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Abstract

People are living increasingly large swaths of their lives through their online ac-
counts. These accounts are brimming with sensitive data, and they are often protected
only by a text password. Attackers can break into service providers and steal the
hashed password files that store users’ passwords. This lets attackers make a large
number of guesses to crack users’ passwords. The stronger a password is, the more
difficult it is for an attacker to guess.

Many service providers have implemented password-composition policies. These
policies constrain or restrict passwords in order to prevent users from creating eas-
ily guessed passwords. Too lenient a policy may permit easily cracked passwords,
and too strict a policy may encumber users. The ideal password-composition policy
balances security and usability.

Prior to the work in this thesis, many password-composition policies were based
on heuristics and speculation, rather than scientific analysis. Passwords research often
examined passwords constructed under a single uniform policy, or constructed under
unknown policies. In this thesis, I contrast the strength and usability of passwords cre-
ated under different policies. I do this through online, crowdsourced human-subjects
studies with randomized, controlled password-composition policies. This result is
a scientific comparison of how different password-composition policies affect both
password strength and usability.

I studied a range of policies, including those similar to policies found in the wild,
policies that trade usability for security by requiring longer passwords, and policies
in which passwords are system-assigned with known security. One contribution of
this thesis is a tested methodology for collecting passwords under different policies.
Another contribution is the comparison between password policies. I find that some
password-composition policies make more favorable tradeoffs between security and
usability, allowing evidence-based recommendations for service providers. I also of-
fer insights for researchers interested in conducting larger-scale online studies, having
collected data from tens of thousands of participants.
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Chapter 1

Introduction

Users depend on their online accounts for myriad important and sensitive purposes. Users go
online and create accounts to send email, find dates, and shop for Magic cards. Email accounts
and social-networking accounts often represent a person’s face to the outside world. Passwords are
also used to protect accounts in business and academic settings. It is very common for universities
to employ accounts for scholastic activities such as registering for classes and checking grades.
Despite how much personal data is stored within these accounts, a single password is often the
sole barrier keeping out a potential attacker.

Because account information is often protected only by a password, these passwords are at-
tractive targets for theft. An attacker making live, online password guesses on the account website
is called an online attack. Under this threat model, the service provider can notice the incorrect
guesses being made and lock out the attacker after a specific number of incorrect guesses.

An attacker has many more chances to crack a victim’s password in an offline attack. In this
model, the attacker steals a password file from a service provider, containing the passwords of
many potential victims. In practice, such theft has occurred in large scale in many instances in the
past few years [11,32,34,40,78,95]. The threat model considered in this thesis is one in which the
attacker has a hashed, possibly salted set of passwords. In order to determine the password for a
particular account, the attacker guesses a password and salts and hashes the guess. If the resultant
hash matches the one in the stolen password file, the attacker knows the guessed password to be
the victim’s password. The attacker can make a very large number of guesses against victims’
passwords, limited by hash type and hardware available.

1.1 Password Policies, Strength, and Usability

Although stronger passwords better protect user accounts, users will often create easily guessed
passwords when they can [5]. In order to increase password strength, many service providers have
implemented password-composition policies. These constrain the available space of passwords
in an effort to preclude users from selecting easily guessed passwords. Password-composition
policies affect both security and usability; the passwords created under such a policy are ideally
resistant to attackers’ guesses while still being memorable to their owners.

While password-composition policies have existed long before this thesis, they were often
based on heuristics and guesswork. Research on password-composition policies was not suf-
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ficiently conclusive to recommend one policy or another. Some research looked at passwords
without regard for the policies under which the passwords were created [5]. Other research had
only a limited corpus of passwords from which to draw [51,97]. Missing from the literature
was work that contrasted large corpora of passwords created under controlled, randomly assigned
conditions.

In this thesis, I present the results of using Amazon Mechanical Turk to collect security and
usability data for participants creating and recalling passwords under assigned, randomized con-
ditions. I advance the state-of-the-art in password-composition policy and password-composition-
policy research through both the methodology and the findings. Over the course of four studies, I
explore the security and usability tradeoffs of different password-composition policies, including
system-assigned and user-generated passwords. The result is a better understanding of how to use
policy to lead users toward stronger yet usable passwords, and actionable guidelines for service
providers. My contributions also include a novel and potent technique for conducting human-
subjects studies using Amazon Mechanical Turk, more akin to laboratory studies than traditional
online surveys.

At a high level, I find that password-composition policies can affect password strength and
password usability. The relationship between password usability and password strength is not
necessarily directly inverse. Some password-composition policies — specifically those requiring
longer passwords with some further character requirements — can lead to secure yet usable pass-
words. Overall, I find that while a tradeoff between usability and security must be made, some
policies are more conducive to a favorable tradeoff. The rest of this thesis will explain and expound
upon these findings.

Thesis Statement

The objective of this thesis is to create guidelines for password-composition policies that lead
to strong yet usable passwords. These guidelines will be based on empirical data gathered
through online crowdsourced human-subjects testing using randomized, controlled condi-
tions.

1.2 Thesis Overview

Chapter 2 presents previous research on passwords and password policy. I present a list of recent
password breaches to motivate my focus on offline attacks. I discuss approaches to measuring
password strength. I then look at human-subjects passwords research, including previous pass-
words studies conducted on Mechanical Turk.

Chapter 3 presents SHELF, a framework for facilitating online studies on Mechanical Turk.
SHELF is a generalized framework that other researchers could use to conduct other online
human-subjects studies. I discuss the implementation of SHELF. Then, I discuss how researchers
can use SHELF to make creating, monitoring, and analyzing data from their online studies much
easier.

Chapter 4 describes the data-collection methodology I used in the four studies I present in this
thesis. I present the user-study protocol as well as the security and usability metrics. This includes
when each usability metric is important, and under what circumstances it is most relevant.

2



1.2. Thesis Overview

Chapter 5 presents How Usable are System-Assigned Passphrases?, in which participants were
assigned passwords or passphrases. Conditions included short passwords, passwords intended to
be pronounceable, and passphrases comprised of dictionary words. System-assigned passwords
and passphrases had considerable usability difficulties, with a high rate of storage. Passphrases
failed to out-perform passwords with equivalent strength in any usability metric, including self-
reported sentiment and observed behavior. Passwords took less time to enter and were less error-
prone than passphrases. Post-facto error correction could improve the usability of passphrases, but
did not make them more usable than passwords on any metric.

Users struggled with system-assigned passwords, and so all of the subsequent studies focus on
user-created passwords. Chapter 6 presents How Secure and Usable are Some Common Password
Policies? This compared several real-world policies and demonstrated that policies can affect
both usability and password strength. The two strongest policies it tested were a policy requiring
only sixteen characters and a traditional “strong” policy requiring eight characters with multiple
classes and a dictionary check. The 16-character policy led to more usable passwords and more
security against an attacker able to make a large number of guesses. This study found that users
often fulfilled the requirements of the traditional policy in predictable ways, reducing password
strength. This study also found that dictionary checks can increase security, and that the choice of
dictionary mattered.

Chapter 7 presents Can Longer Passwords be Secure and Usable?, a two-part study of policies
that require longer passwords. Chapter 6 suggested that policies requiring longer passwords could
have usability and security benefits over traditional “strong” password policies, but also enable
some very weak passwords. These studies tested several conditions in an effort to retain the
security and usability benefits of longer passwords while reducing the number of easily guessed
passwords. The first study found that adding certain character-class requirements reduced the
number of easily guessed passwords, while still being more usable than a traditional policy. There
were patterns common in cracked passwords. For example, passwords containing the string /234
were three times as likely to be cracked as those without. The second study examined policies
that prohibited common substrings, and policies that placed further structural requirements on
passwords. It also explored more combinations of length and character-class requirements. Using
a substring blacklist increased password strength. While it made password creation more difficult,
it had no adverse effect on password recall.

Chapter 8 presents Can Creation-Time Feedback Help Users Create Passwords? This study
focused on making strict password-composition requirements, such as those studied in previous
chapters, more palatable to users through real-time password-creation feedback. This study also
examined guiding participants through a multi-step password-creation process. It found that let-
ting participants know whether and how requirements were met during password creation helped
them create passwords with fewer errors. On the other hand, guiding participants through pass-
word creation reduced password strength. This study found that looking only at requirements in
isolation did not paint a complete picture of passwords. Presentation can affect user sentiment,
behavior, and security.

The remaining chapters are based on the data from these studies. Chapter 9 looks back at the
study metrics and survey questions. I discuss how observed factors correlated with self-reported
user sentiment. I also discuss participants’ demographics, their use of mobile devices while taking
the studies, and their responses about their own real email passwords.
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Chapter 10 offers advice for system administrators. This is intended to provide practical guid-
ance for better user security based on our findings. Finally, in Chapter 11, I conclude the thesis.
I summarize the findings, discuss recommendations for researchers, and describe potential future
work.



Chapter 2

Background and Related Work

This chapter provides context for many of the choices made in this thesis, including the choice of
attacker model and the choice of data-collection protocol.

In Section 2.1, I present one way that an attacker can learn a victim’s password: an offline
attack. I discuss how this thesis models offline attacks. I then discuss several recent data breaches
to motivate my focus on the offline attack model in Section 2.1.3. Section 2.2 discusses password-
composition policies, how they are intended to strengthen passwords, and how they are only effec-
tive against certain kinds of attacks. Section 2.3 discusses evaluating password strength, including
information entropy and password guessability. Section 2.4 discusses the computational strength
of several real-world attackers, and estimates how their computational power would translate into
being able to crack passwords. Section 2.5 discusses human-subjects passwords research. I orga-
nize the presentation of those findings by methodology to highlight different methodologies that
researchers have employed to study password composition.

2.1 Guessing Users’ Passwords

This section discusses the threat model used in this thesis and its assumptions. The goal is to
help the reader better understand the security results, and understand the scenarios to which those
results are applicable. This section first defines offline attacks, the attack model on which this
thesis focuses. Then, this section discusses specific assumptions made about the attacker in this
thesis.

2.1.1 Online and Offline Attacks

In the attacks described in this subsection, an attacker is attempting to break into a victim’s ac-
count. In an online attack against a password-protected account, the attacker tries guessing the
victim’s password on a live login page. The service provider can notice this and lock out the
attacker, though an attacker can avoid detection by making a smaller number of guesses over
time [27].

This thesis focuses on the offline attack model, in which an attacker steals a hashed password
file from a service provider. A hash is a one-way function that, given an input, produces output
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that cannot easily be used to determine the input. The same input always yields the same output,
but two similar inputs should not necessarily produce similar outputs.

Theft of hashed password sets is occurring frequently enough to make the news several times
per year [24, 50, 55, 68]. In an offline attack, the attacker guesses a password and applies the
same salting and hashing function as was applied to the targeted password in the stolen file. If the
hashes match, the attacker knows the victim’s password unless there was a collision. Suppose a
user creates a password to access a website. The website stores password P with salt S and hash
H as H(P+S). When the user subsequently attempts to authenticate, he or she submits password
attempt P’. The website then checks that H(P+.5) = H(P’'+S). In an offline attack, an attacker
steals the password file containing the user’s salted and hashed password, H (P + S). The attacker
can make a larger number of guesses for P. For a guess Py, if H(P + S) = H(Py + S), then
the attacker has determined the user’s password to be Py .

Both online and offline attacks require that an attacker guess a victim’s password to break
into that victim’s account. As I will discuss in Section 2.2.1, there are other attacks that are not
prevented by strong passwords, such as phishing and shoulder surfing.

2.1.2 Assumptions in our Threat Modeling

This section discusses some of the assumptions made in how this thesis models password cracking.

Hashing the Password File

The research in this thesis assumes the attacker has stolen a password file, and that the passwords
in that file are hashed. If the attacker were guessing passwords on a live system, then the service
provider could detect the guessing and lock out the attacker. If the attacker stole a password
file that kept passwords in plaintext, then the attacker has already met the objective of learning
users’ passwords. Some service providers have encrypted their password files using a single-key
symmetric cipher [73]. This is considered a poor security practice, because the attacker acquiring
the decryption key would immediately have access to all of the passwords. The attacker has
already acquired a copy of the password file, which makes it likely the attacker has compromised
the server on which authentication occurs.

Using a Slow Hash

The number of hashed guesses that an attacker can guess in a given period of time is bounded by
several factors. The more computing power available to an attacker, the more guesses the attacker
can make. However, a service provider does not have control over this. A service provider does,
however, have control over the hashing function being used. A slower hashing function leads to
each guess the attacker makes taking longer.

A slower hash causes each legitimate authentication attempt to take more time. It can also
increase server load for legitimate authentication [73]. However, given that an offline attacker may
be making 10'? or more guesses, it hinders an attacker far more than legitimate users or server
providers. Using a slow hash is a security measure that increases cost slightly for the legitimate
user, and by a much larger factor for the attacker.

6
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Salting the Password File

The threat model assumes that passwords are hashed with a slow hash and salted. A salt is a string
that is added to a password before that password is hashed. Adding a unique salt to each password
before it is hashed does two important things. First, it prevents attackers from using rainbow
tables, which are pre-computed sets of password hashes to look up password hashes. Second, it
means that each user’s password must be cracked individually. Without a salt, two users with the
same password would have the same hash, so determining the password of one user would also
determine the password of all users with the same password.

2.1.3 Real-World Password Breaches

In the past few years, it has become common to hear about stolen password sets. In 2010, these
breaches were common enough for some to call for an end to passwords altogether [62]. However,
researchers have argued that text passwords will likely persist because, despite their shortcomings,
they are entrenched and there is no especially promising alternative [8,35]. This thesis focuses
on the offline attack model, which requires that a password file be stolen from a service provider.
This section mentions recent large-scale password breaches to help demonstrate that the offline
attack model is worth studying.

At the start of this decade, the media reported on large-scale password breaches. In 2010,
attackers stole 748,490 usernames and passwords from Gawker. The passwords were salted and
hashed, but the hashing was executed poorly. Gawker used DES, truncated passwords to 8 char-
acters, and removed non-ASCII characters [6]. In 2011, attackers stole account information for
24.6 million Sony Online Entertainment users. The compromised data included passwords, phone
numbers, logins, and addresses [76]. Further, attackers claimed to have compromised one million
unhashed passwords on sonypictures.com through an SQL injection attack [78]. Attackers
in 2011 also took 90,000 pairs of email and hashed passwords from military contractor Booz Allen
Hamilton [11]. Attackers stole 90,000 hashed but unsalted passwords from Swedish blog website
Bloggtoppen [34] and 1.3 million login credentials from Sega, including emails and encrypted
passwords [40].

Several password breaches stood out in 2012. Attackers stole 6.5 million hashed passwords
from the website LinkedIn [67]. A fifth of the hashed passwords could be cracked in a few hours
using publicly available tools on a “customer grade laptop.” Over one third of the cracked pass-
words had length eight or less [95]. Attacks used an SQL injection to steal 453,000 login creden-
tials from a Yahoo server, including unhashed passwords [32].

The year 2013 saw a large number of password breaches. Attackers obtained account infor-
mation, including encrypted passwords, from 2.9 million Adobe users [2]. Adobe claims to have
reset the password information automatically for affected users, and recommended changing the
password on any website using the same password. Software company Evernote forced its users
to reset their passwords after its authentication data was compromised. The company reported that
the compromised data included usernames and salted, encrypted passwords [24]. Twitter reported
that it found evidence that an attacker had gained access to information for a quarter-million of
its users, including usernames, email addresses, and encrypted-and-salted passwords [55]. Video-
delivery website Vudu, owned by Walmart, suffered a physical theft of its servers. Included on
the stolen machines was user information including names, email addresses, and encrypted pass-
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words. The company responded by reseting all of its users’ passwords [50]. Internet coupon
website Living Social reported that user data for 50 million users had been taken. This included
email addresses, user names, and salted, hashed passwords [68].

2.2 Password-Composition Policies

A rational attacker conducting an offline attack guesses the most likely passwords first. This is an
effective attack against users who create easily predicted passwords. In practice, as discussed in
Section 2.5, many users create passwords from a fairly small pool of weak passwords. A stronger
password, therefore, is a password that an attacker is unlikely to guess. In order to prevent weak
passwords and increase password strength, many service providers employ password-composition
policies — sets of requirements for users creating passwords. These policies can help prevent
attacks that require the attacker to guess a password. As discussed in Section 2.2.1, there are some
attacks, such as phishing and shoulder-surfing, that are not countered by having strong passwords.

As an example of a password-composition policy, consider the one Carnegie Mellon Univer-
sity employs. We refer to this policy as comp8; it requires eight characters, one of each of the
four character classes, and a dictionary check.! This policy is based on the authentication require-
ments for member universities of the InCommon Federation [38]. Those requirements, in turn, are
based on guidelines published by the United States National Institute of Standards and Technology
(NIST) [16].

When Carnegie Mellon University transitioned from a lenient policy to its strict comp§ policy,
a number of its community members expressed annoyance [88]. An ideal password-composition
policy helps users to make strong passwords, without making it onerous to create and recall pass-
words. User attention and effort are finite resources, and this can affect password behavior [28].
Moreover, many service providers employ password policies that do not place realistic expecta-
tions on users and are not supported by research [27].

Researchers have been advocating password-composition policies for many years. In 1995,
researchers used a dictionary-based attack to guess roughly 40% of the roughly 14,000 hashed
passwords that administrators had provided to them. This resulted in those researchers advocating
“proactive password checking” to prevent easily guessed passwords [5].

Several studies have demonstrated negative consequences of password-composition policies.
In work performed before this thesis, colleagues and I used simulation to show that an organi-
zation’s financial health can be negatively affected by using onerous password-composition poli-
cies [83]. A 32-participant diary study, published in 2010, observed that password-composition
policies were often burdensome to users and could lead to decreased productivity [39]. Another
interview study suggested that users struggle to make strong passwords [91]. These studies indi-
cate that the password-composition policies intended to protect users can be burdensome to users
and the service provider.

Password-composition policies are intended to make it difficult for attackers to guess pass-
words by making passwords less predictable. However, their effectiveness is often limited because
users tend to fulfill their requirements in predictable ways. For example, in one study we found
that users often select symbols from only a small fraction of the symbols on a keyboard [88]. In

'mttp://www.cmu.edu/iso/governance/guidelines/password-management .html
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another study, researchers found that when users employ digits, symbols, and uppercase characters
in their passwords, they often do so predictably [97]. NIST wrote in its electronic authentication
guideline that users are expected to create passwords of mostly lowercase letters when not other-
wise required, and to fulfill requirements in predictable ways [15].

2.2.1 The Limits of Password Policies

Password-composition policies are designed to induce difficult-to-guess passwords. Therefore, an
attack that is not hindered by password strength will not be prevented by a password-composition
policy. Such attacks include key-logging attacks, in which the victim’s computer is rigged up to
provide illicit data to an attacker. An attacker can also observe a user entering a password, leading
to a shoulder-surfing attack. Users can be tricked into giving up their passwords, such as with a
phishing attack. Password-composition policies won’t help protect accounts if the service provider
discloses the contents of those accounts. Governments can often force information disclosure,
such as with a subpoena. Users can be coerced or threatened into giving up their passwords.

Another way that an attacker can break into a victim’s account without guessing the victim’s
password is by taking advantage of password-reset mechanisms that many service providers offer.
For example, attackers compromised several accounts of Wired editor Mat Honan by hijacking
password-reset mechanisms. They never needed to crack his passwords [36].

Password-composition policies are not a complete security solution because passwords are not
a complete security solution. They can keep out some classes of attackers, but cannot keep out
all threats. Passwords are a part of a complete security approach. Some attackers may have the
resources to crack passwords, while other attackers may circumvent passwords entirely. The goal
is not to make users secure, but to make them more secure. Service providers should, for example,
monitor their networks for suspicious activity, including online attacks. This can include noting
that a single user account has made a large number of failed login attempts. If a service offers a
single sign-on system such that increased value is placed behind is passwords, having password
security becomes increasingly important.

One way to increase account security is to use two-factor authentication. For example, Google?
and Microsoft® both offer services that allow the user to designate a mobile phone number. If
someone tries to authenticate as that user from a new device, a code is sent to the mobile device.
That code then needs to be entered in order for the attacker to get into the account. This would
help protect against an attacker who might obtain the user’s password, such as via key-logging or
phishing.

2.3 Measuring Password Strength

This thesis contrasts password-composition policies, including the strength of the passwords cre-
ated under them. I next discuss two measures of password strength found in the literature: infor-
mation entropy and password guess numbers. I discuss both metrics, and discuss why this thesis
favors using guess numbers as a comparative metric of password strength.

https://www.google.com/landing/2step/
*http://windows.microsoft.com/en—us/windows/two-step-verification-faq
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2.3.1 Entropy

The information entropy of a given text corpus, including a password set, is a measure of the
information or uncertainty contained within that text, in bits. Claude Shannon introduced the
concept of information entropy in 1949 [80]. Shannon’s algorithm for estimating the entropy
of a corpus, which he called n-gram entropy, calculated statistics for each substring of length n
in that corpus. The entropy of a given character is a function of the conditional probability of
that character being present, given the previous n — 1 characters. The entropy of each character
is estimated and summed; because entropy is additive, this produces the entropy of the entire
corpus. A larger value of n leads to a more accurate entropy estimate because more characters are
used as context for the entropy estimation, but the calculation also becomes more computationally
intensive [81].
Let C' be a corpus of text. Shannon’s formula for the n-gram entropy of C'is:

— Z Pr(a + b)log, Pr(b | a)

* qis string of length n — 1.

* bis a single character.

* a + bis a string of length n, comprised of a concatenated with b.

* Pr(a + b) is the probability of the string a + b in C', which can be calculated as the number
of instances of a + b in C' divided by the total number of n-grams in C.

* Pr(b | a) is the conditional probability of b given that the previous n — 1 characters are
a, which can be calculated as the number of instances of a + b divided by the number of
n — grams whose first n — 1 characters are a.

Shannon further stated that when N = 0, n-gram entropy is log, 26 [81].

Calculating entropy based on insufficient text samples leads to an underestimate of the actual
entropy [61]. The entropy of a password provides a theoretical lower bound on the number of
guesses required to crack that password for an attacker using an optimal guessing strategy [57].
In 2006, the National Institute of Standards and Technology published guidelines for password-
composition policies, with different policies having projected per-password entropy [16]. Pass-
words research has used entropy to quantify password strength [26, 88].

2.3.2 Guessability

While entropy provides a theoretical bound on how quickly an attacker can crack a password [57],
a number of researchers have advocated using guessability instead of entropy as a metric of pass-
word strength. The guess number of a password is the number of guesses that would be required
for a given password-guessing algorithm, with a given set of training data, to guess that password.

John Pliam compared entropy unfavorably to what he called “marginal guesswork,” a con-
cept that correlates to what this paper calls guessability. Marginal guesswork is the number of
guesses required to determine a secret with a given probability of success. Pliam stated that, when
items to be guessed have an even distribution, entropy and guessability converge. This is relevant
to system-assigned passwords, because if system-assigned passwords have an even distribution,
their entropy and guessability converge. However, Pliam proved that there are also distributions
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Estimated Attacker Based On Time for 10'? berypt hashes  Time for 10'? MD5 hashes
Single Computer 2012 MacBook Over 2,000 years 56 days

Hacktivist Estimates of Anonymous 207 days 20 minutes

Criminal Network Torpig Botnet 27 days 2.5 minutes

Foreign State Chinese Supercomputer 5 days 30 seconds

Table 2.1: A summary of estimated time for various possible attackers to reach 102 hashes using berypt
with its default cost factor of ten. Each increase in the cost factor would increase the time taken by a factor
of two. For comparison, the table also contains the estimated time for hashing using MD5. The assumptions
made for each estimate are in Section 2.4. This omits one’s own government because they can often use
other means to obtain data stored in servers under their jurisdiction.

in which entropy and marginal guesswork diverge. One example is a password set primarily com-
posed of weak passwords but also containing a few very complex passwords. Those complex
passwords raise the average entropy for the entire set, even though the bulk of the passwords are
easily guessed. Whereas, for marginal guesswork, a password is classified as either cracked or not
cracked for a given guess threshold, so a few hard-to-guess passwords do not skew the result [69].

Joseph Bonneau also argued that entropy is not an appropriate metric for evaluating password
strength. He argued that entropy does not correlate directly to the difficulty faced by an attacker
in guessing a password. Instead of considering the average strength of passwords in a password
set, Bonneau argued in favor of measuring how much of a password set is easily cracked, which
he called a “partial guess metric” [7].

Because of the reasons given above, guessability is the primary metric of password strength in
this thesis. As discussed in Section 4.2, this meant generating guess numbers for the passwords.
A guess number is the number of guesses that a given password-guessing algorithm, with a given
set of training data, would take to guess a specific password.

2.4 Guess Numbers and Threat Modeling

The studies in this thesis present the number of passwords per condition cracked after a given
number of guesses, often to a threshold around 10'2. This subsection discusses how those guess
numbers might correlate with different attackers. Section 2.4.1 discusses berypt, the hashing func-
tion on which my guess-number estimates are based. Section 2.4.2 iterates through a number of
attackers and estimates their ability to make password guesses. Table 2.1 summarizes these esti-
mates.

24.1 Password Hashing with berypt

Many hashing algorithms take a fixed amount of time to execute. The problem with these fixed-
time hashing algorithms is that an algorithm that is slow on today’s computer systems may be
executed much more quickly on future systems because of increasing computing capacity. Provos
and Mazieres, working for the OpenBSD Project, presented a solution to this problem in 1999.
They presented the bcrypt hashing scheme, which is designed for use with passwords. The algo-
rithm is intentionally relatively slow. Moreover, berypt is designed to take as a parameter a cost
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factor, which can be used to increase exponentially the time the hash takes to execute. Increasing
the cost-factor parameter by one doubles the time. This allows hashing with bcrypt to be made
more resource-intensive as computer power increases [72].

berypt has become the default password-hashing function in FreeBSD [72]. It has also become
the default password-encryption function in Ruby on Rails,* with a free implementation in Ruby.’
The Openwall project has made free versions of berypt available on other platforms.® SHELF,
the online survey framework described in Chapter 3, hashes researcher passwords with berypt.
Researchers have found that using specialized hardware can lead to a three-to-fourfold increase in
hashing speed with berypt [56]. The subsequent discussion will be about hardware that has not
been specifically designed for berypt.

2.4.2 Guess Numbers for Specific Attackers

First, consider an attacker using a standard laptop computer to hash passwords. This might repre-
sent an attacker unable to assemble more resources to hash passwords, or an attacker conducting
an attack of convenience. For benchmarking purposes, I am using my own laptop.” berypt has a
default cost factor of 10, meaning that it iterates 2'° times. I performed a benchmarking test by
hashing 1,000 passwords of eight random lowercase letters each. This took 73.3 seconds, less than
a tenth of a second per password. In order to reach 10'? guesses against a password file encrypted
with the default cost factor of 10, it would take the attacker over 2,000 years. Increasing the cost
factor to 11 roughly doubled this to take 143.5 seconds for 1,000 passwords. Increasing the cost
factor to 20 made hashing take about one minute and 15 seconds per password on my laptop. For
comparison, using MD5 to hash 102 passwords on the same computer would take 55.9 days.

Next, consider a “hacktivist” attacker such as Anonymous. This attacker may be comprised of
a loosely organized cluster of individual actors, perhaps acting in order to achieve a political goal.
The computing power of such a loose organization is not easy to determine, but I can estimate.
Estimates for the number of people online in an Anonymous chatroom can number around 7,000
In 2011, PayPal chose to give the FBI the 1,000 most active IP address during an attack. In 2012,
Anonymous itself claimed to have over 9,000 members.” Those higher numbers are for a less
computationally intensive task than password-cracking, however. Based on this, I conservatively
estimate that Anonymous might be able to harness the computing capacity of a few thousand
computers. There is no indication that Anonymous taps into further resources, or that they have
the full resources of those computers. Therefore, as a very conservative estimate, suppose that
Anonymous has access to the resources of 4,096 computers. For simplicity, assume that they are
all similar to my laptop, described above. Then, using the standard cost factor of 10, 10'? hashes
would take about 207 days.

Another threat to password security is criminals. Criminals may be extra-legal organizations,
similar to hacktivists. However, unlike hacktivists, they are more likely to hire a botnet, rather

‘api.rubyonrails.org/classes/ActiveModel/SecurePassword/ClassMethods.html

Shttps://rubygems.org/gems/berypt-ruby

*http://www.openwall.com/crypt/

72012 MacBook Pro, running OSX 10.10.1 (Yosemite), Retina display, 8 GB 1600 MHz Memory, with a four-core
single-processor 2.3 GHz Intel Core i7, running ruby 1.9.3

$http://www.wired.com/2014/06/anonymous—sabu/

‘https://twitter.com/YourAnonNews/status/160283918526980096
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than depend on donated computing resources. The exact computational resources of a criminal
organization are unknown and often exaggerated,'? so I will make an estimate. Researchers from
UC Santa Barbara took control of the Torpig botnet in 2009, giving a rare view inside a large-scale
botnet. They found that at any given time, the mean and median size of the botnet was just under
50,000 machines [92]. Further, a botnet is often unable to utilize the full computational capacity
of an infected machine. Flow-control between nodes would further tax computational capacity.
Therefore, I conservatively estimate that a botnet would provide an attacker with the equivalent of
around 32,000 full-time, dedicated machines. Getting to 10'? guesses on berypt with the default
cost factor of 10 would take about 27 days.

Consider a foreign nation-state. Finding reliable numbers for the capacity of such an attacker
may not be possible. Therefore, assume that the attacker has access to a top-of-the-line supercom-
puter. The world’s top supercomputer as of November 2014, according to top500.0rg, has a
speed of 33,862.7 terraflops.!! This machine resides in China. According to benchmarking soft-
ware Xbench!2, my laptop has a speed of 211.06 gigaflops. Based on those numbers, the Chinese
supercomputer has a speed of roughly 160,441 times that of this laptop. With a default cost factor
of 10, the super computer could make 10'2 hashes in about 5.3 days. Increasing the cost factor of
berypt to 20 would cause the super computer to take about 14 years.

Finally, consider the government of the United States. This can include agencies such as the
NSA and FBI. These agencies do not publish estimates of their computing capacity, making it
difficult to determine their capacity. More importantly, in many scenarios for a US-based orga-
nization, password strength may not be useful to protect data from the NSA. The United States
government can issue a subpoena to compel a service provider under its jurisdiction to disclose
information to which it has access. Therefore, for most large-scale US online service providers,
password strength against the NSA’s computing capacity may not be helpful.

Table 2.1 summarizes my estimates for computing power for different attackers. These esti-
mates are presented in rough calculations of how long different attackers would need to hash 10!2
guesses using berypt with its default cost factor of 10. Note that these are estimates for all but
the single computer. Further, the nature of berypt allows the hashing time to be adjusted; each
increase in the cost factor would double the estimated time.

2.4.3 Attack Models and Acceptable Loses

There are some use-cases in which it would be unacceptable for any accounts to become compro-
mised. This might be, for example, a situation in which doctors are using passwords to protect
patient information, and a single account being compromised might lead to a lawsuit. Another
example might be where there are specific data-protection laws in place for certain classes of data,
such as the Health Insurance Portability and Accountability Act (HIPAA).!3 In these cases, de-
spite their usability difficulties (as discussed in Chapter 5), system-assigned passwords might be a
reasonable approach. They would let the administrator determine password strength, and prevent
the users from creating weak passwords.

Ohttp://www.zdnet.com/article/botnet-size-may-be-exaggerated-says—enisa/
"http://www.top500.0rg/list/2014/11/

Phttp://www.xbench.com

Bhttp://www.hhs.gov/ocr/privacy/

13



Chapter 2. Background and Related Work

In some cases, it may not be worthwhile for a service provider to try to prevent all accounts
from being compromised. A service provider forming a password-composition policy should
be mindful of roughly how many compromised accounts are acceptable. I led development of
a simulation tool to help organizations reason about how best to balance password strength and
usability for their own context [83, 84].

There are several factors for a service provider to consider. Not all types of accounts are the
same. In a work environment, user accounts are used by employees who generate value for the
company, so it may be especially problematic for them to be compromised. Even within a work
environment, some accounts may have more value than others; a president’s account being com-
promised may cause more harm than that of a typical worker. On the other hand, there are contexts
where some users may not be concerned about compromised accounts. For example, users of an
email client may be unconcerned about their spam accounts being compromised. Likewise, users
may be less concerned about their low-value accounts being compromised, such as accounts they
were forced to make to read a newspaper online. Another consideration is whether having some
number of compromised accounts might threaten the integrity of the system itself, which would
be more common in a work environment than for a webmail client.

2.5 Human-Subjects Research on Passwords

This section presents related human-subjects passwords research. Section 2.5.1 presents human-
subjects research on two specific categories of passwords: passphrases and system-assigned pass-
words. In order to highlight the strengths and weaknesses of different methodological approaches,
I organize the remaining sections by methodology. I examine password-related surveys in Sec-
tion 2.5.2, longer-duration in-situ password studies in Section 2.5.3, and laboratory studies in
Section 2.5.4. Section 2.5.5 looks at interview studies. Finally, in Section 2.5.6, I discuss other
Mechanical Turk password studies.

2.5.1 Passphrases and System-Assigned Passwords

Passphrases are passwords comprised of a sequence of natural-language words. They have been
discussed in the literature for over three decades [70]. The comic xkcd helped to rekindle interest
in passphrases by declaring their superiority over similar-strength passwords [64]. An academic
institution’s blog even referenced the comic [77]. However, human-subjects studies focused on
passphrases are relatively uncommon. Amazon has a password mechanism it calls a payphrase,
which is a user-created password composed of multiple words used to facilitate online ordering.
An analysis of 100,000 payphrases, published in 2012, found that they often contained predictable
patterns. For example, they contained titles of popular movies and books, as well as digrams of
words commonly found together in natural language. This suggests user-created passphrases may
contain predictable patterns [9].

In most circumstances, users create their own passwords. However, some research has focused
on system-assigned passwords. Assigning passwords allows service providers to ensure minimum
strength. The idea of assigning a password has existed for many years [52], but has not become
wide-spread. Research has shown that users struggle when assigned a password. A study pub-
lished in 2007 asked 19 student participants to recall a system-assigned password after two weeks.
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Across different password-creation algorithms, participants struggled with recall [54]. Another
study, published in 2009, focused on login success across three different password policies. In
this 12-week field study, each of 52 undergraduate participants was assigned to one of three con-
ditions, and used the passwords with their coursework. These conditions included user-created
eight-character passwords with a non-letter; system-assigned passwords; and passphrases with
at least 16 characters. Participants assigned passwords had the highest instance of login failure,
while participants who created sentence-like passphrases had the least [43].

2.5.2 Password-Related Surveys

Researchers have employed surveys to learn about user behavior. Surveys are often not as in-
depth as laboratory studies, and they do not facilitate contrasting different conditions. They tend
to provide description of current practices and sentiment, rather than facilitating investigation
of prospective password policies. Surveys tend to be easier to administer per participant than
laboratory studies, and therefore they tend to have more participants.

A common theme in password-behavior surveys is that participants reused and wrote down
passwords. In 1997, Adams et al. reported a password survey of 139 participants. Half of the
participants reported writing down their passwords. Half of the participants with more than one
password connected most or all of their passwords with a common theme or creation technique [1].
In a survey of 997 Department of Defense employees, published in 1999, Zviran and Haga asked
about password creation and characteristics. The most common password length was six char-
acters, and 80% of participants used all-alphabetic passwords. 80% also never changed their
passwords. Over a third of participants reported writing down their passwords. The authors found
no association between password composition and the importance of the data protected by that
password, or between how a password was selected and its importance [101]. Medlin et al. ad-
ministered a survey on password creation and behavior to 118 healthcare workers, publishing the
results in 2008. This survey included a question that asked those healthcare workers to share their
home or work passwords. Workers who frequently changed their passwords were more likely to
share them. Overall, 73% of workers did share a password [59].

