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Abstract

Software frameworks impose constraints on how plugins may interact with them. Many of hese
constraints involve multiple objects, are temporal, and depend on runtime values. Additionally,
they are difficult to specify because they are non-local and may break behavioral subtyping. This
work presents relationships as a means for specifying framework constraints, and it presents a
formal description and implementation of a static analysis to find constraint violations in plugin
code. We define three variants of this analysis: one is sound, one is complete, and one provides
compromise of the two. We prove soundness and completeness for the appropriate variants, and
we show how the compromise variant works on examples from real-world programs. This allows
the user to select the option which is the most cost-effective in practice with regard to the number
of false positives and false negatives.

This work was supported in part by a fellowship from Los Alamos National Laboratory, DARPA contract
HRO00110710019, and Army Research Office grant number DAAD19-02-1-0389 entitled Perpetually Available and
Secure Information Systems.



Keywords: software frameworks, relationships, static analysis, verification



ListControl ListitemCollection
ListitemCollection getltems() Tistitem findByText(String)

Listitem getSelecteditem() Listitern findBiValuqStringz

Lislli?em
| DropDownList | | [ CheckboxList | |[ RadioButtonList | [Hoolean isSelected()
[ [ J (L J

| void setSelected(boolean)

ListBox _
ListSelectionMode getSelectionMode() BulletedList
void setSelectionModesListSeIectionModez I

Figure 1: ASP.NET ListControl Class Diagram
1 Introduction

Object-oriented frameworks have brought many benefits to software development, including re-
usable codebases, extensible systems, and encapsulation of quality attributes. However, frame-
works are used at a high cost; they are complex and difficult to learn [11]. This is partially due to
the complexity of the semantic constraints they place on the plugins that utilize them.

As an example, consider a constraint in the ASP.NET web application framework. The ASP.-
NET framework allows developers to create web pages with user interface controls on them. These
controls can be manipulated programatically through callbacks provided by the framework. A
developer can write code that responds to control events, adds and removes controls, and changes
the state of controls.

One task that a developer might want to perform is to programmatically change the selection
of a drop down list. The ASP.NET framework provides the relevant pieces, as shown in Figure 1'.
Notice that if the developer wants to change the selection of a DropDownList (or any other derived
ListControl), she has to access the individual ListItems through the ListItemCollection
and change the selection using setSelected. Based on this information, she might naively change
the selection as shown in Listing 1. Her expectation is that the framework will see that she has
selected a new item and will change the selection accordingly.

When the developer runs this code, she will get the error shown in Figure 2. The error message
clearly describes the problem; a DropDownList had more than one item selected. This error is
due to the fact that the developer did not de-select the previously selected item, and, by design,
the framework does not do this automatically. While an experienced developer will realize that
this was the problem, an inexperienced developer might be confused because she did not select
multiple items.

The stack trace in Figure 2 is even more interesting because it does not point to the code where
the developer made the selection. In fact, the entire stack trace is from framework code; there is
no plugin code referenced at all! At runtime, the framework called the plugin developer’s code
in Listing 1, this code ran and returned to the framework, and then the framework discovered the
error. To make matters worse, the program control could go back and forth several times before
finally reaching the check that triggered the exception. Since the developer doesn’t know exactly
where the problem occurred, or even what object it occurred on, she must search her code by hand
to find the erroneous selection.

!'To make this code more accessible to those unfamiliar with C#, we are using traditional getter/setter syntax rather
than properties.



Listing 1: Incorrect selection for a DropDownList

1 |DropDownList list;

wooN

private void Page_Load(object sender, EventArgs e)
{
ListItem newSel;
newSel = list.getItems().findByValue("foo");
newSel.setSelected(true);
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Cannot have multiple items selected in a DropDownList.
Stack Trace:

[HttpException (0x80004005): Cannot hawve multiple items selected in a DropDownList.]
System.Web.UI.WebControls.DropDownlist. VerifyMultiSelect() +133
System.wWeb.UI.WebControls.ListControl.RenderCantents{Html TextWriter writer) +206
System.web.UI.WebControls.wWebControl.Render (Html TextWriter writer) +43
System.wWeb.UI.Control.RenderControl Internal (Html TextWriter writer, ControlAdapter adapter) +74
System.Web.UI.Control.RenderControl (Html TextWriter writer, Contr‘a]Adapter adapter) +291

Figure 2: Error with partial stack trace from ASP.NET

The correct code for this task is in Listing 2. In this code snippet, the developer de-selects the
currently selected item before selecting a new item.

This example, and many others we have found on the ASP.NET developer forum, shows three
interesting properties of framework constraints.
Framework constraints involve multiple classes and objects. Listing 1 references three objects,
and Listing 2 required four objects to make the proper selection. The framework code that the
plugin used was located in four classes.
Framework constraints are non-local. While the DropDownList was the class that checked
the constraint (as seen by the stack trace), the constraint itself was on the methods of ListItem.
However, the ListItem class is not aware of the DropDownList class or even that it is within a
ListControl at all, and therefore it should not be responsible for enforcing the constraint. The
non-local nature of these constraints also makes them difficult to document, as it is unclear where
the documentation should go so that the plugin developer will discover it. In this example, had the
framework developer placed the relevant documentation in the DropDownList, the plugin devel-

Listing 2: Correctly selecting an item using the ASPNET API

1 |DropDownList list;

3 |private void Page_Load(object sender, EventArgs e)
4 | {
5 ListItem newSel, oldSel;

6 oldSel = list.getSelectedItem();

7 oldSel.setSelected(false);

8 newSel = list.getItems().findByValue("foo");
9 newSel.setSelected(true);




Listing 3: Selecting on the wrong DropDownList

DropDownList listA;
DropDownList 1istB;

private void Page_Load(object sender, EventArgs e)
{
ListItem newSel, oldSel;
oldSel = listA.getSelectedItem();
oldSel.setSelected(false);
newSel = listB.getItems().findByValue("foo");
newSel.setSelected(true);
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oper might still not find it because she was using methods of the ListItem class.

Framework constraints have semantic properties. Framework constraints are not only about
structural concerns such as method naming conventions or types; the developer must also be aware
of semantic properties of the constraint. There are several semantic properties shown by this ex-
ample. First, the plugin developer had to be aware of which objects she was using to avoid the
problem in Listing 3. In this example, the developer called the correct operations, but on the
wrong objects. She also had to be aware of the primitive values (such as true or false) she used
on the calls to change the selection. Finally, she had to be aware of the ordering of the operations.
In Listing 2, had she swapped lines 6 and 7 with lines 8 and 9, she would have caused unex-
pected runtime behavior where the selection change does not occur. This behavior occurs because
getSelectedItemreturns the first selected ListItem that it finds in the DropDownList, and that
may be the newly selected item rather than the old item.

In previous work [10], we proposed a preliminary specification approach and sketched a hy-
pothetical analysis to discover mismatches between the plugin code and the declared constraints
of the framework. The previous work primarily discussed the requirements for such a system and
explored a prototype specification. In this paper, we make three contributions:

1. We show that the concept of developer-defined relations across objects captures the primary
programming model used to interact with frameworks. We use these relations to specify
framework constraints in a concise manner. (Section 2)

2. We propose (Section 3) and formally define (Section 4) a static analysis that detects where
a plugin violates framework constraints. We define three variants of this analysis: a sound
variant, a complete variant, and a third variant that is neither sound nor complete. We prove
soundness and completeness for the appropriate variants, and we argue that the third variant
is a better compromise for practical use. Additionally, there are only minor differences
between the variants, so it is it simple to swap between them.

3. We implemented the compromise variant of the analysis within the Eclipse IDE and ran it on
code based on examples from framework help forums. We show that the constraints capture
the properties described and that the compromise variant can handle real-world code with
relatively few false positives and false negatives. (Section 5)



2 Developer-defined Relations over Objects

WWhen a developer programs to a framework, the primary task is not about creating new objects
or data. In many cases, programming in this environment is about manipulating the abstract asso-
ciations between existing objects. Every time the plugin receives a callback from the framework,
it is implicitly notified of the current associations between objects. As the plugin calls framework
methods, the framework changes these associations, and the plugin learns more about how the ob-
jects relate. Every method call, field access, or test gives the plugin more information. Even when
the plugin needs to create a new object, it is frequently done by calling abstract factory methods
that set up the object and its relationships with other objects.

The ASP.NET framework exemplifies this means of interaction. In the DropDownList exam-
ple, all the objects are provided by the framework, and the plugin simply changes their relation-
ships with each other through calls to the framework. In fact, the DropDownList itself, and the
data within it, is frequently set up using dependency injection, a mechanism in which the frame-
work populates the fields of the plugin based on an external configuration file [7]. This may be
done in several stages, with the framework notifying the plugin as it completes each stage using
a callback. When using dependency injection, the plugin simply receives and manipulates pre-

configured objects.

Since the primary mechanism of interaction is based on manipulating relationships between ob-
jects, we will model it formally using a mathematical relation. A relation is a named, mathematical
relation on several types T.

Relation :==name — Ty X ... X Tn
A relationship is a single tuple in a relation, represented as
Relationship :=name({q,...,4,)

where { is a static representation of a runtime object.

In this section, we introduce three specification constructs based on relationships. The first
construct, relationship effects, specify how framework operations change associations between ob-
jects. The second construct, constraints, uses relationships to specify the non-local constraints on
framework operations. Finally, relation inference rules specify how relationships can be inferred
based on the current state of other relationships, regardless of what operations are used.

2.1 Relationship Effects

Relationship effects specify changes to the relations that occur after calling a framework method.
The framework developer annotates the framework methods with information about how the call-
ing object, parameters, and return value are related (or not related) after a call to the method. These
annotations describe additions and removals of relationships from a relation. For example, the an-
notation @ltem({item, list}, ADD) creates an “Item” relationship between item and 1ist, while
@ltem({item, list}, REMOVE) removes this relationship?. Relationship effects may refer to the

2We are presenting a simplified version of the syntax for readability purposes. The correct Java syntax for the add
annotation appears as @ltem(params={"item", "list" }, effect=ADD). This is the syntax used in the implementation.

4



Listing 4: Relations for the ListControl APIL Every relation must define the properties params, effect,
and test

QRelation({Listltem.class, ListControl.class})
public @interface Child {
public String[] params;
public Effect effect;

public String test = ;

1< Y N T

parameters, the receiver object, and the return value of a method. They may also refer to primitive
values. Additionally, parameters can be wild-carded, so @ltem({*, list}, REMOVE) removes all
the “Item” relationships between 1ist and any other object.

In addition to the ADD and REMOVE effects, a TEST effect uses a parameter to determine whether
to add or remove a relationship. For example, we might annotate the method List.contains-
(Object obj) with @ltem({obj, this}, TEST, return) to signify that this relationship is added
when the value of return is true and removed when the value of return is false.

As relations are user-defined, they have no predefined semantics. Any hierarchy or ownership
present, such as “Child” or “Item” relations, is only inserted by the framework developer. In fact,
relationships do not have to reflect any reference paths found in the heap, but may exist only as an
abstraction to the developer. This allows relations to be treated as an abstraction independent from
code, and even allows the same relation to be used across frameworks.

To define a new relation, the framework developer creates an annotation and uses the meta-
annotation @Relation to signify it as a relation over specific types. Listing 4 shows a sample
definition of the Child relation from the DropDownList example.

Once the framework developer defines the desired relations, they can be used as relationship
effects, as shown in Listing 5. These annotations allow tools to track relationship effects through
the plugin code at compile time. Listing 6 shows a snippet from a plugin, along with the current
relationships after each instruction. For example, after line 4 in Listing 6, we learn the relationships
in displayed in line 5 based on the effects declared for in Listing 5, lines 7-9. This information, the
relationship context, provides us with an abstract, semantic context that each instruction resides in.
In the next section, we use this context to check the semantic parts of framework constraints.

2.2 Constraints

Constraints use relationships in logical predicates to specify non-local preconditions of framework
operations. They are written as class-level annotations, but as constraints are non-local, they can
constrain the operations on any other class. Three examples of constraints on the DropDownList
class are in Listing 7. As the examples show, a constraint has four parts:

1. operation: This is a signature of an operation to be constrained, such as a method call,
constructor call, or even a tag signaling the end of a method. Notice that these operations
may constrain operations on another class.

2. trigger predicate: This is a logical predicate over relationships. The plugin’s relationship
context must show this predicate to be true for this constraint to be triggered. If not, the



Listing 5: Partial ListControl API with Relation annotations

public class ListControl {

}

@List({return, this}, ADD)
public ListItemCollection getItems();

//After this call, we know two pieces of information.
//The returned item is selected, and it is a child of this
@Child({return, this}, ADD)
@Selected({return}, ADD)

public ListItem getSelectedItem();

public class ListItem {

}

//if the return is true, then we know we have a selected item
//if it is false, we know it was not selected.
@Selected({this}, TEST, return)

public boolean isSelected();

@Selected({this}, TEST, select)
public void setSelected(boolean select);

Q@Text({return, this}, ADD)
public String getText();

//When we call setText, remove any previous Text relationships,
//then add one for text

Q@Text({*, this}, REMOVE)

Q@Text({text, this}, ADD)

public void setText(String text);

public class ListItemCollection

Qltem({item, this}, REMOVE)
public void remove(ListItem item);

@ltem({item, this}, ADD)
public void add(ListItem item);

Qltem({item, this}, TEST, return)
public boolean contains(ListItem item);

@ltem({item, this}, ADD)
@Text({text, return}, ADD)
public ListItem findByText(String text);

//if we had any items before this, remove them after this call
Oltem({*, this}, REMOVE)
public void clear();




23
24
25
26
27

Listing 6: Comments showing how the relationship context changes after each instruction

DropDownList ddl = ...;
ListItemCollection coll;
ListItem newSel, oldSel;
oldSel = ddl.getSelectedItem();
//Child(oldSel, ddl), Selected(oldSel)
oldSel.setSelected(false);
//Child(oldSel, ddl), !Selected(oldSel)
coll = ddl.getItems();
//Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl)
newSel = coll.findByText("foo");
//Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl),
/Hltem(newSel, coll), Text(”foo”, newSel)

Listing 7: DropDownList Selection Constraints and Inferred Relationships

Q@Constraint(
op=""Listltem.setSelected(boolean select)"”,
trigger="select == false and Child(this, ctrl) and
ctrl instanceof DropDownlList”,
requires="Selected(this)",
effect={"!CorrectlySelected(ctrl)" }

@Constraint(
op=""Listltem.setSelected(boolean select)",
trigger="select == true and Child(this, ctrl) and
ctrl instanceof DropDownList”,
requires="1CorrectlySelected(ctrl)",
effect={" CorrectlySelected(ctrl)" }

@Constraint(
op="end—of—method”,
trigger="ctrl instanceof DropDownList”,

”
'

requires="CorrectlySelected(ctrl)

effect={}

)

@Infer(
trigger=""List(list, ctrl) and Item(item, list)",
infer={" Child(item, ctrl)"}

)

public class DropDownList {...}

constraint is ignored. While operation provides a syntactic trigger for the constraint, trigger

provides the semantic trigger.

3. requires predicate: This is another logical predicate over relationships. If the constraint




is triggered, then this predicate must be true under the current relationship context. If the
requires predicate is not true, this is a broken constraint and the analysis should signal an
error in the plugin.

4. effect list: This is a list of relationship effects. These effects will only be applied if the
constraint is triggered.

In the first example at the top of Listing 7, the constraint is checking that at every call to
ListItem.setSelected(boolean), if the relationship context shows that the argument is false,
the receiver is a Child of a ListControl, and if the ListControl is a DropDownList, then it
must also indicate that the ListItemis Selected. Additionally, the context will change so that
the DropDownList is not CorrectlySelected. The second constraint is similar to the first and in
enforces proper selection of ListItems in a DropDownList. The third constraint ensures that the
method does not end in an improper state by utilizing the “end-of-method” instruction to trigger
when a plugin callback is about to end.

In some cases, the relationships between objects are implicit. Consider the ListItemCollec-
tion from the DropDownList example. In this example, the framework developer would like
to state that items in this list are in a Child relation with the ListControl parent. However,
it does not make sense to annotate the ListItemCollection class with this information since
ListItemCollections should not know about ListControls.

2.3 Inferred relationships

In some cases, the relationships between objects are implicit. Consider the ListItemCollection
from the DropDownList example. In this example, the framework developer would like to state
that items in this list are in a Child relation with the ListControl parent. However, it does not
make sense to annotate the ListItemCollection class with this information since ListItem-
Collections should not know about ListControls.

Inferred relationships describe these implicit relationships that can be assumed at any time. In
Listing 7, lines 23-26 show an example for inferring a Child relationship based on the relations
ListItemCollections and ListControls. Whenever the relationship context can show that the
“trigger” predicate is true, it can infer the relationship effects in the “infer” list. It is possible to
produce inferred relationships that directly conflict with the relationship context. To prevent this,
the semantics of inferred relationships is that they are ignored in the case of a conflict, that is,
relationships from declared relationship effects and constraints have a higher precedence.



3 The Relation Analysis

We have designed and implemented a static analysis to track relationships through plugin code
and check plugin code against framework constraints. The relation analysis is a branch-sensitive,
forward dataflow analysis®. It is designed to work on a three address code representation of Java-
like source. We assume that the analysis runs in a framework that provides all of these features. In
this section, we will present the analysis data structures, the intuition behind the three variations
of the analysis, and a discussion of their tradeoffs. Section 4 defines how the analysis runs on each
instruction.

The relation analysis is dependent on several other analyses, including a boolean constant prop-
agation analysis and an alias analysis. The relation analysis uses the constant propagation analysis
for the TEST effect. For this purpose, the relation analysis assumes there is a function B to which
it can pass a variable and learn whether the represented value is true, false, or unknown.

The relation analysis can use any alias analysis which implements a simple interface. First, it
assumes there is a context L that given any variable x, provides a finite set { of abstract locations
that the variable might point to. Second, it assumes a context I, which maps every location { to a
type T. The combination of these two contexts, < I, L > is represented as the alias lattice A.

The alias lattice must be conservative in its abstraction of the heap, as defined by Definition 1.

Definition 1 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set of source
variables x which point to a runtime location { of type 1. Let H be all the possible heaps at a
particular program counter. An alias lattice < Ty, L > abstracts H at a program counter if and

only if

Vhe H.dom(h) =dom(L)and
Vizi= 4 :m)eh.V(x, = 1) eh.
if x; # %, and {; = {, then
/e L(x1)and £’ € L(x;) and 17 <: T (€))
and
if x; # % and {7 # {, then
0] € L(xq) and 05 € L(xp) and £] # €4 and 71 <: Ty(£]) and T2 <: T (£5)

This definition ensures that if two variables alias under any heap, then the alias lattice will
reflect that by putting the same location {’ into each of their location lists. Likewise, if any heap
can determine that the two variables are not aliased, then the alias lattice will reflect this possibility
as well by having a distinct location in each location set. The definition also ensures that the typing
context ', has the most general type for a location.

