
Checking Framework Interactions with
Relationships

Ciera Jaspan Jonathan Aldrich
December 2008

CMU-ISR-08-140

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Software frameworks impose constraints on how plugins may interact with them. Many of hese
constraints involve multiple objects, are temporal, and depend on runtime values. Additionally,
they are difficult to specify because they are non-local and may break behavioral subtyping. This
work presents relationships as a means for specifying framework constraints, and it presents a
formal description and implementation of a static analysis to find constraint violations in plugin
code. We define three variants of this analysis: one is sound, one is complete, and one provides
compromise of the two. We prove soundness and completeness for the appropriate variants, and
we show how the compromise variant works on examples from real-world programs. This allows
the user to select the option which is the most cost-effective in practice with regard to the number
of false positives and false negatives.

This work was supported in part by a fellowship from Los Alamos National Laboratory, DARPA contract
HR00110710019, and Army Research Office grant number DAAD19-02-1-0389 entitled Perpetually Available and
Secure Information Systems.

Keywords: software frameworks, relationships, static analysis, verification

Figure 1: ASP.NET ListControl Class Diagram

1 Introduction
Object-oriented frameworks have brought many benefits to software development, including re-
usable codebases, extensible systems, and encapsulation of quality attributes. However, frame-
works are used at a high cost; they are complex and difficult to learn [11]. This is partially due to
the complexity of the semantic constraints they place on the plugins that utilize them.

As an example, consider a constraint in the ASP.NET web application framework. The ASP.-
NET framework allows developers to create web pages with user interface controls on them. These
controls can be manipulated programatically through callbacks provided by the framework. A
developer can write code that responds to control events, adds and removes controls, and changes
the state of controls.

One task that a developer might want to perform is to programmatically change the selection
of a drop down list. The ASP.NET framework provides the relevant pieces, as shown in Figure 11.
Notice that if the developer wants to change the selection of a DropDownList (or any other derived
ListControl), she has to access the individual ListItems through the ListItemCollection
and change the selection using setSelected. Based on this information, she might naı̈vely change
the selection as shown in Listing 1. Her expectation is that the framework will see that she has
selected a new item and will change the selection accordingly.

When the developer runs this code, she will get the error shown in Figure 2. The error message
clearly describes the problem; a DropDownList had more than one item selected. This error is
due to the fact that the developer did not de-select the previously selected item, and, by design,
the framework does not do this automatically. While an experienced developer will realize that
this was the problem, an inexperienced developer might be confused because she did not select
multiple items.

The stack trace in Figure 2 is even more interesting because it does not point to the code where
the developer made the selection. In fact, the entire stack trace is from framework code; there is
no plugin code referenced at all! At runtime, the framework called the plugin developer’s code
in Listing 1, this code ran and returned to the framework, and then the framework discovered the
error. To make matters worse, the program control could go back and forth several times before
finally reaching the check that triggered the exception. Since the developer doesn’t know exactly
where the problem occurred, or even what object it occurred on, she must search her code by hand
to find the erroneous selection.

1To make this code more accessible to those unfamiliar with C#, we are using traditional getter/setter syntax rather
than properties.

1

Listing 1: Incorrect selection for a DropDownList
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel;

6 newSel = list.getItems().findByValue("foo");

7 newSel.setSelected(true);
8 }

Figure 2: Error with partial stack trace from ASP.NET

The correct code for this task is in Listing 2. In this code snippet, the developer de-selects the
currently selected item before selecting a new item.

This example, and many others we have found on the ASP.NET developer forum, shows three
interesting properties of framework constraints.
Framework constraints involve multiple classes and objects. Listing 1 references three objects,
and Listing 2 required four objects to make the proper selection. The framework code that the
plugin used was located in four classes.
Framework constraints are non-local. While the DropDownList was the class that checked
the constraint (as seen by the stack trace), the constraint itself was on the methods of ListItem.
However, the ListItem class is not aware of the DropDownList class or even that it is within a
ListControl at all, and therefore it should not be responsible for enforcing the constraint. The
non-local nature of these constraints also makes them difficult to document, as it is unclear where
the documentation should go so that the plugin developer will discover it. In this example, had the
framework developer placed the relevant documentation in the DropDownList, the plugin devel-

Listing 2: Correctly selecting an item using the ASP.NET API
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 oldSel = list.getSelectedItem();

7 oldSel.setSelected(false);
8 newSel = list.getItems().findByValue("foo");

9 newSel.setSelected(true);
10 }

2

Listing 3: Selecting on the wrong DropDownList
1 DropDownList listA;

2 DropDownList listB;

3

4 private void Page_Load(object sender, EventArgs e)
5 {

6 ListItem newSel, oldSel;

7 oldSel = listA.getSelectedItem();

8 oldSel.setSelected(false);
9 newSel = listB.getItems().findByValue("foo");

10 newSel.setSelected(true);
11 }

oper might still not find it because she was using methods of the ListItem class.
Framework constraints have semantic properties. Framework constraints are not only about
structural concerns such as method naming conventions or types; the developer must also be aware
of semantic properties of the constraint. There are several semantic properties shown by this ex-
ample. First, the plugin developer had to be aware of which objects she was using to avoid the
problem in Listing 3. In this example, the developer called the correct operations, but on the
wrong objects. She also had to be aware of the primitive values (such as true or false) she used
on the calls to change the selection. Finally, she had to be aware of the ordering of the operations.
In Listing 2, had she swapped lines 6 and 7 with lines 8 and 9, she would have caused unex-
pected runtime behavior where the selection change does not occur. This behavior occurs because
getSelectedItem returns the first selected ListItem that it finds in the DropDownList, and that
may be the newly selected item rather than the old item.

In previous work [10], we proposed a preliminary specification approach and sketched a hy-
pothetical analysis to discover mismatches between the plugin code and the declared constraints
of the framework. The previous work primarily discussed the requirements for such a system and
explored a prototype specification. In this paper, we make three contributions:

1. We show that the concept of developer-defined relations across objects captures the primary
programming model used to interact with frameworks. We use these relations to specify
framework constraints in a concise manner. (Section 2)

2. We propose (Section 3) and formally define (Section 4) a static analysis that detects where
a plugin violates framework constraints. We define three variants of this analysis: a sound
variant, a complete variant, and a third variant that is neither sound nor complete. We prove
soundness and completeness for the appropriate variants, and we argue that the third variant
is a better compromise for practical use. Additionally, there are only minor differences
between the variants, so it is it simple to swap between them.

3. We implemented the compromise variant of the analysis within the Eclipse IDE and ran it on
code based on examples from framework help forums. We show that the constraints capture
the properties described and that the compromise variant can handle real-world code with
relatively few false positives and false negatives. (Section 5)

3

2 Developer-defined Relations over Objects
WWhen a developer programs to a framework, the primary task is not about creating new objects
or data. In many cases, programming in this environment is about manipulating the abstract asso-
ciations between existing objects. Every time the plugin receives a callback from the framework,
it is implicitly notified of the current associations between objects. As the plugin calls framework
methods, the framework changes these associations, and the plugin learns more about how the ob-
jects relate. Every method call, field access, or test gives the plugin more information. Even when
the plugin needs to create a new object, it is frequently done by calling abstract factory methods
that set up the object and its relationships with other objects.

The ASP.NET framework exemplifies this means of interaction. In the DropDownList exam-
ple, all the objects are provided by the framework, and the plugin simply changes their relation-
ships with each other through calls to the framework. In fact, the DropDownList itself, and the
data within it, is frequently set up using dependency injection, a mechanism in which the frame-
work populates the fields of the plugin based on an external configuration file [7]. This may be
done in several stages, with the framework notifying the plugin as it completes each stage using
a callback. When using dependency injection, the plugin simply receives and manipulates pre-
configured objects.

Since the primary mechanism of interaction is based on manipulating relationships between ob-
jects, we will model it formally using a mathematical relation. A relation is a named, mathematical
relation on several types τ.

Relation ::= name → τ1 × . . .× τn

A relationship is a single tuple in a relation, represented as

Relationship ::= name(`1, . . . , `n)

where ` is a static representation of a runtime object.
In this section, we introduce three specification constructs based on relationships. The first

construct, relationship effects, specify how framework operations change associations between ob-
jects. The second construct, constraints, uses relationships to specify the non-local constraints on
framework operations. Finally, relation inference rules specify how relationships can be inferred
based on the current state of other relationships, regardless of what operations are used.

2.1 Relationship Effects
Relationship effects specify changes to the relations that occur after calling a framework method.
The framework developer annotates the framework methods with information about how the call-
ing object, parameters, and return value are related (or not related) after a call to the method. These
annotations describe additions and removals of relationships from a relation. For example, the an-
notation @Item({item, list}, ADD) creates an “Item” relationship between item and list, while
@Item({item, list}, REMOVE) removes this relationship2. Relationship effects may refer to the

2We are presenting a simplified version of the syntax for readability purposes. The correct Java syntax for the add
annotation appears as @Item(params={”item”, ”list”}, effect=ADD). This is the syntax used in the implementation.

4

Listing 4: Relations for the ListControl API. Every relation must define the properties params, effect,
and test
1 @Relation({ListItem.class, ListControl.class})
2 public @interface Child {
3 public String[] params;
4 public Effect effect;
5 public String test = "";
6 }

parameters, the receiver object, and the return value of a method. They may also refer to primitive
values. Additionally, parameters can be wild-carded, so @Item({*, list}, REMOVE) removes all
the “Item” relationships between list and any other object.

In addition to the ADD and REMOVE effects, a TEST effect uses a parameter to determine whether
to add or remove a relationship. For example, we might annotate the method List.contains-
(Object obj) with @Item({obj, this}, TEST, return) to signify that this relationship is added
when the value of return is true and removed when the value of return is false.

As relations are user-defined, they have no predefined semantics. Any hierarchy or ownership
present, such as “Child” or “Item” relations, is only inserted by the framework developer. In fact,
relationships do not have to reflect any reference paths found in the heap, but may exist only as an
abstraction to the developer. This allows relations to be treated as an abstraction independent from
code, and even allows the same relation to be used across frameworks.

To define a new relation, the framework developer creates an annotation and uses the meta-
annotation @Relation to signify it as a relation over specific types. Listing 4 shows a sample
definition of the Child relation from the DropDownList example.

Once the framework developer defines the desired relations, they can be used as relationship
effects, as shown in Listing 5. These annotations allow tools to track relationship effects through
the plugin code at compile time. Listing 6 shows a snippet from a plugin, along with the current
relationships after each instruction. For example, after line 4 in Listing 6, we learn the relationships
in displayed in line 5 based on the effects declared for in Listing 5, lines 7-9. This information, the
relationship context, provides us with an abstract, semantic context that each instruction resides in.
In the next section, we use this context to check the semantic parts of framework constraints.

2.2 Constraints
Constraints use relationships in logical predicates to specify non-local preconditions of framework
operations. They are written as class-level annotations, but as constraints are non-local, they can
constrain the operations on any other class. Three examples of constraints on the DropDownList
class are in Listing 7. As the examples show, a constraint has four parts:

1. operation: This is a signature of an operation to be constrained, such as a method call,
constructor call, or even a tag signaling the end of a method. Notice that these operations
may constrain operations on another class.

2. trigger predicate: This is a logical predicate over relationships. The plugin’s relationship
context must show this predicate to be true for this constraint to be triggered. If not, the

5

Listing 5: Partial ListControl API with Relation annotations
1 public class ListControl {
2 @List({return, this}, ADD)

3 public ListItemCollection getItems();
4

5 //After this call, we know two pieces of information.
6 //The returned item is selected, and it is a child of this
7 @Child({return, this}, ADD)

8 @Selected({return}, ADD)

9 public ListItem getSelectedItem();
10 }

11 public class ListItem {
12 //if the return is true, then we know we have a selected item
13 //if it is false, we know it was not selected.
14 @Selected({this}, TEST, return)

15 public boolean isSelected();
16

17 @Selected({this}, TEST, select)

18 public void setSelected(boolean select);
19

20 @Text({return, this}, ADD)

21 public String getText();
22

23 //When we call setText, remove any previous Text relationships,
24 //then add one for text
25 @Text({∗, this}, REMOVE)

26 @Text({text, this}, ADD)

27 public void setText(String text);
28 }

29 public class ListItemCollection
30 @Item({item, this}, REMOVE)

31 public void remove(ListItem item);
32

33 @Item({item, this}, ADD)

34 public void add(ListItem item);
35

36 @Item({item, this}, TEST, return)

37 public boolean contains(ListItem item);
38

39 @Item({item, this}, ADD)

40 @Text({text, return}, ADD)

41 public ListItem findByText(String text);
42

43 //if we had any items before this, remove them after this call
44 @Item({∗, this}, REMOVE)

45 public void clear();
46 }

6

Listing 6: Comments showing how the relationship context changes after each instruction
1 DropDownList ddl = ...;

2 ListItemCollection coll;

3 ListItem newSel, oldSel;

4 oldSel = ddl.getSelectedItem();

5 //Child(oldSel, ddl), Selected(oldSel)
6 oldSel.setSelected(false);
7 //Child(oldSel, ddl), !Selected(oldSel)
8 coll = ddl.getItems();

9 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl)
10 newSel = coll.findByText("foo");

11 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl),
12 //Item(newSel, coll), Text(”foo”, newSel)

Listing 7: DropDownList Selection Constraints and Inferred Relationships
1 @Constraint(

2 op=”ListItem.setSelected(boolean select)”,

3 trigger=”select == false and Child(this, ctrl) and

4 ctrl instanceof DropDownList”,

5 requires=”Selected(this)”,

6 effect={”!CorrectlySelected(ctrl)”}
7)

8

9 @Constraint(

10 op=”ListItem.setSelected(boolean select)”,

11 trigger=”select == true and Child(this, ctrl) and

12 ctrl instanceof DropDownList”,

13 requires=”!CorrectlySelected(ctrl)”,

14 effect={”CorrectlySelected(ctrl)”}
15)

16

17 @Constraint(

18 op=”end−of−method”,

19 trigger=”ctrl instanceof DropDownList”,

20 requires=”CorrectlySelected(ctrl)”,

21 effect={}
22)

23 @Infer(

24 trigger=”List(list, ctrl) and Item(item, list)”,

25 infer={”Child(item, ctrl)”}
26)

27 public class DropDownList {...}

constraint is ignored. While operation provides a syntactic trigger for the constraint, trigger
provides the semantic trigger.

3. requires predicate: This is another logical predicate over relationships. If the constraint

7

is triggered, then this predicate must be true under the current relationship context. If the
requires predicate is not true, this is a broken constraint and the analysis should signal an
error in the plugin.

4. effect list: This is a list of relationship effects. These effects will only be applied if the
constraint is triggered.

In the first example at the top of Listing 7, the constraint is checking that at every call to
ListItem.setSelected(boolean), if the relationship context shows that the argument is false,
the receiver is a Child of a ListControl, and if the ListControl is a DropDownList, then it
must also indicate that the ListItem is Selected. Additionally, the context will change so that
the DropDownList is not CorrectlySelected. The second constraint is similar to the first and in
enforces proper selection of ListItems in a DropDownList. The third constraint ensures that the
method does not end in an improper state by utilizing the “end-of-method” instruction to trigger
when a plugin callback is about to end.

In some cases, the relationships between objects are implicit. Consider the ListItemCollec-
tion from the DropDownList example. In this example, the framework developer would like
to state that items in this list are in a Child relation with the ListControl parent. However,
it does not make sense to annotate the ListItemCollection class with this information since
ListItemCollections should not know about ListControls.

2.3 Inferred relationships
In some cases, the relationships between objects are implicit. Consider the ListItemCollection
from the DropDownList example. In this example, the framework developer would like to state
that items in this list are in a Child relation with the ListControl parent. However, it does not
make sense to annotate the ListItemCollection class with this information since ListItem-
Collections should not know about ListControls.

Inferred relationships describe these implicit relationships that can be assumed at any time. In
Listing 7, lines 23-26 show an example for inferring a Child relationship based on the relations
ListItemCollections and ListControls. Whenever the relationship context can show that the
“trigger” predicate is true, it can infer the relationship effects in the “infer” list. It is possible to
produce inferred relationships that directly conflict with the relationship context. To prevent this,
the semantics of inferred relationships is that they are ignored in the case of a conflict, that is,
relationships from declared relationship effects and constraints have a higher precedence.

8

3 The Relation Analysis
We have designed and implemented a static analysis to track relationships through plugin code
and check plugin code against framework constraints. The relation analysis is a branch-sensitive,
forward dataflow analysis3. It is designed to work on a three address code representation of Java-
like source. We assume that the analysis runs in a framework that provides all of these features. In
this section, we will present the analysis data structures, the intuition behind the three variations
of the analysis, and a discussion of their tradeoffs. Section 4 defines how the analysis runs on each
instruction.

The relation analysis is dependent on several other analyses, including a boolean constant prop-
agation analysis and an alias analysis. The relation analysis uses the constant propagation analysis
for the TEST effect. For this purpose, the relation analysis assumes there is a function B to which
it can pass a variable and learn whether the represented value is true, false, or unknown.

The relation analysis can use any alias analysis which implements a simple interface. First, it
assumes there is a context L that given any variable x, provides a finite set ¯̀ of abstract locations
that the variable might point to. Second, it assumes a context Γ` which maps every location ` to a
type τ. The combination of these two contexts, < Γ`,L > is represented as the alias lattice A.

The alias lattice must be conservative in its abstraction of the heap, as defined by Definition 1.

Definition 1 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set of source
variables x which point to a runtime location ` of type τ. Let H be all the possible heaps at a
particular program counter. An alias lattice < Γ`,L > abstracts H at a program counter if and
only if

∀ h ∈ H . dom(h) = dom(L)and

∀ (x1 ↪→ `1 : τ1) ∈ h . ∀ (x2 ↪→ `2 : τ2) ∈ h .
if x1 6= x2 and `1 = `2 then

` ′ ∈ L(x1) and ` ′ ∈ L(x2) and τ1 <: Γ`(`
′)

and

if x1 6= x2 and `1 6= `2 then

` ′1 ∈ L(x1) and ` ′2 ∈ L(x2) and ` ′1 6= ` ′2 and τ1 <: Γ`(`
′
1) and τ2 <: Γ`(`

′
2)

This definition ensures that if two variables alias under any heap, then the alias lattice will
reflect that by putting the same location ` ′ into each of their location lists. Likewise, if any heap
can determine that the two variables are not aliased, then the alias lattice will reflect this possibility
as well by having a distinct location in each location set. The definition also ensures that the typing
context Γ` has the most general type for a location.

As long as the alias analysis maintains the abstraction property and can provide the required
interface, the relation analysis can be proven to be either sound or complete. Of course, a more
precise alias analysis will increase the precision of the relation analysis.

3By branch-sensitive, we mean that the true and false branches of a conditional may receive different lattice infor-
mation depending upon the condition. The transfer function on the condition is called twice, once assuming that the
result is false, and once assuming that it is true. This is not a path-sensitive analysis; the branch condition is not saved
for use after the branches merge together.

9

3.1 The Relationship State Lattice

unknown

true

qqqqqqq
false

NNNNNNN

bot

ppppppp

MMMMMMM

Figure 3: The simple
lattice for a relation-
ship

We track the status of a relationship using the four-point dataflow
lattice represented in Figure 3, where unknown represents either
true or false and bottom is a special case used only inside the flow
function. The relation analysis uses a tuple lattice which maps all
relationships we want to track to a relationship state lattice element.
We will represent this tuple lattice as ρ. We will say that ρ is con-
sistent with an alias lattice A when the domain of ρ is equal to the
set of relationships that are possible under A.

Notice that as more references enter the context, there are more possible relationships, and the
height of ρ grows. Even so, the height is always finite as there is a finite number of locations
and a finite number of relations. As the flow function is monotonic, the analysis always reaches a
fix-point.

3.2 Flow Function
The analysis flow function is responsible for two tasks; it must check that a given operation is valid,
and it must apply any specified relationship changes to the lattice. The flow function is defined as

fC;A;B(ρ, instr) = ρ ′

where C are all the constraints, A is the alias lattice, B is the boolean constant lattice, ρ is the
starting relation lattice, ρ ′ is the ending relation lattice, and instr is the three-address code in-
struction on which we are running the analysis. The analysis goes through each constraint in C and
checks for a match. It first checks to see whether the operation defined by the constraint matches
the instruction, thus representing a syntactic match. It also checks to see whether ρ determines that
the trigger of the constraint applies. If so, it has both a syntactic and semantic match, and it binds
the specification variables to the locations that triggered the match.

Once the analysis has a match, two things must occur. First, it uses the bindings generated
above to show that the required predicate of the constraint is true under ρ. If it is not true, then the
analysis reports an error on instr. Second, the analysis must use the same bindings to produce ρ ′

by applying the relationship effects.

3.3 Soundness and Completeness
Soundness and completeness allow the user of the analysis to either have confidence that there are
no errors at runtime if the analysis finds none (if it is sound) or that any errors the analysis finds will
actually occur in some runtime scenario (if it is complete). For the purposes of these definitions,
an error is a dynamic interpretation of the constraint which causes the requires predicate to fail. In
the formal semantics, an error is signaled as a failure for the flow function to produce a new lattice
for a particular instruction.

We define soundness and completeness of the relation analysis by assuming an alias analysis
which abstracts the heap using A, as described above. For both of these theorems, we let Aconc

10

Table 1: Differences between sound, complete, and compromise variant
Trigger Predicate checks when... Requires Predicate passes when...

Sound True or Unknown True
Complete True True or Unknown
Compromise True True

define the actual heap at some point of an real execution, and we let Aabs be a sound approximation
of Aconc. We also let ρabs and ρconc be relationship lattices consistent with Aabs and Aconc where
ρabs is an abstraction of the concrete runtime lattice ρconc, defined as ρconc v ρabs.

If the relation analysis is sound, we expect that if the flow function runs to completion using
the imprecise lattice ρabs, then any more concrete lattice will also run to completion for that in-
struction. As the flow function only runs to completion if it finds no errors, then there may be
false positives from when ρabs produces errors, but there will be no false negatives. To be locally
sound for this instruction, the analysis must also produce a new abstract lattice that conservatively
approximates any new concrete lattice. Theorem 3.1 captures the intuition of local soundness for-
mally. Global soundness follows from local soundness, the monotonicity of the flow function, and
the initial conditions of the lattice.

Theorem 3.1 (Local Soundness of Relations Analysis).
if fC;Aabs;B(ρabs, instr) = ρabs

′
and ρconc v ρabs

then fC;Aconc;B(ρconc, instr) = ρconc
′

and ρconc
′ v ρabs ′

If the relation analysis is complete, we expect a theorem which is the opposite of the soundness
theorem and is shown in Theorem 3.2. If a flow function runs to completion on a lattice ρconc,
then it will also run to completion on any abstraction of that lattice. An analysis with this property
may produce false negatives, as the analysis can find an error using the concrete lattice yet run to
completion on the abstract lattice, but it will produce no false positives. Like the sound analysis,
the results from the flow function must maintain their existing precision relationship.

