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Abstract

Data sets with many discrete variables and relatively few cases arise in health
care, ecommerce, information security, text mining, and many other domains.
Learning effective and efficient prediction models from such data sets is a chal-
lenging task. In this paper, we propose a Tabu Search enhanced Markov Blan-
ket (TS/MB) procedure to learn a graphical Markov Blanket classifier from
data. The TS/MB procedure is based on the use of restricted neighborhoods
in a general Bayesian Network constrained by the Markov condition, called
Markov Blanket Neighborhoods. Computational results from real world data
sets drawn from several domains indicate that the TS/MB procedure is able to
find a parsimonious model with substantially fewer predictor variables than in
the full data set, and provides comparable prediction performance when com-
pared against several machine learning methods.
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1. Introduction

The deployment of comprehensive information systems and online databases
has made extremely large collections of real-time data readily available. In
many domains such as genetics, clinical diagnoses, direct marketing, finance,
and on-line business, data sets arise with thousands of variables and a small
ratio of cases to variables. Such data present dimensional difficulties for clas-
sification of a target variable (Berry and Linoff, 1997), and identification of
critical predictor variables. Furthermore, they pose even greater challenges
in the determination of actual influence, i.e., causal relationships between the
target variable and predictor variables. The problem of identifying essential
variables is critical to the success of decision support systems and knowledge
discovery tools due to the impact of the number of variables on the speed of
computation, the quality of decisions, operational costs, and understandability
and user acceptance of the decision model. For example, in medical diagnosis
(Cooper et al., 1992), the elimination of redundant tests may reduce the risks
to patients and lower health care cost; in interactive marketing (Jesus, 2001),
conducting consumer profile analysis using non-essential variables tends to
increase the risks of a firm’s strategic decisions, raise customers’ privacy con-
cerns, hurt consumers’ trust and the firm’s reputation, and reduce profitability;
in the text mining field, being able to extract sentiments from unstructured text
would be helpful in business intelligence applications and recommender sys-
tems where user input and feedback could be quickly summarized (Pang et al.,
2002).

In this study, we address this problem of efficiently identifying a small sub-
set of predictor variables from among a large number, usingMarkov Blanket
(MB) and Tabu Search(TS) approaches. The Markov Blanket of a variable
Y , (MB(Y )), by definition, is the set of variables such thatY is conditionally
independent of all the other variables givenMB(Y ). A Markov Blanket Di-
rected Acyclic Graph(MB DAG) is a Directed Acyclic Graph over that subset
of variables. When the parameters of the MB DAG are estimated, the result is a
Bayesian Network, defined in the next section. Recent research by the machine
learning community (Tsamardinos et al., 2002, Madden, 2003, Tsamardinos
et al., 2003, Margaritis, 2003 ) has sought to identify the Markov Blanket of a
target variable by filtering variables using statistical decisions for conditional
independence and using the MB predictors as the input features of a classifier.

However, learning MB DAG classifiers from data is an open problem (
Chickering, 2002). There are several challenges: the problem of learning the
graphical structure with the highest score (for a variety of scores) is NP hard
(Chickering et al., 2003); for methods that use conditional independencies to
guide graph search, identifying conditional independencies in the presence of
limited data is quite unreliable; and the presence of multiple local optima in the
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space of possible structures makes the search process difficult. In this paper, we
propose a Tabu Search enhanced Markov Blanket procedure that finds a MB
DAG for a target variable. This two-stage algorithm generates an MB DAG
in the first stage as a starting solution; in the second stage, the Tabu Search
metaheuristic strategy is applied to improve the effectiveness of the MB DAG
as a classifier, with conventional Bayesian updating and a heuristic method of
estimating parameters.

Classification using the Markov Blanket of a target variable in a Bayesian
Network has important properties: it specifies a statistically efficient predic-
tion of the probability distribution of a variable from the smallest subset of
variables that contains all of the information about the target variable; it pro-
vides accuracy while avoiding overfitting due to redundant variables; and it
provides a classifier of the target variable from a reduced set of predictors. The
TS/MB procedure proposed in this paper allows us to move through the search
space of Markov Blanket structures quickly and escape from local optima, thus
learning a more robust structure.

This paper is organized as follows: Section 2 provides background and lit-
erature review. Section 3 presents our proposed method and examines several
relevant issues such as move selection, neighborhood structure, and evaluation
metric for our specific problem. Section 4 presents the layout of the experimen-
tal design. Section 5 details the conduct of the experiments and the analysis of
the computational results in a health care case study. Section 6, 7 and 8 present
the applications in three different domains: text mining, health care and Inter-
net marketing. Section 9 summarizes our general findings. Section 10 studies
the theoretical properties of our algorithm.

2. Representation and Background Knowledge

Definition and Notation

Bayesian Networks and Markov Blankets. A Bayesian Networkis a
graphical representation of the joint probability distribution of a set of random
variables. A Bayesian Network for a set of variablesX = {X1, ..., Xn} con-
sists of: (i) a directed acyclic graph (DAG)S that encodes a set of conditional
independence assertions among variables inX; (ii) a setP = {p1, ..., pn} of
local conditional probability distributions associated with each node and its
parents. A DAG is an ordered pair of a set of vertices,X, and a set of directed
edges, where each directed edge is an ordered pair of distint vertices inX. If
there is a directed edgeX → Y , in S, thenX is a parent ofY andY is a child
of X.

Definition 1 A joint probability distributionp satisfies the Markov condi-
tion for DAG S if every nodeXi in S is independent of its non-descendants
and non-parents inS, conditional on its parents1.
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The Markov Condition implies that the joint distributionp can be factorized
as a product of conditional probabilities, by specifying the distribution of each
node conditional on its parents (Pearl, 2000). In particular, for a given DAGS,
the joint probability distribution forX can be written as

p(X) =
n∏

i=1

pi(Xi|pai) , (1)

wherepai denotes the set of parents ofXi in S; this is called a Markov factor-
ization ofp according toS.

Definition 2 Given the set of variablesX and target variableY , a Markov
Blanket (MB) forY is a smallest subsetQ of variables inX such thatY is
independent ofX\Q, conditional on the variables inQ.

Definition 3 p is faithful to the DAGS with the vertex setX if and only if
there are no conditional independence relations inp other than those entailed
by satisfying the Markov condition forS.

The set of distributions represented byS is the set of distributions that sat-
isfy the Markov condition forS. If p is faithful to the graphS, then given a
Bayesian Network (S, p), there is a unique Markov Blanket forY consisting
of paY , the set of parents ofY ; chY , the set of children ofY ; andpa chY , the
set of parents of children ofY .

X1

X5

X4X3

X2

Y

X6

Figure 1. The Bayesian Network (S, P )

X1

X5

X4X3

X2

Y

Figure 2. A Markov Blanket DAG forY

For example, consider the two DAGs in Figure 1 and 2, above. The factor-
ization ofp entailed by the Bayesian Network (S, P ) is

p(Y, X1, ..., X6) = p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y )·
· p(X2|X1) · p(X3|X1) · p(X6|X4) · p(X1) ,

(2)

The factorization of the conditional probabilityp(Y |X1, ..., X6) entailed by
the Markov Blanket forY corresponds to the product of those (local) factors
in equation (2) that contain the termY .

p(Y |X1, ..., X6) = C ′ · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y ) , (3)
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whereC ′ is a normalizing constant independent of the value ofY .

Definition 4 MB DAGs that entail the same set of conditional indepen-
dence relations are Markov equivalent; and the set of all MB DAGs that are
Markov equivalent belong to the same Markov equivalence class.

Tabu Search Heuristic. A Heuristic is an algorithm or procedure that pro-
vides a shortcut to solving complex decision problems. Heuristics are used
when you have limited time and/or information to make a decision. For ex-
ample, some optimization problems, such as the travelling salesman problem,
may take far too long to compute an optimal solution. A good heuristic is fast
and able find a solution that is no more than a few percentage points worse than
the optimal solution. Heuristics lead to a good decisions most of the time, but
not always.

There have been several Meta-heuristic application recently in Machine
Learning, Evolutionary Algorithms, and Fuzzy Logic problems. For instance,
"What parameter settings do I use to get good results when applying heuristic
methodX to problemY ?" "How do I adjust the parameters of heuristicX so
I get better results on problemY ?" "Which is ’better’, heuristicX or heuristic
Y ?"

Definition 5 A Meta-heuristic(Greenberg, 2004) is
(1) A high-level algorithmic framework or approach that can be specialized to
solve optimization problems, or
(2) A high-level strategy that guides other heuristics in a search for feasible
solutions

Tabu Search is ameta-heuristicstrategy that is able to guide traditional local
search methods to escape the trap of local optimality with the assistance of
adaptive memory (Glover, 1997). Its strategic use of memory and responsive
exploration is based on selected concepts that cut across the fields of artificial
intelligence and operations research.

Given an optimization problemMinimize c(x) : x ∈ X, wherec(x) is the
objective function, which may be linear or nonlinear, andx is any solution in
the solution spaceX, many procedures for solving optimization problems can
often be characterized by reference to sequences ofmovesthat lead from one
solution (x ∈ X) to another.

Definition 6 A Moves is a mapping defined on a subset ofX(s) of X,

s : X(s)→ X, s ∈ S, (4)

whereX is the solution space. In some settings,X may be a superset of the
solutions which are feasible.S is a set of moves.S can be written asS(x);
S(x) can be viewed as a neighborhood function ofx.
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A simple version of Tabu Search may be expressed as follows:

Simple Tabu search (Glover, 1989)

1 Select an initial solutionx ∈ X, and letx∗ := x andx0 := x.
Set iteration counterk = 0 and tabu listTL = ∅.

2 If S − TL = ∅, then go to step 4;
Otherwisek := k + 1 and selectsk ∈ S − TL such that
sk(xk−1) = OPTIMUM(s(xk−1) : sk ∈ S − TL).

3 Letxk = sk(xk−1). If c(xk) < c(x∗) wherex∗ donates the best solution
currently found, letx∗ = xk.

4 If a chosen number of iterations has elapsed either in total number or
sincex∗ was last improved orS − TL = ∅ upon reaching this step from
step 2, stop.
Otherwise, updateTL (explained below) and return to step 2.

The mathematical definitions of thetabu listandtabu tenureare as follows:

Definition 7 Tabu list (TL) is given by

TL = {s−1 : s = si, i > k − t, } (5)

wherek is the iteration index ands−1 is the inverse of the moves; i.e.,
s−1(s(x)) = x. In words,TL is the set of those moves that would undo one of
those moves in thet most recent iterations.t is called the tabu tenure.

The use ofTL provides the "constrained search" element of the approach,
and hence the solution generated depends critically on the composition ofTL
and the way it is updated. Tabu search makes no reference to the condition of
local optimality, except implicitly where a local optimum improves on the best
solution. Abestmove, rather than an improving move is chosen at each step.
This strategy is embedded in theOPTIMUM function.

Tabu search is viewed as "intelligent" search because it makes use of adap-
tive memory. The adaptive memory feature of TS allows the implementation
of procedures that are capable of searching the solution space economically
and effectively. Memoryless heuristics, such as semi-greedy heuristics and the
prominent genetic algorithm(GA) and simulated annealing(SA) approaches,
rely heavily on semi-random processes that implement a form of sampling.
Recency-based memory structureand frequency-based memory structureare
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two most commonly used structures. They are used inshort-term Tabu search
memoryandlong-term Tabu search memoryrespectively.

