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André Platzer (Chair)

Stefan Mitsch

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

© 2022, Weihan Li



Keywords: Formal Verification, Differential Game Logic, Pursuit-Evasion-Games

ii



Abstract

A pursuit-evasion game is an adversarial hybrid game that combines both continuous
and discrete dynamics that is widely used to model robotics tasks in the literature. We
model the game rules formally, present a formal verification approach for the winning
strategies and prove the design correctness of the proposed algorithms. To accomplish
this, we use Differential Game Logic (dGL) to implement the proofs with the KeYmaera
X theorem prover, which rigorously proves the safety of the model and the correctness
of the winning strategies. The games we consider have two different models of motion:
discrete dynamics and continuous dynamics. In particular, we focus on two types of
games: Cops-and-Robbers games, which are placed on discrete graphs with movements
by stepping the graph edges and Lion-and-Man games, which are played on continuous
planes with continuous movement. We set up the model in dGL, identify variants and
invariants to reason about winning strategies for different types of game regions and dis-
cuss pursuer/evader winning conditions. We separately considered game regions with
certain properties, i.e. different families of graphs and planes with selected properties,
and conducted proofs that serve for the most general cases.
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Chapter 1

Introduction

A Pursuit-Evasion Game is a type of mathematical game that is widely discussed in
the literature. It provides a general theoretical model for search problems in robotics, and
it has wide applications including search-and-rescue, collision-avoidance, path-finding,
etc. These problems aim to find efficient strategies for the agents to perform different
tasks in cases that involve two parties. The objective of the pursuer is to catch the evader,
and the objective of the evader is to escape. Therefore, the game is two-player, zero-sum
game, and has a Nash Equilibrium. Research on this problem focuses on finding and
proving the existence of winning strategies in mathematical ways, and discussing the
computational complexity in Computer Science. This type of game combines discrete
dynamics and continuous dynamics, which can be naturally defined using hybrid games.
Hybrid games have two adversarial players, zero-sum with discrete or continuous
dynamics, i.e. the players compete against each other to win the game.

Formal verification approaches are commonly applied to hybrid games, since they
provide strong safety guarantee for the agents’ control algorithms. The goal of such
approaches coincide with our goal of designing smart and safe winning strategies in
pursuit-evasion games, and through proving the safety and correctness of the strategies,
we also construct explicit strategies that can be directly applied to robotics systems.
In this paper, we use Differential Game Logic (dGL) [14], a proof calculus designed
specifically to represent hybrid games and verify game strategies. Modeling different
types of game regions in dGL contributes a way of characterizing families of game
regions, and proving dGL formulas provides safety and correctness guarantee of players’
winning strategies. Therefore, hybrid games and dGL perfectly capture the nature of
studying pursuit-evasion games.

In this paper, we consider two distinct variants of pursuit-evasion games in particular:
“Cops and Robbers” games and “Lion and Man” games. The former represent games
played on discrete graphs, and the latter represent games played on continuous planes.
For each game, this paper contributes dGL models that characterize the rules and dynam-
ics, definitions and categorizations for several families of game regions, mathematical
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proofs and dGL proofs for the corresponding winning strategies. We verified a selection
of the proofs using the theorem prover KeYmaera X [6], which is found in Appendix B,
and the rest using paper-based proofs. KeYmaera X proofs unrolls the structure of proofs
clearer and ensures safety and correctness throughout the proof. Paper-based proofs can
make use of mathematical definitions and theorems which supports more complicated
proofs.

This work is structured as follows: Chapter 2 provides a summarization of back-
ground work. Chapter 3 provides game formations and relevant mathematical defini-
tions. Chapter 4 discusses Cops and Robbers game and Chapter 5 focuses on Lion and
Man game. Chapter 6 provides a summary of the work and potential future work.
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Chapter 2

Background Work

2.1 Pursuit-Evasion Game

A pursuit-evasion game is a family of mathematical games that contains two adver-
sarial parties: in which one is the pursuer and the other is the evader. The pursuer aims
to track down the evader and the evader escapes away from the pursuer. The game is
usually called discrete pursuit-evasion if the game is restricted on a graph; and is called
continuous pursuit-evasion if the game is played on a geometric plane.

The concept of Cops and Robbers game proposed by Nowakowski and Winkler in
1983 [12] formalizes the graph variant. Aigner [1] generalizes the case to multiple cops
and robbers. An extension of this work focuses on the cop number of a graph: i.e. the
minimum number of cops required to win the game. Meyniel’s conjecture by Frankl [4]
states that for graphs of size n, O(

√
n) cops suffice to win, and the conjecture still remains

open. The decision problem of the cop-number of a graph is EXPTIME-complete [9]. In
this work, we mainly focus on 1-cop scenarios.

Continuous pursuit-evasion game extends discrete games to the continuous space
with continuous dynamics. A particular variant, “Lion and Man” game was first pro-
posed by Rado in 1925. It is a geometric version of “Cops and Robbers” game. In
this game, both players are allowed to move by a maximum time range in each round.
Research has focused on the capture time for different types of planes. If the game is
played simultaneously in continuous time, the man can always escape. If the players
move in turns, a single lion has a winning strategy in a simply-connected polygon [16],
and three lions is sufficient to catch the man in any polygon [8, 2].

Less relevant to this work are the visibility problem [7] and random graphs [15]. A
summary is in [3].
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2.2 Differential Game Logic

Differential Game Logic (dGL) [14] is a proof calculus primarily used to prove the
existence and correctness of game strategies of hybrid games. dGL is an extension of
Differential Dynamic Logic (dL) [13], which is the logic that describes dynamics of hybrid
systems, by adding the dual operator d to describe the adversarial dynamics of both
parties.

In dGL, we usually call the two players as Angel and Demon. Hybrid games are
adversarial, sequential, and perfect-information. We recall the following syntax and
semantics, with illustration of proof rules through an example.

2.2.1 Syntax

Definition 2.2.1. (Hybrid Games) [14] dGL is built upon the following grammar:

α, β ::= x := e | ?Q | x′ = f(x)&Q | α ∪ β | α; β | α∗ |αd.

In order, the syntax enables the ability of assignment, test, the system of differential
equations, choice, sequence, repetition and dual. These operators are Angel’s operators,
with Demon’s operators are defined using the dual operator d. We sometimes abbreviate
as follows:

Table 2.1: Demon’s Operations

Original Abbreviation

(x := e)d x := e
?Qd None
(x′ = f(x)&Q)d None
(αd ∪ βd)d (α ∩ β)
(α; β)d αd; βd

((αd)∗)d α×

Definition 2.2.2. (dGL Formulas) [14]

ϕ := θ1 ∼ θ2 | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2,

where θ1, θ2 are real arithmetic terms and ∼ stands for real arithmetic operators (>,<,≥
,≤,=, ̸=,). α is a hybrid game, x is a variable.

2.2.2 Semantics

The intuitive understanding of hybrid games semantics is summarized in Table 2.2.
In dGL, common formulas are as defined similarly as First Order Logic. [α]ϕ means that
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Demon has a winning strategy of game α to make ϕ true, and ⟨α⟩ϕ means that Angel has
a winning strategy of game α to make ϕ true.

The most important note here is the usage of dual operator d. We consider Angel and
Demon to be the two players playing against each other in the hybrid game. The dual
operator demonstrates which player is in the move, as explained in Table 2.1.

To formally define the semantics, we use the notation [[ϕ]] which is the set of states in
which ϕ is true. For hybrid game α, we define ςα(X) as the set of states such that Angel
can play game α to reach winning state X ; δα(X) as the set of states such that Demon
can play game α to reach winning state X .

Table 2.2: Hybrid Game Semantics [14]

Syntax Semantics

x := e Assign the value of e to the variable x, leaving all other variables
unchanged

?Q Test if Q is true, continue running; else terminate

x′ = f(x)&Q Follow the system of differential equation x′ = f(x) for a certain
amount of time when Q holds true

α ∪ β Run hybrid game α or β (Angel’s choice)

α ∩ β Run hybrid game α or β (Demon’s choice)

α; β Sequentially run β after α

α∗ Run α repeatedly for any ≥ 0 amount of iterations (Angel’s choice)

α× Run α repeatedly for any ≥ 0 amount of iterations (Demon’s
choice)

αd Changes player to run α

The semantics are defined inductively as follows, see [14] for details.

Definition 2.2.3. (Semantics) [14] Let J be the set of states.

1. [[e ≥ f ]] = {ω ∈ J : ω[[e]] ≥ ω[[f ]]}, where ω[[e]] is the value of e interpreted in state ω.

2. [[¬P ]] = ([[P ]])C , which is the set of states where P is false.

3. [[P ∧Q]] = [[P ]] ∩ [[Q]]. This means that P ∧Q is true if and only if P is true and Q is
true.

4. [[∃xP ]] = {ω ∈ J : ∃r ∈ R, ωr
x ∈ [[P ]]} where ωr

x stands for the state that replaces
variable x with value r.

5



5. [[⟨α⟩P ]] = ςα(P ). P is in Angel’s winning region after playing hybrid game α.

6. [[[α]P ]] = δα(P ). P is in Demon’s winning region after playing hybrid game α.

Note that the semantics for Demon’s moves can be inferred using αd, therefore we do
not further elaborate here. Now we define hybrid game semantics inductively.

1. ςx:=e(X) = {ω ∈ J : ω
ω[e]
X ∈ X}. A winning state after assignment is exactly the

winning states that assign x to e.

2. ςx′=f(x)&Q(X) = {ϕ(0) ∈ J : ϕ(r) ∈ X for some solution ϕ : [0, r] → J of any duration
r ∈ R s.t. ϕ ⊢ x′ = f(x) ∧Q}. Angel wins the differential equation x′ = f(x)&Q if
ϕ(0), ϕ(r) ∈ X and Q is maintained through non-negative time duration r.

3. ς?Q(X) = [[Q]] ∩X . Angel wins for the states that satisfy both Q and X .

4. ςα∪β(X) = ςα(X) ∪ ςβ(X). Angel wins for the states that satisfy X from running α
or β.

5. ςα;β(X) = ςα(ςβ(X)). Angel wins for the states that satisfy X from running α then
β.

6. ςα∗(X) =
⋂
{Z ∈ J : X ∪ ςα(Z) ⊆ Z}. Angel wins for the minimum intersection of

states that contain X and running α once still maintain in this set.

7. ςαd(X) = (ςα(X
C))C . Angel wins if Angel loses the winning state XC .

Now we have all the tools required to understand an intuitive example in “Cops and
Robbers” game. We will let Cop be Angel and Robber be Demon.
Example 2.2.4. The following formula describes a naive scenario in the game that if the
robber chooses a vertex first, then the cop c can always choose a vertex that is the same
as the robber r.