Theorem 3.2 (Local Completeness of Relations Analysis).
if fC;Aconc;B(ρconc, instr) = ρconc

′
and ρconc v ρabs

then fC;Aabs;B(ρabs, instr) = ρabs
′

and ρconc
′ v ρabs ′

The relation analysis can be either sound, complete, or a compromise of the two, by making
only minor changes to the analysis. Proofs of soundness and completeness, for the sound and
complete variants respectively, can be found in the appendicies. The differences between the
variants are summarized in Table 1 and are described below.

Trigger condition. The trigger predicate determines when the constraint will check the re-
quired predicate and when it will produce effects. The sound analysis will trigger a constraint
whenever there is even a possibility of it triggering at runtime. Therefore, it triggers when the
predicate is either true or unknown. The complete variant can produce no false positives, so it will
only check the requires predicate when the trigger predicate is definitely true. Regardless of the
variant, if the trigger is either true or unknown, the analysis produces a set of changes to make to
the lattice based upon the effects list.

11

public class ListItemCollection {
@Item({∗, this}, REMOVE)

public void clear() {...}
...

}

@Constraint(

op = ”ListItemCollection.clear()”,

trigger = ”x instanceof ListItem”,

requires = ”true”,

effect = {”!Item(x, this)”}
)

Figure 4: Translating a relation effect with wildcards into a constraint

Error condition. The requires predicate should be true to signal that the operation is safe to
use. The sound variant will cause an error whenever the required predicate is false or unknown.
The complete variant, however, can only cause an error if it is sure there is one, so it only flags an
error if the requires predicate is definitely false.

Table 1 also shows a variant of the analysis that, while neither sound or complete, we believe
is a good compromise between the two. The compromise variant attempts to minimize the number
of false positives and false negatives by only triggering when the trigger predicate is definitely
true, but then signaling an error if the requires predicate is either false or unknown. While this
version can produce false positives and false negatives, we believe it will be the most cost-effective
compromise in practice, based on our experience described in Section 5. Additionally, this version
may utilize inferred relations, a feature which is inherently neither sound or complete, but reduces
the specification burden on the framework developer.

4 Abstract Semantics
In this section, we present formal semantics for a simplified version of the specifications and anal-
ysis, the grammar for which is shown in Figure 5. We do not specialized relations for equality(==)
and typing (instanceof). It is possible to add specialized relations by calling out to other flow anal-
yses in the same manner as is done with both the boolean constant propagation analysis and the
alias analysis.

Relation effects and wildcards are both syntactic sugar that can be easily translated into a
constraint form. Relation effects are translated by considering them as a constraint on the annotated
method with a true trigger predicate, a true requires predicate, and the effect list as annotated.
Wildcards are easily rewritten by declaring a fresh variable in the trigger predicate and constraining
it to have the desired type. Figure 4 shows an example effect with a wildcard translated into a
constraint.

The lattice ρ has the usual operators of join (t) and precision (v), which work as expected for
a tuple lattice. We also introduce three additional operators, defined in Figure 6. Equivalence join
() will resolve to unknown if the two sides are not equal. Overriding meet () has the property
that if the right side has a defined value (not bot), then it will use the right value, otherwise it will
use the left value. The polarity operator (l) will push all non-bottom values to the top of the lattice.
Finally, we also define⊥A as a special lattice which is consistent with the alias lattice A and which
maps every relationship to bot.

12

constraint cons ::= op : Pctx ⇒ Preq ⇓ Q
predicate P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 |Q | true | false

negation predicate Q ::= ¬S | S
test predicate S ::= A | A/y

relation predicate A ::= rel(ȳ)

bound predicate M ::= M1 ∧M2 |M1 ∨M2 |M1 =⇒ M2 |N | true | false
bound negation N ::= ¬T | T

bound test T ::= R | R/`

relationship R ::= rel(¯̀)

source instruction instr ::= xret = xthis.m(x) | xret = new τ(x) | eom | . . .
instruction signature op ::= τthis.m(y : τ) : τret | new τ(y : τ) | end-of-method | . . .

ternary logic t ::= True | False | Unknown

lattice elements E ::= unknown | true | false | bot
flow lattice ρ ::= R 7→ E, ρ | ∅

set of lattices P ::= {ρ} ∪ P | ∅

substitution σ ::= (y 7→ `), σ | ∅
set of substitutions Σ ::= {σ} ∪ Σ | ∅

bool constants lattice B ::= ` 7→ t,B | ∅
alias lattice A ::= < Γ`; L >

aliases L ::= (x 7→ `),L | ∅
location types Γ` ::= (` : τ), Γ` | ∅

spec variable types Γy ::= (y : τ), Γy | ∅

relation type R ::= rel 7→ τ̄,R | ∅
constraints C ::= cons,C | ∅

relation inference rules I ::= P ⇓ S, I | ∅

x is a source variable
m is a method name
rel is a relation name
τ is a type
y is a spec variable, where the variables this and ret have special meanings
` is a label for a runtime object

⊥A is a special lattice which is consistent with the alias lattice A and where every
relationship maps to bot

Figure 5: Abstract grammar

4.1 Checking predicate truth
Before we show how constraint checking works, we must describe how the analysis tests the truth
of a relationship predicate. The judgment for this is written as

A; B; ρ `M t

and is read as “Given an aliasing context and a constant propagation context, the lattice ρ shows
that bound predicateM is t”, where t is either True, False, or Unknown. The rules for this judgment

13

E bot = E
(OVRMEET−BOT)

Er 6= bot
El Er = Er

(OVRMEET−NOT−BOT)

E E = E
(EQJOIN−=)

El 6= Er

El Er = unknown
(EQJOIN−6=)

l bot = bot
(POLAR−BOT)

E 6= botl E = unknown
(POLAR−UNKNOWN)

botE bot
(E−BOT)

botE unknown
(E−UNKNOWN)

El 6= bot
El E Er

(E−OTHER)

bot t E = E
(t−BOT−L)

E t bot = E
(t−BOT−R)

E t E = E
(t−=)

El 6= bot Er 6= bot El 6= Er

El t Er = unknown
(t−6=)

bot v E
(v−BOT)

E v unknown
(v−UNKNOWN)

E 6= bot E 6= unknown
E v E

(v−=)

Figure 6: Lattice Element Operations

are similar to three-valued logic and are shown in Figures 7 and 8.
In the sound and complete variants, the rules are trivial. The analysis inspects the lattice to

see what the value of the relationship is to determine whether it is True (REL-T), False (REL-F), or
Unknown (REL-U-SOUND/COMPLETE). If the lattice maps the relationship to either unknown or bot,
then the predicate is considered Unknown. The rest of the predicate rules work as expected for a
three-valued logic.

The interesting case is in the compromise variant when the relationship does not map to true or
false. Instead of using the rule (REL-U-SOUND/COMPLETE), the compromise variant admits the rules
(REL-U-COMPROMISE) and (INFER-COMPROMISE). These rules attempt to use the inferred relationships,
defined in Section 2.3, to retrieve the desired relationship. The rule for the inference judgement
ρ infers ρ ′, is defined in Figure 9. This rule first checks to see if the trigger of an inferred relation
is true, and if so, uses the function lattice to produce the inferred relationships described by
R̄[σ]. For all relationships not defined by ¯R[σ], the lattice function defaults to bot to signal that
there are no changes. There are two properties to note about the rules (REL-U-COMPROMISE), (INFER-

COMPROMISE), and (DISCOVER):
1. The use of inferred relationships does not change the original lattice ρ. This allows the

inferred relationships to go away automatically if the generating predicate, P, is no longer
true.

2. Any inferred relationship must be strictly more precise than the relationship’s value in ρ, as
enforced by ρ ′ @ ρ. This means that relationships can move from unknown to true, but
they can not move from false to true. This property guarantees termination and prevents
the inferred relationships from taking precedence over declared ones.

Inferred relationships can not be used in the sound and complete variants. This does not limit

14

A; B; ρ `M t

ρ(R) = true

A; B; ρ ` R True
(REL−TRUE)

ρ(R) = false

A; B; ρ ` R False
(REL−FALSE)

ρ(R) = E E 6= true E 6= false
A; B; ρ ` R Unknown

(REL−UNKNOWN−SOUND/COMPLETE)

ρ(R) = E E 6= true E 6= false
A; B ` ρ infers ρ ′ ρ ρ ′ ` R t t is True or False

A; B; ρ ` R t
(INFER−COMPROMISE)

ρ(R) = E E 6= true E 6= false
¬∃ρ . A; B ` ρ infers ρ ′

A; B; ρ ` R Unknown
(REL−UNKNOWN−COMPROMISE)

A; B; ρ ` R t B(`test) = t t 6= Unknown

A; B; ρ ` R/`test True
(REL−TEST−T)

A; B; ρ ` R t1 B(`test) = t2 t1 6= Unknown t2 6= Unknown t1 6= t2

A; B; ρ ` R/`test False
(REL−TEST−F)

A; B; ρ ` R Unknown

A; B; ρ ` R/`test Unknown
(REL−TEST−U1)

A; B(`test) = Unknown A; B; ρ ` R t
A; B; ρ ` R/`test Unknown

(REL−TEST−U2)

A; B; ρ ` T Unknown

A; B; ρ ` ¬T Unknown
(¬R−UNKNOWN)

A; B; ρ ` T False

A; B; ρ ` ¬T True
(¬R−TRUE)

A; B; ρ ` T True

A; B; ρ ` ¬T False
(¬R−FALSE)

A; B; ρ ` true True
(TRUE)

A; B; ρ ` false False
(FALSE)

A; B; ρ `M1 False

A; B; ρ `M1 =⇒ M2 True
(=⇒ −TRUE1)

A; B; ρ ` P2 True

A; B; ρ `M1 =⇒ M2 True
(=⇒ −TRUE2)

A; B; ρ `M1 True A; B; ρ `M2 False

A; B; ρ `M1 =⇒ M2 False
(=⇒ −FALSE)

Figure 7: Check predicate truth under a lattice

the expressiveness of the specifications, as inferred relations can always be written directly within
the constraints. Doing so does make the specifications more difficult to write; the framework devel-
oper must add the inferred relations to any constraint which will also prove the trigger predicate.
Since inferred relations do change the semantics, they are not syntactic sugar, but they are not
necessary for reasons beyond the ease of writing specifications.

4.2 Matching on an operator
In order to check a constraint, the analysis must determine whether a source instruction, called
instr, matches the syntactic operation op defined by a constraint. This is realized in the judgment

A; Γy ` instr : op Z⇒ (Σt, Σu)

15

A; B; ρ `M t

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown

A; B; ρ `M1 =⇒ M2 Unknown
(=⇒ −UNKNOWN1)

A; B; ρ `M1 True A; B; ρ `M2 Unknown

A; B; ρ `M1 =⇒ M2 Unknown
(=⇒ −UNKNOWN2)

A; B; ρ `M1 Unknown A; B; ρ `M2 False

A; B; ρ `M1 =⇒ M2 Unknown
(=⇒ −UNKNOWN3)

A; B; ρ `M1 True A; B; ρ `M2 True

A; B; ρ `M1 ∧M2 True
(∧−TRUE)

A; B; ρ `M1False

A; B; ρ `M1 ∧M2False
(∧−FALSE1)

A; B; ρ `M2 False

B; ρ `M1 ∧M2 False
(∧−FALSE2)

A; B; ρ `M1 True A; B; ρ `M2 Unknown

A; B; ρ `M1 ∧M2 Unknown
(∧−UNKNOWN1)

A; B; ρ `M1 Unknown A; B; ρ `M2 True

A; B; ρ `M1 ∧M2 Unknown
(∧−UNKNOWN2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown

A; B; ρ `M1 ∧M2 Unknown
(∧−UNKNOWN3)

A; B; ρ `M1 True

A; B; ρ `M1 ∨M2 True
(∨−TRUE1)

A; B; ρ `M2 True

A; B; ρ `M1 ∨M2 True
(∨−TRUE2)

A; B; ρ `M1 False A; B; ρ `M2 False

A; B; ρ `M1 ∨M2 False
(∨−FALSE)

A; B; ρ `M1 False A; B; ρ `M2 Unknown

A; B; ρ `M1 ∨M2 Unknown
(∨−UNKNOWN1)

A; B; ρ `M1 Unknown A; B; ρ `M2 False

A; B; ρ `M1 ∨M2 Unknown
(∨−UNKNOWN2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown

A; B; ρ `M1 ∨M2 Unknown
(∨−UNKNOWN3)

Figure 8: Check predicate truth under a lattice

ρ infers ρ ′

P ⇓ Q ∈ I ρ ` P[σ] True ρ ′ = lattice(Q[σ]; A; B) ρ ′ @ ρ

A; B ` ρ infers ρ ′
(DISCOVER)

Figure 9: Infer new relationships

with rules defined in Figure 10. Given the alias lattice A and a typing environment for the free
variables in op, this judgment matches instr to op and produces two disjoint sets of substitutions

16

A; Γy ` instr : op Z⇒ (Σt, Σu)

FV(τthis.m(y : τ) : τret) ⊆ Γy (Σt, Σu) = findLabels(A; Γy ; xret, xthis, x; ret, this, y)

A; Γy ` xret = xthis.m(x) : τthis.m(y : τ) : τret Z⇒ (Σt, Σu)
(INVOKE)

FV(new τ(y : τ)) ⊆ Γy
(Σt, Σu) = findLabels(A; Γy ; xret, x; this, y)

A; Γy ` xret = new m(x) : new τ(y : τ) Z⇒ (Σt, Σu)
(CONSTRUCTOR)

A; Γy ` eom : end-of-method Z⇒ ({∅},∅)
(EOM)

findLabels(A; Γy ; x; y) = (Σt, Σu)

|x| = |y| = n

Σt = {(y1 7→ `1), . . . , (yn 7→ `n) |
∀ i ∈ 1 . . . n . L(xi) = {`i} ∧ Γ`(`i) <: Γy(yi)}

Σu = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . `i ∈ L(xi) ∧ ∃ τ ′ . τ ′ <: Γ`(`i) ∧ τ ′ <: Γy(yi)} − Σt

findLabels(< Γ`,L >; Γy ; x; y) = (Σt, Σu)
(FINDLABELS)

Figure 10: Matching instructions to operations and type satisfaction

that map specification variables in op to heap locations. The first set, Σt, represents possible
substitutions where the locations are all known to be a subtype of the type required by the variables.
The second set, Σu, are potential substitutions where the locations may or may not have the right
type at runtime.

As an example, we will walk through the rule (INVOKE). The first premise checks that the free
variables in op are in Γy , and the second premise builds the substitution set using the findLabels
function. Each substitution in the set will map the specification variables in op (this, ret, and
y1 . . . yn) to a location in the heap that is aliased by the appropriate source variables in instr
(xthis, xret, and x1 . . . xn).

To produce the set Σt, the findLabels function must generate a substitution for each yi in ȳ. It
starts by verifying that the corresponding source variable xi points to only one location `, and it
checks to see if the type of that location is a subtype of the type required for yi. Every substitution
σ which fits these requirements is in Σt.
Σu is a more interesting set. Unlike Σt, it checks all locations which xi aliases and records a

possible substitution for each. Additionally, when it checks the type, it allows the location if there
is even a possibility of it being the right type. As an example, consider the class hierarchy and
use of findLabels shown in Figure 11. In the first row, ` is definitely substitutable for y, so it is a
substitution in Σt. In the second row, y can never be substituted by `, so both sets are empty. In
the third and fourth rows, ` may be substitutable for y (if ` has type B or C, respectively), so both
substitutions are possibly, but not definitely, allowed and are therefore in Σu.

The need for Σu may seem surprising, but the rationale behind it is that framework constraints
do not always adhere to behavioral subtyping. Consider the DropDownList selection constraint
being analyzed for the code in Listing 8. Since list is of type ListControl, the trigger clause

17

findLabels(< ` : τ`, x 7→ {`} >; y : τy ; x; y) = (Σt, Σu)

class A interface D

class B

_LR

class C

�dl QQQQQQQQQQ

_LR

τ` τy Σt Σu

B A {(y 7→ `)} ∅
B D ∅ ∅
A B ∅ {(y 7→ `)}

A D ∅ {(y 7→ `)}

Figure 11: The difference between Σt and Σu

Listing 8: Generically changing the selection on a ListControl
1 ListControl list = ...;

2 ListItem item;

3 item = list.getItems().findByValue("foo");

4 item.setSelected(true);

of the first constraint in Listing 7 will not be true, and the constraint will never trigger an error.
However, we would like this to trigger a potential violation in the sound variant since list could be
a DropDownList. The root of the problem was that DropDownList is not following the principle
of behavioral subtyping; it has added preconditions to methods that the base class did not require.
Therefore, a DropDownList is not always substitutable where a ListControl is used! While
frustrating, this appears to be a common problem with frameworks. Inheritance was used here
rather than composition because the type is structurally the same, and it is almost behaviorally
the same. In fact, the methods on DropDownList itself do appear to be behaviorally the same.
However, the subtype added a few constraints to other classes, like the ListItem class.

By keeping track of Σt and Σu separately, it will allow the variants of the analysis to use them
differently. In particular, the sound variant will trigger errors from substitutions in Σu, while the
complete and compromise variant will only use it to propagate lattice changes from the effect list.

4.3 Checking a single constraint
We will now show how the analysis checks an instruction for a single constraint. This is done with
the judgment

A; B; ρ; cons ` instr ↪→ ρ∆

shown in Figure 12. This judgment takes the alias lattice, the relationship lattice, and a constraint,
and it determines what changes to make to the lattice for the given instruction. The lattice changes
are represented in ρ∆, where a relationship mapped to bot signifies no changes.

The analysis starts by checking whether the instruction matches the operation used by the
constraint. If not, then instruction matching rules will return no substitutions, the rule (NO-MATCH)
will apply, and no changes are made by returning ⊥A. If there are substitutions, as shown in rule
(MATCH), then the analysis must check this constraint for every aliasing configuration possible, as
represented byΣt andΣu. This rule checks that the constraint passes for each aliasing configuration
σ and receives the lattice changes for each. If the substitution was from Σu, then the analysis must

18

A; B; ρ; cons ` instr ↪→ ρ∆

cons = op : Pctx ⇒ Preq ⇓ Q A; FV(cons) ` instr : op Z⇒ (Σt, Σu)

Pt = {ρ∆ | σ ∈ Σt ∧ A; B; ρ;σ `part cons ↪→ ρ∆}

Pu = {l ρ∆ | σ ∈ Σu ∧ A; B; ρ;σ `part cons ↪→ ρ∆}

Σt 6= ∅ ∨ Σu 6= ∅ |Pt| = |Σt| |Pu| = |Σu| P∆ = Pt ∪ Pu

A; B; ρ; cons ` instr ↪→ (P∆)
(MATCH)

cons = op : Pctx ⇒ Preq ⇓ Q A; FV(cons) ` instr : op Z⇒ (∅,∅)

A; B; ρ; cons ` instr ↪→ ⊥A
(NO−MATCH)

A; B; ρ;σ `part cons ↪→ ρ∆

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(A;σop; Γy) = (Σt, Σu)

Pt = {ρ∆ | σ ∈ Σt ∧ A; B; ρ;σ `full cons ↪→ ρ∆}

Pu = {l ρ∆ | σ ∈ Σu ∧ A; B; ρ;σ `full cons ↪→ ρ∆}

Σt 6= ∅ ∨ Σu 6= ∅ |Σt| = |Pt| |Σu| = |Pu| P∆ = Pt ∪ Pu

A; B; ρ;σop `part cons ↪→ (P∆)
(BOUND)

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(A;σop; Γy) = (∅,∅)

A; B; ρ;σop `part cons ↪→ ⊥A
(CANT−BIND)

allValidSubs(A;σ; Γy) = (Σt, Σu)

Σt = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′ . Γ`(`) <: Γy(y)}
Σu = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)} − Σt

allValidSubs(< Γ`; L >;σ; Γy) = (Σt, Σu)
(VALIDSUBS)

Figure 12: Check a single constraint

use the l operator on the change lattice and the starting lattice to produce the correct change lattice.
This is done because the analysis cannot be sure if the substitution is valid at runtime, so it can only
make changes into the unknown state. Setting all changes to unknown could cause the analysis to
lose precision when ρ∆ prescribes a change that already exists in ρ. A possible solution is to let
the polarizing operator return bot if the prescribed changes already exist in the lattice ρ (we have
not yet proven this extension is sound).

The last step the rule makes is to combine all the lattice changes, from all substitutions, using
. The use of means that a change is only made to true or false if all the aliasing con-

figurations agree to it. Likewise, a signal to make no changes by way of bot must also show in
all configurations. If any configurations disagree about a lattice change, then the lattice element
changes to unknown.

Once the analysis has a syntactic match, it tries to find the aliasing configurations for a semantic

19

match using the judgment

A; ρ;σ `part cons ↪→ ρ∆

The analysis must get all aliasing configurations that are consistent with the current aliases in σ
and Γy . σ represents the substitutions which are already made by matching the instruction, while
Γy represents the free variables and their types which the analysis should find substitutions for.
The substitutions are found by the allValidSubs function, shown in Figure 12. The rule (BOUND)
proceeds in a similar manner to the rule (MATCH), except it checks the constraint using the judgment

A; ρ;σ `full cons ↪→ ρ∆

The rules for this judgment, shown in Figure 13, are the primary point of difference between the
variants of the analysis.

Sound Variant

The sound variant first checks Ptrg[σ] under ρ. It uses this to determine which rule applies. If
Ptrg[σ] is True, as seen in rule (FULL-T-SOUND), then the analysis must check if Preq is True under
ρ given any substitution. Since this is the sound variant, it will only accept substitutions from Σt.
If Preq is not True with a substitution from Σt, then the analysis produces an error. If there is no
error, the rule produces the effects dictated by R̄[σ]. The function lattice simply converts this list
to a lattice, where all unspecified relationships map to bot. If Ptrg[σ] is False, then the analysis
uses rule (FULL-F-SOUND). In this situation the constraint does not trigger, so the requires predicate
is not checked and the analysis returns no changes using ⊥A.

In the case that Ptrg[σ] is Unknown, the sound variant proceeds in a similar manner to the case
where Ptrg[σ] is True as it must consider the possibility that the trigger predicate is actually true.
In fact the only difference in the rule (FULL-U-SOUND) is that the analysis must use the polarizing
operator to be conservative with the effects it is producing in case the trigger predicate was actually
false.

