
Combining Deep Learning

and Physics Models

for Efficient and Robust Architectures

Filipe de Avila Belbute Peres

CMU-CS-22-148

September 2022

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
J. Zico Kolter, Chair
Zachary Manchester
Katerina Fragkiadaki
Venkat Viswanathan

Fei Sha (Google Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Filipe de Avila Belbute Peres

This research was sponsored by Robert Bosch GMBH and the Defense Advanced Research Projects Agency
under award number HR00112020006. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

Keywords: artificial intelligence, machine learning, deep learning, physics, neural
networks, differential equations, rigid body dynamics, fluid dynamics

To my parents.

iv

Abstract

Over the last decade, deep learning methods have achieved success in diverse
domains, becoming one of the most widely employed approaches in artificial
intelligence. These recent successes have also motivated their application in
physics domains, such as solving differential equations, or predicting the motion
of objects or the behavior of fluids.

Deep learning methods have as their strengths their extreme flexibility,
allowing complex dynamics to be learned directly from data, and their proven
track record working directly on unstructured, high-dimensional domains (such
as image and video processing). However, these approaches also face some
issues, such as difficulty in generalizing outside the training domain, large
data requirements, and costly training. Traditional models of physics, on the
other hand, have been developed to be universally valid within their domain of
application (i.e., generalizable) and require little to no data for modelling.

In this proposal, we present methods for leveraging the strengths of both
types of approaches, by combining deep learning and physics models. This
allows for the development of deep learning architectures that are more data-
efficient and robust to generalization than their standard, “physics-unaware”
counterparts.

These methods fall under two broad categories: differentiable physics layers
and physics-informed learning approaches. In the first group of methods,
we embed full physics simulators as layers into deep learning models, fully
constraining their outputs to match the underlying dynamics. By having these
simulations be fully differentiable, we maintain the ability to train these systems
end-to-end. We present the application of such methods to problems in rigid
body and fluid dynamics.

Physics-informed learning methods provide information about the underlying
physics in the form of physics-informed loss terms, which regularize the model’s
outputs to be physically consistent. We present a method to improve these
approaches in order to learn parameterized systems of differential equations
more efficiently. We also analyze theoretically and empirically the usage of
sinusoidal neural networks to address known issues, such as spectral bias, in
neural networks performing physics-informed learning.

vi

Acknowledgments

The work presented in this thesis would obviously not have been possible
without the support from my advisor, Zico Kolter. I want to first thank him for
his research instincts, which were crucial in guiding this research process, and for
his impressive knowledge of the wide array of topics spanned not only by the work
presented here, but also by the many topics that did not make it into this thesis.

I am also greatly indebted to all my co-authors for the work discussed
here, without whom none of this would have been possible. I am grateful to
Kevin Smith, for being a great mentor even before I started my PhD, and for
demonstrating what systematic thinking and careful research should look like. I
am also thankful to Kevin, together with Joshua Tenenbaum and Kelsey Allen,
for shaping my initial research interests and teaching me about a whole area of AI
and cognitive psychology. In the same spirit, I also want to thank Tom Economon
for being a welcoming and always available advisor, and most importantly also
for guiding me in learning about everything CFD related. Moreover, I must also
thank all the team at the Bosch Center for AI, not only for creating a positive
work environment, but also for funding our group’s research. I also want to thank
Fei Sha for being a supportive advisor, always available and excited to discuss
ideas and new directions. I am grateful to Yi-fan Chen too, for always taking
time to make sure I had a positive experience while at Google. Fei, Yi-fan and the
whole Google Research team truly build a great research environment, with their
lively discussions and general excitement about the possibilities of their research.

I want to express my gratitude also to the members of the thesis committee,
Zico Kolter, Fei Sha, Katerina Fragkiadaki, Zachary Manchester and Venkat
Viswanathan, for their support throughout this process and their willingness
to make accommodations to make everything possible.

During my years at CMU, I have also been fortunate to have had many
discussions with my labmates. I am thankful to all the past and present mem-
bers who were there along the journey: Brandon Amos, Vaishnavh Nagarajan,
Eric Wong, Shaojie Bai, Powei Wang, Priya Donti, Alnur Ali, Gaurav Manek,
Mel Roderick, Jeremy Cohen, Leslie Rice, Ezra Winston, Suvansh Sanjeev,
Yash Savani, Samuel Sokota, Chun Kai Ling, Zhili Feng, Victor Akinwande,
Christina Baek, Anna Bair, Sachin Goyal, Swaminathan Gurumurthy, Yid-
ing Jiang, Pratyush Maini, Dylan Sam, Mingjie Sun, Ashwini Pokle, Asher
Trockman, Josh Williams, Ezra Winston, Runtian Zhai and Huan Zhang.

Finally, I want to also thank my friends and family for the support throughout
this journey. In particular I would like to thank my parents, to whom this work
is dedicated. Beside their always present, unlimited support, they have always
set the highest examples for me on every aspect of life, but most importantly of
all they have always been my compass for what it means to be a good person.

viii

Contents

1 Introduction 1

1.1 Deep learning and traditional physics . 2

1.2 Contributions . 3

1.2.1 Part I: Learning with Differentiable Physics Layers 3

1.2.2 Part II: Improving Physics-informed Learning 3

2 Preliminaries & Background 5

2.1 Combining Deep Learning and Physics Learning 5

2.1.1 Differentiable physics layers . 5

2.1.2 Physics-informed losses . 6

2.2 Background . 7

2.2.1 Physics-informed learning . 7

2.2.2 Differentiable physics layers . 8

2.2.3 Rigid body dynamics . 8

2.2.4 Fluid dynamics . 9

2.2.5 Graph neural networks . 10

2.2.6 Sinusoidal networks . 10

2.2.7 Neural tangent kernel . 11

I Learning with Differentiable Physics Layers 13

3 Learning and Control with Differentiable Rigid Body Dynamics 15

3.1 Introduction . 15

3.2 Differentiable Physics Engine . 16

3.2.1 Formulating the LCP . 16

3.2.2 Solving the LCP . 17

3.2.3 Gradients . 17

3.2.4 Implementation . 18

3.3 Experiments . 18

3.3.1 Parameter learning . 18

3.3.2 Prediction on visual data . 20

3.3.3 Control . 22

ix

4 Fluid Flow Prediction with Graph Neural Networks and Differentiable
Fluid Dynamics 25
4.1 Introduction . 25
4.2 CFD-GCN . 26

4.2.1 Architecture . 26
4.2.2 Training . 31

4.3 Experiments . 32
4.3.1 Interpolation . 33
4.3.2 Generalization . 34
4.3.3 Runtime . 36

II Improving Physics-Informed Learning 45

5 Solving Parameterized Differential Equations with Physics-Informed
Hypernetworks 47
5.1 Introduction . 47
5.2 Preliminaries . 48

5.2.1 Differential equations . 48
5.2.2 Physics-Informed Neural Networks 49
5.2.3 Multistep Neural Networks . 49
5.2.4 Hypernetworks . 50

5.3 HyperPINN . 50
5.4 Experiments . 52

5.4.1 1D Burgers’ equation . 52
5.4.2 Lorenz system . 54

6 Simple Sinusoidal Networks 59
6.1 Introduction . 59
6.2 Simple Sinusoidal Networks . 60

6.2.1 Practical Implementation Details of SIRENs 61
6.2.2 Simplifying SIRENs . 62

6.3 Experiments . 67
6.3.1 Image . 68
6.3.2 Poisson . 69
6.3.3 Video . 70
6.3.4 Audio . 71
6.3.5 Helmholtz equation . 72
6.3.6 Signed distance function (SDF) . 73

7 Understanding and Applying Sinusoidal Networks 75
7.1 Preliminaries . 75
7.2 Shallow sinusoidal networks . 78

7.2.1 SIREN . 78

x

7.2.2 Simple sinusoidal network . 81
7.3 Deep sinusoidal networks . 85

7.3.1 Simple sinusoidal network . 85
7.3.2 SIREN . 88

7.4 Empirical Analysis . 90
7.5 Tuning ω . 93

7.5.1 Choosing ω from the Nyquist frequency 95
7.5.2 Multi-dimensional ω . 96
7.5.3 Choosing ω from available information 97

7.6 Experiments . 97
7.6.1 Evaluating generalization . 97
7.6.2 Solving differential equations . 98

III Conclusion 105

8 Conclusion 107

A Building a Differentiable Rigid Body Dynamics Engine 109
A.1 Physics Engine . 109

A.1.1 Step Overview . 109
A.1.2 Bodies . 110
A.1.3 Global Parameters . 111
A.1.4 Contact Detection . 111
A.1.5 Constraints . 113
A.1.6 Dynamics LCP . 115

A.2 Solution and Derivatives . 117
A.2.1 Solution . 117
A.2.2 Derivatives . 118

Bibliography 121

xi

xii

Chapter 1

Introduction

Over the last decade, deep learning methods have achieved success in diverse domains,
becoming one of the most widely employed approaches in artificial intelligence . These
recent successes have also motivated their application in physics domains, such as solving
differential equations [Bar-Sinai et al., 2019, Long et al., 2018, Raissi et al., 2019a], or
predicting the motion of objects [Battaglia et al., 2016, Chang et al., 2016, Ehrhardt et al.,
2017] or the behavior of fluids [Afshar et al., 2019, Guo and Hesthaven, 2019, Kochkov
et al., 2021].

The connection between these two disparate fields is greater than one might initially
expect. When one thinks of the connection between deep learning and physics, what usually
comes to mind are traditional tasks, such as finding solutions to differential equations,
learning the dynamics of fluids, etc. Indeed, there has been a large amount of work in
applying deep learning methods to these types of tasks.

However, this view is in fact too restrictive. In some sense, physics is at least implicitly
a part of a large amount of artificial intelligence tasks. Any agent that interacts with the
real world will need to have at least an implicit understanding of how the physics of the
natural world work. For example an agent that manipulates objects needs to understand
how these objects will move and interact. This is in fact borne out by the studies on infants
that demonstrate that humans posses an innate knowledge of physics, which they leverage
to interact with and learn efficiently about the world [Spelke and Kinzler, 2007].

Moreover, even agents that do not interact with the real world might have a need for
understanding physics. For example, planning and controlling agents in a video game
environment often involves understanding the dynamics of that environment. Given that
such simulated environments are created by humans and for humans, it has been shown they
are often similar in many important ways to the real world [Dubey et al., 2018], allowing
humans to learn with great efficiency in these environments.

Therefore, having an understanding of physics can be useful not only for tasks seen as
traditionally in the scope of the discipline of physics, but also to artificial intelligence in
general.

1

Physics
Models

Deep
Learning

+ Universally valid
(“general”)

+ Little to no learning or
data required

- Requires structured
representation

- Numerical integration
can be costly

+ Good at processing
perceptual / unstructured data

+ Flexible: can learn un-
modelled dynamics

- Difficulty generalizing outside
training domain

- Learning is costly and requires
a lot of data

Figure 1.1: Comparison of general characteristics traditional physics models and conventional
deep learning approaches.

1.1 Deep learning and traditional physics

Despite both the explicit and implicit connections to physics problems, the trend when
applying deep learning methods to such tasks is to approach problems in a purely “data-
driven” fashion. That is, to gather a large amount of data from the process of interest and
to perform some sort of statistical learning procedure on that data, usually with minimal
amount of prior knowledge provided to the deep learning model. This approach brings with
it many advantages, demonstrated clearly in the many recent successes of deep learning.
For instance, it is very clear that deep learning methods are very strong at processing
unstructured, high-dimensional data – the type of data that usually arises from perceptual
tasks, such as image, video and audio processing [Goodfellow et al., 2014, He et al., 2015,
Schneider et al., 2019]. In comparison, traditional methods in physics commonly require
data to be provided in a structured form, such as the explicit positions and velocities of
particles or objects. Moreover, deep learning methods, given their parameterized learning-
based nature and their universal approximation capabilities, are extremely flexible and
able to learn to approximate even unknown, not modelled or partially measured dynamics
[Eivazi et al., 2021, Kochkov et al., 2021].

Nevertheless, deep learning methods also have some drawbacks. It is known that these
types of approaches can require large amounts of data in order to learn properly [Marcus,
2018]. In contrast, traditional physics models require little to no data for training, as
most of the information regarding the underlying dynamics is hardcoded into the model by
design. Moreover, it is known that deep learning methods also face issues when generalizing
outside of the training domain [Belbute-Peres et al., 2020]. Combined with the high-cost
associated with training a new model (compared to their relatively cheap evaluation), this
imposes a severe restriction on their practical applicability. Physics models, conversely, are

2

generally designed to be universal, at least within their intended domain of application. A
prototypical example of this are the Navier-Stokes equations, which are able to model fluid
dynamics from everyday scales to the scale of jet engines.

Figure 1.1 presents a summarized representation of the general differences between these
approaches.

In many domains, we indeed have a large body of knowledge acquired over the centuries
from scientists who studied the natural world and developed accurate models of the
underlying dynamics for diverse physical processes. In this thesis we propose methods for
combining deep learning and physics models in order to develop architectures that leverage
their aforementioned complementary strengths (outlined in blue and positive in Figure 1.1).
By employing end-to-end trainable deep learning architectures, we are able to have models
that are flexible and capable of learning from data. Additionally, the usage of physics
models allows for models that are capable of achieving greater data efficiency and that are
robust to data from outside the training domain.

1.2 Contributions

In the following chapter, we will summarize the relevant preliminary concepts and back-
ground to the rest of this thesis. After that, the subsequent chapters will describe in detail
the relevant research contributions in this thesis.

1.2.1 Part I: Learning with Differentiable Physics Layers

In Part I, we present methods for developing and utilizing differentiable physics models as
special neural network layers in order to embed structured physics knowledge into deep
learning models.

• Chapter 3 presents a method for developing an analytically differentiable rigid-body
physics engine, such that it can be employed as a layer in an end-to-end trainable deep
learning system. We demonstrate that this method allows for improved data-efficiency
in both prediction and control tasks.

• Chapter 4 presents a method for employing fast fluid simulations in conjunction with
a graph neural network, such that we can have an architecture that is able to perform
fluid flow predictions on unstructured meshes. We demonstrate that this method can
perform efficient predictions and is able to generalize robustly outside of its training
domain.

1.2.2 Part II: Improving Physics-informed Learning

In Part II, we present methods to address failure modes of physics-informed neural networks,
such as their spectral bias and lack of generalization, by employing practical and theoretical
techniques from modern deep learning learning.

3

• Chapter 5 presents a method for utilizing soft constraints, in the form physics-informed
losses, combined with a weak inductive bias, in the form of a hierarchical architecture,
the hypernetwork. We demonstrate that this method allows for more efficient learning
of the solutions to parameterized differential equations.

• Chapter 6 introduces the concept of sinusoidal networks, which are of interest for
physics-informed learning, and propose a simplified version of these architectures that
still maintains their main benefits, such as the ability to avoid the spectral bias of
traditional neural networks. We demonstrate that these simple sinusoidal networks
have performance equivalent to more complex alternatives that have been proposed.

• Chapter 7 utilizes neural tangent kernel theory to analyze the sinusoidal networks
proposed in the previous chapter, demonstrating their behavior is similar to that of
low-pass filters and informing methods to tune their properties in order to achieve
improved performance in physics-informed differential equation tasks.

4

Chapter 2

Preliminaries & Background

This thesis brings together many ideas from deep learning and physics. Though an extensive
treatments of all these topics would be impossible, in this chapter, we provide a high-level
background on the main topics employed. More specific concepts and lower level details
are left to each individual chapter.

2.1 Combining Deep Learning and Physics Learning

The ideas we present in this thesis can be organized into two categories, which broadly
match the main components of a deep learning model, the choice of architecture and the
choice of objective.

In general, deep learning models can be seen as a composition of functions, i.e. a deep
learning model f is in fact a series of neural network “layers”

f(x) = fn ◦ · · · ◦ f1(x). (2.1)

One common way of specifying the network architecture is by specifying the nature of these
layers (e.g., convolutional, fully connected, self-attention, etc).

Given a certain architecture, a neural network fθ will be parameterized by some learnable
parameters θ. These parameters are learned through an optimization procedure, which
requires the choice of an objective (or loss) function. For example, for some ground truth
training data (xi, yi)

n
i=1 and network predictions fθ(xi), a common objective is the mean

squared error on the training data

L(θ) = 1

n

n∑
i=1

∥yi − fθ(xi)∥22. (2.2)

These two components naturally suggest the two ways in which we combine our knowledge
of physics with deep learning methods. We describe each in turn below.

2.1.1 Differentiable physics layers

As mentioned above, the layer functions fi from Equation 2.1 come from a restricted
set of commonly used architectural “building blocks”, such as fully-connected layers,

5

convolutional layers, etc. Nevertheless, we need not be restricted to this set. From a deep
learning optimization perspective, in which essentially all optimization methods used in
practice are first-order, the main requirement we have is that the layer functions fi have
to be differentiable, so that the backpropagation algorithm [Rumelhart et al., 1986] can
compute the derivatives with respect to the network’s parameters and the preceding layers.

Therefore, one natural way of hard-constraining a neural network to conform to a given
physics model ϕ is to set one of the layers fk(x) = ϕ(x). That is

f(x) = fn ◦ · · · ◦ ϕ ◦ · · · ◦ f1(x).

This hard-constraints the network f to have outputs that conform to the physics model ϕ
at layer fk. As a concrete example, which we explore in Chapter 3, ϕ could be a discrete
rigid body dynamics model, that takes in as input rigid body positions and velocities, and
returns these quantities at the next time step, i.e. (xt+1, vt+1) = ϕ(xt, vt). If we are able to
frame the function ϕ(x) as a differentiable function, then it would still be possible to train
the network f end-to-end using regular backpropagation.

In this way, we can still have a learnable neural network architecture, but at the same
time incorporate prior physics knowledge into our model. This allows for deep learning
models that are more efficient at learning and better at generalizing, due to the relevant
information contained in the physics models. In Part I, we demonstrate examples of this
approach, with networks that contain layers constrained to follow both rigid body dynamics
(in Chapter 3) and fluid dynamics (in Chapter 4).

2.1.2 Physics-informed losses

As described above, deep learning models are trained by optimizing a choice of loss function,
L(θ). In the most common machine learning paradigm, supervised learning, this function is
given by some error between the true labels yi and the prediction from the neural network
with parameters θ, as shown for example in Equation 2.2.

However, we need not be constrained only by this paradigm. Different choices of loss
functions can be employed to penalize parameter configurations that do not conform to
some desired behavior. Therefore, another way we can leverage our prior knowledge of
physics is by designing loss functions that penalize neural networks that do not conform to
our physics model for a given task.

For example, we can “soft-constrain” a neural network fθ to conform to a certain
differential equation model by adding loss terms that penalize deviations from those
equations. If we know that our dynamics are specified by the differential equation

∂f

∂t
=

∂f

∂x
, (2.3)

then in order to have our deep learning model conform to these dynamics, we can add a
loss term of the form

Lphys(θ) =

∥∥∥∥∂fθ(x)∂t
− ∂fθ(x)

∂x

∥∥∥∥2
2

,

6

which will penalize parameterizations of fθ that do not satisfy Equation 2.3, without having
to hard-constraining the model to these dynamics, as we did in the previous section.

These types of loss terms are called physics-informed losses, and are the basis for the set
of methods called physics-informed neural networks (PINNs) [Raissi et al., 2019a]. They
are described in more detail in Part II. In Chapter 5 we present a method for efficiently
using these types of soft-constrained deep learning models to learn parameterized systems of
differential equations efficiently, and in Chapters 6 and 7 we propose a different architecture,
utilizing sinusoidal activation functions, that enables more efficient learning when utilizing
these physics-informed losses.

2.2 Background

2.2.1 Physics-informed learning

Differential equations. The differential equations we study in this thesis take the general
form

N [t, x, u(t, x);λ] = 0,

with t ∈ [0, T], x ∈ Ω,
(2.4)

where N [·;λ] is an arbitrary (possibly non-linear) differential operator, which can contain
time and space derivatives, and is parameterized by some list of parameters λ ∈ Rd. Here,
t is the time variable ranging up to time T , x is the D-dimensional spatial variable in some
domain Ω ⊆ RD, with boundary ∂Ω, and u(t, x) is the solution function to the differential
equation. In order for a solution to be defined, initial and boundary conditions need to be
provided. These can assume different forms, but in general initial conditions define u(0, x)
for x ∈ Ω, and boundary conditions define u(t, x) for x ∈ ∂Ω and t ∈ [0, T].

As a concrete example of this formulation, we can take a look at a wave equation in one
dimension, which is given by

∂2u

∂t2
= c2

∂2u

∂x2
(2.5)

Here N from Equation 2.4 is a non-linear operator containing second derivatives that
defines the left-hand side of the equation, and λ = c.

Physics-Informed Neural Networks. Physics-informed neural networks [Raissi et al.,
2019a] are a method for approximating the solution to differential equations, such as
Equation 2.4, using neural networks (NNs). In this method, a neural network û(t, x; θ),
with learned parameters θ, is trained to approximate the actual solution function u(t, x) to
a given partial differential equation (PDE).

Importantly, PINNs employ not only a standard “supervised” data loss, but also a
physics-informed loss, which consists of the differential equation residual defined by N .
Thus, for a given optimization hyper-parameter α, the training loss consists of

7

L(θ) = Ldata(θ) + αLphysics(θ),

Ldata(θ) =
∑

(ti,xi,ui)∈D

[û(ti, xi; θ)− ui]
2,

Lphysics(θ) =
∑

(tc,xc)∈C

N [tc, xc, û(tc, xc; θ);λ]
2,

(2.6)

where D is a dataset containing ground-truth values for u (e.g., from simulation data)
at points (ti, xi), and C is a set of collocation points at which to evaluate the differential
equation residual (which does not require ground-truth solution data). While the data in
D can be used to enforce the initial and boundary conditions, the physics-informed loss
term regularizes the search space, penalizing functions û that do conform to the differential
equations, reducing the need for simulation data.

2.2.2 Differentiable physics layers

The work in Part I on differentiable physics layers relates methodologically to a recent trend
of incorporating more structured layers within deep networks [Ramsundar et al., 2021].
Specifically, recent work has looked incorporating quadratic programs [Amos and Kolter,
2017], combinatorial optimization [Djolonga and Krause, 2017], computing equilibria in
games [Ling et al., 2018], or dynamic programming [Mensch and Blondel, 2018].

The work in Chapter 3 on differentiable rigid body dynamics relates most closely to that
of [Amos and Kolter, 2017]. Like this work, we use an interior point primal dual method to
solve a nonlinear set of equations (in our case a general LCP, in their case a symmetric
LCP resulting from the KKT conditions of QP). However, both the general nature of the
LCP, and the application to physical simulation, specializes substantially from what has
been considered previously. Full details for our approach are described in Appendix A.

The work in Chapter 4 uses a differentiable CFD solver, which allows us to embed
a fluid simulation as a layers in a deep learning model. Differentiation of PDE solvers
has been used for decades for shape optimization in aerodynamics Jameson [1988], with
diverse formulations, such as the continuous adjoint Economon et al. [2015a] and the
discrete adjoint Albring et al. [2015, 2016] being available. The adjoint method has also
been applied in the graphics literature, but with different goals. McNamara et al. [2004]
developed a differentiable fluid simulator for controlling smoke animations by optimizing
forces acting on the smoke in order to have it match target shapes. In our work, we
utilize SU2 [Economon et al., 2016], which is an open-source suite that provides both CFD
simulations and adjoint-based differentiation.

2.2.3 Rigid body dynamics

Although they were not developed purely within the machine learning community, physical
simulation tools such as MuJoCo [Todorov et al., 2012], Bullet [Coumans et al., 2013],
and DART [Lee et al., 2018b], have become ubiquitous tools particularly in reinforcement
learning. Despite their power, computing derivatives through these engines mostly involves

8

using finite difference methods, i.e. evaluating the forward simulation multiple times with
small perturbations to the relevant parameters to approximate the relevant gradients. This
strategy is often impractical due to (1) the high computational burden of finite differencing
when computing the gradient with respect to a large number of model/policy parameters;
and (2) the instability of numerical gradients over long time horizons, especially if contacts
change over the course of a rollout.

In Chapter 3, we employ the strategy of directly differentiating the optimization problem
that defines the dynamics. The analytic differentiation avoids the aforementioned issues,
and can give gradients with respect to a large number of parameters essentially “for free”
given a forward solution. Full details for our approach are described in Appendix A.
The usage of analytical gradients in physics simulation has been previously investigated
in spring-damper systems [Hermans et al., 2014]. However, due to its limitations, such
as instability and unrealistic contact handling, most engines used in practice do not use
spring-damper models. Degrave et al. [2016] also develop a differentiable physics engine,
with similar motivations. However, in this case the engine is made differentiable by simply
implementing it in its entirety in the Theano framework [Al-Rfou et al., 2016]. This severely
limited the complexity of the allowable operations: for instance the engine only allowed for
collision between balls and the ground plane.

In a related but orthogonal body of work, many studies have investigated the human
ability to intuitively understand physics. Battaglia et al. [2013], Hamrick et al. [2015] and
Smith and Vul [2013] suggested that people have an “intuitive physics engine” that they
can use to simulate future or hypothetical states of the world for inference and planning.
Recent work in machine learning has leveraged this idea by attempting to design networks
that can learn physical dynamics in a differentiable system [Battaglia et al., 2016, Chang
et al., 2016, Lerer et al., 2016], but because these dynamics must be learned, they require
extensive training before they can be used as a layer in a larger network, and it is not clear
how well they generalize across tasks. Conversely, by performing explicit simulation (similar
to how people do), which is embedded as a “layer” in the system, our approach requires
no pre-training and can generalize across scenarios that can be captured by a rigid-body
engine.

2.2.4 Fluid dynamics

Many recent works have explored the interface between machine learning and CFD. In
many cases, the approach has been model-free, aiming to directly learn to predict physical
processes using solely deep learning methods [Afshar et al., 2019, Guo et al., 2016], with
Afshar et al. [2019] applying an encoder-decoder convolutional architecture to the task of
predicting flow fields around an airfoil. However, in many such works, generalization was
not evaluated at a range of parameters that would generate behavior significantly different
from the ones seen during training.

Others have looked at employing deep learning models as function approximators that
substitute certain terms in equations of interest, such as the turbulence terms in turbulence
modeling [Duraisamy et al., 2019, King et al., 2018, Singh et al., 2017]. In contrast to these
approaches, which embed deep learning models as a component in larger physical models,

9

the approach we describe in Chapter 4 aims to embed a full physical simulation as a layer
in a deep learning system.

Many papers have also explored applications of machine learning to fluid simulations
for graphics. Unlike in CFD, fluid animations have the main goal of looking realistic,
not necessarily aiming to model physical laws or conform perfectly to reality. Graphics
applications are frequently more naturally suited to deep learning methods, as in many
such applications the simulations are natively performed in structured grids. Some success
has been achieved in generating realistic animations of smoke or water [Kim et al., 2018,
Um et al., 2017, Wiewel et al., 2018].

Additionally, machine learning methods have also been applied to particle-based methods
[Macklin and Müller, 2013] in order to develop a differentiable fluid simulator [Schenck and
Fox, 2018]. Since these methods do not focus on accurately modeling the physical processes,
having as their main goal generating realistic animations, they are unsuited for CFD tasks
such as predicting aerodynamic flows for practical engineering applications.

2.2.5 Graph neural networks

In Chapter 4, as a consequence of working with unstructured meshes, our proposed method
makes use of many recent advances in graph neural networks. These are neural networks that
operate on general graph structures, instead of the regular grids required by convolutional
networks. In the domain of physics, this allows for the usage of unstructured meshes, which
are common due to their efficiency in allocating higher node density only where it is needed.

The graph convolution operation we use in our models was originally proposed by Kipf
and Welling [2016], though many other approaches have also been proposed [Bronstein
et al., 2017, Defferrard et al., 2016, Hamilton et al., 2017]. A detailed description of this
architecture is provided in Chapter 4

Other works in the space of graph neural networks have worked on applying graph
neural networks to meshes [Hanocka et al., 2019] or on graphs with positional information
[Qi et al., 2017]. However, in their work, the modifications to the mesh do not attempt to
preserve or improve its functionality, serving only the purpose of pooling for a classification
task. Alet et al. [2019] employed graph neural networks with positional information to mesh
a continuous space and model spatial processes. In this work, the dynamics were learned
solely by the graph neural network, without the usage of any PDE solver. To the best of
our knowledge, our work is the first to directly modify a mesh to optimize its functionality
for a downstream task, through using it on a differentiable simulator.

2.2.6 Sinusoidal networks

A “sinusoidal network” is a neural network with a sine non-linearities, instead of traditional
non-linearities such as the hyperbolic tangent (tanh) or the rectified linear unit (ReLU).
A popular recent example of such type of neural network are sinusoidal representation
networks (SIRENs) [Sitzmann et al., 2020]. Sinusoidal networks have also been evaluated in
physics-informed learning settings, demonstrating promising results in a series of domains
[Huang et al., 2021a,b, Raissi et al., 2019b, Song et al., 2021, Wong et al., 2022]. Sinusoidal

10

networks are discussed in detail in Chapter 6, with their behavior analysed through the
lens of the neural tangent kernel in Chapter 7.

Among the benefits of such networks is the fact that the mapping of the inputs through
an (initially) random linear layer followed by a sine function is mathematically equivalent to
a transformation to a random Fourier basis, rendering them close to networks with Fourier
feature transformations [Rahimi and Recht, 2007, Tancik et al., 2020]. Additionally, the
periodic nature of such activation functions renders the network shift-invariant with respect
to its inputs [Mildenhall et al., 2020, Tancik et al., 2020].

Moreover, Sitzmann et al. [2020] argue that SIRENs have the property of being closed
under derivation, given that the derivative of its outputs with respect to its inputs is given
by another sinusoidal network, due to the fact that

d

dx
sin(x) = cos(x) = sin

(
x+

π

2

)
. (2.7)

This contrasts with the derivatives of networks with, for example, a traditional ReLU
activation, which has vanishing higher-order derivatives.

2.2.7 Neural tangent kernel

An important prior result to the neural tangent kernel (NTK) is the neural network Gaussian
process (NNGP). It has been shown that, at random initialization of the network parameters
θ, the output function of a neural network of depth L with nonlinearity σ, converges to a
Gaussian process, called the NNGP, as the width of its layers n1, . . . , nL →∞ [Lee et al.,
2018a, Neal, 1994]. This Gaussian process has covariance recursively defined by

Σ(1)(x, x̃) =
1

n0

xT x̃+ β2

Σ(L+1)(x, x̃) = Ef∼N (0,Σ(L)) [σ(f(x))σ(f(x̃))] + β2,

where β gives the variance of the bias terms in the neural network layers.
This result, though interesting, does not say much on its own about the behavior of

trained neural networks. This role is left to the NTK, which is defined as the kernel given
by

Θ(x, x̃) = ⟨∇θfθ(x),∇θfθ(x̃)⟩ .

It can be shown that this kernel can be written out as a recursive expression involving the
NNGP (see Theorem 7.1).

