
New Optimization Methods for Modern
Machine Learning

Sashank J. Reddi

CMU-ML-17-102

July 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Alexander J. Smola, Co-Chair

Barnabás Póczos, Co-chair
Geoffrey J. Gordon

Suvrit Sra (Massachusetts Institute of Technology)
Stephen Boyd (Stanford University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2017 Sashank J. Reddi

This research was sponsored by: National Science Foundation awards IIS1250350 and IIS1247658; DOE
award DESC0011114; and Boeing Aerospace Data Analytics Lab. The views and conclusions contained in
this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Machine Learning, Optimization, Large-scale, Distributed optimization,
Communication-efficient, Finite-sum, Variance-reduction, Bayesian inference

To my parents and my brother.

iv

Abstract
Modern machine learning systems pose several new statistical, scalabil-

ity, privacy and ethical challenges. With the advent of massive datasets and
increasingly complex tasks, scalability has especially become a critical issue
in these systems. In this thesis, we focus on fundamental challenges related
to scalability, such as computational and communication efficiency, in mod-
ern machine learning applications. The underlying central message of this
thesis is that classical statistical thinking leads to highly effective optimiza-
tion methods for modern big data applications.

The first part of the thesis investigates optimization methods for solving
large-scale nonconvex Empirical Risk Minimization (ERM) problems. Such
problems have surged into prominence, notably through deep learning, and
have led to exciting progress. However, our understanding of optimization
methods suitable for these problems is still very limited. We develop and
analyze a new line of optimization methods for nonconvex ERM problems,
based on the principle of variance reduction. We show that our methods
exhibit fast convergence to stationary points and improve the state-of-the-art
in several nonconvex ERM settings, including nonsmooth and constrained
ERM. Using similar principles, we also develop novel optimization methods
that provably converge to second-order stationary points. Finally, we show
that the key principles behind our methods can be generalized to overcome
challenges in other important problems such as Bayesian inference.

The second part of the thesis studies two critical aspects of modern dis-
tributed machine learning systems — asynchronicity and communication ef-
ficiency of optimization methods. We study various asynchronous stochastic
algorithms with fast convergence for convex ERM problems and show that
these methods achieve near-linear speedups in sparse settings common to
machine learning. Another key factor governing the overall performance of
a distributed system is its communication efficiency. Traditional optimiza-
tion algorithms used in machine learning are often ill-suited for distributed
environments with high communication cost. To address this issue, we dis-
cuss two different paradigms to achieve communication efficiency of algo-
rithms in distributed environments and explore new algorithms with better
communication complexity.

vi

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my
brilliant advisors, Alex Smola and Barnabás Póczos, for their unwavering
support throughout my journey at CMU. Alex Smola has been an excep-
tional mentor. His sheer brilliance, incredibly sharp insights and amazing
expertise in almost every aspect of machine learning has been a great source
of inspiration for me. Barnabás Póczos is a brilliant researcher and a wonder-
ful mentor who taught me that patience and persistence is the key to success-
ful research. Also, thanks to my committee members for their constructive
feedback throughout this thesis.

I have been extremely fortunate to collaborate with a wonderful set of
colleagues: Francis Bach, Emma Brunskill, Carlton Downey, Avinava Dubey,
Ahmed Hefny, Jakub Konečný, Barnabás Póczos, Ariel Procaccia, Aaditya
Ramdas, Peter Richtárik, Nisarg Shah, Alex Smola, Ruslan Salakhutdinov,
Sunita Sarawagi, Aarti Singh, Suvrit Sra, Sundar Vishwanathan, Larry Wasser-
man, Sinead Williamson, Eric Xing and Manzil Zaheer. Special mention goes
to Suvrit Sra, who has been an incredible mentor. His exceptional insights
and ideas have been instrumental in shaping a significant part of this thesis.
I am forever indebted to my undergraduate advisor Sunita Sarawagi for in-
troducing me to research during my time at IIT Bombay. Also, thanks to my
officemates, Avinava, Ahmed, Yifei, Aaditya and Maruan, and department
colleagues for countless interesting discussions.

I was lucky enough to have a wonderful set of friends at CMU. Many
thanks to my closest friend (read as family), Nisarg. It was a great pleasure
discussing research and random subjects, ranging from deep philosophy to
public policy, for countless hours with someone as brilliant as Nisarg. His
thoughts and insights have been very influential in shaping my career and
my life. I would also like to thank Kinjal, Veeru, Yash, Supraja, Jess, Ishan,
Avinava and Manzil for being such awesome friends. My time in Pittsburgh
would not have been as much fun without their company. I thank all my
fellow graduate students for their friendship and support, and for creating a
vibrant research environment.

I am very grateful to all my teachers and research collaborators at CMU.
I am greatly indebted to Larry Wasserman, Geoff Gordon, Ryan Tibshirani,
Aarti Singh and Ruslan Salakhutdinov for sharing their valuable insights
and research expertise with me. Also, thanks to the department staff mem-
bers, especially Diane Stidle and Sandy Winkler, for their invaluable support
throughout my time at CMU.

I have been blessed with an amazing family. Special thanks to my sister-
in-law, Snigdha, for her constant support and encouragement throughout
my doctorate studies. I am lucky to have two wonderful nephews, Arjun
and Akhil, who have been a constant source of joy and pride. I would like
to thank my grandmothers for their love, wisdom and untold sacrifices. I

cannot acknowledge all by name, but let that not diminish my gratitude for
the love and support of my uncles, aunts , cousins and rest of the family.

Last but most importantly, I would like to thank my amazing parents,
Ravindra Reddy and Girija Kumari, and my brilliant brother, Siddhartha, for
their unconditional love, support and countless sacrifices at every moment
of my life. Without their guidance and encouragement none of this would
have been possible. It is to them I dedicate this thesis.

viii

Contents

1 Introduction 1
1.1 Background . 3

1.1.1 Black Box Oracles . 4
1.1.2 Convergence Criteria . 4

1.2 Overview of Thesis & Our Results . 5
1.3 Bibliographic Notes . 13

1.3.1 Excluded Research . 13
1.4 How to read this Thesis? . 13

I Nonconvex Empirical Risk Minimization 15

2 Stochastic Variance Reduction for Smooth Nonconvex Optimization 17
2.1 Introduction . 17

2.1.1 Related Work . 18
2.2 Background & Problem Setup . 19

2.2.1 Nonconvex SGD: Convergence Rate 20
2.3 Nonconvex SVRG . 21

2.3.1 Gradient Dominated Functions . 23
2.4 Convex Case . 24
2.5 Mini-batch Nonconvex SVRG . 25
2.6 Comparison of the Convergence Rates . 27
2.7 Best of Two Worlds . 27
2.8 Experiments . 28
2.9 Discussion . 30

3 Fast Incremental Methods for Smooth Nonconvex Optimization 45
3.1 Introduction . 45

3.1.1 Related work . 46
3.2 Preliminaries . 46
3.3 Algorithm . 48
3.4 Finite Sums with Regularization . 50
3.5 Gradient Dominated Functions . 51
3.6 Minibatch Variant . 52

ix

3.7 Experiments . 54
3.8 Discussion . 55

4 A Generic Approach for Escaping Saddle Points 59
4.1 Introduction . 59

4.1.1 Related Work . 61
4.2 Background & Problem Setup . 62
4.3 Generic Framework . 62
4.4 Concrete Instantiations . 64

4.4.1 Hessian descent . 65
4.4.2 Cubic Descent . 66
4.4.3 Practical Considerations . 67

4.5 Experiments . 67
4.6 Discussion . 70

5 Fast Stochastic Methods for Nonsmooth Nonconvex Optimization 81
5.1 Introduction . 81

5.1.1 Related Work . 83
5.2 Preliminaries . 84
5.3 Algorithms . 85

5.3.1 Nonconvex Proximal SVRG . 85
5.3.2 Nonconvex Proximal SAGA . 87

5.4 General Convergence Analysis . 89
5.5 Extensions . 90
5.6 Experiments . 91
5.7 Discussion . 93

6 Projection-Free Stochastic Nonconvex Optimization 109
6.1 Introduction . 109

6.1.1 Related Work . 110
6.2 Preliminaries . 111
6.3 Algorithms . 113

6.3.1 Stochastic Setting . 113
6.3.2 Finite-sum Setting . 116

6.4 Variance Reduction in Stochastic Setting . 122
6.5 Discussion . 124

7 Variance Reduced Stochastic Langevin Dynamics 129
7.1 Introduction . 129
7.2 Preliminaries . 130
7.3 Variance Reduction for Langevin Dynamics 132

7.3.1 SAGA-LD . 132
7.3.2 SVRG-LD . 134

7.4 Analysis . 134

x

7.5 Experiments . 136
7.5.1 Regression . 136
7.5.2 Classification . 137
7.5.3 Bayesian Independent Component Analysis 138
7.5.4 Mixture Model . 139

7.6 Discussion and Future Work . 139

II Large-Scale Empirical Risk Minimization 147

8 Asynchronous Stochastic Variance Reduced Algorithms for ERM 149
8.1 Introduction . 149
8.2 A General Framework for VR Stochastic Methods 150

8.2.1 Convergence Analysis . 153
8.3 Asynchronous Stochastic Variance Reduction 154

8.3.1 Convergence Analysis . 155
8.4 Non-strongly Convex Case . 156
8.5 Experiments . 158
8.6 Discussion & Future Work . 160

9 Asynchronous Randomized Coordinate Descent Algorithms for ERM 181
9.1 Introduction . 181
9.2 Preliminaries . 183
9.3 Algorithm . 184

9.3.1 Composite Minimization . 184
9.3.2 Asynchronous Parallel Algorithm for Smooth Minimization 185
9.3.3 Stochastic Minimization . 186

9.4 Convergence Analysis . 186
9.4.1 Convergence Results for the Smooth Case 188
9.4.2 Nonsmooth Case . 190

9.5 Applications . 190
9.6 Experiments . 191

9.6.1 Effect of Communication Constraints 192
9.6.2 Concurrency and Synchronization 193
9.6.3 Practical Case Study: Parallel Training of Linear SVM 194

10 Communication-Efficient Coresets
for ERM 205
10.1 Introduction . 205

10.1.1 Related Work . 206
10.2 A General Framework . 208
10.3 Coreset Algorithm . 212
10.4 Experiments . 218
10.5 Discussion . 220

xi

11 Communication-Efficient Distributed Optimization for ERM 221
11.1 Introduction . 221

11.1.1 Related Work . 223
11.2 Algorithm: INEXACTDANE . 223
11.3 Analysis of INEXACTDANE: Quadratic Case 224
11.4 Analysis of INEXACTDANE: General Case 225

11.4.1 Strongly convex case . 226
11.4.2 Weakly convex case . 226
11.4.3 Nonconvex case . 226

11.5 Accelerated Distributed Optimization . 227
11.5.1 Quadratic case . 227
11.5.2 Convex case . 228

11.6 Connection to a Practical Distributed Version of SVRG 229
11.7 Experiments . 229
11.8 Discussion . 231

12 My Other Research — In a Nutshell 249

Bibliography 251

xii

List of Figures

2.1 Neural network results for CIFAR-10, MNIST and STL-10 datasets. The
top row represents the results for CIFAR-10 dataset. The bottom left and
middle figures represent the results for MNIST dataset. The bottom right
figure represents the result for STL-10. 29

2.2 Neural network results for MNIST and STL-10. The leftmost result is for
MNIST. The remaining two plots are of STL-10. 43

3.1 Results for nonconvex regularized generalized linear models (see Equa-
tion (3.12)). The first and last two figures correspond to rcv1 and realsim
datasets respectively. The results compare the performance of REG-SAGA
and SGD algorithms. Here x̂ corresponds to the solution obtained by run-
ning GD for a very long time and using multiple restarts. As seen in the
figure, REG-SAGA converges much faster than SGD in terms of objective
function value and the stationarity gap ‖∇ f (x)‖2. 54

4.1 First order methods like GD can potentially get stuck at saddle points. Second-
order methods can escape it in very few iterations (as observed in the left plot)
but at the cost of expensive Hessian based iterations (see time plot to the right).
The proposed framework, which is a novel mix of the two strategies, can escape
saddle points faster in time by carefully trading off computation and iteration
complexity. 60

4.2 Comparison of various methods on a synthetic problem. Our mix frame-
work successfully escapes saddle point and uses relatively few ISO calls
in comparison to CUBICDESCENT. 68

4.3 Comparison of various methods on CURVES and MNIST Deep Autoen-
coder. Our mix approach converges faster than the baseline methods and
uses relatively few ISO calls in comparison to APPROXCUBICDESCENT. . . 69

4.4 Comparison of various methods on a synthetic problem. Our mix frame-
work successfully escapes saddle point. 78

4.5 Comparison of various methods on a Deep Autoencoder on CURVES
(top) and MNIST (bottom). Our mix approach converges faster than
the baseline methods and uses relatively few ISO calls in comparison to
APPROXCUBICDESCENT . 78

5.1 PROXSVRG and PROXSAGA variants for PL functions. 90

xiii

5.2 Non-negative principal component analysis. Performance of PROXSGD,
PROXSVRG and PROXSAGA on ’rcv1’ (left), ’a9a’(left-center), ’mnist’ (right-
center) and ’aloi’ (right) datasets. Here, the y-axis is the function subop-
timality i.e., f (x)− f (x̂) where x̂ represents the best solution obtained by
running gradient descent for long time and with multiple restarts. 92

5.3 Non-negative principal component analysis. Performance of SGD, PROXSVRG
and PROXSAGA on ’real-sim’ (left), ’covtype’(center) and ’ijcnn1’ (right)
datasets. Recall that the y-axis is the function suboptimality i.e., f (x)−
f (x̂) where x̂ represents the best solution obtained by running gradient
descent for long time and with multiple restarts. 104

6.1 Table comparing the best SFO/IFO and LO complexity of algorithms dis-
cussed in the chapter (for the nonconvex setting). Here, SFW, SVFW-S
and SAGAFW-S are algorithms for the stochastic setting, while FW, SVFW
and SAGAFW are algorithms for the finite-sum setting. The complexity is
measured by the number of oracle calls required to achieve an ε-accurate
solution (see Section 6.2 for definitions of SFO/IFO and LO complexity).
The complexity of FW is from [78]. The results marked in red highlight
our contributions in this chapter. For clarity, we hide the dependence
of SFO/IFO and LO complexity on the initial point and few parameters
related to the function F and domain Ω. 112

6.2 SVFW-S and SAGAFW-S variants for the stochastic setting. 122

7.1 Performance comparison of SGLD and SAGA-LD on a regression task.
The x-axis and y-axis represent the number of passes through the entire
data and the average test MSE, respectively. Additional experiments are
provided in the appendix. 137

7.2 Comparison of performance of SGLD and SAGA-LD for Bayesian logistic
regression. The x-axis and y-axis represent the number of effective passes
through the dataset and the test log-likelihood respectively in these plots. 138

7.3 Left plot shows the performance of SGLD and SAGA-LD for ICA task. The
next two plots show the variance of SGLD and SAGA-LD for regression,
classification. The rightmost two plot shows true and estimated posterior
using SAGA-LD for Mixture model . 138

7.4 Performance comparison of SGLD and SAGA-LD on regression task. The
x-axis and y-axis represent the number of pass through the entire data
and average test MSE respectively. 145

8.1 SCHEDULEUPDATE function for SVRG (top left), SAGA (top right), SAG
(bottom left) and GD (bottom right). While SVRG is epoch-based, rest
of algorithms perform updates at each iteration. Here a|b denotes that a
divides b. 152

8.2 SCHEDULEUPDATE for HSAG. 153

xiv

8.3 l2-regularized logistic regression. Speedup curves for Lock-Free SVRG
and Locked SVRG on rcv1 (left), real-sim (left center), news20 (right cen-
ter) and url (right) datasets. We report the speedup achieved by increas-
ing the number of threads. 159

8.4 l2-regularized logistic regression. Training loss residual f (x)− f (x∗) ver-
sus time plot of Lock-Free SVRG, DSGD and CSGD on rcv1 (left), real-sim
(left center), news20 (right center) and url (right) datasets. The experi-
ments are parallelized over 10 cores. 160

9.1 Objective value vs. number of iterations for different graph topologies.
Note that larger the connectivity of the graph, faster is the convergence. . 192

9.2 Speedup for Tree + Ring (top) and Star + Ring (bottom) topologies and
different levels of synchronization. Note for Star + Ring topology, speedup
of asynchronous algorithm is significantly higher than that of synchronous
version. 194

9.3 Speedup for linear SVM training on a7a (top) and w8a datasets. 195

10.1 l2-regularized logistic regression on ijcnn1 (top) and cod-rna (bottom)
datasets. We compare our algorithm with mini-batch SVRG and SGD.
Training loss residual is shown with respect to passes through the dataset
and communication cost (left and central columns). Test error with re-
spect to the passes through the dataset is shown in the right column. . . . 218

10.2 l2-regularized logistic regression on more datasets w8a (top) and cover-
type (bottom). Similar to the previous case, we compare our algorithm
with mini-batch SVRG and SGD. 219

11.1 Top: rcv1 dataset; Smoothed hinge loss; λ set to 1/(cN), for c ∈ {1, 10, 100}.
Bottom: Logistic loss; left-hand two: Varying number of local data passes
per iteration. rcv1 and url datasets. right-hand two: Varying number of
nodes; rcv1 and url datasets. 230

11.2 rcv1 dataset, 8 nodes, regularization parameter λ set to 1/(cN), for c ∈
{1, 10, 100} (in left/middle/right columns respectively). Top row: logis-
tic loss. Bottom row: smoothed hinge loss. 244

11.3 rcv1 dataset, 64 nodes, regularization parameter λ set to 1/(cN), for
c ∈ {1, 10, 100} (in left/middle/right columns respectively). Top row:
logistic loss. Bottom row: smoothed hinge loss. 244

11.4 covtype dataset, 8 nodes, regularization parameter λ set to 1/(cN), for
c ∈ {1, 10, 100} (in left/middle/right columns respectively). Top row:
logistic loss. Bottom row: smoothed hinge loss. 245

11.5 realsim dataset, 8 nodes, regularization parameter λ set to 1/(cN), for
c ∈ {1, 10, 100} (in left/middle/right columns respectively). Top row:
logistic loss. Bottom row: smoothed hinge loss. 245

xv

11.6 Varying number of passes through local data per iteration in range [1/6, 4].
Top row: logistic loss, Bottom row: smoothed hinge loss. Datasets in
columns: rcv1, covtype, realsim, url . 246

11.7 Performance comparison as data is partitioned across 4–64 nodes, with
logistic loss. Top row: Single pass through local data per iteration. Bot-
tom row: Fixed number of updates of local SVRG per iteration. Datasets
in columns: rcv1, covtype, realsim, url. 247

11.8 Data partitioned randomly, vs. data partitioned according to their output
label. Datasets in columns: rcv1, covtype and realsim. 247

xvi

List of Tables

2.1 Table comparing the best IFO complexity of different algorithms discussed
in this chapter. The complexity is measured in terms of the number of or-
acle calls required to achieve an ε-accurate solution (see Definition 2.2.1).
Here, by fixed step size, we mean that the step size of the algorithm is
fixed and does not dependent on ε (or alternatively T, the total number
of iterations). The complexity of gradient dominated functions refers to
the number of IFO calls required to obtain ε-accurate solution for a τ-
gradient dominated function (see Section 2.2 for the definition) 18

5.1 Table comparing the best IFO and PO complexity of different algorithms
discussed in the chapter. The complexity is measured in terms of the
number of oracle calls required to achieve an ε-accurate solution. The IFO
(PL) and PO (PL) represents the IFO and PO complexity of PL functions
(see Section 5.5 for a formal definition). The results marked in red high-
light our contributions. In the table, “C-MB” indicates whether stochas-
tic algorithm converges using a constant minibatch size. To the best of
our knowledge, it is not known if PROXSGD converges on using constant
minibatches for nonconvex nonsmooth optimization. Also, we are not
aware of any specific convergence results for PROXSGD in the context of
PL functions. 85

7.1 Summary of datasets used in regression. 137
7.2 Summary of the datasets used for classification. 138

xvii

xviii

Chapter 1

Introduction

Machine learning (ML) and intelligent systems have become an indispensable part of
our modern society. These systems are now used for a variety of tasks that includes
search engines, recommendation engines, self-driving cars and autonomous robots.
Most of these systems rely on recognizing patterns in observable data in order to un-
derstand the data or make new predictions on unseen data. The advent of modern data
collection methods and increased computing machinery have fueled the development
of such ML systems. However, modern ML applications also pose new challenges in
terms of scalability, efficiency, privacy and ethics; thus, addressing them is critical to the
development of the field. This thesis is a step in the direction of addressing these new
challenges in modern ML applications.

We start our discussion by further explaining the goals of this thesis. Modern ma-
chine learning applications are heavily rooted in statistics and typically involve two
major tasks: (i) constructing a model that generates the observable data. (ii) learning
the parameters of the model using the observable data. This thesis particularly focuses
on developing fast and efficient mathematical optimization methods to address problem (ii) in
modern ML applications. For the purpose of our discussion, consider the classical prob-
lem of classification using a logistic regression classifier. The samples {(zi, yi)}n

i=1 where
zi ∈ Rd and yi ∈ {−1, 1} for all i ∈ [n] form the dataset where zi is referred to as fea-
tures and yi the corresponding class label. For instance, in email spam filtering task,
the training data includes the features zi corresponding to the content of the email and
spam/non-spam label yi. For such tasks, the optimization problem of our interest is:

min
x∈Rd

1
n

n

∑
i=1

log(1 + exp(−yiz>i x)) +
1
2
‖x‖2. (1.1)

The term log(1 + exp(−yiz>i x)) represents the loss with respect to the ith sample. The
term ‖x‖2, referred to as regularizer, improves the quality of the solution by providing
better generalization over unseen data. Roughly, this corresponds to finding the max-
imum likelihood estimate (MLE) of the distribution that explains the observed data.
One of the most interesting aspects of this problem is that it is separable over the sam-
ple data points. Statistically speaking, such an attribute results from the assumption

1

that the sample points are drawn i.i.d from a probability distribution. In modern ML
applications, the number of data points n is very large, in which case exploiting the sep-
arable nature of the optimization problem becomes important. More generally, in most
part of this thesis, we are interested in solving optimization problems of the following
form:

min
x∈Ω

1
n

n

∑
i=1

fi(x) + h(x), (1.2)

where Ω is a compact convex set. Optimization problems of this form, typically referred
to as empirical risk minimization (ERM) problems or finite-sum problems, are central to
most applications in ML. For example, in logistic regression problem, fi(x) = log(1 +
exp(−yiz>i x)), h(x) = 1

2‖x‖2 and Ω = Rd. In general, for supervised learning tasks, x,
fi and h represent the parameter of our interest, loss with respect to the ith data point and
regularization respectively. In most instances, a closed-form solution for problems of the
form (1.2) does not exist. Hence, one has to resort to numerical optimization techniques
in order to obtain a solution. Numerical optimization methods based on first-order
methods (i.e., based on gradient information of the function) are particularly favored
in the ML community due to their scalable nature. Popular methods include gradient
descent, stochastic gradient descent and randomized coordinate descent. However, as
we will see later, these methods can be significantly improved by further exploiting the
structure of the problem in (1.2).

Before proceeding any further, one needs to understand the characteristics and re-
quirements of modern machine learning applications in order to appreciate the con-
tributions of this work. Modern ML applications have added the following two new
dimensions to the traditional ones.

1. Increased complexity of the model. Traditionally, most of the focus in machine
learning has been on developing convex models and algorithms (e.g., SVM, logis-
tic regression). However, recently, nonconvex models have surged into the lime-
light (notably via deep learning) and led to exciting progress – for instance these
models have provided state-of-the-art performance and have completely revolu-
tionized areas like computer vision, natural language processing. Thus, develop-
ing fast and principled optimization techniques for solving these complex models
has become important.

2. Large-scale and distributed data. With advances in modern data collection meth-
ods, the size of the datasets used in ML applications have increased tremendously.
Thus, the dataset is huge and distributed across several computing nodes. For
example, large scale distributed machine learning systems such as the Parameter
server [84], GraphLab [176] and TensorFlow [1] work with datasets sizes in the order
of hundreds of terabytes. When dealing with datasets of such scale in distributed
systems, computational and communication workloads need to be designed care-
fully.

The main focus of this thesis is to make the progress geared towards addressing these
important aspects of the modern machine learning applications. Our primary goal is to

2

show that by using principled statistical thinking, one can design very efficient and
effective optimization methods with focus on the aforementioned aspects.

1.1 Background

In this section, we briefly review the background material for this thesis. We also de-
scribe some common assumptions and notation used for most part of the thesis except
where it is mentioned otherwise. The primary optimization problem of our interest is:

min
x∈Rd

1
n

n

∑
i=1

fi(x), (1.3)

where functions fi can be general nonconvex functions. We use empirical risk minimiza-
tion (ERM) and finite-sum problem interchangeably to describe this problem setting.
We use Fn to denote all functions of the form (1.3). We use component function and
training point i interchangeably to refer function fi for all i ∈ [n].

We use smoothness assumptions on objective functions throughout this thesis. In
particular, we use the following Lipschitz conditions on the function.

Definition 1.1.1. (L-smooth functions) We say a function f : Rd → R is L-smooth if there is
a constant L such that ‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.
Throughout this thesis, we assume that the functions fi in (1.3) are L-smooth for all
i ∈ [n]. Such an assumption is very common in the analysis of first-order methods. In
parts of the thesis, we also examine strongly convex and non-strongly convex functions.
A function f is called λ-strongly convex if there is λ ≥ 0 such that

f (x) ≥ f (y) + 〈∇ f (y), x− y〉+ λ
2 ‖x− y‖2 ∀x, y ∈ Rd.

When f is L-smooth and λ-strongly convex, the quantity κ := L/λ is called the condition
number of f . We say f is non-strongly convex when f is 0-strongly convex. We also
recall the class of gradient dominated functions [115, 122], where a function f is called
τ-gradient dominated if for any x ∈ Rd

f (x)− f (x∗) ≤ τ‖∇ f (x)‖2, (1.4)

where x∗ is a global minimizer of f . Note that such a function f need not be convex;
it is also easy to show that a λ-strongly convex function is 1/(2λ)-gradient dominated.
We shall later see that stronger convergence guarantees can be provided for this special
class of nonconvex functions. We introduce one more definition useful in the analysis
of SGD methods.

Definition 1.1.2. We say f ∈ Fn has a σ-bounded gradient if ‖∇ fi(x)‖ ≤ σ for all i ∈ [n]
and x ∈ Rd.

3

Finally, the proximal operator of a function h is defined as

proxηh(x) := arg min
y∈Rd

(
h(y) +

1
2η
‖y− x‖2

)
, (1.5)

for some parameter η > 0. Proximal Operators are important for nonsmooth optimiza-
tion i.e., problems where the objective function is non-differentiable. These operators
are particularly useful when (i) the objective function can be written as a sum of smooth
and nonsmooth function and (ii) the proximal operator of the nonsmooth part is easy to
compute. We defer further discussion on proximal operators to Chapter 5.

1.1.1 Black Box Oracles

We define the black box oracle models used in this thesis. Use of a black box oracle is
helpful in providing a clear exposition of the problem and its structure. Furthermore, it
also allows us to compare the performance of the various algorithms in a simple manner.
We use four different oracle models in this thesis:

1. Incremental First-order Oracle (IFO)

2. Incremental Second-order Oracle (ISO)

3. Proximal Oracle (PO)

4. Linear Oracle (LO)
A majority of the algorithms proposed in this thesis use simple first-order information
of the function, and hence, simply query the IFO oracle. We describe only the IFO oracle
here and defer the discussion of other oracles to the respective chapters where they have
been used.

Definition 1.1.3. For f ∈ Fn, an IFO takes an index i ∈ [n] and a point x ∈ Rd, and returns
the pair (fi(x),∇ fi(x)).

IFO based complexity analysis was introduced to study lower bounds for finite-sum
problems [2]. Observe that IFO outputs only first-order information of a specific ran-
domly chosen function fi. As we shall see later, ISO oracle uses second-order (Hessian)
information the function. PO and LO will be useful for nonsmooth and constrained
optimization settings.

1.1.2 Convergence Criteria

A significant part of this thesis is devoted to designing and analyzing convergence of
optimization algorithms for the aforementioned problem. In the convex case, one typ-
ically uses suboptimality conditions based on [f (x) − f (x∗)] or ‖x − x∗‖2 as the con-
vergence criterion. Unfortunately, such criteria cannot be used for nonconvex functions
due to the hardness of the problem. Following Nesterov [111] and Ghadimi and Lan
[47], we use ‖∇ f (x)‖2 to judge when iterate x is approximately stationary. While the
quantities ‖∇ f (x)‖2 and f (x)− f (x∗) or ‖x− x∗‖2 are not comparable in general (see

4

[47]), they are typically assumed to be of similar magnitude. Throughout our analysis,
we do not assume n to be constant, and report dependence on it in our results. For our
analysis, we need the following definition.

Definition 1.1.4. (ε-accurate point) A point x is called ε-accurate if ‖∇ f (x)‖2 ≤ ε. A stochas-
tic iterative algorithm is said to achieve ε-accuracy in t iterations if E[‖∇ f (xt)‖2] ≤ ε, where
the expectation is over the stochasticity of the algorithm.

In machine learning applications, we are typically interested in generalization er-
ror. However, the exact relationship between stationarity and generalization error is
unknown in the nonconvex setting and is, thus, out of scope of this thesis. For convex
functions, a stronger criterion based on suboptimality can be used. In particular, we use
the following convergence criterion for convex and strongly convex functions.

Definition 1.1.5. (ε-suboptimal Point) A point x is called ε-suboptimal if f (x)− f (x∗) ≤ ε,
where x∗ is an optimal solution of (1.2). A stochastic iterative algorithm is said to achieve ε-
suboptimality in t iterations if E[f (x)]− f (x∗) ≤ ε, where the expectation is over the stochas-
ticity of the algorithm.

We measure efficiency of the algorithms in terms of the number of IFO calls made
by the algorithm (IFO complexity) to find an ε-accurate or ε-suboptimal solution for
nonconvex and convex cases respectively, except in Chapter 4, where a stronger conver-
gence criterion for nonconvex functions is considered. Throughout this thesis, we hide
the dependence of IFO complexity on the Lipschitz constant L, and the initial point (in
terms of ‖x0 − x∗‖2 and f (x0)− f (x∗)) for a clean comparison.

1.2 Overview of Thesis & Our Results

This thesis presents a selection of my work on large-scale optimization methods for
machine learning. The content of the thesis is divided into two parts: Part I, consisting of
Chapters 2 to 7, describes my work on nonconvex ERM problems, and Part II, organized
as the next four chapters, describes my work on large-scale optimization methods with
focus on computational and communication efficiency 1. We provide a brief overview
of various chapters here and defer the exact details to the respective chapters. The key
message of this thesis is: Classical statistical thinking leads to highly effective optimization
algorithms for modern machine learning applications.

Part I: Nonconvex Empirical Risk Minimization

The first part of the thesis focuses on fast stochastic methods for nonconvex empirical
risk minimization problems. We consider a variety of settings, including nonsmooth
and constrained optimization, and provide practical methods with fast convergence
rates. We develop a new line of algorithms, called variance reduced algorithms, for
nonconvex optimization and show that they can significantly improve the convergence

1The code for parts of this thesis is available at https://github.com/CMU-ML-17-102/

5

https://github.com/CMU-ML-17-102/

of the state-of-the-art algorithms, both from theoretical and practical standpoint.

Chapter 2: Stochastic Variance Reduction for Nonconvex Optimization
Traditionally, for small-scale nonconvex optimization problems of form (1.2) that arise
in ML, batch gradient methods have been used. However, in the large-scale setting i.e.,
where n is very large in (1.2), batch methods become intractable. In such scenarios,
the popular stochastic gradient method (SGD) proposed by Robbins and Monro [148] is
often preferred. SGD is an iterative first-order method wherein each step it takes a step
in the negative direction of the stochastic approximation of the gradient. However, one
of the fundamental issues with SGD is the high variance in the stochastic approximation
of the gradient slows its convergence. In order to control the variance introduced due
to noise in the gradient, one has to typically decrease the step size as the algorithm
proceeds. This in turn leads to slow convergence and furthermore, raises the question
of selection of step size and its decreasing rate. This limitation has been circumvented in
the convex settings, where variance reduced variants of SGD with good theoretical and
practical properties have been developed. However, the nonconvex setting has been
largely unexplored and is still unresolved.

In this chapter, we show that a variant of popular variance reduced method, SVRG,
can be used to provide strong convergence guarantees to a stationary point. More
specifically, we show that SVRG algorithm can converge to a ε-accurate stationary point
at a rate O(n+ n2/3/ε), faster than both gradient descent (GD) and SGD. Our second con-
tribution of this chapter is analysis of SVRG for non-strongly convex functions. Typically,
this class of functions is analyzed indirectly by first reducing them to the strongly convex
functions using l2 perturbations and then appealing to convergence results for strongly
convex functions. However, such a strategy is undesirable in practice due to additional
complexity of l2-perturbation. Instead, we provide direct convergence analysis of SVRG
algorithm for this class of functions. Our final contribution of this chapter is linear con-
vergence rate of O(n+ n2/3τ log(1/ε)) to the global optimum for τ-gradient dominated
functions. Note that for this class of problems, SGD converges at sublinear convergence
rate O(1/ε2). To our knowledge, ours is the first result that improves upon the conver-
gence rate of SGD and GD for general nonconvex and gradient dominated functions.

Chapter 3: Fast Incremental Methods for Smooth Nonconvex Optimization
Chapter 2 is devoted to investigating convergence of SVRG algorithm for nonconvex
ERM problems. Although SVRG exhibits strong theoretical and practical performance
for nonconvex optimization, it requires computing full gradient at periodic intervals and
is thus, not an incremental method. Incremental methods are optimization algorithms
that use only constant (independent of n) IFO calls at every iteration of the algorithm.
Conceptually, due to very restricted access to component functions, incremental meth-
ods are desirable for large-scale empirical risk minimization and more broadly, stochas-
tic optimization. These methods are also appealing from practical point of view since
the computational load is distributed uniformly with respect to time.

To this end, we develop fast incremental methods for smooth nonconvex optimiza-
tion. In particular, we build upon SAGA algorithm, a variance reduced method used

6

in the context of convex optimization, and develop an incremental method with fast
convergence rate for nonconvex ERM problems. Perhaps surprisingly, we show that
SAGA algorithm converges to ε-accurate solution at a rate O(n + n2/3/ε), similar to SVRG
algorithm. However, this advantage comes at the cost of additional memory require-
ment. While such a memory overhead is unavoidable in the general nonconvex setting,
we show that for a special class of functions that typically arise in ML, this memory
requirement can be reduced. Finally, we also prove that SAGA algorithm exhibits linear
convergence for gradient dominated functions. In this chapter, while we confine our
attention to SAGA algorithm, by using our proof technique, we can show that another
incremental method, SDCA, exhibits very similar properties for our general problem
setting.

Chapter 4: A Generic Approach for Escaping Saddle Points
The previous two chapters focus on understanding the convergence of stochastic meth-
ods, like SVRG and SAGA, to stationary points of nonconvex functions i.e., first-order
critical points. While these results significantly advance our understanding, they have
an important shortcoming — they do not ensure convergence to local optima or second-
order critical points. This issue has recently received considerable attention in the ML
community, especially in the context of deep learning [27, 29, 30], who argue that con-
vergence to saddle points is the primary obstacle for solving nonconvex ERM problems
like large deep networks.

In this chapter, we tackle this fundamental issue of convergence to second-order crit-
ical points. To ensure such a property, one has to resort to algorithms that either use the
Hessian explicitly or exploit its structure. Thus, this chapter, unlike other chapters of
this thesis, uses second-order information of the objective function. However, frequent
usage of second-order information drastically increases the computational and memory
requirements of the system; thereby, reducing its overall performance. For example, cu-
bic regularization (CR) method [115] uses Hessians to obtain faster convergence rates.
In particular, Nesterov and Polyak [115] showed that CR requires O(1/ε3/2) iterations
to achieve the second-order critical conditions. However, each iteration of CR is expen-
sive requiring computation of the Hessian and solving multiple linear systems, each
of which has complexity O(dω) (ω is the matrix multiplication constant), thus, under-
mining the benefit of its faster convergence. The insight of our work is that first-order
information can be used for the most part of the optimization process and Hessian infor-
mation is needed only when stuck at stationary points that are not second-order critical;
thus, eliminating the need for frequent use of Hessian information.

Our first contribution in this chapter is to develop a general framework based on
this methodology, one which carefully alternates between subroutines that use gradient
and Hessian information respectively and ensures second-order criticality, and provide
its convergence analysis. We provide two different instantiations of the framework and
show that a simple instantiation of the framework achieves convergence rates that are
competitive to the current state-of-the-art results.

Chapter 5: Fast Stochastic Methods for Nonsmooth Nonconvex Optimization

7

Nonsmoothness arises naturally in ML settings as part of the loss function or the reg-
ularization. For example, in support vector machines (SVM), nonsmoothness is due to
the non-differentiability of the hinge loss. This is just one of several instances in ML
where the objective function is nonsmooth. In this chapter, we focus on fast stochastic
methods for nonsmooth nonconvex optimization problems, thereby, generalizing the
problem settings in the previous chapters. One of the popular approach to handle non-
smoothness is through the use of proximal operators. Proximal operators can be used
in problem settings of the following form:

min
x

f (x) + h(x), (1.6)

where function f is smooth and h is nonsmooth and proximal operator of function h
can be computed (see (1.5)). Such a setting is very natural to ML, where function h
corresponds to the nonsmooth regularizer. Proximal variants of SGD algorithm has been
extensively studied in the context of convex optimization and been recently generalized
to the nonconvex setting.

In the convex case, proximal variants of algorithms are appealing because they have
convergence rates very similar to that of their smooth counterparts. For instance, prox-
imal variant of SGD algorithm has convergence rate O(1/ε2) to obtain an ε-suboptimal
solution, which is similar to that of SGD for smooth convex optimization. However,
it is unknown if such a benefit extends to the nonconvex setting. In a recent work,
[48] showed that proximal variant of SGD algorithm converges in the setting where f is
smooth nonconvex and r is nonsmooth but convex; however, it requires increasing the
mini-batch size at each iteration of the algorithm. In particular, it is unknown if the con-
stant mini-batch proximal variant of SGD converges for the nonconvex case. Note that
this issue does not afflict the smooth nonconvex setting where SGD is known to converge
with constant mini-batch size. Our primary contribution in this chapter is to develop
and study fast stochastic methods for tackling nonsmooth nonconvex problems with
guaranteed convergence for constant minibatches; thereby, bridging a fundamental gap
in our knowledge of stochastic nonsmooth nonconvex optimization. These methods are
based on proximal variants of the variance reduced methods, SVRG and SAGA, once
again demonstrating the power of reducing variance in the context of nonconvex opti-
mization.

Chapter 6: Projection-Free Stochastic Nonconvex Optimization
In the previous chapter, the primary focus was on handling nonsmoothness through the
use of proximal operators, which includes constrained optimization as a special case.
Consider the following optimization problem:

min
x∈Ω

1
n

n

∑
i=1

fi(x),

where set Ω is convex. This is a special case of (1.6), where function h corresponds to

8

the indicator function IΩ(x) of a closed convex set Ω, defined below:

IΩ(x) =

{
0 when x ∈ Ω
+∞ when x /∈ Ω.

An important assumption in this context is that the proximal operator of r is easy to
compute. In the constrained optimization setting, this amounts to efficient projection
onto the constraint set. While such an assumption is reasonable in several ML applica-
tions, in many real settings, the cost projecting onto the constraints set can be very high
(e.g., projecting onto the trace-norm ball, onto base polytopes in submodular minimiza-
tion [42]); and in extreme cases projection can even be computationally intractable [28].
This fundamental issue underlies the recent surge in interest for projection-free meth-
ods. Frank-Wolfe (FW) method, also known as conditional gradient, is a classic projection-
free method developed for constrained convex optimization. More recently, stochastic
FW methods have been developed for ML applications since batch FW method is infeasi-
ble for large-scale ML applications because it requires access to all component functions
at each iteration of the algorithm; however, nonconvex variants of these methods are
unknown. Developing nonconvex projection-free methods is critical for modern large-
scale ML applications, especially in wake of recent breakthroughs in deep learning.

To address this challenge, following the line of work on variance reduced methods
in thesis, we propose two variance reduced (VR) algorithms: SVFW and SAGAFW, based
on SVRG and SAGA respectively. By careful selection of parameters in these algorithms,
we can attain faster convergence rates than the deterministic FW. In particular, we prove
that SVFW and SAGAFW are faster than deterministic FW by a factor of n1/3 and n2/3.
In this chapter, we also investigate the purely stochastic setting and show that signif-
icant improvements over out-of-the-box stochastic FW method for this setting. To our
knowledge, our work presents the first theoretical improvement for stochastic variants
of projection-free methods, like Frank-Wolfe, in the context of nonconvex optimization.

Chapter 7: Variance Reduced Stochastic Langevin Dynamics
Bayesian inference (BI) is a very closely related to optimization. BI involves sampling
from the posterior distribution and exploring its landscape, which is intimately related
to finding the minimum of a function. Our focus in this chapter is to show that variance
reduction techniques can be useful in settings beyond optimization.

Monte Carlo based sampling methods are preferred in Bayesian inference due to
their simplicity and asymptotic convergence properties; however convergence can be
slow in large models due to poor mixing. This led to the rise of gradient-based Monte
Carlo methods like Langevin Dynamics and Hamiltonian Monte Carlo [104], which al-
low more efficient exploration of posterior distributions. However, the practical per-
formance of these methods is greatly undermined by the huge computational cost of
computing the gradient and evaluating the likelihood on large datasets. More recently,
stochastic variants of these methods, replace the expensive gradient evaluation with a
cheap stochastic gradient approximation on a random subset of the data, have garnered
significant interest while working with large data sets, especially Stochastic Gradient

9

Langevin Dynamics (SGLD) [172]. SGLD algorithm has very close relationship with clas-
sic SGD method [149]. Similar to SGD, performance of SGLD can be hampered by the
variance in the stochastic gradient approximation, thereby, leading to slow convergence
of the algorithm. Hence, it is natural to ask if SGLD, similar to SGD, can benefit from
variance reduction techniques.

We provide an affirmative answer to the aforementioned research question by de-
veloping new methods for reducing variance in the stochastic approximation in SGLD.
In particular, we propose two different methods, SVRG-LD and SAGA-LD inspired from
SVRG and SAGA algorithms respectively, that use variance reduced gradient approxi-
mation. For these methods, we provide strong theoretical results, and empirical evalua-
tions showing impressive speed-ups over SGLD, on a variety of machine learning tasks
such as regression, classification, independent component analysis and mixture model-
ing. To our knowledge, ours is the first work that aims to directly reduce variance in
a gradient-based Monte Carlo method. While our focus in this chapter is on Langevin
dynamics, our approach is easily applicable to other gradient-based Monte Carlo meth-
ods.

Part II: Large-Scale Asynchronous & Distributed Optimization

In the second part, we look into asynchronous and distributed empirical risk minimiza-
tion problems. In particular, we assume a setting where parallelism is important and
communication between the nodes is expensive. In order to meet these requirements,
the distributed optimization algorithm needs to be robust in terms of (i) synchronicity
and (ii) the communication load of the overall system. Our focus in this part of the thesis
is to examine these vital aspects, and design novel asynchronous and communication
efficient algorithms for convex ERM problems.

Chapter 8: Asynchronous Stochastic Variance Reduced Algorithms for ERM
Most traditional ML algorithms, like SGD, are inherently sequential. For instance, the
update of SGD,

xt+1 = xt − 1
|It| ∑i∈It

∇ fi(xt)

for a uniformly randomly chosen subset It ⊂ [n], is sequential requiring computation
of gradient only part of the training data. In parallel computing environments, this
results in only partial usage of computing resources, which can immensely damage the
performance of the system; hence, asynchronous systems are vital to many modern
large-scale ML systems. Recently, several works, most notably Hogwild! [128], have
demonstrated that SGD algorithm can be implemented in an asynchronous fashion at
the expense of very little practical and theoretical efficiency. However, these variants of
SGD inherit the same slow convergence of SGD.

VR methods, like SVRG and SAGA, have been able to overcome these problems in the
synchronous setting, however, asynchronous versions of these algorithms—a crucial re-
quirement for modern large-scale applications—have not been studied. We bridge this

10

gap by presenting a new unifying framework for many variance reduction techniques.
Subsequently, we propose an asynchronous algorithm grounded in our framework, and
prove its fast convergence. An important consequence of our general approach is that
it yields asynchronous versions of variance reduction algorithms such as SVRG and
SAGA as a byproduct, which exhibit linear convergence to the global minimum for
strongly-convex functions. Our method achieves near linear speedup in sparse set-
tings common to machine learning. We demonstrate the empirical performance of our
method through a concrete realization of asynchronous SVRG. To our knowledge, ours
is the first work to develop asynchronous stochastic methods with linear convergence for
strongly-convex functions.

Chapter 9: Asynchronous Randomized Coordinate Descent Algorithms for ERM
In this chapter, we develop asynchronous variants for randomized coordinate descent
with linear constraints. In this setting, we are interested in the following composite
objective convex problem with non-separable linear constraints

min
x

F(x) := f (x) + h(x) s.t. Ax = 0. (1.7)

Here, f : Rd → R is assumed to be continuously differentiable and convex, while
h : Rd → R ∪ {∞} is lower semi-continuous, convex, coordinate-wise separable, but
not necessarily smooth; the linear constraints are specified by a matrix A ∈ Rm×d, for
which m � d. One might wonder the connection between optimization problem (1.7)
and finite-sum minimization problems of our interest. However, observe that any finite-
sum minimization problem can be rewritten using variable-splitting in the following
manner:

min
x

1
n

n

∑
i=1

fi(x) ≡ min
{xi=x,∀i∈[n]}

1
n

n

∑
i=1

fi(xi).

Solving the problem in distributed environment requires considerable synchronization
(for the consensus constraint), which can slow down the algorithm significantly. How-
ever, the dual of the problem is

min
λ

1
n

n

∑
i=1

f ∗i (λi) s.t
n

∑
i=1

λi = 0,

where f ∗i is the Fenchel conjugate of fi. This reformulation perfectly fits our prob-
lem formulation in (1.7) and can be solved in an asynchronous manner using the pro-
posed procedure. Other interesting applications of the more general setup include con-
strained least square problem, multi-agent planning problems, resource allocation—see
[105, 106] and references therein for more examples. We also demonstrate the superior
empirical performance of our algorithm on synthetic and real-world applications.

Chapter 10: Communication-Efficient Coresets for Empirical Risk Minimization
In the previous chapters of Part II, we discuss asynchronous optimization algorithms
for problems that arise in machine learning. However, the communication efficiency

11

of these algorithms was not examined. In modern distributed ML systems, machines
read and write global parameter frequently. This data access requires massive amount
of network bandwidth and hence, communication efficiency of optimization algorithms
is critical. To this end, we develop and discuss new communication efficient optimiza-
tion algorithms. For the purpose of this discussion, we assume a parameter server ar-
chitecture for investigating these algorithms. Such a setup entails a server group and
a worker group where each group contains several threads/machines. The server ma-
chines mainly serve the purpose of maintaining the global parameters, while most of the
workload needs to be allocated to the worker machines. The communication between
the worker and the server group is the assumed to the main bottleneck and hence, needs
to minimized.

Iterative algorithms like SGD often require large amount of communication between
worker and server machines. The first approach to reduce this communication cost is
by constructing a small summary of the training data — which acts as a proxy for the
entire data set — and communicating it to the server machine; thereby, eliminating the
need for frequent communication between the worker and the server machines. Such
an approach entails (i) computing these summaries of data at the worker nodes (which
can be computationally intensive), (ii) sending these small summaries to a server ma-
chine (a low communication overhead task) and (iii) finally, solving a small optimization
problem at the server machines. This summary of the training points is called a coreset.
While this methodology has been successfully applied to data clustering problems like
k-means and k-median (see [38, 39]), it remains largely unexplored for supervised learn-
ing and optimization problems. In this chapter, we investigate this methodology in the
context of solving empirical loss minimization problems and show its benefit for ERM
problems with particular loss functions like hinge and logistic loss.

Chapter 11: Communication-Efficient Distributed Optimization for ERM
An alternate approach to attain communication efficiency is to perform most of the
computation at the worker machines in an embarrassingly manner and combine the
solutions from all the worker machines; consequently, eliminating the need to commu-
nicate to the server machine frequently. Note that such an operation needs to be done
in an iterative fashion in order to each an optimal solution to our optimization problem.
ADMM (alternating direction method of multipliers) is an popular approach for solving
distribution optimization problems that follows this methodology. Under certain con-
ditions, ADMM is shown to achieve communication complexity of O(

√
L/λ log(1/ε))

for L-smooth and λ-strongly convex function. More recently, the DANE, DISCO and
COCOA+ algorithms have been proposed to tackle the problem of reducing the commu-
nication complexity in solving problems of form (1.2) [67, 163, 180]. DISCO is particu-
larly appealing because they match communication complexity lower bounds derived
in [175]. However, DISCO requires a second-order oracle for its execution and is not
embarrassingly parallel. Our contribution in this chapter is to develop a first-order algo-
rithm that not only achieves the communication lower bounds in [175] but can be also
be implemented in an embarrassingly parallel fashion. This algorithm, AIDE, is to our
knowledge the first gradient-based method that achieves the lower bounds in [175].

12

1.3 Bibliographic Notes

The research presented in this thesis is based on joint work with many co-authors, as
described below. In each work, I am either the primary contributor or one of two equal
primary contributors.

In Part I, Chapter 2 is based on joint work with Ahmed Hefny, Suvrit Sra, Barnabás
Póczos and Alex Smola [139]. Chapter 3, 5 and 6 are joint works with Suvrit Sra,
Barnabás Póczos and Alex Smola [141, 142, 143]. Chapter 4 is joint work with Manzil Za-
heer, Suvrit Sra, Barnabás Póczos, Francis Bach, Ruslan Salakhutdinov and Alex Smola.
Chapter 7 is joint work with Avinava Dubey, Sinead Williamson, Barnabás Póczos, Alex
Smola and Eric Xing [138].

In Part II, Chapter 8 is based on joint work with Ahmed Hefny, Suvrit Sra, Barnabás
Póczos and Alex Smola [133]. Chapter 9 is joint work with Ahmed Hefny, Carlton
Downey, Avinava Dubey and Suvrit Sra [132]. Chapter 10 is joint work with Barnabás
Póczos and Alex Smola [134]. Chapter 11 is joint work with Jakub Konečný, Peter
Richtárik, Barnabás Póczos and Alex Smola [140].

1.3.1 Excluded Research

This thesis not does include a portion of my work during my PhD. Chapter 12 provides
an overview of my research excluded from this thesis. Most of these works focus on
statistical aspects of machine learning. The excluded research includes:

• My work on decision processes: [129].
• My work on doubly robust estimation: [135].
• My work on functional data analysis: [131].
• My work on kernel methods and hypothesis testing: [126, 130, 136, 137].

1.4 How to read this Thesis?

The introduction chapter provides a brief overview of all the chapters and relationship
between results of various chapters, and is a prerequisite to rest of the thesis. Each
chapter is self-contained and independent of other chapters so that it can be read with-
out any reference to rest of this thesis. Furthermore, the reader is not assumed to have
detailed knowledge of machine learning and optimization; we rather try to provide the
necessary knowledge, allowing the thesis to be accessible to graduate students.

13

14

Part I

Nonconvex Empirical Risk
Minimization

15

Chapter 2

Stochastic Variance Reduction for
Smooth Nonconvex Optimization

2.1 Introduction

In this chapter, we investigate fast stochastic methods for non-convex finite-sum prob-
lems. In particular, we study nonconvex finite-sum problems of the form

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (2.1)

where neither f nor the individual fi (i ∈ [n]) are necessarily convex; just Lipschitz
smooth (i.e., Lipschitz continuous gradients). Problems of this form arise naturally in
ML in the form of empirical risk minimization (ERM). Algorithms that use IFOs are
favored for these problems as they require only a small amount first-order information
at each iteration. Two fundamental models in machine learning that profit from IFO
algorithms are (i) empirical risk minimization, which typically uses convex finite-sum
models; and (ii) deep learning, which uses nonconvex ones.

The prototypical IFO algorithm, stochastic gradient descent (SGD)1 has witnessed
tremendous progress in the recent years. By now a variety of accelerated, parallel,
and faster converging versions are known. Among these, of particular importance are
variance reduced (VR) stochastic methods [33, 71, 153], which have delivered exciting
progress such as linear convergence rates (for strongly convex functions) as opposed
to sublinear rates of ordinary SGD [110, 148]. Similar (but not same) benefits of VR
methods can also be seen in smooth convex functions. The SVRG algorithm of [71] is
particularly attractive here because of its low storage requirement in comparison to the
algorithms in [33, 153].

Despite the meteoric rise of VR methods, their analysis for general nonconvex prob-
lems is largely missing. [71] remark on convergence of SVRG when f ∈ Fn is locally

1We use ‘incremental gradient’ and ‘stochastic gradient’ interchangeably, though we are only inter-
ested in finite-sum problems.

17

Algorithm Nonconvex Convex Gradient Dominated Fixed Step Size?

SGD O
(
1/ε2) O

(
1/ε2) O

(
1/ε2) ×

GD O (n/ε) O (n/ε) O (nτ log(1/ε))
√

SVRG O
(
n + (n2/3/ε)

)
O
(
n + (

√
n/ε)

)
O
(
(n + n2/3τ) log(1/ε)

) √

Table 2.1: Table comparing the best IFO complexity of different algorithms discussed in
this chapter. The complexity is measured in terms of the number of oracle calls required
to achieve an ε-accurate solution (see Definition 2.2.1). Here, by fixed step size, we mean
that the step size of the algorithm is fixed and does not dependent on ε (or alternatively
T, the total number of iterations). The complexity of gradient dominated functions
refers to the number of IFO calls required to obtain ε-accurate solution for a τ-gradient
dominated function (see Section 2.2 for the definition)

strongly convex and provide compelling experimental results (Fig. 4 in [71]). How-
ever, problems encountered in practice are typically not even locally convex, let alone
strongly convex. The current analysis of SVRG does not extend to nonconvex functions
as it relies heavily on convexity for controlling the variance. Given the dominance of
stochastic gradient methods in optimizing deep neural nets and other large noncon-
vex models, theoretical investigation of faster nonconvex stochastic methods is much
needed.

Convex VR methods are known to enjoy the faster convergence rate of GD but with
a much weaker dependence on n, without compromising the rate like SGD. However,
it is not clear if these benefits carry beyond convex problems, prompting the central
question of this chapter:

For nonconvex functions in Fn, can one achieve convergence rates faster than both
SGD and GD using an IFO? If so, then how does the rate depend on n and on the
number of iterations performed by the algorithm?

Perhaps surprisingly, we provide an affirmative answer to this question by showing
that a careful selection of parameters in SVRG leads to faster convergence than both GD
and SGD. To our knowledge, ours is the first work to improve convergence rates of SGD
and GD for IFO-based nonconvex optimization. The key complexity results are listed
in Table 2.1.

2.1.1 Related Work

Convex. Bertsekas [18] surveys several incremental gradient methods for convex prob-
lems. A key reference for stochastic convex optimization (for min Ez[F(x, z)]) is [110].
Faster rates of convergence are attained for problems in Fn by VR methods, see e.g., [33,
34, 71, 75, 153, 156]. Asynchronous VR frameworks are developed in [133]. Agarwal
and Bottou [2], Lan and Zhou [81] study lower-bounds for convex finite-sum prob-
lems. Shalev-Shwartz [154] prove linear convergence of stochastic dual coordinate as-
cent when the individual fi (i ∈ [n]) are nonconvex but f is strongly convex. They do

18

not study the general nonconvex case. Moreover, even in their special setting our results
improve upon theirs for the high condition number regime.
Nonconvex. SGD dates at least to the seminal work [148]; and since then it has been de-
veloped in several directions [19, 77, 93, 124]. In the (nonsmooth) finite-sum setting, Sra
[164] considers proximal splitting methods, and analyzes asymptotic convergence with
nonvanishing gradient errors. Hong [60] studies a distributed nonconvex incremental
ADMM algorithm.

These works, however, only prove expected convergence to stationary points and
often lack analysis of rates. The first nonasymptotic convergence rate analysis for SGD
is in [47], who show that SGD ensures ‖∇ f ‖2 ≤ ε in O(1/ε2) iterations. A similar rate
for parallel and distributed SGD was shown recently in [87]. GD is known to ensure
‖∇ f ‖2 ≤ ε in O(1/ε) iterations [111, Chap. 1.2.3].

The first analysis of nonconvex SVRG seems to be due to Shamir [160], who considers
the special problem of computing a few leading eigenvectors (e.g., for PCA); see also the
follow up work [161]. Finally, we note another interesting example, stochastic optimiza-
tion of locally quasi-convex functions [57], wherein actually a O(1/ε2) convergence in
function value is shown.

2.2 Background & Problem Setup

We say f is L-smooth if there is a constant L such that

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.

Throughout, we assume that the functions fi in (2.1) are L-smooth, so that ‖∇ fi(x) −
∇ fi(y)‖ ≤ L‖x− y‖ for all i ∈ [n]. Such an assumption is very common in the analysis
of first-order methods. A function f is called λ-strongly convex if there is λ ≥ 0 such that

f (x) ≥ f (y) + 〈∇ f (y), x− y〉+ λ
2 ‖x− y‖2 ∀x, y ∈ Rd.

The quantity κ := L/λ is called the condition number of f , whenever f is L-smooth and
λ-strongly convex. We say f is non-strongly convex when f is 0-strongly convex.

We also recall the class of gradient dominated functions [115, 122], where a function
f is called τ-gradient dominated if for any x ∈ Rd

f (x)− f (x∗) ≤ τ‖∇ f (x)‖2, (2.2)

where x∗ is a global minimizer of f . Note that such a function f need not be convex; it
is also easy to show that a λ-strongly convex function is 1/2λ-gradient dominated.

We analyze convergence rates for the above classes of functions. Following Nes-
terov [111] and Ghadimi and Lan [47], we say an iterate x is approximately stationary
if ‖∇ f (x)‖2 ≤ ε. Contrast this with SGD for convex f , where one uses [f (x)− f (x∗)]
or ‖x− x∗‖2 as a convergence criterion. Unfortunately, such criteria cannot be used for
nonconvex functions due to the hardness of the problem. While the quantities ‖∇ f (x)‖2

19

and f (x)− f (x∗) or ‖x− x∗‖2 are not comparable in general (see [47]), they are typically
assumed to be of similar magnitude. Throughout our analysis, we do not assume n to
be constant, and report dependence on it in our results. For our analysis, we need the
following definition.

Definition 2.2.1. A point x is called ε-accurate if ‖∇ f (x)‖2 ≤ ε. A stochastic iterative algo-
rithm is said to achieve ε-accuracy in t iterations if E[‖∇ f (xt)‖2] ≤ ε, where the expectation
is over the stochasticity of the algorithm.

We measure the efficiency of the algorithms in terms of the number of IFO calls
made by the algorithm (IFO complexity) to achieve an ε-accurate solution. Throughout
the chapter, we hide the dependence of IFO complexity on Lipschitz constant L, and
the initial point (in terms of ‖x0 − x∗‖2 and f (x0)− f (x∗)) for a clean comparison. We
introduce one more definition useful in the analysis of SGD methods for bounding the
variance.

Definition 2.2.2. We say f ∈ Fn has a σ-bounded gradient if ‖∇ fi(x)‖ ≤ σ for all i ∈ [n]
and x ∈ Rd.

2.2.1 Nonconvex SGD: Convergence Rate

Stochastic gradient descent (SGD) is one of the simplest algorithms for solving (2.1);
Algorithm 1 lists its pseudocode. By using a uniformly randomly chosen (with re-

Algorithm 1: SGD
1: Input: x0 ∈ Rd, Step-size sequence: {ηt > 0}T−1

t=0
2: for t = 0 to T − 1 do
3: Uniformly randomly pick it from {1, . . . , n}
4: xt+1 = xt − ηt∇ fit(x)
5: end for

placement) index it from [n], SGD uses an unbiased estimate of the gradient at each
iteration. Under appropriate conditions, Ghadimi and Lan [47] establish convergence
rate of SGD to a stationary point of f . Their results include the following theorem.

Theorem 2.2.3. Suppose f has σ-bounded gradient; let ηt = η = c/
√

T where c =
√

2(f (x0)− f (x∗))
Lσ2 ,

and x∗ is an optimal solution to (2.1). Then, the iterates of Algorithm 1 satisfy

min
0≤t≤T−1

E[‖∇ f (xt)‖2] ≤
√

2(f (x0)− f (x∗))L
T

σ.

For completeness we present a proof in the appendix. Note that our choice of step
size η requires knowing the total number of iterations T in advance. A more practical
approach is to use a ηt ∝ 1/

√
t or 1/t. A bound on IFO calls made by Algorithm 1

follows as a corollary of Theorem 2.2.3.

20

Corollary 2.2.3.1. Suppose function f has σ-bounded gradient, then the IFO complexity of
Algorithm 1 to obtain an ε-accurate solution is O(1/ε2).

As seen in Theorem 2.2.3, SGD has a convergence rate of O(1/
√

T). This rate is not
improvable in general even when the function is (non-strongly) convex [108]. This bar-
rier is due to the variance introduced by the stochasticity of the gradients, and it is not
clear if better rates can be obtained SGD even for convex f ∈ Fn.

2.3 Nonconvex SVRG

We now turn our focus to variance reduced methods. We use SVRG [71], an algorithm
recently shown to be very effective for reducing variance in convex problems. As a
result, it has gained considerable interest in both machine learning and optimization
communities. We seek to understand its benefits for nonconvex optimization. For refer-
ence, Algorithm 2 presents SVRG’s pseudocode.

Observe that Algorithm 2 operates in epochs. At the end of epoch s, a full gradient
is calculated at the point x̃s, requiring n calls to the IFO. Within its inner loop SVRG
performs m stochastic updates. The total number of IFO calls for each epoch is thus
Θ(m + n). For m = 1, the algorithm reduces to the classic GD algorithm. Suppose
m is chosen to be O(n) (typically used in practice), then the total IFO calls per epoch
is Θ(n). To enable a fair comparison with SGD, we assume that the total number of
inner iterations across all epochs in Algorithm 2 is T. Also note a simple but impor-
tant implementation detail: as written, Algorithm 2 requires storing all the iterates xs+1

t
(0 ≤ t ≤ m). This storage can be avoided by keeping a running average with respect to
the probability distribution {pi}m

i=0.
Algorithm 2 attains linear convergence for strongly convex f [71]; for non-strongly

convex functions, rates faster than SGD can be shown by using an indirect perturbation
argument—see e.g., [74, 173].

We first state an intermediate result for the iterates of nonconvex SVRG. To ease
exposition, we define

Γt =
(
ηt −

ct+1ηt

βt
− η2

t L− 2ct+1η2
t
)
, (2.3)

for some parameters ct+1 and βt (to be defined shortly).
Our first main result is the following theorem that provides convergence rate of Al-

gorithm 2.

Theorem 2.3.1. Let f ∈ Fn. Let cm = 0, ηt = η > 0, βt = β > 0, and ct = ct+1(1 + ηβ +
2η2L2) + η2L3 such that Γt > 0 for 0 ≤ t ≤ m− 1. Define the quantity γn := mint Γt. Further,
let pi = 0 for 0 ≤ i < m and pm = 1, and let T be a multiple of m. Then for the output xa of
Algorithm 2 we have

E[‖∇ f (xa)‖2] ≤ f (x0)− f (x∗)
Tγn

,

where x∗ is an optimal solution to (2.1).

21

Algorithm 2: SVRG
(

x0, T, m, {pi}m
i=0, {ηi}m−1

i=0

)
1: Input: x̃0 = x0

m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}m−1
i=0 , S = dT/me, discrete

probability distribution {pi}m
i=0

2: for s = 0 to S− 1 do
3: xs+1

0 = xs
m

4: gs+1 = 1
n ∑n

i=1∇ fi(x̃s)
5: for t = 0 to m− 1 do
6: Uniformly randomly pick it from {1, . . . , n}
7: vs+1

t = ∇ fit(xs+1
t)−∇ fit(x̃s) + gs+1

8: xs+1
t+1 = xs+1

t − ηtvs+1
t

9: end for
10: x̃s+1 = ∑m

i=0 pixs+1
i

11: end for
12: Output: Iterate xa chosen uniformly random from {{xs+1

t }m−1
t=0 }

S−1
s=0 .

Furthermore, we can also show that nonconvex SVRG exhibits expected descent (in
objective) after every epoch. The condition that T is a multiple of m is solely for conve-
nience and can be removed by slight modification of the theorem statement. Note that
the value γn above can depend on n. To obtain an explicit dependence, we simplify it
using specific choices for η and β, as formalized below.

Theorem 2.3.2. Suppose f ∈ Fn. Let η = µ0/(Lnα) (0 < µ0 < 1 and 0 < α ≤ 1),
β = L/nα/2, m = bn3α/2/(3µ0)c and T is some multiple of m. Then there exists universal
constants µ0, ν > 0 such that we have the following: γn ≥ ν

Lnα in Theorem 2.3.1 and

E[‖∇ f (xa)‖2] ≤ Lnα[f (x0)− f (x∗)]
Tν

,

where x∗ is an optimal solution to the problem in (2.1) and xa is the output of Algorithm 2.
By rewriting the above result in terms IFO calls, we get the following general corol-

lary for nonconvex SVRG.

Corollary 2.3.2.1. Suppose f ∈ Fn. Then the IFO complexity of Algorithm 2 (with parameters
from Theorem 2.3.2) for achieving an ε-accurate solution is:

IFO calls =

{
O
(

n + (n1− α
2 /ε)

)
, if α < 2/3,

O (n + (nα/ε)) , if α ≥ 2/3.

Corollary 2.3.2.1 shows the interplay between step size and the IFO complexity. We
observe that the number of IFO calls is minimized in Corollary 2.3.2.1 when α = 2/3.
This gives rise to the following key results of the chapter.

Corollary 2.3.2.2. Suppose f ∈ Fn. Let η = µ1/(Ln2/3) (0 < µ1 < 1), β = L/n1/3,
m = bn/(3µ1)c and T is some multiple of m. Then there exists universal constants µ1, ν1 > 0

22

Algorithm 3: GD-SVRG
(

x0, K, T, m, {pi}m
i=0, {ηi}m−1

i=0

)
1: Input: x0 ∈ Rd, K, epoch length m, step sizes {ηi > 0}m−1

i=0 , discrete probability distribution
{pi}m

i=0
2: for k = 0 to K do
3: xk = SVRG(xk−1, T, m, {pi}m

i=0, {ηi}m−1
i=0)

4: end for
5: Output: xK

such that we have the following: γn ≥ ν1
Ln2/3 in Theorem 2.3.1 and

E[‖∇ f (xa)‖2] ≤ Ln2/3[f (x0)− f (x∗)]
Tν1

,

where x∗ is an optimal solution to the problem in (2.1) and xa is the output of Algorithm 2.

Corollary 2.3.2.3. If f ∈ Fn, then the IFO complexity of Algorithm 2 (with parameters in
Corollary 2.3.2.2) to obtain an ε-accurate solution is O(n + (n2/3/ε)).

Note the rate of O(1/T) in the above results, as opposed to slower O(1/
√

T) rate
of SGD (Theorem 2.2.3). For a more comprehensive comparison of the rates, refer to
Section 2.6.

2.3.1 Gradient Dominated Functions

Before ending our discussion on convergence of nonconvex SVRG, we prove a linear
convergence rate for the class of τ-gradient dominated functions (2.2). For ease of ex-
position, assume that τ > n1/3, a property analogous to the “high condition number
regime” for strongly convex functions typical in machine learning. Note that gradient
dominated functions can be nonconvex.

Theorem 2.3.3. Suppose f is τ-gradient dominated where τ > n1/3. Then, the iterates of
Algorithm 3 with T = d2Lτn2/3/ν1e, m = bn/(3µ1)c, ηt = µ1/(Ln2/3) for all 0 ≤ t ≤
m− 1 and pm = 1 and pi = 0 for all 0 ≤ i < m satisfy

E[‖∇ f (xk)‖2] ≤ 2−k[‖∇ f (x0)‖2].

Here µ1 and ν1 are the constants used in Corollary 2.3.2.2.
In fact, for τ-gradient dominated functions we can prove a stronger result of global

linear convergence.

Theorem 2.3.4. If f is τ-gradient dominated (τ > n1/3), then with T = d2Lτn2/3/ν1e,
m = bn/(3µ1)c, ηt = µ1/(Ln2/3) for 0 ≤ t ≤ m − 1 and pm = 1 and pi = 0 for all
0 ≤ i < m, the iterates of Algorithm 3 satisfy

E[f (xk)− f (x∗)] ≤ 2−k[f (x0)− f (x∗)].

Here µ1, ν1 are as in Corollary 2.3.2.2; x∗ is an optimal solution.

23

An immediate consequence is the following.

Corollary 2.3.4.1. If f is τ-gradient dominated, the IFO complexity of Algorithm 3 (with pa-
rameters from Theorem 2.3.3) to compute an ε-accurate solution is O((n + τn2/3) log(1/ε)).

Note that GD can also achieve linear convergence rate for gradient dominated func-
tions [122]. However, GD requires O(n + nτ log(1/ε)) IFO calls to obtain an ε-accurate
solution as opposed to O(n+ n2/3τ log(1/ε)) for SVRG. Similar (but not the same) gains
can be seen for SVRG for strongly convex functions [71]. Also notice that we did not as-
sume anything except smoothness on the individual functions fi in the above results. In
particular, the following corollary is also an immediate consequence.

Corollary 2.3.4.2. If f is λ-strongly convex and the functions { fi}n
i=1 are possibly nonconvex,

then the number of IFO calls made by Algorithm 3 (with parameters from Theorem 2.3.3) to
compute an ε-accurate solution is O((n + n2/3κ) log(1/ε)).

Recall that here κ denotes the condition number L/λ for a λ-strongly convex func-
tion. Corollary 2.3.4.2 follows from Corollary 2.3.4.1 upon noting that λ-strongly convex
function is 1/2λ-gradient dominated. Theorem 2.3.4 generalizes the linear convergence
result in [71] since it allows nonconvex fi. Observe that Corollary 2.3.4.2 also applies
when fi is strongly convex for all i ∈ [n], though in this case a more refined result can
be proved [71].

Finally, we note that our result also improves on a recent result on SDCA in the set-
ting of Corollary 2.3.4.2 when the condition number κ is reasonably large – a case that
typically arises in machine learning. More precisely, for l2-regularized empirical loss
minimization, Shalev-Shwartz [154] show that SDCA requires O((n + κ2) log(1/ε) iter-
ations when the fi’s are possibly nonconvex but their sum f is strongly convex. In com-
parison, we show that Algorithm 3 requires O((n + n2/3κ) log(1/ε)) iterations, which
is an improvement over SDCA when κ > n2/3.

2.4 Convex Case

In the previous section, we showed nonconvex SVRG converges to a stationary point at
the rate O(n2/3/T). A natural question is whether this rate can be improved if we as-
sume convexity? We provide an affirmative answer. For non-strongly convex functions,
this yields a direct analysis (i.e., not based on strongly convex perturbations) for SVRG.
While we state our results in terms of stationarity gap ‖∇ f (x)‖2 for the ease of compar-
ison, our analysis also provides rates with respect to the optimality gap [f (x)− f (x∗)]
(see the proof of Theorem 2.4.1 in the appendix).

Theorem 2.4.1. If fi is convex for all i ∈ [n], pi = 1/m for 0 ≤ i ≤ m− 1, and pm = 0, then
for Algorithm 2, we have

E[‖∇ f (xa)‖2] ≤ L‖x0 − x∗‖2 + 4mL2η2[f (x0)− f (x∗)]
Tη(1− 4Lη)

,

where x∗ is optimal for (2.1) and xa is the output of Algorithm 2.

24

We now state corollaries of this theorem that explicitly show the dependence on n in
the convergence rates.

Corollary 2.4.1.1. If m = n and η = 1/(8L
√

n) in Theorem 2.4.1, then we have the following
bound:

E[‖∇ f (xa)‖2] ≤ L
√

n(16L‖x0 − x∗‖2 + [f (x0)− f (x∗)])
T

,

where x∗ is optimal for (2.1) and xa is the output of Algorithm 2.
The above result uses a step size that depends on n. For the convex case, we can also

use step sizes independent of n. The following corollary states the associated result.

Corollary 2.4.1.2. If m = n and η = 1/(8L) in Theorem 2.4.1, then we have the following
bound:

E[‖∇ f (xa)‖2] ≤ L(16L‖x0 − x∗‖2 + n[f (x0)− f (x∗)])
T

,

where x∗ is optimal for (2.1) and xa is the output of Algorithm 2.
We can rewrite these corollaries in terms of IFO complexity to get the following

corollaries.

Corollary 2.4.1.3. If fi is convex for all i ∈ [n], then the IFO complexity of Algorithm 2 (with
parameters from Corollary 2.4.1.1) to compute an ε-accurate solution is O(n + (

√
n/ε)).

Corollary 2.4.1.4. If fi is convex for all i ∈ [n], then the IFO complexity of Algorithm 2 (with
parameters from Corollary 2.4.1.2) to compute ε-accurate solution is O(n/ε).

These results follow from Corollary 2.4.1.1 and Corollary 2.4.1.2 and noting that for
m = O(n) the total IFO calls made by Algorithm 2 is O(n). It is instructive to quan-
titatively compare Corollary 2.4.1.3 and Corollary2.4.1.4. With a step size independent
of n, the convergence rate of SVRG has a dependence that is in the order of n (Corol-
lary 2.4.1.2). But this dependence can be reduced to

√
n by either carefully selecting a

step size that diminishes with n (Corollary 2.4.1.1) or by using a good initial point x0

obtained by, say, running O(n) iterations of SGD.
We emphasize that the convergence rate for convex case can be improved signifi-

cantly by slightly modifying the algorithm (either by adding an appropriate strongly
convex perturbation [173] or by using a choice of m that changes with epoch [179]).
However, it is not clear if these strategies provide any theoretical gains for the general
nonconvex case.

2.5 Mini-batch Nonconvex SVRG

In this section, we study the mini-batch version of Algorithm 2. Mini-batching is a
popular strategy, especially in multicore and distributed settings as it greatly helps one
exploit parallelism and reduce the communication costs. The pseudocode for mini-
batch nonconvex SVRG (Algorithm 4) is provided in the appendix. The key difference
between the mini-batch SVRG and Algorithm 2 lies in lines 6 to 8. To use mini-batches

25

we replace line 6 with sampling (with replacement) a mini-batch It ⊂ [n] of size b; lines
7 to 8 are replaced with the following updates:

us+1
t = 1

|It| ∑it∈It

(
∇ fit(xs+1

t)−∇ fit(x̃s)
)
+ gs+1,

xs+1
t+1 = xs+1

t − ηtus+1
t

When b = 1, this reduces to Algorithm 2. Mini-batch is typically used to reduce the
variance of the stochastic gradient and increase the parallelism. Lemma 2.16.2 (in Sec-
tion 2.16 of the appendix) shows the reduction in the variance of stochastic gradients
with mini-batch size b. Using this lemma, one can derive the mini-batch equivalents of
Lemma 2.11.1, Theorem 2.3.1 and Theorem 2.3.2. However, for the sake of brevity, we
directly state the following main result for mini-batch SVRG.

Theorem 2.5.1. Let γn denote the following quantity:

γn := min
0≤t≤m−1

(
η − ct+1η

β − η2L− 2ct+1η2).
where cm = 0, ct = ct+1(1+ ηβ+ 2η2L2/b)+ η2

t L3/b for 0 ≤ t ≤ m− 1. Suppose η = µ2b/(Ln2/3)
(0 < µ2 < 1), β = L/n1/3, m = bn/(3bµ2)c and T is some multiple of m. Then for the mini-
batch version of Algorithm 2 with mini-batch size b < n2/3, there exists universal constants
µ2, ν2 > 0 such that we have the following: γn ≥

ν2b
Ln2/3 and

E[‖∇ f (xa)‖2] ≤ Ln2/3[f (x0)− f (x∗)]
bTν2

,

where x∗ is optimal for (2.1).
It is important to compare this result with mini-batched SGD. For a batch size of

b, SGD obtains a rate of O(1/
√

bT + 1/T) [35] (obtainable by a simple modification of
Theorem 2.2.3). Specifically, SGD has a 1/

√
b dependence on the batch size. In contrast,

Theorem 2.5.1 shows that SVRG has a much better dependence of 1/b on the batch size.
Hence, compared to SGD, SVRG allows more efficient mini-batching. More formally, in
terms of IFO queries we have the following result.

Corollary 2.5.1.1. If f ∈ Fn, then the IFO complexity of the mini-batch version of Algorithm 2
(with parameters from Theorem 2.5.1 and mini-batch size b < n2/3) to obtain an ε-accurate
solution is O(n + (n2/3/ε)).

Corollary 2.5.1.1 shows an interesting property of mini-batch SVRG. First, note that b
IFO calls are required for calculating the gradient on a mini-batch of size b. Hence, SVRG
does not gain on IFO complexity by using mini-batches. However, if the b gradients are
calculated in parallel, then this leads to a theoretical linear speedup in multicore and
distributed settings. In contrast, SGD does not yield an efficient mini-batch strategy
[85].

