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Abstract
One of the most fundamental assumptions in statistical machine learning is that

training and testing data should be sampled independently from the same distribution.
However, modern real world applications require that the learning algorithm should
perform robustly even when this assumption is no longer valid. Specifically, the
training and testing distributions may shift slightly (yet adversarially) within a small
neighborhood of each other. This formulation encompasses many new challenges in
machine learning, including adversarial examples, outlier contaminated data, group
fairness and label imbalance.

In this thesis, we seek to understand the statistical optimality and provide better
algorithms under the aforementioned adversarial distribution shift. Our contributions
include (1) the first near optimal minimax lower bound for the sample complexity of
adversarially robust classification in a Gaussian setting. (2) introducing the framework
of distributional and outlier robust optimization, which allowed us to apply distribu-
tionally robust optimization to large scale experiments with deep neural networks and
outperformed existing methods in sub-population shift tasks. (3) margin sensitive
group risk, a principled way of improving distributional robust generalization via
group-asymmetric margin maximization.
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Chapter 1

Introduction

One of the most fundamental assumptions in statistical machine learning is that training and testing
data should be sampled independently from the same distribution. Mathematically speaking, in
a supervised learning problem where we have feature vector x ∈ Rd and label y ∈ R, it was
assumed that there is an underlying distribution P, such that the learner has access to n i.i.d.
training samples

(x1, y1), (x2, y2), · · · , (xn, yn) ∼i.i.d. Pn, (1.1)

and the learner’s goal is to find a classifier f̂n : Rd → R based on observed training samples
{(xi, yi)}ni=1, which makes the test error Ltest as small as possible:

Ltest(f̂n;P) := E(x,y)∼Pl(f̂n(x), y). (1.2)

Here, l(y′, y) can be chosen as square loss (y′ − y)2 for regression problems, or zero-one loss
1[y′ ̸= y] for classification problems.

Here, we can see that both training and testing samples are sampled from the same underlying
distribution P. However, in recent years, modern real world applications require that the learning
algorithm should perform robustly even when this assumption is no longer valid.

Here are some typical applications where the training and testing distributions differ from
each other:

Adversarial Examples While deep learning algorithms have achieved tremendous success in a
variety of different domains such as image classification, natural language processing and strategy
games (e.g. Bahdanau et al. [10], Krizhevsky et al. [81], Silver et al. [124]), a crucial weakness,
i.e. adversarial examples, has been observed by recent works Szegedy et al. [128] (among others
e.g. Goodfellow et al. [53], Papernot et al. [107]). Namely, deep learning models often achieve
extremely accurate performances yet are susceptible to small perturbations of the inputs, i.e. one
can add small (nearly imperceptible) perturbation δ to image x , which cause neural network
classifiers to make wrong predictions f̂n(x) far from ground truth y, with very high confidence.

Outlier Contaminated Data Outlier robust estimation is a classic problem in statistics starting
with the pioneering works of [65, 136]. The classic Huber’s ε-contamination model assumes that
at most ε fraction of training data can be contaminated i.e. sampled from any arbitrary distribution.
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Efficient algorithms for very basic tasks, e.g. mean estimation, remains unsolved until late 2010s
[42, 43, 85, 110].

Label Imbalance Datasets with class imbalance — that is, the number of samples of one
class far exceeds the number of data of another class — are prevalent in cutting-edge data
science applications [30, 60]. Take COVID-19 testing data for example: a dominant fraction
of data samples often come from the negative class (i.e., non-targeted people who have not
contracted the virus). The evaluation criterion in reality, however, might place equal, or even
higher, emphasis on the minority class (e.g., the infected people in the COVID-19 case). The
ability to generalize favorably in both majority and minority classes plays a pivotal role in critical
scientific and societal issues (e.g., fairness/equity in machine learning, discovery of rare disease,
transferability of knowledge to sample-starved tasks). It has been widely recognized, however,
that the imbalanced availability of data can cause severe issues to modern data-limited learning
algorithms including neural networks (e.g., [24, 60, 138]), particularly when reasoning about the
underrepresented class.

Subpopulation Shift Another common type of distributional shift studied in this thesis is
subpopulation shift, where the training and testing distributions are both a mixture of the same
group of subpopulations, while the mixing weights can be different. Mathematically, we assume
there are K subpopulations P1, P2, · · · , Pk, and training/testing distributions can be written as

Ptrain = w1P1 + w2P2 + · · ·wKPK (1.3)

Ptest = w′
1P1 + w′

2P2 + · · ·w′
KPK (1.4)

It is commonly assumed that w and w′ are similar, yet not exactly the same, from each other.
Subpopulation shift is closely related to algorithmic fairness and class imbalance. The setting of
subpopulation shift is most closely related to the algorithmic fairness notion of Rawlsian Max-Min
fairness [58, 116].

In this thesis, we seek to understand the statistical optimality and provide better algorithms
under aforementioned types of distrbution shift. In fact, we can formulate all of these applications
as certain realization of adversarial distribution shift, defined in detail below.

Under the framework of adversarial distribution shift, we assume that Ptrain and Ptest can be
perturbed slightly, yet adversarially, from the underlying distribution P, and the performance of
the classifier is evaluated as the worst possible outcome from such perturbations. Mathematically,
we assume there exists a collection of distributions Btrain(P ), Btest(P ), both close to P in certain
sense, and Ptrain ∈ Btrain(P ), Ptest ∈ Btest(P ). The learner has access to n i.i.d. training samples

(x1, y1), (x2, y2), · · · , (xn, yn) ∼i.i.d. Pn
train, (1.5)

and the learner’s goal is to find a classifier f̂n : Rd → R based on observed training samples
{(xi, yi)}ni=1, which makes the worst-case test error Ltest as small as possible:

sup
Ptrain∈Btrain(P ),Ptest∈Btest(P )

Ltest(f̂n;Ptest) := E(x,y)∼Ptestl(f̂n(x), y). (1.6)
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We can see that all of the four applications: adversarial examples, outlier contaminated data,
label imbalance and sub-population shift, are realizations of this framework. (For the mathematical
details, we refer the readers to the corresponding chapters.)

Adversarial Examples: The testing distribution Ptest can be written as a sum of a vector
x ∈ P and a perturbation vector δ where ∥δ∥≤ ε.

Outlier contaminated data: The training distribution Ptrain can be written as a mixture
Ptrain = (1− ε)P + εP ′, where P ′ can be arbitrary.

Label Imbalance: Denote the class conditional distributions as P0 := P (X|Y = 0) and
P1 := P (X|Y = 1). We assume that the testing distribution is a balanced mixture of P0 and P1,
while the training distribution can be imbalanced.

Subpopulation Shift: Assume that Ptrain =
∑K

j=1wjPj and Ptest =
∑K

j=1w
′
jPj . We assume

that the testing distribution has the weight w′ satisfying a bounded divergence condition:

Df (w
′||w) =

K∑
j=1

wjf(
w′

j

wj

) ≤ t. (1.7)

1.1 Background and Related Works

1.1.1 Sample Complexity in Adversarial Robustness
Achieving adversarial robustness has been a very challenging task. One of the main obstacle
is sample complexity: training a classifier with adversarial robustness typically requires more
training data. [120] showed that, in the setting where an adversary is present, the generalization
gap is much larger compared to the standard supervised learning setting. They also showed that in
a gaussian mixture model, adversarial robustness provably need more data. Carmon et al. [28],
Stanforth et al. [125], Zhai et al. [161] showed that with the help of unlabeled data, it is possible to
achieve high robust accuracy with the same number of labeled data required for standard learning.
However, it was unclear about the optimal sample complexity in these models.

Another line of research study the sample complexity of adversarially robust learning under the
PAC framework, using extensions of Rademacher complexity or VC dimension, including Attias
et al. [5], Khim and Loh [73], Yin et al. [158], Cullina et al. [33], Montasser et al. [102], Awasthi
et al. [8]. These works analyzed the difference between training and testing robust accuracy (i.e.
the robust generalization gap) over a family of classifiers. Informally, these works show that

the robust generalization gap scales as O(
√

C(F )
n

), where C(F ) is a complexity measure for the
family of classifiers. Again, it was not clear whether the n−1/2 dependency is optimal.

In Chapter 2, we analyze the sample complexity of adversarially robust learning in the same
Gaussian Mixture setting as [120], and provided optimal upper and lower bounds for it.

1.1.2 Subpopulation Shift
Distributionally robust optimization (DRO) [47, 103] is a popular approach to train classifiers
which generalizes under subpopulation shift. distribution in a neighborhood of the observed
training distribution. Generally speaking, DRO trains the model on the worst-off subpopulation,
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and when the subpopulation membership is unknown, it focuses on the worst-off training instances,
that is, the tail performance of the model. Previous work has shown effectiveness of DRO in
subpopulation shift settings, such as algorithmic fairness [58] and class imbalance [155]. However,
while DRO has been effective in small datasets or simple linear classifiers, it suffers from poor
performance and severe instability during training when applied to large scale datasets and deep
neural networks. One of the obstacle is that DRO is sensitive to outliers, as noted by several
previous papers [58, 63, 169]. However, there has been no existing works on how to fix DRO in
presense of outliers.

In Chapter 3, we propose an modification to DRO which provably generalize well even when
the training set has a small fraction of outliers. The algorithm is inspired by the field of robust
statistics, which has been an active field of research in statistics since 1960s [65, 136].

1.1.3 High Dimensional and Overparameterized Models

In statistical learning, it was typically assumed that the number of samples n is much larger than
the dimensionality d (or the number of parameters p). This is due to the fact that the most common

statistical error bounds scales as
√

d
n

or d
n

, which becomes vacuous when d is much larger than n.
However, in recent years, it became a common practice that practitioners train huge deep neural
networks where the number of parameters is much larger than n, and these classifiers with huge
amount of parameters outperformed the ones trained with convention wisdom. This discrepency
got a lot of attention in the learning theory community in recent years.

Specifically, in [14], it was shown that the algorithmic regularization plays an important role
in the overparameterized regime. For overparameterized models, there could be many model
parameters which all minimize the training loss. Traditional analyzes do not distinguish between
those minimizers. However, it was shown that the popular algorithms used in practice, like gradient
descent, favors certain special solutions when there are multiple minimizers. Furthermore, in the
context of deep neural networks, [1, 46] proved that when the neural networks are sufficiently
wide, gradient descent can converge to zero training loss despite the non-convexity of training loss,
and the converged classifier is closely related to Neural Tangent Kernel [67]. In short, the success
of deep neural network is (at least partially) due to the blessing of algorithmic regularization.

However, in the context of subpopulation shift, algorithmic regularization actually brings more
negative effect. This is because the most popular approaches, like DRO or sample reweighting,
are aimed at improving over ERM - however, the algorithmic regularization actually makes them
behave very similar to (or even the same as) ERM and overfit to training data. Sagawa et al.
[117, 119] showed empiricaly that DRO overfits to the training data in subpopulation shift tasks.
However, there hasn’t been theoretical works that proves this observation. In chapter 5, we analyze
the implicit bias of Distributionally Robust Optimization methods for overparameterized and
interpolating models and showed that under various settings, DRO converges to the same solution
of ERM.
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1.2 Organization of this thesis
• In Chapter 2, we provide the first minimax lower bounds for adversarially robust classifica-

tion in a Gaussian setting, along with an algorithm that achieves this lower bound. This is
based on our paper published in ICML 2020.

• In Chapter 3, we introduced the framework of distributional and outlier robust optimization
(DORO), which allowed us to apply distributionally robust optimization to large scale ex-
periments with deep neural networks and outperformed existing methods in sub-population
shift tasks. This is based on our paper published in ICML 2021.

• In chapter 4, we study the problem of imbalanced classification in a high dimensional
Gaussian setting, where the number of samples n scale linearly with dimension d. This
is a regime where classical theory breaks down (due to the requirement of n >> d). Our
analysis reveals a surprising phenomenon: more samples can hurt the performance of M-
estimators, even when popular heuristic of re-weighting is applied. We also derived a new
lower bound which remains tight in the d = Θ(n) regime, showing that a bias-correcting
estimator first proposed in Deev, 1970 is optimal.

• In chapter 5, we analyze the implicit bias of Distributionally Robust Optimization methods
for overparameterized and interpolating models. We show that the implicit bias of gradient-
based DRO leads to the convergence to the same solution of ERM in many settings,
including linear regression and heavily overparameterized neural networks.

• In Chapter 6, we propose a new risk function, the margin sensitive group risk (MSG), as a
risk upper bound for group sensitive generalization error based on margin theory. While this
risk function is non-convex, we designed a alternate minimization algorithm to optimize
MSG, which performs very well in practice. Using MSG to fine-tune the final layer of the
neural network is both effective and efficient. We achieved higher worst group accuracy
comparing with group DRO based methods on several datasets, without retraining the
representation.

1.3 Excluded Research
To keep this thesis concise, a significant portion of this author’s work during Ph.D. has been
excluded from the document. These works include:

• Adversarial examples: [161, 162].
• Subpopulation shift and class imbalance: [155, 165].
• Matrix low rank approximation:[34, 36].
• Nonparametric mixture and graphical models:[4, 35, 168].
• Beyond worst case analysis of algorithms: [2, 19].
• Invariant representation learning: [167].
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Chapter 2

Statistical Minimax Guarantees for
Adversarially Robust Classification

2.1 Introduction

Recent years, machine learning algorithms have revolutionized our life due to their tremendous
success in a variety of different domains such as image classification, natural language process-
ing and strategy games (e.g. Bahdanau et al. [10], Krizhevsky et al. [81], Silver et al. [124]).
These algorithms often achieve extremely accurate performances yet are susceptible to small
perturbations of the inputs. In particular, Szegedy et al. [128] (among others e.g. Goodfellow
et al. [53], Papernot et al. [107]) noticed that small perturbations (nearly imperceptible) to images
could cause neural network classifiers to make wrong predictions with high confidence. While a
growing amount of effort has been made in order to empirically improve the robustness of these
learning algorithms against adversarial attacks, the problems of assessing statistical optimality,
understanding generalization and statistical significance are important but far less understood. In
this paper, we take a step towards this end.

In this work, we consider the adversarially robust classification problem under the Gaussian
mixture model proposed by Schmidt et al. [120]. While the classification for mixture of Gaussian
distributions — which is also referred to as discriminant analysis — has now been standard in
statistics and computer science literature (see, e.g. McLachlan and Peel [96]), it is only until
recently that researchers start to consider what can go wrong in the adversarial scenarios for this
simple problem. It turns out (and as is shown in the sequel) that this simple yet instructive model
demonstrates clear tradeoffs between adversarially robustness and the statistical complexities, and
at the same time, capturing some of the features one would encounter in real applications.

Under minimal assumptions of the adversarial perturbations, we provide optimal minimax
lower bounds, and show that a natural computationally efficient estimator achieves these minimax
lower bounds in terms of the adversarial signal to noise ratio. Putting these together gives a sharp
characterization of the intrinsic hardness of this problem in terms of how far one can push towards
a robust estimator without any essential loss of statistical accuracy. These optimal lower and
upper bounds are useful since that they provide a comprehensive view of the adversarially robust
sample complexity of the conditional Gaussian model, which could then be contrasted with that
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of the rates of the classical conditional Gaussian model.
Despite of an extensive line of work considering this problem, Schmidt et al. [120] and Bhagoji

et al. [15] lie most closely to this paper. In order to obtain tight statistical characterizations of
the risk, they made a number of simplifications, which thus do not directly provide answers to
the minimax sample complexity of the original problem. As one main contrast, they consider
the Bayesian setting where the means of the conditional Gaussians have as prior an independent
standard Gaussian distribution. For other simplifications, Schmidt et al. [120] considered the
spherical models so that the covariance is identity and also made additional simplifications such as
large separation between two Gaussians and an upper bound on the noise level. These additional
assumptions made it hard to compare with that of the adversary-free scenario. More detailed
comparisons and discussions are provided after our main results.

2.1.1 Our contributions
The main contributions of this paper are summarized below, all of which are built upon a careful
analysis of the classification error for linear classifiers.

• We develop the first minimax lower bounds for the classification excess risk in the condi-
tional Gaussian model, stated in Theorem 2.4.1. In terms of the Adversarial Signal-to-Noise
Ratio (AdvSNR), this excess risk scales as ΩP (exp(−(1

8
+ o(1))r2) d

n
) for AdvSNR = r,

dimension d and sample size n.
• We construct a computationally efficient estimator based on the solution of a constrained

quadratic optimization problem that has excess risk of order OP (exp(−(1
8
+ o(1))r2) d

n
).

This result is given in Theorem 2.3.1. Hence, the upper bound is nearly tight (up to lower
order terms in r) with the minimax lower bound in our regime of interest in terms of
AdvSNR r, dimension d and sample size n .

• The recipe provided herein, works for a wide range of adversarial perturbations, generalizing
the result by Schmidt et al. [120] who focus only on the ℓ∞-type perturbations.

• Finally, our results are built upon minimum set of assumptions, without assuming strong
separations between two classes, allowing for unknown and arbitrary covariance structure
and the rates are naturally adaptive to the true signal.

Our findings unveil new insights into the adversarially robust sample complexity of the
conditional Gaussian model which goes beyond of what the current theory has to offer.

2.1.2 Other related works
The conditional Gaussian models or mixture of Gaussians has been studied a lot in statistics and
computer science literature. An incomplete and more recent list includes Azizyan et al. [9], Cai
and Zhang [26], Kim et al. [74], Li et al. [91, 92]. In the context of adversarial robustness, since
the seminal work of [120], there are several other papers that studied the sample complexity issue
in conditional Gaussian models. Bhagoji et al. [15] also provided a slightly improved bound in
the same setting. Carmon et al. [28], Stanforth et al. [125], Zhai et al. [161] showed that with the
help of unlabeled data, it is possible to achieve high robust accuracy with the same number of
labeled data required for standard learning.

8



Another line of research study the sample complexity of adversarially robust learning under the
PAC framework, using extensions of Rademacher complexity or VC dimension, including Attias
et al. [5], Khim and Loh [73], Yin et al. [158], Cullina et al. [33], Montasser et al. [102], Awasthi
et al. [8]. The tradeoff in standard and robust accuracy has been theoretically and empirically
studied in Zhang et al. [166], Suggala et al. [126], Tsipras et al. [135], Raghunathan et al. [114]
and Javanmard et al. [69].

Several previous works analyzed the robustness of specific family of classifiers. The early
work of Xu et al. [152, 153] estabilished the connections between robust optimization for linear
models and certain types of regularization in classification and regression settings. Subsequently,
Xu and Mannor [154] also showed that under certain notion of robustness, robust algorithms can
generalize well. Wang et al. [146] studied the robustness of nearest neighbor classifiers.

From the aspect of computational complexity, some recent works showed that learning a robust
model or even verifying robustness of a given model can be computationally hard, including
[22, 23] and [7, 147].

2.1.3 Notations
For the reader’s convenience, we list here our notational conventions.

For positive semi-definite matrix A, we use ∥x∥A:=
√
xTAx. Let Φ(·) be the CDF of standard

Gaussian distribution N (0, 1) and Φ̄(x) := 1− Φ(x). The notation f(n, d) = O (g(n, d)) means
that there exists a universal constant c > 0 that does not depend on the problem parameters such
as n, d etc, such that |f(n, d)|≤ c|g(n, d)|. Similarly, we define f(n, d) = Ω (g(n, d)) when there
exist constants c1, c2 > 0 such that c1|g(n, d)|≤ |f(n, d)|≤ c2|g(n, d)|. Notation OP ,ΩP are
used if the corresponding relations happen with probability converges to 1 as n → ∞ (see e.g.
Chapter 2 of [137]). We define the ℓp norm ∥x∥p= (

∑d
i=1 x

p
i )

1/p and the corresponding ℓp-ball as
{x ∈ Rd|∥x∥p≤ 1}.

2.2 Preliminaries
This section is devoted to setting up the adversarial robust classification problem that is considered
in this paper. Along the way, we introduce necessary background and state several preliminary
results for future comparisons.

Conditional Gaussian Model We consider the binary classification problem with data pair
(x, y) generated from the mixture of two Gaussian distributions Pµ,Σ,

p(y = 1) =
1

2
, p(y = −1) =

1

2
,

p(x|y) = N (x; yµ,Σ).

Here µ ∈ Rd, Σ ∈ Rd×d,Σ ⪰ 0 denote the mean and covariance of the Gaussian distribution.
Given n training samples (xi, yi) ∼i.i.d. Pµ,Σ for 1 ≤ i ≤ n, the goal is to learn a classifier f̂(x)
for predicting the class of a future data point that is drawn from the same distribution Pµ,Σ.
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Adversarially Robust Classification In the standard setting of classification, the optimal
classifier is defined as the one that which minimizes the population classification error

Rstd
µ,Σ(f) := E(x,y)∼Pµ,Σ

[I(f(x) ̸= y)] .

which we refer to the standard error throughout. In this paper, we consider the classification
problem under conditional Gaussian generative model in presence of an adversary — which is to
say — at the testing stage, an adversary is allowed to add any perturbation δ to the input x, that
has bounded magnitude ∥δ∥B≤ ε. The norm defined here is the standard Minkowski functional
that associated with a convex set [131]. Formally, given a closed and origin-symmetric convex set
B, the Minkowski functional is defined as

∥x∥B:= inf{λ ∈ R>0 : x ∈ λB}.

For instance, when B is the ℓp unit ball, then ∥x∥B boils down to the classical ℓp norm of x. In
practice, the most widely considered norm for the adversary are ℓ∞ and ℓ2 norms.

In the adversarially robust setting, a mapping f : Rd → {−1,+1} classifies a sample (x, y)
correctly, if and only if the prediction agrees with the true label for all possible perturbations of
the adversary. To put it in mathematical form,

ℓB,ε(f ;x, y) := I (∃δ : ∥δ∥B≤ ε, f(x+ δ) ̸= y) .

Our goal is to obtain a classifier with minimal expected robust classification error, i.e. finding
mapping f that minimizes

RB,ε
µ,Σ(f) = E(x,y)∼Pµ,Σ

[ℓB,ε(f ;x, y)]

= E(x,y)∼Pµ,Σ
[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= y)]. (2.1)

The optimal risk is then defined as the classification error regarding the optimal classifier, namely

RB,ε
µ,Σ∗ := RB,ε

µ,Σ(f∗), (2.2)

and accordingly, we define the excess risk of any classifier f as

RB,ε
µ,Σ(f)−RB,ε

µ,Σ∗, (2.3)

which by definition is always non-negative.

Robust Bayes Optimal Classifier To motivate the robust optimal classifiers, we start our
discussion with the optimal risk and optimal classifier in the conditional Gaussian Model. We note
that when ε = 0, i.e. there is no adversary, the classification problem reduces to the well-known
Fisher’s Linear Discriminant Analysis problem, where the Bayes optimal classifier is a simple
linear classifier

fBayes(x) = sign(µTx),
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known as Fisher’s linear discriminant rule (see, e.g. Johnson et al. [71]). The Bayes optimal
classifier minimizes the misclassification rate. However, the classifier that minimizes the robust
classification error is not known until recently, where [15] provided a tight lower bound on the
minimal robust classification error via optimal transport techniques. It is also proved that the
optimal risk can be written as the optimal value of a convex program, and the oracle optimal
classifier is a linear classifier that has a closed form given the solution of the convex program.

We find it is useful to first simplify and restate this result in order to set the stage for our main
result.
Theorem 2.2.1 (Restated and simplified from Bhagoji et al. [15]). Let zΣ(µ) be the solution of
the following convex program:

zΣ(µ) = argmin
∥z∥B≤ε

∥µ− z∥2Σ−1 , (2.4)

where ∥x∥A=
√
xTAx. 1Then, the optimal robust classifier for Pµ,Σ is a linear classifier f∗(x) =

sign(wT
0 x), where

w0 := Σ−1(µ− zΣ(µ)), (2.5)

and the optimal robust classification error is

RB,ε
µ,Σ∗ := Φ̄(∥w0∥Σ) = Φ̄(∥µ− zΣ(µ)∥Σ−1).

We remark that the above mentioned classifier is indeed an oracle classifier since it is constructed
using the unknown parameters µ and Σ.

Adversarial Signal-To-Noise Ratio (AdvSNR). In the context of standard classification in
the conditional Gaussian model, the notion of Signal-To-Noise Ratio was introduced to measure
the effective separation which is defined as the Mahalanobis distance between the means of two
conditional distributions.
Definition 2.2.1 (Standard Signal-To-Noise Ratio). The Standard Signal-To-Noise Ratio (StdSNR)
of conditional Gaussian model Pµ,Σ is defined as

StdSNR(µ,Σ) := 2∥µ∥Σ−1 .

Here, the constant 2 is introduced to be consistent with the literature in Fisher’s LDA, e.g. [26],
where SNR is defined as the Mahalanobis distance between means of two mixture components. We
make the note that the StdSNR measures the difficulty of standard classification in the conditional
Gaussian model, since the minimal misclassification error equals to Φ̄(1

2
StdSNR(µ,Σ)) [26]. In

fact, the misclassification error decreases exponentially as the StdSNR increases.
When it comes to the adversarial setting, StdSNR, however, is no longer a proper metric for

the classification difficulty. Specifically, conditional Gaussian models with the same StdSNR can
have very different levels of hardness in the adversarially robust classification problem. In order
to illustrate this, we demonstrate a simple example.

1Note that this notation is different with [15], where in their notation ∥x∥A=
√
xTA−1x.
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Example 2.2.1. Consider an adversary which is allowed to perturb the input with budget ε = 6√
d

in terms the ℓ∞ norm. Set the covariance Σ to be the identity matrix Id. We examine two
conditional Gaussian models, Pµ1,Σ and Pµ2,Σ with different means µ1 and µ2, where

µ1 =
6√
d
· (1, 1, 1, · · · , 1)T , µ2 = (6, 0, 0, · · · , 0)T .

It is easily seen that ∥µ1∥Σ−1= ∥µ2∥Σ−1= 6, therefore Pµ1,Σ and Pµ2,Σ have the same StdSNR.
However, by Theorem 2.2.1, these two distributions actually exhibit completely different minimal
robust classification error, indeed,

RB,ε
µ1,Σ

= Φ̄(0) =
1

2
, RB,ε

µ2,Σ
= Φ̄(6− 6√

d
).

When the dimension d is sufficiently large, the optimal risk RB,ε
µ2,Σ

approaches Φ̄(6) ≈ 10−8, which
means there exists a very good robust classifier for Pµ2,Σ. In contrast, the optimal risk RB,ε

µ1,Σ
= 1

2
,

i.e. no classifier can achieve a robust accuracy better than a uninformative predictor that classifies
everything as the same class. From this simple example, it is safe to conclude that StdSNR is not
an ideal measurement for the difficulty in the adversarially robust classification problem.

To address the above issue, one need a proper definition of the signal-to-noise-ratio that is
suitable for the adversarial robust setting. Therefore we introduce the Adversarial Signal-To-Noise
Ratio (AdvSNR) for any (B, ε) adversary.
Definition 2.2.2 (Adversarial Signal-To-Noise Ratio). Define the (B, ε) Adversarial Signal-To-
Noise Ratio (AdvSNR) of conditional Gaussian model Pµ,Σ as

AdvSNRB,ε(µ,Σ) := 2∥µ− zΣ(µ)∥Σ−1= 2∥w0∥Σ,

where w0 is defined in (2.5).
As a consequence of Theorem 2.2.1, the minimal robust classification error satisfies

RB,ε
µ,Σ∗ = Φ̄

(
1

2
AdvSNR(µ,Σ)

)
. (2.6)

Consequently, the AdvSNR fully characterizes the difficulty for the adversarially robust setting
as the StdSNR in the standard setting. We also note that when ε = 0, i.e. there is no adversary,
the AdvSNR reduces to the traditional definition of the StdSNR. Thus, AdvSNR is a reasonable
generalization for StdSNR.

Naturally, for every r > 0, one can consider a class of distributions where each of them has
the same (B, ε)-AdvSNR equal to r. Within each class, they should enjoy the same hardness of
the classification problem. Formally, let us define the class DB,ε(r).
Definition 2.2.3. The family of conditional Gaussian models with (B, ε)-AdvSNR value of r, is
defined as:

DB,ε(r) := {(µ,Σ)|AdvSNRB,ε(µ,Σ) = r}.
In the sequel, we develop our minimax lower bounds over these classes of distributions. To

assist our analysis, we also define the family of conditional Gaussian models with a standard SNR
value of r similarly.

12



Definition 2.2.4. The family of conditional Gaussian models with a standard SNR value of r, is
defined as:

Dstd(r) := {(µ,Σ)|StdSNR(µ,Σ) = r}.

In the derivations of our upper bounds and minimax lower bounds, we make the assumption
that the AdvSNR r is strictly bounded away from zero by a universal constant 2, otherwise as a
result of Theorem 2.2.1, no classifier can achieve accuracy much better than 1

2
, the robust risk of a

constant classifier f(x) ≡ 1.

2.3 A Coputationally Efficient Estimator and Risk Upper Bound

Thus far, we introduce the notion of AdvSNR which is known to characterize the minimal robust
classification error as in expression (2.6). However, whether there exists a computation-efficient
classifier that behaves similarly to the oracle best classifier is still unclear.

This section, we aim to answer this question in the affirmative by constructing such a classifier.
For the classifier that we shall define in the sequel, we give an exact characterization of its excess
robust classification error compared with the oracle best classifier. Motivated by the fact that
the optimal robust classifier has the form of (2.5), we design a ”plug-in” estimator for w0. The
estimator is described in the following algorithm.

Algorithm 1 A plug-in estimator of w0

Input: Data pairs {(xi, yi)}ni=1.
Output: ŵ.
Step 1: Define µ̂ and Σ̂ as

µ̂ :=
1

n

n∑
i=1

yixi, Σ̂ :=
1

n

n∑
i=1

xix
T
i − µ̂µ̂T .

Step 2: Solve for ẑ in the following

ẑ := zΣ̂(µ̂) = argmin
∥z∥B≤ε

∥µ̂− z∥2
Σ̂−1 .

Step 3: Define ŵ := Σ̂−1(µ̂− ẑ).

The main theorem of this section is to characterize the excess risk bound of the classifier
induced by ŵ.
Theorem 2.3.1. For the (∥·∥B, ε) adversary, suppose the adversarial signal-to-noise ratio
AdvSNRB,ε(µ,Σ) = r, then the excess risk of fŵ is upper bounded by

RB,ε
µ,Σ(fŵ)−RB,ε

µ,Σ∗ ≤ OP

(
e−

1
8
r2 · r · d

n

)
.

2for instance, r ≥ 10−9
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We take a moment to make several remarks. First recall that the AdvSNR is defined as a
measurement for the hardness of the classification problem. Indeed, as the above result shows, the
excess risk vanishes exponentially with the AdvSNR. Moreover, our estimator is adaptive in the
sense that it does not require knowing any information about the value of r, but the theoretical
guarantee improves automatically with larger AdvSNRs. We also note that the dependency with
sample size n is O

(
1
n

)
, which is the same as the rate of Fisher’s LDA, but faster than the typical

O
(

1√
n

)
rate.

Comparisons to [120] We note that our result generalizes the one showed in [120] in many
different aspects:

1. In terms of the perturbations, Schmidt et al. [120] considered perturbations in ℓ∞ balls,
while ours allow for any convex, closed and origin-symmentric perturbaion set B, including
all ℓp balls for p ≥ 1.

2. Our upper and lower bounds hold for both spherical and non-spherical Gaussians, without
the knowledge of the population covariance structure.

3. We impose no restrictions on the separation between Gaussian distributions. Schmidt et al.
[120] studied a very specific regime, where the budget of ℓ∞ adversary is bounded by 1

4
,

the separation between the means of two Gaussians is
√
d, and the spherical covariance

matrix Σ = σ2I satisfies σ ≤ 1
32
d1/4. This regime is low-noise by design, while our analysis

applies to any regime whenever there exists a classifier with robust accuracy slightly better
than 1

2
.

4. Our estimator is consistent, i.e. the excess risk converges to zero as sample size n → ∞.
The classifier used in Schmidt et al. [120] is actually sign(µ̂Tx). While this classifier
achieve near-optimal classification error in the regime of their interst (the low noise regime
mentioned above with Gaussian prior on µ), the excess risk does not converge to zero in
general. This is due to the fact that the large-sample limit of their classifier is actually
sign(µTx), i.e. the Bayes optimal classifier for the standard setting. As we can see from
Theorem 2.2.1 and a simple simulation in Figure 2.1, the excess risk of their algorithm
saturates at a level above zero, which is very different from the behavior of Algorithm 1.

Proof Sketch: Here we provide a brief sketch of the proof. More details can be found in the
Section 2.6.

Step 1: First order approximation of the risk. Since both the learned fŵ and the optimal
robust classifier f∗ are linear classifiers, we can calculate the robust excess risk in closed form
using Lemma 2.6.2 (also shown in [15]):

RB,ε
µ,Σ(fŵ)−RB,ε

µ,Σ∗ = Φ̄

(
ŵTµ− ε∥ŵ∥B∗

∥ŵ∥Σ

)
− Φ̄(

1

2
r).

By the Taylor expansion of Φ̄(·), we have

Φ̄

(
ŵTµ− ε∥ŵ∥B∗

∥ŵ∥Σ

)
− Φ̄(

1

2
r) ≈ 1√

2π
e−

1
8
r2δn,
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Figure 2.1: A simple simulation on the performance of Algorithm 1 and the algorithm proposed
in [120] is shown here with different values of AdvSNR r. Here we consider a 50-dimensional
example under ℓ∞ adversary with ε = 0.1. The covariance matrix is fixed to be Σ = I , and
the mean parameter µ is set as µ = (r + ε, ε, ε, · · · , ε) for r ∈ {0.5, 1.0, 2.0}. We evaluate the
excess risk RB,ε

µ,Σ(fŵ) − RB,ε
µ,Σ∗ returned by the two algorithms using n i.i.d. training data pairs,

where n ∈ {50, 100, 200, 400, 800, 1600, 3200, 6400, 12800}. For each combination of (n, r), the
averaged excess risk over 10 random repetitions is reported respectively.

where

δn =
1

2
r − ŵTµ− ε∥ŵ∥B∗

∥ŵ∥Σ
.

Therefore, it is sufficient to show that δn = OP (r · d
n
).

Step 2: Controlling δn. To give an upper bound of δn, we will use the fact that sample mean µ̂
and sample covariace Σ̂ converge to µ and Σ respectively. Furthermore, the convergence rate is

well known as OP (
√

d
n
).

From a high level, the upper bound of δn is estabished (see Lemma 2.6.3) by carefully
decomposing δn into four terms and each term is in the form of the differences between population
and sample quantities like Σ vs Σ̂, µ̂ vs µ. Invoking the convergence rates of µ̂ and Σ̂, we are able
to bound each of these terms and complete the proof.

2.4 Minimax Lower Bounds

This section is dedicated to developing minimax excess risk lower bounds for the adversarially
robust classification with conditional Gaussian models.
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As is mentioned above, we consider a class of distributions DB,ε(r) which have the same
AdvSNRB,ε = r, as in Definition 2.2.3. As quantity AdvSNR characterizes the minimal robust
classification error, this class of distributions DB,ε(r) all share the same adversarially robust
classification error. Therefore, our lower bounds here measure the fundamental information-
theoretic limit of this problem, namely, no estimator can achieve an essential improvement in
terms of the adversarial classification error.
Theorem 2.4.1. Let f̂ be any estimator based on n samples (x1, y1), · · · , (xn, yn) ∼i.i.d. Pµ,Σ. We
have the following lower bound on the minimax excess risk:

min
f̂

max
(µ,Σ)∈DB,ε(r)

[RB,ε
µ,Σ(f̂)−RB,ε

µ,Σ∗] ≥ ΩP

(
e−( 1

8
+o(1))r2 d

n

)
.

Putting together with the upper bound in Theorem 2.3.1, this lower bound matches almost
exactly with the upper bound in the regime of interest, therefore they are both optimal up to lower
order terms.

The main technique we used for this lower bound is with a flavor of black-box reduction. In
particular, we show that the minimax robust excess risk in DB,ε(r) cannot be smaller than the
minimax standard excess risk in Dstd(r). In other words,
Lemma 2.4.1. The minimax excess error satisfies

min
f̂

max
(µ,Σ)∈DB,ε(r)

[RB,ε
µ,Σ(f̂)−RB,ε

µ,Σ∗] ≥ min
f̂

max
(µ′,Σ)∈Dstd(r)

[Rstd
µ′,Σ(f̂)−Rstd

µ′,Σ∗].

The right hand side of (2.7), i.e. the minimax rate for standard classification, is well-studied
in the existing literature of Fisher’s LDA. For example, [92] proved the following lower bound:
Theorem 2.4.2 (Theorem 1 of [92]). Suppose the covariance matrix satisfies Σ = I and is known
to the learner, then we have the minimax lower bound

min
f̂

max
(µ′,I)∈Dstd(r)

[Rstd
µ′,Σ(f̂)−Rstd

µ′,Σ∗] ≥ ΩP

(
e−

1
8
r2 · 1

r
· d
n

)
.

Since the parameter space considered in [92] is a subset of Dstd(r), we have (2.7) is also lower
bounded by ΩP

(
e−

1
8
r2 · 1

r
· d
n

)
, therefore proves Theorem 2.4.1.

Comparisons to [120] and [15] To the best of our knowlege, Theorem 2.4.1 is the first minimax-
type lower bound in adversarially robust classification. Existing works [120] and [15] also studied
the sample complexity of robust learning in conditional Gaussian model. However, both of them
simplified the problem and considered the case when µ follows from a prior distribution N (0, I).
This assumption is crucial to their analysis, otherwise the posterior distribution of µ given training
data is intractable. Hence, the technical tool used in prior works is not sufficient for developing
such a minimax lower bound of our interest.

Proof Sketch: Here we also provide a proof sketch to Lemma 2.4.1. More details can be found
in the Section 2.6.
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Step 1: Connecting standard and robust risks In Lemma 2.6.4, we prove that for any classifier
f and a perturbed distribution Pµ′,Σ, where ∥µ′ − µ∥B≤ ε, the robust risk of f on Pµ,Σ is always
lower bounded by the standard risk on Pµ′,Σ.

As a consequence, in Corollary 2.6.1 we show that if we choose µ′ = µ − zΣ(µ), then the
robust excess risk of f on Pµ,Σ is always lower bounded by the standard excess risk on Pµ′,Σ.

Step 2: A mapping fron Dstd(r) to DB,ε(r) To prove Lemma 2.4.1, we only need to answer
the following question: for any (µ′,Σ) ∈ Dstd(r), can we find a (µ,Σ) ∈ DB,ε(r), so that the
robust excess risk on Pµ,Σ is always lower bounded by the standard excess risk on Pµ′,Σ? We give
an affirmative answer to this question. The proof in a combination of Corollary 2.6.1 showed in
Step 1 and an examination of optimality condition in the optimization problem 2.4.

2.5 Comparing Adversarial and Standard Rates

Putting the upper and lower bounds together provides a comprehensive view of the statistical
aspect of the adversarially robust classification. A key question to ask is that: How much does the
classification error blows up as the price of being adversarially robust?

To answer this question, it is sufficient to compare the optimal risks in both cases. Informally,
one can write the logarithm ratio between two rates as

log

(
AdvRate

StdRate

)
≈ 1

2

(
∥µ− zΣ(µ)∥2Σ−1−∥µ∥2Σ−1

)
. (2.7)

From the definition of zΣ(µ) in (2.4), we can see that ∥µ − zΣ(µ)∥2Σ−1≤ ∥µ∥2Σ−1 , hence
adversarial rate is always slower.

To analyze this difference quantitively and interpretably, we consider the special case where
Σ = I and the adversary is ℓ2 bounded. Similar results hold for other adversaries as well. The key
observation is that depending on the different scale of ∥µ∥2 and the budget of perturbation ε, this
difference can be as small as O(1), or as large as Ω(exp(d)).
Proposition 2.5.1. When Σ = I and the adversarial perturbation satisfies ∥δ∥2≤ ε, then

• When ε ≤ O( 1
∥µ∥2 ), the adversarial rate is at most O(1) times slower than the standard

rate.
• When ∥µ∥2≥ Ω(log d) and ε ≥ Ω( log d∥µ∥2 ), the adversarial rate can be slower than the

standard rate by a poly(d) factor.
• When ∥µ∥2≥ Ω(

√
d) and ε ≥ Ω( d

∥µ∥2 ), the adversarial rate can be slower than the standard
rate by an exp(d) factor.

In general, the difference is more significant when ε or ∥µ∥2 is larger. This example demon-
strates a clear tradeoff between being adversarial robust and obtaining the optimal accuracy, in
particular in the case of large perturbations.

17



2.6 Proofs and further details
In this section, we provide detailed proofs for our main results. The proof details of some lemmas
are deferred to our supplementary file.

2.6.1 Proof of Theorem 2.3.1
Before presenting our analysis, we first state a standard lemma about the convergence of empirical
mean and covariance.
Lemma 2.6.1 (Convergence of the empirical mean and covariance (see, e.g. Wainwright [141])).
The convergence rates of the empirical mean µ̂ and Σ̂ to the corresponding ground truth satisfy

∥µ̂− µ∥Σ−1= OP

(√
d

n

)
,

and

∥Σ− 1
2 Σ̂Σ− 1

2 − I∥op= OP

(√
d

n

)
.

The following lemma about the classification error of linear classifiers will also be useful for
us.
Lemma 2.6.2 (Robust classification error of linear classifier, (see e.g. in [15], Appendix B.3)).
For a linear classifier fw(x) = sign(wTx), the robust classification error with a B, ε adversary is

RB,ε
µ,Σ(fw) = Φ̄

(
wTµ− ε∥w∥B∗

∥w∥Σ

)
.

Here, ∥·∥B∗ is the dual norm of ∥·∥B. We use RB,ε
µ,Σ(w) as a shorthand for RB,ε

µ,Σ(fw) when the
meaning is clear from context.

Proof of Theorem 2.3.1. By Lemma 2.6.2 and Taylor expansion of Φ̄(t) around t = 1
2
r = ∥w0∥Σ,

the excess risk can be written as:

RB,ε
µ,Σ(ŵ)−RB,ε

µ,Σ∗ = Φ̄

(
ŵTµ− ε∥ŵ∥B∗

∥ŵ∥Σ

)
− Φ̄(∥w0∥Σ)

=
1√
2π
e−

1
8
r2δn +O(δ2n),

where

δn = ∥w0∥Σ−
ŵTµ− ε∥ŵ∥B∗

∥ŵ∥Σ
.

Therefore, to analyze the convergence rate of the excess risk, we only need to analyze the
convergence rate of δn. We would like to prove that

δn = OP

(
r · d

n

)
.

The following lemma is the key of our analysis: it decomposes δn into four terms, each in the
form of the difference between population and sample quantities like Σ vs Σ̂, µ̂ vs µ.

18



Lemma 2.6.3. We have the following decomposition for δn:

∥ŵ∥Σδn = −1

2
(∥w0∥Σ−∥ŵ∥Σ)2︸ ︷︷ ︸

T1

+wT
0 (ẑ − zΣ(µ))︸ ︷︷ ︸

T2

−1

2
∥ẑ − zΣ(µ)∥2Σ−1︸ ︷︷ ︸

T3

+
1

2
∥(Σ− Σ̂)ŵ + (µ̂− µ)∥2Σ−1︸ ︷︷ ︸

T4

.

where ẑ is the shorthand for ẑ = zΣ̂(µ̂).

The proof of Lemma 2.6.3 is provided in Appendix 2.10. Based on this decomposition, our
goal is to establish the following relations.

T1 ≤ 0, T2 ≤ 0, T3 ≤ 0, T4 ≤ OP

(
r2
d

n

)
.

It is obvious that T1 ≤ 0, T3 ≤ 0. For the second term T2, consider ϕ(z) = ∥µ− z∥2Σ−1 . Since
zΣ(µ) = argmin∥z∥B≤ε∥µ− z∥2Σ−1= argmin∥z∥B≤ε ϕ(z) , by the first order optimality condition,
we have (z′ − zΣ(µ))

T∇ϕ(zΣ(µ)) ≤ 0 holds for any ∥z′∥B≤ ε. Choosing z′ = ẑ gives:

(µ− zΣ(µ))
TΣ−1(ẑ − zΣ(µ)) ≤ 0 ⇔ wT

0 (ẑ − zΣ(µ)) ≤ 0.

Therefore, T2 ≤ 0 as we desired.
The remaining work is to prove that T4 ≤ OP

(
(1 + r)2 d

n

)
. By triangle’s inequality,

∥(Σ− Σ̂)ŵ + (µ̂− µ)∥Σ−1≤ ∥(Σ− Σ̂)ŵ∥Σ−1+∥µ̂− µ∥Σ−1 .

Both terms can be controled using covergence of sample mean and covariance. By Lemma 2.6.1,
one has

∥µ̂− µ∥Σ−1≤ OP

(√
d

n

)
,

and direct calculations give

∥(Σ− Σ̂)ŵ∥Σ−1 = ∥(I − Σ− 1
2 Σ̂Σ− 1

2 )(Σ
1
2 ŵ)∥2

≤ ∥I − Σ− 1
2 Σ̂Σ− 1

2∥op∥Σ
1
2 ŵ∥2

= OP

(√
d

n

)
∥ŵ∥Σ.

Combined pieces together, triangle’s inequality further guarantees that

∥(Σ− Σ̂)ŵ + (µ̂− µ)∥Σ−1≤ OP

(√
d

n
(∥ŵ∥Σ+1)

)
.
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Since µ̂ → µ, Σ̂ → Σ, we have ŵ → w0, therefore ∥ŵ∥Σ= (1 + o(1))∥w0∥Σ= (1
2
+ o(1))r,

hence,

T4 =
1

2
∥(Σ− Σ̂)ŵ + (µ̂− µ)∥2Σ−1

≤ 1

2

(
OP (

√
d

n
)(∥ŵ∥Σ+1)

)2

= OP

(
r2 · d

n

)
.

Putting things together and recall that r = Ω(1), we have

δn = OP

(
r · d

n

)
.

Therefore we have completed the proof.

