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Abstract
I study the informational complexity of active learning in astatistical learning

theory framework. Specifically, I derive bounds on the ratesof convergence achiev-
able by active learning, under various noise models and under general conditions
on the hypothesis class. I also study the theoretical advantages of active learning
over passive learning, and develop procedures for transforming passive learning al-
gorithms into active learning algorithms with asymptotically superior label com-
plexity. Finally, I study generalizations of active learning to more general forms of
interactive statistical learning.
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Chapter 1

Notation and Background

1.1 Introduction

In active learning, a learning algorithm is given access to alarge pool of unlabeled examples, and

is allowed to request the label of any particular examples from that pool, interactively. The ob-

jective is to learn a function that accurately predicts the labels of new examples, while requesting

as few labels as possible. This contrasts with passive learning, where the examples to be labeled

are chosen randomly. In comparison, active learning can often significantly decrease the work

load of human annotators by more carefully selecting which examples from the unlabeled pool

should be labeled. This is of particular interest for learning tasks where unlabeled examples are

available in abundance, but label information comes only through significant effort or cost.

In the passive learning literature, there are well-known bounds on the rate of convergence

of the loss of an estimator, as a function of the number of labeled examples observed [e.g.,

Benedek and Itai, 1988, Blumer et al., 1989, Koltchinskii, 2006, Kulkarni, 1989, Long, 1995,

Vapnik, 1998]. However, significantly less is presently known about the analogous rate in active

learning: namely, the rate of convergence of the loss of an estimator, as a function of the number

of label requests made by an active learning algorithm.

In this thesis, I will outline some recent progress I have been able to make toward understand-
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ing the achievable rates of convergence by active learning,along with algorithms that achieve

them. I will also describe a few of the many open problems remaining on this topic.

The thesis begins with a brief survey of the history of this topic, along with an introduction

to the formal definitions and notation that will be used throughout the thesis. It then describes

some of my contributions to this area. To begin, Chapter 2 describes some rates of convergence

achievable by active learning algorithms under various noise conditions, as quantified by a new

complexity parameter called thedisagreement coefficient. It then continues by exploring an in-

teresting distinction between two different notions of label complexity: namely,verifiableand

unverifiable. This distinction turns out to be extremely important for active learning, and Chap-

ter 3 explains why. Following this, Chapter 4 describes a reductions-based approach to active

learning, in which the goal is to transform passive learningalgorithms into active learning al-

gorithms having strictly superior label complexity. The results in that chapter are surprisingly

general and of deep theoretical significance. The thesis concludes with Chapter 5, which de-

scribes some preliminary work on generalizations of activelearning to more general types of

interactive statistical learning, proving results at a higher level of abstraction, so that they can

apply to a variety of interactive learning protocols.

1.2 A Simple Example: Thresholds

We begin with the canonical toy example illustrating the potential benefits of active learning.

Suppose we are tasked with finding, somewhere in the interval[0, 1], a threshold valuex; we are

scored based on how close our guess is to the true value, so that if we guessx equalsz for some

z ∈ [0, 1], we are awarded1− |x− z| points. There is an oracle at hand who knows the value of

x, and given any pointx′ ∈ [0, 1] can tell us whetherx′ ≥ x or x′ < x.

The passive learning strategy can be simply described as taking points uniformly at random

from the interval[0, 1] and asking the oracle whether each point is≥ x or< x for every one. After

a number of these random queries, the passive learning strategy chooses its guess somewhere
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betweenx′
1 = the largestx′ that it knows is< x, andx′

2 = the smallestx′ it knows is≥ x (say

it guessesx
′
1+x′

2

2
). By a simple argument, if the passive strategy asks aboutn points, then the

expected distance betweenx′
1 andx′

2 is at least 1
n+1

(say forx = 1/2), so we expect the passive

strategy’s guess to be off by some amount≥ 1
2(n+1)

.

On the other hand, suppose instead of asking the oracle aboutevery one of these random

points, we instead look at each one sequentially, and only ask about a point if it is between the

currentx′
1 and the currentx′

2; that is, we only ask about a point if it isnot greater than a point

x′ known to be≥ x andnot less than a point known to be< x. This certainly seems to be a

reasonable modification to our strategy, since we already know how the oracle would respond

for the points we choose not to ask about. In this case, if we ask the oracle aboutn points, each

one reduces the width of the interval[x′
1, x

′
2] at that moment by some factorβi. Thesen factors

βi are upper bounded byn independentUniform([1/2, 1]) random variables (representing the

fraction of the interval on the larger side of thex′), so that the expected final width of[x′
1, x

′
2] is

at most(3
4
)n ≤ exp{−n/4}. Therefore, we expect this modified strategy’s guess to be off by at

most half this amount.1

As we will see, this modified strategy is a special case of an active learning algorithm I will

refer to as CAL (after its discoverers, Cohn, Atlas, and Ladner [1994]) or Algorithm 0, which

I introduce in Section 1.4. The gap between the passive strategy, which can only reduce the

distance between the guess and the true threshold at alinear rateΩ(n−1), and the active strategy,

which can reduce this distance at anexponentialrate1
2
(3

4
)n, can be substantial. For instance, with

n = 20, 1
2(n+1)

≈ .024 while 1
2
(3

4
)n ≈ .0016, better than an order of magnitude improvement.

We will see several cases below where these types of exponential improvements are achievable

by active learning algorithms for much more realistic learning problems, but in many cases the

proofs can be thought of as simple generalizations of this toy example.

1Of course, the optimal strategy for this task always asks about x′

1
+x′

2

2 , and thus closes the gap at a rate2−n.

However, the less aggressive strategy I described here illustrates a simple case of an algorithm we will use exten-

sively below.
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1.3 Notation

Perhaps the simplest active learning task is binary classification, and we will focus primar-

ily on that task. LetX be aninstance space, comprising all possible examples we may ever

encounter. C is a set of measurable functionsh : X → {−1, 1}, known as theconcept

spaceor hypothesis class. We also overload this notation so that form ∈ N and a sequence

S = {x1, . . . , xm} ∈ Xm, h(S) = (h(x1), h(x2), . . . , h(xm)). We denote byd the VC di-

mension ofC, and byC[m] = max
S∈Xm

|{h(S) : h ∈ C}| the shatter coefficient (a.k.a. growth

function) value atm [Vapnik, 1998]. Generally, we will refer to anyC with finite VC dimension

as aVC class. D is a known set of probability distributions onX × {−1, 1}, in which there

is some unknowntarget distributionDXY . I also denote byD[X ] the marginal ofD overX .

There is additionally a sequence of examples(x1, y1), (x2, y2), . . . sampled i.i.d. according to

DXY . In the active learning setting, theyi values are hidden from the learning algorithm until

requested. DefineZm = {(x1, y1), (x2, y2), . . . , (xm, ym)}, a finite sequence consisting of the

first m examples.

For anyh ∈ C and distributionD′ overX × {−1, 1}, let erD′(h) = P(X,Y )∼D′{h(X) 6= Y },

and forS = {(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
m, y′

m)} ∈ (X × {−1, 1})m, define the empirical error

erS(h) = 1
2m

∑m
i=1 |h(x′

i) − y′
i|. WhenD′ = DXY (the target distribution), we abbreviate the

former byer(h) = erDXY
(h), and whenS = Zm, we abbreviate the latter byerm(h) = erZm(h).

Thenoise rate, denotedν(C,DXY ), is defined asν(C,D) = infh∈C erD(h); we abbreviate this

by ν whenC andD = DXY are clear from the context (i.e., the concept space and target dis-

tribution). We also defineη(x;D) = PD(Y = 1|x), and define theBayes error rate, denoted

β(D), asβ(D) = EX∼D[X ][min{η(X;D), 1− η(X;D)}], which represents the best achievable

error rate byany classifier; we will also refer to the Bayes optimal classifier, denotedh∗, de-

fined ash∗
D(x) = 21[η(x;D) ≥ 1/2] − 1; again, forD = DXY , we may abbreviate this as

η(x) = η(x;DXY ), β = β(DXY ), andh∗ = h∗
DXY

.

For concept spaceH and distributionD′ overX , for any measurableh : X → {−1, 1} and
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anyr > 0, define

BH,D′(h, r) = {h′ ∈ H : PX∼D′(h(X) 6= h′(X)) ≤ r}.

WhenH = C, D′ = DXY [X ], or both are true, we may simply writeBD′(h, r), BH(h, r),

or B(h, r) respectively. For concept spaceH and distributionD′ overX × {−1, +1}, for any

ǫ ∈ [0, 1], define theǫ−minimal set, H(ǫ;D′) = {h ∈ H : erD′(h) − ν(H,D′) ≤ ǫ}. When

D′ = DXY (target distribution) and is clear from the context, we abbreviate this byH(ǫ) =

H(ǫ;DXY ). For a concept spaceH and distributionD′ overX , define thediameterof H as

diam(H;D′) = suph1,h2∈H PX∼D(h1(X) 6= h2(X)); as before, whenD′ = DXY [X ] and is clear

from the context, we will abbreviate this asdiam(H) = diam(H;DXY [X ]).

Also define theregion of disagreementof a concept spaceH as

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H s.t.h1(x) 6= h2(x)}.

Also, for a concept spaceH, distributionD overX ×{−1, +1}, ǫ ∈ [0, 1], andm ∈ N, define

theexpected continuity modulusas

ωH(m, ǫ;D) = ES∼Dm sup
h1,h2∈H:

PX∼D[X ]{h1(X)6=h2(X)}≤ǫ

|(erD(h1)− erS(h1))− (erD(h2)− erS(h2))|.

At this point, let us distinguish between some particular settings, distinguished by the defini-

tion of D as one of the following sets of distributions.

• Agnostic = { all D} (the set of all joint distributions onX × {−1, +1}).

• BenignNoise(C) = {D : ν(C,D) = β(D)}.

• Tsybakov(C, κ, µ) =
{

D : ∀ǫ > 0, diam(C(ǫ;D);D) ≤ µǫ
1
κ

}

, (for any finite parameters

κ ≥ 1, µ > 0).

• Entropy[](C, α, ρ) =
{

D : ∀m ∈ N andǫ ∈ [0, 1], ωC(m, ǫ;D) ≤ αǫ
1−ρ
2 m−1/2

}

, (for any

finite parametersα > 0, ρ ∈ (0, 1)).

• UniformNoise(C) = {D : ∃α ∈ [0, 1/2), f ∈ C s.t.∀x ∈ X , PD(Y 6= f(x)|X = x) =

α}.
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• Realizable(C) = {D : ∃f ∈ C s.t.erD(f) = 0}.

• Realizable(C,DX) = Realizable(C) ∩ {D : D[X ] = DX}, (for any given marginal

distributionDX overX ).

Agnostic is the most general setting we will study, and is referred to as theagnostic case,

whereD is the set ofall joint distributions. However, at times we will consider theother

sets, which represent various restrictions ofAgnostic. In particular, the setBenignNoise(C)

essentially corresponds to situations in which the lack of aperfect classifier inC is due to

stochasticity of the labels, not model misspecification.Tsybakov(C, κ, µ) is a further restric-

tion, introduced by Mammen and Tsybakov [1999] and Tsybakov[2004], which (informally)

represents those distributions having reasonably low noise near the optimal decision bound-

ary (see Chapter 2 for further explanations).Entropy[](C, α, ρ) represents thefinite entropy

with bracketingcondition common to the empirical processes literature [e.g., Koltchinskii, 2006,

van der Vaart and Wellner, 1996].UniformNoise(C) represents a (rather artificial) subset of

BenignNoise(C) in which every point has the same probability of being labeled opposite to

the optimal label.Realizable(C) represents therealizable case, popularized by the PAC model

of passive learning [Valiant, 1984], in which there is a perfect classifier in the concept space;

in this setting, we will refer to this perfect classifier as the target function, typically denoted

h∗. Realizable(C,DX) represents a restriction of the realizable case, which we will refer to as

thefixed-distribution realizable case; this corresponds to learning problems where the marginal

distribution overX is knowna priori.

Several of the more restrictive sets above may initially seem unrealistic. However, they

become more plausible when we consider fairly complex concept spaces (e.g., nonparametric

spaces). On the other hand, some (specifically,UniformNoise(C) andRealizable(C,DX))

are basically toy scenarios, which are only explored as stepping stones toward more realistic

assumptions.

We now define the primary quantities of interest throughout this thesis: namely, rates of
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convergence, and label complexity.

Definition 1.1. (Unverifiable rate) An algorithmA achieves a rate of convergencēR(·, ·) on

expected excess error with respect toC if for anyDXY andn ∈ N, if hn = A(n) is the

algorithm’s output after at mostn label requests, for target distributionDXY , then

E[er(hn)]− ν(C,DXY ) ≤ R̄(n,DXY ).

An algorithmA achieves a rate of convergenceR(·, ·, ·) on confidence-bounded excess error

with respect toC if, for anyDXY , δ ∈ (0, 1), andn ∈ N, if hn = A(n) is the algorithm’s output

after at mostn label requests, for target distributionDXY , then

P(er(hn)− ν(C,DXY ) ≤ R(n, δ,DXY )) ≥ 1− δ.

Definition 1.2. (Verifiable rate) An algorithmA achieves a rate of convergenceR(·, ·, ·) on an

accessible bound on excess error with respect toC, underD if, for anyDXY ∈ D, δ ∈ (0, 1),

andn ∈ N, if (hn, ǫ̂n) = A(n) is the algorithm’s output after at mostn label requests, for target

distributionDXY , then

P(er(hn)− ν(C,DXY ) ≤ ǫ̂n ≤ R(n, δ,DXY )) ≥ 1− δ.

I will refer to Definition 1.2 as averifiable rateunderD, for short. If ever I simply refer to

therate, I will mean Definition 1.1. To distinguish these two notionsof convergence rates, I may

sometimes refer to Definition 1.1 as theunverifiable rateor thetrue rate. Clearly any algorithm

that achieves a verifiable rateR also achievesR as an unverifiable rate. However, we will see

interesting cases where the reverse is not true.

At times, it will be necessary to express some results in terms of the number of label requests

required to guarantee a certain error rate. This quantity isreferred to as thelabel complexity, and

is defined quite naturally as follows.
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Definition 1.3. (Unverifiable label complexity) An algorithmA achieves alabel complexity

Λ̄(·, ·) for expected error, if for anyDXY , ∀ǫ ∈ (0, 1), ∀n ≥ Λ̄(ǫ,DXY ), if hn = A(n) is the

algorithm’s output after at mostn label requests, for target distributionDXY , then

E[er(hn)] ≤ ǫ.

An algorithmA achieves alabel complexityΛ(·, ·, ·) for confidence-bounded error, if for any

DXY , ∀ǫ, δ ∈ (0, 1), ∀n ≥ Λ(ǫ, δ,DXY ), if hn = A(n) is the algorithm’s output after at mostn

label requests, for target distributionDXY , thenP(er(hn) ≤ ǫ) ≥ 1− δ.

Definition 1.4. (Verifiable label complexity) An algorithmA achieves averifiable label

complexityΛ(·, ·, ·) for C underD if it achieves a verifiable rateR with respect toC underD

such that, for anyDXY ∈ D, ∀δ ∈ (0, 1), ∀ǫ ∈ (0, 1), ∀n ≥ Λ(ǫ, δ,DXY ), R(n, δ,DXY ) ≤ ǫ.

Again, to distinguish between these definitions, I may sometimes refer to the former as the

unverifiable label complexityor the true label complexity. Also, throughout the thesis, I will

maintain the convention that whenever I refer to a “rateR” or “label complexityΛ,” I refer to the

confidence-bounded variety, and similarly when I refer to a “rateR̄” or “label complexityΛ̄,” in

those cases I refer to the version of the definition forexpectederror rates.

A brief note on measurability:

Throughout this thesis, we will letE andP (and indeedany reference to “probability”) refer to

theouter expectation and probability [van der Vaart and Wellner, 1996], so that quantities such

asP(DIS(B(h, r))) are well defined, even ifDIS(B(h, r)) is not measurable.

1.4 A Simple Algorithm Based on Disagreement

One of the earliest, and most elegant, theoretically sound active learning algorithms for the re-

alizable case was provided by Cohn, Atlas, and Ladner [1994]. Under the assumption that there

exists a perfect classifier inC, they proposed an algorithm which processes unlabeled examples

in sequence, and for each one it determines whether there exists a classifier inC consistent with

all previously observed labels that labels this new example+1 andone that labels this example
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−1; if so, the algorithm requests the label, and otherwise it does not request the label; aftern label

requests, the algorithm returns any classifier consistent with all observed labels. In some sense,

this algorithm corresponds to the very least we could expectof an active learning algorithm, as

it never requests the label of an example it can derive from known information, but otherwise

makes no effort to search for informative examples. We can equivalently think of this algorithm

as maintaining two sets:V ⊆ C is the set of candidate hypotheses still under consideration, and

R = DIS(V ) is their region of disagreement. We can then think of the algorithm as request-

ing a random labeled example from the conditional distribution ofDXY given thatX ∈ R, and

subsequently removing fromV any classifier inconsistent with the observed label.

Most of the active learning algorithms we study in subsequent chapters will be, in some

way, variants of, or extensions to, this basic procedure. Infact, at this writing, all of the pub-

lished general-purpose agnostic active learning algorithms achieving nontrivial improvements

are derivatives of Algorithm 0. A formal definition of the algorithm is given below.

Algorithm 0
Input: hypothesis classH, label budgetn
Output: classifierhn ∈ H and error bound̂ǫn

0. V0 ←H, q ← 0
1. Form = 1, 2, . . .
2. If ∃h1, h2 ∈ Vq s.t.h1(xm) 6= h2(xm),
3. Requestym

4. q ← q + 1
5. Vq ← {h ∈ Vq−1 : h(xm) = ym}
6. If q = n, Return an arbitrary classifierhn ∈ Vn and valuêǫn = diam(Vn)

One of the most appealing properties of this algorithm, besides its simplicity, is the fact that

it makes extremely efficient use of the unlabeled examples; in fact, supposing the algorithm

processesm unlabeled examples before returning, we can take the classifier hn and label all of

the examples we skipped over (i.e., those we didnot request the labels of); this actually produces

a set ofm perfectly labeled examples, which we can feed into our favorite passive learning

algorithm, even though we only requested the labels of a subset of those examples. This fact

also provides a simple proof thater(hn) can be bounded by a quantity that decreases to zero (in
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probability) withn: namely,diam(Vn). However, Cohn et al. [1994] did not provide any further

characterization of the rates achieved by this algorithm ingeneral. For this, we must wait until

Chapter 2, where I provide the first general characterization of the rates achieved by this method

in terms of a quantity I call the disagreement coefficient.

1.5 A Lower Bound

When beginning an investigation into the achievable rates,it is natural to first ask what we can

possibly hope to achieve, and what results are definitely notpossible. That is, what are some

fundamental limits on what this type of learning is capable of. This type of question was inves-

tigated by Kulkarni et al. [1993] in a more general setting. Informally, the reasoning is that each

label request can communicate at most one bit of information. So the best we can hope for is

something logarithmic in the “size” of the hypothesis class. Of course, for infinite hypothesis

classes this makes no sense, but with the help of a notion ofcover size, Kulkarni et al. [1993]

were able to prove the analogous result.

Specifically, letN(ǫ) be the size of the smallest setV of classifiers inC such that∀h ∈

C, ∃h′ ∈ V : PX∼D[h(X) 6= h′(X)] ≤ ǫ, for some distributionD overX. Then any achievable

label complexityΛ has the property that∀ǫ > 0, sup
DXY ∈Realizable(C,D)

Λ(ǫ, δ,DXY )≥ log2[(1−δ)N(2ǫ)].

Since we can often get a reasonable estimate ofN(ǫ) by its distribution-free upper bound

2
(

2e
ǫ

ln 2e
ǫ

)d
[Haussler, 1992], we can often expect our rates to be at bestexp {−cn/d} for some

constantc. In particular, rather than working withN(ǫ) in the results below, I will typically

formulate upper bounds in terms ofd; in most of these cases, some variant oflog N(ǫ) could

easily be substituted to achieve a tighter bound (by using the cover as a hypothesis class instead

of the full space), closer in spirit to this lower bound.
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1.6 Splitting Index

Over the past decade, several special-purpose active learning algorithms were proposed, but

notably lacking was a general theory of convergence rates for active learning. This changed in

2005 when Dasgupta published his theory of splitting indices [Dasgupta, 2005].

As before, this section is restricted to therealizable case. Let Q ⊆ {{h1, h2} : h1, h2 ∈ C}

be a finite set of unordered pairs of classifiers fromC. For x ∈ X andy ∈ {−1, +1}, define

Qy
x = {{h1, h2} ∈ Q : h1(x) = h2(x) = y}. A point x ∈ X is said toρ-split Q if

max
y∈{−1,+1}

|Qy
x| ≤ (1− ρ)|Q|.

We sayH ⊆ C is (ρ, ∆, τ)-splittableif for all finite Q ⊆ {{h1,h2}⊆C :P(h1(X) 6=h2(X))>∆},

P(X ρ-splitsQ) ≥ τ.

A large value ofρ for a reasonably largeτ indicates that there are highly informative examples

that are not too rare. Dasgupta effectively proves the following results.

Theorem 1.5.For any VC classC, for some universal constantc > 0, there is an algorithm

with verifiable label complexityΛ for Realizable(C) such that, for anyǫ ∈ (0, 1), δ ∈ (0, 1),

andDXY ∈ Realizable(C), if B(h∗, 4∆) is (ρ, ∆, τ)-splittable for all∆ ≥ ǫ/2, then

Λ(ǫ, δ,DXY ) ≤ cd
ρ
log d

ǫδτ
log 1

ǫ
.

The valueρ has been referred to as thesplitting index. It can be useful for quantifying

the verifiable rates for a variety of problems in the realizable case. For example, Dasgupta

[2005] uses it to analyze the problem whereC is the class of homogeneous linear separators ind

dimensions, andDXY [X ] = D is the uniform distribution on the unitd-dimensional sphere. He

shows that this problem is(1/2, ǫ, ǫ)-splittable for anyǫ > 0 for any target inC. This implies a

verifiable rate forRealizable(C,D) of

R(n, δ,DXY ) ∝ d

δ
· exp

{

−c′
√

n

d

}

for a constantc′ > 0. This rate was previously known for other algorithms [e.g.,Dasgupta et al.,

2005], but had not previously been derived as a special case of such a general analysis.
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1.7 Agnostic Active Learning

Though each of the preceding analyses provides valuable insights into the nature of active learn-

ing, they also suffer the drawback of reliance on the realizability assumption. In particular, that

there is no label noise, and that the Bayes optimal classifieris in C, are severe and often unreal-

istic assumptions. We would ideally like an analysis of the agnostic case as well. However, the

aforementioned algorithms (e.g., CAL, and the algorithm achieving the splitting index bounds)

no longer function properly in the presence of nonzero noiserates. So we need to start from the

basics and build new techniques that are robust to noise conditions.

To begin, we may again ask what we might hope to achieve. That is, are there fundamental

information-theoretic limits on what we can do with this type of learning? This question was

investigated by Kääriäinen [2006]. In particular, he was able to prove that for basically any

nontrivial marginalD overX , noise rateν, numbern, and active learning algorithm, there is

some distributionDXY with marginalD and noise rateν such that the algorithm’s achieved rate

R(n, δ,DXY ) atn satisfies (for some constantc > 0)

R(n, δ,DXY ) ≥ c

√

ν2 log(1/δ)

n
.

Furthermore, this result was improved by Beygelzimer, Dasgupta, and Langford [2009] to

R(n, 3/4, DXY ) ≥ c

√

ν2d

n
.

Considering that rates∝
√

νd log(1/δ)
n

are achievable in passive learning, this indicates that,

even for concept spaces that had exponential rates in the realizable case, any bound on the veri-

fiable rates that shows significant improvement (more than a multiplicative factor of
√

ν) in the

dependence onn for nonzero noise rates must depend onDXY in more than simply the noise

rate.
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Chapter 2

Rates of Convergence in Active Learning

In this chapter, we study the rates of convergence in generalization error achievable by active

learning under various types of label noise. Additionally,we study the more general problem of

active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose

error rate provably converges to the best achievable error among classifiers in the hierarchy at a

rate adaptive to both the complexity of the optimal classifier and the noise conditions. In partic-

ular, we state sufficient conditions for these rates to be dramatically faster than those achievable

by passive learning.

2.1 Introduction

There have recently been a series of exciting advances on thetopic of active learning with

arbitrary classification noise (the so-calledagnosticPAC model), resulting in several new al-

gorithms capable of achieving improved convergence rates compared to passive learning un-

der certain conditions. The first, proposed by Balcan, Beygelzimer, and Langford [2006] was

the A2 (agnostic active) algorithm, which is provably never significantly worse than passive

learning by empirical risk minimization. This algorithm was later analyzed in more detail

in [Hanneke, 2007b], where it was found that a complexity measure called thedisagreement
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coefficientcharacterizes the worst-case convergence rates achieved by A2 for any given hypothe-

sis class, data distribution, and best achievable error rate in the class. The next major advance was

by Dasgupta, Hsu, and Monteleoni [2007], who proposed a new algorithm, and proved that it im-

proves the dependence of the convergence rates on the disagreement coefficient compared toA2.

Both algorithms are defined below in Section 2.2. While all ofthese advances are encouraging,

they are limited in two ways. First, the convergence rates that have been proven for these algo-

rithms typically only improve the dependence on the magnitude of the noise (more precisely, the

noise rate of the hypothesis class), compared to passive learning. Thus, in an asymptotic sense,

for nonzero noise rates these results represent at best a constant factor improvement over passive

learning. Second, these results are limited to learning with a fixed hypothesis class of limited

expressiveness, so that convergence to the Bayes error rateis not always a possibility.

On the first of these limitations, some recent work by Castro and Nowak [2006] on learn-

ing threshold classifiers discovered that if certain parameters of the noise distribution areknown

(namely, parameters related to Tsybakov’s margin conditions), then we can achieve strict im-

provements in the asymptotic convergence rate via a specificactive learning algorithm designed

to take advantage of that knowledge for thresholds. That work left open the question of whether

such improvements could be achieved by an algorithm that does not explicitly depend on the

noise conditions (i.e., in theagnosticsetting), and whether this type of improvement is achiev-

able for more general families of hypothesis classes. In a personal communication, John Lang-

ford reported that he and Rui Castro determined such improvements are in fact achieved by

A2 for the special case of threshold classifiers. However, there remained an open question of

whether such rate improvements could be generalized to holdfor arbitrary hypothesis classes.

In Section 2.3, we provide precisely this generalization. We analyze the rates achieved byA2

under Tsybakov’s noise conditions [Mammen and Tsybakov, 1999, Tsybakov, 2004]; in par-

ticular, we find that these rates are strictly superior to theknown rates for passive learning,

when the disagreement coefficient is small. We also study a novel modification of the algorithm
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of Dasgupta, Hsu, and Monteleoni [2007], proving that it improves upon the rates ofA2 in its

dependence on the disagreement coefficient.

Additionally, in Section 2.4, we address the second limitation by proposing a general model

selection procedure for active learning with an arbitrary structure of nested hypothesis classes.

If the classes each have finite complexity, the error rate forthis algorithm converges to the best

achievable error by any classifier in the structure, at a ratethat adapts to the noise conditions

and complexity of the optimal classifier. In general, if the structure is constructed to include

arbitrarily good approximations to any classifier, the error converges to the Bayes error rate in

the limit. In particular, if the Bayes optimal classifier is in some class within the structure, the

algorithm performs nearly as well as running an agnostic active learning algorithm on that single

hypothesis class, thus preserving the convergence rate improvements achievable for that class.

2.1.1 Tsybakov’s Noise Conditions

In this chapter, we will primarily be interested in the setsTsybakov(C, κ, µ), for parameter

valuesµ > 0 andκ ≥ 1. These noise conditions have recently received substantial attention

in the passive learning literature, as they describe situations in which the asymptotic minimax

convergence rate of passive learning is faster than the worst casen−1/2 rate [e.g., Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart andÉlodie Nédélec, 2006, Tsybakov, 2004].

This condition is satisfied when, for example,

∃µ′ > 0, κ ≥ 1 s.t.∃h ∈ C : ∀h′ ∈ C, er(h′)− ν ≥ µ′P{h(X) 6= h′(X)}κ.

As we will see, the case whereκ = 1 is particularly interesting; for instance, this is the case

whenh∗ ∈ C andP{|η(X) − 1/2| > c} = 1 for some constantc ∈ (0, 1/2). Informally, in

many cases these conditions can often be interpreted in terms of the relation between magnitude

of noise and distance to the decision boundary; that is, since in practice the amount of noise

in an example’s label is often inversely related to the distance from the decision boundary, a

κ value of1 may often result from having low density near the decision boundary (i.e., large
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margin); when this is not the case, the value ofκ is essentially determined by how quicklyη(x)

changes asx approaches the decision boundary. See [Castro and Nowak, 2006, Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart andÉlodie Nédélec, 2006, Tsybakov, 2004] for

further interpretations of this margin condition.

It is known that when these conditions are satisfied for someκ ≥ 1 andµ > 0, the passive

learning method of empirical risk minimization achieves a convergence rate guarantee, holding

with probability≥ 1− δ, of

er(arg min
h∈C

ern(h))− ν ≤ c

(

d log(n/δ)

n

)
κ

2κ−1

,

wherec is a (κ andµ -dependent) constant [Koltchinskii, 2006, Mammen and Tsybakov, 1999,

Massart and́Elodie Nédélec, 2006]. Furthermore, for some hypothesisclasses, this is known to

be a tight bound (up to the log factor) on the minimax convergence rate, so that there isnopassive

learning algorithm for these classes for which we can guarantee a faster convergence rate, given

that the guarantee depends onDXY only throughµ andκ [Tsybakov, 2004].

2.1.2 Disagreement Coefficient

Central to the idea of Algorithm 0, and the various generalizations there-of we will study, is

the idea of theregion of disagreementof the version space. Thus, a quantification of the per-

formance of these algorithms should hinge upon a description of how quickly the region of

disagreement collapses as the algorithm processes examples. This rate of collapse is precisely

captured by a notion introduced in [Hanneke, 2007b], calledthedisagreement coefficient. It is

a measure of the complexity of an active learning problem, which has proven quite useful for

analyzing the convergence rates of certain types of active learning algorithms: for example, the

algorithms of Balcan, Beygelzimer, and Langford [2006], Beygelzimer, Dasgupta, and Langford

[2009], Cohn, Atlas, and Ladner [1994], Dasgupta, Hsu, and Monteleoni [2007]. Informally, it

quantifies how much disagreement there is among a set of classifiers relative to how close to
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someh they are. The following is a version of its definition, which we will use extensively

below.

Definition 2.1. The disagreement coefficient ofh with respect toC underDXY [X ] is

θh = sup
r>r0

P(DIS(B(h, r)))

r
,

wherer0 can either be defined as0, giving a coarse analysis, or for a more subtle analysis we

can take it to be a function ofn, the number of labels (see Section 2.7.1 for such a definition

valid for the main theorems of this chapter: 2.11-2.15).

We further define the disagreement coefficient for the hypothesis classC with respect to the

target distributionDXY asθ = lim supk→∞ θh(k) , where{h(k)} is any sequence ofh(k) ∈ C with

er(h(k)) monotonically decreasing toν.

In particular, we can always bound the disagreement coefficient bysuph∈C θh ≥ θ.

Because of its simple intuitive interpretation, measuringthe amount of disagreement in a local

neighborhood of some classifierh, the disagreement coefficient has the wonderful property of

being relatively simple to calculate for a wide range of learning problems, especially when those

problems have some type of geometric representation. To illustrate this, we will go through a

few simple examples, taken from [Hanneke, 2007b].

Consider the hypothesis class of thresholdshz on the interval[0, 1] (for z ∈ [0, 1]), where

hz(x) = +1 iff x ≥ z. Furthermore, supposeDXY [X ] is uniform on[0, 1]. In this case, it is

clear that the disagreement coefficient is at most2, since the region of disagreement ofB(hz, r)

is roughly{x ∈ [0, 1] : |x − z| ≤ r}. That is, since the disagreement region grows at rate1 in

two disjoint directions asr increases, the disagreement coefficientθhz = 2 for anyz ∈ (0, 1).

As a second example, consider the disagreement coefficient for intervalson [0, 1]. As before,

let X = [0, 1] andDXY [X ] be uniform, but this timeC is the set of intervalsI[a,b] such that for

x ∈ [0, 1], I[a,b](x) = +1 iff x ∈ [a, b] (for a, b ∈ [0, 1], a ≤ b). In contrast to thresholds, the

disagreement coefficientsθh for the space of intervals vary widely depending on the particularh.

In particular, take anyh = I[a,b] where0 < a ≤ b < 1. In this case,θh ≤ max
{

1
max{r0,b−a}

, 4
}

.
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To see this, note that whenr0 < r < b − a, every interval inB(I[a,b], r) has its lower and

upper boundaries withinr of a and b, respectively; thus,P(DIS(B(I[a,b], r))) ≤ 4r. How-

ever, whenr ≥ max{r0, b − a}, every interval of width≤ r − (b − a) is in B(I[a,b], r), so

P(DIS(B(I[a,b], r))) = 1.

As a slightly more involved example, consider the followingtheorem.

Theorem 2.2. [Hanneke, 2007b] IfX is the surface of the origin-centered unit sphere inRd for

d > 2, C is the space of linear separators whose decision surface passes through the origin, and

DXY [X ] is the uniform distribution onX , then∀h ∈ C the disagreement coefficientθh satisfies

1

4
min

{

π
√

d,
1

r0

}

≤ θh ≤ min

{

π
√

d,
1

r0

}

.

Proof. First we represent the concepts inC as weight vectorsw ∈ Rd in the usual way. For

w1, w2 ∈ C, by examining the projection ofDXY [X ] onto the subspace spanned by{w1, w2},

we see thatP(x : sign(w1 · x) 6= sign(w2 · x)) = arccos(w1·w2)
π

. Thus, for anyw ∈ C and

r ≤ 1/2, B(w, r) = {w′ : w · w′ ≥ cos(πr)}. Since the decision boundary corresponding tow′

is orthogonal to the vectorw′, some simple trigonometry gives us that

DIS(B(w, r)) = {x ∈ X : |x · w| ≤ sin(πr)}.

LettingA(d, R) = 2πd/2Rd−1

Γ( d
2)

denote the surface area of the radius-R sphere inRd, we can express

the disagreement rate at radiusr as

P(DIS(B(w, r)))

=
1

A(d, 1)

∫ sin(πr)

−sin(πr)

A
(

d− 1,
√

1− x2
)

dx =
Γ
(

d
2

)

√
πΓ
(

d−1
2

)

∫ sin(πr)

−sin(πr)

(

1− x2
)

d−2
2 dx (∗)

≤ Γ
(

d
2

)

√
πΓ
(

d−1
2

)2sin(πr) ≤
√

d− 2sin(πr) ≤
√

dπr.

For the lower bound, note thatP(DIS(B(w, 1/2))) = 1 soθw ≥ min
{

2, 1
r0

}

, and thus we need
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only considerr0 < 1
8
. Supposingr0 < r < 1

8
, note that(∗) is at least

√

d

12

∫ sin(πr)

−sin(πr)

(

1− x2
)

d
2 dx ≥

√

π

12

∫ sin(πr)

−sin(πr)

√

d

π
e−d·x2

dx

≥ 1

2
min

{

1

2
,
√

dsin(πr)

}

≥ 1

4
min

{

1, π
√

dr
}

.