As long as the alias analysis maintains the abstraction property and can provide the required
interface, the relation analysis can be proven to be either sound or complete. Of course, a more
precise alias analysis will increase the precision of the relation analysis.

3By branch-sensitive, we mean that the true and false branches of a conditional may receive different lattice infor-
mation depending upon the condition. The transfer function on the condition is called twice, once assuming that the
result is false, and once assuming that it is true. This is not a path-sensitive analysis; the branch condition is not saved
for use after the branches merge together.



3.1 The Relationship State Lattice

We track the status of a relationship using the four-point dataflow unknown

lattice represented in Figure 3, where unknown represents either / \

true or false and bottom is a special case used only inside the flow trye false
function. The relation analysis uses a tuple lattice which maps all \ /
relationships we want to track to a relationship state lattice element. bot

We will represent this tuple lattice as p. We will say that p is con- Figure 3: The simple
sistent with an alias lattice A when the domain of p is equal to the [¢tice for a relation-
set of relationships that are possible under A. ship

Notice that as more references enter the context, there are more possible relationships, and the
height of p grows. Even so, the height is always finite as there is a finite number of locations
and a finite number of relations. As the flow function is monotonic, the analysis always reaches a
fix-point.

3.2 Flow Function

The analysis flow function is responsible for two tasks; it must check that a given operation is valid,
and it must apply any specified relationship changes to the lattice. The flow function is defined as

fe.a;s(p,instr) = p’

where C are all the constraints, A is the alias lattice, B is the boolean constant lattice, p is the
starting relation lattice, p’ is the ending relation lattice, and instr is the three-address code in-
struction on which we are running the analysis. The analysis goes through each constraint in € and
checks for a match. It first checks to see whether the operation defined by the constraint matches
the instruction, thus representing a syntactic match. It also checks to see whether p determines that
the trigger of the constraint applies. If so, it has both a syntactic and semantic match, and it binds
the specification variables to the locations that triggered the match.

Once the analysis has a match, two things must occur. First, it uses the bindings generated
above to show that the required predicate of the constraint is true under p. If it is not true, then the
analysis reports an error on instr. Second, the analysis must use the same bindings to produce p’
by applying the relationship effects.

3.3 Soundness and Completeness

Soundness and completeness allow the user of the analysis to either have confidence that there are
no errors at runtime if the analysis finds none (if it is sound) or that any errors the analysis finds will
actually occur in some runtime scenario (if it is complete). For the purposes of these definitions,
an error is a dynamic interpretation of the constraint which causes the requires predicate to fail. In
the formal semantics, an error is signaled as a failure for the flow function to produce a new lattice
for a particular instruction.

We define soundness and completeness of the relation analysis by assuming an alias analysis
which abstracts the heap using A, as described above. For both of these theorems, we let A€

10



1 ta and ~amangeang variant

Table 1 Differencec betwwee
Tabt

“Frigger Predicate checks when..| | Requires Predicate passes when...
Sound True or Unknown True
Complete True True or Unknown
Compromise | True True

define the actual heap at some point of an real execution, and we let A" be a sound approximation
of A", We also let paps and peone be relationship lattices consistent with AP and A ™ where
Pabs 18 an abstraction of the concrete runtime lattice pconc, defined as peone & Pabs-

If the relation analysis is sound, we expect that if the flow function runs to completion using
the imprecise lattice p®®S, then any more concrete lattice will also run to completion for that in-
struction. As the flow function only runs to completion if it finds no errors, then there may be
false positives from when p®®s produces errors, but there will be no false negatives. To be locally
sound for this instruction, the analysis must also produce a new abstract lattice that conservatively
approximates any new concrete lattice. Theorem 3.1 captures the intuition of local soundness for-
mally. Global soundness follows from local soundness, the monotonicity of the flow function, and

the initial conditions of the lattice.

Theorem 3.1 (Local Soundness of Relations Analysis).
iff@;Aubs.ny(pabs,iTlStT) — pabs’ and peone C pabs
thenfe;Aconc;B(pconc,insh‘) — pconc/ and pconc’ C pabs/

If the relation analysis is complete, we expect a theorem which is the opposite of the soundness
theorem and is shown in Theorem 3.2. If a flow function runs to completion on a lattice p°"c,
then it will also run to completion on any abstraction of that lattice. An analysis with this property
may produce false negatives, as the analysis can find an error using the concrete lattice yet run to
completion on the abstract lattice, but it will produce no false positives. Like the sound analysis,
the results from the flow function must maintain their existing precision relationship.

Theorem 3.2 (Local Completeness of Relations Analysis).
iffe;ACOHC;’B(pconc,instr) — pCOT'LC, and pCOTlC E pCLbS
then fe, gavs.5(p2PS, instr) = pbs’ and peone’ C pabs’

The relation analysis can be either sound, complete, or a compromise of the two, by making
only minor changes to the analysis. Proofs of soundness and completeness, for the sound and
complete variants respectively, can be found in the appendicies. The differences between the
variants are summarized in Table 1 and are described below.

Trigger condition. The trigger predicate determines when the constraint will check the re-
quired predicate and when it will produce effects. The sound analysis will trigger a constraint
whenever there is even a possibility of it triggering at runtime. Therefore, it triggers when the
predicate is either true or unknown. The complete variant can produce no false positives, so it will
only check the requires predicate when the trigger predicate is definitely true. Regardless of the
variant, if the trigger is either true or unknown, the analysis produces a set of changes to make to
the lattice based upon the effects list.

11



@Constraint(

ublic class ListItemCollecti
P N ., ection { op = "ListltemCollection.clear()",

@ltem({*, this}, REMOVE)
public void clear() {...}

trigger = "x instanceof Listltem”,
requires = "true”,
effect = {"!ltem(x, this)" }

)

Figure 4: Translating a relation effect with wildcards into a constraint

Error condition. The requires predicate should be true to signal that the operation is safe to
use. The sound variant will cause an error whenever the required predicate is false or unknown.
The complete variant, however, can only cause an error if it is sure there is one, so it only flags an
error if the requires predicate is definitely false.

Table 1 also shows a variant of the analysis that, while neither sound or complete, we believe
is a good compromise between the two. The compromise variant attempts to minimize the number
of false positives and false negatives by only triggering when the trigger predicate is definitely
true, but then signaling an error if the requires predicate is either false or unknown. While this
version can produce false positives and false negatives, we believe it will be the most cost-effective
compromise in practice, based on our experience described in Section 5. Additionally, this version
may utilize inferred relations, a feature which is inherently neither sound or complete, but reduces
the specification burden on the framework developer.

4 Abstract Semantics

In this section, we present formal semantics for a simplified version of the specifications and anal-
ysis, the grammar for which is shown in Figure 5. We do not specialized relations for equality(==
and typing (instanceof). It is possible to add specialized relations by calling out to other flow anal-
yses in the same manner as is done with both the boolean constant propagation analysis and the
alias analysis.

Relation effects and wildcards are both syntactic sugar that can be easily translated into a
constraint form. Relation effects are translated by considering them as a constraint on the annotated
method with a true trigger predicate, a true requires predicate, and the effect list as annotated.
Wildcards are easily rewritten by declaring a fresh variable in the trigger predicate and constraining
it to have the desired type. Figure 4 shows an example effect with a wildcard translated into a
constraint.

The lattice p has the usual operators of join (L) and precision (C), which work as expected for
a tuple lattice. We also introduce three additional operators, defined in Figure 6. Equivalence join
(=) will resolve to unknown if the two sides are not equal. Overriding meet (/1) has the property
that if the right side has a defined value (not bot), then it will use the right value, otherwise it will
use the left value. The polarity operator (]) will push all non-bottom values to the top of the lattice.
Finally, we also define | 4 as a special lattice which is consistent with the alias lattice A and which
maps every relationship to bot.

12



constraint
predicate
negation predicate
test predicate
relation predicate

bound predicate
bound negation
bound test
relationship

source instruction
instruction signature
ternary logic
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flow lattice
set of lattices

substitution
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alias lattice
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constraints
relation inference rules
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L 4 is a special lattice which is consistent with the alias lattice A and where every

relationship maps to bot

Figure 5: Abstract grammar

4.1 Checking predicate truth

Before we show how constraint checking works, we must describe how the analysis tests the truth
of a relationship predicate. The judgment for this is written as

A;BipEMt

and is read as “Given an aliasing context and a constant propagation context, the lattice p shows
that bound predicate M is t”, where t is either True, False, or Unknown. The rules for this judgment
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Figure 6: Lattice Element Operations

are similar to three-valued logic and are shown in Figures 7 and 8.

In the sound and complete variants, the rules are trivial. The analysis inspects the lattice to
see what the value of the relationship is to determine whether it is True (REL-T), False (REL-F), or
Unknown (REL-U-SOUND/COMPLETE). If the lattice maps the relationship to either unknown or bot,
then the predicate is considered Unknown. The rest of the predicate rules work as expected for a
three-valued logic.

The interesting case is in the compromise variant when the relationship does not map to true or
false. Instead of using the rule (REL-U-SOUND/COMPLETE), the compromise variant admits the rules
(REL-U-COMPROMISE) and (INFER-COMPROMISE). These rules attempt to use the inferred relationships,
defined in Section 2.3, to retrieve the desired relationship. The rule for the inference judgement
p infers p’, is defined in Figure 9. This rule first checks to see if the trigger of an inferred relation
is true, and if so, uses the function lattice to produce the inferred relationships described by
Rlo]. For all relationships not defined by R{o], the lattice function defaults to bot to signal that
there are no changes. There are two properties to note about the rules (REL-U-COMPROMISE), (INFER-
COMPROMISE), and (DISCOVER):

1. The use of inferred relationships does not change the original lattice p. This allows the
inferred relationships to go away automatically if the generating predicate, P, is no longer
true.

2. Any inferred relationship must be strictly more precise than the relationship’s value in p, as
enforced by p’ C p. This means that relationships can move from unknown to true, but
they can not move from false to true. This property guarantees termination and prevents
the inferred relationships from taking precedence over declared ones.

Inferred relationships can not be used in the sound and complete variants. This does not limit
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Figure 7: Check predicate truth under a lattice

the expressiveness of the specifications, as inferred relations can always be written directly within
the constraints. Doing so does make the specifications more difficult to write; the framework devel-
oper must add the inferred relations to any constraint which will also prove the trigger predicate.
Since inferred relations do change the semantics, they are not syntactic sugar, but they are not
necessary for reasons beyond the ease of writing specifications.

4.2 Matching on an operator

In order to check a constraint, the analysis must determine whether a source instruction, called
instr, matches the syntactic operation op defined by a constraint. This is realized in the judgment

ATy Finstr:op = (Z5 2Y)
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Figure 8: Check predicate truth under a lattice

PUQeZ phk Plo] True p’ = lattice(Qlol; A; B) o' C

p
DISCOVER
A; B F pinfers p’ ( :

Figure 9: Infer new relationships

with rules defined in Figure 10. Given the alias lattice A and a typing environment for the free
variables in op, this judgment matches instr to op and produces two disjoint sets of substitutions
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— —— <~ (CONSTRUCTOR)
ATy F Xpee = new m(X) : new 1(y:7T) = (X%, 1Y)
A; Ty F eom : end-of-method = ({2}, @) (FOM)
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findLabels(< T, L >; Ty %y) = (25, Z%)

Figure 10: Matching instructions to operations and type satisfaction

that map specification variables in op to heap locations. The first set, X%, represents possible
substitutions where the locations are all known to be a subtype of the type required by the variables.
The second set, 2", are potential substitutions where the locations may or may not have the right
type at runtime.

As an example, we will walk through the rule (INVOKE). The first premise checks that the free
variables in op are in [}, and the second premise builds the substitution set using the findLabels
function. Each substitution in the set will map the specification variables in op (this, ret, and
Y1 ...Yn) to a location in the heap that is aliased by the appropriate source variables in instr
(Xthiss Xret, and X ... Xp).

To produce the set X%, the findLabels function must generate a substitution for each y; in y. It
starts by verifying that the corresponding source variable x; points to only one location ¢, and it
checks to see if the type of that location is a subtype of the type required for y;. Every substitution
o which fits these requirements is in Z*.

X' is a more interesting set. Unlike X', it checks all locations which x; aliases and records a
possible substitution for each. Additionally, when it checks the type, it allows the location if there
is even a possibility of it being the right type. As an example, consider the class hierarchy and
use of findLabels shown in Figure 11. In the first row, £ is definitely substitutable for y, so it is a
substitution in Z*. In the second row, y can never be substituted by {, so both sets are empty. In
the third and fourth rows, £ may be substitutable for y (if £ has type B or C, respectively), so both
substitutions are possibly, but not definitely, allowed and are therefore in 2.

The need for =" may seem surprising, but the rationale behind it is that framework constraints
do not always adhere to behavioral subtyping. Consider the DropDownList selection constraint
being analyzed for the code in Listing 8. Since list is of type ListControl, the trigger clause
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findLabels(< € : g, x — {{} >y 1 15 xy) = (Z5 ZY)

RS S
[class A| [interface D] Bl A |{ly—=0} g

B|D %) %]
AlBl o2 Hy=b)

A|D o {ly— 0}
Figure 11: The difference between L' and I

Listing 8: Generically changing the selection on a ListControl

ListControl list = ...;

ListItem item;

item = list.getItems().findByValue("foo");
item.setSelected(true);

N T S

of the first constraint in Listing 7 will not be true, and the constraint will never trigger an error.
However, we would like this to trigger a potential violation in the sound variant since 1ist could be
a DropDownList. The root of the problem was that DropDownList is not following the principle
of behavioral subtyping; it has added preconditions to methods that the base class did not require.
Therefore, a DropDownList is not always substitutable where a ListControl is used! While
frustrating, this appears to be a common problem with frameworks. Inheritance was used here
rather than composition because the type is structurally the same, and it is almost behaviorally
the same. In fact, the methods on DropDownList itself do appear to be behaviorally the same.
However, the subtype added a few constraints to other classes, like the ListItem class.

By keeping track of Z* and X" separately, it will allow the variants of the analysis to use them
differently. In particular, the sound variant will trigger errors from substitutions in X, while the
complete and compromise variant will only use it to propagate lattice changes from the effect list.

4.3 Checking a single constraint

We will now show how the analysis checks an instruction for a single constraint. This is done with
the judgment

A; B; p; cons F instr — p?

shown in Figure 12. This judgment takes the alias lattice, the relationship lattice, and a constraint,
and it determines what changes to make to the lattice for the given instruction. The lattice changes
are represented in p*, where a relationship mapped to bot signifies no changes.

The analysis starts by checking whether the instruction matches the operation used by the
constraint. If not, then instruction matching rules will return no substitutions, the rule (NO-MATCH)
will apply, and no changes are made by returning | 4. If there are substitutions, as shown in rule
(MATCH), then the analysis must check this constraint for every aliasing configuration possible, as
represented by Z* and X', This rule checks that the constraint passes for each aliasing configuration
o and receives the lattice changes for each. If the substitution was from X", then the analysis must
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Figure 12: Check a single constraint

use the | operator on the change lattice and the starting lattice to produce the correct change lattice.
This is done because the analysis cannot be sure if the substitution is valid at runtime, so it can only
make changes into the unknown state. Setting all changes to unknown could cause the analysis to
lose precision when p? prescribes a change that already exists in p. A possible solution is to let
the polarizing operator return bot if the prescribed changes already exist in the lattice p (we have
not yet proven this extension is sound).

The last step the rule makes is to combine all the lattice changes, from all substitutions, using
l=/ . The use of =] means that a change is only made to true or false if all the aliasing con-
figurations agree to it. Likewise, a signal to make no changes by way of bot must also show in
all configurations. If any configurations disagree about a lattice change, then the lattice element

changes to unknown.
Once the analysis has a syntactic match, it tries to find the aliasing configurations for a semantic
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match using the judgment
A; p; 0 Fpare cons — pA

The analysis must get all aliasing configurations that are consistent with the current aliases in o
and [,. o represents the substitutions which are already made by matching the instruction, while
Iy, represents the free variables and their types which the analysis should find substitutions for.
The substitutions are found by the allValidSubs function, shown in Figure 12. The rule (BOUND)
proceeds in a similar manner to the rule (MATCH), except it checks the constraint using the judgment

A; p; 0 Fga cons — pA

The rules for this judgment, shown in Figure 13, are the primary point of difference between the
variants of the analysis.

Sound Variant

The sound variant first checks Pi.q[c] under p. It uses this to determine which rule applies. If
Ptrg[G] is True, as seen in rule (FULL-T-SOUND), then the analysis must check if P,¢q is True under
p given any substitution. Since this is the sound variant, it will only accept substitutions from X*.
If Preq is not True with a substitution from X, then the analysis produces an error. If there is no
error, the rule produces the effects dictated by R[o]. The function lattice simply converts this list
to a lattice, where all unspecified relationships map to bot. If P4[o] is False, then the analysis
uses rule (FULL-F-SOUND). In this situation the constraint does not trigger, so the requires predicate
is not checked and the analysis returns no changes using 1 4.

In the case that Py,g [o] is Unknown, the sound variant proceeds in a similar manner to the case
where Py.4[0] is True as it must consider the possibility that the trigger predicate is actually true.
In fact the only difference in the rule (FULL-U-SOUND) is that the analysis must use the polarizing
operator to be conservative with the effects it is producing in case the trigger predicate was actually
false.

Complete Variant

Like the sound variant, the complete variant starts by checking Py,4[0] under p. If Py, 4[0] is True,
as seen in rule (FULL-T-COMPLETE), then the analysis must check P-4 under p given any substitution.
As this is the complete variant, the analysis does not care whether the substitution came from X*
or X%, and it does not matter whether P¢q is True or Unknown. If no substitutions work, either
because none exist or because they all show P..q to be false, then the analysis produces an error.
Otherwise, if there is no error, then the rule produces some effects. Since the constraint trigger was
true, it will produce exactly the effects dictated by R[o]. If the analysis determines that Py4[o] is
False, then it uses the rule (FULL-F-COMPLETE). Like the sound variant, the requires predicate is not
checked and the analysis returns no changes.

Finally, if Py.4[o] is Unknown, the complete variant will not check P,.q as it cannot be sure
whether the constraint is actually triggered and it should not produce an error. However, it must
still produce some conservative effects in case the constraint is triggered given a more concrete
lattice. Like the sound rule in the case of an unknown trigger, the rule uses the polarizing operator
1 to produce only conservative effects.
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Figure 13: Checking a fully bound constraint and producing effects. Shading highlights the differences
between the three variants.
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Figure 14: The flow function for the relation analysis
Compromise Variant

The compromise variant is a combination of the sound and complete variants. It has the same rule
for False as the other two variants, (FULL-F-COMPROMISE). The rule (FULL-T-COMPROMISE) is the same
as the True rule for soundness, while the rule (FULL-U-COMPROMISE) is the same as the Unknown rule
for completeness. This means that this variant can produce both false positives and false negatives.
The false negatives can occur when P4 is Unknown under p, but a more precise lattice would
have found P44 to be True and eventually generated an error. The false positives occur when Py,
is True under p and P.¢q is Unknown under p, but P...q would have been True under a more precise
lattice.

