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Abstract

The Andrew File System is a location-transparent distributed file system that will
eventually span more than 5000 workstations at Carnegie Mellon University.
Large scale affects perfortnance and complicates system operation. [n this paper
we present observations of a prototype implementation, motivate changes in the
areas of cache validation, server process structure, name translation and low-level
storage representation, and quantitatively demonstrate Andrew’s ability to scale
gracefully. We establish the importance of whole-file transfer and caching in
Andrew by comparing its perforrance with that of Sun Microsysiem’s NFS file
system. We also show how the aggregation of files into volumes improves the
operability of the system.
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1. Introduction

Andrew is a distributed computing environment that has been under development at Cuarnegic-Mecllon
University since 1983, A comprehensive overview of the system has been presented by Morris ¢t al [3]. The
characteristic of Andrew that is most pertinent to this paper is its expected final size. Fuch individual at CMU
may cventually possess an Andrew workstation, thus implying a scale of 5000 to 10000 nodes.

A fundamental component of Andrew is the distributed file system that constitutes the underlying
information sharing mechanism. A deaailed description of this file System has been presented in an carlier
paper [6]. Using a sct of trusted servers, collectively called Vice, the Andrew File System presents a
homogencous, location-transparent file name space to all the client workstations, Clients and servers run the
4.2 Berkeley Software Distribution(4.285D) of the Unix operating system.! The operating system on each
workstation intercepts file system calls and forwards them to a uscr-level process on that workstation. This
process. called Venus, caches files from Vice and stores modified copics of files back on the servers they came
from. Venus contacts Vice only when a file is opened or closed: reading and writing of individual bytes of a
file arc performed directly on the cached copy, bypassing Venus.

This file system architecture was motivated primarily by considerations of scale. To maximisc the number of
clients that can be supported by a server, as much of the work as possible is performed by Venus rather than

Vice. The servers are organised as a loose confederacy. with minimal communication among themsclves. It is
Venus on each workstation that does the locating of a file on a specific server and iniuates a dialogue with that
server.

Our intent in this paper is to examine the design of the Andrew File System at the next level of detail. In
particular. we concentrate on those features and design decisions that bear on the scalability of the system.
Large scale affects a distributcd system in (wo ways: it degrades performance, and it complicates
administration and day-to-day operatuon. This paper addresscs both of these conscquences of scale on
Andrew, and shows that the mechanisms we have incorporated cope with these concerns successrully.

Section 2 of the paper describes an initial prototype impiementation and our ¢xpenence with it. That section
also introduces a synthetic benchmark that is used as the basis of performance companson in the rest of the
paper. Based on this experience we made many design changes. The rationale for these changes is presented
in Section 3. Scction 4 discusses the effect of these design changes on performance. To place our design in
perspective and to quantify its relative merits. Section 3 presents the results of running the same benchmark
on an alternative contemporary distributed file system. Sun Microsystem's NFS [9]. Scction 6 shows how the
operability of the system has been enhanced by our design changes. Finally, in Secuon 7 we discuss issues
that are related peripherally t0 scale and examine the ways in which the present design can be enhanced.

2. The Prototype

Our primary goal in building a prototype was to validate the basic file system architecture, In the
implementation we had to careruily balance two Opposing consuraints: the desire to obtain feedback on our
design as rapidly as possible. and the need 0 build a s¥stem that was usable enough to make that feedback
meaningful. In retrospect. the prototype was successiul in both these respects. The prototype was used by
ourselves as well as by about 400 other users. At the Peak of'its usage, there were about 100 workstations and
six servers. The workstations were Sun2's with 65MB local disks, and the servers were Sun2's or Vax-750's

1L‘nix is 2 rademark of AT&T. To avord any pessioile ambiguity, we yga the name 4 2BSD” throughout this paper for the speafic
version of Unix used in our system.



cach with two or three 400MB disks. As the rest of this paper illustrates, the experience we gained from the
prototype was invaluable in developing a considerably improved implementation of the Andrew File System.

2.1. Description
In the prototype, Venus on a client workstation would rendezvous with a process listening at a well-known
network address on a server. This process then created a dedicated process to deal with all future requests
from the client. The dedicated process persisted until its client terminated the network connection. In stcady
state a scrver typically operated with as many processes as there were clients who had cver contacted it. Since
4.2BSD does not allow sharing of address spacces between processes, all communication and manipulation of
data structures between server processes took place via files in the underlying file system. User-level file
locking was implemented by a dedicated lock scrver process which scrialized requests from the scparate server
" processes and maintained a lock table in its address space.

Data and associated Vice status information were stored in separate files. Each server contained a dircctory
hierarchy mirroring the structure of the Vice files stored on it. Vice file status information, such as an access
list. was stored in shadow dircctories called .admin directories. The dircctory hicrarchy contained Siwub
dircctories to represent portions of the Vice name space that werc located on other servers. The location
database that maps files to servers was thus embedded in the file tree. If a file were not on a server, the search
for its name would end in a stub directory which identified the server conuaining that file. Below the top
levels of the Vice name tree, files in the same subtree were likely to be located on the same server. Hence
clients cached pathname prefix information and used this as the basis of a heuristic to direct file requests to
appropriate servers.

The Vice-Venus interface named files by their full pathname. There was no notion of a low-level name, such
as the inode in 4.2BSD. A rudimentary form of read-only replication, restricted to the topmost levels of the
Vice name tree, was present. Each replicated directory had a single server site to which all updates were
directed. An asynchronous slow-propagation mechanism reflected changes made at this site to the read-only
replicas at all other sites.

All cached copies of files were considered suspect by Venus. Before using a cached file, Venus would verify
its timestamp with that on the server responsible for the file. Each open of a file thus resulted in at least one
interaction with a server, even if the file were already in the cache and up to date.

2.2. Qualitative Observations

Our preliminary experience with the protoype was quite positive. Almost every application program on
workstations was able 10 use Vice files without recompilation or relinking. This put to rest one of our key
concerns: namely, the successful emulation of 4.2BSD file system semantics using caching and whole-file
transfer. There were some areas of incompatibility with standard 4.2BSD semantics, but they were never
serious enough to discourage use of the prototype.

Command execution involving Vice files was noticeably slower than similar commands involving local files,
However. the performance was so much better than that of the heavily-loaded timesharing systems used by
the general user community at CMU that our users willingly suffered!

As we had anticipated. the performance degradation was not uniform across all operatons. CPU-bound
operations like the compilation of a large program were almost as fast as on a stand-alone system. Other
operations, such as the recursive dircctory lisung of a large subtree of files, took much longer when the



subtree was in Vice.

We were puzzied by certain application programs that ran much slower than we had expected, even when all
relevant files were in the local cache, It turned out that such programs used the siar primitive in 4.2BSD to
test for the presence of files or to obtain status information before opening them. In pathological cascs, a file
would be stat-ed twice or thrice before being actually opened. Since cach srar call involved a cache validity
check. the total number of client-server interactions was significantly higher than the number of file opens.
This increased both the total running time of these programs and the load on the servers. We attempted to
alleviate this problem by placing an upper bound on the frequency with which we checked the validity of a
cache entry. Although performance did improve, it was still not satisfactory.

We found that performance was usually acceptable up to a limit of about 20 active users per server. However,

there were occasions when even a few users using the file system intensely caused performance to degrade
intolerably. =

The prototype turned out to be difficult to operate and maintain. The use of a dedicated process per client on
each server caused critical resource limits to be exceeded on a number of occasions. It also resulted in
excessive context switching overhead and in high virtual memory paging demands. However, it did have the
virtue of simplicity and resulted in a relatvely robust system because the failure of an individual server
process affected only one client. The remote procedure call package was built on top of a reliable byte-stream
abstraction provided by the kernel. While this simpiificd our implementation. it frequently caused network-
related resources in the kernel to be exceeded. Qur decision to embed the file locauon database in stub
directories in the Vice name tree made it difficuit t0 move users’ dircctories between servers. When disk
storage on a server was exhausted. it was casier t0 add another disk rather than move a few users to another
server! Our inability to enforce disk storage quotas on individual users exaccrbated this problem.

2.3. The Benchmark

To quantify the performance penalty due to remote access, we ran a series of controlled experiments with a
synthetic benchmark. This benchmark consists of a command script that operates on a collection of files
constituting an application program. The operations are intended to be a representadve sample of the kinds
of actions an average user might perform. Although we do not demonstrate any staustical similarity between
these file references and those observed in real systems, It provides a convenient yardstick for comparing a
variety of file system implementations. o

Throughout this paper the term Load Unit refers 1o the load placed on a server by a single client workstation
running this benchmark. Server load is varied by initiating the benchmark simultaneously on muitiple client
workstations and waiting for all of them 0 complete. We refrain from using the term “client” in reportng
benchmark results to avoid the possible misinterpretation that We are referming o a human user.® Qur
observations of network trarfic indicate that a load unit corresponds 1o about five Andrew users.