26

2.6 Comparison of the Convergence Rates

In this section, we give a comprehensive comparison of results obtained in this chapter.
In particular, we compare key aspects of the convergence rates for SGD, GD, and SVRG.
The comparison is based on IFO complexity to achieve an ε-accurate solution.
Dependence on n: The number of IFO calls of SVRG and GD depend explicitly on
n. In contrast, the number of oracle calls of SGD is independent of n (Theorem 2.2.3).
However, this comes at the expense of worse dependence on ε. The number of IFO calls
in GD is proportional to n. But for SVRG this dependence reduces to n1/2 for convex
(Corollary 2.4.1.1) and n2/3 for nonconvex (Corollary 2.3.2.2) problems. Whether this
difference in dependence on n is due to nonconvexity or just an artifact of our analysis
is an interesting open problem.
Dependence on ε: The dependence on ε (or alternatively T) follows from the conver-
gence rates of the algorithms. SGD is seen to depend as O(1/ε2) on ε, regardless of
convexity or nonconvexity. In contrast, for both convex and nonconvex settings, SVRG
and GD converge as O(1/ε). Furthermore, for gradient dominated functions, SVRG and
GD have global linear convergence. This speedup in convergence over SGD is especially
significant when medium to high accuracy solutions are required (i.e., ε is small).
Assumptions used in analysis: It is important to understand the assumptions used in
deriving the convergence rates. All algorithms assume Lipschitz continuous gradients.
However, SGD requires two additional subtle but important assumptions: σ-bounded
gradients and advance knowledge of T (since its step sizes depend on T). On the other
hand, both SVRG and GD do not require these assumptions, and thus, are more flexible.
Step size / learning rates: It is valuable to compare the step sizes used by the algorithms.
The step sizes of SGD shrink as the number of iterations T increases—an undesirable
property. On the other hand, the step sizes of SVRG and GD are independent of T.
Hence, both these algorithms can be executed with a fixed step size. However, SVRG
uses step sizes that depend on n (see Corollary 2.3.2.2 and Corollary 2.4.1.1). A step size
independent of n can be used for SVRG for convex f , albeit at cost of worse dependence
on n (Corollary 2.4.1.2). GD does not have this issue as its step size is independent of
both n and T.
Dependence on initial point and mini-batch: SVRG is more sensitive to the initial point
in comparison to SGD. This can be seen by comparing Corollary 2.3.2.2 (of SVRG) to
Theorem 2.2.3 (of SGD). Hence, it is important to use a good initial point for SVRG.
Similarly, a good mini-batch can be beneficial to SVRG. Moreover, mini-batches not
only provides parallelism but also good theoretical guarantees (see Theorem 2.5.1). In
contrast, the performance gain in SGD with mini-batches is not very pronounced (see
Section 2.5).

2.7 Best of Two Worlds

We have seen in the previous section that SVRG combines the benefits of both GD and
SGD. We now show that these benefits of SVRG can be made more pronounced by an

27

appropriate step size under additional assumptions. In this case, the IFO complexity of
SVRG is lower than those of SGD and GD. This variant of SVRG (MSVRG) chooses a step
size based on the total number of iterations T (or alternatively ε). For our discussion
below, we assume that T > n.

Theorem 2.7.1. Let f ∈ Fn have σ-bounded gradients. Let ηt = η = max{c/
√

T, µ1/(Ln2/3)}
(µ1 is the universal constant from Corollary 2.3.2.2), m = bn/(3µ1)c, and c =

√
f (x0)− f (x∗)

2Lσ2 .
Further, let T be a multiple of m, pm = 1, and pi = 0 for 0 ≤ i < m. Then, the output xa of
Algorithm 2 satisfies

E[‖∇ f (xa)‖2] ≤ ν̄ min
{

2

√
2(f (x0)− f (x∗))L

T
σ,

Ln2/3[f (x0)− f (x∗)]
Tν1

}
,

where ν̄ > 0 is a universal constant, ν1 is the universal constant from Corollary 2.3.2.2 and x∗

is an optimal solution to (2.1).

Corollary 2.7.1.1. If f ∈ Fn has σ-bounded gradients, the IFO complexity of Algorithm 2 (with
parameters from Theorem 2.7.1) to achieve an ε-accurate solution is O(min{1/ε2, n2/3/ε}).

An almost identical reasoning can be applied when f is convex to get the bounds
specified in Table 2.1. Hence, we omit the details and directly state the following result.

Corollary 2.7.1.2. Suppose fi is convex for i ∈ [n] and f has σ-bounded gradients, then the
IFO complexity of Algorithm 2 (with step size η = max{1/(L

√
T), 1/(8L

√
n)}, m = n

and pi = 1/m for 0 ≤ i ≤ m − 1 and pm = 0) to achieve an ε-accurate solution is
O(min{1/ε2,

√
n/ε}).

MSVRG has a convergence rate faster than those of both SGD and SVRG, though this
benefit is not without cost. MSVRG, in contrast to SVRG, uses the additional assumption
of σ-bounded gradients. Furthermore, its step size is not fixed since it depends on the
number of iterations T. While it is often difficult in practice to compute the step size of
MSVRG (Theorem 2.7.1), it is typical to try multiple step sizes and choose the one with
the best results.

2.8 Experiments

We present our empirical results in this section. For our experiments, we study the
problem of multiclass classification using neural networks. This is a typical nonconvex
problem encountered in machine learning.
Experimental Setup. We train neural networks with one fully-connected hidden layer
of 100 nodes and 10 softmax output nodes. We use `2-regularization for training. We
use CIFAR-102, MNIST3, and STL-104 datasets for our experiments. These datasets are
standard in the neural networks literature. The `2 regularization is 1e-3 for CIFAR-
10 and MNIST, and 1e-2 for STL-10. The features in the datasets are normalized to

2www.cs.toronto.edu/˜kriz/cifar.html
3http://yann.lecun.com/exdb/mnist/
4https://cs.stanford.edu/˜acoates/stl10/

28

www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://cs.stanford.edu/~acoates/stl10/

0 100 200 300 400
grad / n

1.45

1.50

1.55

1.60

1.65

T
ra

in
in

g
 l
o
ss

SGD

SVRG

0 100 200 300 400
grad / n

10-5

10-4

10-3

10-2

10-1

100

101

‖∇
f(
x
t)
‖2

SGD

SVRG

0 100 200 300 400
grad / n

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

T
e
st

 E
rr

o
r

SGD

SVRG

0 50 100 150 200 250 300
grad / n

0.350

0.355

0.360

0.365

0.370

0.375

0.380

T
ra

in
in

g
 l
o
ss

SGD

SVRG

0 50 100 150 200 250 300
grad / n

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

‖∇
f(
x
t)
‖2

SGD

SVRG

0 50 100 150 200 250 300
grad / n

1.4

1.5

1.6

1.7

1.8

1.9

T
ra

in
in

g
 l
o
ss

SGD

SVRG

Figure 2.1: Neural network results for CIFAR-10, MNIST and STL-10 datasets. The top
row represents the results for CIFAR-10 dataset. The bottom left and middle figures
represent the results for MNIST dataset. The bottom right figure represents the result
for STL-10.

the interval [0, 1]. All the datasets come with a predefined split into training and test
datasets.

We compare SGD (the de-facto algorithm for training neural networks) against non-
convex SVRG. The step size (or learning rate) is critical for SGD. We set the learning rate
of SGD using the popular t−inverse schedule ηt = η0(1 + η′bt/nc)−1, where η0 and η′

are chosen so that SGD gives the best performance on the training loss. In our experi-
ments, we also use η′ = 0; this results in a fixed step size for SGD. For SVRG, we use a
fixed step size as suggested by our analysis. Again, the step size is chosen so that SVRG
gives the best performance on the training loss.
Initialization & mini-batching. Initialization is critical to training of neural networks.
We use the normalized initialization in [50] where parameters are chosen uniformly
from [−

√
6/(ni + no),

√
6/(ni + no)] where ni and no are the number of input and out-

put layers of the neural network, respectively.
For SVRG, we use n iterations of SGD for CIFAR-10 and MINST and 2n iterations of

SGD for STL-10 before running Algorithm 2. Such initialization is standard for variance
reduced schemes even for convex problems [71, 153]. As noted earlier in Section 2.6,
SVRG is more sensitive than SGD to the initial point, so such an initialization is typically
helpful. We use mini-batches of size 10 in our experiments. SGD with mini-batches is
common in training neural networks. Note that mini-batch training is especially bene-
ficial for SVRG, as shown by our analysis in Section 2.5. Along the lines of theoretical
analysis provided by Theorem 2.5.1, we use an epoch size m = n/10 in our experiments.
Results. We report objective function (training loss), test error (classification error on
the test set), and ‖∇ f (xt)‖2 (convergence criterion throughout our analysis) for the

29

datasets. For all the algorithms, we compare these criteria against the number of ef-
fective passes through the data, i.e., IFO calls divided by n. This includes the cost of
calculating the full gradient at the end of each epoch of SVRG. Due to the SGD ini-
tialization in SVRG and mini-batching, the SVRG plots start from x-axis value of 10 for
CIFAR-10 and MNIST and 20 for STL-10. Figure 2.1 shows the results for our experi-
ment. It can be seen that the ‖∇ f (xt)‖2 for SVRG is lower compared to SGD, suggesting
faster convergence to a stationary point. Furthermore, the training loss is also lower
compared to SGD in all the datasets. Notably, the test error for CIFAR-10 is lower for
SVRG, indicating better generalization; we did not notice substantial difference in test
error for MNIST and STL-10 (see Section 2.17 in the appendix). Overall, these results on
a network with one hidden layer are promising; it will be interesting to study SVRG for
deep neural networks in the future.

2.9 Discussion

Before concluding the chapter, we would like to discuss the implications of our work
and few caveats. One should exercise some caution while interpreting the results in the
chapter. All our theoretical results are based on the stationarity gap. In general, this
does not necessarily translate to optimality gap or low training loss and test error. One
criticism against VR schemes in nonconvex optimization is the general wisdom that
variance in the stochastic gradients of SGD can actually help it escape local minimum
and saddle points. In fact, Ge et al. [46] add additional noise to the stochastic gradient
in order to escape saddle points. However, one can reap the benefit of VR schemes
even in such scenarios. For example, one can envision an algorithm which uses SGD
as an exploration tool to obtain a good initial point and then uses a VR algorithm as
an exploitation tool to quickly converge to a good local minimum. In either case, we
believe variance reduction can be used as an important tool alongside other tools like
momentum, adaptive learning rates for faster and better nonconvex optimization.

Appendix: Omitted Proofs and Additional Experiments

2.10 Nonconvex SGD: Convergence Rate

Proof of Theorem 2.2.3

Theorem. Suppose f has σ-bounded gradient; let ηt = η = c/
√

T where c =
√

2(f (x0)− f (x∗))
Lσ2 ,

and x∗ is an optimal solution to (2.1). Then, the iterates of Algorithm 1 satisfy

min
0≤t≤T−1

E[‖∇ f (xt)‖2] ≤
√

2(f (x0)− f (x∗))L
T σ.

30

Proof. We include the proof here for completeness. Please refer to [47] for a more general
result.

The iterates of Algorithm 1 satisfy the following bound:

E[f (xt+1)] ≤ E[f (xt) +
〈
∇ f (xt), xt+1 − xt

〉
+ L

2‖x
t+1 − xt‖2] (2.4)

≤ E[f (xt)]− ηtE[‖∇ f (xt)‖2] +
Lη2

t
2 E[‖∇ fit(xt)‖2]

≤ E[f (xt)]− ηtE[‖∇ f (xt)‖2] +
Lη2

t
2 σ2. (2.5)

The first inequality follows from Lipschitz continuity of ∇ f . The second inequality
follows from the update in Algorithm 1 and since Eit [∇ fit(xt)] = ∇ f (xt) (unbiasedness
of the stochastic gradient). The last step uses our assumption on gradient boundedness.
Rearranging Equation (2.5) we obtain

E[‖∇ f (xt)‖2] ≤ 1
ηt

E[f (xt)− f (xt+1)] + Lηt
2 σ2. (2.6)

Summing Equation (2.6) from t = 0 to T − 1 and using that ηt is constant η we obtain

min
t

E[‖∇ f (xt)‖2] ≤ 1
T ∑T−1

t=0 E[‖ f (xt)‖2]

≤ 1
Tη E[f (x0)− f (xT)] + Lη

2 σ2

≤ 1
Tη (f (x0)− f (x∗)) + Lη

2 σ2

≤ 1√
T

(
1
c
(

f (x0)− f (x∗)
)
+ Lc

2 σ2
)

.

The first step holds because the minimum is less than the average. The second and third
steps are obtained from Equation (2.6) and the fact that f (x∗) ≤ f (xT), respectively. The
final inequality follows upon using η = c/

√
T. By setting

c =

√
2(f (x0)− f (x∗))

Lσ2

in the above inequality, we get the desired result.

2.11 Nonconvex SVRG

In this section, we provide the proofs of the results for nonconvex SVRG. We first start
with few useful lemmas and then proceed towards the main results.

Lemma 2.11.1. For ct, ct+1, βt > 0, suppose we have

ct = ct+1(1 + ηtβt + 2η2
t L2) + η2

t L3.

31

Let ηt, βt and ct+1 be chosen such that Γt > 0 (in Equation (2.3)). The iterate xs+1
t in Algo-

rithm 2 satisfy the bound:

E[‖∇ f (xs+1
t)‖2] ≤

Rs+1
t − Rs+1

t+1
Γt

,

where Rs+1
t := E[f (xs+1

t) + ct‖xs+1
t − x̃s‖2] for 0 ≤ s ≤ S− 1.

Proof. Since f is L-smooth we have

E[f (xs+1
t+1)] ≤ E[f (xs+1

t) + 〈∇ f (xs+1
t), xs+1

t+1 − xs+1
t 〉+ L

2‖x
s+1
t+1 − xs+1

t ‖2].

Using the SVRG update in Algorithm 2 and its unbiasedness, the right hand side above
is further upper bounded by

E[f (xs+1
t)− ηt‖∇ f (xs+1

t)‖2 +
Lη2

t
2 ‖v

s+1
t ‖2]. (2.7)

Consider now the Lyapunov function

Rs+1
t := E[f (xs+1

t) + ct‖xs+1
t − x̃s‖2].

For bounding it we will require the following:

E[‖xs+1
t+1 − x̃s‖2] = E[‖xs+1

t+1 − xs+1
t + xs+1

t − x̃s‖2]

= E[‖xs+1
t+1 − xs+1

t ‖2 + ‖xs+1
t − x̃s‖2 + 2〈xs+1

t+1 − xs+1
t , xs+1

t − x̃s〉]
= E[η2

t ‖vs+1
t ‖2 + ‖xs+1

t − x̃s‖2]− 2ηtE[〈∇ f (xs+1
t), xs+1

t − x̃s〉] (2.8)

≤ E[η2
t ‖vs+1

t ‖2 + ‖xs+1
t − x̃s‖2] + 2ηtE

[
1

2βt
‖∇ f (xs+1

t)‖2 + 1
2 βt‖xs+1

t − x̃s‖2
]

. (2.9)

The second equality follows from the unbiasedness of the update of SVRG. The last in-
equality follows from a simple application of Cauchy-Schwarz and Young’s inequality.
Plugging Equation (2.7) and Equation (2.9) into Rs+1

t+1 , we obtain the following bound:

Rs+1
t+1 ≤ E[f (xs+1

t)− ηt‖∇ f (xs+1
t)‖2 +

Lη2
t

2 ‖v
s+1
t ‖2]

+ E[ct+1η2
t ‖vs+1

t ‖2 + ct+1‖xs+1
t − x̃s‖2]

+ 2ct+1ηtE
[

1
2βt
‖∇ f (xs+1

t)‖2 + 1
2 βt‖xs+1

t − x̃s‖2
]

≤ E[f (xs+1
t)−

(
ηt − ct+1ηt

βt

)
‖∇ f (xs+1

t)‖2

+
(

Lη2
t

2 + ct+1η2
t

)
E[‖vs+1

t ‖2]

+ (ct+1 + ct+1ηtβt)E
[
‖xs+1

t − x̃s‖2
]

. (2.10)

32

To further bound this quantity, we use Lemma 2.16.1 to bound E[‖vs+1
t ‖2], so that upon

substituting it in Equation (2.10), we see that

Rs+1
t+1 ≤ E[f (xs+1

t)]

−
(

ηt − ct+1ηt
βt
− η2

t L− 2ct+1η2
t

)
E[‖∇ f (xs+1

t)‖2]

+
[
ct+1

(
1 + ηtβt + 2η2

t L2)+ η2
t L3
]

E
[
‖xs+1

t − x̃s‖2
]

≤ Rs+1
t −

(
ηt − ct+1ηt

βt
− η2

t L− 2ct+1η2
t
)
E[‖∇ f (xs+1

t)‖2].

The second inequality follows from the definition of ct and Rs+1
t , thus concluding the

proof.

Proof of Theorem 2.3.1

Theorem. Let f ∈ Fn. Let cm = 0, ηt = η > 0, βt = β > 0, and ct = ct+1(1 +
ηβ + 2η2L2) + η2L3 such that Γt > 0 for 0 ≤ t ≤ m− 1. Define the quantity γn := mint Γt.
Further, let pi = 0 for 0 ≤ i < m and pm = 1, and let T be a multiple of m. Then for the output
xa of Algorithm 2 we have

E[‖∇ f (xa)‖2] ≤ f (x0)− f (x∗)
Tγn

,

where x∗ is an optimal solution to (2.1).

Proof. Since ηt = η for t ∈ {0, . . . , m− 1}, using Lemma 2.11.1 and telescoping the sum,
we obtain

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤
Rs+1

0 − Rs+1
m

γn
.

This inequality in turn implies that

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤ E[f (x̃s)− f (x̃s+1)]

γn
, (2.11)

where we used that Rs+1
m = E[f (xs+1

m)] = E[f (x̃s+1)] (since cm = 0, pm = 1, and pi = 0
for i < m), and that Rs+1

0 = E[f (x̃s)] (since xs+1
0 = x̃s, as pm = 1 and pi = 0 for i < m).

Now sum over all epochs to obtain

1
T

S−1

∑
s=0

m−1

∑
t=0

E[‖∇ f (xs+1
t)‖2] ≤ f (x0)− f (x∗)

Tγn
. (2.12)

The above inequality used the fact that x̃0 = x0. Using the above inequality and the
definition of xa in Algorithm 2, we obtain the desired result.

33

Proof of Theorem 2.3.2

Theorem. Suppose f ∈ Fn. Let η = µ0/(Lnα) (0 < µ0 < 1 and 0 < α ≤ 1), β = L/nα/2,
m = bn3α/2/(3µ0)c and T is some multiple of m. Then there exists universal constants µ0, ν >
0 such that we have the following: γn ≥ ν

Lnα in Theorem 2.3.1 and

E[‖∇ f (xa)‖2] ≤ Lnα[f (x0)− f (x∗)]
Tν

,

where x∗ is an optimal solution to the problem in (2.1) and xa is the output of Algorithm 2.

Proof. For our analysis, we will require an upper bound on c0. We observe that c0 =
µ2

0L
n2α

(1+θ)m−1
θ where θ = 2η2L2 + ηβ. This is obtained using the relation ct = ct+1(1 +

ηβ + 2η2L2) + η2L3 and the fact that cm = 0. Using the specified values of β and η we
have

θ = 2η2L2 + ηβ =
2µ2

0
n2α

+
µ0

n3α/2 ≤
3µ0

n3α/2 .

The above inequality follows since µ0 ≤ 1 and n ≥ 1. Using the above bound on θ, we
get

c0 =
µ2

0L
n2α

(1 + θ)m − 1
θ

=
µ0L((1 + θ)m − 1)

2µ0 + nα/2

≤
µ0L((1 + 3µ0

n3α/2)
bn3α/2/3µ0c − 1)

2µ0 + nα/2

≤ n−α/2(µ0L(e− 1)), (2.13)

wherein the second inequality follows upon noting that (1 + 1
l)

l is increasing for l > 0
and liml→∞(1 + 1

l)
l = e (here e is the Euler’s number). Now we can lower bound γn, as

γn = min
t

(
η − ct+1η

β − η2L− 2ct+1η2)
≥
(
η − c0η

β − η2L− 2c0η2) ≥ ν

Lnα
,

where ν is a constant independent of n. The first inequality holds since ct decreases
with t. The second inequality holds since (a) c0/β is upper bounded by a constant
independent of n as c0/β ≤ µ0(e− 1) (follows from Equation (2.13)), (b) η2L ≤ µ0η and
(c) 2c0η2 ≤ 2µ2

0(e− 1)η (follows from Equation (2.13)). By choosing µ0 (independent of
n) appropriately, one can ensure that γn ≥ ν/(Lnα) for some universal constant ν. For
example, choosing µ0 = 1/4, we have γn ≥ ν/(Lnα) with ν = 1/40. Substituting the
above lower bound in Equation (2.12), we obtain the desired result.

34

Proof of Corollary 2.3.2.1

Corollary. Suppose f ∈ Fn. Then the IFO complexity of Algorithm 2 (with parameters from
Theorem 2.3.2) for achieving an ε-accurate solution is:

IFO calls =

{
O
(

n + (n1− α
2 /ε)

)
, if α < 2/3,

O (n + (nα/ε)) , if α ≥ 2/3.

Proof. This result follows from Theorem 2.3.2 and the fact that m = bn3α/2/(3µ0)c. Sup-
pose α < 2/3, then m = o(n). However, n IFO calls are invested in calculating the
average gradient at the end of each epoch. In other words, computation of average gra-
dient requires n IFO calls for every m iterations of the algorithm. Using this relationship,

we get O
(
n + (n1−α

2 /ε)
)

in this case.
On the other hand, when α ≥ 2/3, the total number of IFO calls made by Algorithm 2

in each epoch is Ω(n) since m = bn3α/2/(3µ0)c. Hence, the oracle calls required for
calculating the average gradient (per epoch) is of lower order, leading to O

(
n + (nα/ε)

)
IFO calls.

2.12 GD-SVRG

Proof of Theorem 2.3.3

Theorem. Suppose f is τ-gradient dominated where τ > n1/3. Then, the iterates of Algo-
rithm 3 with T = d2Lτn2/3/ν1e, m = bn/(3µ1)c, ηt = µ1/(Ln2/3) for all 0 ≤ t ≤ m− 1
and pm = 1 and pi = 0 for all 0 ≤ i < m satisfy

E[‖∇ f (xk)‖2] ≤ 2−k[‖∇ f (x0)‖2].

Here µ1 and ν1 are the constants used in Corollary 2.3.2.2.

Proof. Corollary 2.3.2.2 shows that the iterates of Algorithm 3 satisfy

E[‖∇ f (xk)‖2] ≤ Ln2/3E[f (xk−1)− f (x∗)]
Tν1

.

Substituting the specified value of T in the above inequality, we have

E[‖∇ f (xk)‖2] ≤ 1
2τ

(
E[f (xk−1)− f (x∗)]

)
≤ 1

2E[‖∇ f (xk−1)‖2].

The second inequality follows from τ-gradient dominance of the function f .

35

Proof of Theorem 2.3.4

Theorem. If f is τ-gradient dominated (τ > n1/3), then with T = d2Lτn2/3/ν1e, m =
bn/(3µ1)c, ηt = µ1/(Ln2/3) for 0 ≤ t ≤ m− 1 and pm = 1 and pi = 0 for all 0 ≤ i < m,
the iterates of Algorithm 3 satisfy

E[f (xk)− f (x∗)] ≤ 2−k[f (x0)− f (x∗)].

Here µ1, ν1 are as in Corollary 2.3.2.2; x∗ is an optimal solution.

Proof. The proof mimics that of Theorem 2.3.3; now we have the following condition on
the iterates of Algorithm 3:

E[‖∇ f (xk)‖2] ≤ E[f (xk−1)− f (x∗)]
2τ

. (2.14)

However, f is τ-gradient dominated, so E[‖∇ f (xk)‖2] ≥ E[f (xk) − f (x∗)]/τ, which
combined with Equation (2.14) concludes the proof.

2.13 Convex SVRG: Convergence Rate

Proof of Theorem 2.4.1

Theorem. If fi is convex for all i ∈ [n], pi = 1/m for 0 ≤ i ≤ m− 1, and pm = 0, then for
Algorithm 2, we have

E[‖∇ f (xa)‖2] ≤ L‖x0 − x∗‖2 + 4mL2η2[f (x0)− f (x∗)]
Tη(1− 4Lη)

,

where x∗ is optimal for (2.1) and xa is the output of Algorithm 2.

Proof. Consider the following sequence of inequalities:

E[‖xs+1
t+1 − x∗‖2] = E[‖xs+1

t − ηvs+1
t − x∗‖2]

≤ E[‖xs+1
t − x∗‖2] + η2E[‖vs+1

t ‖2]

− 2ηE[〈vs+1
t , xs+1

t − x∗〉]
≤ E[‖xs+1

t − x∗‖2] + η2E[‖vs+1
t ‖2]

− 2ηE[f (xs+1
t)− f (x∗)]

≤ E[‖xs+1
t − x∗‖2]− 2η(1− 2Lη)E[f (xs+1

t)− f (x∗)]

+ 4Lη2E[f (x̃s)− f (x∗)]

= E[‖xs+1
t − x∗‖2]− 2η(1− 4Lη)E[f (xs+1

t)− f (x∗)]

+ 4Lη2E[f (x̃s)− f (x∗)]− 4Lη2E[f (xs+1
t)− f (x∗)].

36

The second inequality uses unbiasedness of the SVRG update and convexity of f . The
third inequality follows from Lemma 2.18.2. Defining the Lyapunov function

Ps := E[‖xs
m − x∗‖2] + 4mLη2E[f (x̃s)− f (x∗)],

and summing the above inequality over t, we get

2η(1− 4Lη)
m−1

∑
t=0

E[f (xs+1
t)− f (x∗)] ≤ Ps − Ps+1.

This due is to the fact that

Ps+1 = E[‖xs+1
m − x∗‖2] + 4mLη2E[f (x̃s+1)− f (x∗)]

= E[‖xs+1
m − x∗‖2] + 4Lη2

m−1

∑
t=0

E[f (xs+1
t)− f (x∗)].

The above equality uses the fact that pm = 0 and pi = 1/m for 0 ≤ i < m. Summing
over all epochs and telescoping we then obtain

E[f (xa)− f (x∗)] ≤ P0(2Tη(1− 4Lη)
)−1.

The inequality also uses the definition of xa given in Alg 2. On this inequality we use
Lemma 2.18.1, which yields

E[‖∇ f (xa)‖2] ≤ 2LE[f (xa)− f (x∗)]

≤ L‖x0 − x∗‖2 + 4mL2η2[f (x0)− f (x∗)]
Tη(1− 4Lη)

.

It is easy to see that we can obtain convergence rates for E[f (xa)− f (x∗)] from the
above reasoning. This leads to a direct analysis of SVRG for convex functions.

2.14 Minibatch Nonconvex SVRG

Proof of Theorem 2.5.1

The proofs essentially follow along the lines of Lemma 2.11.1, Theorem 2.3.1 and The-
orem 2.3.2 with the added complexity of mini-batch. We first prove few intermediate
results before proceeding to the proof of Theorem 2.5.1.

Lemma 2.14.1. Suppose we have

Rs+1
t := E[f (xs+1

t) + ct‖xs+1
t − x̃s‖2],

ct = ct+1(1 + ηtβt +
2η2

t L2

b
) +

η2
t L3

b
,

37

Algorithm 4: Mini-batch SVRG
1: Input: x̃0 = x0

m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}m−1
i=0 , S = dT/me, discrete

probability distribution {pi}m
i=0, mini-batch size b

2: for s = 0 to S− 1 do
3: xs+1

0 = xs
m

4: gs+1 = 1
n ∑n

i=1∇ fi(x̃s)
5: for t = 0 to m− 1 do
6: Choose a mini-batch (uniformly random with replacement) It ⊂ [n] of size b
7: us+1

t = 1
b ∑it∈It

(∇ fit(xs+1
t)−∇ fit(x̃s)) + gs+1

8: xs+1
t+1 = xs+1

t − ηtus+1
t

9: end for
10: x̃s+1 = ∑m

i=0 pixs+1
i

11: end for
12: Output: Iterate xa chosen uniformly random from {{xs+1

t }m−1
t=0 }

S−1
s=0 .

for 0 ≤ s ≤ S− 1 and 0 ≤ t ≤ m− 1 and the parameters ηt, βt and ct+1 are chosen such that(
ηt −

ct+1ηt

βt
− η2

t L− 2ct+1η2
t

)
≥ 0.

Then the iterates xs+1
t in the mini-batch version of Algorithm 2 i.e., Algorithm 4 with mini-batch

size b satisfy the bound:

E[‖∇ f (xs+1
t)‖2] ≤ Rs+1

t − Rs+1
t+1(

ηt − ct+1ηt
βt
− η2

t L− 2ct+1η2
t

) ,

Proof. Using essentially the same argument as the proof of Lemma. 2.11.1 until Equa-
tion (2.10), we have

Rs+1
t+1 ≤ E[f (xs+1

t)−
(

ηt − ct+1ηt
βt

)
‖∇ f (xs+1

t)‖2

+
(

Lη2
t

2 + ct+1η2
t

)
E[‖us+1

t ‖2]

+ (ct+1 + ct+1ηtβt)E
[
‖xs+1

t − x̃s‖2
]

. (2.15)

We use Lemma 2.16.2 in order to bound E[‖us+1
t ‖2] in the above inequality. Substituting

it in Equation (2.15), we see that

Rs+1
t+1 ≤ E[f (xs+1

t)]

−
(

ηt − ct+1ηt
βt
− η2

t L− 2ct+1η2
t

)
E[‖∇ f (xs+1

t)‖2]

+
[
ct+1

(
1 + ηtβt +

2η2
t L2

b
)
+

η2
t L3

b

]
E
[
‖xs+1

t − x̃s‖2
]

≤ Rs+1
t −

(
ηt − ct+1ηt

βt
− η2

t L− 2ct+1η2
t
)
E[‖∇ f (xs+1

t)‖2].

38

The second inequality follows from the definition of ct and Rs+1
t , thus concluding the

proof.

Our intermediate key result is the following theorem that provides convergence rate
of mini-batch SVRG.

Theorem 2.14.2. Let γn denote the following quantity:

γn := min
0≤t≤m−1

(
η − ct+1η

β − η2L− 2ct+1η2).
Suppose ηt = η and βt = β for all t ∈ {0, . . . , m− 1}, cm = 0, ct = ct+1(1+ ηtβt +

2η2
t L2

b) +
η2

t L3

b for t ∈ {0, . . . , m− 1} and γn > 0. Further, let pm = 1 and pi = 0 for 0 ≤ i < m. Then
for the output xa of mini-batch version of Algorithm 2 with mini-batch size b, we have

E[‖∇ f (xa)‖2] ≤ f (x0)− f (x∗)
Tγn

,

where x∗ is an optimal solution to (2.1).

Proof. Since ηt = η for t ∈ {0, . . . , m− 1}, using Lemma 2.14.1 and telescoping the sum,
we obtain

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤ Rs+1
0 − Rs+1

m
γn

.

This inequality in turn implies that

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤ E[f (x̃s)− f (x̃s+1)]

γn
,

where we used that Rs+1
m = E[f (xs+1

m)] = E[f (x̃s+1)] (since cm = 0, pm = 1, and pi = 0
for i < m), and that Rs+1

0 = E[f (x̃s)] (since xs+1
0 = x̃s, as pm = 1 and pi = 0 for i < m).

Now sum over all epochs and using the fact that x̃0 = x0, we get the desired result.

We now present the proof of Theorem 2.5.1 using the above results.

Theorem. Let γn denote the following quantity:

γn := min
0≤t≤m−1

(
η − ct+1η

β − η2L− 2ct+1η2).
where cm = 0, ct = ct+1(1+ ηβ+ 2η2L2/b)+ η2

t L3/b for 0 ≤ t ≤ m− 1. Suppose η = µ2b/(Ln2/3)
(0 < µ2 < 1), β = L/n1/3, m = bn/(3bµ2)c and T is some multiple of m. Then for the mini-
batch version of Algorithm 2 with mini-batch size b < n2/3, there exists universal constants
µ2, ν2 > 0 such that we have the following: γn ≥

ν2b
Ln2/3 and

E[‖∇ f (xa)‖2] ≤ Ln2/3[f (x0)− f (x∗)]
bTν2

,

where x∗ is optimal for (2.1).

39

Proof of Theorem 2.5.1. We first observe that using the specified values of β and η we
obtain

θ :=
2η2L2

b
+ ηβ =

2µ2
2b

n4/3 +
µ2b
n
≤ 3µ2b

n
.

The above inequality follows since µ2 ≤ 1 and n ≥ 1. For our analysis, we will require
the following bound on c0:

c0 =
µ2

2b2L
bn4/3

(1 + θ)m − 1
θ

=
µ2bL((1 + θ)m − 1)

2bµ2 + bn1/3

≤ n−1/3(µ2L(e− 1)), (2.16)

wherein the first equality holds due to the relation ct = ct+1(1 + ηtβt +
2η2

t L2

b) +
η2

t L3

b ,
and the inequality follows upon again noting that (1 + 1/l)l is increasing for l > 0 and
liml→∞(1 + 1

l)
l = e. Now we can lower bound γn, as

γn = min
t

(
η − ct+1η

β − η2L− 2ct+1η2)
≥
(
η − c0η

β − η2L− 2c0η2) ≥ bν2

Ln2/3 ,

where ν2 is a constant independent of n. The first inequality holds since ct decreases
with t. The second one holds since (a) c0/β is upper bounded by a constant indepen-
dent of n as c0/β ≤ µ2(e − 1) (due to Equation (2.16)), (b) η2L ≤ µ2η (as b < n2/3)
and (c) 2c0η2 ≤ 2µ2

2(e − 1)η (again due to Equation (2.16) and the fact b < n2/3). By
choosing an appropriately small constant µ2 (independent of n), one can ensure that
γn ≥ bν2/(Ln2/3) for some universal constant ν2. For example, choosing µ2 = 1/4,
we have γn ≥ bν2/(Ln2/3) with ν2 = 1/40. Substituting the above lower bound in
Theorem 2.14.2, we get the desired result.

2.15 MSVRG: Convergence Rate

Proof of Theorem 2.7.1

Theorem. Let f ∈ Fn have σ-bounded gradients. Let ηt = η = max{c/
√

T, µ1/(Ln2/3)} (µ1 is

the universal constant from Corollary 2.3.2.2), m = bn/(3µ1)c, and c =
√

f (x0)− f (x∗)
2Lσ2 . Further,

let T be a multiple of m, pm = 1, and pi = 0 for 0 ≤ i < m. Then, the output xa of Algorithm 2
satisfies

E[‖∇ f (xa)‖2]

≤ ν̄ min
{

2

√
2(f (x0)− f (x∗))L

T
σ,

Ln2/3[f (x0)− f (x∗)]
Tν1

}
,

40

where ν̄ is a universal constant, ν1 is the universal constant from Corollary 2.3.2.2 and x∗ is an
optimal solution to (2.1).

Proof. First, we observe that the step size η is chosen to be max{c/
√

T, µ1/(Ln2/3)}
where

c =

√
f (x0)− f (x∗)

2Lσ2 .

Suppose η = µ1/(Ln2/3), we obtain the convergence rate in Corollary 2.3.2.2. Now, lets
consider the case where η = c/

√
T. In this case, we have the following bound:

E[‖vs+1
t ‖2]

= E[‖∇ fit(xs+1
t)−∇ fit(x̃s) +∇ f (x̃s)‖2]

≤ 2
(

E[‖∇ fit(xs+1
t)‖2 + ‖∇ fit(x̃s)−∇ f (x̃s)‖2]

)
≤ 2

(
E[‖∇ fit(xs+1

t)‖2 + ‖∇ fit(x̃s)‖2]
)

≤ 4σ2.

The first inequality follows from Lemma 2.18.4 with r = 2. The second inequality fol-
lows from (a) σ-bounded gradient property of f and (b) the fact that for a random vari-
able ζ, E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2]. The rest of the proof is along exactly the lines as in
Theorem 2.2.3. This provides a convergence rate similar to Theorem 2.2.3. More specif-
ically, using step size c/

√
T, we get

E[‖ f (xa)‖2] ≤ 2

√
2(f (x0)− f (x∗))L

T
σ. (2.17)

The only thing that remains to be proved is that with the step size choice of max{c/
√

T,
µ1/(Ln2/3)}, the minimum of two bounds hold. Consider the case c/

√
T > µ1/(Ln2/3).

In this case, we have the following:

2
√

2(f (x0)− f (x∗))L
T σ

Ln2/3[f (x0)− f (x∗)]
Tν1

=
2ν1σ
√

2LT
Ln2/3

√
f (x0)− f (x∗)

≤ 2ν1/µ1 ≤ ν̄ := max
{

2ν1

µ1
,

µ1

2ν1

}
,

where ν1 is the constant in Corollary 2.3.2.2. This inequality holds since c/
√

T >
µ1/(Ln2/3). Rearranging the above inequality, we have

2

√
2(f (x0)− f (x∗))L

T
σ ≤ ν̄Ln2/3[f (x0)− f (x∗)]

T
in this case. Note that the left hand side of the above inequality is precisely the bound
obtained by using step size c/

√
T (see Equation (2.17)). Similarly, the inequality holds

in the other direction when c/
√

T ≤ µ1/(Ln2/3). Using these two observations, we
have the desired result.

41

2.16 Key Lemmatta

Lemma 2.16.1. For the intermediate iterates vs+1
t computed by Algorithm 2, we have the fol-

lowing:

E[‖vs+1
t ‖2] ≤ 2E[‖∇ f (xs+1

t)‖2] + 2L2E[‖xs+1
t − x̃s‖2].

Proof. The proof simply follows from the proof of Lemma 2.16.2 with It = {it}.

We now present a result to bound the variance of mini-batch SVRG.

Lemma 2.16.2. Let us+1
t be computed by the mini-batch version of Algorithm 2 i.e., Algorithm 4

with mini-batch size b. Then,

E[‖us+1
t ‖2] ≤ 2E[‖∇ f (xs+1

t)‖2] + 2L2

b E[‖xs+1
t − x̃s‖2].

Proof. For the ease of exposition, we use the following notation:

ζs+1
t =

1
|It| ∑

it∈It

(
∇ fit(xs+1

t)−∇ fit(x̃s)
)

.

We use the definition of us+1
t to get

E[‖us+1
t ‖2] = E[‖ζs+1

t +∇ f (x̃s)‖2]

= E[‖ζs+1
t +∇ f (x̃s)−∇ f (xs+1

t) +∇ f (xs+1
t)‖2]

≤ 2E[‖∇ f (xs+1
t)‖2] + 2E[‖ζs+1

t −E[ζs+1
t]‖2]

= 2E[‖∇ f (xs+1
t)‖2] +

2
b2 E

∥∥∥∥∥∑
it∈It

(
∇ fit(xs+1

t)−∇ fit(x̃s)−E[ζs+1
t]

)∥∥∥∥∥
2


The first inequality follows from Lemma 2.18.4 (with r = 2) and the fact that E[ζs+1
t] =

∇ f (xs+1
t)−∇ f (x̃s). From the above inequality, we get

E[‖us+1
t ‖2]

≤ 2E[‖∇ f (xs+1
t)‖2] +

2
b2 E

[
∑

it∈It

‖∇ fit(xs+1
t)−∇ fit(x̃s)‖2

]

≤ 2E[‖∇ f (xs+1
t)‖2] +

2L2

b
E[‖xs+1

t − x̃s‖2]

The first inequality follows from Lemma 2.18.3 and noting that for a random variable ζ,
E[‖ζ −E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality follows from L-smoothness of fit .

42

0 50 100 150 200 250 300
grad / n

0.044

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

T
e
st

 E
rr

o
r

SGD

SVRG

0 50 100 150 200 250 300
grad / n

10-4

10-3

10-2

10-1

100

101

‖∇
f(
x
t)
‖2

SGD

SVRG

0 50 100 150 200 250 300
grad / n

0.58

0.60

0.62

0.64

0.66

0.68

0.70

T
e
st

 E
rr

o
r

SGD

SVRG

Figure 2.2: Neural network results for MNIST and STL-10. The leftmost result is for
MNIST. The remaining two plots are of STL-10.

2.17 Experiments

Figure 2.2 shows the remaining plots for MNIST and STL-10 datasets. As seen in the
plots, there is no significant difference in the test error of SVRG and SGD for these
datasets.

2.18 Other Lemmas

We need Lemma 2.18.1 for our results in the convex case.

Lemma 2.18.1 (Johnson and Zhang [71]). Let g : Rd → R be convex with L-Lipschitz
continuous gradient. Then,

‖∇g(x)−∇g(y)‖2 ≤ 2L[g(x)− g(y)− 〈∇g(y), x− y〉],

for all x, y ∈ Rd.

Proof. Consider h(x) := g(x)− g(y)− 〈∇g(y), x− y〉 for arbitrary y ∈ Rd. Observe that
∇h is also L-Lipschitz continuous. Note that h(x) ≥ 0 (since h(y) = 0 and ∇h(y) = 0,
or alternatively since h defines a Bregman divergence), from which it follows that

0 ≤ min
ρ

[h(x− ρ∇h(x))]

≤ min
ρ

[h(x)− ρ‖∇h(x)‖2 + Lρ2

2 ‖∇h(x)‖2]

= h(x)− 1
2L‖∇h(x)‖2.

Rewriting in terms of g we obtain the required result.

Lemma 2.18.2 bounds the variance of SVRG for the convex case. Please refer to [71]
for more details.

Lemma 2.18.2 ([71]). Suppose fi is convex for all i ∈ [n]. For the updates in Algorithm 2 we
have the following inequality:

E[‖vs+1
t ‖2] ≤ 4L[f (xs+1

t)− f (x∗) + f (x̃s)− f (x∗)].

43

Proof. The proof follows upon observing the following:

E[‖vs+1
t ‖2 = E[‖∇ fit(xs+1

t)−∇ fit(xs+1
0) +∇ f (x̃s)‖2]

≤ 2E[‖∇ fit(xs+1
t)−∇ fit(x∗)‖2] + 2E[‖∇ fit(x̃s)−∇ fit(x∗)− (∇ f (x̃s)−∇ f (x∗))‖2]

≤ 2E[‖∇ fit(xs+1
t)−∇ fit(x∗)‖2] + 2E[‖∇ fit(x̃s)−∇ fit(x∗)‖2]

≤ 4L[f (xs+1
t − f (x∗) + f (x̃s)− f (x∗)].

The first inequality follows from Cauchy-Schwarz and Young inequality; the second one
from E[‖ξ −E[ξ]‖2] ≤ E[‖ξ‖2], and the third one from Lemma 2.18.1.

Lemma 2.18.3. For random variables z1, . . . , zr are independent and mean 0, we have

E
[
‖z1 + ... + zr‖2

]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

Proof. We have the following:

E
[
‖z1 + ... + zr‖2

]
=

r

∑
i,i=1

E
[
zizj
]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

The second equality follows from the fact that zi’s are independent and mean 0.

Lemma 2.18.4. For random variables z1, . . . , zr, we have

E
[
‖z1 + ... + zr‖2

]
≤ rE

[
‖z1‖2 + ... + ‖zr‖2

]
.

44

Chapter 3

Fast Incremental Methods for Smooth
Nonconvex Optimization

3.1 Introduction

In this chapter, we continue our study of the finite-sum optimization problem

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (3.1)

where each fi (i ∈ {1, . . . , n} , [n]) can be nonconvex. Recall that we denote the class
of such instances of (3.1) by Fn. While the previous chapter presents a fast variance-
reduced algorithm, SVRG, for this problem setting, it is not fully incremental since it
requires computing the full gradient periodically. Our focus in this chapter is to develop
incremental methods for smooth nonconvex optimization.

As mentioned earlier, problems of the form (3.1) are of central importance in machine
learning where they occur as instances of empirical risk minimization; well-known ex-
amples include logistic regression (convex) [68] and deep neural networks (noncon-
vex) [36]. Consequently, such problems have been intensively studied. A basic ap-
proach for solving (3.1) is gradient descent (GD), described by the following:

xt+1 = xt − ηt∇ f (xt), where ηt > 0. (3.2)

However, iteration (10.8) is prohibitively expensive in large-scale settings where n is
very large. For such settings, stochastic and incremental methods are typical [18, 33].
These methods use cheap noisy estimates of the gradient at each iteration of (10.8) in-
stead of ∇ f (xt). A particularly popular approach, stochastic gradient descent (SGD)
uses ∇ fit , where it in chosen uniformly randomly from {1, . . . , n}. While the cost of
each iteration is now greatly reduced, it is not without any drawbacks. Due to the noise
(also known as variance in stochastic methods) in the gradients, one has to typically use
decreasing step-sizes ηt to ensure convergence, and consequently, the convergence rate
gets adversely affected.

45

Therefore, it is of great interest to overcome the slowdown of SGD without giving up
its scalability. Towards this end, for convex instances of (3.1), remarkable progress has
been made recently. The key realization is that if we make multiple passes through the
data, we can store information that allows us to reduce variance of the stochastic gra-
dients. As a result, we can use constant stepsizes (rather than diminishing scalars) and
obtain convergence faster than SGD, both in theory and practice [33, 71, 153]. Noncon-
vex instances of (3.1) are also known to enjoy similar speedups [71], but existing analysis
does not explain this success as it relies heavily on convexity to control variance. Since
SGD dominates large-scale nonconvex optimization (including neural network train-
ing), it is of great value to develop faster nonconvex stochastic methods.

In this chapter, we analyze a variant of SAGA [33] algorithm, an incremental aggre-
gated gradient algorithm that extends the seminal SAG method of [153], and has been
shown to work well for convex finite-sum problems [33]. Specifically, we analyze SAGA
for the class Fn using the incremental first-order oracle (IFO) [2]. Recall that for f ∈ Fn,
an IFO is a subroutine that takes an index i ∈ [n] and a point x ∈ Rd, and returns the
pair (fi(x),∇ fi(x)). To our knowledge, this work presents the first analysis of fast con-
vergence for an incremental aggregated gradient method for nonconvex problems. The
attained rates improve over both SGD and GD, a benefit that is also corroborated by
experiments.

3.1.1 Related work

A concise survey of incremental gradient methods is [18]. An accessible analysis of
stochastic convex optimization (min Ez[F(x, z)]) is [110]. Classically, SGD stems from
the seminal work [148], and has since witnessed many developments [77], including
parallel and distributed variants [3, 15, 128], though non-asymptotic convergence anal-
ysis is limited to convex setups. Faster rates for convex problems in Fn are attained by
variance reduced methods, e.g., [33, 71, 133, 153, 156]. Linear convergence of stochastic
dual coordinate ascent when fi (i ∈ [n]) may be nonconvex but f is strongly convex is
studied in [154]. Lower bounds for convex finite-sum problems are studied in [2].

For nonconvex nonsmooth problems the first incremental proximal-splitting meth-
ods is in [164], though only asymptotic convergence is studied. Hong [60] studies con-
vergence of a distributed nonconvex incremental ADMM algorithm. The first work to
present non-asymptotic convergence rates for SGD is [47]; this work presents an O(1/ε2)
iteration bound for SGD to satisfy approximate stationarity ‖∇ f (x)‖2 ≤ ε, and their
convergence criterion is motivated by the gradient descent analysis of Nesterov [111].
The first analysis for nonconvex variance reduced stochastic gradient is due to [160],
who apply it to the specific problem of principal component analysis (PCA).

3.2 Preliminaries

In this section, we further explain our assumptions and goals. Recall that a function f is
L-smooth if there is a constant L such that ‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.

46

Throughout, we assume that all fi in (11.1) are L-smooth, i.e., ‖∇ fi(x) − ∇ fi(y)‖ ≤
L‖x − y‖ for all i ∈ [n]. Such an assumption is common in the analysis of first-order
methods. For ease of exposition, we assume the Lipschitz constant L to be indepen-
dent of n. For our analysis, we also discuss the class of τ-gradient dominated [115, 122]
functions, namely functions for which

f (x)− f (x∗) ≤ τ‖∇ f (x)‖2, (3.3)

where x∗ is a global minimizer of f . This class of functions was originally introduced by
Polyak in [122]. Observe that such functions need not be convex. Also notice that gradi-
ent dominance (3.3) is a restriction on the overall function f , but not on the individual
functions fi (i ∈ [n]).

Following [47, 111] we use ‖∇ f (x)‖2 ≤ ε to judge approximate stationarity of x.
Contrast this with SGD for convex f , where one uses [f (x) − f (x∗)] or ‖x − x∗‖2 as
criteria for convergence analysis. Such criteria cannot be used for nonconvex functions
due to the intractability of the problem.

While the quantities ‖∇ f (x)‖2, [f (x)− f (x∗)], or ‖x − x∗‖2 are not comparable in
general, they are typically assumed to be of similar magnitude (see [47]). We note that
our analysis does not assume n to be a constant, so we report dependence on it in our
results. Furthermore, while stating our complexity results, we assume that the initial
point of the algorithms is constant, i.e., f (x0)− f (x∗) and ‖x0 − x∗‖ are constants. For
our analysis, we will need the following definition.

Definition 3.2.1. A point x is called ε-accurate if ‖∇ f (x)‖2 ≤ ε. A stochastic iterative algo-
rithm is said to achieve ε-accuracy in t iterations if E[‖∇ f (xt)‖2] ≤ ε, where the expectation
is taken over its stochasticity.

We start our discussion of algorithms by recalling SGD, which performs the follow-
ing update in its tth iteration:

xt+1 = xt − ηt∇ fit(x), (3.4)

where it is a random index chosen from [n], and the gradient∇ fit(xt) approximates the
gradient of f at xt,∇ f (xt). It can be seen that the update is unbiased, i.e., E[∇ fit(xt)] =
∇ f (xt) since the index it is chosen uniformly at random. Though the SGD update is
unbiased, it suffers from variance due to the aforementioned stochasticity in the chosen
index. To control the variance one has to decrease the step size ηt in (3.4), which in turn
leads to slow convergence. The following is a well-known result on SGD in the context
of nonconvex optimization [47].

Theorem 3.2.2. Suppose ‖∇ fi‖ ≤ σ i.e., gradient of function fi is bounded for all i ∈ [n], then
the IFO complexity of SGD to obtain an ε-accurate solution is O(1/ε2).

It is instructive to compare the above result with the convergence rate of GD. The
IFO complexity of GD is O(n/ε). Thus, while SGD eliminates the dependence on n,
the convergence rate worsens to O(1/ε2) from O(1/ε) in GD. In the next section, we
investigate an incremental method with faster convergence.

47

Algorithm 5: SAGA
(
x0, T, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], number of iterations T, step size η > 0
2: g0 = 1

n ∑n
i=1∇ fi(α

0
i)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick it, jt from [n]
5: vt = ∇ fit(xt)−∇ fit(α

t
it
) + gt

6: xt+1 = xt − ηvt

7: αt+1
jt = xt and αt+1

j = αt
j for j 6= jt

8: gt+1 = gt − 1
n (∇ f jt(α

t
jt)−∇ f jt(α

t+1
jt))

9: end for
10: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

3.3 Algorithm

We describe below the SAGA algorithm and prove its fast convergence for nonconvex
optimization. SAGA is a popular incremental method in machine learning and opti-
mization communities. It is very effective in reducing the variance introduced due to
stochasticity in SGD. Algorithm 5 presents pseudocode for SAGA. Note that the update
vt (Line 5) is unbiased, i.e., E[vt] = ∇ f (xt). This is due to the uniform random selection
of index it. It can be seen in Algorithm 5 that SAGA maintains gradients at αi for i ∈ [n].
This additional set is critical to reducing the variance of the update vt. At each iteration
of the algorithm, one of the αi is updated to the current iterate. An implementation of
SAGA requires storage and updating of gradients ∇ fi(αi); the storage cost of the algo-
rithm is nd. While this leads to higher storage in comparison to SGD, this cost is often
reasonable for many applications. Furthermore, this cost can be reduced in the case of
specific models; refer to [33] for more details.

For ease of exposition, we introduce the following quantity:

Γt =
(
η − ct+1η

β − η2L− 2ct+1η2), (3.5)

where the parameters ct+1, β and η will be defined shortly. We start with the following
set of key results that provide convergence rate of Algorithm 5.

Lemma 3.3.1. For ct, ct+1, β > 0, suppose we have

ct = ct+1(1− 1
n + ηβ + 2η2L2) + η2L3.

Also let η, β and ct+1 be chosen such that Γt > 0. Then, the iterates {xt} of Algorithm 5 satisfy
the bound

E[‖∇ f (xt)‖2] ≤ Rt − Rt+1

Γt
,

where Rt := E[f (xt) + (ct/n)∑n
i=1 ‖xt − αt

i‖2].

48

The proof of this lemma is given in Section 3.9. Using this lemma we prove the
following result on the iterates of SAGA.

Theorem 3.3.2. Let f ∈ Fn. Let cT = 0, β > 0, and ct = ct+1(1− 1
n + ηβ + 2η2L2) + η2L3

be such that Γt > 0 for 0 ≤ t ≤ T − 1. Define the quantity γn := min0≤t≤T−1 Γt. Then the
output xa of Algorithm 5 satisfies the bound

E[‖∇ f (xa)‖2] ≤ f (x0)− f (x∗)
Tγn

,

where x∗ is an optimal solution to (3.1).

Proof. We apply telescoping sums to the result of Lemma 3.3.1 to obtain

γn ∑T−1
t=0 E[‖∇ f (xt)‖2] ≤∑T−1

t=0 ΓtE[‖∇ f (xt)‖2]

≤ R0 − RT.

The first inequality follows from the definition of γn. This inequality in turn implies the
bound

∑T−1
t=0 E[‖∇ f (xt)‖2] ≤ E[f (x0)− f (xT)]

γn
, (3.6)

where we used that RT = E[f (xT)] (since cT = 0), and that R0 = E[f (x0)] (since
α0

i = x0 for i ∈ [n]). Using inequality (3.6), the optimality of x∗, and the definition of xa
in Algorithm 5, we obtain the desired result.

Note that the notation γn involves n, since this quantity can depend on n. To obtain
an explicit dependence on n, we have to use an appropriate choice of β and η. This is
made precise by the following main result of the chapter.

Theorem 3.3.3. Suppose f ∈ Fn. Let η = 1/(3Ln2/3) and β = L/n1/3. Then, γn ≥ 1
12Ln2/3

and we have the bound

E[‖∇ f (xa)‖2] ≤ 12Ln2/3[f (x0)− f (x∗)]
T

,

where x∗ is an optimal solution to the problem in (3.1) and xa is the output of Algorithm 5.

Proof. With the values of η and β, let us first establish an upper bound on ct. Let θ denote
1
n − ηβ− 2η2L2. Observe that θ < 1 and θ ≥ 4/(9n). This is due to the specific values
of η and β stated in the theorem. Also, we have ct = ct+1(1− θ) + η2L3. Using this

relationship, it is easy to see that ct = η2L3 1−(1−θ)T−t

θ . Therefore, we obtain the bound

ct = η2L3 1−(1−θ)T−t

θ ≤ η2L3

θ
≤ L

4n1/3 , (3.7)

49

for all 0 ≤ t ≤ T, where the inequality follows from the definition of η and the fact that
θ ≥ 4/(9n). Using the above upper bound on ct we can conclude that

γn = min
t

(
η − ct+1η

β − η2L− 2ct+1η2) ≥ 1
12Ln2/3 ,

upon using the following inequalities: (i) ct+1η/β ≤ η/4, (ii) η2L ≤ η/3 and (iii)
2ct+1η2 ≤ η/6, which hold due to the upper bound on ct in (3.7). Substituting this
bound on γn in Theorem 3.3.2, we obtain the desired result.

A more general result with step size η < 1/(3Ln2/3) can be proved, but it will only
lead to a theoretically suboptimal convergence result. Recall that each iteration of Algo-
rithm 5 requires O(1) IFO calls. Using this fact, we can rewrite Theorem 3.3.3 in terms
of its IFO complexity as follows.

Corollary 3.3.3.1. If f ∈ Fn, then the IFO complexity of Algorithm 5 (with parameters from
Theorem 3.3.3) to obtain an ε-accurate solution is O(n + n2/3/ε).

This corollary follows from the O(1) per iteration cost of Algorithm 5 and because n
IFO calls are required to calculate g0 at the start of the algorithm. In special cases, the
initial O(n) IFO calls can be avoided (refer to [33, 153] for details). By comparing the
IFO complexity of SAGA (O(n + n2/3/ε)) with that of GD (O(n/ε)), we see that SAGA
is faster than GD by a factor of n1/3.

3.4 Finite Sums with Regularization

In this section, we study the problem of finite-sum problems with additional regular-
ization. More specifically, we consider problems of the form

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x) + r(x), (3.8)

where r : Rd → R is an L-smooth (possibly nonconvex) function. Problems of this
nature arise in machine learning where the functions fi are loss functions and r is a
regularizer. Since we assumed r to be smooth, (3.8) can be reformulated as (3.1) by
simply encapsulating r into the functions fi. However, as we will see, it is beneficial to
handle the regularization separately. We call the variant of SAGA with the additional
regularization as REG-SAGA. The key difference between REG-SAGA and SAGA lies in
Line 6 of Algorithm 5. In particular, for REG-SAGA, Line 6 of Algorithm 5 is replaced
with the following update:

xt+1 = xt − η(vt +∇r(xt)). (3.9)

Note that the primary difference is that the part of gradient based on function r is up-
dated at each iteration of the algorithm. The convergence of REG-SAGA can be proved
along the lines of our analysis of SAGA. Hence, we omit the details for brevity and
directly state the following key result stating the IFO complexity of REG-SAGA.

50

Theorem 3.4.1. If function f is of the form in (3.8), then the IFO complexity of REG-SAGA to
obtain an ε-accurate solution is O(n + n2/3/ε).

The proof essentially follows along the lines of the proof of Theorem 3.3.3. The dif-
ference, however, being that the update corresponding to function r(x) is handled ex-
plicitly at each iteration. Note that the above IFO complexity is not different from that
in Corollary 3.3.3.1. However, its main benefit comes in the form of storage efficiency in
problems with more structure. To understand this, consider the problems of form

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

l(x>zi) + r(x), (3.10)

where zi ∈ Rd for i ∈ [n] while l : R→ R≥0 is a differentiable loss function. Here, l and
r can be in general nonconvex. Such problems are popularly known as (regularized)
empirical risk minimization in machine learning literature. We can directly apply SAGA
to (3.10) by casting it in the form (3.1). However, recall that the storage cost of SAGA
is O(nd) due to the cost of storing the gradient at αt

i . This storage cost can be avoided
in REG-SAGA by handling the function r separately. Indeed, for REG-SAGA we need to
store just ∇l(x>zi) for all i ∈ [n] (as ∇r(x) is updated at each iteration). By observing
that ∇l(x>zi) = l′(x>zi)zi, where l′ represents the derivative of l, it is apparent that
we need to store only the scalars l′(x>zi) for REG-SAGA. This reduces the storage O(n)
instead of O(nd) in SAGA.

3.5 Gradient Dominated Functions

Until now the only assumption we used was Lipschitz continuity of gradients. An
immediate question is whether the IFO complexity can be further improved under
stronger assumptions. We provide an affirmative answer to this question by show-
ing that for gradient dominated functions, a variant of SAGA attains linear convergence
rate. Recall that a function f is called τ-gradient dominated if around an optimal point
x∗, f satisfies the following growth condition:

f (x)− f (x∗) ≤ τ‖∇ f (x)‖2, ∀x ∈ Rd.

For such functions, we use the variant of SAGA shown in Algorithm 6. Observe that
Algorithm 6 uses SAGA as a subroutine. Alternatively, one can rewrite Algorithm 6 in
the form of KT iterations of Algorithm 5 where one updates {αi} after every T iterations
and then selects a random iterate amongst the last T iterates. For this variant of SAGA,
we can prove the following linear convergence result.

Theorem 3.5.1. If f is τ-gradient dominated, then with η = 1/(3Ln2/3) and T = d24Lτn2/3e,
the iterates of Algorithm 6 satisfy E[‖ f (xk)‖2] ≤ 2−k‖ f (x0)‖2, where x∗ is an optimal solution
of (3.1).

51

Algorithm 6: GD-SAGA
(
x0, K, T, η

)
1: Input: x0 ∈ Rd, K, epoch length m, step sizes η > 0
2: for k = 0 to K do
3: xk = SAGA(xk−1, T, η)
4: end for
5: Output: xK

Proof. The iterates of Algorithm 6 satisfy the bound

E[‖∇ f (xk)‖2] ≤ E[f (xk−1)− f (x∗)]
2τ

, (3.11)

which holds due to Theorem 3.3.3 given the choices of η and T assumed in the state-
ment. However, f is τ-gradient dominated, so E[‖∇ f (xk−1)‖2] ≥ E[f (xk−1)− f (x∗)]/τ,
which combined with (3.11) concludes the proof.

An immediate consequence of this theorem is the following.

Corollary 3.5.1.1. If f is τ-gradient dominated, the IFO complexity of Algorithm 6 (with pa-
rameters from Theorem 3.5.1) to compute an ε-accurate solution is O((n + τn2/3) log(1/ε)).

While we state the result in terms of ‖∇ f (x)‖2, it is not hard to see that for gradient
dominated functions a similar result holds for the convergence criterion being [f (x)−
f (x∗)].

Theorem 3.5.2. If f is τ-gradient dominated, with η = 1/(3Ln2/3) and T = d24Lτn2/3e, the
iterates {xk} of Algorithm 6 satisfy

E[f (xk)− f (x∗)] ≤ 2−k[f (x0)− f (x∗)],

where x∗ is an optimal solution to (3.1).
A noteworthy aspect of the above result is the linear convergence rate to a global op-

timum. Therefore, the above result is stronger than Theorem 3.3.3. Note that through-
out our analysis of gradient dominated functions, no assumptions other than Lipschitz
smoothness are placed on the individual set of functions fi. We emphasize here that
these results can be further improved with additional assumptions (e.g., strong con-
vexity) on the individual functions fi and on f . Also note that GD can achieve linear
convergence rate for gradient dominated functions [122]. However, the IFO complexity
of GD is O(τn log(1/ε)), which is strictly worse than IFO complexity of GD-SAGA (see
Corollary 3.5.1.1).

3.6 Minibatch Variant

A common variant of incremental methods is to sample a set of indices It instead of sin-
gle index it when approximating the gradient. Such a variant is generally referred to as

52

Algorithm 7: Minibatch-SAGA
(
x0, b, T, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], minibatch size b, number of iterations T, step size η > 0
2: g0 = 1

n ∑n
i=1∇ fi(α

0
i)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick (with replacement) indices sets It, Jt of size b from [n]
5: vt = 1

|It| ∑i∈It
(∇ fi(xt)−∇ fi(α

t
it
)) + gt

6: xt+1 = xt − ηvt

7: αt+1
j = xt for j ∈ Jt and αt+1

j = αt
j for j /∈ Jt

8: gt+1 = gt − 1
n ∑j∈Jt

(∇ f j(α
t
j)−∇ f j(α

t+1
j))

9: end for
10: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

a “minibatch” version of the algorithm. Minibatch variants are of great practical signif-
icance since they reduce the variance of incremental methods and promote parallelism.
Algorithm 7 lists the pseudocode for a minibatch variant of SAGA. Algorithm 7 uses a
set It of size |It| = b for calculating the update vt instead of a single index it used in
Algorithm 5. By using a larger b, one can reduce the variance due to the stochasticity in
the algorithm. Such a procedure is also beneficial in parallel settings since the calcula-
tion of the update vt can be parallelized. For this algorithm, we can prove the following
convergence result.

Theorem 3.6.1. Suppose f ∈ Fn. Let η = b/(3Ln2/3) and β = L/n1/3. Then for the output
xa of Algorithm 7 (with b < n2/3) we have γn ≥ b

12Ln2/3 and

E[‖∇ f (xa)‖2] ≤ 12Ln2/3[f (x0)− f (x∗)]
bT

,

where x∗ is an optimal solution to (3.1).
We omit the details of the proof since it is similar to the proof of Theorem 3.3.3.

Note that the key difference in comparison to Theorem 5 is that we can now use a more
aggressive step size η = b/(3Ln2/3) due to a larger minibatch size b. An interesting
aspect of the result is the O(1/b) dependence on the minibatch size b. As long as this
size is not large (b < n2/3), one can significantly improve the convergence rate to a
stationary point. A restatement of aforementioned result in terms of IFO complexity is
provided below.

Corollary 3.6.1.1. If f ∈ Fn, then the IFO complexity of Algorithm 7 (with parameters from
Theorem 3.6.1 and minibatch size b < n2/3) to obtain an ε-accurate solution is O(n + n2/3/ε).

By comparing the above result with Corollary 3.3.3.1, we can see that the IFO com-
plexity of minibatch-SAGA is the same SAGA. However, since the b gradients can be
computed in parallel, one can achieve (theoretical) b times speedup in multicore and
distributed settings. In contrast, the performance SGD degrades with minibatch size b
since the improvement in convergence rate for SGD is typically O(1/

√
b) but b IFO calls

are required at each iteration of minibatch-SGD. Thus, SAGA has a much more efficient
minibatch version in comparison to SGD.

53

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 20 40 60 80 100

kr
f
(x

t)
k2

10-10

10-8

10-6

10-4

REG-SAGA
SGD

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 20 40 60 80 100

kr
f
(x

t)
k2

10-10

10-8

10-6

10-4

REG-SAGA
SGD

Figure 3.1: Results for nonconvex regularized generalized linear models (see Equa-
tion (3.12)). The first and last two figures correspond to rcv1 and realsim datasets re-
spectively. The results compare the performance of REG-SAGA and SGD algorithms.
Here x̂ corresponds to the solution obtained by running GD for a very long time and
using multiple restarts. As seen in the figure, REG-SAGA converges much faster than
SGD in terms of objective function value and the stationarity gap ‖∇ f (x)‖2.

3.7 Experiments

We present our empirical results in this section. For our experiments, we study the
problem of binary classification using nonconvex regularizers. The input consists of
tuples {(zi, yi)}n

i=1 where zi ∈ Rd (commonly referred to as features) and yi ∈ {−1, 1}
(class labels). We are interested in the empirical loss minimization setup described in
Section 3.4. Recall that problem of finite sum with regularization takes the form

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x) + r(x). (3.12)

For our experiments, we use logistic function for fi, i.e., fi(x) = log(1 + exp(−yix>zi))
for all i ∈ [n]. All zi are normalized such that ‖zi‖ = 1. We observe that the loss function
has Lipschitz continuous gradients. The function r(x) = λ ∑d

i=1 αx2
i /(1+ αx2

i) is chosen
as the regularizer (see [9]). Note that the regularizer is nonconvex and smooth. In our
experiments, we use the parameter settings of λ = 0.001 and α = 1 for all the datasets.

We compare the performance of SGD (the de facto incremental method for nonconvex
optimization) with nonconvex REG-SAGA in our experiments. The comparison is based
on the following criteria: (i) the objective function value (also called training loss in this
context), which is the main goal of the chapter; and (ii) the stationarity gap ‖∇ f (x)‖2,
the criteria used for our theoretical analysis. For the step size of SGD, we use the popular
t−inverse schedule ηt = η0(1 + η′bt/nc)−1, where η0 and η′ are tuned so that SGD
gives the best performance on the training loss. In our experiments, we also use η′ = 0;
this results in a fixed step size for SGD. For REG-SAGA, a fixed step size is chosen
(as suggested by our analysis) so that it gives the best performance on the objective
function value, i.e., training loss. Note that due to the structure of the problem in (3.12),
as discussed in Section 3.4, the storage cost of REG-SAGA is just O(n).

Initialization is critical to many of the incremental methods like REG-SAGA. This
is due to the stronger dependence of the convergence on the initial point (see Theo-
rem 3.3.3). Furthermore, one has to obtain ∇ fi(α

0
i) for all i ∈ [n] in REG-SAGA algo-

54

rithm (see Algorithm 5). For initialization of both SGD and REG-SAGA, we make one
pass (without replacement) through the dataset and perform the updates of SGD dur-
ing this pass. Doing so not only allows us to also obtain a good initial point x0 but
also to compute the initial values of ∇ f (α0

i) for i ∈ [n]. Note that this choice results in
a variant of REG-SAGA where α0

i are different for various i (unlike the pseudocode in
Algorithm 5). The convergence rates of this variant can be shown to be similar to that
of Algorithm 5.

Figure 3.1 shows the results of our experiments. The results are on two standard
UCI datasets, ‘rcv1’ and ‘realsim’1. The plots compare the criteria mentioned earlier
against the number of IFO calls made by the corresponding algorithm. For the objective
function, we look at the difference between the objective function (f (xt)) and the best
objective function value obtained by running GD for a very large number of iterations
using multiple initializations (denoted by f (x̂)). As shown in the figure, REG-SAGA
converges much faster than SGD in terms of objective value. Furthermore, as supported
by the theory, the stationarity gap for REG-SAGA is very small in comparison to SGD.
Also, in our experiments, the selection of step size was much easier for REG-SAGA when
compared to SGD. Overall the empirical results for nonconvex regularized problems
are promising. It will be interesting to apply the approach for other smooth nonconvex
problems.

3.8 Discussion

Before ending this chapter, it is important to compare and contrast different convergence
rates obtained in the chapter. For general smooth nonconvex problems, we observed
that SAGA has a low IFO complexity of O(n + n2/3/ε) in comparison to SGD (O(1/ε2))
and GD (O(n/ε)). This difference in the convergence is especially significant if one
requires a medium to high accuracy solution, i.e., ε is small. Furthermore, for gradient
dominated functions, where SGD obtains a sublinear convergence rate of O(1/ε2)2 as
opposed to fast linear convergence rate of a variant of SAGA (see Theorem 3.5.1.1). It
is an interesting future work to explore other setups where we can achieve stronger
convergence rates. Surprisingly, the aforementioned convergence rates of SAGA match
with those obtained for SVRG in the previous chapter.

From our analysis of minibatch-SAGA in Section 3.6, we observe that SAGA profits
from mini-batching much more than SGD. In particular, one can achieve a (theoretical)
linear speedup using mini-batching in SAGA in parallel settings. On the other hand, the
performance of SGD typically degrades with minibatching. In summary, SAGA enjoys
all the benefits of GD like constant step size, efficient minibatching with much weaker
dependence on n.

Notably, SAGA, similar to SVRG and unlike SGD, does not use any additional as-
sumption of bounded gradients (see Theorem 3.2.2 and Corollary 3.3.3.1). Moreover, if

1The datasets can be downloaded from https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html.

2For SGD, we are not aware of any better convergence rates for gradient dominated functions.

55

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

one uses a constant step size for SGD, we need to have an advance knowledge of the
total number of iterations T in order to obtain the convergence rate mentioned in The-
orem 3.2.2. Although we restrict our attention to SAGA algorithm, by using our proof
technique, we can show that another incremental method, SDCA, exhibits very similar
properties for the problem setting of our interest.

Appendix: Omitted Proofs

3.9 Proof of Lemma 3.3.1

Proof. Since f is L-smooth, from Lemma 3.9.2, we have

E[f (xt+1)] ≤ E[f (xt) + 〈∇ f (xt), xt+1 − xt〉+ L
2‖x

t+1 − xt‖2].

We first note that the update in Algorithm 5 is unbiased i.e., E[vt] = ∇ f (xt). By using
this property of the update on the right hand side of the inequality above, we get the
following:

E[f (xt+1)] ≤ E[f (xt)− ηt‖∇ f (xt)‖2 + Lη2

2 ‖v
t‖2]. (3.13)

Here we used the fact that xt+1 − xt = −ηvt (see Algorithm 5). Consider now the
Lyapunov function

Rt := E[f (xt) + ct
n

n

∑
i=1
‖xt − αt

i‖2].

For bounding Rt+1 we need the following:

1
n

n

∑
i=1

E[‖xt+1 − αt+1
i ‖

2] =
1
n

n

∑
i=1

 1
n

E‖xt+1 − xt‖2 +
n− 1

n
E‖xt+1 − αt

i‖2︸ ︷︷ ︸
T1

 . (3.14)

The above equality from the definition of αt+1
i and the uniform randomness of index jt

in Algorithm 5. The term T1 in (3.14) can be bounded as follows

T1 = E[‖xt+1 − xt + xt − αt
i‖2]

= E[‖xt+1 − xt‖2 + ‖xt − αt
i‖2 + 2〈xt+1 − xt, xt − αt

i〉]
= E[‖xt+1 − xt‖2 + ‖xt − αt

i‖2]− 2ηE[〈∇ f (xt), xt − αt
i〉]

≤ E[‖xt+1 − xt‖2 + ‖xt − αt
i‖2]

+ 2ηE
[

1
2β‖∇ f (xt)‖2 + 1

2 β‖xt − αt
i‖2
]

. (3.15)

56

The second equality again follows from the unbiasedness of the update of SAGA. The
last inequality follows from a simple application of Cauchy-Schwarz and Young’s in-
equality. Plugging (3.13) and (3.15) into Rt+1, we obtain the following bound:

Rt+1 ≤ E[f (xt)− η‖∇ f (xt)‖2 + Lη2

2 ‖v
t‖2]

+ E[ct+1‖xt+1 − xt‖2 + ct+1
n− 1

n2

n

∑
i=1
‖xt − αt

i‖2]

+
2(n− 1)ct+1η

n2

n

∑
i=1

E
[

1
2β‖∇ f (xt)‖2 + 1

2 β‖xt − αt
i‖2
]

≤ E[f (xt)−
(

η − ct+1η
β

)
‖∇ f (xt)‖2

+
(

Lη2

2 + ct+1η2
)

E[‖vt‖2]

+

(
n− 1

n
ct+1 + ct+1ηβ

)
1
n

n

∑
i=1

E
[
‖xt − αt

i‖2
]

. (3.16)

To further bound the quantity in (3.16), we use Lemma 3.9.1 to bound E[‖vt‖2], so that
upon substituting it into (3.16), we obtain

Rt+1 ≤ E[f (xt)]

−
(

η − ct+1η
β − η2L− 2ct+1η2

)
E[‖∇ f (xt)‖2]

+
[
ct+1

(
1− 1

n + ηβ + 2η2L2)+ η2L3
]

1
n

n

∑
i=1

E
[
‖xt − αt

i‖2
]

≤ Rt −
(
η − ct+1η

β − η2L− 2ct+1η2)E[‖∇ f (xt)‖2].

The second inequality follows from the definition of ct i.e., ct = ct+1(1 − 1
n + ηβ +

2η2L2) + η2L3 and Rt specified in the statement, thus concluding the proof.

Other Lemmas

The following lemma provides a bound on the variance of the update used in SAGA
algorithm. More specifically, it bounds the quantity E[‖vt‖2]. A more general result
for bounding the variance of the minibatch scheme in Algorithm 7 can be proved along
similar lines.

Lemma 3.9.1. Let vt be computed by Algorithm 5. Then,

E[‖vt‖2] ≤ 2E[‖∇ f (xt)‖2] +
2L2

n

n

∑
i=1

E[‖xt − αt
i‖2].

Proof. For ease of exposition, we use the notation

ζt =
(
∇ fit(xt)−∇ fit(α

t
it)
)

57

Using the convexity of ‖·‖2 and the definition of vt we get

E[‖vt‖2] = E[‖ζt + 1
n

n

∑
i=1
∇ f (αt

i)‖2]

= E[‖ζt + 1
n

n

∑
i=1
∇ f (αt

i)−∇ f (xt) +∇ f (xt)‖2]

≤ 2E[‖∇ f (xt)‖2] + 2E[‖ζt −E[ζt]‖2]

≤ 2E[‖∇ f (xt)‖2] + 2E[‖ζt‖2].

The first inequality follows from the fact that ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) and that E[ζt] =
∇ f (xt)− 1

n ∑n
i=1∇ f (αt

i). The second inequality is obtained by noting that for a random
variable ζ, E[‖ζ −E[ζ]‖2] ≤ E[‖ζ‖2]. Using Jensen’s inequality in the inequality above,
we get

E[‖vt‖2]

≤ 2E[‖∇ f (xt)‖2] +
2
n

n

∑
i=1

E[‖∇ fit(xt)−∇ fit(α
t
i)‖2]

≤ 2E[‖∇ f (xt)‖2] +
2L2

n

n

∑
i=1

E[‖xt − αt
i‖2].

The last inequality follows from L-smoothness of fit , thus concluding the proof.

The following result provides a bound on the function value of functions with Lips-
chitz continuous gradients.

Lemma 3.9.2. Suppose the function f : Rd → R is L-smooth, then the following holds

f (x) ≤ f (y) + 〈∇ f (y), x− y〉+ L
2
‖x− y‖2,

for all x, y ∈ Rd.

58

Chapter 4

A Generic Approach for Escaping
Saddle Points

4.1 Introduction

While the previous chapters examined fast stochastic and incremental methods for non-
convex optimization, the convergence criterion was that of stationarity. In this chapter,
we investigate algorithms for nonconvex finite-sum problems of the form

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (4.1)

with focus on convergence to local minimizers. Recall that neither f : Rd → R nor the
individual functions fi : Rd → R (i ∈ [n]) are necessarily convex. As earlier, we operate
in a general nonconvex setting except for few smoothness assumptions like Lipschitz
continuity of the gradient and Hessian.

In the large-scale settings, algorithms based on first-order information of functions
fi are typically favored as they are relatively inexpensive and scale seamlessly. An al-
gorithm widely used in practice is stochastic gradient descent (SGD), which has the
iterative update:

xt+1 = xt − ηt∇ fit(xt), (4.2)

where it ∈ [n] is a randomly chosen index and ηt is a learning rate. Under suitable
selection of the learning rate, we can show that SGD converges to a point x that, in ex-
pectation, satisfies the stationarity condition ‖∇ f (x)‖ ≤ ε in O(1/ε4) iterations [47].
This result has two critical weaknesses: (i) It does not ensure convergence to local op-
tima or second-order critical points; (ii) The rate of convergence of the SGD algorithm is
slow.