Definition 8 Recency-based memory, a memory structure used in short-
term Tabu search memory, keeps track of solution attributes that have changed
during the recent past.

Attributes that have changed in the recent solutions are labelled astabu-active
in Recency-based memory. Solutions that contain tabu active elements, or par-
ticular combination of the elements will not be revisited for a short term. The
tabu list is one specification of recency-based memory structure. While Tabu
classification strictly refers to the solutions that are forbidden to be visited, it
also often refers to the moves that lead to such solutions as being tabu.

Definition 9 Frequency-based memory, a memory structure used in long-
term Tabu search memory, records the counts of each move in the search his-
tory. In non-improving phases, frequency based memory also penalizes choices
of moves that drive toward configurations often visited.

Long-term memory helps to guide the search to new regions once the search
by short-term memory get stuck, and determines the new starting solution for
the search. Two strategies that make use of short-term memory and long-term
memory areintensificationanddiversificationstrategies. Intensification strate-
gies are based on modifying choice rules to encourage move combinations and
solution features historically found good. They may also initiate a return to
attractive regions to search them more thoroughly. Thecandidate listis an
important consideration during the intensification stage or even in the general
Tabu search process. When the neighborhood is large, narrowing the examina-
tion of elements ofS(x) can achieve an effective tradeoff between the quality
of x and the effort expended to find it. The diversification stage on the other
hand encourages the search process to examine unvisited regions and to gener-
ate solutions that differ in various significant ways from those seen before.

A version of Tabu Search that uses both short-term memory and long-term
memory may be formulated as follows:

Tabu search with diversification

1 Select an initial solutionx ∈ X, and letx∗ := x, andx0 := x.
Set the iteration counterk = 0, the non-improving move counterl = 0,
and tabu listTL = ∅.

2 If S − TL = ∅, then go to step 4;
Otherwisek := k + 1 and selectsk ∈ S − TL such that
sk(x) = OPTIMUM(s(xk−1) : sk ∈ S − TL).
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3 Letxk = sk(xk−1).
If c(xk) < c(x∗) wherex∗ donates the best solution currently found, let
x∗ = xk; l := 0
Otherwise,l := l + 1

4 If a chosen number of iterations has elapsed either in total number, or
l reaches the maximum value non-improving count, orS − TL = ∅,
upon reaching this step from step 2, stop.
Otherwise, updateTL and return to step 2.

Having introduced the definition and representation schema, in the next sub-
section, we briefly survey the literatures relevant to our study.

Background Literature

There are a few recent studies using Markov Blankets in the machine learn-
ing literature (Koller and Sahami, 1996, Margaritis and Thrun, 1999, Tsamardi-
nos et al., 2003). But few of these generate the Markov Blanket from data, and
those are usually for small number of variables. Those studies use the notion of
Markov Blanket as a set of variables; none of them have generated the DAG of
Markov Blankets, nor have they use it for Bayesian inference in classification
problems. Theoretically correct Bayesian algorithms in the large sample limit (
Chickering, 2002) for finding DAGs are now known, but have not been applied
to the problem of finding Markov Blankets for data sets with large numbers of
variables.

Koller and Sahami (Koller and Sahami, 1996) first used a heuristic proce-
dure to find the Markov Blanket variables for a target variable in data sets with
large numbers of variables. The heuristic is based on two assumptions that are
not always true in real world data: (1) The target influences the predictors; and
(2) that the variables most strongly associated with the target are in its Markov
Blanket. No classifier is studied. In Kohler and Sahami’s experiments with
large variable sets, one hundred or more predictor variables remain.

Margaritis and Thrun proposed the GS algorithm in 1999 (Margaritis and
Thrun, 1999). GS uses a measure of association with the target variable and
conditional independence tests to find a reduced set of variables estimated to
be the Markov Blanket, and use the set of Markov Blanket nodes to learning
a Bayesian network structure. The scoring criterion they used is global in the
sense that the evaluation function chooses the structure that fits best the overall
structure.

Aliferis et al. proposed IAMBnPC in 2003 (Tsamardinos et al., 2003).
IAMBnC uses a dynamical variant of the feature selection filter, followed by
the PC algorithm (Spirtes et al., 2000). No graphical Markov Blanket DAG is
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generated from the modified PC algorithm output. A variant IAMBnC, inte-
rIAMBnPC (Cheng et al., 2002), interleaves the PC algorithm with the filter.
Another feature selection procedure that uses Markov Blanket notion, HITON,
(Aliferis et al., 2003), supplements the dynamic variable filter of IAMBnPC
with a "wrapper" using any of several non-Bayesian classifiers, and then clas-
sifies the target with the non-Bayesian classifier. A graphical Markov Blanket
is not produced. The results are compared on five empirical data sets from
biomedicine domains, each with a very large ratio of variables to cases.

Tabu search has been applied successfully to a wide variety of continuous
and combinatorial optimization problems (Johnson and McGeoch, 1997, Toth
and Vigo, 2003), and is capable of reducing the complexity of the search pro-
cess and accelerating the rate of convergence. In its simplest form, Tabu Search
starts with a feasible solution and chooses thebest moveaccording to an eval-
uation function while taking steps to ensure that the method does not re-visit
a solution previously generated. This is accomplished by introducingtabu
restrictionson possible moves to discourage the reversal and in some cases
repetition of selected moves. The tabu list that contains these forbidden move
attributes is known as the short term memory function. It operates by modify-
ing the search trajectory to exclude moves leading to new solutions that contain
attributes (or attribute mixes) belonging to solutions previously visited within
a time horizon governed by the short term memory. Intermediate and long-
term memory functions may also be incorporated to intensify and diversify the
search.

We were motivated to use Tabu Search because its adaptive memory capabil-
ity - both short term and long term - appears particularly suited to the Bayesian
Networks and Markov Blanket approaches. Our choice of TS was also mo-
tivated by the extensively documented situations where its adaptive memory
capability has proved successful, both directly and embedded within other "hy-
brid" methods such as those involving genetic algorithms, evolutionary compu-
tation methods (http://www.tabusearch.net/, Glover, 1997) and scatter search
(Rego and Alidaee, 2004). Certainly it would be worthwhile to investigate ad-
ditional metaheuristic procedures, and also to investigate more advanced forms
of tabu search. Yet our results with the version of TS we propose have proved
comparable (using many fewer variables) on some examples than those previ-
ously obtained by researchers in this area, and on this basis we conclude that
our work provides a useful contribution even though we may subsequently find
ways to improve upon it - as in fact we hope to do.

Metaheuristic search methods such as genetic algorithms (Holland, 1975),
Artificial Neural Networks (Freeman and Skapura, 1991), simulated annealing
(Metropolis et al., 1953, Johnson et al., 1989), Tabu search (Glover, 1997),
and others have been applied to machine learning and data mining methods
such as decision trees and Bayesian Networks (Sreerama et al., 1994, Har-
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wood and Scheines, 2002) with significant success in finding good solutions
and accelerating convergence in the learning process. Recent applications in-
clude a Genetic Algorithm based approach to building accurate decision trees
in the marketing domain (Fu et al., 2004), Neural Networks applied to Hybrid
Intelligent Systems for Stock Market Analysis (Abraham et al., 2001) and hill-
climbing heuristics to model a reinforcement learning algorithm for learning
to control partially-observable Markov decision processes (Moll et al., 2000).

3. Tabu Search Enhanced Markov Blanket Algorithm

Our algorithm first generates aninitial Markov BlanketDAG for the target
variable. However, the initial MB may be highly suboptimal due to the ap-
plication of repeated conditional independence tests(Spirtes et al., 2000) and
propagation of errors in causal orientation (Bai et al., 2003). Therefore, Tabu
Search is applied to improve the initial MB DAG. The algorithm stops after a
fixed number of iterations or a fixed number of non-improved iterations. These
steps are explained in the following two subsections. The detailed algorithm is
presented as below.

TS/MB Algorithm

InitialMBsearch (Data D, TargetT , Depthd, Significanceα):

/*

sepSet(vi, vj): a mapping of a set of nodes s.t.(vi ⊥ vj | sepSet(vi, vj));
adj(vi): the set of adjacent nodes to nodevi in G;
A: an edge list not in the outputMBDAG, but might be added;
vertex(G): the set of vertexes in the graphG;
edges(G): the set of edges in the graphG;
*/

Procedurecheckedges∗1 (VertexV , GraphG, Depth-of-searchd, Array
of SetssepSet, set of edgesForbidden):

For eachvi ∈ vertex(G) \ V ;
If V − vi 6∈ Forbidden
addV − vi to edges(G);
For eachdepth = 0, ..., d

If (adj(V ) has at leastdepth + 1 vertexes in it)
For eachvi ∈ adj(V )
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If ((vi is independent ofV conditional onS))
whereS ⊂ {adj(V ) \ vi}&(|S| = depth)

remove edgeV − vi from edges(G);
add edgeV − vi to Forbidden;
sepSet(vi, V ) = S;

End procedure

(*1 Note that the graphG is modified by the procedurecheckedges, and
so it contains different adjecencies at different points in the algorithm.
The graphs we consider in the algorithm have edges with two kinds of
points: non-arrow head, " - ", or arrow head, ">". A "*" is a meta-symbol
that represents either arrow head or arrow tail. ThusA ∗ −B represents
eitherA← B or A−B. When an edgeA ∗−B is replaced byA∗ → B,
the end point with∗ is left the same. Thus the instruction to replace
A ∗−B with A∗ → B says if the edge isA−B, replace it withA→ B;
and if the edge isA← B, replace it withA↔ B.)

Initialize vertex(G) to all variables in data setD;
Initialize edges(G) to ∅∗2;
Initialize sepSet(vi, vj) to Null;
Initialize Forbidden to ∅;

(*2 Note that if the finalsepSet(vi, vj) is Null, vi andvj are notd −
separated conditional on any subset of vertices, this is different than
beingd− separated conditional on the empty set.)

/* Finding adjacency;T is the target variable. */
checkedges(T,G, d, sepSet, Forbidden);
For eachV in adj(T )

checkedges(V,G, d, sepSet, Forbidden);
For eachV ∈ adj(adj(T )) \ adj(T )

checkedges(V,G, d, sepSet, Forbidden);

/* Orient G using Orientation rules. */
For each triple of vertices (X, Y , Z)

If X ∗ −Y − ∗Z and X is not adjacent toZ , and If Y 6∈
(sepSet(X, Z)), then

orient asX∗ → Y ← ∗Z;

Repeat
If X → Y − Z and X, Z are not adjacentthen orient asY → Z;
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If (X → Z → Y ), and X ∗ −Y , then orientX∗ → Y ;
If W → Y ← Z, and Z is not adjacent toW , and W,Y, Z are

all adjacent toV , W − V − Z do not collide atV , then orientV ∗ −Y
asV ∗ → Y ;

Until no more edges can be oriented.