The disagreement coefficient has many interesting properties that can help to bound its value

for a given hypothesis class and distribution. We list a few elementary properties below. Their

proofs, which are quite short and follow directly from the definition, are left as easy exercises.

Lemma 2.3. [Close Marginals][Hanneke, 2007b] Suppose∃λ ∈ (0, 1] s.t. for any measurable

setA ⊆ X , λPDX
(A) ≤ PD′

X
(A) ≤ 1

λ
PDX

(A). Leth : X → {−1, 1} be a measurable classifier,

and supposeθh andθ′h are the disagreement coefficients forh with respect toC underDX and

D′
X respectively. Then

λ2θh ≤ θ′h ≤
1

λ2
θh.

Lemma 2.4. [Finite Mixtures] Suppose∃α ∈ [0, 1] s.t. for any measurable setA ⊆ X ,

PDX
(A) = αPD1(A) + (1− α)PD2(A). For a measurableh : X → {−1, 1}, let θ(1)

h be the

disagreement coefficient with respect toC underD1, θ
(2)
h be the disagreement coefficient with

respect toC underD2, andθh be the disagreement coefficient with respect toC underDX . Then

θh ≤ θ
(1)
h + θ

(2)
h .

Lemma 2.5. [Finite Unions] Supposeh ∈ C1 ∩ C2 is a classifier s.t. the disagreement

coefficient with respect toC1 underDX is θ
(1)
h and with respect toC2 underDX is θ

(2)
h . Then if

θh is the disagreement coefficient with respect toC = C1 ∪ C2 underDX , we have that

max
{

θ
(1)
h , θ

(2)
h

}

≤ θh ≤ θ
(1)
h + θ

(2)
h .

The disagreement coefficient has deep connections to several other quantities, such as dou-

bling dimension [Li and Long, 2007] and VC dimension [Vapnik, 1982]. See [Hanneke, 2007b],
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[Dasgupta, Hsu, and Monteleoni, 2007], [Balcan, Hanneke, and Wortman, 2008], and

[Beygelzimer, Dasgupta, and Langford, 2009] for further discussions of various uses of the dis-

agreement coefficient and related notions and extensions inactive learning. In particular,

Beygelzimer, Dasgupta, and Langford [2009] present an interesting analysis using a natural ex-

tension of the disagreement coefficient to study active learning with a larger family of loss func-

tions beyond0 − 1 loss. As a related aside, although the focus of this thesis isactive learning,

interestingly the disagreement coefficient also has applications in the analysis ofpassivelearn-

ing; see Section 2.9 for an interesting example of this.

2.2 General Algorithms

The algorithms described below for the problem of active learning with label noise each represent

noise-robust variants of Algorithm 0. They work to reduce the set of candidate hypotheses, while

only requesting the labels of examples in the region of disagreement of these candidates. The

trick is to only remove a classifier from the candidate set once we have high statistical confidence

that it is worse than some other candidate classifier so that we never remove the best classifier.

However, the two algorithms differ somewhat in the details of how that confidence is calculated.

2.2.1 Algorithm 1

The first algorithm, originally proposed by Balcan, Beygelzimer, and Langford [2006], is typi-

cally referred to asA2 for Agnostic Active. This was historically the first general-purpose ag-

nostic active learning algorithm shown to achieve improvederror guarantees for certain learning

problems in certain ranges ofn andν. A version of the algorithm is described below.
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Algorithm 1
Input: hypothesis classC, label budgetn, confidenceδ
Output: classifier̂h

0. V ← C, R← DIS(C), Q← ∅, m← 0
1. Fort = 1, 2, . . . , n
2. If P(DIS(V )) ≤ 1

2
P(R)

3. R← DIS(V ); Q← ∅
4. If P(R) ≤ 2−n, Return anyh ∈ V
5. m← min{m′ > m : Xm′ ∈ R}
6. RequestYm and letQ← Q ∪ {(Xm, Ym)}
7. V ← {h ∈ V : LB(h, Q, δ/n) ≤ min

h′∈V
UB(h′, Q, δ/n)}

8. ht ← arg min
h∈V

UB(h, Q, δ/n)

9. βt ← (UB(ht, Q, δ/n)−min
h∈V

LB(h, Q, δ/n))P(R)

10. Return̂hn = ht̂, wheret̂ = argmin
t∈{1,2,...,n}

βt

Algorithm 1 is defined in terms of two functions:UB andLB. These represent upper and

lower confidence bounds on the error rate of a classifier fromC with respect to an arbitrary

sampling distribution, as a function of a labeled sequence sampled according to that distribution.

As long as these bounds satisfy

PZ∼Dm{∀h ∈ C, LB(h, Z, δ) ≤ erD(h) ≤ UB(h, Z, δ)} ≥ 1− δ

for any distributionD overX × {−1, 1} and anyδ ∈ (0, 1/2), andUB andLB converge to

each other asm grows, this algorithm is known to be correct, in thater(ĥ)− ν converges to0 in

probability [Balcan, Beygelzimer, and Langford, 2006]. For instance, Balcan, Beygelzimer, and

Langford suggest defining these functions based on classic results on uniform convergence rates

in passive learning [Vapnik, 1982], such as

UB(h, Q, δ) = min{erQ(h) + G(|Q|, δ), 1}, LB(h, Q, δ) = max{erQ(h)−G(|Q|, δ), 0},

(2.1)

whereG(m, δ) = 1
m

+

√

ln 4
δ
+d ln 2em

d

m
, and by conventionG(0, δ) = ∞. This choice is justified

by the following lemma, due to Vapnik [1998].
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Lemma 2.6. For any distributionD overX × {−1, 1}, and anyδ > 0 andm ∈ N, with

probability≥ 1− δ over the draw ofZ ∼ Dm, everyh ∈ C satisfies

|erZ(h)− erD(h)| ≤ G(m, δ). (2.2)
To avoid computational issues, instead of explicitly representing the setsV andR, we may

implicitly represent it as a set of constraints imposed by the condition in Step 7 of previous

iterations. We may also replaceP(DIS(V )) andP(R) by estimates, since these quantities can be

estimated to arbitrary precision with arbitrarily high confidence using onlyunlabeledexamples.

2.2.2 Algorithm 2

The second algorithm we study was originally proposed by Dasgupta, Hsu, and Monteleoni [2007].

It uses a type of constrained passive learning subroutine, LEARN, defined as follows.

LEARNC(L, Q) = argmin
h∈C:erL(h)=0

erQ(h).

By convention, if noh ∈ C haserL(h) = 0, LEARNC(L, Q) = ∅.

Algorithm 2
Input: hypothesis classC, label budgetn, confidenceδ
Output: classifier̂h, set of labeled examplesL, set of labeled examplesQ

0. L ← ∅, Q← ∅
1. Form = 1, 2, . . .
2. If |Q| = n or |L| = 2n, Returnĥ = LEARNC(L, Q) along withL andQ
3. For eachy ∈ {−1, +1}, let h(y) = LEARNC(L ∪ {(Xm, y)}, Q)
4. If somey hash(−y) =∅ or

erL∪Q(h(−y))− erL∪Q(h(y)) > ∆m−1(L, Q, h(y), h(−y), δ)
5. ThenL ← L ∪ {(Xm, y)}
6. Else Request the labelYm and letQ← Q ∪ {(Xm, Ym)}

Algorithm 2 is defined in terms of a function∆m(L, Q, h(y), h(−y), δ), representing a thresh-

old for a type of hypothesis test. This threshold must be set carefully, since the setL ∪ Q is not

actually an i.i.d. sample fromDXY . Dasgupta, Hsu, and Monteleoni [2007] suggest defining this

function as

∆m(L, Q, h(y), h(−y), δ) = β2
m + βm

(

√

erL∪Q(h(y)) +
√

erL∪Q(h(−y))

)

, (2.3)
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whereβm =
√

4 ln(8m(m+1)C[2m]2/δ)
m

and C[2m] is the shatter coefficient [e.g., Devroye et al.,

1996]; this suggestion is based on a confidence bound they derive, and they prove the correct-

ness of the algorithm with this definition. For now we will focus on the first return value (the

classifier), leaving the others for Section 2.4, where they will be useful for chaining multiple

executions together.

2.3 Convergence Rates

In both of the above cases, one can prove fallback guaranteesstating that neither algorithm is sig-

nificantly worse than the minimax rates for passive learning[Balcan, Beygelzimer, and Langford,

2006, Dasgupta, Hsu, and Monteleoni, 2007]. However, it is even more interesting to discuss sit-

uations in which one can prove error rate guarantees for these algorithms significantlybetterthan

those achievable by passive learning. In this section, we begin by reviewing known results on

these potential improvements, stated in terms of the disagreement coefficient; we then proceed to

discuss new results for Algorithm 1 and a novel variant of Algorithm 2, and describe the conver-

gence rates achieved by these methods in terms of the disagreement coefficient and Tsybakov’s

noise conditions.

2.3.1 The Disagreement Coefficient and Active Learning: Basic Results

Before going into the results for general distributionsDXY onX×{−1, +1}, it will be instructive

to first look at the special case when the noise rate is zero. Understanding how the disagreement

coefficient enters into the analysis of this simpler case mayaid in digestion of the theorems and

proofs for the general case presented later, where it plays an essentially analogous role. Most of

the major ingredients of the proofs for the general case can be found in this special case, albeit

in a much simpler form. Although this result has not previously been published, the proof is

essentially similar to (one case of) the analysis of Algorithm 1 in [Hanneke, 2007b].
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Theorem 2.7.SupposeDXY ∈ Realizable(C) for a VC classC, and letf ∈ C be such that

er(f) = 0, andθf <∞. For anyn ∈ N, with probability≥ 1− δ over the draw of the

unlabeled examples, the classifierhn returned by Algorithm 0aftern label requests satisfies

er(hn) ≤ 2 · exp

{

− n

6θf (4d ln(44θf) + ln(2n/δ)

}

.

Proof. The casediam(C) = 0 is trivial, so assumediam(C) > 0 (and thusd ≥ 1 andθf > 0).

Let Vt denote the set of classifiers inC consistent with the firstt label requests. IfP(DIS(Vt)) =

0 for somet ≤ n, then the result holds trivially. Otherwise, with probability 1, the algorithm uses

all n label requests; in this case, consider somet < n. Letxmt denote the example corresponding

to thetth label request. Letλn = 4θf (4d ln(16eθf ) + ln(2n/δ)), t′ = t + λn, and letxmt′
denote

the example corresponding to label request numbert′ (assumingt ≤ n− λn). In particular, this

implies |{xmt+1, xmt+2, . . . , xmt′
} ∩ DIS(Vt)| ≥ λn, which means there is an i.i.d. sample of

sizeλn fromDXY [X ] givenX ∈ DIS(Vt) contained in{xmt+1, xmt+2, . . . , xmt′
}: namely, the

first λn points in this subsequence that are inDIS(Vt).

Now recall that, by classic results from the passive learning literature [e.g., Blumer et al.,

1989, Vapnik, 1982], this implies that on an eventEδ,t holding with probability1− δ/n,

sup
h∈Vt′

er(h|DIS(Vt)) ≤
4d ln 2eλn

d
+ ln 2n

δ

λn
≤ 1/(2θf).

SinceVt′ ⊆ Vt, this means

P(DIS(Vt′)) ≤ P(DIS(B(f, P(DIS(Vt))/(2θf)))) ≤ P(DIS(Vt))/2.

By a union bound, the eventsEδ,t hold for all t ∈ {iλn : i ∈ {0, 1, . . . , ⌊n/λn⌋ − 1}} with

probability≥ 1− δ. On these events, ifn ≥ λn⌈log2(1/ǫ)⌉, then (by induction)

sup
h∈Vn

er(h) ≤ P(DIS(Vn)) ≤ ǫ.

Solving forǫ in terms ofn gives the result.
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2.3.2 Known Results on Convergence Rates for Agnostic Active Learning

We will now describe the known results for agnostic active learning algorithms, starting with

Algorithm 1. The key to the potential convergence rate improvements of Algorithm 1 is that,

as the region of disagreementR decreases in measure, the magnitude of the error difference

er(h|R) − er(h′|R) of any classifiersh, h′ ∈ V under theconditionalsampling distribution

(givenR) can become significantly larger (by a factor ofP(R)−1) thaner(h)− er(h′), making it

significantly easier to determine which of the two is worse using a sample of labeled examples.

In particular, [Hanneke, 2007b] developed a technique for analyzing this type of algorithm, re-

sulting in the following convergence rate guarantee for Algorithm 1. The proof follows similar

reasoning to what we will see in the next subsection, but is omitted here to reduce redundancy;

see [Hanneke, 2007b] for the full details.

Theorem 2.8. [Hanneke, 2007b] Let̂hn be the classifier returned by Algorithm 1 when allowed

n label requests, using the bounds(2.1)and confidence parameterδ > 0. Then there exists a

finite universal constantc such that, with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤ c

√

ν2θ2d log 1
δ

n
log

n

ν2θ2d log 1
δ

+
1

δ
exp

{

−
√

n

cθ2d

}

.

Similarly, the key to improvements from Algorithm 2 is that asm increases, we only need to

request the labels of those examples in the region of disagreement of the set of classifiers with

near-optimal empirical error rates. Thus, ifP(DIS(C(ǫ))) shrinks asǫ decreases, we expect the

frequency of label requests to shrink asm increases. Since we are careful not to discard the best

classifier, and the excess error rate of a classifier can be bounded in terms of the∆m function, we

end up with a bound on the excess error which is converging inm, the number ofunlabeledex-

amples processed, even though we request a number of labels growing slower thanm. When this

situation occurs, we expect Algorithm 2 will provide an improved convergence rate compared

to passive learning. Using the disagreement coefficient, Dasgupta, Hsu, and Monteleoni [2007]

prove the following convergence rate guarantee.
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Theorem 2.9. [Dasgupta, Hsu, and Monteleoni, 2007] Letĥn be the classifier returned by

Algorithm 2 when allowedn label requests, using the threshold(2.3), and confidence parameter

δ > 0. Then there exists a finite universal constantc such that, with probability≥ 1− δ,

∀n ∈ N,

er(ĥn)− ν ≤ c

√

ν2θd log 1
δ
log n

θνδ

n
+

√

d log
1

δ
· exp

{

−
√

n

cθd log2 1
δ

}

.

Note that, among other changes, this bound improves the dependence on the disagreement

coefficient,θ, compared to the bound for Algorithm 1. In both cases, for certain ranges ofθ,

ν, andn, these bounds can represent significant improvements in theexcess error guarantees,

compared to the corresponding guarantees possible for passive learning. However, in both cases,

whenν > 0 these bounds have anasymptoticdependence onn of Θ̃(n−1/2), which is no better

than the convergence rates achievable by passive learning (e.g., by empirical risk minimization).

Thus, there remains the question of whether either algorithm can achieve asymptotic convergence

rates strictly superior to passive learning for distributions with nonzero noise rates. This is the

topic we turn to next.

2.3.3 Adaptation to Tsybakov’s Noise Conditions

It is known that for most nontrivialC, for anyn andν > 0, for every active learning algorithm

there is some distribution with noise rateν for which we can guarantee excess error no better

than∝ νn−1/2 [Kääriäinen, 2006]; that is, then−1/2 asymptotic dependence onn in the above

bounds matches the corresponding minimax rate, and thus cannot be improved as long as the

bounds depend onDXY only viaν (andθ). Therefore, if we hope to discover situations in which

these algorithms have strictly superior asymptotic dependence onn, we will need to allow the

bounds to depend on a more detailed description of the noise distribution than simply the noise

rateν.

As previously mentioned, one way to describe a noise distribution using a more detailed
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parameterization is to use Tsybakov’s noise conditions (Tsybakov(C, κ, µ)). In the context of

passive learning, this allows one to describe situations inwhich the rate of convergence is be-

tweenn−1 andn−1/2, even whenν > 0. This raises the natural question of how these active

learning algorithms perform when the noise distribution satisfies this condition with finiteµ and

κ parameter values. In many ways, it seems active learning is particularly well-suited to ex-

ploit these more favorable noise conditions, since they imply that as we eliminate suboptimal

classifiers, the diameter of the version space decreases; thus, for smallθ values, the region of

disagreement should also be decreasing, allowing us to focus the samples in a smaller region and

accelerate the convergence.

Focusing on the special case of one-dimensional threshold classifiers under a uniform marginal

distribution, Castro and Nowak [2006] studied conditions related toTsybakov(C, κ, µ). In par-

ticular, they studied a threshold-learning algorithm that, unlike the algorithms described here,

takesκ asinput, and found its convergence rate to be∝
(

log n
n

)
κ

2κ−2 whenκ > 1, andexp{−cn}

for some (µ-dependent) constantc, whenκ = 1. Note that this improves over then− κ
2κ−1 rates

achievable in passive learning [Tsybakov, 2004]. Furthermore, they prove that a value∝ n− κ
2κ−2

(or exp{−c′n}, for somec′, whenκ = 1) is also alower boundon the minimax rate. Later, in

a personal communication, Langford reported that this near-optimal rate is also achieved by Al-

gorithm 1 for the same learning problem (one-dimensional threshold classifiers under a uniform

marginal distribution), leading to speculation that perhaps these improvements are achievable in

the general case as well (under conditions on the disagreement coefficient).

Other than the one-dimensional threshold learning problem, it was not previously known

whether Algorithm 1 or Algorithm 2 generally achieves convergence rates that exhibit these

types of improvements.
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2.3.4 Adaptive Rates in Active Learning

The above observations open the question of whether these algorithms, or variants thereof, im-

prove this asymptotic dependence onn. It turns out this is indeed possible. Specifically, we have

the following result for Algorithm 1.

Theorem 2.10.Let ĥn be the classifier returned by Algorithm 1 when allowedn label requests,

using the bounds(2.1)and confidence parameterδ > 0. Suppose further that

DXY ∈ Tsybakov(C, κ, µ) for finite parameter valuesκ ≥ 1 andµ > 0 and VC classC. Then

there exists a finite (κ- andµ-dependent) constantc such that, for anyn ∈ N, with probability

≥ 1− δ,

er(ĥn)− ν ≤















exp
{

− n
cdθ2 log(n/δ)

}

, whenκ = 1

c
(

dθ2 log2(n/δ)
n

)
κ

2κ−2

, whenκ > 1

.

Proof. The case ofdiam(C) = 0 clearly holds, so we will focus on the nontrivial case of

diam(C) > 0 (and therefore,θ > 0 and d ≥ 1). We will proceed by bounding thelabel

complexity, or size of the label budgetn that is sufficient to guarantee, with high probability, that

the excess error of the returned classifier will be at mostǫ (for arbitraryǫ > 0); with this in hand,

we can simply bound the inverse of the function to get the result in terms of a bound on excess

error.

First note that, by Lemma 2.6 and a union bound, on an event of probability 1 − δ, (2.2)

holds withη = δ/n for every setQ, relative to the conditional distribution given its respective

R set, for any value ofn. For the remainder of this proof, we assume that this1− δ probability

event occurs. In particular, this means that for everyh ∈ C and everyQ set in the algorithm,

LB(h, Q, δ/n) ≤ er(h|R) ≤ UB(h, Q, δ/n), for the setR thatQ is sampled under. Thus, we

always have the invariant that at all times,

∀γ > 0, {h ∈ V : er(h)− ν ≤ γ} 6= ∅, (2.4)

and therefore also that∀t, er(ht)− ν = (er(ht|R)− infh∈V er(h|R))P(R) ≤ βt. We will spend
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the remainder of the proof bounding the size ofn sufficient to guarantee someβt ≤ ǫ.

Recalling the definition of theh(k) sequence (from Definition 2.1), note that after step7,
{

h ∈ V : lim supk P(h(X) 6= h(k)(X)) > P(R)
2θ

}

=

{

h ∈ V :

(

lim supk P(h(X) 6= h(k)(X))

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆
{

h ∈ V :

(

diam(er(h)− ν; C)

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆
{

h ∈ V : er(h)− ν >

(

P(R)

2µθ

)κ}

=

{

h ∈ V : er(h|R)− inf
h′∈V

er(h′|R) > P(R)κ−1(2µθ)−κ

}

⊆
{

h ∈ V : UB(h, Q, δ/n)− min
h′∈V

LB(h′, Q, δ/n) > P(R)κ−1(2µθ)−κ

}

=

{

h ∈ V : LB(h, Q, δ/n)−min
h′∈V

UB(h′, Q, δ/n) > P(R)κ−1(2µθ)−κ − 4G(|Q|, δ/n)

}

.

By definition, everyh ∈ V hasLB(h, Q, δ/n) ≤ minh′∈V UB(h′, Q, δ/n), so for this last set to

be nonempty after step7, we must haveP(R)κ−1(2µθ)−κ < 4G(|Q|, δ/n). On the other hand, if
{

h ∈ V : lim supk P(h(X) 6= h(k)(X)) > P(R)
2θ

}

= ∅, then

P(DIS(V )) ≤ P(DIS({h ∈ C : lim sup
k

P(h(X) 6= h(k)(X)) ≤ P(R)/(2θ)}))

= lim sup
k

P(DIS({h ∈ C : P(h(X) 6= h(k)(X)) ≤ P(R)/(2θ)})) ≤ lim sup
k

θhk

P(R)

2θ
=

P(R)

2
,

so that we will definitely satisfy the condition in step2 on the next round. Since|Q| gets reset

to 0 upon reaching step3, we have that after every execution of step7, P(R)κ−1(2µθ)−κ <

4G(|Q| − 1, δ/n).

If P(R) ≤ ǫ
2G(|Q|−1,δ/n)

≤ ǫ
2G(|Q|,δ/n)

, then certainlyβt ≤ ǫ. So on any round for which

βt > ǫ, we must haveP(R) > ǫ
2G(|Q|−1,δ/n)

. Combined with the above observations, on any

round for whichβt > ǫ,
(

ǫ
2G(|Q|−1,δ/n)

)κ−1

(2µθ)−κ < 4G(|Q| − 1, δ/n), which implies (by

simple algebra)

|Q| ≤
(

1

ǫ

)
2κ−2

κ

(6µθ)2

(

ln
4

δ
+ (d + 1) ln(n)

)

+ 1.
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Since we need to reach step3 at most⌈log(1/ǫ)⌉ times before we are guaranteed someβt ≤ ǫ

(P(R) is at least halved each time we reach step3), any

n ≥ 1 +

(

(

1

ǫ

)
2κ−2

κ

(6µθ)2

(

ln
4

δ
+ (d + 1) ln(n)

)

+ 1

)

log2

2

ǫ
(2.5)

suffices to guarantee someβt ≤ ǫ. This implies the stated result by basic inequalities to bound

the smallest value ofǫ satisfying (2.5) for a given value ofn.

If the disagreement coefficient is relatively small, Theorem 2.10 can represent a significant

improvement in convergence rate compared to passive learning, where we typically expect rates

of ordern−κ/(2κ−1) [Mammen and Tsybakov, 1999, Tsybakov, 2004]; this gap is especially no-

table when the disagreement coefficient andκ are small. In particular, the bound matches (up to

log factors) the form of the minimax ratelower boundproven by Castro and Nowak [2006] for

threshold classifiers (whereθ = 2). Note that, unlike the analysis of Castro and Nowak [2006],

we do not require the algorithm to be given any extra information about the noise distribution,

so that this result is somewhat stronger; it is also more general, as this bound applies to an arbi-

trary hypothesis class. In some sense, Theorem 2.10 is somewhat surprising, since the bounds

UB andLB used to define the setV and the boundsβt are not themselves adaptive to the noise

conditions.

Note that, as before,n gets divided byθ2 in the rates achieved byA2. As before, it is not

clear whether any modification to the definitions ofUB andLB can reduce this exponent on

θ from 2 to 1. As such, it is natural to investigate the rates achieved by Algorithm 2 under

Tsybakov(C, κ, µ); we know that it does improve the dependence onθ for the worst case rates

over distributions with any given noise rate, so we might hope that it does the same for the

rates over distributions with any given values ofµ andκ. Unfortunately, we do not presently

know whether the original definition of Algorithm 2 achievesthis improvement. However, we

now present a slight modification of the algorithm, and provethat it does indeed provide the

desired improvement in dependence onθ, while maintaining the improvements in the asymptotic
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dependence onn. Specifically, consider the following definition for the threshold in Algorithm

2.

∆m(L, Q, h(y), h(−y), δ) = 3ÊC(L ∪Q, δ;L), (2.6)

whereÊC(·, ·; ·) is defined in Section 2.6, based on a notion of local Rademacher complexity

studied by Koltchinskii [2006]. Unlike the previous definitions, these definitions are known to

be adaptive to Tsybakov’s noise conditions, so that we wouldexpect them to be asymptotically

tighter and therefore allow the algorithm to more aggressively prune the set of candidate hypothe-

ses. Using these definitions, we have the following theorem;its proof is included in Section 2.7.

Theorem 2.11.Supposêhn is the classifier returned by Algorithm 2 with threshold as in(2.6),

when allowedn label requests and given confidence parameterδ > 0. Suppose further that

DXY ∈ Tsybakov(C, κ, µ) for finite parameter valuesκ ≥ 1 andµ > 0 and VC classC. Then

there exists a finite (κ andµ -dependent) constantc such that, with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤















1
δ
· exp

{

−
√

n
cdθ log3(d/δ)

}

, whenκ = 1

c
(

dθ log2(dn/δ)
n

)
κ

2κ−2
, whenκ > 1

.

Note that this does indeed improve the dependence onθ, reducing its exponent from2 to 1;

we do lose some in that there is now a square root in the exponent of theκ = 1 case, but it is

likely that an improved definition of̂E and a refined analysis can correct this. The bound in The-

orem 2.11 is stated in terms of the VC dimensiond. However, for certain nonparametric function

classes, it is sometimes preferable to quantify the complexity of the class in terms of a constraint

on theentropy(with bracketing) of the classEntropy[](C, α, ρ) [see e.g., Castro and Nowak,

2007, Koltchinskii, 2006, Tsybakov, 2004, van der Vaart andWellner, 1996].

In passive learning, it is known that empirical risk minimization achieves a rate of order

n−κ/(2κ+ρ−1), underEntropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ), and that this is sometimes tight

[Koltchinskii, 2006, Tsybakov, 2004]. The following theorem gives a bound on the rate of con-

vergence of the same version of Algorithm 2 as in Theorem 2.11, this time in terms of the entropy

with bracketing condition which, as before, is faster than the passive learning rate when the dis-
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agreement coefficient is small. The proof of this is includedin Section 2.7.

Theorem 2.12.Supposêhn is the classifier returned by Algorithm 2 with threshold as in(2.6),

when allowedn label requests and given confidence parameterδ > 0. Suppose further that

DXY ∈ Entropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ) for finite parameter valuesκ ≥ 1, µ > 0,

α > 0, andρ ∈ (0, 1). Then there exists a finite (κ, µ, α andρ -dependent) constantc such that,

with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

.

Although this result is stated for Algorithm 2, it is conceivable that, by modifying Algorithm

1 to use definitions ofV andβt based on̂EC(Q, δ; ∅), an analogous result may be possible for

Algorithm 1 as well.

2.4 Model Selection

While the previous sections address adaptation to the noisedistribution, they are still restrictive

in that they deal only with finite complexity hypothesis classes, where it is often unrealistic

to expect convergence to the Bayes error rate to be achievable. We address this issue in this

section by developing a general algorithm for learning witha sequence of nested hypothesis

classes of increasing complexity, similar to the setting ofStructural Risk Minimization in passive

learning [Vapnik, 1982]. The starting point for this discussion is the assumption of a structure on

C, in the form of a sequence of nested hypothesis classes.

C1 ⊂ C2 ⊂ · · ·

Each class has an associated noise rateνi = infh∈Ci
er(h), and we defineν∞ = lim

i→∞
νi. We also

let θi anddi be the disagreement coefficient and VC dimension, respectively, for the setCi. We

are interested in an algorithm that guarantees convergencein probability of the error rate toν∞.

We are particularly interested in situations whereν∞ = ν∗, a condition which is realistic in this
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setting sinceCi can be defined so that it is always satisfied [see e.g., Devroye, Györfi, and Lugosi,

1996]. Additionally, if we are so lucky as to have someνi = ν∗, then we would like the conver-

gence rate achieved by the algorithm to be not significantly worse than running one of the above

agnostic active learning algorithms with hypothesis classCi alone. In this context, we can de-

fine a structure-dependent version of Tsybakov’s noise condition by
⋂

i∈I

Tsybakov(Ci, κi, µi), for

someI ⊆ N, and finite parametersκi ≥ 1 andµi > 0.

In passive learning, there are several methods for this typeof model selection which are

known to preserve the convergence rates of each classCi underTsybakov(Ci, κi, µi). [e.g.,

Koltchinskii, 2006, Tsybakov, 2004]. In particular, Koltchinskii [2006] develops a method that

performs this type of model selection; it turns out we can modify Koltchinskii’s method to suit

our present needs in the context of active learning; this results in a general active learning model

selection method that preserves the types of improved ratesdiscussed in the previous section.

This modification is presented below, based on using Algorithm 2 as a subroutine. (It may also

be possible to define an analogous method that uses Algorithm1 as a subroutine instead.)

Algorithm 3
Input: nested sequence of classes{Ci}, label budgetn, confidence parameterδ
Output: classifier̂hn

0. Fori = ⌊
√

n/2⌋, ⌊
√

n/2⌋ − 1, ⌊
√

n/2⌋ − 2, . . . , 1
1. LetLin andQin be the sets returned by Algorithm 2 run withCi and the

threshold in (2.6), allowing⌊n/(2i2)⌋ label requests, and confidenceδ/(2i2)
2. Lethin ← LEARNCi

(∪j≥iLjn, Qin)

3. If hin 6= ∅ and∀j s.t. i < j ≤ ⌊
√

n/2⌋,
erLjn∪Qjn

(hin)− erLjn∪Qjn
(hjn) ≤ 3

2
ÊCj

(Ljn∪Qjn, δ/(2j2);Ljn)

4. ĥn ← hin

5. Return̂hn

The functionÊ·(·, ·; ·) is defined in Section 2.6. This method can be shown to correctly

converge in probability to an error rate ofν∞ at a rate never significantly worse than the original

passive learning method of Koltchinskii [2006], as desired. Additionally, we have the following

guarantee on the rate of convergence under the structure-dependent definition of Tsybakov’s

noise conditions. The proof is similar in style to Koltchinskii’s original proof, though some
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care is needed due to the altered sampling distribution and the constraint setLjn. The proof is

included in Section 2.7.

Theorem 2.13.Supposêhn is the classifier returned by Algorithm 3, when allowedn label

requests and confidence parameterδ > 0. Suppose further thatDXY ∈
⋂

i∈I

Tsybakov(Ci, κi, µi)

for some nonemptyI ⊆ N and for finite parameter valuesκi ≥ 1 andµi > 0. Then there exist

finite (κi andµi -dependent) constantsci such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∞ ≤ 3 min
i∈I

(νi − ν∞) +



















1
δ
· exp

{

−
√

n

cidiθi log3 di
δ

}

, if κi = 1

ci

(

diθi log2 din

δ

n

)

κi
2κi−2

, if κi > 1

.

In particular, if we are so lucky as to haveνi = ν∗ for some finitei ∈ I, then the above algorithm

achieves a convergence rate not significantly worse than that guaranteed by Theorem 2.11 for

applying Algorithm 2 directly, with hypothesis classCi.

As in the case of finite-complexityC, we can also show a variant of this result when the

complexities are quantified in terms of the entropy with bracketing. Specifically, consider the

following theorem; the proof is in Section 2.7. Again, this represents an improvement over

known results for passive learning when the disagreement coefficient is small.

Theorem 2.14.Supposêhn is the classifier returned by Algorithm 3, when allowedn label

requests and confidence parameterδ > 0. Suppose further that

DXY ∈
⋂

i∈I

Tsybakov(Ci, κi, µi) ∩ Entropy[](Ci, αi, ρi) for some nonemptyI ⊆ N and finite

parametersµi > 0, κi ≥ 1, αi > 0 andρi ∈ (0, 1). Then there exist finite (κi, µi, αi andρi

-dependent) constantsci such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∞ ≤ 3 min
i∈I

(νi − ν∞) + ci

(

θi log2 in
δ

n

)

κi
2κi+ρi−2

.

In addition to these theorems for this structure-dependentversion of Tsybakov’s noise con-

ditions, we also have the following result for a structure-independent version.
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Theorem 2.15.Supposêhn is the classifier returned by Algorithm 3, when allowedn label

requests and confidence parameterδ > 0. Suppose further that there exists a constantµ > 0

such that for all measurableh : X → {−1, 1}, er(h)− ν∗ ≥ µP{h(X) 6= h∗(X)}. Then there

exists a finite (µ-dependent) constantc such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∗ ≤ c min
i

(νi − ν∗) + exp

{

−
√

n

cdiθi log3 idi

δ

}

.

The case whereer(h) − ν∗ ≥ µP{h(X) 6= h∗(X)}κ for κ > 1 can be studied analogously,

though the rate improvements over passive learning are moresubtle.

2.5 Conclusions

Under Tsybakov’s noise conditions, active learning can offer improved asymptotic convergence

rates compared to passive learning when the disagreement coefficient is small. It is also possible

to preserve these improved convergence rates when learningwith a nested structure of hypothesis

classes, using an algorithm that adapts to both the noise conditions and the complexity of the

optimal classifier.

2.6 Definition of Ê

For any functionf : X → R, andξ1, ξ2, . . . a sequence of independent random variables with

distribution uniform in{−1, +1}, define theRademacher processfor f under a finite sequence

of labeled examplesQ = {(X ′
i, Y

′
i )} as

R(f ; Q) =
1

|Q|

|Q|
∑

i=1

ξif(X ′
i).

The ξi should be thought of as internal variables in the learning algorithm, rather than being

fundamental to the learning problem.
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For any two sequences of labeled examplesL = {(X ′
i, Y

′
i )} andQ = {(X ′′

i , Y ′′
i )}, define

C[L] = {h ∈ C : erL(h) = 0},

Ĉ(ǫ;L, Q) = {h ∈ C[L] : erQ(h)− min
h′∈C[L]

erQ(h′) ≤ ǫ},

let

D̂C(ǫ;L, Q) = sup
h1,h2∈Ĉ(ǫ;L,Q)

1

|Q|

|Q|
∑

i=1

1[h1(X
′′
i ) 6= h2(X

′′
i )],

and define

φ̂C(ǫ;L, Q) =
1

2
sup

h1,h2∈Ĉ(ǫ;L,Q)

R(h1 − h2; Q).

Let δ ∈ (0, 1], m ∈ N, and define

sm(δ) = ln
20m2 log2(3m)

δ
.