For general nonconvex problems, one has to settle for a more modest goal than sub-
optimality, as finding the global minimizer of finite-sum nonconvex problem will be in
general intractably hard. Unfortunately, SGD does not even ensure second-order critical
conditions such as local optimality since it can get stuck at saddle points. This issue

59

Figure 4.1: First order methods like GD
can potentially get stuck at saddle points.
Second-order methods can escape it in
very few iterations (as observed in the
left plot) but at the cost of expensive Hes-
sian based iterations (see time plot to the
right). The proposed framework, which is
a novel mix of the two strategies, can es-
cape saddle points faster in time by care-
fully trading off computation and itera-
tion complexity.

has recently received considerable attention in the ML community, especially in the
context of deep learning [27, 29, 30]. These works argue that saddle points are highly
prevalent in most optimization paths, and are the primary obstacle for training large
deep networks. To tackle this issue and achieve a second-order critical point for which
‖∇ f ‖ ≤ ε and ∇2 f � −

√
εI, we need algorithms that either use the Hessian explicitly

or exploit its structure.
A key work that explicitly uses Hessians to obtain faster convergence rates is the cu-

bic regularization (CR) method [115]. In particular, Nesterov and Polyak [115] showed
that CR requires O(1/ε3/2) iterations to achieve the second-order critical conditions.
However, each iteration of CR is expensive as it requires computing the Hessian and
solving multiple linear systems, each of which has complexity O(dω) (ω is the matrix
multiplication constant), thus, undermining the benefit of its faster convergence. Re-
cently, Agarwal et al. [5] designed an algorithm to solve the CR more efficiently, how-
ever, it still exhibits slower convergence in practice compared to first-order methods.
Both of these approaches use Hessian based optimization in each iteration, which make
them slow in practice.

A second line of work focuses on using Hessian information (or its structure) when-
ever the method gets stuck at stationary points that are not second-order critical. To our
knowledge, the first work in this line is [46], which shows that for a class of functions
that satisfy a special property called “strict-saddle” property, a noisy variant of SGD can
converge to a point close to a local minimum. For this class of functions, points close to
saddle points have a Hessian with a large negative eigenvalue, which proves instrumen-
tal in escaping saddle points using an isotropic noise. While such a noise-based method
is appealing as it only uses first-order information, it has a very bad dependence on the
dimension d, and furthermore, the result only holds when the strict-saddle property is
satisfied [46]. More recently, Carmon et al. [22] presented a new faster algorithm that
alternates between first-order and second-order subroutines. However, their algorithm
is designed for the simple case of n = 1 in (4.1) and hence, can be expensive in practice.

Inspired by this line of work, we develop a general framework for finding second-
order critical points. The key idea of our framework is to use first-order information for
the most part of the optimization process and invoke Hessian information only when
stuck at stationary points that are not second-order critical. We summarize the key idea

60

and main contributions of this chapter below.
Main Contributions: We develop an algorithmic framework for converging to second-
order critical points and provide convergence analysis for it. Our framework carefully
alternates between two subroutines that use gradient and Hessian information, respec-
tively, and ensures second-order criticality. Furthermore, we present two instantiations
of our framework and provide convergence rates for them. In particular, we show that
a simple instance of our framework, based on SVRG, achieves convergence rates com-
petitive with the current state-of-the-art methods; thus highlighting the simplicity and
applicability of our framework. Finally, we demonstrate the empirical performance of a
few algorithms encapsulated by our framework and show their superior performance.

4.1.1 Related Work

There is a vast literature on algorithms for solving optimization problems of the form (4.1).
A classical approach for solving such optimization problems is SGD, which dates back
at least to the seminal work of [148]. Since then, SGD has been a subject of extensive
research, especially in the convex setting [19, 77, 93, 124]. Recently, new faster methods,
called variance reduced (VR) methods, have been proposed for convex finite-sum prob-
lems. VR methods attain faster convergence by reducing the variance in the stochastic
updates of SGD, see e.g., [33, 34, 71, 75, 153, 156]. Accelerated variants of these methods
achieve the lower bounds proved in [2, 81], thereby settling the question of their opti-
mality. Furthermore, [133] developed an asynchronous framework for VR methods and
demonstrated their benefits in parallel environments.

Most of the aforementioned prior works study stochastic methods in convex or very
specialized nonconvex settings that admit theoretical guarantees on sub-optimality. For
the general nonconvex setting, it is only recently that non-asymptotic convergence rate
analysis for SGD and its variants was obtained in [47], who showed that SGD ensures
‖∇ f ‖ ≤ ε (in expectation) in O(1/ε4) iterations. A similar rate for parallel and dis-
tributed SGD was shown in [87]. For these problems, Reddi et al. [139, 141, 142] proved
faster convergence rates that ensure the same optimality criteria in O(n + n2/3/ε2),
which is an order n1/3 faster than GD. While these methods ensure convergence to sta-
tionary points at a faster rate, the question of convergence to local minima (or in general
to second-order critical points) has not been addressed. To our knowledge, convergence
rates to second-order critical points (defined in Definition 4.2.1) for general nonconvex
functions was first studied by [115]. However, each iteration of the algorithm in [115]
is prohibitively expensive since it requires eigenvalue decompositions, and hence, is
unsuitable for large-scale high-dimensional problems. More recently, Agarwal et al.
[5], Carmon et al. [22] presented algorithms for finding second-order critical points by
tackling some practical issues that arise in [115]. However, these algorithms are either
only applicable to a restricted setting or heavily use Hessian based computations, mak-
ing them unappealing from a practical standpoint. Noisy variants of first-order methods
have also been shown to escape saddle points (see [46, 69, 83]), however, these methods
have strong dependence on either n or d, both of which are undesirable.

61

4.2 Background & Problem Setup

We assume that each of the functions fi in (4.1) is L-smooth, i.e., ‖∇ fi(x)−∇ fi(y)‖ ≤
L‖x − y‖ for all i ∈ [n]. Furthermore, we assume that the Hessian of f in (4.1) is Lips-
chitz, i.e., we have

‖∇2 f (x)−∇2 f (y)‖ ≤ M‖x− y‖, (4.3)

for all x, y ∈ Rd. Such a condition is typically necessary to ensure convergence of al-
gorithms to the second-order critical points [115]. In addition to the above smoothness
conditions, we also assume that the function f is bounded below, i.e., f (x) ≥ B for all
x ∈ Rd.

In order to measure stationarity of an iterate x, similar to [47, 111, 115], we use the
condition ‖∇ f (x)‖ ≤ ε. In this chapter, we are interested in convergence to second-
order critical points. Thus, in addition to stationarity, we also require the solution to
satisfy the Hessian condition ∇2 f (x) � −γI [115]. For iterative algorithms, we require
both ε, γ → 0 as the number of iterations T → ∞. When all saddle points are non-
degenerate, such a condition implies convergence to a local optimum.

Definition 4.2.1. An algorithmA is said to obtain a point x that is a (ε, γ)-second order critical
point if E[‖∇ f (x)‖] ≤ ε and ∇2 f (x) � −γI, where the expectation is over any randomness
in A.

We must exercise caution while interpreting results pertaining to (ε, γ)-second order
critical points. Such points need not be close to any local minima either in objective
function value, or in the domain of (4.1). Note that the aforementioned criterion is
stronger than the one used in the previous chapters. For our algorithms, we use only an
Incremental First-order Oracle (IFO) [2] and an Incremental Second-order Oracle (ISO),
defined below.

Definition 4.2.2. An IFO takes an index i ∈ [n] and a point x ∈ Rd, and returns the pair
(fi(x),∇ fi(x)). An ISO takes an index i ∈ [n], point x ∈ Rd and vector v ∈ Rd and returns
the vector ∇2 fi(x)v.

IFO and ISO calls are typically cheap, with ISO call being relatively more expensive.
In many practical settings that arise in machine learning, the time complexity of these
oracle calls is linear in d [4, 120]. For clarity and clean comparison, the dependence of
time complexity on Lipschitz constant L, M, initial point and any polylog factors in the
results is hidden.

4.3 Generic Framework

In this section, we propose a generic framework for escaping saddle points while solv-
ing nonconvex problems of form (4.1). One of the primary difficulties in reaching a
second-order critical point is the presence of saddle points. To evade such points, one
needs to use properties of both gradients and Hessians. To this end, our framework is
based on two core subroutines: GF-OPTIMIZER and HF-OPTIMIZER.

62

Algorithm 8: Generic Framework
1: Input - Initial point x0, iterations T, error threshold parameters ε, γ and probability p
2: for t = 1 to T do
3: (yt, zt) = GF-OPTIMIZER(xt−1, ε) (refer to G.1 and G.2)
4: Choose ut as yt with probability p and zt with probability 1− p
5: (xt+1, τt+1) = HF-OPTIMIZER(ut, ε, γ) (refer to H.1 and H.2)
6: if τt+1 = ∅ then
7: Output set {xt+1}
8: end if
9: end for

10: Output set {y1, ..., yT}

The idea is to use these two subroutines, each focused on different aspects of the
optimization procedure. GF-OPTIMIZER focuses on using gradient information for de-
creasing the function. On its own, the GF-OPTIMIZER might not converge to a local
minimizer since it can get stuck at a saddle point. Hence, we require the subroutine
HF-OPTIMIZER to help avoid saddle points. A natural idea is to interleave these subrou-
tines to obtain a second-order critical point. But it is not even clear if such a procedure
even converges. We propose a carefully designed procedure that effectively balances
these two subroutines, which not only provides meaningful theoretical guarantees, but
remarkably also translates into strong empirical gains in practice.

Algorithm 8 provides pseudocode of our framework. Observe that the algorithm is
still abstract, since it does not specify the subroutines GF-OPTIMIZER and HF-OPTIMIZER.
These subroutines determine the crucial update mechanism of the algorithm. We will
present specific instance of these subroutines in the next section, but we assume the
following properties to hold for these subroutines.

• GF-OPTIMIZER: Suppose (y, z) = GF-OPTIMIZER(x, n, ε), then there exists positive
function g : N×R+ → R+, such that

G.1 E[f (y)] ≤ f (x),
G.2 E[‖∇ f (y)‖2] ≤ 1

g(n,ε)E[f (x)− f (z)].

Here the outputs y, z ∈ Rd. The expectation in the conditions above is over any
randomness that is a part of the subroutine. The function g will be critical for the
overall rate of Algorithm 8. Typically, GF-OPTIMIZER is a first-order method, since
the primary aim of this subroutine is to focus on gradient based optimization.

• HF-OPTIMIZER: Suppose (y, τ) = HF-OPTIMIZER(x, n, ε, γ) where y ∈ Rd and τ =
{∅, �}. If τ = ∅, then y is a (ε, γ)-second order critical point with probability at least
1− q. Otherwise if τ = �, then y satisfies the following condition:

H.1 E[f (y)] ≤ f (x),
H.2 E[f (y)] ≤ f (x) − h(n, ε, γ) when λmin(∇2 f (x)) ≤ −γ for some function h :

N×R+ ×R+ → R+.

63

Here the expectation is over any randomness in subroutine HF-OPTIMIZER. The two
conditions ensure that the objective function value, in expectation, never increases
and furthermore, decreases with a certain rate when λmin(∇2 f (x)) ≤ −γ. In gen-
eral, this subroutine utilizes the Hessian or its properties for minimizing the objective
function. Typically, this is the most expensive part of the Algorithm 8 and hence,
needs to be invoked judiciously.

The key aspect of these subroutines is that they, in expectation, never increase the
objective function value. The functions g and h will determine the convergence rate
of Algorithm 8. In order to provide a concrete implementation, we need to specify
the aforementioned subroutines. Before we delve into those details, we will provide a
generic convergence analysis for Algorithm 8.

Convergence Analysis

Theorem 4.3.1. Let ∆ = f (x0)− B and θ = min((1− p)ε2g(n, ε), ph(n, ε, γ)) . Also, let set
Γ be the output of Algorithm 8 with GF-OPTIMIZER satisfying G.1 and G.2 and HF-OPTIMIZER
satisfying H.1 and H.2. Furthermore, T be such that T > ∆/θ.

Suppose the multiset S = {i1, ...ik} are k indices selected independently and uniformly ran-
domly from {1, ..., |Γ|}. Then the following holds for the indices in S:
1. yt, where t ∈ {i1, ..., ik}, is a (ε, γ)-critical point with probability at least 1−max(∆/(Tθ), q).
2. If k = O(log(1/ζ)/ min(log(∆/(Tθ)), log(1/q))), with at least probability 1− ζ, at least

one iterate yt where t ∈ {i1, ..., ik} is a (ε, γ)-critical point.
The proof of the result is presented in Appendix 4.7. The key point regarding the

above result is that the overall convergence rate depends on the magnitude of both
functions g and h. Theorem 4.3.1 shows that the slowest amongst the subroutines
GF-OPTIMIZER and HF-OPTIMIZER governs the overall rate of Algorithm 8. Thus, it
is important to ensure that both these procedures have good convergence. Also, note
that the optimal setting for p based on the result above satisfies 1/p = 1/ε2g(n, ε) +
1/h(n, ε, γ) . We defer further discussion of convergence to next section, where we
present more specific convergence and rate analysis.

4.4 Concrete Instantiations

We now present specific instantiations of our framework in this section. Before we state
our key results, we discuss an important subroutine that is used as GF-OPTIMIZER for
rest of this chapter: SVRG. We give a brief description of the algorithm in this section
and show that it meets the conditions required for a GF-OPTIMIZER. SVRG [71, 139] is a
stochastic algorithm recently shown to be very effective for reducing variance in finite-
sum problems. We seek to understand its benefits for nonconvex optimization, with a
particular focus on the issue of escaping saddle points. Algorithm 9 presents SVRG’s
pseudocode.

64

Algorithm 9: SVRG
(
x0, ε

)
1: Input: x0

m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}m−1
i=0 , iterations Tg, S = dTg/me

2: for s = 0 to S− 1 do
3: x̃s = xs+1

0 = xs
m

4: gs+1 = 1
n ∑n

i=1∇ fi(x̃s)
5: for t = 0 to m− 1 do
6: Uniformly randomly pick it from {1, . . . , n}
7: vs+1

t = ∇ fit(xs+1
t)−∇ fit(x̃s) + gs+1

8: xs+1
t+1 = xs+1

t − ηtvs+1
t

9: end for
10: end for
11: Output: (y, z) where y is Iterate xa chosen uniformly random from {{xs+1

t }m−1
t=0 }

S−1
s=0 and

z = xS
m.

Observe that Algorithm 9 is an epoch-based algorithm. At the start of each epoch s,
a full gradient is calculated at the point x̃s, requiring n calls to the IFO. Within its inner
loop SVRG performs m stochastic updates. Suppose m is chosen to be O(n) (typically
used in practice), then the total IFO calls per epoch is Θ(n). Strong convergence rates
have been proved Algorithm 9 in the context of convex and nonconvex optimization [71,
139]. The following result shows that SVRG meets the requirements of a GF-OPTIMIZER.

Lemma 4.4.1. Suppose ηt = η = 1/4Ln2/3, m = n and Tg = Tε, which depends on ε, then
Algorithm 9 is a GF-OPTIMIZER with g(n, ε) = Tε/40Ln2/3.

In rest of this section, we discuss approaches using SVRG as a GF-OPTIMIZER. In par-
ticular, we propose and provide convergence analysis for two different methods with
different HF-OPTIMIZER but which use SVRG as a GF-OPTIMIZER.

4.4.1 Hessian descent

The first approach is based on directly using the eigenvector corresponding to the small-
est eigenvalue as a HF-OPTIMIZER. More specifically, when the smallest eigenvalue of
the Hessian is negative and reasonably large in magnitude, the Hessian information
can be used to ensure descent in the objective function value. The pseudo-code for the
algorithm is given in Algorithm 10.

The key idea is to utilize the minimum eigenvalue information in order to make
a descent step. If λmin(∇2 f (x)) ≤ −γ then the idea is to use this information to
take a descent step. Note the subroutine is designed in a fashion such that the objec-
tive function value never increases. Thus, it naturally satisfies the requirement H.1 of
HF-OPTIMIZER. The following result shows that HESSIANDESCENT is a HF-OPTIMIZER.

Lemma 4.4.2. HESSIANDESCENT is a HF-OPTIMIZER with h(n, ε, γ) = ρ
24M2 γ3.

The proof of the result is presented in Appendix 4.9. With SVRG as GF-OPTIMIZER
and HESSIANDESCENT as HF-OPTIMIZER, we show the following key result:

65

Algorithm 10: HESSIANDESCENT (x, ε, γ)

1: Find v such that ‖v‖ = 1, and with probability at least ρ the following inequality holds:
〈v,∇2 f (x)v〉 ≤ λmin(∇2 f (x)) + γ

2 .
2: Set α = |〈v,∇2 f (x)v〉|/M.
3: u = x− α sign(〈v,∇ f (x)〉)v.
4: y = arg minz∈{u,x} f (z)
5: Output: (y, �).

Theorem 4.4.3. Suppose SVRG with m = n, ηt = η = 1/4Ln2/3 for all t ∈ {1, ..., m}
and Tg = 40Ln2/3/ε1/2 is used as GF-OPTIMIZER and HESSIANDESCENT is used as HF-
OPTIMIZER with q = 0, then Algorithm 8 finds a (ε,

√
ε)-second order critical point in T =

O(∆/ min(p, 1− p)ε3/2) with probability at least 0.9.
The result directly follows from using Lemma 4.4.1 and 4.4.2 in Theorem 4.3.1. The

result shows that the iteration complexity of Algorithm 8 in this case is O(∆/ε3/2 min(p,
1− p)). Thus, the overall IFO complexity of SVRG algorithm is (n+Tg)×T = O(n/ε3/2 +

n2/3/ε2). Since each IFO call takes O(d) time, the overall time complexity of all GF-
OPTIMIZER steps is O(nd/ε3/2 + n2/3d/ε2). To understand the time complexity of
HESSIANDESCENT, we need the following result [5].

Preposition 1. The time complexity of finding v ∈ Rd that ‖v‖ = 1, and with probabil-
ity at least ρ the following inequality holds: 〈v,∇2 f (x)v〉 ≤ λmin(∇2 f (x)) + γ

2 is O(nd +

n3/4dγ1/2).
Note that each iteration of Algorithm 8 in this case has just linear dependence on

d. Since the total number of HESSIANDESCENT iterations is O(∆/ min(p, 1 − p)ε3/2)
and each iteration has the complexity of O(nd + n3/4d/ε1/4), using the above remark,
we obtain an overall time complexity of HESSIANDESCENT is O(nd/ε3/2 + n3/4d/ε7/4).
Combining this with the time complexity of SVRG, we get the following result.

Corollary 4.4.3.1. The overall running time of Algorithm 8 to find a (ε,
√

ε)-second order
critical point, with parameter settings used in Theorem 4.4.3, is O(nd/ε3/2 + n3/4d/ε7/4 +
n2/3d/ε2).

Note that the dependence on ε is much better in comparison to that of Noisy SGD
used in [46]. Furthermore, our results are competitive with [5, 22] in their respective set-
tings, but with a much simpler algorithm and analysis. We also note that our algorithm
is faster than the one proposed in [69], which has a time complexity of O(nd/ε2).

4.4.2 Cubic Descent

In this section, we show that the cubic regularization method in [115] can be used as
HF-OPTIMIZER. More specifically, here HF-OPTIMIZER approximately solves the fol-
lowing optimization problem:

y = arg min
z
〈∇ f (x), z− x〉+ 1

2

〈
z− x,∇2 f (x)(z− x)

〉
+

M
6
‖z− x‖3,
(CUBICDESCENT)

66

and returns (y, �) as output. The following result can be proved for this approach.

Theorem 4.4.4. Suppose SVRG (with same parameters as in Theorem 4.4.3) is used as GF-
OPTIMIZER and CUBICDESCENT is used as HF-OPTIMIZER with q = 0, then Algorithm 8
finds a (ε,

√
ε)-second order critical point in T = O(∆/ min(p, 1− p)ε3/2) with probability

at least 0.9.
In principle, Algorithm 8 with CUBICDESCENT as HF-OPTIMIZER can converge with-

out the use of GF-OPTIMIZER subroutine at each iteration since it essentially reduces
to the cubic regularization method of [115]. However, in practice, we would expect
GF-OPTIMIZER to perform most of the optimization and HF-OPTIMIZER to be used for
far fewer iterations. Using the method developed in [115] for solving CUBICDESCENT,
we obtain the following corollary.

Corollary 4.4.4.1. The overall running time of Algorithm 8 to find a (ε,
√

ε)-second order
critical point, with parameter settings used in Theorem 4.4.4, is O(ndω/ε3/2 + n2/3d/ε2).

Here ω is the matrix multiplication constant. The dependence on ε is weaker in
comparison to Corollary 4.4.3.1. However, each iteration of CUBICDESCENT is expen-
sive (as seen from the factor dω in the corollary above) and thus, in high dimensional
settings typically encountered in machine learning, this approach can be expensive in
comparison to HESSIANDESCENT.

4.4.3 Practical Considerations

The focus of this section was to demonstrate the wide applicability of our framework;
wherein using a simple instantiation of this framework, we could achieve algorithms
with fast convergence rates. To further achieve good empirical performance, we had to
slightly modify these procedures. For HF-OPTIMIZER, we found stochastic, adaptive
and inexact approaches for solving HESSIANDESCENT and CUBICDESCENT work well
in practice. The exact description of these modifications is deferred to Appendix 4.12.
Furthermore, in the context of deep learning, empirical evidence suggests that first-
order methods like ADAM [73] exhibit behavior that is in congruence with properties
G.1 and G.2. While theoretical analysis for a setting where ADAM is used as GF-
OPTIMIZER is still unresolved, we nevertheless demonstrate its performance through
empirical results in the following section.

4.5 Experiments

We now present empirical results for our saddle point avoidance technique with an
aim to highlight three aspects: (i) the framework successfully escapes non-degenerate
saddle points, (ii) the framework is fast, and (iii) the framework is practical on large-
scale problems. All the algorithms are implemented on TensorFlow [1]. In case of deep
networks, the Hessian-vector product is evaluated using the trick presented in [120].
We run our experiments on a commodity machine with Intel® Xeon® CPU E5-2630 v4
CPU, 256GB RAM, and NVidia® Titan X (Pascal) GPU.

67

Figure 4.2: Comparison of various methods on a synthetic problem. Our mix framework
successfully escapes saddle point and uses relatively few ISO calls in comparison to
CUBICDESCENT.

Synthetic Problem To demonstrate the fast escape from a saddle point by the proposed
method, we consider the following simple nonconvex finite-sum problem:

min
x∈Rd

1
n

n

∑
i=1

xT Aix + bT
i x + ‖x‖10

10 (4.4)

Here the parameters are designed such that ∑i bi = 0 and ∑i Ai matrix has exactly one
negative eigenvalue of −0.001 and other eigenvalues randomly chosen in the interval
[1, 2]. The total number of examples n is set to be 100,000 and d is 1000. It is not hard to
see that this problem has a non-degenerate saddle point at the origin. This allows us to
explore the behaviour of different optimization algorithms in the vicinity of the saddle
point. In this experiment, we compare a mix of SVRG and HESSIANDESCENT (as in
Theorem 4.4.3) with SGD (with constant step size), ADAM, SVRG and CUBICDESCENT.
The parameter of these algorithms is chosen by grid search so that it gives the best
performance. The subproblem of CUBICDESCENT was solved with gradient descent
[22] until the gradient norm of the subproblem is reduced below 10−3. We study the
progress of optimization, i.e., decrease in function value with wall clock time, IFO calls,
and ISO calls. All algorithms were initialized with the same starting point very close to
origin.

The results are presented in Figure 4.2, which shows that our proposed mix frame-
work was the fastest to escape the saddle point in terms of wall clock time. We ob-
serve that performance of the first order methods suffered severely due to the saddle
point. Note that SGD eventually escaped the saddle point due to inherent noise in the
mini-batch gradient. CUBICDESCENT, a second-order method, escaped the saddle point
faster in terms of iterations using the Hessian information. But operating on Hessian
information is expensive as a result this method was slow in terms of wall clock time.
The proposed framework, which is a mix of the two strategies, inherits the best of both
worlds by using cheap gradient information most of the time and reducing the use of
relatively expensive Hessian information (ISO calls) by 100x. This resulted in faster es-
cape from saddle point in terms of wall clock time.
Deep Networks To investigate the practical performance of the framework for deep
learning problems, we applied it to two deep autoencoder optimization problems from

68

Figure 4.3: Comparison of various methods on CURVES and MNIST Deep Autoen-
coder. Our mix approach converges faster than the baseline methods and uses relatively
few ISO calls in comparison to APPROXCUBICDESCENT.

[59] called “CURVES” and “MNIST”. Due to their high difficulty, performance on these
problems has become a standard benchmark for neural network optimization meth-
ods, e.g. [100, 101, 165, 170]. The “CURVES” autoencoder consists of an encoder with
layers of size (28x28)-400-200-100- 50-25-6 and a symmetric decoder totaling in 0.85M
parameters. The six units in the code layer were linear and all the other units were
logistic. The network was trained on 20,000 images and tested on 10,000 new images.
The data set contains images of curves that were generated from three randomly chosen
points in two dimensions. The “MNIST” autoencoder consists of an encoder with layers
of size (28x28)-1000-500-250-30 and a symmetric decoder, totaling in 2.8M parameters.
The thirty units in the code layer were linear and all the other units were logistic. The
network was trained on 60,000 images and tested on 10,000 new images. The data set
contains images of handwritten digits 0-9. The pixel intensities were normalized to lie
between 0 and 1.1

As an instantiation of our framework, we use a mix of ADAM, which is popular
in deep learning community, and an APPROXCUBICDESCENT for the practical reasons
mentioned in Section 4.4.3. This method with ADAM and APPROXCUBICDESCENT. The
parameters of these algorithms were chosen to produce the best generalization on a held
out test set. The regularization parameter M was chosen as the smallest value such that
the function value does not fluctuate in the first 10 epochs. We use the initialization sug-
gested in [100] and a mini-batch size of 1000 for all the algorithms. We report objective
function value against wall clock time and ISO calls.

The results are presented in Figure 4.3, which shows that our proposed mix frame-
work was the fastest to escape the saddle point in terms of wall clock time. ADAM took
considerably more time to escape the saddle point, especially in the case of MNIST.
While APPROXCUBICDESCENT escaped the saddle point in relatively fewer iterations,
each iteration required considerably large number of ISO calls; as a result, the method
was extremely slow in terms of wall clock time, despite our efforts to improve it via
approximations and code optimizations. On the other hand, our proposed framework,
seamlessly balances these two methods, thereby, resulting in the fast decrease of train-
ing loss.

1Data available at: www.cs.toronto.edu/˜jmartens/digs3pts_1.mat, mnist all.mat

69

www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/mnist_all.mat

4.6 Discussion

In this chapter, we examined a generic strategy to escape saddle points in nonconvex
finite-sum problems and presented its convergence analysis. The key intuition is to al-
ternate between a first-order and second-order based optimizers; the latter is mainly in-
tended to escape points that are only stationary but are not second-order critical points.
We presented two different instantiations of our framework and provided their detailed
convergence analysis. While both our methods explicity use the Hessian information,
one can also use noisy first-order methods as HF-OPTIMIZER (see e.g. noisy SGD in
[46]). In such a scenario, we exploit the negative eigenvalues of the Hessian to escape
saddle points by using isotropic noise, and do not explicitly use ISO. For these meth-
ods, under strict-saddle point property [46], we can show convergence to local optima
within our framework.

We primarily focused on obtaining second-order critical points for nonconvex finite-
sums (4.1). This does not necessarily imply low test error or good generalization ca-
pabilities. Thus, we should be careful when interpreting the results presented in this
chapter. A detailed discussion or analysis of these issues is out of scope of this thesis.
While a few prior works argue for convergence to local optima, the exact connection
between generalization and local optima is not well understood, and is an interesting
open problem. Nevertheless, we believe the techniques presented in this chapter can be
used alongside other optimization tools for faster and better nonconvex optimization.

Appendix: Omitted Proofs and Additional Experiments

4.7 Proof of Theorem 4.3.1

The case of τ = ∅ can be handled in a straightforward manner, so let us focus on the case
where τ = �. We split our analysis into cases, each analyzing the change in objective
function value depending on second-order criticality of yt.

We start with the case where the gradient condition of second-order critical point is
violated and then proceed to the case where the Hessian condition is violated.
Case I: E[‖∇ f (yt)‖] ≥ ε for some t > 0 We first observe the following: E[‖∇ f (yt)‖2] ≥
(E‖∇ f (yt)‖)2 ≥ ε2. This follows from a straightforward application of Jensen’s in-
equality. From this inequality, we have the following:

ε2 ≤ E[‖∇ f (yt)‖2] ≤ 1
g(n, ε)

E[f (xt−1)− f (zt)]. (4.5)

This follows from the fact that yt is the output of GF-OPTIMIZER subroutine, which
satisfies the condition that for (y, z) = GF-OPTIMIZER(x, n, ε), we have

E[‖∇ f (y)‖2] ≤ 1
g(n, ε)

E[f (x)− f (z)].

70

From Equation (4.5), we have

E[f (zt)] ≤ E[f (xt−1)]− ε2g(n, ε).

Furthermore, due to the property of non-increasing nature of GF-OPTIMIZER, we also
have E[yt] ≤ E[f (xt−1)].

We now focus on the HF-OPTIMIZER subroutine. From the property of HF-OPTIMIZER
that the objective function value is non-increasing, we have E[f (xt)] ≤ E[f (ut)]. There-
fore, combining with the above inequality, we have

E[f (xt)] ≤ E[f (ut)]

= pE[f (yt)] + (1− p)E[f (zt)]

≤ pE[f (xt−1)] + (1− p)(E[f (xt−1)]− ε2g(n, ε))

= E[f (xt−1)]− (1− p)ε2g(n, ε). (4.6)

The first equality is due to the definition of ut in Algorithm 8. Therefore, when the gra-
dient condition is violated, irrespective of whether λmin(∇2 f (x)) ≤ −γ or ∇2 f (yt) �
−γI, the objective function value always decreases by at least ε2g(n, ε).
Case II: E[‖∇ f (yt)‖] < ε and λmin(∇2 f (x)) ≤ −γ for some t > 0 In this case, we
first note that for y = HF-OPTIMIZER(x, n, ε, γ) and λmin(∇2 f (x)) ≤ −γ, we have
E[f (y)] ≤ f (x)− h(n, ε, γ). Observe that xt = HF-OPTIMIZER(ut, n, ε, γ). Therefore, if
ut = yt and λmin(∇2 f (x)) ≤ −γ, then we have

E[f (xt)|ut = yt] ≤ f (yt)− h(n, ε, γ) ≤ f (xt−1)− h(n, ε, γ).

The second inequality is due to the non-increasing property of GF-OPTIMIZER. On the
other hand, if ut = zt, we have hand, if we have E[f (xt)|ut = zt] ≤ f (zt). This is due to
the non-increasing property of HF-OPTIMIZER. Combining the above two inequalities
and using the law of total expectation, we get

E[f (xt)] = pE[f (xt)|ut = yt] + (1− p)E[f (xt)|ut = zt]

≤ p
(
E[f (yt)]− h(n, ε, γ)

)
+ (1− p)E[f (zt)]

≤ p
(

E[f (xt−1)]− h(n, ε, γ)
)
+ (1− p)E[f (xt−1)]

= E[f (xt−1)]− ph(n, ε, γ). (4.7)

The second inequality is due to he non-increasing property of GF-OPTIMIZER. There-
fore, when the hessian condition is violated, the objective function value always de-
creases by at least ph(n, ε, γ).
Case III: E[‖∇ f (yt)‖] < ε and∇2 f (yt) � −γI for some t > 0 This is the favorable case
for the algorithm. The only condition to note is that the objective function value will be
non-increasing in this case too. This is, again, due to the non-increasing properties of
subroutines GF-OPTIMIZER and HF-OPTIMIZER. In general, greater the occurrence of
this case during the course of the algorithm, higher will the probability that the output
of our algorithm satisfies the desired property.

71

The key observation is that Case I & II cannot occur large number of times since
each of these cases strictly decreases the objective function value. In particular, from
Equation (4.6) and (4.7), it is easy to see that each occurrence of Case I & II the following
holds:

E[f (xt)] ≤ E[f (xt−1)]− θ,

where θ = min((1 − p)ε2g(n, ε), ph(n, ε, γ)). Furthermore, the function f is lower
bounded by B, thus, Case I & II cannot occur more than (f (x0) − B)/θ times. There-
fore, the probability of occurrence of Case III is at least 1 − (f (x0) − B)/(Tθ), which
completes the first part of the proof.

The second part of the proof simply follows from first part. As seen above, the
probability of Case I & II is at most (f (x0) − B)/Tθ. Therefore, probability that an
element of the set S falls in Case III is at least 1− ((f (x0)− B)/Tθ)k, which gives us the
required result for the second part.

4.8 Proof of Lemma 4.4.1

Proof. The proof follows from the analysis in [139] with some additional reasoning. We
need to show two properties: G.1 and G.2, both of which are based on objective function
value. To this end, we start with an update in the sth epoch. We have the following:

E[f (xs+1
t+1)] ≤ E[f (xs+1

t) + 〈∇ f (xs+1
t), xs+1

t+1 − xs+1
t 〉+ L

2‖x
s+1
t+1 − xs+1

t ‖2]

≤ E[f (xs+1
t)− ηt‖∇ f (xs+1

t)‖2 +
Lη2

t
2 ‖v

s+1
t ‖2]. (4.8)

The first inequality is due to L-smoothness of the function f . The second inequality
simply follows from the unbiasedness of SVRG update in Algorithm 9. For the analysis
of the algorithm, we need the following Lyapunov function:

As+1
t := E[f (xs+1

t) + µt‖xs+1
t − x̃s‖2].

This function is a combination of objective function and the distance of the current iter-
ate from the latest snapshot x̃s. Note that the term µt is introduced only for the analysis
and is not part of the algorithm (see Algorithm 9). Here {µt}m

t=0 is chosen such the
following holds:

µt = µt+1(1 + ηtβt + 2η2
t L2) + η2

t L3,

for all t ∈ {0, · · · , m− 1} and µm = 0. For bounding the Lypunov function A, we need
the following bound on the distance of the current iterate from the latest snapshot:

E[‖xs+1
t+1 − x̃s‖2] = E[‖xs+1

t+1 − xs+1
t + xs+1

t − x̃s‖2]

= E[‖xs+1
t+1 − xs+1

t ‖2 + ‖xs+1
t − x̃s‖2 + 2〈xs+1

t+1 − xs+1
t , xs+1

t − x̃s〉]
= E[η2

t ‖vs+1
t ‖2 + ‖xs+1

t − x̃s‖2]− 2ηtE[〈∇ f (xs+1
t), xs+1

t − x̃s〉]

≤ E[η2
t ‖vs+1

t ‖2 + ‖xs+1
t − x̃s‖2] + 2ηtE

[
1

2βt
‖∇ f (xs+1

t)‖2 + 1
2 βt‖xs+1

t − x̃s‖2
]

. (4.9)

72

The second equality is due to the unbiasedness of the update of SVRG. The last inequal-
ity follows from a simple application of Cauchy-Schwarz and Young’s inequality. Sub-
stituting Equation (4.8) and Equation (4.9) into the Lypunov function As+1

t+1 , we obtain
the following:

As+1
t+1 ≤ E[f (xs+1

t)− ηt‖∇ f (xs+1
t)‖2 +

Lη2
t

2 ‖v
s+1
t ‖2]

+ E[µt+1η2
t ‖vs+1

t ‖2 + µt+1‖xs+1
t − x̃s‖2]

+ 2µt+1ηtE
[

1
2βt
‖∇ f (xs+1

t)‖2 + 1
2 βt‖xs+1

t − x̃s‖2
]

≤ E[f (xs+1
t)−

(
ηt − µt+1ηt

βt

)
‖∇ f (xs+1

t)‖2

+
(

Lη2
t

2 + µt+1η2
t

)
E[‖vs+1

t ‖2] + (µt+1 + µt+1ηtβt)E
[
‖xs+1

t − x̃s‖2
]

. (4.10)

To further bound this quantity, we use Lemma 4.11.1 to bound E[‖vs+1
t ‖2], so that upon

substituting it in Equation (4.10), we see that

As+1
t+1 ≤ E[f (xs+1

t)]−
(

ηt − µt+1ηt
βt
− η2

t L− 2µt+1η2
t

)
E[‖∇ f (xs+1

t)‖2]

+
[
µt+1

(
1 + ηtβt + 2η2

t L2)+ η2
t L3
]

E
[
‖xs+1

t − x̃s‖2
]

≤ As+1
t −

(
ηt − µt+1ηt

βt
− η2

t L− 2µt+1η2
t
)
E[‖∇ f (xs+1

t)‖2].

The second inequality follows from the definition of µt and As+1
t . Since ηt = η =

1/(4Ln2/3) for j > 0 and t ∈ {0, . . . , j− 1},

As+1
j ≤ As+1

0 − υn ∑j−1
t=0 E[‖∇ f (xs+1

t)‖2], (4.11)

where
υn =

(
ηt − µt+1ηt

βt
− η2

t L− 2µt+1η2
t
)
.

We will prove that for the given parameter setting υn > 0 (see the proof below). With
υn > 0, it is easy to see that As+1

j ≤ As+1
0 . Furthermore, note that As+1

0 = E[f (xs+1
0) +

µ0‖xs+1
0 − x̃s‖2] = E[f (xs+1

0)] since xs+1
0 = x̃s (see Algorithm 9). Also, we have

E[f (xs+1
j) + µj‖xs+1

j − x̃s‖2] ≤ E[f (xs+1
0)]

and thus, we obtain E[f (xs+1
j)] ≤ E[f (xs+1

0)] for all j ∈ {0,, m}. Furthermore, using

simple induction and the fact that xs+1
0 = xs

m for all epoch s ∈ {0, ..., S− 1}, it easy to
see that E[f (xs+1

j)] ≤ f (x0). Therefore, with the definition of y specified in the output
of Algorithm 9, we see that the condition G.1 of GF-OPTIMIZER is satisfied for SVRG
algorithm.

We now prove that υn > 0 and also G.2 of GF-OPTIMIZER is satisifed for SVRG
algorithm. By using telescoping the sum with j = m in Equation (4.11), we obtain

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤
As+1

0 − As+1
m

υn
.

73

This inequality in turn implies that

∑m−1
t=0 E[‖∇ f (xs+1

t)‖2] ≤ E[f (x̃s)− f (x̃s+1)]

υn
, (4.12)

where we used that As+1
m = E[f (xs+1

m)] = E[f (x̃s+1)] (since µm = 0), and that As+1
0 =

E[f (x̃s)] (since xs+1
0 = x̃s). Now sum over all epochs to obtain

1
Tg

S−1

∑
s=0

m−1

∑
t=0

E[‖∇ f (xs+1
t)‖2] ≤ E[f (x0)− f (xS

m)]

Tgυn
. (4.13)

Here we used the the fact that x̃0 = x0. To obtain a handle on υn and complete our
analysis, we will require an upper bound on µ0. We observe that µ0 = L

16n4/3
(1+θ)m−1

θ

where θ = 2η2L2 + ηβ. This is obtained using the relation µt = µt+1(1 + ηβ + 2η2L2) +
η2L3 and the fact that µm = 0. Using the specified values of β and η we have

θ = 2η2L2 + ηβ =
1

8n4/3 +
1

4n
≤ 3

4n
.

Using the above bound on θ, we get

µ0 =
L

16n4/3
(1 + θ)m − 1

θ
=

L((1 + θ)m − 1)
2(1 + 2n1/3)

≤
L((1 + 3

4n)
b4n/3c − 1)

2(1 + 2n1/3)
≤ n−1/3(L(e− 1)/4), (4.14)

wherein the second inequality follows upon noting that (1 + 1
l)

l is increasing for l > 0
and liml→∞(1 + 1

l)
l = e (here e is the Euler’s number). Now we can lower bound υn, as

υn = min
t

(
η − µt+1η

β − η2L− 2µt+1η2) ≥ (η − µ0η
β − η2L− 2µ0η2) ≥ 1

40Ln2/3 .

The first inequality holds since µt decreases with t. The second inequality holds since (a)
µ0/β can be upper bounded by (e− 1)/4 (follows from Equation (4.14)), (b) η2L ≤ η/4
and (c) 2µ0η2 ≤ (e− 1)η/8 (follows from Equation (4.14)). Substituting the above lower
bound in Equation (4.13), we obtain the following:

1
Tg

S−1

∑
s=0

m−1

∑
t=0

E[‖∇ f (xs+1
t)‖2] ≤ 40Ln2/3E[f (x0)− f (xS

m)]

Tg
. (4.15)

From the definition of (y, z) in output of Algorithm 9 i.e., y is Iterate xa chosen uniformly
random from {{xs+1

t }m−1
t=0 }

S−1
s=0 and z = xS

m, it is clear that Algorithm 9 satisfies the G.2
requirement of GF-OPTIMIZER with g(n, ε) = Tε/40Ln2/3. Since both G.1 and G.2 are
satisified for Algorithm 9, we conclude that SVRG is a GF-OPTIMIZER.

74

4.9 Proof of Lemma 4.4.2

Proof. The first important observation is that the function value never increases because
y = arg minz∈{u,x} f (z) i.e., f (y) ≤ f (x), thus satisfying H.1 of HF-OPTIMIZER. We now
analyze the scenario where λmin(∇2 f (x)) ≤ −γ. Consider the event where we obtain v
such that

〈v,∇2 f (x)v〉 ≤ λmin(∇2 f (x)) +
γ

2
.

This event (denoted by E) happens with at least probability ρ. Note that, since λmin(∇2 f (x))
≤ −γ, we have 〈v,∇2 f (x)v〉 ≤ −γ

2 . In this case, we have the following relationship:

f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ 1
2
(y− x)T∇2 f (x)(y− x) +

M
6
‖y− x‖3

= f (x)− α|〈∇ f (x), v〉|+ α2

2
vT∇2 f (x)v +

Mα3

6
‖v‖3

≤ f (x) +
α2

2
vT∇2 f (x)v +

Mα3

6

≤ f (x)− 1
2M2 |v

T∇2 f (x)v|3 + 1
6M2 |v

T∇2 f (x)v|3

= f (x)− 1
3M2 |v

T∇2 f (x)v|3 ≤ f (x)− 1
24M2 γ3. (4.16)

The first inequality follows from the M-lipschitz continuity of the Hessain ∇2 f (x). The
first equality follows from the update rule of HESSIANDESCENT. The second inequality
is obtained by dropping the negative term and using the fact that ‖v‖ = 1 . The second

equality is obtained by substituting α = |vT∇2 f (x)v|
M . The last inequality is due to the fact

that〈v,∇2 f (x)v〉 ≤ −γ
2 . In the other scenario where

〈v,∇2 f (x)v〉 ≤ λmin(∇2 f (x)) +
γ

2
,

we can at least ensure that f (y) ≤ f (x) since y = arg minz∈{u,x} f (z). Therefore, we
have

E[f (y)] = ρE[f (y)|E] + (1− ρ)E[f (y)|Ē]
≤ ρE[f (y)|E] + (1− ρ) f (x)

≤ ρ
[

f (x)− ρ
24M2 γ3

]
+ (1− ρ) f (x)

= f (x)− ρ
24M2 γ3. (4.17)

The last inequality is due to Equation (4.16). Hence, HF-OPTIMIZER satisfies H.2 of
HF-OPTIMIZER with h(n, ε, γ) = ρ

24M2 γ3, thus concluding the proof.

75

4.10 Proof of Theorem 4.4.4

First note that cubic method is a descent method (refer to Theorem 1 of [115]); thus, H.1
is trivially satisfied. Furthermore, cubic descent is a HF-OPTIMIZER with h(n, ε, γ) =

2γ3

81M3 γ3. This, again, follows from Theorem 1 of [115]. The result easily follows from the
aforementioned observations.

4.11 Other Lemmas

The following bound on the variance of SVRG is useful for our proof [139].

Lemma 4.11.1. [139] Let vs+1
t be computed by Algorithm 9. Then,

E[‖vs+1
t ‖2] ≤ 2E[‖∇ f (xs+1

t)‖2] + 2L2E[‖xs+1
t − x̃s‖2].

Proof. We use the definition of vs+1
t to get

E[‖vs+1
t ‖2] = E[‖

(
∇ fit(xs+1

t)−∇ fit(x̃s)
)
+∇ f (x̃s)‖2]

= E[‖
(
∇ fit(xs+1

t)−∇ fit(x̃s)
)
+∇ f (x̃s)−∇ f (xs+1

t) +∇ f (xs+1
t)‖2]

≤ 2E[‖∇ f (xs+1
t)‖2] + 2E

[∥∥∥∇ fit(xs+1
t)−∇ fit(x̃s)−E[∇ fit(xs+1

t)−∇ fit(x̃s)]
∥∥∥2
]

The inequality follows from the simple fact that (a + b)2 ≤ a2 + b2. From the above
inequality, we get the following:

E[‖vs+1
t ‖2] ≤ 2E[‖∇ f (xs+1

t)‖2] + 2E‖∇ fit(xs+1
t)−∇ fit(x̃s)‖2

≤ 2E[‖∇ f (xs+1
t)‖2] + 2L2E[‖xs+1

t − x̃s‖2]

The first inequality follows by noting that for a random variable ζ, E[‖ζ − E[ζ]‖2] ≤
E[‖ζ‖2]. The last inequality follows from L-smoothness of fit .

4.12 Approximate Cubic Regularization

Cubic regularization method of [19] is designed to operate on full batch, i.e., it does
not exploit the finite-sum structure of the problem and requires the computation of the
gradient and the Hessian on the entire dataset to make an update. However, such full-
batch methods do not scale gracefully with the size of data and become prohibitively
expensive on large datasets. To overcome this challenge, we devised an approximate
cubic regularization method described below:

76

1. Pick a mini-batch B and obtain the gradient and the hessian based on B, i.e.,

g =
1
|B| ∑i∈B

∇ fi(x) H =
1
|B| ∑i∈B

∇2 fi(x) (4.18)

2. Solve the sub-problem

v∗ = arg min
v
〈g, v〉+ 1

2
〈v, Hv〉+ M

6
‖v‖3 (4.19)

3. Update: x ← x + v∗

We found that this mini-batch training strategy, which requires the computation of
the gradient and the Hessian on a small subset of the dataset, to work well on a few
datasets (CURVES, MNIST, CIFAR10). A similar method has been analysed in [23].

Furthermore, in many deep-networks, adaptive per-parameter learning rate helps
immensely [73]. One possible explanation for this is that the scale of the gradients in
each layer of the network often differ by several orders of magnitude. A well-suited
optimization method should take this into account. This is the reason for popularity of
methods like ADAM or RMSPROP in the deep learning community. On similar lines, to
account for different per-parameter behaviour in cubic regularization, we modify the
sub-problem by adding a diagonal matrix Md in addition to the scalar regularization
coefficient M, i.e.,

min
v
〈g, v〉+ 1

2
〈v, Hv〉+ 1

6
M‖Mdv‖3. (4.20)

Also we devised an adaptive rule to obtain the diagonal matrix as Md = diag((s +
10−12)1/9), where s is maintained as a moving average of third order polynomial of the
mini-batch gradient g, in a fashion similar to RMSPROP and ADAM:

s← βs + (1− β)(|g|3 + 2g2), (4.21)

where |g|3 and g2 are vectors such that [|g|3]i = |gi|3 and [g2]i = g2
i respectively for all

i ∈ [n]. The experiments reported on CURVES and MNIST in this chapter utilizes both
the above modifications to the cubic regularization, with β set to 0.9. We refer to this
modified procedure as ACubic in our results.

4.13 Experiment Details

In this section we provide further experimental details and results to aid reproducibility.

4.13.1 Synthetic Problem

The parameter selection for all the methods were carried as follows:
1. SGD: The scalar step-size was determined by a grid search.

77

Figure 4.4: Comparison of various methods on a synthetic problem. Our mix framework
successfully escapes saddle point.

Figure 4.5: Comparison of various methods on a Deep Autoencoder on CURVES (top)
and MNIST (bottom). Our mix approach converges faster than the baseline methods
and uses relatively few ISO calls in comparison to APPROXCUBICDESCENT

2. ADAM: We performed a grid search over α and ε parameters of ADAM tied together,
i.e., α = ε.

3. SVRG: The scalar step-size was determined by a grid search.
4. CUBICDESCENT: The regularization parameter M was chosen by grid search. The

sub-problem was solved with gradient descent [22] with the step-size of solver to be
10−2 and run till the gradient norm of the sub-problem is reduced below 10−3.

Further Observations: The results are presented in Figure 4.4. The other first order
methods like ADAM with higher noise could escape relatively faster whereas SVRG with
reduced noise stayed stuck at the saddle point.

78

4.13.2 Deep Networks

Methods: The parameter selection for all the methods were carried as follows::
1. ADAM: We performed a grid search over α and ε parameters of ADAM so as to pro-

duce the best generalization on a held out test set. We found it to be α = 10−3, ε =
10−3 for CURVES and α = 10−2, ε = 10−1 for MNIST.

2. APPROXCUBICDESCENT: The regularization parameter M was chosen as the largest
value such function value does not jump in first 10 epochs. We found it to be M = 103

for both CURVES and MNIST. The sub-problem was solved with gradient descent
[22] with the step-size of solver to be 10−3 and run till the gradient norm of the sub-
problem is reduced below 0.1.

79

80

Chapter 5

Fast Stochastic Methods for Nonsmooth
Nonconvex Optimization

5.1 Introduction

In this chapter, we study nonconvex, nonsmooth, finite-sum optimization problems of
the form

min
x∈Rd

F(x) := f (x) + h(x), where f (x) :=
1
n

n

∑
i=1

fi(x), (5.1)

where each fi : Rd → R is smooth (possibly nonconvex) for all i ∈ {1, . . . , n} , [n],
while h : Rd → R is nonsmooth but convex and relatively simple.

Such finite-sum optimization problems are fundamental to machine learning, where
they typically arise within the spectrum of regularized empirical risk minimization.
While there has been extensive research in solving nonsmooth convex finite-sum prob-
lems (i.e., each fi is convex for i ∈ [n]) [33, 113, 173], our understanding of their nons-
mooth nonconvex counterpart is surprisingly limited—despite the widespread use and
importance of nonconvex models. We focus, therefore, on fast stochastic methods for
solving nonconvex, nonsmooth, finite-sum problems.

A popular approach to handle nonsmoothness is via proximal operators [103, 150].
Recall that for a proper closed convex function h, the proximal operator is defined as

proxηh(x) := arg min
y∈Rd

(
h(y) +

1
2η
‖y− x‖2

)
, for η > 0. (5.2)

The power of proximal operators lies in how they generalize projections—indeed, if h
is the indicator function IC(x) of a closed convex set C, then proxIC

(x) ≡ projC(x) ≡
arg miny∈C ‖y− x‖.

Throughout this chapter, we assume that the proximal operator of h is relatively easy
to compute. This is true for many applications in machine learning and statistics in-
cluding `1 regularization, box-constraints, simplex constraints, among others [11, 118].

81

Specifically, we assume access to a proximal oracle (PO) that takes a point x ∈ Rd and
returns the output of (5.2). To describe our complexity results more precisely we use the
incremental first-order oracle (IFO).1 For a function f = 1

n ∑i fi, an IFO takes an index
i ∈ [n] and a point x ∈ Rd, and returns the pair (fi(x),∇ fi(x)).

A standard (batch) method for solving (5.1) is the proximal-gradient method (GD) [102],
first studied for nonconvex problems in [43]. This method performs the following iter-
ation:

xt+1 = proxηh(xt − η∇ f (xt)), t = 0, 1, . . . , (5.3)

where η > 0 is the step size. The following non-asymptotic rate of convergence result
for the proximal gradient method was proved recently.

Theorem (Informal). [48]: The number of IFO and PO calls made by the proximal gradient
method (5.3) to reach ε close to a stationary point is O(n/ε) and O(1/ε) respectively.

We refer the readers to [48] for more details. The key point to note here is that
the IFO complexity of (5.3) is O(n/ε). This is due to the fact that a full gradient ∇ f
needs to computed at each iteration of (5.3), thus, entailing n IFO calls at each iteration.
When n is large, this per iteration cost is very expensive, and hence often results in slow
convergence. A more practical approach is offered by the proximal stochastic gradient
(PROXSGD) method, which performs the iteration

xt+1 = proxηth

(
xt − ηt

|It|∑i∈It
∇ fi(xt)

)
, t = 0, 1, . . . , (5.4)

where It (referred to as minibatch) is a randomly chosen set (with replacement) from [n]
and ηt is a step size. Non-asymptotic convergence of PROXSGD was also shown recently,
as noted below.

Theorem (Informal). [48]: The number of IFO and PO calls made by PROXSGD, i.e., iter-
ation (5.4), to reach ε close to a stationary point is O(1/ε2) and O(1/ε) respectively. For
achieving this convergence, we need batch sizes |It| that increase and step sizes ηt that decrease
with 1/ε.

Notice that the PO complexity of PROXSGD is similar to proximal gradient, but its
IFO complexity is independent of n; though this benefit comes at the cost of an extra
1/ε factor. Furthermore, the step size must decrease with 1/ε (or alternatively decay
with the number of iterations of the algorithm). The same two aspects are also seen for
convex stochastic gradient, in both the smooth and proximal versions. However, in the
nonconvex setting there is a key third and more important aspect: the minibatch size |It|
increases with 1/ε.

To understand this aspect, consider the case of |It| being a constant (independent of
both n and ε), typically the choice used in practice. In this case, the above PROXSGD
convergence result no longer holds and it is not clear if PROXSGD even converges to a
stationary point at all. To clarify, a decreasing step size ηt trivially ensures convergence

1Introduced in [2] to study lower bounds of deterministic algorithms for convex finite-sum problems.

82

as t → ∞, but the limiting point is not necessarily stationary. On the other hand, in-
creasing |It|with 1/ε can easily lead to |It| ≥ n for reasonably small ε, which effectively
reduces the algorithm to (batch) proximal gradient.

This dismal news does not apply to the convex setting, where convergence (in ex-
pectation) to an optimal solution has been shown for PROXSGD and its variants using
constant minibatch sizes |It| [19, 148]. Furthermore, this problem does not afflict the
smooth nonconvex case (h ≡ 0), where convergence with constant minibatches is en-
sured [47, 139, 141]. Hence, there appears to be a fundamental gap in our understanding
of stochastic methods for nonsmooth nonconvex problems. Given the ubiquity of noncon-
vex models in machine learning and statistics, it is important to bridge this gap. To
this end, we study fast stochastic methods for tackling nonsmooth nonconvex problems
with guaranteed convergence for constant minibatches, and faster convergence with
minibatches independent of 1/ε.

Main Contributions

We state our main contributions below and list the key complexity results in Table 5.1.
• We analyze nonconvex proximal versions of the recently proposed stochastic algo-

rithms SVRG and SAGA [33, 71, 173], hereafter referred to as PROXSVRG and PROXSAGA,
respectively. We show convergence of these algorithms with constant minibatches.
To the best of our knowledge, this is the first work to present non-asymptotic conver-
gence rates for stochastic methods that apply to nonsmooth nonconvex problems with
constant (hence more realistic) minibatches.
• We show that by carefully choosing the minibatch size (to be sublinearly dependent

on n but still independent of 1/ε), we can achieve provably faster convergence than
both proximal gradient and proximal stochastic gradient. We are not aware of any
earlier results on stochastic methods for the general nonsmooth nonconvex problem
that have faster convergence than proximal gradient.
• We study a nonconvex subclass of (5.1) based on the proximal extension of Polyak-

Łojasiewicz inequality [72]. We show linear convergence of PROXSVRG and PROXSAGA
to the optimal solution for this subclass. This includes the recent results proved in
[154, 179] as special cases. Ours is the first stochastic method with provable global
linear convergence for this subclass of problems.

5.1.1 Related Work

The literature on finite-sum problems is vast; so we summarize only a few closely re-
lated works. Convex instances of (5.1) have been long studied [19, 108, 124] and are
fairly well-understood. Remarkable recent progress for smooth convex instances of (5.1)
is the creation of variance reduced (VR) stochastic methods [33, 71, 153, 156]. Nons-
mooth proximal VR stochastic algorithms are studied in [33, 173] where faster conver-
gence rates for both strongly convex and non-strongly convex cases are proved. Asyn-
chronous VR frameworks are developed in [133]; lower-bounds are studied in [2, 81].

83

In contrast, nonconvex instances of (5.1) are much less understood. Stochastic gradi-
ent for smooth nonconvex problems is analyzed in [47], and only very recently, conver-
gence results for VR stochastic methods for smooth nonconvex problems were obtained
in [139, 141]. In [86], the authors consider a VR nonconvex setting different from ours,
namely, where the loss is (essentially strongly) convex but hard thresholding is used.
We build upon [139, 141], and focus on handling nonsmooth convex regularizers (h 6≡ 0
in (5.1)). Incremental proximal gradient methods for this class were also considered
in [164] but only asymptotic convergence was shown. The first analysis of a projection
version of nonconvex SVRG is due to [160], who considers the special problem of PCA;
see also the follow-up work [161]. Perhaps, the closest to our work is [48], where con-
vergence of minibatch nonconvex PROXSGD method is studied. However, typical to
the stochastic gradient method, the convergence is slow; moreover, no convergence for
constant minibatches is provided.

5.2 Preliminaries

We assume that the function h(x) in (5.1) is lower semi-continuous (lsc) and convex.
Furthermore, we also assume that its domain dom(h) = {x ∈ Rd|h(x) < +∞} is
closed. We say f is L-smooth if there is a constant L such that

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.

Throughout, we assume that the functions fi in (5.1) are L-smooth, so that ‖∇ fi(x) −
∇ fi(y)‖ ≤ L‖x − y‖ for all i ∈ [n]. Such an assumption is typical in the analysis of
first-order methods.

One crucial aspect of the analysis for nonsmooth nonconvex problems is the conver-
gence criterion. For convex problems, typically the optimality gap F(x)− F(x∗) is used
as a criterion. It is unreasonable to use such a criterion for general nonconvex problems
due to their intractability. For smooth nonconvex problems (i.e., h ≡ 0), it is typical to
measure stationarity, e.g., using ‖∇F‖. This cannot be used for nonsmooth problems,
but a fitting alternative is the gradient mapping2 [111]:

Gη(x) := 1
η [x− proxηh(x− η∇ f (x))]. (5.5)

When h ≡ 0 this mapping reduces to Gη(x) = ∇ f (x) = ∇F(x), the gradient of function
F at x. We analyze our algorithms using the gradient mapping (5.5) as described more
precisely below.

Definition 5.2.1. A point x output by stochastic iterative algorithm for solving (5.1) is called
an ε-accurate solution, if E[‖Gη(x)‖2] ≤ ε for some η > 0.

Our goal is to obtain efficient algorithms for achieving an ε-accurate solution, where
efficiency is measured using IFO and PO complexity as functions of 1/ε and n.

2This mapping has also been used in the analysis of nonconvex proximal methods in [47, 48, 164].

84

Algorithm IFO PO IFO (PL) PO (PL) C-
MB?

PROXSGD O
(
1/ε2) O (1/ε) O

(
1/ε2) O (1/ε) ?

PROXGD O (n/ε) O (1/ε) O (nκ log(1/ε)) O (κ log(1/ε)) −

PROXSVRG O(n + (n2/3/ε)) O(1/ε) O((n + κn2/3) log(1/ε)) O(κ log(1/ε))
√

PROXSAGA O(n + (n2/3/ε)) O(1/ε) O((n + κn2/3) log(1/ε)) O(κ log(1/ε))
√

Table 5.1: Table comparing the best IFO and PO complexity of different algorithms dis-
cussed in the chapter. The complexity is measured in terms of the number of oracle
calls required to achieve an ε-accurate solution. The IFO (PL) and PO (PL) represents
the IFO and PO complexity of PL functions (see Section 5.5 for a formal definition).
The results marked in red highlight our contributions. In the table, “C-MB” indicates
whether stochastic algorithm converges using a constant minibatch size. To the best of
our knowledge, it is not known if PROXSGD converges on using constant minibatches
for nonconvex nonsmooth optimization. Also, we are not aware of any specific conver-
gence results for PROXSGD in the context of PL functions.

5.3 Algorithms

We focus on two algorithms: (a) proximal SVRG (PROXSVRG) and (b) proximal SAGA
(PROXSAGA).

5.3.1 Nonconvex Proximal SVRG

We first consider a variant of PROXSVRG [173]; pseudocode of this variant is stated
in Algorithm 11. When F is strongly convex, SVRG attains linear convergence rate as
opposed to sublinear convergence of SGD [71]. Note that, while SVRG is typically stated
with b = 1, we use its minibatch variant with batch size b. The specific reasons for using
such a variant will become clear during the analysis.

While some other algorithms have been proposed for reducing the variance in the
stochastic gradients, SVRG is particularly attractive because of its low memory require-
ment; it requires just O(d) extra memory in comparison to SGD for storing the average
gradient (gs in Algorithm 11), while algorithms like SAG and SAGA incur O(nd) stor-
age cost. In addition to its strong theoretical results, SVRG is known to outperform SGD
empirically while being more robust to selection of step size. For convex problems,
PROXSVRG is known to inherit these advantages of SVRG [173].

We now present our analysis of nonconvex PROXSVRG, starting with a result for
batch size b = 1.

Theorem 5.3.1. Let b = 1 in Algorithm 11. Let η = 1/(3Ln), m = n and T be a multiple of m.

85

Then the output xa of Algorithm 11 satisfies the following bound:

E[‖Gη(xa)‖2] ≤ 18Ln2

3n− 2

(
F(x0)− F(x∗)

T

)
,

where x∗ is an optimal solution of (5.1).
Theorem 5.3.1 shows that PROXSVRG converges for constant minibatches of size

b = 1. This result is in strong contrast to PROXSGD whose convergence with con-
stant minibatches is still unknown. However, the result delivered by Theorem 5.3.1
is not stronger than that of GD. The following corollary to Theorem 5.3.1 highlights this
point.

Corollary 5.3.1.1. To obtain an ε-accurate solution, with b = 1 and parameters from Theo-
rem 5.3.1, the IFO and PO complexities of Algorithm 5.3.1 are O(n/ε) and O(n/ε), respec-
tively.

Corollary 5.3.1.1 follows upon noting that each inner iteration (Step 7) of Algo-
rithm 11 has an effective IFO complexity of O(1) since m = n. This IFO complexity
includes the IFO calls for calculating the average gradient at the end of each epoch.
Furthermore, each inner iteration also invokes the proximal oracle, whereby the PO
complexity is also O(n/ε). While the IFO complexity of constant minibatch PROXSVRG
is same as GD, we see that its PO complexity is much worse. This is due to the fact
that n IFO calls correspond to one PO call in GD, while one IFO call in PROXSVRG cor-
responds to one PO call. Consequently, we do not gain any theoretical advantage by
using constant minibatch PROXSVRG over GD.

The key question is therefore: can we modify the algorithm to obtain better theoretical
guarantees? To answer this question, we prove the following main convergence result.
For the ease of theoretical exposition, we assume n2/3 to be an integer. This is only for
convenience in stating our theoretical results and all the results in the chapter hold for
the general case.

Theorem 5.3.2. Suppose b = n2/3 in Algorithm 11. Let η = 1/(3L), m = bn1/3c and T is a
multiple of m. Then for the output xa of Algorithm 11, we have:

E[‖Gη(xa)‖2] ≤ 18L(F(x0)− F(x∗))
T

,

where x∗ is an optimal solution to (5.1).
Rewriting Theorem 5.3.2 in terms of the IFO and PO complexity, we obtain the fol-

lowing corollary.

Corollary 5.3.2.1. Let b = n2/3 and set parameters as in Theorem 5.3.2. Then, to obtain
an ε-accurate solution, the IFO and PO complexities of Algorithm 11 are O(n + n2/3/ε) and
O(1/ε), respectively.

The above corollary is due to the following observations. From Theorem 5.3.2, it can
be seen that the total number of inner iterations (across all epochs) of Algorithm 11 to
obtain an ε-accurate solution is O(1/ε). Since each inner iteration of Algorithm 5.3.2
involves a call to the PO, we obtain a PO complexity of O(1/ε). Further, since b = n2/3

86

Algorithm 11: Nonconvex PROXSVRG
(
x0, T, m, b, η

)
1: Input: x̃0 = x0

m = x0 ∈ Rd, epoch length m, step sizes η > 0, S = dT/me
2: for s = 0 to S− 1 do
3: xs+1

0 = xs
m

4: gs+1 = 1
n ∑n

i=1∇ fi(x̃s)
5: for t = 0 to m− 1 do
6: Uniformly randomly pick It ⊂ {1, . . . , n} (with replacement) such that |It| = b
7: vs+1

t = 1
b ∑it∈It

(∇ fit(xs+1
t)−∇ fit(x̃s)) + gs+1

8: xs+1
t+1 = proxηh(xs+1

t − ηvs+1
t)

9: end for
10: x̃s+1 = xs+1

m
11: end for
12: Output: Iterate xa chosen uniformly at random from {{xs+1

t }m−1
t=0 }

S−1
s=0 .

IFO calls are made at each inner iteration, we obtain a net IFO complexity of O(n2/3/ε).
Adding the IFO calls for the calculation of the average gradient (and noting that T is a
multiple of m), we obtain the desired result. A noteworthy aspect of Corollary 5.3.2.1 is
that its PO complexity matches GD, but its IFO complexity is significantly decreased to
O(n + n2/3/ε) as opposed to O(n/ε) in GD.

5.3.2 Nonconvex Proximal SAGA

In the previous section, we investigated PROXSVRG for solving (5.1). Note that PROXSVRG
is not a fully “incremental” algorithm since it requires calculation of the full gradient
once per epoch. An alternative to PROXSVRG is the algorithm proposed in [33] (pop-
ularly referred to as SAGA). We build upon the work of [33] to develop PROXSAGA, a
nonconvex proximal variant of SAGA.

The pseudocode for PROXSAGA is presented in Algorithm 12. The key difference be-
tween Algorithm 11 and 12 is that PROXSAGA, unlike PROXSVRG, avoids computation
of the full gradient. Instead, it maintains an average gradient vector gt, which changes at
each iteration (refer to [133]). However, such a strategy entails additional storage costs.
In particular, for implementing Algorithm 12, we must store the gradients {∇ fi(α

t
i)}n

i=1,
which in general can cost O(nd) in storage. Nevertheless, in some scenarios common
to machine learning (see [33]), one can reduce the storage requirements to O(n). When-
ever such an implementation of PROXSAGA is possible, it can perform similar to or even
better than PROXSVRG [33]; hence, in addition to theoretical interest, it is of significant
practical value.

We remark that PROXSAGA in Algorithm 12 differs slightly from [33]. In particular,
it uses minibatches where two sets It, Jt are sampled at each iteration as opposed to one
in [33]. This is mainly for the ease of theoretical analysis.

We prove that as in the convex case, nonconvex PROXSVRG and PROXSAGA share
similar theoretical guarantees. In particular, our first result for PROXSAGA is a counter-
part to Theorem 5.3.1 for PROXSVRG.

87

Algorithm 12: Nonconvex PROXSAGA
(
x0, T, b, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], step size η > 0
2: g0 = 1

n ∑n
i=1∇ fi(α

0
i)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick sets It, Jt from [n] (with replacement) such that |It| = |Jt| = b
5: vt = 1

b ∑it∈It
(∇ fit(xt)−∇ fit(α

t
it
)) + gt

6: xt+1 = proxηh(xt − ηvt)

7: αt+1
j = xt for j ∈ Jt and αt+1

j = αt
j for j /∈ Jt

8: gt+1 = gt − 1
n ∑jt∈Jt

(∇ f jt(α
t
jt)−∇ f jt(α

t+1
jt))

9: end for
10: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

Theorem 5.3.3. Suppose b = 1 in Algorithm 12. Let η = 1/(5Ln). Then for the output xa of
Algorithm 12 after T iterations, the following stationarity bound holds:

E[‖Gη(xa)‖2] ≤ 50Ln2

5n− 2
F(x0)− F(x∗)

T
,

where x∗ is an optimal solution of (5.1).
Theorem 5.3.3 immediately leads to the following corollary.

Corollary 5.3.3.1. The IFO and PO complexity of Algorithm 5.3.3 for b = 1 and parameters
specified in Theorem 5.3.3 to obtain an ε-accurate solution are O(n/ε) and O(n/ε) respectively.

Similar to Theorem 5.3.2 for PROXSVRG, we obtain the following main result for
PROXSAGA.

Theorem 5.3.4. Suppose b = n2/3 in Algorithm 12. Let η = 1/(5L). Then for the output xa
of Algorithm 12 after T iterations, the following holds:

E[‖Gη(xa)‖2] ≤ 50L(F(x0)− F(x∗))
3T

,

where x∗ is an optimal solution of Problem (5.1).
Rewriting this result in terms of IFO and PO access, we obtain the following impor-

tant corollary.

Corollary 5.3.4.1. Let b = n2/3 and set parameters as in Theorem 5.3.4. Then, to obtain
an ε-accurate solution, the IFO and PO complexities of Algorithm 12 are O(n + n2/3/ε) and
O(1/ε), respectively.

The above result is due to Theorem 5.3.4 and because each iteration of PROXSAGA
requires O(n2/3) IFO calls. The number of PO calls is only O(1/ε), since make one PO
call for every n2/3 IFO calls.
Discussion: It is important to note the role of minibatches in Corollaries 5.3.2.1 and 5.3.4.1.
Minibatches are typically used for reducing variance and promoting parallelism in stochas-
tic methods. But unlike previous works, we use minibatches as a theoretical tool to im-
prove convergence rates of both nonconvex PROXSVRG and PROXSAGA. In particular,

88

by carefully selecting the minibatch size, we can improve the IFO complexity of the al-
gorithms described in the chapter from O(n/ε) (similar to GD) to O(n2/3/ε) (matching
our results for the smooth nonconvex case in [139, 141]). Furthermore, the PO com-
plexity is also improved in a similar manner by using the minibatch size mentioned in
Theorems 5.3.2 and 5.3.4.

5.4 General Convergence Analysis

In this previous sections, for the sake of clarity, we stated convergence rates of PROXSVRG
and PROXSAGA for a specific set of parameters. However, a more general analysis can
be derived for these algorithms. The rationale behind the choice of parameters is Sec-
tion 5.3 will also become clear later in this section. We have the following general con-
vergence results for PROXSVRG and PROXSAGA.

Theorem 5.4.1. Suppose b ≤ n in Algorithm 11. Let T be a multiple of m and η = ρ/L where
ρ < 1/2 and satisfies the following:

4ρ2m2

b
+ ρ ≤ 1.

Then for the output xa of Algorithm 11, we have:

E[‖Gη(xa)‖2] ≤ 2L(F(x0)− F(x∗))
ρ(1− 2ρ)T

,

where x∗ is an optimal solution to (5.1).
The following result is an immediate consequence of the above result.

Corollary 5.4.1.1. Let b ≤ n, ρ = 1/4 and m = bb1/2c in Theorem 5.4.1. Then, to obtain an
ε-accurate solution, the IFO and PO complexities of Algorithm 11 are O(n+ n/(b1/2ε)+ b/ε)
and O(1/ε), respectively.

We observe that under the parameter setting in Corollary 5.4.1.1, the PO complexity
is O(1/ε), which matches that of GD. Thus, this setting is optimized for reducing the
PO complexity. Furthermore, for constant minibatch b = 1, Corollary 5.4.1.1 shows that
the IFO and PO complexity of PROXSVRG is O(n/ε) and O(1/ε) respectively, which is
stronger than Theorem 5.3.1. However, in the setting of Corollary 5.4.1.1 with minibatch
size b = 1, PROXSVRG effectively reduces to GD since m = bb1/2c = 1 and hence,
not very interesting. When b = 1, Theorem 5.3.1 provides the convergence result of
PROXSVRG for the setting that is generally used in practice where m = n.

For PROXSAGA, we have the following general convergence results.

Theorem 5.4.2. Suppose b ≤ n in Algorithm 12. Let η = ρ/L where ρ < 1/2 and ρ satisfies
the following condition:

16n2ρ2

b3 + ρ ≤ 1.

89

PL-SVRG:(x0, K, T, m, η)
for k = 1 to K do

xk =
ProxSVRG(xk−1, T, m, b, η) ;

end
Output: xK

PL-SAGA:(x0, K, T, m, η)
for k = 1 to K do

xk =
ProxSAGA(xk−1, T, b, η) ;

end
Output: xK

Figure 5.1: PROXSVRG and PROXSAGA variants for PL functions.

Then for the output xa of Algorithm 12, we have:

E[‖Gη(xa)‖2] ≤ 2L(F(x0)− F(x∗))
ρ(1− 2ρ)T

,

where x∗ is an optimal solution to (5.1).

Corollary 5.4.2.1. Let b ≤ n, ρ = min{1/5, b3/2/5n} in Theorem 5.4.2. Then, to obtain an
ε-accurate solution, the IFO and PO complexities of Algorithm 12 are O(n+ n/(b1/2ε)+ b/ε)
and O(max{1, n/b3/2}/ε) respectively.

Note that the IFO complexity of PROXSVRG (in Corollary 5.4.1.1) and PROXSAGA (in
Corollary 5.4.2.1) are similar; however, their PO complexities are different. It is not hard
to see from Corollary 5.4.1.1 and 5.4.2.1, that the best IFO and PO complexity of both
PROXSVRG and PROXSAGA obtainable through these upper bounds are O(n + n2/3/ε)
and O(1/ε) respectively; which are precisely our main results in Section 5.3.

5.5 Extensions

We discuss some extensions of our approach in this section. Our first extension is to
provide convergence analysis for a subclass of nonconvex functions that satisfy a spe-
cific growth condition popularly known as the Polyak-Łojasiewicz (PL) inequality. In
the context of gradient descent, this inequality was proposed by Polyak in 1963 [122],
who showed global linear convergence of gradient descent for functions that satisfy the
PL inequality. Recently, in [72] the PL inequality was generalized to nonsmooth func-
tions and used for proving linear convergence of proximal gradient. The generalization
presented in [72] considers functions F(x) = f (x) + h(x) that satisfy the following:

µ(F(x)− F(x∗)) ≤ 1
2

Dh(x, µ), where µ > 0

and Dh(x, µ) := −2µ miny
[
〈∇ f (x), y− x〉+ µ

2
‖y− x‖2 + h(y)− h(x)

]
.

(5.6)

An F that satisfies (5.6) is called a µ-PL function.
When h ≡ 0, condition (5.6) reduces to the usual PL inequality. The class of µ-PL

functions includes several other classes as special cases. It subsumes strongly convex

90

functions, covers fi(x) = g(a>i x) with only g being strongly convex, and includes func-
tions that satisfy a optimal strong convexity property [89]. Note that the µ-PL functions
also subsume the recently studied special case where fi’s are nonconvex but their sum
f is strongly convex. Hence, it encapsulates the problems of [154, 179].

The algorithms in Figure 5.1 provide variants of PROXSVRG and PROXSAGA adapted
to optimize µ-PL functions. We show the following global linear convergence result
of PL-SVRG and PL-SAGA in Figure 5.1 for PL functions. For simplicity, we assume
κ = (L/µ) > n1/3. When f is strongly convex, κ is referred to as the condition number,
in which case κ > n1/3 corresponds to the high condition number regime.

Theorem 5.5.1. Suppose F is a µ-PL function. Let b = n2/3, η = 1/5L, m = bn1/3c and
T = d30κe. Then for the output xK of PL-SVRG and PL-SAGA (in Figure 5.1), the following
holds:

E[F(xK)− F(x∗)] ≤ [F(x0)− F(x∗)]
2K ,

where x∗ is an optimal solution of (5.1).
The following corollary on IFO and PO complexity of PL-SVRG and PL-SAGA is

immediate.

Corollary 5.5.1.1. When F is a µ-PL function, then the IFO and PO complexities of PL-SVRG
and PL-SAGA with the parameters specified in Theorem 5.5.1 to obtain an ε-accurate solution
are O((n + κn2/3) log(1/ε)) and O(κ log(1/ε)), respectively.

Note that proximal gradient also has global linear convergence for PL functions, as
recently shown in [72]. However, its IFO complexity is O(κn log(1/ε)), which is much
worser than that of PL-SVRG and PL-SAGA (Corollary 5.5.1.1).
Other extensions: Our results can be easily generalized to the case where non-uniform
sampling is used in Algorithm 11 and Algorithm 12. This is useful when the functions
fi have different Lipschitz constants.

5.6 Experiments

We present our empirical results in this section. For our experiments, we study the
problem of non-negative principal component analysis (NN-PCA). More specifically,
for a given set of samples {zi}n

i=1, we solve the following optimization problem:

min
‖x‖≤1, x≥0

−1
2

x>
(

n

∑
i=1

ziz>i

)
x. (5.7)

The problem of NN-PCA is, in general, NP-hard. This variant of the standard PCA
problem can be written in the form (5.1) with fi(x) = −(x>zi)

2 for all i ∈ [n] and
h(x) = IC(x) where C is the convex set {x ∈ Rd|‖x‖ ≤ 1, x ≥ 0}. In our experiments,
we compare PROXSGD with nonconvex PROXSVRG and PROXSAGA. The choice of step

91

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

Figure 5.2: Non-negative principal component analysis. Performance of PROXSGD,
PROXSVRG and PROXSAGA on ’rcv1’ (left), ’a9a’(left-center), ’mnist’ (right-center) and
’aloi’ (right) datasets. Here, the y-axis is the function suboptimality i.e., f (x) − f (x̂)
where x̂ represents the best solution obtained by running gradient descent for long time
and with multiple restarts.

size is important to PROXSGD. The step size of PROXSGD is set using the popular t-
inverse step size choice of ηt = η0(1 + η′bt/nc)−1 where η0, η′ > 0. For PROXSVRG
and PROXSAGA, motivated by the theoretical analysis, we use a fixed step size. The
parameters of the step size in each of these methods are chosen so that the method
gives the best performance on the objective value. In our experiments, we include the
value η′ = 0, which corresponds to PROXSGD with fixed step size. For PROXSVRG, we
use the epoch length m = n.