/* Transform into aMBDAG: */
For anyvi in G s. t.vi ↔ T or vi − T ;

orient this edge asT → vi; put edgeT ← vi into the edge listA;

For anyw, vi in G s. t.w − vi → T&w 6∈ {T} ∪ adj(T )
remove the edgew − vi; putw − vi into the edge listA;

For any nodevi, vi 6∈ {T} ∪ adj(T ) ∪ adj(adj(T ))
removevi and all the corresponding edges; record the corresponding

edges inA;

Remove any undirected or bi-directed edges fromG; put them into the
edge listA

Remove any remaining edges among parents and amongadj(T ) from
G; put them into the edge listA

For any nodevi, vi 6∈ {T} ∪ adj(T ) ∪ adj(adj(T ))
removevi and all the corresponding edges; record the corresponding

edges inA;
/* At this point G is an MB DAG:MBDag */

Return(MBDag ,A).

TabuSearch(Data D, TargetY ):
initialize bestSolution := currentSolution := MBDag ;

bestScore := currentScore := thescoreofMBDag ;
tabuTenure = 7 (in our experiments);tabuList := ∅

repeat until (bestScore does not improve fork consecutive
iterations)
form candidateMoves for currentSolution
find bestMove amongcandidateMoves according to

function score
update currentSolution by applyingbestMove
add bestMove to tabuList

/* tabu moves will not be re-visited in the nextk iterations.*/
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if (bestScore < score(bestMove))
update bestSolution andbestScore by applyingbestMove

return bestSolution( a MBDag)

InitialMBsearch (D, T , d, α)
TabuSearch(D, Y )

End pseudo-code of TS/MB algorithm.

1st Stage: Learning Initial Dependencies -InitialMBsearch

Suppose that there is a DAGG without hidden variables such that the pop-
ulation distributionp satisfies the Markov and Faithfulness conditions forG.
In that case, there is a set of DAGs,Equiv(G) that entail exactly the same set
of conditional independence relations asG (in some casesEquiv(G) contains
only G for discrete distribution.) Any member ofEquiv(G) is as good a pre-
dictor of the target variableT as isG. The goal of theInitialMBsearchis to
generate an initial MB DAG forT from the data (Ramsey et al., 2004) that is
in Equiv(G). TheInitialMBsearchhas four different phases.

1 Find the vertices adjacent toT , and the vertices adjacent to the vertices
adjacent toT . After the first phase, pairs of vertices that are adjacent are
connected by an undirected edge.

2 Apply the edge orientation rules that guarantee that: for each undirected
edgeX − Y , if it is oriented asX → Y in every DAG conditional
independence equivalent toG, the edge is oriented asX → Y .

3 Orient the remaining undirected edges to form a DAG.

4 Prune the vertices and edges that are not part of the MB DAG.

If there is a DAGG without hidden variables, such that the population distri-
bution p satisfies the Markov and Faithfulness conditions forG, and as long
as the results of conditional independence tests are correct, the correctness of
the adjacencies in the DAG returned byPhase 1is justified by the following
Theorem:

Theorem: If a distributionp satisfies the Markov condition for a DAGG,
and is faithful toG, then 1) ifX andY are independent conditional on any
subsetS then there is no edge betweenX andY in G; 2) if there is no edge
betweenX and Y in G then X and Y are independent conditional on the
parents ofY in G, or independent conditional on the parents ofX in G.
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Figure 3. Steps of the initial solution creation (Steps 0-5)
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– 5} 

9. depth = 2; add to Sepset: 
{1,5|{4, 6}}; add to 
Forbidden: {1 – 5} 

        T 
 
1          3     
 
 
2     4         5         6 

        T 
 
1          3     
 
 
2     4         5         6 

10. the same operation for 
Node 2; add to Sepset {2,6|{∅∅∅∅}}  

11. depth = 1; add to Sepset: 
{2,4|{1}}; add to Forbidden: {2 
–4},  {2 –6} 

 

Check edges 
for Node 3 

Check edges 
for Node 3 

Check edges 
for Node 5 

Check edges 
for Node 5 

Check edges 
for Node 2 

Check edges 
for Node 2 

Figure 4. Steps of the initial solution creation (Steps 6-11)
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        T 
 
1          3     
 
 
2     4         5         6 

       
       T 
 
1          3     
 
 
2     4         

12. The same operation for 
Node 4. Note that there is no 
need to check edges to Node 6 
because all the candidate edges 
for Node 6 have been checked 
before. 

13. Prune redundant edges  

       T 
 
1          3     
 
 
2     4         

       T 
 
1          3     
 
 
2     4         

14. Orient colliders 15. Orient away from colliders 

       T 
 
1          3     
 
 
2     4         

       T 
 
1              
 
 
2              

16. Orient away from cycles 17. The resulting Markov 
Blanket 

 

Check edges 
for Node 4 

Figure 5. Steps of the initial solution creation (Steps 12-16)
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Phase 1consists basically of repeated calls to the procedureCheckedges.
The procedureCheckedges(V ) returns a graph U (with undirected edges); the
set of vertices adjacent toV in U may be a superset of the vertices adjacent to
V in G. Checkedges(V ) starts by makingV adjacent to each other vertex
(except for those that have already been determined are not adjacent toV .) It
performs a sequence of conditional independence tests, and removes the edge
betweenV andX if it finds some subset S of the other vertices adjacent to
V such thatV andX are independent conditional on S. This edge removal is
justified by condition 1) of the Theorem.

Even if V and X are adjacent in U,V and X might not be adjacent in
G. This is becauseCheckedges(V ) checks whetherV andX are indepen-
dent conditional on the parents ofV (because the parents ofV are a subset
of the vertices adjacent toV ). However, it might be the case thatV andX
are independent conditional on the parents ofX rather than the parents of
V , andCheckedges(V ) did not check that possibility (if, for example, there
is a parent ofX that is not adjacent toV ). However, a subsequent call of
Checkedges(X) will check whetherV andX are independent conditional on
the parents ofX (which are a subset of the vertices adjacent toX.)

So phase 1first callsCheckedges(T ) to find a superset of the variables
adjacent to the targetT in G. For each vertexX adjacent toT , phase 1calls
Checkedges(X). At this point, the graph U has the correct adjacencies toT ,
and a superset of the vertices adjacent to the vertices adjacent toT in G. For
each variableY adjacent to a variableX adjacent toT , Checkedges(Y ) is
called. After this stage, the set of vertices adjacent toT is correct inU , and the
set of vertices adjacent to vertices adjacent toT is correct inU .

In phase 2, the algorithm orients some of the undirected edges. In some
cases, every DAG inEquiv(G) orients the edges in the same way, i.e. . The
algorithm finds all of those orientations that are shared by every member of
Equiv(G). This part of the algorithm is the same as the PC algorithm (Spirtes
et al., 2000).

In phase 3, the algorithm chooses an orientation for those undirected edges
that are not oriented the same way in every member ofEquiv(G), and any
bidirected edges. (If the assumptions under which the correctness of the algo-
rithm has been proved are true, there will be no bidirected edges.) This part of
the algorithm is a simplified heuristic - it does not guarantee that the orienta-
tions are the same as some member ofEquiv(G). This is because extensive
experimentation has shown that the PC algorithm is much more reliable on
adjacencies than it is on orientations, and the orientations after theInitialMB-
searchare simply used as one starting point for the subsequent Tabu Search.

After phase 3, it may be that some vertices that are adjacent to vertices
adjacent toT are nevertheless not parents of children ofT , and hence are not
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part of the MB DAG. These vertices and the edges they are part of are then
pruned from the DAG.

2nd Stage: Tabu Search Optimization

Tabu Search (TS) is applied to improve the initial MB DAG. Our algorithm
searches for solutions in the space of Markov Blankets DAGs; moves that result
in cyclic graphs are not valid moves.

Briefly, four kinds of moves are allowed in the TS procedure: edge addition,
edge deletion, edge reversal, and edge reversal with node pruning. At each
stage, and for each allowed move, the corresponding MB DAG is computed,
its conditional probability factored, its predictions scored, and the best move
is then selected and applied. The best solution and best score at each step are
tracked. The tabu list keeps a record ofm previous moves, so that moves in
the tabu list will not be repeated till their corresponding tabu tenure expires.

Markov Blanket Neighborhoods and Choice of Moves. Our algorithm
uses the set of Markov Blanket DAGs as the set of possible states in the search
space. The set of operators are the feasible moves, which transforms the cur-
rent MB DAG to another MB DAG. Thus the neighborhood for any state is
the set ofnewMarkov Blankets DAGs that can be constructed via one feasible
move. We call this a Markov Blanket Neighborhood. However, in order to
make our search more efficient, I do not consider the MB DAGs in the neigh-
borhood whose only differences from a current MB DAG are the edges among
parents, because the conditional independence relations entailed by these edges
have no effect on the discrete probability distribution of the target variable con-
ditional on the other variables in the DAG. So we do not have moves such as
adding or deleting an edge between parents of the target from a current MB
DAG in our candidate move list for a current solution or state.

We allow the following kinds of moves, as illustrated in Figure 6:

edge addition For example: from (b) to (c), by adding edgeX2 →
Y , X2 becomes a parent ofY ; the conditional probability ofY in the
Markov factorization Changes fromp(Y |X1) to p(Y |X1, X2).

edge deletionFor example: from (a) to (b), by deleting edgeX4 → X5,
X4 is no longer a parent ofX5; the conditional probability ofX5 in the
Markov factorization Changes fromp(X5|X3, X4, Y ) to p(X5|X3, Y ).

edge reversalFor example: from (c) to (d), by switching the direction
of edgeX1 → Y , X1 changes from a parent ofY to a child ofY ; the
Markov factorization of the graph has a new itemp(Y |X2) · p(X1|Y ),
and it replacesp(Y |X1, X2).
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X1

X5

X4X3

X2

Y

X1

X5

X4X3

X2

Y

X1

X5

X4X3

X2

Y

(a) DAG no.1 (b) DAG no.2 (c) DAG no.3

Add
X2→Y

Delete
X4→X5

X1

X5

X4X3

X2

Y

(d) DAG no.4

Switch
X1→Y

X1

X5

X4

X2

Y

(e) DAG no.5

Switch
Y→X5

and
Prune X3

Figure 6. An example of moves in Tabu search enhanced Markov Blanket procedure

edge reversal with node pruningFor example: from (d) to (e), by
switching the direction of edgeY → X5, X5 becomes a parent ofY ;
X3 becomes a parent of a parent(X5) of Y . X3 is longer in the Markov
Blanket, so it is pruned away. The Markov factorization of the graph has
a new itemp(Y |X2, X5), and it replacesp(Y |X2) · p(X5|X3, Y ).

Table 1 lists the corresponding factorizations of each move in Figure 6.

Table 1. The Markov Factorizations for Moves in Figure 6

DAGs Score Computation

DAG no.1 p(Y |X1, ..., X5) = C1 · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y )

DAG no.2 p(Y |X1, ..., X5) = C2 · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, Y )

DAG no.3 p(Y |X1, ..., X5) = C3 · p(Y |X1, X2) · p(X4|X2, Y ) · p(X5|X3, Y )

DAG no.4 p(Y |X1, ..., X5) = C4 · p(Y |X2) · p(X1|Y ) · p(X4|X2, Y ) · p(X5|X3, Y )

DAG no.5 p(Y |X1, ..., X5) = C5 · p(Y |X2, X5) · p(X1|Y ) · p(X4|X2, Y )

Moves that yield cyclic graphs are not valid moves. At each stage, for
each allowed move, the resulting Markov Blanket is constructed, the condi-
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tional probability for the target node is factored and computed, its prediction is
scored, and the current Markov Blanket is modified with the best move.