Importantly, Jacot et al. [2018] demonstrated that, again as the network layer widths
n1, . . . , nL →∞, the NTK is (1) deterministic at initialization and (2) constant throughout
training. Finally, it has also been demonstrated that, as the learning rate for the stochastic
gradient descent (SGD) algorithm tends to 0, the output function of the trained neural
network fθ converges to the kernel regression solution using the NTK [Arora et al., 2019,
Lee et al., 2020]. In other words, under the assumptions above, the behavior of a trained
deep neural network can be modeled as kernel regression using the NTK.

11

In Chapter 7, we derive the NNGPs and NTKs for sinusoidal networks and use the
findings, together with the NTK theory described above, to inform our understanding of
how these networks behave.

12

Part I

Learning with Differentiable Physics
Layers

13

Chapter 3

Learning and Control with
Differentiable Rigid Body Dynamics

In this chapter, we present how to develop a differentiable rigid body physics engine and
integrate it into a deep learning model as a layer that is hard-constrained to follow the
underlying dynamics, which are fully specified. This allows for models that are significantly
more data-efficient than their corresponding “physics-agnostic” deep learning counterparts.

3.1 Introduction

Physical simulation environments, such as MuJoCo [Todorov et al., 2012], Bullet [Coumans
et al., 2013], and others, have played a fundamental role in developing intelligent rein-
forcement learning agents. Such environments are widely used, both as benchmark tasks
for RL agents [Brockman et al., 2016], and as “cheap” simulation environments that can
(ideally) allow for transfer to real domains. However, despite their ubiquity, these simulation
environments are in some sense poorly suited for deep learning settings: the environments
are not natively differentiable, and so gradients (e.g., policy gradients for control tasks,
physical property gradients for modeling fitting, or dynamics Jacobians for model-based
control) must all be evaluated via finite differencing, with some attendant issues of speed
and numerical stability. Recent work has also proposed the development of a differentiable
physical simulator [Degrave et al., 2016], but this was accomplished by simply writing the
simulation engine entirely in an automatic differentiation framework; the limitations of this
framework meant that the system only supported balls as objects, with limited extensibility.

In this chapter, we propose and present a differentiable two-dimensional physics simulator
that addresses the main limitations of past work. Specifically, like many past simulation
engines, our system simulates rigid body dynamics via a linear complementarity problem
(LCP) [Cline, 2002, Cottle, 2008], which computes the equations of motion subject to
contact and friction constraints. In addition to this, however, we also show how to
differentiate, analytically, through the optimal solution to the LCP; this allows us to use
general simulation methods for determining the non-differentiable parts of the dynamics
(namely, the presence or absence of collisions between convex shapes), while still providing a

15

simulation environment that is end-to-end differentiable (given the observed set of collisions).
The end result is that we can embed an entire physical simulation environment as a “layer”
in a deep network, enabling agents to both learn the parameters of the environments to
match observed behavior and improve control performance via traditional gradient-based
learning. We highlight the utility of this system in a wide variety of different domains,
each highlighting a different benefit that such differentiable physics can bring to deep
learning systems: learning physical parameters from data; simulating observed (visual)
behavior with minimal data requirements; and learning physical deep RL tasks, ranging
from pure physical systems like Cartpole to “physics based” like Atari Breakout, via gradient
planning methods. The environment itself is implemented as a function within popular the
PyTorch library [Paszke et al., 2017]. Code for the engine and experiments is available at
https://github.com/locuslab/lcp-physics.

3.2 Differentiable Physics Engine

A detailed description of the physics engine architecture is omitted here due to space
constraints. This description, the LCP solution and the gradients are presnted in detail in
Appendix A. Below we present a brief summary of the LCP formulation.

3.2.1 Formulating the LCP

Rigid body dynamics are commonly formulated as a linear complementarity problem, with
the different constraints on the movement of bodies (such as joints, interpenetrations,
friction, etc.) represented as equality and inequality constraints [Anitescu and Potra, 1997,
Cline, 2002]. In this work, we follow closely the framework described in Cline [2002], in
which at each time step an LCP is solved to find the constrained velocities of the objects.

To formulate such an LCP, we first find which contacts between bodies are present at
the current time-step. Let t be the current time-step and t+ dt the following time-step,
for a step of size dt. If the distance between possibly contacting objects is less than a
predefined threshold, the interaction is considered a contact. From the equality constraints
specified in the system, such as joints, we can build the matrix Je such that Jevt+dt = 0.
From the contacts at each step, we can build a contact constraint matrix Jc, such that
Jcvt+dt ≥ 0. Similarly, we have a friction constraint matrix Jf that introduces frictional
interactions. From the definition of the simulated bodies we construct the inertia matrix
M. Finally, given the forces acting on the bodies at time t, ft, and the collision coefficient
c, the constrained dynamics can be formulated as the following mixed LCP

16

https://github.com/locuslab/lcp-physics

0
0
a
σ
ζ

−

M −J e −J c −J f 0
Je 0 0 0 0
Jc 0 0 0 0
Jf 0 0 0 E
0 0 µ −ET 0

vt+dt

λe

λc

λf

γ

 =

Mvt + dtft

0
c
0
0

subject to

 a
σ
ζ

 ≥ 0,

 λc

λf

γ

 ≥ 0,

 a
σ
ζ

T λc

λf

γ

 = 0,

(3.1)

where [a, σ, ζ]T are slack variables for the inequality constraints, and [vt+dt, λe, λc, λf , γ]
T

are the unknowns. By solving this LCP, we obtain the velocities for the next time-step
vt+dt, which are used to update the positions of the bodies.

3.2.2 Solving the LCP

Analogously to the differentiable optimizer in OptNet [Amos and Kolter, 2017], our LCP
solver is adapted from the primal-dual interior point method described in Mattingley and
Boyd [2012]. The advantage of using such a method is that it allows for efficient computation
of the gradients, as we show in Section 3.2.3.

First, to simplify the notation from the LCP formulation of the dynamics in Equation 3.1,
let us define

x := −vt+dt

y := λe

z :=

 λc

λf

γ

q := −Mvt − dtft

A := Je

G :=

 Jc 0
Jf 0
0 0

s :=

 a
σ
ζ

m :=

 c
0
0

 F :=

 0 0 0
0 0 E
µ −ET 0

 .

Then we can rewrite the LCP above as the system below, which can be solved with only
slight adaptations to the primal-dual interior point method by [Mattingley and Boyd, 2012]. 0

s
0

+

 M GT AT

G F 0
A 0 0

 x
z
y

 =

 −qm
0

subject to s ≥ 0, z ≥ 0, sT z = 0.

(3.2)

3.2.3 Gradients

All the work leading to the construction of the dynamics LCP in Equation 3.1 consists
of differentiable operations on the simulations parameters and initial setting. Therefore,
if we could differentiate through the solution for the LCP as well, the system would be
differentiable end to end. To derive these gradients we apply the method described in

17

[Amos and Kolter, 2017] to the LCP in 3.2, which gives us the gradients of the solution of
the LCP with respect to the input parameters from the previous time-step. By following
this method we arrive at the partials that can then be used for the backward step

∂ℓ

∂q
= −dx

∂ℓ

∂m
= D(z⋆)dz

∂ℓ

∂A
= −dyxT − ydTx

∂ℓ

∂M = −1

2
(dxx

T + xdTx)

∂ℓ

∂G
= −D(z⋆)(dzx

T + zdTx)

∂ℓ

∂F
= −D(z⋆)dzz

T .

(3.3)

3.2.4 Implementation

The physics engine is implemented in PyTorch [Paszke et al., 2017] in order to take
advantage of the autograd automatic differentiation graph functionality. The LCP solver is
implemented as an autograd Function, with the analytical gradients provided according to
the definitions above. This allows the derivatives to be propagated across time-steps in the
simulation. Furthermore, the autograd graph then allows the derivatives to be propagated
backwards into the leaf parameters of the dynamics, such as the bodies’ masses, positions,
etc.

3.3 Experiments

To demonstrate the flexibility of the differentiable physics engine, we test its performance
across three classes of experiments. First, we show that it can infer the mass of an object by
observing the dynamics of a scene. Next, we demonstrate that embedding a differentiable
physics engine within a deep autoencoder network can lead to high accuracy predictions
and improved sample efficiency. Finally, we use the differentiable physics engine together
with gradient-based control methods to show that we can learn to perform physics-based
tasks with low sample complexity when compared to model-free methods.

3.3.1 Parameter learning

Task To evaluate the engine’s capabilities for inference, we devised an experiment
where one object has unknown mass which has to be inferred from its interactions with the
other bodies. As depicted in Figure 3.1, a scene in which a ball of known mass hits a chain
is observed and the resulting positions of the objects are recorded for 10s. The goal is to
infer the mass of the chain.

Learning and results Simulations are iteratively unrolled starting with an arbitrarily
chosen mass of 1 for the chain. After each iteration, the mean squared error (MSE) between
the observed positions and the simulated positions is observed, and then used to obtain its
gradient with respect to the mass. Gradients are clipped to a maximum absolute value of
100 and then used to perform gradient descent on the value of the mass, with a learning

18

0 5 10 15 20
Step

1

2

3

4

5

6

7

Es
tim

at
ed

 M
as

s

Estimated Chain Mass

Estimated Mass
True Mass

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step

10 4

10 2

100

102

104

M
SE

Estimation Error

3 4 5 6 7 8 9 10
Number of links

0

200

400

600

800

1000

Ru
n

tim
e

(s
)

Numerical vs Analytic Differentiation Runtime
Analytic
Numerical

Figure 3.1: Inferring the mass of a chain. Top: Sequence of frames from the inference
experiment. The goal is to infer the mass of the chain by unrolling simulations and using
the gradient to minimize the loss from the predicted positions to the observed ones. Bottom
left : The estimated mass quickly converges to the true value, m = 7, indicated by the
dashed line. Bottom center : As a consequence of the improving mass estimation, the MSE
(represented in log scale) between the true and simulated positions for the bodies decreases
quickly. Bottom right : Run time comparison between using analytical gradients or finite
differences for 30 updates, as a function of the number of links in the chain.

rate of 0.01. As shown in Figure 3.1 this process is able to quickly reduce the position MSE
by converging to the true value of the mass.

Comparison to numerical derivatives We also compared using analytic and
numerical gradients. In this experiment, the same optimization process described above
was repeated for a varying number of links in the chain. The number of gradient updates
was fixed to 30 and the run times were averaged over 5 runs for each condition. As can be
seen in Figure 3.1, the run time with analytical gradients grows much more slowly with the
increasing number of parameters.

19

Encode Predict Decode
𝑝"
𝑣"

𝑝"$%
𝑣"$%

Figure 3.2: Diagram of autoencoder architecture. The encoder learns to map from input
frames to the physical state of the objects (i.e., position, velocity, etc.). The physics engine
steps the world forward using the parameters from the encoder. The decoder takes the
predicted physical parameters and generates a frame to match the true future frame. The
system is trained end-to-end. Part of the labels have strong supervision, with ground truth
values available for the output of the encoder and physics engine. Different proportions of
strong and weak supervision (only the future frame is provided) in the data are evaluated.
Using a large number of weakly labelled data improves sample efficiency for strongly labelled
data.

3.3.2 Prediction on visual data

Task To test our approach on a benchmark for visual physical prediction, we generated
a dataset of videos of billiard ball-like scenarios using the code from [Fragkiadaki et al.,
2015]. Simulations lasting 10 seconds were generated, totalling 8,000 trials for training,
1,000 for validation and 1,000 for testing. Datasets with 1 and 3 balls were used, with
all balls having the same mass. Frames from sample trials can be seen in Figure 3.3. In
our task setup, balls bouncing in a box are observed for a period of time. The model is
provided with 3 frames as input and has to learn to predict the state of the world at a
future state, 10 frames later.

Architecture To make visual prediction given the visual input, we use an autoencoder
architecture summarized in Figure 3.2. It consists of three parts: (1) the encoder maps
input frames to the physical state of the objects (i.e., position, velocity, etc.). Specifically,
we take in a sequence of 3 RGB frames from the simulation. We then use a pretrained
spatial pyramid network [Ranjan and Black, 2016] to obtain two optical flow frames (each
consisting of two matrices, for x and y flow). Color filters are applied to the RGB images
to segment the objects. The segmented region of each object is then used as a mask for the
RGB and optical flow frames, such that at the end of this pipeline we have, for each object,
a collection of 3 RGB frames and 2 optical flow frames (13 channels) with only a single
segmented object. Then, each of these per-object processed inputs is passed to a VGG-11
network with its last layer modified to output size 4, in order to regress two position and
two velocity parameters as outputs. (2) the physics engine steps the world forward using
the physical parameters received from the encoder. The physics engine can be integrated
into the autoencoder pipeline and allow for end-to-end training due to its differentiability,
as described in Section 3.2. (3) the decoder takes the predicted physical parameters and
generates a frame to match the true future frame. The architecture used is a mirror of
the VGG encoder network, with transposed convolutions in the place of convolutions and

20

bilinear upsampling layers in the place of the maxpooling ones.

Learning In order to evaluate the sample efficiency of the model, the network was
trained with varying amounts of labelled samples. The labels used consist of the ground
truth physical parameters ϕ of the objects both at the present (ϕt) and the future time-step
(ϕt+dt). When a label is available for a given sample, the model uses these ground truth
physical parameters (instead of the estimated ones) to generate the predicted frame ŷ from
input frames x, such that

ϕ̂t = encoder(x), ϕ̂t+dt = physics(ϕt), ŷ = decoder(ϕt+dt). (3.4)

Using the labels and the true future frame y, the model is then trained to minimize a loss
consisting of the sum of three terms, the encoder, physics and decoder losses

L = Lenc + Lphys + Ldec,

Lenc = ℓ(ϕ̂t, ϕt), Lphys = ℓ(ϕ̂t+dt, ϕt+dt), Ldec = ℓ(ŷ, y),
(3.5)

where ℓ(·, ·) is the mean squared error loss.
When labels are not available for a given sample, the model uses its own estimated

parameters to generate the predicted frame, that is

ϕ̂t = encoder(x), ϕ̂t+dt = physics(ϕ̂t), ŷ = decoder(ϕ̂t+dt). (3.6)

Notice that here, unlike in Equation 3.5, the arguments to the function are estimated (ϕ̂t,
ϕ̂t+dt). In this case, since there are no labels to use for the other losses, the loss consists
only of L = Ldec. Notice that here the right hand side of the equations use the estimated
ϕ̂. The gradients are thus being propagated end-to-end through the physics model back
to the encoder. As shown in Figure 3.4, this signal from unlabeled examples allows the
autoencoder to learn with greater sample efficiency. For all losses, the MSE is used. In
our experiments, the squared loss performed better than the ℓ1 loss, which was not able to
produce meaningful decoder outputs.

Results As demonstrated in Figure 3.4, the model was able to learn to perform the
task with high accuracy. Figure 3.3 contains sample predicted frames and their matching
ground truth frame for a qualitative analysis of the results. As a comparison point, an
MLP with two hidden-layers of size 100 and trained with only labeled data was used as
a baseline, replacing the physics(·) function in Equation 3.4 above. In our experiments,
using the baseline model in such a way, as a replacement for the physics function, provided
better results than using it in an unstructured manner, relying solely on the decoder loss.
It is clear from Figure 3.4 that the autoencoder with the physics model is able to learn
more efficiently and with higher accuracy than the baseline model. To evaluate the sample
efficiency of this model, we compare its performance on training regimens in which 100%,
25%, 10% and 2% of the available samples containing labels. Some supervision is still
necessary, since when provided with no supervision at all (a 0% condition), relying solely on
the decoder loss, the model was not able to learn to extract meaningful physical parameters.
Still, as can be seen in Figure 3.4, the model is able to leverage the unlabeled data to
quickly learn even from few labelled data points.

21

Initial
Frame

True Future
Frame

Predicted
Frame

Figure 3.3: Qualitative results for prediction task comparing ground truth and predicted
future frame. Only the initial frame and the two preceding frames are used as input,
with physical parameters extracted, used to simulated the state forward and generate the
predicted frame. In most cases the predicted frame is accurate. However, small differences
can still be perceived in some cases, due to differences between the two engines.

104 105 106

Labelled Samples

10 2

10 1

M
SE

Decoder MSE

100% labels
25% labels
10% labels
2% labels
MLP Baseline

Figure 3.4: Sample efficiency for the prediction task measured by the validation loss per
number of labelled samples used in training. The autoencoder is able to leverage unlabelled
examples to improve its sample efficiency: training regimes that employ unlabeled data
learn faster for a given amount of labeled data. The loss is the mean squared error of
the predicted image to the ground truth. Each line represents a training regiment with a
different proportion of labeled to unlabeled data. Note that the x-axis is already adjusted
to the number of labeled samples used, to facilitate comparisons.

3.3.3 Control

Tasks Finally, in this section we demonstrate the physics engine ability to be readily
used with gradient-based control methods. To this end, we evaluate its performance on
physics based tasks from the OpenAI Gym’s environment [Brockman et al., 2016], namely
Cartpole and the Atari game Breakout.

22

Model and Controller For the Cartpole environment, a model is built using two
articulated rectangles, whose dimensions and mass are learned from simulated trajectories
using random actions. The physics engine-based model is compared to a baseline consisting
of an MLP with two hidden layers of size 100 trained on the same data. A variation of the
environment is used in which the actions to be taken by the cart are continuous, instead of
discrete. Rewards are also limited to 1000, instead of the default 200 for which the task is
considered done.

For Breakout, a model of the environments is built by applying color filters, segmenting
the diverse objects (the paddle, the ball, etc.) and translating these positions into the
physics engine. The ball’s velocity is estimated by the difference in its position from the
last two frames. The paddle velocity when moving at each step is learned by unrolling
game episodes with randomly chosen actions, performing the same actions in the physics
simulation and then fitting the simulation parameter via gradient descent to minimize the
mean squared error to the observed trajectory, analogously to the process in Section 3.3.1.
The physics engine model is compared to a Double Q Learning with prioritized replay [van
Hasselt et al., 2015] baseline from OpenAI [Dhariwal et al., 2017].

Since the resulting physics models described above are differentiable, they are used in
conjunction with iLQR [Li and Todorov, 2004] to control the agent in the tasks. The iLQR
is set up with a time-horizon of 5 frames for both tasks. For Cartpole the cost consists of
the square of pole’s angular deviation from vertical. For the Ataro game the cost consists
of the squared difference in the x position of the paddle and the ball when the ball is
descending, and the squared distance to the center of the screen otherwise.

Results Results for the Cartpole task are shown in Figure 3.5. Even though the MLP
baseline achieves a lower MSE faster in predicting the next state of the cartpole system,
the physics engine is able to learn parameters for a model that allows for high reward on
the task, even when error is higher.

In the Atari benchmark, the system is able to achieve high reward on the task with
extremely low sample complexity. Specifically, the model is able to learn the paddle
parameters quickly from random trajectories, improving the control precision, and leading
to high reward, as shown in Figure 3.6 for Breakout. The model performs close to model-free
reinforcement learning methods and is able to achieve a high level of reward with orders of
magnitude fewer samples.

23

0 1000 2000 3000 4000 5000
Minibatches

10 5

10 4

10 3

10 2

M
SE

Cartpole Prediction Error
MLP Baseline
Physics Engine

0 1000 2000 3000 4000 5000
Minibatches

200

400

600

800

1000

Re
wa

rd

Cartpole Reward

MLP Baseline
Physics Engine

Figure 3.5: Even though the baseline is able to achieve lower MSE over one-step predictions
of the dynamics of the Cartpole environment (left), the physics engine-based controller is
able to achieve a higher reward very quickly (right).

101 103 105 107 109

Steps

0

100

200

300

400

Re
wa

rd

Breakout Reward
Physics
Double Q
Human

Figure 3.6: The physics based controller is able to quickly learn a good parameter values
that lead to high reward. Even though the asymptotic performance is lower than the
model-free method, it achieves a high level of reward with orders of magnitude data (the
horizontal axis is log-scaled). Human level of 31 for a professional game tester was used, as
per [Mnih et al., 2015].

24

Chapter 4

Fluid Flow Prediction with Graph
Neural Networks and Differentiable
Fluid Dynamics

In this chapter, we again present the usage of a differentiable physics simulation as a layer
in a deep learning model, but here in the domain of fluid dynamics. Additionally, we also
demonstrate the utilization of graph-based deep learning architectures, which allow the
integration of additional inductive biases in the form of unstructured meshes, which are
used to generate fluid flow fields. These allows the learned model to perform much stronger
generalization to samples from outside the distribution seen during training.

4.1 Introduction

Several recent works have explored the application of deep models to approximate the
solutions to partial differential equations (PDEs), particularly in the context of simulating
fluid dynamics [Afshar et al., 2019, Guo et al., 2016, Um et al., 2017, Wiewel et al.,
2018]. The behavior of fluids is a well-studied problem in the physical sciences, and
predicting their dynamics involves solving the nonlinear Navier-Stokes PDEs. In order
to perform computational fluid dynamics (CFD) simulations, these equations must be
solved numerically. One of the primary bottlenecks in more accurate and advanced CFD
simulation is specifically the time it takes to run these models. It is not uncommon for a
single simulation to take many days to weeks on massive supercomputing infrastructure.
Especially for the cases where fast iteration time is desired, for example when iterating
over different aerodynamic design prototypes for a structure, then faster, learning-based
surrogate models have spawned a great deal of interest. However, despite the recent
enthusiasm for this area, most deep learning models cannot capture the full complexity of
the underlying equations, and, as we demonstrate in this work, can quickly start to produce
poor results when testing on settings well outside the domain of their training data.

In this chapter, we explore a hybrid approach that combines the benefits of (graph)
neural networks for fast predictions, with the physical realism of an industry-grade CFD

25

simulator. Our system has two main components. First, we construct a graph convolution
network Kipf and Welling [2016] (GCN), which operates directly upon the non-uniform
mesh used in typical CFD simulation tasks. This use of GCNs is crucial because all realistic
CFD solvers operate on these unstructured meshes rather than directly on the regular grid
used by most prior work, which has typically used convolutional networks to approximate
CFD simulations. Second, and more fundamentally, we embed a (differentiable) CFD solver,
operating on a much coarser resolution, directly into the GCN itself. Although typically
treated as black-boxes, modern CFD simulators are themselves perfectly well-suited to act
as (costly) “layers” in a deep network. Using well-studied adjoint methods, modern solvers
can compute gradients of the output quantities of a simulation with respect to the input
mesh. This allows us to integrate a fast CFD simulation (made fast because it is operating
on a much smaller mesh) into the network itself, and allows us to jointly train the GCN
and the mesh input into the simulation engine, all in an end-to-end fashion.

We demonstrate that this combined approach performs substantially better than the
coarse CFD simulation alone (i.e., the network is able to provide higher fidelity results
than simply running a faster simulation to begin with), and generalizes to novel situations
much better than a pure graph-network-based approach. Moreover, the approach is still
substantially faster than running the CFD simulation on the original size mesh itself. We
believe that in total this represents a substantial advance towards integrating deep learning
and existing state-of-the-art simulation software.

4.2 CFD-GCN

Here we describe the general outline of our hybrid CFD simulation and graph neural network
approach. Based on this hybrid nature, we refer to our model as CFD-GCN. We first
describe its broad architecture and then its different components in detail. Finally, we
describe the procedures used to train the network itself.

4.2.1 Architecture

The overall architecture of the CFD-GCN is shown in Figure 4.1. Intuitively, the network
operates over two different graphs, a “fine” mesh over which to compute the CFD simulation,
and a “coarse” mesh (initially a simple coarsened version of the fine mesh, but eventually
tuned by our model) that acts as input to the CFD solver. As input, the network takes a
small number of parameters that govern the simulation. For the case of the experiments
in this work, in which we predict the flow fields around an airfoil, these parameters are
the Angle of Attack (AoA) and the Mach number. These parameters are provided to the
CFD simulation and are also appended to the initial GCN node features. Although this
may seem to be a relatively low-dimensional task, even these two components can vary the
output of the simulation drastically and are difficult for traditional models to learn when
generalizing outside the precise range of values used to “train” the network. The network
operates by first running a CFD simulation on the coarse mesh, while simultaneously
processing the graph defined by the fine mesh with GCNs. It then upsamples the results of

26

Fine

Mesh G
C

N …

AoA
Mach

Coarse

Mesh

Up-
sample

Zk

U0

Z1 G
C

N …Zk+1 ZK G
C

N Ŷ

U0 = SU2(XC , AoA, Mach)

Ui+1 = Upsample(Ui), i = 0, . . . , L

Z0 = [X, SDF(X), AoA, Mach]

Zi+1 = ReLU(GCNi(Zi)), i = 0, . . . , k � 2

Zk = [ReLU(GCNk(Zk�1)), UL]

Zk+i+1 = ReLU(GCNk+i(Zk+i)), i = 0, . . . , K � k

Ŷ = GCNK(ZK)
<latexit sha1_base64="3jdL8VZDoWE8ef4BE7b8/V//QFY=">AAADinichVJdb9MwFHUTYKMM6OCRF4sKlGjtlFSIgapJG50AqQUNRrZuTRQ5rrta+VTsIKrI/4XfxBv/BqdJIXRFXCXS8b33nHviXC8JKOOG8bOhqLdu39navtu8t3P/wcPW7qNzFmcpJhaOgzgde4iRgEbE4pQHZJykBIVeQC48f1DUL76SlNE4+sIXCXFCdB3RGcWIy5S72/huuQZ8Dg+hzck3np9ZPaGN3UGnOh/Hx2KFPyA8Fzq07abl5nTPFDWelTAUJgERmuVSXTL6dh/SQ6NjB9OYs86ooMkHyriqJk7GK+Wzk7dyqt6x61Pt+lgH/iavj/5MRpbQSvxu8FG4VLuSHjaY8Lu9PzJ+6eEfGr7UyP2uKfTCleWO6gb8vf9ZKFqEVraKTVaGXX8laM8Rzy/rcqXEsBAY6m6rbewby4A3gVmBNqji1G39sKcxzkIScRwgxiamkXAnRymnWP6gpp0xkiDso2sykTBCIWFOvlwlAZ/JzBTO4lS+EYfLbJ2Ro5CxRejJzhDxOVuvFclNtUnGZ6+cnEZJxkmEy0GzLIA8hsVewilNCebBQgKEUyq9QjxHKcJcbm9TXoK5/sk3wXlv35T404v20ZvqOrbBE/AUaMAEB+AIvAenwAJY2VK6ykvlQN1Re+prtV+2Ko2K8xj8FerJL/mJDE4=</latexit><latexit sha1_base64="3jdL8VZDoWE8ef4BE7b8/V//QFY=">AAADinichVJdb9MwFHUTYKMM6OCRF4sKlGjtlFSIgapJG50AqQUNRrZuTRQ5rrta+VTsIKrI/4XfxBv/BqdJIXRFXCXS8b33nHviXC8JKOOG8bOhqLdu39navtu8t3P/wcPW7qNzFmcpJhaOgzgde4iRgEbE4pQHZJykBIVeQC48f1DUL76SlNE4+sIXCXFCdB3RGcWIy5S72/huuQZ8Dg+hzck3np9ZPaGN3UGnOh/Hx2KFPyA8Fzq07abl5nTPFDWelTAUJgERmuVSXTL6dh/SQ6NjB9OYs86ooMkHyriqJk7GK+Wzk7dyqt6x61Pt+lgH/iavj/5MRpbQSvxu8FG4VLuSHjaY8Lu9PzJ+6eEfGr7UyP2uKfTCleWO6gb8vf9ZKFqEVraKTVaGXX8laM8Rzy/rcqXEsBAY6m6rbewby4A3gVmBNqji1G39sKcxzkIScRwgxiamkXAnRymnWP6gpp0xkiDso2sykTBCIWFOvlwlAZ/JzBTO4lS+EYfLbJ2Ro5CxRejJzhDxOVuvFclNtUnGZ6+cnEZJxkmEy0GzLIA8hsVewilNCebBQgKEUyq9QjxHKcJcbm9TXoK5/sk3wXlv35T404v20ZvqOrbBE/AUaMAEB+AIvAenwAJY2VK6ykvlQN1Re+prtV+2Ko2K8xj8FerJL/mJDE4=</latexit><latexit sha1_base64="3jdL8VZDoWE8ef4BE7b8/V//QFY=">AAADinichVJdb9MwFHUTYKMM6OCRF4sKlGjtlFSIgapJG50AqQUNRrZuTRQ5rrta+VTsIKrI/4XfxBv/BqdJIXRFXCXS8b33nHviXC8JKOOG8bOhqLdu39navtu8t3P/wcPW7qNzFmcpJhaOgzgde4iRgEbE4pQHZJykBIVeQC48f1DUL76SlNE4+sIXCXFCdB3RGcWIy5S72/huuQZ8Dg+hzck3np9ZPaGN3UGnOh/Hx2KFPyA8Fzq07abl5nTPFDWelTAUJgERmuVSXTL6dh/SQ6NjB9OYs86ooMkHyriqJk7GK+Wzk7dyqt6x61Pt+lgH/iavj/5MRpbQSvxu8FG4VLuSHjaY8Lu9PzJ+6eEfGr7UyP2uKfTCleWO6gb8vf9ZKFqEVraKTVaGXX8laM8Rzy/rcqXEsBAY6m6rbewby4A3gVmBNqji1G39sKcxzkIScRwgxiamkXAnRymnWP6gpp0xkiDso2sykTBCIWFOvlwlAZ/JzBTO4lS+EYfLbJ2Ro5CxRejJzhDxOVuvFclNtUnGZ6+cnEZJxkmEy0GzLIA8hsVewilNCebBQgKEUyq9QjxHKcJcbm9TXoK5/sk3wXlv35T404v20ZvqOrbBE/AUaMAEB+AIvAenwAJY2VK6ykvlQN1Re+prtV+2Ko2K8xj8FerJL/mJDE4=</latexit>

SU2

Figure 4.1: A diagram of the CFD-GCN model and its corresponding equations.

the simulation, and concatenates these with an intermediate output from a GCN. Finally,
it applies additional GCN layers to these joint features, ultimately predicting the desired
output values (in this case, the velocity and pressure fields at each node in the fine mesh).
We now describe each of these components in detail.

Graph structure and network input. The graph structure we use for the CFD-
GCN is directly derived from the mesh structure used by traditional CFD software to
simulate the physical system. Specifically, we consider a two-dimensional, triangular mesh
M = (X,E,B). The first element, X ∈ RN×2, is a matrix containing the (x, y) coordinates
of the N nodes that compose the mesh. The second,

E = {(i1, j1, k1), . . . , (iM , jM , kM)},

is a set of M triangular elements defined by the indices (i, j, k) of their component nodes.
The third,

B = {(i1, b1), . . . , (iL, bL)},

is a set of L boundary points, defined as a pair consisting of the index of the node and a
tag b that identifies which boundary the point belongs to (e.g. airfoil, farfield, etc.).

Such a mesh M clearly defines a graph GM = (X,EG) whose nodes are the same X,
and whose edges EG can be directly inferred from the mesh elements E. Conversely, a
graph can also be converted into a mesh if the structure of its edges is appropriate and a
set of boundary points B is provided.