Many surveys have focused on password use within academic communities. In part, this may
be because the researchers are already located in a school. In addition, an academic institution
provides a number of users sharing a single password policy. A survey of 218 psychology stu-
dents, published in 2004, found that the average user had 8.2 passwords but only 4.5 unique
passwords [12]. There is evidence that the number of accounts user have has increased since then.
Experian released results from a 2013 study of 2,000 adults from the United Kingdom that showed
an average of 19 online accounts each [25]. Kumar presented results in 2011 from 195 members
of a university community in India. 45% of participants never changed their passwords and 70%
reported reusing them. Participants employed a number of password-creation techniques, the most
common being to base the password on the name of a family member [49]. In 2006, Bryant and
Campbell published results from a password study of 884 undergraduate students in Australia.
The most common password length was eight characters, with only 7.4% of participants using
over 11 characters. Around a third wrote down their passwords [13]. Another survey, published
in 2006, looked at the password behavior of 315 students. Most participants, 60%, did not to cre-
ate more complex passwords for higher-value websites. 53% of participants did not change their
passwords regularly unless required [74].
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In 2010, we asked 470 Carnegie Mellon students, faculty, and staff about their password-
related attitudes and behaviors. This survey occurred just as the University transitioned from a
lenient password-composition policy to a much more stringent policy. This allowed for a deeper
look at how users respond to encountering strong password-composition policies. While par-
ticipants were annoyed with the new policy, they also felt that the new policy provided better
protection and were ambivalent about reverting to the previous policy [88].

2.5.3 Longer-Duration Password Studies

Several studies have examined how participants use their real passwords over longer stretches of
time. This allowed researchers to learn about patterns in user behavior. These studies tend to study
users in situ, rather than assigning them to study-specific conditions.

Florencio and Herley conducted a large-scale password study over three months, publishing
the results in 2007. 544,960 participants installed a Windows toolbar that monitored their pass-
word behavior. The researchers gathered information about how many accounts users had, their
password strength, and their password reuse. They found that users had about 25 accounts each.
The average user had 6.5 passwords, typing eight passwords per diem. Password reuse was com-
mon and most passwords contained only lowercase letters unless required otherwise [26]. In 2010,
Inglesant and Sasse reported results from a week-long diary study of 32 office workers. Users were
concerned about security, but often struggled to follow password policies. Their password poli-
cies often hindered productivity. Only 60% of participants used a password with at least eight
characters [39]. In 2011, Grawemeyer and Johnson presented a seven-day diary study with 22
participants. Participants authenticated on average 45 times per diem. Users stored, shared, and
reused passwords. The most common password-creation techniques were basing a password on a
phrase (28%) or on a single word or name (26%) [33].

2.5.4 Laboratory Studies

Laboratory studies have examined password behavior. Similar to the online studies in this thesis,
laboratory studies can have users create passwords under specific sets of requirements. However,
they tend to be able to draw participants only from a limited geographic area. Further, because
they require researcher interaction, they tend to be limited to a small number of participants.

A 2002 paper from Proctor et al. described the results of two laboratory studies on password
creation. 24 Purdue undergraduate students created two passwords each, one with at least five
characters and one with five characters plus additional requirements, such as having a digit and an
uppercase letter. Passwords with additional requirements took significantly longer to create and
had significantly more creation errors. John the Ripper cracked 18 of the 24 passwords without
additional requirements and only eight of the passwords with additional requirements. Most of the
passwords created under the additional requirements followed a common pattern of starting with
an uppercase letter and ending with a digit. The authors repeated the experiment with a minimum
length of eight characters rather than five. John the Ripper cracked four of the 24 passwords
with only the length requirement, and three of the 24 passwords with the additional requirement.
Increasing the length of passwords was an effective way to increase their strength while being
more usable than other requirements [71].
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In a 2006 study, Gaw and Felten asked 49 undergraduate students for a list of websites on
which they have accounts, and were asked to recall their passwords for those websites in a lab-
oratory setting. Password reuse was very common, and participants were more likely to reuse a
password exactly rather than with modification. Participants with more accounts tended to reuse
passwords more often. Participants were also shown different passwords and asked about their se-
curity; participants considered password security from the perspective of a human attacker actively
guessing a victim’s password [31].

Vu et al. published in 2007 a three-part laboratory study with Purdue undergraduate students.
In the first part of the study, 32 participants created either three or five passwords, each with a
number of requirements that included having four character classes. Participants with five pass-
words needed more login attempts than those with three passwords, and made stronger passwords.
In the second part, 40 participants created mnemonic passwords, with half being given additional
restrictions. Passwords with additional requirements took longer to enter, but were stronger. In a
third experiment with 60 participants, passwords derived from a whole sentence were not easier
to recall than a mnemonic password based on a sentence [96].

Forget et al. presented work in 2008 that explored persuading users to create more secure
passwords by adding random characters in random locations to passwords users had just created.
The authors found that inserting two characters increased password security without perceptibly
affecting usability. Furthermore, adding more than two characters resulted in decreased usability
but no more security, since users would select weaker pre-improvement passwords to compensate
for the increased memory load of additional characters [29].

In a paper published in 2013, Egelman et al. examined password meters using a laboratory
study and an online study. In the laboratory study, 47 members of a university community created
new passwords. Meters improved password strength. In a follow-up study on MTurk, password
meters did not improve password strength. The authors concluded that password meters increase
password strength, but only for higher-value passwords [23].

2.5.5 Interview Studies

Studies have used interviews to learn more about password behavior. An advantage of an in-
person interview over an online study is that it facilitates follow-up questions in response to what
participants say. Interviews can also be more in-depth than surveys. On the other hand, interviews
tend to be time-consuming for researchers. In practice, interviews have focused on password use
under existing policies.

Singh et al. conducted a qualitative study on password-sharing habits in Australia, publishing
the results in 2007. They found that password sharing was common. Couples, in particular, tended
to share passwords with one another as a sign of trust. Disabled people reported being forced to
share their passwords with a caretaker [89].

Notoatmodjo and Thomborson conducted a laboratory study about password behavior and
perceptions with 26 student participants in New Zealand, publishing the results in 2009. Partici-
pants categorized and described their passwords. Passwords for higher-value accounts tended to
be longer, though not significantly so. The authors found evidence that users with more accounts
tended to reuse passwords more often. They also found that users were more likely to reuse pass-
words for lower-value accounts [66].
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Stobert and Biddle published a study in 2014 that described their efforts to use grounded
theory to paint a picture of the password lifecycle. The authors conducted 27 interviews about
how participants used passwords. Many participants wrote down their passwords as a backup, and
did not refer to the written passwords regularly. Further, none of the participants used a dedicated
password manager, instead primarily using their browser. Users budgeted their cognitive resources
in the space of passwords. Users also had a poor understanding of the threats that their passwords
faced [91].

2.5.6 MTurk Passwords Studies

The Carnegie Mellon passwords group has used Mechanical Turk to conduct human-subjects pass-
words research in studies not included in this thesis. These studies have followed a data-collection
protocol similar to that described in Section 4. Researchers recruited participants online, asked
them to create or memorize passwords under a given policy, and asked them to recall the password
after a few minutes and a few days.

Our group conducted an online study on the effects of password-strength meters, publishing
the results in 2012. We asked participants to create passwords under different policies while being
shown password-strength feedback as a meter. Meters could lead to stronger passwords, though
specific visual stimuli did not appear to affect password strength. The meters that were more
difficult to fill did lead to stronger passwords, up to a point. Beyond a threshold, users did not
respond to further requirements with stronger passwords [94].

Another study, published in 2013, examined the strength of actual passwords used by the stu-
dents, faculty, and staff of Carnegie Mellon University. Our passwords group indirectly studied
metrics from genuine passwords. We also conducted an MTurk study in which workers created
study passwords under the same requirements as actual members of the Carnegie Mellon Univer-
sity community. While MTurk passwords were slightly more vulnerable to cracking than genuine
university passwords, they were fairly close in strength. Further, the two sets of passwords had
many similarities including their general composition. This work further validates the external
validity of using MTurk to study and contrast password-composition policies [58].

Some members of our passwords group collaborated with researchers from Microsoft Re-
search to study a form of real-time password-creation feedback. We explored the usability and
security implications of an algorithm that displayed predictions for the next characters participants
might type as they created their passwords. The objective was to prevent participants from enter-
ing characters that were the most likely to be guessed, based on the characters they had already
entered. Feedback affected user behavior and password-creation usability. Requiring a number of
non-predicted characters increased password strength without diminishing usability [47].

The studies presented in this thesis use a similar data-collection protocol as the above studies
to understand passwords. However, they differ in substantial ways. The two above-mentioned
studies that compare conditions focus on the visual element of password-strength indicators for
user-created passwords [47,94]. The study presented in Chapter 5 focuses on system-assigned
passwords, rather than user-created passwords. The studies in Chapters 6 and 7 contrast password-
composition policies without any visual element. The final study presented in this thesis, in Chap-
ter 8, does focus on visual elements during password creation. However, rather than using its
visual element to indicate password strength, it indicates whether and how the user’s password
has met password-composition requirements.
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Experimental Framework

In the studies presented in this thesis, I wanted to draw causal conclusions about how different
sets of password requirements affect password strength and usability. This posed a number of
data-collection challenges. Some of the password-composition policies I wanted to study were
not already deployed in practice. Further, the analyses would require collecting enough data to
detect significant differences between conditions. Those considerations meant needing to collect
data from a large number of participants who were randomly assigned to conditions.

Chapter 2 discusses previous methodologies used to study password policies. None of them
met these requirements. Laboratory studies can study how participants create passwords under
randomly assigned sets of requirements. However, they are very time-consuming and labor-
intensive, making it infeasible to collect data from thousands of participants. Surveys and in-situ
studies can be faster to administer and can accommodate larger numbers of participants. However,
they are better suited to studying the current state of password usage, and less able to facilitate as-
signing participants randomly to conditions.

The solution was to combine the large numbers of participants of online surveys with the
randomly assigned conditions of laboratory studies. We could use Amazon’s Mechanical Turk
crowdsourcing service (MTurk) to recruit and pay participants. Assigning participants to condi-
tions, and keeping their data organized, would be much easier with a dedicated study framework.
I wanted a data-collection framework with the following capabilities:

* Use MTurk to screen, recruit, and pay large numbers of participants.

* Facilitate interactions with MTurk like posting tasks, emailing, and paying participants.

* Assign participants to controlled conditions.

* Automate data collection so researchers do not need to be hands-on with each participant.
» Keep data from thousands of participants organized.

* Coordinate data for multiple experiments on MTurk, Survey Gizmo, and local servers.

* Be able to prevent any one person from participating in more than one study.

* Provide researchers with a panoptic, real-time view of data collection to monitor progress.
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I met these requirements by developing SHELF, a general framework to facilitate large-scale
online human-subjects studies. SHELF has data-collection and study-monitoring features. I was
SHELF’s primary architect and developer. Saranga Komanduri implemented some features, in-
cluding much of the interface between SHELF and MTurk. We used SHELF in each study pre-
sented in this thesis, and refined and improved SHELF between studies. Section 3.1 describes the
implementation of SHELF. Section 3.2 highlights some of SHELF’s salient features, and how they
helped to meet the design objectives discussed above.

3.1 SHELF Implementation

I implemented SHELF in Ruby on Rails — SHELF uses Ruby v1.9 and Rails 3.1.1. Our studies
have used MySQL for the back-end database, but SHELF is intended to be database-agnostic.
SHELF itself is a generalized experimental framework — there is an abstract form of SHELF that
has the base code common to many use-case scenarios. Each experiment to be conducting using
SHELF has its own, separate instance, or fork, of the framework. An administrator starting a new
SHELF project copies the abstract SHELF template, and then modifies it for the specific experi-
ment. This includes creating the specific subject-facing pages, and creating the study conditions.

SHELF is an Internet-based framework. An instance of SHELF is run on a server, with its
own URL. A researcher using SHELF goes to a specific URL and authenticates with a login and
password. A participant taking a study on SHELF is given a URL for the study, which can include
that participant’s MTurk workerid.

SHELF has so far primarily been used for passwords research. Therefore, I have created an
abstract form of SHELF intended for passwords studies. Password-specific features in the abstract
password SHELF include facilities for password creation and recall. Most of the studies in this
thesis were created by copying the abstract password SHELF framework and customizing it for
the specific study. Throughout the studies in this thesis, I have constantly improved SHELF. If a
new feature was specific to a given study, then I added it to the specific instance of SHELF. On the
other hand, if the feature was more generally useful, I added it to the abstract SHELF.

SHELF evolved over the course of the studies in this thesis. For example, in the study pre-
sented in Chapter 6, SHELF was monolithic and all studies were contained in the same database.
As our passwords group conducted more studies, I realized that having each experiment isolated
in its own SHELF instance would keep overall database size down, and allow more experiment-
specific customization. Many of the other features described in this chapter were not present in
the initial version of SHELF, but were added as the system was used.

Creating a new experiment in SHELF requires copying the abstract SHELF template, and then
modifying that template. This requires some knowledge of Ruby on Rails. I designed SHELF to
require as little coding as possible; I tried to give SHELF many reasonable defaults, and much of
an experiment can be configured through a web interface. A number of participant-facing pages
are already present in SHELF, such as a consent form. In addition, SHELF comes with a set of
default database tables, which are sufficient for many human-subjects study protocols.

The following are default database tables in SHELF. Each includes a built-in researcher-facing
webpage to facilitate monitoring study progress.

e User: A researcher.
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* Setting: A number of variables determine aspects of the study and are stored as variables
in a table rather than being hard-coded into the system to facilitate changes. These include
how much participants are paid and whether the study should be launched in sandbox mode.

* Subject: This is an individual MTurk user. Depending on settings, a subject may be allowed
to participate in one or more studies.

* Run: A pass of a Subject through a study. Each run belongs to a Subject and to a Condition.

* Condition: A Condition has multiple Runs, and each Run belongs to exactly one Condition.
In this study, a Condition determines the password-composition policy.

* Experiment: An Experiment represents an individual study and has a set of Conditions.

* Collection: This is a set of Runs that are analyzed together. For example, all of the pilot
participants may constitute a Collection.

* Visit: A visit represents a Subject visiting a page in the experiment, as part of a Run. Each
Run has many Visits.

* Input Record: This represents the input acquired from a participant on a given page. For
example, the password-creation field on a page would have an Input Record for keystrokes.

3.2 SHELF Features

SHELF makes conducting large-scale MTurk studies much easier. Rather than needing to create
individual tasks manually, SHELF creates correctly configured tasks with the click of a button.
Then, as data is collected, it helps researchers monitor data. The only time that a researcher needs
to go directly to MTurk is when adding more money into the MTurk account to pay participants.
The remainder of this section discusses several of the features built into SHELF to help run exper-
iments more quickly and easily.

3.2.1 Monitoring and Organizing Large-Scale Studies

Conducting a research study requires monitoring data collection. Each researcher has an account
with a username and password — passwords are stored salted and hashed using berypt. A researcher
who logs in sees a screen similar to that in Figure 3.1. The researcher can walk through the study
as though a participant in any condition, which is useful for developing and testing. Researchers
can view how many participants many have completed each step of a study by condition. They
can also monitor how much money remains to pay participants. Most interactions with MTurk
can be conducted through SHELF. This can help detect technical problems with data collection,
and detect whether a condition is causing an unacceptable dropout rate. Once data collection,
researchers can export data for analysis.
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SHELF_feedback
Rich
Home About Researchers Control Panel Settings
Runs AMT Interactions Subjects Experiments Passwords

Experiments : feedback Conditions Collections Hits

feedback
Conditions
3cl2 Active edit delete Test Test2
3cl2-1t Active edit delete Test Test2
3c12-plain Active edit delete Test Test2
3cl2-bl Active edit delete Test Test2
3c12-bl-rt Active edit delete Test Test2

3cpl2-rt-10splice2 Active edit delete Test Test2
3cpl2-rt-10guide2 Active edit delete Test Test2
3cpl2-rt Active edit delete Test Test2
3cpl2 Active edit delete Test Test2

New Condition

Edit

Figure 3.1: The screen a researcher, in this case Rich, sees upon logging into SHELF. He can view, delete,
and test different conditions. “feedback” is the internal name of the study presented in Chapter 8. There are
also links to screens containing the different data in the study, such as the subjects.

3.2.2 Preventing Repeat Participants

SHELF can be configured to exclude prospective participants based on several criteria. Re-
searchers can prevent participants from taking a study more than once, or taking more than one
study. The studies in this thesis were between-subjects studies, and used statistical tests that as-
sumed each data point was independent. Amazon assigns each MTurk account a unique workerid.
To facilitate preventing participants from taking more than one of a group of studies, SHELF can
import and export sets of workerids. That way, one study using SHELF can import the list of
workerids from a prior study in order to detect and reject repeat participants. Because it may be
possible to de-anonymize MTurk workers based on their workerid, these lists can be encrypted.
As an additional measure to detect repeat participants, SHELF can place cookies on participants’
machines.

3.2.3 Keeping Participants from Viewing the Wrong Page

Participant taking a study on SHELF view a sequence of web pages. By clicking on buttons or
other indicators, they move to the subsequent page. Participants do not authenticate to SHELF,
but I did not want anyone to be able to stumble onto the wrong page by playing with URLs.
Therefore, I implemented a check-sum system for each participant-facing page. Each Run (a
participant’s course through a study) has a unique identifier number. Each user-facing page also
has a unique identification number, and each study has a hash value. SHELF hashes the Run id,
page id, and salt together to generate a checksum. Anyone attempting to reach a participant-facing
page without the correct checksum goes to an error page.

22



3.2. SHELF Features

3.2.4 Conducting Participants Through the Study

SHELF is designed to conduct participants automatically through the course of a study. A prospec-
tive participant encounters the study on MTurk, in which HITs advertise paid tasks for workers.
Once a participant has accepted the HIT, that participant receives a URL into SHELF. Each MTurk
worker has a unique workerid, and this URL is custom-made to include that workerid. Sending this
workerid lets SHELF record, and pay, the worker. SHELF assigns participants to their conditions
round-robin, and can have different subject-facing pages depending on condition. As participants
take the study, SHELF records their activity in the study database. After participants completed
the study, SHELF automatically approved their HITs, ensuring they were compensated. Our study
protocol required emailing participants to return for Part Two of the study. SHELF uses a cron job
to contact participants and invite them to return with a customized URL.

The next chapter of this thesis discusses the data-collection protocol for the studies presented
in this thesis. This data-collection protocol makes heavy use of SHELF. SHELF itself is designed
to be flexible, and the following chapter describes only one possible use of the framework.
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Chapter 4

Study Protocol

In this chapter, we describe our data-collection processes and the data we collect. This thesis
presents data from five studies, each with a similar protocol. Each study chapter has an individual
Methodology section describing its conditions and other specific factors. Section 4.1 describes the
route that participants take through our studies. In Section 4.2, we describe the PCFG password-
guessing algorithm that we used to calculate password guess numbers. We describe our security
and usability metrics in Section 4.3. In Section 4.4, we present the statistical tests that we use in
our studies. Section 4.5 discusses ethical considerations of our research. Section 4.6 discusses
limitations of our methodology.

4.1 Data-Collection Protocol

We recruited participants on MTurk, as described in Section 3. All of ours studies required that
participants be at least 18 years old. The study we present in Chapter 6 allowed participants from
anywhere, while the rest required participants be located in the United States. Participants could
only take a study once, and could be in at most one study. In our first MTurk study, described in
Chapter 6, we began by paying participants 25 cents for completing the first part of the study and
50 cents for completing the second part. We soon! increased this to 55 and 70 cents to increase
participation, and we kept these payment amounts.

Figure 4.1 depicts our protocol. After recruitment on MTurk, we asked participants to com-
plete a consent form. Then, they begin the initial task, which we call Part One of our study. We
asked participants in all but one condition to imagine creating a new password for their email
service provider. We used text matching or very similar to the following in each study:

Imagine that your main email service provider has been attacked, and your account
became compromised. You need to use a new password for your email account,
since your old password may be known by the attackers...We will ask you to use this
password in a few days to log in again so it is important that you remember your new
password. Please take the steps you would normally take to remember your email
password and protect this password as you normally would protect the password for
your email account. Please behave as you would if this were your real password!

'We paid 984 participants the lower rates of 25 and 50 cents.
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Email Invite

Survey | Part Il Recall

s ec B

Figure 4.1: Out data-collection protocol. The first column represents Part One, linked to from MTurk.
The second column represents part two, to which participants were invited through email two days after
completing Part One.

As a function of their study condition, participants either created a password under a specific
password-composition policy, or were assigned a password. After creating or being assigned a
password, participants took a quick survey, as shown in the Appendices. We did this to learn
about the participant’s sentiment regarding the password-creation process and as a distractor task.
We then asked participants to enter their passwords, which we call Part One recall. If unsuccessful
in five attempts, the participant saw the password on-screen. Successful recall ended Part One of
the study, and we compensated the participant.

Two days after completing Part One of the study, we invited the participant to return for Part
Two of the study. We used MTurk to email workers through their workerid, and we did not need
to learn their email addresses. We asked returning participants to recall their passwords, which
we call Part Two recall. On the fifth failed attempt, participants saw the password on the screen.
Participants could click on a “Forgot My Password” link to be emailed a link to their password.

Participants then took a second brief survey. This asked about the password-recall process,
sentiment related to password recall, and whether and how participants wrote down or otherwise
stored their password. To set a cutoff for our own data collection, and to consider only recall from
participants who had seen their password within five days, participants who finished Part Two
more than three days after Part One were compensated but excluded from our analyses.

4.2 Generating Guess Numbers

As described in Section 2.3.2, we used guess numbers to compare the strength of passwords. To
generate these guess numbers, we used a Probabilistic Context-Free Grammar (PCFG) password-
guessing algorithm. Weir et al. first devised the concept [98], and our passwords research group
refined the algorithm in subsequent research [45].

The PCFG algorithm constructs a probabilistic context-free grammar from training data, such
as wordlists or other password corpora. Probabilities are learned for overall password structures
(sequences of character classes) and learned separately for substrings of a single character class.
These structural and substring probabilities are combined into probabilities for potential password
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guesses, and the algorithm guesses passwords in probabilistic order. Computational limits gener-
ally require a cutoff before the entire space has been guessed [98].

Our lab continued to improve the PCFG algorithm over the course of the studies in this thesis.
Rather than using the PCFG algorithm to generate a full list of guesses and then matching study
passwords against that list, in [45] our lab introduced the concept of a guess number calculator.
Given a password, the guess number calculator determines or estimates the number of guesses the
PCFG algorithm would need to guess that password.

Algorithm 1 describes the creation of a lookup table for the guessnumber calculator. We adopt
Weir et al.’s terminology of structure for a string representing the character classes of a given
password. For example, the structure of password Passwordl! is UlIIDS. A terminal is an
instantiation of a structure, and a probability group is a set of terminals with the same probabil-
ity [45].

To find the number of guesses required for PCFG to guess a given password, we use the
lookup table created by Algorithm 1 to determine how many guesses would be made before that
password’s probability group would begin to be guessed. Because all passwords in a given proba-
bility group are guessed in deterministic order, it is straightforward to calculate the guess number
of the password itself. Creating this lookup table is time-intensive and resource-intensive, so we
set a cutoff for each study — around 102 to 10'4 guesses.

Algorithm 1 This is the training algorithm for the PCFG algorithm to create a lookup table. Given
a password, we looked up the number of guesses required to get to that password’s probability
group. We then calculated how many additional guesses were required to guess the password
itself. An Lc.s. is a longest common substring, the longest substrings in a probability group made
from characters of the same character class. For example, for UULL9UUU, the l.c.s.’s would be
UU, LL, 9, and UUU.
T = New Lookup Table
for all structures s do
for all probability_group pg € s do
for all [.c.s. € pg do
¢;=Number of terminals of [.c.s.
p;=Probability of [.c.s. in training data
end for
probability = ] p;
T .add: probability, pg, [ ¢
end for
end for
Sort(T) by probability
Add to each value in (7°) the sum of prior values

4.2.1 PCFG Training Data and Word Lists

The PCFG algorithm requires training data, generally corpora of known passwords. The training
data for password structures can differ from that used for password substrings. This helps to tune
the PCFG algorithm for guessing specific sets of password requirements. For example, if a policy
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requires eight characters and three character classes, we can include only passwords matching
these requirements in the structural training data.

Our security results simulated an attacker who was aware of the password-composition re-
quirements for each study condition. We trained the PCFG algorithm separately either for each
condition, or for each set of passwords sharing structural requirements.

We trained the PCFG algorithm using both publicly availably data sets and study data. We used
study data for training the PCFG algorithm by using two folds. We randomly split the passwords
being cracked together into two halves, and used each half as training data to crack the other half,
along with public data. We then recombined the halves, yielding guess-number results for each
password.

The PCFG algorithm itself evolved during the course of the studies presented in this thesis,
and so comparing guessing results across studies may be of limited value. In some of our studies,
in order to facilitate cracking longer passwords, we used a word list from Google [10]. Some of
our later studies also used passwords from prior studies as PCFG training data. However, within
a given study, we used the same version of the PCFG algorithm with analogous training data for
each condition.

We used six publicly available word lists as training data for PCFG algorithm, as well as to
construct dictionary checks for some of our conditions. The RockYou password set [19] includes
more than 30 million passwords, and the MySpace password set [75] contains about 45,000 pass-
words. Both sets resulted from password breaches. The inflection list> contains words in varied
grammatical forms such as plurals and past tense. The simple dictionary contains about 200,000
words and is a standard English dictionary available on most Unix systems. We also used two
dedicated cracking dictionaries from the Openwall Project® containing standard and mangled ver-
sions of dictionary words and common passwords. The free Openwall list contains about 4 million
words, and the paid Openwall list contains more than 40 million words. These data sources are
publicly available, and we expect attackers would train with readily available word lists.

4.3 Study Metrics

This section discusses the security and usability metrics we collected and analyzed.

4.3.1 Password Strength

Password strength is important for both system administrators and passwords researchers. Sec-
tion 2.3 discussed prior work on password strength, including the arguments for using guess num-
bers to measure password strength. Section 4.2 described how we calculated guess numbers with
the PCFG algorithm. Guess numbers let us compare how passwords in each condition perform
against an increasing number of guesses. We plot the percentage of guessed passwords in each
condition against the number of guesses that have been made, in log scale. In addition, we provide
entropy estimates for passwords in some of our studies (as described in Section 2.3.1), as well as
descriptive statistics such as usage of different character classes.

2http: //wordlist.sourceforge.net
*http://www.openwall.com/wordlists/
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Our security model is an offline attack in which the attacker has access to passwords in hashed
(salted or unsalted) form. We simulated a larger number of guesses — often over 10'°. The actual
time needed to reach that number of guesses depends on the attacker’s hardware and the hash-
ing function being used. To provide a rough idea of how guess numbers translate to time, we
performed benchmarking tests in our lab. We used oclHashcat-1.21 on a top-of-the-line graphics
card* to perform the deliberately slow Blowfish hash (configured with a cost factor 05), on which
the password-hashing scheme berypt® is based. We performed 6,874 hashes per second. This
means that an attacker using similar hardware would reach 10® guesses after about 4.0 hours. The
attacker would reach 10'? guesses after about 4.6 years, but this could be reduced by dividing the
work among multiple cards. A more in-depth discussion of translating guess numbers into time is
in Section 2.1.

4.3.2 Password Usability

We examine usability for password creation, and recalling passwords after a few minutes and a
few days. We ask participants questions in order to understand their perceived sentiment. We
also record observed metrics, including attempts needed and time taken. We consider taking more
attempts and more time to be indicative of increased difficulty. We describe these metrics in more
detail below.

Password Creation or Assignment

Password-creation usability is especially important for real-world systems in which a frustrated or
annoyed user can easily abandon the service. It may be less important for universities or offices
where users are less likely to leave because creating a password is unpleasant.

* Creation attempts: This is the number of attempts participants needed to create a pass-
word complying with the requirements. For system-assigned passwords, it is the number of
attempts needed for the participant to enter the password correctly. We consider a partici-
pant requiring more attempts to create a password to indicate password creation being more
difficult or taking more effort.

» Password-creation sentiment (difficult, annoying, fun): We asked participants whether
they agreed with creating or learning their password being difficult, annoying, and fun as
three separate Likert questions. This measures self-reported user sentiment for password
creation.

Part One Recall

After creating their passwords, we gave participants a short survey. Then, we asked them to recall
their password. We measured how accurately and quickly they were able to do so. Short-term
password-recall usability is relevant in a number of real-world scenarios, such as websites that ask
users to create a new password and then to sign in with that password. Difficulty in this step might

* AMD Radeon R9 290x with stock clock frequencies
Shttps://www.schneier.com/blowfish.html
6http: //bcrypt.sourceforge.net
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deter usage. Further, short-term recall usability helps to align our findings with those of past and
future human-subjects laboratory studies of password policy. As discussed in Section 2.5.4, these
laboratory studies are often limited to studying password recall soon after creation.

* Recall attempts: This is the number of attempts needed to recall the password shortly after
creation. Conditions that took more attempts to recall are considered less memorable in the
short term.

* Recall time: This is the average time taken to enter the password, typically measured in
median seconds. We consider shorter recall times to signify the passwords being easier to
recall and type.

Part Two Recall

Two days after participants finished Part One of our study, we invited them to return for Part Two.
Upon returning, we asked them to recall their password. Part Two recall represents recalling the
password after between two and five days have passed since creating it. This is relevant to service
providers concerned about retaining users, as well as to those who need to pay help-desk costs
for helping users who forgot their password. For researchers, it provides insight into recall over a
larger time period than a typical laboratory study.

* Recall attempts: This is the number of attempts participants took to recall their passwords.
After five failed attempts, we showed their password on the screen. More attempts may
indicate more recall difficulty, or recall taking more effort.

* Recall time: This is how long participants took to recall their passwords, in median seconds.
In most studies, we looked only at participants who recalled their password on the first
attempt. Less time is considered more usable.

* Password-recall sentiment (difficulty): We asked participants whether they agreed with
password recall being difficult, as a Likert question. This measures self-reported password-
recall difficulty.

* Password reminder usage: Participants could use a password reminder to be emailed a
link to view their passwords on the screen. Use of this reminder might indicate participants
finding it difficult or frustrating to recall their passwords. It might also indicate participants
perceiving that recalling their passwords would take more effort.

Further Usability Metrics

* Part One dropout: We consider a participant who has completed the consent form, but
who did not finish Part One of the study, to have dropped out. We consider a higher dropout
rate to indicate usability difficulty, because dropping out may signify that the participant
despaired of recalling the password, or was unable to make a satisfactory password that
met the condition. This metric is relevant to both researchers and service providers, as the
former want more participants and the latter want more users.
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* Password storage: We consider a participant who has stored his or her password to have
had a more difficult time with it, or to have anticipated having a more difficult time recalling
it. We only consider password storage for participants who completed Part Two of the study.
We consider a participant to have stored his or her password if we detected that participant
pasting or autofilling the password. We also consider a participant to have stored his or her
password if that participant did not indicate otherwise in the Part Two survey. This metric
is relevant to researchers because it puts other recall metrics into context. For example,
password storage might explain why participants reported less difficulty with recalling a
difficult password.

4.4 Statistical Testing

Unless otherwise noted, our statistical tests use a significance level of « = .05. We compare
metrics between study conditions. Some studies compare each condition to each other condition;
other studies compare only certain conditions to each other. When we compare metrics for condi-
tions, we distinguish between quantitative and categorical variables. When conducting a quantita-
tive comparison across conditions, we first conduct an omnibus comparison using Kruskal-Wallis
(KW). This is an analogue of ANOVA that does not assume normality. If this test is significant, we
perform pairwise Mann-Whitney U (MW) tests with Holm-Bonferroni correction (HC). In order
to test for differences in categorical variables across conditions, we first perform an omnibus x?
test. If that shows significance, then for each pair of conditions we are testing, we perform Fisher’s
Exact Test (FET) with HC correction.

4.5 Ethical Considerations

The studies in this thesis were approved by the Carnegie Mellon University Institutional Review
Board. Our participants consented to take part in our research and received a researcher’s contact
information. They all affirmed that they were at least 18 years old. In order to train our password-
cracking algorithm, we used publicly available stolen password sets. These were widely known
and circulated before we used them, and many had already been used in other research [21,97,98].
We contend that because the data are already widely available, our use of them constitutes no
further harm to the victims. We did not collect passwords alongside usernames or other login
data. Further, because attackers likely were already using these passwords for their own purposes,
our use of them to study password-composition policies is especially important if we want to help
security administrators keep pace with attackers.

4.6 Limitations

This section discusses limitations of our study protocol.

4.6.1 Ecological Validity

The ecological validity of our research is important to the generalizability of our results. The
MTurk population is younger and better-educated than the general population, and is more diverse
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than is typical for laboratory studies [14,41]. Previous research on using MTurk for research has
found that it can produce high-quality data [4,22,37,46,93]. Using MTurk allowed us to collect a
very large sample size under controlled conditions. Traditional in-person data collection would not
have been a feasible way to accomplish this. Mechanical Turk enabled much larger sample sizes
for our studies, allowing our statistical tests to have more power. We were also able to collect data
across a much larger geographic area than would have been feasible using in-person laboratory
studies.

The passwords in our studies did not protect high-value accounts. To help participants think
more as they would in reality, we asked them to imagine that they were creating passwords for
their primary email account. In the study described in Chapter 6, we had one condition in which
we asked participants instead simply to create a password for a study. Participants in that condition
created significantly weaker passwords. This is evidence that by asking participants to imagine
creating a real password, they were more likely to buy into our study.

Within each of our studies, we took care to differentiate the experiences of our participants
only in ways related to their differing conditions. This means that the differences observed be-
tween participants in each condition can be attributed to the differences between those conditions.
In most cases, this is only a difference in their password-composition policies. In this way, even
if the study being conducted on MTurk made participants behave differently than they would in
real life, we believe that the comparisons between the conditions would still be valid because all
conditions were run on MTurk.

In Section 2.5.6, we describe a study conducted by our passwords research group. In this
study, we collected metrics about genuine passwords used by the students, faculty, and staff of
Carnegie Mellon University. We also asked MTurk workers to create passwords under the same
requirements, including a replication of the password-creation screens seen by genuine users. This
enabled us to contrast the passwords created by MTurk workers with genuine passwords made un-
der the same requirements and branding. We found that while the MTurk passwords were slightly
weaker than the genuine passwords, they were very similar and shared many characteristics. This
demonstrated that MTurk workers create passwords that are in many ways similar to those of
genuine users, supporting the ecological validity of MTurk passwords research [58].

4.6.2 Remote Data Collection

Remote data collection has both advantages and disadvantages compared to traditional in-person
human-subjects data collection. The research in this thesis would not have been feasible without
using online crowdsourcing. MTurk allowed us to recruit far more participants than would have
been possible using traditional methods. We recruited participants across a broad geographic
space, instead of using only local participants. Further, while traditional live human-subjects data
collection requires a researcher be present with one or a few participants, our data collection
allowed participants to take the study independently.

While this remote, automated data collection enables many more participants than traditional
methodologies, it has some downsides. When a live researcher sees a participant struggling with
something in a study, this can be noted and reported. A live researcher can also ask a participant
to speak aloud to collect more information, and ask spontaneous questions that come up during
the study. These are not feasible through our methodology. This shortcoming can be at least
somewhat mitigated through live in-person study piloting.
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4.6.3 Other Limitations

Advances continue in the domain of password-cracking algorithms. While a study of these al-
gorithms is not a focus of this thesis, we do use them to contrast password strength between
conditions in a study. There may exist yet-undiscovered password-cracking algorithms that would
produce different password-strength results. Further, advances in hardware may facilitate attackers
making more guesses than our research considers.

Our research focuses on specific security and usability metrics, as outlined in Section 4.3.
Other metrics that may be useful are not recorded. For example, while we examine password
recall after a few minutes and a few days, many password use-case scenarios involve password
recall after a longer period of time.

Our security model considers how well passwords resist an offline attack. There are other
threats to passwords, such as shoulder-surfing and phishing, in which password strength is not a
factor.
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Chapter 5

How Usable are System-Assigned
Passphrases?

5.1 Introduction

Allowing users free rein to create their own passwords often leads to weak, easily guessed pass-
words [5, 71, 100], resulting in security breaches and loss of privacy for victims [18]. Many or-
ganizations attempt to address this problem using password-composition policies, which limit the
password-creation space in an effort to prevent users from choosing passwords that are too easily
guessed [16]. Unfortunately, strict password-composition policies sometimes lead to user frustra-
tion without substantial security benefit [1,39]. Also, even under a strict policy, users may fulfill
policy requirements in predictable ways [90], such as basing their passwords on older passwords,
names, or words [88, 100], or reusing passwords across domains [26].

The other studies in this thesis examine password-composition policies in which users create
policies under certain requirements. These requirements, such as requiring that user-created pass-
words have at least sixteen characters, are intended to prevent users from creating easily guessed
passwords. This study takes a different approach to ensuring the guessability of passwords. We
assign system-created passwords to participants, removing their choice about passwords. This lets
us ensure that each system-assigned password has a level of security that would be difficult to
ensure with user-created passwords.