⟨{r := ∗; ?(r ∈ V )}d; {c := ∗; ?(c ∈ V )}; ⟩(c = r)

We can decompose the formula as follows: (c = r) is the winning condition. ⟨{r :=
∗; ?(r ∈ V )}d; {c := ∗; ?(c ∈ V )}; ⟩ is the game which the cop has a winning strategy. Then
we decompose the game into ⟨{r := ∗; ?(r ∈ V )d}⟩ and ⟨{c := ∗; ?(c ∈ V )}⟩. The former
describes the robber’s move and the rule to follow; the latter describes the cop’s move
and the rule to follow. In the robber’s rule, it first randomly assigns a value to variable r,
but it has to pass the test r ∈ V , otherwise it fails the game. This interprets the idea that
restricts the robber to select a legal vertex from the set of V . The similar rule is defined
for the cop. Since the cop moves after the robber, the winning strategy for the cop is to
select the exact same position the robber chooses.

Now we give another example to explain the use of ODE and repetition in dGL.
Example 2.2.5. The following formula describes a hybrid game where in each round, r
selects a random real number, then c selects an ODE to run. The goal of the game is c = r.

⟨{{r := ∗; }d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)

6



2.2.3 Axioms

In this paper, our proofs are built upon dGL axioms using sequent calculus. The proof
structure forms like this:

Definition 2.2.6. A sequent is formed like Γ ⊢ ∆, where Γ stands for the set of as-
sumptions, and ∆ stands for the set of assertions to prove. The conclusion Γ ⊢ ∆ says
whenever every assumption holds, at least one of the assertions hold.

A proof rule is formed like

Γ1 ⊢ ∆1, ...,Γn ⊢ ∆n

Γ ⊢ ∆ ,

which expresses the case that if all premises Γi ⊢ ∆i are valid, then the conclusion Γ ⊢ ∆
must be valid.

We can build up dGL axioms using the semantics definitions.

[·] Determinacy Axiom: [α]P ↔ ¬⟨α⟩(¬P )

⟨:=⟩ Assignment Axiom: ⟨x := θ⟩P (x) ↔ P (θ)

⟨∪⟩ Choice Axiom: ⟨α ∪ β⟩P ↔ ⟨α⟩P ∧ ⟨β⟩P

⟨; ⟩ Composition Axiom: ⟨a; b⟩P ↔ ⟨a⟩⟨b⟩P

⟨∗⟩ Iteration Axiom: ⟨a∗⟩P ↔ P ∨ ⟨a⟩⟨a∗⟩P

⟨′⟩ Solution Axiom: ⟨x′ = f(x)⟩p(x) ↔ ∃t ≥ 0⟨x := y(t)⟩p(x)

⟨?⟩ Test Axiom: ⟨?Q⟩P ↔ Q ∧ P

⟨d⟩ Duality Axiom: ⟨αd⟩P ↔ ⟨¬α⟩¬P .

Table 2.3: Differential Game Logic Axioms [14]

Using the equivalence relations in the axiom above, we can infer a large proportion of
dL sequent calculus proof rules. For example, we can deduce the following proof rules
for [∪]:

Γ ⊢ [α]P Γ ⊢ [β]P

Γ ⊢ [α ∪ β]P
∪R

[α]P ∧ [β]P ⊢ ∆

[α ∪ β]P ⊢ ∆
∪L

A full list of proof rules we used can be found in Appendix A.

We further make remark on two rules we rely on heavily in providing the constructive
game strategy here:

Γ ⊢ J,∆ J ⊢ P J ⊢ [α]J

Γ ⊢ [α∗]P,∆
loop
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Γ ⊢ ∃d.J(d) d ≤ 0, J(d) ⊢ P d > 0, J(d) ⊢ ⟨α⟩J(d− 1)

Γ ⊢ ⟨α∗⟩P,∆
con

Note that J in loop rule stands for the loop invariant of the hybrid game. It serves to
unwrap the box program using an induction-like rule, since for [α∗]P to hold, we need
all runs of hybrid game α reach a winning state where P is true. Therefore, if J holds
initially, J implies P and J is maintained by one round of the game, we can combine the
premises and reach the conclusion.

J in con rule stands for the loop variant of the hybrid game. It describes progress
and serves to unwrap the diamond program using an induction-like rule, since for ⟨α∗⟩P
to hold, there exists a certain number of rounds of the game that reaches a winning state
where P holds. However, this number of rounds is often hard to calculate, and for large
runs of the game, this rule substitutes the rule to unwrap one round at a time. Therefore,
we are looking for a function J that depends on x such that J decreases by 1 in each
round. We separate the premises to case init, step and post.

• init: In this case we show that J(x) holds using the original hypothesis Γ.

• step: In this case we show that given J(x) in the premise, after one run of α, J(x−1)
holds. We can interpret J(x) as x = d where d is equal to some value that changes
in the game, so that after one round of game, d decreases by 1.

• post: In this case we show that after J(x) has reached a minimum value, Angel can
now break the loop and finish the game. Therefore we need to prove that for x ≤ 0,
J(x) ⊢ P at the end.

As we define the value d that decreases monotonically in the game, we need to make
sure that d is guaranteed to decrease by some constant value. This is required to prove
that d eventually reaches 0. We use the constant 1 without loss of generality in our proofs,
as we can multiply a constant to get 1. In some cases, the value is not decreasing linearly
but even quicker. This is also provable as long as we guarantee that over a game round,
d decreases by at least 1 by defining J(x) := x ≥ d.
Example 2.2.7. We can use a sequence of proof rules to formally prove the formula in
Example 2.2.5:

⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r).

The proof follows a typical sequent logic proof structure: the final conclusion formula
starts at the bottom. The proof rules are labeled on the right of the horizontal bar of each
step. The top line is where we finish the proof, which can be shown by arithmetic.

⊢
⊢ c < r ∨ c ≥ r cont.

⟨c′ = 1⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r) ∨ ⟨c′ = −1⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
cut

⊢ ⟨{c′ = 1 ∪ c′ = −1}⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
⟨∪⟩

⊢ [r := ∗]⟨{c′ = 1 ∪ c′ = −1}⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
[:=]

⊢ ⟨{r := ∗}d; ⟩⟨{c′ = 1 ∪ c′ = −1}⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
⟨d⟩

⊢ ⟨{r := ∗}d; {c′ = 1 ∪ c′ = −1}⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
⟨; ⟩

⊢ (c = r) ∨ ⟨{r := ∗}d; {c′ = 1 ∪ c′ = −1}⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
∨R

⊢ ⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
⟨∗⟩
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cont.:
∗

c < r ∧ t = r − c ⊢ (t ≥ 0 ∧ ∀c ≥ 0 → c1 = t+ c(c1 = r))

c < r ⊢ ∃t(t ≥ 0 ∧ ∀c ≥ 0 → c1 = t+ c(c1 = r))
∃R

c < r ⊢ ⟨c′ = 1⟩(c = r)
solve

c < r ⊢ ⟨c′ = 1⟩(c = r) ∨ ⟨c′ = −1⟩(c = r)
∨R

∗
c ≥ r ∧ t = c− r ⊢ (t ≥ 0 ∧ ∀c ≥ 0 → c1 = t+ c(c1 = r))

c ≥ r ⊢ ∃t(t ≥ 0 ∧ ∀c ≥ 0 → c1 = −t+ c(c1 = r))
∃R

c ≥ r ⊢ ⟨c′ = −1⟩(c = r)
solve

c ≥ r ⊢ ⟨c′ = 1⟩(c = r) ∨ ⟨c′ = −1⟩(c = r)
∨R

c < r ∨ c ≥ r ⊢ ⟨c′ = 1⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r) ∨ ⟨c′ = −1⟩⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r)
∨L

2.2.4 KeYmaera X

KeYmaera X1[6] is an automatic theorem prover designed to prove dGL theorem’s
correctness. It builds upon a trusted core of axioms, uniform substitution and proposi-
tional dL sequent calculus. A more detailed introduction is given in [6]. In KeYmaera
X, Bellerophron Tactic Language [5] is a programming language for automatic proof
constructions and proof search operations of the KeYmaera X core. We also represent
our KeYmaera X proofs in this manner that can restore the corresponding dL sequent
calculus.

In defining KeYmaera X models, we need to define a list of Definitions of constants,
predicates and formulas; a list of ProgramVariables, and a Problem that gives the actual
sequent to prove. The following table summarizes some common notations in KeYmaera
X syntax. Note that we will not distinguish dGL syntax and KeYmaera X syntax in this
work, as most of the notations are self-explanatory. ASCII syntax is described in [11],
and definitions are described in [10].

HP KeYmaera X

x := e x:=e;

x := ∗ x:=*;

x′ = f(x)&Q {x’=f(x)&Q}

a ∪ b a ++ b

a∗ {a*}

ad a^@

a ∩ b a -- b

Table 2.4: KeYmaera X syntax of dGL

Example 2.2.8. The Bellerophron code in Appendix B, dGL-Example.kyx represent the
sequent proof in Example 2.2.7 of the formula

⟨{{r := ∗}d; {c′ = 1 ∪ c′ = −1}}∗⟩(c = r).

1https://keymaerax.org/
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Chapter 3

Preliminaries

In this chapter, we formally define the game variant we consider in the following
proofs.

The pursuit-evasion game variant we use is always perfect information, which means
that all information available to the reader is presented to the players, including all
history moves, the playground, the current positions, etc. The game play is always
sequential, i.e. the players make moves round by round. The pursuer is also called the
cop (lion), and the evader is called the robber (man).

3.1 “Cops and Robbers” on Discrete Graphs

In Chapter 4, we will consider only nonempty simply undirected and connected
graphs. Given graph G, we say V (G) to be the set of vertices labeled using {1, 2, ..., n}
where n = |G| is the number of vertices. We say E(G) to be the set of edges, where each
edge is denoted by a pair of vertices of the form e.g. {2, 3}. For simplicity, we sometimes
write vertex v ∈ V (G) and edge e ∈ E(G). For a vertex v ∈ V (G), we say the neighbors
of v to be the set of vertices that share an edge with v, and denote this as N(v). We
abbreviate the combined set {v} ∪N(v) as N [v].

The classical version consists of a cop C and a robber R. The game is played on a
finite graph with the players making alternative moves, starting with C. First C chooses
a vertex to start then R. Then in each round, each player makes a move to another vertex
that neighbors its previous position. The goal of C is to catch R, i.e. to be on the same
vertex as R in the same round; the goal of R is to escape from C, i.e. cannot be caught
in any round. For the initial selection part, if the cop chooses position after the robber
instead, the cop can select the same position as the robber. For the actual game rounds,
since the game is sequential, the actual ordering does not matter and each player can
base his strategy upon the previous player.

We only consider games that have n cops, but always 1 robber. If there are more than
one cop in the game, the cops share the same information set and act collaboratively.
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This allows us to always regard the set of cops as the pursuer, and the robber as the
evader. For multi-player versions, the cops move one by one in each round, followed by
the robber’s move.