In addition to the fine mesh used to compute the CFD simulation, we also consider a
coarse mesh, denoted MC . This mesh has the same structure as the fine mesh M , with the
number of nodes downsampled by almost 20x, which thus allows for much faster simulation.
Although this mesh also technically defines a graph, we do not directly compute any GCN
over this graph, but instead only use it as input to the simulation engine.

27

Figure 4.2: A NACA0012 mesh, zoomed in on the airfoil region.

In addition to the graphs themselves, the model also receives as input two physical
parameters that define the behavior of the flow around an airfoil: the angle of attack (AoA)
and the Mach number. These two parameters are both fed into the simulation and appended
as initial node features for every node in the GCN. These two parameters ultimately are
the quantities that vary from simulation-to-simulation, and thus the main task of the GCN
is to learn how to predict the resulting flow field from these two parameters that define
the simulation. Even thought this input space is low dimensional, it still defines a complex
task, since varying these parameters gives rise to diverse behaviors of the fluid flows, as
demonstrated, for example, in our generalization experiment (Section 4.3.2).

The SU2 Fluid Simulator. A central component of the CFD-CGN model is the
integrated differentiable fluid dynamics simulator. As input, the fluid simulator takes coarse
mesh MC , plus the angle of attack and Mach number, and outputs predictions of the
velocity and pressure at each node in the coarse graph. We specifically employ the SU2
fluid simulator [Economon et al., 2015b], an open source, industry-grade CFD simulation
widely used by many researchers in aerospace and beyond. Briefly, SU2 uses a finite volume
method (FVM) to solve the Navier-Stokes equations over its input mesh. Crucially for our
purposes, the SU2 solver also support an adjoint method which lets us differentiate the
outputs of the simulation with respect to its inputs and parameters (in this case, the coarse
mesh MC itself, plus the angle of attack and Mach number).

Intuitively, the SU2 solver should be thought of as an additional layer in our network,
which takes the angle of attack and Mach number as input, and produces the output
velocity and pressure fields. The equivalent of the “parameters” of a traditional layer is the
coarse mesh itself: different configurations for the coarse mesh will be differently suited
to integration within the remainder of the CFD-GCN. Thus, the main learning task for

28

the SU2 portion of our model is to adjust the coarse mesh in a manner than eventually
maximizes accuracy of the resulting full CFD-GCN model. The adjoint method in SU2
uses reverse-mode differentiation, so gradients can be efficiently computed with respect to a
scalar-valued loss such as the overall predictive error of the CFD-GCN.

Finally, although not strictly a research contribution, we want to mention that as part of
this project we have developed an interface layer between the SU2 solver and the PyTorch
library. This interface allows full SU2 simulations to be treated just as any other layer
within a PyTorch module, and we hope it will find additional applications at the intersection
of deep learning and (industrial-grade) CFD simulation. The code for the work presented
in this chapter can be found at https://github.com/locuslab/cfd-gcn.

Upsampling. The output of the coarse simulation described above is a mesh with the
predicted values for each field at every node. For this to be used towards generating the final
prediction, we need to upsample it to the size of the fine mesh. We do this by performing
successive applications of squared distance-weighted, k-nearest neighbors interpolation [Qi
et al., 2017].

Let us call U ∈ RNU×3 the upsampled version of some coarser graph D ∈ RND×3.
For every row U (i), with corresponding node position X

(i)
U , we find the set {n1, . . . , nk}

containing the indices of the k closest nodes to X
(i)
U in the coarser graph XD. Then, we

define U (i) as

U (i) =

∑k
j=1w(nj)D

(nj)∑k
j=1w(nj)

,

where

w(cj) =
1

∥X(i)
U −X

(nj)
D ∥22

.

As a default, we set k = 3.

Graph Convolutions. As depicted on Figure 4.1, the output of the coarse simulation is
processed by a sequence of convolutional layers. In order to operate directly on the mesh
output of the CFD simulation, we utilize the graph convolutional network (GCN) architec-
ture from Kipf and Welling [2016]. This architecture defines a generalized convolutional
layer for graphs.

A general graph consisting of NZ nodes, each with F features, is defined by its feature
matrix Zi ∈ RNZ×F and its adjacency matrix A ∈ RNZ×NZ . We can then further define
B̃ = D̃− 1

2 (A+ I)D̃− 1
2 , where I is the identity matrix and D̃ the diagonal degree matrix,

with its diagonal given by D̃ii = 1 +
∑NZ

j=0Aij. Then, a GCN layer with F input channels

and F ′ output channels, parameterized by the weight matrix W ∈ RF×F ′
and the bias term

b ∈ RNZ×F ′
, followed by a ReLU non-linearity, will have as output

Z̃i+1 = B̃ZiWi + bi ≡ GCNi(Zi).

Zi+1 = ReLU(Z̃i+1)

29

https://github.com/locuslab/cfd-gcn

Δ

𝑒#𝑒$

�̃�#	

Figure 4.3: For certain updates to the mesh (∆), a node might be pushed over the edge of
its triangular element, generating overlap of elements. These non-physical situations harm
convergence of the simulation. When this happens, the cross product between ordered
edges changes. Before the update, e1 × e0 > 0, while afterwards ẽ1 × e2 < 0.

CFD-GCN. With all the components of the CFD-GCN desribed above, we can now
bring them all together to describe the full pipeline depicted in Figure 4.1.

First, an SU2 simulation is run with the coarse mesh and the physical parameters. The
output of this coarse simulation is upsampled L times.

U0 = SU2(XC ,AoA,Mach)

Ui+1 = Upsample(Ui), i = 0, . . . , L.
(4.1)

Concurrently, the fine mesh has the physical parameters and the signed distance function
(SDF) appended to each of its nodes’ features. The resulting graph is then passed through
a series of graph convolutions. At some specified convolutional layer k, the final upsampled
value UL is appended to the output Zk of the k-th convolution. Another set of convolutions
is performed in order to generate the final prediction Ŷ

Z0 = [X, SDF(X), AoA, Mach]

Zi+1 = ReLU(GCNi(Zi)), i = 0, . . . , k − 2

Zk = [ReLU(GCNk(Zk−1)), UL] (4.2)

Zk+i+1 = ReLU(GCNk+i(Zk+i)), i = 0, . . . , K − k

Ŷ = GCNK(ZK).

Here, [·, ·] is the matrix concatenation operation over the column dimension.

30

0 500 1000 1500 2000 2500 3000
Batch

10−3

10−2
Lo

ss
 (l

og
 M

SE
)

Effect of gradient step projection
not projected, α= 5 ⋅ 10−5

projected, α= 5 ⋅ 10−5

projected, α= 1 ⋅ 10−4

Figure 4.4: Optimizing a mesh without correcting the gradient update to prevent degen-
eration causes the training to diverge. Meshes trained using the projected gradient step
(avoiding non-physical elements) learn smoothly, even with a higher learning rate α.

4.2.2 Training

Given that the entire CFD-GCN as formulated above can be treated as a single differentiable
deep network (including the SU2 “layer” discussed above), the training process itself is
largely straightforward. The model is trained to predict the output fields Y ∈ RN×3,
consisting of the x and y components of the velocity and the pressure at each node in the
fine mesh, by minimizing the mean squared error (MSE) loss ℓ between the prediction Ŷ
and ground truth

ℓ(Y, Ŷ) =
1

3N
∥Y − Ŷ ∥22,

where the ground truth Y in this case is obtained by running the full SU2 solver to
convergence on the original fine mesh.

The training procedure optimizes the weight matrices Wi and bi of the GCNs, and
the positions of the nodes in the coarse mesh XC by backpropagating through the CFD
simulation. The loss is minimized using the Adam optimizer [Kingma and Ba, 2014a] with
a learning rate α = 5 · 10−5.

Mesh degeneration. An issue arises when optimizing the input coarse mesh. Gradually,
as the node positions are moved by the gradient descent updates, it is possible that, in
a given triangular element, one of its nodes crosses over an edge (see Figure 4.3). This
generates non-physical volumes, which harm the stability of the simulations, frequently
impeding convergence. In other words, at each gradient update step, our optimizer updates

31

the mesh nodes by performing the update

XC ← XC +∆XC ,

with some small update matrix ∆XC of the same shape as XC . If left unmodified, this
∆XC can cause the aforementioned issue.

In order to avoid this, we seek to generate a projected update P (∆XC) such that only
non-degenerating updates are performed. We start with P (∆XC) = ∆XC . Then, we check
which elements in the mesh have a node pushed over an edge by ∆XC . This can be done by
computing the cross product of two edges in each triangular element in a consistent order.
If the sign of the cross product flips with the update XC +∆XC , that means a node crossed
over an edge (since this causes the ordering of the nodes to change). This is depicted in
Figure 4.3, where the cross product of the edges e1 and e2 is positive before the update,
but negative afterwards.

For every element E = (i, j, k) which has flipped, we set the rows i, j and k of P (∆XC)
to 0, thus performing no updates to those points in XC . Since removing the updates to
some nodes might cause new elements to flip, this procedure is repeated until no points are
flipped. Once we reach this state, we perform the projected gradient update

XC ← XC + P (∆XC).

In Figure 4.4 we see the results of optimizing the nodes of a mesh to improve a
prediction loss both with and without the correction to the gradient update. Whereas the
mesh optimized without the correction quickly degenerates and the loss diverges, the one
with the projected gradient update learns smoothly, even for a higher learning rate α.

4.3 Experiments

For all experiments we use the NACA0012 airfoil, represented as a fine mesh with 6648
nodes Figure 4.2). The coarse mesh for the same airfoil has 354 nodes. Both meshes are
mixed triangular and quadrilateral meshes, but for usage with the CFD-GCN model the
coarse mesh is converted to purely triangular by dividing every quadrilateral element in
half along a diagonal. All meshes were created using Pointwise Mesh Generation Software1.

All CFD simulations are performed by solving the0.0 steady-state, compressible, inviscid
case of the Navier-Stokes equations (the Euler equations) using SU2. Ground truth
simulations on the fine mesh are run to convergence, while simulations on the coarse mesh
are run for up to 200 iterations. Sample outputs of simulations with identical physical
parameters in each mesh are presented in Figure 4.5.

For the CFD-GCN model, we set k = 3, K = 6, and L = 1. That is, we perform one
upsampling step on the coarse simulation, appending it to the third GCN layer, and then
perform 3 additional convolutions, for a total of 6 GCN layers. All GCNs are set to have
512 hidden channels. A batch size of 16 is used on all experiments.

1https://www.pointwise.com

32

Fine meshCoarse mesh

Figure 4.5: Two simulations with identical physical parameters, one with the coarse mesh
(left) and one with the fine mesh (right). The pressure component of the output field is
presented here. The coarse elements are easily noticeable on the left, whereas on the fine
mesh on the right the elements are small enough to be barely visible at this size.

In the experiments, our model is compared to three baselines that can be interpreted
as ablated versions of the full CFD-GCN model: the “upsampled coarse mesh” (UCM)
baseline, a pure GCN baseline, and the “frozen mesh” version of the CFD-GCN. Each of
these demonstrates the importance of each part of the full proposed model. The upsampled
coarse mesh baseline consists simply of the part of the model described in Equations 4.1.
That is, simply of running the simulation on the coarse mesh and interpolating the output
up to the full mesh size. It does not have convolutional layers and it does not perform
any learning. The GCN baseline, conversely, consists solely of the GCNs, without the
simulation. That is, the part of the model described in Equations 4.2 (without the appended
UL). The GCNs are set to the same parameters as used for the CFD-GCN (6 layers with
512 hidden channels). Finally, the “frozen mesh” version of the CFD-GCN consists of the
full CFD-GCN model, with both the GCNs and the coarse simulation, but the gradients
through the fluid simulation are not computed, and thus the coarse mesh is not optimized
(it is therefore “frozen” through training).

4.3.1 Interpolation

In order to test our model’s ability to make accurate flow field predictions, we test its
predictions across a range of different physical parameters. We construct training and test
sets composed of values for the AoA and Mach number.

33

The training set is defined by

AoAtrain = {−10,−9, . . . , 9, 10},
Machtrain = {0.2, 0.3, 0.35, 0.4,

0.5, 0.55, 0.6, 0.7}.

Similarly, test pairs are sampled from the sets

AoAtest = {−10,−9, . . . , 9, 10},
Machtest = {0.25, 0.45, 0.65}.

Training pairs are then sampled uniformly from AoAtrain ×Machtrain, and test pairs from
AoAtest ×Machtest. Here we can see that even though the train and test set are different,
the parameters come from similar ranges, and the two sets contain examples with a similar
range of qualitative behaviors. This experiment therefore tests the ability of our model to
interpolate from parameters seen in training to unseen, yet similar ones at test time. Even
though this procedure does not present a strong test of the learning ability of the model, it
is a common form of evaluation in many works that apply deep learning methods to CFD
(e.g., Afshar et al. [2019], Guo et al. [2016]). We present a stronger test of generalization to
new scenarios in our next experiment (Section 4.3.2).

The model takes in as input the pairs and, using the coarse mesh, predicts the three
components of the output field, as described in Section 4.2. These predictions are compared
against ground truth simulations performed on the fine mesh.

Results are summarized in Table 4.1. A sample prediction is presented in Figure 4.6. We
can see from the results that our method outperforms the upsample coarse mesh baseline.
This superiority to the upsample coarse mesh baseline demonstrates that the model is not
simply upsampling the coarse prediction. The processing done by the GCNs is in fact
improving its predictions. We can also observe that the CFD-GCN performs worse than
the GCN baseline. The fact that the CFD-GCN underperforms the GCN baseline on the
test set is a consequence of the similarity of the settings between training and testing, as we
will see in the next experiment. The GCN is capable of overfitting the training set better
(as we can see in Figure 4.7) therefore it also performs well on the very similar test set.

4.3.2 Generalization

Depending on the parameter configuration for a given simulation, a “shock” may or may
not form around the airfoil. Figure 4.9 presents an example configuration in which we
observe a shock. As can be noticed from the figure, these shocks present qualitatively
different behavior from the smooth flow fields of “regular” simulations. In this experiment,
we aimed to use such a difference in behavior in order to test the generalization capabilities
of our model.

We thus constructed a training split such that there were no simulations with a shock
present in the training set. To achieve this goal, we used the same data points consisting of

34

Model
Interpolation

(RMSE)
Generalization

(RMSE)
Batch Prediction

Time (s)

CFD-GCN 1.8 · 10−2 5.4 · 10−2 2.0
Frozen Mesh 1.8 · 10−2 6.1 · 10−2 2.0
Upsampled Coarse Mesh 4.0 · 10−2 7.0 · 10−2 1.9
GCN 1.4 · 10−2 9.5 · 10−2 0.1
Ground Truth Simulation – – 137

Table 4.1: Interpolation and generalization tasks. Test root mean squared error
(RMSE) for the interpolation and generalization tasks. The CFD-GCN model is compared
to the frozen mesh, upsampled coarse mesh (UCM) and the pure GCN model baselines.
The CFD-GCN and the GCN achieve similar performance in the interpolation task. The
slightly better performance of the GCN is due to overfitting to the training distribution,
as demonstrated by the superior performance of the CFD-GCN in the generalization task.
Runtime. Runtimes for a batch of 16 predictions compared to ground truth simulations
with the fine mesh. The CFD-GCN runs significantly faster than running a full simulation,
while presenting better results than the GCN. Results are for evaluation mode, without
the backwards pass. Tests performed on a 24-core, 2.2 GHz machine with an NVidia GTX
2080 GPU.

pairs of AoA and Mach parameters as in the last experiment. Here, however, the points
were split into train and test set such that all points with a Mach number greater than 0.5
were placed in the test set. Shocks become very frequent as the Mach number increases.
In order to ensure this qualitative split between training and test sets, the ground truth
simulation for each pair of parameters was analyzed individually to guarantee no simulations
with shocks put into the training set.

This particular training split generates a very strong test of generalization. Not only
does the test set present behavior that is qualitatively different from what is observed in the
training set, it also contains a significant quantitative difference, due to the wide range of
Mach numbers that are never seen in training. Therefore, this experiment presents a good
setting to evaluate the generalization capabilities of the proposed model and the baselines.

Table 4.1 summarizes the results for this experiment, and Figure 4.10 presents the
training curves for the CFD-GCN and the baselines. As expected, we can see that the
CFD-GCN model generalizes better to the test set containing unseen shock behavior. This
is also demonstrated qualitatively in Figure 4.8, which presents a sample prediction from the
GCN baseline. This baseline overfits the training set strongly, and is unable to consistently
make predictions for simulations with shocks. Conversely, even though it was never trained
on this type of flow, our method is able to generate predictions that are closer to the ground
truth by using the available coarse simulation. This can also be observed in Figure 4.9. In
many test cases containing shock, the CFD-GCN is able to approximate the characteristics
even of the unseen behavior. Additionally, the performance of the upsampled coarse mesh
baseline demonstrates that once again our method is not relying simply on upsampling the

35

simulation, but is also learning additional information to improve its predictions. Sample
predictions for the upsampled coarse mesh baseline are presented in Figure 4.11.

Finally, we can also observe that the full CFD-GCN model also outperforms the frozen
mesh baseline. This result demonstrates the optimizing the coarse mesh by using the
gradients computed through the simulations allows the model to optimize the simulation
outputs in order to achieve predictions that generalize better. Figure 4.12 demonstrates the
transformation of the coarse mesh before and after the training procedure. The optimization
performed is significant enough that the changes are easily perceptible visually. The changes
are greater around the airfoil, where the gradient of the prediction loss is expected to
be higher, demonstrating that the training procedure adjusts the mesh according to the
training objective.

4.3.3 Runtime

Table 4.1 demonstrates the efficiency of our method compared to running a full simulation.
By downsampling the mesh down almost 20x to 354 nodes, our method is able to make a
prediction much faster than running the full ground-truth simulations.

In our experiments, and as can be noticed with the comparison to the upsampled coarse
mesh and GCN baselines, we observed that the bulk of the time that the GCN takes to
make a prediction is consumed by the CFD simulation. On average, approximately 85% of
the time to make a batch of predictions was due to the CFD simulation, 10% to upsampling
the mesh and 5% to processing the graph convolutions. Due to the additional complexity of
performing the simulations, total training time for the pure GCN baseline was also faster.
Whereas training the CFD-GCN took approximately 19 hours, training the GCN baseline
took approximately 1.3 hours.

Even though the pure GCN baseline model is able to make predictions faster, it does
not generalize as well across diverse physical behaviors, as demonstrated in our experiments.
Therefore, we note that the CFD-GCN model, as its name suggests, provides a trade-off
between the high cost and ability to generalize of a full CFD simulation, and the low cost
and ability to generalize of GCN predictions.

36

Figure 4.6: CFD-GCN model prediction and ground truth for a test sample in the interpola-
tion task. The x and y components of the velocity and pressure output fields are presented
here.

37

0 1000 2000 3000 4000 5000
Batch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Lo
ss

 (R
M

SE
)

Prediction Training Curves
GCN Test
GCN Train
CFD-GCN Test
CFD-GCN Train
Frozen Mesh Test
Frozen Mesh Train
UCM

Figure 4.7: Training curves for the interpolation experiment. The vertical axis represented
the root mean squared error (RMSE). The GCN baseline overfits more strongly to the
training set, but since the test set is drawn from a similar distribution of parameters, this
helps it outperform the CFD-GCN model.

38

Figure 4.8: The GCN baseline prediction for a test sample with a large shock in the
generalization task. In many cases with large shocks the GCN is unable to generalize to
this previously unseen behavior. The x and y components of the velocity and pressure
output fields are1 presented here.

39

Figure 4.9: The CFD-GCN model prediction for a test sample with a large shock in the
generalization task. It can generalize better than the pure GCN model to examples with
large shocks, which were not seen in the training set. The x and y components of the
velocity and pressure output fields are presented here.

40

0 1000 2000 3000 4000 5000
Batch

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 (R
M

SE
)

Generalization Training Curves

GCN Test
GCN Train
Frozen Mesh Test
Frozen Mesh Train
CFD-GCN Test
CFD-GCN Train
UCM

Figure 4.10: Training curves for the generalization experiment. The GCN baseline overfits
more strongly to the training set, being unable to generalize well to the test set.

41

Figure 4.11: The upsampled coarse mesh baseline prediction for a test sample with a large
shock in the generalization task. The x and y components of the velocity and the pressure
output fields are presented here.

42

(a) The NACA0012 mesh after training. (b) The original NACA0012 mesh before train-
ing.

(c) The meshes before and after training, su-
perimposed.

(d) Farther view of before and after meshes,
superimposed.

Figure 4.12: Comparison of the coarse mesh before and after being optimized during
training. Changes are greater around the airfoil, where the gradients of the loss are large.
Regions further away from the wing, which do not affect prediction strongly, are mostly
unaltered.

43

44

Part II

Improving Physics-Informed Learning

45

Chapter 5

Solving Parameterized Differential
Equations with Physics-Informed
Hypernetworks

In this chapter, we present the usage of soft constraints, in the form physics-informed
losses, combined with a weak inductive bias, in the form of a hierarchical architecture, the
hypernetwork. This allows for more efficient learning of the solutions to parameterized
differential equations.

5.1 Introduction

The recent successes of deep learning approaches in diverse domains have motivated many
works exploring their application to physical systems, including approximating the solutions
to differential equations [Berg and Nyström, 2018, Chen et al., 2018, He et al., 2000, Jin
et al., 2021, Karniadakis et al., 2021, Lagaris et al., 1998, Lee and Kang, 1990, Long
et al., 2018, Mai-Duy and Tran-Cong, 2003, Sirignano and Spiliopoulos, 2018]. Recent
advancements in deep learning optimization methods and automatic differentiation tools
have led to the development of deep learning-based methods that have been shown to
be competitive with traditional solvers in certain conditions, such as in high-dimensional
problems [Avrutskiy, 2020] or inverse problems [Raissi et al., 2020].

In many applications such as shape optimization, topology optimization or design
prototyping, approximate solutions with fast iteration times might be preferred over ones
that are guaranteed to be accurate, yet are more computationally complex. In these cases,
machine learning models might offer an interesting alternative to traditional methods.
Moreover, the usage of data-driven methods allows for the incorporation of data into the
solution, which can be useful in domains where only noisy or partial measurements are
available, or where the underlying physics are not fully known [Eivazi et al., 2021, Raissi,
2018, Raissi and Karniadakis, 2018, Tipireddy et al., 2019].

Physics-informed neural networks (PINNs) [Raissi et al., 2017, 2019a] have been recently
proposed as a method for employing neural networks as function approximators for the

47

solution of differential equations, while allowing the incorporation of the underlying physical
knowledge in the form of a physics-informed loss. In their standard formulation, PINNs
fit the solution to a single parameterization of a differential equation. Therefore, when
working in a domain that requires evaluating the solutions at multiple parameterizations,
this requires either utilizing the naive approach of re-training the model multiple times
to find the solution at each parameterization, or instead including the parameterization
explicitly as an input to the neural network model [Arthurs and King, 2021, Gao et al.,
2020, Sun et al., 2020]. Given that the training of the model is the most expensive part of
the process, having to repeat the learning procedure for every parameterization can greatly
increase the computational cost of the method. Conversely, augmenting the model to take
into account the parameters requires increasing the capacity of the neural network, as it
now has to both approximate the solution function and model the parameter space, thus
also increasing the computational cost at inference time.

In this chapter, we propose looking at the problem of learning parameterized families
of differential equations as a meta-learning problem, where the given parameters and
initial/boundary conditions define a task, which can then be solved by a neural network.
Under this framework, we propose the HyperPINN, which uses a hypernetwork [Ha et al.,
2016] to learn to model the parameter space of a differential equation, taking as input
a given parameterization and producing as output a main network that approximates
the solution function at that specific parameterization. By separating this task into two
parts, the complexity of modeling the parameter space is “offloaded” to the hypernetwork,
which is only evaluated once for every parameterization. Importantly, this allows the main
network, which is evaluated at every time-space point, to remain small. We demonstrate
this approach with experiments on a PDE and an ODE, using both “standard” PINNs
[Raissi et al., 2019a] and multistep neural networks [Raissi et al., 2018].

5.2 Preliminaries

5.2.1 Differential equations

Let us assume a differential equation in the general form

N [t, x, u(t, x);λ] = 0,

with t ∈ [0, T], x ∈ Ω,
(5.1)

where N [·;λ] is an arbitrary (possibly non-linear) differential operator, which can contain
time and space derivatives, and is parameterized by some list of parameters λ ∈ Rd. Here,
t is the time variable ranging up to time T , x is the D-dimensional spatial variable in some
domain Ω ⊆ RD, with boundary ∂Ω, and u(t, x) is the solution function to the differential
equation. In order for a solution to be defined, initial and boundary conditions need to be
provided. These can assume different forms, but in general initial conditions define u(0, x)
for x ∈ Ω, and boundary conditions define u(t, x) for x ∈ ∂Ω and t ∈ [0, T].

48

For a concrete example of this formulation, refer to Equation 5.8, in which N is a
non-linear operator containing first and second derivatives that defines the left-hand side of
the equation, and λ = ν. The initial and boundary conditions are given in Equation 5.9.

5.2.2 Physics-Informed Neural Networks

Physics-informed neural networks [Raissi et al., 2019a] are a method for approximating the
solution to differential equations using neural networks (NNs). In this method, a neural
network û(t, x; θ), with learned parameters θ, is trained to approximate the actual solution
function u(t, x) to a given partial differential equation (PDE).

Importantly, PINNs employ not only a standard “supervised” data loss, but also a
physics-informed loss, which consists of the differential equation residual defined by N .
Thus, for a given optimization hyper-parameter α, the training loss consists of

L(θ) = Ldata(θ) + αLphysics(θ),

Ldata(θ) =
∑

(ti,xi,ui)∈D

[û(ti, xi; θ)− ui]
2,

Lphysics(θ) =
∑

(tc,xc)∈C

N [tc, xc, û(tc, xc; θ);λ]
2,

(5.2)

where D is a dataset containing ground-truth values for u (e.g., from simulation data)
at points (ti, xi), and C is a set of collocation points at which to evaluate the differential
equation residual (which does not require ground-truth solution data). While the data in
D can be used to enforce the initial and boundary conditions, the physics-informed loss
term regularizes the search space, penalizing functions û that do conform to the differential
equations, reducing the need for simulation data.

5.2.3 Multistep Neural Networks

Multistep neural networks [Raissi et al., 2018] are a method related to PINNs in which a
neural network model is used to approximate the time-derivative of a dynamical system
(instead of the actual solution function, as in a traditional PINN). Instead of using the
differential equation residuals, the loss for the multistep neural network is derived directly
from the formulation for traditional multistep methods. That is, for a general dynamical
system

d

dt
x(t) = f(x(t)), (5.3)

where f is some arbitrary (linear or non-linear) function of x ∈ RD, a two-step linear
multistep method, with timestep ∆t, gives us the relation

xn = xn−1 +
1

2
∆t(f(xn) + f(xn−1)). (5.4)

49

fh(λ; θh) θmλ

fm(t, x; θm) ût, x

Figure 5.1: Diagram for the HyperPINN. The hypernetwork, represented in orange, takes
as input the parameterization and outputs the parameters for the main network. The
main network, represented in blue, takes as input a space-time coordinate and outputs its
prediction using the parameters provided by the hypernetwork.

If we want to train a neural network f̂(·; θ) to approximate the time derivative f , this
relation can then be used to define a residual loss over a dataset of points xn sampled from
a given trajectory

L(θ) =
∑

(xn,xn−1)∈D

[xn − xn−1 −
1

2
∆t(f̂(xn; θ) + f̂(xn−1; θ))]

2. (5.5)

5.2.4 Hypernetworks

Hypernetworks [Ha et al., 2016] are a recently proposed meta-learning method in which
learning is broken down into two separate networks: a main network and a hypernetwork.
The main network performs the desired task, in the same way a neural network would
normally be employed. The parameters for this network, however, are not learned directly
at training time. Instead, the parameters for the main network are generated, at evaluation
time, by the hypernetwork. That is, for a hypernetwork fh that takes an input xh, and a
main network fm that takes as input xm, we have

θm = fh(xh; θh),

ŷ = fm(xm; θm),
(5.6)

where θh are the learnable parameters. This ability to generate neural networks allows
the hypernet to meta-learn a space of tasks defined by xh, outputting an appropriate main
network for each task.

5.3 HyperPINN

In this chapter, we propose the HyperPINN, which combines the previously described
physics-informed architectures with hypernetworks in order to learn parameterized families

50

(a) ν = 0.1 (b) ν = 0.01 (c) ν = 0.001

Figure 5.2: Solutions from the 1D Burgers’ PDE, displaying diverse behavior for different
parameter values.

of differential equations. A HyperPINN has a hypernetwork that, given a certain parame-
terization, generates a main network that approximate the solution to the corresponding
differential equation.

Following the general differential equation definition above, we want to have a hypernet-
work that maps a parameterization λ into an approximation of the differential equation
given by a neural network. Following the hypernetwork formulation in Equation 5.6, a
HyperPINN could consist of

θû = fh(λ; θh),

û = û(t, x; θû).
(5.7)

Here fh is the hypernetwork with learneable parameters θh, and û is the approximate
solution. These are trained using a loss on the predictions of the main network, which can
then be optimized with gradient-based methods using conventional automatic differentiation
packages, since all operations are differentiable. If employing a stochastic gradient descent
method, batches of randomly sampled parameter-input pairs can be used. The loss can
consist of a regular supervised loss, with a ground truth for the main network prediction
for each given parameterization and inputs. Moreover, in order to make the training
more data-efficient, physics-informed losses can also be used, such as the PINN loss or the
multistep loss defined in Equations 5.2 and 5.5 above.

Figure 5.1 contains a schematic representation of the hyper and main networks that
compose the HyperPINN. The hypernetwork, in orange, takes as input the parameterization
and outputs the parameters for the main network. The main network, in blue, takes as
input a space-time coordinate and outputs its prediction using the parameters provided by
the hypernetwork.

To give concrete examples, for the case of a Burgers’ PDE (described in more detail in
Section 5.4.1 below), λ corresponds to the parameter ν in the PDE, and the main network
outputs and approximation of the solution u. For the case of the Lorenz ODE (described
in more detail in Section 5.4.2 below), λ corresponds to the parameters (σ, β, ρ). When
using the multistep neural network approach, the main network takes as input the spatial
coordinates (x, y, z) and outputs the time-derivative (ẋ, ẏ, ż).

51

5.4 Experiments

We evaluate the application of HyperPINNs to both an example PDE problem, the 1D
Burgers’ PDE, and an example ODE problem, the Lorenz system, using both a PINN and
a multistep neural network.

5.4.1 1D Burgers’ equation

The 1D Burgers’ PDE, with solution u(t, x), a function of time t and spatial coordinate x,
is given by

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0. (5.8)

We use as our time domain the range [0, 1], and as our spatial domain the range [−1, 1].
As our initial condition, we utilized a simple sinusoidal function, coupled with a Dirichlet
boundary condition given by

u(0, x) = −sin(πx),
u(t,−1) = u(t, 1) = 0.

