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Abstract

| study the informational complexity of active learning irstatistical learning

theory framework. Specifically, | derive bounds on the ratiesonvergence achiev-
able by active learning, under various noise models andrugeleeral conditions
on the hypothesis class. | also study the theoretical adgastof active learning
over passive learning, and develop procedures for tramafigr passive learning al-
gorithms into active learning algorithms with asymptollicauperior label com-

plexity. Finally, | study generalizations of active leargito more general forms of
interactive statistical learning.
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Chapter 1

Notation and Background

1.1 Introduction

In active learning, a learning algorithm is given accessltoge pool of unlabeled examples, and
is allowed to request the label of any particular exampleshfthat pool, interactively. The ob-
jective is to learn a function that accurately predicts #ieels of new examples, while requesting
as few labels as possible. This contrasts with passiveitegrwhere the examples to be labeled
are chosen randomly. In comparison, active learning candfignificantly decrease the work
load of human annotators by more carefully selecting whicdn®les from the unlabeled pool
should be labeled. This is of particular interest for leagiiasks where unlabeled examples are
available in abundance, but label information comes omgugh significant effort or cost.

In the passive learning literature, there are well-knowortats on the rate of convergence
of the loss of an estimator, as a function of the number oflé&abexamples observed [e.g.,

dl 19 Blumer ef al., 1 MQMJ!JM Kulkarr',_ll3.8|9 Long, 1995,

m,@ﬂ. However, significantly less is presently Wncabout the analogous rate in active

learning: namely, the rate of convergence of the loss of amator, as a function of the number
of label requests made by an active learning algorithm.

In this thesis, | will outline some recent progress | havensade to make toward understand-
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ing the achievable rates of convergence by active learmlogpg with algorithms that achieve
them. | will also describe a few of the many open problems reimg@ on this topic.

The thesis begins with a brief survey of the history of thigi¢palong with an introduction
to the formal definitions and notation that will be used thlyloout the thesis. It then describes
some of my contributions to this area. To begin, Chagter 2ritees some rates of convergence
achievable by active learning algorithms under various@cbnditions, as quantified by a new
complexity parameter called tlitsagreement coefficienltt then continues by exploring an in-
teresting distinction between two different notions ofdabomplexity: namelyyerifiableand
unverifiable This distinction turns out to be extremely important fotiaelearning, and Chap-
ter[3 explains why. Following this, Chapfdr 4 describes aicédns-based approach to active
learning, in which the goal is to transform passive learratgprithms into active learning al-
gorithms having strictly superior label complexity. Theuw#s in that chapter are surprisingly
general and of deep theoretical significance. The thesisledes with Chaptdrl5, which de-
scribes some preliminary work on generalizations of adiaaning to more general types of
interactive statistical learning, proving results at ahieiglevel of abstraction, so that they can

apply to a variety of interactive learning protocols.

1.2 A Simple Example: Thresholds

We begin with the canonical toy example illustrating thegmbial benefits of active learning.
Suppose we are tasked with finding, somewhere in the intérvd| a threshold value; we are
scored based on how close our guess is to the true value,tsbwieaguessr equals: for some
z € [0, 1], we are awardedl — |z — z| points. There is an oracle at hand who knows the value of
x, and given any point’ € [0, 1] can tell us whether’ > x orz’ < x.

The passive learning strategy can be simply described asgtpkints uniformly at random
from the interval0, 1] and asking the oracle whether each pointis or < x for every one. After

a number of these random queries, the passive learninggfrahooses its guess somewhere
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betweenr| = the largest’ that it knows is< x, andz), = the smallest’ it knows is> x (say
. ,—‘,-:Bl . . . .
it guesses™*2). By a simple argument, if the passive strategy asks abquints, then the

expected distance betweehandz; is at Ieastn+rl (say forx = 1/2), so we expect the passive
strategy’s guess to be off by some amog%.

On the other hand, suppose instead of asking the oracle alent one of these random
points, we instead look at each one sequentially, and okiyabsut a point if it is between the
currentz’] and the current’; that is, we only ask about a point if it reot greater than a point
2’ known to be> x andnot less than a point known to be z. This certainly seems to be a
reasonable modification to our strategy, since we alreadyvkmow the oracle would respond
for the points we choose not to ask about. In this case, if ketasoracle about points, each
one reduces the width of the interval , =5, at that moment by some factgy. Thesen factors
B; are upper bounded by independent/niform([1/2,1]) random variables (representing the
fraction of the interval on the larger side of th®, so that the expected final width pf,, 2] is
at most(2)" < exp{—n/4}. Therefore, we expect this modified strategy’s guess to bleyodt
most half this amoun.

As we will see, this modified strategy is a special case of éimealearning algorithm I will

refer to as CAL (after its discovereis, Cohn, Atlas, and 4]) or Algorithm 0, which

| introduce in Sectiof_114. The gap between the passiveegiyatvhich can only reduce the
distance between the guess and the true thresholtiretza rate)(n '), and the active strategy,
which can reduce this distance atexponentiatate: ()", can be substantial. For instance, with
n = 20, gy ~ 024 while 3(3)" ~ .0016, better than an order of magnitude improvement.
We will see several cases below where these types of expahiemprovements are achievable
by active learning algorithms for much more realistic léagrproblems, but in many cases the
proofs can be thought of as simple generalizations of tlyigkample.
10f course, the optimal strategy for this task always askwaﬁie’;ié, and thus closes the gap at a rate.

However, the less aggressive strategy | described hestrdlies a simple case of an algorithm we will use exten-

sively below.



1.3 Notation

Perhaps the simplest active learning task is binary claasidin, and we will focus primar-
ily on that task. LetY be aninstance spacecomprising all possible examples we may ever
encounter. C is a set of measurable functios: X — {—1,1}, known as theconcept
spaceor hypothesis classWe also overload this notation so that far € N and a sequence

S = {x1,...,xn} € X™, h(S) = (h(z1), h(za),...,h(zy)). We denote byl the VC di-

mension ofC, and byC[m| = max I{h(S) : h € C}| the shatter coefficient (a.k.a. growth
S m

function) value atn [Vapnik,|1998]. Generally, we will refer to arfy with finite VC dimension

as aVC class D is a known set of probability distributions oki x {—1, 1}, in which there

is some unknownarget distributionDxy . | also denote byD[X'] the marginal ofD over X'.
There is additionally a sequence of examples y1), (x2,¥2), ... Sampled i.i.d. according to
Dxy. In the active learning setting, thg values are hidden from the learning algorithm until
requested. Defin&,, = {(x1,vy1), (z2,92), ..., (Tm,ym)}, @ finite sequence consisting of the
first m examples.

For anyh € C and distributiorD’ over X x {—1,1}, leterp/(h) = Pix y)~o {h(X) # Y},
and forS = {(«,v1), (25, v5), ..., (2, y.)} € (X x {—1,1})™, define the empirical error
ers(h) = 5= 5" |h(2}) — yi|. WhenD’ = Dxy (the target distribution), we abbreviate the
former byer(h) = erp,, (h), and whenS = Z,,, we abbreviate the latter by, (h) = erz, (h).
Thenoise rate denoted/(C, Dxy ), is defined a®(C, D) = inf,cc erp(h); we abbreviate this
by v whenC andD = Dy, are clear from the context (i.e., the concept space andttdige
tribution). We also defing(z; D) = Pp(Y = 1|z), and define th&ayes error rate denoted
B(D), asf(D) = Ex.pix[min{n(X;D),1 — n(X;D)}], which represents the best achievable
error rate byany classifier; we will also refer to the Bayes optimal classifagnotedh*, de-
fined ashi,(z) = 21[n(x; D) > 1/2] — 1; again, forD = Dx,, we may abbreviate this as
n(z) = n(z; Dxy), B = B(Dxy), andh* = hp,__ .

For concept spack and distributiorD’ over X', for any measurablg : X — {—1,1} and

4



anyr > 0, define
B'H7D’(h7T) = {h, cH: IP)XND/(]’L(X) §é h,(X)) S ’r’}.

WhenH = C, D' = Dxy[X], or both are true, we may simply writBp: (h,r), By(h,7r),
or B(h,r) respectively. For concept spatéand distributionD’ over X x {—1, +1}, for any

€ [0, 1], define thec—minimal set H(¢;D') = {h € H : erp/(h) — v(H,D’) < €}. When
D' = Dxy (target distribution) and is clear from the context, we abkate this byH(e) =
H(e; Dxy). For a concept spackH and distributionD’ over X', define thediameterof H as
diam(H; D') = supy, pyen Px~p(h1(X) # he(X)); as before, whe®’ = Dyy [X] and is clear
from the context, we will abbreviate this dgim(H) = diam(H; Dxy[X]).

Also define theegion of disagreemermf a concept spacH as
D[S(H) = {Ilf eX: th,hg € H s.t. hl(llj') 7& hg([lj’)}

Also, for a concept spad¥, distributionD overX’ x {—1,+1}, € € [0, 1], andm € N, define

theexpected continuity modulas

wy(m, ;D) = Egupm . s}?p |(erp(hy) —ers(hy)) — (erp(hg) — erg(ha))].
1,ho€H:
P U (X)ha (X)) <e

At this point, let us distinguish between some particuldtirsgs, distinguished by the defini-
tion of D as one of the following sets of distributions.

e Agnostic = { all D} (the set of all joint distributions oA x {—1,+1}).

e BenignNoise(C) ={D : v(C,D) = 3(D)}.

e Tsybakov(C, Kk, pu) = {D : Ve > 0,diam(C(e; D); D) < uei}, (for any finite parameters
k>1,u>0).

e Entropyy(C,a, p) = {D :¥m € Nande € [0, 1], we(m, ;D) < aekTpm_l/z}, (for any
finite parameters > 0, p € (0,1)).

® UniformNoise(C) ={D :3Ja €[0,1/2),f € Cs.t.Vz € X, Pp(Y # f(2)|X =x) =
at.



e Realizable(C) ={D :3f € Cs.t.erp(f) = 0}.

® Realizable(C,Dx) = Realizable(C) N {D : D[X]| = Dx}, (for any given marginal

distributionDy over X).

Agnostic is the most general setting we will study, and is referred 9dhee agnostic case
whereD is the set ofall joint distributions. However, at times we will consider tbther
sets, which represent various restrictionsAgfnostic. In particular, the seBenignNoise(C)

essentially corresponds to situations in which the lack giedect classifier inC is due to
stochasticity of the labels, not model misspecificatiOiybakov(C, k, 11) is a further restric-

tion, introduced b,_Ma.mm.en_a.LLdB;LbaL v [1999] Jz.n.dﬁ;abdk@@_

represents those distributions having reasonably lowennesar the optimal decision bound-

N

1], which (informally)

ary (see Chaptdd 2 for further explanations)ntropy;(C, a, p) represents _théinite entropy

with bracketingcondition common to the empirical processes literatuig, i 1,,20085,
sLa.n_d.emla.a.LLa.ndAALelLJe 1996Uni formNoise(C) represents a (rather artificial) subset of

BenignNoise(C) in which every point has the same probability of being labbedpposite to

the optimal Iabelﬂ%ealizablef@i represents theealizable casgpopularized by the PAC model

of passive learning ian 4], in which there is a petfclassifier in the concept space;
in this setting, we will refer to this perfect classifier ag target function typically denoted

h*. Realizable(C, Dx) represents a restriction of the realizable case, which Weaefer to as
thefixed-distribution realizable caséhis corresponds to learning problems where the marginal

distribution overX is knowna priori.

Several of the more restrictive sets above may initiallynsemrealistic. However, they
become more plausible when we consider fairly complex goinspaces (e.g., nhonparametric
spaces). On the other hand, some (specifically; formNoise(C) and Realizable(C, Dy))
are basically toy scenarios, which are only explored aspstgpstones toward more realistic

assumptions.
We now define the primary quantities of interest throughbig thesis: namely, rates of
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convergence, and label complexity.

Definition 1.1. (Unverifiable rate) An algorithrod achieves a rate of convergeng-, -) on
expected excess error with respectd for any Dyy andn € N, if h,, = A(n) is the

algorithm’s output after at most label requests, for target distributioR vy, then
Eler(h,)] — v(C,Dxy) < R(n, Dxy).

An algorithm.A achieves a rate of convergen&-:, -, -) on confidence-bounded excess error
with respect taC if, for anyDxy, § € (0,1), andn € N, if h,, = A(n) is the algorithm’s output

after at most: label requests, for target distributicR xy-, then

P(er(hn) - V(C,ny) S R(n, 5, DXy)) Z 1-—0.

Definition 1.2. (Verifiable rate) An algorithmA achieves a rate of convergengg-, -, -) on an
accessible bound on excess error with resped tanderD if, foranyDxy € D, 6 € (0,1),
andn € N, if (h,, €,) = A(n) is the algorithm’s output after at mostlabel requests, for target

distributionDyy, then

P(er(hn) - V(C,ny) S én S R(n, 5, DXy)) Z 1—6.

| will refer to Definition[I.2 as averifiable rateunderD, for short. If ever | simply refer to
therate, | will mean DefinitionlIlL. To distinguish these two notiarfconvergence rates, | may

sometimes refer to Definitidn.1 as theverifiable rateor thetrue rate Clearly any algorithm

that achieves a verifiable rafe also achieves: as an unverifiable rate. However, we will see

interesting cases where the reverse is not true.

At times, it will be necessary to express some results ingerithe number of label requests
required to guarantee a certain error rate. This quantigféesred to as thiabel complexityand

is defined quite naturally as follows.



Definition 1.3. (Unverifiable label complexity) An algorithpt achieves dabel complexity
A(-, ) for expected error, if for anPxy, Ve € (0,1), Vn > A(e, Dxy), if h, = A(n) is the
algorithm’s output after at most label requests, for target distributioR vy, then

Eler(h,)] < e.

An algorithm.A4 achieves dabel complexityA(-, -, -) for confidence-bounded error, if for any
Dxy, Ve, 0 € (0,1),Vn > A, 6, Dxy), if h,, = A(n) is the algorithm’s output after at most

label requests, for target distributioR xy, thenP(er(h,) <€) > 1 — 6.

Definition 1.4. (Verifiable label complexity) An algorithpd achieves averifiable label

complexityA(-, -, -) for C underD if it achieves a verifiable rat& with respect taC underD

such that, for anyDyy € D, V§ € (0,1), Ve € (0,1), Vn > A(e, 0, Dxy), R(n,0, Dxy) < e.
Again, to distinguish between these definitions, | may somex refer to the former as the

unverifiable label complexitgr thetrue label complexity Also, throughout the thesis, | will
maintain the convention that whenever | refer to a “rater “label complexityA,” | refer to the
confidence-bounded variety, and similarly when | refer toade’R” or “label complexityA,” in
those cases | refer to the version of the definitioneigpectederror rates.

A brief note on measurability:

Throughout this thesis, we will &£ andP (and indeedany reference to “probability”) refer to

the outer expectation and probability [van der Vaart and Welli 990 that quantities such

asP(DIS(B(h,r))) are well defined, even ibI1.S(B(h,r)) is not measurable.

1.4 A Simple Algorithm Based on Disagreement

One of the earliest, and most elegant, theoretically sogtidealearning algorithms for the re-

alizable case was provided by Cohn, Atlas, and Ladner [199A§ler the assumption that there

exists a perfect classifier i@, they proposed an algorithm which processes unlabeledm@ram
in sequence, and for each one it determines whether thests exclassifier it consistent with

all previously observed labels that labels this new examyl@nd one that labels this example
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—1; if so, the algorithm requests the label, and otherwiseasdmwt request the label; aftetabel
requests, the algorithm returns any classifier consistéhtadl observed labels. In some sense,
this algorithm corresponds to the very least we could expkah active learning algorithm, as
it never requests the label of an example it can derive froowkninformation, but otherwise
makes no effort to search for informative examples. We cativatgntly think of this algorithm
as maintaining two setd/ C C is the set of candidate hypotheses still under consider,diod

R = DIS(V) is their region of disagreement. We can then think of therélgm as request-
ing a random labeled example from the conditional distidsudf Dy given thatX € R, and

subsequently removing froii any classifier inconsistent with the observed label.

Most of the active learning algorithms we study in subsetebapters will be, in some
way, variants of, or extensions to, this basic procedurefadty at this writing, all of the pub-
lished general-purpose agnostic active learning algostlachieving nontrivial improvements

are derivatives of Algorithm 0. A formal definition of the algthm is given below.

Algorithm O
Input: hypothesis clask, label budget:
Output: classifieh,, € H and error bound,,

0.Vo—H,qg<—0

1. Form=1,2,...

2. If Elhl, hy € V:] s.t. hl({lj'm) 7& hg(l’m),

3. Requesy,,

4. qg—q+1

5. Ve {h€Vym: hzw) = ym}

6. If ¢ = n, Return an arbitrary classifiér, € V,, and value,, = diam(V,,)

One of the most appealing properties of this algorithm,dessits simplicity, is the fact that
it makes extremely efficient use of the unlabeled examplegadt, supposing the algorithm
processes: unlabeled examples before returning, we can take the filassi and label all of
the examples we skipped over (i.e., those werdittequest the labels of); this actually produces
a set ofm perfectly labeled examples, which we can feed into our fé¥qrassive learning
algorithm, even though we only requested the labels of aetulfghose examples. This fact

also provides a simple proof that(h,,) can be bounded by a quantity that decreases to zero (in
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probability) withn: namely,diam/(V},). However_C_o.hn_e.t_eLl [19D4] did not provide any further

characterization of the rates achieved by this algorithmeneral. For this, we must wait until
ChapteER, where | provide the first general characterimaifdhe rates achieved by this method

in terms of a quantity | call the disagreement coefficient.

1.5 A Lower Bound

When beginning an investigation into the achievable rates natural to first ask what we can
possibly hope to achieve, and what results are definitelypossible. That is, what are some

fundamental limits on what this type of learning is capalileThis type of question was inves-

tigated by Kulkarni et al![1993] in a more general settingotmally, the reasoning is that each

label request can communicate at most one bit of informattm the best we can hope for is

something logarithmic in the “size” of the hypothesis cla€d course, for infinite hypothesis

classes this makes no sense, but with the help of a notieoadr sizelKulkarni et al. [1993]

were able to prove the analogous result.

Specifically, letN(¢) be the size of the smallest sitof classifiers inC such thatvh €
C,3n € V : Pxplh(X) # W(X)] < ¢, for some distributiorD over X. Then any achievable

label complexityA has the property that > 0, sup  A(e,0, Dxy ) >1ogs[(1-0) N (2€)].
Dxy €Realizable(C,D)

Since we can often get a reasonable estimat® @f by its distribution-free upper bound

2 (%1n k)d [Haussler, 1992], we can often expect our rates to be atbegt—cn/d} for some

€ €

constante. In particular, rather than working with(e) in the results below, | will typically
formulate upper bounds in terms @f in most of these cases, some variani@f NV (¢) could
easily be substituted to achieve a tighter bound (by usiagtiver as a hypothesis class instead

of the full space), closer in spirit to this lower bound.
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1.6 Splitting Index

Over the past decade, several special-purpose activeirigaatgorithms were proposed, but
notably lacking was a general theory of convergence rateadive learning. This changed in
2005 when Dasgupta published his theory of splitting insil@a.sgupja 2005].

As before, this section is restricted to ttealizable caseLet Q C {{hy, ha} : hy,hy € C}

be a finite set of unordered pairs of classifiers fr@émForz € X andy € {—1,+1}, define
QY = {{h1,ha} € Q : hy(z) = ha(x) = y}. Apointz € X is said top-split Q if
I < (1 — .
Jemax Q) < (1= p)lQl
We sayH C Cis(p, A, 7)-splittableif for all finite @ C {{h1,ha} CC:P(hq(X)#ho(X)) > A},
P(X p-splits@) > 7.

A large value of for a reasonably largeindicates that there are highly informative examples

that are not too rare. Dasgupta effectively proves theoiig results.

Theorem 1.5. For any VC clas<C, for some universal constant> 0, there is an algorithm
with verifiable label complexity for Realizable(C) such that, for any € (0,1),0 € (0, 1),
andDxy € Realizable(C), if B(h*,4A)is (p, A, 7)-splittable for all A > ¢/2, then

A(e,0,Dxy) < c% log % log %
The valuep has been referred to as tlplitting index It can be useful for quantifying

the verifiable rates for a variety of problems in the realieatase. For exampleé, _Dasgupta

[2005] uses it to analyze the problem whérés the class of homogeneous linear separatodis in

dimensions, an@xy [X]| = D is the uniform distribution on the unit-dimensional sphere. He
shows that this problem id /2, ¢, €)-splittable for any > 0 for any target inC. This implies a

verifiable rate fofRealizable(C, D) of

n

R(n,d,Dxy) x %l - exp {—c’ E}

for a constant’ > 0. This rate was previously known for other algorithms [elasgupta et a

005], but had not previously been derived as a special dasech a general analysis.
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1.7 Agnostic Active Learning

Though each of the preceding analyses provides valuabtghiissnto the nature of active learn-
ing, they also suffer the drawback of reliance on the rehlidg assumption. In particular, that
there is no label noise, and that the Bayes optimal classsfiarC, are severe and often unreal-
istic assumptions. We would ideally like an analysis of tgaastic case as well. However, the
aforementioned algorithms (e.g., CAL, and the algorithimedng the splitting index bounds)
no longer function properly in the presence of nonzero n@tes. So we need to start from the
basics and build new techniques that are robust to noisataomsl

To begin, we may again ask what we might hope to achieve. Bhate there fundamental

information-theoretic limits on what we can do with this ¢ypf learning? This question was

investigated b Kéériéinnrll_{m%]. In particular, heswable to prove that for basically any
nontrivial marginalD over X', noise rates, numbern, and active learning algorithm, there is
some distributiorD xy with marginalD and noise rate such that the algorithm’s achieved rate

R(n, 0, Dxy) atn satisfies (for some constant> 0)

2log(1/6
R(n,8,Dxy) > ¢ %(/).
Furthermore, this result was improved [2009] to
2d
R(n,3/4,DXy) >c VT

Considering that rates %@/5)

are achievable in passive learning, this indicates that,
even for concept spaces that had exponential rates in theatda case, any bound on the veri-
fiable rates that shows significant improvement (more thawlépticative factor of,/v) in the
dependence on for nonzero noise rates must dependgy in more than simply the noise

rate.
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Chapter 2

Rates of Convergence in Active Learning

In this chapter, we study the rates of convergence in gemati@n error achievable by active
learning under various types of label noise. Additionadlg, study the more general problem of
active learning with a nested hierarchy of hypothesis elssand propose an algorithm whose
error rate provably converges to the best achievable emong classifiers in the hierarchy at a
rate adaptive to both the complexity of the optimal classdied the noise conditions. In partic-
ular, we state sufficient conditions for these rates to bedteally faster than those achievable

by passive learning.

2.1 Introduction

There have recently been a series of exciting advances otofie of active learning with
arbitrary classification noise (the so-callagnosticPAC model), resulting in several new al-
gorithms capable of achieving improved convergence radegpared to passive learning un-

der certain conditions. The first, proposedlby Balcan, Beymer, and Langford [2006] was

the A% (agnostic active) algorithm, which is provably never sfipaintly worse than passive

learning by empirical risk minimization. This algorithm svdater analyzed in more detalil

in [Hanneke| 2007b], where it was found that a complexity snea called thelisagreement

13



coefficientcharacterizes the worst-case convergence rates achigwédfbr any given hypothe-

sis class, data distribution, and best achievable erreimdhe class. The next major advance was

byDasgupta, Hsu, and Montel oLu'_LZ)O?], who proposed a tgovithm, and proved that it im-

proves the dependence of the convergence rates on theedisagmt coefficient compared 3.
Both algorithms are defined below in Sectlon] 2.2. While alihefse advances are encouraging,
they are limited in two ways. First, the convergence ratasltave been proven for these algo-
rithms typically only improve the dependence on the magi@tof the noise (more precisely, the
noise rate of the hypothesis class), compared to passit@rnga Thus, in an asymptotic sense,
for nonzero noise rates these results represent at besstanbfactor improvement over passive
learning. Second, these results are limited to learning wifixed hypothesis class of limited

expressiveness, so that convergence to the Bayes erras retealways a possibility.

On the first of these limitations, some recent workl by Castihowak [2006] on learn-

ing threshold classifiers discovered that if certain patarmseof the noise distribution ak®own
(namely, parameters related to Tsybakov’s margin conwjiothen we can achieve strict im-
provements in the asymptotic convergence rate via a spectiie learning algorithm designed
to take advantage of that knowledge for thresholds. Thakaft open the question of whether
such improvements could be achieved by an algorithm thad doé explicitly depend on the
noise conditions (i.e., in thagnosticsetting), and whether this type of improvement is achiev-
able for more general families of hypothesis classes. Inrsgp@l communication, John Lang-
ford reported that he and Rui Castro determined such impnemés are in fact achieved by
A? for the special case of threshold classifiers. Howevergethemained an open question of
whether such rate improvements could be generalized tofboldrbitrary hypothesis classes.

In Section ZB, we provide precisely this generalizatiore &kalyze the rates achieved Hy

under Tsybakov’s noise conditions [Mammen and Tsy aLQ_d, g sybakav| 2004]; in par-
ticular, we find that these rates are strictly superior to khewn rates for passive learning,

when the disagreement coefficient is small. We also studywalmoeodification of the algorithm

14



of Dasgupta, Hsu, and Monteleohi [2007], proving that it ioy@s upon the rates of? in its

dependence on the disagreement coefficient.

Additionally, in SectiodlZ}4, we address the second linataby proposing a general model
selection procedure for active learning with an arbitrarycture of nested hypothesis classes.
If the classes each have finite complexity, the error ratéhisralgorithm converges to the best
achievable error by any classifier in the structure, at attatadapts to the noise conditions
and complexity of the optimal classifier. In general, if thusture is constructed to include
arbitrarily good approximations to any classifier, the egonverges to the Bayes error rate in
the limit. In particular, if the Bayes optimal classifier issome class within the structure, the
algorithm performs nearly as well as running an agnostig@&tarning algorithm on that single

hypothesis class, thus preserving the convergence rateveipents achievable for that class.

2.1.1 Tsybakov’'s Noise Conditions

In this chapter, we will primarily be interested in the s&tgbakov(C, k, 1), for parameter
valuesy > 0 andx > 1. These noise conditions have recently received substatténtion

in the passive learning literature, as they describe $itngtin which the asymptotic minimax

convergence rate of passive learning is faster than thetwasen /2 rate [e.g.| Kaltchinski

006,/ Mammen and Tsybakav, 1999 Massart Blutlie Nedéled, 2006 Tsybakav, 2004].

This condition is satisfied when, for example,
Ju' >0,k >1st.3h e C: VI € C,er(h) —v > W'P{h(X) # h'(X)}".

As we will see, the case where= 1 is particularly interesting; for instance, this is the case
whenh* € C andP{|n(X) — 1/2] > ¢} = 1 for some constant € (0,1/2). Informally, in
many cases these conditions can often be interpreted irs t&frthe relation between magnitude
of noise and distance to the decision boundary; that isesmgractice the amount of noise
in an example’s label is often inversely related to the distafrom the decision boundary, a

x value of1 may often result from having low density near the decisionrutary (i.e., large
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margin); when this is not the case, the value:a$ essentially determined by how quickjyz)

changes as approaches the decision boundary. See [Castro and N , ' i,

006, Mammen and Tsybakav, 1999, Massart Blutlie Nedelec, 2006, Tsybakay, 2004] for

further interpretations of this margin condition.

It is known that when these conditions are satisfied for serre 1 andy > 0, the passive
learning method of empirical risk minimization achievesoavergence rate guarantee, holding
with probability> 1 — ¢, of

d 1og(n/5)) %1 |

n

wherec is a (x andu -dependent) constant [Koltchinskii, 2 (LG_Ma.mm.en_a.n.djmll, 19909,

2006]. Furthermore, for some hypothésisses, this is known to

1 —v <
er(arg min er,(h)) —v<c (

be a tight bound (up to the log factor) on the minimax convecgeate, so that theren®s passive

learning algorithm for these classes for which we can guaeaa faster convergence rate, given

that the guarantee depends®g, only throughu andx [[Lsybakov| 2004].

2.1.2 Disagreement Coefficient

Central to the idea of Algorithm 0, and the various geneadilins there-of we will study, is
the idea of thaegion of disagreemertf the version space. Thus, a quantification of the per-
formance of these algorithms should hinge upon a descniifohow quickly the region of

disagreement collapses as the algorithm processes exandies rate of collapse is precisely

captured by a notion introduced eke, 2007b], catedlisagreement coefficientt is

a measure of the complexity of an active learning problemiclwhas proven quite useful for

analyzing the convergence rates of certain types of acmmning algorithms: for example, the

algorithms o rd [2006ly&eizi gford

1013 ANQ
r [1994], Dasgupta, Hsu, andtéeoni ) ally, it

guantifies how much disagreement there is among a set offdesselative to how close to

[2009],
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someh they are. The following is a version of its definition, whicle wvill use extensively

below.

Definition 2.1. The disagreement coefficient/ofvith respect taC underDyy [X] is

1 — sup PSR 7))
r>10 T

wherer, can either be defined ds giving a coarse analysis, or for a more subtle analysis we
can take it to be a function of, the number of labels (see Section2.7.1 for such a definition
valid for the main theorems of this chapter_2[11-2.15).

We further define the disagreement coefficient for the hgsatltlas< with respect to the
target distributionDxy asf = limsup,,_.._ 6, , where{h®} is any sequence &f* < C with

er(h®)) monotonically decreasing te.

In particular, we can always bound the disagreement coaffitiysup,, . 6, > 0.

Because of its simple intuitive interpretation, measutirgamount of disagreementin a local
neighborhood of some classifigr the disagreement coefficient has the wonderful property of
being relatively simple to calculate for a wide range of héag problems, especially when those

problems have some type of geometric representation. Ustrilte this, we will go through a

few simple examples, taken fro e, 2007b].

Consider the hypothesis class of threshadldsn the interval0, 1] (for =z € [0, 1]), where
h.(x) = +1iff z > z. Furthermore, supposByxy[X] is uniform on[0, 1]. In this case, it is
clear that the disagreement coefficient is at n2psince the region of disagreement®fh., r)
is roughly{z € [0,1] : |z — z| < r}. Thatis, since the disagreement region grows at rate
two disjoint directions as increases, the disagreement coeffictgnt= 2 for anyz € (0, 1).

As a second example, consider the disagreement coefficieintérvalson [0, 1]. As before,
let X = [0, 1] andDxy [X] be uniform, but this timéC is the set of intervalg, ;) such that for
v € [0,1], [jg(x) = +1iff x € [a,b] (for a,b € [0,1], a < b). In contrast to thresholds, the
disagreement coefficients for the space of intervals vary widely depending on the paldir /..

In particular, take anyt = Ij,; where0 < a < b < 1. In this casef;, < max {m, 4}.
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To see this, note that when < r < b — a, every interval inB(Ij,;,r) has its lower and
upper boundaries within of a andb, respectively; thusP(DIS(B(I,y,7))) < 4r. How-

ever, whenr > max{rg,b — a}, everyinterval of width< r — (b — a) is in B(Ij,7), SO

P(DIS(B(ljo,1))) = 1.

As a slightly more involved example, consider the followthgorem.