Let Zǫ = {j ∈ Z : 2j ≥ ǫ}, and for any sequence of labeled examplesQ = {(X ′
i, Y

′
i )},

defineQm = {(X ′
1, Y

′
1), (X

′
2, Y

′
2), . . . , (X

′
m, Y ′

m)}. We use the following notation of Koltchin-

skii Koltchinskii [2006] with only minor modifications. Forǫ ∈ [0, 1], define

ÛC(ǫ, δ;L, Q)=K̂

(

φ̂C(ĉǫ;L, Q)+

√

s|Q|(δ)D̂C(ĉǫ;L,Q)

|Q|
+

s|Q|(δ)

|Q|

)

ÊC(Q, δ;L)= min
m≤|Q|

inf
{

ǫ>0:∀j∈Zǫ,ÛC(2j, δ;L, Qm)≤2j−4
}

where, for our purposes, we can takeK̂ = 752, andĉ = 3/2, though there seems to be room for

improvement in these constants. We also defineÊC(∅, δ; C,L) =∞ by convention.

2.7 Main Proofs

Let ÊC(m, δ) = ÊC(Zm, δ; ∅). For eachm ∈ N, let ĥ∗
m = arg min

h∈C

erm(h) be the empirical risk

minimizer inC for thetrue labels of the firstm examples.

For ǫ > 0, defineC(ǫ) = {h ∈ C : er(h)− ν ≤ ǫ}. Form ∈ N, let

φC(m, ǫ) = E sup
h1,h2∈C(ǫ)

|(er(h1)− erm(h1))− (er(h2)− erm(h2))|,
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ŨC(m, ǫ, δ) = K̃

(

φC(m, c̃ǫ) +

√

sm(δ)diam(C(c̃ǫ))

m
+

sm(δ)

m

)

,

ẼC(m, δ) = inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŨC(m, 2j, δ) ≤ 2j−4
}

,

where, for our purposes, we can takeK̃ = 8272 andc̃ = 3. We also definẽEC(0, δ) = ∞. The

following lemma is crucial to all of the proofs that follow.

Lemma 2.16. [Koltchinskii, 2006] There is an eventEC,δ with P(EC,δ) ≥ 1− δ/2 such that, on

eventEC,δ, ∀m ∈ N, ∀h ∈ C, ∀τ ∈ (0, 1/m), ∀h′ ∈ C(τ),

er(h)− ν ≤ max
{

2(erm(h)− erm(h′) + τ), ÊC(m, δ)
}

erm(h)− erm(ĥ∗
n) ≤ 3

2
max

{

(er(h)− ν), ÊC(m, δ)
}

,

ÊC(m, δ) ≤ ẼC(m, δ),

and for anyj ∈ Z with 2j > ÊC(m, δ),

sup
h1,h2∈C(2j )

|(erm(h1)− er(h1))− (erm(h2)− er(h2))| ≤ ÛC(2j , δ; ∅,Zm).

This lemma essentially follows from details of the proof of Koltchinskii’s Theorem 1, Lemma

2, and Theorem 3 [Koltchinskii, 2006]1. We do not provide a proof of Lemma 2.16 here. The

reader is referred to Koltchinskii’s paper for the details.

2.7.1 Definition ofr0

If θ is bounded by a finite constant, the definition ofr0 is not too important. However, in some

cases, settingr0 = 0 results in a suboptimal, or even infinite, value ofθ, which is undesirable.

In these cases, we would like to setr0 as large as possible while maintaining the validity of

the bounds, and if we do this carefully we should be able to establish bounds that, even in the

worst case whenθ = 1/r0, are never worse than the bounds for some analogous passive learning

1Our min
m≤|Q|

modification to Koltchinskii’s version of̂EC(m, δ) is not a problem, sinceφC(m, ǫ) and sm(δ)
m

are

nonincreasing functions ofm.
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method; however, to do this requiresr0 to depend on the parameters of the learning problem:

namely,n, δ, C, andDXY .

Generally, depending on the bound we wish to prove, different values ofr0 may be appro-

priate. For the tightest bound in terms ofθ proven below (namely, Lemma 2.18), the following

definition ofr0 gives a good bound. Defining

m̃C(n, δ,DXY ) = min

{

m ∈ N : n ≤ log2

4m2

δ
+ 2e

m−1
∑

ℓ=0

P(DIS(C(2ẼC(ℓ, δ))))

}

, (2.7)

we can letr0 = rC(n, δ,DXY ), where

rC(n, δ,DXY ) =
1

m̃C(n, δ,DXY )

m̃C(n,δ,DXY )−1
∑

ℓ=0

diam(C(2ẼC(mC(r′, n, δ), δ))). (2.8)

We use this definition in all of the proofs below. In particular, with this definition, Lemma 2.18 is

never significantly worse than the analogous known result for passive learning (though it can be

significantly better whenθ << 1/r0). For the looser bounds (namely, Theorems 2.11 and 2.12),

a larger value ofr0 would be more appropriate; however, note that this same general technique

can be employed to define a good value forr0 in these looser bounds as well, simply using upper

bounds on (2.8) analogous to how the theorems themselves arederived from Lemma 2.18 below.

2.7.2 Proofs Relating to Section 2.3

For ℓ ∈ N ∪ {0}, letL(ℓ) andQ(ℓ) denote the setsL andQ, respectively, in step 4 of Algorithm

2, whenm− 1 = ℓ; if this never happens during execution, then defineL(ℓ) = ∅, Q(ℓ) = Zℓ.

Lemma 2.17.On eventEC,δ, ∀ℓ ∈ N ∪ {0},

ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) = ÊC(ℓ, δ)

and

∀ǫ ≥ ÊC(ℓ, δ), ĥ∗
ℓ ∈ Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅).

Proof of Lemma 2.17. Throughout this proof, we assume the eventEC,δ occurs. We proceed by

induction onℓ, with the base case ofℓ = 0 (which clearly holds). Suppose the statements are true
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for all ℓ′ < ℓ. The caseL(ℓ) = ∅ is trivial, so assumeL(ℓ) 6= ∅. For the inductive step, suppose

h ∈ Ĉℓ(ÊC(ℓ, δ); ∅).

Then for allℓ′ < ℓ, we have

erℓ(h)− erℓ(ĥ
∗
ℓ) ≤ ÊC(ℓ′, δ).

In particular, by Lemma 2.16, this implies

er(h)− ν ≤ max
{

2(erℓ(h)− erℓ(ĥ
∗
ℓ)), ÊC(ℓ, δ)

}

≤ 2ÊC(ℓ′, δ),

and thus for anyh′ ∈ C,

erℓ′(h)− erℓ′(h
′) ≤ erℓ′(h)− erℓ′(ĥ

∗
ℓ′)

≤ 3

2
max

{

er(h)− ν, ÊC(ℓ′, δ)
}

≤ 3ÊC(ℓ′, δ) = 3ÊC(Q(ℓ′), δ;L(ℓ′)).

Thus, we must haveerL(ℓ)(h) = 0, and thereforeh ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)). Since this is the case

for all suchh, we must have that

Ĉℓ(ÊC(ℓ, δ);L(ℓ)) ⊇ Ĉℓ(ÊC(ℓ, δ); ∅). (2.9)

In particular, this implies that

ÛC(ÊC(ℓ, δ), δ;L(ℓ), Q(ℓ)) ≥ ÛC(ÊC(ℓ, δ), δ; ∅,Zℓ) >
1

16
ÊC(ℓ, δ),

where the last inequality follows from the definition ofÊC(ℓ, δ), (which is a power of2). Thus,

we must havêEC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) ≥ ÊC(ℓ, δ).

The relation in (2.9) also implies that

ĥ∗
ℓ ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)),

and therefore

∀ǫ ≥ ÊC(ℓ, δ), Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅),
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which implies

∀ǫ ≥ ÊC(ℓ, δ), ÛC(ǫ, δ;L(ℓ), Q(ℓ)) ≤ ÛC(ǫ, δ; ∅,Zℓ).

But this meanŝEC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) ≤ ÊC(ℓ, δ). Therefore, we must have equality. Thus, the

lemma follows by the principle of induction.

Lemma 2.18.Suppose for anyn ∈ N, ĥn is the classifier returned by Algorithm 2 with

threshold as in(2.6), when allowedn label requests and given confidence parameterδ > 0, and

suppose further thatmn is the value of|Q|+ |L| when Algorithm 2 returns. Then there is an

eventHC,δ such thatP(HC,δ ∩EC,δ) ≥ 1− δ, such that onHC,δ ∩EC,δ, ∀n ∈ N,

er(ĥn)− ν ≤ ẼC(mn, δ),

and

n ≤ min

{

mn, log2

4m2
n

δ
+ 4eθ

mn−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ)))

}

.

Proof of Lemma 2.18. Once again, assume eventEC,δ occurs. By Lemma 2.16,∀τ > 0,

er(ĥn)− ν ≤ max
{

2(ermn(ĥn)− ermn(ĥ∗
mn

) + τ), ÊC(mn, δ)
}

.

Letting τ → 0, and noting thaterL(ĥ∗
mn

) = 0 (Lemma 2.17) impliesermn(ĥn) = ermn(ĥ∗
mn

),

we have

er(ĥn)− ν ≤ ÊC(mn, δ) ≤ ẼC(mn, δ),

where the last inequality is also due to Lemma 2.16. Note thatthis ÊC(mn, δ) represents an

interesting data-dependent bound.

To get the bound on the number of label requests, we proceed asfollows. For anym ∈ N,

and nonnegative integerℓ < m, let Iℓ be the indicator for the event that Algorithm 2 requests

the labelYℓ+1 and letNm =
∑m−1

ℓ=0 Iℓ. Additionally, let I ′
ℓ be independent Bernoulli random

variables with

P[I ′
ℓ = 1] = P

{

DIS(C(2ẼC(ℓ, δ)))
}

.
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Let N ′
m =

∑m−1
ℓ=0 I ′

ℓ. We have that

P [{Iℓ = 1} ∩EC,δ] ≤ P

[

{Xℓ+1 ∈ DIS(Ĉℓ(ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)
i );L(ℓ)))} ∩ EC,δ

]

≤ P

[

{Xℓ+1 ∈ DIS(Ĉℓ(ẼC(ℓ, δ); ∅))} ∩ EC,δ

]

≤ P

[

DIS(C(2ẼC(ℓ, δ)))
]

= P[I ′
ℓ = 1].

The second inequality is due to Lemmas 2.17 and 2.16, while the third inequality is due to

Lemma 2.16. Note that

E[N ′
m] =

m−1
∑

ℓ=0

P[I ′
ℓ = 1] =

m−1
∑

ℓ=0

P

{

DIS(C(2ẼC(ℓ, δ)))}
}

Let us name this last quantityqm. Thus, by union and Chernoff bounds,

P

[{

∃m ∈ N : Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

N ′
m > max

{

2eqm, qm + log2

4m2

δ

}}]

≤
∑

m∈N

δ

4m2
≤ δ

2
.

For anyn, we known ≤ mn ≤ 2n. Therefore, we have that on an event (which includesEC,δ)

occuring with probability≥ 1− δ, for everyn ∈ N,

n ≤ max{Nmn , log2 mn} ≤ max

{

2eqmn , qmn + log2

4m2
n

δ

}

≤ log2

4m2
n

δ
+ 2e

mn−1
∑

ℓ=0

P{DIS(C(2ẼC(ℓ, δ)))}.

In particular, this implies̃mn = m̃C(n, δ,DXY ) ≤ mn (wherem̃C(n, δ,DXY ) is defined in (2.7)).

We now use the definition ofθ with ther0 in (2.8).

n ≤ log2

4m̃2
n

δ
+ 2e

m̃n−1
∑

ℓ=0

P{DIS(C(2ẼC(ℓ, δ)))}

≤ log2

4m̃2
n

δ
+ 2eθ

m̃n−1
∑

ℓ=0

max{diam(C(2ẼC(ℓ, δ))), rC(n, δ,DXY )}

≤ log2

4m̃2
n

δ
+ 4eθ

m̃n−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ))) ≤ log2

4m2
n

δ
+ 4eθ

mn−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ))).
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Lemma 2.19.On eventHC,δ ∩EC,δ (whereHC,δ is from Lemma 2.18), under

Tsybakov(C, κ, µ), ∀n ∈ N,

ẼC(mn, δ) ≤















1
δ
· exp

{

−
√

n
cdθ log3 d

δ

}

, if κ = 1

c
(

dθ log2(nd/δ)
n

)
κ

2κ−2
, if κ > 1

,

for some finite constantc (depending onκ andµ), and under

Entropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ), ∀n ∈ N,

ẼC(mn, δ) ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

,

for some finite constantc (depending onκ, µ, ρ, andα).

Proof of Lemma 2.19. We begin with the first case (Tsybakov(C, κ, µ) only).

We know that

ωC(m, ǫ) ≤ K

√

ǫd log 2
ǫ

m

for some constantK [see e.g., Massart and́Elodie Nédélec, 2006]. Noting thatφC(m, ǫ) ≤

ωC(m, diam(C(ǫ))), we have that

ŨC(m, ǫ, δ) ≤ K̃



K

√

diam(C(c̃ǫ))d log 2
diam(C(c̃ǫ))

m
+

√

sm(δ)diam(C(c̃ǫ))

m
+

sm(δ)

m





≤ K ′ max







√

ǫ1/κd log 1
ǫ

m
,

√

sm(δ)ǫ1/κ

m
,
sm(δ)

m







.

Taking anyǫ ≥ K ′′
(

d log m
δ

m

)
κ

2κ−1
, for some constantK ′′ > 0, suffices to make this latter quantity

≤ ǫ
16

. So for some appropriate constantK (depending onµ andκ), we must have that

ẼC(m, δ) ≤ K

(

d log m
δ

m

)
κ

2κ−1

. (2.10)

Plugging this into the query bound, we have that

n ≤ log2

4m2
n

δ
+ 2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

d log x
δ

x

)
1

2κ−1

)

. (2.11)
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If κ > 1, (2.11) is at mostK ′′θm
2κ−2
2κ−1
n d log mn

δ
, for some constantK ′′ (depending onκ and

µ). This implies

mn ≥ K(3)

(

n

θd log n
δ

)
2κ−1
2κ−2

,

for some constantK(3). Plugging this into (2.10) and using Lemma 2.18 completes the proof for

this case.

On the other hand, ifκ = 1, (2.11) is at mostK ′′θd log2 mn

δ
, for some constantK ′′ (depending

onκ andµ). This implies

mn ≥ δexp

{

K(3)

√

n

θd

}

,

for some constantK(3). Plugging this into (2.10), using Lemma 2.18, and simplifying the ex-

pression with a bit of algebra completes this case.

For the bound in terms ofρ, Koltchinskii [2006] proves that

ẼC(m, δ) ≤ K ′ max

{

m− κ
2κ+ρ−1 ,

(

log m
δ

m

)
κ

2κ−1

}

≤ K ′

(

log m
δ

m

)
κ

2κ+ρ−1

, (2.12)

for some constantK ′ (depending onµ, α, andκ). Plugging this into the query bound, we have

that

n ≤ log2

4m2
n

δ
+ 2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

log x
δ

x

)
1

2κ+ρ−1

)

≤ K ′′θm
2κ+ρ−2
2κ+ρ−1
n log

mn

δ
,

for some constantK ′′ (depending onκ, µ, α, andρ). This implies

mn ≥ K(3)

(

n

θ log n
δ

)
2κ+ρ−1
2κ+ρ−2

,

for some constantK(3). Plugging this into (2.12) and using Lemma 2.18 completes the proof of

this case.

Proofs of Theorem 2.11 and Theorem 2.12. These theorems now follow directly from Lem-

mas 2.18 and 2.19.
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2.7.3 Proofs Relating to Section 2.4

Lemma 2.20.For i ∈ N, let δi = δ/(2i2) andmin = |Lin|+ |Qin| (for i >
√

n/2, define

Lin = Qin = ∅). For eachn, let în denote the smallest indexi satisfying the condition onhin in

step 3 of Algorithm 3. Letτn = 2−n and define

i∗n = min
{

i ∈ N : ∀i′ ≥ i, ∀j ≥ i′, ∀h ∈ Ci′(τn), erLjn
(h) = 0

}

,

and

j∗n = arg min
j∈N

νj + ÊCj
(mjn, δj).

Then on the event
∞
⋂

i=1

ECi,δi
,

∀n ∈ N, max
{

i∗n, în

}

≤ j∗n.

Proof of Lemma 2.20. Continuing the notation from the proof of Lemma 2.17, forℓ ∈ N∪{0},

letL(ℓ)
in andQ

(ℓ)
in denote the setsL andQ, respectively, in step 4 of Algorithm 2, whenm− 1 =

ℓ, when run with classCi, label budget⌊n/(2i2)⌋, confidence parameterδi, and threshold as

in (2.6); if m− 1 is neverℓ during execution, then defineL(ℓ)
in = ∅ andQ

(ℓ)
in = Zℓ.

Assume the event
∞
⋂

i=1

ECi,δi
occurs. Suppose, for the sake of contradiction, thatj = j∗n < i∗n

for somen ∈ N. Then there is somei ≥ i∗n − 1 such that, for someℓ < min, we have some

h′ ∈ Ci∗n−1(τn) ∩ {h ∈ Ci : er
L

(ℓ)
in

(h) = 0} but

erℓ(h
′)−min

h∈Ci

erℓ(h) ≥ erℓ(h
′)− min

h∈Ci:er
L

(ℓ)
in

(h)=0
erℓ(h) > 3ÊCi

(L(ℓ)
in ∪Q

(ℓ)
in , δi;L(ℓ)

in ) = 3ÊCi
(ℓ, δi),

where the last equality is due to Lemma 2.17. Lemma 2.16 implies this will not happen for

i = i∗n − 1, so we can assumei ≥ i∗n. We therefore have (by Lemma 2.16) that

3ÊCi
(ℓ, δi) < erℓ(h

′)−min
h∈Ci

erℓ(h) ≤ 3

2
max

{

τn + νi∗n−1 − νi, ÊCi
(ℓ, δi)

}

.

In particular, this implies that

3ÊCi
(min, δi) ≤ 3ÊCi

(ℓ, δi) <
3

2

(

τn + νi∗n−1 − νi

)

≤ 3

2
(τn + νj − νi) .

Therefore,

ÊCj
(mjn, δj) + νj ≤ ÊCi

(min, δi) + νi ≤
1

2
(τn + νj − νi) + νi ≤

τn

2
+ νj.
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This would imply thatÊCj
(mjn, δj) ≤ τn/2 < 1

mjn
(due to the second return condition in Al-

gorithm 2), which by definition is not possible, so we have a contradiction. Therefore, we must

have that everyj∗n ≥ i∗n. In particular, we have that∀n ∈ N, hj∗nn 6= ∅.

Now pick an arbitraryi ∈ N with i > j = j∗n, and leth′ ∈ Cj(τn). Then

erLin∪Qin
(hjn)− erLin∪Qin

(hin) = ermin
(hjn)− ermin

(hin)

≤ ermin
(hjn)−min

h∈Ci

ermin
(h)

≤ 3

2
max

{

er(hjn)− νi, ÊCi
(min, δi)

}

(Lemma 2.16)

=
3

2
max

{

er(hjn)− νj + νj − νi, ÊCi
(min, δi)

}

≤ 3

2
max































2(ermjn
(hjn)− ermjn

(h′) + τn) + νj − νi

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

=
3

2
max















ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

(sincej ≥ i∗n)

=
3

2
ÊCi

(min, δi) (by definition ofj∗t )

=
3

2
ÊC(Lin ∪Qin, δi;Lin) (by Lemma 2.17).

Lemma 2.21.On the event
∞
⋂

i=1

ECi,δi
, ∀n ∈ N,

er(hînn)− ν∞ ≤ 3 min
i∈N

(

νi − ν∞ + ẼCi
(min, δi)

)

.

Proof of Lemma 2.21. Let h′
n ∈ Cj∗n(τn) for τn ∈ (0, 2−n), n ∈ N.
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er(ĥn)− ν∞ = er(hînn)− ν∞

= νj∗n − ν∞ + er(hînn)− νj∗n

≤ νj∗n − ν∞ + max















2(ermj∗nn
(hînn)− ermj∗nn

(h′
n) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

≤ νj∗n − ν∞ + max















2(erLj∗nn∪Qj∗nn
(hînn)− erLj∗nn∪Qj∗nn

(hj∗nn)) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

The first inequality follows from Lemma 2.16. The second inequality is due to Lemma 2.20 (i.e.,

j∗n ≥ i∗n). In this last line, we can letτn → 0, and using the definition of̂in show that it is at most

νj∗n − ν∞ + max

{

2

(

3

2
ÊCj∗n

(Lj∗nn ∪Qj∗nn, δj∗n;Lj∗nn)

)

, ÊCj∗n
(mj∗nn, δj∗n)

}

= νj∗n − ν∞ + 3ÊCj∗n
(mj∗nn, δj∗n) (Lemma 2.17)

≤ 3 min
i

(

νi − ν∞ + ÊCi
(min, δi)

)

(by definition ofj∗n)

≤ 3 min
i

(

νi − ν∞ + ẼCi
(min, δi)

)

(Lemma 2.16).

We are now ready for the proof of Theorems 2.13 and 2.14.

Proofs of Theorem 2.13 and Theorem 2.14.These theorems now follow directly from Lem-

mas 2.21 and 2.19. That is, Lemma 2.21 gives a bound in terms ofthe Ẽ quantities, holding on

event
∞
⋂

i=1

ECi,δi
, and Lemma 2.19 bounds theseẼ quantities as desired, on event

∞
⋂

i=1

HCi,δi
∩ECi,δi

.

Noting that, by the union bound,P

[

∞
⋂

i=1

HCi,δi
∩ ECi,δi

]

≥ 1 −∑∞
i=1 δi ≥ 1 − δ completes the

proof.

Definec̊ = c̃ + 1, D̊(ǫ) = lim
j→∞

diam(Cj(ǫ)), and

ŮCi
(m, ǫ, δi) = K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m




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and

E̊Ci
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j, δi) ≤ 2j−4

}

.

Lemma 2.22.For anym, i ∈ N,

ẼCi
(m, δi) ≤ max

{

E̊Ci
(m, δi), νi − ν∞

}

.

Proof of Lemma 2.22. For ǫ > νi − ν∞,

ŨCi
(m, ǫ, δi) = K̃

(

φCi
(m, c̃ǫ) +

√

sm(δi)diam(Ci(c̃ǫ))

m
+

sm(δi)

m

)

≤ K̃

(

ωCi
(m, diam(Ci(c̃ǫ))) +

√

sm(δi)diam(Ci(c̃ǫ))

m
+

sm(δi)

m

)

.

But diam(Ci(c̃ǫ)) ≤ D̊(c̃ǫ + (νi − ν∞)) ≤ D̊(̊cǫ), so the above line is at most

K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m



 = ŮCi
(m, ǫ, δi).

In particular, this implies that

ẼCi
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŨCi
(m, 2j, δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŨCi
(m, 2j, δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŮCi
(m, 2j, δi) ≤ 2j−4

}

≤ max
{

inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

, (νi − ν∞)
}

= max
{

E̊Ci
(m, δi), νi − ν∞

}

.

Proof of Theorem 2.15. By the same argument that lead to (2.10), we have that

E̊Ci
(m, δi) ≤ K2

di log mi
δ

m
,
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for some constantK2 (depending onµ).

Now assume the event
⋂∞

i=1 HCi,δi
∩ ECi,δi

occurs. In particular, Lemma 2.21 implies that

∀i, n ∈ N,

er(ĥn)− ν∗ ≤ min

{

1, 3 min
i∈N

(

2(νi − ν∞) + E̊Ci
(min, δi)

)

}

≤ K3 min
i∈N

(

(νi − ν∗) + min

{

1,
di log mini

δ

min

})

,

for some constantK3.

Now takei ∈ N. The label request bound of Lemma 2.18, along with Lemma 2.22, implies

that

⌊n/(2i2)⌋ ≤ log
8m2

ini
2

δ
+ K4θi

(

2 +

∫ min−1

1

max

{

νi − ν∗,
di log xi

δ

x

}

dx

)

≤ K5θi max

{

(νi − ν∗)min, di log2(min) log
i

δ

}

Let γi(n) =
√

n
i2θidi log i

δ

. Then

di log mini
δ

min
≤ K6

(

(νi − ν∗)
1 + γi(n)

γi(n)2
+ di log

i

δ
(1 + γi(n)) exp {−c2γi(n)}

)

.

Thus,

min

{

1,
di log mini

δ

min

}

≤ min

{

1, K7

(

(νi − ν∗) + di log
i

δ
(1 + γi(t)) exp {−c2γi(n)}

)}

.

The result follows from this by some simple algebra.

2.8 Time Complexity of Algorithm 2

It is worth making a few remarks about the time complexity of Algorithm 2 when used with

the (2.6) threshold. Clearly the LEARNC subroutine could be at least as computationally hard

as empirical risk minimization (ERM) overC. For most interesting hypothesis classes, this

is known to be NP-Hard – though interestingly, there are someefficient special cases [e.g.,
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Kalai, Klivans, Mansour, and Servedio, 2005]. Additionally, there is the matter of calculating

Êm(δ; C,L). The challenge here is due to the localizationĈ(ǫ;L) in the empirical Rademacher

process calculation and the empirical diameter calculation.

However, using a trick similar to that in Bartlett, Bousquet, and Mendelson [2005], we can

calculate or bound these quantities via an efficient reduction to minimization of aweightedem-

pirical error. That is, the only possibly difficult step in calculating φ̂m(ǫ; C,L) requires only

that we identifyh1 = argmin
h∈Ĉm(ǫ;L)

erm(h, ξ) andh2 = argmin
h∈Ĉm(ǫ;L)

erm(h,−ξ), whereerm(h, ξ) =

1
m

∑m
i=1 1[h(Xi) 6= ξi] and erm(h,−ξ) is the same but with−ξi. Similarly, letting ĥL =

LEARNC(L, Q) for L ∪Q generated from the firstm unlabeled examples, we can bound

D̂m(ǫ; C,L) within a factor of2 by 2erm(h′, ĥL) whereh′ = argmin
h∈Ĉm(ǫ;L)

erm(h,−ĥL) and

erm(f, g) = 1
m

∑m
i=1 1[f(Xi) 6= g(Xi)]. All that remains is to specify how this optimization for

h1,h2,andh′ can be performed. Taking theh1 case for example, we can solve the optimization as

follows. We find

ĥ(λ) = arg min
h∈C

m
∑

i=1

1[h(Xi) 6= ξi] +
∑

(x,y)∈Q

λ1[h(x) 6= y] +
∑

(x,y)∈L

2 max{1, λ}m1[h(x) 6= y],

whereλ is a Lagrange multiplier; we can calculateĥ(λ) for O(m2) values ofλ in a discrete

grid, and from these choose the one with smallesterm(ĥ(λ), ξ) among those witherL∪Q(ĥ(λ))−

erL∪Q(ĥL) ≤ ǫ. The third term guarantees the solution satisfieserL(ĥ(λ)) = 0, while the value

of λ specifies the trade-off betweenerL∪Q(ĥ(λ)) anderm(ĥ(λ), ξ). The calculation forh2 andh′

is analogous. Additionally, we can clearly formulate the LEARN subroutine as such a weighted

ERM problem as well.

For each of these weighted ERM problems, a further polynomial reduction to (unweighted)

empirical risk minimization is possible. In particular, wecan replicate the examples a number

of times proportional to the weights, generating an ERM problem onO(m2) examples. Thus,

for processing any finite number of unlabeled examplesm, the time complexity of Algorithm

2 (substituting the above2-approximation forD̂m(ǫ; C,L), which only changes constant factors

in the results of Section 2.3.4) should be no more than a polynomial factor worse than the time
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complexity of empirical risk minimization withC, for the worst case over all samples of size

O(m2).

2.9 A Refined Analysis of PAC Learning Via the Disagree-

ment Coefficient

Throughout this section, we will work inRealizable(C) and denoteD = DXY [X ]. In particular,

there is always a target functionf ∈ C with er(f) = 0.

Note that the known general upper bound for this problem is that, if the VC dimension ofC

is d, then with probability1− δ, every classifier inC consistent withn random samples has error

rate at most

4
d ln(2en/d) + ln(4/δ)

n
. (2.13)

This is due to Vapnik [1982]. There is a slightly different bound (for a different learning strategy)

of

∝ d log(1/δ)

n
(2.14)

proven by Haussler, Littlestone, and Warmuth [1994]. It is also known that one cannot get a

distribution-free bound smaller than

∝ d + log(1/δ)

n

for any concept space [Vapnik, 1982]. The question we are concerned with here is deriving upper

bounds that are closer to this lower bound than either (2.13)or (2.14) in some cases.

For our purposes, throughout this section we will taker0 = d+log(1/δ)
n

in the definition of the

disagreement coefficient. In particular, recall thatθf ≤ 1
r0

always, and this will imply a fallback

guarantee no worse than those above for our analysis below. However, it is sometimes much

smaller, or even constant, in which case our analysis here may be better than those mentioned

above.
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2.9.1 Error Rates for Any Consistent Classifier

For simplicity and to focus on the nontrivial cases, the results in this section will be stated for

the case whereP(DIS(C)) > 0. TheP(DIS(C)) = 0 case is trivial, since everyh ∈ C has

er(h) = 0 there.

Theorem 2.23.Letd be the VC dimension of concept spaceC, and let

Vn = {h ∈ C : ∀i ≤ n, h(xi) = f(xi)}, wheref ∈ C is the target function (i.e.,er(f) = 0),

and(x1, x2, . . . , xn) ∼ Dn is a sequence of i.i.d. training examples. Then for anyδ ∈ (0, 1),

with probability≥ 1− δ, ∀h ∈ Vn,

er(h) ≤ 24

n

(

d ln(880θf) + ln
12

δ

)

. (2.15)

Proof. SinceP(DIS(C)) > 0 by assumption,θf > 0 (andd > 0 also follows). As above, let

Vm = {h ∈ C : ∀i ≤ m, h(xi) = f(xi)}, and defineradius(Vm) = suph∈Vm
er(h). We will

prove the result by induction onn. As a base case, note that the result clearly holds forn ≤ d, as

we always haveer(h) ≤ 1.

Now supposen ≥ d + 1 ≥ 2, and suppose the result holds for anym < n; in particular,

considerm = ⌊n/2⌋. Thus, for anyδ ∈ (0, 1), with probability≥ 1− δ/3,

radius(Vm) ≤ 24

m

(

d ln(880θf) + ln
36

δ

)

.

Note thatrn < rm, so we can take this inequality to hold for theθf defined withrn as well. If

P(DIS(Vm)) < 8
m

ln 3
δ
≤ 24

n
ln 3

δ
, then (2.15) is valid (as is (2.16) below) sinceradius(Vn) ≤

radius(Vm) ≤ P(DIS(Vm)). Otherwise, by a Chernoff bound, with probability≥ 1− δ/3, we

have

|{xm+1, xm+2, . . . , xn} ∩DIS(Vm)| ≥ P(DIS(Vm))⌈n/2⌉/2 =: N.
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(2.13) tells us that given this event, with probability≥ 1− δ/3,

radius(Vn) = P(DIS(Vm))radius(Vn|DIS(Vm))

≤ P(DIS(Vm))
4

N

(

d ln
2eN

d
+ ln

12

δ

)

≤ 16

n

(

d ln
2eP(DIS(Vm))n

4d
+ ln

12

δ

)

≤ 16

n

(

d ln
eθfradius(Vm)n

2d
+ ln

12

δ

)

.

Applying the inductive hypothesis forradius(Vm) combined with a union bound over these3

failure events (each of probabilityδ/3), we have that with probability≥ 1− δ,

radius(Vn) ≤
16

n

(

d ln

(

48eθf

(

ln (880θf) +
1

d
ln

36

δ

))

+ ln
12

δ

)

. (2.16)

If d ≥ 1
e
ln 12

δ
, then the right side of (2.16) is at most

16

n

(

d ln (θf48e ln (880 · 3 · eeθf )) + ln
12

δ

)

≤ 16

n

(

d ln (θf48e ln (40008θf)) + ln
12

δ

)

≤ 16

n

(

d ln
(

26099θ
3/2
f

)

+ ln
12

δ

)

≤ 24

n

(

d ln (880θf) + ln
12

δ

)

.

Otherwised < 1
e
ln 12

δ
, so that the right side of (2.16) is at most

16

n

(

d ln

(

θf48e ln (880 · 3θf)
1

d
ln

12

δ

)

+ ln
12

δ

)

≤ 16

n

(

d ln
(

6705θ
3/2
f

)

+ d ln

(

1

d
ln

12

δ

)

+ ln
12

δ

)

≤ 24

n

(

d ln (356θf) +
2

3

(

1

e
+ 1

)

ln
12

δ

)

≤ 24

n

(

d ln (880θf) + ln
12

δ

)

.

The theorem now follows by the principle of induction.

With this result in hand, we can immediately get some interesting results, such as the follow-

ing corollary.
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Corollary 2.24. SupposeC is the space of linear separators ind dimensions that pass through

the origin, and suppose the distribution is uniform on the surface of the origin-centered unit

sphere. Then with probability≥ 1− δ, anyh ∈ C consistent with then i.i.d. training examples

has (for some finite universalc)

er(h) ≤ c
d log d + log 1

δ

n
.

Proof. [Hanneke, 2007b] proves thatsup
f∈C

θf ≤ π
√

d for this problem.

This improves over the best previously known bound for consistent classifiers for this problem

in its dependence onn, which was∝ d
√

log(n/d)+log(1/δ)

n
[Li and Long, 2007] (though we picked

up an extralog d factor in the process).

2.9.2 Specializing to Particular Algorithms

The above analysis is for arbitrary algorithms that select aclassifier consistent with the training

data. However, we can modify the disagreement coefficient tobe more interesting for more spe-

cific algorithms. Specifically, suppose there are setsCf such that with high probability algorithm

A will output a classifier inCf whenf is the target function. Then we only need to worry about

the regions of disagreement within theseCf sets, which may be significantly smaller than within

the full spaceC.

To give a concrete example, consider the Closure algorithm:output theh ∈ C with smallest

P(h(X) = +1) that is consistent with the data. For intersection-closedC, the sets areCf =

{h ∈ C : h(x) = +1 ⇒ f(x) = +1}. So effectively, this becomes our concept space, and the

disagreement coefficient off with respect toCf andD can be significantly smaller than it is with

respect to the full spaceC. For instance, ifC is axis-aligned rectangles, then the disagreement

coefficient of anyf ∈ C with respect toCf andD is at mostd. This implies a bound

∝ d log d + log(1/δ)

n
.
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We already have better bounds than this for using Closure with this concept space. How-

ever, if thed upper bound on disagreement coefficient with respect toCf is true for general

intersection-closed spacesC, this would match the best known bounds for general intersection-

closed spaces [Auer and Ortner, 2004].
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Chapter 3

Significance of the Verifiable/Unverifiable

Distinction in Realizable Active Learning

This chapter describes and explores a new perspective on thelabel complexity of active learning

in the fixed-distribution realizable case. In many situations where it was generally thought that

active learning does not help, we show that active learning does help in the limit, often with

exponential improvements in label complexity. This contrasts with the traditional analysis of

active learning problems such as non-homogeneous linear separators or depth-limited decision

trees, in whichΩ(1/ǫ) lower bounds are common. Such lower bounds should be interpreted

carefully; indeed, we prove that it is always possible to learn anǫ-good classifier with a number

of labels asymptotically smaller than this. These new insights arise from a subtle variation on

the traditional definition of label complexity, not previously recognized in the active learning

literature.