We assign participants both short passwords and longer passphrases. A passphrase is a pass-
word composed of a sequence of words. Passphrases are typically much longer than ordinary pass-
words, and proponents argue that they are more secure and easier to remember. One NIST publi-
cation states that “any long password that can be remembered must necessarily be a ‘pass-phrase’
composed of dictionary words” [16]. The use of passphrases has recently garnered appreciable at-
tention [64,77], and some institutions have adopted passphrases as a password policy (e.g., [99]).
Despite this recent interest in passphrases, however, there is little empirical evidence to support
claims of superior usability over passwords.

This chapter describes the results of a 1,476-participant study on the usability of system-
assigned passphrases and system-assigned passwords. The passphrases we study are sequences

This chapter is largely a reproduction of [86], co-authored with Patrick Gage Kelley, Saranga Komanduri, Michelle
Mazurek, Blase Ur, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.

35



Chapter 5. How Usable are System-Assigned Passphrases?

of three or four English words drawn at random from a set dictionary and separated with spaces.
Our passwords are also system-assigned and are five to eight characters in length. While the other
studies in this thesis focus on user-created passwords, this study is limited to system-assigned
passwords. We control for guessability and contrast usability for different password-assignment
policies.

Our findings suggest that system-assigned passphrases are far from a panacea for user au-
thentication. Rather than committing them to memory, users tend to write down or otherwise
store both passwords and passphrases when they are system-assigned. When compared to our
password conditions, no passphrase condition significantly outperformed passwords in any of our
usability metrics, indicating that the system-assigned passphrase types we tested fail to offer sub-
stantial usability benefits over system-assigned passwords of equivalent strength. We even find
that system-assigned passphrases might actually be less usable than system-assigned passwords.
For instance, users were able to enter their passwords more quickly and with fewer errors than
passphrases of similar strength.

While our results in general do not strongly favor system-assigned passwords over system-
assigned passphrases or vice versa, we identify several areas for further investigation. For exam-
ple, larger dictionary sizes do not appear to have a substantial impact on usability for passphrases.
This could be leveraged to make stronger passphrases without much usability cost. We also find
that lowercase, pronounceable passwords are an unexpectedly promising strategy for generating
system-assigned passwords.

Researchers have proposed error-corrected passphrase systems [3,42,60]. Our results suggest
that sophisticated error correction, such as mapping the word a user enters to the closest word
in the passphrase dictionary, is necessary to make passphrases comparably usable to passwords.
Without error correction, many passphrase conditions perform significantly worse than our pass-
word conditions.

We next discuss our methodology in Section 5.2. We present results on usability, accuracy, and
sentiment in Section 5.3, and describe our error analysis in Section 5.4. We consider our findings
in Section 5.5.

5.2 Methodology

Our data-collection protocol is described in Section 4.1. We used an instance of the SHELF
framework, which is discussed in Chapter 3. We limited our data collection to participants
from the United States because our passphrases are constructed using words from American En-
glish. Because we used only system-assigned passwords in this study, we did not generate guess
curves. Instead, the security of each condition against guessing attacks by someone who knows
the password-generation algorithm can be calculated a priori.

In this study, we use the term “secret” to mean either a password or a passphrase. Instead of
being asked to create a password, participants were assigned a secret based on which of the 11
conditions they were assigned. After being shown the secret, participants were required to check
a box on the screen to hide the secret and then enter that secret twice, once as confirmation. They
could uncheck the box to see their assigned secret again, but could not type while their secret was
visible.
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Entropy Dictionary
Condition name  (bits) Length size Example

Password Conditions

pw-length5 30 5 characters 64 characters @J#8x
pw-pronounce 30.2 8 characters 190 syllables tufritvi
pw-length6 36 6 characters 64 characters R6wy$_

Passphrase Conditions

pp-small 294 4 words 181 words one between high tell
pp-med-unorder  29.3 4 words (any order OK) 401 words help any country our
pp-large-3word 294 3 words 1,024 words own decide some
pp-nouns 30 4 nouns 181 nouns sense child reason paper
pp-nouns-instr 30 4 nouns (w/ instructions) 181 nouns phone star record right
pp-sentence 30 4 words (N-V-Adj-N) 181 words each  end determines red drug
pp-medium 33.9 4 words 401 words also that research must
pp-large 39.2 4 words 1,024 words because strategy cover us

Table 5.1: A summary of experimental conditions, with data about their characteristics and example secrets
assigned to participants.

5.2.1 Conditions

We assigned participants round-robin to one of 11 conditions, which are summarized in Table 5.1.
The conditions varied in the type of secret assigned to the participant. Participants were unable to
modify their assigned secret or to obtain a replacement. We focused on system-assigned secrets so
that we could precisely control their entropy (and their guessability), and focus on their usability.

Three conditions were variants of passwords, and eight were variants of passphrases. Our
password conditions did not use spaces. In the passphrase conditions, we required that partici-
pants enter words separated by spaces and in the same order they were assigned, unless otherwise
specified. Secrets in all 11 conditions were case-sensitive.

We designed two of our three password conditions and six of our eight passphrase conditions
to have approximately 30 bits of entropy so that we could compare system-assigned passwords to
equally strong system-assigned passphrases. This entropy value was chosen because guidelines
frequently used in practice [16,38] recommend password policies that provide an estimated 30 bits
of entropy. While research has suggested that entropy may not be the best indicator of resilience
to attack [45,97], when all elements from a set occur with equal probability (as is the case with our
system-assigned secrets), entropy maps directly to the probability that an attacker with knowledge
of the password-generation algorithm will successfully guess a password.

5.2.2 Password conditions
Three of our conditions focused on passwords.

» pw-length5: Participants were assigned a five-character password, where each character is
chosen randomly from a dictionary of 64 characters, including lowercase letters, uppercase
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letters, digits, and symbols. We removed characters that could easily be confused with other
characters, e.g., both the letter “O” and the digit “0.” This password space has 30 bits of
entropy.

* pw-pronounce: Participants were assigned an eight-character password likely to be pro-
nounceable by an English speaker. To generate these passwords, we used an implemen-
tation! of an algorithm originally proposed by Gasser [30] and later adopted as a NIST
standard [65]. Prior work has identified a flaw in this scheme: certain passwords are chosen
with high probability since the probability of a syllable occurring in a password mirrors its
relative frequency in English [53]. To overcome this, we generated the full list of eight-
character pronounceable passwords without duplicates (=~ 1.2 billion) and assigned each
password on this list with equal probability, resulting in 30.2 bits of entropy.

* pw-length6: Participants were assigned a six-character password, where characters are cho-
sen as in the pw-length5 condition. The extra character makes passwords in this condition
have 36 bits of entropy. This condition helps determine how the length of randomly gener-
ated passwords affects usability.

5.2.3 Passphrase conditions

We tested eight variations on passphrases. We generated dictionaries for all passphrase condi-
tions using word-frequency data® with part-of-speech (e.g., noun, verb) tags from the Corpus of
Contemporary American English (COCA) [20]. This list ranks the most common words in the
425-million-word COCA based on the number of times they appear and their diffusion throughout
different sources. So that our dictionaries would contain only well-known words, we chose the
N most common words matching particular criteria for each dictionary. For instance, a dictionary
of 181 nouns would contain the 181 most common nouns from COCA.

We selected word lists of particular sizes so that different conditions would each have 30 bits
of entropy. However, we later discovered that word lists not restricted to a particular part of speech
contained duplicate words. For instance, “to” was present on the list as both an infinitive marker
and as a preposition. Thus, the actual passphrase entropies in the next three conditions, intended
to be 30 bits, were as low as 29.3 bits.

* pp-small: Participants were assigned four words, randomly selected with replacement from
a 181-word dictionary.

* pp-med-unorder: Participants were assigned four words, randomly selected with replace-
ment from a 401-word dictionary. Unlike all other conditions, participants could enter the
words in their passphrase in any order.

* pp-large-3word: Participants were assigned three words, randomly selected with replace-
ment from a 1,024-word dictionary.

'"http://www.adel.nursat .kz/apg/ (visited 5/2012)
http://www.wordfrequency.info/top5000.asp (visited 5/2012)
3 All entropies were calculated using Shannon’s formula on the frequency distribution of unique words [80].
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The next two conditions are similar to the pp-small condition, except they use larger dictionar-
ies of the most common words in order to test whether the size of the dictionary has a measurable
impact on usability:

* pp-medium: Participants were assigned four words, randomly selected with replacement
from the 401-word dictionary used in the pp-med-unorder condition. These passphrases
present 33.9 bits of entropy.

* pp-large: Participants were assigned four words, randomly selected with replacement from
the 1,024-word dictionary used in the pp-large-3word condition. These passphrases present
39.2 bits of entropy.

We also tested whether passphrases that followed certain part-of-speech patterns aid memorability.
The next three conditions use passphrases with 30 bits of entropy.

* pp-sentence: Participants were assigned passphrases of the form “noun verb adjective
noun,” where nouns, verbs, and adjectives are chosen from separate 181-word dictionar-
ies. So that it would make sense for the verb to be followed by a noun, the verb dictionary
contained only verbs whose entry in The Free Dictionary” listed at least one transitive def-
inition. Since all nouns but one were singular, we manually conjugated all verbs to agree
with a singular subject. Although these passphrases were unlikely to make semantic sense
due to the random selection of words, they might resemble English sentences.

e pp-nouns: Participants were assigned four nouns, randomly sampled with replacement
from a dictionary containing the 181 most common nouns.

* pp-nouns-instr: The condition is identical to pp-nouns, except that we gave the participant
specific instructions for memorizing the passphrase. The instructions asked participants to
“try to imagine a scene that includes all of the words in your password phrase. This will
help you to remember it more easily. Research has found that the more bizarre, unusual,
and exaggerated you make your scene, the easier it will be to remember. So, take a moment
to construct your scene, and think about it whenever you need to enter your password.” This
specific instruction mimics the example from the xkcd comic [64].

5.2.4 Statistical Testing

In our pairwise tests, we compared a subset of all possible pairs of conditions. All eight of our
30-bit conditions are compared to each other. We also compare pp-medium with pp-med-unor-
der, because they both use a 401-word dictionary; and pp-large with pp-large-3word since both
use 1,024-word dictionaries. We compare pw-lengthS with pw-length6 as the latter uses longer
passwords, but they are otherwise identical. Finally, we compare pp-medium with pw-length6 to
compare a password and a passphrase condition with higher entropy.

In addition to looking at conditions independently, we sometimes combine a subset of our
password conditions and a subset of our passphrase conditions to compare larger sample sizes of
passwords and equivalent-entropy passphrases. The combined passwords participants comprise

‘http://www.thefreedictionary.com/ (visited 5/2012)
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pw-length5 75.9 1.3 220 424 94 1.1 34 1.3 4.0 183
pw-pronounce 72.2 1.1 203 38,0 193 1.1 3.1 1.3 33 246
pw-length6 80.8 1.5 442 615 4.8 1.2 42 1.4 55 173
pp-small 76.6 1.2 144 378 9.0 1.5 53 1.6 53 207
pp-nouns 69.7 1.5 250 468 144 1.3 7.4 1.5 84 245
pp-nouns-instr  63.4 1.5 204 387 257 1.3 7.4 1.5 8.6 26.7
pp-sentence 71.3 1.3 191 436 18.1 1.3 7.7 1.5 9.0 245

pp-med-unorder 76.4 1.3 151 387 17.0 1.6 6.1 1.4 6.5 292
pp-large-3word  72.8 1.3 1.9 320 8.7 1.5 4.7 1.3 51 214
pp-medium 66.3 14 168 337 208 1.4 6.5 1.4 6.6 347
pp-large 75.0 1.3 18.0 48.0 120 1.4 7.4 1.5 7.8 240

Table 5.2: This table contains data for the analyses in this chapter.

our two 30-bit password conditions, pw-length5 and pw-pronounce. The combined passphrases
participants comprise our 30-bit passphrase conditions that use 181-word dictionaries: pp-small,
pp-sentence, pp-nouns, and pp-nouns-instr.

5.3 Results

In this section, we present the results of our study. We begin by discussing participant demo-
graphics in Section 5.3.1. We then look at drop-out rates per condition in Section 5.3.2, as higher
drop-out rates may indicate participants are struggling more in those conditions. In Section 5.3.3,
we discuss participants storing their assigned secrets. We examine how well participants were
able to enter their secrets immediately upon assignment in Section 5.3.4. Section 5.3.5 discusses
part-one recall rates, and Section 5.3.6 part-two recall rates. We further investigate usability by
examining user sentiment in Section 5.3.7. A summary of results metrics is in Table 5.2.

5.3.1 Demographics

2,689 participants began our study in February and early March 2012. 2,294 completed the first
part of our study and 1,562 returned for the second part within three days of being sent an email
invitation two days after completing the first part. An additional 88 participants returned for the
second part between three and 42 days after completing the first part; we do not include them in
our analysis. Of the participants who returned within three days, 1,476 completed the second part
of our study. With the exception of our discussion of drop-out rates in Section 5.3.2, we focus on
these 1,476 participants throughout our analysis.
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Of the 1,468 participants who reported gender, 51.9% reported being female and 47.6% re-
ported being male. The mean age was 31 years, while the median was 28. The standard deviation
was 11.2, and our oldest participant reported being 74 years old. Of the 1,464 participants who
reported their highest academic degree, 653 reported having at least a bachelor’s degree. Partici-
pants were asked whether they had degrees or jobs in “computer science, computer engineering,
information technology, or a related field.” Of the 1,460 who answered, 263 answered in the
affirmative. We found no statistically significant differences between our conditions in reported
gender, age, or background and education.

Because using a keyboard on a mobile phone could impact a participant’s ability to enter his
or her secret, we examined participants’ user-agent strings. For example, if a user-agent string
contains “iPhone,” that is strong evidence that the participant is taking the study from an iPhone.
Only 25 participants show evidence of this,? and there were no more than four per condition.

5.3.2 Study Dropouts

Of the 2,689 participants who started our study, 2,294 finished the first part (85.3%); 1,562 partic-
ipants returned within three days of receiving our email invitation to complete the second part of
the study, and 1,476 of these completed the second part.

The proportion of participants who completed the first part of the study varied by condition
(X%0=28.288, p=.002), with participants in the two 30-bit password conditions, surprisingly, most
likely to finish. Completion rates for the first part ranged from 78.9% for pp-sentence to 90.4%
for pw-pronounce. Significantly more participants finished the first day in pw-pronounce than in
pp-nouns (HC FET, p=.020) and pp-sentence (HC FET, p=.011). More also completed the first
day in pw-length5 than in pp-sentence (HC FET, p=.035). Combined password participants were
more likely to finish than combined passphrase participants (y3=14.768, p<.001).

The proportion of participants who returned for the second part of the study within five days
after completing the first did not vary significantly by condition (x%,=6.759, p=.748), and neither
did the proportion of these who finished the second part (X%0:15.956, p=.101). We also saw no
significant difference between combined password participants and combined passphrase partici-
pants for returning within five days (y?=3.423, p=.064) or finishing the second day (x3=0.015, p
=.901).

5.3.3 Password Storage

During the second part of the study, we asked participants if they wrote down their secrets, on pa-
per or electronically. We consider a participant not to have stored his or her secret if the participant
affirmed not writing it down, and we do not detect pasting or autofilling the secret. We labelled
these participants, 410 of our 1,476 total (27.8%), as no-storage; other participants we call stor-
age participants. The proportion of no-storage participants is low across conditions; it does not
vary significantly by condition (x3,=17.351, p=.067), nor is it significantly different between the
combined password participants and the combined passphrase participants (x?=2.444, p=.118).
The no-storage participants are most relevant when evaluating the memorability of secrets.
However, as users can and do store secrets for their real accounts, the behavior of storage partic-

>We searched the user-agent strings for: Android, iPhone, iPod, iPad, mobile, RIM Tablet, BlackBerry, Opera Mini,
Windows Phone, SymbianOS, Opera Mobi, nook, Windows CE, smartphone, webOS, BREW.
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ipants also provides useful insights. For some of our analyses, we look specifically at no-storage
participants. In some cases, differences between conditions that were statistically significant when
looking at all participants are no longer significant when looking only at no-storage participants.
However, this may be due in part to the smaller number of no-storage participants.

Among the 72.2% of participants who stored their secret, 48.3% indicated writing it down on
paper and 43.6% reported storing it electronically; 23% pasted their secret. A single participant
may have done more than one of the above. We asked participants “If you wrote down or stored
your password for this study, how is it protected (choose all that apply)?” Of our 1,066 storage
participants, 21.9% did nothing to protect their passwords. 26.7% said they stored it on a computer
or device used only by themselves, the most popular response. 24.5% stored the password in a
room or office used only by that participant.

We also asked our participants about their real email passwords. 308 indicated referring to a
written-down or stored password when logging in with their real email password, and 1,168 did
not. We also asked if they had ever stored their real email password. 768 participants indicated
never writing down their real email password, while 373 did so on paper and 430 electronically.
This 52.6% of participants who did not store their real passwords is a significantly larger propor-
tion than the 32.8% who indicated not storing their study secret (x3=114.287, p<.001).

5.3.4 Assignment

After receiving instructions, our participants were assigned a secret and immediately asked to
enter it. They could toggle between being able to view the secret and being able to enter it. This
was intended to ensure that participants observed and were able to type their secret. We measured
the number of attempts needed to enter the secret successfully, and the fraction of participants
who correctly entered their secret on the first try. Significant results of statistical tests are shown
in Table 5.3.

Overall, participants needed an average of 1.3 attempts to enter their secret and 78.7% entered
it successfully on the first try. For both metrics, there was a significant difference across conditions.
pw-pronounce secrets needed fewer attempts and were more likely to be entered on the first try
than pp-nouns-instr and pp-nouns, and also needed fewer attempts than pp-sentence. In aggregate,
combined password participants needed fewer attempts and were more successful in entering their
secret on the first attempt than combined passphrase participants. Similar relationships hold for
no-storage participants: pw-pronounce needed fewer attempts and was more successful on the
first attempt than pp-nouns-instr. No-storage participants also show difference based on password
length, with pw-length5 requiring fewer attempts than pw-length6.

5.3.5 Part-One Recall

We asked participants to recall their secret after completing a brief survey. Participants who could
not recall their secret after five attempts were shown the secret on the screen. The vast majority of
participants in each condition succeeded in entering their secret within five attempts, ranging from
92.5% in pp-med-unorder to 99.5% in pw-length5 and pw-pronounce. The significant results of
our statistical tests are in Table 5.4.

The proportion of participants who correctly entered their secret on the first try varied sig-
nificantly across conditions. A larger proportion in pw-lengthS and pw-pronounce entered their
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Success on first entry Omnibus x39=28.026, p=.002

cond 1 % cond 2 % p-value
pw-pronounce  90.4%  pp-nouns 73.4% HC FET, p=.001
pp-nouns-instr  71.2% HC FET, p<.001

combined pw  84.9% combined pp 74.5% x?=14.233, p<.001

Success on first entry (no-storage) Omnibus x3,=27.021, p=.003

pw-pronounce  92.3%  pp-nouns-instr  67.1% HC FET, p=.027
Attempts needed Omnibus KW x3,=28.573, p=.001
cond 1 mean  cond 2 mean p-value
pw-pronounce 1.14 pp-nouns 1.45 HC MW, U=14526, p<.001
pp-nouns-instr ~ 1.50 HC MW, U=14367.5, p<.001

pp-sentence 1.33 HC MW, U=7473, p=.025

combined pw  1.23 combined pp 1.41 KW x?=14.979, p<.001

Attempts needed (no-storage)
pw-length5 1.24 pw-length6
pw-pronounce  1.08 pp-nouns-instr

Omnibus KW x3,=28.888, p=.001
2.55 HC MW, U=274.5, p=.037
1.53 HC MW, U=1350, p=.025

Table 5.3: Statistically significant results for secret entry immediately upon assignment.

Success on first entry

Omnibus x30=34.936, p<.001

cond 1 % cond 2 % p-value
pw-length5 94.8%  pp-small 81.1% HC FET, p=.008
pp-med-unorder  80.2% HC FET, p=.007

pw-pronounce  94.7%  pp-small 81.1% HC FET, p=.009
pp-med-unorder  80.2% HC FET, p=.007

combined pw  94.7% combined pp 87.2% x1=13.867, p<.001

Omnibus x39=26.558, p=.003
64.3% HC FET, p=.033

success on first entry (no-storage)
pw-pronounce  94.2%  pp-large-3word

Table 5.4: Statistically significant differences in success on the first try for Part One recall.

password correctly on the first attempt than in pp-small or pp-med-unorder. Combined password
participants outperformed combined passphrase participants.

Among no-storage participants, significantly more in pw-pronounce entered their secret cor-
rectly on the first try than in pp-large-3word. Looking at participants who entered their secret
within five attempts, we see omnibus significance between conditions, but pairwise tests reveal no
significant differences.

We measured the time between the first and last keystroke on the first correct entry for par-
ticipants whom we did not detect pasting or autofilling their secrets, and who entered the secret
within five attempts. Results are in Table 5.5. Combined passphrase participants had a median
time of 7 seconds, significantly more than combined password participants, with a median of 3
seconds. pw-lengthS and pw-pronounce each performed significantly better than all of the 30-
bit passphrase conditions, and pw-length6 performed better than pp-medium. pp-small and pp-
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large-3word performed significantly better than pp-nouns, pp-nouns-instr, and pp-sentence; and
pp-large-3word also outperformed pp-large.

5.3.6 Part-Two Recall

Forty-eight hours after finishing the first part of our study, we invited participants to return for the
second part. Our analysis includes the participants who returned within 72 hours of being invited
and completed both parts of the study. We find that a majority in each condition wrote down
their secrets, and nearly half that did not store their secret clicked on the “Forgot Password” link.
Upon returning, a participant was asked to recall his or her secret. Five incorrect entries resulted
in the secret being shown on screen. How participants fared in entering their secrets is shown in
Table 5.6.

Returning participants could click a link to be emailed a link to their secret. 48.8% of no-
storage participants used this feature. The proportion does not vary significantly by condition
(X%0=11.992, p=.286), nor between combined passphrase participants and combined password
participants (x3=1.764, p=.184). 210 of our 1,476 participants did not use the email reminder or
store their secrets. Across all conditions, out of the 354 participants who used the email reminder,
197 (55.6%) made no attempt to recall their secrets and 87 (24.6%) made only one attempt before
using the reminder.

We consider a participant to have succeeded in recalling his or her secret if he or she entered it
within five attempts without using the reminder. Overall, 74.7% of our participants were success-
ful, including 48.5% of no-storage participants and 84.7% of storage participants. There were no
significant differences between conditions (x?=2.413, p=.120), nor between combined password
and combined passphrase participants (x7=2.618, p=.106). There were also not significant differ-
ences for no-storage participants between conditions (X%0=11.786, p=.3). There was significant
difference in how many participants succeed on the first attempt between conditions (x3,=4.774,
p=.906).

For each participant on his or her first attempt at secret entry, we calculated the edit distance
between what was entered and the assigned secret. We use the Damerau-Levenshtein edit-distance
metric, which is the minimum number of insertions, deletions, substitutions, and adjacent trans-
positions required to transform one string into another [3]. This mean edit distance is shown in
Table 5.8. It was less than one for each of the password conditions, and for passphrases it ranged
between 1.12 for pp-large-3word and 2.96 for pp-nouns-instr. The median for each condition was
zero. Edit distance did not vary significantly between conditions (KW x3,=12.579, p=.248), or
for just no-storage participants (KW X%O=10.407, p=.400).

Looking at successful no-storage participants in the pp-med-unorder condition, six of nine
entered the password in the same order as it was assigned. Overall, 68 out of 74 participants in
pp-med-unorder entered the passphrase in the same order as it was assigned.

Another metric for usability was the use of deletes during secret entry. A delete may indicate a
participant changing his or her mind about a secret while entering it. We counted each instance of
one or more characters being removed from the secret-entry field as a single delete and recorded
the number per secret-entry attempt for each participant. Deletions per condition are shown in Ta-
ble 5.8. Looking only at participants who succeeded in entering their secret on the first try in part
two, the mean for each password condition was less than one, while for passphrase conditions it
ranged from 1.76 for pp-medium to 3.78 for pp-sentence. pw-length5 had significantly fewer dele-
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Figure 5.1: Likert response data on annoyance, difficulty, and fun. Data significance is shown in symbol
groups; a condition marked with a solid symbol performs significantly better than conditions marked with
the same symbol drawn as an outline.

tions than any 30-bit passphrase condition except pp-small, and pw-pronounce had significantly
fewer deletions than pp-nouns-instr (HC MW, p < .026).

We also looked at login time, the total time a participant took to enter his or her secret, mea-
sured from the participant’s first arrival at the secret-entry screen until the end of the participant’s
last visit to that screen. Login times by condition are shown in Table 5.8. The only significant pair-
wise difference for login time was pw-pronounce (median 25 seconds) performing significantly
better than pp-nouns (median 35 seconds) (HC MW, U=13716.5, p=.018). Login time does not
vary significantly by condition for no-storage participants (KW x3,=15.79, p=.106).

We next examined entry time the time between the first and the last keystroke on the initial
correct entry for participants who neither pasted nor autofilled their secrets in the second part
of our study, and entered their secret within five attempts. pw-length5 and pw-pronounce each
performed significantly better than most of the passphrase conditions, and pp-small and pp-large-
3word outperformed most other passphrase conditions; these differences are shown in Table 5.7.

5.3.7 User Sentiment

In Part One, we asked participants to indicate their agreement, from “strongly disagree” to “strongly
agree,” with the statements “learning my password was [fun/difficult/annoying].” We classify par-

ticipants as either agreeing (“agree” or “strongly agree”) or not agreeing with each statement. An

overview of results is shown in Figure 5.1, with detailed statistical results in Table 5.9.

We see a significant difference in annoyance, fun, and difficulty memorizing across conditions.
Pairwise tests show that pw-length6 was substantially more annoying, difficult to learn, and less
fun than pp-medium, and was also more difficult than pw-lengthS. pp-large, and all 30-bit con-
ditions, were more difficult to memorize than pp-large-3word. Finally, pp-nouns-instr was more
fun by a wide margin than pp-small, pp-large-3word, or pw-length5. Comparing our combined
password and combined passphrase participants, we see no significant difference in agreement
that memorizing the secrets was annoying (X%:O.219, p=.639), difficult (X%:0.022, p=.882), or
fun (x?=1.65, p=.199).
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5.4 Error Analysis Results

Examining factors that lead to user error can help us understand why passphrases were less suc-
cessful than we anticipated, and can inform research on improving their performance. In addition,
passphrases (and to a lesser extent pronounceable passwords) offer several opportunities for au-
tomatic error detection and correction, which may be able to improve usability without loss of
entropy.

The overall results of our error analysis are shown in Table 5.10. This table displays the
percentage of subjects who correctly entered their secret, both with no correction and adjusted for
the use of different error-correcting mechanisms, as discussed below.

54.1 Length

We hypothesized that longer secrets (in characters) lead to more typing errors. Table 5.8 shows the
mean length of secrets, per condition. For passphrase conditions, in which secrets are generally
longer than in our password conditions, we find that longer passphrases reduce the likelihood of
authentication success at assignment, but not thereafter. For all passphrase participants, we used
logistic regression on passphrase length with an outcome of first-attempt success at assignment,
and found a significant relationship (p=.003). The shortest passphrase condition, pp-small, had a
mean length of 18.3 characters and a first-try success rate of 81% at assignment. By contrast, the
longest condition, pp-sentence, had a mean of 25.5 characters and a first-try success rate of only
76%.

The same analysis for first-try accuracy for Part One recall (excluding participants who pasted
or auto-filled their passphrase) and part two recall (excluding storage participants) found that
length was not a significant factor in either case (p>.375). We also found no relationship be-
tween length and overall rate of part two recall success (within five attempts, without using the
reminder, p=.4006).

5.4.2 Ignoring Spaces and Capitalization

We required participants to enter their secret exactly as we showed it to them, including spaces and
capitalization. In general, however, passphrase dictionaries can be designed to be case-insensitive
and unambiguous even when spaces are removed. In addition, our pw-pronounce condition did
not include uppercase letters. In such cases, removing spaces and ignoring case when checking
input passwords can potentially improve usability with no cost to security. We examine how
our passphrase and pw-pronounce participants would have performed had we ignored spaces and
capitalization. We find that while error correction provides a small benefit, it does not cause
passphrase performance to improve relative to passwords.

As shown in Table 5.10, ignoring case and spaces improves first-attempt accuracy for every
passphrase condition as well as pw-pronounce, but has minimal impact on overall success within
five attempts, on either Part One or part two. These improvements are small enough that they do
not cause changes in the significance relationships among conditions.

Looking only at no-storage participants, however, we do see another difference. As reported
in Section 5.3.5, during part-one recall significantly more participants in pw-pronounce entered
their secret correctly on the first try than in pp-large-3word. This is still true with the correction
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and, in addition, pw-pronounce also performed better than pp-small (HC FET, p=.018). Part-two
recall continues to have no significant difference (X%0:7.252, p=0.701).

5.4.3 Off-by-One Errors

It is possible to construct a passphrase dictionary in which no word is within one edit of another.
With such a dictionary, users who enter a word that is within one edit of the correct word in their
passphrase can be authenticated successfully, with no loss of security. We did not attempt to create
such a dictionary, but we did measure how many of our passphrase participants submitted entries
with each word within one edit of the correct entry, as shown in Table 5.10.

Applying this correction narrows the gap between passwords and passphrases. For first-
attempt success during day-one recall, we still see an omnibus significant difference among condi-
tions (x3,=18.463, p=.048), but the pairwise differences showing greater accuracy for passwords
than passphrases (see Section 5.3.5) disappear. Looking at only no-storage participants, however,
pw-pronounce remains more successful than pp-large-3word (HC FET, p=.033). Recall attempts
on the second day continue to show no significant variation among conditions, including when we
examine only no-storage participants.

5.4.4 Closest Dictionary Word Correction

Our security analysis assumes the attacker knows the dictionaries used to generate passphrases,
and would therefore never guess a non-dictionary word. As a result, if a passphrase participant en-
ters a word not included in the dictionary for his or her condition, we can replace the entered word
with the closest (by edit distance) dictionary word, with no loss of security. Ties are arbitrarily but
consistently broken using word order within the dictionary. This correction can be applied only in
our passphrase conditions and is case-insensitive; we did not implement it for our participants, but
we examine how it would have affected their passphrase entries.

Results of our analysis are shown in Table 5.10. We find that this mechanism, like off-by-one
correction, helps passphrase users somewhat but does not outperform uncorrected passwords. As
with off-by-one correction, the only change we see in statistical relationships among conditions is
for Part One recall; there remains an omnibus difference among conditions (X%0:23.808, p=.008),
but there are no longer any pairwise differences. For no-storage participants, likewise, we see
omnibus significance in Part One recall (x2,=21.517, p=.018), but no pairwise significance.

5.5 Discussion

We compared the usability of eight types of system-assigned passphrases and three types of
system-assigned passwords using a number of metrics. This included memorability, time to au-
thenticate, rate of user errors, rate of user storage, and user sentiment. In this section, we sum-
marize our high-level results about passphrases and some surprising findings about pronounceable
passwords. Several factors may affect the ecological validity and generalizability of our results.
First, passphrases are unfamiliar to most users, whose behaviors and reactions might change given
more experience. We would expect different behavior from users with self-selected passphrases,
and users keeping track of multiple passphrases. Our memorability results are limited because so
many participants stored their secrets.
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System-assigned secrets. The use of system-assigned secrets eliminates the problem of users
selecting low-entropy secrets, as well as the problem of users selecting a secret that they use
for another account. We found that, in general, our system-assigned passwords and passphrases
were not well-liked by users, and that the vast majority of users opted to store them. These
results are consistent with the results of a previous study which found that 60% of participants
stored their system-assigned 4-digit PINs [44]. In contrast, a study with similar methodology
found that user-selected passwords were stored between 17% and 50% of the time, depending on
condition [48]. Despite their unpopularity with users, system-assigned secrets may serve a role in
situations where high entropy is a priority, and secure password storage poses minimal security
risk and user inconvenience.

Dictionary choice. We used passphrases composed of words drawn from a variety of dic-
tionaries. All of the dictionaries we used were generated from the most frequently used words
in COCA. We found that whether we used a dictionary of the top 181 words, top 401 words, or
top 1,024 words made little difference for the metrics we studied. Using the top 181 nouns, or a
sentence-like combination of the top 181 nouns, verbs, and adjectives also made little difference.
This suggests that we may be able to create high-entropy passphrases using even larger dictio-
naries without losing usability. Further, some dictionaries are better-suited to implementing error
correction, such as a dictionary of words that are all at least three edits apart.

Passphrase length. We found few differences between 3-word and 4-word passphrases. 3-
word passphrases were shorter than 4-word passphrases drawn from the same dictionary, and
therefore faster to type and resulted in fewer typing errors. But although 3-word passphrases
were perceived as significantly less difficult to learn than several other conditions, the number
of attempts needed to authenticate did not vary significantly. In addition, 3-word and 4-word
passphrases with equivalent entropy are approximately the same length and result in similar typing
speeds and error rates. For the conditions we studied, the number of characters in a passphrase
appears to affect usability more than does the number of words.

Memory aids. We hypothesized that passphrases would be easier to remember if they were
sentence-like, and that passphrases composed of nouns would be easier to visualize than passphrases
composed of random words. However, we found that pp-sentence and pp-nouns resulted in
slightly longer passphrases than pp-small (which contained short words such as: the, be, and,
a, to), but otherwise performed similarly. We had also predicted that pp-nouns-instr would per-
form better than pp-nouns because the instructions would help people visualize and remember
their passphrases. However, we found only small, statistically insignificant differences between
these two conditions. Different instructions, such as guiding users to visualize their passphrase or
construct a scene or story using words from their passphrase, could prove more effective.

Word order. Requiring users to enter the words in a passphrase in a prescribed order increases
the entropy of the passphrase. We explored whether this entropy increase came at the expense of
usability. The pp-med-unorder condition was the same as the pp-medium condition, except it did
not impose order requirements. Contrary to expectations, we did not find any significant differ-
ences between these conditions, nor between the pp-med-unorder and pp-small conditions, which
used different dictionaries to maintain equivalent entropy. However, we found that participants did
reorder their passphrases. 8.1% of participants in the pp-med-unorder condition took advantage of
the ability to reorder their passphrases when entering them in the second part of the study (33.3%
if we consider only no-storage participants). In passphrase conditions that did not permit reorder-
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ing, we found that 9.3% of passphrase entry errors were due to entering words in the wrong order.
Thus, it appears that relaxing the order requirement may provide small usability gains, but these
gains were not significant in our study.

Error correction. Our analysis of passphrase-entry errors suggests that usability could be
improved by selecting dictionaries that allow automatic correction of entry errors while maintain-
ing a desired entropy. Even with the dictionaries we used, capitalization errors could be corrected
without loss of entropy, because no two words differed only in capitalization. For the ordered
passphrase conditions, missing spaces could also be corrected without loss of entropy. And, if
every word in a dictionary had an edit distance of at least three from every other word in the dic-
tionary, then it would be possible to correct many common typos as well as some errors where
users misremember a word in their passphrase as another word that sounds similar.

Pronounceable passwords. We compared system-assigned passphrases and passwords. Based
on the negative sentiment and high storage rate associated with system-assigned passwords in a
previous study [44], we were initially concerned that random-character system-assigned pass-
words might not provide a fair comparison. We looked for algorithms to generate relatively short
but high-entropy system-assigned passwords that had characteristics that might make them more
memorable. We found repeated mention in the literature of Gasser’s algorithm for generating
pronounceable random passwords [30]. We discovered that pw-pronounce performed very well
in accuracy and entry-speed during part-one recall. One advantage of the pw-pronounce condi-
tion seems to be that the passwords in this condition include character combinations that, even if
marginally pronounceable, are all lowercase and relatively easy to type.

49



Chapter 5. How Usable are System-Assigned Passphrases?