Theorem 2.2.[Hanneke| 2007b] Ift is the surface of the origin-centered unit spher&ihfor

d > 2, Cis the space of linear separators whose decision surfacsgsatirough the origin, and

Dxy [X] is the uniform distribution o', thenVh € C the disagreement coefficieft satisfies

imin{ﬂ\/g,i} <0, < min{ﬂ\/g,l}.
To

To

Proof. First we represent the concepts@nas weight vectorsy € R? in the usual way. For
wy, we € C, by examining the projection dPxy [X] onto the subspace spanned{ay;, w,},
we see thalP(zx : sign(w; - z) # sign(ws - x)) = w Thus, for anyw € C and
r<1/2, B(w,r) = {w' : w-w > cos(nr)}. Since the decision boundary correspondingto

is orthogonal to the vectar’, some simple trigonometry gives us that

DIS(B(w,r)) ={x € X : |z - w| < sin(nr)}.

Letting A(d, R) = 2”‘;/25571 denote the surface area of the raditisphere ifR?, we can express
2

the disagreement rate at raditias

P(DIS(B(w,r)))

sin(7r) d sin(7r) _
_ 1 / A(d—l, /1—x2>d$:L)/ (1—x2)¥dx (%)
—sin(mr) _

A<d7 1) sin(mr ﬁr (%1 sin(mr)
(¢
< ﬁ%m(mﬂ < Vd—=2sin(rr) < V.

For the lower bound, note th& DS (B(w,1/2))) = 1 s06,, > min {2, Tio} and thus we need

18



only consider, < £. Supposingy, < r < g, note that(x) is at least
sin(7mr) sin(7r)
/ 1 — 22 da: > / e~4 4y
1 , 1 .
> — 5 m1n{2, \/Esm(m")} > 7 Win {1,7?\/&7"} :

O

The disagreement coefficient has many interesting prasettiat can help to bound its value

for a given hypothesis class and distribution. We list a fésmentary properties below. Their

proofs, which are quite short and follow directly from thdidgion, are left as easy exercises.

Lemma 2.3. [Close Marginals]_I:Ia.an.eIJ 2007b] Supposa € (0, 1] s.t. for any measurable

setA C X, APp, (A) < Pp, (A) < iPp, (A). Leth : X — {—1,1} be a measurable classifi¢
and supposé,, andd, are the disagreement coefficients fowith respect taC underDy and
D', respectively. Then

A%<@<ﬁ%

v

Lemma 2.4. [Finite Mixtures] Supposéla € [0, 1] s.t. for any measurable sgt C X',
Pp, (A) = aPp, (A) + (1 — a)Pp,(A). For a measurablé, : X — {—1,1}, let6\" be the
disagreement coefficient with respecttainderD;, 6\” be the disagreement coefficient with

respect taC underD,, andd, be the disagreement coefficient with resped tonderDy. Then

O <6 + 6.

Lemma 2.5. [Finite Unions] Supposé € C; N Cs is a classifier s.t. the disagreement
coefficient with respect t6; underDy is 6\" and with respect t@, underDy is 6'*. Then if

0, is the disagreement coefficient with respecdtte- C; U C, underDy, we have that

max {07, 07} < 0, <o) + 67

The disagreement coefficient has deep connections to $etkes quantities, such as dou-

bling dimension|[Li and Lorg, 2007] and VC dimensi 182]. Seel[Hanneke, 2007b],
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DIJLZLO'H [Balcan, Hannehke \&ortmah, 2008], and
' [d_2L309] for furthescdissions of various uses of the dis-

agreement coefficient and related notions and extensicadive learning. In particular,

B.&yg&lzlulﬂLJlasguma._andJ_ang.JOLd_LZOOQ] present amestimg analysis using a natural ex-

tension of the disagreement coefficient to study activeniegrwith a larger family of loss func-

tions beyond) — 1 loss. As a related aside, although the focus of this thesistige learning,
interestingly the disagreement coefficient also has agptios in the analysis gfassivdearn-

ing; see Sectiofn 2.9 for an interesting example of this.

2.2 General Algorithms

The algorithms described below for the problem of activeriega with label noise each represent
noise-robust variants of Algorithm 0. They work to reduce $ket of candidate hypotheses, while
only requesting the labels of examples in the region of demment of these candidates. The
trick is to only remove a classifier from the candidate seeome have high statistical confidence
that it is worse than some other candidate classifier so teatever remove the best classifier.

However, the two algorithms differ somewhat in the detailsaw that confidence is calculated.

2.2.1 Algorithm 1

The first algorithm, originally proposed hy Balcan, Beyamler, and Langford [2006], is typi-
cally referred to asA? for Agnostic Active This was historically the first general-purpose ag-
nostic active learning algorithm shown to achieve improeedr guarantees for certain learning

problems in certain ranges ofandv. A version of the algorithm is described below.
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Algorithm 1
Input: hypothesis class, label budget:, confidencel
Output: classifieh

0.V—C,R«— DIS(C),Q —0,m<0
1. Fort=1,2,....n
If P(DIS(V)) < iP(R)
R~ DIS(V);Q 0
If P(R) < 27", Returnanyh € V
m «— min{m’ > m: X, € R}
Request, and letQ «— Q U {(X,,,Y,,)}
Ve—{heV:LB(hQ,d/n) < gleigUB(h’,Q,é/n)}

hy — argl;lréi‘lg UB(h,Q,6/n)
5, (UB{he,Q,5/n) — min LB(h,Q,5/n) P(R)

10. Returnh,, = h;, wheref = argmin (3,
te{1,2,...,n}

© © Nogakwd

Algorithm 1 is defined in terms of two functiong/ B and L B. These represent upper and
lower confidence bounds on the error rate of a classifier fébmith respect to an arbitrary
sampling distribution, as a function of a labeled sequenogpéed according to that distribution.

As long as these bounds satisfy
Py pm{Vh € C,LB(h,Z,0) < erp(h) <UB(h,Z,§)} >1—9§

for any distributionD over X x {—1,1} and anyd € (0,1/2), andUB and LB converge to

each other as: grows, this algorithm is known to be correct, in thath) — v converges td in

probability [Balcan, Beygelzimer, and L angf Ld_2006].r Hestance, Balcan, Beygelzimer, and

Langford suggest defining these functions based on classidts on uniform convergence rates

in passive learning [\/apris_]_JBZ], such as

UB(h,Q,d) = min{erqg(h) + G(|Q|,9),1}, LB(h,Q,d) = max{erg(h) — G(|Q|,0),0},

2.1)

In $4dIn 267

< and by conventior:(0, ) = oo. This choice is justified

whereG(m,§) = L +

by the following lemma, due i
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Lemma 2.6. For any distributionD over X’ x {—1,1}, and anys > 0 andm € N, with

probability> 1 — § over the draw ofZ ~ D™, everyh € C satisfies

lerz(h) —erp(h)] < G(m,9). (2.2)
To avoid computational issues, instead of explicitly repreing the set§” and R, we may

implicitly represent it as a set of constraints imposed by ¢bndition in Step 7 of previous
iterations. We may also repla8¢D/S(1)) andP(R) by estimates, since these quantities can be

estimated to arbitrary precision with arbitrarily high éidence using onlyinlabeledexamples.

2.2.2 Algorithm 2

The second algorithm we study was originally proposed byyData, Hsu, and Monteleoni [2007].

It uses a type of constrained passive learning subroutiberl, defined as follows.

LEARNC(L, Q) = hez%cr:g?(i}%:o erg(h).

By convention, if nah € C haser,(h) = 0, LEARN¢(L, Q) = @.

Algorithm 2
Input: hypothesis class, label budget:, confidencel
Output: classifieh, set of labeled examples, set of labeled example&g

0.L—~0,Q 0
1. Form=1,2,...
2. If|Q| =nor|L| = 2", Returnh = LEARNc(L, Q) along with£ andQ
3. Foreachy € {—1,+1},leth® = LEARNc(L U {(X,n, %)}, Q)
4. If somey hash!"¥) =g or
eer(h(_y)) — €T£UQ(h(y)) > Am_l(ﬁ, Q, h(yz h(_yz 5)
Thenl — LU {(X,,,y)}
Else Request the labg], and letQ) «— Q U {(X,,, YY)}

Algorithm 2 is defined in terms of a functiah,,, (£, Q, R, =¥ §), representing a thresh-

oo

old for a type of hypothesis test. This threshold must be aefally, since the sef U @ is not

actually an i.i.d. sample fror®yy . IDasgupta, Hsu, and MonteleoLj_[Z)O?] suggest defining this

function as

AL, QW% WD §) = 32 + B, <\/emQ(h<y>) + \/eer(m—w)) (293
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where3,, = \/41“(8m(m+1)c[2m]2/5) and C[2m] is the shatter coefficient [e.d., Devroye et al.,

m

1996]; this suggestion is based on a confidence bound thexedand they prove the correct-

ness of the algorithm with this definition. For now we will fecon the first return value (the
classifier), leaving the others for Sectibnl2.4, where théybe useful for chaining multiple

executions together.

2.3 Convergence Rates

In both of the above cases, one can prove fallback guarasti#tasg that neither algorithm is sig-

nificantly worse than the minimax rates for passive lear i ord,

~

006, Dasgupta, Hsu, and Monteleoni, 2Z007]. However, iténenore interesting to discuss sit-

uations in which one can prove error rate guarantees foe thlgerithms significantlpetterthan
those achievable by passive learning. In this section, wginld®y reviewing known results on
these potential improvements, stated in terms of the désmgent coefficient; we then proceed to
discuss new results for Algorithm 1 and a novel variant ofokithm 2, and describe the conver-
gence rates achieved by these methods in terms of the disagne coefficient and Tsybakov’s

noise conditions.

2.3.1 The Disagreement Coefficient and Active Learning: Bas Results

Before going into the results for general distributi@ng, on X' x {—1, +1}, it will be instructive

to first look at the special case when the noise rate is zerdetdtanding how the disagreement
coefficient enters into the analysis of this simpler case adyn digestion of the theorems and
proofs for the general case presented later, where it plagssentially analogous role. Most of
the major ingredients of the proofs for the general case edioind in this special case, albeit

in a much simpler form. Although this result has not previgusen published, the proof is

essentially similar to (one case of) the analysis of Aldonitl in | 200¥b].
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Theorem 2.7. Suppos@ xy € Realizable(C) for a VC classC, and letf € C be such that
er(f) =0, andf; < co. For anyn € N, with probability> 1 — § over the draw of the

unlabeled examples, the classifigrreturned by Algorithm Oaften label requests satisfies

er(hy) <2 - exp {_69f(4d In(4467) + In(2n/0) } |

Proof. The caseliam(C) = 0 is trivial, so assuméiam(C) > 0 (and thus? > 1 andf; > 0).
Let V; denote the set of classifiers@consistent with the firstlabel requests. P(DI1S(V;)) =

0 for somet < n, then the result holds trivially. Otherwise, with probdlill, the algorithm uses
all n label requests; in this case, consider sommen. Letx,,, denote the example corresponding
to thet'" label request. Lek,, = 460(4d In(16ef;) + In(2n/0)), t' =t + X, and letz,,, denote
the example corresponding to label request numb@ssuming < n — A,). In particular, this
implies {41, Tm42, - - - Tm,, } N DIS(V;)| > A, which means there is an i.i.d. sample of
size ), from Dxy[X] given X € DIS(V;) contained in{z,,, 41, Tm,+2, - - -, Tm, - NAMely, the

first \,, points in this subsequence that areJdaS(V}).

Now recall that, by classic results from the passive leaiterature [e.g., Blumer et al.,

198¢ ML 1982], this implies that on an evént holding with probabilityl — §/n,

4dIn 22 4 I 20
sup er (| DIS(V;)) < =4 TS 120y,
hEVt/ n

SinceV, C V;, this means
P(DIS(Vy)) < P(DIS(B(f,P(DIS(V;))/(207)))) < P(DIS(V;))/2.

By a union bound, the events;; hold for allt € {i\, : i € {0,1,...,|n/A\,] — 1}} with

probability> 1 — §. On these events, if > )\, [log,(1/¢)], then (by induction)

sup er(h) <P(DIS(V,)) <e.
heVn

Solving fore in terms ofn gives the result. O
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2.3.2 Known Results on Convergence Rates for Agnostic Acev_earning

We will now describe the known results for agnostic activarméng algorithms, starting with
Algorithm 1. The key to the potential convergence rate improents of Algorithm 1 is that,

as the region of disagreemeRtdecreases in measure, the magnitude of the error difference
er(h|R) — er(h'|R) of any classifiersh, ”’ € V under theconditional sampling distribution
(given R) can become significantly larger (by a factof®f?) ') thaner(h) — er(h'), making it

significantly easier to determine which of the two is worsmgs sample of labeled examples.

In particular, [Hanneke, 2007b] developed a technique hadyaing this type of algorithm, re-

sulting in the following convergence rate guarantee foroflidnm 1. The proof follows similar

reasoning to what we will see in the next subsection, but igtedhhere to reduce redundancy;

see[Hanneke, 2007b] for the full details.

Theorem 2.8.[Hanneke| 2007b] Lek., be the classifier returned by Algorithm 1 when allowed

n label requests, using the boun@&1) and confidence parametér> 0. Then there exists a

finite universal constant such that, with probabilitg> 1 — 6§, Vn € N,

. [12602d log n 1 [ n
hy) —v < 2] - /== 0 -
erlhn) —v < n o8 v202dlog * 56$p{ 092d}

Similarly, the key to improvements from Algorithm 2 is that:a increases, we only need to

request the labels of those examples in the region of disaggst of the set of classifiers with
near-optimal empirical error rates. ThusPifD1.5(C(¢))) shrinks as decreases, we expect the
frequency of label requests to shrinkragncreases. Since we are careful not to discard the best
classifier, and the excess error rate of a classifier can bedeolin terms of thé\,,, function, we

end up with a bound on the excess error which is convergimg, ithe number otinlabeledex-
amples processed, even though we request a number of labelisig slower thann. When this
situation occurs, we expect Algorithm 2 will provide an iraped convergence rate compared

to passive learning. Using the disagreement coefficiensgData, Hsu, and Monteleoni [2007]

prove the following convergence rate guarantee.
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Theorem 2.9.[Dasgupta, Hsu, and Monteleoni, 2007] Liet be the classifier returned by

Algorithm 2 when allowed label requests, using the threshdf[3), and confidence parameter
0 > 0. Then there exists a finite universal constastich that, with probability> 1 — 9,

Vn € N,

. v20d log + log - 1 n
hy) —v < 0208 4 4 /dlog - - — .
er(hy,) —v < c\/ - + 0g 5+ eTp D1z ]

Note that, among other changes, this bound improves thendepee on the disagreement

coefficient,d, compared to the bound for Algorithm 1. In both cases, fotaterranges ob,

v, andn, these bounds can represent significant improvements iextess error guarantees,
compared to the corresponding guarantees possible favpdsarning. However, in both cases,
whenv > 0 these bounds have asymptoticlependence on of ©(n~'/2), which is no better
than the convergence rates achievable by passive leamig l§y empirical risk minimization).
Thus, there remains the question of whether either algoritéin achieve asymptotic convergence
rates strictly superior to passive learning for distribn& with nonzero noise rates. This is the

topic we turn to next.

2.3.3 Adaptation to Tsybakov’s Noise Conditions

It is known that for most nontriviaC, for anyn andv > 0, for every active learning algorithm

there is some distribution with noise ratefor which we can guarantee excess error no better

thanoc vn~'/? [Kaariaineh) 2006]; that is, the~'/? asymptotic dependence anin the above

bounds matches the corresponding minimax rate, and thustae improved as long as the
bounds depend o xy only viav (andd). Therefore, if we hope to discover situations in which
these algorithms have strictly superior asymptotic depeod onn, we will need to allow the
bounds to depend on a more detailed description of the n@s#bdtion than simply the noise
ratev.

As previously mentioned, one way to describe a noise digidh using a more detailed
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parameterization is to use Tsybakov’s noise conditidngfakov(C, , 1)). In the context of
passive learning, this allows one to describe situationshith the rate of convergence is be-
tweenn~! andn~'/2, even whenv > 0. This raises the natural question of how these active
learning algorithms perform when the noise distributiotisg@s this condition with finite; and

k parameter values. In many ways, it seems active learningriscplarly well-suited to ex-
ploit these more favorable noise conditions, since theyyrtipat as we eliminate suboptimal
classifiers, the diameter of the version space decreasss; fir smallf values, the region of
disagreement should also be decreasing, allowing us te fibeusamples in a smaller region and

accelerate the convergence.

Focusing on the special case of one-dimensional threstaddiiers under a uniform marginal

distribution,_C_as.LLo_a.n.d_N_ome [2006] studied conditioelated toTsybakov(C, k, j1). In par-

ticular, they studied a threshold-learning algorithm thatlike the algorithms described here,
takesr asinput, and found its convergence rate tOckue(k’%)ﬁ whenk > 1, andexzp{—cn}

for some (i-dependent) constant whenx = 1. Note that this improves over the 71 rates

achievable in passive Iearnir,g_[B;Lb.a] ov, 2004]. Furtleeenthey prove that a value n =22

(or exp{—c'n}, for somec, whenx = 1) is also alower boundon the minimax rate. Later, in

a personal communication, Langford reported that this-optimal rate is also achieved by Al-
gorithm 1 for the same learning problem (one-dimensiornaidiold classifiers under a uniform
marginal distribution), leading to speculation that p@dhthese improvements are achievable in

the general case as well (under conditions on the disagrderoefficient).

Other than the one-dimensional threshold learning proplervas not previously known
whether Algorithm 1 or Algorithm 2 generally achieves cagence rates that exhibit these

types of improvements.
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2.3.4 Adaptive Rates in Active Learning

The above observations open the question of whether thgegthims, or variants thereof, im-
prove this asymptotic dependencerant turns out this is indeed possible. Specifically, we have

the following result for Algorithm 1.

Theorem 2.10.Let ,, be the classifier returned by Algorithm 1 when alloweldbel requests
using the bound@.1) and confidence parametér> 0. Suppose further that

Dxy € Tsybakov(C, k, 1) for finite parameter values > 1 andu > 0 and VC clas<C. Then
there exists a finitest and u-dependent) constantsuch that, for any: € N, with probability
> 19,

exp {—m} ., whenk =1

C<d9210g72(n/6)>m, whenx > 1

n

er(hy) — v <

Proof. The case ofliam(C) = 0 clearly holds, so we will focus on the nontrivial case of
diam(C) > 0 (and thereforef > 0 andd > 1). We will proceed by bounding thiabel
complexity or size of the label budgetthat is sufficient to guarantee, with high probability, that
the excess error of the returned classifier will be at mdfir arbitrarye > 0); with this in hand,
we can simply bound the inverse of the function to get thelt@sterms of a bound on excess
error.

First note that, by Lemm@=3.6 and a union bound, on an eventadfapility 1 — ¢, (Z2)
holds withn = 6/n for every set), relative to the conditional distribution given its respee
R set, for any value ofi. For the remainder of this proof, we assume that thisé probability
event occurs. In particular, this means that for everg C and every set in the algorithm,
LB(h,Q,d/n) < er(h|R) < UB(h,Q,d/n), for the setr that( is sampled under. Thus, we

always have the invariant that at all times,
Vy>0,{h eV :er(h) —v <~} #0, (2.4)

and therefore also th&t, er(h,) — v = (er(h|R) — infrey er(h|R))P(R) < ;. We will spend
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the remainder of the proof bounding the sizexcfufficient to guarantee sonikg < e.
Recalling the definition of thé*) sequence (from Definitidod.1), note that after step
{h e V : limsupy, P(h(X) # h®) (X)) > %}

_ { - <nmsupk P(h(X) # hUﬂ(X)))“ N (@)}

0

v (et w0y (0

{ H
ieveam s (D))

{

{

heV:er(h|lR)— hllrg/ er(l'|R) > P(R)“_l(Que)_“}
heV :UB(h,Q,0/n)— hleig LB(W,Q,d/n) > IP(R)“_I(ZLLH)_“}
= {h €V :LB(h,Q,5/n) — frll/’lelg UB(I,Q,6/n) > P(R)"(2uf) " — 4G(|Q\,5/n)} .

By definition, everyh € V hasLB(h,Q,d/n) < mingcy UB(R',Q,d/n), so for this last set to
be nonempty after steh we must havé®(R)~~(2u0) " < 4G(|Q|,d/n). On the other hand, if
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{h e V : limsup, P(h(X) # h® (X)) > @} — (), then

P(DIS(V)) <P(DIS({h € C : limsup P(h(X) # h® (X)) < P(R)/(20)}))

= limsup P(DIS({h € C: P(h(X) # hW (X)) < P(R)/(20)})) < limsup 6y, Pé];) = ?,

so that we will definitely satisfy the condition in stémn the next round. Sinc)| gets reset
to 0 upon reaching step, we have that after every execution of stepP(R)"'(2u0)™" <

4G(|1Q| — 1,9/n).

If P(R) < < 7 then certainly3;, < e. So on any round for which

€ €
2G(IQ|-1,6/n) 2G(IQ1,0/n

B > ¢, we must have(R) > s 37

rk—1
rouna for whichg, > €, | s 7= 2u0)™" < — 1,0/n), which implies (by
df hichj 2G(\Q\El,6/n) 0 4G(1Q ) hich implies (b

simple algebra)

2k—2

QI < (%) ~(6u0)’ <ln§ + (d+ 1)1n(n)) + 1.
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Since we need to reach stg@mt most[log(1/¢)]| times before we are guaranteed sofhe< ¢

(P(R) is at least halved each time we reach stg@any

2k—2

n>1+ ((%) " (6u6)? (m% +(d+ 1)1n(n)) + 1) 1og2§ (2.5)

suffices to guarantee sorpe < e. This implies the stated result by basic inequalities tortabu

the smallest value aof satisfying [Z.b) for a given value of. O

If the disagreement coefficient is relatively small, Thewo[EID can represent a significant

improvement in convergence rate compared to passive fegwhere we typically expect rates

of ordern"/(2%~1) [Mammen and Tsybakov, 1999 TsybaL v, 2004]; this gap ie@&afly no-

table when the disagreement coefficient arette small. In particular, the bound matches (up to

log factors) the form of the minimax ratewer boundproven by Castro and No aL_[ﬁ 06] for

threshold classifiers (whefe= 2). Note that, unlike the analysis of Castro and Nawak [2006],

we do not require the algorithm to be given any extra inforamaabout the noise distribution,
so that this result is somewhat stronger; it is also more rgées this bound applies to an arbi-
trary hypothesis class. In some sense, Thedren 2.10 is swshewrprising, since the bounds
U B and LB used to define the sét and the bounds; are not themselves adaptive to the noise
conditions.

Note that, as before; gets divided by)? in the rates achieved by?>. As before, it is not
clear whether any modification to the definitions(o3 and LB can reduce this exponent on
6 from 2 to 1. As such, it is natural to investigate the rates achieved lgothm 2 under
Tsybakov(C, k, i1); we know that it does improve the dependence dor the worst case rates
over distributions with any given noise rate, so we mightédipat it does the same for the
rates over distributions with any given values;ofind <. Unfortunately, we do not presently
know whether the original definition of Algorithm 2 achievbss improvement. However, we
now present a slight modification of the algorithm, and prthet it does indeed provide the

desired improvement in dependence&lpwhile maintaining the improvements in the asymptotic
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dependence on. Specifically, consider the following definition for the éishold in Algorithm

2.
An(L,Q,hW BV §) =3Ec(LUQ,5; L), (2.6)

where&c(-,-:-) is defined in Sectiofi 2.6, based on a notion of local Rademaxraplexity

studied by_KQILthns.IJii [2006]. Unlike the previous definits, these definitions are known to

be adaptive to Tsybakov’s noise conditions, so that we wexfgkct them to be asymptotically
tighter and therefore allow the algorithm to more aggredgigrune the set of candidate hypothe-

ses. Using these definitions, we have the following theornproof is included in Sectidn2.7.

Theorem 2.11.Supposé,, is the classifier returned by Algorithm 2 with threshold a¢am),
when allowed: label requests and given confidence paraméter(0. Suppose further that
Dxy € Tsybakov(C, k, ) for finite parameter values > 1 andu > 0 and VC clas<C. Then

there exists a finites(and . -dependent) constantsuch that, with probability> 1 — 9, Vn € N,

1 / n _
(}AL ) - ge:tp{— Wf’(d/é)}’ When/{—l
erin,) —v .

¢ (M)— , when > 1

n

Note that this does indeed improve the dependenag oeducing its exponent fromto 1;
we do lose some in that there is now a square root in the exponhdime ~ = 1 case, but it is
likely that an improved definition of and a refined analysis can correct this. The bound in The-
oremZ11 is stated in terms of the VC dimensibtdowever, for certain nonparametric function

classes, it is sometimes preferable to quantify the conitylekthe class in terms of a constraint

on theentropy(with bracketing) of the claséntropu@(C a, p) [see e.g.._Castro and Nowak,

N

007

Koltchinskii; 2006, Tsyba C , ].

In passive learning, it is known that empirical risk mini@tion achieves a rate of order

n=/@ste= 1) under Entropyy (C. a, p) N Tsybakov(C, k, p), and that this is sometimes tight

[Koltchinskii, 2006, Tsybakowv, 2004]. The following thewn gives a bound on the rate of con-

vergence of the same version of Algorithm 2 as in Thedren, 2h4 time in terms of the entropy

with bracketing condition which, as before, is faster tHampassive learning rate when the dis-
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agreement coefficient is small. The proof of this is include8ectiol 2.

Theorem 2.12.Supposé,, is the classifier returned by Algorithm 2 with threshold a¢dm),
when allowed: label requests and given confidence paraméter(. Suppose further that
Dxy € Entropy)(C, o, p) N Tsybakov(C, k, u) for finite parameter values > 1, 1 > 0,

a > 0,andp € (0,1). Then there exists a finite (1, « and p -dependent) constantsuch that,

with probability> 1 — §, Vn € N,

91<>g;2(n/5))m‘?‘E

n

w@w—u§c<

Although this result is stated for Algorithm 2, it is concalble that, by modifying Algorithm

1 to use definitions o¥ and; based on@c(Q, d; (), an analogous result may be possible for

Algorithm 1 as well.

2.4 Model Selection

While the previous sections address adaptation to the dag#bution, they are still restrictive
in that they deal only with finite complexity hypothesis &as, where it is often unrealistic
to expect convergence to the Bayes error rate to be acheevaldé address this issue in this
section by developing a general algorithm for learning véitsequence of nested hypothesis

classes of increasing complexity, similar to the setting§tofictural Risk Minimization in passive

learning [Vapnik| 1982]. The starting point for this dissig is the assumption of a structure on

C, in the form of a sequence of nested hypothesis classes.

ClCCQC"'

Each class has an associated noiseuwate inf,,cc, er(h), and we define,,, = lim ;. We also
let 0; andd; be the disagreement coefficient and VC dimension, resgdygtior the setC;. We
are interested in an algorithm that guarantees convergemprebability of the error rate to,..

We are particularly interested in situations whege= v*, a condition which is realistic in this
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setting sinceC; can be defined so that it is always satisfied [seele.q., Dev@yfi, and Lugosi,

1996]. Additionally, if we are so lucky as to have some= v*, then we would like the conver-
gence rate achieved by the algorithm to be not significantiyse/than running one of the above
agnostic active learning algorithms with hypothesis cldsalone. In this context, we can de-
fine a structure-dependent version of Tsybakov’s noiseitiondy (| Tsybakov(C;, k;, p;), for

el
some/ C N, and finite parameters;, > 1 andyu; > 0.

In passive learning, there are several methods for this ¢fpaodel selection which are

known to preserve the convergence rates of each dassderTsybakov(C;, Ky, 11;). [€.9.,

Koltchinskil, 2006} Tsybakov, 2004]. In particular, Kdiiaskil [2006] develops a method that

performs this type of model selection; it turns out we can ifiyadoltchinskii’'s method to suit

our present needs in the context of active learning; thisltes a general active learning model
selection method that preserves the types of improved disesissed in the previous section.
This modification is presented below, based on using Algori2 as a subroutine. (It may also

be possible to define an analogous method that uses Algotithsra subroutine instead.)

Algorithm 3
Input: nested sequence of clas$€s}, label budget:, confidence parametér
Output: classifief,,

0. Fori = [\/n/2], [\/n/2] —1,[\/n/2] = 2,...,1
1. LetZ;, and@);, be the sets returned by Algorithm 2 run with and the
threshold in[[Z16), allowingn/(2:%) | label requests, and confident&?2:?)
2. Leth;, < LEARNC,(U;j>iLin, Qin)
If hi, # @ @andvj s.t.i < j < |\/n/2],
erﬁjnUan(hiN) - 6rﬁjnUan(hjn) < %8((3]' (‘CjnUQjm 6/(2j2); ‘CJ")
4, By — hin
5. Returnh,,

w

The functioné.(-, ;) is defined in Sectiofi2.6. This method can be shown to coyrectl

converge in probability to an error rate @f at a rate never significantly worse than the original

passive learning method lof Koltchinskii [2006], as desirédditionally, we have the following

guarantee on the rate of convergence under the structpexdent definition of Tsybakov’s

noise conditions. The proof is similar in style to Koltchiii's original proof, though some
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care is needed due to the altered sampling distribution le@ddnstraint sef ;,,. The proof is

included in Sectiof 217.

Theorem 2.13.Supposézn is the classifier returned by Algorithm 3, when allowethbel
requests and confidence parameter 0. Suppose further th&?yy € () Tsybakov(C;, ki, ;)
el

for some nonempty C N and for finite parameter values > 1 andy; > 0. Then there exist

finite (x; and u; -dependent) constanéssuch that, with probability> 1 — 4, Vn > 2,

1 n H _
: | S'Q”fp{‘\/m}’ =1
er(hy) — Voo < 3min(y; — vs) + "

KA .
€1 2 d;n 2k; —2
d;0; log® —+— g .
c(i”g&) , if k; > 1

Z n

In particular, if we are so lucky as to have= v* for some finitei € I, then the above algorithm
achieves a convergence rate not significantly worse thamgtheranteed by Theoreln 2111 for

applying Algorithm 2 directly, with hypothesis cla&s.

As in the case of finite-complexit{Z, we can also show a variant of this result when the
complexities are quantified in terms of the entropy with keding. Specifically, consider the
following theorem; the proof is in Sectidn 2.7. Again, thepresents an improvement over

known results for passive learning when the disagreemaesiticient is small.

Theorem 2.14.Supposé,, is the classifier returned by Algorithm 3, when allowethbel

requests and confidence parameter 0. Suppose further that

Dxy € () Tsybakov(C;, ki, ;) N SntropyH(Ci, «;, p;) for some nonempty C N and finite
i€l

parameterg:; > 0, k; > 1, o > 0 andp; € (0,1). Then there exist finites, y;, o; and p;

-dependent) constantéssuch that, with probability> 1 — §, Vn > 2,

el n

2 0;lo 2 in 2"”~ij/ir2
er(hp) — Voo < 3min(v; — vso) + ¢ (ﬁ) .

In addition to these theorems for this structure-dependersion of Tsybakov’s noise con-

ditions, we also have the following result for a structurde@pendent version.

34



Theorem 2.15.Supposé, is the classifier returned by Algorithm 3, when allowethbel
requests and confidence parameter 0. Suppose further that there exists a consjant 0
such that for all measurable : X — {—1,1}, er(h) — v* > uP{h(X) # h*(X)}. Then there

exists a finite g-dependent) constantsuch that, with probability> 1 — §, Vn > 2,

. f n
h/n - * S m' Z - * _'_ - - a9 -7 .
er(h,) —v* <c Z'1n(1/ V') + exp { .0, Tog? % }

The case wherer(h) — v* > pP{h(X) # h*(X)}" for k > 1 can be studied analogously,

though the rate improvements over passive learning are sutntte.