Remark 3.1. The results in this chapter are taken from [Balcan, Hanneke,and Wortman, 2008],

joint work with Maria-Florina Balcan and Jennifer Wortman.
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3.1 Introduction

A number of active learning analyses have recently been proposed in a PAC-style setting, both for

the realizable and for the agnostic cases, resulting in a sequence of important positive and nega-

tive results [Balcan et al., 2006, 2007, Cohn et al., 1994, Dasgupta, 2004, 2005, Dasgupta et al.,

2005, 2007, Hanneke, 2007a,b]. In particular, the most concrete noteworthy positive result for

when active learning helps is that of learning homogeneous (i.e., through the origin) linear

separators, when the data is linearly separable and distributed uniformly over the unit sphere,

and this example has been extensively analyzed [Balcan et al., 2006, 2007, Dasgupta, 2005,

Dasgupta et al., 2005, 2007]. However, few other positive results are known, and there are sim-

ple (almost trivial) examples, such as learning intervals or non-homogeneous linear separators

under the uniform distribution, where previous analyses oflabel complexities have indicated that

perhaps active learning does not help at all [Dasgupta, 2005].

In this work, we approach the analysis of active learning algorithms from a different angle.

Specifically, we point out that traditional analyses have studied the number of label requests

required before an algorithm can both produce anǫ-good classifierandprove that the classifier’s

error is no more thanǫ. These studies have turned up simple examples where this number is

no smaller than the number of random labeled examples required for passive learning. This is

the case for learning certain nonhomogeneous linear separators and intervals on the real line,

and generally seems to be a common problem for many learning scenarios. As such, it has led

some to conclude that active learningdoes not helpfor most learning problems. One of the goals

of our present analysis is to dispel this misconception. Specifically, we study the number of

labels an algorithm needs to request before it can produce anǫ-good classifier, even if there is

no accessible confidence bound available to verify the quality of the classifier. With this type

of analysis, we prove that active learning can essentially always achieve asymptotically superior

label complexity compared to passive learning when the VC dimension is finite. Furthermore,

we find that for most natural learning problems, including the negative examples given in the
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Best accessible confidence

bound on the error

True error rate of

the learner's hypothesis

Γ polylogH1�ΕL 1�Ε
labels

Ε

Figure 3.1: Active learning can often achieve exponential improvements, though in many cases

the amount of improvement cannot be detected from information available to the learning algo-

rithm. Hereγ may be a target-dependent constant.

previous literature, active learning can achieve exponential1 improvements over passive learning

with respect to dependence onǫ. This situation is characterized in Figure 3.1.

To our knowledge, this is the first work to address this subtlepoint in the context of active

learning. Though several previous papers have studied bounds on this latter type of label com-

plexity [Castro and Nowak, 2007, Dasgupta et al., 2005, 2007], their results wereno stronger

than the results one could prove in the traditional analysis. As such, it seems this large gap

between the two types of label complexities has gone unnoticed until now.

3.1.1 A Simple Example: Intervals

To get some intuition about when these types of label complexity are different, consider the

following example. Suppose thatC is the class of all intervals over[0, 1] andD is a uniform

distribution over[0, 1]. If the target function is the empty interval, then for any sufficiently small

ǫ, in order toverify with high confidence that this (or any) interval has error≤ ǫ, we need to

request labels in at least a constant fraction of theΩ(1/ǫ) intervals[0, 2ǫ], [2ǫ, 4ǫ], . . ., requiring

Ω(1/ǫ) total label requests.

1We slightly abuse the term “exponential” throughout the chapter. In particular, we refer to anypolylog(1/ǫ) as

being an exponential improvement over1/ǫ.
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However, no matter what the target function is, we canfind an ǫ-good classifier with only

a logarithmic label complexity via the following extremelysimple 2-phase learning algorithm.

The algorithm will be allowed to maket label requests, and then we will find a value oft that is

sufficiently large to guarantee learning. We start with a large (Ω(2t)) set of unlabeled examples.

In the first phase, on each round we choose a pointx uniformly at random from the unlabeled

sample and query its label. We repeat this until we either observe a+1 label, at which point we

enter the second phase, or we use allt label requests. In the second phase, we alternate between

running one binary search on the examples between0 and thatx and a second on the examples

between thatx and 1 to approximate the end-points of the interval. Once we use all t label

requests, we output a smallest interval consistent with theobserved labels.

If the targeth∗ labels every point as−1 (the so-calledall-negativefunction), the algorithm

described above would output a hypothesis with0 error even after0 label requests, so anyt ≥ 0

suffices in this case. On the other hand, if the target is an interval [a, b] ⊆ [0, 1], whereb − a =

w > 0, then after roughlyO(1/w) queries (a constant number that depends only on the target),a

positive example will be found. Since onlyO(log(1/ǫ)) additional queries are required to run the

binary search to reach error rateǫ, it suffices to havet ≥ O(1/w+log(1/ǫ)) = O(log(1/ǫ)). So in

general, the label complexity is at worstO(log(1/ǫ)). Thus, we see a sharp distinction between

the label complexity required tofind a good classifier (logarithmic) and the label complexity

needed to both find a good classifierand verifythat it is good.

This example is particularly simple, since there is effectively onlyone“hard” target function

(the all-negative target). However, most of the spaces we study are significantly more complex

than this, and there are generally many targets for which it is difficult to achieve good verifiable

complexity.
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3.1.2 Our Results

We show that in many situations where it was previously believed that active learning cannot

help, active learning does help in the limit. Our main specific contributions are as follows:

• We distinguish between two different variations on the definition of label complexity. The

traditional definition, which we refer to asverifiable label complexity, focuses on the num-

ber of label requests needed to obtain a confidence bound indicating an algorithm has

achieved at mostǫ error. The newer definition, which we refer to simply aslabel complex-

ity, focuses on the number of label requests before an algorithmactually achieves at most

ǫ error. We point out that the latter is often significantly smaller than the former, in con-

trast to passive learning where they are often equivalent upto constants for most nontrivial

learning problems.

• We prove thatanydistribution and finite VC dimension concept class has active learning

label complexity asymptotically smaller than the label complexity of passive learning for

nontrivial targets. A simple corollary of this is that finiteVC dimension implieso(1/ǫ)

active learning label complexity.

• We show it is possible to actively learn with anexponential ratea variety of concept classes

and distributions, many of which are known to require a linear rate in the traditional anal-

ysis of active learning: for example, intervals on[0, 1] and non-homogeneous linear sepa-

rators under the uniform distribution.

• We show that even in this new perspective, there do exist lower bounds; it is possible to

exhibit somewhat contrived distributions where exponential rates are not achievable even

for some simple concept spaces (see Theorem 3.11). The learning problems for which

these lower bounds hold are much more intricate than the lower bounds from the traditional

analysis, and intuitively seem to represent the core of whatmakes a hard active learning

problem.
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3.2 Background and Notation

In various places throughout this chapter, we will need notation for acountable dense subsetof

a hypothesis classV . For any set of classifiersV , we will denote byṼ a countable (or possibly

finite) subset ofV s.t. ∀α > 0, ∀h ∈ V , ∃h′ ∈ Ṽ with PDXY [X ](h(X) 6= h′(X)) ≤ α. Such

a set is guaranteed to exist under mild conditions; in particular, finite VC dimension suffices to

guarantee its existence. We introduce this notion to avoid certain degenerate behaviors, such as

whenDIS(B(h, 0)) = X . For instance, the hypothesis class of classifiers on the[0, 1] interval

that label exactly one point positive has this property under any nonatomic density function.

Since all of the results in this chapter are for the fixed-distribution realizable case, it will be

convenient to introduce the following short-hand notation.

Definition 3.1. A functionΛ(ǫ, δ, h∗) is a label complexityfor a pair (C,D) if there exists an

active learning algorithmA achieving label complexityΛ(ǫ, δ,DXY ) = Λ(ǫ, δ, h∗
DXY

) for all

DXY ∈ Realizable(C,D), whereD is a distribution overX andh∗
DXY

is the target function

underDXY .

Definition 3.2. A functionΛ(ǫ, δ, h∗) is a verifiable label complexityfor a pair (C,D) if there

exists an active learning algorithmA achieving verifiable label complexity

Λ(ǫ, δ,DXY ) = Λ(ǫ, δ, h∗
DXY

) for all DXY ∈ Realizable(C,D), whereD is a distribution over

X andh∗
DXY

is the target function underDXY .

Let us take a moment to reflect on the difference between the two definitions of label com-

plexity: namely, verifiable and unverifiable. The distinction may appear quite subtle. Both

definitions allow the label complexity to depend both on the target function and on the input dis-

tribution. The only distinction is whether or not there is anaccessible guaranteeor confidence

boundon the error of the chosen hypothesis that is also at mostǫ. This confidence bound can

only depend on quantities accessible to the learning algorithm, such as thet requested labels. As

an illustration of this distinction, consider again the problem of learning intervals. As described

above, if the targeth∗ is an interval of widthw, then after seeingO(1/w + log(1/ǫ)) labels, with
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high probability it is possible for an algorithm toguaranteethat it can output a function with

error less thanǫ. In this case, for sufficiently smallǫ, the verifiable label complexityΛ(ǫ, δ, h∗)

is proportional tolog(1/ǫ). However, ifh∗ is the all-negative function, then the verifiable label

complexity is at least proportional to1/ǫ for all values ofǫ becausea high-confidence guarantee

can never be madewithout observingΩ(1/ǫ) labels; for completeness, a formal proof of this fact

is included in Section 3.7. In contrast, as we have seen, the label complexity isO(log(1/ǫ)) for

anytarget in the class of intervals when no such guarantee is required.

A common alternative formulation of verifiable label complexity is to let A take ǫ as an

argument and allow it to choose online how many label requests it needs in order to guarantee

error at mostǫ [Dasgupta, 2005]. This alternative definition is almost equivalent (an algorithm

for either definition can be modified to fit the other definitionwithout significant loss in the

verifiable label complexity values), as the algorithm must be able to produce a confidence bound

of size at mostǫ on the error of its hypothesis in order to decide when to stop requesting labels

anyway.2

3.2.1 The Verifiable Label Complexity

To date, there has been a significant amount of work studying the verifiable label complexity

(though typically under the aforementioned alternative formulation). It is clear from standard re-

sults in passive learning that verifiable label complexities ofO ((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ))

are easy to obtain for any learning problem, by requesting the labels of random examples. As

such, there has been much interest in determining when it is possible to achieve verifiable la-

2There is some question as to what the “right” formal model of active learning is in general. For instance, we

could instead letA generate an infinite sequence ofht hypotheses (or(ht, ǫ̂t) in the verifiable case), whereht

can depend only on the firstt label requests made by the algorithm along with some initialsegment of unlabeled

examples (as in [Castro and Nowak, 2007]), representing thecase where we are not sure a-priori of when we will

stop the algorithm. However, for our present purposes, suchalternative models are equivalent in label complexity

up to constants.
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bel complexitysmaller than this, and in particular, when the verifiable label complexity is a

polylogarithmic function of1/ǫ (representing exponential improvements over passive learning).

As discussed in previous chapters, there have been a few quantities proposed to measure

the verifiable label complexity of active learning on any given concept class and distribution.

Dasgupta’ssplitting index[Dasgupta, 2005], which is dependent on the concept class, data dis-

tribution, target function, and a parameterτ , quantifies how easy it is to make progress toward

reducing the diameter of the version space by choosing an example to query. Another quantity

to which we will frequently refer is thedisagreement coefficient[Hanneke, 2007b], defined in

Chapter 2.

The disagreement coefficient is often a useful quantity for analyzing the verifiable label com-

plexity of active learning algorithms. For example, as we saw in Chapter 2, Algorithm 0 achieves

a verifiable label complexity at mostθh∗d ·polylog(1/(ǫδ)) when run with hypothesis classC for

target functionh∗ ∈ C. We will use it in several of the results below. In all of the relevant results

of this chapter, we will simply taker0 = 0 in the definition of the disagreement coefficient.

We will see that both the disagreement coefficient and splitting index are also useful quantities

for analyzing unverifiable label complexities, though their use in that case is less direct.

3.2.2 The True Label Complexity

This chapter focuses on situations where true label complexities are significantly smaller than

verifiable label complexities. In particular, we show that many common pairs(C,D) have

label complexity that is polylogarithmic inboth 1/ǫ and 1/δ and linear only in some finite

target-dependent constantγh∗. This contrasts sharply with the infamous1/ǫ lower bounds men-

tioned above, which have been identified for verifiable labelcomplexity [Dasgupta, 2004, 2005,

Freund et al., 1997, Hanneke, 2007a]. The implication is that, for any fixed targeth∗, such lower

bounds vanish asǫ approaches0. This also contrasts with passive learning, where1/ǫ lower

bounds are typically unavoidable [Antos and Lugosi, 1998].
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Definition 3.3. We say that(C,D) is actively learnable at an exponential rateif there exists an

active learning algorithm achieving label complexity

Λ(ǫ, δ, h∗)=γh∗ · polylog (1/(ǫδ))

for all h∗ ∈ C, whereγh∗ is a finite constant that may depend onh∗ andD but is independent of

ǫ andδ.

3.3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active learning can achieve a label complexity

asymptotically superior to passive learning. The results are surprisingly general, indicating that

whenever the VC dimension is finite, essentiallyanypassive learning algorithm is asymptotically

dominatedby an active learning algorithm onall targets.

Definition 3.4. A functionΛ(ǫ, δ, h∗) is a passive learninglabel complexity for a pair(C,D) if

there exists an algorithmA(((x1, h
∗(x1)), (x2, h

∗(x2)), . . . , (xt, h
∗(xt))), δ) that outputs a

classifierht,δ, such that for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for any

t ≥ Λ(ǫ, δ, h∗),

PD(er(ht,δ) ≤ ǫ) ≥ 1− δ.

Thus, a passive learning label complexity corresponds to a restriction of an active learning

label complexity to algorithms that specifically request the first t labels in the sequence and

ignore the rest. In particular, it is known that for any finiteVC dimension class, there is always

anO (1/ǫ) passive learning label complexity [Haussler et al., 1994].Furthermore, this is often

(though not always) tight, in the sense that for any passive algorithm, there exist targets for which

the corresponding passive learning label complexity isΩ (1/ǫ) [Antos and Lugosi, 1998]. The

following theorem states that for any passive learning label complexity, there exists an achievable

active learning label complexity with a strictly slower asymptotic rate of growth. Its proof is

included in Section 3.11.

Remark 3.2. This result is superceded by a stronger result in Chapter 4; however, the result in
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Chapter 4 is proven for a different algorithm, so that Theorem 3.5 is not entirely redundant. I

have therefore chosen to include the result, since the construction of the algorithm may be of

independent interest, even if the stated theorem is itself weaker than later results.

Theorem 3.5.SupposeC has finite VC dimension, and letD be any distribution onX . For any

passive learning label complexityΛp(ǫ, δ, h) for (C,D), there exists an active learning

algorithm achieving a label complexityΛa(ǫ, δ, h) such that, for allδ ∈ (0, 1/4) and targets

h∗ ∈ C for whichΛp(ǫ, δ, h
∗) = ω(1),

Λa(ǫ, δ, h
∗) = o (Λp(ǫ/4, δ, h∗)) .

In particular, this implies the following simple corollary.

Corollary 3.6. For anyC with finite VC dimension, and any distributionD overX , there is an

active learning algorithm that achieves a label complexityΛ(ǫ, δ, h∗) such that forδ ∈ (0, 1/4),

Λ(ǫ, δ, h∗) = o (1/ǫ)

for all targetsh ∈ C.

Proof. Let d be the VC dimension ofC. The passive learning algorithm of Haussler, Little-

stone & Warmuth [Haussler et al., 1994] is known to achieve a label complexity no more than

(kd/ǫ) log(1/δ), for some universal constantk < 200. Applying Theorem 3.5 now implies the

result.

Note the interesting contrast, not only to passive learning, but also to the known results on the

verifiable label complexity of active learning. This theorem definitively states that theΩ (1/ǫ)

lower bounds common in the literature on verifiable label complexity canneverarise in the

analysis of the true label complexity of finite VC dimension classes.
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3.4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning the class of intervals over[0, 1] under

the uniform distribution. As discussed above, it is well known that the verifiable label complexity

of the all-negative classifier in this class isΩ(1/ǫ). However, consider the more limited class

C′ ⊂ C containing only the intervalsh of width wh strictly greater than 0. Using the simple

algorithm described in Section 3.1.1, this restricted class can be learned with a (verifiable) label

complexity of onlyO(1/wh + log(1/ǫ)). Furthermore, the remaining set of classifiersC′′ =

C \C′ consists of only a single function (the all-negative classifier) and thus can be learned with

verifiable label complexity0. Here we have thatC can be decomposed into two subclassesC′

andC′′, where both(C′,D) and (C′′,D) are learnable at an exponential rate. It is natural to

wonder if the existence of such a decomposition is enough to imply thatC itself is learnable at

an exponential rate.

More generally, suppose that we are given a distributionD and a hypothesis classC such

that we can construct a sequence of subclassesCi with label complexityΛi(ǫ, δ, h), with C =

∪∞i=1Ci. Thus, if we knewa priori that the targeth∗ was a member of subclassCi, it would be

straightforward to achieveΛi(ǫ, δ, h
∗) label complexity. It turns out that it is possible to learnany

targeth∗ in anyclassCi with label complexity onlyO(Λi(ǫ/2, δ/2, h∗)), even without knowing

which subclass the target belongs to in advance. This can be accomplished by using a simple

aggregation algorithm, such as the one given below. Here a set of active learning algorithms

(for example, multiple instances of Dasgupta’s splitting algorithm [Dasgupta, 2005] or CAL) are

run on individual subclassesCi in parallel. The output of one of these algorithms is selected

according to a sequence of comparisons.

Using this algorithm, we can show the following label complexity bound. The proof appears

in Section 3.8.
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Algorithm 1 Algorithm 4 : The Aggregation Procedure. Here it is assumed thatC = ∪∞i=1Ci,

and that for eachi, Ai is an algorithm achieving label complexity at mostΛi(ǫ, δ, h) for the pair

(Ci,D). Both the main aggregation procedure and each algorithmAi take a number of labelst

and a confidence parameterδ as parameters.
Let k be the largest integer s.t.k2 ⌈72 ln(4k/δ)⌉ ≤ t/2

for i = 1, . . . , k do

Let hi be the output of runningAi(⌊t/(4i2)⌋, δ/2) on the sequence{x2n−1}∞n=1

end for

for i, j ∈ {1, 2, . . . , k} do

if PD(hi(x) 6= hj(x)) > 0 then

Let Rij be the first⌈72 ln(4k/δ)⌉ elementsx in the sequence{x2n}∞n=1 s.t.hi(x) 6= hj(x)

Request the labels of all examples inRij

Let mij be the number of elements inRij on whichhi makes a mistake

else

Let mij = 0

end if

end for

Returnĥt = hi wherei = argmin
i∈{1,2,...,k}

max
j∈{1,2,...,k}

mij

Theorem 3.7.For any distributionD, let C1, C2, . . . be a sequence of classes such that for each

i, the pair(Ci,D) has label complexity at mostΛi(ǫ, δ, h) for all h ∈ Ci. LetC = ∪∞i=1Ci. Then

(C,D) has a label complexity at most

min
i:h∈Ci

max

{

4i2 ⌈Λi(ǫ/2, δ/2, h)⌉ , 2i2
⌈

72 ln
4i

δ

⌉}

,

for anyh ∈ C. In particular, Algorithm 4 achieves this when given as input the algorithmsAi

that each achieve label complexityΛi(ǫ, δ, h) on class(Ci,D).

A particularly interesting implication of Theorem 3.7 is that the ability to decomposeC into
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a sequence of classesCi with each pair(Ci,D) learnable at an exponential rate is enough to

imply that (C,D) is also learnable at an exponential rate. Since theverifiablelabel complexity

of active learning has received more attention and is therefore better understood, it is often be

useful to apply this result when there exist known bounds on the verifiable label complexity; the

approach loses nothing in generality, as suggested by the following theorem. The proof of this

theorem. is included in Section 3.9.

Theorem 3.8.For any(C,D) learnable at an exponential rate, there exists a sequence

C1, C2, . . . with C = ∪∞i=1Ci, and a sequence of active learning algorithmsA1, A2, . . . such that

the algorithmAi achievesverifiablelabel complexity at mostγipolylogi (1/(ǫδ)) for the pair

(Ci,D), whereγi is a constant independent ofǫ andδ. In particular, the aggregation algorithm

(Algorithm 4 ) achieves exponential rates when used with these algorithms.

Note that decomposing a givenC into a sequence ofCi subsets that have good verifiable label

complexities is not always a simple task. One might be tempted to think a simple decomposi-

tion based on increasing values of verifiable label complexity with respect to(C,D) would be

sufficient. However, this is not always the case, and generally we need to use information more

detailed than verifiable complexity with respect to(C,D) to construct a good decomposition.

We have included in Section 3.10 a simple heuristic approachthat can be quite effective, and in

particular yields good label complexities for every(C,D) described in Section 3.5.

Since it is more abstract and allows us to use known active learning algorithms as a black

box, we frequently rely on the decompositional view introduced here throughout the remainder

of the chapter.

3.5 Exponential Rates

The results in Section 3.3 tell us that the label complexity of active learning can be made strictly

superior to any passive learning label complexity when the VC dimension is finite. We now ask

how much better that label complexity can be. In particular,we describe a number of concept
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classes and distributions that are learnable at anexponentialrate, many of which are known to

requireΩ(1/ǫ) verifiablelabel complexity.

3.5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situations in which exponential rates

are trivially achievable; in fact, in each of the cases mentioned in this subsection, the label

complexity is actuallyO(1).

Clearly if |X | <∞ or |C| <∞, we can always achieve exponential rates. In the former case,

we may simply request the label of everyx in the support ofD, and thereby perfectly identify

the target. The correspondingγ = |X |. In the latter case, Algorithm 0 can achieve exponential

learning withγ = |C| since each queried label will reduce the size of the version space by at

least one.

Less obvious is the fact that a similar argument can be applied to anycountably infinite

hypothesis classC. In this case we can impose an orderingh1, h2, · · · over the classifiers inC,

and setCi = {hi} for all i. By Theorem 3.7, applying the aggregation procedure to thissequence

yields an algorithm with label complexityΛ(ǫ, δ, hi) = 2i2 ⌈72 ln(4i/δ)⌉ = O(1).

3.5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric concepts inRn are learnable at an exponential rate if the underlying

distribution is uniform on some subset ofRn. Here we provide some examples; interestingly,

every example in this subsection has some targets for which the verifiable label complexity is

Ω (1/ǫ). As we see in Section 3.5.3, all of the results in this sectioncan be extended to many

other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let X be the interval[0, 1) and letC(k)

denote the class of unions of at mostk intervals. In other words,C(k) contains functions de-
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scribed by a sequence〈a0, a1, · · · , aℓ〉, wherea0 = 0, aℓ = 1, ℓ ≤ 2k + 1, anda0, · · · , aℓ is the

(nondecreasing) sequence of transition points between negative and positive segments (sox is

labeled+1 iff x ∈ [ai, ai+1) for someodd i). For any distribution, this class is learnable at an

exponential rate by the following decomposition argument.First, defineC1 to be the set contain-

ing the all-negative function along with any functions thatare equivalent given the distribution

D. Formally,

C1 = {h ∈ C(k) : P(h(X) = +1) = 0} .

ClearlyC1 has verifiable label complexity0. For i = 2, 3, . . . , k + 1, let Ci be the set containing

all functions that can be represented as unions ofi − 1 intervals but cannot be represented as

unions of fewer intervals. More formally, we can inductively define eachCi as

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1) s.t.P(h(X) 6= h′(X)) = 0
}

\ ∪j<iCj .

For i > 1, within each subclassCi, for eachh ∈ Ci the disagreement coefficient wrt̃Ci is

bounded by something proportional tok + 1/w(h), wherew(h) is the weight of the smallest

positive or negative interval with nonzero weight. Thus running Algorithm 0 withC̃i achieves

polylogarithmic (verifiable) label complexity for anyh ∈ Ci. SinceC(k) = ∪k+1
i=1 Ci, by Theo-

rem 3.7,C(k) is learnable at an exponential rate.

Ordinary Binary Classification Trees: LetX be the cube[0, 1]n,D be the uniform distribution

on X , andC be the class of binary decision trees using a finite number of axis-parallel splits

(see e.g., Devroye et al. [Devroye et al., 1996], Chapter 20). In this case, in the same spirit as

the previous example, we letCi be the set of decision trees inC distance zero from a tree with

i leaf nodes, not contained in anyCj for j < i. For anyi, the disagreement coefficient for any

h ∈ Ci (with respect to(C̃i,D)) is a finite constant, and we can chooseC̃i to have finite VC

dimension, so each(Ci,D) is learnable at an exponential rate (by running Algorithm 0 with C̃i).

By Theorem 3.7,(C,D) is learnable at an exponential rate.
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Linear Separators

Theorem 3.9.LetC be the concept class of linear separators inn dimensions, and letD be the

uniform distribution over the surface of the unit sphere. The pair (C,D) is learnable at an

exponential rate.

Proof. There are multiple ways to achieve this. We describe here a simple proof that uses a de-

composition as follows. Letλ(h) be the probability mass of the minority class under hypothesis

h. Let C1 be the set containing only the separatorsh with λ(h) = 0, let C2 = {h ∈ C : λ(h) =

1/2}, and letC3 = C \ (C1 ∪ C2). As before, we can use a black box active learning algorithm

such as CAL to learn within the classC3. To prove that we indeed get the desired exponential

rate of active learning, we show that the disagreement coefficient of any separatorh ∈ C3 with

respect to(C3,D) is finite. The results concerning Algorithm 0 from Chapter 2 then immedi-

ately imply thatC3 is learnable at an exponential rate. SinceC1 trivially has label complexity

1, and(C2,D) is known to be learnable at an exponential rate [e.g., Balcan, Broder, and Zhang,

2007, Dasgupta, 2005, Dasgupta, Kalai, and Monteleoni, 2005, Hanneke, 2007b] combined with

Theorem 3.7, this would imply the result.

Below, we will restrict the discussion to hypotheses inC3, which will be implicit in notation

such asB(h, r), etc. First note that, to showθh <∞, it suffices to show that

lim
r→0

P(DIS(B(h, r)))

r
<∞, (3.1)

so we will focus on this.

For anyh, there existsrh > 0 s.t. ∀h′ ∈ B(h, r), P(h′(X) = +1) ≤ 1/2 ⇔ P(h(X) =

+1) ≤ 1/2, or in other words the minority class is the same among allh′ ∈ B(h, r). Now

consider anyh′ ∈ B(h, r) for 0 < r < min{rh, λ(h)/2}. ClearlyP(h(X) 6= h′(X)) ≥ |λ(h)−

λ(h′)|. Supposeh(x) = sign(w · x + b) andh′(x) = sign(w′ · x + b′) (where, without loss,

we assume‖w‖ = 1), andα(h, h′) ∈ [0, π] is the angle betweenw and w′. If α(h, h′) =

0 or if the minority regions ofh and h′ do not intersect, then clearlyP(h(X) 6= h′(X)) ≥
2α(h,h′)

π
min{λ(h), λ(h′)}. Otherwise, consider the classifiersh̄(x) = sign(w ·x+ b̄) andh̄′(x) =
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Figure 3.2: Projection of̄h andh̄′ into the plane defined byw andw′.

sign(w′ · x + b̄′), where b̄ and b̄′ are chosen s.t.P(h̄(X) = +1) = P(h̄′(X) = +1) and

λ(h̄) = min{λ(h), λ(h′)}. That is,h̄ andh̄′ are identical toh andh′ except that we adjust the

bias term of the one with larger minority class probability to reduce its minority class probability

to be equal to the other’s. Ifh 6= h̄, then most of the probability mass of{x : h(x) 6= h̄(x)} is

contained in the majority class region ofh′ (or vice versa ifh′ 6= h̄′), and in fact every point in

{x : h(x) 6= h̄(x)} is labeled bȳh according to the majority class label (and similarly forh′ and

h̄′). Therefore, we must haveP(h(X) 6= h′(X)) ≥ P(h̄(X) 6= h̄′(X)).

We also have thatP(h̄(X) 6= h̄′(X)) ≥ 2α(h,h′)
π

λ(h̄). To see this, consider the projection

onto the2-dimensional plane defined byw andw′, as in Figure 3.5.2. Because the two decision

boundaries must intersect inside the acute angle, the probability mass contained in each of the

two wedges (both withα(h, h′) angle) making up the projected region of disagreement betweenh̄

andh̄′ must be at least anα(h, h′)/π fraction of the total minority class probability for the respec-

tive classifier, implying the union of these two wedges has probability mass at least2α(h,h′)
π

λ(h̄).

Thus, we haveP(h(X) 6= h′(X)) ≥ max
{

|λ(h)− λ(h′)|, 2α(h,h′)
π

min{λ(h), λ(h′)}
}

. In par-

ticular,

B(h, r) ⊆
{

h′ : max

{

|λ(h)− λ(h′)|, 2α(h, h′)

π
min{λ(h), λ(h′)}

}

≤ r

}

.

The region of disagreement of this set is at most

DIS

({

h′ :
2α(h, h′)

π
(λ(h)− r) ≤ r ∧ |λ(h)− λ(h′)| ≤ r

})

⊆ DIS({h′ : w′ = w∧|λ(h′)−λ(h)| ≤ r})∪DIS({h′ : α(h, h′) ≤ πr/λ(h)∧|λ(h)−λ(h′)| = r}),
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where this last line follows from the following reasoning. Takeymaj to be the majority class of

h (arbitrary ifλ(h) = 1/2). For anyh′ with |λ(h)− λ(h′)| < r, theh′′ with α(h, h′′) = α(h, h′)

havingP(h(X) = ymaj)− P(h′′(X) = ymaj) = r disagrees withh on a set of points containing

{x : h′(x) 6= h(x) = ymaj}; likewise, the one havingP(h(X) = ymaj)−P(h′′(X) = ymaj) = −r

disagrees withh on a set of points containing{x : h′(x) 6= h(x) = −ymaj}. So any point in

disagreement betweenh and someh′ with |λ(h) − λ(h′)| < r andα(h, h′) ≤ πr/λ(h) is also

disagreed upon by someh′′ with |λ(h)− λ(h′′)| = r andα(h, h′′) ≤ πr/λ(h).

Some simple trigonometry shows thatDIS({h′ : α(h, h′) ≤ πr/λ(h)∧|λ(h)−λ(h′)| = r})

is contained in the set of points within distancesin(πr/λ(h)) ≤ πr/λ of the two hyperplanes

representingh1(x) = sign(w ·x+ b1) andh2(x) = sign(w ·x+ b2) defined by the property that

λ(h1)− λ(h) = λ(h)− λ(h2) = r, so that the total region of disagreement is contained within

{x : h1(x) 6= h2(x)} ∪ {x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}.

Clearly,P({x : h1(x) 6= h2(x)}) = 2r. Using previous results [Balcan et al., 2006, Hanneke,

2007b], we know thatP({x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}) ≤ 2π
√

nr/λ(h)

(since the probability mass contained within this distanceof a hyperplane is maximized when the

hyperplane passes through the origin). Thus, the probability of the entire region of disagreement

is at most(2 + 2π
√

n/λ(h))r, so that (3.1) holds, and therefore the disagreement coefficient is

finite.

3.5.3 Composition results

We can also extend the results from the previous subsection to other types of distributions and

concept classes in a variety of ways. Here we include a few results to this end.

Close distributions: If (C,D) is learnable at an exponential rate, then for any distributionD′

such that for all measurableA ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for someλ ∈ (0, 1],

(C,D′) is also learnable at an exponential rate. In particular, we can simply use the algorithm
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Figure 3.3:Illustration of the proof of Theorem 3.10. The dark gray regions representBD1(h1, 2r) and

BD2(h2, 2r). The functionh that gets returned is in the intersection of these. The lightgray regions

representBD1(h1, ǫ/3) and BD2(h2, ǫ/3). The target functionh∗ is in the intersection of these. We

therefore must haver ≤ ǫ/3, and by the triangle inequalityer(h) ≤ ǫ.

for (C,D), filter the examples fromD′ so that they appear like examples fromD, and then any

t large enough to find anǫλ-good classifier with respect toD is large enough to find anǫ-good

classifier with respect toD′.

Mixtures of distributions: Suppose there exist algorithmsA1 andA2 for learning a classC at

an exponential rate under distributionsD1 andD2 respectively. It turns out we can also learn

under anymixtureof D1 andD2 at an exponential rate, by usingA1 andA2 as black boxes.

In particular, the following theorem relates the label complexity under a mixture to the label

complexities under the mixing components.

Theorem 3.10.LetC be an arbitrary hypothesis class. Assume that the pairs(C,D1) and

(C,D2) have label complexitiesΛ1(ǫ, δ, h
∗) andΛ2(ǫ, δ, h

∗) respectively, whereD1 andD2 have

density functionsPrD1 andPrD2 respectively. Then for anyα ∈ [0, 1], the pair

(C, αD1 + (1− α)D2) has label complexity at most

2 ⌈max{Λ1(ǫ/3, δ/2, h∗), Λ2(ǫ/3, δ/2, h∗)}⌉.

Proof. If α = 0 or 1 then the theorem statement holds trivially. Assume insteadthatα ∈ (0, 1).

We describe an algorithm in terms ofα,D1, andD2, which achieves this label complexity bound.

Suppose algorithmsA1 andA2 achieve the stated label complexities underD1 andD2 re-

73



spectively. At a high level, the algorithm we define works by “filtering” the distribution over

input so that it appears to come from two streams, one distributed according toD1, and one dis-

tributed according toD2, and feeding these filtered streams toA1 andA2 respectively. To do so,

we define a random sequenceu1, u2, · · · of independent uniform random variables in[0, 1]. We

then runA1 on the sequence of examplesxi from the unlabeled data sequence satisfying

ui <
αPrD1(xi)

αPrD1(xi) + (1− α)PrD2(xi)
,

and runA2 on the remaining examples, allowing each to make an equal number of label requests.

Let h1 andh2 be the classifiers output byA1 andA2. Because of the filtering, the examples

thatA1 sees are distributed according toD1, so aftert/2 queries, the current error ofh1 with

respect toD1 is, with probability1 − δ/2, at mostinf{ǫ′ : Λ1(ǫ
′, δ/2, h∗) ≤ t/2}. A similar

argument applies to the error ofh2 with respect toD2.

Finally, let

r = inf{r : BD1(h1, r) ∩BD2(h2, r) 6= ∅} ,

where

BDi
(hi, r) = {h ∈ C : PrDi

(h(x) 6= hi(x)) ≤ r} .

Define the output of the algorithm to be anyh ∈ BD1(h1, 2r) ∩ BD2(h2, 2r). If a total of t ≥

2 ⌈max{Λ1(ǫ/3, δ/2, h∗), Λ2(ǫ/3, δ/2, h∗)}⌉ queries have been made (t/2 byA1 andt/2 byA2),

then by a union bound, with probability at least1 − δ, h∗ is in the intersection of theǫ/3-balls,

and soh is in the intersection of the2ǫ/3-balls. By the triangle inequality,h is within ǫ of h∗

under both distributions, and thus also under the mixture. (See Figure 3.3 for an illustration of

these ideas.)

