
Deductive Veri�cation for
Ordinary Di�erential Equations:
Safety, Liveness, and Stability

Yong Kiam Tan
CMU-CS-22-114

June 2022

School of Computer Science
Carnegie Mellon University

Pi�sburgh, PA 15213

�esis Committee:
André Platzer, Chair

Jeremy Avigad
Stefan Mitsch

Frank Pfenning
Joël Ouaknine (MPI-SWS, Saarland University)

Submi�ed in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Yong Kiam Tan

�is research was sponsored by the National Science Foundation under NSF CAREER Award CNS-1054246 and
Grant No. CNS-1739629, the AFOSR under grant number FA9550-16-1-0288, and the Alexander von Humboldt
Foundation. �e author was supported by A*STAR, Singapore. �e views and conclusions contained in this
document are those of the author and should not be interpreted as representing the o�cial policies, either expressed
or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: deductive veri�cation, di�erential dynamic logic, ordinary di�erential equations,
switched systems, safety, invariance, liveness, existence, stability

Auspicium Melioris Aevi

iv

Abstract
Ordinary di�erential equations (ODEs) are quintessential models of real-world

continuous behavior in the physical and engineering sciences. �ey also feature
prominently in hybrid system models that combine discrete and continuous dynamics,
and interactions thereof. Formal veri�cation of ODEs and hybrid systems is of
increasing practical importance because the real-world systems they model, such as
control systems and cyber-physical systems, are o�en required to operate in safety-
and mission-critical se�ings—obtaining comprehensive and trustworthy veri�cation
results for continuous and hybrid systems gives a strong measure of con�dence that
the real-world systems they model operate correctly.

�is thesis studies deductive veri�cation for ordinary di�erential equations with a
focus on proofs of their i) safety, ii) liveness, and iii) stability properties. �ese proofs
are compositionally extended to obtain proofs of iv) stability for hybrid (switched) sys-
tems. �e combination of safety, liveness, and stability is crucial for comprehensive
correctness of real-world systems: i) safety of a system model ensures that it always
stays within a prescribed set of safe states throughout its operation, ii) liveness
ensures that the modeled system will eventually reach its speci�ed goal or complete
its mission, and iii) & iv) stability ensures that the idealized models are robust to
real-world perturbations, which is important for control system designs.

�e overarching thesis insight is the use of deductive reasoning as a basis for
understanding the aforementioned properties and for developing their proofs. Specif-
ically, this thesis uses di�erential dynamic logic (dL), a logic for deductive veri�cation
of hybrid systems, as a trustworthy logical foundation upon which all reasoning prin-
ciples for safety, liveness, and stability are rigorously derived. �e thesis �rst shows
how ODE invariance, a key ingredient in proofs of ODE safety, can be completely ax-
iomatized and reasoned about syntactically in dL. �en, ODE liveness and existence
properties are formally proved through re�nement-based reasoning in dL, where
each re�nement step is justi�ed by proving an ODE safety property. Finally, stability
properties for ODEs and hybrid systems are speci�ed using dL’s ability to nest safety
and liveness modalities with �rst-order quanti�cation. Proofs of those stability
speci�cations build on ODE safety and liveness (sub-)proofs by compositionally
adding dL reasoning for the �rst-order quanti�ers and hybrid systems.

Formal dL speci�cations elucidate the logical relationships between the proper-
ties studied in this thesis. Indeed, these relationships are re�ected in the thesis struc-
ture outlined above because they yield chapter-by-chapter identi�cation, buildup,
and generalization of the deductive building blocks underlying proof methods for the
respective properties. �e deductive approach enables such generalizations while
retaining utmost con�dence in the correctness of the resulting proofs because every
step is soundly and syntactically justi�ed using dL’s parsimonious axiomatization.
�e derived proof principles and insights are put into practice by implementing
them in the KeYmaera X theorem prover for hybrid systems based on dL.

vi

Acknowledgments

I would like to start by thanking my family and friends for their support through-
out my studies, especially during the COVID-19 pandemic. My undergraduate and
graduate studies were generously funded by A*STAR, Singapore.

I was �rst introduced to formal methods research through an undergraduate
internship working on the CakeML project at Cambridge, which was made possible
by Mike Gordon and Alan Mycro�. My internship advisors, Ramana Kumar and
Magnus Myreen, were instrumental in sparking my interest in veri�cation research.
I am also thankful for numerous past and ongoing collaboration opportunities with
members of the wider CakeML community.

At CMU, I am very fortunate to be advised by André Platzer, who taught me
most of what I know about scienti�c research, writing, speaking, teaching, and
much more. Most of the results and ideas presented in this thesis were sparked by
initial conversations with André and signi�cantly polished over the course of our
in-person/Zoom meetings. �e thesis material is also signi�cantly shaped by the
insights I gained from working with members and visitors of the Logical Systems
Lab, both past and present, including: Stefan Mitsch, Khalil Ghorbal, Fabian Immler,
Jean-Baptiste Jeannin, William Simmons, Andrew Sogokon, Noah Abou El Wafa,
Rose Bohrer, Nathan Fulton, Aditi Kabra, Katherine Kosaian, Jonathan Laurent,
Samuel Teuber, and James Gallicchio.

In the broader CMU community, I am grateful for the opportunity to learn about
neighboring research areas from the Principles of Programming group and the Lean
working group. �e administrative sta�, especially Deb Cavlovich and Jessica Packer,
helped make my time at CMU a smooth sailing one. �e Pi�sburgh Symphony
Orchestra provided many evenings of quality entertainment; readers interested in
classical music are strongly recommended to check out their subscription packages.

Finally, I would like to thank all of my thesis commi�ee members for their time
and for their invaluable advice on the contents of this thesis.

viii

Contents

1 Introduction 1
1.1 �esis Overview . 2

1.1.1 Safety and Invariance for Ordinary Di�erential Equations 3
1.1.2 Liveness and Existence for Ordinary Di�erential Equations 4
1.1.3 Stability for Ordinary Di�erential Equations 4
1.1.4 Stability for Switched Systems . 6
1.1.5 Chapter Layout . 7

1.2 Related Work . 8
1.2.1 Reachability Approaches . 8
1.2.2 Numerical and Certi�cate-Based Approaches 9
1.2.3 Syntactic Deduction . 11
1.2.4 Formalized Mathematics . 12

2 Background: Di�erential Dynamic Logic 15
2.1 Syntax . 15

2.1.1 Terms . 15
2.1.2 Formulas . 16
2.1.3 Hybrid Programs . 16

2.2 Semantics . 18
2.2.1 Terms . 18
2.2.2 Formulas and Hybrid Programs . 19

2.3 Axiomatics . 20
2.3.1 Sequent Calculus . 20
2.3.2 Base Axioms and Proof Rules . 21
2.3.3 Di�erentials and Lie Derivatives . 24
2.3.4 Di�erential Equation Axiomatization . 26

3 Safety and Invariance for Ordinary Di�erential Equations 31
3.1 Introduction . 31
3.2 Di�erential Dynamic Logic with Extended Terms 33

3.2.1 Syntax . 34
3.2.2 Semantics . 34
3.2.3 Axiomatics . 35
3.2.4 Extended Term Conditions . 37

ix

3.3 Darboux Invariants . 38
3.3.1 Darboux Equalities . 38
3.3.2 Darboux Inequalities . 39
3.3.3 Barrier Certi�cates . 43

3.4 Analytic Invariants . 45
3.4.1 Vectorial Darboux Equalities . 45
3.4.2 Completeness for Analytic Invariants . 48

3.5 Extended Axiomatization . 52
3.5.1 Existence, Uniqueness, and Continuity 52
3.5.2 Real Induction . 53

3.6 Semianalytic Invariants . 55
3.6.1 Local Progress . 56
3.6.2 Completeness for Semianalytic Invariants 61

3.7 Noetherian Functions . 62
3.7.1 Mathematical Preliminaries . 62
3.7.2 Extended Term Conditions for Noetherian Functions 66
3.7.3 Extended Term Language Example . 69

3.8 Related Work . 72
3.9 Discussion . 73

4 Liveness and Existence for Ordinary Di�erential Equations 75
4.1 Introduction . 75
4.2 ODE Liveness via Box Re�nements . 78

4.2.1 Liveness Re�nement . 79
4.2.2 Liveness Re�nement Axioms . 80

4.3 Finite-Time Blow Up and Global Existence . 83
4.3.1 Global Existence Proofs . 83
4.3.2 Derived Existence Axioms . 86
4.3.3 Completeness for Global Existence . 90

4.4 Liveness Without Domain Constraints . 92
4.4.1 Di�erential Variants . 93
4.4.2 Staging Sets . 96

4.5 Liveness With Domain Constraints . 99
4.6 ODE Liveness Proofs in Practice . 104

4.6.1 Liveness Proof Rules . 105
4.6.2 Proof Support . 109

4.7 Related Work . 114
4.8 Discussion . 116

5 Stability for Ordinary Di�erential Equations 117
5.1 Introduction . 117
5.2 Asymptotic Stability of an Equilibrium Point . 119

5.2.1 Mathematical Preliminaries . 120
5.2.2 Formal Speci�cation . 120

x

5.2.3 Lyapunov Functions . 122
5.2.4 Asymptotic Stability Variations . 124

5.3 General Stability . 128
5.3.1 General Stability and General A�ractivity 128
5.3.2 Specialization . 129

5.4 Stability in KeYmaera X . 132
5.5 Input-to-State Stability . 135
5.6 Related Work . 137
5.7 Discussion . 138

6 Stability for Switched Systems 139
6.1 Introduction . 139
6.2 Switched Systems as Hybrid Programs . 142

6.2.1 Mathematical Preliminaries . 142
6.2.2 Autonomous Switching . 143
6.2.3 Controlled Switching . 148

6.3 Switched System Stability . 151
6.3.1 Stability as �anti�ed Loop Safety . 151
6.3.2 Stability for Autonomous Switching . 153
6.3.3 Stability for Controlled Switching . 157

6.4 KeYmaera X Implementation . 159
6.4.1 Modeling and Proof Interface . 159
6.4.2 Examples . 160

6.5 Case Studies . 161
6.5.1 Canonical Max System . 161
6.5.2 Automated Cruise Control . 163
6.5.3 Brocke�’s Nonholonomic Integrator . 165

6.6 Related Work . 167
6.7 Discussion . 168

7 Conclusion 169
7.1 �esis Summary . 169
7.2 Future Directions . 170

A Appendix: Safety and Invariance for Ordinary Di�erential Equations 191
A.1 Di�erential Dynamic Logic Axiomatization . 191

A.1.1 Extended Axiomatization Soundness . 191
A.1.2 Extended Derived Rules and Axioms . 195

A.2 Completeness . 199
A.2.1 Progress Formulas . 200
A.2.2 Local Progress . 202
A.2.3 Analytic Invariants . 207
A.2.4 Completeness for Semianalytic Invariants with Semianalytic

Evolution Domains . 211

xi

B Appendix: Liveness and Existence for Ordinary Di�erential Equations 215
B.1 Proof Calculus . 215

B.1.1 Base Calculus . 215
B.1.2 Re�nement Calculus . 217
B.1.3 Topological Side Conditions . 221

B.2 Derived Existence and Liveness Proof Rules . 223
B.2.1 Proofs for Finite-Time Blow Up and Global Existence 223
B.2.2 Proofs for Liveness Without Domain Constraints 228
B.2.3 Proofs for Liveness With Domain Constraints 233
B.2.4 Proofs for ODE Liveness Proofs in Practice 237

B.3 Counterexamples . 239
B.3.1 Finite-Time Blow Up . 240
B.3.2 Topological Considerations . 240

C Appendix: Stability for Ordinary Di�erential Equations 243
C.1 Derived Stability Proof Rules . 243

C.1.1 Proofs for Asymptotic Stability of an Equilibrium Point 243
C.1.2 Proofs for General Stability . 252

C.2 Counterexamples . 257

D Appendix: Stability for Switched Systems 259
D.1 Switched System Models and Stability Proof Rules 259

D.1.1 Proofs for Switched Systems as Hybrid Programs 259
D.1.2 Proofs for Switched System Stability . 263

D.2 Counterexamples . 279

xii

Chapter 1

Introduction

Ordinary di�erential equations (ODEs) are quintessential mathematical models in the engineering
and physical sciences. �eir importance stems from the fact that they provide a succinct and
tractable way of describing the complex dynamics of real-world continuous systems. However,
many real-world systems of practical interest, such as self-driving cars, autonomous factory
robots, or airplane autopilots, cannot be modeled purely continuously because they are also con-
trolled by discrete so�ware components. For example, the continuous motion of an autonomous
vehicle may be controlled by so�ware that makes abrupt, discrete changes to its steering, braking,
or other control inputs. �ese systems are examples of so-called cyber-physical systems (CPSs)
that feature an interaction between discrete computational control and continuous real-world
physics. �e increasing prevalence of CPSs and the fact that they o�en operate in safety- and
mission-critical se�ings entail the need to ensure that those systems operate safely and correctly.
Hybrid systems [28, 45, 66, 75] are mathematical models that combine discrete and continuous
dynamics, and interactions thereof; this combination makes them natural models to use in the
study of the discrete-continuous dynamics present in CPSs [6, 144].

Deductive reasoning for hybrid systems is an emergent approach for the formal veri�cation of
CPSs [45, 135, 144, 164, 188, 208, 213]. Broadly speaking, deductive reasoning refers to a class of
logic- and proof-based veri�cation techniques [45] where a given system is shown to have the
desired correctness properties through a series of syntactic deduction steps. Such techniques are
a�ractive for hybrid systems because their �exibility allows for proofs of comprehensive correct-
ness speci�cations, while their sound logical foundations ensure trustworthiness of the resulting
conclusions. Compositionality is the key for scaling deductive techniques to larger models and
realizing the aforementioned bene�ts in practical applications. In particular, deductive proofs
for hybrid systems formally decompose those systems into their constituent dynamics and then
prove properties of the resulting simpler subsystems separately [45]. Conversely, composi-
tionality also li�s insights for discrete and continuous dynamics to corresponding insights for
hybrid systems. �e goal of this thesis is to push the boundaries of formal veri�cation for hybrid
systems by furthering the understanding of deductive reasoning for their constituent continuous
dynamics described by ODEs. �e pursuit of this goal is guided by the thesis statement:

Deductive reasoning provides a powerful, uniform, and foundational way of proving
properties of ordinary di�erential equations. �is logical foundation, in turn, yields
new insights towards the veri�cation of continuous and hybrid systems.

1

ODE Safety
Proofs (Ch. 3)

ODE Liveness
Proofs (Ch. 4)

ODE Stability
Proofs (Ch. 5)

Switched System
Stability Proofs (Ch. 6)

+ Re�nement
reasoning

+ ∀,∃ reasoning

+ ∀,∃ reasoning

+ Hybrid systems reasoning

Background: Di�erential Dynamic Logic (Ch. 2)

Figure 1.1: An overview of the thesis chapters and dependencies between those chapters. An
arrow Chapter A −→ Chapter B indicates that Chapter B builds on material from Chapter A by
adding new proof ideas and deduction techniques.

1.1 �esis Overview
�is thesis studies deductive veri�cation for three key classes of ODE properties: safety (Chap-
ter 3), liveness (Chapter 4), and stability (Chapter 5). Brie�y, an ODE is safe if its continuous
solutions from a given set of initial states always stay within a prescribed set of safe states. Dually,
an ODE is live if its solutions eventually enter a speci�ed goal region from the given initial states.
Proofs of ODE safety and liveness speci�cations provide mathematical guarantees that a given
continuous system operates safely and reaches its goals successfully. Proofs of stability show
that the ODE models under consideration are suitably robust to small, mathematically-de�ned
perturbations of the system. Such stability properties are complementary to safety and liveness
properties, especially for control systems which must be designed to operate robustly in the
presence of real-world perturbations. Figure 1.1 provides an overview of the thesis chapters
and illustrates the key role that compositionality plays throughout this thesis—later chapters
build on the deductive proofs from earlier chapters by adding various reasoning aspects. �is
compositional arrangement culminates in the study of deductive stability proofs for switched
systems (Chapter 6), a class of hybrid systems featuring discrete switching between a family
of continuous modes. Hybrid switching designs can be used to achieve control objectives that
cannot otherwise be achieved by purely continuous means, but they can also exhibit subtle
stability behavior (see Section 1.1.4) which makes rigorous proofs of their stability desirable.

All of the aforementioned properties are formalized in this thesis using di�erential dynamic
logic (dL), a logic for deductive veri�cation of hybrid systems [135, 139, 142, 144] (Chapter 2).
�e use of dL as a uniform logical foundation throughout this thesis has several key bene�ts:

1. �e dL proof calculus enables compositional reasoning, as illustrated by the logical depen-
dencies in Fig. 1.1. Proof insights for ODEs are li�ed to corresponding results for hybrid
systems through dL’s hybrid program modeling language and reasoning principles [144].

2

Figure 1.2: (Le�) An appropriate invariant set shows that ODE evolutions from the initial states
always stays in the invariant and cannot enter the unsafe states. (Right) Trajectories from the
initial state eventually enter the target region without leaving the domain of safe states.

2. All reasoning principles for safety, liveness, and stability are syntactically derived from
a parsimonious set of dL axioms with well-established semantic and axiomatic founda-
tions [139, 142] which yields utmost con�dence in the correctness of the resulting proofs.
Moreover, the dL foundation provides a basis for investigating proof-theoretical questions,
such as the completeness and deductive power of the proof calculus [139, 140].

3. �e dL proof calculus is implemented in the KeYmaera family of hybrid system theorem
provers [115, 147] and related tools [55, 180]. Insights from this thesis are put into
practice through the KeYmaera X prover [54] which implements dL’s uniform substitution
calculus [142]. �anks to the shared dL foundation, the thesis implementations and case
studies require minimal extensions to KeYmaera X’s soundness-critical axiomatic core and
thereby directly inherit the trustworthiness of KeYmaera X’s microkernel design [54, 115].

Informally, dL is also an excellent se�ing in which familiar intuitions from discrete program
veri�cation can be analogously applied to continuous and hybrid systems. �is connection is
exploited throughout the thesis, for example, the classical technique of introducing auxiliary
ghost state to a program for the sake of its veri�cation [127] is crucially used to aid di�erential
equations reasoning in Chapters 3 and 4 through dL’s continuous di�erential ghost princi-
ple [139, 140]. �e same idea reappears under a slightly di�erent guise for stability speci�cations
in Chapter 5 and yet again in Chapter 6 for a switched system stability veri�cation case study.

1.1.1 Safety and Invariance for Ordinary Di�erential Equations
An invariant (also called positive invariant) of an ODE is a set of states that cannot be le� by
evolving the ODE forward in time starting from any state in that set. Such invariants play an
important role in proofs of safety for ODEs [144], as illustrated in Fig. 1.2 (le�). Suppose the
system under consideration is evolved forward in time from a set of initial states (in green)
and it is undesirable for the system to enter the unsafe states (in red). �e invariant set (in
blue, with dashed boundary) contains the initial set and is a subset of the safe states (unshaded).
Consequently, all forward evolutions of the ODE from the initial set are trapped within the
invariant and can therefore never enter the set of unsafe states.

3

Chapter 3 presents a dL di�erential equation axiomatization [148, 149] that is complete for
reasoning about ODE invariants. �e key result is that, given an ODE and a candidate invariant
characterized by a formula of arithmetic, one can always syntactically prove (or disprove)
invariance of the candidate invariant from the parsimonious axiomatization of di�erential
equations reasoning principles in dL. �e dL logical foundation is crucial for this result and, in
fact, Chapter 3 [149] proves the completeness result more generally for all ODEs and invariants
in any extended dL term language that meets three extended term conditions because the
dL axiomatization remains sound for those extensions [149]. �e rich class of Noetherian
functions [12, 56, 57, 201] is shown to meet those criteria and therefore automatically inherits
the completeness result. Extension of dL’s term language with Noetherian functions is practically
useful because the Noetherian class includes many (non-polynomial) functions of use in models
of continuous and hybrid systems, e.g., the exponential and trigonometric functions. �e chapter
also proves related completeness results for the special case of equational invariants, where dL’s
hybrid program axioms are used to compositionally li� those results to hybrid systems.

1.1.2 Liveness and Existence for Ordinary Di�erential Equations
An ODE is live if its solutions from the prescribed initial states eventually enter a given goal or
target region. For reach-avoid type applications [18, 22], these solutions may also be required to
avoid certain unsafe states before the goal or target region is reached. �is liveness property is
illustrated in Fig. 1.2 (right), where trajectories from the initial set (in green) enter the target
region (in blue, dashed boundary) without entering the set of unsafe states (in red). Liveness
arguments are subtle in the continuous se�ing, e.g., ODE solutions may cease to exist a�er a
short time period before they reach the target region. �ese subtleties are the source of several
soundness errors identi�ed in liveness arguments from the literature (see Table 4.1, page 76).

Chapter 4 [192, 195] presents an approach for deducing liveness properties of ODEs through
systematic, step-by-step re�nements, where each step is justi�ed using an ODE safety (or
invariance) property proved using the results of Chapter 3. �e idea of using safety properties
in proofs of liveness properties is reminiscent of deductive proofs of liveness for discrete
(concurrent) systems [109, 128] and Chapter 4’s key insight is that this idea generalizes to
the continuous se�ing—as long as the new technical subtleties, such as su�cient duration
existence of solutions, are appropriately identi�ed and handled. Re�nement reasoning in
dL provides a sound and uniform basis for navigating these subtleties, in contrast to earlier
ad hoc (o�en unsound) approaches from the literature (surveyed in Table 4.1). Re�nements
also naturally generalize to new ODE liveness arguments by soundly mix-and-matching or
generalizing previously identi�ed re�nement steps in new ways. As a special case, Chapter 4
applies the re�nement approach to deductive proofs of su�cient duration existence for ODEs
which are a key hypothesis behind ODE liveness arguments. �ese insights are put into practice
through an implementation of ODE existence and liveness proofs in KeYmaera X.

1.1.3 Stability for Ordinary Di�erential Equations
At a high level, stability properties can be understood as a combination and/or variation of two
underlying properties [165]:

4

v v v

vc vc vc
v0 v0 v0

t t t

Figure 1.3: �e le�most plot shows a stable and a�ractive cruise controller driving a car’s speed
v back to the desired cruising speed vc over time t from a small initial perturbation v0. Note
that v remains near vc throughout (stability) and converges to vc as t→∞ (a�ractivity). �e
middle plot shows a stable controller lacking a�ractivity, where v oscillates around vc but never
converges to vc. �e rightmost plot shows an a�ractive controller that lacks stability; although
v converges to vc, the car is transiently driven to a stop v = 0 before speeding up again.

Stability.1 A stable system always stays close to its desired operating state(s) when initially
slightly perturbed from those operating state(s).

A�ractivity. An a�ractive system dissipates initial perturbations and eventually returns to
a desired operating state.

A familiar example illustrating these properties is a cruise controller that is a�empting to
keep a car at its desired cruising speed [6]. Stability of the cruise controller ensures that small
perturbations to the car’s cruising speed, e.g., from minor bumps in the road, do not result in
large and potentially unsafe changes in its speed. A�ractivity of the controller ensures that
those perturbations are eventually dissipated so that the car successfully returns to its cruising
speed and does not, e.g., remain in uncomfortable oscillations that might be dangerous for the
car’s passengers. �e behavior of various cruise controllers are illustrated in Fig. 1.3.

�e informal descriptions of stability and a�ractivity are, respectively, similar to the de-
scriptions of ODE safety and liveness, with the added twist that stability and a�ractivity are
concerned with the local and long-term (asymptotic) behavior of a system near its desired operat-
ing state(s). Chapter 5 [194] shows how ODE stability and a�ractivity can be formally speci�ed
as quanti�ed and nested ODE safety and liveness properties, where the �rst-order quanti�ers
∀,∃ are used to express local and/or long-term asymptotic behaviors of the ODE solutions. Ac-
cordingly, deductive proofs of stability speci�cations are built by formalizing classical Lyapunov
function-based techniques [98] for stability through the combination of quanti�er reasoning and
dL’s ODE safety and liveness reasoning principles studied in the preceding Chapters 3 and 4.
�e �exibility a�orded by dL’s formula syntax and proof calculus is crucial because there are a
number of stability variations, e.g., exponential or set stability, that may be of interest for any
given system with di�erent speci�cations (see Chapter 5 for further examples). Unlike existing
stability veri�cation approaches [3, 61, 88, 104, 170], the deductive approach rigorously proves
every step of a stability argument as opposed to arithmetic conditions that imply a given stability

1�e word “stability” is o�en used as a one-size-�ts-all term to refer to various related stability notions. �e
description of stability here is in the sense of the mathematical de�nition of Lyapunov stability for ODEs [71, 89, 165].

5

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4

v

u

(a) Stable ODE u′ = −u
8 − v, v

′ = 2u− v
8

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4

v

u

(b) Stable ODE u′ = −u
8 − 2v, v′ = u− v

8

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4

v

u

(c) Stable switching along u = 0

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4

v

u

(d) Unstable switching along u = 0 and u = 2v

Figure 1.4: Figures 1.4a and 1.4b in the top row show trajectories for ODEs in blue and dashed
red that spiral towards the stable origin u = 0, v = 0. Figures 1.4c and 1.4d in the bo�om row
show two di�erent switching designs that produce opposite stability outcomes for the overall
system: a stable spiral towards the origin for Fig. 1.4c but an unstable trajectory that diverges
from the origin for Fig. 1.4d. �e alternating colors show the ODE that is being followed at each
point along the trajectory and the solid black lines indicate switching boundaries.

notion. �us, instead of building an entirely new veri�cation tool or proof approach for each
new stability notion, the deductive approach formalizes them all within dL, which enables the
use of KeYmaera X as a single trustworthy tool for stability veri�cation.

1.1.4 Stability for Switched Systems

Stability is also an important design objective when the real-world systems of interest are
modeled by hybrid systems instead of purely continuous ODEs [44, 99, 118, 189]. �e added
complication is that stability of a given hybrid system is a function of both its continuous ODEs

6

and its discrete dynamics, so both dynamics must be adequately accounted for in the overall
stability proof. �is subtlety is present even for the sub-class of switched systems, i.e., hybrid
systems that discretely switch between a family of continuous modes but without discrete jumps
in their system state [28]. For example, Fig. 1.4 shows a system that switches between two
ODEs which are individually stable (Figs. 1.4a and 1.4b), but where the overall system becomes
unstable when subjected to a destabilizing switching signal (Fig. 1.4d). It is desirable to design
discrete switching mechanisms that maintain stability of the overall system (Fig. 1.4c) and, in
some cases, it may even be possible to use switching to stabilize otherwise unstable ODEs or to
use appropriately designed switching control to achieve control goals that cannot be achieved
by purely continuous means [99]. Rigorous proofs of switched system stability are important
to ensure that a given switching design achieves the intended e�ect of stabilizing a system,
especially for complicated designs where pen-and-paper proofs become error-prone.

Switched systems and their stability questions provide a practically useful proving grounds
for demonstrating the la�er part of the thesis statement, i.e., that the deductive approach to
ODEs yields new insights towards the veri�cation of hybrid systems. Chapter 6 [193, 196] applies
the results of the preceding Chapters 3–5 to the study of switched system stability.

Switched Systems as Hybrid Programs [193]. Various classes of switched systems are
modeled as looping hybrid programs in dL, where each loop iteration models a discrete switching
step followed by continuous evolution of the chosen mode. �is bridge between formalisms—
switched systems from control theory and hybrid programs from veri�cation—leads to fruitful
cross-pollination of ideas from their respective �elds. For example, the completeness results for
ODE invariants in Chapter 3 are compositionally extended to complete invariance proof rules
for various classes of switched systems, which facilitates their e�ective safety veri�cation in dL.

Switched System Stability Veri�cation [196]. Switched system stability is proved for loop-
ing hybrid programs by blending classical ideas from the controls and veri�cation literature
using dL. From controls, standard stability notions for various classes of switching mechanisms
are used [65, 66, 99], along with their corresponding Lyapunov function-based analysis tech-
niques [27, 89, 99]. From veri�cation, properties of looping hybrid programs (modeling switched
systems) are veri�ed by �nding appropriate loop invariants, i.e., properties that are preserved
across each loop iteration [144]. �is blend of ideas enables a trustworthy implementation
of switched system stability veri�cation in KeYmaera X providing fully automated stability
proofs for standard classes of switching mechanisms, including automatically searching for
suitable Lyapunov functions. �e generality of the dL approach also allows for veri�cation of
switching control laws that require non-standard stability arguments because users can design
loop invariants that suitably express speci�c intuitions behind those control laws. �is �exibility
is demonstrated on several case studies in Chapter 6.