We use standard machine learning datasets in LIBSVM for all our experiments 3. The
samples from each of these datasets are normalized i.e. ‖zi‖ = 1 for all i ∈ [n]. Each of
these methods is initialized by running PROXSGD for n iterations. Such an initialization
serves two purposes: (a) it provides a reasonably good initial point, typically beneficial
for variance reduction techniques [33, 153]. (b) it provides a heuristic for calculating the
initial average gradient g0 [153]. In our experiments, we use minibatch size b = 1 in
order to demonstrate the performance of the algorithms with constant minibatches.

We report the objective function value for the datasets. In particular, we report the
suboptimality in objective function i.e., f (xs+1

t)− f (x̂) (for PROXSVRG) and f (xt)− f (x̂)
(for PROXSAGA). Here x̂ refers to the solution obtained by running proximal gradient
descent for a large number of iterations and multiple random initializations. For all
the algorithms, we compare the aforementioned criteria against for the number of effec-
tive passes through the dataset i.e., IFO complexity divided by n. For PROXSVRG, this
includes the cost of calculating the full gradient at the end of each epoch.

Figure 5.2 shows the performance of PROXSGD , PROXSVRG and PROXSVRG on NN-
PCA problem (see Section 5.11 of the Appendix for more experiments). It can be seen
that the objective value for PROXSVRG and PROXSAGA is much lower compared to
PROXSGD, suggesting faster convergence for these algorithms. We observed a signif-
icant gain consistently across all the datasets. Moreover, the selection of step size was
much simpler for PROXSVRG and PROXSAGA than that for PROXSGD. We did not ob-
serve any significant difference in the performance of PROXSVRG and PROXSAGA for

3The datasets can be downloaded from https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets.

92

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

this particular task.

5.7 Discussion

In this chapter, we presented fast stochastic methods for nonsmooth nonconvex opti-
mization. In particular, by employing variance reduction techniques, we show that one
can design methods that can provably perform better than PROXSGD and proximal gra-
dient descent. Furthermore, in contrast to PROXSGD, the resulting approaches have
provable convergence to a stationary point with constant minibatches; thus, bridging a
fundamental gap in our knowledge of nonsmooth nonconvex problems.

We proved that with a careful selection of minibatch size, it is possible to theoreti-
cally show superior performance to proximal gradient descent. Our empirical results
provide evidence for a similar conclusion even with constant minibatches. Thus, we
conclude with an important open problem of developing stochastic methods with prov-
ably better performance than proximal gradient descent with constant minibatch size.

Appendix: Omitted Proofs and Additional Experiments

5.8 Convergence analysis for Proximal Nonconvex SVRG

The analysis requires some key lemmas which can be found in Appendix 5.12.

5.8.1 General Convergence Analysis: Proof of Theorem 5.4.1

Proof. We start by defining the full gradient iterate

xs+1
t+1 = proxηh(xs+1

t − η∇ f (xs+1
t)), (5.8)

which is merely for our analysis, and is never actually computed. Applying Lemma 5.12.2
to (5.8) (with y = xs+1

t+1 , z = xs+1
t and d′ = ∇ f (xs+1

t)), and taking expectations we obtain
the bound

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 − 1

2η‖x
s+1
t+1 − xs+1

t ‖2
]

. (5.9)

Recall the iterates of Algorithm 11 are computed using the following update:

xs+1
t+1 = proxηh(xs+1

t − ηvs+1
t)), (5.10)

where vs+1
t = 1

b ∑it∈It(∇ fit(xs+1
t) − ∇ fit(x̃s)) + gs+1 (see Algorithm 11). Applying

Lemma 5.12.2 on update (5.10) (with y = xs+1
t+1 , z = xs+1

t+1 and d′ = vs+1
t) and taking

93

expectations we obtain

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t+1) + 〈x
s+1
t+1 − xs+1

t+1 ,∇ f (xs+1
t)− vs+1

t 〉

+
[

L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
L
2 + 1

2η

]
‖xs+1

t+1 − xs+1
t ‖2 − 1

2η‖x
s+1
t+1 − xs+1

t+1‖
2
]
.

(5.11)

Adding inequalities (5.9) and (5.11), we get

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

L− 1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2

− 1
2η‖x

s+1
t+1 − xs+1

t+1‖
2 + 〈xs+1

t+1 − xs+1
t+1 ,∇ f (xs+1

t)− vs+1
t 〉︸ ︷︷ ︸

T1

]
(5.12)

We can bound the term T1 as follows:

E[T1] ≤
1

2η
E‖xs+1

t+1 − xs+1
t+1‖

2 +
η

2
E‖∇ f (xs+1

t)− vs+1
t ‖2

≤ 1
2η

E‖xs+1
t+1 − xs+1

t+1‖
2 +

ηL2

2b
E‖xs+1

t − x̃s‖2.

The first inequality follows from Cauchy-Schwarz and Young’s inequality, while the
second inequality is due to Lemma 5.12.3. Substituting the upper bound on T1 in (5.12),
we see that

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

L− 1
2η

]
‖xs+1

t+1 − xs+1
t ‖2

+
[

L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 + ηL2

2b ‖x
s+1
t − x̃s‖2

]
. (5.13)

To further analyze (5.13), we set up a recursion for which we use the following Lya-
punov function:

Rs+1
t := E[F(xs+1

t) + ct‖xs+1
t − x̃s‖2].

Introduce the quantities cm = 0, and ct = ct+1(1+ β) + ηL2

2b . Also, for rest of the analysis
set β = 1/m. We can then bound Rs+1

t+1 as follows

Rs+1
t+1 = E[F(xs+1

t+1) + ct+1‖xs+1
t+1 − xs+1

t + xs+1
t − x̃s‖2]

= E[F(xs+1
t+1) + ct+1(‖xs+1

t+1 − xs+1
t ‖2 + ‖xs+1

t − x̃s‖2 + 2〈xs+1
t+1 − xs+1

t , xs+1
t − x̃s〉)]

≤ E[F(xs+1
t+1) + ct+1(1 + 1/β)‖xs+1

t+1 − xs+1
t ‖2 + ct+1(1 + β)‖xs+1

t − x̃s‖2]

≤ E
[

F(xs+1
t) +

[
L− 1

2η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
ct+1

(
1 + 1

β

)
+ L

2 −
1

2η

]
‖xs+1

t+1 − xs+1
t ‖2

+
[
ct+1(1 + β) + ηL2

2b

]
‖xs+1

t − x̃s‖2
]

(5.14)

≤ E
[

F(xs+1
t) +

[
L− 1

2η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
ct+1(1 + β) + ηL2

2b

]
‖xs+1

t − x̃s‖2
]

= Rs+1
t +

[
L− 1

2η

]
E‖xs+1

t+1 − xs+1
t ‖2. (5.15)

94

The first inequality follows from Cauchy-Schwarz and Young’s inequality. The second
inequality is due to the bound (5.13), while the final equality is due to the definition of
the Lyapunov function Rs+1

t . The third inequality holds because the sequence of values
ct satisfies the following bound:

ct+1

(
1 +

1
β

)
+

L
2
≤ 1

2η
. (5.16)

To verify (5.16), first observe that cm = 0 and ct = ct+1(1 + β) + ηL2

2b . Recursing on t, we
thus obtain

ct =
ηL2

2b
(1 + β)m−t − 1

β
=

ρLm
2b

((
1 +

1
m

)m−t
− 1

)
≤ ρLm

2b
(e− 1) ≤ ρLm

b
,

where the first equality is due to the definition of η and β. The first inequality follows
upon noting that (i) liml→+∞(1 + 1/l)l = e and (ii) (1 + 1/l)l is an increasing function
for l > 0 (here e is Euler’s number). It follows that

ct+1

(
1 +

1
β

)
+

L
2
≤ ρLm

b
(1 + m) +

L
2

≤ 2ρLm2

b
+

L
2
≤ L

2ρ
=

1
2η

,

where the second inequality uses m ≥ 1. The third inequality uses the condition that

4ρ2m2

b
+ ρ ≤ 1.

Hence, inequality (5.16) follows. Now, adding (5.15) across all the iterations in epoch
s + 1 and then telescoping sums, we get

Rs+1
m ≤ Rs+1

0 + ∑m−1
t=0

[
L− 1

2η

]
E‖xs+1

t+1 − xs+1
t ‖2. (5.17)

Since cm = 0 and from the definition of x̃s+1, it follows that Rs+1
m = E[F(xs+1

m)] =
E[F(x̃s+1)]. Furthermore, Rs+1

0 = E[F(xs+1
0)] = E[F(x̃s)]. This is due to the fact that

xs+1
0 = x̃s. Therefore, using the above reasoning in inequality (5.17), we have

E[F(x̃s+1)] ≤ E[F(x̃s)] +
m−1

∑
t=0

[
L− 1

2η

]
E‖xs+1

t+1 − xs+1
t ‖2. (5.18)

Adding (5.18) across all the epochs and rearranging the terms, we obtain the bound

S

∑
s=0

m−1

∑
t=0

[
1

2η − L
]

E‖xs+1
t+1 − xs+1

t ‖2 ≤ F(x0)−E[F(x̃S)] ≤ F(x0)− F(x∗), (5.19)

95

where the second inequality follows from the optimality of x∗.
Recall that in our notation

Gη(xs+1
t) = 1

η [x
s+1
t − proxηh(xs+1

t − η∇ f (xs+1
t))] = 1

η [x
s+1
t − xs+1

t+1].

Using this relationship in (5.19) we see that

S

∑
s=0

m−1

∑
t=0

[
1

2η − L
]

η2E‖Gη(xs+1
t)‖2 ≤ F(x0)− F(x∗). (5.20)

Now using the definition of xa from Algorithm 11 and simplifying we obtain the desired
result.

Proof of Theorem 5.3.1

Proof. The proof follows from Theorem 5.4.1 with b = 1 and the parameters used in the
theorem statement.

Proof of Theorem 5.3.2

Proof. The proof follows from Theorem 5.4.1 with b = n2/3 and the parameters used in
the theorem statement.

5.9 Convergence analysis for Nonconvex Proximal SAGA

5.9.1 General Convergence Analysis: Proof of Theorem 5.4.2

Proof. We introduce the full-gradient iterate (as before, only for the analysis)

xt+1 = proxηh(xt − η∇ f (xt)), (5.21)

and recall that PROXSAGA iterations compute the update

xt+1 = proxηh(xt − ηvt),

where vt = 1
b ∑it∈It

(
∇ fit(xt)−∇ fit(α

t
it)
)
+ gt. Now, using the same argument as in

Theorem 5.4.1 until inequality (5.12), we obtain the following

E[F(xt+1)] ≤ E
[

F(xt) +
[

L− 1
2η

]
‖xt+1 − xt‖2 +

[
L
2 −

1
2η

]
‖xt+1 − xt‖2

− 1
2η‖x

t+1 − xt+1‖2 + 〈xt+1 − xt+1,∇ f (xt)− vt〉︸ ︷︷ ︸
T2

]
. (5.22)

96

The term T2 in (5.22) can be bound as follows:

E[T2] ≤
1

2η
E‖xt+1 − xt+1‖2 +

η

2
E‖∇ f (xt)− vt‖2 ≤ 1

2η
E‖xt+1 − xt+1‖2 +

ηL2

2nb

n

∑
i=1

E‖xt − αt
i‖2.

The inequality follows from Cauchy-Schwarz and Young’s inequality. The second in-
equality is due to Lemma 5.12.4. Substituting the upper bound on T2 in inequality (5.22),
we have

E[F(xt+1)] ≤ E
[

F(xt) +
[

L− 1
2η

]
‖xt+1 − xt‖2

+
[

L
2 −

1
2η

]
‖xt+1 − xt‖2 +

ηL2

2nb

n

∑
i=1
‖xt − αt

i‖2
]
. (5.23)

For further analysis, we require the following Lyapunov function:

Rt := E
[

F(xt) +
ct

n ∑n
i=1 ‖x

t − αt
i‖2
]

.

Moreover, for the rest of the analysis we set β = b/4n. We use p to denote the probability
1− (1− 1/n)b of an index i being in Jt. Observe that we can bound p from below as

p = 1−
(

1− 1
n

)b
≥ 1− 1

1+(b/n) =
b/n

1+b/n ≥
b

2n , (5.24)

where the first inequality follows from (1− y)r ≤ 1/(1 + ry) (which holds for y ∈ [0, 1]
and r ≥ 1), while the second inequality holds because b ≤ n.

We now obtain a recursive bound on Rt+1 as follows

Rt+1 = E[F(xt+1) +
ct+1

n

n

∑
i=1
‖xt+1 − αt+1

i ‖
2]

= E
[
F(xt+1) +

ct+1p
n

n

∑
i=1
‖xt+1 − xt‖2 +

ct+1(1− p)
n

n

∑
i=1
‖xt+1 − αt

i‖2]
= E

[
F(xt+1) + ct+1p‖xt+1 − xt‖2

+
ct+1(1− p)

n

n

∑
i=1

(‖xt+1 − xt‖2 + ‖xt − αt
i‖2 + 2〈xt+1 − xt, xt − αt

i〉)
]

≤ E
[
F(xt+1) + ct+1

(
1 +

1− p
β

)
‖xt+1 − xt‖2 +

ct+1(1 + β)(1− p)
n

n

∑
i=1
‖xt − αt

i‖2]
≤ E

[
F(xt) +

[
L− 1

2η

]
‖xt+1 − xt‖2 +

[
ct+1

(
1 + 1−p

β

)
+ L

2 −
1

2η

]
‖xt+1 − xt‖2

+
[

ct+1(1+β)(1−p)
n + ηL2

2nb

] n

∑
i=1
‖xt − αt

i‖2
]

(5.25)

≤ E

[
F(xt) +

[
L− 1

2η

]
‖xt+1 − xt‖2 +

[
ct+1(1+β)(1−p)

n + ηL2

2nb

] n

∑
i=1
‖xt − αt

i‖2

]
= Rt +

[
L− 1

2η

]
E‖xt+1 − xt‖2. (5.26)

97

The equality in the second line follows how αt+1
i is chosen in Algorithm 12. In particular,

from noting that each index in Jt is drawn uniformly randomly and independently from
[n]. The first inequality follows from Cauchy-Schwarz and Young’s inequality. The
second inequality uses the bound (5.23). The final equality is due to the definition of the
Lyapunov function Rt, wherein we also use

ct =

[
ct+1(1 + β)(1− p) +

ηL2

2b

]
. (5.27)

The third inequality requires a brief explanation. It follows upon observing that

ct+1

(
1 +

1− p
β

)
+

L
2
≤ 1

2η
. (5.28)

To see why (5.28) holds, first observe that cT = 0, and then use (5.27) to show that

ct ≤ ct+1(1− θ) +
ηL2

2b
,

where θ = (b/2n)− β = b/4n. The above inequality is elementary, since (1 + β)(1−
p) ≤ 1− p + β ≤ (1− θ) and because p ≥ (b/2n) as noted in (5.24). Recursing on t, we
thus obtain

ct ≤
ηL2

2b
1− (1− θ)T−t

θ
≤ 2nρL

b2 , (5.29)

for all t ∈ {0, . . . , T − 1}, which holds due to the definition of η and θ. We now use
inequality (5.29) to bound the left hand side of (5.28) as follows

ct+1

(
1 +

1− p
β

)
+

L
2
≤ 2nρL

b2

(
1 +

2(2n− b)
b

)
+

L
2

=
2nρL

b2

[
4n
b
− 1
]
+

L
2

≤ L
2ρ

=
1

2η
.

The first inequality uses the bound (5.24), while the third inequality uses the following
condition on ρ:

16n2ρ2

b3 + ρ ≤ 1.

Thus, inequality (5.28) holds. Adding the bound (5.26) across all the iterations and then
using telescoping sums, we get

RT ≤ R0 +
T−1

∑
t=0

[
L− 1

2η

]
E‖xt+1 − xt‖2. (5.30)

98

Since cT = 0, we observe that RT = E[F(xT)]. Furthermore, since α0
i = x0 for all i ∈ [n],

we conclude that R0 = E[F(x0)]. Therefore, we can rewrite (5.30) to obtain

E[F(xT)] ≤ F(x0) +
T−1

∑
t=0

[
L− 1

2η

]
E‖xt+1 − xt‖2.

Rearranging, and using optimality of x∗, this leads to the bound

T−1

∑
t=0

[
1

2η − L
]

E‖xt+1 − xt‖2 ≤ F(x0)−E[F(xT)] ≤ F(x0)− F(x∗).

Now recall the relationship

Gη(xt) = 1
η [x

t − proxηh(xt − η∇ f (xt))] = 1
η [x

t − xt+1]

and use the definition of xa (from Algorithm 12) in the above bound to obtain the desired
result.

Proof of Theorem 5.3.3

Proof. The proof follows from Theorem 5.4.2 with b = 1 and the parameters used in the
theorem statement.

5.9.2 Proof of Theorem 5.3.4

Proof. The proof follows from Theorem 5.4.2 with b = n2/3 and the parameters used in
the theorem statement.

5.10 Convergence Analysis of PL-variants

5.10.1 Proof of Theorem 5.5.1

Proof. The proof follows immediately from Theorem 5.10.1 and Theorem 5.10.2 with
b = n2/3 and the parameters used in theorem statement.

5.10.2 PL-SVRG Convergence Analysis

Theorem 5.10.1. Suppose F is a µ-PL function. Let b ≤ n, η = ρ/L, T = d6L/ρµe, where
ρ ≤ 1/5 and satisfies the condition

4ρ2m2

b
+ ρ ≤ 1.

99

Then for the output xK of PL-SVRG, the following holds:

E[F(xK)− F(x∗)] ≤ [F(x0)− F(x∗)]
2K ,

where x∗ is an optimal solution of Problem (5.1).

Proof. We define the following :

xs+1
t+1 = proxηh(xs+1

t − η∇ f (xs+1
t)). (5.31)

We first analyze one iteration of the PROXSVRG for PL functions. PL-SVRG essentially
uses this as subroutine multiple times in order to obtain the final solution. The proof is
similar to that of Theorem 5.3.4 until Equation (5.11). We have the following inequali-
ties:

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

L
2 −

1
η

]
‖xs+1

t+1 − xs+1
t ‖2

]
, (5.32)

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t+1) + 〈x
s+1
t+1 − xs+1

t+1 ,∇ f (xs+1
t)− vs+1

t 〉

+
[

L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
L
2 + 1

2η

]
‖xs+1

t+1 − xs+1
t ‖2 − 1

2η‖x
s+1
t+1 − xs+1

t+1‖
2

]
.

(5.33)

Furthermore, we have the following inequality:

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) + 〈∇ f (xs+1
t , xs+1

t+1 − xs+1
t 〉+ L

2‖x
s+1
t+1 − xs+1

t ‖2 + h(xs+1
t+1)− h(xs+1

t)
]

≤ E
[

F(xs+1
t) + 〈∇ f (xs+1

t , xs+1
t+1 − xs+1

t 〉+ 1
2η‖x

s+1
t+1 − xs+1

t ‖2 + h(xs+1
t+1)− h(xs+1

t)
]

= E
[

F(xs+1
t)− η

2 Dh(xs+1
t , 1

η)
]
≤ E

[
F(xs+1

t)− η
2 Dh(xs+1

t , µ)
]

≤ E
[

F(xs+1
t)− µη[F(xs+1

t)− F(x∗)]
]

(5.34)

The first inequality follows from Lipschitz continuity of the gradient of f . The second
inequality follows from the fact that η < 1/L. The third inequality follows from the
fact that Dh(x, .) is a decreasing function. Here, we are implicitly using the fact that
µ ≤ L (which can be shown easily for µ-PL functions that are L-smooth). Adding 2/3×
Equation (5.32) and 1/3× Equation (5.34), we have the following:

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

L
3 −

2
3η

]
‖xs+1

t+1 − xs+1
t ‖2 − µη

3 [F(xs+1
t)− F(x∗)]

]
. (5.35)

Adding the above equation with Equation (5.33), we have the following:

E[F(xs+1
t+1)] ≤ E

[
F(xs+1

t) +
[

5L
6 −

1
6η

]
‖xs+1

t+1 − xs+1
t ‖2 +

[
L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2

− µη
3 [F(xs+1

t)− F(x∗)]− 1
2η‖x

s+1
t+1 − xs+1

t+1‖
2 + 〈xs+1

t+1 − xs+1
t+1 ,∇ f (xs+1

t)− vs+1
t 〉

]
.

(5.36)

100

Using Cauchy-Schwarz and Young’s inequality and the fact that η ≤ 1/5L, we have the
following:

E[F(xs+1
t+1)] (5.37)

≤ E
[

F(xs+1
t) +

[
L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 − µη

3 [F(xs+1
t)− F(x∗)] + η

2‖∇ f (xs+1
t)− vs+1

t ‖2
]

≤ E
[

F(xs+1
t) +

[
L
2 −

1
2η

]
‖xs+1

t+1 − xs+1
t ‖2 − µη

3 [F(xs+1
t)− F(x∗)] + ηL2

2b ‖x
s+1
t − x̃s‖2

]
.

(5.38)

The second inequality follows from Lemma 5.12.3. We use the similar proof technique
as in Theorem 5.4.1 and 5.4.2 and define the following lyapunov function: Rs+1

t+1 =

E[F(xs+1
t+1) + ct+1‖xs+1

t+1 − x̃s‖2]. Let β = b/n. Using the bound on the lyapunov function
in Equation (5.15), we have the following:

Rs+1
t+1 ≤ E

[
F(xs+1

t)− µη
3 [F(xs+1

t)− F(x∗)] +
[
ct+1

(
1 + 1

β

)
+ L

2 −
1

2η

]
‖xs+1

t+1 − xs+1
t ‖2

+
[
ct+1(1 + β) + ηL2

2b

]
‖xs+1

t − x̃s‖2
]

≤ E
[

F(xs+1
t)− µη

3 [F(xs+1
t)− F(x∗)] +

[
ct+1(1 + β) + ηL2

2b

]
‖xs+1

t − x̃s‖2
]

= Rs+1
t − µη

3 E[F(xs+1
t)− F(x∗)]. (5.39)

The second inequality follows from the fact that:

ct+1

(
1 +

1
β

)
+

L
2
≤ 1

2η
.

This, again, follows from argument stated in Theorem 5.4.1, the fact that η = ρ/L and

4ρ2m2

b
+ ρ ≤ 1.

Adding Equation (5.39) across all the iterations epoch s + 1 and then using telescopy
sum, we get

Rs+1
m ≤ Rs+1

0 −
m−1

∑
t=0

µη

3
E[F(xs+1

t)− F(x∗)]. (5.40)

We observe that Rs+1
m = E[F(xs+1

m)] = E[F(x̃s+1)]. This is due the fact that cm = 0 and
the definition of x̃s+1. Furthermore, Rs+1

0 = E[F(xs+1
0)] = E[F(x̃s)]. This is due to the

fact that xs+1
0 = x̃s. Therefore, using the above reasoning in Equation (5.40), we have

E[F(x̃s+1)] ≤ E[F(x̃s)]−
m−1

∑
t=0

µη

3
E[F(xs+1

t)− F(x∗)].

101

Adding the inequality stated above across all the epochs and using telescopy sum, we
have:

S

∑
s=0

m−1

∑
t=0

µη

3
E[F(xs+1

t)− F(x∗)] ≤ E[F(x0)]−E[F(x̃S)] ≤ E[F(x0)]− F(x∗).

The second inequality follows from the optimality of x∗. Using the definition of xk in
PL-SVRG, we have the following:

E[F(x1)− F(x∗)] ≤ 3E[F(x0)− F(x∗)]
µηT

≤ E[F(x0)− F(x∗)]
2

.

The second inequality follows from the fact that T = d6L/ρµe. Using this recursion, we
have the desired result.

5.10.3 PL-SAGA Convergence Analysis

Theorem 5.10.2. Suppose F is a µ-PL function. Let b ≤ n, η = ρ/L, T = d6L/µρe where
ρ ≤ 1/5 and satisfies the following condition:

16n2ρ2

b3 + ρ ≤ 1.

Then for the output xK of PL-SAGA, the following holds:

E[F(xK)− F(x∗)] ≤ [F(x0)− F(x∗)]
2K ,

where x∗ is an optimal solution of Problem (5.1).

Proof. We define the following :

xt+1 = proxηh(xt − η∇ f (xt)). (5.41)

Similar to Theorem 5.10.1, we start with one iteration of PL-SAGA algorithm. In particu-
lar, we first analyze the case of T iterations of SAGA. Further recursing on the the result
obtain will give us the desired result. The first part of the theorem is similar to the proof
in Theorem 5.10.1. Using essentially a similar argument as the one in Theorem 5.10.1
until Equation (5.32), we have the following:

E[F(xt+1)] ≤ E
[

F(xt) +
[

L
2 −

1
2η

]
‖xt+1 − xt‖2 − µη

3 [F(xt)− F(x∗)] + ηL2

2nb ∑n
i=1 ‖x

t − αt
i‖2
]

.

(5.42)

102

We the following Lyapunov function:

Rt = E[F(xt) +
ct

n

n

∑
i=1
‖xt − αt

i‖2],

as defined in Theorem 5.4.2. Using the same argument in Theorem 5.4.2 to bound it, we
have the following:

Rt+1 ≤ E
[

F(xt)− µη
3 [F(xt)− F(x∗)] +

[
ct+1

(
1 + 1−p

β

)
+ L

2 −
1

2η

]
‖xt+1 − xt‖2

+
[

ct+1(1+β)(1−p)
n + ηL2

2nb

]
∑n

i=1 ‖x
t − αt

i‖2
]

≤ Rt − µη
3 E[F(xt)− F(x∗)]. (5.43)

Recall that p = 1− (1− 1/n)b. The second inequality is due to the following inequality:

ct+1

(
1 +

1− p
β

)
+

L
2
≤ 1

2η
.

This is obtained by the same argument in Theorem 5.4.2. Adding Equation (5.43) over
all the iterations and using telescopy sum, we have the following:

E[F(xT)] ≤ E[F(x0)]−
T−1

∑
t=0

µη

3
E[F(xt)− F(x∗)].

The above inequality is obtained from the fact that RT = E[F(xT)]. This is due the fact
that cT = 0. Furthermore, R0 = E[F(x0)]. This is due to the fact that α0

i = x0 for all
i ∈ [n]. Therefore, we have:

T−1

∑
t=0

µη

3
E[F(xt)− F(x∗)] ≤ E[F(x0)]−E[F(xT)] ≤ E[F(x0)− F(x∗)].

Using the definition of xk in PL-SAGA, we have the following:

E[F(x1)− F(x∗)] ≤ 3E[F(x0)− F(x∗)]
µηT

≤ E[F(x0)− F(x∗)]
2

.

The second inequality follows from the fact that T = d6L/µρe. Using the above recur-
sion repeatedly, we obtain the desired result.

5.11 Additional Experiments

We present the additional experiments for non-negative principal component analysis
problems in this section. Figure 5.3 shows the additional results. Similar to Figure 5.2,
we see that PROXSVRG and PROXSAGA outperform PROXSGD. We did not find any
significant difference in the performance of PROXSVRG and PROXSAGA.

103

grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 5 10 15 20

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

grad/n
0 5 10 15 20

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

Figure 5.3: Non-negative principal component analysis. Performance of SGD,
PROXSVRG and PROXSAGA on ’real-sim’ (left), ’covtype’(center) and ’ijcnn1’ (right)
datasets. Recall that the y-axis is the function suboptimality i.e., f (x) − f (x̂) where
x̂ represents the best solution obtained by running gradient descent for long time and
with multiple restarts.

5.12 Lemmatta

We first few intermediate results that are useful for our analysis. These results are key
to the mirror descent analysis [108]. We prove them here for completeness.

Lemma 5.12.1. Suppose we define the following:

y = proxηh(x− ηd′). (5.44)

for some d′ ∈ Rd. Then for y, the following inequality holds:

h(y) + 〈y− z, d′〉 ≤ h(z) + 1
2η

[
‖z− x‖2 − ‖y− x‖2 − ‖y− z‖2

]
. (5.45)

for all z ∈ Rd.

Proof. From Lemma 5.12.5 applied on Equation (5.44), we get the following:

h(y) + 〈y− x, d′〉+ 1
2η‖y− x‖2 +

η

2
‖d′‖2

= h(y) + 1
2η‖y− (x− ηd′)‖2

≤ h(z) + 1
2η‖z− (x− ηd′)‖2 − 1

2η‖y− z‖2

= h(z) + 〈z− x, d′〉+ 1
2η‖z− x‖2 +

η

2
‖d′‖2 − 1

2η‖y− z‖2. (5.46)

By rearranging Equation (5.46), we obtain the following inequality that concludes the
proof.

h(y) + 〈y− z, d′〉 ≤ h(z) + 1
2η

[
‖z− x‖2 − ‖y− x‖2 − ‖y− z‖2

]
.

104

The following key lemma involving function F is useful for proving the convergence
of PROXSVRG and PROXSAGA.

Lemma 5.12.2. Suppose we define the following:

y = proxηh(x− ηd′).

for some d′ ∈ Rd. Then for y, the following inequality holds:

F(y) ≤ F(z)+〈y− z,∇ f (x)− d′〉

+
[

L
2 −

1
2η

]
‖y− x‖2 +

[
L
2 + 1

2η

]
‖z− x‖2 − 1

2η‖y− z‖2. (5.47)

for all z ∈ Rd.

Proof. We have the following inequalities for function f :

f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ L
2
‖y− x‖2,

f (x) ≤ f (z) + 〈∇ f (x), x− z〉+ L
2
‖x− z‖2.

The above inequalities can be obtained by application of Lemma 5.12.6. Adding both
the inequalities above, we obtain the following inequality:

f (y) ≤ f (z) + 〈∇ f (x), y− z〉+ L
2

[
‖y− x‖2 + ‖z− x‖2

]
. (5.48)

Adding Equations (5.45) (which follows from Lemma 5.12.1) and (5.48), we obtain the
inequality:

F(y) ≤ F(z)+〈y− z,∇ f (x)− d′〉

+
[

L
2 −

1
2η

]
‖y− x‖2 +

[
L
2 + 1

2η

]
‖z− x‖2 − 1

2η‖y− z‖2. (5.49)

Here we used that definition F(x) = f (x) + h(x). This concludes our proof.

The following result is useful for bounding the variance of the updates of PROXSVRG
and follows from slight modification of result in [139]. We give the proof here for com-
pleteness.

Lemma 5.12.3 ([139]). For the iterates xs+1
t , vs+1

t and x̃s where t ∈ {0, . . . , m− 1} and s ∈
{0, . . . , S− 1} in Algorithm 11, the following inequality holds:

E[‖∇ f (xs+1
t)− vs+1

t ‖2] ≤ L2

b
‖xs+1

t − x̃s‖2.

105

Proof. Let us define the following notation for the ease of exposition:

ζs+1
t =

1
|It| ∑i∈It

(
∇ fi(xs+1

t)−∇ fi(x̃s)
)

.

Using this notation, we obtain the following bound:

E[‖∇ f (xs+1
t)− vs+1

t ‖2] = E[‖ζs+1
t +∇ f (x̃s)−∇ f (xs+1

t)‖2]

= E[‖ζs+1
t −E[ζs+1

t]‖2] =
1
b2 E

∥∥∥∥∥∑
i∈It

(
∇ fi(xs+1

t)−∇ fi(x̃s)−E[ζs+1
t]

)∥∥∥∥∥
2


The second equality is due to the fact that E[ζs+1
t] = ∇ f (xs+1

t) − ∇ f (x̃s). From the
above relationship, we get

E[‖∇ f (xs+1
t)− vs+1

t ‖2] ≤ 1
b

E

[
∑
i∈It

‖∇ fi(xs+1
t)−∇ fi(x̃s)−E[ζs+1

t]‖2

]

≤ 1
b

E

[
∑
i∈It

‖∇ fi(xs+1
t)−∇ fi(x̃s)‖2

]
≤ L2

b
E[‖xs+1

t − x̃s‖2]

The first inequality follows from Lemma 5.12.7. The second inequality is due to the fact
that for a random variable ζ, E[‖ζ−E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality follows from
L-smoothness of fi.

A similar result can be obtained for PROXSAGA. The key difference with that of
Lemma 5.12.3 is that the variance term in PROXSAGA involves αt

i . Again, we provide
the proof for completeness.

Lemma 5.12.4. For the iterates xt, vt and {αt
i}n

i=1 where t ∈ {0, . . . , T − 1} in Algorithm 12,
the following inequality holds:

E[‖∇ f (xt)− vt‖2] ≤ L2

nb

n

∑
i=1

E‖xt − αt
i‖2.

Proof. Let us define the following notation for the ease of exposition:

ζt =
1
|It| ∑i∈It

(
∇ fi(xt)−∇ fi(α

t
i)
)

.

In this notation, we have the following:

E[‖∇ f (xt)− vt‖2] = E

∥∥∥∥∥ζt +
1
n

n

∑
i=1
∇ f (αt

i)−∇ f (xt)

∥∥∥∥∥
2


= E[‖ζt −E[ζt]‖2] =
1
b2 E

∥∥∥∥∥∑
i∈It

(
∇ fi(xt)−∇ fi(α

t
i)−E[ζt]

)∥∥∥∥∥
2


106

The second equality follows from the fact that E[ζt] = ∇ f (xt)− 1
n ∑n

i=1∇ f (αt
i). From

the above inequality, we get

E[‖∇ f (xt)− vt‖2] ≤ 1
b

E

[
∑
i∈It

‖∇ fi(xt)−∇ fi(α
t
i)−E[ζt]‖2

]

≤ 1
b

E

[
∑
i∈It

‖∇ fi(xt)−∇ fi(α
t
i)‖2

]
≤ L2

nb

n

∑
i=1

E[‖xt − αt
i‖2]

The first inequality is due to Lemma 5.12.7. The second inequality follows from the
fact that for a random variable ζ, E[‖ζ −E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality is from
L-smoothness of fi for all i ∈ [n] and uniform randomness of the set It.

The following lemma is a classical result in mirror descent analysis.

Lemma 5.12.5. Suppose function h : Rd → R is l.s.c and y = proxηh(x). Then we have the
following:

h(y) + 1
2η‖y− x‖2 ≤ h(z) + 1

2η‖z− x‖2 − 1
2η‖y− z‖2,

for all z ∈ Rd.

Lemma 5.12.6. Suppose function f : Rd → R is L-smooth, then we have the following:

f (y) + 〈∇ f (y), x− y〉 − L
2
‖x− y‖2 ≤ f (x) ≤ f (y) + 〈∇ f (y), x− y〉+ L

2
‖x− y‖2,

for all x, y ∈ Rd.

Lemma 5.12.7. For random variables z1, . . . , zr are independent and mean 0, we have

E
[
‖z1 + ... + zr‖2

]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

Proof. We have the following:

E
[
‖z1 + ... + zr‖2

]
=

r

∑
i,i=1

E
[
zizj
]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

The second equality follows from the fact that zi’s are independent and mean 0.

Lemma 5.12.8. For random variables z1, . . . , zr, we have

E
[
‖z1 + ... + zr‖2

]
≤ rE

[
‖z1‖2 + ... + ‖zr‖2

]
.

107

108

Chapter 6

Projection-Free Stochastic Nonconvex
Optimization

6.1 Introduction

This chapter focuses on designing projection-free methods for constrained optimization
problems of the form:

min
x∈Ω

F(x) :=

{
Ez[f (x, z)], (stochastic)
1
n ∑n

i= fi(x), (finite-sum).
(6.1)

We assume that F, f , and fi (i ∈ {1, . . . , n} , [n]) are all differentiable, but possibly
nonconvex; the domain Ω is convex and compact. Problems of this form are at the heart of
machine learning and statistics. Examples of such problems include multiclass classifi-
cation, matrix learning, recommendation systems [54, 55, 56, 66].

Within convex optimization, problem (6.1) is relatively well-studied. Two partic-
ularly popular approaches for solving it are: (i) Projected stochastic gradient descent
(SGD); and (b) the Frank-Wolfe (FW) method. At each iteration, SGD takes a step in a
direction opposite to a stochastic approximation of the gradient ∇F and uses projec-
tion onto Ω to ensure feasibility. While computing a stochastic approximation to ∇F is
usually inexpensive, in many real settings, the cost projecting onto Ω can be very high
(e.g., projecting onto the trace-norm ball, onto base polytopes in submodular minimiza-
tion [42]); and in extreme cases projection can even be computationally intractable [28].

In such cases, projection based methods like SGD become impractical. This diffi-
culty underlies the recent surge of interest in Frank-Wolfe methods [40, 66] (also known
as conditional gradient), due to their projection-free property. In particular, FW meth-
ods avoid the expensive projection operation and require just a linear oracle that solves
problems of the form minx∈Ω〈x, g〉 at each iteration.

Despite the remarkable success of FW approaches in the convex setting, including
stochastic problems [56], their applicability and non-asymptotic convergence for nonconvex
optimization is largely unstudied. Even for SGD, it is only recently that non-asymptotic
convergence analysis for nonconvex optimization was obtained [47, 48]. More recently,

109

Reddi et al. [139, 141] obtained variance reduced stochastic methods that converge faster
than SGD in the nonconvex finite-sum setting.

Similar fast variants of FW for nonconvex problems are not known. Given the vast
importance of nonconvex models in machine learning (e.g., in deep learning) and the
need to incorporate non-trivial constraints in such models, it is imperative to develop
scalable, projection-free methods. This chapter presents new FW methods towards this
goal. Our main contributions are summarized below, while the key complexity results
are listed in Figure 6.1.
Main Contributions. For the nonconvex stochastic setting in (6.1), we propose a stochas-
tic Frank-Wolfe algorithm (SFW), and provide its convergence analysis. For the non-
convex finite-sum setting, we propose two variance reduced (VR) algorithms: SVFW
and SAGAFW, based on the popular VR algorithms SVRG and SAGA, respectively. We
show that by carefully selecting the parameters of these algorithms, we can attain faster
convergence rates than the deterministic FW. In particular, we prove that SVFW and
SAGAFW are faster than deterministic FW by a factor of n1/3 and n2/3 respectively,
where n is the number of component functions in the finite-sum (see (6.1)). Further-
more, leveraging these variance reduced methods, we propose two algorithms, SVFW-
S and SAGAFW-S, for the nonconvex stochastic setting, with faster convergence rates
than SFW. To our knowledge, our work presents the first theoretical improvement for
stochastic variants of Frank-Wolfe in the context of nonconvex optimization.

6.1.1 Related Work

The classical Frank-Wolfe method [40] using line-search was analyzed for smooth con-
vex functions F and polyhedral domains Ω. Here, a convergence rate of O(1/ε) to en-
sure F(x)− F∗ ≤ ε was proved without additional conditions [40, 66]. There have been
several recent works on improving the convergence rates under additional assumptions
[45, 79]. More recently, Hazan and Luo [56] proposed stochastic variants of FW for con-
vex problems of form (6.1), and showed theoretical improvements over the classical
Frank-Wolfe method.

The literature on nonconvex Frank-Wolfe is relatively small. The work [16] proves
asymptotic convergence of FW to a stationary point; though, no convergence rates are
provided. To the best of our knowledge, Yu et al. [178] is the first to provide convergence
rates for FW-type algorithm in the nonconvex setting. Very recently, Lacoste-Julien [78]
provided a (non-asymptotic) convergence rate of O(1/ε2) for nonconvex FW with adap-
tive step sizes. However, as we shall see later, implementation of classical FW for (6.1) is
expensive (or impossible in the pure stochastic case) since it requires calculation of the
gradient ∇F at each iteration. We show that our stochastic variants are provably faster
than the existing FW methods.

In the nonconvex setting, most of the work on stochastic methods focuses on SGD [47,
48] and analyzes convergence to stationary points. For the finite-sum setting, we build
on recent variance reduction techniques [33, 71, 153], which were first proposed for
solving unconstrained convex problems of form (6.1). Projected variants to handle con-

110

straints were studied in [33, 173]. More recently, Reddi et al. [139, 141, 142] provided
nonconvex variants of these methods that converge provably faster than both SGD and
its deterministic counterpart.

6.2 Preliminaries

As stated above, we study two different problem settings: (1) stochastic, where F(x) =
Ez[f (x, z)] and z is random variable whose distribution P is supported on Ξ ⊂ Rp; and
(2) finite-sums, where F(x) = 1

n ∑n
i=1 fi(x).

For the stochastic setting, we assume that F is L-smooth, i.e., its gradient is Lipschitz
continuous with constant L, so

‖∇F(x)−∇F(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω.

Here ‖.‖ denotes the `2-norm. Furthermore, for the stochastic setting, we also assume
the function f is G-Lipschitz i.e., ‖∇ f (x, z)‖ ≤ G for all x ∈ Ω and z ∈ Ξ. Such an
assumption is common in the stochastic setting [47, 56].

For the finite-sum setting, we assume that the individual functions fi (i ∈ [n]) are
L-smooth i.e.,

‖∇ fi(x)−∇ fi(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω.

Note that this implies that the function F is also L-smooth. The domain Ω ∈ Rd is
assumed to be convex and compact with diameter D; i.e., ‖x− y‖ ≤ D for all x, y ∈ Ω.
Such an assumption is common to all Frank-Wolfe methods.
Convergence criteria. The criterion used for the convergence analysis is important in
nonconvex optimization. For unconstrained problems, the gradient norm ‖∇F‖ is typi-
cally used to measure convergence, because ‖∇F‖ → 0 translates into convergence to a
stationary point. However, this criterion cannot be used for constrained problems of the
form (6.1). Instead, we use the following quantity, typically referred to as Frank-Wolfe
gap:

G(x) = max
v∈Ω
〈v− x,−∇F(x)〉. (6.2)

For convex functions, the FW gap provides an upper bound on the suboptimality. For
nonconvex functions, the gap G(x) = 0 if and only if x is a stationary point. To state our
convergence results we will also need the following bound:

β ≥ 2(F(x0)− F(x∗))
LD2 ,

given some (unspecified) initial point x0 ∈ Ω.
Oracle model. To compare convergence speed of different algorithms, we use the fol-
lowing black-box oracles:

• Stochastic First-Order Oracle (SFO): For a function F(·) = Ez[f (., z)] where z ∼ P ,
an SFO takes a point x and returns the pair (f (x, z′),∇ f (x, z′)) where z′ is a sample
drawn i.i.d. from P [108].

111

Algorithm SFO/IFO Complexity LO Complexity

Frank-Wolfe O(n/ε2) O
(
1/ε2)

SFW O
(
1/ε4) O

(
1/ε2)

SVFW O(n + n2/3/ε2) O(1/ε2)

SAGAFW O(n + n1/3/ε2) O(1/ε2)

SVFW-S O(1/ε10/3) O(1/ε2)

SAGAFW-S O(1/ε8/3) O(1/ε2)

Figure 6.1: Table comparing the best SFO/IFO and LO complexity of algorithms dis-
cussed in the chapter (for the nonconvex setting). Here, SFW, SVFW-S and SAGAFW-S
are algorithms for the stochastic setting, while FW, SVFW and SAGAFW are algorithms
for the finite-sum setting. The complexity is measured by the number of oracle calls re-
quired to achieve an ε-accurate solution (see Section 6.2 for definitions of SFO/IFO and
LO complexity). The complexity of FW is from [78]. The results marked in red highlight
our contributions in this chapter. For clarity, we hide the dependence of SFO/IFO and
LO complexity on the initial point and few parameters related to the function F and
domain Ω.

• Incremental First-Order Oracle (IFO): For a function F(·) = 1
n ∑i fi(.), an IFO takes

an index i ∈ [n] and a point x ∈ Rd, and returns the pair (fi(x),∇ fi(x)) [2].
• Linear Optimization Oracle (LO): For a set Ω, an LO takes a direction d and returns

arg maxv∈Ω〈v, d〉.
Throughout the chapter, by SFO, IFO and LO complexity of an algorithm, we mean

the total number of SFO, IFO and LO calls made by the algorithm to obtain an ε-accurate
solution, i.e., a solution for which E[G(x)] ≤ ε; the expectation is over any random-
ization as part of the algorithm. For clarity of presentation, we hide the dependence
of these complexities on the initial point F(x0) − F(x∗), Lipschitz constant G, and the
smoothness constant L; we report the dependence on n to highlight its importance.
Classical FW. To place our results in perspective, we begin by recalling the classical
Frank-Wolfe (FW) algorithm [40]. Pseudocode for this is presented in Algorithm 13.

Algorithm 13: FW
(

x0, T, {γi}T−1
i=0

)
1: Input: x0 ∈ Ω, number of iterations T, {γi}T−1

i=0 where γi ∈ [0, 1] for all i ∈ {0, . . . , T − 1}
2: for t = 0 to T − 1 do
3: Compute vt = arg maxv∈Ω〈v,−∇F(xt)〉
4: Compute update direction dt = vt − xt
5: xt+1 = xt + γtdt
6: end for

112

Each iteration of FW entails calculation of the gradient ∇F and moving towards a
minimizer of a linearized objective. Notice that calculation of ∇F may not be possible
in the stochastic setting of (6.1). Furthermore, even in the finite-sum setting, computing
∇F requires n IFO calls, rendering the approach useless in large-scale problems, where
n is large. For the nonconvex finite-sum setting, the following key result was proved
recently [78].

Theorem 6.2.1 ([78]). Under appropriate selection of step sizes γt, the IFO and LO complexity
of Algorithm 13 to achieve an ε-accurate solution in the finite-sum setting are O(n/ε2) and
O(1/ε2) respectively.

The key aspect of Theorem 6.2.1 is the dependence of IFO complexity on n. In par-
ticular, when n is large, the IFO complexity O(n/ε2) shown by the theorem becomes
prohibitively expensive; thus, undermining the benefits of FW over competitors like
projected SGD. In the next section, we tackle this drawback and develop faster noncon-
vex stochastic and variance reduced FW methods.

6.3 Algorithms

In this section, we describe FW algorithms for solving (6.1). In particular, we explore
stochastic and variance reduced versions of the classical FW method, for the stochastic
and finite-sum settings, respectively. We defer the discussion on comparison of the
convergence rates to Section 6.5.

6.3.1 Stochastic Setting

We first investigate the convergence of FW in the stochastic setting. As mentioned ear-
lier, the classical FW method (Algorithm 13) requires calculation of the full gradient
∇F(x), which is typically impossible to compute in the stochastic setting. For convex
problems, Hazan and Luo [56] tackle this issue by using the popular Robbins-Monro ap-
proximation [149] to the gradient. We use a variant of the algorithm for our nonconvex
stochastic setting, which we call SFW.

The pseudocode of SFW is listed in Algorithm 14. Note that the samples {zi} are
chosen independently according to the distribution P . Thus, Ezi [∇ f (x, zi)] = ∇F(x),
i.e., we obtain an unbiased estimate of the gradient. Also, note that the output in Algo-
rithm 14 is randomly selected from all the iterates of the algorithm. The key parameters
of SFW are the step sizes {γi}T−1

i=0 and the minibatch sizes {bt}. These parameters must
be chosen appropriately in order to ensure convergence of the algorithm (see Theo-
rem 6.3.1). For our analysis, we assume that the function f is G-Lipschitz i.e., we have
maxx∈Ω,z∈Ξ ‖∇ f (x, z)‖ ≤ G. This bound on the gradient is crucial for our convergence
analysis.

We prove the following key result for nonconvex SFW.

113

Algorithm 14: Nonconvex SFW
(

x0, T, {γi}T−1
i=0 , {bi}T−1

i=0

)
1: Input: x0 ∈ Ω, number of iterations T, {γi}T−1

i=0 where γi ∈ [0, 1] for all
i ∈ {0, . . . , T − 1}, minibatch size {bi}T−1

i=0
2: for t = 0 to T − 1 do
3: Uniformly randomly pick i.i.d samples {zt

1, . . . , zt
bt
} according to the distribution

P .
4: Compute vt = arg maxv∈Ω〈v,− 1

bt
∑bt

i=1∇ f (xt, zi)〉
5: Compute update direction dt = vt − xt
6: xt+1 = xt + γtdt
7: end for
8: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

Theorem 6.3.1. Consider the stochastic setting of (6.1) where f is G-Lipschitz and F is L-

smooth. Then, the output xa of Algorithm 14 with parameters γt = γ =

√
2(F(x0)−F(x∗))

TLD2β
,

bt = b = T for all t ∈ {0, . . . , T − 1}, satisfies the following bound:

E[G(xa)] ≤
D√

T

(
G +

√
2L(F(x0)−F(x∗))

β (1 + β)

)
,

where x∗ is an optimal solution to (stochastic) problem (6.1).

Proof. First observe the following upper bound:

F(xt+1) ≤ F(xt) + 〈∇F(xt), xt+1 − xt〉+
L
2
‖xt+1 − xt‖2

= F(xt) + 〈∇F(xt), γ(vt − xt)〉+
L
2
‖γ(vt − xt)‖2

≤ F(xt) + γ〈∇F(xt), vt − xt〉+
LD2γ2

2
. (6.3)

The first inequality follows since F is L-smooth (see Lemma 6.5.1). The equality is due
to the fact that xt+1 − xt = γ(vt − xt). The second inequality holds because vt, xt ∈ Ω
and because the diameter of Ω is D.

Next, we introduce the following quantity:

v̂t := arg max
v∈Ω
〈v,−∇F(xt)〉, (6.4)

which is used purely for our analysis and is not part of the algorithm. For brevity, we
use ∇t to denote 1

b ∑b
i=1 f (xt, zt

i).

114

Rewriting inequality (6.3) using this quantity, we see that

F(xt+1) ≤ F(xt) + γ〈∇t, vt − xt〉+ γ〈∇F(xt)−∇t, vt − xt〉+
LD2γ2

2

≤ F(xt) + γ〈∇t, v̂t − xt〉+ γ〈∇F(xt)−∇t, vt − xt〉+
LD2γ2

2

= F(xt) + γ〈∇F(xt), v̂t − xt〉+ γ〈∇F(xt)−∇t, vt − v̂t〉+
LD2γ2

2

= F(xt)− γG(xt) + γ〈∇F(xt)−∇t, vt − v̂t〉+
LD2γ2

2

≤ F(xt)− γG(xt) + Dγ‖∇F(xt)−∇t‖+
LD2γ2

2
. (6.5)

The second inequality follows from the optimality of vt in Algorithm 14, while the
third inequality follows from recalling that G(xt) = maxv∈Ω〈v− xt,−∇F(xt)〉 = 〈v̂t −
xt,−∇F(xt)〉, which holds due to the optimality of v̂t in (6.4). The last inequality follows
from Cauchy-Schwarz and the fact that the diameter of the feasible set Ω is bounded by
D.

Taking expectations and using Lemma 6.5.2 in (6.5) we obtain the following impor-
tant bound:

E[F(xt+1)] ≤ E[F(xt)]− γE[G(xt)] +
GDγ√

b
+

LD2γ2

2
.

Summing over t and telescoping, we then obtain the upper-bound

γ
T−1

∑
t=0

E[G(xt)] ≤ F(x0)−E[F(xT)] +
TGDγ√

b
+

TLD2γ2

2

≤ F(x0)− F(x∗) +
TGDγ√

b
+

TLD2γ2

2
.

The latter inequality follows from the optimality of x∗. Using the definition of the output
xa of Algorithm 14 and the parameters specified in the theorem statement, we get

E[G(xa)] ≤
F(x0)− F(x∗)

Tγ
+

GD√
b
+

LD2γ

2

≤ D√
T

(
G +

√
2L(F(x0)−F(x∗))

β (1 + β)
)

, (6.6)

which concludes the proof of the theorem.

An immediate consequence of Theorem 6.3.1 is the following complexity result for
SFW.

Corollary 6.3.1.1. Under the setting of Theorem 6.3.1, the SFO complexity and LO complexity
of Algorithm 14 are O(1/ε4) and O(1/ε2), respectively.

115

Proof. The proof follows upon observing that O(1/ε2) minibatch size is required at each
iteration of the algorithm, and noting that as per Theorem 6.3.1 O(1/ε2) iterations are
required to achieve an ε-accurate solution.

Note that the SFO and LO complexity of nonconvex SFW is similar to that of online
FW [55] and slightly worse than complexity of SFW for convex problems [56]. Further-
more, for simplicity of analysis, we used a fixed step size and minibatch size. One can
derive an essentially similar result using a decreasing step size and increasing minibatch
size.

It is important to emphasize that the above results also apply to the finite-sum set-
ting. In particular, when the distribution P is the empirical measure, then the conver-
gence result in Theorem 6.3.1 also provides convergence rates for the finite-sum case.
However, as we will see shortly, these convergence rates can be improved significantly
by using variance reduction techniques.

6.3.2 Finite-sum Setting

In this section, we consider the finite-sum setting of (6.1). We show that by building on
ideas from variance reduction for SGD, one can significantly improve the convergence
rates. The key idea is to use a variance reduced approximation of the gradient [33,
71]. We analyze two different algorithms for the finite-sum setting. Our first algorithm
(SVFW) is based on the convex method of [56] adapted to the nonconvex case. Our
second algorithm (SAGAFW) is based on another variance reduction technique called
SAGA [33].

SVFW Algorithm

Pseudocode of our first method (SVFW) is presented in Algorithm 15. Similar to [71] and
[56], nonconvex SVFW is also epoch-based. At the end of each epoch, the full gradient is
computed at the current iterate. This gradient is used for controlling the variance of the
stochastic gradients in the inner loop. For epoch size m = 1, SVFW reduces to the classic
FW algorithm. In general, the epoch size m is chosen such that the total number of IFO
calls per epoch is Θ(n). This ensures that the cost of computing the full gradient at the
end of each epoch is amortized. To enable a fair comparison with SFW, we assume that
the total number of inner iterations across all epochs in Algorithm 15 is T.

We prove the following key result for Algorithm 15. For ease of exposition, we as-
sume that the total number of inner iterations T is a multiple of m.

Theorem 6.3.2. Consider the finite-sum setting of (6.1) where the functions { fi}n
i=1 are L-

smooth. Then, the output xa of Algorithm 15 with parameters γt = γ =

√
F(x0)−F(x∗)

TLD2β
and

116

Algorithm 15: SVFW
(

x0, T, m, {γi}m−1
i=0 , {bi}m−1

i=0

)
1: Input: x0

m = x0 ∈ Ω, epoch size m, number of epochs S = dT/me, {γi}m−1
i=0 where

γi ∈ [0, 1] for all i ∈ {0, . . . , m− 1}, minibatch size {bi}m−1
i=0

2: for s = 0 to S− 1 do
3: Let x̃s = xs

m
4: Compute g̃s = ∇F(x̃s) = 1

n ∑n
i=1 f (x̃s)

5: for t = 0 to m− 1 do
6: Uniformly randomly (replacement) select subset It = {i1, . . . , ibt} from [n].
7: Compute vs+1

t = arg maxv∈Ω〈v,− 1
bt
(∑i∈It ∇ fi(xs+1

t)− fi(x̃s) + g̃s)〉
8: Compute update direction ds+1

t = vs+1
t − xs+1

t
9: xs+1

t+1 = xs+1
t + γtds+1

t
10: end for
11: end for
12: Output: Iterate xa chosen uniformly random from {{xs+1

t }m−1
t=0 }

S−1
s=0 .

bt = b = m2 for all t ∈ {0, . . . , m− 1}, satisfies

E[G(xa)] ≤
2D√

Tβ

√
L(F(x0)− F(x∗))(1 + β),

where x∗ is an optimal solution of (6.1) and xa is the output of Algorithm 16.

Proof. We first analyze the convergence properties of iterates within an epoch. Suppose
that the current epoch is s + 1. For brevity, we drop the symbol s from xs+1

t , x̃s and g̃s,
whenever it safe to do so given the context. The first part of the proof is similar to that
of Theorem 6.3.1. We use the quantity v̂t = arg maxv∈Ω〈v,−∇F(xt)〉, as before, purely
for our analysis. For the tth iteration within the epoch s, we have

F(xt+1) ≤ F(xt) + 〈∇F(xt), γ(vt − xt)〉+
L
2
‖γ(vt − xt)‖2

≤ F(xt) + γ〈∇F(xt), vt − xt〉+
LD2γ2

2
. (6.7)

This is due to Lemma 6.5.1 and definition of xt+1 in Algorithm 15. For brevity, we use
∇̃t to denote 1

bt
(∑i∈It ∇ fi(xt)− fi(x̃) + g̃). Rewriting, we then obtain

F(xt+1) ≤ F(xt) + γ〈∇̃t, vt − xt〉+ γ〈∇F(xt)− ∇̃t, vt − xt〉+
LD2γ2

2

≤ F(xt) + γ〈∇̃t, v̂t − xt〉+ γ〈∇F(xt)− ∇̃t, vt − xt〉+
LD2γ2

2

≤ F(xt) + γ〈∇F(xt), v̂t − xt〉+ γ〈∇F(xt)− ∇̃t, vt − v̂t〉+
LD2γ2

2

≤ F(xt)− γG(xt) + Dγ‖∇F(xt)− ∇̃t‖+
LD2γ2

2
. (6.8)

117

The second inequality is due to the optimality of vt in Algorithm 15. The last inequality
is due to the definition of G(xt), the diameter of set Ω, and an application of Cauchy-
Schwarz inequality. Note that the above inequality is similar to (6.5), except for the
crucial difference in the term ∇F(xt) − ∇̃t (instead of ∇F(xt) − ∇t in (6.5)). As we
shall see shortly, this term has much lower variance, which ultimately leads to faster
convergence rates.

Taking expectations and using Lemma 6.5.3 in inequality (6.8) we obtain the bound

E[F(xt+1)] ≤ E[F(xt)]− γE[G(xt)] +
LDγ√

b
E[‖xt − x̃‖] + LD2γ2

2
. (6.9)

To aid further analysis, we introduce the following Lyapunov function:

Rt = E[F(xt) + ct‖xt − x̃‖],

where cm = 0 and ct = ct+1 + (LDγ)/
√

b for all t ∈ {0, . . . , m− 1}. Using the relation-
ship in (6.9), we see that

Rt+1 = E[F(xt+1) + ct+1‖xt+1 − x̃‖]

≤ E[F(xt)]− γE[G(xt)] +
LDγ√

b
E[‖xt − x̃‖] + LD2γ2

2
+ ct+1E[‖xt+1 − x̃‖]

≤ E[F(xt)]− γE[G(xt)] +
LDγ√

b
E[‖xt − x̃‖] + LD2γ2

2
+ ct+1E[‖xt+1 − xt‖+ ‖xt − x̃‖]

≤ Rt − γE[G(xt)] +
LD2γ2

2
+ ct+1Dγ. (6.10)

The second inequality follows from the triangle inequality, while the last inequality
holds because: (a) ct = ct+1 + (LDγ)/

√
b, and (b) ‖xt+1 − xt‖ = γ‖vt − xt‖ ≤ Dγ

(recall the definition of diameter of Ω). Telescoping over all the iterations within an
epoch, we obtain

Rm ≤ R0 − γ
m−1

∑
t=0

E[G(xt)] +
LmD2γ2

2
+ Dγ

m

∑
t=1

ct

= R0 − γ
m−1

∑
t=0

E[G(xt)] +
LmD2γ2

2
+

L(m− 1)mD2γ2

2
√

b
. (6.11)

The equality follows from the relationship ct = ct+1 + (LDγ)/
√

b. Since cm = 0 and
xs+1

0 = x̃s = xs
m (in Algorithm 15), from (6.11) we obtain

E[F(xs+1
m)] ≤ E[F(xs+1

m)]− γ
m−1

∑
t=0

E[G(xs+1
t)] +

LmD2γ2

2
+

L(m− 1)mD2γ2

2
√

b
.

Now telescoping over all epochs, we obtain

E[F(xS
m)] ≤ F(x0)− γ

S−1

∑
s=0

m−1

∑
t=0

E[G(xs+1
t)] +

TLD2γ2

2
+

TL(m− 1)D2γ2

2
√

b
.

118

Rearranging this inequality and using the definition of the output in Algorithm 15, we
finally obtain

E[G(xa)] ≤
F(x0)−E[F(xS

m)]

Tγ
+

LD2γ

2
+

L(m− 1)D2γ

2
√

b

≤ F(x0)− F(x∗)
Tγ

+ LD2γ

≤ 2

√
LD2(F(x0)− F(x∗))

Tβ
(1 + β).

The second inequality follows from the optimality of x∗ and because b = m2. The
last inequality follows from the choice of γ stated in the theorem. This concludes the
proof.

The analysis suggests that the value of m should be set appropriately in Theorem 6.3.2
to obtain good convergence rates. If m is small, the IFO complexity of Algorithm 15 is
dominated by the step involving calculation of the full gradient at the end of each epoch.
On the other hand, if m is large, a large minibatch is used in each step of the algorithm
(since b = m2), which increases the IFO complexity. With this intuition, we present
following important corollary.

Corollary 6.3.2.1. Under the setting of Theorem 6.3.2 and with m = dn1/3e, the IFO complex-
ity and LO complexity of Algorithm 14 are O(n + n2/3/ε2) and O(1/ε2), respectively.

Proof. We first observe that the total number of IFO calls for an epoch (including those
required for calculating the full gradient) is Θ(m3 + n). Since m = dn1/3e, the total
amortized IFO complexity of one iteration within an epoch is O(m2) = O(n2/3). There-
fore, the IFO complexity is O(n + n2/3/ε2). Further, since each inner iteration requires
O(1) LO calls, the LO complexity is O(1/ε2).

SAGAFW Algorithm

SVFW is a semi-stochastic algorithm since it requires calculation of the full gradient at
the end of each epoch. Below we propose a purely incremental method (SAGAFW)
based on the SAGA algorithm of [33]. The pseudocode for SAGAFW is presented in
Algorithm 16.

A key feature of SAGAFW is that it entirely avoids calculation of full gradients. In-
stead, it updates the average gradient vector gt at each iteration. This update requires
maintaining additional vectors αi (i ∈ [n]), and in the worst case such a strategy incurs
additional storage cost of O(nd). However, this cost can be reduced to O(n) in several
practical cases (refer to [33, 141]).

For SAGAFW, we prove the following key result.

119

Algorithm 16: SAGAFW
(

x0, T, {γi}T−1
i=0 , {bi}T−1

i=0

)
1: Input: αi

0 = x0 ∈ Ω for all i ∈ [n], number of iterations T, {γi}T−1
i=0 where γi ∈ [0, 1]

for all i ∈ {0, . . . , T − 1}, minibatch size {bi}T−1
i=0

2: Compute g0 = 1
n ∑n

i=1∇F(αi
0)

3: for t = 0 to T − 1 do
4: Uniformly randomly (with replacement) select subsets It, Jt from [n] of size bt.
5: Compute vt = arg maxv∈Ω〈v,− 1

bt
(∑i∈It ∇ fi(xt)− fi(α

i
t) + gt)〉

6: Compute update direction dt = vt − xt
7: xt+1 = xt + γtdt

8: α
j
t+1 = xt for j ∈ Jt and α

j
t+1 = α

j
t for j /∈ Jt

9: gt+1 = gt − 1
n ∑j∈Jt(∇ f j(α

j
t)−∇ f j(α

j
t+1))

10: end for
11: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

Theorem 6.3.3. Consider the finite-sum setting of (6.1) where functions { fi}n
i=1 are L-smooth.

Define θ(b, n, T) = 1/2+(2n3/2/Tb3/2). Then the output xa of Algorithm 16 with parameters

γt = γ =

√
F(x0)−F(x∗)

TLD2θ(b,n,T)β
and bt = b ≤ n for all t ∈ {0, . . . , T − 1}, satisfies the following:

E[G(xa)] ≤
2D√

Tβ

√
Lθ(b, n, T)(F(x0)− F(x∗))(1 + β),

where x∗ is an optimal solution of problem (6.1) and xa is the output of Algorithm 16.

Proof. We use the following quantities in our analysis:

∇̌t =
1
bt

∑
i∈It

(
∇ fi(xt)− fi(α

i
t) + gt

)
v̂t = arg max

v∈Ω
〈v,−∇F(xt)〉.

The first part of our proof is similar to that of Theorem 6.3.2. Using essentially the same
argument until (6.8), we have

E[F(xt+1)] ≤ F(xt)− γG(xt) + Dγ‖∇F(xt)− ∇̌t‖+
LD2γ2

2

≤ F(xt)− γG(xt) +
LDγ
√

n√
b

1
n

n

∑
i=1

E‖xt − αi
t‖+

LD2γ2

2
. (6.12)

The second inequality is due to Lemma 6.5.4. Next, we define the following Lyapunov
function:

Rt = E[F(xt)] + ct
1
n

n

∑
i=1

E‖xt − αi
t‖,

120

where cT = 0 and ct = (1− ρ)ct+1 + (LDγ
√

n)/
√

b for all t ∈ {0, . . . , T− 1}, where ρ is
the probability 1− (1− 1/n)b of an index i being in Jt. We can bound ρ from below as

ρ = 1−
(

1− 1
n

)b
≥ 1− 1

1+(b/n) =
b/n

1+b/n ≥
b

2n , (6.13)

where the first inequality follows from (1 − y)r ≤ 1/(1 + ry) (which holds for y ∈
[0, 1] and r ≥ 1), while the second inequality holds because b ≤ n. Now observe the
following:

1
n

n

∑
i=1

E‖xt+1 − αi
t+1‖ =

1
n

n

∑
i=1

E
[
ρ‖xt+1 − xt‖+ (1− ρ)‖xt+1 − αi

t‖
]

≤ 1
n

n

∑
i=1

E
[
ρ‖xt+1 − xt‖+ (1− ρ)(‖xt+1 − xt‖+ ‖xt − αi

t‖)
]

=
1
n

n

∑
i=1

E
[
‖xt+1 − xt‖+ (1− ρ)E‖xt − αi

t‖
]

(6.14)

The first equality follows from the definition of αi
t+1 in Algorithm 16, while the inequal-

ity is just the triangle inequality. Using the above relationship and the bound in (6.12),
we obtain

Rt+1 ≤ E[F(xt)]− γE[G(xt)] +
LD2γ2

2

+
LDγ
√

n√
b

1
n

n

∑
i=1

E[‖xt − αi
t‖] + ct+1E[‖xt+1 − xt‖]

+ ct+1(1− ρ)
1
n

n

∑
i=1

E[‖xt − αi
t‖]

≤ Rt − γE[G(xt)] +
LD2γ2

2
+ ct+1Dγ. (6.15)

The second inequality holds because: (a) ct = (1 − ρ)ct+1 + (LDγ
√

n)/
√

b, and (b)
‖xt+1 − xt‖ = γ‖vt − xt‖ ≤ Dγ (due to our bound on the diameter of the set Ω).
Telescoping over all the iterations, we see that

RT ≤ R0 − γ
T−1

∑
t=0

E[G(xt)] +
TLD2γ2

2
+ Dγ

T

∑
t=1

ct

≤ R0 − γ
T−1

∑
t=0

E[G(xt)] +
TLD2γ2

2
+

LD2γ2√n
ρ
√

b

≤ R0 − γ
T−1

∑
t=0

E[G(xt)] +
TLD2γ2

2
+

2LD2γ2n3/2

b3/2 .

The second inequality follows form the fact that ∑T
t=1 ct ≤ LDγ

√
n/(ρ

√
b). This can, in

turn, be obtained from the recursion ct = (1− ρ)ct+1 + (LDγ
√

n)/
√

b and cT = 0. The

121

SVFW-S:(x0, T, B, γ)
Randomly sample z1, · · · , zB ∼ P
Let finite-sum F̂(x) = 1

B ∑B
i=1 f (x, zi)

Output: SVFW(x0, T, B1/3, γ, dB2/3e)
applied on the function F̂

SAGAFW-S:(x0, T, B, γ)
Randomly sample z1, · · · , zB ∼ P
Let finite-sum F̂(x) = 1

B ∑B
i=1 f (x, zi)

Output: SAGAFW(x0, T, γ, d3B1/3e)
applied on the function F̂

Figure 6.2: SVFW-S and SAGAFW-S variants for the stochastic setting.

third inequality is due to the bound on ρ in (6.13). Rearranging the above inequality
and using the definition of xa from Algorithm 16, we finally obtain the bound

E[G(xa)] ≤
F(x0)−E[F(xT)]

Tγ
+

LD2γ

2
+

2LD2γn3/2

Tb3/2

≤ F(x0)− F(x∗)
Tγ

+ LD2γθ(b, n, T).

The first inequality uses the fact that cT = 0 and αi
0 = x0 (in Algorithm 16). The second

inequality uses the optimality of x∗ and the definition of θ(b, n, T). Using the setting of
γ in the theorem statement, we obtain the desired result.

Corollary 6.3.3.1. Assume T ≥ n. Under the settings of Theorem 6.3.3 and with b = dn1/3e,
the IFO and LO complexity of Algorithm 14 are O(n + n1/3/ε2) and O(1/ε2), respectively.

Proof. First, observe that for T ≥ n and b = dn1/3e, θ(b, n, T) ≤ 5/2 in Theorem 6.3.3.
Thus, the IFO complexity is O(n + n1/3/ε2). Furthermore, since each iteration requires
just O(1) LO calls, the LO complexity is O(1/ε2).

Notably, the IFO complexity of SAGAFW is lower than that of SVFW. Moreover, if
T ≥ n3/2 and b = 1, then we have θ(b, n, T) ≤ 5/2, in which case the IFO complexity is
O(n3/2 + 1/ε2).

6.4 Variance Reduction in Stochastic Setting

In this section, we improve the convergence rates in the stochastic setting using variance
reduction techniques. The key idea is to first obtain samples {zi} are chosen indepen-
dently according to the distribution P and then use SVFW or SAGAFW, described in this
chapter, on the finite-sum problem over these samples. The pseudocode for the SVFW
and SAGAFW variants for stochastic setting (SVFW-S and SAGAFW-S respectively) are
provided in Figure 6.2. The following is the key result regarding the convergence rates
of SVFW-S and SAGAFW-S.

Theorem 6.4.1. Consider the stochastic setting of (6.1) where f is G-Lipschitz and f (., z) is

L-smooth for all z ∈ Ξ. Suppose B = T and γ =

√
F(x0)−F(x∗)

TLD2β
(for SVFW-S and SAGAFW-S).

122

Then the output of SVFW-S and SAGAFW-S satisfy the following:

E[G(xa)] ≤
2D√

Tβ

√
L(F(x0)− F(x∗))(1 + β) +

GD√
T

(6.16)

Proof. Consider the finite-sum F̂(x) = 1
B ∑B

i=1 f (x, zi) where z1, · · · , zB ∼ P . We use the
following notation:

Ĝ(x) = max
v∈Ω
〈v− x,−∇F̂(x)〉.

Let v̄s+1
t = arg maxv∈Ω〈v− xs+1

t ,−∇F(xs+1
t)〉 and v̂s+1

t = arg maxv∈Ω〈v− xs+1
t ,−∇F̂(xs+1

t)〉.
We first observe the following key relationship for SVFW:

E[G(xs+1
t)− Ĝ(xs+1

t)] = E[〈v̄s+1
t − xs+1

t ,−∇F(xs+1
t)〉]−E[〈v̂s+1

t − xs+1
t ,−∇F̂(xs+1

t)〉]
≤ E[〈v̄s+1

t − xs+1
t ,−∇F(xs+1

t)〉]−E[〈v̄s+1
t − xs+1

t ,−∇F̂(xs+1
t)〉]

≤ E[〈v̄s+1
t − xs+1

t ,∇F̂(xs+1
t)−∇F(xs+1

t)〉]

≤ DE[‖∇F̂(xs+1
t)−∇F(xs+1

t)‖] ≤ GD√
T

.

The first inequality is due to the optimality of v̂s+1
t . The third inequality follows from

Cauchy-Schwarz inequality. The last inequality is due to Lemma 6.5.2. Adding the
above inequality across all the iterations and epochs, we get:

E[G(xa)] ≤ E[Ĝ(xa)] +
GD√

T
.

Using the bound on E[Ĝ(xa)] in Theorem 6.3.2 (here, recall we are using SVFW on F̂) in
the above inequality, we get the desired result. The proof for SAGAFW-S is similar.

The following corollary on the complexity of SVFW-S and SAGAFW-S is immediate
consequence of the above result.

Corollary 6.4.1.1. Under the setting of Theorem 6.4.1, the SFO complexity of SVFW-S and
SAGAFW-S (in Figure 6.2) are O(1/ε10/3) and O(1/ε8/3), respectively. The LO complexity
of both SVFW-S and SAGAFW-S is O(1/ε2).

Proof. The proof follows from the fact that B = T, b = dB2/3e (in SVFW-S) and b =
d3B1/3e (in SAGAFW-S) and IFO complexities of SVFW and SAGAFW given in Corol-
lary 6.3.2.1 and 6.3.3.1 respectively.

By comparing Corollary 6.4.1.1 with Corollary 6.3.1.1, we see that SVFW-S and SAGAFW-
S have better SFO complexity than SFW.

123

6.5 Discussion

It is important to remark on the complexity results derived in this chapter. For the
stochastic setting, we showed that the SFO and LO complexity of SFW are O(1/ε4)
and O(1/ε2), respectively. At first glance, these rates might appear worse than those
obtained for nonconvex SGD (see [47]). However, it is important to note that the con-
vergence criterion used in this chapter is different from the one used in [47]. It is an
important piece of future work to understand the precise relationship between these
convergence criteria. Furthermore, the convergence rates in this chapter are similar to
those obtained for online Frank-Wolfe [55] and only slightly worse than those obtained
for stochastic Frank-Wolfe in the convex setting [56]. We, further, improved the conver-
gence rate of SFW by using variance reduction ideas in the stochastic setting (SVFW-S
and SAGAFW-S algorithms in Section 6.4). Understanding the tightness of these rates is
an interesting open problem left as future work.

For the finite-sum setting, while the complexity results of SFW still hold, we obtained
significantly faster convergence rates by using variance reduction techniques. The de-
pendence of IFO and LO complexity of nonconvex SVFW and SAGAFW, on ε is O(1/ε2),
which matches the classical Frank-Wolfe algorithm [78]. However, SVFW and SAGAFW
exhibit a much weaker dependence on n than FW; wherein, they are provably faster
than the classical Frank-Wolfe by a factor of n1/3 and n2/3, respectively. Similar (but
not same) benefits have also been reported for nonconvex SVRG and SAGA over gradi-
ent descent [139, 141]. Interestingly, there appears to be a gap between the convergence
rates of SVFW and SAGAFW. Whether this gap is an artifact of our analysis or has deeper
reasons remains open.

We conclude with a remark on a subtle point regarding the step size γ. The step
size γ in Theorems 6.3.1, 6.3.2, and 16 requires knowledge of parameters like L, D
and F(x) − F(x∗). Typically, an estimate of the these values suffices in practice. In
absence of such knowledge, one can completely eliminate this dependence of γ on these
parameters by simply choosing β = 2(F(x0)−F(x∗))

LD2 . Fortunately, this comes at the cost of
only slightly worse constants in the convergence rate.

Appendix: Omitted Proofs

The following bound on the value of functions with Lipschitz continuous gradients is
classical (see e.g., [111]).

Lemma 6.5.1. If f : Rd → R is L-smooth, then

f (x) ≤ f (y) + 〈∇ f (y), x− y〉+ L
2
‖x− y‖2,

for all x, y ∈ Rd.
The following lemma is useful for bounding the variance of the gradient estimate

used in the stochastic setting.

124

Lemma 6.5.2. Suppose the function F(x) = Ez[f (x, z)] where z is a random variable with
distribution P and support Ξ, and maxz∈Ξ ‖∇ f (x, z)‖ ≤ G for all x ∈ Ω. Also, let ∇̄x =
1
b ∑i∈It ∇ f (x, zi) where {zi}b

i=1 are i.i.d. samples from the distribution P . Then, the following
holds for any x ∈ Ω:

E[‖∇̄x −∇F(x)‖] ≤ G√
b

.

Proof. The proof follows from a simple application of Lemma 6.5.5 and Jensen’s inequal-
ity.

The following result is useful for bounding the variance of the updates of SVFW
and follows from a slight modification of a result in [139]. We give the proof here for
completeness.

Lemma 6.5.3 ([139]). Let ∇̃t =
1
bt
(∑i∈It ∇ fi(xs+1

t)− fi(x̃s) + g̃s) in Algorithm 15. For the
iterates xs+1

t and x̃s where t ∈ {0, . . . , m − 1} and s ∈ {0, . . . , S − 1} in Algorithm 15, the
following inequality holds:

EIt [‖∇F(xs+1
t)− ∇̃t‖] ≤

L√
bt
‖xs+1

t − x̃s‖.

Proof. For the ease of exposition, we first define

ζs+1
t =

1
|It| ∑i∈It

(
∇ fi(xs+1

t)−∇ fi(x̃s)
)

.

Using this notation, we then obtain the following:

EIt [‖∇F(xs+1
t)− ∇̃t‖2]

= EIt [‖ζs+1
t +∇F(x̃s)−∇F(xs+1

t)‖2]

= EIt [‖ζs+1
t −EIt [ζ

s+1
t]‖2]

=
1
b2

t
EIt

∥∥∥∥∥∑
i∈It

(
∇ fi(xs+1

t)−∇ fi(x̃s)−EIt [ζ
s+1
t]

)∥∥∥∥∥
2
 .

The second equality is due to the fact that EIt [ζ
s+1
t] = ∇F(xs+1

t) −∇F(x̃s). From the
above relationship, we get

EIt [‖∇F(xs+1
t)− ∇̃t‖2]

≤ 1
bt

EIt

[
∑
i∈It

‖∇ fi(xs+1
t)−∇ fi(x̃s)−EIt [ζ

s+1
t]‖2

]

≤ 1
bt

EIt

[
∑
i∈It

‖∇ fi(xs+1
t)−∇ fi(x̃s)‖2

]

≤ L2

bt
‖xs+1

t − x̃s‖2.