Part One Secret entry time

Omnibus KW x2,=329.817, p<.001

cond 1 median seconds  cond 2 median seconds p-value
pw-pronounce 3.1 pp-small 53 HC MW, U=3296, p<.001
pp-nouns 7.4 HC MW, U=3187.5, p<.001

pp-nouns-instr 7.4 HC MW, U=2833, p<.001

pp-sentence 7.7 HC MW, U=1310.5, p<.001

pp-large-3word 4.7 HC MW, U=3626, p<.001

pp-med-unorder 6.1 HC MW, U=2548.5, p<.001

pw-length5 3.4 pp-small 53 HC MW, U=3962, p<.001
pp-nouns 7.4 HC MW, U=4126, p<.001

pp-nouns-instr 74 HC MW, U=3652.5, p<.001

pp-sentence 7.7 HC MW, U=1792, p<.001

pp-large-3word 4.7 HC MW, U=4223.5, p<.001

pp-med-unorder 6.1 HC MW, U=3141.5, p<.001

pw-length6 4.2 HC MW, U=4857.5, p=.039

pw-length6 4.2 pp-medium 6.5 HC MW, U=1933, p<.001
pp-small 53 pp-nouns 74 HC MW, U=4717.5, p=.009
pw-pronounce 3.1 HC MW, U=10608, p<.001

pp-nouns-instr 74 HC MW, U=4328.5, p<.001

pp-sentence 7.1 HC MW, U=2212.5, p=.002

pw-length5 34 HC MW, U=9766, p<.001

pp-large-3word 4.7 pp-nouns 74 HC MW, U=4106.5, p=.001
pp-nouns-instr 74 HC MW, U=3809, p<.001

pp-sentence 7.7 HC MW, U=1914, p<.001

pp-large 74 HC MW, U=2101.5, p=.001

pp-large 74 pp-large-3word 4.7 HC MW, U=4455.5, p=.001
pp-medium 6.5 pw-length6 4.2 HC MW, U=4790, p<.001
pp-nouns 74 pp-large-3word 4.7 HC MW, U=8011.5, p=.001
pp-nouns-instr 7.4 pp-large-3word 4.7 HC MW, U=8807, p<.001
pp-med-unorder 6.1 pp-nouns-instr 74 HC MW, U=4886, p=.015
pp-nouns-instr 74 pp-med-unorder 6.1 HC MW, U=8186, p=.015
pp-sentence 7.7 pp-large-3word 4.7 HC MW, U=4477, p<.001
combined pw 3.1 combined pp 7.0 KW x?=249.884, p<.001

Table 5.5: Statistically significant differences in password-recall time for Part One. This was the time
between first and last keystroke on the first correct entry for participants whom we did not detect pasting or
autofilling their secrets, and who entered the secret within five attempts.
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No-storage Storage

Partici- Loginin Loginon Partici- Loginin Loginon

pants  five tries first try pants  five tries first try
pw-length5 46 65% 57% 145 86% 81%
pw-pronounce 52 52% 48% 135 83% 77%
combined password 98 58% 52% 280 85% 79%
pp-small 26 42% 38% 85 86% 76%
pp-nouns 57 47% 42% 131 84% 76%
pp-nouns-instr 70 51% 37% 121 83% 78%
pp-sentence 27 41% 37% 67 87% 76%
combined passphrase 180 47% 39% 404 85% 71%
pp-med-unorder 25 36% 36% 81 80% 70%
pp-large-3word 28 57% 50% 75 85% 75%
pp-medium 34 35% 32% 67 81% 73%
pw-length6 20 45% 40% 84 92% 82%
pp-large 25 44% 40% 75 85% 73%
total 410 49% 42% 1066 85% 77%

Table 5.6: Successful logins in part two, for no-storage and storage participants. Participants are considered
successful if they entered their secret in five tries without having their secret emailed to them.

Part two secret-entry time Omnibus (KW x27=204.592, p<.001)
cond 1 median seconds  cond 2 median seconds p-value
pw-length5 4.0 pw-length6 5.5 HC MW, U=3931.5, p=.021
pp-small 53 HC MW, U=4063.5, p=.017

pp-nouns 8.4 HC MW, U=4256, p<.001

pp-nouns-instr 8.6 HC MW, U=4736, p<.001

pp-sentence 9.0 HC MW, U=2109.5, p<.001

pp-large-3word 5.1 HC MW, U=4152.5, p=.016

pp-med-unorder 6.5 HC MW, U=3193, p<.001

pw-pronounce 3.3 pp-small 53 HC MW, U=3765, p=.001
pp-nouns 8.4 HC MW, U=3894.5, p<.001

pp-nouns-instr 8.6 HC MW, U=4363.5, p<.001

pp-sentence 9.0 HC MW, U=1899.5, p<.001

pp-large-3word 5.1 HC MW, U=3809, p<.001

pp-med-unorder 6.5 HC MW, U=3002.5, p<.001

pp-small 5.3 pp-nouns 8.4 HC MW, U=3675, p<.001
pp-nouns-instr 8.6 HC MW, U=4078, p=.002

pp-sentence 9.0 HC MW, U=1842, p=.003

pp-large-3word 5.1 pp-nouns 8.4 HC MW, U=4045, p=.002
pp-nouns-instr 8.6 HC MW, U=4438.5, p=.013

pp-sentence 9.0 HC MW, U=1982, p=.009

pp-large 7.8 HC MW, U=2274, p=.013

comb. pw 3.6 comb. pp 7.9 KW x?=148.919, p<.001

Table 5.7: Differences in password-entry times for participants who entered their secret in five attempts
without pasting or autofilling.
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All participants No-storage

Length  Entry Login Delet- Edit Entry Login Delet- Edit

time time ions dist. time time ions dist.

pw-length5 5.0 40 275 02 09 3.7 325 02 15
pw-pronounce 8.0 33 250 0.7 09 27 260 0.8 1.1
combined password 6.5 36 260 04 09 31 275 05 13
pp-small 18.3 53 260 20 17 42 310 09 44
pp-nouns 242 84 350 30 25 76 35.0 39 32
pp-nouns-instr 24.7 8.6 340 2.7 3.0 72 31.0 23 40
pp-sentence 25.5 9.0 34.0 38 24 6.0 31.0 5.6 2.1
combined passphrase  23.4 79 330 28 25 6.8 320 32 35
pp-med-u 21.3 65 360 27 25 51 285 26 19
pp-large-3word 184 51 270 27 1.1 41 235 1.7 25
pp-medium 21.2 6.6 350 1.8 23 6.6 445 33 54
pw-length6 6.0 55 240 04 038 5.1 445 02 1.6
pp-large 24.1 7.8 345 35 25 70 350 38 37
total 17.2 6.0 310 20 19 56 320 23 29

Table 5.8: Length, entry time, login time, number of deletions, and edit distance for each condition. Length
is mean characters. Entry time is median part two secret-entry time in seconds, first to last keystroke, for
participants who did not paste or autofill their secrets, and who entered them within five attempts. Login
time is the median time between a participant first being shown the second-part recall screen and leaving
that page for the final time. Mean deletions are shown for participants who entered their secret on the first
try during part two recall. Edit distance is the mean distance between the actual secret and what was entered
on the first attempt during part two recall.

Annoying Omnibus x3,=30.116, p=.001
cond 1 % cond 2 % p-value
pw-length6 61.5 pp-medium 33.7 HC FET, p=.003
Difficult Omnibus x3,=66.583, p<.001
pp-large-3word 1.9 pp-large 18.0 HC FET, p=.002
all other 30-bit  14.4-25.0 (HC FET, p<.023)

pw-length6 442 pp-medium 16.8 HC FET, p=.001
pw-length5 22.0 HC FET, p=.003

Fun Omnibus x39=43.433, p<.001
pp-nouns-instr ~ 25.7  pp-small 9.0 HC FET, p=.014
pp-large-3word 8.7 HC FET, p=.012

pw-length5 9.4 HC FET, p=.001

pp-medium 20.8  pw-length6 4.8 HC FET, p=.018

Table 5.9: Statistically significant differences in agreement with “learning my password was
[fun/difficult/annoying].”
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All participants No-storage All participants No-storage

PART  PART  PART PART PART  PART  PART PART

ONE  Two ONE Two ONE  Two ONE Two
> 8z 8|z 8z 8 z 8z 8|z 8z 8
= = = = = & & &
Condition § =58 =||8 58 = Condition S =8 5|8 =8 =
pw-lengthS 95 99| 83 99 || 93 98| 72 98 pw-pronounce 95 99| 83 99 || 94 98| 75 98
pwlength6 90 99| 82 99 || 90 95| o100  __opacercase 96 |84 - [[96 -] - -
pp-nouns-instr 88 97| 74 98 80 93| 61 97
EpS-;r;:ael-lv—case gé 95_ gg 32 65_ 85_ g§ 92_ —Space+case 89 -| 81 99 - -1 73 99
~Neardict. 85 -|8296 |69 |65 -  _newrdict Bt T 800 -

—Editdist. 88 -[{8396 ||73 -|65 - -

pp-medium 85 96| 77100 || 71 97| 62 100 pp-sentence 89 98| 78 98 85100 70 93
~Spacetcase 88 -1 80 - |l 76 - - - —Space+case 93 -[ 83 99 ||93 -| 78 96
e e leo - llqa o 0 -Nerdic. 909918299 | - -] 7496
_ Edit dist. 87 |81 - l7a | . — Edit dist. 91 99| 82 99 - -] 74 96
pp-large 31 96| 75 99 72 96| 68 100 pp-large-3word 84 93| 83 99 64 82| 79 96
“Spacercase 87 -1 81 - llgo -l . - —Space+case 87 94| 89 - || 68 86| 82 -
e %6 78 . llso .| - . -Neardict.  8595/89 - ||68 89|82 -
—Editdist' 91 97|79 - |88 .| - - — Edit dist. -94189 - - 86|82 -
pp-nouns 89 97| 79 97 84 95| 70 98 pp-med-unorder 80 92| 78 98 72 80| 80 96
— Space+case 90 -| 82 - - =175 - —Space+case 81 -| 81 99 - - - -
—Neardict. 91 99| 84 98 || 88 96|75 - — Near dict. 83 -18399 ||76 -|88 -
—Editdist. 91 98| 84 98 || 88 96|75 - — Edit dist. 8593|8599 || 80 84|88 -

Table 5.10: The percentage of participants in each condition who successfully recalled their secret in one
and in five attempts in the first and second parts of the study. The first row for each condition shows
uncorrected data. Subsequent rows show the impact of correction for cases where correction would have
allowed more users to log in; in many cases, correction did not help. — Near dict. indicates moving words
to the closest dictionary word. — Space+case indicates ignoring whitespace and capitalization.
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Chapter 6

How Secure and Usable are Some
Common Password Policies?

6.1 Introduction

Chapter 5 examined the usability of system-assigned passwords and passphrases. Our findings
suggested that users struggled with learning and recalling them. In this and subsequent chap-
ters, we shift our focus to user-created passwords. This chapter presents findings using data
from our first two papers utilizing MTurk to examine passwords and their users, [48] and [45].
Specifically, this chapter presents data from those papers on how password-composition policies
affect the usability and security of user-created passwords. This chapter focuses on common
password-composition policies for user-created passwords, including two policies recommended
by the National Institute of Standards and Technology (NIST) [16]. The next chapter, Chapter 7,
further explores user-created passwords. The password-composition policies that chapter exam-
ines are based on findings from this chapter. Prior to this work, it was generally believed that
password-composition policies made passwords harder to guess and more secure. However, re-
search had struggled to quantify the level of resistance to guessing provided by different password-
composition policies or the individual requirements they comprise.

With the research presented in this chapter, we took a substantial step forward in understanding
the effects of password-composition policies on the guessability of passwords. We compiled a
dataset of 8,000 plaintext passwords collected from different participants under seven different
password-composition policies. We analyzed and compared usability metrics for each condition.
We also calculated how many guesses it would take for an attacker to guess each of the passwords.
This allowed us to evaluate and contrast the impact on security of each password-composition
policy using empirical data.

This chapter proceeds as follows. The general form of our data collection was described in
Chapter 4. In Section 6.2, we describe methodology factors specific to this study, including study
conditions. We present our demographic findings in Section 6.3 and password-strength findings

This chapter is a partial reproduction of two papers: [48] co-authored with Saranga Komanduri, Patrick Gage
Kelley, Michelle Mazurek, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman; and [45] co-authored
with Patrick Gage Kelley, Saranga Komanduri, Michelle Mazurek, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Julio Lopez. This chapter includes new material.
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in Section 6.4. Usability findings are in Section 6.5. We discuss the implications of the findings
in Section 6.6.

6.2 Methodology

Section 4.1 outlines our data-collection protocol and Section 4.3.2 discusses usability metrics. The
data-collection for the research in this chapter used a prototype of the data-collection system that
would evolve into the SHELF framework presented in Chapter 3. Section 4.2 describes how we
calculate guess numbers for the collected passwords. We also estimate entropy for the passwords
in each condition, as discussed in Section 2.3.1. We calculate for each password in a condition
the entropy contributed by the number, content, and type of each character. We then sum the
individual entropy contributions to estimate the total entropy of the passwords in that condition.

6.2.1 Conditions

We had eight total conditions, with seven sets of password-composition requirements and two
password-creation scenarios. We used two scenarios in order to measure the extent to which
giving participants different instructions affects password strength.

The survey scenario was designed to simulate a scenario in which users create low-value
passwords, while the email scenario was designed to elicit higher-value passwords. All but one
condition used the email scenario. In the survey scenario, participants were told, “To link your
survey responses, we will use a password that you create below; therefore it is important that you
remember your password.” In the email scenario, participants were told:

Imagine that your main email service provider has been attacked, and your account
became compromised. You need to create a new password for your email account,
since your old password may be known by the attackers. Because of the attack, your
email service provider is also changing its password rules. Please follow the instruc-
tions below to create a new password for your email account. We will ask you to use
this password in a few days to log in again, so it is important that you remember your
new password. Please take the steps you would normally take to remember your email
password and protect this password as you normally would protect the password for
your email account. Please behave as you would if this were your real password!

The eight conditions are detailed below. We include NIST’s entropy estimate for passwords
with those requirements [16].

* basic8survey: Participants were given the survey scenario and the password-composition
policy “Password must have at least 8 characters.” This is the only condition using the
survey scenario; all others use the email scenario.

* basic8: Participants were given the password-composition policy “Password must have at
least 8 characters.” Only the scenario differentiates this from basic8survey.

* basicl6: Participants were given the password-composition policy ‘“Password must have at
least 16 characters.”
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* dict8: Participants were given the password-composition policy “Password must have at
least 8 characters. It may not contain a dictionary word.” We performed a dictionary check
by removing non-alphabetic characters and checking the remainder against a dictionary,
ignoring case. This method is used in practice, including at Carnegie Mellon University.
We used the free Openwall list as the dictionary.

* comp8: Participants were given the password-composition policy ‘“Password must have at
least 8 characters including an uppercase and lowercase letter, a symbol, and a digit. It may
not contain a dictionary word.” We performed the same dictionary check as in dict8. This
condition reproduced NIST’s comprehensive password-composition requirements [16].

* blacklistEasy: Participants were given the password-composition policy “Password must
have at least 8 characters. It may not contain a dictionary word.” We checked the password
against the simple Unix dictionary, ignoring case. Unlike the dict8 and comp8 conditions,
the password was not stripped of non-alphabetic characters before the check.

* blacklistMedium: This condition was the same as the blacklistEasy condition, except we
used the paid Openwall list.

* blacklistHard: This condition was the same as the blacklistEasy condition, except we
used a five-billion-word dictionary we created by making five billion guesses with a PCFG
password-guessing algorithm trained on the MySpace, RockYou, and inflection lists. Both
the training and testing were case-insensitive.

6.3 Demographics

We collected data between August 2010 and January 2011. We collected 5,000 participants across
a subset of our conditions for [48]. For [45], we collected data until we had 1,000 participants for
each condition.

Among participants who completed Part One of the study, 54.9% returned within 3 days and
completed part two. This did not vary significantly by condition (x#=11.132, p=0.133). We
detected no statistically significant difference in the guessability of passwords between participants
who participated in just the first part of the study and those who participated in both parts.

Among the 8,000 participants, 52.0% percent reported being male and 45.9% female, with a
mean reported age of 29.6 years. This makes our sample more male and slightly younger than
Mechanical Turk participants in general [14]. 33.3% of participants reported studying or working
in computer science or a related field.

Participants in blacklistMedium (56.2%) were more likely to be male than those in comp8
(48.1%) (HC FET, p=.01). Participants in basicl6 (mean 30.3) were significantly older than those
in blacklistHard (28.6) (HC FET, p=.012). And blacklistEasy participants (37.6%) were signifi-
cantly more likely to be technical than blacklistHard participants (30.5%) (HC FET, p=.027). No
other pairwise demographics comparisons were significant. Because we looked only at partici-
pants who finished Part One of the study, these differences may be due to dropout induced by the
conditions themselves.

To look at study dropout rates between conditions, we consider all participants who began
the study during the time period in which our 1,000 participants per condition were collected.
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Part One Completion Omnibus x%=124.632, p<.001
cond 1 % cond 2 % p-value
blacklistEasy 88.8%  basic8survey  83.5% HC FET, p=.004
dict8 82.3% HC FET, p<.001

comp8 75.3% HC FET, p<.001

blacklistMedium 86.3% comp8 75.3% HC FET, p<.001
blacklistHard 86.2%  comp8 75.3% HC FET, p<.001
basic8 85.6% comp8 75.3% HC FET, p<.001
basicl6 84.9%  comp8 75.3% HC FET, p<.001
basic8survey 83.5% comp8 75.3% HC FET, p<.001
dict8 82.3% comp8 75.3% HC FET, p<.001

Table 6.1: Significant differences in completing Part One of the study.

Participants in comp8 were significantly less likely to finish Part One of the study than in any
other condition. Significant differences are shown in Table 6.1.

6.4 Security Results

In this section, we discuss password-strength results. In [45], we included a more detailed ac-
count of using different password-cracking techniques. In this thesis, we focus on contrasting the
strength of our conditions.

Among conditions we tested, basic16 provided the greatest security against an attacker capable
of a large number of guesses, outperforming the complicated comp8 condition. This advantage
does not appear, however, until the attacker has had a chance to make a larger number of guesses.
We note that this remains true even when we tune the cracking algorithm to target the basic/6 and
comp8 conditions.

While a limited relationship between information entropy and guessability can be observed,
especially when considering attacks on the order of a trillion guesses or more, entropy provided
no more than a very rough approximation of overall password strength.

6.4.1 Comparing Policies for Guessability

Figure 6.1 shows password strength results when the attacker uses publicly available data as well
as experimental data. The y-axis represents the proportion of passwords guessed and the x-axis
represents the number of guesses made in log scale. Each condition is divided into two halves,
and each half is combined with public data and used for training when generating guess numbers
for the other half.

As suggested by Figure 6.1, which password-composition policy is best at resisting guessing
attacks depends on how many attempts an attacker is able to make. All of the following pairwise
tests are for (HC FET, p<.05).
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Figure 6.1: The number of passwords cracked compared to the number of guesses per condition. The
PCFG guess calculator was trained on both publicly available data and our collected data with two folds
per condition.

At one million and one billion guesses, significantly fewer blacklistHard and comp8 pass-
words were guessed than in any other condition. At one billion guesses, 9.5%, 1.4%, and 2.9%
of passwords were cracked in basicl6, comp8, and blacklistHard respectively; 40.3% of basic8
passwords were cracked.

As the number of guesses increases, basicl6 begins to outperform the other conditions. At
one trillion guesses, significantly fewer basicl6 passwords were cracked than comp8 passwords,
which were in turn cracked significantly less than any other condition. After exhausting the PCFG-
algorithm guessing space, basicl6 remains significantly hardest to crack. The next best at resisting
cracking were comp8 and blacklistHard, performing significantly better than any of the other con-
ditions. 14.6, 26.4, and 31.0% of passwords were cracked in basicl6, comp8, and blacklistHard
respectively; in contrast, 63.0% basicS passwords were cracked.

6.4.2 Guessability and Entropy

Historically, Shannon entropy (as discussed in Section 2.3.1) has provided a convenient single
statistic to summarize password strength. While information entropy does provide a theoretical
lower bound on the guessability of a set of passwords [57], in practice a system administrator
may be more concerned about how many passwords can be cracked in a given number of guesses
than about the average guessability across the population. Although there is no mathematical
relationship between entropy and this definition of guess resistance, we examine the possibility
that the two are correlated in practice. To do this, we consider two independent measures of
entropy: an empirically calculated estimate and a theoretical NIST estimate. For both measures,
we find that entropy estimates roughly indicate which composition policies provide more guess
resistance than others, but provide no useful information about the magnitude of these differences.

We ranked our password conditions based on the proportion of passwords cracked in Fig-
ure 6.1 at one trillion guesses, and compared this to the rank of conditions based on empirically
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Figure 6.2: Relationship among the resistance of our collected password sets to cracking; empirical entropy
estimates we calculated from those sets; and 2006 NIST entropy estimates for our password conditions.

estimated entropy. We found these rankings, shown in Figure 6.2, to be significantly correlated
(Kendall’s 7 = 0.71, Holm-corrected p = 0.042). However, looking at the proportion of pass-
words cracked at a million or a billion guesses, the correlation in rankings is no longer significant
(Holm-corrected p = 0.275,0.062). This suggests that entropy might be useful when consider-
ing an adversary who can make a large number of guesses, but is not useful when considering a
smaller number of guesses.

Further, empirically estimated entropy was unable to predict correctly the ranking of dictio-
nary8, even when considering a large number of guesses. This condition displayed greater re-
sistance to guessability than basic$8, yet its empirically estimated entropy was lower. This might
indicate a flaw in how entropy was estimated, a flaw in the guessing algorithm, or an innate short-
coming of the use of entropy to predict guessability. Since entropy can only lower-bound the
guessability of passwords, it is possible for the frequency distribution of dict8 to have low entropy
but high guess resistance.

Examining the 2006 NIST entropy of our password conditions produces three equivalence
classes, as shown in Figure 6.2. These arise because NIST entropy is not granular enough to
capture all differences between our conditions. First, NIST entropy does not take into account the
size of a dictionary or its implementation. All five of our dictionary and blacklist conditions meet
the NIST requirement of a dictionary with at least 50,000 words [16]. Implementation details,
such as case-insensitive blacklist checking or the removal of non-alphabetic characters before a
dictionary check, are not considered in the entropy score. Our results show that these details lead
to password policies with very different levels of password strength and should be considered in
a future heuristic. Further, the NIST entropy scores for basicl6 and comp8 are the same, even
though basicl6 appears to be much more resistant to powerful guessing attacks.

Perhaps surprisingly, the equivalence classes given by NIST entropy are ordered correctly
based on our results for guessability after 50 trillion guesses. Though its lack of granularity fails
to capture differences between similar password conditions, NIST entropy seems to succeed at its
stated purpose of providing a “rough rule of thumb” [16].

We stress that although both measures of entropy provide a rough ordering among policies,
they do not always correctly classify guessability (see for example dictionary8), and they do not
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Agreement with study password more secure  Omnibus x2=233.41, p<.001

cond 1 % cond 2 % p-value
comp8 67.2%  basicl6 56.8%  HC FET, p<.001
blacklistMedium  50.6%  HC FET, p<.001

dict8 493%  HC FET, p<.001

blacklistHard 49.0%  HC FET, p<.001

blacklistEasy 43.5%  HC FET, p<.001

basic8 44.5%  HC FET, p<.001

basic8survey 38.4%  HC FET, p<.001

basicl6 56.8%  dict8 493%  HC FET, p=.013
blacklistHard 49.0%  HC FET, p=.008

blacklistEasy 43.5%  HC FET, p<.001

basic8 44.5%  HC FET, p<.001

basic8survey 38.4%  HC FET, p<.001

blacklistMedium  50.6%  blacklistEasy 43.5%  HC FET, p=.022
basic8 44.5%  HCFET, p=.023

basic8survey 38.4%  HC FET, p<.001

dict8 49.3%  basicSsurvey 38.4%  HC FET, p<.001
blacklistHard 49.0%  basic8Ssurvey 38.4%  HC FET, p<.001

Table 6.2: Significant differences in participant agreement that study passwords were more secure than real
email passwords.

effectively measure how much additional guess resistance one policy provides as compared to
another. These results suggest that a “rough rule of thumb" may be the limit of entropy’s usefulness
as a metric.

6.4.3 User Perception of Security

In order to measure how participants perceived the strength of their study passwords, we asked
them whether they agreed with, “If my main email account required me to change my password
using the same requirements as used in this study, it would make my email account more secure.”
Significant differences in responses are shown in Table 6.2. It is interesting that the stronger two
conditions both performed best in this question, though in opposite order. Participants in comp8
were more likely to agree than any other condition, with participants in basic/6 more likely to
agree than any other condition except comp8.

6.5 Usability Results

This section presents usability results for the 1,000 participants in each condition. We find, overall,
that the basic16 and comp8 passwords were generally less usable than those in the more lenient
conditions. We find, further, that basicl6 is generally more usable than comp8, despite the former
being more secure than the latter after a number of guesses.
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Password creation attempts Omnibus KW x2=2024.694, p<.001
cond 1 counts cond 2 counts p-value
comp8 3.4 blacklistHard 2.1 HC MW, U=706766.5, p<.001
dict8 1.9 HC MW, U=736313, p<.001

basicl6 1.7 HC MW, U=767023, p<.001

blacklistMedium 1.4 HC MW, U=821712, p<.001

blacklistEasy 1.2 HC MW, U=860905, p<.001

basic8survey 1.2 HC MW, U=873751, p<.001

basic8 1.1 HC MW, U=881944, p<.001

blacklistHard 2.1 dict8 1.9 HC MW, U=531588.5, p=.026
basicl6 1.7 HC MW, U=542148, p=.002

blacklistMedium 1.4 HC MW, U=624107.5, p<.001

blacklistEasy 1.2 HC MW, U=670948.5, p<.001

basic8survey 1.2 HC MW, U=687127, p<.001

basic8 1.1 HC MW, U=702157, p<.001

dict8 1.9 blacklistMedium 1.4 HC MW, U=592563, p<.001
blacklistEasy 1.2 HC MW, U=639836.5, p<.001

basic8survey 1.2 HC MW, U=656290.5, p<.001

basic8 1.1 HC MW, U=672197.5, p<.001

basicl6 1.7 blacklistMedium 1.4 HC MW, U=595772, p<.001
blacklistEasy 1.2 HC MW, U=650158, p<.001

basic8survey 1.2 HC MW, U=668797, p<.001

basic8 1.1 HC MW, U=686031.5, p<.001

blacklistMedium 1.4 blacklistEasy 1.2 HC MW, U=549397, p<.001
basic8survey 1.2 HC MW, U=566935.5, p<.001

basic8 1.1 HC MW, U=585787.5, p<.001

blacklistEasy 1.2 basic8 1.1 HC MW, U=538323, p<.001
basic8survey 1.2 basic8 1.1 HC MW, U=520948.5, p=.026

Table 6.3: Statistically significant differences in creation attempts across conditions.

6.5.1 Password Creation

Participants were asked to create a password matching the requirements of their condition. Sub-
mitting a password that did not meet the requirements resulted in the participant being told what
was wrong with the submitted password and being asked to create another. This repeated until the
participant entered a satisfactory password.

Significant differences in the number of attempts to create a password successfully are in Ta-
ble 6.3. We see that participants in comp8 took significantly more attempts to create a satisfactory
password than in any other condition. Participants in blacklistHard struggled the most after that,
taking more attempts than participants in any condition other than comp8. Participants in basic16
took more attempts than those in half of the conditions yet still took fewer than two attempts on
average.

We also asked participants whether they agreed with the creation process being annoying,
difficult, and fun. Significant differences in these are in Tables 6.4, 6.5, and 6.6 respectively.

We observe that comp8 was the most annoying and most difficult to create, more so than
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Agreement with Creation Annoying Omnibus x2=681.406, p<.001
cond 1 % cond 2 % p-value
comp8 65.4%  basicl6 56.7% HC FET, p<.001
blacklistHard 42.3% HC FET, p<.001

dict8 37.3% HC FET, p<.001

blacklistMedium  35.0% HC FET, p<.001

blacklistEasy 27.2% HC FET, p<.001

basic8survey 26.6% HC FET, p<.001

basic8 22.0% HC FET, p<.001

basicl6 56.7%  blacklistHard 42.3% HC FET, p<.001
dict8 37.3% HC FET, p<.001

blacklistMedium  35.0% HC FET, p<.001
blacklistEasy 27.2% HC FET, p<.001

basic8survey 26.6% HC FET, p<.001
basic8 22.0% HC FET, p<.001
blacklistHard 42.3%  blacklistMedium  35.0% HC FET, p=.006
blacklistEasy 27.2% HC FET, p<.001
basic8survey 26.6% HC FET, p<.001
basic8 22.0% HC FET, p<.001
dict8 37.3%  blacklistEasy 27.2% HC FET, p<.001
basic8survey 26.6% HC FET, p<.001
basic8 22.0% HC FET, p<.001
blacklistMedium  35.0%  blacklistEasy 27.2% HC FET, p=.001
basic8survey 26.6% HC FET, p<.001
basic8 22.0% HC FET, p<.001
blacklistEasy 27.2%  basic8 22.0% HC FET, p=.04

Table 6.4: Significant differences in how annoying passwords were to create.

any other condition. basicl6 followed, being more annoying and difficult to create than anything
besides itself and comp8. Differences in annoyance are illustrated in Figure 6.3.

6.5.2 Part One Recall

Table 6.7 shows statistical differences in the number of attempts to recall the password in Part One
recall. basic8 took fewer attempts than comp8, basicl6, and dictS. However, the effect size is
small, with those taking on average 1.2 instead of 1.1 attempts.

6.5.3 Part Two Recall

When they returned for part two of the study, participants had the option to click a reminder link
to be emailed a link to their password. Usage of this reminder did not vary significantly between
conditions (x2=5.008, p=0.659). Nor did we see a significant difference in the number of attempts
needed to recall the password by condition (x2=10.6, p=0.157).
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Agreement with creation difficult Omnibus x2=602.315, p<.001
cond 1 % cond 2 % p-value
comp8 38.8%  basicl6 30.7% HC FET, p=.001
blacklistHard 21.9% HC FET, p<.001

dict8 19.5% HC FET, p<.001

blacklistMedium  16.1% HC FET, p<.001

blacklistEasy 9.6% HC FET, p<.001

basic8 7.8% HC FET, p<.001

basic8survey 6.3% HC FET, p<.001

basicl6 30.7%  blacklistHard 21.9% HC FET, p<.001
dict8 19.5% HC FET, p<.001

blacklistMedium  16.1% HC FET, p<.001
blacklistEasy 9.6% HC FET, p<.001

basic8 7.8% HC FET, p<.001
basic8survey 6.3% HC FET, p<.001
blacklistHard 21.9%  blacklistMedium 16.1% HC FET, p=.007
blacklistEasy 9.6% HC FET, p<.001
basic8 7.8% HC FET, p<.001
basic8survey 6.3% HC FET, p<.001
dict8 19.5%  blacklistEasy 9.6% HC FET, p<.001
basic8 7.8% HC FET, p<.001
basic8survey 6.3% HC FET, p<.001
blacklistMedium  16.1%  blacklistEasy 9.6% HC FET, p<.001
basic8 7.8% HC FET, p<.001
basic8survey 6.3% HC FET, p<.001
blacklistEasy 9.6% basic8survey 6.3% HC FET, p=.04

Table 6.5: Significant differences in how difficult passwords were to create.

Agreement with recall being difficult is depicted in Figure 6.3, and statistical differences be-
tween conditions are shown in Table 6.8. Here again, we see the most difficulty being with comp8,
followed by basicl6.

6.5.4 Password Storage

We asked participants who returned for part two whether they wrote down or otherwise stored
their password. We also detected pasting and auto-filling of passwords during both password
recalls. Participants are considered to have stored their password if we ever detected them pasting
or auto-filling their password. Further, participants are considered to have stored their password
unless explicitly answering “No” to “Did you write down or store the password you created for
this study?” Differences in storage between part-two participants are shown in Table 6.9. We
see that participants in comp8 were the most likely to have stored their password, followed by
participants in basicl6.
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Agreement with creation fun

Omnibus x2=28.484, p<.001

cond 1 % cond 2 % p-value
basic8 24.5%  basicSsurvey 163%  HC FET, p<.001
blacklistMedium  24.1%  basic8survey 16.3%  HC FET, p<.001
blacklistEasy 23.5%  basic8survey 16.3%  HC FET, p=.002
dict8 23.0%  basic8survey 16.3%  HC FET, p=.005

Table 6.6: Significant differences in how fun passwords were to create.

Creation Difficult
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Figure 6.3: Participant agreement with “Creating a password that meets the requirements given in this study
was difficult” and “Remembering the password I used for this study was difficult.”

6.6 Discussion

Table 6.10 contains all of the metrics from the comparison tables in this chapter.

Although the number and complexity of password-composition requirements are steadily in-
creasing, the actual value added by those requirements is poorly understood. In this work, we
take a substantial step forward in understanding those requirements, both their strength and their
usability.

We found several notable results regarding the comparative strength of different composition
policies. Although NIST estimates basicl6 and comp8 to be equivalent in strength, we found that
basic16 is superior for large numbers of guesses. We also observed that basicl6 is easier on users,

Part One recall attempts Omnibus KW x2=26.71, p<.001

cond 1 count cond2 count p-value
comp8 1.2 basic8 1.1 HC MW, U=523639.5, p<.001
dict8 1.2 basic§ 1.1 HC MW, U=522456.5, p<.001
basicl6 1.2 basic8 1.1 HC MW, U=518018.5, p=.013

Table 6.7: Statistically significant differences in Part One recall attempts across conditions.
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Agreement with recall difficult Omnibus x2=131.042, p<.001
cond 1 % cond 2 % p-value
comp8 38.9%  blacklistEasy 21.5% HC FET, p<.001
basicl6 26.2% HC FET, p<.001

basic8 17.5% HC FET, p<.001

dict8 19.9% HC FET, p<.001

blacklistMedium — 22.7% HC FET, p<.001

basic8survey 15.6% HC FET, p<.001

blacklistHard 21.5% HC FET, p<.001

basicl6 26.2%  basic8 17.5% HC FET, p=.006
basic8survey 15.6% HC FET, p<.001

blacklistMedium  22.7%  basic8survey 15.6% HC FET, p=.006

Table 6.8: Significant differences in how difficult passwords were to recall.

Storage Omnibus x%=143.318, p<.001
cond 1 % cond 2 % p-value
comp8 61.4%  basicl6 44.3% HC FET, p<.001
dict8 40.8% HC FET, p<.001

blacklistHard 39.0% HC FET, p<.001
blacklistMedium  38.4% HC FET, p<.001

blacklistEasy 36.5% HC FET, p<.001
basic8 35.7% HC FET, p<.001
basic8survey 29.2% HC FET, p<.001
basicl6 44.3%  basic8survey 29.2% HC FET, p<.001
dict8 40.8%  basic8survey 29.2% HC FET, p=.001
blacklistHard 39.0%  basic8survey 29.2% HC FET, p=.012
blacklistMedium  38.4%  basic8Ssurvey 29.2% HC FET, p=.028

Table 6.9: Significant differences in password storage for participants who finished part two.

suggesting it as the better choice for stronger passwords.

We also found that the effectiveness of a dictionary check depends heavily on the choice of
dictionary; in particular, a large blacklist created using state-of-the-art password-guessing tech-
niques is much more effective than a standard dictionary at preventing users from choosing easily
guessed passwords.

Finally, we report that Shannon entropy, though a convenient single-statistic metric of pass-
word strength, provides only a rough correlation with guess resistance and is unable to predict
quantitative differences in guessability among password sets.
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basic8survey 60.5 835 292 1.2 63 266 163 1.1 1.3 156 384
basic8 560 856 357 1.1 7.8 220 245 1.1 1.3 175 445
dict8 347 823 4038 1.9 195 373 230 1.2 14 199 493
blacklistEasy 51.5 88.8 365 1.2 9.6 272 235 1.1 1.5 215 435
blacklistMedium 45.1 863  38.4 14 161 350 241 1.1 14 227 50.6
blacklistHard 19.0 862 39.0 21 219 423 211 1.2 14 215 490
comp8 20.1 753 614 34 388 654 21.1 1.2 1.5 389 672
basicl6 11.8 849 443 1.7 307 56.7 21.1 1.2 1.5 262 568

Table 6.10: This table contains all of the metrics presented in comparison tables in this chapter. Agree study
secure refers to the percentage of participants who agree that the study requirements would make their real
email password more secure.

6.6.1 Meeting comp8 Requirements

It is noteworthy that participants in comp$8 often struggled the with their passwords, and believed
their security to be highest. However, the condition did not provide as much protection from a
resourceful attack as basicl/6. In order to gain a better understanding of this, this section looks
at how participants met the requirements of comp8. Participants tended to meet the character-
class requirements in predictable ways, in turn making those requirements much less effective in
increasing password variety.

82.5% of comp8 passwords exceeded the minimum length of eight characters; the median
length was ten characters. Using more digits than required was fairly popular (63.5%). However,
participants were less keen on using more than the single required uppercase letter (26.2%) or
symbol (11.2%).