1.1.5 Chapter Layout
Chapters 3–6 each have an associated appendix containing omi�ed details and proofs (Ap-
pendix A–D). It is recommended to read the thesis chapters in order, because later thesis chapters
build signi�cantly on results developed in earlier chapters (see Fig. 1.1).

7

Figure 1.5: An overview of approaches for the veri�cation of continuous and hybrid systems. �e
underlying trust story for each approach is shown in green, with darker shades corresponding
to a comparatively stronger trust story behind the approach’s veri�cation results.

1.2 Related Work
�is related work discussion broadly examines approaches for the formal veri�cation of con-
tinuous and hybrid systems and explains how this thesis relates to the broader hybrid systems
veri�cation landscape. Chapters 3–6 contain further related work discussion speci�c to the
material of the respective chapters. �e discussion here is structured along a high-level catego-
rization of formal veri�cation approaches along the automation, generality, and trust story axes,
as shown in Fig. 1.5. �e automation axis examines the tools that implement a given category of
approaches; the generality axis examines the types of speci�cations that can be tackled, espe-
cially the safety, liveness, and stability properties studied in this thesis; and the trust story axis
examines what needs to be trusted by a user in order to trust a veri�cation result produced by
the tools. �is thesis seeks to improve syntactic deduction along the automation and generality
axes while retaining its strong trust story. Of course, the boundaries between categories are not
always clear-cut and approaches that overlap several categories are highlighted as well.

1.2.1 Reachability Approaches
�ere is an extensive literature on model checking and reachability analysis for hybrid systems [7,
31, 35, 48, 52, 53], o�en based on analyzing hybrid automata [7, 75], see Doyen et al. [45] for a
comprehensive survey. Brie�y, these approaches compute an overapproximation of the image of
a set of initial states under the dynamics of a hybrid system. Safety speci�cations are veri�ed by
checking that the overapproximate images do not intersect unsafe states.

• Automation. �ere are a number of tools for automated hybrid system reachability analysis
that handle di�erent sub-classes of hybrid dynamics, e.g., SpaceEx [53] handles piecewise
a�ne hybrid automata while Flow* [31] supports automata with nonlinear dynamics,

8

see Doyen et al. [45, Chapter 30.7] for a survey of other reachability tools [5, 15, 48,
52, 172]. A key ingredient for reachability computations is the use of e�cient internal
representations of state sets that provide di�erent trade-o�s in runtime and accuracy for
computing overapproximations [45]. For example, SpaceEx converts between template
polyhedra and support function representations to apply di�erent operations [53] while
Flow* is based on Taylor model overapproximations [31]. Several tools provide modular
libraries [5, 15, 172] so that users and developers can �exibly experiment on di�erent
combinations of representations and algorithms.

• Generality. Reachability analysis tools are o�en limited to i) sub-classes of hybrid sys-
tems, e.g., with piecewise a�ne dynamics in SpaceEx [53], ii) analysis over su�ciently
small bounded initial sets and for a �nite time horizon to avoid error growth in overap-
proximations [45], and iii) �xed (or bounded) parameters for the hybrid system models.
�e use of reachability analysis for liveness-type properties has not been as extensively
explored [122], although specialized tools have used, e.g., (under-approximate) reacha-
bility for liveness [32, 67] and stability veri�cation [151], see related work discussion in
Chapters 4–6. Overall, reachability approaches have powerful automation but apply to
restricted subsets of the safety, liveness, and stability properties considered in this thesis.

• Trust story. To trust the output of each veri�cation tool mentioned above, one must trust
the correctness of the underlying mathematical justi�cation intrinsic to each approach
and the extrinsic tool implementation details. Intrinsic errors in mathematical justi�cation
nullify veri�cation results since there is no guarantee that those results correctly imply the
desired property. Extrinsic errors are mismatches between the tool implementation and
underlying justi�cation. �is also leads to gap in the trust story, e.g., the use of �oating
point rather than exact arithmetic for e�ciency in implementations [53]. One way to
eliminate both forms of error is to formally prove their absence within a general purpose
proof assistant, e.g., Immler [79] veri�ed an ODE solver in Isabelle/HOL [124] using
rigorous Runge-Ku�a methods [199, Section 2.7] that can produce veri�ed enclosures for
solutions of ODEs. However, the veri�ed tool’s performance is not competitive with other
(unveri�ed) tools [84]. Another trust gap is that a disparate combination of tools must be
used in concert to achieve a comprehensive veri�cation result of multiple speci�cations,
e.g., of safety, liveness, and stability for a given system, which enlarges the trusted base
of the veri�cation result. Notwithstanding the trust story, the bag-of-tools approach is
advantageous because it applies complementary tools with di�erent strengths to tackle
sub-classes of speci�cations. Combined approaches using reachability tools and others
(discussed below) have been successfully used for several case studies [101, 186, 212].

1.2.2 Numerical and Certi�cate-Based Approaches
An alternative class of automated veri�cation techniques is based on generating certi�cates
that imply the properties of interest [45, Chapter 30.6]. For example, barrier certi�cates [155]
are a popular technique for certifying safety of a hybrid system, where the trajectories of the
hybrid system are proved to never enter unsafe states by showing that a given barrier function

9

(typically a polynomial function) satis�es certain arithmetical conditions that imply safety. Such
barriers are o�en found by numerically solving a sum-of-squares problem [129] with constraints
that encode the appropriate arithmetical conditions. Similar techniques for ODE and hybrid
system safety are based on �nding invariants of those systems [146, 161, 169] (see Chapter 3).
Other (numerical) certi�cates include variants that imply liveness [156, 157, 191] (see Chapter 4)
and Lyapunov functions that imply stability [3, 61, 88, 170] (see Chapters 5 and 6).

• Automation. Approaches based on automatically generating certi�cates are implemented
in various tools [3, 61, 88, 91, 155, 156, 157, 170, 178, 180, 191]. �e main di�erence between
tools is how they encode di�erent (su�cient) arithmetical conditions into an appropriate
input format for di�erent numerical solvers. For example, su�cient conditions for barrier
certi�cates come in various �avors, including strict [155], Darboux [210], exponential [91],
and vector barrier certi�cates [178]. �ese conditions have also been encoded (and solved)
di�erently, e.g., with linear programming [209], sum-of-squares programming [91, 155],
or other novel combinations of encoding and/or solving techniques [88, 132, 205, 210].

• Generality. Compared to reachability approaches, barrier certi�cates and invariants are
useful for certifying safety with respect to unbounded initial sets and over in�nite time
horizons. However, tools for generating these certi�cates are highly-dependent on the
success of numerically solving the encoded problems and they su�er from scalability
issues for higher dimensional systems [180]. Some numerical generation techniques also
require bounded domains for the input model’s state or parameter values [3, 61, 170]. �us,
problems can have safety certi�cates in theory but those certi�cates may not be easily
found by tools in practice. Certi�cates for liveness and stability can also be numerically
generated [49, 104, 130, 131, 156, 157, 200], subject to similar caveats, see related work
discussion in Chapters 4–6. Existing certi�cate-based methods form the basis for further
study in this thesis, e.g., Chapter 4 surveys and generalizes liveness arguments from the
literature while Chapters 5 and 6 formalize Lyapunov functions for stability.

• Trust story. Intrinsic errors in the mathematical justi�cation for certi�cate-based ap-
proaches have been reported in the literature and in this thesis, e.g., for barrier certi�-
cates [45, Chapter 30.6.1], in the survey of liveness arguments (Table 4.1, page 76), and
for stability (Appendix C.2). A key contribution of this thesis is to soundly and syntacti-
cally justify proof rules for certi�cates by deriving them from a trustworthy logical basis.
Another important trust gap for certi�cate-based approaches arises when numerically
generated results are invalid because the results contain numerical errors and so do not
satisfy all of the required arithmetical conditions. Numerical issues have been highlighted
in the literature [3, 40, 88, 167, 170, 180] and they are o�en handled by not trusting the
output of numerical solvers but instead separately checking the correctness of any un-
trusted candidate certi�cates with a separate trusted tool. Certi�cate-based approaches
can be fruitfully integrated with deductive tools (discussed next) by using the la�er tools
to soundly check untrusted certi�cates. For example, untrusted ODE invariant candidates
generated by the Pegasus tool [180] are formally checked by KeYmaera X.

10

1.2.3 Syntactic Deduction
A number of proof calculi have been proposed for syntactic, deductive reasoning for hybrid
systems [45, 135, 164, 188, 213], including di�erential dynamic logic (dL) [135, 139, 142, 144]
which is used as the logical foundation throughout this thesis (Chapter 2).

• Automation. Hybrid Hoare Logic (HHL) [102, 213] extends Hoare logic to support hybrid
systems and it is implemented in the HHL prover [206] embedded in Isabelle/HOL. �e
dL proof calculus is implemented in the KeYmaera [147] and KeYmaera X [54] provers
for hybrid systems [115]. A Hoare-style logic with dL-inspired proof rules has also been
implemented in Isabelle/HOL [50, 51]. �ese tools provide users with a high degree of
hybrid system-speci�c automation [54], e.g., ODE solving, invariant generation [180], and
automated application of canonical reasoning steps. However, unlike the reachability and
certi�cate-based approaches, syntactic deduction approaches are semi-automatic and o�en
require some manual user input to supply insights for more di�cult parts of proof, such
as supplying loop invariants or proving properties of (complicated) ODEs [144, 213].
�is thesis improves automation: Chapter 3 furnishes a means of automatically proving
ODE invariance; Chapter 4 provides an implementation of ODE liveness; Chapters 5 and 6
derive high-level stability proof rules in dL and implement them in KeYmaera X.

• Generality. Proof calculi are syntactically limited by the properties that can be expressed
in their speci�cation language and by the reasoning principles available for proving those
speci�cations. For example, in dL, users can model and specify �rst-order dynamical
properties of hybrid system models [73, 144]. Deductive calculi can be composition-
ally extended to accommodate, e.g., (continuous) di�erential-algebraic [137], (construc-
tive) adversarial [18, 141, 143], doxastic [110], distributed [136], stochastic [138], and
concurrent [164, 213] dynamics. �e base logic of dL has also been extended with tem-
poral [85, 133], relational [90], hybrid-logical [17], and re�nement [19, 106] reasoning.
Compositionality can also be exploited through contract-based reasoning to scale veri�ca-
tion to larger hybrid systems consisting of interacting components [87, 100, 119].
�is thesis improves generality: Chapter 3 extends the base term language of dL while
retaining complete invariance reasoning; Chapter 4 develops reasoning principles for ODE
liveness; Chapters 5 and 6 uses dL to tackle stability and its reasoning principles. �e
fundamental advantage of compositional reasoning is that all results of this thesis can be
applied to answer ODE safety, liveness, and stability sub-questions arising in any of the
aforementioned extensions of dL without compromising the soundness of their logics.

• Trust story. To trust a syntactically proved result, one must trust its logical foundations. �is
thesis uses dL, whose foundations are well established in the literature [135, 139, 142, 144].
Furthermore, soundness of dL’s uniform substitution calculus has been formally veri�ed
in the general purpose proof assistants Isabelle/HOL and Coq [20]. Both KeYmaera and
KeYmaera X implement dL but with di�erent design principles [115]: KeYmaera is built on
the KeY prover and inherits its signi�cant visualization, automation, and user interaction
features; KeYmaera X is a clean-slate prover designed around a minimal, soundness-
critical core kernel implementing the aforementioned uniform substitution calculus for

11

dL. Crucially, KeYmaera X’s microkernel (≈2000 lines of Scala) [54, 115] is the only part
of its implementation that must be trusted to trust its axiomatic veri�cation results. �e
remaining trust question is how to handle arithmetic sub-questions arising in proofs:
KeYmaera and KeYmaera X both provide tools for proving simple arithmetic questions and
interfaces to various external arithmetic solvers [115]. Veri�ed arithmetic is an active area
of research, including formally veri�ed provers [36, 38, 113, 120, 121, 171], certi�cate-based
techniques [74, 150] (also available in KeYmaera), and combinations thereof [97].

�is thesis retains the strong trust story of dL and KeYmaera X: it is based on syntactically
deriving high-level reasoning principles for ODE safety, liveness, and stability from a
core dL axiomatization. Such a syntactic approach �ts particularly well with an imple-
mentation in KeYmaera X because those high-level reasoning principles are implemented
as (untrusted) tactics in KeYmaera X [55], with its sound kernel as a safeguard against
implementation errors or mistakes in pen-and-paper proof rule derivations.

1.2.4 Formalized Mathematics

General purpose proof assistants have been used to formalize speci�cations and theorems for
ODEs and hybrid systems. Examples of such e�orts include: foundational theory for ODEs and
libraries for their veri�ed numerical analysis [80, 83, 108], LaSalle’s invariance principle for
stability analysis [37, 166], and the Poincaré-Bendixson theorem [82].

• Automation. Formalizing mathematics in a proof assistant is o�en beset by signi�cant
manual user e�ort in proofs, e.g., in dynamical systems formalization, Immler and Tan
[82] required ≈7000 lines of proof script to formalize the Poincaré-Bendixson theorem,
building on signi�cant existing libraries; Rouhling [166] required ≈1000 lines of proof
to de�ne and prove the stability of an inverted pendulum controller a�er extending an
earlier formalization of LaSalle’s invariance principle [37]. �is e�ort contrasts with
syntactic deduction (e.g., in KeYmaera X) because users have to reason over the underlying
mathematical semantics of the properties being formalized. Addition of domain speci�c
automation, e.g., in the style of dL for hybrid systems [51], can help reduce user e�ort.

• Generality. In principle, general purpose proof assistants allow for formalization of com-
plicated mathematical properties of ODEs and hybrid systems, as long as the required
background libraries are available (or su�cient time and resources are devoted to develop-
ing those libraries). Examples of such libraries include the Archive of Formal Proofs (AFP)
for Isabelle/HOL,2 the Lean mathematical library [111], and the Mathematical Compo-
nents library for Coq.3 �e AFP ODE library [81] has been used in a number of ODE and
hybrid system formalizations by various authors [20, 82, 145, 208], while the Mathematical
Components library is used by Cohen and Rouhling [37]. Libraries for real analysis are
available in most proof assistants [23].

2https://www.isa-afp.org
3https://math-comp.github.io

12

https://www.isa-afp.org
https://math-comp.github.io

• Trust story. To trust a formalized result, one must trust: i) the logical foundations of the
proof assistant used, ii) the proof assistant implementation, and iii) the correct de�nition
of mathematical concepts involved in the formalization. �ere is ongoing research towards
improving trust in the former two points, e.g., by mechanizing the logical foundations [95,
184] and developing veri�ed kernel implementations [2, 42]. �e la�er point may be
alleviated by careful inspection, or by re-using well-accepted de�nitions from other
formalization e�orts available in common libraries, such as the ones mentioned above.

Proof assistants can also be used to strengthen the trust story underlying the preceding
categories of approaches. Several deductive calculi for hybrid systems have been mechanized, e.g.,
dL and its game logic extension [20, 145], modal Kleene algebra for hybrid systems [50, 51, 208],
and Hybrid Hoare Logic [206]. �e VeriDrone [163] and ROSCoq [8] projects both provide
mechanized frameworks within Coq which can be used to model and reason about hybrid
systems. Full mechanical veri�cation is an intriguing future endpoint for the results of this
thesis, although the proof e�ort required may be prohibitive. In this respect, an important
contribution of this thesis is to identify what results are possible and useful to mechanize.
For example, a key property involving how ODE solutions can enter or exit semialgebraic
sets [64, 103] which is used in the complete analysis of ODE invariants (see Chapter 3) has been
formalized in PVS for real analytic functions [174].

13

14

Chapter 2

Background: Di�erential Dynamic Logic

�is chapter reviews the syntax, semantics, and axiomatics of di�erential-form di�erential dy-
namic logic (dL), which is the hybrid systems speci�cation and veri�cation logic used throughout
this thesis. �e exposition herein is necessarily abbreviated and adapted for the purposes of this
thesis; interested readers are referred to the literature [135, 139, 142, 144] for more complete
expositions of dL. Notational conventions used in this thesis are also established in this chapter.

2.1 Syntax
�e syntax of dL is the language in which hybrid systems are modeled and speci�ed.

2.1.1 Terms
Terms are generated by the following grammar, where x ∈ V is a variable from the set of all
variables V and c ∈ Q is a rational constant:

e, ẽ ::= x | c | e+ ẽ | e · ẽ | (e)′

Terms generated using only the �rst 4 clauses of this grammar correspond to polynomials
over the variables V under consideration. Di�erentials (e)′ are used in dL for sound di�erential
equations reasoning [142], where the value of (e)′ relates to how the value of term e changes
with each of its variables as a function also of how those variables themselves change. �e
fundamental insight is that, along the evolution of a di�erential equation, the semantic value of
di�erential (e)′ coincides with the analytic time derivative of e [142, Lem. 35], so that proofs about
equations of di�erentials yield proofs about di�erential equations. It is crucial for soundness and
compositionality that di�erentials have a local semantics de�ned in any state, so that they can be
used correctly in any context to draw sound conclusions from syntactic manipulations mixing
dynamic statements about di�erential equations and static statements about di�erentials. �e
precise semantics of di�erentials is elaborated in Section 2.2, while Section 2.3.3 explains how they
can be used to obtain a syntactic representation of (semantic) time derivatives along solutions to
di�erential equations. Syntactically, every variable x ∈ V is assumed to have a corresponding
di�erential variable x′ ∈ V which, like di�erential terms, are syntactic representations of the

15

semantic time derivative of x along ODE solutions. Section 2.3.3 shows that, in the context of an
ODE, di�erential terms (and variables) can be provably turned into terms that do not contain
any di�erentials or di�erential variables. �us, e, ẽ is exclusively used in this thesis to refer to
di�erential-free terms, i.e., (e)′ is the di�erential of e, where e is a di�erential-free term.

Notational Conventions (Terms). Results are o�en proved vectorially in this thesis, e.g., if
they hold for a di�erential equation system over any (�nite) number of state dimensions. �us,
for convenience, x will o�en be used to abbreviate a vector of state variables x = (x1, . . . , xn).
Terms e(x), ẽ(x) are wri�en with explicit arguments (x) for emphasis when it is important
that the terms depend only on variables x free. When this dependency is unimportant, terms
e, ẽ are wri�en as usual without any arguments. �e notation p, q is reserved for emphasis
when the terms p, q are polynomials, with dependencies p(x), q(x) added when necessary. For
n-dimensional vectors of terms e = (e1, . . . , en), ẽ = (ẽ1, . . . , ẽn), the dot product is e · ẽ def

=∑n
i=1 eiẽi and the squared Euclidean norm is ‖e‖2

2

def
=
∑n

i=1 e
2
i . Other norms are explicitly de�ned

when they are used.

2.1.2 Formulas
Formulas are generated by the following grammar, where ∼ ∈ {=, 6=,≥, >,≤, <} is a compari-
son operator and α is a hybrid program (de�ned in Section 2.1.3).

φ, ψ ::=

First-order formulas of real arithmetic P,Q︷ ︸︸ ︷
e ∼ ẽ | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

�is grammar extends the �rst-order language of real arithmetic (FOLR) with the box ([α]φ)
and diamond (〈α〉φ) modality formulas, which express that all or some runs of hybrid program
α satisfy the postcondition φ, respectively. Note that the modalities [·], 〈·〉 can be freely nested
with �rst-order and modal connectives, which is crucial for the dL axiomatization (Section 2.3)
and the speci�cation of stability properties in Chapters 5 and 6.

Notational Conventions (Formulas). In real arithmetic, formulas can be equivalently nor-
malized such that every atomic comparison e ∼ ẽ has 0 on the right-hand side and∼ ∈{=,≥, >}.
�e notation e < ẽ (resp. e 4 ẽ) is used when the comparison operator can be either ≥ or >
(resp. ≤ or <). Other logical connectives, e.g.,→,↔, are de�nable as usual in classical logic. As
with terms, variable dependencies for formulas φ(x), ψ(x) are added when necessary. Formulas
not containing the modal connectives, i.e., formulas of FOLR, are wri�en asP,Q. �is convention
for formulas P,Q is modi�ed for extended term languages introduced in Section 3.2 (page 33).

2.1.3 Hybrid Programs
Hybrid programs are generated by the following grammar, where x is a variable, e is a dL term
and Q is a dL formula.

α, β ::=

Continuous program︷ ︸︸ ︷
x′ = f(x) &Q |

Discrete programs and connectives︷ ︸︸ ︷
x := e | ?Q | α; β | α ∪ β | α∗

16

Continuous Programs. Chapters 3–5 focus on deductive veri�cation for the continuous
program x′ = f(x) &Q, which is a di�erential equation system x′1 = f1(x), . . . , x′n = fn(x)
over variables x = (x1, . . . , xn), where the LHS x′i is the time derivative of xi and the RHS fi(x)
is a dL term over variables x. Following the notational convention, term fi(x) is di�erential-free
so the ODE system x′ = f(x) is given in explicit form [142]. �e autonomous ODEs x′ = f(x)
do not depend explicitly on time on the RHS. A standard transformation is to add a clock variable
t to the system with x′ = f(x, t), t′ = 1 if time dependency on the RHS is desired. �e evolution
domain constraint formula Q restricts the set of states in which the ODE is allowed to evolve
continuously; the ODE is simply wri�en as x′ = f(x) when there is no domain constraint, i.e.,
Q ≡ true . �e following example ODE αe over variables u, v is illustrated in Fig. 2.1:

αe ≡ u′ = −v +
u

4
(1− u2 − v2), v′ = u+

v

4
(1− u2 − v2) (2.1)

-2 0 2 u

-1

0

1

v

Figure 2.1: �e red dashed circle u2 + v2 = 1 is ap-
proached by solutions of αe from all initial points except
the origin, e.g., the blue trajectory starting from (1

8
, 1

8
)

spirals towards the circle. �e red circle, green region
u2 ≤ v2 + 9

2
, and origin are invariants of the system.

To intuitively understand continu-
ous evolution, it is useful to draw an
analogy between ODEs and discrete
program loops: solutions of an ODE
must continuously (locally) follow its
RHS at each time instant; analogously,
a looping program must repeat its local
description given by its loop body on
each iteration.1 �e continuous evolu-
tion of αe is visualized in Fig. 2.1 with
directional arrows corresponding to
the RHS of αe evaluated at points on
the plane. Observe that, even though
the RHS of αe are polynomials in vari-
ables u, v, its solutions, which must locally follow the arrows, trace out trajectories in the u, v
plane that exhibit complex global behavior. For example, Fig. 2.1 suggests that all points on the
u, v plane (except the origin) globally evolve towards the unit circle.

Returning to the analogy, the complex behavior of ODE solutions is unsurprising: even
though the body of a loop may be simple, it is almost always impractical to reason about the
global behavior of loops by unfolding all possible iterations. Instead, the premier reasoning
technique for loops is to study their loop invariants, i.e., inductive properties that are preserved
across each execution of the loop body. Similarly, invariants of ODEs describe subsets of the
state space from which solutions of the ODEs cannot escape. Invariance reasoning principles
for ODEs form the basis upon which all further ODE reasoning is built in this thesis.

Discrete and Hybrid Programs. Hybrid dynamics arise in hybrid programs through the
combination of continuous ODEs with discrete programming constructs: discrete assignment
x := e sets the value of variable x to that of term e in the current state; test ?Q checks that formula

1In fact, this analogy can be made precise: dL also has a converse relative completeness theorem [139, �eorem
2] that reduces hybrid systems and their ODEs completely to discrete Euler approximation loops.

17

Q is true in the current state and aborts the run otherwise; the sequence program α; β runs
program β a�er α; the choice program α ∪ β nondeterministically chooses to run either α or β;
and the loop program α∗ repeats α for n ∈ N iterations where n is chosen nondeterministically.
�e nondeterminism inherent in hybrid programs is useful for abstractly modeling real-world
behaviors [144], such as the discrete switching behavior between continuous ODEs studied
in Chapter 6.

Notational Conventions (Hybrid Programs). Conditional branching programs (if-else)
are de�ned as if(φ){α}else{β} ≡ (?φ;α)∪(?¬φ; β). Single-sided conditionals (if) are de�ned
as if(φ){α} ≡ (?φ;α) ∪ (?¬φ). Nondeterministic assignments x := ∗ ≡ x′ = 1 ∪ x′ = −1
model the assignment of an arbitrary value for x [144, Appendix 12.9.2]. Nondeterministic
choice over a �nite family of hybrid programs αp for p ∈ P , P ≡ {1, . . . ,m} is denoted⋃
p∈P αp ≡ α1 ∪ α2 ∪ . . . ∪ αm.

Notational Conventions (Operator Precedence). �is thesis uses the standard operator
precedences for dL, see [144, Expedition 4.3]. Brie�y, all unary operators (¬, ∀x , ∃x , [α], 〈α〉,
and (·)∗) bind tighter than binary operators, sequential composition ; binds tighter than choice ∪,
conjunction ∧ binds tighter than disjunction ∨, and both ∧, ∨ bind tighter than (bi)implication
→,↔. Arithmetic operators are le�-associative, while logical and program operators are right-
associative, except→,↔ which require explicit parentheses.

2.2 Semantics
�e semantics of dL gives a formal, mathematical meaning to the elements of its syntax.

2.2.1 Terms

A dL state ω : V→ R assigns a real value to each variable in V; the set of all states is wri�en S.
�e semantics of term e in state ω is wri�en as ω[[e]] ∈ R and it is de�ned as usual for the standard
arithmetic operators [144, De�nition 2.4], e.g., ω[[x]] = ω(x) and ω[[e+ ẽ]] = ω[[e]] + ω[[ẽ]]. �e
semantics of di�erentials [142] is the sum of partial derivatives ∂ω[[e]]

∂x
by all variables x ∈ V

multiplied by the values of their associated di�erential variables x′, where ω(x′) selects the
direction in which x evolves locally and ∂ω[[e]]

∂x
describes how the value of e changes with a change

in the value of x:

ω[[(e)′]] =
∑
x∈V

ω(x′)
∂ω[[e]]

∂x
(2.2)

Note that the semantics of di�erentials (e)′ is well-de�ned for isolated states ω, independent
of any ODEs. �eir importance for di�erential equations reasoning in dL stems from the
(upcoming) semantics of dL formulas and hybrid programs.

18

2.2.2 Formulas and Hybrid Programs
Formulas. �e semantics of comparison operations and �rst-order logical connectives are
de�ned as usual [144, De�nition 2.5], with [[φ]] ⊆ S being the set of states where formula φ is
true, e.g., ω ∈ [[e ≤ ẽ]] i� ω[[e]] ≤ ω[[ẽ]], and ω ∈ [[φ ∧ ψ]] i� ω ∈ [[φ]] and ω ∈ [[ψ]]. �e semantics
of the modal connectives are de�ned over hybrid program semantics [[α]] ⊆ S× S (below):

ω ∈ [[[α]φ]] i� for all states ν such that (ω, ν) ∈ [[α]], ν ∈ [[φ]]

ω ∈ [[〈α〉φ]] i� there is a state ν such that (ω, ν) ∈ [[α]] and ν ∈ [[φ]]

�e semantics of hybrid programs are transition relations [[α]] ⊆ S× S, where (ω, ν) ∈ [[α]]
i� state ν is reachable from state ω by running hybrid program α. �e semantics is de�ned
inductively over the syntax of hybrid programs as follows.

Continuous Programs. �e semantics of an ODE, [[x′ = f(x) &Q]], is the set of all pairs of
states that are connected by some solution of the ODE [142, De�nition 7]:

(ω, ν) ∈ [[x′ = f(x) &Q]] i� there is a duration 0 ≤ T ∈ R and a function ϕ : [0, T]→ S
with ϕ(0) = ω on {x′}{, ϕ(T) = ν, and ϕ |= x′ = f(x) ∧Q

�e condition ϕ |= x′ = f(x) ∧Q checks that the di�erential equations and domain are
satis�ed ϕ(ζ) ∈ [[x′ = f(x) ∧Q]], with ϕ(0) = ϕ(ζ) {x, x′}{ for all times 0 ≤ ζ ≤ T , and, if
T > 0, then dϕ(t)(x)

dt (ζ) exists, and is equal to ϕ(ζ)(x′) for all 0 ≤ ζ ≤ T . In other words, ϕ is
a solution of the di�erential equations x′ = f(x) that always stays in the evolution domain
constraint Q. It is required to hold all variables other than x, x′ constant and, importantly, the
values of the di�erential variables x′ are required to match the value of the RHS f(x) of the
di�erential equation along the solution.