2.6.2 Proof of Lemma 2.4.1
To prove Lemma 2.4.1, we start with a simple observation: for any classifier f , its standard
error on any perturbed distribution Pµ′,Σ is always a lower bound on robust error of the original
distribution Pµ,Σ, as long as the perturbation has bounded B-norm ∥µ′ − µ∥B≤ ε:
Lemma 2.6.4. For any classifier f : Rd → {−1,+1} and any µ′ ∈ Rd, ∥µ′ − µ∥B≤ ε

RB,ε
µ,Σ(f) ≥ Rstd

µ′,Σ(f).

Proof. By the definition of robust classification error (2.1), we can decompose the error into two
parts: the error on positive class (y = 1) and negative class (y = −1), namely,

RB,ε
µ,Σ(f) =E(x,y)∼Pµ,Σ

[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= y)]

=
1

2
Ex∼N(µ,Σ)[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= 1)] +

1

2
Ex∼N(−µ,Σ)[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= −1)].

(2.8)

By choosing the adversarial perurbation as δ = µ′−µ, we have the error on positive class is lower
bounded by:

Ex∼N(µ,Σ)[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= 1)] ≥Ex∼N(µ,Σ)[I (f(x− µ+ µ′) ̸= 1)]

=Ex′∼N(µ′,Σ)[I (f(x′) ̸= 1)]. (2.9)

Similarly, by choosing δ = µ− µ′, we have the error on negative class is lower bounded by:

Ex∼N(−µ,Σ)[I (∃∥δ∥B≤ ε, f(x+ δ) ̸= 1)] ≥ Ex′∼N(−µ′,Σ)[I (f(x′) ̸= −1)].

Hence, combining (2.8) , (2.9) and (2.10), we get

RB,ε
µ,Σ(f) ≥

1

2
Ex′∼N(µ′,Σ)[I (f(x′) ̸= 1)] +

1

2
Ex′∼N(−µ′,Σ)[I (f(x′) ̸= −1)]

=Rstd
µ′,Σ(f),
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where the last step is by the definition of standard error (2.2). Therefore we have completed the
proof.

Next, we show more connections between robust and standard classification. Namely, the
robust Bayes classifier of Pµ,Σ coincides with the standard Bayes classifier of Pµ−zΣ(µ),Σ, as stated
in the following Lemma:
Lemma 2.6.5. Let zΣ(µ) be the solution of (2.4), then the robust Bayes classifier of Pµ,Σ,
f∗(x) = sign(wT

0 x), satisfies the following conditions:
1. RB,ε

µ,Σ(f∗) = Rstd
µ−zΣ(µ),Σ

(f∗).
2. f∗ is the standard Bayes Optimal Classifier of Pµ−zΣ(µ),Σ.

Proof. Note that by setting ε = 0 in Theorem 2.2.1, we get the characterization of the standard
Bayes error and Bayes optimal classifier for conditional Gaussian models. Applying this result
for the distribution Pµ−zΣ(µ),Σ, we have

1. The standard Bayes Optimal Classifier of Pµ−zΣ(µ),Σ is sign((µ− zΣ(µ))
TΣ−1x), which is

exactly f∗(x).
2. The standard Bayes error of of Pµ−zΣ(µ),Σ is Φ̄(

√
(µ− zΣ(µ))TΣ−1(µ− zΣ(µ))), which is

exactly RB,ε
µ,Σ∗.

Hence we have completed the proof.

As a direct consequence of Lemma 2.6.4 and Lemma 2.6.5, we have the robust excess risk
under Pµ,Σ is lower bounded by the standard excess risk under Pµ−zΣ(µ),Σ:
Corollary 2.6.1. For any classifier f : Rd → {−1,+1},

RB,ε
µ,Σ(f)−RB,ε

µ,Σ∗ ≥ Rstd
µ−zΣ(µ),Σ

(f)−Rstd
µ−zΣ(µ),Σ

(f∗)

= Rstd
µ−zΣ(µ),Σ

(f)−Rstd
µ−zΣ(µ),Σ

∗,

where
Rstd

µ′,Σ∗ = inf
g
Rstd

µ′,Σ(g)

is the optimal standard risk.
The last piece of tool needed for proving Lemma 2.4.1 is a mapping from Dstd(r) to DB,ε(r)

that keeps the excess risk non-decreasing. This is established via the following lemma:
Lemma 2.6.6. For any (µ′,Σ) ∈ Dstd(r), there exists (µ,Σ) ∈ DB,ε(r), such that µ−zΣ(µ) = µ′,
here zΣ(µ) is the optimal solution of (2.4).

Proof. The proof is constructive: we choose µ = µ′ + z̃Σ(µ
′), where z̃Σ(µ′) is the maximizer of

the following convex program (which is maximizing a linear function over a convex set):

z̃Σ(µ
′) = argmax

∥z∥B≤ε

µ′ · Σ−1z. (2.10)

We want to prove that µ− zΣ(µ) = µ′. By our choice of µ, we also have µ = µ′ + z̃Σ(µ
′). Hence,

we only need to prove that
z̃Σ(µ

′) = zΣ(µ).
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In other words, we only need to show that z̃Σ(µ′) is the minimizer of (2.4).
Since (2.4) is a convex program with a strongly convex objective, it suffices to prove the

following first order optimality condition holds for any ∀∥z′∥B≤ ε:

(µ− z̃Σ(µ
′))TΣ−1(z′ − z̃Σ(µ

′)) ≤ 0.

Since µ− z̃Σ(µ
′) = µ′, the inequality is equivalent to:

µ′ · Σ−1z′ ≤ µ′ · Σ−1z̃Σ(µ
′),

which is correct by the definition of z̃Σ(µ′). Hence we have completed the proof.

Equipped with Lemma 2.6.6, now we can prove the important lemma:

Proof of Lemma 2.4.1. By Lemma 2.6.6, for any (µ′,Σ) ∈ Dstd(r), there exists (µ,Σ) ∈ DB,ε(r),
such that µ− zΣ(µ) = µ′, where zΣ(µ) is the optimal solution of (2.4). By Corollary 2.6.1, we
have the following inequality holds for any fixed f̂ :

Rstd
µ′,Σ(f̂)−Rstd

µ′,Σ∗ ≤ Rµ,Σ(f̂)−RB,ε
µ,Σ ∗ .

Therefore,

Rstd
µ′,Σ(f̂)−Rstd

µ′,Σ∗ ≤ max
(µ,Σ)∈DB,ε(r)

[Rµ,Σ(f̂)−RB,ε
µ,Σ∗].

holds for all (µ,Σ) ∈ DB,ε(r), which means

max
(µ,Σ)∈DB,ε(r)

[RB,ε
µ,Σ(f̂)−RB,ε

µ,Σ∗] ≥ max
(µ′,Σ)∈Dstd(r)

[Rstd
µ′,Σ(f̂)−Rstd

µ′,Σ∗].

Then, taking minimum over f̂ on both sides proves the theorem.
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2.7 Proof of Theorem 2.2.1
For completeness, in this section, we present the proof of Theorem 2.2.1. This result follows
from combining Theorem 1, Theorem 2 and Lemma 1 in [15]. The proof is mainly a simplified
presentation of their proofs (e.g. without using the language of optimal transport) which make
some of their results explicit to interpret for our case (e.g. they did not provide the expression for
optimal linear classifier, which is useful to our algorithmic results).

To start with, let us define w1 := w0

∥w0∥Σ
= Σ−1(µ−zΣ(µ))

∥µ−zΣ(µ)∥Σ−1
be the normalized version of w0 so

that ∥w1∥Σ= 1. The following lemma is implicit in [15]:
Lemma 2.7.1. Suppose we define

G(z, w) = wT (µ− z),

then (zΣ(µ), w1) is solution of the following minimax optimization problem:

min
∥z∥B≤ε

max
∥w∥Σ≤1

G(z, w). (2.11)

Proof. We first show that the optimal value of the inner maximization problem can be written as:

max
∥w∥Σ≤1

wT (µ− z) = ∥µ− z∥Σ−1 , (2.12)

and the maximum is achieved when

w =
Σ−1(µ− z)

∥µ− z∥Σ−1

. (2.13)

In fact, for any w such that ∥w∥Σ≤ 1, Cauchy-Schwarz inequality gives

wT (µ− z) = (Σ1/2w)TΣ−1/2(µ− z) ≤ ∥Σ1/2w∥2∥Σ−1/2(µ− z)∥2
= ∥w∥Σ∥µ− z∥Σ−1

≤ ∥µ− z∥Σ−1 .

Furthermore, it is easy to check that the choice w = Σ−1(µ−z)
∥µ−z∥Σ−1

directly yields wT (µ − z) =

∥µ− z∥Σ−1 achieving the equality. Therefore we have proved (2.12) and (2.13).
Using (2.12), the minimax problem (2.11) therefore simplifies to:

min
∥z∥B≤ε

∥µ− z∥Σ−1 .

Recall that we define zΣ(µ) (cf. (2.4)) as

zΣ(µ) = argmin
∥z∥B≤ε

∥µ− z∥2Σ−1 ,

which is the optimal solution to this outer minimization problem. Combining with the optimality
condition for the inner maximization (2.13), we conclude that (zΣ(µ), w1) is solution of the
minimax problem (2.11) and complete the proof.
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Corollary 2.7.1. The following relation is satisfied for quantities w1 and zΣ(µ):

wT
1 µ− ε∥w1∥B∗= ∥µ− zΣ(µ)∥Σ−1 .

Proof. Since G(z, w) is linear in both z and w and both constraint sets {∥z∥B≤ ε} and {∥w∥Σ≤
1} are convex, the minimax problem (2.11) satisfies strong duality by Von Neumann’s Minimax
Theorem. In other words, we can switch the order of the min and max, namely,

min
∥z∥B≤ε

max
∥w∥Σ≤1

G(z, w) = max
∥w∥Σ≤1

min
∥z∥B≤ε

G(z, w),

and (zΣ(µ), w1) is the solution to both sides. By the stationary condition of the minimax problem,

zΣ(µ) = argmin
∥z∥B≤ε

G(z, w1).

By the definition of dual norm, we also have

min
∥z∥B≤ε

G(z, w1) = min
∥z∥B≤ε

wT
1 (µ− z) = wT

1 µ− ε∥w1∥B∗.

Hence,
∥µ− zΣ(µ)∥Σ−1= G(zΣ(µ), w1) = min

∥z∥B≤ε
G(z, w1) = wT

1 µ− ε∥w1∥B∗.

Thus we completed the proof.

Now we are ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The proof can be divided into two parts:

1. Show that fw0 has robust risk RB,ε
µ,Σ(fw0) = Φ̄(∥µ− zΣ(µ)∥Σ−1).

2. Show that no classifier can achieve robust risk smaller than Φ̄(∥µ− zΣ(µ)∥Σ−1).

The first part is a consequence of Corollary 2.7.1. In order to see this, we first note that since w1

is a rescaling of w0, the induced linear classifiers are the same, hence,

RB,ε
µ,Σ(fw0) = RB,ε

µ,Σ(fw1).

By Lemma 2.6.2, the robust risk of fw1 is

RB,ε
µ,Σ(fw1) = Φ̄(

wT
1 µ− ε∥w1∥B∗

∥w1∥Σ
) = Φ̄(wT

1 µ− ε∥w1∥B∗).

By Corollary 2.7.1,
Φ̄(wT

1 µ− ε∥w1∥B∗) = Φ̄(∥µ− zΣ(µ)∥Σ−1).

Therefore, we have proved the first part.
For the second part, we invoke Lemma 2.6.4. By setting µ′ = µ− zΣ(µ) in Lemma 2.6.4, we

have that for any classifier f ,
RB,ε

µ,Σ(f) ≥ Rstd
µ−zΣ(µ),Σ

(f).
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We also know that no classifier can achieve standard risk smaller than the Bayes Risk in Pµ−zΣ(µ),Σ.
Recall that for a conditional Gaussian kmodel Pµ′,Σ, the standard Bayes Risk is Φ̄(∥µ′∥Σ−1). In
other words, for any classifier f , we have

Rstd
µ−zΣ(µ),Σ

(f) ≥ Φ̄(∥µ− zΣ(µ)∥Σ−1).

Combining the two inequalities, we conclude that

RB,ε
µ,Σ(f) ≥ Φ̄(∥µ− zΣ(µ)∥Σ−1) (2.14)

holds for all classifiers f . Therefore, we prove the second part and thus complete the proof.

2.8 Proof of Proposition 2.5.1
Proof of Proposition 2.5.1. Recall that the setting of interest here is Σ = I and ∥·∥B corresponds
to the ℓ2 norm. In this setting, we show that zΣ(µ) has a simplified form. In fact, directly invoking

zΣ(µ) = argmin
∥z∥B≤ε

∥µ− z∥2Σ−1= argmin
∥z∥2≤ε

∥µ− z∥22,

gives zΣ(µ) = min(ε, ∥µ∥2) µ
∥µ∥2 , and

µ− zΣ(µ) = max(0,
∥µ∥2−ε
∥µ∥2

)µ.

From this expression, we can see that when ε > ∥µ∥2, the Adversarial Signal-to-Noise Ratio of
Pµ,Σ is 2∥µ − zΣ(µ)∥2= 0. Hence, no classifier can achieve accuracy better than 1

2
. Below we

only consider the case when ε < ∥µ∥2.
Recall that we want to compare the minimax rate in adversarial and standard setting. As

we showed earlier, the minimax rates are O(exp(−1
2
∥µ − zΣ(µ)∥22) dn) and O(exp(−1

2
∥µ∥22) dn)

respectively. The ratio between the two quantities equals to:

exp(−1
2
∥µ− zΣ(µ)∥22) dn

exp(−1
2
∥µ− zΣ(µ)∥22) dn

= exp(
1

2
((∥µ∥2−ε)2 − ∥µ∥22)) = exp(ε∥µ∥2−

1

2
ε2). (2.15)

Since 0 ≤ ε < ∥µ∥2, we have

ε∥µ∥2−
1

2
ε2 = ε(∥µ∥2−

1

2
ε) ∈

[
1

2
ε∥µ∥2, ε∥µ∥2

]
.

Equipped with the above relation, we are in the position of establishing Proposition 2.5.1.

• When ε ≤ O( 1
∥µ∥2 ), one has

ε∥µ∥2−
1

2
ε2 ≤ ε∥µ∥2≤ O(1),

thereby, the adversarial rate is at most exp(O(1)) = O(1) times slower than the standard
rate.
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• When ∥µ∥2≥ Ω(log d) and ε ≥ Ω( log d∥µ∥2 ), we conclude

ε∥µ∥2−
1

2
ε2 ≥ 1

2
ε∥µ∥2≥ Ω(log d),

the adversarial rate can be slower than the standard rate by an Ω(exp(log d)) = Ω(poly(d))
factor.

• When ∥µ∥2≥ Ω(
√
d) and ε ≥ Ω( d

∥µ∥2 ), it is guaranteed that

ε∥µ∥2−
1

2
ε2 ≥ 1

2
ε∥µ∥2≥ Ω(d),

therefore, the adversarial rate can be slower than the standard rate by an Ω(exp(d)) factor.

2.9 Improved analysis when Σ is known

Meticulous readers may find a tiny gap between our bounds: the upper bound in Theorem 2.3.1 is
OP

(
e−

1
8
r2 · r · d

n

)
, while the lower bound above gives ΩP

(
e−

1
8
r2 · 1

r
· d
n

)
. Since the dominant

factor is e−
1
8
r2 and r = Ω(1), this difference is only in a lower order term. This gap is due to the

fact that [92] assumed the covariance matrix Σ is known to the learner. In this section, we will
prove that under the same assumption, there is a modified version of Algorithm 1 that achieves
the truly optimal rate which matches the lower bound even with lower order term in r.

The only modification we made in Algorithm 1 is to replace the sample covariance matrix by
the true covariance Σ. The modified algorithm is presented below in Algorithm 3.

Algorithm 3 An improved estimator for w0 when Σ is known

Input: Data pairs {(xi, yi)}ni=1.
Output: ŵ.
Step 1: Define µ̂ and Σ̂ as

µ̂ :=
1

n

n∑
i=1

yixi, Σ̂ := Σ.

Step 2: Solve for ẑ in the following

ẑ := zΣ̂(µ̂) = argmin
∥z∥B≤ε

∥µ̂− z∥2
Σ̂−1 .

Step 3: Define ŵ := Σ̂−1(µ̂− ẑ).
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Theorem 2.9.1. For the (∥·∥B, ε) adversary, suppose the adversarial signal-to-noise ratio
AdvSNRB,ε(µ,Σ) = r, then the excess risk of fŵ defined in Algorithm 3 is upper bounded by

RB,ε
µ,Σ(fŵ)−RB,ε

µ,Σ∗ ≤ OP

(
e−

1
8
r2 · 1

r
· d
n

)
.

This improved rate can be proved by some simple modification to the proof of Theorem 2.3.1.

Proof. We demonstrate that in this setting, there is a stronger upper bound δn = OP

(
1
r
· d
n

)
and

the rest of proof follows the same as that of Theorem 2.3.1. To this end, let us recall that by
Lemma 2.6.3 and one has the decomposition,

∥ŵ∥Σδn = −1

2
(∥w0∥Σ−∥ŵ∥Σ)2︸ ︷︷ ︸

T1

+wT
0 (ẑ − zΣ(µ))︸ ︷︷ ︸

T2

−1

2
∥ẑ − zΣ(µ)∥2Σ−1︸ ︷︷ ︸

T3

+
1

2
∥(Σ− Σ̂)ŵ + (µ̂− µ)∥2Σ−1︸ ︷︷ ︸

T4

.

Similar to the proof of Theorem 2.3.1, we shall establish that

T1 ≤ 0, T2 ≤ 0, T3 ≤ 0, T4 ≤ OP

(
d

n

)
.

Note that the only difference here is that we can now give a tighter upper bound for T4: OP

(
d
n

)
instead of OP

(
r2 d

n

)
.

Since Σ = Σ̂, by Lemma 2.6.1, we have

T4 =
1

2
∥(Σ− Σ̂)ŵ + (µ̂− µ)∥2Σ−1=

1

2
∥(µ̂− µ)∥2Σ−1= OP

(
d

n

)
. (2.16)

Hence, we have proved that T4 = OP

(
d
n

)
, and

δn = OP

(
1

r
· d
n

)
.

Therefore we have completed the proof.

2.10 Proof of Lemma 2.6.3
Proof of Lemma 2.6.3. Recall that our goal is to establish

∥ŵ∥Σδn = ∥ŵ∥Σ∥w0∥Σ−
(
ŵTµ− ε∥ŵ∥B∗

)
= −1

2
(∥w0∥Σ−∥ŵ∥Σ)2︸ ︷︷ ︸

T1

+wT
0 (ẑ − zΣ(µ))︸ ︷︷ ︸

T2

−1

2
∥ẑ − zΣ(µ)∥2Σ−1︸ ︷︷ ︸

T3

+
1

2
∥(Σ− Σ̂)ŵ + (µ̂− µ)∥2Σ−1︸ ︷︷ ︸

T4

.

(2.17)
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Since ŵ = Σ̂−1(µ̂ − zΣ̂(µ̂)), by Theorem 2.2.1, fŵ is the optimal robust classifier for Pµ̂,Σ̂,
therefore, one can observe

ŵT µ̂− ε∥ŵ∥B∗

∥ŵ∥Σ̂
= ∥ŵ∥Σ̂.

Hence, direct calculations yield

∥ŵ∥Σδn = ∥w0∥Σ∥ŵ∥Σ−∥ŵ∥2
Σ̂
−ŵT (µ− µ̂)

= ∥w0∥Σ∥ŵ∥Σ−(µ̂− ẑ)T Σ̂−1(µ̂− ẑ) + (µ̂− ẑ)T Σ̂−1(µ̂− µ)

= ∥w0∥Σ∥ŵ∥Σ+ŵT (ẑ − µ).

Now by use of the relation µ = Σw0 + zΣ(µ), we can further obtain

∥ŵ∥Σδn = ∥w0∥Σ∥ŵ∥Σ+ŵT (ẑ − Σw0 − zΣ(µ))

= ∥w0∥Σ∥ŵ∥Σ−ŵTΣw0 + ŵT (ẑ − zΣ(µ))

= −1

2
(∥w0∥Σ−∥ŵ∥Σ)2 +

1

2
∥w0∥2Σ+

1

2
∥ŵ∥2Σ−ŵTΣw0 + ŵT (ẑ − zΣ(µ))

= T1 +
1

2
(ŵ − w0)

TΣ(ŵ − w0) + wT
0 (ẑ − zΣ(µ)) + (ŵ − w0)

T (ẑ − zΣ(µ))

= T1 +
1

2
(ŵ − w0)

TΣ(ŵ − w0) + T2 + (ŵ − w0)
T (ẑ − zΣ(µ)),

where the last equality invokes the definitions in expression (2.17). To finish the proof, we make
the observation about Σ(ŵ − w0) in the following

Σ(ŵ − w0) = (Σ− Σ̂)ŵ + (Σ̂ŵ − Σw0)

= (Σ− Σ̂)ŵ︸ ︷︷ ︸
U1

+(µ̂− µ)︸ ︷︷ ︸
U2

− (ẑ − zΣ(µ))︸ ︷︷ ︸
U3

:= U1 + U2 − U3.

Therefore, putting everything together and rearranging terms, it is guaranteed that

∥ŵ∥Σδn = T1 + T2 +
1

2
(ŵ − w0)

TΣ(ŵ − w0) + (ŵ − w0)
T (ẑ − zΣ(µ))

= T1 + T2 +
1

2
(Σ(ŵ − w0))

TΣ−1(Σ(ŵ − w0)) + (Σ(ŵ − w0))
TΣ−1(ẑ − zΣ(µ))

= T1 + T2 +
1

2
(U1 + U2 − U3)

TΣ−1(U1 + U2 − U3) + (U1 + U2 − U3)Σ
−1U3

= T1 + T2 +
1

2
(U1 + U2 − U3)

TΣ−1(U1 + U2 + U3)

= T1 + T2 −
1

2
UT
3 Σ

−1U3 +
1

2
(U1 + U2)

TΣ−1(U1 + U2)

= T1 + T2 + T3 + T4.

Thus we have finished the proof.
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Chapter 3

Distributional and Outlier Robust
Optimization

3.1 Introduction

Many machine learning tasks require models to perform well under distributional shift, where
the training and the testing data distributions are different. One type of distributional shift that
arouses great research interest is subpopulation shift, where the testing distribution is a specific or
the worst-case subpopulation of the training distribution. A wide range of tasks can be modeled as
subpopulation shift problems, such as learning for algorithmic fairness [12, 48] where we want to
test model’s performance on key demographic subpopulations, and learning with class imbalance
[52, 68] where we train a classifier on an imbalanced dataset with some minority classes having
much fewer samples than the others, and we want to maximize the classifier’s accuracy on the
minority classes instead of its overall average accuracy.

Distributionally robust optimization (DRO) [47, 103] refers to a family of learning algorithms
that minimize the model’s loss over the worst-case distribution in a neighborhood of the observed
training distribution. Generally speaking, DRO trains the model on the worst-off subpopulation,
and when the subpopulation membership is unknown, it focuses on the worst-off training instances,
that is, the tail performance of the model. Previous work has shown effectiveness of DRO in
subpopulation shift settings, such as algorithmic fairness [58] and class imbalance [155].

However, in our empirical investigations, when we apply DRO to real tasks on modern datasets,
we observe that DRO suffers from poor performance and severe instability during training. The
issue that DRO is sensitive to outliers has been raised by several previous papers [58, 63, 169] .
In this paper, we study the cause of these problems with DRO, and develop approaches to address
them.

In particular, we identify and study one key factor that we find directly leads to DRO’s sub-
optimal behavior: DRO’s sensitivity to outliers that widely exist in modern datasets. In general,
DRO maximizes a model’s tail performance by putting more weights on the “harder” instances,
i.e. those which incur higher losses during training. On the one hand, this allows DRO to focus
its attention on worst-off sub-populations. But on the other hand, since outliers are intuitively
“hard” instances that incur higher losses than inliers, DRO is prone to assign large weights to
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Figure 3.1: DORO avoids overfitting to outliers.

outliers, resulting in both a drop in performance, and training instability. To provide empirical
insights into how outliers affect DRO, in Section 3.3 we conducted experiments examining how
the performance of DRO changes as we removed or added outliers to the dataset. The results of
these experiments indicate that outliers bring about the observed bad performance of DRO. Thus,
it is crucial to first enhance the robustness of DRO to outliers before applying it to real-world
applications.

To this end, we propose DORO, an outlier robust refinement of DRO which takes inspiration
from robust statistics. At the core of this approach is a refined risk function which prevents DRO
from overfitting to potential outliers. Intuitively speaking, the new risk function adaptively filters
out a small fraction of data with high risk during training, which is potentially caused by outliers.
Figure 3.1 illustrates the difference between DRO and DORO. In Section 3.4 we implement
DORO for the Cressie-Read family of Rényi divergence, and for our theoretical and empirical
study we primarily focus on CVaR-DORO and χ2-DORO. In Section 3.5 we provide theoretical
results guaranteeing that DORO can effectively handle subpopulation shift in the presence of
outliers. Then, in Section 3.6 we empirically demonstrate that DORO improves the performance
and stability of DRO. We conduct large-scale experiments on three datasets: the tabular dataset
COMPAS, the vision dataset CelebA, and the language dataset CivilComments-Wilds.

Contributions Our contributions are summarized below:
• We demonstrate that the sensitivity of DRO to outliers is a direct cause of the irregular

behavior of DRO with some intriguing experimental results in Section 3.3.
• We propose and implement DORO as an outlier robust refinement of DRO in Section 3.4.

Then, in Section 3.5 we provide theoretical guarantees for DORO.
• We conduct large-scale experiments in Section 3.6 and empirically show that DORO im-

proves the performance and stability of DRO. We also analyze the effect of hyperparameters
on DRO and DORO.

Related Work Distributional shift naturally arises in many machine learning applications and
has been widely studied in statistics, applied probability and optimization [16, 64, 113, 123].
One common type of distributional shift is domain generalization where the training and testing
distributions consist of distinct domains, and relevant topics include domain adaptation [108, 145]
and transfer learning [106, 129]. Another common type of distributional shift studied in this
paper is subpopulation shift, where the two distributions consist of the same group of domains.
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Subpopulation shift is closely related to algorithmic fairness and class imbalance. For algorithmic
fairness, a number of fairness notions have been proposed, such as individual fairness [48, 160],
group fairness [57, 159], counterfactual fairness [83] and Rawlsian Max-Min fairness [58, 116].
The setting of subpopulation shift is most closely related to the Rawlsian Max-Min fairness notion.
Several recent papers [58, 104, 155] proposed using DRO to deal with subpopulation shift, but
it was also observed that DRO was prone to overfit in practice [117, 119]. [58] raised the open
question whether it is possible to design algorithms both fair to unknown latent subpopulations
and robust to outliers, and this work answers this question positively.

Outlier robust estimation is a classic problem in statistics starting with the pioneering works of
[65, 136]. Recent works in statistics and machine learning [42, 43, 85, 110] provided efficiently
computable outlier-robust estimators for high-dimensional mean estimation with corresponding
error guarantees. Outliers have a greater effect on the performance of DRO than ERM [63], due
to its focus on the tail performance, so removing this negative impact of outliers is crucial for the
success of DRO in its real-world applications. One closely related recent work is [88], and DORO
can be viewed as a combination of risk-averse and risk-seeking methods discussed in this paper.

3.2 Background

This section provides the necessary background of subpopulation shift and DRO.

3.2.1 Subpopulation Shift

A machine learning task with subpopulation shift requires a model that performs well on the
data distribution of each subpopulation. Let the input space be X and the label space be Y .
We are given a training set containing m samples i.i.d. sampled from some data distribution P
over X × Y . There are K predefined domains (subpopulations) D1, · · · ,DK , each of which is a
subset of X × Y . For example, in an algorithmic fairness task, domains are demographic groups
defined by a number of protected features such as race and sex. Let Pk(z) = P (z|z ∈ Dk) be
the conditional training distribution over Dk, where z = (x, y). The goal is to train a model
fθ : X → Y parameterized by θ ∈ Θ that performs well over every Pk. Denote the expected
risk over P by R(θ;P ) = EZ∼P [ℓ(θ;Z)] where ℓ(θ; z) is a measurable loss function. Then the
expected risk over Pk is Rk(θ;P ) = EZ∼Pk

[ℓ(θ;Z)]. The objective is to minimize the worst-case
risk defined as

Rmax(θ;P ) = max
k=1,···,K

Rk(θ;P ) (3.1)

Several different settings were studied by previous work:

Overlapping vs Non-overlapping The overlapping setting allows the domains to overlap with
each other while non-overlapping does not. For example, suppose we have two protected features:
race (White and Others) and sex (Male and Female). Under either setting we will have four
domains. Under the overlapping setting we will have White, Others, Male and Female, while
under the non-overlapping setting we will have White Male, White Female, Others Male and
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Others Female. All the experiments in this work are conducted under the overlapping setting.
Each instance may belong to zero, one or more domains.

Domain-Aware vs Domain-Oblivious Some previous work has assumed that domain mem-
berships of instances are known at least during training. This is called the domain-aware setting.
However, [58] argue that in many real applications, domain memberships are unknown during
training, either because it is hard to extract the domain information from the input, or because
it is hard to identify all protected features. Thus, a line of recent work [58, 84] studies the
domain-oblivious setting, in which the training algorithm does not know the domain membership
of any instance (even the number of domains K is unknown). In this work, we focus on the
domain-oblivious setting.

3.2.2 Distributionally Robust Optimization (DRO)
Under the domain-oblivious setting, we cannot compute the worst-case risk since we have no
access to D1, · · · ,DK . In this case, the framework of DRO instead maximizes the performance
over the worst-off subpopulation in general. Specifically, given some divergence D between
distributions, DRO aims to minimize the expected risk over the worst-case distribution Q (that
is absolutely continuous with respect to training distribution P , so that Q ≪ P ) in a ball w.r.t.
divergence D around the training distribution P .

Thus, while empirical risk minimization (ERM) algorithm minimizes the expected risk
R(θ;P ), DRO minimizes the expected DRO risk defined as:

RD,ρ(θ;P ) = sup
Q≪P

{EQ[ℓ(θ;Z)] : D(Q ∥ P ) ≤ ρ} (3.2)

for some ρ > 0. Different divergence functions D derive different DRO risks. In this work, we
focus on the Cressie-Read family of Rényi divergence [32] formulated as:

Dβ(Q ∥ P ) =
∫
fβ(

dQ

dP
)dP (3.3)

where β > 1, and fβ(t) is defined as:

fβ(t) =
1

β(β − 1)

(
tβ − βt+ β − 1

)
(3.4)

An advantage of the Cressie-Read family is that it has the following convenient dual character-
ization (see Lemma 1 of [47] for the proof):

RDβ ,ρ(θ;P ) = inf
η∈R

{
cβ(ρ)EP [(l(θ;Z)− η)β∗

+ ]
1
β∗ + η

}
(3.5)

where β∗ = β
β−1

, and cβ(ρ) = (1 + β(β − 1)ρ)
1
β .

The following proposition shows that DRO can handle subpopulation shift under the domain-
oblivious setting. The only information DRO needs during training is α, the ratio between the
size of the smallest domain and the size of the population. See the proof in Appendix 3.8.1.
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Proposition 1. Let α = mink=1,···,K P (Dk) ≤ exp(−1) ≈ 36.8% be the minimal group size, and
define ρ = fβ(

1
α
), then we have

Rmax(θ;P ) ≤ RDβ ,ρ(θ;P ). (3.6)

While the Cressie-Read formulation only defines the f -divergence for finite β ∈ (1,+∞), it
can be shown that the dual characterization is valid for β = ∞ as well, for which the DORO risk
becomes the well-known conditional value-at-risk (CVaR) (See e.g. [47], Example 3). In our
theoretical analysis and experiments, we delve into two most widely-used sepecial cases of the
Cressie-Read family: (i) β = ∞, which corresponds to CVaR; (ii) β = 2, which corresponds to
χ2-DRO risk used in [58]. Table 3.1 summarizes the relevant quatities in these two special cases.
Table 3.1: CVaR and χ2-DRO. α is the ratio between the size of the smallest domain and the size
of the population.

CVaR χ2-DRO

β ∞ 2
β∗ 1 2
ρ − log(α) 1

2(
1
α − 1)2

cβ(ρ) α−1
√
1 + ( 1α − 1)2

Dβ(Q ∥ P ) sup log dQ
dP

1
2

∫
(dQ/dP − 1)2dP

DRO Risk /home/chen/Dropbox/App/Overleaf/ICML′21 : DRORobusttoOutliers/mathcommands.texα(θ;P ) RDχ2 ,ρ(θ;P )

For example, the dual form of CVaR is

CVaRα(θ;P ) = inf
η∈R

{α−1EP [(ℓ(θ;Z)− η)+] + η} (3.7)

It is easy to see that the optimal η of (3.7) is the α-quantile of l(θ;Z) defined as

qθ(α) = inf
q
{PZ∼P (ℓ(θ;Z) > q) ≤ α} (3.8)

The dual form (3.7) shows that CVaR in effect minimizes the expected risk on the worst α
portion of the training data.

The following corollary of Proposition 1 shows that both CVaRα(θ;P ) and RDχ2 ,ρ(θ;P ) are
upper bounds of Rmax(θ;P ), so that minimizing either of them guarantees a small worst-case risk
(see the proof in Appendix 3.8.2):
Corollary 2. Let α = mink=1,···,K P (Dk) be the minimal group size, and ρ = 1

2
( 1
α
− 1)2. Then

Rmax(θ;P ) ≤ CVaRα(θ;P ) ≤ RDχ2 ,ρ(θ;P ) (3.9)

3.3 DRO is Sensitive to Outliers
Although the construction of DRO aims to be effective against subpopulation shift as detailed
in the previous section, when applied to real tasks DRO is found to have poor and unstable
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performance. After some examination, we pinpoint one direct cause of this phenomenon: the
vulnerablity of DRO to outliers that widely exist in modern datasets. In this section, we will
provide some intriguing experimental results to show that:

1. DRO methods have poor and unstable performances.

2. Sensitivity to outliers is a direct cause of DRO’s poor performance. To support this
argument, we show that DRO becomes good and stable on a “clean” dataset constructed
by removing the outliers from the original dataset, and new outliers added to this “clean”
dataset compromise DRO’s performance and stability.

We conduct experiments on COMPAS [86], a recidivism prediction dataset with 5049 training
instances (after preprocessing and train-test splitting). We select two features as protected features:
race and sex. The two protected features define four overlapping demographic groups: White,
Others, Male and Female. A two-layer feed-forward neural network with ReLU activations is
used as the classification model. We train three models on this dataset with ERM, CVaR and
χ2-DRO. Then we remove the outliers from the training set using the following procedure: We
first train a model with ERM, and then remove 200 training instances that incur the highest loss
on this model, as outliers are likely to have poorer fit. Then we reinitialize the model, train it on
the new training set with ERM, and remove 200 more instances with the highest loss from the
new training set. This process is repeated 5 times, so that 1000 training instances are removed
and we get a new training set with 4049 instances. Note that this procedure is not guaranteed to
remove all outliers and retain all inliers, but is sufficient for the purposes of our demonstration.
We then run the three algorithms again on this same “clean” training set.

We plot the test accuracies (average and worst across four demographic groups) of the models
achieved by the three methods in Figure 3.2. The first row shows the results on the original dataset,
and the second row shows the results on the “clean” dataset with the outliers removed. We can see
that in the first row, for both average and worst-case test accuracies, the DRO curves are below
the ERM curves and jumping up and down, which implies that DRO has lower performance
than ERM and is very unstable on the original dataset. However, the third row shows that DRO
becomes good and stable after the outliers are removed. For comparison, in the second row we
plot the train/test loss on the original dataset of the three methods (for ERM we plot the ERM loss,
and for DRO we plot the corresponding DRO loss). The train and test losses of DRO descend
steadily while the average and worst-case accuracies jump up and down, which indicates that the
instability is not an optimization issue, but rather stems from the existence of outliers. It should
also be emphasized that these outliers naturally exist in the original dataset since no outliers have
been manually added yet.

To further substantiate our conclusion, we consider another common source of outliers:
incorrect labels. We randomly flip 20% of the labels of the “clean” COMPAS dataset with
the outliers removed, and run the three training methods again. The results are plotted in the
fourth row of Figure 3.2, which shows that while the label noise just slightly influences ERM, it
significantly downgrades the performance and stability of the two DRO methods.

Likewise, [63] also found in their experiments that DRO had even lower performance than
ERM (see their Table 1). Essentially, DRO methods minimize the expected risk on the worst
portion of the training data, which contains a higher density of outliers than the whole population.
Training on these instances naturally result in the observed bad performance of DRO.
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In the next section we will propose DORO as a solution to the problem revealed by the
experiments in this section. We plot the performances of the two DORO algorithms we implement
in the last row of Figure 3.2, which compared to the first row shows that DORO improves the
performance and stability of DRO on the original dataset.

3.4 DORO
Problem Setting The goal is to train a model on a dataset with outliers to achieve high tail
performance on the clean underlying data distribution P . Denote the observed contaminated
training distribution by ptrain. We formulate ptrain with Huber’s ϵ-contamination model [65], in
which the training instances are i.i.d. sampled from

ptrain = (1− ϵ)P + ϵP̃ (3.10)

where P̃ is an arbitrary outlier distribution, and 0 < ϵ < 1
2

is the noise level. The objective is to
minimize Rmax(θ;P ), the worst-case risk over the clean distribution P .

DORO Risk We propose to minimize the following expected ϵ-DORO risk:

RD,ρ,ϵ(θ; ptrain) =

inf
P ′
{RD,ρ(θ;P

′) : ∃P̃ ′ s.t. ptrain = (1− ϵ)P ′ + ϵP̃ ′} (3.11)

The DORO risk is motivated by the following intuition: we would like the algorithm to avoid
the “hardest” instances that are likely to be outliers, and the optimal P ′ of (3.11) consists of
the “easiest” (1 − ϵ)-portion of the training set given the current model parameters θ. The ϵ
in DORO is a hyperparameter selected by the user since the real noise level of the dataset is
unknown. Let the real noise level of ptrain be ϵ0. For any ϵ ≥ ϵ0, there exist P̃0 and P̃ such that
ptrain = (1− ϵ0)P + ϵ0P̃0 = (1− ϵ)P + ϵP̃ , so we only need to make sure that ϵ is not less than
the real noise level.

The following proposition provides the formula for computing the DORO risk for the Cressie-
Read family (See the proof in Appendix 3.8.3):
Proposition 3. Let ℓ be a continuous non-negative loss function, and suppose ptrain is a continuous
distribution. Then the formula for computing the DORO risk with Dβ is

RDβ ,ρ,ϵ(θ; ptrain) =

inf
η
{cβ(ρ)EZ∼ptrain [(ℓ(θ;Z)− η)β∗

+ |

PZ′∼ptrain(ℓ(θ;Z
′) > ℓ(θ;Z)) ≥ ϵ]

1
β∗ + η}

(3.12)

Remark In Proposition 3, we assume the continuity of ptrain to keep the formula simple. For
an arbitrary distribution ptrain, we can obtain a similar formula, but the formula is much more
complex than (3.12). The general formula can be found in Appendix 3.8.3.

With this formula, we develop Algorithm 4. In the algorithm, we first order the batch samples
according to their training losses, then find the optimal η∗ using some numerical method (we use
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Algorithm 4 DORO with Dβ Divergence

Input: Batch size n, outlier fraction ϵ, minimal group size α
for each iteration do

Sample a batch z1, · · · , zn ∼ ptrain
Compute losses: ℓi = ℓ(θ, zi) for i = 1, · · · , n
Sort the losses: ℓi1 ≥ · · · ≥ ℓin
Find η∗ = argminη F (θ, η) where F (θ, η) = cβ(ρ) · [ 1

n−⌊ϵn⌋
∑n

j=⌊ϵn⌋+1(ℓ(θ; zij)−η)
β∗
+ ]1/β∗+

η
Update θ by one step to minimize ℓ(θ) = F (θ, η∗) with some gradient method

end for

Brent’s method [21] in our implementation), and finally update θ with some gradient method.
Note that generally it is difficult to find the minimizer of the DORO risk for neural networks, and
our algorithm is inspired by the ITLM algorithm [122], in which they proved that the optimization
converges to ground truth for a few simple problems. Particularly, using the quantities listed
in Table 3.1, we can implement CVaR-DORO and χ2-DORO. In the sections that follow, we
will focus on the performances of CVaR-DORO and χ2-DORO in particular. We denote the
CVaR-DORO risk by CVaRα,ϵ(θ; ptrain), and the χ2-DORO risk by RDχ2 ,ρ,ϵ(θ; ptrain).

3.5 Theoretical Analysis
Having the DORO algorithms implemented, in this section we prove that DORO can effectively
handle subpopulation shift in the presence of outliers. The proofs to the results in this section can
be found in Appendix 3.8.4. We summarize our theoretical results as follows:

1. The minimizer of DORO over the contaminated distribution ptrain achieves a DRO risk close
to the minimum over the clean distribution P (Theorem 5). We complement our analysis
with information-theoretical lower bounds (Theorem 6) implying that the optimality gaps
given by Theorem 5 are optimal.

2. The worst-case risk Rmax over P is upper bounded by the DORO risk over ptrain times a
constant factor (Theorem 7). This result parallels Corollary 2 in the uncontaminated setting
and guarantees that minimizing the DORO risk over ptrain effectively minimizes Rmax over
P .

Our results are based on the following lemma which lower bounds the DORO risk over ptrain
by the infimum of the original DRO risk in a TV-ball centered at P :
Lemma 4. Let TV(P,Q) = 1

2

∫
X×Y |P (z)−Q(z)|dz be the total variation, and ptrain be defined

by (3.10). Then the DORO risk can be lower bounded by:

RD,ρ,ϵ(θ; ptrain) ≥

inf
P ′′

{RD,ρ(θ;P
′′) : TV(P, P ′′) ≤ ϵ

1− ϵ
}

(3.13)

The main results we are about to present only require very mild assumptions. For the first
result, we assume that ℓ has a bounded (2k)-th moment on P , a standard assumption in the robust
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statistics literature:
Theorem 5. Let ptrain be defined by (3.10). Denote the minimizer of the DORO risk by θ̂. If ℓ is
non-negative, and ℓ(θ̂;Z) has a bounded (2k)-th moment: EZ∼P [l(θ̂;Z)

2k] = σ2k
2k < +∞, then

we have:
CVaRα(θ̂;P )− inf

θ
CVaRα(θ;P ) ≤ Oα,k(1)σ2kϵ

1− 1
2k (3.14)

and if k > 1, then we have:

RDχ2 ,ρ(θ̂;P )− inf
θ
RDχ2 ,ρ(θ;P ) ≤ Oρ,k(1)σ2kϵ

( 1
2
− 1

2k) (3.15)

Furthermore, the above optimality gaps are optimal:
Theorem 6. There exists a pair of (P, ptrain) where ptrain = (1− ϵ)P + ϵP ′ and P has uniformly
bounded 2k-th moment: ∀θ ∈ Θ, EP [l(θ, Z)

2k] ≤ σ2k
2k such that for any learner with only access

to ptrain, the best achievable error in DRO over P is lower bounded by

CVaRα(θ̂;P )− inf
θ∈Θ

CVaRα(θ;P ) ≥ Ωα,k(1)σ2kϵ
1− 1

2k (3.16)

RDχ2 ,ρ(θ̂;P )− inf
θ∈Θ

RDχ2 ,ρ(θ;P ) ≥ Ωρ,k(1)σ2kϵ
( 1
2
− 1

2k) (3.17)

We make a few remarks on these theoretical results. The O(ϵ1−
1
2k ) and O(ϵ

1
2
− 1

2k ) rates
resemble the existing works on robust mean/moment estimation, see e.g. [79, 109]. The robust
mean estimation problem can be seen as a special case of CVaR when α = 1, where CVaR of
any θ is just the mean of l(θ, Z). On the other hand, the connection between CVaR and robust
moment estimation can be built with the dual characterization (3.5): for any fixed dual variable
η, evaluating the dual is nothing but a robust (β∗-th) moment estimation of the random variable
(l(θ, Z) − η)+. However, the problem we are trying to tackle in the above theorems is more
challenging, in the sense that (1) DRO risk involves taking infimum over all η ∈ R, but the
moments of (l(θ, Z)− η)+ are not uniformly bounded for all possible η’s; and (2) the optimal dual
variable η∗ can be very different even for distributions extremely close in total-variation distance.
In Appendix 3.8.4 we discuss how to overcome these difficulties in detail.

Our second result is a robust analogue to Corollary 2: we show that the worst-case risk Rmax

can be upper bounded by a constant factor times the DORO risk CVaRα,ϵ, under the very mild
assumption that ℓ has a uniformly bounded second moment on P and Rmax is not exceedingly
small:
Theorem 7. Let ptrain be defined by (3.10). Let α = mink=1,···,K P (Dk), and ρ = 1

2
( 1
α
−

1)2. If ℓ(θ;Z) is a non-negative loss function with a uniformly bounded second moment:
EZ∼P [ℓ(θ;Z)

2] ≤ σ2 for all θ, then we have:

Rmax(θ;P ) ≤ max{3CVaRα,ϵ(θ; ptrain), 3α
−1σ

√
ϵ

1− ϵ
}

≤ max{3Dχ2,ρ,ϵ(θ; ptrain), 3α
−1σ

√
ϵ

1− ϵ
}

(3.18)

Note that a similar result can be derived under the bounded 2k-th moment condition with
different constants.
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3.6 Experiments

In this section, we conduct large-scale experiments on modern datasets. Our results show
that DORO improves the performance and stability of DRO. We also analyze the effect of
hyperparameters on DRO and DORO.

3.6.1 Setup

Datasets Our goal is to apply DRO to real tasks with subpopulation shift on modern datasets.
While many previous work used small tabular datasets such as COMPAS, these datasets are
insufficient for our purpose. Therefore, apart from COMPAS, we use two large datasets: CelebA
[94] and CivilComments-Wilds [20, 77]. CelebA is a widely used vision dataset with 162,770
training instances, and CivilComments-Wilds is a recently released language dataset with 269,038
training instances. Both datasets are captured in the wild and labeled by potentially biased humans,
so they can reveal many challenges we need to face in practice.