Tabu List and Tabu Tenure. In our implementation, the tabu list keeps
a record ofm previous moves, or more precisely, of the attributes of the cur-
rent solution that are changed by these moves. By reference to this record,
new solutions are classified tabu if they contain attributes of previous solutions
encountered within them move horizon. A move is tabu if it leads to a tabu
solution. 2 The value ofm, called the tabu tenure, can vary depending on the
type of strategic design applied. We use a simple design that permitsm to vary
for different types of moves but, once assigned, remains constant throughout
the search. We also employ aspiration criteria to permit moves that aregood
enoughto be selected in spite of being classified tabu.

The magnitude of Tabu tenure can vary depending on the complexity of
the MB DAGs in different problems. When the dependency structure of the
Markov Blanket is very dense, the number of neighborhood states that need to
be considered can grow exponentially, and a larger Tabu tenure is preferred.
Implementations of simple versions of TS based on Tabu tenures between 7
and 12 have been found to work well in several settings where tabu restrictions
rule out a non-trivial portion of the otherwise available moves (Glover, 1997).
Our setting appears to be one of this character, and in our experiments, we use
a static Tabu tenure of 7 because the structure of the MB DAGs is not complex.
Considering the computational cost of each type of move, it is reasonable to
assign larger value of Tabu tenure to moves that are computationally more
expensive. Such moves include edge reversals that involve pruning nodes that
are no longer present in the resulting MB DAG, or edge reversals that result in
significant changes in the parent-child relations in the resulting MB DAG. It is
possible to optimize these parameters in future research and to replace the use
of a static tenure by a dynamic tenure.

Intensification and Diversification. We alternate between intensification
and diversification in the TS/MB procedure. The intensification process fo-
cuses on convergence to the best Markov Blanket DAG in a local Markov
Blanket neighborhood. The diversification process attempts to explore MB
structures that are far from the current neighborhood. The distance of two
Markov Blankets can be roughly understood as the difference in the MB struc-
tures and the resulting Markov factorizations. In our experiments, we seed dif-
ferent starting solutions by altering the significance level of the independence
tests and by altering the edge orientations in the generated pattern at the end of
the InitialMBsearch procedure. By doing this, we generate starting solutions
with a variety of independence structures and complexity.
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The result of local search is a local optimum. One typical local search is
Best First Search (BFS). Best First Search always chooses the next node or
state to be that with the best score according to the evaluation function. It is
exhaustive because it tries all possible paths. Tabu search can navigate through
local optima by accepting non-improving moves and pushes the solution to-
ward the global optimum with the guidance of dynamic memory. It may or
may not be exhaustive so it works on both finite and infinite search space. The
following is an illustration ofTabusearchprocedure. It is also a step-by-step
example illustrating how Tabu search gets out of local optima and pushes the
solution toward the global optimum. It shows why Tabu search works and
works better than local search such as Best First Search (BFS) in this domain.

Suppose the output ofInitialMBsearch(a) and the true graph (b) are as in
Figure 7. Then the DAG transformation procedure transforms the output into
a DAG, as shown in Figure 7(c), which is the initial MB DAG for Tabu search
procedure.

Figure 7. TheInitialMBsearchoutput and the true graph

As shown in Figure 8, the current solution and best solution are initialized
to this MB DAG at the beginning of Tabu search procedure.

By comparing the initial solution with the true graph:

Observation 1:Any single valid edge reversal would not improve the
independence structure because the resulting structure is Markov equiv-
alent to the previous one;

Observation 2:Any single edge deletion will result in the decrease of
the score because it throws away the relevant information entailed by the
initial solution, and the resulting structure will have a different Markov
factorizations than the true graph;
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Figure 8. Tabu search initiation

Observation 3:Any edge addition or edge reversal with node pruning
does not apply here.

Best First Search (BFS) will stop right here, which we call alocal optimum.
Tabu search, unlike BFS, continues the search by keeping an adaptive memory
of the best solution, current solution, current neighborhood, and current Tabu
list. The Tabu procedure accepts non-improving solutions, picks up the best
available move, and moves on. In this example, suppose by comparing the
Markov factorization of the output and the true graph, the best available move

is most likely to beX
Delete−−−−→ Y (The best move is actually chosen by calcu-

lating the score of each candidate move based on the dependence structure and
magnitude of the parameters of the variable). In our procedure, we set the tabu
tenure as 7, constraining the re-entrance of a tabu move till after the seventh
iteration.

Suppose in the 1st iteration, TS chooses to deleteX → Y . After the first
iteration, the state information is as in Figure 9. The best solution remains the
same, as does the best score. The current solution moves to its best neighbor,

where the score is lower. Candidate moves get updated and the moveX
Delete−−−−→

Y is entered into the Tabu list.
In the 2nd iteration, TS chooses to reverse edgeZ → X. After the second

iteration, the state information is as in Figure 10. The best solution still re-
mains the same, as does the best score. The current solution moves to its best
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Figure 9. Tabu search iteration 1

neighbor, whereas the score remains the same. Candidate moves get updated

and the moveZ
Reverse−−−−−→ X is entered into the Tabu list.

Figure 10. Tabu search iteration 2

In the 3rd iteration, TS chooses to reverse edgeZ → Y . After the third
iteration, the state information is as in Figure 11. The procedure finds the true
graph. Both the best solution and the best score get updated. The current
solution moved to its best neighbor, which is the true graph. The score is
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improved. Candidate moves get updated and the moveZ
Reverse−−−−−→ X entered

the Tabu list.
The procedure stops after a fixed number of iterations. The true graph is

found to be the best solution.

Figure 11. Tabu search iteration 3

Classification

At the end of the Tabu search, the TS/MB procedure returns an improved
MB DAG. We use this MB DAG to do classification for the target variable.
The classification is done in the following several steps. Suppose we have an
MB DAG MB(Y ) (Figure 11):

X1

X5

X4X3

X2

Y

Figure 12. The Tabu search enhanced Markov Blanket forY : MB(Y )

First, we factorize the conditional probability ofY given all the other vari-
ables as product of conditional probabilities of each variable given its parents:
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p(Y |X1, ..., X6) = C ′ · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y ) , (6)

whereC ′ is a normalizing constant independent ofY .
In order to estimatep(Y = yi|X1 = x1, X2 = x2, ...), we first estimate

each factor in equation 6, and multiply the estimates. The estimate of a factor
p(A = a|B = b) is the number of data points in the training set in which
A = a & B = b, divided by the number of data points in the training set for
whichB = b. We assign the category with the highest conditional probability
in the training set to this testing data point. For example, suppose we have a
testing point(x1, x2, x3, x4, x5, x6). By the definition of a Markov blanket,
X6 is not in the Markov blanket, i. e.,Y (Y hask categories:y1, ..., yk) is
independent ofX6 conditional onX1, X2, X3, X4 andX5. The classification
procedure is illustrated in Table 2:

Table 2. Calculation ofp(y|x1)

number of(y1, x1) = number of(y2, x1) = ... number of(yk, x1) =

n1 n2 ... nk

p(y1|x1) = p(y2|x1) = ... p(yk|x1) =

n1/(n1 + n2 + ... + nk) n2/(n1 + n2 + ... + nk) ... nk/(n1 + n2 + ... + nk)

By doing this calculation on every factor in the factorization and repeating
this for each category ofY , we get the estimates for all the categories ofY as
illustrated in Table 3:

Table 3. Classification ofy given(x1, x2, x3, x4, x5, x6)

Estimate of ˆp(y|x1, ..., x6) ŷ

p(y1|x1, ..., x6) = C′ · p(y1|x1) · p(x4|x2, y1) · p(x5|x3, x4, y1) = p1

p(y2|x1, ..., x6) = C′ · p(y2|x1) · p(x4|x2, y2) · p(x5|x3, x4, y2) = p2

...

p(yk|x1, ..., x6) = C′ · p(yk|x1) · p(x4|x2, yk) · p(x5|x3, x4, yk) = pk argyi
maxi∈1,...k{pi}

Suppose that one of the factors in the factorized distribution isp(X|Xa =
xa, Xb = xb, , Xi = xi), and there are some training set data points with
values (xa, xb, , xi). In that case, the preceding procedure gives a maximum
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likelihood estimate ofp(X|Xa, , Xi). However, there may be cases in which
no training data point has values (xa, xb, , xi) in which case there is no unique
maximum likelihood estimate. Then we use a heuristic similar to nearest
neighbor to estimatep(X|Xa = xa, , Xi = xi). However, because we still
use the factorization of the distribution to classify the target variable, the re-
sults in general are not the same as simply employing nearest neighbor to
classify the target. Suppose for example that we the algorithm is estimat-
ing p(y = 1|x1, x2, x3, x4, x5, x6), one of the factors in the factorization is
p(x5|x3, x4, y = 1), and no data point in the training set contains(x3, x4, y =
1). In that case, the algorithm determines if there any data points in the train-
ing set that contains(x3, x4), (x3, y = 1), or (x4, y = 1). If there are mem-
bers of the training set that contain(x4, y = 1), and other members that con-
tain (x3, y = 1), then the estimate ofp(x5|x3, x4, y = 1) is set to the av-
erage of the relative frequency ofx5 among the training set data points with
(x4, y = 1) and the relative frequency ofx5 among the training set data points
with (x3, y = 1). If there are no data points in the training set that match
any subset of(x3, x4, y = 1) that leaves out a single variable value, then the
algorithm checks whether there are any training set data points that leave out
two variable values (ie.(x3), (x4), or (y = 1)), and so on until some matching
training set data points are found.

This heuristic for estimating the conditional probability of the target variable
has the net effect of penalizing adding more parents to the target variable less
than simply guessing when there is no training set data matching the parent
set of one of the factors in the factorization. This may partially explain why in
actual practice the parent sets of the target variable in the graph that was output
were generally fairly large.

In practice, the size of the suppression sets very rarely goes beyond one.
The explanation is that although the training set does not contain all possible
combinations of the predictor variables, some combinations of predictor values
are unlikely to occur in both training and test sets. For example in the movie
review case which I will describe later,p(rating = 1|Worst = 1, Boring =
1, Lame = 1, P erfect = 1) cannot be estimated but it is very unlikely that
this combination of values would occur in the test set. So the actual chance of
finding the matched case from the training set is larger than that assuming all
the configurations of the selected features are equally probable. There could be
other heuristic methods for handling classifying data with no matched training
cases.

By orienting an edge out of the target node and making the adjacent node
child, the number of parameters to be estimated is reduced by a factor of 2, if
the predictor is binary. The more children in the graph, the fewer parameters
are there to estimate, and the more efficient the algorithms are. However, in
the experimental results we got, the learned MB Dags have more parents than
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children in the output and sometimes have no parents of the children. One
possible explanation to this is that in order to be able to identify those edges,
either the edge dependence has to be very strong or there has to be a large
amount of data. The data we are working on is high in dimension and low
in the number of the sample points. Thus it is very difficult to identify these
edges.

Sample size affects the running time of our algorithm. It may take a long
time to run on data sets with large number of samples. This is because the
number of evidences needed to check is increased very time an independence
test is performed. These effects occurred in our experiments.

