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Abstract

An anomaly is an observation that does not conform to the expected nor-
mal behavior. With the ever increasing amount of data being collected uni-
versally, automatic surveillance systems are becoming more popular and are
increasingly using data mining methods to detect patterns of anomalies. De-
tecting anomalies can provide useful and actionable information in a variety of
real-world scenarios. For example, in disease monitoring, a timely detection
of an epidemic can potentially save many lives.

The diverse nature of real-world datasets, and the difficulty of obtaining
labeled training data make it challenging to develop a universal framework
for anomaly detection. We focus on a key feature of most real world sce-
narios, that multiple anomalous records are usually generated by a common
anomalous process. In this thesis we develop methods that utilize the similar-
ity between records in these groups or patterns of anomalies to perform better
detection. We also investigate new methods for detection of individual record
anomalies, which we then incorporate into the group detection methods. A re-
curring feature of our methods is combinatorial search over some space (e.g.
over all subsets of attributes, or over all subsets of records). We use a variety
of computational speedup tricks and approximation techniques to make these
methods scalable to large datasets. Since most of our motivating problems in-
volve datasets having categorical or symbolic values, we focus on categorical
valued datasets. Apart from this, we make few assumptions about the data,
and our methods are very general and applicable to a wide variety of domains.

Additionally, we investigate anomaly pattern detection in data structured
by space and time. Our method generalizes the popular method of spatio-
temporal scan statistics to learn and detect specific, time-varying spatial pat-
terns in the data. Finally, we show an efficient and easily interpretable tech-
nique for anomaly detection in multivariate time series data. We evaluate our
methods on a variety of real world data sets including both real and synthetic
anomalies.
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Chapter 1

Introduction

1.1 Anomaly Detection

1.1.1 Motivation and Challenges

An anomaly is an observation or a pattern of observations that does not conform to the
expected normal1 behavior of the data. With the ever increasing amount of data being col-
lected universally, it gets more important and challenging to spot unusual or unexpected
observations. Such unexpected behavior might either be unwanted (e.g. in network intru-
sion detection, disease surveillance), requiring user intervention, or it might be interesting
(e.g. in astronomy), leading to a better understanding of the system. The task of anomaly
detection assumes an important role, since in most cases, the detection of anomalies re-
sults in actionable information, whereby we can either prevent or mitigate the effects of
an undesired situation. For example, in biosurveillance, we want to detect causes such as
epidemics or bioterrorist attacks which give rise to unusual patterns of emergency depart-
ment records. Timely detection of such phenomena leading to appropriate action can save
many lives.

1We use the word “normal” here in layman’s terms, not as a reference to the normal distribution in
statistics
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Hence, automatic surveillance systems are becoming more popular and are increas-
ingly using data mining methods to perform detection. The observation of industrial man-
ufacturing processes is one traditional application of such systems. Time-series data from
various sensors are monitored to detect out of control processes. Another common appli-
cation is public health monitoring, where patient data from hospitals and sales data from
pharmacies are monitored with the goal of detecting new disease outbreaks as early as pos-
sible [Wong et al., 2003, Neill et al., 2005c]. In recent times, searching for terrorist activity
or attacks has attracted a lot of attention. Applications in that area include monitoring hu-
man health and behavioral data to detect a chemical or biological attack [Hogan et al.,
2007], or searching for signs of radiation to detect development or deployment of nuclear
devices [Theiler and Cai, 2003]. Other applications of anomaly detection include credit
card fraud detection [Aleskerov et al., 1997], insider trading detection [Donoho, 2004],
image processing [Chen et al., 2005, Theiler and Cai, 2003, Augusteijn and Folkert, 2002]
and traffic monitoring [Shekhar et al., 2001].

An important challenge in anomaly detection is the difficulty to obtain enough labeled
data to characterize anomalies. Hence, in most cases we need to operate in an unsupervised

setting, where only the normal behavior is characterized, and is used to detect deviations
from it. In our data mining framework, it is usually assumed that we have a sufficiently
large training dataset that contains no or very few anomalous cases. This dataset is as-
sumed to define the normal behavior of the system. Along with this, we also need an
anomalousness measure or score to compare new observations to the usual state. Given
this scoring method, any observation that significantly deviates from the usual is flagged
as an anomaly.

Another challenge in forming a universal framework for anomaly detection is that the
definition of anomalies and that of normality is typically very domain specific. This has
led to domain specific efforts in this area based on factors like the type of anomalies, the
nature of the data, the availability of data labels and other constraints. In light of these
factors, we present the relationship between the different anomaly detection techniques
presented in this thesis.

2



1.1.2 Detection of Anomalous Groups and Patterns

The data is usually a collection of records, each of which is described by a set of attributes

(or features). Broadly speaking, anomalies might be either individual anomalies (corre-
sponding to a single record) or collective anomalies (corresponding to groups of records).
For example, in credit card fraud detection, it is important to monitor each transaction to
determine if it conforms to the usual behavior of the customer. In this case we would like
to use an anomaly detection method that tests each record individually and searches for
single record anomalies. On the other hand, in disease surveillance, we wish to detect
disease outbreaks which give rise to unusual patterns of emergency department patients or
of medicine sales (consisting of multiple records).

For the case of individual anomaly detection, a standard approach is to create a model
of normal data, and compare test records against it. A probabilistic approach builds a
likelihood model from the training data. Records are tested for anomalies based on the
complete record likelihood given the probability model. While this approach is good at
finding outliers in the dataset, it often tends to detect records with attribute values that
are rare, especially when the attributes have a high arity. Sometimes, in such cases, just
detecting rare values of an attribute is not desired and such outliers are not considered
as anomalies in that context. Hence in Chapter 2, we present an alternative definition of
anomalies, and propose an approach of comparing attribute values against the marginal
distribution of subsets of attributes. We show that this is a more meaningful way of detect-
ing anomalies, and has a better performance for real world datasets.

In the case of collective anomalies, rather than finding individually anomalous records
(which may be due to noise or errors in the data), we are more interested in detecting the
emergence of new phenomena resulting in patterns of anomalous observations that cannot
be explained by a previous model. In general, these activities give rise to multiple records
in the dataset which are anomalous, but are similar to each other. Our goal here is to utilize
the presence of such multiple cases to better detect collections (or groups) of anomalous
records, as compared to searching for individual records.

In certain cases, the attributes can be divided into two distinct sets, the contextual and

3



the behavioral attributes [Song et al., 2007]. The contextual attributes specify the context
(e.g. spatial information such as geographical coordinates or time) and the behavioral at-
tributes then determine whether or not the records are anomalous within the given context.
While monitoring emergency department cases, the zipcode and the date can be treated as
contextual attributes, whereas the symptom of the patient is a behavioral attribute.

Most of the previous work that aims to detect groups of anomalies assumes some form
of contextual information. In this case, the definition of a group relies on the similarity
between records with respect to these contextual attributes. For example, in spatial scan,
a group is defined as a set of geographically adjacent locations. And given a specific geo-
graphical region, the number of patients with a particular symptom (behavioral attribute)
determine whether or not a disease outbreak has occurred in the region [Neill et al., 2005c,
Kulldorff, 1997]. One of the main contributions of this thesis is to detect groups of anoma-
lies in the more general case, where we do not restrict the contextual information to any
particular subset. In this case, all the attributes take on the dual role of defining similarity
between cases (the contextual information used to define groups), and indicating whether
they display anomalous behavior (behavioral information). Alternatively, we can say that
the contextual and behavioral attributes completely overlap, and are the same set. One
central idea common to of most of our methods is that they usually aim to perform a com-
binatorial search over some space (e.g. over all subsets of attributes, or over all subsets
of records), to overcome the lack of pre-defined contextual information. We use a vari-
ety of computational speedup tricks and approximation techniques to make these methods
scalable to large datasets.

In this context of collective anomalies, we can broadly think of two possible scenarios.
In the first scenario, an anomalous process generates records which are loosely similar to
each other, based on one (or few) attribute value(s). Here, we assume that the underlying
process is constrained such that it only has access to a fixed (but unknown) subset of the
data. For example, in customs monitoring, a smuggler might be operating only from a
fixed port of arrival, or might have access only to a particular shipping line. But within
that subset, smugglers will try to hide their activities by making them appear as random as
possible. Similarly, in monitoring emergency department visits, a bioterrorist might have

4



access to only a particular geographical location, or to only a particular type of disease
causing agent. Thus these activities give rise to multiple anomalous records which share
common values in some (small) subset of their attributes. Since such patterns are only
loosely similar, we cannot use their similarity alone to detect them. Instead in this case,
we assume that most of the records belonging to such a pattern stand out on their own as
individual (or local) anomalies. In Chapter 3, we take a two step approach where we first
use a “local anomaly detector” (such as the Conditional Method described in Chapter 2)
with a low threshold setting, to flag individual anomalies. We then develop a rule based
Anomaly Pattern Detector (APD) which detects anomalous patterns in subsets of the data
and improves the detection performance (giving a lower false positives rate).

The second scenario is where all the records generated by an anomalous process are
very self-similar. For example, in the case of network intrusion, the same task might be
repeated a number of times to gain unauthorized access to a system. In health monitor-
ing, a disease outbreak can lead to a large number of disease cases with almost identical
features being reported. In this scenario, it is possible that the individual cases corre-
sponding to an anomalous group might not stand out by themselves, but as a group they
appear anomalous. Our method of Anomaly Group Detection (AGD) aims to address this
problem, when there are a many self-similar anomalous cases, which might not be very
anomalous on their own (Chapter 4).

We deal with anomaly detection in the presence of contextual information in Chapter
5 (TV-MBSS) and Chapter 6 (composite time series anomaly detection), focusing on the
cases of spatio-temporal and purely temporal data from multiple time series respectively.

1.1.3 Other features of Anomaly Detection algorithms

Each attribute of a dataset can either be real or categorical valued. Comparison between
attribute values in the case of real valued attributes is simple and straightforward. This has
led to the development of a very diverse set of methods to model and analyze data having
real valued features. Comparatively, it is less simple to model the relationship between
attribute values in case of categorical (or symbolic) values. In this case, there is no inherent

5



ordering of the values, and their inter-relationships are often domain specific. Because of
this added complexity, there are fewer methods that deal with categorical valued attributes.
Note that any method that can deal with categorical valued attributes can usually be applied
to real valued attributes by discretizing them (binning into a fixed set of buckets, based on
quantiles). But the converse is not true in general. Hence the majority of the work in this
thesis (Chapters 2, 3 and 4) focuses on datasets having categorical valued attributes. Any
real valued attribute is assumed to be discretized using a suitable method. Chapter 5 deals
with real valued attributes in the form of space-time coordinates as well as aggregated
counts. Chapter 6 deals with time-series data which is also real valued.

Another important feature of an anomaly detection method is the availability (or un-
availability) of data labels. In practice obtaining proper labels (whether each data record
is normal or anomalous) is a difficult and time consuming task. Often the only reliable
source is for an expert to hand label cases. On the other hand it is very easy to obtain data
without any labels, since it is usually collected on a daily basis. There are three classes
of methods - supervised, semi-supervised and unsupervised. Supervised methods assume
that we have a fully labeled training dataset with both normal and anomalous class in-
stances. Usually this is used to train an appropriate classification method, which is then
used to classify new test records. Since it is usually not practical to assume a fully labeled
training dataset, we mainly focus on the other two categories. In the semi-supervised ap-
proach, we usually have a few labeled cases, either from the normal or the anomalous
class (or a few instances from both classes) that are hand labeled. The training data usu-
ally consists of these labeled instances along with a large number of unlabeled cases. The
method described in Chapter 5 belongs to this category. The unsupervised setting assumes
the absence of any labels in the training data. However, we typically assume that most of
the cases in the training data are normal with the presence of very few anomalous cases.
Thus a model of normal behavior can be learned from the training data. For the purpose of
anomaly detection, unsupervised methods are very useful for two reasons. First, they do
not rely on the availability of expensive and difficult to obtain data labels and second, they
do not assume any specific characteristics of the anomalies. In many cases, it is important
to detect unexpected or unexplained behavior which cannot be pre-specified. Since the
unsupervised approach relies on detecting any observation that deviates from the normal
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data cases, it is not restricted to any particular type of anomaly. Hence, we have mainly
focused on unsupervised methods in this thesis, and the methods described in Chapters
2,3,4 and 6 belong to this category.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• We propose several novel techniques of unsupervised anomaly detection in categor-
ical valued datasets, that can handle attributes having a large number of possible
values. The four different techniques proposed in this context are applicable over a
range of anomaly generation scenarios.

• The Conditional Method and Marginal Method of anomaly detection described in
Chapter 2 are applicable in detecting single record anomalies that stand out on their
own. In this case, we show that considering small subsets of attributes and compar-
ing the corresponding attribute values against the marginal distributions gives better
performance than calculating the complete likelihood of the record in real world
anomaly detection scenarios.

• Under the condition that multiple anomalies are generated by a single process, all
of which share some common attribute value(s), we propose the Anomaly Pattern
Detection (APD) method in Chapter 3. This method detects collections of anomalies
that are individually somewhat anomalous and are similar to the extent that they
share some common attribute values. This method is a combination of the “local
anomaly detection” methods and rule-based methods, and we demonstrate that it
performs better at detection than either of these methods alone.

• We present another technique, for detecting anomalous groups of records in Chapter
4. This Anomalous Group Detection (AGD) method assumes that there are multiple
similar anomalies generated by a common process. The anomalies may or may not
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Table 1.1: Summary of Methods

Chapter
No.

Method Name Type of Anomalies Detected Type of Dataset

2 Conditional Method
Individual record anomalies, ignor-
ing rare values

Categorical valued

Marginal Method
Individual record anomalies, in-
cluding those due to rare values

Categorical valued

3
Anomaly Pattern De-
tection (APD)

Anomalous groups of records, with
low self-similarity within the group,
but high individual anomalousness
scores

Categorical valued

4
Anomalous Group
Detection (AGD)

Anomalous groups of records,
with high self-similarity within
the group, but low individual
anomalousness scores

Categorical valued

5
Time Varying - Multi-
variate Bayesian Scan
Statistics

Time varying spatio-temporal pat-
terns

Real valued (Mul-
tivariate space-time
data)

6
Arithmetic combina-
tions of time series

Increases (or decreases) in time se-
ries counts

Real valued (Multi-
variate time series)
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stand out on their own as being anomalous. This method utilizes a likelihood ratio
statistic which incorporates both the anomalousness and self-similarity of a group.

• In Chapter 5, we propose another technique of detecting collection of anomalies with
specific temporal and spatial patterns. Our Time Varying Multivariate Bayesian Scan
Statistic (TV-MBSS) extends the previously proposed method Multivariate Bayesian
Scan Statistic (MBSS) to detect events having specific temporal patterns in multi-
variate datasets. Furthermore, we also model events that move over time and incor-
porate semi-supervised learning of the temporal patterns from data.

• Finally, we investigate an intuitive multivariate time-series anomaly detection method,
which searches over simple arithmetic combinations of the different time-series.
We show the effectiveness of this procedure over other traditional multivariate ap-
proaches.

1.3 Related Work

Anomaly detection has been applied in various domains and on different types of datasets.
First, we present popular anomaly detection methods for temporal and spatial analysis.
Next, we give an overview of existing methods for detecting anomalous records in large
multivariate datasets. This technique has received a lot of attention in detecting intrusions
in networks. Hence, we first give an overview of different approaches in this context. This
is followed by a description of methods that apply to categorical datasets in an unsuper-
vised setting.

1.3.1 Time Series Anomaly Detection

One of the most popular uses of automatic surveillance systems is in monitoring time se-
ries data to detect any abnormalities. The observation of industrial manufacturing systems
is one traditional application of these systems. A more recent interest is in public health
monitoring which has the goal of detecting new disease outbreaks as early as possible. A
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simple method to monitoring time series data is to place a restriction on the maximum
and minimum tolerable values (e.g. three standard deviations below or above the expected
value), and to sound an alarm if the signal moves out of this envelope of acceptable be-
havior. A more sophisticated idea to detect shifts in the data is using a CUmulative SUM
(CUSUM) method [Page, 1954, Montgomery, 1996]. As the name suggests, CUSUM
maintains a cumulative sum of deviations from a reference value. Let us consider a time
series where at time i we have measurement Xi. The one-sided CUSUM calculation is as
follows:

C0 = 0

Cm = max(0, Xm − (µ0 + K) + Cm−1) (1.1)

µ0 is the expected value. From the equations above, if the Xm values are close to the
mean, then the Cm values will be some small value. However once a positive shift from
the mean occurs, the Cm value will increase rapidly. K is known as the slack value or
allowance. In equation 1.1, any values within K units of µ0 will be effectively ignored.
It also causes Cm to drift towards zero during normal behavior of the system. Alerts are
raised whenever Cm exceeds a threshold decision interval H, and Cm is reset to zero.

We have investigated a POMDP based approach to optimal alarming in a decision
theoretic framework in [Das et al., 2004]. We propose a probabilistic model of the process
being monitored and the detection algorithm observing it. Based on those models we can
determine the correct belief state for the underlying process and the optimal decision when
considering the costs of signaling an alarm and allowing an event to go undetected.

For a more realistic modeling, the data observed thus far can be used to predict future
values. If there is a significant discrepancy between the predicted and observed values, it
can be denoted as surprising. The most common technique is to model the time series as an
Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average
(ARIMA) or Seasonal ARIMA (SARIMA) process [Box et al., 1994]. A summary of this
and other time series monitoring techniques that are commonly used in biosurveillance
can be found in [Wong and Moore, 2006]. AWSOM (Arbitrary-Window Stream mOdeling
Method) uses an unsupervised approach using wavelet coefficients to model and forecast
time series with periodic structures [Papadimitriou et al., 2003b].
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There are a class of methods that model time series data from dynamical systems us-
ing continuous valued hidden state space. Kalman filters [Kalman, 1960] assume a linear
dynamic system with Gaussian noise. A class of methods known as subspace identifica-
tion algorithms [Favoreel et al., 2000] aim to directly determine the hidden state sequence
without knowing the model, using linear algebra tools like singular value decomposition
and QR-decomposition. In the case of non-linear systems with non-Gaussian noise, parti-
cle filters [Gordon et al., 1993] are employed, which use sequential Monte Carlo methods
to estimate the model. Sampling Importance Resampling (SIR) and Sampling Importance
Sampling (SIS) are the common techniques used in this case [Liu and Chen, 1998].

Another area of interest is the case of categorical and discrete time series variables.
Researchers have used subsequence matching algorithms [Keogh et al., 2002b, Patel et al.,
2002] to detect anomalies in such cases. Yang et al. [Yang et al., 2001] use an information
gain metric to locate surprising periodic patterns. Keogh et al. develop an algorithm
TARZAN, that can efficiently compute the expected frequency of a pattern using suffix
trees [Keogh et al., 2002a]. They use this idea to detect surprising patterns in the dataset.
There has also been some work on novelty detection in time series using neural networks
[Whitehead and Hoyt, 1993, Borisyuk et al., 2000].

In §6.2 we further discuss other multivariate methods that can be used for time-series
anomaly detection.

1.3.2 Spatial Anomaly Detection

Along with temporal analysis, spatial analysis of data is another important and much ap-
plied area of research. In particular, the detection of spatial clusters or ‘bumps’ in spatial
data has numerous applications in epidemiology, biosurveillance, astronomy and other
fields. Among the wide range of methods proposed to test for spatial clustering, the spatial
scan statistic is a common approach.

Consider the plot in Figure 1.1. Each point shows the home location of a patient
arriving in the emergency department2. The crosses mark points with a particular symptom

2This data comes from emergency departments in the Pittsburgh area. The data has been anonymized
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Figure 1.1: Sample scan statistic application.

of interest such as respiratory problems. We are interested in determining whether there
is some region within this data (such as the ellipse shown in the plot) that has a higher
incidence rate of the symptom of interest. This is a typical spatial scan statistic application.
Studies of this sort are common in the field of public health and are used to determine
whether environmental factors are causing higher disease rates in certain areas. In our
case, we are interested in early detection of a bio-terrorist attack, which under several
delivery mechanisms including airborne anthrax release, may be clustered spatially.

The goal is to detect whether some region has a higher incidence rate. Theoretically
we can imagine a region to have any arbitrary shape and spread. However in a realistic
scenario, we are interested in a regions that are geographically compact, i.e. include a set
of locations that are all near to each other. In practice different regular shapes such as
circles, squares or rectangles have been used to define regions. The original formulation
[Kulldorff, 1997] scans all circular regions with a center at one of the data points to find

and the locations have significant noise added for further privacy protection.
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the region with maximum discrepancy. The algorithm for computing the scan statistic is as
follows (adapted from [Glaz and Balakrishnan, 1999, Kulldorff, 1997, Neill et al., 2005c]):

Given a region S (a set of locations), a score F (S) is defined that indicates the degree
of discrepancy for that region. The most common statistical framework for the spatial
scan is a frequentist, hypothesis testing approach. In this approach, F (S) is defined as a
likelihood ratio score:

F (S) =
Pr(Data|H1(S))

Pr(Data|H0)
(1.2)

Here H0 denotes the null hypothesis that there are no clusters and H1(S) denotes the
alternative hypothesis assuming a cluster in region S.

In general, the hypotheses might have some parameter space, and in the maximum
likelihood framework, the estimates of the parameters that maximize the likelihood of the
data are used [Neill et al., 2005c]:

F (S) =
maxθ1(S)∈Θ1(S) Pr(Data|H1(S), θ1(S))

maxθ0∈Θ0 Pr(Data|H0, θ0)
(1.3)

where, Θ1(S) denotes the parameter space for the alternate hypothesis H1(S) and Θ0

denotes the parameter space for the null hypothesis H0. In the simple case of assuming
that the marks in Figure 1.1 are Bernoulli random variables, the likelihood of the data
given the null hypothesis is as follows:

Pr(Data|H0) =

(
N+

N

)N+

×
(

N−

N

)N−

(1.4)

where N is the total number of data points and N+ and N− are the number of positive
and negative instances respectively.

For the alternate hypothesis, the likelihood of the data using the maximum likelihood
estimates of the distribution parameters is:
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Pr(Data|H1(S)) =

(
N+(S)

N(S)

)N+(S)

×
(

N−(S)

N(S)

)N−(S)

×
(

N+(S)

N(S)

)N+(S)

×
(

N−(S)

N(S)

)N−(S)

(1.5)

where the S and S in parentheses indicate the counts of points inside and outside the region
S, respectively.

We then compute the score F (S) over all possible regions and we report the score
F (S∗) and the region S∗ that yielded this maximum score. This approach of searching over
all possible regions is computationally very expensive. Various approaches have been sug-
gested to make it tractable. These include grid based multi-resolution branch and bound
search [Neill and Moore, 2004, Neill et al., 2005c], approximation algorithms [Agrawal
and Srikant, 1994] and greedy strategies [Friedman and Fisher, 1999]. We can also calcu-
late the p-value of each detected region by randomization testing. A set of Nrandom replica
data sets under the null hypothesis (no clustering) is created by randomly shuffling the data
labels. The spatial scan algorithm is run on all the replicas, and the maximum region score
is recorded for each run. The p-value of a region under the original scan is computed by
comparing it to the distribution of maximum region scores under the null hypothesis.

Alternatively it is possible to use a Bayesian approach where the test statistic F (S) is
defined as the posterior probability of a cluster in the region, marginalized over the model
parameters:

F (S) = Pr(Data |H1(S)) =
Pr(Data|H1(S))Pr(H1(S))

Pr(Data|H0)Pr(H0) +
∑

S′ Pr(Data|H1(S ′))Pr(H1(S ′))
(1.6)

Distance and Density Based Approaches

These methods are commonly used for spatial data, where each point has only spatial
features. In this case all the data points belong to a multidimensional vector space or,
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more generally, to a metric space. In the distance based method originally proposed by
[Knorr et al., 2000], an object is a distance-based outlier if at least a fraction β of the
objects in the dataset are further than r from it. It is based on the global parameters β

and r. Local Outlier Factor (LOF) described in [Breunig et al., 2000] is a density based
measure of the degree to which an object is isolated from its surrounding neighborhood.
The neighborhood is defined as the distance to the MinPts-th nearest neighbor. Local
Correlation Integral (LOCI) is a more parameter free approach that deals with both local
density and multiple granularity [Papadimitriou et al., 2003a].