Complete Variant

Like the sound variant, the complete variant starts by checking Ptrg[σ] under ρ. If Ptrg[σ] is True,
as seen in rule (FULL-T-COMPLETE), then the analysis must check Preq under ρ given any substitution.
As this is the complete variant, the analysis does not care whether the substitution came from Σt

or Σu, and it does not matter whether Preq is True or Unknown. If no substitutions work, either
because none exist or because they all show Preq to be false, then the analysis produces an error.
Otherwise, if there is no error, then the rule produces some effects. Since the constraint trigger was
true, it will produce exactly the effects dictated by R̄[σ]. If the analysis determines that Ptrg[σ] is
False, then it uses the rule (FULL-F-COMPLETE). Like the sound variant, the requires predicate is not
checked and the analysis returns no changes.

Finally, if Ptrg[σ] is Unknown, the complete variant will not check Preq as it cannot be sure
whether the constraint is actually triggered and it should not produce an error. However, it must
still produce some conservative effects in case the constraint is triggered given a more concrete
lattice. Like the sound rule in the case of an unknown trigger, the rule uses the polarizing operatorl to produce only conservative effects.

20

A; ρ;σ `full cons ↪→ ρ∆, Sound Variant

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . A; B; ρ ` Preq[σ ′] True

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ]; A; B)
(FULL−T−SOUND)

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A
(FULL−F−SOUND)

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] Unknown

(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . A; B; ρ ` Preq[σ ′] True ρ∆ = lattice(Q̄[σ]; A; B)

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−SOUND)

A; B; ρ;σ `full cons ↪→ ρ∆, Complete Variant

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt ∪ Σu . A; B; ρ ` Preq[σ ′] True ∨ A; B; ρ ` Preq[σ ′] Unknown

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ]; A; B)
(FULL−T−COMPLETE)

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A
(FULL−F−COMPLETE)

cons = op : Pctx ⇒ Preq ⇓ Q
A; B; ρ ` Pctx[σ] Unknown ρ∆ = lattice(Q̄[σ]; A; B)

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−COMPLETE)

A; B; ρ;σ `full cons ↪→ ρ∆, Compromise Variant

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . A; B; ρ ` Preq[σ ′] True

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ]; A; B)
(FULL−T−COMPROMISE)

cons = op : Pctx ⇒ Preq ⇓ Q A; B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A
(FULL−F−COMPROMISE)

cons = op : Pctx ⇒ Preq ⇓ Q
A; B; ρ ` Pctx[σ] Unknown ρ∆ = lattice(Q̄[σ]; A; B)

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−COMPROMISE)

Figure 13: Checking a fully bound constraint and producing effects. Shading highlights the differences
between the three variants.

21

fC;A;B(ρ, instr) = ρ ′

falias(A, instr) = A ′

∀ consi ∈ C . A ′; B; ρ; consi ` instr ↪→ ρ∆i ρ∆ = t{ρ∆i } (i ∈ 1 . . . n)

fC;A;B(ρ, instr) = transfer(ρ,A ′) ρ∆
(FLOW−CONS)

Figure 14: The flow function for the relation analysis

Compromise Variant

The compromise variant is a combination of the sound and complete variants. It has the same rule
for False as the other two variants, (FULL-F-COMPROMISE). The rule (FULL-T-COMPROMISE) is the same
as the True rule for soundness, while the rule (FULL-U-COMPROMISE) is the same as the Unknown rule
for completeness. This means that this variant can produce both false positives and false negatives.
The false negatives can occur when Ptrg is Unknown under ρ, but a more precise lattice would
have found Ptrg to be True and eventually generated an error. The false positives occur when Ptrg
is True under ρ and Preq is Unknown under ρ, but Preq would have been True under a more precise
lattice.

4.4 The flow function
The flow function for the analysis checks all the individual constraints and produces the final lattice
for each operation. Using the judgments defined in the previous section, the flow function iterates
through each constraint and receives a change lattice for each. As shown in Figure 14, these lattices
are combined using the join operator. Once the analysis has the final change lattice ρ∆, it applies
the changes using the overriding meet operation. This will preserve the old values of a relationship
if the change lattice maps to bot, but it will override the old value otherwise. This provides us
with the new relationship lattice ρ ′, which is used by the dataflow analysis to feed into the next
instruction’s flow function. This flow function is monotonic, and the lattice has a finite height, so
the dataflow analysis will reach a fix point.

5 Implementation and Experience
We implemented the compromise variant of the analysis in the Crystal dataflow analysis frame-
work, an Eclipse plugin developed at Carnegie Mellon University for statically analyzing Java
source 4. Crystal provides capabilities for analyzing source in three address code form, running
a branch-sensitive analysis, and reading specifications from annotations. For the implementation
of this analysis, we also used a boolean constant propagation analysis and a basic alias analysis.
Either of these could be replaced with more sophisticated analyses in order to improve the results;
the relation analysis is only dependent on the interfaces to these analyses.

We specified three constraints, one from the ASP.NET framework5 and two from the Eclipse

4http://code.google.com/p/crystalsaf
5We translated the relevant parts of the API and the examples into Java.

22

http://code.google.com/p/crystalsaf

JDT framework. These were all constraints which we had misused ourselves and were common
problems that were posted on the help forums and mailing lists. These constraints exercised several
different patterns, and the specifications were able to capture each of these patterns.

The specifications allowed us to easily describe structured relationships, such as the ListItems
which are in a DropDownList and a tree of ASTNodes within the Eclipse JDT. In each of these
cases, a relationship ties the “child” and “parent” objects together, and it is straightforward to check
if two children have the same parent. Two of our constraints had a structured relationship where
an operation required that some objects exist (or do not exist) in a structured relationship.

All three constraints had semantics which required operations to occur in a particular order.
To define this pattern, we just needed a relationship which binds relevant objects together. The
operation which occurs first produces an effect which sets this relationship to true, and the oper-
ation which must occur second simply requires this relationship. An example of this was seen in
the constraints on the DropDownList in Listing 7. Additionally, relationships also allowed us to
specify partial orderings of operations. One of the Eclipse JDT constraints had this behavior, and
in fact required three methods to be called before the constrained operation. Alternatively, the user
could choose to call a fourth method that would replace all three method calls. We captured this
constraint by having each of the four methods produce a relationship, and the constrained opera-
tion simply required either the three relationships produced from the group of three methods, or
the single relationship produced from the fourth one.

Relationships also made it straightforward to associate any objects that were used in the same
operation. For example, this allowed us to associate several fields of an object so that we could later
check that they were only used together. We did this by annotating the constructor of the object
with a relationship effect that tied the field parameters together. We could also associate objects
that were linked by some secondary object, but had no direct connection, such as a DropDownList
and the ListItems received from calls to the associated ListItemCollection.

After specifying the constraints, we ran the compromise analysis on 20 examples based on
real-world code. The examples we selected are based on our own misuses of these frameworks and
on several postings on internet help forums and mailing lists. Of these, the compromise variant
worked properly on 16, meaning that it either found an expected error or did not find an error on
correct code. Most of these examples had little aliasing and used exact types, which reflected what
we saw on the help forums.

These examples identified two sources of imprecision. The compromise variant failed on one
example because it used an unconstrained supertype, and it failed on the remaining three exam-
ples because the relevant constraint required objects which were not in scope. The unconstrained
supertype resulted in a false negative, and the three examples with objects out of scope resulted in
false positives. In all four of these cases, the sound variant would have flagged an error, and the
complete variant would not have.

Using an unconstrained supertype, such as using a ListControl instead of a DropDownList,
as seen in Listing 8, is the first potential source of imprecision for the compromise variant. While
a sound analysis would have detected the error in this example, in practice, using this superclass is
not typical. The plugin has a DropDownList as a field if the control was initialized statically on the
web page, and the plugin will typically cast directly to the expected subtype if it created the control

23

dynamically. In fact, we never found code on the forum that used the superclass ListControl.
The more interesting, and more typical, source of imprecision occurs when a required object

is not in scope. For example, one of the Eclipse JDT constraints required that an ASTNode have a
relationship with an AST object. The plugin, however, did not have any AST objects in scope at all,
even though this relationship did exist globally. Based on the examples we found, this does occur
in practice, typically when the framework makes multiple callbacks in sequence, such as with a
Visitor pattern.

Future revisions of the analysis could address the problem of out-of-scope objects with two
changes. First, it should be possible for the framework to declare what relationships exist at the
point where the callback occurs. This would have provided the correct relationships in the previous
example, and it should be relatively straightforward to annotate the interface of the plugin with this
information. Second, an inter-procedural analysis on only the plugin code could handle the case
where the relationship goes out of scope for similar reasons, such as calls to a helper function.
These changes would increase the precision of all three variants of the analysis.

The two sources of imprecision affect all three variants, though in different ways. While im-
precision anywhere in the constraint can produce a false positive in the sound variant or a false
negative in the complete variant, the location of the imprecision in the constraint directly changes
how the compromise variant handles it. When the imprecision occurs in the trigger predicate, the
compromise variant results in a false negative. When the trigger predicate is precise but the re-
quires predicate is imprecise, the compromise variant results in a false positive. This reflects what
we expect from the analysis; we only wish to see an error if there is reason to believe that the con-
straint applies to our plugin. If the trigger predicate is unknown, it is less likely that the constraint
is relevant.

6 Related Work
SCL [9] allows framework developers to create a specification for the structural constraints for
using the framework. The specifications we propose focus on semantic constraints rather than
structural constraints. Some of the key ideas from SCL could be used to drive the more structurally
focused parts of the specifications, and we view the two as complimentary.

Scoped Methods [16] are a language construct for enforcing protocols which are local to a
method, such as a framework callback. Like SCL, scoped methods are structural and do not take
semantic context of objects into account.

Typestates [6] provide a mechanism for specifying a protocol on a single object by using a state
machine. There have been several approaches to inter-object typestate. Lam et al. manipulated
the typestate of many objects together through their participation in data structures [12]. Nanda
et al. take this a step further by allowing external objects to affect a particular object’s state,
but unlike relationships, it requires that the objects reference each other through a pre-defined
path [14]. Bierhoff and Aldrich add permissions to typestates and allows objects to capture the
permission of another object, thus binding the objects as needed for the protocol [2]. Relationships
can combine multiple objects into a single state-like construct and is more general for this purpose
than typestate; it can describe all of the examples used in multiple object typestate work.

24

With respect to the specifications, relationships are more incremental than typestate because the
entire protocol does not need to be specified in order to specify a single constraint. Additionally,
the plugin developer does not add any specifications, which she must do with some of the typestate
approaches. However, typestate analyses aim to be sound, and can also check that both the plugin
and the framework meet the specification. The relationship analysis assumes that the framework
properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [17]. Unlike typestate, which specifies
the correct protocol, tracematches specify a temporal sequence of events which lead to an error
state. This is done by defining a state machine for the protocol and then specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main difference
is in how the techniques specify the path leading up to the error state. Tracematches must specify
the entire good path leading up to the error state, which leads to many specifications to define a
single bad error state. In cases where multiple execution traces lead to the same error, such as the
many ways to find an item in a DropDownList and select it incorrectly, a tracematch would have to
specify each possibility. Instead of specifying the good path leading up to the error, relationships
specify the context predicate, which is the same for all good paths. This difference affects how
robust a specification is in the face of API changes. If the framework developer adds a new way
to access ListItems in a ListControl, the existing tracematches will not cover that good path.
However, all the constraint specifications in the proposed technique will continue to work if the
new method is annotated with the appropriate relationship effects.

Unlike relationships, tracematches are enforced both dynamically and statically using a global
analysis [4]. The static analysis soundly determines possible violations, and it instruments the code
to check them dynamically. Bodden et al. provide a static analysis which optimizes the dynamic
analysis by verifying more errors statically [5], and Naeem and Lhoták specifically optimize with
regard to tracematches that involve multiple objects [13] .

Bierman and Wren formalized UML relationships as a first-class language construct [3]. The
language extension they created gives relationships attributes and inheritance, and plugin devel-
opers use the relationships by explicitly adding and removing them. In contrast, the relationships
presented in this paper are added and removed implicitly through use of framework operations,
and if inferred relationships are used, they may be entirely hidden from the developer. While Bier-
man and Wren did not explore constraints on relationships, Balzer et al. discuss how to describe
relationship invariants using discrete mathematics [1]. These invariants are on the relationships
themselves and, unlike the proposed work, they do not constrain the framework operations.

Like the proposed framework language, Contracts [8] also view relationships between objects
as a key factor in specifying systems. A contract also declares the objects involved in the contract,
an invariant, and a lifetime where the invariant is guaranteed to hold. Contracts allow all the
power of first-order predicate logic and can express very complex invariants. Contracts differ
from the proposed specifications because they do not check the conformance of plugins and the
specifications are more complex to write.

Our analysis itself is similar to a shape analysis, with the closest being TVLA [15]. TVLA
allows developers to extend shape analysis using custom predicates that relate different objects.
Our constraint specifications could be written as custom TVLA predicates, but the lower level of

25

abstraction would result in a more complex specification and would require greater expertise from
the specifier.

7 Conclusion
Relationships capture the interaction between a plugin and framework by describing how abstract
object associations change as the plugin makes calls to the framework. We can then use these
relationships to describe non-local constraints on the framework operations. We have shown that
relationship-based constraints can describe many constraint paradigms found in real frameworks,
capturing relationship structure, operation order, and object associations that may or may not derive
from direct references As the specifications are written entirely by framework developers, plugin
developers only need to run the analysis on their code, so that investments by a few framework
developers pay dividends to many plugin developers

A modular, intra-procedural static analysis can check that the plugin code meets framework
constraints. This analysis is particularly interesting because it is adjustable. While many analyses
strive to only be either sound or complete, the relation analysis can be run either soundly, com-
pletely, or as a compromise of the two, thereby allowing the plugin developer to choose the variant
that provides the most useful results.

26

References
[1] Stephanie Balzer, Thomas Gross, and Patrick Eugster. A relational model of object collaborations and

its use in reasoning about relationships. In ECOOP, LNCS, pages 323–346. Springer, 2007.

[2] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In OOPSLA,
pages 301–320, 2007.

[3] Gavin Bierman and Alisdair Wren. First-class relationships in an object-oriented language. In ECOOP,
volume 3586 of LNCS, pages 262–286. Springer, 2005.

[4] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analysis to improve the
performance of runtime monitoring. In ECOOP, volume 4609 of LNCS, pages 525–549. Springer,
2007.

[5] Eric Bodden, Patrick Lam, and Laurie Hendren. Finding programming errors earlier by evaluating
runtime monitors ahead-of-time. In FSE, 2008.

[6] Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, LNCS, pages 465–490.
Springer, 2004.

[7] Martin Fowler. Inversion of control containers and the dependency injection pattern. http://www.
martinfowler.com/articles/injection.html, 2004.

[8] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: specifying behavioral com-
positions in object-oriented systems. In OOPSLA, pages 169–180, 1990.

[9] Daqing Hou and H. James Hoover. Using SCL to specify and check design intent in source code. IEEE
Trans. Softw. Eng., 32(6), 2006.

[10] Ciera Jaspan and Jonathan Aldrich. Checking semantic usage of frameworks. In Proceedings of the
4th symposium on Library Centric Software Design, 2007.

[11] Ralph E. Johnson. Frameworks = (components + patterns). Commun. ACM, 40(10), 1997.

[12] Patric Lam, Viktor Kuncak, and Martin Rinard. Generalized Typestate Checking for Data Structure
Consistency. In Verification, Model Checking, and Abstract Interpretation, 2005.

[13] Nomair A. Naeem and Ondřej Lhoták. Typestate-like analysis of multiple interacting objects. In
OOPSLA, pages 347–366, 2008.

[14] Mangala Gowri Nanda, Christian Grothoff, and Satish Chandra. Deriving object typestates in the
presence of inter-object references. In OOPSLA, pages 77–96, 2005.

[15] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[16] Gang Tan, Xinming Ou, and David Walker. Enforcing resource usage protocols via scoped methods,
2003. Appeared in the 10th International Workshops on Foundations of Object-Oriented Languages.

[17] Robert J. Walker and Kevin Viggers. Implementing Protocols via Declarative Event Patterns. In
Proceedings of the 12th International symposium on Foundations of Software Engineering, pages 159–
169, 2004.

27

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

A Operations

A.1 Equivalence Join on ρ
dom(ρl) = dom(ρr) = dom(ρ) ∀ R 7→ E ∈ ρ . E = ρl(R) ρr(R)

ρl ρr = ρ
(EQJOIN−ρ)

A.2 Overriding Meet on ρ
dom(ρ) = dom(ρ∆) = dom(ρ ′) ∀ R 7→ E

′ ∈ ρ ′
. E

′ = ρ(R) ρ∆(R))

ρ ρ∆ = ρ
′ (OVRMEETS−ρ)

A.3 Polarity operator on ρ
dom(ρ) = dom(ρ ′) ∀ R 7→ E ∈ ρ ′

. E =l ρ(R)l ρ = ρ
′ (l−ρ)

A.4 Join on ρ
dom(ρl) = dom(ρr) = dom(ρ) ∀ R 7→ E ∈ ρ . E = ρl(R) t ρr(R)

ρl t ρr = ρ
(t−ρ)

A.5 At least as precise on ρ
Ec v Ea ρc v ρa

ρc, R 7→ Ec v ρa, R 7→ Ea
(v−ρ)

∅ v ρa
∅ v ρa, R 7→ unknown

(v−PARTIAL−UNKNOWN)

∅ v ρa
∅ v ρa, R 7→ bot

(v−PARTIAL−BOT)
∅ v ∅

(v−∅)

A.6 Transfer into new aliasing environment, transfer

ρ
′ = {R 7→ E | R ∈ dom(⊥A) ∧ R ∈ dom(ρ) =⇒ E = ρ(R) ∧ R 6∈ dom(ρ) =⇒ E = unknown}

ρ
′ = transfer(ρ,A)

(TRANSFER)

A.7 Substitution on P
P[σ] = M. Do the obvious thing.

(P1 ∧ P2)[σ] = P1[σ] ∧ P2[σ]

(P1 ∨ P2)[σ] = P1[σ] ∨ P2[σ]

(P1 =⇒ P2)[σ] = P1[σ] =⇒ P2[σ]

true[σ] = true

false[σ] = false

(¬S)[σ] = ¬S[σ]

(A/ytest)[σ] = A[σ]/σ(ytest)

rel(ȳ)[σ] = rel(ȳ[σ])

(y, ȳ)[σ] = σ(y), ȳ[σ]

28

A.8 Lattice transformation of N
Notice that a list will become a pair of sets, in particular, a ρ. The sets could be conflicting, meaning that in
this list, the transformation causes conflicts. We are using to move conflicts into unknown. Alternately,
we could either report this as an error or override or join. It is not clear what is best though.

ρ1 = lattice(N; A; B) ρ2 = lattice(N; A; B)

lattice(N,N; A; B) = ρ1 t ρ2
(LIST)

lattice(R,A) = ⊥A[R 7→ true]
(LATTICE−R)

lattice(¬R,A) = ⊥A[R 7→ false]
(LATTICE−¬R)

B(`test) = True

lattice(R/`test,A,B) = ⊥A[R 7→ true]
(LATTICE−R−TEST−T)

B(`test) = False

lattice(R/`test,A,B) = ⊥A[R 7→ false]
(LATTICE−R−TEST−F)

B(`test) = Unknown

lattice(R/`test,A,B) = ⊥A[R 7→ unknown]
(LATTICE−R−TEST−U)

B(`test) = True

lattice(¬R/`test,A,B) = ⊥A[R 7→ false]
(LATTICE−¬R−TEST−T)

B(`test) = False

lattice(¬R/`test,A,B) = ⊥A[R 7→ true]
(LATTICE−¬R−TEST−F)

B(`test) = Unknown

lattice(¬R/`test,A,B) = ⊥A[R 7→ unknown]
(LATTICE−¬R−TEST−U)

B Truth

t 4 t
(4−=)

t 4 Unknown
(4−UNKNOWN)

B.1 Free variables
Find the free variables and the types of a specification or a part of a specification.

FV(cons) = FV(op) ∪ FV(Pctx) ∪ FV(Preq) ∪ FV(R)

FV(P1 ∧ P2) = FV(P1) ∪ FV(P2)

FV(P1 ∨ P2) = FV(P1) ∪ FV(P2)

FV(P1 =⇒ P2) = FV(P1) ∪ FV(P2)

FV(true) = ∅
FV(false) = ∅

FV(Q) =
S
FV(Q)

FV(¬S) = FV(S)

FV(A/ytest) = FV(A), ytest : boolean

FV(rel(ȳ)) = ȳ : R(rel)

FV(τthis.m(y : τ) : τret) = this : τthis, ret : τret, y : τ

FV(new τ(y : τ)) = this : τ, y : τ

29

Γy ∪∅ = Γy
(∪−∅)

y 6∈ dom(Γ ly) Γ
l
y ∪ Γry = Γy

Γ
l
y ∪ y : τ, Γry = y : τ, Γy

(∪−NOTIN)
τ
l
<: τr Γ

l
y ∪ Γry = Γy

y : τl, Γ ly ∪ y : τr, Γry = y : τl, Γy
(∪−LEFTSUB)

τ
r
<: τl Γ

l
y ∪ Γry = Γy

y : τl, Γ ly ∪ y : τr, Γry = y : τr, Γy
(∪−RIGHT−SUB)

Γy − ∅ = Γy
(MINUS−∅)

y 6∈ dom(Γ ly) Γ
l
y ∪ Γry = Γy

Γ
l
y ∪ y : τ, Γry = Γy

(MINUS−NOTIN)

Γ
l
y ∪ Γry = Γy

y : τl, Γ ly ∪ y : τr, Γry = Γy
(MINUS−IN)

dom(Γy) ⊆ dom(Γ ′
y) ∀y : τ ∈ Γy . Γ ′

y <: τ

Γy ⊆ Γ ′
y

(⊆−ΓY)

C Aliasing Operations and Theorems

C.1 At least as precise, vA

dom(L ′) = dom(L) dom(Γ ′
`) = dom(Γ`) ∀ ` ′ : τ ′ ∈ Γ ′

` . τ
′
<: Γ`(`

′) ∀ x ′ 7→ ¯̀ ′ ∈ L
′
. ¯̀′ ⊆ L(x ′) ∧ ¯̀ ′ 6= ∅

< Γ
′
` ; L

′
>vA< Γ`; L >

()(vA)

C.2 Abstraction function
Theorem C.1 (Abstraction of Alias Lattice from the heap). Let x ↪→ ` : τ be a source variable x which
points to a runtime location ` of type τ. Let h be a heap, represented as a list of source variables which
point to locations of a particular type. Also let H be all the possible heaps at a particular program counter.
An alias lattice < Γ`,L > abstracts H at a program counter if and only if
∀ h ∈ H . dom(h) = dom(L) ∧

∀ (x1 ↪→ `1 : τ1) ∈ h . ∀ (x2 ↪→ `2 : τ2) ∈ h .
x1 6= x2 ∧ `1 = `2 =⇒
` ′ ∈ L(x1) ∧ ` ′ ∈ L(x2) ∧ τ1 <: Γ`(`

′) ∧

x1 6= x2 ∧ `1 6= `2 =⇒
` ′1 ∈ L(x1) ∧ ` ′2 ∈ L(x2) ∧ ` ′1 6= ` ′2 ∧ τ1 <: Γ`(`

′
1) ∧ τ2 <: Γ`(`

′
2)

C.3 At least as precise, vB

dom(Bc) = dom(Ba) ∀ ` : t ∈ B
c
. t 4 B

a(`)

B
c vB B

a ()(vA)

30

D Consistency
Theorem D.1. Consistency

forall deriv.