4. Experimental Design

Our algorithm is evaluated on three real world data sets from different do-
mains, such as health care, internet marketing and text mining. The detailed
results and analyses are presented as case studies in Section 5, 6 and 7. The
results are compared against several state-of-the-art classifiers. The classifiers
compared are the naive Bayes classifier, the support vector machine (SVM),
the voted Perceptron, the maximum entropy method,k-nearest neighbor, and
logistic regression.

Regarding the classifiers, support vector machines are learning machines
that can perform binary classification (pattern recognition) and real valued
function approximation (regression estimation) tasks. Support Vector Ma-
chines non-linearly map their n-dimensional input space into a high dimen-
sional feature space. In this high dimensional feature space a linear classifier
is constructed. Naive Bayes classification is a simple probabilistic classifica-
tion method. The underlying probability model assumes features independent
conditional on the target, which is often an unrealistic assumption. The per-
ceptron algorithm is a type of artificial neural network classification algorithm.
The voted perceptron method is one or more layers of the Threshold Logic
Units where the inputs are fed directly to the outputs via a series of weights.
Maximum Entropy3 functions by maximizing an entropy function.k-nearest
neighbor is an instance based learning method which selects "k nearest" exam-
ples in the training set according to a distance function, and predict the most
common class among its K-nearest neighbors as the label of the dependant
variable4. Complete definitions of these classifiers can be found in the book
Machine Learningby Mitchell (Mitchell, 1997).

Since several parameters are central to the performance of the algorithm, an
appropriate experimental design has an important role in the evaluation study.
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Design of Experimental Parameters

The parameters in our experiments are: data-splits, scoring criteria, start-
ing solution structure, the depth of conditional independence search (d), and
significance level (α).

Data-splits. We split the data in two ways: 90 percent for training/10 per-
cent for testing and 80 percent for training/20 percent for testing. In our exper-
iments, each configuration is cross validated. For example, in a 5-fold cross
validation scheme (80 percent for training/20 percent for testing), the data set
is divided into 5 subsets. In each run, one of the 5 subsets is used as the test set
and the other 4 subsets are assembled to form a training set. Then the average
error across all 5 trials is computed. The advantage of this method is that it
matters less how the data gets divided. Every data point gets to be in a test
set exactly once, and gets to be in a training set 4 times. The mean and the
variance of the estimated error are reduced as the number of folds increases.
In that sense, 5-fold cross validation yields more conservative estimates than
10-fold cross validation (90 percent for training/10 percent for testing). We use
a nested, stratified cross-validation scheme (Weiss and Kulikowski, 1991).

We found thedominant configurationof the parameters on the training data
and estimated the performance on the testing data. For example, in a 5-fold
cross-validation schema, in order to find this configuration, within each foldi,
we further split the training data in two (TRi1 andTRi2), trained the MB clas-
sifier onTRi1 for each parameter configuration, and tested the performance
on TRi2. The configuration that led to the best MB, in terms of accuracy on
TRi2 across all foldsi = 1, ..., 5, was chosen as the best configuration. The
outer layer of cross-validation estimates the performance of the best Markov
Blanket classifier on the testing data.

Scoring criteria. The applied scoring criteria are AUC and prediction accu-
racy. Prediction accuracy is widely used in the Machine Learning community
for comparison of classification effectiveness. However, accuracy estimation
is not the most appropriate metric when cost of misclassification or class distri-
butions are not specified precisely (Provost et al., 1998). For example, wrong
prediction in the diagnosis and treatment of a seriously ill patient has different
consequences than incorrect prediction of the patronage of an online consumer.
The quality metric AUC, the area under the Receiver Operator Characteristic
(ROC) curve, takes into account the costs of the different kinds of misclassi-
fication (Hanley and McNeil, 1983). An ROC curve is a plot of true-positive
rate and false positive rate in binary classification problems as a function of
the variation in the classification threshold. This metric has gained popularity
among statisticians for evaluating diagnosis tests, and has also been adopted
by the machine learning community for general binary classification evalua-
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tion. ROC curves are similar to the precision/recall curves used in information
retrieval (Lewis, 1991) as well as lift curves used in marketing communities (
Piatetsky-Shapiro and Steingold, 2000). AUC ranges from 0 to 100 percent.
The higher the AUC is, the better the quality of the classifier. We test both AUC
and prediction accuracy as scoring criteria to score each move. For example,
in experiments where AUC is used as the scoring criterion, the procedure cal-
culates AUC for every neighborhood move and identifies the move with the
highest AUC as the best move, and similarly with prediction accuracy.

Starting solution structure. InitialMBsearchis only able to learn the true
graph in the condition of large sample limit with unlimited depth of search and
no latent variables. In practice, this is never the case. The orientation rules
of InitialMBsearch is not reliable with finite data and and high dimensions.
Heuristic search starting from there comes into play naturally. Tabu Search
picks one MB DAG as the starting solution. Variations in the orientation of the
edges result in different starting solutions. We have tested two specific alter-
natives. In Structure I, all the undirected edges adjacent to the target variable
Y are oriented intoY, i.e., all the nodes that are connected toY by undirected
edges are treated as the parents ofY . In Structure II, all but one of the undi-
rected edges adjacent to the target variableY are oriented out ofY, i.e., all but
one of the nodes that are connected toY by undirected edges are treated as the
children ofY ; that one node is treated as a parent ofY . By orienting the edges
differently, we create two different types of Markov Blanket structures for the
starting solution, as shown in Figures 13 and 14.

X(1)

Y

X(N)X(3)X(2) . . .

Figure 13. Starting solution I

X(1)

Y

X(N)X(3)X(2) . . .

Figure 14. Starting solution II

Depth of the conditional independence search (d). The depth of condi-
tional independence search (d) and the significance level (α) are usually ex-
ogenous variables that the user has to provide. The depth of search specifies
the maximum size of the set conditioned on in the conditional independence
tests.

Significance level (α). The alpha level is the threshold for the statistical in-
dependence tests. The smaller alpha is, the stricter the tests are and the stronger
he dependence between two nodes has to be in order to retain the edge. We do
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not adjust for multiple tests, and treat it as a search parameter. Tabu search en-
hancement in the second stage will search iteratively to improve the predictive
structure of the learned Markov blanket

There are thus a total of 96 configurations of parameter combinations (Table
4).

Table 4. Experimental Parameter Configurations

Parameters Data-splits Scoring Criteria Starting Solution Depth of Alpha
(train/test) Search

Configurations 90%/10% AUC, Accuracy Type I, Type II 1,2,3 0.001,0.005

80%/20% 0.01,0.05

Evaluation Criteria

To evaluate the classification results of the generated models, we use both
the AUC and prediction accuracy on the testing set. These results are shown
in Table 6 and Table 7. To compare our algorithm with the commonly used
classifiers, we use AUC and prediction accuracy on the testing set, as well as
the size of reduction in the set of variables. The size reduction was evaluated
based on the fraction of variables in the resulting models. All metrics (variable
size reduction, AUC, and accuracy) were averaged over cross-validation splits.
The comparative results are shown in the case study sections(Section 6, 7 and
8).

5. A Demonstration of Experiments and Analysis

In this section, we demonstrate the whole experimental process and detailed
analysis on Prostate cancer (PCA) data set (Adam et al., 2002).

PCA Data

PCA data set has been widely used in medical informatics research (Tsamardi-
nos et al., 2003). The task is to diagnose prostate cancer from analysis of mass
spectrometry signal peaks obtained from human sera. 326 serum samples from
167 PCA patients, 77 patients with benign prostate hyperplasia (BPH), and
82 age-matched unaffected healthy men are used for learning and prediction.
Peak detection was performed using Ciphergen SELDI software versions 3.0
and 3.0.5. Powerful peaks in discriminating normal versus PCA, normal versus
BPH, and BPH versus PCA were selected as features for classification. After
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the clustering and peak alignment process, 779 peaks were identified. Table 5
summarizes the characteristics of PCA data set.

Table 5. Characteristics of the PCA Data Set

Task Variables #Samples Variable Types Target Variable Type

Prostate Cancer 779 326 discretized5 binary

Diagnosis (cancer/normal)

Experimental Results and Analysis

Table 6 and Table 7 present the classification accuracy and AUC for different
combinations of the experimental parameters (Comparisions with other meth-
ods are shown in Section 7). The results are averaged over cross-validation
runs. The number in parentheses is the standard error. We did not list the
parameter "depth of search" here because the variation of the computational
result is very small across depth configurations in all the experiments. The
results presented in Table 6 and 7 are the outcomes with depth3.

Table 6. Classification Accuracy on the Testing Set (%)

Data-splits Scoring Starting Alpha(α)
(train/test) Criteria Solution (α=0.001) (α=0.005) (α= 0.01) (α=0.05)

293/33 AUC I 83.8 (1.3) 87.1 (1.2) 83.8 (1.5) 90.3 (1.3)
II 83.8 (1.4) 87.1 (1.0) 74.1 (3.5) 90.3 (1.0)

Accuracy I 83.8 (2.2) 87.1 (1.0) 83.8 (2.0) 90.3 (1.7)
II 83.8 (2.3) 87.1 (1.1) 74.1 (4.9) 83.8 (3.5)

259/67 AUC I 90.3 (1.2) 88.7 (1.2) 83.8 (2.2) 93.5 (1.0)
II 61.6 (28.3) 88.7 (1.2) 83.8 (2.2) 91.9 (1.2)

Accuracy I 90.3 (1.2) 88.7 (1.3) 90.3 (1.0) 93.5 (1.0)
II 90.3 (1.2) 88.7 (1.3) 90.3 (1.0) 91.9 (1.9)

As shown in Table 6 and Table 7, the optimal parameter configurations for
best prediction accuracy (259/67, AUC or Accuracy, Structure I, 0.05) is dif-
ferent from the optimal parameter configurations for best AUC (293/33, AUC
or Accuracy, Structure I, 0.05). In real world applications, users can choose
the evaluation criterion they deem appropriate for the application. As shown
in Figures 15 and 16, the resulting best fitting MB DAGs are also different.

In our experiments, the scoring criterion used in Tabu Search does not im-
pact the classification performance, both in terms of prediction accuracy and
AUC. Setting the alpha value at 0.05 generates the best result for both accu-



Application in Text Mining Field: Consumer Sentiments Case Study 33

Table 7. Classification AUC on the Testing Set (%)

Data-splits Scoring Starting Alpha(α)
(train/test) Criteria Solution (α=0.001) (α=0.005) (α= 0.01) (α=0.05)

293/33 AUC I 97.1 (1.0) 95.0 (2.1) 94.5 (1.6) 98.3 (0.8)
II 97.1 (1.0) 94.1 (1.1) 94. (1.0) 96.2 (1.2)

Accuracy I 97.1 (1.1) 95.0 (1.9) 94.5 (1.3) 98.3 (0.8)
II 97.1 (0.9) 95.0 (2.1) 94.1 (1.9) 83.7 (1.8)

259/67 AUC I 96.9 (1.2) 96.0 (0.9) 94.0 (0.8) 96.3 (1.1)
II 69.3 (24.0) 96.0 (1.0) 94.0 (1.1) 96.5 (1.9)

Accuracy I 96.9 (1.2) 96.0 (0.9) 95.8 (0.9) 95.0 (0.8)
II 96.9 (1.2) 96.0 (1.3) 97.6 (1.2) 96.5 (1.2)
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Figure 16. The best fitting MB DAG by
accuracy

racy and AUC. The reason may be that a larger alpha value imposes fewer
constraints on accepting dependence in the independence tests. This allows
the algorithm to generate more complex MB structures and test more edges.
Furthermore, the Structure I initial solution seems to be a better configuration
under both evaluation criteria. All the directed edges are robust over almost
all cross validation runs, with very small variation. However, more extensive
and systematic experiments on larger data sets are necessary to explore these
relationships further.