Example 3.1.1. We provide a “Cops and Robbers” Game example here to illustrate the
game.

Cop’s initial position at 5 Robber’s initial position at 2 Robber makes a move from 2 to 3

Cop makes a move from 4 to 9

Original Graph

Robber makes a move from 3 to 8 Robber makes a move from 8 to 2

Robber makes a move from 2 to 1

Cop makes a move from 5 to 4

Cop makes a move from 8 to 7Cop makes a move from 9 to 8

1
2

3

4

5
6

7 8

9

10

Figure 3.1: The blue square represents the robber; the red triangle represents the cop.
The figures in order describes the “Cops and Robbers” game dynamics.

We can informally see that this graph in Figure 3.1 is robber-win. This is because the
robber’s strategy forms a cycle and can keep a distance of at least 1 with the cop. This
will be formally proven using Theorem 4.3.9, since this graph is not dismantlable.

3.2 “Lion and Man” on Continuous Planes

In Chapter 5, we will consider Euclidean planes and straight-line movements. The
positions of the cop and the robber are in Cartesian coordinates such that the cop’s
position is denoted (xC , yC) and the robber’s position is denoted (xR, yR). The straight
line movements simplify the movements of the players that allow us to define simple
ODEs. The players have constant speeds that may or may not differ in the game.
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The game is played on a geometric plane. The general setup remains the same as
“Cops and Robbers” game. The cop first selects an initial position, then the robber selects
an initial position. In each round, the robber first selects a direction of movement, and
then the cop selects a direction. Then we allow the players to move simultaneously by a
time range of at most 1, controlled by the cop. The winning condition of the game is for
the cop to get arbitrarily close to the robber, i.e. in a constant-distance ball.

This particular order of play is by careful selection. For initialization, we let the cop
move first, otherwise the cop wins by always selecting the robber’s initial position. But
in each round we let the robber move first, so that the cop has a chance to react to the
robber’s move.

This type of dynamics is different from the traditional “Lion and Man” game, in
which the players move within a unit ball sequentially. Instead, we allow the players to
act simultaneously, while their moves are restricted by straight lines. Details including
the advantages and disadvantages are discussed in Chapter 5.

Example 3.2.1. We provide a ”Lion and Man” Game example here to illustrate the game.

Robber selects direction Cop selects direction Players move simuntaneously,

cop controls time

Robber selects direction Cop selects direction Players move simuntaneously,

cop controls time

Figure 3.2: The blue square represents the robber; the red triangle represents the cop.
The figures in order describes the “Lion and Man” game dynamics.
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Chapter 4

Pursuit-Evasion Games on Discrete
Graphs

In this section, we provide a detailed discussion of Cops-and-Robbers game, as
described in Section 3, by considering 4 problems on different graph families and different
numbers of cops.

4.1 Model Setup

For each discrete graph G = (V,E), let V = [n] be the set of vertices. Correspondingly,
for each model, we define the following functions:

• vertex: Real → Bool s.t. vertex(x) = x ∈ V .

• edge: Real×Real→ Bool s.t. edge(x, y) = vertex(x) ∧ vertex(y) ∧ (x, y) ∈ E.

We first define the initial selection as

initialize ≡ {c := ∗; ?vertex(c); }{r := ∗; ?vertex(r); }d

And a round of the game as

step ≡ {co := c; c := ∗; ?edge(c, co); }; {?(c ̸= r); ro := r; r := ∗; ?edge(r, ro); }d

The complete model of the game for a cop-win graph is as follows:

⟨{initialize}{step}∗⟩(c = r) (4.1)

This model generalizes the theorem for cop-win graphs of traditional cop-vs-robber
with 1 cop and 1 robber. The diamond syntax is used here to describe that there exists
a winning strategy for the cop in a finite number of rounds. The cop first selects a
position and then the robber does. We use tests to guarantee that both members are
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responsible for taking a legal position, otherwise they lose the game. In each round, the
cop first selects a new position and then the robber selects a new position. We also use
an additional test c ̸= r to avoid the situation that even if the cop catches the robber in
his round, the robber then moves away. If the cop catches the robber, which is the case
that c = r, then the robber fails the test and loses the game immediately.

Notice that for the formal proofs, we use the simplified model by eliminating the
initial moves, and instead build them into the precondition, where c0 and r0 are constants
that satisfy c0, r0 ∈ V .

c = c0 ∧ r = r0 ⊢ ⟨{step}∗⟩(c = r) (4.2)

On the other hand, we may define the general theorem for a robber-win graph:

[{initialize}{step}∗](c ̸= r) (4.3)

Notice that this is the dual of 4.1, which implies that a finite graph must be either cop-win
or robber-win.

4.1.1 A Concrete Example

We consider a star graph of 4 vertices as in Figure 4.1. We further define the following
predicates:

• vertex(x) = (x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4)

• edge(x, y) = (x = 2 ∧ (y = 1 ∨ y = 3 ∨ y = 4)) ∨ (y = 2 ∧ (x = 1 ∨ x = 3 ∨ x = 4))

1

2

3

4 4

3

2

1

C C

R C=R
1

2

3

4

(a) (b) (c)

Figure 4.1: A star graph with leaves 1,3,4 connected to center node 2; (a) The cop chooses
initial position 2; (b) The robber chooses initial position 1; (c) The cop moves in the first
round from 2 to 1 and catches the robber.

We can now prove Theorem 4.1 by first letting c = 2, it passes the test. Then we expand
the possible positions of the robber and discuss by cases. Suppose r = 1, then we move
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into diamond star rule and expand by one step. Now we store the old position of the cop
as co = 2 and select c = 1. Now the edge cco = {1, 2} passes the edge test, but c = r, so
the cop wins.

This proof sketch shows the analysis we make when we have a concrete graph
example: first we define the functions that characterize the graph; then we expand the
definitions and discuss the cop’s strategy by cases.

4.2 Abstraction

We see from the previous example in Section 4.1 that defining vertex and edge

functions only serves for a specific graph. This kind of definition also results in brute-
force expanding the diamond star rule by enumerating each specific move. It is natural
to consider the more general case as in graph families. In discrete graphs, we can make
this generalization by abstracting the size of the graph as an integer n. Although the
nature of KeYmaera X variables does not allow it to directly define integer types, we can
define natural numbers by proving lemmas of its group properties.

Definition 4.2.1. (Natural Numbers) n ∈ N+ if and only if nat(n),

nat(n) ≡ ⟨{?(n > 1);n := n− 1; }∗⟩(n = 1)

Note that throughout this paper, we use the definition of natural numbers such that
the minimum natural number is 1. We delete the consideration of 0 for simplicity here,
and since the graphs we consider are finite non-empty graphs, we don’t need 0 case by
construction.

Lemma 4.2.2. (Plus) For all m,n ∈ N, m+ n ∈ N+.

Lemma 4.2.3. (Multiplication) For all m,n ∈ N+, m× n ∈ N+.

Lemma 4.2.4. (Inequality) For all n ∈ N+, c ∈ R, n ≥ c → n+ 1 > c.

Although the lemmas above do not cover all common mathematical properties of
natural numbers, these three are the ones we rely on to show winning strategies in the
section below. To prove these lemmas, we need to first verify natural numbers induction.

Lemma 4.2.5. (Induction) Given arbitrary predicate p, we have

p(1) →
(
∀x

(
nat(x) → p(x) → p(x+ 1)

))
→

(
∀y

(
nat(y) → p(y)

))
The formula is obviously valid since it’s the representation of mathematical induction

in dGL.

Lemma 4.2.5 provides sufficient tools to formalize the proof of the mathematical
properties of natural numbers. The formal proofs for Lemma 4.2.2, 4.2.3, 4.2.4 and 4.2.5
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use KeYmaera X, and are found in the Appendix. Here we give a proof sketch of Lemma
4.2.4. We first formalize the lemma in dL language:

∀m
(
nat(m) → ∀n

(
nat(n) → nat(m+ n)

))
.

Define predicate p(x) := nat(m + x). Then we need to show the base case nat(m) →
nat(m+1) and the induction step nat(m+x) → nat(m+x+1). Both cases can be proven
simply by expanding the definition and unrolling ⟨∗⟩ once.

4.3 Proofs of Winning Strategies

Now we can formally prove the theorems for some common graph families of arbi-
trary size. By considering a certain type of graph, we could define specification in edge

definition and the corresponding cop’s strategy. In this section, we separately considered
the family of cycles, trees, dismantlable graphs and grids.

4.3.1 Cycles

C

R

Figure 4.2: A cycle graph example. The blue rectangle denotes the robber; the red triangle
denotes the cop. The invariant in Equation 4.4 describes that the distance between the
players is kept constant.

Definition 4.3.1. A cycle graph is a graph that consists of a single cycle. This can be
formally defined by

• vertex(x) = nat(x) ∧ x ≤ n.

• edge(x, y) = mod((x− y), n, 1) ∨ mod((x− y), n,−1).

where mod is defined as

mod(x, n, r) ≡ (x = r ∨ x+ n = r).
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Recall that in mathematics, the modulo operation mod is defined as

x mod y = r if and only if x = cy + r for some c ∈ N.

This definition is a simplified version of mod, since the domain we work with is in
[n] = {1, 2, ..., n}.

Theorem 4.3.2. The robber has a winning strategy on cycles of size n, when n ≥ 4.

The selection of n here is because, when n ≤ 3, the only possible cycle graph is a
triangle. We can show by brute-forcing all possible moves that the cop has a winning
strategy.

The formal model is defined as

vertex(c) ∧ vertex(r) ∧ mod(r − c, n, 2) ⊢ [step∗](c ̸= r).

Proof. The winning strategy of the robber is to always keep a constant distance from the
cop. We formally define the invariant as

J ≡ mod(r − c, n, 2). (4.4)

For arbitrary initial position c satisfying vertex(c), the robber selects r = (c+ 2) mod n.
Now we expand [∗] using loop rule.

We separately prove the following cases:

• init: To show c ∈ V (G) ∧ r ∈ V (G) ∧ mod(r − c, n, 2) ⊢ J :
By the way of initial selection, the claim is obvious.

• step: To show J ⊢ [step]J :
Since we are working from the robber’s perspective, we define the robber’s strategy
and consider all opponent moves. Therefore, given J as premise, we will discuss
cases on all possible cop moves: in this particular graph, the cop can either move
to c + 1 mod n or move to c − 1 mod n following the game rules. This allows the
robber to respond by case:

– If the cop moves to c+ 1 mod n, the robber moves to r + 1 mod n.

– If the cop moves to c− 1 mod n, the robber moves to r − 1 mod n.

In either case, the invariant J is kept by arithmetic.

• post: We also infer that J ⊢ (c ̸= r) from arithmetic.

This proof is also done in KeYmaera X.
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4.3.2 Trees

R

C

Figure 4.3: A tree graph example depicting the cop’s strategy. The blue rectangle denotes
the robber; the red triangle denotes the cop. The blue dotted area depicts S(c, r). The
cop’s strategy shrinks the size of this region over rounds.