A ` ρ consistent

ρ final

mathitfalias(A, instr) = A ′

fC;A;B(ρ, instr) = ρ ′

exists deriv.

A ′ ` ρ ′ consistent

ρ ′ final

Proof:

∀consi ∈ C . A ′; B; ρ; consi ` instr ↪→ ρ∆i By inversion on fC;A;B(ρ, instr) = ρ ′

ρ∆ = t{ρ∆i } By inversion on fC;A;B(ρ, instr) = ρ ′

ρ ′ = transfer(ρ,A ′) ρ∆ By inversion on fC;A;B(ρ, instr) = ρ ′

∀ consi ∈ C . A ′;` ρ∆i consistent By lemma consistency of single constraint
A ′ ` tρ∆ consistent By lemma t preserves consistency
A ′ ` transfer(ρ,A ′) consistent By lemma transfer implies consistency
A ′ ` ρ ′ consistent By lemma preserves consistency
ρ ′ final By lemma makes final

�

31

Theorem D.2. Consistency of a Single Constraint

forall deriv.

A ` ρ consistent

mathitfalias(A, instr) = A ′

A ′; B; ρ; cons ` instr ↪→ ρ∆

exists deriv.

A ′ ` ρ∆ consistent

Proof:
By case analysis on A; ρ; cons ` instr ↪→ ρ∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q A ′; FV(cons) ` instr : op Z⇒ (Σt, Σu)

Σt 6= ∅ ∨ Σu 6= ∅ Pt = {ρ∆ | σ ∈ Σt ∧ A ′; B; ρ;σ `part cons ↪→ ρ∆}

Pu = {l ρ∆ | σ ∈ Σu ∧ A ′; B; ρ;σ `part cons ↪→ ρ∆}

|Pt| = |Σt| |Pu| = |Σu| P∆ = Pt ∪ Pu

A ′; B; ρ; cons ` instr ↪→ (P∆)
(MATCH)

∀ i .

dom(FV(op)) = dom(σi) By lemma Instruction Binding Consistent
rng(σi) ⊆ dom(Γ`) By lemma Instruction Binding Consistent
∀ y : τ ∈ FV(op) . Γ`(σi(y)) <: τ By lemma Instruction Binding Consistent
A `↪→ ρ∆i consistent By lemma partial binding consistent

∀ρ∆i ∈ P∆ . A ` ρ∆i consistent By quantification above
A ` P∆ consistent By lemma preserves consistency

Case:
cons = op : Pctx ⇒ Preq ⇓ R A 6` instr : op Z⇒ Σ

A; ρ; cons ` instr ↪→ ⊥A

(NOT−MATCH)

R; A ` ⊥A consistent By definition of ⊥A

�

32

Theorem D.3. Consistency of Partial Binding

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q
A; B; ρ;σ `part cons ↪→ ρ∆

exists deriv.

A ` ρ∆ consistent

Proof:

By case analysis on A; B; ρ;σ `part cons ↪→ ρ∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(A;σop; Γy) = (Σt, Σu)

Σt 6= ∅ ∨ Σu 6= ∅ Pt = {ρ∆ | σ ∈ Σt ∧ A; B; ρ;σ `full cons ↪→ ρ∆}

Pu = {l ρ∆ | σ ∈ Σu ∧ A; B; ρ;σ `full cons ↪→ ρ∆} P∆ = Pt ∪ Pu

A; B; ρ;σop `part cons ↪→ (P∆)
(BOUND)

∀ σ ∈ Σt . A ` σ validFor Γy By Lemma validSubs sound and complete
∀ σ ∈ Σu . A ` σ validFor Γy By Lemma validSubs sound and complete
∀ ρ∆ ∈ Pt .

A; B; ρ;σ `full cons ↪→ ρ∆ where σ ∈ Σt By construction of Pt

A ` σ validFor Γy By σ ∈ Σt
A ` σ validFor FV(Q̄) By FV(Q̄) ⊆ Γy
A ` ρ∆ consistent By Lemma Full Binding Consistent

∀ ρ∆ ∈ Pt . A ` ρ∆ consistent By quantification
∀ ρ∆ ∈ Pu .

ρ∆ =l ρ∆ ′
where A; B; ρ;σ `full cons ↪→ ρ∆

′
∧ σ ∈ Σu By construction of Pu

A ` σ validFor Γy By σ ∈ Σu
A ` σ validFor FV(Q̄) By FV(Q̄) ⊆ Γy
A ` ρ∆ ′

consistent By Lemma Full Binding Consistent
A ` ρ∆ consistent By Lemma l consistent

∀ ρ∆ ∈ Pu . A ` ρ∆ consistent By quantification
∀ ρ∆ ∈ P∆ . A ` ρ∆ consistent By P∆ = Pt ∪ Pu

A ` (P∆) consistent By Lemma consistent

33

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(A;σop; Γy) = (∅,∅)

A; B; ρ;σop `part cons ↪→ ⊥A

(CANT−BIND)

A ` ⊥A consistent By definition of ⊥A

�

34

Theorem D.4. Consistency of Full Binding

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q
A ` σ validFor FV(Q̄)

A; B; ρ;σ `full cons ↪→ ρ∆

exists deriv.

A ` ρ∆ consistent

Proof:

By case analysis on all variants of A; B; ρ;σ `full cons ↪→ ρ∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . B; ρ ` Preq[σ ′] True

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ])
(FULL−T−COMPROMISE)

A ` lattice(Q̄[σ]) consistent By Lemma Lattice with substitution is consistent

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A

(FULL−F−COMPROMISE)

A ` ⊥A consistent By definition of ⊥A

cons = op : Pctx ⇒ Preq ⇓ Q
B; ρ ` Pctx[σ] Unknown ρ∆ = lattice(Q̄[σ])

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−COMPROMISE)

A ` ρ∆ consistent By Lemma Lattice with substitution is consistent
A `l ρ∆ consistent By Lemma l preserves consistency

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . B; ρ ` Preq[σ ′] True

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ])
(FULL−T−SOUND)

A ` lattice(Q̄[σ]) consistent By Lemma Lattice with substitution is consistent

35

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A

(FULL−F−SOUND)

A ` ⊥A consistent By definition of ⊥A

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] Unknown
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt . ρB;` Preq[σ ′] True ρ∆ = lattice(Q̄[σ])

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−SOUND)

A ` ρ∆ consistent By Lemma Lattice with substitution is consistent
A `l ρ∆ consistent By Lemma l preserves consistency

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] True
(Σt, Σu) = allValidSubs(A;σ; FV(cons))

∃ σ ′ ∈ Σt ∪ Σu . B; ρ ` Preq[σ ′] True ∨ ρ ` Preq[σ ′] Unknown

A; B; ρ;σ `full cons ↪→ lattice(Q̄[σ])
(FULL−T−COMPLETE)

A ` lattice(Q̄[σ]) consistent By Lemma Lattice with substitution is consistent

cons = op : Pctx ⇒ Preq ⇓ Q B; ρ ` Pctx[σ] False

A; B; ρ;σ `full cons ↪→ ⊥A

(FULL−F−COMPLETE)

A ` ⊥A consistent By definition of ⊥A

cons = op : Pctx ⇒ Preq ⇓ Q
B; ρ ` Pctx[σ] Unknown ρ∆ = lattice(Q̄[σ])

A; B; ρ;σ `full cons ↪→l ρ∆ (FULL−U−COMPLETE)

A ` ρ∆ consistent By Lemma Lattice with substitution is consistent
A `l ρ∆ consistent By Lemma l preserves consistency

�

E Completeness
Theorem E.1. Completeness of Relations Analysis

36

forall der.

falias(Aabs, instr) = Aabs
′

falias(Aconc, instr) = Aconc
′

ρabs final

ρconc final

Bconc vB Babs

Aconc vA Aabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρconc v ρabs

fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′

exists der.

fC;Aabs;Babs(ρ
abs, instr) = ρabs

′

ρconc
′ v ρabs ′

Proof: [Completeness of Relation Analysis]

ρconc
′
= transfer(ρconc,Aconc

′
) ρconc∆ By inversion on fC;Aconc;Bconc(ρ

conc, instr) = ρconc
′

∀ consi ∈ C . Aconc; Bconcρconc; consi ` instr ↪→ ρconc∆i

By inversion on fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′

ρconc∆ = t {ρconc∆i } By inversion on fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′

∀ consi ∈ C .

ρconc∆i v ρabs∆i By Lemma Soundness of Single Constraint
Aabs

′
; ρabs; cons ` instr ↪→ ρabs∆i By Lemma Soundness of Single Constraint

ρconc∆i E ρabs∆i By Lemma Soundness of Single Constraint
Aabs

′ ` ρabs∆i consistent By Lemma Consistency of Single Constraint
∃ R̄ . ∀ i . dom(ρabs∆i) = R̄ By Lemma consistency means same domain
Let ρabs∆ = t {ρabs∆i } By join rule applied many times
ρconc∆ E ρabs∆ By Lemma t preserves E
ρconc∆ v ρabs∆ By Lemma t preserves v
Aabs

′ ` ρabs∆ consistent By Lemma same domains mean consistency
Let ρabs

′′
= transfer(ρabs,Aabs

′
)

Aabs
′ ` ρabs ′′

consistent By Lemma transfer implies consistency
dom(ρabs

′′
) = dom(ρabs∆) By Lemma consistency means same domain

Let ρabs
′
= ρabs

′′
ρabs∆ By rule overmeets

ρconc
′ v ρabs ′

By Lemma preserves v
fC;Aabs;Babs(ρ

abs, instr) = ρabs
′

By rule flow− cons

�

37

Theorem E.2. Completeness of Single Constraint

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρconc final

Aconc; ρconc; cons ` instr ↪→ ρconc∆

exists deriv.

Aabs; ρabs; cons ` instr ↪→ ρabs∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aconc; ρconc; cons ` instr ↪→ ρconc∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q Aconc; FV(cons) ` instr : op Z⇒ (Σtc, Σ
u
c)

Σtc 6= ∅ ∨ Σuc 6= ∅ Ptc = {ρ∆ | σ ∈ Σtc ∧ Aconc; Bconc; ρconc;σ `part cons ↪→ ρ∆}

Puc = {l ρ∆ | σ ∈ Σuc ∧ Aconc; Bconc; ρconc;σ `part cons ↪→ ρ∆}

|Ptc| = |Σtc| |Puc | = |Σuc | P∆c = Ptc ∪ Puc

Aconc; Bconc; ρconc; cons ` instr ↪→ (P∆c)
(MATCH)

Let ρ∆a =↪→ (P∆a)

Aconc; FV(cons) ` instr : op Z⇒ (Σta, Σ
u
a) By Lemma Instruction Binding Complete

Σtc ⊆ Σta ∪ Σua By Lemma Instruction Binding Complete
Σuc ⊆ Σua By Lemma Instruction Binding Complete
Σtc ⊇ Σta By Lemma Instruction Binding Complete
Σta 6= ∅ ∨ Σua 6= ∅ By Σtc 6= ∅ ∨ Σuc 6= ∅ and inversion on ⊆
Let Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆}

Let Pua = {l ρ∆ | σ ∈ Σua ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆}

∀ ρt∆c ∈ Ptc .

∃ distinct σt ∈ Σtc . Aconc; Bconc; ρconc;σ `full cons ↪→ ρt∆c
By construction of Ptc and |Σtc| = |Ptc|

σt ∈ Σta ∨ σt ∈ Σua By Σtc ⊆ Σta ∪ Σua By case analysis on the location of σt

Case: σt ∈ Σta

38

Aabs; Babs; ρabs;σ `full cons ↪→ ρt∆a By Lemma Partial Binding complete
ρt∆c v ρt∆a By Lemma Partial Binding Sound
ρt∆c E ρ

t∆
a By Lemma Partial Binding Sound

ρt∆a distinct ∈ Pta By construction of Pta

Case: σu ∈ Σua
Aabs; Babs; ρabs;σ `full cons ↪→ ρu∆a By Lemma Partial Binding complete
ρt∆c v ρu∆a By Lemma Partial Binding Sound
ρt∆c E ρ

u∆
a By Lemma Partial Binding Sound

ρt∆c vl ρu∆a By Lemma l on abs preserves v
ρt∆c E l ρu∆a By Lemma l on abs preserves E
ρu∆a distinct ∈ Pua By construction of Pua

∀ ρu∆c ∈ Puc .

∃ distinct σu ∈ Σuc . Aconc; Bconc; ρconc;σ `part cons ↪→ ρu∆
′

c

By construction of Puc and |Σuc | = |Puc |

ρu∆c =l ρu∆ ′
c By construction of Puc

σu ∈ Σua By Σuc ⊆ Σua
Aabs; Babs; ρabs;σ `part cons ↪→ ρu∆

′
a By Lemma Partial Binding complete

ρu∆
′

c v ρu∆ ′
a By Lemma Partial Binding Sound

ρu∆
′

c E ρu∆
′

a By Lemma Partial Binding Sound
ρu∆c vl ρu∆a By Lemma l preserves v
ρu∆c E l ρu∆a By Lemma l preserves E
ρu∆a distinct ∈ Pua By construction of Pua

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c v ρ∆a By quantification above

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c E ρ

∆
a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c v ρ∆a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c E ρ

∆
a By quantification above

∀ ρt∆a ∈ Pta . Aabs ` ρt∆a consistent By quantification above
∀ ρu∆a ∈ Pua . Aabs ` ρu∆a consistent By quantification above
Let Pa = Pta ∪ Pua
∃R̄ . ∀ ρa ∈ Pa . dom(ρa) = R̄ By inversion on consistency of each ρa
Let ρ∆a = (Pa)

Aabs; ρabs; cons ` instr ↪→ ρabs∆ By rulematch
∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ

∆
c v ρ∆a By Pc = Rhotc ∪ Rhouc

∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ
∆
c E ρ

∆
a By Pc = Rhotc ∪ Rhouc

ρ∆c v ρ∆a By preserves v and E on sets
ρ∆c E ρ

∆
a By preserves v and E on sets

Case:
cons = op : Pctx ⇒ Preq ⇓ Q Aconc; FV(cons) ` instr : op Z⇒ (∅,∅)

Aconc; Bconc; ρconc; cons ` instr ↪→ ⊥Aconc
(NO−MATCH)

39

allValidSubs(Aabs;σop; Γy) 7→ (Σta, Σ
u
a) By Lemma Instruction Binding Complete

Σtc ⊆ Σta ∪ Σua By Lemma Instruction Binding Complete
Σuc ⊆ Σua By Lemma Instruction Binding Complete
Σtc ⊇ Σta By Lemma Instruction Binding Complete
Σta = ∅ By Σtc ⊇ Σta
By case analysis on the property Σua = ∅

Case: Σua = ∅

Aabs; Babs; ρabs; cons ` instr ↪→ ⊥Aabs By rule no−match

⊥concA v ⊥absA By definition of ⊥A

⊥concA E⊥absA By definition of ⊥A

Case: Σua 6= ∅

Let Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `part cons ↪→ ρ∆} Pta = ∅ By Σta = ∅
Let Puc = {l ρ∆ ′

| σ ∈ Σuc ∧ Aabs; Babs; ρabs;σ `part cons ↪→ ρ∆
′
}

∀ R 7→ E ∈ ⊥Aconc . E = bot By definition of ⊥A

Aconc ` ⊥Aconc consistent By definition of ⊥A

∀ ρ∆ ∈ Puc .

ρ∆ =l ρ∆ ′
where Aabs; Babs; ρabs;σ `part cons ↪→ ρ∆

′
By construction of Puc

Aabs ` ρ∆ ′
consistent By lemma partial binding consistent

Aabs ` ρ∆ consistent By lemma l consistent
dom(⊥Aconc) ⊆ dom(ρ∆) By Lemma consistency and vA implies domains subset
∀ R 7→ E ∈ ρ∆ . E = bot ∨ E = unknown By l creates polarity
∀ R 7→ E ∈ ⊥Aconc . E v ρ∆(R) By rule v −bot

⊥Aconc v ρ∆ By rule v −ρ

∀ R 7→ E ∈ ⊥Aconc . EE ρ∆(R) By rule E− bot and E− unknown

⊥Aconc E ρ∆ By rule E− ρ

Aabs; ρabs; cons ` instr ↪→ ρabs∆ By rulematch
∀ ρ∆ ∈ Puc . ⊥Aconc v ρ∆ By quantification
∀ ρ∆ ∈ Puc . ⊥Aconc E ρ∆ By quantification
⊥Aconc v (Puc) By lemma preserves v
⊥Aconc E (Puc) By lemma preserves E

�

40

Theorem E.3. Completeness of Constraint with Partial Substitution

forall deriv.

Aconc vA Aabs

ρconc v ρabs

ρabs final

ρconc final

Aabs ` ρabs consistent

Aconc ` ρconc consistent

Aconc; Bconc; ρconc;σ `part cons → ρconc∆

Bconc vB Babs

exists deriv.

Aabs; Babs; ρabs;σ `part cons → ρabs∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aconc; Bconc; ρconc;σ `part cons → ρconc∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(Aconc;σop; Γy) = (Σtc, Σ

u
c)

Σtc 6= ∅ ∨ Σuc 6= ∅ Ptc = {ρ∆ | σ ∈ Σtc ∧ Aconc; Bconc; ρconc;σ `full cons ↪→ ρ∆}

Puc = {l ρ∆ | σ ∈ Σuc ∧ Aconc; Bconc; ρconc;σ `full cons ↪→ ρ∆}

|Σtc| = |Ptc| |Σuc | = |Puc | P∆c = Ptc ∪ Puc

Aconc; Bconc; ρconc;σop `part cons ↪→ (P∆)
(BOUND)

Let ρ∆a =↪→ (P∆a)

allValidSubs(Aabs;σop; Γy) = (Σta, Σ
u
a) By Lemma All Valid Subs sound and complete

Σtc ⊆ Σta ∪ Σua By Lemma All Valid Subs sound and complete
Σuc ⊆ Σua By Lemma All Valid Subs sound and complete
Σtc ⊇ Σta By Lemma All Valid Subs sound and complete
Σta 6= ∅ ∨ Σua 6= ∅ By Σtc 6= ∅ ∨ Σuc 6= ∅ and inversion on ⊆
Let Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆}

Let Pua = {l ρ∆ | σ ∈ Σua ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆}

∀ ρt∆c ∈ Ptc .

∃ distinct σt ∈ Σtc . Aconc; Bconc; ρconc;σ `full cons ↪→ ρt∆c By construction of Ptc and |Σtc| = |Ptc|

σt ∈ Σta ∨ σt ∈ Σua By Σtc ⊆ Σta ∪ Σua
By case analysis on the location of σt

Case: σt ∈ Σta

41

Aabs; Babs; ρabs;σ `full cons ↪→ ρt∆a By Lemma Full complete
ρt∆c v ρt∆a By Lemma Full complete
ρt∆c E ρ

t∆
a By Lemma Full complete

ρt∆a distinct ∈ Pta By construction of Pta

Case: σu ∈ Σua
Aabs; Babs; ρabs;σ `full cons ↪→ ρu∆a By Lemma Full complete
ρt∆c v ρu∆a By Lemma Full complete
ρt∆c E ρ

u∆
a By Lemma Full complete

ρt∆c vl ρu∆a By Lemma l on abs preserves v
ρt∆c E l ρu∆a By Lemma l on abs preserves E
ρu∆a distinct ∈ Pua By construction of Pua

∀ ρu∆c ∈ Puc .

∃ distinct σu ∈ Σuc . Aconc; Bconc; ρconc;σ `full cons ↪→ ρu∆
′

c By construction of Puc and |Σuc | = |Puc |

ρu∆c =l ρu∆ ′
c By construction of Puc

σu ∈ Σua By Σuc ⊆ Σua
Aabs; Babs; ρabs;σ `full cons ↪→ ρu∆

′
a By Lemma Full complete

ρu∆
′

c v ρu∆ ′
a By Lemma Full complete

ρu∆
′

c E ρu∆
′

a By Lemma Full complete
ρu∆c vl ρu∆a By Lemma l preserves v
ρu∆c E l ρu∆a By Lemma l preserves E
ρu∆a distinct ∈ Pua By construction of Pua

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c v ρ∆a By quantification above

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c E ρ

∆
a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c v ρ∆a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c E ρ

∆
a By quantification above

∀ ρt∆a ∈ Pta . Aabs ` ρt∆a consistent By quantification above
∀ ρu∆a ∈ Pua . Aabs ` ρu∆a consistent By quantification above
Let Pa = Pta ∪ Pua
∃R̄ . ∀ ρa ∈ Pa . dom(ρa) = R̄ By inversion on consistency of each ρa
Let ρ∆a = (Pa)

Aabs; Babs; ρabs `part cons ↪→ ρabs∆ By rule bind
∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ

∆
c v ρ∆a By Pc = Rhotc ∪ Rhouc

∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ
∆
c E ρ

∆
a By Pc = Rhotc ∪ Rhouc

ρ∆c v ρ∆a By preserves v and E on sets
ρ∆c E ρ

∆
a By preserves v and E on sets

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(Aconc;σop; Γy) = (∅,∅)

Aconc; Bconc; ρconc;σop `part cons ↪→ ⊥Aconc
(CANT−BIND)

42

allValidSubs(Aabs;σop; Γy) 7→ (Σta, Σ
u
a) By Lemma All Subs Sound and complete

Σtc ⊆ Σta ∪ Σua By Lemma All Subs Sound and complete
Σuc ⊆ Σua By Lemma All Subs Sound and complete
Σtc ⊇ Σta By Lemma All Subs Sound and complete
Σta = ∅ By Σtc ⊇ Σta
By case analysis on the property Σua = ∅

Case: Σua = ∅

Aabs; Babs; ρabs; cons ` instr ↪→ ⊥Aabs By rule cant− bind

⊥concA v ⊥absA By definition of ⊥A

⊥concA E⊥absA By definition of ⊥A

Case: Σua 6= ∅

Let Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆} Pta = ∅ By Σta = ∅
Let Puc = {l ρ∆ ′

| σ ∈ Σuc ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆
′
}

∀ R 7→ E ∈ ⊥Aconc . E = bot By definition of ⊥A

Aconc ` ⊥Aconc consistent By definition of ⊥A

∀ ρ∆ ∈ Puc .