2.5 Conclusions

Under Tsybakov’s noise conditions, active learning caerafhproved asymptotic convergence
rates compared to passive learning when the disagreemeffitmmt is small. It is also possible
to preserve these improved convergence rates when learitimg nested structure of hypothesis
classes, using an algorithm that adapts to both the noisditamrs and the complexity of the

optimal classifier.

2.6 Definition of &

For any functionf : X — R, and&y, &, ... a sequence of independent random variables with
distribution uniform in{—1, +1}, define theRademacher procedsr f under a finite sequence

of labeled example® = {(X/,Y/)} as

1 T

Q|

R(FQ) = 1 6 (X))

The &; should be thought of as internal variables in the learnimggrthm, rather than being

fundamental to the learning problem.
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For any two sequences of labeled examples: {(X/,Y/)} and@ = {(X/,Y/")}, define
C[L] ={h € C:erg(h) =0},

C(e L£,Q) = {h e C[L] : erg(h) — J?é&} ero(h') < €},

let
Q|

De(e£.Q) = sup ﬁzﬂ[hl(Xfl)#hz(Xf)],
) i=1

h1,haeC(e;L,Q
and define
A 1
¢c(6L,Q) =5  sup  R(hi —hg; Q).
h1,h2€C(6;£,Q)
Leto € (0,1], m € N, and define

20m?1
s(8) = Tn 22" ‘;g2(3m).

LetZ. = {j € Z : 27 > ¢}, and for any sequence of labeled examples- {(X/,Y/)},

RN

define@,, = {(X1,Y]), (X5, Y3),...,(X],,Y')}. We use the following notation of Koltchin-

mr T m

skii [Kaltchinskil [2006] with only minor modifications. Fare [0, 1}, define

UC(€7 57 £7 Q) - KG(C (66, E, Q) + S‘Q‘((S)l?g‘(éem’@) + SQQ(5)>

£¢(Q.6: £)= min infle>0:je 2, Ue(2!5: £, Qu) <27
where, for our purposes, we can take= 752, and¢ = 3/2, though there seems to be room for

improvement in these constants. We also de@i@@), 9; C, L) = oo by convention.

2.7 Main Proofs

Let Ec(m,8) = Ec(Zn,0;0). For eachm € N, let b}, = arg min e, (h) be the empirical risk
S
minimizer inC for thetrue labels of the firsin examples.
Fore > 0, defineC(¢) = {h € C:er(h) —v < e€}. Form € N, let

de(m.e) =E S |(er(h1) = erm(h1)) = (er(hs) — erm(hs))l,
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Uc(m,e,8) = K (cb(c(m, ce) + \/Sm(é)dii:?((:(ée)) + 8’2};”) :

Ec(m, o) = inf {e>0:Vj € 2., Uc(m,2,8) < 27},

where, for our purposes, we can take= 8272 andé = 3. We also defin€c(0,d) = co. The

following lemma is crucial to all of the proofs that follow.

Lemma 2.16. [Kaltchinskil, I2006] There is an evetic s with P(E¢s) > 1 — §/2 such that, on

eventEc s, Vm € N,Vh € C, V1 € (0,1/m),Vh' € C(7),
er(h) — v < max {Q(erm(h) —erm(h) + 1), éc(m, 5)}
erm(h) — erp(hy) < 2 max {(er(h) — ), &c(m, 5)} ,

E(C(mu 5) S éC(mu 5)7

and for anyj € Z with 2/ > &¢(m, ),

sup  |(erp(hy) —er(hy)) — (erm(he) —er(hg))| < U(C(2j, 5,0, Z,,).

hi,hoeC(27)

This lemma essentially follows from details of the proof aft€hinskii’'s Theorem 1, Lemma

2, and Theorem 3 [Koltchins <li_m ] We do not provide a proof of Lemnfia2]116 here. The

reader is referred to Koltchinskii’'s paper for the details.

2.7.1 Definition ofr

If 6 is bounded by a finite constant, the definition-gfis not too important. However, in some
cases, setting, = 0 results in a suboptimal, or even infinite, valuedpfwhich is undesirable.
In these cases, we would like to sgtas large as possible while maintaining the validity of
the bounds, and if we do this carefully we should be able tabéish bounds that, even in the
worst case whefi = 1/r,, are never worse than the bounds for some analogous pasaimélg

0our min‘ modification to Koltchinskii's version of¢(m, §) is not a problem, sincec(m, ¢) andsmT@ are

m<|Q

nonincreasing functions of.
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method; however, to do this requiresto depend on the parameters of the learning problem:
namelyn, 6, C, andDyy .

Generally, depending on the bound we wish to prove, diffevatues ofr, may be appro-
priate. For the tightest bound in termséproven below (namely, LemniaZ]18), the following
definition ofry gives a good bound. Defining

’fh(c(n, (5, ny) = min {m eN:n< 10g2 %T;ﬂ + Qemz_ P(D[S(C(Qé(c(g, (S))))} y (27)

/=0
we can letry = r¢(n, 0, Dxy ), Where

Thc(n,(S,DXY)_l
1 . s /
rc(n,d, Dxy) = Fc(n. 5, Dy ZZ:; diam(C(2E¢c(me(r',n,d),0))). (2.8)

We use this definition in all of the proofs below. In partiaulaith this definition, LemmB&Z2.18 is
never significantly worse than the analogous known resupéssive learning (though it can be
significantly better whefl << 1/r¢). For the looser bounds (namely, Theordms12.11[and 2.12),
a larger value of\, would be more appropriate; however, note that this samergketeehnique
can be employed to define a good valuerfpin these looser bounds as well, simply using upper

bounds on[(Z]8) analogous to how the theorems themselveea@ved from LemmBZ.18 below.

2.7.2 Proofs Relating to Sectiofi 213

For¢ € NU {0}, let £Y andQ® denote the set§ and(, respectively, in step 4 of Algorithm

2, whenm — 1 = ¢; if this never happens during execution, then defiffé = §, Q) = Zz,.

Lemma 2.17.0n eventtc 5, V¢ € N U {0},
Ec(QVU LY, 6;LY) = Ec((,0)

and

Ve > Ec(0,0), hi e Cyle; £O) C Cyle; 0).

Proof of LemmalZI4 Throughout this proof, we assume the evEnt; occurs. We proceed by

induction on?, with the base case éf= 0 (which clearly holds). Suppose the statements are true
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forall ¢ < ¢. The caseC”) = () is trivial, so assum&® = ). For the inductive step, suppose
h e @g(éc(ﬁ, (S), @)

Then for all?’ < ¢, we have
ero(h) — ere(hy) < Ec(l',6).
In particular, by LemmBZ16, this implies

er(h) — v < max {Q(erg(h) —ero(h2)), Ec(t, 5)} < 28(0,9),

and thus for any)’ € C,

~

erp(h) —erp(h') < erp(h) — erp(h})

< ;max {er(h) — v, &c(l, 5)} < 3E(C,8) = 3Ec(QY), 5, L)),

Thus, we must haver ., (h) = 0, and thereforér € C,(Ec(¢,6); £L?). Since this is the case

for all suchh, we must have that
Col€c(t,8); L) 2 CulEc(t,6); 0). (2.9)
In particular, this implies that
Oe(Eelt,5),8 £0,Q0) 2 Ue(Ec(t,8),0:0,2) > 1Ee(t,0),

where the last inequality follows from the definition &&(ﬁ, 9), (which is a power oR). Thus,
we must havec(QW U L0 §: £LO) > (4, 5).
The relation in[(ZB) also implies that
hi € Co(Ec(t,6); £LO),
and therefore
Ve > Ec(0,8), Cyle: £Y) C Cyle: 0),
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which implies

Ve > Ec(L,0), Uc(e,8;£9,QW) < Uc(e, 80, Z,).

But this mean€c(QYW U £®,§; £O) < &¢(¢,8). Therefore, we must have equality. Thus, the

lemma follows by the principle of induction. O

Lemma 2.18. Suppose for any € N, h, is the classifier returned by Algorithm 2 with
threshold as iffZ.8), when allowed: label requests and given confidence paraméter0, and
suppose further that,, is the value ofQ| + |£| when Algorithm 2 returns. Then there is an

eventHc s such thatP(Hc s N Ecs) > 1 — 6, such that oc s N Ec s, Vn € N,
er(ﬁn) —v< éc(mn, J),
and

4 2 myp—1 ~
n < min {mn, log, % +4e0 Y diam(C(2&c(, 5)))} .

£=0

Proof of LemmalZI8. Once again, assume eveiit ; occurs. By Lemm&Z16/m > 0,

er(hn) — v < max {Q(ermn(ﬁn) — et (B2, )+ 7), Ec(m, 5)} .

~

Letting7 — 0, and noting thatr,(h%, ) = 0 (LemmalZ1V) impliegr,,, (h,) = ery,, (k% ),
we have

er(hn) — v < Ec(my, 8) < Ec(mn,d),

where the last inequality is also due to LemmaR.16. Note tthiatéc(mn,d) represents an
interesting data-dependent bound.

To get the bound on the number of label requests, we procetdl@ass. For anym € N,
and nonnegative integér< m, let I, be the indicator for the event that Algorithm 2 requests
the labelY,,,; and letN,, = 2”:_01 I,. Additionally, let I; be independent Bernoulli random
variables with

P[[,=1 =P {DJS(C(zéC(/z, 5)))} .
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Let N/, = 37! I;. We have that
P[{I, =1} N Ecs) <P |{Xp1 € DIS(Co(Ec(QW U L® 5Ly, £ONY N Em]
<P |{Xp1 € DIS(C(Ec(t,8);0)} N Ew} <P [DIS((C(&EJ(C(& 5)))} —P[1 = 1].

The second inequality is due to Lemnias"2.17 Bndl2.16, whéethird inequality is due to
LemmdZIb. Note that

E[N' ]| = Z_ Pl =1] = Z_ P {DJS(C(zéC(e, 5)))}}

Let us name this last quantity,. Thus, by union and Chernoff bounds,

4m?
Pi<3dmeN: N, >max< 2eq,, ¢, + logy, — N Ecs

)
4m?
< Z P < N, > max < 2eq,, ¢ + log, e N Ecs
meN
Am? ) )
< W%IP HN,’n > max{Qeqm,qm + log, T}H < %4—7”2 < 3

For anyn, we known < m,, < 2". Therefore, we have that on an event (which incluties)

occuring with probability> 1 — 9, for everyn € N,

4m?
n < max{N,,, ,log, m,} < max < 2eq¢n,, Gm, + l0g,

5
4m? e N
<log, —" +2¢ > P{DIS(C(2€c((,0)))}.
/=0

In particular, this impliesn,, = mc(n,d, Dxy) < m, (Wheremc(n,d, Dxy ) is defined in[(Z17)).

We now use the definition @f with ther, in .38).

~ 9 M —1 ~

n < log, {% +2e Y P{DIS(C(2Ec(L,0)))}
(=0
4?2 o ;
<log, —" +2e0 Y max{diam(C(2Ec(¢,0))),rc(n, d, Dxy)}
/=0
42 o . 4m? oy ;

< log, —" + de0 > diam(C(2&c((,))) < log, —= +4e® > diam(C(2Ec(, ))).

=0 /=0
]
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Lemma 2.19.0n eventf¢ ;s N Ec s (WhereHc s is from Lemm&Z18), under

Tsybakov(C, k, 1), Vn € N,

-e:vp{— /#}, ifr=1
Ec(imn, 0) < v

c(M)— if 15> 1

1§
S

)

n

for some finite constant(depending om: and ), and under

Entropy; (C, o, p) N Tsybakov(C, k, p), Vn € N,

K

~ 2 PP
Ee(mn. 8) < c (M) ,

n

for some finite constant(depending o, 1, p, anda).

Proof of Lemmal[Z19. We begin with the first cas&6ybakov(C, k, 1) only).

We know that
edlog %

we(m,e) < K\ —

for some constanfs [see e.g.| Massart arflodie Nedélec, 2006]. Noting that:(m,¢) <

we(m, diam(C(e))), we have that

Oc(m,e,8) < K (K\/ diam(C(c€))d108 grmicray \/ su(@)diam(C() | sm(a))

m m

m
1/6d1 1 1/k
<K,max{ Jevedlon ! [5,(0)c ’sm(5)}‘
m m m

Taking anye > K" (%) m, for some constank” > 0, suffices to make this latter quantity

< 15- So for some appropriate constdtidepending om andx), we must have that

- dlog ™\ Z=-T
Ec(m,8) < K ( %8s ) . (2.10)
m
Plugging this into the query bound, we have that
2 mp—1 L dl x Til
n < log, 4?” + 2ef (2 —i—/ pu(2K')x <&) ) . (2.11)
1 X
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2K

—2
If x> 1, (ZI1) is at mos""¢m;"~" dlog ", for some constank™ (depending om and

1). Thisimplies

2k—1

2k—2
N L
i = <9dlogg ’

for some constank ). Plugging this into[[Z10) and using Lemina2.18 completesptoof for

this case.

Onthe other hand, if = 1, (ZI1) is at mosk"#d log” ™=, for some constant” (depending

My > 5emp{K(3)1/%},

for some constank ®). Plugging this into[[Z10), using Lemria2.18, and simpfifythe ex-

onx andy). This implies

pression with a bit of algebra completes this case.

For the bound in terms of, IKoltchinskil [2006] proves that

~ ; log ™\ 2n=1 log ™\ 2rFp=1
Ec(m,d) < Kfmax{m—mw, < o8 5) } <K' <ﬁ) , (2.12)

m m

for some constank” (depending on, «, andk). Plugging this into the query bound, we have

that

4 2 mp—1 10 xz 2,14:—71 2k+p—2 "
n < log, % + 2¢6 <2 + / [(2K')x ( s 5) ’ ) < K"0my"""'log mT,
] T

for some constank™” (depending om:, i, ,, andp). This implies

2k+p—1

My > K(3)< n )2’””

for some constank ). Plugging this into[[2Z12) and using Lemina2.18 completegptioof of

this case. [

Proofs of TheoremPZIT and TheoremZI2 These theorems now follow directly from Lem-

mad2Z1B and Z.19. O
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2.7.3 Proofs Relating to Sectioh 214

Lemma 2.20.Fori € N, letd; = §/(2i?) andmy,, = |Lin| + |Qin| (fOr i > \/Tﬂ define
Lin = Qi = ). For eachn, let 1,, denote the smallest indesatisfying the condition oh;,, in
step 3 of Algorithm 3. Let, = 2" and define
in =min{i € N: Vi >i,Vj > ,Vh € Cy(1,), erg,, (h) = 0},
and

Je =argminv; + &c (M, 95).
JeN

Then on the everft) Eg, s,
i=1

Vn € N, max {i,’;,%n} < g

Proof of Lemmal[Z.20. Continuing the notation from the proof of Lemina32.17,fer NU{0},
let EZ(.Z andQ denote the set§ and(, respectively, in step 4 of Algorithm 2, when — 1 =
¢, when run with clas<;, label budgetn/(2i%)], confidence parametéf, and threshold as
in @8); if m — 1 is never/ during execution, then defing ’ = () andQ

Assume the everm1 E¢, 5, occurs. Suppose, for the sake of contradiction, jhatj < i

for somen € N. Then there is somé > ¢ — 1 such that, for somé < m;,, we have some

h e Ci;—l('rn) N {h € Cz : 67“£(£)(h) = 0} but

ero(h)—miner,(h) > er(H) —hECi:mrrii(% - ero(h) > 3¢ (LY0QY  5;: £1Y) = 38¢,(¢,6,),

in

where the last equality is due to Lemma=2.17. Lenimal2.16 esghis will not happen for

i =1i* — 1, so we can assume> i*. We therefore have (by Lemrha2l16) that

38 (0,5;) < ero(H') — min ery(h) < g max {1, + vt — v, e (6.5) )

heC;

In particular, this implies that

w

~

SECi(mim 52) < Sé(cb(ga 52) <

N W

(Tn + Vix—1 — Vi) < (v —1).

[\

Therefore,
~ ~ Tn

gcj(m]‘n, 5]) -+ Vi S &Ci(mm, (51) +v; S 5 (Tn + vy — VZ') + v S E + vj.
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This would imply thatécj (Myjn,0;) < 7,/2 < m%n (due to the second return condition in Al-
gorithm 2), which by definition is not possible, so we have at@diction. Therefore, we must
have that every; > . In particular, we have thatn € N, h;.,, # @.

Now pick an arbitrary € N withi > j = j*, and leth’ € C;(r,). Then

< erm, (Rjn) — hme%CI} erm,. (h)

< gmax {er(hjn) — v, &¢,(min, 51)} (LemmdZ.1b)

— ;max {er(hjn) — Vv + v — v, Ec, (Min, 52')}
(2(ermjn(hjn) — €Ty, (W) +70) + v — 14

< 3 .

5 max S(Cj (mjn, (Sj) + Vi —V;

éCi (min7 52)
\
)

A

3 acj (mjn, (%) + Vi —1; ) . »
= 5 max (sincej > )
éci (mim 5i)
\
= gec (Min, 0;) (by definition of ;)
- DEe(Lin U Qun, 0 L) (by LemmeZI)

Lemma 2.21.0n the even{) Eg,s,, Vn € N,
=1

er(h

Proof of LemmalZZ]. Let k!, € C;.(r,) for 7,, € (0,27"), n € N.
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er(hn) — Voo = er(h; ) — Voo

= Uy — Voo ter(hy ) — v
4

2(erp,. (h; ) — 67’mj§n(h;z) + Ta)

Inm

IN

Vjx — Voo + 1NaAX

A

Ec,. (Mjzn 0jz)
\ n

2(€rﬁj;nUQj;n(hi7ln) - 6rﬁj;nUQj;n(hj£")) + Tu)

IN

Vj» — Voo + 1NaAX

\ Ec,. (Myjzn, 65z
The first inequality follows from Lemn{aZ116. The second inagy is due to LemmBZ20 (i.e.,

j* > i*). Inthis last line, we can let, — 0, and using the definition af, show that it is at most

3. R
Vj; = Voo +max {2 (58% (Ljzn U Qjzns 0z ﬁj;;n)) €, (Myn, 53';;)}

= I/j;; — Vo + Bé(cj;; (m];;n, 6];;) (Lemmm)
< 3min (yi — Vo + &, (i, 5i)) (by definition of;*)
< 3 min (I/i — Voo + éci(mm, 5,)) (LemmdZ.1b).

We are now ready for the proof of Theorems2.13andl2.14.

Proofs of TheoremZIB and Theoreri 214These theorems now follow directly from Lem-

masZ2Zll andZ19. Thatis, Lemma2.21 gives a bound in tere&f quantities, holding on

event() Ec, s, and Lemm&Z.19 bounds thesquantities as desired, on eveNtHe, 5,NEc, s,
i=1 i=1

Noting that, by the union bound, [ﬂ Hg, 5N ECZ.@} >1—>"7 6 >1— ¢ completes the
i=1

proof. ]

Defineé = ¢+ 1, D(e) = lim diam(C;(e)), and

J—00

Sm(6:) D (ée) . S (67)

Uc,(m,€,8;) = K | we,(m, D(ée)) +
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and

éci(m, ;) = inf {e >0:VY) € Z, [J*Ci(m7 27.6;) < 2;‘-4} '

Lemma 2.22.For anym,+ € N,

Ec,(m, ;) < max {éci(m, 0i), Vi — I/OO} )

Proof of LemmalZ22. Fore > v; — v,

m m

Uci(m,e,éi) = K <¢Cl (m,ée) + \/Sm(&)dzam(Cl((}e)) n Sm 52))

<K (wci(m, diam(C;(ce))) + \/ Sm<5i>di6:zl(<ci(é€)) . sm;léi)) .

But diam(C;(¢e)) < D(ée + (v; — vso)) < D(é¢), s0 the above line is at most

m m

K (wcl(m,f)(ée)) + 5m(3:) D(é) + Sm(éi)) = lo]ci(m, €,0;).

In particular, this implies that

Ec,(m,&;) = inf {e >0:VYj € Z, U, (m,2,5;) < 2j_4}
< inffe> (- va) V) € Ze, Uy (m, 2,0 <27}
< inffe> (- va) V) € Ze, Uy (m, 2,0, <271}
< max 1nf{e>0 Vg GZE,U(C (m, 27 5)<2j_4},(ui—uoo)}

{
T

Ec,(m I/OO} )

Proof of TheoremZIH. By the same argument that leadfo{2.10), we have that



for some constank’, (depending omn).
Now assume the evefy.”, Hc, 5, N Ec, s, occurs. In particular, LemnaZ]21 implies that

Vi,n € N,

er(hy) — v* < min {1, 3 min (2(14 — voo) + &, (M, 52)>}

ieN
< K3min ((VZ — ") + min {1, A}) ,
1€N Min

Now takei € N. The label request bound of Lemia3.18, along with Lerhmd, 2n2alies

for some constank’s.

that

2 2 Mip—1 dll 1l
1

< K50, max {(1/2- — VU )mip, d; logz(mm) log %}

Let’yl(n) = /m. Then

d; log mini
208 75— < K ((Vi Y

Myin,

+dilog (14 () exp {—62%(71)}) |

1+ 7i(n)
Yi(n)?

Thus,

d; log Mt :
min {1, L} < min {1,K7 (( )+ dylog (1 +%(t))€€6p{—02%(n)}) } .

Myin,

The result follows from this by some simple algebra. O

2.8 Time Complexity of Algorithm 2

It is worth making a few remarks about the time complexity ag@kithm 2 when used with
the [2Z®) threshold. Clearly theHarN¢ subroutine could be at least as computationally hard
as empirical risk minimization (ERM) ovef. For most interesting hypothesis classes, this

is known to be NP-Hard — though interestingly, there are seiffieient special cases [e.g.,
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Kalai, Klivans, Mansour, and Servedio, 2005]. Additiogathere is the matter of calculating

&.(6;C, £). The challenge here is due to the localizatdf; £) in the empirical Rademacher

process calculation and the empirical diameter calcuiatio

However, using a trick similar to that \n_Bartlett, Bousquaid Mendelson [2005], we can

calculate or bound these quantities via an efficient redodth minimization of aveightedem-

pirical error. That is, the only possibly difficult step inlcalating g%m(e; C, £) requires only

that we identifyh; = argmin er,,(h,§) andhy = argmin er,,(h, —&), whereer,,(h,§) =
hECwL(5§£) hECm(G;»C)

L3 IMXG) # &) ander,(h, =€) is the same but with-&;.  Similarly, letting o, =

LEARNC(L, @) for £L U @ generated from the first unlabeled examples, we can bound

D,(e; C, £) within a factor of2 by 2er,, (i, h;) whereh/ = argmin  er,,(h, —h.) and

heCm (&L)
erm(f,g) = % S Lf(XG) # g(X;)]. All that remains is to specify how this optimization for

hi,hs,andh’ can be performed. Taking thg case for example, we can solve the optimization as

follows. We find

m

hoy = argmin D UA(X) # &)+ D AMh(x) # 9]+ Y 2max{1, \pm1[h(x) # o],

i=1 (z.9)€Q (@,y)EL
where \ is a Lagrange multiplier; we can calcula?t@\) for O(m?) values of\ in a discrete
grid, and from these choose the one with smallest(’,), £) among those witlr g (h () —
ercug(he) < e. The third term guarantees the solution satisfigg)) = 0, while the value
of \ specifies the trade-off between, o (h(y)) ander,,(h), €). The calculation fo, andh’
is analogous. Additionally, we can clearly formulate thearN subroutine as such a weighted
ERM problem as well.

For each of these weighted ERM problems, a further polynbraduction to (unweighted)
empirical risk minimization is possible. In particular, wan replicate the examples a number
of times proportional to the weights, generating an ERM f@wbon O (m?) examples. Thus,
for processing any finite number of unlabeled exampteghe time complexity of Algorithm

2 (substituting the abov&-approximation forf)m(e; C, £), which only changes constant factors

in the results of Sectidn2.3.4) should be no more than a paotyal factor worse than the time
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complexity of empirical risk minimization witl€, for the worst case over all samples of size

O(m?).

2.9 A Refined Analysis of PAC Learning Via the Disagree-
ment Coefficient

Throughout this section, we will work ifiRealizable(C) and denoté® = D [X]. In particular,
there is always a target functighe C with er(f) = 0.
Note that the known general upper bound for this problemas iththe VC dimension ofC
is d, then with probabilityl — ¢, every classifier ifC consistent withh random samples has error
rate at most
dIn(2en/d) +1n(4/6)

4 _ (2.13)
n

This is due to Vapnik [1982]. There is a slightly differentusal (for a different learning strategy)

of

o Llog(1/9) (2.14)

proven by.Ha.ussIﬂL_LLLLI.eslo.n.e_a.n.dJNamI\ th [1994]. Itlmoaknown that one cannot get a

distribution-free bound smaller than

_ d+log(1/6)

n

for any concept space [Vaphlk, 1982]. The question we areaxoed with here is deriving upper
bounds that are closer to this lower bound than eifher24&.13) in some cases.

10801/ iy the definition of the

For our purposes, throughout this section we will take-
disagreement coefficient. In particular, recall that< % always, and this will imply a fallback
guarantee no worse than those above for our analysis bel@mever, it is sometimes much
smaller, or even constant, in which case our analysis heyelbmdetter than those mentioned

above.
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2.9.1 Error Rates for Any Consistent Classifier

For simplicity and to focus on the nontrivial cases, the ltesu this section will be stated for
the case wher®(DI1S(C)) > 0. TheP(DIS(C)) = 0 case is trivial, since every € C has
er(h) = 0 there.

Theorem 2.23.Letd be the VC dimension of concept spéteand let
Vi, ={h € C:Vi<n,h(z;) = f(z;)}, wheref € C is the target function (i.e¢r(f) = 0),
and(xy, zo, ..., z,) ~ D" is a sequence of i.i.d. training examples. Then for &my(0, 1),

with probability> 1 — 6, Vh € V,,,

24

n

er(h) <

(d In(8806,) + In %2) . (2.15)

Proof. SinceP(D1S(C)) > 0 by assumptiond; > 0 (andd > 0 also follows). As above, let
Vin = {h € C: Vi < m,h(z;) = f(z;)}, and defineradius(V;,) = supy¢y, er(h). We will
prove the result by induction an As a base case, note that the result clearly holds ferd, as
we always haver(h) < 1.

Now suppose: > d + 1 > 2, and suppose the result holds for any< n; in particular,
considernn = |n/2]. Thus, for any € (0, 1), with probability> 1 — §/3,

24
radius(Vy,) < - <d In(8806;) + In ?) :

Note thatr, < r,,, so we can take this inequality to hold for thedefined withr,, as well. If
P(DIS(V,,) < 2In2 < 21n 3, then [ZIB) is valid (as i$1Z116) below) sineelius(V,) <
radius(Vy,) < P(DIS(V,,)). Otherwise, by a Chernoff bound, with probabilityl — 6/3, we

have

{ Lty Tomsas - s 20} O DIS(Vi)| > B(DIS(Vin))[n/2]/2 =: N.
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2I3) tells us that given this event, with probabilityl — 6/3,

radius(V,) = P(DIS(V,,))radius(V,|DIS(V,,))
1

1_
Ad T

< 16 (dln efrradius(Vy,)n 12) .
n

SV,
< P(DIS(V,, ))% (dln@ tln B) <

: : 6 ( 2eP(DIS(V,,))n 12)

+1n —

2d o

Applying the inductive hypothesis fotadius(V,,) combined with a union bound over these

failure events (each of probability/3), we have that with probabilityy 1 — 4,

1 1 12
radius(V,) < ;6 <d In <4869f <ln (8806f) + 7 In %6)) In F) . (2.16)

If d > L1n 12, then the right side of{Z16) is at most

% (d In (048¢1n (880 - 3 - ¢“0¢)) + In %2)
< 10 (d In (6,48 In (400086;)) + In 15—2)
n

16 » 12 _ 24 2
< (dln (260999f ) +In T) <d1n (8800;) + In F) .

n

Otherwised < 11n 2, so that the right side o {Z116) is at most

16 1. 12 12
— (d In <9f4861n (880 - 36;) = 7 In 7) +1n F)

<16 (d In (670593/2) +dn (

5
24 2
< = Z -
= (dln(3569f) + 5 < )ln )

The theorem now follows by the principle of induction. O

24 12
< J— 1 J—
o <d n 880¢9f) —l—hl 5 )

With this result in hand, we can immediately get some intergsesults, such as the follow-

ing corollary.
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Corollary 2.24. Suppos«€ is the space of linear separators dhdimensions that pass through
the origin, and suppose the distribution is uniform on thdae of the origin-centered unit
sphere. Then with probability 1 — 4, anyh € C consistent with the i.i.d. training examples

has (for some finite universa)

dlogd+ log%
c——————2,

n

er(h) <

Proof. [Hannekel 2007b] proves thatp 6, < 7v/d for this problem. O
fec

This improves over the best previously known bound for cstesit classifiers for this problem

in its dependence om, which wasoc 220/ DH0e0/0) 1y 5 and | ong, 2007] (though we picked

n

up an extrdog d factor in the process).

2.9.2 Specializing to Particular Algorithms

The above analysis is for arbitrary algorithms that selestassifier consistent with the training
data. However, we can modify the disagreement coefficienetmore interesting for more spe-
cific algorithms. Specifically, suppose there are €gtsuch that with high probability algorithm
A will output a classifier irC; when f is the target function. Then we only need to worry about
the regions of disagreement within th&Sgsets, which may be significantly smaller than within
the full spaceC.

To give a concrete example, consider the Closure algoritutput theh € C with smallest
P(h(X) = +1) that is consistent with the data. For intersection-cloSedhe sets ar€; =
{h € C: h(zx) = +1 = f(x) = +1}. So effectively, this becomes our concept space, and the
disagreement coefficient gfwith respect taC ; andD can be significantly smaller than it is with
respect to the full spac€. For instance, ifC is axis-aligned rectangles, then the disagreement
coefficient of anyf € C with respect taC,; andD is at mostd. This implies a bound

~ dlogd + log(1/4)

n
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We already have better bounds than this for using Closurbk this concept space. How-
ever, if thed upper bound on disagreement coefficient with resped tas true for general

intersection-closed spac€s this would match the best known bounds for general intémec

closed spaces 004].
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Chapter 3

Significance of the Verifiable/Unverifiable

Distinction in Realizable Active Learning

This chapter describes and explores a new perspective daltblecomplexity of active learning
in the fixed-distribution realizable case. In many situagiovhere it was generally thought that
active learning does not help, we show that active learnmgscdelp in the limit, often with
exponential improvements in label complexity. This costisavith the traditional analysis of
active learning problems such as non-homogeneous linparaers or depth-limited decision
trees, in whichQ2(1/¢) lower bounds are common. Such lower bounds should be ieteqgbr
carefully; indeed, we prove that it is always possible toriesne-good classifier with a number
of labels asymptotically smaller than this. These new imsigirise from a subtle variation on
the traditional definition of label complexity, not previly recognized in the active learning

literature.