1.3.3 Network Intrusion Detection

Anomaly detection applied to network intrusion detection has been an active area of
research since it was proposed in [Denning, 1980]. Traditional anomaly detection ap-
proaches build models of normal data and detect deviations from the normal model in
observed data. A survey of these techniques is given in [Warrender et al., 1999]. One
approach is to use sequence analysis to determine anomalies. [Lakhina et al., 2005] uses
entropy is an metric to capture unusual changes induced by anomalies in traffic feature
distributions. A method of modeling normal sequences using look ahead pairs and con-
tiguous sequences is presented in [Hofmeyr et al., 1998], and a statistical method to deter-
mine frequent sequences in intrusion data is presented in [Helman and Bhangoo, 1997].
[Venkataraman et al., 2005] describes an approach to detect heavy distinct hitters or hosts
that are associated with unusually high number of other hosts. [Lee and Stolfo, 1998] uses
a decision tree model over normal data and [Ghosh and Schwartzbard, 1999] uses neural
network to obtain the model. [Eskin, 2000] uses a probability distribution model from the
training data to determine anomalous data. They use a mixture model to explain the pres-
ence of anomalies. A clustering based approach to detect anomalies in the dataset is used
in [Leung and Leckie, 2005] and [Eskin et al., 2002]. One-class SVMs [Li et al., 2003,
Heller et al., 2003] and Genetic Algorithms [Shon et al., 2005] have also been used to clas-
sify anomalies in this context. [Axelsson, 2000] gives a survey of the different techniques
used in this domain.
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1.3.4 Association Rule Based Approaches

The task of association rule mining has received considerable attention especially, in the
case of market basket analysis [Agrawal et al., 1993]. An association rule is an expression
of the form X ⇒ Y , where X and Y are sets of items. Given a database of records
(or transactions) D, where each record T ∈ D is a set of items, X ⇒ Y expresses that
whenever a record T contains X , then T probably also contains Y . The confidence of the
rule is the probability p(Y |X). The support of the rule is the number of training cases
where both X and Y are present. Typically we search for rules with both high confidence
and high support. Instead of sets of items, X and Y can also be considered to be the events
that an attribute of T takes some particular values.

Association rule mining is commonly used in the analysis of market-basket data, where
the target of mining is not predetermined. Chan et al. [Chan et al., 2006] developed a rule
learning method, LERAD, to detect anomalies. They consider rules of the form X ⇒ Y ,
where X and Y are mutually exclusive subsets of attributes taking on particular values.
They seek combinations of X and Y with large values of P (Y |X). The anomaly score
of a record depends on P (¬Y |X), where Y , though expected, is not observed when X is
observed.

Balderas et al. [Balderas et al., 2005] mine hidden association rules, or rules that
are not common, but have high confidence. Such rules are assumed to represent the rare
anomaly class.

WSARE developed by Wong et al. [Wong et al., 2002] also uses rules to identify
anomalies. But in this case, all possible one and two component rules are evaluated by
comparing the events on the current day against events in the past. It is described in more
detail in §3.2.2.

1.3.5 Likelihood Based Approaches

In these approaches, ‘normal’ data is modeled as a probability distribution. Any test record
that has an unusually low likelihood based on the probability model is flagged as anoma-
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lous. For multivariate categorical data, dependency trees and Bayesian networks are com-
mon representations of a probability density model. Dependency trees have been used to
detect anomalies in [Pelleg, 2004]. We choose the Bayesian network as the standard model
against which we compare most of our algorithms. Hence, we give an overview of this
method next.

Anomaly Detection Using Bayesian Network

The Bayesian networks are popular representations of probability models over attributes
for categorical data because of its parsimonious use of parameters, and efficient learning
and inference techniques. Bayes Net have been used for detecting anomalies in network
intrusion detection [Bronstein et al., 2001, Ye and Xu, 2000], detecting malicious emails
[Dong-Her et al., 2004] and disease outbreak detection [Wong et al., 2003].

[Cooper et al., 2006] and [Cooper et al., 2004] use entity based Bayesian network
models to detect anomalies in Emergency Department data. The doctoral thesis [Jiang,
2008] investigates the use of spatio-temporal information within the Bayesian network
framework for outbreak detection.

A typical anomaly detection approach is to learn the structure and parameters of a
Bayesian network using the training data, compute the likelihood of each record in the test
dataset given the Bayesian network model, and report test records with unusually low like-
lihoods as potential anomalies. Any good structure and parameter learning algorithm is
appropriate to learn the model. For our experiments, we used the optimal reinsertion algo-
rithm [Moore and Wong, 2003] to learn the structure, and then did a maximum likelihood
estimation (which is an approximation of the full Bayesian estimation) of the network
parameters. Once the model is built, to test any record we find its complete record likeli-
hood given the probability model. Test records that have unusually low likelihood are then
flagged as anomalies. In general, the log-likelihood value can be used as the anomalous-
ness score of each record.
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1.4 Datasets Used

In this section we describe the various real-world datasets that we have used in this thesis
to evaluate our anomaly detection method. All the datasets correspond to records of ob-
servations of some system. Most of these datasets have categorical (or symbolic) valued
attribute types. This motivates our initial focus on categorical valued datasets. Also, none
of these have known labels of real life anomalies. Some form of simulation is used in
each case to generate anomalies that would be relevant to a domain user, and inject them
into the dataset, and these simulated anomalies are used for evaluation and comparison of
methods.

1.4.1 PIERS Dataset

Attribute Name Arity

Country 22

Foreign Port 42

US Port 16

Shipping Line 4

Shipper Name 4218

Importer Name 6412

Commodity Description 1649

Size (discretized) 5

Weight (discretized) 5

Value (discretized) 5

Table 1.2: Features in PIERS Dataset

Our first dataset consists of records describing containers imported into the country.
This data was obtained from the Port Import Export Reporting Service (PIERS). Each
record consists of 10 attributes, describing the container, its contents, and its transport
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as outlined in Table 1.2. Most of the attributes are categorical, such as the country of
origin, the departing and arriving ports and shipping line. There are three real valued
attributes, the size, weight and value of the container. We have categorized these to five
discrete levels. Our work is motivated by the need to detect unusual shipments among all
imports into the country. Specifically, we are interested in detection of illegal activities
like smuggling. However, we do not have any labels in the data, i.e. there are no known
cases of smuggling or unusual activity. Hence, in all our evaluations, we generate some
form of synthetic anomalies, as described in each chapter.

1.4.2 KDD Cup 99 Network Connections Dataset

The network connection records dataset from KDD Cup 1999 [KDDCup, 1999] contains
a wide variety of intrusions simulated in a military network environment. Each record is a
vector of extracted feature values from a connection record obtained from the raw network
data. The extracted features include the basic features of an individual TCP connection
such as its duration, protocol type, number of bytes transferred etc. Other features of
an individual connection are obtained using some domain knowledge, and includes the
number of file creation operations, number of failed login attempts, whether root shell
was obtained, and others. Finally there are a number of features computed using a two
second time window. These includes the number of connections to the same host as the
current connection, the number of connections to the same service, etc. In total there are 41
features, most of them taking continuous values. The continuous features are discretized
to 5 levels.

There are a total of 24 types of attack. Some of the attacks such as denial of service
or probing attacks are much easier to detect than other attacks. We have selected the
most common kinds of attacks for our evaluations: apache2, guess password, mailbomb,
neptune, smurf, snmpguess snmpgetattack and warezmaster. In this dataset, the attacks are
labeled, but we do not use a supervised approach. Instead, we train on data with no attacks
present and then test our ability to recognize these attacks as anomalies in a test set.

We note that subsequent analysis of this data (as well as its source, the DARPA dataset)
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have shown that there are serious data quality issues. [McHugh, 2000] published a fairly
harsh criticism of the dataset. [Mahoney and Chan, 2003] also found numerous irregulari-
ties due to the way the data was generated. Hence the performance of our methods on this
dataset might not be representative of performance on real network traffic. However since
we use an unsupervised approach, it is instructive to analyze our performance in detecting
the previously unseen types of records.

1.4.3 Sales of Over the Counter (OTC) medicines data

This data consists of Over the Counter medicine sales in US pharmacies for a period of 2
years (2004-2006). Each sale has the following information:

1. Date of Sale

2. Zipcode specifying the location of sale

3. Category: There are five categories of sales: Baby/Child Electrolytes, Cough/Cold,
Internal Analgesics, Stomach Remedies and Thermometers.

4. Promotion: Whether the sale was part of a promotion offer.

5. Count: The number of sales matching the above attributes.

We used this information to compute the aggregate sales for each category in each zipcode
on each day, and our goal is to detect spatial regions (clusters of zipcodes) with anomalous
values of recent counts. These clusters may represent disease outbreaks or other unusual
patterns in the dataset, such as inclement weather. Since the data has no labeled disease
events, we will test using surrogate events such as hurricanes, for which we can easily
obtain our own labels.

1.4.4 Emergency Department Dataset

This dataset consists of Emergency Department records from hospitals around the country.
The data spans 400 days.
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It has the following attributes:

1. Admit Date: Date on which the patient was admitted.

2. Prodrome: The main category of the patient’s complaint upon arrival at the emer-
gency department. It can have 7 possible values.

3. Age Decile: 1, 2, . . . 9.

4. Gender

5. Zipcode: This specifies the patient’s home zip code.

6. Count: The number of cases matching the above attributes.

While there are no known real disease outbreaks in this data, we have simulated cases of
airborne anthrax release produced by a state-of-the-art simulator [Hogan et al., 2007], and
measured each method’s timeliness and accuracy of detection as a function of the false
positive rate.
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Chapter 2

Detecting Anomalous Records in
Categorical Datasets

We consider the problem of detecting anomalies in high arity categorical datasets. Quite
often we have access to unlabelled data which consists mostly of normal records, along
with a small percentage of anomalous records. We are interested in the problem of un-

supervised anomaly detection, where we use the unlabelled data for training, and detect
test records that do not follow the definition of normality. In this chapter, we focus on the
problem of detecting single record anomalies, testing for each record independently.

A standard approach is to create a model of normal data, and compare test records
against it. A probabilistic approach builds a likelihood model from the training data.
Records are tested for anomalousness based on the complete record likelihood given the
probability model. For categorical attributes, Bayesian networks give a standard represen-
tation of the likelihood. While this approach is good at finding outliers in the dataset, it
often tends to detect records with attribute values that are rare. Sometimes, just detecting
rare values of an attribute is not desired and such outliers are not considered as anoma-
lies in that context. We present an alternative definition of anomalies, and propose an
approach of comparing against marginal distributions of attribute subsets. We show that
this is a more meaningful way of detecting anomalies, and has a better performance on
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detecting synthetic anomalies injected into real world datasets.

We also compare our methods against a association rule based method LERAD [Chan
et al., 2006]. It considers rules of the form X ⇒ Y , where X and Y are mutually exclusive
subsets of attributes taking on particular values. They seek combinations of X and Y with
large values of P (Y |X). The anomaly score of a record depends on P (¬Y |X), where
Y , though expected, is not observed when X is observed. The main disadvantage of this
method is that it learns a very small subset of all the possible rules. Various other rule
based methods used to detect anomalies are discussed in §1.3.4.

First, we present the problem statement, along with our algorithms for anomaly detec-
tion. We show ways of speeding up the computation and making it more memory efficient.
This is followed by the experimental setup, where we describe the datasets used, and the
evaluation procedure. The results of our algorithms on the datasets are presented next. We
conclude with a discussion of possible extensions of the current work. Parts of this chapter
have been adapted from our paper in KDD 2007 [Das and Schneider, 2007].

2.1 Approach

Suppose we are given a set of records comprised of several attributes. The data contains
both normal and anomalous records. However, we do not have any labeling of the data.
The problem is to identify the anomalous records among them. First we need to define
normality with respect to the given data. Here, we make an assumption that in the training
data a majority of records are normal and there are only a few anomalous records. This
means we can build a model of all the data with minimal harm caused by the anomalous
records. We discuss several ways of approaching this problem in the following sections.
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Training

1. Construct a conditional AD Tree over the training dataset (§2.1.3.6).

2. Determine the dependence between all attribute sets up to size k by computing
the mutual information between them (§2.1.3).

3. Construct the cache for denominator counts (§2.1.4.2).

Testing: Scoring a test record t

1. For each mutually exclusive and dependent pair of attribute sets A and B

(§2.1.3):

(a) Compute r(at, bt) (eqn. 2.2).

2. Compute the overall conditional score of the record t from all the r-values cal-
culated above (§2.1.3.2).

Figure 2.1: Conditional Anomaly Test Algorithm.

2.1.1 Baseline Approach of using Bayesian Networks

We have used the Bayesian Network method (described in §1.3.5) to detect individual
record anomalies as the baseline method. We learn a Bayesian network probability model
from the training dataset, and to test any record we compute its complete record likelihood
given the Bayes net. The record log-likelihood is used as the anomalousness score. Given a
threshold, test records that have a lower log-likelihood value are then flagged as anomalies.

2.1.2 Conditional and Marginal Methods

Figures 2.1 and 2.3 give an overview of the two proposed algorithms used to test for
anomalous records. We will explain the steps in detail in the following sections.

Our current work is motivated by the need to detect unusual shipments among all
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imports into the country. Each record corresponds to a container that is being imported. It
has attributes describing the container, its contents, and its transport as outlined in Table
1.4.1.

2.1.3 Conditional Probability Tests

We will motivate our method based on the disadvantage of using the likelihood based
approach to detect anomalies in this context. Consider the attribute ShipperName, which
has a very high arity of more than 4000. In this case, as in many real world problems,
the distribution of values of high arity attributes is very skewed. Some of the values are
common, while a large number of them are very rare. When we construct a probability
distribution of the data, these rare attribute values contribute to a skewed distribution. If a
record has ShipperName as one of the rare values, then the record’s likelihood is dominated
by this term. This means that rare values will cause these records to look very unusual.
But often, an attribute having a rare value might not be useful information. In our data,
more than 20% of the instances contain a value of ShipperName that occurs only once
in the training data. Another disadvantage of using the likelihood based method relates
to the fact that we learn a fixed probability structure during the training phase. Since
most structure learning algorithms use approximate methods, there can be mistakes in the
learned structure. The testing phase depends only on the learned probability model, and
any model learning mistake is going to persist throughout the testing phase. To overcome
this, our proposed method does not learn an overall probability model, but instead directly
uses the counts from the training data during the testing phase.

Consider a particular test record t and the attributes ShipperName and Country. We
define P (SNt, Ct) = P(Shipper- Name =SNt, Country=Ct), where SNt and Ct are the
ShipperName and Country of the test record t respectively. In general, let A be a set of
attributes. Define P (at) = P (A = at), where at is the corresponding set of values of A in
the test record t.

We are interested in detecting unusual combinations of attribute values. For exam-
ple, say ShipperName = SN1 always occurs with Country=C1 and never with Coun-
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try=C2. Then a record t having ShipperName=SN1 and Country=C2 is considered unusual
or anomalous. This corresponds to the probability P (SN1, C2). But we have to be care-
ful in interpreting this. Consider a situation where Country=C2 occurs very rarely in the
data. In this case, the fact that ShipperName=SN1 has never occurred with Country=C2

can be explained by the rarity of seeing records from Country=C2. It might not mean
that for shipments coming from Country=C2, it is unusual to see ShipperName=SN1.
Here, we do not have enough data to support the hypothesis that this is really anoma-
lous. To take care of this fact, we can normalize the joint probability of these attributes
with the marginal probability P (Countryt). Now, if P (Countryt) has a low value, the
ratio P (ShipperNamet,Countryt)

P (Countryt)
will no longer be small. But, the same argument applies to the

attribute ShipperName, and hence, we also normalize with respect to P (ShipperNamet).
The quantity we now consider is the ratio P (ShipperNamet,Countryt)

P (ShipperNamet)P (Countryt)
.

In general, we consider the ratio r(at, bt) = P (at,bt)
P (at)P (bt)

for attributes A and B. An unusu-
ally low value of this ratio suggests a strong negative dependence between the occurrences
of at and bt in the training data. When we observe them together in the test record t, we
can reasonably say that it is anomalous. This also ensures we have seen enough cases of at

and bt in the training data to support the hypothesis of negative dependence. We quantify
this notion of minimum support in §2.1.4.1.

To generalize this idea to more than two attributes, we can consider attribute sets in-
stead of single attributes. For example, we can consider whether the combination of at-
tribute set A = {ShipperName, Weight} and the attribute set B = {Country, Commodity} is
unusual. The ratio that we consider here is:

r(at, bt) =
P (at, bt)

P (at)P (bt)

=
P (ShipperNamet,Weightt, Countryt, Commodityt)

P (ShipperNamet, Weightt)P (Countryt, Commodityt)

Similarly, we can compare any two subsets of attributes, the only constraint being that
there should be no common attribute among them. Let us call this ratio the r-value of the
record t for the attribute sets A and B. Considering all possible subsets would require
computation time exponential in the number of attributes. Therefore, we only consider
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subsets up to size k. Also, we want to avoid comparing attribute sets that are completely
independent (since such subsets are unlikely to yield small r-values). We compute the
mutual information µ(A,B) between two attribute sets A and B, and calculate r(at, bt)

only if the mutual information is greater than a threshold. We define A and B to be
dependent if,

µ(A,B) ≥ βµ (2.1)

where, βµ is a threshold parameter, set to a low value of 0.1 (empirically) in our experi-
ments.

Thus, for a given record, we consider all pairs of dependent and mutually exclusive

subsets having up to k attributes, and calculate the corresponding r-values.

A ratio of the form r = P (A,B)
P (A)P (B)

has been proposed as a measure of suspicious co-

incidence by Barlow [Barlow, 1989]. It states that two candidate fragments A and B

should be combined into a composite object AB if the probability of their joint appearance
P (A,B) is much higher than the probability expected in case of statistical independence
P (A)P (B). It has also been used to investigate unsupervised learning of complex visual
stimuli by human subjects [Edelman et al., 2002]. In association rule mining, this quantity
is known as interest [Brin et al., 1997] or lift [Sheikh et al., 2004]. In most of these cases,
large values of r are interesting as it signifies a suspicious coincidence of the events co-
occurring. We are interested in exactly the opposite situation, where low r values signify
that the events do not co-occur naturally. If they are observed together, then we treat it as
an anomaly.

2.1.3.1 Partitioning the training data

A further generalization is to use a ratio of the form: rval(at, bt|ct) = P (at,bt|ct)
P (at|ct)P (bt|ct)

, where
A,B and C are mutually exclusive subsets of attributes with at most k elements. This ratio
is similar to the previous formula, but here we consider the probabilities conditioned on
a set of attributes. It is equivalent to partitioning the training data and considering only a
subset to estimate the probabilities, consisting only of records that match the test record t

in a subset of attributes, C.
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2.1.3.2 Combining evidence across different attribute sets

One disadvantage of our method is that it considers only a subset of attributes at a time.
The final score of a record is the minimum score obtained over all such subsets. But, the
score reflects the behavior of only a particular subset of size up to 2k, ignoring the values
of other attributes. Here, we make an assumption that maximum of 2k attribute values
indicate anomalous behavior. In many practical problems this assumption is reasonable.

But, as shown in the results using artificial anomalies, when the number of anomalous
attributes is larger than 2k, comparing against a joint distribution might give more accurate
results.

To solve this problem, we can combine the evidence across different attribute sets. We
use the following heuristic to score the record t:

1. Order the r-values (over all scored subsets) in ascending order. Consider only the
ordered values r1 to rq which are less than a threshold α (described in the next
section).

2. Initialize: Score = 1, and U = φ.

3. For i = 1 to q

(a) If there is any common attribute between the attributes defining ri and U , then
skip to the next value of i.

(b) Else, Score = Score ∗ ri, and include the attributes defining ri in U .

This heuristic computes the product of the selected r-values corresponding to mutually
exclusive sets of attributes. The intuition is that if the attribute subsets were not only
disjoint, but also independent, then this would be the r-value for the larger combined set
of attributes.
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r(at, bt)× r(ct, dt) =
P (at, bt)P (ct, dt)

P (at)P (bt)P (ct)P (dt)

=
P (at, bt, ct, dt)

P (at, ct)P (bt, dt)
(2.2)

= r([at, ct], [bt, dt]) (2.3)

Here, we assume (A ⊥ C) and (B ⊥ D). In general, this assumption does not hold,
but the heuristic gives a reasonable strategy to combine evidence from multiple r-values.

2.1.3.3 User specified pruning of the search space

In many applications we can use domain information to restrict our search space. For
example, consider the attributes Country and City. Given the value of City, the value
of Country is fixed. We do not need to test if there is a rare combination of these two
attributes. In general, if there is a hierarchical structure of the attributes, we do not want
to compare between the higher and lower level attributes. One exception is the case of
searching for data entry errors, which is another potential application of our algorithm.

A user may simply be uninterested in some combinations of attributes. For example,
a medical diagnosis tool may not care about an anomalous combination of patient demo-
graphic features. It may only be interested in anomalous sets of symptoms or symptoms
in combination with demographics.

In either case, our algorithms can easily ignore special combinations of attributes. This
improves computational speed by reducing the search space, and will produce results that
are more meaningful to the end user.

2.1.3.4 Estimating the probability values

For calculating the r-value r(at, bt) of a test record t, we need to estimate the marginal
probability values from the training data. The MLE estimate is P (at) = C(at)

N
, where C(at)

is the count of training cases where A = at. N is the total number of training records. A
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problem with this estimator is that when C(at, bt) = 0, then r(at, bt) = 0. Regardless of the
threshold α, all such cases will be flagged as anomalies.

To avoid this problem, we calculate the expected value of pA = P (at) with a Bayesian
prior. Given the record t, each attribute behaves as binary. The attribute set A can have
two possible values at and ’not at’.

P (Data|pA) = Binomial(N, pA) (2.4)

P (pA|Data) =
P (Data|pA) ∗ P (pA)

P (Data)
(2.5)

P (pA|Data) ∼ p
C(at)
A (1− pA)N−C(at) (2.6)

P (pA|Data) ∼ Beta(C(at) + 1, N − C(at) + 1) (2.7)

Here we assume an uniform prior over pA. Hence E[pA] = C(at)+1
N+2

.

2.1.3.5 Bound on the counts

From eqn. 2.7 above, we can calculate:

r(at, bt) = P (at,bt)
P (at)P (bt)

= C(at,bt)+1
N+2

× N+2
C(at)+1

× N+2
C(bt)+1

.

To compute this ratio we need the counts C(at), C(bt) and C(at, bt). We use a caching
technique to cache these counts as described in §2.1.4.2. To make this caching tractable,
we compute a lower bound for C(at) and C(bt).
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The record t is interesting when r(at, bt) ≤ α.

=⇒C(at, bt) + 1

N + 2
× N + 2

C(at) + 1
× N + 2

C(bt) + 1
≤ α

=⇒C(at, bt) + 1

N + 2
× N + 2

C(at) + 1
< α

[because, (N + 2) > (C(bt) + 1)]

=⇒C(at, bt) + 1

C(at) + 1
< α

=⇒ 1

C(at) + 1
< α

[because, C(at, bt) ≥ 0]

=⇒C(at) >
1

α
− 1 (2.8)

Similarly, C(bt) > 1
α
− 1. Hence, we need to consider only the cases where C(at) and

C(bt) are greater than this bound.

2.1.3.6 Using AD Trees for computing counts

The required counts are conjunctive counting queries on the dataset, and can be efficiently
queried using an AD Tree [Moore and Lee, 1998]. The AD Tree building algorithm scans
the dataset once, and precomputes information needed to answer every possible query in
time independent of the number of records. The parameter leaflist size can be adjusted to
obtain a tradeoff between the memory used and the query response time. Note that for our
algorithm, we will never need an AD Tree of depth greater than 2k.

2.1.4 Computational Speedup

2.1.4.1 Reducing arity

The memory required to build an AD Tree significantly depends on the arity of the at-
tributes. We use the result from eqn. 2.8 to reduce the arity of each attribute. Consider
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an attribute value lt of attribute L in test record t. Let A and B be two attribute sets, such
that L ∈ A (or equivalently it could belong to B), and we want to calculate the value of
r(at, bt). The r-value will be of interest only when C(at) > 1

α
− 1 and C(bt) > 1

α
− 1.

Since L ∈ A, C(lt) ≥ C(at). This implies C(lt) > 1
α
− 1. So we can ignore all values li

of L where C(li) < 1
α
− 1. All such values are called rare values of attribute L. All other

values are called common values of attribute L. Any r-value that includes the attribute L

corresponding to a rare value, will always be greater than α. So, we can replace all rare
values by a generic rare value. While computing the r-value of attribute sets A and B

we skip the computation if either at or bt contains any rare value. We can ignore missing
values originally present in the dataset in a similar fashion. This scheme of keeping only
the common values significantly reduces the arity of each attribute and drastically reduces
the memory required to build the AD Tree. This also ensures that if any ratio r(at, bt)

is anomalous, then there is a minimum support of 1
α

training cases corresponding to the
attribute values at and bt.