In fact, the majority of comp8 passwords (60.4%) began with a capital letter and used no other
capital letter. Half of comp8 participants both used only one symbol, and placed this symbol as the
last or second-to-last character. 20.6% of participants used only “!” for their symbol, and another
221 used only “@” for the symbol.

6.6.2 Shortcomings of the basic16 Condition

Against an attacker capable of a large number of guesses, basic16 was highly effective. However,
observing Figure 6.1 reveals that basicl6 still led to some easily guessed passwords. Against
a more limited attacker, in fact, comp8 performed better. This suggests that, even with the ad-
vantages of basicl6, it could be improved such that it precludes the “low-hanging fruit” in the
condition. This shortcoming will be discussed and addressed in subsequent studies in this thesis.
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Chapter 7

Can Longer Passwords be Secure and
Usable?

7.1 Introduction

In Chapter 6, the two most secure password-composition policies we examined were comp8 and
basicl6. comp8 is similar to the password-composition policy in use at Carnegie Mellon Uni-
versity, and requires eight characters, four character classes, and a dictionary check.! basicl6
requires 16 characters with no other requirements. Chapter 6 found that password creation and
recall were easier and less error-prone under basicl6 than comp8. On average, basic16 passwords
were also significantly more difficult to guess. However, a number of participants created very
simple, easily guessed passwords under basicl6, such as passwordpassword. Despite its usability
advantages over comp8, the large proportion of easily guessed basic16 passwords make it poorly
suited for real-world deployment.

In this chapter, we present the findings of two studies intended to find policies that we can
recommend to service providers. We examined 16 password-composition policies, testing several
permutations of length and character-based requirements. We compared password strength, as
well as user sentiment, timing, and attempts required for password creation and recall. The first
study examined 13,751 passwords created by participants under one of eight policies. These
policies included comp8 as well as policies requiring 12, 16, and 20 characters without further
requirements. We also tested adding a three-character-class requirement to the length-12 and
length-16 requirements. To evaluate the effectiveness of passphrases, we tested requiring two
“words” — strings of letters separated by non-letters. This study showed that certain combinations
of character requirements and longer-length requirements led to fewer easily guessed passwords
than basic16, while still being more usable and more secure than comp8.

Many weak passwords in the first study shared common substrings, sequences of characters
within the password. For example, passwords containing the string /1234 were three times as likely
to be guessed as those that did not contain that string. In policies that required multiple character

This chapter includes a partial reproduction of [87], co-authored with Saranga Komanduri, Adam Durity, Phillip
(Seyoung) Huh, Michelle Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
This chapter includes new material.

'mttp://www.cmu.edu/iso/governance/guidelines/password-management .html
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classes, passwords beginning and ending with lowercase letters were much stronger than those
beginning or ending with digits, symbols, or uppercase letters. Further, in the first study, some
conditions that combined length requirements of 12 or 16 characters with character or structural
requirements had performed especially well. These observations encouraged us to conduct the
second study presented in this chapter. In the second study, we tested password policies that
had substring blacklists and policies that required passwords to begin and end with lowercase
letters. We also tested additional combinations of length and character-class requirements based
on findings from the first study. We collected data from 8,740 participants, each assigned to one
of eight password-composition policies.

In the second study, we found further evidence that a password policy requiring 12 characters
and two or three character classes is more usable and more secure than the traditional comp8
policy. We also found that adding a substring blacklist check to this policy significantly improved
password strength without having a negative impact on password recall. These findings let us
make practical policy recommendations to service providers who want their users to make stronger
passwords.

We present findings from our first study in Section 7.2. In Section 7.3, we discuss how the
findings from our first study led to the conditions in our second study. We then present the findings
of the second study in Section 7.4. Finally, we discuss the implications of both of these studies
together in Section 7.5.

7.2 Study I

This section presents the first of the two studies in this chapter. We describe the study conditions in
Section 7.2.1. We discuss the study participants and their demographics in Section 7.2.2. Security
results are in Section 7.2.3 and usability results in Section 7.2.4. We discuss common patterns
found in weaker passwords in Section 7.2.5.

7.2.1 Conditions

We assigned participants to one of eight conditions, each with its own password policy.

comp8— We asked participants to include at least eight characters and all four character
classes. We also performed a dictionary check on the letters in the password. We used the free
Openwall password-cracking dictionary? for this dictionary check. We removed digits and sym-
bols from the prospective password and checked it against this dictionary, case-insensitive.

basicl2, basicl6, basic20— We asked participants to include at least 12, 16, or 20 characters.

2wordl2, 2word16— We asked participants to include at least 12 or 16 characters, and to have
“at least two words (letter sequences separated by a non-letter sequence).”

3class12, 3class16— We asked participants to include at least 12 or 16 characters, and at least
three of the four character classes. These conditions combined longer length requirements with
some of the character-class requirements of compS.

http://www.openwall.com/wordlists/
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Condition Partic- Length Upper Lower Digit Sym. Fail Length Class Dict. 2word

ipants (median) (median) (median) (median) (median) (%) (%) (%) (%) (%)
comp8 1996 10 1 5 2 1 58.0 6.5 263 39.0 -
basicl2 1693 13 0 10 3 0 406 38.2 - 18.5% -
basicl6 1757 17 0 14 3 0 526 50.4 - 6.3% -
basic20 1715 21 0 18 3 0 599 57.3 - 43* -
3classi2 1653 13 1 8 3 1 445 38.2 9.5 23.4% -
3class16 1625 17 1 11 3 1 522 47.2 10.0 9.7% -
2wordi2 1659 14 0 11 2 0 545 304 9.9 6.5% 454
2wordl6 1653 18 0 14 2 1 598 44.8 9.6 2.6% 45.1

Table 7.1: Summary of password attributes and creation failure on the first attempt. A password can fail
multiple ways. We omit failure from blank fields and confirmation mismatch. Dict shows the percent of
compS8 participants who failed the dictionary check on their first attempt. It also shows the percentage of
final passwords in other conditions that would have failed the dictionary check.

7.2.2 Participants

We recruited participants between April and June 2013. Table 7.1 shows the number of partici-
pants per condition. Of the 15,108 participants who began our study, 13,751 finished Part One.
Except the discussion of dropout rates, our analysis focuses on these participants or a subset of
these participants. 8,565 returned for Part Two within three days of receiving our invitation; 8,143
finished Part Two. When discussing metrics from Part Two, we focus on these participants.

51.5% of participants reported being male and 47.4% reported being female. Participants’
mean age was 29.3 years (median 26). These did not vary significantly between conditions. Look-
ing at user-agent strings, only 1.5% of participants appeared to be using mobile devices.

7.2.3 Security Results

Table 7.1 has descriptive statistics for passwords. Table 7.3 contains a summary of the results
for Study I. Participants typically avoided uppercase letters or symbols in their passwords, but
often included digits. Figure 7.1 shows the percentage of passwords cracked in each condition
as additional guesses are made. Table 7.3 shows the percentages of passwords guessed in each
condition after 108 and 10'? guesses, with pairwise significant differences in Table 7.2.

Overall, passwords in the basic conditions performed poorly against an attacker limited to
10® guesses. Passwords in comp8 performed poorly against an attacker capable of making 10'2
guesses. A number of conditions that combined longer length and character-class requirements,
such as 3classi2 and 2word16, performed well across a range of guess numbers.

Condition 3classi6 is the strongest after both 10® and 10'? guesses. Consistent with the
findings of Chapter 6, the basic conditions perform relatively well after 10'2 guesses, but also
contain a number of passwords that are cracked after a small number of guesses. The 2word and
3class conditions are stronger than their basic counterparts.

The comp8 condition is relatively strong against a resource-limited attacker capable only of
108 guesses. However, comp8 performs poorly as the number of guesses increases. After 1012
guesses, comp8 passwords are significantly more likely to be cracked than any other condition
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Figure 7.1: The percentage of passwords cracked in each condition by the number of guesses made, in log
scale. Our cutoff for guess numbers was 10*2.

except basic12 and 2word12. 3class12 is similar in strength to comp8 until around 10'° guesses,
and remains stronger after.

It appears that adding the 2word requirement improves basic{6 more than basicl2. Manually
examining passwords from participants who finished Part Two shows that 2word16 passwords
contained three words 31.8% of the time, almost twice as often as 2word12 passwords. The 2word
approach seems more effective when combined with a length-16 requirement, perhaps because this
leads more participants to create passphrases.

To understand how participants perceived the strength of their study passwords, we asked
whether they agreed with the statement, “If my main email provider had the same password re-
quirements as used in this study, my email account would be more secure.” Agreement ranged
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Cracked after 10® guesses Cracked after 10'? guesses

Omnibus x2=205.59, p<.001 Omnibus x?=838.465, p<.001
cond 1 % cond 2 % p-value cond 1 % cond 2 % p-value
basicl2  9.6% 2wordl2 6.6% .021 basicl?2 28.8% comp8 24.8% .019
3class12 4.8% <.001 2wordl2  24.2% 012
basic20  4.5% <.001 3classi2 17.1% <.001
comp8 3.5% <.001 basicl6 13.1% <.001
2wordl6  2.0% <.001 basic20  7.5% <.001
3class16  0.8% <.001 2wordl6  6.7% <.001
basicl6  7.0%  basic20  4.5% 02 Jelass16  27% <001
comp8 3.5% <.001 comp8 24.8%  3class12  17.1% <.001
2wordl6  2.0% <.001 basicl6 13.1% <.001
3class16  0.8% <.001 basic20  7.5% <.001

2wordl2  6.6% compS  35% <001 2Wl‘”‘”g 6.7% <001
2wordl6  2.0%  <.001 3classl6  2.1%  <.001
classI6 0.8% <001 2wordl2  242% 3classl2  17.1% <001

class12  48% 2wordl6 2.0% <001 basicl6  13.1% <001

classl6  0.8%  <.001 basic20 —7.5% <001
2wordl6  61% <001

basic20 45% 2wordl6  2.0% <.001 3classl6  2.7% <.001
3class16 0.8% <.001

3classi2  17.1%  basicl6  13.1% .006
comp8 3.5% 3classl6  0.8% <.001 basic20 7.5% <.001
2wordl6  2.0%  3classl6  0.8% 043 2wordl6  6.7% <.001

3classl6  2.7% <.001

basicl6 13.1%  basic20 7.5% <.001
2wordl6  6.7% <.001
3class16  2.7% <.001

basic20 7.5% 3class16  2.7% <.001
2wordl6  6.7% 3class16 2.7% <.001

Table 7.2: Significant differences in the probability of passwords cracked after 10% and 102 guesses,
representing more and less resource-constrained attackers. Figure 7.1 illustrates these guess numbers along
a curve. In both tables, the more secure condition is in the cond 2 column.

from 59.8% for 3class16 and 59.7% for comp8 to 35.2% for basicl2. Participants in comp8 were
more likely to agree than in any other condition except 3class16. This suggests that user percep-
tion of password strength does not align with our strength analysis. We suspect that participants
expected the comp8 requirements to lead to strong passwords because it is similar to a traditional
“strong” policy. Future work might investigate the security and usability impact of helping users
better understand how password-composition requirements can lead to stronger passwords.

7.2.4 Usability Results

In this section, we examine dropout rates, as well as password storage, creation, and recall. Over-
all, we found that most conditions are significantly more usable than comp8 on a number of met-
rics, with only basic20 and 3class16 being significantly less usable on any metric.
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comp8 83.0 56.9 24 328 1.1 7.1 1.7 132 393 3.5 248

basicl2 = 945 454 1.5 152 1.1 6.2 1.6 11.6 274 9.6 28.8
basicl6 939 499 1.8 285 1.1 74 1.6 13.7 30.1 70 13.1
basic20 = 939 50.0 19 352 1.2 9.0 1.6 | 153 329 4.5 7.5
2wordI2 920 514 1.9 219 1.1 6.8 1.6 13.1  31.0 6.6 242
2wordl6  92.1 513 2.1 347 1.1 8.4 1.7 146 368 2.0 6.7
3class12 920 549 1.5 26.0 1.1 7.4 1.7 148 353 48 171
3classi6 90.5 60.2 1.9 | 403 1.1 8.8 1.7 | 162 | 429 0.8 2.7

Table 7.3: A summary of findings of study I results are shown first, with each condition compared to
comp8. Lighter blue indicates being significantly better than the control, and darker red indicates being
worse. No shading indicates no significant difference. This table is repeated, along with data for Study II,
in Table 7.10.

Study Dropout

We consider higher dropout rates to indicate increased participant frustration. Among 15,108
participants who began the study, 91.0% finished Part One. Part One completion varied signifi-
cantly by condition (x2=246.60, p<.001), ranging from 83.0% for comp8 to 94.5% for basicl?2.
Participants in comp8 were significantly less likely to finish Part One than those in any other con-
dition (HC x?2, p<.001). This suggests participants assigned to comp8 experienced more negative
sentiment than in other conditions. They may have found the study more confusing, boring, or
frustrating. Participants in 3class16 (90.5%) were significantly less likely to finish Part One than
those in basic12 (94.5%) or basic16 (93.9%) (HC x?2, p<.004). Of those participants who finished
Part One, 62.3% returned within three days of being invited back; this did not vary significantly
by condition (x2=7.69, p=0.361). Of those who returned for Part Two, 95.1% completed Part Two
within three days of being invited back; this also did not vary significantly by condition ()@:4. 15,
p=0.762).

Password Storage

Our analysis of password storage looked at participants who finished Part Two, because we asked
participants about their storage behavior only in the Part Two survey. 52.6% of participants were
storage participants. This ranged from 45.4% for basic12 to 60.2% for 3classi6; Table 7.5 shows
significant pairwise differences. 3classi6 had a significantly higher storage rate than every other
condition except comp8 and 3class12. Password storage rates were highest in conditions that
required three or four character classes, and lowest in the basic conditions.
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Password creation attempts Agree password creation difficult
Omnibus KW x2=394.337, p<.001 Omnibus X$=239.44, p<.001
cond 1 mean cond2 mean p-value cond 1 %o cond 2 % p-value
comp8 2.4  basic20 1.9 U=1809027, .011 3class16  40.3%  basic20 35.2% .019
3class16 1.9  U=1797307.5, <.001 2wordl6  34.7% .007
2wordl2 1.9 U=1824868, <.001 comp8 32.8% <.001
basicl6 1.8 U=1993010.5, <.001 basicl6 28.5% <.001
3classi2 1.7 U=1992868, <.001 3classi2  26.0% <.001
basicl2 1.5 U=2137340, <.001 2wordl2  21.9% <.001
2wordl6 2.1 3classl6 19 U=1458583.5, <.001 basiel2152% <001
2wordl2 1.9 U=1481683, <.001 basic20  352%  basicl6  28.5% <.001
basicl6 1.8 U=1623889, <.001 3class12  26.0% <.001
3class12 1.7 U=1635127.5, <.001 2wordl2  21.9% <.001
basicl2 1.5 U=1764158, <.001 basicl2  152% <.001
basic20 1.9 3classi6 1.9  U=1476928.5, .011 2wordl6  34.7%  basicl6  28.5% <.001
2wordi2 1.9  U=1499017.5, .023 3class12 26.0% <.001
basicl6 1.8 U=1645027.5, <.001 2wordl2  21.9% <.001
3classi2 1.7 U=1666130, <.001 basicl2  15.2% <.001
basiciz 1.5 U=1803101.5, <001 compS  328% basicl6  28.5% 027
3class16 1.9  3classi2 1.7 U=1487448, <.001 3class12  26.0% <.001
basicl2 1.5 U=1607634, <.001 2wordl2  21.9% <.001
2word2 1.9 3classi2 1.7 U=1534292.5, <.001 basiel2152% <001
basic12 1.5 U=1660203.5, <.001 basicl6  285% 2wordl2  21.9% <.001
basicl6 1.8 3classi2 17 U=1577844.5, <.001 basiciz = 15.2% <001
basic12 1.5 U=1712210.5, <.001 3class12 26.0% 2wordl2  21.9% 032

basicl2 15.2% <.001
2word12  21.9%  basicl2 15.2% <.001

3class12 1.7 basicl2 1.5 U=1483504.5, .006

Table 7.4: Significant differences in study I password-creation usability, with the significantly more usable
condition in the cond 2 column.The left-hand side compares password-creation attempts. The right-hand
side compares agreement with password creation being difficult.

Password Creation

We interpret taking more password-creation attempts as being less usable. Participants took an
average of 1.9 attempts to create a password. Table 7.4 shows significant pairwise differences.
compS8 took the most attempts, (mean=2.4), and basici2 took the fewest (mean=1.5). To compare
their sentiment, we asked participants whether they agreed with the statement, “Creating a pass-
word that meets the requirements given in this study was difficult”. Figure 7.2 depicts responses
and Table 7.4 shows significant differences. Agreement ranged from 15.2% for basicl2 to 40.3%
for 3classli6.

Creation Failure

For a better understanding of password-creation failures, we looked at participants’ first failed
attempt. Table 7.1 shows these failures. Participants often failed to meet length or character-class
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Password entry time (s) Agree remembering password difficult
Omnibus KW x2=71.58, p<.001 Omnibus x2=83.89, p<.001
cond 1 med cond2 med p-value cond 1 Y% cond 2 Y% p-value
3class16 16.2 comp8 13.2 U=65587.5,.001 3classl6 429  3classi2 353 .012
2wordI2 13.1 U=60727, <.001 basic20 329 <.001
basicl2 11.6 U=75507, <.001 2wordl2  31.0 <.001

basicl6  30.1 <.001

basic20 15.3 comp8 13.2 U=86932, <.001 .
basicl2 27.4 <.001

2wordI2 13.1 U=80633.5, <.001

basic12 11.6 U=100385, <.001 comp8 393  basic20 329 035

class12 14.8 basicl2 11.6 U=81122.5, 001 2wordi2 310 .00l

basicl6 30.1 <.001

2wordl6 14.6 2word12 13.1 U=69022.5, 012 basicl2 Y14 <001
basic12 11.6 U=86435.5, <.001 ,

2wordl6  36.8  basicl6 30.1 .03

basicl6 13.7 basicl2 11.6 U=95571.5, .003 basicl2 Y14 <001

3class12 353  basicl2 27.4 .002

Password storage
Omnibus x%=61.87, p<.001

cond 1 % cond2 % p-value
3class16 60.2 2wordl2 51.4 .002
2wordl6 51.3 .002
basic20 50.0 <.001
basicl6 49.9 <.001
basicl2 45.4 <.001
comp8  56.9 basic20 50.0 .029
basicl6 49.9 .02
basicl2 45.4 <.001
3class12 54.9 basicl2 45.4 <.001

Table 7.5: These show significant differences in study I password-recall usability, with the significantly
more usable condition on the cond 2 column. This includes Part Two recall time for participants who
recalled their password in five attempts without a reminder, password storage rates for Part Two participants,
and agreement with password recall being difficult.

Creation Difficult Remembering Difficult

compe - -

basic12 I ]

basic16 ] ]

basic20 || | |

3class12 - -

3class16 [ | I

2word12 | ]

2word16 || ]
0% 100% 0% 100%

l Strongly agree [l Agree Neutral Disagree [ Strongly disagree

Figure 7.2: Participant agreement with “Creating a password that meets the requirements given in this study
was difficult” and “Remembering the password I used for this study was difficult.” Significant differences
are in Tables 7.4 and 7.5.
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requirements.

Many participants failed to meet length requirements, with 57.3% of participants in basic20
using less than 20 characters. 26.3% of participants in comp8 used too few character classes,
compared to between nine and ten percent of participants in other conditions that required non-
letter characters. This suggests that participants struggle more to create a password with four
classes compared to three. The largest source of failure in comp8 was the dictionary check. Only
comp8 had a dictionary check, so we looked at how many passwords in other conditions would
have been prevented by that check. These numbers are included in the same column in Table 7.1
with an asterisk. This was 23.4% of passwords in 3classi2, 18.5% in basicl2, and less than
10% in any other condition. Recall that the dictionary check strips away non-letter characters and
checks the remaining letters against a dictionary. We speculate that the longer conditions were
less likely to fail the dictionary check because longer passwords tend to have more letters than a
single dictionary word.

Part One Recall

Participants recalled their passwords after filling out a brief survey in Part One. 93.5% of partici-
pants correctly entered their password on the first attempt and this varied by condition (X$=27.241,
p<0). Participants in basic12 (95.7%) were significantly more likely to enter their passwords cor-
rectly on the first try than those in 2word16 (92.9%), 3classi2 (93.1%), 3classi6 (92.1%), or
basic20 (92.5%) (HC FET, p<.038).

Part Two Recall

In Part Two recall, participants could use a password reminder to display their password. 15.5% of
participants used this feature, and this did not vary significantly by condition (X%=8.31, p=0.300).
Among no-storage participants, 21.4% used the reminder, and this also did not vary by condition
(X%=7.72, p=0.358). 80.1% of participants successfully entered their password in five attempts
without using the reminder, and this did not vary significantly by condition (x2=7.75, p=0.356).
These participants took an average of 1.3 tries, and this also did not vary significantly by condition
(x3=12.96, p=0.073).

As a measure of usability, we looked at how long participants spent entering their passwords
on their first successful attempt. We looked only at no-storage participants who did not use the
reminder. Median times varied from basicI2 (11.6 seconds) to 3classi6 (16.2 seconds), with
significant differences in Table 7.5. Overall, participants in 3class16 took the most time to recall
their passwords successfully. Participants in basic12 and 2word12 took the least time to enter their
passwords on the first successful attempt, despite their being longer than comp8.

To measure subjective user difficulty, we asked participants whether they agreed with the
statement, “Remembering the password I used for this study was difficult.” The least difficult
condition for recall was basicl2 (27.4%), and the most difficult were comp8 (39.3%) and 3class16
(42.9%). Figure 7.2 depicts the results, and Table 7.5 shows significant differences.
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Substring Using  Cracked | Using  Cracked | —=Using  p-value

1234 4.9% 44.5% 144% < .001
password 3.0% 44.1% 15.0% < .001
love 1.9% 15.3% 15.9% .864
123456789  1.7% 47.5% 153% < .001
2013 1.6% 20.4% 15.8% 132
this 1.6% 21.1% 15.8% 124
turk 1.5% 39.6% 155% < .001
char 1.1% 40.0% 15.6% < .001

Table 7.6: Substrings in at least 1% of passwords. The first column shows the percent of passwords con-
taining the substring. The next two show percentages of passwords cracked containing and not containing
it. The fourth shows a x? test on the difference. The presence of “2013” likely results from the study being
conducted in that year.

7.2.5 Password Patterns

This section looks at common themes and patterns in study passwords, to help explain how users
created passwords under different requirements. We identified markers of weak passwords, which
can help to identify weak passwords during creation. We found a small set of common password
substrings that indicate weaker passwords. We examined whether and how participants exceed
minimum password requirements. And we manually examined passwords and found a number of
common themes, such as love and animals.

Common Substrings

We identified the most common substrings in the study’s passwords. We first made a list of all
substrings of 4 to 12 characters present in at least one percent of the passwords. We removed any
substrings that did not exist in at least one percent of study passwords without already being part
of another, longer substring on the list. For example, we removed “sword,” which was almost
always present as part of “password.” This left the eight substrings in Table 7.6. Overall, 1,944
passwords (14.1%) contain at least one of the eight substrings. We looked at password-cracking
rates for passwords with and without each substring. Table 7.6 shows the five substrings such that
passwords containing any of them were significantly more likely to be cracked. This finding sug-
gests future research on proactively checking prospective passwords and rejecting any password
that contains a substring associated with weak passwords.

Meeting the comp8 Requirements

29.0% of passwords in comp8 fulfilled the symbol requirement only by placing “!” at the end
of the password. Likewise, 57.7% of passwords in comp8 used an uppercase letter as their first
character and used no other uppercase letter. Passwords doing either of these were significantly
more likely to be cracked (34.6% to 6.5% cracked) (X%=190.4864, p<.001). This suggests that
comp8 can be a much more effective condition when its requirements are not met in minimal
ways.
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Going Beyond the Requirements

Table 7.1 shows that participants often exceeded minimum length and character-class require-
ments. Each condition has a median length above its minimum, and all conditions have a median
of at least two digits. 66.4% of participants exceeded their minimum required length, ranging
from 59.3% of participants in basicl2 to 76.8% in compS8. Perhaps not surprisingly, passwords
that exceeded the minimum length requirements were less likely to be cracked (12.0% to 23.4%)
(x3=295.9375, p<.001).

We also looked at exceeding the minimum number of character classes, omitting comp8 be-
cause it already required all four character classes. 62.4% of non-comp8 participants used more
than the minimum number of character classes. 38.7% of participants in 2word16 and 38.5% in
2wordl2 used at least three character classes. Over two thirds of passwords in each of the basic and
3class conditions exceeded their minima. Passwords exceeding the minimum were significantly
less likely to be cracked, 10.2% to 21.3% (x3=277.5778, p<.001).

Character Distribution in 3class12

Participants often responded to the three-character-class requirement of 3classi2 by placing char-
acters other than lowercase letters at the beginning or end of their passwords. In fact, fewer than
2% of passwords in 3classI2 — 33 of 1653 — began and ended with lowercase letters. Those 33
passwords were particularly difficult to guess. After 108 guesses, none were guessed. After 10'2
guesses, only one of them was guessed (‘“family-4ever”). This suggests that encouraging or re-
quiring users to distribute their different character classes more evenly might make character-class
requirements more effective.

Semantic Analysis

To gain a better understanding of the semantic content of user-generated passwords, we manually
looked at 100 randomly chosen passwords per condition from participants who finished Part Two.
Participants who included words were more likely to place non-letter characters between words,
rather than within them. We found that names, dates, and sequences of characters (such as “1234”
and “qwerty”’) were common. We also saw a number of study-related words, as well as references
to animals, love, and pop culture. Consistent with those themes, looking at all passwords and
ignoring case, 42 passwords contained “monkey” and 294 passwords contained “love.” Future
research might explore encouraging participants to choose words from a wider range of themes,
and to add special characters within words.

7.3 Using Findings from Study I to Create Study II Conditions

This section discusses how the findings of study I led to the conditions of study II. Table 7.10
summarizes security and usability findings for study I, comparing each other condition to comp$.
Both 3classi2 and 2word16 performed significantly better than comp8 on several usability met-
rics, were more secure after 10'2 guesses, and did not perform worse than comp8 on any metric.
Comparing 3class12 and 2word16, passwords in 2word16 were more difficult to guess. However,
passwords in 3class12 were easier to create, and were still significantly more secure than those
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in comp8. In addition, 3classi2 is more similar to policies commonly found in the wild, which
may help make it a better baseline. Therefore, study II used 3class12 as its baseline condition. An
exploration of conditions based on 2wordl6 remains promising future work.

Section 7.2.5 showed that a small set of substrings were markers of a password being more
likely to be cracked. For example, 47.5% of passwords containing “123456789” were cracked,
compared to 15.3% without that substring. Therefore, we introduced the blacklist requirement,
which requires that passwords not contain any blacklisted substrings. While users may not be fa-
miliar with the concept of a substring blacklist, we hoped that familiarity with common dictionary
checks would help them grasp it. Also, in practice, the blacklist requirement using a short sub-
string blacklist would be more feasible to conduct client-side than a traditional dictionary check
with a large dictionary. We present the blacklist we used in study II below. 69.2% of study I
passwords would have passed this blacklist check, ranging from 57.4% of basic20 to 83.0% of
comp.

As indicated in Section 7.2.5, fewer than 2% of 3classi2 passwords began and ended with
lowercase letters, but those that did were especially difficult to guess. We call the requirement
that passwords begin and end with a lowercase letter the pattern requirement. We hypothesized
that users creating a password under the pattern requirement would more evenly distribute non-
lowercase letters throughout their password.

2class12, 3classi12— These conditions required 12 characters and two and three character
classes. In study I, 3classi2 was more usable and secure than comp8. We expected that a condition
adding further requirements to 3classi2 would be less usable than 3classi?2 itself. Therefore,
we created 2class12. The other conditions in study II were created by adding requirements to
2classi?2.

2class16— This condition extended the length requirement of 2classi2 by four characters.
3class16 passwords were difficult for participants to create and recall, but they were stronger
than in any other study I condition. We were interested in whether reducing the character-class
requirements could make the policy more usable.

2list12, 2s-list12— These conditions combined the blacklist requirement with the requirements
of 2classi2. Participants in 2list]12 saw an explicit list of blacklisted substrings, and participants in
2s-list12 were simply asked to avoid using common substrings.® We used the following blacklist.
123!, amazon, character, monkey, number, survey, this, turk
Any year between 1950 and 2049
The same character four or more times in a row
Any four consecutive characters from password
Any four sequential digits (e.g., 5678)
Any four sequential letters in the alphabet (e.g., wxyz)
Any four consecutive characters on the keyboard (e.g., wsxc)

2patternl2— This condition added the pattern requirement to 2classi2. As described above,
the pattern required was that the password started and ended with a lowercase letter.

2list-patti2, 2s-list-patt]2— These conditions combined the requirements of 2/ist/2 and 2s-
list12 with the pattern requirement.

Do not include words commonly found in passwords (e.g. password), keyboard patterns (e.g. gazx), or other
common patterns (e.g. 5678)
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Condition Partic- Len. Up. Low. Digit Sym. Fail Length Class Blacklist Pattern

ipants (med- (med- (med- (med- (med- (%) (%) (%) (%) (%)

ian) ian) ian) ian) ian)

3classi2 1121 13 1 8 3 1 430 37.6 8.4 35.6% 98.0*
2classi2 1131 13 1 8 3 1 412 37.2 1.7 32.8% 97.3%
2class16 1096 17 1 12 3 1 519 47.5 2.0 38.3% 96.2%
2list12 1113 13 1 8 3 1 46.7 294 1.2 16.3 96.0*
2s-list12 1099 13 1 8 3 1 523 335 1.7 19.6 97.0*
2patterni?2 1076 14 1 9 2 1 705 352 13 28.5% 59.1
2list-patt12 1059 14 1 9 2 1 69.1 27.9 1.8 13.3 55.9
2s-list-patti2 1045 14 1 9 2 1 76.7 353 2.6 21.8 58.1

Table 7.7: Password attributes and creation failure on the first try. Length and character counts are medians.
A password can fail in multiple ways. We omit failure from blank fields and confirmation mismatch.
“Blacklist” and “Pattern” show percents of participants who failed those checks for conditions with those
checks. For other conditions (marked with *), they show the percentage of final passwords that would have
failed.

7.4 Study II Findings

This section presents the findings of the second of our two studies. Section 7.4.1 presents par-
ticipant demographics. We present security results in Section 7.4.2 and usability results in Sec-
tion 7.4.3. Section 7.4.4 discuss patterns we observed in cracked passwords.

7.4.1 Participants

We collected data from December 2013 to January 2014. 9,707 participants began the study, 8,740
finished Part One, and 5,111 returned for Part Two within three days of being notified. Table 7.7
shows the number of participants per condition. Participant age did not vary significantly by con-
dition (X$=10.069, p=0.185) (mean=30.59, standard deviation = 10.45, median = 28). Reported
gender did not vary significantly either (X%=4.821, p=0.682) (47.9% male, 51.2% female).

7.4.2 Security Results

Figure 7.3 depicts the proportion of passwords in each condition that were guessed as the num-
ber of guesses increased. Table 7.10 shows significant differences in after 10% and 10'? guesses.
After 10'? guesses, 3class12 and 2class12 performed significantly worse than any other condi-
tions. 2list12 and 2s-list12 did not differ from each other but were worse than the remaining four
conditions. 2patterni2 performed worse than the remaining three conditions. Those three con-
ditions — 2class16, 2list-patt12, and 2s-list-patt]2 — performed significantly better than any other
condition, and did not differ significantly from one another. Strength after 102 guesses divides
the conditions into four clusters, consistent with a visual inspection of Figure 7.3.

Table 7.8 shows cracking differences after 10% guesses. This smaller number of guesses simu-
lates a more resource-constrained attacker, or a scenario in which the service provider quickly de-
tects a breach and resets its passwords. 3classi2 and 2classi2 performed worse than the blacklist
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Figure 7.3: The percentage of passwords cracked in each condition by the number of guesses made in log

scale. Our cutoff for guess numbers was 10'2. Table 7.8 shows significant differences in cracking rates
between conditions.

or pattern conditions, though fewer than five percent of passwords in any condition were guessed.

7.4.3 Usability Results

Overall, 2classi12 and 3classi2 had similar usability metrics and were more usable than the other
conditions. The blacklist check made password creation more difficult but did not affect recall.
The pattern requirement negatively affected creation and recall usability.

Study Dropout

Table 7.8 shows significant differences in Part One dropout rates among all participants who began
the study. Participants in the pattern conditions were the most likely to drop out, which may
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Creation Difficult Remembering Difficult
3class12 || ]
2class12 - -
2class16 - -

2list12 | ] ||
2s-list12 | | | ]
2pattern12 . -
2list-pattern12 . -
2s-list-pattern12 . -
0% 100% 0% 100%
W Strongly agree M Agree Neutral Disagree [ Strongly disagree

Figure 7.4: Participant agreement with “Creating a password that meets the requirements given in this study
was difficult” and “Remembering the password I used for this study was difficult.”

suggest they were more frustrated. There was no significant difference in rates of returning for
Part Two (x2=5.826, p=0.56) or completing Part Two (x2=5.97, p=0.543).

Password Storage

58.5% of part-two participants stored their password. Table 7.9 shows significant differences
across conditions. Participants in the pattern conditions were the most likely to store their pass-
words, which may indicate actual or expected recall difficulty.

Password Creation

Table 7.8 shows significant differences in password-creation attempts. Participants in the pattern
conditions took significantly more attempts than in any non-pattern condition. Fewer than one
third of participants in pattern conditions successfully created a password on the first try. In the
other conditions, this ranged from 48% for 2s-list12 to 59% for 2classi2.

As we did in the first study, to learn about perceived password-creation difficulty, we asked
participants whether they agreed with the statement, “Creating a password that meets the require-
ments given in this study was difficult.” Figure 7.4 depicts responses and Table 7.9 shows pairwise
differences. Password creation under the the pattern conditions was usually more difficult than un-
der the non-pattern conditions.

Anecdotal evidence from our previous research suggested that users were fond of incorpo-
rating the term “monkey” into their passwords. To examine this more scientifically, we detected
passwords with text matching or similar to “monkey.” After these participants finished Part One,
we asked, “We couldn’t help but notice that you have a Monkey-ish word in your password. Please
tell us why you included [text] in your password.” We detected 17 passwords with a monkey-ish
phrase. Participants reported liking monkeys, finding them cute, and having “monkey” be a nick-
name or pet name. This is further anecdotal evidence that users often make passwords related to
things they like.
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Creation Failure

Table 7.7 shows types of password-creation failures on the first attempt. Participants struggled to
meet the pattern requirement. Over two-thirds of participants with this requirement failed on their
first attempt, and over half of these failures were due to the pattern requirement itself. The blacklist
requirement appears to have prevented fewer passwords than the dictionary check of comp8.

Part One Recall

In Part One recall, 93.2% of participants entered their passwords correctly on the first attempt. This
was not significantly different between conditions (X$=5. 101, p=.648). Table 7.9 shows significant
differences in password-entry time for participants who correctly entered their password on the
first try. Passwords in 2class16 took longest to enter, followed by 2patterni2. 2classi2 took
significantly less time than any other condition. However, the effect size is small. Median times
ranged from 2classi2 (7.2 seconds) to 2class16 (8.9 seconds).

Part Two Recall

5,111 participants returned and finished Part Two within three days of being invited back. 14.9%
of them used the reminder and this did not vary significantly by condition (X$=6.833, p=0.446).
80.0% of participants entered their password correctly within five attempts without the reminder,
and this also did not vary by condition (X%:5.401, p=0.611). Among these success participants,
the number of recall attempts did not vary significantly (x2=3.009, p=0.884). Among the 2,120
no-storage participants, there was also no significant difference in using the reminder (X$:9.727,
p=0.205) or successfully recalling the passwords (x2=9.518, p=0.218).

To understand perceived difficulty, we asked participants whether they agreed with, “Remem-
bering the password I used for this study was difficult.” While the above observed metrics for pass-
word recall did not vary by condition, perceived difficulty did. Agreement was 47.4% to 49.1%
for pattern conditions and 38.5% to 32.6% for the non-pattern conditions. Table 7.9 shows sig-
nificant differences. Each pattern condition had significantly more difficulty than any non-pattern
condition.

7.4.4 Password Patterns

This section examines how participants in study II met and exceeded their password-composition
requirements.