125

The first inequality follows from Lemma 6.5.5. The second inequality is due to the fact
that for a random variable ζ, E[‖ζ−E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality follows from
L-smoothness of fi. The result follows from a simple application of Jensen’s inequality
to the inequality above.

The following result is important for bounding the variance in SAGAFW. The key
difference from Lemma 6.5.3 is that the variance term in SAGAFW involves αi

t. Again,
we provide the proof for completeness.

Lemma 6.5.4. Let ∇̌t = 1
bt
(∑i∈It ∇ fi(xt) − fi(α

i
t) + gt) in Algorithm 16. For the iterates

xt, vt and {αi
t}n

i=1 where t ∈ {0, . . . , T − 1} in Algorithm 16, we have the inequality

EIt [‖∇F(xt)− ∇̌t‖] ≤
L√
bt

n

∑
i=1

1√
n
‖xt − αi

t‖.

Proof. As before we first define the quantity

ζt =
1
|It| ∑i∈It

(
∇ fi(xt)−∇ fi(α

i
t)
)

.

With this notation, we then obtain the equality

EIt [‖∇F(xt)− ∇̌t‖2]

= EIt

∥∥∥∥∥ζt +
1
n

n

∑
i=1
∇ fi(α

i
t)−∇F(xt)

∥∥∥∥∥
2
 = EIt [‖ζt −EIt [ζt]‖2]

=
1
b2 EIt

∥∥∥∥∥∑
i∈It

(
∇ fi(xt)−∇ fi(α

i
t)−EIt [ζt]

)∥∥∥∥∥
2
 .

The second equality follows from the fact that EIt [ζt] = ∇F(xt)− 1
n ∑n

i=1∇ fi(α
i
t). From

the above inequality, we get the following bound:

EIt [‖∇F(xt)− ∇̌t‖2]

≤ 1
bt

EIt

[
∑
i∈It

‖∇ fi(xt)−∇ fi(α
i
t)−EIt [ζt]‖2

]

≤ 1
bt

EIt

[
∑
i∈It

‖∇ fi(xt)−∇ fi(α
i
t)‖2

]
≤ L2

nbt

n

∑
i=1
‖xt − αi

t‖2.

The first inequality is due to Lemma 6.5.5, while the second inequality holds because
for a random variable ζ, E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality is from L-
smoothness of fi (i ∈ [n]) and uniform randomness of the set It. By applying Jensen’s
inequality, we get the desired result.

Lemma 6.5.5. For random variables z1, . . . , zr that are independent and have mean 0, we have

E
[
‖z1 + ... + zr‖2

]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

126

Proof. Expanding the left hand side we have

E
[
‖z1 + ... + zr‖2

]
=

r

∑
i,j=1

E
[
zizj
]
= E

[
∑r

i=1 ‖zi‖2
]

;

the second equality here follows from the our hypothesis.

127

128

Chapter 7

Variance Reduced Stochastic Langevin
Dynamics

7.1 Introduction

In the previous chapters, we examined the benefit of variance reduction in the context
of optimization. Here, we demonstrate that these techniques can be useful in settings
beyond optimization by investigating its benefit for Bayesian posterior Inference (BI). BI
involves drawing samples from a posterior distribution based on the training data and
is a central task in machine learning and Bayesian analysis. It has widespread applica-
tions in science, law, sports and philosophy. While sampling methods like Monte Carlo
are considered as gold standard in Bayesian posterior inference due to their asymptotic
convergence properties, their convergence can be slow in large models due to poor mix-
ing. Gradient-based Monte Carlo methods such as Langevin Dynamics and Hamilto-
nian Monte Carlo [104] allow us to use gradient information to more efficiently explore
posterior distributions over continuous-valued parameters. By traversing contours of a
potential energy function based on the posterior distribution, these methods allow us
to make large moves in the sample space. Although gradient-based methods are effi-
cient in exploring the posterior distribution, they are limited by the computational cost
of computing the gradient and evaluating the likelihood on large datasets. As a result,
stochastic variants are a popular choice when working with large data sets [172].

Stochastic gradient methods [149] have long been used in the optimization com-
munity to decrease the computational cost of gradient-based optimization algorithms
such as gradient descent. These methods replace the (expensive, but accurate) gradient
evaluation with a noisy (but computationally cheap) gradient evaluation on a random
subset of the data. With appropriate scaling, this gradient evaluated on a random subset
of the data acts as a proxy for the true gradient. A carefully designed schedule of step
sizes ensures convergence of the stochastic algorithm.

A similar idea has been employed to design stochastic versions of gradient-based
Monte Carlo methods [7, 8, 97, 172]. By evaluating the derivative of the log likelihood
on only a small subset of data points, we can drastically reduce computational costs.

129

However, using stochastic gradients comes at a cost: While the resulting estimates are
unbiased, they do have very high variance. This leads to an increased probability of se-
lecting paths with high deviation from the true gradient, leading to slower convergence.

There have been a number of variations proposed on the basic stochastic gradient
Langevin dynamics (SGLD) model of [172]: [26] incorporate a momentum term to im-
prove posterior exploration; [37] propose using additional variables to stabilize fluctu-
ations; [119] proposed modifications to facilitate exploration of simplex; [49] provides
sampling solutions for correlated data. However, none of these methods directly tries
to reduce the variance in the computed stochastic gradient.

As was the case with the original SGLD algorithm, we look to the optimization com-
munity for inspiration, since high variance is also detrimental in stochastic gradient
based optimization. A plethora of variance reduction techniques have been recently
proposed to alleviate this issue for the stochastic gradient descent (SGD) algorithm
[33, 71, 153]. By incorporating a carefully designed (usually unbiased) term into the up-
date sequence of SGD, these methods reduce the variance that arises due to the stochas-
tic gradients in SGD; thereby, providing strong theoretical and empirical performance.

Inspired by these successes in the optimization community, we propose methods
for reducing the variance in stochastic Langevin dynamics. Our approach bridges the
gap between the faster (in terms of iterations) convergence of non-stochastic Langevin
dynamics, and the faster per-iteration speed of stochastic Langevin dynamics. While
our approach draws its motivation from stochastic optimization literature, it is to our
knowledge the first approach that aims to directly reduce variance in a gradient-based
Monte Carlo method. While our focus is on Langevin dynamics, our approach is easily
applicable to other gradient-based Monte Carlo methods.
Main Contributions: We propose a new Langevin algorithm designed to reduce vari-
ance in the stochastic gradient, with minimal additional computational overhead. We
also provide a memory efficient variant of our algorithm. We demonstrate theoretical
conversion to the true posterior under reasonable assumptions, and show that the rate
of convergence has a tighter bound than one previously shown for stochastic Langevin
dynamics. We complement these theoretical results with empirical evaluation showing
impressive speed-ups versus a standard stochastic Langevin algorithm, on a variety of
machine learning tasks such as regression, classification, independent component anal-
ysis and mixture modeling.

7.2 Preliminaries

Let X = {xi}N
i=1 be a set of data items modeled using a likelihood function p(X|θ) =

∏N
i=1 p(xi|θ) where the parameter θ has prior distribution p(θ). We are interested in

sampling from the posterior distribution p(θ|X) ∝ p(θ)∏N
i=1 p(xi|θ). If N is large, stan-

dard Langevin Dynamics is not feasible due to the high cost of repeated gradient evalu-
ations; a more scalable approach is to use a stochastic variant [172] (which we will refer
to as stochastic gradient Langevin dynamics, or SGLD). SGLD uses a classical Robbins-
Monro stochastic approximation to the true gradient [149]. At each iteration t of the

130

algorithm, a subset of the data Xt = {xt1, . . . , xtn} is sampled and the parameters are
updated by using only this subset of data, according to

∆θt =
ht
2

(
∇ log p(θt) +

N
n ∑n

i=1∇ log p(xti|θt)
)
+ ηt (7.1)

where ηt ∼ N(0, ht), and ht is the learning rate. ht is set in such a fashion that ∑∞
t=1 ht =

∞ and ∑∞
t=1 h2

t < ∞. This provides an approximation to a first order Langevin diffusion,
with dynamics

dθ = −1
2∇θUdt + dW, (7.2)

where U is the unnormalized negative log posterior. Equation (7.2) has stationary
distribution ρ(θ) ∝ exp{−U(θ)}. Let φ̄ =

∫
φ(θ)ρ(θ)dθ where φ represents a test func-

tion of interest. For a numerical method that generates samples {θt}T−1
i=0 , the empirical

average 1
T ∑T−1

t=0 φ(θt) is denoted by φ̂. Furthermore, let ψ denote the solution to the
Poisson equation Lψ = φ− φ̄, where L is the generator of the diffusion, given by

Lψ = 〈∇θψ,∇θU〉+ 1
2 ∑i∇2

i ψ. (7.3)

The decreasing step size ht in our approximation (Equation (7.1)) means we do not
have to incorporate a Metropolis-Hastings step to correct for the discretization error
relative to Equation (7.2); however it comes at the cost of slowing the mixing rate of
the algorithm. We note that, while the discretized Langevin diffusion is Markovian,
its convergence guarantees rely on the quality of the approximation, rather than from
standard Markov chain Monte Carlo analyses.

A second source of error comes from the use of stochastic approximations to the true
gradients. This is equivalent to using an approximate generator L̃t = L+ ∆Vt where
∆Vt = ∇θψ · (∇θUt −∇θU) where Ut is the current stochastic approximation to U. Our
key contribution in this chapter will be replacing the Robbins-Monroe approximation
to U with a lower-variance approximation, thus reducing the error.

To see more clearly the effect of the variance of our stochastic approximation on the
estimator error, we present a result derived for SGLD by [25]:

Theorem 7.2.1. [25] Let Ut be an unbiased estimate of U and ht = h for all t ∈ {1, . . . , T}.
Then under certain reasonable assumptions (concretely, assumption [A1] in Section 7.4), for
a smooth test function φ, the MSE of SGLD at time K = hT is bounded, for some C > 0
independent of (T, h) in the following manner:

E(φ̂− φ̄)2 ≤ C

 1
T ∑t E[‖∆Vt‖2]

T︸ ︷︷ ︸
T1

+
1

Th
+ h2

 . (7.4)

Here ‖.‖ represents the operator norm.

131

We clearly see that the MSE depends on the variance term E[‖∆Vt‖2], which in turn
depends on the variance of the noisy stochastic gradients. Since, for consistency, we
require h → 0 as T → ∞,1 provided E[‖∆Vt‖2] is bounded by a constant τ, the term T1
ceases to dominate as T → ∞, meaning that the effect of noise in the stochastic gradient
becomes negligible. However outside this asymptotic regime, the effect of the variance
term in Equation (7.4) remains significant. This motivates our efforts in this chapter
to decrease the variance of the approximate gradient, while maintaining an unbiased
estimator.

One easy approach to decrease the variance is by using larger minibatches. How-
ever, this comes at a considerably large computational cost; thus, undermining the
whole benefit of using SGLD. Inspired by the recent success of variance reduction tech-
niques in stochastic optimization [33, 71, 153], we take a rather different approach to
reduce the effect of noisy gradients.

7.3 Variance Reduction for Langevin Dynamics

As we have seen in Section 7.2, reducing the variance of our stochastic approxima-
tion can reduce our estimation error. In this section, we introduce two approaches for
variance reduction, based on recent variance reduction algorithms for gradient descent
[33, 71]. The first algorithm, SAGA-LD, is appropriate when our bottleneck is computa-
tion; it yields improved convergence with minimal additional computational costs over
SGLD. The second algorithm, SVRG-LD, is appropriate when our bottleneck is memory;
while the computational cost is generally higher than SAGA-LD, the memory require-
ment is lower, with the memory overhead beyond that of stochastic Langevin dynam-
ics scales as O(d). In practice, we found that computation was a greater bottleneck in
the examples considered, so our experimental section only focuses on SAGA-LD; how-
ever on larger datasets with easily computable gradients, SVRG-LD may be the optimal
choice.

7.3.1 SAGA-LD

The increased variance in SGLD is due to the fact that we only have information from
n � N data points at each iteration. However, inspired by a minibatch version of the
SAGA algorithm [33], we can include information from the remaining data points via an
approximate gradient and partially update the average gradient in each operation. We
call this approach SAGA-LD.

Under SAGA-LD, we explicitly store N approximate gradients {gαi}N
i=1, correspond-

ing to the N data points. Concretely, let αt = (αi
t)

N
i=1 be a set of vectors, initialized as

αi
0 = θ0 for all i ∈ [N], and initialize gαi = ∇ log p(xi|αi

0). As we iterate through the
data, if a data point is not selected in the current minibatch, we approximate its gradi-
ent with gαi. If It = {i1t, . . . int} is the minibatch selected at iteration t, this means we

1In particular, if h ∝ T−1/3, we obtain the optimal convergence rate for the above upper bound.

132

Algorithm 17: SAGA-LD

1: Input: αi
0 = θ0 ∈ Rd for i ∈ {1, . . . , N}, step sizes {ht > 0}T−1

i=0
2: gα = ∑N

i=1∇ log p(xi|αi
0)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick a set It from {1, . . . , N} (with replacement) such that

|It| = b
5: Randomly draw ηt ∼ N(0, ht)
6: θt+1 = θt +

ht
2

(
∇ log p(θt) +

N
n ∑i∈It(∇ log p(xi|θt)−∇ log p(xi|αi

t)) + gα

)
+ ηt

7: αi
t+1 = θt for i ∈ It and αi

t+1 = αi
t for i /∈ It

8: gα = gα + ∑i∈It(∇ log p(xi|αi
t+1)−∇ log p(xi|αi

t))
9: end for

10: Output: Iterates {θt}T−1
t=0 .

approximate the gradient as

∑N
i=1∇ log p(xi|θt) ≈ N

n ∑i∈It (∇ log p(xi|θt)− gαi) + gα (7.5)

When Equation (7.5) is used for MAP estimation it corresponds to SAGA[33]. However
by injecting noise into the parameter update in the following manner

∆θt =
ht
2

(
∇ log p(θt) +

N
n ∑i∈It (∇ log p(xi|θt)− gαi) + gα

)
+ ηt, where ηt ∼ N(0, ht)

(7.6)
we can adapt it for sampling from the posterior. After updating θt+1 = θt + ∆θt, we let
αi

t+1 = θt for i ∈ It. Note that we do not need to explicitly store the αi
t; instead we just

update the corresponding gradients gαi and average gradient. The SAGA-LD algorithm
is summarized in Algorithm 17.

The approximation in Equation (7.6) gives an unbiased estimate of the true gradient,
since the minibatch It is sampled uniformly at random from [N], and the αt

i are indepen-
dent of It. SAGA-LD offers two key properties: (i) As shown in Section 7.4, SAGA-LD
has a better convergence properties than SGLD (ii) The computational overhead is min-
imal, since SAGA-LD does not require calculation of the full gradient after every few
iterations. Instead, it simply makes use of gradients that are already being calculated in
the current minibatch. Combined, we end up with a similar computational complexity
to SGLD, with a much better convergence rate.

The only downside of SAGA-LD, when compared with SGLD, is in terms of memory
storage. Since we need to store N individual gradients gαi, we typically have a storage
overhead of O(Nd) relative to SGLD. Fortunately, in many applications of interest to
machine learning, the cost can be reduced to O(N) (please refer to [33] for more de-
tails), and in practice the cost of the higher memory requirements is outweighed by the
improved convergence and low computational cost.

133

Algorithm 18: SVRG-LD

1: Input: θ̃ = θ0 ∈ Rd, epoch length m, step sizes {ht > 0}T−1
i=0

2: for t = 0 to T − 1 do
3: if (t mod m = 0) then
4: θ̃ = θt
5: g̃ = ∑N

i=1∇ log p(xi|θ̃)
6: end if
7: Uniformly randomly (with replacement) pick a set It from {1, . . . , N} such that

|It| = n
8: Randomly draw ηt ∼ N(0, ht)
9: θt+1 = θt +

ht
2

(
∇ log p(θt) +

N
n ∑i∈It(∇ log p(xi|θt)−∇ log p(xi|θ̃)) + g̃

)
+ ηt

10: end for
11: Output: Iterates {θt}T−1

t=0 .

7.3.2 SVRG-LD

If the memory overhead of SAGA-LD is not acceptable, we can use a variant that re-
duces storage requirements, at the cost of higher computational demands. The memory
complexity for SAGA-LD is high because the average gradient g̃ is updated at each step.
This can be avoided by updating the average gradient at every m iterations in a single
evaluation, and never storing the individual gradients gαi. Concretely, after every m
passes through the data, we evaluate the gradient on the entire data set, to obtain an
estimate g̃ = ∑N

i=1 g̃i, where g̃i = ∇ log p(xi|θ̃) is the local gradient evaluated at that
time point. This yields an update of the form

∆θt =
ht
2

(
∇ log p(θt) +

N
n ∑i∈It (∇ log p(xi|θt)− g̃i) + g̃

)
+ ηt where ηt ∼ N(0, ht)

(7.7)
Without adding noise ηt the update sequence in Equation (7.7) corresponds to the stochas-
tic variance reduction gradient descent algorithm [71]. Pseudocode for this procedure
is given in Algorithm 18.

While the memory requirements are lower, the computational cost is higher, due to
the cost of a full update of g̃. Further, convergence may be negatively effected due to the
fact that, as we move further from θ̃, g̃ will be further from the true gradient. In practice,
we found SAGA-LD to be a more effective algorithm on the datasets considered. We
relegate further details about SVRG-LD to the appendix.

7.4 Analysis

Our motivation in this chapter was to improve the convergence of SGLD, by reducing
the variance of the gradient estimate. As we saw in Theorem 7.2.1, a high variance
E[||∆Vt||2], corresponding to noisy stochastic gradients, leads to a large bound on the

134

MSE of a test function. We expand this analysis to show that the algorithms introduced
in this chapter exhibit a tighter bound.

Theorem 7.2.1 required a number of assumptions, given below in [A1]. Discussion
of the reasonableness of these assumptions is provided in [25].

[A1] We assume the functional ψ that solves the Poisson equation Lψ = φ − φ̄ is
bounded up to 3rd-order derivatives by some function Γ, i.e., ‖Dkψ‖ ≤ CkΓpk where D
is the kth order derivative (for k = (0, 1, 2, 3)), and Ck, pk > 0. We also assume that the
expectation of Γ on {θt} is bounded (supt EΓp[θt] < ∞) and that Γ is smooth such that
sups∈(0,1) Γp(sθ + (1− s)θ′) ≤ C(Γp(θ) + Γp(θ′)), ∀θ, θ′, p ≤ max 2pk for some C > 0.

In our analysis of SAGA-LD and SVRG-LD, we make the assumptions in A1, and add
the following further assumptions about the smoothness of our gradients:

[A2] We assume that the functions log p(xi|θ) are Lipschitz smooth with constant L
for all , i ∈ [N] i.e., ‖∇ log p(xi|θ) − ∇ log p(xi|θ′)‖ ≤ L‖θ − θ′‖ for all i ∈ [N] and
θ, θ′ ∈ Rd. We assume that (∆Vtψ(θ))2 ≤ C′‖Ut(θ)−U(θ)‖2 for some constant C′ > 0
for all θ ∈ Rd, where ψ is the solution to the Poisson equation for our test function. We
also assume that ‖∇ log p(θ)‖ ≤ σ and ‖∇ log p(xi|θ)‖ ≤ σ for some σ and all i ∈ [N]
and θ ∈ Rd.

The Lipschitz smoothness assumption is very common both in the optimization lit-
erature [111] and when working with Itô diffusions [25]. The bound on (∆Vtψ(θ))2

holds when the gradient ‖∇ψ‖ is bounded.
Loosely, these assumptions encode the idea that the gradients don’t change too

quickly, so that we limit the errors introduced by incorporating gradients based on
previous values of θ. With these assumptions, we state the following key results for
SAGA-LD and SVRG-LD, which are proved in the appendix.

Theorem 7.4.1. Let ht = h for all t ∈ {1, . . . , T}. Under the assumptions [A1],[A2], for a
smooth test function φ, the MSE of SAGA-LD (in Algorithm 17) at time K = hT is bounded,
for some C > 0 independent of (T, h) in the following manner:

E(φ̂− φ̄)2 ≤ C

(
N2 min{σ2, N2

n2 (L2h2σ2+hd)}
nT + 1

Th + h2

)
. (7.8)

A similar result can be shown for SVRG-LD in Algorithm 18. In particular, we have
the following key result for SVRG-LD.

Theorem 7.4.2. Let ht = h for all t ∈ {1, . . . , T}. Under the assumptions [A1],[A2], for a
smooth test function φ, the MSE of SVRG-LD (in Algorithm 18) at time K = hT is bounded,
for some C > 0 independent of (T, h) in the following manner:

E(φ̂− φ̄)2 ≤ C
(

N2 min{σ2,m2(L2h2σ2+hd)}
nT + 1

Th + h2
)

. (7.9)

The result in Theorem 7.4.2 is qualitatively equivalent to that in Theorem 7.4.1 when
m = bN/nc. In general, such a choice of m is preferable because in this case the overall
cost of calculation of full gradient in Algorithm 18 becomes insignificant.

135

In order to assess the theoretical convergence of our proposed algorithm, we com-
pare the bounds for SVRG-LD (Theorem 7.4.2) and SAGA-LD (Theorem 7.4.1) with those
obtained for SGLD (Theorem 7.2.1. Under the assumptions in this section, it is easy to
show that the term T1 in Theorem 7.2.1 becomes O(N2σ2/(Tn)). In contrast, both The-
orem 7.4.1 and 7.4.2 show that due to a reduction in variance, SVRG-LD and SAGA-LD
exhibit a much weaker dependence. More specifically, this is manifested in the form of
the following bound:

N2 min{σ2, N2

n2 (h2σ2+hd)}
nT .

Note that this is tighter than the corresponding bound on SGLD. We also note that,
similar to SGLD, SAGA-LD and SVRG-LD require h → 0 as T → ∞. In such a scenario,
the convergence becomes significantly faster relative to SGLD as h→ 0.

7.5 Experiments

We present our empirical results in this section. We focus on applying our stochastic
gradient method to four different machine learning tasks, carried out on benchmark
datasets: (i) Bayesian linear regression (ii) Bayesian logistic regression and (iii) Inde-
pendent component analysis (iv) Mixture models. We focus on SAGA-LD, since in the
applications considered, the convergence and computational benefits of SAGA-LD are
more beneficial than the memory benefits of SVRG-LD;

In order to reduce the initial computational costs associated with calculating the
initial average gradient, we use a variant of Algorithm 17 that calculates gα (in Algo-
rithm 7.4.1) in an online fashion and reweights the updates accordingly. Note that such
a heuristic is also commonly used in the implementation of SAG and SAGA in the con-
text of optimization [33, 153].

In all our experiments, we use a decreasing step size for SGLD as suggested by [172].
In particular, we use εt = a(b + t)−γ, where the parameters a, b and γ are chosen for
each dataset to give the best performance of the algorithm on that particular dataset.
For SAGA-LD, due to the benefit of variance reduction, we use a simple two phase con-
stant step size selection strategy. In each of these phases, a constant step size is chosen
such that SAGA-LD gives the best performance on the particular dataset. The minibatch
size, n, in both SGLD and SAGA-LD is held at a constant value of 10 throughout our
experiments. All algorithms are initialized to the same point and the same sequence of
minibatches is pre-generated and used in both algorithms.

7.5.1 Regression

We first demonstrate the performance of our algorithm on Bayesian regression. For-
mally, we are provided with inputs Z = {xi, yi}N

i=1 where xi ∈ Rd and yi ∈ R. The distri-
bution of the ith output yi is given by p(yi|xi) = N (β>xi, σe), where p(β) = N (0, λ−1 I).
Due to conjugacy, the posterior distribution over β is also normal, and the gradients of

136

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102

104 concrete

SGLD
SAGA-LD

Number of pass through data
0 1 3 5

T
es

t M
S

E

10-1

102

104 noise

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

T
es

t M
S

E

10-1

102

105 parkinsons

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

T
es

t M
S

E

10-1

101

103 toms

SGLD
SAGA-LD

Number of pass through data
0 0.5 1

T
es

t M
S

E

1

1.5

2
3dRoad

SGLD
SAGA-LD

Figure 7.1: Performance comparison of SGLD and SAGA-LD on a regression task. The x-
axis and y-axis represent the number of passes through the entire data and the average
test MSE, respectively. Additional experiments are provided in the appendix.

the log-likelihood and the log-prior are given by ∇β log(P(yi|xi, β)) = −(yi − βTxi)xi
and∇β log(P(β)) = −λβ. We ran experiments on 11 standard UCI regression datasets,
summarized in Table 7.1.2 In each case, we set the prior precision λ = 1, and we parti-
tioned our dataset into training (70%), validation (10%) and test (20%) sets. The valida-
tion set is used to select the step size parameters, and we report the mean square error
(MSE) evaluated on the test set, using 5-fold cross-validation.

The average test MSE on a subset of datasets is reported in Figure 7.1. We relegate the
remaining experiments to the Appendix. As shown in Figure 7.1, SAGA-LD converges
much faster than the SGLD method (taking less than one pass through the whole dataset
in many cases). This performance gain is consistent across all the datasets. Furthermore,
the step size selection was much simpler for SAGA-LD than SGLD.

Datasets concrete noise parkinson bike toms protein casp kegg 3droad music twitter
N 1030 1503 5875 17379 45730 45730 53500 64608 434874 515345 583250
P 8 5 21 12 96 9 9 27 2 90 77

Table 7.1: Summary of datasets used in regression.

7.5.2 Classification

We next turn our attention to the classification task, using Bayesian logistic regression.
In this case, the input is the set Z = {xi, yi}N

i=1 where xi ∈ Rd, yi ∈ {0, 1}. The dis-
tribution of the output yi for given sample xi is given by yi = φ(βTxi), where p(β) =
N (0, λ−1 I) and φ(z) = 1/(1 + exp(−z)). Here, the gradient of the log-likelihood and
the log-prior are given by ∇β log(P(yi|xi, β)) = (yi − φ(βTxi))xi and ∇β log(P(β)) =
−λβ respectively. Again, the value of λ is set to 1 for all our classification experiments,
and the dataset split and the parameter selection method is exactly same as that in our
regression experiments. We run experiments on five binary classification datasets in the
UCI repository, summarized in Table 7.2, and report the the test log-likelihood for each
datasets, using 5-fold cross validation. Figure 7.2 shows the performance of SGLD and
SAGA-LD for the classification datasets. As we saw with the regression task, SAGA-LD
converges faster that SGLD on all the datasets, thus, demonstrating the efficiency of the
our algorithm in this setting.

2The datasets can be downloaded from https://archive.ics.uci.edu/ml/index.html

137

https://archive.ics.uci.edu/ml/index.html

Datasets pima diabetic eeg space susy
N 768 1151 14980 58000 100000
d 8 20 15 9 18

Table 7.2: Summary of the datasets used for classification.

Number of pass through data
1 4 8

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-102

-101

-100

-10-1 pima

SGLD
SAGA-LD

Number of pass through data
0 2 4

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-102

-101

-100

-10-1 diabetic

SGLD
SAGA-LD

Number of pass through data
0 0.5 1

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-101

-100

eeg

SGLD
SAGA-LD

Number of pass through data
1 5 10

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-100

-10-1 space

SGLD
SAGA-LD

Number of pass through data
0.5 1 2

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-2

-1

-0.4
susy

SGLD
SAGA-LD

Figure 7.2: Comparison of performance of SGLD and SAGA-LD for Bayesian logistic
regression. The x-axis and y-axis represent the number of effective passes through the
dataset and the test log-likelihood respectively in these plots.

Number of pass through data
0 1 1.5

A
ve

ra
ge

 T
es

t l
og

-li
ke

lih
oo

d

-2

-1

1
MEG

SGLD
SAGA-LD

Number of pass through data
0 2 4 6

V
ar

ia
nc

e

105

1010 Regression-concrete

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

V
ar

ia
nc

e

103

104

Classification-pima

SGLD
SAGA-LD

7

-50 0 50

lo
g-

po
st

er
io

r

#106

-3

-1

-0.01
posterior

7

-50 0 50

S
am

pl
e

co
un

t

0

7000

15000
Estimated Posterior

Figure 7.3: Left plot shows the performance of SGLD and SAGA-LD for ICA task. The
next two plots show the variance of SGLD and SAGA-LD for regression, classification.
The rightmost two plot shows true and estimated posterior using SAGA-LD for Mixture
model

7.5.3 Bayesian Independent Component Analysis

Under Bayesian Independent Component Analysis (ICA), we assume that a dataset x =
{xi}N

i=1 is distributed according to

p(x|W) ∝ |det(W)|∏d
i=1 p(yi), Wij ∼ N (0, λ), (7.10)

where W ∈ Rd×d, yi = wT
i x and p(yi) = 1/(4 cosh2(1

2 yi)). The gradient of the log-
likelihood and the log-prior are∇W log(p(xi|W)) = (W−1)T−YixT

i where Yij = tanh(1
2 yij)

for all j ∈ [d] and ∇W log(p(W)) = −λW respectively. All other parameters are set as
before. We used a standard ICA dataset for our experiment3 This dataset comprises
17730 time-points with 122 channels from which we extract the first 10 channels. We
omit the details of the experimental setup because it is similar to that for regression
and classification. The performance (in terms of test set log likelihood) of SGLD and
SAGA-LD for the ICA task is shown in Figure 7.3. As seen in Figure 7.3, similar to the
regression and classification tasks, SAGA-LD outperforms SGLD in the ICA task.

3The dataset can be downloaded from https://www.cis.hut.fi/projects/ica/eegmeg/
MEG_data.html.

138

https://www.cis.hut.fi/projects/ica/eegmeg/MEG_data.html
https://www.cis.hut.fi/projects/ica/eegmeg/MEG_data.html

7.5.4 Mixture Model

Finally we evaluate how well SAGA-LD estimates the true posterior of parameters of
mixture models. We generate {xi}N

i=1 is generated from a mixture of two Gaussians
given by p(x|µ, σ1, σ2, γ) = 1

2N (x; µ, σ2
1) +

1
2N (x;−µ + γ, σ2

2). We only try to estimate
the posterior distribution over µ while the rest is kept fixed. We sample points from
p(x|µ) with µ = −5, γ = 20. The 2 plots on the right of Figure 7.3 show that we are able
to estimate the true posterior correctly from the samples.
Discussion: Our experiments provide a very compelling reason to use variance re-
duction techniques for SGLD, complementing the theoretical justification given in Sec-
tion 7.4. The hypothesized variance reduction is demonstrated in Figure 7.3, where
we compare the variances of SGLD and SAGA-LD as compared to true gradient on re-
gression and classification tasks. As we see from all of the experimental results in this
section, SAGA-LD converges with relatively very few samples in comparison to SGLD.
This is, specially, important in Bayesian averaging models where, typically, the size of
the model is proportional to the number of samples from the posterior distribution.
Thus, with SAGA-LD, we can achieve better performance with very few samples. An-
other advantage is that, while we require the step size to tend to zero, we can use a
much simpler schedule than SGLD.

7.6 Discussion and Future Work

SAGA-LD is a new stochastic Langevin method that obtains improved convergence by
reducing the variance in the stochastic gradient. An alternative method, SVRG-LD, can
be used when memory is at a premium. For both SAGA-LD and SVRG-LD, we proved
a tighter convergence bound than the one previously shown for stochastic Langevin
dynamic. We also showed on a variety of machine learning task SAGA-LD converges
to the true posterior faster than SGLD, suggesting the widespread use of SAGA-LD in
place of SGLD. We note that, unlike other stochastic Langevin methods, our sampler
is non-Markovian. Since our convergence guarantees are based on bounding the error
relative to the full Langevin diffusion rather than on properties of a Markov chain, this
does not impact the validity of our sampler.

While we showed the efficacy of using our proposed variance reduction technique
to SGLD, our proposed strategy is very generic enough and can also be applied to other
gradient-based MCMC techniques such as [7, 8, 37, 97, 119]. We leave this as future
work.

Appendix: Omitted Proofs and Additional Experiments

We provide details of the theoretical analysis provided in the chapter. We first start with
the proof of Theorem 7.4.2 and then look at the proof of Theorem 7.4.1.

139

7.7 Proof of Theorem 7.4.2

We introduce a notation for simplifying our theoretical exposition. For t ∈ [sm, (s +
1)m) for some integer s ∈ [0, bT/mc], let θ̃t = θsm. Then the update of SVRG-LD can
rewritten in the following manner:

θt+1 = θt +
ht

2

(
∇ log p(θt) +

N
n ∑

i∈It

(∇ log p(xi|θt)−∇ log p(xi|θ̃t)) +
N

∑
i=1
∇ log p(xi|θ̃t)

)
+ ηt.

We use the a key result proved in [25] for general stochastic gradient MCMC. First,
recall that φ̄ = 1

T ∑t φ(θt) and MSE is E(φ − φ̄)2. We have the following important
bound for MSE of SGLD:

E(φ− φ̄)2 ≤ C

(
1
T ∑t E(∆Vtψ(θt))2

T
+

1
Th

+ h2

)
. (7.11)

for some constant C > 0 (refer to [25] for a detailed proof of this fact). Using Assumption
[A1], we get the result in Theorem 7.2.1. We use a different upper bound for the term
1
T ∑t E(∆Vtψ(θt))2. In particular, we have the following upper bound:

1
C′T ∑

t
E(∆Vtψ(θt))

2 ≤ 1
T ∑

t
E[‖Ut(θt)−U(θt)‖2]

=
1
T ∑

t
E

∥∥∥∥∥N
n ∑

i∈It

(∇ log p(xi|θt)−∇ log p(xi|θ̃t)) +
N

∑
i=1
∇ log p(xi|θ̃t)−

N

∑
i=1
∇ log p(xi|θt)

∥∥∥∥∥
2

=
1

Tn2 ∑
t

E

∥∥∥∥∥ ∑
i∈It

(
N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]
−
[

N

∑
i=1
∇ log p(xi|θt)−

N

∑
i=1
∇ log p(xi|θ̃t)

])∥∥∥∥∥
2

=
1

Tn2 ∑
t

E ∑
i∈It

∥∥∥∥∥
(

N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]
−
[

N

∑
i=1
∇ log p(xi|θt)−

N

∑
i=1
∇ log p(xi|θ̃t)

])∥∥∥∥∥
2

≤ 1
Tn2 ∑

t
E ∑

i∈It

∥∥N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]∥∥2 ≤ L2N2

Tn ∑
t

E
∥∥θt − θ̃t

∥∥2 . (7.12)

The first inequality follows from our assumption [A3] in Section 7.4. The third equal-
ity follows from Lemma 5.12.7. The second inequality is due to the fact that E[‖ζ −
E[ζ]‖2] ≤ E[‖ζ‖2] for any random variable ζ ∈ Rd. The last inequality is follows from

140

the Lipschitz continuity of ∇ log p(xi|θ). Note that alternatively, we can also bound in
the following fashion:

1
C′T ∑

t
E(∆Vtψ(θt))

2 ≤ 1
Tn2 ∑

t
E ∑

i∈It

∥∥N
[
∇ log p(xi|θt)−∇ log p(xi|θ̃t)

]∥∥2 ≤ 2N2σ2

n
(7.13)

Consider t ∈ [sm + 1, (s + 1)m) for some integer s ∈ [0, bT/mc]. We bound E‖θt −
θ̃‖2 in the following manner.

E
∥∥θt − θ̃t

∥∥2
= E

∥∥∥∥∥ t−1

∑
j=sm

(θj+1 − θj)

∥∥∥∥∥
2

≤ (t− sm)
t−1

∑
j=sm

E[‖θj+1 − θj‖2] ≤ m
t−1

∑
j=sm

E[‖θj+1 − θj‖2]. (7.14)

The first inequality is due to Lemma 7.11.2. The second inequality is due to the fact that
t ∈ [sm + 1, (s + 1)m). We bound the term E[‖θj+1 − θj‖2] in the following manner:

E[‖θj+1 − θj‖2]

= E

∥∥∥∥∥h
2

(
∇ log p(θj) +

N
n ∑

i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N

∑
i=1
∇ log p(xi|θ̃j)

)
+ ηj

∥∥∥∥∥
2

≤ 3h2

4
E‖∇ log p(θj)‖2 + 3E[‖ηj‖2]

+
3h2

4

∥∥∥∥∥N
n ∑

i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N

∑
i=1
∇ log p(xi|θ̃j)

∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd +

3h2

4

∥∥∥∥∥N
n ∑

i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N

∑
i=1
∇ log p(xi|θ̃j)

−
N

∑
i=1
∇ log p(xi|θj) +

N

∑
i=1
∇ log p(xi|θj)

∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd +

3h2

2

∥∥∥∥∥ N

∑
i=1
∇ log p(xi|θj)

∥∥∥∥∥
2

+
3h2

2

∥∥∥∥∥N
n ∑

i∈It

(∇ log p(xi|θj)−∇ log p(xi|θ̃j)) +
N

∑
i=1
∇ log p(xi|θ̃j)−

N

∑
i=1
∇ log p(xi|θj)

∥∥∥∥∥
2

≤ 3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n
.

141

The first inequality follows from Lemma 7.11.2 (with r = 3). The second inequality
follows from the fact that ‖∇p(θ)‖2 ≤ σ2 for all θ ∈ Rd and the fact that ηj ∼ N(0,

√
hI).

The third inequality again follows from Lemma 7.11.2 with r = 2. The last inequality
follows from: (a) Lemma 7.11.2 with r = N and (b) bound in Equation (7.12). Substitut-
ing the bound in Equation (7.14), we get the following:

E
∥∥θt − θ̃t

∥∥2 ≤ m2
[

3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
. (7.15)

Substituting Equation (7.15) in Equation (7.12) and substituting the minimum of the
resultant bound and bound in Equation (7.13) into Equation (7.11) gives the desired
result.

7.8 Proof of Theorem 7.4.1

The proof of Theorem 7.4.1 is along the lines of Theorem 7.4.2. But the key difficulty, in
comparison to the analysis of SVRG-LD, comes from the fact that the full gradient is not
computed after every few epochs. We again start with the following inequality in [25]:

E(φ− φ̄)2 ≤ C

(
1
T ∑t E(∆Vtψ(θt))2

T
+

1
Th

+ h2

)
. (7.16)

for some constant C > 0. For SAGA-LD, we have the following inequality:

1
C′T ∑

t
E(∆Vtψ(θt))

2 ≤ 1
T ∑

t
E[‖Ut(θt)−U(θt)‖2]

=
1
T ∑

t
E

∥∥∥∥∥N
n ∑

i∈It

(∇ log p(xi|θt)−∇ log p(xi|αi
t)) +

N

∑
i=1
∇ log p(xi|αi

t)−
N

∑
i=1
∇ log p(xi|θt)

∥∥∥∥∥
2

=
1

Tn2 ∑
t

E

∥∥∥∥∥ ∑
i∈It

(
N
[
∇ log p(xi|θt)−∇ log p(xi|αi

t)
]

−
[

N

∑
i=1
∇ log p(xi|θt)−

N

∑
i=1
∇ log p(xi|αi

t)

])∥∥∥∥∥
2

=
1

Tn2 ∑
t

E ∑
i∈It

∥∥∥∥∥
(

N
[
∇ log p(xi|θt)−∇ log p(xi|αi

t)
]

−
[

N

∑
i=1
∇ log p(xi|θt)−

N

∑
i=1
∇ log p(xi|αi

t)

])∥∥∥∥∥
2

≤ 1
Tn2 ∑

t
E ∑

i∈It

∥∥∥N
[
∇ log p(xi|θt)−∇ log p(xi|αi

t)
]∥∥∥2
≤ L2N

Tn ∑
t

∑
i

E

∥∥∥θt − αi
t

∥∥∥2
.

(7.17)

142

The first inequality is due to our assumption [A3] in Section 7.4. The third equality is
obtained by using Lemma 7.11.1. The second inequality is due to the fact that E[‖ζ −
E[ζ]‖2] ≤ E[‖ζ‖2] for any random variable ζ ∈ Rd. The last inequality is follows from
the Lipschitz continuity of ∇ log p(xi|θ) and uniform randomness of the set It.

Let γ = 1− (1− 1/N)n. γ represents the probability that an index is chosen at a
particular iteration. Our goal is to bound the term ∑t ∑i E

∥∥θt − αi
t
∥∥2. To this end, we

observe the following:

E

∥∥∥θt − αi
t

∥∥∥2
=

t−1

∑
j=0

E

[
E

[∥∥∥θt − αi
t

∥∥∥2
| αi

t = θj

]]

≤
t−1

∑
j=0

(t− j)2
[

3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
P(αi

t = θj)

=

[
3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

] t−1

∑
j=0

(t− j)2 (1− γ)t−j−1 γ

=

[
3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
γ

t

∑
j=1

j2 (1− γ)j−1

≤
[

3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
γ

∞

∑
j=1

j2 (1− γ)j−1

≤ 2
γ2

[
3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
≤ 8N2

n2

[
3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
. (7.18)

The first equality is due to law of total expectation. The first inequality is due can be
obtained by using similar argument as the one in Equation (7.15). The second inequality
follows from simple calculation of P(αi

t = xj). This in turn uses the fact that the set It is
selected uniformly randomly at each iteration. The last equality is due to the standard
formula: ∑∞

j=1 j2(1− γ)j−1 = (2− γ)/γ3. The last inequality is due to the following
bound on γ:

γ = 1−
(

1− 1
N

)n
≥ 1− 1

1 + n
N

=
n/N

1 + n/N
≥ n

2N
. (7.19)

The first inequality is due to the fact that (1 − x)n ≤ 1/(1 + nx) for x ∈ [0, 1] and
n ∈ N. The last inequality is due to the fact that n/N ≤ 1. Substituting the bound in
Equation (7.18) into Equation (7.17), we have

1
C′T ∑

t
E(∆Vtψ(θt))

2 ≤ L2N3

n2

[
3h2σ2

4
+ 3hd +

3N2h2σ2

2
+

3N2h2σ2

n

]
. (7.20)

143

Algorithm 19: SVRG-LD

1: Input: θ̃ = θ0 ∈ Rd, epoch length m, step sizes {ht > 0}T−1
i=0

2: for t = 0 to T − 1 do
3: if (t mod m = 0) then
4: θ̃ = θt
5: g̃ = ∑N

i=1∇ log p(xi|θ̃)
6: end if
7: Uniformly randomly (with replacement) pick a set It from {1, . . . , N} such that

|It| = n
8: Randomly draw ηt ∼ N(0, ht)
9: θt+1 = θt +

ht
2

(
∇ log p(θt) +

N
n ∑i∈It(∇ log p(xi|θt)−∇ log p(xi|θ̃)) + g̃

)
+ ηt

10: end for
11: Output: Iterates {θt}T−1

t=0 .

Note that similar to Equation (7.13), the following bound holds for SAGA-LD.

1
C′T ∑

t
E(∆Vtψ(θt))

2 ≤ 1
Tn2 ∑

t
E ∑

i∈It

∥∥∥N
[
∇ log p(xi|θt)−∇ log p(xi|αi

t)
]∥∥∥2
≤ 2N2σ2

n
(7.21)

Using the minimum of the bounds in Equation (7.21) and (7.20) in Equation (7.16)
gives us the desired result.

7.9 SVRG-LD

The memory complexity for SAGA-LD is high because the average gradient g̃ is up-
dated at each step. This can be avoided by updating the average gradient at every m
iterations in one expensive evaluation. Concretely, every m passes through the data, we
evaluate the gradient on the entire data set, to obtain an estimate g̃ = ∑N

i=1 g̃i, where
g̃i = ∇ log p(xi|θ̃) is the local gradient evaluated at every m step.

As we iterate through the data, if a data point is not selected in the current minibatch,
we approximate its gradient with g̃i. If It = {i1t, . . . int} is the minibatch selected at
iteration t, then we approximate ∑N

i=1∇ log p(xi|θt) our update is

N

∑
i=1
∇ log p(xi|θt) ≈

N
n ∑

i∈It

(∇ log p(xi|θt)− g̃i) + g̃, (7.22)

This yields an update of the form

δθt =
ht

2

(
∇ log p(θt) +

N
n ∑

i∈It

(∇ log p(xi|θt)− g̃i) + g̃

)
+ ηt (7.23)

144

where ηt ∼ N(0, ht). Pseudocode for this procedure is given in Algorithm 18.
As with SAGA-LD, we note that the update in Equation (7.7) gives an unbiased esti-

mate of the true gradient, since It is chosen uniformly at random (with replacement)
from [N] = {1, . . . , N}, since we have E[N

n ∑i∈It g̃i − g̃] = 0. Therefore, the term
N
n ∑i∈It g̃i − g̃ does not add any biased to the stochastic gradient.

By calculating the full gradient after every m iterations, we ensure that the accuracy
of the approximation is not allowed to decrease too significantly, and ensure that the
variance of the updates is controlled. We provide concrete bounds in Section 7.4. We
note that, if m ≥ bN/nc, the computational complexity of SVRG-LD is similar to SGLD.

One desirable property of SVRG-LD is that it has low memory requirements: SVRG
requires just O(d) extra memory (in order to store the average gradient g̃), in compari-
son with SGLD. However, there is a potentially large computational burden due to the
need to periodically calculate the full gradient. In practice, we found that computa-
tion was a greater bottleneck in the examples considered, so our experimental section
focuses on SAGA-LD.

7.10 Other Experiment Results

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102

104 concrete

SGLD
SAGA-LD

Number of pass through data
0 1 3 5

T
es

t M
S

E

10-1

102

104 noise

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

T
es

t M
S

E

10-1

102

105 parkinsons

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102

105 bike

SGLD
SAGA-LD

Number of pass through data
0 1 5 10

T
es

t M
S

E

10-1

101

103 toms

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102

105 protein

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102

105 protein

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-3

10-1

102

105 kegg

SGLD
SAGA-LD

Number of pass through data
0 0.5 1

T
es

t M
S

E

1

1.5

2
3dRoad

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

102 music

SGLD
SAGA-LD

Number of pass through data
0 1 2 3

T
es

t M
S

E

10-1

100

101

102 twitter

SGLD
SAGA-LD

Figure 7.4: Performance comparison of SGLD and SAGA-LD on regression task. The x-
axis and y-axis represent the number of pass through the entire data and average test
MSE respectively.

7.11 Other Lemmatta

We state few useful and well-known lemmas in this section.

145

Lemma 7.11.1. For random variables z1, . . . , zr are independent and mean 0, we have

E
[
‖z1 + ... + zr‖2

]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

Proof. We have the following:

E
[
‖z1 + ... + zr‖2

]
=

r

∑
i,i=1

E
[
zizj
]
= E

[
‖z1‖2 + ... + ‖zr‖2

]
.

The second equality follows from the fact that zi’s are independent and mean 0.

Lemma 7.11.2. For random variables z1, . . . , zr, we have

E
[
‖z1 + ... + zr‖2

]
≤ rE

[
‖z1‖2 + ... + ‖zr‖2

]
.

146

Part II

Large-Scale Empirical Risk
Minimization

147

Chapter 8

Asynchronous Stochastic Variance
Reduced Algorithms for ERM

8.1 Introduction

In this chapter, we turn our attention to asynchronous stochastic algorithms for convex
finite-sum problems of the form:

min
x∈Rd

f (x) := 1
n ∑n

i=1 fi(x). (8.1)

There has been a steep rise in recent work on “variance reduced” stochastic gradient
algorithms for convex finite-sum problems [33, 34, 53, 71, 74, 75, 153, 156, 173]. Under
strong convexity assumptions such variance reduced (VR) stochastic algorithms attain
better convergence rates (in expectation) than stochastic gradient descent (SGD) [110,
148], both in theory and practice.1 The key property of these VR algorithms is that by
exploiting problem structure and by making suitable space-time tradeoffs, they reduce
the variance incurred due to stochastic gradients. This variance reduction has powerful
consequences: it bestows VR stochastic methods with linear convergence rates, and
thereby circumvents slowdowns that usually hit SGD.

Although these advances have great value in general, for large-scale problems we
still require parallel or distributed processing. And in this setting, asynchronous vari-
ants of SGD remain indispensable [3, 35, 84, 128, 162, 182]. Therefore, a key question is
how to extend the synchronous finite-sum VR algorithms to asynchronous parallel and
distributed settings.

We answer one part of this question by developing new asynchronous parallel stochas-
tic gradient methods that provably converge at a linear rate for smooth strongly convex
finite-sum problems. Our methods are inspired by the influential SVRG [71], S2GD [74],
SAG [153] and SAGA [33] family of algorithms. We list our contributions more precisely
below.

1Though we should note that SGD also applies to the harder stochastic optimization problem
min F(x) = E[f (x; ξ)], which need not be a finite-sum.

149

Contributions. This chapter has two core components: (i) a formal general frame-
work for variance reduced stochastic methods based on discussions in [33]; and (ii)
asynchronous parallel VR algorithms within the framework. The general framework
presents a formal unifying view of several VR methods (e.g., it includes SAGA and
SVRG as special cases) while expressing key algorithmic and practical tradeoffs con-
cisely. Thus, it yields a broader understanding of VR methods, which helps us obtain
asynchronous parallel variants of VR methods. Under settings common to machine learn-
ing problems, our parallel algorithms attain speedups that scale near linearly with the
number of processors. As a concrete illustration, we present a specialization to an asyn-
chronous SVRG-like method. We compare this specialization with non-variance reduced
asynchronous SGD methods, and observe strong empirical speedups that agree with the
theory.
Related work. As already mentioned, our work is closest to (and generalizes) SAG [153],
SAGA [33], SVRG [71] and S2GD [74], which are primal methods. Also closely related
are dual methods such as SDCA [156] and Finito [34], and in its convex incarnation
MISO [99]; a more precise relation between these dual methods and VR stochastic meth-
ods is described in Defazio’s thesis [31]. By their algorithmic structure, these VR meth-
ods trace back to classical non-stochastic incremental gradient algorithms [18], but by
now it is well-recognized that randomization helps obtain much sharper convergence
results (in expectation). Proximal [173] and accelerated VR methods have also been pro-
posed [116, 155]; we leave a study of such variants of our framework as future work.
Finally, there is recent work on lower-bounds for finite-sum problems [2].

Within asynchronous SGD algorithms, both parallel [128] and distributed [3, 107]
variants are known. In this chapter, we focus our attention on the parallel setting. A
different line of methods is that of (primal) coordinate descent methods, and their par-
allel and distributed variants [90, 92, 113, 144]. Our asynchronous methods share some
structural assumptions with these methods. Finally, the recent work [75] generalizes
S2GD to the mini-batch setting, thereby also permitting parallel processing, albeit with
more synchronization and allowing only small mini-batches.

8.2 A General Framework for VR Stochastic Methods

We focus on instances of (8.1) where the cost function f (x) has an L-Lipschitz gradient,
so that ‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, and it is λ-strongly convex, i.e., for all x, y ∈ Rd,

f (x) ≥ f (y) + 〈∇ f (y), x− y〉+ λ
2 ‖x− y‖2. (8.2)

In the first part of the chapter, we focus on strongly convex case and later extend our
analysis to smooth convex functions in Section 8.4.

Inspired by the discussion on a general view of variance reduced techniques in [33],
we now describe a formal general framework for variance reduction in stochastic gra-
dient descent. We denote the collection { fi}n

i=1 of functions that make up f in (8.1) by
F . For our algorithm, we maintain an additional parameter αt

i ∈ Rd for each fi ∈ F .

150

Algorithm 20: GENERIC STOCHASTIC VARIANCE REDUCTION ALGORITHM

Data: x0 ∈ Rd, α0
i = x0 ∀i ∈ [n] , {1, . . . , n}, step size η > 0

Randomly pick a IT = {i0, . . . , iT} where it ∈ {1, . . . , n} ∀ t ∈ {0, . . . , T} ;
for t = 0 to T do

Update iterate as xt+1 ← xt − η
(
∇ fit(xt)−∇ fit(α

t
it) +

1
n ∑i∇ fi(α

t
i)
)

;

At+1 = SCHEDULEUPDATE({xi}t+1
i=0 , At, t, IT) ;

end
return xT

We use At to denote {αt
i}n

i=1. The general iterative framework for updating the param-
eters is presented as Algorithm 20. Observe that the algorithm is still abstract, since
it does not specify the subroutine SCHEDULEUPDATE. This subroutine determines the
crucial update mechanism of {αt

i} (and thereby of At). As we will see different sched-
ules give rise to different fast first-order methods proposed in the literature. The part of
the update based on At is the key for these approaches and is responsible for variance
reduction.

Next, we provide different instantiations of the framework and construct a new algo-
rithm derived from it. In particular, we consider incremental methods SAG [153], SVRG
[71] and SAGA [33], and classic gradient descent GD for demonstrating our framework.

Figure 8.1 shows the schedules for the aforementioned algorithms. In case of SVRG,
SCHEDULEUPDATE is triggered every m iterations (here m denotes precisely the number
of inner iterations used in [71]); so At remains unchanged for the m iterations and all
αt

i are updated to the current iterate at the mth iteration. For SAGA, unlike SVRG, At

changes at the tth iteration for all t ∈ [T]. This change is only to a single element of At,
and is determined by the index it (the function chosen at iteration t). The update of SAG
is similar to SAGA insofar that only one of the αi is updated at each iteration. However,
the update for At+1 is based on it+1 rather than it. This results in a biased estimate of the
gradient, unlike SVRG and SAGA. Finally, the schedule for gradient descent is similar
to SAG, except that all the αi’s are updated at each iteration. Due to the full update we
end up with the exact gradient at each iteration. This discussion highlights how the
scheduler determines the resulting gradient method.

To motivate the design of another schedule, let us consider the computational and
storage costs of each of these algorithms. For SVRG, since we update At after every
m iterations, it is enough to store a full gradient, and hence, the storage cost is O(d).
However, the running time is O(nd) at each epoch and O(d) at each iteration since we
have to calculate the full gradient at end of each epoch. In contrast, both SAG and SAGA
have high storage costs of O(nd) and running time of O(d) per iteration. Finally, GD
has low storage cost since it needs to store the gradient at O(d) cost, but very high
computational costs of O(nd) at each iteration.

It is interesting to note that when m is high (say greater than n), SVRG has low com-
putational cost per iteration. However, as we will later see, this comes at the expense

151

of slower convergence to the optimal solution. SAG and SAGA can converge faster by
allowing us to update At more frequently, but at the cost of additional storage. The
tradeoffs between the epoch size m, additional storage, frequency of updates, and the
convergence to the optimal solution are still not completely resolved.

SVRG:SCHEDULEUPDATE({xi}t+1
i=0 , At, t, IT)

for i = 1 to n do
αt+1

i = 1(m | t)xt + 1(m6 | t)αt
i ;

end
return At+1

SAGA:SCHEDULEUPDATE({xi}t+1
i=0 , At, t, IT)

for i = 1 to n do
αt+1

i = 1(it = i)xt + 1(it 6= i)αt
i ;

end
return At+1

SAG:SCHEDULEUPDATE({xi}t+1
i=0 , At, t, IT)

for i = 1 to n do
αt+1

i = 1(it+1 = i)xt+1 + 1(it+1 6= i)αt
i ;

end
return At+1

GD:SCHEDULEUPDATE({xi}t+1
i=0 , At, t, IT)

for i = 1 to n do
αt+1

i = xt+1 ;
end
return At+1

Figure 8.1: SCHEDULEUPDATE function for SVRG (top left), SAGA (top right), SAG (bot-
tom left) and GD (bottom right). While SVRG is epoch-based, rest of algorithms perform
updates at each iteration. Here a|b denotes that a divides b.

To design a new scheduler we combine the schedules of the above algorithms. We
call this schedule hybrid stochastic average gradient (HSAG). Specifically, we use the sched-
ules of SVRG and SAGA to develop HSAG. Consider S ⊆ [n], the indices that follow
SAGA schedule. We assume that rest of the indices follow an SVRG-like schedule with
schedule frequency si for all i ∈ S , [n] \ S. Figure 8.2 shows the corresponding update
schedule of HSAG. If S = [n] then HSAG is equivalent to SAGA, while at the other ex-
treme, for S = ∅ and si = m for all i ∈ [n], it corresponds to SVRG. HSAG exhibits
interesting storage, computational and convergence tradeoffs that depend on S. In gen-
eral, while large cardinality of S likely incurs high storage costs, the computational cost
per iteration is relatively low. On the other hand, when cardinality of S is small and si’s
are large, storage costs are low but the convergence typically slows down.

Before concluding our discussion on the general framework, we would like to draw
the reader’s attention to the advantages of studying Algorithm 20. First, note that Al-
gorithm 20 provides a unifying framework for many incremental/stochastic gradient
methods proposed in the literature. Second, and more importantly, it provides a generic
platform for analyzing this class of algorithms. As we will see in Section 8.3, this helps
us develop and analyze asynchronous versions for different finite-sum algorithms un-
der a common umbrella. Finally, it provides a mechanism to derive new algorithms by
designing more sophisticated schedules; as noted above, one such construction gives
rise to HSAG.

152

HSAG:SCHEDULEUPDATE(xt, At, t, IT)
for i = 1 to n do

αt+1
i ={
1(it = i)xt + 1(it 6= i)αt

i if i ∈ S
1(si | t)xt + 1(si 6 | t)αt

i if i /∈ S
end
return At+1

Figure 8.2: SCHEDULEUPDATE for HSAG.
This algorithm assumes access to the index set S and the schedule frequency vector s.

8.2.1 Convergence Analysis

In this section, we provide convergence analysis for Algorithm 20 with HSAG sched-
ules. As observed earlier, SVRG and SAGA are special cases of this setup. Our analysis
assumes unbiasedness of the gradient estimates at each iteration, so it does not encom-
pass SAG. For ease of exposition, we assume that all si = m for all i ∈ [n]. Since HSAG
is epoch-based, our analysis focuses on the iterates obtained after each epoch. Similar
to [71] (see Option II of SVRG in [71]), our analysis will be for the case where the iterate
at the end of (k + 1)st epoch, xkm+m, is replaced with an element chosen randomly from
{xkm, . . . , xkm+m−1} with probability {p1, · · · , pm}. For brevity, we use x̃k to denote the
iterate chosen at the kth epoch. We also need the following quantity for our analysis:

G̃k ,
1
n ∑

i∈S

(
fi(α

km
i)− fi(x∗)− 〈∇ fi(x∗), αkm

i − x∗〉
)

.

Theorem 8.2.1. For any positive parameters c, β, κ > 1, step size η and epoch size m, we define
the following quantities:

γ = κ

[
1−

(
1− 1

κ

)m] (
2cη(1− Lη(1 + β))− 1

n
− 2c

κλ

)
θ = max

{[
2c
γλ

(
1− 1

κ

)m
+

2Lcη2

γ

(
1 +

1
β

)
κ

[
1−

(
1− 1

κ

)m]]
,
(

1− 1
κ

)m}
.

Suppose the probabilities pi ∝ (1− 1
κ)

m−i, and that c, β, κ, step size η and epoch size m are
chosen such that the following conditions are satisfied:

1
κ
+ 2Lcη2

(
1 +

1
β

)
≤ 1

n
, γ > 0, θ < 1.

Then, for iterates of Algorithm 20 under the HSAG schedule, we have

E
[

f (x̃k+1)− f (x∗) +
1
γ

G̃k+1

]
≤ θ E

[
f (x̃k)− f (x∗) +

1
γ

G̃k

]
.

As a corollary, we immediately obtain an expected linear rate of convergence for
HSAG.

153

Corollary 8.2.1.1. Note that G̃k ≥ 0 and therefore, under the conditions specified in Theo-
rem 8.2.1 and θ̄ = θ (1 + 1/γ) < 1 we have

E
[

f (x̃k)− f (x∗)
]
≤ θ̄k

[
f (x0)− f (x∗)

]
.

We emphasize that there exist values of the parameters for which the conditions
in Theorem 8.2.1 and Corollary 8.2.1.1 are easily satisfied. For instance, setting η =
1/16(λn + L), κ = 4/λη, β = (2λn + L)/L and c = 2/ηn, the conditions in Theo-
rem 8.2.1 are satisfied for sufficiently large m. Additionally, in the high condition num-
ber regime of L/λ = n, we can obtain constant θ < 1 (say 0.5) with m = O(n) epoch size
(similar to [33, 71]). This leads to ε accuracy in the objective function after n log(1/ε)
number of iterations.

8.3 Asynchronous Stochastic Variance Reduction

We are now ready to present asynchronous versions of the algorithms captured by our
general framework. We first describe our setup before delving into the details of these
algorithms. Our model of computation is similar to the ones used in Hogwild! [128]
and AsySCD [92]. We assume a multicore architecture where each core makes stochastic
gradient updates to a centrally stored vector x in an asynchronous manner. There are
four key components in our asynchronous algorithm; these are briefly described below.

1. Read: Read iterate x and compute the gradient ∇ fit(x) for a randomly chosen it.
2. Read schedule iterate: Read the schedule iterate A and compute the gradients

required for update in Algorithm 20.
3. Update: Update the iterate x with the update in Algorithm 20.
4. Schedule Update: Run a scheduler update for updating A.
Each processor repeatedly runs these procedures concurrently, without any synchro-

nization. Hence, x may change in between Step 1 and Step 3. Similarly, A may change in
between Steps 2 and 4. In fact, the states of iterates x and A can correspond to different
time-stamps. We maintain a global counter t to track the number of updates success-
fully executed. We use D(t) ∈ [t] and D′(t) ∈ [t] to denote the particular x-iterate and
A-iterate used for evaluating the update at the tth iteration. We assume that the delay
in between the time of evaluation and updating is bounded by a non-negative integer
τ, i.e., t− D(t) ≤ τ and t− D′(t) ≤ τ. The bound on the staleness captures the degree
of parallelism in the method: such parameters are typical in asynchronous systems (see
e.g., [92, 128]). Furthermore, we also assume that the system is synchronized after every
epoch i.e., D(t) ≥ km for t ≥ km. We would like to emphasize that the assumption is
not strong since such a synchronization needs to be done only once per epoch.

For the purpose of our analysis, We assume a read consistent model. In particular,
our analysis requires that the vector x used for evaluation of gradients be a valid iterate
that existed at some point in time. However, like Hogwild! our implementation is lock-
free. We will revisit this point in Section 8.5.

154

8.3.1 Convergence Analysis

The key ingredients to the success of asynchronous algorithms for multicore stochastic
gradient descent are sparsity and “disjointness” of the data matrix [128] . These as-
sumptions are typically satisfied in a variety of machine learning problems where one
often has sparse, high-dimensional data. We also exploit these properties of the data
for our convergence analysis. More formally, let ‖x‖i denote the norm of x with respect
to non-zero coordinates of function fi; then, the convergence depends on ∆, the small-
est constant such that Ei[‖x‖2

i] ≤ ∆‖x‖2. Intuitively, ∆ denotes the average frequency
with which a feature appears in the data matrix. We are interested in situations where
∆� 1. As a warm up, let us first discuss convergence analysis for asynchronous SVRG.
The general case is similar, but much more involved. Hence, it is instructive to first go
through the analysis of asynchronous SVRG.

Theorem 8.3.1. Suppose step size η, epoch size m are chosen such that the following condition
holds:

0 < θs :=

(
1

ληm + 4L
(

η+L∆τ2η2

1−2L2∆η2τ2

))
(

1− 4L
(

η+L∆τ2η2

1−2L2∆η2τ2

)) < 1.

Then, for the iterates of an asynchronous variant of Algorithm 20 with SVRG schedule and
probabilities pi = 1/m for all i ∈ [m], we have

E[f (x̃k+1)− f (x∗)] ≤ θs E[f (x̃k)− f (x∗)].

The bound obtained in Theorem 8.3.1 is useful when ∆ is small. To see this, as ear-
lier, consider the indicative case where L/λ = n. The synchronous version of SVRG
obtains a convergence rate of θ = 0.5 for step size η = 0.1/L and epoch size m = O(n).
For the asynchronous variant of SVRG, by setting η = 0.1/2(max{1, ∆1/2τ}L), we
obtain a similar rate with m = O(n + ∆1/2τn). To obtain this, set η = ρ/L where
ρ = 0.1/2(max{1, ∆1/2τ}) and θs = 0.5. Then, a simple calculation gives the following:

m
n

=
2
ρ

(
1− 2∆τ2ρ2

1− 12ρ− 14∆τ2ρ2

)
≤ c′max{1, ∆1/2τ},

where c′ is some constant. This follows from the fact that ρ = 0.1/2(max{1, ∆1/2τ}).
Suppose τ < 1/∆1/2. Then we can achieve nearly the same guarantees as the syn-
chronous version, but τ times faster since we are running the algorithm asynchronously.
For example, consider the sparse setting where ∆ = o(1/n); then it is possible to get
near linear speedup when τ = o(n1/2). On the other hand, when ∆1/2τ > 1, we can
obtain a theoretical speedup of 1/∆1/2.

We finally provide the convergence result for the asynchronous algorithm in the
general case. The proof is complicated by the fact that set A, unlike in SVRG, changes
during the epoch. The key idea is that only a single element of A changes at each iter-
ation. Furthermore, it can only change to one of the iterates in the epoch. This control

155

provides a handle on the error obtained due to the staleness. The proof is relegated to
the appendix.

Theorem 8.3.2. For any positive parameters c, β, κ > 1, step size η and epoch size m, we define
the following quantities:

ζ =

(
cη2 +

(
1− 1

κ

)−τ

cL∆τ2η3

)
,

γa = κ

[
1−

(
1− 1

κ

)m] [
2cη − 8ζL(1 + β)− 2c

κλ
− 96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]
,

θa = max


 2c

γaλ

(
1− 1

κ

)m
+

8ζL
(

1 + 1
β

)
γa

κ

[
1−

(
1− 1

κ

)m] ,
(

1− 1
κ

)m
 .

Suppose probabilities pi ∝ (1− 1
κ)

m−i, parameters β, κ, step-size η, and epoch size m are chosen
such that the following conditions are satisfied:

1
κ
+ 8ζL

(
1 +

1
β

)
+

96ζLτ

n

(
1− 1

κ

)−τ

≤ 1
n

, η2 ≤
(

1− 1
κ

)m−1 1
12L2∆τ2 , γa > 0, θa < 1.

Then, for the iterates of asynchronous variant of Algorithm 20 with HSAG schedule we have

E

[
f (x̃k+1)− f (x∗) +

1
γa

G̃k+1

]
≤ θaE

[
f (x̃k)− f (x∗) +

1
γa

G̃k

]
.

Corollary 8.3.2.1. Note that G̃k ≥ 0 and therefore, under the conditions specified in Theo-
rem 8.3.2 and θ̄a = θa (1 + 1/γa) < 1, we have

E
[

f (x̃k)− f (x∗)
]
≤ θ̄k

a

[
f (x0)− f (x∗)

]
.

By using step size normalized by ∆1/2τ (similar to Theorem 8.3.1) and parameters
similar to the ones specified after Theorem 8.2.1 we can show speedups similar to the
ones obtained in Theorem 8.3.1.

8.4 Non-strongly Convex Case

We extend our analysis to the case of non-strongly convex function in this section. The
first part of our analysis deals with convergence of HSAG when the function is just
convex. Recall that such an analysis also provides convergence analysis for methods
such as SVRG and SAGA because they are merely extreme cases of HSAG.

The following is the main convergence result for the convex case. The key conse-
quence of the result is that we obtain convergence rate of O(1/T) as opposed to rate of

156

O(1/
√

T) obtained through SGD. All results will be based on the average of the iterates
across T iterations (denoted by xT

a). In all our results below we assume that T is a mul-
tiple of m. We expand function f as f (x) = g(x) + h(x) where g(x) = 1

n ∑i∈S fi(x) and
h(x) = 1

n ∑i/∈S fi(x).

Theorem 8.4.1. For any positive parameters c, β, step size η and epoch size m, we define the
following quantity:

P′0 = ‖x0 − x∗‖2 + Dg(x0, x∗) + 2mLcη2
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

.

Suppose probabilities pi = 1/n, parameters β, κ, step-size η, and epoch size m are chosen such
that the following conditions are satisfied:

2Lcη2
(

1 +
1
β

)
≤ 1

n
,

2cη(1− Lη(1 + β))− 1
n
≥ 2Lcη2

(
1 +

1
β

)
Then, for the iterates of Algorithm 20 with HSAG schedule we have

E
[

f (xT
a)− f (x∗)

]
≤ P0

T
(

2cη(1− Lη(1 + β))− 1
n − 2Lcη2

(
1 + 1

β

)) .

Unlike the previous analysis of SVRG for non-strongly convex case that reduces to
the strongly convex by adding a quadratic perturbation, our result provides a direct
sublinear convergence rate. Finally, we also extend our analysis for non-strongly convex
problems to the asynchronous setting. In particular, we show that with bounded delay,
we can obtain performance gains similar to those obtained in the strongly convex case
in Section 8.3.1.

Theorem 8.4.2. For any positive parameters c, β, step size η and epoch size m, we define the
following quantities:

ζ ′ =
(

cη2 + cL∆τ2η3
)

,

P′0 = ‖x0 − x∗‖2 + Dg(x0, x∗) + 8mζ ′L
(

1 +
1
β

)
E
[

Dh(x0, x∗)
]

.

Suppose probabilities pi = 1/n, parameters β and κ, step-size η, and epoch size m are chosen
such that the following conditions are satisfied:

8ζ ′L
(

1 +
1
β

)
+

96ζ ′Lτ

n
≤ 1

n
, η2 ≤ 1

12L2∆τ2 ,

2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n
− 1

n
≥ 8ζ ′L

(
1 +

1
β

)

157

Then, for the iterates of asynchronous variant of Algorithm 20 with HSAG schedule we have

E
[

f (xT
a)− f (x∗)

]
≤ P′0

T
[
2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n − 1
n − 8ζ ′L

(
1 + 1

β

)] .

Before ending our discussion on the theoretical analysis, we would like to highlight
an important point. Our emphasis throughout the chapter was on generality. While the
results are presented here in full generality, one can obtain stronger results in specific
cases. For example, in the case of SAGA, one can obtain per iteration convergence guar-
antees (see [33]) rather than those corresponding to per epoch presented in the chapter.
Also, SAGA can be analyzed without any additional synchronization per epoch. How-
ever, there is no qualitative difference in these guarantees accumulated over the epoch.
Furthermore, in this case, our analysis for both synchronous and asynchronous cases
can be easily modified to obtain convergence properties similar to those in [33].

8.5 Experiments

We present our empirical results in this section. For our experiments, we study the
problem of binary classification via l2-regularized logistic regression. More formally,
we are interested in the following optimization problem:

min
x

1
n

n

∑
i=1

(
log(1 + exp(yiz>i x)) + λ‖x‖2

)
, (8.3)

where zi ∈ Rd and yi is the corresponding label for each i ∈ [n]. In all our experiments,
we set λ = 1/n. Note that such a choice leads to high condition number.

Since we are interested in sparse datasets, simply taking fi(x) = log(1+ exp(yiz>i x))+
λ‖x‖2 is not efficient as it requires updating the whole vector x at each iteration. This
is due to the regularization term in each of the fi’s. Instead, similar to [128], we rewrite
problem in (8.3) as follows:

min
x

1
n

n

∑
i=1

log(1 + exp(yiz>i x)) + λ ∑
j∈nz(zi)

‖xj‖2

dj

 ,

where nz(z) represents the non-zero components of vector z, and dj = ∑i 1(j ∈ nz(zi)).
While this leads to sparse gradients at each iteration, updates in SVRG are still dense due
to the part of the update that contains ∑i∇ fi(αi)/n. This problem can be circumvented
by using a ‘just-in-time’ update scheme similar to the one mentioned in [153]. First,
recall that for SVRG, ∑i∇ fi(αi)/n does not change during an epoch (see Figure 8.1).
Therefore, during the (k + 1)st epoch we have the following relationship:

xt =

[
x̃k − η

t−1

∑
j=km

(fij(xj)− fij(x̃k))

]
−
[

η(t− km)

n

n

∑
i=1

fi(x̃k)

]
.

158

Threads
0 5 10

Sp
ee

du
p

1

2

3 Lock-Free SVRG
Locked SVRG

Threads
0 5 10

Sp
ee

du
p

1

2

3

4

5 Lock-Free SVRG
Locked SVRG

Threads
0 5 10

Sp
ee

du
p

1

2

3

4

5 Lock-Free SVRG
Locked SVRG

Threads
0 5 10

Sp
ee

du
p

1

2

3

4

5 Lock-Free SVRG
Locked SVRG

Figure 8.3: l2-regularized logistic regression. Speedup curves for Lock-Free SVRG and
Locked SVRG on rcv1 (left), real-sim (left center), news20 (right center) and url (right)
datasets. We report the speedup achieved by increasing the number of threads.

We maintain each bracketed term separately. The updates to the first term in the above
equation are sparse while those to the second term are just a simple scalar addition,
since we already maintain the average gradient ∑n

i=1 fi(x̃k)/n. When the gradient of fit
at xt is needed, we only calculate components of xt required for fit by aggregating these
two terms. Hence, each step of this update procedure can be implemented in a way that
respects sparsity of the data.

We evaluate the following algorithms for our experiments:
• Lock-Free SVRG: This is the lock-free asynchronous variant of Algorithm 20 using

SVRG schedule; all threads can read and update the parameters with any synchro-
nization. Parameter updates are performed through atomic compare-and-swap instruc-
tion facilitated by modern processors [128]. A constant step size that gives the best
convergence is chosen for the dataset.

• Locked SVRG: This is the locked version of the asynchronous variant of Algorithm 20
using SVRG schedule. In particular, we use a concurrent read exclusive write locking
model, where all threads can read the parameters but only one threads can update
the parameters at a given time. The step size is chosen similar to Lock-Free SVRG.

• Lock-Free SGD: This is the lock-free asynchronous variant of the SGD algorithm (see
[128]). We compare two different versions of this algorithm: (i) SGD with constant
step size (referred to as CSGD). (ii) SGD with decaying step size η0

√
σ0/(t + σ0) (re-

ferred to as DSGD), where constants η0 and σ0 specify the scale and speed of decay.
For each of these versions, step size is tuned for each dataset to give the best conver-
gence progress.

All the algorithms were implemented in C++. The linear algebra operations are mainly
performed using eigen32. We run our experiments on datasets from LIBSVM website3.
Similar to [173], we normalize each example in the dataset so that ‖zi‖2 = 1 for all
i ∈ [n]. Such a normalization leads to an upper bound of 0.25 on the Lipschitz constant
of the gradient of fi. The epoch size m is chosen as 2n (as recommended in [71]) in
all our experiments. In the first experiment, we compare the speedup achieved by our
asynchronous algorithm. To this end, for each dataset we first measure the time required

2http://eigen.tuxfamily.org/
3http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html

159

http://eigen.tuxfamily.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Time(seconds)
0 0.5 1 1.5O

bj
ec

tiv
e

Va
lu

e
- O

pt
im

al

10 -10

10 -5

Lock-Free SVRG
DSGD
CSGD

Time(seconds)
0 2 4 6 8O

bj
ec

tiv
e

Va
lu

e
- O

pt
im

al

10 -10

10 -5

10 0

Lock-Free SVRG
DSGD
CSGD

Time(seconds)
0 5 10O

bj
ec

tiv
e

Va
lu

e-
O

pt
im

al

10 -10

10 -5

10 0

Lock-Free SVRG
DSGD
CSGD

Time(seconds)
0 50 100O

bj
ec

tiv
e

Va
lu

e
- O

pt
im

al

10 -10

10 -5

Lock-Free SVRG
DSGD
CSGD

Figure 8.4: l2-regularized logistic regression. Training loss residual f (x) − f (x∗) ver-
sus time plot of Lock-Free SVRG, DSGD and CSGD on rcv1 (left), real-sim (left center),
news20 (right center) and url (right) datasets. The experiments are parallelized over 10
cores.

for the algorithm to each an accuracy of 10−10 (i.e., f (x)− f (x∗) < 10−10). The speedup
with P threads is defined as the ratio of the runtime with a single thread to the runtime
with P threads. Results in Figure 8.3 show the speedup on various datasets. As seen
in the figure, we achieve significant speedups for all the datasets. Not surprisingly,
the speedup achieved by Lock-free SVRG is much higher than ones obtained by locking.
Furthermore, the lowest speedup is achieved for rcv1 dataset. Similar speedup behavior
was reported for this dataset in [128]. It should be noted that this dataset is not sparse
and hence, is a bad case for the algorithm (similar to [128]).

For the second set of experiments we compare the performance of Lock-Free SVRG
with stochastic gradient descent. In particular, we compare with the variants of stochas-
tic gradient descent, DSGD and CSGD, described earlier in this section. It is well estab-
lished that the performance of variance reduced stochastic methods is better than that
of SGD. We would like to empirically verify that such benefits carry over to the asyn-
chronous variants of these algorithms. Figure 8.4 shows the performance of Lock-Free
SVRG, DSGD and CSGD. Since the computation complexity of each epoch of these al-
gorithms is different, we directly plot the objective value versus the runtime for each
of these algorithms. We use 10 cores for comparing the algorithms in this experiment.
As seen in the figure, Lock-Free SVRG outperforms both DSGD and CSGD. The per-
formance gains are qualitatively similar to those reported in [71] for the synchronous
versions of these algorithms. It can also be seen that the DSGD, not surprisingly, out-
performs CSGD in all the cases. In our experiments, we observed that Lock-Free SVRG,
in comparison to SGD, is relatively much less sensitive to the step size and more robust
to increasing threads.

8.6 Discussion & Future Work

In this chapter, we presented a unifying framework based on [33], that captures many
popular variance reduction techniques for stochastic gradient descent. We use this
framework to develop a simple hybrid variance reduction method. The primary pur-
pose of the framework, however, was to provide a common platform to analyze various
variance reduction techniques. To this end, we provided convergence analysis for the

160

framework under certain conditions. More importantly, we propose an asynchronous
algorithm for the framework with provable convergence guarantees. The key conse-
quence of our approach is that we obtain asynchronous variants of several algorithms
like SVRG, SAGA and S2GD. Our asynchronous algorithms exploits sparsity in the data
to obtain near linear speedup in settings that are typically encountered in machine learn-
ing.