2.1.4.2 Caching values

Even though the AD Tree structure retrieves the counts quite efficiently, it has some over-
head because it tries to store the results for all possible queries, whereas we are interested
only in some special cases as described below. We can improve the query response time
by building an additional cache that is more specialized for the task. We build an AD Tree
as the base query module. We then build a more specialized cache as described below, by
obtaining the relevant counts from the AD Tree. This caching scheme gives 1.5 to 2 times
speedup in computation.

Caching the Denominator values: Let there be M attributes in the dataset, numbered
from 1 to M . There are S =

(
M
1

)
+

(
M
2

)
+ ... +

(
M
k

)
attribute combinations, considering

up to k attributes in each combination. We call these S composite attributes. We create a
tree data structure (shown in Figure 2.2) where each node represents a composite attribute,
i.e., a set of attributes. The root node represents the null set. It has M children, each
representing the unary set of the corresponding attribute. Let q be the highest attribute
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Figure 2.2: Tree data structure used for caching the denominator values

number in the set represented by node n. Then n has M -q children, child i corresponding
to the union of the set represented by n, and attribute number q+i. We limit the depth of
the tree to k. The complete tree has S+1 nodes, corresponding to each composite attribute
and the null set.

Now, for each composite attribute, we find the common values (§2.1.4) present in the
dataset. We store the count of the number of occurrences for each common value of each
composite attribute in the corresponding node. As noted above, the counts C(at) and C(bt)

are needed only when they are greater than 1
α
− 1 (i.e., when they are common). Hence

all the counts that we need to compute the denominator of any r-value, are precomputed
in our cache. It takes O(k) time to retrieve any count stored in the cache.

Caching the Numerator values: Unlike the denominator counts, the numerator counts
can correspond to rare value combinations (i.e., C(at, bt) can be as small as zero). It be-
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comes infeasible to store counts for all possible combinations of values for all attributes
(as a caching scheme, it is actually equivalent to the full blown AD Tree, which does the
job more efficiently). However, given a test record t, it is possible to cache the correspond-
ing counts for all attribute combinations, as each combination now represents a fixed set of
values. We see that we can reuse the computation of probability values P (at, bt). For ex-
ample, we compute P (Countryt, Shippert, ForeignPortt,Weightt) when A={Country,

Shipper} and B={Foreign Port, Weight}. We have the same joint probability value for
A={Country, Shipper, Foreign Port} and B={Weight}. Therefore, each time before com-
puting the value of P (at, bt), we first check if it has been already calculated. If not, we
compute its value, obtaining relevant counts from the AD Tree. We then cache this value
in our tree cache structure for future use. This reduces the number of (relatively) expensive
AD Tree queries.

Note that the cached values are useful only for a particular test record. For a new test
record we clear the cache and start over.

Training

1. Construct a marginal AD Tree over the dataset (§2.1.5.1).

2. Compute the marginal count histograms over the training data (§2.1.5.1).

Testing: Scoring a test record t

1. For each attribute set A with up to k attributes:

(a) Compute qval(at) (eqn. 2.9).

2. Compute the overall marginal score of the record t as the minimum q-value
calculated above (§2.1.5).

Figure 2.3: Marginal Anomaly Test Algorithm.
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Figure 2.4: Histogram showing the number of occurrences of different values of the port

of entry in the containers dataset.

2.1.5 Marginal Probability Tests

While computing the r-value, we normalize with respect to the marginal probabilities.
This means that an unusually low marginal probability value will not be detected by this
method. That is fine because we want to detect unusual pairings of sets of attributes, rather
than just detecting a rare combination. But in some cases, detecting rare combinations
might also be useful.

We define qval(at), the q-value of an attribute set A for the test record t as the sum of
P (A = at) and all values of P (A) that are smaller or equal to P (A = at). Here at is the
corresponding set of values of the attributes in A in the test record t.

qval(at) =
∑
x∈X

P (x) where, X ≡ {x : P (x) ≤ P (at)} (2.9)

This is parallel to the standard definition of p-value for continuous variables, which
sums over values that are more extreme than the current value. In our definition for the
case of categorical attributes, more extreme corresponds to values that have a probability
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less than the current value1.

The q-value of an attribute gives an indication of rarity of its occurrence. An attribute
set A is considered anomalous in record t if qval(at) ≤ αm, where αm is a predetermined
threshold. The advantage of using this measure is seen when there are a lot of rare values of
some attribute. For example, in the container shipment data, the attribute ShipperName

has a very high arity, and a lot of the values are rare. But, in this situation, the qval of
a rare value is computed by aggregating over all similar rare values, and will not have a
small value. This avoids the problem of detecting each occurrence of a rare value as an
anomaly.

Figure 2.4 shows a histogram (arranged in descending order) of the number of occur-
rences of different values of the port of entry in the containers dataset. Suppose we want to
compute qval(Boston). We need to consider the probability of seeing something as rare
or rarer than Boston (the corresponding values are shaded in the figure). If the fraction of
the counts in the shaded region is very low, then we treat the value Boston as a marginal
anomaly. Correspondingly, any occurrence of this value in a test record will cause it to be
flagged as an anomaly.

2.1.5.1 Implementation

Computing the qval(at) of an attribute set A in test record t is somewhat more complicated
than calculating the r-value. To calculate qval(at), we not only need to know C(at), but
also the counts for all other possible values ai of A such that, C(ai) ≤ C(at). When
dealing with composite attributes, the number of possible values it can have becomes
exponentially large. Even if all the counts are cached, going through each of them for
every test becomes prohibitive.

Instead, for every composite attribute A, we store the histogram h of the number of
times different values occur in the training dataset. For example we precompute the fact

1We have heard the argument that this is exactly a p-value iff X is ordinal and P (X) is unimodal and
monotonically decreases as we move away from the mode. We think that this is equivalent to a p-value even
if X is not ordinal.
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that A has h(1) values occurring only once, h(2) values occurring twice and in general,
h(i) values occurring i times. When testing attribute set A in record t, we compute C(at),
and compare that to the precomputed histogram. We compute the quantity

Crarer =
∑

i≤C(at)

i ∗ h(i) (2.10)

Crarer denotes the number of times a value that is as rare (or rarer) than at occurs in the
training dataset. The q value is then computed as:

qval(at) =
Crarer

N
(2.11)

where, N is the number of data-points in the training dataset.

Assuming that h is precomputed, while testing a value at, we still need to compute
the count C(at), and unlike the conditional method, we are especially interested in rare
values. Hence, we cannot reuse the AD Tree constructed for the conditional method. We
construct another AD Tree without any reduction of arity from the original dataset. We
call this the marginal AD Tree. We use a bigger leaf-list size to keep the size of the tree
manageable [Moore and Lee, 1998].

Note that all the information in the conditional AD Tree is also contained in the
marginal AD Tree. But, we still maintain the conditional AD Tree separately as it is faster
to query from the smaller tree for the conditional method. Figure 2.3 gives an overview of
the marginal method algorithm.

2.2 Experimental Setup

2.2.1 Datasets

2.2.1.1 PIERS Dataset

This dataset (described in §1.4.1) consists of records of containers imported into US. Since
there were no labeled anomalies in the original data, we create synthetic anomalies by
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randomly flipping attribute values. We first partition the dataset into training and testing
sets. We randomly choose 10% of the data as a test set, and the remaining 90% is the
training set. The dataset used for generating these results has 100,000 records so the
training set has 90,000 records and the test set has 10,000. We modify a random 10%

(i.e. 1000) of the test set records to be anomalies. For each record that is modified, a
random set of up to l attributes is chosen. The values for these attributes are reassigned by
drawing from the corresponding attribute marginal distribution. The higher the value of l,
the greater the degree of anomaly.

Apart from randomly flipping attribute values, we use another method to create anoma-
lies in the test data. The training data is from the month of June 2002. We randomly
pick 1000 records from a different month (June 2003), and replace 1000 randomly chosen
records in the test set. We deliberately do not include records from June 2003 that have
attribute values not present in the training data. Otherwise, detecting those anomalies is a
trivial task.

2.2.1.2 KDD Cup 99 Network Connections Dataset

We have used a network connection records dataset from KDD Cup 1999 [KDDCup,
1999], which contained a wide variety of intrusions simulated in a military network en-
vironment. In total there are 41 features, most of them taking continuous values. The
continuous features were discretized to 5 levels ((described in more detail in §1.4.2)).

The goal of the KDD dataset was to produce a good training set for learning methods
that use labeled data. Hence, the proportion of attack instances to normal ones is very
large. To create more realistic data, we have reduced the number of attack records to about
10% of the test dataset. There are a total of 24 types of attack. Some of the attacks which
are Denial of Service or probing attacks are much easier to detect than other attacks. We
have selected four kinds of attacks - mailbomb, guess password, warezmaster and apache2.
Correspondingly, we created four test sets containing 10% records of the particular attack
type, and 90% normal records. We used other normal records for training our model.
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2.2.2 Training

We build our model, which includes the conditional AD Tree, the marginal AD Tree, the
mutual information matrix, cache for the denominator counts §2.1.4.2 and the marginal
count histograms using the training data. Building these comprise the training phase.

2.2.3 Testing

For each test record t, we consider every possible pair of composite attributes, that are
mutually exclusive and dependent (see eqn.2.1). For each such pair, A and B, we compute
r(at, bt). The minimum r-value is assigned as the score of the record t. In some cases we
have used the combining evidence heuristic (§2.1.3.2) to assign a score to a record. For
the KDD dataset, we have also considered the partitioning method described in §2.1.3.1.
Here we consider all possible mutually exclusive subsets A, B and C to compute the ratio
rval(at, bt|ct).

2.2.4 Evaluation

We evaluate our methods against a likelihood based approach using a Bayesian network
representation and association rule based learner LERAD [Chan et al., 2006]. The con-
ditional and marginal models are evaluated separately. For the conditional and marginal
methods, we vary the value of α between 0.001 to 0.02 to generate points on the curve.
For the Bayesian network method, we vary the likelihood threshold. In our plots, the
x-axis represents the detection rate, i.e., the proportion of total true anomalies that are de-
tected. The y-axis gives the corresponding precision of detection, i.e., the ratio of number
of true positives to the total number of predicted positives. A higher curve denotes better
performance.
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(a) Algorithm performances for l = 1
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(b) Algorithm performances for l = 3
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(c) Algorithm performances for l = 7
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(d) Algorithm performances for inserted records
from different month

Figure 2.5: Comparison of algorithm performances for the Piers dataset. The x axis is the
fraction of the true anomalies found by the algorithm. The y axis is the fraction of pre-
dicted anomalies that were true anomalies. The curves are created by varying the threshold
parameter α. Curves that are higher and farther to the right are better.
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(a) Apache2
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(b) Mailbomb
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(c) Snmpguess
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Figure 2.6: Performance over the Network Connections KDD Cup 99 dataset
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2.3 Results

2.3.1 PIERS Dataset

In Figure 2.5 we show the comparison our methods (conditional and marginal) against
the Bayesian network likelihood method and LERAD [Chan et al., 2006] on the PIERS
dataset. The data points correspond to particular threshold parameter values. The points
denote the average performance over 20 randomly generated test sets for each algorithm.
The 95% confidence error bars are much smaller than the marker sizes. Hence any differ-
ence that appears in the plots is statistically significant.

In Figure 2.5(a) we see the performance of the methods when l = 1, i.e., the anomalies
are generated by flipping just one attribute value. For the conditional method, we set k = 3

for all the experiments. This means we consider up to three attributes in each composite
attribute. We see that the conditional method performs best, followed by the marginal
method. Both these methods outperform the Bayes net and LERAD significantly.

Figures 2.5(b) and 2.5(c) shows the performance when l = 3 and l = 7 respectively.
Our methods outperform the Bayes net method and LERAD. As mentioned previously, we
take k = 3 for the conditional method. This means that we consider up to six attributes
while computing a r-value. Even though the Bayes net models the likelihood of all the
attributes combined together, the conditional and marginal methods still perform better.

Figure 2.5(d) shows the performance when the anomalies are actually records inserted
from a different month. We see that the marginal method performs the best, followed
by the conditional method. The Bayes net method and LERAD perform very poorly in
comparison. The superlative performance of the marginal method can be explained by
the fact that records from the other month have combinations of attribute values that are
not present in the training set. The conditional method ignores these values, while the
marginal method takes advantage of this fact.
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Dataset Training Size Test Size Number of Training Testing Memory
Attributes Time (secs) Time (secs) (MB)

Piers 500,000 10,000 10 6.9 4.7 4.5

KDD Cup 99 500,000 10,000 41 297 1.6 152

Table 2.1: Time and Space requirement for Bayes Network Method

Dataset Training Test k Training Testing Memory Marginal
Size Size Time (secs) Time (secs) (MB) Memory (MB)

Piers 500,000 10,000 1 7.6 16.8 337 334
2 7.8 133 338 340
3 9.3 790 341 489

KDD Cup 99 500,000 10,000 1 10.2 15 323 222
2 44 7145 332 2618

Table 2.2: Time and Space requirement for Conditional and Marginal Methods

2.3.2 KDD Cup 99 Network Connections Dataset

On the network connections dataset, we see that some attack types are easier to detect than
others. Figure 2.6 shows the performance comparison of the different methods for some of
the attack types. As number of attributes is quite large, we have used up to k = 2 attribute
combinations. This means that up to four attribute values are considered at a time. For
the conditional method, we have used the heuristic to combine evidence (§2.1.3.2) from
different attribute sets. Here, we have also compared the performance of the partitioning
method §2.1.3.1.

The marginal method performs very poorly in this case and starts with a large number
of false positives even at the lowest sensitivity level. Since this dataset has a very large
number of attributes, there is a high chance that even for normal records, there is a value of
an attribute combination that is not present in the training data. This leads to flagging of a
large number of records as maximally anomalous. Hence, we haven’t shown the marginal
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algorithm curve for the plots as it performs very poorly.

We have evaluated the performance of each algorithm over 20 randomly chosen test
sets of size 10,000 each. We show the average performance for each attack type. For
attack types mailbomb and snmpguess we also show the 95% confidence error bars.

For attack type apache2 in Figure 2.6(a), the original conditional method performs
worse than the Bayesian network likelihood approach. But using the combining evidence
heuristic results in a much better accuracy. Here, the conditional method is able to detect
almost all the attacks with a very high precision rate.

For attack types mailbomb and snmpguess, the conditional method performs slightly
better than the Bayes net method. Using the partitioning of training data in the condi-
tional method results in similar or better performance to the basic method. Here we see
that the error bars are quite large. Figure 2.6(d) gives a better comparison of performance
between the methods. This plots the difference of detection precision between the condi-
tional method and the Bayes net method. A positive difference means that the conditional
method has higher precision. We see that for five of the attack types considered, the differ-
ence is mostly above zero. But, for the attack type guess password the Bayes net method
performs significantly better. Here, the error bars represent 95% confidence intervals.

We note that for this dataset, the precision recall curves are non-monotonic. This is not
very surprising if we consider the fact that many of the attack records in this case are quite
similar, and tend to lump together when sorted according to the record scores. Hence as
we go down this sorted list, we encounter some false positives in a row followed by some
true positives in a row. This alternates a few times, and the corresponding precision goes
up or down each time we see such a row of true or false positives respectively.

Since this dataset was used for the KDD Cup 1999 competition, we also mention the re-
sults of the winning entry (submitted by Dr. Bernhard Pfahringer of the Austrian Research
Institute for Artificial Intelligence). The published result categorizes the attack types into
four categories. Out of them two categories correspond to the attack types considered in
this thesis: Denial of Service (apache2, mailbomb, neptune, smurf and warezmaster) and
remote-to-local (guess password and snmpguess). For the DOS category, it achieved pre-
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cision of 99.9% with recall of 97.1%. For R2L category, it achieved precision of 98.8%

with recall of 8.4%. However note that these results cannot be directly compared with
our results since the KDD Cup problem was a supervised learning task. In our work we
remove all the attack instances from the training data, and train our methods only on the
normal records. Then we use unsupervised methods to detect attack instances in the test
data. These results are given just as a point of reference.

2.4 Conclusions

We have proposed two methods of anomaly detection in high arity categorical datasets: the
Conditional method and the Marginal method. We show that performing a combinatorial
search over all possible subsets of attributes (up to a certain size) gives a better performing
and more meaningful anomaly detection method.

We note that the methods proposed in this chapter follow the frequentist approach of
determining probabilities. It can be extended into a Bayesian framework at different levels.
Instead of computing a smoothed maximum likelihood estimate, the Bayesian estimates
of the probabilities P (at) and P (bt) in §2.1.3 we can be computed by assuming a Dirichlet
prior and marginalizing out the distribution parameters. We also note that in this case the
Bayesian estimate coincides with the Laplace smoothed maximum likelihood estimate if
we assume a uniform prior for p (the Binomial parameter) over [0,1]. Furthermore, at the
top level it might be possible to formulate a Bayesian framework that can integrate the
r-values to give a record likelihood. We can imagine that there exists an underlying prob-
ability distribution such that the record likelihoods are proportional to the anomalousness
scores of the records.

The current work focuses on finding single records that are anomalous. Sometimes
in real world applications we are more interested in detecting groups of unusual records
that deviate from the norm, rather than detecting the records separately. For example, in
astronomical datasets, we might be more interested in an unusual phenomenon if it keeps
repeating at some interval. Just observing one such instance may not be significant, as it
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could be attributed to some measurement error. In biosurveillance, we might be interested
in the emergence of a new disease by detecting a group of unusual but similar cases. It is
specially relevant in network security monitoring, as we can detect a new pattern of user
behavior from a group of records. This can signal possible malicious behavior. In the
following chapters we investigate different techniques to detect such groups of anomalous
records.

47



48



Chapter 3

Anomaly Pattern Detection in
Categorical Datasets

3.1 Introduction

So far we looked at individual record anomalies. In this chapter, rather than finding indi-
vidually anomalous records (which may be due to noise), we consider multiple anomalies
following a pattern, and propose a new method for detecting such patterns of anomalies in
categorical datasets. We assume that anomalies are generated by some underlying process
which affects only a particular subset of the data. For example, in customs monitoring, a
smuggler might be operating only from a fixed port of arrival, or might have access only
to a particular shipping line. But within that subset, the smuggler will try to hide their ac-
tivities by making them appear as random as possible. Similarly, in monitoring emergency
department visits, a bioterrorist might have access to only a particular geographical loca-
tion, or to only a particular type of disease causing agent. Thus these activities give rise to
multiple anomalous records which share common values in some subset of their attributes.
In this work, we develop a new detection method that can efficiently and accurately detect
such patterns.

While local anomaly detection methods (such as in Chapter 2) can be used to detect in-
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dividually anomalous records, they cannot take advantage of the fact that there are multiple
anomalies from the same source which have some similarity between them. Nevertheless,
these methods can be incorporated into our proposed anomaly pattern detector, which
uses the presence of many similar anomalous records (generated by a common process)
to improve the detection performance. Our method consists of two steps: we first use
a local anomaly detector to identify individual records with anomalous attribute values,
and then detect patterns where the number of anomalous records is higher than expected.
Here we assume that most of the anomalous records sufficiently stand out from the normal
records on their own, and can be detected by the local anomaly detector. Given the set
of anomalies flagged by the local anomaly detector, we search over all subsets of the data
defined by any set of fixed values of a subset of the attributes, in order to detect self-similar
patterns of anomalies. We wish to detect any such subset of the test data which displays a
significant increase in anomalous activity as compared to the normal behavior of the sys-
tem (as indicated by the training data). We perform significance testing to determine if the
number of anomalies in any subset of the test data is significantly higher than expected,
and propose an efficient algorithm to perform this test over all such subsets of the data.
We show that this algorithm is able to accurately detect anomalous patterns in real-world
hospital, container shipping and network intrusion data.

“What’s Strange About Recent Events” (WSARE) [Wong et al., 2002] is a method
designed to detect clusters of anomalies in the data. WSARE operates under a different
set of assumptions than our proposed method: it tries to detect anomalies evidenced by
differences in the relative counts of records matching particular rules for the current and
historical datasets. This is not sufficient for our purposes, since in our case, the presence
of anomalies need not necessarily increase the total counts in certain subsets of the data.
Rather, we use the detection capability of a feature-based local anomaly detector, and
search for patterns by incorporating the output of such a detector. Here, we are interested
in detecting increased incidence counts of anomalous records (records with unexpected
attribute values, as determined by the local anomaly detector) as compared to the total
number of records in a subset of the data. The detection of such patterns with many
anomalies matching certain rules indicates the presence of anomalous processes.
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To formalize our problem, we assume that we have a sufficiently large training dataset

which defines the normal behavior of the system. We typically have unlabeled training
data, in which we assume that no anomalies are present, but our methods can tolerate
the presence of a small percentage of anomalies in the training set. Our goal is to de-
tect the presence of patterns of anomalies in an unlabeled test dataset, where each pattern
corresponds to a fixed set of attribute value(s). There might be single or multiple such
anomalous patterns present, possibly generated by several distinct causes. We want to de-
tect the anomalous records generated by such patterns, while minimizing the false positive
rate and avoiding detection of irrelevant anomalies due to noise. Much of this chapter has
been adapted from our paper in KDD 2008 [Das et al., 2008].

3.2 Anomaly Pattern Detection

Our proposed method can be thought of as generalizing two lines of previous research:
the use of standard anomaly detection methods to detect individually anomalous records,
and the use of WSARE 2.0 [Wong et al., 2002] to detect anomalous clusters of counts in
categorical data. We generalize the former method by integrating information from pat-

terns of potentially anomalous records. We extend WSARE by using the information from
a local anomaly detector and determining if any subset of the data has more anomalous
records than expected. This is distinct from the original formulation of WSARE, which
detects subsets with more total records than expected and does not consider whether each
individual record is anomalous.

3.2.1 Local Anomaly Detection

In this work, we use two local anomaly detection methods to score the records individually.
Our method of pattern detection uses the output of either of these algorithms to search for
patterns. We briefly describe both these methods of local anomaly detection.
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Bayesian Network Anomaly Detection We use the method described in §1.3.5. We
learn the structure and parameters of a Bayes Net using the training data, compute the
likelihood of each record in the test dataset given the Bayes Net model, and report test
records with unusually low likelihoods as potential anomalies.

Conditional Anomaly Detection As described in Chapter 2, in the Conditional Method
a score is then assigned to the test record t based on all r-values corresponding to all
possible pairs of attribute sets. The score is defined as the maximum value of the product
of r-values over all possible partitions of the attributes for record t. In our experiments
we use the parameter values k = 2 and α = 0.02 for the conditional method in most
cases. Here, k is the maximum set size of A or B. α is the threshold for the r-values to
be significant. For the KDD Cup 99 dataset (§3.3.3), we use k = 1 since it has a larger
number of attributes.

3.2.2 WSARE

The WSARE 2.0 method [Wong et al., 2002] searches over all possible rules in the dataset.
Each rule R can be written as R : A = aj , where A is a subset of attributes and
aj is an assignment of attribute values. WSARE considers rules with one component
(e.g. Country = Japan) or two components (e.g. Country = Japan AND Shipper =

ShipCo). It determines whether the count of cases that match the rule in the test dataset is
significantly different from the expected count determined by the training dataset. The sta-
tistical significance of each rule is determined by using a Fisher’s exact test on the two by
two table (Table 3.1), where C(R)test and C(R)train represent the numbers of test records
and training records corresponding to rule R, and Ctest and Ctrain denote the total numbers
of test and training records respectively.

To account for multiple hypothesis testing, these p-values are adjusted using a ran-
domization test. In a later version of the algorithm (WSARE-3) [Wong et al., 2003], the
authors consider determining the baseline using a Bayesian Network rather than directly
using the counts from the training dataset. We use the algorithm WSARE-2 with up to two
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Test Train

Match R C(R)test C(R)train

Do not match R Ctest − C(R)test Ctrain − C(R)train

Table 3.1: 2 × 2 Contingency Table for WSARE

component rules for comparing against our methods.