The input to the benchmark is a read-oniy source subtree consisung or about 70 files. The files are the source
code of an application program and totl about 200 Kbytes in size. There are five distinct phases in the
benchmark:

MakeDir constructs a target subtree that 1s ideaucal in structure to the source subtree,

2We are indebted to Jerry Saltzer for alerung us to this danger.



Copy copics every file from the source subtree to the target subtree.

ScanDir recursively traverses the target subtree and cxamines the status of every file in it. [t docs
not actually read the contents of any file,

ReadAll scans cvery byte of every file in the target subtree once.
Make compiles and links all the files in the target subtree.

On a Sun2 workstation with a local disk, this benchmark takes about 1000 seconds to complete when all files
are obtained locally. The corresponding times for other machines are shown in Table 1.

2.4. Performance Observations

A fundamental quantity of interest in a caching file system is the hit ratio observed during actual use. Venus
used two caches: one for files and the other for status information about files. A snapshot of the caches of 12
machines showed an average file-cache hit ratio of 81% with a standard deviation of 9.8%. and an average
status-cache hit ratio of 82% with a standard deviation of 12.9%.

Also of interest is the relative distribution of client/server interactions. Such a profile is valuable in
improving server performance, since attention can be focused on the most frequent cails. Table 2 shows the
observed distribution of those Vice cails that accounted for more than one percent of the total. This data was
gathered over a one-month period on five servers. The distribution is dramatically skewed, with two calls
accounting for nearty 90% of the total. The TestAuth call validated cache entries. while GetFileSiat obtained
status information about files absent from the cache. The table also shows that only 6% of the calis to Vice
(Fetch and Siore) actually involved file transfer, and that the ratio of Ferch calls to Store calls was
approximately 2:1.

We also performed a series of controlled experiments using the benchmark. Table 3 presents the total
running time for the benchmark as a function of server load. The table also shows the average response time
for the most frequent Vice operation, TestAuth, during each of the experiments. One important observation
from this table is that the benchmark took about 70% longer at a load of one than in the standalone case, A
second observation is that the time for TestAuth rose rapidly beyond a load of S, indicating server saturation.
For this benchmark, therefore, a server load between 35 and 10 was the maximum feasible.

For measuring server usage. we installed software on servers to maintain statistics about CPU and disk
utilisation, and about data transfers t0 and from the disks. Table 4 presents this data for four servers over a
two-week period. The data is restricted to observatons made during 9am to 5pm on weekdays. since this was
the period of greatest system usc. As the CPU udilisations in the table show, the servers loads were not evenly
balanced. This fact is confirmed by Table 2, which shows a spread of about 5:1 in the total number of Vice
calls presented to each server. Under these circumstances, moving users to less heavily loaded servers wouid
have improved the quality of service considerably.

Table 4 also reveals that the two most heavily used servers showed an average CPU utilisation of about 40%,
This is a very high figure, considering that it was an average over an §-hour period. Closer examination of the
raw data showed much higher short-term CPU udilisation: figures in the neighborhood of 75% over a s-
minute averaging period were common. Disk udlisations, however, were much lower. The 8-hour average
was less than 15%. and the short-term peaks were rarcly above 20%. -We concluded from these figures, and
from server utilisation data obtained during the benchmarks, thag the performance bottleneck in our



prototype was the server CPU. Based on protiling of the servers, we deduced that the two factors chictly
responsible for this high CPU utilisation were the frequency of context switches between the many secrver
processes. and the time spent by the servers in traversing full pathnames presented by workstations.

To summarise, the measurements reported in this section indicated that significant performance improvement
was possible if we reduced the frequency of cache validity checks. reduced the number of server processes,

required workstations rather than the servers to do pathname traversals, and balanced scrver usage by
reassigning users.

3. Changes for Performance

Bascd on our experience with the prototype we set out to build a revised version of the Andrew File System.
Although we were under no constraint t rcuse code or ideas. the resulting design uses the same fundamental
architectural principle as the prototype:  workstations cache entire files from a collection of dedicated
auionomous servers. Our analysis convinced us that the shortcomings of the prototype were due to
inadequacies in its realisation rather than in its basic architecture. We were also convinced that this was the
most promising path to our goal of supporting at Icast 50 clients per server.,

Some aspects of the prototype implementation have remained unchanged. Both Venus and server code run as
user-level processes. Communication between servers and clients is based on the RPC paradigm and uses an
independently-optimised protocol for the transfer of bulk data. ‘The mechanism in the workstation kernels to
intercept and forward file requests to Venus is the same as in the prototype.

While retaining these aspects of the prototype, we have changed many details. The changes fall into two
categories: those made to enhance performance and those madc to improve the opcrability of the system. In
this section we describe the changes made for performance, and defer discussion of changes for operability
until Section 6. The changes for performance are in four distinct areas:

e Cache management

o Name resolution

¢ Communication and server process structure
o Low-level storage representation

These are orthogonal changes, although a smail degree of interdependency is incvitable. We discuss the
individual changes in Sections 3.1 to 3.4 and then describe their synthesis in Section 3.5.

3.1. Cache Management

Caching, the key to Andrew’s ability to scale well, is further exploited in our redesign. Venus now caches the
contents of directories and symbolic links in addition to files, There are sull two separate caches, one for
status and the other for data. Venus uses a simpie LRU algonthm 1o keep each of them bounded in size, The
status cache is kept in virtual memory t allow rapid SCIVICING of staf system calls, Each entry containg
information such as the size of a file and its modification Umestamp. The data cache s resident on the local
disk, but the 4.2BSD 1/0 buffering mechanism does some caching of disk blocks in memory, transparent (o
Venus. -

Modifications to a cached file are done locally. and are rerlected back to Vice when the file is closed. As
mentoned carfier, Venus intercepts only the opening and closing of files and does not parucipate in the
reading or writing of individuai bytes on a cached copy. For reasons or integrity, modifications to a directory
are made directly on the server responsible for that directory, However, Venus reflects the change in its



cached copy to avoid refetching the directory.

A significant point of departure from the prototype is the manner in which cache cntrics are kept consistent.
Rather than checking with a server on cach open, Venus now assumes that cache entrics are valid unless
otherwisc notificd. When a workstation caches a tile or directory, the server promiscs to notify it before
allowing a modification by any other workstation. This promise, called a Caflback, dramatically reduces the
number of cache validation requests received by servers. A small amount of cache validation traffic is still
present, usually to replace callbacks lost on account of machine or network failures. When a workstation is
rebooted, Venus considers ail cached files and directorics suspect and generates a cache validation request for
the first use of cach such entry.

Callback complicates the system because each server and Venus now maintains callback state information.
Before modifying a file or dircctory a server has to notify every workstation that has a callback on that file. If
the amount of callback state maintained by a server is excessive its performance may degrade. Under such
circumstances it may be appropriate for servers to break callbacks and reclaim storage. Finally, there is
potential for inconsistency if the callback state maintained by a Venus gets out of sync with the corresponding
state maintained by the servers.

In spite of these complications, we are convinced of the importance of callback. By reducing cache validation
traffic, callback reduces the load on servers considerably. It is also callback that makes it feasible to resolve
pathnames on workstations, as described in the next section. In the abscnce of callback, the lookup of every
component of a pathname would generate a cache validation request.

3.2. Name Resolution ‘

In a conventional 4.2BSD system a file has a unique, fixed-length name, its inode, and one or more variable-
length Pathnames that map to this inode. The routine that performs this mapping, namei. is usually one of the
most heavily used and time consuming parts of the kernel. In our prototype, Venus was aware only of
pathnames; there was no nouon of an inode for a Vice file. However, because of the data representation on
our servers. each Vice pathname presented by a Venus involved an implicit namer operation on the server to
locate the file. This resulted in considerable CPU overhead on the servers and was an obstacle to scaling. It
also made full emulation of 4.2BSD semantics difficuit.

To alleviate these problems we reintroduced the notion of two-level names. Each Vice file or directory is now
identified by a unique fixed-length Fid. Each entry in a directory maps a component of a pathname to a fid.
Venus now performs the logical equivalent of a namer operation, mapping Vice pathnames to fids. Servers
are presented with fids and are, in fact. unaware of pathnames. As discussed in Section 3.4 we have
performed further optimisations to ensure that no implicit namei operations are performed on a server when
accessing data. '

A fid is 96 bits long and has 3 components: a 32-bit Volume number, a 32-bit Vnode number and a 32-bit
Uniquifier. The volume number identfies a collection of files, called a Volume, located on one server.
Volumes are discussed in Section 6. The vnode number is used as an index into an array containing the file
storage information for the files in a single volume. The actual accessing of file data. given a fid. is thus an
efficient operation. The uniquifier guarantces that no fid is ever used twice in the history of the file system.
This allows reuse of vnode numbers, thereby keeping certain critical server data structures compact.