4.4 The flow function

The flow function for the analysis checks all the individual constraints and produces the final lattice
for each operation. Using the judgments defined in the previous section, the flow function iterates
through each constraint and receives a change lattice for each. As shown in Figure 14, these lattices
are combined using the join operator. Once the analysis has the final change lattice p2, it applies
the changes using the overriding meet operation. This will preserve the old values of a relationship
if the change lattice maps to bot, but it will override the old value otherwise. This provides us
with the new relationship lattice p’, which is used by the dataflow analysis to feed into the next
instruction’s flow function. This flow function is monotonic, and the lattice has a finite height, so
the dataflow analysis will reach a fix point.

S5 Implementation and Experience

We implemented the compromise variant of the analysis in the Crystal dataflow analysis frame-
work, an Eclipse plugin developed at Carnegie Mellon University for statically analyzing Java
source 4. Crystal provides capabilities for analyzing source in three address code form, running
a branch-sensitive analysis, and reading specifications from annotations. For the implementation
of this analysis, we also used a boolean constant propagation analysis and a basic alias analysis.
Either of these could be replaced with more sophisticated analyses in order to improve the results;
the relation analysis is only dependent on the interfaces to these analyses.

We specified three constraints, one from the ASPNET framework® and two from the Eclipse

“http://code.google.com/p/crystalsaf
SWe translated the relevant parts of the API and the examples into Java.
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JDT framework. These were all constraints which we had misused ourselves and were common
problems that were posted on the help forums and mailing lists. These constraints exercised several
different patterns, and the specifications were able to capture each of these patterns.

The specifications allowed us to easily describe structured relationships, such as the ListItems
which are in a DropDownList and a tree of ASTNodes within the Eclipse JDT. In each of these
cases, a relationship ties the “child” and “parent” objects together, and it is straightforward to check
if two children have the same parent. Two of our constraints had a structured relationship where
an operation required that some objects exist (or do not exist) in a structured relationship.

All three constraints had semantics which required operations to occur in a particular order.
To define this pattern, we just needed a relationship which binds relevant objects together. The
operation which occurs first produces an effect which sets this relationship to true, and the oper-
ation which must occur second simply requires this relationship. An example of this was seen in
the constraints on the DropDownList in Listing 7. Additionally, relationships also allowed us to
specify partial orderings of operations. One of the Eclipse JDT constraints had this behavior, and
in fact required three methods to be called before the constrained operation. Alternatively, the user
could choose to call a fourth method that would replace all three method calls. We captured this
constraint by having each of the four methods produce a relationship, and the constrained opera-
tion simply required either the three relationships produced from the group of three methods, or
the single relationship produced from the fourth one.

Relationships also made it straightforward to associate any objects that were used in the same
operation. For example, this allowed us to associate several fields of an object so that we could later
check that they were only used together. We did this by annotating the constructor of the object
with a relationship effect that tied the field parameters together. We could also associate objects
that were linked by some secondary object, but had no direct connection, such as a DropDownList
and the ListItems received from calls to the associated ListItemCollection.

After specifying the constraints, we ran the compromise analysis on 20 examples based on
real-world code. The examples we selected are based on our own misuses of these frameworks and
on several postings on internet help forums and mailing lists. Of these, the compromise variant
worked properly on 16, meaning that it either found an expected error or did not find an error on
correct code. Most of these examples had little aliasing and used exact types, which reflected what
we saw on the help forums.

These examples identified two sources of imprecision. The compromise variant failed on one
example because it used an unconstrained supertype, and it failed on the remaining three exam-
ples because the relevant constraint required objects which were not in scope. The unconstrained
supertype resulted in a false negative, and the three examples with objects out of scope resulted in
false positives. In all four of these cases, the sound variant would have flagged an error, and the
complete variant would not have.

Using an unconstrained supertype, such as using a ListControl instead of a DropDownList,
as seen in Listing 8, is the first potential source of imprecision for the compromise variant. While
a sound analysis would have detected the error in this example, in practice, using this superclass is
not typical. The plugin has a DropDownList as a field if the control was initialized statically on the
web page, and the plugin will typically cast directly to the expected subtype if it created the control
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dynamically. In fact, we never found code on the forum that used the superclass ListControl.

The more interesting, and more typical, source of imprecision occurs when a required object
is not in scope. For example, one of the Eclipse JDT constraints required that an ASTNode have a
relationship with an AST object. The plugin, however, did not have any AST objects in scope at all,
even though this relationship did exist globally. Based on the examples we found, this does occur
in practice, typically when the framework makes multiple callbacks in sequence, such as with a
Visitor pattern.

Future revisions of the analysis could address the problem of out-of-scope objects with two
changes. First, it should be possible for the framework to declare what relationships exist at the
point where the callback occurs. This would have provided the correct relationships in the previous
example, and it should be relatively straightforward to annotate the interface of the plugin with this
information. Second, an inter-procedural analysis on only the plugin code could handle the case
where the relationship goes out of scope for similar reasons, such as calls to a helper function.
These changes would increase the precision of all three variants of the analysis.

The two sources of imprecision affect all three variants, though in different ways. While im-
precision anywhere in the constraint can produce a false positive in the sound variant or a false
negative in the complete variant, the location of the imprecision in the constraint directly changes
how the compromise variant handles it. When the imprecision occurs in the trigger predicate, the
compromise variant results in a false negative. When the trigger predicate is precise but the re-
quires predicate is imprecise, the compromise variant results in a false positive. This reflects what
we expect from the analysis; we only wish to see an error if there is reason to believe that the con-
straint applies to our plugin. If the trigger predicate is unknown, it is less likely that the constraint
is relevant.

6 Related Work

SCL [9] allows framework developers to create a specification for the structural constraints for
using the framework. The specifications we propose focus on semantic constraints rather than
structural constraints. Some of the key ideas from SCL could be used to drive the more structurally
focused parts of the specifications, and we view the two as complimentary.

Scoped Methods [16] are a language construct for enforcing protocols which are local to a
method, such as a framework callback. Like SCL, scoped methods are structural and do not take
semantic context of objects into account.

Typestates [6] provide a mechanism for specifying a protocol on a single object by using a state
machine. There have been several approaches to inter-object typestate. Lam et al. manipulated
the typestate of many objects together through their participation in data structures [12]. Nanda
et al. take this a step further by allowing external objects to affect a particular object’s state,
but unlike relationships, it requires that the objects reference each other through a pre-defined
path [14]. Bierhoff and Aldrich add permissions to typestates and allows objects to capture the
permission of another object, thus binding the objects as needed for the protocol [2]. Relationships
can combine multiple objects into a single state-like construct and is more general for this purpose
than typestate; it can describe all of the examples used in multiple object typestate work.

24



With respect to the specifications, relationships are more incremental than typestate because the
entire protocol does not need to be specified in order to specify a single constraint. Additionally,
the plugin developer does not add any specifications, which she must do with some of the typestate
approaches. However, typestate analyses aim to be sound, and can also check that both the plugin
and the framework meet the specification. The relationship analysis assumes that the framework
properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [17]. Unlike typestate, which specifies
the correct protocol, tracematches specify a temporal sequence of events which lead to an error
state. This is done by defining a state machine for the protocol and then specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main difference
is in how the techniques specify the path leading up to the error state. Tracematches must specify
the entire good path leading up to the error state, which leads to many specifications to define a
single bad error state. In cases where multiple execution traces lead to the same error, such as the
many ways to find an item in a DropDownList and select it incorrectly, a tracematch would have to
specify each possibility. Instead of specifying the good path leading up to the error, relationships
specify the context predicate, which is the same for all good paths. This difference affects how
robust a specification is in the face of API changes. If the framework developer adds a new way
to access ListItems in a ListControl, the existing tracematches will not cover that good path.
However, all the constraint specifications in the proposed technique will continue to work if the
new method is annotated with the appropriate relationship effects.

Unlike relationships, tracematches are enforced both dynamically and statically using a global
analysis [4]. The static analysis soundly determines possible violations, and it instruments the code
to check them dynamically. Bodden et al. provide a static analysis which optimizes the dynamic
analysis by verifying more errors statically [5], and Naeem and Lhotdk specifically optimize with
regard to tracematches that involve multiple objects [13] .

Bierman and Wren formalized UML relationships as a first-class language construct [3]. The
language extension they created gives relationships attributes and inheritance, and plugin devel-
opers use the relationships by explicitly adding and removing them. In contrast, the relationships
presented in this paper are added and removed implicitly through use of framework operations,
and if inferred relationships are used, they may be entirely hidden from the developer. While Bier-
man and Wren did not explore constraints on relationships, Balzer et al. discuss how to describe
relationship invariants using discrete mathematics [1]. These invariants are on the relationships
themselves and, unlike the proposed work, they do not constrain the framework operations.

Like the proposed framework language, Contracts [8] also view relationships between objects
as a key factor in specifying systems. A contract also declares the objects involved in the contract,
an invariant, and a lifetime where the invariant is guaranteed to hold. Contracts allow all the
power of first-order predicate logic and can express very complex invariants. Contracts differ
from the proposed specifications because they do not check the conformance of plugins and the
specifications are more complex to write.

Our analysis itself is similar to a shape analysis, with the closest being TVLA [15]. TVLA
allows developers to extend shape analysis using custom predicates that relate different objects.
Our constraint specifications could be written as custom TVLA predicates, but the lower level of
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abstraction would result in a more complex specification and would require greater expertise from
the specifier.

7 Conclusion

Relationships capture the interaction between a plugin and framework by describing how abstract
object associations change as the plugin makes calls to the framework. We can then use these
relationships to describe non-local constraints on the framework operations. We have shown that
relationship-based constraints can describe many constraint paradigms found in real frameworks,
capturing relationship structure, operation order, and object associations that may or may not derive
from direct references As the specifications are written entirely by framework developers, plugin
developers only need to run the analysis on their code, so that investments by a few framework
developers pay dividends to many plugin developers

A modular, intra-procedural static analysis can check that the plugin code meets framework
constraints. This analysis is particularly interesting because it is adjustable. While many analyses
strive to only be either sound or complete, the relation analysis can be run either soundly, com-
pletely, or as a compromise of the two, thereby allowing the plugin developer to choose the variant
that provides the most useful results.
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A Operations

A.1 Equivalence Join on p

dom(pi) = dom(p;) =dom(p) VR—=Ee€p.E=pi(R)Ep (R)

EQJOIN—
pLlEpr =p (EQ] °)
A.2  Overriding Meet on p
dom(p) = dom(pa) =dom(p’) VR H,) E'cp’ . E' =p(R)Hpa(R)) (OVRMEETS—p)
pFpa=0p
A.3 Polarity operator on p
dom(p) = dom(p’) VR—Ecp .E=]pR)
I p= p/ (I_p)

A.4 Joinon p

dom(p1) = dom(py) =dom(p) VR—=Ecp.E=p(R)Up:(R)

(U—p)
prUpr=p
A.5 Atleast as precise on p
Ec CEEa Pc E pa I L pa
(E—p) (C—PARTIAL—UNKNOWN)
pc,R— Ec C po,R— Eq & C pa, R — unknown
I E pa
—— — = _  (C—PARTIAL—BOT) (C—2)
@ C pa,R — bot oCo

A.6 Transfer into new aliasing environment, transfer

p’={R— E|Redom(Lls) A Redom(p) = E=p(R) A R¢gdom(p) = E = unknown]}
p’ = transfer(p, A)

(TRANSFER)

A.7 Substitution on P
P[o] = M. Do the obvious thing.

(P1AP2)[o] = Pilo]AP2
(P] \/Pz)[O'] = P] [O'}sz[oﬂ
(P1 = P2)lo] = Pilo] = P;[d]
truelo] = true
falselo] = false
(=S)[lo] = —Slo]
(A/Ytest)[o_] = A[O_]/O-(Ytest)
rel(y)lo] = rel(y[o])
(y,9)lol = oly),ylo]
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A.8 Lattice transformation of N

Notice that a list will become a pair of sets, in particular, a p. The sets could be conflicting, meaning that in
this list, the transformation causes conflicts. We are using =] to move conflicts into unknown. Alternately,
we could either report this as an error or override or join. It is not clear what is best though.

p1 = lattice(N;A;B) p2 = lattice(N;A;B)

. — (LIST) . (LATTICE—R)
lattice(N,N;A;B) = p1 U p2 lattice(R,A) = L4[R +— true]
‘B(Etest) = True
- (LATTICE—R) - (LATTICE—R—TEST-T)
lattice(—R,A) = L4 [R — false] lattice(R/€test, A, B) = L 4[R — true]

B(Lrest) = False
lattice(R/€iest, A, B) = L4[R — false]

(LATTICE-R—TEST—F)

B(Liest) = Unknown
lattice(R/€test, A, B) = L 4[R +— unknown]

(LATTICE—R—TEST—U)

B(Ltest) = True
lattice(—R/Ltest, A, B) = L4[R — false]

(LATTICE——R—TEST—T)

B(Liest) = False
lattice(—R/{est, A, B) = L 4[R — true]

(LATTICE——R—TEST—F)

B(Liest) = Unknown
lattice(—R/Liest, A, B) = L 4[R — unknown]

(LATTICE——R—TEST—U)

B Truth

<X—= —— (X—UNKNOWN
t < t(\ ) t < Unknown (= )

B.1 Free variables

Find the free variables and the types of a specification or a part of a specification.

FV(cons) = (0p) UFV(Petx) UFV(Preq) UFV(R)
FV(P1 AP2) = FV(P;)UFV(P2)
FV(P] \/Pz) = V(P1) UFV(Pz)
FV(Py = P;) = (P1) UFV(P2)
FV(true) = @
FV(fals ) = @
FV@Q) = UFV(Q)
FV(=S) = FV(S)
FV(A/ytest) = FV(A), Yeest : boolean
FV(rel(y)) = y:R(rel)
FV(Tthis.m(Y :T) : Tret) = this: Ttnis,ret: Tret,y: T
FV(newt(y:T)) = this:1,y:7T
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y g dom(ly) TyuUly =T <t Ul =1

- (U-2) - - (U-NOTIN) o S — (U-LEFTSUB)
LNuo =TIy Luy:t,Iy =y:1,0 y:t,yUy:t, Iy =y:1,[}
<t Uy =Ty
o Y —— (U-RIGHT-SUB)
y:t, Uyt Iy =y:1,[
dom(T}! TMurr =T
— (MINUS-2) y ¢ l(yJ Y = = Y (MINUS-NOTIN)
nN—o=I uy:t,Iy =1

Uy =T
y:t Uyt Ty =T,

(MINUS—IN)

dom(Iy) C dom(Ty) Vyitel . Iy <t

C—NR
ry g ry/ (7 Y)

C Aliasing Operations and Theorems

C.1 Atleast as precise, C 4

dom(L') =dom(L)  dom(IY)=dom(Ty) V¢ :tv' el v/ <) V' —=Uel '/CLix)A E/#Q()([ |
<THL >Ca< T L > =4

C.2 Abstraction function

Theorem C.1 (Abstraction of Alias Lattice from the heap). Let x <— { : T be a source variable x which
points to a runtime location £ of type T. Let h be a heap, represented as a list of source variables which
point to locations of a particular type. Also let H be all the possible heaps at a particular program counter.
An alias lattice < Ty, L > abstracts H at a program counter if and only if
VheH.dom(h) =dom(L) A
Vixi—= 4 :m)eh.V(x = :12)€h.
xnEx NG =0L =
Uelx) AU el(x) At <T(l)A
X1 #Xz A {4 75(7,2 —
O el(xi) AN el(xa) A£G AT <To(t]) A 12 <:Te(l})

C.3 Atleast as precise, C3

dom(B°) = dom(B*) Vi:te B .t < B
Be Co pa

0(Ex)
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D Consistency

Theorem D.1. Consistency

forall deriv.
A = p consistent
p final
mathitf giqs(A, instr) = A’
fe.as(p,instr) = p’
exists deriv.
A’ I p’ consistent

p’ final

Proof:

Veons; € €. A’; B; p;cons; F instr — pf By inversion on fe.4.5(p, instr) = p’
pA = u{piA} By inversion on fe.4.5(p, instr) = p’
p’ = transfer(p, A’) [l p2 By inversion on fe.4.5(p, instr) = p’
Vcons; € C. A5+ piA consistent By lemma consistency of single constraint
A’ Up? consistent By lemma L! preserves consistency
A’ I transfer(p, A’) consistent By lemma transfer implies consistency

A’ p’ consistent
p’ final

By lemma [ preserves consistency
By lemma | makes final

O
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Theorem D.2. Consistency of a Single Constraint

forall deriv.
A F p consistent
mathitfqies(A, instr) = A’
A’:B; p;cons F instr < p?
exists deriv.

A’ + p? consistent

Proof:
By case analysis on A; p;cons F instr < p?

cons = op : Petx = Preg L Q  A;FV(coms) Finstr:op & (£4, 1Y)
StALo VIV4£e Pt={p| o€ L' A A';B;p;0 Fpart cons — p2}
PU=1{]p% o€ A A B;p;0 Fpare coms — p2}
|PY ==Y |PH = 2™ PA =Pty P

Case: - - = (MATCH)
A’ B; p;cons F instr — (1=l P?)
Vi.
dom(FV(op)) = dom(oy) By lemma Instruction Binding Consistent
mg(oi) € dom(Ty) By lemma Instruction Binding Consistent
Vy:1t€FV(op).Te(oily)) <it By lemma Instruction Binding Consistent
AbF— pf consistent By lemma partial binding consistent
VpiA cePArAF piA consistent By quantification above
A F =] P2 consistent By lemma [=| preserves consistency
cons =op : Petx = Preq U R Al instriop= £
Case: - (NOT—MATCH)
A;p;cons Finstr — 1 4
R; A+ L4 consistent By definition of L 4

0
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Theorem D.3. Consistency of Partial Binding

forall deriv.
cons = op : Petx = Preq 1L Q
A; B; p; 0 Fpare cONs — p2
exists deriv.