To understand the key difference between our current problem and that considered in
WSARE, let us first look at what we mean by an anomalous pattern. Here, there are two
factors to consider. The first factor is that each individual record is individually anomalous
with respect to some normal behavior. The second factor is the pattern formed by these
anomalies (defined by some constraint of similarity between them) which signifies that the
records are generated by the same underlying anomalous process. WSARE does not take
the anomalousness of each individual record’s attribute values into account, but instead
counts the number of records corresponding to a given rule and reports rules for which
these counts are anomalous. In our current work, an anomalous process can generate a
pattern of anomalous records that are similar with respect to a particular subset of the
attributes, but which are anomalous due to unusual values in any (potentially different) set
of attributes. This definition of a pattern is particularly useful when we have an adversarial
process creating the anomalies. The adversary might try to make the generated records
look as random as possible, but might be restricted to a particular set of fixed values of
some of the attributes. For example, in customs monitoring, a smuggler wants to smuggle
goods using a variety of methods to avoid detection, but they might have access to only a
particular port or shipping line. In such a case, detecting increased incidence of suspicious
activity corresponding to that subset of the data can alert us to the illegal activity.

3.2.3 Algorithm

To detect the presence of anomalies in this scenario, we first make use of a local anomaly
detector that can detect individual anomalies in a dataset. Any such detector may detect
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many false positives. In order to successfully determine if a subset of the test data has a
higher than expected concentration of true anomalies, we compare it to the corresponding
subset in the training data. If the number of positives in the subset of the test data is
significantly larger than what is expected from the training data, it signals the presence
of true positives clustered in that subset. The outline of our anomaly pattern detection
algorithm is given in Figure 3.1.

While searching for patterns of anomalies, we retain the concept of anomalousness of
individual records. In Step 1 of our algorithm we score all the records of both the test and
training dataset using one of the local anomaly detection algorithms described in §3.2.1.
The local anomaly detector requires baseline or training examples which correspond to the
normal behavior of the system. While scoring the test records, the training dataset is used
as the baseline. To score the training records, we use a leave-one-out approach, where the
entire training data excluding the current record is used as the baseline.

In Step 2 we choose the top PositiveRate fraction of the “most anomalous records”
in the training dataset. We set the threshold score of the local anomaly detector such that
the top PositiveRate fraction of records are flagged as anomalies in the training dataset.
In this case the training dataset is assumed to contain no true anomalies, and hence this
step fixes a desired false positive rate. We then use the local anomaly detector with the
same threshold score to detect anomalies in the test dataset. We would like to set the value
of PositiveRate such that most of the true anomalies in the test data have a higher score
than the threshold. We wish to compare the number of anomalies detected in subsets of
the test data to the false positive rate (in the training data) to the determine the presence of
patterns of true anomalies.

In Step 3 we search over all possible rules of the form R : A = aj . Here A denotes
any subset of attributes of size up to k and aj is the jth value combination of A. For exam-
ple, if A = {Country, Shipper}, aj can correspond to any fixed combination of Country
and Shipper Name. Each rule R defines subsets of the test and training datasets respec-
tively, corresponding to the records that match the rule. For each rule R, we determine
the number of records in the corresponding test and training subsets of the data (C(R)test

and C(R)train) and the count of positives detected by the local anomaly detector in those
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subsets (C(R)+
test and C(R)+

train).

Our null hypothesis is that the proportion of detected positives by the local anomaly
detector will be the same in the test and training datasets. When true positives are present
in the test dataset, the null hypothesis may be rejected, since we would expect to see a
higher proportion of detected positives in the affected subset of the data. To test these
hypotheses we use a one-sided Fisher’s Exact Test [Good, 2000] (using Stirling’s approx-
imation to calculate the factorials) on the 2 × 2 table (Table 3.2). We use a one-sided test
since our alternate hypothesis is that C(R)+

test is higher than expected. This gives us a
p-value for each such rule tested.

Test Train

Positives C(R)+
test C(R)+

train

Negatives C(R)test − C(R)+
test C(R)train − C(R)+

train

Table 3.2: 2 × 2 Contingency Table for Anomaly Pattern Detection

Since we are searching over all possible anomalous patterns rather than considering
isolated anomalies, we are performing multiple hypothesis tests, increasing the expected
number of false positives proportional to the number of tests performed. To compen-
sate for multiple testing, we use the False Discovery Rate (FDR) method [Benjamini and
Hochberg, 1995]. It is used to find a critical value for the hypothesis tests such that the
expected proportion of false positives is below α. In our experiments we use FDR with
α = 0.9. We use a high value of α because we want to compare the different methods over
a wide range of recall values. Using a lower value of α will give us fewer false positives,
but at the cost of a lower recall rate. In real-world applications, we can use an appropriate
value of α based on our desired false discovery rate.

Step 4 of our algorithm outputs the most anomalous patterns found in Step 3. Addi-
tionally, for comparison to the baseline method of the local anomaly detection that does
not consider patterns, we assign an anomalousness score for each individual record R in
the test data. The score of R is set equal to the score assigned by the local anomaly de-
tector if it belongs to one of the detected patterns. The significant patterns may cover only
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a small subset of the true anomalies present, giving a low recall rate. To compare the al-
gorithms over the entire range of recall values, we append the rest of the records to our
list of detected anomalies. To score these records we adjust the local anomaly detector
score such that they are less important than the records belonging to a pattern, but retain
the original ordering from the local anomaly detector.

3.2.4 Computational Speedup

Since we consider all possible attribute sets up to a size k, and all possible value combina-
tions corresponding to these sets, the total number of possible rules is O(nkak), where n

is the total number of attributes, and a is the maximum arity. We can have a large number
of such rules for large values of n or a. k is usually set to 2 or 3 in our experiments. To
be able to efficiently search over all the rules, we employ several computational speedup
techniques as described below:

Using AD Trees for Computing Counts

The required counts (C(R)+
test, C(R)+

train, C(R)test, and C(R)train) are conjunctive count-
ing queries on the dataset, and can be efficiently queried using an AD Tree [Moore and
Lee, 1998]. The AD Tree building algorithm scans the dataset once, and precomputes
information needed to answer every possible query in time independent of the number of
records. The parameter leaflist size can be adjusted to obtain a tradeoff between the mem-
ory used and the query response time. We build two separate AD-Trees for the training and
test datasets respectively. We append an extra Boolean attribute to each record indicating
whether it has been flagged by the local anomaly detector as a positive. This attribute is
used to retrieve the counts for the positive cases.
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Ignoring Rare Values

We can treat rare values in a way similar to what was done in Chapter 2. For computational
efficiency we can set a lower bound min size, on the size of the test subset (C(R)test)
corresponding to a rule R. This means we are only interested in patterns of anomalies
that affect subsets of the data larger than min size. If C(R)test < min size, we then
ignore the rule R. Predefining the value of min size can save us computational time and
memory, especially if some of the attributes have high arity. Consider the jth value xj

of the attribute X . If xj occurs less than min size times in the test dataset, then it is
easy to see that any rule R containing xj will be ignored. We call such values of the
attributes which occur less than min size times in the test dataset as rare values and all
other values are as common values. We can replace all the rare values of each attribute
by a generic rare value. While considering the possible rules we ignore this generic rare
value for each attribute. This scheme of keeping only the common values reduces the
arity of each attribute and significantly reduces the memory required to build the AD Tree.
This also reduces the total number of rules that we need to consider and hence gives us a
computational time saving as well. In our experiments, we have set min size = 10.

Pruning the Search Space

Since anomalies are usually rare, we use another simple trick to speed up computation. If
a rule R corresponding to some set of attribute values has no anomalies in the test data
(C(R)+

test = 0), then all rules R′ which contain the same set of attribute values (along with
some other attribute values) will also have C(R′)+

test = 0. Hence, once we find a rule R

that does not correspond to any anomalies in the test dataset, we can prune away all the
rules that are an extension of R.

3.3 Datasets

We evaluate the methods on the three datasets described below.
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3.3.1 PIERS Dataset

Our first dataset consists of records describing containers imported into the country from
various ports in Asia as described in §1.4.1.

Since there were no labeled anomalies in the original data, we create synthetic anoma-
lies by randomly altering attribute values for a subset of the data. We first partition the
dataset into training and testing sets. We randomly choose 10,000 records from the data as
a test set, and then choose 100,000 of the remaining records to form the training set. We
modify a random NumAnom records of the test set records to be anomalous patterns, as
described below.

Our goal is to identify patterns or groups of anomalies in the data. A pattern is defined
as a set of anomalous records which belong to a particular subset of the data, characterized
by one or more fixed values of the attribute(s). To create such patterns in the dataset, we
adopt the following procedure:

CreatePattern(Datatest, NumAnom, MinSetSize, PatternRate)

1. Initialize NumGenerated = 0.

2. Select a rule R : A = a where A is a set of up to k attributes, and a is any combina-
tion of values of those attributes, uniformly at random.

3. Select the set of records Data(R)test that match the rule R in Datatest.

4. If Size(Data(R)test) < MinSetSize, goto Step 2 and reselect a rule R.

5. Choose a random PatternRate fraction of records from Data(R)test. For each
record T which is selected (and as long as NumGenerated < NumAnom):

(a) Choose an attribute Xrand uniformly at random.

(b) Draw a random value valx of attribute Xrand from the marginal distribution of
values of X in Datatrain.

(c) Replace the value of Xrand in T by valx
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(d) Update NumGenerated = NumGenerated + 1.

6. If NumGenerated < NumAnom then goto step 2 else stop.

This algorithm creates anomalies in particular subsets of the data corresponding to
randomly chosen rules. We have a restriction on the minimum size of the subset of data
since very small patterns are almost indistinguishable from randomly chosen individual
records. We set MinSetSize = 200 for all our experiments. Any rule that matches less
than MinSetSize records in the test dataset is rejected. Once we choose a suitable rule
R, we affect a fixed fraction (PatternRate) of them to be anomalous. A high value of
PatternRate would mean that a large fraction of records corresponding to the rule R are
anomalous and make such patterns easier to detect by the pattern detector. Each record in
the pattern is anomalous in the sense that it has an attribute value changed randomly. This
breaks the relationship of that attribute with the rest of the attributes. Our goal here is to
use the similarity pattern in these anomalies to improve the performance of our detection
algorithm.

Anomalies are injected into this dataset using the method described above. We con-
sider one possible real world scenario where we might see such anomalous patterns. A
smuggler can try to smuggle in goods using various means, but might have access to only
a particular US port of arrival. Hence even if he tries to avoid detection by hiding the
smuggled containers randomly, the fact that an unusual number of suspicious cases are
seen at a particular port gives a strong indication of illegal activity.

3.3.2 Emergency Department Dataset

This real-world dataset contains records of patients visiting emergency departments (ED)
from hospitals around Allegheny county in the year 2004 as described in §1.4.4. Each
record consists of five categorical attributes: the hospital id, prodrome, age decile, home
zip code and the chief complaint class. The dataset is injected with simulated ED cases
resembling an anthrax release. The simulated cases of anthrax were produced by a state
of art simulator [Hogan et al., 2007] that implements a realistic simulation model of the
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effects of an airborne anthrax release on the number and spatial distribution of respiratory
ED cases. We treat the first two days when the attack symptoms begin to appear as the test
data, thus evaluating our ability to detect anthrax attacks within two days of the appearance
of symptoms. We train our model on the previous 90 days’ data.

3.3.3 KDD Cup 1999 Network Intrusion Detection Dataset

We have also evaluated APD on the KDD Cup 1999 data [KDDCup, 1999], which con-
tained a wide variety of intrusions simulated in a military network environment (described
in §1.4.2). The goal of the KDD dataset was to produce a good training set for learning
methods that use labeled data. Hence, in this case we have labeled anomalies (network at-
tacks) and the proportion of attack instances to normal ones is very large. To create more
realistic data, we have reduced the number of attack records to 1% of the test dataset. We
have run our algorithms on the 6 most common types of attacks - apache2, guess password,
mailbomb, neptune, smurf and snmpguess. Correspondingly, we created six different test
sets containing 1% records of the particular attack type, and 99% normal records. We use
the rest of the normal records for training our model.

3.4 Evaluation and Results

We compare the performance of our Anomaly Pattern Detection (APD) method to the
baseline method of just using the local anomaly detector. We compare the performance of
both the baseline methods described in section 3.2.3, choosing the better one to use as the
base method for pattern detection.

We note that our anomalous pattern detection algorithm is similar to running WSARE
on a dataset where each record is augmented by a binary indicator attribute L, denoting
the output of the local anomaly detector. But it differs from this augmented version of
WSARE (WSARE-AUG) in the following ways:

1. WSARE-AUG searches over all possible rules including ones which are not related

60



to the anomaly feature. The rules we consider always include the feature L.

2. We perform a one-sided significance test since we are interested only in increases in
the proportion of anomalies.

3. Our search over rules is different from WSARE-AUG. We search only over rules of
the form {L = 1}|R ({L = 1} conditioned on R), where the rule R can contain up
to k components. WSARE-AUG chooses the best one component rule C0 and then
finds the best two component rule {C0, C1} where the rules C0 | C1 and C1 | C0 are
both determined to be significant.

We also compare the anomaly detection performance of our method of pattern detec-
tion to both WSARE and WSARE-AUG.

The procedure for generating the test and train data and injecting anomalous patterns
is randomly repeated 50 to 100 times for each dataset. We run each algorithm on these
datasets in order to obtain 95% confidence intervals (computed as 1.96 × standard error)
on the performance measure. The evaluation criteria we use is the ability of each algorithm
to identify each individual anomaly correctly. We plot the detection precision, i.e. the ratio
of number of true positives to the total number of predicted positives, against the detection
rate, i.e. the proportion of total true anomalies that are detected. A point on the plot is
obtained by setting a particular threshold score ScoreT to flag anomalies. Any record
having a score greater than ScoreT is flagged as an anomaly. The corresponding precision
and detection rate are then calculated. By varying ScoreT we obtain the plot for the entire
range of detection rates. This threshold is varied independently for each of the methods.
Here, a higher curve denotes better performance, since it corresponds to a higher detection
precision for a given detection rate.

Figures 3.2(a) and 3.3(a) gives the performance plots using the PIERS dataset and
anomaly patterns generated using NumAnom = 100 and PatternRate = 0.1. This
gives a nominal detection precision of 0.01 if we randomly select records. The parameter
values used in the Anomaly Pattern Detection algorithm are: PositiveRate = 0.1, k = 2

and α = 0.9. All the plots also show the 95% confidence intervals for the performances.
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Figure 3.2(a) compares the performance of the two baseline methods and WSARE on
this dataset. We see that the conditional method performs best. The Bayesian Network
method performs quite poorly in this case. Since our method of pattern detection relies on
the output of a baseline local detection method, we choose the better performing method
for our experiments. Note that the detection precision of WSARE is almost the same as
the chance precision. This shows that WSARE is unable to detect the kind of anomalies
that we consider here. This is not surprising since we do not increase (or decrease) the
count of any particular subset of the data, which is what WSARE attempts to detect.

We ran WSARE-AUG (§3.2.3) on this dataset, augmenting each record with the out-
put from the local anomaly detector. In all cases, the most interesting rule detected by
WSARE-AUG is that there is a larger proportion of anomalies in the entire test dataset
as compared to the training dataset. Also, no other rules were reported containing the
component L = 1, where L is the augmented anomaly attribute. This gives a degenerate
result that all the anomalies detected by the local anomaly generator are actually anoma-
lies. So, in effect we do not get any improvement in performance using WSARE-AUG
over the baseline methods. This same effect is seen when WSARE-AUG is run on the
other datasets.

Figure 3.3(a) compares the performance of our proposed anomaly pattern detector
(APD) with the baseline method of conditional anomaly detection (§3.2.1) on the PIERS
data, with anomaly patterns generated using PatternRate = 0.1. In this case the pat-
tern detection algorithm uses the conditional method as its local anomaly detector. Figure
3.3(b) shows the performances when PatternRate = 0.2. We see that in both these
cases the pattern detection method performs significantly better (with a significance level
of α = 0.05) than the baseline. For the higher value of PatternRate we see a greater
improvement in performance as expected. We also evaluated the performance with the pa-
rameter PositiveRate varying between 0.05 and 0.3. The detection performance does not
vary much with different values of the parameter. In general, the value of this parameter
can be set based on our estimation of the proportion of anomalies that might be present in
the dataset.

Our goal in this work is to use the patterns formed by the anomalies to detect them
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Table 3.3: Normalized area under the curves for KDD Cup 99 Dataset comparing Baseline
and APD, with 95% CI

Attack Type Baseline APD

apache2 0.9636 ± 0.0057 0.9668 ± 0.0053

guess passwd 0.7316 ± 0.0133 0.7792 ± 0.0145

mailbomb 0.1782 ± 0.0104 0.2243 ± 0.014

neptune 0.9938 ± 0.003 0.9938 ± 0.003

smurf 0.6758 ± 0.0125 0.7662 ± 0.0131

snmpguess 0.9616 ± 0.0059 0.9773 ± 0.0045

more effectively (with fewer false positives). However to give a better understanding of
how well our algorithm can correctly identify the rules that generated the anomaly clusters
in the data, we perform an alternate evaluation. Since our datasets either have a large
number of attributes, or the attributes have very high arity, the number of possible rules
is very large. Also, due to the strong dependence between different variables, multiple
rules can correspond to very similar subsets of the data. Hence instead of trying to retrieve
the exact rules, we measure the similarity between the rules detected by APD and those
which were used to generate the anomalies as described in §3.3.1. We use an intuitive
similarity index to calculate the overlap between these two sets of rules. Let d1 and d2

denote the subsets of the data that matches the two sets of rules. Then the Jaccard index
[Jaccard, 1912] is defined as Size(d1∩d2)

Size(d1∪d2)
. A higher value of this index denotes a greater

degree of similarity between the rule sets. For the experiment corresponding to figure
3.3(a) the average Jaccard index of APD is 0.27. We can compare this with the average
Jaccard index of 0.15 for the null rule that matches all records in the test set. We achieve
an improvement by a factor of about 2 in this case.

Figure 3.2(b) shows the comparison of APD with the baseline methods and WSARE
on the emergency department dataset. Note that the WSARE algorithm was originally
developed to detect anomalies in this context. However, in Wong et. al. [Wong et al.,
2002] the evaluation criteria used was to detect the presence of increased counts of patients
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rather than to identify the particular patients showing anomalous behavior. We see that the
baseline method of using Bayes Net and WSARE perform very similarly. The conditional
method performs better than both these methods in the recall range [0,0.5]. The conditional
method does not assign a score to every record, but only scores the records that it flags as
anomalies. Hence, it does not extend beyond recall rate 0.5 as the remaining anomalies
are not detected by the method. We see that APD gives a significant improvement in
performance within the same range. The curve for APD also includes the rest of the
records (ones not flagged by the conditional method) appended in some random order.
This causes the curve to extend beyond recall rate 0.5, but decreases the precision rate
below the other methods in that range.

Figures 3.4(a) and 3.4(b) gives the comparison of APD with the conditional method for
attack types guess password and smurf in the KDD Cup 99 dataset. We have summarized
the results for the 6 attack types in table 3.3. It gives the normalized area under the curves
for the baseline conditional method and APD for the recall range [0.1,0.9]. We see that
APD gives a significant improvement in the detection precision for the attack types guess
password, mailbomb, smurf and snmpguess. The remaining two attack types apache2
and neptune are very easy to detect by the conditional method and APD does not give a
significant increase in precision.

3.5 Conclusions

We propose a new method to search for patterns of anomalies in large multidimensional
categorical datasets. Our method utilizes the output from a local anomaly detector to locate
subsets of the data that might be affected. We consider two such local anomaly detectors,
the Bayesian Network likelihood method, and conditional anomaly detection method. We
also note the similarity and differences of our proposed method of anomaly pattern detec-
tion (APD) to a rule based anomaly detector WSARE. We evaluate the performances of
these algorithms on three real world datasets with synthetic and real anomalies. We show
that APD performs significantly better at detecting anomalies over the other methods.
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We also note that the pattern search in APD is orthogonal to the local anomaly detec-
tion method. We can use any such local anomaly detector which is more appropriate for
a given domain. Finally, while we believe that the chosen BARD outbreak simulation is a
highly realistic model of anthrax release, evaluating our methods on real, known disease
outbreaks can provide more robust evidence of the usefulness of our method.
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Figure 3.1: Anomaly Pattern Detection (APD) Algorithm
Input Datasets: test dataset and training dataset

Parameters: PositiveRate, k, α

1. Use any local anomaly detector to score all the records in test dataset and train-

ing dataset.

2. Fix an anomaly score threshold using the parameter PositiveRate. Label all
records in the test and training datasets which are more anomalous than the
threshold to be anomalies.

3. For each possible rule R : A = aj , where aj is any value combination of any
subset of attributes A containing up to k attributes:

(a) Compute the counts in the 2 × 2 contingency table shown in Table 3.2.
These correspond to the number of records matching the rule R and the
number of positives detected in them for both the training and test datasets.

(b) Use Fisher’s exact test to determine the p-value of the alternate hypothesis
that the count C(R)+

test (number of detected positives in the test dataset that
match the rule R) is higher than what is expected under the independence
assumption (null hypothesis).

4. Output all patterns that have significantly higher test case anomalies. Use FDR
method (with parameter α) to determine the significant patterns.
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Figure 3.2: Detection precision vs. recall curves for PIERS and ED datasets
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Figure 3.3: PIERS dataset: Performance comparison between pattern detection and base-
line, with 95% confidence intervals
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Figure 3.4: KDD Cup 99: Performance comparison between pattern detection and baseline
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Chapter 4

Detecting Anomalous Groups in
Categorical Datasets

4.1 Introduction

In this chapter, we consider another scenario for detecting groups of anomalies in categor-
ical datasets. In Chapter 3, we considered the case when multiple anomalies generated by
a common process are loosely self-similar based on one (or a few) attribute values. We
also assumed that the individual anomalous records sufficiently stood out from the rest
on their own. In contrast, in certain situations, anomalous groups of highly self similar
records might be generated by a common process. For example, in the case of network
intrusion, the same task might be repeated a number of times to gain unauthorized access
to a system. In health monitoring, a disease outbreak can lead to a large number of disease
cases with almost identical features being reported. In these cases, the individual records
belonging to the group might not appear anomalous by itself, but as a group they stand
out from the rest. We propose a novel technique of Anomalous Group Detection (AGD)
to detect such groups of anomalous records in categorical valued datasets.

Our approach is a generalization of the spatial scan statistic, a commonly used method
for detecting clusters of increased counts in spatial data. We extend this framework to
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non-spatial datasets with discrete valued attributes, where the degree of anomalousness
of each record depends on its attribute values and we wish to find self-similar groups of
anomalous records. We model the relationship between the attributes using a probabilistic
model (e.g. Bayesian network), define a likelihood ratio statistic in terms of the pseudo-
likelihoods for the null and alternative hypotheses, and maximize this statistic over all
subsets of records. Since an exhaustive search over all such groups is computationally
infeasible, we propose an efficient (but approximate) search heuristic. We show that this
algorithm is able to accurately detect anomalous groups in real-world hospital, container
shipping and network connections data.

To formalize our problem, assume we have a sufficiently large training dataset which
defines the normal behavior of the system. We typically have unlabeled training data, in
which we assume that no anomalies are present, but our methods can tolerate the presence
of a small percentage of anomalies in the training set. Our goal is to detect the presence
of groups of anomalies in an unlabeled test dataset. There might be single or multiple
anomalous groups present, possibly generated by several distinct causes. We want to
detect the anomalous groups of records, while minimizing the false positive rate. This
chapter has been adapted from our paper submitted in KDD 2009 [Das et al., 2009].

4.2 Related work

Our proposed method can be thought of as generalizing two lines of previous research: the
use of Bayesian networks and other probabilistic models to detect individually anomalous
records in data, and the use of spatial scan statistics to detect clusters in spatial data. We
extend the former method by integrating information from groups of anomalous records,
and generalize the latter method from a simple univariate model (Poisson-distributed and
spatially labeled counts) to multivariate datasets.

The Bayesian Network anomaly detection method (§1.3.5) is used as a baseline algo-
rithm in our empirical studies. We also compare the performance of our proposed anoma-
lous group detection method to another individual record anomaly detector, the Condi-
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tional Method, described in Chapter 2.

One of the most important statistical tools for cluster detection is the spatial scan

statistic [Kulldorff and Nagarwalla, 1995, Kulldorff, 1997, Neill and Moore, 2005]. This
method searches over a given set of spatial regions, finding those regions which maximize
a likelihood ratio statistic and thus are most likely to be generated under the alternative hy-
pothesis of clustering rather than the null hypothesis of no clustering. Kulldorff’s frame-
work assumes that the count of data points in a region S is Poisson distributed with some
unknown rate of incidence q. Then the goal of the scan statistic is to find regions where the
incidence rate is significantly higher inside the region than outside. The statistic used for
this is the likelihood ratio F (S) = P (Data |H1(S))

P (Data |H0)
, where the null hypothesis H0 assumes

no clusters, and the alternative hypothesis H1(S) assumes a cluster in region S. Under H0,
we assume a uniform incidence rate qall, while under H1(S) we assume that the incidence
rate is higher inside region S than outside (i.e. qin > qout). The spatial scan in described
in more detail in §1.3.2.