It is important to note that a fid contains no explicit location information. Moving files from one server to
another does not, therefore, invalidate the contents of directories cached on workstatons. Location



information is contained in a Folume [ocarion Database replicated on cach server. This is a slowly changing
database that allows every server to identify the location of cvery voluine in the system. It is the aggregation
of files into volumes that makes it possible to keep the location database to a manageable size.

3.3. Communication and Server Process Structure

As the context switching and paging overheads in our prototype indicated, the use of a scrver process per
client did not scale well. A related problem was that server processes could not cache critical shared
information in their address spaces because 4.2BSD does not permit processes to share virtual mcmory. The
redesign solves these problems by using a single process to service all clients of a server.

Since multiple threads of control provide a convenicnt programming abstraction, we have built a user-level
mcchanism to support multiple nonpreemptive Lighuweight Processes (LWPs) within one process. Context
switching between LWPs is only of the order of a few procedure call times. The number of I.WPs (typically
five) is determined when a server is initialised and remains fixed thercafter. An LWP is bound to a particular
client only for the duration of a single server operation. A client thus has long-term state on a server, but not
a corresponding thread of control associated with jt. Since Venus also uscs the LWP mechanism, it can act
concurrently on remote file access requests from multiple user processes on its workstation.

As in the prototype. clients and servers communicate via a remote procedure call mechanism. Unlike the
prototype, however, this implementation is cnurely outside the kernel and is capable of supporting many
hundreds or thousands of clients per server. It is integratcd with the LWP mcechanism, thus allowing the
server 1o continue servicing client requests unless all its LWPs are blocked on network events, The RPC
mechanism runs on a variety of workstatons, provides exactly-once semanucs in the absence of failures,
supports whole-file transfer using an opumised bulk transfer protocol. and provides secure, authenticated
communication between workstations and servers. -

3.4. Low-level Storage Representation

Our decision to retain 4.2BSD on the servers implied that files would hold Vice data. as in the prototype. As
mentoned in Section 3.2, we were wary of the cost of the namei operations invoived in accessing data via
pathnames. Therefore we decided to access files by their inodes rather than by pathnames. Since the internal
inode interface is not visible to user-level processes. we had o add an appropriate sct of system calls, The
vnode information for a Vice file identries the nodc of the file stonng its data. Data aceess on a server is thus
quite rapid; an index of a fid into a wble to look up vnode information. followed Dy an iopen call to read or
write the data.

For efficiency Venus also uses this mechanism. A local directory on the workstation is used as the cache,
Within the directory are files whose names are placcholders for cache entnes.  Venus accesses these files
dircctly by their inodes. We have thus climinated neariy ai] pathname lookups on workstations and servers,
except explicit ones performed on cached dircctones by Venus. Such expiicit lookups are, in fact, faster than
kernel lookups because of the improved internal organisauon of Vice directones.

3.5..0verail Design

The result of our redesign can be best understood by cxamining a remote file access in detail, Suppose a user
process opens a file with pathname £ on a worksuuon: The kernel, in resolving P, detects that it is a Vice file
and passes it to Venus on that workstation. One of the LWPs compnsing Venus now uses the cache to
examine each directory component 0 of 7 in succession:



o If Disin the cache and has a callback on it it is used without any network comimunication.
e [f Dis in the cache but has no callback on it. the appropriate scrver is contacted, a new copy of D
is fetched if it has been updated. and a callback is cstablished on it.

* If Dis not in the cache it is fetched from the appropriate server, and a callback established on it.

When the target file Fis identificd, a current cache copy is created in the same manner. Venus then rewurns to
the kernel, which opens the cached copy of Fand rcturns its handle to the user process. Thus, at the end of
the pathname traversal, all the intermediate dircctorics and the target file are in the cache, with callbacks on
them. Future references o this file will involve no network communication at all, unless a callback is broken
on a component of P. Venus regains control when the file is closed and, if it has been modified locally,

updates it on the appropriate server. An LRU replacement algorithm is periodically run to reclaim cache
space.

When processing a pathname component, Venus identifies the server to be contacted by examining the
volume ficld of the fid of that component. If an entry for this volume is not present in a mapping cache,
Venus contacts any server that it already has a conncction to, requests the location information, and cnters it
into the mapping cache. Unless Venus already has a connection o the server responsible for that volume, it
establishes a new connection. It then uses this connection to fetch the file or directory. Conncction

establishment and future requests from the workstation are serviced by any of the LWPs comprising the
Server process.

The above description is a simplified view of the actual sequence of events [2). In particular, authentication,
protection checking, and network failures complicate matters considerably. Also. since the other LWPs in
Venus may be concurrently servicing file access requests from other processes, accesses to cache data
structures must be synchronised. However, although the initial access of a file may be complex and rather
expensive, further accesses to it are much simpler and cheaper. It is the locality inherent in actual file access
patterns that makes this strategy viable,

Some of the complexity of our impiementation arises from our desire to provide a useful yet efficient notion
of file consistency across multiple machines. We examined a variety of choices ranging from the stict
serializability of operations typically provided by datbase systems, to the laissez-faire attitude excmplified by
the SUN NFS file system, where a file created on a workstation may not be visible on another workstation for
30 seconds. Our design converged on the following consistency semantics:

e Writes to an open file by a process on a workstation are visible to all other processes on the
workstation immediately, but are invisible clsewhere in the network.

¢ Once a file is closed. the changes made to0 it are visible to new opens anywhere on the network.
Already-open instances of the file do not reflect these changes.

e All other file operations (such as protection changes) are visible everywhere on the network
immediately after the operation completes.

e Multiple workstations can perform the same operation on a file concurrenty. In conformance
with 4.2BSD semantics, no implicit locking is performed. Application programs have to cooperate
to perform the necessary synchronisation if they care about the seralization of these operations.

Actual usage has convinced us that this is a useful and easily understood mode] of consistency in a distributed
file system. It is also one that we have successtully implemented without serious performance penalty.

Finally, it is important to note that the changes we describe in this paper are only those relevant to scale.

Other changes, typically for better 4.2BSD em-ulau‘on Or security, are not discussed here. The current
interface between Venus and Vice is summansed in Table S.



4. Effect of Changes for Performance

The revised implementation of the Andrew File System has been operational for aver a year. The evaluation
of this system focuscs on two questions.  First, how cffective were our changes? In particular, has the
antcipated improvement in scalability been realised? Sccond. what are the characteristics of the system in

normal operation? ‘The first question is addressed in Section 4.1, and information pertinent to the second
question is presented in Section 4.2,

4.1. Scalability

To investigate the behaviour of the system we repeated the experiments that we had performed on the
prototype. The server was a Sun2, as in the experiments on the prototype, but the clients were IBM-RTs.
Table 6 shows the absolute and relative times of the benchmark as a function of server load. The times for the
individual phases of the benchmark are also shown in this table. Figure 1 presents some of this data
graphically and compares it with prototype data from Table 3.

The performance penalty for remote access has been reduced considerably. Data from Tables 1 and 6 show
that an Andrew workstation is 19% slower than a standalone workstation. The prototype was 70% slower.
The improvement in scalability is remarkable. In the prototype, the benchmark took more than four times as
long at a load of 10 as at a load of one. [n the current system, it takes less than twice as long at a load of 20 as
ataload of one. Ata load of 10 it takes only 36% longer.

Table 6 shows that the Copy and Make phascs are most susceptible to server load. Since files are written in
both these phases. interactions with the server for file stores are necessary. Further. it is during the Copy
phase that files are fetched and calibacks cstablished. In contrast, the ScanDir and ReadAll phases are barely
affected by load. Callback eliminates almost ail interactions with the server during these phases.

Table 7 and Figure 2 present CPU and disk utilisation on the server during the benchmark. CPU utlisation
rises from about 8% at a load of one to over 70% at a load of 20. But disk uuiisation is below 25% even at a
load of 20. This indicates that the server CPU still limits performance in our system. though it is less of a
bottleneck than in the prototype. Better performance under load will require more etficient server software
or a raster server CPU. Figure 2 shows an anomaly at a load of ten. Since the corresponding data in Table 7
shows a high standard deviation, we suspect that server activity unrelated (o our experiments occurred during
one of these trials.

In summary, the resuits of this section demonstrate that our design changes have improved scalability
considerably. At a load of 20. the system is stiil not saturated. Since a load unit corresponds 0 about five
typical Andrew users, we believe our scale goal of 50 users per server has been met.