A F p? consistent

Proof:

By case analysis on A; B; p; 0 Fpare cons — p2

cons = op : Petx = Preq 4 Q
I, = FV(op) UFV(Pewe) UFV(Q)  allValidSubs(A; oop;Ty) = (£ £%)
SYLo VIY£o Pt={p? |0 e It A A;B;p;0 Fe cons < p

PU={]p?| o€ L™ A A;B;p;0 Feyi cons — p2} PA — Pty pu

Case: X (BOUND)
A; B; p; 0op Fpart cons — (1=l P2)
VoeZLt. At ovalidForT, By Lemma validSubs sound and complete
Voel". Al ovalidForT, By Lemma validSubs sound and complete
VA e Pt
A:B: p; 0 e cons — p? where 0 € It By construction of Pt
A F o validFor T, Byoe !t
A+ o validFor FV(Q) By FV(Q) C Ty
A F p? consistent By Lemma Full Binding Consistent
V p® € Pt. A F p? consistent By quantification
VA e Pu,
pA =] pA’ where A; B; p; 0 by cons <— pA’ N oelt By construction of P“
A+ o validFor T, Byoe"
A F o validFor FV(Q) ByFV(Q) CTy
A+ p2 consistent By Lemma Full Binding Consistent
A p? consistent By Lemma | consistent
Y p® € P* . A p? consistent By quantification
vV p2 e PA . At p2 consistent By P4 = Pt U pu
A F (2l PA) consistent By Lemma =/ consistent
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cons = op : Peix = Preq 44 Q

Iy = FV(op) UFV(Pcix) UFV(Q) allValidSubs(A; oop; Ty ) = (2, @)
A; B; p; 0op Fpart COMLs — L 4

(CANT—BIND)

A L 4 consistent By definition of L 4
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Theorem D.4. Consistency of Full Binding

forall deriv.

cons = op : Petx = Preq I Q

A F o validFor FV(Q)
A; B; p; 0 by cons — pA
exists deriv.

A F p? consistent

Proof:

By case analysis on all variants of A; B; p; 0 k¢ cons — p2

cons = op : Petx = Preq 4 Q  B;p F Perxlo] True
(Y £ = allValidSubs(A; o; FV(cons))

Jo' € L. B;p I Preglo’] True
Case: e (FULL—T—COMPROMISE)
A; B; p; 0 Fea cons — lattice(Qlol])

A+ lattice(Q[o]) consistent By Lemma Lattice with substitution is consistent

cons = op : Petx = Preq 4 Q B:p - Peixlo] False
A; B p; 0 Fgu cons <— L g

(FULL—F—COMPROMISE)

A L 4 consistent By definition of 1 4

cons = op : Petx = Preq 4 Q )
B;p F Pexlo] Unknown  p? = lattice(Qlo])

A; B; 0; 0 i cons =7 p?

(FULL-U—COMPROMISE)

A F p? consistent By Lemma Lattice with substitution is consistent
AFT p2 consistent By Lemma | preserves consistency

cons = op : Petx = Preq 4 6 B;p F Pewlo] True
(£t =) = allValidSubs(A; o;FV(cons))

J0' € LY. B;p F Preglo’] True
— (FULL-T—SOUND)
A; B; p; 0 Faul cons — lattice(Q[o])

A F lattice(Q[o]) consistent By Lemma Lattice with substitution is consistent
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cons = op : Petx = Preg 4 Q  B;p - Perxlo] False
A; B p;0 Feu cons — 1 g

(FULL—F—SOUND)

A F L 4 consistent By definition of L 4

cons = op : Petx = Preq 4 Q B; p F Pexlo] Unknown
(£t =) = allValidSubs(A; o;FV(cons))
Jo' € LY. pB;k Preqlo’] True p? = lattice(Qlo])

A; B; p; 0 Fra cons <] pA

(FULL-U—SOUND)

A F p? consistent By Lemma Lattice with substitution is consistent
A F] p? consistent By Lemma | preserves consistency

cons = op : Petx = Preq 4 Q  B;p - Perxlo] True
(' ") = allValidSubs(A; o; FV(cons))

Jo0' € LU LY. B;p F Preglo’] True V p = Preglo’] Unknown
_ FULL—T—COMPLETE
A;B; p; 0 Fgy cons — lattice(Q[o]) ( :

A lattice(Q[o]) consistent By Lemma Lattice with substitution is consistent

cons = op : Petx = Preq 4 Q  B;p - Perxlo] False
A; B p;0 Feu cons <— 1L g

(FULL—F—COMPLETE)

A F L 4 consistent By definition of 1 4

cons =op : Pex = Preg 4 Q
B; p F Peixlo] Unknown p? = lattice(Qlo])

A; B; ;.0 b cons 7 p®

(FULL-U—COMPLETE)

A F p? consistent By Lemma Lattice with substitution is consistent
A F] p? consistent By Lemma [ preserves consistency
O

E Completeness

Theorem E.1. Completeness of Relations Analysis
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forall der.

fatias(A“PS, instr) = APS

falias(-AconC» iTlStT) = Acome

pPs final

PO final

Rcone EB Babs

Aconc EA A abs

’

AP | pabs congistent

ACOME | p®OM€ consistent

pCOT'LC E p(l

fe;‘Aconc “Beone (p

exists der.

fe;‘Aabs;Babs (pabs, iTLStT‘) =p
pconc’ O pabs’

Proof: [Completeness of Relation Analysis]

4 /
pCOnC — transfer(pCOnC)ACOnC ) I:l pCOT‘LCA
V cons;i € C . ACONE; BEONCHCONE: cong; |- instr — pfonea

pconcA =1 {piconcA}

Vcons; € C.

Aabs'; pabs; cons F instr < pf

piconcA < pgbsA

1

1

pgoncA C P absA

AQDs" |- absA consistent
JR.Vi.dom(pf?s2) =R

Let pabsA =1 {pgbsA}
pconcA < pabsA '

pconcA C pabsA

/ .
A9Ps" | absA congistent

1" ’
Let p@Ps" = transfer(p@bs, Aabs")

/ " .
A9PsT | pabsT consistent

dom(pabs”)

=dom(p

absA)

Let pabs’ — pabs” o= pabsA
pconc’ C pabs’

fe;‘Aabs;Eabs (p

abs

,instr) = pabs

/

absA
i

bs

By inversion Onfe;Aconc;ABconc (p

By inversion on fe. geonc.geone (p€OT¢ instr)
By inversion on fe. geonc.geone (pOT€, instr)
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conc

. __ .conc’
,instr) =p

abs’

conc conc’

,instr) = p
— pconc’
— pconc’
By Lemma Soundness of Single Constraint
By Lemma Soundness of Single Constraint
By Lemma Soundness of Single Constraint
By Lemma Consistency of Single Constraint
By Lemma consistency means same domain
By join rule applied many times

By Lemma L! preserves <

By Lemma LI preserves C

By Lemma same domains mean consistency

By Lemma transfer implies consistency

By Lemma consistency means same domain
By rule overmeets

By Lemma [ preserves C

By rule flow — cons

0



Theorem E.2. Completeness of Single Constraint

Proof:
By case analysis on A °™¢; p€°1C cons F instr — p

Case:

forall deriv.
Aconc EA Aabs
pconc EB Babs

pconc C ) abs

AP 1 paPS congistent

AP | p®OM€ consistent

PO final
ACOnC; pCOTLC; cons
exists deriv.

AGbS: 5abS. cong -

p
p

concA C P absA

concA S] P absA

concA

cons = op : Petx = Preq I+ Q ACTEFV(

LAV IV £o

9)1(.:1. _ {I pA | = ZEL A ACOTLC;BCOTLC; )
Pel = IZ¢ 1Pel = 1Z¢

Finstr «y peoneA

instr < pabsA

cons) instr:op = (I, I

PL={p?| o IL N\ AcONE BeONE peONC 5| cons < pP)

)

P =PLUPH

conc, A
O 0 Fpart cons <— p-}

(MATCH)

Let p4 =—

A COME, BEONE, (CONC cons - instr — (= CPCA)

)

(E192)

AONEFV(cons) Finstr:op & (I, ZY)
IeCriuiy

Z%LQZ;:
Iiox,

ILA£oVIV£Y
Let Pt = {p?| o c £t A AS;Babs; pabs: 5 1o cons «— p?}

Let P4 = {] pA| o0 € Z& A A, Babs; 5abs. 5 |\ cons < p?}
Vpld e PL.

Jdistinct ot € L . Acone; Beone, peonc. g g

ctert Votezly

Case: o' € £}
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By Lemma Instruction Binding Complete
By Lemma Instruction Binding Complete
By Lemma Instruction Binding Complete
By Lemma Instruction Binding Complete
By £l # @ V IY +# & and inversion on C

| cons < piA
By construction of P! and [Lf| = [P}

By £! C £t U Y By case analysis on the location of o*



A s BALS; paS; o =gy cons ) pE
piA L p?

ptA < pth

ptA distinct € P,

Case: o c Xy
Aabs. pabs. nabs. g 1. cons «— p};A
pIA LT pud
piA g pu
pet CT py
pA T pu?
pUA distinct € PY

V puh e Pu.

By Lemma Partial Binding complete
By Lemma Partial Binding Sound
By Lemma Partial Binding Sound

By construction of Pt

By Lemma Partial Binding complete
By Lemma Partial Binding Sound
By Lemma Partial Binding Sound

By Lemma | on abs preserves C
By Lemma | on abs preserves <
By construction of P}

. . !
ddistinct o™ € L. AN BN pONE 6 Fpare cons — plc‘A

pus =T pud’

ot e Tu

Aabs; Babs, gabs g cons — pus’
pus’ C put

puA’ g pus’

puA LT pud

pUA T pudt

a

uA . .
pa” distinct € Py

V ptA € Pt Jdistinct p4 € Py . ptA C 02
VA € PL. Fdistinct p4 € Py . pt2 < p8
Y pus ¢ PY . Jdistinct p4 € Pq . pYA T p4
VoA € PY . Jdistinct p4 € Py . pA < pd
VA € P Agps F o2 consistent

Y pUd € P Aqps F pU2 consistent

Let Pq = Pt U PY

JR.Vpg € Pq.dom(pg) =R

Let p4 = (= Pg)

AaPs: 5abs: cons - instr < p
V p2 € P, . Idistinct p4 € Py . p2 C p4
V p2 € P. . Idistinct p4 € Py . p2 < p2
P2 C p4

e <oy

absA

Case:

By construction of P¢ and [ZY] = |PY
By construction of Pt

Byreciy

By Lemma Partial Binding complete
By Lemma Partial Binding Sound

By Lemma Partial Binding Sound

By Lemma [ preserves C

By Lemma | preserves <

By construction of P}

By quantification above
By quantification above
By quantification above
By quantification above
By quantification above
By quantification above

By inversion on consistency of each pq

By rule match

By P. = Rho! U Rho¥

By P = Rho! U Rho}

By =l preserves C and < on sets
By =l preserves C and < on sets

cons = op : Petx = Preq 4 Q AN FV(cons) F instr: op & (2, 9)

conec, cone, conec,
Acone. p
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(NO—MATCH)

P scons F instr < L geone



allValidSubs(.A bs; oop; Iy) — (Z5, I By Lemma Instruction Binding Complete

rfcrtury By Lemma Instruction Binding Complete
Ly Cry By Lemma Instruction Binding Complete
rtoxrt By Lemma Instruction Binding Complete
st=g By It D It

By case analysis on the property LY = &

Case: L, =0

Aabs: Babs. abs: cong - instr < | 4abs By rule no — match
19me e J_;llbs By definition of | 4
1emed Libs By definition of 1 4
Case: I # 0O
Let P ={p?| o € LY N Aabs;Babs; pabs. g1 cons — p2} PL =g Byl =02
Let PL ={] p2 |0 € £ A AQbS; Babs; gabs, g1 cons — p?'}
VR— E € 1 geone . E = Dot By definition of | 4
ACOTC - | jeconce consistent By definition of | 4
VA e Py,
p2 =] p2A" where A abs; Babs. pabs. Fpart cons — pA' By construction of P¢
A®bs 1 oA consistent By lemma partial binding consistent
AGPS |- oA consistent By lemma ] consistent
dom(L geonc) C dom(p?) By Lemma consistency and C 4 implies domains subset
VRi— E€ p?.E=bot V E = unknown By [ creates polarity
VR— E € L geone . EC p?(R) By rule C —bot
1 geone C p2 By rule C —p
VR i— E € L geone . E < p?(R) By rule < — bot and < — unknown
Lpeone I p2 By rule <—p
AaPs: 5abs. cong - instr «— pabsA By rule match
Vole PU . L geone T pA By quantification
VpA € PY. L geone < p? By quantification
1 geone C (21 PY) By lemma [=| preserves C
1 geone K (EIPY) By lemma [=| preserves <
O
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Theorem E.3. Completeness of Constraint with Partial Substitution

Proof:

forall deriv.
Aconc EA .Aabs

pconc C ) abs

PP final
P€O™¢ final
AGES | nabs congistent
ACONE | p€OMC consistent
Aconc;Bconc; pconc; o '_part COTS —3 pconcA
Reonc EB .Babs
exists deriv.

abs. m abs, ,abs. absA
ATPH B 0% 0 Fpare cONs —

concA absA
P Cp

concA absA
P dp

By case analysis on A COTE; BEONC, nCONC |- 1 cons — pConea

Case:

cons = op : Petx = Preq I+ Q
I, = FV(op) UFV(Pe) UFV(Q)  allValidSubs(A©™; 6oy 1) = (ZL, £Y)
iAoV IV£o PL=1{p?| o€ L N\ ACOTE Beone, peone, g cons < p}
PL={(]p?| o€ LE N ACONE BCONE, 5CONC 5 1 1 cons — p2)

TU=IPH T =[PH A =PLUPE

comc, q COoMe, COomce A (BOUND)
A :B P s Oop Fpart cons < (=1 P2)

Let p4 =— (=1 P2)
allValidSubs(.A2Ps; oop; [y) = (Z5, ZY) By Lemma All Valid Subs sound and complete
rtcriuzry By Lemma All Valid Subs sound and complete
vcry By Lemma All Valid Subs sound and complete
ioxt By Lemma All Valid Subs sound and complete
ILA£OGVIVALY By Ll # @ V LY # @ and inversion on C

Let Pt = {p® | o c £t A Abs; Babs; nabs, 51\ cons — p?}
Let PY¥ = {] p?| o € Z% A AGbs; Babs; gabs, 5 |\ cons < p?}
VpldePt.

Jdistinct ot € Lt . Acone; Beone: peone: g - cons — ptABy construction of PY and |ZY] = |PY
t o 5t t t t

ctest V gtery By £t C stuzy

By case analysis on the location of ot

Case: o' € X!
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APS; Babs pabS, 5 gy cons < p By Lemma Full complete

plA L pta By Lemma Full complete
p:‘:A qpth By Lemma Full complete
ptA distinct € PY By construction of PY

Case: ot ey

Aabs. pabs. gabs. g 1. cons — p}{A By Lemma Full complete
plA L pua By Lemma Full complete
piA < pus By Lemma Full complete
ptALCT pud By Lemma [ on abs preserves C
plA T pud By Lemma | on abs preserves <l
pUA distinct € PY By construction of Py
Vpuh e PL.
3 distinct Gu/ € XY ACONE PBOONE pCONE g k¢ ) cons — pg‘A'By construction of P and X = [Py
puA =T pU By construction of P
otery By Iy c Iy
A“bls; Babs, /pabs; 0 b cons — p}jA/ By Lemma Full complete
puA’ C pud By Lemma Full complete
pEA/ g p}{A/ By Lemma Full complete
pua ) pua By Lemma | preserves C
pUAL T pus By Lemma | preserves <
pUA distinct € PY By construction of Py
V ptA € Pt Jdistinct p4 € Py . ptA C 02 By quantification above
VA € PL. Fdistinct p4 € Py . pt2 < p2 By quantification above
V pul € PY . Jdistinct p4 € Pq . pYA T p4 By quantification above
Y puh € PY . Jdistinct p4 € Py . p¥A 1 pd By quantification above
VA € P Agps F pt2 consistent By quantification above
W p}{A € Py. Aavs - p}l‘A consistent By quantification above
Let P, = Pt UPY
IR. VApa € Po.dom(pa) =R By inversion on consistency of each pq
Let p5 = (=EPg)
Aabs; Babs; pabs Fpart COTLS pabsA By rule bind
v pcA € P. . I distinct p4 € Pq . pcA Cp2 By P. = Rho! U Rho¥
V p2 € P. . Idistinct p4 € Pq . p2 < p2 By P = Rho! U Rho}
pcA C pﬁ By =l preserves C and < on sets
p2 < p2 By =] preserves C and < on sets

cons = op : Petx = Preq 44 Q

Iy = FV(op) UFV(Peix) UFV(Q) allValidSubs(A°™; oop; ) = (2, @)
‘ACOTLC. tBCOTLC. p

(CANT—BIND)
€O Oop Fpart cOMs — L geone
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allValidSubs(.A bs; oop; Iy) — (Z5, I By Lemma All Subs Sound and complete

rfcrtury By Lemma All Subs Sound and complete
rvCry By Lemma All Subs Sound and complete
rtoxrt By Lemma All Subs Sound and complete
st=g By It D It

By case analysis on the property LY = &

Case: L, =0

Aabs: Babs. abs: cong - instr < | 4abs By rule cant — bind
19me e J_;llbs By definition of 1 4
1emed Libs By definition of 1 4
Case: I # 0O
Let Pt = {p?| o€ It A Aabs;Babs gabs. g o cons < pA) iP/f1 =0 Byrli=02
Let P¥ = {] p? | 0 € I A AGbs; Babs: gabs, g |\ cons < p?'}
VR— E € 1 geone . E = Dot By definition of | 4
ACOTC - | jecone consistent By definition of 1| 4
VA e Pu.
p2 =] pA" where A@bs; Babs. nabs. 5 cons s pA' By construction of P¢
A®bs 1 oA consistent By lemma full consistent
AGPS |- oA consistent By lemma ] consistent
dom(L geonc) C dom(p?) By Lemma consistency and C 4 implies domains subset
VRi—= E€ p®.E=bot V E = unknown By [ creates polarity
VR— E € L geone . E C p?(R) By rule C —bot
1 geone C p2 By rule C —p
VR — E € L geone . E < p?(R) By rule < — bot and < — unknown
1 geone < pA Byrule<d—p
A abs, pabs, jabs Fpart cONLS — pabsA By rule bind
Voele PY . L geone T pA By quantification
VpA € PY. L geone < p? By quantification
1 geone C (21 PY) By lemma [=| preserves C
1 geone K (EIPY) By lemma [=| preserves <
O
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Theorem E.4. Completeness of Constraint with Full Substitution

Proof:

forall deriv.
A conc EA Aabs
peonc EB Babs
pconc O p(1bs

AP b pabs congistent
ACONE |- pONC consistent
p 9P final

p<M€ final

ACOTLC. tBCOTLC conc
)

;P05 0 Fgy cons — p

dom(o) = dom(FV(cons))
exists deriv.

concA

abs. mabs, abs, absA
AP BV 9P g e cons — p

concA absA
P Cp

concA absA
p dp

By case analysis on A OM¢; BEONC, 5CONC: 5 1\ cons — pConeA

Case:

cons = op : Petx = Preg 4 Q BN pOMC | Py [o] False

conec,

ACOTE, BEONE nCONC 5 e cons — L geone

BS; 0 |- Py [o] £
False < t¢
By case analysis on the value of t¢

Case: t“ = False

Aabs;‘Babs; pabs; o l_full COTLS L‘(}lbs
VR—=Ee L™ . E =bot

VR— E€e LM EC L9PS(R)
Li{)ne C J_;llbs

VR Ee L9 E=bot

VR—E ¢ pconcA E < pabsA(R)
J_%)nc < J‘jlbs

Case: t¢ = True

a

Invalid case by False < t
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(FULL—F—COMPLETE)

By lemma truth sound
By lemma truth sound

By rule full — complete — False
By definition of L

ByruleC —1

By rule C

By definition of L

By rule < —bot

By rule <



Case:

Case: t® = Unknown

Let p2" = lattice(Qlo],.Abs, Babs)
Let p4 =] p?