For the spatial scan, each data point consists of a set of real-valued location attributes,
which can be mapped to a point in a Euclidean space, as well as a real-valued count. The
search regions are defined in terms of the location attributes, while the likelihood ratio
statistic is a function of the aggregate counts inside and outside a region. The spatial
scan searches over subsets of the data which are geographically contiguous. For compu-
tational efficiency, further size and shape restrictions may be imposed on the set of search
regions [Kulldorff, 1997].

Rule-based algorithms have been proposed to detect groups of records. They find
anomalous patterns by searching over rules of the form “A1 = v1 and A2 = v2” (e.g. Gender =

Male and Symptom = Cough), where each rule defines a subset of records with the given
attribute values. Anomaly Pattern Detection (APD) as described in Chapter 3, begins with
an individual anomaly detector and then uses the rule learning method to find groups of
records that have an abnormally high proportion of individual anomalies. What’s Strange
About Recent Events (WSARE) [Wong et al., 2003] compares the actual and expected
numbers of records fitting a rule using Fisher’s Exact Test, and finds rules (subsets of
records) with a higher or lower number of records than expected. We compare to both of
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these methods in our empirical studies.

The patterns detected by APD and WSARE are constrained to match a particular rule,
and therefore are not flexible enough to include arbitrary subsets of the records. Another
limitation of APD is that it can detect anomalous patterns only when the individual records
forming the pattern are anomalous enough to be detected by the individual anomaly de-
tector. We propose a method that can overcome the above limitations, finding arbitrary
subsets of records that may not be individually anomalous but are anomalous when con-
sidered together.

4.3 Anomalous group detection

We would like to generalize the methodology of spatial scan statistics to find anomalous
groups in arbitrary, non-spatial datasets with discrete valued attributes. This problem dif-
fers from spatial cluster detection in several respects. First, we do not have a defined set
of location attributes, and thus we can no longer predefine a set of search regions based
on geographical attributes such as size, shape, or contiguity. While we could conceivably
define a distance metric between records with categorical attributes, we do not have a di-
rect embedding of the data points in Euclidean space or a notion of adjacency between
different attribute values. Nevertheless, we want to formulate a measure of how well the
data points fit as a group based on the similarity between them. We must then search over
subsets of the data in order to find the most anomalous groups.

The second key difference is in the way we define the anomalousness of a data point
or a group of points. Scan statistics are usually applied to detect over-densities of records
in a given space. They assign the same level of interest or importance to each record, and
aggregate individual records to counts to determine the anomalousness of a cluster. In
our case, each record has many discrete-valued attributes rather than a single real-valued
count, and can have an inherent degree of anomalousness depending on its features. Most
records are generated from the “normal” (or usual) distribution of data and hence are not
interesting for our purpose. We assume that the normal behavior of the data is defined by
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a model learned from a training dataset. Here we are no longer trying to detect simple
over-densities of records in a certain feature space, but to detect groups of records that are
both anomalous and also self-similar in some respect.

Instead of treating these two issues independently, we propose an approach that han-
dles them simultaneously. As in the spatial scan statistic, our goal is to find a set of records
that maximizes the likelihood ratio statistic F (S) = P (Data |H1(S))

P (Data |H0)
, where H0 is the null

hypothesis that there are no anomalies present, and H1(S) is the alternative hypothesis
specifying that the set S is an anomalous group. We assume suitable probability distribu-
tion models for both the null and alternative hypothesis, and compute the data likelihoods
given these models. More precisely, we learn a probability distribution model from the
training dataset, which is assumed to contain no anomalies. Under the null hypothesis
H0, all data records are assumed to be drawn independently from this model. Under the
alternative hypothesis H1(S), the records contained in subset S are assumed to have been
drawn from a different probability model, while the rest of the data records are generated
from the null model. We assume that data points are conditionally independent given the
model, and thus records not contained in subset S have identical likelihoods given H1(S)

and given H0. Thus the likelihood ratio statistic simplifies to:

F (S) =
P (DataS |H1(S))

P (DataS |H0)
=

∏
i∈S P (Ri |H1(S))∏

i∈S P (Ri |H0)
(4.1)

where DataS represents the subset of the data S and Ri is the ith record in DataS .
We note that the probability model parameters, but not the structure, for the alternative
hypothesis H1(S) are learned directly from the records in DataS . Since the number of
records in group S may be small and we are using this data to fit a (potentially) large
number of model parameters, data sparsity is a serious problem. In particular, learning the
model parameters from the data DataS and evaluating the likelihood P (DataS |H1(S)),
results in overfitting of the model. Using this as a part of the scoring function leads to the
inclusion of a large number of irrelevant records in the best scoring group, as discussed in
§4.3.2.

We use a two part approach to dealing with the problem of overfitting for the alternative
hypothesis H1(S). First, we use Laplacian smoothing in the parameter estimation. Second,
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we use a “leave-one-out” method to compute the likelihood, which results in the following
pseudo-likelihood:

Ppseudo(DataS |H1(S)) =
∏
i∈S

P (Ri |H1(S − {Ri})) (4.2)

This means that while computing the likelihood of the record Ri under the alternate hy-
pothesis, we use a probability model with parameters learned from all the records in S

minus Ri. Since we do not use the same record to estimate the parameters and to evaluate
the likelihood, we expect to reduce the risk of over-fitting. We now define the group score
as:

F (S) =
Ppseudo(DataS |H1(S))

P (DataS |H0)
(4.3)

This form of pseudo-likelihood computation was first proposed by [Besag, 1975]. Al-
though in this case, the leave-one-out computation is with respect to the variables (or
attributes), and is an easily computable approximation to the true likelihood. Such leave-
one-out technique is also popular while estimating the kernel bandwidth of kernel density
estimators [Habbema et al., 1974, Duin, 1976]. While training a classifier, leave-one-out
cross validation is commonly used in order to avoid over-fitting [Stone, 1977].

This scoring metric gives a higher score to anomalous records, as well as setting a
constraint of similarity between the records in a group. If the records in S are similar to
each other, then the alternate hypothesis will be able to model them tightly. This will result
in a high value of the likelihood Ppseudo(DataS |H1(S)), thus increasing the score F (S).
Also, records that are poorly modeled by the null hypothesis will have a low value of the
likelihood P (DataS |H0), again increasing the group score F (S). Hence maximizing this
score leads to grouping of similar records and at the same time it prefers records that are
anomalous (i.e. records with low likelihood under the null hypothesis).

4.3.1 The AGD Algorithm

We will now describe our method for anomalous group detection (AGD). An overview of
the algorithm is given in Figure 1, and we now explain each step in detail. Although any
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1. Learn the probability model for the null hypothesis H0 from the training data.

2. For all subsets of the data S:

(a) For each Ri ∈ S:

i. Fit the alternate hypothesis probability model parameters using
Data(S−Ri)

ii. Compute the leave-one-out likelihood P (Ri |H1(S − {Ri})).
(b) Compute the group score,

F (S) =
∏

i∈S P (Ri |H1(S−{Ri}))∏
i∈S P (Ri |H0)

.

3. Output the groups with highest score.

4. Perform randomization testing to evaluate the statistical significance of the de-
tected groups.

Figure 4.1: Anomalous Group Detection Algorithm

probability distribution model can be used, we choose Bayesian Networks to model the
probability distribution, and will specifically refer to them in the following description.

Step 1 of our algorithm is to learn the Bayes Net corresponding to the null hypothe-
sis. We perform structure learning on the training dataset using the Optimal Reinsertion
algorithm [Moore and Wong, 2003]. We assume this same Bayes Net structure for both
H0 and H1(S). We then learn the conditional probability table parameters of H0 from the
training dataset using smoothed maximum likelihood estimation.

Let us consider a node corresponding to the variable Xm in the Bayes Net. Let XΠm

denote the set of variables corresponding to the parent nodes of Xm. The conditional
probability table of Xm has parameters corresponding to the conditional probability values
θmjk = P (Xm = j | XΠm = k). Here we need to estimate θmjk for each value of m, j

and k. To deal with sparsity of the training data, we apply Laplace smoothing to adjust
our estimate of each model parameter. We add 1

J
to each Nmjk (the number of instances
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in the training dataset with Xm = j and XΠm = k), where J is the arity of Xm. This
makes the total weight of the prior add up to one for each variable Xm and each set of
parent values k. The smoothed maximum likelihood estimates of the parameters are given
by θ̂mjk =

Nmjk+1/J∑
j′ (Nmj′k+1/J)

In Steps 2-3, we wish to find groups of records that maximize the likelihood ratio
score F (S). To do so, we search over all possible subsets of the test data. We note
that an exhaustive search over all such subsets would require exponential time, but we
will describe an efficient heuristic to make this search computationally feasible. For each
subset of the data S, the alternative hypothesis assumes that the records in subset S form
an anomalous group.

Step 2(a) of our algorithm computes the pseudo-likelihood of each record under the
alternate hypothesis. To compute the pseudo-likelihood, in Step 2(a)i we first fit the pa-
rameters of the Bayesian Network for the alternative hypothesis H1(S − {Ri}). These
parameters are estimated from the counts in the subset of the test dataset represented by
S − {Ri}. We follow an approach of smoothed maximum likelihood estimation similar
to Step 1 above. In Step 2(a)ii we perform inference on the learned alternate hypothesis
Bayesian Network model.

Step 2(b) of our algorithm computes the group likelihood ratio score F (S), assuming
conditional independence of the records given the models.

Note that Step 2(a) involves |S| iterations of fitting the model parameters and perform-
ing inference. In the case of a Bayesian Network model using previously cached counts
and a smoothed maximum likelihood estimation of parameters, we can perform this com-
putation in one step (independent of the size of the group S). Using the notation from the
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description of Step 1,

P (Ri |H1(S − {Ri}))

=
∏
m

[
Nmjk + 1/J − 1∑

j′(Nmj′k + 1/J)− 1

]

{j=Xm;k=XΠm}
(4.4)

Ppseudo(DataS |H1(S))

=
∏
m

∏

k

J∏
j=1

[
Nmjk + 1/J − 1∑

j′(Nmj′k + 1/J)− 1

]Nmjk

(4.5)

Here Nmjk denotes the corresponding counts in subset of data DataS . Notice that due to
the exponentiation term Nmjk, this computation can be performed in time proportional to
C, the number of non-zero values of Nmjk in DataS .

Step 3 of our algorithm outputs the highest scoring groups found in step 2. We
use these scores to score the dataset with a measure of anomalousness. We assign the
score of the most anomalous group detected as the score of the dataset: F ∗(Data) =

maxS∈Groups F (S). This is useful for distinguishing between datasets which contain anoma-
lous groups and those without anomalous groups, e.g. distinguishing disease outbreaks
from non-outbreak days.

Additionally, to identify individual records which are anomalies, we compute an anoma-
lousness score for each individual record R in the test data, by finding the highest scoring
group S∗(R) that contains R. We can then compute the score of record R as Score(R) =

F (S∗(R)). This gives a high score to any record that is contained in a highly anoma-
lous group, regardless of whether the record is itself anomalous or just similar to other
anomalous records.

In Step 4, we perform randomization testing (bootstrap) to evaluate the statistical sig-
nificance of the detected groups. To do so, we generate a large number Nrand of replica
datasets under the null hypothesis that no anomalous groups are present. For each replica,
we sample the training data uniformly at random to form a test dataset Drand having the
same number of records as the original test dataset, repeat steps 2 and 3 to find the highest
scoring groups in the replica dataset, and record the maximum group score F ∗(Drand). To
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compute the p-value of a given subset of records S, we can compare the score F (S) (from
the original test dataset) to the distribution of maximum group scores from the replica
datasets. The p-value is defined as Nbeat+1

Nrand+1
, where Nbeat is the number of replica datasets

with maximum group scores greater than F (S). Since we are performing the same search
procedure (maximization over subsets) for the original dataset and each replica dataset, the
randomization testing approach correctly adjusts for the multiple hypothesis tests resulting
from maximizing the score over many possible subsets.

We also note that, for a given dataset, the highest scoring subset will have the lowest
p-value, and hence the ranking of regions is unchanged by randomization testing. When
using the AGD method in practice, we can either choose a p-value threshold, and report
all regions with p-values below the threshold, or choose a score threshold, and report all
regions S with scores F (S) above the threshold. In our evaluations discussed below, we
have plotted the performance of AGD (and four other algorithms) over the entire range of
such thresholds, and compared the area under these curves. For this type of evaluation,
statistical significance testing by randomization is not necessary.

4.3.2 Search Heuristic

As noted previously, our method calls for searching over all possible subsets of the data.
However, an exhaustive search requires exponential time and is thus likely to be compu-
tationally infeasible. Instead, we perform an efficient (but approximate) heuristic search
in order to speed up the computation. More precisely, we adopt a greedy approach of
growing the groups. We grow linearly many groups, starting from each record as an initial
seed, and grow the group until no further additions can improve the likelihood ratio score.
The algorithm is as follows:

1. Initialize Groups ← {φ}

2. For each record Ri ∈ Datatest:

(a) Initialize S ← {Ri}.
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(b) While S has changed over the previous iteration and size(S) < MaxGroupSize:

i. Iterating over each record Rj ∈ Datatest − DataS , find the record that
maximizes the score F (S ∪ {Rj}). Let the maximizing record be Rmax.

ii. If F (S ∪ {Rmax}) > F (S) then set S = S ∪ {Rmax}; else Groups =

Groups ∪ S.

The anomalousness score of a record R in the test set is then defined as Score(R) =

maxS: S∈Groups, R∈S F (S).

The impact of using the pseudo-likelihood score can be clearly seen during this greedy
search procedure. When we use the full-likelihood scoring function as given by eqn. 4.1,
overfitting results in an increase of the group score even when a dissimilar record is added
to the group. This causes iteration 2(b) to keep adding records to the group until it reaches
a size of MaxGroupSize. In most cases this results in the addition of many dissimilar
records to the group before the iteration stops. The pseudo-likelihood scoring function
(eqn. 4.2) helps us avoid this problem. In this case, the group score is increased only by
the addition of records that are similar to the existing records within the group.

To evaluate the computational complexity of this search, let us consider a test set of
size n. We treat each record as the initial seed and greedily grow the groups to some
maximum size G. In our experiments below, we have used G = 400. Hence Step 2(b) is
repeated at most nG times. We iterate over each record to find the one that best fits the
group. Each such comparison can be done in time C, the number of non-zero values of
Nmjk in DataS . Hence, the overall complexity of the algorithm is O(n2GC). To make
the algorithm efficient, we use a bounding strategy to prune the set of records for which
we compute the score F (S ∪ {Rj}) in step 2(b)i. Based on the current best candidate for
inclusion in the group, it is possible to compute an upper bound on the null hypothesis like-
lihood score for any other candidate. Only records that have a null hypothesis likelihood
score less than this bound need to be considered. As we search through the records, we
can dynamically update this upper bound based on the current best candidate. In certain
cases, it allows us to significantly speedup the computation to determine the best record to
add to a group.
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4.3.3 Comparison to spatial scan

As noted above, our AGD algorithm can be thought of as a generalization of the spatial
scan statistic [Kulldorff, 1997] to arbitrary multivariate datasets without predefined loca-
tion or count attributes. Here we summarize how the original spatial scan differs from our
algorithm described in Figure 4.3.1:

1. The spatial scan searches over a set of contiguous spatial regions that are predefined
based on the location attributes of the data, while we perform a heuristic search over
arbitrary subsets of the data.

2. In Step 1, the spatial scan learns only a single parameter (the uniform incidence rate
qall) for the null hypothesis, rather than a probability model relating all variables
in the multivariate dataset. Similarly, in Step 2(a)i, the spatial scan learns only two
parameters (qin and qout) for H1(S). In Step 2(a)ii, it computes the likelihoods under
the null and alternative hypotheses using a simple Poisson count model, rather than
performing inference on a probability model.

4.4 Datasets

1. PIERS Dataset: Our first dataset consists of records describing containers imported
into the country (described in §1.4.1). Since there were no labels in the original data, we
create synthetic anomalies by randomly flipping attribute values. We first create a random
partition of the dataset into training (100,000 records) and test (1000 records) sets. We
modify a random 5% of the test set records to be an anomalous group. To create a group
of anomalies G, we first make SizeG identical copies of a randomly chosen record. Each
record in the group is then modified by changing the value of up to two randomly chosen
attributes. The new values are drawn from the marginal distribution of the corresponding
attribute in the training dataset. The records within the group are similar to each other
since each pair of records in G differs by at most four attribute values. Each record in the
group is anomalous because randomly changing an attribute value breaks the relationship
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of that attribute with the rest of the attributes. One possible real world scenario where
such an anomalous group might occur is when a smuggler smuggles goods using similar
methods which have proved successful in the past.

2. Emergency Department Dataset: This real-world dataset contains records of pa-
tients visiting Emergency Departments (ED) from hospitals around Allegheny County in
the year 2004 (described in §1.4.4). The dataset is injected with simulated ED cases re-
sembling an anthrax release. The simulated cases of anthrax were produced by a state-of-
the-art simulator [Hogan et al., 2007] that implements a realistic simulation model of the
effects of an airborne anthrax release on the number and spatial distribution of respiratory
ED cases. We treat the first two days when the attack symptoms begin to appear as the test
data, thus evaluating our ability to detect anthrax attacks within two days of the appearance
of symptoms. We train our model on the previous 90 days’ data. Note that while we have
a model for anthrax release, AGD is not given any information from it. Thus this dataset
tests our ability to recognize a realistic, but previously unknown, disease outbreak.

3. KDD Cup 1999 Network Intrusion Detection Dataset: We have also evaluated
AGD on the KDD Cup 1999 data [KDDCup, 1999], which contained a wide variety of
intrusions simulated in a military network environment (described in §1.4.2). Using all
the features in the detection task causes most of the intrusion records to individually stand
out from the normal ones as seen in Chapters 2 and 3. Hence, we chose a subset of 22
features that includes the basic features of individual TCP connections and the content
features suggested by domain knowledge. This evaluation setup creates groups of self-
similar anomalous records that are individually anomalous to a lesser degree. The real
valued features were discretized to 5 levels. The goal of the KDD dataset was to produce
a good training set for learning methods that use labeled data. Hence, in this case we
have labeled anomalies (network attacks) and the proportion of attack instances to normal
ones is very large. To create more realistic data, we have reduced the number of attack
records to 10% of the test dataset. We have run our algorithms on the 7 most common
types of attacks - apache2, guess password, mailbomb, neptune, smurf, snmpguess and
warezmaster. Correspondingly, we created seven different test sets containing 10% records
of the particular attack type, and 90% normal records. We use the rest of the normal records
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(b) PIERS dataset

Figure 4.2: Algorithm performances for detection of datasets with anomalies

for training our model.

4.5 Evaluation

We compare the performance of our AGD method to the baseline method, which detects
individual records with low likelihoods given the null hypothesis Bayes Net model. In our
implementation of the baseline method, we use Optimal Reinsertion [Moore and Wong,
2003] to learn the structure, and perform smoothed maximum likelihood estimation of the
network parameters. We also compare the performance to three other related methods dis-
cussed in Section 4.2: the Conditional Method [Das and Schneider, 2007], WSARE [Wong
et al., 2003], and APD [Das et al., 2008]. We note that the better-performing of the two
individual anomaly detectors was used to detect individually anomalous records for APD
on each dataset (i.e. we used the Conditional Method for the ED and PIERS datasets, and
the Bayes Net method for the KDD Cup datasets).

The procedure for randomly generating the test data and injecting anomalous groups
in them was repeated 50 times for each of the nine experiments (ED, PIERS, and seven
different KDD Cup attack types). For each experiment, we also produced 50 additional
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(c) KDD Cup 99: guess password
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(d) KDD Cup 99: mailbomb

Figure 4.3: Comparison of detection precision vs. recall for AGD and baseline methods,
with standard errors. The dashed line at constant precision is the average performance of
the “chance” algorithm that chooses records at random.
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Table 4.1: Normalized area under the true positive rate vs. false positive rate curves for
AGD and related methods, with standard errors

Dataset AGD Bayesian Network Conditional Method APD WSARE

ED 0.932 ± 0.026 0.793 ± 0.041 0.910 ± 0.034 0.976 ± 0.018 0.984 ± 0.01

PIERS 0.988 ± 0.006 0.926 ± 0.025 0.994 ± 0.003 1.0 ± 0.0 0.970 ± 0.019

apache2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.727 ± 0.051

guess passwd 1.0 ± 0.0 1.0 ± 0.0 0.957 ± 0.016 1.0 ± 0.0 0.610 ± 0.045

mailbomb 0.788 ± 0.02 0.82 ± 0.023 0.276 ± 0.036 0.936 ± 0.03 0.54 ± 0.048

neptune 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.695 ± 0.055

smurf 1.0 ± 0.0 1.0 ± 0.0 0.286 ± 0.031 1.0 ± 0.0 0.781 ± 0.048

snmpguess 1.0 ± 0.0 0.962 ± 0.023 0.294 ± 0.034 0.935 ± 0.02 0.679 ± 0.052

warezmaster 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.789 ± 0.042

sets of test data (of the same size) with no anomalies injected. These runs are helpful in
determining the ability of the algorithms to differentiate between entire datasets containing
anomalous groups and those without anomalous groups.

We evaluate the performance of the algorithms in two different ways. First, we ex-
amine the ability of the algorithms to identify and distinguish between entire test datasets
which have anomalous groups against ones which are normal (i.e. do not have any anoma-
lies). In the Emergency Department data, for example, this corresponds to distinguish-
ing between an anthrax attack occurring and no attack occurring. As noted above, the
algorithms are run over 100 test datasets, where half of these datasets contain injected
anomalies.

For the three methods that explicitly search over sets of records, the dataset score is
set as the score of the most anomalous group (AGD), pattern (APD), or rule (WSARE)
detected. For two methods that score records individually (the baseline Bayesian Network
method and the Conditional Method), the dataset score is calculated as the sum of the
individual scores of all the records. Note that since these methods do not model groups
of anomalies, summing up the individual record scores (as opposed to considering the
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Table 4.2: Area under the detection precision vs. recall curves for AGD and related meth-
ods, with standard errors

Dataset AGD Bayesian Network Conditional Method APD WSARE

ED 0.729 ± 0.032 0.479 ± 0.027 0.375 ± 0.026 0.420 ± 0.027 0.465 ± 0.033

PIERS 0.957 ± 0.014 0.429 ± 0.053 0.706 ± 0.045 0.720 ± 0.043 0.053 ± 0.003

apache2 1.0 ± 0.0 0.973 ± 0.003 0.951 ± 0.004 0.882 ± 0.021 0.215 ± 0.042

guess passwd 0.991 ± 0.002 0.773 ± 0.008 0.124 ± 0.005 0.804 ± 0.013 0.205 ± 0.041

mailbomb 0.587 ± 0.007 0.136 ± 0.001 0.086 ± 0.001 0.329 ± 0.019 0.146 ± 0.022

neptune 0.993 ± 0.002 0.984 ± 0.003 1.0 ± 0.0 0.986 ± 0.003 0.217 ± 0.030

smurf 0.974 ± 0.003 0.640 ± 0.006 0.089 ± 0.001 0.889 ± 0.015 0.237 ± 0.032

snmpguess 0.987 ± 0.002 0.288 ± 0.002 0.087 ± 0.001 0.521 ± 0.030 0.266 ± 0.034

warezmaster 0.892 ± 0.014 0.852 ± 0.009 0.430 ± 0.014 0.677 ± 0.034 0.141 ± 0.021

single most anomalous record score) gives significantly better detection performance. We
then examine each method’s tradeoff between its false positive rate (proportion of datasets
without anomalies that were falsely detected as being anomalous) and its true positive rate
(proportion of datasets with anomalies that were correctly detected as being anomalous).
This is the standard ROC curve: a higher curve denotes better detection performance, since
it corresponds to a higher true positive rate for a given false positive rate. The area under
the ROC curve (AUC) can be used as a summary measure, where higher AUC corresponds
to better average performance.

For the 50 datasets that contain anomalies, we also evaluate the ability of each algo-
rithm to identify which individual records were anomalous. For example, in the Emer-
gency Department dataset, this corresponds to identifying which patients have been af-
fected by the anthrax attack and which patients are in the Emergency Department due to
other causes. We plot the detection precision, i.e. the ratio of number of true positives to
the total number of predicted positives, against the detection rate, i.e. the proportion of to-
tal true anomalies that are detected. The plots are generated by varying the threshold used
to flag anomalies. The standard error estimates are also shown in the plots. Here, a higher
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curve denotes better performance, since it corresponds to a higher detection precision for
a given detection rate.