4.2. Generai Observations

Table 8 presents server CPU and disk uulisadons in Andrew. The figures shown are averages over the § hour
period from 9am to 5pm on weekdays. Most of the servers show CPU udlisatons between 15% and 25%.
One of the servers. viced. shows a uulisauon of 35.3%. but the disk ulisauon is not correspondingly high.
The high standard deviation for the CPU uulisauon leads us to believe that this anomaiy was caused by
system maintenance activites that were unexpectedly performed during the day rather than at night. Server
viced, on the other hand. shows a CPU uulisauon of 37.6% with a small sandard deviation. The disk
udlisation is 12.1%. the highest of any server. The high udlisation is explained by the fact that this server
stores the builetin boards. a collecuon of directories that are frequently accessed and moditied by many
different users.
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The distrihution ot Vice calls over a three day period is shown in Table 9. 'The servers with the most calls are
vice7, which stores common system files used by all workstations. and vice9. the server that stores bulletin
boards. The most frequent call is GetTime, which is used by workstations to synchronise their clocks and as
an implicit kecpalive. ‘The next most frequent call is FetchStatus. We conjecture that many of these calls are
gencrated by users listing directories in parts of the file name space that they do not have cached. It is
interesting that in spite of caching, fetches dominate stores. The call RemoveCB is made by Venus when it
flushes a cache entry. Server vice9 shows one of the highest occurences of RemoveC' B indicating that the files
it stores exhibit poor locality. This is precisely the behaviour one would expect of bulletin boards, since users
tend not to read bulletin board entries more than once. Only vice8, which is a special server used by the
operations staff, shows a higher occurence of RemoveCB. Basced on these measurcments, we have modified
Venus to remove callback on groups of files rather than one file at a time, when possible. This has reduced
the obscrved frequency of RemoveC B considerably.

Table 10, derived from the samc set of observations as Table 9, shows the type of data stored on each server
and the average number of users actively using that server. Most of the servers have between 50 and 70 active
users during the peak period of use, where an active user is one on whose behaif a request other than GetTime
has been reccived in the last 15 minutes. In interpreting this data it should be kept in mind that a user often
uses files from many different servers.

Although we do not present detailed data here, network utilisation is quite low. typically in the
neighbourhood of 5% for the 10 Mbit Ethernet, and 12% for the 4 Mbit token ring. The routers which
interconnect segments of the local area network have occasionally shown signs of overload. This problem
does not yet cause us concern, but may require attention in the future.

5. Comparison with a Remote-Open File System -

The caching of entire files on local disks in the Andrew File System was motvated primarily by
considerations of scale:

e Locality of file references by typical users makes caching attractive: server load and network
traffic are reduced.

e A whole-file transfer approach contacts servers only on opens and closes. Read and write
operations. which are far more numerous, are transparent to servers and causc no network traffic.
o The study by Qusterhout et al [4] has shown that most files in a 4.2BSD environment are read in

their entirety. Whole-file transfer exploits this property by allowing the use of efficient bulk data
transfer protocols.

o Disk caches retain their cntries across reboots, a surprisingly frequent event in workstation
environments. Since few of the files accessed by a typical user are likely to be modified elsewhere
in the system, the amount of data fetched after a reboot is usually smalil.

e Finally. caching of entire files simplifics cache management. Venus only has to keep track of the
files in its cache, not of their individual pages.

Our approach does have its drawbacks. Although diskless operation is possible, workstations require local
disks for acceptable performance. Files which are larger than the local disk cache cannot be accessed at all,
Strict emulation of 4.2BSD concurrent read and write semantics across workstations is impossible. since reads
and writes are not intercepted. Building a distributed database using such a file system is difficult, if not
impossible.

In spite of these disadvantages we persisted in our approach because we believed it would provide superior
performance in a large scale systcm. The drawbacks listed in the previous paragraph have not proved to be
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significant in actual usage in our enviromnent.  And, as the discussions of Scction 4 have cstablished, the
Andrew File System docs scale well. But could an alternative design have produced cquivalent or better

results? How critical to scaling are caching and whole-file transfer? The rest of this scction examines these
questions in detail,

5.1. Remote Open

A number of distributed file systems such as Locus [12], IBIS [11] and the Neweastle Conncction (1] have
been described in the rescarch literature and surveyed by Svobodova [10]. ‘The design of such systems has

matured to the point where vendor-supported inplementations like Sun Microsystem’s NFS [9], AT&T s
RFS [S], and Locus are available,

Although the details of these systems vary considerably, all of them share one fundamental property: the data
in a file is not fetched en masse; instead. the remote site potentially participates in cach individual-read and write
operation. Buffering and rcad-ahead arc employed by some of the systems to improve performance, but the
remote site is still conceptually involved in every 1/0 operation. We call this property Remote Open, since it
is reminiscent of the situation where a file is actually opencd on the remote site rather than the local site.
Only the Andrew File System and the Cedar File System (7] employ caching of cntire files as their remote
access mechanism.

To explore how vital our approach is to scaling, we compared Andrew under controlled conditions to a

representative of the set of remote open file systems. We selected Sun Microsystem's NFS as the candidate
for comparison for the following reasons:

o NFS is a mature product from a successful vendor of distnbuted cumputing hardware and
software. It is not a research prototype. , .-

® Sun has spent a considerable amount of time and effort to tune and refine NFS. Deficiencies in
its performance are therefore likely to be due 10 its basic architecture, rather than inadequacies in
implementation. A comparison of Andrew and NFS is thus most likely to vield significant
insights into the scaling characteristics of caching and remote-open file systems.

e NFS and Andrew can run on precisely the same hardware and opcraung system. They can, in
fact, coexist on the same machine and be used simultaneously. Using NFS allowed us to conduct
controlled experiments in which the only significant vanable was the file system component. The
performance differences we observed were due to the design and impiementation of the
distributed file systems and were not arufacts of hardware, network. or operaung system variation,

e There is a perception in the 4.2BSD user community that NFS is a de facto siandard. We were
curious to see how well Andrew measured up to it.

To be fair, it must be pointed out that NFS was not designed for cperauon n 3 large environment. It was
designed as a distributed file system for use by a smail collecton of trusted worksuauons. It must also be
emphasised that our comparison is based on a singie benchmark. Other benchmarks may yield different
results.

We also wish to emphasise that the focus of this comoanson is scalability. The quesuon of interest is “How
does-the performance perceived by a workstation degrade as the load on its server increases? This justifies
our comparison of NFS and Andrew on idenucal hardware conrigurauons. A different qucsuon would be tg
compare the cost of NFS and Andrew configuratons for a given leve] of performance at a given load. Since
the price of hardware is subject t0 a varicty of factors bevond the scope of this paper, we do not address this
issue here.
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5.2. The Sun Network File System
In this scction we present a minimal overview of NS, Only those details relevant to this paper are discussed
here. Further information can be obtained from the documentation 9]

NFS does not distinguish between client and server machines. Any workstation can export a subtree of its file
system and thus become a server.  Servers must be identified and mounted individually; there is no
transparent file location facility as in Andrew. Both the client and scrver components of NFS are
implemented within the kernel and arc thus more cfficient than their counterparts in Andrew.

NFS caches inodes and individual pages of a filc in memory. On a file open, the kernel checks with the
remote server to fetch or revalidate the cached inode. The cached file pages arc used only if the cached inode
is up to date. The validity check on directory inodes is suppressed if a check was made within the last 30
scconds. Once a file is open, the remote site is treated like a local disk, with read-ahead and write-bchind of
pages. ;

It is difficult to characterise the consistency semantics of NFS. New files created on a workstion may not be
visible clsewhere for 30 seconds. It is indeterminate whether writes to a file at one site are visible to other sites
that have that file open for reading. New opens of that file will see the changes that have been flushed to the
server.  Because of the caching of file pages, processes on different workstations that perform interleaved
writes on a file will produce a resuit that is different from the same sequence of writes by processes on one
workstation. Thus NFS neither provides strict emulation of 4.2BSD semantics nor the open/close action
consistency of Andrew.

5.3. Results of Comparison

The benchmark described in Section 2.3 was used as the basis of comparison between NES and Andrew.
Eighteen Sun3 workstations with local disks were available to us for our experiments. We added the Andrew
kernel intercepts to these workstations so that Venus could be run on them. These modifications were
orthogonal to NFS. A Sun3 was used as the server for both the Andrew and NFS trials. Clients and servers
communicated on a 10 Mbit Ethernet.

A set of experiments operating on files in NFS and another set operating on files in Andrew were run. The
Andrew experiments consisted of two subsets: a Cold Cache set. where workstation caches were cleared
before each trial, and a Warm Cache set, where caches were left unaltered. Since the target subtree is entirely
re-created in each trial of a benchmark, the only benefit of a warm cache is that it avoids fetching of files from
the source subtree. In all cases, at least three trials were performed for each experiment.

We ran into serious functional problems with NFS at high loads. At loads of ten or greater we consistently
observed that some of the workstations terminated the final phase of the benchmark prematurely because of
file system errors. Examination of the NFS source code revealed that the problem was probably being caused
by lost RPC reply packets from servers during periods of high network activity. The RPC protocol used in
NFS is based on unreliable datagrams. but depends on retries at the operation leve] rather than at the RPC
level. Non-idempotent file system calls that were retried by NFS sometimes failed and these were reflected as
file system crrors in the running of the benchmark. Since the effective server load was lower than the nominal
load in the last phase of these experiments. the results presented here are biased in favour of NFS at high
loads. We did not encounter any functional problems of this nature with Andrew.