3.5.4 Lower Bounds

Given the previous discussion, one might suspect thatany pair (C,D) is learnable at an expo-

nential rate, under some mild condition such as finite VC dimension. However, we show in the
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Figure 3.4: A learning problem where exponential rates are not achievable. The instance space

is an infinite-depth tree. The target labels nodes along a single infinite path as+1, and labels all

other nodes−1. For anyφ(ǫ) = o(1/ǫ), when the number of children and probability mass of

each node at each subsequent level are set in a certain way, label complexities ofo(φ(ǫ)) are not

achievable for all targets.

following that this isnot the case, even for some simple geometric concept classes when the

distribution is especially nasty.

Theorem 3.11.For any positive functionφ(ǫ) = o(1/ǫ), there exists a pair(C,D), with the VC

dimension ofC equal1, such that for any achievable label complexityΛ(ǫ, δ, h) for (C,D), for

anyδ ∈ (0, 1/4),

∃h ∈ C s.t.Λ(ǫ, δ, h) 6= o(φ(ǫ)).

In particular, takingφ(ǫ) = 1/
√

ǫ (for example), this implies that there exists a(C,D) that is

not learnable at an exponential rate (in the sense of Definition 3.3).

Proof. If we can prove this for any suchφ(ǫ) 6= O(1), then clearly this would imply the result

holds forφ(ǫ) = O(1) as well, so we will focus onφ(ǫ) 6= O(1) case. LetT be a fixed infinite

tree in which each node at depthi hasci children; ci is defined shortly below. We consider

learning the hypothesis classC where eachh ∈ C corresponds to a path down the tree starting

at the root; every node along this path is labeled1 while the remaining nodes are labeled−1.

Clearly for eachh ∈ C there is precisely one node on each level of the tree labeled1 by h (i.e.

one node at each depth).C has VC dimension 1 since knowing the identity of the node labeled1

on leveli is enough to determine the labels of all nodes on levels0, . . . , i perfectly. This learning

problem is depicted in Figure 3.4.
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Now we defineD, a “bad” distribution forC. Let{ℓi}∞i=1 be any sequence of positive numbers

s.t.
∑∞

i=1 ℓi = 1. ℓi will bound the total probability of all nodes on leveli according toD.

Assume all nodes on leveli have the same probability according toD, and call thispi. We define

the values ofpi andci recursively as follows. For eachi ≥ 1, we definepi as any positive number

s.t. pi⌈φ(pi)⌉
∏i−2

j=0 cj ≤ ℓi andφ(pi) ≥ 4, and defineci−1 = ⌈φ(pi)⌉. We are guaranteed that

such a value ofpi exists by the assumptions thatφ(ǫ) = o(1/ǫ), meaninglimǫ→0 ǫφ(ǫ) = 0, and

thatφ(ǫ) 6= O(1). Lettingp0 = 1−∑i≥1 pi

∏i−1
j=0 cj completes the definition ofD.

With this definition of the parameters above, since
∑

i pi ≤ 1, we know that for anyǫ0 > 0,

there exists someǫ < ǫ0 such that for some levelj, pj = ǫ and thuscj−1 ≥ φ(pj) = φ(ǫ).

We will use this fact to show that∝ φ(ǫ) labels are needed to learn with error less thanǫ for

these values ofǫ. To complete the proof, we must prove the existence of a “difficult” target

function, customized to challenge the particular learningalgorithm being used. To accomplish

this, we will use the probabilistic method to prove the existence of a point in each leveli such

that any target function labeling that point positive wouldhave a label complexity≥ φ(pi)/4.

The difficult target function simply strings these points together.

To begin, we definex0 = the root node. Then for eachi ≥ 1, recursively definexi as

follows. Suppose, for anyh, the setRh and the classifier̂hh are, respectively, the random variable

representing the set of examples the learning algorithm would request, and the classifier the

learning algorithm would output, whenh is the target and its label request budget is set tot =

⌊φ(pi)/2⌋. For any nodex, we will let Children(x) denote the set of children ofx, and Subtree(x)

denote the set ofx along with all descendants ofx. Additionally, lethx denote any classifier in
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C s.t.hx(x) = +1. Now note that

max
x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{PD(h(X) 6= ĥh(X)) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{PD(h(X) 6= ĥh(X)) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

P{∀h ∈ C : h(x) = +1, Subtree(x) ∩Rh = ∅ ∧ PD(h(X) 6= ĥh(X)) > pi}

= E





1

ci−1

∑

x∈Children(xi−1):Subtree(x)∩Rhx=∅

I

[

∀h ∈ C : h(x) = +1, PD

(

h(X) 6= ĥh(X)
)

> pi

]





≥ E



 min
x′∈Children(xi−1)

1

ci−1

∑

x∈Children(xi−1):Subtree(x)∩Rhx=∅

I [x′ 6= x]





≥ 1

ci−1
(ci−1 − t− 1) =

1

⌊φ(pi)⌋
(⌊φ(pi)⌋ − ⌊φ(pi)/2⌋ − 1) ≥ 1

⌊φ(pi)⌋
(⌊φ(pi)⌋/2− 1) ≥ 1/4.

The expectations above are over the unlabeled examples and any internal random bits used by the

algorithm. The above inequalities imply there exists somex ∈ Children(xi−1) such that every

h ∈ C that hash(x) = +1 hasΛ(pi, δ, h) ≥ ⌊φ(pi)/2⌋ ≥ φ(pi)/4; we will takexi to be this

value ofx. We now simply take the target functionh∗ to be the classifier that labelsxi positive for

all i, and labels every other point negative. By construction, wehave∀i, Λ(pi, δ, h
∗) ≥ φ(pi)/4,

and therefore

∀ǫ0 > 0, ∃ǫ < ǫ0 : Λ(ǫ, δ, h∗) ≥ φ(ǫ)/4,

so thatΛ(ǫ, δ, h∗) 6= o(φ(ǫ)).

Note that this implies that theo (1/ǫ) guarantee of Corollary 3.6 is in some sense the tightest

guarantee we can make at that level of generality, without using a more detailed description of

the structure of the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty distributions, even for a variety of

simple hypothesis classes: for example, linear separatorsin R2 or axis-aligned rectangles inR2.

We remark that this example can also be modified to show that wecannot expect intersections

of classifiers to preserve exponential rates. That is, the proof can be extended to show that there
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exist classesC1 andC2, such that both(C1,D) and(C2,D) are learnable at an exponential rate,

but (C, D) is not, whereC = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.

3.6 Discussion and Open Questions

The implication of our analysis is that in many interesting cases where it was previously believed

that active learning could not help, it turns out that activelearningdoes help asymptotically.

We have formalized this idea and illustrated it with a numberof examples and general theorems

throughout the chapter. This realization dramatically shifts our understanding of the usefulness

of active learning: while previously it was thought that active learning couldnot provably help

in any but a few contrived and unrealistic learning problems, in this alternative perspective we

now see that active learning essentiallyalwayshelps, and does so significantly in allbut a few

contrived and unrealistic problems.

The use of decompositions ofC in our analysis generates another interpretation of these

results. Specifically, Dasgupta [2005] posed the question of whether it would be useful to de-

velop active learning techniques for looking at unlabeled data and “placing bets” on certain

hypotheses. One might interpret this work as an answer to this question; that is, some of the

decompositions used in this chapter can be interpreted as reflecting a preference partial-ordering

of the hypotheses, similar to ideas explored in the passive learning literature [Balcan and Blum,

Shawe-Taylor et al., 1998, Vapnik, 1998]. However, the construction of a good decomposition

in active learning seems more subtle and quite different from previous work in the context of

supervised or semi-supervised learning.

It is interesting to examine the role of target- and distribution-dependent constants in this

analysis. As defined, both the verifiable and true label complexities may depend heavily on the

particular target function and distribution. Thus, in bothcases, we have interpreted these quan-

tities as fixed when studying the asymptotic growth of these label complexities asǫ approaches

0. It has been known for some time that, with only a few unusual exceptions, any target- and
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distribution-independent bound on the verifiable label complexity could typically be no better

than the label complexity of passive learning; in particular, this observation lead Dasgupta to for-

mulate his splitting index bounds as both target- and distribution-dependent [Dasgupta, 2005].

This fact also applies to bounds on the true label complexityas well. Indeed, the entire distinc-

tion between verifiable and true label complexities collapses if we remove the dependence on

these unobservable quantities.

One might wonder what the practical implications of the truelabel complexity of active learn-

ing might be since the theoretical improvements we provide are for an unverifiable complexity

measure and therefore they do not actually inform the user (or algorithm) of how many labels

to allow the algorithm to request. However, there might still be implications for the design of

practical algorithms. In some sense, this is the same issue faced in the analysis of universally

consistent learning rules in passive learning [Devroye et al., 1996]. There is typically no way to

verify how close to the Bayes error rate a classifier is (verifiable complexity is infinite), yet we

still want learning rules whose error rates provably converge to the Bayes error in the limit (true

complexity is a finite function of epsilon and the distribution of (X, Y )), and we often find such

methods quite effective in practice (e.g.,k-nearest neighbor methods). So this is one instance

where an unverifiable label complexity seems to be a useful guide in algorithm design. In active

learning with finite-complexity hypothesis classes we are more fortunate, since the verifiable

complexity is finite – and we certainly want algorithms with small verifiable label complexity;

however, an analysis of unverifiable complexities still seems relevant, particularly when the veri-

fiable complexity is large. In general, it seems desirable todesign algorithms for any given active

learning problem that achieve both a verifiable label complexity that is near optimal and a true

label complexity that is asymptotically better than passive learning.

Open Questions: There are many interesting open problems within this framework. Perhaps

the most interesting of these would be formulating general necessary and sufficient conditions

for learnability at an exponential rate, and determining for what types of algorithms Theorem 3.5
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can be extended to the agnostic case or to infinite capacity hypothesis classes. We will discuss

some progress on this latter problem in the next chapter.

3.7 The Verifiable Label Complexity of the Empty Interval

Let h− denote the all-negative interval. In this section, we lowerbound the verifiable labels

complexities achievable for this classifier, with respect to the hypothesis classC of interval clas-

sifiers under a uniform distribution on[0, 1]. Specifically, suppose there exists an algorithmA

that achieves a verifiable label complexityΛ(ǫ, δ, h) such that for someǫ ∈ (0, 1/4) and some

δ ∈ (0, 1/4),

Λ(ǫ, δ, h−) <

⌊

1

24ǫ

⌋

.

We prove that this would imply the existence of some intervalh′ for which the value ofΛ(ǫ, δ, h′)

is not validunder Definition 3.2. We proceed by the probabilistic method.

Consider the subset of intervals

Hǫ =

{

[3iǫ, 3(i + 1)ǫ] : i ∈
{

0, 1, . . . ,

⌊

1− 3ǫ

3ǫ

⌋}}

.

Let s = ⌈Λ(ǫ, δ, h−)⌉. For anyf ∈ C, let Rf , ĥf , and ǫ̂f denote the random variables repre-

senting, respectively, the set of examples(x, y) for whichA(s, δ) requests labels (including their

y = f(x) labels), the classifierA(s, δ) outputs, and the confidence boundA(s, δ) outputs, when

f is the target function. LetI be an indicator function that is 1 if its argument is true and 0

otherwise. Then
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max
f∈Hǫ

P

(

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

PX

(

ĥf(X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

(Rf = Rh−) ∧
(

PX

(

ĥf(X) 6= f(X)
)

> ǫ̂f

))

= E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

]





≥ E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[(

PX

(

ĥf (X) = +1
)

≤ ǫ
)

∧ (ǫ̂f ≤ ǫ)
]



 (3.2)

= E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[(

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ
)

∧
(

ǫ̂h− ≤ ǫ
)

]



 (3.3)

≥ E

[( |Hǫ| − s

|Hǫ|

)

I

[

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ̂h− ≤ ǫ
]

]

(3.4)

=

( |Hǫ| − s

|Hǫ|

)

P

(

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ̂h− ≤ ǫ
)

≥
( |Hǫ| − s

|Hǫ|

)

(1− δ) > δ.

All expectations are over the draw of the unlabeled examplesand any additional random bits

used by the algorithm. Line 3.2 follows from the fact that allintervalsf ∈ Hǫ are of width

3ǫ, so if ĥf labels less than a fractionǫ of the points as positive, it must make an error of at

least2ǫ with respect tof , which is more than̂ǫf if ǫ̂f ≤ ǫ. Note that, for any fixed sequence of

unlabeled examples and additional random bits used by the algorithm, the setsRf are completely

determined, and anyf and f ′ for which Rf = Rf ′ must havêhf = ĥf ′ and ǫ̂f = ǫ̂f ′ . In

particular, anyf for which Rf = Rh− will yield identical outputs from the algorithm, which

implies line 3.3. Furthermore, the only classifiersf ∈ Hǫ for which Rf 6= Rh− are those for

which some(x,−1) ∈ Rh− hasf(x) = +1 (i.e.,x is in thef interval). But since there is zero

probability that any unlabeled example is in more than one ofthe intervals inHǫ, with probability

1 there are at mosts intervalsf ∈ Hǫ with Rf 6= Rh− , which explains line 3.4.

This proves the existence of some target functionh∗ ∈ C such thatP(er(hs,δ) > ǫ̂s,δ) > δ,
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which contradicts the conditions of Definition 3.2.

3.8 Proof of Theorem 3.7

First note that the total number of label requests used by theaggregation procedure in Algorithm

4is at mostt. Initially running the algorithmsA1, . . . , Ak requires
∑k

i=1⌊t/(4i2)⌋ ≤ t/2 labels,

and the second phase of the algorithm requiresk2⌈72 ln(4k/δ)⌉ labels, which by definition ofk

is also less thant/2. Thus this procedure is a valid learning algorithm.

Now suppose that the true targeth∗ is a member ofCi. We must show that for any inputt

such that

t ≥ max
{

4i2 ⌈Λi(ǫ/2, δ/2, h∗)⌉ , 2i2 ⌈72 ln(4i/δ)⌉
}

,

the aggregation procedure outputs a hypothesisĥt such thater(ĥt) ≤ ǫ with probability at least

1− δ.

First notice that sincet ≥ 2i2 ⌈72 ln(4i/δ)⌉, k ≥ i. Furthermore, sincet/(4i2) ≥

⌈Λi(ǫ/2, δ/2, h∗)⌉, with probability at least1−δ/2, runningAi(⌊t/(4i2)⌋, δ/2) returns a function

hi with er(hi) ≤ ǫ/2.

Let j∗ = argminj er(hj). Sinceer(hj∗) ≤ er(hℓ) for anyℓ, we would expecthj∗ to make no

more errors thathℓ on points where the two functions disagree. It then follows from Hoeffding’s

inequality, with probability at least1− δ/4, for all ℓ,

mj∗ℓ ≤
7

12
⌈72 ln (4k/δ)⌉ ,

and thus

min
j

max
ℓ

mjℓ ≤
7

12
⌈72 ln(4k/δ)⌉ .

Similarly, by Hoeffding’s inequality and a union bound, with probability at least1− δ/4, for any

ℓ such that

mℓj∗ ≤
7

12
⌈72 ln(4k/δ)⌉ ,
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the probability thathℓ mislabels a pointx given thathℓ(x) 6= hj∗(x) is less than2/3, and thus

er(hℓ) ≤ 2er(hj∗). By a union bound over these three events, we find that, as desired, with

probability at least1− δ,

er(ĥt) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ǫ .

3.9 Proof of Theorem 3.8

Assume that(C,D) is learnable at an exponential rate. This means that there exists an algorithm

A such that for any targeth∗ in C, there exist constantsγh∗ andkh∗ such that for anyǫ andδ, for

anyt ≥ γh∗(log(1/(ǫδ)))kh∗ , with probability at least1− δ, aftert label requests,A(t, δ) outputs

anǫ-good classifier.

For eachi, let

Ci = {h ∈ C : γh ≤ i, kh ≤ i} .

Define an algorithmAi that achieves the required polylog verifiable label complexity on (Ci,D)

as follows. First, run the algorithmA to obtain a functionhA. Then, output the classifier inCi

that isclosest tohA, i.e., the classifier that minimizes the probability of disagreement withhA. If

t ≥ i(log (2/(ǫδ)))i, then aftert label requests, with probability at least1− δ, A(t, δ) outputs an

ǫ/2-good classifier, so by the triangle inequality, with probability at least1− δ, Ai(t, δ) outputs

anǫ-good classifier.

It can be guaranteed that with probability at least1 − δ, the function output byAi has error

no more than̂ǫt = (2/δ) exp
{

−(t/i)1/i
}

, which is no more thanǫ, implying that the expression

above is averifiablelabel complexity.

Combining this with Theorem 3.7 yields the desired result.
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3.10 Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable complexity with respect to(C,D) typ-

ically cannot yield a good decomposition even for very simple problems, such as unions of

intervals. The reason is that the set of classifiers with highverifiable label complexity may itself

have high verifiable complexity.

Although we have not yet found a general method that can provably always find a good

decomposition when one exists (other than the trivial method in the proof of Theorem 3.8), we

find that a heuristic recursive technique is frequently effective. To begin, defineC1 = C. Then

for i > 1, recursively defineCi as the set of allh ∈ Ci−1 such thatθh = ∞ with respect to

(Ci−1,D). (Hereθh is the disagreement coefficient ofh.) Suppose that for someN , CN+1 = ∅.

Then for the decompositionC1, C2, . . . , CN , everyh ∈ C hasθh <∞with respect to at least one

of the sets in which it is contained, which implies that the verifiable label complexity ofh with

respect to that set isO(polylog(1/ǫδ)), and the aggregation algorithm can be used to achieve

polylog label complexity.

We could alternatively perform a similar decomposition using a suitable definition of splitting

index [Dasgupta, 2005], or more generally using

lim sup
ǫ→0

ΛCi−1
(ǫ, δ, h)

(

log
(

1
ǫδ

))k

for some fixed constantk > 0.

This procedure does not always generate a good decomposition. However, ifN <∞ exists,

then it creates a decomposition for which the aggregation algorithm, combined with an appropri-

ate sequence of algorithms{Ai}, could achieve exponential rates. In particular, this is the case

for all of the (C,D) described in Section 3.5. In fact, even ifN = ∞, as long as everyh ∈ C

does end up insomesetCi for finite i, this decomposition would still provide exponential rates.
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3.11 Proof of Theorem 3.5

We now finally prove Theorem 3.5. This section is mostly self-contained, though we do make

use of Theorem 3.7 from Section 3.4 in the final step of the proof.

The proof proceeds according to the following outline. We begin in Lemma 3.12 by de-

scribing special conditions under which a CAL-like algorithm has the property that the more

unlabeled examples it considers, the smaller the fraction of them it asks to be labeled. Since

CAL is able to identify the target’s true label on any exampleit considers (either the label of

the example is requested or the example is not in the region ofdisagreement and therefore the

label is already known), we end up with a set of labeled examples growing strictly faster than the

number of label requests used to obtain it. This set of labeled examples can be used as a training

set in any passive learning algorithm. However, the specialconditions under which this happens

are rather limiting. In Lemma 3.13, we exploit a subtle relation between overlapping boundary

regions and shatterable sets to show that we can decompose any finite VC dimension class into a

countable number of subsets satisfying these special conditions. This, combined with the aggre-

gation algorithm, and a simple procedure that boosts the confidence level, extends Lemma 3.12

to the general conditions of Theorem 3.5.

Before jumping into Lemma 3.12, it is useful to define some additional notation. For any

V ⊆ C andh ∈ C, define theboundaryof h with respect toD andV , denoted∂V h, as

∂V h = lim
r→0

DIS(BV (h, r)).

Lemma 3.12.Suppose(C,D) is such thatC has finite VC dimensiond, and

∀h ∈ C, P(∂
C̃
h) = 0. Then for any passive learning label complexityΛp(ǫ, δ, h) for (C,D)

which is nondecreasing asǫ→ 0, there exists an active learning algorithm achieving a label

complexityΛa(ǫ, δ, h) such that, for anyδ > 0 and any target functionh∗ ∈ C with

Λp(ǫ, δ, h
∗) = ω(1) and∀ǫ > 0,Λp(ǫ, δ, h

∗) <∞,

Λa(ǫ, 2δ, h
∗) = o(Λp(ǫ, δ, h

∗)) .
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Proof. Recall thatt is the “budget” of the active learning algorithm, and our goal in this proof is

to define an active learning algorithmAa and a functionΛa(ǫ, δ, h
∗) such that, ift ≥ Λa(ǫ, δ, h

∗)

andh∗ ∈ C is the target function, thenAa(t, δ) will, with probability 1 − δ, output anǫ-good

classifier; furthermore, we require thatΛa(ǫ, 2δ, h
∗) = o(Λp(ǫ, δ, h

∗)) under the conditions onh∗

in the lemma statement.

To construct this algorithm, we perform the learning in two phases. The first is a passive

phase, where we focus on reducing a version space, to shrink the region of disagreement; the

second is a phase where we construct a labeled training set, which is much larger than the number

of label requests used to construct it since all classifiers in the version space agree on many of

the examples’ labels.

To begin the first phase, we simply request the labels ofx1, x2, . . . , x⌊t/2⌋, and let

V = {h ∈ C̃ : ∀i ≤ ⌊t/2⌋, h(xi) = h∗(xi)} .

In other words,V is the set of all hypotheses iñC that correctly label the first⌊t/2⌋ examples.

By standard consistency results [Blumer et al., 1989, Devroye et al., 1996, Vapnik, 1982], there

is a universal constantc > 0 such that, with probability at least1− δ/2,

sup
h∈V

er(h) ≤ c

(

d ln t + ln 1
δ

t

)

.

This implies that

V ⊆ B
C̃

(

h∗, c

(

d ln t + ln 1
δ

t

))

,

and thusP(DIS(V )) ≤ ∆t where

∆t = P

(

DIS

(

B
C̃

(

h∗, c

(

d ln t + ln 1
δ

t

))))

.

Clearly,∆t goes to0 ast grows, by the assumption onP(∂
C̃
h∗).

Next, in the second phase of the algorithm, we will actively construct a set of labeled exam-

ples to use with the passive learning algorithm. If ever we have P(DIS(V )) = 0 for some finite

t, then clearly we can return anyh ∈ V , so this case is easy.
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Otherwise, letnt = ⌊t/(24P(DIS(V )) ln(4/δ))⌋, and supposet ≥ 2. By a Chernoff bound,

with probability at least1− δ/2, in the sequence of examplesx⌊t/2⌋+1, x⌊t/2⌋+2, . . . , x⌊t/2⌋+nt , at

mostt/2 of the examples are inDIS(V ). If this is not the case, we fail and output an arbitraryh;

otherwise, we request the labels of every one of thesent examples that are inDIS(V ).

Now construct a sequenceL = {(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
nt

, y′
nt

)} of labeled examples such

that x′
i = x⌊t/2⌋+i, and y′

i is either the label agreed upon by all the elements ofV , or it is

theh∗(x⌊t/2⌋+i) label value we explicitly requested. Note that becauseinfh∈V er(h) = 0 with

probability 1, we also have that with probability1 everyy′
i = h∗(x′

i). We may therefore use

thesent examples as iid training examples for the passive learning algorithm.

SupposeA is the passive learning algorithm that guaranteesΛp(ǫ, δ, h) passive label complex-

ities. Then letht be the classifier returned byA(L, δ). This is the classifier the active learning

algorithm outputs.

Note that ifnt ≥ Λp(ǫ, δ, h
∗), then with probability at least1−δ over the draw ofL, er(ht) ≤

ǫ. Define

Λa(ǫ, 2δ, h
∗) = 1 + inf {s : s ≥ 144 ln(4/δ)Λp(ǫ, δ, h

∗)∆s} .

This is well-defined whenΛp(ǫ, δ, h
∗) <∞ because∆s is nonincreasing ins, so some value ofs

will satisfy the inequality. Note that ift ≥ Λa(ǫ, 2δ, h
∗), then (with probability at least1− δ/2)

Λp(ǫ, δ, h
∗) ≤ t

144 ln(4/δ)∆t

≤ nt .

So, by a union bound over the possible failure events listed above (δ/2 for P(DIS(V )) > ∆t, δ/2

for more thant/2 examples ofL in DIS(V ), andδ for er(ht) > ǫ when the previous failures do

not occur), ift ≥ Λa(ǫ, 2δ, h
∗), then with probability at least1− 2δ, er(ht) ≤ ǫ. SoΛa(ǫ, δ, h

∗)

is a valid label complexity function, achieved by the described algorithm. Furthermore,

Λa(ǫ, 2δ, h
∗) ≤ 1 + 144 ln(4/δ)Λp(ǫ, δ, h

∗)∆Λa(ǫ,2δ,h∗)−2.

If Λa(ǫ, 2δ, h
∗) = O(1), then sinceΛp(ǫ, δ, h

∗) = ω(1), the result is established. Otherwise, since

Λa(ǫ, δ, h
∗) is nondecreasing asǫ → 0, Λa(ǫ, 2δ, h

∗) = ω(1), so we know that∆Λa(ǫ,2δ,h∗)−2 =
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o(1). Thus,Λa(ǫ, 2δ, h
∗) = o (Λp(ǫ, δ, h

∗)).

As an interesting aside, it is also true (by essentially the same argument) that under the

conditions of Lemma 3.12, theverifiable label complexity of active learning is strictly smaller

than theverifiable label complexity of passive learning in this same sense. In particular, this

implies a verifiable label complexity that iso (1/ǫ) under these conditions. For instance, with

some effort one can show that these conditions are satisfied when the VC dimension ofC is 1,

or when the support ofD is at most countably infinite. However, for more complex learning

problems, this condition will typically not be satisfied, and as such we require some additional

work in order to use this lemma toward a proof of the general result in Theorem 3.5. Toward this

end, we again turn to the idea of a decomposition ofC, this time decomposing it into subsets

satisfying the condition in Lemma 3.12.

Lemma 3.13.For any(C,D) whereC has finite VC dimensiond, there exists a countably

infinite sequenceC1, C2, . . . such thatC = ∪∞i=1Ci and∀i, ∀h ∈ Ci, P(∂
C̃i

h) = 0.

Proof. The case ofd = 0 is clear, so assumed > 0. A decomposition procedure is given below.

We will show that, if we letH = Decompose(C), then the maximum recursion depth is at most

d (counting the initial call as depth0). Note that if this is true, then the lemma is proved, since

it implies thatH can be uniquely indexed by ad-tuple of integers, of which there are at most

countably many.

Algorithm 2 Decompose(H)

LetH∞ = {h ∈ H : P(∂H̃h) = 0}

if H∞ = H then

Return{H}

else

For i ∈ {1, 2, . . .}, letHi =
{

h∈H : P(∂H̃h)∈((1 + 2−(d+3))−i, (1 + 2−(d+3))1−i]
}

Return
⋃

i∈{1,2,...}

Decompose(Hi) ∪ {H∞}

end if
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For the sake of contradiction, suppose that the maximum recursion depth of Decompose(C)

is more thand (or is infinite). Thus, based on the firstd+1 recursive calls in one of those deepest

paths in the recursion tree, there is a sequence of sets

C = H(0) ⊇ H(1) ⊇ H(2) ⊇ · · ·H(d+1) 6= ∅

and a corresponding sequence of finite positive integersi1, i2, . . . , id+1 such that for eachj ∈

{1, 2, . . . , d + 1}, everyh ∈ H(j) has

P(∂H̃(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij
]

.

Take anyhd+1 ∈ H(d+1). There must exist somer > 0 such that∀j ∈ {1, 2, . . . , d + 1},

P(DIS(BH̃(j−1)(hd+1, r))) ∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

. (3.5)

In particular, by (3.5), eachh ∈ BH̃(j)(hd+1, r/2) has

P(∂H̃(j−1)h) > (1 + 2−(d+3))−ij ≥ (1 + 2−(d+2))−1P(DIS(BH̃(j−1)(hd+1, r))),

though by definition of∂H̃(j−1)h and the triangle inequality,

P(∂H̃(j−1)h \DIS(BH̃(j−1)(hd+1, r))) = 0.

Recall that in general, for setsQ andR1, R2, . . . , Rk, if P(Ri \Q) = 0 for all i, thenP(
⋂

i Ri) ≥

P(Q)−∑k
i=1(P(Q)−P(Ri)). Thus, for anyj, any set of≤ 2d+1 classifiersT ⊂ BH̃(j)(hd+1, r/2)

must have

P(∩h∈T ∂H̃(j−1)h) ≥ (1− 2d+1(1− (1 + 2−(d+2))−1))P(DIS(BH̃(j−1)(hd+1, r))) > 0.

That is, any set of2d+1 classifiers inH̃(j) within distancer/2 of hd+1 will have boundaries with

respect toH(j−1) which have a nonzero probability overlap. The remainder of the proof will

hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of sized + 1. Consider constructing a binary

tree with2d+1 leaves as follows. The root node containshd+1 (call this leveld + 1). Let hd ∈
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BH̃(d)(hd+1, r/4) be some classifier withP(hd(X) 6= hd+1(X)) > 0. Let the left child of the root

behd+1 and the right child behd (call this leveld). DefineAd = {x : hd(x) 6= hd+1(x)}, and

let ∆d = 2−(d+2)P(Ad). Now for eachℓ ∈ {d − 1, d − 2, . . . , 0} in decreasing order, we define

theℓ level of the tree as follows. LetTℓ+1 denote the nodes at theℓ + 1 level in the tree, and let

A′
ℓ =

⋂

h∈Tℓ+1
∂H̃(ℓ)h. We iterate over the elements ofTℓ+1 in left-to-right order, and for each one

h, we findh′ ∈ BH̃(ℓ)(h, ∆ℓ+1) with

PD(h(x) 6= h′(x) ∧ x ∈ A′
ℓ) > 0 .

We then define the left child ofh to beh and the right child to beh′, and we update

A′
ℓ ← A′

ℓ ∩ {x : h(x) 6= h′(x)} .

After iterating through all the elements ofTℓ+1 in this manner, defineAℓ to be the final value of

A′
ℓ and∆ℓ = 2−(d+2)P(Aℓ). The key is that, because everyh in the tree is withinr/2 of hd+1, the

setA′
ℓ always has nonzero measure, and is contained in∂H̃(ℓ)h for anyh ∈ Tℓ+1, so there always

exists anh′ arbitrarily close toh with PD(h(x) 6= h′(x) ∧ x ∈ A′
ℓ) > 0.

Note that forℓ ∈ {0, 1, 2, . . . , d}, every node in the left subtree of anyh at levelℓ + 1 is

strictly within distance2∆ℓ of h, and every node in the right subtree of anyh at levelℓ + 1 is

strictly within distance2∆ℓ of the right child ofh. Thus,

P(∃h′ ∈ Tℓ, h
′′ ∈ Subtree(h′) : h′(x) 6= h′′(x)) < 2d+12∆ℓ.

Since

2d+12∆ℓ = P(Aℓ) = P(x ∈
⋂

h′∈Tℓ+1

∂H̃(ℓ)h′ and∀ siblingsh1, h2 ∈ Tℓ, h1(x) 6= h2(x)),

there must be some set

A∗
ℓ = {x ∈

⋂

h′∈Tℓ+1

∂H̃(ℓ)h′ s.t.∀siblingsh1, h2 ∈ Tℓ, h1(x) 6=h2(x)

and∀h ∈ Tℓ, h
′ ∈ Subtree(h), h(x)=h′(x)} ⊆ Aℓ
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with P(A∗
ℓ) > 0. That is, for everyh at levelℓ+ 1, every node in its left subtree agrees withh on

everyx ∈ A∗
ℓ and every node in its right subtree disagrees withh on everyx ∈ A∗

ℓ . Therefore,

taking any{x0, x1, x2, . . . , xd} such that eachxℓ ∈ A∗
ℓ creates a shatterable set (shattered by the

set of leaf nodes in the tree). This contradicts VC dimensiond, so we must have the desired

claim that the maximum recursion depth is at mostd.

Before completing the proof of Theorem 3.5, we have two additional minor concerns to

address. The first is that the confidence level in Lemma 3.12 isslightly smaller than needed for

the theorem. The second is that Lemma 3.12 only applies whenΛp(ǫ, δ, h
∗) < ∞ for all ǫ > 0.

We can address both of these concerns with the following lemma.

Lemma 3.14.Suppose(C,D) is such thatC has finite VC dimensiond, and suppose

Λ′
a(ǫ, δ, h

∗) is a label complexity for(C,D). Then there is a label complexityΛa(ǫ, δ, h
∗) for

(C,D) s.t. for anyδ ∈ (0, 1/4) andǫ ∈ (0, 1/2),

Λa(ǫ, δ, h
∗) ≤ (k + 2) max















min
{

Λ′
a(ǫ/2, 4δ, h∗), 16d log(26/ǫ)+8 log(4/δ)

ǫ

}

(k + 1)272 log(4(k + 1)2/δ)

,

wherek = ⌈log(δ/2)/ log(4δ)⌉.

Proof. SupposeA′
a is the algorithm achievingΛ′

a(ǫ, δ, h
∗). Then we can define a new algorithm

Aa as follows. Supposet is the budget of label requests allowed ofAa andδ is its confidence

argument. We partition the indices of the unlabeled sequence intok + 2 infinite subsequences.

Fori ∈ {1, 2, . . . , k}, lethi = A′
a(t/(k+2), 4δ), each time runningA′

a on a different one of these

subsequence, rather than on the full sequence. From one of the remaining two subsequences, we

request the labels of the firstt/(k+2) unlabeled examples and lethk+1 denote any classifier inC

consistent with these labels. From the remaining subsequence, for eachi, j ∈ {1, 2, . . . , k+1} s.t.

P(hi(X) 6= hj(X)) > 0, we find the first⌊t/((k + 2)(k + 1)k)⌋ examplesx s.t. hi(x) 6= hj(x),

request their labels and letmij denote the number of mistakes made byhi on these labels (if

P(hi(X) 6= hj(X)) = 0, we letmij = 0). Now take as the return value ofAa the classifierhî
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wherêi = arg mini maxj mij .

Supposet ≥ Λa(ǫ, δ, h
∗). First note that, by a Hoeffding bound argument (similar to the

proof of Theorem 3.7),t is large enough to guarantee with probability≥ 1− δ/2 thater(hî) ≤

2 mini er(hi). So all that remains is to show that, with probability≥ 1 − δ/2, at least one of

thesehi haser(hi) ≤ ǫ/2.

If Λ′
a(ǫ/2, 4δ, h∗) > 16d log(26/ǫ)+8 log(4/δ)

ǫ
, then the classic results for consistent classifiers

(e.g., [Blumer et al., 1989, Devroye et al., 1996, Vapnik, 1982]) guarantee that, with probability

≥ 1 − δ/2, er(hk+1) ≤ ǫ/2. Otherwise, we havet ≥ (k + 2)Λ′
a(ǫ/2, 4δ, h∗). In this case, each

of h1, . . . , hk has an independent≥ 1− 4δ probability of havinger(hi) ≤ ǫ/2. The probability

at least one of them achieves this is therefore at least1− (4δ)k ≥ 1− δ/2.

We are now ready to combine these lemmas to prove Theorem 3.5.