The Bayesian Network method and the Conditional Method assign a anomalousness
score to each individual record which can be directly used to perform this evaluation. For
the rest of the methods, the score of a record is assigned as the score of the most anomalous
group (AGD), pattern (APD) or rule (WSARE) that it belongs to.

4.6 Results

We first examine the performances of the algorithms in differentiating between test datasets
that contain anomalous groups and datasets without injected anomalies. Figures 4.2(a) and
4.2(b) show the ROC curves for the ED and PIERS datasets respectively, and Table 4.1
shows the area under the ROC curve (AUC) for all nine experiments (ED, PIERS, and the
seven attack types for KDD Cup).

We can see that, for both the ED and PIERS datasets, AGD performs better than the
baseline Bayesian Network method, having a greater true positive rate for a given false
positive rate. The AGD method has significantly larger area under the curve than the base-
line method (using a paired t-test, α = 0.05) in both cases. However in both these cases
we observe that APD performs better than AGD. For the KDD Cup network intrusion
dataset, AGD is able to perfectly differentiate the datasets (i.e., has a true positive rate = 1
for all false positive rates) for all attack types except mailbomb. AGD also performs well
across all nine experiments as compared to APD, WSARE, and the Conditional Method.
However, we see that for the Emergency Department data, WSARE gives us the best per-
formance. This is not very surprising, since WSARE was originally developed to detect
outbreaks among patients admitted to Emergency Departments, and WSARE performs
relatively poorly for the other experiments. APD performs similarly to AGD for this eval-
uation, but as we demonstrate below, AGD performs substantially better on identifying
anomalous records.

Next, we look at the performances of the algorithms in identifying anomalous records
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Table 4.3: Comparison of AUCs for precision vs. recall plots for AGD and APD on
datasets with different group sizes and group self-similarity

Method Type of injected anomalies 50 25 10

AGD Self-similar group 0.957 ± 0.014 0.581 ± 0.051 0.524 ± 0.058
Individual anomalies 0.300 ± 0.017 0.183 ± 0.015 0.089 ± 0.015

APD Self-similar group 0.720 ± 0.043 0.581 ± 0.046 0.638 ± 0.054
Individual anomalies 0.471 ± 0.025 0.396 ± 0.031 0.268 ± 0.035

in the datasets that contain anomalies. Figure 3 shows the relative performance of the five
methods on the ED and PIERS datasets, as well as two of the seven KDD Cup experiments
(guess password and mailbomb). In all of the plots, the baseline performance of randomly
choosing which records are anomalous is shown by a dashed line. Table 4.2 gives the
normalized area under the curve for the detection rate interval [0.1, 0.9], with standard
errors, for each method on all nine experiments.

We see that AGD performed significantly better than the baseline Bayes Net method
for all nine experiments, demonstrating that using the group information substantially im-
proves our ability to detect which records are anomalous. On eight of the nine exper-
iments, AGD also performed significantly better than the three related methods (APD,
WSARE, and the Conditional Method). The one exception was the KDD Cup neptune at-
tack, where the Conditional Method achieved perfect performance (AUC = 1) while AGD
achieved near-perfect performance (AUC = 0.993). All differences in AUCs between the
best method (performance shown in bold font) and second-best method were found to be
significant at α = 0.05 (using a paired t-test).

We also evaluate how the size and self-similarity of the anomalous groups impact the
relative performance of detection methods APD and AGD. Table 4.3 gives the AUC for the
task of identifying anomalous records in the PIERS dataset. We vary the size of the group
(SizeG = 50, 25, 10) by choosing different proportion of test records to be modified as
anomalies. We also evaluate the performance of both the algorithms when the anomalous
records are not self-similar (randomly chosen records are modified to be anomalous). We
see that AGD performs best when the anomalous groups are larger and more self-similar,
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while APD outperforms AGD for detecting smaller groups where each individual record
in the group is anomalous. When the anomalies do not form a self-similar group, AGD
performs very poorly.

In the extreme case of a group consisting of a single, highly anomalous record, we
would expect individual anomaly detection methods such as the Conditional Method to
outperform both APD and AGD.

4.7 Discussion

We note that, instead of using the maximum likelihood estimates of the parameters in
§4.3, we have also explored the use of a Bayesian approach. In this approach, we consider
a Dirichlet prior distribution over the parameters, and compute the marginal likelihood of
the data as the score function F (S). From a theoretical standpoint, it would seem that
this approach might lessen the effect of overfitting while computing the likelihood under
the alternate hypothesis. However, our preliminary empirical results indicate that using
the marginal likelihood scoring function is not very effective at addressing overfitting, and
the resulting groups still grow without bound (as was the case for the original maximum
likelihood approach, motivating our use of the pseudo-likelihood). When we consider the
marginal likelihood approach, the pseudo-likelihood is no longer well defined, since the
likelihood of the data can no longer be expressed as a product of the individual record
likelihoods when integrated over the multinomial parameters. Hence we chose to use the
maximum likelihood, rather than marginal likelihood, estimates of the multinomial param-
eters in our pseudo-likelihood score function. Another possibility that can be explored is
to use a prior probability over the groups that decreases with the size of the group. This
can help in limiting the group size instead of allowing it to grow without bound.

One of the main drawback of AGD is its high computational complexity as mentioned
in §4.3.2. In order to perform a faster search, it might be possible to restrict the search
space based on some similarity metric defined over the categorical values. There are sev-
eral methods in literature that aims to compute a distance metric over symbolic values.
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[Eiter and Mannila, 1997] computes a distance metric over any possible subset of symbolic
values. [Palmer and Faloutsos, 2003] proposes an electricity based external similarity of
categorical attributes.

4.8 Conclusions

In this work we describe a method of generalizing likelihood based anomaly detection (us-
ing Bayesian Networks) by integrating the information about groups of anomalous records.
We evaluate the methods on three real-world datasets, injected with simulated and real
anomalies. The performance is evaluated for the tasks of detecting individual anomalous
records and distinguishing between datasets having or not having anomalous groups. The
Anomalous Group Detection method gives significantly better detection performance over
the baseline method for both of these tasks. Additionally, under certain assumptions, AGD
is shown to outperform three previously proposed methods (WSARE, APD, and the Con-
ditional Method), substantially improving the identification of anomalous records for all
three datasets.
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Chapter 5

Detecting Spatio-Temporal Patterns

5.1 Introduction

So far, we have considered the unsupervised problem of detecting any behavior that is
different from the normal or usual behavior of the system. We now focus on the semi-
supervised case of detecting of certain given types of events that affect the data in char-
acteristic patterns. In particular we are interested in characterizing and detecting specific
spatio-temporal patterns which correspond to certain event types in datasets with space
and time components.

The Spatial scan statistic (described in §1.3.2) is a popular method used to detect spa-
tial clusters of increased counts. It has also been extended to include the time domain to
scan over space-time regions [Kulldorff, 2001, Neill et al., 2005c]. These methods gener-
ally assume a frequentist framework, and perform maximum likelihood fitting of the null
and alternate hypotheses parameters. In [Neill and Cooper, 2009] this is extended to a
multivariate Bayesian framework. These methods assume a uniform increase of counts
(e.g. number of emergency department patients or over the counter sales of medicines in
the affected region) over the affected space-time region, and that the affected region does
not change with time, over the given time window. These simplifying assumptions can be
too restrictive for some types of events. By limiting the effects to be constant over the time
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Figure 5.1: Data coverage of the OTC sales data in the eastern part of United States

window, it is not able to model events that have both increasing and decreasing effects over
time. Additionally, it is not able to differentiate between event types that have different
rates of increase (or decrease) of counts. The affected region might expand or contract
with time, or more significantly the effect might move to different regions with time.

In this chapter, our main contribution is the generalization of spatio-temporal scan
statistics to detect time varying patterns, learned in a semi-supervised framework. We
consider two time varying effects. First, the counts at a particular location affected by an
event can have a time dependent variation pattern (for example the pattern shown in Figure
5.3) and second, the event can affect distinct spatial regions over time. An example of such
an event type is described below.
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We have data of the daily counts of sale of eight different categories of over the counter
sales of medicines in stores throughout the US. The data is aggregated at the zip-code level
due to privacy concerns. Figure 5.1 shows the data coverage over zip codes in the eastern
part of United States. Zip codes for which data is available are shown in black. The obvi-
ous use of this data is to detect outbreaks of diseases as investigated in [Goldenberg et al.,
2002]. The main limitation in this kind of evaluation is that we do not have any labeled
disease outbreaks in this data. Hence, all the evaluations depend on artificial injects of
outbreaks. We are interested in events that have a time-varying effect on the counts, and
affects a spatial region that moves with time. Our observation of the data indicated that
there are significant patterns in the data corresponding to inclement weather. Specifically,
a region that is hit by a hurricane exhibits a characteristic temporal pattern of OTC sales
(shown in Figure 5.3). Since hurricane warnings are quite accurate, we see a sudden in-
crease in OTC sales just before the hurricane strike. This is followed by a very significant
decrease of sales on the day the hurricane passes over the region. Presumably this is be-
cause very few people venture out of their homes and/or the stores close in such extreme
weather. The number of sales again comes back to normal within a few days. Also, the
hurricane moves with time (shown in Figure 5.2) and affects different spatial regions over
time. Note that different areas may be affected at different start times but then undergo the
same characteristic temporal pattern: Figure 5.3 shows an example where some locations’
temporal trends (x0) lead others (x1) by one day. The National Hurricane Center [NHC]
has a comprehensive archive of past hurricane strikes affecting locations within the coun-
try. Because of the lack of accurate labels for any other event type in this data, we use
the example of hurricane strikes to evaluate our algorithm. We assume a semi-supervised
framework, where a small set of locations are labeled by the user as belonging to a par-
ticular event type. Our algorithm aims to use this partial labeling to learn a model for the
event, and detect other occurrences of similar events in the data. Although we evaluate our
methods on examples of hurricane strikes present in the data, this method can be useful
in more practical detection problems. For example, in case of an airborne anthrax release
[Hogan et al., 2007], we can track the effect of the outbreak as it spreads to different re-
gions. Also, it is possible to detect and differentiate between different disease types based
on the rate at which it affects a population.
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A Bayesian version of the scan statistics is presented in [Neill et al., 2005b] and
[Makatchev and Neill, 2008], where the null and alternate hypotheses are modeled by
a hierarchical Bayesian structure. A further generalization of this method is the Multivari-
ate Bayesian Scan Statistics (MBSS) framework presented in [Neill et al., 2007] and [Neill
and Cooper, 2009], aimed at detecting specific event types in multivariate spatio-temporal
data. Events are characterized by their effect on counts of observation in a particular space-
time region. We note that MBSS assumes that an event causes a constant factor increase
in the counts and that the affected region remains constant over the relevant time window.

The main contributing ideas in this chapter (incorporating time-varying effects and
spatially dependent lags into the event detection setting) can be viewed as a generalization
of space-time scan statistics, orthogonal to the Bayesian extension. For example, [Neill
et al., 2005a] present a simple frequentist extension of the space-time scan statistic where
the effect increases monotonically over time and [Jiang et al., 2008] considers a linear
increase over time. However, since MBSS is currently one of the most general methods
for space-time scan, we implement our ideas of detecting time varying pattern as a gener-
alization of this framework. Our proposed method: Time Varying Multivariate Bayesian
Scan Statistics (TV-MBSS) is able to model these time varying effects in the MBSS frame-
work. Therefore, we start with a detailed description of the MBSS framework. We then
describe our contribution: the two time varying effects that generalize this framework. We
also present a semi-supervised learning algorithm to learn the time varying effects of an
event. We show the evaluation of our algorithm on the example of hurricanes strikes, and
compare the performance with that of MBSS.

5.2 Multivariate Bayesian Scan Statistics

This section gives a detailed description of the MBSS method and is adapted from [Neill
and Cooper, 2009].

We are given a dataset D consisting of multiple data streams Dm, for m = 1 . . . M .
Each data stream consists of spatial time series data collected at a set of spatial locations
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Figure 5.2: Best track positions of Hurricane Frances, Aug-Sept 2004

si, for i = 1 . . . I . For each stream Dm and location si, we have a time series of counts
ct
i,m, for t = 0 . . . T . For example, in disease surveillance, we typically have data collected

on a daily basis, and aggregated at the zip code level due to data privacy concerns. Thus a
given count ct

i,m might represent the number of respiratory emergency department visits,
or the number of cough/cold drugs sold, for a given zip code on a given day.

As noted by [Neill and Cooper, 2009], the goals of the MBSS framework are event
detection and characterization: to detect any relevant events occurring in the data, identify
the type of event, and determine the event duration and affected locations. Thus it needs
to compare the set of alternative hypotheses H1(S, Ek), each representing the occurrence
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Figure 5.3: Temporal effects pattern on OTC medicine sales corresponding to a hurricane
strike (Frances)

of some event of type Ek in some space-time region S (which is a collection of locations,
each over some time duration), against the null hypothesis H0 that no events have occurred.
It is assumed that the set of event types E = {Ek}, for k = 1 . . . K, is given, and that these
events are mutually exclusive (i.e. at most one event occurs in the data). Moreover, each
distinct hypothesis H1(S, Ek) assumes that the given event type Ek has affected all and
only those locations si ∈ S, and thus all hypotheses H1(S, Ek) are mutually exclusive.

In the Bayesian framework, the goal is to compute the posterior probability Pr(H1(S, Ek)|D)

that each event type Ek has affected each space-time region S, as well as the posterior
probability Pr(H0 |D) that no event has occurred. Applying Bayes’ Theorem to compute
the posterior probability of each hypothesis:

Pr(H1(S, Ek) |D) =
Pr(D |H1(S, Ek))Pr(H1(S, Ek))

Pr(D)
(5.1)
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Pr(H0 |D) =
Pr(D |H0)Pr(H0)

Pr(D)
(5.2)

In this expression, the posterior probability of each hypothesis is normalized by the to-
tal probability of the data, Pr(D) = Pr(D|H0)Pr(H0)+

∑
S,Ek

Pr(D|H1(S, Ek))Pr(H1(S, Ek)).

Since the goal is to compare the posterior probability values for each event type and
the null hypothesis, we can use the following posterior likelihood ratio:

Pr(H1(S,Ek) |D)

Pr(H0 |D)
=

Pr(D |H1(S, Ek))

Pr(D |H0)

Pr(H1(S, Ek)

Pr(H0)
(5.3)

This formulation is useful in practice since it is easier to compute the likelihood ratio
terms than computing the actual likelihood values. Thus, this ratio of posterior probabili-
ties is used as a scoring metric for comparison.

Finally, the posterior probability that a location si is affected by the event Ek is given
by:

Pr(H1(si, Ek |D)) =
∑

S:si∈S

Pr(H1(S, Ek) |D) (5.4)

In the following sections, we consider how the priors Pr(H) and the likelihoods Pr(D|H)

can be computed for each hypothesis under consideration.

Each prior probability Pr(H1(S, Ek)) can be decomposed as the product of the prior
probability of event type Ek and the conditional probability that subset S is affected by
Ek: Pr(H1(S, Ek)) = Pr(Ek)Pr(H1(S,Ek) |Ek). In this expression, Pr(Ek) represents the
overall prevalence of event type Ek, while Pr(H1(S, Ek) | Ek) represents its distribution
in space and time. As noted above, we assume that all event types are mutually exclusive,
so that Pr(H0) +

∑
k Pr(Ek) = 1. We also assume that each event only affects a single

space-time region S, so that
∑

S Pr(H1(S, Ek) | Ek) = 1 for each event type Ek.

We assume a uniform prior over event types. In this case, we have Pr(H0) = 0.99,
and Pr(Ek) = 0.01

K
for all k = 1 . . . K. Similarly, for the distribution of a given event type

over regions S, we assume a uniform region prior Pr(H1(S, Ek) | Ek) = 1
NS

, where NS is
the total number of space-time regions. Thus we have prior probabilities Pr(H1(S,Ek)) =
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0.01
KNS

for all S and Ek under consideration. Alternatively, if we have a sufficient amount of
labeled training data, these prior values can be learned from it.

Figure 5.4: Bayesian network representation of the MBSS method. Solid ovals represent
observed quantities, and dashed ovals represent hidden quantities

5.2.1 Likelihood computation

The counts ct
i,m are assumed to be generated by an hierarchical Gamma Poisson model

as shown in Figure 5.4. The event type k is drawn from a multinomial distribution. The
region of effect S depends on the event type. The effects of an event H1(S,Ek) are deter-
mined by xt

i,m for each location si, data stream Dm, and time step t. These effects are mul-
tiplicative and increase the value of each count ct

i,m by a factor of xt
i,m, and thus xt

i,m = 1

would signify no effect of the event for the given location, data stream and time step. For
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the null hypothesis H0, xt
i,m is assumed to be 1 everywhere. For an event H1(S,Ek), the

effects are assumed to be constant within all the locations si ∈ S and over the time window
of the affected space time region. In this case, the effects can be represented by a vector
x = (x1 . . . xM) representing the effects on the event on each data stream Dm. The data
likelihood for the event can then be represented as the marginal probability value:

Pr(D |H1(S, Ek)) =
∑
X

Pr(D |X)Pr(X |H1(S,Ek)) (5.5)

The relative risk qt
i,m has a Gamma distribution with parameters {xt

i,mαm, βm}. The
count ct

i,m is drawn from a Poisson distribution with mean qt
i,mbt

i,m. Here the parameter
priors αm and βm are learned from the data using a “parametric empirical Bayes” (or
moment matching) procedure as described in [Neill and Cooper, 2009]. bt

i,m is the baseline
counts that represents the expected value of ct

i,m assuming that no events are taking place,
and is learned from time series analysis of historical data. The method used here is a
28-day moving average value, adjusted for a day of the week effect.

Marginalizing over the values of the relative risk, we see that each count ct
i,m follows a

negative binomial distribution with parameters xt
i,mαm and βm

βm+bt
i,m

. Since the counts are
conditionally independent given the values of bt

i,m, xt
i,m, αm, and βm, the likelihood of the

entire dataset D = {ct
i,m} for a given set of effects X = {xt

i,m} is the product of these
conditional probabilities:

Pr(D |X) =
∏
i,m,t

Pr(ct
i,m | bt

i,m, xt
i,m, αm, βm)

∝
∏
i,m,t

(
βm

βm + bt
i,m

)xt
i,mαm Γ(xt

i,mαm + ct
i,m)

Γ(xt
i,mαm)

(5.6)

In this expression, terms not dependent on the xt
i,m have been removed, since these

are constant for all hypotheses under consideration. For the null hypothesis H0, we have
xt

i,m = 1 everywhere:

Pr(D |H0) ∝
∏
i,m,t

(
βm

βm + bt
i,m

)αm Γ(αm + ct
i,m)

Γ(αm)
(5.7)
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The probability distribution Pr(X | H1(S, Ek)) is modeled as follows. The model is
parameterized in terms of the average effects x̄k,m of each event type Ek on each data
stream Dm and the event magnitude θ:

xθ
m = 1 + θ(x̄k,m − 1) (5.8)

A fixed discrete distribution for θ is assumed, mixing uniformly over θ ∈ {1
4
, 1

3
, 1

2
, 2

3
, 1, 3

2
, 2, 3, 4}.

The average effects, x̄k,m, can either be specified by a domain expert or learned from the
training data.

Using equations 5.5, 5.6, 5.7 and 5.8 the likelihood ratio can be expressed as:

Pr(D |H1(S, Ek))

Pr(D |H0)
=

∑

θ

Pr(θ | Ek)
∏

i,m,t∈S

Pr(ct
i,m | bt

i,m, xθ
mαm, βm)

Pr(ct
i,m | bt

i,m, αm, βm)

=
∑

θ

Pr(θ | Ek)
∏

i,m,t∈S

(
βm

βm + bt
i,m

)(xθ
m−1)αm Γ(αm) Γ(xθ

mαm + ct
i,m)

Γ(xθ
mαm) Γ(αm + ct

i,m)

=
∑

θ

Pr(θ | Ek)
∏
i,t∈S

∏
m

LRt,θ
i,m (5.9)

For a each location si, time step t and event magnitude θ, a log-likelihood ratio value
is precomputed:

LLRt,θ
i =

∑
m

log LRt,θ
i,m (5.10)

The likelihood ratio for any region S (eqn. 5.9) can then be computed as a sum over
all the log-likelihood values with location, time step belonging in S. This gives the advan-
tage that the expensive log-likelihood computations are only performed a number of times
proportional to the number of locations, rather than the (much larger) number of regions.

5.3 Time Varying Multivariate Bayesian Scan Statistics

We now present our method of Time Varying Multivariate Bayesian Scan Statistics (TV-
MBSS). The time varying pattern detection can be implemented as an extension to either
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Figure 5.5: Bayesian network representation of the TV-MBSS method. Solid ovals repre-
sent observed quantities, and dashed ovals represent hidden quantities

of the scan statistics formulation, the frequentist and the Bayesian. In this work, we im-
plement this as an extension of the MBSS framework.

MBSS makes two simplifying assumptions. The effects xt
i,m of an event H1(S, Ek)

are assumed to be constant over the time window and over all the locations in S. Then
xt

i,m = xm for all si ∈ S and 0 ≤ t < −W (S), and xt
i,m = 1 otherwise. Here W (S) is the

time duration of the space time region S. We relax both of these assumptions. Figure 5.5
shows the Bayesian network representation of the TV-MBSS method. The two differences
from the original MBSS model (Figure 5.4) are:

1. We now have M time-series patterns {xt
1 . . . xt

m} instead of just a vector {x1 . . . xm},
characterizing the effects of an event type.
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2. Instead of a single space-time region S, we now have two (or more) space-time
sub-regions denoted by S0, S1 . . . . The subsequent sub-region is dependent on the
previous sub-region (they are constrained to be adjacent).

Apart from these differences, we assume the same hierarchical Gamma Poisson model
as MBSS. Below we describe how the time varying effects are integrated into this frame-
work.

5.3.1 Time Series Patterns

We now consider the first time varying generalization that an event type can have a time
varying pattern of effects at a particular location. We begin by assuming a constant effect
over all the locations within the affected region S at a given time step t, i.e. xt

i,m = xt
m

for all si ∈ S. Hence, for a given data stream Dm, {xt
m : t = 0 . . . (W − 1)} forms a

time-series (e.g. Figure 5.3 gives the time series pattern for a hurricane strike). Here t = 0

is the time step at which the event is assumed to start affecting the data.

Under this assumption, to model an event Ek, we need to specify the average effects
x̄t

m, which can be viewed as M time-series patterns of duration W , each corresponding to
a data stream Dm. Here we assume W is the fixed length of duration over which the event
has an effect on a particular location. The probability distribution Pr(X | H1(S, Ek)) is
parameterized in terms of the average effects on each data stream and the event magnitude
θ as given by eqn. 5.8.

In our implementation, we assume that the set of regions S contains all possible cir-
cular regions centered at a data location, containing up to Sizemax locations. Sizemax is
pre-specified by the user, based on expert knowledge about the maximum possible geo-
graphical spread of any event.

While this method (which we call TV-MBSS-1) is able to model the time varying na-
ture of the effects at a particular location, it assumes that an event affects all the locations
in S synchronously. It cannot model an event that can move with time, and affect geo-
graphically adjacent regions with a time lag. For example, when we apply this method to
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Figure 5.6: MBSS-TV-1 Detect Algorithm
Parameters: S , For each event type Ek effects
{xt

m : m = 1 . . .M ; t = 0 . . . (W − 1)}

1. Compute the baselines bt
i,m and the parameter priors (αm, βm) from historical

data, as in the original MBSS algorithm.

2. Compute the log-likelihood ratios LLRθ
i,k corresponding to each location si,

event type Ek and intensity level θ aggregated over the M data streams and
over the time window t = 0 . . . (W − 1); as given by eqn. 5.10.

3. For each S ∈ S and each event type Ek, compute the posterior log-likelihood
ratio Pr(H1(S,Ek)|D)

Pr(H0|D)
, as given by eqn. 5.9.

4. For each location si and event type Ek, compute the posterior probability
P (H1(si, Ek)|D), that si is affected by the event Ek, as given by eqn. 5.4.

detect hurricane patterns in the OTC sales data, it fails to identify all the locations affected
by the hurricane, since areas that are farther inland are affected with a time lag of one
(or more) days as compared to areas on the coast. Figure 5.7 shows the set of locations
identified using TV-MBSS-1, and as we can see, it can only identify a small subset of all
the locations affected (as shown in Figure 5.13). To account for this non-stationary nature
of the events, we propose another extension of the algorithm in the next section.