(5.9)

This differential equation has a viscosity parameter ν, which can cause the underlying
solution u(t, x) to exhibit different behaviors depending on its value. For low values of ν,
such as ν = 0.001, the solution develops a characteristic shock. For higher values, such as
ν = 0.1, the solution is smooth. Example solutions for different parameter values are shown
in Figure 5.2.

In order to test the ability of the PINN and the HyperPINN to learn parameterized
systems across their full range, we performed this experiment by having the parameter ν
vary in the range [0.001, 0.1].

A dataset of size 100 was generated with 50 points sampled randomly uniformly at
different positions from the initial timestep (t = 0) and 50 points sampled randomly
uniformly at diverse timesteps from the boundary (x = −1 or x = 1). Since these values do
not change with the parameterization, values of the parameter ν are sampled randomly
uniformly from the range [0.001, 0.1] at training time to form the training data points.
The collocation points are sampled randomly uniformly from the time-space domain, with
accompanying values for ν also sampled randomly uniformly.

We evaluate the HyperPINN and compare it to two PINN baselines. For the HyperPINN,
the hypernetwork takes as input the parameter ν and outputs the parameters for a main
neural network, which takes as input the space-time coordinates and approximates the
solution function u(t, x). For the standard PINN baselines, a single network takes as input
both the parameter ν and the space time coordinates, and outputs the approximate solution.
The summary of the results are shown in Table 5.1.

The HyperPINN consists of a main network with 6 fully-connected (FC) hidden layers
of size 8 (393 parameters) and a hypernetwork with 3 FC hidden layers of size 32 followed
by 1 hidden layer of size 16 (9385 parameters). The first baseline, the small PINN baseline,

52

consists of a FC network of approximately the same size as the main network in the
HyperPINN, with 6 hidden layers of size 8 (401 parameters). This baseline serves as a
comparison point to the main network, which is the one that is evaluated multiple times
after the hypernetwork is evaluated once to generate the main network’s weights.

Qualitatively, we can see in Figure 5.3 that the HyperPINN learns to approximate the
solution function even at a parameter value containing a shock. The small PINN baseline
is not able to learn to properly approximate the solution, lacking capacity to fully learn the
parameter space. Full solutions (over time and space) for the HyperPINN and the small
PINN baseline are shown in Figure 5.4, where we can also observe that the small PINN
solution is lacking.

The second baseline, the large PINN baseline, consists of a FC neural network of approx-
imately the same size as the full hyper and main networks combined in the HyperPINN,
with 10 hidden layers of size 32 (9665 parameters).

This large baseline serves as a comparison point with the same full capacity as the
HyperPINN. It is able to achieve results close to the HyperPINN, but at the cost of having
a larger size. As a consequence, the large PINN has a runtime of 158µs for performing a
single prediction, whereas the main network in the HyperPINN has a runtime of 86µs for
performing the same prediction, which is faster than even the small PINN. That is, for
a similar number of parameters, the HyperPINN is able to surpass the performance of a
large network while keeping the main network as efficient as a small one, by offloading the
task of learning the parameter space to the hypernetwork. All times were measured on an
NVIDIA Tesla V100 GPU.

Table 5.1: Comparison of HyperPINN and baselines on the parameterized Burgers’ PDE.

Model Mean squared error Model size Evaluation time
Small PINN 3.0 · 10−4 401 parameters 92µs
Large PINN 2.3 · 10−5 9665 parameters 158µs

HyperPINN 1.9 · 10−5 Main: 393 parameters
Hyper: 9385 parameters

Main: 86µs
Hyper: 158µs

(a) HyperPINN (b) Small PINN baseline (c) Large PINN baseline

Figure 5.3: Results for the parameterized 1D Burgers’ PDE at a series of time points for
ν = 0.003. Solid lines represent the ground truth simulation, and dashed lines represent
the model predictions.

53

(a) HyperPINN

(b) Small PINN baseline

Figure 5.4: Comparison of the full domain solution for the HyperPINN and the Small PINN
baseline for the 1D Burgers experiment.

5.4.2 Lorenz system

In this experiment we attempt to learn the solution to the Lorenz ODE, with solution
(x, y, z), defined by

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz.t

(5.10)

This system of differential equations has parameters (σ, β, ρ).
In our experiments we noticed that a traditional PINN approach had a hard time

learning this function. This was less so due to a failure of the physics-informed approach
than to a general difficulty of fully-connected neural networks to learn functions with high
frequency components such as this one.

We demonstrate this with a simple experiment in which we attempt to directly fit the
solution function, without any physics-informed loss term. Impressively, we observed that
fully-connected neural networks, even of a fairly large size, had a hard time even fitting the
function even under full supervision in the training data.

In Figure 5.5, we show a Lorenz system solution and its breakdown into individual
components. We attempted to fit this solution (mapping time to space coordinates) using
a fully-connected neural network with 5 hidden-layers of size 128 and tanh activations,
trained for 10, 000 epochs on 250 equally spaced points from the ground truth solution. It is
clear the network is not able to properly capture the high frequency behavior of the target

54

x
−15−10−5 0 5 10 15

y
−20

−10
0

10
20

z

10
15
20
25
30
35
40

Lorenz attractor true
predicted

0 5 10 15 20 25
t

−15

−10

−5

0

5

10

15

x

Lorenz attractor, X dimension

true
predicted

0 5 10 15 20 25
t

−20

−10

0

10

20

y

Lorenz attractor, Y dimension

true
predicted

0 5 10 15 20 25
t

5

10

15

20

25

30

35

40

45

z

Lorenz attractor, Z dimension
true
predicted

Figure 5.5: Fitting the Lorenz solution with a fully connected network with hyperbolic
tangent activations. The network has 5 hidden layers of size 128 and is trained for 10,000
full batch steps on 250 equally spaced points from the solution. The solution to the
Lorenz system is ran for t ∈ [0, 25] with (σ, β, ρ) = (10, 8/3, 28) and initial condition
(x0, y0, z0) = (−8, 7, 27).

function, often averaging out the fast oscillations within each low frequency (“butterfly
wing”) mode. Similar results are shown for the same setting using ReLU activations in
Figure 5.6. If we train for a very long time, with a very large network, we are eventually
able to solve fit the solution, but this still very inefficient, and the task setting is the easiest
possible. It would be infeasible to use this approach on any appropriate usage setting.

In Chapters 6 and 7, we will explore a solution to this problem, namely employing
sinusoidal networks. (In Figure 6.1 we present the results for this same experiment on a
smaller neural network with sin activations.) For now, in this chapter, we shift to employing
multistep neural networks, a physics-informed approach that has been demonstrated to be
able to learn the Lorenz system well [Raissi et al., 2018]. In this setting, instead of fitting
the solution function directly like a traditional PINN, the multistep neural network learns
the time-derivative of the Lorenz system (given by the right-hand side in Equation 5.10).
This also has the added benefit of demonstrating that our proposed method works with
diverse physics-informed approaches.

In order to test the ability of the PINN and the HyperPINN to learn parameterized
systems, we performed this experiment with σ = 10, ρ varying in the range [0, 28], β in
[2/3, 8/3]. We sampled 100 different initial conditions randomly uniformly from [−10, 10]3
for each of 30 different parameter value combinations. These values cause the underlying
solution to exhibit diverse behavior, including the chaotic attractor.

Evaluation is performed using parameter and initial condition values not seen in training.
We computed trajectories of 25s duration with ∆t = 0.01 using the Runge-Kutta Fehlberg
integrator. Evaluation is performed using a separate set of 100 trajectories, sampled from

55

x
−15−10−5 0 5 10 15

y
−20

−10
0

10
20

z

10
15
20
25
30
35
40

Lorenz attractor true
predicted

0 5 10 15 20 25
t

−20

−15

−10

−5

0

5

10

15

x

Lorenz attractor, X dimension

true
predicted

0 5 10 15 20 25
t

−20

−10

0

10

20

y

Lorenz attractor, Y dimension

true
predicted

0 5 10 15 20 25
t

5

10

15

20

25

30

35

40

45

z

Lorenz attractor, Z dimension
true
predicted

Figure 5.6: Fitting the Lorenz solution with a fully connected network with ReLU activations.
The network has 5 hidden layers of size 128 and is trained for 10,000 full batch steps on
250 equally spaced points from the solution. The solution to the Lorenz system is ran for
t ∈ [0, 25] with (σ, β, ρ) = (10, 8/3, 28) and initial condition (x0, y0, z0) = (−8, 7, 27).

the same range of parameters and initial conditions, but using different values from the
training set.

Example trajectories for different initial conditions and parameter values are shown in
Figure 5.7.

We compare the HyperPINN with two baselines, a small and a large multistep neural
network. The HyperPINN consists of a main FC network with one hidden layer of size
16 (115 parameters) and a FC hypernetwork with 2 hidden layers of size 16 and 8 (1406
parameters). The small baseline consists of a FC neural network with one hidden layer
of size 16 (214 parameters). The large baseline consists of a FC neural network with one
hidden layer of size 256 (3334 parameters). In the HyperPINN, the hypernetwork takes as
input the parameters (σ, β, ρ) and outputs the parameters for a main network, which takes
as input the state (x, y, z) and outputs the time-derivative (ẋ, ẏ, ż). In the baselines, a single
network takes as input both the parameters and the state, and outputs the time-derivative.

Note that when performing integration using the learned model, it is expected that the
system will deviate from the ground truth. Given the chaotic nature of the system, even
minuscule deviations from the true time-derivative compound over time when performing
integration, causing large errors even when the correct qualitative behavior is captured.
Nevertheless, when compared to the baselines, the HyperPINN achieves lower error in
predicting the trajectories of the system. While the HyperPINN achieves an aggregate
squared error over all test trajectories of 17.5, the small baseline has an error of 39.4, and
the large baseline has an error of 20.6. Importantly, when analyzing the results qualitatively,
we can see that the HyperPINN achieves this lower error by more accurately capturing
the qualitative behavior of the system at different parameter values. In comparison, the

56

Figure 5.7: Trajectories from the Lorenz system, displaying diverse behavior for different
initial conditions and parameter values.

(a) HyperPINN (b) Small PINN baseline (c) Large PINN baseline

Figure 5.8: Results for the Lorenz ODE with σ = 10, β = 5/3 and ρ = 21.7. Solid lines
represent the ground truth trajectory, and dashed lines represent the trajectory integrated
from model predictions.

baselines frequently mistake one type of behavior for another, as exemplified in Figure 5.8.
Particularly, when compared to the small PINN baseline, the HyperPINN achieves better

performance with a similarly sized main network. In comparison to the large baseline, the
HyperPINN is able to approximate the solution at diverse parameters and initial conditions
while using a much smaller sized main network, which is repeatedly evaluated for integration
at test time.

57

58

Chapter 6

Simple Sinusoidal Networks

6.1 Introduction

In the Lorenz experiment in Chapter 5 (Section 5.4.2), we observed that we had to use a
multistep neural network [Raissi et al., 2018] (a neural network that fits the derivatives in
a differential equation), instead of a traditional physics-informed neural network (a neural
network that fits the solution function directly), due to the fact that regular PINNs (using
hyperbolic tangent or ReLU activations) had a very hard time fitting the solution to the
Lorenz system. In this chapter, we will use that failure mode as a starting point to motivate
the development of an architecture better suited to the types of functions we frequently see
in physics problems.

The phenomenon observed in Chapter 5 has been previously described in the literature.
It has been observed that neural networks have a spectral bias [Basri et al., 2019, Cao
et al., 2020, Rahaman et al., 2019]. They tend to have difficulty learning functions with
high-frequency components, as seen in the Lorenz experiment. This has been described
both in general and in the particular case of PINNs learning the solution to differential
equations [Wang et al., 2020, 2021].

One proposed solution has been to employ Fourier feature mappings [Rahimi and Recht,
2007, Tancik et al., 2020], that is, mapping the input values to a set of sinusoidal bases.
This has been shown to be effective in overcoming spectral bias in PINNs [Wang et al., 2021].
Moreover, it is also has the added benefit of rendering the input features shift-invariant,
a useful property that has been leveraged, for example, in spatial and language domains
[Mildenhall et al., 2020, Tancik et al., 2020].

Neural networks with sine non-linearities, which we call sinusoidal networks are mathe-
matically analogous to regular networks with Fourier features (at least with respect to the
first layer), and thus inherit many of their desirable properties, such as allowing for more
efficient learning of higher frequency functions and shift-invariance.

As a motivating example, in Figure 6.1, we show the same Lorenz task mentioned above
from Chapter 5, but employing a sinusoidal network. Not only does this simple change
allow the network to easily fit the target function quickly, but also to do so much more
efficiently – the neural network used to generate the output in the figure has only 3 hidden

59

x
−15−10−5 0 5 10 15

y
−20

−10
0

10
20

z

10
15
20
25
30
35
40

Lorenz attractor true
predicted

0 5 10 15 20 25
t

−15

−10

−5

0

5

10

15

x

Lorenz attractor, X dimension

true
predicted

0 5 10 15 20 25
t

−20

−10

0

10

20

y

Lorenz attractor, Y dimension

true
predicted

0 5 10 15 20 25
t

5

10

15

20

25

30

35

40

45

z

Lorenz attractor, Z dimension
true
predicted

Figure 6.1: Fitting the Lorenz solution with a fully connected network with sine activations.
The network has 3 hidden layers of size 64 and is trained for 10,000 full batch steps on
250 equally spaced points from the solution. The solution to the Lorenz system is ran for
t ∈ [0, 25] with (σ, β, ρ) = (10, 8/3, 28) and initial condition (x0, y0, z0) = (−8, 7, 27).

layers of size 64.
Recently, sinusoidal representation networks (SIRENs) have been proposed [Sitzmann

et al., 2020], employing sinusoidal activations together with particular design choices to
improve learning. [Sitzmann et al., 2020] also argue that sinusoidal networks have the
property of being closed under derivation, that the derivative of its outputs with respect
to its inputs is given by another sinusoidal network, due to the nature of the derivatives
of trigonometric functions. Intuitively, this property can be particularly useful for PINNs,
in which training is often supervised based on PDE-based losses containing higher order
derivatives. Indeed, some works have employed sinusoidal networks in the context of
physics-informed learning, showing promising results in a variety of domains [Huang et al.,
2021a,b, Raissi et al., 2019b, Song et al., 2021, Wong et al., 2022].

In this chapter and Chapter 7, we will propose a much simplified sinusoidal network
architecture, and then analyze its behavior under the neural tangent kernel framework.
This analysis will allow us to understand the functioning of these networks, enabling
us to better tune their characteristics to the spectrum of each given problem. We then
finally demonstrate that these “well-tuned” sinusoidal networks outperform their traditional
counterparts in spatial and spatio-temporal tasks, including the learning of solutions to
differential equations.

6.2 Simple Sinusoidal Networks

As we will see in the following section, there are many details that complicate the practical
implementation of current sinusoidal networks. After describing these details, we will

60

propose a simplified version of sinusoidal networks. We then demonstrate that this simple
sinusoidal network can nonetheless maintain or surpass the performance level of standard
SIRENs.

Throughout the following chapters, we will use the term sinusoidal network to refer
generally to any network with sinusoidal activations (including SIRENs). We will reserve
the term SIREN particularly for the architecture proposed by Sitzmann et al. [2020]. That
is, a sinusoidal network with the particular design choices we will describe below. Finally,
we will call our simplified version of SIREN, described in section 6.2.2 below, the simple
sinusoidal network (SSN).

6.2.1 Practical Implementation Details of SIRENs

On the surface, SIRENs appear to be simple. For a given layer l in an MLP, we can express
its output as

fl(x) = ϕ(Wlx+ bl), (6.1)

for some set of layer parameters (Wl, bl) and some activation function ϕ. In a “traditional”
MLP, ϕ would usually be a non-linear function such as the commonly employed hyperbolic
tangent (tanh) or rectified linear unit (ReLU). One might think that “converting” such
an MLP into a SIREN might amount to instead defining ϕ := sin. However, practical
implementation of SIRENs, as originally suggested by Sitzmann et al. [2020], involves an
additional number of details.

The ω parameter

The first such detail is a frequency hyperparameter, ω ∈ R, which inserts itself into the
first layer of a sinusoidal MLP (notice l = 1) as

f1(x) = sin(ω (W1x+ b1)). (6.2)

This hyperparameter is chosen before training and kept fixed throughout. No method for
choosing ω is provided, except for the fact that a value of ω = 30 works well for most tasks
because it allows the inputs to the sine function to span multiple periods over the range
[−1, 1]. We perform a theoretical analysis of the function of ω in a sinusoidal network and
how this can inform its choice later in this chapter.

When implementing SIRENs in practice, instead of applying ω only to the first layer,
as specified in Equation 6.2, Sitzmann et al. [2020] in fact apply the scaling to all layers,
but negate its effect by dividing the initial value of Wl for later layers (l > 1) by a factor of
ω. That is, at initialization, we would have

Wl =
W init

l

ω
, l > 1, (6.3)

where W init
l is the value of the usual initialization of Wl (discussed below). Obviously, the

values of Wl can drift after training progresses, but at least intuitively it is clear that the
effect of this adjustment is to cancel out the influence of ω on later layers, while keeping it
as a scaling factor for the first one.

61

Initialization scheme

Besides this scaling factor, SIRENs also have a particular initialization scheme for its
parameter matrices Wl. Each entry W

(i)
l is sampled from a uniform distribution in the

range [−
√

6/n,
√

6/n], where n is the number of inputs to the layer l. This applies to all
layers but the first. Sitzmann et al. [2020] prove that this initialization is such that the
input to each sine activation will be normal distributed with a standard deviation of 1, and
it is chosen for this reason.

The first layer is initialized separately by sampling W
(i)
1 ∼ U(−1/n, 1/n). This difference

in scaling is mostly inconsequential, as the output of the first layer is scaled by the parameter
ω described in the previous section. Nevertheless, it is worth mentioning as it both adds
extra complexity to the activation scheme, and also changes our interpretation of the
absolute values of ω (in comparisons to other approaches we will analyze and to NTK
assumptions).

6.2.2 Simplifying SIRENs

After discussing the implementation details behind SIRENs, we will now propose a series of
simplifications with the goal of formulating a sinusoidal network that (almost) amounts to
simply substituting its activation functions by the sine function. We will however, keep a
simplified implementation of the ω parameter, since (as we will in future analyses) it is in
fact a useful tool for allowing the network to fit inputs of diverse frequencies.

The ω parameter

The first step is thus to remove all scaling parameters ω except for the first layer, and
consequently also remove the “cancelling initialization” described in Equation 6.3. As a
consequence, the layer activation equations of our simple sinusoidal network are simply

f1(x) = sin(ω (W1x+ b1)), (6.4)

fl(x) = sin(Wlx+ bl), l > 1. (6.5)

Though Sitzmann et al. [2020] claim that the scaling by ω of all layers (with further
cancellation in layers after the first) helps accelerate training, in our experiments (in
Section 6.3 below) we were able to at least match the performance of regular SIRENs even
without this scaling factor – with the added benefit of simplifying the overall implementation
and initialization of the sinusoidal layers. Though we have not fully tested this hypothesis,
we believe it is likely that modern adaptive optimizers, such as Adam [Kingma and Ba,
2014b], are able to compensate for the different gradient magnitudes at individual layers,
preserving the ability to learn efficiently even in the presence of different scaling factors.

Additionally, we can leverage this simplification to further enhance the capabilities
of our sinusoidal networks. As we will show in Section 7.5.2, the fact that we are now
only multiplying the network input layer by ω, allows us to know ω will always multiply
a vector of a given dimension (which is not usually the case in SIRENs, since commonly
input and hidden sizes are distinct in MLPs). Given this fact, we can in fact have ω be

62

multi-dimensional, instead of a scalar, which, as we will see, allows us to further tune
our network to fit dimensions with different frequency spectra (as is commonly the case
in problems with space and time dimensions, for example). We leave the discussion of
this “enhancement” for after our further analysis of the sinusoidal networks in Chapter 7,
which will inform our understanding of the role of ω, and for now we focus only on the
simplifications.

Initialization scheme

Our final simplification to SIRENs is to reformulate their parameter initialization scheme.
Instead of utilizing uniform initializations, with different bounds for the first and subsequent
layers, we propose initializing all parameters using a standard Kaiming (i.e., He) normal

initialization scheme. This amounts to sampling all weights W
(i)
l from a normal distribution

with mean 0 and standard deviation
√
2/n. This choice not only greatly simplifies the

initialization scheme of the network, but it also facilitates theoretical analysis of the behavior
of the network under the NTK framework, as we will see later in Chapter 7.

Proof of the initialization scheme

We will now show that this particular choice of initialization distribution preserves the
variance of the original proposed SIREN initialization distribution. As a consequence, the
theoretical justification for the original initialization scheme still holds. Moreover, we also
demonstrate empirically that the desired properties of the initialization (namely, having
the input to each sine activation will be normal distributed with a standard deviation of 1)
are maintained in practice

Lemma 6.1. Given any c, for X ∼ N
(
0, 1

3
c2
)
and Y ∼ U (−c, c), we have Var[X] =

Var[Y] = 1
3
c2.

Proof. By definition, Var[X] = σ2 = 1
3
c2. For Y , we know that the variance of a

uniformly distributed random variable with bound [a, b] is given by 1
12
(b − a)2. Thus,

Var[Y] = 1
12
(2c)2 = 1

3
c2.

This simple Lemma and its corollary relates to Lemma 1.7 in Sitzmann et al. [2020],
showing that the initialization we propose here has the same variance as the one proposed
for SIRENs. Using this result we can translate the result from the main Theorem 1.8 from
Sitzmann et al. [2020], which shows that the SIREN initialization indeed has the desired
properties, to our proposed initialization. The Theorem below show the same properties
still hold. The reasoning for assuming the inputs are uniform in the range [−1, 1] is that
sinusoidal networks are usually applied to problems mapping from spatial (or time-space)
coordinates (commonly normalized to [−1, 1]) to some output.

Theorem 6.2. For a uniform input in [−1, 1], the activations throughout a sinusoidal
networks are approximately standard normal distributed before each sine non-linearity and

63

arcsine-distributed after each sine non-linearity, irrespective of the depth of the network,
if the weights are distributed normally, with mean 0 and variance 2

n
with n is the layer’s

fan-in.

Proof. The proof follows exactly the proof for Theorem 1.8 in Sitzmann et al. [2020], only
using Lemma 6.1 when necessary to show that the initialization proposed here has the same
variance necessary for the proof to follow.

Empirical evaluation of initialization scheme

To empirically demonstrate the proposed simple initialization scheme preserves the properties
from the SIREN initialization scheme, we perform the same analysis performed by Sitzmann
et al. [2020] (Figure 2 in their Appendix).

For this analysis we use a sinusoidal MLP with 6 hidden layers of 2048 units, and
single-dimensional input and output. This MLP is initialized using the simplified scheme
described above. For testing, 28 equally space inputs from the range [−1, 1] are passed
through the network. We then plot the histogram of activations after each linear operation
(before the sine non-linearity) and after each sine non-linearity. To match the original plot,
we also plot the 1D Fast Fourier Transform of all activations in a layer, and the gradient of
this output with respect to each activation. These results are presented in Figure 6.2.

The main conclusion from this figure is that the distribution of activations matches the
predicted normal (before the non-linearity) and arcsine (after the non-linearity) distributions,
and that this behavior is stable across many layers. We also reproduced the same result up
to 50 layers.

We then perform an additional experiment in which the exact same setup as above is
employed, yet the 1D inputs are shifted by a large value (i.e., x→ x+ 1000). We the show
the same plot as before in Figure 6.3. We can see that there is essentially no change from
the previous plot, which demonstrates the sinusoidal networks shift-invariance in the input
space, one of its important desirable properties, as discussed previously. This will also be
further demonstrated and analyzed in Chapter 7, when we study the NTK of sinusoidal
networks.

64

3r
d

la
ye

r
5t

h
la

ye
r

1s
t l

ay
er

6t
h

la
ye

r
2n

d
la

ye
r

4t
h

la
ye

r
In
pu
t

Figure 6.2: Activation statistics for 6 layers of a simplified sinusoidal network, demonstrating
the observed distributions matched the theoretical expectation and preserves the properties
from the SIREN initialization.

65

2n
d

la
ye

r
6t

h
la

ye
r

In
pu
t

3r
d

la
ye

r
4t

h
la

ye
r

5t
h

la
ye

r
1s

t l
ay

er

Figure 6.3: Activations for 6 layers of a simplified sinusoidal network in which the input
has been shifted by a large value, i.e., x→ x+ 1000. The distribution characteristics are
preserved, demonstrating the sinusoidal network’s shift-invariance.

66

Table 6.1: Comparison of the simple sinusoidal network and SIREN results, both directly
from Sitzmann et al. [2020] (when reported) and from our own reproduced experiments.
Values above the horizontal center line are peak signal to noise ratio (PSNR), values below
are mean squared error (MSE), except for SDF which uses a composite loss. †Audio
experiments utilized a different learning rate for the first layer, see the full description below
for details.

Experiment Simple Sinusoidal Network SIREN [paper] SIREN [ours]

Image 50.04 49 (approx.) 49.0
Poisson (Gradient) 39.66 32.91 38.92
Poisson (Laplacian) 20.97 14.95 20.85
Video (cat) 34.03 29.90 32.09
Video (bikes) 37.4 32.88 33.75

Audio (Bach)† 1.57 · 10−5 1.10 · 10−5 3.28 · 10−5

Audio (counting)† 3.17 · 10−4 3.82 · 10−4 4.38 · 10−4

Helmholtz equation 5.94 · 10−2 – 5.97 · 10−2

SDF (room) 12.99 – 14.32
SDF (statue) 6.22 – 5.98

6.3 Experiments

In order to demonstrate our simplified sinusoidal network does not suffer in performance
compared to a standard SIREN, in this section we reproduce all the main results from
Sitzmann et al. [2020]. In fact, we observe that in almost all cases our simplified sinusoidal
network surpasses the performance of SIREN.

Table 6.1 compiles the results for all experiments. In order to be fair, we compare
the simplified sinusoidal network proposed in this chapter with both the results directly
reported in Sitzmann et al. [2020], and our own reproduction of the SIREN results (using
the same parameters and settings as the original). We can see from the numbers reported
in the table that the performance of the simple sinusoidal network proposed in this chapter
matches or even surpasses the performance of the SIRENs in all cases.

It is important to note that this is not a favorable setting for the simplified sinusoidal
network, given that the training durations were very short. The standard SIREN favors
quickly converging to a solution, though it does not have as strong asymptotic behavior.
This effect is likely due to the multiplicative factor applied to later layers described in
Section 6.2.1.

As hypothesized in Section 6.2.2, we observe that indeed in almost all cases we can
compensate this effect by simply lowering the learning rate with the Adam optimizer. The
only exception was in the audio experiments, in which a very large omega is used (in the
15, 000− 30, 000 range, compared to the 10− 30 range for all other experiments). In these
cases, we were still able to compensate by setting a separate, lower learning rate for the
first layer compared to the rest of the network. We can see how this can be critiqued as

67

Table 6.2: Comparison of the simple sinusoidal network and SIREN on some experiments,
with a longer training duration. The specific durations are described below in the details for
each experiment. We can see that the simple sinusoidal network has stronger asymptotic
performance. Values above the horizontal center line are peak signal to noise ratio (PSNR),
values below are mean squared error (MSE). †Audio experiments utilized a different learning
rate for the first layer, see the full description below for details.

Experiment Simple Sinusoidal Network SIREN [ours]

Image 56.21 52.95
Poisson (Gradient) 39.51 38.70
Poisson (Laplacian) 22.09 20.82
Video (cat) 34.66 32.19
Video (bikes) 38.1 34.07

Audio (Bach)† 4.83 · 10−7 3.02 · 10−6

Audio (counting)† 3.86 · 10−5 1.46 · 10−4

re-introducing complexity, counteracting the purpose the proposed simplification. However,
we argue (1) that this is only limited to cases with extremely high omega, which is not
present in any case except for fitting audio waves, and (2) that adjusting the learning rate
for an individual layer is still an approach that is simpler and more in line with standard
machine learning practice compared to multiplying all layers by a scaling factor and then
dividing their initializations by the same amount, except for in the first layer.

Finally, we observe that besides being able to exceed the performance of SIREN in a
shorter training regimen, the simple sinusoidal network performs even more strongly with
longer training. To demonstrate this, we repeated some experiments from above, but with
longer training durations. These results are shown in Table 6.2.

Below, we present qualitative results and describe experimental details for each experi-
ment. As these are a reproduction of the experiments in Sitzmann et al. [2020], we refer to
their details if more information is needed.

6.3.1 Image

In the image fitting experiment, we treat an image as a function from the spatial domain
to color values (x, y) → (r, g, b). In the case of a monochromatic image, used here, this
function maps instead to one-dimensional intensity values. We try to learn a function
f : R2 → R, parameterized as a sinusoidal network, in order to fit such an image.

Figure 6.4 shows the image used in this experiment, and the reconstruction from the
fitted sinusoidal network. The gradient and Laplacian for the learned function are also
presented, demonstrating that higher order derivatives are also learned appropriately.

Training parameters. The input image used is 512× 512, mapped to an input domain
[−1, 1]2. The sinusoidal network used is a 5-layer MLP with hidden size 256, following the

68

Image Gradient Laplacian

Figure 6.4: Top row: Ground truth image. Bottom: Reconstructed with sinusoidal network.

proposed initialization scheme above. The parameter ω is set to 32. The Adam optimizer is
used with a learning rate of 3 · 10−3, trained for 10, 000 steps in the short duration training
results and for 20, 000 steps in the long duration training results.

6.3.2 Poisson

These tasks are similar to the image fitting experiment, but instead of supervising directly on
the ground truth image, the learned fitted sinusoidal network is supervised on its derivatives,
constituting a Poisson problem. We perform the experiment by supervising both on the
input image’s gradient and Laplacian, and report the reconstruction of the image and it’s
gradients in each case.

Figure 6.5 shows the image used in this experiment, and the reconstruction from the
fitted sinusoidal networks. Since reconstruction from derivatives can only be correct up to
a scaling factor, we scale the reconstructions for visualization. As in the original SIREN
results, we can observe that the reconstruction from the gradient is of higher quality than
the one from the Laplacian.

Training parameters. The input image used is of size 256 × 256, mapped from an
input domain [−1, 1]2. The sinusoidal network used is a 5-layer MLP with hidden size 256,
following the proposed initialization scheme above. For both experiments, the parameter ω
is set to 32 and the Adam optimizer is used. For the gradient experiments, in short and
long training results, a learning rate of 1 · 10−4 is used, trained for 10, 000 and 20, 000 steps
respectively. For the Laplace experiments, in short and long training results, a learning

69

Image Gradient Laplacian

Figure 6.5: Top row: Ground truth image. Mid: Image reconstructed from sinusoidal
network supervised on gradient. Bottom: Image reconstructed from sinusoidal network
supervised on Laplacian.

rate of 1 · 10−3 is used, trained for 10, 000 and 20, 000 steps respectively.