Aabs;Babs; pabs; o l_full CONS — pﬁ
AabS |- pﬁl consistent

AGPS |- ol consistent

ACOMC | | jeone consistent

dom(L geonc) € dom(p4)
VR—=Ee LY. E =bot

VR E € pq.E=bot V E = unknown

VR— E€ LM EC p2(R)
J_i{)nc C pabsA

VR—E € pconcA ' E <4 pabsA(R)
J_%)nc ’q pabsA

cons = op : Petx = Preq 4 Q

By rule full — complete — Unknown
By lattice consistent

By ] consistent

By definition of | 4

By consistency and C 4 implies domains subset
By definition of L

By ] creates polarity

By rule C —bot

By rule C

By rule < — bot and < — unknown
By rule <

Beone. peone - p.. lo] True

(ZL, %) = allValidSubs(A°™; o; FV(cons))
Jo' € LLUZY. BN pONC | Poyl0’] True V pm I Preqlo’] Unknown

— (FULL-T—COMPLETE)

ACOT\C;BCOHC; pCOT‘LC; o '_fu” CONs < lattice(Q[o_]"ACOnC)gCOTLC)

BLS; pbS | Py, o] £

True < t¢

Let p2 = lattice(Ql[o], AcOme, Beone)
By case analysis on t¢

Case: t% = True

(£t £ = allValidSubs(A%S; o; FV(cons))

stCstusy
suC sy

sio st
sturtcrtuse

By lemma truth sound
By lemma truth sound

By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete

By subsets above

Let 0/ where 0’ € L U I and BOMC; pONC 1= Proqlo’] True V pM€ = Preqlo’] Unknown

oclertury

By StULY¥ C Lt ULy

Bavs; pabs |- p. . [o'] True V BaS; pabs |- P [6'] Unknown By lemma truth complete

Let p4 = lattice(Qlo]; A 9Ps; Babs)
Aabs;Babs; pabs; o l_full COMS — pﬁ
P2 C p2
pd < p?

Case: t% = False

Invalid case by True < t¢
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By rule full — T — sound
By Lemma lattice complete
By Lemma lattice complete



Case: t® = Unknown

Let p2" = lattice(Qlo],.Abs, Babs)

Let pg =] p

AGPS; Babs gabS; 5 f-g )y cons — pg By rule full — complete — Unknown
p2A C pﬁ/ By Lemma lattice complete
P2 < pﬁ/ By Lemma lattice complete
P2 C pd By Lemma | on abs preserves C
pcA <04 By Lemma | on abs preserves <

cons = op : Petx = Preq 4 Q

BEONE, O | Py [0] Unknown p2 = lattice(Qlo])
Case: ot cone —cone X (FULL—U—COMPLETE)
A B e ;0 e cons <=7 pg

Babs; pabs - Py [o] t° By lemma truth sound
Unknown < t¢ By lemma truth sound
Babs; pabs |- Py [0] Unknown By inversion on Unknown < t¢
Let p4 = lattice(Qlo], AP, Babs)

P2 C o4 By Lemma lattice complete
pe g By Lemma lattice complete
Te2C] pﬁ By Lemma [ preserves C
Ted<lpd By Lemma | preserves <

46



Theorem E.5. Truth Checking Complete

forall deriv.
pconc E pabs

Reone — g abs

pPs final

PO final

Beone. peone | p[g]te
exists deriv.

BAbs: 5abs L plglt,

t° < ta

Proof:
By induction on p€°"¢ I Plo] tq

Case: p~(rel(B)[o]) = true (REL—TRUE)
"B pOC k- rel(y)[o] True

Let R = rel(£)[0]

R € dom(p@?s) By inversion on pS°n¢ [ pabs
Let E@ = p9Ps(R)

By case analysis on the value of E¢

Case: E¢ = true

Beone. peone 1 R True By rule rel — True
True < True By rule 5 — =

Case: E¢ = false

Contradiction with p¢onc C pabs

Case: E9 = unknown

Beone, peonc 1 R Unknown By rule rel — Unknown
True < Unknown By rule < —Unknown

Case: E¢ =bot

Contradiction with p@* final

. po™(rel(f)[0]) = false
ase: REL—FALSE
peone. yeone | rel(y)[o] FalSe( )
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Case:

Let R = rel({)[0o]

R € dom(p®™) By inversion on pS°n¢ C pabs
Let E¢ = p@bs(R)

By case analysis on E¢

Case: E¢ = false

Beone. peonc 1 R True By rule rel — False
True < True Byrule x — =

Case: E¢ = true

Contradiction with p¢one C pabs

Case: E9 = unknown

Beone, peonc - R Unknown By rule rel — Unknown
True < Unknown By rule < —Unknown

Case: E¢ =bot

Contradiction with p@Ps final

p o™ (rel(£)) = E€ E€ £ true E€ £ false
= (REL—UNKNOWN—SOUND—COMPLETE
BEOME: pONE 1 rel(£) Unknown :

Let R = rel({)[0o]

R € dom(p®™) By inversion on pSon¢ C pabs
Let E¢ = p@bs(R)

By case analysis on E¢

Case: E¢ = false

Contradiction with p¢onc C pabs

Case: E¢ = true

Contradiction with peon¢ C pabs

Case: E9 = unknown

Beone, peonc - R Unknown By rule rel — Unknown
True < Unknown By rule < —Unknown

Case: E¢ =bot
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Contradiction with p@Ps final

Beone. o 1 A . BeONC(g, i) = te t¢ = Unknown

Case:
BEONE pCONE - A [l o5t True

Babs. pabs FA tq
t° < ta
By case analysis on t.

Case: t. = True

By case analysis on B %P5 ({(egt)

Case: BW5(Liest) = True
By case analysis on tq
Case: t, = True

Babs. nabs | A /g, True
True < True

Case: t, = False
Invalid case by pone C pabs

Case: t, = Unknown

Babs. nabs i A /0. Unknown
True < Unknown

Case: BP5(L.q) = False
Invalid case by BN Ly Babs

Case: B5(Lyest) = Unknown
Babs. nabs i A /0.« Unknown

Case: t. = False

By case analysis on BPS({(gt)

Case: B5(fiost) = False
By case analysis on tq

Case: t, = False

Babs. nabs i A /g, False
False < False
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(REL—TEST—TRUE)

By induction hypothesis
By induction hypothesis

By rule rel — test — True
Byrule x — =

By rule rel — test — Unknown1
By rule  —Unknown

By rule rel — test — Unknown2

By rule rel — test — False
Byrule x — =



Case: t, = True
Invalid case by p°n¢ C pabs

Case: t, = Unknown

Babs. nabs - A /.« Unknown
False < Unknown

Case: B5(Les) = True
Invalid case by BOne Ly Babs

Case: B5(Lyes) = Unknown
Babs. nabs - A /0.« Unknown

Case: t. = Unknown

Invalid case by t. # Unknown

By rule rel — test — Unknown1
By rule < —Unknown

By rule rel — test — Unknown2

Case:

Babs. pabs FA tl
) a
te < tg
By case analysis on tl

Case: t! = True

t2 = False
By case analysis on BPS({(egt)

Case: BP5({.s) = False
By case analysis on tll
Case: t] = True

Babs. pabs A /p. .. False
False < False

Case: t) = False

Invalid case by pone C pabs

Case: t) = Unknown

Babs. nabs i A /0. Unknown
False < Unknown
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BN o At! BEONC(fiot) = t2 t{ # Unknownt$ # Unknownt{ # tg(
PBEONE pCONE = A /{5t False

REL—TEST—FALSE)

By induction hypothesis
By induction hypothesis

By t{ # t§ and t§ # Unknown

By rule rel — test — False
Byrulex — =

By rule rel — test — Unknown1
By rule  —Unknown



Case:

Case: BW5(Liest) = True

Invalid case by BN Ly Babs

Case: B5(fyest) = Unknown

Babs. nabs i A /.« Unknown

Case: t! = False

t2 = True

By case analysis on BPS({1eq)

Case: BW5(Liest) = True
By case analysis on t),

Case: t) = False

Babs, nabs b A /. False

False < False

Case: t] = True

Invalid case by p°ne C pabs

Case: t) = Unknown

rBabs; pabs F A/Liest Unknown

False < Unknown

Case: B5({.¢) = False

Invalid case by BCO™c Ly BabS

Case: B5({yest) = Unknown

3abs; pabs F A/Liest Unknown

Case: t! = Unknown

Invalid case by t; # Unknown

BEONE: pOTC 1 A Unknown

Beone. peone A /g Unknown

R abs. pabs FAtg

Unknown < t4

Babs. pabs - A /¢, Unknown
Unknown < Unknown

(REL—TEST—U1)
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By rule rel — test — Unknown2

By t{ # t§ and t{ # Unknown

By rule rel — test — False
Byrulex — =

By rule rel — test — Unknown1
By rule < —Unknown

By rule rel — test — Unknown2

By induction hypothesis
By induction hypothesis
By rule rel — test — ul

By rule  —Unknown



Case:

Case:

Case:

Case:

B (Liest) = Unknown

BCOT\.C; pCOT‘LC '_ A tc

conc, ,conc
B P =

‘Babs. pabs FA ta

te <ta

Babs (g, .t) = Unknown
B, 005 1 A /010y Un
Unknown < Unknown

ABCOTLC; pCOTLC '_ S Unkn

A /liest Unknown

known

own

gCOTLC,

P

conc l_

Babs. pabs S tq
Unknown < tq

(—S—UNKNOWN)

=S Unknown

Babs, nabs - -G Jnknown

Unknown < Unknown

BEONE pCONC |- SFalse
BCOTIC; pconc '_ _‘STrue

Babs. pabs S tq
False < tq

(—S—TRUE)

By case analysis on the value of tq

Case: t, = False

Babs. nabs | G Trye

True < True

Case: tq = True
Contradiction with
Case: t, = Unknown

Babs. pabs F-SU
True < Unknown

BCOTLC; pCOTlC '_ STrUe

False < tq

nknown

BEONE; pCONE |- —SFalse

Babs. pabs S tq
True < tq
By case analysis on the v

(—R—FALSE)

alue of to
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(REL-TEST—U2)

By induction hypothesis
By induction hypothesis
By Rconc Cp Babs

By rule rel — test —u2
By rule  —Unknown

By induction hypothesis
By induction hypothesis
By rule =S — Unknown

By rule < —Unknown

By induction hypothesis
By induction hypothesis

By rule =S — True
Byrule x — =

By rule =S — Unknown
Byrule x — =

By induction hypothesis
By induction hypothesis



Case:

Case:

Remaining cases work as expected for a three value logic.

Case: tq = True

Babs. nabs |- -G False
False < False

Case: t, = False
Contradiction with True < t4
Case: t, = Unknown

Babs. nabs - —S Unknown
False < Unknown

(TRUE)
BEONE: O - trueTrue
Babs. 5abs i tryeTrue
True < True
(FALSE)

BEONE pONC |- falseFalse

Babs. nabs 1 fqlseFalse
False < False
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By rule —S — False
Byrule x — =

By rule =S — Unknown
Byrule x — =

By rule true
Byrule < — =

By rule false
Byrulex — =



Theorem E.6. Instruction Binding Complete

forall deriv.
Aconc Ca Aabs
AN - instr: op — (Z5, ZY)
exists deriv.
A - instr:op — (ZL,ZY)
stcstury
IrCxy
2L
Proof:
By case analysis on the structure of the derivation of A" |- instr: op — (ZL, LY)

FV(Tthis-m(Y 1 T) : Tret) € ry
(25, £¥) = findLabels(AS Ty {Xret, Xthis} U X, {ret, this} UY)

Case: — —— (INVOKE)
Aconc; ry F Xpet = Xthis-m(x) . Tthis-m(y : T) I Tret B (Zﬁ, Zlcl)
(£t £ = findLabels(,A%Ps, Iy, {Xret, Xthis) U X, {ret, this} U y)By lemma FindLabels sound and complete
rtcriury By lemma FindLabels sound and complete
vcry By lemma FindLabels sound and complete
ot By lemma FindLabels sound and complete
A8 = Xt = Xenis.M(X) : Tenis.M(Y 1 T) : Tret — (Z8, ZY) By rule invoke
FV(inew t(y:7)) CTy
(2L, £ = findLabels(A°™ Ty, {Xret } U X, {this} U Y)
Case: — — —— + <y (CONSTRUCTOR)
A Ty F Xret = new m(X) : new t(y:7) = (X, X¢)
(£, ZY) = findLabels(A S, Iy, {Xret, Xthis) U X, {ret, this} U ¥)By lemma FindLabels sound and complete
rfcrtury By lemma FindLabels sound and complete
rvCry By lemma FindLabels sound and complete
ot By lemma FindLabels sound and complete
AGPS - xoo0 = new m(X): new T(y:7T) — (I, IV By rule constructor
Case: — (EOM)
A ;Ty F eom : end-of-method = ({@}, @)
A%PS - eom : end-of-method = ({2}, @) By rule eom
IeCIpury By {2} C{oluw
TuC U Byo C o
ozt By {©} D {&}

O
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F Soundness

Theorem F.1. Soundness of Relations

Analysis

forall der.
fatias(A%PS, instr) = AP’

Fattas (A", instr) = Acon

exists de

p P final

P final

peonc EB Babs

A cone EA A abs

Aabs - pab

S consistent

ACONE | pONC consistent

pCOTLC E pa

fe;Aabs;Babs (pabs, iTlStr) =P

T.

fe;‘Aconc;gconc (p

bs

abs’

conc conc’

,instr) =p

pconc’ O pabs’

Proof: [Soundness of Relation Analysis]

pabs’ _ transfer(pabs’ﬂabs') = pabsA

V cons; € €. APS; Babspabs. cong: - instr < pS

pabsA -1 {p?bSA}

Vcons; € C.
concA absA
Py ) C p;
ACOTE L pCONC: cons - instr — p
concA absA
P Jpf

Acone’ pfO“CA consistent
JR.Vi.dom(pfoned) =R

Let pconcA =1 {pg:oncA}
pconCA < pabsA t

pconcA C pabsA

, .
Aconc’ pCO“CA consistent
1" !
Let p¢°M™¢" = transfer(pcomnc, Aconc)
’ 1" .
ACONE |- peonc™ consistent

dom(pconc“) — dom(pconcA)
Let pconc’ — pconc“ = pconcA

pconc’ C pabs/

concA
i

. . - ’
By inversion on fe. gabs.gabs (p9Ps instr) = pabs
absA

1
’

By inversion on fe. gabs.gabs (pabs instr) = pabs
By inversion on fe. gabs.gabs (pabs instr) = pabs’
By Lemma Soundness of Single Constraint
By Lemma Soundness of Single Constraint
By Lemma Soundness of Single Constraint
By Lemma Consistency of Single Constraint
By Lemma consistency means same domain
By join rule applied many times

By Lemma U preserves <

By Lemma LI preserves C

By Lemma same domains mean consistency

By Lemma transfer implies consistency

By Lemma consistency means same domain
By rule overmeets

By Lemma [ preserves C
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conc’

feaconc.peone (PO instr) = p By rule flow — cons

O
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Theorem F.2. Soundness of Single Constraint

forall deriv.
Aconc EA Aabs
pconc EB Babs

pconc C ) abs

AP 1 paPS congistent
AP | p®OM€ consistent

PO final

A 5abS. cons b instr < pabsA

exists deriv.

conc, ,conec, concA
AT 0

scons Finstr — p

concA absA
P Cp

concA absA
P <dp

Proof:

By case analysis on A%PS; Babs: 5abs: cons | instr «— pabsd

cons = op : Petx = Preq L QA5 FV(cons) F instr:op = (I8, ZY)
StV INLD Pt ={p?| o€ I N APS B 5o 51 cons — pt)
PL={]p%| o€t A AS; BAPS, bS5 cons — p?}
P =T IPY=ITY  PR=PLUPY
Aabs; Babs, nBabs. cong - instr < (1= PL)

Case:

Let p4 = (=1 P2)

AcOMC - instr:op & (ZL, EL) By Lemma Instruction Binding Sound
ricriuzry By lemma Instruction Binding Sound
TyCiy By lemma Instruction Binding Sound
ot By lemma Instruction Binding Sound

By case analysis on the property L U LY = &

Case: L!UIV =0

It=0 By inversion of L U Il = &
t=yg By inversion of ZL U LY = &
ACOTE BEONE, pCONC cons - instr — LPMC By rule not — match
ACOTE |- | 9P consistent By definition of L 4
AGPS |- o4 consistent By Lemma partial binding consistent
dom(Lm) C dom(p%) By lemma consistency and C 4 implies p domains subset

VR Ec € Lomne,

57



E. =bot
E.C pé(R)

VR Ec € LM E. C p2(R)

Lo C p2(R)

Ht=o
Pt=0o
Y puh € pu,

Let p& =] pu&’

Where APS; Babs; pabs. gl - cons < pU4 and o™ € LY
VR E € p¥4 . E =bot V E = unknown

VotA e PY VR E € pts . E=botV E = unknown
VR~ E € p4 . E=bot V E = unknown

VR € dom(L geonc) .

J__Aconc (R) — bO‘t
Let Eq = p4(R)

Case analysis on the value of E,

E,. =bot
bot < bot

E, = unknown
bot < unknown

Eq, = true

Contradiction with VR — E € p

E, = false

Contradiction with VR — E € p

VR e dom(J_Aconc) . J_Aconc (R) < pﬁ(R)

A
J_Aconc S] pa

Case: L' ULV #£ 2

LAGVIVAD

By definition of L 4
By rule C —bot

By quantification above

By rule C —p
ByfIlDitandil=0
By [Pol =zl

By construction of P}y

By T makes everything bottom or top.