We summarize the datasets we use as follows: (i) COMPAS: recidivism prediction, where the
target is whether the person will reoffend in two years; (ii) CelebA: human face recognition, where
the target is whether the person has blond hair; (iii) CivilComments-Wilds: toxicity identification,
where the target is whether the user comment contains toxic contents. All targets are binary. For
COMPAS, we randomly sample 70% of the instances to be the training data (with a fixed random
seed) and the rest is the validation/testing data. Both CelebA and CivilComments-Wilds have
official train-validation-test splits, so we use them directly.

Domain Definition On COMPAS we define 4 domains (subpopulations), and on CelebA and
CivilComments-Wilds we define 16 domains for each. Our domain definitions cover several types
of subpopulation shift, such as different demographic groups, class imbalance, labeling biases,
confounding variables, etc. See Appendix 3.9.1 for details.

Training We use a two-layer feed-forward neural network activated by ReLU on COMPAS,
a ResNet18 [61] on CelebA, and a BERT-base-uncased model [41] on CivilComments-Wilds.
On each dataset, we run ERM, CVaR, χ2-DRO, CVaR-DORO and χ2-DORO. Each algorithm is
run 300 epochs on COMPAS, 30 epochs on CelebA and 5 epochs on CivilComments-Wilds. For
each method we collect the model achieved at the end of every epoch, and select the best model
through validation. (On CivilComments-Wilds we collect 5 models each epoch, one for every
∼20% of the training instances.)

Model Selection To select the best model, we assume that the domain membership of each
instance is available in the validation set, and select the model with the highest worst-case
validation accuracy. This is an oracle strategy since it requires a domain-aware validation set.
Over the course of our experiments, we have realized that model selection with no group labels
during validation is a very hard problem. On the other hand, model selection has a huge impact
on the performance of the final model. We include some preliminary discussions on this issue in
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Table 3.2: The average and worst-case test accuracies of the best models achieved by different
methods. (%)

Dataset Method Average Accuracy Worst-case Accuracy

COMPAS

ERM 69.31± 0.19 68.83± 0.18
CVaR 68.52± 0.31 68.22± 0.30

CVaR-DORO 69.38± 0.10 69.11± 0.05
χ2-DRO 67.93± 0.40 67.32± 0.60
χ2-DORO 69.62± 0.16 69.22± 0.11

CelebA

ERM 95.01± 0.38 53.94± 2.02
CVaR 82.83± 1.33 66.44± 2.34

CVaR-DORO 92.91± 0.48 72.17± 3.14
χ2-DRO 83.85± 1.42 67.76± 3.22
χ2-DORO 82.18± 1.17 68.33± 1.79

CivilComments-Wilds

ERM 92.04± 0.24 64.62± 2.48
CVaR 89.11± 0.76 63.90± 4.42

CVaR-DORO 90.45± 0.70 68.00± 2.10
χ2-DRO 90.08± 0.92 65.55± 1.51
χ2-DORO 90.11± 1.09 67.19± 2.51

Table 3.3: Standard deviations of average/worst-case test accuracies during training on CelebA.
(α = 0.1 for CVaR/CVaR-DORO; α = 0.3 for χ2-DRO/χ2-DORO. ϵ = 0.01) (%)

Method Average Worst-case

ERM 0.73± 0.06 8.59± 0.90
CVaR 11.53± 1.72 21.47± 0.71

CVaR-DORO 4.03± 1.57 16.84± 0.91
χ2-DRO 8.88± 2.98 19.06± 1.18
χ2-DORO 1.60± 0.34 13.01± 1.40

Appendix 3.9.2. Since model selection is not the main focus of this paper, we pose it as an open
question.

3.6.2 Results
The 95% confidence intervals of the mean test accuracies on each dataset are reported in Table 3.2.
For every DRO and DORO method, we do a grid search to pick the best α and ϵ that achieve the
best worst-case accuracy (see the optimal hyperparameters in Appendix 3.9.3). Each experiment is
repeated 10 times on COMPAS and CelebA, and 5 times on CivilComments-Wilds with different
random seeds. Table 3.2 clearly shows that on all datasets, DORO consistently improves the
average and worst-case accuracies of DRO.

Next, we analyze the stability of the algorithms on the CelebA dataset. We use the α that
achieves the optimal DRO performance for each of CVaR and χ2-DRO, and compare them to
DORO with the same value of α and ϵ = 0.01. χ2-DRO achieves its optimal performance with a
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bigger α than CVaR because it is less stable. To quantitatively compare the stability, we compute
the standard deviations of the test accuracies across epochs and report the results in Table 3.3.
To further visualize the training dynamics, we run all algorithms with one fixed random seed,
and plot the test accuracies during training in Figures 3.3 and 3.4. Table 3.3 shows that the
standard deviation of the test accuracy of DORO is smaller and in Figures 3.3a and 3.4a the
DORO curves are flatter than the DRO curves, which implies that DORO improves the stability of
DRO. Although it is hard to tell whether DORO has a more stable worst-case accuracy from the
figures, our quantitative results in Table 3.3 confirm that DORO has more stable worst-case test
accuracies.

3.6.3 Effect of Hyperparameters
In this part, we study how α and ϵ affect the test accuracies of DORO with two experiments on
CelebA, providing insight into how to select the optimal hyperparameters.

In the first experiment, we fix α = 0.2, and run the two DORO algorithms with different
values of ϵ. The results are plotted in Figure 3.5. We can see that for both methods, as ϵ increases,
the average accuracy slightly decreases, while the worst-case accuracy first rises and then drops.
Both average and worst-case accuracies will drop if ϵ is too big. Moreover, both methods achieve
the optimal worst-case accuracy at ϵ = 0.005. We conjecture that the real noise level of the
CelebA dataset is around 0.005, and that the optimal ϵ should be close to the real noise level.

In the second experiment, we run DRO and DORO (ϵ = 0.01) with different values of α.
The results are plotted in Figure 3.6. First, we observe that for all methods, the optimal α is
much bigger than the real α of the dataset. The real α of the CelebA dataset is around 0.008 (see
Appendix 3.9.1, Table 3.4), much smaller than those achieving the highest worst-case accuracies
in the figures. Second, in all four figures the overall trend of the average accuracy is that it grows
with α. Third, both CVaR-DORO and χ2-DORO achieve the optimal worst-case accuracy at
α = 0.25, but the worst-case accuracy drops as α goes to 0.3.

3.7 Discussion
In this work we pinpointed one direct cause of the performance drop and instability of DRO: the
sensitivity of DRO to outliers in the dataset. We proposed DORO as an outlier robust refinement
of DRO, and implemented DORO for the Cressie-Read family of Rényi divergence. We made a
positive response to the open question raised by [58] by demonstrating the effectiveness of DORO
both theoretically and empirically.

One alternative approach to making DRO robust to outliers is removing the outliers from the
dataset via preprocessing. In Section 3.3 we used a simple version of iterative trimming [122] to
remove outliers from the training set. Compared to iterative trimming, DORO does not require
retraining the model and does not throw away any data. In addition, preprocessing methods such
as iterative trimming cannot cope with online data (where new instances are received sequentially),
but DORO is still feasible.

The high-level idea of DORO can be extended to other algorithms that deal with subpopulation
shift, such as static reweighting [123], adversarial reweighting [63, 84] and group DRO [117].
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The implementations might be different, but the basic ideas are the same: to prevent the algorithm
from overfitting to potential outliers. We leave the design of such algorithms to future work.

There is one large open question from this work. In our experiments, we found that model
selection without domain information in the validation set is very hard. In Appendix 3.9.2 we
study several strategies, such as selecting the model with the lowest CVaR risk or the lowest CVaR-
DORO risk, but none of them is satisfactory. A recent paper [99] proposed two selection methods
Minmax and Greedy-Minmax, but their performances are still much lower than the oracle’s
(see their Table 2a). [55] also pointed out the difficulty of model selection in domain-oblivious
distributional shift tasks. Thus, we believe this question to be fairly non-trivial.

3.8 Proofs

3.8.1 Proof of Proposition 1
We have the following observation: when α ≤ exp(−1), we have:

∀t ∈ [0,
1

α
], fβ(t) ≤ fβ(

1

α
). (3.19)

Notice that
f ′
β(t) =

1

β − 1
(tβ−1 − 1) (3.20)

Hence, f ′
β(t) is decreasing when t ∈ [0, 1] and increasing when t ∈ [1, 1

α
]. therefore, fβ(t) ≤

max(fβ(0), fβ(
1
α
)). We can further verify that

fβ(
1

α
)− fβ(0) =

1

β(β − 1)

(
1

αβ
− β

α

)
(3.21)

which is nonnegaative whenever α ≤ β− 1
β−1 . Since when β > 1, one always have exp(−1) ≤

β− 1
β−1 and we have proved equation 3.19.
Since Pk is a mixture component of P with probability mass at least α, we can see that

dPk

dP
≤ 1

α
(3.22)

thus, by equation 3.19,

Dβ(Pk||P ) =
∫
fβ(

dPk

dP
)dP (3.23)

≤
∫
fβ(

1

α
)dP (3.24)

= fβ(
1

α
) (3.25)

by the definition of β-DRO risk, we have completed the proof.
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3.8.2 Proof of Corollary 2
For any k, let pk = P (Dk), then P (z) = pkP (z|Dk) + (1 − pk)P (z|Dk) holds for all x. Let
Q = Pk and Q′(z) = pk−α

1−α
P (z|Dk) +

1−pk
1−α

P (z|Dk). Then P = αQ+ (1− α)Q′, which implies
that EPk

[ℓ(θ;Z)] ≤ CVaRα(θ;P ). Thus, Rmax(θ;P ) ≤ CVaRα(θ;P ). On the other hand, for any
Q such that there exists Q′ satisfying P = αQ + (1 − α)Q′, we have dQ

dP
(z) ≤ 1

α
a.e., so that

Dχ2(Q ∥ P ) ≤ 1
2
( 1
α
− 1)2 = ρ. Thus, CVaRα(θ;P ) ≤ RDχ2 ,ρ(θ;P ).

3.8.3 Proposition 3
Proof of Proposition 3

By (3.6) and (3.11) we have

RDβ ,ρ,ϵ(θ; ptrain) = inf
P ′

{
RDβ ,ρ(θ;P

′) : ∃P̃ ′ s.t. ptrain = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′,η

{
cβ(ρ)EP ′ [(ℓ(θ;Z)− η)β∗

+ ]
1
β∗ + η

}
= inf

η

{
cβ(ρ) inf

P ′
{[
∫
R+

P ′((ℓ(θ;Z)− η)β∗
+ > u)du]

1
β∗ }+ η

} (3.26)

By ptrain = (1− ϵ)P ′ + ϵP̃ ′ we have for all ℓ0,

P ′(ℓ(θ;Z) ≤ ℓ0) ≤ min

{
1,

1

1− ϵ
ptrain(ℓ(θ;Z) ≤ ℓ0)

}
(3.27)

and we can also show that there exists a P ∗ = P ′ such that the equality is achieved in (3.27) for
all ℓ0: Since both ℓ and ptrain are continuous, ptrain(ℓ(θ; z)) is a continuous function of z for any
fixed θ, so there exists an ℓ∗ such that ptrain(ℓ(θ;Z) > ℓ∗) = ϵ. Define

P ∗(z) =

{
1

1−ϵ
ptrain(z) , ℓ(θ; z) ≤ ℓ∗

0 , ℓ(θ; z) > ℓ∗
(3.28)

For (3.28), we have
∫
X×Y P

∗(z)dz = 1
1−ϵ

∫
ℓ(θ;z)<ℓ∗

ptrain(z)dz =
1

1−ϵ
ptrain(ℓ(θ;Z) < ℓ∗) = 1

because ptrain(ℓ(θ;Z) = ℓ∗) = 0, so (3.28) is a distribution function.
Let v = u

1
β∗ . Plugging P ∗(ℓ(θ;Z) ≤ ℓ0) = min

{
1, 1

1−ϵ
ptrain(ℓ(θ;Z) ≤ ℓ0)

}
into (3.26)

produces

RDβ ,ρ,ϵ(θ; ptrain) = inf
η

{
cβ(ρ)

[∫
R+

[1− P ∗((ℓ(θ;Z)− η)β∗
+ ≤ vβ∗)]dvβ∗

] 1
β∗

+ η

}

= inf
η

{
cβ(ρ)

[∫
R+

[1− 1

1− ϵ
ptrain(ℓ(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η

}

= inf
η

cβ(ρ)
[∫ (ℓ∗−η)+

0

1

1− ϵ
[(1− ϵ)− ptrain(ℓ(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η


(3.29)

42



On the other hand, we have

Eptrain [(ℓ− η)β∗
+ | PZ′∼ptrain(ℓ(θ;Z

′) > ℓ(θ;Z)) ≥ ϵ]

=
1

1− ϵ

∫ ℓ∗

0

(u− η)β∗
+ d(ptrain(ℓ ≤ u))

=
1

1− ϵ

{[
(u− η)β∗

+ ptrain(ℓ ≤ u)
]ℓ∗
0
−
∫ ℓ∗

0

ptrain(ℓ ≤ u)d((u− η)β∗
+ )

}
=

1

1− ϵ

{
(ℓ∗ − η)β∗

+ (1− ϵ)−
∫ ℓ∗

0

ptrain(ℓ ≤ u)d((u− η)β∗
+ )

}
=

1

1− ϵ

{∫ (ℓ∗−η)+

0

(1− ϵ)dvβ∗ −
∫ (ℓ∗−η)+

0

ptrain(ℓ ≤ η + w)dwβ∗

}
(3.30)

where w = (u− η)+. Thus, (3.29) is equal to the right-hand side of (3.12).

Extension to Arbitrary ptrain

For any distribution ptrain, we can obtain a similar but more complex formula (3.33). For any
ptrain, there exists an ℓ∗ such that ptrain(ℓ(θ;Z) > ℓ∗) ≤ ϵ and ptrain(ℓ(θ;Z) < ℓ∗) ≤ 1 − ϵ. If
ptrain(ℓ(θ;Z) = ℓ∗) = 0, then the proof above is still correct, so the formula is still (3.12).

Now assume that ptrain(ℓ(θ;Z) = ℓ∗) > 0. Similar to (3.28), define

P ∗(z) =


1

1−ϵ
ptrain(z) , ℓ(θ; z) < ℓ∗[

1− 1
1−ϵ

ptrain(ℓ(θ;Z) < ℓ∗)
]
/ptrain(ℓ(θ;Z) = ℓ∗) , ℓ(θ; z) = ℓ∗

0 , ℓ(θ; z) > ℓ∗
(3.31)

Then we still have P ∗(ℓ(θ;Z) ≤ ℓ0) = min
{
1, 1

1−ϵ
ptrain(ℓ(θ;Z) ≤ ℓ0)

}
, so (3.29) still holds.

On the other hand, we have

Eptrain [(ℓ− η)β∗
+ | PZ′∼ptrain(ℓ(θ;Z

′) > ℓ(θ;Z)) > ϵ]

=
1

ptrain(ℓ(θ;Z) < ℓ∗)

{∫ (ℓ∗−η)+

0

(1− ϵ)dvβ∗ −
∫ (ℓ∗−η)+

0

ptrain(ℓ ≤ η + w)dwβ∗

}
(3.32)

Thus, the formula becomes

RDβ ,ρ,ϵ(θ; ptrain) = inf
η
{cβ(ρ)(

ptrain(ℓ < ℓ∗)

1− ϵ
EZ [(ℓ(θ;Z)− η)β∗

+ | PZ′(ℓ(θ;Z ′) > ℓ(θ;Z)) > ϵ]

+
1− ptrain(ℓ < ℓ∗)

1− ϵ
(ℓ∗ − η)β∗

+ )
1
β∗ + η}

(3.33)
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3.8.4 Proofs of Results in Section 3.5
A Key Technical Lemma

The following lemma will be useful in the analysis of CVaR-DORO and χ2-DORO: it controls the
difference of dual objective in two distributions P, P ′ by their total variation distance, with the
assumption that loss function l has bounded 2k-th moment under P .
Lemma 8. For any distributions P, P ′, non-negative loss function l(·, Z) and 1 ≤ β∗ < 2k, such
that EP [l(θ, Z)

2k] <∞, we have

EP [(ℓ−η)β∗
+ ]

1
β∗ ≤ EP ′ [(ℓ−η)β∗

+ ]
1
β∗ +EP [(l(θ, Z)−η)2k+ ]

1
2kTV(P, P ′)(

1
β∗

− 1
2k)β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗

(3.34)

Proof. By the definition of total variation distance, we have

P (ℓ(θ;Z) > u)− P ′(ℓ(θ;Z ′) > u) ≤ TV(P, P ′) (3.35)

holds for any u ≥ 0.
By Markov’s Inequality and the non-negativity of ℓ, we have for any η ≥ 0,

P (ℓ− η > u) ≤
E[(ℓ− η)2k+ ]

u2k
:= (

s2k
u

)2k (3.36)

where we introduced the shorthand s2k := E[(ℓ− η)2k+ ]
1
2k Using integration by parts, we can see

that:

EP [(ℓ− η)β∗
+ ] =

∫ ∞

η

β∗(t− η)(β∗−1)P (ℓ ≥ t)dt (3.37)

=

∫ ∞

0

β∗u
(β∗−1)P (ℓ− η ≥ u)du (3.38)

Thus,

EP [(ℓ− η)β∗
+ ]− EP ′ [(ℓ− η)β∗

+ ] =

∫ ∞

0

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du

=

(∫ M

0

+

∫ ∞

M

)(
β∗u

(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du
)

(3.39)
Here, M is a positive parameter whose value will be determined later. Next, we will upper bound
each of the two integrals separately. By equation 3.39,∫ M

0

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du ≤

∫ M

0

β∗u
(β∗−1)TV(P, P ′)du (3.40)

=Mβ∗TV(P, P ′), (3.41)
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which gives an upper bound for the first integral. For the second integral, notice that P ′(ℓ−η ≥ u)
is non-negative and use equation 3.36, we have:∫ ∞

M

β∗u
(β∗−1) (P (ℓ− η ≥ u)− P ′(ℓ− η ≥ u)) du ≤

∫ ∞

M

β∗u
(β∗−1)P (ℓ− η ≥ u)du (3.42)

≤
∫ ∞

M

β∗u
(β∗−1)

(s2k
u

)2k
(3.43)

=
s2k2k

2k − β∗
· 1

M2k−β∗
(3.44)

Therefore, by setting M = s2k(TV(P, P
′)β∗)

−1/2k which minimizes the sum of two terms, we
have

EP [(ℓ−η)β∗
+ ]−EP ′ [(ℓ−η)β∗

+ ] ≤ inf
M>0

(
Mβ∗TV(P, P ′) +

s2k2k
2k − β∗

· 1

M2k−β∗

)
= sβ∗

2kTV(P, P
′)1−

β∗
2k β

−β∗
2k

∗ · 2k

2k − β∗
(3.45)

Using the inequality (A+B)
1
β∗ ≤ A

1
β∗ +B

1
β∗ when β∗ ≥ 1, we have:

EP [(ℓ− η)β∗
+ ]

1
β∗ ≤ EP ′ [(ℓ− η)β∗

+ ]
1
β∗ + s2kTV(P, P

′)(
1
β∗

− 1
2k)β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗

(3.46)

Proof of Lemma 4

For any P ′ such that ptrain = (1 − ϵ)P ′ + ϵP̃ ′ for some P̃ ′, let U = P ∧ P ′, i.e. U(z) =
min{P (z), P ′(z)} for any z ∈ X × Y . We have

(1− ϵ)U(z) + ϵP̃ (z) + ϵP̃ ′(z) ≥ ptrain(z) for any z ∈ X × Y (3.47)

because both P̃ (z) and P̃ ′(z) are non-negative. Integrating both sides produces∫
X×Y

U(z)dz ≥ 1− 2ϵ

1− ϵ
(3.48)

which implies TV(P, P ′) ≤ ϵ
1−ϵ

. Thus,

RD,ρ(θ;P
′) ≥ inf

P ′′
{RD,ρ(θ, P

′′) : TV(P, P ′′) ≤ ϵ

1− ϵ
} (3.49)

which together with (3.11) proves (3.13).

Proof of Theorem 5, Analysis of CVaR-DORO

Proof of Theorem 5, CVaR-DORO. For any θ, by Lemma 4 we have

CVaRα,ϵ(θ; ptrain) ≥ CVaRα,ϵ(θ̂; ptrain) ≥ inf
P ′
{CVaRα(θ̂;P

′) : TV(P, P ′) ≤ ϵ

1− ϵ
} (3.50)
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By Lemma 8, we have for any η ≥ 0 and TV(P, P ′) ≤ ϵ
1−ϵ

,

EP [(ℓ− η)+]− EP ′ [(ℓ− η)+] ≤
(
1 +

1

2k − 1

)
EP [(ℓ− η)2k+ ]

1
2kTV(P, P ′)1−

1
2k

≤
(
1 +

1

2k − 1

)
σ2kTV(P, P

′)1−
1
2k

(3.51)

Here, we used the fact that 0 ≤ (ℓ−η)2k+ ≤ ℓ2k Moreover, for any η < 0, EP [(ℓ−η)+]−EP ′ [(ℓ−
η)+] = EP [(ℓ − 0)+] − EP ′ [(ℓ − 0)+] because ℓ is non-negative. So (3.51) holds for all η ∈ R.
Thus, by (3.7) we have for any η ∈ R,

CVaRα(θ̂;P ) ≤ α−1EP [(ℓ−η)+]+η ≤ α−1

{
EP ′ [(ℓ− η)+] +

(
1 +

1

2k − 1

)(
ϵ

1− ϵ

)1− 1
2k

}
+η

(3.52)
and taking the infimum over η, we have the following inequality holds for any θ:

CVaRα(θ̂;P ) ≤ CVaRα(θ̂;P
′) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ϵ

1− ϵ

)1− 1
2k

(3.53)

By (3.11) we have CVaRα,ϵ(θ; ptrain) ≤ CVaRα(θ;P ). Thus, by (5.69), taking the infimum
over P ′ yields

CVaRα(θ̂;P ) ≤ CVaRα,ϵ(θ; ptrain) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ϵ

1− ϵ

)1− 1
2k

(3.54)

≤ CVaRα(θ;P ) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ϵ

1− ϵ

)1− 1
2k

(3.55)

Taking the infimum over θ completes the proof.

Proof of Theorem 5, Analysis of χ2-DORO

We begin with a structral lemma about the optimal dual variable η in the dual formulation
equation 3.5. Recall that β = β∗ = 2 for χ2 divergence.
Lemma 9. Let η∗(P ) be the minimizer of equation 3.5. We have the following characterization
about η∗(P ):

1. When ρ ≤ VarP [l(θ,Z)]
2E[l(θ,Z)]2

, we have η∗ ≤ 0;
Furthermore, the DRO risk and optimal dual variable η∗ can be formulated as:

RDχ2 ,ρ(θ;P ) = EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)] (3.56)

η∗ = EP [l(θ, Z)]−

√
VarP [l(θ, Z)]

2ρ
(3.57)

2. When ρ ≥ VarP [l(θ,Z)]
2E[l(θ,Z)]2

, we have η∗ ≥ 0.
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Proof. (1) We will prove that for any ρ > 0,

RDχ2 ,ρ(θ;P ) ≤ EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)] (3.58)

and the equality is achievable when ρ ≤ VarP [l(θ,Z)]
2E[l(θ,Z)]2

.
By the definition of χ2-DRO risk,

RDχ2 ,ρ(θ;P ) = sup
Q:Dχ2 (Q||P )≤ρ

EQ[l(θ, Z)] (3.59)

Let µ := EP [l(θ, Z)], notice that

EQ[l(θ, Z)] = EP [l(θ, Z)
dQ

dP
] (3.60)

= EP [l(θ, Z)] + EP [l(θ, Z)

(
dQ

dP
− 1

)
] (3.61)

= µ+ EP [(l(θ, Z)− µ)

(
dQ

dP
− 1

)
] (3.62)

where in the last step we used the fact that EP
dQ
dP

= 1.
By the definition of χ2 divergence,

EP [

(
dQ

dP
− 1

)2

] = 2Dχ2(Q||P ) ≤ 2ρ, (3.63)

Therefore, by Cauchy-Schwarz inequality,

EP [(l(θ, Z)− µ)

(
dQ

dP
− 1

)
] ≤ (EP [(l(θ, Z)− µ)])1/2

(
EP [

(
dQ

dP
− 1

)2

]

)1/2

(3.64)

≤
√

VarP [l(θ, Z)] · 2ρ (3.65)

Plug in this upper bound to equation 3.60 completes the proof of equation 3.58.
To see that the equality can be achieved when ρ ≤ VarP [l(θ,Z)]

E[l(θ,Z)]2
, we only need to verify that

η = η∗ gives the same dual objective EP [l(θ, Z)] +
√
2ρVarP [l(θ, Z)]. Since η∗ < 0, we have

EP [(l(θ, Z)− η∗)2+] (3.66)
=EP [(l(θ, Z)− η∗)2] (3.67)

=EP [(l(θ, Z)− EP [l(θ, Z)] +

√
1

2ρ
VarP [l(θ, Z)])

2] (3.68)

=EP [(l(θ, Z)− EP [l(θ, Z)])
2] + 2

√
1

2ρ
VarP [l(θ, Z)]E[(l(θ, Z)− EP [l(θ, Z)])] +

1

2ρ
VarP [l(θ, Z)]

(3.69)

=VarP [l(θ, Z)] + 0 + +
1

2ρ
VarP [l(θ, Z)] =

1 + 2ρ

2ρ
VarP [l(θ, Z)] (3.70)
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Therefore,√
1 + 2ρ

(
EP [(l(θ, Z)− η∗)2+]

)1/2
+ η∗ =

1 + 2ρ√
2ρ

√
VarP [l(θ, Z)] + EP [l(θ, Z)]−

1√
2ρ

√
VarP [l(θ, Z)]

(3.71)

= EP [l(θ, Z)] +
√
2ρVarP [l(θ, Z)] (3.72)

and we have completed the proof.
(2) Let g(η, P ) =

√
1 + 2ρ

(
EP [(l(θ, Z)− η)2+]

) 1
2 + η and recall that RDχ2 ,ρ(θ;P ) =

infη∈R g(η, P ). To show that η∗ ≤ 0, we only need to prove that g(η) ≤ g(0) whenever η < 0,
which is equivalent to:√

1 + 2ρ
(
EP [(l(θ, Z)− η)2]

) 1
2 ≥

√
1 + 2ρ

(
EP [l(θ, Z)

2]
) 1

2 − η (3.73)

Since both sides are non-negative, this inequality is equivalent to:

(1 + 2ρ)EP [(l(θ, Z)− η)2 ≥ (1 + 2ρ)EP [l(θ, Z)
2 + η2 − 2η

√
1 + 2ρ

(
EP [l(θ, Z)

2]
) 1

2 (3.74)

After re-organizing terms, it remains to prove

2ρη2 − 2(1 + 2ρ)ηEP [l(θ, Z)] + 2η
√
1 + 2ρ

(
EP [l(θ, Z)

2]
) 1

2 ≥ 0 (3.75)

Since ρ ≥ VarP [l(θ,Z)]
2E[l(θ,Z)]2

, we have (1 + 2ρ) ≥ E[l(θ,Z)2]
E[l(θ,Z)]2

. Therefore,

LHS ≥ 2η
√

1 + 2ρ
(
EP [l(θ, Z)

2]
) 1

2 − 2(1 + 2ρ)ηEP [l(θ, Z)] (3.76)

= 2η
√

1 + 2ρ
((

EP [l(θ, Z)
2]
) 1

2 −
√

1 + 2ρEP [l(θ, Z)]
)

(3.77)

≥ 0 (3.78)

where in the last step we used the assumption that η ≤ 0. Therefore we have completed the proof.

Having prepared with Lemma 9, we are now ready to prove the χ2-DORO part of Theorem 5.

Proof of Theorem 5, χ2-DORO. We will first show that

RDχ2 ,ρ(θ̂;P ) ≤ RDχ2 ,ρ(θ̂;P
′)+
√

1 + 2ρ(1+Cρ)σ2kTV(P, P
′)(

1
2
− 1

2k)2−
1
2k ·
(

k

k − 1

) 1
2

(3.79)

This inequality will be proved by combining two different strategies: when η∗(P ′) is relatively
large, we will use an argument based on Lemma 8, similar to what we did in the analysis of
CVaR-DORO. Otherwise, when η∗(P ′) is small, we need a different proof which builds upon the
structral result Lemma 9.

Define Cρ =
√
1+2ρ
2ρ

. Below we discuss two cases: η∗(P ′) < −Cρσ2k and η∗(P ′) ≥ −Cρσ2k.
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Case 1: η∗(P ′) < −Cρσ2k. When η∗(P ′) < −Cρσ2k, by Lemma 9, we have

RDχ2 ,ρ(θ̂;P
′) = EP ′ [l(θ̂, Z)] +

√
2ρVarP ′ [l(θ̂, Z)] (3.80)

η∗(P ′) = EP ′ [l(θ̂, Z)]−

√
VarP ′ [l(θ̂, Z)]

2ρ
< −Cρσ2k (3.81)

Therefore, we can lower bound
√

VarP ′ [l(θ̂, Z)] as:√
VarP ′ [l(θ̂, Z)] ≥

√
2ρEP ′ [l(θ̂, Z)] +

√
2ρCρσ2k ≥

√
2ρCρσ2k, (3.82)

and consequently, we have a lower bound for RDχ2 ,ρ(θ;P
′):

RDχ2 ,ρ(θ̂;P
′) = EP ′ [l(θ̂, Z)] +

√
2ρVarP ′ [l(θ̂, Z)] (3.83)

≥
√
2ρVarP ′ [l(θ̂, Z)] ≥ 2ρCρσ2k =

√
1 + 2ρσ2k (3.84)

On the other hand, by setting the dual variable η = 0, we have a simple upper bound for
RDχ2 ,ρ(θ̂;P ):

RDχ2 ,ρ(θ̂;P ) ≤
√
1 + 2ρEP [l(θ̂, Z)

2]1/2 ≤
√
1 + 2ρσ2k (3.85)

Combining equation 3.83 and equation 3.85, we conclude that RDχ2 ,ρ(θ̂;P
′) ≥ RDχ2 ,ρ(θ̂;P ) and

the inequality is trivially true.

Case 2: η∗(P ′) ≥ −Cρσ2k By Lemma 8, we have

EP [(ℓ−η)2+]
1
2 ≤ EP ′ [(ℓ−η)2+]

1
2+EZ [(l(θ, Z)−η)2k+ ]

1
2kTV(P, P ′)(

1
2
− 1

2k)2−
1
2k ·
(

k

k − 1

) 1
2

(3.86)

holds for any η ∈ R. Since η∗(P ′) ≥ −Cρσ2k, we can upper bound the 2k-th moment
EZ [(l(θ, Z)− η∗(P ′))2k+ ]

1
2k as:

EZ [(l(θ, Z)− η∗(P ′))2k+ ]
1
2k ≤ EZ [(l(θ, Z) + Cρσ2k)

2k
+ ]

1
2k (3.87)

≤ EZ [(l(θ, Z)]
1
2k + Cρσ2k = (1 + Cρ)σ2k (3.88)

Hence,

RDχ2 ,ρ(θ̂;P ) ≤
√

1 + 2ρEP [(ℓ− η∗(P ′))2+]
1
2 + η∗(P ′) (3.89)

≤
√

1 + 2ρEP ′ [(ℓ− η∗(P ′))2+]
1
2 + η∗(P ′) +

√
1 + 2ρ(1 + Cρ)σ2kTV(P, P

′)(
1
2
− 1

2k)2−
1
2k ·
(

k

k − 1

) 1
2

(3.90)

= RDχ2 ,ρ(θ̂;P
′) +

√
1 + 2ρ(1 + Cρ)σ2kTV(P, P

′)(
1
2
− 1

2k)2−
1
2k ·
(

k

k − 1

) 1
2

(3.91)
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Hence, we have proved the inequality equation 3.79. The rest of proof mimics CVaR-DORO.
For any θ, by Lemma 4 we have

RDχ2 ,ρ,ε(θ; ptrain) ≥ RDχ2 ,ρ,ε ≥ inf
P ′
{RDχ2 ,ρ(θ̂;P

′) : TV(P, P ′) ≤ ϵ

1− ϵ
} (3.92)

By (3.11) we have RDχ2 ,ρ,ε(θ; ptrain) ≤ RDχ2 ,ρ(θ;P ). Thus, by (5.69), taking the infimum over
P ′ yields

RDχ2 ,ρ(θ̂;P ) ≤ RDχ2 ,ρ,ϵ(θ; ptrain) +
√
1 + 2ρ(1 + Cρ)σ2k

(
ϵ

1− ϵ

)( 1
2
− 1

2k)
2−

1
2k ·
(

k

k − 1

) 1
2

(3.93)

≤ RDβ ,ρ(θ;P ) +
√

1 + 2ρ(1 + Cρ)σ2k

(
ϵ

1− ϵ

)( 1
2
− 1

2k)
2−

1
2k ·
(

k

k − 1

) 1
2

(3.94)

Taking the infimum over θ completes the proof.

Proof of Theorem 6

We consider an optimization problem with the parameter space restricted to only two possible
values Θ = {θ0, θ1}. Our proof is constructive, which relies on the following distribution PM,∆,ε:

l(θ0, Z) = 0, l(θ1, Z) = ∆ w.p. (1− ε) (3.95)
l(θ0, Z) =M, l(θ1, Z) = ∆ w.p. ε (3.96)

here M,∆ are some non-negative parameters whose value to be determined later and the proba-
bility is taken over the randomness of Z.

We have the following characterization of CVaR and χ2-DRO risk:
Lemma 10 (DRO Risk of PM,∆,ε). Assume that α ≥ ε and 1 + 2ρ ≤ 1

ε
, we have the following

closed-form expressions for CVaR and χ2-DRO risk:

CVaRα(θ0;PM,∆,ε) =
Mε

α
(3.97)

CVaRα(θ1;PM,∆,ε) = ∆ (3.98)

and

RDχ2 ,ρ(θ0;PM,∆,ε) =Mε+M
√
2ρε(1− ε) (3.99)

RDχ2 ,ρ(θ1;PM,∆,ε) = ∆ (3.100)

Proof. Since l(θ1, Z) is always a constant ∆, it’s immediate to see CVaRα(θ1;PM,∆,ε) =
RDχ2 ,ρ(θ1;PM,∆,ε) = ∆. Hence we only need to focus on θ0.
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By the dual formulation of DRO risk, we have CVaRα(θ0;PM,∆,ε) = infη∈R h(η) and
RDχ2 ,ρ(θ0;PM,∆,ε) = infη∈R g(η), where we use the shorthand g(η) and h(η) for

g(η) :=
√

1 + 2ρ
(
EP [(l(θ, Z)− η)2+]

) 1
2 + η (3.101)

h(η) =
1

α
EP [(l(θ, Z)− η)+] + η (3.102)

Direct calculation gives:

g(η) =


√
1 + 2ρ

√
(η − ϵM)2 + ε(1− ε)M2 + η, for η < 0√

ε(1 + 2ρ)(M − η) + η, for 0 ≤ η ≤M

η, for η > M

(3.103)

and

h(η) =


Mε−η

α
+ η, for η < 0

ε(M−η)
α

+ η, for 0 ≤ η ≤M

η, for η > M

(3.104)

Therefore, when α ≥ ε and 1 + 2ρ ≤ 1
ε
, we have

CVaRα(θ0;PM,∆,ε) = inf
η∈R

h(η) = h(0) =
Mε

α
(3.105)

RDχ2 ,ρ(θ0;PM,∆,ε) = inf
η∈R

g(η) = g(εM −
M
√
ε(1− ε)√
2ρ

) =Mε+M
√
2ρε(1− ε) (3.106)

and we have completed the proof.

Equipped with Lemma 10, we are now ready to prove the main lower bound Theorem 6.

Proof of Theorem 6. Consider ptrain = PM,∆,ε. We have two different ways to decompose ptrain
into mixture of two distributions:

ptrain = PM,∆,ε = (1− ε)PM,∆,ε + εPM,∆,ε = (1− ε)P0,∆,0 + εPM,∆,0 (3.107)

In other words, with only access to ptrain = PM,∆,ε, the learner cannot distinguish the following
two possibilities:

• (a) The clean distribution is P = PM,∆,ε, and the outlier distribution is P ′ = PM,∆,ε.
• (b) The clean distribution is Q = P0,∆,1, and the outlier distribution is Q′ = PM,∆,1.

Furthermore, as long as M ≤ σ2kε
− 1

2k and ∆ ≤ σ2k, both P and Q satisfy the bounded 2k-th
moment condition E[l(θ, Z)2k] ≤ σ2k

2k . With our construction below, we can ensure that θ1 is
Θ(∆)-suboptimal under P , while θ0 is Θ(∆)-suboptimal under Q. Therefore, in the worst case
scenario, it’s impossible for the learner to find a solution with O(∆) sub-optimality gap under
both P and Q.

51



CVaR lower bound Assume that α ≥ 1
2
ε1−

1
2k . Let M = σ2kε

− 1
2k ,∆ = σ2k

ε1−
1
2k

2α
≤ σ2k. Recall

that P = PM,∆,ε, by Lemma 10, we have:

CVaRα(θ0;P ) =
Mε

α
=
σ2k
α
ε1−

1
2k = 2∆ (3.108)

CVaRα(θ1;P ) = ∆ (3.109)

Therefore,

CVaRα(θ0;P )− inf
θ∈Θ

CVaRα(θ;P ) = ∆ = Ω(
1

α
σ2kε

1− 1
2k ) (3.110)

For Q = P0,∆,1, both l(θ0, Z) and l(θ1, Z) are constants, and hence

CVaRα(θ0;Q) = 0 (3.111)
CVaRα(θ1;Q) = ∆ (3.112)

and

CVaRα(θ1;Q)− inf
θ∈Θ

CVaRα(θ;Q) = ∆ = Ω(
1

α
σ2kε

1− 1
2k ) (3.113)

Combining equation 3.110 and equation 3.113 completes the proof.

χ2-DRO lower bound Assume that ρ = O(ε
1
k
−1). Let M = σ2kε

− 1
2k ,∆ =

M
2

(
ε+

√
2ρε(1− ε)

)
≤ σ2k. Recall that P = PM,∆,ε, by Lemma 10, we have:

RDχ2 ,ρ(θ0;P ) =Mε+M
√
2ρε(1− ε) = 2∆ (3.114)

RDχ2 ,ρ(θ1;P ) = ∆ (3.115)

Therefore,

RDχ2 ,ρ(θ0;P )− inf
θ∈Θ

RDχ2 ,ρ(θ;P ) = ∆ = Ω(σ2k
√
ρε

1
2
− 1

2k ) (3.116)

For Q = P0,∆,1, both l(θ0, Z) and l(θ1, Z) are constants, and hence

CVaRα(θ0;Q) = 0 (3.117)
CVaRα(θ1;Q) = ∆ (3.118)

and

CVaRα(θ0;Q)− inf
θ∈Θ

CVaRα(θ;Q) = ∆ = Ω(σ2k
√
ρε

1
2
− 1

2k ) (3.119)

Combining equation 3.116 and equation 3.119 completes the proof.
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Proof of Theorem 7

By Lemma 8, for any P ′ such that TV(P, P ′) ≤ ϵ
1−ϵ

,

CVaRα(θ;P )− CVaRα(θ;P
′) ≤ 2α−1σ

√
ϵ

1− ϵ
(3.120)

By Proposition 2, if Rmax(θ;P ) > 3α−1σ
√

ϵ
1−ϵ

, then CVaRα(θ;P ) > 3α−1σ
√

ϵ
1−ϵ

, which
implies that

CVaRα(θ;P
′)

Rmax(θ;P )
≥ CVaRα(θ;P

′)

CVaRα(θ;P )
= 1− δ

CVaRα(θ;P )
≥ 1−

2α−1σ
√

ϵ
1−ϵ

3α−1σ
√

ϵ
1−ϵ

=
1

3
(3.121)

holds for any P ′ such that TV(P, P ′) ≤ ϵ
1−ϵ

. By Lemma 4, taking the infimum over P ′ yields
the first inequality of (3.18). Moreover, by Proposition 2, for any θ and P ′, Dχ2,ρ(θ;P

′) ≥
CVaRα(θ;P

′), which together with (3.121) yields the second inequality of (3.18).

3.9 Experiment Details

3.9.1 Domain Definition

One important decision we need to make when we design a task with subpopulation shift is how
to define the domains (subpopulations). We refer our readers to the Wilds paper [77], which
discusses in detail the desiderata and considerations of domain definition, and defines 16 domains
on the CivilComments-Wilds dataset which we use directly. The authors selected 8 features such
as race, sex and religion, and crossed them with the two classes to define the 16 domains. Such a
definition naturally covers class imbalance. There is no official domain definition on CelebA, so
we define the domains on our own. Following their approach, on CelebA we also select 8 features
and cross them with the two classes to compose the 16 domains. Our definition is inspired by
[117], but we cover more types of subpopulation shift apart from demographic differences.

We select 8 features on CelebA: Male, Female, Young, Old, Attractive, Not-attractive, Straight-
hair and Wavy-hair. We explain why we select these features as follows:

• The first four features cover sex and age, two protected features widely used in algorithmic
fairness papers.

• We select the next two features in order to cover labeling biases, biases induced by the
labelers into the dataset. Among the 40 features provided by CelebA, the Attractive feature
is the most subjective one. Table 3.4 shows that among the people with blond hair, more
than half are labeled Attractive; while among the other people, more than half are labeled
Not-attractive. It might be that the labelers consider blond more attractive than other hair
colors, or it might be that the labelers consider females more attractive than males, and it
turns out that more females have blond hair than males in this dataset. Although the reason
behind is unknown, we believe that these two features well represent the labeling biases in
this dataset, and should be taken into consideration.
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Table 3.4: Number of training instances in each domain of CelebA and CivilComments-Wilds.

CelebA Blond Others

Male 1387 66874
Female 22880 71629
Young 20230 106558

Old 4037 31945
Attractive 17008 66595

Not-attractive 7259 71908
Straight-hair 5178 28769
Wavy-hair 11342 40640

Total 162770

CivilComments-Wilds Toxic Non-toxic

Male 4437 25373
Female 4962 31282
LGBTQ 2265 6155
Christian 2446 24292
Muslim 3125 10829

Other Religions 1003 5541
Black 3111 6785
White 4682 12016

Total 269038

• We select the last two features in order to cover confounding variables, features the model
uses to do classification that should have no correlation with the target by prior knowledge.
Since the target is the hair color, a convolutional network trained on this dataset would focus
on the hair of the person, so we conjecture that the output of the convolutional network is
highly correlated with the hair style. In our experiments, we find that models trained with
ERM misclassify about 20% of the test instances with blond straight hair, much more than
the other three combinations.

Table 3.4 lists the number of training instances in each domain of each dataset. Each instance
may belong to zero, one or more domains. In CivilComments-Wilds, the aggregated group size of
the 16 groups is less than the total number 269,038, because most online comments do not contain
sensitive words.

3.9.2 Model Selection

In Section 3.6 we assume access to a domain-aware validation set, which is not available in real
domain-oblivious tasks. In this part we study several domain-oblivious model selection strategies,
and discuss why model selection is hard.

We study the following model selection strategies:
• Max Average Accuracy: The model with the highest average accuracy in validation.
• Min CVaR: The model with the lowest CVaR risk (α = 0.2) over the validation set.
• Min CVaR-DORO: The model with the lowest CVaR-DORO risk (α = 0.2, ϵ = 0.005) over

the validation set.
Note that selecting the model that achieves the highest average accuracy over the worst α

portion of the data is almost equivalent to the Max Average Accuracy strategy because the model
with the highest average accuracy over the population also achieves the highest accuracy on the
worst α portion (see e.g. [63], Theorem 1).

We conduct experiments on CelebA and report the results in Table 3.5. From the table we
draw the following conclusions:
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Table 3.5: The average and worst-case test accuracies of the best models selected by different
strategies. (%)

Training Algorithm Model Selection Average Accuracy Worst-case Accuracy

ERM

Oracle 95.01± 0.38 53.94± 2.02
Max Avg Acc 95.65± 0.05 45.83± 1.87

Min CVaR 95.68± 0.04 44.83± 2.74
Min CVaR-DORO 95.69± 0.04 44.50± 2.72

Oracle 95.52± 0.08 49.94± 3.36
CVaR Max Avg Acc 95.74± 0.06 39.28± 3.58

(α = 0.2) Min CVaR 95.79± 0.05 38.67± 2.06
Min CVaR-DORO 95.81± 0.05 38.83± 2.05

Oracle 92.91± 0.48 72.17± 3.14
CVaR-DORO Max Avg Acc 95.60± 0.05 45.39± 3.22

(α = 0.2, ϵ = 0.005) Min CVaR 95.58± 0.06 39.83± 2.37
Min CVaR-DORO 95.56± 0.07 41.28± 3.26

Oracle 82.44± 1.22 63.36± 2.51
χ2-DRO Max Avg Acc 90.70± 0.26 20.67± 3.86
(α = 0.2) Min CVaR 87.28± 2.05 21.44± 11.13

Min CVaR-DORO 89.16± 1.41 25.50± 9.14

Oracle 80.73± 1.41 65.36± 1.02
χ2-DORO Max Avg Acc 90.06± 0.57 22.06± 5.82

(α = 0.2, ϵ = 0.005) Min CVaR 84.37± 4.08 29.83± 12.10
Min CVaR-DORO 88.76± 0.81 23.61± 7.45

1. For every training algorithm, the oracle strategy achieves a much higher worst-case test
accuracy than the other three strategies, and the gap between the oracle and the non-oracle
strategies for DRO and DORO is larger than ERM. While it is expected that the oracle
achieves a higher worst-case accuracy, the large gap indicates that there is still huge room
for improvement.