6.3.3 Video

These tasks are similar to the image fitting experiment, but we instead fit a video, which
also has a temporal input dimension, (t, x, y)→ (r, g, b). We learn a function f : R3 → R3,
parameterized as a sinusoidal network, in order to fit such a video.

Figures 6.6 and 6.7 show sampled frames from the videos used in this experiment, and
their respective reconstructions from the fitted sinusoidal networks.

Training parameters. The cat video contains 300 frames of size 512× 512. The bikes
video contains 250 frames of size 272× 640. These signals are fitted from the input domain
[−1, 1]3. The sinusoidal network used is a 5-layer MLP with hidden size 1024, following the

70

Figure 6.6: Top row: Frames from ground truth “cat” video. Bottom: Video reconstructed
from sinusoidal network.

Figure 6.7: Top row: Frames from ground truth “bikes” video. Bottom: Video reconstructed
from sinusoidal network.

proposed initialization scheme above. The parameter ω is set to 8. The Adam optimizer is
used, with a learning rate of 3 · 10−4 trained for 100, 000 steps in the short duration training
results and for 200, 000 steps in the long duration training results.

6.3.4 Audio

In the audio experiments, we fit an audio signal in the temporal domain as a waveform
t→ w. We to learn a function f : R→ R, parameterized as a sinusoidal network, in order
to fit the audio.

Figure 6.8 shows the waveforms for the input audios and the reconstructed audios from
the fitted sinusoidal network.

Training parameters. Both audios use a sampling rate of 44100Hz. The Bach audio is
7s long and the counting audio is approximately 12s long. These signals are fitted from
the input domain [−1, 1]. The sinusoidal network used is a 5-layer MLP with hidden size
256, following the proposed initialization scheme above. For short and long training results,
training is performed for 5, 000 and 50, 000 steps respectively. For the Bach experiment,

71

Figure 6.8: Ground truth and reconstructed waveforms for “Bach” and “counting” audios.

the parameter ω is set to 15, 000. The Adam optimizer is used, with a general learning
rate of 3 · 10−3. A separate learning rate of 1 · 10−6 is used for the first layer to stabilize
training due to the large ω value. For the counting experiment, the parameter ω is set to
32, 000. The Adam optimizer is used, with a general learning rate of 1 · 10−3 and a first
layer learning rate of 1 · 10−6.

6.3.5 Helmholtz equation

Real Imaginary

Figure 6.9: Top row: Ground truth real and imaginary fields. Bottom: Reconstructed with
sinusoidal network.

In this experiment we solve for the unknown wavefield Φ : R2 → R2 in the Helmholtz
equation

(∆ + k2)Φ(x) = −f(x), (6.6)

72

with known wavenumber k and source function f (a Gaussian with µ = 0 and σ2 = 10−4).
We solve this differential equation using a sinusoidal network supervised with the physics-
informed loss

∫
Ω
∥(∆ + k2)Φ(x) + f(x)∥1dx, evaluated at random points sampled uniformly

in the domain Ω = [−1, 1]2.
Figure 6.9 shows the real and imaginary components of the ground truth solution to

the differential equation and the solution recovered by the fitted sinusoidal network.

Training parameters. The sinusoidal network used is a 5-layer MLP with hidden size
256, following the proposed initialization scheme above. The parameter ω is set to 16. The
Adam optimizer is used, with a learning rate of 3 · 10−4 trained for 50, 000 steps.

6.3.6 Signed distance function (SDF)

In these tasks we learn a 3D signed distance function. We learn a function f : R3 → R,
parameterized as a sinusoidal network, to model a signed distance function representing
a 3D scene. This function is supervised indirectly from point cloud data of the scene.
Figures 6.11 and 6.10 show 3D renderings of the volumes inferred from the learned SDFs.

Training parameters. The statue point cloud contains 4, 999, 996 points. The room
point cloud contains 10, 250, 688 points. These signals are fitted from the input domain
[−1, 1]3. The sinusoidal network used is a 5-layer MLP with hidden size 256 for the statue
and 1024 for the room. The parameter ω is set to 4. The Adam optimizer is used, with a
learning rate of 8 · 10−4 and a batch size of 1400. All models are trained for 190, 000 steps
for the statue experiment and for 410, 000 steps for the room experiment.

Figure 6.10: Rendering of the “room” 3D scene SDF learned by the sinusoidal network
from a point cloud.

73

Figure 6.11: Rendering of the “statue” 3D scene SDF learned by the sinusoidal network
from a point cloud.

74

Chapter 7

Understanding and Applying
Sinusoidal Networks

In this chapter, we analyze the behavior of sinusoidal networks, including SIREN and our
proposed simple sinusoidal network from Section 6.2, from a neural tangent kernel (NTK)
perspective. Background on the NTK was previously discussed in Chapter 2.

In the following sections, we will derive the NTK for sinusoidal networks. This analysis
provides many insights into their behavior. First, it supports their shift-invariance, observed
empirically previously. Second, it shows that sinusoidal networks operate like low-pass
filters, with their bandwidth directly defined by the ω parameter. We support these findings
with empirical analysis as well. Finally, we demonstrate how these insights can be leveraged
to properly “tune” sinusoidal networks to the frequency spectrum of the desired signal.

7.1 Preliminaries

In order to perform the subsequent NTK analysis, we first need to formalize definitions for
simple sinusoidal networks and SIRENs. The definitions used here adhere to the common
NTK analysis practices, and thus differ slightly from practical implementation.

Definition 7.1. For the purposes of the following proofs, a (sinusoidal) fully-connected
neural network with L hidden layers that takes as input x ∈ Rn0, is defined as the function
f (L) : Rn0 → RnL+1, recursively given by

f (0)(x) = ω
(
W (0)x+ b(0)

)
,

f (L)(x) = W (L) 1√
nL

sin
(
f (L−1)

)
+ b(L),

where ω ∈ R. The parameters
{
W (j)

}L
j=0

have shape nj+1 × nj and all have each element

sampled independently either from N (0, 1) (for simple sinusoidal networks) or from U(−c, c)
with some bound c ∈ R (for SIRENs). The

{
b(j)
}L
j=0

are nj+1-dimensional vectors sampled

independently from N (0, Inj+1
).

75

With this definition, we now state the general formulation of the NTK, which applies
in general to fully-connected networks with Lipschitz non-linearities, and consequently in
particular to the sinusoidal networks studied here as well.

Theorem 7.1. For a neural network with L hidden layers f (L) : Rn0 → RnL+1 following
Definition 7.1, as the size of the hidden layers n1, . . . , nL → ∞ sequentially, the neural
tangent kernel (NTK) of f (L) converges in probability to the deterministic kernel Θ(L) defined
recursively as

Θ(0)(x, x̃) = Σ(0)(x, x̃) = ω2
(
xT x̃+ 1

)
,

Θ(L)(x, x̃) = Θ(L−1)(x, x̃)Σ̇(L)(x, x̃) + Σ(L)(x, x̃),

where
{
Σ(l)
}L
l=0

are the neural network Gaussian processes (NNGPs) corresponding to each

f (l) and

Σ̇(l)(x, x̃) = E(u,v)∼Σ(l−1)(x,x̃) [cos(u)cos(v)] .

Proof. This is a standard general NTK theorem, showing that the limiting kernel recursively
in terms of the network’s NNGPs and the previous layer’s NTK. For brevity we omit the
proof here and refer the reader to, for example, Jacot et al. [2020].

The only difference is for the base case Σ(0), due to the fact that we have an additional ω
parameter in the first layer. It is simple to see that the neural network with 0 hidden layers,
i.e. the linear model ω

(
W (0)x+ b(0)

)
will lead to the same Gaussian process covariance

kernel as the original proof, xT x̃+1, only adjusted by the additional variance factor ω2.

This Theorem demonstrates that the NTK can be constructed as a recursive function of
the NTK of previous layers and the network’s NNGPs. In the following sections we will
derive the NNGPs for the SIREN and the simple sinusoidal network directly. We will then
use these NNGPs with Theorem 7.1 to derive their NTKs as well.

To finalize this preliminary section, we also provide two propositions that will be useful
in following proofs in this section.

Proposition 7.2. For any ω ∈ R, x ∈ Rd,

Ew∼N (0,Id)

[
eiω(w

T x)
]
= e−

ω2

2
∥x∥22

Proof. Omitting w ∼ N (0, Id) from the expectation for brevity, we have

E
[
eiω(w

T x)
]
= E

[
eiω

∑d
j=1 wjxj

]
.

By independence of the components of w and the definition of expectation,

E
[
eiω

∑d
j=1 iwjxj

]
=

d∏
j=1

E
[
eiω wjxj

]
=

d∏
j=1

1√
2π

∫ ∞

−∞
eiω wjxje−

w2
j
2 dwj.

76

Completing the square, we get

d∏
j=1

1√
2π

∫ ∞

−∞
eiω wjxje−

1
2
w2

jdwj =
d∏

j=1

1√
2π

∫ ∞

−∞
e

1
2(i2ω2x2

j−i2ω2x2
j+2ixjwj−w2

j)dwj

=
d∏

j=1

e
1
2
i2ω2x2

j
1√
2π

∫ ∞

−∞
e−

1
2(i2ω2x2

j−2iω2xjwj+w2
j)dwj

=
d∏

j=1

e−
1
2
ω2x2

j
1√
2π

∫ ∞

−∞
e−

1
2
(wj−iωxj)

2

dwj.

Since the integral and its preceding factor constitute a Gaussian pdf, they integrate to 1,
leaving the final result

d∏
j=1

e−
ω2

2
x2
j = e−

ω2

2

∑d
j=1 x

2
j = e−

ω2

2
∥xj∥22 .

Proposition 7.3. For any c, ω ∈ R, x ∈ Rd,

Ew∼Ud(−c,c)

[
eiω(w

T x)
]
=

d∏
j=1

sinc(c ωxj).

Proof. Omitting w ∼ Ud(−c, c) from the expectation for brevity, we have

E
[
eiω(w

T x)
]
= E

[
eiω

∑d
j=1 wjxj

]
.

By independence of the components of w and the definition of expectation,

E
[
eiω

∑d
j=1 wjxj

]
=

d∏
j=1

E
[
eiω wjxj

]
=

d∏
j=1

∫ c

−c

eiω wjxj
1

2c
dwj =

d∏
j=1

1

2c

∫ c

−c

eiω wjxjdwj.

Now, focusing on the integral above, we have∫ c

−c

eiω wjxjdwj =

∫ c

−c

cos(ω wjxj)dwj + i

∫ c

−c

sin(ω wjxj)dwj

=
sin(ω wjxj)

ωxj

∣∣∣∣∣
c

−c

− i
cos(ω wjxj)

ωxj

∣∣∣∣∣
c

−c

=
2sin(c ωxj)

ωxj

.

Finally, plugging this back into the product above, we get

d∏
j=1

1

2c

∫ c

−c

eiω wjxjdwj =
d∏

j=1

1

2c

2sin(c ωxj)

ωxj

=
d∏

j=1

sinc(c ωxj).

77

7.2 Shallow sinusoidal networks

For the next few proofs, we will be focusing on neural networks with a single hidden layer,
i.e. L = 1. Expanding the definition above, such a network is given by

f (1)(x) = W (1) 1√
n1

sin
(
ω
(
W (0)x+ b(0)

))
+ b(1). (7.1)

The advantage of analysing such shallow networks is that their NNGPs and NTKs have
formulations that are intuitively interpretable, providing insight into their characteristics.
We later extend these derivations to networks of arbitrary depth.

7.2.1 SIREN

First, let us derive the NNGP for a SIREN with a single hidden layer.

Theorem 7.4. Shalow SIREN NNGP. For a single hidden layer SIREN f (1) : Rn0 →
Rn2 following Definition 7.1, as the size of the hidden layer n1 →∞, f (1) tends (by law of
large numbers) to the neural network Gaussian Process (NNGP) with covariance

Σ(1)(x, x̃) =
c2

6

[
n0∏
j=1

sinc(c ω (xj − x̃j))− e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
+ 1.

Proof. We first show that despite the usage of a uniform distribution for the weights, this
initialization scheme still leads to an NNGP. In this initial part, we follow an approach
similar to Lee et al. [2018a], with the modifications necessary for this conclusion to hold.

From our neural network definition, each element f (1)(x)j in the output vector is a
weighted combination of elements in W (1) and b(1). Conditioning on the outputs from
the first layer (L = 0), since the sine function is bounded and each of the parameters is
uniformly distributed with finite variance and zero mean, the f (1)(x)j become normally
distributed with mean zero as n1 → ∞ by the (Lyapunov) central limit theorem (CLT).
Since any subset of elements in f (1)(x) is jointly Gaussian, we have that this outer layer is
described by a Gaussian process.

Now that we have concluded that this initialization scheme still entails an NNGP, we
have that its covariance is determined by σ2

WΣ(1) + σ2
b = c2

3
Σ(1) + 1, where

Σ(1)(x, x̃) = lim
n1→∞

[
1

n1

〈
sin
(
f (0)(x)

)
, sin

(
f (0)(x̃)

)〉]
= lim

n1→∞

[
1

n1

n1∑
j=1

sin
(
f (0)(x)

)
j
sin
(
f (0)(x̃)

)
j

]

= lim
n1→∞

[
1

n1

n1∑
j=1

sin
(
ω
(
W

(0)
j x+ b

(0)
j

))
sin
(
ω
(
W

(0)
j x̃+ b

(0)
j

))]
.

78

Now by the law of large number (LLN) the limit above converges to

Ew∼Un0 (−c,c), b∼N (0,1)

[
sin
(
ω
(
wTx+ b

))
sin
(
ω
(
wT x̃+ b

))]
,

where w ∈ Rn0 and b ∈ R. Omitting the distributions from the expectation for brevity and
expanding the exponential definition of sine, we have

E
[
1

2i

(
eiω(w

T x+b) − e−iω(wT x+b)
) 1

2i

(
eiω(w

T x̃+b) − e−iω(wT x̃+b)
)]

= −1

4
E
[
eiω(w

T x+b)+iω(wT x̃+b) − eiω(w
T x+b)−iω(wT x̃+b) − e−iω(wT x+b)+iω(wT x̃+b) + e−iω(wT x+b)−iω(wT x̃+b)

]
= −1

4

[
E
[
eiω(w

T (x+x̃))
]
E
[
e2iωb

]
− E

[
eiω(w

T (x−x̃))
]
− E

[
eiω(w

T (x̃−x))
]
+ E

[
eiω(w

T (−x−x̃))
]
E
[
e−2iωb

]]

Applying Propositions 7.2 and 7.3 to each expectation above and noting that the sinc
function is even, we are left with

− 1

4

[
2

n0∏
j=1

sinc(c ω (xj + x̃j))− 2e−2ω2
n0∏
j=1

sinc(c ω (xj − x̃j))

]

=
1

2

[
n0∏
j=1

sinc(c ω (xj − x̃j))− e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
.

For simplicity, if we take the case of a one-dimensional output (e.g., an audio signal or a
monochromatic image) with the standard SIREN setting of c =

√
6, the NNGP reduces to

Σ(1)(x, x̃) = sinc
(√

6ω (x− x̃)
)
− e−2ω2

sinc
(√

6ω (x+ x̃)
)
+ 1.

We can already notice that this kernel is composed of sinc functions. The sinc function
is the ideal low-pass filter. For any value of ω > 1, we can see the the first term in the
expression above will completely dominate the expression, due to the exponential e−2ω2

factor. In practice, ω is commonly set to values at least one order of magnitude above 1, if
not multiple orders of magnitude above that in certain cases (e.g., high frequency audio
signals). This leaves us with simply

Σ(1)(x, x̃) = sinc
(√

6ω (x− x̃)
)
+ 1.

Notice that not only does our kernel reduce to the sinc function, but it also reduces to a
function solely of ∆x = x− x̃. This agrees with the shift-invariant property we observe in
SIRENs, since the NNGP is dependent only on ∆x, but not on the particular values of x
and x̃. Notice also that ω defines the bandwidth of the sinc function, thus determining the
maximum frequencies it allows to pass.

79

−1 0 1
̃x

−1

0

1

x

SIREN Σ(1)(x, ̃x), ω= 4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−1 0 1
̃x

−1

0

1

x

SIREN Σ(1)(x, ̃x), ω= 10

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−1 0 1
̃x

−1

0

1

x

SIREN Σ(1)(x, ̃x), ω= 30

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SIREN Σ(1)(x, ̃x), ̃x= 0, ω= 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SIREN Σ(1)(x, ̃x), ̃x= 0, ω= 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SIREN Σ(1)(x, ̃x), ̃x= 0, ω= 30

Figure 7.1: The NNGP for SIREN at different ω values. The top row shows the kernel
values for pairs (x, x̃) ∈ [−1, 1]2. Bottom row shows a slice at fixed x̃ = 0.

The general sinc form and the shift-invariance of this kernel can be visualized in
Figure 7.1, along with the effect of varying ω on the bandwidth of the NNGP kernel.

We analyzed the SIREN NNGP above due to its simplicity. However, the NNGP of a
neural network does not paint a full picture of its behavior, since it models only its behavior
at initialization, not after training. This is the role of the NTK which, under its limiting
assumptions, models the behavior of the network after training. Nevertheless, the definition
of the NTK, as can be seen from Theorem 7.1 is heavily dependent on the NNGP (and the
closely related kernel Σ̇). We can see that the NTK of the shallow SIREN, derived below,
maintains the same relevant characteristics as the NNGP. We first derive Σ̇ in the Lemma
below.

Lemma 7.5. For ω ∈ R, Σ̇(1)(x, x̃) : Rn0 × Rn0 → R is given by

Σ(1)(x, x̃) =
c2

6

[
n0∏
j=1

sinc(c ω (xj − x̃j)) + e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
+ 1.

Proof. The proof follows the same pattern as Theorem 7.4, with the only difference being a
few sign changes after the exponential expansion of the trigonometric functions, due to the
different identities for sine and cosine.

Now we can derive the NTK for the shallow SIREN.

Corollary 7.6. Shallow SIREN NTK. For a single hidden layer SIREN f (1) : Rn0 →
Rn2 following Definition 7.1, its neural tangent kernel (NTK), as defined in Theorem 7.1,

80

is given by

Θ(1)(x, x̃) =
(
ω2
(
xT x̃+ 1

))(c2

6

[
n0∏
j=1

sinc(c ω (xj − x̃j))− e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
+ 1

)

+
c2

6

[
n0∏
j=1

sinc(c ω (xj − x̃j)) + e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
+ 1

=
c2

6

(
ω2
(
xT x̃+ 1

)
+ 1
) n0∏
j=1

sinc(c ω (xj − x̃j))

− c2

6

(
ω2
(
xT x̃+ 1

)
− 1
)
e−2ω2

n0∏
j=1

sinc(c ω (xj + x̃j)) + ω2
(
xT x̃+ 1

)
+ 1.

Proof. Follows trivially by applying Theorem 7.4 and Lemma 7.5 to Theorem 7.1.

Though the expressions become more complex due to the formulation of the NTK,
we can see that many of the same properties from the NNGP still apply. Again, for
reasonable values of ω, the term with the exponential factor e−2ω2

will be of negligible
relative magnitude. With c =

√
6, this leaves us with

(
ω2
(
xT x̃+ 1

)
+ 1
) n0∏
j=1

sinc
(√

6ω (xj − x̃j)
)
+ ω2

(
xT x̃+ 1

)
+ 1,

which is of the same form as the NNGP, with some additional linear terms xT x̃. Though
these linear terms break the pure shift-invariance, we still have a strong diagonal and the
sinc form with bandwidth determined by ω, as can be seen in Figure 7.2.

Similarly to the NNGP, the SIREN NTK suggests that training a shallow SIREN is
approximately equivalent to performing kernel regression with a sinc kernel, a low-pass filter,
with its bandwidth defined by ω. This agrees intuitively with the experimental observation
from Sitzmann et al. [2020] and Chapter 6 that in order to fit higher frequencies signals, a
larger ω is required.

7.2.2 Simple sinusoidal network

Just as we did in the last section, we will now first derive the NNGP for a simple sinusoidal
network, and then use that in order to obtain its NTK as well. As we will see, the Gaussian
initialization employed in the SSN has the benefit of rendering the derivations cleaner, while
retaining the relevant properties from the SIREN initialization.

Theorem 7.7. Shalow SSN NNGP. For a single hidden layer simple sinusoidal network
f (1) : Rn0 → Rn2 following Definition 7.1, as the size of the hidden layer n1 →∞, f (1) tends
(by law of large numbers) to the neural network Gaussian Process (NNGP) with covariance

Σ(1)(x, x̃) =
1

2

(
e−

ω2

2
∥x−x̃∥22 − e−

ω2

2
∥x+x̃∥22e−2ω2

)
+ 1.

81

−1 0 1
̃x

−1

0

1

x

SIREN Θ(1)(x, ̃x), ω= 4

0

500

1000

1500

2000

−1 0 1
̃x

−1

0

1

x

SIREN Θ(1)(x, ̃x), ω= 10

0

500

1000

1500

2000

−1 0 1
̃x

−1

0

1

x

SIREN Θ(1)(x, ̃x), ω= 30

0

500

1000

1500

2000

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

−200

0

200

400

600

800

1000

Θ(1
) (x

,0
)

SIREN Θ(1)(x, ̃x), ̃x= 0, ω= 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

−200

0

200

400

600

800

1000

Θ(1
) (x

,0
)

SIREN Θ(1)(x, ̃x), ̃x= 0, ω= 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

−200

0

200

400

600

800

1000

Θ(1
) (x

,0
)

SIREN Θ(1)(x, ̃x), ̃x= 0, ω= 30

Figure 7.2: The NTK for SIREN at different ω values. The top row shows the kernel values
for pairs (x, x̃) ∈ [−1, 1]2. Bottom row shows a slice at fixed x̃ = 0.

Proof. We again initially follow an approach similar to the one described in Lee et al.
[2018a].

From our sinusoidal network definition, each element f (1)(x)j in the output vector is
a weighted combination of elements in W (1) and b(1). Conditioning on the outputs from
the first layer (L = 0), since the sine function is bounded and each of the parameters is
Gaussian with finite variance and zero mean, the f (1)(x)j are also normally distributed
with mean zero by the CLT. Since any subset of elements in f (1)(x) is jointly Gaussian, we
have that this outer layer is described by a Gaussian process.

Therefore, its covariance is determined by σ2
WΣ(1) + σ2

b = Σ(1) + 1, where

Σ(1)(x, x̃) = lim
n1→∞

[
1

n1

〈
sin
(
f (0)(x)

)
, sin

(
f (0)(x̃)

)〉]
= lim

n1→∞

[
1

n1

n1∑
j=1

sin
(
f (0)(x)

)
j
sin
(
f (0)(x̃)

)
j

]

= lim
n1→∞

[
1

n1

n1∑
j=1

sin
(
ω
(
W

(0)
j x+ b

(0)
j

))
sin
(
ω
(
W

(0)
j x̃+ b

(0)
j

))]
.

Now by the LLN the limit above converges to

Ew∼N (0,In0),b∼N (0,1)

[
sin
(
ω
(
wTx+ b

))
sin
(
ω
(
wT x̃+ b

))]
,

where w ∈ Rn0 and b ∈ R. Omitting the distributions from the expectation for brevity and

82

expanding the exponential definition of sine, we have

E
[
1

2i

(
eiω(w

T x+b) − e−iω(wT x+b)
) 1

2i

(
eiω(w

T x̃+b) − e−iω(wT x̃+b)
)]

= −1

4
E
[
eiω(w

T x+b)+iω(wT x̃+b) − eiω(w
T x+b)−iω(wT x̃+b) − e−iω(wT x+b)+iω(wT x̃+b) + e−iω(wT x+b)−iω(wT x̃+b)

]
= −1

4

[
E
[
eiω(w

T (x+x̃))
]
E
[
e2iωb

]
− E

[
eiω(w

T (x−x̃))
]
− E

[
eiω(w

T (x̃−x))
]
+ E

[
eiω(w

T (−x−x̃))
]
E
[
e−2iωb

]]

Applying Proposition 7.2 to each expectation above, it becomes

−1

4

(
e−

ω2

2
∥x+x̃∥22e−2ω2 − e−

ω2

2
∥x−x̃∥22 − e−

ω2

2
∥x+x̃∥22 + e−

ω2

2
∥x+x̃∥22e−2ω2

)
=

1

2

(
e−

ω2

2
∥x−x̃∥22 − e−

ω2

2
∥x+x̃∥22e−2ω2

)
.

We an once again observe that, for practical values of ω, the NNGP simplifies to

1

2
e−

ω2

2
∥x−x̃∥22 + 1.

This takes the form of a Gaussian kernel, which is also a low-pass filter, with its bandwidth
determined by ω. We note that, similar to the c =

√
6 setting from SIRENs, in practice a

scaling factor of
√
2 is applied to the normal activations, as described in Chapter 6, which

cancels out the 1/2 factors from the kernels, preserving the variance magnitude.

Moreover, we can also observe again that the kernel is a function solely of ∆x, in
agreement with the shift invariance that is also observed in simple sinusoidal networks.
Visualizations of this NNGP are provided in Figure 7.3.

We will now proceed to derive the NTK, which requires first obtaining Σ̇.

Lemma 7.8. For ω ∈ R, Σ̇(1)(x, x̃) : Rn0 × Rn0 → R is given by

Σ̇(1)(x, x̃) =
1

2

(
e−

ω2

2
∥x−x̃∥22 + e−

ω2

2
∥x+x̃∥22e−2ω2

)
+ 1.

Proof. The proof follows the same pattern as Theorem 7.7, with the only difference being a
few sign changes after the exponential expansion of the trigonometric functions, due to the
different identities for sine and cosine.

Corollary 7.9. Shallow SSN NTK. For a simple sinusoidal network with a single hidden
layer f (1) : Rn0 → Rn2 following Definition 7.1, its neural tangent kernel (NTK), as defined

83

−1 0 1
̃x

−1

0

1

x

SSN Σ(1)(x, ̃x), ω= 4

1.0

1.2

1.4

1.6

1.8

2.0

−1 0 1
̃x

−1

0

1

x

SSN Σ(1)(x, ̃x), ω= 10

1.0

1.2

1.4

1.6

1.8

2.0

−1 0 1
̃x

−1

0

1

x

SSN Σ(1)(x, ̃x), ω= 30

1.0

1.2

1.4

1.6

1.8

2.0

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SSN Σ(1)(x, ̃x), ̃x= 0, ω= 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SSN Σ(1)(x, ̃x), ̃x= 0, ω= 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

1.2

1.4

1.6

1.8

2.0

Σ(1
) (x

,0
)

SSN Σ(1)(x, ̃x), ̃x= 0, ω= 30

Figure 7.3: The NNGP for SSN at different ω values. The top row shows the kernel values
for pairs (x, x̃) ∈ [−1, 1]2. Bottom row shows a slice at fixed x̃ = 0.

in Theorem 7.1, is given by

Θ(1)(x, x̃) =
(
ω2
(
xT x̃+ 1

)) [1
2

(
e−

ω2

2
∥x−x̃∥22 + e−

ω2

2
∥x+x̃∥22e−2ω2

)
+ 1

]
+

1

2

(
e−

ω2

2
∥x−x̃∥22 − e−

ω2

2
∥x+x̃∥22e−2ω2

)
+ 1

=
1

2

(
ω2
(
xT x̃+ 1

)
+ 1
)
e−

ω2

2
∥x−x̃∥22

− 1

2

(
ω2
(
xT x̃+ 1

)
− 1
)
e−

ω2

2
∥x+x̃∥22e−2ω2

+ ω2
(
xT x̃+ 1

)
+ 1.

Proof. Follows trivially by applying Theorem 7.7 and Lemma 7.8 to Theorem 7.1.

We again note the vanishing factor e−2ω2
, which leaves us with

1

2

(
ω2
(
xT x̃+ 1

)
+ 1
)
e−

ω2

2
∥x−x̃∥22 + ω2

(
xT x̃+ 1

)
+ 1. (7.2)

As with the SIREN before, this NTK is still of the same form as its corresponding NNGP.
While again we have additional linear terms xT x̃ in the NTK compared to the NNGP, in
this case as well the kernel preserves its strong diagonal. It is still close to a Gaussian kernel,
with its bandwidth determined directly by ω. We demonstrate this in Figure 7.4, where the
NTK for different values of ω is shown. Additionally, we also plot a pure Gaussian kernel
with variance ω2, scaled to match the maximum and minimum values of the NTK. We can
observe the NTK kernel closely matches the Gaussian. Moreover, we can also observe that,
at x̃ = 0 the maximum value is predicted by k ≈ ω2/2, as expected from the scaling factors
in the kernel in Equation 7.2.

84

This NTK suggests that training a simple sinusoidal network is approximately equivalent
to performing kernel regression with a Gaussian kernel, a low-pass filter, with its bandwidth
defined by ω. This also agrees intuitively with the observation from Chapter 6 that in order
to fit higher frequencies signals, a larger ω is required.

−1 0 1
̃x

−1

0

1

x

SSN Θ(1)(x, ̃x), ω= 4

2

4

6

8

10

12

14

16

−1 0 1
̃x

−1

0

1

x

SSN Θ(1)(x, ̃x), ω= 10

20

40

60

80

100

−1 0 1
̃x

−1

0

1

x

SSN Θ(1)(x, ̃x), ω= 30

200

400

600

800

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

2

4

6

8

SSN Θ(1)(x, ̃x), ̃x= 0, ω= 4
Θ(1)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

SSN Θ(1)(x, ̃x), ̃x= 0, ω= 10
Θ(1)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
0

100

200

300

400

SSN Θ(1)(x, ̃x), ̃x= 0, ω= 30
Θ(1)

k ⋅ (0,ω−2)

Figure 7.4: The NTK for SSN at different ω values. The top row shows the kernel values for
pairs (x, x̃) ∈ [−1, 1]2. Bottom row shows a slice at fixed x̃ = 0, together with a Gaussian
kernel scaled to match the maximum and minimum values of the NTK.

7.3 Deep sinusoidal networks

We will now look at the full NNGP and NTK for sinusoidal networks of arbitrary depth.
As we will see, due to the recursive nature of these kernels, for networks deeper than
the ones analyzed in the previous section, their full unrolled expressions quickly become
intractable intuitively, especially for the NTK. Nevertheless, these kernels can still provide
some insight, into the behavior of their corresponding networks. Moreover, despite their
symbolic complexity, we will also demonstrate empirically that the resulting kernels can be
approximated by simple Gaussian kernels, even for deep networks.

7.3.1 Simple sinusoidal network

As demonstrated in the previous section, simple sinusoidal networks produce simpler NNGP
and NTK kernels due to their Gaussian initialization. We thus begin this section by now
analyzing SSNs first, starting with their general NNGP.

85

Theorem 7.10. SSN NNGP. For a simple sinusoidal network with L hidden layers
f (L) : Rn0 → RnL+1 following Definition 7.1, as the size of the hidden layers n1, . . . , nL →∞
sequentially, f (L) tends (by law of large numbers) to the neural network Gaussian Process
(NNGP) with covariance Σ(L)(x, x̃), recursively defined as

Σ(0)(x, x̃) = ω2
(
xT x̃+ 1

)
Σ(L)(x, x̃) =

1

2
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃))

(
eΣ

(L−1)(x,x̃) − e−Σ(L−1)(x,x̃)
)
+ 1.