Discrete and Hybrid Programs. �e remaining cases for hybrid programs α are as follows,
where ◦ denotes relational composition and α0 ≡?true, αn+1 ≡ αn;α, see [144, De�nition 3.2].

(ω, ν) ∈ [[x := e]] i� ν = ω except ν(x) = ω[[e]]

(ω, ν) ∈ [[?Q]] i� ν = ω and ω ∈ [[Q]]

(ω, ν) ∈ [[α; β]] i� (ω, ν) ∈ [[α]] ◦ [[β]]

i.e., there exists state µ such that (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]]

(ω, ν) ∈ [[α ∪ β]] i� (ω, ν) ∈ [[α]] or (ω, ν) ∈ [[β]]

(ω, ν) ∈ [[α∗]] i� (ω, ν) ∈
⋃
n∈N

[[αn]], i.e., (ω, ν) ∈ [[αn]] for some n ∈ N

Formula φ is valid i� it is true in all states, i.e., [[φ]] = S. If formula P → [x′ = f(x) &Q]P
is valid, then the formula P is called an invariant of the ODE, x′ = f(x) &Q. Unfolding the
semantics, this means that from any initial state ω ∈ [[P]], any solution ϕ of x′ = f(x) starting
from ω, which does not leave the evolution domain [[Q]], stays in [[P]] for its entire duration.
Fig. 2.1 suggests several invariants for the ODE αe from (2.1). �e unit circle, u2 + v2 = 1, is an

19

equational invariant because the direction of �ow on the circle is always tangential to it. �e
open unit disk, u2 + v2 < 1, is also invariant because trajectories within the disk spiral towards
the circle but never reach it. �e green region described by u2 ≤ v2 + 9

2
is invariant but needs a

careful proof. Similarly, if the formula P → [α∗]P is valid, then the formula P is called a loop
invariant for the looping hybrid program α∗.

Notational Conventions (Semantics). Variables y ∈ V \ {x} that do not occur on the
LHS of ODE x′ = f(x) remain constant along solutions ϕ : [0, T] → S of the ODE, with
ϕ(τ)(y) = ϕ(0)(y) for all τ ∈ [0, T]. Since only the values of x = (x1, . . . , xn) change along
the solution ϕ, the solution may also be viewed geometrically as a trajectory in Rn, dependent
on the initial values of the constant parameters y. Similarly, the values of terms and formulas
depend only on the values of their free variables [142]. �us, terms (or formulas) whose free
variables are all parameters for x′ = f(x) also have provably constant (truth) values along
solutions of the ODE. For formulas φ(x) that only mention free variables x, [[φ]] can also be
viewed geometrically as a subset of Rn. Such a formula is said to characterize a (topologically)
open (resp. closed, bounded, compact) set with respect to variables x i� the set [[φ]] ⊆ Rn is
topologically open (resp. closed, bounded, compact) with respect to the Euclidean topology.
In Appendix B.1.3, a more general de�nition of these side conditions is given for formulas φ
that mention parameters y. �ese side conditions are decidable [14, 197] when φ is a formula
of �rst-order real arithmetic and there are simple syntactic criteria for checking if they hold
(Appendix B.1.3). Analogously, by projecting dL states onto the state variables x of interest for
a hybrid program α, the transition semantics of α can be equivalently viewed as a relation in
Euclidean space [[α]] ⊆ Rn×Rn. Formulas P̊ ,P and ∂P are the syntactically de�nable topological
interior, closure, and boundary of the set characterized by P , respectively [14]. For example, the
closure formula for P (x) is de�ned as, P (x) ≡ ∀ t∃y (P (x) ∧ (‖y − x‖2

2 < t2 ∨ t = 0)), with
fresh variables y, t not appearing in P (x) [14, Proposition 2.2.2]. �e interior formula is de�ned
as P̊ ≡ ¬(¬P) and the boundary formula is de�ned as ∂P ≡ P ∧ ¬P̊ .

2.3 Axiomatics
�e axiomatics of dL are the sound axioms and proof rules by which dL syntax can be soundly
and syntactically manipulated to derive new, valid conclusions.

2.3.1 Sequent Calculus
�is thesis uses a standard, classical sequent calculus [134] with the usual rules for manipulating
logical connectives and sequents. �e semantics of sequent2 Γ ` φ is equivalent to the formula
(
∧
ψ∈Γ ψ) → φ and the sequent is valid i� its corresponding formula is valid. Formulas Γ are

called antecedents of the sequent, while formula φ is its succedent. Proofs are wri�en as a

2For notational simplicity, this thesis uses sequents with exactly one succedent Γ ` φ because all of the thesis
results focus on proving validity of an ODE or hybrid system speci�cation φ from assumptions Γ. Presentations of
dL with sequents Γ ` ∆ where ∆ is a set of succedents are available in the literature [135, 139, 142, 144].

20

sequence of deduction steps, where the axiom or proof rule used in each step is annotated to the
le�, as shown in the following illustrative proof outline:

Deductionx cut

...
Γ ` ψ

[;]

...
ψ ` [α][β]φ

Γ, ψ ` [α; β]φ

Γ ` [α; β]φ

Starting from the desired conclusion (below the rule bar), application of a proof rule, like
the propositional cut rule, yields its premises (above the rule bar). When an implicational or
equivalence axiom is used, like the [;] axiom [α; β]φ ↔ [α][β]φ for sequential compositions,
propositional sequent manipulation steps are omi�ed and the proof step is directly labeled with
the axiom, giving the resulting premises accordingly [142]. Weakening steps that drop irrelevant
assumptions are also omi�ed. Completed branches are marked with ∗ above the rule bar.

An axiom is sound i� all of its instances are valid and a proof rule is sound i� validity of
all of its premises imply validity of its conclusion. Axioms and proof rules are derivable i� all
of their instances can be deduced from sound dL axioms and proof rules. Soundness of the dL
axiomatization ensures that all axioms and proof rules that are syntactically derived from the
axiomatization are sound [142, 144] and can thereby be soundly used in subsequent deductions.

Arithmetic. First-order real arithmetic (over polynomial terms) is decidable [14, 197] so access
to such a decision procedure is assumed. Proof steps are labeled with R whenever they follow as
a substitution instance of a valid formula of �rst-order real arithmetic.

Propositional and First-Order Proof Rules. �e following is an excerpt of sound proposi-
tional and �rst-order sequent calculus proof rules that are used in this thesis. Presentations of
the entire calculus, e.g., with the ∨R rule(s), are available in the literature [135, 139, 142, 144].
In rules ∀L, ∃R, an arbitrary dL term e can be used to instantiate the respective quanti�ers. In
rules ∃L, ∀R, the Skolem variable y is fresh, i.e., does not occur free, in the conclusion:

¬L
Γ ` φ

Γ,¬φ ` false

¬R
Γ, φ ` false

Γ ` ¬φ

∨L
Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ, φ1 ∨ φ2 ` ψ

cut
Γ ` ψ Γ, ψ ` φ

Γ ` φ

∧L
Γ, φ1, φ2 ` ψ

Γ, φ1 ∧ φ2 ` ψ

∧R
Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2

∀L
Γ, φ(e) ` ψ

Γ, ∀xφ(x) ` ψ

∀R
Γ ` φ(y)

Γ ` ∀xφ(x)

→L
Γ ` φ1 Γ, φ2 ` ψ

Γ, φ1 → φ2 ` ψ

→R
Γ, φ1 ` φ2

Γ ` φ1 → φ2

∃L
Γ, φ(y) ` ψ

Γ,∃xφ(x) ` ψ

∃R
Γ ` φ(e)

Γ ` ∃xφ(x)

2.3.2 Base Axioms and Proof Rules
�is section presents the subset of dynamic logic and hybrid program axioms of dL [139, 142, 144]
used in this thesis, except the axiomatization of di�erential equations which is deferred to the

21

subsequent sections.

�eorem 2.1 (Base axioms and proof rules [139, 142]). �e following are sound axioms and proof
rules of dL.

〈·〉 〈α〉φ↔ ¬[α]¬φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

G
` φ

Γ ` [α]φ

V φ→ [α]φ (no free variable of φ is bound by α)

�e three axioms 〈·〉, K, V and proof rule G are usual reasoning principles for dynamic
logics [139] and they apply generally for any hybrid program α. Axiom 〈·〉 expresses the duality
between the diamond and box modalities, allowing conversion between the two with a double
negation. Kripke axiom K is the modal modus ponens for postconditions of the box modality.
Vacuous axiom V says if no free variable of φ is bound by hybrid program α, then the truth value
of φ is also unchanged by a run of α. �e free and bound variables of dL terms, formulas, and
hybrid programs are de�ned as usual [142, 144]. �e Gödel generalization rule G reduces proofs
of [α]φ to a proof of φ but must discard all assumptions in the antecedents Γ for soundness.

�eorem 2.2 (Hybrid program axioms [142]). �e following are sound axioms of dL.

[:=] [x := e]φ(x)↔ φ(e) (e free for x in φ)

[?] [?Q]φ↔ (Q→ φ)

[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α; β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

I [α∗]φ↔ φ ∧ [α∗](φ→ [α]φ)

Axioms [:=], [?], [∪], [;], [∗], I unfold box modalities of their respective hybrid programs ac-
cording to their semantics (see Section 2.2.2). Assignment axiom [:=] says to show postcondition
φ(x) a�er an assignment to variable x, it su�ces to prove φ(e) in the initial state; test axiom [?]
assumes that the test Q succeeded when proving postcondition φ; nondeterministic choice
axiom [∪] proves the box modality for both branches α and β of the choice program α ∪ β
separately; sequential composition axiom [;] says to prove postcondition φ for all runs of α; β,
one can equivalently prove the nested box modality postcondition [β]φ for all runs of program α;
loop iteration axiom [∗] says in order for postcondition φ to be true for all iterations of a loop α∗,
φ must be true in the initial state before running the loop and it must remain true a�er running
at least one iteration [α][α∗]φ; and loop induction axiom I says to prove φ for all runs of loop α∗,
φ must be true in the initial state and it must be inductively true along the loop [α∗](φ→ [α]φ).
�e soundness proofs for �eorems 2.1 and 2.2 are available elsewhere [139, 142], along with an
in-depth textbook exposition of the axioms [144].

Notational Conventions (Axioms). Key subformulas of (derived) equivalence or implication
axioms are marked in blue to indicate that the equivalence or implication is typically applied to
syntactically rewrite the marked subformula in proofs. For example, axiom [;] is typically used
to equivalently rewrite the key formula [α; β]φ to [α][β]φ.

22

Derived Axioms and Proof Rules

�e dynamic logic and hybrid program axioms of dL can be fruitfully combined to derive new
axioms and proof rules that are useful in subsequent proofs. For example, the loop induction
rule loop with a chosen loop invariant Inv (below) derives from induction axiom I using Gödel’s
generalization rule G [139, 144]; the monotonicity rule M[·], which derives from axiom K and
rule G, strengthens the postcondition ψ of a box modality to φ provided that formula φ implies ψ;
axiom [·]∧, which is also derived from axiom K [144], says to prove a conjunctive postcondition
for a box modality it su�ces to prove those postconditions for the box modality separately.

loop
Γ ` Inv Inv ` [α] Inv Inv ` φ

Γ ` [α∗]φ
M[·]

φ ` ψ Γ ` [α]φ

Γ ` [α]ψ
[·]∧ [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ

Axiom 〈·〉 is useful for deriving diamond modality versions of dL axioms and proof rules.
For example, the diamond Kripke axiom K〈·〉 (below) derives from K by dualizing its inner
implication with 〈·〉 [139] and the monotonicity rule for diamond modality postconditions M〈·〉
derives from axiom K〈·〉 by rule G. Similarly, dualizing [∗] yields the diamond loop unfolding
axiom 〈∗〉, which expresses that a loop can be repeated to reach postcondition φ i� either φ is
already true in the initial state or it can be reached by repeating the loop for at least one iteration.
Duality is exploited further for ODEs in Section 2.3.4 and in the re�nement approach to ODE
liveness introduced in Chapter 4.

K〈·〉 [α](φ→ ψ)→ (〈α〉φ→ 〈α〉ψ)

〈∗〉 〈α∗〉φ↔ φ ∨ 〈α〉〈α∗〉φ

M〈·〉
φ ` ψ Γ ` 〈α〉φ

Γ ` 〈α〉ψ

Axiom V is particularly useful when working with constant assumptions [144]. If formula
φ(y) is true initially and variable y is not bound in hybrid program α, then it remains true for
all states reachable by running α because the value of y is unchanged by α and the truth value
of φ(y) depends only on the (unchanged) value of its free variables y [142]. Axiom V proves
this for box modalities in succedents and, by duality, for diamond modalities in antecedents.
Conversely, if a constant assumption φ(y) is true in a �nal state reachable by hybrid program α,
then it must already be true initially. �is is shown formally by the derivation below which uses
a classical case split with a cut on whether the formula φ(y) is already true initially:

∗
Γ, φ(y), 〈α〉(P ∧ φ(y)) ` φ(y) Γ,¬φ(y), 〈α〉(P ∧ φ(y)) ` φ(y)

∨LΓ, φ(y) ∨ ¬φ(y), 〈α〉(P ∧ φ(y)) ` φ(y)
cut Γ, 〈α〉(P ∧ φ(y)) ` φ(y)

�e le� premise closes trivially. For the right premise, a contradiction is derived with 〈·〉 as
follows, where the V, M[·] step uses the propositional tautology ¬φ(y)→ ¬(P ∧ φ(y)):

∗
V, M[·] ¬φ(y) ` [α]¬(P ∧ φ(y))
〈·〉, ¬L¬φ(y), 〈α〉(P ∧ φ(y)) ` false

23

Notational Conventions (Constant Assumptions). In the sequel, routine steps to maintain
constant assumptions in contexts are omi�ed (or simply labeled with V for emphasis). For
example, in the loop induction rule, all constant assumptions Γc ⊆ Γ for α can be soundly kept
across rule application of loop by adding those assumptions to the loop invariant and proving
them with an internal use of V as follows [144]:

Γ ` φ

Γc, φ ` [α]φ
[·]∧, VΓc ∧ φ ` [α](Γc ∧ φ)
loop Γ, φ ` [α∗]φ

cut Γ ` [α∗]φ

Additional constant contexts, like Γc above, are useful when working with assumptions on
symbolic parameters, e.g., v > 0 to model a (constant) positive velocity unchanged by α.

2.3.3 Di�erentials and Lie Derivatives
ODEs x′ = f(x) precisely specify equations on time derivatives that their solutions must obey.
�e deduction of properties of ODE solutions from their di�erential equations therefore relates to
the study of time derivatives of quantities mentioned in those properties. However, directly using
time derivatives leads to numerous subtle sources of unsoundness because they are semantic
objects that only make sense when a “time” axis even exists at all. Such a continuous time axis is
furnished by the domain of de�nition of an ODE solution, but time derivatives are not otherwise
well-de�ned in arbitrary contexts, e.g., in isolated states or across discrete transitions.

It is of utmost importance for soundness that, unlike time derivatives, di�erentials have a
local semantics (2.2) that is well-de�ned in single states which enables their use in arbitrary
contexts for sound syntactic manipulations [142]. �e crucial di�erential lemma [142, Lem. 35]
shows that, along a solution of the ODE x′ = f(x), the value of the di�erential term (e)′ coincides
with the time derivative d

dt of the value of term e. �is relationship allows conclusions to be
drawn about the di�erential equations directly from syntactic dL proofs involving di�erentials.
�e la�er syntactic manipulation of di�erentials is achieved using the di�erential axioms of dL,
which are given below. In axiom DE, x′ = f(x) is understood vectorially, i.e., x is a vector of
variables x1, . . . , xn, x′ the corresponding vector of di�erential variables x′1, . . . , x′n, and f(x) a
vector of terms f1(x), . . . , fn(x).

�eorem 2.3 (Di�erential axioms [142]). �e following are sound axioms of dL:

DE [x′ = f(x) &Q(x)]P (x, x′)↔ [x′ = f(x) &Q(x)][x′ := f(x)]P (x, x′)

c′ (c)′ = 0

+′ (e+ ẽ)′ = (e)′ + (ẽ)′

x′ (x)′ = x′

·′ (e · ẽ)′ = (e)′ · ẽ+ e · (ẽ)′

�e di�erential e�ect axiom (DE) says that the di�erential variables x′ take on the values of
the RHS along solutions to an ODE. �is is expressed on its RHS with an assignment x′ := f(x)
to the di�erential variable x′. Together, axioms DE, [:=] allow replacing free occurrences of x′ in
the postcondition P (x, x′) yielding postcondition P (x, f(x)). However, proofs usually need to

24

work with di�erentials of terms (e)′ rather than di�erential variables directly. �is is where the
di�erential axioms (c′, x′, +′, ·′) are used. Axiom c′ says that the di�erential of a constant is 0,
while axiom x′ says the di�erential of a variable (x)′ is the corresponding di�erential variable x′.
Axioms +′, ·′ are the sum and product rules of di�erentiation respectively. Soundness of these
axioms allows di�erential terms to be rewri�en equationally in all contexts, including in the
postcondition of an ODE and within sub-terms. �e di�erential axioms enable sound syntactic
di�erentiation because di�erential terms (e)′ can be rewri�en according to these equational
axioms until no further di�erential sub-terms occur; any remaining di�erential variables are
substituted away using DE, [:=] under an ODE. Such exhaustive use of di�erential axioms is
simply labeled as ()′ in proofs. �e following example shows such a derivation concretely using
a polynomial term from the example in Fig. 2.1:

Example 2.4 (Syntactic di�erentiation). �e following dL derivation syntactically di�erentiates
the polynomial term v2 − u2 + 9

2
along the ODE αe from (2.1) for any comparison operator ∼:

` [αe]4uv + 1
2
(1− u2 − v2)(v2 − u2) ∼ 0

M[·], R ` [αe]2v(u+ v
4
(1− u2 − v2))− 2u(−v + u

4
(1− u2 − v2)) ∼ 0

[:=] ` [αe][u
′:=− v + u

4
(1− u2 − v2)][v′:=u+ v

4
(1− u2 − v2)]2vv′ − 2uu′ ∼ 0

()′ ` [αe][u
′:=− v + u

4
(1− u2 − v2)][v′:=u+ v

4
(1− u2 − v2)](v2 − u2 + 9

2
)′ ∼ 0

DE ` [αe](v
2 − u2 + 9

2
)′ ∼ 0

�e �rst DE step makes available assignments on variables u′, v′ in the postcondition. �e
()′ step is then used to syntactically simplify (v2 − u2 + 9

2
)′ yielding 2vv′ − 2uu′. A subsequent

use of [:=] replaces the resulting di�erential variables u′, v′ with their respective RHS along the
ODE. Finally, rules M[·], R are used to rearrange the calculated derivative arithmetically, which
results in a (simpli�ed) polynomial term. 4

�e exhaustive use of di�erential axioms means that all di�erential terms (e)′ under an
ODE x′ = f(x) can be axiomatically rewri�en to another term not mentioning di�erentials
and di�erential variables. �is resulting term is called the Lie derivative of term e along ODE
x′ = f(x), succinctly wri�en as follows:

Lf(x)(e)
def
=

n∑
i=1

∂e

∂xi
· fi(x)

Unlike (semantic) time derivatives, Lie derivatives can be wri�en down syntactically in the
syntactic term language. Like time derivatives though, Lie derivatives still depend on the ODE
context in which they are used, so they do not give a compositional means of de�ning syntactic
di�erentiation. �e use of di�erentials in dL solves this problem by giving a compositional term
semantics that is de�ned independently of any hybrid programs or formulas. Along an ODE
x′ = f(x), the value of Lie derivative Lf(x)(e) coincides with that of the di�erential (e)′ and
dL allows transformation between the two by proof with the di�erential axioms [142]. �e
Lie derivative Lf(x)(e) is wri�en as .

e when the ODE x′ = f(x) is clear from the context. �e

25

i-th higher Lie derivative
.
e(i) of term e along the ODE x′ = f(x) is de�ned by iterating the Lie

derivation operator:

.
e(0) def

= e,
.
e(i+1) def

= Lf(x)(
.
e(i)),

.
e

def
=

.
e(1)

2.3.4 Di�erential Equation Axiomatization
Having enabled meaningful syntactic di�erentiation with di�erentials, it remains to give axioms
for working with di�erential equations. �e following are dL axioms for di�erential equa-
tions [142, Figure 3], where each axiom DI, DC, DG progressively strengthens dL’s deductive
power for di�erential equation invariants [140]. All axioms are understood vectorially for
di�erential equations as described in �eorem 2.3 for axiom DE.

�eorem 2.5 (Di�erential equation axiomatization [142]). �e following are sound axioms of
dL.3 In axiom DG, the ∃ quanti�er can be replaced with a ∀ quanti�er.

DI= [x′ = f(x) &Q](e)′ = 0→
(
[x′ = f(x) &Q]e = 0↔ (Q→ e = 0)

)
DI< [x′ = f(x) &Q](e)′ ≥ 0→

(
[x′ = f(x) &Q]e < 0↔ (Q→ e < 0)

)
(< either ≥ or >)

DC [x′ = f(x) &Q]R→
(
[x′ = f(x) &Q]P ↔ [x′ = f(x) &Q ∧R]P

)
DG [x′ = f(x) &Q]P ↔ ∃y [x′ = f(x), y′ = a(x)y + b(x) &Q]P

Di�erential invariants (DI) reduce questions about invariance of e = 0, e < 0 (globally, along
solutions of the ODE) to local questions about di�erentials. Only two instances (DI=, DI<) of the
more general DI axiom [142] are needed here. Axiom DI= says that the value of term e always
stays zero if its di�erential (e)′ is always zero along the solution, while axiom DI< says that e
stays non-negative (or strictly positive) if its di�erential stays non-negative. Note that axiom
DI< only requires (e)′ ≥ 0 in its premise even for the e > 0 case. �ese axioms internalize the
mean value theorem (see Corollary 2.7). Di�erential cut (DC) expresses that, if the system never
leaves R while staying in Q (the outer assumption), then R may be additionally assumed in
the domain constraint when proving the postcondition P (the RHS of the inner equivalence).
Axiom DC increases dL’s deductive power for invariants over DI [140] and the deductive power
increases even further [140] with the di�erential ghost axiom (DG) which adds a fresh variable y
to the system of ODEs for the sake of the proof. Since y is fresh, its initial value can be either
existentially (DG) or universally (DG∀) quanti�ed [142]. �e syntactic restriction of DG is that
the new ODE must be linear (or a�ne) in y, hence a(x), b(x) are not allowed to mention y.
�is restriction prevents the newly added equation from unsoundly restricting the duration of
existence for solutions to the di�erential equations [140], e.g., the (unsound) di�erential ghost
y′ = y2 may cause �nite-time (or early) blowup of solutions [204] (see Chapter 4). �e added
di�erential ghost variable y co-evolves along solutions and crucially enables the expression

3For simplicity, this thesis only uses ODE axioms, e.g., DC, DG, with postconditions and domains involving
formulas without modal quanti�ers, P,Q,R, following the notational conventions from Section 2.1.2.

26

of new (integral) relationships between variables along the di�erential equations. �ese new
relationships are then used to syntactically deduce properties of interest in the original system.

To use axioms DI, DC, DG in proofs, additional di�erential equation axioms syntactically
internalize temporal and �rst-order reasoning over di�erential equations.

�eorem 2.6 (Di�erential equation axiomatization (continued) [142]). �e following are sound
axioms of dL.

B′ 〈x′ = f(x) &Q(x)〉∃yP (x, y)↔ ∃y 〈x′ = f(x) &Q(x)〉P (x, y) (y 6∈ x)

DW [x′ = f(x) &Q]Q

DX [x′ = f(x) &Q]P ↔ (Q→ P ∧ [x′ = f(x) &Q]P) (x′ 6∈ P,Q)

D[;] [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q][x′ = f(x) &Q]P

DMP [x′ = f(x) &Q](Q→ R)→ ([x′ = f(x) &R]P → [x′ = f(x) &Q]P)

Proof. �e soundness of all axioms and proof rules in �eorem 2.6 are proved elsewhere [142],
except DX, D[;], DMP, which are proved here since they are wri�en di�erently elsewhere.

DX Let ω be an initial state. Classically, either ω ∈ [[Q]] or ω ∈ [[¬Q]]. If ω ∈ [[Q]], then, proposi-
tionally, it su�ces to assume ω ∈ [[[x′ = f(x) &Q]P]] and show ω ∈ [[P]]. Since ω ∈ [[Q]],
there is a trivial solution ϕ : [0, 0]→ S where ϕ |= x′ = f(x)∧Q and ϕ(0) = ω on {x′}{.
By assumption, ϕ(0) ∈ [[P]]. Since x′ /∈ P , coincidence for formulas [142] implies ω ∈ [[P]].
Conversely, if ω ∈ [[¬Q]], then, propositionally, it su�ces to show ω ∈ [[[x′ = f(x) &Q]P]].
�e box modality is vacuous because, by de�nition, no solution ϕ : [0, T]→ S can exist
for any T ≥ 0 with ϕ |= x′ = f(x) ∧Q. Any such solution would require ϕ(0) ∈ [[Q]] by
de�nition. However, because x′ /∈ Q, coincidence for formulas [142] with state ω gives
ω ∈ [[Q]], contradiction.

D[;] Let ω be an initial state and let ϕ : [0, T) → S, 0 < T ≤ ∞ be the unique, right-
maximal solution [33] to the ODE x′ = f(x) with initial value ϕ(0) = ω. Unfolding the
semantics of the outer box modality, the RHS of axiom D[;] is true in state ω i� for all times
0 ≤ τ < T such that ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ , the solution at time τ satis�es ϕ(τ) ∈
[[[x′ = f(x) &Q]P]]. Unfolding the semantics again, by uniqueness of ODE solutions [33],
this means that for all times τ ≤ t < T , such that ϕ(ζ) ∈ [[Q]] for all τ ≤ ζ ≤ t, the
solution at time t satis�es ϕ(t) ∈ [[P]]. �us, the RHS is true in state ω i� for all times
0 ≤ τ < T such that ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ , the solution at time τ satis�es
ϕ(τ) ∈ [[P]], which is the unfolded semantics of the LHS of axiom D[;].

DMP Let ω be an initial state satisfying both formulas on the le� of the implications in DMP, i.e.,
1 ω ∈ [[[x′ = f(x) &Q](Q→ R)]] and 2 ω ∈ [[[x′ = f(x) &R]P]]. Consider any solution
ϕ : [0, T] → S where ϕ(0) = ω on {x′}{, and ϕ |= x′ = f(x) ∧ Q. By de�nition,
ϕ(ζ) ∈ [[Q]] for all ζ ∈ [0, T], and so by 1 , ϕ(ζ) ∈ [[Q→ R]] for all ζ ∈ [0, T]. �erefore,
ϕ(ζ) ∈ [[R]] for all ζ ∈ [0, T], and thus ϕ |= x′ = f(x) ∧R. By 2 , ϕ(T) ∈ [[P]].

27

�e ODE Barcan axiom B′ specializes the Barcan axiom of dynamic logic [139] to ODEs in
the diamond modality. It commutes an existential quanti�er ∃y with the diamond modality,
where the variables y are required to be fresh in the ODE x′ = f(x) (i.e., y 6∈ x). �e di�erential
weakening axiom DW expresses that domain constraints are always obeyed along ODE solutions.
�e di�erential skip axiom DX expresses a re�exivity property of di�erential equation solutions.
If domain constraintQ is false in an initial state ω, then the formula [x′ = f(x) &Q]P is trivially
true in ω because no solution of the ODE starting from ω stays in the domain constraint.
Conversely, if Q is true in ω, then the postcondition P must already be true in ω because of
the trivial solution of duration zero. �e condition x′ 6∈ P,Q of axiom DX is met as P,Q are
di�erential-free (Section 2.1). �e di�erential composition axiom D[;] is a transitivity property of
di�erential equation solutions which says that any state reachable from two sequential runs of
the same ODE is reachable in a single run of that ODE. Axiom DMP is the modus ponens for
domain constraints of ODEs which underlies di�erential cuts DC [142].