6. Application in Text Mining Field: Consumer
Sentiments Case Study

In this section, we study a case from text mining domain: sentiment ex-
traction from text documents. Traditionally, researchers have used surveys to
collect a limited amount of data in a structured form for their analyses. In
recent years, the advent of the Internet, and the widespread use of advanced in-
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formation technologies in general, have resulted in a surge of information that
is freely available on-line in anunstructured format. For example, many dis-
cussion groups and review sites exist where people post their opinions about
a product. The automatic understanding ofsentimentsexpressed within the
texts of such posts could lead to a number of new applications in the fields of
marketing and information retrieval.

Researchers have been investigating the problem of automatic text catego-
rization for the past two decades. Satisfactory solutions have been found for
the cases of topic categorization and of authorship attribution; briefly, topics
are captured by sets of keywords (Mitchell, 1997), whereas authors are iden-
tified by their choices about the use of non-contextual, high-frequency words
(Mosteller and Wallace, 1964; Mosteller and Wallace, 1984; Airoldi et al.,
2004). Pang et al. (Pang et al., 2002) showed that such solutions, or extensions
of them, yield cross-validated accuracies and areas under the curve (AUC) in
the low 80%s when ported to sentiment extraction.

Movie Reviews Data

We tested our method on the data set used in Pang et al. (Pang et al., 2002).
This data set contains approximately 29,000 posts to the rec.arts.movies.reviews
newsgroup archived at the Internet Movie Database (IMDb). The original posts
are available in the form of HTML pages. Some pre-processing was performed
to produce the version of the data we used (Pang et al., 2002). Specifically,
only reviews where authors’ ratings were expressed explicitly (either by stars
or by numerical values) were selected. Then explicit ratings were removed and
converted into one of three categories: positive, negative, or neutral. Finally,
700 positive reviews and 700 negative reviews, which the authors of the corpus
judged to be more extreme, were selected for our study. Various versions of
the data are available on-line (http://www.cs.cornell.edu/people/pabo/movie-
review-data/, 2002).

Feature Definition

In our study, we used words as features, wherewordsare strings of letters
enclosed by non-letters to the left and to the right. Note that our definition
excludes punctuation sign even though exclamation signs and question marks
may be helpful for our task. Intuitively the task of sentiment extraction is a
hybrid task between authorship attribution and topic categorization; we look
for frequent words, possibly not related to the context, that help express lexical
patterns, as well as low frequency words which may be specific to a few review
styles, but very indicative of an opinion. We considered all the words that
appeared in more than 8 documents as our input features, whereas words with
lower counts were discarded since they appear too rarely to be helpful in the
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classification of many reviews. We were left with a total number of 7,716
words, as input features. In our experiments, we represented each document
as a vector,X := [X1, ..., X7716], of the size of the initial vocabulary, where
eachXi is a binary random variable that takes the value of 1 if theith word in
the vocabulary is present in the document and the value of 0 otherwise. Table
8 summarizes the characteristics of Movie Review data set.

Table 8. Characteristics of the Movie Review Data Set

Task Variables #Samples Variable Types Target Variable Type

Reviewer opinion 7,716 1,400 binary binary

classification (positive/negative)

Results and Analysis

We compare the our results first with the MB classifier, and then with the
four widely used classifiers in text mining field: a naive Bayes classifier based
on the multivariate Bernoulli distribution, discussed in Nigam et al. (Nigam
et al., 2000), a support vector machine (SVM) classifier, discussed by Joachims
(Joachims, 2001), an implementation of the voted Perceptron, discussed in
Freund and Schapire (Freund and Schapire, 1999), and a maximum entropy
conditional random field learner, introduced by Lafferty et al. (Lafferty et al.,
2001).

Table 9 compares the TS/MB with the performances of the other classifiers
using thewhole feature setas input. As shown in the first two rows of Table 9,
although the MB procedure itself can identify a discriminating subset of pre-
dictors, the MB procedure coupled with TS improves both AUC and accuracy.
In this data set, MB procedure selects 18 out of 7716 features with simpler
Markov Blanket graphical structure. TS/MB procedure picks up 3 more fea-
tures and constructs more complex Markov Blanket graphical structures. This
suggests that TS/MB is able to fine tune the initial Markov Blanket and find
better independence structures with produce better predictions, than single-
stage MB procedure. The comparative classification results of TS/MB against
the other four methods are shown in table 9. The TS/MB procedure selects
21 relevant words out of 7,716 words in the vocabulary. The feature reduc-
tion ratio is 99.71%; the cross-validated AUC based on the 21 words and their
dependencies is 77.26%, which is comparable with the other four methods;
the corresponding cross-validated accuracy is 69.12%, which is slight lower
than the average of the other four methods. This is understandable, because
the TS/MB procedure is designed to find a parsimonious set of vocabulary
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along with their conditional dependance relationships. Its contribution lies in
providing insights to the sentiment understanding while achieving compara-
ble prediction results. It has important implications in both the computational
linguistic field and the text mining field.

Table 9. Sentiment Extraction Case Average Performance - Comparison I

Method AUC Accuracy #Original # Selected Size
(%) (%) Features Features Reduction

MB 71.24 65.00 7,716 18 99.76%
TS/MB 77.26 69.12 7,716 21 99.71%
Naive Bayes 82.61 66.22 7,716 7,716 0%
SVM + TFIDF 81.32 84.07 7,716 7,716 0%
Voted perceptron 77.09 70.00 7,716 7,716 0%
Max. entropy 75.79 79.43 7,716 7,716 0%

We notice that the TS/MB classifier is able to automatically identify a very
discriminating subset of features (or words) that are relevant to the target vari-
able (Y , the label of the review). Specifically, the selected features are those
that form the Markov Blanket forY . One might be interested to see how well
these benchmark methods will do using the same number of features. In order
to do this comparison, we selected 21 features with the highest information
gain score6, and used these as the input for the other four classifiers.

Table 10 compares the performance of the TS/MB with others classifiers
using thesame number of featuresselected using information gain criterion.
We notice that feature selection using information gain criterion does not tell us
how many features have to be selected, but rather allows us to rank the features
from most to least discriminating instead. The TS/MB produce comparable
AUC and accuracy to most of the other methods.

Table 10. Sentiment Extraction Case Average Performance - Comparison II

Method AUC Accuracy #Original # Selected Size
(%) (%) Features Features Reduction

MB 71.24 65.00 7,716 18 99.76%
TS/MB 77.26 69.12 7,716 21 99.71%
Naive Bayes 76.34 68.44 7,716 21 99.71%
SVM + TFIDF 68.90 69.43 7,716 21 99.71%
Voted perceptron 78.82 70.71 7,716 21 99.71%
Max. entropy 64.09 70.93 7,716 21 99.71%
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In Table 11 we compare the performance of the TS/MB with others classi-
fiers using thesame exact features. We find that all the four competing clas-
sifiers performed better on the set of features in the Markov blanket. This
suggests that the Markov Blanket approach is able to identify better sets of
distinctive features in an automatic fashion. Whereas other feature selection
methods, such as the information gain criterion, are not able to automatically
identify the optimal number of features to select, or, given the number, the best
features to choose.

Table 11. Sentiment Extraction Case Average Performance - Comparison III

Method AUC Accuracy #Original # Selected Size
(%) (%) Features Features Reduction

MB 71.24 65.00 7,716 18 99.76%
TS/MB 77.26 69.12 7,716 21 99.71%
Naive Bayes 80.81 70.36 7,716 21 99.71%
SVM + TFIDF 69.47 69.08 7,716 21 99.71%
Voted perceptron 79.61 70.93 7,716 21 99.71%
Max. entropy 66.03 71.14 7,716 21 99.71%

One possible explanation for the improvement in the accuracy and AUC may
be the fact that the MB classifier encodes and takes advantage of dependencies
among words conditional on the target variable.

Finally, in Figure 17 and Figure 18 below we show the initial MB DAG and
the Tabu search enhanced MB DAG learned by the TS/MB classifier. Most of
the directed edges are robust over five cross validation runs; the variation is
fairly small.

Discussion - Sentiment Extraction Case

The TS/MB classifier that we have proposed is a fully automated system
able to select a parsimonious vocabulary, customized for the classification task
in terms of size and relevant features. Many techniques have been tried in or-
der to automatically capture the way people express their opinions, including
models for the contextual effects of negations, the use of feature frequency
counts instead of their presence or absence, the use of different probability dis-
tributions for different positions of the words in the text, the use of sequences
of words orN -grams, the combination of words and part of speech tags, noun-
phrase chunks, and so on. However, the empirical results in terms of prediction
accuracy and AUC always remain in the lower 70%s.

We performed three sets of experiments to compare the methods along var-
ious dimensions, in Tables 9, 10 and 11. The comparison of results of Table
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Figure 18. the best fitting MB DAG for the movie review data

10 and Table 11 suggests that information gain may not be the best criterion
to select discriminating variables, but the statistical tests that measure associa-
tion among features are better tools to perform the selection. The running time
for TS/MB classifier varies according to the number of the variables and the
number of the samples in cases where both the number of the variables and the
sample size are small, TS/MB runs about the same time magnitude as the other
classifiers. However, for the movie review data set , the number of variables
is large (7716 variables), and the number of data samples is fairly big (1400
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data samples), TS/MB took around tens of thousand of seconds, whereas the
benchmark classifiers took at most thousands of seconds.

7. Application in Health Care Field: PCA Case Study

Early detection and diagnosis of prostate cancer has been a challenging task
in Cancer Research community. Although efforts by health care researchers
have resulted in better identification of individuals with cancer (Djavan et al.,
1999, Howe et al., 2001, Stamey et al., 2002), overall early detection or deter-
mination of aggressive cancers is needed. In Section 5, we dicsussed the test-
ing of our experimental design on PCA data set. In this section, we compare
the results we got from the best experimental parameter configuration against
several state-of-the-art classifiers.

We compare the performance of the TS/MB classifier first with single-stage
MB classifier, the Markov Blanket classification without TS enhancing pro-
cedure, and then with those of six widely used classifiers mentioned in the
experimental design section (Section 4).

As shown in the first two rows of Table 12, although the MB procedure
by itself can identify a discriminating subset of predictors, the MB procedure
coupled with TS further improves both AUC and accuracy. In Tables 12, 13
and 14 we present the average best-fitting classification results when compared
against several state-of-the-art classifiers in three different ways. Comparison
I presents the results when using the full set of variables as input. Comparison
II uses the same number of variables as identified by TS/MB as input for all the
other classifiers, selected by information gain criterion. Comparison III uses
the exact same variables as identified by TS/MB as input variables.