Proof. We will proceed by induction on the depth L, demonstrating the NNGP for successive
layers as n1, . . . , nL →∞ sequentially. To demonstrate the base case L = 1, let us rearrange
Σ(1) from Theorem 7.7 in order to express it in terms of inner products,

Σ(1)(x, x̃) =
1

2

(
e−

ω2

2
∥x−x̃∥22 + e−

ω2

2
∥x+x̃∥22e−2ω2

)
+ 1

=
1

2

[
e−

ω2

2 (xT x−2xT x̃+x̃T x̃) − e−
ω2

2 (xT x+2xT x̃+x̃T x̃)e−2ω2
]
+ 1

=
1

2

[
e−

1
2 [ω2(xT x+1)+ω2(x̃T x̃+1)]+ω2(xT x̃+1) − e−

1
2 [ω2(xT x+1)+ω2(x̃T x̃+1)]−ω2(xT x̃+1)

]
+ 1.

Given the definition of Σ(0), this is equivalent to

1

2
e−

1
2(Σ(0)(x,x)+Σ(0)(x̃,x̃))

(
eΣ

(0)(x,x̃) − e−Σ(0)(x,x̃)
)
+ 1,

which concludes this case.
Now given the inductive hypothesis, as n1, . . . , nL−1 →∞ we have that the first L− 1

layers define a network f (L−1) with NNGP given by Σ(L−1)(x, x̃). Now it is left to show that
as nL →∞, we get the NNGP given by Σ(L). Following the same argument in Theorem 7.7,
the network

f (L)(x) = W (L) 1√
nL

sin
(
f (L−1)

)
+ b(L)

constitutes a Gaussian process given the outputs of the previous layer, due to the distribu-
tions of W (L) and b(L). Its covariance is given by σ2

WΣ(L) + σ2
b = Σ(L) + 1, where

Σ(L)(x, x̃) = lim
nL→∞

[
1

nL

〈
sin
(
f (L−1)(x)

)
, sin

(
f (L−1)(x̃)

)〉]
= lim

nL→∞

[
1

nL

nL∑
j=1

sin
(
f (L−1)(x)

)
j
sin
(
f (L−1)(x̃)

)
j

]
.

By inductive hypothesis, f (L−1) is a Gaussian process Σ(L−1)(x, x̃). Thus by the LLN the
limit above equals

E(u,v)∼N(0,Σ(L−1)(x,x̃)) [sin(u)sin(v)] .

86

Omitting the distribution from the expectation for brevity and expanding the exponential
definition of sine, we have

E
[
1

2i

(
eiu − e−iu

) 1

2i

(
eiv − e−iv

)]
= −1

4

[
E
[
ei(u+v)

]
− E

[
ei(u−v)

]
− E

[
e−i(u−v)

]
+ E

[
e−i(u+v)

]]
.

Since u and v are jointly Gaussian, p = u+ v and m = u− v are also Gaussian, with mean
0 and variance

σ2
p = σ2

u + σ2
v + 2Cov[u, v] = Σ(L−1)(x, x) + Σ(L−1)(x̃, x̃) + 2Σ(L−1)(x, x̃),

σ2
m = σ2

u + σ2
v − 2Cov[u, v] = Σ(L−1)(x, x) + Σ(L−1)(x̃, x̃)− 2Σ(L−1)(x, x̃).

We can now rewriting the expectations in terms of normalized variables

−1

4

[
Ez∼N (0,1)

[
eiσpz

]
− Ez∼N (0,1)

[
eiσmz

]
− Ez∼N (0,1)

[
e−iσmz

]
+ Ez∼N (0,1)

[
e−iσpz

]]
.

Applying Proposition 7.2 to each expectation, we get

1

2

[
e−

1
2
σ2
m − e−

1
2
σ2
p

]
=

1

2

[
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃)−2Σ(L−1)(x,x̃)) − e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃)+2Σ(L−1)(x,x̃))

]
=

1

2
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃))

(
eΣ

(L−1)(x,x̃) − e−Σ(L−1)(x,x̃))
)

Unrolling the definition beyond L = 1 leads to expressions that are difficult to parse.
However, without unrolling, we can rearrange the terms in the NNGP above as

Σ(L)(x, x̃) =
1

2
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃))

(
eΣ

(L−1)(x,x̃) − e−Σ(L−1)(x,x̃)
)
+ 1

=
1

2

[
e−

1
2(Σ(L−1)(x,x)−2Σ(L−1)(x,x̃)+Σ(L−1)(x̃,x̃)) − e−

1
2(Σ(L−1)(x,x)+2Σ(L−1)(x,x̃)+Σ(L−1)(x̃,x̃))

]
+ 1.

Since the covariance matrix Σ(L−1) is positive semi-definite, we can observe that the
exponent expressions can be reformulated into a quadratic forms analogous to the ones in
Theorem 7.7. We can thus observe that the same structure is essentially preserved through
the composition of layers, except for the ω factor present in the first layer. Moreover, given
this recursive definition, since the NNGP at any given depth L is a function only of the
preceding kernels, the resulting kernel will also be shift-invariant.

Let us now derive the Σ̇ kernel, required for the NTK.

Lemma 7.11. For ω ∈ R, Σ̇(L)(x, x̃) : Rn0 × Rn0 → R, is given by

Σ̇(L)(x, x̃) =
1

2
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃))

(
eΣ

(L−1)(x,x̃) + e−Σ(L−1)(x,x̃)
)
+ 1.

87

Proof. The proof follows the same pattern as Theorem 7.10, with the only difference being
a few sign changes after the exponential expansion of the trigonometric functions, due to
the different identities for sine and cosine.

As done in the previous section, it would be simple to now derive the full NTK for a
simple sinusoidal network of arbitrary depth by applying Theorem 7.1 with the NNGP
kernels from above. However, there is not much to be gained by writing the convoluted
NTK expression explicitly, beyond what we have already gleaned from the NNGP above.

Nevertheless, some insight can be gained from the recursive expression of the NTK itself,
as defined in Theorem 7.1. First, note that, as before, for practical values of ω, Σ̇ ≈ Σ,
both converging to simply a single Gaussian kernel. Thus, our NTK recursion becomes

Θ(L)(x, x̃) ≈
(
Θ(L−1)(x, x̃) + 1

)
Σ(L)(x, x̃).

Now, note that when expanded, the form of this NTK recursion is essentially as a product
of the Gaussian Σ kernels,

Θ(L)(x, x̃) ≈
((
. . .
((
Σ(0)(x, x̃) + 1

)
Σ(1)(x, x̃) + 1

)
. . .
)
Σ(L−1)(x, x̃) + 1

)
Σ(L)(x, x̃)

=
((
. . .
((
ω2
(
xT x̃+ 1

)
+ 1
)
Σ(1)(x, x̃) + 1

)
. . .
)
Σ(L−1)(x, x̃) + 1

)
Σ(L)(x, x̃).

(7.3)
We know that the product of two Gaussian kernels is Gaussian and thus the general form
of the kernel should be approximately a sum of Gaussian kernels. As long as the magnitude
of one of the terms dominates the sum, the overall resulting kernel will be approximately
Gaussian. Empirically, we observe this to be the case, with the inner term containing
ω2 dominating the sum, for reasonable values (e.g., ω > 1 and L < 10). In Figure 7.5,
we show the NTK for networks of varying depth and ω, together with a pure Gaussian
kernel of variance ω2, scaled to match the maximum and minimum values of the NTK. We
can observe that the NTKs are still approximately Gaussian, with their maximum value
approximated by k ≈ 1

2L
ω2, as expected from the product of ω2 and L kernels above. We

also observe that the width of the kernels is mainly defined by ω.

7.3.2 SIREN

For completeness, in this section we will derive the full SIREN NNGP and NTK. As
discussed previously, both the SIREN and the simple sinusoidal network have kernels that
approximate low-pass filters. Due to the SIREN initialization, its NNGP and NTK were
previously shown to have more complex expressions. However, we will show in this section
that the sinc kernel that arises from the shallow SIREN is gradually “dampened” as the
depth of the network increases, gradually approximating a Gaussian kernel.

Theorem 7.12. SIREN NNGP. For a SIREN with L hidden layers f (L) : Rn0 → RnL+1

following Definition 7.1, as the size of the hidden layers n1, . . . , nL →∞ sequentially, f (L)

tends (by law of large numbers) to the neural network Gaussian Process (NNGP) with

88

L
=

4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

SSN Θ(4)(x, ̃x), ̃x= 0, ω= 4
Θ(4)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

3

4

5

6

7

8

9

10
SSN Θ(4)(x, ̃x), ̃x= 0, ω= 10

Θ(4)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

60

70
SSN Θ(4)(x, ̃x), ̃x= 0, ω= 30

Θ(4)

k ⋅ (0,ω−2)
L
=

6

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

2.9

3.0

3.1

3.2

3.3

SSN Θ(6)(x, ̃x), ̃x= 0, ω= 4
Θ(6)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

3.0

3.5

4.0

4.5

5.0

SSN Θ(6)(x, ̃x), ̃x= 0, ω= 10
Θ(6)

k ⋅ (0,ω−2)

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

SSN Θ(6)(x, ̃x), ̃x= 0, ω= 30
Θ(6)

k ⋅ (0,ω−2)

L
=

8

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
3.000

3.025

3.050

3.075

3.100

3.125

3.150

3.175

SSN Θ(8)(x, ̃x), ̃x= 0, ω= 4
Θ(8)

k ⋅ (0,ω−2)

ω = 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
3.0

3.1

3.2

3.3

3.4

3.5

3.6

SSN Θ(8)(x, ̃x), ̃x= 0, ω= 10
Θ(8)

k ⋅ (0,ω−2)

ω = 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
3

4

5

6

7

8
SSN Θ(8)(x, ̃x), ̃x= 0, ω= 30

Θ(8)

k ⋅ (0,ω−2)

ω = 30

Figure 7.5: The NTK for SSN at different ω and network depth (L) values. Kernel values
at a slice for fixed x̃ = 0 are shown, together with a Gaussian kernel scaled to match the
maximum and minimum values of the NTK.

covariance Σ(L)(x, x̃), recursively defined as

Σ(1)(x, x̃) =
c2

6

[
n0∏
j=1

sinc(c ω (xj − x̃j))− e−2ω2
n0∏
j=1

sinc(c ω (xj + x̃j))

]
+ 1

Σ(L)(x, x̃) =
1

2
e−

1
2(Σ(L−1)(x,x)+Σ(L−1)(x̃,x̃))

(
eΣ

(L−1)(x,x̃) − e−Σ(L−1)(x,x̃)
)
+ 1.

Proof. Intuitively, after the first hidden layer, the inputs to every subsequent hidden layer
are of infinite width, due to the NNGP assumptions. Therefore, due to the CLT, the
pre-activation values at every layer are Gaussian, and the NNGP is unaffected by the
uniform weight initialization (compared to the Gaussian weight initialization case). The
only layer for which this is not the case is the first layer, since the input size is fixed and
finite. This gives rise to the different Σ(1).

Formally, this proof proceed by induction on the depth L, demonstrating the NNGP
for successive layers as n1, . . . , nL → ∞ sequentially. The base case comes straight from
Theorem 7.4. After the base case, the proof follows exactly the same as in Theorem 7.10.

89

For the same reasons as in the proof above, the Σ̇ kernels after the first layer are also
equal to the ones for the simple sinusoidal network, given in Lemma 7.11.

Given the similarity of the kernels beyond the first layer, the interpretation of this
NNGP is the same as discussed in the previous section for the simple sinusoidal network.

Analogously to the SSN case before, the SIREN NTK expansion can also be approximated
as a product of Σ kernels, as in Equation 7.3. The product of a sinc function with L− 1
subsequent Gaussians “dampens” the sinc, such that as the network depth increases the
NTK approaches a Gaussian, as can be seen in Figure 7.6.

L
=

2

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(2
) (x

,0
)

SIREN Θ(2)(x, ̃x), ̃x= 0, ω= 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(2
) (x

,0
)

SIREN Θ(2)(x, ̃x), ̃x= 0, ω= 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(2
) (x

,0
)

SIREN Θ(2)(x, ̃x), ̃x= 0, ω= 30

L
=

4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(4
) (x

,0
)

SIREN Θ(4)(x, ̃x), ̃x= 0, ω= 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(4
) (x

,0
)

SIREN Θ(4)(x, ̃x), ̃x= 0, ω= 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(4
) (x

,0
)

SIREN Θ(4)(x, ̃x), ̃x= 0, ω= 30

L
=

6

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(6
) (x

,0
)

SIREN Θ(6)(x, ̃x), ̃x= 0, ω= 4

ω = 4

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(6
) (x

,0
)

SIREN Θ(6)(x, ̃x), ̃x= 0, ω= 10

ω = 10

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

0

200

400

600

800

1000

Θ(6
) (x

,0
)

SIREN Θ(6)(x, ̃x), ̃x= 0, ω= 30

ω = 30

Figure 7.6: The NTK for SIREN at different ω and network depth (L) values. Kernel
values at a slice for fixed x̃ = 0 are shown.

7.4 Empirical Analysis

As shown above, neural tangent kernel theory suggests that sinusoidal networks work as
low-pass filters, with their bandwidth controlled by the parameter ω. However, the networks
in NTK analysis are only theoretical extrapolations, for example assuming infinite width
and infinitesimal learning rate. In this section, we demonstrate empirically that we can
observe this predicted behavior even in real sinusoidal networks.

For this experiment, we generate a 512× 512 monochromatic image by super-imposing

90

two orthogonal sinusoidal signals, each consisting of a single frequency. That is,

f(x, y) = cos(128πx) + cos(32πy). (7.4)

This function is sampled in the domain [−1, 1]2 to generate the image in Figure 7.7.

Figure 7.7: The test signal used to analyze the behavior of sinusoidal networks. It is created
from two orthogonal, single-frequency signals, f(x, y) = cos(128πx) + cos(32πy).

To demonstrate what we can expect from applying low-pass filters of different bandwidths
to this signal, we take the Discrete Fourier Transform (DFT) of the image, cut off frequencies
above a certain value, and then perform an inverse Fourier transform to recover the (now
filtered) original image. We perform this same operation for various cutoff frequencies, using
each value from 0 (all signal is lost) to 256 (signal fully recovered). The mean squared error
(MSE) of the reconstruction, as a function of the cutoff frequency, is shown in Figure 7.8.
We can see that due to the simple nature of the signal, containing only two frequencies,
there are only three loss levels. When the cutoff frequency is smaller than the smallest
frequency in Equation 7.4, our loss is at its highest – no signal is getting through. For
cutoffs between the two base frequencies, we get an intermediate loss up until the point
our low-pass cutoff is above the highest frequency. At that point the reconstruction is
essentially perfect, with higher cutoffs not having a significant effect.

If indeed the NTK analysis is correct and sinusoidal networks act as low-pass filters,
with their bandwidth controlled by ω, we should be able to observe the same behavior
by the Fourier transform low-pass filter from above with sinusoidal networks of different
bandwidth.

We reproduce this experiment by fitting the same image from Figure 7.7 using sinusoidal
networks with different values of ω. We plot the final training loss for networks with
different ω in Figure 7.9 and training curves in Figure 7.10.

We can observe, again, that there are three consistent loss levels following the magnitude
of the ω parameter, confirming the intuition that, as in the DFT example above, the
sinusoidal network is also working as a low-pass filter. This is also observable in Figure 7.11,

91

0 50 100 150 200 250
Cutoff frequency

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

Low-pass filtering for various cutoff frequencies

Figure 7.8: Reconstruction loss for different cutoff frequencies for a low-pass filter applied
to Figure 7.7. The three loss levels reflect the 2 frequencies present in the simple signal: 8
and 32.

where we see example reconstructions for networks of various ω values after training. For
small ω, none of the frequencies can pass, and the loss is high. For intermediate values, only
the lower frequency is fitted, resulting in intermediate loss. Finally, for ω values above a
certain high enough point, the image is perfectly reconstructed, resulting in loss close to 0.

However, unlike with the DFT low-pass filter (which does not involve any learning), we
see in Figure 7.10 that during training some sinusoidal networks shift from one loss level
to a lower one. This demonstrates the fact that sinusoidal networks differ from regular
low-pass filters in that their weights can change, which implies that the bandwidth defined
by ω can change to some extent with learning. We know the weights W1 in the first layer
of a sinusoidal network, given by

f1(x) = sin
(
ω ·W T

1 x+ b1
)
, (7.5)

will change with training. Empirically, we observe that the spectral norm of W1 increases
throughout training for small ω values. We can interpret that as the overall magnitude
of the term ω ·W T

1 x increasing, which is functionally equivalent to an increase in ω itself,
and thus an increase in bandwidth. NTK analysis circumvents this issue by relying on an
infinitesimal learning rate, such that the magnitude of W1 does not change much during
training. In practice, however, we should expect to see some drift in the bandwidth of the
sinusoidal network as learning progresses. This is also likely to affect smaller ω values more
strongly, as a smaller change in magnitude has a larger impact on the overall magnitude.
We observe this in Figure 7.9, where for smaller ω values we achieve lower reconstruction
loss faster than the expectation from the DFT would suggest.

92

0 50 100 150 200 250
DFT cutoff frequency | ω× 8

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Reconstruction loss

DFT
SSN

Figure 7.9: Final loss, after fitting the image in Figure 7.7 with sinusoidal networks, for
different values of ω, superimposed on the DFT loss values from Figure 7.8. Values of ω are
scaled to align with the DFT values. The three loss levels, analogous to the DFT, reflect
the 2 frequencies present in the simple signal, and demonstrate that the sinusoidal network
is indeed acting as a low-pass filter with bandwidth defined by ω.

In Figure 7.10, we observe that sinusoidal networks with smaller values of ω take a
longer time to achieve a lower loss (if at all). Intuitively, this happens because, due to the
effect described above, lower ω values require a larger increase in magnitude by the weights
W1. Given that all networks were trained with the same learning rate, the ones with a
smaller ω require their weights to move a longer distance, and thus take more training
steps to achieve a lower loss. In cases of very small ω, the “appropriate” weight magnitude
to compensate might be so large that the network never reaches that point, and remains
limited to a lower bandwidth, and incapable of learning the full signal, as we can observe
for small ω values in Figures 7.10 and 7.11.

7.5 Tuning ω

According to the NTK analysis and empirical results above, a sinusoidal network acts as a
low-pass filter, and its band can be tuned through its ω parameter. Though the bandwidth
of the filter change throughout training, as observed in the previous section, the initial
configuration of the network still influences how easily and quickly (if at all) it can learn a
given signal.

It is therefore of great importance to be able to pick appropriate ω values for a given
signal or task. Given the low-pass nature of the networks, a naive choice might be to
simply pick a high enough value. However, it is often not the case that we simply want

93

0 2000 4000 6000 8000 10000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

Reconstruction loss for various ω values

ω value
1
4
8
16
32
64
128

Figure 7.10: Fitting the image in Figure 7.7 with sinusoidal networks with different values
of ω. The three loss levels reflect the 2 frequencies present in the simple signal, and
demonstrate that the sinusoidal network is indeed acting as a low-pass filter with bandwidth
defined by ω.

to fit only the exact training samples. Instead, it is most commonly the case that we
care about finding a good interpolation (i.e., generalizing well). Allowing the network to
model too large frequencies, larger than the ones present in the actual signal, is likely to
generate overfitting artifacts and poor generalization. This is demonstrated empirically in
Figure 7.13.

Thus, the most appropriate choice is to tune the network to the highest frequency
present in the signal. However, this poses a few challenges. First, we do not always have
the knowledge of what is the value of the highest frequency in the true underlying signal of
interest. Moreover, even when we have that information, it is not clear yet how to translate
that into a choice of ω. As seen in the previous analyses, the value of ω does not correspond
directly to the absolute numerical value of the network’s cut off frequency. Moreover, we
have also observed that, since the network learns and its weights change in magnitude, that
value in fact changes with training.

Therefore, the most we can hope for is to have heuristics to guide the choice of ω based
on the nature of the filter. Nevertheless, having a reasonable guess for ω is also likely
sufficient for good performance, precisely due to the ability of the network to change during
training.

94

(a) ω = 1 (b) ω = 8 (c) ω = 64

Figure 7.11: Examples of the reconstructed signal for sinusoidal networks for different
values of ω. Each is a qualitative for each of the loss levels in Figure 7.10.

7.5.1 Choosing ω from the Nyquist frequency

One source of empirical information on the relationship between ω and the sinusoidal
network’s “learnable frequencies”, is the empirical analysis from the previous section.
Taking into account the scaling, we can see from Figure 7.9 that around ω = 16 the network
starts being able to learn the full signal (frequency 128). As can be inferred by the figure
scaling itself, this suggests a heuristic of setting ω to about 1/8 the maximum frequency in
the signal. We can also see from Figure 7.10 that at about ω = 4 the sinusoidal network
starts to be able to efficiently learn a signal with frequency 32 – but not the signal with
frequency 128.

For natural signals, such as pictures, it is common for frequencies close to the Nyquist
frequency of the discrete sampling to be present. We provide an example for the “camera”
image we have utilized so far in Figure 7.12, where we can see that the reconstruction loss
through a low-pass filter (as done previously with the DFT) continues to decrease significantly
up to the Nyquist frequency for the image resolution. In light of this information, analyzing
the choices of ω above which results do not improve for the experiments in Chapter 6 again
suggests that ω should be set around 1/8 of the Nyquist frequency of the signal. These
values of ω are summarized in Table 7.1 in the “Fitting ω” column.

For example, the image fitting experiment shows that, for an image of shape 512× 512
(and thus Nyquist frequency of 256 for each dimension), this heuristic suggests an ω value
of 256/8 = 32, which is the value found to work best empirically through search.

We find similar results for the audio fitting experiments. The audio signals used in
the audio fitting experiment contained approximately 300, 000 and 500, 000 points. Notice
that since we re-normalize all inputs to a common range, the actual audio sampling rate
of 44, 100 Hz can be disregarded. This implies these signals have maximum frequencies of
approximately 150, 00 and 250, 000. This would suggest reasonable values for ω of 18, 750
and 31, 250, which are close to the ones found empirically to work well.

In examples such as the video fitting experiments, in which each dimension has a
different frequency, it is not completely clear how to pick a single ω to fit all dimensions.

95

0 50 100 150 200 250
Cutoff frequency

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

MSE for various cutoff frequencies

Figure 7.12: Reconstruction loss through a low-pass filter for the “camera” image. Notice
the loss continues to go down up to the Nyquist frequency.

This suggests that having independent values of ω for each dimension might be useful for
such cases. We analyze that possibility in the following section. We note that even in this
setting, as will be show in the experiments below, applying the heuristic to each dimension
independently gives an (multi-dimensional) ω with good performance. Moreover, eve if
using scalar ω value, simply applying the heuristic to the minimum valued dimension yields
good performance.

Finally, when performing the generalization experiments in Section 7.6, we show the
best performing ω ended up being half the value of the best ω used in the fitting tasks
from Chapter 6. This follows intuitively, since for the generalization task we set apart half
the points for training and the other half for testing, thus dividing the maximum possible
frequency in the training sample in half, providing further evidence of the relationship
between ω and the maximum frequency in the input signal.

7.5.2 Multi-dimensional ω

In many problems, such as the video fitting and PDE problems we saw in Chapter 6, not
only is the input space multi-dimensional, it also contains time and space dimensions (which
are additionally possibly of different shape). Overall, the input signal might have a spectrum
that is fundamentally different for different dimensions. Consequently, having a single scalar
ω to tune the bandwidth of a sinusoidal network might be too crude an approach. This
suggests that employing a multi-dimensional ω, specifying different frequencies for each
dimension might be beneficial.

In practice, if we employ a scaling factor λ =
[
λ1 λ2 . . . λd

]T
, we have the first layer

96

of the sinusoidal network given by

f1(x) = sin(ω (W1 (λ⊙ x) + b1)) (7.6)

= sin(W1 (Ω⊙ x) + ωb1), (7.7)

where ⊙ is the elementwise (Hadamard) product, and thus Ω =
[
λ1ω λ2ω . . . λdω

]T
works essentially as a multi-dimensional ω.

In the following experiments, we employ this approach to three-dimensional problems,
in which we have time and differently shaped space domains, namely the video fitting and
physics-informed neural network PDE experiments. For these experiments, we report the ω
in the form of the (already scaled) Ω vector for simplicity.

7.5.3 Choosing ω from available information

Finally, in many problems we either have some knowledge of the underlying signal, or we
have related data we can leverage. For example, if we are fitting the solution to a simple
PDE, to which we might know the form of the solution, we can use that information to
infer which choice of ω to employ.

Even though the particular setting in which we already know the solution to the problem
is not completely realistic, in many realistic cases we are working with inverse problems.
For example, let’s say we have velocity fields for a fluid and we are trying to solve for the
coupled pressure field and the Reynolds number using a physics-informed neural network
(this experiment is performed in Section 7.6). In this case, we have access to two components
of the solution field. Performing a Fourier transform on the training data we have can
reveal the relevant spectrum and inform our choice of ω. If the maximum frequency in the
signal is lower than the Nyquist frequency implied by the sampling for our training data,
this can lead to a more appropriate choice of ω than suggested purely from the sampling.
We perform this analysis on the identification experiments in Section 7.6.2, and use the
heuristic suggested above in order to pick well performing ω values.

7.6 Experiments

In this section, we first perform experiments to demonstrate how the optimal value of ω,
which is directly influenced by the sampling rate in the input signal, influences the general-
ization error of a sinusoidal network, following the discussion in Section 7.5. After that,
we finally demonstrate that sinusoidal networks with properly tuned ω values outperform
traditional neural networks in classic physics-informed learning tasks.

7.6.1 Evaluating generalization

Employing the simple sinusoidal network, we now perform experiments the ability of the
fitted models to generalize to points outside the training set. For this purpose, in all
experiments in this section, we segment the input signal into training and test sets using a

97

Table 7.1: Generalization results and the respective tuned ω value. Generalization values
are mean squared error (MSE). We can observe the best performing ω for generalization
with the simple sinusoidal network is half the ω used previously for fitting the full signal
due to the fact that this task used half the sample points from previously.

Experiment SIREN SSN ω Fitting ω

Image 2.76 · 10−4 1.16 · 10−4 16 32
Audio (Bach) 4.55 · 10−6 3.87 · 10−6 8,000 15,000
Audio (counting) 1.37 · 10−4 5.97 · 10−5 16,000 32,000
Video (cat) 3.40 · 10−3 1.76 · 10−3

[
4 8 8

]
8

Video (bikes) 2.74 · 10−3 8.79 · 10−4
[
4 4 8

]
8

checkerboard pattern – along all axis-aligned directions, points alternate between belonging
to train and test set.

We perform audio, image and video fitting experiments, identical to the ones from Chap-
ter 6, except for the different train/test split. When performing these fitting experiments,
we search for the best performing ω value for generalization (defined as performance on the
held-out points). We report the best values on Table 7.1. We observe that, as expected
from the discussion in Section 7.5, the best performing ω values are half the minimum best
performing value found in the fitting experiments from Chapter 6. This is confirms our
expectation, since we are training on half the number of samples, and thus the bandwidth
of our signal should also halve.

Trying to use a higher ω leads to overfitting, and poor generalization outside the
training points. This is demonstrated in Figure 7.13, in which we can see that choosing
an appropriate ω value from the heuristics described previously leads to a good fit and
interpolation. Conversely, setting ω too high leads to interpolation artifacts, due to the
learning of spurious high-frequency components.

Notice that for the 3D video signals, which have different dimensions along each axis,
we employ a multi-dimensional ω. We scale each dimension of ω proportional to the size of
the input signal along the corresponding axis, while picking a minimum value that is half
the ω used for fitting.

7.6.2 Solving differential equations

Finally, we apply all the findings from the theoretical and empirical analysis so far to
differential equation problems, using the physics-informed approach. We take the Navier-
Stokes and Burgers identification problems and the Schrödinger inference problem from
Raissi et al. [2019a], and the Helmholtz problem from Sitzmann et al. [2020], and compare
the performance of the simple sinusoidal network to the standard tanh network that is
commonly used for these tasks. Results are presented in Table 7.2.

98

(a) Ground truth image (b) Reconstruction with ω = 32 (c) Reconstruction with ω = 128

Figure 7.13: Examples of generalization from half the points in the original image using
sinusoidal networks with different values of ω. Even though both networks achieve equivalent
training loss, the rightmost one, with ω higher than what would be suggested from the
Nyquist frequency of the input signal, overfits the data, causing high-frequency noise
artifacts in the reconstruction (e.g., notice the sky).

Table 7.2: Comparison of the sinusoidal network against MLP with hyperbolic tangent
non-linearity on PINN experiments from Raissi et al. [2019a] and against SIREN for the
Helmholtz experiment from Sitzmann et al. [2020]. Values are percent error relative to
ground truth value for each parameter for identification problems and mean squared error
(MSE) for inference problems.

Experiment Baseline SSN ω

Burgers (Identification) [0.0521%, 0.4522%] [0.0071%,0.0507%] 10
Navier-Stokes (Identification) [0.0046%, 2.093%] [0.0038%,1.782%]

[
0.6 0.3 1.2

]
Schrödinger (Inference) 1.04 · 10−3 4.30 · 10−4 4
Helmholtz (Inference) 5.97 · 10−2 5.94 · 10−2 16

Burgers equation (Identification)

This experiment reproduces the Burgers equation identification experiment from the ap-
pendix of Raissi et al. [2019a]. In this experiment, we are trying to identify, given a known
solution, the parameters λ1 and λ2 of a 1D Burgers equation,

ut + λ1uux − λ2uxx = 0. (7.8)

The ground truth value of the parameters are λ1 = 1.0 and λ2 = 0.01/π.
In order to find a good value for ω, we follow the method described in Section 7.5.3.

We perform a procedure identical to the one in Section 7.4, in which we measure the loss
for DFT reconstructions of the solution with truncated frequencies, for all possible cutoff
values. From the results, presented in Figure 7.14, we observe that the solution does not
have high bandwidth, with most of the loss being minimized at a cutoff frequency 70. Note

99

that the sampling performed to generate the training data (which will constitute the de
facto input signal), described below in the training details, has a Nyquist frequency higher
than this value, and is thus not limiting the underlying signal. This suggests an ω value of
approximately 9.

Indeed, we observe that ω = 10 gives the best identification of the desired parameters,
with errors of 0.0071% and 0.0507% for λ1 and λ2 respectively, against errors of 0.0521%
and 0.4522% of the baseline. This value of ω also achieve the lowest reconstruction loss
against the known solution, with an MSE of 8.034 · 10−4, which can further help identify
the best performing ω value from the training data. Figure 7.15 shows the reconstructed
solution using the identified parameters, together with the position of the sampled data
points used for training.

0 20 40 60 80 100 120
Cutoff frequency

0.00

0.02

0.04

0.06

0.08

M
SE

MSE for various cutoff frequencies

Figure 7.14: Reconstruction loss for different cutoff frequencies for a low-pass filter applied
to the solution of the Burgers equation.