2. For χ2-DRO/DORO, Min CVaR and Min CVaR-DORO work better than Max Average
Accuracy. However, for the other three algorithms, Max Average Accuracy is better. This
shows that model selection based on CVaR and selection based on CVaR-DORO are not
good strategies.

3. With the three non-oracle strategies, ERM achieves the highest worst-case test accuracy.
This does not mean that DRO and DORO are not as good as ERM, but suggests that we
need other model selection strategies that work better with DRO and DORO.

The reason why Min CVaR is not a good strategy is that CVaR does not decrease monotonically
with Rmax. Corollary 2 only guarantees that CVaR is an upper bound of Rmax, but the θ that
achieves the minimum CVaR does not necessarily have the smallest Rmax. For the same reason,
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Min CVaR-DORO is not a good strategy either.
Model selection under the domain oblivious setting is a very difficult task. In fact, Theorem

1 of [63] implies that no strategy can be provably better than Max Average Accuracy under the
domain-oblivious setting, i.e. for any model selection strategy, there always exist D1, · · · ,DK

such that the model it selects is not better than the model selected by the Max Average Accuracy
strategy. Thus, to design a provably model selection strategy, prior knowledge or reasonable
assumptions on the domains are necessary.

3.9.3 Training Hyperparameters
On the COMPAS dataset, we use a two-layer feed-forward neural network activated by ReLU as
the classification model. For optimization we use ASGD with learning rate 0.01. The batch size is
128. The hyperparameters we used in Table 3.2 were: α = 0.5 for CVaR; α = 0.5, ϵ = 0.2 for
CVaR-DORO; α = 0.5 for χ2-DRO; α = 0.5, ϵ = 0.2 for χ2-DORO.

On the CelebA dataset, we use a standard ResNet18 as the classification model. For opti-
mization we use momentum SGD with learning rate 0.001, momentum 0.9 and weight decay
0.001. The batch size is 400. The hyperparameters we used in Table 3.2 were: α = 0.1 for CVaR;
α = 0.2, ϵ = 0.005 for CVaR-DORO; α = 0.25 for χ2-DRO; α = 0.25, ϵ = 0.01 for χ2-DORO.

On the CivilComments-Wilds dataset, we use a pretrained BERT-base-uncased model as the
classification model. For optimization, we use AdamW with learning rate 0.00001 and weight
decay 0.01. The batch size is 128. The hyperparameters we used in Table 3.2 were: α = 0.1
for CVaR; α = 0.1, ϵ = 0.01 for CVaR-DORO; α = 0.2 for χ2-DRO; α = 0.2, ϵ = 0.01 for
χ2-DORO.
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(a) Average (Original) (b) Worst (Original)

(c) Train Loss (Original) (d) Test Loss (Original)

(e) Average (Outliers removed) (f) Worst (Outliers removed)

(g) Average (Labels flipped) (h) Worst (Labels flipped)

(i) Average (Original) (j) Worst (Original)

Figure 3.2: Average/Worst-case test accuracies on the COMPAS dataset (Original, “clean” with
the outliers removed, and “clean with label noise” with 20% of the labels flipped). The second
row shows the train/test loss of ERM and DRO on the original dataset (average over all samples).
The last row shows the performance of DORO on the original dataset.
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Figure 3.3: Test accuracies of CVaR and CVaR-DORO on CelebA (α = 0.1, ϵ = 0.01).
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Figure 3.4: Test accuracies of χ2-DRO and χ2-DORO on CelebA (α = 0.3, ϵ = 0.01).
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Figure 3.5: Effect of ϵ on the test accuracies of CVaR/χ2-DORO on CelebA (α = 0.2). DORO
with ϵ = 0 is equivalent to DRO.
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Figure 3.6: Effect of α on the test accuracies of DRO and DORO on CelebA (ϵ = 0.01).
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Chapter 4

High Dimensional Imbalanced
Classification
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4.1 Introduction

Datasets with class imbalance — that is, the number of samples of one class far exceeds the
number of data of another class — are prevalent in cutting-edge data science applications [30, 60].
Take COVID-19 testing data for example: a dominant fraction of data samples often come from
the negative class (i.e., non-targeted people who have not contracted the virus). The evaluation
criterion in reality, however, might place equal, or even higher, emphasis on the minority class
(e.g., the infected people in the COVID-19 case). The ability to generalize favorably in both
majority and minority classes plays a pivotal role in critical scientific and societal issues (e.g.,
fairness/equity in machine learning, discovery of rare disease, transferability of knowledge to
sample-starved tasks). It has been widely recognized, however, that the imbalanced availability of
data can cause severe issues to modern data-limited learning algorithms including neural networks
(e.g., [24, 60, 138]), particularly when reasoning about the underrepresented class.

For concreteness, let us discuss a puzzling phenomenon that arises in a classical binary
classification problem. Imagine there are two classes: the majority class has n0 samples and
the minority class has n1 samples, where n1 ≪ n0. We take the generalization error to be the
misclassification error when averaged over two classes (with equal weight). Prior statistical theory
typically suggested a generalization bound that scales as O(n−1/2

0 + n
−1/2
1 ) as long as the sample

sizes for both classes tend to infinity [27, 155]; if this were true, then one would predict that
the sample size of the minority class plays a dominant role in imbalanced classification, while
adding more data to either class helps improve generalization. However, an intriguing empirical
phenomenon seems to contradicts this theory: in data-hungry settings, adding more data in the
majority class might sometimes even hurt generalization [140, 156].

In this paper, we aim to take steps towards theoretically understanding the detrimental role
of majority data for M-estimators, including the popular learning algorithms like Fisher linear
discriminant analysis (LDA), logistic regression and SVM among others. We pursue a compre-
hensive understanding of these classifiers in the proportional regime — where the number of
parameters d scales linearly with the number of linear equations n, with their ratio d/n held
fixed to be a constant δ ∈ (0,∞). It is demonstrated that more data from majority class can
provably hurt the performance of these algorithms, using recent techniques from high dimensional
statistics like random matrix theory or convex Gaussian minimax theorem (CGMT). Finally, we
also develop effective schemes to correct the biases brought by having imbalanced classes.

4.1.1 Binary classification

Consider classifying a mixture of two d-dimensional Gaussian components, with n0 (resp. n1)
samples for the majority (resp. minority) class. In each sample (xi, yi), the binary variable
yi ∈ {±1} denotes the class label, while xi = [1, x̃i] = [1, x̃i,1, · · · , x̃i,d]⊤ ∈ Rd+1 comprises
the (augmented) feature variables, with the first coordinate encoding the intercept. The problem
is this: based on n independent observations, can we hope to identify a classifier such that the
classification error on a new sample xnew is as small as possible?

Formally, suppose we have acquired n independent observations {(xi, yi)}ni=1, with n0

(resp. n1) samples drawn from the majority class with yi = −1 (resp. minority class with

62



yi = 1). The Gaussian mixture model assumes that

X̃ | Y = +1 ∼ P1 := N (µ1,Σ)

X̃ | Y = −1 ∼ P0 := N (µ0,Σ)
(4.1)

for different mean vectors µ1, µ0 ∈ Rd and shared covariance structure Σ.
Despite the imbalanced availability of training data, we would like to treat both classes equally

in the generalization error. Specifically, given any classifier f that maps a feature vector x ∈ Rd+1

to {+1,−1}, the generalization error is defined w.r.t. a balanced mixture of P0 and P1 as follows

Risk(f) :=
1

2

{
Ex∼P1 [1{f(x) ̸= 1}] + Ex∼P0 [1{f(x) ̸= −1}]

}
. (4.2)

In other words, R(f) characterizes the out-of-same test error of classifier f at a new sample drawn
from Ptest :=

1
2
P0 +

1
2
P1. The focus is the challenging proportional growth regime

n1/d = α1, n0/d = α0, (n0, n1, d) → ∞, (4.3)

where both α0 and α1 are fixed constants.

4.1.2 Surprises in high-dimensional imbalanced classification
An illustrative example: Fisher’s LDA in high dimensions. In order to determine whether
an observed vector x has been drawn from distribution P1 or distribution P0, arguably the most
widely used procedure is Fisher’s linear discriminant analysis (LDA). In its simplest form, when
the covariance matrix is known a priori as identity, Fisher’s LDA is given by

f̂(x) = sign

(
(µ̂1 − µ̂0)

Tx− 1

2
(∥µ̂1∥22−∥µ̂0∥22)

)
, (4.4)

where µ̂1 := 1
n1

∑
i:yi=1 xi and µ̂0 := 1

n0

∑
i:yi=−1 xi, corresponding to the sample average of

each class. Most classical analyses on LDA have focused on the asymptotic regime where the
number of samples n largely overwhelms the feature dimension d.In this regime, LDA is known
to achieve classification error approaching Bayes risk Φ(−r/2) as n grows to infinity1, where
r := ∥µ1 − µ0∥2 denotes the ℓ2-norm separation between the means. In addition, LDA is also
known to be minimax-optimal among certain natural family of distributions.

However, in the regime where n and d grows proportionally to infinity, the performance of
LDA is no longer characterized by the classical analyses (see [38] and a nice survey paper by [115]
and references therein). As is also explained in [141, Chapter 1.2.1], assuming n1/d = n0/d→ α,
[38] showed that the classification error of f̂ converges in probability to a fixed number — in
particular,

Risk(f̂) → Φ
(
− r

2
√

1 + 2
r2α

)
̸= Φ(−r

2
), (4.5)

1Throughout, the cumulative distribution function (CDF) of the standard normal distribution is denoted as Φ(·).
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Figure 4.1: Asymptotic risk versus the sample ratio α0 of the majority class for different choices
of α1. The ℓ2 separation in population means is set to be r = ∥µ1 − µ0∥2= 6.

which is strictly larger than the Bayes risk for non-zero α. In addition, [38] also considered an
imbalanced variant of this result, which is of particular interest: under the imbalanced proportional
regime equation 4.3 the classification risk of f̂ converges to:

Risk(f̂) → 1

2
Φ
(
− r2 + α−1

0 − α−1
1√

r2 + α−1
0 + α−1

1

)
+

1

2
Φ
(
− r2 − α−1

0 + α−1
1√

r2 + α−1
0 + α−1

1

)
. (4.6)

Risk (non)-monotonicity. To give the readers a sense of how Risk(f̂) behaves, we present here
an illustrative example. Fixing the value of α1 (the proportion of samples from the minority class),
let α0 vary from 0 to ∞ and we can plot the risk curve Risk(f̂) against different values of α0. The
asymptotics risk provided in expression equation 4.6 is shown in Figure 4.1.

When α1 = 0.1 or 0.2, a surprising non-monotonic risk behavior arises (shown in the
blue/orange curve): as one increases the number of samples from the majority class, the test error
actually increases. In other words,

More data from the majority class can hurt the generalization of Fisher’s LDA.

It contradicts the common intuition that more data always help. This non-monotonic or U-shape
behavior, however, does not always appear in this plot. In fact, it disappears after α1, the number
of samples from minority class, grows above a certain threshold; for example, the red curve —
corresponding to r = 6 and α1 = 0.4 — is monotonically decreasing.

It turns out that the phenomenon aforementioned is not merely restrictive to Fisher’s LDA.
This paper also considers a spectrum of other standard classifiers such as support vector machine
(SVM), logistic regression with or without regularization and other type of M-estimators, all
of which suffer from the same sample inefficiency regarding the majority class. See also an
illustrative plot in Figure 4.2.
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Figure 4.2: Non-monotonicity of the asymptotic risk behavior: Test errors of logistic regression
and SVM are shown for α1 = 0.1, r = 6,Σ = I . We generate the data and fit the models 20 times
and average over their generalization error (on a new data sample).

4.1.3 Other related works
Classifying Gaussian mixtures. Classifying mixture of Gaussians has been one of the most
widely studied prototypes for binary classification due to its simplicity and applicability. While its
study can be dated back to Fisher in 1930s, this stylized model has been used as a starting point for
analysis of various new challenges in machine learning, such as adversarial robustness [37, 120],
self-training algorithms [28, 82], non-convex optimization [11, 150], and domain adaptation [82].
Another evolving line of recent work studies this model in the high dimensional proportional
regime where d/n = Θ(1), see for example [44, 49, 69, 142]. Some earlier works also considered
sparse variant of LDA.

Imbalanced classification. Class-imbalanced classification has received a great amount of
attention recently due to its pervasiveness in modern data applications (see surveys [30, 60]).
The standard approach to correct the bias that introduced by class imbalance is by direct class
re-weighting [111, 112]. It also motivates the study of designing proper loss functions to ac-
commodate class variability, see for example [27, 45, 75]. Another line of research considers
another kind of re-weighting framework by sub-sampling the major class (see [50, 121, 143] and
references therein). [105] provided interesting asymptotic characterization of logistic regression
for infinitely imbalanced datasets.

Exact high-dimensional asymptotics. The framework that adopted in the first part of this paper
is the exact high-dimensional asymptotics of convex optimization based estimators. In order to
provide sharp characterization of these estimators in the proportional regime, this framework
has recently been considered in various problems in statistics and machine learning such as the
analysis of LASSO estimators [29? ], logistic regression [40, 127], double-descent phenomena
[13, 97] and adversarial training [69], just to name a few. Most related to our work are the recent
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work [40, 75] which study the binary and multi-class classification error respectively, without
explicitly modeling the role of class imbalance. The classifiers analyzed in this paper are also
closely related to the M-estimators used prominently for high dimensional regression. The efforts
of characterizing the risk and distribution of robust regression estimators are initiated in [? ? ? ]
and also considered in [44, 59, 132? ].

Fairness/Distributionally Robust Generalization The algorithmic bias of machine predictions
in the face of biased data collection has been a pressing issue that raises serious concerns
across various communities [66]. Our results concerning data-imbalanced classification and bias
correction should be integrated broadly with the growing efforts in equitable learning and fairness.
See [51, 57, 149, 159] and references therein.
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4.2 Analysis of re-weighted M-estimators

4.2.1 A warm-up example: Diagnosis of LDA

Here we provide a brief analysis of why Fisher LDA is sub-optimal in the high dimensional
imbalanced setting. For simiplicity, in this section we assume that µ1 = µ, µ0 = −µ be symmetric
around the origin.

In this setting, the Bayes classifier is fBayes = sign(µTx). Notice that the constant term is 0
in the Bayes classifier.

However, if we look at the LDA estimator closely - the constant term is 1
2
∥µ̂0∥22−1

2
∥µ̂1∥22.

Using basic properties of Gaussian distribution, we can show that

E[∥µ̂0∥22] = ∥µ∥22+
d

n0

E[∥µ̂1∥22] = ∥µ∥22+
d

n1

In the classical regime where n0, n1 >> d, the O(1/n) terms are negligible and the constant
term in LDA does converge to 0 as n grows to infinity. Or alternatively, in the high dimensional
balanced regime where n0 = n1, the O(1/n) terms cancel out with each other, and the constant
term is unbiased too. But when the dataset is both imbalanced and high-dimensional, this
estimation causes trouble: the difference becomes 1

2α0
− 1

2α1
, i.e. the bias is non-zero!

In light of this observation, [38] proposed a simple improved version of LDA in this regime:
He uses a shifted linear predictor, which corrects bias in the intercept term:

f̂shifted(x) = sign

(
(µ̂1 − µ̂0)

Tx− 1

2
(∥µ̂1∥22−∥µ̂0∥22) +

1

2
(
d

n0

− d

n1

)

)
(4.7)

Deev showed that the risk of this bias-corrected version of LDA converges to

Φ

(
− r2

2
√

r+α−1
0 +α−1

1

)
, which not only always outperform LDA, but also always monotone in

both α0 and α1, as shown in the figure 4.3. An interesting interpretation of Deev’s result is that
the ”effective” sample size seem to be twice of the harmonic mean of n0 and n1, i.e. 4n0n1

n0+n1
. Since

harmonic mean is always upper bounded the arithmetic mean (with the equality when n0 = n1),
this indeed suggest that imbalanced classification is always harder than balanced case.

4.2.2 Main results

Without loss of generality, we assume α1 < α0, i.e. class 1 is the minority class. We also
shuffle the training data so that the first n0 samples are from class 0. In other words, the samples
from class 0 are (x1, y1 = 0), · · · , (xn0 , yn0 = 0), and samples from class 1 are (xn0+1, yn0+1 =
1), · · · , (xn0+n1 , yn0+n1 = 1).
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Figure 4.3: Comparing LDA and Bias-corrected LDA.

Class-weighted M-estimator: Throughout, we consider a class of classifiers that referred to as
class-weighted M-estimators. Specifically, let l(·) : R → [0,∞) be a convex classification loss
function. For every linear classifier f(x; β) = sign(βTx), define its risk function as

R̂emp(β; l, λ) =
1

2n0

n0∑
i=1

l(yiβ
Txi) +

1

2n1

n1∑
i=n0+1

l(yiβ
Txi) + λ∥β∥22. (4.8)

Here the loss from class 0 (resp. class 1) is scaled by 1
n0

(resp. 1
n1

) and the corresponding
M-estimator is given by

f̂λ(x) := sign(β̂Tx) β̂ := argmin
β∈Rd+1

R̂emp(β; l, λ). (4.9)

Our goal is to understand the performance of f̂λ(x) in terms of population risk equation 4.2. When
f is a linear classifier f(x; β), we write R(β) as a shorthand for R(f(·; β)) when the meaning is
clear from context.

Here l(t) denotes any convex classification loss function. For example, l(t) := log(1 + e−t)
corresponds to the logistic loss, whereas l(t) := max{1− t, 0} is the hinge loss. For notational
convenience, we adopt the conventional Moreau envelope definition as

el(x; τ) := min
u

{ 1

2τ
(x− u)2 + l(u)}. (4.10)

In this section, we study the high dimensional asymptotic behavior of the convexified class
weighted ERM estimator. The main technical tool used in the analysis is Convex Gaussian
Minimax Theorem (CGMT), stated below.

We consider two settings, where the linear predictor is either homogeneous (i.e. f(x) =
sign(βTx)) or non-homogeneous (i.e. f(x) = sign(βTx+ c)). The analysis for both settings are
similar and we will only provide the proof for non-homogeneous setting since it’s more general.
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Theorem 4.2.1 (Asymptotic Classification Error of Homogeneous Linear Classifiers). Consider
the class-weighted convexified ERM estimator β̂ which minimizes the normalized logistic loss:

R̂emp(β) =
1

2n0

n0∑
i=1

l(yiβ
Txi) +

1

2n1

n0+n1∑
i=n0+1

l(yiβ
Txi) + λ∥β∥22. (4.11)

Assuming the Gaussian Mixture model, ni

d
→ αi for i ∈ {0, 1}. Then, the asymptotic classification

error can be characterized as:

R(β̂) →P Φ

(
− r∗1
R∗∥µ∥2

)
, (4.12)

where el is the Moreau envelope of l(·) defined in equation 4.10, and (r∗1, R
∗, θ∗) is the optimal

solution of the following convex-concave scalar optimization problem:

min
r1,R:|r1|≤R

max
θ

1

2
EZ∼N(0,1)

[
el

(
RZ + r1∥µ∥2;

α0 + α1

2α0θ

)
+ el

(
RZ + r1∥µ∥2;

α0 + α1

2α1θ

)]
−θ(R

2 − r21)

2(α0 + α1)
+λR2

(4.13)
Theorem 4.2.2 (Asymptotic Classification Error of Non-Homogeneous Linear Classifiers). Con-
sider the class-weighted convexified ERM estimator β which minimizes the weighted logistic
loss:

R̂emp(β; q0, q1) =
q0
2n0

n0∑
i=1

l(yi(β
Txi + c)) +

q1
2n1

n0+n1∑
i=n0+1

l(yi(β
Txi + c)) + λ∥β∥22. (4.14)

Assuming the Gaussian Mixture model, ni

d
→ αi for i ∈ {0, 1}. Then, the asymptotic classification

error can be characterized as:

R(β) →P
1

2
Φ

(
−r

∗
1∥µ∥2+c∗

R∗

)
+

1

2
Φ

(
−r

∗
1∥µ∥2−c∗

R∗

)
, (4.15)

where el is the Moreau envelope of l(·) defined in equation 4.10, and (r∗1, R
∗, θ∗) is the optimal

solution of the following convex-concave scalar optimization problem:

min
r1,R,c:|r1|≤R

max
θ

1

2
EZ∼N(0,1)

[
q0el

(
RZ + r1∥µ∥2−c;

(α0 + α1)q0
2α0θ

)
+ q1el

(
RZ + r1∥µ∥2+c;

(α0 + α1)q1
2α1θ

)]
− θ(R2 − r21)

2(α0 + α1)
+ λR2

Proof techniques. This theorem is established by exploiting tools from modern high-
dimensional probability, particularly the convex Gaussian minimax theorem (CGMT) [54] that has
recently proven to be effective in enabling fine-grained characterization for both high-dimensional
asymptotics and over-parameterized problems [6, 69, 133? ? ]. As it turns out, this theorem allows
one to pin down the asymptotic class-balanced classification error for a broad family of ℓ(·). The
theoretical prediction can be numerically computed, matching the empirical behavior of, say, the
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Figure 4.4: Comparing empirical and theoretical test error of logistic regression . In this figure,
we set λ = 0.2 and n1

d
= α1 = 0.1, and d = 5000, T = 3 times average of indpendent generation

of dataset for the empirical curve.

LDA classifier. Let G ∈ Rn×d, g ∈ Rn, h ∈ Rd have i.i.d. Gaussian entries, Sw ⊂ Rd, Su ⊂ Rn

be bounded, compact, convex sets. Define two Gaussian processes:

Xw,u = uTGw + ψ(w, u)

Yw,u = ∥w∥2gTu+ ∥u∥2hTw + ψ(w, u)

Define two optimization problems, primary optimization (PO) and auxilary optimization (AO):

PO(G) = min
w∈Sw

max
u∈Su

Xw,u (4.16)

AO(g, h) = min
w∈Sw

max
u∈Su

Yw,u (4.17)

Assuming ψ(·, ·) is convex-concave on Sw × Su, then for any ν ∈ R, t > 0, we have:

Pr[|PO(G)− ν|> t] ≤ 2Pr[|AO(g, h)− ν|> t] (4.18)

where the randomness is from G, g, h. In other words,

Concentration of OPT (AO) ⇒ Concentration of OPT (PO)

The main benefit of CGMT is that it reduces the analysis of PO to that of AO, which is typically
easier since it does not involve the Gaussian random matrix G and only depends on two Gaussian
vectors g, h. Furthermore, it’s often possible to simplify AO, which is a O(n)-dimensional
problem, to an equivalent convex-concave program which involves only a small (constant) number
of scalar variables, where the scalar variables also encode the quantities of our interest, e.g. the
distance to the population optimal solution, the limit correlation with ground truth parameter, to
name a few.

4.2.3 Bias correction for M-estimators

In Section 4.1.2, we showed that applying bias-correction on Fisher’s LDA leads to a better
test accuracy and monotonic risk. A natural question is whether it’s possible to apply a similar
bias-correction procedure to other classifiers, like logistic regression or SVMs. In this section, we
answer this question in affirmative and provide two different ways of de-biasing high dimensional
logistic regression in imbalanced dataset.
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Figure 4.5: Comparing test error of logistic regression before and after bias-correction. In this
figure, we set λ = 0.2 and n1

d
= α1 = 0.1

Method 1: De-biasing with high dimensional asymptotics

Recall that in section 4.2, we provided sharp high dimensional asymptotics for weighted logistic
regression. In particular, we showed that the solution (β, c) satisfies

βT (µ1 − µ0) → r∗1∥µ1 − µ0∥2, ∥β∥2→ R∗,−1

2
βT (µ1 + µ0) + c→ c∗, (4.19)

where (r∗1, R
∗, c∗) is the solution to a convex-concave program. By inspecting the asymptotic

behavior, we have the following observation:
• The correlation between β and β∗ is increasing with α0, the sample size of majority class.
• The bias of c∗ is also growing with α0, and eventually becomes the dominating factor in

classification error.
Motivated by these observations, we propose the following de-biasing procedure.
First, let c0 = 1

2
(β∗)T (µ1 + µ0) be the constant term of Bayes-Optimal classifier. We use the

weighted logistic loss to learn a linear classifier βTx + c, then replace c with ccorrected = c− c∗.
This step makes c′ asymptotically unbiased. This procedure can be viewed as a generalization to
Deev’s bias correction for LDA, for which he also derived the asymptotic formula of the bias term
and substracted it from the estimator.

As shown in figure ??, this correction improves the classification accuracy of logistic regression
and eliminates the non-monotonicity of risk, although still being worse than the bias-corrected
LDA.

Method 2: De-biasing with validation Set

While Method 1 is effective under the high-dimensional asymptotic setting we considered, it
has a few crucial drawbacks. First of all, the validity of this procedure depends heavily on the
Gaussian distributional assumption. Without such assumptions, it is very difficult to derive the
asymptotic formula for the bias. Furthermore, even if we know the data is indeed Gaussian,
this asymptotic bias varies from different Signal-to-noise ratios (i.e. the separation between the
mixture components), which is unlikely to be known apriori. These drawbacks motivate us to
explore alternative, practical way of de-biasing the estimator.

Another popular way of de-biasing is using a hold-out validation set, and choose the best
parameter based on the accuracy therein. This method is often not statistically efficient, especially
in the proportional regime d/n = Θ(1). This is because it often requires a constant fraction of
data for validation, which changes the ratio of d/n and leads to an inferior statistical accuracy.
However, a key observation here is that we only need to tune a single thereshold parameter, for
which we only use a sublinear number of samples for validation.

More specifically, suppose we use O( n
logn

) samples from each class for validation. We first
use a weighted logistic loss to learn a linear classifier βTx+ c. Then, we replace c with cvalidation

which minimizes the validation error of the shifted linear classifier.
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Since tuning c is equivalent to (agnostic) learning a threshold function over real line, by a VC
dimension argument, we can show that:

R(β, cvalidation) ≥ inf
c
R(β, c) + Õ(

1√
n
), (4.20)

because the generalization error scales like Õ( 1√
nvalidation

), and nvalidation = O( n
logn

) = Õ(n). Note
that this inequality holds without any distributional assumptions. In fact, we (should be) able to
prove that this gap can be improved to O( 1

n
) for Gaussian mixtures.

Since all of our previous analysis only requires n0/d → α0, n1/d → α1 and removing a
sublinear number of samples does not change the limiting behavior, the homogeneous part of the
linear predictor inherits all of the theoretical properties we derived in the previous section. Since
1/
√
n→ 0 in the asymptotic regime, we can achieve the bias-corrected asymptotic error with this

validation-based approach.

4.3 Sharp non-asymptotic analysis of Deev’s estimator
In this section, we provide a sharp, non-asymptotic analysis to Deev’s Estimator:

f̂Deev(x) = sign

(
(µ̂1 − µ̂0)

Tx− 1

2
(∥µ̂1∥22−∥µ̂0∥22) +

1

2
(
d

n0

− d

n1

)

)
(4.21)

Theorem 4.3.1. (Informal) Assuming ∆ = Ω(1), n0 ≥ n1 = Ω(d), we have:

R(f̂Deev) = Φ

− ∆2

2
√

∆2 + d
n0

+ d
n1

+ Õ

(√
d

n1

)
(4.22)

In contrast, as long as d
n1

− d
n0

= Ω(1), we have:

R(f̂LDA) = Φ

− ∆2

2
√
∆2 + d

n0
+ d

n1

+ Ω̃

(
d

n1

)
(4.23)

We first equivalently re-formulate Deev’s Estimator in the following form:

f̂Deev(x) = sign

(
(µ̂1 − µ̂0)

T (x− µ1 + µ0

2
)− 1

2
(µ̂1 − µ̂0)

T (µ̂1 − µ1 + µ̂0 − µ0) +
1

2
(
d

n0

− d

n1

)

)
(4.24)

Let µ1 − µ0 = 2v, µ̂1 − µ1 = z1 ∼ N(0, 1
n1
Id), µ̂0 − µ0 = −z0 ∼ N(0, 1

n0
Id), we can further

simplify the above equation to:

f̂Deev(x) = sign

(
wT (x− µ1 + µ0

2
) + b)

)
(4.25)
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where:

w = 2v + z1 + z0 (4.26)

b = −vT (z1 − z0) +
1

2
(∥z1∥2−

d

n1

)− 1

2
(∥z0∥2−

d

n0

) (4.27)

Recall that the test error can be written as:

R(f) =
1

2
Φ

(
−wTv − b

∥w∥2

)
+

1

2
Φ

(
−wTv + b

∥w∥2

)
(4.28)

We have the following simple lemma:
Lemma 4.3.1.

1

2
Φ (−s+ t) +

1

2
Φ (−s− t) = Φ(s) +

1

2
√
2π
e−

s2

2 st2 +O(t4) (4.29)

Therefore,

R(f) =
1

2
Φ

(
−wTv

∥w∥2

)
+O

(
b2

∥w∥22

)
. (4.30)

Next, we will analyze the two terms separately.
Lemma 4.3.2. With probability 1− δ

2
,

wTv

∥w∥2
≥ ... (4.31)

Lemma 4.3.3. With probability 1− 6δ2 − exp(−0.04 · d),

b2

∥w∥22
≤ 5

(
1

n0

+
1

n1

)
log(

1

δ2
) +

20

∥v∥22

(
d log(

1

δ2
) + log(

1

δ2
)2
)(

1

n0

+
1

n1

)2

(4.32)

Proof of Lemma 4.3.2. First, we notice that w ∼ N(2v, ( 1
n0

+ 1
n1
)Id) can be decomposed as

w = 2v +

√
1

n0

+
1

n1

(zv ·
v

∥v∥2
+ z⊥), (4.33)

where zv ∼ N(0, 1) and z⊥ ∼ N(0, I − 1
∥v∥22

vvT ) are independent Gaussian variables. Note that
vT z⊥ = 0, hence we have

∥w∥22=
(
2∥v∥2+

√
1

n0

+
1

n1

zv

)2

+

(
1

n0

+
1

n1

)
∥z⊥∥22 (4.34)

and

wTv = 2∥v∥22+
√

1

n0

+
1

n1

zv∥v∥2 (4.35)
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therefore,

wTv

∥w∥2
=

2∥v∥22+
√

1
n0

+ 1
n1
zv∥v∥2((

2∥v∥2+
√

1
n0

+ 1
n1
zv

)2
+
(

1
n0

+ 1
n1

)
∥z⊥∥22

)1/2
(4.36)

By the Gaussian/chi-square tail bounds ([87], Lemma 1), we have with probability 1− 2δ4,

zv ≥ −
√

log(
1

δ4
), (4.37)

and

∥z⊥∥22≤ (d− 1) + 2

√
(d− 1) log(

1

δ4
) + 2 log(

1

δ4
) (4.38)

Let

T4 =

√(
1

n0

+
1

n1

)
log(

1

δ4
) (4.39)

T5 =

(
2

√
(d− 1) log(

1

δ4
) + 2 log(

1

δ4
)

)(
1

n0

+
1

n1

)
(4.40)

Assuming T4 ≤ ∥v∥2 (which is equivalent to δ4 ≥ exp
(
− 1

∥v∥2
n0n1

n0+n1

)
= exp (−Θ(n1))), we

have:

wTv

∥w∥2
≥ ∥v∥2

2∥v∥2−T4(
(2∥v∥2−T4)2 + d−1

n0
+ d−1

n1
+ T5

)1/2 (4.41)

=
2∥v∥22(

4∥v∥22+d−1
n0

+ d−1
n1

) 1
2

−
∥v∥2

((
d−1
n0

+ d−1
n1

)
T4 + ∥v∥2T5

)
(
4∥v∥22+d−1

n0
+ d−1

n1

) 3
2

+O(T 2
4 + T 2

5 ) (4.42)

Plugin

Proof of Lemma 4.3.3. b consists of three terms:

b = −vT (z1 − z0)︸ ︷︷ ︸
T1

+
1

2
(∥z1∥2−

d

n1

)︸ ︷︷ ︸
T2

−1

2
(∥z0∥2−

d

n0

)︸ ︷︷ ︸
T3

(4.43)

We will bound each term separately.

Upper Bounding T1 Notice that z1 − z0 ∼ N(0, ( 1
n0

+ 1
n1
)Id), therefore, T1 ∼ N(0, ( 1

n0
+

1
n1
)∥v∥22). Consequently, by the normal tail bound Pr[N(0, 1) ≥ t] ≤ exp(− t2

2
), we have

Pr

[
|T1|≤

√(
1

n0

+
1

n1

)
log(

2

δ1
)∥v∥2

]
≥ 1− δ1 (4.44)
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Upper Bounding T2 and T3 Notice that n1∥z1∥2∼ χ2(d), by Lemma 1 of [87],

Pr
[
n1∥z1∥22−d ≥ 2

√
dt+ 2t

]
≤ exp(−t) (4.45)

Pr
[
n1∥z1∥22−d ≤ −2

√
dt
]
≤ exp(−t) (4.46)

Therefore, w.p (1− 2δ2),

−

√
d log( 1

δ2
)

n1

≤ T2 ≤

√
d log( 1

δ2
)

n1

+
log( 1

δ2
)

n1

(4.47)

Similarly, w.p (1− 2δ2),

−

√
d log( 1

δ2
)

n0

≤ T3 ≤

√
d log( 1

δ2
)

n0

+
log( 1

δ2
)

n0

(4.48)

Therefore, w.p (1− 4δ2), we have

|T2 + T3|≤
√
d log(

1

δ2
)

(
1

n0

+
1

n1

)
+

log( 1
δ2
)

min(n0, n1)
(4.49)

Putting things together, we have

|b|≤

√(
1

n0

+
1

n1

)
log(

2

δ1
)∥v∥2+

(√
d log(

1

δ2
) + log(

1

δ2
)

)(
1

n0

+
1

n1

)
(4.50)

with probability 1− δ1 − 4δ2. Thus, by Cauchy-Schwarz,

|b|2≤ 4∥v∥22
(

1

n0

+
1

n1

)
log(

2

δ1
) + 16

(
d log(

1

δ2
) + log(

1

δ2
)2
)(

1

n0

+
1

n1

)2

(4.51)

Roughly speaking, this implies that b = Õ( d
n2
∗
+ 1

n∗
), where n∗ =

n0n1

n0+n1

Lower Bounding ∥w∥2 Recall that w = 2v + z1 + z0 ∼ N(2v, ( 1
n0

+ 1
n1
)Id), we have ( 1

n0
+

1
n1
)−1∥w∥22 follows non-central χ2 distribution χ2

d(λ), where λ = 4∥v∥22( 1
n0

+ 1
n1
)−1. By [17], we

have:
Pr
[
χ2
d(λ) ≤ d+ λ− 2

√
(d+ 2λ)t

]
≤ exp(−t) (4.52)

as a result, as long as t ≤ d+2λ
25

, we have

d+ λ− 2
√
(d+ 2λ)t ≥ 3d+ λ

5
, (4.53)

and

Pr

[
(
1

n0

+
1

n1

)−1∥w∥22≤
3d+ λ

5

]
≤ exp(−t), (4.54)
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thus, we have with probability 1− exp(−Ω(d)),

∥w∥22≥
4

5
∥v∥22+

3

5
(
d

n0

+
d

n1

) ≥ 4

5
∥v∥22 (4.55)

Finally, choosing δ1 = 2δ2 and apply union bound, we have with probability at least 1− 6δ2 −
exp(−0.04 · d),

b2

∥w∥22
≤ 5

(
1

n0

+
1

n1

)
log(

1

δ2
) +

20

∥v∥22

(
d log(

1

δ2
) + log(

1

δ2
)2
)(

1

n0

+
1

n1

)2

(4.56)

4.4 Minimax lower bounds

For any classifier f̂(xn+1;x1, · · · , xn),n = n0 + n1, the expected classification error is defined as:

R(f̂) = Pr[f̂(xn+1;x1, · · · , xn) ̸= yn+1] (4.57)

where the probability is taken over both training data {x1, · · · , xn} and test data (xn+1, yn+1)
drawn from the following distribution:

x1, · · · , xn0 ∼ N(µ0, I) (4.58)
xn0+1, · · · , xn0+n1 ∼ N(µ1, I) (4.59)

yn+1 ∼ Uniform{+1,−1} (4.60)
x|y = 1 ∼ N(µ1, I) (4.61)

x|y = −1 ∼ N(µ0, I) (4.62)

We focus on the parameter space where (µ0, µ1) are ∆-separated:

Pd(∆) = {µ0, µ1 ∈ Rd, ∥µ0 − µ1∥2≥ ∆} (4.63)

We will sometimes use P as a shorthand for Pd(∆) when the meaning is clear from context.
Now, let us define the minimax classification error:

M(n0, n1,P) = inf
f̂(xn+1;x1,···,xn)

sup
(µ0,µ1)∈P

R(f̂) (4.64)

And the quantity of interest to us is the asymptotic minimax error when n0/d = α0, n1/d =
α1,∆ are fixed constants and n0, n1, d→ ∞. To be precise,

R∗
asymp(∆, α0, α1) = lim sup

n0/d=α0,n1/d=α1,d→∞
M(n0, n1,Pd(∆)) (4.65)
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4.4.1 The Bayesian connection to minimax risk

This part is analogous to Larry’s Lecture Notes, chapter 36.8.
Let Q(µ0, µ1) be a prior distribution over (µ0, µ1) ∈ P . The Q-risk of f̂ is defined as:

BQ(f̂) = E(µ0,µ1)∼QR(f̂) (4.66)

The classifier that minimizes the Q-risk is the MAP classifier:

fQ(x;x1, · · · , xn) = argmax
y∈{+1,−1}

Pr
Q
[Y = y|X = x, x1, · · · , xn], (4.67)

for which we denote its Q-risk as B(n0, n1, Q). Clearly, the minimax risk is always lower
bounded by the Q-risk:

M(n0, n1,P) ≥ B(n0, n1, Q). (4.68)

Utilizing this Bayesian connection, [92] provided a minimax lower bound on classification
error when the classes are balanced (n0 = n1). In particular, they chose the prior distribution
as uniform over a d-dimensional sphere: µ1 = −µ0 = µ ∼ 1

2
∆ · Uniform(Sd−1), and used a

delicate argument to show that the MAP classifier is a linear classifier. However, we weren’t able
to generalize their proof to imbalanced setting, mostly due to the fact that posterior distribution
p(yn+1|xn+1, x1, · · · , xn) is nearly intractable without the balancedness assumption. Motivated
by this, we introduce a notion of ”improper prior”, where the prior distribution Q(µ) may have
small probability mass outside of the parameter space P . This will enable more flexible choice of
prior distributions, e.g. Gaussian priors, which in turn help us circumvent the intractable posterior
issue.
Definition 4.4.1 (Improper Prior). A prior distribution Q(µ) is a δ-improper prior over P , if

Pr
Q
[µ ∈ P ] = 1− δ (4.69)

The following lemma shows that we can also link the minimax risk with the bayes risk of an
improper prior:
Lemma 4.4.1. Let Q(µ) be a δ-improper prior over P . Then, the minimax risk over P is lower
bounded by:

M(n0, n1,P) ≥ B(n0, n1, Q)− δ. (4.70)

Proof. By definition of minimax risk, for any ε > 0, there exists an estimator ĝ, such that

sup
(µ0,µ1)∈P

R(ĝ) ≤M(n0, n1,P) + ε (4.71)

By definition of Q-risk, we have

BQ(ĝ) ≥ B(n0, n1, Q) (4.72)
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The rest of proof is reminiscent of Markov’s inequality. Notice that the 0-1 loss function is R(ĝ)
bounded in [0, 1], we can upper bound BQ(ĝ) as folows:

BQ(ĝ) = E(µ0,µ1)∼QR(ĝ) (4.73)
= E [R(ĝ)|(µ0, µ1) ∈ P ] Pr

Q
[(µ0, µ1) ∈ P ] + E [R(ĝ)|(µ0, µ1) /∈ P ] Pr

Q
[(µ0, µ1) /∈ P ]

(4.74)

≤ (M(n0, n1,P) + ε)(1− δ) + 1 · δ (4.75)
< M(n0, n1,P) + ε+ δ. (4.76)

Therefore,
B(n0, n1, Q) < M(n0, n1,P) + ε+ δ, (4.77)

and set ε→ 0+ completes the proof.

4.4.2 Imbalanced lower bounds
In this section, we try to establish a tight lower bound to the high dimensional imbalanced
classification problem. Below we state the main theorem:
Theorem 4.4.1. Assuming n0 = α0d and n1 = α1d, the minimax risk M(n0, n1,Pd(∆)) is lower
bounded by:

M(n0, n1,Pd(∆)) ≥ Φ

(
− ∆2

2
√

∆2 + α−1
0 + α−1

1

)
−O

(√
log d

d

)
(4.78)

As an immediate corollary of this theorem, we can see that Deev’s Bias correction achieves
the information-theoretically optimal risk under the asymptotic regime n0

d
→ α0,

n1

d
→

α1;n0, n1, d → ∞. Furthermore, our lower bound is non-asymptotic, i.e. it holds for any
finite (n0, n1, d), which generalizes the exising results even in the balanced setting.

Our proof relies on a careful analysis of Bayesian Q-risk, just like a few recent works which
studied various Bayesian learning settings in high dimensional Gaussian classification [100],
[134]. However, since we are interested in the minimax risk, an additional step required here
is to choose an (approximately) least favorable prior over parameters (µ0, µ1). This step is not
required in the Bayesian learning setting where the prior distribution is fixed, and it is usually a
very difficult task (maybe add some reference here). Nevertheless, our analysis below indicates
that it is approximately tractable when the dimensionality d is very large.

Our choice of prior distribution Q(µ0, µ1) is a generalization of those appeared in recent
works [100] and [134]. In [100], the prior distribution is chosen as symmetric Gaussian Prior
µ1 ∼ N(0, ∆

2

4d
I), µ0 = −µ1. In [134], the prior is chosen as independent Gaussian Prior

µ1, µ0 ∼ N(0, ∆
2

2d
I). While neither of these priors leads to a tight minimax lower bound, a key

observation is that both of these priors can be written in the following form:(
µ0

µ1

)
∼ N

(
0,

[
(R2 + r2)Id (R2 − r2)Id
(R2 − r2)Id (R2 + r2)Id

])
, (4.79)
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Another way of interepreting equation 4.79 is as follows: let u, v be independent random
variables each with N(0, Id) distribution, then equation 4.79 is equivalent to:

µ0 = Ru− rv (4.80)
µ1 = Ru+ rv. (4.81)

Indeed, the prior considered in [100] corresponds to R = 0, r = ∆
2
√
d
, and the one in [134]

corresponds to R = r = ∆
2
√
d
. As we will see in the analysis, our choice of R is much larger

than both of them: we require R = Ω(
√
d) for our desired lower bound. From a high level, this

choice of prior is inspired by a classical result in determining the exact minimax risk of Normal
mean estimation, where the prior distribution was chosen as N(0, γ2Id) and let the variance
γ2 → ∞ (See e.g. Example 36.67 of Larry’s Lecture Notes). In our case, the difference of means
µ1 − µ0 ∼ N(0, 4r2Id), which implies ∥µ1 − µd∥2≈ 2r

√
d ≈ ∆, while µ1 + µ0 ∼ N(0, 4R2Id),

which has a very large variance similar to the text-book proof for normal mean estimation.
The main technical lemma is a careful non-asymptotic analysis of the Bayes risk under the

prior distribution mentioned above, stated below:
Lemma 4.4.2. Under the prior distribution Q defined in equation 4.79, with the choice of
parameters R = Ω(

√
d) and r = ∆̃

2
√
d
, the Q-risk is lower bounded by:

B(n0, n1, Q) ≥ Φ

− ∆̃2

2
√

∆̃2 + α−1
0 + α−1

1

−O

(√
log d

d

)
(4.82)

Theorem 4.4.1 is a consequence of Lemma 4.4.1 and Lemma 4.4.2.

Proof. We choose ∆̃ = ∆(1+C
√

log d
d
). By our construction, 1

2r
(µ1−µ0) ∼ N(0, Id). Therefore,

1
4r2

∥µ1 − µ0∥22∼ χ2(d). Using the tail bound for chi-square variables [87], we have

Pr

[
1

4r2
∥µ1 − µ0∥22≤ d− C

√
d log d

]
≤ 1√

d
(4.83)

In other words, with probability 1− d−1/2, we have

∥µ1 − µ0∥22≥ 4r2
(
d− C

√
d log d

)
= ∆̃2

(
1− C

√
log d

d

)
≥ ∆2 (4.84)

Thus, Q is a δ-improper prior with parameter δ ≤ d−1/2. Therefore, by Lemma 4.4.1,

M(n0, n1,Pd(∆)) ≥ B(n0, n1, Q)− δ (4.85)

≥ Φ

− ∆̃2

2
√

∆̃2 + α−1
0 + α−1

1

−O

(√
log d

d

)
(4.86)
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Finally, it remains to show that

Φ

− ∆̃2

2
√

∆̃2 + α−1
0 + α−1

1

 ≥ Φ

(
− ∆2

2
√
∆2 + α−1

0 + α−1
1

)
−O

(√
log d

d

)
(4.87)

This can be proven via a simple Lipschitzness argument. Notice that Φ(·) is 1√
2π

-Lipschitz, and by

Lemma 4.4.3, h(t) = − t2

2
√
t2+c

is
√

32
27

-Lipschitz for any c > 0. Therefore, Φ(h(t)) is 1√
2π
·
√

32
27

=

4
3
√
3π

-Lipschitz, and we complete the proof by using the fact that |∆̃−∆|= O

(√
log d
d

)
.