By quantification
By =l preserves polarity

By definition of L

By rule < — bot

By rule < — unknown

A E =bot V E = unknown

A E =bot V E = unknown

By quantification
Byrule d—p

By inversion on U

Let Pt = {p2 o € L A AN B; p®ONC g ko cons — p2}V ot € IL.



oterluzry By inversionon £f C X U LY
Case analysis on the location of ot
ote Xl
3 distinct pt& € PL . Aabs; Babs; pabs gt cons < ptA
By the construction of Pt and [PY| = [Z}
Acone, peone, jeone. gt Fpart cONs — pEABy lemma partial constraint binding sound

Acone F pEA consistent By lemma partial constraint consistent

plALC ptA By lemma partial constraint binding sound

plA g pta By lemma partial constraint binding sound

pih e PL By construction of P}
otezd

3 distinct p‘C{A e Py,
/ /
p}l‘A :I pgA A Aabs;nBabs; pabs;o.t Fpart COTLS < DE'A
By the construction of Py and |Py| = |ZY]
Acone, peone, peone, gt - cons < pEABy lemma partial constraint binding sound

Acone F p’éA consistent By lemma partial constraint consistent
ptA C pud’ By lemma partial constraint binding sound
ptA g pud’ By lemma partial constraint binding sound
plALC pua By lemma ] on right preserves C
plA < pus By lemma | on right preserves <
ptA e Pt By construction of P¥

Vo' e It . Jdistinct pf € PL . AcONE; Beone, peonc. gt -+ cons < pl By quantification above

|PY = [Zf By quantification above and construction of Pt
V piA € PL . Jdistinct p2 € Py . ptA C p2 By quantification above
v ptA € Pt Jdistinct p4 € Py . ptA < p2 By quantification above
VA € PL. Acone F pt2 consistent By quantification above
Let P4 = {pA | 0 € It A AcONE, Beone, peont g\ cons — p2}
Vole sy,

otely By inversionon I C I

3 distinct pUd’ € PU, AGbS, Babs, pabs, gu L cons < pUd
By the construction of Py and |Py| = I}
ACOTE BEONE, pCONE gt |-t cONS — pt‘A/ By lemma partial constraint binding sound

Acone F pt‘A/ consistent By lemma partial constraint consistent
Let pi =] pi?’

dom(p¥2’) = dom/(pcone) By lemma consistency implies same domain
Let pe® =T pp’

pud’ [ pua By lemma partial constraint binding sound
pud’ g pua’ By lemma partial constraint binding sound
pUA L pud By lemma | preserves C
puA g pud By lemma | preserves <
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Case:

p};iA (S By construction of P¢

Vo' e Ly . ddistinct pgf € P . AN BEONE pOne gt k- cons — pg" By quantification
|P = |2 By quantification above and construction of fP:‘:
Y pul € P Jdistinct p4 € Pq . YA T p4 By quantification above
¥ pUA € PY . Jdistinct p4 € Py . piA < pd By quantification above
Y pUA € P Acone F pU2 consistent By quantification above
Let P, = PL U PY

JR.V pe € Pe.dom(pe) =R By inversion on consistency of each p'®
Let pcA = (EP)

L COne, PCONC, nCONC: con g |- {nstr «— pCcoOneA By rule match
Y p2 € P. . Idistinct p4 € Py . p2 C p2 By P. = Rho! U Rho}
¥ p2 € P. . Idistinct p4 € Py . p2 < p4 By P. = Rho! U Rho¥
p2 C p4 By L=} preserves C and < on sets
pcA g pﬁ By =l preserves C and < on sets

cons = op : Petx = Preq 4 Q A FV(cons) F instr: op & (9, 9)

(NO—MATCH)
Aabs, Babs, 5abs. cons - instr < L 4abs
AN - instr:op & (I, EY) By Lemma Instruction Binding Sound
rtcrtury By lemma Instruction Binding Sound
It=go By inversion on C
IyCiy By lemma Instruction Binding Sound
=0 By inversion on C
Acone, peonc. aconc cons Finstr <— 1 geone By rule not — match
ACOTE |- | OPTC consistent By definition of L 4
VR € dom(LP™) . LP™(R) = bot By definition of | 4
Aabs - J_f‘qbs consistent By definition of 1 4
VR € dom(L4Ps). L9PS(R) = bot By definition of 1 4
dom(LPme) C dom(J_f&bs By lemma consistency and C 4 implies p domains subset
VR e dom(LP™) . LP™(R) C J_f}lbs(R) By rule C —bot
1Leme J_j‘qbs Byrule C —p
VR e dom(LGP™e) . LP™(R) J_f}lbs(R) By rule < — bot
Lme g | gps By rule < —p

60

above



Theorem F.3. Soundness of Constraint with Partial Substitution

Proof:

By case analysis on A %PS; Babs: 5abs. Fpart cONLS — P

Case:

forall deriv.
A cone EA Aabs
pconc O pabs
pPs final

P€o™¢ final

APS | pabs congistent

ACOTE | €O consistent

abs. m abs, ,abs. absA
ATPH B 095 0 Fpare cOns —

chonc EE 3abs
exists deriv.

conc, conc,
‘A ) B )

concA absA
P Cp

concA absA
P dp

PO 0 Fpare cOMs — p

concA

absA

cons = op : Pex = Preq (X 6

I, = FV(0p) UFV(Pewe) UFV(Q)  allValidSubs(A%YS, 0oy Ty) = (£4, 51
AoV ItAg  PL={(p%|oc I A AW B pabS 51 cons < pP)
Ph={] pA|o €Tt N\ AWPSBS pS 5y cons — pt)  PL=PLUPY

bs. bs. abs. _| DA
AT B 098 00 Fpare cons — (=1 P2)

Let p4 == (1= P4)

allValidSubs (A" oo Ty) = (25, ZY)
rtcrtury

yCcry

ot

VoeZLl. A" o validFor I

Voeld. A" ovalidFor T

VoeZXl. A g validFor FV(Pcix)
VoeXy. A E o validFor FV(Peix)

By case analysis on the property L U ZY = &

Case: LUV =0

=0
Ift=0
ACOTE BEONE pCONC cons F instr — LPMC
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(BOUND)

By Lemma All Valid Subs sound and complete
By Lemma All Valid Subs sound and complete
By Lemma All Valid Subs sound and complete
By Lemma All Valid Subs sound and complete
By Lemma All Valid Subs sound and complete
By Lemma All Valid Subs sound and complete

By FV(Pewd) C T,

By FV(Per) C Ty

By inversion of L U Il = &
By inversion of L U LY = &
By rule cant — bind



Acone | | CONC consistent By definition of L 4

AGPS |- o consistent By Lemma forall binding consistent
dom(LPme) C dom(p%) By lemma consistency and C 4 implies p domains subset
VR Ec € Loome

E. =bot By definition of 1 4

E. C p4(R) By rule C —bot
VR—E.€ LM . E.C p2(R) By quantification above
Lo C p2(R) By rule C —p
t=90 ByriDrlandili=0
Pt =g By [Pyl =X
Y puh ¢ pu,

Let p}l‘A =] p}l‘Al

where A aPs; Babs. pabs. gu . cong < p‘C{A/ and ot € I} By construction of P}
VR E € p¥4 E =bot V E = unknown By [ creates polarity
VotA e PY VR E € pts . E=botV E = unknown By quantification
VR—E € pﬁ . E =bot V E = unknown By =l preserves polarity

VR € dom(L geonc) .

1 geonc (R) = bot By definition of |
Let Eq = p4(R)
Case analysis on the value of E,

E,. =bot
bot < bot By rule < — bot

E . = unknown

bot < unknown By rule < — unknown

Eq, = true
Contradiction with V R — E € p2 . E = bot V E = unknown

a

E, = false
Contradiction with V R — E € p2 . E = bot V E = unknown

a

VR € dom(L geone) . L geone(R) <1 p2(R) By quantification
Lpcone 1 pg Byrule <—p
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Case: JLULV #£ O

ILALGVIVA D By inversion on U
Let Pt = {p? | o € ZL A Acone; Beone, peone, g 1\ cons — p2} Vot € It .

otertury By inversionon £f C X} U LY
Case analysis on the location of o
otexl
J distinct pt2 € PL . Aabs;, Babs, nabs, gt 1\ cons — pABy the construction of PY and [PL| = |Z
Acone. peone: peone: gt L cons < ptA By lemma full constraint binding sound

Acone F pEA consistent By lemma full constraint consistent

plA L pta By lemma full constraint binding sound

pzA QpthA By lemma full constraint binding sound

plA e Pt By construction of P!
otexld

3 distinct pU4 € Y, pus =] plgA/Aabs;Babs; pbs: gt b cons — pg‘A/By the construction of P
Acone, peone. peones gt L cons < ptA By lemma full constraint binding sound

Acone F p:‘:A consistent By lemma full constraint consistent
pf:A C pgA/ By lemma full constraint binding sound
pf:A < p}l‘A/ By lemma full constraint binding sound
plA L pud By lemma | on abs preserves C
piA < pud By lemma | on abs preserves <
plA e Pt By construction of PY

Vot e £ . Jdistinct pl € PL . Acone, Beone, peone. gt g cons — pt By quantification above

|PL = |ZY By quantification above and construction of P!
V ptA € PL . Jdistinct p2 € Py . ptA C 04 By quantification above
¥ ptA € PL. Jdistinct p4 € Py . ptA < pd By quantification above
VA € PL . Acone F pt2 consistent By quantification above

Let Pt = (] p? | 0 € ¥ A ACONE; BCONC, nCONC: e 1 cons < pA}V ol € IU.

otely By inversionon I C LY
3 p}{A, € PY . Aabs; Babs, pabs. gl i\ cons — p}l‘A/By the construction of P% and P4 = |ZY]
A cCOome, BCONC, CONC, Gl |- 1 CONS — pgA/ By lemma full constraint binding sound
Acone F pEA/ consistent By lemma full constraint consistent
Let pi& =7 pu&’

dom(pgA/) = dom(p©°"¢)By lemma consistency implies same domain Let pEA =] p¢ '
pt‘A/ L p}l‘A/ By lemma full constraint binding sound
pEA/ g p}l‘A/ By lemma full constraint binding sound
puA C pud By lemma | preserves C
pEA g p}l‘A By lemma | preserves <
puA € Pu By construction of Pt
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Vo' e Xt . ddistinct pgf € Py . AN B; p; 0™ Fpare cons < p By quantification above

[P = |ZY] By quantification above and construction of Pt
¥ pUA € PY . Jdistinct p4 € Py . pUA C p4 By quantification above
Y put € PU . Jdistinct p4 € Pq . ptL < pd By quantification above
A pEA e P Aconc F pEA consistent By quantification above
Let P. = PL U PY

IR .V pc € Pe.dom(pe) =R By inversion on consistency of each pt4
Aconc; Bconc; pconc |_part COMs < pconcA By rule bind
V p2 € P. . Idistinct p4 € Py . p2 C p4 By P. = Rho! U Rho¥
V p2 € P. . Idistinct p4 € Py . p2 < p2 By P = Rho! URho}
pAC o2 By =l preserves C and < on sets
p2 < p2 By (=l preserves C and < on sets

cons = op : Petx = Preq 4 Q

Iy = FV(op) UFV(Pew) UFV(Q) allValidSubs(A%PS; oop; Iy) = (9, 2)

abs. mabs. abs (CANT—BIND)
ATPE B 0%P% 0op Fpart cons — L jabs
allValidSubs (A" oop; Ty) — (ZE, I3 By Lemma All Subs Sound
rftcrtury By Lemma All Subs Sound and complete
=g By inversion on C
vcry By Lemma All Subs Sound and complete
Iv=0 By inversion on C
ACOne, PCONC, (CONC: cons - instr < L geone By rule cant — bind
ACOTE |- | 9P consistent By definition of 1 4
VR € dom(LP™) . LP™(R) = bot By definition of | 4
Aabs Lf‘qbs consistent By definition of L 4
VR € dom(L4Ps). L9PS(R) = bot By definition of 1 4
dom(LPme) C dom(J_fabs By Lemma consistency and C 4 implies p domains subset
VR e dom(LGP™€) . LPM(R) C J_f}lbs(R) By rule C —bot
1Leme J_j‘qbs By rule C —p
VR € dom(LEPme) . LSME(R) <O L 9PS(R) By rule < — bot
Lcone g | gbs By rule < — p
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Theorem F.4. Soundness of Constraint with Full Substitution

forall deriv.
Acone [, gabs
peone [ gabs
pconc C pabs
AP b pabs congistent
ACOTE | p€ONC consistent
pPs final
p€O™¢ final
A | o validFor FV(Peiy)
dom(c) = dom(FV(cons))
AQbs. gabs. jabs. o cone y pabsA
exists deriv.

comc. qp CONnc. ,conc, concA
A B ) ;0 Fqycons — p

pconcA C ) absA

concA absA
P <dp

Proof:

By case analysis on A%PS; Babs: nabs. 5 |\ cons «— pabsA

cons = op : Petx = Preg 4 Q Babs. nabs L p . [5] False

Case: 5 5 5 (FULL—F—SOUND)
AGCS B oS g gy cons < L gavs
Beonc. peonc - p . lo] t€ By lemma truth sound
t¢ < False By lemma truth sound
Beone. peonc - p . [o] False By inversion on t¢ < False
ACOTE BEOTLE, pCONE g kg cons — LPMe By rule full — sound — False
VR—Ee€ LP" . E =bot By definition of L
VR—E€e LM EC L9%%(R) By rule C — L
Lcone | gbs By rule C
VR E e L9 E=bot By definition of L
VR — E € peoncA E g pabsA(R) By rule <— L
1yned J_jlbs By rule <

cons = op : Peix = Preq I Q Babs. nabs - p . [o] True
(L, £¥) = allValidSubs(A9P%; o; FV(cons))
Jo’ € It . B pbs - P [0”] True

AQbs. gabs. yabs. 5o cong < lattice(Qlo])

Case: (FULL—T—SOUND)
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Case:

4BCOTLC; pCOnC '_ Pctx[U] tC

t¢ < True

Beonc. peonc - p . [o] True

(£, £Y) = allValidSubs(A°™; o; FV(cons))
VoeXluZLl. AN g validFor FV(cons)
VoeZluzl. A |- gvalidFor FV(Preq)
rtcrtury

TUC g

rtoxrt

3o’ € £, Babs; pabs | p (7] True

Let p9Ps2 = lattice(Q[o], A%Ps, Babs)

pconcA — 1attice(Q[o_]"Aconc, Bconc)
pconcA C pabsA

pconcA < pa‘bsA

ACOT‘LC; ABCOT‘LC; pCOTLC; o }_fu” cons — pCOTLCA

cons = op : Petx = Preq I Q

By lemma truth sound

By lemma truth sound

By inversion on t€ < True

By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By FV(Preq) € FV(cons)

By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By It D> xt

By Lemma lattice sound
By Lemma lattice sound
By Lemma lattice sound
By rule full — T — sound

Babs. nabs L p . (6] Unknown

(L, =% = allValidSubs(AY%; o; FV(cons))

Jo' € Il . BS; oS P (6] True

pPsA” — 1attice(Q[o])

bs. bs. abs. bsA’
‘A(l S»Ba S’p(l syo—l_fu” cons (_)I Pa s

BCOTLC; pCOTLC l_ PCtX[O-] t
Case analysis on t

Case: t = True

(£L, £ = allValidSubs(A°™¢; o; FV(cons))
VoeXLluIlt. AN gvalidFor FV(cons)
stCrtusy

FuC gu

ot

Jo'exl. Babs, nabs Preqlo’] True

Let p@bsA” — 1attice(Q[o], A%bs, Babs)

pconcA — 1attice(Q[G],A°°“°, Bconc)
pconcA C pabsA’

pconcA < pabsA’

Let pabsA :I pabsA’
pconcA C pabsA

pconcA 59 pabsA

ACOTLC; ABCOTLC; pCOTLC; o l_fu” cons — pCOTLCA

Case: t = Unknown
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(FULL—U-SOUND)

By lemma truth sound

By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete

By It D> 1t

By Lemma lattice sound
By Lemma lattice sound
By Lemma lattice sound

By Lemma [ on abs preserves C
By Lemma | on abs preserves <
By rule full — T — sound



(£L, £ = allValidSubs(A°™¢; o; FV(cons))

VoeXluzil. Acne |- g validFor FV(cons)

slCrtysy

FuC su

v st

Jo’ € £t . Babs; pabs - p.. [07] True
Let p2bsA” — lattice(R[o], A2Ps, Babs)

pconcA’ _ lattice(ﬁ[o.]’ﬂconc’Bconc)
pconcA’ C pabsA’

pconcA’ <p absA/’

Let pabsA :I pabsA’

Let pconcA :I pconCA’
pconcA C pabsA

pconcA < pabsA

Aconc; Bconc; pconc; o l_full CONs — pconcA

Case: t = False

ACOTLC; pCOTLC; o |_fu|| COMNS — J_‘(;lOTLC

Let pabsA :I pabsA’

VR— Ee L. E =bot

VR Ee LM EC p®s4(R)

L‘%)nc C pabsA

VR— E € p®2 E =bot V E = unknown
VR Ee L E g pabsh

J_i{)nc ’q pabsA

ACOHC;_BCOHC; pCOTLC; o l_fu” cCons — J_SQOT‘LC
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By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete
By lemma valid subs Sound and Complete

By I 21g

By Lemma lattice sound
By Lemma lattice sound
By Lemma lattice sound

By Lemma | preserves C
By Lemma [ preserves <
By rule full — U — sound

By rule full — sound — False

By definition of L
ByruleC —L

By rule C

By [ creates polarity

By rule <

By rule <

By rule full — F — sound



Theorem F.5. Truth Checking Sound

forall deriv.
pconc E pabs

Reone — g abs

paPs final

PO™¢ final

A" |- o validFor FV(P)

ACONE |- pONC consistent

Babs; pabs - P[O‘]ta
exists deriv.