Derived Axioms and Proof Rules

Similar to Section 2.3.2, additional ODE axioms and proof rules can be derived from the ODE
axioms of �eorems 2.5 and 2.6 for use in subsequent deductive proofs. Rule dI< (below)
derives by combining DI< with the di�erential axioms ()′ to provably transform di�erentials
to Lie derivatives in its premise. Rules dC, dW derive from their underlying axioms DC, DW
respectively [144].

dI<
Q ` Lf(x)(e) ≥ Lf(x)(ẽ)

Γ, e < ẽ ` [x′ = f(x) &Q]e < ẽ
(where < is either ≥ or >)

dC
Γ ` [x′ = f(x) &Q]R Γ ` [x′ = f(x) &Q ∧R]P

Γ ` [x′ = f(x) &Q]P

dW
Q ` P

Γ ` [x′ = f(x) &Q]P

Axiom 〈·〉 also yields dual diamond readings for the ODE axioms and proof rules. For
example, the DI< axiom internalizes a version of the mean value theorem [204, Appendix B.I].
�is is shown in derived axiom MVT below which says that, if the value of term e is non-negative
initially and eventually becomes negative along the ODE x′ = f(x) &Q, then its di�erential
(e)′ must be negative somewhere along the solution to that ODE.

Corollary 2.7 (Mean value theorem). �e mean value theorem axiom MVT derives from DI<:

MVT e ≥ 0 ∧ 〈x′ = f(x) &Q〉e < 0→ 〈x′ = f(x) &Q〉(e)′ < 0

Proof. �e derivation takes contrapositives (dualizing with 〈·〉) before DI< �nishes it.
∗

DI< e ≥ 0, [x′ = f(x) &Q](e)′ ≥ 0 ` [x′ = f(x) &Q]e ≥ 0
〈·〉, ¬L, ¬R e ≥ 0, 〈x′ = f(x) &Q〉e < 0 ` 〈x′ = f(x) &Q〉(e)′ < 0

Other useful proof rules are derived by combining the di�erential equation axioms with
the base axioms and proof rules. For example, the following monotonicity rules (for both

28

box and diamond modalities) are derived from axiom K and dW. Compared to the mono-
tonicity rules M[·], M〈·〉 which apply for general hybrid programs α, the ODE monotonicity
rules M[′], M〈′〉 additionally assume domain constraint Q when strengthening the postcondition
from P to R for an ODE x′ = f(x) &Q:

M[′]
Q,R ` P Γ ` [x′ = f(x) &Q]R

Γ ` [x′ = f(x) &Q]P
M〈′〉

Q,R ` P Γ ` 〈x′ = f(x) &Q〉R
Γ ` 〈x′ = f(x) &Q〉P

�e “←” direction of DX allows domain constraint Q to be assumed true initially when prov-
ing [x′ = f(x) &Q]P (shown below, on the le�). �e “→” direction has the following equivalent
contrapositive reading using 〈·〉 and propositional simpli�cation: Q ∧ P → 〈x′ = f(x) &Q〉P ,
i.e., if the domain constraintQ and postconditionP are both true initially, then 〈x′ = f(x) &Q〉P
is true because of the trivial solution of duration zero. When proving the liveness property
〈x′ = f(x) &Q〉P , one can therefore always additionally assume ¬(Q ∧ P) because, by DX, 〈·〉,
there is nothing to prove otherwise (shown below, on the right).

Γ, Q ` [x′ = f(x) &Q]P
DX Γ ` [x′ = f(x) &Q]P

Γ,¬(Q ∧ P) ` 〈x′ = f(x) &Q〉P
DX, 〈·〉 Γ ` 〈x′ = f(x) &Q〉P

29

30

Chapter 3

Safety and Invariance for Ordinary
Di�erential Equations

�is chapter begins the study of deductive veri�cation for ordinary di�erential equations (ODEs)
by examining dL proofs of ODE safety and invariance, and their proof theory. Classically,
di�erential equations are studied by analyzing their solutions, which is at odds with the fact that
those solutions are o�en much more complicated than the di�erential equations themselves. �is
stark di�erence between the simple local description as di�erential equations and the complex
global behavior exhibited by their solutions is fundamental to the descriptive power of di�erential
equations. Poincaré’s qualitative study of di�erential equations [152] calls for the exploitation
of this di�erence by deducing properties of solutions directly from the di�erential equations.
�is chapter completes an important step in Poincaré’s enterprise by identifying the logical
foundations for proving invariance properties of di�erential equations described by Noetherian
functions [12, 56, 57, 201]. �ese invariance proof principles further serve as foundational
building blocks for subsequent thesis chapters, e.g., as stepping stones in re�nement proofs of
liveness (Chapter 4) and as powerful black box proof steps for ODE safety (sub-)questions arising
in stability proofs (Chapters 5 and 6). Consequently, the generality of all results presented in
this chapter yields corresponding generality in subsequent thesis chapters.

3.1 Introduction
�e ODE safety speci�cation Γ ` [x′ = f(x) &Q]φ says that, from initial states satisfying
assumptions Γ, all states reached by following the ODE x′ = f(x) &Q from those states satisfy
the safety postcondition φ. �ese ODE safety questions may arise, for example, when proving
that a continuous control law always keeps a system within safe bounds throughout its operation,
or as sub-questions within a larger hybrid system safety proof [144]. �ey can also come from
the system designer’s insights into physically meaningful quantities of the continuous system,
for example, conservation of an energy quantity E along an ODE is expressed by the formula
[x′ = f(x)]E = E0, which says that E always stays at its initial value E0 along the system’s
continuous evolution. Such a conserved quantity (if proved) may, in turn, be used as part of
safety proofs or to provide physical insights into a given system.

31

Unfortunately, it is rarely the case that ODEs x′ = f(x) have closed form solutions that can be
mathematically analyzed to prove safety properties of its trajectories directly (recall Section 2.1.3,
page 16). Instead, the premier technique for proving ODE safety is to �nd a suitable invariant P
of the ODE such that: i) it contains the initial states Γ ` P , ii) it is safe P ` φ, and iii) solutions
of the ODEs cannot escape it P ` [x′ = f(x) &Q]P . �e use of an invariant P is illustrated by
the following partial derivation with cut (to prove i) and M[·] (to prove ii):

Γ ` P

. . .
P ` [x′ = f(x) &Q]P P ` φ

M[·] P ` [x′ = f(x) &Q]φ
cut Γ ` [x′ = f(x) &Q]φ

�is chapter shows that one can always �ll in the remaining “· · · ” steps in the derivation be-
cause the invariance question for any formula P and ODE x′ = f(x) &Q is provably equivalent
to an arithmetic question within dL. �us, the remaining practical challenge for proofs of ODE
safety is to �nd suitable and succinct ODE invariants P ; the invariance of any candidate formula
P can be proved or disproved by checking validity of the resulting arithmetic question a�er
applying the derived dL equivalence. In fact, a stronger result is proved for equational safety
properties, such as the energy conservation formula [x′ = f(x)]E = E0 above: dL completely
reduces such questions to arithmetic without the need for an intermediary invariant. �ese
completeness results are proved more generally for an extended dL term language, which enables
the use of extended (non-polynomial) functions in models and proofs of continuous and hybrid
systems while retaining sound and complete dL ODE invariance reasoning.

Formally, this chapter presents a di�erential equation invariance axiomatization based on dL.
For extended term languages (and ODEs) meeting three extended term conditions, the chapter
proves the following results:

1. All analytic invariants, i.e., �nite conjunctions and disjunctions of equations between
extended terms, are provable using only the three dL ODE axioms DI, DC, DG. �is result
generalizes to analytic hybrid programs with dL’s hybrid program axioms.

2. With axioms internalizing the existence and uniqueness theorems for solutions of di�er-
ential equations, all local progress properties of ODEs are provable for all semianalytic
formulas, i.e., propositional combinations of inequalities between extended terms.

3. With a real induction axiom that reduces invariance to local progress, the dL calculus is
complete for proving all semianalytic invariants of di�erential equations.

4. �ese are axiomatic completeness results: all (semi)analytic invariance and local progress
questions are provably equivalent in dL to questions about the underlying arithmetic. �is
equivalence also yields disproofs when the resulting arithmetic questions are refuted.

�ese results are proved constructively with syntactic derivations for each equivalence, thus
yielding practical and purely logical proof-producing procedures for reducing ODE invariance
questions to arithmetical questions in dL. �e axiomatic approach crucially enables these contri-
butions because the syntactic dL axioms internalize basic properties of ODEs and thus remain
sound and complete for all extended term languages meeting the extended term conditions.

32

Furthermore, the identi�cation of a parsimonious yet complete ODE axiomatization provides the
best of both worlds: parsimony minimizes e�ort required in implementation and veri�cation of
the proof calculus while completeness guarantees that all ODE invariance reasoning is possible
using only syntactic proofs from the foundational axioms.

�e most subtle step in the proofs is the construction of suitable di�erential ghosts that
simplify the analysis as a function of both the di�erential equations and desired invariant. Just
as discrete ghosts can make a program logic relatively complete [127], di�erential ghosts achieve
completeness for algebraic (and analytic) invariants in dL.

5. Scalar di�erential ghosts DG are used to derive (complete) reasoning principles for analytic
invariants, Darboux (in)equalities, and barrier certi�cates [155] for ODEs.

�e result (5) is signi�cant for implementation and proof-theoretical purposes because it
uncovers classes of invariants that are provable e�ciently using only a constant number of
di�erential ghost reasoning steps. In practice, these classes cover many automatic invariant
generation techniques, such as those used by the Pegasus tool [180], which enables an e�cient
combination of invariant generation and sound checking in KeYmaera X [54].

Finally, since Noetherian functions from real analytic geometry [12, 56, 57, 201] generate
Noetherian rings closed under partial derivatives, they meet all of the extended term conditions
and thus provide an ideal se�ing for extending dL’s term language. Many functions of practical
interest for modeling hybrid systems are Noetherian, e.g., the real exponential and trigonometric
functions, which are implicitly de�nable in dL [137, 139] but do not come with e�ective reasoning
principles.1 Making them �rst-class members of the term language enables their explicit use in
hybrid systems models and proofs, especially in descriptions of ODE invariants.

6. Noetherian functions are shown to meet the extended term conditions. Any such extension
automatically inherits all of the aforementioned completeness results.

�anks to the common dL logical foundation of this thesis, result (6) gives license to all
subsequent chapters to freely use extended Noetherian function terms, with the assurance that
the underlying ODE invariance reasoning can be handled completely and compositionally, in
isolation from other continuous and hybrid systems reasoning [139].

Contribution. �e material for this chapter is drawn from Platzer and Tan [148, 149].

3.2 Di�erential Dynamic Logic with Extended Terms
�is section introduces a generic extended term language for dL which enables models and proofs
of hybrid systems featuring non-polynomial terms. Of course, such a syntactic extension cannot
be completely arbitrary, e.g., adding functions whose interpretations are nowhere di�erentiable
would fundamentally break the enterprise of studying ODEs directly by their local behavior.
�ese unsuitable syntactic extensions are ruled out by a set of extended term conditions, which

1�e relative decidability theorem for dL [139, �eorem 11] needs either an oracle for (continuous) di�erential
equation properties or an oracle for discrete program properties.

33

are developed and motivated along the way, with a summary in Section 3.2.4. �e class of
Noetherian functions, which meets all the extended term conditions, is introduced in Section 3.7.

3.2.1 Syntax
�e dL term language is extended with a �nite number of new k-ary �xed function symbols,
h ∈ {h1, . . . , hr}, with �xed interpretations.

e, ẽ ::= x | c | e+ ẽ | e · ẽ | h(e1, . . . , ek) | (e)′

As a running example of such an extended term language, consider the unary function
symbols exp, sin, cos which are always interpreted as the real exponential and trigonometric
functions respectively:

e, ẽ ::= x | c | e+ ẽ | e · ẽ | exp(e) | sin(e) | cos(e) | (e)′ (3.1)

Notational Conventions (Extended Term Language). Polynomial terms are useful as fa-
miliar illustrative examples and they also enjoy special properties not necessarily shared by
extended term languages. As usual (Section 2.1.1), the notation p, q is reserved for polynomial
terms, with dependencies p(x), q(x) added when necessary. Formulas over extended term
languages that do not contain the �rst-order quanti�ers nor the modal connectives are called
semianalytic formulas and are wri�en as P,Q. �e word “analytic” refers to the (semantic) real
analyticity [94] of terms extended with Noetherian functions in Section 3.7. Every semianalytic
formula can be normalized to one that is formed from only conjunctions and disjunctions of
atomic comparison formulas. Formulas P,Q that are formed from only conjunctions and disjunc-
tions of equalities are called analytic formulas. When all atomic comparisons in (semi)analytic
formulas are restricted to only occur between polynomial terms p ∼ q, the resulting formulas
are also known as (semi)algebraic formulas [14]. Compared to Section 2.1.2 the notational con-
vention for semianalytic formulas P,Q disallows �rst-order quanti�cation. No expressiveness is
lost by disallowing �rst-order quanti�ers for polynomial terms because the �rst-order theory of
the reals with polynomial terms (and with quanti�ers) admits quanti�er elimination [14, 197],
so every �rst-order formula of real arithmetic (over polynomial terms) is provably equivalent to
a quanti�er-free semialgebraic formula. Unfortunately, quanti�er elimination is impossible even
for simple term language extensions like the exponential function [202].

3.2.2 Semantics
�e dL term semantics ω[[e]] ∈ R is extended as follows, where the semantics of each k-ary �xed
function symbol h is given by a corresponding real-valued function h : Rk → R (using the same
symbol h for the LHS syntactic function symbol and its RHS semantic interpretation by a slight
abuse of notation):

ω[[h(e1, . . . , ek)]] = h(ω[[e1]], . . . , ω[[ek]])

�ere are two subtleties to highlight. First, the real-valued interpretations h are required
to be de�ned on the domain Rk so that the term semantics are well-de�ned in all states. It is

34

possible to extend dL with terms that are only de�ned within an open domain of de�nition rather
than the entire real domain [21] and this would allow, e.g., rational functions to be added to the
term language. Such an extension will not be pursued in this thesis although the Noetherian
functions from Section 3.7 and Proposition 3.34 give an implicit way of working with quotients
of extended terms. Second, the semantics of di�erentials implicitly requires that the partial
derivatives ∂ω[[e]]

∂x
exist for any term e. In fact, partial derivatives of any order for the semantics

of any term must exist because their di�erentials (which provably reduce to di�erential-free
terms by Section 2.3.3), in turn, have di�erentials that must also have well-de�ned semantics.
Following the dL interpretation of function symbols [142], it su�ces to require that the �xed
function symbols h are interpreted as smooth C∞ functions, i.e., h : Rk → R with partial
derivatives of any order. Since the C∞ functions are closed under addition, multiplication and
function composition, the resulting term semantics are also smooth [142], as required.

3.2.3 Axiomatics
�e soundness proofs for the axiomatization of dL in Section 2.3 carry over unchanged for
extended term languages because �xed function symbols h are interpreted as smooth C∞

functions [142]. �e subtleties are in arithmetic reasoning using rule R and the introduction of
di�erential axioms for the �xed function symbols.

Arithmetic. Even for the extended term language (3.1) with trigonometric functions, arith-
metic questions are already undecidable [162]. �erefore, special care must be taken to dis-
tinguish �rst-order properties of the real closed �elds, i.e., those described by (semi)algebraic
formulas [14], from those properties described by (semi)analytic formulas, as illustrated next.

Example 3.1 (Proving with R). Consider the following two proofs in extended term lan-
guage (3.1) with the real exponential function exp. �e le� sequent proves (as a substitution
instance) by R because the negation of a real number is its additive inverse. In contrast, the right
sequent does not prove by R alone (indicated by the subscript on rule Rexp) because it uses the
fact that the real exponential function is strictly positive.

R
∗

` exp (x) + (− exp (x)) = 0
Rexp

∗
` exp (x) > 0

An alternative understanding is that rule R can be used to conclude valid arithmetic properties
that follow only from �rst-order properties of the real closed �elds [14, 197]. 4

Di�erential Axioms. Section 2.3.3 showed how di�erential terms under an ODE x′ = f(x)
can be axiomatically rewri�en to the Lie derivative using the di�erential axioms ()′. �is is
the case for di�erentials of polynomial terms (p)′, but di�erential axioms are still needed for
the �xed function symbols. Consider the case of a unary �xed function symbol h which is
semantically interpreted as the function h(y) : R→ R. Expanding the semantics of term (h(e))′

and applying the chain rule:

ω[[(h(e))′]] =
∑
x∈V

ω(x′)
∂ω[[h(e)]]

∂x
=
∑
x∈V

ω(x′)
∂h

∂y
(ω[[e]])

∂ω[[e]]

∂x

35

=
∂h

∂y
(ω[[e]])

∑
x∈V

ω(x′)
∂ω[[e]]

∂x
=
∂h

∂y
(ω[[e]])ω[[(e)′]]

�e RHS product between ∂h
∂y

(ω[[e]]) and ω[[(e)′]] can be represented syntactically provided
that the partial derivative of h with respect to its argument y is representable as a term. Assume
(suggestively) that such a term is wri�en as ∂h

∂y
(e). �e easiest case is to think of ∂h

∂y
as another

unary �xed function symbol and ∂h
∂y

(e) as function application, hence the suggestive notation.
�is is not strictly necessary: ∂h

∂y
can be another term that mentions variable y free, in which

case ∂h
∂y

(e) corresponds to substituting e for y in that term. �e di�erential axiom h′ for �xed
function symbol h uses a product of the (syntactic) partial derivative ∂h

∂y
and di�erential (e)′ of e:

h′ (h(e))′ =
∂h

∂y
(e) · (e)′

Example 3.2 (Unary extended di�erential axioms). For the extended term language (3.1), the
extended terms for the partial derivatives are as usual from calculus:

∂ exp(y)

∂y
= exp(y)

∂ sin(y)

∂y
= cos(y)

∂ cos(y)

∂y
= − sin(y)

Following the axiom schema h′, the di�erential axioms for these �xed function symbols are:

exp′ (exp(e))′ = exp(e) · (e)′ sin′ (sin(e))′ = cos(e) · (e)′ cos′ (cos(e))′ = − sin(e) · (e)′

Axioms sin′, cos′ illustrate a syntactic subtlety: �xed function symbols must be introduced
in a syntactically complete way with respect to di�erentials. �e unary function symbol sin for
the trigonometric sine function cannot be added without also adding one for the cosine function
because there would otherwise be no way to express the di�erential of sin syntactically.2 4

�e following lemma generalizes the syntactic representation condition from the above
example and gives sound di�erential axioms for k-ary �xed function symbols.
Lemma 3.3 (Extended di�erential axioms). Let the k-ary �xed function symbol h be semantically
interpreted as a di�erentiable function h : Rk → R. Suppose its partial derivative ∂h

∂yi
(y1, . . . , yk)

at y1, . . . , yk is syntactically represented by the term ∂h
∂yi

for each i such that ω[[∂h
∂yi

(y1, . . . , yk)]] =
∂h
∂yi

(ω(y1), . . . , ω(yk)) for all states ω. �en the di�erential axiom schema h′ for h is sound:

h′ (h(e1, . . . , ek))
′ =

k∑
i=1

∂h

∂yi
(e1, . . . , ek) · (ei)′

Proof. �e terms ∂h
∂yi

(e1, . . . , ek) appearing on the RHS of axiom h′ are understood as (syntactic)
function application of ∂h

∂yi
to the arguments e1, . . . , ek. Soundness of this axiom follows from

the (multivariate) chain rule and the semantics of di�erential terms. For any given state ω:

ω[[(h(e1, . . . , ek))
′]]=
∑
x∈V

ω(x′)
∂ω[[h(e1, . . . , ek)]]

∂x
=
∑
x∈V

ω(x′)
k∑
i=1

∂h

∂yi
(ω[[e1]], . . . , ω[[ek]])

∂ω[[ei]]

∂x

2Technically, π could be added and cos(x) encoded as sin(x+ π) but that also requires another 0-ary function
symbol π.

36

=
k∑
i=1

∂h

∂yi
(ω[[e1]], . . . , ω[[ek]])

∑
x∈V

ω(x′)
∂ω[[ei]]

∂x
=

k∑
i=1

∂h

∂yi
(ω[[e1]], . . . , ω[[ek]])ω[[(ei)

′]]

=
k∑
i=1

ω[[
∂h

∂yi
(e1, . . . , ek)]]ω[[(ei)

′]] = ω[[
k∑
i=1

∂h

∂yi
(e1, . . . , ek)(ei)

′]]

�e penultimate step uses the fact that all partial derivatives are syntactically represented in the
term language to replace a semantic function application with its syntactic representation.

Lemma 3.3 allows derivations to freely replace di�erential terms of extended term languages
(e)′ under an ODE x′ = f(x) with their corresponding Lie derivative Lf(x)(e) by proof with the
di�erential axioms [142].

3.2.4 Extended Term Conditions
Two natural conditions on the �xed function symbols h ∈ {h1, . . . , hr} and their semantics have
been uncovered thus far. For this chapter’s completeness results, a third condition is needed. All
three extended term conditions are assumed throughout this chapter:

(S) Smoothness. All �xed function symbols h ∈ {h1, . . . hr} in the extended term language
are interpreted as smooth C∞ functions h : Rk → R.

(P) Syntactic partial derivatives. Each partial derivative ∂h
∂yi

of h(y1, . . . , yk) has a syntactic
representation in the extended term language in the sense of Lemma 3.3.

(R) Computable di�erential radicals. �e extended term language has computable di�erential
radicals, i.e., for each extended term e and ODE x′ = f(x) with extended terms in its
RHS f(x), there must computably exist a natural number N ≥ 1 and N extended terms
(g0, g1, . . . , gN−1) such that the higher Lie derivatives of e along x′ = f(x) provably satisfy
the following di�erential radical identity [63]:

.
e(N) =

N−1∑
i=0

gi
.
e(i) (3.2)

Condition (S) ensures that the semantics are well-de�ned, while conditions (P) and (R) enable
(complete) syntactic analysis of di�erential equations invariance by their local (di�erential)
behavior. �e C∞ smoothness required by (S) is subtly weaker than real analyticity [94]. �is
chapter o�en gives brief but intuitive (semantic) explanations of results and explicitly indicates
when those arguments only apply in the real analytic se�ing. None of the actual proofs given
in this chapter require real analyticity. Condition (R) requires an algorithm that computes
and proves the identity (3.2). �is identity is crucially used for completeness in Section 3.4
and Section 3.6, where it is also motivated logically. Intuitively, it yields a �niteness property on
the number of Lie derivatives that need to be analyzed for any given term e and ODE, i.e., from
identity (3.2), the �rstN−1 Lie derivatives will turn out to su�ce for completely determining the
local behavior of extended term e along the ODE x′ = f(x). All three extended term conditions
are met by the polynomial term language without extensions.

37

Proposition 3.4. Polynomial term languages satisfy the extended term conditions.

Proof Sketch. A full proof is omi�ed because this is a corollary of a later result (�eorem 3.37).
Brie�y, conditions (S) and (P) are met because polynomial functions are smooth (even real
analytic) and the polynomials are closed under partial derivatives. Condition (R) generalizes
di�erent �avors of results that have been proved in the literature [63, 103, 125]. �e proofs rely
on the fact that polynomials form a Noetherian ring [24] so that the ascending chain of ideals3

formed by successive (polynomial) Lie derivatives stabilizes. �e polynomial identity (3.2) is
computable by successive ideal membership checks [63, 64, 103]. Moreover, it is a formula of real
arithmetic and can therefore always be proved by the rule R for decidable real arithmetic.

It is less straightforward to show that an extended term language like (3.1) meets these
conditions. Indeed, even the simple language extension (3.1) already features exponential rings
which are not Noetherian [198, Remark 1.4.2] and undecidable arithmetic over the trigonometric
functions [162]. In the interest of a general presentation, the question of how to determine if a
candidate term language extension {h1, . . . , hr} meets the extended term conditions is deferred
to Section 3.7. Until then, the only assumption about the extended term language is that it
satis�es those three conditions. �is su�ces for the chapter’s completeness results, which the
next section begins to show.

3.3 Darboux Invariants
�is section exploits di�erential ghosts for proving an important class of invariance properties.
�ese are called Darboux invariants because they are inspired by Darboux polynomials [41].
�e derived proof rule for Darboux equalities corresponds to the case N = 1 in the di�erential
radical identity (3.2), while the subsequent rule for Darboux inequalities is a crucial step for
the completeness result in Section 3.4. �eir derivations also show how analytic and geomet-
ric notions from the theory of di�erential equations, such as Darboux polynomials [41] and
Grönwall’s lemma [70, 204, §29.VI] can be internalized syntactically with di�erential ghost
arguments without extension to any dL axiom.

3.3.1 Darboux Equalities
Assume that the extended term e satis�es the di�erential radical identity (3.2) with N = 1 and
extended term cofactor g, i.e., .e = ge. Taking Lie derivatives on both sides gives:

.
e(2) = Lf(x)(

.
e) = Lf(x)(ge) =

.
ge+ g

.
e = (

.
g + g2)e

By repeatedly taking Lie derivatives, note that all higher Lie derivatives of e can be wri�en
as a product between e and some extended term cofactor. Now, consider an initial state ω where
e evaluates to ω[[e]] = 0, then:

ω[[
.
e]] = ω[[ge]] = ω[[g]] · ω[[e]] = 0

3�e ideal [14] generated by polynomials p1, . . . , ps ∈ R[x] is the set of all their linear combination with
polynomial cofactors gi ∈ R[x], denoted by (p1, . . . , ps)

def
= {Σ

s

i=1gipi : gi ∈ R[x]}.

38

Similarly, because every higher Lie derivative is a product with e, all of them evaluate
simultaneously to 0 in state ω. �us, in the real analytic se�ing, e = 0 stays invariant along
solutions to the ODE starting at ω because all its derivatives are 0. �is motivates the following
proof rule for invariance of e = 0:

dbx
Q ` .

e = ge

e = 0 ` [x′ = f(x) &Q]e = 0

Rule dbx derives using di�erential ghosts, which provides a �rst hint at their deductive power
for equational invariants. A special case of dbx proves invariance for Darboux polynomials, which
are polynomials p satisfying the polynomial identity .

p = gp for some polynomial cofactor g.
�ese polynomials are of signi�cant interest in the study of (polynomial) ODEs [41] and invariant
generation for continuous and hybrid systems [169, 180]. In Section 3.4, dbx is generalized
vectorially to yield proofs of all analytic invariants with di�erential ghosts. Although the rule
can be derived from DG directly, this section follows a detour through a proof rule for Darboux
inequalities instead, which is crucially used for this vectorial generalization.

3.3.2 Darboux Inequalities
Assume that the extended term e satis�es the Darboux inequality

.
e ≥ ge for some extended term

cofactor g. Semantically, in an initial state ω where ω[[e]] ≥ 0, Grönwall’s lemma [70, 204, §29.VI]
implies that e ≥ 0 stays invariant along solutions starting at ω because the semantic value of
extended term e is bounded below by a (typically decaying) non-negative exponential solution
of the non-autonomous linear di�erential equation e′ = g(t)e for the variable e. Here, g(t) is the
time-dependent function corresponding to the value of term g evaluated along the solution to
the di�erential equations x′ = f(x) from ω, see Fig. 3.1a for an illustration. Indeed, if e satis�es
the Darboux equality .

e = ge with cofactor g, then it satis�es both Darboux inequalities .
e ≥ ge

and .
e ≤ ge, giving an alternative semantic argument for the invariance of e = 0 in rule dbx.

Di�erentials and Lie derivatives along di�erential equations x′ = f(x) provably coincide
(Section 2.3.3), so axiomatic Darboux inequalities assume [x′ = f(x) &Q](e)′ ≥ ge and Darboux
equalities assume [x′ = f(x) &Q](e)′ = ge instead of .e ≥ ge and .

e = ge, respectively. �e use
of di�erentials in the axioms yield particularly e�cient proofs within dL’s uniform substitution
calculus [142] because they derive once-and-for-all, independently of the ODE x′ = f(x). Sub-
sequently substituting [142] for speci�c ODE instances means that only the �nal Lie derivative
calculation steps DE, ()′, [:=] are needed for each concrete derived instance.

Lemma 3.5 (Darboux (in)equalities are di�. ghosts). �e Darboux equality DBX and Darboux
inequality DBX< axioms derive from DG (and DI, DC) for any extended term cofactor g.

DBX [x′ = f(x) &Q](e)′ = ge→ (e = 0→ [x′ = f(x) &Q]e = 0)

DBX< [x′ = f(x) &Q](e)′ ≥ ge→ (e < 0→ [x′ = f(x) &Q]e < 0) (< either ≥ or >)

Proof. Axiom DBX< is derived �rst before axiom DBX is derived as a corollary. A�er propo-
sitional normalization, the derivation starts with a DG, DG∀ step, introducing a new ghost

39

variable y satisfying a carefully chosen di�erential equation y′ = −gy. Next, ∃R, ∀L pick an
initial value for y. It su�ces to pick any y > 0. �e augmented ODE is abbreviated with
αy ≡ x′ = f(x), y′ = −gy in the derivation.