ρ∆ =l ρ∆ ′
where Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆

′
By construction of Puc

Aabs ` ρ∆ ′
consistent By lemma full consistent

Aabs ` ρ∆ consistent By lemma l consistent
dom(⊥Aconc) ⊆ dom(ρ∆) By Lemma consistency and vA implies domains subset
∀ R 7→ E ∈ ρ∆ . E = bot ∨ E = unknown By l creates polarity
∀ R 7→ E ∈ ⊥Aconc . E v ρ∆(R) By rule v −bot

⊥Aconc v ρ∆ By rule v −ρ

∀ R 7→ E ∈ ⊥Aconc . EE ρ∆(R) By rule E− bot and E− unknown

⊥Aconc E ρ∆ By rule E− ρ

Aabs; Babs; ρabs `part cons ↪→ ρabs∆ By rule bind
∀ ρ∆ ∈ Puc . ⊥Aconc v ρ∆ By quantification
∀ ρ∆ ∈ Puc . ⊥Aconc E ρ∆ By quantification
⊥Aconc v (Puc) By lemma preserves v
⊥Aconc E (Puc) By lemma preserves E

�

43

Theorem E.4. Completeness of Constraint with Full Substitution

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρabs final

ρconc final

Aconc; Bconc; ρconc;σ `full cons → ρconc∆

dom(σ) = dom(FV(cons))

exists deriv.

Aabs; Babs; ρabs;σ `full cons → ρabs∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aconc; Bconc; ρconc;σ `full cons → ρconc∆

Case:
cons = op : Pctx ⇒ Preq ⇓ Q Bconc; ρconc ` Pctx[σ] False

Aconc; Bconc; ρconc;σ `full cons ↪→ ⊥Aconc
(FULL−F−COMPLETE)

Babs; ρabs ` Pctx[σ] ta By lemma truth sound
False 4 ta By lemma truth sound
By case analysis on the value of ta

Case: ta = False

Aabs; Babs; ρabs;σ `full cons ↪→ ⊥absA By rule full− complete− False
∀ R 7→ E ∈ ⊥concA . E = bot By definition of ⊥
∀ R 7→ E ∈ ⊥concA . E v ⊥absA (R) By rule v −⊥
⊥concA v ⊥absA By rule v
∀ R 7→ E ∈ ⊥absA . E = bot By definition of ⊥
∀ R 7→ E ∈ ρconc∆ . EE ρabs∆(R) By rule E− bot

⊥concA E⊥absA By rule E

Case: ta = True

Invalid case by False 4 ta

44

Case: ta = Unknown

Let ρ∆
′

a = lattice(Q̄[σ],Aabs,Babs)

Let ρ∆a =l ρ∆ ′

Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆a By rule full− complete− Unknown

Aabs ` ρ∆ ′
a consistent By lattice consistent

Aabs ` ρ∆a consistent By l consistent
Aconc ` ⊥Aconc consistent By definition of ⊥A

dom(⊥Aconc) ⊆ dom(ρ∆a) By consistency and vA implies domains subset
∀ R 7→ E ∈ ⊥concA . E = bot By definition of ⊥
∀ R 7→ E ∈ ρ∆a . E = bot ∨ E = unknown By l creates polarity
∀ R 7→ E ∈ ⊥concA . E v ρ∆a (R) By rule v −bot

⊥concA v ρabs∆ By rule v
∀ R 7→ E ∈ ρconc∆ . EE ρabs∆(R) By rule E− bot and E− unknown

⊥concA E ρabs∆ By rule E

Case:

cons = op : Pctx ⇒ Preq ⇓ Q Bconc; ρconc ` Pctx[σ] True
(Σtc, Σ

u
c) = allValidSubs(Aconc;σ; FV(cons))

∃ σ ′ ∈ Σtc ∪ Σuc . Bconc; ρconc ` Preq[σ ′] True ∨ ρconc ` Preq[σ ′] Unknown

Aconc; Bconc; ρconc;σ `full cons ↪→ lattice(Q̄[σ]; Aconc; Bconc)
(FULL−T−COMPLETE)

Babs; ρabs ` Pctx[σ] ta By lemma truth sound
True 4 ta By lemma truth sound
Let ρ∆c = lattice(Q̄[σ],Aconc,Bconc)

By case analysis on ta

Case: ta = True

(Σta, Σ
u
a) = allValidSubs(Aabs;σ; FV(cons)) By lemma valid subs Sound and Complete

Σtc ⊆ Σta ∪ Σua By lemma valid subs Sound and Complete
Σuc ⊆ Σua By lemma valid subs Sound and Complete
Σtc ⊇ Σta By lemma valid subs Sound and Complete
Σtc ∪ Σuc ⊆ Σta ∪ Σua By subsets above
Let σ ′ where σ ′ ∈ Σtc ∪ Σuc and Bconc; ρconc ` Preq[σ ′] True ∨ ρconc ` Preq[σ ′] Unknown
σ ′ ∈ Σta ∪ Σua By Σtc ∪ Σuc ⊆ Σta ∪ Σua
Babs; ρabs ` Preq[σ ′] True ∨ Babs; ρabs ` Preq[σ ′] Unknown By lemma truth complete
Let ρ∆a = lattice(Q̄[σ]; Aabs; Babs)

Aabs; Babs; ρabs;σ `full cons → ρ∆a By rule full− T − sound

ρ∆c v ρ∆a By Lemma lattice complete
ρ∆c E ρ

∆
a By Lemma lattice complete

Case: ta = False

Invalid case by True 4 ta

45

Case: ta = Unknown

Let ρ∆
′

a = lattice(Q̄[σ],Aabs,Babs)

Let ρ∆a =l ρ∆ ′

Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆a By rule full− complete− Unknown

ρ∆c v ρ∆
′

a By Lemma lattice complete
ρ∆c E ρ

∆ ′
a By Lemma lattice complete

ρ∆c v ρ∆a By Lemma l on abs preserves v
ρ∆c E ρ

∆
a By Lemma l on abs preserves E

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Bconc; ρconc ` Pctx[σ] Unknown ρ∆c = lattice(Q̄[σ])

Aconc; Bconc; ρconc;σ `full cons ↪→l ρ∆c (FULL−U−COMPLETE)

Babs; ρabs ` Pctx[σ] ta By lemma truth sound
Unknown 4 ta By lemma truth sound
Babs; ρabs ` Pctx[σ] Unknown By inversion on Unknown 4 ta

Let ρ∆a = lattice(Q̄[σ],Aabs,Babs)

ρ∆c v ρ∆a By Lemma lattice complete
ρ∆c E ρ

∆
a By Lemma lattice completel ρ∆c vl ρ∆a By Lemma l preserves vl ρ∆cE l ρ∆a By Lemma l preserves E

�

46

Theorem E.5. Truth Checking Complete

forall deriv.

ρconc v ρabs

Bconc v Babs

ρabs final

ρconc final

Bconc; ρconc ` P[σ]tc

exists deriv.

Babs; ρabs ` P[σ]ta

tc 4 ta

Proof:
By induction on ρconc ` P[σ] ta

Case:
ρconc(rel(`)[σ]) = true

Bconc; ρconc ` rel(y)[σ] True
(REL−TRUE)

Let R = rel(`)[σ]

R ∈ dom(ρabs) By inversion on ρconc v ρabs
Let Ea = ρabs(R)

By case analysis on the value of Ea

Case: Ea = true

Bconc; ρconc ` R True By rule rel − True
True 4 True By rule 4 − =

Case: Ea = false

Contradiction with ρconc v ρabs

Case: Ea = unknown

Bconc; ρconc ` R Unknown By rule rel − Unknown
True 4 Unknown By rule 4 −Unknown

Case: Ea = bot

Contradiction with ρabs final

Case:
ρconc(rel(`)[σ]) = false

Bconc; ρconc ` rel(y)[σ] False
(REL−FALSE)

47

Let R = rel(`)[σ]

R ∈ dom(ρabs) By inversion on ρconc v ρabs
Let Ea = ρabs(R)

By case analysis on Ea

Case: Ea = false

Bconc; ρconc ` R True By rule rel − False
True 4 True By rule 4 − =

Case: Ea = true

Contradiction with ρconc v ρabs

Case: Ea = unknown

Bconc; ρconc ` R Unknown By rule rel − Unknown
True 4 Unknown By rule 4 −Unknown

Case: Ea = bot

Contradiction with ρabs final

Case:
ρconc(rel(`)) = Ec Ec 6= true Ec 6= false

Bconc; ρconc ` rel(`) Unknown
(REL−UNKNOWN−SOUND−COMPLETE)

Let R = rel(`)[σ]

R ∈ dom(ρabs) By inversion on ρconc v ρabs
Let Ea = ρabs(R)

By case analysis on Ea

Case: Ea = false

Contradiction with ρconc v ρabs

Case: Ea = true

Contradiction with ρconc v ρabs

Case: Ea = unknown

Bconc; ρconc ` R Unknown By rule rel − Unknown
True 4 Unknown By rule 4 −Unknown

Case: Ea = bot

48

Contradiction with ρabs final

Case:
Bconc; ρ ` A tc Bconc(`test) = tc tc 6= Unknown

Bconc; ρconc ` A/`test True
(REL−TEST−TRUE)

Babs; ρabs ` A ta By induction hypothesis
tc 4 ta By induction hypothesis
By case analysis on tc

Case: tc = True

By case analysis on Babs(`test)

Case: Babs(`test) = True

By case analysis on ta
Case: ta = True

Babs; ρabs ` A/`test True By rule rel− test− True
True 4 True By rule 4 − =

Case: ta = False

Invalid case by ρconc v ρabs

Case: ta = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown1
True 4 Unknown By rule 4 −Unknown

Case: Babs(`test) = False

Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown2

Case: tc = False

By case analysis on Babs(`test)

Case: Babs(`test) = False

By case analysis on ta
Case: ta = False

Babs; ρabs ` A/`test False By rule rel− test− False
False 4 False By rule 4 − =

49

Case: ta = True

Invalid case by ρconc v ρabs

Case: ta = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown1
False 4 Unknown By rule 4 −Unknown

Case: Babs(`test) = True

Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown2

Case: tc = Unknown

Invalid case by tc 6= Unknown

Case:
Bconc; ρ ` A t1c Bconc(`test) = t2c tc1 6= Unknowntc2 6= Unknowntc1 6= tc2

Bconc; ρconc ` A/`test False
(REL−TEST−FALSE)

Babs; ρabs ` A t1a By induction hypothesis
t1c 4 t

1
a By induction hypothesis

By case analysis on t1c

Case: t1c = True

t2c = False By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = False

By case analysis on t1a
Case: t1a = True

Babs; ρabs ` A/`test False By rule rel− test− False
False 4 False By rule 4 − =

Case: t1a = False

Invalid case by ρconc v ρabs

Case: t1a = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown1
False 4 Unknown By rule 4 −Unknown

50

Case: Babs(`test) = True

Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown2

Case: t1c = False

t2c = True By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = True

By case analysis on t1a
Case: t1a = False

Babs; ρabs ` A/`test False By rule rel− test− False
False 4 False By rule 4 − =

Case: t1a = True

Invalid case by ρconc v ρabs

Case: t1a = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown1
False 4 Unknown By rule 4 −Unknown

Case: Babs(`test) = False

Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown

Babs; ρabs ` A/`test Unknown By rule rel− test− Unknown2

Case: t1c = Unknown

Invalid case by tc 6= Unknown

Case:
Bconc; ρconc ` A Unknown

Bconc; ρconc ` A/`test Unknown
(REL−TEST−U1)

Babs; ρabs ` A ta By induction hypothesis
Unknown 4 ta By induction hypothesis
Babs; ρabs ` A/`test Unknown By rule rel− test− u1

Unknown 4 Unknown By rule 4 −Unknown

51

Case:
Bconc(`test) = Unknown Bconc; ρconc ` A tc

Bconc; ρconc ` A/`test Unknown
(REL−TEST−U2)

Babs; ρabs ` A ta By induction hypothesis
tc 4 ta By induction hypothesis
Babs(`test) = Unknown By Bconc vB Babs

Babs; ρabs ` A/`test Unknown By rule rel− test− u2

Unknown 4 Unknown By rule 4 −Unknown

Case:
Bconc; ρconc ` S Unknown

Bconc; ρconc ` ¬S Unknown
(¬S−UNKNOWN)

Babs; ρabs ` S ta By induction hypothesis
Unknown 4 ta By induction hypothesis
Babs; ρabs ` ¬S Unknown By rule ¬S− Unknown
Unknown 4 Unknown By rule 4 −Unknown

Case:
Bconc; ρconc ` SFalse

Bconc; ρconc ` ¬STrue
(¬S−TRUE)

Babs; ρabs ` S ta By induction hypothesis
False 4 ta By induction hypothesis
By case analysis on the value of ta

Case: ta = False

Babs; ρabs ` ¬S True By rule ¬S− True
True 4 True By rule 4 − =

Case: ta = True

Contradiction with False 4 ta

Case: ta = Unknown

Babs; ρabs ` ¬S Unknown By rule ¬S− Unknown
True 4 Unknown By rule 4 − =

Case:
Bconc; ρconc ` STrue

Bconc; ρconc ` ¬SFalse
(¬R−FALSE)

Babs; ρabs ` S ta By induction hypothesis
True 4 ta By induction hypothesis
By case analysis on the value of ta

52

Case: ta = True

Babs; ρabs ` ¬S False By rule ¬S− False
False 4 False By rule 4 − =

Case: ta = False

Contradiction with True 4 ta

Case: ta = Unknown

Babs; ρabs ` ¬S Unknown By rule ¬S− Unknown
False 4 Unknown By rule 4 − =

Case:
Bconc; ρconc ` trueTrue

(TRUE)

Babs; ρabs ` trueTrue By rule true
True 4 True By rule 4 − =

Case:
Bconc; ρconc ` falseFalse

(FALSE)

Babs; ρabs ` falseFalse By rule false
False 4 False By rule 4 − =

Remaining cases work as expected for a three value logic.

�

53

Theorem E.6. Instruction Binding Complete

forall deriv.

Aconc vA Aabs

Aconc ` instr : op ↪→ (Σtc, Σ
u
c)

exists deriv.

Aabs ` instr : op ↪→ (Σta, Σ
u
a)

Σtc ⊆ Σta ∪ Σua
Σuc ⊆ Σua
Σtc ⊇ Σta

Proof:
By case analysis on the structure of the derivation of Aconc ` instr : op ↪→ (Σtc, Σ

u
c)

Case:

FV(τthis.m(y : τ) : τret) ⊆ Γy
(Σtc, Σ

u
c) = findLabels(Aabs, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)

Aconc; Γy ` xret = xthis.m(x) : τthis.m(y : τ) : τret Z⇒ (Σtc, Σ
u
c)

(INVOKE)

(Σta, Σ
u
a) = findLabels(Aabs, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)By lemma FindLabels sound and complete

Σtc ⊆ Σta ∪ Σua By lemma FindLabels sound and complete
Σuc ⊆ Σua By lemma FindLabels sound and complete
Σtc ⊇ Σta By lemma FindLabels sound and complete
Aabs ` xret = xthis.m(x) : τthis.m(y : τ) : τret ↪→ (Σta, Σ

u
a) By rule invoke

Case:

FV(new τ(y : τ)) ⊆ Γy
(Σtc, Σ

u
c) = findLabels(Aconc, Γy , {xret} ∪ x, {this} ∪ y)

Aconc; Γy ` xret = new m(x) : new τ(y : τ) Z⇒ (Σtc, Σ
u
c)

(CONSTRUCTOR)

(Σta, Σ
u
a) = findLabels(Aabs, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)By lemma FindLabels sound and complete

Σtc ⊆ Σta ∪ Σua By lemma FindLabels sound and complete
Σuc ⊆ Σua By lemma FindLabels sound and complete
Σtc ⊇ Σta By lemma FindLabels sound and complete
Aabs ` xret = new m(x) : new τ(y : τ) ↪→ (Σta, Σ

u
a) By rule constructor

Case:
Aconc; Γy ` eom : end-of-method Z⇒ ({∅},∅)

(EOM)

Aabs ` eom : end-of-method Z⇒ ({∅},∅) By rule eom
Σtc ⊆ Σta ∪ Σua By {∅} ⊆ {∅} ∪∅
Σuc ⊆ Σua By ∅ ⊆ ∅
Σtc ⊇ Σta By {∅} ⊇ {∅}

�

54

F Soundness
Theorem F.1. Soundness of Relations Analysis

forall der.

falias(Aabs, instr) = Aabs
′

falias(Aconc, instr) = Aconc
′

ρabs final

ρconc final

Bconc vB Babs

Aconc vA Aabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρconc v ρabs

fC;Aabs;Babs(ρ
abs, instr) = ρabs

′

exists der.

fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′

ρconc
′ v ρabs ′

Proof: [Soundness of Relation Analysis]

ρabs
′
= transfer(ρabs,Aabs

′
) ρabs∆ By inversion on fC;Aabs;Babs(ρ

abs, instr) = ρabs
′

∀ consi ∈ C . Aabs; Babsρabs; consi ` instr ↪→ ρabs∆i

By inversion on fC;Aabs;Babs(ρ
abs, instr) = ρabs

′

ρabs∆ = t {ρabs∆i } By inversion on fC;Aabs;Babs(ρ
abs, instr) = ρabs

′

∀ consi ∈ C .

ρconc∆i v ρabs∆i By Lemma Soundness of Single Constraint
Aconc

′
; ρconc; cons ` instr ↪→ ρconc∆i By Lemma Soundness of Single Constraint

ρconc∆i E ρabs∆i By Lemma Soundness of Single Constraint
Aconc

′ ` ρconc∆i consistent By Lemma Consistency of Single Constraint
∃ R̄ . ∀ i . dom(ρconc∆i) = R̄ By Lemma consistency means same domain
Let ρconc∆ = t {ρconc∆i } By join rule applied many times
ρconc∆ E ρabs∆ By Lemma t preserves E
ρconc∆ v ρabs∆ By Lemma t preserves v
Aconc

′ ` ρconc∆ consistent By Lemma same domains mean consistency
Let ρconc

′′
= transfer(ρconc,Aconc

′
)

Aconc
′ ` ρconc ′′

consistent By Lemma transfer implies consistency
dom(ρconc

′′
) = dom(ρconc∆) By Lemma consistency means same domain

Let ρconc
′
= ρconc

′′
ρconc∆ By rule overmeets

ρconc
′ v ρabs ′

By Lemma preserves v

55

fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′
By rule flow− cons

�

56

Theorem F.2. Soundness of Single Constraint

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρconc final

Aabs; ρabs; cons ` instr ↪→ ρabs∆

exists deriv.

Aconc; ρconc; cons ` instr ↪→ ρconc∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aabs; Babs; ρabs; cons ` instr ↪→ ρabs∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q Aabs; FV(cons) ` instr : op Z⇒ (Σta, Σ
u
a)

Σta 6= ∅ ∨ Σua 6= ∅ Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `part cons ↪→ ρ∆}

Pua = {l ρ∆ | σ ∈ Σua ∧ Aabs; Babs; ρabs;σ `part cons ↪→ ρ∆}

|Pta| = |Σta| |Pua | = |Σua | P∆a = Pta ∪ Pua

Aabs; Babs; ρBabs; cons ` instr ↪→ (P∆a)
(MATCH)

Let ρ∆a = (P∆a)

Aconc ` instr : op Z⇒ (Σtc, Σ
t
a) By Lemma Instruction Binding Sound

Σtc ⊆ Σta ∪ Σua By lemma Instruction Binding Sound
Σuc ⊆ Σua By lemma Instruction Binding Sound
Σtc ⊇ Σta By lemma Instruction Binding Sound
By case analysis on the property Σtc ∪ Σuc = ∅

Case: Σtc ∪ Σuc = ∅

Σtc = ∅ By inversion of Σtc ∪ Σuc = ∅
Σuc = ∅ By inversion of Σtc ∪ Σuc = ∅
Aconc; Bconc; ρconc; cons ` instr ↪→ ⊥concA By rule not−match

Aconc ` ⊥concA consistent By definition of ⊥A

Aabs ` ρ∆a consistent By Lemma partial binding consistent
dom(⊥concA) ⊆ dom(ρ∆a) By lemma consistency and vA implies ρ domains subset
∀ R 7→ Ec ∈ ⊥concA .

57

Ec = bot By definition of ⊥A

Ec v ρ∆a (R) By rule v −bot

∀ R 7→ Ec ∈ ⊥concA . Ec v ρ∆a (R) By quantification above
⊥concA v ρ∆a (R) By rule v −ρ

Σta = ∅ By Σtc ⊇ Σta and Σtc = ∅
Pta = ∅ By |Pta| = |Σta|

∀ ρu∆a ∈ Pua .

Let ρu∆a =l ρu∆ ′
a

Where Aabs; Babs; ρabs;σu `part cons ↪→ ρu∆
′

a and σu ∈ Σua By construction of Pua
∀ R 7→ E ∈ ρu∆a . E = bot∨ E = unknown By l makes everything bottom or top.

∀ ρu∆a ∈ Pua . ∀ R 7→ E ∈ ρu∆a . E = bot∨ E = unknown By quantification
∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown By preserves polarity
∀ R ∈ dom(⊥Aconc) .

⊥Aconc(R) = bot By definition of ⊥
Let Ea = ρ∆a (R)

Case analysis on the value of Ea

Ea = bot

botE bot By rule E− bot

Ea = unknown

botE unknown By rule E− unknown

Ea = true

Contradiction with ∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown

Ea = false

Contradiction with ∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown

∀ R ∈ dom(⊥Aconc) . ⊥Aconc(R)E ρ∆a (R) By quantification
⊥Aconc E ρ∆a By rule E− ρ

Case: Σtc ∪ Σuc 6= ∅

Σtc 6= ∅ ∨ Σuc 6= ∅ By inversion on ∪
Let Ptc = {ρ∆ | σ ∈ Σtc ∧ Aconc; B; ρconc;σ `part cons ↪→ ρ∆} ∀ σt ∈ Σtc .

58

σt ∈ Σta ∪ Σua By inversion on Σtc ⊆ Σta ∪ Σua
Case analysis on the location of σt

σt ∈ Σta
∃ distinct ρt∆a ∈ Pta . A

abs; Babs; ρabs;σt `part cons ↪→ ρt∆a
By the construction of Pta and |Pta| = |Σta|

Aconc; Bconc; ρconc;σt `part cons ↪→ ρt∆c By lemma partial constraint binding sound
Aconc ` ρt∆c consistent By lemma partial constraint consistent
ρt∆c v ρt∆a By lemma partial constraint binding sound
ρt∆c E ρ

t∆
a By lemma partial constraint binding sound

ρt∆c ∈ Ptc By construction of Ptc

σt ∈ Σua
∃ distinct ρu∆a ∈ Pua .