Remark 3.1. The results in this chapter are taken frOLn_[.B.a.Is:a.n_I:Ia.rln.akEUA&LLma' 2008],

joint work with Maria-Florina Balcan and Jennifer Wortman.
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3.1 Introduction

A number of active learning analyses have recently beergseapin a PAC-style setting, both for

the realizable and for the agnostic cases, resulting in aeseg of important positive and nega-

tive resultsi[Balcan et al., 2006, 2007, Cohn et al ptal 2004, 2005, Dasgupta €t al.,

005,2007, Hanneke a,b]. In particular, the mostr@eaoteworthy positive result for
when active learning helps is that of learning homogeneaas through the origin) linear
separators, when the data is linearly separable and distdhuniformly over the unit sphere,

and this example has been extensively analy.Led_[.B.a.I.ca.rI\ $G6,02007] _Dasgupta, 2005,

Dasgupta et al., 2005, 2007]. However, few other positigelte are known, and there are sim-

ple (almost trivial) examples, such as learning intervala@n-homogeneous linear separators

under the uniform distribution, where previous analysdaleél complexities have indicated that

perhaps active learning does not help at pta,]2005

In this work, we approach the analysis of active learningalgms from a different angle.
Specifically, we point out that traditional analyses hawedigtd the number of label requests
required before an algorithm can both produce-giwod classifieand prove that the classifier’s
error is no more tham. These studies have turned up simple examples where thibarus
no smaller than the number of random labeled examples estjfor passive learning. This is
the case for learning certain nonhomogeneous linear depar@nd intervals on the real line,
and generally seems to be a common problem for many learogmpsios. As such, it has led
some to conclude that active learnitiges not helfior most learning problems. One of the goals
of our present analysis is to dispel this misconception. cHipelly, we study the number of
labels an algorithm needs to request before it can produeegand classifier, even if there is
no accessible confidence bound available to verify the tyuafithe classifier. With this type
of analysis, we prove that active learning can essentidligys achieve asymptotically superior
label complexity compared to passive learning when the M@edision is finite. Furthermore,

we find that for most natural learning problems, including tiregative examples given in the
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Best accessible confiden
bound on the error

True error rate of
the learnés hypothesis

y ponIlog(l/e) 1I/e

Figure 3.1: Active learning can often achieve exponentigdriovements, though in many cases
the amount of improvement cannot be detected from infolnadiailable to the learning algo-

rithm. Herey may be a target-dependent constant.

previous literature, active learning can achieve expdaErhmprovements over passive learning
with respect to dependence anThis situation is characterized in Figlrel3.1.
To our knowledge, this is the first work to address this subtiet in the context of active

learning. Though several previous papers have studieddsoom this latter type of label com-

plexity K, 20077, Dasgupta etlal., 2005, [ROD@ir results wereno stronger

than the results one could prove in the traditional analy#is such, it seems this large gap

between the two types of label complexities has gone uresticitil now.

3.1.1 A Simple Example: Intervals

To get some intuition about when these types of label conifglexe different, consider the
following example. Suppose thét is the class of all intervals oved, 1] andD is a uniform
distribution over{0, 1]. If the target function is the empty interval, then for anffisiently small
¢, in order toverify with high confidence that this (or any) interval has eror, we need to
request labels in at least a constant fraction of(¥ie/¢) intervals|0, 2¢], [2¢, 4¢], . . ., requiring
2(1/e) total label requests.

lwe slightly abuse the term “exponential” throughout theptha In particular, we refer to anylylog(1/¢) as

being an exponential improvement ovgfe.
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However, no matter what the target function is, we @ad an e-good classifier with only
a logarithmic label complexity via the following extremedymple 2-phase learning algorithm.
The algorithm will be allowed to makelabel requests, and then we will find a valuet dfiat is
sufficiently large to guarantee learning. We start with géaf(2*)) set of unlabeled examples.
In the first phase, on each round we choose a poumiformly at random from the unlabeled
sample and query its label. We repeat this until we eitheenigsa+1 label, at which point we
enter the second phase, or we use &bel requests. In the second phase, we alternate between
running one binary search on the examples betveand thatz and a second on the examples
between that: and 1 to approximate the end-points of the interval. Once we uke label

requests, we output a smallest interval consistent witlobserved labels.

If the targeth* labels every point as-1 (the so-calledll-negativefunction), the algorithm
described above would output a hypothesis witlrror even aftef label requests, so ary> 0
suffices in this case. On the other hand, if the target is amiat[a, b] C [0, 1], whereb — a =
w > 0, then after roughly)(1/w) queries (a constant number that depends only on the taaget),
positive example will be found. Since ondy(log(1/¢)) additional queries are required to run the
binary search to reach error ratét suffices to have > O(1/w+log(1/¢)) = O(log(1/¢)). Soin
general, the label complexity is at worStlog(1/¢)). Thus, we see a sharp distinction between
the label complexity required thind a good classifier (logarithmic) and the label complexity

needed to both find a good classifaerd verifythat it is good.

This example is particularly simple, since there is effeti only one“hard” target function
(the all-negative target). However, most of the spaces wdystre significantly more complex
than this, and there are generally many targets for whighdifficult to achieve good verifiable

complexity.
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3.1.2 Our Results

We show that in many situations where it was previously beliethat active learning cannot

help, active learning does help in the limit. Our main speaéntributions are as follows:

e We distinguish between two different variations on the dedin of label complexity. The
traditional definition, which we refer to agrifiable label complexityfocuses on the num-
ber of label requests needed to obtain a confidence boundainay an algorithm has
achieved at mosterror. The newer definition, which we refer to simplylalsel complex-
ity, focuses on the number of label requests before an algoatitoally achieves at most
e error. We point out that the latter is often significantly fievathan the former, in con-
trast to passive learning where they are often equivaletd apnstants for most nontrivial

learning problems.

e We prove thatnydistribution and finite VC dimension concept class has adgarning
label complexity asymptotically smaller than the label pbewity of passive learning for
nontrivial targets. A simple corollary of this is that fin¥éC dimension implies(1/¢)

active learning label complexity.

e We show it is possible to actively learn with erponential rate variety of concept classes
and distributions, many of which are known to require a Iimaée in the traditional anal-
ysis of active learning: for example, intervals @n1] and non-homogeneous linear sepa-

rators under the uniform distribution.

e We show that even in this new perspective, there do existritwoands; it is possible to
exhibit somewhat contrived distributions where exporamtites are not achievable even
for some simple concept spaces (see Thedrem 3.11). Therlggroblems for which
these lower bounds hold are much more intricate than therloaends from the traditional
analysis, and intuitively seem to represent the core of wialtes a hard active learning

problem.
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3.2 Background and Notation

In various places throughout this chapter, we will need tratefor acountable dense subsatt

a hypothesis clasg. For any set of classifiefi§, we will denote byl a countable (or possibly

finite) subset of/” s.t. Voo > 0, Vh € V, 31’ € V with Pp 12 (h(X) # I'(X)) < a. Such

a set is guaranteed to exist under mild conditions; in paerc finite VC dimension suffices to

guarantee its existence. We introduce this notion to averthth degenerate behaviors, such as

whenDIS(B(h,0)) = X. For instance, the hypothesis class of classifiers on0thg interval

that label exactly one point positive has this property urghy nonatomic density function.
Since all of the results in this chapter are for the fixedritigtion realizable case, it will be

convenient to introduce the following short-hand notation

Definition 3.1. A functionA(e, 6, h*) is alabel complexityfor a pair (C, D) if there exists an
active learning algorithmA achieving label complexity(e, §, Dxy) = A(e, 6, h*p,.,.) for all
Dxy € Realizable(C, D), whereD is a distribution overt’ andh*p, . is the target function

underDxy-.

Definition 3.2. A functionA(e, 6, h*) is averifiable label complexityor a pair (C, D) if there
exists an active learning algorithpd achieving verifiable label complexity

A(e,6,Dxy) = A(e, 0, h*p,, ) for all Dxy € Realizable(C, D), whereD is a distribution over

X andh*

Let us take a moment to reflect on the difference between thalgfinitions of label com-

is the target function undep yy-.

Dxy

plexity: namely, verifiable and unverifiable. The distioctimay appear quite subtle. Both
definitions allow the label complexity to depend both on #rgét function and on the input dis-
tribution. The only distinction is whether or not there isautessible guarantear confidence

boundon the error of the chosen hypothesis that is also at mo$his confidence bound can
only depend on quantities accessible to the learning algorisuch as therequested labels. As
an illustration of this distinction, consider again thelgeon of learning intervals. As described

above, if the target* is an interval of widthw, then after seein@(1/w +log(1/¢)) labels, with
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high probability it is possible for an algorithm guaranteethat it can output a function with
error less than. In this case, for sufficiently smad| the verifiable label complexity (e, d, h*)
is proportional tdog(1/¢). However, ifh* is the all-negative function, then the verifiable label
complexity is at least proportional 10 ¢ for all values ofe becausa high-confidence guarantee
can never be madeithout observing2(1/¢) labels; for completeness, a formal proof of this fact
is included in Sectiof3l7. In contrast, as we have seenatied tomplexity isD(log(1/¢)) for
anytarget in the class of intervals when no such guarantee isrest

A common alternative formulation of verifiable label comptg is to let A takee as an

argument and allow it to choose online how many label reguésieeds in order to guarantee

error at most [Dasgupta, 2005]. This alternative definition is almostieglent (an algorithm

for either definition can be modified to fit the other definitiithout significant loss in the
verifiable label complexity values), as the algorithm muesable to produce a confidence bound
of size at most on the error of its hypothesis in order to decide when to stojuesting labels

anywa

3.2.1 The Verifiable Label Complexity

To date, there has been a significant amount of work studyiag/érifiable label complexity
(though typically under the aforementioned alternativenfalation). It is clear from standard re-
sults in passive learning that verifiable label complegit€O ((d/¢) log(1/€) + (1/¢€)log(1/9))
are easy to obtain for any learning problem, by requestiedahels of random examples. As

such, there has been much interest in determining when tdgsiple to achieve verifiable la-

°There is some question as to what the “right” formal modelativa learning is in general. For instance, we
could instead letA generate an infinite sequence /af hypotheses (ofh., ¢;) in the verifiable case), wher,

can depend only on the firstlabel requests made by the algorithm along with some irségiment of unlabeled

examples (as irL.[Castro and Nowak, 2007]), representingdBe where we are not sure a-priori of when we will

stop the algorithm. However, for our present purposes, ailtemative models are equivalent in label complexity

up to constants.
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bel complexitysmallerthan this, and in particular, when the verifiable label carjy is a
polylogarithmic function ofl /e (representing exponential improvements over passivailegy.
As discussed in previous chapters, there have been a fewitipmproposed to measure

the verifiable label complexity of active learning on anyegivconcept class and distribution.

Dasgupta’'ssplitting index[Dasguptal 2005], which is dependent on the concept clasa,dis-

tribution, target function, and a parameterquantifies how easy it is to make progress toward

reducing the diameter of the version space by choosing am@eao query. Another quantity

to which we will frequently refer is theisagreement coefficie 2| 2007b], defined in

ChaptefR.

The disagreement coefficient is often a useful quantity falyzing the verifiable label com-
plexity of active learning algorithms. For example, as we saChaptefR, Algorithm 0 achieves
a verifiable label complexity at mo&t-d - polylog(1/(ed)) when run with hypothesis clagsfor
target functiom* € C. We will use it in several of the results below. In all of théerant results
of this chapter, we will simply take, = 0 in the definition of the disagreement coefficient.

We will see that both the disagreement coefficient and splithdex are also useful quantities

for analyzing unverifiable label complexities, though these in that case is less direct.

3.2.2 The True Label Complexity

This chapter focuses on situations where true label cont@s»are significantly smaller than
verifiable label complexities. In particular, we show thaamp common pairg§C, D) have
label complexity that is polylogarithmic iboth 1/e and 1/§ and linear only in some finite

target-dependent constant.. This contrasts sharply with the infamoué lower bounds men-

tioned above, which have been identified for verifiable laoehplexity [Dasgupta, 2004, 2005,

,_J_Q;L? Hanneke, 2007a]. The implication i§ thaany fixed targek*, such lower

Freund et &

bounds vanish as approache$. This also contrasts with passive learning, where lower
bounds are typically unavoidab|e_LAn105_a.n.d_Lugl3£i_L998].
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Definition 3.3. We say thaf{C, D) is actively learnable at an exponential riftthere exists an

active learning algorithm achieving label complexity

A<€7 0, h*> ="+ - polylog (1/(€5>)

for all h* € C, wherey,- is a finite constant that may depend whand D but is independent of

eandd.

3.3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which acteerling can achieve a label complexity
asymptotically superior to passive learning. The resultssarprisingly general, indicating that
whenever the VC dimension is finite, essentialhypassive learning algorithm is asymptotically

dominatedby an active learning algorithm il targets.

Definition 3.4. A functionA (e, 6, h*) is apassive learningabel complexity for a pai{C, D) if
there exists an algorithm (((x1, h*(x1)), (z2, h*(22)), . . ., (z, h*(x))), 0) that outputs a
classifierh, s, such that for any target functio € C, e € (0,1/2),9 € (0, 1), for any

t > A(e, 6, h*),

Pp(er(his) <€) >1—24.
Thus, a passive learning label complexity corresponds &stiction of an active learning

label complexity to algorithms that specifically reques first ¢ labels in the sequence and

ignore the rest. In particular, it is known that for any filt€ dimension class, there is always

anO (1/¢) passive learning label complexity [Haussler etlal., 19%4jrthermore, this is often

(though not always) tight, in the sense that for any passgarigéhm, there exist targets for which

the corresponding passive learning label complexitf (g /¢) [Antos and Lugosi, 1998]. The

following theorem states that for any passive learningllebeplexity, there exists an achievable
active learning label complexity with a strictly slower agytotic rate of growth. Its proof is
included in Sectioi’311.

Remark 3.2. This result is superceded by a stronger result in Chalpiterciyéwver, the result in
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Chapter® is proven for a different algorithm, so that Theof&% is not entirely redundant. |

have therefore chosen to include the result, since the natgin of the algorithm may be of

independent interest, even if the stated theorem is itssker than later results.

Theorem 3.5. Supposé& has finite VC dimension, and &t be any distribution ot’. For any
passive learning label complexity, (e, 6, k) for (C, D), there exists an active learning
algorithm achieving a label complexity, (¢, 6, ) such that, for alb € (0,1/4) and targets

h* € C for which A, (e, 6, h*) = w(1),

Ao(€,6,h") =0 (A, (e/4,6,h7)).

In particular, this implies the following simple corollary

Corollary 3.6. For anyC with finite VC dimension, and any distributi@hover X, there is an

active learning algorithm that achieves a label complexity, 6, »*) such that ford € (0,1/4),

for all targetsh € C.

Ae, 0, h*) =o(1/e)

Proof. Let d be the VC dimension of. The passive learning algorithm of Haussler, Little-

stone & Warmuth

[Haussler et

all_1$94] is known to achievabell complexity no more than

(kd/e)log(1/4), for some universal constaht< 200. Applying Theoreniz315 now implies the

result.

O

Note the interesting contrast, not only to passive learmngalso to the known results on the

verifiablelabel complexity of active learning. This theorem defirgtivstates that thel (1/¢)

lower bounds common in the literature on verifiable label ptaxity canneverarise in the

analysis of the true label complexity of finite VC dimensidasses.
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3.4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning lmsof intervals ovel, 1] under

the uniform distribution. As discussed above, it is well wmahat the verifiable label complexity
of the all-negative classifier in this class{¥1/¢). However, consider the more limited class
C’ C C containing only the intervals of width wy, strictly greater than 0. Using the simple
algorithm described in Sectidn3.11.1, this restricted<tzsn be learned with a (verifiable) label
complexity of onlyO(1/wy, + log(1/¢€)). Furthermore, the remaining set of classifi€rs =

C\ C’ consists of only a single function (the all-negative clfisgiand thus can be learned with
verifiable label complexity). Here we have thaf can be decomposed into two subclasgés
andC”, where both(C’, D) and (C”, D) are learnable at an exponential rate. It is natural to
wonder if the existence of such a decomposition is enougmpdyi thatC itself is learnable at

an exponential rate.

More generally, suppose that we are given a distribufioand a hypothesis clags such
that we can construct a sequence of subcla€sesith label complexityA; (e, 9, h), with C =
U2, C;. Thus, if we knewa priori that the targef.* was a member of subcla&s, it would be
straightforward to achievg; (¢, 6, h*) label complexity. It turns out that it is possible to leamy
targeth* in anyclassC; with label complexity onlyO(A;(e/2,46/2, h*)), even without knowing
which subclass the target belongs to in advance. This cardmrplished by using a simple

aggregation algorithm, such as the one given below. Here afs&tive learning algorithms

(for example, multiple instances of Dasgupta’s splittitgpathm |[Dasgupie, 2005] or CAL) are

run on individual subclassés; in parallel. The output of one of these algorithms is sebkcte

according to a sequence of comparisons.

Using this algorithm, we can show the following label comqtiebound. The proof appears

in Sectior3.B.
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Algorithm 1 Algorithm 4 : The Aggregation Procedure. Here it is assunmed@ = U, C,,

and that for each, A; is an algorithm achieving label complexity at maste, 9, i) for the pair

(C;, D). Both the main aggregation procedure and each algorithtake a number of labels

and a confidence parameteas parameters.

Let k be the largest integer sk? [721n(4k/6)] < t/2
fori=1,...,kdo

Let ; be the output of running\;(|¢/(44%)],4/2) on the sequencgrs, 1 12,

end for
fori,j € {1,2,...,k} do
if Pp(hi(x) # h;(z)) > 0then

Let R;; be the firs§ 72 In(4%/0)| elements: in the sequenc@r,, }02, S.t. hi(x) # h;(z)

Request the labels of all exampleshy),

Let m,; be the number of elements i&; on whichh, makes a mistake

else
Letm;; =0
end if
end for

Returni, — h; wherei — argmin  max ms
i€{1,2,... k} 7€{1,2,....k}

Theorem 3.7.For any distributionD, let C,, C,, . .. be a sequence of classes such that for ¢

i, the pair(C;, D) has label complexity at moat;(¢, 6, 1) for all h € C;. LetC = U2, C;. Then

(C, D) has a label complexity at most

4r}r11i8 max {42’2 [Ai(e/2,0/2,h)], 2 [72 In
1:hel;

foranyh € C. In particular, Algorithm 4 achieves this when given as infne algorithms4;

that each achieve label complexity(e, , h) on class(C;, D).

i

rach

A patrticularly interesting implication of TheordmB.7 isattthe ability to decomposg into
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a sequence of classé€s with each pair(C;, D) learnable at an exponential rate is enough to
imply that(C, D) is also learnable at an exponential rate. Sincevtdrdiablelabel complexity

of active learning has received more attention and is thegdbetter understood, it is often be
useful to apply this result when there exist known boundserverifiable label complexity; the
approach loses nothing in generality, as suggested by Hosvfog theorem. The proof of this

theorem. is included in Secti@nB.9.

Theorem 3.8.For any (C, D) learnable at an exponential rate, there exists a sequence
Cy, Cy, ... with C = U, C,;, and a sequence of active learning algorithrs A,, . . . such that
the algorithmA; achievewerifiablelabel complexity at mosy;polylog; (1/(ed)) for the pair

(C;, D), wherey; is a constant independent ©ndo. In particular, the aggregation algorithm

(Algorithm 4') achieves exponential rates when used witbeladgorithms.

Note that decomposing a givéhinto a sequence df; subsets that have good verifiable label
complexities is not always a simple task. One might be techfieghink a simple decomposi-
tion based on increasing values of verifiable label complexith respect ta/C, D) would be
sufficient. However, this is not always the case, and gelyena need to use information more
detailed than verifiable complexity with respect(td, D) to construct a good decomposition.
We have included in Sectidn3]10 a simple heuristic apprtiaahcan be quite effective, and in
particular yields good label complexities for evéfy, D) described in Sectidn3.5.

Since it is more abstract and allows us to use known activaileg algorithms as a black
box, we frequently rely on the decompositional view introeld here throughout the remainder

of the chapter.

3.5 Exponential Rates

The results in Sectidn 3.3 tell us that the label complexXityative learning can be made strictly
superior to any passive learning label complexity when tliedimension is finite. We now ask

how much better that label complexity can be. In particulg,describe a number of concept
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classes and distributions that are learnable aonentiarate, many of which are known to

requireQ)(1/e) verifiablelabel complexity.

3.5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situwadiin which exponential rates
are trivially achievable; in fact, in each of the cases nuwargd in this subsection, the label
complexity is actuallyO(1).

Clearly if |X'| < oo or |C| < oo, we can always achieve exponential rates. In the former case
we may simply request the label of everyn the support ofD, and thereby perfectly identify
the target. The corresponding= |X|. In the latter case, Algorithm 0 can achieve exponential
learning withy = |C| since each queried label will reduce the size of the versiate by at
least one.

Less obvious is the fact that a similar argument can be appiieany countably infinite
hypothesis clas€. In this case we can impose an orderingh,, - - - over the classifiers ift,
and setC; = {h;} for all i. By Theoreni:3l7, applying the aggregation procedure tecttsience
yields an algorithm with label complexity(e, d, k;) = 2i? [721n(4i/6)] = O(1).

3.5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric conceptsift are learnable at an exponential rate if the underlying
distribution is uniform on some subset &f'. Here we provide some examples; interestingly,
every example in this subsection has some targets for whigherifiable label complexity is

Q2 (1/e). As we see in Section3.5.3, all of the results in this sect@m be extended to many

other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let X' be the interval0, 1) and letC®)

denote the class of unions of at mdsintervals. In other wordsC(*) contains functions de-
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scribed by a sequencey, a;, - - - , as), Wwhereay = 0, a, = 1, ¢ < 2k + 1, anday, - - - , a, is the
(nondecreasing) sequence of transition points betweeatimegand positive segments (sds
labeled+1 iff x € [a;,a,41) for someodd:). For any distribution, this class is learnable at an
exponential rate by the following decomposition argumeéist, defineC; to be the set contain-
ing the all-negative function along with any functions tha¢ equivalent given the distribution

D. Formally,

C,={hecCW . PhX)=+1)=0}.

ClearlyC, has verifiable label complexity. Fori = 2,3,...,k+ 1, letC; be the set containing
all functions that can be represented as unions-efl intervals but cannot be represented as

unions of fewer intervals. More formally, we can inductivdefine eacltC; as
Ci={heC® a0 e C"Yst.P(h(X)#HK(X))=0}\UjwC;.

Fori > 1, within each subclas€;, for eachh € C; the disagreement coefficient Wt is
bounded by something proportional o+ 1/w(h), wherew(h) is the weight of the smallest
positive or negative interval with nonzero weight. Thusmimg Algorithm 0 withC; achieves
polylogarithmic (verifiable) label complexity for anly € C;. SinceC*) = U!C;, by Theo-

rem37,C%) is learnable at an exponential rate.

Ordinary Binary Classification Trees: Let X be the cubg0, 1|, D be the uniform distribution

on X, andC be the class of binary decision trees using a finite numbexigfarallel splits

(see e.g., Devroye et t al., 1996], Chapter B0O}his case, in the same spirit as

the previous example, we |€l; be the set of decision trees @hdistance zero from a tree with
i leaf nodes, not contained in afy; for j < i. For any:, the disagreement coefficient for any
h € C; (with respect toC;, D)) is a finite constant, and we can chodgto have finite VC
dimension, so eactC;, D) is learnable at an exponential rate (by running Algorithmith;).

By Theorenf317(C, D) is learnable at an exponential rate.
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Linear Separators

Theorem 3.9.LetC be the concept class of linear separatorsiidimensions, and | be the
uniform distribution over the surface of the unit spheree Plir (C, D) is learnable at an

exponential rate.

Proof. There are multiple ways to achieve this. We describe hermplsiproof that uses a de-
composition as follows. Lex(h) be the probability mass of the minority class under hypathes
h. Let C; be the set containing only the separatomsith A\(h) = 0,letCy = {h € C: A(h) =
1/2},and letC; = C\ (C; U C,). As before, we can use a black box active learning algorithm
such as CAL to learn within the clags. To prove that we indeed get the desired exponential
rate of active learning, we show that the disagreement cosfti of any separatdr € C3 with
respect to/Cs, D) is finite. The results concerning Algorithm 0 from Chagieh2rt immedi-

ately imply thatC; is learnable at an exponential rate. Siricetrivially has label complexity

1, and(C,, D) is known to be learnable at an exponential rate [ g,

2007b] combined with

20N

OO"_D_as,gu_pHa 2005, Dasgupta, Kalai, and Mont
Theoren:3J7, this would imply the result.

Below, we will restrict the discussion to hypothese€’iny which will be implicit in notation
such asB(h, ), etc. First note that, to shotly, < oo, it suffices to show that

lim DPISBR)) (3.1)

r—0 r

so we will focus on this.

For anyh, there exists;, > 0s.t. Vi’ € B(h,r),P(W(X) = +1) < 1/2 & P(h(X) =
+1) < 1/2, or in other words the minority class is the same amondi/akk B(h,r). Now
consider anyy’ € B(h,r) for 0 < r < min{ry, A(h)/2}. ClearlyP(h(X) # (X)) > |[\(h) —
A(R)|. Supposéi(z) = sign(w - x 4+ b) andh’(xz) = sign(w’ - x + ') (where, without loss,
we assuméw|| = 1), anda(h,h’) € [0,7] is the angle between andw’. If a(h,h') =
0 or if the minority regions ofh and /' do not intersect, then clearj(h(X) # h'(X)) >

%’h') min{\(h), A\(h/)}. Otherwise, consider the classifiénis:) = sign(w-z+b) andh/(z) =
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Figure 3.2: Projection of and/’ into the plane defined by andw’.

sign(w’ - x + V'), whereb and b’ are chosen s.tP(h(X) = +1) = P(#(X) = +1) and
A(R) = min{\(h), \(W)}. Thatis,h andh’ are identical toh andh’ except that we adjust the
bias term of the one with larger minority class probabildyéduce its minority class probability
to be equal to the other’s. If # h, then most of the probability mass @f : h(x) # h(z)} is
contained in the majority class region f(or vice versa ifi’ # h'), and in fact every point in
{x: h(x) # h(z)} is labeled byh according to the majority class label (and similarly férand
h"). Therefore, we must haw&(h(X) # h/(X)) > P(h(X) # W (X)).

We also have thab(h(X) # h'(X)) > 2" \(R). To see this, consider the projection
onto the2-dimensional plane defined hy andw’, as in Figurd-3.5]2. Because the two decision
boundaries must intersect inside the acute angle, the pitlitfpanass contained in each of the
two wedges (both with(h, k') angle) making up the projected region of disagreement leative
andh’ must be at least am(h, ') /7 fraction of the total minority class probability for the pesc-
tive classifier, implying the union of these two wedges habability mass at Ieaﬁt@)\(ﬁ).
Thus, we havé(h(X) # /(X)) > max{|)\(h) — (R, Mmin{x(h),A(h')}}. In par-
ticular,

2a(h, )

B(h,r) C {h/ : max{|)\(h) ), min{ A(h), A(h/)}} < r} .

The region of disagreement of this set is at most
DIS ({h’ : M(A(h) —r) < rAINR) = AR <7
s

C DISH{K : w' = wANR)=A(R)| < rHUDISHR : a(h, b)) < wr/AR)AAR)—AR)| = 1)),
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where this last line follows from the following reasoningak€y,,,; to be the majority class of
h (arbitrary if \(h) = 1/2). For anyh’ with |[\(h) — A(R)| < r, theh” with «a(h, h") = a(h, h')
havingP(h(X) = ymaj) — P(R"(X) = yma;) = r disagrees witth on a set of points containing
{x: W (x) # h(x) = yma, }; likewise, the one havinB(h(X ) = Yma;) —P(R"(X) = Ymas) = —7
disagrees witth on a set of points containinge : 1'(z) # h(x) = —Ymq;}. SO any point in
disagreement betweénand somée’ with |\(h) — A(R')| < r anda(h,h’) < 7r/A(h) is also
disagreed upon by sont& with |A(k) — A(R")| = r anda(h, ") < 7r/A(h).

Some simple trigonometry shows thaf S({»' : a(h,h') < 7wr/A(h) A|NR) = A(R)| =71})
is contained in the set of points within distange(rr/A(h)) < 7r/X of the two hyperplanes
representing; () = sign(w - x + by) andhsy(x) = sign(w - = + by) defined by the property that

A(hy) — A(h) = A(h) — A(hg) = r, so that the total region of disagreement is contained withi

{z: hi(x) # ho(x)} U{z: min{|w -z + by|, |w -z + by|} < 7r/A(h)}.

Clearly,P({z : hi(x) # ho(x)}) = 2r. Using previous results [Balcan et al., 2006, Hanheke,

007b], we know thaP({z : min{|w - = + by, |w - x + by|} < 7r/A(h)}) < 27y/nr/X(h)

(since the probability mass contained within this distasf@hyperplane is maximized when the
hyperplane passes through the origin). Thus, the probabflthe entire region of disagreement
is at most(2 + 27/n/A(h))r, so that[(311) holds, and therefore the disagreement cieeffits
finite. O

3.5.3 Composition results

We can also extend the results from the previous subsediother types of distributions and

concept classes in a variety of ways. Here we include a fewtset® this end.

Close distributions: If (C, D) is learnable at an exponential rate, then for any distrioLE’
such that for all measurablé C X', \Pp(A) < Pp/(A) < (1/N)Pp(A) for some € (0, 1],

(C,D’) is also learnable at an exponential rate. In particular, aresimply use the algorithm
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Figure 3.3:lllustration of the proof of Theoreln=3110. The dark gray cewi represenByp, (h1,2r) and
Bp,(he,2r). The functionh that gets returned is in the intersection of these. The lighy regions
representByp, (hi,€/3) and Bp, (ha,€¢/3). The target functiom* is in the intersection of these. We

therefore must have < ¢/3, and by the triangle inequalityr (h) < e.

for (C, D), filter the examples fron®’ so that they appear like examples frdm and then any
t large enough to find ae\-good classifier with respect 1 is large enough to find artgood

classifier with respect t®'.

Mixtures of distributions: Suppose there exist algorithnlg and A, for learning a clas§ at
an exponential rate under distributios and D, respectively. It turns out we can also learn
under anymixture of D; andD, at an exponential rate, by usind; and. A, as black boxes.
In particular, the following theorem relates the label ctewjty under a mixture to the label

complexities under the mixing components.

Theorem 3.10.LetC be an arbitrary hypothesis class. Assume that the géir$, ) and

(C, D,) have label complexitie& (¢, §, h*) and As(e, d, h*) respectively, wher®, andD, have
density function®rp, andPrp, respectively. Then for any € [0, 1], the pair

(C,aD; + (1 — «)D,) has label complexity at most

2 [max{A1(e/3,86/2,h*), Aa(e/3,8/2, h*)}].

Proof. If & = 0 or 1 then the theorem statement holds trivially. Assume insteatty € (0, 1).
We describe an algorithm in terms®@f D,, andD,, which achieves this label complexity bound.