-BCOTLC. pCOﬂ.C '_ P[O.]tC

t¢ g t¢

Proof:
By induction on pabs |- P[g] t@

pP5(rel({)[0]) = true
Case: ——— — (REL—TRUE)
B p9P% = rel(y)[o] True

Let R = rel({)[0]

R € dom/(pcemc) By lemma o valid and p consistent
Let E€ = pone(R)

By case analysis on the value of E€

Case: E€ = true

Beone. peone 1 R True By rule rel — True
True < True Byrule < — =

Case: E€ = false

Contradiction with peon¢ C pabs

Case: E€ = unknown

Contradiction with p¢omec C pabs

Case: E€ =bot

Contradiction with p€°™¢ final
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Case

Case:

) Babs; pabs F rel(y)[o] True

p3(rel(7)[0]) = false

(REL—FALSE)

Let R = rel(£)[0]

R € dom/(pcemc)

Let E€ = p®"¢(R)

By case analysis on the value of E€

Case: E€ = false

Beone, peonc 1 R False
False < False

Case: E€ = true

Contradiction with p¢onc C pabs

Case: E€ = unknown

Contradiction with peon¢ C pabs

Case: E€ =bot

Contradiction with p€°™¢ final

By lemma o valid and p consistent

By rule rel — False
Byrule x — =

pS(rel(0)) =E*  E%#true  E%+# false

Babs: HabS 1 re|(f) Unknown

E o = unknown

Let R = rel(£)[o]

R € dom(pc°mc)

Let E€ = p®"¢(R)

By case analysis on the value of E€

Case: E€ = false

Beone. peonc 1 R False
False < Unknown

Case: E€ = true

BCOT\.C; pCOTlC '_ R True
True < Unknown

(REL-UNKNOWN—-SOUND—-COMPLETE)

By p?s final

By lemma o valid and p consistent

By rule rel — False
By rule x —U

By rule rel — False
Byrule 5 —U
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Case:

Case:

Case: E€ = unknown

Beone, peonc 1 R Unknown By rule rel — False
Unknown < Unknown By rule x —U

Case: E€ =bot

Contradiction with p€°™¢ final

Babs; oA ta Babswtest) =t¢ t@ 75 Unknown
Babs; pabs - A/etest True

(REL—TEST—TRUE)

Beonc. peone | A ¢ By induction hypothesis
tC < ta
By case analysis on t¢

Case: t¢ = True

BN (Lest) = True By Beone [ Babs
BabS; pAbS - A /046 True By rule rel — test — True
True < True Byrule < — =

Case: t¢ = False

BCOnC(etest) — False By ABCOTLC E B(lbs
Babs. nabs - A /g, True By rule rel — test — True
True < True Byrulex — =

Case: t¢ = Unknown

Contradiction with Beone C Babs

BS: o1 A t§ BAS (o) = t§ t} # Unknownt§ # Unknownt{ # t§
PBabs; pabS | A /0. False

(REL—TEST—FALSE)

PBEONE, pCONE = A 1 By induction hypothesis
65 <t
By case analysis on t§

Case: t§ = True

BCOnC(etest) — tg By fBCOTlC E tBabS
By case analysis on t§
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Case: t5 = True
Contradiction with t§ < t¢ and t§ # t$ and Beone C Babs

Case: t5 = False

BEONC, pCONC - A /{5t False By rule rel — test — False
False < False By rule 5 — =

Case: t§ = Unknown
Contradiction with Beonc [ Babs

Case: t] = False

Bconc(etest) — tg By Beone R abs
By case analysis on t§

Case: t§ = True
Contradiction with t§ < t¢ and t§ # t$ and Beone C Babs

Case: t5 = False

BEONC, pCONC - A /{4 st False By rule rel — test — False
False < False By rule 5 — =

Case: t§ = Unknown
Contradiction with Bconc [ Babs

Case: t§ = Unknown

Contradiction with Beone C Babs

Babs. Habs L A Unknown
Case: s —abs (REL—TEST—UT1)
B3 0 E A /liest Unknown

Beone, peone - A ¢ By induction hypothesis
t{ < Unknown By induction hypothesis
Let t§ = B"¢({est) By case analysis on t§

Case: t$ = True

Let t§ = BT (Liest)
By case analysis on t§
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Case: t§ = True

Bconc; pconc - A/etest True
True < Unknown

Case: t§ = False

.Bconc; pconc - A/etest False
False < Unknown

Case: tS = Unknown

Beone. peone A /g Unknown
Unknown < Unknown

Case: t{ = False

Let t% = Bconcwtest)
By case analysis on t§

Case: t§ = False

Beone. peone A /g True
True < Unknown

Case: t§ = True

Beone. peone - A /g False
False < Unknown

Case: t5 = Unknown

Bconc; pconc - A/Etest Unknown
Unknown < Unknown

Case: tt{— = Unknown

Babs. nabs i A /. Unknown
Unknown < Unknown

B8 (Liest) = Unknown Babs; pabs |- A t§
(REL-TEST-U2)

Case:

(Babs; pabs F A/{iest Unknown

By rule rel — test — True
By rule < —U

By rule rel — test — False
By rule < —U

By rule rel — test — u2
By rule < —U

By rule rel — test — True
By rule < —U

By rule rel — test — False
By rule < —U

By rule rel — test —u2
By rule < —U

By rule rel — test —ul
Byrule x — =



4BCOTLC; pCOTLC '_ A t(]l
C a
By case analysis on t§

Case: t{ = True

Let t§ = B (Lrest)
By case analysis on t§

Case: t§5 = True

PBeONC, nCONC - A [l o5t True
True < Unknown

Case: t§ = False

Beone, peonc - A /f, . False
False < Unknown

Case: t5 = Unknown

Beone. peone A /g Unknown
Unknown < Unknown

Case: t = False

Let t5 = B ™ (leest)
By case analysis on t7

Case: t5 = False

BeONC: pCONC |- A [l o5t True
True < Unknown

Case: t5 = True

Beone. peonc 1 A /.« False
False < Unknown

Case: t5 = Unknown

Bconc; pconc - A/Etest Unknown
Unknown < Unknown
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By induction hypothesis
By induction hypothesis

By rule rel — test — True
Byrule x —U

By rule rel — test — False
By rule < —U

By rule rel — test —u2
Byrule x —U

By rule rel — test — True
Byrule x —U

By rule rel — test — False
By rule x —U

By rule rel — test — u2
By rule x —U



Case: t7 = Unknown

Babs. npabs - A /¢, Unknown

Unknown < Unknown

Babs, PSS Unknown

Case: (—S—UNKNOWN)

Babs. Habs L —S Unknown

BCOTLC. pCOTLC '_ S tC
t¢ < Unknown
By case analysis on the value of t¢

Case: t€ = True

Beone, peonc 1 =S False
False < Unknown

Case: t¢ = False

BCOT\.C; pCOT‘LC F _|S True
True < Unknown

Case: t¢ = Unknown

Beone. peone - —§ Unknown

Unknown < Unknown

Babs; pabs F SFalse
Case: bs abs (—-S—TRUE)
B p % = =STrue

4BCOTLC. pCOTlC '_ S tC
t¢ < False
By case analysis on the value of t©

Case: t¢ = False

BCOTLC; pCOTlC }_ ﬁS True
True < Unknown

Case: t¢ = True

Contradiction with t¢ < False

By rule rel — test — ul
Byrule x — =

By induction hypothesis
By induction hypothesis

By rule —S — False
Byrule x —U

By rule =S — True
Byrule x —U

By rule =S — Unknown
Byrule x —U

By induction hypothesis
By induction hypothesis

By rule =S — True
By rule < —U
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Case:

Case:

Case:

Remaining cases work as expected for a three value logic.

Case: t¢ = Unknown

Contradiction with t¢ < False

BPS; pPS - STrue
Babs, 5abs 1 —SFalse

(—R—FALSE)

BCOTLC. pCOTIC '_ S tC
t€ < True
By case analysis on the value of t¢

Case: t€ = True

Beone, peonc 1 =S False
False < Unknown

Case: t¢ = False
Contradiction with t€ < True
Case: t¢ = Unknown

Contradiction with t¢ < True

(TRUE)
BabS: AbS L tryeTrue

Beone. peone 1 trueTrue
True < True

(FALSE)
Babs. abs L fqlseFalse

Beone. peonc | falseFalse
False < False
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By induction hypothesis
By induction hypothesis

By rule —S — False
Byrule x —U

By rule true
Byrule x — =

By rule false
Byrule x — =



Theorem F.6. Instruction Binding Sound

Proof:

forall deriv.

Acone [, gabs

A3 - instr: op < (Zt, o
exists deriv.

AN - instr i op «— (Z5, ZY)

ricrtusy

IfCxy

ot

By case analysis on the structure of the derivation of A% |- instr : op — (Z%, £

Case:

Case:

Case:

FV(Tthis-m(Y 1 T) © Tret) € ry
(L, %) = findLabels(A®S, Ty, {Xret, Xtnis} UX, {ret, this} Uy)

abs — — n " (INVOKE)
A ;ry F Xret = Xthis-M(X) : Tthis-m(y (T) I Tret B (Za» Za)
(ZL, ZY) = findLabels(A™ Ty {Xret, Xthis} U X, {ret, this} Uy)

By lemma FindLabels sound and complete
rftcrtury By lemma FindLabels sound and complete
rvCry By lemma FindLabels sound and complete
rtoxrt By lemma FindLabels sound and complete
ACOMC b Kot = Xthis-M(X) & Tthis-M(Y : T) @ Tret — (Z5, ZY) By rule invoke

FV(inew t(y:7T)) C Ty
(2%, Z%) = findLabels(A %, T}, {Xrer} UK, {this} UY)
Tbe — — . (CONSTRUCTOR)
A% | Xper = new m(X): new T(y:7T) = (X, Zg)
(ZL, Z%) = findLabels(A™ Ty {Xret, Xtnis} U X, {ret, this} Uy)

By lemma FindLabels sound and complete
rtcrtury By lemma FindLabels sound and complete
vcry By lemma FindLabels sound and complete
tosxt By lemma FindLabels sound and complete
AN |- %16t = new m(X): new T(y:7T) — (ZL,IY) By rule constructor

5 (EOM)
A% Ty I eom : end-of-method = ({2}, @)
A€ | eom : end-of-method = ({9}, &) By rule eom
rtcrtuzry By{o} C{oluo
IpCry Byo Co
125y By {2} 2 {2}

O
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G Operator Lemmas

Theorem G.1. Ll operator preserves =

forallderivationsof
Eclzonc C E{lbs A E<T:onc C ET(?.bS A

Efonc L Egonc — Econc A E{lbs L Egbs — Eabs

existsderivationsof
Econc O Eabs

Proof:
By case analysis on structure of the derivation of EZb | E4PS = Eabs

Case: m(u—BOT—L)
(0] =
E{°"¢ = bot By inversion on E{°™¢ £ E{lbs
Eeone = ggone By inversion on E{°™¢ LI EZOTC = ECOnC
Econe [ pabs By equality
Case: —— (U-BOT-R)
EUbot=E
ESO™C = bot By inversion on E¢Om¢ C E&bs
ECOone = Eyone By inversion on E{°™¢ LJ EZOTC = ECOnC
Eeone [ pabs By equality
Case: —— (=)
EUE=E
Eeone [ Eabs By equality
E1 # bot E, # bot Ei1 #E,
Case: (LU—£)

E U E+ = unknown

Econc C E abs
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By rule C —unknown

0



Theorem G.2. LI operator preserves <

forall deriv.
di

exists deriv.

d5:

Proof:
By case analysis on d4

Case:

Case:

————————— (U—BOT—L)
bot UES = ES

By case analysis on d1

Case (<—BOT)

) bot < bot —
E¢=E¢
E€C < ES

Case: (<I—TOP)

bot < unknown

E® = unknown
EC<EC

[ # bot

Case: —————
Ef < EY

(<—OTHER)

Invalid case by Ef = bot
————— (U-BOT-R
E{ Ubot = Ef( :

By case analysis on d2

Case: (<—BOT)

bot <bot —

E¢=E¢
EC < EC
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(E{ S EY
d2:
d3:
d4 :

ETJED
E*=ESUES
E¢ = ESLUES

EC<QE®

By inversion on d3
By ET JEY

By inversion on d3
By rule <— hot or < — unknown

By inversion on d3
By Ef S EP



Case:

Case:

Case: ————————(<—TOP)
bot < unknown

E® = unknown By inversion on d3
E€C < E® By rule <— bot or < — unknown
ES #£ bot
Case: L( <—OTHER)
ESQES

Invalid case by E¢ = bot

e g

By case analysis on d3

Case: ————————— (L—BOT-L)
bot U E} =E}
E€C<QE By ES JES
Case: ————————— (U—BOT-R
E{ Ubot = E{l( :
EC<EC By Ef < EP
Case: Afe_fa Ea(u—:)
E€C<QE By ES JE¢

E{ # bot E{ # bot Ef #EY
Case: (U—#)
E{ U Ef = unknown

By case on whether E€ = bot

Case: E€ =Dbot

EC<E® By rule < — unknown
Case: E€ = pot

EC<E® By rule <— ot

{ # bot E; # bot [ # Es
L

E{ U Ef = unknown 7
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By rule <— hot



Theorem G.3. [=| preserves polarity

forall deriv.

dl:E=E L E,

d2:E; =bot V E; = unknown
exists deriv.

d4 : E =bot V E = unknown

Proof:

By case analysis on d1

Case: ———  (EQJOIN—=
ELEE = EL( Q )
E =bot V E = unknown By Ey =bot V E| = unknown
Case: BEE giomes
" E = E, = unknown
E =Dbot V E = unknown By E = unknown
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Theorem G.4. [=| less precise than operands

forall deriv.

dl : E =E{ = E,
exists deriv.
d2: El C E
d3:E,CE
Proof:
By case analysis on d1
Case: ——————(EQJOIN—=
El=E = E( Q )
EtCEByruleC —=E,CE ByruleC — =
Case: Bk (EQJOIN—#)
" E 2 E; = unknown
Ei C EByrule C —unknown E, C E By rule C —unknown

O
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Theorem G.5. =] maintains super-precise on an operand

forall deriv.

dl : E =E{ = E,
d2:E' <E
exists deriv.
d3:E'<E
Proof:
By case analysis on d1
Case: ———————— (EQJOIN—=
Eil=EE = El( Q )
E'JE By E/ <
El 7& Er
Case: EQJOIN—
E = E, = unknown( < 7
E'<E By rule < — unknown or < — other
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Theorem G.6. |=| preserves C and <

forall deriv.
E€ =E[ = ES
E¢=E{ = ES
EfCEY
ESCES
E{ < EY
EfJES

exists deriv.

Proof:
By case analysis on E¢ = Ef = ES

Case: (EQJOIN—=)

ECE/EC =E°

By case analysis on E¢ = E{' =l E¢

Case: - (EQJOIN—=)

ECEEC=E

ECC E®
E¢<QE“

Ef A ES

Case:
E{' = ES = unknown

(EQJOIN—#)
ECC E“
E¢<JE®

=
E{ =l Ef = unknown

Case: (EQJOIN—#)

ECJE“
By case analysis on E¢ = E{' lEI E¢

Case: (EQJOIN—=)

ECHEC=E°
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By Ef C E?
By ET JEF

By rule C —unknown
By rule < — unknown or < — other

By rule < — other



By case analysis on the value of E¢

Case: EY = unknown
ECC E® By rule C —unknown

Case: E® =bot
E{ = bot By E{ C Ef!
ES = bot ByESC ES
Invalid case by Ef # Ef

Case: E® = true

E{ # bot By Ef J EP
ES #£ bot By ES JES
E{ = true By Ef C Ef
ES = true By ESC EZ

Invalid case by Ef # Ef

Case: E¢ = false

E{ # bot By Ef S EP
ES # bot By ESJER
E{ = false By Ef C Ef
ES = false By ESC E®

Invalid case by Ef # ET

. Ef # EC
ase: EQJOIN—

EfEES = unknown( < )

ECC E® By rule C —unknown
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Theor

Proof:

em G.7. = on sets preserves C and <
forall der.
d] . pc == Iﬂ ﬂ)c
dz . pa - Iﬂ :Pa

d3:Vp.eP..FpL€Pa.plEpl A pldpl
(where each p. has a distinct p},)
exists der.
d4:pc C pa
d5:pcdpa

By induction on d1

Case:

Case:

Pc = P

Let p/, be the distinct p/, for p.
By case analysis on the form of P

Case P ={pl}
Pe C Pa By p¢ C pg
Pc Jpa By p. < pg
Case Py ={p,}U P, where P # &
Pa = Pq = pg where p; = 1= (Pq — pg)

pLCpa By Lemma (=] less precise than operands
pc C pa By LC transitive
pe <pa By Lemma =] maintains < for operand

pe = L= (1)

Let p/ = =P,
Let p/, be the distinct p/, for p/
Pa = Pl =l p2 where pll = =l (Pq — pl)

Pe E Pa By induction hypothesis
Pe 1 pg By induction hypothesis
Pe C Pq By induction hypothesis
pe Jpq By induction hypothesis
Pc E Pa By Lemma [=| preserves C and <
Pc I pa By Lemma =] preserves C and <
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Theorem G.8. | creates polarity

forall der.
dl1:JE=F
exists der.
d2:E' =bot V E’ = unknown

Proof:

By case analysis on d1

Case: 1—BOT)

T (
1 bot = bot

E # bot

Case: ————
1 E = unknown

(T—UNKNOWN)
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Theorem G.9. | on abstract preserves C

forall der.
dl:ECCEY
d2 ] EY =E¢
exists der.
d2:ECE“
Proof:
By case analysis on d1
Case: ————— (C—BoT)
bot C E®
ECC E@ By rule C —bot
Case: —————————— (C—UNKNOWN)

E€ C unknown

By case analysis on d2

Case: 1—BOT)

T
1 bot = bot
Invalid case since E¢" = unknown

EY £ bot

Case: ; (T —UNKNOWN)
TE® = unknown

ECC E® By rule = —unknown

EY £ bot EY o unknown

Case: ; 7
E¢ CE®

(E—)

By case analysis on d2

Case: ——— (]—BoT
1 bot = bot (1=som

ECC E® ByruleC — =
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EY £ bot
Case: ; (] —UNKNOWN)
T E® = unknown

ECC E® By rule C —unknown
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Theorem G.10. | preserves C

forall der.
dl:E.CE]
d2:E, =] E]
d3:E. =] E]
exists der.
d4:ECCE“
Proof:
By case analysis on d3
Case: ——— (] —BoT
1 bot =bot (1=som
ECC E® By rule C —bot
E. # bot
Case: ; c 7 (] —UNKNOWN)
1 E{ = unknown
E/ # bot By inversion on E. C E[,
T B/ = unknown By rule ] —unknown
ECC E® By rule C —unknown
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Theorem G.11. | creates <

forall der.
dl:E, =] E]
d2:E. =] E]
exists der.
d3:ECQE“®
Proof:
E® = unknown V E® = bot By lemma ] creates polarity
E€¢ = unknown V E€ = bot By lemma ] creates polarity

By case analysis on the value of E€

Case: E€ =bot

By case analysis on the value of E¢

Case: E¢ =bot

E€ < ES By rule < — bot

Case: E9 = unknown

E€<E® By rule < — unknown

Case: E€ = unknown

E€C < E® By rule < — other
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Theorem G.12. [l preserves C

Proof:

forall der.