Table 11 and Figure 3 present the overall running Limg of the benchmark as 3 function of server load. NFS
performs slightly better than Andrew at low loads, but its performance degrades rapidly with increasing load.
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‘The cross-over point is at a load of about 3 in the warm cache casc and about 4 in the cold cache case. Close
cxamination of Table 11 reveals that the ScanDir, ReadAll and Make phascs contribute most to the difference
in NFS and Andrew performance. Caching and callback in Andrew result in the time for these phascs being
only slightly affected by load. [n NES. the lack of a disk cache and the need to cheek with the server on each
tile open cause the time for these phascs 0 be considerably more load-dependent. The use of a warm cache
in Andrew improves the time only for the Copy phase.

Figure 4 and Table 12 present data on server CPU utilisation during thesc experiments. At a load of one,
server CPU utilisation is about 22% in NFS; in Andrew it is approximately 3% in both the cold and warm
cache cases. At a load of 18, server CPU udilisation saturates at 100% in NFS; in Andrew it is about 38% in
the cold cache case and about 42% in the warm cache case,

Data on server disk utilisation is presented in Figure 5 and Table 12. NFS used both disks on the server, with
utilisations rising from about 9% and 3% at a load of onc to ncarly 95% and 19% ataload of 18.” Andrew used
only one of the server disks, with utilisation rising from about 4% at a load of one to about 33% at a load of 18
in the cold cache case. Disk utilisation is slightly, but not substantially, lower in the warm cache case.

Another quantity of interest is the relative amount of network traffic generated by NFS and Andrew during
the exccution of the benchmark. Table 13 presents this information. As the table indicates, NFS generates
nearly 3 times as many packets as Andrew at a load of one.

Low latency is an obvious advantage of remote-open file systems. To quantify this fact we ran a serics of
experiments that opened a file, read the first byte, and then closed it. Table 14 illustrates the effect of file size
on latency in NFS and Andrew. Latency is independent of file size in NFS. and is about thrice that of a local
file: In Andrew, when the file is in the cache, latency is close to that of NFS. When the file is not in the
cache, latency increases with file size. In interpreting Andrew data it is important to note that the close system
call completes before Venus transfers the file to the server.

What can we conclude from these observations? First, it is clear that Andrew's scaling characteristics are
superior to those of NFS. Second. the improved scaling of Andrew is not achicved at the price of
substantially poorer small-scale performance. Andrew is implemented almost enurely in user space, while
NFS is entirely in the kernel. We anticipate a significant reduction in overhead if we move Andrew code into
the kemel. There is thus untapped potential for, improved performance in Andrew, while we s¢e no similar
potenual in NFS. Finally, Andrew provides a well-defined consistency semantics as well as support for
security and operability. We are pleased to observe that such addiuonal functionaiity has been incorporated
without detriment to our primary goal of scalability.

6. Changes for Operability

As the scale of a system grows its users become increasingly dependent on it and operability assumes major
significance. Since the prototype paid scant atention to operability, it was imperative that we address this
aspect of the system seriously in the redesign. Our zoal was to build a system that would be €asy for a smali
operational staff to run and monitor. with minumal inconvenjence 1o users.

At the heart of the operability problems in the prototvpe was an inflexible mapping of Vice files to server disk
storage. This mapping, described in Section 2.1, was dericient in 3 number of ways:

e Vice was constructed out of collecuons of files giued together by the 4.2BSD Mount mechanism.

Unfortunately, only entre disk parutions could be mounted. Consequently, only sets of files on
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different disk partitions could be independently located in Vice. To minimisc internal
fragmentation on the disks. such partitions had t be quite large: typically consisting of the files of
ten or more users. ‘The fact that repartitioning of a disk had to be done offline further reduced
flexibility.

¢ The cmbedding of file location information in the file storage structure made movement of files
across scrvers difficult. It required structural modifications to storage on the servers, and
modifications to the files while the move was in progress were sometimes lost.

e It was not possible to implement a quota system, which we believe to be important in a system
with a large number of uscrs.

¢ The mechanisms for file location and for file replication were cumbersome because of the lack of
well-defined consistency guarantees. The embedded location data base was often wrong, and
failures during the propagation of replicated files sometimes loft it inconsistent.

e Standard utilities were used to create backup copics of the files in the system. Although these
utiliies arc adequate for a single-site system. they are not convenient for use in a distributed
environment, where filcs may have been moved since they were last backed up. The wiring-in of
location information made restoration of files particularly difficult.

o Backup was further complicated by the fact that a consistent snapshot of a user’s files could not be

made uniess the enure disk partition containing those files was taken offline. We feit this an
unacceptable imposition on users.

To address these problems our redesign uses a data structuring primitive called a Volume [8]. In the rest of
this section we describe volumes and show how they have improved the operability of the system.

6.1. Volumes

A Volume s a collection of files forming a partial subtree of the Vice name space. Volumes are glued together
at Mount Points to form the complete name space. A mount point is a leaf node of a volume that specifies the
name of another volume whose root directory is attached at that node. Mount points are not visible in
pathnames: Venus transparently recognises and crosses mount points during name resolution. The mount
mechanism in Vice is thus conceptually similar to the standard 4.28SD mount mechanism.

A volume resides within a single disk partition on a server, and may grow or shrink in size. Volume sizes are
usually small enough to allow many volumes per parttion. We have found it convenient to associate a
separate volume with each user. As mentioned in Section 3.2, volume 10 server mapping information is
maintained in a volume location database replicated at all servers.

6.2. Volume Movement

Balancing of the available disk space and utlisation on servers is accomplished by redistributing volumes
among the available partitions on one or more servers. When a volume is moved, the volume location
database is updated. The update does not have to be synchronous at all servers since temporary forwarding
information is left with the original server after a move. It is thus always possible for a workstation to identify
the server responsible for a volume. A volume may be used, even for update, while it is being moved.

The actual movement is accomplished by creating a frozen copy-on-write snapshot of the volume called a
Clone. constructing a machine-independent representaton of the clone. shipping it to the new site, and
regenerating the volume at the remote site. Duning this process the volume may be updated at the original
site. [f the volume does change. the procedure is repeated with an incremental clone, shipping only those files
that have changed. Finally the volume is bn’cﬂ_v disabled. the last incremental changes shipped. the volume
made available at the new site, and requests directed there. The volume move operation is atomic; if either
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server crashes the operation is aborted.,

6.3. Quotas

Quotas are implemented in this System on a per volume basis. Fach user of the system is assigned a volume
and cach volume is assigned a quota. The responsibility for managing the allocated space within a volume is
left to the user.  Access-lists permitting, a user may store files in a volume belonging to another user.
However, it is always the owner of a volume who is charged for its usage. System administrators can change
quotas casily on volumes after they are created.

6.4. Read-only Replication

Exccutable files corresponding to system programs, and files in the upper levels of the Vice name space, are
frequendy read but scldom updated. Rcad-only replication of these files at multiple servers improves
availability and balances load. No callbacks are nceded on such files. thereby making access more cfficient.
Read-only replication is supported at the granularity of an entire volume. The volume location database
specifics the server containing the read-write copy of a volume and a list of read-only replication sites.

As described in Section 6.2, a read-only clone of a volume can be created and propagated cfficiently to the
replication sites. Since volume propagation is an atomic operauon. mutuai consistency of files within a
read-only volume is guaranteed at all replicauon sites. However, there may be some period of time during
which certain replication sites have an old copy of the volume while others have the new copy.

Read-only volumes arc valuable in system administration since they form the basis of an orderly release
process for system software. [tis easy to back out a new release in the event of an unanticipated problem with
it. Any one of a collection of servers with identical sets of read-only volumes (and no read-write volumes) can
be introduced or withdrawn from service with virtuaily no impact on users. This provides an additional
measure of availability and serviceability.

6.5. Backup

read-only clone is first made, thus creating a frozen snapsnot of those files. Since cloning is an efficient
operation, users rarely notice any loss o access to that volume. An asynchronous mcechanism then transfers
this clone to a staging machine from where it is dumped to wpe. The staging software is not aware of the
internal structure of volumes but merely dumps and restores them in their enurety. Volumes can be restored
to any server, since there is no server-specific informaton cmbedded in a volume.

Experience has shown that a large fraction of file restore réquests arise from accidental deletion by users. To
handle this common special case. the cloned read-only backup volume of cach user's files is made available as
a read-only subtree in that user’s home directory. Restoration of files within a 24-hour period can thus be
performed by users themselves using norma.l file operations.  Since cloning uses copy-on-write to conserve
disk storage, this convenient backup strategy is achieved at modest expense.