5.3.2 Modeling Nonstationary Events

Here we assume that the event moves over time and can affect different regions at different
time steps. For ease of presentation, we assume a single event type Ek for the rest of this
discussion. Due to computational and practical considerations, we consider up to two
distinct, adjacent but non-overlapping regions that are affected on consecutive time steps
by the event. Let t = 0 represent the time step at which the effects of an event onsets on
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Figure 5.7: Locations detected using TV-MBSS-1 affected by hurricane Frances

the overall data and St denote the set of locations where the effect of the event onsets at
time step t. Since we are assuming a movement of the event over two consecutive time
steps, we have a pair of sub-regions S0 and S1 corresponding to the two consecutive days.
In our example of a hurricane strike, S0 denotes the sub-region where the hurricane hits
first, and S1 denotes the sub-region where it hits the next day. We define S = S0

⋃
S1. We

assume that all the locations within a given sub-region get affected by the same time-series
pattern of effects for a given data stream. However, the time-series patterns corresponding
to the two sub-regions are shifted by one time step. Let {xt

m : t = 0 . . . (W − 1)} denote
the time-series pattern of the event for data stream Dm. Let {xt

0,m : t = 0 . . .W} and
{xt

1,m : t = 0 . . .W} denote the time-series patterns corresponding to the sub-regions S0

and S1 respectively. Then,
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Figure 5.8: TV-MBSS-2 Detect Algorithm
Parameters: S, For each event type Ek effects {xt

d,m : m = 1 . . .M ; t = 0 . . .W}

1. Compute the baselines bt
i,m and the parameter priors (αm, βm) from historical

data, as in the original MBSS algorithm.

2. For each event type Ek, compute the log-likelihood ratios LLRθ
d,i corresponding

to each location si, intensity level θ and time lag d = 0, 1 aggregated over the
M data streams and over the time window t = 0 . . .W as given by:

LLRθ
d,i =

∑
m

W∑
t=0

log LRt,θ
d,i,m (5.11)

LRt,θ
d,i,m =

(
βm

βm + bt
i,m

)(xt,θ
d,m−1)αm Γ(αm) Γ(xt,θ

d,mαm + ct
i,m)

Γ(xt,θ
d,mαm) Γ(αm + ct

i,m)
(5.12)

3. For each S ∈ S and event type Ek, compute the posterior log-likelihood ratio
Pr(H1(S,Ek)|D)

Pr(H0|D)
, as given by eqn. 5.9.

4. For each location si and event type Ek, compute the posterior probability
P (H1(si, Ek)|D), that si is affected by the event Ek, as given by eqn. 5.4.

5. For each location si and event type Ek, also, compute the posterior probabili-
ties p0

i and p1
i , that si is affected by the event Ek on the first and second days

respectively.

p0
i =

∑

{S : si∈S0}
Pr(H1(S,Ek) |D) (5.13)

p1
i =

∑

{S : si∈S1}
Pr(H1(S,Ek) |D) (5.14)

Note that, P (H1(si, Ek)|D) = p0
i + p1

i .
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xt
0,m = xt

m for t = 0 . . . (W − 1),

= 1 for t = W. (5.15)

xt
1,m = xt−1

m for t = 1 . . . W,

= 1 for t = 0. (5.16)

Figure 5.3 shows an example of two such time series patterns lagged by one day.

Note that both the time series {xt
0,m} and {xt

1,m} have a time duration of length (W +

1). This extra day is needed to accommodate the one-day lag between the two time series.
Since we are interested in modeling moving events, we additionally assume that S0 and
S1 are adjacent sub-regions. Specifically, we model the search region S as a pair of non-
overlapping but touching circles corresponding to S0 and S1 respectively. Figure 5.8 shows
the modified algorithm assuming non-stationary events.

5.3.3 Heuristic search procedure

We would like to search over all possible pairs of non-overlapping but touching circles
centered at two data points. The number of search regions increases cubically with the
number of data points N . Since it is computationally very expensive to compute the pos-
terior for all such possible space time regions, we adopt a heuristic procedure to perform
a faster search.

Our goal is to compute the posterior Pr(H1(Ek)|D) ∝
∑
S∈S

Pr(D|H1(S, Ek))Pr(H1(S,Ek)|Ek).

In practice, we see that only a small set of regions have a significant contribution to the pos-
terior probability value. This leads us to the insight that we can approximate the posterior
probability by summing over a truncated set of regions S∗ ⊂ S , ignoring the regions that
have a very low value of Pr(D |H1(S,Ek)). Under this assumption, we first identify the set
of regions that are most likely to have a high value of the data likelihood given the event
model. A region S consists of two sub-regions S0 and S1, which are non-overlapping,
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Figure 5.9: Heuristic Search procedure for TV-MBSS-2 Detect Algorithm
Parameters: S , For each event type Ek effects {xt

0,m : m = 1 . . .M ; t = 0 . . . W}

1. Run the TV-MBSS-1 Detect Algorithm using S: set of all circles containing up
to Sizemax locations; and the event model specified by the effects {xt

0,m : t =

0 . . .W}.

2. Define C0 = {si : Pr(H(si, Ek)|D) > 0.5} as the first day centers.

3. Define C1 = {si : distance(si, sj) ≤ K, sj ∈ C0} as the second day centers.

4. Initialize S∗ ← φ.

5. For each pair of locations in {{si, sj} : si ∈ C0, sj ∈ C1}, construct a set of re-
gions with sub-region centers at {si, sj} by varying one of the sub-region radius.
Include these regions in the set S∗.

adjacent circles centered at data locations si and sj respectively. This implies that the sum
of the radii of the two circles, equals the distance between the data locations si and sj .
Thus, given a pair of locations {si, sj} as the corresponding centers, we can generate a set
of regions by varying the radius of one of the sub-regions, subject to the constraint that
the maximum number of locations included in any sub-region is Sizemax. We now focus
our attention on identifying pairs of centers that will generate the regions which have a
relatively high value of Pr(D | H1(S, Ek)). Specifically, we wish to identify two sets of
locations C0 and C1, such that the pairs of centers {{si, sj} : si ∈ C0, sj ∈ C1} generate
all the regions of interest.

In our experiments, the effect of the event (hurricane) was more pronounced on the
area where it hit first. Hence, we first identify the set of most the likely centers C0 and
construct the set C1 as all the locations (including the ones in C0) that are within a certain
distance of any location in C0. Given an event type Ek, the steps to generate S∗ are shown
in Figure 5.9.

107



By restricting our search over a smaller set of regions, we are effectively choosing
a prior distribution over the set of all possible regions, which distributes the probability
values uniformly over S ∈ S∗ and is zero over all regions not belonging to S∗. For the
rest of the chapter, we assume this heuristic search region generation for TV-MBSS-2.

5.3.4 Detecting patterns over three or more days

So far, we have assumed that the event affects up to two non-overlapping regions on con-
secutive days. Generalizing this to k (more than two) days would mean searching over all
possible regions S comprised of k non-overlapping adjacent circles. In the worst case there
can be O(Nk+1) such regions, where N is the number of data locations and k << N , and
is prohibitively expensive to compute for k > 2. Instead, we use an iterative procedure,
using the ‘pair of circles’ approach described above, to extend the region S one sub-region
at a time. Similar to the two day case, t = 0 represent the time step at which the effects of
an event onsets on the overall data and St denote the set of locations where the effect of the
event onsets at time step t. The effect pattern affecting the sub-region Sj is a j time-step
lagged version of the overall pattern, padded with ones appropriately:

xt
j,m = 1 for 0 ≤ t < j (5.17)

= xt−j
m for j ≤ t < j + W

= 1 for j + W ≤ t < (W + k)

Below, we give the heuristic procedure to identify an event that affects k different non-
overlapping adjacent regions, with the pattern lagged by one time-step from one adjacent
region to the next. We run the TV-MBSS-2 algorithm (using the heuristic search from
§5.3.3) for each consecutive pair of days, starting from the first two days. After each run,
the locations corresponding to the first sub-region are fixed, and are removed from the
dataset. The locations corresponding to the second sub-region are then treated as the first
day centers for the next iteration of TV-MBSS-2.

At the end of the iteration, we have k fixed sub-regions that are non-overlapping (since
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Figure 5.10: Extending TV-MBSS-2 Detect Algorithm for three or more days
Parameters: For each event type, time series effects

{xt
d,m : m = 1 . . . M ; t = 0 . . . W + k − 1; d = 1 . . . k}

1. Using the parameter estimates for the first two time-steps x
(k−1)
m and x

(k−2)
m run

the TV-MBSS-2 algorithm.

2. Identify the set of locations belonging to the first sub-region as Sfirst = {si :

p0
i > 0.5}, where p0

i is given by eqn. 5.13. Remove all locations in Sfirst from
the data.

3. Identify the set of locations belonging to the second sub-region as Ssecond =

{si : p1
i > 0.5}, where p1

i is given by eqn. 5.14. Initialize the first day centers of
TV-MBSS-2 with Ssecond.

4. Use the parameter estimates for the next two time-steps, and run the TV-MBSS-2
algorithm.

5. Repeat steps 2,3 and 4 for (k − 1) times.

at each iteration we remove the locations within the last sub-region) and approximately
adjacent (since the centers of the next sub-region come from an adjacent region). Since
the sub-regions are fixed, this procedure is no longer fully Bayesian. The score of each
sub-region is the log of the posterior likelihood ratio (eqn. 5.3). The final score for the
overall composite region S is the sum of all the k sub-region scores.

5.4 Learning the model

The algorithm in Figure 5.8 assumes that the time series of effects xt
m is known for each

event type. In this section, we present a semi-supervised framework to learn these effect
parameters from data. As previously mentioned, data labels are usually manually gener-
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ated by human experts and can be very difficult to obtain for a large data set. Instead,
we assume that we have a few labeled examples of each event type of interest. Since we
assume that the event types are mutually exclusive (i.e. up to one event type affects the
data on at any given time) we can independently learn the effects for each event type. For
this discussion, let us focus our attention on any particular event type Ek (for example,
hurricanes). For this event type, we are given a few hand labeled locations that are af-
fected by this event. Our goal here is to learn the event model and then use it to detect
other occurrences of events in the data, corresponding to this event type. In our example,
we would like to learn how a hurricane strike affects the OTC sales of a region, and use
this model to detect other hurricane strikes present in the data.

As previously mentioned, in our case we model events that affect up to two adjacent
but non-overlapping regions (sets of locations) on consecutive days. The space time region
S consists of a pair of sub-regions S0 and S1, corresponding to the two consecutive days.

Then, for each location si, the data label is a pair of the form: {p0
i , p

1
i }, where pt

i

is the probability that si ∈ St for t ∈ {0, 1}. In the case of the provided hand labels,
either exactly one of these values is equal to one (the event affects the location with the
corresponding lag) or both the values are zero (the event does not affect the location). Note
that we do not require the user to hand label each location si in the data. The user labels
a small set of locations that are affected by the event (with the corresponding time lag)
and we assume p0

i = p1
i = 0 for all other locations. This small set of labels is usually

enough to initialize the time series pattern(s) corresponding to the event, and we follow an
Expectation Maximization (EM) based procedure to learn the actual pattern(s).

We also assume that we are given the length W of the time duration over which the
event has an effect on a particular location. The range t = 0 . . . W represents the entire
time duration of interest. For a given data stream m the effect parameters xt

m can be
described by as a time series of length W . Figure 5.3 shows an example time-series of the
effects of an hurricane on the OTC sales data (W = 8).

Our algorithm is based on the Expectation Maximization (EM) framework, where we
iterate over estimating the model parameters and inferring the data labels using the learned
model.
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Figure 5.11: Learning the time series pattern of effects for an event type
1. Initialize: For each location si initialize data labels {p0

i , p
1
i } using the manually

labeled locations.

2. M Step: We learn the expected value of xt
m, the effect of the event on the data

steam Dm at the time step t. Since xt
m is a multiplicative factor, the maximum

likelihood estimate is given by a weighted average of the ratio of the actual and
expected counts, taking into account the proper time lag:

xt
m =

∑
si∈S

[
p0

i

ct
i,m

αm

βm
bt
i,m

+ p1
i

ct+1
i,m

αm

βm
bt+1
i,m

]
for t = 0 . . . (W − 1)

3. E Step: Using the parameter estimates xt
m, run the TV-MBSS-2 detect algorithm

Figure 5.6. Update the data labels {p0
i , p

1
i } based on the output (as given by eqns.

5.13 and 5.14).

4. Repeat: Steps 2 and 3 until stopping criteria is met.

In the EM framework, the stopping criteria in Step 4 is reaching convergence (data
labels remain constant over successive iterations). However, in our experiments we have
observed that in most cases there is very little change after the second iteration. Since Step
3 is computationally expensive, in our evaluations, we stop after the second iteration.

5.4.1 Using Alternate Event Explanations

As mentioned in §5.2 we assume that up to one event Ek affects the data at any given
time, i.e., Pr(H0) +

∑
k Pr(Ek) = 1. This assumes that we have a comprehensive list

{Ek} of all events that can affect the data. In practice, in most realistic situations, it is not
possible to have a complete list of all such possible causes. Specifically, in our example of
monitoring the OTC sales data, we are interested in the event type “hurricane”, although
the data contains a lot of variations due to other causes. Most such variations (including
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noise) appear over very short time durations, and can be seen as a single day upward or
downward spike in the counts. Since we are interested in detecting an extended temporal
pattern (over W = 8 days), we would like to ignore any single day variation of the counts.
This motivates us to extend the null hypothesis H0 to include these alternate events (single
day spikes). In this case, we define a series of W + 1 upward-spike and downward-spike
events. For i = 0 . . . W , the ith upward-spike event, H i

0−up is characterized by a time-
series of effects (identical over all the data streams), with xt = 1 for all t 6= i, and xi = 2.
Similarly, the jth downward-spike event Hj

0−down, is characterized by a time-series of
effects, with xt = 1 for all t 6= j, and xj = 0.5.

The data likelihood under this alternate null H∗
0 , is then given by:

Pr(D |H∗
0 ) = max

i,j

{
Pr(D |H0), Pr(D |H i

0−up), Pr(D |Hj
0−down)

}
(5.18)

We then use this likelihood value in eqn. 5.3 to compute the event score. In the fol-
lowing sections, this method of using alternate event explanations for the null hypothesis
is called TV-MBSS-Alt.

5.5 Evaluation and Results

We evaluate the TV-MBSS method on a dataset of Over the Counter (OTC) sales (as
described in §1.4.3). This dataset consists of OTC medicine sales in pharmacies all over
the US. It spans over two years, March 2004 - March 2006. In this work, we evaluate
the methods in their effectiveness to detect the sales pattern caused by hurricane strikes
from the Atlantic ocean. Figure 5.1 shows the data coverage over zip codes in the eastern
part of United States. We wish to detect both when and where the hurricane hit. For
the ease of evaluation, we consider a single data stream (M = 1), the aggregate over all
the categories of sales in a zip code. As previously mentioned in §5.1, this is a proof
of concept evaluation. This method can be applied to detect any event type which has a
specific temporal pattern of effects and which may have a region of effect which moves
from one day to the next.
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Figure 5.12: Partial hand labels of locations affected by hurricane Frances used for semi-
supervised learning

We start by presenting results of our algorithm when applied to learn and detect the
pattern corresponding to a particular hurricane. We then present a more comprehensive
evaluation over the entire hurricane season for 2004 and 2005, comparing our method to
MBSS.

5.5.1 Learning to detect a single hurricane

We first compiled a small list of zip codes that were affected by hurricane Frances on
September 5th 2004 (as shown in Figure 5.12). We fixed the duration of the effect at
a location, W = 8 days. We use k = 3 in this case, i.e. the effect of the hurricane starts
appearing on three consecutive days in three non-overlapping adjacent regions. We choose
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Figure 5.13: Locations detected using TV-MBSS as affected by hurricane Frances
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Figure 5.14: Locations detected using TV-MBSS as affected by hurricane Katrina

this value of k since by the fourth day after initial landfall, the hurricane had lost strength
and turned into a tropical depression, and no longer had any effect on the OTC medicine
sales. Therefore, the region of interest S consists of three sub-regions: S0, the sub-region
where the hurricane hit the first day, S1 and S2, the regions where it hit on subsequent
days.

Figure 5.13 shows the output of the algorithm. Each zip code is color coded to repre-
sent the probability that it belongs to one of the sub-regions: S0 (red), S1 (green) and S2

(blue). Higher probability is indicated by more intense color. We see that the progression
of the hurricane effects match quite well with the hurricane track information from NHC
shown in Figure 5.2.

Figure 5.14 shows the output of the algorithm run on August 26th 2005, using the
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Figure 5.15: ROC curve comparing our methods with MBSS for the task of hurricane
detection in OTC dataset

pattern learned from hurricane Frances. In this case we detect the effect of hurricane
Katrina. Although Katrina caused major devastation near the coast, we see that the effects
of Katrina are not pronounced as it moved inland on subsequent days. The zip codes
marked in red corresponds to the region affected on the day Katrina made landfall.

5.5.2 Comparison with MBSS

In our next evaluation, we compared the effectiveness of our methods with MBSS. Here,
MBSS searches over space time regions to detect increases in count with a time window
varying between 1 to 4 days. For TV-MBSS, we use the hurricane effects pattern learned
in the previous section (from the effects of hurricane Frances). We use the heuristic search
procedure (§5.3.3) to search over pairs of circles. We also evaluate the TV-MBSS with
Alternate event explanations as described in §5.4.1. For each method, we perform a sep-
arate run corresponding to each day (assuming that day as t = 0) of the hurricane season
(July 1 - Oct 31) for the years 2004 and 2005. We note that there are four hurricanes in
2004 (Charlie, Frances, Ivan and Jeanne) and five hurricanes in 2005 (Dennis, Katrina,
Ophelia, Rita and Wilma), that has an effect on the data. For each method, and each run
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Table 5.1: Area under the curves for ROC curves in Figure 5.15, with standard errors
Method 2004 2005

TV-MBSS 0.981 ± 0.016 0.984 ± 0.004

TV-MBSS-Alt 0.989 ± 0.008 0.996 ± 0.002
MBSS 0.989 ± 0.011 0.959 ± 0.013

(corresponding to each day), we compute the log-likelihood ratio of posterior probabili-
ties: log Pr(H1(S,E)|Data)

Pr(H0|Data)
as given by eqn. 5.3. Here E denotes the event type ’hurricane’.

This gives the corresponding score for that run. A higher value indicates that it is more
likely to be affected by a hurricane, where the effect pattern onsets at t = 0 for that run.

We observe that for all the methods, the effects of a single hurricane are usually de-
tected in more than one run. This is because in some cases, even if the search pattern is
time shifted with respect to the actual pattern in the data, and is not an exact match, it still
provides a better match than the null hypothesis (of no effects). In such cases, we consider
the maximum score over these multiple runs as the true positive score of detecting the
hurricane. We set a threshold score, and any run that has a score greater than this threshold
is flagged as a detect. The runs in which regions not affected by a hurricane are detected,
are treated as false positives. We have used the ground truth information about hurricane
hits from the National Hurricane Center archives [NHC].

We then examine each method’s tradeoff between its false positive rate (proportion of
runs without hurricane effects that were falsely detected) and its true positive rate (propor-
tion of runs with hurricane effects that were correctly detected) by varying the threshold
score. This is the standard ROC curve: a higher curve denotes better detection perfor-
mance, since it corresponds to a higher true positive rate for a given false positive rate.
The area under the ROC curve (AUC) can be used as a summary measure, where higher
AUC corresponds to better average performance.

Figure 5.15 shows the ROC curve for all the three methods for 2004 and 2005. Table
5.1 gives the corresponding area under the curve values. The AUC for the best method,
and for the other methods which are not significantly less (at α = 0.05, using Student’s
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t-test) than the best are shown in bold font. We see that for 2004, all the methods have very
similar performances. For 2005, we see that both TV-MBSS and TV-MBSS with Alternate
events perform significantly better than MBSS.

5.6 Conclusions

In this chapter we presented a set of methods to characterize and detect events that have
time varying effects, and which can move over different locations from one time step to
the next. We implement our ideas as an extension (TV-MBSS) to the state of art scan
statistics MBSS. As a proof of concept evaluation, we use data from OTC sales to model
and identify hurricane strikes in the south-east coast of United States. We show that TV-
MBSS is able to correctly model the time varying pattern of effects, as well as the time
lagged patterns as the hurricane moves inland. We do a ROC analysis of the effectiveness
of detection, and show that for some cases TV-MBSS performs significantly better than
MBSS.
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Chapter 6

Searching through composite time series

6.1 Introduction

In this chapter we focus on the purely temporal domain for detecting anomaly patterns.
The drastic decrease of data storage costs, availability of cheap sensors along with au-
tomation of systems have resulted in proliferation of time series data. In most cases the
data is multivariate in nature, and the effect of an anomaly can potentially be observed
across more than one of these series. Many classical statistical methods deal with univari-
ate data, and less has been done about multivariate data. A traditional method of applying
univariate methods in these cases would be to reduce the dimension using some dimen-
sionality reduction technique (e.g. PCA). But, an anomaly detected in a weighted linear
combination of the data might not be meaningful to the end user. A majority of such
techniques suffer from the lack of user interpretability of the results. This motivates our
approach of search through simple arithmetic combinations of time series.

Modern surveillance systems are characterized by the need to analyze many variables
simultaneously, and the traditional method of setting upper and lower bounds on normal
values for a single variable are no longer adequate. Data mining methods must address the
complex interactions between variables, the dangers of multiple hypothesis testing, and
the computational issues caused by large data sets. [Wong, 2004] gives an overview of
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time series anomaly detection methods.

We consider the problem of detecting an anomalous increase of values in multivariate
time series data. The problem stems from the fact that the increase can be spread over
multiple variables. As an example, consider the time series of counts of patients visiting
emergency departments every day. For each possible symptom we have a corresponding
time series. A particular disease such as an influenza outbreak, will affect the count of
multiple syndromes. In this case, we need to simultaneously consider all the variables to
detect the presence of an anomaly. We are concerned with prospective surveillance, where
we need to detect a disease outbreak as soon as possible.

To combine information from multiple time series we examine a novel technique which
is simple but powerful. Composite time series are constructed by simple addition and
subtraction of the individual time series. We search through all possible composite time
series for an anomaly. Using just simple arithmetic operations like addition and subtraction
provides an easy physical interpretation of the composite series. It is also able to detect
anomalies sooner than other traditional methods. We compare the performance of our
algorithm with related methods such as Vector Autoregression on semi-synthetic health
data.

6.2 Related Methods

In this section we describe various multivariate techniques that can detect a shift in the
data.

6.2.1 Vector Auto Regression

The time series is modeled as a standard VAR(p) model [Hamilton, 1994]. Let the number
of variables be n. Let Xt denote the (n× 1) vector of values at time t.

Xt = C +

p∑
i=1

ΦiXt−i + εt
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where, C denotes an (n× 1) vector of constants, Φi are (m×m) coefficient matrices and
the (n × 1) vector εt is the residual vector. Here E[εt] = 0. The coefficients Φi can be
estimated from data using ordinary least squares (OLS) linear regression.

The expected value of Xt given the past p days’ data is given by

E[Xt] = C +

p∑
i=1

ΦiXt−i

At each time step, we compare the actual and expected values of Xt. We signal an
alarm when Xt deviates significantly from E[Xt]. Quantitatively, we compute the Maha-
lanobis distance:

D2 = (Xt − E[Xt])
TΣ−1(Xt − E[Xt])

where, Σ is the sample variance-covariance matrix for the past p days’ data.

An alarm is signaled when D exceeds a threshold h. Here h is the parameter which
controls the number of false positives.

6.2.2 Vector Moving Average

This method is a special case of the Vector Autoregression as described above. We assume
that the expected value of Xt is the mean of the past p days’ values.

E[Xt] =
1

p

p∑
i=1

Xt−i

We compute the Mahalanobis distance as mentioned previously, and signal an alarm when
D > h.

6.2.3 Hotelling T Squared Test

We model the distribution of the mean of the recent p days’ data. Let

X̄ =
1

p

p−1∑
i=0

Xt−i
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and Σ be the sample variance-covariance matrix for the past p days’ data.