Training details. We follow the same training procedures as in Raissi et al. [2019a].
The training set is created by randomly sampling 2, 000 points from the available exact
solution grid (shown in Figure 7.15). The neural networks used are 9-layer MLPs with
20 neurons per hidden layer. The network structure is the same for both the tanh and
sinusoidal networks. As in the original work, the network is trained by using L-BFGS to
minimize a mean square error loss composed of the sum of an MSE loss over the data points
and a physics-informed MSE loss derived from Equation 7.8.

Navier-Stokes (Identification)

This experiment reproduces the Navier-Stokes identification experiment from Raissi et al.
[2019a]. In this experiment, we are trying to identify, given known velocity fields u and v,

100

0.0 0.2 0.4 0.6 0.8
t

1.0

0.5

0.0

0.5

1.0

x

u(t, x)

Data (2000 points)

0

1

1 0 1
x

1

0

1

u(
t,

x)

t = 0.25

1 0 1
x

1

0

1

u(
t,

x)

t = 0.50

Exact Prediction

1 0 1
x

1

0

1

u(
t,

x)

t = 0.75

Correct PDE u_t + u u_x - 0.0031831 u_{xx} = 0
 Identified PDE (clean data) u_t + 1.00007 u u_x - 0.0031847 u_{xx} = 0
Identified PDE (1\% noise) u_t + 0.00000 u u_x - 0.0000000 u_{xx} = 0

Figure 7.15: Reconstructed solution of the Burgers equation using the identified parameters
with the sinusoidal network, together with the position of the sampled data points used for
training.

the parameters λ1, λ2 and the pressure field p of the Navier-Stokes equations given by

ut + λ1(uux + vuy) = −px + λ2(uxx + uyy) (7.9)

vt + λ1(uvx + vvy) = −py + λ2(vxx + vyy). (7.10)

The ground truth value of the parameters are λ1 = 1.0 and λ2 = 0.01.

Unlike the 1D Burgers case, in this case the amount of points sampled for the training
set (N = 5, 000, shown in Figure 7.17) is not high compared to the size of the full solution
volume, and is thus the limiting factor for the bandwidth of the input signal. (Compare the
approximate maximum frequency that can be inferred from Figure 7.16 to the one found
for the sampling in the derivation below.)

Given the random sampling of points from the full solution, the generalized sampling
theorem applies. Given the original solution dimensions of 100× 50× 200, and the 5, 000
randomly sampled points, the average sampling rate per dimension is approximately 8.5,
corresponding to a Nyquist frequency of approximately 4.25.

Furthermore, given the multi-dimensional nature of this problem, with both spatial and
temporal axes, we employ an independent scaling to ω for each dimension. The analysis
above suggests and average ω in the range 0.5 − 1, with the dimensions of the problem

suggesting scaling factors of
[
0.5 1 2

]T
.

Indeed, we observe that Ω =
[
0.3 0.6 1.2

]T
gives the best results. With with errors

of 0.0038% and 1.782% for λ1 and λ2 respectively, against errors of 0.0046% and 2.093%
of the baseline. Figure 7.18 shows the identified pressure field. Given the nature of the
problem, this field can only be identified up to a constant.

101

0 20 40 60 80 100
Cutoff frequency

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

MSE for various cutoff frequencies

Figure 7.16: Reconstruction loss for different cutoff frequencies for a low-pass filter applied
to the solution of the Navier-Stokes equations.

15 10 5 0 5 10 15 20 25
x

5

0

5

y

Vorticity

2

0

2

x

ty

u(t, x, y)

x

ty

v(t, x, y)
Figure 7.17: Left: One timestep of the ground truth Navier-Stokes solution. The black
rectangle indicates the domain region used for the task. Right: The sampling of data points
for the training set. Figures generated with code from Raissi et al. [2019a].

Training details. We follow the same training procedures as in Raissi et al. [2019a]. The
training set is created by randomly sampling 5, 000 points from the available exact solution
grid (one timestep is shown in Figure 7.17). The neural networks used are 9-layer MLPs
with 20 neurons per hidden layer. The network structure is the same for both the tanh and
sinusoidal networks. As in the original work, the network is trained by using the Adam
optimizer to minimize a mean square error loss composed of the sum of an MSE loss over
the data points and a physics-informed MSE loss derived from Equation 7.9.

102

2 4 6 8
x

2
1
0
1
2

y
Predicted pressure

0.0

0.2

0.4

2 4 6 8
x

2
1
0
1
2

y

Exact pressure

0.4

0.2

0.0

Correct PDE u_t + (u u_x + v u_y) = -p_x + 0.01 (u_{xx} + u_{yy})
 v_t + (u v_x + v v_y) = -p_y + 0.01 (v_{xx} + v_{yy})
Identified PDE (clean data) u_t + 1.000 (u u_x + v u_y) = -p_x + 0.01018 (u_{xx} + u_{yy})
 v_t + 1.000 (u v_x + v v_y) = -p_y + 0.01018 (v_{xx} + v_{yy})
 Identified PDE (1\% noise) u_t + 0.000 (u u_x + v u_y) = -p_x + 0.00000 (u_{xx} + u_{yy})
 v_t + 0.000 (u v_x + v v_y) = -p_y + 0.00000 (v_{xx} + v_{yy})

Figure 7.18: Identified pressure field for the Navier-Stokes equations using the sinusoidal
network. Notice that the identification is only possible up to a constant.

Schrödinger (Inference)

This experiment reproduces the Schrödinger equation experiment from Raissi et al. [2019a].
In this experiment, we are trying to find the solution to the Schrödinger equation, given by

iht + 0.5hxx + |h|2h = 0 (7.11)

Since in this case we have a forward problem, we do not have any prior information to
base our choice of ω on, besides a maximum limit given by the Nyquist frequency for the
sampling generating the training data. We thus follow usual machine learning procedures
and experiment with a number of small ω values, based on the previous experiments.

We find that ω = 4 gives the best results, with a solution MSE of 4.30 · 10−4, against
an MSE of 1.04 · 10−3 for the baseline. Figure 7.19 shows the solution from the sinusoidal
network, together with the position of the sampled data points used for training.

Training details. We follow the same training procedures as in Raissi et al. [2019a]. The
training set is created by randomly sampling 20, 000 points from the domain (x ∈ [−5, 5],
t ∈ [0, π/2]) for evaluation for the physics-informed loss. Additionally, 50 points are sampled
from each of the boundary and initial conditions for direct data supervision. The neural
networks used are 5-layer MLPs with 100 neurons per hidden layer. The network structure
is the same for both the tanh and sinusoidal networks. As in the original work, the network
is trained first using the Adam optimizer by 50, 000 steps and then by using L-BFGS until
convergence. The loss is composed of the sum of an MSE loss over the data points and a
physics-informed MSE loss derived from Equation 7.11.

Helmholtz equation

Details for the Helmholtz equation experiment are provided in Section 6.3.

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

5

0

5

x

|h(t, x)|
Data (150 points)

1
2
3

5 0 5
x

0

5

|h
(t,

x)
|

t = 0.59

5 0 5
x

0

5

|h
(t,

x)
|

t = 0.79

Exact Prediction

5 0 5
x

0

5
|h

(t,
x)

|
t = 0.98

Figure 7.19: Solution to the Schrodinger equation with the sinusoidal network, together
with the position of the sampled data points used for training.

104

Part III

Conclusion

105

Chapter 8

Conclusion

In this thesis, we have presented different approaches for combining prior knowledge of
physics with deep learning models. As deep learning approaches have become successful
in many different domains over the past decade, the intersection of machine learning and
physics has also become a popular domain of research interest. In many domains in which it
is applied, deep learning is presented as a disruptor that can displace traditional approaches
by outperforming them using vasts amount of data. In part due to the limitations on
the difficulty of acquiring data in physical domains, and in part due to the fact that they
have been studied for far longer, traditional methods still have a significant advantage. In
this work, we proposed instead methods that try and leverage the best of both worlds,
combining the strengths of traditional methods and deep learning approaches.

In Part I we explained a particular approach to embedding a physics model into a
deep learning architecture. We start by taking the view of neural network layers as
general differentiable functions. We then replace one of those functions by a fully-capable,
differentiable physics model of the relevant underlying dynamics. In Chapter 3, this amounts
to developing a complete rigid body dynamics engine using a differentiable LCP solver. We
are able to show that employing such an engine within a deep learning model can improve
learning efficiency, by allowing the model to focus the learning in other aspects of the tasks,
without having to learn the dynamics from scratch. This type of approach can have benefits
not only limited to the domain of physics, but more broadly also to any task in which an
agent interacts with the physical world.

In Chapter 4, we extended this approach naturally from rigid bodies to the domain
of fluids. Here we employed an industrial grade CFD solver as a layer in a graph neural
network model. This gives us twice the opportunity to guide the neural network, once
through the physics model embedded as a layer and twice through the inductive biases
provided by the mesh structure derived for the problem. We demonstrated in this study
that providing such rich information to the neural network allowed it to be robust to
changes from its training distribution, with the model being capable of generalizing to
previously unseen behavior. This type of approach can be extremely valuable in fields such
as aerodynamic design and prototyping, in which it is often desirable to have a fast and
approximate estimate of certain aerodynamic properties, such as drag or lift.

In Part II, we presented methods for addressing and improving known shortcomings

107

in physics-informed learning. In Chapter 5, we address the issue of the high cost of
re-training a physics-informed neural network when solving parameterized differential
equations. By employing hypernetworks that learn the space of physics-informed neural
network parameterizations for a given differential equation family, we are able to fit a
range of parameters and perform faster inference for new parameterizations. This type of
approach can be important for classes of problems in which it is required to repeatedly solve
the same set of differential equations with slightly different parameterizations (including
different initial or boundary conditions).

In Chapters 6 and 7, we addressed the issue of spectral bias, in which physics-informed
neural networks have difficulty learning functions containing high-frequency components. In
Chapter 6, we propose a simplified version of neural networks with sinusoidal activations and
demonstrate they have performance similar to previously proposed analogous methods.Then,
in Chapter 7, we perform a theoretical and empirical analysis of these simplified sinusoidal
networks. Neural tangent kernel analysis suggests these networks behave similarly to low-
pass filter kernels, with empirical analysis confirming these findings. Using these insights, we
demonstrate how these networks can be properly tuned to match the appropriate spectrum
in the learning signal. This allowed us to develop sinusoidal networks that outperform
regular networks in physics-informed learning tasks. As sinusoidal networks become popular
across a diverse set of problems, not only limited to physics, it is important to understand
their behavior and how to tune their bandwidth to each given task.

108

Appendix A

Building a Differentiable Rigid Body
Dynamics Engine

A.1 Physics Engine

In this section, we present a description of the structure of the physics engine. The
formulation of the physics engine described here follows closely the one presented by
Cline [2002], with some simplifications applied due to the engine presented here being
two-dimensional. The description presented here is brief and intended only to be a sufficient
guide to reproducing the work in the paper. For a more detailed introduction to physics
engines, including comparisons to other architectural choices, see Garstenauer and Kurka
[2006].

A.1.1 Step Overview

A physics simulation proceeds over time by iteratively taking small steps of size dt. In this
section, we describe conceptually the sequence of sub-steps that compose a step in the
simulation. In the following sections, we describe in greater depth each of these parts.

1. At the beginning of time step t we have the bodies at positions pt with velocities vt,
as defined in Section A.1.3 (Equation A.3). Importantly, at this point (the beginning
of the step), we assume current contacts are known and that constraints are satisfied
(i.e., there are no interpenetrations).

2. External forces acting on bodies are added up to form the force vector ft, as defined
in Section A.1.3 (Equation A.4).

3. Constraint matrices for the current step are formed, as defined in Section A.1.5.

4. We solve the dynamics LCP defined in Section A.1.6 to get the velocities vt+dt.

5. Numerical integration is used with the velocities vt+dt to get the positions pt+dt. For
example, simple explicit Euler integration gives pt+dt = pt + dt · vt+dt. The new
positions pt+dt have contacts detected and checked for interpenetrations (details in
Section A.1.4). If interpenetrations do occur, we divide dt in half and repeat the

109

numerical integration from pt to pt+dt with the new dt. We repeat this process
until a position free of interpenetrations is found. Since we know there are no
interpenetrations at the beginning of the step (by the assumption in sub-step 1), we
know there is dt > 0 for which there are no interpenetrations.

6. If post-stabilization is being employed, then constraint matrices are re-calculated
from the new contacts at positions pt+dt, and the post-stabilization correction to
the positions is applied. Importantly, the post-stabilization update does not violate
constraints, thus we still end the step with no interpenetrations.

A.1.2 Bodies

The basic unit in the engine are the rigid bodies. Bodies possess mass, position and
velocity, and forces act on them. The position and velocity of a body are composed of three
components: an angular (a) components, and two linear (x and y) components,

pbody =

papx
py

 vbody =

vavx
vy

 . (A.1)

The mass of a body, m, defines the mass-inertia matrix of a body,Mbody, which is given by

Mbody =

I 0 0
0 m 0
0 0 m

 ,

where I is the moment of inertia for the body, which is a scalar in 2D. The moment of
inertia is a function of the mass and the shape of a body. For example, for a circle, we have
I = 1

2
mr2, where r is the radius.1

Moreover, bodies also possess dimensionless scalar parameters that define their behavior
when in contact with other bodies, namely the collision restitution coefficient and the
friction coefficient. The restitution coefficient k specifies the elasticity of the collision, with
k = 1 specifying a perfectly elastic collision, and k = 0 specifying a perfectly inelastic
collision. The friction here is defined by a single coefficient µ, with no distinction for
static and dynamic friction. When two bodies are in contact, the frictional force opposes a
body’s movement of sliding against the other. The friction coefficient coefficient defines the
maximal frictional force as a proportion to the normal force between the bodies, that is

ffric ≤ µfnormal.

Finally, each body has a set of external forces that act on it. External forces are
represented as acting on the center of mass of the body, and they are represented as a vector
with three components: a torque (τ) component, and two linear (fx and fy) components

fexternal =

 τ
fx
fy

 . (A.2)

1Other examples available at https://en.wikipedia.org/wiki/List_of_moments_of_inertia

110

https://en.wikipedia.org/wiki/List_of_moments_of_inertia

A.1.3 Global Parameters

To simplify the simulation equations specified below, parameters for all bodies are grouped
into global structures. Assuming there are n bodies in a simulation, ordered consistently
from 1 to n, the global position and velocity vectors are given by

p =

p1...
pn

 v =

v1...
vn

 . (A.3)

where pi and vi are three dimensional position and velocity vectors (as defined in Equa-
tion A.1) for each body i ∈ {1, . . . , n}. Forces acting on bodies are also concatenate

Similarly, the mass-inertia matrices for all n bodies are concatenated into a large global
matrixM, given by

M =

M1 0
. . .

0 Mn

 .

A global external force vector is constructed by summing all external forces acting on
each body, and concatenating them into a single vector. We thus have

f =

f1...
fn

 , (A.4)

where each fi is the sum of all external forces acting on body i.

A.1.4 Contact Detection

Let us define the distance between two bodies as the minimum length between two points,
one in surface of each body. Two bodies are then considered to be in contact if the distance
between them is less than some parameter ϵ > 0. In other words, for simulation purposes,
two bodies are in contact if they are either interpenetrating (i.e., distance smaller than
zero), or “touching” (i.e., distance between 0 and ϵ).

The purpose of detecting contacts is to be able to enforce non-interpenetration constraints.
From the definitions of the constraint matrices in Section A.1.5, we can see that for each
contact between two bodies, our formulation requires a normal contact vector and a contact
point in each body. The normal vector defines the direction in which the contact force will
be applied, while the contact points define the points in which such force will be applied in
each body.

The process of detecting contacts is divided into two phases: a “broadphase” that
cheaply generates candidate contacts by finding bodies that are in each others vicinity,
and a “narrowphase” that analyses candidate contacts carefully to determine if they are
truly contacts and to generate the contact information. A naive broadphase approach is to
simply list all possible pairs of objects, followed then by a narrowphase will have to verify

111

every possible contact. More efficient broadphase algorithms exist, but these will not be
discussed here for the sake of brevity. Refer to Bergen [2004] for a more detailed exposition.

In the narrowphase, as described above, we want to not only verify that a contact between
two bodies is present, but also to generate the required information related to that contact.
We will rely on two algorithms for this purpose: the Gilbert–Johnson–Keerthi (GJK) and
the Separating Axis Theorem (SAT). For a detailed exposition of these algorithms, refer
to Catto [2010] and Gregorius [2013]. Suffice it to say here that the GJK algorithm can
provide the closest points between two disjoint convex shapes and that the SAT algorithm
can provide the axis of minimum penetration between two interpenetrating convex shapes.

The specifics of how contact detection is handled depends on the shapes involved. For
the sake of brevity, we will cover here two examples: (1) circle against circle and (2) circle
against convex hull. For a detailed exposition containing more collision types, including
convex hulls against convex hulls, please refer to Gregorius [2015].

Circle against circle

For two circles, checking for contacts is simple. The distance between the two bodies, with
positions p1 and p2 and radii r1 and r2, is given by

d = ∥p1 − p2∥ − r1 − r2.

We thus have a contact if d < ϵ and an interpenetration if d < 0. The normal vector is
simply given by

n =
p1 − p2
∥p1 − p2∥

.

Finally, the contact points (given in each body’s reference frame) are

c1 = −n · r1 and c2 = n · r2.

Circle against convex hull

In this case, we start by applying the GJK algorithm on the convex hull and the center of
the circle. There are two possible cases. First, if the circle’s center is outsde the hull, GJK
will return the point in the convex hull closest to the circle’s center. From this, we have
that the distance between the two bodies is

d = ∥pc − pGJK∥ − r,

where pc and r are the circle’s center and radius, and pGJK is the nearest point to pc in the
hull. As before, we have a contact if d < ϵ and an interpenetration if d < 0. The normal is
then given by

n =
pc − pGJK

∥pc − pGJK∥
,

and the contact points are

cc = −n · r and ch = pGJK .

112

The second case happens when the circle’s center is inside the hull. In this case, we
know we have an interpenetration, but GJK does not provide us with enough information
to generate the contact. We thus employ the SAT algorithm to find the axis of minimum
penetration. This is done by running the SAT on the axes defined by the normal to each
the face of the hull (i.e., the vector perpendicular to the face that points out of the hull).
Once we find the face with the smallest distance to pc, the collision normal n is the normal
to that face, normalized to have length 1. In this case we know there is a penetration, thus
the distance d < 0 between the two bodies is given by the distance from the circle’s center
to the closest face of the hull minus the radius of the circle, or equivalently

d = (p(h)c − pvert) · n− r,

where (pc − pvert) · n takes the vector from one of the vertices of the closest face in the hull

(pvert) to the center of the circle in the hull’s reference frame (p
(h)
c), and projects it onto the

normal (n). Finally, the contact points are given by the closest point to the circle in the
hull’s face, given in each body’s reference frame

ch = p(h)c − n · (d+ r) and cc = ch + pc − pc,

where ph is the hull’s position.

A.1.5 Constraints

In this section we describe in detail the equations that constrain the dynamics of the
bodies. These constraints are divided into three categories: equality, contact and friction
constraints.

Equality constraints

Equality constraints take the form g(v) = 0, where g is some function of the velocities.
These constraints can be used to implement, for example, joints of many kinds.

In general, for two bodies (a and b), equality constraints are defined by two Jacobian

matrices (J (body)
e), one for each body, such that

J (a)
e v(a) + J (b)

e v(b) = 0. (A.5)

A hinge joint, for example, which in two dimensions gives the bodies only one degree of
freedom to rotate about their connection point, would be defined by the following two
Jacobians

J (a)
e =

[
−ray 1 0
rax 0 1

]
and J (b)

e =

[
rby −1 0
−rbx 0 −1

]
,

where ra and rb are the vectors pointing to the connection point from the center of each
body. Substituting these two matrices into Equation A.5 we can see that we get an equation
that constraints the translation velocities of the two bodies at the connection point to be
equal.

113

Finally, to more easily apply all constraint simultaneously in concert with the global
parameters defined above, we define a global constraint Jacobian Je. For n bodies and m
constraints, Je is formed as a block matrix such that we have

Jev =

J11 · · · J1n
...

. . .
...

Jm1 · · · Jmn

v1...
vn

 = 0, (A.6)

where in each block-row i of Je all blocks Jij are zero matrices, except for the two blocks
Jia and Jib corresponding to the two bodies we want to constraint, which are then given
by Equation A.5.

Contact constraints

Contact constraints are inequality constraints and thus take the form g(v) ≥ 0. These
constraints enforce that rigid bodies do not interpenetrate.

In general, for two bodies (a and b), contact constraints are defined by two Jacobian

matrices (J (body)
c), one for each body, such that

J (a)
c v

(a)
t+dt + J (b)

c v
(b)
t+dt + cab ≥ 0, (A.7)

where the term cab depends on the velocities before the contact and on the combined
restitution parameter for a and b, kab,

cab = kab

[
J (a)

c v
(a)
t + J (b)

c v
(b)
t

]
. (A.8)

The combined restitution parameter is usually defined as a simple function of the restitution
parameter of each body, for example kab =

1
2
(ka + kb).

At each time step, contact constraints as defined in Equation A.7 are constructed for
each pair of bodies in contact. Using the normal vector n and the contact points pa and pb
provided by the contact detection algorithms (see Section A.1.4), the Jacobians are 1× 3
matrices defined as2

J (a)
c =

[
(pa × n) nT

]
and J (b)

c =
[
(pb × n) nT

]
, (A.9)

As before, we define a global constraint Jacobian Jc. For n bodies and m constraints,
Jc is formed as a block matrix such that we have

Jcvt+dt =

J11 · · · J1n
...

. . .
...

Jm1 · · · Jmn

v1...
vn

 ≥ −c, (A.10)

where in each block-row i of Jc all blocks Jij are zero matrices, except for the two blocks Jia

and Jib corresponding to the two bodies in contact, which are then given by Equation A.9.
The term c is then given by

c = diag(k)Jcvt,

with k = [k1, . . . , km]
T , where ki = kab for the two contacting bodies in contact i.

2We define the two dimensional cross product as the scalar x× y = x1y2 − x2y1.

114

Friction constraints

Friction constraints are also inequality constraints and thus take the form g(v) ≥ 0. While
contact forces act on the normal direction, friction constraints create forces that act
tangentially to the plane of contact of two bodies.

For simplicity, in this section we will for now simply describe the structure of the friction
Jacobian Jf , noting its similarity to the contact Jacobian Jc. In Section A.1.6, we will
describe the structure of the inequalities and the complementarity constraints that cause
the frictional forces to behave as expected.

As mentioned above, frictional constraints act on contacts, but in the tangential directions
instead of the normal direction. In two dimensions there are two tangential directions to a
contact, the two orthogonal directions to the contact normal vector. Intuitively, we can
imagine that the friction Jacobians will have a structure analogous to the contact Jacobians
in Equation A.9, with the normal vector substituted by the tangent vectors. Since there
are two tangent directions, we will have two constraints for each contact. Let us call d the
left orthogonal vector to the normal contact vector n, and pa and pb the contact points, as
provided by the contact detection algorithms (see Section A.1.4). We then have the friction
Jacobians for a contact between bodies a and b

J (a)
f =

[
(pa × d) dT

(pa ×−d) −dT
]

and J (b)
f =

[
(pb × d) dT

(pb ×−d) −dT
]
. (A.11)

As before, we define a global constraint Jacobian Jf . For n bodies and m constraints,
Jc is formed as a block matrix given by

Jf =

J11 · · · J1n
...

. . .
...

Jk1 · · · Jkn

 ,

where in each block-row i of Jf all blocks Jij are zero matrices, except for the two blocks Jia

and Jib corresponding to the two bodies in contact, which are then given by Equation A.11.
Two other matrices will be important when dealing with friction constraints, E and µ.

We will define them here for later reference. If there are m contacts for a given time step,
we have

E =
[
e1 · · · en

]
and µ =

µ1

. . .

µm

 .

Here, µi ∈ R is the combined friction coefficient two bodies involved in contact i, which
can be defined as the average of each body’s friction coefficient, for example. Moreover,
ei ∈ R2m is a column vector of zeroes except for the two entries 2i − 1 and 2i (e.g.,
e2 = [0, 0, 1, 1, . . . , 0]T and em = [0, . . . , 0, 1, 1]T).

A.1.6 Dynamics LCP

Let us call v̇ the acceleration vector. From Newtonian dynamics, it generally holds that

Mv̇ = f (c) + f,

115

where f (c) are constraint forces inherent to the dynamics, and f are external forces applied
to the bodies. These two are here assumed to comprise the totality of forces acting on
bodies. However, formulating the dynamics at the acceleration level can lead to systems
with no solutions in the presence of friction [Anitescu and Potra, 1997]. Fortunately, by
approximating the acceleration with a discrete step

v̇t+dt ≈
vt+dt − vt

dt
,

we can rewrite the dynamics equation as

M(vt+dt − vt) = dtf
(c)
t + dtft, (A.12)

to get a velocity-based formulation, which is guaranteed to have a solution even with friction
constraints. Since dt is a small time-step, dtf

(c)
t can be seen as approximate constraint

impulses. We omit the derivation here (see Garstenauer and Kurka [2006]), but these
constraint impulses can be written as

dtf (c) = J λ, (A.13)

where J is a constraint Jacobian such as the ones described in Section A.1.5, and λ is
some vector of multipliers. By rearranging the terms in Equation A.12 and combining with
Equation A.13 (broken down into the equality, contact and friction constraint matrices),
we get the final dynamics equation

Mvt+dt − Jeλe − Jcλc − Jfλf =Mvt + dtft. (A.14)

Moreover, for a realistic rigid body simulation, we know that the impulses Jcλc can act to
push bodies apart and avoid interpenetrations, but they cannot act to pull bodies together.
Hence, we must have λc ≥ 0. Additionally, if for each constraint i, (Jcv)i + ci = ai for
some ai > 0 strictly greater than zero, then the bodies are moving apart and no separating
forces should be applied, i.e. (λc)i = 0. Conversely, if this condition is not satisfied, then a
separating force is needed to counteract the penetration velocity, thus (λc)i = 0. This gives
rise to the following complementarity condition,

λc ≥ 0, a := Jcv + c ≥ 0 and aTλc = 0. (A.15)

The friction terms have similar complementarity constraints. However, due to the nature of
Coulomb friction these constraints involve the contact terms (for example, to assert there
is no frictional force when contact normal force is 0). We will omit the derivation here (see
Cline [2002]), but these interactions give rise to the following constraints,

ζ := µλc − ETλf ≥ 0, σ := Jfv + γE ≥ 0, σTλf = 0 and ζTγ = 0, (A.16)

with λf ≥ 0 and γ ≥ 0.

116

Taking the constraints defined in Section A.1.5 (Equations A.6 and A.10), the dynamics
equation (Equation A.14), and the complementarity conditions formulated above (Equa-
tions A.15 and A.16), the dynamics for a step in the simulation can be summarized as the
following LCP

0
0
a
σ
ζ

−

M −J e −J c −J f 0
Je 0 0 0 0
Jc 0 0 0 0
Jf 0 0 0 E
0 0 µ −ET 0

vt+dt

λe

λc

λf

γ

 =

Mvt + dtft

0
c
0
0

subject to

 a
σ
ζ

 ≥ 0,

 λc

λf

γ

 ≥ 0,

 a
σ
ζ

T λc

λf

γ

 = 0.

(A.17)

Where the inequality constraints are written as equality constraints using the slack variables
[a, σ, ζ]T defined above, and [vt+dt, λe, λc, λf , γ]

T are the unknowns. From the solution, we
obtain the velocities vt+dt for the next step, which are used to update the positions of the
bodies as described in Section A.1.1 (item 5).

A.2 Solution and Derivatives

A.2.1 Solution

The solution described here follows closely the method described in Mattingley and Boyd
[2012], with small modifications for our LCP formulation above. The following is a small
summary of that method, highlighting such differences.

In Equation 3.2, we formed the equivalent to the following system:

Mx+ ATy +GT z + q = 0

Ax = 0

Gx+ Fz + s = m

s ≥ 0, z ≥ 0, sT z ≥ 0.

(A.18)

To solve such system, after an initialization step (described in Mattingley and Boyd
[2012]), we iteratively minimize the residuals from the equations above over the variables x,
s, z and y. At each iteration, if the stopping criteria (residual sizes and duality gap) are
not met, we compute the affine scaling directions by solving the system

M 0 GT AT

0 D(z) D(s) 0
G I F 0
A 0 0 0

∆xaff

∆saff

∆zaff

∆yaff

 =

−(Mx+ ATy +GT z + q)

−(D(s)z)
−(Gx+ Fz + s−m)

−(Ax)

 . (A.19)

117

Then we compute the centering-plus-corrector directions
M 0 GT AT

0 D(z) D(s) 0
G I F 0
A 0 0 0

∆xcc

∆scc

∆zcc

∆ycc

 =

0

σµ1−D(∆saff)∆zaff

0
0

 . (A.20)

where µ and σ is defined in [Mattingley and Boyd, 2012]. We then update the variables by
applying the following combined updates

x := x+ α(∆xaff +∆xcc)

s := s+ α(∆saff +∆scc)

z := z + α(∆zaff +∆zcc)

y := y + α(∆yaff +∆ycc)

(A.21)

according to the step-size α defined in Mattingley and Boyd [2012].

A.2.2 Derivatives

To obtain the derivatives, we use Equation A.18 in a slightly modified form, such that at a
solution point we have

Mx⋆ + ATy⋆ +GT z⋆ + q = 0

Ax⋆ = 0

D(z⋆)(Gx⋆ + Fz⋆ −m) = 0.

We use matrix differential calculus [Magnus and Neudecker, 1988] to take the differentials
of these equations:

dMx⋆ +Mdx+ dATy⋆ + ATdy + dGT z⋆ +GTdz + dq = 0

dAx⋆ + Adx = 0

D(Gx⋆ + Fz⋆ −m)dz +D(z⋆)(dGx⋆ +Gdx+ dFz⋆ + Fdz − dm) = 0,

(A.22)

which in matrix form is equivalent to M GT AT

D(z⋆)G D(Gx⋆ + Fz⋆ −m) + F 0
A 0 0

 dx
dz
dy

 =

 −dMx⋆ − dATy⋆ − dGT z⋆ − dq
−D(z⋆)dGx⋆ −D(z⋆)dFz⋆ +D(z⋆)dm

−dAx⋆

 .