6.6. Summa ry

Our experience with volumes as a data structunng mechanism has been enurely positive. Volumes provide a
level of Operational Transparency which s not supported by any other fija system we are aware of. From an
operational standpoint. the system i§ a flat space of nameq volumes, The file system hicrarchy is constructed
out of volumes, but is orthogonal to it.
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‘The ability to associate disk usage quotas with volumes and the case with which volumes may be moved
between servers have proved to be of considerable value in actual operation of the system. ‘The backup
mcchanism is simplc and cfficient, and seldom disrupts normal user activities. These observations lead us to
conclude that the volume abstraction, or somcthing similar to it, is indispensible in a large distributed file
systcm.

7. Conclusion .

Scale impacts Andrew in arcas besides performance and opcrability. ‘The large number of users and
workstations in the system has resulted in sizable authentication and network databases. As the systcm grows,
the existing mechanisms to update and query these databases will become inadcquate. Fault-tolerance is
another area where scaling stresses Andrew. The access of a Vice file can. in the worst case, involve multiple
servers and network clements. Every one of these components has to be up for the file access to succeed.
Read-only replication of system files alleviates this problem to a certain extent. but does not cntirely solve it.
While a uniform, location-transparent file name space is a major conceptual simplification, the failure modes
that arise can be quite difficult for a naive uscr to comprchend. The issue of software version control and
orderly release of critical software to workstations will also increase in importance as the system grows in size.

In choosing to focus on scale, we have omitted discussion of many other important aspects of the evolution of
the Andrew File System. Sccurity and emulation of Unix semantics, for exampie, are two arcas fundamental
to the file system. Nctwork topology, hardware and software are other such examples. We have had to pay
close attention to these and other similar areas in the course of our design and implementation.

At the time this paper was written, in carly 1987, there were about 400 workstations and 16 servers. About a
fifth of the workstations were in public terminal rooms. Therc were over 3500 registered users of the system,
of whom over 1000 used Andrew reguiarly. The data stored on the servers was approximately 6000 Mbytes
and was distributed over about 4000 volumes. Although Andrew is not the sole compuung facility at CMU, it
is used as the primary computational environment of many courses and research projects.

What do we see for the future? Usage experience gives us confidence that this system will scale with minimal
changes to0 about 500 to 700 workstations. From there to our eventual goal of 5000 workstations is, of course,
alarge gap. Although the performance data presented in this paper confirms that our high level architecture
is appropriate for scaling, it is inevitable that significant changes will have to be made with each quantum
increase in the size of the system. -

The changes we have thought of address a variety of issues. Moving Venus and the server code into the
kernel would improve performance considerably. Changing the kernel intercept mechanism to an industry
standard would simplify the maintenance and portability of the system. The ability to allow users to define
their own protection groups would simplifv administration. As users become more dependent on the system,
availability becomes increasingly important. Some form of repiication of writable files will be necessary
eventually. The distributed nature of the system and its inherent complexity make it a difficult system (o
troubleshoot. Monitoring, fault isolation and diagnostc tools that span all levels of the hardware and software
will become increasingly important. Finally, as the system grows. decentralised administration and physicai
dispersal of servers will be necessary.

In conclusion, we look upon the present state of the Andrew File System with satisfaction. We are pleased
with its current performance and with the fact that it compares favourably with the most prominent
alternative distributed file system. At the same ume we are cerwin that further growth will stress our skill,
patience and ingenuity.
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Machine Type

Benchmark Phase Sun2 IBM RT/25 Sua3/50
Overall 1054 (5) 798 (20) 482 (8)
MakeDir 16 (1) 13(1) 10(0)
Copy 40 (1) 372 31Q)
ScanDir 70(4) 51(9) 45
ReadAll 106 (2) 132(8) 510
Make 82(2) 566 (11) 346 ()

This table shows the elapsed time in seconds of the benchmark when it was run on the local
file systems of different machines. Since no remote file accesses were made, the differences
in times are due solely to the hardware and operating system impiementation. The amount
of real memory used by cach of the machine types was as foliows: Sun2 2 Mbytes, IBM RT
2.8 Mbytes, Sun3 4 Mbytes. All the machines were configured as workstations rather than
servers, and had relatively low performance disks. Each of these expenments was repeated
J times. Figures in parentheses are standard devianons.

Table 1: Standalone Benchmark Performance

Server - Total Calls Call Distribution
!
TestAuth | GetFileStat Fetch Store SetFileStat ListDir All Others

cluster0 1625954 64.2% 28.7% 34% 14% 08% 0.6% 0.9%
clusterl 564981 64.5% 27% 31% 3.5% 28% 1.3% 1%
anu-0 281482 50.7% 33.5% 6.6% 1.9% 15% 36% 22%
amu-1 1527960 6L1% 29.6% 18% L1% 14% 1.8% L2%
amu-2 318610 68.2% 19.7% 33% 27% 23% 16% 22%
Mean 61.7% 36.8% 10% 21% 1.8% 18% 17%
. (6.7) (5.6) (L9 1.0 0.8 (LD 0.6)

The data shown here was gathered over a one-month penod. The figures 1n parentheses are standard deviations.
Table 2: Distnbution of Vice Calls in Prototype
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Load Units Overall Benchmark Time ‘Time per TestAuth Call
Absolute (s) Relative Absolute (ms) Relative
1 1789 (3) 100% 87(0) 100%
2 1894 (4) 106% 118 (1) 136%
S 2747 (48) 154% 259(16) 298%
8 5129 (177) 287% 670 (23) 770% .
10 7326 (69) 410% 1050 (13) 1207%

Each data point is the mean of 3 thals. Clients and servers were
Sun2s. Each client had a 300-entry cache. Figures in parentheses
are standard deviatons. In cach row. the value in a column
marked “Relative™ is the ratio of the absolute value at that load to
its value at load one. Part of the data presented here is reproduced
in Figure 1.

Table 3: Prototype Benchmark Performance

Server | Samples CPU Utilisation Disk 1 Disk 2

total user system uul KBytes xfers util KBytes xfers

cluster 13 37.8% 9.6% 28.2% 12.0% 380058 132304 6.8% 186017 75212

(12.5) (4.9) (8.4) 3.3 (84330} (35796) (4.2) (104682) | (42972)
clusterl| 14 12.6% 2.5% 10.1% 41% 159316 45127 14% 168137 49034

4.0) (LD 3.9 (L3 (41203) (21262) (D (63927 (32168)
anu0 | 15 7.0% 18% 51% 15% 106820 18177

(2.5 0.7 (L.8) 0.9 (31048) | (10289)

anu-1 14 43.2% 12% 36.0% 13.9% 478059 | 126257 151 373526 140516
(1.8)

(10.0) (8.7 (4.5 (151759 ! (42409) (5.9 (105846) | (30464)

The data shown here was gathered from servers over two weeks

from 9am 10 Spm on weekdays. Figures
parentheses are standard deviagons.

Table 4: Prototype Server Usage
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I'etch

Store

Remove

Create

Renanie

Symlink

Link

Makedir
Removedir
SetLock
Releaselock
GetRootVolume
GetVolumelnfo
GetVolumeStatus
SetVolumeStatus
ConnectFFS
DisconnectFS
RemoveCallBack
GetTime
GetStatistics
CheckToken
DisableGroup
EnableGroup
BreakCaliback

returns the status and {optionally) data of the specified file or directory and places a callback on it
stores the status and (optionally} data of the specified file.

dcletes the specified file.

creates a new lile and places a callback on it

changes the name of a file or a dircctory. Cross-volume renames are illegal.
creates a svmbolic link to a file or directory.

creates a hard link 1o a file. Cross-directory links are illegal.

creates a new directory.

deletes the specificd directory. The dircctory must be empty

locks the specified file or directory in shared or exclusive modc. Locks expire after 30 minutes.
unlocks the speeified file or directory. )

returns the name of the volume containing the root of Vice.

returns the name(s) of servers that store the specified volume.

returns status information about the specified volume,

modifies status information on the specified volume.

initiates dialogue with a scrver.

terminates dialogue with a server.

specifies a file that Venus has {lushed from its cache.

synchronizes the workstation clock.

returns server CPU, memory and 170 utilization.

determunes whether the specified authenucauon token for a user is valid
temporanly disables membership in a protection group.

cnables membership in a temporanly disabled protection group.

revokes e callback on a file or directory. Made by a server to Venus.

Table 5: Vice Interface -
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Overall Time ‘Time for Fach Phase

Load Units Absolute Relative MakeDir Copy Scanb)ir ReadAll Make
1 949 (33) 100% 14(1) 85(28) 64 (3) 179 (14) 608 (16)
2 948 (35) 100% 14(1) 82(16) 65(9) 176 (13) 611(14)
5 1050 (19) 111% 17Q) 125 (30) 86 (0) 186 (17) 637 (1)
8 1107 (5) 117% 2(1) 159 (1) 78(2) 206 (4) 641 (6)
10 1293 (70) 136% K TE)) 209(13) 76 (5) 200(7) _TI5(8D)
15 1518 (28) 160% 45(3) 304 (5) 81 (9) 192(7N) 896 (12)
20 1823 (42) 192% 58(1) 433 (45) 77 4) 192 (6) 1063 (64)

This table shows the clapscd time in seconds of the benchmark as a funcuon of load. The clicats were IBM RT/25s
on a token ning and the server was a Sun2 on an Ethernet. Most of the clients were one router hop away from the
server, but a few were two hops away. Euch of the expenments was repeated 3 times. [igures in parcntheses are
standard deviauons. In each row. the value 1n a column marked “Relauve” is the ratio of the absoiute vajue at that
load to its value at load one. Pan of this informauon s reproduccd in Figure L.