Definition 4.3.3. A tree graph is an undirected, acyclic and connected graph.

Theorem 4.3.4. The cop has a winning strategy on a tree graph.

Since trees are hard to represent in dGL, we proved an example case of this theorem,
i.e. the line graph, in KeYmaera X. The general tree graph case is proved below using
paper-based proof.

Define the following variable in a tree G:

• Let dG(r, c) be the distance between r and c in G. If r, c are not connected, define
dG(r, c) = ∞.

• Let P (c, r) be the set of all vertices on the unique path from c to r, pi(c, r) be the ith
vertex on this path, 0-indexed.

• Let S(c, r) = {v ∈ V (G), c /∈ P (v, r)}, which describes the active region for r to
move, without meeting the cop.

Theorem 4.3.5. When G is a tree, if c is on the path between a and b, then the path
between a and b is exactly the path between a and c and the path between c and b. i.e.

a ∈ V (G) ∧ b ∈ V (G) ∧ c ∈ V (G) ∧ c ∈ P (a, b) ⊢ P (a, b) = P (a, c) ∪ P (c, b).

Lemma 4.3.6. If c moves to the next vertex on the path from c to r, then S(c, r) must
decrease by at least 1. |S(c, r)| > |S(p1(c, r), r)|.

We define the formal model as following:

c = c0 ∧ vertex(r) ⊢ ⟨step∗⟩(c = r)

where c0 is the medium vertex on the longest path in the tree, i.e. the center of the tree.
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R

Co

C

Figure 4.4: The cop’s strategy following the state in Figure 4.3.2. The cop moves from C0

to C. The blue dotted area dipicts S(c, r).

Proof. Let the initial selection of the robber be r0 that satisfies vertex(r0). We formally
define the variant d as

J(d) ≡ d ≥ |S(c, r)|.

This means that the active region of the robber decreases by at least 1 after a game round.
The intuitive strategy of the cop is to move to the next position on the path from c to r, as
shown in Figure 4.4. We separately prove the following cases:

• init: To show c = c0 ∧ vertex(r) ⊢ ∃d.J(d):
Select d = |S(c0, r0)| and the conclusion follows by propositional logic.

• step: To show d ≥ 0, J(d) ⊢ ⟨step⟩J(d):
Given J(d) as premise and d ≥ 0 we will discuss all possible robber’s moves:

Since d > 0, there exists at least a legal move r′ such that r′ ̸= c. Notice that by the
property of the tree, S(c, r) = S(c, r′). Then the cop selects c′ = p1(c, r).

Applying Lemma 4.3.6, |S(c, r)| ≥ |S(p1(c, r), r)|+ 1. Therefore J(d) holds.

• post: To show d ≤ 0, J(d) ⊢ (c = r). This means d = 0, i.e. the size of the active
region of r is 0, so c = r.

4.3.3 General Graph

In this section, we aim to identify winning strategies for all undirected, discrete graphs.
First we will introduce a type of graph, the dismantlable graph. It can be dismantled by
repeatedly removing a corner vertex. This type of graphs creates a dismantling order
that helps us to define the cop-winning strategies. An example is shown in Figure 4.5.
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1

2

3

4

6

5

(a) (b) (c) (d)

Figure 4.5: An dismantlable graph example. The labels denote the dismantling order by
removing corners of the graph. (a) is the original graph; (b) is the remaining graph after
removing 1; (c) is the remaining graph after removing 2; (d) is the remaining graph after
removing 3, and the final 4,5,6 are all corner vertices.

Definition 4.3.7. For a vertex v, let N(v) be the set of neighbors of v and N [v] = N(v)∪{v}.
A corner of a graph G is a vertex v such that N [v] ⊆ N [u] for some u ∈ N(v).

Definition 4.3.8. A graph is dismantlable if it has a dismantling-order, which is an
ordering of the vertices from 1 to n, such that

For all i ∈ [n], vertex i is a corner of the vertex-induced subgraph {i, i+ 1, ..., n} of G.

A dismantling order is an elimination ordering for chordal planar graphs. i.e. we can
always find a corner vertex and delete it, and repeat this process until there’s no vertex
left in the graph.

Theorem 4.3.9. The cop has a winning strategy on a graph G of n vertices if and only if it
is dismantlable.

Proof. Let the dismantling order for G be f : G → [n] where f(v) = i is the order of v. Let
the vertex set be labeled as in the dismantling order. Since the graph is guaranteed to
contain a corner vertex, we will let Gi be the graph Gi = G ∩ {i, ..., n}.

There is a mapping fi : Gi → Gi+1 for all the vertices such that

fi(v) =

{
u if v is the corner vertex s.t. N [v] ⊆ N [u]

v otherwise

Define Fi : G1 → Gi = fi · fi−1... · f1. At each step i, if robber is on u, the cop must be
on Fi(u); next step the robber moves to v ∈ N(u), the cop moves to Fi+1(v).

Now we can use this rule to construct a dGL proof. We define the formal model as

c = n ∧ r ∈ [n] ⊢ ⟨step∗⟩(c = r)

Let the variant be
J(d) ≡ Fd(r) = c.
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• init: The cop will select the initial position n, so that by definition, Fn(r) = n for
all r ∈ [n].

• step: To show Fd(r) = c ⊢ ⟨step⟩Fd−1(r) = c.

By definition, the new position r1 ∈ N(r). Since Fd(r) = c, then fd(Fd−1(r)) = c.
Then N [Fd−1(r)] ⊆ N [c] in Gd. Since r1 ∈ N(r), Fd−1(r1) ∈ N [Fd−1(r)] in Gd−1. So
Fd−1(r1) ∈ N [c]. Now we can let the cop’s new position be Fd−1(r1) that satisfies
the test, and thus proves the conclusion.

• post: Since F1 is the identity function, then F1(r) = c implies r = c.

4.3.4 Grids

Theorem 4.3.9 provides a general strategy to identify 1-cop-win graphs and construc-
tive winning strategies. Here we extend the discussion to multiple cop games. This game
setting adds a level of difficulty in the level of proofs. By Theorem 4.3.2, grid graphs are
obviously robber-win for 1 cop, because they contain at least a cycle of size 4. Instead,
we claim that grid graphs are 2-cop-win. An example grid graph is shown in Figure 4.6.

Definition 4.3.10. A grid graph is a graph forms a rectangular tilling. It can be formally
defined as

• vertex(x, y) = nat(x) ∧ nat(y) ∧ x ≥ 0 ∧ x ≤ n ∧ y ≥ 0 ∧ y ≤ n.

• edge(x1, y1, x2, y2) = vertex(x1, y1) ∧ vertex(x2, y2) ∧ ((|x1 − x2| = 1 ∧ y1 = y2) ∨
(|y1 − y2| = 1 ∧ x1 = x2))

Here we modified the model setup from Section 4.1, since we now model the game
in 2D coordinates and we will need separate variables to represent the cops. Let (x1, y1)
denote the position of Cop C1, (x2, y2) denote the position of Cop C2 and (xR, yR) denote
the position of the Robber R. We define the coordinates of the game to be (1, 1) to (n, n).

Theorem 4.3.11. 2 cops that share all information have a winning strategy in a grid graph
of size n× n.

Figure 4.6: A grid graph example of size 5× 5. The green diamond denotes C1; the red
triangle denotes C2; the blue rectangle denotes R.
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To formalize the model, we define the following hybrid program:

move1 ≡ {xCO1 := xC1; yCO1 := yC1;xC1 := ∗; yC1 := ∗; ?edge(xC1, yC1, xCO1, yCO1)}
move2 ≡ {xCO2 := xC2; yCO2 := yC2;xC2 := ∗; yC2 := ∗; ?edge(xC2, yC2, xCO2, yCO2)}
moveR ≡ {xR1 := xR; yR1 := yR;xR := ∗; yR := ∗; ?edge(xR, yR, xR1, yR1)}

We use the shorthand same(x1, y1, x2, y2) := x1 = x2∧y1 = y2 to verify that the coordinates
(x1, y1), (x2, y2) are the same.

Then we define the game round:

step ≡ {moveR; }d{?¬(same(xC1, yC1, xR, yR) ∨ same(xC2, yC2, xR, yR)); move1; move2; }

Now we can define the formal model:

xC1 = n ∧ yC1 = n ∧ xC2 = n ∧ yC2 = n

⊢ ⟨step∗⟩(same(xC1, yC1, xR, yR) ∨ same(xC2, yC2, xR, yR))

Definition 4.3.12. Let manhattan(x, y) = x+ y denote the Manhattan Distance between
(x, y) and the origin (0, 0).

Since the domain we work with is for x, y ∈ [n], we can simplify the absolute values
here.

Proof. The variant is defined as

J(d) ≡¬(same(xC1, yC1, xR, yR) ∨ same(xC2, yC2, xR, yR)) →
(xR ≤ xC1 ∧ xR ≤ xC2 ∧ yR ≤ yC1 ∧ yR ≤ yC2∧
d = manhattan(xC1, yC1) + manhattan(xC2, yC2)− manhattan(xR, yR))

• init: Select initial position (xC1, yC1) = (xC2, yC2) = (n, n). Then J(d) can be
proven automatically.

• step: To show d > 0, J(d) ⊢ ⟨step⟩J(d), we first separately consider the case where
the hypothesis part in J is false. Then the cops’ strategy can exactly copy the move
of the robber, which makes J(d) holds.

When the hypothesis part is true, we will discuss by case of initial positions:

– Let the robber be at (xR, yR). Let the new position the robber selects to be
(xR1, yR1). Note that the distance (xR1 − xR)

2 + (yR1 − yR)
2 ≤ 1, and −1 ≤

xR1 + yR1 − xR − yR ≤ 1.
Define the first cop’s strategy to be, given the new position (xR1, yR1):

Let the new position for C1 to be


(xC1, yC1 − 1) if xR1 = xC1, yR1 − yC1 ≥ 0

(xC1 − 1, yC1) if xR1 < xC1

(xC1 + 1, yC1) if xR1 > xC1
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Define the second cop’s strategy to be, given the new position (xR1, yR1):

Let the new position for C2 to be


(xC2 − 1, yC2) if yR2 = yC2, xR2 − xC2 ≥ 0

(xC2, yC2 − 1) if yR2 < yC2

(xC2, yC2 + 1) if yR2 > yC2

We first show that the invariant xC1 ≥ xR1 ∧ yC1 ≥ yR1 holds: If xR1 = xC1,
then we must have the case yR1 − yC1 > 0, since otherwise the cop has caught
the robber. Then it’s safe to decrease yR1 by 1. In other cases, the invariant
holds for simple geometry. A similar analysis can be done for C2 case.
Then we reason about the invariant. Notice that manhattan(x, y) changes by
absolute value at most one. We argue that only the following cases in Table 4.1
(illustrated in Figure 4.7) are possible:

Table 4.1: The possible cases for the cop’s strategy

∆manhattan(xR, yR) ∆manhattan(xC1, yC1) ∆manhattan(xC2, yC2)

-1 -1 -1
+1 +1 -1
+1 -1 +1
+1 -1 -1

We present pictures for these cases as Figure 4.7.