ρu∆a =l ρu∆ ′
a ∧ Aabs; Babs; ρabs;σt `part cons ↪→ ρu∆

′
a

By the construction of Pua and |Pua | = |Σua |

Aconc; Bconc; ρconc;σt `part cons ↪→ ρt∆c By lemma partial constraint binding sound
Aconc ` ρt∆c consistent By lemma partial constraint consistent
ρt∆c v ρu∆

′
a By lemma partial constraint binding sound

ρt∆c E ρ
u∆ ′
a By lemma partial constraint binding sound

ρt∆c v ρu∆a By lemma l on right preserves v
ρt∆c E ρ

u∆
a By lemma l on right preserves E

ρt∆c ∈ Ptc By construction of Puc

∀ σt ∈ Σtc . ∃ distinct ρtc ∈ Ptc . A
conc; Bconc; ρconc;σt `part cons ↪→ ρtc By quantification above

|Ptc| = |Σtc| By quantification above and construction of Ptc
∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ

t∆
c v ρ∆a By quantification above

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c E ρ

∆
a By quantification above

∀ ρt∆c ∈ Ptc . Aconc ` ρt∆c consistent By quantification above
Let Puc = {ρ∆ | σ ∈ Σuc ∧ Aconc; Bconc; ρconc;σ `part cons ↪→ ρ∆}

∀ σu ∈ Σuc .

σu ∈ Σua By inversion on Σuc ⊆ Σua
∃ distinct ρu∆

′
a ∈ Pua . A

abs; Babs; ρabs;σu `part cons ↪→ ρu∆
′

a

By the construction of Pua and |Pua | = |Σua |

Aconc; Bconc; ρconc;σu `part cons ↪→ ρu∆
′

c By lemma partial constraint binding sound
Aconc ` ρu∆

′
c consistent By lemma partial constraint consistent

Let ρu∆a =l ρu∆ ′
a

dom(ρu∆
′

c) = dom(ρconc) By lemma consistency implies same domain
Let ρu∆c =l ρu∆ ′

c

ρu∆
′

c v ρu∆ ′
a By lemma partial constraint binding sound

ρu∆
′

c E ρu∆
′

a By lemma partial constraint binding sound
ρu∆c v ρu∆a By lemma l preserves v
ρu∆c E ρ

u∆
a By lemma l preserves E

59

ρu∆c ∈ Puc By construction of Puc

∀ σu ∈ Σuc . ∃ distinct ρuc ∈ Puc . A
conc; Bconc; ρconc;σu `part cons ↪→ ρuc By quantification above

|Puc | = |Σuc | By quantification above and construction of Ptc
∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ

u∆
c v ρ∆a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c E ρ

∆
a By quantification above

∀ ρu∆c ∈ Puc . Aconc ` ρu∆c consistent By quantification above
Let Pc = Ptc ∪ Puc
∃R̄ . ∀ ρc ∈ Pc . dom(ρc) = R̄ By inversion on consistency of each ρt∆c
Let ρ∆c = (Pc)

Aconc; Bconc; ρconc; cons ` instr ↪→ ρconc∆ By rulematch
∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ

∆
c v ρ∆a By Pc = Rhotc ∪ Rhouc

∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ
∆
c E ρ

∆
a By Pc = Rhotc ∪ Rhouc

ρ∆c v ρ∆a By preserves v and E on sets
ρ∆c E ρ

∆
a By preserves v and E on sets

Case:
cons = op : Pctx ⇒ Preq ⇓ Q Aabs; FV(cons) ` instr : op Z⇒ (∅,∅)

Aabs; Babs; ρabs; cons ` instr ↪→ ⊥Aabs
(NO−MATCH)

Aconc ` instr : op Z⇒ (Σtc, Σ
t
a) By Lemma Instruction Binding Sound

Σtc ⊆ Σta ∪ Σua By lemma Instruction Binding Sound
Σtc = ∅ By inversion on ⊆
Σuc ⊆ Σua By lemma Instruction Binding Sound
Σuc = ∅ By inversion on ⊆
Aconc; Bconc; ρconc; cons ` instr ↪→ ⊥Aconc By rule not−match

Aconc ` ⊥concA consistent By definition of ⊥A

∀ R ∈ dom(⊥concA) . ⊥concA (R) = bot By definition of ⊥A

Aabs ` ⊥absA consistent By definition of ⊥A

∀ R ∈ dom(⊥absA) . ⊥absA (R) = bot By definition of ⊥A

dom(⊥concA) ⊆ dom(⊥absA By lemma consistency and vA implies ρ domains subset
∀ R ∈ dom(⊥concA) . ⊥concA (R) v ⊥absA (R) By rule v −bot

⊥concA v ⊥absA By rule v −ρ

∀ R ∈ dom(⊥concA) . ⊥concA (R)E⊥absA (R) By rule E− bot

⊥concA E⊥absA By rule E− ρ

�

60

Theorem F.3. Soundness of Constraint with Partial Substitution

forall deriv.

Aconc vA Aabs

ρconc v ρabs

ρabs final

ρconc final

Aabs ` ρabs consistent

Aconc ` ρconc consistent

Aabs; Babs; ρabs;σ `part cons → ρabs∆

Bconc vB Babs

exists deriv.

Aconc; Bconc; ρconc;σ `part cons → ρconc∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aabs; Babs; ρabs;σ `part cons → ρabs∆

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(Aabs;σop; Γy) = (Σta, Σ

u
a)

Σta 6= ∅ ∨ Σua 6= ∅ Pta = {ρ∆ | σ ∈ Σta ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆}

Pua = {l ρ∆ | σ ∈ Σua ∧ Aabs; Babs; ρabs;σ `full cons ↪→ ρ∆} P∆a = Pta ∪ Pua

Aabs; Babs; ρabs;σop `part cons ↪→ (P∆)
(BOUND)

Let ρ∆a =↪→ (P∆a)

allValidSubs(Aconc;σop; Γy) = (Σtc, Σ
u
c) By Lemma All Valid Subs sound and complete

Σtc ⊆ Σta ∪ Σua By Lemma All Valid Subs sound and complete
Σuc ⊆ Σua By Lemma All Valid Subs sound and complete
Σtc ⊇ Σta By Lemma All Valid Subs sound and complete
∀ σ ∈ Σtc . Aconc ` σ validFor Γy By Lemma All Valid Subs sound and complete
∀ σ ∈ Σuc . Aconc ` σ validFor Γy By Lemma All Valid Subs sound and complete
∀ σ ∈ Σtc . Aconc ` σ validFor FV(Pctx) By FV(Pctx) ⊆ Γy
∀ σ ∈ Σuc . Aconc ` σ validFor FV(Pctx) By FV(Pctx) ⊆ Γy
By case analysis on the property Σtc ∪ Σuc = ∅

Case: Σtc ∪ Σuc = ∅

Σtc = ∅ By inversion of Σtc ∪ Σuc = ∅
Σuc = ∅ By inversion of Σtc ∪ Σuc = ∅
Aconc; Bconc; ρconc; cons ` instr ↪→ ⊥concA By rule cant− bind

61

Aconc ` ⊥concA consistent By definition of ⊥A

Aabs ` ρ∆a consistent By Lemma forall binding consistent
dom(⊥concA) ⊆ dom(ρ∆a) By lemma consistency and vA implies ρ domains subset
∀ R 7→ Ec ∈ ⊥concA .

Ec = bot By definition of ⊥A

Ec v ρ∆a (R) By rule v −bot

∀ R 7→ Ec ∈ ⊥concA . Ec v ρ∆a (R) By quantification above
⊥concA v ρ∆a (R) By rule v −ρ

Σta = ∅ By Σtc ⊇ Σta and Σtc = ∅
Pta = ∅ By |Pta| = |Σta|

∀ ρu∆a ∈ Pua .

Let ρu∆a =l ρu∆ ′
a

where Aabs; Babs; ρabs;σu `full cons ↪→ ρu∆
′

a and σu ∈ Σua By construction of Pua
∀ R 7→ E ∈ ρu∆a . E = bot∨ E = unknown By l creates polarity

∀ ρu∆a ∈ Pua . ∀ R 7→ E ∈ ρu∆a . E = bot∨ E = unknown By quantification
∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown By preserves polarity
∀ R ∈ dom(⊥Aconc) .

⊥Aconc(R) = bot By definition of ⊥
Let Ea = ρ∆a (R)

Case analysis on the value of Ea

Ea = bot

botE bot By rule E− bot

Ea = unknown

botE unknown By rule E− unknown

Ea = true

Contradiction with ∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown

Ea = false

Contradiction with ∀ R 7→ E ∈ ρ∆a . E = bot∨ E = unknown

∀ R ∈ dom(⊥Aconc) . ⊥Aconc(R)E ρ∆a (R) By quantification
⊥Aconc E ρ∆a By rule E− ρ

62

Case: Σtc ∪ Σuc 6= ∅

Σtc 6= ∅ ∨ Σuc 6= ∅ By inversion on ∪
Let Ptc = {ρ∆ | σ ∈ Σtc ∧ Aconc; Bconc; ρconc;σ `full cons ↪→ ρ∆} ∀ σt ∈ Σtc .

σt ∈ Σta ∪ Σua By inversion on Σtc ⊆ Σta ∪ Σua
Case analysis on the location of σt

σt ∈ Σta
∃ distinct ρt∆a ∈ Pta . A

abs; Babs; ρabs;σt `full cons ↪→ ρt∆a By the construction of Pta and |Pta| = |Σta|

Aconc; Bconc; ρconc;σt `full cons ↪→ ρt∆c By lemma full constraint binding sound
Aconc ` ρt∆c consistent By lemma full constraint consistent
ρt∆c v ρt∆a By lemma full constraint binding sound
ρt∆c E ρ

t∆
a By lemma full constraint binding sound

ρt∆c ∈ Ptc By construction of Ptc

σt ∈ Σua
∃ distinct ρu∆a ∈ Pua . ρ

u∆
a =l ρu∆ ′

a Aabs; Babs; ρabs;σt `full cons ↪→ ρu∆
′

a By the construction of Pua and |Pua | = |Σua |

Aconc; Bconc; ρconc;σt `full cons ↪→ ρt∆c By lemma full constraint binding sound
Aconc ` ρt∆c consistent By lemma full constraint consistent
ρt∆c v ρu∆

′
a By lemma full constraint binding sound

ρt∆c E ρ
u∆ ′
a By lemma full constraint binding sound

ρt∆c v ρu∆a By lemma l on abs preserves v
ρt∆c E ρ

u∆
a By lemma l on abs preserves E

ρt∆c ∈ Ptc By construction of Puc

∀ σt ∈ Σtc . ∃ distinct ρtc ∈ Ptc . A
conc; Bconc; ρconc;σt `full cons ↪→ ρtc By quantification above

|Ptc| = |Σtc| By quantification above and construction of Ptc
∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ

t∆
c v ρ∆a By quantification above

∀ ρt∆c ∈ Ptc . ∃ distinct ρ∆a ∈ Pa . ρ
t∆
c E ρ

∆
a By quantification above

∀ ρt∆c ∈ Ptc . Aconc ` ρt∆c consistent By quantification above
Let Puc = {l ρ∆ | σ ∈ Σuc ∧ Aconc; Bconc; ρconc;σ `full cons ↪→ ρ∆} ∀ σu ∈ Σuc .

σu ∈ Σua By inversion on Σuc ⊆ Σua
∃ ρu∆ ′

a ∈ Pua . A
abs; Babs; ρabs;σu `full cons ↪→ ρu∆

′
a By the construction of Pua and |Pua | = |Σua |

Aconc; Bconc; ρconc;σu `full cons ↪→ ρu∆
′

c By lemma full constraint binding sound
Aconc ` ρu∆

′
c consistent By lemma full constraint consistent

Let ρu∆a =l ρu∆ ′
a

dom(ρu∆
′

c) = dom(ρconc)By lemma consistency implies same domain Let ρu∆c =l ρu∆ ′
c

ρu∆
′

c v ρu∆ ′
a By lemma full constraint binding sound

ρu∆
′

c E ρu∆
′

a By lemma full constraint binding sound
ρu∆c v ρu∆a By lemma l preserves v
ρu∆c E ρ

u∆
a By lemma l preserves E

ρu∆c ∈ Puc By construction of Puc

63

∀ σu ∈ Σuc . ∃ distinct ρuc ∈ Puc . A
conc; B; ρ;σu `part cons ↪→ ρuc By quantification above

|Puc | = |Σuc | By quantification above and construction of Ptc
∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ

u∆
c v ρ∆a By quantification above

∀ ρu∆c ∈ Puc . ∃ distinct ρ∆a ∈ Pa . ρ
u∆
c E ρ

∆
a By quantification above

∀ ρu∆c ∈ Puc . Aconc ` ρu∆c consistent By quantification above
Let Pc = Ptc ∪ Puc
∃R̄ . ∀ ρc ∈ Pc . dom(ρc) = R̄ By inversion on consistency of each ρt∆c
Let ρ∆c = (Pc)

Aconc; Bconc; ρconc `part cons ↪→ ρconc∆ By rule bind
∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ

∆
c v ρ∆a By Pc = Rhotc ∪ Rhouc

∀ ρ∆c ∈ Pc . ∃ distinct ρ∆a ∈ Pa . ρ
∆
c E ρ

∆
a By Pc = Rhotc ∪ Rhouc

ρ∆c v ρ∆a By preserves v and E on sets
ρ∆c E ρ

∆
a By preserves v and E on sets

Case:

cons = op : Pctx ⇒ Preq ⇓ Q
Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q) allValidSubs(Aabs;σop; Γy) = (∅,∅)

Aabs; Babs; ρabs;σop `part cons ↪→ ⊥Aabs
(CANT−BIND)

allValidSubs(Aconc;σop; Γy) 7→ (Σtc, Σ
u
c) By Lemma All Subs Sound

Σtc ⊆ Σta ∪ Σua By Lemma All Subs Sound and complete
Σtc = ∅ By inversion on ⊆
Σuc ⊆ Σua By Lemma All Subs Sound and complete
Σuc = ∅ By inversion on ⊆
Aconc; Bconc; ρconc; cons ` instr ↪→ ⊥Aconc By rule cant− bind

Aconc ` ⊥concA consistent By definition of ⊥A

∀ R ∈ dom(⊥concA) . ⊥concA (R) = bot By definition of ⊥A

Aabs ` ⊥absA consistent By definition of ⊥A

∀ R ∈ dom(⊥absA) . ⊥absA (R) = bot By definition of ⊥A

dom(⊥concA) ⊆ dom(⊥absA By Lemma consistency and vA implies ρ domains subset
∀ R ∈ dom(⊥concA) . ⊥concA (R) v ⊥absA (R) By rule v −bot

⊥concA v ⊥absA By rule v −ρ

∀ R ∈ dom(⊥concA) . ⊥concA (R)E⊥absA (R) By rule E− bot

⊥concA E⊥absA By rule E− ρ

�

64

Theorem F.4. Soundness of Constraint with Full Substitution

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent

Aconc ` ρconc consistent

ρabs final

ρconc final

Aconc ` σ validFor FV(Pctx)

dom(σ) = dom(FV(cons))

Aabs; Babs; ρabs;σ `full cons → ρabs∆

exists deriv.

Aconc; Bconc; ρconc;σ `full cons → ρconc∆

ρconc∆ v ρabs∆

ρconc∆ E ρabs∆

Proof:
By case analysis on Aabs; Babs; ρabs;σ `full cons ↪→ ρabs∆

Case:
cons = op : Pctx ⇒ Preq ⇓ Q Babs; ρabs ` Pctx[σ] False

Aabs; Babs; ρabs;σ `full cons ↪→ ⊥Aabs
(FULL−F−SOUND)

Bconc; ρconc ` Pctx[σ] tc By lemma truth sound
tc 4 False By lemma truth sound
Bconc; ρconc ` Pctx[σ] False By inversion on tc 4 False
Aconc; Bconc; ρconc;σ `full cons ↪→ ⊥concA By rule full− sound− False
∀ R 7→ E ∈ ⊥concA . E = bot By definition of ⊥
∀ R 7→ E ∈ ⊥concA . E v ⊥absA (R) By rule v −⊥
⊥concA v ⊥absA By rule v
∀ R 7→ E ∈ ⊥absA . E = bot By definition of ⊥
∀ R 7→ E ∈ ρconc∆ . EE ρabs∆(R) By rule E−⊥
⊥concA E⊥absA By rule E

Case:

cons = op : Pctx ⇒ Preq ⇓ Q Babs; ρabs ` Pctx[σ] True

(Σta, Σ
u
a) = allValidSubs(Aabs;σ; FV(cons))

∃ σ ′ ∈ Σta . Babs; ρabs ` Preq[σ ′] True

Aabs; Babs; ρabs;σ `full cons ↪→ lattice(Q̄[σ])
(FULL−T−SOUND)

65

Bconc; ρconc ` Pctx[σ] tc By lemma truth sound
tc 4 True By lemma truth sound
Bconc; ρconc ` Pctx[σ] True By inversion on tc 4 True
(Σtc, Σ

u
c) = allValidSubs(Aconc;σ; FV(cons)) By lemma valid subs Sound and Complete

∀ σ ∈ Σtc ∪ Σtc . Aconc ` σ validFor FV(cons) By lemma valid subs Sound and Complete
∀ σ ∈ Σtc ∪ Σtc . Aconc ` σ validFor FV(Preq) By FV(Preq) ⊆ FV(cons)

Σtc ⊆ Σta ∪ Σua By lemma valid subs Sound and Complete
Σuc ⊆ Σua By lemma valid subs Sound and Complete
Σtc ⊇ Σta By lemma valid subs Sound and Complete
∃ σ ′ ∈ Σtc . Babs; ρabs ` Preq[σ ′] True By Σtc ⊇ Σta
Let ρabs∆ = lattice(Q̄[σ],Aabs,Babs)

ρconc∆ = lattice(Q̄[σ],Aconc,Bconc) By Lemma lattice sound
ρconc∆ v ρabs∆ By Lemma lattice sound
ρconc∆ E ρabs∆ By Lemma lattice sound
Aconc; Bconc; ρconc;σ `full cons → ρconc∆ By rule full− T − sound

Case:

cons = op : Pctx ⇒ Preq ⇓ Q Babs; ρabs ` Pctx[σ] Unknown

(Σta, Σ
u
a) = allValidSubs(Aabs;σ; FV(cons))

∃ σ ′ ∈ Σta . Babs; ρabs ` Preq[σ ′] True ρabs∆
′
= lattice(Q̄[σ])

Aabs; Babs; ρabs;σ `full cons ↪→l ρabs∆ ′ (FULL−U−SOUND)

Bconc; ρconc ` Pctx[σ] t By lemma truth sound
Case analysis on t

Case: t = True

(Σtc, Σ
u
c) = allValidSubs(Aconc;σ; FV(cons)) By lemma valid subs Sound and Complete

∀ σ ∈ Σtc ∪ Σuc . Aconc ` σ validFor FV(cons) By lemma valid subs Sound and Complete
Σtc ⊆ Σta ∪ Σua By lemma valid subs Sound and Complete
Σuc ⊆ Σua By lemma valid subs Sound and Complete
Σtc ⊇ Σta By lemma valid subs Sound and Complete
∃ σ ′ ∈ Σtc . Babs; ρabs ` Preq[σ ′] True By Σtc ⊇ Σta
Let ρabs∆

′
= lattice(Q̄[σ],Aabs,Babs)

ρconc∆ = lattice(Q̄[σ],Aconc,Bconc) By Lemma lattice sound
ρconc∆ v ρabs∆ ′

By Lemma lattice sound
ρconc∆ E ρabs∆

′
By Lemma lattice sound

Let ρabs∆ =l ρabs∆ ′

ρconc∆ v ρabs∆ By Lemma l on abs preserves v
ρconc∆ E ρabs∆ By Lemma l on abs preserves E
Aconc; Bconc; ρconc;σ `full cons → ρconc∆ By rule full− T − sound

Case: t = Unknown

66

(Σtc, Σ
u
c) = allValidSubs(Aconc;σ; FV(cons)) By lemma valid subs Sound and Complete

∀ σ ∈ Σtc ∪ Σuc . Aconc ` σ validFor FV(cons) By lemma valid subs Sound and Complete
Σtc ⊆ Σta ∪ Σua By lemma valid subs Sound and Complete
Σuc ⊆ Σua By lemma valid subs Sound and Complete
Σtc ⊇ Σta By lemma valid subs Sound and Complete
∃ σ ′ ∈ Σtc . Babs; ρabs ` Preq[σ ′] True By Σtc ⊇ Σta
Let ρabs∆

′
= lattice(R̄[σ],Aabs,Babs)

ρconc∆
′
= lattice(R̄[σ],Aconc,Bconc) By Lemma lattice sound

ρconc∆
′ v ρabs∆ ′

By Lemma lattice sound
ρconc∆

′
E ρabs∆

′
By Lemma lattice sound

Let ρabs∆ =l ρabs∆ ′

Let ρconc∆ =l ρconc∆ ′

ρconc∆ v ρabs∆ By Lemma l preserves v
ρconc∆ E ρabs∆ By Lemma l preserves E
Aconc; Bconc; ρconc;σ `full cons → ρconc∆ By rule full−U− sound

Case: t = False

Aconc; ρconc;σ `full cons ↪→ ⊥concA By rule full− sound− False

Let ρabs∆ =l ρabs∆ ′

∀ R 7→ E ∈ ⊥concA . E = bot By definition of ⊥
∀ R 7→ E ∈ ⊥concA . E v ρabs∆(R) By rule v −⊥
⊥concA v ρabs∆ By rule v
∀ R 7→ E ∈ ρabs∆ . E = bot∨ E = unknown By l creates polarity
∀ R 7→ E ∈ ⊥concA . EE ρabs∆ By rule E
⊥concA E ρabs∆ By rule E
Aconc; Bconc; ρconc;σ `full cons → ⊥concA By rule full− F− sound

�

67

Theorem F.5. Truth Checking Sound

forall deriv.

ρconc v ρabs

Bconc v Babs

ρabs final

ρconc final

Aconc ` σ validFor FV(P)

Aconc ` ρconc consistent

Babs; ρabs ` P[σ]ta

exists deriv.