Theorem 3.5.Theorem 3.5 now follows by a simple combination of Lemmas 3.12 and 3.13,

along with Theorem 3.7 and Lemma 3.14. That is, the passive learning algorithm achieving

passive learning label complexityΛp(ǫ, δ, h) on (C,D) also achieves passive label complexity

Λ̄p(ǫ, δ, h) = minǫ′≤ǫ⌈Λp(ǫ
′, δ, h)⌉ on any(Ci,D), whereC1, C2, . . . is the decomposition from

Lemma 3.13. So Lemma 3.12 guarantees the existence of activelearning algorithmsA1, A2, . . .

such thatAi achieves a label complexityΛi(ǫ, 2δ, h) = o(Λ̄p(ǫ, δ, h)) on (Ci,D) for all δ > 0

andh ∈ Ci s.t. Λ̄p(ǫ, δ, h) is finite andω(1). Then Theorem 3.7 tells us that this implies the exis-

tence of an active learning algorithm based on theseAi combined with Algorithm 4 , achieving

label complexityΛ′
a(ǫ, 4δ, h) = o(Λ̄p(ǫ/2, δ, h)) on (C,D), for anyδ > 0 andh s.t. Λ̄p(ǫ/2, δ, h)

is always finite and isω(1). Lemma 3.14 then implies the existence of an algorithm achiev-

ing label complexityΛa(ǫ, δ, h) ∈ O(min{Λa(ǫ/2, 4δ, h), log(1/ǫ)/ǫ}) ⊆ o(Λ̄p(ǫ/4, δ, h)) ⊆

o(Λp(ǫ/4, δ, h)) for all δ ∈ (0, 1/4) and allh ∈ C.

Note there is nothing special about4 in Theorem 3.5. Using a similar argument, it can be made

arbitrarily close to1.
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Chapter 4

Activized Learning: Transforming Passive

to Active With Improved Label Complexity

In this chapter, we prove that, in the realizable case, virtually any passive learning algorithm can

be transformed into an active learning algorithm with asymptotically strictly superior label com-

plexity, in many cases without significant loss in computational efficiency. We further explore

the problem of learning with label noise, and find that even under arbitrary noise distributions,

we can still guarantee strict improvements over the known results for passive learning. These are

the most general results proven to date regarding the advantages of active learning over passive

learning.

4.1 Definitions and Notation

As in previous chapters, all of our asymptotics notation in this chapter will be interpretted as

ǫ ց 0, when stated for a function ofǫ, the desired excess error, or asn → ∞ when stated for

a function ofn, the allowed number of label requests. In particular, recall that for two functions

φ1 andφ2, we sayφ1(ǫ) = o(φ2(ǫ)) iff lim
ǫց0

φ1(ǫ)
φ2(ǫ)

= 0. Throughout the chapter, theo notation, as

well as “O,” “ Ω,” “ ω,” “≪,” and “≫,” where used, should be interpreted purely in terms of the
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asymptotic dependence onǫ or n, with all other quantities held constant, includingDXY , δ, and

C, where appropriate.

Definition 4.1. Define the set of functions polynomial in the logarithm of1/ǫ as follows.

Polylog(1/ǫ) = {φ : [0, 1]→ [0,∞]|∃k ∈ [0,∞) s.t.φ(ǫ) = O(logk(1/ǫ))}.

Definition 4.2. We say an active meta-algorithmAa activizesa passive algorithmAp for C

underD if, for any label complexitȳΛp achieved byAp, Aa(Ap, ·) achieves label complexitȳΛa

such that for allD ∈ D,

Λ̄p(ǫ + ν(C,D),D) ∈ Polylog(1/ǫ)⇒ Λ̄a(ǫ + ν(C,D),D) ∈ Polylog(1/ǫ), and if

Λ̄p(ǫ + ν(C,D),D)≪∞ andΛ̄p(ǫ + ν(C,D),D) /∈ Polylog(1/ǫ), then there exists a finite

constantc such that

Λ̄a(cǫ + ν(C,D),D) = o(Λ̄p(ǫ + ν(C,D),D)).

Note that, in keeping with the reductions spirit, we only require the meta-algorithm to suc-

cessfully improve over the passive algorithm under conditions for which the passive algorithm

is itself a reasonable learning algorithm (Λ̄p ≪∞). Given a meta-algorithm satisfying this con-

dition, it is a trivial matter to strengthen it to successfully improve over the passive algorithm

even when the passive algorithm is not itself a reasonable method, simply by replacing the pas-

sive algorithm with an aggregate of the passive algorithm and some reasonable general-purpose

method, such as empiricial error minimization. For simplicity, we do not discuss this matter

further.

We will generally refer to any meta-algorithmAa that activizeseverypassive algorithmAp

for C underD as ageneral activizerfor C underD. As we will see, such general activizers do

exist underRealizable(C), under mild conditions onC. However, we will also see that this is

typically not true for the noisy settings.
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4.2 A Basic Activizer

In the following, we adopt the convention that any set of classifiersV shatters{} iff V 6= {} (and

otherwise, shattering is defined as in [Vapnik, 1998], as usual). Furthermore, for convenience,

we will defineX 0 = {{}}.

Let us begin by motivating the approach we will take below. Similarly to Chapter 3, define the

boundaryas∂CDXY = lim
rց0

DIS(C(r)). If P(∂CDXY ) = 0, then methods based on sampling in

the region of disagreement and inferring the labels of examples not in the region of disagreement

should be effective for activizing (in the realizable case). On the other hand, ifP(∂CDXY ) > 0,

then such methods will fail to focus the sampling region beyond a constant fraction ofX , so

alternative methods are needed. To cope with such situations, we might exploit the fact that the

region of disagreement of the set of classifiers with relatively small empirical error rates on a

labeled sample (call this set̂C(τ)) converges to∂CDXY (up to measure-zero differences). So,

for a large enough labeled sample, a random pointx ∈ DIS(Ĉ(τ)) will probably be in the

boundary region. We can exploit this fact by usingx to split Ĉ(τ) into two subsets:V+ =

{h ∈ Ĉ(τ) : h(x) = +1} and V− = {h ∈ Ĉ(τ) : h(x) = −1}. Now, if x ∈ ∂CDXY ,

then inf
h∈V+

er(h) = inf
h∈V−

er(h) = ν(C,DXY ). So, for almost every pointx′ ∈ X \ DIS(V+),

we can infer a label for this point, which will agree with someclassifier whose error rate is

arbitrarily close toν(C,DXY ), and similarly forV−. In particular, in the realizable case, this

inferred label is the target function’s label, and in the benign noise case, it is the Bayes optimal

classifier’s label (whenη(x′) 6= 1/2). We can therefore infer the label of points not in the region

DIS(V+) ∩DIS(V−), thus effectively reducing the region we must request labels in. Similarly,

this region converges to a region∂V+DXY ∩ ∂V−DXY . If this region has zero probability, then

sampling fromDIS(V+) ∩ DIS(V−) effectively focuses the sampling distribution, as needed.

Otherwise, we can repeat this argument; for large enough sample sizes, a random point from

DIS(V+) ∩DIS(V−) will likely be in ∂V+DXY ∩ ∂V−DXY , and therefore splitŝC(τ) into four

sets withν(C,DXY ) optimal error rates, and we can further focus the sampling region in this
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way. We can repeat this process as needed until we get a partition of Ĉ(τ) with a shrinking

intersection of regions of disagreement. Note that this argument can be written more concisely

in terms of shattering. That is, a point inDIS(Ĉ(τ)) is simply a point that̂C(τ) can shatter.

Similarly, a pointx′ ∈ DIS(V+) ∩DIS(V−) is simply a point s.t.̂C(τ) shatters{x, x′}, etc.

The above simple argument leads to a natural algorithm, which effectively improves label

complexity for confidence-bounded error in the realizable case. However, to achieve improve-

ments in the label complexity for expected error, it is not sufficient to merely have the probability

of a random point inDIS(Ĉ(τ)) being in the boundary converging to1, as this could happen at

a slow rate. To resolve this, we can replace the single samplex with multiple samples, and then

take a majority vote over whether to infer the label, and which label to infer if we do.

The following meta-algorithm, based on these observations, is central to the results of this

chapter. It depends on several parameters, and two types of estimators:∆̂(k)(·, ·) andΓ̂(k)(·, ·, ·);

one possible definition for these is given immediately afterthe meta-algorithm, along with a

discussion of the roles of these various parameters and estimators.

Meta-Algorithm 5 :Activizer(Ap, n)
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. Request the first⌊n/3⌋ labels and letQ denote these⌊n/3⌋ labeled examples
1. LetV = {h ∈ C : erQ(h)−min

h′∈C

erQ(h′) ≤ τ}
2. LetU1 be the nextmn unlabeled examples, andU2 the nextmn examples after that
3. Fork = 1, 2, . . . , d + 1
4. LetLk denote the next⌊n/(6 · 2k∆̂(k)(U1,U2))⌋ unlabeled examples,
5. For eachx ∈ Lk,
6. If ∆̂(k)(x,U2) ≥ 1− γ, and we’ve requested< ⌊n/(3 · 2k)⌋ labels inLk so far,
7. Request the label ofx and replace it inLk by the labeled one
8. Else, labelx with argmax

y∈{−1,+1}

Γ̂(k)(x, y,U2) and replace it inLk by the labeled one

9. ReturnActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)}, ⌊n/3⌋)

Subroutine:ActiveSelect({h1, h2, . . . , hN}, m)
0. For eachj, k ∈ {1, 2, . . . , N} : j < k,
1. Take the next⌊m/

(

N
2

)

⌋ examplesx s.t.hj(x) 6= hk(x) (if such examples exist)
2. Letmjk andmkj respectively denote the number of mistakeshj andhk make on these
3. Returnhk̂, wherek̂ = arg mink maxj mkj
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The meta-algorithm has several parameters to be specified below.

As with Algorithm 0 and the agnostic generalizations thereof, the setV can be represented

implicitly by simply performing each step on the full spaceC, subject to the constraint given in

the definition ofV , so that we can more easily adapt algorithms that are designed to manipulate

C. Note that, since this is the realizable case, the choice ofτ = 0 is sufficient, and furthermore

enables the possibility of an efficient reduction to the passive algorithm for many interesting

concept spaces. The choice ofγ is fairly arbitrary; generally, the proof requires only that γ ∈

(0, 1).

The design of the estimatorŝ∆(k)(U1,U2), ∆̂(k)(x,U2), and Γ̂(k)(x, y,U2) can be done in

a variety of ways. Generally, the only important feature seems to be that they be converging

estimators of an appropriate limiting values. For our purposes, given anym ∈ N and sequences

U1 = {z1, . . . , zm} ∈ Xm andU2 = {zm+1, zm+2, . . . , z2m} ∈ Xm, the following definitions for

∆̂(k)(U1,U2), ∆̂(k)(z,U2), andΓ̂(k)(x, y,U2) will suffice. Generally, we define

∆̂(k)(U1,U2) =
1

m1/3
+

1

m

∑

z∈U1

1[∆̂(k)(z,U2) ≥ 1− γ]. (4.1)

For the others, there are two cases to consider. Ifk = 1, the definitions are quite simple:

Γ̂(1)(x, y,U2) = 1[∀h ∈ V, h(x) = y],

∆̂(1)(z,U2) = 1[z ∈ DIS(V )].

For the other case, namelyk ≥ 2, we first partitionU2 into subsets of sizek − 1, and record

how many of those subsets are shattered byV : for i ∈ {1, 2, . . . , ⌊m/(k − 1)⌋}, defineS
(k)
i =

{zm+1+(i−1)(k−1), . . . , zm+i(k−1)}, and letMk = max

{

1,
⌊m/(k−1)⌋
∑

i=1

1 [V shattersS(k)
i

]

}

. Then

defineV(x,y) = {h ∈ V : h(x) = y}, and

Γ̂(k)(x, y,U2) =

⌊m/(k−1)⌋
∑

i=1

1[V shattersS(k)
i andV(x,−y) does not shatterS(k)

i

]

. (4.2)

∆̂(k)(z,U2) simply estimates the probability thatS ∪ {z} is shatterable byV givenS shatterable
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by V , as follows.

∆̂(k)(z,U2) =
1

M
1/3
k

+
1

Mk

⌊m/(k−1)⌋
∑

i=1

1[V shattersS(k)
i ∪ {z}]. (4.3)

The following theorem is the main result on activized learning in the realizable case for this

chapter.

Theorem 4.3.SupposeC is a VC class,0 ≤ τ = o(1), mn ≥ n, andγ ∈ (0, 1) is constant. Let

∆̂(k) andΓ̂(k) be defined as in(4.1), (4.3), and(4.2).

For any passive algorithmAp, Meta-Algorithm 5 activizesAp for C underRealizable(C).

More concisely, Theorem 4.3 states that Meta-Algorithm 5 isa general activizerfor C. We

can also prove the following result on the fixed-confidence version of label complexity.1

Theorem 4.4.Suppose the conditions of Theorem 4.3 hold, and thatAp achieves a label

complexityΛp. ThenActivizer(Ap, ·) achieves a label complexityΛa such that, for any

δ ∈ (0, 1) andD ∈ Realizable(C), there is a finite constantc such that

Λp(ǫ, cδ,D) = O(1)⇒ Λa(cǫ, cδ,D) = O(1) and

Λp(ǫ, δ,D) = ω(1)⇒ Λa(cǫ, cδ,D) = o(Λp(ǫ, δ,D)).

The proof of Theorems 4.3 and 4.4 are deferred to Section 4.4.

For a more concrete implication, we immediately get the following simple corollary.

Corollary 4.5. For any VC classC, there exist active learning algorithms that achieve label

complexitiesΛa andΛ̄a, respectively, such that for allDXY ∈ Realizable(C),

Λ̄a(ǫ,DXY ) = o(1/ǫ), and ∀δ ∈ (0, 1), Λa(ǫ, δ,DXY ) = o(1/ǫ).

Proof. For d = 0, the result is trivial. Ford ≥ 1, Haussler, Littlestone, and Warmuth [1994]

propose passive learning algorithms achieving respectivelabel complexities̄Λp(ǫ,DXY ) = d
ǫ

andΛp(ǫ, δ,DXY ) ≤ 70d
ǫ

ln 8
δ
. Plugging this into Theorems 4.3 and 4.4 implies that applying

Meta-Algorithm 5 to these passive algorithms yield combined active learning algorithms with

the stated behaviors for̄Λa andΛa.

1In fact, this result even holds for a much simpler variant of the algorithm, wherêΓ(k) and∆̂(k) can be replaced

by an estimator that uses a single randomS ∈ X k−1 shattered byV , rather than repeated samples.
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For practical reasons, it is interesting to note that all of the label requests in Meta-Algorithm

5 can be performed in three batches: the initialn/3, the requests during thed+1 iterations (which

can all be requested in a single batch), and the requests for theActiveSelect procedure. However,

because of this, we should not expect Meta-Algorithm 5 to have optimal label complexities. In

particular, to get exponential rates, we should expect to needΘ(n) batches. That said, it should

be possible to construct the setsLk sequentially, updatingV after each example added toLk, and

requesting labels as needed while constructing the set, analogous to Algorithm 0. Some care in

the choice of stopping criterion on each round is needed to make sure the setLk still represents an

i.i.d. sample. Such a modification should significantly improve the label complexities compared

to Meta-Algorithm 5, while still maintaining the validity of the results proven here.

Note: The restriction to VC classes is not necessary for positive results in activized learning.

For instance, even if the concept spaceC has infinite VC dimension, but can be decomposed

into a countable sequence of VC class subsets, we can still construct an activizer forC using an

aggregation technique similar to that introduced in Chapter 3.

4.3 Toward Agnostic Activized Learning

We might wonder whether it is possible to state a result as general as Theorem 4.3, even for the

most general settingAgnostic. However, one can construct VC classesC, and passive algorithms

Ap that cannot be activized forC, even under bounded noise distributions (Tsybakov(C, 1, µ)),

let aloneAgnostic. These algorithms tend to have a peculiar dependence on the noise distribu-

tion, so that if the noise distribution andh∗ align in just the right way, the algorithm becomes

very good, and is otherwise not very good; the effect is that we cannot lose much information

about the noise distribution if we hope to get these extremely fast rates for these particular dis-

tributions, so that the problem becomes more like regression than classification. However, as

mentioned, these passive algorithms are not very interesting for most distributions, which leads

to an informal conjecture that anyreasonablepassive algorithm can be activized forC under
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Agnostic. More formally, I have the following specific conjecture.

Recall that we sayh is a minimizer of the empirical error rate for a labeled sample L iff

h ∈ arg min
h′∈C

erL(h′).

Conjecture 4.6. For any VC classC, there exists a passive algorithmAp that outputs a

minimizer of the empirical error rate on its training samplesuch that some active

meta-algorithmAa activizesAp for C underAgnostic.

Although, at this writing, this conjecture remains open, the rest of this section may serve as

evidence in its favor.

4.3.1 Positive Results

First, we have the following simple lemma, which allows us torestrict the discussion to the

BenignNoise(C) case.

Lemma 4.7. For anyC, if there exists an active algorithmAa achieving label complexities̄Λa

andΛa, then there exists an active algorithmA′
a achieving label complexities̄Λ′

a andΛ′
a such

that,∀D ∈ Agnostic andδ ∈ (0, 1), for some functions̄λ(ǫ,D), λ(ǫ, δ,D) ∈ Polylog(1/ǫ),

If D ∈ BenignNoise(C), then

Λ̄′
a(ǫ + ν(C,D),D) ≤ max{2⌈Λ̄a(ǫ/2 + ν(C,D),D)⌉, λ̄(ǫ,D)},

Λ′
a(ǫ + ν(C,D), δ,D) ≤ max{2⌈Λa(ǫ + ν(C,D), δ/2,D)⌉, λ(ǫ, δ,D)},

and ifD /∈ BenignNoise(C), then

Λ̄′
a(ǫ + ν(C,D),D) ≤ λ̄(ǫ,D),

Λ′
a(ǫ + ν(C,D), δ,D) ≤ λ(ǫ, δ,D).

Proof. Consider a universally consistent passive learning algorithmAu. ThenAu achieves label

complexitiesΛu and Λ̄u such that for any distributionD on X × {−1, +1}, ∀ǫ, δ ∈ (0, 1),

Λ̄u(ǫ/2+β(D),D) andΛu(ǫ/2+β(D), δ/2,D) are both finite. In particular, ifβ(D) < ν(C,D),
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thenΛ̄u(ǫ/2 + ν(C,D),D) = O(1) andΛu(ǫ/2 + ν(C,D), δ/2,D) = O(1).

Now we simply runAa(⌊n/2⌋), to get a classifierha, and runAu(Z⌊n/3⌋) (after requesting

those first⌊n/3⌋ labels), to get a classifierhu. Take the nextn − ⌊n/2⌋ − ⌊n/3⌋ unlabeled

examples and request their labels; call this setL. If erL(ha)− erL(hu) > n−1/3, returnĥ = hu;

otherwise, return̂h = ha. I claim that this method achieves the stated result, for thefollowing

reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequality, the probability

thater(ĥ) 6= min{er(ha), er(hu)} is at most2exp{−n1/3/24}.

Consider the case whereD ∈ BenignNoise(C). For anyn ≥ 2⌈Λ̄a(ǫ/2 + ν(C,D),D)⌉,

E[er(ha)] ≤ ν(C,D) + ǫ/2, soE[er(ĥ)] ≤ ν(C,D) + ǫ/2 + 2exp{−n1/3/24}, which is at most

ν(C,D) + ǫ if n ≥ 243 ln3 4
ǫ
. Also, for anyn ≥ 2⌈Λa(ǫ + ν(C,D), δ/2,D)⌉, with probability at

least1− δ/2, er(ha) ≤ ν(C,D) + ǫ. If additionally,n ≥ 243 ln3 4
δ
, then a union bound implies

that with probability≥ 1− δ, er(ĥ) ≤ er(ha) ≤ ν(C,D) + ǫ.

On the other hand, ifD /∈ BenignNoise(C), then for anyn ≥ 3⌈Λ̄u(ν(C,D) + ǫ/2,D)⌉,

E[er(ĥ)] ≤ E[min{er(ha), er(hu)}] + 2exp{−n1/3/24} ≤ E[er(hu)] + 2exp{−n1/3/24} ≤

ν(C,D)+ ǫ/2+2exp{−n1/3/24}. Again, this is at mostν(C,D)+ ǫ if n ≥ 243 ln3 4
ǫ
. Similarly,

for anyn ≥ 3⌈Λu(ν(C,D)+ǫ, δ/2,D)⌉ = O(1), with probability≥ 1−δ/2, er(hu) ≤ ν(C,D)+

ǫ. If additionally, n ≥ 243 ln3 4
δ
, then a union bound implies that with probability≥ 1 − δ,

er(ĥ) ≤ er(hu) ≤ ν(C,D) + ǫ.

Thus, we can takēλ(ǫ,D) = max{243 ln3 4
ǫ
, 3⌈Λ̄u(ν(C,D) + ǫ/2,D)⌉} ∈ Polylog(1/ǫ).

andλ(ǫ, δ,D) = max{243 ln3 4
δ
, 3⌈Λu(ν(C,D) + ǫ, δ/2,D)⌉} ∈ Polylog(1/ǫ).

Because of Lemma 4.7, it suffices to focus our discussion purely on theBenignNoise(C)

case, since any label complexity results forBenignNoise(C) immediately imply almost equally

strong label complexity results forAgnostic, losing only an additive polylogarithmic term. With

this in mind, we state the following active learning algorithm, designed for theBenignNoise(C)

setting.
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Meta-Algorithm 6:BenignActivizer(Ap, n)
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. Request the first⌊n/3⌋ labels and letQ denote these⌊n/3⌋ labeled examples
1. LetV = {h ∈ C : erQ(h)−min

h′∈C

erQ(h′) ≤ τ}
2. LetU2 be the nextmn unlabeled examples
3. Fork = 1, 2, . . . , d
4. Qk ← {}
5. Fort = 1, 2, . . . , ⌊2n/(3 · 2k)⌋
6. Letx′ be the next unlabeled example for whichminj≤k ∆̂(j)(x,U2) ≥ 1− γ
7. Request the labely′ of x′ and letQk ← Qk ∪ {(x′, y′)}
8. Construct the classifier̂hk, for k ∈ {1, 2, . . . , d + 1} (see description below)

9. Return̂hk̂, for k̂ = max
{

k : maxj<k erQj
(ĥk)− erQj

(ĥj) ≤ Tkj

}

.

The definition of̂hk in Step 8 of Meta-Algorithm 6 is as follows.

Let hk = Ap(Qk), k′(x) = min{k′ : ∆̂(k′)(x,U2) < 1− γ}, and

ĥk(x) =















arg max
y∈{−1,+1}

Γ̂(k′(x))(x, y,U2), if k′(x) ≤ k

hk(x), otherwise

.

For the thresholdTkj in Step 9 of Meta-Algorithm 6, for our purposes, we can take the

following definition.

Tkj = 5

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

It is interesting to note that this algorithm requires only two batches of label requests, which

is clearly the minimum number for any algorithm that takes advantage of the sequential aspects

of active learning. However, even with this, we have the following general results.

Theorem 4.8.Let τ = 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, δ ∈ (0, 1), and let∆̂(k) andΓ̂(k) be defined as

in (4.1), (4.3), and(4.2). For any VC classC, by applying Meta-Algorithm 6 withAp being any

algorithm outputting a minimizer of the empirical error rate fromC, the combined active

algorithm achieves a label complexityΛa such that∀D ∈ BenignNoise(C),

Λa(ǫ + ν(C,D), δ,D) = o(1/ǫ2).
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The proof of Theorem 4.8 is included in Section 4.4.1. Theorem 4.8, combined with Lemma 4.7,

immediately implies the following quite general corollary.

Corollary 4.9. For any VC classC, andδ ∈ (0, 1), there exists an active learning algorithm

achieving a label complexityΛa such that,∀D ∈ Agnostic,

Λa(ǫ + ν(C,D), δ,D) = o(1/ǫ2).

Note that this result shows strict improvements over the known worst-case (minimax) label

complexities for passive learning.

4.4 Proofs

4.4.1 Proof of Theorems 4.3, 4.4, and 4.8

Throughout this subsection, we will assumeC is a VC class,0 ≤ τ = o(1), mn ≥ n, γ ∈ (0, 1),

and ∆̂(k) and Γ̂(k) are defined as in (4.1), (4.3) and (4.2), as stated in the conditions of the

theorems. Furthermore, we will defineV = {h ∈ C : er⌊n/3⌋(h) − min
h′∈C

er⌊n/3⌋(h
′) ≤ τ}, and

unless otherwise specified,DXY ∈ Agnostic and we will simply discuss the behavior for this

fixed, but arbitrary, distribution.

Also, recall that we are using the convention thatX 0 = {{}} and we say a set of classifiers

V shatters{} iff V 6= {}.

Lemma 4.10.For anyN ∈ N, andN classifiers{h1, h2, . . . , hN},

ActiveSelect({h1, h2, . . . , hN}, m) makes at mostm label requests, and ifhk̂ is the classifier

output byActiveSelect({h1, h2, . . . , hN}, m), then with probability

≥ 1− 2(N − 1)exp{−(m/
(

N
2

)

)/72}, er(hk̂) ≤ 2 mink er(hk).

Proof. This proof is essentially identical to the proof of Theorem 3.7 from Chapter 3.

First note that the total number of label requests used byActiveSelect is at mostm, since

each pair of classifiers uses at mostm/
(

N
2

)

requests.

103



Let k∗∗ = argmink er(hk). Now for anyj ∈ {1, 2, . . . , N} with P(hj(X) 6= hk∗∗(X)) > 0,

the law of large numbers implies that with probability1 we will find at leastm/
(

N
2

)

exam-

ples remaining in the sequence for whichhj(x) 6= hk∗∗(x), and furthermore sinceer(hk∗∗|{x :

hj(x) 6= hk∗∗(x)}) ≤ 1/2, Hoeffding’s inequality implies thatP(mk∗∗j > (7/12)m/
(

N
2

)

) ≤

exp{−(m/
(

N
2

)

)/72}. A union bound implies

P

(

max
j

mk∗∗j > (7/12)m/

(

N

2

))

≤ (N − 1)exp

{

−
(

m/

(

N

2

))

/72

}

.

Now supposek ∈ {1, 2, . . . , N} haser(hk) > 2er(hk∗∗). In particular, this impliesP(hk(X) 6=

hk∗∗(X)) > 0 and er(hk|{x : hk∗∗(x) 6= hk(x)}) > 2/3. By Hoeffding’s inequality, we

have thatP(mkk∗∗ ≤ (7/12)m/
(

N
2

)

) ≤ exp{−(m/
(

N
2

)

)/72}. By a union bound, we have that

P(∃k : er(hk) > 2er(hk∗∗) and maxj mkj ≤ (7/12)m/
(

N
2

)

) ≤ (N − 1)exp{−(m/
(

N
2

)

)/72}.

So, by a union bound, with probability≥ 1−2(N−1)exp{−(m/
(

N
2

)

)/72}, for thek̂ chosen

by ActiveSelect,

max
j

mk̂j ≤ max
j

mhk∗∗j ≤ (7/12)m/

(

N

2

)

< min
k:er(hk)>2er(hk∗∗)

max
j

mkj,

and thuser(hk̂) ≤ 2er(hk∗∗) as claimed.

Lemma 4.11.There is an eventHn, holding with probability≥ 1− exp{−√n}, such that for

someC-dependent functionφ(n) = o(1), V ⊆ C(φ(n);DXY ).

Proof. By the uniform convergence bounds proven by Vapnik [1982], for aC-dependent finite

constantc, with probability≥ 1 − exp{−n1/2}, V ⊆ C
(

cn−1/4 + τ ;DXY

)

. Thus, the result

holds forφ(n) = cn−1/4 + τ = o(1).

Lemma 4.12. If τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, then there is a strictly positive functionφ′(n) = o(1)

such that, with probability≥ 1− 1/n, C(φ′(n);DXY ) ⊆ V .

Proof. By the uniform convergence bounds proven by Vapnik [1982], with probability1− 1/n,

everyh ∈ C has|er(h)− er⌊n/3⌋(h)| ≤ τ/3. Therefore, on this event,V ⊇ C(τ/3;DXY ). Thus,

we can letφ′(n) = τ/3, which satisfies the desired conditions.
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Lemma 4.13.For anyn ∈ N, there is an eventH ′
n for the data sequenceZ⌊n/3⌋ with

P(H ′
n) ≥















1, if DXY ∈ Realizable(C)

1− 1/n, if DXY /∈ Realizable(C) but τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n

,

s.t. onH ′
n, for anyk ∈ {1, 2, . . . , d + 1} with P(S ∈ X k−1 : lim

rց0
1[C(r) shattersS] = 1) > 0,

P(S ∈ X k−1 : V shattersS| lim
rց0

1[C(r) shattersS] = 1)

= P(S ∈ X k−1 : lim
rց0

1[V (r) shattersS] = 1| lim
rց0

1[C(r) shattersS] = 1) = 1.

Proof. For the case ofDXY /∈ Realizable(C) andτ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, the result imme-

diately follows from Lemma 4.12, which implies that on an event of probability≥ 1− 1/n, for

any setS, 1[V shattersS] ≥ lim
rց0

1[V (r) shattersS] = lim
rց0

1[C(r) shattersS].

Next we examine the case whereDXY ∈ Realizable(C). We will show this is true for any

fixed k, and the existence ofH ′
n then holds by the union bound. Fix any setS ∈ X k−1 s.t.

lim
rց0

1[C(r) shattersS] = 1. SupposeV (r) does not shatterS for somer > 0. Then there is an

infinite sequence of sets{{h(i)
1 , h

(i)
2 , . . . , h

(i)

2k−1}}i with ∀j ≤ 2k−1, P(x : h
(i)
j (x) 6= h∗(x)) ց 0,

such that each{h(i)
1 , . . . , h

(i)

2k−1} ⊆ C(r) and shattersS. SinceV (r) does not shatterS, 1 =

inf
i
1[∃j : h

(i)
j /∈ V (r)] = inf

i
1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]. But

E[inf
i
1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]] ≤ inf

i
E[1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]]

≤ lim
i→∞

∑

j≤2k−1

⌊n/3⌋P(x : h
(i)
j (x) 6= h∗(x)) = 0,

where the second inequality follows from the union bound. Therefore,∀r > 0,

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : V (r) does not shatterS) = 0 by Markov’s inequality. Furthermore, since1[V (r) does not shatterS] is monotonic inr, Markov’s inequality and the monotone convergence
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theorem give us that

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : lim
rց0

1[V (r) does not shatterS] = 1)

≤ E[lim
rց0

1[V (r) does not shatterS]] = lim
rց0

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : V (r) does not shatterS) = 0.

This implies that

P(Z⌊n/3⌋∈X ⌊n/3⌋ : P(S∈X k−1 : lim
rց0

1[V (r) shattersS] = 0| lim
rց0

1[C(r) shattersS] = 1) > 0)

= lim
ξց0

P(Z⌊n/3⌋∈X ⌊n/3⌋ :P(S∈X k−1 : lim
rց0

1[V (r) shattersS]=0| lim
rց0

1[C(r) shattersS]=1)>ξ)

≤ lim
ξց0

P(Z⌊n/3⌋∈X ⌊n/3⌋ :P(S∈X k−1 : lim
rց0

1[C(r) shattersS]=1 6=lim
rց0

1[V (r) shattersS])>ξ)

≤ lim
ξց0

1

ξ
E[P(S∈X k−1 : lim

rց0
1[C(r) shattersS]=1 6=lim

rց0
1[V (r) shattersS])] (by Markov’s ineq)

= lim
ξց0

1

ξ
E[1[lim

rց0
1[C(r) shattersS]=1]P(Z⌊n/3⌋ : lim

rց0
1[V (r) shattersS]=0)] (by Fubini’s thm)

= lim
ξց0

0 = 0.

Lemma 4.14.Supposek ∈ N satisfiesP(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1) > 0. There is

a functionq(n) = o(1) such that, for anyn ∈ N, on eventHn ∩H ′
n (defined above),

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 0|V shattersS) ≤ q(n).

Proof. By Lemmas 4.11 and 4.13, we know that on eventHn ∩H ′
n,

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 0|V shattersS)

=
P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 0 andV shattersS)

P(S ∈ X k−1 : V shattersS)

≤ P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 0 andV shattersS)

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)

≤ P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 0 andC(φ(n)) shattersS)

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)
.
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Defineq(n) as this latter quantity. Since

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 0 andC(r′) shattersS) is monotonic inr′,

lim
n→∞

q(n) = lim
r′ց0

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 0 andC(r′) shattersS)

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)

=
E[1[limrց0 1[C(r) shattersS] = 0] limr′ց0 1[C(r′) shattersS]]

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)
= 0,

where the second equality holds by the monotone convergencetheorem. This proves

q(n) = o(1), as claimed.

Lemma 4.15.Letk∗ ∈ N be the smallest indexk for which

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1) > 0 and

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shattersS ∪ {x}] = 1) = 0| lim
rց0

1[C(r) shattersS] = 1) > γ.

Such ak∗ ≤ d + 1 exists, and∀ζ ∈ (0, 1), ∃nζ s.t.∀n > nζ , if DXY ∈ Realizable(C) or

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
andDXY ∈ BenignNoise(C), on eventHn ∩H ′

n (defined above),

∀k ≤ k∗,

P(x : η(x) 6=1/2 andP(S∈X k−1 :V(x,h∗(x)) does not shatterS|V shattersS) > ζ) =

P(x : η(x) 6=1/2 andP(S∈X k−1 :V(x,h∗(x)) does not shatterS| lim
rց0

1[V (r) shattersS]=1)>ζ)

= 0.

Proof. First we prove that such ak∗ is guaranteed to exist. As mentioned, by convention any

set of classifiers shatters{}, and{} ∈ X 0, so there exist values ofk for which P(S ∈ X k−1 :

lim
rց0

1[C(r) shattersS] = 1) > 0. Furthermore, we will see that for anyk ∈ {1, . . . , d + 1}, if

this condition is satisfied fork, but

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shattersS ∪ {x}] = 1) = 0| lim
rց0

1[C(r) shattersS] = 1) ≤ γ,

thenP(S ∈ X k : lim
rց0

1[C(r) shattersS] = 1) > 0. We prove this by contradiction. Suppose the

implication is not true for somek. Then
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0 < 1− γ

≤ P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shattersS ∪ {x}] = 1) > 0| lim
rց0

1[C(r) shattersS] = 1)

≤ lim
ξց0

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shattersS ∪ {x}] = 1) > ξ)

P(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)

≤ lim
ξց0

E[P(x : lim
rց0

1[C(r) shattersS ∪ {x}] = 1)]

ξP(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)
(by Markov’s inequality)

= lim
ξց0

P(S ∈ X k : lim
rց0

1[C(r) shattersS] = 1)

ξP(S ∈ X k−1 : limrց0 1[C(r) shattersS] = 1)
= lim

ξց0
0 = 0.

This is a contradiction, so it must be true that the implication holds for allk. This establishes the

existence ofk∗, since we definitely have

P(S ∈ X d : lim
rց0

P(x : C(r) shattersS ∪ {x}) = 0| lim
rց0

1[C(r) shattersS] = 1) = 1 > γ,

so thatsomek satisfies both conditions.