[αy &Q](e)′ ≥ ge, e < 0, y > 0 ` [αy &Q]e < 0
∃R, ∀L ∀y [αy &Q](e)′ ≥ ge, e < 0 ` ∃y [αy &Q]e < 0

DG, DG∀[x′ = f(x) &Q](e)′ ≥ ge, e < 0 ` [x′ = f(x) &Q]e < 0

�e augmented ODE αy has a new provable invariant relationship ey < 0 (see Fig. 3.1 and
discussion a�er this proof). To deduce the original property of interest (e < 0) from this new
relationship, it su�ces to prove y > 0 invariant because the formula ey < 0 ∧ y > 0→ e < 0
is provable by R. Axiom DC is used to prove y > 0 separately (right premise abbreviated
with 1) and assume it in the evolution domain constraints of the le� premise. Subsequently,
monotonicity rule M[′] and R strengthen the postcondition to ey < 0 using the added domain
constraint y > 0.

[αy &Q ∧ y > 0](e)′ ≥ ge, e < 0, y > 0 ` [αy &Q ∧ y > 0]ey < 0
M[′], R[αy &Q ∧ y > 0](e)′ ≥ ge, e < 0, y > 0 ` [αy &Q ∧ y > 0]e < 0 1

DC [αy &Q](e)′ ≥ ge, e < 0, y > 0 ` [αy &Q]e < 0

From the le� premise, a cut, R step adds ey < 0 to the assumptions using the provable
arithmetic formula e < 0 ∧ y > 0 → ey < 0. Axiom DI< is used to prove the inequational
invariant ey < 0 and the resulting di�erential (ey)′ simpli�es with ()′ from Section 2.3.3
(page 24). An additional DE, [:=] step replaces the di�erential variable y′ according to the
augmented ODE αy, before a monotonicity M[′] (with a cut) and R step closes the derivation
using the domain constraint y > 0. �e di�erential ghost y′ = −gy is speci�cally cra�ed so that
this �nal arithmetic step proves with R.

∗
R (e)′ ≥ ge, y > 0 ` (e)′y + e(−gy) ≥ 0

M[′] [αy &Q ∧ y > 0](e)′ ≥ ge ` [αy &Q ∧ y > 0](e)′y + e(−gy) ≥ 0
DE, [:=] [αy &Q ∧ y > 0](e)′ ≥ ge ` [αy &Q ∧ y > 0](e)′y + ey′ ≥ 0

()′ [αy &Q ∧ y > 0](e)′ ≥ ge ` [αy &Q ∧ y > 0](ey)′ ≥ 0
DI< [αy &Q ∧ y > 0](e)′ ≥ ge, ey < 0 ` [αy &Q ∧ y > 0]ey < 0

cut, R [αy &Q ∧ y > 0](e)′ ≥ ge, e < 0, y > 0 ` [αy &Q ∧ y > 0]ey < 0

�e derivation continues from premise 1 with a second di�erential ghost z′ = g
2
z analogously:

∗
R Q ` (−gy)z2 + 2yz(g

2
z) = 0

dW ` [x′ = f(x), y′ = −gy, z′ = g
2
z&Q](−gy)z2 + 2yz(g

2
z) = 0

DE, [:=] ` [x′ = f(x), y′ = −gy, z′ = g
2
z&Q]y′z2 + 2yzz′ = 0

DI=, ()′ yz2 = 1 ` [x′ = f(x), y′ = −gy, z′ = g
2
z&Q]yz2 = 1

∃R, M[′], R y > 0 ` ∃z [x′ = f(x), y′ = −gy, z′ = g
2
z&Q]y > 0

DG y > 0 ` [x′ = f(x), y′ = −gy&Q]y > 0

In the ∃R, M[′], R step, observe that if y > 0 initially, then there exists z such that yz2 = 1.
Moreover, yz2 = 1 is su�cient to imply y > 0 in the postcondition. Rule R again applies here

40

since both of these are properties of real arithmetic. �e di�erential ghost z′ = g
2
z is speci�cally

constructed so that yz2 = 1 can be proved invariant along the di�erential equation.
Axiom DBX derives using the derived axiom [·]∧, the equivalence e = 0↔ e ≥ 0 ∧ −e ≥ 0

by R, and the equality (−e)′ = −(e)′ provable by ()′. �e ODE is abbreviated in the derivation
below with αx ≡ x′ = f(x) &Q.

∗
DBX<, ∧L, ∧R[αx](e)

′ ≥ ge ∧ [αx](−e)′ ≥ g(−e), e ≥ 0 ∧ −e ≥ 0 ` [αx]e ≥ 0 ∧ [αx]−e ≥ 0
[·]∧ [αx]((e)

′ ≥ ge ∧ (−e)′ ≥ g(−e)), e ≥ 0 ∧ −e ≥ 0 ` [αx](e ≥ 0 ∧ −e ≥ 0)
M[′], R [x′ = f(x) &Q](e)′ = ge, e = 0 ` [x′ = f(x) &Q]e = 0

�e �rst two syntactic deduction steps in the derivation of DBX< do not appear to have
changed the sequent much, but they correspond to a signi�cant geometric transformation of
the problem, as illustrated in Fig. 3.1b and Fig. 3.1c. In the system extended with di�erential
ghost y, there is now a new invariant ey < 0 which can be observed along solutions! While
the value of e decays (dangerously) towards 0, the chosen di�erential equation y′ = −gy yields
an (integral) value for y that counteracts this change, ensuring that their product still always
stays non-negative along all solutions. In fact, the value of ey even remains constant when
the extended term e satis�es the equational identity .

e = ge. �e second di�erential ghost
z′ = g

2
z in the proof is similarly constructed so that yz2 = 1 can be proved invariant along the

di�erential equation. �e geometric transformation from this second syntactic di�erential ghost
is illustrated in Fig. 3.1d. Since the �rst di�erential ghost y satis�es a di�erential equation, the
second ghost z exactly balances it out with the value of yz2 remaining (provably) constant and
positive at 1 along solutions (similarly to Fig. 3.1b).

�e derivation of DBX< illustrates how the ODE axioms of dL (DI, DC, DG) complement
each other in proofs of ODE invariance. For brevity, the same derivation is used for both ≥ and
> cases of DBX< even though the la�er only needs one ghost (using y′ = −g

2
y and invariant

ey2 > 0 instead). Axiom DBX also derives directly (similarly to DBX<, using the invariant
ey = 0 instead) using just two di�erential ghosts rather than the four incurred with [·]∧.

Corollary 3.6 (Darboux (in)equality rules). �e Darboux equality dbx and Darboux inequality
dbx< proof rules derive from DG (and DI, DC) for any extended cofactor term g.

dbx
Q ` .

e = ge

e = 0 ` [x′ = f(x) &Q]e = 0
dbx<

Q ` .
e ≥ ge

e < 0 ` [x′ = f(x) &Q]e < 0
(< either ≥ or >)

Proof. �e dbx proof rule derives from axiom DBX (and rule dbx< from axiom DBX<) using an
additional ()′, DE step to di�erentials (e)′ into Lie derivatives .

e, followed by dW:
Q ` .

e = ge
dW ` [x′ = f(x) &Q]

.
e = ge

()′, DE, [:=] ` [x′ = f(x) &Q](e)′ = ge
DBX e = 0 ` [x′ = f(x) &Q]e = 0

Q ` .
e ≥ ge

dW ` [x′ = f(x) &Q]
.
e ≥ ge

()′, DE, [:=] ` [x′ = f(x) &Q](e)′ ≥ ge
DBX< e < 0 ` [x′ = f(x) &Q]e < 0

�e following example shows a concrete proof utilizing the newly derived proof rules.

Example 3.7 (Proving ODE properties in dL). Judging by the plot (Fig. 2.1) of the ODE αe
from (2.1), trajectories from within the open (or closed) disk stay trapped within the disk. Rather

41

e'=g (t)e

e

≥ge

t
0

1

(a) Grönwall’s lemma lower bounds .
e ≥ ge

e'=g (t)e

ey=1

y '=-gy

t
0

1

(b) Di�erential ghost y′ = −gy for e′ = g(t)e

e'=g (t)e

e

≥ge

y '=-gy ey≥0

t
0

1

(c) Di�erential ghost y′ = −gy for .
e ≥ ge

y '=-gy

z'=
g
2 z

yz
2
=1

t
0

1

(d) Di�erential ghost z′ = g
2z for y′ = −gy

Figure 3.1: �e horizontal axis tracks the evolution of time t along solutions. Dashed lines
indicate steps based on semantical arguments while solid lines indicate constructions used in
the syntactical proof of Lemma 3.5 (lines are labeled above with their respective equations or
inequalities). In Fig. 3.1a, solutions of .e ≥ ge (solid blue) are bounded below by those of the
non-autonomous linear di�erential equation e′ = g(t)e (dashed blue) by Grönwall’s lemma. In
Fig. 3.1b, the di�erential ghost y′ = −gy (solid green) balances out e′ = g(t)e so that the value
of ey (dashed red) remains constant at 1. In Fig. 3.1c, the same ghost y′ = −gy also balances
out .e ≥ ge, where the value of ey (solid red) remains non-negative but not necessarily constant.
In Fig. 3.1d, a second di�erential ghost z′ = g

2
z (solid black) balances out y′ = −gy so that the

value of yz2 (solid red) remains constant at 1. �e constant 1 in the RHS of ey = 1 and yz2 = 1
in Figs. 3.1b and 3.1d respectively is chosen for simplicity. Any positive constant su�ces with
appropriate initial values of the di�erential ghosts.

than relying (informally) on a potentially incorrect plot though, this fact can be shown formally
by proving that e < 0, with e = 1− u2 − v2, is an invariant of αe. �e Lie derivative of e along
αe is: Lαe

(e) = −2u(−v + u
4
(1− u2 − v2))− 2v(u + v

4
(1− u2 − v2)) = −1

2
(u2 + v2)e. �us,

the following derivation with dbx< proves invariance of 1− u2 − v2 < 0, since e satis�es the

42

(polynomial) inequality .
e ≥ ge with polynomial cofactor g = −1

2
(u2 + v2).

∗
R ` Lαe

(1− u2 − v2) ≥ −1
2
(u2 + v2)(1− u2 − v2)

dbx<1− u2 − v2 < 0 ` [αe]1− u2 − v2 < 0

In fact, the term e obeys the special equational case .
e = ge (Fig. 3.1b) in which the seemingly

innocuous syntactic introduction of a di�erential ghost y′ = −gy even exactly balances out
the complicated (decaying) evolution of e geometrically. Indeed, in this case, e = 0 can also be
proved invariant for the ODE αe using rule dbx. �is proves the observation from Fig. 2.1 that
the unit circle is also invariant for αe. 4

�e derivations of axioms DBX, DBX< give constructive choices of di�erential ghosts when
the invariant is a Darboux (in)equality. �e derived rule dbx< already exceeds the deductive
power of DI, DC because the formula y > 0→ [y′ = −y]y > 0 is easily provable by dbx< using
the Darboux equality .

y = −y, but is not provable with DI, DC alone [140].

3.3.3 Barrier Certi�cates
Barrier certi�cates [155, 158] are certi�cates of safety for ODEs and hybrid systems. Brie�y,
given an ODE safety question Γ ` [x′ = f(x) &Q]φ, a barrier certi�cate term b is such that
formula b < 0 is a suitable invariant for proving that safety question, i.e., the sequents Γ ` b < 0,
b < 0 ` φ, and b < 0 ` [x′ = f(x) &Q]b < 0 are all valid. In practice, such certi�cates are
computationally a�ractive because they can (sometimes) be found by suitably encoding the
above validity questions, e.g., with sum-of-squares programming [155, 158], and solving the
resulting problem through numerical methods. However, numerical inaccuracies in the results,
especially when polynomials of high degree are involved, means that the generated candidates
are o�en unsound [40] and they must be carefully checked for soundness when used in safety
proofs. A useful application of rule dbx< is to derive a sound proof rule4 that checks the invariance
for b < 0 according to the barrier certi�cates condition.

Corollary 3.8 (Strict barrier certi�cates are di�erential ghosts). �e barrier certi�cates Barr proof
rule derives from DG (and DI, DC) for any polynomial term p and polynomial ODE x′ = f(x) in
a closed semialgebraic domain Q, i.e., Q is formed from conjunctions and disjunctions of non-strict
inequalities over polynomial terms.

Barr
Q, p = 0 ` .

p > 0

p < 0 ` [x′ = f(x) &Q]p < 0
(where < is ≥ or >)

Proof. �e proof starts by considering the cofactor “term” ĝ =
.
pp

max (
.
p,p2)

which, crucially for
soundness, is not included in the syntax of extended dL terms because it contains division by

4�e sound justi�cation of this rule is important, e.g., the earlier presentation of barrier certi�cates [155] with
.
p ≥ 0 instead of .p > 0 in the succedent of the premise of rule Barr is unsound [45, Example 2].

43

the non-smooth max function. �is cofactor is modi�ed later to be a polynomial term but, for
the moment, note the following valid arithmetic inequality:

max (
.
p, p2)

.
p =

{.
p

2 if .p ≥ p2

.
pp2 otherwise .

p < p2

≥ .
pp2 (in both cases) (3.3)

In the former case, inequality (3.3) is justi�ed by multiplying both sides of the case assumption
.
p ≥ p2 by .

p (which is non-negative because it is bounded below by a squared term). From
the premise of rule Barr, the “term” max (

.
p, p2) is strictly positive in domain Q, so dividing

both sides of (3.3) by max (
.
p, p2) proves the inequality .

p ≥ ĝp. �is argument justi�es the LHS
“derivation” below which, however, uses an illegal cofactor “term” ĝ.

Q, p = 0 ` .
p > 0

Q ` .
p ≥ ĝp

dbx< p < 0 ` [x′ = f(x) &Q]p < 0

Q, p = 0 ` .
p > 0

R Q ` .
p ≥ gp

dbx< p < 0 ` [x′ = f(x) &Q]p < 0
It remains to identify a cofactor g that satis�es the inequality ĝp ≥ gp in Q so that the RHS

derivation above is justi�ed by rule R (because all entries of the sequent are formulas in FOLR).
�e identi�cation of g uses a bound on the rate of growth of continuous semialgebraic functions
from real algebraic geometry [14, Prop 2.6.2]. By an abuse of notation, all polynomial terms
below, e.g., .p, p, denote their respective polynomial functions over x.

�e function σ(x) =
.
p(x)

max (
.
p(x),p(x)2)

is a semialgebraic function on the closed domain [[Q]] ⊆ Rn

because, within [[Q]], its denominator is strictly positive and the graph relation σ(x) = y is
characterized by the following semialgebraic formula, where the disjuncts case split on the max
function appearing in the denominator of σ(x):

σ(x) = y ≡
(.
p(x) ≥ p(x)2 ∧ .

p(x) = y
.
p(x)

)
∨
(.
p(x) < p(x)2 ∧ .

p(x) = yp(x)2
)

�us, by [14, Prop 2.6.2], the function σ is bounded in norm with |σ(x)| ≤ c
(
1 + ‖x‖2

2

)r for
some (positive) constant c ∈ R and power r ∈ N. �is bound justi�es the choice of (polynomial)
cofactor g = −c

(
1 + ‖x‖2

2

)r
p(x) because for all x ∈ [[Q]],

ĝ(x)p(x) = σ(x)p(x)2 ≥ −c
(
1 + ‖x‖2

2

)r
p(x)2 = g(x)p(x)

Corollary 3.8 generalizes an earlier result [178], which showed that many �avors of barrier
certi�cates in the literature can be understood using a comparison principle (in particular,
with dbx<) to the case of strict barrier certi�cates [155, 158]. Together with dbx, dbx<, rule Barr
enables sound checking of various invariant candidates using (at most) two DG steps. How-
ever, Corollary 3.8 is restricted to polynomials because it uses a bound from real algebraic
geometry [14, Prop 2.6.2] to select an appropriate polynomial cofactor. �is restriction is im-
material in practice because techniques for generating barrier certi�cates use optimization
over polynomials anyway [155, 158]. Nevertheless, the general barrier certi�cates proof rule
for arbitrary extended terms e shown below is a special case of the complete proof rule for
semianalytic invariants derived in �eorem 3.29 with axiomatic extensions.

Barr
Q, e = 0 ` .

e > 0

e < 0 ` [x′ = f(x) &Q]e < 0
(where < is ≥ or >)

44

�e next section builds on these constructions, showing that the deductive power a�orded
by axiom DG extends to all true analytic invariants.

3.4 Analytic Invariants
Analytic formulas are formed from �nite conjunctions and disjunctions of equalities, but, over
R, can be normalized to a single equality e = 0 using the provable real arithmetic equivalences:
e = 0 ∧ ẽ = 0↔ e2 + ẽ2 = 0 and e = 0 ∨ ẽ = 0↔ eẽ = 0. �us, it su�ces to restrict a�ention
to equational formulas e = 0 when proving completeness for analytic invariants.

�e key to completeness is the di�erential radical identity (3.2) for e with arbitrary rank
N ≥ 1, which analyzes all higher Lie derivatives simultaneously. Suppose that extended term e
satis�es identity (3.2) with rank N and some cofactors gi. Taking Lie derivatives on both sides
of identity (3.2) yields:

.
e(N+1) = Lf(x)(

.
e(N)) = Lf(x)

(
N−1∑
i=0

gi
.
e(i)

)
=

N−1∑
i=0

Lf(x)(gi
.
e(i)) =

N−1∑
i=0

(.
gi
.
e(i) + gi

.
e(i+1)

)
=

N−1∑
i=0

(.
gi
.
e(i)
)

+
N−2∑
i=0

(
gi
.
e(i+1)

)
+ gN−1

.
e(N)

=
N−1∑
i=0

(.
gi
.
e(i)
)

+
N−2∑
i=0

(
gi
.
e(i+1)

)
+ gN−1

(
N−1∑
i=0

gi
.
e(i)

)

�e last step follows using (3.2) to expand .
e(N). Observe that the resulting expression for

.
e(N+1) is again a sum over the lower Lie derivatives .

e(i) for i = 0, . . . , N − 1 multiplied by ap-
propriate cofactors. By repeatedly taking Lie derivatives on both sides, the higher Lie derivatives
.
e(N),

.
e(N+1), . . . can all be wri�en as sums over these lower Lie derivatives with appropriate

cofactors. �us, in the real analytic se�ing, for initial states ω where ω[[e]], ω[[
.
e]], . . . , ω[[

.
e(N−1)]]

all simultaneously evaluate to 0, formula e = 0 (and similarly for all its higher Lie derivatives)
stays invariant along solutions to the ODE.

�is suggests that rule dbx should be generalized by considering higher Lie derivatives. �e
canonical technique for generalizing to higher derivatives comes from the study of ODEs. All
(explicit form) ordinary di�erential equations involving higher derivatives can be transformed
into vectorial systems of di�erential equations involving only �rst derivatives but possibly over
a vector of variables [204, §11.I]. �is transformation can be done syntactically and is precisely
the idea used to derive the (complete) proof rule for analytic invariants by reduction to a suitable
vectorial generalization of rule dbx. �is crucial vectorial generalization is derived �rst.

3.4.1 Vectorial Darboux Equalities
Suppose that them-dimensional vector of extended terms e = (e1, . . . , em) satis�es the vectorial
identity .

e = Ge, where G is an m×m matrix of extended terms and .
e denotes component-wise

Lie derivatives of vector e along x′ = f(x) and (e)′ denotes component-wise di�erentials. If all

45

components of e evaluate to 0 in an initial state, then they all always stay at 0 along x′ = f(x)
because their component-wise Lie derivatives all evaluate to 0 in that initial state.

Lemma 3.9 (Vectorial Darboux equalities are di�erential ghosts). �e vectorial Darboux ax-
iom VDBX derives from DG (and DI, DC), where G is an m×m cofactor matrix of extended terms
and e is an m-dimensional vector of extended terms.

VDBX [x′ = f(x) &Q](e)′ = Ge→ (e = 0→ [x′ = f(x) &Q]e = 0)

Proof. First, observe that the formula e = 0 is provably equivalent in real arithmetic to the
formula −‖e‖2

2 ≥ 0; recall that the term ‖e‖2
2

def
=
∑m

i=1 e
2
i is the squared Euclidean norm of

vector e. �e derivation starts with M[′], cut and R to rephrase e = 0 using this equivalence.
�anks to this rephrasing, the sequent no longer contains vectorial quantities and the derivation
is completed using a (scalar) DBX< step with the extended term cofactor g = ‖G‖2

F + 1, where
the term ‖G‖2

F

def
=
∑m

i=1

∑m
j=1 G

2
ij is the squared Frobenius norm of matrix G.

∗
()′, R (e)′ = Ge ` (−‖e‖2

2)′ ≥ g(−‖e‖2
2)

M[′] [x′ = f(x) &Q](e)′ = Ge ` [x′ = f(x) &Q](−‖e‖2
2)′ ≥ g(−‖e‖2

2)
DBX< [x′ = f(x) &Q](e)′ = Ge, −‖e‖2

2 ≥ 0 ` [x′ = f(x) &Q]−‖e‖2
2 ≥ 0

M[′], cut, R [x′ = f(x) &Q](e)′ = Ge, e = 0 ` [x′ = f(x) &Q]e = 0

All that remains is to justify the �nal ()′, R step a�er M[′] by showing that the following
arithmetic formula is provable:

(e)′ = Ge → (−‖e‖2
2)′ ≥ g(−‖e‖2

2) (3.4)

�e di�erential (−‖e‖2
2)′ is calculated (and proved via ()′ from Section 2.3.3, page 24) as

follows, where u · v denotes the dot product of vectors u,v. �e last step uses (e)′ = Ge:

(−‖e‖2
2)′ = −(

m∑
i=1

e2
i)
′ = −2

m∑
i=1

ei(ei)
′ = −2(e · (e)′) = −2(e · (Ge))

�us, it su�ces to prove the validity of formula−2(e · (Ge)) ≥ g(−‖e‖2
2), i.e., its truth in all

states ω. Validity is �rst shown semantically. For ease of notation, let ω[[e]], ω[[G]] stand for the
respective real vector and matrix values of e and G evaluated component-wise in state ω. �e
notation ‖·‖2 , ‖·‖F denotes the (real-valued) Euclidean and Frobenius norms for vectors and
matrices respectively. By the Cauchy-Schwarz inequality [204, §28.I], the dot product between
vectors ω[[e]] and ω[[G]]ω[[e]] is bounded by the product of their norms:

ω[[e]] · (ω[[G]]ω[[e]]) ≤ ‖ω[[e]]‖2 ‖ω[[G]]ω[[e]]‖2

�e norm ‖ω[[G]]ω[[e]]‖2 of this matrix-vector product is bounded by the product of their matrix
and vector norms because the Euclidean and Frobenius norms are compatible [204, §14.II]:

‖ω[[G]]ω[[e]]‖2 ≤ ‖ω[[G]]‖F ‖ω[[e]]‖2

46

Expanding the (square) inequality 0 ≤ (‖ω[[G]]‖F − 1)2 yields an upper bound on the Frobenius
norm ‖ω[[G]]‖F by its squared value:

2 ‖ω[[G]]‖F ≤ ‖ω[[G]]‖2
F + 1

Chaining these (in)equalities yields:

ω[[−2(e · (Ge))]] = −2(ω[[e]] · (ω[[G]]ω[[e]])) ≥ −2 ‖ω[[e]]‖2 ‖ω[[G]]ω[[e]]‖2

≥ −2 ‖ω[[e]]‖2 ‖ω[[G]]‖F ‖ω[[e]]‖2 = −2 ‖ω[[G]]‖F ‖ω[[e]]‖2
2

≥ (‖ω[[G]]‖2
F +1)(−‖ω[[e]]‖2

2) = ω[[g(−‖e‖2
2)]]

where ‖ω[[G]]‖2
F + 1 is precisely the semantic value of cofactor g in state ω. Since this semantic

argument for the validity of implication (3.4) only depends on �rst-order properties of the real
closed �elds, which is decidable [14, 197], formula (3.4) is provable syntactically by ()′, R.

Corollary 3.10 (Vectorial Darboux equality rule). �e vectorial Darboux equality proof rule vdbx
derives from DG (and DI, DC), where G is an m×m cofactor matrix of extended terms and e is an
m-dimensional vector of extended terms.

vdbx
Q ` .

e = Ge

e = 0 ` [x′ = f(x) &Q]e = 0

Proof. Rule vdbx derives from derived axiom VDBX using ()′, DE, [:=] to provably transform
between (e)′ and .

e, just like rule dbx derives from derived axiom DBX in Corollary 3.6.

�e use of axiom DBX< in the derivation of axiom VDBX corresponds to an application
of Grönwall’s lemma [70, 204, §29.VI], as illustrated in Fig. 3.1a. In case e starts with value 0
initially and satis�es the Darboux inequality .

e ≥ ge, the constant zero solution of the di�erential
equation e′ = g(t)e bounds it from below. In Fig. 3.1a, this corresponds to the case where both
blue lines lie exactly on the horizontal axis. �e proof uses the (squared) Euclidean and Frobenius
norms to reduce a vectorial equality (e = 0) to a scalar inequality (−‖e‖2

2 ≥ 0), which enables
further analysis using scalar di�erential ghosts. �e convenient choice of compatible norms
ensures that all syntactic proof steps are done within the extended term language. Since all
norms are equivalent on �nite-dimensional vector spaces [204, §10.III], this reduction can also
be done using other norms with suitable syntactic representations. Convenient choices of norms
are a common technique in the study of di�erential equations [204].

An alternative derivation of rule vdbx is given in an earlier result [148] based on Liouville’s
formula [204, §15.III]. �at alternative derivation has a geometric interpretation as a continuous
change of basis that is expressed purely syntactically [148] but requires the use of vectorial
di�erential ghosts and a number of ghost variables that is quadratic in the dimension. �e new
derivation in Lemma 3.9 uses exactly 2 scalar di�erential ghosts in the DBX< step independent
of dimension and relies only on basic properties of real arithmetic. In fact, just like the scalar
Darboux axioms, axiom VDBX for m-dimensional extended terms e derives once-and-for-all so
no di�erential ghosts are needed for its subsequent use.

47

3.4.2 Completeness for Analytic Invariants
Returning to extended terms e satisfying the di�erential radical identity (3.2), the following
proof rule for invariance of e = 0 based on higher Lie derivatives derives as a direct instance of
derived rule vdbx:

�eorem 3.11 (Di�erential radical invariants are vectorial Darboux). �e di�erential radical
invariant proof rule dRI derives from vdbx (which in turn derives from DG).

dRI
Γ, Q `

∧N−1
i=0

.
e(i) = 0 Q ` .

e(N) =
∑N−1

i=0 gi
.
e(i)

Γ ` [x′ = f(x) &Q]e = 0

Proof Summary (Appendix A.2.3). Rule dRI derives from rule vdbx by transforming identity (3.2)
involving higher Lie derivatives of e into a vectorial Darboux equality involving only �rst Lie
derivatives of the extended term vector e, using the following choice of cofactor matrix G:

G =

0 1 0 . . . 0

0 0
.

... 0
0 0 . . . 0 1
g0 g1 . . . gN−2 gN−1

 , e =

e
.
e(1)

...

.
e(N−2)

.
e(N−1)

�e matrix G has 1 on its superdiagonal and the gi cofactors in the last row. �e le� premise

of dRI is used to prove formula e = 0 true initially, while the right premise of dRI is used to
show the premise of vdbx.

For any extended term e in the LHS of normalized equation e = 0, the computable di�erential
radicals condition (R) requires that the di�erential radical identity (3.2) (computably) exists and
proves with associated rank N and cofactors gi for e. �e resulting (provable) identity (3.2)
proves the right premise of dRI.5 �e succedent in the remaining le� premise of dRI thus gives a
�nitary characterization for when all Lie derivatives of e evaluate to zero in the initial state. �is
motivates the following de�nition of a �nite formula summarizing that all higher Lie derivatives
of e are zero:

De�nition 3.12 (Di�erential radical formula). �e di�erential radical formula
.
e(∗) = 0 for

extended term e of rank N ≥ 1 from identity (3.2) with Lie derivatives along x′ = f(x) is
de�ned to be the formula .

e
(∗)
f = 0 below (le�), where the dependency on ODE x′ = f(x) is

dropped when it is clear from the context (shown on the right):

.
e

(∗)
f = 0

def≡
N−1∧
i=0

L(i)

f(x)(e) = 0
.
e(∗) = 0

def≡
N−1∧
i=0

.
e(i) = 0

5�eorem 3.11 shows Q can be assumed when proving the right premise of dRI. A �nite rank must exist either
way, but assuming Q may reduce the number of higher Lie derivatives of e that need to be considered for the proof
(as in Example 3.41).