Bconc; ρconc ` P[σ]tc

tc 4 ta

Proof:
By induction on ρabs ` P[σ] ta

Case:
ρabs(rel(`)[σ]) = true

Babs; ρabs ` rel(y)[σ] True
(REL−TRUE)

Let R = rel(`)[σ]

R ∈ dom(ρconc) By lemma σ valid and ρ consistent
Let Ec = ρconc(R)

By case analysis on the value of Ec

Case: Ec = true

Bconc; ρconc ` R True By rule rel − True
True 4 True By rule 4 − =

Case: Ec = false

Contradiction with ρconc v ρabs

Case: Ec = unknown

Contradiction with ρconc v ρabs

Case: Ec = bot

Contradiction with ρconc final

68

Case:
ρabs(rel(`)[σ]) = false

Babs; ρabs ` rel(y)[σ] True
(REL−FALSE)

Let R = rel(`)[σ]

R ∈ dom(ρconc) By lemma σ valid and ρ consistent
Let Ec = ρconc(R)

By case analysis on the value of Ec

Case: Ec = false

Bconc; ρconc ` R False By rule rel − False
False 4 False By rule 4 − =

Case: Ec = true

Contradiction with ρconc v ρabs

Case: Ec = unknown

Contradiction with ρconc v ρabs

Case: Ec = bot

Contradiction with ρconc final

Case:
ρabs(rel(`)) = Ea Ea 6= true Ea 6= false

Babs; ρabs ` rel(`) Unknown
(REL−UNKNOWN−SOUND−COMPLETE)

Ea = unknown By ρabs final

Let R = rel(`)[σ]

R ∈ dom(ρconc) By lemma σ valid and ρ consistent
Let Ec = ρconc(R)

By case analysis on the value of Ec

Case: Ec = false

Bconc; ρconc ` R False By rule rel − False
False 4 Unknown By rule 4 −U

Case: Ec = true

Bconc; ρconc ` R True By rule rel − False
True 4 Unknown By rule 4 −U

69

Case: Ec = unknown

Bconc; ρconc ` R Unknown By rule rel − False
Unknown 4 Unknown By rule 4 −U

Case: Ec = bot

Contradiction with ρconc final

Case:
Babs; ρ ` A ta Babs(`test) = ta ta 6= Unknown

Babs; ρabs ` A/`test True
(REL−TEST−TRUE)

Bconc; ρconc ` A tc By induction hypothesis
tc 4 ta

By case analysis on tc

Case: tc = True

Bconc(`test) = True By Bconc v Babs

Babs; ρabs ` A/`test True By rule rel − test− True
True 4 True By rule 4 − =

Case: tc = False

Bconc(`test) = False By Bconc v Babs

Babs; ρabs ` A/`test True By rule rel − test− True
True 4 True By rule 4 − =

Case: tc = Unknown

Contradiction with Bconc v Babs

Case:
Babs; ρ ` A ta1 Babs(`test) = ta2 ta1 6= Unknownta2 6= Unknownta1 6= ta2

Babs; ρabs ` A/`test False
(REL−TEST−FALSE)

Bconc; ρconc ` A tc1 By induction hypothesis
tc1 4 t

a
1

By case analysis on tc1

Case: tc1 = True

Bconc(`test) = tc2 By Bconc v Babs

By case analysis on tc2

70

Case: tc2 = True
Contradiction with tc1 4 t

a
1 and ta1 6= ta2 and Bconc v Babs

Case: tc2 = False

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 False By rule 4 − =

Case: tc2 = Unknown
Contradiction with Bconc v Babs

Case: tc1 = False

Bconc(`test) = tc2 By Bconc v Babs

By case analysis on tc2

Case: tc2 = True
Contradiction with tc1 4 t

a
1 and ta1 6= ta2 and Bconc v Babs

Case: tc2 = False

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 False By rule 4 − =

Case: tc2 = Unknown
Contradiction with Bconc v Babs

Case: tc1 = Unknown

Contradiction with Bconc v Babs

Case:
Babs; ρabs ` A Unknown

Babs; ρabs ` A/`test Unknown
(REL−TEST−U1)

Bconc; ρconc ` A tc By induction hypothesis
tc1 4 Unknown By induction hypothesis
Let tc2 = Bconc(`test) By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(`test)

By case analysis on tc1

71

Case: tc2 = True

Bconc; ρconc ` A/`test True By rule rel − test− True
True 4 Unknown By rule 4 −U

Case: tc2 = False

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 Unknown By rule 4 −U

Case: tc2 = Unknown

Bconc; ρconc ` A/`test Unknown By rule rel − test− u2

Unknown 4 Unknown By rule 4 −U

Case: tc1 = False

Let tc2 = Bconc(`test)

By case analysis on tc1

Case: tc2 = False

Bconc; ρconc ` A/`test True By rule rel − test− True
True 4 Unknown By rule 4 −U

Case: tc2 = True

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 Unknown By rule 4 −U

Case: tc2 = Unknown

Bconc; ρconc ` A/`test Unknown By rule rel − test− u2

Unknown 4 Unknown By rule 4 −U

Case: tc1 = Unknown

Babs; ρabs ` A/`test Unknown By rule rel − test− u1

Unknown 4 Unknown By rule 4 − =

Case:
Babs(`test) = Unknown Babs; ρabs ` A ta1

Babs; ρabs ` A/`test Unknown
(REL−TEST−U2)

72

Bconc; ρconc ` A tc1 By induction hypothesis
tc1 4 t

a
1 By induction hypothesis

By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(`test)

By case analysis on tc2

Case: tc2 = True

Bconc; ρconc ` A/`test True By rule rel − test− True
True 4 Unknown By rule 4 −U

Case: tc2 = False

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 Unknown By rule 4 −U

Case: tc2 = Unknown

Bconc; ρconc ` A/`test Unknown By rule rel − test− u2

Unknown 4 Unknown By rule 4 −U

Case: tc1 = False

Let tc2 = Bconc(`test)

By case analysis on tc1

Case: tc2 = False

Bconc; ρconc ` A/`test True By rule rel − test− True
True 4 Unknown By rule 4 −U

Case: tc2 = True

Bconc; ρconc ` A/`test False By rule rel − test− False
False 4 Unknown By rule 4 −U

Case: tc2 = Unknown

Bconc; ρconc ` A/`test Unknown By rule rel − test− u2

Unknown 4 Unknown By rule 4 −U

73

Case: tc1 = Unknown

Babs; ρabs ` A/`test Unknown By rule rel − test− u1

Unknown 4 Unknown By rule 4 − =

Case:
Babs; ρabs ` S Unknown

Babs; ρabs ` ¬S Unknown
(¬S−UNKNOWN)

Bconc; ρconc ` S tc By induction hypothesis
tc 4 Unknown By induction hypothesis
By case analysis on the value of tc

Case: tc = True

Bconc; ρconc ` ¬S False By rule ¬S− False
False 4 Unknown By rule 4 −U

Case: tc = False

Bconc; ρconc ` ¬S True By rule ¬S− True
True 4 Unknown By rule 4 −U

Case: tc = Unknown

Bconc; ρconc ` ¬S Unknown By rule ¬S− Unknown
Unknown 4 Unknown By rule 4 −U

Case:
Babs; ρabs ` SFalse

Babs; ρabs ` ¬STrue
(¬S−TRUE)

Bconc; ρconc ` S tc By induction hypothesis
tc 4 False By induction hypothesis
By case analysis on the value of tc

Case: tc = False

Bconc; ρconc ` ¬S True By rule ¬S− True
True 4 Unknown By rule 4 −U

Case: tc = True

Contradiction with tc 4 False

74

Case: tc = Unknown

Contradiction with tc 4 False

Case:
Babs; ρabs ` STrue

Babs; ρabs ` ¬SFalse
(¬R−FALSE)

Bconc; ρconc ` S tc By induction hypothesis
tc 4 True By induction hypothesis
By case analysis on the value of tc

Case: tc = True

Bconc; ρconc ` ¬S False By rule ¬S− False
False 4 Unknown By rule 4 −U

Case: tc = False

Contradiction with tc 4 True

Case: tc = Unknown

Contradiction with tc 4 True

Case:
Babs; ρabs ` trueTrue

(TRUE)

Bconc; ρconc ` trueTrue By rule true
True 4 True By rule 4 − =

Case:
Babs; ρabs ` falseFalse

(FALSE)

Bconc; ρconc ` falseFalse By rule false
False 4 False By rule 4 − =

Remaining cases work as expected for a three value logic.

�

75

Theorem F.6. Instruction Binding Sound

forall deriv.

Aconc vA Aabs

Aabs ` instr : op ↪→ (Σta, Σ
u
a)

exists deriv.

Aconc ` instr : op ↪→ (Σtc, Σ
u
c)

Σtc ⊆ Σta ∪ Σua
Σuc ⊆ Σua
Σtc ⊇ Σta

Proof:
By case analysis on the structure of the derivation of Aabs ` instr : op ↪→ (Σta, Σ

u
a)

Case:

FV(τthis.m(y : τ) : τret) ⊆ Γy
(Σta, Σ

u
a) = findLabels(Aabs, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)

Aabs; Γy ` xret = xthis.m(x) : τthis.m(y : τ) : τret Z⇒ (Σta, Σ
u
a)

(INVOKE)

(Σtc, Σ
u
c) = findLabels(Aconc, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)

By lemma FindLabels sound and complete
Σtc ⊆ Σta ∪ Σua By lemma FindLabels sound and complete
Σuc ⊆ Σua By lemma FindLabels sound and complete
Σtc ⊇ Σta By lemma FindLabels sound and complete
Aconc ` xret = xthis.m(x) : τthis.m(y : τ) : τret ↪→ (Σtc, Σ

u
c) By rule invoke

Case:

FV(new τ(y : τ)) ⊆ Γy
(Σta, Σ

u
a) = findLabels(Aabs, Γy , {xret} ∪ x, {this} ∪ y)

Aabs; Γy ` xret = new m(x) : new τ(y : τ) Z⇒ (Σta, Σ
u
a)

(CONSTRUCTOR)

(Σtc, Σ
u
c) = findLabels(Aconc, Γy , {xret, xthis} ∪ x, {ret, this} ∪ y)

By lemma FindLabels sound and complete
Σtc ⊆ Σta ∪ Σua By lemma FindLabels sound and complete
Σuc ⊆ Σua By lemma FindLabels sound and complete
Σtc ⊇ Σta By lemma FindLabels sound and complete
Aconc ` xret = new m(x) : new τ(y : τ) ↪→ (Σtc, Σ

u
c) By rule constructor

Case:
Aabs; Γy ` eom : end-of-method Z⇒ ({∅},∅)

(EOM)

Aconc ` eom : end-of-method Z⇒ ({∅},∅) By rule eom
Σtc ⊆ Σta ∪ Σua By {∅} ⊆ {∅} ∪∅
Σuc ⊆ Σua By ∅ ⊆ ∅
Σtc ⊇ Σta By {∅} ⊇ {∅}

�

76

G Operator Lemmas
Theorem G.1. t operator preserves v

forallderivationsof

Econcl v Eabsl ∧ Econcr v Eabsr ∧

Econcl t Econcr = Econc ∧ Eabsl t Eabsr = Eabs

existsderivationsof

Econc v Eabs

Proof:
By case analysis on structure of the derivation of Eabsl t Eabsr = Eabs

Case:
bot t E = E

(t−BOT−L)

Econcl = bot By inversion on Econcl v Eabsl

Econc = Econcr By inversion on Econcl t Econcr = Econc

Econc v Eabs By equality

Case:
E t bot = E

(t−BOT−R)

Econcr = bot By inversion on Econcr v Eabsr

Econc = Econcl By inversion on Econcl t Econcr = Econc

Econc v Eabs By equality

Case:
E t E = E

(t−=)

Econc v Eabs By equality

Case:
El 6= bot Er 6= bot El 6= Er

El t Er = unknown
(t−6=)

Econc v Eabs By rule v −unknown

�

77

Theorem G.2. t operator preserves E

forall deriv.

d1 : Ecl E E
a
l

d2 : Ecr E E
a
r

d3 : Ea = Eal t Ear
d4 : Ec = Ecl t Ecr

exists deriv.

d5 : Ec E Ea

Proof:
By case analysis on d4

Case:
bot t Ecr = Ecr

(t−BOT−L)

By case analysis on d1

Case:
botE bot

(E−BOT)

Ea = Ear By inversion on d3
Ec E Ea By Ecr E E

a
r

Case:
botE unknown

(E−TOP)

Ea = unknown By inversion on d3
Ec E Ea By rule E− 6 bot or E− unknown

Case:
Ecl 6= bot
Ecl E E

a
l

(E−OTHER)

Invalid case by Ecl = bot

Case:
Ecl t bot = Ecl

(t−BOT−R)

By case analysis on d2

Case:
botE bot

(E−BOT)

Ea = Eal By inversion on d3
Ec E Ea By Ecl E E

a
l

78

Case:
botE unknown

(E−TOP)

Ea = unknown By inversion on d3
Ec E Ea By rule E− 6 bot or E− unknown

Case:
Ecr 6= bot
Ecr E E

a
r

(E−OTHER)

Invalid case by Ecr = bot

Case:
Ec t Ec = Ec

(t−=)

By case analysis on d3

Case:
bot t Ear = Ear

(t−BOT−L)

Ec E Ea By Ecr E E
a
r

Case:
Eal t bot = Eal

(t−BOT−R)

Ec E Ea By Ecl E E
a
l

Case:
Ea t Ea = Ea

(t−=)

Ec E Ea By Ecr E E
a
r

Case:
Eal 6= bot Ear 6= bot Eal 6= Ear

Eal t Ear = unknown
(t−6=)

By case on whether Ec = bot

Case: Ec = bot

Ec E Ea By rule E− unknown

Case: Ec = 6 bot
Ec E Ea By rule E− 6 bot

Case:
Ecl 6= bot Ecr 6= bot Ecl 6= Ecr

Ecl t Ecr = unknown
(t−6=)

79

Ec E Ea By rule E− 6 bot

�

80

Theorem G.3. preserves polarity

forall deriv.

d1 : E = El Er

d2 : El = bot∨ El = unknown

exists deriv.

d4 : E = bot∨ E = unknown

Proof:

By case analysis on d1

Case:
El El = El

(EQJOIN−=)

E = bot∨ E = unknown By El = bot∨ El = unknown

Case:
El 6= Er

El Er = unknown
(EQJOIN−6=)

E = bot∨ E = unknown By E = unknown

�

81

Theorem G.4. less precise than operands

forall deriv.

d1 : E = El Er

exists deriv.

d2 : El v E
d3 : Er v E

Proof:

By case analysis on d1

Case:
E E = E

(EQJOIN−=)

El v EBy rule v − = Er v E By rule v − =

Case:
El 6= Er

El Er = unknown
(EQJOIN−6=)

El v EBy rule v −unknown Er v E By rule v −unknown

�

82

Theorem G.5. maintains super-precise on an operand

forall deriv.

d1 : E = El Er

d2 : E ′ E El
exists deriv.

d3 : E ′ E E

Proof:

By case analysis on d1

Case:
El El = El

(EQJOIN−=)

E ′ E E By E ′ E El

Case:
El 6= Er

El Er = unknown
(EQJOIN−6=)

E ′ E E By rule E− unknown or E− other

�

83

Theorem G.6. preserves v and E

forall deriv.

Ec = Ecl Ecr

Ea = Eal Ear

Ecl v Eal
Ecr v Ear
Ecl E E

a
l

Ecr E E
a
r

exists deriv.

Ec v Ea

Ec E Ea

Proof:

By case analysis on Ec = Ecl Ecr

Case:
Ec Ec = Ec

(EQJOIN−=)

By case analysis on Ea = Eal Ear

Case:
Ea Ea = Ea

(EQJOIN−=)

Ec v Ea By Ecr v Ear
Ec E Ea By Ecr E E

a
r

Case:
Eal 6= Ear

Eal Ear = unknown
(EQJOIN−6=)

Ec v Ea By rule v −unknown

Ec E Ea By rule E− unknown or E− other

Case:
Ecl 6= Ecr

Ecl Ecr = unknown
(EQJOIN−6=)

Ec E Ea By rule E− other

By case analysis on Ea = Eal Ear

Case:
Ea Ea = Ea

(EQJOIN−=)

84

By case analysis on the value of Ea

Case: Ea = unknown

Ec v Ea By rule v −unknown

Case: Ea = bot

Ecl = bot By Ecl v Eal
Ecr = bot By Ecr v Ear
Invalid case by Ecl 6= Ecr

Case: Ea = true

Ecl 6= bot By Ecl E E
a
l

Ecr 6= bot By Ecr E E
a
r

Ecl = true By Ecl v Eal
Ecr = true By Ecr v Ear
Invalid case by Ecl 6= Ecr

Case: Ea = false

Ecl 6= bot By Ecl E E
a
l

Ecr 6= bot By Ecr E E
a
r

Ecl = false By Ecl v Eal
Ecr = false By Ecr v Ear
Invalid case by Ecl 6= Ecr

Case:
Eal 6= Ear

Eal Ear = unknown
(EQJOIN−6=)

Ec v Ea By rule v −unknown

�

85

Theorem G.7. on sets preserves v and E

forall der.

d1 : ρc = Pc

d2 : ρa = Pa

d3 : ∀ ρ ′c ∈ Pc . ∃ ρ ′a ∈ Pa . ρ
′
c v ρ ′a ∧ ρ ′c E ρ

′
a

(where each ρ ′c has a distinct ρ ′a)

exists der.

d4 : ρc v ρa
d5 : ρc E ρa

Proof:

By induction on d1

Case: ρc = ρ ′c

Let ρ ′a be the distinct ρ ′a for ρ ′c
By case analysis on the form of Pa

Case Pa = {ρ ′a}

ρc v ρa By ρ ′c v ρ ′a
ρc E ρa By ρ ′c E ρ

′
a

Case Pa = {ρ ′a} ∪ P ′a where P ′a 6= ∅

ρa = ρ ′a ρ ′′a where ρ ′′a = (Pa − ρ ′a)
ρ ′a v ρa By Lemma less precise than operands
ρc v ρa By v transitive
ρc E ρa By Lemma maintains E for operand

Case: ρc = ρ ′c (P ′c)

Let ρ ′′c = P ′c
Let ρ ′a be the distinct ρ ′a for ρ ′c
ρa = ρ ′a ρ ′′a where ρ ′′a = (Pa − ρ ′a)
ρ ′c v ρ ′a By induction hypothesis
ρ ′c E ρ

′
a By induction hypothesis

ρ ′′c v ρ ′′a By induction hypothesis
ρ ′′c E ρ

′′
a By induction hypothesis

ρc v ρa By Lemma preserves v and E
ρc E ρa By Lemma preserves v and E

86

�

87

Theorem G.8. l creates polarity

forall der.

d1 :l E = E ′

exists der.

d2 : E ′ = bot∨ E ′ = unknown

Proof:

By case analysis on d1

Case: l bot = bot
(l−BOT)

Case:
E 6= botl E = unknown

(l−UNKNOWN)

�

88

Theorem G.9. l on abstract preserves v

forall der.

d1 : Ec v Ea ′

d2 :l Ea ′
= Ea

exists der.

d2 : Ec v Ea

Proof:

By case analysis on d1

Case:
bot v Ea ′ (v−BOT)

Ec v Ea By rule v −bot

Case:
Ec v unknown

(v−UNKNOWN)

By case analysis on d2

Case: l bot = bot
(l−BOT)

Invalid case since Ea
′
= unknown

Case:
Ea

′ 6= botl Ea ′
= unknown

(l−UNKNOWN)

Ec v Ea By rule v −unknown

Case:
Ea

′ 6= bot Ea
′ 6= unknown

Ea
′ v Ea ′ (v−=)

By case analysis on d2

Case: l bot = bot
(l−BOT)

Ec v Ea By rule v − =

89

Case:
Ea

′ 6= botl Ea ′
= unknown

(l−UNKNOWN)

Ec v Ea By rule v −unknown

�

90

Theorem G.10. l preserves v

forall der.

d1 : E ′c v E ′a
d2 : Ea =l E ′a
d3 : Ec =l E ′c

exists der.

d4 : Ec v Ea

Proof:

By case analysis on d3

Case: l bot = bot
(l−BOT)

Ec v Ea By rule v −bot

Case:
E ′c 6= botl E ′c = unknown

(l−UNKNOWN)

E ′a 6= bot By inversion on E ′c v E ′al E ′a = unknown By rule l −unknown

Ec v Ea By rule v −unknown

�

91

Theorem G.11. l creates E

forall der.

d1 : Ea =l E ′a
d2 : Ec =l E ′c

exists der.

d3 : Ec E Ea

Proof:

Ea = unknown∨ Ea = bot By lemma l creates polarity
Ec = unknown∨ Ec = bot By lemma l creates polarity
By case analysis on the value of Ec

Case: Ec = bot

By case analysis on the value of Ea

Case: Ea = bot

Ec E Ea By rule E− bot

Case: Ea = unknown

Ec E Ea By rule E− unknown

Case: Ec = unknown

Ec E Ea By rule E− other

�

92

Theorem G.12. preserves v

forall der.

Econcl v Eabsl ∧ Econcr v Eabsr ∧

Econcl Econcr = Econc ∧ Eabsl Eabsr = Eabs ∧

Econcr E Eabsr

exists der.