Suppose algorithmgl; and A, achieve the stated label complexities un@igrand D, re-
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spectively. At a high level, the algorithm we define works Itéring” the distribution over
input so that it appears to come from two streams, one dig&tbaccording t@;, and one dis-
tributed according t@,, and feeding these filtered streams4pand.A, respectively. To do so,
we define a random sequeneg u,, - - - of independent uniform random variablegin1]. We

then runA; on the sequence of examplesfrom the unlabeled data sequence satisfying

aPrp, (z;)
aPrp, (z;) + (1 — «)Prp, (z;)’

U; <

and run4, on the remaining examples, allowing each to make an equabeuai label requests.
Let h; andhy be the classifiers output byt; and.A,. Because of the filtering, the examples
that. A, sees are distributed accordingf, so aftert/2 queries, the current error @f; with
respect toD; is, with probabilityl — ¢/2, at mostinf{e’ : A;(¢/,6/2,h*) < t/2}. A similar
argument applies to the error bf with respect tdD;.
Finally, let
r =inf{r : Bp, (h1,7) N Bp,(ha, 1) # 0},

where

Bp,(hi,r) ={h € C: Prp,(h(x) # h;y(x)) <r}.

Define the output of the algorithm to be ahyc Bp, (h1,2r) N Bp,(hs, 2r). If a total oft >
2 [max{A1(e/3,5/2,h*), Aa(e/3,9/2, h*)}| queries have been madg® by .4, andt/2 by As,),
then by a union bound, with probability at ledst 4, h* is in the intersection of the/3-balls,
and soh is in the intersection of thee/3-balls. By the triangle inequality; is within e of h*
under both distributions, and thus also under the mixtugee(Figuré_313 for an illustration of

these ideas.) O

3.5.4 Lower Bounds

Given the previous discussion, one might suspectahgtpair (C, D) is learnable at an expo-

nential rate, under some mild condition such as finite VC disien. However, we show in the
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Figure 3.4: A learning problem where exponential rates ateanhievable. The instance space
is an infinite-depth tree. The target labels nodes alongd@esinfinite path ast+1, and labels all
other nodes-1. For any¢(e) = o(1/¢), when the number of children and probability mass of
each node at each subsequent level are set in a certain Wwalctanplexities ob(¢(¢)) are not

achievable for all targets.

following that this isnot the case, even for some simple geometric concept classes tivbe

distribution is especially nasty.

Theorem 3.11.For any positive functiom(¢) = o(1/¢), there exists a paifC, D), with the VC
dimension ofC equall, such that for any achievable label complexiti¢, §, h) for (C, D), for
anyo € (0,1/4),

Jh € Cs.t.A(e, 8, h) # o(p(e€)).

In particular, takingo(e) = 1/+/€ (for example), this implies that there existé@ D) that is

not learnable at an exponential rate (in the sense of Defin[H.3).

Proof. If we can prove this for any such(e) # O(1), then clearly this would imply the result
holds forg(e) = O(1) as well, so we will focus o(e) # O(1) case. Lefl” be a fixed infinite
tree in which each node at depithasc; children; ¢; is defined shortly below. We consider
learning the hypothesis clagswhere eacth € C corresponds to a path down the tree starting
at the root; every node along this path is labeleghile the remaining nodes are labeled.
Clearly for eachh € C there is precisely one node on each level of the tree labelgdh (i.e.
one node at each deptlf).has VC dimension 1 since knowing the identity of the nodeltbe

on leveli is enough to determine the labels of all nodes on levels. , i perfectly. This learning

problem is depicted in Figute_3.4.
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Now we defineD, a “bad” distribution forC. Let{/;}3°, be any sequence of positive numbers
s.t. D7, ¢; = 1. ¢; will bound the total probability of all nodes on levelaccording toD.
Assume all nodes on levéhave the same probability according®pand call thisp;. We define
the values op,; andc; recursively as follows. For eagh> 1, we definep; as any positive number
s.t. pi[o(pi)] H;;% ¢; < ¢;andg(p;) > 4, and define;;_; = [¢(p;)]. We are guaranteed that
such a value op; exists by the assumptions thate) = o(1/¢), meaningim,._o e¢(e) = 0, and

thatg(e) # O(1). Lettingpy = 1 — 3", p: [[/—, ¢; completes the definition ab.

With this definition of the parameters above, sifcep;, < 1, we know that for any, > 0,
there exists some < ¢, such that for some level, p; = € and thusc;_; > ¢(p;) = ¢(e).
We will use this fact to show thak ¢(¢) labels are needed to learn with error less thdor
these values of. To complete the proof, we must prove the existence of a tdilffi target
function, customized to challenge the particular learralgprithm being used. To accomplish
this, we will use the probabilistic method to prove the estiste of a point in each levélsuch
that any target function labeling that point positive wobklve a label complexity ¢(p;)/4.

The difficult target function simply strings these pointgether.

To begin, we definec, = the root node. Then for each> 1, recursively definer; as
follows. Suppose, for any, the setR), and the classifieli,, are, respectively, the random variable
representing the set of examples the learning algorithmldvoequest, and the classifier the
learning algorithm would output, whénis the target and its label request budget is sét+o
|#(p:)/2]. Forany node;, we will let Children(x) denote the set of children of and Subtregr)

denote the set of along with all descendants af Additionally, leth, denote any classifier in
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C s.t. h,(z) = +1. Now note that

eomax - nf | P{Pp(A(X) # ha(X)) > pi}
>y inf  P{Pp(h(X) # hn(X)) > pi}

Ci_ heC:h(z)=+1
=1 yechildren(z;_1) @)

> L S P{vheC:h(x) = +1,Subtreér) N R, = D A Po(h(X) £ hn(X)) > pi}

Ci—1

* sconibte
—F Cil_l xeohndrer(xi1)%”8@)%1:@1[ [Vh € C: hiz) = +1,Pp <h(X) ] izh(X)) > pi]
2 E ol o D P

> (e =1 = 1) = o (l6()] — L0)/2) = 1) = (Lo /2= 1) > 1/4

The expectations above are over the unlabeled exampleswgiatarnal random bits used by the
algorithm. The above inequalities imply there exists same Children(z;_;) such that every
h € C that hash(z) = +1 hasA(p;,0,h) > [o(pi)/2] > &(pi)/4; we will take z; to be this
value ofx. We now simply take the target functian to be the classifier that labels positive for
all 7, and labels every other point negative. By constructionhexeeVi, A(p;, 6, h*) > ¢ (p;)/4,
and therefore

Veg > 0,3e < €y : Ale, 0, h™) > ¢(e) /4,

so thatA(e, 0, h*) # o(¢(€)). O

Note that this implies that the(1/¢) guarantee of Corollafy 3.6 is in some sense the tightest
guarantee we can make at that level of generality, withomigus more detailed description of
the structure of the problem beyond the finite VC dimensicuagption.

This type of example can be realized by certain nasty digiohs, even for a variety of
simple hypothesis classes: for example, linear separat®$ or axis-aligned rectangles k.

We remark that this example can also be modified to show thatamaot expect intersections

of classifiers to preserve exponential rates. That is, theffman be extended to show that there
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exist classe€’; andC,, such that botiC,, D) and(C,, D) are learnable at an exponential rate,

but(C, D) is not, whereC = {hy; N hy : hy € Cyq, hy € Cy}.

3.6 Discussion and Open Questions

The implication of our analysis is that in many interestiages where it was previously believed
that active learning could not help, it turns out that acte@ningdoes help asymptotically
We have formalized this idea and illustrated it with a numiifeexamples and general theorems
throughout the chapter. This realization dramaticallytstour understanding of the usefulness
of active learning: while previously it was thought thatieetiearning coulchot provably help

in any but a few contrived and unrealistic learning problemghis alternative perspective we
now see that active learning essentialwayshelps, and does so significantly in allit a few
contrived and unrealistic problems.

The use of decompositions &f in our analysis generates another interpretation of these

results. Specifically, Dasgu Ja_[a)OS] posed the questiomhether it would be useful to de-

velop active learning techniques for looking at unlabelathdand “placing bets” on certain
hypotheses. One might interpret this work as an answer sogtiestion; that is, some of the

decompositions used in this chapter can be interpretedlastieg a preference partial-ordering

of the hypotheses, similar to ideas explored in the passaing literature [Balcan and Blum,

Shawe-Tavlor et ¢

1903, Vaph 98]. However, the tmiesion of a good decomposition
in active learning seems more subtle and quite differemhfpwevious work in the context of
supervised or semi-supervised learning.

It is interesting to examine the role of target- and distifmrdependent constants in this
analysis. As defined, both the verifiable and true label cerifdés may depend heavily on the
particular target function and distribution. Thus, in bo#ses, we have interpreted these quan-
tities as fixed when studying the asymptotic growth of thebell complexities as approaches

0. It has been known for some time that, with only a few unusxeéptions, any target- and
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distribution-independent bound on the verifiable label plaxity could typically be no better

than the label complexity of passive learning; in particulais observation lead Dasgupta to for-

mulate his splitting index bounds as both target- and tistion-dependent [Dasgupta, 2005].

This fact also applies to bounds on the true label complastyvell. Indeed, the entire distinc-
tion between verifiable and true label complexities cokeps we remove the dependence on

these unobservable quantities.

One might wonder what the practical implications of the talee| complexity of active learn-
ing might be since the theoretical improvements we provigegfar an unverifiable complexity
measure and therefore they do not actually inform the useal¢mrithm) of how many labels
to allow the algorithm to request. However, there might bl implications for the design of

practical algorithms. In some sense, this is the same issigglfin the analysis of universally

consistent learning rules in passive Iearnlng [Devrove.el1896]. There is typically no way to

verify how close to the Bayes error rate a classifier is (\al& complexity is infinite), yet we
still want learning rules whose error rates provably cogedp the Bayes error in the limit (true
complexity is a finite function of epsilon and the distrilautiof (X, Y)), and we often find such
methods quite effective in practice (e.g§-nearest neighbor methods). So this is one instance
where an unverifiable label complexity seems to be a usefdkegn algorithm design. In active
learning with finite-complexity hypothesis classes we amarfortunate, since the verifiable
complexity is finite — and we certainly want algorithms withall verifiable label complexity;
however, an analysis of unverifiable complexities stililmeeelevant, particularly when the veri-
fiable complexity is large. In general, it seems desirabtiegign algorithms for any given active
learning problem that achieve both a verifiable label comipje¢hat is near optimal and a true

label complexity that is asymptotically better than pas$@arning.

Open Questions: There are many interesting open problems within this fraotkwPerhaps
the most interesting of these would be formulating geneeakssary and sufficient conditions

for learnability at an exponential rate, and determiningabat types of algorithms TheordmB.5
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can be extended to the agnostic case or to infinite capacugthgsis classes. We will discuss

some progress on this latter problem in the next chapter.

3.7 The Verifiable Label Complexity of the Empty Interval

Let h_ denote the all-negative interval. In this section, we loweund the verifiable labels
complexities achievable for this classifier, with respedhie hypothesis clags of interval clas-
sifiers under a uniform distribution dn, 1]. Specifically, suppose there exists an algorithm
that achieves a verifiable label complexitye, 6, h) such that for some € (0,1/4) and some
§ € (0,1/4),
Ae,d,h) < LLJ |
24e

We prove that this would imply the existence of some intek¢&r which the value of\ (e, §, 1)

is not valid under Definitior:32. We proceed by the probabilistic method

Consider the subset of intervals

o = {[3ie,3(i+1)e] ie {0,1,..., {1;’6”} .

Lets = [A(e,6,h_)]. Foranyf € C, let Ry, h;, andé; denote the random variables repre-

senting, respectively, the set of examplesy) for which A(s, §) requests labels (including their
y = f(x) labels), the classified(s, §) outputs, and the confidence bouags, §) outputs, when
f is the target function. Lef be an indicator function that is 1 if its argument is true and O

otherwise. Then
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> E ‘}IM fem%:m I (IP’X (i}f(X) - +1> < e) NGRS g)ﬂ (3.2)
_E _|fi| fEHE%;:Rh i (IP’X (hh (X) # h_(X)) < (—:) A < e)}:l (3.3)
> 2| (B=2) 1 (o £000) << ] (3.4)

All expectations are over the draw of the unlabeled examahesany additional random bits
used by the algorithm. LinE-3.2 follows from the fact thatiatervals f € H, are of width
3¢, so if hy labels less than a fractionof the points as positive, it must make an error of at
least2e with respect tof, which is more thard; if ¢, < e. Note that, for any fixed sequence of
unlabeled examples and additional random bits used by gjogitim, the set$:; are completely
determined, and any and f’ for which R; = Ry must haveh; = hy andé; = ép. In
particular, anyf for which R, = R, will yield identical outputs from the algorithm, which
implies line[33B. Furthermore, the only classifigis= H, for which Ry # R, are those for
which some(z, —1) € R, hasf(z) = +1 (i.e.,z is in the f interval). But since there is zero
probability that any unlabeled example is in more than orte@intervals inf., with probability

1 there are at mostintervalsf € H. with R; # R, , which explains lin€3]4.

This proves the existence of some target functivre C such thatP(er(hss) > és5) > 0,
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which contradicts the conditions of Definitibn13.2.

3.8 Proof of Theorem3.Y

First note that the total number of label requests used bgdhesgation procedure in Algorithm
4is at most. Initially running the algorithmsl,, ..., A, requiresy."_, |t/(4i)] < t/2 labels,
and the second phase of the algorithm requiré§2 In(4% /)] labels, which by definition of
is also less thary/2. Thus this procedure is a valid learning algorithm.

Now suppose that the true targetis a member ofC;. We must show that for any input
such that

t > max {4i* [A;(e/2,6/2,h")] , 2% [721n(4i/6)]}

the aggregation procedure outputs a hypothiesssich thater(i}t) < e with probability at least
1—06.

First notice that since > 2% [721n(44/8)], k > i. Furthermore, since/(4:%) >
[A;(e/2,6/2, h*)], with probability at least — /2, running.A;(|¢/(4i%)], §/2) returns a function
h; with er(h;) < ¢€/2.

Let j* = argmin, er(h;). Sinceer(h;.) < er(h) for any/, we would expect- to make no
more errors thak, on points where the two functions disagree. It then follorest Hoeffding’s
inequality, with probability at least — 6 /4, for all ¢,

e < 1—72 (72 1n (4k/5)]

and thus

min max mjy < l [721n(4k/9)] .
i 12

Similarly, by Hoeffding's inequality and a union bound, vjtrobability at least — ¢ /4, for any
¢ such that

— % 72 In(4k/8)]
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the probability that,, mislabels a point: given thath,(x) # h;-(z) is less thar/3, and thus
er(hy) < 2er(h;-). By a union bound over these three events, we find that, asedesvith

probability at least — 9,

~

er(hy) < 2er(hj«) < 2er(h;) <e.

3.9 Proof of Theorem3.8

Assume thatC, D) is learnable at an exponential rate. This means that théestsen algorithm
A such that for any targét® in C, there exist constantg,- andk;,- such that for any ando, for
anyt > - (log(1/(ed)))*~, with probability at least — §, aftert label requests4(t, §) outputs

ane-good classifier.

For each, let

CZ:{hGC’thZ,/{ZhSZ}

Define an algorithmy; that achieves the required polylog verifiable label comipfeon (C;, D)
as follows. First, run the algorithm to obtain a functiom 4. Then, output the classifier 1@;
that isclosest toh 4, i.e., the classifier that minimizes the probability of dissement withh 4. If
t >i(log (2/(€0)))?, then after label requests, with probability at ledst- 4, A(t, §) outputs an
¢/2-good classifier, so by the triangle inequality, with proligbat least1 — ¢, A;(t, J) outputs

ane-good classifier.

It can be guaranteed that with probability at least o, the function output by; has error
no more thar, = (2/8) exp {—(t/i)"/*}, which is no more than, implying that the expression

above is averifiablelabel complexity.
Combining this with Theoref 3.7 yields the desired result.
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3.10 Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable cotitpleith respect to(C, D) typ-
ically cannot yield a good decomposition even for very sinptoblems, such as unions of
intervals. The reason is that the set of classifiers with kagifiable label complexity may itself

have high verifiable complexity.

Although we have not yet found a general method that can pipwaways find a good
decomposition when one exists (other than the trivial mé¢ihahe proof of Theorefi3.8), we
find that a heuristic recursive technique is frequentlyaiée. To begin, defin€, = C. Then
for i > 1, recursively defineC; as the set of alh € C,_; such thatd, = oo with respect to
(C;_1,D). (Hered, is the disagreement coefficient bf) Suppose that for som¥, Cy; = 0.
Then for the decompositia;, C,, . .., Cy, everyh € C has;, < oo with respect to at least one
of the sets in which it is contained, which implies that thefiable label complexity of: with
respect to that set i®(polylog(1/ed)), and the aggregation algorithm can be used to achieve

polylog label complexity.

We could alternatively perform a similar decompositiomgsa suitable definition of splitting

index |Dasgupté, 2005], or more generally using

. A(Ciﬂ (Ev 57 h)
lim sup T
0 (log (55))

for some fixed constarit > 0.

This procedure does not always generate a good decompositivever, if N < co exists,
then it creates a decomposition for which the aggregatigordhm, combined with an appropri-
ate sequence of algorithrgst; }, could achieve exponential rates. In particular, this ées¢ase
for all of the (C, D) described in Sectidn3.5. In fact, even\f = oo, as long as everj € C

does end up isomesetC,; for finite 4, this decomposition would still provide exponential rates
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3.11 Proof of Theoreni3.b

We now finally prove Theorefi3.5. This section is mostly selfitained, though we do make
use of Theorer 37 from SectibnB.4 in the final step of thefproo

The proof proceeds according to the following outline. Wgiben Lemmal3.IPR by de-
scribing special conditions under which a CAL-like algbnit has the property that the more
unlabeled examples it considers, the smaller the fractfathem it asks to be labeled. Since
CAL is able to identify the target’s true label on any examipleonsiders (either the label of
the example is requested or the example is not in the regidisafjreement and therefore the
label is already known), we end up with a set of labeled examgitowing strictly faster than the
number of label requests used to obtain it. This set of labeamples can be used as a training
set in any passive learning algorithm. However, the speoiadlitions under which this happens
are rather limiting. In LemmB=31L3, we exploit a subtle rielatbetween overlapping boundary
regions and shatterable sets to show that we can decomppgritnVC dimension class into a
countable number of subsets satisfying these special wonsli This, combined with the aggre-
gation algorithm, and a simple procedure that boosts thédamte level, extends Lemrha=3.12
to the general conditions of Theoréml3.5.

Before jumping into LemmB=3:12, it is useful to define someitamital notation. For any

V C C andh € C, define theboundaryof h with respect taD andV/, denoted h, as

dyh = lim DIS(By (h,r)).

Lemma 3.12. SupposéC, D) is such thatC has finite VC dimensiod, and

Vh € C,IP(0zh) = 0. Then for any passive learning label complexitye, ¢, i) for (C, D)
which is nondecreasing as— 0, there exists an active learning algorithm achieving a labe
complexityA, (e, 4, h) such that, for any > 0 and any target function* € C with

Ay(e,0,h*) = w(l) andVe > 0,A, (¢, 0, h*) < oo,

Au(€,20,h™) = o(A,(€,6,h7)) .
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Proof. Recall that is the “budget” of the active learning algorithm, and ourlgondhis proof is
to define an active learning algorithA), and a functiom\, (e, §, *) such that, ift > A, (¢, 0, h*)
andh* € C is the target function, thed, (¢, d) will, with probability 1 — §, output ane-good
classifier; furthermore, we require thaf(e, 29, h*) = o(A, (¢, 0, h*)) under the conditions oh*
in the lemma statement.

To construct this algorithm, we perform the learning in tweapes. The first is a passive
phase, where we focus on reducing a version space, to slmeniegion of disagreement; the
second is a phase where we construct a labeled traininglsiet) \8 much larger than the number
of label requests used to construct it since all classifiethe version space agree on many of
the examples’ labels.

To begin the first phase, we simply request the labels of,, ..., z|;2|, and let
V={heC:V¥i<|[t/2],hlz;) = h*(z;)} .

In other words)/ is the set of all hypotheses it that correctly label the first/2| examples.

By standard consistency resu tlal., 1989, Devei al., 6 ik, 1982], there

is a universal constamt> 0 such that, with probability at least— ¢ /2,

dlnt +In +
super(h) <c (niné) :
hev t

dint +1Int
VQB@@*,C(in :né)),

and thusP(DIS(V)) < A, where

e oo (21)

Clearly,A; goes ta) ast grows, by the assumption d{dzh*).

This implies that

Next, in the second phase of the algorithm, we will activelpstruct a set of labeled exam-
ples to use with the passive learning algorithm. If ever weelf{DIS(V')) = 0 for some finite

t, then clearly we can return amye V, so this case is easy.
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Otherwise, letr, = |t/(24P(DIS(V))1n(4/6))|, and suppose > 2. By a Chernoff bound,
with probability at leasl — §/2, in the sequence of examples /o1, T |/2)+2, - - -, T|¢/2)+n,» AL
mostt/2 of the examples are iDIS(V'). If this is not the case, we fail and output an arbitrary
otherwise, we request the labels of every one of thesxamples that are iDIS(V).

Now construct a sequenae= {(z},v,), (25, ¥5), - .-, (x),,,y,,)} of labeled examples such
thatz; = x;24:, andy; is either the label agreed upon by all the elementsd/pfor it is
the h*(x|4/2)+:) label value we explicitly requested. Note that becaiu$g- er(h) = 0 with
probability 1, we also have that with probability everyy, = h*(z}). We may therefore use
thesen, examples as iid training examples for the passive learnguyighm.

Supposel is the passive learning algorithm that guarantegs, 6, 1) passive label complex-
ities. Then leth, be the classifier returned by(L, §). This is the classifier the active learning
algorithm outputs.

Note that ifn, > A, (e, §, h*), then with probability at least— 6 over the draw oL, er(h;) <

e. Define

Au(6,26,h%) =1 +1inf {s: s> 1441n(4/5)A,(e, 0, A" ) A} .

This is well-defined when (¢, §, h*) < oo because\; is nonincreasing iR, so some value of

will satisfy the inequality. Note that if > A, (e, 20, h*), then (with probability at least — §/2)

'
Afe6,h")< —— _<np,.
W60 S s, S

So, by a union bound over the possible failure events lidtedea (/2 for P(DIS(V')) > Ay, 6/2
for more thart /2 examples of in DIS(V'), andé for er(h;) > ¢ when the previous failures do
not occur), ift > A, (¢, 26, h*), then with probability at least — 26, er(h;) < e. SOA,(€, 0, h*)

is a valid label complexity function, achieved by the ddsed algorithm. Furthermore,
Ao(€,20,h") <1+ 1441n(4/5)Ap(€, 6, h*) Ap, (e,26,17)—2-

If Au(e, 26, h*) = O(1), thensince\, (e, d, h*) = w(1), the result is established. Otherwise, since

M. (€, 6, h*) is nondecreasing as— 0, Aq(€,20,h*) = w(1), so we know that\,, (¢ 25 1+)—2 =
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o(1). Thus,A,(€, 26, h*) = 0 (A, (€, 6, hY)). O

As an interesting aside, it is also true (by essentially #@es argument) that under the
conditions of Lemm&3.12, theerifiablelabel complexity of active learning is strictly smaller
than theverifiablelabel complexity of passive learning in this same sense. altiqular, this
implies a verifiable label complexity that is(1/¢) under these conditions. For instance, with
some effort one can show that these conditions are satisted the VC dimension of is 1,
or when the support dD is at most countably infinite. However, for more complex teag
problems, this condition will typically not be satisfied,daas such we require some additional
work in order to use this lemma toward a proof of the genemalltén Theoreni315. Toward this
end, we again turn to the idea of a decompositiorCothis time decomposing it into subsets

satisfying the condition in Lemnia3112.

Lemma 3.13. For any (C, D) whereC has finite VC dimensiod, there exists a countably

infinite sequenc€,, Cs, . .. such thatC = U2, C; andVi, Vh € C;,P(0,h) = 0.

Proof. The case ofl = 0 is clear, so assumé> (0. A decomposition procedure is given below.
We will show that, if we lefl = DecomposgC), then the maximum recursion depth is at most
d (counting the initial call as depth). Note that if this is true, then the lemma is proved, since
it implies thatH can be uniquely indexed by &tuple of integers, of which there are at most

countably many.

Algorithm 2 DecomposgH)
LetH,, = {h € H:P(0zh) =0}

if Ho, = H then
Return{H}
else

Fori € {1,2,...},letH; = {heH : P(dyh) e ((1 +27@F3)) = (1 4 27 (@H3))1=]}
Return |J Decompos€H;)U {H}

ie{1,2,..}
end if
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For the sake of contradiction, suppose that the maximunrsegudepth of Decompo§€)
is more thani (or is infinite). Thus, based on the fiest- 1 recursive calls in one of those deepest

paths in the recursion tree, there is a sequence of sets
C=HO >HD OHD ... KD £

and a corresponding sequence of finite positive integels, . . ., i4.1 such that for each €

{1,2,...,d+ 1}, everyh € HY) has
P(Og-nh) € ((1+27)70, (14 27 1=0]
Take anyhg,, € H@Y. There must exist some> 0 such that'j € {1,2,...,d + 1},
P(DIS(Bg-n (has1, 7)) € (14 2749) 7 (14 272 (1 4 27¢3)=0]. (3.5)
In particular, by[(3b), each € By (hqg+1,7/2) has
P(0gg-nh) > (1427370 > (14 272 IP(DIS(Byg-1) (has1, 7)),
though by definition ob,; 1)k and the triangle inequality,
P(03-nh \ DIS(Bj- (hat,7))) = 0.

Recall that in general, for sefgandR;, Rs, . .., Ry, if P(R;\ Q) = 0 for all i, thenP (", R;) >
P(Q)—F (P(Q)—P(R;)). Thus, for anyj, any set of 2%+ classifiersl” By (hay1,7/2)

must have
P(Mherdno-vh) > (1 =27 (1 = (14272 " )P(DIS(By v (hay1,7))) > 0.

That is, any set o' classifiers ir{() within distancer/2 of h,,1 will have boundaries with
respect ta~1) which have a nonzero probability overlap. The remaindemhefroof will
hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of size 1. Consider constructing a binary

tree with2¢*! leaves as follows. The root node contains; (call this leveld + 1). Leth, €
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Byya)(hgt1,7/4) be some classifier witB(hq(X) # hq1(X)) > 0. Let the left child of the root
be hyy1 and the right child bé,; (call this leveld). DefineA; = {z : hy(z) # hqi1(z)}, and
let Ay = 27 @2P(A,). Now for each € {d — 1,d — 2,...,0} in decreasing order, we define
the/ level of the tree as follows. Lét,,; denote the nodes at tlier 1 level in the tree, and let
Ay = Nier,,, O h. We iterate over the elementsf, , in left-to-right order, and for each one

h, we findh' € By (h, Agyq) With
Pp(h(z) # W(z) Nz € A) > 0.

We then define the left child df to beh and the right child to bé’, and we update
A, — A,z h(z) # W (x)}.

After iterating through all the elements @f, ; in this manner, definél, to be the final value of
A, andA, = 27@H2IP(A,). The key is that, because evéryn the tree is within/2 of 24,1, the
setA; always has nonzero measure, and is containég inh for anyh € 7,4, so there always
exists amy’ arbitrarily close toh with Pp(h(z) # b'(z) Ax € A}) > 0.

Note that for¢ € {0,1,2,...,d}, every node in the left subtree of anyat level/ + 1 is
strictly within distanceA, of h, and every node in the right subtree of anwt level/ + 1 is
strictly within distanceA, of the right child ofh. Thus,

P(3K € Ty, " € Subtree(h') : W (x) # h'(x)) < 297124,
Since
2d+12Ag = ]P(Ag) = ]P(.T c ﬂ 87:[(5) n andV SiblingShl, hy € Ty, hl(l’) 7A hg(l’)),

h/ET[+1

there must be some set
A ={z € [ Owh’ st.Vsiblingshy, hy € Ty, hy(x) # ha(x)
h'€Tyyq

andvh € Ty, h' € Subtree(h), h(x)=h'(z)} C A,
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with P(A;) > 0. That s, for every: at level/ + 1, every node in its left subtree agrees witbn
everyx € Aj and every node in its right subtree disagrees withn everyxr € Aj. Therefore,
taking any{xo, x1, 2, . . ., x4} such that each, € A} creates a shatterable set (shattered by the
set of leaf nodes in the tree). This contradicts VC dimensgioso we must have the desired

claim that the maximum recursion depth is at mast O

Before completing the proof of Theordm 3.5, we have two @fudl minor concerns to
address. The first is that the confidence level in Lerhnmd 3.&Rgktly smaller than needed for
the theorem. The second is that Lemimal3.12 only applies whenos, h*) < oo for all e > 0.

We can address both of these concerns with the following lamm

Lemma 3.14. SupposéC, D) is such thatC has finite VC dimensio#, and suppose
Al (e,9, h*) is a label complexity fofC, D). Then there is a label complexity, (¢, J, h*) for
(C,D) s.t. foranys € (0,1/4) ande € (0,1/2),

min {A;(G/Q’ 48, h*), 16d 1og(26/¢)+8 log(4/5) }

€

Au(€,6,h") < (k + 2) max :
(k +1)*721log(4(k + 1)2/9)

wherek = [log(6/2)/ log(45)].

Proof. Supposed’, is the algorithm achieving/, (e, 5, h*). Then we can define a new algorithm
A, as follows. Supposeis the budget of label requests allowedAf andd is its confidence
argument. We partition the indices of the unlabeled sequeno i + 2 infinite subsequences.
Fori e {1,2,... Kk}, leth, = Al(t/(k+2),40), each time running!/, on a different one of these
subsequence, rather than on the full sequence. From one wdrtiraining two subsequences, we
request the labels of the first(k +2) unlabeled examples and let,; denote any classifier i@
consistent with these labels. From the remaining subseguésr each, j € {1,2,...,k+1} s.t.
P(h;(X) # h;j(X)) > 0, we find the first| ¢ /((k + 2)(k + 1)k) | examples: s.t. h;(x) # h;(z),
request their labels and let;; denote the number of mistakes made/yon these labels (if

P(h;(X) # h;(X)) = 0, we letm;; = 0). Now take as the return value df, the classifier:;

91



where; = arg min; max; m;.

Suppose > A,(¢,6,h*). First note that, by a Hoeffding bound argument (similarhe t
proof of Theoreni 3]7); is large enough to guarantee with probabilityl — ¢/2 thater(h;) <
2min; er(h;). So all that remains is to show that, with probability1 — §/2, at least one of
theseh; haser(h;) < €/2.

If A’ (/2,48 h*) > 16410e6/0+810e(4/9) “than the classic results for consistent classifiers

(e.g., [Blumer et gl., 1989, Devroye ef al., 1996, V: Lilﬁzll%uaranteethat, with probability

>1—-19/2, er(hi+1) < €/2. Otherwise, we have> (k + 2)Al(e/2,44, h*). In this case, each
of hy, ..., hy has an independent 1 — 49 probability of havinger(h;) < €/2. The probability

at least one of them achieves this is therefore at least4d)* > 1 — §/2. O
We are now ready to combine these lemmas to prove Thdarém 3.5.