For future work, it would be interesting to perform an empirical comparison of vari-
ous schedules. In particular, it would be worth exploring the space-time-accuracy trade-
offs of these schedules. We would also like to analyze the effect of these tradeoffs on the
asynchronous variants.

Appendix: Omitted Proofs

Notation: We use D f to denote the Bregman divergence (defined below) for function f .

D f (x, y) = f (x)− f (y)− 〈∇ f (y), x− y〉.

For ease of exposition, we use E[X] to denote the expectation the random variable X
with respect to indices {i1, . . . , it} when X depends on just these indices up to step
t. This dependence will be clear from the context. We use 1 to denote the indicator
function.

We would like to clarify the definition of xkm here. As noted in the text, for analysis
of strongly convex functions, we assume that xkm+m is replaced with the average of the
iterates in the kth epoch at the end of the epoch. However, whenever xkm appears in the
analysis, it represents the iterate before it is replaced by the average of the iterates.

Proof of Theorem 8.2.1

Proof. We expand function f as f (x) = g(x) + h(x) where g(x) = 1
n ∑i∈S fi(x) and

h(x) = 1
n ∑i/∈S fi(x). Let the present epoch be k + 1. We define the following:

vt =
1
η
(xt+1 − xt) = −

[
∇ fit(xt)−∇ fit(α

t
it) +

1
n ∑

i
∇ fi(α

t
i)

]

Gt =
1
n ∑

i∈S

(
fi(α

t
i)− fi(x∗)− 〈∇ fi(x∗), αt

i − x∗〉
)

Rt = E
[
c‖xt − x∗‖2 + Gt

]
.

161

We first observe that E[vt] = −∇ f (xt). This follows from the unbiasedness of the
gradient at each iteration. Using this observation, we have the following:

E[Rt+1] = E[c‖xt+1 − x∗‖2 + Gt+1] = E[c‖xt + ηvt − x∗‖2 + Gt+1]

= cE
[
‖xt − x∗‖2

]
+ cη2E

[
‖vt‖2

]
+ 2cηE

[
〈xt − x∗, vt〉

]
+ E[Gt+1]

≤ cE
[
‖xt − x∗‖2

]
+ cη2E

[
‖vt‖2

]
− 2cηE

[
f (xt)− f (x∗)

]
+ E[Gt+1]. (8.4)

The last step follows from convexity of f and the unbiasedness of vt. We have the
following relationship between Gt+1 and Gt.

E[Gt+1] =

(
1− 1

n

)
E [Gt] +

1
n

E

[
1
n ∑

i∈S

(
fi(xt)− fi(x∗)− 〈∇ fi(x∗), xt − x∗〉

)]

=

(
1− 1

n

)
E [Gt] +

1
n

E[Dg(xt, x∗)]. (8.5)

This follows from the definition of the schedule of HSAG for indices in S. Substituting
the above relationship in Equation (8.4) we get the following.

Rt+1 ≤ Rt + cη2E
[
‖vt‖2

]
− 2cηE

[
f (xt)− f (x∗)

]
− 1

n
E[Gt] +

1
n

E[Dg(xt, x∗)]

≤
(

1− 1
κ

)
Rt +

c
κ

E[‖xt − x∗‖2] + cη2E
[
‖vt‖2

]
− 2cηE

[
f (xt)− f (x∗)

]
+

(
1
κ
− 1

n

)
E[Gt] +

1
n

E[Dg(xt, x∗)]

:=
(

1− 1
κ

)
Rt + bt.

We describe the bounds for bt (defined below).

bt =
c
κ

E[‖xt − x∗‖2]︸ ︷︷ ︸
T1

+cη2 E
[
‖vt‖2

]
︸ ︷︷ ︸

T2

−2cηE
[

f (xt)− f (x∗)
]

+

(
1
κ
− 1

n

)
E[Gt] +

1
n

E[Dg(xt, x∗)].

162

The terms T1 and T2 can be bounded in the following fashion:

T1 = E[‖xt − x∗‖2] ≤ 2
λ

E[f (xt)− f (x∗)]

T2 = E
[
‖vt‖2

]
≤
(

1 +
1
β

)
E
[
‖∇ fit(α

t
it)−∇ fit(x∗)‖2

]
+ (1 + β)E

[
‖∇ fit(xt)−∇ fit(x∗)‖2

]
≤ 2L

n

(
1 +

1
β

)
E ∑

i

[
fi(α

t
i)− f (x∗)−

〈
∇ fi(x∗), αt

i − x∗
〉]

+
2L
n
(1 + β)E ∑

i

[
fi(xt)− f (x∗)

]
≤ 2L

(
1 +

1
β

)
E
[

Gt + Dh(x̃k, x∗)
]
+ 2L(1 + β)E[f (xt)− f (x∗)].

The bound on T1 is due to strong convexity of f . The first inequality and second inequal-
ities on T2 directly follows from Lemma 3 of [33] and simple application of Lemma 8.8.1
respectively. The third inequality follows from the definition of Gt and the fact that
αt

i = x̃k for all i /∈ S and t ∈ {km, . . . , km + m− 1}.
Substituting these bounds T1 and T2 in bt, we get

bt ≤ −
[

2cη − 2cLη2(1 + β)− 2c
κλ

]
E
[

f (xt)− f (x∗)
]

+

(
1
κ
+ 2cLη2

(
1 +

1
β

)
− 1

n

)
E[Gt] +

1
n

E[Dg(xt, x∗)]

+ 2cLη2
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

≤ −
[

2cη − 2cLη2(1 + β)− 1
n
− 2c

κλ

]
E
[

f (xt)− f (x∗)
]

+

(
1
κ
+ 2cLη2

(
1 +

1
β

)
− 1

n

)
E[Gt] + 2cLη2

(
1 +

1
β

)
E
[

Dh(x̃k, x∗)
]

≤ −
[

2cη − 2cLη2(1 + β)− 1
n
− 2c

κλ

]
E
[

f (xt)− f (x∗)
]
+ 2cLη2

(
1 +

1
β

)
E
[

Dh(x̃k, x∗)
]

.

(8.6)

The second inequality follows from Lemma 8.8.2. In particular, we use the fact that
f (x)− f (x∗) = D f (x, x∗) and D f (x, x∗) = Dg(x, x∗) + Dh(x, x∗) ≥ Dg(x, x∗). The third
inequality follows from the following for the choice of our parameters:

1
κ
+ 2Lcη2

(
1 +

1
β

)
≤ 1

n
.

Applying the recursive relationship on Rt+1 for m iterations, we get

Rkm+m ≤
(

1− 1
κ

)m
R̃k +

m−1

∑
j=0

(
1− 1

κ

)m−1−j
bkm+j

163

where
R̃k = E

[
c‖x̃k − x∗‖2 + G̃k

]
.

Substituting the bound on bt from Equation (8.6) in the above equation we get the fol-
lowing inequality:

Rkm+m ≤
(

1− 1
κ

)m
R̃k

−
m−1

∑
j=0

(
2cη(1− Lη(1 + β))− 1

n
− 2c

κλ

)(
1− 1

κ

)m−1−j
E
[

f (xkm+j)− f (x∗)
]

+
m−1

∑
j=0

(
1− 1

κ

)m−1−j
2Lcη2

(
1 +

1
β

)
E
[

h(x̃k)− h(x∗)− 〈∇h(x∗), x̃k − x∗〉
]

.

We now use the fact that x̃k+1 is chosen randomly from {xkm, . . . , xkm+m−1}with proba-
bilities proportional to {(1− 1/κ)m−1, . . . , 1} we have the following consequence of the
above inequality:

Rkm+m + κ

[
1−

(
1− 1

κ

)m] (
2cη(1− Lη(1 + β))− 1

n
− 2c

κλ

)
E
[

f (x̃k+1)− f (x∗)
]

≤ 2c
λ

(
1− 1

κ

)m
E
[

f (x̃k)− f (x∗)
]
+

(
1− 1

κ

)m
E
[
G̃k
]

+ 2Lcη2κ

[
1−

(
1− 1

κ

)m] (
1 +

1
β

)
E
[

Dh(x̃k, x∗)
]

.

For obtaining the above inequality, we used strong convexity of f . Again, using the
Bregman divergence based inequality (see Lemma 8.8.2)

f (x)− f (x∗) = D f (x, x∗) = Dg(x, x∗) + Dh(x, x∗) ≥ Dh(x, x∗),

we have the following inequality

Rkm+m + κ

[
1−

(
1− 1

κ

)m] (
2cη(1− Lη(1 + β))− 1

n
− 2c

κλ

)
E
[

f (x̃k+1)− f (x∗)
]

≤
[

2c
λ

(
1− 1

κ

)m
+ 2Lcη2κ

(
1 +

1
β

) [
1−

(
1− 1

κ

)m]]
E
[

f (x̃k)− f (x∗)
]
+

(
1− 1

κ

)m
E
[
G̃k
]

.

(8.7)

Introduce now the notation

γ = κ

[
1−

(
1− 1

κ

)m] (
2cη(1− Lη(1 + β))− 1

n
− 2c

κλ

)
θ = max

{[
2c
γλ

(
1− 1

κ

)m
+

2Lcη2

γ

(
1 +

1
β

)
κ

[
1−

(
1− 1

κ

)m]]
,
(

1− 1
κ

)m}
.

164

Using this notation along with (8.7) we obtain the inequality

E

[
f (x̃k+1)− f (x∗) +

1
γ

G̃k+1

]
≤ θ E

[
f (x̃k)− f (x∗) +

1
γ

G̃k

]
,

where θ < 1 is a constant that depends on the parameters used in the algorithm.

Proof of Theorem 8.3.1

Proof. Let the present epoch be k + 1. Recall that D(t) denotes the iterate used in the tth

iteration of the algorithm. We define the following two sequences:

ut = −
[
∇ fit(xD(t))−∇ fit(x̃k) +∇ f (x̃k)

]
vt = −

[
∇ fit(xt)−∇ fit(x̃k) +∇ f (x̃k)

]
.

Consider now

E‖xt+1 − x∗‖2 = E‖xt + ηut − x∗‖2 = E
[
‖xt − x∗‖2 + η2‖ut‖2 + 2η〈xt − x∗, ut〉

]
.

(8.8)

We first bound the last term of the above inequality. We expand the term in the following
manner:

E〈xt − x∗, ut〉 = E
[
〈x∗ − xt,∇ fit(xD(t))〉

]
= E

[
〈x∗ − xD(t),∇ fit(xD(t))〉

]
︸ ︷︷ ︸

T3

+
t−1

∑
d=D(t)

E
[
〈xd − xd+1,∇ fit(xd)〉

]
︸ ︷︷ ︸

T4

+
t−1

∑
d=D(t)

E
[
〈xd − xd+1,∇ fit(xD(t))−∇ fit(xd)〉

]
︸ ︷︷ ︸

T5

.

(8.9)

The first equality directly follows from the definition of ut and its property of unbiased-
ness. The second step follows from simple algebraic calculations. Terms T3 and T4 can
be bounded in the following way:

T3 ≤ E[fit(x∗)− fit(xD(t))]. (8.10)

165

This bound directly follows from convexity of function fit .

T4 =
t−1

∑
d=D(t)

E
[
〈xd − xd+1,∇ fit(xd)〉

]
≤

t−1

∑
d=D(t)

E

[
fit(xd)− fit(xd+1) +

L
2
‖xd+1 − xd‖2

it

]

≤ E
[

fit(xD(t))− fit(xt)
]
+

L∆
2

t−1

∑
d=D(t)

E
[
‖xd+1 − xd‖2

]
. (8.11)

The first inequality follows Lipschitz continuity of ∇ fit . The second inequality follows
from the definition of ∆. The last term T5 can be bounded as follows.

T5 = E

 t−1

∑
d=D(t)

〈xd − xd+1,∇ fit(xD(t))−∇ fit(xd)〉


≤ E

 t−1

∑
d=D(t)

‖xd+1 − xd‖it‖∇ fit(xD(t))−∇ fit(xd)‖


≤ E

 t−1

∑
d=D(t)

‖xd+1 − xd‖it

d−1

∑
j=D(t)

‖∇ fit(xj+1)−∇ fit(xj)‖

 (8.12)

The first inequality follows from Cauchy-Schwartz inequality. The second inequality
follows from repeated application of triangle inequality. Furthermore, the aforemen-
tioned bound on T5 can be bounded in the following manner:

T5 ≤ E

 t−1

∑
d=D(t)

d−1

∑
j=D(t)

L
2

(
‖xd+1 − xd‖2

it + ‖x
j+1 − xj‖2

it

)
≤ L∆(τ − 1)

2
E

t−1

∑
d=D(t)

‖xd+1 − xd‖2. (8.13)

The first step uses Lipschitz continuity of the gradient ∇ fit combined with the AM-
GM inequality. Finally, the last step can be obtained from the fact that the staleness in
gradient is at most τ and the definition of ∆.

By combining the bounds on T3, T4 and T5 in Equations (8.10), (8.11) and (8.13)
respectively and substituting the sum in Equation (8.9), we get

E〈xt − x∗, ut〉 ≤ E

[
f (x∗)− f (xt) +

L∆τ

2

t−1

∑
d=D(t)

‖xd+1 − xd‖2
]

. (8.14)

166

By substituting the above inequality in (8.8) and noting that xd+1 − xd = ηud, we get

E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xt − x∗‖2 + η2‖ut‖2 − 2η(f (xt)− f (x∗)) + L∆τη3

t−1

∑
d=D(t)

‖ud‖2
]

.

(8.15)

We next bound the term E[‖ut‖2] in terms of E
[
‖vt‖2] in the following way:

E
[
‖ut‖2

]
≤ 2E

[
‖ut − vt‖2 + ‖vt‖2

]
≤ 2E

[
‖∇ fit(xt)−∇ fit(xD(t))‖2

]
+ 2E

∥∥∥vt‖2
]

≤ 2L2E
[
‖xd+1 − xd‖2

it

]
+ 2E

[
‖vt‖2

]
≤ 2L2τ

t−1

∑
d=D(t)

E
[
‖xt − xD(t)‖2

it

]
+ 2E

[
‖vt‖2

]
≤ 2L2∆η2τ

t−1

∑
d=D(t)

E
[
‖ud‖2

]
+ 2E

[
‖vt‖2

]
.

The first step follows from AM-GM inequality. The second inequality follows from
Lipschitz continuity of the gradient. The third step is a simple application of Cauchy-
Schwarz. Adding the above inequalities from t = km to t = km + m− 1, we get

km+m−1

∑
t=km

E
[
‖ut‖2

]
≤

km+m−1

∑
t=km

2L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+ 2E

[
‖vt‖2

]
≤ 2L2∆η2τ2

km+m−1

∑
t=km

E
[
‖ut‖2

]
+ 2

km+m−1

∑
t=km

E
[
‖vt‖2

]
.

Here we again used the fact that the delay in the gradients is at most τ. From the above
inequality, we get

km+m−1

∑
t=km

E
[
‖ut‖2

]
≤ 2

(1− 2L2∆η2τ2)

km+m−1

∑
t=km

E
[
‖vt‖2

]
. (8.16)

Adding Equation (8.15) from t = km to t = km + m− 1 and substituting Equation (8.16)
in the resultant, we get

E
[
‖xkm+m − x∗‖2

]
≤ E

[
‖x̃k − x∗‖2 + (η2 + L∆τ2η3)

km+m−1

∑
t=km

‖ut‖2 −
km+m−1

∑
t=km

2η(f (xt)− f (x∗))

]

≤ E

[
‖x̃k − x∗‖2 + 2

(
η2 + L∆τ2η3

1− 2L2∆η2τ2

) km+m−1

∑
t=km

‖vt‖2 −
km+m−1

∑
t=km

2η(f (xt)− f (x∗))

]
.

167

The first step follows from telescopy sum and the definition of x̃k. From Lemma 3 of
[33] (also see [71]), we have

E[‖vt‖2] ≤ 4LE
[

f (xt)− f (x∗) + f (x̃k)− f (x∗)
]

.

Substituting this in the inequality above , we get the following bound:(
2η − 8L

(
η2 + L∆τ2η3

1− 2L2∆η2τ2

))
mE[f (x̃k+1)− f (x∗)]

≤
(

2
µ
+ 8L

(
η2 + L∆τ2η3

1− 2L2∆η2τ2

)
m
)

E[f (x̃k)− f (x∗)].

Proof of Theorem 8.3.2

Proof. Let the present epoch be k+ 1. For simplicity, we assume that the iterates x and A
used in the each iteration are from the same time step (index) i.e., D(t) = D′(t) for all t ∈
T. Recall that D(t) and D′(t) denote the index used in the tth iteration of the algorithm.
Our analysis can be extended to the case of D(t) 6= D′(t) in a straightforward albeit
tedious manner. We expand function f as f (x) = g(x)+ h(x) where g(x) = 1

n ∑i∈S fi(x)
and h(x) = 1

n ∑i/∈S fi(x). We define

ut =
1
η
(xt+1 − xt) = −

[
∇ fit(xD(t))−∇ fit(α

D(t)
it

) +
1
n ∑

i
∇ fi(α

D(t)
i)

]

vt = −
[
∇ fit(xt)−∇ fit(α

t
it) +

1
n ∑

i
∇ fi(α

t
i)

]
.

We use the same Lyapunov function used in Theorem 8.2.1. We recall the following
definitions:

Gt =
1
n ∑

i∈S

(
fi(α

t
i)− fi(x∗)− 〈∇ fi(x∗), αt

i − x∗〉
)

Rt = E
[
c‖xt − x∗‖2 + Gt

]
.

Using unbiasedness of the gradient we have E[ut] = −∇ f (xD(t)) and E[vt] = −∇ f (xt).
Using this observation, we have the following:

cE[‖xt+1 − x∗‖2] = cE[‖xt + ηut − x∗‖2]

= cE
[
‖xt − x∗‖2

]
+ cη2 E

[
‖ut‖2

]
︸ ︷︷ ︸

T6

+2cη E
[
〈xt − x∗, ut〉

]︸ ︷︷ ︸
T7

. (8.17)

168

The last step follows from convexity of f and the unbiasedness of ut. We further bound
term T6 in the following manner:

T6 = E
[
‖ut‖2

]
≤ 2E

[
‖ut − vt‖2

]
+ 2E[‖vt‖2]. (8.18)

The first term can be bounded in the following manner:

E
[
‖ut − vt‖2

]
≤ E

[∥∥∥(∇ fit(xt)−∇ fit(xD(t)))− (∇ fit(α
D(t)
it

)−∇ fit(α
t
it))

+
1
n ∑

i
(∇ fi(α

t
i)−∇ fi(α

D(t)
i))

∥∥∥2]
≤ 3E

[∥∥∥∇ fit(xt)−∇ fit(xD(t))
∥∥∥2
]
+ 3E

[∥∥∥∇ fit(α
D(t)
it

)−∇ fit(α
t
it)
∥∥∥2
]

+ 3E

∥∥∥∥∥ 1
n ∑

i
(∇ fi(α

t
i)−∇ fi(α

D(t)
i))

∥∥∥∥∥
2


≤ 3E

[∥∥∥∇ fit(xt)−∇ fit(xD(t))
∥∥∥2
]
+ 3E

[∥∥∥∇ fit(α
D(t)
it

)−∇ fit(α
t
it)
∥∥∥2
]

+
3
n ∑

i
E

[∥∥∥∇ fi(α
t
i)−∇ fi(α

D(t)
i)

∥∥∥2
]

. (8.19)

The second step follows from Lemma 8.8.3 for r = 3. The last step follows from simple
application of Jensen’s inequality. The first term can be bounded easily in the following
manner:

E
[
‖∇ fit(xt)−∇ fit(xD(t))‖2

]
≤ L2τ

t−1

∑
d=D(t)

E
[
‖xd+1 − xd‖2

it

]
≤ L2∆η2τ

t−1

∑
d=D(t)

E
[
‖ud‖2

]
.

The second and third terms need more delicate analysis. The key insight for our
analysis is that at most τ different αi’s differ from time step D(t) to t. This is due to
the fact that the delay is bounded by τ and at most one αi changes at each iteration.
Furthermore, whenever there is a change in αi, it changes to one of the iterates xj for
some j = {t− τ, . . . , t}. With this intuition we bound the second term in the following

169

fashion.

E

[∥∥∥∇ fit(α
D(t)
i)−∇ fit(α

t
it)
∥∥∥2
]
≤ 1

n

t−1

∑
j=D(t)

∑
i∈S

E

[
1(i = ij)

∥∥∥∇ fi(xj)−∇ fi(α
D(t)
i)

∥∥∥2
]

≤ 2
n

t−1

∑
j=D(t)

∑
i∈S

E

[
1(i = ij)

(∥∥∥∇ fi(xj)−∇ fi(x∗)
∥∥∥2

+
∥∥∥∇ fi(α

D(t)
i)−∇ fi(x∗)

∥∥∥2
)]

≤ 2
n2

t−1

∑
j=D(t)

∑
i∈S

E

[∥∥∥∇ fi(xj)−∇ fi(x∗)
∥∥∥2
]
+

2
n2

t−1

∑
j=D(t)

∑
i∈S

E

[∥∥∥∇ fi(α
D(t)
i)−∇ fi(x∗)

∥∥∥2
]

≤ 4L
n

t−1

∑
j=D(t)

E

[
1
n ∑

i∈S
fi(xj)− fi(x∗)− 〈∇ fi(x∗), xj − x∗〉)

]

+
4Lτ

n
E

[
1
n ∑

i∈S
fi(α

D(t)
i)− fi(x∗)− 〈∇ fi(x∗), α

D(t)
i − x∗〉

]
.

The second inequality follows from Lemma 8.8.3 for r = 2. The last step directly follows
from Lemma 8.8.1. Note that sum is over indices in S since αi’s for i /∈ S do not change
during the epoch.

The third term in (8.19) can be bounded by exactly the same technique we used for
the second term. The bound, in fact, turns out to identical to the second term since it is
chosen uniformly at random. Combining all the terms we have

T6 ≤ 2E[‖vt‖2] + 6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

48L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]
+

48Lτ

n
E
[

GD(t)

]
.

The term T7 can be bounded in a manner similar to one in Theorem 8.3.1 to obtain
the following (see proof of Theorem 8.3.1 for details):

E〈xt − x∗, ut〉 ≤ E

 f (x∗)− f (xt) +
L∆τη2

2

t−1

∑
d=D(t)

‖ud‖2

 . (8.20)

We need the following bound for our analysis:

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖ukm+j‖2] ≤ 2

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖vkm+j‖2]

+
km+m−1

∑
t=km

6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

km+m−1

∑
t=km

48L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]

+
km+m−1

∑
t=km

48Lτ

n
E
[

GD(t)

]
.

170

The above inequality follows directly from the bound on T6.
Under the condition

η2 ≤
(

1− 1
κ

)m−1 1
12L2∆τ2 ,

we have the inequality

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖ukm+j‖2] ≤ 4

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖vkm+j‖2]

+
km+m−1

∑
t=km

96L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]

+
km+m−1

∑
t=km

96Lτ

n
E
[

GD(t)

]
. (8.21)

This follows from that fact that

km+m−1

∑
t=km

6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
≤ 1

2

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖ukm+j‖2].

The above relationship is due to the condition on η and the fact that d ∈ [t, D(t)] for at
most τ values of t. We have the following:

Rt+1 = cE
[
‖xt − x∗‖2

]
+ cη2E

[
‖ut‖2

]
+ 2cηE

[
〈xt − x∗, ut〉

]
+ E [Gt+1]

:=
(

1− 1
κ

)
Rt + et. (8.22)

We bound et in the following manner:

et =
c
κ
‖xt − x∗‖2 +

(
1
κ
− 1
)

E[Gt] + cη2E
[
‖ut‖2

]
+ 2cηE

[
〈xt − x∗, ut〉

]
+ E [Gt+1]

=
c
κ
‖xt − x∗‖2 +

(
1
κ
− 1

n

)
E[Gt] + cη2E

[
‖ut‖2

]
+ 2cηE

[
〈xt − x∗, ut〉

]
+

1
n

E[Dg(xt, x∗)]

≤ −
(

2cη − 2c
κλ

)
E
[

f (xt)− f (x∗)
]
+

(
1
κ
− 1

n

)
E[Gt] + cη2E[‖ut‖2]

+ cL∆τη3
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

1
n

E[Dg(xt, x∗)].

The second equality follows from the definition of Gt+1 (see Equation (8.5)).

E[Gt+1] =

(
1− 1

n

)
E [Gt] +

1
n

E[Dg(xt, x∗)].

171

Applying the recurrence relationship in Equation (8.22) with the derived bound on
et, we have

Rkm+m ≤
(

1− 1
κ

)m
R̃k +

m−1

∑
j=0

(
1− 1

κ

)m−1−j
ekm+j

≤
(

1− 1
κ

)m
R̃k +

m−1

∑
j=0

(
1− 1

κ

)m−1−j
e′km+j,

where e′t is defined as follows

R̃k = E
[
c‖x̃k − x∗‖2 + G̃k

]
e′t = −

(
2cη − 2c

κλ

)
E
[

f (xt)− f (x∗)
]
+

(
1
κ
− 1

n

)
E[Gt]

+

(
cη2 +

(
1− 1

κ

)−τ

cL∆τ2η3

)
E[‖ut‖2] +

1
n

E[Dg(xt, x∗)].

We use the following notation for ease of exposition:

ζ =

(
cη2 +

(
1− 1

κ

)−τ

cL∆τ2η3

)
.

This last inequality follows from that fact that the delay is at most τ. In particular, each
index j ∈ {D(t) . . . , t} for at most τ times. Substituting the bound in Equation (8.21),
we get the following:

Rkm+m ≤
(

1− 1
κ

)m
R̃k −

(
2cη − 2c

κλ

) m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

f (xkm+j)− f (x∗)
]

+ 4ζ
m−1

∑
j=0

(
1− 1

κ

)m−1−j
E[‖vkm+j‖2]

+

[
96ζLτ

n

(
1− 1

κ

)−τ

+
1
n

]
m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

Dg(xkm+j, x∗)
]

+

[
1
κ
+

96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]
m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

GD(km+j)

]
. (8.23)

We now use the following previously used bound on vt (see bound T2 in the proof
of Theorem 8.2.1).

E[‖vt‖2] ≤ 2L
(

1 +
1
β

) [
Gt + Dh(x̃k, x∗)

]
+ 2L(1 + β)E[f (xt)− f (x∗)].

172

Substituting the above bound on vt in Equation (8.23), we get the following:

Rkm+m ≤
(

1− 1
κ

)m
R̃k −

[
2cη − 8ζL(1 + β)− 2c

κλ
− 96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]
×

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

f (xkm+j)− f (x∗)
]

+

[
1
κ
+ 8ζL

(
1 +

1
β

)
+

96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]
×

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[
Gkm+j

]
+ 8ζL

(
1 +

1
β

) m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

Dh(x̃k, x∗)
]

≤ 2c
λ

(
1− 1

κ

)m
E
[

f (x̃k)− f (x∗)
]
+

(
1− 1

κ

)m
E
[
G̃k
]

−
[

2cη − 8ζL(1 + β)− 2c
κλ
− 96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]
×

m−1

∑
j=0

(
1− 1

κ

)m−1−j
E
[

f (xkm+j)− f (x∗)
]

+ 8ζL
(

1 +
1
β

)
κ

[
1−

(
1− 1

κ

)m]
E
[

Dh(x̃k, x∗)
]

. (8.24)

The first step is due to the Bregman divergence based inequality D f (x, x∗) ≥ Dg(x, x∗).
The second step follows from the expanding R̃k and using the strong convexity of func-
tion f . We now use the fact that x̃k+1 is chosen randomly from {xkm, . . . , xkm+m−1} with
probabilities proportional to {(1− 1/κ)m−1, . . . , 1} we have the following consequence
of the above inequality. We use the following notation:

γa = κ

[
1−

(
1− 1

κ

)m] [
2cη − 8ζL(1 + β)− 2c

κλ
− 96ζLτ

n

(
1− 1

κ

)−τ

− 1
n

]

θa = max


 2c

γaλ

(
1− 1

κ

)m
+

8ζL
(

1 + 1
β

)
γa

κ

[
1−

(
1− 1

κ

)m] ,
(

1− 1
κ

)m
 .

Using the above notation, we have the following inequality from Equation (8.7).

E

[
f (x̃k+1)− f (x∗) +

1
γa

G̃k+1

]
≤ θa E

[
f (x̃k)− f (x∗) +

1
γa

G̃k

]
.

where θ < 1 is a constant that depends on the parameters used in the algorithm.

173

8.7 Proof of Theorem 8.4.1

Proof. Using exactly the same argument as in first part of Theorem 8.2.1, we have the
following:

Rt+1 ≤ Rt + cη2E
[
‖vt‖2

]
− 2cηE

[
f (xt)− f (x∗)

]
− 1

n
E[Gt] +

1
n

E[Dg(xt, x∗)] := Rt + b′t.

The terms E
[
‖vt‖2] can be bounded in the following fashion:

E
[
‖vt‖2

]
≤
(

1 +
1
β

)
E
[
‖∇ fit(α

t
it)−∇ fit(x∗)‖2

]
+ (1 + β)E

[
‖∇ fit(xt)−∇ fit(x∗)‖2

]
≤ 2L

n

(
1 +

1
β

)
E ∑

i

[
fi(α

t
i)− f (x∗)−

〈
∇ fi(x∗), αt

i − x∗
〉]

+
2L
n
(1 + β)E ∑

i

[
fi(xt)− f (x∗)

]
≤ 2L

(
1 +

1
β

) [
Gt + Dh(x̃k, x∗)

]
+ 2L(1 + β)E[f (xt)− f (x∗)].

The first inequality and second inequalities directly follow from Lemma 3 of [33] and
simple application of Lemma 8.8.1 respectively. The third inequality follows from the
definition of Gt and the fact that αt

i = x̃k for all i /∈ S and t ∈ {km, . . . , km + m}.
Substituting the above bound in b′t, we get

b′t ≤ −
[
2cη − 2cLη2(1 + β)

]
E
[

f (xt)− f (x∗)
]

+

(
2cLη2

(
1 +

1
β

)
− 1

n

)
E[Gt] +

1
n

E[Dg(xt, x∗)]

+ 2cLη2
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

≤ −
[

2cη − 2cLη2(1 + β)− 1
n

]
E
[

f (xt)− f (x∗)
]

+

(
2cLη2

(
1 +

1
β

)
− 1

n

)
E[Gt] + 2cLη2

(
1 +

1
β

)
E
[

Dh(x̃k, x∗)
]

≤ −
[

2cη − 2cLη2(1 + β)− 1
n

]
E
[

f (xt)− f (x∗)
]
+ 2cLη2

(
1 +

1
β

)
E
[

Dh(x̃k, x∗)
]

(8.25)

The second inequality follows from Lemma 8.8.2. In particular, we use the fact that
f (x)− f (x∗) = D f (x, x∗) and D f (x, x∗) = Dg(x, x∗) + Dh(x, x∗) ≥ Dg(x, x∗). The third
inequality follows from the following for the choice of our parameters:

2Lcη2
(

1 +
1
β

)
≤ 1

n
.

174

Applying the recursive relationship on Rt+1 for m iterations, we get

Rkm+m ≤ Rkm +
m−1

∑
j=0

b′km+j.

Substituting the bound on b′t from Equation (8.6) in the above equation we get the fol-
lowing inequality:

Rkm+m ≤ Rkm

−
m−1

∑
j=0

(
2cη(1− Lη(1 + β))− 1

n

)
E
[

f (xkm+j)− f (x∗)
]

+
m−1

∑
j=0

2Lcη2
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

.

We define the following quantity:

Pk = Rkm + 2mLcη2
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

. (8.26)

Using this definition, we have(
2cη(1− Lη(1 + β))− 1

n
− 2Lcη2

(
1 +

1
β

)) m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]
≤ Pk − Pk+1.

This directly follows from the definition of Pk, x̃k and the fact Dh(x, x∗) ≤ f (x)− f (x∗).
Now using the telescopy sum, we have the main result:

E
[

f (xT
a)− f (x∗)

]
≤ P0

T
(

2cη(1− Lη(1 + β))− 1
n − 2Lcη2

(
1 + 1

β

)) .

8.8 Proof of Theorem 8.4.2

Proof. Let the present epoch be k + 1. For simplicity, we assume that the iterates x and
A used in the each iteration are from the same time step (index) i.e., D(t) = D′(t)
for all t ∈ T. Recall that D(t) and D′(t) denote the index used in the tth iteration of the
algorithm. Our analysis can be extended to the case of D(t) 6= D′(t) in a straightforward
manner. We expand function f as f (x) = g(x) + h(x) where g(x) = 1

n ∑i∈S fi(x) and

175

h(x) = 1
n ∑i/∈S fi(x). We define the following:

ut =
1
η
(xt+1 − xt) = −

[
∇ fit(xD(t))−∇ fit(α

D(t)
it

) +
1
n ∑

i
∇ fi(α

D(t)
i)

]

vt = −
[
∇ fit(xt)−∇ fit(α

t
it) +

1
n ∑

i
∇ fi(α

t
i)

]
.

We use the same Lyapunov function used in Theorem 8.2.1. We recall the following
definitions:

Gt =
1
n ∑

i∈S

(
fi(α

t
i)− fi(x∗)− 〈∇ fi(x∗), αt

i − x∗〉
)

Rt = E
[
c‖xt − x∗‖2 + Gt

]
.

Using unbiasedness of the gradient we have E[ut] = −∇ f (xD(t)) and E[vt] = −∇ f (xt).
Using this observation, we have the following:

cE[‖xt+1 − x∗‖2] = cE[‖xt + ηut − x∗‖2]

= cE
[
‖xt − x∗‖2

]
+ cη2 E

[
‖ut‖2

]
︸ ︷︷ ︸

T6

+2cη E
[
〈xt − x∗, ut〉

]︸ ︷︷ ︸
T7

. (8.27)

Using the argument in Theorem 8.3.2, we obtain the following bounds on T6 and T7:

T6 ≤ 2E[‖vt‖2] + 6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

48L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]
+

48Lτ

n
E
[

GD(t)

]
,

T7 ≤ E

 f (x∗)− f (xt) +
L∆τη2

2

t−1

∑
d=D(t)

‖ud‖2

 .

We need the following bound for our analysis:

m−1

∑
j=0

E[‖ukm+j‖2] ≤ 2
m−1

∑
j=0

E[‖vkm+j‖2]

+
km+m−1

∑
t=km

6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

km+m−1

∑
t=km

48L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]

+
km+m−1

∑
t=km

48Lτ

n
E
[

GD(t)

]
.

176

The above inequality follows directly from the bound on T6. Under the condition η2 ≤
1

12L2∆τ2 , we have the following inequality:

m−1

∑
j=0

E[‖ukm+j‖2] ≤ 4
m−1

∑
j=0

E[‖vkm+j‖2]

+
km+m−1

∑
t=km

96L
n

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]

+
km+m−1

∑
t=km

96Lτ

n
E
[

GD(t)

]
. (8.28)

This follows from that fact that

km+m−1

∑
t=km

6L2∆η2τ
t−1

∑
d=D(t)

E
[
‖ud‖2

]
≤ 1

2

m−1

∑
j=0

E[‖ukm+j‖2]

due to the condition mentioned above. We have the following:

Rt+1 = cE
[
‖xt − x∗‖2

]
+ cη2E

[
‖ut‖2

]
+ 2cηE

[
〈xt − x∗, ut〉

]
+ E [Gt+1]

:= Rt + e′t. (8.29)

We bound e′t in the following manner:

e′t = cη2E
[
‖ut‖2

]
−E [Gt] + 2cηE

[
〈xt − x∗, ut〉

]
+ E [Gt+1]

= − 1
n

E[Gt] + cη2E
[
‖ut‖2

]
+ 2cηE

[
〈xt − x∗, ut〉

]
+

1
n

E[Dg(xt, x∗)]

≤ − 1
n

E[Gt]− 2cηE
[

f (xt)− f (x∗)
]
+ cη2E[‖ut‖2]

+ cL∆τη3
t−1

∑
d=D(t)

E
[
‖ud‖2

]
+

1
n

E[Dg(xt, x∗)]

≤ − 1
n

E[Gt]−
(

2cη − 1
n

)
E
[

f (xt)− f (x∗)
]
+ cη2E[‖ut‖2] + cL∆τη3

t−1

∑
d=D(t)

E
[
‖ud‖2

]
The second equality follows from the definition of Gt+1 (see Equation (8.5)).

E[Gt+1] =

(
1− 1

n

)
E [Gt] +

1
n

E[Dg(xt, x∗)].

The third and fourth inequalities follow from the fact that Gt ≥ 0 and Dg(xt, x∗) ≤
f (xt)− f (x∗) respectively. Applying the recurrence relationship in Equation (8.29) with

177

the derived bound on e′t, we have

Rkm+m ≤ Rkm +
m−1

∑
j=0

e′km+j ≤ Rkm −
(

2cη − 1
n

) m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]

+
(

cη2 + cL∆τ2η3
) m−1

∑
j=0

E[‖ukm+j‖2]− 1
n

m−1

∑
j=0

E[Gkm+j]

This last inequality follows from that fact that the delay is at most τ. In particular, each
index j ∈ {D(t) . . . , t} for at most τ times. Substituting the bound in Equation (8.28),
we get the following:

Rkm+m ≤ Rkm −
(

2cη − 1
n

) m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]

+ 4
(

cη2 + cL∆τ2η3
) m−1

∑
j=0

E[‖vkm+j‖2]− 1
n

m−1

∑
j=0

E[Gkm+j]

+
96L

(
cη2 + cL∆τ2η3)

n

km+m−1

∑
t=km

t−1

∑
j=D(t)

E
[

Dg(xj, x∗)
]

+
96Lτ

(
cη2 + cL∆τ2η3)

n

km+m−1

∑
t=km

E
[

GD(t)

]
. (8.30)

We now use the following previously used bound on vt (see bound T2 in the proof
of Theorem 8.2.1).

E[‖vt‖2] ≤ 2L
(

1 +
1
β

) [
Gt + Dh(x̃k, x∗)

]
+ 2L(1 + β)E[f (xt)− f (x∗)].

We use ζ ′ to denote cη2 + cL∆τ2η3. Substituting the above bound on vt in Equation (8.30),
we get the following:

Rkm+m ≤ Rkm −
[

2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n
− 1

n

] m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]

+

[
8ζ ′L

(
1 +

1
β

)
+

96ζ ′Lτ

n
− 1

n

] m−1

∑
j=0

E
[
Gkm+j

]
+ 8ζ ′L

(
1 +

1
β

) m−1

∑
j=0

E
[

Dh(x̃k, x∗)
]

≤ Rkm −
[

2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n
− 1

n

] m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]

+ 8mζ ′L
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

. (8.31)

178

We define the following quantity:

P′k = Rkm + 8mζ ′L
(

1 +
1
β

)
E
[

Dh(x̃k, x∗)
]

. (8.32)

Using this definition, we have[
2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n
− 1

n
− 8ζ ′L

(
1 +

1
β

)] m−1

∑
j=0

E
[

f (xkm+j)− f (x∗)
]
≤ P′k − P′k+1.

This directly follows from the definition of P′k, x̃k and the fact Dh(x, x∗) ≤ f (x)− f (x∗).
Now using the telescopy sum, we have the main result:

E
[

f (xT
a)− f (x∗)

]
≤ P′0

T
[
2cη − 8ζ ′L(1 + β)− 96ζ ′Lτ

n − 1
n − 8ζ ′L

(
1 + 1

β

)] .

Other Lemmatta

Lemma 8.8.1. [71] For any αi ∈ Rd where i ∈ [n] and x∗, we have

E
[
‖∇ fit(αit)−∇ fit(x∗)‖2

]
≤ 2L

n ∑
i
[fi(αi)− f (x∗)− 〈∇ fi(x∗), αi − x∗〉] .

Lemma 8.8.2. Suppose f : Rd → R and f = g + h where f , g and h are convex and differen-
tiable. x∗ is the optimal solution to arg minx f (x) then we have the following

D f (x, x∗) = f (x)− f (x∗)

D f (x, x∗) = Dg(x, x∗) + Dh(x, x∗)

D f (x, x∗) ≥ Dg(x, x∗).

Proof. The proof follows trivially from the fact that x∗ is the optimal solution and lin-
earity and non-negative properties of Bregman divergence.

Lemma 8.8.3. For random variables z1, . . . , zr, we have

E
[
‖z1 + ... + zr‖2

]
≤ rE

[
‖z1‖2 + ... + ‖zr‖2

]
.

179

180

Chapter 9

Asynchronous Randomized Coordinate
Descent Algorithms for ERM

9.1 Introduction

In this chapter, we develop, analyze, and implement asynchronous randomized coordi-
nate descent methods for the following composite objective convex problem with non-
separable linear constraints

minx F(x) := f (x) + h(x) s.t. Ax = 0. (9.1)

Here, f : Rn → R is assumed to be continuously differentiable and convex, while
h : Rn → R ∪ {∞} is lower semi-continuous, convex, coordinate-wise separable, but
not necessarily smooth; the linear constraints (LC) are specified by a matrix A ∈ Rm×n,
for which m � n, and a certain structure (see Section 9.4) is assumed. The reader
may wonder the relationship between aforementioned problem and ERM problem of
our interest, but observe that any ERM problem can be rewritten in dual form (9.1) as
follows:

min
x

1
n

n

∑
i=1

fi(x) ≡ min
{xi=x,∀i∈[n]}

1
n

n

∑
i=1

fi(xi) ≡ min
λ

1
n

n

∑
i=1

f ∗i (λi) s.t
n

∑
i=1

λi = 0.

Thus, an asynchronous coordinate descent method for (9.1), consequently, yields an
asynchronous dual algorithm for ERM problems. Coordinate descent (CD) methods are
conceptually among the simplest schemes for unconstrained optimization—they have
been studied for a long time (see e.g., [10, 17, 123]), and are now enjoying greatly re-
newed interest. Their resurgence is rooted in successful applications in machine learn-
ing [63, 64], statistics [41, 65], and many other areas—see [145, 146, 157] and references
therein for more examples.

A catalyst to the theoretical as well as practical success of CD methods has been
randomization. (The idea of randomized algorithms for optimization methods is of
course much older, see e.g., [127].) Indeed, generic non-randomized CD has resisted
complexity analysis, though there is promising recent work [62, 151, 171]; remarkably

181

for randomized CD for smooth convex optimization, Nesterov [112, 114] presented an
analysis of global iteration complexity. This work triggered several improvements, such
as [146, 147], who simplified and extended the analysis to include separable nonsmooth
terms. Randomization has also been crucial to a host of other CD algorithms and anal-
yses [21, 64, 91, 106, 128, 145, 147, 157, 158, 166].

Almost all of the aforementioned CD methods assume essentially unconstrained
problems, which at best allow separable constraints. In contrast, we develop, analyze,
and implement randomized CD methods for the following composite objective convex
problem with non-separable linear constraints. Problem (9.1) subsumes the usual regu-
larized optimization problems pervasive in machine learning for the simplest (m = 0)
case. In the presence of linear constraints (m > 0), Problem (9.1) assumes a form used in
the classic Alternating Direction Method of Multipliers (ADMM) [44, 51]. The principal
difference between our approach and ADMM is that the latter treats the entire variable
x ∈ Rn as a single block, whereas we use the structure of A to split x into b smaller
blocks. Familiar special cases of Problem (9.1) include SVM (with bias) dual, fused
Lasso and group Lasso [167], and linearly constrained least-squares regression [52, 82].

Recently, Necoara et al. [106] studied a special case of Problem (9.1) that sets h ≡ 0
and assumes a single sum constraint. They presented a randomized CD method that
starts with a feasible solution and at each iteration updates a pair of coordinates to
ensure descent on the objective while maintaining feasibility. This scheme is reminiscent
of the well-known SMO procedure for SVM optimization [121]. For smooth convex
problems with n variables, Necoara et al. [106] prove an O(1/ε) rate of convergence.
More recently, in [105] considered a generalization to the general case Ax = 0 (assuming
h is coordinatewise separable).

Unfortunately, the analysis in [105] yields an extremely pessimistic complexity re-
sult:

Theorem 9.1.1 ([105]). Consider Problem (9.1) with h being coordinatewise separable, and
A ∈ Rm×n with b blocks. Then, the CD algorithm in [105] takes no more than O(bm/ε)
iterations to obtain a solution of ε-accuracy.

This result is exponential in the number of constraints and too severe even for small-
scale problems!

We present randomized CD methods, and prove that for important special cases
(mainly h ≡ 0 or A is a sum constraint) we can obtain global iteration complexity that
does not have an intractable dependence on either the number of coordinate blocks (b),
or on the number of linear constraints (m). Previously, Tseng and Yun [169] also studied
a linearly coupled block-CD method based on the Gauss-Southwell choice; however,
their complexity analysis applies only to the special m = 0 and m = 1 cases.

To our knowledge, ours is the first work on CD for problems with more than one
(m > 1) linear constraints that presents such results.
Contributions. In light of the above background, our primary contributions in this
chapter are as follows:
◦ Convergence rate analysis of a randomized block-CD method for the smooth case

(h ≡ 0) with m ≥ 1 general linear constraints.

182

◦ A tighter convergence analysis for the composite function optimization (h 6= 0)
than [105] in the case of sum constraint.
◦ An asynchronous CD algorithm for Problem (9.1).
◦ A stochastic CD method with convergence analysis for solving problems with a

separable loss f (x) = (1/N)∑N
i=1 fi(x).

Additional related work. As noted, CD methods have a long history in optimization
and they have gained tremendous recent interest. We cannot hope to do full justice to all
the related work, but refer the reader to [146, 147] and [91] for more thorough coverage.
Classically, local linear convergence was analyzed in [94]. Global rates for randomized
block coordinate descent (BCD) were pioneered by Nesterov [112], and have since then
been extended by various authors [13, 146, 147, 171]. The related family of Gauss-Seidel
like analyses for ADMM have also recently gained prominence [61]. A combination of
randomized block-coordinate ideas with Frank-Wolfe methods was recently presented
in [80], though algorithmically the Frank-Wolfe approach is very different as it relies on
non projection based oracles.

9.2 Preliminaries

In this section, we further explain our model and assumptions. We assume that the
entire space Rn is decomposed into b blocks, i.e., x = [x>1 , · · · , x>b]

> where x ∈ Rn,
xi ∈ Rni for all i ∈ [b], and n = ∑i ni. For any x ∈ Rn, we use xi to denote the ith block
of x. We model communication constraints in our algorithms by viewing variables as
nodes in a connected graph G := (V, E). Specifically, node i ∈ V ≡ [b] corresponds to
variable xi, while an edge (i, j) ∈ E ⊂ V × V is present if nodes i and j can exchange
information. We use “pair” and “edge” interchangeably.

For a differentiable function f , we use fi1···ip and ∇i1···ip f (x) (or ∇xi1
···xip

f (x)) to de-
note the restriction of the function and its partial gradient to coordinate blocks (xi1 , · · · , xip).
For any matrix B with n columns, we use Bi to denote the columns of B corresponding
to xi and Bij to denote the columns of B corresponding to xi and xj. We use U to denote
the n× n identity matrix and hence Ui is a matrix that places an ni dimensional vector
into the corresponding block of an n dimensional vector.

We make the following standard assumption on the partial gradients of f .

Assumption 1. The function has block-coordinate Lipschitz continuous gradient, i.e.,

‖∇i f (x)−∇i f (x + Uih)‖ ≤ Li‖hi‖ for all x ∈ Rn, .

Assumption 1 is similar to the typical Lipschitz continuous gradients assumed in
first-order methods and it is necessary to ensure convergence of block-coordinate meth-
ods. When functions fi and f j have Lipschitz continuous gradients with constants Li
and Lj respectively, one can show that the function fij has a Lipschitz continuous gradi-
ent with Lij = Li + Lj [105, Lemma 1]. The following result is standard.

183

Lemma 9.2.1. For any function g : Rn → R with L-Lipschitz continuous gradient ∇g, we
have

g(x) ≤ g(y) + 〈∇g(y), x− y〉+ L
2‖x− y‖2 x, y ∈ Rn.

Following [146, 169], we also make the following assumption on the structure of h.

Assumption 2. The nonsmooth function h is block separable, i.e., h(x) = ∑i hi(xi).
This assumption is critical to composite optimization using CD methods. We also

assume access to an oracle that returns function values and partial gradients at any points
and iterates of the optimization algorithm.

9.3 Algorithm

We are now ready to present our randomized CD methods for Problem (9.1) in various
settings. We first study composite minimization (§9.3.1) and later look at asynchronous
(§9.3.2) and stochastic (§9.3.3) variants. The main idea underlying our algorithms is to
pick a random pair (i, j) ∈ E of variables (blocks) at each iteration, and to update them
in a manner which maintains feasibility and ensures progress in optimization.

9.3.1 Composite Minimization

We begin with the nonsmooth setting, where h 6≡ 0. We start with a feasible point x0.
Then, at each iteration we pick a random pair (i, j) ∈ E of variables and minimize the
first-order Taylor expansion of the loss f around the current iterate while maintaining
feasibility. Formally, this involves performing the update

Z(f , x, (i, j), α) := arg min
Aijdij=0

f (x) + 〈∇ij f (x), dij〉 (9.2)

+(2α)−1‖dij‖2 + h(x + Uijdij),

where α > 0 is a stepsize parameter and dij is the update. The right hand side of Equa-
tion (9.2) upper bounds f at x +Uijdij, as seen by using Assumption 1 and Lemma 9.2.1.
If h(x) ≡ 0, minimizing Equation (9.2) yields

λ← α(Ai A>i + Aj A>j)
+
(

Ai∇i f (x) + Aj∇j f (x)
)

di ← −α∇i f (x) + A>i λ

dj ← −α∇j f (x) + A>j λ (9.3)

Algorithm 21 presents the resulting method.
Note that since we start with a feasible point x0 and the update dk satisfies Adk = 0,

the iterate xk is always feasible. However, it can be shown that a necessary condition
for Equation (9.2) to result in a non-zero update is that Ai and Aj span the same column
space. If the constraints are not block separable (i.e. for any partitioning of blocks

184

x1, . . . , xb into two groups, there is a constraint that involves blocks from both groups),
a typical way to satisfy the aforementioned condition is to require Ai to be full row-rank
for all i ∈ [b]. This constraints the minimum block size to be chosen in order to apply
randomized CD.

Theorem 9.4.1 describes convergence of Algorithm 21 for the smooth case (h ≡ 0),
while Theorem 9.4.4 considers the nonsmooth case under a suitable assumption on the
structure of the interdependency graph G—both results are presented in Section 9.4.

1: x0 ∈ Rn such that Ax0 = 0
2: for k ≥ 0 do
3: Select a random edge (ik, jk) ∈ E with probability pik jk
4: dk ← Uik jk Z(f , xk, (ik, jk), αk/Lik jk)

5: xk+1 ← xk + dk

6: k← k + 1
7: end for

Algorithm 21: Composite Minimization with Linear Constraints

9.3.2 Asynchronous Parallel Algorithm for Smooth Minimization

Although the algorithm described in the previous section solves a simple subproblem at
each iteration, it is inherently sequential. This can be a disadvantage when addressing
large-scale problems. To overcome this concern, we develop an asynchronous parallel
method that solves Problem (9.1) for the smooth case.

Our parallel algorithm is similar to Algorithm 21, except for a crucial difference: now
we may have multiple processors, and each of these executes the loop 2–6 independently
without the need for coordination. This way, we can solve subproblems (i.e., multiple
pairs) simultaneously in parallel, and due to the asynchronous nature of our algorithm,
we can execute updates as they complete, without requiring any locking.

The critical issue, however, with implementing an asynchronous algorithm in the
presence of non-separable constraints is ensuring feasibility throughout the course of
the algorithm. This requires the operation xi ← xi + δ to be executed in an atomic (i.e.,
sequentially consistent) fashion. Modern processors facilitate that without an additional
locking structure through the “compare-and-swap” instruction [128]. Since the updates
use atomic increments and each update satisfies Adk = 0, the net effect of T updates is
∑T

k=1 Adk = 0, which is feasible despite asynchronicity of the algorithm.
The next key issue is that of convergence. In an asynchronous setting, the updates

are based on stale gradients that are computed using values of x read many iterations
earlier. But provided that gradient staleness is bounded, we can establish a sublinear
convergence rate of the asynchronous parallel algorithm (Theorem 9.4.2). More for-
mally, we assume that in iteration k, stale gradients are computed based on xD(k) such
that k − D(k) ≤ τ. The bound on staleness, denoted by τ, captures the degree of par-

185

allelism in the method: such parameters are typical in asynchronous systems and pro-
vides a bound on the delay of the updates [91].

Before concluding the discussion on our asynchronous algorithm, it is important to
note the difficulty of extending our algorithm to nonsmooth problems. For example,
consider the case where h = IC (indicator function of some convex set). Although
a pairwise update as suggested above maintains feasibility with respect to the linear
constraint Ax = 0, it may violate the feasibility of being in the convex set C. This
complication can be circumvented by using a convex combination of the current iterate
with the update, as this would retain overall feasibility. However, it would complicate
the convergence analysis. We plan to investigate this direction in future work.

9.3.3 Stochastic Minimization

An important subclass of Problem (9.1) assumes separable losses f (x) = 1
N ∑N

i=1 fi(x).
This class arises naturally in many machine learning applications where the loss sepa-
rates over training examples. To take advantage of this added separability of f , we can
derive a stochastic block-CD procedure.

Our key innovation here is the following: in addition to randomly picking an edge
(i, j), we also pick a function randomly from { f1, · · · , fN} and perform our update using
this function. This choice substantially reduces the cost of each iteration when N is large,
since now the gradient calculations involve only the randomly selected function fi (i.e.,
we now use a stochastic-gradient). Pseudocode is given in Algorithm 22.

1: Choose x0 ∈ Rn such that Ax0 = 0.
2: for k ≥ 0 do
3: Select a random edge (ik, jk) ∈ E with probability pik jk
4: Select random integer l ∈ [N]
5: xk+1 ← xk + Uik jk Z(fl, xk, (ik, jk), αk/Lik jk)
6: k← k + 1
7: end for

Algorithm 22: Stochastic Minimization with Linear Constraints

Notice that the per iteration cost of Algorithm 22 is lower than Algorithm 21 by a
factor of N. However, as we will see later, this speedup comes at a price of slower
convergence rate (Theorem 9.4.3). Moreover, to ensure convergence, decaying step sizes
{αk}k≥0 are generally chosen.

9.4 Convergence Analysis

In this section, we outline convergence results for the algorithms described above. The
proofs are somewhat technical, and hence left in the appendix; here we present only the
key ideas.

186

For simplicity, we present our analysis for the following reformulation of the main
problem:

min
y,z

f (y, z) + ∑b
i=1 h(yi, zi) (9.4)

subject to ∑b
i=1 yi = 0,

where yi ∈ Rny and zi ∈ Rnz . Let y = [y>1 · · · y>b]> and z = [z>1 · · · z>b]>. We use
x to denote the concatenated vector [y>z>]> and hence we assume (unless otherwise
mentioned) that the constraint matrix A is defined as follows

A
(

y
z

)
=

(
∑b

i=1 yi
0

)
. (9.5)

It is worth emphasizing that this analysis does not result in any loss of generality. This
is due to the fact that Problem (9.1) with a general constraint matrix Ã having full row-
rank submatrices Ãi’s can be rewritten in the form of Problem (9.4) by using the trans-
formation specified in Section 9.11 of the appendix. It is important to note that this
reduction is presented only for the ease of exposition. For our experiments, we directly
solve the problem in Equation (9.2).

Let ηk = {(i0, j0), . . . , (ik−1, jk−1)} denote the pairs selected up to iteration k− 1. To
simplify notation, assume (without loss of generality) that the Lipschitz constant for the
partial gradient ∇i f (x) and ∇ij f (x) is L for all i ∈ [n] and (i, j) ∈ E.

Similar to [106], we introduce a Laplacian matrix L ∈ Rb×b that represents the com-
munication graph G. Since we also have unconstrained variables zi, we introduce a
diagonal matrix D ∈ Rb×b.

Lij =

{
∑r 6=i

pir
2L i = j

− pij
2L i 6= j

Dij =

{ pi
L i = j
0 i 6= j

We use K to denote the concatenation of the Laplacian L and the diagonal matrix D.
More formally,

K =

[
L⊗ Iny 0

0 D ⊗ Inz

]
.

This matrix induces a norm ‖x‖K =
√

x>Kx on the feasible subspace, with a correspond-
ing dual norm

‖x‖∗K =

√
x>
([
L+ ⊗ Iny 0

0 D−1 ⊗ Inz

])
x

Let X∗ denote the set of optimal solutions and let x0 denote the initial point. We
define the following distance, which quantifies how far the initial point is from the
optimal, taking into account the graph layout and edge selection probabilities

R(x0) := max
x: f (x)≤ f (x0)

max
x∗∈X∗

‖x− x∗‖∗K (9.6)

187

Note. Before delving into the details of the convergence results, we would like to draw
the reader’s attention to the impact of the communication network G on convergence.
In general, the convergence results depend on R(x0), which in turn depends on the
Laplacian L of the graph G. As a rule of thumb, the larger the connectivity of the graph,
the smaller the value of R(x0), and hence, faster the convergence.

9.4.1 Convergence Results for the Smooth Case

We first consider the case when h = 0. Here the subproblem at kth iteration has a very
simple update dik jk = Uik dk−Ujk dk where dk = αk

2L (∇jk f (xk)−∇ik f (xk)). We now prove
that Algorithm 21 attains an O(1/k) convergence rate.

Theorem 9.4.1. Let αk = 1 for k ≥ 0, and let {xk}k≥0 be the sequence generated by Algo-
rithm 21; let f ∗ denote the optimal value. Then, we have the following rate of convergence:

E[f (xk)]− f ∗ ≤ 2R2(x0)

k

where R(x0) is as defined in Equation (9.6).

Proof Sketch. We first prove that each iteration leads to descent in expectation. More
formally, we get

Eik jk [f (xk+1)|ηk] ≤ f (xk)− 1
2∇ f (xk)>K∇ f (xk).

The above step can be proved using Lemma 9.2.1. Let ∆k = E[f (xk)] − f ∗. It can be
proved that

1
∆k
≤ 1

∆k+1
− 1

2R2(x0)

This follows from the fact that

f (xk+1)− f ∗ ≤ ‖xk − x∗‖∗K‖∇ f (xk)‖K
≤ R(x0)‖∇ f (xk)‖K ∀k ≥ 0

Telescoping the sum, we get the desired result.

Note that Theorem 9.4.1 is a strict generalization of the analysis in [106] and [105]
due to: (i) the presence of unconstrained variables z; and (ii) the presence of a non-
decomposable objective function. it is also worth emphasizing that our convergence
rates improve upon those of [105], since they do not involve an exponential dependence
of the form bm on the number of constraints.

We now turn our attention towards the convergence analysis of our asynchronous
algorithm under a consistent reading model [91]. In this context we would like to em-
phasize that while our theoretical analysis assumes consistent reads, we do not enforce
this assumption in our experiments.

188

Theorem 9.4.2. Let ρ > 1 and αk = α be such that α < 2/(1 + τ + τρτ) and α < (ρ −
1)/(
√

2(τ + 2)(ρτ+1 + ρ)). Let {xk}k≥0 be the sequence generated by asynchronous algorithm
using step size αk and let f ∗ denote the optimal value. Then, we have the following rate of
convergence for the expected values of the objective function

E[f (xk)]− f ∗ ≤ R2(x0)

µk

where R(x0) is as defined in Equation (9.6) and µ =
α2

k
2

(
1
αk
− 1+τ+τρτ

2

)
.

Proof Sketch. For ease of exposition, we describe the case where the unconstrained vari-
ables z are absent. The analysis of case with z variables can be carried out in a similar
manner. Let D(k) denote the iterate of the variables used in the kth iteration (the exis-
tence of D(k) follows from the consistent reading assumption). Let

dk =
αk
2L

(
∇yjk

f (xD(k))−∇yik
f (xD(k))

)
and dk

ik jk
= xk+1 − xk = Uik dk − Ujk dk. Using Lemma 9.2.1 and the assumption that

staleness in the variables is bounded by τ, i.e., k − D(k) ≤ τ and definition of dk
ij, we

can derive the following bound:

E[f (xk+1)] ≤ E[f (xk)]− L
(

1
αk
− 1 + τ

2

)
E[‖dk

ik jk‖
2] +

L
2

E

[
τ

∑
t=1
‖dk−t

ik−t jk−t
‖2

]
.

In order to obtain an upper bound on the norms of dk
ik jk

, we prove that

E
[
‖dk−1

ik−1 jk−1
‖2
]
≤ ρE

[
‖dk

ik jk‖
2
]

This can proven using mathematical induction. Using the above bound on ‖dk
ik jk
‖2, we

get

E[f (xk+1)] ≤ E[f (xk)]− L
(

1
αk
− 1 + τ + τρτ

2

)
E[‖dk

ik jk‖
2]

This proves that the method is a descent method in expectation. Following similar anal-
ysis as Theorem 9.4.1, we get the required result.

Note the dependence of convergence rate on the staleness bound τ. For larger val-
ues of τ, the stepsize αk needs to be decreased to ensure convergence, which in turn
slows down the convergence rate of the algorithm. Nevertheless, the convergence rate
remains O(1/k).

The last smooth case we analyze is our stochastic algorithm.

189

Theorem 9.4.3. Let αi =
√

∆0L/(M
√

i + 1) for i ≥ 0 in Algorithm 22. Let {xk}k≥0 be
the sequence generated by Algorithm 22 and let f ∗ denote the optimal value. We denote x̄k =
arg min0≤i≤k f (xk). Then, we have the following rate of convergence for the expected values of
the objective:

E[f (x̄k)]− f ∗ ≤ O
(

1
4
√

k

)
where ∆0 = f (x0)− f ∗.

The convergence rate is O(1/k1/4) as opposed to O(1/k) of Theorem 9.4.1. On the
other hand, the iteration complexity is lower by a factor of N; this kind of tradeoff is
typical in stochastic algorithms, where the slower rate is the price we pay for a lower
iteration complexity. We believe that the convergence rate can be improved to O(1/

√
k),

the rate generally observed in stochastic algorithms, by a more careful analysis.

9.4.2 Nonsmooth Case

We finally state the convergence rate for the nonsmooth case (h 6≡ 0) in the case of a sum
constraint. Similar to [105], we assume h is coordinatewise separable (i.e. we can write
h(x) = ∑b

i=1 ∑j xij), where xij is the jth coordinate in the ith block. For this analysis, we
assume that the graph G is a clique 1 with uniform probability, i.e., λ = pij = 2/b(b− 1).

Theorem 9.4.4. Assume Ax = ∑i Aixi. Let {xk}k≥0 be the sequence generated by Algo-
rithm 21 and let F∗ denote the optimal value. Assume that the graph G is a clique with uniform
probability. Then we have the following:

E[F(xk)− F∗] ≤ b2LR2(x0)

2k + b2LR2(x0)
∆0

,

where R(x0) is as defined in Equation (9.6).
This convergence rate is a generalization of the convergence rate obtained in Necoara

and Patrascu [105] for a single linear constraint (see Theorem 1 in [105]). It is also an
improvement of the rate obtained in Necoara and Patrascu [105] for general linear con-
straints (see Theorem 4 in [105]) when applied to the special case of a sum constraint.
Our improvement comes in the form of a tractable constant, as opposed to the exponen-
tial dependence O(bm) shown in [105].

9.5 Applications

To gain a better understanding of our approach, we state some applications of interest,
while discussing details of Algorithm 21 and Algorithm 22 for them. While there are

1We believe our results also easily extend to the general case along the lines of [145, 146, 147], using the
concept of Expected Separable Overapproximation (ESO). Moreover, the assumption is not totally impracti-
cal, e.g., in a multicore setting with a zero-sum constraint (i.e. Ai = I), the clique-assumption introduces
little cost.

190

many applications of problem (9.1), we only mention a few prominent ones here.
Support Vector Machines: The SVM dual (with bias term) assumes the form (9.1);
specifically,

min
α

1
2 ∑i,j αiαjyiyjz>i zj −∑n

i=1 αi

s.t. ∑i αiyi = 0, 0 ≤ αi ≤ C ∀ i ∈ [n]. (9.7)

Here, zi denotes the feature vector of the ith training example and yi ∈ {1,−1} de-
notes the corresponding label. By letting f (α) = 1

2 ∑i,j αiαjyiyjz>i zj − ∑i αi and h(α) =

∑i I(0 ≤ αi ≤ C) and A = [y1, . . . , yn] this problem can be written in form of Prob-
lem (9.1). Using Algorithm 21 for SVM involves solving a sub-problem similar to one
used in SMO in the scalar case (i.e., αi ∈ R) and can be solved in linear time in the block
case (see [14]).
Generalized Lasso: The objective is to solve the following optimization problem.

minβ
1
2‖Y− Xβ‖2

2 + λ‖Dβ‖1

where Y ∈ RN denotes the output, X ∈ RN×n is the input and D ∈ Rq×n represents a
specified penalty matrix. This problem can also be seen as a specific case of Problem (9.1)
by introducing an auxiliary variable t and slack variables u, v. Then, f (β, t) = 1

2‖Y −
Xβ‖2

2 + ∑i ti, h(u, v) = I(u ≥ 0) + I(v ≥ 0) and, t − Dβ − u = 0 and t + Dβ − v =
0 are the linear constraints. To solve this problem, we can use either Algorithm 21
or Algorithm 22. In general, optimization of convex functions on a structured convex
polytope can be solved in a similar manner.
Unconstrained Separable Optimization: As mentioned earlier, another interesting ap-
plication is for unconstrained separable optimization. For any problem minx ∑i fi(x)—a
form generally encountered across machine learning—can be rewritten using variable-
splitting. Solving the problem in distributed environment requires considerable syn-
chronization (for the consensus constraint), which can slow down the algorithm signif-
icantly. However, the dual of the problem is

min
λ

∑
i

f ∗i (λi) s.t ∑N
i=1 λi = 0.

where f ∗i is the Fenchel conjugate of fi. This reformulation perfectly fits our frame-
work and can be solved in an asynchronous manner using the procedure described in
Section 9.3.2.

Other interesting application include constrained least square problem, multi-agent
planning problems, resource allocation—see [105, 106] and references therein for more
examples.

9.6 Experiments

In this section, we present our empirical results. In particular, we examine the behav-
ior of random coordinate descent algorithms analyzed in this chapter under different

191

h
0 2000 4000 6000 8000600

700

800

900

1000

Iteration

O
bj

ec
tiv

e
Va

lu
e

Tree + Ring
Star + Ring
Ring
Clique

Figure 9.1: Objective value vs. number of iterations for different graph topologies. Note
that larger the connectivity of the graph, faster is the convergence.

communication constraints and concurrency conditions. 2

9.6.1 Effect of Communication Constraints

Our first set of experiments test the affect of the connectivity of the graph on the con-
vergence rate. In particular, recall that the convergence analysis established in Theo-
rem 9.4.1 depends on the Laplacian of the communication graph. In this experiment we
demonstrate how communication constraints affect convergence in practice. We exper-
iment with the following graph topologies of graph G: Ring, Clique, Star + Ring (i.e.,
the union of edges of a star and a ring) and Tree + Ring. On each layout we run the
sequential Algorithm 21 on the following quadratic problem

min C ∑N
i=1 ‖xi − (i mod 10)1‖2

s.t. ∑N
i=1 Aixi = 0, (9.8)

Note the decomposable structure of the problem. For this experiment, we use N =
1000 and xi ∈ R50. We have 10 constraints whose coefficients are randomly generated
from U[0, 1] and we choose C such that the objective evaluates to 1000 when x = 0.

The results for Algorithm 21 on each topology for 10000 iterations are shown in
Figure 9.1. The results clearly show that better connectivity implies better convergence
rate. Note that while the clique topology has significantly better convergence than other
topologies, acceptable long-term performance can be achieved by much sparser topolo-
gies such as Star + Ring and Tree + Ring.

Having a sparse communication graph is important to lower the cost of a distributed
system. Furthermore, it is worth mentioning that the sparsity of the communication
graph is also important in a multicore setting; since Algorithm 21 requires computing
(Ai A>i + Aj A>j)

+ for each communicating pair of nodes (i, j). Our analysis shows that
this computation takes a significant portion of the running time and hence it is essential
to minimize the number of variable pairs that are allowed to be updated.

2All experiments were conducted on a Google Compute Engine virtual machine of type “n1-highcpu-
16”, which comprises 16 virtual CPUs and 14.4 GB of memory. For more details, please refer to https:
//cloud.google.com/compute/docs/machine-types#highcpu.

192

https://cloud.google.com/compute/docs/machine-types#highcpu
https://cloud.google.com/compute/docs/machine-types#highcpu

9.6.2 Concurrency and Synchronization

As seen earlier, compared to Tree + Ring, Star + Ring is a low diameter layout (di-
ameter = 2). Hence, in a sequential setting, it indeed results in a faster convergence.
However, Star + Ring requires a node to be connected to all other nodes. This high-
degree node could be a contention point in a parallel setting. We test the performance
of our asynchronous algorithm in this setting. To assess how the performance would be
affected with such contention and how asynchronous updates would increase perfor-
mance, we conduct another experiment on the synthetic problem (9.8) but on a larger
scale (N = 10000, xi ∈ R100, 100 constraints).

Our concurrent update follows a master/slave scheme. Each thread performs a loop
where in each iteration it elects a master i and slave j and then applies the following
sequence of actions:

1. Obtain the information required for the update from the master (i.e., information
for calculating the gradients used for solving the subproblem).

2. Send the master information to the slave, update the slave variable and get back
the information needed to update the master.

3. Update the master based (only) on the information obtained from steps 1 and 2.
We emphasize that the master is not allowed to read its own state at step 3 except to
apply an increment, which is computed based on steps 1 and 2. This ensures that the
master’s increment is consistent with that of the slave, even if one or both of them was
being concurrently overwritten by another thread. More details on the implementation
can be found in [58].

Given this update scheme, we experiment with three levels of synchronization: (a)
Double Locking: Locks the master and the slave through the entire update. Because the
objective function is decomposable, a more conservative locking (e.g. locking all nodes)
is not needed. (b) Single Locking: Locks the master during steps 1 and 3 (the master
is unlocked during step 2 and locks the slave during step 2). (c) Lock-free: No locks
are used. Master and slave variables are updated through atomic increments similar to
Hogwild! method.

Following [128], we use spinlocks instead of mutex locks to implement locking.
Spinlocks are preferred over mutex locks when the resource is locked for a short pe-
riod of time, which is the case in our algorithm. For each locking mechanism, we vary
the number of threads from 1 to 15. We stop when f0 − ft > 0.99(f0 − f ∗), where f ∗ is
computed beforehand up to three significant digits. Similar to [128], we add artificial
delay to steps 1 and 2 in the update scheme to model complicated gradient calculations
and/or network latency in a distributed setting.

Figure 9.2 shows the speedup for Tree + Ring and Star + Ring layouts. The figure
clearly shows that a fully synchronous method suffers from contention in the Star +
Ring topology whereas asynchronous method does not suffer from this problem and
hence, achieves higher speedups. Although the Tree + Ring layouts achieves higher
speedup than Star + Ring, the latter topology results in much less running time (∼ 67
seconds vs 91 seconds using 15 threads).

193

0 5 10 150

5

10

15

P

Sp
ee

du
p

Optimal
Double lock
Single lock
Lock free

0 5 10 150

5

10

15

P

Sp
ee

du
p

Optimal
Double lock
Single lock
Lock free

Figure 9.2: Speedup for Tree + Ring (top) and Star + Ring (bottom) topologies and differ-
ent levels of synchronization. Note for Star + Ring topology, speedup of asynchronous
algorithm is significantly higher than that of synchronous version.

9.6.3 Practical Case Study: Parallel Training of Linear SVM

In this section, we explore the effect of parallelism on randomized CD for training a
linear SVM based on the dual formulation stated in (9.7). Necoara et. al. [105] have
shown that, in terms of CPU time, a sequential randomized CD outperforms coordinate
descent using Gauss-Southwell selection rule. It was also observed that randomized CD
outperforms LIBSVM [24] for large datasets while maintaining reasonable performance
for small datasets.

In this experiment we use a clique layout. For SVM training in a multicore setting,
using a clique layout does not introduce additional cost compared to a more sparse
layout. To maintain the box constraint, we use the double-locking scheme described in
Section 9.6.2 for updating a pair of dual variables.

One advantage of coordinate descent algorithms is that they do not require the stor-
age of the Gram matrix; instead they can compute its elements on the fly. That comes,
however, at the expense of CPU time. Similar to [105], to speed up gradient computa-
tions without increasing memory requirements, we maintain the primal weight vector
of the linear SVM and use it to compute gradients. Basically, if we increment αi by δi
and αj by δj, then we increment the weight vector by δiyixi + δjyjxj. This increment
is accomplished using atomic additions. However, this implies that all threads will be
concurrently updating the primal weight vector. Similar to [128], we require these up-
dates to be sparse with small overlap between non-zero coordinates in order to ensure
convergence. In other words, we require training examples to have sparse features with
small overlap between non-zero features.

We report speedups on two datasets used in [105].3 For each dataset, we train the
SVM model until f0 − ft > 0.9999(f0 − f ∗), where f ∗ is the objective reported in [105].

3Datasets can be downloaded from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets.

194

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

0 5 10 150.5

1

1.5

2

2.5

3

3.5

P

Sp
ee
du
p

0 5 10 151

2

3

4

5

P

Sp
ee
du
p

Figure 9.3: Speedup for linear SVM training on a7a (top) and w8a datasets.

In Figure 9.3, we report speedup for both the datasets. The figure shows that parallelism
indeed increases the performance of randomized CD training of linear SVM.

Appendix: Omitted Proofs

9.7 Proof of Theorem 9.4.1

Proof. Taking the expectation over the choice of edges (ik, jk) gives the following in-
equality

Eik jk [f (xk+1)|ηk]

≤ Eik jk

[
f (xk)− 1

4L
‖∇yik

f (xk)−∇yjk
f (xk)‖2 − 1

2L
‖∇zik

f (xk)‖2 − 1
2L
‖∇zjk

f (xk)‖2
]

≤ f (xk)− 1
2
∇y f (xk)>(L⊗ Iny)∇y f (xk)− 1

2
∇z f (xk)>(D ⊗ Inz)∇z f (xk)

≤ f (xk)− 1
2
∇ f (xk)>K∇ f (xk), (9.9)

where ⊗ denotes the Kronecker product. This shows that the method is a descent
method. Now we are ready to prove the main convergence theorem. We have the
following:

f (xk+1)− f ∗ ≤ 〈∇ f (xk), xk − x∗〉 ≤ ‖xk − x∗‖∗K‖∇ f (xk)‖K
≤ R(x0)‖∇ f (xk)‖K ∀k ≥ 0.

Combining this with inequality (9.9), we obtain

E[f (xk+1|ηk] ≤ f (xk)− (f (xk)− f ∗)2

2R2(x0)
.

195

Taking the expectation of both sides an denoting ∆k = E[f (xk)]− f ∗ gives

∆k+1 ≤ ∆k −
∆2

k
2R2(x0)

.

Dividing both sides by ∆k∆k+1 and using the fact that ∆k+1 ≤ ∆k we obtain

1
∆k
≤ 1

∆k+1
− 1

2R2(x0)
.

Adding these inequalities for k steps 0 ≤ 1
∆0
≤ 1

∆k
− k

2R2(x0)
from which we obtain the

statement of the theorem where C = 2R2(x0).

9.8 Proof of Theorem 9.4.3

Proof. In this case, the expectation should be over the selection of the pair (ik, jk) and
random index lk ∈ [N]. In this proof, the definition of ηk includes lk i.e., we have
ηk = {(i0, j0, l0), . . . , (ik−1, jk−1, lk−1)}. We define the following:

dk
ik =

[
αk
2L

[
∇yjk

flk(xk)−∇yik
flk(xk)

]>
, −αk

L

[
∇zik

flk(xk)
]>]>

,

dk
jk =

[
αk
2L

[
∇yjk

flk(xk)−∇yik
flk(xk)

]>
,

αk
L

[
∇zjk

flk(xk)
]>]>

,

dlk
ik jk

= Uik dk
ik −Ujk dk

jk .

For the expectation of objective value at xk+1, we have

E[f (xk+1)|ηk] ≤ Eik jkElk

[
f (xk) +

〈
∇ f (xk), dlk

ik jk

〉
+

L
2
‖dlk

ik jk
‖2
]

≤ Eik jk

[
f (xk) +

〈
∇ f (xk), Elk [d

lk
ik jk

]
〉
+

L
2

Elk [‖d
lk
ik jk
‖2]

]
≤ Eik jk

[
f (xk) +

αk
2L

〈
∇yik

f (xk), Elk [∇yjk
flk(xk)−∇yik

flk(xk)]
〉

+
αk
2L

〈
∇yjk

f (xk), Elk [∇yik
flk(xk)−∇yjk

flk(xk)]
〉

− αk
L

〈
∇zik

f (xk), Elk [∇zik
flk(xk)]

〉
− αk

L

〈
∇zjk

f (xk), Elk [∇zjk
flk(xk)]

〉
+

L
2

Elk [‖d
lk
ik jk
‖2]
]
.