48

�e �niteness of .e(∗) = 0 depends on Lie derivatives along the particular di�erential equation
x′ = f(x) of interest, because, without considering the ODE, no corresponding chain of higher-
order di�erentials would stabilize. �e rest of this chapter uses Lie derivatives for this �niteness
property, but relies under the hood on dL’s axiomatic proof transformation from di�erentials.

�e completeness of derived rule dRI can be proved semantically by extending earlier argu-
ments [63] to extended term languages. Even be�er: the following equivalent characterization
in arithmetic of the truth of analytic formulas along forward evolutions of di�erential equations
derives axiomatically using the extensions developed in Section 3.5.6 In contrast to the semantic
completeness argument, this syntactic characterization enables complete proofs and complete
disproofs of analytic invariance within the dL calculus. In other words, disproving the RHS of
the characterization under assumptions Γ, yields a dL proof of Γ ` ¬[x′ = f(x) &Q]e = 0.

�eorem 3.13 (Analytic completeness). �e di�erential radical invariant axiom DRI derives in dL
when Q is a semianalytic formula formed from conjunctions and disjunctions of strict inequalities:

DRI [x′ = f(x) &Q]e = 0↔
(
Q→ .

e(∗) = 0
)

Proof Summary (Appendix A.2.3). �e “←” direction derives (for any Q) by an application of
derived rule dRI, whose right premise closes by (3.2). �e “→” direction relies on existence
and uniqueness of solutions to di�erential equations, which are internalized later as axioms in
Section 3.5.

For the proof of �eorem 3.13, the additional axioms are only required for syntactically deriv-
ing the “→” direction (completeness) of DRI. �e “←“ direction (soundness) derives using dRI,
which, by �eorem 3.11, can be derived using only DI, DC, DG. �us, the base dL axiomatization
with di�erential ghosts is complete for proving properties of the form [x′ = f(x) &Q]e = 0
because dRI provably reduces all such questions to Q→ .

e(∗) = 0. �e validity of this resulting
semianalytic formula is a purely arithmetical question. In fact, the base dL axiomatization
decides [x′ = f(x) &Q]p = 0 in the case where x′ = f(x) is polynomial and Q is semialgebraic,
because the resulting RHS of DRI is semialgebraic, and hence, a formula of decidable real arith-
metic [14, 197]. �e same applies for the next result, which is a corollary of �eorem 3.13 but
applies beyond the continuous fragment, thanks to the compositional application of dL’s hybrid
program axioms.

Corollary 3.14 (Analytic hybrid program completeness). For analytic formulas P and analytic
hybrid programs α, i.e., whose tests and domain constraints are negations of analytic formulas, it is
possible to compute an extended term e such that the equivalence [α]P ↔ e = 0 is derivable in dL,
provided that the term language is Noetherian.7

6With these axiomatic extensions, the requirement in �eorem 3.13 that Q is formed from strict inequalities is
not necessary. A derived equivalence axiom for analytic invariance with arbitrary semianalytic domain constraint
Q is given in �eorem 3.30.

7�e set of extended terms always forms a ring because the +, · operations are interpreted as the usual real-
valued addition and multiplication and hence obey the ring axioms [24] for R. An extended term language is said
to be Noetherian if its corresponding ring of extended terms is Noetherian. Like the computable di�erential radicals
condition (R), an algorithm is assumed that decides (and proves) ideal membership in the ring of extended terms.

49

Proof. �e analytic formula P is provably equivalent in real arithmetic to a formula e = 0
for some extended term e by normalizing P with the provable real arithmetic equivalences
e = 0 ∧ ẽ = 0↔ e2 + ẽ2 = 0 and e = 0 ∨ ẽ = 0↔ eẽ = 0. Assume without loss of generality
that it is already wri�en in this form, and accordingly for the negated analytic formulas in α so
that analytic hybrid programs are generated by the grammar (3.5).

α, β ::= x := e | ?d 6= 0 | x′ = f(x) & d 6= 0 | α ∪ β | α; β | α∗ (3.5)

�e proof proceeds by structural induction on the fragment of dL programs generated
by the grammar (3.5), showing that for some (computable) extended term ẽ, the equivalence
[α]e = 0↔ ẽ = 0 is derivable in dL.

• Case x′ = f(x) & d 6= 0. �e formula d 6= 0 is a strict inequality so �eorem 3.13 derives
[x′ = f(x) & d 6= 0]e = 0↔ (d 6= 0→ .

e(∗) = 0). Let N be the rank of e so that .e(∗) = 0
expands to

∧N−1
i=0

.
e(i) = 0 and let ẽ = d(

∑N−1
i=0 (

.
e(i))2), giving the provable real arithmetic

equivalence (d 6= 0→ .
e(∗) = 0)↔ ẽ = 0. Rewriting with this derives the equivalence:

[x′ = f(x) & d 6= 0]e = 0↔ ẽ = 0

• Case x := e. Axiom [:=] derives the equivalence [x := e]ẽ(x) = 0↔ ẽ(e) = 0, where ẽ(e)
is an extended term.

• Case ?d 6= 0. Axiom [?] derives the equivalence [?d 6= 0]e = 0 ↔ (d 6= 0 → e = 0).
Rewriting with the provable real arithmetic equivalence (d 6= 0 → e = 0) ↔ de = 0
derives the equivalence:

[?d 6= 0]e = 0↔ de = 0

• Case α∪β. Axiom [∪] derives the equivalence [α ∪ β]e = 0↔ [α]e = 0∧ [β]e = 0. By the
induction hypothesis on α, β, the equivalences [α]e = 0↔ ẽ1 = 0 and [β]e = 0↔ ẽ2 = 0
derive for some extended terms ẽ1, ẽ2. Moreover, ẽ1 = 0∧ẽ2 = 0↔ ẽ2

1+ẽ2
2 = 0 is provable

in real arithmetic. Rewriting with the derived equivalences derives the equivalence:

[α ∪ β]e = 0↔ ẽ2
1 + ẽ2

2 = 0

• Case α; β. Axiom [;] derives the equivalence [α; β]e = 0↔ [α][β]e = 0. By the induction
hypothesis on β, the equivalence [β]e = 0 ↔ ẽ2 = 0 derives for some extended term
ẽ2. Rewriting with this equivalence derives [α; β]e = 0 ↔ [α]ẽ2 = 0. By the induction
hypothesis on α, the equivalence [α]ẽ2 = 0↔ ẽ1 = 0 derives for some extended term ẽ1.
Rewriting with the chain of derived equivalences derives the equivalence:

[α; β]e = 0↔ ẽ1 = 0

• Case α∗. �is case crucially requires that the extended term language is Noetherian.
First, construct the sequence of terms ẽi de�ned inductively with ẽ0

def
= e and ẽi+1 is the

term satisfying the derived equivalence [α]ẽi = 0↔ ẽi+1 = 0 obtained by applying the
induction hypothesis on α with postcondition ẽi = 0 for i = 0, 1, 2, Since the term
language is assumed to be Noetherian, the following ascending chain of ideals stabilizes:

(ẽ0) ⊆ (ẽ0, ẽ1) ⊆ (ẽ0, ẽ1, ẽ2) ⊆ · · ·

50

By decidable ideal membership for the extended term language, there is a (smallest)
computable k such that ẽk satis�es the provable identity (3.6), with cofactor terms gi:

ẽk =
k−1∑
i=0

giẽi (3.6)

�e equivalence
∑k−1

i=0 ẽ
2
i = 0↔

∧k−1
i=0 ẽi = 0 is provable by real arithmetic so, to derive

the equivalence [α∗]e = 0 ↔
∑k−1

i=0 ẽ
2
i = 0, it su�ces to show that the equivalence

[α∗]e = 0 ↔
∧k−1
i=0 ẽi = 0 is derivable. �e two directions of this la�er equivalence are

shown separately:
“→” �is direction is straightforward using the iteration axiom [∗] k times together with

derived axiom [·]∧. By construction, the formulas [α]ẽi = 0 are provably equivalent
to ẽi+1 = 0 using derived equivalences, which derives the required implication:

∗
ẽ0 = 0 ∧ ẽ1 = 0 ∧ ẽ2 = 0 ∧ · · · ∧ ẽk−1 = 0 `

∧k−1
i=0 ẽi = 0

e = 0 ∧ [α]e = 0 ∧ [α][α]e = 0 ∧ · · · ∧ [α] . . . [α]︸ ︷︷ ︸
k−1 times

e = 0 `
∧k−1
i=0 ẽi = 0

[∗], [·]∧ · · ·
[∗], [·]∧ e = 0 ∧ [α]e = 0 ∧ [α][α][α∗]e = 0 `

∧k−1
i=0 ẽi = 0

[∗], [·]∧ e = 0 ∧ [α][α∗]e = 0 `
∧k−1
i=0 ẽi = 0

[∗] [α∗]e = 0 `
∧k−1
i=0 ẽi = 0

“←” �e postcondition of the succedent box modality is strengthened to
∧k−1
i=0 ẽi = 0

by monotonicity with M[·], recalling that ẽ0
def
= e, so

∧k−1
i=0 ẽi = 0 → e = 0 is a

propositional tautology. Subsequently, the loop rule is used to prove that
∧k−1
i=0 ẽi = 0

is a loop invariant of α∗: ∧k−1
i=0 ẽi = 0 ` [α]

∧k−1
i=0 ẽi = 0

loop∧k−1
i=0 ẽi = 0 ` [α∗]

∧k−1
i=0 ẽi = 0

M[·]∧k−1
i=0 ẽi = 0 ` [α∗]e = 0

By axiom [·]∧ and ∧R, each conjunct of the postcondition (indexed by 0 ≤ i ≤ k−1)
of the premise is proved separately. By construction, each [α]ẽi = 0 is provably
equivalent to ẽi+1 = 0 so the premises for indices 0 ≤ i < k − 1 all close trivially
because ẽi+1 = 0 is already in the antecedent. �e last premise for index i = k−1 has
succedent ẽk = 0. However, this follows (by construction and R) from the antecedent
using the provable identity (3.6).

∗
R, ∧R∧k−1

i=0 ẽi = 0 `
∧k−1
i=0 ẽi+1 = 0∧k−1

i=0 ẽi = 0 `
∧k−1
i=0 [α]ẽi = 0

[·]∧ ∧k−1
i=0 ẽi = 0 ` [α]

∧k−1
i=0 ẽi = 0

51

�e Noetherian condition of Corollary 3.14 implies the computable di�erential radicals con-
dition (R). Polynomial term languages are Noetherian so Corollary 3.14 shows that dL decides
[α]P where P and α are both algebraic. However, extended term languages are not necessarily
Noetherian, for example, extended term language (3.1), even only with exp, is not Noethe-
rian [198, Remark 1.4.2].8 Nevertheless, the stronger Noetherian condition is only required when
the analytic hybrid program α contains loops. Otherwise, the weaker condition (R) su�ces for
loop-free α in Corollary 3.14. A version of Corollary 3.14 is proved for Noetherian functions
in Corollary 3.39 with loop-free α or with assignment-free α (with loops).

3.5 Extended Axiomatization
�is section presents an axiomatic extension to dL whose purpose is to internalize standard
properties of di�erential equations, such as existence and uniqueness [204, §10.VI], as syntactic
reasoning principles. �e extension requires that the ODE system x′ = f(x) locally evolves x,
i.e., it has no �xpoint at which f(x) is the 0 vector. �is can be ensured syntactically, e.g., by
requiring that the system contains a clock variable x′1 = 1 that tracks the passage of time. In
proofs, such a clock can always be added using axiom DG if necessary.

3.5.1 Existence, Uniqueness, and Continuity
�e di�erential equations of dL are smooth so the Picard-Lindelöf theorem [204, §10.VI] guaran-
tees that for any initial state ω, a unique solution of the system x′ = f(x), i.e., ϕ : [0, T]→ S
with ϕ(0) = ω, exists for some duration T > 0. �e solution ϕ can be extended (uniquely) to its
maximal open interval of existence [204, §10.IX] and ϕ(ζ) is smooth with respect to ζ .

Lemma 3.15 (Continuous existence, uniqueness, and di�erential adjoints). �e following axioms
are sound. In Cont and Dadj, y are fresh variables (not in x′ = f(x) &Q(x) or extended term e).

Uniq 〈x′ = f(x) &Q1 ∧Q2〉P ↔
(
〈x′ = f(x) &Q1〉P

)
∧
(
〈x′ = f(x) &Q2〉P

)
Cont x = y →

(
〈x′ = f(x) & e > 0〉x 6= y ↔ e > 0

)
Dadj 〈x′ = f(x) &Q(x)〉x = y ↔ 〈y′ = −f(y) &Q(y)〉 y = x

Proof Summary (Appendix A.1.1). Uniq internalizes uniqueness, Cont internalizes continuity of
the values of e and existence of solutions, and Dadj internalizes di�erential adjoints by the group
action of time on ODE solutions, which is another consequence of existence and uniqueness.

�e uniqueness axiom Uniq says that if a state has two solutions ϕ1, ϕ2 respectively staying
in evolution domains Q1, Q2 and whose endpoints satisfy P , then, by uniqueness, one of ϕ1 or
ϕ2 is a pre�x of the other, and therefore, that pre�x stays in both evolution domains Q1 ∧Q2

and satis�es P at its endpoint. �e continuous existence axiom Cont expresses a notion of local

8�e ring of all extended terms (including function composition) is not to be confused with the ring of Noetherian
functions generated by a single Noetherian chain, the la�er of which is indeed Noetherian (see Section 3.7).

52

progress for di�erential equations. It says that from an initial state satisfying x = y, the system
can locally evolve to another state satisfying x 6= y while still staying in the open set of states
characterized by e > 0 i� the initial state is already in that open set. �is uses the assumption
that the system locally evolves x at all. �e di�erential adjoints axiom Dadj expresses that x can
�ow forward to y i� y can �ow backward to x along the negated ODE. It is at the heart of the
“there and back again” axiom that equivalently expresses properties of di�erential equations
with evolution domains in terms of properties of forward and backward di�erential equations
without evolution domains [139].

Although all three axioms are stated as (conditional9) equivalences to support intuition, the
main properties of interest are their “←” directions. For example, the “→” direction of Uniq
derives from domain constraint monotonicity for the diamond modality (derived rule dRW〈·〉
below). Diamond modality monotonicity principles are given below because they are useful for
working with the newly introduced axioms. �ey are derived duals of the usual dL box modality
principles using axiom 〈·〉.

Corollary 3.16 (Derived diamond modality domain rules and axioms). �e following axiom and
its corollary proof rule derive in dL:

DR〈·〉 [x′ = f(x) &R]Q→
(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
dRW〈·〉

R ` Q Γ ` 〈x′ = f(x) &R〉P
Γ ` 〈x′ = f(x) &Q〉P

Proof. Axiom DR〈·〉 derives from DMP (the roles of Q and R are �ipped) by dualizing with the
〈·〉 axiom. �e �nal K, dW steps use the propositional tautology Q→ (R→ Q).

∗
dW ` [x′ = f(x) &R](Q→ (R→ Q))
K [x′ = f(x) &R]Q ` [x′ = f(x) &R](R→ Q)

DMP [x′ = f(x) &R]Q, [x′ = f(x) &Q]¬P ` [x′ = f(x) &R]¬P
〈·〉, ¬R, ¬L [x′ = f(x) &R]Q, 〈x′ = f(x) &R〉P ` 〈x′ = f(x) &Q〉P

Rule dRW〈·〉 derives from DR〈·〉 by simplifying its outer (le�most) assumption with rule dW.

3.5.2 Real Induction
�e �nal axiomatic extension is based on the real induction principle [34], brie�y:

De�nition 3.17 (Inductive subset [34]). �e subset S ⊆ [a, b] is called an inductive subset of
the compact interval [a, b] i� for all a ≤ ζ ≤ b such that [a, ζ) ⊆ S,

1 ζ ∈ S and
2 if ζ < b then (ζ, ζ + ε] ⊆ S for some ε > 0.

Here, [a, a) is the empty interval, hence 1 requires a ∈ S.
9Axiom Cont is sound even without the condition from assumption x = y. It is stated conditionally to align

with the intuition of local evolution from an initial state satisfying x = y.

53

Proposition 3.18 (Real induction [34]). �e subset S ⊆ [a, b] is inductive i� S = [a, b].

Proof. In the “⇐ ” direction, S = [a, b] is inductive by de�nition. For the “⇒ ” direction, let
S ⊆ [a, b] be inductive. Suppose S 6= [a, b], so that the complement set S{ = [a, b] \ S is
nonempty. Let ζ be the in�mum of S{, then ζ ∈ [a, b] since [a, b] is le�-closed. First, note that
[a, ζ) ⊆ S. Otherwise, ζ is not an in�mum of S{, because there would exist a ≤ τ < ζ , such
that τ ∈ S{. By 1 , ζ ∈ S. Next, if ζ = b, then S = [a, b], contradiction. �us, ζ < b, and by 2 ,
(ζ, ζ + ε] ⊆ S for some ε > 0. Since ζ ∈ S, this implies that ζ + ε is a greater lower bound of
S{ than ζ , contradiction.

Proposition 3.18 is based on the completeness of the reals [34] for compact intervals [a, b] of R.
Applying it to the time axis of ODE solutions yields real induction along solutions of di�erential
equations. For brevity, only the real induction axiom for systems without evolution domain
constraints is presented here, leaving the general version to Appendix A.1.1, since evolution
domains are de�nable in dL [139].

Lemma 3.19 (Real induction). �e real induction axiom RI is sound, where variable y is fresh in
formula [x′ = f(x)]P .

RI [x′ = f(x)]P ↔ ∀y [x′ = f(x) &P ∨ x = y]
(
x = y → P ∧〈x′ = f(x) &P ∨ x = y〉x 6= y

)
Proof Summary (Appendix A.1.1). �e RI axiom follows from the real induction principle [34]
and the Picard-Lindelöf theorem [204, §10.VI].

Figure 3.2: �e half-open green disk is not
invariant for the ODE αe from (2.1) be-
cause the red and blue trajectories spiral
out of it at a closed (solid green) or open
(dashed green) boundary, respectively.

Real induction axiom RI can be understood in
relation to Def. 3.17: its RHS is true in a state i� the
subset of times at which the solution satis�es P is
inductive. First, ∀y [. . .]

(
x = y → . . .

)
can be un-

derstood as quantifying over all �nal states (x = y)
reached by trajectories staying within P except pos-
sibly at the endpoint x = y. �is corresponds to
[a, ζ) ⊆ S in Def. 3.17. �e le� conjunct (P) under
the box modality expresses that P is still true at such
an endpoint, corresponding to 1 in Def. 3.17. �e
right conjunct (〈x′ = f(x) &P ∨ x = y〉x 6= y) ex-
presses that P continues to remain true locally when
following the ODE for a short time, corresponding
to 2 in Def. 3.17.

To see the topological signi�cance of RI, recall
the ODE αe from (2.1) (page 17) and consider a set of
points that is not invariant. Figure 3.2 illustrates two
trajectories that leave the half-open disk character-
ized by the disjunctive formula: u2 + v2 < 1

4
∨ u2 + v2 = 1

4
∧ u ≥ 0. Trajectories starting in the

disk leave it through its boundary but only in one of two ways: either at a point which is also in
the disk (red trajectory exiting right) or which is not in the disk (blue trajectory exiting le�).
�e le� conjunct of RI rules out trajectories like the blue one exiting le� in Fig. 3.2, while the

54

right conjunct rules out trajectories like the red trajectory exiting right. �e right conjunct of
axiom RI also suggests a way to use it—axiom RI reduces proofs of invariance to local progress
properties under the box modality. �is motivates the following syntactic modality abbreviation
for local progress into an evolution domain Q:

〈x′ = f(x) &Q〉© def≡ 〈x′ = f(x) &Q ∨ x = y〉x 6= y

All proofs in this chapter use the© modality with an initial assumption x = y, where y is
fresh. In this case, where ω[[x]] = ω[[y]], since the ODE locally evolves x, the© modality has the
following semantics:

ω ∈ [[〈x′ = f(x) &Q〉©]] i� there is a function ϕ : [0, T]→ S with T > 0, ϕ(0) = ω,

ϕ solves the ODE x′ = f(x) and ϕ(ζ) ∈ [[Q]] for all ζ in the half-open interval (0, T]

�us, the abbreviation© is a continuous-time version of the next modality of temporal
logic [109] for di�erential equations. Conventionally, such a next state operator is excluded from
continuous-time generalizations of temporal logic [76] because there is no unique “next” state
in the continuous se�ing. �e local progress modality© overcomes this by instead quantifying
over some time interval (0, T], with T > 0, of states along the solution. Intuitively, the exclusion
of time 0 is because the©modality describes what solutions will do next (or locally) rather than
what they are doing now. A precise (topological) explanation is provided in Appendix A.2.2 and a
complete characterization of local progress for all semianalytic formulas is derived in Section 3.6.
As a corollary, Section 3.6 shows that, like its discrete counterpart, the© modality is self-dual
for semianalytic Q.

�e �nal derived rule rI shows what the added axioms and local progress provide—axiom RI
reduces global invariance properties of ODEs to local progress properties. �ese local progress
properties are provable using Cont, Uniq and the dL axioms, as shown in the next section.

Corollary 3.20 (Real induction rule). �e real induction proof rule rI derives from RI, Dadj.
Variables y are fresh in the ODE x′ = f(x) and formula P .

rI
x=y, P ` 〈x′ = f(x) &P 〉© x=y,¬P ` 〈x′ = −f(x) &¬P 〉©

P ` [x′ = f(x)]P

Proof Summary (Appendix A.1.2). Rule rI derives from axiom RI, where the le�/right premises
of the rule correspond respectively to the right/le� conjunct of the RHS of RI. Axiom Dadj is
used to syntactically �ip signs in the right premise.

3.6 Semianalytic Invariants
�is section makes the simplifying assumption that domain constraint Q ≡ true since it is
de�nable in dL [139] and not central to the core idea of the section. Using the generalizations of
RI, rI from Appendix A.1, the case of semianalytic invariants for ODEs with arbitrary semianalytic
evolution domain Q is given in Appendix A.2.

55

�e �rst step in invariance proofs for semianalytic P is to use derived rule rI, which yields
premises of the form x=y, P ` 〈x′ = f(x) &P 〉© (modulo sign changes and negation). �ese
premises express local progress properties of the ODE x′ = f(x). Analogously to the equivalent
arithmetic reduction of equational properties of di�erential equations in �eorem 3.13 using
the �nite di�erential radical formula (Def. 3.12), the key insight is that local progress for any
semianalytic formula is also (provably) completely characterized by a corresponding �nite
semianalytic progress formula.

3.6.1 Local Progress
�is section shows how an arithmetical characterization of local progress can be derived syntac-
tically in dL for extended term languages and proves the completeness of this characterization.
�is characterization was previously used implicitly for semialgebraic invariants [64, 103]. �e
derivation is built up systematically, starting from the base case of atomic inequalities before
moving on to the full semianalytic case. Interesting properties of this characterization, e.g.,
self-duality, are also observed.

Atomic Inequalities. Consider the atomic inequality e < 0. To show local progress into such
an inequality, it is su�cient to locally consider the �rst (signi�cant) Lie derivative of e because
the sign of a smooth function is locally dominated by the sign of its �rst non-zero derivative, if
one exists. �e key to a syntactic rendition uses the following lemma for non-strict inequalities.

Lemma 3.21 (Local progress step). �e local progress step axiom LPi≥ derives from Cont. Variables
y are fresh in the ODE x′ = f(x) and extended term e.

LPi≥ x=y →
(
e ≥ 0 ∧

(
e = 0→ 〈x′ = f(x) &

.
e ≥ 0〉x 6=y

)
→ 〈x′ = f(x) & e ≥ 0〉x 6=y

)
Proof. �e proof starts with a ∨L case split since the antecedent formula e ≥ 0 is equivalent to
formula e > 0 ∨ e = 0 by R. �e resulting premises are respectively abbreviated 1 for e > 0
and 2 for e = 0 and continued below.

1 2
R, ∨Lx=y, e ≥ 0, e = 0→ 〈x′ = f(x) &

.
e ≥ 0〉x 6=y ` 〈x′ = f(x) & e ≥ 0〉x 6=y

From premise 1 , since the value of e is already positive initially, it must locally stay positive.
Using dRW〈·〉, the non-strict inequality in the domain constraint of the succedent is strengthened
to a strict one, a�er which axiom Cont �nishes the derivation.

∗
Cont x=y, e > 0 ` 〈x′ = f(x) & e > 0〉x 6=y

dRW〈·〉x=y, e > 0 ` 〈x′ = f(x) & e ≥ 0〉x 6=y

From premise 2 , the local sign of e cannot be determined from its initial value alone. �e
proof looks to the Lie derivative of e, which is assumed to be locally non-negative (in the
implication e = 0 → . . .). Axiom DR〈·〉 reduces the succedent to a box modality question,

56

a�er which axiom DI �nishes the proof; this re�nement-style technique is further explored for
proving ODE liveness properties in Chapter 4.

∗
DI, ()′, DE, [:=] e = 0 ` [x′ = f(x) &

.
e ≥ 0]e ≥ 0

DR〈·〉 e = 0, 〈x′ = f(x) &
.
e ≥ 0〉x 6=y ` 〈x′ = f(x) & e ≥ 0〉x 6=y

→L e = 0, e = 0→ 〈x′ = f(x) &
.
e ≥ 0〉x 6=y ` 〈x′ = f(x) & e ≥ 0〉x 6=y

Similar to DBX, DBX<, and VDBX, a version of LPi≥ derives once-and-for-all using di�eren-
tials ((e)′ ≥ 0) in domain constraints. �is presentation is omi�ed to keep with the notational
convention that domain constraints are always di�erential-free formulas (Section 2.1). Mathe-
matically, to conclude that e is locally non-negative, it is important that the Lie derivative .

e is
assumed to be locally non-negative rather than just initially non-negative. Just as the local sign
of e cannot be determined (directly) when its initial value is zero, the same is true for .

e. �is
di�erence drives the use of higher Lie derivatives when LPi≥ is generalized below. Syntactically,
this di�erence manifests in both DR〈·〉, DI proof steps which crucially rely on the formula .

e ≥ 0
appearing in their respective domain constraints rather than simply as an initial assumption.

Observe that LPi≥ allows derivations to pass from reasoning about local progress10 for
e ≥ 0 to local progress for its (�rst) Lie derivative .

e ≥ 0 whilst accumulating e = 0 in the
antecedent. �is is reminiscent of derivative tests from elementary calculus used for testing
the local behavior around a given stationary point of a (su�ciently) smooth function. �e
di�erence is that (syntactic) Lie derivatives have to be used for soundness instead of analytic
time derivatives, but these notions are provably equal along ODEs using di�erentials [142,
Lem. 35]. Similar to derivative tests, if the �rst Lie derivative is indeterminate as well, then the
derivation can look to the second higher Lie derivative, and so on. Deductively, this is done by
repeated use of derived axiom LPi≥ until the k-th derivative (shown as . . . in the outline below):

Γ ` e ≥ 0
Γ, e=0 ` .

e ≥ 0
Γ, x=y, e=0, . . . ,

.
e(k−1) = 0 ` 〈x′ = f(x) &

.
e(k)≥0〉x 6=y

. . .
LPi≥ Γ, x=y, e=0 ` 〈x′ = f(x) &

.
e ≥ 0〉x 6=y

LPi≥ Γ, x=y ` 〈x′ = f(x) & e ≥ 0〉x 6=y

Notice that the rightmost premise closes whenever the (strict) inequality .
e(k) > 0 can

be proved from the accumulated antecedents. In that case, the local sign of e (and of all its
Lie derivatives below the k-th one) is dominated by that of .e(k) because all of the lower (Lie)
derivatives have indeterminate sign. �e use of Cont, dRW〈·〉 �nishes the proof because the
solution must then locally enter .

e(k) > 0, for example, with:

Γ, x=y, e = 0, . . . ,
.
e(k−1) = 0 ` .

e(k) > 0

∗
Cont x=y,

.
e(k) > 0 ` 〈x′ = f(x) &

.
e(k) > 0〉x 6=y

dRW〈·〉x=y,
.
e(k) > 0 ` 〈x′ = f(x) &

.
e(k) ≥ 0〉x 6=y

cut Γ, x=y, e = 0, . . . ,
.
e(k−1) = 0 ` 〈x′ = f(x) &

.
e(k) ≥ 0〉x 6=y

10�e local progress property used in LPi≥ is syntactically simpler than for the© modality (no x = y in the
domain constraints). For non-strict inequalities, the two are equivalent but the syntactic simpli�cation in LPi≥
allows its re-use as a lemma in proving© local progress for both non-strict and strict inequalities.