Common Substrings

Analyses presented in Section 7.2.5 found eight substrings that were present in at least one percent
of study I passwords. This led to the blacklist requirement for some study II conditions. The
substring “love” is in 1.4% of passwords created in conditions with the blacklist requirement. No
other substring was in one percent or more of these passwords. This substring was not correlated
with passwords being more likely to be cracked (FET, p = .743). This shows that the blacklist
requirement did help prevent participants from using common substrings in their passwords. This
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Figure 7.5: For the first and last six characters, this depicts the percentage of each character class in 2classi2
and 2patterni?2.

may help explain why 2s-list12 and 2list12 passwords were less likely to be cracked than 2classi2
passwords.

Going Beyond the Requirements

65.4% of passwords exceeded their minimum length requirement of 12 or 16 characters. They
were significantly less likely to be cracked than passwords that did not exceed the minimum (5.7%
to 14.0%) (X%:174.0752, p<.001). 84.3% of passwords exceeded their minimum character-class
requirement. These passwords were significantly less likely to be cracked than passwords that did
not exceed the minimum (7.1% to 16.2%) (X%:120.4505, p<.001).

The Pattern Requirement and Character Distribution

The pattern requirement was intended to cause participants to distribute non-lowercase-letter char-
acters throughout their passwords, rather than putting most of them at the beginning or end.
To measure how effective this was, we compared character-class distributions in 2patterni2 and
2class12 passwords, which differed only in having the pattern requirement.

The structure of a password is a representation of its character classes [98]. For example,
the structure of password “P4ssword!” is “UDLLLLLLS”. We examined how often passwords
in 2class12 and 2patterni?2 had unique patterns. Because 2classi2 had more participants, we did
not make a direct comparison of the number of unique passwords in each condition. We instead
took a random sample of 1000 participants from each condition and counted how many of them
had structures unique among the 1000. We repeated this experiment 1000 times. For 2classi2,
an average of 63.4% of passwords had unique structures. For 2patterni?2, it was 81.8%. This is
evidence that the pattern requirement leads participants to more diverse password structures.

Figure 7.5 visualizes character-class distributions of 2class12 and 2patterni2. It depicts char-
acter classes of the first and last six characters because those conditions both require 12 characters.
Passwords in 2classi2 have spikes of special characters at the start and end. While 2patterni?2
passwords do not have an even distribution of character classes, they appear to be better mixed
than in 2classi2. This may explain how the pattern requirement led to stronger passwords.
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Cracked after 10° guesses Part One dropout rate
Omnibus x3=112.708, p<.001 Omnibus x%=58.579, p<.001
cond 1 % cond 2 % p-value cond 1 %  cond2 % p-value
3class12 3.9 2classl6 1.2 <001  2s-list-patti2 14.0 2class16 9.6 .021
2s-list12 0.8 <.001 2s-list12 9.5 <.013
2patterni2 0.7  <.001 2listl2 8.1 <.001
2list]2 04 <001 3class12 8.0 <.001
2s-list-part12 0.3  <.001 2classi2 6.7 <.001
2istpaitt2 0.1 <001 oy a1z 12.6 26ist1z 8.1 008
2class12 2.8 2s-listi2 0.8 .007 3classi2 8.0 .005
2patterni2 0.7 .001 2classi2 6.7 <.001
2list12 04 <001 5 terni2 113 2classi2 67 002

2s-list-part12 0.3  <.001
2list-pant12 0.1 <001 pagsword creation attempts
2classl6 1.2 2list-parti2 0.1 031 Omnibus KW x7=795.632, p<.001

Cracked after 10'? guesses cond 1 count cond 2 count p-value
. 2_

Omnibus x7=328.517, p<.001 2s-list-pattl2 2.6 2list-patt2 2.4  U=604263.5,.001

cond 1 % cond 2 %  p-value 2patterni2 2.4 U=612719, .001

2s-list12 1.9 U=754699, <.001
2class16 1.8 U=767909.5, <.001
2listl2 1.8 U=791452, <.001
3class12 1.6 U=837478, <.001
2class16 32 <001 ’
Ddist-patl2 2.9 <001 2class12 1.6 U=863035, <.001

2s-list-patt12 2.6 <.001  2list-partl2 2.4 2s-listi2 1.9 U=710967.5, <.001
2classi6 1.8 U=723734, <.001
2list]2 1.8 U=748822, <.001
3class12 1.6 U=794217.5, <.001
2patternl2 5.7 <.001 _ ’
Selass]6 39 <00] 2class12 1.6 U=819334.5, <.001

2list-part]l2 2.9 <001 2patterni2 2.4 2s-list12 1.9 U=726433, <.001
2s-list-patt]2 2.6 <.001 2class16 1.8 U=739575.5, <.001

2listl2 1.8 U=765386, <.001
2s-list12 10.6 2patterni2 5.7  <.001 -~ ’
sclassl6 32 <001 3class12 1.6 U=812124.5, <.001

Ddist-pattl2 2.9 <001 2class12 1.6 U=838019.5, <.001
2s-list-patt]12 2.6 <.001  2s-listl2 1.9 3classI12 1.6 U=688868.5, <.001

2istl2 9.5 2patternl2 5.7  .006 2classl2 1.6 U=713024.5, <.001
2classl6 32 <001 2classl6 1.8 3classi2 1.6 U=675942, <.001

3class12  16.5 2s-list12 10.6 <.001
2list12 9.5 <001
2patterni2 5.7 <.001

2class12  16.4 2s-list]2 10.6 <.001
2listl2 9.5 <.001

Dlist-patt12 2.9 <001 2class12 1.6 U=700279.5, <.001
2s-list-partl2 2.6 <001 507> 1.8 3elassI2 1.6  U=661462.5, .036
2patterni2 5.7 2classl6 3.2 .038 2class12 1.6 U=684801, <.001

2list-parti2 2.9 .013
2s-list-patt12 2.6 .004

Table 7.8: Significant differences between conditions in study II. The left-hand side shows differences in
proportions of passwords cracked after 10% and 102 guesses, with the significantly more secure condition
in the cond 2 column. The right-hand side shows significant usability differences. These include differences
in the Part One dropout rate and the number of attempts needed to create a satisfactory password. The more
usable condition is in the cond 2 column.
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Agreement with creation difficult Part One recall time
Omnibus x2=405.645, p<.001 Omnibus KW x2=117.625, p<.001
cond 1 % cond2 % p-value cond]l med cond 2 med p-value

2s-list-patt12 50.2 2class16 40.1 <.001 2class16 8.9 2list-part12 8.4 U=543322.5,.039

2Uistl2 328 <001 2listl2 80  U=596162, <.001
2s-list12 274 <001 Sclass12 7.7 U=608448.5, <.001
2class12 25.1 <001 25-listl2 7.7 U=588180, <.001
3class12 241 <001 2class12 7.2 U=657899.5, <.001
Dlist-patt12 500 2classI6 40.1 <001  2parterni2 8.8 2listI2 8.0  U=573492, .003
2Uistl2 328 <001 3class12 7.7 U=584217.5, <.001
2s-list12 274 <001 2s-listl2 7.7 U=565331,<.001
2class12 25.1 <001 2class12 7.2 U=632595.5, <.001
Jclass12 241 <001 5o hicipai12 87 2list12 8.0 U=546893.5,.033
2patternl2  46.8 2classi6 40.1 015 3class12 7.7 U=557563.5, .002
2Uistl2 328 <001 2s-list]2 7.7 U=539154.5, .006
2s-list12 274 <001 2class12 7.2 U=603795.5, <.001
2class1225.1 <001 5u0 w12 84 2classl2 7.2 U=601437, <001
3classi2 24.1  <.001
2list12 80 2classl2 7.2  U=606090.5, 001

2class16 40.1 2list12 32.8 .003
2s-list]2 27.4 <.001 3classi2 7.7 2classi2 7.2 U=595388, .021

2class1225.1 <001 pg jigt2 7.7 2class12 7.2 U=582572.5, .01
3class12 24.1 <.001

2listl2 32.8 2s-listl12 27.4 .044
2class12 25.1 <.001

Proportion of storage participants
Omnibus x2=57.391, p<.001

3classi2 24.1 <001  cond 1 % cond 2 % p-value
Agreement with recall being difficult 2s-list-parti2 67.5 2class16  56.7 002
Omnibus x2=85.906, p<.001 2s-list]2  56.5 .002
3class12  52.7 <.001
cond 1 % cond2 % p-value 2class12 50.8 <001
2list-partl2 49.1 2class16 38.5 003 pjisrpart12  64.0 3class2 527 002
3classi2 36.0  <.001 2class12 50.8 <001

2list12 357  <.001
2class]2 35.4 <001 2patterni2  61.7 3class12  52.7 .031

2s-list]2 32.6  <.001 2classi2 508 002

2s-list-patt12 49.0 2class16 38.5 002 2listl2 59.6 2classi2  50.8 032
3class12 36.0 <.001
2istl2 357 <001
2class12 354 <.001
2s-list]2 32.6  <.001

2pattern12  47.4 2classl6 38.5 .019
3classi2 36.0 <.001
2list12 357 <.001
2classi2 354 <.001
2s-list12 32.6  <.001

Table 7.9: Significant usability differences. The more usable conditions are in the cond 2 column. The left-
hand side shows agreement with password creation and recall being difficult. The right-hand size shows
Part One recall timing (for participants who correctly entered their password on the first try) and password
storage.
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7.5 Discussion

This section discusses our findings from both studies. We succeeded in finding password-composition
policies that offer advantages over the traditional comp$8 policy, without being worse in any metric
we analyzed. We also found that substring blacklists can improve password strength without mak-
ing recall more difficult or error-prone. The following sections summarize our findings, discuss
findings between studies, and provide recommendations for service providers.

7.5.1 Results Summary

We conducted two studies on password-composition policies that require longer passwords. Ta-
ble 7.10 shows security and usability metrics from both studies. For each metric, each other
condition is compared with the base condition for its study — comp8 for study I and 3classi?2
for study II. The darker red color indicates an unfavorable significant comparison with the base
condition, and the lighter blue color indicates a favorable comparison.

Study I examined password policies with different minimum lengths, and policies that com-
bined length and character-class requirements. Conditions 3class2 and 2word16 compared favor-
ably to the traditional compS8 policy. Their passwords were easier to create and to recall. Further,
their passwords were less likely to be guessed after 10'? guesses, and no more likely after 108
guesses. Other conditions in the study had advantages, but compared unfavorably with comp8 in
one or more metric.

Study II examined conditions that added further length and character-class requirements to
2class12. Adding the blacklist or pattern requirement to 2classi2 made the resulting passwords
more secure. The pattern requirement made password creation and recall more difficult and error-
prone. The blacklist requirement made passwords more difficult to create, but did not make recall
more difficult.

7.5.2 Comparing 2word16 and 2s-list12

Passwords in both 2word16 and 2s-list12 were more secure than those in 3classi2, without being
more difficult to recall. This is a compelling reason to compare 2word16 and 2s-list12. However,
we collected data for study I and study II at different times. To determine whether we could
reasonably compare 2word16 and 2s-list12 directly, we compared the set of 3classi2 participants
who finished Part Two of either study. These two sets of 3classi2 participants did not differ
significantly in password strength, difficulty with password creation or recall, or attempts needed
to create or recall their passwords (p < .1). The similarity of 3classi2 between studies made us
comfortable comparing 2word16 and 2s-list12 in this subsection.

We compared the 981 2wordl6 participants who finished Part Two of study I to the 648
2s-list12 participants who finished Part Two of study II. After 10® guesses, their proportions of
guessed passwords did not differ significantly (x?=2.012, p=.156). After 10'? guesses, 2word16
passwords were less likely to be guessed (6.3% to 10.5%) (x3=8.697, p=.003). Participants in 2s-
list12 were less likely to find password creation difficult (27.3% to 35.2%) (X%:10.695, p=.001).
and took fewer attempts to create their passwords, (1.8 to 2.0 mean attempts) (KW x2=15.666, p
<0). There was no significant difference in finding password recall difficult (x2=2.892, p=.089) or
part-two recall attempts (KW x2=0.047, p=.829). Neither condition stood out as clearly superior.
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Study I
comp8 83.0 56.9 24 328 1.1 7.1 1.7 132 393 3.5 248
basicl2 945 454 1.5 152 1.1 6.2 1.6 11.6 274 9.6 28.8
basicl6 939 499 1.8 285 1.1 7.4 1.6 137 30.1 7.0 13.1
basic20 93.9 50.0 1.9 352 1.2 9.0 1.6 | 153 329 4.5 7.5
2wordl2 92.0 514 1.9 219 1.1 6.8 1.6 131 31.0 6.6 242
2wordl6 92.1 513 2.1 347 1.1 8.4 1.7 146 36.8 2.0 6.7
3classi2 92.0 549 1.5  26.0 1.1 7.4 1.7 148 353 48 17.1
3class16 90.5 60.2 1.9 @ 403 1.1 8.8 1.7 | 162 429 0.8 2.7
Study II

3class12 92.0 527 1.6 241 1.1 1.7 1.8 15.28 36.0 39 165
2class12 933 50.8 1.6 25.1 1.1 7.2 1.7 15.09 354 28 164
2class16 90.4  56.7 1.8 40.1 1.2 8.9 1.7 18.60 38.5 1.2 32
2list12 919 596 1.8 328 1.1 8.0 1.7 1497 35.7 0.4 9.5
2s-list12 90.5 56.5 1.9 274 1.1 7.7 1.8 15.64 326 0.8 10.6

2patterni?2 88.7 | 61.7 24 468 1.1 8.8 1.7 19.00 47.4 0.7 5.7
2list-parti2 | 87.4  64.0 24  50.0 1.1 8.4 1.7 18.66 | 49.1 0.1 29
2s-list-patt12| 86.0  67.5 26 502 1.1 8.7 1.7 1938 49.0 0.3 2.6

Table 7.10: A summary of findings. Study I results are shown first, with each condition compared to comp$.
Study II results compare each condition to 3classi2. Lighter blue indicates being significantly better than
the control, and darker red indicates being worse. No shading indicates no significant difference.

7.5.3 Create a Substring Blacklist

Using a substring blacklist made passwords more secure without making recall more difficult.
The ideal contents of a substring blacklist depend on context. For example, passwords in our
studies often contained the substring “turk” because we conducted them on MTurk. Most websites
would not benefit from having “turk” in their substring blacklist, unless they were websites about
Constantinople.

Given a set of known passwords, creating an optimal set of k substrings to preclude the maxi-
mum number of passwords from the set can be reduced to the maximum coverage problem, which
is known to be NP-hard. Let each password be an element. Each substring can be considered to
be a subset of those passwords. Any password containing that substring is considered to be in the
subset of elements associated with that substring. The objective then becomes to create a blacklist
of k substrings (or subsets) such that the maximum number of passwords (elements) is covered.

Our technique for creating a substring blacklist from a password corpus might be useful to
service providers. We first created a list of all password substrings with lengths between four and
the length of the shortest password in the corpus. Then, we removed from the list any substring
in fewer than 1% of passwords. This can be adjusted to increase or decrease the final blacklist
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size. We then made a second pass through the list and removed any substrings that did not occur
in at least 1% of passwords without being part of a larger substring in the list. For example, if
“password” and “sword” are both on the list, we would remove “sword” unless it appears in 1%
of passwords outside of “password.”

We applied this blacklist-creation algorithm to the 289,039 passwords with at least eight char-
acters in the Yahoo password set [32]. The only two substrings common to at least 1% of these
passwords were “1234” and “love.” An algorithmic approach to creating a substring blacklist can
lead to over-fitting, and we recommend manually improving the blacklist. This can include, for
example, adding the name of the website and other terms related to the service.

7.5.4 Recommendations for Service Providers

Although password policies similar to comp§ are traditionally considered “strong,” 3classi2 and
2wordl6 were both more secure and more usable. Therefore, our findings suggest that service
providers currently using a policy similar to comp8 can increase both security and usability for
their users. We found that 2classi2 and 3classi2 had very similar usability and security results.
In fact, 90% of 2classi2 participants created passwords that met the 3classi2 requirements.

The blacklist requirement made passwords less likely to be guessed. It made passwords more
difficult to create, but not more difficult to recall. Therefore, the blacklist requirement is promis-
ing for settings in which password creation is generally not frequent, and that require strong pass-
words. It may also be promising for institutions, such as universities, that are unlikely to turn away
prospective users by having more onerous password policies.

We also found that a number of the requirements we studied had downsides that limit their use-
fulness to service providers. Policies with length as their only requirement were generally usable,
but many participants in with those policies made easily guessed passwords. While 3classi6 led to
fairly strong passwords, it was significantly less usable than comp8. The pattern made passwords
more difficult to guess, but also made passwords more difficult to create and to recall.
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Chapter 8

Can Creation-Time Feedback Help
Users Create Passwords?

8.1 Introduction

Chapters 6 and 7 have explored password-composition policies for user-created passwords. Com-
pared to a simple policy that requires only eight characters, we found that stricter policies lead to
stronger passwords. On the other hand, users often struggled to create a password meeting com-
plex password requirements. In this paper, we explore requirements feedback: real-time password-
creation feedback telling users whether they have met password-composition requirements. We
intend this to help users create passwords that meet strict password-composition requirements.
Some service providers already offer requirements feedback: For example, Yahoo displays green
check marks indicating satisfied requirements (Figure 8.1). Another mechanism this chapter ex-
plores for helping users create passwords that meet strict requirements is guidance: guiding users
through a multi-step password-creation process. An example of guidance used in practice, from
Dashlane, is in Figure 8.2.

Previous work on user-facing feedback has focused specifically on password meters that pro-
vide estimates of password strength [23,94]. In this chapter, we present the first scientific anal-
ysis of the usability of requirements feedback and guidance mechanisms intended to help users
successfully navigate difficult requirements. Using a 6,435-participant, between-subjects online
study, we considered real-time requirements feedback for three strict composition policies. For
one of these policies, we also examined two approaches to multi-step password-creation. In guid-
ance, participants were guided to enhance a simple password by adding components until it met
all requirements. In insertion, inspired by Forget et al. [29], participants created a simple pass-
word and the system inserted random characters to meet all requirements. We tested how these
approaches affect users’ ability to create conforming passwords quickly and correctly, users’ per-
ceptions of these approaches, and how the approaches impact the security and memorability of the
resulting passwords.

We found that requirements feedback helped participants create passwords meeting strict re-
quirements without making errors, and in some cases gave participants more confidence in the

This chapter is a partial reproduction of [82], co-authored with Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Alain Forget, Saranga Komanduri, Michelle Mazurek, William Melicher, Sean M. Segreti, and Blase Ur.
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username2study

Please use: v 8 to 32 characters v Numbers

Figure 8.1: An example of real-time password-creation feedback in the wild, from Yahoo.

Choose a strong password

Choosing a secure, easy-to-remember password is easier than you think!

Choose a strong password

4 Type a sentence or phrase you know you can remember easily.
Example: My favorite musical instrument is the guitar

Choosing a secure, easy-to-remember password is easier than you think! R . R N R

You cannot step into the same river twice Heraclitus circa 500bc

Type a sentence or phrase you know you can remember easily. 2 Choose a number with at least two digits that means something to you

Example: My favorite musical instrument is the guitar Example: Woodstock took place this year (please don't choose your birthday)

You cannot step into the same river twice — Heraclitus circa 500bc 500

Choose a strong password

Tadal Here is a possible strong password based on the information you entered. To
remember it, just think to the sentence and the number you entered previously

Ycs500itsrtHc5 Generate another one

You cannot step into the same river twice —.. 500

Now let's try it

Figure 8.2: An example of a multi-step password-creation process, from Dashlane.

strength of their passwords. Passwords created with requirements feedback were as strong as
those without. Thus, requirements feedback may help make complex password-composition re-
quirements, including those studied in prior chapters, more palatable to users.

Compared to having participants create a password under a strict policy in a single step, both
the guidance and insertion techniques led to a reduction in password security. While user senti-
ment toward the process of creating passwords with guidance was more positive than creating a
password without guidance, the resulting passwords were less likely to exceed the stated require-
ments and more likely to be cracked after a large number of guesses. Likewise, randomly inserting
characters into passwords leaves them vulnerable to a brute-force attack across the inserted charac-
ters. Overall, our results demonstrate that looking only at password requirements is insufficient, as
the presentation of those requirements, including requirements feedback and guidance, can affect
both usability and security. This finding suggests that the password-composition policies studied
in previous chapters can benefit from requirements feedback.

We begin by discussing our research questions in Section 8.2. We discuss our conditions
in Section 8.3. We then present our usability and security results in Section 8.4. Finally, we
discuss the implications of our findings for system administrators managing password-creation
mechanisms in Section 8.5.
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8.2 Research Questions

In this section, we present the research questions that our study addresses. The unifying theme
behind these questions is examining how strict password requirements can be made more usable
through visual elements, requirements feedback, guidance, and automatic insertion of random
characters. All of the research questions in this study were applied to passwords with requirements
that include at least 12 characters and 3 character classes — we call these the base requirements.

Question QQ1: How do the blacklist and pattern requirements affect password security and
usability when applied to requirements that already demand longer passwords with multiple char-
acter classes? The blacklist requirement prohibits passwords from containing any substring in
a 41,329-string blacklist. Pattern requires that passwords begin and end with a lowercase letter.
These requirements are grounded in prior work that has found users often include common sub-
strings in passwords, and often begin and end them with required non-lowercase character classes
(Chapter 7). Based on previous findings in Chapters 6 and 7, we expected adding either require-
ment to the base requirement would increase strength and decrease usability.

Question ()2: Does an organization-branded look-and-feel help users better create or recall
passwords with length and character class requirements? We collected data in two conditions that
displayed the same information and had the same requirements, but differed in their branding and
text color. Our base condition took its look-and-feel from a university, including its wordmark and
color scheme, while the base-plain condition used the default HTML rendering. We wondered if
the distinct visuals of the former may help participants recall their passwords, perhaps by acting as
a memory cue [17]. This has real-world implications because users often create and subsequently
recall passwords on websites with distinct branding, and select predictable passwords based on
such visual cues [17].

Question QQ3: How does requirements feedback affect password creation, recall, and strength
when applied to strong password requirements? We compared sets of conditions that differed
only in whether participants received real-time requirements-compliance feedback during pass-
word creation. We examined the effects of this requirements feedback on password security and
usability. We compared passwords with only the base requirement to those also using the blacklist
or pattern requirement.

Question Q4: Does a three-step password-creation process, using either guidance or in-
sertion, make it easier to create passwords that have strict requirements? We compared three
conditions with the base and pattern requirements that included requirements feedback. One con-
dition asked participants to create passwords in a single step, while two conditions used three
steps. In one of the three-step conditions, we guided participants through a password-creation
process (guidance) such that they created a simple password and then were asked to add more
characters. In the other three-step condition, participants created a simple password and then we
randomly inserted two more characters (insertion). The insertion mechanism is inspired by [29]
and is explained in more detail in Section 8.3.

8.3 Methodology

Next we discuss our data-collection and analysis procedures. Our protocol is described in Chap-
ter 4, using the SHELF framework discussed in Chapter 3.
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Condition  pattern  blacklist feedback brand 3-step

Base University

Base+ v University

Blacklist v University

Blacklist,+ Ve Ve University

Base-plain Plain

Pattern v University

Pattern,+ Ve v University

Guide v v University ~ Participant adds
Insert v v University ~ System adds

Table 8.1: Requirements of each condition. All require at least 12 characters and three character classes.
The blacklist requirement prohibits certain substrings in passwords. Pattern requires starting and ending
with lowercase letters. 3-step uses a multiple-step process to create the password.

8.3.1 Measuring Password Strength

Our cracking procedures are described in Section 4.2. We included in our training data words from
the Google corpus [10] and data from prior studies. We used the PCFG algorithm to make guesses
with at least twelve characters and three character classes, as required by all of our conditions.
Some of our conditions required passwords to begin and end with a lowercase letter; these were
trained as a separate group and only guesses starting and ending with a lowercase letter were made.
We used two folds for each group of passwords being cracked and generated guesses to at least
2 x 10'3 per condition.

Our Insert condition, detailed in Section 8.3.2, asked participants to create a password of at
least ten characters that started and ended with a lowercase letter. The system then added ran-
dom characters of 43,200 different possible combinations. At first, the traditional PCFG approach
was ineffective against Insert, cracking only one password after 10'? guesses. However, we then
took a different cracking approach. We used the PCFG algorithm to crack the pre-enhancement
passwords, and then multiplied the number of guesses used to guess the pre-enhancement pass-
words by 43,200. This simulated an attacker who knows the random-character insertion algorithm
and brute-forces through all possible permutations. Our security results are based on this more
effective technique in order to simulate a more powerful and aware attacker. As with the other
conditions, we performed two-fold cracking on this condition.

8.3.2 Conditions

Conditions, listed in Table 8.1, were assigned round-robin. All conditions share the base require-
ments — that passwords have at least 12 characters and three character classes. Chapter 7 suggests
these are usable yet strong requirements.

8.3.3 Password Creation in One Step

Base used only the base requirements. Pattern adds the pattern requirement that passwords begin
and end with lowercase letters, as shown in Figure 8.3. Blacklist also contains the blacklist re-
quirement that passwords not contain substrings from a 41,329-string blacklist, as follows:
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Password requirements:

o Include at least 12 characters (Your password contains 9 characters

Password requirements: but 12 are required.)
« Password must both begin and end with a lowercase letter (a-z)
¢ Include at least 12 characters (Your password must begin and end with a lowercase letter)
« Password must both begin and end with a lowercase letter (a-z) « Include at least 3 of the following: (Your password contains 2 types
o Include at least 3 of the following: of characters but 3 are required.)
o A lowercase English letter o A lowercase English letter
o An uppercase English letter o An uppercase English letter
o Adigit o Adigit
o A symbol (something that is not a digit or an English letter) o A symbol (something that is not a digit or an English letter)
Choose a password: eecccccee Choose a password: eesssscee
Re-enter your password: eecccccce Re-enter your password: eecsccsce
Continue Continue

Figure 8.3: Password-requirements presentations for Pattern and Pattern.,.; as “password!” is entered.

- 123!, amazon, character, monkey

- number, survey, this, turk

- Any year between 1950 and 2049

- The same character four or more times in a row
- Any four consecutive characters from password
- Any four sequential digits

- Any four sequential letters in the alphabet

- Any four consecutive characters on the keyboard

Base.;, Blacklist,;, and Pattern,, are analogues of the above three conditions, except they
employ requirements feedback. As participants entered their passwords, listed requirements were
accompanied with either a green check mark (for a fulfilled requirement) or a red message in-
dicating why the requirement is not fulfilled. A comparison between Pattern and Pattern,; is in
Figure 8.3.

This feedback is consistent with the recommendations of Moshfeghian and Ryu, who exam-
ined popular websites and found many of them presented poor guidance. The recommended using
instructions with clear language near password fields, providing real-time feedback, and using
red-colored feedback to indicate errors [63].

Base and our other conditions are displayed with Carnegie Mellon University’s branding (col-
ors, fonts, and wordmark). Base-plain is identical to Base, except it employs no branding, instead
using default HTML rendering, to address Q2.

8.3.4 Password Creation in Three Steps

While participants in the aforementioned seven conditions created a password in one step, two
conditions — Guide and Insert — employed a three-step process. Both use requirements feedback
and led to passwords meeting the same requirements as Pattern,;. The first two steps of Guide are
shown in Figure 8.4, and those of Insert are in Figure 8.5.

In Step 1, participants were asked, “To start, please enter a password with at least 10 characters.
It can be a word, and it needs to start and end with a lowercase letter.” In Step 2, passwords were
enhanced to meet the requirements of Pattern. In Guide, participants were shown their password in
an editable text field and asked to enhance it until meeting the requirements. In Insert, participants
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Password Creation Step 2 of 3: Make your password stronger

In order to enhance security, add two more characters to the middle of
your password. Add two characters that aren't lower-case letters, and be
sure not to add them to the beginning or end of your password. Your
modified password needs to have at least 12 characters, three different

In order to help you create a secure password, we will guide you through a types of characters, and still needs to start and end with a lowercase letter.

3-step password-creation process. On this screen, you will create a « Include at least 12 characters v

password with at least ten characters. Then, we will ask you to add « Password must both begin and end with a lowercase letter (a-z) v
additional characters to increase its strength. Third, we will ask you to type « Include at least 3 of the ing: (Your p. d contains 1
in the improved password. type of character but 3 are required.)

Password Creation Step 1 of 3: Create a simple password A lowercase English letter

An uppercase English letter
A digit

.
To start, please enter a password with at least 10 characters. It can be a :
o A symbol (something that is not a digit or an English letter)

word, and it needs to start and end with a lowercase letter.

Password requirements:
Please type
o Include at least 10 characters v° your new,

o Password must both begin and end with a lowercase letter (a-z) v/ enhanced fourmongeese

password
Choose a password: essccsccccce here:
Continue Continue

Figure 8.4: The first two steps of password creation in Guide.

In order to help you create a secure password, we will guide you through a

3-step password-creation process. On this screen, you will create a Password Creation Step 2 of 3: Make your password stronger
password with at least ten characters. Then, we will add additional

characters to increase its strength. Third, we will ask you to type in the In order to enhance security, we have added two random characters to
improved password. your password.

Password Creation Step 1 of 3: Create a simple password Your new password is

To start, please enter a password with at least 10 characters. It can be a f U
word, and it needs to start and end with a lowercase letter. O u rmo n g e e S e

Password requirements:

Please type
o Include at least 10 characters v° our ne\:lp
o Password must both begin and end with a lowercase letter (a-z) v/ Y !
enhanced  fOourmongeese
password
Choose a password: eccccsccccce here:
Continue | Continue |

Figure 8.5: The first two steps of password creation in Insert.

were shown their system-enhanced password with the two new characters in green. Participants
saw a text box with their non-enhanced password and were asked to modify it to match what was
above. In Step 3, we asked participants to confirm their passwords in a blank password field.

To insert two random characters in Insert, we first selected two characters of two different
character classes, chosen from 9 symbols @Q!$ « #. — &_, 8 possible digits, and 24 uppercase
letters (removing O, 0, I, and 1, since they may be confused with each other). We then inserted
these characters between the first ten characters of the initial password. There are 960 different
ways to choose characters of two different character classes from these three sets (with order
mattering). There are 45 different ways to select two spaces between the first ten characters. Thus,
there are 960 x 45 = 43, 200 different ways of inserting characters.
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. L . . Creation
Creation errors Creation time Creation difficult .
annoying
condition pairs mean p-val med(sec) p-val % agree p-val % agree p-val
Q1: Impact of blacklist and pattern requirements
Base — Blacklist 0.7-08 .152 6188 <001 24-32 .002 55-61 212
Base — Pattern 07-15 <001 61-122 <001 24-50 <.001 55-77 <.001

Blacklist — Pattern 08-15 <001 88-122 <.001 32-50 <001 61-77 <.001
Q2: Impact of branded look-and-feel

Base — Base-plain 0.7-0.6 .039 61 - 60 1 24 - 23 1 55-57 1
Q3: Impact of password-creation feedback
Base — Baser 0.7-03 <.001 61 -60 1 24-22 1 55-55 1
Blacklist — Blacklist,:  0.8-0.4 <.001 88 — 86 621 32-29 618 61-56 281
Pattern — Pattern,; 1.5-0.6 <.001 122 -109 019 50-49 1 77 -1717
Q4: Impact of guiding and insertion through creation
Guide — Pattern, 08-0.6 .114 116-109 036 29-49 <001 67-77 <.001
Insert — Pattern,. 07-06 .023 101-109 .019 17-49 <001 45-77 <.001

Table 8.2: Password-creation metrics and comparisons.

8.3.5 Statistical Testing

The statistical tests used are described in Section 4.4. Rather than testing each possible pair of
conditions, we test selected pairs of conditions to help answer our research questions. Except
for (Q1, all comparisons are between conditions that have the same password requirements. The
pairwise comparisons that we perform are as follows.

(Q1: Base—Blacklist; Base—Pattern; Blacklist—Pattern

QQ2: Base—Base-plain

QQ3: Base—Base,; Blacklist-Blacklist,; Pattern—Pattern,

Q4: Pattern,.—Guide; Pattern,,—Insert

8.4 Results

In this section, we present the findings of our study. We first discuss our participants in Sec-
tion 8.4.1. We present password strength in Section 8.4.2, and user perception of password
strength in Section 8.4.3. We present usability results for password creation and recall in Sec-
tion 8.4.4. Result metrics and comparisons for password creation are summarized in Table 8.2.
Metrics for password characteristics are in Table 8.3. Other metrics are summarized in Table 8.4.

8.4.1 Participants

We collected data in May and June 2014. A total of 7,262 participants began our study and
6,435 finished Part One. All who finished Part One were invited to return for Part Two. 3,934
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E d min cl Password length Cracked after Storage
xceed min class g 2 % 10*® guesses g
condition pairs % p-val  mean char  p-val % p-val % p-val
Q1: Impact of blacklist and pattern requirements
Base — Blacklist 71-67 176 13.6-13.8 285 28-21 .012 49-57 .091
Base — Pattern 71-57 <001 13.6-141 <001 28-8 <001 49-69 <.001

Blacklist — Pattern 67-57 <001 13.8-141 .003 21-8 <001 57-69 .003
Q2: Impact of branded look-and-feel

Base — Base-plain 71-73 449 13.6 -13.5 1 28-30 835 49-52 1
Q3: Impact of password-creation feedback

Base — Base,+ 71-53 <.001 13.6-13.6 1 28 - 30 .835 49 - 50 1

Blacklist — Blacklist,, 67-51 <001 13.8-13.6 285 21-24 525 57-55 1

Pattern — Pattern,. 57 -39 <.001 14.1-14.2 1 8-10 525 69 -61 154
Q4: Impact of guiding and insertion through creation

Guide — Patterny 22-39 <001 13.8-142 .008 16-10 .02 62 - 61 1

Insert — Patterny 15-39 <001 13.7-142 <001 29-10 <.001 76-61 <.001

Table 8.3: Password characteristics and comparisons.

total participants finished Part Two within three days of being invited. Among our 6,435 Part One
participants, the median age was 28 years. 99.2% of our participants disclosed their gender; among
these, 46.7% were male and 52.5% female. 95.7% of respondents stated their highest degree, of
which 45.9% held a Bachelor’s degree or higher.

Participants in Pattern,; (84.7%) who began Part One were less likely to finish it than those
in Guide (90.8%) or Insert (93.8%) (HC FET, p=.001). The higher dropout rates may suggest
greater user difficulty and frustration. 64.1% of participants who completed Part One returned
for Part Two within five days and this did not vary by condition (X§=2.77, p=0.948). 95.3% who
started Part Two within five days finished and this too did not vary by condition (y2=4.64, p
=0.795).

8.4.2 Password Strength

We observe an overall cracking rate of 21.7% after 2 x 10'3 guesses, varying significantly by
condition, as shown in Table 8.3. The percentage of passwords cracked after each guess are shown
in Figure 8.6. As observed in Table 8.3, we found no effect of real-time requirements-compliance
feedback on password strength (see (J3). On the other hand, both Pattern and Blacklist performed
better than Base, and Pattern performed better than Blacklist (see ()1). Passwords created under
Fattern,; were significantly less likely to be cracked than those created under Guide or Insert.
Thus our three-step password creation processes both decreased password strength compared to
creating a password with the same requirements in a single step (see (Q4).

While Insert was vulnerable to the partial-brute-force approach described in the Methodology,
it did perform well against a more traditional PCFG attack. Using a traditional PCFG approach,
after 10'2 guesses, over 5% of each other condition had been cracked, compared to 0.1% of Insert.
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Finished Part Part One recall Part two recall Part two recall
One time attempts difficult
condition pairs % p-val med (sec) p-val mean p-val % agree p-val

Q1: Impact of blacklist and pattern requirements
Base — Blacklist 88 — 88 1 10-10 1 19-19 1 36-43 368
Base — Pattern 88-84 131 10-11 <001 19-17 244 36-54 <.001
Blacklist — Pattern 88-84 131 10-11 004 19-17 83 43-54  .004

Q2: Impact of branded look-and-feel

Base — Base-plain 88 -91 384 10-9 1 1.9-19 1 36 -32 944
Q3: Impact of password-creation feedback

Base — Base.; 88 — 89 1 10-10 1 19-19 1 36 -35 .983

Blacklist — Blacklist,; 88 — 89 I 10-10 1 1.9-2.0 1 43-40 983

Pattern — Pattern,; 84 — 85 1 11-11 1 1.7-1.7 1 54 - 46 .094
Q4: Impact of guiding and insertion through creation

Guide — Patterny 91-85 .001 10-11 81 2.0-1.7 088 42-46 944

Insert — Pattern,+ 94 -85 <.001 12-11 ] 20-1.7 .146 53 -46 .26

Table 8.4: User-behavior metrics and comparisons.