Figure 4.7: Cases to illustrate the Cops’ strategy: The green diamond denotes C1; the
red triangle denotes C2; the blue rectangle denotes R. The arrows denote the movement
through a game round. The positions are relative.

An intuitive way to understand this strategy is that C1 moves in order to reach
xC1 = xR first, when this is achieved then move on the y-axis; C2 moves in
order to reach yC2 = xR first, when this is achieved then move on the x-axis.
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• post: To show d ≤ 0, J(d) ⊢ (same(xC1, yC1, xR, yR) ∨ same(xC2, yC2, xR, yR)), use
→ L to separately consider the case where the hypothesis part in J . If the hypothesis
is true, the conclusion also follows. Otherwise we reach the case that all C1, C2, R
are on the same coordinate, therefore the conclusion is also true.
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Chapter 5

Pursuit-Evasion Games on Continuous
Planes

In this section, we provide a detailed discussion of “Lion and Man” game, as described
in Section 3. Instead of moving along edges, the players now move inside a continuous 2D
plane with straight-line, continuous and simultaneous movements. We have transformed
from discrete dynamics to continuous dynamics, which is a more generalized scenerio
and a better simulation of real physics. We consider problems in the following subsections
including different properties of game regions, and discuss the effect they make on the
winning party and the winning strategies.

We also make note of the definition of legal game regions more carefully using
illustrations in Figure 5.1.

Figure 5.1: Example of obstacles. The white region on the left picture is considered illegal,
the grey region and the black boundaries are considered legal; the dotted lines denote
the possible moves for the blue rectangle given the triangle obstacle: the one without the
cross is legal and the other one is illegal.

5.1 Model Setup

Definition 5.1.1. We use the following predicates to denote the winning condition:
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• inBall(xC , yC , xR, yR, r) ≡ (xC − xR)
2 + (yC − yR)

2 ≤ r2 where r is a constant.

• inRegion(x, y): Real2 → Bool: describes whether the current location (x, y) is in
the game region.

We define the position of cop to be (xC , yC) and the position of the robber to be
(xR, yR). We also define velocity vC and vR correspondingly. Unlike the previous section
where the players move along graph edges at the same speed, here we allow them to
move freely inside the legal game region. For the simplicity of modeling, we restrict the
players to move in straight lines. To this end, we use vectors to define the direction of
movement for the players: (xC1, yC1) and (xR1, yR1). Then we define the following helper
predicates:

We first define the actual game moves using the following hybrid program:

ctrl ≡ {{xR1 := ∗; yR1 := ∗; ?x2
R1 + y2R1 = 1; }d{xC1 := ∗; yC1 := ∗; ?x2

C1 + y2C1 = 1; }

plant ≡{x′
C = vC · xC1, y

′
C = vC · yC1, x

′
R = vR · xR1, y

′
R = vR · yR1, t

′ = 1

&
(
t ≤ 1 ∧ inRegion(xC , yC)

)
}

And the predicate cop win as(
inRegion(xR, yR) → inBall(xC , yC , xR, yR, r)

)
Here ctrl is the round when the robber selects direction first, and then the cop selects

direction. Both players need to ensure that this direction vector is a unit vector. plant is
the actual movement of the players. The players move in the direction defined in ctrl,
with a predefined velocity constant. cop win states the final winning condition for the
cop. Therefore the complete model of the game for a cop-win region is as follows:

(xC , yC) = (xC0, yC0) ⊢⟨{ctrl;t := 0; plant}∗⟩cop win (5.1)

Similarly, the complete model of the game for a robber-win region is as follows:

(xR, yR) = (xR0, yR0) ⊢[{ctrl;t := 0; plant}∗](¬cop win) (5.2)

where xC0, yC0, xR0, yR0 are constants that state the initial positions.

There are several details in this selection of dynamics: First, we select the domain
constraint with a restriction of time. This is easier to model and can generalize to different
game regions, and we can control the termination of a game round.

Second we let the cop to be in charge of time. Note that we also add a restriction of
the maximum time, otherwise the cop could force the robber to move until he reaches out
of the legal region. However, if we let the robber to be in charge of time, the robber can
always select time duration 0 to avoid getting caught. Assume that the model instead
restricts the robber to move at least 1 second, which is interchangeable with the model

26



that restricts the cop to move at most 1 second. This also explains why we add the
constraint of not moving out of boundary inside the ODE, but only for the cop. It doesn’t
make sense to also restrict the robber here since it’s not the cop’s job to do it. Instead,
the constraint for the robber is added in the cop’s winning condition. This makes sure
that the robber will be responsible for not to be out of region in the game move, because
otherwise the cop would stop immediately and the robber loses the game.

Third, we let the robber select direction first. This is a selection that actually favors the
cop, since it can determine its strategy based on the robber’s direction. This is because
we primarily work with cop-winning cases as they are often more involved.

In the end, we define the winning condition to be within a constant range of distance,
rather than letting the cop be at the same position as the robber. This is because, if we
have the distance between the cop and the robber to be less than 1, sometimes we need
the cop to move less than 1 second to avoid going past the robber. So the purpose is to
simplify proofs. However, this does not affect the result. If we can reduce the variant to
reach this condition, it can also reduce to the case where the cop goes to the exact same
position as the robber.

5.2 Faster Cop

5.2.1 Unbounded Plane

We first discuss the scenario where the cop is faster than the robber, and consider
the unbounded plane. The intuition is that the cop can catch the robber since the cop is
faster, and here we formally prove the winning strategy. The example plane is shown in
Figure 5.2.

C R

Figure 5.2: An unbounded plane example. Whenever the robber moves, the cop moves
according to the invariant yC = yR.

Theorem 5.2.1. If the game region is unbounded Euclidean plane with speed vC > vR > 0,
then the cop has a winning strategy.

Without loss of generality, the model assumes the cop is at (−1, 0) and the robber is
at (1, 0) in the initial state. The cop moves in a constant velocity vC and the robber moves
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in a constant velocity vR where vR = 1, vC = 2. We will not restrict a closed plane in the
model, because the cop is guaranteed to catch the robber even if in open region.

Proof. The proof structure relies on con rule and the following variant J :

J(d) ≡ d ≥ xR − xC − 1 ∧ yC = yR ∧ xR ≥ xC .

Intuition: In each round, we will select the direction of the cop based on the direction
of the robber that satisfies the invariant yC = yR, which is calculated using yC1 = yR1

2
,

xC1 =
√

1− yR1

2
2. The x−axis distance of xC is guaranteed to approach xR by at least 1 in

each round, so in the end we will have inBall(xC , yC , xR, yR, 1).

This lower bound attains equality when C and R are moving in the same direction,
where ∆(d) = vC − vR.
Let H = vC · yC1 = vR · yR1, we know

∆(d) ≤ vR · xR1 − vC · xC1.

Let d1 = vR · xR1, d2 = vC · xC1. So we have d1 − d2 = (d21 − d22)/(d1 + d2). Note that
d21 − d22 = v2C − H2 − v2R + H2, and d1 + d2 =

√
v2C −H2 +

√
v2R −H2 where H is the

movement in y-axis. Obviously d1+ d2 reaches maximum if H = 0, where d1− d2 reaches
minimum. Therefore, the variant xR − xC is guaranteed to decrease by at least 1.

• init: To show C = (−1, 0), R = (1, 0) ⊢ ∃d.J(d), we first note that the variant is
satisfied by selecting d = xR −xC − 1. Then the condition yC = yR = 0 and xR ≥ xC

are met by arithmetic.

• step: To show d > 0, J(d) ⊢ ⟨step⟩J(d− 1), since d > 0, xR − xC > 1. Let (xR1, yR1)
be the direction of the robber, then we select (xC1, yC1) according to the strategy
stated above. This guarantees that after a certain amount of time, the invariant
yC = yR holds.

Now we consider the following cases separately:

– If xR + xR1 < xC + xC1, then the players cannot safely move by time amount
of 1. Let t satisfy xR + txR1 = xC + txC1, which also satisfies 0 ≤ t < 1, and
ODE moves by t. Now the final condition satisfies xR = xC . Since initially we
have xR − xC > 1, d has decreased by at least 1.

– If xR + xR1 ≥ xC + xC1, then the players can safely move time duration of 1
without violating the invariant. Therefore the final condition satisfies xR ≥ xC .
And by math we reasoned before, d has decreased by at least 1.

• post: To show d ≤ 0, J(d) ⊢ inBall(xC , yC , xR, yR, 1), obviously when yC = yR,
xR − xC ≤ 1, the final condition is satisfied.

This proof is also done in KeYmaera X.
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5.2.2 Unbounded Plane with Line Obstacle

Now we discuss the case if we add a line obstacle to the unbounded plane. An
example game region is shown in Figure 5.3.

(0,1)

(0,-1)

Figure 5.3: An example game region of a line obstacle at (0,−1) to (0, 1).

Theorem 5.2.2. If the game region is an unbounded Euclidean plane containing 1 line-
segment obstacle and vC > vR > 0, the cop has a winning strategy.

In our proof, we specify our field to be Figure 5.3 to ease computation complexity.
We can always define the coordinates for the open planes with a line obstacle to look
like Figure 5.3. The optimal strategy is to follow the most time-wise sufficient path to
the position of the robber in the previous round. We will define this formally as the
time-optimal path.

Definition 5.2.3. We define the Euclidean Distance between (x1, y1) and (x2, y2) in the
plane with obstacles by euc(x1, y1, x2, y2) =

√
(x1 − x2)2 + (y1 − y2)2.

Definition 5.2.4. We define the time-optimal path between (x1, y1) and (x2, y2) in the
plane with obstacles by the shortest path one can navigate from (x1, y1) to (x2, y2) without
trespassing the obstacle. So

top(xC , yC , xR, yR) = min
(
euc(xC , yC , 0, 1) + euc(0, 1, xR, yR),

euc(xC , yC , 0,−1) + euc(0,−1, xR, yR)
)

Theorem 5.2.5. (Axiom) When the field consists of only line segment obstacles, the
time-optimal paths are also line segments.

Definition 5.2.6. We define the function dist : R4 → R of the time-optimal path between
(xC , yC) and (xR, yR) to be

dist(xC , yC , xR, yR) =


top(xC , yC , xR, yR) if the line segment connecting (xC , yC)

and (xR, yR) intersects with the obstacle
euc(xC , yC , xR, yR) otherwise
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To formalize our proof, an additional definition to describe the point at which a line
crossed the y-axis is required:

Definition 5.2.7. cut(xC , yC , xR, yR) is the intercept of the line crossing (xC , yC) and
(xR, yR) with the y-axis.

cut(xC , yC , xR, yR) ≡ yC − yC − yR
xC − xR

· xC

The legal region of this game is defined with the following predicate:

inRegion(x, y) ≡ xC ̸= 0 ∨ yC ≥ 1 ∨ yC ≤ 1.