Table 12. PCA Case Average Performance - Comparison I

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 96.5 87.1 779 21 97.30%
TS/ MB 98.3 90.3 779 19 97.56%
Naive Bayes 97.5 89.3 779 779 0
SVM 97.1 98.5 779 779 0
Voted Perceptron 73.9 58.0 779 779 0
Maximum Entropy 97.4 98.8 779 779 0
K-NN 96.3 88.6 779 779 0
Logistic Regressionfailed failed - - -

For Comparison I, we use the full data set as the input for each method.
As shown in Table 12, the TS/MB classifier produces a substantially smaller
variable set. In terms of AUC, the TS/MB classifier consistently yields the
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best results; on accuracy, even with the smaller number of variables employed,
it produces results comparable to the average performance of the state-of-the-
art methods. Moreover, our algorithm identifies the 19 most discriminatory
peaks out of 779 peaks that were identified by SELDI software program and
the follow up clustering and peak alignment processes.

Table 13 presents the results for Comparison II. The TS/MB classifier dom-
inates other methods both in terms of AUC and accuracy. This is possible
because the TS/MB classifier is able to select the predictive features in the ab-
sence of evidence. In Table 14, we compare the results by using exact the same
variables as were selected by the TS/MB classifier as the input variables for the
other methods. Similar to Comparison II, the TS/MB substantially outperforms
all the competitors.

Table 13. PCA Case Average Performance - Comparison II

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 96.5 87.1 779 21 97.30%
TS/MB 98.3 90.3 779 19 97.56%
Naive Bayes 67.5 63.2 779 19 97.56%
SVM 63.3 62.0 779 19 97.56%
Voted Perceptron 65.2 59.2 779 19 97.56%
Maximum Entropy 64.7 64.1 779 19 97.56%
K-NN 65.6 58.6 779 19 97.56%
Logistic Regression73.6 56.4 779 19 97.56%

Table 14. PCA Case Average Performance - Comparison III

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 96.5 87.1 779 21 97.30%
TS/MB 98.3 90.3 779 19 97.56%
Naive Bayes 77.4 69.4 779 19 97.56%
SVM 72.6 69.9 779 19 97.56%
Voted Perceptron 75.4 67.8 779 19 97.56%
Maximum Entropy 74.9 70.9 779 19 97.56%
K-NN 72.1 65.3 779 19 97.56%
Logistic Regression78.1 70.0 779 19 97.56%

For PCA data, the number of variables is not too big (779 variables), and the
number of data samples are not too big (326 data samples), TS/MB on average
took about several hundred of seconds while the other classifiers took from no
time to about 100 seconds. These results are obtained from the discrete version
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of the PCA data. We don’t exclude the possibility that the benchmark classi-
fiers such as SVM may have better performance on the continuous version of
the data. A version of this case study can be found in the proceedings of the
9th INFORMS Computing Society (Bai and Padman, 2005)

8. Application in Online Marketing Field: Consumer
Response Case Study

In this case study, we use the data from DealTime (Brynjolfsson and Smith,
2002) to predict consumer response to

The Internet provides a wealth of information about online competing firms.
Consumers use shopbots such aswww.dealtime.comto search and compare of-
fers online, and purchase the offer that maximized their latent utilities. Firms
can monitor the changing prices, announcements of new products or services or
of promotions of competitors through the customized intelligent searches such
aswww.whizbang.com(Montgomery and Kannan, 2002). Search engine com-
panies, such as DealTime and Whizbang, can mine data to optimize their oper-
ational decisions about which stores to search, what advertisements to present,
and which offers to present to a certain user. Online data offers many oppor-
tunities for firms to reduce their costs and increase sales, service quality and
consumer utility. However, online data source are easy to collect but usually
large and difficult to process. Thus being able to identify a set of essential
features is important for business decision making.

Data

The dataset is from DealTime.com. DealTime is an international company
with local shopbot sites in the U.S., U. K., and Germany. By using DealTime,
customers can make worldwide price comparisons for books and other prod-
ucts from around 70 different retailers operating in 10 different countries. Cus-
tomers visiting the site first identify the book they are interested in by searching
on the title, the author, the publisher, or the ISBN. DealTime then queries dis-
tinct book retailers for information on this book. The prices and the delivery
times are queried in real-time and thus represent the most up-to-date data from
the retailers. Customers then evaluate different options in the price comparison
table and click through a particular offer to complete the purchase at a retailer’s
site.

The data used in this paper includes three categories: offer data, session
data and choice data. The offer data contains an individual price quote from
a retailer, which in our analysis refers to item price, total price, discount and
discount rate, tax information, price rank, shipping service type, shipping cost,
delivery time, delivery availability and the position in an offer table. It also
contains the information about the retailer such as retailer ID, country ID of
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the retailer. Session data contains information of an individual search occa-
sion for a book, which refers to the session identification number, customer IP
address, country ID of the customer, the time and date the session inquiry is
made, and the ISBN number for a book. Choice data includes click-through. A
customer clicks through the link to a particular retailer if he or she is interested
in its offer. By using the binary variable "click-through" as the proxy for cus-
tomer response, we are able to track the traffic driven to a web site through the
shopbot. Although the customer’s visit to a store doesn’t guarantee the actual
purchase, Brynjolfsson and Smith (Brynjolfsson and Smith, 2002) show that
the conversion rate of click-throughs and the actual purchase is positive and
stable; it does not change significantly across stores.

We discretized the data by adding dummies to each category of categorical
and non-ordinal variables in the data set. For continues ordinal variables, we
first discretize the value, and put the value into different ranges, and assign
dummy variables to each range. For discrete ordinal variables, we rank the
value and assign dummy variables to each rank. The processed data has 2,936
observations from 48 retailers in 7 countries from January, 2002 to July, 2002.
It includes 271 distinct customer searches for 79 distinct ISBN’s, an average
of 37 offers per search. Table 15 summarizes the characteristics of DealTime
data set.

Table 15. Characteristics of the DealTime Data Set

Task Variables #Samples Variable Types Target Variable Type

Online Customer 235 2,936 discretized binary

Response (click/not click )

Results and Analysis

We conduct comparative studies the same manner as we did in the PCA case
(Section 6). We compare the performance of our algorithm first with single-
stage MB classifier, and then with the other six classifiers.

In Tables 16, 17 and 18 we show the average best-fitting classification results
when compared against the other classifiers. Comparison I presents the results
when using the full set of variables as input. Comparison II uses the same
number of variables as identified by TS/MB as input for all the other classifiers,
selected by information gain. Comparison III uses the exact same variables as
identified by TS/MB as input variables.

For Comparison I, we use the full data set as the input for each method. As
shown in Table 16, the TS/MB classifier identifies 7 out 234 predictor vari-
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Table 16. Customer Response Case Average Performance - Comparison I

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 78.8 97.0 234 12 94.87%
TS/ MB 82.8 97.6 234 7 97.01%
Naive Bayes 84.6 90.5 234 234 0
SVM 25.3 97.6 234 234 0
Voted Perceptron 73.1 97.7 234 234 0
Maximum Entropy 27.8 96.5 234 234 0
K-NN 46.0 97.6 234 234 0
Logistic Regression82.8 97.7 234 234 0

ables. In terms of AUC, TS/MB classifier does substantially better than all the
other classifiers; on accuracy, it produces results comparable to the average
performance of the other methods.

Table 17. Customer Response Case Average Performance - Comparison II

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 78.8 97.0 234 12 94.87%
TS/ MB 82.8 97.6 234 7 97.01%
Naive Bayes 80.5 92.6 234 7 97.01%
SVM 24.9 97.6 234 7 97.01%
Voted Perceptron 68.6 97.7 234 7 97.01%
Maximum Entropy 24.9 97.7 234 7 97.01%
K-NN failed failed - - -
Logistic Regression72.2 97.2 234 7 97.01%

Table 17 and 18 present the results for comparisons with the same number of
variables and the same exact variables, respectively as input for other methods.
Similar to Comparison I, TS/MB performs better on AUC and no worse on
average accuracy.

Figure 19 below we show the best MB DAG learned by the TS/MB classifier
for DealTime data.

For DealTime data, the number of the samples (2936 samples) are relatively
large comparing to the number of the variables (235 variables). TS/MB on
average took about tens of thousand of seconds to run, whereas the benchmark
classifiers took from 500 to 5,000 seconds.

One characteristic of the DealTime data is that it is unbalanced data. About
96 percent of the labels of the target variable is 0. This makes the baseline ac-
curacy7 as high as 96 percent, which is the reason why all the accuracies in the
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Table 18. Customer Response Case Average Performance - Comparison III

Method AUC Accuracy #Original #Predictor Size
(%) (%) Variables Variables Reduction

MB 78.8 97.0 234 12 94.87%
TS/ MB 82.8 97.6 234 7 97.01%
Naive Bayes 82.2 93.0 234 7 97.01%
SVM 25.4 97.9 234 7 97.01%
Voted Perceptron 70.5 97.9 234 7 97.01%
Maximum Entropy 25.4 97.8 234 7 97.01%
K-NN failed failed - - -
Logistic Regression74.8 97.2 234 7 97.01%

Figure 19. The best fitting MB DAG for the DealTime data set

tables look high. However, the AUC score varies a lot. This is partially because
of the skewness of the data as well as the way the data is processed. When we
assigned dummy variables to the ordinal variables in the data, we created de-
pendant correlations among dummy variables. These correlations may make
the data not linearly separable in high dimensional space. For classifiers that
work well only on linearly separable data, they will not be able to distinguish
the positive label from negative. In skewed data, the minority label have the
bigger misclassification cost in AUC score. For DealTime data, misclassifying
a label "click" as "not click" has bigger penalty in AUC score than the other
way round. This explains why some classifiers have poor AUC score.

9. Summary

On average, the TS/MB classifier reduces the set of predictor variables by
at least an order of magnitude from the full set of variables, in some cases
to a sufficiently small set for entry into hand calculators or paper and pen-



Summary 45

cil decision procedures in clinical decision settings. At the same time, when
compared to the state-of-the-art classification methods, the TS/MB classifier
procedures good classification results in all the real world applications tested
in this study, where the cost of misclassification has significant implications.
These experiments, as well as more results we have obtained on data sets from
text mining domain, suggest that for problems where the ratio of samples to the
number of the variables is small, the TS/MB classifier is comparable in terms
of the prediction performance, effectiveness in identifying critical predictors,
and robustness.

It is possible that different Markov Blanket graphical structures consistent
with the TS/MB classifier output would give slightly different classification
results. The reasons can be the following: Any undirected and bi-directed
edges are deleted after the edge orientation step, and these deletions might be
suboptimal decisions. After the edge pruning step, the graph is often a partially
directly graph (also called pattern), not a real DAG. The algorithm transforms
this partially directly graph into a set of DAGs, and arbitrarily picks one of
them as the starting solution of Tabu search procedure. Tabu search iteratively
investigates alternative orientations and further edge additions to minimize the
sub-optimality.