57

�e extended term conditions for smoothness (S) and syntactic partial derivatives (P) guaran-
tee that all of the (in�nitely many) higher Lie derivatives of e are well-de�ned semantically and
syntactically. Derivations, on the other hand, are �nite syntactic objects and can only mention
�nitely many Lie derivatives. �us, one might suspect they are insu�cient (hence incomplete)
when, e.g., none of the higher Lie derivatives has a de�nite sign or if (in�nitely many) di�erent
choices of k are needed in the proof depending on the initial state that satis�es assumptions Γ.

�is is where the third, computable di�erential radicals condition (R) is crucially used.
When N is the rank of e according to identity (3.2), then once the derivation has gathered
e = 0, . . . ,

.
e(N−1) = 0, i.e., .e(∗) = 0 in the antecedents, derived rule dRI proves the invariant

e = 0 and ODEs always locally progress in invariants. Furthermore, this argument shows
(mathematically) that it is unnecessary to analyze higher Lie derivatives of e beyond N when
proving local progress for e > 0 because none of those higher Lie derivatives will be sign-de�nite.
�us, the rank from (3.2) provides a uniform and �nite bound for the number of Lie derivatives
of e that need to be analyzed in any state, regardless of assumptions Γ. �is �niteness property
motivates the following de�nition, which gathers the above open premises to obtain a �nite
formula characterizing the �rst signi�cant Lie derivative of e:

De�nition 3.22 (First signi�cant Lie derivative). �e progress formula
.
e

(∗)
f > 0 for extended

term e of rank N ≥ 1 from identity (3.2) with Lie derivatives along x′ = f(x) is de�ned to be:

.
e

(∗)
f > 0

def≡e ≥ 0 ∧
(
e = 0→ Lf(x)(e) ≥ 0

)
∧
(
e = 0 ∧ Lf(x)(e) = 0→ L(2)

f(x)(e) ≥ 0
)

∧ · · · ∧
(
e = 0 ∧ Lf(x)(e) = 0 ∧ · · · ∧ L(N−3)

f(x) (e) = 0→ L(N−2)

f(x) (e) ≥ 0
)

∧
(
e = 0 ∧ Lf(x)(e) = 0 ∧ · · · ∧ L(N−2)

f(x) (e) = 0→ L(N−1)

f(x) (e) > 0
)

�e dependency on ODE x′ = f(x) is dropped with .
e(∗) > 0 when it is clear from the context.

�e progress formula
.
e(∗) ≥ 0 is de�ned to be .

e(∗) > 0 ∨ .
e(∗) = 0. �e formulas .

e−(∗) > 0 (or
.
e−(∗) ≥ 0) are identical except their Lie derivatives are along the negated ODE x′ = −f(x).

Lemma 3.23 (Local progress <). �e local progress inequality axioms LP≥∗ , LP>∗ derive from
LPi≥ and thus from Cont. Variables y are fresh in the ODE x′ = f(x) and extended term e.

LP≥∗ x=y →
(.
e(∗) ≥ 0→ 〈x′ = f(x) & e ≥ 0〉©

)
LP>∗ x=y →

(.
e(∗) > 0→ 〈x′ = f(x) & e > 0〉©

)
Proof Summary (Appendix A.2.2). Both axioms derive a�er unfolding the syntactic abbreviation
of the© modality. Axiom LP≥∗ derives by the preceding discussion with iterated use of derived
axioms LPi≥ and dRI. Axiom LP>∗ derives similarly, but with an additional tweak to weaken
the strict inequality e > 0 so that axiom LPi≥ can be used.

�e di�erence between the derivations of LP≥∗ and LP>∗ is mainly technical and boils
down to the handling of the assumptions about the initial state, and in particular, x=y (see
Appendix A.1.2 and A.2.2). Intuitively, the di�erence arises from the fact that the formula e ≥ 0
characterizes a topologically closed set while e > 0 characterizes an open set. To locally progress

58

into a set from initial state ω, the state ω must already be in the topological closure of that set.
Closed sets are equal to their closure so, e.g., ω must already satisfy e ≥ 0 in order to locally
progress into it. Sets that are not closed (e.g., open sets) are not equal to their closure as they
lack points on their topological boundary. An example of this is the half-open disk illustrated
in Fig. 3.2. �us, it is possible to locally progress into such sets from their topological boundary
without ω already starting in the set.

Semianalytic Formulas. Semianalytic formulas P normalize propositionally to the following
disjunctive normal form with extended terms eij, ẽij :

P ≡
M∨
i=0

(m(i)∧
j=0

eij ≥ 0 ∧
n(i)∧
j=0

ẽij > 0
)

(3.7)

Progress formulas are li�ed homomorphically to semianalytic formulas in normal form:

De�nition 3.24 (Semianalytic progress formula). �e semianalytic progress formula
.
P

(∗)
f for a

semianalytic formula P in normal form (3.7) and Lie derivatives along x′ = f(x) is de�ned as:

.
P

(∗)
f

def≡
M∨
i=0

(m(i)∧
j=0

.
(eij)

(∗)
f ≥ 0 ∧

n(i)∧
j=0

.
(ẽij)

(∗)
f > 0

)
�e dependency on ODE x′ = f(x) is dropped with

.
P (∗) when it is clear from the context.

�e formula
.
P−(∗) takes Lie derivatives along ODE x′ = −f(x) instead. A mention of the

notation
.
P (∗) is understood as the progress formula for semianalytic formula P a�er it is

rewri�en propositionally to any equivalent normal form (3.7).

Lemma 3.25 (Semianalytic local progress). �e local progress formula axiom LPR derives from
Cont, Uniq. Variables y are fresh in the ODE x′ = f(x) and semianalytic formula P .

LPR x=y →
(.
P (∗) → 〈x′ = f(x) &P 〉©

)
Proof Summary (Appendix A.2.2). �e shape of the semianalytic progress formula

.
P (∗) guides

the proof. �e derivation is sketched at a high level here for the representative example formula:

P ≡ (e1 ≥ 0 ∧ ẽ1 > 0) ∨ (e2 ≥ 0 ∧ ẽ2 > 0)
.
P (∗) ≡ (

.
e1

(∗) ≥ 0 ∧
.
ẽ1

(∗) > 0) ∨ (
.
e2

(∗) ≥ 0 ∧
.
ẽ2

(∗) > 0)

To show local progress into a disjunction, it su�ces to show local progress into either
disjunct. �e derivation starts by decomposing

.
P (∗) according to its (outermost) disjunction and

accordingly decomposing P in the local progress succedent with dRW〈·〉. �e premise for the
second disjunct resulting from the ∨L step is symmetric and omi�ed here.

x=y,
.
e1

(∗) ≥ 0 ∧
.
ẽ1

(∗) > 0 ` 〈x′ = f(x) & e1 ≥ 0 ∧ ẽ1 > 0〉©
dRW〈·〉x=y,

.
e1

(∗) ≥ 0 ∧
.
ẽ1

(∗) > 0 ` 〈x′ = f(x) &P 〉©
∨L x=y,

.
P (∗) ` 〈x′ = f(x) &P 〉©

59

To show local progress into a conjunction, by Uniq, it su�ces to show local progress into
both conjuncts separately. �e derivation continues using Uniq, ∧R to split the conjunctive local
progress succedent before the derived axioms LP≥∗ , LP>∗ are used to �nish the proofs in the
resulting atomic cases for inequalities ≥, >, respectively.

∗
LP≥∗x=y,

.
e1

(∗) ≥ 0 ` 〈x′=f(x) & e1≥0〉©
∗

LP>∗x=y,
.
ẽ1

(∗) > 0 ` 〈x′=f(x) & ẽ1>0〉©
Uniq, ∧R x=y,

.
e1

(∗) ≥ 0,
.
ẽ1

(∗) > 0 ` 〈x′=f(x) & e1 ≥ 0 ∧ ẽ1 > 0〉©

Completeness could potentially be lost in several steps of the proof of Lemma 3.25, e.g., the
use of ∨L at the start of the derivation, or the implicational axioms LP≥∗ , LP>∗ . �e converse
(completeness) direction of axiom LPR therefore does not follow immediately from Lemma 3.25.
Instead, the axiom LPR can be re-used to derive its own strengthening to an equivalence. �is
equivalence justi�es the syntactic abbreviation©, recalling that the© modality of temporal
logic is self-dual. It also shows that the progress formulas are congruent over equivalences.

�eorem 3.26 (Local progress completeness). �e local progress axiom LP derives from Cont,
Uniq. Variables y are fresh in the ODE x′ = f(x) and semianalytic formula P .

LP x=y →
(
〈x′ = f(x) &P 〉© ↔

.
P (∗))

Corollary 3.27 (Duality and congruence). �e duality axiom ¬© and congruence proof rule for
progress formulas CLP derive from LP and thus from Cont, Uniq. Variables y are fresh in the ODE
x′ = f(x) and semianalytic formulas P,R.

¬© x=y →
(
〈x′ = f(x) &P 〉© ↔ ¬〈x′ = f(x) &¬P 〉©

)
CLP

P ↔ R
.
P (∗) ↔

.
R(∗)

(for ODE x′ = f(x))

Proof Summary for �eorem 3.26 and Corollary 3.27 (Appendix A.2.2). �e derivation of axioms
LP, ¬© and proof rule CLP use the homomorphic de�nition of semianalytic progress formulas
which implies that any semianalytic formula P in normal form (3.7) has a corresponding normal
form for ¬P such that the equivalence ¬(

.
P (∗)) ↔

.
(¬P)(∗) is provable. Classically, in any

state, either formula
.
P (∗) or ¬(

.
P (∗)) is true. �erefore, by LPR, the ODE must (exclusively,

by uniqueness) either locally progress into P or ¬P from this state. Both axioms LP, ¬© are
derivable consequences of this fact, as shown syntactically in Appendix A.2.2. Rule CLP follows
from LP by congruential equivalence [142].

Congruence rule CLP shows that any equivalent choice of normal form (3.7) for semianalytic
formula P gives a local progress formula that is (provably) equivalent to

.
P (∗). �e rule works for

all (semianalytic) equivalences, including arithmetical ones over extended term languages, e.g.,
exp (x) = 1↔ x = 0 from (3.1), so CLP does not follow immediately from the homomorphic
de�nition of progress formulas.

60

3.6.2 Completeness for Semianalytic Invariants
Combining derived axiom LP and derived rule rI yields an e�ective proof rule which reduces a
semianalytic invariance question to questions involving purely arithmetic formulas.

�eorem 3.28 (Semianalytic invariants). �e semianalytic invariant proof rule sAI derives from
RI, Dadj, Cont, Uniq for semianalytic formula P .

sAI
P `

.
P (∗) ¬P `

.
(¬P)−(∗)

P ` [x′ = f(x)]P

Proof. �is follows immediately by rewriting the premises of rule rI with the equivalence LP.

Completeness of sAI was �rst proved semantically for polynomial terms languages [103],
making crucial use of semialgebraic sets and real analytic solutions to polynomial ODE systems.
�e proof rule sAI derives syntactically in dL and generalizes to semianalytic invariants for
extended term languages. Its completeness derives syntactically too, which yields dL disproofs
of semianalytic invariance when arithmetic counterexamples can be found.

�eorem 3.29 (Semianalytic invariant completeness). �e semianalytic invariant axiom SAI
derives from RI, Dadj, Cont, Uniq for semianalytic formula P .

SAI ∀x (P → [x′ = f(x)]P)↔ ∀x
(
P →

.
P (∗)) ∧ ∀x (¬P → .

(¬P)−(∗))
Proof in Appendix A.2.4.

In Appendix A.2, a generalization of �eorem 3.29 is proven that handles semianalytic evolu-
tion domains Q using LP and a corresponding generalization of axiom RI. �e same appendix
proves the following generalization of �eorem 3.13 for semianalytic evolution domains:

�eorem 3.30 (Analytic completeness with semianalytic domains). �e di�erential radical
invariant axiom DRI& derives from Cont, Uniq for semianalytic formula Q.

DRI& [x′ = f(x) &Q]e = 0↔
(
Q→ e = 0 ∧ (

.
Q(∗) → .

e(∗) = 0)
)

Proof in Appendix A.2.4.

�eorems 3.29 and 3.30 show that dL is complete for proving invariance of all (semi)analytic
P of di�erential equations because it reduces all such questions equivalently to �rst-order
formulas, e.g., on the RHS of derived axiom SAI. In addition, dL decides invariance properties
for all �rst-order real arithmetic formulas P , because quanti�er elimination [14, 197] can equiv-
alently rewrite P to (semialgebraic) normal form (3.7) �rst. Unlike for �eorem 3.13 and its
generalization �eorem 3.30, which equivalently reduce safety properties with analytic postcon-
ditions to arithmetic directly, �eorem 3.29 and its generalized version in Appendix A.2 are only
equivalences for invariants P ; the search for suitable invariants in proofs of ODE safety is the
remaining practical challenge [180].

61

Of course, the complete proof rule sAI can be used to prove all of the suggested invariants
for the ODE αe from (2.1). However, Example 3.7 gives a signi�cantly simpler proof for the
invariance of 1 − u2 − v2 < 0 with dbx<. �is has implications for implementations of sAI
because simpler proofs help minimize dependence on real arithmetic decision procedures. For
semianalytic formulas (that are not semialgebraic), proof rules resulting in simpler arithmetic
premises might even be preferable because validity of the arithmetic premises is undecidable
in general [162]. Logically, when P is formed from only strict (resp. non-strict) inequalities
then the le� (resp. right) premise of sAI closes trivially. �is logical fact corresponds to the
topological fact that the set P characterizes is topologically open (resp. closed) so only one of
the two exit trajectories in Section 3.5.2 can occur.

3.7 Noetherian Functions
�is section studies the class of Noetherian functions which meets all of the extended term
conditions required in Section 3.2.4 and therefore inherits all soundness and completeness results
of the preceding sections, including �eorems 3.29 and 3.30.

3.7.1 Mathematical Preliminaries
�e following de�nition of Noetherian functions is standard, although the parameters that are
used for studying the complexity of these functions [12, 56, 57] have been omi�ed. �e notation
h : H ⊆ Rk → R is used for real-valued functions with domain H , i.e., an open, connected
subset of Rk. With a slight abuse of notation, polynomials p ∈ R[x] over indeterminates
x = (x1, . . . , xn) and their corresponding polynomial functions p(x1, . . . , xn) in Rn → R are
used interchangeably.

De�nition 3.31 (Noetherian chain and Noetherian function). A Noetherian chain is a sequence
of real analytic functions h1, . . . , hr : H ⊆ Rk → R such that all partial derivatives in H for all
i = 1, . . . , k and j = 1, . . . , r have the following form, where each qij ∈ R[y, z] is a polynomial
in k + r indeterminates with y = (y1, . . . , yk), z = (z1, . . . , zr):

∂hj
∂yi

(y) = qij(y, h1(y), . . . , hr(y)) (3.8)

�e function h : H ⊆ Rk → R is Noetherian i� it can be wri�en as h(y) = p(y, h1(y), . . . , hr(y)),
where p ∈ R[y, z] is a polynomial in k + r indeterminates and h1, . . . , hr is a Noetherian chain.
In that case, h is said to be generated by this polynomial and Noetherian chain respectively but
the choice of generating chain and polynomial for h is not unique.

For the term language extension (3.1), exp is a 1-element Noetherian chain because its
derivative is ∂ exp(y)

∂y
= exp(y), while sin, cos form a 2-element Noetherian chain. All three

functions together form a 3-element Noetherian chain. More generally, the union of any (�nite)
number of Noetherian chains is a Noetherian chain. By de�nition, any element of a Noetherian
chain is itself a Noetherian function so exp, sin, cos are also Noetherian functions. It is o�en
useful to consider Noetherian functions over a larger domain than the generating chain, e.g.,

62

h(x, y) = exp(y) + sin(x) with h : R2 → R. In this case, the domain of de�nition of the
generating chain is implicitly extended by treating them as functions over the dimensionally
larger domain, e.g., with exp(x, y), sin(x, y) : R2 → R which ignore their �rst and second
argument respectively. �is is compatible with Def. 3.31 because the partial derivatives with
respect to the ignored arguments is trivially zero. Proposition 3.32 gives important closure
properties of the Noetherian functions generated by the same Noetherian chain, which are
crucial later and explain the name Noetherian function [57, 201].

Proposition 3.32 ([12, 56, 57]). �e setR of Noetherian functions generated by a given Noetherian
chain h1, . . . , hr : H ⊆ Rk → R is a Noetherian ring that is closed under partial derivatives.

Proof. Let y = (y1, . . . , yk), z = (z1, . . . , zr) abbreviate indeterminates as in Def. 3.31. �e
set R is a ring under the usual addition and multiplication of real-valued functions because
the corresponding generating polynomials form a ring. Now, R is Noetherian because it is a
�nitely generated algebra [24, §2.11, Corollary 3] over the Noetherian polynomial ring R[y]. �e
following constructive proof yields a computational method that is used later.

Consider an ascending chain of ideals I0 ⊆ I1 ⊆ · · · in R. For each Ii, associate the set
of generating polynomials Ji

def
= {p | p(y, h1(y), . . . , hr(y)) ∈ Ii} ⊆ R[y, z] with respect to the

generating Noetherian chain. Each Ji is an ideal in R[y, z] because the corresponding Ii are
themselves ideals. By construction, Ji ⊆ Ji+1 because Ii ⊆ Ii+1 for all i. Since J0 ⊆ J1 ⊆ · · · is
an ascending chain of ideals in R[y, z], which is a Noetherian polynomial ring, it must stabilize at
some N with JN = JN+1 = · · · . Correspondingly, the chain of ideals Ii stabilizes (at the latest)
at N so R is Noetherian. �e chain I0 ⊆ I1 ⊆ · · · may stabilize earlier than the corresponding
Ji chain but that is not important here.

To show that R is closed under partial derivatives, let h(y) = p(y, h1(y), . . . , hr(y)) ∈ R
with p ∈ R[y, z]. For the partial derivative of h with respect to yi, applying the chain rule yields:

∂h

∂yi
(y) =

∂p(y, h1(y), . . . , hr(y))

∂yi

=
∂p

∂yi
(y, h1(y), . . . , hr(y)) +

r∑
j=1

∂p

∂zj
(y, h1(y), . . . , hr(y))

∂hj
∂yi

(y)

By de�nition, ∂p
∂yi

(y, h1(y), . . . , hr(y)) ∈ R since ∂p
∂yi

is a polynomial in R[y, z]. Each sum-
mand ∂p

∂zj
(y, h1(y), . . . , hr(y)) ∈ R since ∂p

∂zj
is a polynomial in R[y, z], and ∂hj

∂yi
(y) ∈ R by

de�nition because h1, . . . , hr is a Noetherian chain. Hence, all RHS sub-terms are in R, and so
∂h
∂yi

(y) ∈ R.

Proposition 3.32 implies that adding Noetherian functions to their generating chains yields
another Noetherian chain generating the same Noetherian ring R of Noetherian functions
because R is closed under ring addition and multiplication. Beyond closure properties for
a single Noetherian chain, the class of all Noetherian functions is also closed under other
mathematical operations, including function composition, multiplicative inverses, and function
inverses (with appropriate assumptions) [12]. Closure under function composition is proved
constructively in Proposition 3.33 as it is used later.

63

Proposition 3.33 ([12]). If h : H ⊆ Rk → R is Noetherian and υ : Υ ⊆ Rl → Rk has a
compatible image υ(Υ) ⊆ H where each component υi : Υ ⊆ Rl → R for i = 1, . . . , k is
Noetherian, then the function composition f = h(υ1, . . . , υk) : Υ ⊆ Rl → R is Noetherian.

Proof. Let y = (y1, . . . , yk), z = (z1, . . . , zr), γ = (γ1, . . . , γl) abbreviate indeterminates.
�e composed function f is well-de�ned on Υ since υ(Υ) ⊆ H . By assumption, h(y) =
p(y, h1(y), . . . , hr(y)) for some generating Noetherian chain h1, . . . , hr : H ⊆ Rk → R and
polynomial p ∈ [y, z]. Since the union of Noetherian chains is Noetherian and by Proposi-
tion 3.32, assume without loss of generality, that the Noetherian functions υi for i = 1, . . . , k
are members of the same generating Noetherian chain υ1, . . . , υs : Υ ⊆ Rl → R with k ≤ s.
Pu�ing these together, f can be wri�en as: f = p(υ, f1, . . . , fr), where υ = (υ1, . . . , υk) and
the function compositions fi

def
= hi(υ1, . . . , υk) for i = 1, . . . , r. From this representation, f is

generated by polynomial p over the sequence:

υ1, . . . , υs, f1, . . . , fr (3.9)

In order to show that (3.9) is a Noetherian chain, it su�ces to check that f1, . . . , fr obey the
condition on partial derivatives (3.8) because υ1, . . . , υs is already a Noetherian chain. For each
fi(γ) : Υ ⊆ Rl → R, taking the partial derivative with respect to γj and applying the chain
rule:

∂fi
∂γj

(γ) =
∂hi(υ1(γ), . . . , υk(γ))

∂γj
=

k∑
l=1

∂hi
∂yl

(υ1(γ), . . . , υk(γ))
∂υl
∂γj

(γ)

It su�ces to check that each sub-term appearing on the RHS sum are generated as polyno-
mials over the sequence (3.9). �e case for each ∂υl

∂γj
(γ) follows immediately because υ1, . . . , υs

is a Noetherian chain. Since h1, . . . , hr is a Noetherian chain, each ∂hi
∂yl

is a polynomial combi-
nation ∂hi

∂yl
= til(y, h1, . . . , hr) for some polynomial til ∈ R[y, z] and, thus, ∂hi

∂yl
is generated by

chain (3.9):
∂hi
∂yl

(υ1, . . . , υk) = til(υ, h1(υ), . . . , hr(υ)) = til(υ, f1, . . . , fr)

Before turning to the study of Noetherian functions in dL, it is helpful to �rst understand how
they help with its di�erential equations reasoning. Polynomial ODEs are very expressive and
earlier results [69, 105, 137] make use of polynomial ODEs to implicitly characterize (and thus,
eliminate) real analytic functions appearing in initial value problems (IVPs). IVPs are speci�ed by
a system of ODEs, x′ = f(x), de�ned over domain D with RHS f(x) : D ⊆ Rn → Rn and real
initial valueX0 ∈ D ⊆ Rn. �e IVP is called Noetherian (resp. polynomial) when all components
of the RHS f(x) are Noetherian functions (resp. polynomials). Both Noetherian and polynomial
functions are analytic and therefore continuously di�erentiable. Under the assumption of
continuously di�erentiable RHS, the Picard-Lindelöf theorem [204, §10.VI] guarantees that
the IVP has a unique maximal solution ϕ(t) : (α, β) → Rn with −∞ ≤ α < 0 < β ≤ ∞
such that ϕ(0) = X0 and dϕ(t)

dt = f(ϕ(t)). Uniqueness and maximality here means that every
solution of the IVP is a truncation of ϕ to a smaller existence interval. �e following generalizes
aforementioned results [69, 105, 137] to the Noetherian se�ing:

64

Proposition 3.34. Functionϕ : (α, β)→ Rn with−∞≤α<0<β≤∞ is the (coordinate-projected)
solution of a Noetherian IVP i� it is the (coordinate-projected) solution of a polynomial IVP.

Proof. In the (trivial) converse “⇐ ” direction, suppose function ϕ solves the polynomial IVP
x′ = p(x, y), y′ = q(x, y) with initial values X0 ∈ Rn, Y0 ∈ Rr. Let ϕx, ϕy denote the projection
onto the x and y coordinates of ϕ respectively. Every solution of polynomial ODEs is a univariate
Noetherian function [57]. �erefore, the Noetherian IVP given by x′ = p(ϕx(τ), ϕy(τ)), τ ′ = 1
with the same initial value for x and 0 for τ trivially has the (unique) solution (ϕx(t), t) :
(α, β)→ Rn × R.

In the (nontrivial) “⇒ ” direction, suppose that ϕ is the solution to the Noetherian IVP
x′ = f(x) where each fi(x) : D ⊆ Rn → R is Noetherian, and with initial value X0 ∈ D.
By uniqueness of solutions, it su�ces to construct a polynomial IVP so that ϕ(t) solves it in
the x coordinates. Since the union of Noetherian chains is itself a Noetherian chain, assume
without loss of generality that the functions f1, . . . , fn are generated by the same Noetherian
chain h1, . . . , hr and that fi = pi(x, h1(x), . . . , hr(x)) for some polynomials pi ∈ R[x, y] in
n + r indeterminates for i = 1, . . . , n. Introduce new variables yj for j = 1, . . . , r which are
meant to take on the respective value of hj along solutions to the ODE. Accordingly, the RHS of
the Noetherian ODE is rewri�en by replacing each fi with pi(x, y), i.e., the desired polynomial
ODEs for x is x′ = p(x, y).

It remains to ensure that each of these newly introduced variables yj take on their intended
values hj(ϕ(t)) along the solution ϕ. By (3.8), the partial derivatives for each hj can be wri�en
as polynomials qij ∈ R[x, y] over the generating Noetherian chain. By the chain rule:

dhj(ϕ(t))

dt
=

n∑
i=1

∂hj(x)

∂xi
(ϕ(t))

dϕi(t)
dt

=
n∑
i=1

qij
(
ϕ(t), h1(ϕ(t)), . . . , hr(ϕ(t))

)dϕi(t)
dt

Back-substituting into the RHS of this equation using the intended values for yj and the new
ODEs for x, yields the following additional ODEs for y:

y′j =
n∑
i=1

qij(x, y)pi(x, y)

�e RHS of these additional ODEs are polynomials in R[x, y], which completes the desired
polynomial IVP with the initial values Y0

def
= (h1(x0), . . . , hr(x0)) ∈ Rr for y. �e construction of

this polynomial IVP is correct-by-construction because of the mechanical chain rule computation.
In particular, a solution to this IVP is given by the pair (ϕ(t), y(t)) : (α, β)→ Rn × Rr where
yj(t)

def
= hj(ϕ(t)) : (α, β)→ R. By uniqueness of solutions, this completes the proof.

In the “⇒ ” direction of Proposition 3.34, the constructed polynomial IVP may involve
additional ODEs over the variables y (with their respective initial values). �e number of
additional equations required in this construction is the length of the shortest Noetherian chain
that generates the RHS of the input Noetherian ODE. �e polynomial IVP may have a larger
maximal interval of existence than the input Noetherian IVP if it leaves the domain D of the
input RHS. In the “⇐ ” direction, only one additional time variable τ is required. Consequently,

65

the solution of any n-dimensional IVP that is the coordinate projection of the solution of a
polynomial IVP (of potentially much larger dimension) is the coordinate projection of the
solution of an (n+ 1)-dimensional Noetherian IVP.

�e constructive proof of the “⇒ ” direction in Proposition 3.34 yields an approach for
transforming input Noetherian IVPs to polynomial IVPs assuming that the Noetherian functions
can be e�ectively associated with generating Noetherian chains and polynomials.

Example 3.35 (Flight dynamics [137, Equation 1]). A simple planar model of curved aircra�
motion is given by the following ODE system, where (x, y) are the aircra�’s planar coordinates,
θ its angular orientation, and ν, ω its linear and angular velocity respectively [137, Equation 1]:

x′ = ν cos (θ), y′ = ν sin (θ), θ′ = ω

Consider an IVP for this ODE with initial values x = X0, y = Y0, θ = Θ0 ∈ R. �e linear
and angular velocities ν, ω are le� as symbolic constants in this model. �e RHS of the ODE
is generated by the Noetherian chain: sin (θ), cos (θ). Introducing additional variables z1, z2

for the elements of this chain, and replacing the RHS for x′, y′ according to their generating
polynomials with respect to the chain gives:

x′ = νz1, y′ = νz2, θ′ = ω

A symbolic calculation (see Proposition 3.34) yields the following ODEs that z1, z2 must obey:

z′1 = ωz2, z′2 = −ωz1

To �nish constructing the polynomial IVP, set the initial values z1 = sin (Θ0), z2 = cos (Θ0).
�e resulting ODE has higher dimension but a polynomial RHS. 4

Proposition 3.34 shows that the utility of adding Noetherian functions to dL is not an increase
in expressiveness of the di�erential equations. Rather, extended term languages allow Noetherian
ODEs to be wri�en down naturally instead of relying on implicit polynomial characterization
such as in Example 3.35. More importantly, they make it possible to use formulas as ODE
invariants that are not semialgebraic. By �eorems 3.29 and 3.30, the dL ODE axiomatization
provides an e�ective and complete calculus for (dis)proving the resulting semianalytic ODE
invariants involving Noetherian functions. �is requires Noetherian functions to meet the
extended term conditions from Section 3.2.4, which is shown next.