Now the formal model to prove is

vC = 2 ∧ vR = 1 ∧ xC = −2 ∧ yC = 0 ∧ xR = 2 ∧ yR = 0 ⊢
⟨{ctrl;t := 0; plant}∗⟩

(
inRegion(xR, yR) → inBall(xC , yC , xR, yR, 2)

)
Now we show the formal proof for Theorem 5.2.2.

Proof. Since ⟨α∗⟩P ↔
〈
⟨α∗⟩∗

〉
P , we can rewrite it as

vC = 2 ∧ vR = 1 ∧ xC = −2 ∧ yC = 0 ∧ xR = 2 ∧ yR = 0 ⊢〈
{⟨{ctrl;t := 0; plant}∗⟩}∗

〉(
inRegion(xR, yR) → inBall(xC , yC , xR, yR, 2)

)
This change of modeling is required in the cop’s strategy, as we will see later that the cop
sometimes needs to move two rounds in order to meet the variant requirement.

For the outermost loop, we define loop variant J(d) ≡

(inRegion(xC , yC) ∧ (inRegion(xR, yR)

→ d− 2 ≥ dist(xC , yC , xR, yR) ∨ dist(xC , yC , xR, yR) ≤ 2))

We define the following predicates:

unsafe robber ≡ ¬inRegion(xR, yR) ≡ (xR = 0 ∧ yR < 1 ∧ yR > −1)

euc cop ≡ (xC · xR ≥ 0 ∨ cut(xC , yC , xR, yR) ≥ 1 ∨ cut(xC , yC , xR, yR) ≤ −1)

top cop ≡ (xC · xR < 0 ∧ (cut(xC , yC , xR, yR) > −1 ∧ cut(xC , yC , xR, yR) < 1))

Now we can expand the variant to cases:

J(d) ≡inRegion(xC , yC) ∧
(
inRegion(xR, yR) →((

euc cop → (d− 2 ≥ euc(xC , yC , xR, yR) ∨ euc(xC , yC , xR, yR) ≤ 2)
)
∧(

top cop → (d− 2 ≥ top(xC , yC , xR, yR) ∨ top(xC , yC , xR, yR) ≤ 2)
)))

This intuitively describes that the time-optimal distance between the cop and the
robber decreases by at least constant speed.

Now we can use con rule to separate into cases:

30



• init: Proven via arithmetic.

• step: Proven in Lemma 5.2.9.

• post: Proven via arithmetic. Note that when d ≤ 0, inBall(xC , yC , xR, yR, 2) is
satisfied.

To show the step case, we first assume d > 2 by renaming the variable d to d+ 2 to
start with.

Lemma 5.2.8. For all xR, yR, xC , yC ∈ R, top(xR, yR, xC , yC) ≥ euc(xR, yR, xC , yC).

This is obvious because the Euclidean distance is the shortest distance in 2D space.

The following lemma expands the formula that is needed to prove the step case in
Theorem 5.2.2 by cases, either the robber is not in legal region, the cop can or cannot
reach the robber in a straight line without passing the obstacle.

Lemma 5.2.9. ∀d ≥ dist(xR, yR, xC , yC) and d > 2, we have

d > 2 ∧
(
unsafe robber ∨

(
(euc cop → d ≥ euc(xC , yC , xR, yR))∧

(top cop → d ≥ top(xC , yC , xR, yR))
))

⊢ ⟨{{ctrl;t := 0; }{plant}}∗⟩(
unsafe robber ∨

(
(euc cop → d− 1 ≥ euc(xC , yC , xR, yR))∧

(top cop → d− 1 ≥ top(xC , yC , xR, yR))
))

Proof. We will first break down the proof into 3 cases according to the premise (unsafe robber,
euc cop, top cop) using orL, note that in each case we also have the assumption that
d > 2:

Case 1 unsafe robber: The cop then selects t = 0 and thus reaches conclusion unsafe robber.

Case 2 euc cop: The assumption states that d > 2 ∧ d ≥ euc(xC , yC , xR, yR).
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(0,1)
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(a) (b)

Figure 5.4: (a) illustrates an example of euc cop condition, after one game round becomes
top cop (Subcase 2.2); (b) illustrates an example of euc cop condition, after one game
round becomes euc cop (Subcase 2.3).

We will store the initial positions: xC0 = xC , yC0 = yC , xR0 = xR, yR0 = yR, and select
(xC1, yC1) to move in the direction to (xR0, yR0).

xC1 =
xR0 − xC0√

(xR0 − xC0)2 + (yR0 − yC0)2
, yC1 =

yR0 − yC0√
(xR0 − xC0)2 + (yR0 − yC0)2

The cop selects t = 1. We first show that the domain constraint holds:

∀r(0 ≤ r ≤ 1) → r ≤ 1 ∧ ¬(xC0 + vC · xC1 = 0 ∧ yC0 + vC · yC1 < 1 ∧ yC0 + vC · yC1 > −1)

This can be proven by breaking down into each subcase and by arithmetic. Then we
show the post condition holds: This is equivalent to showing

d ≥ 2 ∧ d ≥ euc(xC , yC , xR, yR) ∧ euc(xC , yC , xR, yR) ≥ 2 →
⟨ctrl;t := 0; plant⟩

(
unsafe robber ∨ (euc cop → d− 1 ≥ euc(xC , yC , xR, yR))∨

(top cop → d− 1 ≥ top(xC , yC , xR, yR))
)

We can now discuss the proof by casing on the ending positions of Case 2 for the players:

Subcase 2.1: Ends in unsafe robber. The robber loses the game, the cop can choose
t = 1 and exact post condition as needed.

Subcase 2.2: Ends in euc cop. Intuition: The cop moves towards the robber, and the
robber moves distance 1, as illustrated in Figure 5.4(a). The distance is still
euc(xR, yR, xC , yC). So

euc(xR, yR, xC , yC) ≤ euc(xR0, yR0, xC , yC) + euc(xR, yR, xR0, yR0)

= euc(xR0, yR0, xC , yC) + 1

= euc(xR0, yR0, xC0, yC0)− 1

This can be proven by expanding the definitions and arithmetic.
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Subcase 2.3: Ends in top cop. Intuition: The cop moves towards the robber, and the
robber moves distance 1, as illustrated in Figure 5.4(b). Without loss of general-
ity, we suppose the distance now becomes top(xR, yR, xC , yC) = euc(xR, yR, 0, 1) +
euc(xC , yC , 0, 1). So

top(xR, yR, xC , yC) = euc(xR, yR, 0, 1) + euc(xC , yC , 0, 1)

≤ euc(xR0, yR0, xC , yC) + euc(xR, yR, xR0, yR0)

= euc(xR0, yR0, xC0, yC0)− 1

This can be proven by expanding the definitions and arithmetic.

Now this concludes the proof for Case 2.

Case 3 top cop: The assumption states that d > 2 ∧ d ≥ top(xC , yC , xR, yR).

As compared to Case 2 where d > 2 ∧ euc cop, we may need to unroll the repetition
operator twice using ⟨∗⟩ in this case, i.e. change direction twice.

C
R

(0,1)

CR

(0,1)

(a) (b)

Figure 5.5: (a) illustrates an example of top cop condition, after one game round becomes
top cop (Subcase 3.2); (b) illustrates an example of top cop condition, after one game
round becomes euc cop (Subcase 3.3).

We will store the initial positions: xC0 = xC , yC0 = yC , xR0 = xR, yR0 = yR, and we first
show that the domain constraint holds:

∀r(0 ≤ r ≤ 1) → r ≤ 1 ∧ ¬(xC0 + vC · xC1 = 0 ∧ yC0 + vC · yC1 < 1 ∧ yC0 + vC · yC1 > −1)

This can be proven via expanding definitions and arithmetic. Then we show the post
condition hold by sub-casing on the end positions for the players:

Subcase 3.1: Ends in unsafe robber. Exact post condition as needed.
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Subcase 3.2: Ends in state euc cop. As illustrated in Figure 5.5(a), the cop will need to
change direction twice. Therefore, we expand the repetition twice and get

d ≥ 2 ∧ d ≥ top(xC , yC , xR, yR) ∧ top(xC , yC , xR, yR) ≥ 2 ⊢
cop win ∨ ⟨ctrl;t := 0; plant⟩cop win∨

⟨ctrl;t := 0; plant⟩⟨ctrl;t := 0; plant⟩cop win

Note that the only case possible is that euc(xC0, yC0, 0, 1) ≤ 2 or euc(xC0, yC0, 0,−1) ≤
2. Now the cop will first move in the direction towards the closest endpoint of
the line obstacle, and then move in the direction towards the new position of the
robber:

• First select t =
√

(xC0)2+(1−yC0)2)

2
and

xC1 =
0− xC0√

(xC0)2 + (1− yC0)2)
, yC1 =

1− xC0√
(xC0)2 + (1− yC0)2)

This selection ensures that after the move, the cop is at xC = 0, yC = 1. Then
select t′ = 1− t, so that the cop moves the maximum amount towards the new
position of the robber and

xC1 =
xR0√

(xR0)2 + (1− yR0)2)
, yC1 =

xR0 − 1√
(xR0)2 + (1− yR0)2)

So

euc(xR, yR, xC , yC) ≤ euc(xR0, yR0, xC , yC) + euc(xR, yR, xR0, yR0)

≤ top(xR0, yR0, xC0, yC0)− euc(xC0, yC0, 0, 1)− euc(0, 1, xC , yC) + 1

≤ top(xR0, yR0, xC0, yC0)− 1

• We can prove the similar case for (0,−1).

Subcase 3.3: Ends in state top cop. As illustrated in Figure 5.5(b), this is the case where
euc(xC0, yC0, 0, 1) ≥ 2 and euc(xC0, yC0, 0,−1) ≥ 2. Now the cop selects the direction
to move towards the closest endpoint of the line obstacle. So select t = 1 and

•
xC1 =

0− xC0√
(xC0)2 + (1− yC0)2)

, yC1 =
1− xC0√

(xC0)2 + (1− yC0)2)

So

top(xR, yR, xC , yC) = top(xR0, yR0, xC0, yC0)− euc(xR, yR, xR0, yR0)

= top(xR0, yR0, xC0, yC0)− 1

• We can prove the similar case for (0,−1).

This concludes the proof of Case 3.
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5.3 Equal Speed Cop

Now we consider the case when the cop’s speed is the same as the robber, slightly
restricting the cop’s ability to move comparing to the previous section. We consider only
the case where the players have positive velocity and ignore the case where the velocity
is equal to 0, since then no player moves in the game and is always robber-win.