However, Insert appeared much weaker once we instead applied PCFG to its pre-splice passwords
and multiplied the resulting guess numbers by the total number of splicings, 43,200, to simulate
brute-forcing the possible splicings. We see that using a relatively small amount of random text to
increase password strength is vulnerable to being brute forced.

Our study used 9 different symbols, chosen to be distinct and easy to recognize. While increas-
ing the number of symbols would have increased security, it would not have been a substantial
improvement. Using 19 symbols rather than 9 would have resulted in 72,000 different insertion
configurations instead of 43,200. Using 32 symbols would have led to 109,440 different configu-
rations. Using the same cracking technique of using PCFG to guess pre-enhancement passwords
and then brute-forcing the inserted characters, using 32 symbols would lead to a cracking rate of
26.1%, a minor improvement compared to the current 28.6%.

Exceeding Minimum Requirements

Beyond cracking results, we looked at the structural components of passwords. While all pass-
words required 12 characters and 3 characters classes, participants were free to exceed either. The
percentage of participants who exceeded the minimum three-character-class requirement is shown
in Table 8.2. Pattern,, participants were more likely to exceed the minimum than those in Guide or
Insert. In addition, we found that participants in all three real-time-feedback conditions were less
likely to use four character classes than those in the same conditions without real-time feedback.
This may be due to participants with real-time feedback feeling that they are “done” once they see
the green check mark beside the requirement (see (3).

Although all conditions required a minimum of 12 characters, 59.1% of participants created
longer passwords, with a mean password length of 13.8 characters. Length by condition and sig-

99



Chapter 8. Can Creation-Time Feedback Help Users Create Passwords?
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Figure 8.6: The percentage of passwords cracked in each condition by the number of guesses made in log
scale. Our cutoff for guess numbers is 2 x 10'3. Significant comparisons are in Table 8.4.

nificant differences are shown in Table 8.2. While both Guide and Insert had shorter passwords
than Pattern,; (see (Q4), we did not see significant length differences between conditions with
and without real-time feedback. Previous work found that increasing password length by one
lowercase character makes a password 70% as likely to be guessed [58]. Thus, the length dif-
ference between Pattern,+ and the 3-step conditions may contribute substantially to the security
differences between these conditions.

8.4.3 User Perception of Password Strength

In order to measure perception of how feedback affected password security, we asked our partici-
pants in a Likert question whether they agreed with the statement, “The feedback and instructions
I saw while creating my password led me to create a stronger password than I would have oth-
erwise”. Responses are shown in Figure 8.7. The only significant pairwise differences were that
Fattern,; participants (84.3%) were more likely to agree than those in either Pattern (74.2%) or
Insert (67.4%) (HC FET, p<.001). One possible explanation for the low agreement from Insert
participants is that they anticipated creating a weaker initial password, because they expected to
have its strength increased. Alternatively, they may not have perceived much security in adding
two random characters (see (Q4).

For further insight into participant perception of password strength, we asked whether they
agreed with, “If my main email provider had the same password requirements as used in this
study, my email account would be more secure”. Responses are shown in Figure 8.7. The sole
pairwise significant difference was that participants in Pattern,; (64.9%) were more likely to agree
than those in Insert (51.2%) (HC FET, p<.001). No other comparison was significant. 79.6% of
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Feedback Made Stronger Study More Secure than Real
base 1 ]
base-rt 1 [ ]
blacklist 1 [ |
blacklist-rt B ]
base-plain | | [ ]
pattern . .
pattern-rt I .
guide 1 | |
insert . -
0% 100%0% 100%
Il Strongly agree [l Agree Neutral Disagree [l Strongly disagree

Figure 8.7: Participant agreement with “The feedback and instructions I saw while creating my password
led me to create a stronger password than I would have otherwise” and “If my main email provider had the
same password requirements as used in this study, my email account would be more secure”.

our participants indicated that their primary email account was through a web email provider. The
relatively low agreement for this question is surprising given that the study requirements are much
more demanding than most web email providers.

8.4.4 Usability

This section presents results for usability metrics and self-reported sentiment. Section 8.4.4 fo-
cuses on the password-creation process. Section 8.4.4 looks at Part One recall, and Section 8.4.4
looks at Part Two recall.

Password Creation

To understand password creation, we begin by looking at self-reported user sentiment. Then, we
look at password creation time and whether and how participants fail to create a password meeting
their requirements. Finally, we look at the effects of web-page branding.

Figure 8.8 illustrates participants’ agreement with password creation being difficult and annoy-
ing respectively, with pairwise differences in agreement shown in Table 8.2. We did not detect any
significant difference in perceived password-creation difficulty or annoyance between a condition
and its real-time-feedback counterpart. Thus, our real-time feedback did not cause participants to
perceive password creation as any more or less difficult or annoying (see (J3). Creating a password
under Pattern,; was both more difficult and more annoying than doing so under either Guide or
Insert. This suggests that our 3-step conditions reduced the difficulty and annoyance of the pattern
requirement (see (Q4).

Table 8.2 shows significant differences in how long participants took creating their passwords.
Pattern,, took significantly less time than Guide but significantly more time than Insert. This may
be due to the fact that Insert participants did not have to decide which special characters to include
(see ()4). Furthermore, requirements feedback helped participants create passwords in Pattern
more quickly (see (J3).

Table 8.2 compares how many errors participants made while creating a password in each
condition. We consider creation errors a metric of password-creation difficulty. We observe that
requirements feedback helps participants successfully create a password with fewer errors for all
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Creation Difficult Creation Annoying
base - -
base-rt | ] | ]
blacklist ] [ ]
blacklist-rt [ ] [ ]
base-plain | ] |
pattern [ ] 1
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Figure 8.8: Participant agreement with “Creating a password that meets the requirements given in this study
was difficult/annoying”.

three pairs of conditions with requirements feedback. This suggests that real-time requirements-
compliance feedback helps participants to adhere to strict password requirements (see (J3).

To understand better the impact of guiding and insertion (see (J4), we examined the types of
errors users made when creating passwords in each of our four conditions that had pattern re-
quirements. The Pattern condition had the highest error rate of any condition, with an average
of 1.5 creation errors per participant (across all of their creation attempts). The most common
error by far was failure to meet the pattern requirement, with an average of 1.1 pattern errors per
participant. With the addition of realtime feedback, participants in the Pattern,; condition made
significantly fewer errors, with only .6 errors and .3 pattern errors per participant. While partici-
pants in the Guide condition had a significantly lower dropout rate and reported finding password
creation easier and less annoying than Pattern,, participants, they did not make significantly fewer
errors or create their passwords more quickly. Likewise, we saw similar sentiment improvements
for participants in the Insert condition as well as significant improvement in password creation
time, without a reduction in the overall error rate. In the insert condition there were an average of
.7 errors overall and .07 pattern errors. This analysis suggests that real-time feedback reduces the
high error rate associated with the pattern requirement, but our 3-step approaches did not result in
further error-rate reductions.

We did not observe any significant effects of Carnegie Mellon University branding (see QJ2).
To understand what impact branding may have had, we looked for the presence of context-related
keywords in both Base and Base-plain. Base was more likely to contain keywords related to the
university (1.3% to 0.7%), but the difference was not significant (X%:O.73, p=0.393). On the other
hand, Base-plain passwords were more likely to contain generic study-related keywords,! (2.3%
to 1.0%) but this was also not significant (X%=3.198, p=0.074).

Part One Recall

Participants were asked to recall their passwords in Part One after completing a brief survey.
92.9% of participants did so correctly on the first try, taking 1.1 attempts on average, with sig-
nificant pairwise differences between conditions. The median time for Part One recall was 11
seconds, and significant differences are shown in Table 8.4. Passwords in Pattern took signifi-

Tee 2

turk,” “amazon,” “mechanical,” “survey,
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study,” or “research”
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cantly more time to enter than those in either Base or Blacklist. This could be an indication of
participants struggling more to remember passwords created under these conditions.

Part Two Recall

In this section, we look at data collected from the 3,934 participants who returned for Part Two
within three days of being invited. 59.9% of participants successfully entered their password on
the first attempt, and this did not vary significantly by condition (y2=13.844, p=.086), as shown
in Table 8.4.

Participants who mentioned storing their passwords when asked in the surveys, or whom we
detected pasting or autofilling when attempting to recall their passwords are considered storage
participants. Others are considered no-storage participants. 58.5% of returned participants are
storage participants, with significant differences shown in Table 8.4. Participants in Insert were
more likely to store their passwords than those in Pattern,;. Likewise, those in Pattern were more
likely to do so than participants in either Base or Blacklist. It appears that the pattern requirement,
and the insertion of random characters, cause participants to be less able to memorize their pass-
words, or at least anticipate being less able to do so and therefore to write them down. 57.1% of
no-storage participants entered their passwords successfully in one attempt, and this did not vary
by condition (y2=12.189, p=0.143).

In addition to observing participants’ behavior during Part Two recall, we also asked whether
they agreed with the statement, “Remembering the password I used for this study was difficult”.
Significant differences are shown in Table 8.4. Pattern was significantly more difficult to recall
than either Base or Blacklist.

8.5 Discussion

We now address each of our research questions in light of our study’s findings. We evaluated three
approaches to help users cope with strict password-composition policies: requirements feedback,
guidance, and insertion. We found that requirements feedback helps prevent user errors while cre-
ating strong passwords. On the other hand, our multi-step password-creation processes, guidance
and insertion, both made password-creation easier, but resulted in weaker passwords. While prior
passwords research has often focused on which sets of requirements lead to strong passwords,
most past research has not looked at the impact of presentation and instructions (beyond password
meters), or at ways to help users cope with strict requirements. We believe these findings will
be valuable to service providers who wish to make their increasingly strict password-composition
requirements easier for users to swallow.

8.5.1 Q1: Impact of blacklist and pattern requirements

As expected, the blacklist and pattern requirements increase password strength but decrease us-
ability. Furthermore, the pattern requirement leads to more security but less usability than the
blacklist requirement. As shown in Table 8.3, Base passwords were significantly more likely to be
cracked after 2 x 103 guesses than Blacklist, which in turn were significantly more likely to be
cracked than Pattern.
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Among these three conditions, Pattern proved least usable: participants had more difficulty
both creating and recalling their passwords. We found that Pattern participants were error-prone
in password creation, and they reported finding password creation both difficult and annoying at
significantly higher rates (Table 8.2). Participants in this condition also spent more time recalling
their passwords in Part One and were more likely to store their passwords (Table 8.4). While error
rates during Part Two recall did not differ significantly, Pattern participants were more likely to
report difficulty in Part Two recall (Table 8.4). The usability differences between Blacklist and
Base were less pronounced, and are generally limited to password creation. Adding a blacklist
requirement may be a reasonable way to increase security with only modest usability losses during
password creation.

8.5.2 Q2: Impact of branded look-and-feel

We originally thought that branding would help users to remember their password (among the
many other passwords people must routinely manage), although security could suffer if users
created passwords that included words related to a brand. However, we found no evidence for
a difference between branded and plain presentation in any of our analyses. While we found no
difference with the branding we used, a different visual presentation might have had more impact.
Our branded design contained no images other than a Carnegie Mellon University wordmark.
Branding that included images, or a brand that was more familiar to participants may have had a
different effect. Further investigation into the effects of stronger branding on password behavior
could prove interesting.

8.5.3 Q3: Impact of password-creation feedback

Our findings show some upside and limited downside to giving participants requirements feed-
back. We found that requirements feedback made password creation less error-prone for all three
pairs of conditions we compared. As shown in Table 8.2, requirements feedback participants were
less likely to use a fourth character class. This may be due to the feedback giving users the feeling
of being “done.” In conditions without requirements feedback, participants may not have realized
when the requirements were met and so added additional character classes to be sure. While this
trend could potentially have some adverse effect on security, we found no significant difference in
guessability after 2 x 103 guesses.

In addition, adding requirements feedback appears to sometimes increase perception of pass-
word strength. This is valuable, because prior research has found that users who are more invested
in password security may make better passwords [58]. Overall, adding requirements feedback
seems to provide a reduction in user error, an increase in perception of strength, and little to no
impact on password security. Thus, requirements feedback seems to be a useful feature to add to
password creation interfaces.

8.5.4 Q4: Impact of guiding and insertion

We tested the impact of our 3-step conditions by comparing Pattern,; with both Guide and Insert.
All three conditions had the same requirements, but the latter two used an interactive three-step
process to create the password over several steps. Participants in Guide and Insert both found

104



8.5. Discussion

password creation less annoying and less difficult than Pattern, ¢, as seen in Table 8.2. They were
also more likely to complete Part One of the study.

However, despite all three conditions enforcing the same requirements, passwords in Guide
and Insert were significantly more likely to be cracked than those in Pattern,, — over twice as
likely in the case of Insert (Table 8.3). This is an interesting finding, because it demonstrates
that looking only at password-composition requirements, as a number of prior passwords-research
papers have done, is insufficient to paint an accurate picture of resulting security.

We observed that participants in the 3-step conditions made shorter passwords with fewer
character classes (Table 8.2), resulting in passwords that were more easily cracked. One possible
explanation for these weaker passwords is that participants did not feel a sense of ownership over
their passwords. Prior research has suggested that passwords are a way that users feel personally
responsibility for computer security [85]. Perhaps, this sense of ownership and responsibility
was diminished because the system appeared to be more of an active participant in the password-
creation process. Another explanation is that users may have trusted that the system was helping
them create a strong password, and may have focused on following the system’s instructions rather
than on trying to increase the security of their passwords.

Further research might explore whether other ways of guiding participants through password-
creation can retain usability gains without sacrificing security. For example, a variation on the
Guide condition might ask users to create a simple password with at least 11 characters, rather than
10, to account for the fact that users following a traditional 1-step password-creation process are
more likely to exceed minimum length requirements. Alternatively, the guidance might encourage
users to exceed minimum requirements by telling users that this is a good way to increase the
security of their password. The Guide condition that we tested specifically told users to add “two
more characters to the middle of your password” and did not suggest that they could add more
than two characters or that doing so would increase security even more. It is clear that the details
associated with password creation instructions matter and that instructions and procedures should
be tested to determine their impact on both usability and security.
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Chapter 9

A Reflection on our Collected Data

In the course of the studies presented in this thesis, we have collected data from 38,402 partici-
pants. Within each study, we use its data to contrast conditions. In this chapter, I examine data
from all four studies. This provides a better understanding of our usability metrics, and how those
metrics relate to one another. This also contributes a better understanding of the people taking
MTurk studies. Section 9.1 examines how observed metrics and survey responses correlate with
self-expressed user sentiment. Section 9.2 looks at participant demographics from across our four
studies. Section 9.3 reports on mobile device usage in our studies. And Section 9.4 looks at data
about real email accounts of our participants.

Several survey questions changed between studies. Therefore, several of our analyses used
only data from a subset of studies. I explicitly point this out in each case. In some analyses, I was
missing data for a few participants, and analyzed the rest.

9.1 Factors Correlating with User Sentiment

In this analysis, I used logit regression [79] to find correlation between self-reported user-sentiment
data, and other study factors. My objective was to learn more about how observed and self-
reported factors affected subjective participant experience. My analysis controlled for study and
condition. I included the 22,548 participants who finished Part Two of any study to have more
complete data for each participant in the analysis. Table 9.1 shows the regression factors.

I performed five separate logit regressions. Each regression used the same 33 independent fac-
tors and had a different binary dependent factor. The five binary dependent factors were agreement
with statements about study experience. These included three statements on password-creation (or
assignment) usability (e.g., “Creating a password that meets the requirements given in this study
was {annoying/difficult/fun}”); one on password-recall difficultly (e.g., “Remembering the pass-
word I used for this study was difficult”); and one on perceived password security (e.g., “If my
main email provider had the same password requirements as used in this study, my email account
would be more secure”). The exact wording of these statements varied between studies.

The 33 independent factors in each regression are in Table 9.1. These factors are based on ei-
ther observed behavior (e.g., password-recall attempts) or responses to survey questions. Because
I included participants from each study, I only included factors based on observations or questions
that were in all four studies. Some survey questions changed wording between studies. In those
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cases, | homogenized the questions and responses. The independent regression factors were taken
from 11 observations and survey questions. For multiple-choice and choose-all-that-apply survey
questions, each response option chosen by one percent of participants became a binary factor. I
removed 25 participants who were missing responses to a user-sentiment question. I removed
another 465 participants who were either missing a response to a question, or whose response was
not given by at least one percent of participants.

9.1.1 Analysis Results

Table 9.1 shows the regression factors and results. Table 9.1 also shows the average values for
independent factors. These include the mean value for numeric factors; the percentage true for
binary factors; and percent agreement for Likert factors. All but two of the 23 independent factors
were significantly correlated with at least one dependent factor.

For each independent factor, the p-value for correlation with each dependent factors is in grey.
If the correlation is significant, I show the logit regression coefficient. For binary independent
factors, a significant coefficient greater than one means that the independent factor being true is
correlated with the dependent factor being true and vice versa. For example, participants who
looked up their password and typed it in were 87% more likely to find password recall difficult.
For numeric independent factors, increasing their value by one is correlated with multiplying the
likelihood of the dependent factor being true by the amount of the coefficient. For example, for
each additional Part Two recall attempt, the participant was 36% more likely to find Part Two
recall difficult.

9.1.2 Analysis Discussion

Table 9.1 shows that many different factors correlate with user sentiment. Participants who found
remembering their own real email password difficult were more likely to have negative sentiment
about creating and recalling their study password. This suggests that there may be some segment
of the population who struggle with passwords in general. Future work might explore categorizing
users based on their comfort level with passwords.

Three of the survey questions in Table 9.1 had an option of “I prefer not to answer.” Only
two or three percent of participants chose this for any question. In each case, that response was
correlated with being less likely to agree with, “If my main email provider had the same password
requirements as used in this study, my email account would be more secure.” One possible ex-
planation is that a small segment of the study population is especially conscious of privacy and
security. They may be less willing to divulge information in our study, and more likely to create
stronger passwords for their real email accounts.

About a third of participants indicated entering their real email password several times per
day. These participants were more likely to find creating their study password fun, and less likely
to find it annoying. It is possible that these participants are more accustomed to working with
passwords, making their study experience more positive.

Older participants were less likely to find password creation difficult or annoying, and less
likely to find password recall difficult. Female participants were more likely to find password
creation difficult, and less likely to think their study passwords were stronger than their real email
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passwords. Participants without a technical background were less likely to find password creation
fun. This shows that demographic factors do affect the subjective participant experience.

Participants who entered their study passwords from memory found recall less difficult. Partic-
ipants who did not use the reminder were also less likely to find recall difficult. Participants who
took more tries to recall their password were more likely to find it difficult. These correlations
emphasize the link between behavior and sentiment.

This analysis has examined correlations between self-expressed user sentiment on the one
hand, and survey responses and observed user behavior on the other. While these correlations
sometimes appear as expected, other correlations were not obvious. The findings suggest that
passwords research should continue to collect both self-reported sentiment data and observed data.
They also highlight the importance of the “I prefer not to answer” option, because participants
selecting this option are infrequent but appear to have sentiment that differed from the majority
of participants. Because demographics correlated with sentiment in several ways, the findings
highlight the importance of continuing to collect demographic information.

The importance of the user-sentiment factors themselves varies by how the accounts are used.
For example, password-creation usability is more important for accounts in which users are re-
quired to change passwords more often. User perception of password security might be more
important for financial services, because users may be more likely to use those services if they
trust their security. Overall, these findings suggest that user sentiment is related to several fac-
tors. Finding a single observed variable that determined user sentiment would have made future
survey-creation easier. However, numerous factors appear to be connected with how users perceive
different steps in the password lifecycle.
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Factor Value Creation Recall
Annoying Difficult Fun Difficult Secure

Remembering the password I use for my real email account is difficult

Agree 7% 1.29 1.52 1.33 2.57
How often do you type in your real email password?

I prefer not to answer 2% 0.69 0.64 0.49 0.66

Several times per day 33% 0.85 1.25

Once per day 15% 1.14

Never 4% 0.72

Less than once a month 8% 0.78

Once per week 8%

Once per month 4%

A few times per month 12%
How did you just enter your password for this study?

I used a password manager 2% 0.50 0.58 0.67 0.68

I used the I forgot my password link 15% 0.57 2.81

I typed it in from memory 49% 0.24

I looked it up and typed it in 15% 1.64

I copied and pasted it 8% 1.55

My browser automatically filled it in 5%
Observed Factors

Creation attempts 2 1.73 1.53 0.83 1.12

Not Use Password Reminder 85% 0.58 0.73

Part two recall attempts 2 1.34

Part one recall attempts 1
Demographics

Age 31 0.98 0.98 0.99

Female 50% 1.23 0.88

I prefer not to answer 1% 0.51
Technical

No 77% 0.76

I prefer not to answer 2% 0.65
Storage Behavior

Yes, on paper 21% 0.75

Other 4% 0.62

Yes, electronically 23%

No 55%

Table 9.1: Correlated between factors and self-reported sentiment. P-values are in light grey for all factors

and coefficients are shown for significant factors (o = .01). Wordings are altered to fit the table.
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9.2 Demographics

We asked participants demographics questions in order to understand who was taking our studies.
In this section, I present a synopsis of that demographics data. This data serves to provide a
context for the results of our research. More importantly, it provides information about the MTurk
worker population. This can help other researchers contextualize their own MTurk research, and
help researchers creating studies determine whether MTurk is appropriate for their work.

Mean participant age was 30.0 years (median 27). 49.0% of participants were female and
49.8% male; 1.2% selected, “I prefer not to answer.” As a rough measure of technical background,
we asked, “Are you majoring in or do you have a degree or job in computer science, computer
engineering, information technology, or a related field?” Responses were “Yes” (22.6%), “No”
(75.3%), and “I prefer not to answer” (2.1%).

For the study in Chapter 6, we did not filter participants by country. SurveyGizmo automat-
ically performed country detection. People from over 100 countries participated in this study.
51.3% of the 8,000 participants were located in the United States. The next most common country
were India (29.5%), Canada (2.1%), United Kingdom (1.7%), Serbia (1.6%), and the Philippines
(1.4%). No other nation comprised one percent of our participants.

For the other three studies, we used MTurk to filter out participants not located in the United
States. Based on SurveyGizmo’s detection, 97.7% of participants were located in the United
States. However, a small proportion of participants, from over 100 countries, appear to have by-
passed MTurk’s country filter. The most common was India, with 0.2% of participants. This
indicates that MTurk does a fair job of filtering out users located outside the United States. How-
ever, if it is critical to a study that all participants be located within the United States, then it is
likely advisable to use a secondary check.

We asked participants in Chapters 7 and 8 “What is the highest level of education that you
have completed?” 34.1% of participants indicated a high school degree and 16.1% responded
with an associate degree. 32.8% of participants indicated a bachelor’s degree and 10.9% indicated
a more advanced degree. This shows a diverse range of educational backgrounds among our study
participants.

9.3 Mobile Device Usage

We collected user agent string data in SHELF and via SurveyGizmo. To determine which partic-
ipants were taking the study on a mobile device, we searched the user agent strings we collected
during the Part One survey for text that would identify a mobile device, as we described in Sec-
tion 5.3.1. For the first two studies, 1.1% of participants were using a mobile device in Part One.
For the latter two studies, this increased to 4.0%.

We also looked at mobile device usage for participants in the latter two studies who returned
for Part Two. Among participants who would return and finish Part Two, 3.5% used a mobile
device during Part One. When they returned for Part Two, 6.7% of those participants used a
mobile device. Some participants took Part One on a traditional device, and switched to a mobile
device for Part Two. A possible explanation is that some participants may have received an email
to return on their mobile devices, and took Part Two on that device.
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In the Part Two survey, in the studies in Chapters 7 and 8, we asked participants “On what sort
of computer or device have you just entered your password?” Of the 18,941 responses, 57.6%
responded with a laptop computer, 33.2% with a desktop, 4.9% with a smartphone, and 3.13%
with a tablet. The percentage of participants who reported using a mobile device is slightly higher
than the percentage we detected using a mobile device. Manually looking at their user agent
strings, there did not appear to be a sign that they were using a mobile device. Some participants
may have configured their devices to use non-mobile user agent strings to avoid being shunted to
mobile websites when browsing the web. Some participants may have been using mobile browsers
that did not indicate being mobile browsers. Further, some participants may have reported a small
laptop as a mobile device.

Part Two participants in Chapters 7 and 8 who reported recalling their password on a mobile
device took more attempts to do so (1.7 to 1.9 attempts) (KW X%:27.1 1, p<.001). They were not
more likely to find recall difficult (x?=0.321, p=0.571). These findings suggest that researchers
continue to monitor what kind of devices participants are using to recall their passwords. These
findings also suggest future work focused on how device usage affects password recall.

9.4 Real Email Passwords

Our studies asked participants to imagine creating a new password for their real email account. We
asked questions about their real email accounts both to prime them to think about those accounts,
and to learn more about those accounts. In order to understand the type of email accounts our
participants were using, we asked them during the studies in Chapters 7 and 8. The majority of
participants, 78.9%, were using a web email account. 8.1% were using a university account, and
3.9% were using a work account.

We asked participants who returned for Part Two whether they agreed with, “Remembering the
password I use for my real email account is difficult.” Only 7.1% of participants found recalling
their real email passwords difficult. Conversely, 35.3% of participants reported that recalling their
study passwords difficult. This difference could be the result of study password requirements
being more demanding than most real email service providers. However, this could also be the
result of participants being more familiar with their real email passwords.

Several questions asked participants how they entered their real email passwords. The first
two studies (presented in Chapters 5 and 6) asked participants in Part Two about password stor-
age. 53.7% indicated not writing down their real email password. 22.9% stored it electronically,
and 19.3% on paper. The latter two studies (presented in Chapters 7 and 8) asked participants
about how they most often entered their real email password. 69.0% of participants typed it from
memory. We also asked participants in the latter two studies which computer or device they most
often used to enter their password. The most common responses were a laptop (55.4%) or desktop
(33.7%) computer. Mobile devices were less common — smartphones were 6.3% and tables 2.5%.
These results help shed light on how users treat their real email passwords.

We asked participants in the first two studies how many characters of each class were in their
real email password. Based on median values, the average real email password had six lowercase
letters, two digits, and no uppercase letters or symbols. Because we thought participants might
be concerned about disclosing that much detail about their real email passwords, we adjusted this
question for the study presented in Chapter 7. That question asked participants to choose their
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password length from a range of options. The most common range was between seven and nine
characters (39.5%), followed by 10 to 12 (26.9%). 11.3% of participants preferred not to an-
swer, indicating that a sizable number of participants did not want to disclose potentially sensitive
password details. This recommends that passwords research offer participants the option to avoid
answering potentially sensitive questions, especially when those questions are not necessary for
answering the study’s research questions.

The studies in Chapters 5 and 6 asked participants, “Approximately how long ago did you last
change your real email password?” We changed this question slightly for the study in Chapter 7
to ask when they last created or changed their password. 17.1% of participants reported creating
or changing their password within the past month. Over a quarter of participants had done so
within the past six months. However 18.8%, had not created or changed their password within the
past year. These findings show a range of password-creation frequencies. System administrators
should consider how often their users create passwords when evaluating password-study results.
In particular, the more frequently users create passwords, the more password-creation usability
should be weighted.

In order to understand password-related behavior better, the study in Chapter 7 asked partic-
ipants with how many people they had shared their real email password. 35.1% of these 22,491
participants declined to answer this question. This emphasizes that many participants are uncom-
fortable answering sensitive password-related questions. Among those who did answer, 65.5%
shared it with no one else and 25.3% shared it with one other person. 5.5% shared their pass-
word with two people, and few shared it with more than two. The fairly high rate of sharing with
exactly one person might be somewhat explained by [89], which found that couples often shared
passwords as a sign of trust.

All of our studies have included password recall as a usability metric. This metric is more
important in contexts where users enter their passwords more often. We asked participants in Part
Two how often they typed in their real email password. 32.7% of participants reported typing in
their real email password several times per day and another 14.6% once per day. This suggests
that password-recall usability is an important metric for evaluating password policies. System
administrators should consider how frequently their own users enter passwords when applying
study results to their own systems.

The studies in Chapters 5 and 6 asked participants in Part Two, “Have you ever used the
password that you created for this study for any other account?” The majority, 74.2%, responded
that they had never used the password before. 19.3% reported making a password that was similar
to a prior password, and only 5.0% reported exact reuse. The higher proportion of participants
reusing a similar password, rather reusing a password exactly, may result from our studies having
more strict requirements than most real-life service providers. Participants were more likely to
agree with Part Two recall being difficult if they had created an entirely new password (39.8%)
than if they had reused or partially reused a password (32.7%) (x3=66.93, p<.001).
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Chapter 10

Practical Recommendations for System
Administrators

This thesis has presented several human-subjects studies contrasting password-composition poli-
cies and other password-creation factors. In this section, I distill into a few pages those findings I
consider especially important for the system administrators who are charged with selecting their
organizations’ password-composition policies. I assume the reader wishes to select a policy re-
sulting in relatively secure passwords. The reader might wish to improve an existing policy or the
reader might wish to create an entirely new password-composition policy. Florencio et al. [27] re-
cently wrote a detailed primer that discusses several findings of interest to system administrators.
This chapter focuses on helping administrators selecting a password-composition policy.

A password-composition policy is only one part of a complete approach to protecting user
accounts. A strong password-composition policy can help protect users in the specific case of
an attacker who has stolen a hashed password file and is making guesses against that file. In
addition, passwords stand out as a piece of system security over which individual users often
feel some ownership [85]. Moreover, a strong and usable password policy can help protect users
while reducing their workload, and help administrators by reducing the number of password-reset
requests.

I discuss threat models in Section 10.1. This includes the attack model against which password-
composition policies can help defend, and attack models where they are not helpful. I also discuss
other factors for the administrator to consider to protect against password cracking. I discuss
factors that should be considered for choosing a password-composition policy in Section 10.2. 1
conclude this chapter with Section 10.3.

10.1 Password Cracking and What You Can Do About It

Password-composition policies are one component of helping to protect user accounts. This sec-
tion presents an attack model against which a good password-composition policy can help defend.
This section also discusses several steps that an administrator can take to protect users and their
passwords, beyond using a good password-composition policy.
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10.1.1 Offline Attacks

An attacker making live guesses on a website is conducting an online attack. To protect against
this, the system can monitor website activity and lock out a user after multiple failed password
attempts. In the attack model we discuss in this thesis, the attacker has acquired a copy of the
password file that stores user passwords. The passwords in that file should be salted and hashed,
as we will discuss below. However, the attackers can still use that file to determine, or crack, user
passwords; this is called an offline attack.

In an offline attack, the attackers make a guess for what a given user’s password might be.
Then, the attackers salt and hash that guess using the same salt and hash as the file. If the result
matches what is in the file, then the attackers know they have guessed the user’s password, bar-
ring an unlikely hash collision. Attackers with powerful hardware can generate a larger number
of guesses in less time. Fortunately, a good password-composition policy can help keep users’
passwords safe even after a large number of guesses.

10.1.2 Password Hashes

A hash is a one-way function; the function takes in a password and returns an unrelated string.
Because a hash is a function, the same password input always produces the same output. With a
properly designed hash, an attacker cannot translate hashed passwords back into user passwords.
If the passwords in the file are not hashed, then an attacker who has acquired the password file has
already acquired the user passwords.

Administrators should salt their users’ passwords before hashing them. A salt is a small string,
different for each user, added to each password before it is hashed. Using a salt makes cracking
hashed passwords more difficult for the attacker. For example, if Alice and Bob both make the
same password, if those passwords are not salted before they are hashed, then Alice and Bob
will have identical password hashes. By salting both of their passwords, their hashed passwords
look different. This prevents the attacker from, for example, cracking Alice’s password and then
automatically knowing Bob’s password.

Not all hashes are equal. Because attackers need to hash each guess they make, using a slower
hash function makes it take much longer for attackers to crack passwords. Because an attacker
often needs to make many guesses to crack a password, increasing the per-guess hashing time
can slow the attacker very much while only adding a small slowdown to authenticating legitimate
users.

berypt is a slow hashing scheme well-suited for storing passwords.! I estimate that a laptop
would take over 2,000 years to hash 10'? password guesses using berypt. I also estimate that
10'2 hashes would take a hacktivist group about 207 days, and a criminal organization closer to
27 days. The time taken to hash passwords can be increased exponentially by adjusting an input
parameter, the cost factor. As computational power increases, the computational capacity required
to crack passwords can be increased to match [72]. Another advantage of berypt is that a number
of implementations already exist, and they include automated password salting. For example, a
version of berypt has become the default for authentication with Ruby on Rails.?

1http: //bcrypt.sourceforge.net
2api .rubyonrails.org/classes/ActiveModel/SecurePassword/ClassMethods.html

116



10.2. Password-Composition Policies

10.1.3 Other Factors for Password Security

There are many ways that attackers could compromise user accounts, some of which do not depend
on password strength. For example, if a system allows authentication via “security questions,” then
accounts are no more secure than those questions. Other attacks, such as shoulder-surfing and
phishing, can allow attackers to learn users’ passwords directly, meaning that their complexity is
not helpful.

It is also worth mentioning password expiration, the practice of requiring new passwords af-
ter a period of time. The motivation behind forcing password changes is that if an attacker has
acquired a victim’s password but has not yet acted, then changing the password would thwart the
attack. Periodic password expiration differs from explicitly revoking passwords in response to an
incident. A forced password reset is a good step if there is reason to believe that a password or
password file has become compromised.

However, the value of routine password expiration is questionable. Unless a password or its
hash is known to an attacker, forcing a reset does little good. Researchers examined genuine
university passwords and found that users replaced an expired password with one very similar.
The most common transformations included incrementing or moving around a digit and replacing
one symbol with another. Given the old passwords, the authors were able to crack 41% of the
subsequent password in a matter of seconds [100]. It does not appear that users created stronger
passwords when forced to change them, and there is reason to believe that password expiration
would be difficult on users without tangible security gains. It is likely more useful to implement
monitoring of the server on which the hashed-and-salted password file is stored. This way, if a
breach is detected, passwords can then be reset.

10.2 Password-Composition Policies

This section discusses findings from the research presented in this thesis in order to help system
administrators create and improve password-composition policies. This section discusses some
of the most successful password-composition policies that this thesis studied. For administrators
who want to retain but improve their current password-composition policies, this section concludes
with steps for improving existing password-composition policies.

10.2.1 Password Instructions and Feedback

Giving users real-time password-requirements feedback as they create their passwords can help
make a strict policy more palatable and reduce password-creation errors. This can be, for ex-
ample, putting a green checkmark next to fulfilled requirements, and stating in red text which
requirements are not yet met. Real-time feedback can be applied to new or existing password-
composition policies. An example of real-time password-creation feedback is in Figure 10.1.

10.2.2 System-Assigned Passwords

System-assigned passwords allow the administrator more control over password strength. How-
ever, users struggle with them. Compared to user-selected passwords, system-assigned passwords
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Password requirements:

e Include at least 12 characters (Your password contains 9 characters
but 12 are required.)
« Password must both begin and end with a lowercase letter (a-z)
(Your password must begin and end with a lowercase letter)
« Include at least 3 of the following: (Your password contains 2 types
of characters but 3 are required.)
o A lowercase English letter
o An uppercase English letter
o A digit
o A symbol (something that is not a digit or an English letter)

Choose a password: sssscsese
Re-enter your password: (LLYTTTTYS
Continue

Figure 10.1: An example of real-time password-creation feedback, as “password!” is entered.

and passphrases were more likely to be difficult to learn and recall, and more likely to be writ-
ten down. System-assigned passwords are unlikely to be suitable for a university setting, except
for employees who access sensitive data. However, there are scenarios where system-assigned
passwords may be a reasonable option. They allow the administrator to ensure that each user’s
password meets a minimum standard of strength. They can also allow strong yet shorter pass-
words, which might be useful for scenarios where passwords must be entered frequently.

10.2.3 The Traditional “Strong” Policy

The studies in this thesis examined the traditional “strong” password-composition policy. Such a
policy is currently in use at Carnegie Mellon University, and is recommended by the InCommon
Federation.? This thesis’ implementation of this policy required that passwords have at least eight
characters and three different character classes (of uppercase letters, lowercase letters, digits, and
symbols). It also required that passwords not be found in a password-cracking dictionary. This is
called comp8 because it required eight characters and a comprehensive set of other requirements.
comp$ is similar to a number of policies in use elsewhere. For example, out 1 ook . com requires
eight characters and two character classes.* The Windows complexity requirements, if enabled,
require at least three different character classes.