Next we prove the second claim. Takek ≤ k∗. Let nζ be s.t.supn>nζ
q(n) < ζ ; it must exist

sinceq(n) = o(1). By Lemma 4.14, forn > nζ , onHn ∩H ′
n,

P(x : η(x) 6=1/2 andP(S∈X k−1 :V(x,h∗(x)) does not shatterS|V shattersS) > ζ)

≤ P(x : η(x) 6=1/2 and

P(S ∈ X k−1 : V(x,h∗(x)) does not shatterS| lim
rց0

1[C(r) shattersS] = 1) + q(n) > ζ)

≤ 1
ζ−q(n)

E[1[η(x) 6=1/2]P(S∈X k−1 :V(X,h∗(X)) does not shatterS| lim
rց0

1[C(r) shattersS]=1)]

(by Markov’s inequality)

≤
E[1[ lim

rց0
1[C(r) shattersS]=1]P(x:η(x)6=1/2 andV(x,h∗(x)) does not shatterS)]

(ζ−q(n))P(S∈Xk−1: lim
rց0

1[C(r) shattersS]=1)
(by Fubini’s theorem)

≤
E[1[ lim

rց0
1[V (r) shattersS]=1]P(x:η(x)6=1/2 andV(x,h∗(x)) does not shatterS)]

(ζ−q(n))P(S∈Xk−1: lim
rց0

1[C(r) shattersS]=1)
(by Lemma 4.13). (4.4)

For any setS ∈ X k−1 for which lim
rց0

1[V (r) shattersS] = 1, there is an infinite sequence of sets

{{h(i)
1 , h

(i)
2 , . . . , h

(i)

2k−1}}i with ∀j ≤ 2k−1, P(x : η(x) 6=1/2 andh
(i)
j (x) 6= h∗(x)) ց 0, such that
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each{h(i)
1 , . . . , h

(i)

2k−1} ⊆ V and shattersS. If V(x,h∗(x)) does not shatterS, then

1 = inf
i
1[∃j : h

(i)
j /∈ V(x,h∗(x))] = inf

i
1[∃j : h

(i)
j (x) 6= h∗(x)].

In particular, by Markov’s inequality,

P(x : η(x) 6=1/2 andV(x,h∗(x)) does not shatterS)

≤ P(x : η(x) 6=1/2 and inf
i
1[∃j : h

(i)
j (x) 6= h∗(x)] = 1)

≤ E[1[η(X) 6=1/2] inf
i
1[∃j : h

(i)
j (X) 6= h∗(X)]]

≤ inf
i

P(x : η(x) 6=1/2 and∃j s.t.h(i)
j (x) 6= h∗(x))

≤
∑

j≤2k−1

lim
i→∞

P(x : η(x) 6=1/2 andh
(i)
j (x) 6= h∗(x)) = 0.

This means (4.4) equals0.

Lemma 4.16.Supposek ∈ {1, 2, . . . , d + 1} satisfies

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1) > 0 and

αk = P(S ∈ X k−1 : lim
rց0

P(x : C(r) shattersS ∪ {x}) = 0| lim
rց0

1[C(r) shattersS] = 1) > γ.

Then there is a function∆(k)
n = o(1) such that, on eventHn ∩H ′

n (defined above),

P(x : P(S ∈ X k−1 : V shattersS ∪ {x}|V shattersS) ≥ 1− (γ + αk)/2) ≤ ∆
(k)
n .

Proof. Let

A = {S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1 and lim
rց0

P(x : C(r) shattersS ∪ {x}) = 0}.

Then, lettingφ(n) be as in Lemma 4.11, on eventHn ∩H ′
n,

P(x : P(S ∈ X k−1 : V shattersS ∪ {x}|V shattersS) ≥ 1− (γ + αk)/2)

≤ P(x : P(S ∈ X k−1 : C(φ(n)) shattersS ∪ {x}| lim
rց0

1[C(r) shattersS] = 1)

+ P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 0|V shattersS) ≥ 1− (γ + αk)/2) (4.5)

By Lemma 4.13, we know there is some finiteñ1 s.t. anyn > ñ1 has (on eventHn ∩H ′
n)

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 0|V shattersS) ≤ (αk − γ)/3.
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We therefore have that, forn > ñ1, on eventHn ∩H ′
n, (4.5) is at most

P(x :P(S∈X k−1 :C(φ(n)) shattersS∪{x}| lim
rց0

1[C(r) shattersS]=1)+(αk−γ)/3≥1−(γ+αk)/2)

≤ P(x :P(S∈X k−1 :C(φ(n)) shattersS∪{x}|S∈A)αk+(1−αk)+(αk−γ)/3≥1−(γ+αk)/2)

= P(x : P(S ∈ X k−1 : C(φ(n)) shattersS ∪ {x}|S ∈ A) ≥ (αk − γ)/(6αk))

≤ 6αk

αk−γ
E[P(S ∈ X k−1 : C(φ(n)) shattersS ∪ {X}|S ∈ A)] (by Markov’s inequality)

≤ 6αk

αk−γ
E[P(x : C(φ(n)) shattersS ∪ {x})|S ∈ A] (by Fubini’s theorem).

We will define∆
(k)
n equal to this last quantity for anyn > ñ1 (we can take∆(k)

n = 1 for

n ≤ ñ1). It remains only to show this quantity iso(1). Since 6αk

αk−γ
E[P(x : C(r) shattersS ∪

{x})|S ∈ A] is monotonic inr,

lim
n→∞

∆(k)
n = lim

rց0

6αk

αk − γ
E[P(x : C(r) shattersS ∪ {x})|S ∈ A].

Since for anyS ∈ X k−1, P(x : C(r) shattersS ∪ {x}) is monotonic inr, the monotone conver-

gence theorem implies

lim
rց0

6αk

αk − γ
E[P(x : C(r) shattersS ∪ {x})|S ∈ A]

=
6αk

αk − γ
E[lim

rց0
P(x : C(r) shattersS ∪ {x})|S ∈ A] = 0.
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Lemma 4.17.∀n ∈ N, there is an event̃Hn ⊆ Hn ∩H ′
n onZ that, if

DXY ∈ BenignNoise(C), has

P(H̃n) ≥ 1− cn4/3 · exp{−c′n1/3} − 1[DXY /∈ Realizable(C)]n−1, forDXY - and

C-dependent constantsc, c′ ∈ (0,∞), such that

∀n ∈ N, on H̃n, |{x ∈ Lk∗ : ∆̂(k∗)(x,U2) ≥ 1− γ}| ≤ ⌊n/(3 · 2k∗

)⌋, (4.6)

∃∆̆(k∗)
n = o(1) and∆̃

(k∗)
n = o(1) s.t.∀n ∈ N, on H̃n,

∆̄(k∗)(U2) ≤ ∆̆(k∗)
n and∆̂(k∗)(U1,U2) ≤ ∆̃(k∗)

n , (4.7)

where∀k, ∆̄(k)(U2) = P(x : ∆̂(k)(x,U2) ≥ 1− γ); also∃n∗ ∈ N s.t.∀n > n∗, if

DXY ∈ Realizable(C), onH̃n, ∀x ∈ Lk∗,

∆̂(k∗)(x,U2) < 1− γ ⇒ Γ̂(k∗)(x,−h∗(x),U2) < Γ̂(k∗)(x, h∗(x),U2), (4.8)

whereLk∗ is as in Meta-Algorithm 5; also,∀n > n∗, if DXY ∈ BenignNoise(C) and

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, then onH̃n,

P(x : η(x) 6=1/2 and∃k ≤ k∗ s.t. ∆̂(k)(x,U2) < 1− γ and

Γ̂(k)(x, h∗(x),U2) ≤ Γ̂(k)(x,−h∗(x),U2)) ≤ (d + 1)e−c′′n1/3

, (4.9)

for a C- andDXY -dependent finite constantc′′ > 0.

Proof. Since most of this lemma discusses onlyk = k∗, in the proof I will simplify the notation

by dropping(k∗) superscripts, so that̂∆(U1,U2) abbreviateŝ∆(k∗)(U1,U2), Γ̂(x, y,U2) abbrevi-

atesΓ̂(k∗)(x, y,U2), and so on. I do this only fork∗, and will include the superscripts for any

other value ofk so that there is no ambiguity.

We begin with (4.6). Recall thatLk∗ is initially an independent sample of size⌊n/(6 ·

2k∗
∆̂(U1,U2))⌋ sampled fromDXY [X ] (i.e., before we add labels to the examples). Let∆̄(U2) =

P(x : ∆̂(x,U2) ≥ 1− γ).

111



By Hoeffding’s inequality, on an eventH(1)
n (U2) on U1 with P(U1 : H

(1)
n (U2)) ≥ 1 − 2 ·

exp{−2m
1/3
n } ≥ 1− 2 · exp{−2n1/3},

|∆̄(U2)−
1

mn

∑

z∈U1

1[∆̂(z,U2) ≥ 1− γ]| ≤ 1

m
1/3
n

,

and therefore

∆̄(U2) ≤ ∆̂(U1,U2).

By a Chernoff bound, there is an eventH
(2)
n (U2) onLk∗ andU1 with

P(Lk∗,U1 :H(2)
n (U2))≥1−exp{−⌊n/(6·2k∗

∆̄(U2))⌋∆̄(U2)/3} ≥ 1−exp{−(n−6·2k∗

)/(18·2k∗

)}

such that, on an eventH
(1)
n (U2) ∩H

(2)
n (U2),

|{x ∈ Lk∗ : ∆̂(x,U2) ≥ 1− γ}| ≤ 2⌊n/(6 · 2k∗

∆̄(U2))⌋∆̄(U2) ≤ n/(3 · 2k∗

).

Since the left side of (4.6) is an integer, (4.6) is established.

Next we prove (4.7). Ifk∗ = 1, the result clearly holds. In particular, we have∆̄(1)(U2) =

P(DIS(V )), and Hoeffding’s inequality implies that on an event with probability

1 − exp{−2m
1/3
n }, ∆̂(1)(U1,U2) ≤ P(DIS(V )) + 2m

−1/3
n . Combined with Lemma 4.16, we

have bounds of∆(1)
n + 2m

−1/3
n = o(1).

Otherwise, we havek∗ ≥ 2. In this case, by Hoeffding’s inequality and a union bound (over

k values), for an eventH ′′
n overU2, with P(H ′′

n) ≥ 1 − (d + 1)exp{−2⌊mn/(k∗ − 1)⌋1/3}, on

H ′′
n ∩H ′

n, for all k ∈ {2, . . . , k∗} (by Lemma 4.13)

Mk ≥ P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1)⌊mn/(k − 1)⌋ − ⌊mn/(k − 1)⌋2/3.

Let us name the right side of this inequalitym(n). Recall that fork ≤ k∗,

P(S ∈ X k−1 : lim
rց0

1[C(r) shattersS] = 1) > 0

by definition ofk∗, som(n) diverges. On eventH(1)
n (U2),

∆̂(U1,U2) ≤ ∆̄(U2) +
2

m
1/3
n

≤ ∆̄(U2) +
2

n1/3
. (4.10)
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Thus, it suffices to bound̄∆(U2) by ao(1) function. In fact, since we haveMk∗ lower bounded

by a diverging function onH ′′
n ∩H ′

n, so for sufficiently largen, onH ′
n ∩H ′′

n,

∆̄(U2) ≤ P(x : ∆̂(x,U2)−M
−1/3
k∗ ≥ 1− (2γ + α)/3).

Thus, it suffices to boundP(x : ∆̂(x,U2) −M
−1/3
k∗ ≥ 1 − (2γ + α)/3) by ao(1) function. On

eventHn ∩H ′
n ∩H ′′

n, we have that

P(x : ∆̂(x,U2)−M
−1/3
k∗ ≥ 1− (2γ + α)/3)

≤ P(x : P(S ∈ X k∗−1 : V shattersS ∪ {x}|V shattersS) ≥ 1− (γ + α)/2)+

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

By Lemma 4.16, on eventHn ∩H ′
n,

P(x : P(S ∈ X k∗−1 : V shattersS ∪ {x}|V shattersS) ≥ 1− (γ + α)/2) ≤ ∆(k∗)
n = o(1).

Thus, it suffices to prove the existence of ao(1) bound on

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

For this, we proceed as follows. Definep̂x = 1
Mk∗

∑⌊m/(k∗−1)⌋
i=1 1[V shattersSi ∪ {x}], a random

variable depending onU2, andpx = P(S ∈ X k∗−1 : V shattersS ∪ {x}|V shattersS).

P(U2 : Mk∗ ≥ m(n) andP(x : |px − p̂x| > (α− γ)/6) > M
−1/3
k∗ )

≤ P

(

U2 : Mk∗ ≥ m(n) and
6

α− γ
E[|pX − p̂X |] > M

−1/3
k∗

)

(by Markov’s inequality)

=

⌊mn/(k∗−1)⌋
∑

m=m(n)

P(U2 : Mk∗ = m)P
(

U2 : E[|pX − p̂X |] > m−1/3(α− γ)/6|Mk∗ = m
)

≤ sup
m≥m(n)

P
(

U2 : exp{tmmE[|pX − p̂X |]} > exp{tmm2/3(α− γ)/6}|Mk∗ = m
)

,

for any valuestm > 0. We now proceed as in Chernoff’s bounding technique. By Markov’s
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inequality, this last quantity is at most

sup
m≥m(n)

E[etmmE[|pX−p̂X |]|Mk∗ = m]exp{−tmm2/3(α− γ)/6}

≤ sup
m≥m(n)

E[E[etmm|pX−p̂X |]|Mk∗ = m]exp{−tmm2/3(α− γ)/6} (by Jensen and Fubini)

≤ sup
m≥m(n)

( sup
p∈[0,1]

E[etmBm,p−tmmp] + sup
p∈[0,1]

E[etmmp−tmBm,p])exp{−tmm2/3(α− γ)/6}

whereBm,p ∼ Binomial(m, p), and the expectation is now overBm,p. By symmetry, ifp is

the maximizer of the first expectation, then1 − p maximizes the second expectation, and the

maximizing values are identical, so this is at most

2 sup
m≥m(n)

sup
p∈[0,1]

E[exp{tmBm,p − tmmp}]exp{−tmm2/3(α− γ)/6)}.

Following the usual proof for Hoeffding’s inequality [see e.g., Devroye et al., 1996], this is at

most

2 sup
m≥m(n)

exp{t2mm/8}exp{−tmm2/3(α− γ)/6)}.

Takingtm = m−1/32(α− γ)/3, this is

2 sup
m≥m(n)

exp{m1/3(α− γ)2/18−m1/32(α− γ)2/18}

= 2 sup
m≥m(n)

exp{−m1/3(α− γ)2/18} = 2exp{−m(n)1/3(α− γ)2/18}.

Therefore, there is an eventH ′′′
n onU2 with

P(H ′′′
n ) ≥ 1− 2exp{−m(n)1/3(α− γ)2/18} ≥ 1−

2exp{−(P(S∈X k∗−1 : lim
rց0

1[C(r)shattersS]=1)⌊n/(k∗−1)⌋−⌊n/(k∗−1)⌋2/3)1/3(α−γ)2/18},

such that onH ′′′
n ∩H ′′

n ∩H ′
n,

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

≤M
−1/3
K∗ ≤ m(n)−1/3 = o(1).

Finally, we turn to (4.8) and (4.9). Ifk = 1, then forDXY ∈ Realizable(C), we clearly have

h∗ ∈ V ; otherwise, ifDXY ∈ BenignNoise(C) andτ ≥ 15
n

+7

√

ln(4n)+d ln 2n
d

n
, then Lemma 4.12
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implies that, on an event overZ⌊n/3⌋ of probability1 − 1/n, with probability1 overx such that

η(x) 6= 1/2, if Γ̂(1)(x, y,U2) > Γ̂(1)(x,−y,U2), theny = h∗(x). This implies (4.8) fork∗ = 1

and it covers thek = 1 case for (4.9).

Let us now focus onk ≥ 2 for (4.9), and in particulark∗ ≥ 2 for both (4.9) and (4.8). By

Lemma 4.15, for anyx in a set of probability1, Hoeffding’s inequality and a union bound (over

k values) implies there is an eventH iv
n (x) with P(U2 : H iv

n (x)) ≥ 1− (d + 1)exp{−2m(n)1/3}

such that, forn > nγ/4, on the additional eventH iv
n (x) ∩ Hn ∩ H ′

n ∩ H ′′
n, if η(x) 6= 1/2,

∀k ∈ {2, . . . , k∗},

1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatterS(k)
i andV shattersS(k)

i ]

≤ P(S ∈ X k−1 : V(x,h∗(x)) does not shatterS|V shattersS) + M
−1/3
k

≤ γ/4 + M
−1/3
k ≤ γ/4 + m(n)−1/3.

For sufficiently largen, m(n)−1/3 < γ/4. If k ∈ {2, . . . , k∗} and∆̂(k)(x,U2) < 1− γ, then

1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V does not shatterS(k)
i ∪ {x} andV shattersS(k)

i ] > γ,

and thus, if this happens for sufficiently largen on the eventH iv
n (x) ∩Hn ∩H ′

n ∩H ′′
n, we must

have
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1
Mk

Γ̂(k)(x,−h∗(x),U2) =

≤ 1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatterS(k)
i andV shattersS(k)

i ]

<γ/2 = −γ/2 + γ

<− γ/2 +
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V does not shatterS(k)
i ∪ {x} andV shattersS(k)

i ]

=− γ/2 +
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatterS(k)
i andV shattersS(k)

i ]

+
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) shattersS(k)
i andV(x,−h∗(x)) does not]

≤ 1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,−h∗(x)) does not shatterS(k)
i andV shattersS(k)

i ]

=
1

Mk
Γ̂(k)(x, h∗(x),U2).

By a union bound over the elements ofLk∗,

P(U2 :
⋂

x∈Lk∗

H iv
n (x)) ≥ 1− nm1/3

n (d + 1)exp{−2m(n)1/3},

which suffices to prove (4.8).

Also, we have the following.

P(U2 : P(x : H iv
n (x) does not occur) > exp{−m(n)1/3})

≤ exp{m(n)1/3}E[P(x : H iv
n (x) does not occur)] (by Markov’s inequality)

= exp{m(n)1/3}E[P(U2 : H iv
n (X) does not occur)] (by Fubini’s theorem)

≤ exp{m(n)1/3}E[(d + 1)exp{−2m(n)1/3}] = (d + 1)exp{−m(n)1/3}.

This suffices to prove (4.9).

Proof of Theorem 4.3.The result now follows directly from Lemmas 4.17 and 4.10. (4.7) im-

plies |Lk∗| ≥ L(n) for some functionL(n) = ω(n), while (4.6)implies we will infer the labels
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for all but at most⌊n/(3 · 2k∗
)⌋ of them, and (4.8) implies that, for sufficiently largen, the in-

ferred labels are correct. Lemma 4.10 implies thater(ĥ) is at most twice the error of any of

thed + 1 classifiers. These things happen on an event that only fails with probability at most

exp{−c · n1/χ} for someDXY -dependent constantc > 0, and a universal constantχ > 0.

Defining L−1(m) = min{n : L(n) ≥ m}, we get that, for some distribution overℓ ∈

{L(n), L(n) + 1, . . .} (independent of the data),

E[er(ĥ)] ≤ EZ [Eℓ[2er(Ap(Zℓ))]]+exp{−c ·n1/χ} ≤ sup
ℓ≥L(n)

EZ [2er(Ap(Zℓ))]+exp{−c ·n1/χ}.

Therefore,

Λ̄a(3ǫ,DXY ) ≤ L−1(Λ̄p(ǫ,DXY )) + c−χ lnχ 1

ǫ
.

If Λ̄p(ǫ,DXY ) ≫ 1, L−1(Λ̄p(ǫ,DXY )) = o(Λ̄p(ǫ,DXY )), so Λ̄p(ǫ,DXY ) /∈ Polylog(1/ǫ) im-

plies the improvements claim, and otherwiseΛ̄a(ǫ,DXY ) ∈ Polylog(1/ǫ).

Proof of Theorem 4.4.This follows identical reasoning to the proof of Theorem 4.3, except that

instead of addingexp{−c · n1/χ} to the expected error, we simply takeΛa(2ǫ, 2δ,DXY ) =

max{L−1(Λp(ǫ, δ,DXY )), c−χ lnχ(1/δ)} to ensure the failure probability for the aforementioned

events is at mostδ. ForΛp(ǫ, δ,DXY ) ≫ 1 this is effectively not a restriction at all for smallǫ,

and otherwise we still haveΛa(ǫ, 2δ,DXY ) = O(1).

Lemma 4.18.Let ĥ be the classifier returned by Meta-Algorithm 6, when

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, andDXY ∈ BenignNoise(C). Then for anyn ∈ N, there is some

En = o(n−1/2) such that, on an event̃H ′
n ⊆ H̃n with P(H̃ ′

n) ≥ P(H̃n)− δ/2,

er(ĥ)− ν ≤ En.

Proof. For brevity, we introduce the notationQk = {x : k′(x) > k}, where as beforek′(x) =

min{k′ : ∆̂(k′)(x,U2) < 1− γ}.

First note that, by Alexander’s results on uniform convergence [Alexander, 1984, Devroye et al.,
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1996], combined with a union bound, on an eventH̃ ′′
n of probability1− δ/2, everyh ∈ C has

∀k, |er(h|Qk)− erQk
(h)| ≤

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

Define H̃ ′
n = H̃n ∩ H̃ ′′

n, and for the remainder of the proof we assume this event holds. In

particular, this implies everŷhk has

er(ĥk|Qk) ≤ inf
h∈C

er(h|Qk) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

Consider anyk ≤ k∗. We have (by Lemma 4.17)

er(ĥk) = P(Qk)er(ĥk|Qk)

+ P((x, y) : x /∈ Qk andη(x) = 1/2 andĥk(x) 6= y)

+ P((x, y) : x /∈ Qk andη(x) 6= 1/2 andĥk(x) = h∗(x) 6= y)

+ P((x, y) : x /∈ Qk andη(x) 6= 1/2 andĥk(x) 6= h∗(x) = y)

≤ P(Qk)

(

er(h∗|Qk) + 2
√

2048d ln(1024d)+ln(32(d+1)/δ)
|Qk|

)

+ (1/2)P(x : x /∈ Qk andη(x) = 1/2)+

P((x, y) : x /∈ Qk andη(x) 6= 1/2 andh∗(x) 6= y) + (d + 1)e−c′′n1/3

≤ P(Qk)

(

er(h∗|Qk) + 2
√

2048d ln(1024d)+ln(32(d+1)/δ)
|Qk|

)

+ er(h∗|X \Qk)P(X \Qk) + (d + 1)e−c′′n1/3

≤ ν + P(Qk)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋ + (d + 1)e−c′′n1/3

.

Now there are two cases to consider. In the first case,k∗ ≤ k̂. In this case, we have
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er(ĥk̂)− er(ĥk∗)

= P(Qk∗)
(

er(ĥk̂|Qk∗)− er(ĥk∗|Qk∗)
)

≤ P(Qk∗)

(

erQk∗
(ĥk̂)− erQk∗

(ĥk∗) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk∗|

)

≤ P(Qk∗)7

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk̂|

Therefore,

er(ĥk̂)− ν ≤ er(ĥk∗)− ν + P(Qk∗)7

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋

≤ P(Qk∗)9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ ∆̄(k∗)
n (U2)9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ ∆̆(k∗)
n 9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2d+1)⌋ + (d + 1)e−c′′n1/3

.

Since∆̆
(k∗)
n = o(1) (by definition in Lemma 4.17), this last quantity iso(n−1/2).

On the other hand, supposek̂ < k∗. If P(Qk̂) = 0, then the aforementioned bound on excess

error implies the result. Otherwise, fork = k̂ + 1, ∃j ≤ k̂ such that
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5

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋

< erQj
(ĥk)− erQj

(ĥj)

≤ er(ĥk|Qj)− er(ĥj|Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj |

= P((x, y) : ĥk(x) 6= y andη(x) 6= 1/2|Qk)P(Qk|Qj)

+ P((x, y) : ĥk(x) 6= y andη(x) 6= 1/2 andx /∈ Qk|x ∈ Qj)

− P((x, y) : ĥj(x) 6= y andη(x) 6= 1/2|x ∈ Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj|

≤ P(Qk|Qj)P((x, y) : ĥk(x) 6= y andη(x) 6= 1/2|Qk)

+ P((x, y) : ĥk(x) 6= y andη(x) 6= 1/2 andx /∈ Qk|x ∈ Qj)

− P((x, y) : h∗(x) 6= y andη(x) 6= 1/2|x ∈ Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj|

= P(Qk|Qj)(er(ĥk|Qk)− er(h∗|Qk))

+ P((x, y) : ĥk(x) 6= y andη(x) 6= 1/2 andx /∈ Qk|x ∈ Qj)

− P((x, y) : h∗(x) 6= y andη(x) 6= 1/2 andx /∈ Qk|x ∈ Qj)

+ 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2j)⌋

≤ P(Qk|Qj)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋

+ P(x : ĥk(x) 6= h∗(x) andη(x) 6= 1/2 andx /∈ Qk)/P(Qj)

+ 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2j)⌋

≤ 4

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋ + (d + 1)e−c′′n1/3

/P(Qk̂)
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In particular, this implies

P(Qk̂) ≤ (d + 1)e−c′′n1/3

√

⌊2n/(3 · 2k̂+1)⌋
2048d ln(1024d) + ln(32(d + 1)/δ)

.

Therefore,

er(ĥk̂)− ν ≤ P(Qk̂)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ (1 +
√

2)(d + 1)e−c′′n1/3

= o(n−1/2).

Proof of Theorem 4.8.This result now follows directly from Lemma 4.18. That is, for suffi-

ciently largen (say n > s, for somes ∈ N), P(H̃n) ≤ δ/2, so with probability1 − δ,

er(ĥ) − ν ≤ En. We can defineE′
n = 1 for n ≤ s, andEn for n > s. Then we have for

all n, with probability1 − δ, er(ĥ) − ν ≤ E′
n = o(n−1/2). Thus, the algorithm obtains a label

complexity

Λa(ǫ + ν, δ,DXY ) ≤ 1 + sup
n∈N

n1[E′
n ≥ ǫ].

Now defineE′′
n = E′

n + 2−n = o(n−1/2). Then

lim
ǫց0

ǫ2Λa(ǫ + ν, δ,DXY ) ≤ lim
ǫց0

ǫ2(1 + sup
n∈N

n1[E′′
n ≥ ǫ])

= lim
ǫց0

ǫ2 sup
n∈N,n≥⌊log2(1/ǫ)⌋

n1[E′′
n ≥ ǫ]

≤ lim
ǫց0

ǫ2 sup
n∈N,n≥⌊log2(1/ǫ)⌋

n
(E′′

n)2

ǫ2

= lim
ǫց0

sup
n∈N,n≥⌊log2(1/ǫ)⌋

n(E′′
n)2

= lim sup
n→∞

n(E′′
n)2 =

(

lim sup
n→∞

√
nE

′′
n

)2

= 0.

Therefore,Λa(ǫ + ν, δ,DXY ) = o(1/ǫ2), as claimed.
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Chapter 5

Beyond Label Requests: A General

Framework for Interactive Statistical

Learning

In this chapter, I describe a general framework in which a learning algorithm is tasked with learn-

ing some concept from a known class by interacting with a teacher via questions. Each question

has an arbitrary known cost associated with it, which the learner is required to pay in order to

have the question answered. Exploring the information-theoretic limits of this framework, I de-

fine a notion called thecost complexityof learning, analogous to traditional notions of sample

complexity. I discuss this topic for the Exact Learning setting as well as PAC Learning with a

pool of unlabeled examples. In the former case, the learner is allowed to askanyquestion, while

in the latter case, all questions must concern the target concept’s behavior on a set of unlabeled

examples. In both settings, I derive upper and lower bounds on the cost complexity of learning,

based on a combinatorial quantity I call theGeneral Identification Cost.
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5.1 Introduction

The ability to ask questions to a knowledgeable teacher can make learning easier. This fact is no

secret to any elementary school student. But how much easier? Some questions are more difficult

for the teacher to answer than others. How much inconvenience must even the most conscientious

learner cause to a teacher in order to learn a concept? This chapter explores these and related

questions about the fundamental advantages and limitations of learning by interaction.

In machine learning research, it is becoming increasingly apparent that well-designed inter-

active learning algorithms can provide valuable improvements in learning performance while

reducing the amount of effort required of a human annotator.This research has mainly focused

on two formal settings of learning: Exact Learning by queries and pool-based Active PAC Learn-

ing. Informally, the objective in the setting of Exact Learning by queries is to perfectly identify

a target concept (classifier) by asking questions. In contrast, the pool-based Active PAC setting

is concerned only with approximating the concept with high probability with respect to an un-

known distribution on the set of possible instances. In thislatter setting, the learning algorithm

is restricted to asking only questions that relate to the concept’s behavior on a particular set of

unannotated instances drawn independently from the unknown distribution.

In this chapter, I study both of these active learning settings under a broad definition. Specif-

ically, I consider a learning protocol in which the learner can askanyquestion, but each possible

question has an associatedcost. For example, a query of the form “what is the label of example

x” might cost $1, while a query of the form “show me a positive example” might cost $10. The

objective is to learn the concept while minimizing the totalcostof queries made. One would like

to know how much cost even the most clever learner might be required to pay to learn a concept

from a particular concept space in the worst case. This can beviewed as a generalization of

notions ofsample complexityor query complexityfound in the learning theory literature. I refer

to this best worst case cost as thecost complexityof learning. This quantity is defined without

reference to computational feasibility, focusing insteadon the information-theoretic boundaries
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of this setting (in the limit of unbounded computation). Below, I derive bounds on the cost com-

plexity of learning, as a function of the concept space and cost function, for both Exact Learning

from queries and pool-based Active PAC Learning.

Section 5.2 formally introduces the setting of Exact Learning from queries, describes some

related work, and defines cost complexity for that setting. It also serves to introduce the notation

and fundamental definitions used throughout this chapter. The section closely parallels the work

of Balcázar et al. [Balcázar et al., 2001]. The primary contribution of Section 5.2 is a derivation

of upper and lower bounds on the cost complexity of Exact Learning from queries. This is

followed, in Section 5.3, by a formal definition of pool-baseActive PAC Learning and extension

of the notion of cost complexity to that setting. The primarycontributions of Section 5.3 include

a derivation of upper and lower bounds on the cost complexityof learning in that general setting,

as well as an interesting corollary for intersection-closed concept spaces. I know of no previous

work giving general results of this type.

5.2 Active Exact Learning

In this setting, there is aninstance spaceX andconcept spaceC onX such that anyh ∈ C is

a distinct functionh : X → {0, 1}.1 Additionally, defineC∗ = {h : X → {0, 1}}. That is,

C∗ is themost generalconcept space, containing all possible labelings ofX . In particular, any

concept spaceC is a subset ofC∗. For a particular learning problem, there is an unknowntarget

conceptf ∈ C, and the task is to identifyf using a teacher’s answers to queries made by the

learning algorithm. Formally, anactual queryis any function inQ̃ = {q̃ : C∗ → 2A
∗ \ {∅}},2

for someanswer setA∗. By a learning algorithm “making an actual query”, I mean that it selects

1All of the main results easily generalize to multiclass as well.
2The restriction that̃q(f) 6= {} is a bit like an assumption that every valid question has at least one answer for

any target concept. However, we can always define some particular answer to mean “there is no answer,” so this

restriction is really more of a notational convenience thanan assumption.
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a functionq̃ ∈ Q̃, passes it to the teacher, and the teacher returns a singleanswerã ∈ q̃(f)

wheref is the target concept. A concepth ∈ C∗ is consistentwith an answer̃a to an actual

queryq̃ if ã ∈ q̃(h). Thus, I assume the teacher always returns an answer that thetarget concept

is consistent with; however, when there are multiple such answers, the teacher may arbitrarily

select from amongst them.

Traditionally, the subject of active learning has been studied with respect to specific restricted

query types, such as membership queries, and the learning algorithm’s objective has been to

minimize thenumberof queries used to learn. However, it is often the case that learning with

these simple types of queries is difficult, but if the learning algorithm is allowed just a fewspecial

queries, learning becomes significantly easier. The reasonwe are initially reluctant to allow the

learner to ask certain types of queries is that these queriesare difficult, expensive, or sometimes

impossible to answer. However, we can incorporate this difficulty level into the framework by

assigning each query type a specificcost, and then allowing the learning algorithm to explicitly

optimize thecostneeded to learn, rather than thenumberof queries. In addition to allowing the

algorithm to trade off between different types of queries, this also gives us the added flexibility to

specify different costs within the same family (e.g., perhaps some membership queries are more

expensive than others).

Formally, in this framework there is acost function. Let α > 0 be a constant. A cost

function is anyc : Q̃→ (α,∞]. In practice,c would typically be defined by the user responsible

for answering the queries, and could be based on the time, resources, or operating expenses

necessary to obtain the answer. Note that if a particular type of query is unanswerable for a

particular application, or if the user wishes to work with a reduced set of possible queries, one

can always define the costs of those undesirable query types to be∞, so that any reasonable

learning algorithm ignores them if possible.

While the notion ofactual queryclosely corresponds to the actual mechanism of querying in

practice, it will be more convenient to work with the information-theoretic implications of these
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queries. Define the set ofeffective queriesQ = {q : C∗ → 22C
∗

\ {∅}|∀f ∈ C∗, a ∈ q(f) ⇒

[f ∈ a ∧ ∀h ∈ a, a ∈ q(h)]}. Each effective query corresponds to an equivalence class of actual

queries, defined by mapping any answer to the set of concepts consistent with it. We can thus

define the mapping

E(q) = {q̃|q̃ ∈ Q̃, ∀f ∈ C∗, [∃ã ∈ q̃(f) with a = {h|h ∈ C∗, ã ∈ q̃(h)}]⇔ a ∈ q(f)}.

By an algorithm “making an effective queryq,” I mean that it makes an actual query inE(q),3 (a

good algorithm will pick a cheaper actual query). For the purpose of this best-worst-case

analysis, the following definition is appropriate. For a cost functionc, define a corresponding

effective cost function(overloading notation)c : Q → [α,∞], such that

∀q ∈ Q, c(q) = inf q̃∈E(q) c(q̃). The following definitions illustrate how query types can be

defined using effective queries.

A positive example queryis anyq̃ ∈ E(qS) for someS ⊆ X , such thatqS ∈ Q is defined by

∀f ∈ C∗ s.t. [∃x ∈ S : f(x) = 1], qS(f) = {{h|h ∈ C∗, h(x) = 1}|x ∈ S : f(x) = 1}, and

∀f ∈ C∗ s.t. [∀x ∈ S, f(x) = 0], qS(f) = {{h|h ∈ C∗ : ∀x ∈ S, h(x) = 0}}.

A membership queryis anyq̃ ∈ E(q{x}) for somex ∈ X . This special case of a positive

example query can equivalently be defined by∀f ∈ C∗, q{x}(f) = {{h|h ∈ C∗, h(x) = f(x)}}.

These effectively correspond to asking for any example labeled 1 inS or an indication that there

are none (positive example query), and asking for the label of a particular example inX

(membership query). I will refer to these two query types in subsequent examples, but the

reader should keep in mind that the theorems below apply toall types of queries.