5.3.1 Unbounded Plane (with Obstacle)

We first consider the unbounded plane. The intuitive conjecture is that the robber
wins the game, since the plane is continuous and the cop has no way to keep the robber
inside a closed region. Indeed, the robber’s strategy follows from a similar approach as
the cycle graph case in Section 4. An example game region is illustrated in Figure 5.6.

CR

x=0

Figure 5.6: An example graph of the unbounded plane with obstacles as illustrated in
the picture. The blue rectangle denotes the robber; the red triangle denotes the cop. The
robber’s strategy is depicted as above, that it is always moving away from the obstacle
in the x-axis.

Theorem 5.3.1. If the legal game region is the Euclidean Plane with finitely many ob-
stacles, and the speed vC = vR > 0, then the robber has a winning strategy to win the
game.

The formal model to prove is

xR ≤ 0 ∧ xC ≤ 0 ∧ xC − xR ≥ 2 ⊢ [{ctrl;t := 0; plant}∗](¬cop win)

Proof. We will define inRegion(x, y) = x ≤ 0. Note that this is a safe definition that gen-
eralizes all cases of different obstacles, by selecting the horizontal axis that all obstacles
are at the right of this axis as x = 0. We can also define the position of the robber to be
xR = min(xC − 2,−2), yR = xR. Note that for the cop to be in the safe region, xC ≤ 0 in
our model, but this suffices to define the strategy for generalized cases. Now we consider
the invariant

J ≡ abs(xC − xR) ≥ 2.
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• init: To show xR = min(xC − 2,−2)∧ inRegion(xR, yR) ⊢ J . This is true by simple
arithmetic.

• step: To show J ⊢ [step]J : we formalize the following strategy for the robber:
(xR1, yR1) = (−1, 0). Then given xR ≤ 0, after positive t ≤ 1 duration, we must have
maintained xR ≤ 0. Since xR is decreasing, J is maintained after step.

• post: Since abs(xC − xR) ≥ 2, obviously (xC − xR)
2 + (yC − yR)

2 ≥ 1.

This proof is also done in KeYmaera X.

5.3.2 Bounded Region (No Obstacle)

Now it is natural to consider bounded regions. We first start with simple game
regions with no obstacles. We consider an arbitrary convex, closed and bounded region
that contains the origin (0, 0) in the 2D-plane. Note that this requirement is without loss
of generality, since we can redefine the coordinate system so that it contains the origin.
An example game region is illustrated in Figure 5.7.

Figure 5.7: An example of a convex, closed and bounded region (the polygon region).
The dotted circle represents the maximum radius required to bound this region.

Definition 5.3.2. A bounded convex region satisfies the following properties:

There exists R > 1 such that

isBounded ≡ ∀x,∀y, (inRegion(x, y) → NormToOrigin(x, y) ≤ R2))

and

isConvex ≡∀(x1, y1), ∀(x2, y2),
(
inRegion(x1, y1) ∧ inRegion(x2, y2) →

∀t, (0 ≤ t ≤ 1 → inRegion(tx1 + (1− t)x2, ty1 + (1− t)y2)
)
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where we also define the following helper functions:

inRegion(x, y) ≡ x2 + y2 ≤ R2.

NormToOrigin(x, y) ≡ x2 + y2.

Definition 5.3.3. Let dC be the distance from the cop to the origin, dR be the distance
from the robber to the origin. i.e.

dC =
√

x2
C + y2C , dR =

√
x2
R + y2R.

Theorem 5.3.4. If the game region is an arbitrary convex, bounded region, and the speed
vC = vR > 0, then the cop has a winning strategy, as formalized below:

isBounded ∧ isConvex ∧ inRegion(xR, yR) ∧ xC = yC = 0 ∧ vC = vR = 1

⊢ ⟨{{ctrl;t := 0; plant;}∗}⟩cop win

The main ingredient for proving Theorem 5.3.4 is the variant J(d) below:

J(d) ≡isBounded ∧ isConvex ∧
(
inRegion(xR, yR) → (inRegion(xC , yC)

∧ xR · yC = xC · yR ∧ d2C ≤ d2R ∧ (xR − xC)
2 + (yR − yC)

2 ≤ d2R ∧ d ≥ R2 − d2C − 1)
)
.

This variant argues that the cop and the robber are always on the same radius and
the cop is always closer to the origin than the robber, and the value d2C is increasing at at
least constant speed.

Lemma 5.3.5. The variant d2C increase by at least 1 after one round. We prove this using
the following model:

d > 0, J(d) ⊢ ⟨ctrl;t := 0; plant⟩J(d− 1)

Proof. The geometric idea behind the proof is illustrated in Figure 5.8. Both balls denote
the unit ball available for the player to move. So if the robber moves from R to R0, the
cop moves from C to C0, which maintains the invariant part and is the furthest possible
point to reach R0.

O

C

C0

R

R0

H

K

Figure 5.8: This figure shows the movement of C and R in a round. O is the origin. When
the robber moves from R to R0, the cop moves from C to C0.
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We now formalize this idea. The circle centred at R denotes the range of R’s movement
and the circle centred at C denotes the range of C’s movement. The line connecting
O,C0, R0 is the radius that guarantees xC0 · yC = xC · yC0. For shorthand we say the unit
vector C⃗1 =

−−→
CC0, R⃗1 =

−−→
RR0. We can see from the picture that there is guaranteed to have

≥ 1 solution for this C0. This can be solved using the following equation:

(x− xC)
2 + (kx− yC)

2 = 1.

with the definition of the following parameters:

k =
yR0

xR0

, A = 1 + k2, B = −2xC − 2kyC , C = x2
C + y2C − 1, D = B2 − 4AC.

So there are two solutions for C0:

xC0 =
−B ±

√
D

2A
, yC0 = k

−B ±
√
D

2A

Let H be a point on OR0 such that CH is perpendicular to OC. K to be the vertical
point on OR0 such that RK is perpendicular to OR0. Geometry shows that CH/RK =
OH/OR = OC/OK. Therefore we can write

(xH − xC) · xC + (kxH − yC) · yC = 0,

and we can solve xH =
x2
C+y2C

xC+k·yC
. By geometry, RR0 = 1 and RK ≤ RR0, RK ≤ 1. By

assumption CR ≥ 2, CH < RK ≤ 1 = CC0.

By geometry, (xC1, yC1) · (xC , yC) ≥ 0. This implies |OC0|2 ≥ |OC|2 + |CC0|2 =
|OC|2 + 1.

We redefine the coordinate system so that the players always start on the positive
x−axis at the start of the round.

Lemma 5.3.6. When dR − dC ≥ 2, the formula d > 0, J(d) ⊢ ⟨ctrl;t := 0; plant⟩J(d− 1)
is true.

Proof. After applying dGL axioms ⟨; ⟩, ⟨:=⟩, ⟨?⟩, and solving ODE, this is equivalent to
showing

xR > xC ≥ 0, yR = yC = 0, dR − dC ≥ 2, yR1 > 0, x2
R1 + y2R1 = 1,

xR0 = xR + xR1, yR0 = yR + yR1, d ≥ d2C , xC · yR = xR · yC , d2C ≤ d2R
⊢ ∃xC1, yC1(x

2
C1 + y2C1 = 1 ∧ xC0 = xC1 + xC ∧ yC0 = yC1 + yC

∧ xC0 · yR0 = xR0 · yC0 ∧ d2C0 ≤ d2R0 ∧ d ≥ d2C0 + 1).

Notice that since dR − dC ≥ 2, xR ≥ 2 ̸= 0. Now we will select xC1 = −B+
√
D

2A
− xC ,

yC1 = kxC1−yC , which is the solution that satisfies the variant by Lemma 5.3.5. Therefore,
we need to break down the conclusion to prove into parts using andR.
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• To show d ≥ d2C0 + 1, we use Lemma 5.3.5.

• To show xC0 · yR0 = xR0 · yC0, the conclusion follows by simple arithmetic.

• To show d2C ≤ d2R: Since the players are only allowed to move within a unit ball of
the original position, d2R ≥ (xR − 1)2, d2C ≤ (xC + 1)2. So d2C ≥ d2R.

• To show (xR − xC)
2 + (yR − yC)

2 ≤ d2R: We can expand this equation and plug in
the definition of dR, which is equivalent to showing xC + xC1 > 0, xR + xR1 > 0.
Since xC1 > 0 by selection, and xR ≥ 2, xR1 ≥ −1 by assumptions and game rules,
this is proven.

Now we are able to show the complete model.

Proof. We use con rule and prove the following cases:

• init: To show

isBounded ∧ isConvex ∧ inRegion(xR, yR) ∧ xC = yC = 0 ∧ vC = vR = 1 ⊢ ∃d.J(d),

the invariant part follows from propositional logic; if we plug in xC = yC = 0 and
select d = R2 − 1, the variants also follow by arithmetic.

• step: To show d > 0, J(d) ⊢ ⟨step⟩J(d− 1), we consider the following cases:

– If dR − dC > 2, if inRegion(xR, yR), then inRegion(xC , yC) by convexity. Then
we apply Lemma 5.3.6.

– If dR − dC ≤ 2, cop selects t = 0 and the robber cannot pass the test.

• post: To show d ≤ 0, J(d) ⊢ inRegion(xR, yR) → inBall(xC , yC , xR, yR, r), note
that the conclusion holds if inRegion(xR, yR) is false. When inRegion(xR, yR) is
true, we have R2 − d2C ≤ 1. Since d2R ≤ R2, the conclusion holds.

This proof is also done in KeYmaera X.

5.3.3 Bounded Region (with 1 Obstacle)

Now we consider the case of bounded region as in the previous section, but add
obstacles in the area. We will not restrict the settings, but instead discuss sufficient and
complete conditions for cop-win and robber-win cases.

Before diving into the problem, we start by stating a lemma that follows from the
previous section. The intuition of this lemma is for the cop to force the robber into an
obstacle-free region and eventually catch the robber by forcing the robber into a shrinking
region over time. We can use this lemma to regulate the players’ strategies that follows
in a bounded region with 1 obstacle, as illustrated in Figure 5.9.
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(a) (b) (c)

Figure 5.9: This describes how the lemma connects to a 1 obstacle region. The blue
rectangle is the robber and the red triangle is the cop. (a) describes the condition inside
the original graph; (b) cuts the graph into two parts; (c) describes the final cop-winning
condition we need to apply Lemma 5.3.8.

Definition 5.3.7. We define the projection p from region G to H , where H ⊆ G, such that
for all (xh, yh) ∈ H , if (xg, yg) ∈ G, dist(xg, yg, xh, yh) ≥ dist(xg, yg, p(xg, yg)). Note that
this is only a well-defined function when there’s only one unique such p(xg, yg) for all
(xg, yg) ∈ G.