The studies in this thesis found that comp8 was neither especially secure nor easy to use.
Passwords created under this policy stood up well against a resource-constrained attacker making
a smaller number of guesses. However, once an attacker made more guesses, 10'2, about a quarter

Shttp://www.incommon.org
*nttps://signup.live.com/
Shttp://technet .microsoft.com/en-us/library/hh994562 (v=ws.10) .aspx

118



10.2. Password-Composition Policies

of the passwords were guessed. Part of why this policy was not very secure was that users often
met its requirements in predictable ways. Most passwords started with a capital letter and used no
other capital letter. Half used only one symbol and placed it either last or second-to-last; a fifth
used / as that one symbol.

This condition was also more onerous on participants than some more-secure policies. This
includes observed usability metrics, such as the number of password-creation attempts. It also in-
cludes self-reported usability metrics, such as perceived password-creation difficulty. Fortunately,
there are conditions that were more usable and more secure than compS.

10.2.4 Combining Character and Length Requirements

Overall, our studies found that policies should require long passwords, with a minimum length
of 12 to 16 characters. However, when participants were asked to make a password with only a
length requirement, many opted to make very simple, easily guessed passwords such as “base-
ballbaseball.” Adding character-class requirements helped prevent these simple passwords. The
following two password policies stood out as more usable and secure than comp§.

Both 2wordi16 and 3classi12 were successful password policies that combined longer-length
and character-class requirements. The 2word16 policy required 16 characters, and required that
passwords contain two “words” — two strings of one or more letters divided by a string of one or
more non-letters. Thus, “baseballbaseball” was not a valid password, but “baseball baseball” was.
The 3classi2 policy required at least 12 characters with three character classes. Both were more
usable and more secure than comp8. We believe that either policy would be a good choice for
many service providers. 3classi2 was the more usable of the two, and 2word16 was more secure.

These findings indicate that service providers should not impose any password-length maxi-
mum that users are likely to reach. They also suggest that service providers should not restrict
users from including different character classes in their passwords.

10.2.5 Using a Substring Blacklist

Many cracked passwords shared common substrings. Therefore, this thesis tested including a
substring blacklist. Unlike a dictionary check, the substring blacklist prevents passwords from
containing certain substrings. A set of blacklisted substrings might be as follows.

Service provider name, city, etc.

Any year between 1950 and 2049

The same character four or more times in a row

Any four consecutive characters from “password”

Any four sequential digits (e.g., 5678)

Any four sequential letters in the alphabet (e.g., wxyz)

Any four consecutive characters on the keyboard (e.g., wsxc)
Using the substring blacklist made passwords take more tries to create, and made password cre-
ation more difficult. However, it did not make password recall any more difficult or less successful.
Thus, the blacklist trades creation-time usability for more security.
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10.2.6 Improving an Existing Policy

There may be administrators who have a good justification for their current password-composition
policies. Rather than using the findings in this thesis to replace the current policy, those adminis-
trators may wish to use these findings to enhance or improve their current password-composition
policies. Real-time feedback can be applied to requirements to let users know whether they have
fulfilled those requirements. For the requirements themselves, the findings in this thesis strongly
suggest requiring longer passwords. The length-eight policies we tested had poor performance
against an attacker capable of making a large number of guesses, such as 10'2. Password length
appears to make passwords more secure against such an attacker. Therefore, an administrator ad-
justing an existing password-composition policy might consider increasing the length requirement
to at least 12. In addition, the administrator should also consider the other password-related advice
given in this chapter: storing passwords salted and hashed, monitoring live guesses and the server
on which the password file is stored, and using a slow hashing algorithm like berypt.

10.3 Concluding Remarks

Password-composition policies are an important tool that system administrators can use to help
keep users secure. These policies are not the only factor that administrators need to consider to
protect user accounts, but they are an important part of protecting them. Administrators should
consider policy tradeoffs and select a policy that works best for their own particular environments.
The list below highlights recommendations from this chapter.

Key Recommendations:

* Any alternate authentication scheme, like security questions, should be as secure as pass-
words.

 Salt and hash stored passwords. Use unique salts and a slow hash like bcrypt.
* Don’t require users to change their passwords unless you suspect a breach.

* Avoid the traditional “strong” policy requiring 8 characters and complex character-class
requirements. There are alternatives that are more usable and more secure.

* For a usable and secure password policy, consider 3classi2: At least 12 characters and three
different character classes.

* For higher-security environments, consider the more secure but less usable 2word16: At
least 16 characters with at least two “words” of letters separated by one or more non-letters.

* To increase security further, consider adding a substring blacklist to the password policy.

* To make password creation easier, consider giving users real-time feedback about whether
they have met the requirements.
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Conclusion

This chapter summarizes the work in this thesis. I present major findings and highlight the primary
contributions of each section. Then, I present the future work that our findings suggest.

11.1 Data-Collection Protocol

This subsection discusses my contribution to general online data collection. The next subsection
discusses my specific contribution to the study of password policies. I helped to lead crowd-
sourced, large-scale human-subjects studies with randomly assigned, controlled conditions. Par-
ticipants stepped through a sequence of webpages, which could vary based on their condition. This
methodology combined advantages from other data-collection protocols, as discussed in Chap-
ter 2. Similar to a laboratory study, it used randomly assigned, controlled conditions that enabled
drawing causal conclusions. Similar to an online survey, it collected data from a very large number
of participants across a broad geographic space, without needing researchers to monitor individual
participants.

In order to facilitate studies using this methodology, I created a generalized framework for con-
ducting online crowdsourced studies. Chapter 3 described this framework, called SHELF. SHELF
helps researchers prepare structured online human-subjects experiments. SHELF then interfaces
with MTurk to automate recruiting and paying participants. While data is being collected, SHELF
helps monitor study progress, giving researchers information such as how many participants fin-
ished the study in each condition. After data collection, SHELF facilitates exporting study data
for analysis.

11.2 Analyzing Password Policies

The work in this thesis applied the data-collection framework described in Chapter 3 to the study
of password-composition policies. Chapter 4 described the methodology those studies shared.
We recruited participants through MTurk and assigned them to different password-composition
policies. We asked participants to create or learn their passwords. Participants created, or were
assigned, a password under a password policy that varied by their condition. Participants filled out
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a brief survey and then recalled their password. Two days later, we invited them to return for Part
Two. Returning participants again recalled their password and then filled in another survey.

As discussed in Section 2.5, prior human-subjects passwords research tended to fit into one
of two categories. Either the research was a laboratory study with a relatively small number
of participants; or the research studied participants using their real-life passwords. We studied
large groups of participants creating and using passwords under randomly assigned, controlled
conditions. This enabled us to draw causal conclusions about the security and usability effects of
different password-composition policies.

11.3 Studies of Password-Composition Policies

The research in this thesis has contributed a better understanding of the effects of password-
composition policies. Chapters 5, 6, 7, and 8 illustrated how different policies affected user sen-
timent, user behavior, and password strength. Under very simple conditions, participants tended
to create weak, easily guessed passwords. Conditions that led to stronger passwords than these
simple conditions were also less usable. However, one policy being less usable than another did
not necessarily mean that the less-usable policy led to stronger passwords. Some policies made
password creation or recall more difficult without increasing password strength.

Chapter 5 examined system-assigned passwords and passphrases. This included short pass-
words and pronounceable passwords, as well as passphrases constructed of words drawn at ran-
dom from dictionaries. Participants struggled with learning and recalling these system-assigned
passwords and passphrases. Passphrases failed to out-perform passwords on any usability metric,
including self-reported user sentiment and observed recall behavior. Passwords often appeared
more usable than passphrases; for example, participants recalled passwords with fewer mistakes
in less time. Post-facto analysis suggested that some metrics for passphrase recall could be im-
proved through automatic error correction. However, even with this improvement, passphrases did
not out-perform passwords.

Chapter 6 examined user-created passwords, focusing on password policies used in practice,
including Carnegie Mellon University’s policy. Password-composition policies made significant
differences in both password security and usability. If a dictionary check was used, then the
contents of the dictionary had a large impact on its effectiveness. A policy requiring sixteen
characters was more usable, and less likely to be guessed after a large number of guesses, than a
traditional “strong” policy that required eight characters, three character classes, and a dictionary
check. Participants often met the requirements of the traditional policy in predictable ways, such
as placing an uppercase letter at the beginning. However, there was a shortcoming of the length-
16 policy as well: a large number of passwords created under this policy were very simple and
quickly guessed.

A better policy would have the advantages of the length-16 requirement, but prevent many of
the easily guessed passwords. Chapter 7 presented two studies that examined this. These studies
contrasted minimum lengths, character-class requirements, substring blacklists, and structural re-
quirements. Combining the length-16 requirement with a requirement that passwords contain two
strings of letters separated by one or more non-letters helped reduce the number of weak pass-
words. In addition, requiring 12 characters with two or three character classes led to a generally
favorable tradeoff between security and usability.
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The first study in Chapter 7 found common characteristics among many weak passwords.
For example, they often began and ended with characters other than lowercase letters, and many
shared a relatively small set of substrings. The second study of Chapter 7 tested conditions that
proactively prevented these markers of weak passwords. These included conditions that prohibited
common substrings and conditions that required passwords start and end with lowercase letters.
We also examined additional combinations of length and character-class requirements. The sub-
string blacklist stood out because it made passwords less likely to be guessed without having any
adverse effect on password recall.

The above studies focused on password-composition requirements. Chapter 8 presented a
study on how those requirements might be made more palatable. It studied the security and us-
ability effects of real-time password-creation feedback. This included, for example, placing a
green checkmark next to fulfilled password-composition requirements, and presenting unfulfilled
requirements in red text. Real-time requirements feedback helped participants create passwords
under strict requirements with fewer mistakes. While most conditions in this thesis asked par-
ticipants to create a password all at once, this study included conditions that guided participants
through a multi-step password-creation process. Guiding participants through password creation
made the process easier, but resulted in passwords that were more likely to be guessed.

11.4 Understanding Participants and their Sentiment

Each study chapter analyzed data by condition to contrast password policies. Chapter 9 examined
data from all four studies to understand better participants and their sentiment. Section 9.1 ana-
lyzed how observed factors and survey responses correlated with user sentiment. User sentiment
correlated significantly with a large number and variety of factors we collected.

Chapter 9 also presented information about study participants. This included demographic
information, use of mobile devices for our studies, and information about the real email pass-
words of our participants. This provided context for the research in this thesis, and a large-scale
demographics description for MTurk research.

11.5 Concrete Advice for Service Providers

Chapter 10 presented concrete advice for service providers. This advice distilled highlights from
across the studies in this thesis into actionable recommendations. For example, several policies
offered both security and usability advantages over the traditional “strong” password policy, .
Because different use-cases place different demands on users, I discussed how service providers
could best apply our findings to their own user base and services. I believe that this chapter can
help service providers better protect their users.

11.6 Future Work

We have only begun to scratch the surface of password-creation feedback and guidance. Future
work might make a further exploration of the space of real-time password requirements feedback.
Chapter 8 demonstrated that one particular implementations of password guidance resulted in
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weaker passwords. However, guided conditions had several usability benefits. Future work might
examine additional implementations of password-creation guidance to retain those usability ben-
efits without sacrificing password strength.

Chapter 5 studied system-assigned passwords and passphrases. The passphrases were com-
posed of words drawn from dictionaries of common words. As the dictionaries increased in size,
the entropy of the resulting passphrases increased. While the system-assigned passphrases were
generally difficult to recall, increasing their entropy did not appear to increase that difficulty.
Therefore, it is possible that passphrases constructed using very large dictionaries could still be
usable. These high-entropy passphrases might be useful in scenarios in which all passwords need
to be very secure. Future work might examine the usability of high-entropy system-assigned
passphrases.

Many participants had a notion of password strength that did not match our empirical results.
For example, participants over-estimated the strength of “traditional” comprehensive password re-
quirements. Future work might study how users reason about password strength and the associated
threat models. Chapter 8 demonstrated that what participants see as they make their passwords, in
addition to the requirements themselves, can affect their passwords. It is possible that by learning
more about how participants think about threats to their passwords, service providers will be able
to provide more effective messaging during password creation.

Finally, the proliferation of mobile-device usage suggests new approaches to studying pass-
words and authentication. Participants overwhelmingly used desktop and laptop computers —
devices with traditional keyboards. Future work might examine whether and how password-
entry differs on mobile devices. In addition, mobile devices facilitate two-factor authentication,
a promising development for increasing account security. For example, Google' and Microsoft?
now offer a two-factor authentication or two-step verification service. When a user authenticates
to a new device, the service provider sends that user a code on his or her mobile device. The user
then enters the usual password as well as that one-time code. An attacker in this model would need
to acquire both the user’s password and the user’s mobile device. Future research could investigate
the usability implications of this sort of two-factor authentication.

'nttps://www.google.com/landing/2step/
http://windows.microsoft.com/en—us/windows/two-step-verification-faq
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Appendix A

How Usable are System-Assigned

Passphrases?

These are the surveys used in the study presented in Chapter 5.

A.1 Part One Survey

Learning my password was annoying.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Learning my password was difficult.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Learning my password was fun.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Describe anything you did to help yourself remem-
ber your password.

Do you have a password or set of passwords you
reuse in different places?

() Yes

() No

() I prefer not to answer
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Do you have a password that you use for differ-
ent accounts with a slight modification for each ac-
count?

() Yes

() No

() I prefer not to answer

Do you have an email password?

() Yes

() No

The questions on this page pertain to your real
email password.

What is the domain for your primary email ac-
count (e.g. hotmail.com, gmail.com, cmu.edu)?

Thinking about the real password you use for your
primary email account, how many of the following
does it contain? Write "0" if there are none.
Uppercase letters:

Lowercase letters:

Numbers:

Symbols:

Approximately how long ago did you last change
your real email password?

() Within the past month

() Within the past six months

() Within the past year

() More than a year ago



() More than 5 years ago
() Never

() I’'m not sure

() I prefer not to answer

Does your main email provider require you to
change your password periodically?

() Yes

() No

() I’'m not sure

() I prefer not to answer

If my main email account assigned me a password
like the one I used in this study, it would make my
email account more secure.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

I would be annoyed if my main email account as-
signed me a password like the one I used in this
study.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If my main email account assigned me a password
like the one I used in this study, it would be easier.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Are you willing to return and try to recall your
password again in a few days?

() Yes

() No

() I prefer not to answer

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.

What is your gender?
() Female
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() Male
() I prefer not to answer

How old are you?

Which of the following best describes your highest
achieved education level?

() Some High School

() High School Graduate

() Some college, no degree

() Associates degree

() Bachelors degree

() Graduate degree (Masters, Doctorate, etc.)

() Other

Are you majoring in or do you have a degree or
job in computer science, computer engineering,
information technology, or a related field?

() Yes

() No

() I prefer not to answer

Are you majoring in or do you have a degree or
job in art, architecture, design, photography, or a
related field?

() Yes

() No

() I prefer not to answer

Are you majoring in or do you have a degree or
job in math, physics, or engineering, or a related
field?

() Yes

() No

() I prefer not to answer

What is your total household income?
() Less than $10,000

() $10,000 to $19,999
() $20,000 to $29,999
() $30,000 to $39,999
() $40,000 to $49,999
() $50,000 to $59,999
() $60,000 to $69,999
() $70,000 to $79,999
() $80,000 to $89,999
() $90,000 to $99,999
() $100,000 to $149,999
() $150,000 or more

() Prefer not to answer



Thank You!

A.2 Part Two Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her bonus payment.

How did you just enter your password for this
study (please be honest — you get paid regardless,
and this will help our research)?

() I typed it in from memory

() It was stored in my browser

() I cut and pasted it from a text file

() I looked it up in the place I had recorded it
earlier and then I typed it in

() I'use a password manager that filled it in for me
() I prefer not to answer

() Other:

() It was automatically filled in

() I forgot my password and followed the pass-
word reset link

Did you write down or store the password you cre-
ated for this study (please be honest, you get paid
regardless, this will help our research)?

[ 1No

[ ] Yes, on paper

[ 1 Yes, electronically (stored in computer, phone,
etc.)

[ ] Other

[ 11 prefer not to answer

If you wrote down or stored your password for this
study, how is it protected (choose all that apply)?
[ 1 Ido not protect it

[ ]I stored it in an encrypted file

[]1Thid it

[ 11 stored it on a computer or device protected
with another password

[ 1Ilocked up the paper

[ 11 always keep the password with me

[ 11 wrote down a reminder instead of the actual
password

[ 1 I keep the paper in an office or room that only I
use
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[ 11 stored it on a computer or device that only I
use

[ ] Other

[ ]I prefer not to answer

[ 1 1did not write down my password

Please describe how you store your password for
this study, including what software you use or
where you wrote it down.

What would you have done differently in pro-
tecting and remembering your password if this
password were used for an account you would use
outside this study?

Did you imagine a scene related to the words or
letters in your password to help you remember it?
() Yes
() No

If so, describe the scene that you imagined.

Did you think of a sentence or phrase based on
the words or letters in your password to help you
remember it?

() Yes

() No

If so, describe the sentence or phrase that you used.

Did you think of a story related to the words or
letters in your password to help you remember it?
() Yes
() No

If so, describe the story that you used.

What, if anything, about your new password
makes it easy for you to remember?

Do you have an email password?
() Yes
() No

The questions on this page pertain to your real
email password.

When logging in with your real email password,
do you refer to a written down or stored password?
() Yes



() No

Prior to this survey, have you ever written down or
stored your real email password?

[ 1No

[ ] Yes, on paper

[ ] Yes, electronically (stored in computer, phone,
etc.)

[ ] Other

[ ]I prefer not to answer

If you ever wrote down or stored your real email
password, how was it protected (choose all that
apply)?

[ ]11did not write down or store it

[ 1 1did not protect it

[ ]I stored it in an encrypted file

[]1Thid it

[ 11 stored it on a computer or device protected
with another password

[ 1Ilocked up the paper

[ 11 always kept the password with me

[ 11 wrote down a reminder instead of the actual
password

[ ]I kept the paper in an office or room that only I
use

[ 11 stored it on a computer or device that only I
use

[ ] Other

[ ] I prefer not to answer

To how many people have you given your real
email password?

00

01

()25

()6-10

() More than 10

Consider the password you used for this study. If
you were protecting/remembering a password for
a real email account you would use outside the
study, what would you have done differently?
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] Nothing would have changed

] I would have written it down on paper

] I would not have written it down on paper

] I would have stored it electronically

] I would not have stored it electronically

] I would still write it on paper, but would secure
the paper better

[ 11 would have tried harder to remember it

[ ] Other

How often do you type in your real email pass-
word (we are interested in when you type it in, not
when your browser enters it automatically)?

() Never

() Several times per day

() Once per day

() Several times per week

() Once per week

() A few times per month

() Once per month

() Less than once a month

() I prefer not to answer

Remembering the password I use for my real email
account is difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Remembering the password I used for this study
was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.



Appendix B

How Secure and Usable are Some
Common Password Policies?

These are the surveys used in the study presented in Chapter 6. Questions were mandatory. Ques-
tions about real email, banking, and news websites were only shown to participants who indicated

having an account of that type.

B.1 Part One Survey

Creating a password that meets the requirements
given in this study was annoying.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was fun.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

For this study, which of the following methods did
you use to create your password (choose all that

apply)?
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[ ] Based on a birthday

[ ] Substituted symbols for some of the letters in a
word or name (e.g. ‘@’ instead of ‘a’)

[ ] Based on an address

[ ] Added symbols to the beginning or end of a
word or name

[ ] Removed letters from a word or name

[ 11 prefer not to answer

[ ] Based on the name of someone or something

[ ] Added numbers to the beginning or end of a
word or name

[ ] Based on a phone number

[ ] Based on a word in a language other than En-
glish

[ ] Based on a word in English

[ ] Password based on the first letter of each word
in a phrase

[ ] Substituted numbers for some of the letters in a
word or name (e.g. ‘3’ instead of ‘e’)

[ ] Based on something else (please explain what):

Do you have a password or set of passwords you
reuse in different places?

() Yes

() No

() I prefer not to answer

Do you have a password that you use for different
accounts with a slight modification for each ac-



count?
() Yes
() No
() I prefer not to answer

Do you have an email password?
() Yes
() No

(If participant answers Yes then the following
questions about the real email password are given)

The questions on this page pertain to your real
email password.

If my main email account required me to change
my password using the same requirements as used
in this study, it would make my email account
more secure.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

What is the domain for your primary email ac-
count (e.g. hotmail.com, gmail.com, cmu.edu)?

Thinking about the real password you use for your
primary email account, how many of the following
does it contain? Write “0” if there are none.
Uppercase letters

Lowercase letters

Numbers

Symbols

Approximately how long ago did you last change
your real email password?

() Within the past month

() Within the past six months

() Within the past year

() More than a year ago

() More than 5 years ago

() Never

() I'm not sure

() I prefer not to answer

Does your main email provider require you to
change your password periodically?
() Yes
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() No
() I'm not sure
() I prefer not to answer

Do you have an online banking password?

() Yes

() No

(If yes, the above questions about real email pass-
words are repeated for real online banking pass-
words).

Do you have a password that you use to log on to
newspaper/media websites to read the news (e.g.
The Boston Globe, Times of India, ESPN)?

() Yes

() No

(If yes, the above questions about real email pass-
words are repeated for real news website pass-
words).

Are you willing to return and try to recall your
password again in a few days?

() Yes

() No

() I prefer not to answer

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.

What is your gender?

() Female

() Male

() I prefer not to answer

How old are you?

Are you majoring in or do you have a degree or
job in computer science, computer engineering,
information technology, or a related field?

() Yes

() No

() I prefer not to answer

Thank you for taking our survey. Your re-

sponse is very important to us.



B.2 Part Two Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her bonus payment.

How did you just enter your password for this
study (please be honest, you get paid regardless,
this will help our research)?

() I looked it up in the place I had recorded it
earlier and then I typed it in

() T'use a password manager that filled it in for me
() I forgot my password and followed the pass-
word reset link

() I typed it in from memory

() It was automatically filled in

() I cut and pasted it from a text file

() It was stored in my browser

() I prefer not to answer

() Other

When you created the password for this study,
which of the following did you do?

[ ] I created an entirely new password

[ 11 prefer not to answer

[ ]I reused a password I use for a different account
[ ] I modified a password I use for a different ac-
count

[ ] Other

Did you write down or store the password you cre-
ated for this study? (please be honest, you get paid
regardless, this will help our research)

[ 1 No

[ ] Yes, on paper

[ ] Yes, electronically (stored in computer, phone,
etc.) I prefer not to answer

[ ] Other

If you wrote down or stored your password for this
study, how is it protected (choose all that apply)?
[ 11 stored it on a computer or device protected
with another password

[ 1Tlocked up the paper

[ 11 prefer not to answer

[ 11 wrote down a reminder instead of the actual
password

[ 1 I keep the paper in an office or room that only I
use
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[1Thidit

[ ]I stored it on a computer or device that only I
use

[ 1 I do not protect it

[ ] Istored it in an encrypted file

[ 1Idid not write down my password

[ ]I always keep the password with me

[ ] Other

Please describe how you store your password for
this study, including what software you use or
where you wrote it down.

What would you have done differently in creating,
protecting, and remembering your password if this
password were used for an account you would use
outside this study?

Do you use the password you created for this study
for any other account?

() Yes

() No

() I prefer not to answer

What about your new password makes it easy for
you to remember?

Do you have an email password?
() Yes
()No

(If participant answers Yes then the following
questions about the real email password are given)

The questions on this page pertain to your real
email password.

When logging in with your real email password,
do you refer to a written down or stored password?
() Yes
() No

Prior to this survey, have you ever written down or
stored your real email password?

[ 1No

[ ] Yes, on paper

[ ] Yes, electronically (stored in computer, phone,
etc.) I prefer not to answer

[ ]I prefer not to answer

[ ] Other



If you ever wrote down or stored your real email
password, how was it protected (choose all that
apply)?

[ 11 stored it on a computer or device protected
with another password

[ 11 locked up the paper

[ ]I prefer not to answer

[ ] T wrote down a reminder instead of the actual
password

[ 11 keep the paper in an office or room that only I
use

[1Thidit

[ ]I stored it on a computer or device that only I
use

[ 11 do not protect it

[ ]I stored it in an encrypted file

[ 1Idid not write down my password

[ 1 T always keep the password with me

[ ] Other

To how many people have you given your real
email password?

Consider the password you created for this study.
If you were creating a password for a real email
account you would use outside the study, what
would you have done differently?

[ ]I would have used an easier-to-remember pass-
word

[ 1 I would have created a longer password

[ 11 would have used an easier-to-type password

[ 1 I would have used more symbols, upper case
letters, or numbers

[ 1 I would have reused a password, but did not for
this study

[ ] Nothing would have changed

[ ] Other

Consider the password you created for this study.
If you were protecting/remembering a password
for a real email account you would use outside the
study, what would you have done differently?

] Nothing would have changed

I would have written it down on paper

I would not have written it down on paper

I would have stored it electronically

I would not have stored it electronically

] I would still write it on paper, but would secure
the paper better

[ 11 would have tried harder to remember it

]
]
]
]
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[ ] Other

How often do you type in your real email pass-
word (we are interested in when you type it in, not
when your browser enters it automatically)?

[ ] Never

[ ] Several times per day

[ ] Once per day

[ ] Several times per week

[ ] Once per week

[ ] A few times per month

[ ] Once per month

[ ] Less than once a month

[ 11 prefer not to answer

Remembering the password I use for my real email
account is difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Do you have an online banking password?

() Yes

() No

(If yes, the above questions about real email pass-
words are repeated for real online banking pass-
words).

Do you have a password that you use to log on to
newspaper/media websites to read the news?

() Yes

() No

(If yes, the above questions about real email pass-
words are repeated for real news website pass-
words).

Remembering the password I used for this study
was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.



Appendix C

Can Longer Passwords be Secure and

Usable?

These are the surveys used in the study presented in Chapter 7.

C.1 Part One Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her payment.

Creating a password that meets the requirements
given in this study was annoying.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was fun.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree
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For this study, did you base your password on any
of the following? You may choose more than one.
[ ] Based on another password

[ ] Based on an address

[ ] Based on more than one word in English

[ 1 Based on the first letter of each word in a phrase
[ ] Based on the name of someone or something

[ ] Based on one word in English

[ ] Based on a phone number

[ 1 Based on one or more words in a language other
than English

[ ] Based on a birthday

[ 11 did not base my password on any of these

[ 11 prefer not to answer

If you created your password based on a word or
name, did you modify that word or name in any of
the following ways to create your password? You
may choose more than one.

[ ] Added symbols to the beginning or end

[ ] Removed letters

[ ] Substituted symbols for some of the letters (e.g.,
‘@’ instead of ‘a’)

[ ] Added numbers to the beginning or end

[ ] Substituted numbers for some of the letters
(e.g., ‘3’ instead of ‘e’)

[ ] My password is based on a word or name, but I
did not do any of these

[ ] The password is not based on a word or name

[ ]I prefer not to answer



The questions on this page are about your real
email password. Please think about that pass-
word for these questions.

How would you describe your primary email ac-
count?

() A work-based email account
() Another type of email account
() A  university email
name @cmu.edu)

() A web email account (e.g., Gmail, Hotmail,
Yahoo! Mail)

() Idon’t know

() I prefer not to answer

account (e.g.,

I would prefer if my main email provider had the
same password requirements as used in this study.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If my main email provider had the same password
requirements as used in this study, my email ac-
count would be more secure.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

It was more difficult to create my password for this
study than it was to create my real email password.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

How many characters (letters, digits, and symbols)
are in your real email password?

()0-6

079

()10-12

() 13-15

()16-18

() 19+

() I don’t know
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() I prefer not to answer

Approximately how long ago did you last create
or change your real email password?

() Within the past month

() Within the past six months

() Within the past year

() More than a year ago

() More than 5 years ago

() Never

() I’'m not sure

() I prefer not to answer

What is your gender?

() Female

() Male

() I prefer not to answer

How old are you?

Are you majoring in or do you have a degree or
job in computer science, computer engineering,
information technology, or a related field?

() Yes

() No

() I prefer not to answer

What is the highest level of education that you
have completed?

() High School Degree

() Associate Degree

() Bachelor’s Degree

() Master’s Degree

() Doctoral Degree

() I prefer not to answer

() Other

Is English your native language? This will not af-
fect your eligibility for this study.

() Yes

() No

() I prefer not to answer

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.



C.2 Part Two Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her bonus payment.

How did you just enter your password for this
study? Please be honest. You will be paid regard-
less and this will help our research.

() My browser automatically filled it in

() Ityped it in from memory

() I'looked it up and typed it in

() I copied and pasted it

() T'used the “I forgot my password” link

() Tused a password manager

() I prefer not to answer

() Other

Did you write down or store the password you
created for this study? You may choose more than
one. Please be honest. You will be paid regardless
and this will help our research.

() I did not write down or store my password

() I wrote down my password on paper

() I stored my password on the computer

() I stored my password on my phone or another
electronic device

() My password manager remembered my pass-
word

() My browser remembered my password

() I prefer not to answer

() Other

On what sort of computer or device have you just
entered your password?

() Tablet

() Desktop computer

() Smartphone

() Laptop computer

() I prefer not to answer

() Other

Remembering the password I used for this study
was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree
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() Strongly disagree

The questions on this page are about your real
email password. Please think about that pass-
word for these questions.

When logging in with your real email password,
how do you most often enter that password?

() I'look it up and type it in

() I copy and paste it

() My browser automatically fills it in

() Itype it in from memory

() I use a password manager

() I prefer not to answer

() Other

Have you ever written down or stored your real
email password? You may choose more than one.
() I did not write down or store my password

() I wrote down my password on paper

() I stored my password on the computer

() I stored my password on my phone or another
electronic device

() My password manager remembered my pass-
word

() My browser remembered my password

() I prefer not to answer

() Other

On what sort of computer or device do you most
often enter your real email password?

() Tablet

() Smartphone

() Laptop computer

() Desktop computer

() I prefer not to answer

() Other

To how many people have you given your real
email password?

How often do you type in your real email pass-
word? We are interested in when you type it in,
not when your browser enters it automatically or
when you paste it.

() Several times per day

() Once per day

() Several times per week

() Once per week

() A few times per month



() Once per month

() Less than once per month
() Never

() I prefer not to answer

Remembering the password I use for my real
email account is difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Have you ever used the password that you created
for this study for any other account?

() This is a password that I often use

() I have used the same password before, but not
often

() ' have used a very similar password before, but
not often

() I have never used this password before

() This is very similar to a password that I often
use

() I prefer not to answer

What, if anything, about the password you created
for this study makes it easy for you to remember?
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What, if anything, would you have done differ-
ently in creating, protecting, and remembering
your password for this study if this same password
were used for your real email account?

Consider the password you created for this study.
If you were creating a password for your real email
account under the same password-creation rules as
used in this study, what would you have done dif-
ferently? You may choose more than one.

[ ] Nothing would have changed

[ 1T would have used more symbols

[ 1 I would have used more uppercase letters

[ 11 would have reused a password, but did not
reuse a password for this study

[ ]I would have used an easier-to-type password

[ ]I would have used an easier-to-remember pass-
word

[ 1 I would have used a longer password

[ 11 would have used more digits

[ ] Other

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.



Appendix D

Can Creation-Time Feedback Help
Users Create Passwords?

These are the surveys used in the study presented in Chapter 8.

D.1 Part One Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her payment.

Creating a password that meets the requirements
given in this study was annoying.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Creating a password that meets the requirements
given in this study was fun.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree
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For this study, did you base your password on any
of the following? You may choose more than one.
[ ] Based on a keyboard pattern

[ ] Based on a birthday

[ ] Based on a phone number

[ ] Based on the name of someone or something

[ ] Based one other password

[ ] Based on more than one word

[ 1 Based on the first letter of each word in a phrase
[ ] Based on more than one other password

[ ] Based on a single word

[ 1 I did not base my password on any of these

[ ]I prefer not to answer

[ ] Other

The feedback and instructions I saw while creating
my password led me to create a stronger password
than I would have otherwise.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

The feedback and instructions I saw while creating
my password were difficult to follow.

() Strongly agree

() Agree

() Neutral

() Disagree



() Strongly disagree

I enjoyed seeing the feedback and instructions
while I created my password.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If you have any additional thoughts about the feed-
back and instructions you saw while you created
your password, please enter your comments here.

The questions on this page are about your real
email password. Please think about that pass-
word for these questions.

How would you describe your primary email ac-
count?

() A work-based email account
() Another type of email account
() A university email
name @cmu.edu)

() A web email account (e.g., Gmail, Hotmail,
Yahoo! Mail)

() I don’t know

() I prefer not to answer

account (e.g.,

I would prefer if my main email provider had the
same password requirements as used in this study.
() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

If my main email provider had the same password
requirements as used in this study, my email ac-
count would be more secure.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

It was more difficult to create my password for this
study than it was to create my real email password.
() Strongly agree

() Agree
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() Neutral
() Disagree
() Strongly disagree

What is your gender?

() Female

() Male

() I prefer not to answer

How old are you?

Are you majoring in or do you have a degree or
job in computer science, computer engineering,
information technology, or a related field?

() Yes

() No

() I prefer not to answer

What is the highest level of education that you
have completed?

() High School Degree

() Associate Degree

() Bachelor’s Degree

() Master’s Degree

() Doctoral Degree

() I prefer not to answer

() Other

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.

D.2 Part Two Survey

Thank you for participating in this Carnegie Mel-
lon University study. Please answer the following
questions honestly. There are no right or wrong
answers and everyone who finishes this task com-
pletely will receive his or her bonus payment.

How did you just enter your password for this
study? Please be honest. You will be paid regard-
less and this will help our research.

() My browser automatically filled it in

() Ityped it in from memory

() I'looked it up and typed it in

() I copied and pasted it

() Tused the “I forgot my password” link

() I used a password manager



() I'looked up a hint and typed in the password
() I prefer not to answer
() Other

Did you write down or store the password you
created for this study? You may choose more than
one. Please be honest. You will be paid regardless
and this will help our research.

() I did not write down or store my password

() I wrote down my password on paper

() I stored my password on the computer

() I stored my password on my phone or another
electronic device

() My password manager remembered my pass-
word

() My browser remembered my password

() I only stored a hint about the password, not the
password itself

() I prefer not to answer

() Other

On what sort of computer or device have you just
entered your password?

() Tablet

() Desktop computer

() Smartphone

() Laptop computer

() I prefer not to answer

() Other

Remembering the password I used for this study
was difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

The questions on this page are about your real
email password. Please think about that pass-
word for these questions.

When logging in with your real email password,
how do you most often enter that password?

() I'look it up and type it in

() I copy and paste it

() My browser automatically fills it in

() Itype it in from memory

() Iuse a password manager

() I prefer not to answer
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() Other

On what sort of computer or device do you most
often enter your real email password?

() Tablet

() Smartphone

() Laptop computer

() Desktop computer

() I prefer not to answer

() Other

How often do you type in your real email pass-
word? We are interested in when you type it in,
not when your browser enters it automatically or
when you paste it.

() Several times per day

() Once per day

() Several times per week

() Once per week

() A few times per month

() Once per month

() Less than once per month

() Never

() I prefer not to answer

Remembering the password I use for my real
email account is difficult.

() Strongly agree

() Agree

() Neutral

() Disagree

() Strongly disagree

Have you ever used the password that you created
for this study for any other account?

() This is a password that I often use

() I have used the same password before, but not
often

() I'have used a very similar password before, but
not often

() I have never used this password before

() This is very similar to a password that I often
use

() I prefer not to answer

What, if anything, about the password you created
for this study makes it easy for you to remember?

What, if anything, would you have done differ-
ently in creating, protecting, and remembering



your password for this study if this same password
were used for your real email account?

Consider the password you created for this study.
If you were creating a password for your real email
account under the same password-creation rules as
used in this study, what would you have done dif-
ferently? You may choose more than one.

[ 1T would have used more symbols

[ 1 I would have used an easier-to-type password

[ 1 I would not have reused a password, but did
reuse a password for this study

[ ]I would have used more digits

[ 1 I would have used a shorter password

[ 11 would have reused a password, but did not
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reuse a password for this study

[ ]I would have used a longer password

[ 1T would have used fewer symbols, digits, or
uppercase letters

[ ] Nothing would have changed

[ ]I would have used more uppercase letters

[ ]I would have used an easier-to-remember pass-
word

[ ] Other

If you have any additional feedback about pass-
words or this survey, please enter your comments
here.