There are limitations of our algorithm. Although our algorithm is able to
identify substantially fewer variables out of a large number of predictor vari-
ables, when the number of variables in the full data set goes beyond hundreds
of thousands, our algorithm will not be able to perform and store the condi-
tional probabilities needed for all the conditional independence tests. However,
this problem can be solved by pairing with a segmentation method. This is fea-
sible because theInitialMBsearchpart is an "anytime" algorithm in the sense
that it can be stopped at any stage, or run on any subset or superset of variables
from a DAG, and the results are asymptotically correct in the following senses:
edges not in the output are not in the DAG. Another alternative is to develop
and run the parallel version of our algorithm. Theoretically, the computational
complexity of our algorithm is bounded by the density or connectivity level
of the underlying true graph, the empirical complexity may be worse. This is
partially because the way the algorithm is implemented is not optimized, and
partially because the characteristic of our algorithm itself. Since the algorithm
is developed and run in the graphical space, generating, storing, reading and
updating a graph alone with its parameters and inferences can be time con-
suming. On the other hand, for data sets with large number of samples, our
algorithms takes a lot of time to run, because the number of evidences to check
is increased very time an independence test is performed. These effects oc-
curred in our experiments. For PCA data where the number of variables is
under one thousand with a few hundred of data samples, TS/MB took about
several hundred of seconds while the benchmark classifiers took from no time



46 Tabu Search Enhanced Markov Blanket Classifier

to about 100 seconds. In movie review data or the DealTime data, where either
the the number of variables is large (several thousands in movie review data) or
the number of samples is large (several thousands in DealTime data), TS/MB
took around tens of thousand of seconds, whereas the benchmark classifiers
took from 500 to 5,000 seconds.

This research can be extended to address the interesting problem of simul-
taneously building classifiers for all variables in a large variable data set, or
the problem of discovering a causal model for all variables in such data. Fu-
ture research could be the exploration of heuristic approaches to global causal
discovery problems.

10. Theoretical Properties

In this section we provide some preliminary theoretical properties of our
algorithm. We first describe the intuitions of search space design and choice
of search heuristic; then we prove the asymptotic correctness ofInitialMB-
searchin limit, and give the complexity analysis ofInitialMBsearch; then we
prove that Tabu search enhanced MB search improve the performance on finite
sample cases; Finally we summarize the favorable aspects that Tabu search
heuristic has for our learning and prediction problem settings.

Search for Markov Blankets Vs. DAGs

When searching in space of DAGs, the number of DAGs is super-exponential

in the number of observed variables: the lower bound is2

(
n
2

)
. For a data

set with 5 variables, the number of possible DAGs is at least25 = 1, 024; for a
data set with 10 variables, the number of possible DAGs is at least245 ≈ 1015.
Theoretically, finding the optimal DAG has been shown NP-hard for the poste-
rior probability score(Chickering, 2002). We suspect that it is the case as well
for other scoring functions, but it has not been proved.

In a practical implementation, one faces two problems: computational com-
plexity and limited data. Construction of a full Bayesian network for the pur-
poses of classification may be computationally inefficient, as the whole struc-
ture may not be relevant to classification. Specifically, classification is unaf-
fected by parts of the structure that lie outside the classification node’s Markov
blanket (Pearl, 2000). It is simpler to search for Markov Blanket DAGs than
for the full DAGs because they contain fewer variables.

We also search directly for prediction score (accuracy and AUC). To our
knowledge, previous research on learning Markov Blanket DAGs score the
overall fit of a structure. The score is calculated on a weighted average schema
over all the nodes in the network, which is called a kind of global scoring
criterion. A "best-overall" structure may not be the "best" structure for certain
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node. In classification or prediction structure learning problems, we only care
about the local fit for the target node, which is measured as the conditional
probability of the target node. The MB DAGs that yield the highest conditional
probability of the target node are the structures that yield the highest prediction
performance. In this sense, our scoring criterion is geared for the prediction
problem, and is superior to global scoring criteria.

Heuristic search Vs. exhaustive search

When searching the space of Markov Blankets, the number of Markov Blan-
kets is still exponential in the number of observed variables with a lower bound
2n, wherec is the number of children of the target variable. Chickering (Chick-
ering, 2002)proposed and proved a two stage greedy search algorithm using
single edge deletion and addition operations in the large sample limit is guar-
anteed to find the inclusion optimal structure giving the assumption that the
probability distribution satisfies the Markov condition and faithfulness to the
DAG. However, he also pointed out that his algorithm worked well only under
the conditions where the graph is sparse and the dimensionality of the problem
is small. He acknowledged that, in practice, it is still an open question whether
the local maximum reached by his algorithm applied to real world data corre-
spond to a model that is close in score to the global maximum, where there is
no guarantee that the generative distribution has a perfect map in a DAG; and
that there is enough data to support the asymptotic properties of the Bayesian
scoring criterion. In summary, theoretically finding the optimal score is known
to be correct in limit. In practical cases, there has not been a known way to find
the optimal score because it takes too long or impossible to perform exhaustive
search. Thus one needs to resort to heuristic search strategies.

InitialMBsearch finds the true Markov Blanket in limit. (The
Correctness of theInitialMBsearch)

Assumptions:

(i) Markov and Faithfulness Assumptions: the probability distributionp
satisfies the Markov condition (Definition 1) and Faithfulness (Defini-
tion 3) for some DAGG,

(ii) no hidden variables,

(iii) unlimited depth of search

Lemma 1: If p(V ) is Markov and faithful (Definition 3) to the graphG with
the vertex setV , then
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(i) for each pair of verticesX, Y in G, X andY are not adjacent if and
only if X andY are independent conditional on either the parents ofX
in G, or the parents ofY in G; and

(ii) for each pair of verticesX, Y in G, X andY are not adjacent if and
only if X andY are independent conditional on some subset of vertices
not containingX or Y

Theorem: In the large sample limit, if the probability distribution is Markov
and faithful to a DAG G that contains no hidden variables, the output of the
InitialMBsearchis a pattern that represents the Markov equivalence class of
G.

Proof Sketch:
Since an edge betweenT andv is removed from the graph if and only ifT

andv are independent conditional on some subset of vertices Z not containing
T or v, by Lemma 1 (ii) the search only removes edges that are not in the
true graph. After the first call tocheckedges, since the search has checked
whetherT and any other vertexv are independent conditional on every subset
of vertices adjacent toT , and the parents ofT are adjacent toT , the search
has checked whetherv andT are independent conditional on the parents of
T . However, some edges not inG might not have been removed yet, because
the algorithm might not yet have checked whetherT andv are independent
conditional on the parents ofv.

After the second set of calls tocheckedges, if T andv are still adjacent, the
algorithm checks whetherT andv are independent conditional on any subset
of vertices adjacent tov. Since the parents ofv are a subset of the vertices
adjacent tov, the search has checked whetherT andv are independent condi-
tional on the parents ofv. So after this stage, the search has checked whether
T andv are independent conditional on the parents ofT , and on the parents of
v. By Lemma 1(i),adj(T ) is the set of parents and children ofT . Similarly,
thecheckedgesmethod is applied to one endpoint of each edgev—w such that
v is in adj(T ) andw is in adj(v). Hence for eachv in adj(T ), andw in adj(v)
the algorithm has checked whetherv andw are independent conditional on the
parents ofv.

checkedgesis then applied to the other endpoint of each such edge, if it
hasn’t already been so applied, without re-adding any edges that have been
removed. So at this point, for eachv in adj(T ), andw in adj(v) the algorithm
has checked whetherv andw are independent conditional on the parents of
v, and on the parents ofw. Hence the adjacencies forT are correct, and the
adjacencies for each vertexv adjacent toT are correct. Hence forT (or any
vertexv adjacent toT ), the set of vertices adjacent toT (or v) is the union of
the parents and children ofT (or v).



Theoretical Properties 49

Then, the orientation rules are applied. The correctness of orientation rules
have been proved in (Spirtes et al., 2000, page 410). So, any orientation in the
output is the same as in the true graphG.

After orienting the edges, any node that is outside the range of MB DAG is
trimmed away as well as the corresponding edges.

Some edges may be un-oriented or bi- oriented in finite samples. In the
large sample limit where the data is sufficient, and the distribution satisfies the
Markov conditions and is faithful to the true DAG, and there are no unmeasured
common causes of a pair of variables in the true causal graphG, there will
be no bi- oriented edges. TheInitialMBsearchis able to identify the pattern
representing the true MB DAG.

Complexity analysis of the Initial MB search

In the large sample limit, the complexity for a MB is bounded by the largest
degree (i. e.) in MB. Letk be the maximal degree of any vertex and letn
be the number of vertices. The number of conditional independence tests in

theInitialMBsearchin the worst case is bounded byk2·(n−1)k−1

(k−1)! (Spirtes et al.,
2000), which is the same as PC algorithm. The worst case is everyone adjacent
to T In real world applications, this does not happen very often. Thus empiri-
cally, Tabu Search enhanced Markov Blanket algorithm is much faster than PC
because it does not consider adjacencies or orientations outside the MB DAG.

Evaluation of Tabu Search

Criteria for evaluating search strategies.

Correctness in the large sample limit

Search Cost

– Time Efficiency

– Space (Memory) Efficiency

Path Cost - Optimality: The optimal solution to a problem is the cheap-
est, quickest, or otherwise most efficient route through the state space

The correctness of our algorithm in the large sample limit has been ad-
dressed in the above discussion. In terms of search cost or efficiency, with
a variable search like Tabu search, it is impossible to determine what, if any,
improvements to efficiency will be made The algorithm will not necessarily
find the most efficient route through the state space. However, Tabu search has
several favorable properties because of its adaptive memory capability - both
short term and long term - and it appears particularly suited to the Bayesian
Networks and Markov Blanket approaches:
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Tabu Search does not stop at the first local optima, whereas local
heuristic search such as Best First Search (BFS) does. In this sense, TS
searches a bigger space in general.

Tabu Search efficiently drives the search away from previous visited
neighborhoodby controlling the size of the Tabu list, the longer the list
is, the further away the solutions are. Because if we interpret reversal as
a two step look-ahead move, an operation of reversal ofX1 → X2, is
equivalent to the set without orderingdeleteX1 → X2, addX2 → X1,
based on this argument, there is a unique set of moves (addition, dele-
tion) between twoMBs : MB1 → MB2, i. e., MB2 = f(MB1) →
MB1 = f−1(MB2). In this sense, by just keeping m previous moves
instead of m previous solutions (MBs), TS prevents revisiting the m most
recent solutions. The smart use of dynamic memory is one of the effi-
ciency and effectiveness of our procedure. BFS does not remember any
history and it is more likely that it get stuck at the very first several steps,
in Bayesian Network and Markov Blanket search space.

In summary,InitialMBsearchidentifies the asymptotically correct structure
in the large sample limit as long as there are no latent variables, and Tabu
search searches for the highest score structure on finite samples.
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Notes

1. If there is a directed path from node A to node B in a DAG, then node B is a descendant of node A;
node A is a parent of node B

2. Because there are some moves which are identical of combinations of other moves, it is possible aht
some states may be visited more than once, although they cannot be revisited indefinitely many times.

3. Maximum Entropy methods are also know as autoregressive model.

4. In our experiments,k is equal to 3.

5. The data was discretized by Aliferis, Tsamardinos and Statnikov from Discovery Systems Labora-
tory of Vanderbilt University Medical Center.
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6. Information gain is a measure of the effectiveness of an attribute in classifying the training data. It
is simply the expected reduction in entropy caused by partitioning the examples according to this attribute.
Entropy is a measure of the impurity in a collection of training points. Details can be found inMachine
Learning (Mitchell, 1997)

7. Baseline accuracy is calculated by classifying every data point as the dominant label.
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