The remaining work is to prove the main technical lemma 4.4.2. Before proceeding, it’ll be
useful to establish a closed form of posterior probability p(yn+1|xn+1, x

n
1 , y

n
1 ), as summarized in

the following claim (whose proof is included in the appendix):
Claim 4.4.2. (Posterior probability)

Pr[Ynew = yn+1|Xnew = xn+1; {(xi, yi)}ni=1] ∝ exp
( T
2Z

− 1

2
d logZ − 1

2

n+1∑
i=1

∥xi∥2
)

(4.88)

where

Z = 4R2r2|C0||C1|+(R2 + r2)(|C0|+|C1|) + 1 (4.89)

T = (4R2r2|C1|+R2 + r2)∥
∑
i∈C0

xi∥22+(4R2r2|C0|+R2 + r2)∥
∑
i∈C1

xi∥22+2(R2 − r2)(
∑
i∈C0

xi)
T (
∑
i∈C1

xi)

(4.90)

and

C0 = {1, · · · , n0, n+ 1}, C1 = {n0 + 1, · · · , n} if ynew = 0 (4.91)
C0 = {1, · · · , n0}, C1 = {n0 + 1, · · · , n, n+ 1} if ynew = 1 (4.92)

Equipped with Claim 4.4.2, we are now ready to prove Lemma 4.4.2.

Proof of Lemma 4.4.2. To avoid notational clutter, we will use ∆ instead of ∆̃ in the proof below.
By definition of MAP classifier,

fQ(x;x1, · · · , xn) = argmax
y∈{+1,−1}

Pr[Ynew = yn+1|Xnew = xn+1; {(xi, yi)}ni=1] (4.93)

Denote
l(y) = Pr[Ynew = y|Xnew = xn+1; {(xi, yi)}ni=1] (4.94)

The expected classification error of the MAP classifier can be formulated as:

BQ(fQ) = Pr[fQ(xn+1) ̸= yn+1] (4.95)

=
1

2
Pr[l(1) < l(0)|yn+1 = 1] +

1

2
Pr[l(0) < l(1)|yn+1 = 0] (4.96)
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where the probability is taken over the prior distribution (µ0, µ1) ∼ Q , as well as {(xi, yi)}i∈[n+1]

generated according to equation 4.58. By symmetry, we will focus our attention on the first term,
i.e. the probability of l(1) < l(0) when xn+1 ∼ N(µ1, Id).

Next, we will compare l(1) and l(0). Define S0, S1 as the summation of all training data from
two classes:

S0 =

n0∑
i=1

xi (4.97)

S1 =
n∑

i=n0+1

xi (4.98)

Notice that in Claim 4.4.2, when yn+1 = 1, we have |C0|= n0, |C1|= n1+1, while when yn+1 = 0,
instead we have |C0|= n0 + 1, |C1|= n1. For notational simplicity, denote

Z0 := 4R2r2(n0 + 1)n1 + (R2 + r2)(n0 + n1 + 1) + 1 (4.99)
Z1 := 4R2r2(n1 + 1)n0 + (R2 + r2)(n0 + n1 + 1) + 1 (4.100)

T0 := (4R2r2n1 +R2 + r2)∥S0 + xn+1∥22+(4R2r2(n0 + 1) +R2 + r2)∥S1∥22+2(R2 − r2)(S0 + xn+1)
TS1

(4.101)

T1 := (4R2r2(n1 + 1) +R2 + r2)∥S0∥22+(4R2r2n0 +R2 + r2)∥S1 + xn+1∥22+2(R2 − r2)ST
0 (S1 + xn+1)

(4.102)

Then,

log

(
l(1)

l(0)

)
=

T1
2Z1

− T0
2Z0

+
1

2
d log

(
Z0

Z1

)
(4.103)

=
T1Z0 − T0Z1

2Z0Z1

+
1

2
d log

(
Z0

Z1

)
(4.104)

In order to analyze equation equation 4.104, we will take a closer look at each term appeared
in equation 4.104, namely, T1Z0 − T0Z1, 2Z0Z1, and 1

2
d log

(
Z0

Z1

)
.

It is easy to see that when r = ∆
2
√
d
, n0 = α0d and n1 = α1d, we have

Z0 = R2d
(
∆2α0α1 + α0 + α1

) (
1 +O(R−1 + d−1)

)
(4.105)

Z1 = R2d
(
∆2α0α1 + α0 + α1

) (
1 +O(R−1 + d−1)

)
(4.106)

and

Z0

Z1

= 1 + d−1 · ∆2(α1 − α0)

∆2α0α1 + α0 + α1

+O(d−2) (4.107)

Therefore,
1

2
d log

(
Z0

Z1

)
=

∆2(α1 − α0)

2 (∆2α0α1 + α0 + α1)
+O(d−1) (4.108)
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and
2Z0Z1 = 2R4

(
∆2α0α1 + α0 + α1

)2 (
1 +O(R−1 + d−1)

)
(4.109)

The remaining work, also the most challenging part, is to analyze the term T1Z0 − T0Z1.
Since S0 =

∑n0

i=1 xi where xi ∼i.i.d. N(µ0, Id), we have the decomposition

S0 = n0µ0 +
√
n0w0 = α0d(Ru− rv) +

√
α0dw0, w0 ∼ N(0, Id). (4.110)

Similarly,

S1 = n1µ1 +
√
n1w1 = α1d(Ru+ rv) +

√
α1dw1, w1 ∼ N(0, Id). (4.111)

We also denote that

xn+1 = µ1 + wn+1 = (Ru+ rv) + wn+1, wn+1 ∼ N(0, Id). (4.112)

Putting equation 4.110, equation 4.111, equation 4.112 and r = ∆
2
√
d

into T1Z0 − T0Z1 and with
the help of symbolic computation, we have the following decomposition:

T1Z0 − T0Z1 =
4∑

i=0

i−1∑
j=i−4

C(i, j)Ridj/2 (4.113)

Here, C(i, j) , are bi-linear forms of u, v, wn+1, w0, w1, whose coefficients only depend on
α0, α1,∆ but independent with d and R.

Recall that u, v, wn+1, w0, w1 are all d-dimensional normal variables ∼ N(0, Id). For the
convenience of our analysis, we denote the following event as egood:

The event egood: For all (γ, ν) ∈ {u, v, wn+1, w0, w1} × {u, v, wn+1, w0, w1}:

∥γ∥22 = d+O(
√
d log d) (4.114)

γTν = O(
√
d log d) (4.115)

Since ∥γ∥22∼ χ2(d), γTν = 1
2

(
1
2
∥γ + ν∥22−1

2
∥γ − ν∥22

)
and ∥γ + ν∥22, ∥γ − ν∥22 are also χ2

distributed, by standard concentration inequalities for chi-squared variables and union bounds
over all (γ, ν) pairs, we have egood happens with probability at least 1− d−2021.

Hence, condition on the event egood, all of quadratic forms C(i, j) are bounded by O(d). Since
when i ≤ 3, we have j ≤ 2 and C(i, j)Ridj/2 at most O(R3d2). Using the same argument, we
can see that C(i, j)Ridj/2 is at most O(R4d

3
2 ) when i = 4, j = 0, 1. As we will show below,

these terms are all negligible and we can focus on the C(4, 3) and C(4, 2) terms.
The precise expressions for C(4, 3), C(4, 2) are as follows:

C(4, 3) = 2∆2wT
n+1

(
∆2α0α1 + α0 + α1

)
(∆α0α1v −

√
α0α1w0 + α0

√
α1w1) , (4.116)

and
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C(4, 2) = ∆2

(
∆2α2

0α1

(
∆2α1 + 2

)
∥v∥22

−α0α1

(
∆2α0+2

)
∥w1∥22+

(
∆2α2

0α1−∆2α0α
2
1+α

2
0−α2

1

)
∥wn+1∥22+α0α1

(
∆2α1+2

)
∥w0∥22

− 2∆vT
(
α

3
2
0 α1

(
∆2α1 + 2

)
w0 − α0

√
α1 (α0 − α1)w1

)
− 2

√
α0

√
α1 (α0 − α1)w

T
0 w1

)
.

(4.117)

Condition on the event egood, we know that vTw0, v
Tw1, w

T
0 w1 = O(

√
d log d), and

∥v∥2, ∥w1∥22, ∥w0∥22, ∥wn+1∥22= d+O(
√
d log d). Therefore,

C(4, 2) =d∆2
(
∆2α2

0α1

(
∆2α1 + 2

)
− α0α1

(
∆2α0 + 2

)
+
(
∆2α2

0α1 −∆2α0α
2
1 + α2

0 − α2
1

)
+ α0α1

(
∆2α1 + 2

))
+O(

√
d log d) (4.118)

=∆2
(
∆4α2

0α
2
1 + 2∆2α2

0α1 + α2
0 − α2

1

)
d+O(

√
d log d) (4.119)

=∆2
(
∆2α0α1 + α0 − α1

) (
∆2α0α1 + α0 + α1

)
d+O(

√
d log d) (4.120)

RegardingC(4, 3), notice that w̃ := (∆2α0α1d+ α0 + α1)
−1/2 (

∆α0α1v −
√
α0α1w0 + α0

√
α1w1

)
∼

N(0, Id). By central limit theorem, zd := 1√
d
wT

n+1w̃ →P N(0, 1) when d→ ∞. Futhermore, by
Berry-Esseen theorem, there exists an universal constant C such that

|Pr{zd ≥ t} − Φ(t)| ≤ C√
d
, (4.121)

and C(4, 3) can be equivalently re-formulated as:

C(4, 3) = 2∆2
(
∆2α0α1 + α0 + α1

)
wT

n+1 (∆α0α1v −
√
α0α1w0 + α0

√
α1w1) (4.122)

= 2
√
dα0α1∆

2
(
∆2α0α1 + α0 + α1

) 3
2 zd (4.123)

Substituting equation 4.118 and equation 4.122 into equation 4.113, we get

T1Z0 − T0Z1 (4.124)

=R4d2∆2
(
2
√
α0α1

(
∆2α0α1 + α0 + α1

) 3
2 zd +

(
∆2α0α1 + α0 − α1

) (
∆2α0α1 + α0 + α1

))
(4.125)

+O(R4d
3
2 +R3d2) (4.126)
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Substituting equation 4.109, equation 4.108 and equation 4.124 into equation 4.104, we have

log

(
l(1)

l(0)

)
=
T1Z0 − T0Z1

2Z0Z1

+
1

2
d log

(
Z0

Z1

)
(4.127)

=
∆2

2 (∆2α0α1 + α0 + α1)

(
2
√
α0α1

(
∆2α0α1 + α0 + α1

) 1
2 zd +

(
∆2α0α1 + α0 − α1

))
(4.128)

+O

(√
log d

d

)
+

∆2(α1 − α0)

2 (∆2α0α1 + α0 + α1)
+O(d−1) (4.129)

=
∆2

2 (∆2α0α1 + α0 + α1)

(
2
√
α0α1

(
∆2α0α1 + α0 + α1

) 1
2 zd +∆2α0α1 +O

(√
log d

d

))
(4.130)

=
∆2√α0α1

(∆2α0α1 + α0 + α1)
1/2

zd + ∆2

2
(
∆2 + α−1

0 + α−1
1

) 1
2

+O

(√
log d

d

)
(4.131)

Hence, condition on the event egood, l(1) < l(0) happens if and only if

zd ≤ − ∆2

2
(
∆2 + α−1

0 + α−1
1

) 1
2

−O

(√
log d

d

)
(4.132)

By Berry-Esseen and union bound, the probability is lower bounded by:

Pr[l(1) < l(0)|yn+1 = 1] ≥ Φ

− ∆2

2
(
∆2 + α−1

0 + α−1
1

) 1
2

−O

(√
log d

d

)−O

(
1√
d

)
− Pr(egood)

(4.133)

≥ Φ

− ∆2

2
(
∆2 + α−1

0 + α−1
1

) 1
2

−O

(√
log d

d

)
, (4.134)

where the last step is due to the 1√
2π

-Lipschitzness of Φ(t).
By symmetricity, when yn+1 = 0 , we also have:

Pr[l(0) < l(1)|yn+1 = 0] ≥ Φ

− ∆2

2
(
∆2 + α−1

0 + α−1
1

) 1
2

−O

(√
log d

d

)
. (4.135)

Therefore we have completed the proof.
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Proof of Claim 4.4.2

Proof of Claim 4.4.2: By law of total probability and Bayes’s theorem,

Pr[Ynew = yn+1|Xnew = xn+1; {(xi, yi)}ni=1] (4.136)
∝p[Ynew = yn+1, Xnew = xn+1; {(xi, yi)}ni=1] (4.137)
=E(µ0,µ1)∼Qp(x

n+1
1 |µ0, µ1, y

n+1
1 )p(yn+1

1 |µ0, µ1) (4.138)

∝E(µ0,µ1)∼Q exp(−1

2

∑
i∈C0

∥xi − µ0∥22−
1

2

∑
i∈C1

∥xi − µ1∥22) (4.139)

=

∫
exp(−1

2

∑
i∈C0

∥xi − µ0∥22−
1

2

∑
i∈C1

∥xi − µ1∥22)dQ(µ0, µ1) (4.140)

∫
exp(−1

2

∑
i∈C0

∥xi − µ0∥22−
1

2

∑
i∈C1

∥xi − µ1∥22)dQ(µ0, µ1) (4.141)

=exp(−1

2

∑
i∈[n+1]

∥xi∥22)
∫

exp(µT
0

∑
i∈C0

xi + µT
1

∑
i∈C1

xi −
|C0|
2

∥µ0∥22−
|C1|
2

∥µ1∥22)dQ(µ0, µ1)

(4.142)

Substitute µ0 = Ru− rv and µ1 = Ru+ rv, we have

∫
exp(µT

0

∑
i∈C0

xi + µT
1

∑
i∈C1

xi −
|C0|
2

∥µ0∥22−
|C1|
2

∥µ1∥22)dQ(µ0, µ1) (4.143)

∝
∫

exp

(
(Ru− rv)T

∑
i∈C0

xi + (Ru+ rv)T
∑
i∈C1

xi −
|C0|
2

∥Ru− rv∥22−
|C1|
2

∥Ru+ rv∥22−
1

2
∥u∥22−

1

2
∥v∥22

)
dudv

(4.144)

=

∫
exp

(
R(
∑
i∈C0

xi +
∑
i∈C1

xi)
Tu+ r(

∑
i∈C1

xi −
∑
i∈C0

xi)
Tv

)
· (4.145)

exp

(
−R

2(|C0|+|C1|) + 1

2
∥u∥22−Rr(|C1|−|C0|))uTv −

r2(|C0|+|C1|) + 1

2
∥v∥22

)
dudv

(4.146)

:=

∫
exp(θT b− 1

2
θTAθ)dθ (4.147)

=

√
(2π)2d

det(A)
exp(bTA−1b) (4.148)
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Here,

θ :=

(
u
v

)
∈ R2d (4.149)

b :=

(
R(
∑

i∈C0
xi +

∑
i∈C1

xi)
r(
∑

i∈C1
xi −

∑
i∈C0

xi)

)
(4.150)

A :=

(
(R2(|C0|+|C1|) + 1)Id Rr(|C1|−|C0|)Id
Rr(|C1|−|C0|)Id (r2(|C0|+|C1|) + 1)Id

)
(4.151)

Direct calculation gives:

Z := 4R2r2|C0||C1|+(R2 + r2)(|C0|+|C1|) + 1 (4.152)

detA = Zd (4.153)

A−1 =
1

Z

(
(r2(|C0|+|C1|) + 1)Id −Rr(|C1|−|C0|)Id
−Rr(|C1|−|C0|)Id (R2(|C0|+|C1|) + 1)Id

)
(4.154)

1

2
bTA−1b =

1

2Z

(
R2(r2|C0|+r2|C1|+1)∥

∑
i∈C0

xi +
∑
i∈C1

xi∥22 (4.155)

+ r2(R2|C0|+R2|C1|+1)∥
∑
i∈C0

xi −
∑
i∈C1

xi∥22 (4.156)

− 2R2r2(|C1|−|C0|)(∥
∑
i∈C1

xi∥22−∥
∑
i∈C0

xi∥22)
)

(4.157)

=
1

2Z

(
(4R2r2|C1|+R2 + r2)∥

∑
i∈C0

xi∥22+(4R2r2|C0|+R2 + r2)∥
∑
i∈C1

xi∥22 (4.158)

+ 2(R2 − r2)(
∑
i∈C0

xi)
T (
∑
i∈C1

xi)
)

(4.159)

:=
T

2Z
. (4.160)

and we have proved the claim.

Full expansion of Equation equation 4.113 In this section, we provide a full expansion of
equation equation 4.113 in power series of R and

√
d, which is given by the following equation

T1Z0 − T0Z1 =
4∑

i=0

i−1∑
j=i−4

C(i, j)Ridj/2 (4.161)

and the coefficients C(i, j) are given by:

C(4, 3) = 2∆2
(
∆2α0α1 + α0 + α1

)
wT

n+1 (∆α0α1v −
√
α0α1w0 + α0

√
α1w1)

C(4, 2) = ∥v∥22
(
∆6α2

0α
2
1 + 2∆4α2

0α1

)
+ vT

(
w0

(
−2∆5α

3
2
0 α

2
1 − 4∆3α

3
2
0 α1

)
+ w1

(
2∆3α2

0

√
α1 − 2∆3α0α

3
2
1

))
+∥w0∥22

(
∆4α0α

2
1+2∆2α0α1

)
+wT

0 w1

(
−2∆2α

3
2
0

√
α1+2∆2√α0α

3
2
1

)
+∥w1∥22

(
−∆4α2

0α1−2∆2α0α1

)
+ ∥wn+1∥22

(
∆4α2

0α1 −∆4α0α
2
1 +∆2α2

0 −∆2α2
1

)
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C(4, 1) = wT
n+1

(
v
(
2∆5α2

0α1 + 2∆3α2
0

)
+ w0

(
−2∆4α

3
2
0 α1 − 2∆2α

3
2
0

)
+ w1

(
2∆4α0α

3
2
1 + 2∆2α

3
2
1

))
C(4, 0) = ∥v∥22
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∆6α2

0α1 +∆4α2
0

)
+ vTw0
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−2∆5α

3
2
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2
0
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1u
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0
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√
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2
1 u
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)
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0
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2
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+∆2√α1

))

87



C(2,−2) = −∆4α0∥u∥22
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Computer-aided verification of equation 4.161 We use the python symbolic computation
package sympy for generating and verifying the expansion equation 4.161. Notice that we only
need to verify the simpler case where u, v, w0, w1, wn+1 are all scalars, since the identity is
separable in different coordinates and we can repeat the same process for all d dimensions of
these vectors.

The following python script was used to verify equation 4.161 and generate the LaTeX
equation. We only did some minor edits in the auto-generated LaTeX equation, such as replacing
scalar uv with inner product uTv and adding linebreaks.
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4.4.3 The importance of a carefully selected prior
We briefly discuss the importance of prior distribution chosen here. In particular, it can be shown
that the prior distributions considered in [100] and [134] lead to strictly weaker (and therefore
sub-optimal) lower bounds than ours in imbalanced classification. The analysis for both cases are
very similar to Theorem 4.4.2, with the only difference being that the dominating terms in 4.113
are no longer C(4, 3)R4d3/2 and C(4, 2)R4d. We will provide the results for both cases but only
summarize the main difference in the proofs and omit the details.

The case of R = 0. When R = 0 as considered in [100], all of the terms in 4.161 disap-
peared except those with i = 0, and among them the dominating terms are C(0,−1)d−1/2 and
C(0,−2)d−1. Using a similar argument as in Lemma 4.4.2, we can show that the Bayes Q-risk in
this setting is

Φ

(
− ∆2

2(∆2 + 4(α0 + α1)−1)1/2

)
−O

(√
log d

d

)
(4.162)

This is a weaker bound than Lemma 4.4.2, since Φ(t) is monotone and by Cauchy-Schwarz,

1

α0

+
1

α1

≥ 4

α0 + α1

(4.163)

The equality is achieved only when α0 = α1, which means this lower bound is only optimal when
the classes are balanced.

The case of R = ∆
2
√
d
. When R = r = ∆

2
√
d

as considered in [134], the dominating terms
become linear combinations of the coefficient C(i, j)’s:

d−1/2

4∑
i=0

C(i, i− 1)(
∆

2
)i and d−1

4∑
i=0

C(i, i− 2)(
∆

2
)i (4.164)

Using a similar argument as in Lemma 4.4.2, we can show that the Bayes Q-risk in this setting is

Φ

(
− ∆2

2(∆2 + α−1
0 + α−1

1 )1/2
· (∆2 + α−1

0 + α−1
1 )

(∆2 + 2α−1
0 )1/2(∆2 + 2α−1

1 )1/2

)
−O

(√
log d

d

)
(4.165)

This is, again, a weaker bound than Lemma 4.4.2, since Φ(t) is monotone and by AM-GM
inequality,

∆2+α−1
0 +α−1

1 =
1

2

(
(∆2 + 2α−1

0 ) + (∆2 + 2α−1
1 )
)
≥ (∆2+2α−1

0 )1/2(∆2+2α−1
1 )1/2. (4.166)

The equality is achieved only when α0 = α1, which means this lower bound is only optimal when
the classes are balanced.

4.4.4 Additional lemmas

Lemma 4.4.3. Let h(t) = t2√
t2+c

where c is any positive constant. Then, h(t) is
√

32
27

-Lipschitz.
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Proof. Direct computation of the derivative h′(t) yields

h′(t) =
t (2c+ t2)

(c+ t2)
3
2

(4.167)

By AM-GM inequality,

|h′(t)|2 = t2 (2c+ t2)
2

(c+ t2)3
(4.168)

=
1

2

(2t2) · (2c+ t2) · (2c+ t2)

(c+ t2)3
(4.169)

≤ 1

2

(
1
3
(2t2 + 2c+ t2 + 2c+ t2)

)3
(c+ t2)3

(4.170)

=
32

27
(4.171)

Therefore, |h′(t)|≤
√

32
27

and we have completed the proof.

4.5 Numerical experiments

In the previous section, we revisited the example of [38], showed the non-monotonicity of LDA
classification error and how to fix it. One may ask if this U-shape behavior is limited to LDA,
or maybe it’s true with much more generality? In this section, we first show empirically that
this is indeed the case for widely-used algorithm like logistic regression or SVM, even in simple
settings like classifying two Gaussians. Furthermore, we conjecture that the reason for the non-
monotonicity is similar to LDA: the estimation of constant terms are biased in the regime of our
interest, as illustrated in the experiments below.

Non-monotonicity of Test Error In Figure 4.6, we plot the test error of Logistic Regression
and SVM when α1 = 0.1, r = 6. We choose the regularization parameter λ to be 0 and 0.1 for
logistic regression / 10−6 and 1 for SVM. The extremely small regularization is with the purpose
of simulating the behavior of ”interpolating” classifiers, which caught a lot of attention these
years. As shown in the figure, all of the four classifiers have the U-shape curve just like LDA.
Note that the ”interpolating” logistic classifier seems to be the least affected model among the
four models presented here.

Effect of Minority Sample Size We repeat the above experiment for larger α1 = 0.4, where the
U-shape curve is known as disappearing for LDA. In this scenario, the behavior of four models
are more similar to what conventional wisdom suggests: unregularized models performs poorly;
the U-shape curve disappeared for appropriately regularized models (both SVM and Logistic).
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Figure 4.6: Non-monotonicity of Test Error: Test Error of Logistic Regression and SVM when
α1 = 0.1, r = 6. The error is estimated with 20-time average of random samples.

Figure 4.7: Effect of Minority Sample Size: Test Error of Logistic Regression and SVM when
α1 = 0.4, r = 6. The error is estimated with 5-time average of random samples.
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Figure 4.8: Effect of Bias-correction: Test Error of Logistic Regression when the constant terms
are fixed to be 0. The error is estimated with 20-time average of random samples.

Effect of Correcting the Bias In this experiment, we fix the two gaussians to be origin-
symmetric, where the population-level optimal constant is known to be zero. The only modification
here is that we do NOT include the constant term in the linear model. The data-generation is
completely the same as Figure 4.6, where the U-shape curve appears.

As shown in Figure 4.8, the U-shape curve disappears for both regularized and unregularized
logistic regression. This suggests that the bias in estimating constant term may cause the irregular
behavior in imbalanced classification, at least for logistic regression.

Note that the sharp transition in the unregularized model around α0 = 7 is likely due to the
interpolation threshold: the data is linearly separable when α0 < 7 and the unregularized logistic
regression behaves like SVM in this scenario.

Effect of Regularization In this experiment, we examine the effect of regularization by varying
the level of regularization for SVM. As shown in Figure 4.9, very strong (λ = 10) regularization
does somewhat mitigate the majority data effect. However, the U-shape curve seem to be
only flattened down instead of disappearing. It’s also worth noting that adding even stronger
regularization λ = 30 completely breaks the model (sometimes test error goes to 50%), so λ = 10
is nearly an unreasonable choice of regularization.
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Figure 4.9: Effect of Regularization: Test Error of SVM with different level of regularization. The
error is estimated with 5-time average of random samples.
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4.6 Proof of Theorem 4.2.2
Proof. The convexified class-weighted ERM objective is equivalent to:

min
β,u

n∑
i=1

πil(ui) + λ∥β∥22

subject to:ui = yi(β
Txi + c)

where πi = q0
2n0

if i ∈ {1, · · · , n0}, and πi = q1
2n1

if i ∈ {n0 + 1, · · · , n0 + n1}.
We can re-formulate this program in Lagrangian form:

min
β,u,c

max
v

n∑
i=1

(
πil(ui) + viyiβ

Txi + viyic− viui
)
+ λ∥β∥22

Step 1: Writing the optimization problem in the form of CGMT. Let xi = yi(µ+ zi), zi ∼
N(0, Id). Objective becomes

min
β,u,c

max
v

n∑
i=1

(
πil(ui) + viy

2
i β

T (µ+ zi) + viyic− viui
)
+ λ∥β∥22

since yi = +1/−1, this program is equivalent to:

min
β,u,c

max
v

n∑
i=1

(
πil(ui) + viβ

Tµ+ viβ
T zi + viyic− viui

)
+ λ∥β∥22

Let Z = [z1, · · · , zn] ∈ Rd×n which has i.i.d. N(0, 1) entries. Now this program can be
written in matrix form:

min
β,u,c

max
v

n∑
i=1

πil(ui) + βTZv + (1Tv)(βTµ)− vTu+ cvTy + λ∥β∥22

which is in the form of PO. Using CGMT, we consider the following AO program:

min
β,u,c

max
v

n∑
i=1

πil(ui) + ∥β∥2gTv + ∥v∥2hTβ + (1Tv)(βTµ)− vTu+ cvTy + λ∥β∥22

Step 2: Simplify AO so that it only involves a constant number of variables. Let β =
r1

µ
∥µ∥ + r2µ⊥, where µT

⊥µ = 0, ∥µ⊥∥2= 1, r2 ≥ 0, then ∥β∥2=
√
r21 + r22, β

Tµ = r1∥µ∥2, AO
becomes:

min
r1,r2,µ⊥,c,u

max
v

n∑
i=1

πil(ui) +
√
r21 + r22g

Tv + ∥v∥2hT (r1
µ

∥µ∥
+ r2µ⊥) + r1∥µ∥2(1Tv)− vTu+ cvTyλ∥β∥22
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Fix r1, r2 and minimize over µ⊥ gives the optimal µ⊥ :

µ∗
⊥ = − P⊥h

∥P⊥h∥2
, (4.172)

Hence we can simplify AO as:

min
r1,r2≥0,c,u

max
v

n∑
i=1

πil(ui) +
√
r21 + r22g

Tv + r1∥v∥2hT
µ

∥µ∥
− r2∥v∥2∥P⊥h∥2+r1∥µ∥2(1Tv)− vTu+ cvTy + λ(r21 + r22)

Re-organizing terms in v:

min
r1,r2≥0,c,u

max
v

n∑
i=1

πil(ui) +

(√
r21 + r22g + r1∥µ∥21 + cy − u

)T

v + r1∥v∥2hT
µ

∥µ∥
− r2∥v∥2∥P⊥h∥2+λ(r21 + r22)

Fix ∥v∥2= r3 and maximize over the direction ov v, we have the objective is maximized when v
is parallel to

√
r21 + r22g + r1∥µ∥21 + cy − u, and the objective becomes

min
r1≥0,r2≥0,c,u∈Rn

max
r3

n∑
i=1

πil(ui) + r3

∥∥∥√r21 + r22g + r1∥µ∥21 + cy − u
∥∥∥
2
+ r1r3h

T µ

∥µ∥
− r2r3∥P⊥h∥2+λ(r21 + r22)

The ∥
√
r21 + r22g + r1∥µ∥21 + cy − u

∥∥∥
2

term is not separable w.r.t. u. We will use the following

variational representation as a workaround: ∥x∥2= inft>0
t
2
+ 1

2t
∥x∥22. After switching the ordering

of max-min, we get:

min
r1≥0,r2≥0,t>0,c,u∈Rn

max
r3

n∑
i=1

πil(ui) +
r3t

2
+
r3
2t

∥∥∥√r21 + r22g + r1∥µ∥21 + cy − u
∥∥∥2
2
+ r1r3h

T µ

∥µ∥
− r2r3∥P⊥h∥2+λ(r21 + r22)

Recall the Moreau envolope function (for l(·)):

el(x; τ) = min
u

1

2τ
(x− u)2 + l(u) (4.173)

Then,

min
u

n∑
i=1

πil(ui)+
r3
2t

∥∥∥√r21 + r22g+r1∥µ∥21+cy−u
∥∥∥2
2
=

n∑
i=1

πiel

(√
r21 + r22gi + r1∥µ∥2+cyi;

πit

r3

)
(4.174)

Therefore, we have completed the scalarization of (AO):

min
r1,r2≥0,c,t>0

max
r3

n∑
i=1

πiel

(√
r21 + r22gi + r1∥µ∥2+cyi;

πit

r3

)
+
r3t

2
+r1r3h

T µ

∥µ∥
−r2r3∥P⊥h∥2+λ(r21+r22),

(4.175)
which is a convex-concave(?) optimization over four scalar variables. In fact, we can simplify this
a little further by reducing the number of scalar variables from 4 to 3.
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Let θ = nr3
t

, the optimization problem can be re-written as:

min
r1≥0,r2≥0,c,t>0

max
θ

n∑
i=1

πiel

(√
r21 + r22gi + r1∥µ∥2+cyi;

nπi
θ

)
+
θt2

2n
+
r1θt

n
hT

µ

∥µ∥
−r2θt

n
∥P⊥h∥2+λ(r21+r22)

(4.176)
Now the objective is a convex quadratic form in t, for which we can find the closed-form

minimizer: t∗ = r1h
T µ
∥µ∥ + r2∥P⊥h∥2. After introducing another change of variable R =√

r21 + r22, we finally reached the fully simplified ”scalarized” version of AO:

min
r1,R,c:|r1|≤R

max
θ

n∑
i=1

πiel

(
Rgi + r1∥µ∥2+cyi;

nπi
θ

)
− θ

2n

(
r1h

Tµ−
√
R2 − r21∥P⊥h∥2

)2

+λR2

(4.177)

Step 3: Analyze the high dimensional asymptotics of scalarized AO. Next, we will study the
high dimensional asymptotics of the objective 2 .

We start with the second term: note that hTµ ∼ N(0, ∥µ∥22), so 1√
n
hTµ →a.s. 0. Simi-

larly, recall that h is d-dimensional standard Gaussian, we have P⊥h ∼ N(0, P⊥P
T
⊥ ) (which

is informally, a d − 1 dimensional standard Gaussian), hence 1√
d−1

∥P⊥h∥2→a.s. 1, and
1√
n
∥P⊥h∥2→ (α0 + α1)

−1/2. Therefore, the second term becomes

θ(R2 − r21)

2(α0 + α1)
(4.178)

Now we focus on the first term, which can be decomposed according to the two class of
samples:

q0
2n0

n0∑
i=1

el

(
Rgi + r1∥µ∥2−c;

nq0
2n0θ

)
+

q1
2n1

n0+n1∑
i=n0+1

el

(
Rgi + r1∥µ∥2+c;

nq1
2n1θ

)
(4.179)

Notice that n
n0

→ α0+α1

α0
, n
n1

→ α0+α1

α1
, and gi are independent (scalar) standard normal variables,

it’s not difficult to see the above summation converges to a Gaussian expectation:

q0
2
EZ∼N(0,1)

[
el

(
RZ + r1∥µ∥2−c;

(α0 + α1)q0
2α0θ

)]
+
q1
2
EZ∼N(0,1)

[
el

(
RZ + r1∥µ∥2+c;

(α0 + α1)q1
2α1θ

)]
(4.180)

To summarize, the high-dimensional asymptotics of the scalarized AO can be formulated as
follows:

min
r1,R:0≤r1≤ R

∥µ∥

max
θ

1

2
EZ∼N(0,1)

[
q0el

(
RZ + r1∥µ∥2−c;

(α0 + α1)q0
2α0θ

)
+ q1el

(
RZ + r1∥µ∥2+c;

(α0 + α1)q1
2α1θ

)]
−θ(R

2 − r21)

2(α0 + α1)
+λR2

(4.181)
2Here, for simplicity we are talking about point-wise covergence, i.e. the limit for a fixed choice of (r1, R, θ) when

d, n0, n1 → ∞. To justify that this point-wise limit indeed characterizes the limiting behavior of the optimization
problem, we need to check several technical conditions provided in [40].
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Step 4: Characterizing the Asymptotic Classification Error We pause here and provide
some interpretation of the asymptotic scalarized AO equation 4.181. Recall that in Step 2, we
introduced change of variables:

β = r1
µ

∥µ∥2
+ r2µ⊥ (4.182)

R =
√
r21 + r22 (4.183)

Hence, R = ∥β∥2 and r1 = βTµ
∥µ∥2 . It was shown in [132] that, under mild technical conditions,

∥β∥2→P R
∗ and βTµ

∥µ∥2 →P r
∗
1. Since the classification error can be formulated as

R(β) =
1

2
Φ

(
−β

Tµ+ c

∥β∥2

)
+

1

2
Φ

(
−β

Tµ− c

∥β∥2

)
, (4.184)

Therefore,

R(β) →P Φ
1

2

(
−r

∗
1∥µ∥2+c∗

R∗

)
+

1

2

(
−r

∗
1∥µ∥2−c∗

R∗

)
, (4.185)

and we have completed the proof.

4.7 Comparison with Related Works

4.7.1 Comparison with [69]
Sanity Check: Consider the balanced setting as a special case, where we have α0 = α1. Let
α = α0 + α1, the optimization problem above is equivalent to:

min
r1,R:|r1|≤R

max
θ

EZ∼N(0,1)

[
el

(
RZ + r1∥µ∥2;

1

θ

)]
− θ(R2 − r21)

2α
+ λR2 (4.186)

Let r2 =
√
R2 − r21, λ = 0

min
r1,r2

max
θ

EZ∼N(0,1)

[
el

(√
r21 + r22Z + r1∥µ∥2;

1

θ

)]
− θr22

2α
(4.187)

Let θ = θ′
√
α

r2
:

min
r1,r2

max
θ′

EZ∼N(0,1)

[
el

(√
r21 + r22Z + r1∥µ∥2;

r2
θ′
√
α

)]
− θ′r2

2
√
α

(4.188)

This is equivalent to a special case ϵ0 = 0 in [69], corollary 5.1.c: after changing notation
(ours → theirs) as r1 → θ, r2 → α, θ′ → β, α → δ, Z → g, ∥µ∥2→ σM,2, the optimization
problem above becomes

min
θ,α≥0

max
θ′

Eg∼N(0,1)

[
el

(√
α2 + θ2g + θ∥µ∥2;

α

β
√
δ

)]
− αβ

2
√
δ

(4.189)

which is the same as equation (5.8) in [69].
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4.8 Technical Lemmas

4.8.1 Moreau Envelope
Recall that for convex loss function l(·), the Monreau envelope is defined as:

el(x; τ) = min
u

1

2τ
(x− u)2 + l(u), (4.190)

Define

lsquare(u) =
1

2
(1− u)2 (4.191)

lhinge(u) = max{1− u, 0} (4.192)
llogistic(u) = ln(1 + e−u), (4.193)

We can compute the Moreau envelope as follows.
(1) Square loss:

elsquare(x; τ) =
1

2(1 + τ)
(1− x)2 (4.194)

Proof:
elsquare(x; τ) = min

u

1

2τ
(x− u)2 +

1

2
(1− u)2 (4.195)

Let ∂
∂u

= 0, we have
1

τ
(u− x) + u− 1 = 0 ⇒ u =

x+ τ

1 + τ
(4.196)

Therefore,

elsquare(x; τ) = min
u

1

2τ
(x− u)2 +

1

2
(1− u)2 (4.197)

=
1

2τ
· τ 2

(1 + τ)2
(x− 1)2 +

1

2

1

(1 + τ)2
(x− 1)2 (4.198)

=
1

2(1 + τ)
(x− 1)2 (4.199)

(2) Hinge Loss:

elhinge(x) =


1− x− τ

2
if x < 1− τ

1
2τ
(1− x)2 if 1− τ ≤ x ≤ 1

0 if x > 1

(4.200)

Proof:
elhinge(x; τ) = min

u

1

2τ
(x− u)2 +max(1− u, 0) (4.201)

Let ∂
∂u

= 0, we have
∂

∂u
=

1

τ
(u− x)− I[u < 1] (4.202)
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when x < 1− τ , u = x+ τ ; when x ≥ 1, u = x; otherwise, u = 1.
(3) Logistic Loss:
ellogistic(x; τ) does not have a closed form solution, but it can be very efficiently approximated

by newton iterations [39].
Define

g(u; τ) =
1

2τ
(x− u)2 + ln(1 + e−u) (4.203)

Then,

g′(u; τ) =
1

τ
(u− x)− 1

1 + eu

g′′(u; τ) =
1

τ
+

eu

(1 + eu)2

The Newton update can be formulated as:

uk+1 = uk −
g′(uk; τ)

g′′(uk; τ)
(4.204)

According to [39], it usually takes at most 3 iterations.

4.8.2 Solving the asymptotic version of AO numerically

We need a few useful properties of the Moreau envelope, in particular, the ones about its deriva-
tives:
Lemma 4.8.1 (From Lemma D.1 of [132]). Define

∂

∂x
el(x, τ) =

1

τ
(x− proxl(x, τ)) (4.205)

∂

∂τ
el(x, τ) = − 1

2τ 2
(x− proxl(x, τ))

2 (4.206)

Below we derive the fixed point iterations for solving asymptotic version of AO.
We will use the following equivalent form of AO:

min
r1,r2≥0

max
θ

1

2
EZ∼N(0,1)

[
q0el

(√
r21 + r22Z + r1∥µ∥2−c;

(α0 + α1)q0
2α0θ

)
+ q1el

(√
r21 + r22Z + r1∥µ∥2+c;

(α0 + α1)q1
2α1θ

)]
− θr22

2(α0 + α1)
+ λ(r21 + r22)
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By the first order optimality condition,

∂

∂r1
= 0

∂

∂r2
= 0

∂

∂θ
= 0

∂

∂c
= 0

(Here are some details about the calculation)

Introducing a few shorthands: (only works for logistic; otherwise the definition of C0, C1

needs to be changed. Also requrires differentiability, otherwise won’t be in a nice form like
below).

Z0 ∼ N(r1∥µ∥2−c, r21 + r22)

Z1 ∼ N(r1∥µ∥2+c, r21 + r22)

τ0 =
(α0 + α1)q0

2α0θ

τ1 =
(α0 + α1)q1

2α1θ

A0 = E[l′ (proxl(Z0, τ0))]

A1 = E[l′ (proxl(Z1, τ1))]

B0 =
τ0
θ
E[(l′ (proxl(Z0, τ0)))

2
]

B1 =
τ1
θ
E[(l′ (proxl(Z1, τ1)))

2
]

C0 = E
[

l′′ (proxl(Z0, τ0))

1 + τ0l′′ (proxl(Z0, τ0))

]
C1 = E

[
l′′ (proxl(Z1, τ1))

1 + τ1l′′ (proxl(Z1, τ1))

]
A =

q0
2
A0 +

q1
2
A1

B =
q0
2
B0 +

q1
2
B1

C =
q0
2
C0 +

q1
2
C1
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Then,

∂

∂r1
= ∥µ∥2A+ r1C + 2λr1 = 0 (4.207)

∂

∂r2
= r2C − θr2

α0 + α1

+ 2λr2 = 0 (4.208)

∂

∂θ
=

1

2
B − r22

2(α0 + α1)
= 0 (4.209)

∂

∂c
= −q0

2
A0 +

q1
2
A1 = 0 (4.210)

(4.211)

By equation 4.209,
r2 =

√
(α0 + α1)B (4.212)

By equation 4.208,
θ = (α0 + α1)(C + 2λ) (4.213)

Combining with equation 4.207,

r1 =
∥µ∥2A
C + 2λ

=
(α0 + α1)∥µ∥2A

θ
(4.214)

equation 4.210 does not have a closed form solution for c. Instead, we use one Newton iteration
to find a approximate solution.

ct+1 = ct −
∂
∂c
(ct)

∂2

∂c2
(ct)

= ct −
− q0

2
A0 +

q1
2
A1

C
(4.215)

4.8.3 Lemmas for Lower Bounds

Lemma 4.8.2. , Let θ ∼ Uniform(Sd−1), where Sd−1 is the unit ball in Rd. Let v be any unit
vector in Rd,then

2θTv − 1 ∼ B(
d− 1

2
,
d− 1

2
), (4.216)

where B(α, β) denotes the Beta distribution.
Lemma 4.8.3. Let X ∼ B(α, β), then

E[exp(tX)] =1 F1(α, α + β, t), (4.217)

where 1F1(α, α + β, t) is the confluent hypergeometric function:

1F1(α, α + β, t) =
∞∑
k=0

tk

k!

k−1∏
m=0

α +m

α + β +m
(4.218)
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Lemma 4.8.4. Let θ ∼ Uniform(Sd−1), where Sd−1 is the unit ball in Rd. Then for any v ∈ Rd,

E[exp(θTv)] = exp(−∥v∥2)
∞∑
k=0

∥v∥k2
k!

k−1∏
m=0

(1 +
m

d+ 1 +m
) (4.219)

which is an increasing function of ∥v∥2

Proof. Monotonicity:

∂

∂∥v∥2
E[exp(θTv)] = exp(−∥v∥2)

∞∑
k=0

∥v∥k2
k!

k∏
m=0

(1 +
m

d+ 1 +m
)− exp(−∥v∥2)

∞∑
k=0

∥v∥k2
k!

k−1∏
m=0

(1 +
m

d+ 1 +m
)

(4.220)

= exp(−∥v∥2)
∞∑
k=0

∥v∥k2
k!

k

d+ 1 + k

k−1∏
m=0

(1 +
m

d+ 1 +m
) (4.221)

≥ 0 (4.222)

The following lemma (analogous to Theorem 36.64 in the reference above) provides a sufficient
condition for asymptotic minimax optimality.
Lemma 4.8.5. Let {fd}∞d=1 be a sequence of classifiers, which satisfies the following conditions:

1. For each fd, there exists a prior distribution Qd, so that fd is the MAP classifier under prior
Qd.

2. limd→∞ sup(µ0,µ1)∈Pd(∆)Rn0,n1,µ0,µ1(fd) = R∞ exists.
3. There exists a sequence of positive real number {γd}d≥1, where γd = od(1), such that the

following inequality holds uniformly for all (µ0, µ1) ∈ Pd:

|Rn0,n1,µ0,µ1(fd)−R∞|≤ γd (4.223)

Then, we can claim that {fd}∞d=1 is asymptotically minimax optimal.
In other words, if {fd}∞d=1 is a sequence of MAP classifiers with approximately constant risk

among (µ0, µ1) ∈ Pd, then it’s asymptotically minimax optimal.

Proof. By condition (1), since Minimax Risk is lower bounded by Bayes Risk, we have

M(n0, n1,Pd) ≥ Bn0,n1,Q(fd) (4.224)

By condition (3), since expectation is lower bounded by the minimum, we have

Bn0,n1,Q(fd) ≥ R∞ − γd (4.225)

Combining the two steps above and let d→ ∞, we have

lim sup
n0/d=α0,n1/d=α1,d→∞

M(n0, n1,Pd) ≥ R∞ (4.226)

However, by condition (2), we know that the asymptotic risk of {fd}∞d=1 is R∞, therefore, it’s
asymptotically minimax optimal and we have completed the proof.
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4.8.4 Exact Asymptotic Minimax Risk in Balanced Setting
In this section, we discuss the asymptotic optimality of LDA in the regime n0 = n1 =

1
2
αd, d→

∞. We have already showed that the variant of LDA with known covariance has the asymptotic
risk of

RLDA → Φ(− ∆2

2
√
∆2 + 4α−1

), (4.227)

But is this risk asymptotically optimal? The answer is yes, as shown in the following theorem:
Theorem 4.8.1. The asymptotic minimax risk is given by

R∗
asymp(∆,

1

2
α,

1

2
α) = Φ(− ∆2

2
√
∆2 + 4α−1

), (4.228)

which is achieved by LDA with known covariances.

Proof. We already know that LDA achieves the asymptotic risk above, so it’s sufficient to prove
LHS ≥ RHS. In fact, we can show that in a more restricted parameter space

Psym
d = {(µ0, µ1) : µ0 = −µ, µ1 = µ, µ =

∆

2
} ⊆ Pd (4.229)

the minimax risk remain the same. The strategy is to use Lemma 4.8.5.
LetQd be the uniform distribution over the hyper-sphere ∆

2
·Sd−1, and fd be the MAP classifier

under Qd. [92] had the following observation:

fd(x;x1, · · · , xn) = sign(
1

n

n∑
i=1

yixi)
Tx) (4.230)

where we recall that yi = −1 when 1 ≤ i ≤ n0, and yi = 1 when n0 + 1 ≤ i ≤ n. Below we
rephrase their proof.