Theoreni:315.TheoremZ3b now follows by a simple combination of Lemmadand[Z31B,
along with Theorenl 317 and Lemria—3.14. That is, the passamiley algorithm achieving
passive learning label complexity,(e, J, k) on (C, D) also achieves passive label complexity
A, (e,6,h) = ming<[A,(¢,5,h)] on any(C;, D), whereC,, C,, ... . is the decomposition from
Lemma3IB. So Lemnia:3112 guarantees the existence of &diveng algorithmsi;, A,, . ..
such thatd; achieves a label complexity;(e, 26, h) = o(A,(e,d,h)) on (C;, D) forall § > 0
andh € C; s.t. A (e, 6, h) is finite andw(1). Then Theorerd 317 tells us that this implies the exis-
tence of an active learning algorithm based on théseombined with Algorithm 4 , achieving
label complexity\’ (e, 49, h) = o(A,(¢/2,6, h)) on (C, D), for anys > 0 andh s.t. A,(e/2, 6, h)

is always finite and isv(1). Lemmal3. I8 then implies the existence of an algorithm aehie
ing label complexityA,(e,d,h) € O(min{A,(e/2,46, h),log(1/€)/e}) C o(A,(e/4,8,h)) C
o(A,(e/4,6,h)) forall § € (0,1/4) and allh € C. O

Note there is nothing special abouin Theoren{3b. Using a similar argument, it can be made

arbitrarily close tal.
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Chapter 4

Activized Learning: Transforming Passive

to Active With Improved Label Complexity

In this chapter, we prove that, in the realizable case, aliflany passive learning algorithm can
be transformed into an active learning algorithm with astatipally strictly superior label com-
plexity, in many cases without significant loss in computaai efficiency. We further explore
the problem of learning with label noise, and find that evedeurarbitrary noise distributions,
we can still guarantee strict improvements over the knowulte for passive learning. These are
the most general results proven to date regarding the aalyasmbf active learning over passive

learning.

4.1 Definitions and Notation

As in previous chapters, all of our asymptotics notationhiis thapter will be interpretted as
e \, 0, when stated for a function ef the desired excess error, orias— oo when stated for

a function ofn, the allowed number of label requests. In particular, tebat for two functions

$1 ande,, we sayg, (¢) = o(¢s(e)) iff hi% 238 = 0. Throughout the chapter, thenotation, as

well as “O,” “ Q) "w,” * «,” and “>,” where used, should be interpreted purely in terms of the
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asymptotic dependence emr n, with all other quantities held constant, includifgy, 6, and

C, where appropriate.

Definition 4.1. Define the set of functions polynomial in the logarithm 6f as follows.

Polylog(1/€) = {¢ : [0,1] — [0,00]|3k € [0, 00) S.t.¢(e) = O(log®(1/€))}.

Definition 4.2. We say an active meta-algoriths), activizesa passive algorithm,, for C
underD if, for any label complexity\, achieved by4,,, A,(A,, -) achieves label complexity,
such that for allD € D,

A, (e +v(C, D), D) € Polylog(1/e) = Au(e + v(C, D), D) € Polylog(1/e), and if

A, (e +v(C,D),D) < oo andA,(e + v(C, D), D) ¢ Polylog(1/e), then there exists a finite

constant: such that

Au(ce +v(C,D), D) = o(A,(e + v(C, D), D)).

Note that, in keeping with the reductions spirit, we onlyuieg the meta-algorithm to suc-
cessfully improve over the passive algorithm under coadgifor which the passive algorithm
is itself a reasonable learning algorithr,(< o). Given a meta-algorithm satisfying this con-
dition, it is a trivial matter to strengthen it to succeskfumprove over the passive algorithm
even when the passive algorithm is not itself a reasonabteadesimply by replacing the pas-
sive algorithm with an aggregate of the passive algoriththsome reasonable general-purpose
method, such as empiricial error minimization. For simpficwe do not discuss this matter

further.

We will generally refer to any meta-algorithr, that activizeseverypassive algorithny,,
for C underD as ageneral activizerfor C underD. As we will see, such general activizers do
exist underRealizable(C), under mild conditions off. However, we will also see that this is

typically nottrue for the noisy settings.
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4.2 A Basic Activizer

In the following, we adopt the convention that any set ofsifeersV” shatters{ } iff V # {} (and

otherwise, shattering is defined aslin [Val lllik_].998], asl)sururthermore, for convenience,

we will definex? = {{}}.

Let us begin by motivating the approach we will take belownitirly to ChaptefB, define the
boundaryasocDxy = 71}{% DIS(C(r)). If P(OcDxy) = 0, then methods based on sampling in
the region of disagreement and inferring the labels of exasmwt in the region of disagreement
should be effective for activizing (in the realizable cageh the other hand, iP(0cDxy) > 0,
then such methods will fail to focus the sampling region lmelya constant fraction ot’, so
alternative methods are needed. To cope with such sitisatee might exploit the fact that the
region of disagreement of the set of classifiers with reddyismall empirical error rates on a
labeled sample (call this SéI(T)) converges t@cDxy (up to measure-zero differences). So,
for a large enough labeled sample, a random peirt DIS(C(7)) will probably be in the
boundary region. We can exploit this fact by usindgo split C(r) into two subsets:V, =
{h € C(r) : h(z) = +1}andV_ = {h € C(r) : h(z) = —1}. Now, if z € dcDxy,
thenhien‘ﬁ+ er(h) = hign& er(h) = v(C,Dxy). So, for almost every point’ € X \ DIS(V,),
we can infer a label for this point, which will agree with somlassifier whose error rate is
arbitrarily close tov(C, Dxy), and similarly forV_. In particular, in the realizable case, this
inferred label is the target function’s label, and in theigamoise case, it is the Bayes optimal
classifier’s label (when(z’) # 1/2). We can therefore infer the label of points not in the region
DIS(Vy)n DIS(V_), thus effectively reducing the region we must request &lelSimilarly,
this region converges to a regidhy, Dxy N dy_Dxy. If this region has zero probability, then
sampling fromDIS(V,) n DIS(V_) effectively focuses the sampling distribution, as needed.
Otherwise, we can repeat this argument; for large enouglpleasizes, a random point from

DIS(Vy) N DIS(V_) will likely be in 0y, Dxy N dy_Dxy, and therefore split@(r) into four

sets withv(C, Dxy) optimal error rates, and we can further focus the samplig@grein this
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way. We can repeat this process as needed until we get aicprauft(fj(r) with a shrinking
intersection of regions of disagreement. Note that thisirment can be written more concisely
in terms of shattering. That is, a point in/S(C(7)) is simply a point that"(r) can shatter.
Similarly, a pointz’ € DIS(V,) N DIS(V_) is simply a point s.tC(7) shatters{x, '}, etc.

The above simple argument leads to a natural algorithm, lwéifectively improves label
complexity for confidence-bounded error in the realizalslsec However, to achieve improve-
ments in the label complexity for expected error, it is ndfisient to merely have the probability
of a random point iD15(C(7)) being in the boundary converging toas this could happen at
a slow rate. To resolve this, we can replace the single samyiéh multiple samples, and then
take a majority vote over whether to infer the label, and Wwhabel to infer if we do.

The following meta-algorithm, based on these observatisnsentral to the results of this
chapter. It depends on several parameters, and two typssimiggors:A®) (. .) andT'®) (-, -, -);

one possible definition for these is given immediately after meta-algorithm, along with a

discussion of the roles of these various parameters andadstis.

Meta-Algorithm 5 : Activizer(A,, n)
Input: passive algorithml,,, label budget:
Output: classifier

0. Request the firgtn /3| labels and lety denote thesén /3| labeled examples
1. LetV ={h e C:erg(h) — znigcl erg(h') <7}
‘e
2. Lets, be the nexin,, unlabeled examples, adf) the nextm,, examples after that
3.Fork=1,2,...,d+1 R
4. LetL, denote the nextn/(6 - 28A™ (U, Us)) | unlabeled examples,
5. For gach: € Ly,
6. If A®(z,Uy) > 1 — ~, and we've requested |n/(3 - 2¥)] labels inL;, so far,
7 Request the label af and replace it inC, by the labeled one
8
9

Else, label: with argmax I'®)(z,y,U,) and replace it irC,, by the labeled one
ye{—1,+1}

. ReturnActiveSelect({A,(L1), Ay, (L2), ..., Ay(Las1)}, [n/3])

Subroutine:ActiveSelect({hy, ha, ..., hn},m)

0. Foreachj, k€ {1,2,...,N}:j <k,

1. Take the nextm/ ()] examplese s.t. h;(z) # hi(x) (if such examples exist)

2. Letm;, andm,, respectively denote the number of mistakesindh;,, make on these
3. Returnhy, wherek = arg miny max; 1mg;
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The meta-algorithm has several parameters to be specified.be

As with Algorithm O and the agnostic generalizations thérdwe setl’ can be represented
implicitly by simply performing each step on the full spacesubject to the constraint given in
the definition ofl/, so that we can more easily adapt algorithms that are desigmaanipulate
C. Note that, since this is the realizable case, the choige-6f0 is sufficient, and furthermore
enables the possibility of an efficient reduction to the pasalgorithm for many interesting
concept spaces. The choice-ofs fairly arbitrary; generally, the proof requires only thac
(0,1).

The design of the estimators™® (14, 1), AW (2,U,), andT'®) (z,y,U,) can be done in
a variety of ways. Generally, the only important featurense¢o be that they be converging
estimators of an appropriate limiting values. For our psg® given anyn € N and sequences
U =A{z1,...,2n} € X" andls = {z;ns1, Zmio, - - -, 2o0m} € X™, the following definitions for

A® Uy, Uy), AP (z,Uy), andD'®) (z, y, Us) will suffice. Generally, we define

" 1 1 A
AUy, U) = —7 + — > 1AW (z,Up) = 1—1]. (4.1)

z€Uy

For the others, there are two cases to considér=f1, the definitions are quite simple:
PO(x,y,Us) = 1Vh € V. h(z) = y),

AW (2 Uy) = 1]z € DIS(V)].

For the other case, namely > 2, we first partitionl, into subsets of sizé — 1, and record

how many of those subsets are shattered’byor i € {1,2,..., m/(k — 1)}, defineS" =

[m/(k—1)]
{emtitG-0k=1) - - Zmsite—1) }» @nd letM, = maxq1, > 1 [V shattersSi('“)} } Then
=1

defineV(,,y = {h € V : h(z) = y}, and
) (k1)
W,y th) = > 1 [V shatterss"’ andV/,. _,, does not shatteﬁfk)} . (4.2)
=1

A®)(z,U,) simply estimates the probability thétU {z} is shatterable by givenS shatterable
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by V, as follows.

Lm/(k—1)]
> 1V shatterss!" U {z}]. (4.3)

i=1

1 1

—_'__
M,i/?’ M,

A(k) (Z, Z/{Q) =

The following theorem is the main result on activized leagnin the realizable case for this

chapter.

Theorem 4.3. Suppos& is a VC class) < 7 = o(1), m,, > n, andy € (0, 1) is constant. Let
A® andI'® be defined as i), @3), and @2).

For any passive algorithmi,,, Meta-Algorithm 5 activizes!, for C underRealizable(C).

More concisely, Theorefn4.3 states that Meta-Algorithm &general activizefor C. We

can also prove the following result on the fixed-confidenasiea of label complexitjj.

Theorem 4.4. Suppose the conditions of Theoren 4.3 hold, and.thachieves a label

complexityA,,. ThenActivizer(A,, -) achieves a label complexity, such that, for any
d € (0,1) andD € Realizable(C), there is a finite constantsuch that
Ay(e,¢6,D) = O(1) = Ay(ce,¢6,D) = O(1) and

Ay(€,0,D) = w(l) = Ag(ce, cd, D) = o(Ay(€, 9, D)).
The proof of Theorems 4.3 ahd¥.4 are deferred to Setfidn 4.4.

For a more concrete implication, we immediately get theofeihg simple corollary.

Corollary 4.5. For any VC clas<, there exist active learning algorithms that achieve label

complexities\, and A,, respectively, such that for aldyy € Realizable(C),

Au(6, Dxy) =0(1/e), and Yo € (0,1), A (€,0,Dxy) = o(1/e). .
Proof. Ford = 0, the result is trivial. Fou > 1, tLaus&IﬂL_LmI.ﬁlan.a_a.muNa.LmL h [1D94]

propose passive learning algorithms achieving respetaivel complexities\, (¢, Dyy) = ¢

€

andA,(e,6,Dxy) < @ 1In¥. Plugging this into Theorenis3.3 ahdl4.4 implies that aplyi
Meta-Algorithm 5 to these passive algorithms yield comdiaetive learning algorithms with

the stated behaviors far, andA,. O

1In fact, this result even holds for a much simpler varianhef algorithm, wher&*) andA*) can be replaced

by an estimator that uses a single rand®m X*~! shattered by, rather than repeated samples.
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For practical reasons, it is interesting to note that alheflabel requests in Meta-Algorithm
5 can be performed in three batches: the initied, the requests during thét-1 iterations (which
can all be requested in a single batch), and the requestsfdrtive Select procedure. However,
because of this, we should not expect Meta-Algorithm 5 taehastimal label complexities. In
particular, to get exponential rates, we should expect éalf@dn) batches. That said, it should
be possible to construct the sétssequentially, updatinyy” after each example added4g, and
requesting labels as needed while constructing the sdggmas to Algorithm 0. Some care in
the choice of stopping criterion on each round is needed t@rsare the sef,, still represents an
i.i.d. sample. Such a modification should significantly io@ the label complexities compared
to Meta-Algorithm 5, while still maintaining the validityfohe results proven here.

Note: The restriction to VC classes is not necessary foitipesiesults in activized learning.
For instance, even if the concept spdcédas infinite VC dimension, but can be decomposed
into a countable sequence of VC class subsets, we can stdtremt an activizer fo€ using an

aggregation technique similar to that introduced in Chdpte

4.3 Toward Agnostic Activized Learning

We might wonder whether it is possible to state a result asigéas Theorefin 4.3, even for the
most general settind gnostic. However, one can construct VC clas§gsnd passive algorithms
A, that cannot be activized fdt, even under bounded noise distributiofisybakov(C, 1, 1)),

let aloneAgnostic. These algorithms tend to have a peculiar dependence orotbe aistribu-
tion, so that if the noise distribution arid align in just the right way, the algorithm becomes
very good, and is otherwise not very good; the effect is thaicannot lose much information
about the noise distribution if we hope to get these extrgrasit rates for these particular dis-
tributions, so that the problem becomes more like regrastian classification. However, as
mentioned, these passive algorithms are not very integefir most distributions, which leads

to an informal conjecture that amgasonablepassive algorithm can be activized fGrunder
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Agnostic. More formally, | have the following specific conjecture.
Recall that we say. is a minimizer of the empirical error rate for a labeled sanpliff

h i h').
€ argglelgerﬁ( )

Conjecture 4.6. For any VC clas<C, there exists a passive algorith#), that outputs a

minimizer of the empirical error rate on its training samlech that some active

meta-algorithmA, activizesA, for C underAgnostic.

Although, at this writing, this conjecture remains oper tbst of this section may serve as

evidence in its favor.

4.3.1 Positive Results

First, we have the following simple lemma, which allows ugéstrict the discussion to the

BenignNoise(C) case.

Lemma 4.7. For anyC, if there exists an active algorithtd, achieving label complexities,
andA,, then there exists an active algorithdj achieving label complexities, and A/, such
that, VD € Agnostic andd € (0, 1), for some functiong (e, D), (e, d, D) € Polylog(1/e),

If D € BenignNoise(C), then

N (e +v(C,D), D) < max{2[A,(e/2 + v(C,D),D)], Me, D)},

AN (e+v(C,D),6,D) < max{2[A.(e + v(C,D),§/2,D)], Ae, 6, D)},
and if D ¢ BenignNoise(C), then

N (e +v(C,D),D) < Me, D),

N,(e +1(C, D), 5,D) < A(&,5,D).

Proof. Consider a universally consistent passive learning algori4,,. ThenA, achieves label
complexitiesA, and A, such that for any distributio® on X x {—1,+1}, Ye,d € (0,1),
A (/24 3(D), D) andA,(¢/2+3(D), §/2, D) are both finite. In particular, i#(D) < v(C, D),
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thenA,(¢/2 +v(C,D), D) = O(1) andA,(e/2 + v(C, D), §/2,D) = O(1).

Now we simply runA,(|[n/2]), to get a classifieh,, and runA, (2,3 ) (after requesting
those first|n/3] labels), to get a classifiér,. Take the next: — [n/2] — [n/3] unlabeled
examples and request their labels; call this&elf er.(h,) — erg(hy,) > n~'/3, returnh = hy;
otherwise, returh = h,. | claim that this method achieves the stated resuilt, forfaHewing
reasons.

First, let us examine the final step of this algorithm. By Hoeilg's inequality, the probability
thater(h) # min{er(h,), er(h,)} is at mosRexp{—n'/3 /24}.

Consider the case whef@ € BenignNoise(C). For anyn > 2[A,(¢/2 + v(C, D), D)],
Eler(hq)] < v(C,D) + €/2, soE[er(h)] < v(C, D) + ¢/2 + 2exp{—n'/3/24}, which is at most
v(C,D) +€eif n > 24%In* 2. Also, for anyn > 2[A,(e + v(C, D), §/2, D)], with probability at
leastl — 6/2, er(h,) < v(C,D) + e. If additionally,n > 24*In* 4, then a union bound implies
that with probability> 1 — 8, er(h) < er(h,) < v(C,D) + e.

On the other hand, iD ¢ BenignNoise(C), then for anyn > 3[A,(v(C, D) + ¢/2,D)],
Eler(h)] < Efmin{er(h,), er(h,)}] + 2ep{—n"/3/24} < Eler(h,)] + 2eap{-n'/*/24} <
v(C, D) +¢/24 2exp{—n'/?/24}. Again, this is at most(C, D) + ¢ if n > 24°In® 1. Similarly,
foranyn > 3[A,(v(C,D)+e¢,6/2,D)] = O(1), with probability> 1—6/2, er(h,) < v(C,D)+
e. If additionally, n > 2431n® % then a union bound implies that with probability 1 — 0,
er(h) < er(hy) < v(C,D) +e.

Thus, we can také(e, D) = max{24%In* 2, 3[A,(v(C, D) + ¢/2,D)]} € Polylog(1/e).
andA(e, 6, D) = max{24°In” 4, 3[A,(v(C, D) +¢€,5/2,D)]} € Polylog(1/e). O

Because of Lemm@a4.7, it suffices to focus our discussionlyporethe BenignNoise(C)
case, since any label complexity resultsBmign N oise(C) immediately imply almost equally
strong label complexity results fatgnostic, losing only an additive polylogarithmic term. With
this in mind, we state the following active learning algonit, designed for th8enign Noise(C)

setting.
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Meta-Algorithm 6:BenignActivizefA,, n)
Input: passive algorithmd,,, label budget.
Output: classifief,

0. Request the firgtn/3 | labels and let) denote thesén /3| labeled examples
1. LetV ={h e C:erg(h) — 2{161% erg(h') <t}

2. LetU, be the nexin,, unlabeled examples

3.Fork=1,2,....d

4. Qr—{}

5. Fort=1,2,...,[2n/(3-2%)]

6 Leta’ be the next unlabeled example for whietn; <, A9 (z,Uy) > 1 — v
7 Request the label of 2/ and letQ,, — Q, U {(«',y')}

8. Construct the classifién,, for k € {1,2,...,d + 1} (see description below)
9

. Returnﬁ,;,, for & = max {k : maX;<g eer(ka) — eer(ij) < Tkj}.

The definition off,, in Step 8 of Meta-Algorithm 6 is as follows.
Let iy, = A,(Qp), k'(z) = min{k" : A®)(z,U) < 1 —~}, and
arg max LWz y 1), ifk(x) <k

hk(x) — ye{—-1,+1}

hi(z), otherwise

For the threshold,; in Step 9 of Meta-Algorithm 6, for our purposes, we can take th

following definition.

2048d In(1024d) + In(32(d + 1)/9)
fo = @

It is interesting to note that this algorithm requires omptbatches of label requests, which
is clearly the minimum number for any algorithm that takegaadage of the sequential aspects

of active learning. However, even with this, we have theoiwlhg general results.

Theorem 4.8.LetT = 15 + ﬂ/% 5 € (0,1), and letA® andT'™ be defined as
in @), @3), and@3). For any VC clas<, by applying Meta-Algorithm 6 withl,, being any
algorithm outputting a minimizer of the empirical error esfromC, the combined active

algorithm achieves a label complexity, such thatvD € BenignNoise(C),

Au(e +v(C,D),5,D) = o(1/*).
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The proof of Theoreri 418 is included in Section4.4.1. Theded, combined with Lemnia3.7,

immediately implies the following quite general corollary

Corollary 4.9. For any VC clas<’, andé € (0, 1), there exists an active learning algorithm

achieving a label complexity, such thatVD € Agnostic,

Ao(e +7(C,D),8,D) = o(1/€%).
Note that this result shows strict improvements over theaknaorst-case (minimax) label

complexities for passive learning.

4.4 Proofs

4.4.1 Proof of Theorem$4ld 414, and 4.8

Throughout this subsection, we will assufiés a VC class) < 7 = o(1), m,, > n,v € (0, 1),
and A®) andI'™® are defined as ifi{4.1)[13.3) arld4.2), as stated in the tiongiof the
theorems. Furthermore, we will definé = {h € C : er,/3/(h) — glei% erin/3(h) < 7}, and
unless otherwise specifie®xy, € Agnostic and we will simply discuss the behavior for this
fixed, but arbitrary, distribution.

Also, recall that we are using the convention th&t= {{}} and we say a set of classifiers

V shatterd } iff V' £ {}.

Lemma 4.10.Forany N € N, andN classifiers{hy, ha, ..., hn},
ActiveSelect({h1, ho, ..., hy}, m) makes at mostk: label requests, and fi;, is the classifier

output byActiveSelect({hy, hs, ..., hy}, m), then with probability

>1—-2(N — 1)exp{—(m/(];))/72}, er(h;) < 2ming er(hy).

Proof. This proof is essentially identical to the proof of Theofem Bom Chaptefl3.
First note that the total number of label requests useddyveSelect is at mostm, since

each pair of classifiers uses at mms/t(];’ ) requests.
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Let £ = argmin, er(hy). Now for anyj € {1,2,..., N} with P(h;(X) # hg(X)) > 0,
the law of large numbers implies that with probabilitywe will find at Ieastm/({j) exam-
ples remaining in the sequence for whicf{z) # hy--(z), and furthermore sincer(hj-|{x :
hij(z) # hi(2)}) < 1/2, Hoeffding's inequality implies thalP(my--; > (7/12)m/ (%)) <
exp{—(m/(%))/72}. A union bound implies

(s> 1 (3)) 09— s { - (wi(3)) ).

Now supposé € {1,2,..., N} haser(hy) > 2er(hg). In particular, this implie®(h,(X) #
he (X)) > 0 ander(hgl{z : hp(x) # hi(x)}) > 2/3. By Hoeffding’s inequality, we
have thatP(my— < (7/12)m/ (%)) < exp{—(m/(%))/72}. By a union bound, we have that
P(3k : er(he) > 2er(hye-) andmax; my, < (7/12)m/ (3)) < (N = Dexp{—(m/(}))/72}.

So, by a union bound, with probability 1 —2(N — 1)exp{—(m/(}))/72}, for thek chosen

by ActiveSelect,
N .
mJaX ml;j = m]aX Mg = (7/12)m/ ( 2) = k:er(hkgggelr(hk**) m]fjiX i)
and thuser(h;) < 2er(hg+) as claimed. O

Lemma 4.11. There is an event/,,, holding with probability> 1 — exp{—+/n}, such that for

someC-dependent function(n) = o(1), V C C(¢(n); Dxy ).

Proof. By the uniform convergence bounds proven_b;dAp ik [1983],afC-dependent finite

constante, with probability > 1 — exzp{—n'/?}, V C C (cn "+ 7;Dxy). Thus, the result
holds forg(n) = cn=4 + 7 = o(1). O

Lemma4.12.1f 7 > L + 7\/% then there is a strictly positive functief(n) = o(1)

such that, with probability> 1 — 1/n, C(¢'(n); Dxy) C V.

Proof. By the uniform convergence bounds prover_b;dlaIpLik_LL%ﬂh ywrobabilityl — 1/n,
everyh € C hasler(h) — er|,3(h)| < 7/3. Therefore, on this event, O C(7/3; Dxy). Thus,

we can lety’(n) = 7/3, which satisfies the desired conditions. ]
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Lemma 4.13.For anyn € N, there is an eventl;, for the data sequencg,, ;) with

1, if Dxy € Realizable(C)

1 —1/n, if Dyy ¢ Realizable(C) butr > 13 4 7/ m@n*dln

s.t. onH/, foranyk € {1,2,...,d + 1} withP(S € x*~1: li{% 1[C(r) shattersS] = 1) > 0,

P(H,) =

P(S € X%~!: V shattersS)| h{% 1[C(r) shattersS] = 1)

= P(S € X*' : lim 1[V (r) shattersS] = 1] li{% 1[C(r) shattersS] = 1) = 1.

™\,0

In(4n)+d1ln 22 .
@) +dn 7 the result imme-

Proof. For the case 0Dyy ¢ Realizable(C) andr > 2 47
diately follows from Lemm&Z.12, which implies that on an ®ivef probability> 1 — 1/n, for
any setS, 1|V shattersS] > ll\r% 1[V(r) shattersS| = 11\r% 1[C(r) shattersS].

Next we examine the case whePgy € Realizable(C). We will show this is true for any
fixed &k, and the existence dfi’ then holds by the union bound. Fix any sete X*! s.t.
11{% 1[C(r) shattersS] = 1. Supposé/(r) does not shatte$ for somer > 0. Then there is an
infinite sequence of sefgA\”, Ay, ... h{) 1}, with Vj < 251, P(x = b\ (2) # h*(2)) \, 0,
such that eacl{hgi), . .,hgk),l} C C(r) and shatterss. SinceV(r) does not shattef, 1 =

inf 137 : 1) ¢ V(r)] = inf L3 : 1 (Z1nss)) # h*(Z1ngs))]- But

Elinf 1[3j : b} (Zin/)) # 1" (Ziaya)]] < WEE[LE) : AP (Zngs)) # B (Zinga))]

<lim 3 (/3]G AP () # () =0,

jgzk—l

where the second inequality follows from the union bounder€fore,vr > 0,
P(Z,/3 € X3 . V(r) does not shatte§) = 0 by Markov’s inequality. Furthermore, since

1[V(r) does not shatte¥] is monotonic in-, Markov's inequality and the monotone convergence
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theorem give us that

P(Z|,3 € X3 li\r% 1[V (r) does not shattef] = 1)

< E[li{% 1[V(r) does not shattes$]] = li{‘I(l]P(ZLn/gJ e X3 . V(r) does not shatte$) = 0.

This implies that

P(Z,/3 € X3 P(Se X 1 lim 1[V (r) shattersS] = 0 lim 1[C(r) shattersS] = 1) > 0)

™\,0
= ?{% P(Z/3 € X3 P(Se x*! :h{% 1[V (r) shattersS] =0| h\r% 1[C(r) shattersS]=1)>¢)
< ?\n% P(Z|,/3 € X3 P(Se x*! :li\n% 1[C(r) shattersS]=1+# li\n% 1[V (r) shattersS]) > ¢)
< %1{% %E[P(S cxk! 11{1(1) 1[C(r) shattersS]=1 ;éll{% 1[V (r) shattersS])] (by Markov's ineq)

= %1\1@% %E[ﬂ[}i\r% 1[C(r) shattersS| =1]P(Z|,,/3) : 11\% 1[V (r) shattersS]=0)] (by Fubini's thm)

=lim0 = 0.
&0

O

Lemma 4.14. Supposé: € N satisfiedP(S € X+ 1. li\n% 1[C(r) shattersS] = 1) > 0. There is

a functiong(n) = o(1) such that, for any: € N, on eventH,, N H (defined above),

P(S € X*!: lim 1[C(r) shattersS] = 0|V shattersS) < ¢(n).

\0

Proof. By Lemmad. 4711 and 4113, we know that on eveptn H,,

P(S € xF 1. li\r% 1[C(r) shattersS] = 0|V shattersS)

~ P(S € X* ! lim,n o 1[C(r) shattersS] = 0 andV shattersS)

B P(S € Xk-1:V shattersS)

- P(S € X*1: lim,\ o 1[/C(r) shattersS] = 0 andV shattersS)

- P(S € X*=1: lim,~ o 1[C(r) shattersS] = 1)

P(S € X% : lim,~ o 1[C(r) shattersS] = 0 andC(¢(n)) shattersS)
P(S € Xk~ : lim, o 1[C(r) shattersS] = 1) '

<
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Defineq(n) as this latter quantity. Since

P(S € xk-1: li{% 1[C(r) shattersS] = 0 andC(r’) shattersS) is monotonic in’,
, . P(S € X* ! lim, o 1[C(r) shattersS] = 0 andC(r’) shattersS)
lim ¢(n) = lim ,

n—oco N0 P(S € X*=1: lim,\ o 1[C(r) shattersS] = 1)
_ E[1[lim,~p 1[C(r) shattersS] = 0] lim,\ o 1[C(r") shattersS]]
B P(S € X+1:lim, o 1[C(r) shattersS] = 1)

Y

where the second equality holds by the monotone converghroeem. This proves

q(n) = o(1), as claimed.

Lemma 4.15. Letk* € N be the smallest indexfor which

P(S € xk-1: li{% 1[C(r) shattersS] = 1) > 0 and

P(S € X* ' . P(x : lim 1[C(r) shattersS U {z}] = 1) = 0| li{r(l] 1[C(r) shattersS] = 1) > 7.

\,0

Such ak* < d + 1 exists, and/¢ € (0, 1), In¢ S.t.Vn > n, if Dxy € Realizable(C) or

2n .
T> % +7 % andDxy € BenignNoise(C), on eventd,, N H/, (defined above),

Vk < k¥,

P(z : n(z)#1/2 andP(S € X : V[, +(»)) does not shattes|V shattersS) > ¢) =
P(z : n(z) #1/2 andP(S € X' : V[, - (»)) does not shattes]| ll{f(l] 1[V (r) shattersS]|=1) > ()

= 0.

Proof. First we prove that such & is guaranteed to exist. As mentioned, by convention any

set of classifiers shattefg, and{} € X°, so there exist values @f for whichP(S € x* -1 :
li{% 1[C(r) shattersS] = 1) > 0. Furthermore, we will see that for atye {1,...,d + 1}, if

this condition is satisfied faor, but

P(S € X1 P li\r% 1[C(r) shattersS U {z}] =1) = 0| l% 1[C(r) shattersS] = 1) <,

thenP(S € X* : lim 1[C(r) shattersS] = 1) > 0. We prove this by contradiction. Suppose the

T

implication is not true for somg. Then
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0<

IN

IN

1—~

P(S € X1 P(x: li{% 1[C(r) shattersS U {z}] = 1) > 0| li{% 1[C(r) shattersS] = 1)
P(S € Xk P(x: li\n% 1[C(r) shattersS U {z}] = 1) > &)
%l\r% P(S € X*=1: lim,~ o 1[C(r) shattersS] = 1)
E[P(x : li{% 1[C(r) shattersS U {z}] = 1)]
?{% EP(S € XF=1: lim,\ o 1[C(r) shattersS] = 1)
P(S € X% : lim 1[C(r) shattersS] = 1)
0 — lim 0 = 0.

.
0 EP(S € XF=1: lim,n o 1[C(r) shattersS] = 1)  &\o

(by Markov’s inequality)

This is a contradiction, so it must be true that the implmatiolds for allt. This establishes the

existence of*, since we definitely have

P(S € x?: I%P(x : C(r) shattersS U {z}) =0 li\r% 1[C(r) shattersS] = 1) =1 > 7,

so thatsomek satisfies both conditions.