Econc v Eabs

Proof:
Given Econcl v Eabsl , Econcr v Eabsr , Econcl Econcr = Econc, Eabsl Eabsr = Eabs, Econcr E Eabsr

Show Econc v Eabs
By case analysis on the structure of the derivation of Econcl Econcr = Econc

Case:
Econc bot = Econc

(OVRMEET−BOT)

By case analysis on the value of Erabs

Case: Eabsr = bot

Eabs = Eabsl By inversion on Eabsl Eabsr = Eabs

Econc v Eabs By equality

Case: Eabsr = unknown

Eabs = unknown By inversion on Eabsl Eabsr = Eabs

Econc v Eabs By rule v −unknown

Case: Eabsr = true

Invalid case because Econcr E Eabsr

Case: Eabsr = false

Invalid case because Econcr E Eabsr

Case:
Econcr 6= bot

Econcl Econcr = Econcr

(OVRMEET−6BOT)

Eabsr 6= bot By inversion of Econcr v Eabsr

Eabs = Eabsr By inversion of Eabsl Eabsr = Eabs

Econc v Eabs By equality

�

93

Theorem G.13. Lattice with substitution is sound

forall deriv.

d1 : ρabs = lattice(Q̄[σ],Aabs,Babs)

d2 : Aconc vA Aabs

d3 : Bconc vB Babs

d4 : Aconc ` σ validFor FV(S̄)

exists deriv.

d5 : ρconc = lattice(Q̄[σ],Aconc,Bconc)

d6 : ρconc v ρabs

d7 : ρconc E ρabs

Proof:By induction on d1:

Case:
ρa1 = lattice(Q[σ]; Aabs; Babs) ρa2 = lattice(Q[σ]; Aabs; Babs)

lattice(Q[σ], Q[σ]; Aabs; Babs) = ρa1 t ρa2
(LIST)

ρc1 = lattice(Q[σ]; Aconc; Bconc) By induction hypothesis
ρc1 v ρa1 By induction hypothesis
ρc1 E ρ

a
1 By induction hypothesis

ρc2 = lattice(Q[σ]; Aconc; Bconc) By induction hypothesis
ρc2 v ρa2 By induction hypothesis
ρc2 E ρ

a
2 By induction hypothesis

Let ρc = ρc1 t ρc2
Let ρa = ρa1 t ρa1
ρc v ρa By Lemma t preserves v
ρc E ρa By Lemma t preserves E

Case:
lattice(A[σ]; Aabs; Babs) = ⊥Aabs [A[σ] 7→ true] (LATTICE−R)

Let R = A[σ]

Let ρa = ⊥Aabs [R 7→ true]
Aconc ` ⊥Aconc consistent By definition of ⊥A

R ∈ dom(⊥Aconc) By Lemma σ valid and ρ consistent gives ρ domain
Let ρc = ⊥Aconc [R 7→ true]
lattice(A[σ]; Aconc; Bconc) = ρc By rule lattice− R

ρc v ρa By definition of ⊥A

ρc E ρa By definition of ⊥A

Case:
lattice(¬A[σ]; Aabs; Babs) = ⊥Aabs [A[σ] 7→ false] (LATTICE−¬R)

94

Let R = A[σ]

Let ρa = ⊥Aabs [R 7→ false]
Aconc ` ⊥Aconc consistent By definition of ⊥A

R ∈ dom(⊥Aconc) By Lemma σ valid and ρ consistent gives ρ domain
Let ρc = ⊥Aconc [R 7→ false]
lattice(¬A[σ]; Aconc; Bconc) = ρc By rule lattice− ¬R

ρc v ρa By definition of ⊥A

ρc E ρa By definition of ⊥A

Case:
Babs(ytest[σ]) = True

lattice(A[σ]/ytest[σ],Aabs,Babs) = ⊥Aabs [A[σ] 7→ true] (LATTICE−R−TEST−T)

Let R = A[σ]

Let ρa = ⊥Aabs [R 7→ false]
Aconc ` ⊥Aconc consistent By definition of ⊥A

R ∈ dom(⊥Aconc) By Lemma σ valid and ρ consistent gives ρ domain
Bconc(ytest[σ]) = True By Bconc vB Babs

Let ρc = ⊥Aconc [R 7→ true]
lattice(A[σ]/ytest[σ]; Aconc; Bconc) = ρc By rule lattice− R− test− t

ρc v ρa By definition of ⊥A

ρc E ρa By definition of ⊥A

Rest of the cases follow in a similar manner.

�

95

Theorem G.14. Lattice with substitution is complete

forall deriv.

ρconc = lattice(Q̄[σ],Aconc,Bconc)

Aconc vA Aabs

Bconc vB Babs

exists deriv.

ρabs = lattice(Q̄[σ],Aabs,Babs)

ρconc v ρabs

ρconc E ρabs

Proof:By induction on d1:

Case:
ρc1 = lattice(Q[σ]; Aconc; Bconc) ρc2 = lattice(Q[σ]; Aconc; Bconc)

lattice(Q[σ], Q[σ]; Aconc; Bconc) = ρc1 t ρc2
(LIST)

ρa1 = lattice(Q[σ]; Aabs; Babs) By induction hypothesis
ρc1 v ρa1 By induction hypothesis
ρc1 E ρ

a
1 By induction hypothesis

ρa2 = lattice(Q[σ]; Aabs; Babs) By induction hypothesis
ρc2 v ρa2 By induction hypothesis
ρc2 E ρ

a
2 By induction hypothesis

Let ρc = ρc1 t ρc2
Let ρa = ρa1 t ρa1
ρc v ρa By Lemma t preserves v
ρc E ρa By Lemma t preserves E

Case:
lattice(A[σ]; Aconc; Bconc) = ⊥Aconc [A[σ] 7→ true] (LATTICE−R)

Let R = A[σ]

lattice(R; Aabs; Babs) = ⊥Aabs [R 7→ true] By rule lattice− R

⊥Aconc v ⊥Aabs By definition of bot
⊥Aconc E⊥Aabs By definition of bot
⊥Aconc [R 7→ true] v ⊥Aabs [R 7→ true] By rule v −ρ

⊥Aconc [R 7→ true]E⊥Aabs [R 7→ true] By rule E− ρ

Case:
lattice(¬A[σ]; Aconc; Bconc) = ⊥Aconc [A[σ] 7→ false] (LATTICE−¬R)

Let R = A[σ]

lattice(¬R; Aabs; Babs) = ⊥Aabs [R 7→ false] By rule lattice− ¬R

96

⊥Aconc v ⊥Aabs By definition of bot
⊥Aconc E⊥Aabs By definition of bot
⊥Aconc [R 7→ false] v ⊥Aabs [R 7→ false] By rule v −ρ

⊥Aconc [R 7→ false]E⊥Aabs [R 7→ false] By rule E− ρ

Case:
Bconc(ytest[σ]) = True

lattice(A[σ]/ytest[σ],Aconc,Bconc) = ⊥Aconc [A[σ] 7→ true] (LATTICE−R−TEST−T)

Let R = A[σ]

Let ta = Babs(ytest[σ])

True 4 ta By Bconc vB Babs

By case analysis on ta

Case: ta = True

lattice(R/ytest[σ],Aabs,Babs) = ⊥Aabs [R 7→ true] By rule lattice− R− test− t

⊥Aconc v ⊥Aabs By definition of bot
⊥Aconc E⊥Aabs By definition of bot
⊥Aconc [R 7→ true] v ⊥Aabs [R 7→ true] By rule v −ρ

⊥Aconc [R 7→ true]E⊥Aabs [R 7→ true] By rule E− ρ

Case: ta = False

Invalid case by True 4 ta

Case: ta = True

lattice(R/ytest[σ],Aabs,Babs) = ⊥Aabs [R 7→ unknown] By rule lattice− R− test− u

⊥Aconc v ⊥Aabs By definition of bot
⊥Aconc E⊥Aabs By definition of bot
⊥Aconc [R 7→ true] v ⊥Aabs [R 7→ unknown] By rule v −ρ

⊥Aconc [R 7→ true]E⊥Aabs [R 7→ unknown] By rule E− ρ

Rest of the cases follow in a similar manner.

�

97

Theorem G.15. σ valid and ρ consistent gives ρ domain

forall deriv.

d1 :< Γ`; L >` σ validFor FV(rel(ȳ))

d2 :< Γ`; L >` ρ consistent

exists deriv.

d3 : rel(ȳ)[σ] ∈ dom(ρ)

Proof:dom(σ) ⊇ dom(Γy) By inversion on d1
∀ y : τ ∈ Γy . ∃ τ ′ . τ ′ <: Γ`(σ(y)) ∧ τ ′ <: τ By inversion on d1
dom(ρ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

By inversion on d2
ȳ = dom(FV(rel(ȳ))) By inversion on FV
Let τ̄ = R(rel)
¯̀ = ȳ[σ] By dom(σ) ⊇ dom(Γy)

|¯̀| = |ȳ| = |τ̄| = n By substitution and typing of rel
Let Γy = FV(rel(ȳ))

Γy = y0 : τ0, . . . , yn : τn By inversion of FV
∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i) By dom(σ) ⊇ dom(Γy)

rel(ȳ)[σ] ∈ dom(ρ) By construction of the domain of ρ

�

98

Theorem G.16. t preserves consistency

∀A, ρl, ρr, ρ.
A ` ρl consistent ∧ A ` ρr consistent ∧ ρ = ρl t ρr =⇒
A ` ρ consistent

Proof:

Let A =< Γ`; L >

∀ rel(¯̀) ∈ dom(ρl) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ` satisfies ¯̀ : τ̄ By inversion on A ` ρl consistent
dom(ρl) = dom(ρ) By inversion on ρ = ρl t ρr
∀ rel(¯̀) ∈ dom(ρ) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ` satisfies ¯̀ : τ̄ By dom(ρl) = dom(ρ)

A ` ρ consistent By rule consistent

�

Theorem G.17. preserves consistency

∀A, ρl, ρr, ρ.
A ` ρl consistent ∧ A ` ρr consistent ∧ ρ = ρl ρr =⇒
A ` ρ consistent

Proof:

Let A =< Γ`; L >

∀ rel(¯̀) ∈ dom(ρl) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ` satisfies ¯̀ : τ̄ By inversion on A ` ρl consistent
dom(ρl) = dom(ρ) By inversion on ρ = ρl ρr
∀ rel(¯̀) ∈ dom(ρ) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ` satisfies ¯̀ : τ̄ By dom(ρl) = dom(ρ)

A ` ρ consistent By rule consistent

�

Theorem G.18. preserves consistency

∀A,A ′ρ, ρ∆, ρ ′.
A ` ρ consistent ∧ A ′ ` ρ∆ consistent ∧ ρ ′ = ρ ρ∆ =⇒
A ′ ` ρ ′ consistent

Proof:

99

Let A ′ =< Γ ′` ; L
′ >

∀ rel(¯̀) ∈ dom(ρ∆) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ ′` satisfies ¯̀ : τ̄ By inversion on A ′ ` ρ∆ consistent
dom(ρ ′) = dom(ρ∆) By inversion on ρ ′ = ρ ρ∆
∀ rel(¯̀) ∈ dom(ρ) . R(rel) = τ̄ ∧ |τ̄| = |¯̀| ∧ Γ ′` satisfies ¯̀ : τ̄ By dom(ρl) = dom(ρ)

A ′ ` ρ ′ consistent By rule consistent

�

Theorem G.19. Transfer implies consistency

∀ deriv.
d1 : ρ ′ = transfer(ρ,A)

∃ deriv.
d2 : A ` ρ ′ consistent

Proof:

ρ ′ = {R 7→ E | R ∈ dom(⊥A) ∧ R ∈ dom(ρ) =⇒ E = ρ(R) ∧ R 6∈ dom(ρ) =⇒ E = unknown}

By inversion on d1
dom(ρ ′) = dom(⊥A) By construction of ρ ′

A ` ⊥A consistent By definition of ⊥A

A ` ρ ′ consistent By Lemma same domains imply same consistency

�

100

Theorem G.20. Lattice with substitution is consistent

forall deriv.

ρ = lattice(Q̄[σ],A,B)

A ` σ validFor FV(Q̄)

exists deriv.

A ` ρ consistent

Proof:By induction on ρ = lattice(Q̄[σ],A,B)

Case:
ρ1 = lattice(Q[σ]; A; B) ρ2 = lattice(Q[σ]; A; B)

lattice(Q[σ], Q[σ]; A; B) = ρ1 t ρ2
(LIST)

A ` ρ1 consistent By induction hypothesis
A ` ρ2 consistent By induction hypothesis
A ` ρ1 t ρ2 consistent By Lemma t preserves consistency

Case:
lattice(A[σ]; A; B) = ⊥A[A[σ] 7→ true] (LATTICE−R)

Let R = A[σ]

A ` ⊥A consistent By definition of ⊥A

R ∈ dom(⊥A) By Lemma σ valid and ρ consistent gives ρ domain
dom(⊥A) = dom(⊥A[R 7→ true]) By R ∈ dom(⊥A)

A ` ⊥A[R 7→ true] consistent By rule consistent

Case:
lattice(¬A[σ]; A; B) = ⊥A[A[σ] 7→ false] (LATTICE−¬R)

Let R = A[σ]

A ` ⊥A consistent By definition of ⊥A

R ∈ dom(⊥A) By Lemma σ valid and ρ consistent gives ρ domain
dom(⊥A) = dom(⊥A[R 7→ false]) By R ∈ dom(⊥A)

A ` ⊥A[R 7→ false] consistent By rule consistent

Case:
B(ytest[σ]) = True

lattice(A[σ]/ytest[σ],A,B) = ⊥A[R 7→ true] (LATTICE−R−TEST−T)

Let R = A[σ]

A ` ⊥A consistent By definition of ⊥A

R ∈ dom(⊥A) By Lemma σ valid and ρ consistent gives ρ domain
dom(⊥A) = dom(⊥A[R 7→ true]) By R ∈ dom(⊥A)

A ` ⊥A[R 7→ true] consistent By rule consistent

101

Rest of the cases follow in a similar manner.

�

102

Theorem G.21. Consistency implies same domain

∀ deriv.
d1 :< Γ`; L >` ρ1 consistent

d2 :< Γ`; L >` ρ2 consistent

∃ deriv.
dom(ρ1) = dom(rho2)

Proof:

dom(ρ1) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

By inversion on d1
dom(ρ2) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

By inversion on d2
dom(ρ1) = dom(ρ2) By construction above

�

Theorem G.22. Consistency and vA implies domains are subset

∀ deriv.
d1 :< Γc` ; L

c >` ρc consistent

d2 :< Γa` ; La >` ρa consistent

d3 :< Γc` ; L
c >vA< Γ

a
` ; La >

∃ deriv.
dom(ρc) ⊆ dom(rhoa)

Proof:

dom(ρc) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)}By inversion on d1
dom(ρa) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)}By inversion on d2
∀rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)

By construction of dom(ρc)

dom(Γa`) = dom(Γc`) By inversion on d3
∀ ` : τ ∈ Γc` . τ <: Γa` (`) By inversion on d3
∀ rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ i ∈ 1 . . . n . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)By <: transitive
∀ rel(¯̀) ∈ dom(ρc) . rel(¯̀) ∈ dom(ρa)By construction of dom(ρa) dom(ρc) ⊆ dom(ρa) By ⊆

�

103

Theorem G.23. Find Labels Sound and Complete

forall deriv.

d1 :< Γc` ,L
c >vA< Γ

a
` ,L

a >

d2 : |x| = |y| = n

exists deriv.

d3 : findLabels(< Γa` ,L
a >, Γy , x, y) = (Σta, Σ

u
a)

d4 : findLabels(< Γc` ,L
c >, Γy , x, y) = (Σtc, Σ

u
c)

d5 : Σtc ⊆ Σta ∪ Σua
d6 : Σuc ⊆ Σua
d7 : Σtc ⊇ Σta

Proof:

Let Σta = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . La(xi) = {`i} ∧ Γa` (`i) <: Γy(yi)}

Let Σua = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . `i ∈ La(xi) ∧ ∃ τ ′ . τ ′ <: Γa` (`i) ∧ τ ′ <: Γy(yi)} − Σta
d3: findLabels(< Γa` ,L

a >, Γy , x, y) = (Σta, Σ
u
a) By rule findLabels

Let Σtc = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . Lc(xi) = {`i} ∧ Γc` (`i) <: Γy(yi)}

Let Σuc = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . `i ∈ Lc(xi) ∧ ∃ τ ′ . τ ′ <: Γc` (`i) ∧ τ ′ <: Γy(yi)} − Σtc
d4: findLabels(< Γc` ,L

c >, Γy , x, y) = (Σtc, Σ
u
c) By rule findLabels

dom(Lc) = dom(La) By inversion on d1
dom(Γc`) = dom(Γa`) By inversion on d1
∀ ` ′ : τ ′ ∈ Γc` . τ ′ <: Γa` (` ′) By inversion on d1
∀ x ′ 7→ ¯̀ ′ ∈ Lc. ¯̀′ ⊆ La(x ′) ∧ ¯̀ ′ 6= ∅ By inversion on d1
∀ ` ∈ dom(Γc`) . Γ

c
` (`) <: Γa` (`) By rewriting

∀ x ∈ dom(Lc) . Lc(x) ⊆ La(x) ∧ Lc(x) 6= ∅ By rewriting
∀ σ ∈ Σtc .

∀ i (1 . . . n) .

(yi 7→ `i) ∈ σ By |σ| = n

{`i} = Lc(xi) ∧ Γc` (`i) <: Γy(yi) By construction of σ
`i ∈ La(xi) ∧ Γc` (`i) <: Γy(yi) By Lc(xi) ⊆ La(xi)

`i ∈ La(xi) ∧ ∃ τ ′ . τ ′ <: Γa` (`i) ∧ τ ′ <: Γy(yi) By τ ′ = Γc` (`i) and Γc` (`i) <: Γa` (`i)

σ ∈ Σta ∪ Σua By quantification above

104

d5: Σtc ⊆ Σta ∪ Σua By quantification above

∀ σ ∈ Σuc .

∀ i (1 . . . n) .

(yi 7→ `i) ∈ σ By |σ| = n

`i ∈ Lc(xi) ∧ ∃ τ ′ . τ ′ <: Γc` (`i) ∧ τ ′ <: Γy(yi) By construction of σ
`i ∈ La(xi) ∧ ∃ τ ′ . τ ′ <: Γc` (`i) ∧ τ ′ <: Γy(yi) By Lc(xi) ⊆ La(xi)

`i ∈ La(xi) ∧ ∃ τ ′ . τ ′ <: Γa` (`i) ∧ τ ′ <: Γy(yi) By Γc` (`i) <: Γa` (`i)

σ ∈ Σua By quantification above

d6: Σuc ⊆ Σua By quantification above

∀ σ ∈ Σta .

∀ i (1 . . . n) .

(yi 7→ `i) ∈ σ By |σ| = n

{`i} = La(xi) ∧ Γa` (`i) <: Γy(yi) By construction of σ
{`i} = Lc(xi) ∧ Γa` (`i) <: Γy(yi) By Lc(xi) ⊆ La(xi) and Lc(xi) 6= ∅
{`i} = Lc(xi) ∧ Γa` (`i) <: Γy(yi) By Γc` (`i) <: Γa` (`i)

σ ∈ Σtc By quantification above

d7: Σtc ⊇ Σta By quantification above

�

105

Theorem G.24. All Valid Substitutions Sound and Complete

forall deriv.

d1 :< Γc` ; L
c >vA< Γ

a
` ; La >

exists deriv.

d2 : allValidSubs(< Γa` ; La >;σ; Γy) = (Σta, Σ
u
a)

d3 : allValidSubs(< Γc` ; L
c >;σ; Γy) = (Σtc, Σ

u
c)

d4 : ∀ σ ∈ Σta ∪ Σua . < Γa` ; La >` σ validFor Γy

d5 : ∀ σ ∈ Σtc ∪ Σuc . < Γc` ; Lc >` σ validFor Γy

d6 : Σtc ⊆ Σta ∪ Σua
d7 : Σuc ⊆ Σua
d8 : Σtc ⊇ Σta

Proof:

Let Σta = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . Γa` (`) <: Γy(y)}

Let Σua = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)} − Σta
d2: allValidSubs(< Γa` ; La >;σ; Γy) = (Σta, Σ

u
a) By rule validSubs

∀σ ∈ Σta . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)By construction of Σta and τ ′ = Γa` (`)

∀σ ∈ Σua . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y) By construction of Σua
∀σ ∈ Σta ∪ Σua . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)By ∪ and above predicates
d4: ∀σ ∈ Σta ∪ Σua . < Γa` ; La >` σ validFor Γy By rule σ− valid

Let Σtc = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . Γc` (`) <: Γy(y)}

Let Σuc = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)} − Σtc
d3: allValidSubs(< Γc` ; L

c >;σ; Γy) = (Σtc, Σ
u
c) By rule validSubs

∀σ ∈ Σtc . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)By construction of Σtc and τ ′ = Γc` (`)

∀σ ∈ Σuc . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y) By construction of Σuc
∀σ ∈ Σtc ∪ Σua . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)By ∪ and above predicates
d5: ∀σ ∈ Σtc ∪ Σuc . < Γc` ; Lc >` σ validFor Γy By rule σ− valid

dom(Lc) = dom(La) By inversion on d1
dom(Γc`) = dom(Γa`) By inversion on d1
∀ ` ′ : τ ′ ∈ Γc` . τ ′ <: Γa` (` ′) By inversion on d1
∀ x ′ 7→ ¯̀ ′ ∈ Lc. ¯̀′ ⊆ La(x ′) ∧ ¯̀ ′ 6= ∅ By inversion on d1
∀ ` ∈ dom(Γc`) . Γ

c
` (`) <: Γa` (`) By rewriting

∀ x ∈ dom(Lc) . Lc(x) ⊆ La(x) ∧ Lc(x) 6= ∅ By rewriting
∀ σ ′ ∈ Σtc .

σ ′ ⊇ σ By construction of σ ′

106

dom(σ ′) = dom(Γy) By construction of σ ′

∀ (y 7→ `) ∈ σ ′ .

Γc` (`) <: Γy(y) By construction of σ ′

∃τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y) By τ ′ = Γc` (`) and Γc` (`i) <: Γa` (`i)

∀ (y 7→ `) ∈ σ ′ . ∃τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)

σ ′ ∈ Σta ∪ Σua By construction of Σta and Σua

d4: Σtc ⊆ Σta ∪ Σua By quantification above

∀ σ ′ ∈ Σuc .

σ ′ ⊇ σ By construction of σ ′

dom(σ ′) = dom(Γy) By construction of σ ′

∀ (y 7→ `) ∈ σ ′ .

∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y) By construction of σ ′

∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y) By Γc` (`) <: Γa` (`)

∀ (y 7→ `) ∈ σ ′ . ∃τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)

σ ′ ∈ Σua By construction of Σua

d5: Σuc ⊆ Σua By quantification above

∀ σ ∈ Σta .

σ ′ ⊇ σ By construction of σ ′

dom(σ ′) = dom(Γy) By construction of σ ′

∀ (y 7→ `) ∈ σ ′ .

Γa` (`) <: Γy(y) By construction of σ ′

Γc` (`) <: Γy(y) By Γc` (`i) <: Γa` (`i)

107

∀ (y 7→ `) ∈ σ ′ . Γc` (`) <: Γy(y)

σ ′ ∈ Σtc By construction of Σtc

d6: Σtc ⊇ Σta By quantification above

�

108

	1 Introduction
	2 Developer-defined Relations over Objects
	2.1 Relationship Effects
	2.2 Constraints
	2.3 Inferred relationships

	3 The Relation Analysis
	3.1 The Relationship State Lattice
	3.2 Flow Function
	3.3 Soundness and Completeness

	4 Abstract Semantics
	4.1 Checking predicate truth
	4.2 Matching on an operator
	4.3 Checking a single constraint
	4.4 The flow function

	5 Implementation and Experience
	6 Related Work
	7 Conclusion
	A Operations
	A.1 Equivalence Join on
	A.2 Overriding Meet on
	A.3 Polarity operator on
	A.4 Join on
	A.5 At least as precise on
	A.6 Transfer into new aliasing environment, transfer
	A.7 Substitution on P
	A.8 Lattice transformation of N

	B Truth
	B.1 Free variables

	C Aliasing Operations and Theorems
	C.1 At least as precise, A
	C.2 Abstraction function
	C.3 At least as precise, B

	D Consistency
	E Completeness
	F Soundness
	G Operator Lemmas