Taking expectation over lk, we get the following relationship:

E[f (xk+1)|ηk] ≤ Eik jk

[
f (xk) +

αk
2L

〈
∇yik

f (xk),∇yjk
f (xk)−∇yik

f (xk)
〉

+
αk
2L

〈
∇yjk

f (xk),∇yik
f (xk)−∇yjk

f (xk)
〉

− αk
L

〈
∇zik

f (xk),∇zik
f (xk)

〉
− αk

L

〈
∇zjk

f (xk),∇zjk
f (xk)

〉
+

L
2

Elk [‖d
lk
ik jk
‖2]
]
.

196

We first note that Elk [‖d
lk
ik jk
‖2] ≤ 8M2α2

k/L2 since ‖∇ fl‖ ≤ M. Substituting this in
the above inequality and simplifying we get,

E[f (xk+1)|ηk] ≤ f (xk)− αk∇y f (xk)>(L⊗ In)∇y f (xk)− αk∇z f (xk)>(D ⊗ In)∇z f (xk) +
4M2α2

k
L

≤ f (xk)− αk∇ f (xk)>K∇ f (xk) +
4M2α2

k
L

. (9.10)

Similar to Theorem 9.4.1, we obtain a lower bound on ∇ f (xk)>K∇ f (xk) in the follow-
ing manner.

f (xk)− f ∗ ≤ 〈∇ f (xk), xk − x∗〉 ≤ ‖xk − x∗‖∗K.‖∇ f (xk)‖K
≤ R(x0)‖∇ f (xk)‖K.

Combining this with inequality Equation (9.10), we obtain

E[f (xk+1)|ηk] ≤ f (xk)− αk
(f (xk)− f ∗)2

R2(x0)
+

4M2α2
k

L
.

Taking the expectation of both sides an denoting ∆k = E[f (xk)]− f ∗ gives

∆k+1 ≤ ∆k − αk
∆2

k
R2(x0)

+
4M2α2

k
L

.

Adding these inequalities from i = 0 to i = k and use telescopy we get,

∆k+1 +
k

∑
i=0

αi
∆2

k
R2(x0)

≤ ∆0 +
4M2

L

k

∑
i=0

α2
i .

Using the definition of x̄k+1 = arg min0≤i≤k+1 f (xi), we get

k

∑
i=0

αi
(E[f (x̄k+1)− f ∗])2

R2(x0)
≤ ∆k+1 +

k

∑
i=0

αi
∆2

k
R2(x0)

≤ ∆0 +
4M2

L

k

∑
i=0

α2
i .

Therefore, from the above inequality we have,

E[f (x̄k+1)− f ∗] ≤ R(x0)

√√√√ (∆0 + 4M2 ∑k
i=0 α2

i /L)

∑k
i=0 αi

.

Note that E[f (x̄k+1) − f ∗] → 0 if we choose step sizes satisfying the condition that
∑∞

i=0 αi = ∞ and ∑∞
i=0 α2

i < ∞. Substituting αi =
√

∆0L/(2M
√

i + 1), we get the re-
quired result using the reasoning from [109] (we refer the reader to Section 2.2 of [109]
for more details).

197

9.9 Proof of Theorem 9.4.2

Proof. For ease of exposition, we analyze the case where the unconstrained variables z
are absent. The analysis of case with z variables can be carried out in a similar manner.
Consider the update on edge (ik, jk). Recall that D(k) denotes the index of the iterate
used in the kth iteration for calculating the gradients. Let dk = αk

2L

(
∇yjk

f (xD(k))−∇yik
f (xD(k))

)
and dk

ik jk
= xk+1 − xk = Uik dk −Ujk dk. Note that ‖dk

ik jk
‖2 = 2‖dk‖2. Since f is Lipschitz

continuous gradient, we have

f (xk+1) ≤ f (xk) +
〈
∇yik

yjk
f (xk), dk

ik jk

〉
+

L
2
‖dk

ik jk‖
2

≤ f (xk) +
〈
∇yik

yjk
f (xD(k)) +∇yik

yjk
f (xk)−∇yik

yjk
f (xD(k)), dk

ik jk

〉
+

L
2
‖dk

ik jk‖
2

≤ f (xk)− L
αk
‖dk

ik jk‖
2 +

〈
∇yik

yjk
f (xk)−∇yik

yjk
f (xD(k)), dk

ik jk

〉
+

L
2
‖dk

ik jk‖
2

≤ f (xk)− L
(

1
αk
− 1

2

)
‖dk

ik jk‖
2 + ‖∇yik

yjk
f (xk)−∇yik

yjk
f (xD(k))‖‖dk

ik jk‖

≤ f (xk)− L
(

1
αk
− 1

2

)
‖dk

ik jk‖
2 + L‖xk − xD(k)‖‖dk

ik jk‖.

The third and fourth steps in the above derivation follow from definition of dk
ij and

Cauchy-Schwarz inequality respectively. The last step follows from the fact the gradi-
ents are Lipschitz continuous. Using the assumption that staleness in the variables is
bounded by τ, i.e., k− D(k) ≤ τ and definition of dk

ij, we have

f (xk+1) ≤ f (xk)− L
(

1
αk
− 1

2

)
‖dk

ik jk‖
2 + L

(
τ

∑
t=1
‖dk−t

ik−t jk−t
‖‖dk

ik jk‖
)

≤ f (xk)− L
(

1
αk
− 1

2

)
‖dk

ik jk‖
2 +

L
2

(
τ

∑
t=1

[
‖dk−t

ik−t jk−t
‖2 + ‖dk

ik jk‖
2
])

≤ f (xk)− L
(

1
αk
− 1 + τ

2

)
‖dk

ik jk‖
2 +

L
2

τ

∑
t=1
‖dk−t

ik−t jk−t
‖2.

The first step follows from triangle inequality. The second inequality follows from fact
that ab ≤ (a2 + b2)/2. Using expectation over the edges, we have

E[f (xk+1)] ≤ E[f (xk)]− L
(

1
αk
− 1 + τ

2

)
E[‖dk

ik jk‖
2] +

L
2

E

[
τ

∑
t=1
‖dk−t

ik−t jk−t
‖2

]
. (9.11)

We now prove that, for all k ≥ 0

E
[
‖dk−1

ik−1 jk−1
‖2
]
≤ ρE

[
‖dk

ik jk‖
2
]

, (9.12)

198

where we define E
[
‖dk−1

ik−1 jk−1
‖2
]
= 0 for k = 0. Let wt denote the vector of size |E| such

that wt
ij =
√pij‖dt

ij‖ (with slight abuse of notation, we use wt
ij to denote the entry corre-

sponding to edge (i, j)). Note that E
[
‖dt

it jt‖
2
]
= E[‖wt‖2]. We prove Equation (9.12) by

induction.
Let uk be a vector of size |E| such that uk

ij =
√pij‖dk

ij− dk−1
ij ‖. Consider the following:

E[‖wk−1‖]2 −E[‖wk‖2] = E[2‖wk−1‖]2 −E[‖wk‖2 + ‖wk−1‖2]

≤ 2E[‖wk−1‖2]− 2E[〈wk−1, wk〉]
≤ 2E[‖wk−1‖‖wk−1 − wk‖]
≤ 2E[‖wk−1‖‖uk‖] ≤ 2E[‖wk−1‖

√
2αk‖xD(k) − xD(k−1)‖]

≤
√

2αk

max(D(k−1),D(k))

∑
t=min(D(k−1),D(k))

(
E[‖wk−1‖2] + E[‖dt

it jt‖
2]
)

. (9.13)

The fourth step follows from the bound below on |uk
ij|

|uk
ij| =

√
pij‖dk

ij − dk−1
ij ‖

≤ √pij‖(Ui −Uj)
αk
2L

(∇yi f (xD(k))−∇yj f (xD(k)) +∇yj f (xD(k−1))−∇yi f (xD(k−1)))‖

≤
√

2pijαk‖xD(k) − xD(k−1)‖.

The fifth step follows from triangle inequality. We now prove (9.12): the induction
hypothesis is trivially true for k = 0. Assume it is true for some k− 1 ≥ 0. Now using
Equation (9.13), we have

E[‖wk−1‖]2 −E[‖wk‖2] ≤
√

2αk(τ + 2)E[‖wk−1‖2] +
√

2αk(τ + 2)ρτ+1E[‖wk‖2]

for our choice of αk. The last step follows from the fact that E[‖dt
it jt‖

2] = E[‖wt‖2] and
mathematical induction. From the above, we get

E[‖wk−1‖2] ≤ 1 +
√

2αk(τ + 2)ρ(τ+1)

1−
√

2αk(τ + 2)
E[‖wk‖2] ≤ ρE[‖wk‖2].

Thus, the statement holds for k. Therefore, the statement holds for all k ∈ N by mathe-
matical induction. Substituting the above in Equation (9.11), we get

E[f (xk+1)] ≤ E[f (xk)]− L
(

1
αk
− 1 + τ + τρτ

2

)
E[‖dk

ik jk‖
2].

This proves that the method is a descent method in expectation. Using the definition of

199

dk
ij, we have

E[f (xk+1)] ≤ E[f (xk)]−
α2

k
4L

(
1
αk
− 1 + τ + τρτ

2

)
E[‖∇yik

f (xD(k))−∇yjk
f (xD(k))‖2]

≤ E[f (xk)]−
α2

k
4L

(
1
αk
− 1 + τ + τρτ

2

)
E[‖∇ f (xD(k))−∇ f (xD(k))‖2

K]

≤ E[f (xk)]−
α2

k
2R2(x0)

(
1
αk
− 1 + τ + τρτ

2

)
E[(f (xD(k))− f ∗)2]

≤ E[f (xk)]−
α2

k
2R2(x0)

(
1
αk
− 1 + τ + τρτ

2

)
E[(f (xk)− f ∗)2].

The second and third steps are similar to the proof of Theorem 9.4.1. The last step
follows from the fact that the method is a descent method in expectation. Following
similar analysis as Theorem 9.4.1, we get the required result.

9.10 Proof of Theorem 9.4.4

Proof. Let Ax = ∑i xi. Let x̃k+1 be solution to the following optimization problem:

x̃k+1 = arg min
{x|Ax=0}

〈∇ f (xk), x− xk〉+ L
2
‖x− xk‖2 + h(x).

To prove our result, we first prove few intermediate results. We say vectors d ∈ Rn

and d′ ∈ Rn are conformal if did′i ≥ 0 for all i ∈ [b]. We use dik jk = xk+1 − xk and
d = x̃k+1 − xk. Our first claim is that for any d, we can always find conformal vectors
whose sum is d (see [105]). More formally, we have the following result.

Lemma 9.10.1. For any d ∈ Rn with Ad = 0, we have a multi-set S = {d′ij}i 6=j such that
d and d′ij are conformal for all i 6= j and i, j ∈ [b] i.e., ∑i 6=j d′ij = d, Ad′ij = 0 and d′ij can be
non-zero only in coordinates corresponding to xi and xj.

Proof. We prove by an iterative construction, i.e., for every vector d such that Ad = 0,
we construct a set S = {sij} (sij ∈ Rn) with the required properties. We start with a
vector u0 = d and multi-set S0 = {s0

ij} and s0
ij = 0 for all i 6= j and i, j ∈ [n]. At the kth

step of the construction, we will have Auk = 0, As = 0 for all s ∈ Sk, d = uk + ∑s∈Sk s
and each element of s is conformal to d.

In kth iteration, pick the element with the smallest absolute value (say v) in uk−1.
Let us assume it corresponds to yj

p. Now pick an element from uk−1 corresponding

to yj
q for p 6= q ∈ [m] with at least absolute value v albeit with opposite sign. Note

that such an element should exist since Auk−1 = 0. Let p1 and p2 denote the indices
of these elements in uk−1. Let Sk be same as Sk−1 except for sk

pq which is given by

200

sk
pq = sk−1

pq + r = sk−1
pq + uk−1

p1
ep1 − uk−1

p1
ep2 where ei denotes a vector in Rn with zero

in all components except in ith position (where it is one). Note that Ar = 0 and r is
conformal to d since it has the same sign. Let uk+1 = uk − r. Note that Auk+1 = 0 since
Auk = 0 and Ar = 0. Also observe that As = 0 for all s ∈ Sk+1 and uk+1 = ∑s∈Sk s = d.

Finally, note that each iteration the number of non-zero elements of uk decrease by
at least 1. Therefore, this algorithm terminates after a finite number of iterations. More-
over, at termination uk = 0 otherwise the algorithm can always pick an element and
continue with the process. This gives us the required conformal multi-set.

Now consider a set {d′ij} which is conformal to d. We define x̂k+1 in the following
manner:

x̂k+1
i =

{
xk

i + d′ij if (i, j) = (ik, jk)
xk

i if (i, j) 6= (ik, jk)

Lemma 9.10.2. For any x ∈ Rn and k ≥ 0,

E[‖x̂k+1 − xk‖2 ≤ λ(‖x̃k+1 − xk‖2).

We also have
E(h(x̂k+1)) ≤ (1− λ)h(xk) + λh(x̃k+1).

Proof. We have the following bound:

Eik jk [‖x̂
k+1 − xk‖2 = λ ∑

i 6=j
‖d′ij‖2 ≤ λ‖∑

i 6=j
d′ij‖2 = λ‖d‖2 = λ‖x̃k+1 − xk‖2.

The above statement directly follows the fact that {d′ij} is conformal to d. The remaining
part directly follows from [105].

The remaining part essentially on similar lines as [105]. We give the details here for
completeness. From Lemma 1, we have

Eik jk [F(xk+1)] ≤ Eik jk [f (xk) + 〈∇ f (xk), dik jk〉+
L
2
‖dik jk‖

2 + h(xk + dik jk)]

≤ Eik jk [f (xk) + 〈∇ f (xk), d′ik jk〉+
L
2
‖d′ik jk‖

2 + h(xk + d′ik jk)]

= f (xk) + λ

(
〈∇ f (x), ∑

i 6=j
d′ij〉+ ∑

i 6=j

L
2
‖d′ij‖2 + ∑

i 6=j
h(x + d′ij)

)

≤ (1− λ)F(xk) + λ(f (xk) + 〈∇ f (x), d〉+ L
2
‖d‖2 + h(x + d))

≤ min
{y|Ay=0}

(1− λ)F(xk) + λ(F(y) +
L
2
‖y− xk‖2)

≤ min
β∈[0,1]

(1− λ)F(xk) + λ(F(βx∗ + (1− β)xk) +
β2L

2
‖xk − x∗‖2)

≤ (1− λ)F(xk) + λ

(
F(xk)− 2(F(xk)− F(x∗))2

LR2(x0)

)
.

201

The second step follows from optimality of dik jk . The fourth step follows from Lemma 9.10.2.
Now using the similar recurrence relation as in Theorem 2, we get the required re-
sult.

9.11 Reduction of General Case

In this section we show how to reduce a problem with linear constraints to the form
of Problem (9.4). For simplicity, we focus on smooth objective functions. However,
the formulation can be extended to composite objective functions along similar lines.
Consider the optimization problem

min
x

f (x) s.t. Ax = ∑ Aixi = 0,

where fi is a convex function with an L-Lipschitz gradient.
Let Āi be a matrix with orthonormal columns satisfying range(Āi) = ker(Ai) , this

can be obtained (e.g. using SVD). For each i, define yi = Aixi and assume that the rank
of Ai is less than or equal to the dimensionality of xi. 4 Then we can rewrite x as a
function h(y, z) satisfying

xi = A+
i yi + Āizi,

for some unknown zi, where C+ denote the pseudo-inverse of C. The problem then
becomes

min
y,z

g(y, z) s.t.
N

∑
i=1

yi = 0, (9.14)

where

g(y, z) = f (φ(y, z)) = f

(
∑

i
Ui(A+

i yi + Āizi)

)
. (9.15)

It is clear that the sets S1 = {x|Ax = 0} and S2 = {φ(y, z)|∑i yi = 0} are equal and
hence the problem defined in (9.14) is equivalent to that in (9.1).

Note that such a transformation preserves convexity of the objective function. It is
also easy to show that it preserves the block-wise Lipschitz continuity of the gradients
as we prove in the following result.

Lemma 9.11.1. Let f be a function with Li-Lipschitz gradient w.r.t xi. Let g(y, z) be the func-
tion defined in (9.15). Then g satisfies the following condition

‖∇yi g(y, z)−∇yi g(y
′, z)‖ ≤ Li

σ2
min(Ai)

‖yi − y′i‖

‖∇zi g(y, z)−∇zi g(y, z′)‖ ≤ Li‖zi − z′i‖,

4If the rank constraint is not satisfied then one solution is to use a coarser partitioning of x so that the
dimensionality of xi is large enough.

202

where σmin(B) denotes the minimum non-zero singular value of B.

Proof. We have

‖∇yi g(y, z)−∇yi g(y
′, z)‖ = ‖(Ui A+

i)
>[∇x f (φ(y, z))−∇x f (φ(y′, z))]‖

≤ ‖A+
i ‖‖∇i f (φ(y, z))−∇i f (φ(y′, z))‖

≤ Li‖A+
i ‖‖A+

i (yi − y′i)‖ ≤ Li‖A+
i ‖

2‖yi − y′i‖ =
Li

σ2
min(Ai)

‖yi − y′i‖,

Similar proof holds for ‖∇zi g(y, z)−∇zi g(y, z′)‖ , noting that ‖Āi‖ = 1.

It is worth noting that this reduction is mainly used to simplify analysis. In practice,
however, we observed that an algorithm that operates directly on the original variables
xi (i.e. Algorithm 21) converges much faster and is much less sensitive to the condition-
ing of Ai compared to an algorithm that operates on yi and zi. Indeed, with appropriate
step sizes, Algorithm 21 minimizes, in each step, a tighter bound on the objective func-
tion compared to the bound based (9.14) as stated in the following result.

Lemma 9.11.2. Let g and φ be as defined in (9.15). And let

di = A+
i dyi + Āidzi .

Then, for any di and dj satisfying Aidi + Ajdj = 0 and any feasible x = φ(y, z) we have

〈∇i f (x), di〉+ 〈∇j f (x), dj〉+
Li

2α
‖di‖2 +

Lj

2α
‖dj‖2

≤ 〈∇yi g(y, z), dyi〉+ 〈∇zi g(y, z), dzi〉+ 〈∇yj g(y, z), dyj〉+ 〈∇zj g(y, z), dzj〉

+
Li

2ασ2
min(Ai)

‖dyi‖
2 +

Li

2α
‖dzi‖

2 +
Lj

2ασ2
min(Aj)

‖dyj‖
2 +

Lj

2α
‖dzj‖

2.

Proof. The proof follows directly from the fact that

∇i f (x) = A+
i
>∇yi g(y, z) + Āi

>∇zi g(y, z).

203

204

Chapter 10

Communication-Efficient Coresets
for ERM

10.1 Introduction

The primary focus of previous chapters in Part II was on asynchronous systems for
solving ERM problems. In this chapter, we investigate another important considera-
tion while solving large-scale ERM problems — communication efficiency. Recall that
the key idea of ERM is to minimize the loss on the training data subject to some reg-
ularization on the model that is being learned. More formally, given the training data
P = {(z1, y1), . . . , (zn, yn)} from a probability distribution on Z × Y , we are interested
in the following generic optimization problem:

min
x

f (x) ≡ λ

2
‖x‖2 +

1
n

n

∑
i=1

`(zi, yi, x) (10.1)

Throughout this chapter we assume that ` is convex. Furthermore, we assume that
Z = Rd and Y = R. Note that the objective function above is strongly convex (a func-
tion f is strongly convex with modulus λ if f (x)− λ

2 ‖x‖2 is a convex function). Prob-
lems conforming to Equation (10.1) include popular supervised learning algorithms
like support vector machines and regularized logistic regression. For example, when
zi ∈ Rd, yi ∈ {−1, 1} and `(zi, yi, x) = log(1 + exp(−yix>zi)) (logistic loss), the opti-
mization problem in Equation (10.1) corresponds to regularized logistic regression. The
loss function ` is not necessarily smooth as in, for example, support vector machines
(SVM) where `(zi, yi, x) = max(0, 1− yix>zi) (hinge loss).

Several algorithms have been proposed in the literature for solving optimization
problems of the aforementioned form. We will briefly review a few key approaches in
Section 10.1.1; however, the algorithms are either largely synchronous or communica-
tion intensive. For example, one of the popular approaches for solving such optimiza-
tion problems is stochastic subgradient descent. At each iteration of the algorithm, a
single training example is chosen at random and used to determine the subgradient
of the objective function. While such an approach reduces the computation complex-

205

ity at each iteration, the communication cost is prohibitively expensive in distributed
environment.

In this chapter, we study the problem described in Equation (10.1) in the setting
where the data is distributed across nodes and hence, communication is expensive in
comparison to the computation time. The main theme of this chapter is to reduce communi-
cation cost by constructing and optimizing over a small summary of the training data — which
acts as a proxy for the entire data set. Such a summary of the training points is called a core-
set. While this methodology has been successfully applied to data clustering problems
like k-means and k-median (we refer the reader to [38, 39] for a comprehensive survey),
it remains largely unexplored for supervised learning and optimization problems. The
goal of this chapter is to advance the frontier in this direction. In light of the above, our
primary contributions in this chapter are as follows:

• We describe a general framework for designing coreset-based algorithms. This
also provides insights into existing algorithms from the coresets viewpoint.

• We propose a novel coreset-based algorithm with low communication cost and
provable guarantees on the convergence to the optimal solution.

• We demonstrate the efficiency of the proposed algorithm on a few real-world
datasets. In particular, we show that the proposed approach reduces the com-
munication cost significantly.

This chapter is structured as follows. We begin with a discussion on the related work
in Section 10.1.1. In Section 10.2, we describe a general framework for the coreset-based
methodology. We then propose a coreset-based algorithm in Section 10.3 and provide its
convergence analysis. We finally conclude by demonstrating the empirical performance
of the algorithm in Section 10.4.

10.1.1 Related Work

As noted earlier, problem in Equation (10.1) arises frequently in the machine learning
and optimization literatures and hence has been a subject of extensive research. Conse-
quently, we cannot hope to do full justice to all the related work. We instead mention
the key relevant works here and refer the reader to the appropriate references for a more
thorough coverage.
First-order methods: In large-scale machine learning and convex optimization appli-
cations, first-order methods are popular due to their cheap iteration cost. The classic
approach in first order methods is the gradient descent approach. For strongly convex
functions f with L-lipshictz gradient, gradient descent has linear convergence rate i.e.,
f (xt) − f (x∗) ≤ ε in O(log(1/ε)) iterations where xt and x∗ are the tth iterate of gra-
dient descent and the optimal solution respectively [111]. The constants can be further
improved by the means of accelerating techniques [111]. On the other hand, when ` is
non-smooth, gradient descent methods have sub-linear convergence rates.

While gradient descent methods have appealing convergence properties, they have
two major shortcomings: (1) they require evaluation of n gradients at each iteration,
typically leading to high computational cost, and (2) the communication costs is also

206

high. A popular modification of this algorithm in large-scale settings is the stochas-
tic gradient descent. While the computational cost per iteration decreases, the linear
convergence property is lost. This is due to the variance introduced by stochasticity of
the approach. Recently, there has been a surge in interest to address this issue by in-
cremental methods (see [71, 153]). By reducing the variance, these approaches achieve
low iteration complexity while retaining the good convergence properties. However,
all these approaches still do not address the other major shortcoming — namely, high
communication cost.

Active Set & Cutting plane Methods: Our approach is also related to the classic active
set and cutting plane methods used in the optimization and the machine learning liter-
atures [117]. The basic idea is to find a working set of constraints, i.e., those inequality
constraints of the optimization problem that are either fulfilled with equality or are oth-
erwise important to the optimization problem. These methods are particularly popular
in the SVM literature. Scheinberg et al. [152] and Joachims et al. [70] provide more de-
tails on these approaches. However, these approaches are inherently sequential and not
communication friendly. Moreover, it is observed that these approaches are typically
outperformed by subgradient methods [159]. While the basic theme of these methods is
similar to that of ours insofar that we compute a similar summary of the training data at
each iteration, the key distinction is the approach and methodology used in construct-
ing the summary. Moreover, our approach is much more general and can be applied to
a wide range of loss functions.

Coresets: Our approach is closely related to the paradigm of coresets used in the theory
literature [12, 38, 39]. The basic idea of coresets is to extract a small amount of relevant
information from the given data and work on this extracted data. Coresets have been
proposed on a variety of data clustering problems such as k-means, k-medians, and
projective clustering. This approach is particularly important for NP-hard problems like
k-means. For example, coresets of size O(k/ε4) and independent of n (number of the
data points) have been proposed for the k-means problem [12, 38]. If k is small, such an
approach makes it possible to find optimal solution of k-means simply by an exhaustive
search. Furthermore, coresets can seamlessly handle distributed and streaming settings
and hence, are suitable to large-scale real-world applications. We refer the reader to
the excellent (but outdated) survey on coresets [6] for more details. Recently, a unifying
coreset framework has been proposed for data clustering problems [38], which provides
a more comprehensive treatment; interested readers may also refer to the references
therein. While there has been some progress in borrowing ideas from coresets in the
context of SVMs [168], this intersection remains largely unexplored.

Distributed Methods: Owing to large-scale machine learning applications, there has
been a recent surge of interest in distributed training of models. The basic idea is to
solve subproblems in parallel, followed by averaging at each iteration. For example,
[98, 182] propose an algorithm with a trade-off between computation and communica-
tion costs. The Alternating Direction Method of Multipliers (ADMM) [20] and its vari-
ants are also popular approaches that fall in this category. However, these strategies
are either synchronous and communication unfriendly since no communication occurs

207

1: Input: Initial x0, coefficients {γ1, . . . , γT}
2: for t = 1 to T do
3: Compute the coreset Ct−1 with the corresponding function gt−1(x; Ct−1, xt−1)
4: Solve the following subproblem

xt = arg min
x∈Ω(xt−1,Rt−1)

gt−1(x; Ct−1, xt−1)

5: Rt = γt−1 · Rt−1
6: end for

Algorithm 23: Generic Iterative Coreset Algorithm

during the computation phase. Mini-batch approaches have received considerable at-
tention recently. We refer the reader to [84] and references therein for a more thorough
analysis of mini-batch approaches based on stochastic gradient descent.

10.2 A General Framework

We describe our general methodology in this section. Before delving into the details of
the framework, we introduce a few definitions and notations in order to simplify our
exposition. We denote the objective function in Equation (10.1) by f (x; P). Recall that P
is the training set. The optimal solution of Equation (10.1) is denoted by x∗ i.e.,

x∗ = arg min
x

f (x; P) ≡ λ

2
‖x‖2 +

1
n

n

∑
i=1

`(zi, yi, x).

We use R∗ to denote ‖x∗ − x0‖, the distance of optimal solution from the initial point.
Next, we define the key ingredient in our approach.

Definition 10.2.1. (Coreset) We call a set C an ε-coreset of P on a set Ω if there exists a function
g : Rd → R such that |g(x; C)− f (x; P)| ≤ ε for all x ∈ Ω.

Note that the above definition is slightly different from the one typically used in the
coreset literature (see [38]) in two ways: (i) the set C is not necessarily a subset of P. (ii)
the coreset is restricted to the domain x ∈ Ω. Another noteworthy point is that while
coresets are classically defined as a multiplicative approximation, we use the notion of
additive approximation. However, such a relaxation allows us to view other related
algorithms through the lens of coresets. The key desirable property of a coreset is that
the cardinality of the set C is small, which will help us reduce the overall communication
complexity of the algorithm.

With this background we are ready to state our algorithm. At each iteration of the
algorithm, the key component of our framework is to compute a new coreset-based
on the current solution and solve the optimization problem based on that coreset. The
pseudocode is given as Algorithm 23.

208

First, we note that algorithm is still abstract because it does not specify the method
to construct the coreset Ct−1 and the function gt−1(x; Ct−1, xt−1). Furthermore, feasible
region of the subproblem Ω(xt−1, Rt−1) at each iteration is unspecified. These details
depend on the specific coreset construction and hence, are explained during the de-
scription of the coreset. We now state a general result on performance of Algorithm 23
based on some on some important properties of the coreset.

Theorem 10.2.2. Suppose we have the following conditions on the function gt−1 for 1 ≤ t ≤ T:
1. gt−1 is an upper bound on f and is strongly convex with modulus λ′t−1, for some λ′t−1 >

0.
2. The feasible region Ω(xt−1, Rt−1) is convex and contains the optimal solution x∗.
3. Suppose gt−1(x; Ct−1, xt−1) ≤ f (x; P) + ∆t−1 for all x ∈ Ω(xt−1, Rt−1) i.e., Ct−1 is an

∆t−1-coreset of P on Ω(xt−1, Rt−1).
Then for iterates {xt}T

t=1 of Algorithm 23 we have,

Rt = ‖xt − x∗‖ ≤
√

2∆t−1

λ + λ′t−1
.

Proof. For brevity, we use f (x) and gt−1(x) to denote f (x; P) and gt−1(x; Ct−1, xt−1)
respectively. We have the following:

gt−1(x∗) ≤ f (x∗) + ∆t−1,

gt−1(xt) + 〈∂gt−1(xt), x∗ − xt〉+
λ′t−1

2
‖xt − x∗‖2 ≤ gt−1(x∗).

The first inequality follows from condition 3 of the theorem. The second inequality fol-
lows from the fact that gt−1 is strongly convex with modulus λ′t−1 (condition 1). Adding
the above two inequalities we get

gt−1(xt) + 〈∂gt−1(xt), x∗ − xt〉+
λ′t−1

2
‖xt − x∗‖2 ≤ f (x∗) + ∆t−1. (10.2)

Because f is strongly convex with modulus λ, we have

f (x∗) + 〈∂ f (x∗), xt − x∗〉+
λ

2
· ‖xt − x∗‖2 ≤ f (xt).

Combining it with the fact that gt−1 is an upper bound on function f (condition 1), we
have

f (x∗) + 〈∂ f (x∗), xt − x∗〉+
λ

2
‖xt − x∗‖2 ≤ gt−1(xt). (10.3)

Adding Equations (10.2) and (10.3), we get the following:

〈∂gt−1(xt), x∗ − xt〉+ 〈∂ f (x∗), xt − x∗〉+
(λ + λ′t−1)

2
‖xt − x∗‖2 ≤ ∆t−1. (10.4)

To complete the proof we need the following intermediate result.

209

Lemma 10.2.3. Suppose gt−1 satisfies the conditions in Theorem 10.2.2, then for iterates xt, for
1 ≤ t ≤ T, of Algorithm 23 we have

〈∂gt−1(xt), x∗ − xt〉 ≥ 0 (10.5)
〈∂ f (x∗), xt − x∗〉 ≥ 0 (10.6)

Proof. We prove the inequality in Equation (10.5). The inequality in Equation (10.6) can
be proved in a similar manner. Let A = Ω(xt−1, Rt−1) and IA : Rd → R+ be the
indicator function corresponding to A i.e.,

IA(x) =
{

0 if x ∈ A
+∞ if x /∈ A

Recall that the xt is the optimal solution of the following:

xt = arg min
x∈A

gt−1(x).

From the optimality condition of xt, we have ∂gt−1(xt) + ∂IA(xt) = 0. Therefore, we
have

〈∂gt−1(xt), x∗ − xt〉 = 〈−∂IA(xt), x∗ − xt〉 (10.7)

Since A is convex (condition 2 of Theorem 10.2.2), the subgradient will be the normal
cone of A. Using the fact that x∗, xt ∈ A (condtion 2 of Theorem (10.2.2)) and from the
definition of the normal cone, we have

〈−∂IA(xt), x∗ − xt〉 ≥ 0.

Using the above inequality in Equation (10.7), we get the required result.

Using the inequalities from Lemma 10.2.3 in Equation (10.4) it is easy to see that the
result follows.

The above result gives an upper bound on the distance of the iterate xt in Algo-
rithm 23 from the optimal solution x∗. Note that the bound depends on ∆t−1 which in
turn typically depends on the optimality of xt−1. It is easy to see that convergence to the
optimal solution is possible as long as limt→∞ ∆t = 0. It is also worth noting that result
does not assume anything on the size of the coreset Ct. However, as we shall see, the
communication and computation complexity of the algorithm will critically depend on
|Ct| at each iteration.

Before discussing our algorithm based on this framework, we consider a popular
instantiation of this framework — gradient descent. For this discussion, we assume
that the loss function ` is differentiable and has L-lipschitz gradient i.e., ‖∂`(zi, yi, x)−
∂`(zi, yi, x′)‖ ≤ L‖x − x′‖. This smoothness condition on the gradient gives us the
following useful result.

210

Lemma 10.2.4. [111] For any function h : Rd → R with L-Lipschitz continuous gradient ∂h,
we have

h(x) ≤ h(y) + 〈∂h(y), x− y〉+ L
2
‖x− y‖2, ∀x, y ∈ Rd.

The update for gradient descent is the following:

xt+1 = xt − γ∂ f (x; P) (10.8)

where γ is the learning rate and is typically set to 1/L. Such an update can be obtained
by minimizing the upper bound on f in Lemma 10.2.4. We briefly explain how gradient
descent like method fits our framework. We choose the coreset1 Ct = ∂ f (xt; P) and the
function gt as follows:

gt(x; Ct, xt) = f (xt; P) + 〈∂ f (xt), x− xt−1〉+
L + λ

2
‖x− xt−1‖2 (10.9)

First note that the function gt is an upper bound of f and is strongly convex with
modulus L + λ. This can be obtained from Lemma 10.2.4. Hence, gt satisfies condition
1 of Theorem 10.2.2. Next, we set Ω(xt, Rt) = B(xt, Rt) where B(x, R) represents a ball
of radius R centered around x. Since this is convex and Rt = ‖xt − x∗‖, it is easy to see
that condition 2 of Theorem 10.2.2 holds. In general, the we

Finally, gt is an ∆t-coreset with ∆t ≤ LR2
t−1/2. This can be obtained by a straight-

forward reasoning based on the Taylor expansion of f and Lemma 10.2.4. Thus all the
conditions of Theorem 10.2.2 hold. Hence, using Theorem 10.2.2 we obtain the follow-
ing corollary.

Corollary 10.2.4.1. The iterates xt of gradient descent algorithm like algorithm (minimizing
upper bound in Equation (10.9) subject to the constraint on x ∈ Ω(xt, Rt)) satisfy

Rt = ‖xt − x∗‖ ≤

√
2LR2

t−1
2(L + 2λ)

= Rt−1

√
1

(1 + 2λ
L)

.

In general, dropping the constraint that x ∈ Ω, recovers the gradient descent al-
gorithm. The above corollary reproduces the well-known linear convergence rate for
gradient descent [111]. Note the dependence of the convergence rate on the condition
number L/λ. While the result does not lead to any new convergence rates, it provides
an interesting insight that gradient descent can be viewed as solving an optimization
problem on a coreset based on the gradients at each iteration. However, it is important
to note that the communication cost is still high since the gradient needs to be com-
municated at each iteration. Hence, gradient descent is not suitable for settings of our
interest — that is, distributed settings where communication is expensive.

A natural question that arises is whether we can construct more interesting coresets
than the gradients of the function. We provide an affirmative answer to this question in
the next few sections.

1Recall that the coreset could be any summary of the data, and not necessarily one of its subsets.

211

10.3 Coreset Algorithm

In this section, we propose a new coreset-based algorithm. Before discussing the details
of the coreset contribution, it is worth mentioning two additional assumptions; how-
ever, we should emphasize that the first assumption is only for the ease of exposition.

1. The loss function ` is of the form `(zi, yi, x) = `(yix>zi). Note the slight abuse of
notation in the usage of `. In what follows, the quantity yix>zi is referred to as
margin.

2. ` is L-lipschitz continuous i.e., |`(yix>zi)− `(yix′>zi)| ≤ L|yix>zi − yix′>zi|.
Loss functions that satisfy the above properties include popular choices such as lo-

gistic loss (used in logistic regression) and hinge loss (used in SVM). The significance of
these assumptions will become clear as we proceed. We also need the following defini-
tions for our discussion.

Definition 10.3.1. (Cover) We call a set of points S as ε-cover of a set of points Q if for all
q ∈ Q there exists a point s ∈ S such that ‖s− q‖ ≤ ε.

Let N(x) for a point x in the cover denote the set of points in Q that are closer to
x than any other point in the cover S. With slight abuse of notation, let ε(Q) = [S, β],
where S is an ε-cover of Q, and β is the vector of cardinalities of the sets {N(x)|x ∈ S}.
Note that ‖β‖1 = |Q|.

The key insight to our coreset construction of the algorithm is that typically at each
iteration there exist only a few important data points that are critical from the optimiza-
tion perspective. For example, consider an iterative algorithm for SVMs. Intuitively, at
each iteration, the points that are close to the margin are crucial in comparison to those
away from the it. Furthermore, due to the piecewise linear nature of the hinge loss, the
points far away from the margin can be represented by a linear function precisely. With
this intuition, we now present our coreset construction.

We define the set P′ = {z′i}n
i=1 where z′i = yizi. Our coreset construction consists of

two primary steps:
Step 1: Identify points whose loss can be approximated by a linear function and

construct a single linear function as a coreset for these points. Generally, these are points
where gradient approximation is good. We denote such a function by LINEARAPPROX.
The description of this function will depend on `.

Step 2: Construct a cover or equivalent functional approximation for the rest of the
points in the set P′. Since ` is assumed to be lipschitz, such a cover also provides ap-
proximation guarantees on the empirical loss on P′.

It should be emphasized that while we use the concept of cover for simplicity, a
similar analysis can be carried out for clustering-based algorithms. In fact, as we will
see later, all our experiments are based on clustering. At each iteration, we use disjoint
sets Gt and Et to denote the points concerned with these two steps respectively. Note
that Gt ∪ Et = P′. We use lt ∈ Rd to denote the linear approximation of loss for points in
Gt. Our coreset is Ct = (It, βt, lt) where [It, βt] = εt(Et) and function gt in Algorithm 23

212

is as follows.2

gt(x; Ct) =
λ

2
‖x‖2 +

1
n

(
∑

ze∈It

βe
t`(x>ze) + x>lt

)
+ ht (10.10)

where ht = (2LR∗|Et|ε + |Gt|δ + c)/n for some δ > 0 and constant c. The pseudocode,
based on the above key steps, is given as Algorithm 24. The size of the coreset Ct de-
pends on the cardinality of set Et.

1: Input: Initial x0, coefficients {γ1, . . . , γT} and {ε1, . . . , εT}
2: for t = 1 to T do
3: [Gt−1, lt−1] = LINEARAPPROX(P′, xt−1, Rt−1)
4: [It−1, βt−1] = εt−1(P′\Gt−1)
5: Coreset Ct−1 = (It−1, βt−1, lt−1)
6: Solve the following subproblem

xt = arg min
x∈Ω(xt−1,Rt−1)

gt−1(x; Ct−1)

7: Rt = γt−1 · Rt−1
8: end for

Algorithm 24: Iterative Coreset Algorithm

One of the key components of Algorithm 24 is the function LINEARAPPROX. As
mentioned earlier, in general, this function depends on the loss function `. We choose
Ω(x0, R0) = B(x0, R0) and Ω(xt, Rt) = Ω(xt−1, Rt−1) ∩ B(xt, Rt) for t ∈ [1, . . . , T − 1].
Also, for the purpose of analysis, we assume the coefficients {γ1, . . . , γT} are chosen in a
way such that the optimal solution lies in feasible region. We prove the following result
for Algorithm 24. The proof of Theorem 10.3.2 relies on result of the generic coreset
algorithm, Theorem 10.2.2.

Theorem 10.3.2. Suppose gt is as defined in Equation (10.10) and LINEARAPPROX satisfies
the following condition:

max
x∈B(xt,Rt)

∣∣∣∣∣∣ ∑
zg∈Gt

`(x>zg)− [x>lt + c]

∣∣∣∣∣∣ ≤ |Gt|δ (10.11)

where [Gt, lt] = LINEARAPPROX(P′, xt) and c ∈ Rd and for all t ∈ {0, . . . , T − 1}, then we
have

Rt+1 = ‖xt+1 − x∗‖ ≤
√

2LR∗|Et|εt + |Gt|δ
λn

.

2Hereinafter we include the parameter xt in the coreset description Ct.

213

Proof. We first observe that gt (in Equation (10.10)) is strongly convex with modulus λ.
Moreover, gt is an upper bound on f due to the following relation:

1
n

(
∑

ze∈It

βe
t`(x>ze) + x>lt

)
+ ht

=
1
n

(
∑

ze∈It

βe
t`(x>ze) + x>lt + 2LR∗|Et|εt + |Gt|δ + c

)

≥ 1
n

 ∑
ze∈It

βe
t`(x>ze) + 2LR∗|Et|εt + ∑

zg∈Gt

`(x>zg)


≥ 1

n

 ∑
zp∈Et

`(x>zp) + ∑
zg∈Gt

`(x>zg)


=

1
n ∑

z∈P′
`(x>z)

The first inequality follows from the definition of ht. The second step follows from the
condition on LINEARAPPROX in the theorem statement. The third step follows from the
fact that ` is L-Lipschitz continuous and ‖βt−1‖1 = |Et|. Combining the above with
regularization term proves the fact that gt is an upper bound on f .

It is easy to see that the feasible region B(xt, Rt) is convex and contains the optimal
solution x∗. To obtain an upper bound on the function gt, we observe the following:

1
n

(
∑

ze∈It

βe
t`(x>ze) + x>lt

)
+ ht

≤ 1
n

(
∑

ze∈It

βe
t`(x>ze) + 2LR∗|Et|εt + ∑

zg∈Gt

`(x>zg) + 2|Gt|δ
)

≤ 1
n

(
∑

zp∈Et

`(x>zp) + 4LR∗|Et|εt + ∑
zg∈Gt

`(x>zg) + 2|Gt|δ
)

=
1
n

(
∑

z∈P′
`(x>z) + 4LR∗|Et|εt + 2|Gt|δ

)

The first and second inequalities follow from the condition of the theorem statement
and the Lipschitz continuous nature of the loss function `.

Therefore, Ct with the corresponding function gt is an ∆t-coreset where ∆t ≤ (4LRt|Et|εt +
2|Gt|δ)/n. The above reasoning shows that the function gt satisfies all the conditions of
Theorem 23. Applying Theorem 23 on the function gt, we get the required result.

It can be observed that the conditions εT → 0 and δ → 0 as T → ∞ ensure conver-
gence of the algorithm to the optimal solution. In general, we can guarantee that our

214

solution is arbitrary close to the optimal solution by choosing δ and εt appropriately.
Furthermore, we can ensure linear convergence of our algorithm by decreasing εt by a
constant factor at each iteration.

It is also important to study the coreset size and the design choice of εt and δ since
they determine the communication cost of our algorithm. Let δ = 2LR∗min{ε1, . . . , εT}.
For this value of δ, we observe the following.

1. The size of the coreset depends on the cardinality of Gt. In general, larger the
cardinality of Gt, smaller is the size of the coreset. Furthermore, as a general rule
of thumb, if ` is asymptotically linear i.e., lim|m|→∞ |`(m) − (cm + d)| = 0 for
some constants c, d, the performance of our algorithm will depend on the rate of
asymptotic linearity.

2. We typically require εt ≤ εt+1 for all t ∈ {0, . . . , T − 1}. With such a choice, if
|Gt| does not decrease, size of the coreset may increase. However, observe that Rt
decreases. Thus, typically more points satisfy Equation (10.11), and the cardinality
of Gt usually decreases.

3. Suppose a subset of P′ satisfies Equation (10.11) at iteration t then it will always
satisfy the condition in future iterations. This is due to the fact that feasible region
shrinks at each iteration. Hence, size of the coreset is always non-increasing.

While the above remarks provide informal reasoning for the size of the coreset, it
does not provide a formal analysis. In order to gain a better understanding, we dis-
cuss the implementation of this algorithm and provide a more formal analysis in the
case of logistic regression and SVMs. To this end, let us first discuss the function
LINEARAPPROX for specific cases.
LINEARAPPROX for differentiable loss functions: The linear approximation in the dif-
ferentiable case can be obtained through the first-order Taylor expansion of the loss
function. More formally, we have

`(x>zk) = `(x>t zk) + ∂`(x>t zk)(x>zk − x>t zk) +
∂2`(ζ)

2
(x>zk − x>t zk)

2

for some ζ = x̃>t z where ‖x̃t− xt‖ ≤ Rt since out feasible region satisfies ‖x− xt‖ ≤ Rt.
The key step is to bound the term ∂2l(ζ). This bound will depend on the structure of
the loss function. We now derive these bounds for logistic regression. We want the
following to ensure the condition in Theorem 10.3.2 with lt = ∑zk∈Gt ∂`(x>t zk)zk and
c = ∑zk∈Gt [`(x>t zk)− ∂`(x>t zk)x>t zk]:

∂2l(ζ)
2

(x>zk − x>t zk)
2 ≤ δ

for all xk ∈ Gt. The above statement is true when

∂2l(ζ)
2

R2
t ‖zk‖2 ≤ δ (10.12)

215

This can be obtained by a straightforward application of the Cauchy-Schwartz inequal-
ity. The final step is to derive an upper bound on ∂2l(ζ). For logistic loss we have

∂2l(ζ) =
1

(1 + exp(−ζ))(1 + exp(ζ))
.

Without loss of generality, we can assume ζ > 0. Then we have ∂2l(ζ) ≤ 1/(2(1 +
exp(ζ))). Using the above inequality it is easy to see that Equation (10.12) is satisfied if

R2
t ‖zk‖2

2(1 + exp(ζ))
≤ δ.

We observe that

R2
t ‖zk‖2

2(1 + exp(ζ))
=

R2
t ‖zk‖2

2(1 + exp(x>t zk + ζ − x>t zk))

≤ R2
t ‖zk‖2

2(1 + exp(x>t zk) exp(−Rt‖zk‖)

This follows from the fact that ζ = w̃>t x where ‖x̃t − xt‖ ≤ Rt. Hence, for logistic
regression, the goal of LINEARAPPROX is to identify all points satisfying

Vt(zk) =
R2

t ‖zk‖2

2(1 + exp(x>t zk) exp(−Rt‖zk‖)
≤ δ

and place these points in the set Gt. The linear function to be used for approximation is
obtained from the first-order Taylor expansion. The pseudocode for LINEARAPPROX in
case of logistic regression is given in Algorithm 25.

1: Input: P′, xt, Rt
2: Gt = {zk ∈ P′ | Vt(zk) ≤ δ}
3: lt = −∑zk∈Gt

zk
(1+exp(x>t zk))

Algorithm 25: LINEARAPPROX for Logistic Regression

Furthermore, we can also obtain a relationship between the margin of zk with respect
to the optimal solution and the iteration at which the point zk moves to the set Gt. We
note the following:

R2
t ‖zk‖2

2(1 + exp(ζ))
=

R2
t ‖zk‖2

2(1 + exp(x>∗ zk + ζ − x>∗ zk))

≤ R2
t ‖zk‖2

2(1 + exp(M∗k) exp(−2Rt‖zk‖)

≤ R2
t ‖zk‖2 exp(2Rt‖zk‖)

2 exp(M∗k)
≤ exp(3Rt‖zk‖)

2 exp(M∗k)

216

where M∗k = |x>∗ zk|. The first step follows from triangle inequality and the fact that
ζ = x̃>t z where ‖x̃t − xt‖ ≤ Rt and ‖x̃∗ − xt‖ ≤ Rt. The final step follows from the
fact that z2 ≤ exp(z) for z ≥ 0. Therefore, from above inequality it is easy to see that
Equation (10.12) is satisfied when the following holds

Rt ≤ max

{ √
δ

‖zk‖
,

M∗k + log(2δ)

3‖zk‖

}
. (10.13)

LINEARAPPROX for SVM: For SVM, the implementation of LINEARAPPROX is pretty
straightforward. Due to the piecewise linear nature of the hinge loss, the condition in
Equation (10.10) is satisfied with δ = 0 if x>zk is greater than 1 (or less than 1) for the
whole feasible region ‖x− xt‖ ≤ Rt. This is satisfied when

Rt ≤
|1− x>t zk|
‖zk‖

The pseudocode for LINEARAPPROX in case of SVM is given in Algorithm 26.

1: Input: P′, xt, Rt
2: Gt = {zk ∈ P′ |Rt ≤ |1− x>t zk|/‖zk‖}
3: lt = −∑zk∈Gt 1(1− x>t zk < 0)zk

Algorithm 26: LINEARAPPROX for SVM

Similarly to the case of logistic regression, we analyze how the margin of zk affects
when it get included in the set Gt. For this, note the following:

1− x>t zk = 1− x>∗ zk − (xt − x∗)>zk

Again, the above quantity will not change sign when x>zk is greater than 1 (or less than
1) for the whole feasible region ‖x − xt‖ ≤ Rt. Based on the expression above, this is
satisfied when

‖xt − x∗‖‖zk‖ ≤ |1− x>∗ zk| = M∗k
It is obtained by application of the Cauchy-Schwartz inequality. Note the difference in
the definition of M∗k in comparison to logistic regression. Hence, condition in Equa-
tion (10.10) will be satisfied when

Rt ≤
M∗k
‖zk‖

(10.14)

Let us make a final remark before proceeding to the experimental section. It should
be emphasized that based on Equations (10.13) and (10.14), the cardinality of Gt criti-
cally depends on the margin of the training points. If the margin of the training points
is large, then the coreset size is small and consequently the communication and compu-
tation costs are low. Hence, our algorithm is naturally adaptive to the hardness of the
optimization problem.

217

Effective passes through Dataset
0 10 20

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Figure 10.1: l2-regularized logistic regression on ijcnn1 (top) and cod-rna (bottom)
datasets. We compare our algorithm with mini-batch SVRG and SGD. Training loss
residual is shown with respect to passes through the dataset and communication cost
(left and central columns). Test error with respect to the passes through the dataset is
shown in the right column.

10.4 Experiments

We present our empirical results in this section. To evaluate the performance of our algo-
rithm, we focus on the task of regularized logistic regression. Recall that Problem (10.1)
in this case is of the following form:

min
x

f (x) ≡ λ

2
‖x‖2 +

1
n

n

∑
i=1

log(1 + exp(−yix>zi)).

We use a simulated Matlab implementation for all the algorithms reported in this sec-
tion. We used the following datasets for our experiments.

Dataset # examples # features
ijcnn1 49,990 22
cod-rna 59,535 8
w8a 64,700 300
covertype 581,012 54

All these datasets can be downloaded from the LIBSVM website 3. Similar to [71],
each of these datasets are scaled to [−1, 1] . We split each of these datasets in 3:1 ratio
for training and testing purposes respectively.

The regularization parameter λ in Problem (10.1) is 1/n. Recall n is the size of the
training set. Note that such a choice results in high condition number and consequently
increases the difficulty of the problem. All the experiments were conducted by fixing

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

218

10 different random seeds for each dataset and results are reported by averaging over
these 10 runs.

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Communication Cost
0 1 2

O
bj

ec
tiv

e
- O

pt
im

al

0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.05

0.1

0.15

0.2

0.25
SVRG
SGD
Coreset

Figure 10.2: l2-regularized logistic regression on more datasets w8a (top) and covertype
(bottom). Similar to the previous case, we compare our algorithm with mini-batch SVRG
and SGD.

We use PROXSVRG (see [174]) for solving the subproblems of Algorithm 24 at each
iteration. SVRG is a incremental first-order method that can be used for solving opti-
mization problems of form (10.1). The origin is used as the initial point for the for all
our experiments. The number of inner iterations is set to m = 2n for the SVRG algorithm.
The step size parameter for each dataset is chosen so as to give the fastest convergence
for SVRG.

For our experiments, we choose γ1 = γ2 = · · · = γT = γ in Algorithm 24 where
γ is such that RT = 0.01. Such a choice is reasonable in the case of linearly convergent
algorithms — which is the scenario we anticipate for our algorithm. As mentioned
earlier, we use a clustering based algorithm instead of the cover. The main rationale
behind such a choice is the availability of coresets for data clustering problems. We
use coresets for k-means clustering for Algorithm 24. The sensitivity based coreset for
k-means is used in all our experiments. We refer interested reader to [38, 39] for more
details of the coreset. For all datasets except covertype, we set the coreset size to be 500.
This value is set to 2000 in case of covertype. Note that these coreset sizes are much
smaller in comparison to the training data.

We compare our algorithm with SVRG (see [71]) and SGD. A mini-batch version of
these methods is used in order to reduce the communication cost of these approaches.
We use a mini-batch size b = 10 in all our experiments. The number of inner iterations
in SVRG is m =

⌈2n
b
⌉

in all our experiments in order to limit the total inner iterations to
the recommended 2n iterations. For SGD, we use the learning rate of α/

√
t where α is

the step size used for the all the algorithms for that dataset.
We report the training loss residual i.e., objective of Problem (10.1) minus optimal

219

(obtained by running gradient descent for very long time) and test error rate of the al-
gorithms with respect to the number of effective passes through the dataset i.e., ratio
of the number of gradients evaluated to the size of the training data. This provides
information about the computation complexity of the algorithm. To measure the com-
munication cost of the algorithm, we similarly report the effective communication of
datasets i.e., ratio of the number of d dimensional vectors communicated to the size of
the training data.

Figures 10.1 and 10.2 show the performance of the algorithms on the aforemen-
tioned datasets. We have several observations from these empirical results. First, we
observe that SVRG outperforms SGD in terms all the metrics of our interest. This obser-
vation is not surprising given the linear convergence of SVRG in comparison to the sub-
linear convergence of SGD. We then observe that our algorithm is competitive to SVRG
in terms of training loss residual and test error rate (show in first and third columns of
the figures respectively). However, our major gain is in the communication cost of the
algorithm (shown in central column of the figures). As seen in the these figures, our
algorithm performs much better in comparison to other algorithms in terms of commu-
nication cost. In other words, for the same communication cost, our algorithm has much
lower objective value in comparison to SVRG and SGD. We believe the performance of
our algorithm can be further improved by utilizing the coresets of the previous iteration
and is part of our ongoing investigation.

10.5 Discussion

This chapter introduces a novel general strategy for designing communication efficient
empirical risk minimization algorithms. The key to our approach is the concept of core-
set — the idea of constructing small summary of training data and optimizing over this
summary. We presented convergence analysis for the algorithm. While we illustrated
this strategy on two popular supervised learning problems — logistic regression and
support vector machines, our methodology is general and is applicable to a much wider
setting. Furthermore, our empirical results demonstrate that the algorithm is compu-
tational and communicational efficient. In the next chapter, we present an alternate
paradigm for reducing communication complexity in distributed optimization setting.

220

Chapter 11

Communication-Efficient Distributed
Optimization for ERM

11.1 Introduction

In this chapter, we explore an alternate approach for reducing communication overhead
in distributed machine learning systems designed for ERM problems. With the advent
of large scale datasets, distributed machine learning has garnered significant attention
recently. For example, large scale distributed machine learning systems such as the
Parameter server [84], GraphLab [176] and TensorFlow [1] work with datasets sizes in the
order of hundreds of terabytes. When dealing with datasets of such scale in distributed
systems, computational and communication workloads need to be designed carefully.
This in turn places primary importance to computational and communication resource
constraints on the algorithms used in these machine learning systems.

Here, we study the problem of distributed optimization for solving empirical risk min-
imization problems, where one seeks to minimize average of N functions minx∈Rd f (x) :=
1
N ∑N

i=1 fi(x). Many problems in machine learning, such as logistic regression or deep
learning, fall into this setting. Formally, we assume a distributed system consisting of
K machines, where machine k has access to a (nonempty) subset of the data indexed by
Pk ⊂ [N] := {1, . . . , N}. We assume that {Pk} forms a partition of [N]. Our goal can
then thus be reformulated as

min
x∈Rd

f (x) =
1
K

K

∑
k=1

Fk(x), where Fk(x) :=
K
N ∑

i∈Pk

fi(x). (11.1)

We assume that (11.1) has an optimal solution. By x̂ we denote an arbitrary optimal
solution: x̂ ∈ arg minx f (x). The fundamental constraint is that machine k can directly
access only (the data describing) function Fk(x), i.e., functions fi(x) for i ∈ Pk. Typically,
fi(x) = φi(x>zi), where zi is the ith data point, and φi(·) is a loss function (dependence
on i indicates potential dependence on a label). The function fi is assumed to be con-
tinuous but not necessarily convex — the structure also encompasses problems in deep
learning.

221

The basic benchmark algorithm for solving the optimization problem is gradient de-
scent (GD). Each iteration of GD performs the update step x ← x − h

K ∑K
k=1∇Fk(x),

where h > 0 is a stepsize parameter. In a distributed system, this amounts to calcula-
tion of the gradient ∇Fk(x) by each machine k and then sending an update to a central
node to compute the full update direction 1

K ∑K
k=1∇Fk(x). Although such an update

sequence is simple, it is often communication intensive due to the communication in-
volved at each iteration of the algorithm. Furthermore, because of the communication
delay, computational resources at each machine are often under-utilized. While the lat-
ter problem can be addressed by using asynchronous and stochastic variants of gradient
descent [128, 133], these algorithms still incur high communication costs at each itera-
tion.

Recently, there have been considerable theoretical advances in our understanding of
the communication overheads in solving (11.1). In particular, three different methods
address this issue by designing a procedure that uses significant amount of computation
locally, between rounds of communication. These methods are DANE [163], DISCO [180]
and COCOA+ [67, 95, 96, 177]. Both DANE and DISCO show that when the functions
{Fk}K

k=1 in (11.1) are similar (see Definition 11.3.2) or exhibit special structure, one could
obtain the optimal solution in considerably fewer rounds of communication.

At the tth iteration of DANE, the following general subproblem has to be solved
exactly by machine k, with η ≥ 0 and µ ≥ 0 being parameters of the method:

min
x∈Rd

Fk(x)−
〈
∇Fk(xt−1)− η∇ f (xt−1), x

〉
+ µ

2‖x− xt−1‖2,

where 〈·, ·〉 is the standard inner product and ‖ · ‖ := 〈·, ·〉1/2 is the standard Euclidean
norm. The gradient∇ f (xt−1) is computed in a distributed fashion at the start, followed
by aggregation of individual updates. DISCO uses an inexact damped Newton method
for solving the problem (11.1) [180]; and hence is a second order method. Thus, both
DANE and DISCO require strong oracle access — either in the form of oracle to solve
another optimization problem exactly, or second order information. This is in sharp
contrast with COCOA+, where (similarly to DANE) a general local problem is formu-
lated, but is needed to be solved only approximately. This enables use of essentially any
algorithm to be used locally for a number of iterations, making the method much more
versatile.

A natural idea is to solve DANE subproblem approximately using a first-order method.
However, from the point of analysis, this leads to an additional error. Hence, it is not
clear whether such method enjoys any theoretical guarantees, as such a generalization
is non-trivial. Based on this intuition, we develop an inexact version of DANE (refer-
eed to as INEXACTDANE) and provide its convergence analysis. We demonstrate that
our proposed approach is significantly more robust to ‘bad’ data partitioning, and also
highlight a connection to a distributed version of SVRG algorithm [71, 74]; thus, yielding
partial convergence guarantees for a method that has been observed to perform well in
practice [76], but has not been successfully analyzed.

While INEXACTDANE is practically appealing in comparison to DISCO due to its
simplicity and possible reliance only on first-order information, DISCO is theoretically

222

superior to INEXACTDANE in terms of communication complexity, as it nearly matches
the lower bounds derived in [175]. To address this issue, we build upon INEXACTDANE
and propose an approach, referred to as AIDE, that matches (up to logarithmic factors)
these communication complexity lower bounds and can be implemented using a first-
order oracle. To our knowledge, ours is the first work that can be implemented using a
first-order oracle, but at the same time achieves near optimal communication complex-
ity for the setting considered in this chapter.

11.1.1 Related Work

The literature on distributed optimization is vast and hence, we restrict our attention to
the works most relevant to this chapter. As mentioned earlier, the most straightforward
approach for solving the distributed optimization is using gradient descent or its accel-
erated version. When the function f is L-smooth and λ-strongly convex, the commu-
nication complexity of accelerated gradient descent is O(

√
L/λ log(1/ε)) for achieving

ε-suboptimal solution [111]. Another possible approach, often referred to as “one shot
averaging”, is solve the local optimization problem parallelly at each machine and then
compute average of the solutions [181, 182]. However, it can be shown that “one shot
averaging” can produce significantly worse solution than the optimal solution x̂.

ADMM (alternating direction method of multipliers) is another popular approach
for solving distribution optimization problems. Under certain conditions, ADMM is
shown to achieve communication complexity of O(

√
L/λ log(1/ε)) for L-smooth and

λ-strongly convex function. More recently, the above mentioned DANE, DISCO and
COCOA+ algorithms have been proposed to tackle the problem of reducing the commu-
nication complexity in solving problems of form (11.1). We defer a detailed comparison
of our algorithms with DANE and COCOA+ to Section 11.7 and Appendix 11.13. The
lower bounds on the communication complexity for solving problems of form (11.1)
have been obtained in [175] (see Section 11.8 for more details). We refer the readers to
[163, 175] for a more comprehensive coverage of the related work.

11.2 Algorithm: INEXACTDANE

The DANE algorithm [163] proceeds as follows. At iteration t, node k exactly solves the
subproblem x̂t

k = arg minx gt
k,µ(x), where

gt
k,µ(x) := Fk(x)−

〈
∇Fk(xt−1)− η∇ f (xt−1), x

〉
+ µ

2‖x− xt−1‖2, (11.2)

and µ, η ≥ 0 are parameters. After this, the method computes xt = ∑K
k=1 x̂t

k/K, which
involves communication, and the process is repeated. Our first method, INEXACTDANE
, modifies this algorithm by allowing the subproblems to be solved inexactly. In partic-
ular, let xt

k denote the point obtained by minimizing gt
k,µ only approximately (for exam-

ple, using Quartz [125] or SVRG [71, 74]). The pseudocode of this method is formalized

223

Algorithm 27: INEXACTDANE (f , w0, s, γ, µ)

Data: f (x) = 1
K ∑K

k=1 Fk(x), initial point x0 ∈ Rd, inexactness parameter 0 ≤ γ < 1
for t = 1 to s do

for k = 1 to K do in parallel
Find an approximate solution xt

k ≈ x̂t
k := arg minx∈Rd gt

k,µ(x)

Option I: ‖xt
k − x̂t

k‖ ≤ γ‖xt−1 − x̂t
k‖

Option II: ‖∇gt
k,µ(xt

k)‖ ≤ γ‖∇gt
k,µ(xt−1)‖ and ‖xt

k − x̂t
k‖ ≤ γ‖xt−1 − x̂t

k‖
end
xt = 1

K ∑K
k=1 xt

k
end
return wt

in Algorithm 27. The parameter γ refers to the level of inexactness allowed (small γ
means higher accuracy). Note that each iteration of INEXACTDANE can be solved in an
embarrassingly parallel fashion.

The communication complexity of an algorithm is defined as the number of com-
munication rounds required by the algorithm to reach a solution xt satisfying specific
convergence criteria such as f (xt)− f (x̂) ≤ ε. In each communication round, the ma-
chines can only send information linear in size of the dimension d. This is also the notion
of communication round used in [175].

We start with the analysis of quadratic case (Section 11.3), after which we deal with
strongly convex, weakly convex and nonconvex cases (Section 11.4).

11.3 Analysis of INEXACTDANE: Quadratic Case

In this section we assume that Fk(x) = 1
2 x>Hkx + l>k x, where Hk ∈ Rd×d and lk ∈ Rd

(this is the case when the functions { fi}N
i=1 in (11.1) are quadratic). We write H :=

1
K ∑K

k=1 Hk and l := 1
K ∑K

k=1 lk. For a square matrix A, by ‖A‖ we denote its spectral
norm. Our first result plays a central role in the analysis of quadratic functions. Proofs
are provided in the Appendix.

Theorem 11.3.1. Assume H � 0. Let µ ≥ 0 and define H̃−1 := 1
K ∑K

k=1(Hk +µI)−1. Further,
choose 0 ≤ γ < 1, η > 0 and define

ρ := ‖ηH̃−1H − I‖+ ηγ
K ∑K

k=1 ‖(Hk + µI)−1H‖.

Let {xt} be the iterates of INEXACTDANE (Algorithm 27 applied with Option I). Then for all
t ≥ 1 we have ‖xt − x̂‖ ≤ ρ‖xt−1 − x̂‖.

Suppose, 0 < λ � Hk � L for all k ∈ [K], then with η = 1, sufficiently large µ and
small γ, one can ensure that ρ < 1. We are interested in the setting where the functions
{Fk} are “similar”. Following [175], we shall measure similarity via the notion of δ-
relatedness, defined next.

224

Definition 11.3.2. We say that quadratic functions {Fk} are δ-related, if for all k, k′ ∈ [K] we
have

‖Hk − Hk′‖ ≤ δ, ‖lk − lk′‖ ≤ δ.

The following theorem specifies the convergence rate in the case of δ-related objec-
tives. We are particularly interested in the setting where δ is small, which is the case
that should allow stronger communication complexity guarantees [163, 175].

Theorem 11.3.3. Let 0 < λ ≤ L be such that λI � H � LI, and assume that {Fk} are
δ-related, with δ ≥ 0. Choose µ = max{0, (8δ2/λ)− λ}, η = 1 and let

γ =

{
1/8 if 2

√
2δ ≤ λ

λ2/(192δ2) otherwise
ρ̃ :=

{
2/3 if 2

√
2δ ≤ λ

1− (λ2/24δ2) otherwise

The iterates {xt} of INEXACTDANE (Algorithm 27 with Option I) satisfy ‖xt− x̂‖ ≤ ρ̃‖xt−1−
x̂‖.

It is interesting to note that solving the local subproblems beyond the accuracy γ
stated in the above result does not lead to a better overall complexity result. That is,
the required accuracy at the nodes of the distributed system should not be perfect, but
should instead depend in δ and λ. We have the following corollary, translating the
result into a bound on the number of iterations (i.e., number of communication rounds)
sufficient to obtain an ε-solution.

Corollary 11.3.3.1. Let the assumptions of Theorem 11.3.3 be satisfied, and pick 0 < ε <
L‖x0 − x̂‖2. If

t = Õ
(

δ2

λ2 log
(

L‖x0−x̂‖2

ε

))
,

then f (xt) ≤ f (x̂) + ε.
The Õ(·) notation hides few logarithmic factors. In the situation when for all k, Hk

arises as the average of Hessians of n i.i.d. quadratic functions with eigenvalues upper-
bounded by L, it can be shown that δ = O(L/

√
n), hence t = Õ((L/λ)2/n log(1/ε))

(see Corollary 11.9.2.1 in the Appendix). This arises for instance in a linear regression
setting where the samples at each machine are i.i.d — a scenario typically assumed
in distributed machine learning systems. Note that, in this case, the communication
complexity decreases as n increases.

11.4 Analysis of INEXACTDANE: General Case

In this section, we present the results for general strongly convex case, weakly convex
case, and non-convex case. Proofs are provided in the Appendix.

A function ψ : Rd → R is called L-smooth if it is differentiable, and if for all x, y ∈
Rd we have ‖∇ψ(x) − ∇ψ(y)‖ ≤ L‖x − y‖. It is called λ-strongly convex if ψ(x) ≥
ψ(y) + 〈∇ψ(y), x− y〉+ λ

2 ‖x− y‖2, for all x, y ∈ Rd (if ψ is twice differentiable, this is
equivalent to requiring that ∇2ψ(x) � λI for all x ∈ Rd). If λ > 0, we say that ψ is

225

strongly convex. In this case, κ = L/λ denotes the condition number. We say that ψ is
weakly convex if it is 0-strongly convex.

11.4.1 Strongly convex case

Our analysis of the strongly convex case follows along the lines of [163] and incorporates
the inexactness in solving the subproblem in (11.2) at each iteration.

Theorem 11.4.1. Assume that for all k ∈ [K], Fk is L-smooth and λ-strongly convex, with
λ > 0. Let

ρ̃ :=
[
(1− γ)2

η(L + µ)
− 2L

(λ + µ)2 −
2γ(L + µ)

η(λ + µ)2

]
η2λ. (11.3)

Suppose η > 0, 0 ≤ γ < 1 and µ > 0 are chosen such that 0 < ρ̃ < 1. Then for the
iterates of INEXACTDANE (Algorithm 27 with Option II) we have: f (xt) − f (x̂) ≤ (1 −
ρ̃)
(

f (xt−1)− f (x̂)
)

.
By setting γ = 0, we roughly recover the corresponding result in [163] covering the

exact case. Note that γ only has a weak effect on the convergence rate. For instance,
with γ = 1/8, η = 1 and µ = 6L− λ, we require O(L

λ log(1/ε)) iterations to achieve a
solution xt such that f (xt)− f (x̂) ≤ ε.

11.4.2 Weakly convex case

We analyze the weakly convex case by using a perturbation argument. This allows
us to use the analysis of strongly convex case for proving the convergence analysis.
In particular, we consider the following function fε(x) = f (x) + ε

2‖x − x0‖2, which is
essentially a perturbation of the function f . First, note that if f is L-smooth then fε is
(L + ε)-smooth and ε-strongly convex. Applying INEXACTDANE (Algorithm 27) on the
function fε and using Theorem 11.4.1, we get the following:

fε(xt)−min
x

fε(x) ≤ (1− ρε)
s
[

fε(x0)−min
x

fε(x)
]

(11.4)

where ρε is defined as in (11.3) with λ and L replaced by ε and L + ε respectively. Using
the above relationship, the corollary below follows immediately.

Corollary 11.4.1.1. Suppose the function f is weakly convex. Then the iterates of INEXACTDANE
in Algorithm 27 (Option II) with η = 1, γ = 1/8 and µ = 6L + 5ε applied to fε after
s = Õ(L log(1/ε)/ε) iterations satisfy f (xt) ≤ f (x̂) + O(ε).

The result essentially shows sublinear convergence rate (up to logarithmic factor)
of INEXACTDANE for weakly convex functions and weak dependence on the inexact
parameter γ.

11.4.3 Nonconvex case

Finally, we look at the case where function f can be nonconvex. The key observation
is that by choosing large enough µ one can have a strongly convex gt

k,µ in (11.2). The

226

existence of such a µ is due to the Lipschitz continuous nature of gradient of f . This
allows us to solve the subproblem efficiently and makes it amenable to analysis. For
the purpose of theoretical analysis, in the nonconvex case, we select xt arbitrarily from
{xt

k}
K
k=1 instead of averaging as in Algorithm 27.

Theorem 11.4.2. Assume that for all k ∈ [K], Fk is L-smooth. Suppose the iterates xt
k of

Algorithm 27 (with Option II) for some 0 ≤ γ < 1. Furthermore, let

θ :=
[
(1− γ)2

η(L + µ)
− 2L

(µ− L)2 −
2γ(L + µ)

η(µ− L)2

]
η2,

where η > 0, 0 ≤ γ < 1 and µ > L are such that θ > 0. Then, we have

min
0≤t′≤t−1

‖∇ f (xt′)‖2 ≤ f (x0)− f (x̂)
θt

.

With η = 1, one could choose µ = 10L and constant inexactness of γ = 1/8 to get
θ ≥ 1/100L. Again, similar to the strongly convex case, we see a very weak effect of γ on
the convergence rate. In other words, with constant approximation at each local node,
we can obtain O(1/t) convergence rate to a stationary point for nonconvex functions.

11.5 Accelerated Distributed Optimization

In this section, we study an accelerated version of INEXACTDANE algorithm. While
INEXACTDANE algorithm reduces the communication complexity in distributed set-
tings, it is known that it is not optimal i.e., there is a gap between upper bounds of
INEXACTDANE and the lower bounds for the communication complexity proved in
[175]. To this end, we propose an accelerated variant of INEXACTDANE algorithm and
prove that it matches the lower bounds (upto logarithmic factors) in specific settings.
We refer to the Accelerated Inexact DanE as “AIDE” (Algorithm 28). The key idea is to
apply the generic acceleration scheme—catalyst—in [88] to INEXACTDANE. We show
that by a careful selection of τ in Algorithm 28, one can achieve optimal communication
complexity in interesting and important settings.

11.5.1 Quadratic case

Here we show that by appropriate selection of τ, for quadratic case, one can achieve
faster convergence rates that match the lower bounds presented in [175].

Theorem 11.5.1. Assume that λI � H � LI and further assume that {Fk} are δ-related. Then
the iterates of AIDE (Algorithm 28) with η = 1, µ = 0, τ = max{0, 2

√
2δ− λ}, s = Õ(1)

and γ = 1/8− (δ2/2(τ + λ)2) after t = Õ(
√

δ/λ log(1/ε)) satisfy f (xt) ≤ f (x̂) + ε and
the total number of iterations in INEXACTDANE (Option I) is Õ(

√
δ/λ log(1/ε)).

227

Algorithm 28: AIDE (f , x0, λ, τ, s, γ, µ, ε)

Data: f (x) = 1
K ∑K

k=1 Fk(x), Initial point y0 = x0 ∈ Rd, INEXACTDANE iterations s,
inexactness parameter 0 ≤ γ < 1, τ ≥ 0

Let q = λ/(λ + τ)
while f (xt−1)− f (x̂) ≤ ε do

Define f t(x) := 1
K ∑K

k=1(Fk(x) + τ
2‖x− yt−1‖2)

xt = INEXACTDANE(f t, xt−1, s, γ, µ)
Find ζt ∈ (0, 1) such that ζ2

t = (1− ζt)ζ2
t−1 + qζt

Compute yt = xt + βt(xt − xt−1) where βt =
ζt−1(1−ζt−1)

ζ2
t−1+ζt

end
return xt

Note that the communication cost of AIDE is proportional to the number of iterations
of INEXACTDANE executed as part of AIDE algorithm. Hence, the total communication
complexity of AIDE is Õ(

√
δ/λ log(1/ε)). It is interesting to note that it is enough to

solve each subproblem in INEXACTDANE up to a constant accuracy of γ = 1/8 in order
to achieve the convergence rate stated above. In other words, by using AIDE, one need
not solve the subproblems with high accuracy and still achieve faster convergence than
INEXACTDANE.

11.5.2 Convex case

For the general strongly convex case, we prove the following key result concerning the
number of iterations of AIDE and INEXACTDANE used as part of AIDE.

Theorem 11.5.2. Assume that for all k ∈ [K], the function Fk is L-smooth and λ-strongly
convex. Then the iterates of AIDE with parameters λ, η = 1, µ = 12L, γ = 1/8, s = Õ(1)
and τ = L− λ after t = Õ(

√
L/λ log(1/ε)) iterations satisfy f (xt) ≤ f (x̂) + ε and the total

number of iterations in INEXACTDANE (Option II) is Õ(
√

L/λ log(1/ε)).
The upper bound on the communication complexity matches the lower bounds proved

in [175] for unrelated strongly convex functions. It is an interesting open problem to ob-
tain better communication complexity for a subclass of strongly convex functions other
than the quadratic case explored above.

As in the case of INEXACTDANE, we apply AIDE to a perturbed problem when f is
weakly convex. In this manner, we invoke catalyst (acceleration) for strongly convex
functions. Recall the function fε is defined as fε(x) = f (x) + ε

2‖x − x0‖2. Using AIDE
on fε, Theorem 11.5.2 shows that one can achieve ε-accuracy on function fε in t =

Õ(
√
(L + ε)/ε log(1/ε)) iterations. This follows from the fact that fε is L + ε-smooth

and ε-strongly convex. Again, using similar argument as in Equation (11.17), we have
the following corollary.

Corollary 11.5.2.1. Suppose the function f is weakly convex. Then iterates of AIDE in Algo-
rithm 28 applied on fε with λ = ε, η = 1, γ = 1/8 and µ = 12(L + ε), s = Õ(1) and τ = L

228

after t = Õ(
√

L/ε log(1/ε)) iterations satisfy f (xt) ≤ f (x̂) + O(ε).

11.6 Connection to a Practical Distributed Version of SVRG

In this section, we discuss the connection between SGD, INEXACTDANE and a version
of distributed SVRG that was observed to perform well in practice [76], but has not yet
been successfully analyzed. Algorithm 27 uses an approximate solution to the mini-
mization of function gt

k,µ(x) at each iteration; however, it does not specify the algorithm
(local solver) used to obtain it. While one could use any of recent fast algorithms for
finite sums [32, 33, 153, 156] with comparable results, we highlight the consequences of
applying the SVRG algorithm [71, 74] as a local solver in INEXACTDANE.

The SVRG algorithm for minimizing average of functions f (x) = 1
N ∑N

i=1 fi(x) runs
in two nested loops. In the tth outer iteration, SVRG computes the gradient of the entire
function ∇ f (xt−1) followed by inner loop, where an update direction at x is computed
as ∇ fi(x) − ∇ fi(xt−1) +∇ f (xt−1) for a randomly chosen index i ∈ [N]. For its dis-
tributed version, the inner loop is executed parallelly over all the machines but the
index i for machine k is sampled only from Pk (the data available locally) instead of [N].
For completeness, the pseudocode is provided in Appendix 11.12.

We can obtain an identical sequence1 of iterates xt by looking at a variation of IN-
EXACTDANE algorithm. It is easy to verify that if we apply SVRG to the INEXACTDANE
subproblem gt

k,µ in (11.2) with µ = 0 and η = 1, running SVRG for a single outer it-
eration, the resulting procedure is equivalent to running the Algorithm 29 (in the Ap-
pendix). Pointing out this connection gives partial justification for the performance of
Algorithm 29. However, a direct analysis for Algorithm 29 still remains an open ques-
tion as the above reasoning applies only when µ = 0 and η = 1. Note that our results
apply to this special setting only under specific conditions; for example when quadratic
functions {Fk} that are δ-related with sufficiently small δ.

11.7 Experiments

In this section, we demonstrate the empirical performance of the INEXACTDANE and
AIDE algorithms on binary classification task using different loss functions. We compare
the performance of our algorithms to that of COCOA+, a popular distributed algorithm
[95]. COCOA+ is particularly relevant to our setting since, similar to INEXACTDANE
and AIDE, it provides flexibility in dealing with communication/computation tradeoff
by choosing the local computation effort spent between rounds of communication. We
use SVRG as the local solver for INEXACTDANE and AIDE, and SDCA as the local solver
for COCOA+ in all our experiments. Unless stated otherwise, at each iteration of the
algorithms, we run the corresponding local solvers for a single pass over data available

1Subject to the same sequence on sampled indices i ∈ Pk.