Next we prove the second claim. Take< k. Letn¢ be s.tsup,.,, g(n) < (; it must exist

sinceq(n) = o(1). By LemmdZIK, fon > n., on H, N H},

IN

IN

<

<

P(z : n(z)#1/2 andP(S € X*~': V|, 1)) does not shatte$|V shattersS) > ()
P(x :n(x)#1/2 and

P(S € X1 Viune(x) does not shattes| l% 1[C(r) shattersS] = 1) + g(n) > ()

e ElLn(2) #1/2]P(S € X1 Vix - (x)) does not shattef| 71}{‘1(1) 1[C(r) shattersS]=1)]

(by Markov’s inequality)

]E[]l[li{rb 1[C(r) shattersS]=1]P(z:n(z)#1 /2 andV(, ,* () does not shattes)]

(C=a()P(Sex T Tim 1[C(r) shatterss|=1) (by Fubini's theorem)

]E[]l[li{rb 1[V (r) shattersS]=1]P(z:n(z )£l /2 andV(, ,+ () does not shattes )]
(C=a(m) P(SEX™T: Tim T[C(r) shatterss|=1) (by Lemme4.1B) (4.4)

For any setS € X*~! for which li\r% 1[V (r) shattersS] = 1, there is an infinite sequence of sets

(A0S, RS 3 with Vi < 281 P(a < n(2) #1/2 andh!? (2) # h*(2)) \, 0, such that
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each{h{, ..., hé?,l} C V and shatters. If V, »-(,)) does not shattes, then
1=inf1[3j: W & Vi) = inf 1(3; : W (x) # h*(2)).

In particular, by Markov’s inequality,

P(z : n(x)#1/2 andV(, j+(»)) does not shattey)

< P(x : n(x)#1/2 and inf 1[3; : W (x) # 1 (x)] = 1)
< E[1[n(X)#1/2)inf 1[F; : b (X) # h*(X)]
< inf P(x : (x) #1/2 andJj s.t W () # h*(x))
< > lim P : n(x) #1/2 andh{” (z) # h*(z)) = 0.
This means{Zl4) equals - m

Lemma 4.16. Supposé € {1,2,...,d + 1} satisfies
P(S € Xkt li\r% 1[C(r) shattersS] = 1) > 0 and
ap=P(S e x+1: li\r% P(x : C(r) shattersS U {z}) = 0| li{% 1[C(r) shattersS] = 1) > .

Then there is a function!”) = o(1) such that, on evertt,, N H’, (defined above),

P(z : P(S € X*¥~1: V shattersS U {z}|V shattersS) > 1 — (y + ax)/2) < AP,

Proof. Let

A={Secxkt, }1{% 1[C(r) shattersS] = 1 and li{%IP(:c : C(r) shattersS U {x}) = 0}.
Then, lettingp(n) be as in LemmBA4.11, on eveht, N H/,

P(x: P(S € X*1. V shattersS U {z}|V shattersS) > 1 — (v + az)/2)

<P(x:P(S € X1 C(¢p(n)) shattersS U {z}| 11{1(1) 1[C(r) shattersS] = 1)
+P(Sextt: ll\r% 1[C(r) shattersS] = 0|V shattersS) > 1 — (v 4+ ax)/2) (4.5)
By Lemmd4.1B, we know there is some finites.t. anyn > n; has (on event/,, N H))
P(S € xF 1. 1{?) 1[C(r) shattersS] = 0|V shattersS) < (a; — v)/3.
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We therefore have that, for > 7,, on eventd,, N H!, (&3) is at most
P(z:P(S€Xx*1:C(4(n)) shattersS{x}| 11{13] 1[C(r) shattersS] =1 ay—y)/3 > 1~(+ou) /2)
< P(z:P(SeX*1:C(¢p(n)) shattersSu{x}|S € A)ay+(1—ag)+(ar—7)/3>1—(v+ai)/2)
=P(z: P(S € X*1: C(¢(n)) shattersS U {z}|S € A) > (ar —7)/(6c.))

%E[IP(S € X%71: C(¢(n)) shattersS U { X }|S € A)] (by Markov’s inequality)

IA

< %E[P(x : C(¢(n)) shatterss U {x})|S € A] (by Fubini’s theorem).

We will define A equal to this last quantity for any > n; (we can takeA™ = 1 for
n < n4). It remains only to show this quantity ig1). Since%E[P(x : C(r) shatterss U

{z})|S € A] is monotonic inr,

6ak

lim A® = lim

E[P(x : C(r) shatterss U S e Al
Jim AL = lim — = B[P(o - C() {z})Is € 4]

Since for anyS € xX*~1, P(x : C(r) shattersS U {x}) is monotonic in-, the monotone conver-

gence theorem implies

liy QSCE“VE[IP’(:E . C(r) shattersS U {z})|S € A]
_ o E[lim P(x : C(r) shattersS U {z})|S € A] = 0.
Qp =7 ™0
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Lemma 4.17.Vn € N, there is an eventl,, C H, N H' on Z that, if
Dxy € BenignNoise(C), has
P(H,) > 1 — en*? . exp{—c'n'/*} — 1[Dxy ¢ Realizable(C)]n"!, for Dxy- and

C-dependent constantsc’ € (0, o), such that
VneN, onH,, |{z € L : A¥) (2, U) > 1 -~} < [n/(3-25)], (4.6)
FAY) = (1) and A = o(1) s.t.¥n € N, on H,,
AF) (1) < AR and A®) (U, Uy) < AP, (4.7)

whereVk, A®) (Uy) = P(z : A®) (z,Uy) > 1 —); alsoIn* € Ns.t.¥n > n*, if
Dxy € Realizable(C), onH,,Vr € Ly,

AW (@ tp) < 1=y = T (@, =h*(2), Uy) < T (2, h* (), Ua), (4.8)

whereL,- is as in Meta-Algorithm 5; alsoin > n*, if Dxy € BenignNoise(C) and

In(4n)+dIn 27”
n

T>8 47 , then onH,,,

Pz : n(z)#1/2and3k < k* s.t. AP (z,14) < 1 — ~v and

1",1/3

") (2, h*(x),Uy) < T® (2, —h*(x),Us)) < (d+1)e™™"", (4.9)

for a C- andDxy-dependent finite constadt > 0.

Proof. Since most of this lemma discusses ohly k*, in the proof | will simplify the notation
by dropping(k*) superscripts, so thak(i4;, U,) abbreviates\*") (U, , 1), T'(x, y, Us) abbrevi-
atesI'*")(x, y,U), and so on. | do this only fok*, and will include the superscripts for any
other value oft so that there is no ambiguity.

We begin with [4B). Recall thaf,- is initially an independent sample of size/(6 -
2¥ AUy, Us)) | sampled fronD .y [X] (i.€., before we add labels to the examples). MA@t ) =
P(z: Alw,Uy) > 1—7).

111



By Hoeffding’s inequality, on an everft\” (4,) on 4, with P(Lfy + HVU)) > 1 —2-

exp{—Qmi/g} >1—2-exp{—2n'3},

_ 1 « 1
AEh) - = S A U) 21— < —
" ey M,

and therefore

AUy) < AUy, Us).

By a Chernoff bound, there is an evdiit” (Us) on Ly« andis; with
P(Lye,Us: HP (Un)) 2 1—eap{—|n/(6-2" Alh)) | AUs) /3} > 1—exp{—(n—62"")/(18:2")}
such that, on an evert!” (1) N H? (Uy),
o € Ly Alx,U) > 1 —~Y < 2[n/(6- 2 AUh)) | AU) < n/(3-2").

Since the left side of{416) is an integér, §4.6) is estalelish

Next we provel[&l7). If* = 1, the result clearly holds. In particular, we ha¥é€") (14,) =
P(DI1S(V)), and Hoeffding’s inequality implies that on an event witllpability
1 — exp{—2my*}, AD Uy, Uy) < P(DIS(V)) + 2my"/*. Combined with Lemm&Z16, we
have bounds oA + 2m, '/* = o(1).

Otherwise, we havé* > 2. In this case, by Hoeffding’s inequality and a union bounekefo
k values), for an eventi” overid,, with P(H") > 1 — (d + 1)exp{—2|m,,/(k* — 1)]'/3}, on
H'NH!, forallk € {2,...,k*} (by LemmdZIR)

M, >P(S e X+ li\n% 1[C(r) shattersS] = 1)|[my,/(k — 1)] — |my/(k —1)]*3.
Let us name the right side of this inequality(n). Recall that fork < k*,

P(S € X' : lim 1[C(r) shattersS] = 1) > 0

\,0
by definition ofk*, som(n) diverges. On everty\”) (),

. _ 2
AUy, Us) < A(Us) + < A(Usy) + mEyES (4.10)

1/3
mn/
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Thus, it suffices to bound(i4,) by ao(1) function. In fact, since we hav&/,- lower bounded

by a diverging function o N H,, so for sufficiently large:, on H, N H/,
AU) <P(x: Az, Uy) — M > 1= (2y+a)/3).

Thus, it suffices to bounB(z : A(z, 1) — M.""* > 1 — (2v + a)/3) by ao(1) function. On
eventH, N H) N H', we have that

P(z: Alz,Us) — ML > 1= (29 + ) /3)

<P(z:P(S € X1 : V shattersS U {z}|V shattersS) > 1 — (v + «)/2)+

[m/(k*—1)]
P(x:|P(S€ X" ~":VshatterSU{z}|V shatters)— 57— 3~ 1[Vshatters,u{z}]| > (a=7)/6)
=1

By Lemma4.1b, on event,, N H,,,
P(z : P(S € X¥ =1 : V shattersS U {z}|V shattersS) > 1 — (v 4 a)/2) < A®) = o(1).

Thus, it suffices to prove the existence af(a) bound on
Lm/(k*—1)]
P(a:|P(S€ X" ~!:Vshatter§U{z}|V shatters)— ;- Z 1[V shatters;U{x}]| > (a—y)/6)
For this, we proceed as follows. Defipg = M Ztm/(k ‘lJ 1[V shattersS; U {z}], a random

variable depending oi,, andp, = P(S € X* ~1 : V shattersS U {z}|V shattersS).

P(Uy : My > m(n) andP(z : |p, — pa| > (@ —7)/6) > M_'?)

<P (L{2 . My > m(n) andaﬁ Ellpx — px|] > M,;l/g) (by Markov's inequality)

Lmn /(K" —1)]
= Y Pl My =m)P (Us : Ellpx — pxl] > m™*(a — ) /6| M;- = m)

m=m(n)

< sup P (Us:exp{t,mE[px — px|]} > exp{tum®*(a —7)/6}| My = m),

m>m(n)

for any values,, > 0. We now proceed as in Chernoff’'s bounding technique. By Magk
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inequality, this last quantity is at most

sup E[etmmEHpX_ﬁXMMk* = m]exp{—tmmz/s(a —)/6}

m>m(n)

< sup E[E[e!™Px=PxI]| M. = m]exp{—t,,m*?(a —~)/6} (by Jensen and Fubini)

m>m(n)

< sup ( sup E[et”‘B"”’_tmm”] + sup E[etmmp_th"”’])exp{—tmmz/g(a —7)/6}
m>m(n) pel0,1] p€(0,1]

whereB,,,, ~ Binomial(m, p), and the expectation is now ov&;, ,. By symmetry, ifp is
the maximizer of the first expectation, thén- p maximizes the second expectation, and the

maximizing values are identical, so this is at most

2 sup sup Eleap{t,, B, — twmp}exp{—tnm**(a —7)/6)}.
m>m(n) pel0,1]

Following the usual proof for Hoeffding’s inequality [seegelDevroye et all, 1996], this is at

most

2 sup exp{t?,m/8}exp{—t,m*3(a —~)/6)}.

m>m(n)

Takingt,, = m~/32(a — v)/3, this is
2 sup exp{ml/g(a — 7)2/18 — m1/32(a — 7)2/18}
m>m(n)

=2 sup exp{—m3(a—7)?/18} = 2eap{—m(n)*3(a — v)?/18}.

m>m(n)

Therefore, there is an evehAt” onif, with

P(H") > 1 — 2eaxp{—m(n)"3(a — 7)?/18} > 1—

2exp{—(P(S€X* 1 :1im 1[C(r)shatters] =1)|n/(k*—1) | —|n/(k*—1)]**)3(a—~)?/18},

™0
such thatord]' N H) N H),,
P(z:|P(Sext 1 :VshattersSU{:c}|Vshatter§)—%m/%_lﬁ[‘/shatterﬁu{x}]\ > (a—y)/6)
< M%< m(n)=13 = o(1). -
Finally, we turn tol[4B) and{4.9). i = 1, then forDyy € Realizable(C), we clearly have

2n
h* € V; otherwise, ifDxy € BenignNoise(C) andr > 12474/ %, then Lemm&Z12
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implies that, on an event ovéd),, /3 of probabilityl — 1/n, with probability1 overx such that
n(z) # 1/2,if T (z,y,Up) > TW(z, —y,Us), theny = h*(z). This implies [ZB) fork* = 1
and it covers thé = 1 case for[[4P).

Let us now focus ot > 2 for (A3), and in particulak* > 2 for both [4.9) and[{Z]18). By
Lemmd4.Ib, for any: in a set of probabilityl, Hoeffding’s inequality and a union bound (over
k values) implies there is an eveH{*(z) with P(Uy : H(z)) > 1 — (d + 1)exp{—2m(n)/?}
such that, forn > n,,,, on the additional event//’(z) N H, N H], N H, if n(x) # 1/2,

Vk e {2,... k*},

1 Lmn/(k=1)]

7 > 1[Viu () does not shattes”’ andV’ shatterss"|
i=1

<P(S € X" Vi, o)) does not shattef|V shatterss) + M, '/

</ M < /a4 m(n) TR

For sufficiently larger, m(n) '3 < v/4. If k € {2,...,k*} andA®) (2, 14,) < 1 — ~, then

1 Lmn/(k—1)]

i Z 1[V does not shatteﬁi(k) U {z} andV shatterss*i(k)] >,
k=1

and thus, if this happens for sufficiently largen the even#/*(z) N H,, N H], N H!/, we must

have
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S T® (@, —h(x),Uy) =

Lmn /(k—1)]
> 1[Viup(x)) does not shattes"’ andV shatterss;"]

i=1

1
<
S

<Y/2=—=v/2+7

Lma/(k=1)]
Z 1[V does not shattes" U {z} andV shatterss'*]
i=1

Lmn /(k—=1)]
Z 1{V(z h*(z)) dO€s not shattes*) andV’ shatterss"]

i=1

2
< — 7/+Mk

=—7v/24+ — YA
1 Lmn /(k—1)] o
STA ; 1[Vi 1 (a)) ShattersS!™ andV{, ;- (.) does ndt
lmn/(k—1)]
<— > 1[Vie 1) does not shattes" andV’ shatterss;

=1

k)]

= W, h*(x),Us).
By a union bound over the elements&yf.,

() HE@) > 1 - nml/(d + Deap{—2m(n)'/),

:L‘E,Ck*

which suffices to provd(4.8).

Also, we have the following.

P(Us, : P(x : H(z) does not occyr> exp{—m(n)'/?})
< exp{m(n)**}E[P(z : H"(x) does not occyt (by Markov’s inequality)
= exp{m(n)'*}YE[P(U, : H"(X) does not occyi (by Fubini's theorem)

< exp{m(n)*}E[(d + 1)exp{—2m(n)**}] = (d + 1)exp{—m(n)*/?}.
This suffices to provd (4.9). O

Proof of Theorerir413The result now follows directly from Lemmé&s 2117 dnd #.10.7)4m-

plies|Ly| > L(n) for some function.(n) = w(n), while (£.8)implies we will infer the labels
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for all but at most{n/(3 - 2*")| of them, and[{418) implies that, for sufficiently largethe in-
ferred labels are correct. Lemria4.10 implies that) is at most twice the error of any of
thed + 1 classifiers. These things happen on an event that only faits probability at most
exp{—c - n'/x} for someDxy-dependent constant> 0, and a universal constagt> 0.

Defining L='(m) = min{n : L(n) > m}, we get that, for some distribution ovére
{L(n), L(n) + 1,...} (independent of the data),

Efer (1) < B2 [Edf2er (Ay(20)] +eapl—c-n'/} < sup Bz [oer(A,(2)]+eapf—e-n'}

Therefore,

- _ 1
Aa(3€, ny) S L_l(Ap(E, DXy)) -+ c X th —.

€
If AP(E,DXy) > 1, L_l(]\p(e, Dxy)) = O(Ap(e,ny)), SOAP(E, Dxy) ¢ Polylog(1/e) im-

plies the improvements claim, and otherwisge, Dxy ) € Polylog(1/e). ]

Proof of Theorer 414 This follows identical reasoning to the proof of Theorem, €&ept that
instead of adding:zp{—c - n'/X} to the expected error, we simply take (2¢,26, Dxy) =
max{L'(A,(¢,d, Dxy)),c X In*(1/§)} to ensure the failure probability for the aforementioned
events is at most. ForA, (e, 0, Dxy) > 1 this is effectively not a restriction at all for small

and otherwise we still hav&, (¢, 26, Dxy) = O(1). O

Lemma 4.18. Let  be the classifier returned by Meta-Algorithm 6, when

2n
In(4n)+dIn =7

T>8 47 ,andDxy € BenignNoise(C). Then for anyn € N, there is some

€, = o(n~'/?) such that, on an evedi’ C H, withP(H')) > P(H,) — §/2,

er(h) —v < &,.

Proof. For brevity, we introduce the notatidd, = {z : k'(x) > k}, where as beforé’(z) =

_19_$4 Devrove et al.,

min{k’ : A®)(z,U,) < 1 —~}.

First note that, by Alexander’s results on uniform conveageAlexande
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1996], combined with a union bound, on an evélij{tof probabilityl — 6 /2, everyh € C has

20484 1n(1024d) + In(32(d + 1)/9)
Qx|

Vk, ler(h|Qi) — erq, (h)| < \/

Define I, = H, N H", and for the remainder of the proof we assume this event hdids

particular, this implies every,, has

20484 1n(1024d) + In(32(d + 1)/9)
| Qx|

er(hy,|Qy) < flllel(g er(h|Qg) + 2\/
Consider any: < k*. We have (by LemmaZ17)

er(hi) = P(Q)er(h|Qy)
+P((z,y) s @ ¢ Qp andn(z) = 1/2 andhy(x) # y)
+P((z,y) : = ¢ Qy and(x) # 1/2 andhy(z) = h*(z) # y)
+P((x,y) : © ¢ Qi andn(x) # 1/2 andh(x) # b (z) = y)

* 2048d 1n(1024d)+1In(32(d+1)/6
Q) (er(r]Qu) + 2/ TR

+ (1/2)P(x : x ¢ Qg andn(z) = 1/2)+

IN

1,1/3

P((z,y) : x ¢ Qp andn(z) # 1/2andh™(z) #y) + (d+ 1)e "

* 2048d 1n(1024d)+1In(32(d+1)/6
Q) (er(r]Qu) + 2/ TR

1,,1/3

+er(h*| X\ Qp)P(X \ Qx) + (d+ 1)e™ "

) 4+ P(Q0)? \/2048d1n(1024d)+1n(32(d+1) /6) s

IN

IN

L2n/<3 . QR)J + (d + 1)6—0 n

Now there are two cases to consider. In the first case; k. In this case, we have
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er(ﬁ,;) — er(hg)

= P@Qe) (erlhglQe) - er(hie|Qe))

N 20484 In(1024d) + In(32(d + 1)/9)
P(@k*) (eer*( k) Qp* (hk )_'_ 2\/ ‘Qk*‘ )

IA
>

20484 In(1024d) + In(32(d + 1)/0)
|Qy]

IN

P(Qx-)7

Therefore,

20484 In(1024d) + In(32(d + 1)/9)
[2n/(3 - 2)]

er(iz,%) —v< er(hy) —v+ P(Qk*ﬁ\/

< P(Qk*)9\/ /32, + (d+1)e

) 2048 In(1024d) + In(32(d + 1)/9) T
= (”2)9\/ 20/ (3 20)] ey

< ()q | 2048d1n(1024d) + In(32(d + 1)/9) el
< AU 9\/ /(3 2041), +(d+1) :

SinceAY") = o(1) (by definition in Lemm&Z17), this last quantitydg.—/2).

On the other hand, suppoke< k*. If P(Q;) = 0, then the aforementioned bound on excess

error implies the result. Otherwise, fbr= k + 1, 3j < k such that
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. \/ 20484 In(1024d) + In(32(d + 1) /)

IN

IN

IN

IN

[2n/(3-2%))

erq, () — erq, (hy)

20484 In(1024d) + In(32(d + 1)/9)
Q]

P((z,y) : ilk(x) # yandn(r) # 1/2|Q)P(QL|Q;)
+P((z,y) : hi(w) # y andn(x) # 1/2 andz ¢ Q4 € Q;)

er(hi|Q)) — er(hy|Q;) + 2\/

—P((x,y) : B(m) #yandn(z) # 1/2|r € Q;) + 2\/2048d1n(1024d) +1n(32(d + 1)/5)
o ] Q5]

P(Qx|Q)P((z,y) : hu(z) # y andn(z) # 1/2|Qy)
+P((2,y) : hy(z) # y andn(z) # 1/2 andz ¢ Qulz € Q)

2048 In(1024d) + In(32(d + 1)/6)

_P((:c,y):h*(w)#yandn(fﬂ)#l/me(@j)w\/ Q1

P(Qx|Q;) (er(hy|Qx) — er(h*|Qx))
+P((z,y) : hi(x) # y andn(x) # 1/2 andz ¢ Qulz € Q;)
—P((z,y) : h*(z) # y andn(z) # 1/2 andx ¢ Qxlr € Q)

L \/ 2048d In(1024d) + In(32(d + 1)/5)
20/(3-2))

20484 1n(1024d) + In(32(d + 1)/5)
IP“Q’C‘QJ')Q\/ [20/(3 2]

+ P(x : hy(z) # h*(z) andn(z) # 1/2 andz ¢ Q) /P(Q;)
Ly \/ 2048 In(1024d) + In(32(d + 1) /)

20/(3-2))]

. \/ 20484 In(1024d) + In(32(d + 1)/6)
[2n/(3 - 2¥)]

+ (d+1)e " /P(Qy)
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In particular, this implies

P(Q;) < (d+ 1)6‘0"”1/3\/ 12n/(3 - 2k+1) |

20484 1n(1024d) + In(32(d + 1)/3)

Therefore,

20484 In(1024d) + In(32(d + 1)/9)
12n/(3-2%)]

—c'nl/3

er(hy) —v < IP(Q,;)2\/ +(d+1)e

<(1+V2)(d+1)e ™" =o(n11?).
O

Proof of Theorer418This result now follows directly from LemmaZl118. That isy fuffi-
ciently largen (sayn > s, for somes € N), P(ﬁ[n) < §/2, so with probabilityl — ¢,
er(h) —v < &,. We can definé/, = 1forn < s, and&, for n > s. Then we have for

all n, with probability1 — 8, er(h) — v < &/, = o(n~"/2). Thus, the algorithm obtains a label

complexity
A(e+ 1,0, Dxy) <1+supnl[€] > €.
neN
Now define€” = &/ + 27" = o(n~1/2). Then
lim €*Ay (€ + v, 9, D < lim €*(1 + supnl[E! > ¢
e el ) S lme(1+supnlfe] > )
= lim € sup nl[El > ¢
N0 neNn>|logy(1/6)]
e 2
< lim €2 sup n( )

N0 peNm>llogy(1/e)] €2

— lim sup n(€)’
N0 neNn>|logy(1/¢)]

2
= lim sup n(€”)? = (lim sup \/ESZ) =0.

n—oo n—oo

Therefore A, (e + v, 0, Dxy) = o(1/€%), as claimed. O
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Chapter 5

Beyond Label Requests: A General
Framework for Interactive Statistical

Learning

In this chapter, | describe a general framework in which enlieg algorithm is tasked with learn-
ing some concept from a known class by interacting with alteacia questions. Each question
has an arbitrary known cost associated with it, which thenkais required to pay in order to
have the question answered. Exploring the informatiowdtec limits of this framework, | de-
fine a notion called theost complexityf learning, analogous to traditional notions of sample
complexity. | discuss this topic for the Exact Learning isgttas well as PAC Learning with a
pool of unlabeled examples. In the former case, the leasredidwed to aslanyquestion, while

in the latter case, all questions must concern the targeteqtis behavior on a set of unlabeled
examples. In both settings, | derive upper and lower bounds® cost complexity of learning,

based on a combinatorial quantity | call tBeneral Identification Cost
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5.1 Introduction

The ability to ask questions to a knowledgeable teacher aertearning easier. This fact is no
secret to any elementary school student. But how much &aSmme questions are more difficult
for the teacher to answer than others. How much inconveaienst even the most conscientious
learner cause to a teacher in order to learn a concept? Thpgerhexplores these and related

guestions about the fundamental advantages and limisatiblearning by interaction.

In machine learning research, it is becoming increasingpegent that well-designed inter-
active learning algorithms can provide valuable improvetsén learning performance while
reducing the amount of effort required of a human annotatbis research has mainly focused
on two formal settings of learning: Exact Learning by quegad pool-based Active PAC Learn-
ing. Informally, the objective in the setting of Exact Leag by queries is to perfectly identify
a target concept (classifier) by asking questions. In cefttiae pool-based Active PAC setting
is concerned only with approximating the concept with higblbability with respect to an un-
known distribution on the set of possible instances. Inldti®r setting, the learning algorithm
is restricted to asking only questions that relate to theceptis behavior on a particular set of

unannotated instances drawn independently from the unkmuiostribution.

In this chapter, | study both of these active learning sg¢tinder a broad definition. Specif-
ically, I consider a learning protocol in which the learnan@skanyquestion, but each possible
guestion has an associateukt For example, a query of the form “what is the label of example
x” might cost $1, while a query of the form “show me a positivaeple” might cost $10. The
objective is to learn the concept while minimizing the tatastof queries made. One would like
to know how much cost even the most clever learner might beiredjto pay to learn a concept
from a particular concept space in the worst case. This cavidveed as a generalization of
notions ofsample complexitgr query complexityound in the learning theory literature. | refer
to this best worst case cost as tust complexityf learning. This quantity is defined without

reference to computational feasibility, focusing insteadhe information-theoretic boundaries
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of this setting (in the limit of unbounded computation). @] | derive bounds on the cost com-
plexity of learning, as a function of the concept space arstl ftmction, for both Exact Learning
from queries and pool-based Active PAC Learning.

Sectior2.P formally introduces the setting of Exact Leagrfrom queries, describes some
related work, and defines cost complexity for that settibgldo serves to introduce the notation

and fundamental definitions used throughout this chaptes.sEction closely parallels the work

of Balcazar et al..[Balcazar etlal., 2001]. The primarytdbution of Sectiof 512 is a derivation

of upper and lower bounds on the cost complexity of Exact hiegr from queries. This is
followed, in Sectiol 513, by a formal definition of pool-basetive PAC Learning and extension
of the notion of cost complexity to that setting. The primaontributions of Sectioh 3.3 include
a derivation of upper and lower bounds on the cost compl@fikyarning in that general setting,
as well as an interesting corollary for intersection-ctbsencept spaces. | know of no previous

work giving general results of this type.

5.2 Active Exact Learning

In this setting, there is amstance spac&” andconcept spac€ on X’ such that any, € C is

a distinct functionh : X — {0,1}|] Additionally, defineC* = {h : X — {0,1}}. That s,

C* is themost generatoncept space, containing all possible labeling&’ofin particular, any
concept spac€ is a subset of*. For a particular learning problem, there is an unknoarget
conceptf € C, and the task is to identify using a teacher’s answers to queries made by the
learning algorithm. Formally, aactual queryis any function inQ = {§ : C* — 24"\ {2}}

for someanswer sefd*. By a learning algorithm “making an actual query”, | meartihaelects

LAll of the main results easily generalize to multiclass ad.we
2The restriction thag(f) # {} is a bit like an assumption that every valid question hasastlene answer for

any target concept. However, we can always define some plartienswer to mean “there is no answer,” so this

restriction is really more of a notational convenience thamssumption.
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a functiong € (), passes it to the teacher, and the teacher returns a singleera qa(f)
where f is the target concept. A concepte C* is consistenwith an answer to an actual
queryq if a € ¢(h). Thus, | assume the teacher always returns an answer thatr¢fe¢ concept
is consistent with; however, when there are multiple sudwans, the teacher may arbitrarily

select from amongst them.

Traditionally, the subject of active learning has beenisthd/ith respect to specific restricted
guery types, such as membership queries, and the learrgogtam’s objective has been to
minimize thenumberof queries used to learn. However, it is often the case tlaahieg with
these simple types of queries is difficult, but if the leagratgorithm is allowed just a feapecial
gueries, learning becomes significantly easier. The reagoare initially reluctant to allow the
learner to ask certain types of queries is that these quangedifficult, expensive, or sometimes
impossible to answer. However, we can incorporate thiscditfy level into the framework by
assigning each query type a specdast and then allowing the learning algorithm to explicitly
optimize thecostneeded to learn, rather than themberof queries. In addition to allowing the
algorithm to trade off between different types of queribgs &lso gives us the added flexibility to
specify different costs within the same family (e.g., p@haome membership queries are more

expensive than others).

Formally, in this framework there is eost function Let o« > 0 be a constant. A cost
functionis anyc : Q — (ar, 0]. In practice ¢ would typically be defined by the user responsible
for answering the queries, and could be based on the timeuness, or operating expenses
necessary to obtain the answer. Note that if a particulag tfpquery is unanswerable for a
particular application, or if the user wishes to work withealuced set of possible queries, one
can always define the costs of those undesirable query tgplesdo, so that any reasonable

learning algorithm ignores them if possible.

While the notion ofactual queryclosely corresponds to the actual mechanism of querying in

practice, it will be more convenient to work with the infortizen-theoretic implications of these
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queries. Define the set effective querie® = {¢ : C* — 22% \{@}Vf € C*ac€q(f) =
[f € aAYh € a,a € q(h)]}. Each effective query corresponds to an equivalence cfessal
gueries, defined by mapping any answer to the set of concepsistent with it. We can thus
define the mapping

E(q) ={dlq € Q,¥f € C*,[3a € g(f) witha = {h|h € C*.a € §(h)}] & a € q(f)}.
By an algorithm “making an effective quegy’ | mean that it makes an actual querydiy)H (a
good algorithm will pick a cheaper actual query). For thepose of this best-worst-case
analysis, the following definition is appropriate. For atdosictionc, define a corresponding
effective cost functiofoverloading notationy : Q — [«a, oo], such that
Vq € Q,c(q) = infgeg(q) c(¢). The following definitions illustrate how query types can be

defined using effective queries.

A positive example quelig anyq € £(qs) for someS C X, such thays € Q is defined by
VieC st.[Fres: f(x)=1],qs(f) = {{hlh € C* h(z) =1}z € S : f(x) =1}, and
VfeC st Ve e S, f(x) =0],qs5(f) = {{h|h € C* : Vx € S, h(z) = 0}}.

A membership queng anyq € £(qq,}) for somex € X. This special case of a positive
example query can equivalently be definedfyc C*, q(,y(f) = {{h|h € C*, h(z) = f(x)}}.
These effectively correspond to asking for any exampleléab® in.S or an indication that there
are none (positive example query), and asking for the lalelparticular example i’
(membership query). | will refer to these two query typesubsequent examples, but the
reader should keep in mind that the theorems below appjl types of queries.