Table 6: Andrew Benchmark Times
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Utilisation (Percent)
Load Units cru Disk
1 8.1(0.7) 27(0.1)
2 15.0(L.3) 4.7(0.9)
5 29.4(1.5) 9.2(0.3)
8 41.8(0.8) 12.8 (0.6)
10 54.6(6.6) 17.83 (3.6)
15 64.7(1.2) : 20.9 (0.1)
20 70.9(2.2) 236 (Q.6)

This table shows the Sun2 server CPU and disk
utilisaion as a function of load. The uulisations
are averaged over the entire duration of the
benchmark. This data was obtained from the
same experiment as Table 6. FEach of the
experiments was rcpeated 3 times. Figures in
parentheses are standard dewviations. A part of
this data is reproduced in Figure 2

Table 7: Andrew Server Utilisation During Benchmark
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Server | Samples CPU Utilisation Disk 1 Disk 2 Disk 3
total user system util KBytes util KBytes utit KBytes
vice2 4 16.7 35 13.2 29 149525 19 109058 0.5 20410
4.5) (1.2) (3.6) 0.3) (15461) (1.0) (64453) 0.1) (2794)
vice3 5 19.2 S1 14.1 30 126951 27 98441 23 96445
(2.8) 21 (1.6) (0.6) (24957) 0.7) (26975) (0.3) (13758)
viced 4 358 14.1 217 48 195618 36 140147 52 . 217331
(24.5) (16.9) (8.9) (3.0) (132128) (1.1) (47836) (3.5) (151199)
vice$ >) 199 1S5 16.4 32 152764 32 174229 09 37851
29) (0.7 24) 0.4) (19247) 0.5 (26849) 0.2) (9167)
vice6 5 143 24 120 24 117050 23 131305 04 14923
(1.4) 0.3) (1.2) (0.3) (17244) (0.3) (15950) 0.1) (3985)
vice7 ) 260 64 19.5 6.9 349075 02 4143 13 59567
(3.2) (LO) (23) 0.2) (9515) (0.1) (4217) (L.2) (60504)
vice8 5 .15 15 6.0 14 62728 0.3 6079 06 28704
(L2) 0.4) 0.8) (0.3) (12226) (0.1) (9025) (0.4) 7| (23248)
viced 5 376 12 30.4 121 558839 25 103109 22 103517
@D 0.4 (23) (L) (63592) (0.8) (38392) (0.5) (21171)
vicelQ 5 233 6.1 17.2 5.8 262846 21 82502 17 73043
(8.6) (5.0) (4.8) (1.3) (82210) 0.7 (44606) (0.8) (35699)
vicell 5 18.0 5.6 12,5 30 124783 30 129667 08 24321
(6.0) 4.4) 20) 0.5) (23398) (0.9) (39455) (0.2) (7715)
vicel2 5 13.2 58 75 27 118960 1.5 29022 02 71
(10.1) (7.9 (vl (LO) (49760) (0.5) (20452) (0.0) (58)
vicel3 5 125 31 94 1.6 70632 0.9 26687 1.9 84874
(24 (1.2) (L) 10.2) (8476) (0.3) (109749 0.5) (26433)
viceld 5 15.3 70 33 131 04861 L1 34442 1.0 36587
12.00 (8.6) (3.5) (LD : (57648) 0.3) (12202) 0.5 (251%0)

- This table shows the CPU and aisk utlisauon of the main Andrew servers dunng weekdays from Yam to Spm. The

_ :3 Fed 1987 Omutted from this wble are servers used for
expenmental versions of the system. Three of the servers in the uple above (vicell, vicel3, viceld) had a fourth

data was gathered over 2 week [rom 9 Feb 1987 to

disk. n all cases the uulisauon of that aisk was 1ess tan 0 $%. Al the servers listed above were Sun2s. Figures in

parentheses are standard deviauons.

Table 8: Andrew Server Usage




Server | Total Cails Call Distribution

FetchData | FetchStatuy Storeldata | StoreStatus GetStat {RemoveCB| GetTime | VoiStats Other
vice2 274432 10.9% 29.6% 0% 0% 17% 0% 35.2% 0% 26%
vicel 307200 1.2% 19.3% 40% 2.6% 1.5% 127% 19.1% 285.4% 8.2%
viced 405504 10.3% 2L7% 72% 32% 1.2% 14.5% 18.2% 13.6% 10.1%
vice$ 348160 13.1% 36.3% 0.2% 0.3% 13% 11.6% 29.7% 0.0f7o 1.5%
viced 212992 11.8% 33.2% 0.0% 0% 22% 0.3% 41.9% 0% 10.6%
vice? 708608 12.8% 26.2% 33% 3.9% 0.7% 79% 14.6% 18% 28.8%
vice8 40960 8.6% 29.2% 1.9% 0.5% 9.7% 26.7% 122% 0% 11.2%
vice9 692224 19.3% 37.9% 16% 0.1% 0.6% 21.8% 10.5% 11% 1.1%
vicelQ 208896 1L3% 2L7% 5.0% 3.6% 1.2% 13.7% 24.7% 11.7% 71%
vicell 368640 7.5% 35.8% 3.6% 19% L3% 10.3% 18.8% 12.9% 7.9%
vicel2 122880 8.8% 182% 4.4% 31% 3.8% 12.9% 31.0% 97% 81%
vicel3 180224 - 9.8% 19.0% 5.5% 4.0% 26% 121% 25.1% 13.6% 8.3
vicel4 114688 8.2% 129% 3.9% 22% 25% 9.6% 19.3% 34.4% 70%

This data in this table was gathered from the main Andrew servers over 78 hours. in the period from 3 Fetr 1987 to 6 Feb

FetchStatus fetches only status. StoreDara and StoreStarus are similarly related.
Table 9: Distribution of Calls to Andrew Servers

1987. Data for three servers running an experimental version of the system are not shown here. The user information in

Table 10 is derived from the same set of observations. Note that the call FerchData fetches both data and status, while
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Server Type of Volumes Averase Active Users
Overall Peak Period
vice2 Read-only, System 23 64
vice3 Read-write, User 3 56
viced Read-write, User a 68
vices Read-only and Read-write 28 76
vice Read-only, System 18 52
vice7 Read-write, System 59 128
vice8 Spedal 2 3
viced Read-write, BBoard PAJ 63
vicel0 Read-write, User 29 77
vicell Read-wnte, User 23 58
vicel2 Read-write, User 8 24
vicel3 Read-write, User 13 31
viceld Read-write, User 11 29

This table is derived from the same set of observauons as Table 9. The second
column describes the kind of volumes stored on cach server. Server vice9 stores
the bulletin boards, which are the most frequently updated set of directones shared
by many users. Server vice$ has the read-wnte volumes whose read-oniy clones
are on vice2. vice5 and vice6. Vice7 has the common system votumes that cannot
be read-only, and are therefore used by ajl of the workstauons in the system. Data
for three servers running z2n expenmenul version of the system are not shown
here. An active user on a scrver s one on whose behalf some workstauon has
interacted with that server dunng the past 15 minutes. Peak penod is defined to be
9am to 5pm on weekdays.