By definition of MAP classifier,

fd(x;x1, · · · , xn) = argmax
y∈{+1,−1}

Pr[Y = y|X = x;x1, · · · , xn] (4.231)

Notice that

Pr[Y = y|X = x;x1, · · · , xn] ∝ p(Y = y,X = x, x1, · · · , xn) (4.232)
= Eµ∼Qd

p(Y = y,X = x, x1, · · · , xn|µ) (4.233)

∝ Eµ∼Qd
exp(−1

2
∥x− yµ∥22−

1

2

n∑
i=1

∥xi − yiµ∥22) (4.234)

∝ Eµ∼Qd
[exp (yx+

n∑
i=1

yixi)] (4.235)

By Lemma 4.8.4, this is a monotone function of ∥yx+
∑n

i=1 yixi∥2. Therefore, fd(x) = 1 if and
only if

∥x+
n∑

i=1

yixi∥2≥ ∥−x+
n∑

i=1

yixi∥2 (4.236)
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which is equivalent to

fd(x;x1, · · · , xn) = sign(
1

n

n∑
i=1

yixi)
Tx) (4.237)

and we have completed the proof of equation 4.230.
Let µ̂ = 1

n

∑n
i=1 yixi. Since fd(x;x1, · · · , xn) = µ̂Tx is a linear classifier, its classification

error condition on any fixed µ can be written as

Φ(− µ̂Tµ

∥µ̂∥2
) (4.238)

(the calculation below is not very rigorous)

Since µ̂ ∼ N(µ, 1
n
Id), we have µ̂Tµ = ∥µ∥22+od(1) = ∆2

4
+ od(1), and ∥µ̂∥2=

√
∥µ∥22+ d

n
+

od(1) =
√

∆2

4
+ 1

α
+ od(1), hence, for any µ,

Rµ(fd) = Φ(
∆2

2
√

∆2 + 4
α

) + od(1) (4.239)

which proves condition (2,3) of Lemma 4.8.5. Therefore, {fd}∞d=1 is asymptotically minimax-
optimal and we have completed the proof.
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Chapter 5

Interpolation in Distributionally Robust
Optimization

5.1 Introduction

It has been well established by prior work that overparameterized models, whose number of
parameters is much larger than the number of training samples, can empirically achieve high test
performance on a variety of tasks, in contrast to the theory that models with too many parameters
could have large generalization error.

This high performance however is on average; a large body of prior work [18, 62, 130]
showed that these models tend to learn spurious features, such as learning the background in
image classification instead of the object, and learning keywords like “not” in language sentiment
analysis instead of really understanding the sentences. Consequently, these models are unfair, i.e.
they fail on certain minority groups (such as positive sentences containing “not”) while still having
high average-case performance. To solve this problem, people have proposed various reweighting
algorithms to improve the model’s worst-group performance, such as upweighting the minority
groups or using distributionally robust optimization (DRO) based methods [47, 58, 117, 123].

While reweighting algorithms in principle can improve the worst-group performance compared
to vanilla empirical risk minimization (ERM), previous work empirically found that when applied
to modern overparameterized models, these methods could overfit very easily, so that they have
poor test worst-group performance. For example, Sagawa et al. [117] studied a reweighting
algorithm called group DRO. They found that compared to ERM, group DRO does improve
the worst-group test accuracy by a large margin at the early stage of training. However, if no
regularization is applied, then as training goes on, the worst-group test accuracy of group DRO
will drop significantly and eventually to a level almost the same as ERM. Some previous work
tried to explain why reweighting algorithms can overfit so easily. For instance, Sagawa et al. [119]
argued that with these algorithms, an overparameterized model would typically memorize all
training samples in the minority groups while still learning the spurious features from the majority
groups.

In this work, we aim to understand the overfitting phenomenon in reweighting algorithms by
studying their implicit biases. Specifically, we prove for a family of overparameterized neural
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networks that for almost all reweighting algorithms, the model always converges to the same
interpolator that fits all training samples, no matter the reweighting. Since ERM is a special case
of such reweighting algorithms (where each sample receives the same weight), this means that
the implicit biases of all reweighting algorithms are equivalent to that of ERM. Consequently,
the model trained by any reweighting algorithm always overfits to the ERM interpolator, so we
cannot hope for its worst-group test performance to be better than ERM. In short, reweighting
algorithms always overfit.

Given this pessimistic result, we analyze whether regularization can help mitigate overfitting,
as proposed by Sagawa et al. [117]. We find that a necessary condition for regularization to
work is that it considerably lowers the training performance. Specifically, we prove that if the
overparameterized model trained by a reweighting algorithm with regularization can still perform
almost perfectly on the training set, then overfitting is still inevitable. This explains why in
practice we need very large regularization that prevents the model from achieving nearly zero
training error to avoid overfitting.

Our results have two important consequences for practice: (i) We should always use large
regularization or early stopping when optimizing for worst-group performance; (ii) We should
always try to obtain more training samples, e.g. with strong data augmentation or semi-supervised
learning.

5.1.1 Related work

Group fairness. Group fairness in machine learning was first studied in Hardt et al. [57]
and Zafar et al. [159], where they required the model to perform equally well over all groups.
Later, Hashimoto et al. [58] studied another type of group fairness called Rawlsian max-min
fairness [116], which does not require equal performance but rather requires high performance
on the worst-off group. The problem we study in this paper is most closely related to Rawlsian
max-min fairness. A large body of recent work in machine learning have studied how to improve
this worst-group performance [47, 93, 104, 155, 163]. Recent work however observe that these
approaches, when used with modern overparameterized models, easily overfit [117, 119]. Apart
from group fairness, there are also other notions of fairness, such as individual fairness [48, 160]
and counterfactual fairness [83], which we do not study in this work.

Implicit bias under the overparameterized setting. For overparameterized models, there
could be many model parameters which all minimize the training loss. In such cases, it is of
interest to study the implicit bias of specific optimization algorithms such as gradient descent
i.e. to what training loss minimizer the model parameters will converge to [1, 46]. Our results
use the NTK formulation of wide neural networks [67], and specifically we use linearized neural
networks to approximate such wide neural networks following Lee et al. [89]. There is some
criticism of this line of work, e.g. Chizat et al. [31] argued that infinitely wide neural networks
fall in the “lazy training” regime and results might not be transferable to general neural networks.
Nonetheless such wide neural networks are being widely studied in recent years, since they
provide considerable insights into the behavior of more general neural networks, which are
typically intractable to analyze otherwise.
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5.2 Preliminaries

Consider a data domain X × Y ⊆ Rd × R that consists of K groups (subdomains)1, where each
data point belongs to one of the groups2. We assume that the input space X is a subset of the unit
ball of Rd, such that any x ∈ X satisfies ∥x∥2≤ 1. We are given a training set {(xi, yi)}ni=1 i.i.d.
sampled from some underlying distribution P over X × Y . Let the K groups be D1, · · · ,DK

where each Di is a subset of X×Y . Let Pk(z) = P (z|z ∈ Dk) be the conditional data distribution
over Dk, where z = (x, y). Denote X = (x1, · · · ,xn) ∈ Rd×n, and Y = (y1, · · · , yn) ∈ Rn;
for any function g : X 7→ R, we overload notation and use g(X) = (g(x1), · · · , g(xn)) . Let
the loss function be ℓ : Y × Y → [0, 1]. In vanilla training, the goal is to minimize the expected
risk denoted by R(f ;P ) = Ez∼P [ℓ(f(x), y)], which is done by minimizing the empirical risk
R̂(f) = 1

n

∑n
i=1 ℓ(f(xi), yi).

For tasks requiring high worst-group performance, the goal is to train a model f : X → Y that
performs well over every Pk, which can be achieved by minimizing the worst-group risk defined
as

Rmax(f ;P ) = max
k=1,···,K

R(f ;Pk) = max
k=1,···,K

Ez∼P [ℓ(f(x), y)|z ∈ Dk] (5.1)

5.2.1 Reweighting Algorithms

Most existing methods that minimize the worst-group risk are reweighting algorithms that assign
each sample with a weight during training and minimize the weighted average risk. At time t, we
assign a weight q(t)i to sample zi, and minimize the weighted empirical risk:

R̂q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi) (5.2)

where q(t) = (q
(t)
1 , · · · , q(t)n ) and q(t)1 + · · ·+ q

(t)
n = 1.

A static reweighting algorithm assigns to each zi = (xi, yi) a fixed weight qi that does not
change during training, i.e. q(t)i ≡ qi. A famous example is Importance Weighting (IW, Shimodaira
[123]), in which if zi ∈ Dk and the size of Dk is nk, then qi = (Knk)

−1. Under IW, each group
has the same weight, and the reweighted empirical risk is a simple (unweighted) average of the
empirical risk over each group, so that each group has an equal contribution to the overall risk
objective. Note that ERM is also a special case of static reweighting algorithms: by assigning
q1 = · · · = qn = 1/n.

On the other hand, in a dynamic reweighting algorithm, q(t) changes with t. Specifically, it
upweights samples over which the model has a high risk in order to help the model learn “hard”
samples. A popular dynamic reweighting algorithm is Group DRO [117]. Denote the empirical
risk over group k by R̂k(f), and the model at time t by f (t). Group DRO sets q(t)i = g

(t)
k /nk for

1We prove our results for Y ⊆ R, but our results can be easily extended to the multi-class scenario Y ⊆ Rm.
2This is the non-overlapping setting. There is also the overlapping setting where groups can overlap with each

other. We focus on the non-overlapping setting in this paper.
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all zi ∈ Dk where g(t)k is the group weight that is updated by

g
(t)
k ∝ g

(t−1)
k exp

(
νR̂k(f

(t−1))
)

(∀k = 1, · · · , K) (5.3)

for some ν > 0, and then normalized so that q(t)1 + · · ·+ q
(t)
n = 1. Sagawa et al. [117] proved a

convergence rate theorem (their Proposition 2) showing that in the convex setting, the worst-group
training risk of Group DRO converges to the global minimum with the rate O(t−1/2).

There are many other reweighting algorithms. Particularly, all variants of DRO and DRO-
based methods like CVaR and χ2-DRO are reweighting algorithms. See Appendix 5.6 for more
examples.

5.2.2 Reweighting algorithms can easily overfit
In this section, we will empirically demonstrate that while IW and Group DRO can achieve higher
worst-group test performances than ERM at the early stage of training, they can easily overfit
after a number of training epochs.

Following Sagawa et al. [117], we conduct the experiment on two datasets: Waterbirds and
CelebA. Each dataset contains a binary confounding variable a and a binary target variable y,
dividing the dataset into four groups (four combinations of (a, y)). In Waterbirds y is the type
of the bird and a is the background; In CelebA y is whether the person has blond hair and a is
whether the person is male. On each dataset, a model trained by ERM always exhibits a very
strong empirical correlation between y and a, so its performance on one of the groups is extremely
poor. The goal is to make the model perform well on every group. See Appendix C.1 of Sagawa
et al. [117] for detailed information of these datasets.

On each dataset, we use the ResNet18 model as the classifier and optimize it with momentum
SGD. We run each of the three algorithms: ERM, IW and group DRO (GDRO), for 500 epochs on
Waterbirds and 200 epochs on CelebA, and plot the average training/test and worst-group (WG)
training/test accuracy curves throughout training in Figure 5.1. From the plots we can conclude
that:

• All algorithms can achieve and maintain high average training/test accuracy throughout
training, i.e. there is almost no overfitting in the average test accuracy.

• Regarding the worst-group test accuracy, while the two reweighting algorithms outperform
ERM by a large margin at the early epochs, they overfit very quickly. On CelebA after
roughly 100 epochs, the worst-group test accuracies of the two reweighting algorithms
become the same as ERM. On Waterbirds, the worst-group test performances of IW and
Group DRO drop significantly after around 30 epochs though they are still better than ERM.

5.3 Implicit biases of reweighting algorithms
In the previous section, we empirically demonstrated that the worst-group test performances of
reweighting algorithms converge to the same level as ERM. To theoretically understand why this
happens in practice, we analyze the implicit biases of reweighting algorithms. Our main theorem
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Figure 5.1: Performances of ERM, IW and Group DRO. First row: Waterbirds. Second row:
CelebA.

(Theorem 16) states that almost all reweighting algorithms (including ERM) have equivalent
implicit biases, in the sense that they converge to the same interpolator. Meanwhile, it is observed
in practice that the ERM interpolator has a poor worst-group test performance. This leads to the
pessimistic result that reweighting algorithms always overfit. All proofs can be found in Appendix
5.7.

5.3.1 Linear models
We first demonstrate this pessimistic result on simple linear models to provide our readers with a
key intuition, and later we will apply this same intuition to neural networks. Let the linear model
be f(x) = ⟨θ,x⟩, where θ ∈ Rd. In the overparameterized setting, we have d > n. Consider
using the squared loss ℓ(ŷ, y) = 1

2
(ŷ − y)2, and minimizing the weighted empirical risk with

gradient descent:

θ(t+1) = θ(t) − η
n∑

i=1

q
(t)
i ∇θℓ(f

(t)(xi), yi) (5.4)

where η > 0 is the learning rate. For a linear model with the squared loss, the update rule is

θ(t+1) = θ(t) − η
n∑

i=1

q
(t)
i xi(f

(t)(xi)− yi) (5.5)

It is a well known result that under the overparameterization setting where d > n, if x1, · · · ,xn are
linearly independent, then with a sufficiently small η, a linear model trained by ERM can always
converge to an interpolator which fits all training samples (i.e. θ(t) → θ∗ such that ⟨θ∗,xi⟩ = yi
for all i). Here the linear independence is necessary, because otherwise in the extreme case where
x1 = x2 but y1 ̸= y2, the model cannot fit (x1, y1) and (x2, y2) simultaneously.

In this section, we aim to extend this ERM convergence analysis to general reweighting
algorithms. Our results require the following assumption:
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Assumption 1. There exist constants q1, · · · , qn such that for all i, q(t)i → qi as t → ∞. And
mini qi = q∗ > 0.

This assumption avoids the scenario where there is some i such that q(t)i ≈ 0 for all t, in which
case the model could never fit zi. Assumption 1 empirically holds for Group DRO on Waterbirds
and CelebA (see Appendix 5.9.2). Under this assumption, we can prove that the model always
converges to an interpolator:
Theorem 11. For any reweighting algorithm satisfying Assumption 1, if x1, · · · ,xn are linearly
independent, then there exists an η0 > 0 such that for any η ≤ η0, as t → ∞, θ(t) converges to
some interpolator θ∗ such that for all i, ⟨θ∗,xi⟩ = yi.

We now make the following key observation regarding the update rule (5.5): θ(t+1) − θ(t)

is a linear combination of x1, · · · ,xn for all t, and thus θ(t) − θ(0) always lies in the linear
subspace span(x1, · · · ,xn). Note that this is an n-dimensional linear subspace if x1, · · · ,xn are
linearly independent, and by Cramer’s rule, there is exactly one θ̃ in this subspace such that
⟨θ̃ + θ(0),xi⟩ = yi for all i, which implies that θ∗ = θ̃ + θ(0) is unique. Together with Theorem
11, this leads to:
Theorem 12. If x1, · · · ,xn are linearly independent, then there exists η0 > 0 such that for any
reweighting algorithm satisfying Assumption 1, and any η ≤ η0, θ(t) converges to the same
interpolator θ∗ that does not depend on q(t)i .

Note that ERM is also a reweighting algorithm satisfying Assumption 1. Therefore, we have
essentially proved the following result: The implicit bias of any reweighting algorithm satisfying
Assumption 1 is equivalent to ERM, so reweighting algorithms always overfit3.

The key intuition here is that no matter what reweighting algorithm we use, θ(t) − θ(0) always
lies in a low-dimensional subspace, in which the interpolator is unique. Therefore, as long as a
model trained by the algorithm converges to some interpolator, it must converge to that unique
interpolator, which means that the implicit bias of the algorithm is equivalent to ERM.

5.3.2 Linearized neural networks
Now we prove the same result for neural networks. Of course it would be very hard to prove
it for all neural networks. However, we can prove the result for a family of overparameterized
neural networks that can be approximated by their linearized counterparts [89]. Denote the neural
network at time t by f (t)(x) = f(x; θ(t)) which is parameterized by θ(t) ∈ Rp where p is the
number of parameters. The linearized neural network of f (t)(x) is defined as

f
(t)
lin (x) = f (0)(x) + ⟨θ(t) − θ(0),∇θf

(0)(x)⟩ (5.6)

where we use the shorthand ∇θf
(0)(x) := ∇θf(x; θ)|θ=θ0

. Consider training f (t)
lin (x) via gra-

dient descent on the reweighted risk (as in (5.4)) using the squared loss. Given a training set
{(xi, yi)}ni=1, we can construct a new training set {

(
∇θf

(0)(xi), yi − f (0)(xi)
)
}ni=1, so that train-

ing a linearized neural network on the original training set is equivalent to training a linear model
on the new training set. Based on this observation, we have the following corollary of Theorem
12:

3By overfit, we are saying that the training error of the model trained by the reweighting algorithm will converge
to zero, but the worst-group test performance will converge to the same low level as ERM.
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Corollary 13. If ∇θf
(0)(x1), · · · ,∇θf

(0)(xn) are linearly independent, then there exists η0 > 0
such that for any reweighting algorithm satisfying Assumption 1, and any η ≤ η0, θ(t) converges
to the same interpolator θ∗ that does not depend on qi.

Here we are still using the key intuition: θ(t) − θ(0) always lies in the n-dimensional linear
subspace span

(
∇θf

(0)(x1), · · · ,∇θf
(0)(xn)

)
. By Cramer’s rule, there is a unique interpolator

θ∗ such that θ∗ − θ(0) ∈ span
(
∇θf

(0)(x1), · · · ,∇θf
(0)(xn)

)
, and θ(t) always converges to that

θ∗. Thus, we have essentially proved that for linearized neural networks, reweighting algorithms
always overfit.

Now let us delve deeper into the training dynamics of a linearized neural network. Note that
∇θf

(t)
lin (X) = ∇θf

(0)(X) ∈ Rp×n, so the change in the training function value vector is

f
(t+1)
lin (X)− f

(t)
lin (X) = −η ∇θf

(0)(X)⊤∇θf
(0)(X)Q(t) ∇ŷℓ(f

(t)
lin (X),Y ) (5.7)

where Q(t) = diag(q
(t)
1 , · · · , q(t)n ). The function value vector moves along the kernel gradient with

respect to Θ
(0)

q(t) = ∇θf
(0)(X)⊤∇θf

(0)(X)Q(t). Meanwhile, the neural tangent kernel (NTK,
[67]) is Θ(0)(x,x′) = ∇θf

(0)(x)⊤∇θf
(0)(x′) , and the Gram matrix is Θ(0) = Θ(0)(X,X), so

Θ
(0)

q(t) = Θ(0)Q(t). We can thus extend our result for gradient descent on linearized neural networks
to a kernel gradient descent algorithm as above.

5.3.3 Wide fully-connected neural networks

Now we prove the result for sufficiently wide fully-connected neural networks, which can be
approximated by the linearized neural networks. First we define a fully-connected neural network
with L hidden layers (we always assume L ≥ 1 so there is at least one hidden layer). Let hl and
xl be the pre- and post-activation outputs of layer l, and dl be the width of layer l. Let x0 = x
and d0 = d. Define the neural network ashl+1 =

W l

√
dl
xl + βbl

xl+1 = σ(hl+1)

(l = 0, · · · , L) (5.8)

where σ is a non-linear activation function, W l ∈ Rdl+1×dl and WL ∈ R1×dL . The parameters θ
consist of W 0, · · · ,WL and b0, · · · , bL (θ is the concatenation of all flattened weights and biases).
The final output of the neural network is f(x) = hL+1. And let the neural network be initialized
as {

W
l(0)
i,j ∼ N (0, 1)

b
l(0)
j ∼ N (0, 1)

(l = 0, · · · , L− 1) and

{
W

L(0)
i,j = 0

b
L(0)
j ∼ N (0, 1)

(5.9)

We also need the following assumption for our approximation theorem:
Assumption 2. σ is differentiable everywhere, and both σ and σ̇ are Lipschitz.4

4f is Lipschitz if there exists a constant L > 0 such that for any x1,x2, |f(x1)− f(x2)|≤ L ∥x1 − x2∥2.

111



Difference from [67]. Our initialization (5.9) is different from the original one in [67] in the
last (output) layer. For the output layer, we use the zero initialization WL(0)

i,j = 0 instead of the
Gaussian initialization WL(0)

i,j ∼ N (0, 1). This modification enables us to accurately approximate
the neural network with its linearized counterpart (5.6), as we notice that the proofs in [89]
(particularly the proofs of their Theorem 2.1 and their Lemma 1 in Appendix G) are flawed. In
Appendix 5.8 we will explain what goes wrong in their proofs and how we manage to fix the
proofs with our modification.

For our new initialization, we still have the following NTK theorem:
Theorem 14. If σ is Lipschitz and dl → ∞ for l = 1, · · · , L sequentially, then Θ(0)(x,x′)
converges in probability to a non-degenerated5 deterministic limiting kernel Θ(x,x′).

The kernel Gram matrix Θ = Θ(X,X) ∈ Rn×n is a positive semi-definite symmetric matrix.
Denote its largest and smallest eigenvalues by λmax and λmin. Note that Θ is non-degenerated,
so we assume that λmin > 0 (which holds almost surely in the overparameterized setting where
dL ≫ n). Then, we can prove the following approximation theorem:
Theorem 15 (Approximation Theorem). Let η∗ = (λmin + λmax)−1. For a fully-connected neural
network f (t) that satisfies Assumption 2 and is trained by any reweighting algorithm satisfying
Assumption 1, let f (t)

lin be its linearized neural network which is trained by the same reweighting
algorithm (i.e. ∀i, t, q(t)i are the same for both networks). If d1 = d2 = · · · = dL = d̃ and
λmin > 0, then for any δ > 0, there exists D̃ > 0 and a constant C such that as long as η ≤ η∗

and d̃ ≥ D̃, for any test point x ∈ Rd such that ∥x∥2 ≤ 1, with probability at least 1 − δ over
random initialization,

sup
t≥0

∣∣∣f (t)
lin (x)− f (t)(x)

∣∣∣ ≤ Cd̃−1/4 (5.10)

Remark 1. We can easily extend this theorem to the case where there exists αl > 0 for each of
l = 2, · · · , L such that dl/d1 → αl and d1 → ∞.

Combining all the above results altogether, we achieve our main theorem:
Theorem 16. Under the conditions of Theorem 15, there exists an η1 > 0 such that if η ≤ η1 and
∇θf

(0)(x1), · · · ,∇θf
(0)(xn) are linearly independent, then as d̃→ ∞, for any test point x ∈ Rd

such that ∥x∥2 ≤ 1, with probability close to 1 over random initialization,

lim sup
t→∞

∣∣∣f (t)(x)− f
(t)
ERM(x)

∣∣∣ = O(d̃−1/4) → 0 (5.11)

where f (t) is trained by the reweighting algorithm and f (t)
ERM is trained by ERM.

The main theorem shows that at any test point x, the gap between the function values of the
two models converges to an infinitely small term, so the worst-group test performance of the
reweighting algorithm will converge to the same level as ERM. Therefore, we have proved that
for sufficiently wide fully-connected neural networks, reweighting algorithms always overfit.

Our key intuition tells us that the change in the model parameters always lies in an n-
dimensional subspace. Thus, one possible way to improve the worst-group test performance is
to enlarge this subspace by adding more training samples, e.g. via data augmentation or semi-
supervised learning. However, even if we have more training samples, as long as the model is still

5Non-degenerated means that Θ(x,x′) depends on x and x′ and is not a constant.
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overparameterized, and all ∇θf
(0)(xi) are linearly independent, then our result still says that no

reweighting algorithm can do better than ERM in the long run (though the performance of ERM
itself might be improved).

Moreover, our theoretical results can explain the surprising empirical observation in [119]
that removing some samples from the majority groups to match the group sizes can sometimes
achieve even higher worst-group test performance than reweighting even though it wastes lots
of data (see their Section 6). When training samples are removed, the model will converge to
an interpolator of the smaller training set which is different from the interpolator of the original
training set, so there is a chance that the performance of the new interpolator is actually higher.

5.4 Does regularization really help?
In the previous section, we proved the pessimistic result that reweighting algorithms always
overfit, i.e. in the long run their worst-group test performances always drop to the same level as
ERM. And even if we use strong data augmentation or semi-supervised learning, reweighting
algorithms still cannot outperform ERM if the training set is not sufficiently enlarged.

[117] proposed to tackle the overfitting problem of reweighting algorithms via regularization.
In particular, they empirically demonstrated with experiments that large regularization is required
to prevent reweighting algorithms such as group DRO from overfitting. With a large regularization,
the model can maintain a high test worst-group performance, but it cannot obtain perfect training
accuracy, in contrast to the case where no regularization is applied.

In this section, we study the necessary conditions for regularization to maintain high worst-
group test performance. Specifically, we will show that regularization will not work if it is not
large enough to prevent the model from obtaining nearly zero training error. In other words,
lowering the training performance is the key to keeping a high worst-group test performance. Note
that the results in this section do not require Assumption 1, so the results hold for all reweighting
algorithms.

5.4.1 Theoretical analysis

Consider a reweighting algorithm with sample weights q(t)i . Following [117], we consider adding
L2 penalty to the weighted empirical risk (6.15):

R̂µ

q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi) +

µ

2

∥∥θ − θ(0)
∥∥2
2

(5.12)

Given that sufficiently wide neural networks can be approximated by linearized ones, we first
focus on linearized neural networks. We will use the subscript “reg” to refer to a regularized model
(which is trained trained by minimizing the regularized risk (5.12)). Let f (t)

linreg be a regularized

linearized neural network trained by some reweighting algorithm, and f (t)
linERM be an unregularized

linearized neural network trained by ERM. As before, we consider training the models with
gradient descent under the squared loss ℓ(ŷ, y) = 1

2
(ŷ − y)2. The following result shows that

these two models are very close if f (t)
linreg can achieve low training error:
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Theorem 17. If there is a constant M0 > 0 such that
∥∥∇θf

(0)(x)
∥∥
2
≤ M0 for all ∥x∥2 ≤ 1,

∇θf
(0)(x1), · · · ,∇θf

(0)(xn) are linearly independent, and the empirical training risk of f (t)
linreg

satisfies
lim sup
t→∞

R̂(f
(t)
linreg) < ϵ, (5.13)

for some ϵ > 0, then for any test point x such that ∥x∥2 ≤ 1 we have

lim sup
t→∞

∣∣∣f (t)
linreg(x)− f

(t)
linERM(x)

∣∣∣ = O(
√
ϵ). (5.14)

The proof of this theorem also follows the key intuition: we can show that even with the L2

penalty added, θ(t) − θ(0) is still limited in a low-dimensional subspace. And although we cannot
prove that θ(t) always converges to the ERM interpolator, we can prove that it can get very close
to that interpolator if its training error is very low, so the resulting model is very close to the ERM
model.

Then, we can extend this result to sufficiently wide fully-connected neural networks:
Theorem 18. If λmin > 0 and µ > 0, then let η∗ = (µ + λmin + λmax)−1. For a wide fully-
connected neural network f (t)

reg defined by (5.8) and (5.9) and satisfying Assumption 2, and any
reweighting algorithm, if d1 = d2 = · · · = dL = d̃, η ≤ η∗, ∇θf

(0)(x1), · · · ,∇θf
(0)(xn) are

linearly independent, and the empirical training risk of f (t)
reg satisfies

lim sup
t→∞

R̂(f (t)
reg) < ϵ (5.15)

for some ϵ > 0, then as d̃ → ∞, with probability close to 1 over random initialization, for any
test point x such that ∥x∥2 ≤ 1 we have

lim sup
t→∞

∣∣∣f (t)
reg(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4 +
√
ϵ) → O(

√
ϵ) (5.16)

The result shows that a regularized model trained by any reweighting algorithm will get very
close to an unregularized ERM model at any test point x if the training error of the former is
nearly zero. Thus, regularization only helps when it is large enough to keep the training error of
the model away from zero by a margin.

Our results explain the empirical observation of [117] that by using large regularization, the
model can maintain a high worst-group test performance, but it cannot achieve perfect training
accuracy. If smaller regularization is applied and the model can achieve nearly perfect training
accuracy, then its worst-group test performance will still significantly drop.

5.4.2 Empirical study
In this section, we validate our theoretical results above with experiments on Waterbirds and
CelebA. We run ERM, IW and group DRO under different levels of weight decay for 500 epochs
on Waterbirds and 250 epochs on CelebA. Note that we do not strictly follow our L2 penalty
formulation (5.12), but we study the L2 weight decay regularization which is most widely used
in practice. We repeat each experiment five times with different random seeds and report the
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Table 5.1: Mean average training accuracy and worst-group test accuracy (%) of the last 10
training epochs of ERM, IW and Group DRO under different levels of weight decay (WD). Each
entry is Average training accuracy / Worst-group test accuracy. Blue entries are mean accuracies
of epochs 11-20 with no weight decay. Each experiment is repeated five times with different
random seeds.

Dataset WD ERM IW Group DRO

Waterbirds

0 100.0± 0.0/56.3± 1.8 100.0± 0.0/67.6± 1.1 100.0± 0.0/64.5± 1.6
(11-20) (Early stopping) 92.4± 0.4/83.7± 0.6 92.9± 0.4/79.9± 2.1

0.05 100.0± 0.0/71.0± 1.9 100.0± 0.0/63.5± 2.6
0.1 100.0± 0.0/67.7± 0.7 100.0± 0.0/54.7± 2.7
0.15 99.0± 0.7/53.7± 2.7 99.4± 0.6/52.5± 2.5
0.2 91.6± 2.0/35.9± 6.9 94.8± 0.9/38.0± 7.5

CelebA

0 99.0± 0.2/40.2± 5.6 99.4± 0.1/42.7± 1.7 99.4± 0.1/49.5± 1.9
(11-20) (Early stopping) 92.1± 0.3/78.2± 3.2 90.5± 0.5/85.2± 1.7

0.01 97.9± 0.2/50.0± 2.8 96.5± 0.5/67.2± 1.7
0.03 95.0± 0.2/62.8± 2.4 88.9± 1.1/83.1± 2.2
0.1 89.4± 2.0/76.0± 2.4 75.1± 9.5/50.6± 15.9

95% confidence interval of the mean average training and worst-group test accuracies of the
last 10 training epochs in Table 5.1. To compare with early stopping, we also report the mean
accuracies of epochs 11-20 with no regularization in blue. Moreover, we plot the average training
and worst-group test accuracy curves throughout training for IW and Group DRO with one of the
random seeds in Figure 5.2.

On both datasets, early stopping achieve the best performances. Particularly, on Waterbirds,
there is no clear sign that regularization could help prevent overfitting. When the regularization is
small, the training accuracy is still 100% and the algorithm continues to overfit. However, when
the regularization is large enough to lower the training accuracy, the worst-group test accuracy
drops more because the model cannot learn the samples well under such a large regularization.
Thus, perhaps not surprisingly, a lower training performance is only a necessary condition but not
sufficient.

On CelebA, regularization does help mitigate overfitting, but a useful regularization must be
large enough to lower the training accuracy. We observe that Group DRO overfits more slowly
than IW, as it still has over 70% worst-group test accuracy after 70 epochs. However, as Figure
5.2d clearly shows, its worst-group test accuracy will still drop to the ERM level at 200 epochs.
We also notice that Group DRO requires a smaller regularization than IW: for IW we need the
weight decay level to be as large as 0.1 to achieve a similar performance as early stopping, but for
Group DRO it only needs to be 0.01, and using 0.1 is actually harmful.

Overall, we find that early stopping achieves a markedly better performance. On the other
hand, using large regularization could result in training instability, as well as a loss in overall
performance, and there may or may not be a small band for the regularization parameter where
the worst-group test performance is better.
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Figure 5.2: Average training accuracy and worst-group (WG) test accuracy of IW and Group
DRO (GDRO) under different L2 weight decay levels on CelebA.

5.5 Conclusion
In this work, we theoretically studied why reweighting algorithms overfit in practice by analyzing
their implicit biases. Specifically, we proved the pessimistic result that reweighting algorithms
always overfit. Our proof was based on the key intuition that the change in model parameters
always lies in a low-dimensional subspace, so that even with reweighting, the model still converges
to the same unique interpolator. When regularization is applied, we proved that the regularization
must be large enough to keep the model from achieving nearly zero training error in order to
prevent overfitting. We empirically validated our theoretical results on real datasets, and our
results can also explain the empirical observations in previous work. Our results are especially
important for large-scale machine learning tasks, where early stopping is not always possible in
order to achieve high performances. Practitioners shooting for high worst-group performances in
those tasks must be very careful about to what extent overfitting affects reweighting algorithms.

Reproducibility statement

To guarantee the reproducibility of all our empirical results, in all our experiments we use a fixed
set of random seeds, and we run some of the experiments twice with the same random seed to
make sure that the outputs are the same. See Appendix 5.9.1 for experiment details. After this
paper is deanonymized, we will provide a GitHub repository that contains all the codes, datasets,
hyperparameters, random seeds, machine speculations and anaconda environment speculations
that are sufficient to exactly reproduce our empirical results.
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5.6 Other reweighting algorithms

In this section, we will review some other previously proposed reweighting algorithms. First, we
will look at DRO-based methods, where DRO stands for Distributionally Robust Optimization.

DRO is designed for tasks with distributional shift, where the training distribution and the
test distribution are different, and there are some constraints on the distance between these two
distributions (typically described by a divergence function D). Since the real test distribution is
unknown, DRO minimizes the model’s risk over the worst distribution that satisfies the distance
constraints, which is an upper bound of the model’s real test error. Formally speaking, given a
training distribution P , DRO minimizes the expected risk over the worst-case distribution Q in
a ball w.r.t. divergence D around the training distribution P . For group shift problems which
require high worst-group performance, Q also needs to be absolutely continuous with respect to
P , i.e. Q≪ P . Overall, DRO minimizes the following expected DRO risk:

RD,ρ(θ;P ) = sup
Q≪P

{EQ[ℓ(θ;Z)] : D(Q ∥ P ) ≤ ρ} (5.17)

The expected DRO risk is typically minimized in the following way: for each epoch t, we
first find the worst Q that maximizes EQ[ℓ(θ;Z)] and satisfies D(Q ∥ P ) ≤ ρ,Q≪ P , and then
minimize the model’s expected risk over this Q with gradient descent. The rationale behind this
algorithm is the famous Danskin’s Theorem, which says that if F (x) is the maximum of a family
of functions, then its gradient at point x is equal to the gradient of the function that attains the
maximum value at x.

Note that in practice we only have a finite set of training samples {z1, · · · , zn}, so P is always
chosen as the empirical distribution, i.e. uniform distribution over z1, · · · , zn. Then, note that
Q ≪ P , which implies that the support of Q must be a subset of the support of P , which is
{z1, · · · , zn}. This means that Q must be a distribution over z1, · · · , zn, i.e. it is a reweighting
over the training samples. Thus, we have essentially showed that DRO is a reweighting algorithm,
and in fact almost all methods based on DRO are reweighting algorithms.

Two widely used variants of DRO are CVaR (Conditional Value at Risk) and χ2-DRO. In
CVaR, for a fixed α ∈ (0, 1), we let D(Q ∥ P ) = sup log dQ

dP
and ρ = − logα. As a result,

suppose that αn is an integer, then CVaR will assign weight 1
αn

to αn training samples that incur
the highest losses, and weight 0 to the rest of the samples, so we can easily see that CVaR is a
reweighting algorithm. χ2-DRO was first used in Hashimoto et al. [58] to deal with fairness tasks
where the group labels are unknown, whereD(Q ∥ P ) = 1

2

∫
(dQ/dP−1)2dP and ρ = 1

2
( 1
α
−1)2.

χ2-DRO is also a reweighting algorithm.
There are many other previously proposed methods of maximizing the worst-group perfor-

mance that are also reweighting algorithms. For instance, Xu et al. [155] studied the imbalanced
class problem where a standard trained model always has high performance over classes with
many training samples and low performance over minority classes. They proposed to balance the
classes with Label CVaR, which is based on DRO and is a reweighting algorithm.

Liu et al. [93] proposed a two-stage training process called JTT: in the first identification stage
they trained a model with ERM to identify training samples that are hard to learn, and in the
second upweighting stage they trained a new model with the hard samples upweighted, so that the
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model could learn all samples equally well. As the process itself suggests, JTT is a reweighting
algorithm.

Finally, Zhai et al. [163] argued that DRO-based methods are very sensitive to outliers in the
training set because they upweight training samples with high losses and outliers tend to incur
high losses. They proposed the DORO algorithm which at each iteration removes the samples
with the highest losses, and then performs DRO on the rest of the samples. DORO is a reweighting
algorithm.

5.7 Proofs
Notations. In all of the proofs, for a matrix A, we will use ∥A∥2 to denote its spectral norm
and ∥A∥F to denote its Frobenius norm.

5.7.1 Proof of Theorem 11
To help our readers understand the proof more easily, we will first prove the result for static
reweighting algorithms where q(t)i = qi for all t, and then we will prove the result for dynamic
reweighting algorithms that satisfy q(t)i → qi as t→ ∞.

Static reweighting algorithms

We first prove the result for all static reweighting algorithms such that mini qi = q∗ > 0.
We will use a standard optimization proof technique called smoothness. Denote A =∑n

i=1 ∥xi∥22. The empirical risk of the linear model f(x) = ⟨θ,x⟩ is

F (θ) =
n∑

i=1

qi(x
⊤
i θ − yi)

2 (5.18)

whose Hessian is

∇2
θF (θ) = 2

n∑
i=1

qixix
⊤
i (5.19)

So for any unit vector v ∈ Rd, we have (since qi ∈ [0, 1])

v⊤∇2
θF (θ)v = 2

n∑
i=1

qi(x
⊤
i v)

2 ≤ 2
n∑

i=1

qi ∥xi∥22 ≤ 2A (5.20)

which implies that F (θ) is 2A-smooth. Thus, we have the following upper quadratic bound: for
any θ1, θ2 ∈ Rd,

F (θ2) ≤ F (θ1) + ⟨∇θF (θ1), θ2 − θ1⟩+ A ∥θ2 − θ1∥22 (5.21)

Denote g(θ(t)) =
√
Q(X⊤θ(t) − Y ) ∈ Rn where

√
Q = diag(

√
q1, · · · ,

√
qn). We can

see that
∥∥g(θ(t))∥∥2

2
= F (θ(t)), so that ∇F (θ(t)) = 2X

√
Qg(θ(t)). The update rule of a static
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reweighting algorithm with gradient descent and the squared loss is:

θ(t+1) = θ(t) − η

n∑
i=1

qixi(f
(t)(xi)− yi) = θ(t) − ηX

√
Qg(θ(t)) (5.22)

Substituting θ1 and θ2 in (5.21) with θ(t) and θ(t+1) yields

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))⊤
√
Q

⊤
X⊤X

√
Qg(θ(t)) + A

∥∥∥ηX√Qg(θ(t))
∥∥∥2
2

(5.23)

Since x1, · · · ,xn are linearly independent, X⊤X is a positive definite matrix. Denote the
smallest eigenvalue of X⊤X by λmin > 0. And

∥∥√Qg(θ(t))
∥∥
2
≥

√
q∗
∥∥g(θ(t))∥∥

2
=
√
q∗F (θ(t)),

so we have g(θ(t))⊤
√
Q

⊤
X⊤X

√
Qg(θ(t)) ≥ q∗λminF (θ(t)). Thus,

F (θ(t+1)) ≤ F (θ(t))− 2ηq∗λminF (θ(t)) + Aη2
∥∥∥X√Q

∥∥∥2
2

∥∥g(θ(t))∥∥2
2

≤ F (θ(t))− 2ηq∗λminF (θ(t)) + Aη2
∥∥∥X√Q

∥∥∥2
F
F (θ(t))

≤ F (θ(t))− 2ηq∗λminF (θ(t)) + Aη2 ∥X∥2F F (θ
(t))

= (1− 2ηq∗λmin + A2η2)F (θ(t))

(5.24)

Let η0 = q∗λmin

A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1 − ηq∗λmin)F (θ(t)) for all t,
which implies that limt→∞ F (θ(t)) = 0. Moreover,

√
F (θ(t+1)) ≤ (1− ηq∗λmin

2
)
√
F (θ(t)) due to√

1− x ≤ 1− x/2.
The convergence in F (θ) implies the convergence in θ. This is because

∥∥θ(t+1) − θ(t)
∥∥2
2
= η2

∥∥∥X√Qg(θ(t))
∥∥∥2
2
≤ η2

∥∥∥X√Q
∥∥∥2
F

∥∥g(θ(t))∥∥2
2

≤ η2 ∥X∥2F
∥∥g(θ(t))∥∥2

2
= Aη2F (θ(t))

(5.25)

which implies that for any η ≤ η0,

∞∑
t=T

∥∥θ(t+1) − θ(t)
∥∥
2
≤
√
Aη2

∞∑
t=T

√
F (θ(t)) ≤ 2A

q∗λmin

√
F (θ(T )) (5.26)

Therefore, limT→∞
∑∞

t=T

∥∥θ(t+1) − θ(t)
∥∥
2
= 0, which means that θ(t) converges, and it con-

verges to some interpolator.

Dynamic reweighting algorithms

Now we prove the result for all dynamic reweighting algorithms satisfying Assumption1. By
Assumption 1, for any ϵ > 0, there exists tϵ such that for all t ≥ tϵ and all i,

q
(t)
i ∈ (qi − ϵ, qi + ϵ) (5.27)
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This is because for all i, there exists ti such that for all t ≥ ti, q
(t)
i ∈ (qi − ϵ, qi + ϵ). Then,

we can define tϵ = max{t1, · · · , tn}. Denote the largest and smallest eigenvalues of X⊤X by
λmax and λmin, and because X is full-rank, we have λmin > 0. Select and a fix an ϵ such that
0 < ϵ < max{ q∗

3
, (q

∗λmin)2

12λmax 2 }, and then tϵ is also fixed.
We still denote Q = diag(q1, · · · , qn). When t ≥ tϵ, the update rule of a dynamic reweighting

algorithm with gradient descent and the squared loss is:

θ(t+1) = θ(t) − ηXQ(t)
ϵ (X⊤θ(t) − Y ) (5.28)

where Q
(t)
ϵ = Q(t), and we use the subscript ϵ to indicate that

∥∥∥Q(t)
ϵ −Q

∥∥∥
2
< ϵ. Then, note that

we can rewrite Q(t)
ϵ as Q(t)

ϵ =

√
Q

(t)
3ϵ ·

√
Q for all ϵ < q∗/3. This is because qi+ϵ <

√
(qi + 3ϵ)qi

and qi − ϵ >
√

(qi − 3ϵ)qi for all ϵ < qi/3, and qi ≥ q∗. Thus, we have

θ(t+1) = θ(t) − ηX

√
Q

(t)
3ϵ g(θ

(t)) where Q(t)
ϵ =

√
Q

(t)
3ϵ ·
√
Q (5.29)

Again, substituting θ1 and θ2 in (5.21) with θ(t) and θ(t+1) yields

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))⊤
√
Q

⊤
X⊤X

√
Q

(t)
3ϵ g(θ

(t)) + A

∥∥∥∥ηX√Q
(t)
3ϵ g(θ

(t))

∥∥∥∥2
2

(5.30)

Then, note that ∣∣∣∣g(θ(t))⊤√Q
⊤
X⊤X

(√
Q

(t)
3ϵ −

√
Q

)
g(θ(t))

∣∣∣∣
≤
∥∥∥∥√Q

⊤
X⊤X

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

∥∥g(θ(t))∥∥2
2

≤
∥∥∥√Q

∥∥∥
2

∥∥X⊤X
∥∥
2

∥∥∥∥√Q
(t)
3ϵ −

√
Q

∥∥∥∥
2

∥∥g(θ(t))∥∥2
2

≤λmax
√
3ϵF (θ(t))

(5.31)

where the last step comes from the following fact: for all ϵ < qi/3,√
qi + 3ϵ−√

qi ≤
√
3ϵ and

√
qi −

√
qi − 3ϵ ≤

√
3ϵ (5.32)

And as proved before, we also have

g(θ(t))⊤
√

Q
⊤
X⊤X

√
Qg(θ(t)) ≥ q∗λminF (θ(t)) (5.33)

Since ϵ ≤ (q∗λmin)2

12λmax 2 , we have

g(θ(t))⊤
√

Q
⊤
X⊤X

√
Q

(t)
3ϵ g(θ

(t)) ≥
(
q∗λmin − λmax

√
3ϵ
)
F (θ(t)) ≥ 1

2
q∗λminF (θ(t)) (5.34)
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Thus,

F (θ(t+1)) ≤ F (θ(t))− ηq∗λminF (θ(t)) + Aη2
∥∥∥∥X√Q

(t)
3ϵ

∥∥∥∥2
2

∥∥g(θ(t))∥∥2
2

≤ (1− ηq∗λmin + A2η2(1 + 3ϵ))F (θ(t))

≤ (1− ηq∗λmin + 2A2η2)F (θ(t))

(5.35)

for all ϵ < 1/3. Let η0 = q∗λmin

4A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1−ηq∗λmin/2)F (θ(t)) for
all t ≥ tϵ, which implies that limt→∞ F (θ(t)) = 0. As before, we can prove that the convergence
in F (θ) implies the convergence in θ. Thus, θ converges to some interpolator.

5.7.2 Proof of Theorem 14

Note that the first l layers (except the output layer) of the original NTK formulation and our new
formulation are the same, so we still have the following proposition:
Proposition 19 (Proposition 1 in Jacot et al. [67]). If σ is Lipschitz and dl → ∞ for l = 1, · · · , L
sequentially, then for all l = 1, · · · , L, the distribution of a single element of hl converges in
probability to a zero-mean Gaussian process of covariance Σl that is defined recursively by:

Σ1(x,x′) =
1

d0
x⊤x′ + β2

Σl(x,x′) = Ef [σ(f(x))σ(f(x
′))] + β2

(5.36)

where f is sampled from a zero-mean Gaussian process of covariance Σ(l−1).
Now we show that for an infinitely wide neural network with L ≥ 1 hidden layers, Θ(0)

converges in probability to the following non-degenerated deterministic limiting kernel

Θ = Ef∼ΣL [σ(f(x))σ(f(x′))] + β2 (5.37)

Consider the output layer hL+1 = WL√
d̃
σ(hL) + βbL. We can see that for any parameter θi

before the output layer,

∇θih
L+1 = diag(σ̇(hL))

WL⊤
√
dL

∇θih
L = 0 (5.38)

And for WL and bL, we have

∇WLhL+1 =
1√
dL
σ(hL) and ∇bLh

L+1 = β (5.39)

Then we can achieve (5.37) by the law of large numbers.