Efonc E E{lbs A Egonc E E;lbs A

E%onc o= Egone — Econc A E{lbs o= E;lbs _ Eabs A

Egonc < Egbs
exists der.
Econc E Eabs

Given Efonc C E{lbs’ Egonc C Esbs, Efonc =] Egonc — Econc’ E{lbs 2= E;lbs — Eabs’ Egonc <4 E;lbs
Show Econc Eabs

By case analysis on the structure of the derivation of E{on¢ [€] E¢one

Case:

Case:

Feone [ pop — Feone (OVRMEET-BOT)

By case analysis on the value of E"abs

Case: E2P =hot
bs __ b
Eabs — E{l s
Econc — Eabs

Case: E2P = unknown

E%PS — unknown
Econc — Eabs

Case: E9YS = true

Invalid case because ESO™c < E&bs
Case: E9Ys = false

Invalid case because ESO™C < Eabs

ESO™C £ bot

COMNC [] conc __ conc
E{one e ESone — ¢

(OVRMEET—BOT)

E4bs £ hot
Eabs — Eabs
T

Econc — E abs
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— ECOTLC

By inversion on E(PS [€] E@bs — abs
By equality

By inversion on E{PS [l E4bS — Eabs
By rule C —unknown

By inversion of E¢On¢ C Eabs
By inversion of E{PS [l Eabs — Eabs
By equality

O



Theorem G.13. Lattice with substitution is sound

forall deriv.
d1: ps = lattice(Qlo], A%, BPs)
d2 . Aconc EA Aabs
d3 : Beone [, Babs
d4 : A°°"¢ | o validFor FV(S)
exists deriv.
d5 : p"™¢ = lattice(Qlo], AOMC, BCONe)
d6 : pCOne [ pabs
d7 : pcone < pabs

Byoofiuction on d1:

Case:

Case:

Case:

Py = lattice(Q[o]; A %S, Babs) ps = lattice(Q[o]; APS; BAbs)

Tattice(Qlo], QLol; A%, BUS) = p¢ ) p§ st
p§ = lattice(Qlo]; AcOme; Beone) By induction hypothesis
gy By induction hypothesis
pT Jpf B By induction hypothesis
pS = lattice(Qlo]; AcOne; Beone) By induction hypothesis
p5 E p3 By induction hypothesis
ps Jp3 By induction hypothesis
Let p© = pJ U p§
Let p® = p§ U p¢
P C p® By Lemma LI preserves =
peJp* By Lemma LI preserves <
Tattice(Alo]; A9 B = 10 Al (PATHEER

; ; = 1 gavs[Af0] — true]
LetR = A[o]
Let p¢ = L javs[R — true]
ACOME | | gcone consistent By definition of L 4
R € dom(L geonc) By Lemma o valid and p consistent gives p domain
Let p€ = L geonc[R +— true]
lattice(Al[o]; ACOTE; BCONC) = p¢ By rule lattice — R
pc C p“ By definition of 1 4
peJp? By definition of 1L 4

- 5 5 (LATTICE——R)
lattice(—A[c]; A%, BYS) = 1 4avs[Alo] — false]
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Let R = Alo]
Let p® = 1L 4avs[R — false]

ACOMC - | jconc consistent By definition of 1 4
R € dom(L geone) By Lemma o valid and p consistent gives p domain
Let p€ = | gconc[R +— false]

lattice(—Al[o]; ACONE; BCONC) = p¢ By rule lattice — —R
p¢ C p¢ By definition of | 4
p¢ dp“ By definition of | 4

Babs(}’test[(ﬂ) = True
lattice(A[o]/yiest[0], APS, BAPS) = 1 gavs [Alo] — true]

Case: (LATTICE—R—TEST—-T)

Let R = Alc]

Let p® = 1 javs[R +— false]

ACOME | | gcone consistent By definition of L 4
R € dom(L geonc) By Lemma o valid and p consistent gives p domain
Bconc(ytest [0.]) = True By Rconc Cx Babs
Let p¢ = | geonc[R — true]

lattice(A[o]/ytest[0]; ACOTE: BEONE) = ]p€ By rule lattice — R — test — t
p¢ C p¢ By definition of 1 4
p¢ < p“ By definition of | 4

Rest of the cases follow in a similar manner.
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Theorem G.14. Lattice with substitution is complete

forall deriv.
pon¢ = lattice(Q[o], AOMC, BCO™C)
Acone [, gabs
Beone ., gabs

exists deriv.

p?s — lattice(Q[o], A0S, Bbs)
pconc E pabs

pconc < pabs

Byoofiuction on d1:

Case:

Case:

Case:

p§ = lattice(Qlo]; A, BOMC) pS = lattice(Qlol; AC™E; BO™C)

lattice(Qlo], Qlol; A™; BO™C) = pf LI p§

p§ = lattice(Q[o]; A%Ps; Babs)
P C ot

P Jpf o

P = lattice(Qlo]; A %Ps; Babs)
ps C pg

ps I p3

Let p© = p§ U p§

Let p® = p§ U p§

P L p¢

peJp?

LATTICE—R
lattice(A[o]; AP BOMC) = | 4eonc[Alo] — true] ( )

Let R = Alo]

lattice(R;A%PS; BS) = | javs[R +— true]
L geone C L gavs

J_Aconc S] J_Aabs

1L geonc[R +— true] C L 4avs[R — true]

1 geone[R+— true] < 1 jabs[R — true]

LATTICE——R
lattice(—Alo]; AT BO™) = | geonc[Al0] = false]( :

LetR = Alo]
lattice(—R;A%PS; BaS) — | .ps[R — false]
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(LIST)

By induction hypothesis
By induction hypothesis
By induction hypothesis
By induction hypothesis
By induction hypothesis
By induction hypothesis

By Lemma LI preserves C
By Lemma U preserves <

By rule lattice — R
By definition of bot
By definition of bot

Byrule C —p
Byrule<d—p

By rule lattice — —R



J_Aconc E J_Aabs
L geone <L gabs
1 geonc[R+— false] C | 4avs[R +— false]
1 geone[R +— false] <L 4abs[R +— false]

BT (yrest[0]) = True

Case:
lattice(A[o]/ytest[0], AT, BO™) = | geonc[Al0] — true]

Let R = Alo]

Lettq = BabS(Ytest[G])
True < tq

By case analysis on tq

Case: tqy = True

lattice(R/ytest[0], APS BAPS) = | 14p:[R — true]
Lgcone & L gavs

Lgeone <L gabs

1 geonc[R = true] C L 4avs [R — true]

1 geonc[R +— true] 9 L javs[R — true]

Case: t, = False

Invalid case by True < tq

Case: tqy = True

lattice(R/ytest[0], APS BS) = | 4 [R — unknown]
Lacone T L gavs

L gcone <L javs

1 geonc[R +— true] C L jabs[R +— unknown)]

1 geone[R+— true] < L javs [R — unknown]

Rest of the cases follow in a similar manner.
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By definition of bot

By definition of bot
By rule C —p
Byrule <—p

(LATTICE—R—TEST—T)

By Bconc EB Babs

By rule lattice — R —test —t
By definition of bot

By definition of bot

By rule C —p

Byrule <—p

By rule lattice — R —test —u
By definition of bot

By definition of bot

By rule C —p

Byrule <—p



Theorem G.15. ¢ valid and p consistent gives p domain

forall deriv.
dl :< Ty L >F o validFor FV(rel(y))
d2 :< Ty L >F p consistent

exists deriv.
d3:rel(y)[o] € dom(p)

Booofo) O dom(Ty) By inversion on d1
Vy:tely. 3t . <Tloly) Nt/ <t By inversion on d1
dom(p) ={relf) | T=R(rel) A T =[l=n AVicl.. n. 31 . v <11 A T <:To(y)}

By inversion on d2

¥ = dom(FV(rel(y))) By inversion on FV

Let T = R(rel

{ =ylo] By dom(c) 2 dom(Ty)

= =t=n By substitution and typing of rel

Let Ty, = FV(rel(y))

Iy =Y0:Toy---,¥Yn:Tn By inversion of FV

Viel..n. 3t .7/ <t A1 < T(&y) By dom(co) D dom(Ty)

rel(y)[o] € dom(p) By construction of the domain of p
]
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Theorem G.16. LI preserves consistency

V‘An PL Pry P
A b pyconsistent A A pyconsistent A p=pUp, =

A F p consistent

Proof:

Let A=<TypL >

Vrel({) € dom(py) . R(rel) =% A |T| = [{] A Ty satisfies { : © By inversion on A - py consistent
dom(py) = dom(p) By inversion on p = py LI py
Vrel(l) € dom(p) . R(rel) =% A |7 =|{] A Ty satisfies £ : T By dom(py) = dom(p)
A F p consistent By rule consistent

O

Theorem G.17. =l preserves consistency

V'A) P, P+, P-
A F py consistent A A pyconsistent A p=p l=lp, =

A = p consistent

Proof:

Let A=<TypL >

Vrel({) € dom(py) . R(rel) =% A |T| = [{] A Ty satisfies { : © By inversion on A - py consistent
dom(py) = dom(p) By inversion on p = p =l p;
Vrel({) € dom(p) . R(rel) =% A |7 = |{|] A T satisfies £ : T By dom(py) = dom(p)
A F p consistent By rule consistent

]

Theorem G.18. [ preserves consistency

VA, A'p,pa,p’.
A F p consistent A A’ F paconsistent A p' =plElpp =
A’ I p’ consistent

Proof:
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Let A’ =< T} L" >
Vrel(f) € dom(pa) . R(rel) =T A |T| =[] A T satisfies{:T By inversion on A’ I- pA consistent

dom(p’) = dom(pa) By inversion on p’ = p [l pa
Vrel(f) € dom(p) . R(rel) =T A [T =[{| A T satisfies {: T By dom(py) = dom(p)
A’ p’ consistent By rule consistent

]

Theorem G.19. Transfer implies consistency

V deriv.

d1: p’ = transfer(p, A)
J deriv.

d2: AF p’ consistent

Proof:

p/={R— E|Redom(Lly) A Redom(p) = E=p(R) A R¢Z€dom(p) = E = unknown}
By inversion on d1

dom(p’) = dom(Ly) By construction of p’
A F L 4 consistent By definition of L 4
A F p’ consistent By Lemma same domains imply same consistency

0
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Theorem G.20. Lattice with substitution is consistent

forall deriv.
p = lattice(Q[ol], 4, B)
A+ o validFor FV(Q)
exists deriv.

A  p consistent

Byookiuction on p = lattice(Q[o], A, B)

p1 = lattice(Ql[ol; A; B) p2 = lattice(Ql[ol; A; B)
Case: - — (LIST)
lattice(Qlol, Qlo}; A; B) = p1 U p2

A = p1 consistent
A p> consistent

By induction hypothesis
By induction hypothesis

A F pj U pz consistent By Lemma U preserves consistency

Case: - (LATTICE—R)
lattice(Alo]; A; B) = L 4[Alo] — true]

Let R = Alo]
A L 4 consistent By definition of | 4
Re dom(Ly) By Lemma o valid and p consistent gives p domain

dom(Ly) = dom(L4[R — true])
A F L 4R — true] consistent

Case: - (LATTICE——R)
lattice(—Alol; A; B) = L 4[Alo] — false]

By R € dom(Ly)
By rule consistent

Let R = Alo]
A F L 4 consistent By definition of L 4
R e dom(Ly) By Lemma ¢ valid and p consistent gives p domain

dom(Ly) = dom(L4[R — false])
AF L 4R — false] consistent

fB(Ytest[o-]) = True
Case: - (LATTICE—R—TEST—T)
lattice(A[o]/yiestl0], A, B) = L 4[R — true]

By R € dom(Ly4)
By rule consistent

Let R = Alo]
A L 4 consistent By definition of L 4
R e dom(Ly) By Lemma o valid and p consistent gives p domain

dom(Ly) = dom(L4[R — true])
A L 4[R — true] consistent
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By rule consistent



Rest of the cases follow in a similar manner.
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Theorem G.21. Consistency implies same domain

Y deriv.
dl :< Ty L >F pq consistent
d2 :< Ty L >F py consistent
d deriv.

dom(pj) = dom(rhoy)

Proof:

dom(pg) ={rel(f) [T=R(rel) A T = =n AViel..n. 37 .7 <1 AT < To(ly)}

By inversion on d1
dom(py) ={rel(l) [T =R(re) A [T =l =n AViel..n. 37 .7 <14 AT < Te(ty)}

By inversion on d2
dom(py) = dom(p2) By construction above

O

Theorem G.22. Consistency and C 4 implies domains are subset

V deriv.
dl :< T§; L€ >k p€ consistent
d2 < T L% > p® consistent
d3 < T L >Cu< THLY >
dderiv.
dom(p€) € dom(rho?)

dom(p®) ={rel(f) | T=R(rel) A [T/=[ll=n AViel...n.37 .7 <ty A v/ <:T§({i)}By inversion on d1
dom(p®) ={rel(l) [T=R(rel) A [T =[l=n AViel...n. 37 .7 <<ty A v/ <:T#{;))By inversion on d2
Vrel(f) € dom(p®) . T=R(rel) A [T =[l=n AViel..n. 3t . v/ <t At <T§)

By construction of dom(p©)
dom(l?') = dom(I) By inversion on d3
Vei:telf ©<Te) By inversion on d3
Vrel(l) € dom(p®) . T=R(rel) A [T =l =n AViel...n. 37 .7 <1y AT < Ti)By <: transitive
Vrel(£) € dom(p€) . rel({) € dom(p®)By construction of dom(p®) dom(p¢) C dom(p?) By C

]
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Theorem G.23. Find Labels Sound and Complete

forall deriv.
dl < T, L SCa< T LY >
d2:[xl=ly[=n

exists deriv.
d3:findLabels(< I, L% > T}, X,y) = (5, £5)
d4 : findLabels(< T§, L > T}, X,y) = (£, £Y)
d5:ffcriusy
d6: Xy Cxy
d7:zf ozt

Proof:

Let Z{ ={(y1 = 1), ..., (yn = {n) |
Viel...n.L%xi) ={4} A TEHEG) < Ty(yi)}
LetZy={(y1 = 4),...,(yn = ) |
Viel..n.elx) NIt .o/ <Tal) AT < ry(yi)}—Zfl
d3: findLabels(< I'#, L% >, Ty, X,y) = (L}, I By rule findLabels
Let Z8 = {(y1 = £1), ..., (yn = &n) |
Viel...n. Lx;:) ={li) A T5(l) < Ty(yi))
Let Xt ={(y1—=41),...,(yn — {n) |
Viel..on. G elf(xi) NIt . v/ <T§l) At < Ty(yi)}— Xt

~

~ —

d4: findLabels(< T5, L€ > T}, X,y) = (X, XY By rule findLabels
dom(L€) = dom(L9) By inversion on d1
dom(I'y) = dom(T'{) By inversion on d1
VUt el o/ < ) By inversion on d1
V' = el CLYx) AN £2 By inversion on d1
Ve dom(Iy) . TF(e) < THL) By rewriting
Vxedom(L).Lx) CLYx) N LE(x) £ T By rewriting
VoeXf.
Vi(l...n).
(yimli)€o By |o| =n
{0} = LC(x5) A TE(8) < Ty(yi) By construction of o
6e L%x1) A TE() < Ty(yi) By L¢(xi) C L%x)
Ge L%xi) A I v < TR) A T/ < Ty(yi) By v/ =T (i) and T (81) <: T(4)
certury By quantification above
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ds: ftcxtuzy By quantification above

Voeld.
vVi(l...n).
(yimt)eo Bylo|=n
be Lxi) A I v/ < TE(l) A T/ < Ty(yi) By construction of o
0 e LYxi) A 3T .t/ < T A T < Ty(yi) By £¢(x3) € L%(x4)
6 € L%x;:) A It/ 1/ < TE) A T < Ty(y;) By I'f(l:) <: TE(4)
oely By quantification above
de: Ty Cry By quantification above
Voexl.
Vi(l...n).
(yimli)€o By lol=n
{li) = L%x1) A TE) < Ty (yi) By construction of o
{6} = L8(xi) A TP < Ty(yi) By L(xi) C L% xi) and L(x;) # @
{li) = L(x1) A TE) < Ty (yi) By I'7 (1) <: T§(4)
cexl By quantification above
d7: £f > 1t By quantification above
]

105



Theorem G.24. All Valid Substitutions Sound and Complete

forall deriv.
dl < T LS SEu< TH LY >

exists deriv.
d2 : allValidSubs(< T £% >;03Ty) = (25, Z1)
d3: allValidSubs(< T§; L€ >; 0;Ty) = (Z8, £Y)
d4:Voe I ULy, <THLe >k ovalidFor Iy
d5:VoeZluLl. <TI§L° >k ovalidFor T,
d6:rfcrtuzy
d7: 5% Csv
dg:rfozrt

Proof:

LetXf ={0'| 0’ D2 0 A dom(o’) = dom(ly) A
Vy—=tleo . TP < Ty(y)}

LetX% ={0’' |0’ D 0 A dom(o’) = dom([y) A
Vy—=tleo . 3t .0/ <TEU N v < Tyly)}—Zf

d2: allValidSubs(< T L% >; 03Ty ) = (25, £Y) By rule validSubs

Vo e XY .dom(o) =dom(ly) AVy—(leo.3t .t/ <T#{l) A v’ < T,(y)By construction of L}, and t/ = T'#({)

VoeLy.dom(o) =dom(ly) AVy—leco.3t .1/ <TF) A v/ <:T(y) By construction of L}

Voe ZLull.dom(o) =dom(ly) AVy—leo.3t .t/ <:TF{) A v/ <:T,(y)By U and above predicates

d4: Vo e ZLULY. <THLe >F ovalidFor Iy By rule 0 —valid

LetXf{ ={0'| 0’ D0 A dom(o’) =dom(ly) A
Vy—=tleo . Tfl) < Ty(y)}

LetZ¢ ={0’ |0’ D2 0 A dom(o’) =dom([}) A
Vy—leo 3t . v/ <TE) AN v/ < Ty(y)}— Xt

d3: allValidSubs(< T'§; L€ >; 03Ty ) = (Z8, IY) By rule validSubs

Vo e Xi.dom(o) =dom(ly) AVy—leo.3t .t/ <TFU) A

Voe Ly .dom(o) =dom(ly) AVy—{leco. It . v/ < T A

Voe ULl .dom(o) =dom(ly) AVy—Lleo.3t . v/ <TH() " <: Ty (y)By U and above predicates

d5:Vo e ZEUZY. <T§;L° >F ovalidFor T}, By rule 0 — valid
dom(L€) = dom(L9) By inversion on d1
dom(Iy) = dom(T'{) By inversion on d1
VUt el o/ < T) By inversion on d1
V'l e LUV CLYx) AU #£ @ By inversion on d1
Ve dom(Iy) . IE(l) <:T2(E) By rewriting
Vxedom(L).L(x) CLYx) N LE(x) £ T By rewriting
Vo' erl.

o/ Do By construction of o’
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dom(o’) = dom(Ily) By construction of o’

V(y—1{) eo.
Fe(e) <:Ty(y) By construction of o’
It < TR A T < Ty (y) By ©/ =T¢({) and T§(£;) <: T & (4;)

Viy— ) eo 3t .o/ <T8WU) AT < Ty(y)

oleXlury By construction of X% and I
d4: st ctuzy By quantification above
Vo eIt

o/ Do By construction of o’

dom(o’) = dom(I}) By construction of o’

V(y—4{) eo.

3. < T A T < Ty(y) By construction of o’
Jh o < TR A T < Ty(y) By I'7(€) <: T#(¢)

Viy— ) eo 3t .o/ <T8) AT < Tyly)

o' e XY By construction of X%
ds: X¢ Ciy By quantification above
VoeZXl.

o/ Do By construction of o’

dom(o’) = dom(Iy) By construction of o’

V(y—1{) eo.

Fe) < Ty(y) By construction of o’
ree) <:Ty(y) By I'f(£;) <: T#(£y)
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Viy—1)eo . TF) < Ty(y)

o' e Lt By construction of L}
d6: Lt O 1t By quantification above
g
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