In this formulation, a given partial derivative, for example ∂z⋆

∂q
, can be found by substituting

dq = I, setting all other differential terms to zero, and solving for dz. For the backpropa-
gation algorithm, for a given backward pass vector with respect to the solution x⋆ to the
LCP, say ∂ℓ

∂x⋆ , we are interested in applying the chain rule to pass the derivatives further

118

backwards, for example to find ∂ℓ
∂q

by multiplying ∂ℓ
∂x⋆

∂x⋆

∂q
. To simplify this process, let us

first define the vector dx
dz
dy

 :=

 M GT AT

D(z⋆)G D(Gx⋆ + Fz⋆ −m) + F 0
A 0 0

−T (∂ℓ
∂x⋆

)T
0
0

 . (A.23)

Then, we have that

∂ℓ

∂x⋆
dx =

 dx
dz
dy

T −dMx⋆ − dATy⋆ − dGT z⋆ − dq
−D(z⋆)dGx⋆ −D(z⋆)dFz⋆ +D(z⋆)dm

−dAx⋆

 . (A.24)

Now, by applying properties from matrix differential calculus we can propagate back the
derivatives via chain rule to obtain the derivatives of our given backwards pass vector ℓ
with respect to the inputs. For example, to obtain ∂ℓ

∂q
= ∂ℓ

∂x⋆
∂x⋆

∂q
, we can see that

∂ℓ

∂x⋆
dx =

 dx
dz
dy

T −dq0
0

 = −dTxdq, (A.25)

which implies ∂ℓ
∂x⋆

∂x⋆

∂q
= −dx. The same procedure can be applied to the others quantities

to arrive at the desired derivatives

∂ℓ

∂q
= −dx

∂ℓ

∂m
= D(z⋆)dz

∂ℓ

∂A
= −dyxT − ydTx

∂ℓ

∂M = −1

2
(dxx

T + xdTx)

∂ℓ

∂G
= −D(z⋆)(dzx

T + zdTx)

∂ℓ

∂F
= −D(z⋆)dzz

T .

(A.26)

119

120

Bibliography

Yaser Afshar, Saakaar Bhatnagar, Shaowu Pan, Karthik Duraisamy, and Shailendra
Kaushik. Prediction of Aerodynamic Flow Fields Using Convolutional Neural Net-
works. Computational Mechanics, 64(2), 2019. doi: 10.1007/s00466-019-01740-0. URL
http://arxiv.org/abs/1905.13166. 1, 2.2.4, 4.1, 4.3.1

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bah-
danau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander
Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh
Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier,
Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan
Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron
Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins,
Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi
Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian
Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-
Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail
Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent,
Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A.
Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier
Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent
Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad
Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus
Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman,
Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne
Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie
Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco
Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin
Xu, Lijun Xue, Li Yao, Saizheng Zhang, and Ying Zhang. Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688, May
2016. URL http://arxiv.org/abs/1605.02688. 2.2.3

T. Albring, M. Sagebaum, and N. R. Gauger. Development of a consistent discrete adjoint
solver in an evolving aerodynamic design framework. AIAA Paper 2015-3240, 2015. doi:
10.2514/6.2015-3240. 2.2.2

T. Albring, M. Sagebaum, and N.R. Gauger. Efficient aerodynamic design using the discrete

121

http://arxiv.org/abs/1905.13166
http://arxiv.org/abs/1605.02688

adjoint method in SU2. AIAA Paper 2016-3518, 2016. doi: 10.2514/6.2016-3518. 2.2.2

Ferran Alet, Adarsh K. Jeewajee, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez,
and Leslie Pack Kaelbling. Graph Element Networks: adaptive, structured computation
and memory. 2019. URL http://arxiv.org/abs/1904.09019. 2.2.5

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in
Neural Networks. 2017. URL http://arxiv.org/abs/1703.00443. 2.2.2, 3.2.2, 3.2.3

Mihai Anitescu and Florian A. Potra. Formulating dynamic multi-rigid-body contact prob-
lems with friction as solvable linear complementarity problems. Nonlinear Dynamics, 14
(3), 1997. URL http://www.springerlink.com/index/J71678405QK31722.pdf. 3.2.1,
A.1.6

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-Grained Analysis
of Optimization and Generalization for Overparameterized Two-Layer Neural Networks.
arXiv:1901.08584 [cs, stat], May 2019. URL http://arxiv.org/abs/1901.08584. arXiv:
1901.08584. 2.2.7

Christopher J. Arthurs and Andrew P. King. Active Training of Physics-Informed Neu-
ral Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes
Equations. Journal of Computational Physics, 438, 2021. doi: 10.1016/j.jcp.2021.110364.
URL http://arxiv.org/abs/2005.05092. 5.1

Vsevolod I. Avrutskiy. Neural networks catching up with finite differences in solving partial
differential equations in higher dimensions. Neural Computing and Applications, 32(17),
2020. doi: 10.1007/s00521-020-04743-8. URL http://arxiv.org/abs/1712.05067. 5.1

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data
driven discretizations for partial differential equations. Proceedings of the National
Academy of Sciences, 116(31), 2019. doi: 10.1073/pnas.1814058116. URL http://arxiv.

org/abs/1808.04930. 1

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The Convergence Rate
of Neural Networks for Learned Functions of Different Frequencies. June 2019. URL
https://arxiv.org/abs/1906.00425v3. 6.1

Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation as an
engine of physical scene understanding. Proceedings of the National Academy of Sciences,
110(45), 2013. doi: 10.1073/pnas.1306572110. URL http://www.pnas.org/content/

110/45/18327. 2.2.3

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.
Interaction Networks for Learning about Objects, Relations and Physics. 2016. URL
http://arxiv.org/abs/1612.00222. 1, 2.2.3

Filipe de Avila Belbute-Peres, Thomas D. Economon, and J. Zico Kolter. Combining
Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. July
2020. URL http://arxiv.org/abs/2007.04439. arXiv: 2007.04439. 1.1

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing, 317, 2018. doi: 10.1016/j.

122

http://arxiv.org/abs/1904.09019
http://arxiv.org/abs/1703.00443
http://www.springerlink.com/index/J71678405QK31722.pdf
http://arxiv.org/abs/1901.08584
http://arxiv.org/abs/2005.05092
http://arxiv.org/abs/1712.05067
http://arxiv.org/abs/1808.04930
http://arxiv.org/abs/1808.04930
https://arxiv.org/abs/1906.00425v3
http://www.pnas.org/content/110/45/18327
http://www.pnas.org/content/110/45/18327
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/2007.04439

neucom.2018.06.056. URL https://www.sciencedirect.com/science/article/pii/

S092523121830794X. 5.1

Gino Johannes Apolonia van den Bergen. Collison detection in interactive 3D environments.
The Morgan Kaufmann series in interactive 3D technology. Elsevier/Morgan Kaufman,
Amsterdam ; Boston, 2004. ISBN 978-1-55860-801-6. A.1.4

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. 3.1, 3.3.3

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4), 2017. 2.2.5

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards Under-
standing the Spectral Bias of Deep Learning, October 2020. URL http://arxiv.org/

abs/1912.01198. arXiv:1912.01198 [cs, stat]. 6.1

Erin Catto. Computing Distance Using GJK. In GDC, 2010. URL http://box2d.org/

downloads/. A.1.4

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A
Compositional Object-Based Approach to Learning Physical Dynamics. 2016. URL
http://arxiv.org/abs/1612.00341. 1, 2.2.3

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
Ordinary Differential Equations. 2018. URL http://arxiv.org/abs/1806.07366. 5.1

Michael Bradley Cline. Rigid body simulation with contact and constraints. PhD thesis,
University of British Columbia, 2002. URL https://pdfs.semanticscholar.org/8567/

e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf. 3.1, 3.2.1, A.1, A.1.6

Richard W Cottle. Linear complementarity problem. In Encyclopedia of Optimization.
Springer, 2008. 3.1

Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15(49), 2013.
2.2.3, 3.1

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in neural information
processing systems, 2016. 2.2.5

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A Differentiable Physics
Engine for Deep Learning in Robotics. 2016. URL http://arxiv.org/abs/1611.01652.
2.2.3, 3.1

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https:

//github.com/openai/baselines, 2017. 3.3.3

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In
Neural Information Processing Systems (NIPS), 2017. 2.2.2

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L. Griffiths, and Alexei A. Efros.

123

https://www.sciencedirect.com/science/article/pii/S092523121830794X
https://www.sciencedirect.com/science/article/pii/S092523121830794X
http://arxiv.org/abs/1912.01198
http://arxiv.org/abs/1912.01198
http://box2d.org/downloads/
http://box2d.org/downloads/
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1806.07366
https://pdfs.semanticscholar.org/8567/e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf
https://pdfs.semanticscholar.org/8567/e2467bb5ad67f3a3f11e7c3c4386d9ca8210.pdf
http://arxiv.org/abs/1611.01652
https://github.com/openai/baselines
https://github.com/openai/baselines

Investigating Human Priors for Playing Video Games. arXiv:1802.10217 [cs], February
2018. URL http://arxiv.org/abs/1802.10217. arXiv: 1802.10217. 1

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence Modeling in
the Age of Data. Annual Review of Fluid Mechanics, 51(1), 2019. doi: 10.1146/
annurev-fluid-010518-040547. URL http://arxiv.org/abs/1804.00183. 2.2.4

T. D. Economon, F. Palacios, and J. J. Alonso. Unsteady continuous adjoint approach for
aerodynamic design on dynamic meshes. AIAA Journal, 53(9), 2015a. doi: 10.2514/1.
J053763. 2.2.2

T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. SU2: An
open-source suite for multiphysics simulation and design. AIAA Journal, 54(3), 2016.
doi: 10.2514/1.J053813. 2.2.2

Thomas D. Economon, Francisco Palacios, Sean R. Copeland, Trent W. Lukaczyk, and
Juan J. Alonso. SU2: An Open-Source Suite for Multiphysics Simulation and Design.
AIAA Journal, 54(3), 2015b. doi: 10.2514/1.J053813. URL https://arc.aiaa.org/

doi/10.2514/1.J053813. 4.2.1

Sébastien Ehrhardt, Aron Monszpart, Andrea Vedaldi, and Niloy Mitra. Learning to
Represent Mechanics via Long-term Extrapolation and Interpolation. 2017. URL
http://arxiv.org/abs/1706.02179. 1

Hamidreza Eivazi, Mojtaba Tahani, Philipp Schlatter, and Ricardo Vinuesa. Physics-
informed neural networks for solving Reynolds-averaged Navier$\unicode{x2013}$Stokes
equations. 2021. URL http://arxiv.org/abs/2107.10711. 1.1, 5.1

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning Visual
Predictive Models of Physics for Playing Billiards. 2015. URL http://arxiv.org/abs/

1511.07404. 3.3.2

Han Gao, Luning Sun, and Jian-Xun Wang. PhyGeoNet: Physics-Informed Geometry-
Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs
on Irregular Domain. 2020. doi: 10.1016/j.jcp.2020.110079. URL https://arxiv.org/

abs/2004.13145v2. 5.1

Helmut Garstenauer and Gerhard Kurka. A unified framework for rigid body dynamics.
PhD thesis, 2006. A.1, A.1.6

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. 2014. 1.1

Dirk Gregorius. The Separating Axis Test. In GDC, 2013. URL http://box2d.org/

downloads/. A.1.4

Dirk Gregorius. Robust Contact Creation for Physics Simulations. In GDC, 2015. URL
http://box2d.org/downloads/. A.1.4

Mengwu Guo and Jan S. Hesthaven. Data-driven reduced order modeling for time-dependent
problems. Computer Methods in Applied Mechanics and Engineering, 345, 2019. doi:
10.1016/j.cma.2018.10.029. URL https://www.sciencedirect.com/science/article/

pii/S0045782518305334. 1

124

http://arxiv.org/abs/1802.10217
http://arxiv.org/abs/1804.00183
https://arc.aiaa.org/doi/10.2514/1.J053813
https://arc.aiaa.org/doi/10.2514/1.J053813
http://arxiv.org/abs/1706.02179
http://arxiv.org/abs/2107.10711
http://arxiv.org/abs/1511.07404
http://arxiv.org/abs/1511.07404
https://arxiv.org/abs/2004.13145v2
https://arxiv.org/abs/2004.13145v2
http://box2d.org/downloads/
http://box2d.org/downloads/
http://box2d.org/downloads/
https://www.sciencedirect.com/science/article/pii/S0045782518305334
https://www.sciencedirect.com/science/article/pii/S0045782518305334

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow
approximation. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016. 2.2.4, 4.1, 4.3.1

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. 2016. URL http://arxiv.org/

abs/1609.09106. 5.1, 5.2.4

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, 2017. 2.2.5

Jessica B. Hamrick, Kevin A. Smith, Thomas L. Griffiths, and Edward Vul. Think
again? the amount of mental simulation tracks uncertainty in the outcome. In Pro-
ceedings of the thirtyseventh annual conference of the cognitive science society. Cite-
seer, 2015. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

704.359&rep=rep1&type=pdf. 2.2.3

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-
Or. Meshcnn: a network with an edge. ACM Transactions on Graphics (TOG), 38(4),
2019. 2.2.5

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. 2015. 1.1

S. He, K. Reif, and R. Unbehauen. Multilayer neural networks for solving a class of partial
differential equations. Neural Networks, 13(3):385–396, April 2000. ISSN 08936080. doi:
10.1016/S0893-6080(00)00013-7. URL https://linkinghub.elsevier.com/retrieve/

pii/S0893608000000137. 5.1

Michiel Hermans, Benjamin Schrauwen, Peter Bienstman, and Joni Dambre. Automated
Design of Complex Dynamic Systems. PLoS ONE, 9(1), 2014. doi: 10.1371/journal.pone.
0086696. URL http://dx.plos.org/10.1371/journal.pone.0086696. 2.2.3

Xiang Huang, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang Li, Bingya
Weng, Min Wang, Haotian Chu, Jing Zhou, Fan Yu, Bei Hua, Lei Chen, and Bin
Dong. Solving Partial Differential Equations with Point Source Based on Physics-
Informed Neural Networks. arXiv:2111.01394 [physics], November 2021a. URL http:

//arxiv.org/abs/2111.01394. arXiv: 2111.01394. 2.2.6, 6.1

Xinquan Huang, Tariq Alkhalifah, and Chao Song. A modified physics-informed neu-
ral network with positional encoding. page 2484, September 2021b. doi: 10.1190/
segam2021-3584127.1. 2.2.6, 6.1

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence
and Generalization in Neural Networks. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.

cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html. 2.2.7

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. 2020. 7.1

A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3,
1988. doi: 10.1007/BF01061285. 2.2.2

125

http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.359&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.359&rep=rep1&type=pdf
https://linkinghub.elsevier.com/retrieve/pii/S0893608000000137
https://linkinghub.elsevier.com/retrieve/pii/S0893608000000137
http://dx.plos.org/10.1371/journal.pone.0086696
http://arxiv.org/abs/2111.01394
http://arxiv.org/abs/2111.01394
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes
Flow nets): Physics-informed neural networks for the incompressible Navier-Stokes
equations. Journal of Computational Physics, 426, 2021. doi: 10.1016/j.jcp.2020.109951.
URL http://arxiv.org/abs/2003.06496. 5.1

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang,
and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6),
2021. doi: 10.1038/s42254-021-00314-5. URL http://www.nature.com/articles/

s42254-021-00314-5. 5.1

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. Deep Fluids: A Generative Network for Parameterized Fluid
Simulations. 2018. URL http://arxiv.org/abs/1806.02071. 2.2.4

Ryan King, Oliver Hennigh, Arvind Mohan, and Michael Chertkov. From Deep to Physics-
Informed Learning of Turbulence: Diagnostics. 2018. URL http://arxiv.org/abs/

1810.07785. 2.2.4

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014a.
URL http://arxiv.org/abs/1412.6980. 4.2.2

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014b.
URL http://arxiv.org/abs/1412.6980. 6.2.2

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 2.2.5, 4.1, 4.2.1

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and
Stephan Hoyer. Machine learning accelerated computational fluid dynamics. 2021. URL
http://arxiv.org/abs/2102.01010. arXiv: 2102.01010 version: 1. 1, 1.1

Isaac Elias Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. Artificial Neural Networks
for Solving Ordinary and Partial Differential Equations. IEEE Transactions on Neural
Networks, 9(5), 1998. doi: 10.1109/72.712178. URL http://arxiv.org/abs/physics/

9705023. 5.1

Hyuk Lee and In Seok Kang. Neural algorithm for solving differential equations. Journal of
Computational Physics, 91:110–131, November 1990. doi: 10.1016/0021-9991(90)90007-N.
5.1

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep Neural Networks as Gaussian Processes, March 2018a.
URL http://arxiv.org/abs/1711.00165. arXiv:1711.00165 [cs, stat]. 2.2.7, 7.2.1, 7.2.2

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide Neural Networks of Any Depth Evolve as
Linear Models Under Gradient Descent. Journal of Statistical Mechanics: Theory and
Experiment, 2019(12):124002, December 2020. ISSN 1742-5468. doi: 10.1088/1742-5468/
abc62b. URL http://arxiv.org/abs/1902.06720. arXiv: 1902.06720. 2.2.7

Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Sid-
dhartha S. Srinivasa, Mike Stilman, and C. Karen Liu. DART: Dynamic Animation

126

http://arxiv.org/abs/2003.06496
http://www.nature.com/articles/s42254-021-00314-5
http://www.nature.com/articles/s42254-021-00314-5
http://arxiv.org/abs/1806.02071
http://arxiv.org/abs/1810.07785
http://arxiv.org/abs/1810.07785
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2102.01010
http://arxiv.org/abs/physics/9705023
http://arxiv.org/abs/physics/9705023
http://arxiv.org/abs/1711.00165
http://arxiv.org/abs/1902.06720

and Robotics Toolkit. The Journal of Open Source Software, 3(22), 2018b. doi:
10.21105/joss.00500. URL http://joss.theoj.org/papers/10.21105/joss.00500.
2.2.3

Adam Lerer, Sam Gross, and Rob Fergus. Learning Physical Intuition of Block Towers by
Example. 2016. URL http://arxiv.org/abs/1603.01312. 2.2.3

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear
biological movement systems. In ICINCO (1), 2004. 3.3.3

Chun Kai Ling, Fei Fang, and J Zico Kolter. What game are we playing? end-to-end
learning in normal and extensive form games. arXiv:1805.02777, 2018. 2.2.2

Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs from Data with A
Numeric-Symbolic Hybrid Deep Network. 2018. URL https://arxiv.org/abs/1812.

04426v1. 1, 5.1

Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions on Graphics,
32(4), 2013. doi: 10.1145/2461912.2461984. URL http://dl.acm.org/citation.cfm?

doid=2461912.2461984. 2.2.4

X. Magnus and Heinz Neudecker. Matrix differential calculus. 1988. A.2.2

Nam Mai-Duy and Thanh Tran-Cong. Approximation of function and its derivatives
using radial basis function networks. Applied Mathematical Modelling, 27(3):197–220,
March 2003. ISSN 0307-904X. doi: 10.1016/S0307-904X(02)00101-4. URL https:

//www.sciencedirect.com/science/article/pii/S0307904X02001014. 5.1

Gary Marcus. Deep learning: A critical appraisal. 2018. 1.1

Jacob Mattingley and Stephen Boyd. CVXGEN: a code generator for embedded convex
optimization. Optimization and Engineering, 13(1), 2012. doi: 10.1007/s11081-011-9176-9.
URL http://link.springer.com/10.1007/s11081-011-9176-9. 3.2.2, A.2.1, A.2.1,
A.2.1, A.2.1

Antoine McNamara, Adrien Treuille, Zoran Popovic, and Jos Stam. Fluid control using the
adjoint method. ACM Transactions On Graphics (TOG), 23(3), 2004. 2.2.2

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured
prediction and attention. arXiv preprint arXiv:1802.03676, 2018. 2.2.2

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis. arXiv:2003.08934 [cs], August 2020. URL http://arxiv.org/abs/

2003.08934. arXiv: 2003.08934. 2.2.6, 6.1

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540), 2015. doi: 10.1038/nature14236. URL
http://www.nature.com/doifinder/10.1038/nature14236. 3.6

Radford M. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, University

127

http://joss.theoj.org/papers/10.21105/joss.00500
http://arxiv.org/abs/1603.01312
https://arxiv.org/abs/1812.04426v1
https://arxiv.org/abs/1812.04426v1
http://dl.acm.org/citation.cfm?doid=2461912.2461984
http://dl.acm.org/citation.cfm?doid=2461912.2461984
https://www.sciencedirect.com/science/article/pii/S0307904X02001014
https://www.sciencedirect.com/science/article/pii/S0307904X02001014
http://link.springer.com/10.1007/s11081-011-9176-9
http://arxiv.org/abs/2003.08934
http://arxiv.org/abs/2003.08934
http://www.nature.com/doifinder/10.1038/nature14236

of Toronto, 1994. URL https://www.cs.toronto.edu/~radford/ftp/pin.pdf. 2.2.7

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 3.1, 3.2.4

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems, 2017. 2.2.5, 4.2.1

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the Spectral Bias of Neural Networks. In
Proceedings of the 36th International Conference on Machine Learning, pages 5301–
5310. PMLR, May 2019. URL https://proceedings.mlr.press/v97/rahaman19a.

html. ISSN: 2640-3498. 6.1

Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Ma-
chines. In Advances in Neural Information Processing Systems, volume 20. Cur-
ran Associates, Inc., 2007. URL https://papers.nips.cc/paper/2007/hash/

013a006f03dbc5392effeb8f18fda755-Abstract.html. 2.2.6, 6.1

Maziar Raissi. Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential
Equations. 2018. URL http://arxiv.org/abs/1801.06637. 5.1

Maziar Raissi and George Em Karniadakis. Hidden Physics Models: Machine Learning of
Nonlinear Partial Differential Equations. Journal of Computational Physics, 357, 2018.
doi: 10.1016/j.jcp.2017.11.039. URL http://arxiv.org/abs/1708.00588. 5.1

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. 2017.
URL http://arxiv.org/abs/1711.10561. 5.1

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep Neural Networks
for Data-driven Discovery of Nonlinear Dynamical Systems. 2018. URL http://arxiv.

org/abs/1801.01236. 5.1, 5.2.3, 5.4.2, 6.1

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378, 2019a.
doi: 10.1016/j.jcp.2018.10.045. URL https://linkinghub.elsevier.com/retrieve/

pii/S0021999118307125. 1, 2.1.2, 2.2.1, 5.1, 5.2.2, 7.6.2, 7.2, 7.6.2, 7.6.2, 7.6.2, 7.17,
7.6.2, 7.6.2, 7.6.2

Maziar Raissi, Zhicheng Wang, Michael S. Triantafyllou, and George Em Karniadakis.
Deep Learning of Vortex Induced Vibrations. Journal of Fluid Mechanics, 861:119–
137, February 2019b. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2018.872. URL
http://arxiv.org/abs/1808.08952. arXiv: 1808.08952. 2.2.6, 6.1

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations. Science, 367(6481), 2020.
doi: 10.1126/science.aaw4741. URL https://www.sciencemag.org/lookup/doi/10.

128

https://www.cs.toronto.edu/~radford/ftp/pin.pdf
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://papers.nips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://papers.nips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
http://arxiv.org/abs/1801.06637
http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1801.01236
http://arxiv.org/abs/1801.01236
https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
http://arxiv.org/abs/1808.08952
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741

1126/science.aaw4741. 5.1

Bharath Ramsundar, Dilip Krishnamurthy, and Venkatasubramanian Viswanathan. Dif-
ferentiable Physics: A Position Piece, September 2021. URL http://arxiv.org/abs/

2109.07573. arXiv:2109.07573 [physics]. 2.2.2

Anurag Ranjan and Michael J. Black. Optical Flow Estimation using a Spatial Pyramid
Network. 2016. URL http://arxiv.org/abs/1611.00850. 3.3.2

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986. 2.1.1

Connor Schenck and Dieter Fox. SPNets: Differentiable Fluid Dynamics for Deep Neural
Networks. 2018. URL https://arxiv.org/abs/1806.06094v2. 2.2.4

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsuper-
vised pre-training for speech recognition. 2019. 1.1

Anand Pratap Singh, Karthikeyan Duraisamy, and Ze Jia Zhang. Augmentation of Tur-
bulence Models Using Field Inversion and Machine Learning. In 55th AIAA Aerospace
Sciences Meeting. American Institute of Aeronautics and Astronautics, 2017. doi:
10.2514/6.2017-0993. URL https://arc.aiaa.org/doi/abs/10.2514/6.2017-0993.
2.2.4

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for
solving partial differential equations. Journal of Computational Physics, 375, 2018. doi:
10.1016/j.jcp.2018.08.029. URL https://www.sciencedirect.com/science/article/

pii/S0021999118305527. 5.1

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit Neural Representations with Periodic Activation Functions.
2020. URL http://arxiv.org/abs/2006.09661. 2.2.6, 6.1, 6.2, 6.2.1, 6.2.1, 6.2.1, 6.2.2,
6.2.2, 6.2.2, 6.2.2, 6.1, 6.3, 6.3, 7.2.1, 7.6.2, 7.2

Kevin A. Smith and Edward Vul. Sources of Uncertainty in Intuitive Physics. Topics in
Cognitive Science, 5(1), 2013. doi: 10.1111/tops.12009. URL http://onlinelibrary.

wiley.com/doi/10.1111/tops.12009/abstract. 2.2.3

Chao Song, Tariq Alkhalifah, and Umair Bin Waheed. A versatile framework to solve the
Helmholtz equation using physics-informed neural networks. Geophysical Journal Interna-
tional, 228(3):1750–1762, November 2021. ISSN 0956-540X, 1365-246X. doi: 10.1093/gji/
ggab434. URL https://academic.oup.com/gji/article/228/3/1750/6409132. 2.2.6,
6.1

Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmental science, 10
(1):89–96, 2007. Publisher: Wiley Online Library. 1

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data. Computer Methods
in Applied Mechanics and Engineering, 361:112732, April 2020. ISSN 0045-7825. doi: 10.
1016/j.cma.2019.112732. URL https://www.sciencedirect.com/science/article/

pii/S004578251930622X. 5.1

129

https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4741
http://arxiv.org/abs/2109.07573
http://arxiv.org/abs/2109.07573
http://arxiv.org/abs/1611.00850
https://arxiv.org/abs/1806.06094v2
https://arc.aiaa.org/doi/abs/10.2514/6.2017-0993
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
http://arxiv.org/abs/2006.09661
http://onlinelibrary.wiley.com/doi/10.1111/tops.12009/abstract
http://onlinelibrary.wiley.com/doi/10.1111/tops.12009/abstract
https://academic.oup.com/gji/article/228/3/1750/6409132
https://www.sciencedirect.com/science/article/pii/S004578251930622X
https://www.sciencedirect.com/science/article/pii/S004578251930622X

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier
features let networks learn high frequency functions in low dimensional domains. 2020.
2.2.6, 6.1

Ramakrishna Tipireddy, Paris Perdikaris, Panos Stinis, and Alexandre Tartakovsky. A
comparative study of physics-informed neural network models for learning unknown
dynamics and constitutive relations. 2019. URL http://arxiv.org/abs/1904.04058.
5.1

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. IEEE, 2012. ISBN 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1. doi:
10.1109/IROS.2012.6386109. URL http://ieeexplore.ieee.org/document/6386109/.
2.2.3, 3.1

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid Splash Modeling with Neural Networks.
2017. URL http://arxiv.org/abs/1704.04456. 2.2.4, 4.1

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.
3.3.3

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural
tangent kernel perspective. 2020. 6.1

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature
networks: From regression to solving multi-scale pdes with physics-informed neural
networks. Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021.
6.1

Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent-space Physics: Towards Learning
the Temporal Evolution of Fluid Flow. 2018. URL http://arxiv.org/abs/1802.10123.
2.2.4, 4.1

Jian Cheng Wong, Chinchun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in
Sinusoidal Spaces with Physics-Informed Neural Networks. arXiv:2109.09338 [physics],
March 2022. URL http://arxiv.org/abs/2109.09338. arXiv: 2109.09338 version: 2.
2.2.6, 6.1

130

http://arxiv.org/abs/1904.04058
http://ieeexplore.ieee.org/document/6386109/
http://arxiv.org/abs/1704.04456
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1802.10123
http://arxiv.org/abs/2109.09338

	1 Introduction
	1.1 Deep learning and traditional physics
	1.2 Contributions
	1.2.1 Part I: Learning with Differentiable Physics Layers
	1.2.2 Part II: Improving Physics-informed Learning

	2 Preliminaries & Background
	2.1 Combining Deep Learning and Physics Learning
	2.1.1 Differentiable physics layers
	2.1.2 Physics-informed losses

	2.2 Background
	2.2.1 Physics-informed learning
	2.2.2 Differentiable physics layers
	2.2.3 Rigid body dynamics
	2.2.4 Fluid dynamics
	2.2.5 Graph neural networks
	2.2.6 Sinusoidal networks
	2.2.7 Neural tangent kernel

	I Learning with Differentiable Physics Layers
	3 Learning and Control with Differentiable Rigid Body Dynamics
	3.1 Introduction
	3.2 Differentiable Physics Engine
	3.2.1 Formulating the LCP
	3.2.2 Solving the LCP
	3.2.3 Gradients
	3.2.4 Implementation

	3.3 Experiments
	3.3.1 Parameter learning
	3.3.2 Prediction on visual data
	3.3.3 Control

	4 Fluid Flow Prediction with Graph Neural Networks and Differentiable Fluid Dynamics
	4.1 Introduction
	4.2 CFD-GCN
	4.2.1 Architecture
	4.2.2 Training

	4.3 Experiments
	4.3.1 Interpolation
	4.3.2 Generalization
	4.3.3 Runtime

	II Improving Physics-Informed Learning
	5 Solving Parameterized Differential Equations with Physics-Informed Hypernetworks
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Differential equations
	5.2.2 Physics-Informed Neural Networks
	5.2.3 Multistep Neural Networks
	5.2.4 Hypernetworks

	5.3 HyperPINN
	5.4 Experiments
	5.4.1 1D Burgers' equation
	5.4.2 Lorenz system

	6 Simple Sinusoidal Networks
	6.1 Introduction
	6.2 Simple Sinusoidal Networks
	6.2.1 Practical Implementation Details of SIRENs
	6.2.2 Simplifying SIRENs

	6.3 Experiments
	6.3.1 Image
	6.3.2 Poisson
	6.3.3 Video
	6.3.4 Audio
	6.3.5 Helmholtz equation
	6.3.6 Signed distance function (SDF)

	7 Understanding and Applying Sinusoidal Networks
	7.1 Preliminaries
	7.2 Shallow sinusoidal networks
	7.2.1 SIREN
	7.2.2 Simple sinusoidal network

	7.3 Deep sinusoidal networks
	7.3.1 Simple sinusoidal network
	7.3.2 SIREN

	7.4 Empirical Analysis
	7.5 Tuning w
	7.5.1 Choosing w from the Nyquist frequency
	7.5.2 Multi-dimensional w
	7.5.3 Choosing w from available information

	7.6 Experiments
	7.6.1 Evaluating generalization
	7.6.2 Solving differential equations

	III Conclusion
	8 Conclusion
	A Building a Differentiable Rigid Body Dynamics Engine
	A.1 Physics Engine
	A.1.1 Step Overview
	A.1.2 Bodies
	A.1.3 Global Parameters
	A.1.4 Contact Detection
	A.1.5 Constraints
	A.1.6 Dynamics LCP

	A.2 Solution and Derivatives
	A.2.1 Solution
	A.2.2 Derivatives

	Bibliography