121



5.7.3 Proof of Theorem 15

We will use the following short-hand in the proof:
g(θ(t)) = f (t)(X)− Y

J(θ(t)) = ∇θf(X; θ(t)) ∈ Rp×n

Θ(t) = J(θ(t))⊤J(θ(t))

(5.40)

For any ϵ > 0, there exists tϵ such that for all t ≥ tϵ and all i, q(t)i ∈ (qi − ϵ, qi + ϵ). Like what

we have done in (5.29), we can rewrite Q(t) = Q
(t)
ϵ =

√
Q

(t)
3ϵ ·

√
Q, where Q = diag(q1, · · · , qn).

The update rule of a reweighting algorithm with gradient descent and the squared loss for the
wide neural network is:

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t)) (5.41)

and for t ≥ tϵ, it can be rewritten as

θ(t+1) = θ(t) − ηJ(θ(t))

√
Q

(t)
3ϵ

[√
Qg(θ(t))

]
(5.42)

First, we will prove the following theorem:
Theorem 20. There exist constants M > 0 and ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0], η ≤ η∗ and
any δ > 0, there exist R0 > 0, D̃ > 0 and B > 1 such that for any d̃ ≥ D̃, the following (i)
and (ii) hold with probability at least (1− δ) over random initialization when applying gradient
descent with learning rate η:

1. For all t ≤ tϵ, there is∥∥g(θ(t))∥∥
2
≤ BtR0 (5.43)

t∑
j=1

∥∥θ(j) − θ(j−1)
∥∥
2
≤ ηMR0

t∑
j=1

Bj−1 <
MBtϵR0

B − 1
(5.44)

2. For all t ≥ tϵ, we have∥∥∥√Qg(θ(t))
∥∥∥
2
≤
(
1− ηq∗λmin

3

)t−tϵ

BtϵR0 (5.45)

t∑
j=tϵ+1

∥∥θ(j) − θ(j−1)
∥∥
2
≤ η

√
1 + 3ϵMBtϵR0

t∑
j=tϵ+1

(
1− ηq∗λmin

3

)j−tϵ

<
3
√
1 + 3ϵMBtϵR0

q∗λmin

(5.46)

Proof. The proof is based on the following lemma:
Lemma 21 (Local Lipschitzness of the Jacobian). Under Assumption 2, there is a constant
M > 0 such that for any C0 > 0 and any δ > 0, there exists a D̃ such that: If d̃ ≥ D̃, then with

122



probability at least (1− δ) over random initialization, for any x such that ∥x∥2 ≤ 1,

∥∥∥∇θf(x; θ)−∇θf(x; θ̃)
∥∥∥
2
≤ M

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2

∥∇θf(x; θ)∥2 ≤M∥∥∥J(θ)− J(θ̃)
∥∥∥
F
≤ M

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2

∥J(θ)∥F ≤M

, ∀θ, θ̃ ∈ B(θ(0), C0) (5.47)

where B(θ(0), R) = {θ :
∥∥θ − θ(0)

∥∥
2
< R}.

The proof can be found in Appendix 5.7.4. Note that for any x, f (0)(x) = βbL where bL is
sampled from the standard Gaussian distribution. Thus, for any δ > 0, there exists a constant R0

such that with probability at least (1− δ/3) over random initialization,∥∥g(θ(0))∥∥
2
< R0 (5.48)

And by Theorem 14, there exists D2 ≥ 0 such that for any d̃ ≥ D2, with probability at least
(1− δ/3), ∥∥Θ−Θ(0)

∥∥
F
≤ q∗λmin

3
(5.49)

Let M be the constant in Lemma 21. Let ϵ0 = (q∗λmin)2

108M4 . Let B = 1 + η∗M2, and C0 =
MBtϵR0

B−1
+ 3

√
1+3ϵMBtϵR0

q∗λmin . By Lemma 21, there exists D1 > 0 such that with probability at least
(1− δ/3), for any d̃ ≥ D1, (5.47) is true for all θ, θ̃ ∈ B(θ(0), C0).

By union bound, with probability at least (1− δ), (5.47), (5.48) and (5.49) are all true. Now
we assume that all of them are true, and prove (5.43) and (5.44) by induction. (5.43) is true for
t = 0 due to (5.48), and (5.44) is always true for t = 0. Suppose (5.43) and (5.44) are true for t,
then for t+ 1 we have∥∥θ(t+1) − θ(t)

∥∥
2
≤ η

∥∥J(θ(t))Q(t)
∥∥
2

∥∥g(θ(t))∥∥
2
≤ η

∥∥J(θ(t))Q(t)
∥∥
F

∥∥g(θ(t))∥∥
2

≤ η
∥∥J(θ(t))∥∥

F

∥∥g(θ(t))∥∥
2
≤MηBtR0

(5.50)

So (5.44) is also true for t+ 1. And we also have∥∥g(θ(t+1))
∥∥
2
=
∥∥g(θ(t+1))− g(θ(t)) + g(θ(t))

∥∥
2

=
∥∥∥J(θ̃(t))⊤(θ(t+1) − θ(t)) + g(θ(t))

∥∥∥
2

=
∥∥∥−ηJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t)) + g(θ(t))

∥∥∥
2

≤
∥∥∥I − ηJ(θ̃(t))⊤J(θ(t))Q(t)

∥∥∥
2

∥∥g(θ(t))∥∥
2

≤
(
1 +

∥∥∥ηJ(θ̃(t))⊤J(θ(t))Q(t)
∥∥∥
2

)∥∥g(θ(t))∥∥
2

≤
(
1 + η

∥∥∥J(θ̃(t))∥∥∥
F

∥∥J(θ(t))∥∥
F

)∥∥g(θ(t))∥∥
2

≤ (1 + η∗M2)
∥∥g(θ(t))∥∥

2
≤ Bt+1R0

(5.51)

123



Therefore, (5.43) and (5.44) are true for all t ≤ tϵ, which implies that
∥∥√Qg(θ(tϵ))

∥∥
2
≤∥∥g(θ(tϵ))∥∥

2
≤ BtϵR0, so (5.45) is true for t = tϵ. And (5.46) is obviously true for t = tϵ. Now, let

us prove (ii) by induction. Note that when t ≥ tϵ, we have the alternative update rule (5.42). If
(5.45) and (5.46) are true for t, then for t+ 1, there is

∥∥θ(t+1) − θ(t)
∥∥
2
≤ η

∥∥∥∥J(θ(t))√Q
(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2
≤ η

∥∥∥∥J(θ(t))√Q
(t)
3ϵ

∥∥∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥
2

≤ η
√
1 + 3ϵ

∥∥J(θ(t))∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥
2
≤Mη

√
1 + 3ϵ

(
1− ηq∗λmin

3

)t−tϵ

BtϵR0

(5.52)
So (5.46) is true for t+ 1. And we also have∥∥∥√Qg(θ(t+1))

∥∥∥
2
=
∥∥∥√Qg(θ(t+1))−

√
Qg(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥√QJ(θ̃(t))⊤(θ(t+1) − θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥−η√QJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

≤
∥∥∥∥I − η

√
QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2

≤
∥∥∥∥I − η

√
QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

(
1− ηq∗λmin

3

)t

R0

(5.53)

where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Now we prove that∥∥∥∥I − η
√
QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

≤ 1− ηq∗λmin

3
(5.54)

For any unit vector v ∈ Rn, we have

v⊤(I − η
√

QΘ
√
Q)v = 1− ηv⊤

√
QΘ

√
Qv (5.55)∥∥√Qv

∥∥
2
∈ [

√
q∗, 1], so for any η ≤ η∗, v⊤(I − η

√
QΘ

√
Q)v ∈ [0, 1 − ηλminq∗], which

implies that
∥∥I − η

√
QΘ

√
Q
∥∥
2
≤ 1− ηλminq∗. Thus,

∥∥∥I − η
√

QJ(θ̃(t))⊤J(θ(t))
√

Q
∥∥∥
2

≤
∥∥∥I − η

√
QΘ

√
Q
∥∥∥
2
+ η

∥∥∥√Q(Θ−Θ(0))
√

Q
∥∥∥
2
+ η

∥∥∥√Q(J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t)))
√
Q
∥∥∥
2

≤1− ηλminq∗ + η
∥∥∥√Q(Θ−Θ(0))

√
Q
∥∥∥
F
+ η

∥∥∥√Q(J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t)))
√
Q
∥∥∥
F

≤1− ηλminq∗ + η
∥∥Θ−Θ(0)

∥∥
F
+ η

∥∥∥J(θ(0))⊤J(θ(0))− J(θ̃(t))⊤J(θ(t))
∥∥∥
F

≤1− ηλminq∗ +
ηq∗λmin

3
+
ηM2

4
√
d̃

(∥∥θ(t) − θ(0)
∥∥
2
+
∥∥∥θ̃(t) − θ(0)

∥∥∥
2

)
≤ 1− ηq∗λmin

2
(5.56)
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for all d̃ ≥ max

{
D1, D2,

(
12M2C0

q∗λmin

)4}
, which implies that∥∥∥∥I − η

√
QJ(θ̃(t))⊤J(θ(t))

√
Q

(t)
3ϵ

∥∥∥∥
2

≤1− ηq∗λmin

2
+

∥∥∥∥η√QJ(θ̃(t))⊤J(θ(t))

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

≤1− ηq∗λmin

2
+ ηM2

√
3ϵ ≤ 1− ηq∗λmin

3
(due to (5.32))

(5.57)

for all ϵ ≤ ϵ0. Thus, (5.45) is also true for t + 1. In conclusion, (5.45) and (5.46) are true with

probability at least (1− δ) for all d̃ ≥ D̃ = max

{
D1, D2,

(
12M2C0

q∗λmin

)4}
.

Returning back to the proof of Theorem 15. Choose and fix an ϵ such that ϵ <

min{ϵ0, 13
(

q∗λmin

3λmax+q∗λmin

)2
}, where ϵ0 is defined by Theorem 20. Then, tϵ is also fixed. There

exists D̃ ≥ 0 such that for any d̃ ≥ D̃, with probability at least (1− δ), Theorem 20 and Lemma
21 are true and ∥∥Θ−Θ(0)

∥∥
F
≤ q∗λmin

3
(5.58)

which immediately implies that∥∥Θ(0)
∥∥
2
≤ ∥Θ∥2 +

∥∥Θ−Θ(0)
∥∥
F
≤ λmax +

q∗λmin

3
(5.59)

We still denote B = 1 + η∗M2 and C0 =
MBtϵR0

B−1
+ 3

√
1+3ϵMBtϵR0

q∗λmin . Theorem 20 ensures that
for all t, θ(t) ∈ B(θ(0), C0). Then we have∥∥∥I − η

√
QΘ(0)

√
Q
∥∥∥
2
≤
∥∥∥I − η

√
QΘ

√
Q
∥∥∥
2
+ η

∥∥∥√Q(Θ−Θ(0))
√
Q
∥∥∥
2

≤ 1− ηλminq∗ +
ηq∗λmin

3
= 1− 2ηq∗λmin

3

(5.60)

so it follows that∥∥∥∥I − η
√
QΘ(0)

√
Q

(t)
3ϵ

∥∥∥∥
2

≤
∥∥∥I − η

√
QΘ(0)

√
Q
∥∥∥
2
+

∥∥∥∥η√QΘ(0)

(√
Q

(t)
3ϵ −

√
Q

)∥∥∥∥
2

≤ 1− 2ηq∗λmin

3
+ η(λmax +

q∗λmin

3
)
√
3ϵ

(5.61)

Thus, for all ϵ < 1
3

(
q∗λmin

3λmax+q∗λmin

)2
, there is∥∥∥∥I − η

√
QΘ(0)

√
Q

(t)
3ϵ

∥∥∥∥
2

≤ 1− ηq∗λmin

3
(5.62)

The update rule of the reweighting algorithm for the linearized neural network is:

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ(0))Q(t)glin(θ

(t)) (5.63)
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where we use the subscript “lin” to denote the linearized neural network, and with a slight abuse
of notion denote glin(θ

(t)) = g(θ
(t)
lin ).

First, let us consider the training data X . Denote ∆t = glin(θ
(t))− g(θ(t)). We have{

glin(θ
(t+1))− glin(θ

(t)) = −ηJ(θ(0))⊤J(θ(0))Q(t)glin(θ
(t))

g(θ(t+1))− g(θ(t)) = −ηJ(θ̃(t))⊤J(θ(t))Q(t)g(θ(t))
(5.64)

where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Thus,

∆t+1 −∆t =η
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]
Q(t)g(θ(t))

− ηJ(θ(0))⊤J(θ(0))Q(t)∆t

(5.65)

By Lemma 21, we have∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))
∥∥∥
F

≤
∥∥∥∥(J(θ̃(t))− J(θ(0))

)⊤
J(θ(t))

∥∥∥∥
F

+
∥∥J(θ(0))⊤ (J(θ(t))− J(θ(0))

)∥∥
F

≤2M2C0d̃
−1/4

(5.66)

which implies that for all t < tϵ,

∥∆t+1∥2 ≤
∥∥[I − ηJ(θ(0))⊤J(θ(0))Q(t)

]
∆t

∥∥
2
+
∥∥∥η [J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]
Q(t)g(θ(t))

∥∥∥
2

≤
∥∥I − ηJ(θ(0))⊤J(θ(0))Q(t)

∥∥
F
∥∆t∥2 + η

∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))
∥∥∥
F

∥∥g(θ(t))∥∥
2

≤ (1 + ηM2) ∥∆t∥2 + 2ηM2C0B
tR0d̃

−1/4

≤ B ∥∆t∥2 + 2ηM2C0B
tR0d̃

−1/4

(5.67)
Therefore, we have

B−(t+1) ∥∆t+1∥2 ≤ B−t ∥∆t∥2 + 2ηM2C0B
−1R0d̃

−1/4 (5.68)

Since ∆0 = 0, it follows that for all t ≤ tϵ,

∥∆t∥2 ≤ 2tηM2C0B
t−1R0d̃

−1/4 (5.69)

and particularly we have∥∥∥√Q∆tϵ

∥∥∥
2
≤ ∥∆tϵ∥2 ≤ 2tϵηM

2C0B
tϵ−1R0d̃

−1/4 (5.70)

For t ≥ tϵ, we have the alternative update rule (5.42). Thus,√
Q∆t+1 −

√
Q∆t =η

√
Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

[√
Qg(θ(t))

]
− η
√

QJ(θ(0))⊤J(θ(0))

√
Q

(t)
3ϵ

[√
Q∆t

] (5.71)

126



Let A = I − η
√
QJ(θ(0))⊤J(θ(0))

√
Q

(t)
3ϵ = I − η

√
QΘ(0)

√
Q

(t)
3ϵ . Then, we have√

Q∆t+1 = A
√

Q∆t + η
√
Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

(√
Qg(θ(t))

)
(5.72)

Let γ = 1− ηq∗λmin

3
< 1. Combining with Theorem 20 and (5.62), the above leads to∥∥∥√Q∆t+1

∥∥∥
2
≤ ∥A∥2

∥∥∥√Q∆t

∥∥∥
2
+ η

∥∥∥∥√Q
[
J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))

]√
Q

(t)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥
2

≤ γ
∥∥∥√Q∆t

∥∥∥
2
+ η

∥∥∥J(θ̃(t))⊤J(θ(t))− J(θ(0))⊤J(θ(0))
∥∥∥
F

√
1 + 3ϵγt−tϵBtϵR0

≤ γ
∥∥∥√Q∆t

∥∥∥
2
+ 2ηM2C0

√
1 + 3ϵγt−tϵBtϵR0d̃

−1/4

(5.73)
This implies that

γ−(t+1)
∥∥∥√Q∆t+1

∥∥∥
2
≤ γ−t

∥∥∥√Q∆t

∥∥∥
2
+ 2ηM2C0

√
1 + 3ϵγ−1−tϵBtϵR0d̃

−1/4 (5.74)

Combining with (5.70), it implies that for all t ≥ tϵ,∥∥∥√Q∆t

∥∥∥
2
≤ 2γt−tϵηM2C0B

tϵR0

[
tϵB

−1 +
√
1 + 3ϵγ−1(t− tϵ)

]
d̃−1/4 (5.75)

Next, we consider an arbitrary test point x such that ∥x∥2 ≤ 1. Denote δt = f
(t)
lin (x)− f (t)(x).

Then we have {
f
(t+1)
lin (x)− f

(t)
lin (x) = −η∇θf(x; θ

(0))⊤J(θ(0))Q(t)glin(θ
(t))

f (t+1)(x)− f (t)(x) = −η∇θf(x; θ̃
(t))⊤J(θ(t))Q(t)g(θ(t))

(5.76)

which yields

δt+1 − δt =η
[
∇θf(x; θ̃

(t))⊤J(θ(t))−∇θf(x; θ
(0))⊤J(θ(0))

]
Q(t)g(θ(t))

− η∇θf(x; θ
(0))⊤J(θ(0))Q(t)∆t

(5.77)

For t ≤ tϵ, we have

∥δt∥2 ≤η
t−1∑
s=0

∥∥∥[∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
]
Q(s)

∥∥∥
2

∥∥g(θ(s))∥∥
2

+ η
t−1∑
s=0

∥∥∇θf(x; θ
(0))⊤J(θ(0))Q(s)

∥∥
2
∥∆s∥2

≤η
t−1∑
s=0

∥∥∥∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
∥∥∥
F

∥∥g(θ(s))∥∥
2

+ η
t−1∑
s=0

∥∥∇θf(x; θ
(0))
∥∥
2

∥∥J(θ(0))∥∥
F
∥∆s∥2

≤2ηM2C0d̃
−1/4

t−1∑
s=0

BsR0 + ηM2

t−1∑
s=0

(2sηM2C0B
s−1R0d̃

−1/4)

(5.78)
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So we can see that there exists a constant C1 such that ∥δtϵ∥2 ≤ C1d̃
−1/4. Then, for t > tϵ, we

have

∥δt∥2 − ∥δtϵ∥2 ≤η
t−1∑
s=tϵ

∥∥∥∥[∇θf(x; θ̃
(s))⊤J(θ(s))−∇θf(x; θ

(0))⊤J(θ(0))
]√

Q
(s)
3ϵ

∥∥∥∥
2

∥∥∥√Qg(θ(s))
∥∥∥
2

+ η

t−1∑
s=tϵ

∥∥∥∥∇θf(x; θ
(0))⊤J(θ(0))

√
Q

(s)
3ϵ

∥∥∥∥
2

∥∥∥√Q∆s

∥∥∥
2

≤2ηM2C0d̃
−1/4

√
1 + 3ϵ

t−1∑
s=tϵ

γs−tϵBtϵR0

+ ηM2
√
1 + 3ϵ

t−1∑
s=tϵ

(
2γs−tϵηM2C0B

tϵR0

[
tϵB

−1 +
√
1 + 3ϵγ−1(s− tϵ)

]
d̃−1/4

)
(5.79)

Note that
∑∞

t=0 tγ
t is finite as long as γ ∈ (0, 1). Therefore, there is a constant C such that

for any t, ∥δt∥2 ≤ Cd̃−1/4 with probability at least (1− δ) for any d̃ ≥ D̃.

5.7.4 Proof of Lemma 21
We will use the following theorem regarding the eigenvalues of random Gaussian matrices:
Theorem 22 (Corollary 5.35 in Vershynin [139]). If A ∈ Rp×q is a random matrix whose entries
are independent standard normal random variables, then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2),

√
p−√

q − t ≤ λmin(A) ≤ λmax(A) ≤ √
p+

√
q + t (5.80)

By this theorem, and also note that WL is a vector, we can see that for any δ, there exist D̃ > 0
and M1 > 0 such that if d̃ ≥ D̃, then with probability at least (1− δ), for all θ ∈ B(θ(0), C0), we
have ∥∥W l

∥∥
2
≤ 3
√
d̃ (∀0 ≤ l ≤ L− 1) and

∥∥WL
∥∥
2
≤ C0 ≤ 3

4
√
d̃ (5.81)

as well as ∥∥βbl∥∥
2
≤M1

√
d̃ (∀l = 0, · · · , L) (5.82)

Now we assume that (5.81) and (5.82) are true. Then, for any x such that ∥x∥2≤ 1,∥∥h1
∥∥
2
=

∥∥∥∥ 1√
d0
W 0x+ βb0

∥∥∥∥
2

≤ 1√
d0

∥∥W 0
∥∥
2
∥x∥2 +

∥∥βb0∥∥
2
≤ (

3√
d0

+M1)
√
d̃

∥∥hl+1
∥∥
2
=

∥∥∥∥∥ 1√
d̃
W lxl + βbl

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥
2

∥∥xl
∥∥
2
+
∥∥βbl∥∥

2
(∀l ≥ 1)

∥∥xl
∥∥
2
=
∥∥σ(hl)− σ(0l) + σ(0l)

∥∥
2
≤ L0

∥∥hl
∥∥
2
+ σ(0)

√
d̃ (∀l ≥ 1)

(5.83)

where L0 is the Lipschitz constant of σ and σ(0l) = (σ(0), · · · , σ(0)) ∈ Rdl . By induction, there
exists an M2 > 0 such that

∥∥xl
∥∥
2
≤M2

√
d̃ and

∥∥hl
∥∥
2
≤M2

√
d̃ for all l = 1, · · · , L.

128



Denote αl = ∇hlf(x) = ∇hlhL+1. For all l = 1, · · · , L, we have αl = diag(σ̇(hl))W
l⊤√
d̃
αl+1

where σ̇(x) ≤ L0 for all x ∈ R since σ is L0-Lipschitz, αL+1 = 1 and
∥∥αL

∥∥
2

=∥∥∥∥diag(σ̇(hL))W
L⊤√
d̃

∥∥∥∥
2

≤ 3
4
√
d̃
L0. Then, we can easily prove by induction that there exists an

M3 > 1 such that
∥∥αl
∥∥
2
≤ M3/

4
√
d̃ for all l = 1, · · · , L (note that this is not true for L + 1

because αL+1 = 1).
For l = 0, ∇W 0f(x) = 1√

d0
x0α1⊤, so ∥∇W lf(x)∥2 ≤ 1√

d0
∥x0∥2 ∥α1∥2 ≤ 1√

d0
M3/

4
√
d̃.

And for any l = 1, · · · , L, ∇W lf(x) = 1√
d̃
xlαl+1, so ∥∇W lf(x)∥2 ≤ 1√

d̃

∥∥xl
∥∥
2

∥∥αl+1
∥∥
2
≤

M2M3. (Note that if M3 > 1, then
∥∥αL+1

∥∥
2
≤ M3; and since d̃ ≥ 1, there is

∥∥αl
∥∥
2
≤ M3 for

l ≤ L.) Moreover, for l = 0, · · · , L, ∇blf(x) = βαl+1, so ∥∇blf(x)∥2 ≤ βM3. Thus, if (5.81)
and (5.82) are true, then there exists an M4 > 0, such that ∥∇θf(x)∥2 ≤ M4/

√
n. And since

∥xi∥2 ≤ 1 for all i, so ∥J(θ)∥F ≤M4.
Next, we consider the difference in ∇θf(x) between θ and θ̃. Let f̃ , W̃ , b̃, x̃, h̃, α̃ be the

function and the values corresponding to θ̃. There is∥∥∥h1 − h̃1
∥∥∥
2
=

∥∥∥∥ 1√
d0

(W 0 − W̃ 0)x+ β(b0 − b̃0)

∥∥∥∥
2

≤ 1√
d0

∥∥∥W 0 − W̃ 0
∥∥∥
2
∥x∥2 + β

∥∥∥b0 − b̃0
∥∥∥
2
≤
(

1√
d0

+ β

)∥∥∥θ − θ̃
∥∥∥
2∥∥∥hl+1 − h̃l+1

∥∥∥
2
=

∥∥∥∥∥ 1√
d̃
W l(xl − x̃l) +

1√
d̃
(W l − W̃ l)x̃l + β(bl − b̃l)

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥
2

∥∥xl − x̃l
∥∥
2
+

1√
d̃

∥∥∥W l − W̃ l
∥∥∥
2

∥∥x̃l
∥∥
2
+ β

∥∥∥bl − b̃l
∥∥∥
2

≤ 3
∥∥xl − x̃l

∥∥
2
+ (M2 + β)

∥∥∥θ − θ̃
∥∥∥
2

(∀l ≥ 1)∥∥xl − x̃l
∥∥
2
=
∥∥∥σ(hl)− σ(h̃l)

∥∥∥
2
≤ L0

∥∥∥hl − h̃l
∥∥∥
2

(∀l ≥ 1)

(5.84)

By induction, there exists an M5 > 0 such that
∥∥xl − x̃l

∥∥
2
≤M5

∥∥∥θ − θ̃
∥∥∥
2

for all l.

For αl, we have αL+1 = α̃L+1 = 1, and for all l ≥ 1,∥∥αl − α̃l
∥∥
2
=

∥∥∥∥∥diag(σ̇(hl))
W l⊤√
d̃
αl+1 − diag(σ̇(h̃l))

W̃ l⊤√
d̃
α̃l+1

∥∥∥∥∥
2

≤

∥∥∥∥∥diag(σ̇(hl))
W l⊤√
d̃
(αl+1 − α̃l+1)

∥∥∥∥∥
2

+

∥∥∥∥∥diag(σ̇(hl))
(W l − W̃ l)⊤√

d̃
α̃l+1

∥∥∥∥∥
2

+

∥∥∥∥∥diag((σ̇(hl)− σ̇(h̃l)))
W̃ l⊤√
d̃
α̃l+1

∥∥∥∥∥
2

≤ 3L0

∥∥αl+1 − α̃l+1
∥∥
2
+
(
M3L0d̃

−1/2 + 3M3M5L1d̃
−1/4

)∥∥∥θ − θ̃
∥∥∥
2

(5.85)
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where L1 is the Lipschitz constant of σ̇. Particularly, for l = L, though α̃L+1 = 1, since∥∥∥W̃L
∥∥∥
2
≤ 3d̃1/4, (5.85) is still true. By induction, there exists anM6 > 0 such that

∥∥αl − α̃l
∥∥
2
≤

M6

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2

for all l ≥ 1 (note that this is also true for l = L+ 1).

Thus, if (5.81) and (5.82) are true, then for all θ, θ̃ ∈ B(θ(0), C0), any x such that ∥x∥2 ≤ 1,
we have ∥∥∥∇W 0f(x)−∇W̃ 0 f̃(x)

∥∥∥
2
=

1√
d0

∥∥xα1⊤ − xα̃1⊤∥∥
2

≤ 1√
d0

∥∥α1 − α̃1
∥∥
2

≤ 1√
d0

M6

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2

(5.86)

and for l = 1, · · · , L, we have

∥∥∥∇W lf(x)−∇W̃ l f̃(x)
∥∥∥
2
=

1√
d̃

∥∥xlαl+1⊤ − x̃lα̃l+1⊤∥∥
2

≤ 1√
d̃

(∥∥xl
∥∥
2

∥∥αl+1 − α̃l+1
∥∥
2
+
∥∥xl − x̃l

∥∥
2

∥∥α̃l+1
∥∥
2

)
≤

(
M2M6

4
√
d̃

+
M5M3√

d̃

)∥∥∥θ − θ̃
∥∥∥
2

(5.87)

Moreover, for any l = 0, · · · , L, there is∥∥∥∇blf(x)−∇b̃l f̃(x)
∥∥∥
2
= β

∥∥αl+1 − α̃l+1
∥∥
2
≤ βM6

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2

(5.88)

Overall, we can see that there exists a constant M7 > 0 such that
∥∥∥∇θf(x)−∇θ̃f̃(x)

∥∥∥
2
≤

M7

√
n·

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2
, so that

∥∥∥J(θ)− J(θ̃)
∥∥∥
F
≤ M7

4
√
d̃

∥∥∥θ − θ̃
∥∥∥
2
.

5.7.5 Proof of Theorem 16
Let η1 = min{η0, η∗}, where η0 is defined in Corollary 13 and η∗ is defined in Theorem 15. Let
f
(t)
lin (x) and f (t)

linERM(x) be the linearized neural networks of f (t)(x) and f (t)
ERM(x), respectively. By

Theorem 15, for any δ > 0, there exists D̃ > 0 and a constant C such that
sup
t≥0

∣∣∣f (t)
lin (x)− f (t)(x)

∣∣∣ ≤ Cd̃−1/4

sup
t≥0

∣∣∣f (t)
linERM(x)− f

(t)
ERM(x)

∣∣∣ ≤ Cd̃−1/4
(5.89)

By Corollary 13, we have

lim
t→∞

∣∣∣f (t)
lin (x)− f

(t)
linERM(x)

∣∣∣ = 0 (5.90)
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Summing the above yields

lim sup
t→∞

∣∣∣f (t)(x)− f
(t)
ERM(x)

∣∣∣ ≤ 2Cd̃−1/4 (5.91)

which is the result we want.

5.7.6 Proof of Theorem 17
To minimize the regularized risk (5.12) with gradient descent, the update rule is

θ(t+1) = θ(t) − η
n∑

i=1

q
(t)
i ∇θℓ(f

(t)(xi), yi)− ηµ(θ(t) − θ(0)) (5.92)

We can see that under the new rule, θ(t) − θ(0) ∈ span(∇θf
(0)(x1), · · · ,∇θf

(0)(xn)) is still
true for all t. Let θ∗ be the interpolator in span(∇θf

(0)(x1), · · · ,∇θf
(0)(xn)), then the empirical

risk of θ is 1
2n

∑n
i=1⟨θ − θ∗,∇θf

(0)(xi)⟩2 = 1
2n

∥∥∇θf
(0)(X)⊤(θ − θ∗)

∥∥2
2
. Thus, there exists

T > 0 such that for any t ≥ T ,∥∥∇θf
(0)(X)⊤(θ(t) − θ∗)

∥∥2
2
≤ 2nϵ (5.93)

Let the smallest singular value of 1√
n
∇θf

(0)(X) be smin, and we have smin > 0. Note that the
column space of ∇θf

(0)(X) is exactly span(∇θf
(0)(x1), · · · ,∇θf

(0)(xn)). Define H ∈ Rp×n

such that its columns form an orthonormal basis of this subspace, then there exists G ∈ Rn×n

such that ∇θf
(0)(X) = HG, and the smallest singular value of 1√

n
G is also smin. Since

θ(t) − θ(0) is also in this subspace, there exists v ∈ Rn such that θ(t) − θ∗ = Hv. Then we have√
2nϵ ≥

∥∥G⊤H⊤Hv
∥∥
2
=
∥∥G⊤v

∥∥
2
. Thus, ∥v∥2 ≤

√
2ϵ

smin , which implies

∥∥θ(t) − θ∗
∥∥
2
≤

√
2ϵ

smin
(5.94)

By Corollary 13, if we minimize the unregularized risk with ERM, then θ always converges to
the interpolator θ∗. So for any t ≥ T and any test point x such that ∥x∥2 ≤ 1,

|f (t)
linreg(x)− f

(t)
linERM(x)|= |⟨θ(t) − θ∗,∇θf

(0)(x)⟩|≤ M0

√
2ϵ

smin
(5.95)

which implies (5.14).

5.7.7 Proof of Theorem 18
First of all, with some simple linear algebra analysis, we can prove the following proposition:
Proposition 23. For any positive definite symmetric matrix H ∈ Rn×n, denote its largest and
smallest eigenvalues by λmax and λmin. Then, for any q ∈ Rn

+ and Q = diag(q1, · · · , qn), HQ
has n positive eigenvalues that are all in [mini qi · λmin,maxi qi · λmax].
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Proof. H is a positive definite symmetric matrix, so there exists A ∈ Rn×n such that
H = A⊤A, and A is full-rank. First, any eigenvalue of AQA⊤ is also an eigenvalue of
A⊤AQ and vice versa, because for any eigenvalue λ of AQA⊤ we have some v ̸= 0 such that
AQA⊤v = λv. Multiplying both sides by A⊤ on the left yields A⊤AQ(A⊤v) = λ(A⊤v)
which implies that λ is also an eigenvalue of A⊤AQ because A⊤v ̸= 0 as λv ̸= 0. We can prove
the other direction similarly.

Second, by condition we know that the eigenvalues of A⊤A are all in [λmin, λmax] where
λmin > 0, which implies for any unit vector v, v⊤A⊤Av ∈ [λmin, λmax], which is equivalent
to ∥Av∥2 ∈ [

√
λmin,

√
λmax]. Thus, we have v⊤A⊤QAv ∈ [λmin mini qi, λ

maxmaxi qi], which
implies that the eigenvalues of A⊤QA are all in [λminmini qi, λ

maxmaxi qi].
Thus, the eigenvalues of HQ = A⊤AQ are all in [λmin mini qi, λ

maxmaxi qi].
Now return back to the proof of Theorem 18. We still use the shorthand (5.40). With L2

penalty, the update rule of the reweighting algorithm for the neural network is:

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t))− ηµ(θ(t) − θ(0)) (5.96)

And the update rule for the linearized neural network is:

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ(0))Q(t)glin(θ

(t))− ηµ(θ
(t)
lin − θ(0)) (5.97)

First, we need to prove that there exists D0 such that for all d̃ ≥ D0, supt≥0

∥∥θ(t) − θ(0)
∥∥
2

is
bounded with high probability. Denote at = θ(t) − θ(0). By (5.96) we have

at+1 =(1− ηµ)at − η[J(θ(t))− J(θ(0))]Q(t)g(θ(t))

− ηJ(θ(0))Q(t)[g(θ(t))− g(θ(0))]− ηJ(θ(0))Q(t)g(θ(0))
(5.98)

which implies

∥at+1∥2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)J(θ̃(t))⊤

∥∥∥
2
∥at∥2

+ η
∥∥J(θ(t))− J(θ(0))

∥∥
F

∥∥g(θ(t))∥∥
2
+ η

∥∥J(θ(0))∥∥
F

∥∥g(θ(0))∥∥
2

(5.99)

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Our choice of η ensures that
ηµ < 1. Similar to (5.48), we can show that for any δ > 0, there exists a constant R0 > 0 such
that with probability at least (1 − δ/3),

∥∥g(θ(0))∥∥
2
< R0. Let M be as defined in Lemma 21.

Denote A = ηMR0, and let C0 =
4A
ηµ

in Lemma 216. By Lemma 21, there exists D1 such that for
all d̃ ≥ D1, with probability at least (1− δ/3), (5.47) is true.

Now we prove by induction that ∥at∥2 < C0. It is true for t = 0, so we need to prove that if
∥at∥2 < C0, then ∥at+1∥2 < C0.

For the first term on the right-hand side of (5.99), we have∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)J(θ̃(t))⊤
∥∥∥
2
≤(1− ηµ)

∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)J(θ(0))⊤

∥∥∥∥
2

+ η
∥∥J(θ(0))∥∥

F

∥∥∥J(θ̃(t))− J(θ(0))
∥∥∥
F

(5.100)

6Note that Lemma 21 only depends on the network structure and does not depend on the update rule, so we can
use this lemma here.
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Like what we have done before, we can show that all non-zero eigenvalues of
J(θ(0))Q(t)J(θ(0))⊤ are eigenvalues of J(θ(0))⊤J(θ(0))Q(t). This is because for any λ ̸= 0,
if J(θ(0))Q(t)J(θ(0))⊤v = λv, then J(θ(0))⊤J(θ(0))Q(t)(J(θ(0))⊤v) = λ(J(θ(0))⊤v), and
J(θ(0))⊤v ̸= 0 since λv ̸= 0, so λ is also an eigenvalue of J(θ(0))⊤J(θ(0))Q(t). On the other
hand, by Theorem 14, J(θ(0))⊤J(θ(0))Q(t) converges in probability to ΘQ(t) whose eigenvalues
are all in [0, λmax] by Proposition 23. So there exists D2 such that for all d̃ ≥ D2, with probability
at least (1− δ/3), the eigenvalues of J(θ(0))Q(t)J(θ(0))⊤ are all in [0, λmax+λmin] for all t. Since
η/(1− ηµ) ≤ (λmin + λmax)−1 by our choice of η, we have∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)J(θ(0))⊤

∥∥∥∥
2

≤ 1 (5.101)

On the other hand, we can use (5.47) since ∥at∥2 < C0, so
∥∥J(θ(0))∥∥

F

∥∥∥J(θ̃(t))− J(θ(0))
∥∥∥
F
≤

M2

4
√
d̃
C0. Therefore, there exists D3 such that for all d̃ ≥ D3,

∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)J(θ̃(t))⊤
∥∥∥
2
≤ 1− ηµ

2
(5.102)

For the second term, we have∥∥g(θ(t))∥∥
2
≤
∥∥g(θ(t))− g(θ(0))

∥∥
2
+
∥∥g(θ(0))∥∥

2

≤
∥∥∥J(θ̃(t))∥∥∥

2

∥∥θ(t) − θ(0)
∥∥
2
+R0 ≤MC0 +R0

(5.103)

And for the third term, we have

η
∥∥J(θ(0))∥∥

F

∥∥g(θ(0))∥∥
2
≤ ηMR0 = A (5.104)

Thus, we have

∥at+1∥2 ≤
(
1− ηµ

2

)
∥at∥2 +

ηM(MC0 +R0)
4
√
d̃

+ A (5.105)

So there exists D4 such that for all d̃ ≥ D4, ∥at+1∥2 ≤
(
1− ηµ

2

)
∥at∥2 + 2A. This shows that

if ∥at∥2 < C0 is true, then ∥at+1∥2 < C0 will also be true.
In conclusion, by union bound, we have proved that for any δ > 0, with probability at least

(1 − δ) for all d̃ ≥ D0 = max{D1, D2, D3, D4},
∥∥θ(t) − θ(0)

∥∥
2
< C0 is true for all t. This also

implies that for C1 =MC0 +R0, we have
∥∥g(θ(t))∥∥

2
≤ C1 for all t by (5.103).

Second, let ∆t = θ
(t)
lin − θ(t). Then we have

∆t+1 −∆t = η(J(θ(t))Q(t)g(θ(t))− J(θ(0))Q(t)glin(θ
(t))− µ∆t) (5.106)

which implies

∆t+1 =
[
(1− ηµ)I − ηJ(θ(0))Q(t)J(θ̃(t))⊤

]
∆t + η(J(θ(t))− J(θ(0)))Q(t)g(θ(t)) (5.107)
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By (5.102), with probability at least (1− δ) for all d̃ ≥ D0, we have

∥∆t+1∥2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)J(θ̃(t))⊤

∥∥∥
2
∥∆t∥2 + η

∥∥J(θ(t))− J(θ(0))
∥∥
F

∥∥g(θ(t))∥∥
2

≤
(
1− ηµ

2

)
∥∆t∥2 + η

M
4
√
d̃
C0C1

(5.108)
Again, as ∆0 = 0, we can prove by induction that for all t,

∥∆t∥2 <
2MC0C1

µ
d̃−1/4 (5.109)

For any test point x such that ∥x∥2 ≤ 1, we have∣∣∣f (t)
reg(x)− f

(t)
linreg(x)

∣∣∣ = ∣∣∣f(x; θ(t))− flin(x; θ
(t)
lin )
∣∣∣

≤
∣∣f(x; θ(t))− flin(x; θ

(t))
∣∣+ ∣∣∣flin(x; θ

(t))− flin(x; θ
(t)
lin )
∣∣∣

≤
∣∣f(x; θ(t))− flin(x; θ

(t))
∣∣+ ∥∥∇θf(x; θ

(0))
∥∥
2

∥∥∥θ(t) − θ
(t)
lin

∥∥∥
2

≤
∣∣f(x; θ(t))− flin(x; θ

(t))
∣∣+M ∥∆t∥2

(5.110)

For the first term, note that{
f(x; θ(t))− f(x; θ(0)) = ∇θf(x; θ̃

(t))(θ(t) − θ(0))

flin(x; θ
(t))− flin(x; θ

(0)) = ∇θf(x; θ
(0))(θ(t) − θ(0))

(5.111)

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Since f(x; θ(0)) = flin(x; θ
(0)),∣∣f(x; θ(t))− flin(x; θ

(t))
∣∣ ≤ ∥∥∥∇θf(x; θ̃

(t))−∇θf(x; θ
(0))
∥∥∥
2

∥∥θ(t) − θ(0)
∥∥
2
≤ M

4
√
d̃
C2

0 (5.112)

Thus, we have shown that for all d̃ ≥ D0, with probability at least (1− δ) for all t and all x,∣∣∣f (t)
reg(x)− f

(t)
linreg(x)

∣∣∣ ≤ (MC2
0 +

2M2C0C1

µ

)
d̃−1/4 = O(d̃−1/4) (5.113)

Given that R̂(f
(t)
linreg) < ϵ for sufficiently large t, this also implies that∣∣∣R̂(f

(t)
linreg)− R̂(f (t)

reg)
∣∣∣ = O(d̃−1/4

√
ϵ+ d̃−1/2) (5.114)

So for a fixed ϵ, there exists D > 0 such that for all d ≥ D, for sufficiently large t,

R̂(f (t)
reg) < ϵ⇒ R̂(f

(t)
linreg) < 2ϵ (5.115)

By Theorem 15, we have

sup
t≥0

∣∣∣f (t)
linERM(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4) (5.116)

Combining Theorem 17 with (5.113) and (5.116) derives

lim sup
t→∞

∣∣∣f (t)
reg(x)− f

(t)
ERM(x)

∣∣∣ = O(d̃−1/4 +
√
ϵ) (5.117)

Letting d̃→ ∞ leads to the result we need.
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5.8 A note on the proofs in Lee et al. [89]
We have mentioned that the proofs in Lee et al. [89], particularly the proofs of their Theorem 2.1
and Lemma 1 in their Appendix G, are flawed. In order to fix their proof, we change the network
initialization to (5.9). In this section, we will demonstrate what goes wrong in the proofs in Lee
et al. [89], and how we manage to fix the proof. For clarity, we are referring to the following
version of the paper: https://arxiv.org/pdf/1902.06720v4.pdf.

To avoid confusion, in this section we will still use the notations used in our paper.

5.8.1 Their problems
Lee et al. [89] claimed in their Theorem 2.1 that under the conditions of our Theorem 15, for
any δ > 0, there exist D̃ > 0 and a constant C such that for any d̃ ≥ D̃, with probability at least
(1− δ), the gap between the output of a sufficiently wide fully-connected neural network and the
output of its linearized neural network at any test point x can be uniformly bounded by

sup
t≥0

∣∣∣f (t)(x)− f
(t)
lin (x)

∣∣∣ ≤ Cd̃−1/2 (claimed) (5.118)

where they used the original NTK formulation and initialization in Jacot et al. [67]:hl+1 =
W l

√
dl
xl + βbl

xl+1 = σ(hl+1)

and

{
W

l(0)
i,j ∼ N (0, 1)

b
l(0)
i ∼ N (0, 1)

(∀l = 0, · · · , L) (5.119)

where x0 = x and f(x) = hL+1. However, in their proof in their Appendix G, they did not
directly prove their result for the NTK formulation, but instead they proved another result for the
following formulation which they called the standard formulation:{

hl+1 = W lxl + βbl

xl+1 = σ(hl+1)
and

W
l(0)
i,j ∼ N (0,

1

dl
)

b
l(0)
i ∼ N (0, 1)

(∀l = 0, · · · , L) (5.120)

See their Appendix F for the definition of their standard formulation. In the original formu-
lation, they also included two constants σw and σb for standard deviations, and for simplicity
we omit these constants here. Note that the outputs of the NTK formulation and the standard
formulation at initialization are actually the same. The only difference is that the norm of the
weight W l and the gradient of the model output with respect to W l are different for all l.

In their Appendix G, they claimed that if a network with the standard formulation is trained
by minimizing the squared loss with gradient descent and learning rate η′ = η/d̃, where η is
our learning rate in Theorem 15 and also their learning rate in their Theorem 2.1, then (5.118)
is true for this network, so it is also true for a network with the NTK formulation because the
two formulations have the same network output. And then they claimed in their equation (S37)
that applying learning rate η′ to the standard formulation is equivalent to applying the following
learning rates

ηlW =
dl
dmax

η and ηlb =
1

dmax

η (5.121)
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to W l and bl of the NTK formulation, where dmax = max{d0, · · · , dL}.
To avoid confusion, in the following discussions we will still use the NTK formulation and

initialization if not stated otherwise.

Problem 1. Claim (5.121) is true, but it leads to two problems. The first problem is that
ηlb = O(d−1

max) since η = O(1), while their Theorem 2.1 needs the learning rate to be O(1).
Nevertheless, this problem can be simply fixed by modifying their standard formulation as
hl+1 = W lxl+β

√
dlb

l where bl(0)i ∼ N (0, d−1
l ). The real problem that is non-trivial to fix is that

by (5.121), there is η0W = d0
dmax

η. However, note that d0 is a constant since it is the dimension of
the input space, while dmax goes to infinity. With that being said, in (5.121) they were essentially
using a very small learning rate for the first layer W 0 but a normal learning rate for the rest of the
layers, which definitely does not match with their claim in their Theorem 2.1.

Problem 2. Another big problem is that the proof of their Lemma 1 in their Appendix G is
erroneous, and consequently their Theorem 2.1 is unsound as it heavily depends on their Lemma
1. In their Lemma 1, they claimed that for some constant M > 0, for any two models with the
parameters θ and θ̃ such that θ, θ̃ ∈ B(θ(0), C0) for some constant C0, there is∥∥∥J(θ)− J(θ̃)

∥∥∥
F
≤ M√

d̃

∥∥∥θ − θ̃
∥∥∥
2

(claimed) (5.122)

Note that the original claim in their paper was
∥∥∥J(θ)− J(θ̃)

∥∥∥
F
≤ M

√
d̃
∥∥∥θ − θ̃

∥∥∥
2
. This is

because they were proving this result for their standard formulation. Compared to the standard
formulation, in the NTK formulation θ is

√
d̃ times larger, while the Jacobian J(θ) is

√
d̃ times

smaller. This is also why here we have θ, θ̃ ∈ B(θ(0), C0) instead of θ, θ̃ ∈ B(θ(0), C0d̃
−1/2)

for the NTK formulation. Therefore, equivalently they were claiming (5.122) for the NTK
formulation.