229

locally. Note that for all the algorithms considered here, the iteration complexity is
proportional to their communication complexity.

For our experiments, we use standard binary classification datasets rcv1, covtype,
real-sim and url2. As part of preprocessing, we normalize the data and add a bias
term. In our experiments, the data is randomly partitioned across individual nodes;
thus, mimicking the i.i.d data distribution. We are interested in examining the effect of
varying amount of local computation and number of nodes on the performance of the
algorithms. For our results, we present the best performance obtained by selected from
a range of stepsize parameters for SVRG and aggregation parameters for COCOA+. For
COCOA+, this amounts to searching for the optimal choice of parameter σ′. In the plots,
we use DANE as the label for INEXACTDANE.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E
 COCOA

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E
/1

DANE/3

DANE/6

D
A
N
E
*2

D
A

N
E
*4

0 10 20 30
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

DANE*2
D

A
N

E*4

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E
4

D
A
N
E
8

D
A
N
E
16

D
A

N
E32

DANE64

0 10 20 30
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E4 D
A

N
E
8

D
A
N
E
16

D
A
N
E
32

D
A

N
E
64

Figure 11.1: Top: rcv1 dataset; Smoothed hinge loss; λ set to 1/(cN), for c ∈ {1, 10, 100}.
Bottom: Logistic loss; left-hand two: Varying number of local data passes per iteration.
rcv1 and url datasets. right-hand two: Varying number of nodes; rcv1 and url datasets.

In the top row of Figure 11.1, we compare INEXACTDANE, AIDE and COCOA+ for
classification task on the rcv1 dataset with smoothed hinge loss on 8 nodes. The three
plots are with regularization parameter λ set to 1/(cN), for c ∈ {1, 10, 100}. It can be
seen that AIDE outperforms both INEXACTDANE and COCOA+. We see similar behavior
on other datasets (see Section 11.13.1 of the Appendix). The benefits of AIDE are par-
ticularly pronounced in settings with large condition number κ = L/λ > N. This can
also be explained theoretically, as convergence rate of fast accelerated stochastic meth-
ods has a dependence of O(

√
Nκ) on κ and N, as opposed to O(κ) without acceleration

[88, 154].
In the two left-hand side plots of the bottom row of Figure 11.1, we demonstrate the

effect of local computation effort at each iteration, to solve the local subproblem (11.2),
on the overall convergence of the algorithm. The different lines signify {1/6, 1/3, 1, 2, 4}
passes through data available locally per iteration of INEXACTDANE. From the plots, it
can be seen that running SVRG beyond 4 passes through local data only provides little
improvement; thus, suggesting a natural computational setting for INEXACTDANE and
demonstrating its advantage over DANE. Finally, in the two right-hand side plots of the

2Datasets available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

230

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

bottom row, we show performance of INEXACTDANE with increasing number of nodes.
In particular, we partition the data to {4, 8, 16, 32, 64} nodes, and keep the number of
local iterations of SVRG constant for all settings. The results suggest that in practice,
INEXACTDANE can scale gracefully with the number of nodes. We only observe drop
in the performance with rcv1 dataset on 64 nodes, where the optimal stepsize of SVRG
was significantly smaller than in other cases. We relegate experiments on other datasets
and loss functions, and demonstration of the robustness of the INEXACTDANE method
over DANE to Section 11.13 of the Appendix.

11.8 Discussion

In this section, we give a brief comparison of the results we presented. In particular, we
compare the key aspects of DANE, DISCO, COCOA+, INEXACTDANE and AIDE .

Communication Complexity: We showed that AIDE nearly achieves the lower bounds
proved in [175] in specific cases. When the functions are quadratic δ-related, AIDE
and DISCO match the communication complexity lower bound of Õ(

√
δ/λ log(1/ε)).

However, in this case, DANE and INEXACTDANE have a sub-optimal communication
complexity of Õ((δ2/λ2) log(1/ε)). Similarly, for the general unrelated strongly convex
function with condition number κ, AIDE and DISCO enjoy communication complexity
of Õ(

√
κ log(1/ε)) [175]. Again, this complexity is superior to the convergence rate of

O(κ log(1/ε)) of COCOA+ , INEXACTDANE and DANE.

Nature of oracle access: Both DANE and DISCO require access to a strong oracle. While
DANE technically requires an oracle that solves the subproblem (11.2), DISCO requires
a second-order oracle for its execution. On the other hand, both INEXACTDANE and
AIDE can be executed using a simple first-order oracle, matching the major advantage
of COCOA+.

Parallelism and Implementation: One of the appealing aspect of the DANE, INEXACT-
DANE, AIDE and COCOA+ is the simplicity of implementation and its suitability for
large-scale distributed environments. Each iteration of these algorithms is embarrass-
ingly parallelizable since it involves solving a local objective function at each node. The
same cannot be said about DISCO due to the asymmetric workload on the master node
at each iteration of the inexact damped Newton iteration.

Distributed SVRG: As a by-product of our analysis, we obtain partial convergence
guarantees of a distributed version of popular SVRG algorithm, that was observed to
perform well in practice [76].

In conclusion, AIDE adopts practical advantages of DANE, but at the same time also
achieves the optimal communication complexity in [175]. Furthermore, similar to CO-
COA+, AIDE and INEXACTDANE provide an efficient way of balancing communica-
tion and computation complexity; thereby, providing a powerful framework for solving
large-scale distributed optimization in a communication-efficient manner.

231

Appendix: Omitted Proofs and Additional Experiments

In this section, we present the omitted proofs of INEXACTDANE and AIDE algorithms,
and provide additional experiments for this chapter.

11.9 Analysis of INEXACTDANE

Quadratic case

Before proving the main result, we will need to establish two lemmas.

Lemma 11.9.1. Let assumptions of Theorem 11.3.1 be satisfied. Then∥∥∥∥∥xt − 1
K

K

∑
k=1

x̂t
k

∥∥∥∥∥ ≤ ηγ

K

K

∑
k=1
‖(Hk + µI)−1H‖‖xt−1 − x̂‖

Proof. Since x̂t
k = arg minx gt

k,µ(x), we have ∇gt
k,µ(x̂t

k) = 0. That is, 0 = ∇gt
k,µ(x̂t

k) =

∇Fk(x̂t
k) + η∇ f (xt−1)−∇Fk(xt−1) + µ(x̂t

k − xt−1). By rearranging the terms in the last
expression, we get

x̂t
k = xt−1 − η

(
(Hk + µI)−1Hxt−1 + (Hk + µI)−1l

)
. (11.5)

Taking norms on both sides of (11.5), and using the fact that x̂ = −H−1l, we obtain

‖xt−1 − x̂t
k‖ = η‖(Hk + µI)−1H(xt−1 − x̂)‖. (11.6)

We proceed to prove the desired result by using the following set of inequalities:∥∥∥∥∥xt − 1
K

K

∑
k=1

x̂t
k

∥∥∥∥∥ ≤ 1
K

K

∑
k=1

∥∥xt
k − x̂t

k
∥∥

≤ 1
K

K

∑
k=1

γ
∥∥∥xt−1 − x̂t

k

∥∥∥
=

ηγ

K

K

∑
k=1
‖(Hk + µI)−1H(xt−1 − x̂)‖

≤ ηγ

K

K

∑
k=1
‖(Hk + µI)−1H‖‖xt−1 − x̂‖. (11.7)

The first inequality follows from Jensen’s inequality and the fact that xt = ∑K
k=1 xt

k/K.
The second inequality follows from the approximation condition on xt

k. The equality is
obtained from Equation (11.6). The last inequality follows from properties of spectral
norm of a matrix.

232

Lemma 11.9.2. Let assumptions of Theorem 11.3.1 be satisfied. Then

‖xt − x̂‖ −
∥∥∥ηH̃−1H − I

∥∥∥ ‖xt−1 − x̂‖ ≤
∥∥∥∥∥xt − 1

K

K

∑
k=1

x̂t
k

∥∥∥∥∥ .

Proof. ∥∥∥∥∥xt − 1
K

K

∑
k=1

x̂t
k

∥∥∥∥∥ =

∥∥∥∥∥xt − xt−1 +
η

K

K

∑
k=1

(Hk + µI)−1H(xt−1 − x̂)

∥∥∥∥∥
=
∥∥∥(xt − x̂)− (xt−1 − x̂) + ηH̃−1H(xt−1 − x̂)

∥∥∥
=
∥∥∥(xt − x̂)− (I − ηH̃−1H)(xt−1 − x̂)

∥∥∥
≥ ‖xt − x̂‖ −

∥∥∥(I − ηH̃−1H)(xt−1 − x̂)
∥∥∥

≥ ‖xt − x̂‖ −
∥∥∥I − ηH̃−1H

∥∥∥ ‖xt−1 − x̂‖. (11.8)

The first equality follows from the optimality property of x̂t
k (see Equation (11.5)). The

first inequality follows from the triangle inequality. The second inequality follows from
the properties of the matrix spectral norm.

11.9.1 Proof of Theorem 11.3.1

Proof. Lemmas 11.9.1 and 11.9.2 imply the inequality

∥∥xt − x̂
∥∥− ∥∥∥ηH̃−1H − I

∥∥∥ ∥∥∥xt−1 − x̂
∥∥∥ ≤ ηγ

K

K

∑
k=1

∥∥∥(Hk + µI)−1H
∥∥∥ ∥∥∥xt−1 − x̂

∥∥∥ .

It suffices to rearrange the terms.

11.9.2 Proof of Theorem 11.3.3

Proof. Follows by using Lemma 11.11.2 (see Appendix 11.11) together with Theorem 11.3.1.

11.9.3 INEXACTDANE for Stochastic Quadratic Setting

In the interesting case of stochastic quadratic setting (see [163]), we can provide a more
precise result. More specifically, we have the following key result in the stochastic
quadratic setting.

233

Corollary 11.9.2.1. Suppose each Hk is the average of n i.i.d. symmetric positive definite ma-
trices with largest eigenvalue bounded above by L. Then for any 0 < α ≤ 1, with probability
1− α we have:

i Functions {Fk} are δ-related with δ =
√

32L2 log(Kd/α)
n ,

ii The iterates of INEXACTDANE (Algorithm 27) (with parameters defined in Theorem 11.3.3)
after

t = Õ
(
(L/λ)2

n log
(

Kd
α

)
log
(

L‖x0−x̂‖2

ε

))
satisfy f (xt) ≤ f (x̂) + ε.

Proof. The first part of the proof is directly from Lemma 2 of [163]. The second part of
the proof follows from Theorem 11.3.3.

Strongly Convex Case

11.9.4 Proof of Theorem 11.4.1

Proof. We first observe that

‖∇gt
k,µ(xt

k)−∇gt
k,µ(xt−1)‖ ≥ ‖∇gt

k,µ(xt−1)‖ − ‖∇gt
k,µ(xt

k)‖
≥ (1− γ)‖∇gt

k,µ(xt−1)‖. (11.9)

The first inequality follows from triangle inequality. The second inequality follows from
the condition that ‖∇gt

k,µ(xt
k)‖ ≤ γ‖∇gt

k,µ(xt−1)‖. We now define function ht
k : Rd → R

as
ht

k(x) := Fk(x) +
µ

2
‖x− xt−1‖2.

We define the virtual iterate x̂t
k = arg minx gt

k,µ(x). Using the optimality conditions of
x̂t

k, we have the following:

∇ht
k(x̂t

k)−∇ht
k(xt−1) = −η∇ f (xt−1). (11.10)

Also, define Bregman divergence of a smooth function φ as Dφ(x, x′) = φ(x)− φ(x′)−
〈∇φ(x′), x− x′〉. We observe the following:

f (xt
k) = f (xt−1) + 〈∇ f (xt−1), xt

k − xt−1〉+ D f (xt
k, xt−1)

= f (xt−1)− 1
η
〈∇ht

k(x̂t
k)−∇ht

k(xt−1), xt
k − xt−1〉+ D f (xt

k, xt−1)

= f (xt−1)− 1
η
〈∇ht

k(x̂t
k)−∇ht

k(xt
k), xt

k − xt−1〉︸ ︷︷ ︸
T1

− 1
η
〈∇ht

k(xt
k)−∇ht

k(xt−1), xt
k − xt−1〉+ D f (xt

k, xt−1). (11.11)

234

The second equality is due to optimality condition in (11.10). We bound the term T1 in
the following manner:

|T1| ≤ ‖∇ht
k(x̂t

k)−∇ht
k(xt

k)‖‖x
t
k − xt−1‖

≤ (L + µ)‖x̂t
k − xt

k‖‖x
t
k − xt−1‖. (11.12)

The first inequality is due to Cauchy-Schwarz inequality. The second inequality follows
from L + µ lipschitz continuous nature of the gradient of ht

k. In order to proceed further,
a bound on the term ‖xt

k − xt−1‖ is obtained in the following fashion:

‖xt−1 − xt
k‖ ≤ ‖x

t−1 − x̂t
k‖+ ‖x̂

t
k − xt

k‖
≤ ‖xt−1 − x̂t

k‖+ γ‖x̂t
k − xt−1‖ = (1 + γ)‖xt−1 − x̂t

k‖. (11.13)

The first inequality is due to triangle inequality. The second inequality is due to the in-
exactness condition in Algorithm 27. Substituting the above bound in Equation (11.12),
we have the following:

|T1| ≤ (L + µ)(1 + γ)‖x̂t
k − xt

k‖‖x
t−1 − x̂t

k‖ ≤ (L + µ)(1 + γ)γ‖xt−1 − x̂t
k‖

2. (11.14)

The second inequality is again due to inexactness condition in Algorithm 27. In order
to bound ‖xt−1 − x̂t

k‖
2, we observe the following:

(µ + λ)‖xt−1 − x̂t
k‖ ≤ ‖∇gt

k,µ(xt−1)‖ = ‖η∇ f (xt−1)‖. (11.15)

The first inequality follows from Lemma 11.11.3. Using this relationship in Equation (11.14),
we have the following:

|T1| ≤
2γη2(L + µ)

(λ + µ)2 ‖∇ f (xt−1)‖2.

235

Substituting the bound in Equation (11.11), we have:

f (xt
k) ≤ f (xt−1) +

2γη(L + µ)

(λ + µ)2 ‖∇ f (xt−1)‖2

− 1
η(L + µ)

‖∇ht
k(xt

k)−∇ht
k(xt−1)‖2 + D f (xt

k, xt−1)

≤ f (xt−1) +
2γη(L + µ)

(λ + µ)2 ‖∇ f (xt−1)‖2

− 1
η(L + µ)

‖∇ht
k(xt

k)−∇ht
k(xt−1)‖2 +

L
2
‖xt−1 − xt

k‖
2

≤ f (xt−1) +
2γη(L + µ)

(λ + µ)2 ‖∇ f (xt−1)‖2

− 1
η(L + µ)

‖∇gt
k,µ(xt

k)−∇gt
k,µ(xt−1)‖2 +

2Lη2

(λ + µ)2‖∇ f (xt−1)‖2

≤ f (xt−1)−
[
(1− γ)2

η(L + µ)
− 2L

(λ + µ)2 −
2γ(L + µ)

η(λ + µ)2

]
η2‖∇ f (xt−1)‖2

≤ f (xt−1)−
[
(1− γ)2

η(L + µ)
− 2L

(λ + µ)2 −
2γ(L + µ)

η(λ + µ)2

]
η2λ(f (xt−1)− f (x̂)). (11.16)

The first step is due to Lemma 11.11.3. The second step follows the L-smoothness of
f . The third step follows from the fact that ‖∇gt

k,µ(xt
k) −∇gt

k,µ(xt−1)‖ = ‖∇ht
k(xt

k) −
∇ht

k(xt−1)‖ and bound on ‖xt−1 − xt
k‖

2 from Equation (11.13) and (11.15). The fourth
inequality follows from Equation (11.9) and the fact that ∇gt

k,µ(xt−1) = ∇ f (xt−1). The
last inequality is due to strong convexity of function f . Finally, we observe:

(f (xt)− f (x̂) ≤ 1
K

K

∑
k=1

(f (xt
k)− f (x̂)) ≤ (1− ρ̃)(f (xt−1)− f (x̂)).

The first inequality is due to convexity. The second inequality follows from Equa-
tion (11.16). Therefore, we have the required result.

Weakly Convex Case

Proof of Corollary 11.4.1.1

We observe the following:

f (xt) ≤ fε(xt) ≤ min
x

fε(x) + (1− ρε)
s[fε(x0)−min

x
fε(x)]

≤ f (x̂) +
ε

2
‖x̂− x0‖2 + (1− ρε)

s[fε(x0)−min
x

fε(x)]

≤ f (x̂) + ε
[
(1/2)‖x̂− x0‖2 + (f (x0)− f (x̂))

]
. (11.17)

236

The second inequality is a consequence of Equation (11.4). The last inequality follows
from the facts that (i) s = Õ(L log(1/ε)/ε) and (ii) [fε(x0) −minx fε(x)] = [f (x0) −
minx fε(x)] ≤ [f (x0)− f (x̂)].

Nonconvex Case

11.9.5 Proof of Theorem 11.4.2

Proof. Using essentially the same argument as in Theorem 11.4.1, we have the following:

f (xt
k) ≤ f (xt−1)−

[
(1− γ)2

η(L + µ)
− 2L

(µ− L)2 −
2γ(L + µ)

η(µ− L)2

]
η2‖∇ f (xt−1)‖2.

The argument uses the fact that gt
k,µ is (µ + L)-smooth and (µ − L)-strongly convex.

This is in turn due to the lipschitz continuous nature of the gradient. Note that this is
possible only when µ > L (as mentioned in the theorem statement). Using the definition
of xt in the nonconvex case, we have

f (xt) ≤ f (xt−1)−
[
(1− γ)2

η(L + µ)
− 2L

(µ− L)2 −
2γ(L + µ)

η(µ− L)2

]
η2‖∇ f (xt−1)‖2. (11.18)

Rearranging the above inequality and using the definition of θ, we get

‖∇ f (xt−1)‖2 ≤ f (xt−1)− f (xt)

θ
.

Using a telescopic sum on the above inequality and the fact that x̂ is an optimal solution
of (11.1), we have the desired result.

11.10 Analysis of AIDE

Quadratic Case

11.10.1 Proof of Theorem 11.5.1

Proof. First consider the case where 2
√

2δ ≤ λ. In this case, we have τ = 0 and 1/16 ≤
γ ≤ 1/8. The required result trivially follows from Theorem 11.3.3. We turn our atten-
tion to the interesting case of 2

√
2δ > λ. For this case, we choose τ = 2

√
2δ− λ. We use

Ft
k(x) to denote the function Fk(x) + (τ/2)‖x− yt−1‖2. As mentioned in pseudocode of

Algorithm 28, we use INEXACTDANE for the set of functions Ft
k . Let ût = arg minx f t(x)

(refer to Algorithm 28). By solving each subproblem inexactly for s iterations, from
Theorem 11.3.3, we have the following:

f t(xt)− f t(ût) ≤ L+τ
2 ‖x

t − ût‖2 ≤ L+τ
2 ρ̃s‖xt−1 − ût‖2, (11.19)

237

where ρ̃ = 2/3. The first inequality follows from the L + τ Lipschitz continuous gra-
dient of f t. The second inequality follows from Theorem 11.3.3. The value of ρ̃ is
obtained from Theorem 11.3.3 noting the following two facts. (i) The inexactness pa-
rameter γ ≤ 1/8. (ii) ρ̃ = 2/3 when γ ≤ 1/8 and 2

√
2δ ≤ (λ + τ). Here, we used

the fact that INEXACTDANE is applied on the function f t and ∇2 f t � (λ + τ)I. Using
Equation (11.19), we have the following:

f t(xt)− f t(ût) ≤ L+τ
2 ρ̃s‖xt−1 − ût‖2 ≤ L+τ

λ+τ ρ̃s[f t(xt−1)− f t(ût)].

This simply follows from the fact that ∇2 f t � (λ + τ)I. Using Proposition 3.2 of [88],
we have the total number of iterations of INEXACTDANE iterations one has to execute
to achieve ε-accuracy is

t = Õ
(

1
1−ρ̃

√
λ+τ

λ log(1/ε)

)
= Õ

(√
δ
λ log(1/ε)

)
.

This is obtained from the fact that ρ̃ = 2/3. Therefore, we get the desired result.

11.10.2 AIDE in the Stochastic Quadratic Setting

The following result follows as a Corollary of Theorem 11.5.1.

Corollary 11.10.0.1. Suppose each Hk is the average of n i.i.d positive semidefinite matrices
with eigenvalues at most L. Then with probability at least 1− α:

i Functions {Fk} are δ-related with δ =
√

32L2 log(Kd/α)
n ,

ii The iterates of INEXACTDANE (Algorithm 27) (with parameters in Theorem 11.5.1) after

t = Õ
(√

L
n1/4
√

λ
log1/4

(
Kd
α

)
log
(

L‖x0−x̂‖2

ε

))
satisfy f (xt) ≤ f (x̂) + ε.

Proof. The first part of the proof is directly from Lemma 2 of [163]. The second part of
the proof follows from Theorem 11.5.1.

Strongly convex case

11.10.3 Proof of Theorem 11.5.2

Proof. Let ût = arg minx f t(x). We first observe that after s iterations of INEXACTDANE
in the tth iteration of AIDE (applied on f t), we have the following:

f t(xt)− f t(ût) ≤ (1− ρ̃)s(f t(xt−1)− f t(ût)), (11.20)

238

where

ρ̃ =

[
49

64(L + µ + τ)
− 2(L + τ)

(λ + τ + µ)2 −
(L + τ + µ)

4(λ + τ + µ)2

]
L

This follows directly from Theorem 11.4.1 and the fact that f t has (L + τ)-Lipschitz
continuous gradient and is (λ + τ)- strongly convex. Note that with the given value of
τ, µ and γ, we have following:

ρ̃ = L
[

49
64(2L + µ− λ)

− 2(2L− λ)

(L + µ)2 −
2L + µ− λ

4(L + µ)2

]
(11.21)

≥ L
[

49
64(14L)

− 4L
(13L)2 −

14L
4(13L)2

]
≥ 0.01. (11.22)

The above bound follows from simple algebra. Now again using Proposition 3.2 of [88],
the total number of INEXACTDANE iterations required to achieve an ε-accurate solution
is

t = Õ

(
1
ρ̃

√
λ + τ

λ
log
(

1
ε

))
= Õ

(√
L
λ

log
(

1
ε

))
.

This is obtained from the bound in Equation (11.21). This gives us the desired result.
Note that the constants in this result are not optimized.

11.11 Auxiliary Results

Here we establish two lemmas which are used in the proofs of the main results.
The following result is a slight extension of Lemma 4 in [163].

Lemma 11.11.1. Let µ, δ, ξ be positive constants satisfying max{µ, δ} < ξ. Further, let A and
B1, . . . , BK be d× d symmetric matrices satisfying ξ I � A, ∑k Bk = 0 and ‖Bk‖ ≤ δ for all
k ∈ [K]. Then, we have the following:∥∥∥((A + Bk)

−1 − A−1
)
(A− µI)

∥∥∥ ≤ 2δ

ξ − δ
, k ∈ [K],∥∥∥∥∥

(
1
K

K

∑
k=1

(A + Bk)
−1 − A−1

)
(A− µI)

∥∥∥∥∥ ≤ 2δ2

ξ(ξ − δ)
.

Proof. First, we observe that

(A + Bk)
−1 = (A(I + A−1Bk))

−1 = (I + A−1Bk)
−1A−1 = A−1 +

∞

∑
j=1

(−1)j(A−1Bk)
j A−1.

The above equality follows form series expansion of (I + A−1Bk)
−1, which is possible as

‖A−1Bk‖ ≤ ‖A−1‖‖Bk‖ = (δ/ξ) < 1. From the above equality, we obtain the following

239

bound: ∥∥∥((A + Bk)
−1 − A−1

)(
A− µI)‖ =

∥∥∥∥∥ ∞

∑
j=1

(−1)j(A−1Bk)
j A−1(A− µI)

∥∥∥∥∥
≤

∞

∑
j=1

∥∥∥(−1)j(A−1Bk)
j A−1(A− µI)

∥∥∥
≤

∞

∑
j=1

∥∥∥A−1
∥∥∥j
‖Bk‖j

∥∥∥I − µA−1
∥∥∥

≤
∞

∑
j=1

δj

ξ j

(
1 +

µ

ξ

)
≤ 2δ

ξ − δ
.

The first inequality follows from the triangle inequality. The second inequality fol-
lows from the Cauchy-Schwarz inequality. The last inequality follows from the fact
that µ/ξ < 1.

The second part of the claim was established as Lemma 4 in [163].

Lemma 11.11.2. Assume that λI � H � LI, where H := 1
K ∑K

k=1 Hk and λ > 0. Further,
assume that ‖Hk − H‖ ≤ δ for all k ∈ [K] and let H̃−1 := 1

K ∑K
k=1(Hk + µI)−1, where

µ = max
{

0, 8 δ2

λ − λ
}

. If we let

γ :=

{
1
8 if 2

√
2δ ≤ λ,

λ2

192δ2 otherwise,

then

ρ = ‖H̃−1H − I‖+ γ

K

K

∑
k=1
‖(Hk + µI)−1H‖ ≤

{
2
3 if 2

√
2δ ≤ λ,

1− λ2

24δ2 otherwise.

Proof. Using Lemma 11.11.1 with A = H + µI and Bk = Hk − H, we have the following
inequality: ∥∥∥((Hk + µI)−1 − (H + µI)−1

)
H
∥∥∥ ≤ 2δ

λ + µ− δ
, (11.23)∥∥∥(H̃−1 − (H + µI)−1

)
H
∥∥∥ ≤ 2δ2

(λ + µ)(λ + µ− δ)
, (11.24)

for all k ∈ [K]. From the above inequalities, we have

‖(Hk + µI)−1H‖ ≤ ‖(Hk + µI)−1H − I‖+ ‖I‖
≤ ‖(Hk + µI)−1H − (H + µI)−1H‖+ ‖(H + µI)−1H − I‖+ ‖I‖

≤ 2δ

λ + µ− δ
+

µ

λ + µ
+ 1. (11.25)

240

The first and second inequality follow from triangle inequality. The third inequality
follows from (11.23) and Lemma 3 in [163], which says that ‖(H + µI)−1H − I‖ =
µ/(λ + µ). Furthermore, we also have the following bound:

‖H̃−1H − I‖ ≤ ‖H̃−1H − (H + µI)−1H‖+ ‖(H + µI)−1H − I‖

≤ 2δ2

(λ + µ)(λ + µ− δ)
+

µ

λ + µ
. (11.26)

The first and second inequality follow from triangle inequality and Equation (11.24), re-
spectively. Inequality in Equation (11.26) was earlier shown in [163]. Using inequalities
in Equation (11.25) and Equation (11.26), we obtain the following bound:

ρ = ‖H̃−1H − I‖+ γ

K

K

∑
k=1
‖(Hk + µI)−1H‖

≤
[

2δ2

(λ + µ)(λ + µ− δ)
+

µ

λ + µ

]
+ γ

[
2δ

λ + µ− δ
+

µ

λ + µ
+ 1
]

Let us first consider the case of λ ≥ 2
√

2δ. In this case, we set µ = 0, γ = 1/8 and hence,
we have

ρ ≤ 2δ2

λ(λ− δ)
+ γ

[
2δ

λ− δ
+ 1
]
< 0.53 <

2
3

.

Now, consider the case of λ < 2
√

2δ. We use ψ to denote 8δ/λ. Note that ψ > 2. In this
case, we set µ = (8δ2/λ)− λ and γ = λ2/(192δ2) and hence, the following holds:

ρ ≤ 2
ψ(ψ− 1)

+ (1 + γ)

(
1− λ

ψδ

)
+ γ

(
1 +

2
ψ− 1

)
. (11.27)

We observe that ψ− 1 > ψ/2 (since ψ > 2). Further, the following inequality holds:

(1 + γ)

(
1− λ

ψδ

)
≤ 1− λ

ψδ
+ γ.

Substituting the above inequalities in Equation (11.27), we have the following:

ρ ≤ 4
ψ2 + 1− λ

ψδ
+ γ + γ

(
1 +

2
ψ− 1

)
≤ 1− λ2

16δ2 + 4γ ≤ 1− λ2

24δ2 .

The second inequality is due to that fact that ψ− 1 > 1 and the fact that γ = λ2/(192δ2).
Hence, we have the desired result.

Lemma 11.11.3. Suppose a function h : Rd → R is L-smooth and λ-strongly convex. Let
x∗ = arg min h(x). Then, we have the following:

〈∇h(x′)− h(x), x′ − x〉 ≥ 1
L
‖∇h(x′)−∇hi(x)‖2,

‖∇h(x)‖ ≥ λ‖x− x∗‖,

for all x′, x ∈ Rd.

241

Algorithm 29: A DISTRIBUTED VERSION OF SVRG (f , x0, s, r, h)

Data: f (x) = 1
K ∑K

k=1 Fk(x), initial point x0 ∈ Rd, stepsize h > 0
for t = 1 to s do

Compute ∇ f (xt) and distribute to all machines
for k = 1 to K do in parallel

xt
k = xt

for j = 1 to r do
Sample i ∈ Pk (e.g., uniformly at random)
xt

k = xt
k − h

(
∇ fi(xt

k)−∇ fi(xt−1) +∇ f (xt−1)
)

end
end
xt = 1

K ∑K
k=1 xt

k
end
return xt

11.12 A Practical Distributed Version of SVRG

In Section 11.6 we pointed out how running SVRG as a local solver in INEXACTDANE
in certain setting is equivalent to the Algorithm 29 below. It is a distributed version of
SVRG, that has been observed to perform well in practice [76], but has not been directly
analyzed. Note that there exist another way to obtain exactly the same algorithm. That
is to rewrite the local subproblem (11.2) as follows

gt
k,µ(x) = ∑i∈Pk

[
fi(x)−

〈
∇ fi(xt−1)−∇ f (xt−1), x

〉
+ µ

2‖x− xt−1‖2] ,

and directly apply SGD locally on this reformulation within INEXACTDANE and set µ =
0.

11.13 Additional Experiments

In this section, we provide extended version of what was already presented in Sec-
tion 11.7, along with results of different types. In particular, we extend the comparison
of INEXACTDANE, AIDE and COCOA+ to various settings and with different datasets.
We also study of the effect of varying local iterations between rounds of communication
on the performance of the algorithms. We present further results showing performance
under varying number of nodes onto which the dataset is distributed, and highlight a
case of non-random data distribution, in which DANE diverges, while the performance
of INEXACTDANE degrades only slightly, compared to benchmark with random data
distribution.

Again, the following default statements are true, unless stated otherwise. We use
SVRG as local solver for INEXACTDANE and AIDE, and we use SDCA in COCOA+. We

242

run all presented methods for a single pass over data available locally in every itera-
tion. We partition data randomly (mimicking the iid data distribution) across 8 nodes.
We present the best performance selected from a range of stepsize parameters for SVRG
and aggregation parameters for COCOA+. In the plots, we use DANE as label for INEX-
ACTDANE.

We omit the experiments for quadratic objectives as the results were very similar to
the ones presented here and hence, did not provide any additional insights, compared
to the experiments with classification on publicly available datasets.

11.13.1 INEXACTDANE, AIDE and COCOA+

In Figures 11.2 and 11.3, we present a comparison of INEXACTDANE, AIDE and CO-
COA+ on a binary classification task on the rcv1 dataset. Plots in top row are for logistic
loss, and bottom is for smoothed hinge loss. We apply L2-regularization with λ set to
1/(cN) for c ∈ {1, 10, 100}, which correspond to left, middle and right column respec-
tively. In Figure 11.2 we partition the data randomly to 8 nodes, while in Figure 11.3 we
use partitioning across 64 nodes. To strengthen our claims, in Figures 11.4 and 11.5, we
provide experiment with settings analogous to the ones in Figure 11.2, but on covtype
and realsim datasets respectively.

In this experiment, we can see a common pattern arising in different settings. The
benefit of acceleration in AIDE is present only when the condition number κ := L/µ >
N, and the larger it is, the larger is the gap in performance. This is to be expected, as the
acceleration of the fast stochastic methods changes κ in convergence rates to

√
Nκ [154].

Both INEXACTDANE and AIDE outperform COCOA+, with AIDE performing much bet-
ter in all studied settings. The behaviour of COCOA+, where if one looks only at subop-
timality of primal function value, the algorithm quickly converges to modest accuracy,
and then converges very slowly to higher accuracies, has been confirmed as correct by
its authors.

11.13.2 Varying amount of local computation

In Figure 11.6 we demonstrate how spending more local computational resources in
each iteration to solve the local subproblem (11.2) leads to faster convergence in terms
of number of iterations. Note that in the settings presented, it is not possible to get close
form solution to the subproblems, and hence we can only approximate behaviour of
DANE by running a local method for a long time. In number of cases in the above, run-
ning SVRG for 4 passes through local data already provides little to none improvement.
The only dataset on which significant improvement is visible is covtype. This behaviour
likely is due to the fact that N � d, and hence under random data distribution, the local
problems can be seen as δ-related with very small δ.

The labels in the figure mean represent the following: The labels DANE/6 and
DANE/3 correspond to running the local SVRG algorithm for one-sixth and one-third
of pass through local data in every iteration. The labels DANE*2 and DANE*4 corre-

243

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E

COCOA

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE A
ID

E

COCOA

0 200 400 600 800
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

A
ID

E

CO
CO

A

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E
 COCOA

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

Figure 11.2: rcv1 dataset, 8 nodes, regularization parameter λ set to 1/(cN), for c ∈
{1, 10, 100} (in left/middle/right columns respectively). Top row: logistic loss. Bottom
row: smoothed hinge loss.

0 20 40 60
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E

COCOA

0 100 200 300
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E

COCOA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 1000 2000 3000 4000 5000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

A
ID

E

C
O

C
O

A

Figure 11.3: rcv1 dataset, 64 nodes, regularization parameter λ set to 1/(cN), for c ∈
{1, 10, 100} (in left/middle/right columns respectively). Top row: logistic loss. Bottom
row: smoothed hinge loss.

244

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

A
ID

E

COCOA

0 50 100 150 200
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE A
ID

E

C
O

C
O

A

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

A
ID

E

C
O

C
O

A

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y
DANE

A
ID

E

C
O

C
O

A

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

Figure 11.4: covtype dataset, 8 nodes, regularization parameter λ set to 1/(cN), for
c ∈ {1, 10, 100} (in left/middle/right columns respectively). Top row: logistic loss.
Bottom row: smoothed hinge loss.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E

COCOA

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

A
ID

E

COCOA

0 200 400 600 800
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E

A
ID

E

COCOA

0 100 200 300 400
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

COCOA

0 500 1000 1500
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE

A
ID

E

C
O

C
O

A

Figure 11.5: realsim dataset, 8 nodes, regularization parameter λ set to 1/(cN), for c ∈
{1, 10, 100} (in left/middle/right columns respectively). Top row: logistic loss. Bottom
row: smoothed hinge loss.

245

spond to running the local SVRG algorithm for two and four passes through the local
data.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E
/1

DANE/3

DANE/6

D
A
N
E
*2

D
A

N
E
*4

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

D
A

N
E
*2

D
A
N
E
*4

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E
/1

DANE/3

DANE/6

D
A

N
E
*2

D
A

N
E
*4

0 10 20 30
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

DANE*2
D

A
N

E*4

0 20 40 60
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

D
A

N
E
*2

DANE*4

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

DANE*2D
A
N
E
*4

0 20 40 60
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

D
A
N
E
*2

D
A

N
E
*4

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

DANE/1

DANE/3

DANE/6

DANE*2
D

A
N

E*4

Figure 11.6: Varying number of passes through local data per iteration in range [1/6, 4].
Top row: logistic loss, Bottom row: smoothed hinge loss. Datasets in columns: rcv1,
covtype, realsim, url

11.13.3 Node scaling

The plots in top row in Figure 11.7 show how the performance changes, as we partition
the data across different number of nodes, but keep the local work equal to one pass
through local data. The performance degrades as we increase number of nodes, because
we do less relative work on any single computer. However, this is a positive result, as
the algorithm always converges.

In the bottom row, we double the number of passes over local data when we double
the number of nodes. This is motivated to compare how the algorithm performs, when
equal number of iteration of local SVRG is used. In most cases, the algorithms perform
very similarly, demonstrating the robustness of INEXACTDANE. For rcv1 and realsim
datasets partitioned on 64 nodes, the convergence slows down. In this case, the optimal
stepsize for local SVRG was significantly smaller than in the other cases. This was likely
caused by getting into region where the aggregation starts to be unstable, and thus
higher accuracy on local subproblems leads to worse overall performance.

11.13.4 Inconvenient data partitioning

In the last experiment, we depart from theory, and observe that INEXACTDANE is, com-
pared to DANE, much more robust to arbitrary partitions of the data. In particular, in
Figure 11.8 we compare INEXACTDANE in two settings: random, which corresponds to
random data partition to 2 nodes, and output, where the data are partitioned according
to their output label — positive examples on one node, negative examples on the other.
In this setting, DANE diverges, while the performance of INEXACTDANE drops down
only slightly. We observed that the optimal stepsize for local SVRG is about 5− 10%
smaller in the output case, compared to the random case.

246

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E
4

D
A
N
E
8

D
A

N
E
16

DANE32

DANE64

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E
4

DANE8

DANE16

DANE32

DANE64

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E
4

D
A
N
E
8

D
A

N
E
16

DANE32

DANE64

0 10 20 30
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E4

DANE8

DANE16

DANE32

DANE64

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A
N
E
4

D
A
N
E
8

D
A
N
E
16

D
A

N
E32

DANE64

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E

4
 DANE8 D

A
N

E
1
6

D
A
N
E
32

D
A

N
E

6
4

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E
4

D
A
N
E
8

D
A
N
E
16

D
A
N
E
32

DANE64

0 10 20 30
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

D
A

N
E4 D
A

N
E
8

D
A
N
E
16

D
A
N
E
32

D
A

N
E
64

Figure 11.7: Performance comparison as data is partitioned across 4–64 nodes, with
logistic loss. Top row: Single pass through local data per iteration. Bottom row: Fixed
number of updates of local SVRG per iteration. Datasets in columns: rcv1, covtype,
realsim, url.

This observation is particularly appealing for practitioners, as the data in huge scale
applications are often partitioned “as is”, i.e., it is given and one does not have the
opportunity to randomly reshuffle the data between nodes.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

random

output

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

random output

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iterations

F
u

n
c

ti
o

n
 s

u
b

o
p

ti
m

a
lit

y

random

output

Figure 11.8: Data partitioned randomly, vs. data partitioned according to their output
label. Datasets in columns: rcv1, covtype and realsim.

Practical considerations: Although the experiments in Section 11.13.1 suggest superi-
ority of AIDE, it may not always be the case in practice. AIDE comes with the additional
requirement to set the catalyst acceleration parameter τ. At the moment, there is not
any simple rule guiding its choice, as the optimal τ depends on properties of the al-
gorithm being accelerated, which are usually not known — see Section 3.1 of [88] for
further details. In contrast, COCOA+ is usually a slightly easier to tune in practice, since
with SDCA one can use data-independent aggregation parameter equal to 1/K, and ef-
fectively have hyper-parameter-free algorithm. In the case of INEXACTDANE, natural
local solvers would require a choice of hyper-parameter such as stepsize. While this can
often be affordable to compute, it is not data-independent.

247

248

Chapter 12

My Other Research — In a Nutshell

Besides optimization methods for machine learning applications, I have also worked
on a number of other topics such as kernel methods, hypothesis testing, dependence
measures, functional regression, which are not part of my thesis. Here, I briefly describe
my contributions that form the core of my research in these areas.
Kernel Methods, Dependence Measures & Hypothesis Testing. Measuring depen-
dencies and conditional dependencies are of great importance in many scientific fields
including machine learning, and statistics. There are numerous problems where we
want to know how large the dependence is between random variables, and how this
dependence changes if we observe other random variables. In an ICML’13 paper [130],
we developed new kernel based dependence measures with scale invariance property
and showed the effectiveness of our dependence measure on real-world problems. I also
worked on kernel based two sample testing problem. In particular, in a series of papers
[126, 136, 137] we proved (through theoretical and empirical results) that MMD based
two sample testing — a kernel based two sample test — also suffers from the curse of
dimensionality. Such a result was important because there was a wide misconception
that these measures do not suffer from the curse of dimensionality and hence, also work
for high dimension problems. Our papers cleared this misconception and provided first
theoretical results for the power of the MMD based two sample hypothesis tests.
Machine Learning on Functional Data. Another important aspect of many modern
machine learning applications is the structure in the input data. Modern data collection
techniques motivate settings where the training data is no longer of simple form such
as features. For example, a Facebook user profile contains very rich information about
the user such as posts, friends list, likes, photos, polls, etc. Unfortunately, most of the
existing machine learning and statistical techniques cannot handle such data, often re-
sorting to ad-hoc approaches, thereby ignoring the underlying rich structure in the data.
This necessitates the development of a different machine learning paradigm where the
true structure in the complex data can be exploited. In a UAI’14 [131], we developed
a simple nearest neighbor based algorithm for handling data of various forms. In fact,
we considered a strictly generalized scenario of noisy and incomplete/missing data.
We analyzed the theoretical properties of our proposed estimator and demonstrated its
performance through practical experiments. We also proposed an approach to choose

249

the number of nearest neighbors to be used, thereby alleviating the problem of cross
validation in nearest neighbor based algorithms.

250

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. (pages 2, 67, and 221)

[2] A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums.
CoRR, abs/1410.0723, 2014. (pages 4, 18, 46, 61, 62, 82, 83, 112, and 150)

[3] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In
Proceedings of the 25th Annual Conference on Neural Information Processing Systems
(NIPS), pages 873–881, 2011. (pages 46, 149, and 150)

[4] N. Agarwal, B. Bullins, and E. Hazan. Second order stochastic optimization in
linear time. CoRR, abs/1602.03943, 2016. (page 62)

[5] N. Agarwal, A. Z. Zeyuan, B. Bullins, E. Hazan, and T. Ma. Finding approximate
local minima for nonconvex optimization in linear time. CoRR, abs/1611.01146,
2016. (pages 60, 61, and 66)

[6] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via
coresets. In Combinatorial and Computational Geometry, MSRI, pages 1–30. Univer-
sity Press, 2005. (page 207)

[7] S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via stochas-
tic gradient Fisher scoring. In Proceedings of the 29th International Conference on
Machine Learning (ICML), 2012. (pages 129 and 139)

[8] S. Ahn, B. Shahbaba, and M. Welling. Distributed stochastic gradient MCMC. In
Proceedings of the 31st International Conference on Machine Learning (ICML), 2014.
(pages 129 and 139)

[9] A. Antoniadis, I. Gijbels, and M. Nikolova. Penalized likelihood regression for
generalized linear models with non-quadratic penalties. Annals of the Institute of
Statistical Mathematics, 63(3):585–615, June 2009. (page 54)

[10] A. Auslender. Optimisation Méthodes Numériques. Masson, 1976. (page 181)

251

http://tensorflow.org/

[11] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with
sparsity-inducing norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Opti-
mization for Machine Learning. MIT Press, 2011. (page 81)

[12] M. F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clus-
tering on general communication topologies. In Proceedings of the 27th Annual
Conference on Neural Information Processing Systems (NIPS), pages 1995–2003, 2013.
(page 207)

[13] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013. (page 183)

[14] P. Berman, N. Kovoor, and P. M. Pardalos. A linear-time algorithm for the least-
distance problem. Technical report, Pennsylvania State University, Department of
Computer Science, 1992. (page 191)

[15] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Prentice-Hall, 1989. (page 46)

[16] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995. (page 110)

[17] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second
edition, 1999. (page 181)

[18] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for
convex optimization: A survey. Optimization for Machine Learning, 2010:1–38, 2011.
(pages 18, 45, 46, and 150)

[19] L. Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nımes, 91(8), 1991. (pages 19, 61, and 83)

[20] S. Boyd. Distributed optimization and statistical learning via the alternating di-
rection method of multipliers. Foundations and Trends® in Machine Learning, 3(1):
1–122, 2010. (page 207)

[21] J.K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent
for L1-regularized loss minimization. In L. Getoor and T. Scheffer, editors, Pro-
ceedings of the 28th International Conference on Machine Learning, pages 321–328.
Omnipress, 2011. (page 182)

[22] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for non-
convex optimization. CoRR, abs/1611.00756, 2016. (pages 60, 61, 66, 68, 78, and 79)

[23] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained
optimization methods based on probabilistic models. Mathematical Programming,
pages 1–39, 2017. (page 77)

[24] C. Chang and C. Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May 2011. ISSN 2157-6904. (page 194)

[25] C. Chen, N. Ding, and L. Carin. On the convergence of stochastic gradient mcmc
algorithms with high-order integrators. In Proceedings of the 29th Annual Confer-
ence on Neural Information Processing Systems (NIPS), 2015. (pages 131, 135, 140,
and 142)

252

[26] T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo.
In Proceedings of the 31st International Conference on Machine Learning (ICML), 2014.
(page 130)

[27] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss
surface of multilayer networks. CoRR, abs/1412.0233, 2014. (pages 7 and 60)

[28] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated
gradient algorithms for conditional random fields and max-margin markov net-
works. Journal of Machine Learning Research (JMLR), 9:1775–1822, 2008. (pages 9
and 109)

[29] Y. Dauphin, H. de Vries, and Y. Bengio. Equilibrated adaptive learning rates for
non-convex optimization. In Proceedings of the 29th Annual Conference on Neural
Information Processing Systems (NIPS), pages 1504–1512, 2015. (pages 7 and 60)

[30] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Proceedings of the 28th Annual Conference on Neural Information
Processing Systems (NIPS), pages 2933–2941, 2014. (pages 7 and 60)

[31] A. Defazio. New Optimization Methods for Machine Learning. PhD thesis, Australian
National University, 2014. (page 150)

[32] A. Defazio. A simple practical accelerated method for finite sums. pages 676–684,
2016. (page 229)

[33] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Proceedings
of the 28th Annual Conference on Neural Information Processing Systems (NIPS), pages
1646–1654. 2014. (pages 17, 18, 45, 46, 48, 50, 61, 81, 83, 87, 92, 110, 111, 116, 119,
130, 132, 133, 136, 149, 150, 151, 154, 158, 160, 163, 168, 174, and 229)

[34] A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable incremental
gradient method for big data problems. pages 1125–1133, 2014. (pages 18, 61, 149,
and 150)

[35] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online
prediction using mini-batches. Journal of Machine Learning Research, 13(1):165–202,
2012. (pages 26 and 149)

[36] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and
Trends Signal Processing, 7:197–387, 2014. (page 45)

[37] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven. Bayesian sam-
pling using stochastic gradient thermostats. In Proceedings of the 28th Annual Con-
ference on Neural Information Processing Systems (NIPS), 2014. (pages 130 and 139)

[38] D. Feldman and M. Langberg. A unified framework for approximating and clus-
tering data. In Proceedings of the Forty-third Annual ACM Symposium on Theory of
Computing (STOC), pages 569–578, 2011. (pages 12, 206, 207, 208, and 219)

[39] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-

253

size coresets for k-means, pca and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1434–
1453, 2013. (pages 12, 206, 207, and 219)

[40] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, March 1956. (pages 109, 110, and 112)

[41] J. Friedman, T. Hastie, H. Höfling, R. Tibshirani, et al. Pathwise coordinate opti-
mization. The Annals of Applied Statistics, 1(2):302–332, 2007. (page 181)

[42] S. Fujishige and S. Isotani. A submodular function minimization algorithm based
on the minimum-norm base. Pacific Journal of Optimization, 7(1):3–17, 2011. (pages
9 and 109)

[43] M. Fukushima and H. Mine. A generalized proximal point algorithm for certain
non-convex minimization problems. International Journal of Systems Science, 12(8):
989–1000, 1981. (page 82)

[44] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation. Computers & Mathematics with
Applications, 2(1):17–40, 1976. (page 182)

[45] D. Garber and E. Hazan. Faster rates for the frank-wolfe method over strongly-
convex sets. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), pages 541–549, 2015. (page 110)

[46] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points - online stochas-
tic gradient for tensor decomposition. In Proceedings of The 28th Conference on
Learning Theory, COLT, pages 797–842, 2015. (pages 30, 60, 61, 66, and 70)

[47] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for noncon-
vex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.
(pages 4, 5, 19, 20, 31, 46, 47, 59, 61, 62, 83, 84, 109, 110, 111, and 124)

[48] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods
for nonconvex stochastic composite optimization. Mathematical Programming, 155
(1-2):267–305, 2014. (pages 8, 82, 84, 109, and 110)

[49] M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 2011. (page 130)

[50] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2010. (page 29)

[51] R. Glowinski and A. Marrocco. Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de
dirichlet non linéares. Revue Française d’Automatique, Informatique, et Recherche
Opérationelle, 1975. (page 182)

[52] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, MD, 3rd edition, 1996. (page 182)

254

[53] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. A globally convergent incremen-
tal Newton method. Mathematical Programming, 151(1):283–313, 2015. (page 149)

[54] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms
for norm-regularized smooth convex optimization. Mathematical Programming,
152(1-2):75–112, apr 2014. (page 109)

[55] E. Hazan and S. Kale. Projection-free online learning. In Proceedings of the 29th
International Conference on Machine Learning (ICML), pages 1843–1850, 2012. (pages
109, 116, and 124)

[56] E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimiza-
tion. CoRR, abs/1602.02101, 2016. (pages 109, 110, 111, 113, 116, and 124)

[57] E. Hazan, K. Levy, and S. Shalev-Shwartz. Beyond convexity: Stochastic quasi-
convex optimization. In Proceedings of the 29th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), pages 1585–1593, 2015. (page 19)

[58] A. Hefny, S. J. Reddi, and S. Sra. Coordinate descent algorithms with coupling
constraints: Lessons learned. In NIPS Workshop on Software Engineering For Ma-
chine Learning, 2014. (page 193)

[59] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006. (page 69)

[60] M. Hong. A distributed, asynchronous and incremental algorithm for nonconvex
optimization: An admm based approach. CoRR, abs/1412.6058, 2014. (pages 19
and 46)

[61] M. Hong and Z. Luo. On the linear convergence of the alternating direction
method of multipliers. CoRR, abs/1208.3922, 2012. (page 183)

[62] M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo. Iteration Complexity Analysis
of Block Coordinate Descent Methods. CoRR, abs/1310.6957, 2013. (page 181)

[63] C. J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable
selection for non-negative matrix factorization. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD),
pages 1064–1072, 2011. (page 181)

[64] C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In Proceedings of the 25th
International Conference on Machine Learning (ICML), pages 408–415, 2008. (pages
181 and 182)

[65] C. J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. D. Ravikumar. Sparse inverse covari-
ance matrix estimation using quadratic approximation. In Proceedings of the 25th
Annual Conference on Neural Information Processing Systems (NIPS), pages 2330–
2338, 2011. (page 181)

[66] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
Proceedings of the 30tt International Conference on Machine Learning (ICML), pages
427–435, 2013. (pages 109 and 110)

255

[67] M. Jaggi, V. Smith, M. Takac, J. Terhorst, S. Krishnan, T. Hofmann, and Michael I.
Jordan. Communication-Efficient Distributed Dual Coordinate Ascent. In Proceed-
ings of the 28th Annual Conference on Neural Information Processing Systems (NIPS),
pages 3068–3076. 2014. (pages 12 and 222)

[68] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statisti-
cal Learning: with Applications in R. Springer Texts in Statistics. Springer, 2013.
(page 45)

[69] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle
points efficiently. CoRR, abs/1703.00887, 2017. (pages 61 and 66)

[70] T. Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’06, pages 217–226. ACM, 2006. ISBN 1-59593-339-5. (page 207)

[71] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using pre-
dictive variance reduction. In Proceedings of the 27th Annual Conference on Neural
Information Processing Systems (NIPS), pages 315–323. 2013. (pages 17, 18, 21, 24,
29, 43, 46, 61, 64, 65, 83, 85, 110, 116, 130, 132, 134, 149, 150, 151, 153, 154, 159, 160,
168, 179, 207, 218, 219, 222, 223, and 229)

[72] H. Karimi, J. Nutini, and M. W. Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD,
pages 795–811, 2016. (pages 83, 90, and 91)

[73] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. (pages 67 and 77)

[74] J. Konečný and P. Richtárik. Semi-Stochastic Gradient Descent Methods. CoRR,
abs/1312.1666, 2013. (pages 21, 149, 150, 222, 223, and 229)

[75] J. Konečný, J. Liu, P. Richtárik, and M. Takáč. Mini-Batch Semi-Stochastic Gradi-
ent Descent in the Proximal Setting. arXiv:1504.04407, 2015. (pages 18, 61, 149,
and 150)

[76] J. Konečný, B. McMahan, and D. Ramage. Federated optimization: distributed
optimization beyond the datacenter. CoRR, abs/1511.03575, 2015. (pages 222,
229, 231, and 242)

[77] H. J. Kushner and D. S. Clark. Stochastic approximation methods for constrained
and unconstrained systems, volume 26. Springer Science & Business Media, 2012.
(pages 19, 46, and 61)

[78] S. Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-Convex Objectives.
abs/1607.00345, 2016. (pages xiv, 110, 112, 113, and 124)

[79] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of frank-wolfe
optimization variants. In Proceedings of the 29th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), pages 496–504, 2015. (page 110)

[80] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-

256

wolfe optimization for structural svms. CoRR, abs/1207.4747, 2012. (page 183)

[81] G. Lan and Y. Zhou. An optimal randomized incremental gradient method. CoRR,
abs/1507.02000, 2015. (pages 18, 61, and 83)

[82] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice–Hall,
Englewood Cliffs, NJ, 1974. Reissued with a survey on recent developments by
SIAM, Philadelphia, 1995. (page 182)

[83] K. Y. Levy. The power of normalization: Faster evasion of saddle points. CoRR,
abs/1611.04831, 2016. (page 61)

[84] M. Li, D. Andersen, A. Smola, and K. Yu. Communication efficient distributed
machine learning with the parameter server. In Proceedings of the 28th Annual Con-
ference on Neural Information Processing Systems (NIPS), pages 19–27. 2014. (pages
2, 149, 208, and 221)

[85] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochas-
tic optimization. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, pages 661–670. ACM, 2014.
(page 26)

[86] X. Li, T. Zhao, R. Arora, H. Liu, and J. Haupt. Stochastic variance reduced op-
timization for nonconvex sparse learning. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016. (page 84)

[87] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous Parallel Stochastic Gradient for
Nonconvex Optimization. In Proceedings of the 29th Annual Conference on Neural
Information Processing Systems (NIPS), 2015. (pages 19 and 61)

[88] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimiza-
tion. In Proceedings of the 29th Annual Conference on Neural Information Processing
Systems (NIPS), pages 3366–3374. 2015. (pages 227, 230, 238, 239, and 247)

[89] J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism
and convergence properties. SIAM Journal on Optimization, 25(1):351–376, January
2015. (page 91)

[90] J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism
and convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.
(page 150)

[91] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel
stochastic coordinate descent algorithm. CoRR, abs/1311.1873, 2013. (pages 182,
183, 186, and 188)

[92] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel
stochastic coordinate descent algorithm. In Proceedings of the 31st International
Conference on Machine Learning (ICML), pages 469–477, 2014. (pages 150 and 154)

[93] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Auto-
matic Control, 22(4):551–575, 1977. (pages 19 and 61)

[94] Z. Luo and P. Tseng. On the convergence of the coordinate descent method for

257

convex differentiable minimization. Journal of Optimization Theory and Applications,
72(1):7–35, 1992. (page 183)

[95] C. Ma, J. Konečný, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, and M. Takáč. Dis-
tributed optimization with arbitrary local solvers. CoRR, abs/1512.04039, 2015.
(pages 222 and 229)

[96] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč. Adding vs.
averaging in distributed primal-dual optimization. CoRR, abs/1502.03508, 2015.
(page 222)

[97] Y. Ma, T. Chen, and E. Fox. A complete recipe for stochastic gradient MCMC. In
Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS), 2015. (pages 129 and 139)

[98] D. Mahajan, S. S. Keerthi, S. Sundararajan, and L. Bottou. A functional approxima-
tion based distributed learning algorithm. CoRR, abs/1310.8418, 2013. (page 207)

[99] J. Mairal. Optimization with first-order surrogate functions. CoRR, abs/1305.3120,
2013. (page 150)

[100] J. Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML), pages 735–742, 2010. (page 69)

[101] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In Proceedings of the 32nd International Conference on Ma-
chine Learning (ICML), pages 2408–2417, 2015. (page 69)

[102] H. Mine and M. Fukushima. A minimization method for the sum of a convex
function and a continuously differentiable function. Journal of Optimization Theory
and Applications, 33(1):9–23, 1981. (page 82)

[103] J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. C. R. Acad. Sci. Paris Sér. A Math., 255:2897–2899, 1962. (page 81)

[104] R. Neal. Mcmc using hamiltonian dynamics. In Handbook of Markov Chain Monte
Carlo, 2010. (pages 9 and 129)

[105] I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimiza-
tion problems with composite objective function and linear coupled constraints.
Computational Optimization and Applications, 57(2):307–337, 2014. (pages 11, 182,
183, 188, 190, 191, 194, 200, and 201)

[106] I Necoara, Y Nesterov, and F Glineur. A random coordinate descent method on
large optimization problems with linear constraints. Technical report, Technical
Report, University Politehnica Bucharest, 2011, 2011. (pages 11, 182, 187, 188,
and 191)

[107] A. Nedić, D. P. Bertsekas, and V. S. Borkar. Distributed asynchronous incremen-
tal subgradient methods. Studies in Computational Mathematics, 8:381–407, 2001.
(page 150)

[108] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. John Wiley and Sons, 1983. (pages 21, 83, 104, and 111)

258

[109] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19(4):
1574–1609, January 2009. ISSN 1052-6234. (page 197)

[110] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19(4):
1574–1609, 2009. (pages 17, 18, 46, and 149)

[111] Y. Nesterov. Introductory Lectures On Convex Optimization: A Basic Course. Springer,
2003. (pages 4, 19, 46, 47, 62, 84, 124, 135, 206, 211, and 223)

[112] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. Core discussion papers, Université catholique de Louvain, Center for
Operations Research and Econometrics (CORE), 2010. (pages 182 and 183)

[113] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012. (pages 81 and 150)

[114] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012. (page 182)

[115] Y. Nesterov and B. T. Polyak. Cubic regularization of newton method and its
global performance. Mathematical Programming, 108(1):177–205, 2006. (pages 3, 7,
19, 47, 60, 61, 62, 66, 67, and 76)

[116] A. Nitanda. Stochastic Proximal Gradient Descent with Acceleration Techniques.
In Proceedings of the 28th Annual Conference on Neural Information Processing Systems
(NIPS), pages 1574–1582, 2014. (page 150)

[117] J. Nocedal and S. J. Wright. Numerical Optimization. Springer series in opera-
tions research and financial engineering. Springer, 1999. ISBN 9780387987934.
(page 207)

[118] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimiza-
tion, 1(3):127–239, 2014. ISSN 2167-3888. (page 81)

[119] S. Patterson and Y. W. Teh. Stochastic gradient Riemannian Langevin dynamics
on the probability simplex. In Proceedings of the 27th Annual Conference on Neural
Information Processing Systems (NIPS), 2013. (pages 130 and 139)

[120] B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 6
(1):147–160, January 1994. ISSN 0899-7667. (pages 62 and 67)

[121] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical report, Advances in Kernel Methods - Support Vector
Learning, 1998. (page 182)

[122] B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Compu-
tational Mathematics and Mathematical Physics, 3(4):864–878, January 1963. (pages
3, 19, 24, 47, 52, and 90)

[123] B. T. Polyak. Introduction to Optimization. Optimization Software Inc., 1987. Nov
2010 revision. (page 181)

259

[124] B .T. Polyak and Y. Z. Tsypkin. Pseudogradient adaptation and training algo-
rithms. Automation and Remote Control, 34:45–67, 1973. (pages 19, 61, and 83)

[125] Z. Qu, P. Richtárik, and T. Zhang. Quartz: Randomized dual coordinate ascent
with arbitrary sampling. In Proceedings of the 29th Annual Conference on Neural
Information Processing Systems (NIPS). 2015. (page 223)

[126] A. Ramdas, S. J. Reddi, B. Póczos, A. Singh, and L. A. Wasserman. Adaptivity and
computation-statistics tradeoffs for kernel and distance based high dimensional
two sample testing. CoRR, abs/1508.00655, 2015. (pages 13 and 249)

[127] L. A. Rastrigin. Statisticheskie Metody Poiska Ekstremuma (Statistical Extremum Seek-
ing Methods). Nauka, Moscow, 1968. (page 181)

[128] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild!: A Lock-Free Approach to Par-
allelizing Stochastic Gradient Descent. In Proceedings of the 25th Annual Conference
on Neural Information Processing Systems (NIPS), pages 693–701, 2011. (pages 10,
46, 149, 150, 154, 155, 158, 159, 160, 182, 185, 193, 194, and 222)

[129] S. J. Reddi and E. Brunskill. Incentive decision processes. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI), pages 418–
427, 2012. (page 13)

[130] S. J. Reddi and B. Póczos. Scale invariant conditional dependence measures. In
Proceedings of the 30th International Conference on Machine Learning (ICML), pages
1355–1363, 2013. (pages 13 and 249)

[131] S. J. Reddi and B. Póczos. k-nn regression on functional data with incomplete
observations. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 692–701, 2014. (pages 13 and 249)

[132] S. J. Reddi, A. Hefny, C. Downey, A. Dubey, and S. Sra. Large-scale randomized-
coordinate descent methods with non-separable linear constraints. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence (UAI), pages
752–761, 2015. (page 13)

[133] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. On variance reduction
in stochastic gradient descent and its asynchronous variants. In Proceedings of
the 29th Annual Conference on Neural Information Processing Systems (NIPS), pages
2629–2637, 2015. (pages 13, 18, 46, 61, 83, 87, and 222)

[134] S. J. Reddi, B. Póczos, and A. J. Smola. Communication efficient coresets for em-
pirical risk minimization. In Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence (UAI), pages 762–771, 2015. (page 13)

[135] S. J. Reddi, B. Póczos, and A. J. Smola. Doubly robust covariate shift correction.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages
2949–2955, 2015. (page 13)

[136] S. J. Reddi, A. Ramdas, B. Póczos, A. Singh, and L. A. Wasserman. On the de-
creasing power of kernel and distance based nonparametric hypothesis tests in
high dimensions. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

260

Intelligence, pages 3571–3577, 2015. (pages 13 and 249)

[137] S. J. Reddi, A. Ramdas, B. Póczos, A. Singh, and L. A. Wasserman. On the high
dimensional power of a linear-time two sample test under mean-shift alternatives.
In Proceedings of the Eighteenth International Conference on Artificial Intelligence and
Statistics (AISTATS), 2015. (pages 13 and 249)

[138] S. J. Reddi, A. Dubey, B. Póczos, A. J. Smola, E. Xing, and S. Williamson. Variance
reduction in stochastic gradient Langevin dynamics. In Proceedings of the 30th
Annual Conference on Neural Information Processing Systems (NIPS), 2016. (page 13)

[139] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. J. Smola. Stochastic variance reduc-
tion for nonconvex optimization. In Proceedings of the 33nd International Conference
on Machine Learning, ICML, pages 314–323, 2016. (pages 13, 61, 64, 65, 72, 76, 83,
84, 89, 105, 110, 111, 124, and 125)

[140] S. J. Reddi, J. Konecný, P. Richtárik, B. Póczos, and A. J. Smola. AIDE: fast and
communication efficient distributed optimization. CoRR, abs/1608.06879, 2016.
(page 13)

[141] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Fast incremental method for noncon-
vex optimization. In Proceedings of the 55th IEEE Conference on Decision and Control
(CDC), 2016. (pages 13, 61, 83, 84, 89, 110, 111, 119, and 124)

[142] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for
nonsmooth nonconvex finite-sum optimization. In Proceedings of the 30th Annual
Conference on Neural Information Processing Systems (NIPS), 2016. (pages 13, 61,
and 111)

[143] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Stochastic frank-wolfe methods
for nonconvex optimization. In 54th Annual Allerton Conference on Communication,
Control, and Computing, 2016. (page 13)

[144] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming,
144(1-2):1–38, 2014. (page 150)

[145] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning
with big data. CoRR, abs/1310.2059, 2013. (pages 181, 182, and 190)

[146] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. CoRR, abs/1107.2848,
2011. (pages 181, 182, 183, 184, and 190)

[147] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data opti-
mization. CoRR, abs/1212.0873, 2012. (pages 182, 183, and 190)

[148] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400–407, 1951. (pages 6, 17, 19, 46, 61, 83, and 149)

[149] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, sep 1951. (pages 10, 113, 129, and 130)

[150] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM

261

Journal on Control and Optimization, 14(5):877–898, 1976. (page 81)

[151] A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic coordinate
descent methods. SIAM Journal on Optimization, 23(1):576–601, 2013. (page 181)

[152] K. Scheinberg. An efficient implementation of an active set method for svms.
Journal of Machine Learning Research, 7:2237–2257, December 2006. ISSN 1532-4435.
(page 207)

[153] M. W. Schmidt, N. L. Roux, and F. R. Bach. Minimizing Finite Sums with the
Stochastic Average Gradient. Mathematical Programming. (pages 17, 18, 29, 46, 50,
61, 83, 92, 110, 130, 132, 136, 149, 150, 151, 158, 207, and 229)

[154] S. Shalev-Shwartz. SDCA without duality. CoRR, abs/1502.06177, 2015. (pages
18, 24, 46, 83, 91, 230, and 243)

[155] S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coor-
dinate ascent. In Proceedings of the 27th Annual Conference on Neural Information
Processing Systems (NIPS), pages 378–385, 2013. (page 150)

[156] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for
regularized loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.
(pages 18, 46, 61, 83, 149, 150, and 229)

[157] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research (JMLR), 14,
2013. (pages 181 and 182)

[158] S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coordi-
nate ascent. CoRR, abs/1305.2581, 2013. (page 182)

[159] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-
gradient solver for svm. In Proceedings of the 24th International Conference on Ma-
chine Learning (ICML), pages 807–814, 2007. (page 207)

[160] O. Shamir. A stochastic PCA and SVD algorithm with an exponential convergence
rate. CoRR, abs/1409.2848, 2014. (pages 19, 46, and 84)

[161] O. Shamir. Fast stochastic algorithms for SVD and PCA: Convergence properties
and convexity. CoRR, abs/1507.08788, 2015. (pages 19 and 84)

[162] O. Shamir and N. Srebro. On distributed stochastic optimization and learning. In
Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and
Computing, 2014. (page 149)

[163] O. Shamir, N. Srebro, and T. Zhang. Communication efficient distributed opti-
mization using an approximate newton-type method. CoRR, abs/1312.7853, 2013.
(pages 12, 222, 223, 225, 226, 233, 234, 238, 239, 240, and 241)

[164] S. Sra. Scalable nonconvex inexact proximal splitting. In Proceedings of the 26th
Annual Conference on Neural Information Processing Systems (NIPS), pages 530–538,
2012. (pages 19, 46, and 84)

[165] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initial-

262

ization and momentum in deep learning. In Proceedings of the 30th International
Conference on Machine Learning (ICML), pages 1139–1147, 2013. (page 69)

[166] R. Tappenden, P. Richtárik, and J. Gondzio. Inexact coordinate descent: complex-
ity and preconditioning. CoRR, abs/1304.5530, 2013. (page 182)

[167] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smooth-
ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005. (page 182)

[168] I. W. Tsang, J. T. Kwok, P. Cheung, and N. Cristianini. Core vector machines:
Fast svm training on very large data sets. Journal of Machine Learning Research, 6:
363–392, 2005. (page 207)

[169] P. Tseng and S. Yun. A block-coordinate gradient descent method for linearly
constrained nonsmooth separable optimization. Journal of Optimization Theory and
Applications, 2009. (pages 182 and 184)

[170] O. Vinyals and D. Povey. Krylov subspace descent for deep learning. In Pro-
ceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 1261–1268, 2012. (page 69)

[171] P. Wang and C. Lin. Iteration complexity of feasible descent methods for convex
optimization. Journal of Machine Learning Research (JMLR), 15:1523–1548, 2014.
(pages 181 and 183)

[172] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning
(ICML), 2011. (pages 10, 129, 130, and 136)

[173] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014. (pages
21, 25, 81, 83, 85, 111, 149, 150, and 159)

[174] L. Xiao and T. Zhang. A proximal stochastic gradient method with progres-
sive variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.
(page 219)

[175] Yossi Y. Arjevani and O. Shamir. Communication complexity of distributed con-
vex learning and optimization. In Proceedings of the 29th Annual Conference on
Neural Information Processing Systems (NIPS), pages 1747–1755. 2015. (pages 12,
223, 224, 225, 227, 228, and 231)

[176] A. Kyrola D. Bickson C. Guestrin Y. Low, J. Gonzalez and J. M. Hellerstein. Dis-
tributed GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud. PVLDB, 2012. (pages 2 and 221)

[177] T. Yang. Trading computation for communication: Distributed stochastic dual
coordinate ascent. In Proceedings of the 27th Annual Conference on Neural Information
Processing Systems (NIPS), pages 629–637, 2013. (page 222)

[178] Y. Yu, X. Zhang, and D. Schuurmans. Generalized conditional gradient for sparse
estimation. abs/arXiv:1410.4828, 2014. (page 110)

263

[179] A. Z. Zeyuan and Y. Yuan. Improved svrg for non-strongly-convex or sum-of-
non-convex objectives. CoRR, abs/1506.01972, 2015. (pages 25, 83, and 91)

[180] Y. Zhang and X. Lin. Disco: Distributed optimization for self-concordant empir-
ical loss. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), pages 362–370, 2015. (pages 12 and 222)

[181] Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communication-efficient algorithms
for statistical optimization. In Proceedings of the 26th Annual Conference on Neural
Information Processing Systems (NIPS), pages 1502–1510, 2012. (page 223)

[182] M. Zinkevich, M. Weimer, L. Lihong, and A.J. Smola. Parallelized stochastic gra-
dient descent. In Proceedings of the 24th Annual Conference on Neural Information
Processing Systems (NIPS), pages 2595–2603, 2010. (pages 149, 207, and 223)

264

	1 Introduction
	1.1 Background
	1.1.1 Black Box Oracles
	1.1.2 Convergence Criteria

	1.2 Overview of Thesis & Our Results
	1.3 Bibliographic Notes
	1.3.1 Excluded Research

	1.4 How to read this Thesis?

	I Nonconvex Empirical Risk Minimization
	2 Stochastic Variance Reduction for Smooth Nonconvex Optimization
	2.1 Introduction
	2.1.1 Related Work

	2.2 Background & Problem Setup
	2.2.1 Nonconvex SGD: Convergence Rate

	2.3 Nonconvex SVRG
	2.3.1 Gradient Dominated Functions

	2.4 Convex Case
	2.5 Mini-batch Nonconvex SVRG
	2.6 Comparison of the Convergence Rates
	2.7 Best of Two Worlds
	2.8 Experiments
	2.9 Discussion
	2.10 Nonconvex SGD: Convergence Rate
	2.11 Nonconvex SVRG
	2.12 GD-SVRG
	2.13 Convex SVRG: Convergence Rate
	2.14 Minibatch Nonconvex SVRG
	2.15 MSVRG: Convergence Rate
	2.16 Key Lemmatta
	2.17 Experiments
	2.18 Other Lemmas

	3 Fast Incremental Methods for Smooth Nonconvex Optimization
	3.1 Introduction
	3.1.1 Related work

	3.2 Preliminaries
	3.3 Algorithm
	3.4 Finite Sums with Regularization
	3.5 Gradient Dominated Functions
	3.6 Minibatch Variant
	3.7 Experiments
	3.8 Discussion
	3.9 Proof of Lemma 3.3.1

	4 A Generic Approach for Escaping Saddle Points
	4.1 Introduction
	4.1.1 Related Work

	4.2 Background & Problem Setup
	4.3 Generic Framework
	4.4 Concrete Instantiations
	4.4.1 Hessian descent
	4.4.2 Cubic Descent
	4.4.3 Practical Considerations

	4.5 Experiments
	4.6 Discussion
	4.7 Proof of Theorem 4.3.1
	4.8 Proof of Lemma 4.4.1
	4.9 Proof of Lemma 4.4.2
	4.10 Proof of Theorem 4.4.4
	4.11 Other Lemmas
	4.12 Approximate Cubic Regularization
	4.13 Experiment Details
	4.13.1 Synthetic Problem
	4.13.2 Deep Networks

	5 Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
	5.1 Introduction
	5.1.1 Related Work

	5.2 Preliminaries
	5.3 Algorithms
	5.3.1 Nonconvex Proximal SVRG
	5.3.2 Nonconvex Proximal SAGA

	5.4 General Convergence Analysis
	5.5 Extensions
	5.6 Experiments
	5.7 Discussion
	5.8 Convergence analysis for Proximal Nonconvex Svrg
	5.8.1 General Convergence Analysis: Proof of Theorem 5.4.1

	5.9 Convergence analysis for Nonconvex Proximal Saga
	5.9.1 General Convergence Analysis: Proof of Theorem 5.4.2
	5.9.2 Proof of Theorem 5.3.4

	5.10 Convergence Analysis of PL-variants
	5.10.1 Proof of Theorem 5.5.1
	5.10.2 Pl-Svrg Convergence Analysis
	5.10.3 Pl-Saga Convergence Analysis

	5.11 Additional Experiments
	5.12 Lemmatta

	6 Projection-Free Stochastic Nonconvex Optimization
	6.1 Introduction
	6.1.1 Related Work

	6.2 Preliminaries
	6.3 Algorithms
	6.3.1 Stochastic Setting
	6.3.2 Finite-sum Setting

	6.4 Variance Reduction in Stochastic Setting
	6.5 Discussion

	7 Variance Reduced Stochastic Langevin Dynamics
	7.1 Introduction
	7.2 Preliminaries
	7.3 Variance Reduction for Langevin Dynamics
	7.3.1 Saga-Ld
	7.3.2 Svrg-Ld

	7.4 Analysis
	7.5 Experiments
	7.5.1 Regression
	7.5.2 Classification
	7.5.3 Bayesian Independent Component Analysis
	7.5.4 Mixture Model

	7.6 Discussion and Future Work
	7.7 Proof of Theorem 7.4.2
	7.8 Proof of Theorem 7.4.1
	7.9 Svrg-Ld
	7.10 Other Experiment Results
	7.11 Other Lemmatta

	II Large-Scale Empirical Risk Minimization
	8 Asynchronous Stochastic Variance Reduced Algorithms for ERM
	8.1 Introduction
	8.2 A General Framework for VR Stochastic Methods
	8.2.1 Convergence Analysis

	8.3 Asynchronous Stochastic Variance Reduction
	8.3.1 Convergence Analysis

	8.4 Non-strongly Convex Case
	8.5 Experiments
	8.6 Discussion & Future Work
	8.7 Proof of Theorem 8.4.1
	8.8 Proof of Theorem 8.4.2

	9 Asynchronous Randomized Coordinate Descent Algorithms for ERM
	9.1 Introduction
	9.2 Preliminaries
	9.3 Algorithm
	9.3.1 Composite Minimization
	9.3.2 Asynchronous Parallel Algorithm for Smooth Minimization
	9.3.3 Stochastic Minimization

	9.4 Convergence Analysis
	9.4.1 Convergence Results for the Smooth Case
	9.4.2 Nonsmooth Case

	9.5 Applications
	9.6 Experiments
	9.6.1 Effect of Communication Constraints
	9.6.2 Concurrency and Synchronization
	9.6.3 Practical Case Study: Parallel Training of Linear SVM

	9.7 Proof of Theorem 9.4.1
	9.8 Proof of Theorem 9.4.3
	9.9 Proof of Theorem 9.4.2
	9.10 Proof of Theorem 9.4.4
	9.11 Reduction of General Case

	10 Communication-Efficient Coresets for ERM
	10.1 Introduction
	10.1.1 Related Work

	10.2 A General Framework
	10.3 Coreset Algorithm
	10.4 Experiments
	10.5 Discussion

	11 Communication-Efficient Distributed Optimization for ERM
	11.1 Introduction
	11.1.1 Related Work

	11.2 Algorithm: InexactDane
	11.3 Analysis of InexactDane: Quadratic Case
	11.4 Analysis of InexactDane: General Case
	11.4.1 Strongly convex case
	11.4.2 Weakly convex case
	11.4.3 Nonconvex case

	11.5 Accelerated Distributed Optimization
	11.5.1 Quadratic case
	11.5.2 Convex case

	11.6 Connection to a Practical Distributed Version of SVRG
	11.7 Experiments
	11.8 Discussion
	11.9 Analysis of InexactDane
	11.9.1 Proof of Theorem 11.3.1
	11.9.2 Proof of Theorem 11.3.3
	11.9.3 InexactDane for Stochastic Quadratic Setting
	11.9.4 Proof of Theorem 11.4.1
	11.9.5 Proof of Theorem 11.4.2

	11.10 Analysis of Aide
	11.10.1 Proof of Theorem 11.5.1
	11.10.2 Aide in the Stochastic Quadratic Setting
	11.10.3 Proof of Theorem 11.5.2

	11.11 Auxiliary Results
	11.12 A Practical Distributed Version of SVRG
	11.13 Additional Experiments
	11.13.1 InexactDane, Aide and Cocoa+
	11.13.2 Varying amount of local computation
	11.13.3 Node scaling
	11.13.4 Inconvenient data partitioning

	12 My Other Research — In a Nutshell
	Bibliography