Additionally, it will be useful to have a notion of affective oraclewhich is an unknown
function defining how the teacher will answer the variousrgpse Formally, an effective oracle
T is any function in7 = {T": Q — 2%"|Vq € Q,T(q) € Usec-q(f)} 1 For convenience, | also

3l assumeA* is sufficiently expressive so thely € Q, £(q) # @; alternatively, we could defing(q) = @ =
¢(q) = oo without sacrificing the main theorems. Additionally, | wélssume that it is possible to find an actual

query in&(q) with cost arbitrarily close tonfc¢ (4 c(g) for anyq € Q using finite computation.
4An effective oracle corresponds to a deterministic stateteacher, which gives up as little information as
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overload this notation, defining for a set of queries. Q, T'(R) = Nyer1'(q).

Definition 5.1. A learning algorithmA for C using cost functiom is any algorithm which, for
any (unknown) target concejite C, by a finite number of finite cost actual queries, is
guaranteed to reduce the set of concept€iconsistent with the answers to preciséfy}. A
concept spac€ is learnablewith cost functiort using total cost if there exists a learning

algorithm forC usingc guaranteed to have the sum of costs of the queries it makessat.m

Definition 5.2. For any instance spac&’, concept spac€ on X, and cost functiom, define

the cost complexitydenoted CostComplexity, c), as the infimum > 0 such thatC is

_}earnable with cost function using total cost no greater tham

ﬂEquivalentIy, we can define cost complexity using the follmywecurrence. IfC| = 1,
CostComplexityC, c¢) = 0. Otherwise,

GeqQ feCaeq(f

CostComplexityC, c) = inf ¢(q) + max )CostCompIexit(y{h|h €eC,aeqh)},c)

Since

inf ¢(¢) + max )COStCompIeXit&{h|h €eC,aeqh)},c)

GeQ feCacq(f

= inf inf ¢(§) + max f CostComplexityC N {h|h € C*,;a € G(h)},c)

q€Q Ge&(q) feC,aeq(

= inf ¢(q) + max CostComplexityC Na,c),
qeQ (Q) feCaeq(f) P t@C )

we can equivalently define cost complexity in termefiéctive querieandeffective costThat
is, CostComplexityC, c) is the infimum¢ > 0 such that there is an algorithm guaranteed to
identify any f € C usingeffectivequeries with total oeffectivecosts no greater than

possible. It is also possible to analyze a setting in whidtingstwo queries from the same equivalence class, or
asking the same question twice, can possibly lead to twerdifft answers. However, the worst case in both settings

is identical, so the worst case results obtained for thisnggalso apply to the more general case.
5| have made the dependence/bbn the teacher implicit. To be formally correet,should have the teacher’s

effective oraclel” as input, and is guaranteed to outgor anyT € 7 s.t. Vg € Q, T(q) € q(f). Costis then a

book-keeping device recording hotvusesI” during execution.
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5.2.1 Related Work

There have been a relatively large number of contributionibe study of Exact Learning from
queries. In particular, much interest has been given tingstin which the learning algorithm is
restricted to a few specific types of queries (e.g. membeipineries and equivalence queries).

However, these contributions focus entirely on tiuenberof queries needed, rather theost

The most relevant work in this area is by Balcazar, Castrd,@uijarro [Balcazar et 2001].

Prior to publication ofl[Balcazar and Cas 02], theeze a variety of publications in

which the learning algorithm could use some specific set efigg, and which derived bounds

on the number of queries any algorithm might be required tkenmathe worst case in order to

learn. For example, [Hellerstein e D96] analyzedcthrabination of membership and

proper equivalence queries, [Hegedus, 1995] additipmalalyzed learning from membership

=

gueries alone, while [Balcazar ef al 99] consideradliag from just proper equivalence

qgueries. Amidst these various special case analyses, swahewrprisingly, Balcazar et al.

[B.a.LQé\za.La.n.d_C.aSJr 2002] discovered that the query t®xitp bounds derived in these

works were all special cases of a single general theorentyiago the broad class of

sample-based querie$hey further generalized this result in [Balcazar et2001], giving
results that apply to any combinationarfy query types. That work defines an abstract
combinatorial quantity, which they call ti@eneral Dimensioywhich provides a lower bound
on the query complexity, and is within a log factor of it. Faetmore, the General Dimension
can actually be computed for a variety of interesting coratiams of query types. Until now
there has not been any analysis | know of that considersifepwith all query types, but giving
each query a cost, and bounding the worst-castthat a learning algorithm might be required
to incur. In particular, the analysis of the next subsectiam be viewed as a generalization of

[Balcazar et all, 2001] to add this notion of cost, such iiaLcﬁzaLeLal 2001] represents the

special case of cost that is uniformly 1 on a particular sejugfries ando on all other queries.
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5.2.2 Cost Complexity Bounds

| now turn to the subject of exploring the fundamental linmtsnteractive learning in terms of

cost. This discussion closely parallels that of BalcaZasstro, and Guijarra [Balcazar ef al.,

001].

Definition 5.3. For any instance spac&’, concept spac€ on X, and cost functiom, define

theGeneral Identification Costlenoted>1C/(C, ¢), as follows.

GIC(C,c) = inf{t|t > 0,¥T € T,3R C Q,s.t[} pc(q) <t A[[CNT(R)| < 1]}

We can also express this&@9 C(C, ¢) = supycr inf peojcnr(r)<i quR ¢(q). Note that
calculating this corresponds to a much simpler optimizagimblem than calculating the cost

complexity. The General Identification Cost is a direct gaheation of the General Dimension

of [Balcazar et &l!, 2001], which itself generalizes qitéed such as Extended Teaching

m ._19:139], and the

Dimension [Hegedi 3_19|95], Strong Consistency Dimen e

Certificate Sizes ot [Hellerstein etlal., 1996]. It can beipteted as a sort of game. This game
is similar to the usual setting, except that the teachessvans are not restricted to be consistent
with a concept. Imagine there is a helpful spy who knows gedgihow the teacher will

respond to every query. The spy is able to suggest queribg fedrner, and wishes to cause the
learner to pay as little as possible. If the spy is sufficieakkver at suggesting queries, and the
learner follows every suggestion by the spy, then aftemgs&ome minimal cost set of queries
the learner can narrow the set of concept€iconsistent with the answers down to at most one.
The General Identification Cost is precisely the worst cesgihg cost the learner might be

forced to pay during this process, no matter how clever tlgessat suggesting queries.

Lemma 5.4. For any instance spac#, concept spac€ on X, and cost functiom, if V' C C,

thenGIC(V,c) < GIC(C,¢).

Proof. It clearly holds ifGIC(C, ¢) = co. If GIC(C, ¢) < k,thenVT € T7,3R C Q s.t.
> gercl@) <kandl > |CNT(R)| > [V NT(R)|, and thereforé&1C(V,c) < k. The limitas
k — GIC(C,c) gives the result. ]
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Lemma 5.5. For any~ > 0, instance spacé’, finite concept spac€ on X" with |C| > 1, and

cost functiorn: such thatGIC(C, ¢) < 0o, d¢ € Q such thatvT € T,

IC| -1
C\T > .
CANT@ = D rac o+
That is, regardless of which answer the teacher picks, tasrat Ieast(q)iGlé‘?i:_j) — concepts

in C inconsistent with the answer.

Proof. Supposerq € Q, 37, € 7 such thalC \ T,(q)| < c(q) grt+- Then define an
effective oraclel” with the property thatq € O, 7'(¢) = T,(q). We have thus defined an oracle

suchthat/R C Q, % ., c(q) < GIC(C,c) +v =

ICNT(R)| =|C| = |C\T(R)| = |C| = )_|C\Ty(q)l

qgeER
ICl -1 ICl -1
C| - > |C| - (GIC(C =
> 0= 30 e g7y 2 101~ (C10C ) Vapae g s
In particular, this contradicts the definition 67 C(C, ¢). O

This brings us to the main theorem of this section.

Theorem 5.6. For any instance spac#&’, concept spac€ on X', and cost functiom,

GIC(C,c) < CostComplexityC, c) < GIC(C, ¢) log, |C|

Proof. | begin with the lower bound. Lét < GIC(C, ¢). By definition of GIC, 3T € T, such
thatvR C Q, > rc(q) < k= |CNT(R)| > 1. In particular, this implies that an adversarial
teacher can answer any sequence of queries with cost negtieabk in a way that leaves at
least 2 concepts it consistent with the answers, either of which could be thgetaconcepyf.
This impliesCostComplexityC, c¢) > k. The limitask — GIC(C, ¢) gives the bound.

Next | prove the upper bound. f/C(C, ¢) = oo or |C| = oo, the bound holds vacuously, so

let us assume these are finite. Say the teacher’s answeespond to some effective oracle

130



T € 7. Consider a recursive algorithi, that makes effective queries fro@;H If |C| =1,
thenA,, halts and outputs the single remaining concept. Othernlgse be an effective query
having the property guaranteed by Lemima 5.5. Tha€is, 7'(¢q)| > c(q)%. Defining

V =CnNT(q) (ageneralized notion ofersion spack this implies that

c(q) < (GIC(C,c)+7) ‘%T_‘Y' and|V| < |C|. SayA. makes effective query, and then
recurses of. In particular, we can immediately see that this algoritdiemiifiesf using no

more tharC| — 1 queries.
| now prove by induction ofiC| thatCostComplexityC, ¢) < (GIC(C, ¢) + v)H|c|-1, Where

H, =Y, isthen™ harmonic number. IfC| = 1, then the cost complexity i& For

IC| > 1,

CostComplexit§(C, c)

<c(q) + CostComplexitiy/, c)

Cl| -1V
<(GIC(C,) +9) T+ (GICW, 0+ Hy

<(GIC(C,c)+7) (|C| — |V

- 4+ Hyvi_
c—1 v )

S(GIC((C, C) -+ ’7)H|(c|_1

where the second inequality uses the inductive hypothé&sig avith the properties of
guaranteed by Lemnia’.5, and the third inequality uses Lem#hdrinally, noting that

Hic|-1 < log, |C| and taking the limit ag — 0 proves the theorem. O

One interesting implication of this proof is that the greattyorithm that choosegto maximize

1%11171 % has a cost complexity withinlag, |C| factor of optimal.
S

6] use the definition of cost complexity in terms of effectivest so that we need not concern ourselves with
how A, chooses itactual queries However, we could defind ., to make actual queries with cost withinof the

effective query cost, so that the result still holdsyas: 0.
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5.2.3 An Example: Discrete Intervals

As a simple example of cost complexity, considée= {1,2,..., N}, for N > 4,

C=A{hgp: X = {0,1}a,be X,a < bV e X, [a <z <b< h(z) = 1]}, and define an
effective cost function that is1 for membership querieg,, for anyz € X, k for the positive
example queryy where3 < k < N — 1, andoo for any other queries. In this case,
GIC(C,c) = k+ 1. In the spy game, say the teacher answers effective queitieameffective
oracleT. Let X = {z|r € X, T(qqsy) = {h|h € C*, h(x) = 1}}. If X # @, then let

a = min X, andb = max A,. The spy tells the learner to make quenes, g}, ¢ro—1y (if

a > 1), andgp41y (if b < N). This narrows the version space{th, ; }, at a worst-case effective
cost of 4. If X, = @, then the spy suggests query. If T'(¢x) = {f_}, the “all 0" concept,
then no concepts i@ are consistent. Otherwis€{(qy) = {h|h € C*, h(x) = 1} for some

r € X, and the spy suggests membership queyy. In this case/ (q(,3) N T'(¢x) = @, So the
worst-case cost i8 + 1 (without gy, it would costNV — 1). These are the only cases to consider,
soGIC(C,c) = k + 1. By Theoreni L, this implies

k 4+ 1 <CostComplexit§C, c) <2(k + 1) log, N.

We can slightly improve this by noting that we only ugseonce. Specifically, if a learning
algorithm begins (in the regular setting) by asking revealing thaf () = 1 for somez € X,
then we can reduce to two disjoint learning problems, withoept spaces

Cl ={huplb € {z,...,N}},andC,, = {h,.|la € {1,2,...,x}}, with cost functions

c1(q) = c(q) for ¢ € {4}, Ggut1y, - - -, vy } @ndoo otherwise, and,(q) = c(q) for

q € {apy, 42y, - - -, 4g2y } @ndoo otherwise, and correspondidgy C(Cy, c) < 2,

GIC(Ci,c) < 2. So we can say that

CostComplexit§yC, c) < k + CostComplexityC’, ¢;) + CostComplexit§C, c2) < k + 4log, N.
One algorithm that achieves this begins by making the pesgxample query, and then

performs binary search above and below the indicated pesiample to find the boundaries.
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5.3 Pool-Based Active PAC Learning

In many scenarios, a more realistic definition of learninipét supplied by the Probably
Approximately Correct (PAC) model. In this case, unlike finevious section, we are interested
only in discovering with high probability a function with bavior verysimilar to the target
concept on examples sampled from some distribution. Féyn@e above there is an instance
spaceX, and a concept spa¢éeC C* on X'; unlike above, there is also a distributidhover X'.
As with Exact Learning, the learning algorithm interactshna teacher by making queries.
However, in this setting the learning algorithm is givenrgsut a finite sequenHeﬁf unlabeled
exampleg/, each drawn independently accordingpandall queriesmade by the algorithm
must concern only the behavior of the target concept on ekeampl/.Formally, a
data-dependent cost functiamany functior: : Q x 2¥ — («a, o). For a given set of unlabeled
exampleg/, and data-dependent cost functigrlefinec,(-) = ¢(-,U). Thus,c, is a cost
function in the sense of the previous section. For a giygrnhe corresponding effective cost

functionc, : Q@ — [a, o] is defined as in the previous section.

Definition 5.7. Let X’ be an instance space€, a concept space oft, andlf = (1,2, ..., Ty))

a finite sequence of unlabeled examples. Déftne C, h(U) = (h(x1), h(z2), . .., h(zw))).

DefineC[i/] C C as any concept space such thate C, [{1'|h € CU], ' (U) = h(U)}| = 1.

"I will implicitly overload all notation for sets and seques; so that if a set is used where a sequence is required,
then an arbitrary ordering of the set is implied (though thridering should be used consistently), and if a sequence

is used where a set is required, then the set of distinct eltnoé the sequence is implied.
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Definition 5.8. A sample-based cost functigany data-dependent cost functioauch that
for all finiteld C X', Vq € Q,

cu(q) <oo=VfeC"Vaecq(f),YheChU)=fU)=hecal.
This corresponds to queries that aboutthe target concept’s labels on some subsét of

Additionally,vi/ C X,z € X, andq € Q, ¢(q,U U{x}) < ¢(q,U). Thatis, in addition to the

above property, adding extra examples to whjshanswers do not refer does not increase its

cost.

For example, membership queries:or U/ and positive examples queries 8rnc ¢/ could
have finite costs under a sample-based cost function. A®iprévious section, there is a targ
conceptf € C, but unlike that section, we do not try identify f, but instead attempt to

approximatdt with high probability.

Definition 5.9. For instance space’, concept spac€ on X, distributionD on X, target

conceptf € C, and conceph € C, define theerror rateof h, denotecrrorp(h, f), as

errorp(h, f) = Prx.p {h(X) # f(X)}

Definition 5.10. For (¢, 4) € (0,1)?, an (e, §)-learning algorithnfor C using sample-based cc
functionc is any algorithmA taking as input a finite sequence of unlabeled examples,thatl
for any target concepf € C and finite sequend#, A(U) outputs a concept it after making
a finite number of actual queries with finite costs undgerAdditionally, any(e, ¢)-learning
algorithmA has the property thaim € [0, co) such that, for any target concejte C and
distributionD on &,

Pry~pm {errorp(AU), f) > €} < 4.

A concept spac€ is (e, §)-learnablegiven sample-based cost functionsing total cost if
there exists afe, ¢)-learning algorithmA for C usingc such that for all finite example

sequence’, A(U) is guaranteed to have the sum of costs of the queries it makessi/

et

st

undercy,.
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Definition 5.11. For any instance spac&, concept spac€ on X, sample-based cost function

¢, and(e, §) € (0,1)?, define thee, §)-cost complexitydenoted CostComplexity, ¢, €, §), as

the infimum > 0 such thatC is (¢, §)-learnable giverr using total cost no greater than

As in the previous section, because it is lin@ting case, we can equivalently define the
(e, 6)-cost complexity as the infimum> 0 such that there is afz, §)-learning algorithm
guaranteed to have the sumedfectivecosts of theeffectivequeries it makes at most
The main results from this section include a new combinatguantityG P1C(C, ¢, m, T)
such that ifd is the VC-dimension of, then

GPIC(C,c,©(1),8) < CostComplexityC, c,e,5) < GPIC(C, ¢, © (2),0)0(d).

€

5.3.1 Related Work

Previous work on pool-based active learning in the PAC mbdslbeen restricted almost
exclusively to uniform-cost membership queries on exampi¢he unlabeled sét. There has

been some recent progress on query complexity bounds forestaicted setting. Specifically,

Dasguptal[Dasgupta, 2004] analyzes a greedy active lepseimeme and derives bounds for the

number of membership querieslifiit uses under aaverage cassetting, in which the target

concept is selected randomly from a known distribution. rikir type of analysis was

previously given by Freund et al. [Freund et al., 1997] tosprpositive results for the Query by

Committee algorithm. In a subsequent paper, Dasg 2005] derives upper and

lower bounds on the number of membership queriés required for active learning for any
particular distributiorD, under the assumption thatis known. The results | derive in this
section implyworst-caseesults (over bottD and f) for this as a special case of more general

bounds applying tanysample-based cost function.

5.3.2 Cost Complexity Upper Bounds

| now derive bounds on the cost complexity of pool-basedwdBAC Learning.
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Definition 5.12. For an instance spac&’, concept spac€ on X, sample-based cost function
and nonnegative integen, define theseneral Identification Cost Growth Functiatenoted
GIC(C,c,m), as follows.

GIC(C,¢,m) = sup GIC(C[U], cy)

uexm

Definition 5.13. For any instance spac&, concept spac€ on X, and(e, §) € (0,1)?, let
M(C, e, 9) denote thesample complexityf C (in the classigassive learningense), or the
smallestn such that there is an algorithrd taking as input a set of exampl€sand labels, and

outputting a classifie(without making any queriesyuch that for anyD and f € C,

Prewpaderyorp(A(L, f(L)), f) > €} < 0.
It is known (e.g.,[Anthony and Bartlett, 1999]) that

max{&t, LIni} < M(C,e,6) < “Inl242n2

for0 <e<1/8,0 <6 < .01, andd > 2, whered is the VC-dimension of°. Furthermore,
Warmuth has conjectured_Ma.LmLLh_ZDM] thatC, €, 0) = O(1(d + log 1)).

With these definitions in mind, we have the following noveddhem.

Theorem 5.14.For any instance spac&’, concept spac€ on X’ with VC-dimension

d € (0, 00), sample-based cost functione € (0,1),andé € (0, 1), if m = M(C,¢,6), then

CostComplexityC, c, €, §) < GIC(C, ¢, m)dlog, <

Proof. For the unlabeled sequence, sanipler D™. If GIC(C, ¢, m) = oo, then the upper

bound holds vacuously, so let us assume this is finite. Als0(0, o) implies|U| € (0, o0)

[Anthony and Bartlett, 1999]. By definition af/ (C, ¢, §), there exists a (passive learning)

algorithmA such that/f € C, VD, Pry..pm{errorp(AU, f(U)), f) > €} <. Therefore any
algorithm that, by a finite sequence of effective queries \iitite cost under,,, identifiesf (i)
and then outputgl (U4, f(U)), is an(e, 0)-learning algorithm forC usingc.

Suppose now that there igghost teacherwho knows the teacher’s target concé¢pt C. The

ghost teacher uses thec C[U/] with h(U/) = f(U) as its target concept. In order to answer any
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actual querieg € Q with ¢,,(§) < oo, the ghost teacher simply passes the query to the real
teacher and then answers the query using the real teachsvi®a This answer is guaranteed to
be valid because, is a sample-based cost function. Thus, identifyfity) can be
accomplished by identifying(/), which can be accomplished by identifyihg The task of
identifying h can be reduced to dfxact Learningask with concept spadgl/] and cost
functioncy,, where the teacher for the Exact Learning task is the ghashes. Therefore, by
Theoreni 2, the total cost required to identffy/) with a finite sequence of queries is no
greater than

Ule

CostComplexitiC (], c) < GIC(CIU], ) log, |CIU)| < GIC(CU), cu)dlogy =, (5.1)

where the last inequality is due to Sauer's Lemma (e.g..HAny and Bartletl, 1999]). Finally,

taking the worst case (supremum) overZéle X' completes the proof. ]

Note that[5.11) also implies a data-dependent bound, widaldgotentially be useful for
practical applications in which the unlabeled examplesaset#lable when bounding the cost. It

can also be used to state a distribution-dependent bound.

5.3.3 An Example: Intersection-Closed Concept Spaces

As an example application, we can use the above theorem e pew results for any

intersection-closed concept spgae follows.

8An intersection-closed concept spatehas the property that for ary,, ho € C, there is a concepts € C
such thatvz € X, [hq(z) = he(z) = 1 < hs(x) = 1]. For example, conjunctions and axis-aligned rectangkes ar

intersection-closed.
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Lemma 5.15. For any instance spac#’, intersection-closed concept spaCevith
VC-dimensionl > 1, sample-based cost functiersuch that membership querieslithave
cost< pu (i.e., YU C X, x € U, cu(qrzy) < i) and positive example queriestihhave cosK «

(.e.,YU C X, S CU,cy(gs) < k), and integem > 0,

GIC(C,e,m) < k+ pd

Proof. Say we have some set of unlabeled examfleand consider bounding the value of
GIC(ClU], cyy). In the spy game, suppose the teacher is answering withtigfferaclel € 7.
Leti, = {z|r € U,T(qy) = {h|h € C*,h(x) = 1}}. The spy first tells the learner to make
theqnu, query (ift/ \ Uy # @). If 3z c U\ U, s.t.T (g, ) = {h|h € C*, h(z) = 1}, then
the spy tells the learner to make effective query for this x, and there are no concepts in
C[U] consistent with the answers to these two queries; the tiféaitive cost for this case is

k + p. If this is not the case, bt/ | = 0, then there is at most one conceptfi{/| consistent
with the answer t@y.;,, : namely, theh € C[i/] with h(z) = 0 for all x € U, if there is such an
h. In this case, the cost is just

Otherwise, letS be a largest subset df, such thatih € C withVz € S, h(z) = 1. If S = &,
then making any membership querylifa leaves all concepts i[l/] inconsistent (at cost),

so let us assumé +# @. For anyS C X, define
CLOS(S) ={z|x € X,Vh € C,[Vy € S,h(y) = 1] = h(z) =1}

theclosureof S. Let S’ be a smallest subset Sfsuch thatC LOS(S") = CLOS(S), known as

aminimal spanning sedf S [Helmbold et al.| 1990]. The spy now tells the learner to make

queriesy,; forall z € .

Any concept inC consistent with the answer tg.,,, must label every € U \ U, as 0. Any
concept inC consistent with the answers to the membership querie¥ arust label every
r € CLOS(S") = CLOS(S) 2 S as 1. Additionally, every concept i@l that labels every

r € S as1mustlabel every € i, \ S as 0, sinces is defined to be maximal. This labeling of
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these three sets completely defines a labelirid,aind as such there is at most dne C|U/]

consistent with the answers to all queries made by the ledrsmbold, Sloan, and Warmuth

[Helmbold et al.| 1990] proved that, for an intersectiooseld concept space with

VC-dimensiond, for any setS, all minimal spanning sets ¢f have size at most. This implies

the learner makes at masmembership queries i, and thus has a total cost of at most

K =+ pd. ]
Corollary 5.16. Under the conditions of Lemmlabl154if> 10, then for0 < e < 1, and
0<6<3,
. 16d 2
CostComplexityC, c, €,d) < (k + ud)dlog, (2 max {% Ind, g In FS })

Proof. This follows from Theoreri5.14, Lemnia’l15, and Auer & Orsezsult

[Auer and Ortnen, 2004] that for intersection-closed cgiepaces witll > 10,

M(C,e,é)gmax{%dlnd,%ln?}. O

For example, consider the concept space of axis-paralpginectangles ik = R”,

C={h:X —{0,1}3((a1,b1), (az,ba),...,(an,b,)) : Ve € R" h(z) =1 Vi€
{1,2,...,n},a; < z; < b;}. One can show that this is an intersection-closed concegesp
with VC-dimensior2n. For a sample-based cost functioof the form stated in Lemna®lIL5,
we have thaCostComplexit§C, ¢, ¢,§) < O ((k + nu)n). Unlike the example in the previous
section, if all other query types have infinite cost, thervfor 2 there are distributions that
force any algorithm achieving this bound for sma#indé to use multiple positive example
queriesgs with |S| > 1. In particular, for finite constant, this is an exponential improvement
over the cost complexity of PAC active learning with onlyfonm cost membership queries on

U.
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5.3.4 A Cost Complexity Lower Bound

At first glance, it might seem that/C(C, ¢, [1=<]) could be a lower bound on

CostComplexitfC, c, €, ). In fact, one can show this is true for< (%Qd. However, there are
simple examples for which this is not a lower bound for geheeadd d We therefore require a

slight modification ofG/C to introduce dependence én

Definition 5.17. For an instance spacé’, finite concept spac€ on X, cost functior, and
d € [0, 1), define theGeneral Partial Identification Costenoted=P/C(C, ¢, §) as follows.

GPIC(C,¢,6) = inf{t|t > 0,YT € T,3R C Q, s.t.[, ., ¢(q) < IAICNT(R)| < 8|C|+1]}

Definition 5.18. For an instance spacg’, concept spac€ on X', sample-based cost function
¢, non-negative integen, andé € [0, 1), define theGeneral Partial Identification Cost Growth
Function denoted>PIC(C, ¢, m, ), as follows.

GPIC(C,¢,m,0) = sup GPIC(CU],cy,9)

Uuexm

It is easy to see tha&t/C'(C, c) = GPIC(C,¢,0) andGIC(C, ¢, m) = GPIC(C, ¢, m,0), SO

that all of the above results could be stated in termS B C.
Theorem 5.19.For any instance spac&’, concept spac€ on X', sample-based cost function

¢, (6,0) € (0,1)2, and anyV C C,

GPIC(V, ¢, [=<],6) < CostComplexityC, c, ¢, §)

Proof. Let S C X be a setwith. < |S| < [=¢], and letDy be the uniform distribution o1.

Thus,errorpg(h, f) < e < h(S) = f(S). | will show that any algorithmd guaranteeing
Pru~pp{errorps(AU), f) > e} < § cannot also guarantee cost strictly less than
GPIC(V[S],cg,0). If 5|V[S]| > |V[S]| — 1, the result is clear since no algorithm guarantees
cost less than 0, so assud|&’[S]| < |V[S]| — 1. Supposed is an algorithm that guarantees,

9The infamous “Monty Hall” problem is an interesting exampfethis. For another example, consid&r =
{1,2,...,N},C = {h,|z € X,Vy € X, h,(y) = I[x = y|}, and cost that is 1 for membership queriegfimnd
infinite for other queries. Although’/C(C,c, N) = N — 1, it is possible to achieve better than= NLH with

probability close tof=2 using cost no greater thav — 2.
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for every finite sequendd of elements front, A(U) incurs total cost strictly less than
GPIC(V[S], cs,0) undere, (and therefore also undeg). By definition of GPIC, T eT
such that for any set of querigsthat.A (/) makes|V[S] N T(R)| > 6|V [S]| + 1. | now
proceed by the probabilistic method. Say the teacher diagviatget concept uniformly at
random fromV/[S], andvq € Q s.t. f € T(q), answers with'(¢). Any ¢ € Q such that

f ¢ T(q) can be answered with an arbitrarys ¢(f). Let hy, = A(U); let R, denote the set of

queriesA (i) would make ifall queries were answered wiih

E¢[Pry~pm{errorps(AU), f) > €}]

=Ey~pm [Pri{hu(S) # f(S)}]

> By [Pri{hu(S) # f(S) A f € T(Ry)}]

o iy VISINT (R — 1

SE N

Therefore, there exists a deterministic method for selggtiand answering queries such that
Pru~pz{errorps(AU), f) > €} > 4. In particular, this proves that there are (aj)-learning
algorithms that guarantee cost strictly less thanl/ C' (V' [S], cg, d). Taking the supremum over

setsS completes the proof. O

Corollary 5.20. Under the conditions of Theordm 519,

GPIC(C, ¢, [==£] ,0) < CostComplexityC, c, €, §).
Equipped with Theoreln 5119, it is straightforward to prave tlaim made in Sectidn 5.8.3 that

there are distributions forcing ary, ¢)-learning algorithm for Axis-parallel rectangles using

only membership queries (at cqstto payﬁ(@). The details are left as an exercise.

5.4 Discussion and Open Problems

Note that the usual “query counting” analysis done for Aetiearning is a special case of cost
complexity (uniform cost 1 on the allowed queries, infinitston the others). In particular,

Theoreni5IM can easily be specialized to give a worst-aasedoon the query complexity for
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the widely studied setting in which the learner can makeraaynbership queriesn examples

in U [Dasguptal, 2005]. However, for this special case, one ceawala slightly tighter bound.

Following the proof technique of Hegedills_[.lzl_eg_e s, 1986¢ can show that for any

sample-based cost functiersuch that/t/ C X, q € Q,

cu(q) < 00 = [aulg) = 1AV € C*, |g(f)| = 1], CostComplexityC, cy) < 25 (o ee 5],

This implies for the PAC setting th&tostComplexit§C, ¢, ¢, §) < 2?5;2%?3&16%)”, for
VC-dimensiond > 3 andm = M (C, ¢, ¢). This includes the cost function assigning 1 to

membership queries @ andoc to all others.

Active Learning in the PAC model is closely related to theitad Semi-Supervised Learning

Balcan & Blum LB.a.Lca.n_a.n.d_B.Lqu_ZQDS] have recently deriveceety of sample complexity

bounds for Semi-Supervised Learning. Many of the techraégqaa be transfered to the

pool-based Active Learning setting in a fairly natural wapecifically, suppose there is a
guantitative notion of “compatibility” between a conceptaa distribution, which can be
estimated from a finite unlabeled sample. If we know the tazgacept is highly compatible
with the data distribution, we can draw enough unlabeledngtes to estimate compatibility,
then identify and discard those concepts that are probagphiyhincompatible. The set of
highly compatible concepts may be significantly less exgivestherefore reducinigoththe
number of examples for which an algorithm must learn thelatzeguarantee generalization
andthe number of labelings of those examples the algorithm ehigshguish between, thereby

also reducing the cost complexity.

There are a variety of interesting extensions of this fraor&worth pursuing. Perhaps the

most natural direction is to move into the agnostic PAC fraomi, which has thus far been

quite elusive for active learning except for a few reSLMI 20 JS_Ka.a.LIa.LL n, 2005].

Another possibility is to derive cost complexity bounds wiilee cost is a function of not only

the query, but also the target concept. Then every time Hreileg algorithm makes a quegy

itis charged:(q, f), but does not necessarily know what this value is. Howetrean always
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upper bound the total cost so far by the worst case over ctsoethe version space. Can
anything interesting be said about this setting (or vasigqterhaps under some benign
smoothness constraints efy, -)? This is of some practical importance since, for exampis, it

often more difficult to label examples that occur near a dexiboundary.
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