However, their proof of (5.122) in incorrect. Specifically, the right-hand side of their inequality
(S86) is incorrect. Using the notations in our Appendix 5.7.4, their (S86) essentially claimed that

∥∥αl − α̃l
∥∥
2
≤ M√

d̃

∥∥∥θ − θ̃
∥∥∥
2

(claimed) (5.123)

for any θ, θ̃ ∈ B(θ(0), C0), where αl = ∇hlhL+1 and α̃l is the same gradient for the second
model. Note that their (S86) does not have the

√
d̃ in the denominator which appears in (5.123).

This is because for their standard formulation, θ is
√
d̃ times smaller than the original NTK

formulation, while
∥∥αl
∥∥
2

has the same order in the two formulations because all hl are the same.
However, it is actually impossible to prove (5.123). Consider the following counterexample:

Since θ and θ̃ are arbitrarily chosen, we can choose them such that they only differ in bl1 for some
1 ≤ l < L. Then,

∥∥∥θ − θ̃
∥∥∥
2
=
∣∣∣bl1 − b̃l1

∣∣∣. We can see that hl+1 and h̃l+1 only differ in the first
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element, and
∣∣∣hl+1

1 − h̃l+1
1

∣∣∣ = ∣∣∣β(bl1 − b̃l1)
∣∣∣. Moreover, we have W l+1 = W̃ l+1, so there is

αl+1 − α̃l+1 =diag(σ̇(hl+1))
W l+1⊤√

d̃
αl+2 − diag(σ̇(h̃l+1))

W̃ l+1⊤√
d̃

α̃l+2

=
[
diag(σ̇(hl+1))− diag(σ̇(h̃l+1))

]W l+1⊤√
d̃

αl+2

+ diag(σ̇(h̃l+1))
W l+1⊤√

d̃
(αl+2 − α̃l+2)

(5.124)

Then we can lower bound
∥∥αl+1 − α̃l+1

∥∥
2

by

∥∥αl+1 − α̃l+1
∥∥
2
≥

∥∥∥∥∥[diag(σ̇(hl+1))− diag(σ̇(h̃l+1))
]W l+1⊤√

d̃
αl+2

∥∥∥∥∥
2

−

∥∥∥∥∥diag(σ̇(h̃l+1))
W l+1⊤√

d̃
(αl+2 − α̃l+2)

∥∥∥∥∥
2

(5.125)

The first term on the right-hand side is equal to
∣∣∣[σ̇(hl+1

1 )− σ̇(h̃l+1
1 )
]
⟨W l+1

1 /
√
d̃,αl+2⟩

∣∣∣
where W l+1

1 is the first row of W l+1. We know that
∥∥W l+1

1

∥∥
2
= Θ

(√
d̃
)

with high probability

as its elements are sampled from N (0, 1), and in their (S85) they claimed that
∥∥αl+2

∥∥
2
= O(1),

which is true. In addition, they assumed that σ̇ is Lipschitz. Hence, we can see that∥∥∥∥∥[diag(σ̇(hl+1))− diag(σ̇(h̃l+1))
]W l+1⊤√

d̃
αl+2

∥∥∥∥∥
2

= O
(∣∣∣hl+1

1 − h̃l+1
1

∣∣∣) = O
(∥∥∥θ − θ̃

∥∥∥
2

)
(5.126)

On the other hand, suppose that claim (5.123) is true, then
∥∥αl+2 − α̃l+2

∥∥
2

=

O
(
d̃−1/2

∥∥∥θ − θ̃
∥∥∥
2

)
. Then we can see that the second term on the right-hand side is

O
(
d̃−1/2

∥∥∥θ − θ̃
∥∥∥
2

)
because

∥∥W l+1
∥∥
2
= O(

√
d̃) and σ̇(x) is bounded by a constant as σ is

Lipschitz. Thus, for a very large d̃, the second-term is an infinitely small term compared to the
first term, so we can only prove that∥∥αl+1 − α̃l+1

∥∥
2
= O

(∥∥∥θ − θ̃
∥∥∥
2

)
(5.127)

which is different from (5.123) because it lacks a critical d̃−1/2 and thus leads to a contradiction.
Hence, we cannot prove (5.123) with the d̃−1/2 factor, and consequently we cannot prove (5.122)
with the

√
d̃ in the denominator on the right-hand side. As a result, their Lemma 1 and Theorem

2.1 cannot be proved without this critical d̃−1/2. Similarly, we can also construct a counterexample
where θ and θ̃ only differ in the first row of some W l.
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5.8.2 Our fixes
Regarding Problem 1, we can still use an O(1) learning rate for the first layer in the NTK
formulation given that ∥x∥2 ≤ 1. This is because for the first layer, we have

∇W 0f(x) =
1√
d0

x0α1⊤ =
1√
d0

xα1⊤ (5.128)

For all l ≥ 1, we have
∥∥xl
∥∥
2
= O(d̃1/2). However, for l = 0, we instead have ∥x0∥2 = O(1).

Thus, we can prove that the norm of ∇W 0f(x) has the same order as the gradient with respect to
any other layer, so there is no need to use a smaller learning rate for the first layer.

Regarding Problem 2, in our formulation (5.8) and initialization (5.9), the initialization of the
last layer of the NTK formulation is changed from the Gaussian initialization WL(0)

i,j ∼ N (0, 1) to
the zero initialization WL(0)

i,j = 0. Now we show how this modification solves Problem 2.
The main consequence of changing the initialization of the last layer is that (5.81) becomes

different: instead of
∥∥WL

∥∥
2
≤ 3

√
d̃, we now have

∥∥WL
∥∥
2
≤ C0 ≤ 3

4
√
d̃. In fact, for any

r ∈ (0, 1/2), we can prove that
∥∥WL

∥∥
2
≤ 3d̃r for sufficiently large d̃. In our proof we choose

r = 1/4.
Consequently, instead of

∥∥αl
∥∥
2
≤ M3, we can now prove that

∥∥αl
∥∥
2
≤ M3d̃

r−1/2 for all

l ≤ L by induction. So now we can prove
∥∥αl − α̃l

∥∥
2
= O

(
d̃r−1/2

∥∥∥θ − θ̃
∥∥∥
2

)
instead of

O
(∥∥∥θ − θ̃

∥∥∥
2

)
, because

• For l < L, we now have
∥∥αl+1

∥∥
2
= O(d̃r−1/2) instead of O(1), so we can have the

additional d̃r−1/2 factor in the bound.
• For l = L, although

∥∥αL+1
∥∥
2
= 1, note that

∥∥WL
∥∥
2

now becomes O(d̃r) instead of
O(d̃1/2), so again we can decrease the bound by a factor of d̃r−1/2.

Then, with this critical d̃r−1/2, we can prove the approximation theorem with the form

sup
t≥0

∣∣∣f (t)(x)− f
(t)
lin (x)

∣∣∣ ≤ Cd̃r−1/2 (5.129)

for any r ∈ (0, 1/2), though we cannot really prove the O(d̃−1/2) bound as originally claimed in
(5.118). So this is how we solve Problem 2.

One caveat of changing the initialization to zero initialization is whether we can still safely
assume that λmin > 0 where λmin is the smallest eigenvalue of Θ, the kernel matrix of our new
formulation. The answer is yes. In fact, in our Theorem 14 we proved that Θ is non-degenerated
(which means that Θ(x,x′) still depends on x and x′), and under the overparameterized setting
where dL ≫ n, chances are high that Θ is full-rank. Hence, we can still assume that λmin > 0.

As a final remark, one key reason why we need to initialize WL as zero is that the dimension
of the output space (i.e. the dimension of hL+1) is finite, and in our case it is 1. Suppose we allow
the dimension of hL+1 to be d̃ which goes to infinity, then using the same proof techniques, for
the NTK formulation we can prove that supt

∥∥∥hL+1(t) − h
L+1(t)
lin

∥∥∥
2
≤ C, i.e. the gap between two

vectors of infinite dimension is always bounded by a finite constant. This is the approximation
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theorem we need for the infinite-dimensional output space. However, when the dimension of the
output space is finite, supt

∥∥∥hL+1(t) − h
L+1(t)
lin

∥∥∥
2
≤ C no longer suffices, so we need to decrease

the order of the norm of WL in order to obtain a smaller bound.

5.9 Experiment details and additional experiments

5.9.1 Experiment details
All experiments are conducted on a Ubuntu 18.04.6 machine with NVIDIA Geforce GTX 1080ti
GPUs. Each model is trained with one GPU. On each of Waterbirds and CelebA, we use a
ResNet18 as the model. The model is trained with SGD with momentum = 0.9. On Waterbirds
the learning rate is 10−4, and on CelebA it is 10−3. For Group DRO, ν is selected as 0.01 (see the
definition of ν in (5.3)). The batch size used for Waterbirds is 128, and for CelebA it is 400. Data
augmentation including random cropping, random horizontal flip and normalization is performed
on both datasets.

5.9.2 Sample weights converge in Group DRO

The results in Section 5.3 require Assumption 1 which states that each sample weight q(t)i converges
to some positive value as t→ ∞. Our readers might wonder how strong this assumption is, and
whether reweighting algorithms satisfy this assumption in practice. In this section we empirically
demonstrate that for Group DRO, the dynamic reweighting algorithm we experiment on, this
assumption is satisfied on Waterbirds and CelebA.

Recall that in Section 5.2.2 we empirically showed that reweighting algorithms could easily
overfit without regularization. Here using the same experimental settings, we keep track of the
weight of each group gk during training, and we plot the group weight curves in Figure 5.3. We
also train the models longer (1000 epochs on Waterbirds and 300 epochs on CelebA). Clearly we
can see that as the training accuracy converges to 100%, the group weights also converge to an
equilibrium. Note that q(t)i = g

(t)
k /nk for all zi ∈ Dk, so the sample weights also converge.
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(a) Waterbirds.
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Figure 5.3: Weights of each group in Group DRO on Waterbirds and CelebA. The four curves
correspond to the four groups.
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Chapter 6

MSG: Margin Sensitive Group Risk

6.1 Introduction
Modern deep neural networks achieve high performance on a wide range of tasks, but they are
also known to be non-robust to distributional shift where the training and test distributions can be
different. A common instance of such distribution shift is subpopulation shift, where the training
and test distributions have the same set of sub-populations but with different proportions. For
example, many existing datasets are biased, in the sense that some underrepresented demographic
groups have sample sizes much smaller than the others, and models trained on such datasets
typically achieve high average performance but poor performances on these minority groups,
which makes such models unfair. Similarly, many existing datasets have highly imbalanced
classes, where some classes have much fewer training samples than others, and models trained on
those datasets, while performing well on average, typically fail to learn these minority classes
well enough.

To solve this problem, researchers have proposed a variety of methods. The most classical
method is importance weighting [123], where the training samples are reweighted so that each
group has the same weight in the training objective. Another widely used method is Distribution-
ally Robust Optimization (DRO) [47, 58], which assumes that the test distribution belongs to a
family of distributions close to the training distribution called the uncertainty set, and trains the
model over the worst distribution in that set. Many DRO variants have been proposed recently
[63, 155, 163, 165]. One of the most popular variants is Group DRO [117], which defines the
uncertainty set as the convex hull of the group-conditionals of the training distribution.

Nevertheless, a line of recent work however has empirically and theoretically shown that
these methods above do not necessarily perform better than standard empirical risk minimization
(ERM). On the empirical side, [25] observed that the effect of importance weighting diminishes
over time on CIFAR-10, and the final performance is close to ERM; [117] found that Group DRO
overfits very easily, i.e. its worst-group performance drops to the same low level as ERM as
training proceeds; [55, 78] demonstrated that these methods do not perform better than ERM on a
variety of realistic tasks. On the theoretical side, based on several previous papers [56, 70, 151], a
recent work [164] proved the surprising fact that under certain mild conditions, a broad family
of algorithms called generalized reweighting (GRW), which includes all the popular methods
mentioned above, has implicit bias equivalent to ERM on both regression and classification tasks,
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implying that GRW does not improve distributionally robust generalization (DRG) over ERM.
The sobering takeaway from this work is that these popular methods, while they might seem
intuitive, do not really help with DRG.

A critical open problem facing the community is thus a principled way to improve DRG. There
is some recent pioneering work towards this. [144] proposed to replace the exponentially-tailed
logistic loss with a polynomially-tailed loss function, and [118, 148] showed that strong data
augmentation, pretraining and semi-supervised learning could help DRG. One line of recent
work [27, 76, 90, 98, 157] focuses on the logit adjustment technique, which applies a linear
transformation to the logits output by a classifier to make it have larger margins on smaller groups.
This line of work starts from [27] which proposed to add an additive adjustment term to the logits
based on the margin theory, but [76] proved that the additive adjustment term only influences
optimization and has no effect on the implicit bias, and thus does not improve DRG. Instead, they
proposed to combine it with a multiplicative term, which they proved does affect the implicit bias.
In their theoretical analysis, they showed that their method leads to robust models on a simple
Gaussian Mixture model, but did not consider more general scenarios.

In this work, we propose to improve DRG by minimizing a margin sensitive group risk
(MSG-risk) which we derive from the margin theory. Specifically, the margin theory provides a
generalization bound for the test worst-group or balanced risk, and the MSG-risk is a surrogate
of that generalization bound. Our method has two major improvements over previous work on
logit adjustment: (i) Logit adjustment only considers the balanced risk, while our method can also
handle the worst-group risk; (ii) Previous methods use fixed margins that are solely determined
by the group sizes, and we show that this could be suboptimal. Instead, the MSG-risk takes the
margins as trainable parameters, and searches for the optimal margins along with the model
weights. In this way, our method can make the classifier have larger margins on more difficult
groups, not just smaller groups.

The MSG-risk is a non-convex function w.r.t. the margins, and we propose two ways to
minimize it: First, we can minimize it with alternating minimization, which can be used in a
method called post-hoc weight normalization under the domain-incomplete setting; Second, we
can directly minimize it with stochastic gradient descent (SGD), which is an increasingly standard
approach to non-convex optimization. In our experiments, we show that our method achieves
state-of-the-art (SOTA) robust test performance on real datasets, and fixes the overfitting problem
which exists in many previous methods. We believe our approach therefore presents a substantial
advance in both our theoretical and practical understanding of how to tune modern classifiers to
improve DRG.

6.2 Preliminaries

6.2.1 Problem Formulation

Consider a classification task where the input space is X ⊆ Rd0 and the output space is Y =
{1,−1} (binary) or Y = {1, · · · , C} (multi-class). We are given a training set {(xi, yi)}ni=1 i.i.d.
sampled from an underlying training distribution P over X × Y . Moreover, the input domain X
contains K groups (demographic groups, classes, etc.) where each sample can belong to zero,
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one or more groups. Denote the conditional distribution of P over group k by Pk.

Balanced risk vs Worst-group risk. In most subpopulation shift problems, the goal is to
minimize either the balanced risk Rbal or the worst-group risk Rmax defined as:

Rbal(f ;P ) =
1

K

K∑
k=1

R(f ;Pk) and Rmax(f ;P ) = max
k=1,···,K

R(f ;Pk) (6.1)

where R(f ;P ) is the expected risk of f over P . In practice the expected risk R(f ;P ) is replaced
by the empirical risk R̂(f ;P ), and the corresponding empirical balanced and worst-group risks
are denoted by R̂bal(f ;P ) and R̂max(f ;P ).

Domain-aware vs Domain-oblivious. If the group labels (i.e. which groups each sample
belongs to) are known during training, then it is called the domain-aware setting, which is most
widely studied. However, in many real applications this might not be the case, either because
collecting group labels is expensive, or because we cannot identify all the groups at train time.
For instance, we train a face recognition model that is fair w.r.t. sensitive features like gender,
skin color, age and so on, but after using it for some time we observe that the model performs
much worse for people wearing glasses than people who don’t, so “wearing glasses” is a group
that we fail to identify during training. Thus, a line of recent work [58, 93, 163] considers the
domain-oblivious setting, where the group labels are unknown during training. The problem
of this setting is that it is too pessimistic, and methods based on this setting typically have low
performances in practice.

6.2.2 Domain-incomplete Setting and Post-hoc Weight Normalization
We saw that the domain-aware setting is not realistic in many real applications, while the domain-
oblivious setting is too pessimistic. Thus, in this work, we study a third setting called the
domain-incomplete setting which is very common and lies in between domain-aware and domain-
oblivious.

Consider the following scenario: We have a trained model, say a face recognition model, that
is trained by ERM or perhaps some robust training algorithm with some pre-defined groups. Then,
at deployment stage we find that this model performs poorly on a certain group, say the group of
people wearing glasses, and we need a “hot-fix” to our model. In this situation, we have no or
incomplete group labels during training, but are provided with the complete group information at
test time (without additional training samples), and the goal is to make the trained model robust
as efficiently as possible. This is the domain-incomplete setting. Of course, we can still view this
situation as a domain-aware problem and retrain or fine-tune the model with the new group added
to the set of watched groups, but this could be very inefficient.

To deal with the domain-incomplete setting, we will use a method which is called post-hoc
weight normalization in [76]. Suppose our model has the form w ◦ Φ(x), where Φ is a feature
encoder and w is a linear classifier. In post-hoc weight normalization, we keep Φ fixed and find
a new w. This method can also be applied to representation learning, where Φ is learnt from
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some self-supervised task, and we just need to find a w. This method works as long as Φ encodes
features that are robust to distributional shift. Since previous work [72] showed that ERM can
learn sufficiently robust features, we can use the encoder trained by ERM as Φ, which is very
effective in our experiments.

6.2.3 Generalized Logit Adjustment (GLA)
Now we introduce logit adjustment (LA) which motivates this work. The core idea of logit
adjustment is to use a new loss function which makes a classifier have larger margins on smaller
groups. Intuitively, the statistics of smaller groups are harder to estimate, so a model is prone
to higher test error on these groups. Thus, we want there to be a larger margin between these
groups and the decision boundary, which acts as a buffer that provides the model with better
generalization. A couple of different losses have been proposed, and here we use a general
formulation called generalized logit adjustment loss (GLA-loss) to cover all of them. Formally
speaking, in GLA we apply a linear transformation to the logits output by the classifier before
feeding them to the (weighted) original loss function. For example, for the logistic loss used in
binary classification, its GLA-loss is defined as

ℓGLA(f ;x, y) = q(x, y) log(1 + exp [−y · (δ(x, y)f(x) + τ(x, y))]) (6.2)

where δ(x, y) is the multiplicative adjustment term, τ(x, y) is the additive adjustment term, and
q(x, y) is the sample weight. This general formulation covers all existing losses, including the
LDAM-loss [27], the LA-loss [98], the CDT-loss [157] and the VS-loss [76].

For linear models, we can show that the only term in the GLA-loss that affects DRG is δ(x, y):
Theorem 24. Suppose f(x) = ⟨w,x⟩ is a linear model, the data is linearly independent, and
q(xi, yi) and δ(xi, yi) are positive for all i. If the model is trained by minimizing the average
training GLA-loss under gradient descent with a sufficiently small learning rate, then we have
∥w(t)∥2→ ∞ and

w(t)

∥w(t)∥2
→ ŵδ = argmax

∥w∥2=1

{
min
1≤i≤n

δ(xi, yi) · yi⟨w,xi⟩
}

as t→ ∞ (6.3)

See the proof in Appendix 6.7. This is an extension of Theorem 1 in [76]. Alternatively, we
can write ŵδ as the direction of the solution to the following cost-sensitive SVM [95]:

minimize
w

∥w∥2
s.t. yi⟨w,xi⟩ ≥ 1/δ(xi, yi), ∀i ∈ [n]

(6.4)

This result shows that losses that only include the additive term and the sample weight, such as
LDAM-loss and LA-loss, do not really improve DRG. However, [76] showed that they do improve
optimization, so they could lead to better models in practice with early stopping.

Figure 6.1: Sample
task.

While GLA seems intuitive, there are still two remaining questions.
First, the GLA-loss is used to minimize the balanced risk, so what about
the worst-group risk? Second, Theorem 24 only shows that δ can affect
DRG, so how to select δ so as to improve DRG?
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In all the losses mentioned above, δ and τ are fixed and only depend
on the group sizes. This can be problematic. For example, in Figure 6.1
we have a sample binary classification task where the two classes have
the same size. Suppose the groups are equivalent to the classes (as in
class imbalance tasks), then all δ(xi, yi) will be the same. By Theorem
24, the resulting linear classifier would be the SVM (black solid line).
However, ideally we would like the decision boundary to be farther away from the blue crosses
(red dashed line) because this group has a larger variance than the pink dots, which means that the
classifier is more difficult to generalize on this group and needs a larger margin. Thus, margins
that only depend on the group sizes could be suboptimal, and we need a way to find the optimal
margins for each group. In other words, we not only need the classifier to have larger margins on
smaller groups, but also on more difficult groups.

6.3 MSG: Margin Sensitive Group Risk

In this section, we propose a new objective function called the margin sensitive group risk (MSG-
risk), which is motivated by the GLA-loss and is based on margin theory, and thus is a principled
way to improve DRG. First, we derive the MSG-risk from the margin theory. Then we show two
ways to minimize this non-convex objective: (i) Alternating minimization, which we will apply to
post-hoc weight normalization under the domain-incomplete setting; (ii) Direct SGD, which we
will use to train a neural network end-to-end under the domain-aware setting.

6.3.1 Derivation of the MSG-Risk

First, we derive the MSG-risk from the margin theory. For binary classification where the
prediction is given by the sign of the model output ŷ, define the ρ-margin loss as

ℓρ(ŷ, y) = ϕρ(ŷy) :=


1, ŷy < 0

1− ŷy
ρ
, 0 ≤ ŷy ≤ ρ

0, ŷy > ρ

(6.5)

A key advantage of this loss is that it is margin sensitive, as well as 1/ρ-Lipschitz, which thus
allows one to derive generalization bounds w.r.t. the margin. Denote the empirical ρ-margin risk
of hypothesis h by R̂ρ(h). Denote the expected zero-one loss of h over the underlying distribution
P by R0/1(h). Then we have the following generalization bound:
Theorem 25 (Theorem 5.9 and 5.10 in [101]). Let Φ : X → Rd be a feature mapping. Let
the hypothesis set be H = {x 7→ ⟨w,Φ(x)⟩ : ∥w∥2≤ Λ} and the input space be X ⊆ {x :
∥Φ(x)∥2≤ r}. Let M > 0 be fixed. Then for any δ > 0, with probability at least 1− δ over the
random sampling of the training set, the following holds for all h ∈ H and all ρ ∈ (0,M ]:

R0/1(h) ≤ R̂ρ(h) + 3

√
log 4

δ

2n
+

4

ρ

√
r2Λ2

n
+

√
log log2

2M
ρ

n
(6.6)
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Denote the expected zero-one loss of h over group k by R0/1
k (h), and the empirical ρ-margin

risk over group k by R̂ρ,k(h). Suppose group k has nk training samples. Then by union bound we
have:
Corollary 26. Let Φ : X → Rd be a feature mapping. Let the hypothesis set be H = {x 7→
⟨w,Φ(x)⟩ : ∥w∥2≤ Λ} and the input space be X ⊆ {x : ∥Φ(x)∥2≤ r}. Let M > 0 be fixed.
Then for any δ > 0, with probability at least 1− δ over the random sampling of the training set,
the following holds for all h ∈ H and all ρ1, · · · , ρK ∈ (0,M ]:

R0/1
k (h) ≤ R̂ρk,k(h) + 3

√
log 4K

δ

2nk

+
4

ρk

√
r2Λ2

nk

+

√
log log2

2M
ρk

nk

, ∀k ∈ [K] (6.7)

Suppose ρk is bounded below away from zero. Then, the last term on the right hand side
of (6.7) becomes much smaller than the other terms and can be ignored. Thus, we define the
MSG-risk as the following surrogate of the generalization bound:

R̂α,β(h; ρ1, · · · , ρK) = max
k∈[K]

[
1

nk

nk∑
i=1

ℓ̃ρk(h(xk,i), yk,i) +
1

√
nk

(
α + β

∥w∥2
ρk

)]
(6.8)

where α, β are some non-negative constants given by (6.7) (which we view as hyperparam-
eters), and ℓ̃ρk is a surrogate loss function of ℓρk such that ℓρk(ŷ, y) ≤ ℓ̃ρk(ŷ, y) (we need this
because ℓρk is not convex). Eqn. (6.8) is a surrogate of the worst-group risk, and if we want to
minimize the balanced risk, we only need to replace maxk∈[K] with

∑
k∈[K] in (6.8) (in which

case α makes no difference and can be set to 0). Note that in previous GLA-losses, the margins
ρ1, · · · , ρK are fixed, but the MSG-risk takes them as trainable parameters and optimizes them
too.

For multi-class classification where the output of h(x) is a logit vector in RC , we have similar
results. Define the ρ-margin loss as

ℓρ(h(x), y) = ϕρ(hy(x)−max
y′ ̸=y

hy′(x)) (6.9)

where ϕρ is given by (6.5). Then we have the following generalization bound:
Theorem 27 (Corollary 9.4 in [101]). Let Φ : X → Rd be a feature mapping. Let H = {x →
w ◦ Φ(x) : w ∈ RC×d, ∥w∥F≤ Λ} and X ⊆ {x : ∥Φ(x)∥2≤ r}. Let M > 0 be fixed. Then for
any δ > 0, with probability at least 1− δ over the random sampling of the training set, for all
h ∈ H and all ρ ∈ (0,M ] we have:

R(h) ≤ R̂ρ(h) + 3

√
log 4

δ

2n
+

4C

ρ

√
r2Λ2

n
+

√
log log2

2M
ρ

n
(6.10)

Again, by union bound we can get a generalization bound similar to Corollary 26. Thus, the
MSG-risk for multi-class classification is still defined as (6.8), with ℓ̃ρk defined as a surrogate of
(6.9).

The main issue with the MSG-risk is that it is non-convex w.r.t. ρ1, · · · , ρK , which means that
we need to use some non-convex optimization methods to minimize it. In the following sections
we will introduce two approaches that work under different settings.

146



6.3.2 Alternating Minimization for the Domain-incomplete Setting
In post-hoc weight normalization, we have a pretrained feature mapping Φ and only need to find
an optimal linear classifier h(x) = ⟨w,Φ(x)⟩ that minimizes the worst-group or balanced risk.
First, we formulate the task of minimizing (6.8) as the following optimization problem:

minimize
w,s,τ,ρ

s (or
∑
k∈[K]

sk)

s.t. τk,i ≥ ℓ̃ρk(⟨w,Φ(xk,i)⟩, yk,i), ∀k ∈ [K],∀i ∈ [nk]

1

nk

nk∑
i=1

τk,i +
1

√
nk

(
α + β

∥w∥2
ρk

)
≤ s (or sk), ∀k ∈ [K]

ρk ≥ 0, ∀k ∈ [K]

(6.11)

In our implementation, we choose ℓ̃ρ to be the hinge loss. For example, for binary classification

this is ℓ̃ρ(ŷ, y) :=
(
1− ŷy

ρ

)
+

= max
{
1− ŷy

ρ
, 0
}

. Let δk = 1
ρk

. With this hinge loss, the

optimization problem above can then be re-written as:

minimize
w,s,τ,δ

s (or
∑
k∈[K]

sk)

s.t.

{
Binary: δk⟨w, yk,izk,i⟩ ≥ 1− τk,i, ∀k ∈ [K],∀i ∈ [nk]

Multi-class: δk⟨wyk,i −wy′ , zk,i⟩ ≥ 1− τk,i, ∀y′ ̸= yk,i,∀k, ∀i

1

nk

nk∑
i=1

τk,i +
1

√
nk

(α + βδk∥w∥2) ≤ s (or sk), ∀k ∈ [K]

δk ≥ 0, τk,i ≥ 0, ∀k ∈ [K],∀i ∈ [nk]

(6.12)

where the first constraint is either one of the two depending on whether it is binary or multi-class
classification, and zk,i = Φ(xk,i). This is a bilinear non-convex optimization problem, which is
hard to solve in general. Here we solve this problem with alternating minimization, a heuristic
method that is widely used in matrix completion. Generally speaking, we train the model for
several iterations, and for each iteration, we first fix δ and solve (6.12) w.r.t. w, s, τ , and then fix
w and solve (6.12) w.r.t. s, τ, δ. Note that if α = 0 and β = ∞, then the optimal solution of δk is
δk ∝ n

1/2
k , so we can initialize δk in this way. Comparing (6.8) to (6.7), we can see that α and β

depend on r, the maximum norm of the features. Thus, we always normalize the features before
solving this optimization problem.

The algorithm for post-hoc weight normalization is listed in Algorithm 5, and in our implemen-
tation Φ is trained by ERM. Since this method works under the domain-incomplete setting which
is in between domain-aware and domain-oblivious, naturally we would expect the performance of
Algorithm 5 to be in between the performances of domain-aware and domain-oblivious methods.
What is surprising, however, is that we find in our experiments that the performance of Algorithm
5 is always close to, and in many occasions even better than, the performances of state-of-the-art
domain-aware methods. Moreover, given a pretrained encoder, our method only takes minutes to
run on a CPU compared to domain-aware methods which typically take hours on a GPU.
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Algorithm 5 Post-hoc Weight Normalization with Alternating Minimization

Require: Training data {(xi, yi)}ni=1, pretrained encoder Φ, hyperparameters α, β, iterations T
1: Build features for the training samples: zi = Φ(xi) for all i
2: Input normalization: z̃i = zi−µ

σ
√
d

, where µ and σ are the mean and standard deviation of
z1, · · · , zn, and d is the dimension of the feature space.

3: Initialization: δk ∝ n
1/2
k for k ∈ [K]

4: for t = 1, · · · , T do
5: Fix δ and solve (6.12) w.r.t. w, s, τ with {(z̃i, yi)}ni=1 as input
6: Fix w and solve (6.12) w.r.t. s, τ, δ with {(z̃i, yi)}ni=1 as input
7: end for
8: return the final model f(x) = w∗ · Φ(x)−µ

σ
√
d

where w∗ is the solution found

6.3.3 End-to-end Training with Stochastic Gradient Descent for the
Domain-aware Setting

The second approach is directly minimizing the non-convex MSG-risk (6.8) with SGD w.r.t.
h and ρ1, · · · , ρK jointly, so that we can train a neural network end-to-end under the domain-
aware setting. Define δk = ρ−1

k . We make δ1, · · · , δK trainable parameters, so that it can be
optimized together with the weights of h (with different learning rates). More specifically, in our
implementation, we choose the surrogate loss of ℓρ to be the logistic loss which is most widely
used in practice:

ℓρ(ŷ, y) ≤ C log

(
1 + exp(− ŷy

ρ
)

)
:= Cℓ̃ρ(ŷ, y) (6.13)

for some constant C which we ignore in the implementation. And the final objective function is

R̂α,β(h, δ) = max
k∈[K]

[
1

nk

nk∑
i=1

log (1 + exp(−δkh(xk,i)yk,i)) +
1

√
nk

(α + βδk∥h∥2)

]
(6.14)

where ∥h∥2 is defined as the L2-norm of all its weights when flattened as a 1-dimensional vector.
We update the model weights and δ by minimizing this objective with stochastic gradient descent
(SGD). Moreover, after each update, we normalize δ so that δ1 + · · ·+ δK is fixed.

Previous work [25, 117] showed that existing methods like importance weighting and Group
DRO suffer from overfitting: At the early stage of training the model trained with these methods
can achieve high worst-group or balanced test performance, but the performance gradually drops to
the same low level as ERM as training proceeds. On the contrary, our method fixes the overfitting
problem as we will show in our experiments, so it does improve DRG over existing methods.

6.4 Experiments

6.4.1 Setup
Datasets. For tasks that require maximizing the worst-group performance, we follow [163]
and use two datasets: CelebA and CivilComments-Wilds. For tasks that require maximizing the
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balanced performance, we follow [76] and use class-imbalanced CIFAR-10 with two types of class
imbalance: Long-Tail (LT) imbalance and Step imbalance. CelebA and CivilComments-Wilds
have official train-validation-test splits. For CIFAR-10, we randomly split the test set into two
halves, making one the validation set and the other one the test set. See Appendix 6.6.1 for more
details.

Models and baselines. Following prior work, we use a wide ResNet-18 for CelebA, a Bert-base-
uncased model for CivilComments-Wilds, and a wide ResNet-32 for the imbalanced CIFAR-10
datasets. For the fairness tasks, we compare our method with two baselines: the SOTA domain-
oblivious method CVaR and the SOTA domain-aware methods importance weighting (IW) and
Group DRO (GDRO). For the class imbalance tasks, since they cannot be domain-oblivious, we
only compare with ERM and SOTA domain-aware methods (IW, LDAM-DRW, CDT, LA and
VS, see [76] for a summary of these methods). For each method except ours, we train the model
for a fixed number of epochs (100 for CelebA, 5 for CivilComments-Wilds and 300 for CIFAR
datasets), and select the one with the highest validation worst-group/balanced accuracy. Note
that here the “domain-oblivious methods” are not 100% domain-oblivious because we use the
group labels during validation (as [163] pointed out, model selection without group labels is too
hard, and currently no method is better than ERM). We use the original code from previous work
whenever available.

Implementation. In post-hoc weight normalization, we solve convex optimization with MOSEK
[3], a commercial optimizer. To train Φ, we run ERM for a fixed number of epochs (as detailed
above), and take the encoder of the checkpoint at the end of training as Φ (so that Φ is completely
domain-oblivious). We only use the training set but not the validation set, while all other methods
use the validation set to select the best model. For end-to-end training with SGD, we combine it
with importance weighting. See Appendix 6.6.2 for details on hyperparameters.

6.4.2 Results

First, we evaluate the performance of post-hoc weight normalization with alternating minimization.
In Tables 6.1 and 6.2 we report the worst-group/balanced test accuracy achieved by post-hoc
weight normalization as well as previous methods with different feature space dimensions, which
we control by changing the width of the network. For alternating minimization, we always run 10
iterations. Overall, we observe that using the MSG-risk in post-hoc weight normalization achieves
performances that are close to, and in many occasions even better than, the performances of
state-of-the-art domain-aware methods. This lends additional credence to the emerging empirical
understanding [72] that ERM learns sufficiently robust feature encoders. Also note that our
method is a very efficient method which only takes minutes to run on a CPU given a pretrained
encoder, whereas retraining from scratch takes hours on a GPU. Regarding the effect of the
feature dimension, we find that increasing the feature dimension does not always provide higher
performances. On CIFAR-10 the performances are higher for all methods when the feature
dimension increases, but not so for CelebA.
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Table 6.1: Results for CelebA and CivilComments-Wilds. Each experiment is run with 5 different
random seeds, and the mean and std. dev. of the worst-group test accuracies (%) are reported.

Dataset CelebA CivilComments
Feature Dim 64 128 256 784

ERM 42.44± 4.72 46.89± 2.96 42.78± 5.02 58.74± 2.94
CVaR 61.29± 7.64 66.07± 3.69 71.25± 1.96 63.90± 4.64

IW 87.00± 1.45 86.89± 2.47 87.67± 1.44 68.05± 1.12
Group DRO 85.67± 1.49 85.60± 2.48 83.67± 2.47 68.34± 2.40

MSG (Alg. 5) 87.12± 0.69 87.70± 1.59 87.94± 0.39 71.67± 1.12

Table 6.2: Results for CIFAR-10 with Long-Tail or Step class imbalance (“-100” means that the
size of the largest class is 100 times that of the smallest). Each experiment is run with 5 different
random seeds, and the mean and std. dev. of the balanced average test accuracies (%) are reported.

Dataset CIFAR-10 (LT-100) CIFAR-10 (STEP-100)
Feature Dim 64 128 64 128

ERM 72.28± 0.44 74.62± 0.41 66.00± 2.00 68.12± 1.46

IW 72.94± 0.94 73.92± 1.29 68.33± 1.27 69.41± 1.26
LDAM-DRW 77.30± 0.53 78.56± 0.45 78.06± 0.69 78.65± 0.75
CDT 79.87± 1.04 81.64± 0.36 75.93± 0.86 77.76± 0.31
LA 80.68± 0.69 82.57± 0.53 76.47± 0.25 80.58± 0.96
VS 80.48± 0.49 82.76± 0.34 79.67± 0.64 82.06± 0.65

MSG (Alg. 5) 80.44± 0.50 82.78± 0.47 78.62± 0.95 80.57± 0.72

Second, we study the convergence rate of alternating minimization. We run Algorithm 5 with
different numbers of iterations on CelebA and imbalanced CIFAR-10 (LT-100) and plot the results
in Figure 6.2. We can see that alternating minimization converges very quickly: It reaches the
optimal point after around 8 iterations on CelebA and around 3 iterations on CIFAR-10 (LT-100).

Third, we evaluate the performance of end-to-end training with SGD. We run our method
together with importance weighting and group DRO on CelebA and plot the worst-group test
accuracies achieved during training in Figure 6.3. The plot clearly shows that the performances of
importance weighting and group DRO are high at the early stage of training, but as the training
proceeds they will start to drop at some point, while the performance of our method continues to
rise and maintains high, which implies that using the MSG-risk fixes the overfitting problem of
previous methods.

Finally, we investigate what factors decide the optimal margins found by minimizing the MSG-
risk. First, we look at the optimal δk found by post-hoc weight normalization with alternating
minimization and report them in Table 6.3. Note that a smaller δk means a larger margin for that
group. On CIFAR-10, we can see that as expected smaller groups have smaller δk, i.e. larger
margins. However, to our surprise, on CelebA the smaller groups have larger δk, i.e. smaller

150



(a) CelebA. (b) CIFAR-10 (LT-100).

Figure 6.2: The convergence rate of alternating minimization
in post-hoc weight normalization.

Figure 6.3: End-to-end training
with SGD on CelebA.

Table 6.3: The optimal δk (= ρ−1
k ) found by post-hoc weight nor-

malization with alternating minimization. Each experiment is run 5
times.

CIFAR-10 (LT-100) CelebA
nk δk = ρ−1

k Feat. Stdev. nk δk = ρ−1
k Feat. Stdev.

5000 9.11± 0.33 2.37± 0.08 1387 28.59± 1.69 2.58± 0.15
2997 6.93± 0.40 2.53± 0.13 66874 18.59± 1.27 2.94± 0.07
83 1.96± 0.06 2.73± 0.16 22880 26.54± 4.52 2.76± 0.28
50 1.52± 0.05 3.00± 0.24 71629 15.72± 1.34 3.08± 0.09

Figure 6.4: δk in end-to-
end training on CelebA.

margins (even though at initialization their δk is smaller). The same phenomenon is observed in
end-to-end training. We plot the change of δk in end-to-end training on CelebA in Figure 6.4,
which shows that the smallest group has the largest δk while the two majority groups have small
δk. We hypothesize that this is because the two majority groups, while larger, are harder to fit. To
verify this, we compute the L2-norm of the standard deviation of the feature vector Φ(xk,i) over
i for each group k, and report the results in Table 6.3 (column “Feat. Stdev.”). We can see that
this quantity aligns with the optimal margin perfectly: Groups with larger feature variances have
smaller δk, i.e. larger margins. Therefore, although the feature variance is not a perfect measure
of how hard it is to fit a group, our results show that our method does make the classifier have
larger margins on more difficult groups as we desire.

6.5 Conclusion
In this work, we studied the difficult yet important problem of how to improve distributionally
robust generalization (DRG), and proposed the MSG-risk that is derived from the margin theory.
We used two ways to minimize the MSG-risk: alternating minimization which can be used in
post-hoc weight normalization for the domain-incomplete setting, and direct SGD which can be
used to train a neural network end-to-end for the domain-aware setting. Our experiments showed
that the MSG-risk leads to state-of-the-art robust performance, and thus we believe this work
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substantially advances our theoretical and practical understanding of how to improve DRG.
There are two remaining questions from this work: (i) In our experiments we find the optimal

α and β via grid search, but can we integrate them into the objective and optimize them jointly?
(ii) The margin theory only considers linear models, and for neural networks we replace ∥w∥2
with ∥h∥2, which lacks a solid theoretical foundation, so can we extend the margin theory to
obtain generalization bounds for more complex models? We leave these problems to future work.

6.6 More Experimental Details

6.6.1 Datasets
In our experiments, we use three datasets: CelebA, CivilComments-Wilds and CIFAR-10 with
long-tail or step class imbalance.

CelebA [94] is a human face image dataset, where each sample is an image of a human face
and has 40 binary attributes. Following [117], we take the blond attribute as the target and the
male attribute as the confounding variable. We need to train a classifier to classify whether a
person is blond or not, and the two binary attributes form four groups. In this dataset, most males
are not blond, so a model trained with ERM would classify most males as not blond, meaning that
it would have a poor performance on the male and blond group, while our goal is to train a model
that performs well on all four groups.

CivilComments-Wilds is one of the datasets in the Wilds package [78] and is based on
CivilComments [20]. It is a language sentiment dataset, where each sample is an online text
comment and the label is whether the comment was rated as toxic. There are 8 demographic
identities considered: male, female, LGBTQ, Christian, Muslim, other religions, black and white.
These 8 binary attributes together with the binary label form 16 groups. Note that a sample can
appear in multiple groups: a comment can contain contents of both LGBTQ and Christian.

The CIFAR-10 dataset [80] is a image dataset with 10 classes. In the original dataset, each
class has 5000 training samples. To make the classes imbalanced, we have two methods: The
Long-Tail (LT) method makes the sizes of the classes decrease exponentially, and the Step method
keeps 5 classes unchanged and remove a equal number of samples from each of the other 5 classes.
In our experiments we consider LT-100 and Step-100, meaning that the size of the biggest group
is 100 times that of the smallest one. We randomly remove training samples with a fixed random
seed.

6.6.2 Training Hyperparameters
Alternating minimization. For CelebA, following [117], we use the learning rate 10−4 for
every method. We use a weight decay factor of 10−4 for ERM, CVaR and importance weighting,
and 0.1 for group DRO. For CVaR, we always use α = 0.1 (note that this is the α for CVaR, not
the one in the MSG-risk). For group DRO, we use ν = 0.01. For each of the above methods,
we train 100 epochs and select the one with the highest worst-group validation accuracy. For
post-hoc weight normalization, we choose Φ to be the feature encoder at the end of the 100 epochs.
Regarding the hyperparameters in the MSG-risk, for the feature dimensions 64 and 128, we use
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α = 4.0 and β = 0.02; and for the feature dimension 256, we use α = 7.0 and β = 0.3. The
optimal α and β are found by grid search.

For CivilComments-Wilds, for all methods, we use the same hyperparameters as in [78] and
[163]. Regarding the hyperparameters in the MSG-risk, we use α = 16.0 and β = 2.0.

For class imbalanced CIFAR-10, for all methods, we use the same hyperparameters as in
[76] except that we train 300 epochs and perform learning rate decay at epochs 220 and 2801.
Regarding the hyperparameters in the MSG-risk, we use α = 0 and β = 2.0 (note that α does not
matter in class imbalance tasks).

End-to-end training with SGD. In Figure 6.3, in order to make the models overfit faster, we
use a larger learning rate 10−3. Under the original learning rate, the models would still overfit, but
much slower. For the MSG-risk, we use α = 4.0 and β = 0.02.

6.7 Proof of Theorem 24
A generalized reweighting (GRW) algorithm minimizes the following objective at time t:

R̂q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi) (6.15)

for some loss function ℓ. And a first-order differentiable function f is called L-smooth over D if

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22 ∀x,y ∈ D (6.16)

The proof of this theorem is based on the following theorem:
Theorem 28 (Theorem 8 in [164]). Consider a linear model f(x) = ⟨θ,x⟩. For any loss ℓ that is
convex, differentiable, L-smooth in ŷ and strictly monotonically decreasing to zero as yŷ → +∞,
and any GRW such that q(t)i → qi as t→ ∞ for some positive q1, · · · , qn, denote

F (θ) =
n∑

i=1

qiℓ(⟨θ,xi⟩, yi) (6.17)

If x1, · · · ,xn are linearly independent, and f is trained under gradient descent with a sufficiently
small learning rate η, then we will have the following results for the model weight θ(t):

1. F (θ(t)) → 0 as t→ ∞.
2.
∥∥θ(t)∥∥

2
→ ∞ as t→ ∞.

3. Define θR = argminθ{F (θ) : ∥θ∥2 ≤ R}. For any R such that min∥θ∥2≤R F (θ) <

mini qiℓ(0, yi), θR is unique. And if limR→∞
θR
R

exists, then limt→∞
θ(t)

∥θ(t)∥
2

also exists and

the two limits are equal.
1In the original paper, the authors train 200 epochs for LT-100 and 300 epochs for STEP-100. In our experiments,

we train 300 epochs for both for consistency. Moreover, the original paper does not mention how to decay the learning
rate when training for 300 epochs, and we confirmed with the authors that they decayed the learning rate at epochs
220 and 280 to achieve their results on STEP-100.
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Denote x′
i = δ(xi, yi)xi, then x′

1, · · · ,x′
n are linearly independent because x1, · · · ,xn are

linearly independent, so for any τ there exists θ0 such that ⟨θ0,x′
i⟩ = τ(xi, yi) for all i. Denote

θ = w + θ0 where w is the weight of the original model, then the GLA-loss can be rewritten as

ℓGLA(f ;xi, yi) = q(xi, yi)ℓlog(⟨θ,x′
i⟩, yi) = q(xi, yi) log(1 + exp(−yi⟨θ,x′

i⟩)) (6.18)

where ℓlog is the logistic loss. It is easy to show that ℓlog satisfies the conditions of Theorem 28,
and by condition q(xi, yi) > 0 for all i. Also we can see that θ(t) is trained under gradient descent
with x′

1, · · · ,x′
n as inputs. Thus, by Theorem 28, we have as t→ ∞, ∥θ(t)∥2→ ∞. And for the

logistic loss, we can show that (as shown in Appendix B.5.3 in [164])

lim
R→∞

θR
R

= argmax
∥θ∥2=1

{
min
1≤i≤n

yi⟨θ,x′
i⟩
}

(6.19)

Therefore, by (iii) and the definition of x′
i and θ, we can see that

lim
t→∞

w(t)

∥w(t)∥2
= argmax

∥w∥2=1

{
min
1≤i≤n

yi⟨w, δ(xi, yi)xi⟩
}

(6.20)

which is the result we need.
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