Lemma 5.3.8. Let R be a curve in the plane, H be the line segment connecting the
endpoints of the curve. If the region enclosed by R and H is convex, we let this region
be G. If there exists a projection p : G → H , the robber (xR, yR) ∈ G and the cop satisfies
(xC , yC) = p(xR, yR), then the cop can catch the robber in finite time.

The formal model to show is

isConvex ∧ isBounded ∧ xC = xR = 0 ∧ yC ≤ yR ⊢ ⟨{ctrl;t := 0; plant}∗⟩cop win

Proof. By assumption, this region satisfies isConvex which is defined the same as in the
previous section, and isBounded, which is refined as

isBounded ≡ ∀x,
(
∃R,

(
∀y, (inRegion(x, y) ∧ y ≥ h → x2 + y2 ≤ R)

))
,

where h satisfies the following:

We will define the coordinate system such that H lies on the horizontal line y = h,
and H is contained in the line segment from (−b, h) to (b, h) for some positive b. The
curve R is above y = h. The initial position of the cop is at (0, h) and xC = xR = 0.
Let (xC0, yC0) and (xR0, yR0) be the coordinates for the new position of the cop and the
robber correspondingly, b is defined as the minimum radius that contains the edge H . By
rewriting these conditions into formulas, h is defined through the following equations:

x2
C0 + y2C0 ≥ h2 + b2

xC0 · yR0 = xR0 · yC0

xC0 = xC1

yC0 = h+ yC1

x2
C1 + y2C1 ≤ 1
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Notice that this h satisfies the requirement that starting from the initial position C = (0, h)
and R = (0, yR), the new position of the cop using the strategy in Lemma 5.3.8, satisfies
x2
C0 + y2C0 ≥ h2 + b2, as illustrated in Figure 5.10.

(-b,h) (b,h)

(0,h)

(0,0)

C0

R0

C

R

Figure 5.10: Illustration of convex region G in the coordinate system and the cop’s
strategy. The cop moves from C to C0 if the robber moves from R to R0.

To find the minimum h required, (5.1) implies that hmin = b2−1
2yC1

. Therefore we consider
the case that minimum yC1 is reached, when RR0 is perpendicular OR0. So we have the
additional equation:

1

y2R
=

x2
C1

x2
C1 + (h+ yC1)2

Combining the equations above, we obtain

y2R · y4C1 + (3− 2b2 − y2R) · y2C1 +
1

4
(b2 − 1)2 = 0

Solving this equality gives us yC1 ≥
√

−3+2b2+y2R√
2yR

.

Therefore we select h = b2−1
2y∗C1

where y∗C1 =

√
−3+2b2+y2R√

2yR
which satisfies the previous

equations.

Under this coordinate system, projection p is defined as p(xg, yg) = (x̃g, h) where x̃g is
xg if (x̃g, h) ∈ G, and the closest corner on H otherwise.

Let the variant be

J(d) ≡ yC · xR = xC · yR ∧ x2
R ≥ x2

C ∧ xR · xC ≥ 0∧ d ≥ r2 − (x2
C + y2C)∧ x2

C + y2C ≥ b2 + h2

This is the variant as defined in Lemma 5.3.6 with the addition of the last condition
x2
C + y2C ≥ b2 + h2, to guarantee that the robber never escapes the unbounded region G.
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First consider the case that dist(xC , yC , xR, yR) ≤ 2, then the final condition is already
met.

Then it suffices to assume dist(xC , yC , xR, yR) > 2: We will first apply ⟨∗⟩ rule, i.e.

dist(xC , yC , xR, yR) > 2 ∧ xC = xR = 0 ∧ yC ≤ yR ⊢
⟨ctrl;t := 0; plant;⟩⟨{ctrl;t := 0; plant;}∗⟩(

inRegion(xR, yR) → inBall(xC , yC , xR, yR, 2)
)

and show

dist(xC , yC , xR, yR) > 2 ∧ xC = xR = 0 ∧ yC ≤ yR ⊢ ⟨ctrl;t := 0; plant;⟩(∃d.J(d)).

Since dist(xC , yC , xR, yR) > 2, then we can select t = 1. We select (xC1, yC1) using the
strategy as in Figure 5.10: select (xC1, yC1) that satisfies xC · yR = xR · yC and has the
closest distance to (xR, yR). By selection of h, x2

C + y2C ≥ b2 + h2 hold.

This guarantees that x2
R + y2R ≥ b2 + h2, i.e. R is always inside the guarded region of

C.

Now use the strategy as in Lemma 5.3.6, we can show that

isConvex∧isBounded∧∃d.J(d) ⊢ ⟨step∗⟩
(
inRegion(xR, yR) → inBall(xC , yC , xR, yR, 2)

)
,

so that the rest of the conclusion is proven.

Now to answer the problem we raised at the beginning of this subsection, it suffices
to find cases such that the cop reaches the projection of the robber on the boundary of
the obstacle. Figure 5.9 shows a mapping from this situation to applying Lemma 5.3.8.

We first consider a counterexample where the cop fails to catch the robber:

Conjecture 5.3.9. If the game region is convex, bounded and contains a single regular
polygon as an obstacle, the game is robber-win.

Figure 5.11: In the case where the obstacle is a square, the red triangle represents the cop
and the blue rectangle represents the robber. Then the robber can move one edge away
from the cop in each round.
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The intuition of this conjecture is shown via Figure 5.11. It is clear that if the cop
starts from a corner of the obstacle, the robber can select a position such that the distance
between the cop and the robber never decreases. However, if the cop selects a random
position in the game space, then it’s unclear whether the robber has a fixed strategy to
enter this case.

Now we consider the problem from another angle.

Conjecture 5.3.10. If the game region is convex, bounded and contains a singular irregu-
lar polygon as an obstacle, the game is cop-win.

Now we claim that if both the cop and the robber greedily chase around the obstacle,
the cop can eventually catch the robber. This happens because the cop’s strategy guaran-
tees to stay on the boundary, while the robber doesn’t. Therefore, the total distance the
cop runs is strictly positive and less than the robber. However, a formal proof requires
defining J(d) to be a strictly decreasing variant such that over a constant time t > 0, J(d)
is guaranteed to decrease by ≥ c where c is a positive constant. For some cases, this
constant can be found through brute-force calculations, but it varies for different cases
and it’s hard to find a lower bound.

Note that this modification allows both the robber and the cop to move freely within
a timestep of 1. The mathematical reasoning stay the same, as we can still view each
move of the agents to be inside the ball of size 1. This essentially switches the concurrent
behavior of the system to turn-based system. The reason for this change is that in the
concurrent setting, the robber is allowed to change direction in real time as the cop
changes direction, and in the case of obstacles, the robber has incentive to do so, resulting
in the case that the robber always wins.

43



Chapter 6

Conclusion

In this work, we discussed different types of pursuit-evasion games, and used dGL
to create models for game rules, and presented formal verification approach for winning
strategies. In both discrete and continuous dynamics, the essence is to find correct
invariants and variants required to show the proofs. In Chapter 4, we considered “Cops
and Robbers” game played on discrete graphs. We investigated graph families starting
from cycles, trees, to a general proof of dismantlable graphs, which is the sufficient and
complete condition for 1-cop games. We also extended the proofs from concrete examples
to abstract properties by using group properties of natural numbers. In addition, we also
considered a proof on grids for two-cop games. This modification requires a change in
modeling, but cannot extend to different cop numbers. In Chapter 5, we considered “Lion
and Man” game played on continuous planes. We investigated several planes casing on
the boundary condition, the cop’s speed and the obstacle condition. We also discussed
the differences among different selections of the game dynamics, and selected the final
one that balances between the difficulty of performing formal proofs and whether it
simulates reality well.

We compared the difference between dGL proofs and traditional mathematical proofs,
and conclude that the advantage of dGL, as shown in continuous games, represents
simultaneous moves easily and the use of ODE and domain constraint well explains the
game dynamics while keeping the agents in the safe region. This significantly differs
from traditional game settings that discusses turn-based games. We can see that turn-
based games favors the cop, since similar cop-winning strategies cannot be adapted to
the simultaneous version, while simultaneous version better simulates real-life scenario.
However, challenge arises when it comes to defining complicated math definitions
properly, and makes the abstraction of proofs difficult using the current set of tools. For
future work, it would be valuable to combine other types of tools with dGL to perform
formal verification, including program simulations and mathematical ways to potentially
simplify the game modeling.
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Appendix A

Differential Game Logic Proof Rules

Propositional Logic Proof Rules

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆
∧R

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∨Q,∆
∨R

Γ, P ⊢ ∆

Γ ⊢ ¬P,∆ ¬R

Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆
∧L

Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆
∨L

Γ,¬P ⊢ ∆
¬L

Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆
→ R

Γ, P ⊢ P,∆
id

Γ, false ⊢ ∆
FL

Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆
→ L

Γ ⊢ P P ⊢ ∆
Γ ⊢ ∆

cut
Γ ⊢ true,∆

TR

dGL Axioms

[α]P ↔ ¬⟨α⟩(¬P )

⟨:=⟩: ⟨x := θ⟩P (x) ↔ P (θ) [:=]: [x := θ]P (x) ↔ P (θ)

⟨∪⟩: ⟨α ∪ β⟩P ↔ ⟨α⟩P ∧ ⟨β⟩P [∪]: [α ∪ β]P ↔ [α]P ∨ [β]P

⟨; ⟩: ⟨α; β⟩P ↔ ⟨α⟩⟨β⟩P [; ] : [α; β]P ↔ [α][β]P

⟨∗⟩: ⟨α∗⟩P ↔ P ∨ ⟨α⟩⟨α∗⟩P [∗]: [α∗]P ↔ P ∧ [α][α∗]P

⟨′⟩: ⟨x′ = f(x)⟩p(x) ↔ ∃t ≥ 0⟨x := y(t)⟩p(x)

[′]: [x′ = f(x)]p(x) ↔ ∀t ≥ 0[x := y(t)]p(x)

⟨?⟩: ⟨?Q⟩P ↔ Q ∧ P [?]: [?Q]P ↔ Q =⇒ P

⟨d⟩: ⟨αd⟩P ↔ ¬⟨α⟩¬P [d]: [αd]P ↔ ¬[α]¬P

⟨:= ∗⟩ : ⟨x := ∗⟩P ↔ ∃x, P [:= ∗]: [x := ∗]P ↔ ∀x, P
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dGL Proof Rules

loop :

Γ ⊢ J J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

con :

Γ ⊢ ∃dJ(d) d > 0, J(d) ⊢ ⟨α⟩J(d− 1) d ≤ 0, J(d) ⊢ P

Γ ⊢ ⟨α∗⟩P,∆

discreteGhost:

Γ ⊢ [x := e]P,∆

Γ ⊢ P,∆ .
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Appendix B

KeYmaera X Tactics

A list of proofs is listed at
https://github.com/ReedyHarbour/Pursuit-Evasion-Game-Tactics.git
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