The statistic T 2 is defined as [Hotelling, 1947]:

T 2 = n(X̄− µ)TΣ−1(X̄− µ)

Here, µ is the fixed expected value of the mean. T 2 is distributed as p(n−1)
n−p

F(p,n−p), with
F(p,n−p) representing the F distribution with p and n − p degrees of freedom. We signal
an alarm when P (x ≥ T 2) < α, where α controls the rate of false positives. Application
of Hotelling T 2 in multivariate quality control has been investigated in [Hong and Hardin,
2004].

6.3 Detection method: CUSUM

Before presenting our algorithm, we describe a popular method used in detecting anoma-
lies in time series. CUSUM was originally developed to detect changes in the quality of
output of continuous production process. It can quickly detect a shift in the mean of a
process. As the name suggests, CUSUM maintains a cumulative sum of deviations from
a reference value r. Let us consider a time series where at time t we have measurement
X(t). The one-sided CUSUM calculation is as follows:

C(0) = 0 (6.1)

C(t) = max(0, X(t)− (µ0 + L) + C(t− 1)) (6.2)

µ0 is the in-control process mean. From the equations above, if the Xm values are close
to the mean, then the C(t) values will be some small value. However once a positive shift
from the mean occurs, the C(t) value will increase rapidly. L is known as the slack value
or allowance. In the equation above, any values within L units of µ0 will be effectively
ignored. The allowance L is usually set to be the midpoint between the in-control process
mean µ0 and the out-of-control process mean µ1.
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Alerts are raised whenever C(t) exceeds a threshold decision interval H. The cumu-
lative sum is then reset to zero. The Average Run Length (ARL) is controlled by this
parameter. The ARL is the average number of time steps before an alert is raised under
the assumption that the process is in-control.

The CUSUM algorithm described here has been extensively used in biosurveillance
systems. It has been used for influenza surveillance [Tillett and Spencer, 1982], detection
of salmonella outbreaks [Hutwagner et al., 1997] and in the Early Aberration Reporting
system [Hutwagner et al., 2003]. CUSUM algorithms have also been extended to incorpo-
rate spatial information such as [Raubertas, 1989] and [Rogerson, 1997].

6.3.1 Modified CUSUM

In this work we use a modified CUSUM as the detection method. We have found this
method to be very effective in detecting upward shifts in time series.

We calculate the cumulative sum of deviation similar to equation 6.2. Instead of main-
taining the cumulant starting at t=0, we consider only the last CW (Cumulant Window)
number of time steps. This means that the current Cumulant at time t, will be independent
of any data before the time T - CW . We signal an alarm if the current cumulant value is
greater than H . This modification does not affect the performance of the algorithm signif-
icantly, and is actually desired in our case, as explained later. This also allows us to speed
up the computation as described in section 6.7.

In the original algorithm, H is usually taken as a fixed threshold value. We have set H

= hσ, a multiple of the standard deviation σ of the time series. We need to calculate and
update the σ value at each time step. In our method σ is the sample standard deviation of
the series calculated over a sliding window of the last N days. Thus, H is dynamically
updated based on the behavior of the variable. Also, since we do not know the out-of-
control process mean µ1, we set L = lσ, for some constant l. L too gets updated at
each time step. The in-control process mean µ0 is taken as the moving average over the
last N days. This dynamic updation of the parameters at each time step is a significant
modification of the original CUSUM algorithm. This allows us to model non-stationary
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time series variables.

6.3.2 Multivariate CUSUM

An analogous Multivariate version has also been applied to surveillance data. Crosier’s
multivariate cumulative sum (MCUSUM) method [Crosier, 1988] has been applied to syn-
dromic data from multiple hospitals [Stoto, 2004] and Pignatiello’s MCUSUM [Pignatiello
and Runger, 1990] applied to yearly, spatially distributed counts of breast cancer incidence
[P. A. Rogerson, 2004]. We have implemented the MCUSM method from [Healy, 1987]
and compared it against our method. This method first computes the Hotelling T 2 statistic
at each time step:

T 2
t = n(X̄t − µ)TΣ−1(X̄t − µ) (6.3)

where µ is the fixed in-control value of the mean. The MCUSUM procedure is essentially
a CUSUM of Tt:

C(0) = 0 (6.4)

C(t) = max(0, Tt − L + C(t− 1)) (6.5)

In our case, the in-control process mean µ is taken as the moving average over the last N

days, and Σ is the sample variance-covariance matrix for the data over the last N days.

6.4 Proposed Method: Parallel Monitoring of Composite
Series

A common feature of all the multivariate methods is that the statistic on which the alarm is
set, does not have an intuitive physical interpretation in terms of the variables. However,
if we monitor the individual variables in parallel, we can identify the variable that has an
anomalous behavior in case of an alarm.

Also, as mentioned in [Burkom et al., 2004]:
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These (multivariate) methods are omnidirectional, a property that can be use-
ful in detecting an earlier signal, but can also cause false alerts if a change in
the covariance matrix occurs that is irrelevant to any outbreak signal of interest

They do not specifically check for increases in individual series. In our experiments this
causes them to perform worse than parallel monitoring of univariate series.

The novel method that we suggest involves parallel monitoring of not only the individ-
ual variables, but also simple arithmetic combinations of them. This retains the advantage
of easy interpretability while giving a better performance as shown in our experiments.
This method of using combinations of time series is orthogonal to the univariate detection
method used to monitor each series. We have chosen CUSUM as the detection algorithm
because of its superior and robust performance in detecting slight increases over the nor-
mal value. In the following sections we describe this algorithm in more detail.

6.5 Search space

As mentioned previously, we perform a parallel monitoring of the time series variables
and arithmetic combinations of them. Here we describe the composite series that are mon-
itored in parallel for any increase from expected values.

Let X1, . . ., Xk be k random time series variables, and Xi(t) denote the value of Xi at
time step t.

Addition We create time series of the form:

Y = Xi1 + Xi2 + . . . + Xim ; i1, . . ., im ∈ {1, 2, . . . , k}

This means that at each time step t,

Y (t) = Xi1(t) + Xi2(t) + . . . + Xim(t); i1, . . ., im ∈ {1, 2, . . . , k}
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Here we can choose the indices i1, i2, . . ., im in
(

k
m

)
ways. If we consider summations

of up to k terms, the total number of such composite series =
(

1
m

)
+

(
2
m

)
+ . . . +

(
k
m

)
.

Subtraction As in the case for addition, we create time series of the form

Y = Xi1 −Xi2 ; i1, i2 ∈ {1, . . . , k}

Here we consider combination of just 2 series. There are
(

n
2

)
such composite series.

Motivation of the addition and subtraction operations:

1. Addition: We assume that an outbreak simultaneously causes an increase in the
value of more than one variable. The detection accuracy of any anomaly detection
method will depend on the signal to noise ratio (SNR) of the outbreak. Here, the
anomalous increase in the value is the signal we want to detect, and the standard
deviation of the variable is the noise. We now show a simple situation where the
composite additive series will have a better SNR than either of the individual series.
Consider two random time series variables X1 and X2. Assume that they have equal
standard deviations, σX1 = σX2 = σ. Let a be the actual anomalous increase in the
values of X1 and X2.

Let Y = X1 + X2. Now,

σ2
Y = σ2

X1 + σ2
X2 − 2 ∗ r ∗ σX1σX2 = 2 ∗ σ(1− r)

where r is the Pearson correlation coefficient between X1 and X2. By definition,
r≥-1. Hence, σY ≤ 2*σ. The SNR of the individual variables is a

σ
. The SNR of the

composite series Y is 2a
σY
≥ a

σ
. In general if the two variables are uncorrelated or

negatively correlated, and the anomalous increase is positively correlated, then we
can expect a better SNR for the composite time series.

We note that if there is a very strong positive correlation between the variables, then
the noise (variance) will increase proportionately to the signal (outbreak). In such
cases, the increased false positive rate (due to multiple hypothesis testing) can lead
to a worse performance.
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2. Subtraction:

Considering series of the form Y = X1−X2 can be helpful if there is a positive cor-
relation between X1 and X2. If these two random variables are positively correlated,
then any anomalous increase present in X1, but not in X2, will be more pronounced
in Y. This is because the noise will tend to cancel, whereas the signal will be left
unaffected. Note that there is an increase of the false positive rate due to multiple
hypothesis testing. Hence we expect an improvement using the subtraction operator
only when there is a high positive correlation among the variables.

6.6 Outbreak simulation

Because there were no known outbreaks in our datasets, we assumed artificial outbreaks
by adding ramp increases. We call these outbreaks as attacks, since one of the motivations
of this work is to detect bioterrorist attacks.

attack(t) = attack height ∗ (t− tstart)

(tstart − tend)
;

for tstart ≥ t ≥ tend

= 0 otherwise (6.6)

The attacks are spread through more than one time series. We randomly choose m of the
k time series to add an attack. We choose m random weights w1, . . ., wm uniformly from
the set {(w1, w2, ..., wm)|0 ≤ wi ≤ 1, Σwi = 1}. We then add a weighted attack to each
of these m time series:

Xattack
i (t) = Xi(t) + wi ∗ attack(t); for i = 1, ..., m

We spread the attack to more than one time series so that it becomes difficult to detect it
from any individual variable. The effect of attack becomes more evident when we combine
more than one variable.
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6.7 Search Algorithm

As mentioned in section 6.5, the number of composite time series can be very large. Let
Ci denote the C value of the composite time series TSi. One approach to monitor all these
series individually would be to store the Ci values corresponding to each of these series
and update them at each time step. At each time step, we signal an alarm if the Ci value
of any of the composite time series exceeds the corresponding hσi. We also need to store
and update each σi value at each time step.

Let m be the maximum number of individual series in a composite series. In cases
where k is large this method will require an exponential amount of memory depending on
m. We now describe a branch and bound approach that does not require us to store all the
Ci and σi values.

The main idea is to determine whether a composite series can possibly signal alert
without explicitly calculating the Ci value. If we are able to eliminate a majority of the
series by using an appropriate bound, then we need only calculate the Ci and σi values
only for a small fraction of them.

First we note that at a particular time step, if Xi(t) - (µi
0 + K) < 0, then we can ignore

the composite series i. This is because at this time step, the Ci value will decrease, and
it cannot signal a new alert. µi

0 is taken as the moving average of Xi over a past window
of N days. σ2

i is calculated as the sample variance of the last N days. For simplicity we
assume that the mean µi

0 has been subtracted from Xi for each i, as a preprocessing step.
We have fixed N = 21 days and CW = 4 days in all our experiments.

6.7.1 Searching through the additive space

We search through additions of all possible combinations of m time series from the k
series. The search is done in a depth first manner. We find a lower bound on the standard
deviation of the sum of two random variables. Let X1 and X2 be two random variables,
and σX1 and σX2 be the corresponding standard deviations. Let Y = X1 + X2. The standard
deviation of Y is given by σ2

Y = σ2
X1

+ σ2
X2

- 2*r*σX1 σX2 . Here r is the Pearson correlation

128



coefficient of X1 and X2. We can obtain a lower bound for σY when r=-1. We can better
this bound if we can assume that r is lower bounded by a higher value.

Now, let σ̂X1 ≤ σX1 and σ̂X2 ≤ σX2 , where ˆσX1 and σ̂X2 are lower bounds on the
standard deviation of X1 and X2. Let r̂ be a lower bound on the correlation coefficient
of X1 and X2. Define, σ̂2

Y = σ̂2
X1

+ σ̂2
X2

- 2*r̂*σ̂X1 σ̂X2 . Under these assumptions it
can be shown that σ̂2

Y ≤ σ2
Y , i.e. σ̂Y gives a lower bound on the standard deviation of

Y = X1 + X2.

Our depth first search algorithm is as follows. We describe our search algorithm as a
recursion:

For each time step t:

Initialize

1. Update the standard deviations σ1, σ1, ..., .σk.

2. S ← φ.

3. DfsRecur(S,0)

DfsRecur(S, σ̂XS
)

1. Let max index = the maximum index number among the series present in S.

2. XS = Xi1 + ... + Xip , where Xi1 , ... , Xip ∈ S

3. If XS ≤ hσ̂XS
, then goto step 8

4. Calculate the value of σXS
. This step requires O(N) time, where N is the moving-

average window size.

5. If XS ≤ hσXS
, then goto step 8

129



6. Calculate the value of CS , the cumulative sum for the composite series S. We need
only consider CW days in the past to calculate this value.

C(0) = 0 (6.7)

C(i) = max(0, XS(t− CW + i)− (µ0 + L) + C(i− 1)),

for i = 1, . . . CW (6.8)

CS = C(CW ) (6.9)

If CS ≥ hσXS
, then signal an alert.

7. If | S | = m, return

8. For each i such that max index < i ≤ k

(a) S ′ = S ∪Xi

(b) if |S ′| > m then return

(c) σ̂XS′ = sqrt(σ̂2
XS

+ σ̂2
i - 2r̂ σ̂XS

σ̂i).

(d) DfsRecur(S ′, σ̂XS′ )

Here m is the maximum number of series that are considered in one composite series
XS . It first calculates a lower bound of the standard deviation of a composite series without
explicitly calculating it from the past data. This lower bound allows us to determine if the
current value of the composite series can possibly signal an alert. We can avoid calculating
the exact standard deviation and cumulative sum by this bounding procedure. In a fraction
of cases we actually need to perform the exact calculations.

We use exactly the same procedure to search through the difference series as well.
The only difference in this case is that σ̂2

Y = σ̂2
X1

+ σ̂2
X2

- 2*r̂*σ̂X1 σ̂X2 , where Y is the
difference series of X1 and X2.
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6.8 Datasets

We use three datasets in our experiments. We use the method described in §6.6 to inject
simulated anomalies into these datasets.

1. Over the Counter medicine sales data (OTC) in US (described in Chapter 1, §1.4.3.
Each sale belongs to one of the following categories:

(a) Baby/Child Electrolytes

(b) Cough/Cold

(c) Internal Analgesics

(d) Stomach Remedies

(e) Thermometers

We have 5 time series corresponding to each of the above categories for a period of
about 2 years.

2. Emergency department dataset from the regions around Pittsburgh (described in
§1.4.4. This data spans 668 days.

The PRODROME attribute describes the category of the patient’s complaint upon
arrival at the emergency department. It can have 7 possible values. Correspondingly,
we get 7 time series of the count of patients each day.

3. Stock Prices Dataset: We consider the daily stock prices of the following 12 com-
panies: Dell, Sun, GE, IBM, Microsoft, GM, Nissan, Toyota, Sony, Ford, BP and
Exxon Mobil for a period of 4 years.

6.9 Results

To measure the performance of the algorithms, we need to measure their false positive rate
and the corresponding detection lag. Detection lag is the time difference between the start
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of the attack and the first instance when an alert is signaled with the attack underway. A
plot of the number of false positives vs. the detection lag is called an AMOC (Activity
Monitoring and Control Chart) curve.

To get a point on the AMOC curve we do the following:

1. Fix a value of h, where, H = hσ, is the CUSUM threshold.

2. For i = 1 to 50,

(a) Inject a random attack of duration 15 days in the data. The attack is spread
over at most three individual variables.

(b) Estimate the baseline trend values using Moving Average with a slide window
of length 21 days.

(c) Run the modified CUSUM algorithm on the residues. Keep track of the num-
ber of false positives and the detection lag. If no alert is signaled within the
duration of the attack, the detection lag is taken as the duration of attack.

3. Calculate the average number of false positives and the average detection lag over
the 50 random attack simulations.

This gives us a point on the AMOC curve. We then vary h to obtain the entire curve.

We ran our algorithm on each dataset, with different values of m (the maximum number
of series in a composite series). We compared the CUSUM algorithm with VAR, Vector
Moving Average, Hotelling T 2 and MCUSUM. Both VAR and Vector Moving Average
used a 3-day slide window (p=3). Hotelling T 2 used the last 10 day’s values for calculating
the mean.

6.9.1 OTC Dataset

Fig 6.1(a) shows the comparison between CUSUM and the other related methods as ex-
plained in section 6.2 for the OTC dataset. We ran CUSUM on the individual series in-
dependently for the Simple CUSUM method (m=1). We see that CUSUM significantly
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Figure 6.1: AMOC Curves comparing Related Methods
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Figure 6.2: AMOC Curves comparing different combinations of time series
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Figure 6.3: Improvement in Detection lag using the proposed methods corresponding to
fixed number of false positives over the duration

outperforms the other methods. For the same False Positive rate, it gives a much lower
Detection Lag.

Fig 6.2(a) shows the curves for CUSUM where m varies as 1, 2 and 3. The fourth curve
corresponds to considering the difference series as explained in section 6.7. We see that
there is an improvement in the detection lag time when we consider summation of two or
more series. The performance of the two series and three series algorithms are similar. But
the difference operation does not seem to give an improvement. For a fixed false positive
rate of 15 for the entire duration, Fig 6.3(a) shows the corresponding Detection Lags. The
detection lag is 7.87 days for m = 1. It improves by about 8% to 7.23 days for m = 3.

6.9.2 Emergency Department Dataset

Fig 6.1(b) shows the comparison between CUSUM and the other related methods. Similar
to the OTC dataset, we see that CUSUM significantly outperforms the other methods.

The AMOC curves for this dataset are shown in Fig 6.2(b). There is a significant
difference in the detection lag time for very low (<10) false positive rate. For example,
for no false positives over the entire duration, the detection lags are 8.88, 6.1 and 6.46, for
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m = 1, 2 and the difference operator respectively. This is illustrated in the bar chart Fig
6.3(b). We see an improvement of 2.78 days or 31% in detection lag when considering
more than one series. In applications such as disease outbreak detection, we need to have
a low false positive rate. Having a high false positive rate makes the system almost useless
because it becomes infeasible to investigate each alarm. Hence, our result in the low false
positive range is significant.

Effect of Cusum Window(CW )

CW denotes the number of previous days that are considered to calculate the cumulative
for the current day. In eqn. 6.8, when CW = 1 and L = 0, CS measures the deviation of the
current value from the expected mean. The CUSUM test in this case becomes identical
to the one sample Gaussian test (computing the p-value of a sample). In our experiments,
we have set L = σ, which empirically give the best results. Hence for CW = 1, our test is
similar to the simple Gaussian test, except for the effect of L. L defines a threshold such
that we are concerned only about increases that are above that threshold.

Another advantage of CUSUM over the Gaussian testing is that it considers samples
from CW past days. If there is a gradual increase in the time series, it can utilize past
information to make a better decision. It can be expected that higher CW values will be
helpful when the expected detection lag is long. But if the expected detection lag is close
to one day, then higher CW values won’t be helpful. This is because in this case the attack
mostly gets detected on the first day, and the data from previous days do not provide any
helpful information.

Fig 6.4(b) shows the AMOC curves for m=1 (considering individual series), with dif-
ferent values of CW . We see that for large (>70) false positive rate, CW = 1 performs
best. But, the portion of the curves that correspond to lower false positive rates show that
higher CW values perform better. Most applications in practice, including disease detec-
tion require a very low false positive rate. Hence having a larger CW value is preferable
in these conditions.
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Figure 6.4: Performance comparisons over the ED and Stock Prices datasets.

Table 6.1: Number of instances that required exact calculation of σ in the Emergency
Department Dataset

Num Series considered Num Calculated

m = 2 93,923 886

m = 3 428,571 5,587

Computational Speedup

Table 6.1 gives an indication of the advantage of using a lower bound on the standard
deviation of the composite series. The first column ’Num Series Considered’ corresponds
to the number of composite time series that are tested for anomaly over the entire time
period. The column ’Num Calculated’ corresponds to the cases where we actually needed
to perform the exact computation of σ. We see that for m = 2 and 3, we need to perform
the expensive computation of σ in only a small fraction of the cases considered.
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6.9.3 Stock Prices Dataset

The AMOC curves for this dataset are shown in Fig 6.4(a). We see that m = 2 and 3
performs similar or worse than m=1. This is not very surprising since there is a high
positive correlation between the variables. As noted earlier, in the presence of positive
correlation, considering the summation of two or more series can cause the false positive
rate to increase without producing a significant decrease in the detection lag. We see that
in this case, when we consider the difference operator, the AMOC curve is significantly
better. This shows that the difference operator is able to exploit the positive correlation
present in the dataset.

6.10 Conclusions

We show that by using simple arithmetic combinations of time series, we get a simple yet
powerful technique of detecting variations in multivariate time series data. We compare
this approach against other related methods, and show the performance improvements on
real world datasets (injected with synthetic events). One of the main advantages of our
method is its easy interpretability of the results.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we consider the problem of detecting anomalies in large datasets. A main
focus is on detecting collective anomalies (e.g. groups, patterns or space-time regions).
In Chapters 2-4, we focus on categorical valued datasets. We start with the investigation
of detecting individual record anomalies, and propose a novel way of testing records by
considering all possible combinations of attribute values (Chapter 2). We show that this
method is especially useful when some of the attributes have a very high arity, and when
many of the attribute values are rare.

We then consider the problem of detecting anomalous groups of records which are gen-
erated by a common process. Chapters 3 and 4 address two possible variations of this sce-
nario. In Chapter 3 we describe the Anomaly Pattern Detection (APD) algorithm, which
assumes that there is some self-similarity (may be low) among the anomalous records, and
that they are sufficiently anomalous to stand out by themselves. In this scenario, we use a
local anomaly detector, followed by a rule based pattern detector to identify the anomalous
records. We show that this approach performs better than either of its component methods.
In Chapter 4 we consider the alternate scenario, where the anomalous groups of records
are strongly self-similar, but each individual record might not be anomalous on their own.
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In this case, we use ideas from spatial scan statistics and the Bayesian network probability
model, to develop the Anomalous Group Detection (AGD) algorithm. We evaluate the
performances of APD and AGD on real world container shipment, emergency department
and network intrusion datasets. A common feature of these algorithms is that they do
not assume any contextual information (§1.1.2), but rather perform a combinatorial search
over the space of all possible subsets (of attributes or of records). We employ various tech-
niques to perform the search efficiently. In some cases, due to the enormity of the search
space, we use heuristic search techniques that search over a small (but relevant) portion
of the complete search space. Also, since these methods make few assumptions about the
data, they are very general algorithms and can be applied to data from a wide variety of
domains.

Next, we investigate the problem of learning and detection of time varying space-
time patterns in data. In Chapter 5 we generalize the state of art technique - Multivariate
Bayesian Scan Statistics (MBSS) to detect time varying events. We use this Time Varying -
Multivariate Bayesian Scan Statistics (TV-MBSS) method on over the counter medication
sales data to learn and identify space time regions affected by hurricane strikes thus en-
abling us to differentiate between changes in patterns of behavior due to inclement weather
and those which may be due to outbreaks of disease. Finally, in Chapter 6 we consider a
simple yet powerful technique of arithmetic combination of time series to detect increase
in count in multivariate time series data. We compare this method with a host of other
related methods, and show that it outperforms all of them.

7.2 Future Work

• The algorithms in Chapter 2, 3 and 4 exclusively deal with categorical valued datasets.
Real valued attributes are discretized into a fixed number of quantile ranges as a pre-
processing step. But by discretizing the values we lose some information, such as
the ordering of values.

Currently, we have a fixed number of levels for discretization. It is possible that
different real attributes have varying characteristics, and discretizing into the same
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number of levels is not the best solution. We can use different clustering techniques
to determine appropriate levels. k-Means clustering [MacQueen, 1967], SAX [Lin
et al., 2003] and Gaussian Mixture Models [Morchen and Ultsch, 2005] are candi-
date techniques that could be evaluated for this purpose.

• While in our Bayesian network methods we exclusively deal with categorical valued
attributes, we can easily generalize them to handle datasets containing real valued
attributes as well, using Bayesian Network models containing both categorical and
real valued nodes as shown in [Monti and Cooper, 1998] and [Monti, 1999].

• None of the datasets used for evaluation in this work have labeled outbreaks or
anomalies. For the Emergency Department datasets, while we believe that the cho-
sen BARD outbreak simulation is a realistic model of anthrax release, for a more
robust analysis, we need to evaluate our methods on real, known disease outbreaks.
Similarly, in the domains of detecting illegal container shipment, network intrusion
detection and over the counter medication sales monitoring, it would be informative
to evaluate our algorithms on naturally occurring events in the data.

• For the time series detection method in Chapter 6, apart from using addition and
subtraction, other arithmetic operations such as division can be used to create com-
posite series. In this case, we need to find an efficient way to compute the standard
deviation of the composite series since the combinations would no longer be linear.

• The main advantage of our time series detection method is the easy interpretability
of an alert. But, not all combinations of time series are meaningful to the end user.
We can have an user interface that can specify which combinations to consider.
Alternatively, it might be possible to learn meaningful combinations through a more
interactive system.
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