Additionally, it will be useful to have a notion of aneffective oracle, which is an unknown

function defining how the teacher will answer the various queries. Formally, an effective oracle

T is any function inT = {T : Q → 2C∗|∀q ∈ Q, T (q) ∈ ∪f∈C∗q(f)}.4 For convenience, I also

3I assumeA∗ is sufficiently expressive so that∀q ∈ Q, E(q) 6= ∅; alternatively, we could defineE(q) = ∅ ⇒

c(q) = ∞ without sacrificing the main theorems. Additionally, I willassume that it is possible to find an actual

query inE(q) with cost arbitrarily close toinf q̃∈E(q) c(q̃) for anyq ∈ Q using finite computation.
4An effective oracle corresponds to a deterministic stateless teacher, which gives up as little information as
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overload this notation, defining for a set of queriesR ⊆ Q, T (R) = ∩q∈RT (q).

Definition 5.1. A learning algorithmA for C using cost functionc is any algorithm which, for

any (unknown) target conceptf ∈ C, by a finite number of finite cost actual queries, is

guaranteed to reduce the set of concepts inC consistent with the answers to precisely{f}. A

concept spaceC is learnablewith cost functionc using total costt if there exists a learning

algorithm forC usingc guaranteed to have the sum of costs of the queries it makes at mostt.

Definition 5.2. For any instance spaceX , concept spaceC onX , and cost functionc, define

thecost complexity, denoted CostComplexity(C, c), as the infimumt ≥ 0 such thatC is

learnable with cost functionc using total cost no greater thant.

5Equivalently, we can define cost complexity using the following recurrence. If|C| = 1,

CostComplexity(C, c) = 0. Otherwise,

CostComplexity(C, c) = inf
q̃∈Q̃

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity({h|h ∈ C, ã ∈ q̃(h)}, c)

Since

inf
q̃∈Q̃

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity({h|h ∈ C, ã ∈ q̃(h)}, c)

= inf
q∈Q

inf
q̃∈E(q)

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity(C ∩ {h|h ∈ C∗, ã ∈ q̃(h)}, c)

= inf
q∈Q

c(q) + max
f∈C,a∈q(f)

CostComplexity(C ∩ a, c),

we can equivalently define cost complexity in terms ofeffective queriesandeffective cost. That

is, CostComplexity(C, c) is the infimumt ≥ 0 such that there is an algorithm guaranteed to

identify anyf ∈ C usingeffectivequeries with total ofeffectivecosts no greater thant.

possible. It is also possible to analyze a setting in which asking two queries from the same equivalence class, or

asking the same question twice, can possibly lead to two different answers. However, the worst case in both settings

is identical, so the worst case results obtained for this setting also apply to the more general case.
5I have made the dependence ofA on the teacher implicit. To be formally correct,A should have the teacher’s

effective oracleT as input, and is guaranteed to outputf for anyT ∈ T s.t. ∀q ∈ Q, T (q) ∈ q(f). Cost is then a

book-keeping device recording howA usesT during execution.
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5.2.1 Related Work

There have been a relatively large number of contributions to the study of Exact Learning from

queries. In particular, much interest has been given to settings in which the learning algorithm is

restricted to a few specific types of queries (e.g. membership queries and equivalence queries).

However, these contributions focus entirely on thenumberof queries needed, rather thancost.

The most relevant work in this area is by Balcázar, Castro, and Guijarro [Balcázar et al., 2001].

Prior to publication of [Balcázar and Castro, 2002], therewere a variety of publications in

which the learning algorithm could use some specific set of queries, and which derived bounds

on the number of queries any algorithm might be required to make in the worst case in order to

learn. For example, [Hellerstein et al., 1996] analyzed thecombination of membership and

proper equivalence queries, [Hegedüs, 1995] additionally analyzed learning from membership

queries alone, while [Balcázar et al., 1999] considered learning from just proper equivalence

queries. Amidst these various special case analyses, somewhat surprisingly, Balcázar et al.

[Balcázar and Castro, 2002] discovered that the query complexity bounds derived in these

works were all special cases of a single general theorem, applying to the broad class of

sample-based queries. They further generalized this result in [Balcázar et al.,2001], giving

results that apply to any combination ofanyquery types. That work defines an abstract

combinatorial quantity, which they call theGeneral Dimension, which provides a lower bound

on the query complexity, and is within a log factor of it. Furthermore, the General Dimension

can actually be computed for a variety of interesting combinations of query types. Until now

there has not been any analysis I know of that considers learning with all query types, but giving

each query a cost, and bounding the worst-casecostthat a learning algorithm might be required

to incur. In particular, the analysis of the next subsectioncan be viewed as a generalization of

[Balcázar et al., 2001] to add this notion of cost, such that[Balcázar et al., 2001] represents the

special case of cost that is uniformly 1 on a particular set ofqueries and∞ on all other queries.
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5.2.2 Cost Complexity Bounds

I now turn to the subject of exploring the fundamental limitsof interactive learning in terms of

cost. This discussion closely parallels that of Balcázar,Castro, and Guijarro [Balcázar et al.,

2001].

Definition 5.3. For any instance spaceX , concept spaceC onX , and cost functionc, define

theGeneral Identification Cost, denotedGIC(C, c), as follows.

GIC(C, c) = inf{t|t ≥ 0, ∀T ∈ T , ∃R ⊆ Q, s.t.[
∑

q∈R
c(q) ≤ t] ∧ [|C ∩ T (R)| ≤ 1]}

We can also express this asGIC(C, c) = supT∈T infR⊆Q:|C∩T (R)|≤1

∑

q∈R
c(q). Note that

calculating this corresponds to a much simpler optimization problem than calculating the cost

complexity. The General Identification Cost is a direct generalization of the General Dimension

of [Balcázar et al., 2001], which itself generalizes quantities such as Extended Teaching

Dimension [Hegedüs, 1995], Strong Consistency Dimension[Balcázar et al., 1999], and the

Certificate Sizes of [Hellerstein et al., 1996]. It can be interpreted as a sort of game. This game

is similar to the usual setting, except that the teacher’s answers are not restricted to be consistent

with a concept. Imagine there is a helpful spy who knows precisely how the teacher will

respond to every query. The spy is able to suggest queries to the learner, and wishes to cause the

learner to pay as little as possible. If the spy is sufficiently clever at suggesting queries, and the

learner follows every suggestion by the spy, then after asking some minimal cost set of queries

the learner can narrow the set of concepts inC consistent with the answers down to at most one.

The General Identification Cost is precisely the worst case limiting cost the learner might be

forced to pay during this process, no matter how clever the spy is at suggesting queries.

Lemma 5.4. For any instance spaceX , concept spaceC onX , and cost functionc, if V ⊆ C,

thenGIC(V, c) ≤ GIC(C, c).

Proof. It clearly holds ifGIC(C, c) =∞. If GIC(C, c) < k, then∀T ∈ T , ∃R ⊆ Q s.t.
∑

q∈R
c(q) < k and1 ≥ |C ∩ T (R)| ≥ |V ∩ T (R)|, and thereforeGIC(V, c) < k. The limit as

k → GIC(C, c) gives the result.
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Lemma 5.5. For anyγ > 0, instance spaceX , finite concept spaceC onX with |C| > 1, and

cost functionc such thatGIC(C, c) <∞, ∃q ∈ Q such that∀T ∈ T ,

|C \ T (q)| ≥ c(q)
|C| − 1

GIC(C, c) + γ
.

That is, regardless of which answer the teacher picks, thereare at leastc(q) |C|−1
GIC(C,c)+γ

concepts

in C inconsistent with the answer.

Proof. Suppose∀q ∈ Q, ∃Tq ∈ T such that|C \ Tq(q)| < c(q) |C|−1
GIC(C,c)+γ

. Then define an

effective oracleT with the property that∀q ∈ Q, T (q) = Tq(q). We have thus defined an oracle

such that∀R ⊆ Q,
∑

q∈R
c(q) ≤ GIC(C, c) + γ ⇒

|C ∩ T (R)| = |C| − |C \ T (R)| ≥ |C| −
∑

q∈R

|C \ Tq(q)|

> |C| −
∑

q∈R

c(q)
|C| − 1

GIC(C, c) + γ
≥ |C| − (GIC(C, c) + γ)

|C| − 1

GIC(C, c) + γ
= 1.

In particular, this contradicts the definition ofGIC(C, c).

This brings us to the main theorem of this section.

Theorem 5.6.For any instance spaceX , concept spaceC onX , and cost functionc,

GIC(C, c) ≤ CostComplexity(C, c) ≤ GIC(C, c) log2 |C|

Proof. I begin with the lower bound. Letk < GIC(C, c). By definition ofGIC, ∃T ∈ T , such

that∀R ⊆ Q,
∑

q∈R
c(q) ≤ k ⇒ |C ∩ T (R)| > 1. In particular, this implies that an adversarial

teacher can answer any sequence of queries with cost no greater thank in a way that leaves at

least 2 concepts inC consistent with the answers, either of which could be the target conceptf .

This impliesCostComplexity(C, c) > k. The limit ask → GIC(C, c) gives the bound.

Next I prove the upper bound. IfGIC(C, c) =∞ or |C| =∞, the bound holds vacuously, so

let us assume these are finite. Say the teacher’s answers correspond to some effective oracle
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T ∈ T . Consider a recursive algorithmAγ that makes effective queries fromQ.6 If |C| = 1,

thenAγ halts and outputs the single remaining concept. Otherwise,let q be an effective query

having the property guaranteed by Lemma 5.5. That is,|C \ T (q)| ≥ c(q) |C|−1
GIC(C,c)+γ

. Defining

V = C ∩ T (q) (a generalized notion ofversion space), this implies that

c(q) ≤ (GIC(C, c) + γ) |C|−|V |
|C|−1

and|V | < |C|. SayAγ makes effective queryq, and then

recurses onV . In particular, we can immediately see that this algorithm identifiesf using no

more than|C| − 1 queries.

I now prove by induction on|C| thatCostComplexity(C, c) ≤ (GIC(C, c) + γ)H|C|−1, where

Hn =
∑n

i=1
1
i

is thenth harmonic number. If|C| = 1, then the cost complexity is0. For

|C| > 1,

CostComplexity(C, c)

≤c(q) + CostComplexity(V, c)

≤(GIC(C, c) + γ)
|C| − |V |
|C| − 1

+ (GIC(V, c) + γ)H|V |−1

≤(GIC(C, c) + γ)

( |C| − |V |
|C| − 1

+ H|V |−1

)

≤(GIC(C, c) + γ)H|C|−1

where the second inequality uses the inductive hypothesis along with the properties ofq

guaranteed by Lemma 5.5, and the third inequality uses Lemma5.4. Finally, noting that

H|C|−1 ≤ log2 |C| and taking the limit asγ → 0 proves the theorem.

One interesting implication of this proof is that the greedyalgorithm that choosesq to maximize

min
T∈T

|C\T (q)|
c(q)

has a cost complexity within alog2 |C| factor of optimal.

6I use the definition of cost complexity in terms of effective cost, so that we need not concern ourselves with

howAγ chooses itsactual queries. However, we could defineAγ to make actual queries with cost withinγ of the

effective query cost, so that the result still holds asγ → 0.
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5.2.3 An Example: Discrete Intervals

As a simple example of cost complexity, considerX = {1, 2, . . . , N}, for N ≥ 4,

C = {ha,b : X → {0, 1}|a, b ∈ X , a ≤ b, ∀x ∈ X , [a ≤ x ≤ b⇔ ha,b(x) = 1]}, and define an

effective cost functionc that is1 for membership queriesq{x} for anyx ∈ X , k for the positive

example queryqX where3 ≤ k ≤ N − 1, and∞ for any other queries. In this case,

GIC(C, c) = k + 1. In the spy game, say the teacher answers effective queries with an effective

oracleT . LetX+ = {x|x ∈ X , T (q{x}) = {h|h ∈ C∗, h(x) = 1}}. If X+ 6= ∅, then let

a = minX+ andb = maxX+. The spy tells the learner to make queriesq{a}, q{b}, q{a−1} (if

a > 1), andq{b+1} (if b < N). This narrows the version space to{ha,b}, at a worst-case effective

cost of 4. IfX+ = ∅, then the spy suggests queryqX . If T (qX ) = {f−}, the “all 0” concept,

then no concepts inC are consistent. Otherwise,T (qX ) = {h|h ∈ C∗, h(x) = 1} for some

x ∈ X , and the spy suggests membership queryq{x}. In this case,T (q{x}) ∩ T (qX ) = ∅, so the

worst-case cost isk + 1 (withoutqX , it would costN − 1). These are the only cases to consider,

soGIC(C, c) = k + 1. By Theorem 5.6, this implies

k + 1≤CostComplexity(C, c)≤2(k + 1) log2 N .

We can slightly improve this by noting that we only useqX once. Specifically, if a learning

algorithm begins (in the regular setting) by askingqX , revealing thatf(x) = 1 for somex ∈ X ,

then we can reduce to two disjoint learning problems, with concept spaces

C′
1 = {hx,b|b ∈ {x, . . . , N}}, andC′

2 = {ha,x|a ∈ {1, 2, . . . , x}}, with cost functions

c1(q) = c(q) for q ∈ {q{x}, q{x+1}, . . . , q{N}} and∞ otherwise, andc2(q) = c(q) for

q ∈ {q{1}, q{2}, . . . , q{x}} and∞ otherwise, and correspondingGIC(C′
1, c) ≤ 2,

GIC(C′
2, c) ≤ 2. So we can say that

CostComplexity(C, c) ≤ k + CostComplexity(C′
1, c1) + CostComplexity(C′

2, c2) ≤ k + 4 log2 N .

One algorithm that achieves this begins by making the positive example query, and then

performs binary search above and below the indicated positive example to find the boundaries.
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5.3 Pool-Based Active PAC Learning

In many scenarios, a more realistic definition of learning isthat supplied by the Probably

Approximately Correct (PAC) model. In this case, unlike theprevious section, we are interested

only in discovering with high probability a function with behavior verysimilar to the target

concept on examples sampled from some distribution. Formally, as above there is an instance

spaceX , and a concept spaceC ⊆ C∗ onX ; unlike above, there is also a distributionD overX .

As with Exact Learning, the learning algorithm interacts with a teacher by making queries.

However, in this setting the learning algorithm is given as input a finite sequence7 of unlabeled

examplesU , each drawn independently according toD, andall queriesmade by the algorithm

must concern only the behavior of the target concept on examples inU .Formally, a

data-dependent cost functionis any functionc : Q̃× 2X → (α,∞]. For a given set of unlabeled

examplesU , and data-dependent cost functionc, definecU(·) = c(·,U). Thus,cU is a cost

function in the sense of the previous section. For a givencU , the corresponding effective cost

functioncU : Q → [α,∞] is defined as in the previous section.

Definition 5.7. LetX be an instance space,C a concept space onX , andU = (x1, x2, . . . , x|U|)

a finite sequence of unlabeled examples. Define∀h ∈ C, h(U) = (h(x1), h(x2), . . . , h(x|U|)).

DefineC[U ] ⊆ C as any concept space such that∀h ∈ C, |{h′|h′ ∈ C[U ], h′(U) = h(U)}| = 1.

7I will implicitly overload all notation for sets and sequences, so that if a set is used where a sequence is required,

then an arbitrary ordering of the set is implied (though thisordering should be used consistently), and if a sequence

is used where a set is required, then the set of distinct elements of the sequence is implied.
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Definition 5.8. A sample-based cost functionis any data-dependent cost functionc such that

for all finiteU ⊆ X , ∀q ∈ Q,

cU(q) <∞⇒ ∀f ∈ C∗, ∀a ∈ q(f), ∀h ∈ C∗, [h(U) = f(U)⇒ h ∈ a].

This corresponds to queries that areaboutthe target concept’s labels on some subset ofU .

Additionally,∀U ⊆ X , x ∈ X , andq ∈ Q, c(q,U ∪ {x}) ≤ c(q,U). That is, in addition to the

above property, adding extra examples to whichq’s answers do not refer does not increase its

cost.

For example, membership queries onx ∈ U and positive examples queries onS ⊆ U could

have finite costs under a sample-based cost function. As in the previous section, there is a target

conceptf ∈ C, but unlike that section, we do not try toidentifyf , but instead attempt to

approximateit with high probability.

Definition 5.9. For instance spaceX , concept spaceC onX , distributionD onX , target

conceptf ∈ C, and concepth ∈ C, define theerror rateof h, denotederrorD(h, f), as

errorD(h, f) = PrX∼D {h(X) 6= f(X)}

Definition 5.10. For (ǫ, δ) ∈ (0, 1)2, an(ǫ, δ)-learning algorithmfor C using sample-based cost

functionc is any algorithmA taking as input a finite sequence of unlabeled examples, suchthat

for any target conceptf ∈ C and finite sequenceU , A(U) outputs a concept inC after making

a finite number of actual queries with finite costs undercU . Additionally, any(ǫ, δ)-learning

algorithmA has the property that∃m ∈ [0,∞) such that, for any target conceptf ∈ C and

distributionD onX ,

PrU∼Dm {errorD(A(U), f) > ǫ} ≤ δ.

A concept spaceC is (ǫ, δ)-learnablegiven sample-based cost functionc using total costt if

there exists an(ǫ, δ)-learning algorithmA for C usingc such that for all finite example

sequencesU , A(U) is guaranteed to have the sum of costs of the queries it makes at mostt

undercU .

134



Definition 5.11. For any instance spaceX , concept spaceC onX , sample-based cost function

c, and(ǫ, δ) ∈ (0, 1)2, define the(ǫ, δ)-cost complexity, denoted CostComplexity(C, c, ǫ, δ), as

the infimumt ≥ 0 such thatC is (ǫ, δ)-learnable givenc using total cost no greater thant.

As in the previous section, because it is thelimiting case, we can equivalently define the

(ǫ, δ)-cost complexity as the infimumt ≥ 0 such that there is an(ǫ, δ)-learning algorithm

guaranteed to have the sum ofeffectivecosts of theeffectivequeries it makes at mostt.

The main results from this section include a new combinatorial quantityGPIC(C, c, m, τ)

such that ifd is the VC-dimension ofC, then

GPIC(C, c, Θ(1
ǫ
), δ) ≤ CostComplexity(C, c, ǫ, δ) ≤ GPIC(C, c, Θ̃

(

d
ǫ

)

, 0)Θ̃(d).

5.3.1 Related Work

Previous work on pool-based active learning in the PAC modelhas been restricted almost

exclusively to uniform-cost membership queries on examples in the unlabeled setU . There has

been some recent progress on query complexity bounds for that restricted setting. Specifically,

Dasgupta [Dasgupta, 2004] analyzes a greedy active learning scheme and derives bounds for the

number of membership queries inU it uses under anaverage casesetting, in which the target

concept is selected randomly from a known distribution. A similar type of analysis was

previously given by Freund et al. [Freund et al., 1997] to prove positive results for the Query by

Committee algorithm. In a subsequent paper, Dasgupta [Dasgupta, 2005] derives upper and

lower bounds on the number of membership queries inU required for active learning for any

particular distributionD, under the assumption thatD is known. The results I derive in this

section implyworst-caseresults (over bothD andf ) for this as a special case of more general

bounds applying toanysample-based cost function.

5.3.2 Cost Complexity Upper Bounds

I now derive bounds on the cost complexity of pool-based Active PAC Learning.
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Definition 5.12. For an instance spaceX , concept spaceC onX , sample-based cost functionc,

and nonnegative integerm, define theGeneral Identification Cost Growth Function, denoted

GIC(C, c, m), as follows.

GIC(C, c, m) = sup
U∈Xm

GIC(C[U ], cU)

Definition 5.13. For any instance spaceX , concept spaceC onX , and(ǫ, δ) ∈ (0, 1)2, let

M(C, ǫ, δ) denote thesample complexityof C (in the classicpassive learningsense), or the

smallestm such that there is an algorithmA taking as input a set of examplesL and labels, and

outputting a classifier(without making any queries), such that for anyD andf ∈ C,

PrL∼Dm {errorD(A(L, f(L)), f) > ǫ} ≤ δ.

It is known (e.g., [Anthony and Bartlett, 1999]) that

max{d−1
32ǫ

, 1
2ǫ

ln 1
δ
} ≤M(C, ǫ, δ) ≤ 4d

ǫ
ln 12

ǫ
+ 4

ǫ
ln 2

δ

for 0 < ǫ < 1/8, 0 < δ < .01, andd ≥ 2, whered is the VC-dimension ofC. Furthermore,

Warmuth has conjectured [Warmuth, 2004] thatM(C, ǫ, δ) = Θ(1
ǫ
(d + log 1

δ
)).

With these definitions in mind, we have the following novel theorem.

Theorem 5.14.For any instance spaceX , concept spaceC onX with VC-dimension

d ∈ (0,∞), sample-based cost functionc, ǫ ∈ (0, 1), andδ ∈ (0, 1
2
), if m = M(C, ǫ, δ), then

CostComplexity(C, c, ǫ, δ) ≤ GIC(C, c, m)d log2
em
d

Proof. For the unlabeled sequence, sampleU ∼ Dm. If GIC(C, c, m) =∞, then the upper

bound holds vacuously, so let us assume this is finite. Also,d ∈ (0,∞) implies|U| ∈ (0,∞)

[Anthony and Bartlett, 1999]. By definition ofM(C, ǫ, δ), there exists a (passive learning)

algorithmA such that∀f ∈ C, ∀D,PrU∼Dm{errorD(A(U , f(U)), f) > ǫ} ≤ δ. Therefore any

algorithm that, by a finite sequence of effective queries with finite cost undercU , identifiesf(U)

and then outputsA(U , f(U)), is an(ǫ, δ)-learning algorithm forC usingc.

Suppose now that there is aghost teacher, who knows the teacher’s target conceptf ∈ C. The

ghost teacher uses theh ∈ C[U ] with h(U) = f(U) as its target concept. In order to answer any
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actual queries̃q ∈ Q̃ with cU(q̃) <∞, the ghost teacher simply passes the query to the real

teacher and then answers the query using the real teacher’s answer. This answer is guaranteed to

be valid becausecU is a sample-based cost function. Thus, identifyingf(U) can be

accomplished by identifyingh(U), which can be accomplished by identifyingh. The task of

identifyingh can be reduced to anExact Learningtask with concept spaceC[U ] and cost

functioncU , where the teacher for the Exact Learning task is the ghost teacher. Therefore, by

Theorem 5.6, the total cost required to identifyf(U) with a finite sequence of queries is no

greater than

CostComplexity(C[U ], cU) ≤ GIC(C[U ], cU) log2 |C[U ]| ≤ GIC(C[U ], cU)d log2

|U|e
d

, (5.1)

where the last inequality is due to Sauer’s Lemma (e.g., [Anthony and Bartlett, 1999]). Finally,

taking the worst case (supremum) over allU ∈ Xm completes the proof.

Note that (5.1) also implies a data-dependent bound, which could potentially be useful for

practical applications in which the unlabeled examples areavailable when bounding the cost. It

can also be used to state a distribution-dependent bound.

5.3.3 An Example: Intersection-Closed Concept Spaces

As an example application, we can use the above theorem to prove new results for any

intersection-closed concept space8 as follows.

8An intersection-closed concept spaceC has the property that for anyh1, h2 ∈ C, there is a concepth3 ∈ C

such that∀x ∈ X , [h1(x) = h2(x) = 1 ⇔ h3(x) = 1]. For example, conjunctions and axis-aligned rectangles are

intersection-closed.
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Lemma 5.15.For any instance spaceX , intersection-closed concept spaceC with

VC-dimensiond ≥ 1, sample-based cost functionc such that membership queries inU have

cost≤ µ (i.e.,∀U ⊆ X , x ∈ U , cU(q{x}) ≤ µ) and positive example queries inU have cost≤ κ

(i.e.,∀U ⊆ X , S ⊆ U , cU(qS) ≤ κ), and integerm ≥ 0,

GIC(C, c, m) ≤ κ + µd

Proof. Say we have some set of unlabeled examplesU , and consider bounding the value of

GIC(C[U ], cU). In the spy game, suppose the teacher is answering with effective oracleT ∈ T .

LetU+ = {x|x ∈ U , T (q{x}) = {h|h ∈ C∗, h(x) = 1}}. The spy first tells the learner to make

theqU\U+
query (ifU \ U+ 6= ∅). If ∃x ∈ U \ U+ s.t.T (qU\U+

) = {h|h ∈ C∗, h(x) = 1}, then

the spy tells the learner to make effective queryq{x} for thisx, and there are no concepts in

C[U ] consistent with the answers to these two queries; the total effective cost for this case is

κ + µ. If this is not the case, but|U+| = 0, then there is at most one concept inC[U ] consistent

with the answer toqU\U+
: namely, theh ∈ C[U ] with h(x) = 0 for all x ∈ U , if there is such an

h. In this case, the cost is justκ.

Otherwise, let̄S be a largest subset ofU+ such that∃h ∈ C with ∀x ∈ S̄, h(x) = 1. If S̄ = ∅,

then making any membership query inU+ leaves all concepts inC[U ] inconsistent (at costµ),

so let us assumēS 6= ∅. For anyS ⊆ X , define

CLOS(S) = {x|x ∈ X , ∀h ∈ C, [∀y ∈ S, h(y) = 1]⇒ h(x) = 1}

theclosureof S. Let S̄ ′ be a smallest subset of̄S such thatCLOS(S̄ ′) = CLOS(S̄), known as

aminimal spanning setof S̄ [Helmbold et al., 1990]. The spy now tells the learner to make

queriesq{x} for all x ∈ S̄ ′.

Any concept inC consistent with the answer toqU\U+ must label everyx ∈ U \ U+ as 0. Any

concept inC consistent with the answers to the membership queries onS̄ ′ must label every

x ∈ CLOS(S̄ ′) = CLOS(S̄) ⊇ S̄ as 1. Additionally, every concept inC that labels every

x ∈ S̄ as 1 must label everyx ∈ U+ \ S̄ as 0, sincēS is defined to be maximal. This labeling of

138



these three sets completely defines a labeling ofU , and as such there is at most oneh ∈ C[U ]

consistent with the answers to all queries made by the learner. Helmbold, Sloan, and Warmuth

[Helmbold et al., 1990] proved that, for an intersection-closed concept space with

VC-dimensiond, for any setS̄, all minimal spanning sets of̄S have size at mostd. This implies

the learner makes at mostd membership queries inU , and thus has a total cost of at most

κ + µd.

Corollary 5.16. Under the conditions of Lemma 5.15, ifd ≥ 10, then for0 < ǫ < 1, and

0 < δ < 1
2
,

CostComplexity(C, c, ǫ, δ) ≤ (κ + µd)d log2

(

e

d
max

{

16d

ǫ
ln d,

6

ǫ
ln

28

δ

})

Proof. This follows from Theorem 5.14, Lemma 5.15, and Auer & Ortner’s result

[Auer and Ortner, 2004] that for intersection-closed concept spaces withd ≥ 10,

M(C, ǫ, δ) ≤ max
{

16d
ǫ

ln d, 6
ǫ
ln 28

δ

}

.

For example, consider the concept space of axis-parallel hyper-rectangles inX = Rn,

C = {h : X → {0, 1}|∃((a1, b1), (a2, b2), . . . , (an, bn)) : ∀x ∈ Rn, h(x) = 1⇔ ∀i ∈

{1, 2, . . . , n}, ai ≤ xi ≤ bi}. One can show that this is an intersection-closed concept space

with VC-dimension2n. For a sample-based cost functionc of the form stated in Lemma 5.15,

we have thatCostComplexity(C, c, ǫ, δ) ≤ Õ ((κ + nµ)n). Unlike the example in the previous

section, if all other query types have infinite cost, then forn ≥ 2 there are distributions that

force any algorithm achieving this bound for smallǫ andδ to use multiple positive example

queriesqS with |S| > 1. In particular, for finite constantκ, this is an exponential improvement

over the cost complexity of PAC active learning with only uniform cost membership queries on

U .
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5.3.4 A Cost Complexity Lower Bound

At first glance, it might seem thatGIC(C, c,
⌈

1−ǫ
ǫ

⌉

) could be a lower bound on

CostComplexity(C, c, ǫ, δ). In fact, one can show this is true forδ < ( ǫd
e
)d. However, there are

simple examples for which this is not a lower bound for general ǫ andδ.9 We therefore require a

slight modification ofGIC to introduce dependence onδ.

Definition 5.17. For an instance spaceX , finite concept spaceC onX , cost functionc, and

δ ∈ [0, 1), define theGeneral Partial Identification Cost, denotedGPIC(C, c, δ) as follows.

GPIC(C, c, δ) = inf{t|t ≥ 0, ∀T ∈ T , ∃R ⊆ Q, s.t. [
∑

q∈R
c(q) ≤ t]∧[|C∩T (R)| ≤ δ|C|+1]}

Definition 5.18. For an instance spaceX , concept spaceC onX , sample-based cost function

c, non-negative integerm, andδ ∈ [0, 1), define theGeneral Partial Identification Cost Growth

Function, denotedGPIC(C, c, m, δ), as follows.

GPIC(C, c, m, δ) = sup
U∈Xm

GPIC(C[U ], cU , δ)

It is easy to see thatGIC(C, c) = GPIC(C, c, 0) andGIC(C, c, m) = GPIC(C, c, m, 0), so

that all of the above results could be stated in terms ofGPIC.

Theorem 5.19.For any instance spaceX , concept spaceC onX , sample-based cost function

c, (ǫ, δ) ∈ (0, 1)2, and anyV ⊆ C,

GPIC(V, c,
⌈

1−ǫ
ǫ

⌉

, δ) ≤ CostComplexity(C, c, ǫ, δ)

Proof. Let S ⊆ X be a set with1 ≤ |S| ≤
⌈

1−ǫ
ǫ

⌉

, and letDS be the uniform distribution onS.

Thus,errorDS
(h, f) ≤ ǫ⇔ h(S) = f(S). I will show that any algorithmA guaranteeing

PrU∼Dm
S
{errorDS

(A(U), f) > ǫ} ≤ δ cannot also guarantee cost strictly less than

GPIC(V [S], cS, δ). If δ|V [S]| ≥ |V [S]| − 1, the result is clear since no algorithm guarantees

cost less than 0, so assumeδ|V [S]| < |V [S]| − 1. SupposeA is an algorithm that guarantees,

9The infamous “Monty Hall” problem is an interesting exampleof this. For another example, considerX =

{1, 2, . . . , N}, C = {hx|x ∈ X , ∀y ∈ X , hx(y) = I[x = y]}, and cost that is 1 for membership queries inU and

infinite for other queries. AlthoughGIC(C, c, N) = N − 1, it is possible to achieve better thanǫ = 1
N+1 with

probability close toN−2
N−1 using cost no greater thanN − 2.
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for every finite sequenceU of elements fromS, A(U) incurs total cost strictly less than

GPIC(V [S], cS, δ) undercU (and therefore also undercS). By definition ofGPIC, ∃T̂ ∈ T

such that for any set of queriesR thatA(U) makes,|V [S] ∩ T̂ (R)| > δ|V [S]|+ 1. I now

proceed by the probabilistic method. Say the teacher draws the target conceptf uniformly at

random fromV [S], and∀q ∈ Q s.t.f ∈ T̂ (q), answers witĥT (q). Any q ∈ Q such that

f /∈ T̂ (q) can be answered with an arbitrarya ∈ q(f). Let hU = A(U); let RU denote the set of

queriesA(U) would make ifall queries were answered witĥT .

Ef [PrU∼Dm
S
{errorDS

(A(U), f) > ǫ}]

=EU∼Dm
S
[Prf{hU(S) 6= f(S)}]

≥EU∼Dm
S
[Prf{hU(S) 6= f(S) ∧ f ∈ T̂ (RU)}]

≥ min
U∈Sm

|V [S] ∩ T̂ (RU)| − 1

|V [S]| > δ.

Therefore, there exists a deterministic method for selectingf and answering queries such that

PrU∼Dm
S
{errorDS

(A(U), f) > ǫ} > δ. In particular, this proves that there are no(ǫ, δ)-learning

algorithms that guarantee cost strictly less thanGPIC(V [S], cS, δ). Taking the supremum over

setsS completes the proof.

Corollary 5.20. Under the conditions of Theorem 5.19,

GPIC(C, c,
⌈

1−ǫ
ǫ

⌉

, δ) ≤ CostComplexity(C, c, ǫ, δ).

Equipped with Theorem 5.19, it is straightforward to prove the claim made in Section 5.3.3 that

there are distributions forcing any(ǫ, δ)-learning algorithm for Axis-parallel rectangles using

only membership queries (at costµ) to payΩ(µ(1−δ)
ǫ

). The details are left as an exercise.

5.4 Discussion and Open Problems

Note that the usual “query counting” analysis done for Active Learning is a special case of cost

complexity (uniform cost 1 on the allowed queries, infinite cost on the others). In particular,

Theorem 5.14 can easily be specialized to give a worst-case bound on the query complexity for
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the widely studied setting in which the learner can make anymembership querieson examples

in U [Dasgupta, 2005]. However, for this special case, one can derive a slightly tighter bound.

Following the proof technique of Hegedüs [Hegedüs, 1995], one can show that for any

sample-based cost functionc such that∀U ⊆ X , q ∈ Q,

cU(q) <∞⇒ [cU(q) = 1 ∧ ∀f ∈ C∗, |q(f)| = 1], CostComplexity(C, cX ) ≤ 2GIC(C,cX ) log2 |C|
log2 GIC(C,cX )

.

This implies for the PAC setting thatCostComplexity(C, c, ǫ, δ) ≤ 2GIC(C,c,m)d log2 m
log2 GIC(C,c,m)

, for

VC-dimensiond ≥ 3 andm = M(C, ǫ, δ). This includes the cost function assigning 1 to

membership queries onU and∞ to all others.

Active Learning in the PAC model is closely related to the topic of Semi-Supervised Learning.

Balcan & Blum [Balcan and Blum, 2005] have recently derived avariety of sample complexity

bounds for Semi-Supervised Learning. Many of the techniques can be transfered to the

pool-based Active Learning setting in a fairly natural way.Specifically, suppose there is a

quantitative notion of “compatibility” between a concept and a distribution, which can be

estimated from a finite unlabeled sample. If we know the target concept is highly compatible

with the data distribution, we can draw enough unlabeled examples to estimate compatibility,

then identify and discard those concepts that are probably highly incompatible. The set of

highly compatible concepts may be significantly less expressive, therefore reducingboththe

number of examples for which an algorithm must learn the labels to guarantee generalization

and the number of labelings of those examples the algorithm mustdistinguish between, thereby

also reducing the cost complexity.

There are a variety of interesting extensions of this framework worth pursuing. Perhaps the

most natural direction is to move into the agnostic PAC framework, which has thus far been

quite elusive for active learning except for a few results [Balcan et al., 2006, Kääriäinen, 2005].

Another possibility is to derive cost complexity bounds when the costc is a function of not only

the query, but also the target concept. Then every time the learning algorithm makes a queryq,

it is chargedc(q, f), but does not necessarily know what this value is. However, it can always

142



upper bound the total cost so far by the worst case over concepts in the version space. Can

anything interesting be said about this setting (or variants), perhaps under some benign

smoothness constraints onc(q, ·)? This is of some practical importance since, for example, itis

often more difficult to label examples that occur near a decision boundary.
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