Table 10: Active Users on Andrew Servers
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Time
Phase l.0ad Units NFS Andrew Cold Andrew Warm StandAlone
Qverall 1 SIL(Y) 588(2) 564 (23) 482 (8)
2 535(2) 582(4) 567 (29)
S 647 (5) 605 (2) 564.(7)
7 736 (5) 636 (4) 573(19)
10 888 (13) 688 (4) 621 (30)
15 1226 (12) 801(2) 659 (8)
18 1279 (84) 874(2) 697 (14)
MakeDir 1 5Q1) 5D 5Q) 10(0)
2 8(0) 5Q) 5Q)
) 18(1) 7Q0) 7(0)
7 33Q) I 8(0)
10 59(2) 12Q1) 12(Q1)
15 82(5) 18 (1) 19(1)
18 81(M 24(1) 18(1)
Copy 1 44.(0) 71(4) 56(8) 31(2)
2 S1(1) 72(3) 57(3)
S 84 (2) 85 (1) S8(1)
7 95(2) 104 () 62(3)
10 107 (9) 137(5) 88 (18)
15 164 (2) 200(3) 116 (5)
18 245(10) 241 (4) 133 (4)
ScanDir 1 67 (1) 100 (2) 98 (14) 44(5)
' 2 67 (0) 98 (0) 96 (10) :
S 72(1) 97 (0) 95(5)
7 78(2) 97 (1) ' 96(13)
10 85(1) ) 94 (0) 9 (4)
15 107 (1) 91(0) 82(0)
18 111 (5) 9 (1) 9% (4)
ReadAll 1 68 (1) 50(3) 48(1) 51(60)
2 76 (2) 50(2) 51N
5 93(0) 47 (0) 49(3)
7 117 (3) 48(0) 43 (0)
10 152 (8) 48 (0) 49(1)
15 215(14) 48 (1) 43 (0)
18 11D 13 (0) 43 (0)
Make 1 27Q) 363(3) 357 (5) 346 (1)
2 334(3) 356 (2) 352(1)
5 380 (4) 368 (2) 355(1)
7 414 (3) QR 359 (3)
10 485 (8) 395(2) 373(10)
15 658 (15) H2(2) 394 (6)
18 638(73) 469 (3) 410(11)

This table shows the elapsed time in seconds of the benchmark as a funcuon of load, This data corresponds to the
same set of expeniments as Table 12, which descnibes the hardware configurauon as well as probiems encountered
with NES at loads of 10, 15 and 18. The standalone numbers are reproduced from Table 1. A part of this data is
reproduced in Figure 3. Figures in parentheses are standard deviations.

Table 11: Benchmark Times of NFS and Andrew
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Load File System CPU Uiilisation Disk 1 Disk 2
Lnits
total user system uul KBytes util KDBytes
1 NFS 23(0.1) | 00(00) | 23¢0.) | 27¢0.1) 4821 (103) 8.7(0.2) 11474 (277)
Andrew Cold 340D ) 060D | 29¢0.1) | 35(0.2) 5149 (449) 0.2(0.1) 0(0)
Andrew Warm 270D | 0500.1) | 21(0.1) | 29¢0.2) 3904 (355) 0.3(0.0) 0(0)
2 NFS 382(0.2) | 0.0(00) | 382(02)} 43(0.1) 8487 (15) 18.0(0.8) 23604 (429)
Andrew Cold 67(00.) | 13(0.1) | 5701 | 53(0.2) 8350 (754) 03(0.1) 2(0)
Andrew Warm 5001 | 1000 | 41(0.1) | 4402 6706 (783) 0.2(0.1) 2(0)
b NFS 68.0(0.7y | 00(0.0) | 68.0¢0.7) | 10.1(0.3) 19169 (890) 46.2(0.9) 58279 (2698)
Andrew Cold 162(0.3) | 30¢02) | 132(0.1) | 10.3(0.2) 16911 (743) 0.2 (0.0 2(0)
Andrew Warm 11501 | 2400 9.2(0.1) 9.2(0.9) 14470 (512) 0.2(0.1) 2(0)
7 NFS 80.8(0.4) | 00(0.1) | 80.8(0.3) | 128(0.2) 26313 (420) 55.9(0.3) 86397 (2755)
Andrew Cold 2203 { 4101 | 181(0.3) | 13.7(0.9) 23073 (1932) 0.3 (0.0) 4(1)
Andrew Warm | 16.9(0.5) | 34(0.2) | 135(0.9)] 108 0.4) 17665 (746) .0.2(0.D) 2(0)
10 NFS 923@.8) | 0.0(0.0) | 923(0.8) ] 16.8(0.5) 35989 (753) 7.1(0.7 124982 (2092)
Andrew Cold 29.6(0.9 | S8(0.1) | 240(0.8) | 18.7(0.4) 34568 (1108) 0.3(0.1) 3Q1)
Andrew Warm | 25.3(20) | S.1(0.4) | 20.1(L6)| 165 0.9) 27886 (2655) 0.2(0.1) 4(2)
15 NFS 96.2(0.7) | 0.0(0.0) | 96.2(0.7) | 19.4(0.5) 52198 (3446) 86.3(0.8) 213181 (6942)
Andrew Cold 38.1(0.5) | 7.1¢0.2) | 31.0¢0.5) | 238 (13) S1830 (1771) 0.3(0.0) 5(1)
Andrew Warm | 33.5(0.6) | 6.9(0.1) | 6.6(0.5) | 225 (L3) 38953 (2819) 0.2(0.1) 6(0)
18 NFS 100(1.1) | 0.0(0.0) 100 (1.1 | 19.3¢0.) 53858 (4148) 95.0(1L.H 243547 (15683)
Andrew Cold 41.5(19) | 8.010.2) .33.4 (1.8) | 27.6(L5) 58501 (10410) 0.3¢0.0) 6(0)
Andrew Warm | 37.7(0.9) | 7.6(0.1) | 30.1(0.7) | 24.6(0.6) 46628 (1536) 0.3(0.1) S()

This table shows the utlisanon of the server as a funcuon of load. The clien
memory and a 70 Mbyte local disk. The server was a Sun3/160 with 8Mbytes g
In the Andrew expenments. system hibranics and user files were both located

ts were Sun3/S0s with 4 Mbvtes of real
{ real memory and two 450 Mbyte disks.

on the same server disk (Diskl). In the
NFS expenments. system libranes were located on one senver disk (Diskl) and user files on the other (Disk2). In all the
expenments, the system binanes were located cn the local aisks of each client. The clients and the server were on the
same physical Ethernet cable. with no interveming routers. Lach of these expenments was repeated at least 3 tmes
Figures in parentheses are standard deviauons. ln the Ancrew cold cache cxpenments. the iocal disk ciche was
completely cteared before cach tn2l. The warm cache expenments were run with cache suate unchanged [rom the

previous trial. A subset of this dawa is grapricaily dispiayed w Figures 3and 4 Taple 11 corresponds to the same set of
expenments.

In the NFS experiments. at 10 or more clients per server, some of the cliongs failed to complete the final phase of the

" benchmark. The number of such premature terminauons increased as the number of clients increased. At 18 clients per

server, at least J clients failed in eacn of the 6 tnals. S~ee Section 3.3 for a complete discussion of ts problem. In both
Andrew and NFS expenments. the ScanDir phase of the benchmark was fun wath an ncorrect binary, which caused
addiuonal local file references and cOMPULILON but no remote references.  This added a fixed. load-independent,
overhead to that phase and lengthened the overall running ume of the benchmark. The data prescated above and o
Table 11 have been corrected to exclude this overhead
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Andrew NIS
Toul packets 3824 (463) 10225 (106)
Packets from Server to Client 2003 (279) 6490 (86)
Packets from Client to Scrver 1818 (189) 3735(23)

This table presents the observed network traffic generated by the
benchmark when a single client was using a server. [n the Andrew
case the server was a Sun2 on an Fthernet connected via a router
to an IBM RT client on a token ring. In the NFS case the server
was a Sun2 on the same Ethernct cable as its Sun3 client. Each of
the experiments was repeated 3 times. Figures in parentheses are

Table 12: Server Utilisation by NS and Andrew

standard deviatons.
Table 13: Network Traffic for Andrew and NFS
File Size (Bytes) Andrew Cold Andrew Warm NFS StandAlone
3 160.0 (34.6) 16.1(0.5) 15.7(0.1) 5.1(0.1)
1113 148.0(17.9)
4334 202.9(29.3)
10278 310.0(53.5)
24576 515.0(142.0) 15.9(0.9)

This table shows the latency in milliseconds as a functon of file size. Latency is defined here as the total time o
open a file, read one byte and then close the file. A Sun3 server and a singie Sun3 client were used 1n all cases. In
the Andrew warm cache case the file being accessed was already in the cache. The cold cache numbers correspond
to cases where the file had to be fetched from the server. The figures in parentheses are standard deviauons.

Table 14: Latency of NFS and Andrew
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This figure compares the degradation in performance of the prototvpe and the current Andrew file svstem as a function
of load The clients were Sun2s in the prototype and IBM RTs in the current file system. The server was a Sun2 in both
cases. Tables 3 and 6 present this informauon in greater detasl.
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Server CPU and disk uulisauon are orcsen_xed ‘AU fzure a5 3 funcnon of load. All clients are [BM RTs and use 3
single Sun2 server. Table 7 presents this informauon in ereater detay),

Figure 2: Andrew Server Culisaton During Benchmark
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This figure compares the benchmark times of NFS and the Andrew file system as a function of load. Table 11 presents
this daa in greater detail. Table 12 descnibes the condiuons under which the data was obtained.
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Figure 3: NFS-and Andrew Overall Benchmark Times
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This figure compares the server CPU utilisations of NFS and Andrew as a function of load. Table 12 presents this data
in greater detail and descnbes the conditions under which it was obtained.

Figure 4: NFS and Andrew Server CPU Utilisatdon
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This figure compares the server disk utilisations of NFS and Andrew as a function of load Table 12 presents this data in
greater detal and descnbes the conditions under which it was obtained.

Figure 5: NFS and Andrew Server Disk Utilisation
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