3.7.2 Extended Term Conditions for Noetherian Functions
Assume from now on that the �xed k-ary function symbols h1, . . . , hr are interpreted semanti-
cally as members of a Noetherian chain h1, . . . , hr : Rk → R respectively. Recall that extended
dL terms are formed syntactically from these function symbols according to the grammar
(Section 3.2.1). �e �rst two extended term conditions are straightforward to check:

(S) All Noetherian functions are, by de�nition,C∞ smooth (even real analytic) so the semantics
of di�erentials are well-de�ned.

66

(P) �e partial derivative of each hj(y1, . . . , yk) : Rk → R with respect to yi satis�es (3.8)
for some polynomial qij ∈ R[y, z]. Since polynomials are generated by addition and
multiplication, these partial derivatives ∂h

∂yi
(y1, . . . , yk) are syntactically represented by

the extended term:

qij
(
y1, . . . , yk, h1(y1, . . . , yk), . . . , hr(y1, . . . , yk)

)
�us, Lemma 3.3 adds the (sound) di�erential axioms for each �xed function symbol hj
and therefore, all Lie derivatives are representable in the extended term language.

�e �nal condition (R) is more involved and relies crucially on closure properties of Noethe-
rian functions. A syntactic subtlety arises for extended terms with nested function applications
such as exp(exp(x)). Its semantics is the iterated real exponential function generated by the
2-element Noetherian chain exp(x), exp(exp(x)). �us, even though the �xed function symbols
h1, . . . , hr form a Noetherian chain, the extended term grammar could produce extended terms
that do not correspond to Noetherian functions generated by that chain. �e following lemma
resolves this issue by computing another (syntactic) Noetherian chain that generates it instead:

Lemma 3.36. �e semantics of every extended term e over Noetherian functions is a Noetherian
function and e can be e�ectively associated with a (syntactic) Noetherian chain that generates it.

Proof. By structural induction on extended dL term e. �e cases for variables and constants are
obvious, while the cases for addition and multiplication follow inductively from closure under
ring operations (Proposition 3.32) and the fact that �nite unions of Noetherian chains are Noethe-
rian chains. �e only di�cult case is when e is a function composition h(e1, . . . , ek), where
e1, . . . , ek are extended terms. Inductively, each e1, . . . , ek semantically is a Noetherian function.
Moreover, h is (semantically) a Noetherian function by the assumption that the interpretation
of all �xed function symbols is an element of some Noetherian chain. �us, Proposition 3.33
implies that the semantics of their composition is also a Noetherian function. Let υ1, . . . , υs be
the union of Noetherian chains obtained inductively for e1, . . . , ek. �e (constructive) proof of
Proposition 3.33 shows that the Noetherian chain (3.9) given by υ1, . . . , υs, f1, . . . , fr generates
h(e1, . . . , ek), where υ1, . . . , υs are syntactically represented by extended terms using the induc-
tion hypothesis on e1, . . . , ek and each fi

def
= hi(e1, . . . , ek) is an extended term by the extended

term grammar (Section 3.2.1).

Lemma 3.36 makes it possible to unambiguously refer to “the” generating Noetherian chain
and polynomial for any extended term e by giving an e�ective procedure for �nding a syntactic
representation of such a generating chain in the extended term language. Together with Propo-
sition 3.32, this su�ces to prove that the extended term language has the computable di�erential
radicals condition (R).

�eorem 3.37. Term languages with Noetherian functions satisfy the extended term conditions.

Proof. Conditions (S) and (P) have already been shown above. It remains to show condition (R),
i.e., any ODE x′ = f(x) and extended term e has a computable (and provable) di�erential radical
identity (3.2). By Lemma 3.36, the terms f(x), e are (semantically) Noetherian and so, by taking

67

the union of Noetherian chains, are de�ned by the same generating Noetherian chain υ1, . . . , υs.
�e ring R generated by this chain is Noetherian by Proposition 3.32 and is closed under partial
derivatives. Recall that the Lie derivative of e along x′ = f(x) is given by:

Lf(x)(e)
def
=

n∑
i=1

∂e

∂xi
· fi(x)

Every sub-term on the RHS of the Lie derivative of e is contained in the ring R because the
ring already contains the RHS of the ODEs, f(x), and is closed under the partial derivatives of e.
Inductively, all higher Lie derivatives .

e(i) for i = 0, 1, . . . are contained in R and are therefore
generated by the chain υ1, . . . , υs with .

e(i) = pi(x, υ1, . . . , υs) for polynomials pi ∈ R[x, y]
and y = (y1, . . . , ys). Following the proof of Proposition 3.32, consider this ascending chain of
polynomial ideals:

(p0) ⊆ (p0, p1) ⊆ (p0, p1, p2) ⊆ · · ·
�is chain stabilizes with the provable polynomial identity pN =

∑N−1
i=0 qipi for some

polynomial cofactors qi ∈ R[x, y] and N ≥ 1. �e rank N and the polynomial cofactors qi
are computable by successive ideal membership checks [63, 64, 103]. Mapping this back into
elements of R gives the required provable di�erential radical identity for the Lie derivatives of e
by choosing cofactors gi

def
= qi(x, υ1, . . . , υs):

.
e(N) =

N−1∑
i=0

gi
.
e(i)

An immediate corollary is that term language extensions with Noetherian functions inherit
all earlier soundness and completeness results, e.g., from Sections 3.4.2 and 3.6.2.

Corollary 3.38 (Noetherian invariant completeness). �e dL proof calculus is complete for
(semi)analytic invariants of ODEs for term languages extended with Noetherian functions.

Proof. Completeness for Noetherian functions follows immediately from the extended term
conditions for Noetherian functions (�eorem 3.37) and the completeness theorems for term
languages meeting those conditions (�eorems 3.29 and 3.30).

Similarly, analytic hybrid programs with Noetherian functions inherit Corollary 3.14 with
an additional restriction on the shape of analytic hybrid programs.

Corollary 3.39 (Noetherian analytic hybrid program completeness). For term languages extended
with Noetherian functions, it is possible to compute an extended term e such that the equivalence
[α]P ↔ e = 0 is derivable in dL for any analytic formula P and analytic hybrid programs α,
where α is either loop-free or assignment-free.

Proof. �e proof for loop-free α follows immediately from the proof of Corollary 3.14 because
the only case of the structural induction that requires the Noetherian property of the extended
term language is loops α∗. Otherwise, only (R) is required, which is shown in �eorem 3.37.

�e proof for assignment-free α follows by strengthening the inductive hypothesis in the
proof of Corollary 3.14. Firstly, by Lemma 3.36, the (�nite) set of all terms appearing in α

68

are (semantically) Noetherian and so, by taking the union of Noetherian chains, are de�ned
by the same generating Noetherian chain. �e ring R generated by this chain is Noetherian
by Proposition 3.32 and is closed under partial derivatives. �e structural induction in Corol-
lary 3.14 is strengthened to show that the extended term ẽ computed with derivable equivalence
[α]e = 0 ↔ ẽ = 0 in each case (except assignments, which are assumed to not occur) is also
contained in ring R. �e cases for test ?d 6= 0, choice α ∪ β, and sequential composition
α; β are omi�ed because they follow immediately from the corresponding cases in the proof
of Corollary 3.14 since the computed extended term ẽ in those cases are (inductively) in R. �e
non-trivial cases are ODEs x′ = f(x) & d 6= 0 and loops α∗.

• Case x′ = f(x) & d 6= 0. As with Corollary 3.14, the following equivalence is derived for
ẽ = d(

∑N−1
i=0 (

.
e(i))2), where N is the rank of e.

[x′ = f(x) & d 6= 0]e = 0↔ ẽ = 0

Note that d is in R by de�nition of R and each subterm .
e(i) for 0 ≤ i ≤ N − 1 in the

summand of ẽ is also in R by the closure of R under partial derivatives and because the
RHS of ODE x′ = f(x) are in R by construction. �us, ẽ is also in the ring R.

• Case α∗. As with Corollary 3.14, construct the sequence of terms ẽi de�ned inductively
with ẽ0

def
= e and ẽi+1 is the term satisfying the derived equivalence [α]ẽi = 0↔ ẽi+1 = 0

obtained by applying the induction hypothesis on α with postcondition ẽi = 0 for i =
0, 1, 2, By the strengthened induction hypothesis, each ẽi in the sequence is in the
Noetherian ring R. �us, the following ascending chain of ideals in R stabilizes:

(ẽ0) ⊆ (ẽ0, ẽ1) ⊆ (ẽ0, ẽ1, ẽ2) ⊆ · · ·

In particular, for some computable k, the sequence satis�es: ẽk =
∑k−1

i=0 giẽi. �e equiva-
lence [α∗]e = 0↔

∑k−1
i=0 ẽ

2
i = 0 is derived identically to the loop case for Corollary 3.14

using the iteration axiom [∗] for the “→” direction and the loop induction rule loop for
the “←” direction (derivation omi�ed). Observe that term

∑k−1
i=0 ẽ

2
i is in R because each

subterm ẽi for 0 ≤ i ≤ k−1 is in the ringR (shown above, from inductive hypothesis).

Additional cases of hybrid programs enjoying analytic completeness can be proved on a
case-by-case basis by building on Corollary 3.39, for example, given an analytic postcondition
P for a choice program [α ∪ β]P between loop-free analytic program α and assignment free
analytic program β, a suitable equivalence can be derived by �rst using equivalence axiom [∪]
and then separately characterizing the resulting conjuncts in [α]P ∧ [β]P .

3.7.3 Extended Term Language Example
�is section illustrates the constructions from Sections 3.7.1 and 3.7.2 using the extended term
language (3.1). �e �rst example shows the computations from Lemma 3.36 and �eorem 3.37:

Example 3.40 (Syntactic manipulation of Noetherian functions). Consider the extended term
ODE x′ = exp(sin(x)) and the polynomial term e = x+x2. �e Noetherian chain for e is empty

69

because it is already a polynomial while the Noetherian chain associated with exp(sin(x)) is
υ1 = sin(x), υ2 = cos(x), υ3 = exp(sin(x)). �e higher Lie derivatives of e are all extended
terms generated by the chain υ1, υ2, υ3:

.
e(1) = υ3 + 2υ3x
.
e(2) = υ2

3υ2 + 2(υ2
3υ2x+ υ2

3) = (2υ3 + υ2υ3 + 2υ2υ3x)((1 + 2x)
.
e(1) − 4υ3e)

�e (polynomial) identity for .e(2) in terms of .e(1), e and their cofactors is obtained computa-
tionally by ideal membership checks for the polynomial ring R[x, y1, y2, y3] (the indeterminate
yi corresponds to υi for i = 1, 2, 3), following Proposition 3.32. 4

�e next example illustrates how the extended term language allows e�ective proofs of more
invariants than possible with polynomial term languages.

Example 3.41 (Expressivity of Noetherian invariants). �e polynomial invariant 1−u2−v2 = 0
was proved for the ODE αe from (2.1) in Example 3.7. With respect to Fig. 2.1, this means that
a trajectory starting at the point (1, 0) stays on the circle. However, this invariant yields
no information about how fast the trajectory loops around the circle or whether it revolves
clockwise or anti-clockwise. In the extended term language, the most precise invariant can be
proved, namely the solution to the ODEs from this initial point. �e solution is a trigonometric
function of time (given below), and so cannot be expressed as a polynomial (or semialgebraic)
invariant [14]. �e precise solution also shows that the motion is anti-clockwise, as suggested
by Fig. 2.1.

�e following derivation uses a DC to add the known polynomial invariant 1− u2 − v2 = 0
which proves by dbx as in Example 3.7. �e abbreviated premise a�er the di�erential cut assumes
1− u2 − v2 = 0 in the ODE’s domain constraint. It is abbreviated 1 and continued below.

∗
dbx, Ru = 1, v = 0, t = 0 ` [αe, t

′=1]1− u2 − v2 = 0 1
DC u = 1, v = 0, t = 0 ` [αe, t

′=1](u−cos(t) = 0 ∧ v−sin(t) = 0)

From 1 , �rst calculate the Lie derivatives, abbreviating c = u− cos(t), s = v − sin(t):

Lαe,t′=1(c) = Lαe,t′=1(u− cos(t)) = −v +
u

4
(1− u2 − v2) + sin(t) = −s+

u

4
(1− u2 − v2)

Lαe,t′=1(s) = Lαe,t′=1(v − sin(t)) = u+
v

4
(1− u2 − v2)− cos(t) = c+

v

4
(1− u2 − v2)

Under the domain constraint assumption 1− u2 − v2 = 0, the additional 1− u2 − v2 term
in both Lie derivatives simpli�es to 0. �e derivation starts with a cut of the postcondition
c = 0 ∧ s = 0. �is arithmetic premise, abbreviated 2 , is discussed a�erwards. Continuing on
the right premise, the vdbx step closes successfully using real arithmetic manipulations only:

2

∗
R 1− u2 − v2 = 0 `

(.
c
.
s

)
=

(
0 −1
1 0

)(
c
s

)
vdbx c = 0 ∧ s = 0 ` [αe, t

′=1 & 1− u2 − v2 = 0](c=0 ∧ s=0)
cutu = 1, v = 0, t = 0 ` [αe, t

′=1 & 1− u2 − v2 = 0](c=0 ∧ s=0)

70

�e premise 2 is valid, but it requires properties of the trigonometric functions (cos(0) = 1,
sin(0) = 0) so it cannot be proved using R. Instead, extended arithmetic Rexp,sin,cos is needed:

∗
Rexp,sin,cosu = 1, v = 0, t = 0 ` u− cos(t) = 0 ∧ v − sin(t) = 0

�e extended arithmetic theory is undecidable in general [162] and so, unlike R, rule Rexp,sin,cos

cannot be implemented via an underlying decision procedure. Yet, simple arithmetic questions
such as 2 which just involve the evaluation of trigonometric functions can be easily checked.

�e above derivation takes advantage of a known Darboux equality for 1 − u2 − v2 to
simplify the proof using vdbx. �e proof could have instead directly made use of �eorem 3.13
by encoding c = 0∧ s = 0 as c2 + s2 = 0 and then calculating the rank of c2 + s2 (which involve
trigonometric functions) according to �eorem 3.37. �is also works, but c2 + s2 has rank 3, and
the resulting cofactors are too large to even �t on this page. 4

�e �nal example below highlights an important insight from Proposition 3.34: even though
this chapter only considers extended term languages with terms that are de�ned everywhere,
it is possible to use logical formulas to implicitly characterize more terms, making use of
closure properties of the Noetherian functions [12]. �e following example illustrates implicit
characterization of quotients which are de�ned everywhere in the domain of interest:

Example 3.42 (Implicit characterization of quotients). �e trigonometric tangent function
tan(x) is Noetherian and de�ned on the interval (−π

2
, π

2
). Consider the following “formula”

where x is restricted in the domain constraint so that the RHS tan(x) is always de�ned:

x =
1

2
→ [x′ = tan(x) &−1 ≤ x ≤ 1]x ≥ 1

2

�is “formula” is not formally in the syntax of dL formulas because tan is not de�ned
everywhere. However, Proposition 3.34 can be used to ask an equivalent question in dL. Recall
from calculus:

tan(x) =
sin(x)

cos(x)

∂ 1
cos(x)

∂x
=

sin(x)

(cos(x))2

�us, sin(x), cos(x), 1
cosx

forms a 3-element Noetherian chain that generates tan(x). For
brevity, by partially following the IVP construction of Proposition 3.34, the “formula” is rephrased
as an actual dL formula with y representing 1

cosx
along the ODE. A�er replacing x′ = sin(x)y,

the required di�erential equation for y is calculated with y′ = sin(x)y2(sin(x)y) = sin2(x)y3.

x =
1

2
∧ cos(x)y − 1 = 0→ [x′ = sin(x)y, y′ = sin2(x)y3 &−1 ≤ x ≤ 1]x ≥ 1

2

For non-zero denominator, the initial value 1
cos(x)

of y is logically characterized by the formula
cos(x)y − 1 = 0. �e following Lie derivative calculation shows that cos(x)y − 1 satis�es a
Darboux equality and so cos(x)y − 1 = 0 can be proven invariant along the ODE (abbreviated
as α) by dbx.

Lα(cos(x)y − 1) = − sin(x)(sin(x)y)y + cos(x)(sin2(x)y3) = sin2(x)y2(cos(x)y − 1)

71

�e rephrased formula proves a�er a DC with this Darboux invariant for y using the ODE
invariant x ≥ 1

2
and rule sAI (or its generalization with domain constraints from Appendix A.2).

Brie�y, the invariance of x ≥ 1
2

provably reduces to the following arithmetic premise which is
valid and falls within a decidable fragment of arithmetic with trigonometric functions [112]:

−1 ≤ x ≤ 1, cos(x)y − 1 = 0, x =
1

2
` sin(x)y > 0 4

3.8 Related Work
�is related work discussion focuses on deductive safety and invariance veri�cation for di�eren-
tial equations. Readers interested in ODEs [204], real analysis [94, 204], algebra [24], and real
algebraic geometry [14] are referred to the cited textbooks. �e orthogonal task of e�ciently
generating invariants is investigated elsewhere [63, 103, 169].

Proof Rules for ODE Invariants. Numerous useful but incomplete proof rules for ODE
invariants [140, 155, 169, 190] are surveyed elsewhere [64]. �e soundness and completeness
theorems for dRI and sAI were previously proved semantically [63, 103]. �ese earlier results are
limited to (semi)algebraic invariants as they depend on speci�c semantic properties limited to
polynomials. �e extended term conditions (Section 3.2.4) and Noetherian functions (Section 3.7)
generalize these results, showing that all (semi)analytic invariance questions reduce completely
to arithmetic. In their original presentation [63, 103], dRI and sAI are algorithmic procedures
for checking invariance of semialgebraic sets, requiring e.g., checking ideal membership for
all polynomials in the semialgebraic decomposition. �is makes them di�cult to implement
soundly within a small, trusted axiomatic core [54]. �is chapter shows that, by relying on the
logic dL, these rules can be derived from a small set of axiomatic principles. Although these
derivations also leverage ideal computations, they are only used in derived rules. With the aid of
a theorem prover like KeYmaera X, derived rules can be implemented as tactics that crucially
remain outside its soundness-critical axiomatic core.

Deductive Power and Proof�eory. �e derivations shown in this chapter are fully general,
which is necessary for completeness of the resulting derived rules. �e number of conjuncts in
the progress and di�erential radical formula for an extended term e is equal to the rank of e.
Known upper bounds for the rank, even in the case of polynomials in n variables, are doubly
exponential in n2 lnn [125]. Many simpler classes of invariants can be proved using simpler
derivations, as exempli�ed by Examples 3.7 and 3.41. �is is where a study of the deductive
power of sound, but incomplete, proof rules [64] is essential. For ODE invariants of a simpler
class, it su�ces to use a proof rule that is complete for just that class, for example, with the proof
rules in Section 3.3 that derive from DG. �is intuition is echoed in an earlier study [140] of the
relative deductive power of di�erential invariants (DI), di�erential cuts (DC), and di�erential
ghosts (DG). �e �rst completeness result (�eorem 3.13) shows that dL with DG is complete for
algebraic and analytic invariants. Other proof-theoretical studies of dL [139] reveal surprising
correspondences between its hybrid, continuous, and discrete aspects in the sense that each
aspect can be axiomatized completely and e�ectively relative to any other aspect.

72

Noetherian Functions. �is chapter only touched on basic properties of Noetherian func-
tions. �e model-theoretic study of Noetherian functions and the related Pfa�an functions is
fascinating in its own right [12, 56, 57]. Pfa�an functions are generated by chains satisfying (3.8)
except with triangular dependencies in their partial derivatives [57], and notably, the expansion
of the real �eld with Pfa�an functions is o-minimal [185, 203, 207]. Such o-minimal expansions
have been studied in reachability analysis for o-minimal hybrid systems [92, 96] because they
admit the construction of �nite bisimulations for reachability analysis algorithms. In contrast,
expansions with (more general) Noetherian functions, e.g., (unrestricted) trigonometric sine and
cosine, are not o-minimal because they can be used to characterize the natural numbers. �is is
a barrier to the construction of �nite bisimulations [96] but not for deductive approaches, as
long as the relevant arithmetic is provable.

Undecidability of arithmetic is a delicate issue [162], but this chapter’s completeness results
show that ODE invariance veri�cation completely reduces to arithmetic! Many (necessarily
incomplete) approaches and tools for handling special functions are available, e.g., resolution
with upper and lower bounds as implemented in MetiTarski [4], δ-decidability as implemented in
dReal [59, 60], or heuristic inference-based approaches as implemented in Polya [10]. Specialized
decision procedures may also be applicable for restricted fragments of arithmetic [112], as in
Examples 3.40 and 3.42. Even in se�ings where all of these automated tools fail to verify an
arithmetic question, the system designer can provide further mathematical intuition with an
interactive proof in KeYmaera X [54].

�e �ndings of this chapter identify Noetherian functions as a more general unifying theme
behind earlier results in continuous/hybrid systems veri�cation. Besides the completeness results
for invariants, Proposition 3.34 also generalizes earlier results [69, 105, 137] to the Noetherian
se�ing. �is idea is called di�erential axiomatization [137] because it axiomatizes ODEs involving
special functions that have undecidable arithmetic using polynomial ODEs. Similarly, [105,
Proposition 1] gives an algorithm for replacing a �xed set of functions appearing in IVPs
with polynomials ones. �e result from [69, �eorem 4] only applies in the case of univariate
Noetherian functions.

3.9 Discussion
�is chapter demonstrates the impressive deductive power of di�erential ghosts: they prove all
Darboux invariants and, as a consequence, all analytic invariants for extended term languages
with the extended term conditions. Even scalar di�erential ghosts su�ce for this result, but the
question of whether their deductive power extends to even larger classes of invariants is le� open.
�e chapter then introduces extensions to the dL axiomatization and shows how they can be used
to extend completeness to semianalytic invariance. �e case of (semi)algebraic invariants is even
decidable, but the results prove completeness for much larger classes of (semi)analytic invariants.
Table 3.1 gives an instructive overview of the key mathematical properties of solutions and terms
that the soundness of each di�erential equation axiom rests on. With these axioms, mathematical
reasoning for di�erential equations can be carried out syntactically and axiomatically within the
dL proof calculus. �is concise and foundational axiomatization of mathematical properties is
precisely what enables generalizations of earlier results [148] to the (semi)analytic se�ing with

73

Table 3.1: Properties of ODE solutions underlying the di�erential equation axioms of dL.

ODE Axiom Mathematical Property
DI Mean value theorem
DC Pre�x-closure of solutions
DG Picard-Lindelöf theorem
Cont Existence of solutions
Uniq Uniqueness of solutions
Dadj Group action on solutions
RI Completeness of �eld R

Noetherian functions. A subtle question is le� open: the extended term conditions in Section 3.2.4
do not require real analyticity for the �xed function symbols h even if Noetherian functions
are always real analytic. �is suggests that there may still be a gap between the extended term
conditions and Noetherian functions. Are there C∞ smooth (or even real analytic) functions
that meet the extended term conditions but are not Noetherian functions? In other words, are
Noetherian functions exactly the class of functions for which completeness results are possible?
Certainly, this chapter’s completeness results continue to hold for any functions meeting those
conditions, which would make both positive and negative results interesting.

74

Chapter 4

Liveness and Existence for Ordinary
Di�erential Equations

�is chapter turns to deductive veri�cation for liveness and existence properties of ordinary
di�erential equations (ODEs), i.e., the question whether an ODE solution exists for long enough
to reach a given region without leaving its domain of evolution. Numerous subtleties complicate
the generalization of discrete liveness veri�cation techniques, such as loop variants, to the
continuous se�ing. For example, ODE solutions may blow up in �nite time or their progress
towards the goal may converge to zero. �ese subtleties are handled in dL by successively
re�ning ODE liveness properties using ODE safety properties, thereby building on the complete
dL axiomatization of invariants from Chapter 3. A special case of this approach is used to deduce
(global) existence of solutions for ODEs which are fundamental hypotheses behind ODE liveness
arguments. Proofs of global existence of solutions also help to justify the adequacy of ODE models
for real-world systems because those systems (typically) do not simply cease to exist a�er a short
time. �ese liveness and existence derivations are put into practice through an implementation
in KeYmaera X. Together with Chapter 3’s ODE safety proofs, this implementation provides the
practical basis for proving dL stability speci�cations involving nested, �rst-order, and modal
quanti�cation over continuous and hybrid programs in the subsequent chapters.

4.1 Introduction
�e ODE liveness speci�cation Γ ` 〈x′ = f(x) &Q〉φ says that, for each initial state satisfying
assumptions Γ, some state reached by following the ODE x′ = f(x) &Q from that initial state
satis�es the postcondition φ. Such liveness questions are dual to safety questions from Chapter 3:
recall that ODE safety questions arise when proving that a continuous or hybrid system always
satis�es a desired safety property; dually, ODE liveness questions arise when proving that those
systems eventually reach a desired goal or target region. �is form of ODE liveness is in the
sense of Owicki and Lamport [128] for concurrent programs within their (linear) temporal logic.
Liveness for ODEs has sometimes been called eventuality [157, 176] and reachability [191]. To
minimize ambiguity, this chapter refers to the diamond modality formula 〈x′ = f(x) &Q〉φ as
ODE liveness, while other related notions are discussed in Section 4.7.

75

Table 4.1: Surveyed ODE liveness arguments with highlighting in blue for soundness-critical
corrections identi�ed in this chapter. �e applications (and corrections, if any) for each surveyed
argument is brie�y described here. �e referenced corollaries are corresponding derived proof
rules with details of the corrections.

Application Without Domain Constraints

Hybrid systems veri�cation [137] OK (Cor. 4.16)
Automated ODE veri�cation [156, 157] [157, Remark 3.6] is incorrect
Finding basin of a�raction [159] if chosen set is compact (Cor. 4.23)
Staging set-based liveness proofs [176] OK (Cor. 4.20)
Switching logic synthesis [191] if ODE solutions assumed or proved global (Cor. 4.18)

Application With Domain Constraints

Hybrid systems veri�cation [137] if domain open/closed, target initially false (Cor. 4.25)
Automated ODE veri�cation [156, 157] if arithmetical conditions checked globally (Cor. 4.31)
Finding basin of a�raction [159] if chosen set is compact (Cor. 4.27)
Staging set-based liveness proofs [176] OK (Cor. 4.28)
Switching logic synthesis [191] if ODE solutions assumed or proved global (Cor. 4.26)

For discrete systems, methods for proving liveness are well-known: loop variants show that
discrete loops eventually reach a desired goal [73], while temporal logic is used to specify and
study liveness properties in concurrent and in�nitary se�ings [109, 128]. However, the deduction
of (continuous) ODE liveness properties is hampered by several di�culties: i) solutions of ODEs
may converge towards a goal without ever reaching it, ii) solutions of nonlinear ODEs may
blow up in �nite time leaving insu�cient time for the goal to be reached, and iii) the goal may
be reachable but only by illegally leaving the evolution domain constraint. Motivated by these
di�culties, this chapter uses dL to perform systematic, step-by-step re�nement of ODE liveness
properties, where each re�nement step is justi�ed using an ODE safety (and invariance) property.
Notably, liveness proofs focus on high-level re�nement arguments while their underlying ODE
safety justi�cations are handled transparently using Chapter 3’s complete ODE invariance proof
rules. Indeed, using safety to deduce liveness is a well-known proof technique for (discrete)
concurrent systems [109, 128] and this chapter shows that those techniques generalize to the
continuous se�ing—as long as the aforementioned di�culties are appropriately handled.

To demonstrate the applicability of the deductive re�nement approach, this chapter surveys
several arguments from the literature and derives them all as (corrected) dL proof rules, see
Table 4.1. �is logical presentation has two key bene�ts:

• �e proof rules are syntactically derived from sound axioms of dL, which guarantees their
correctness. Many of the surveyed arguments contain subtle soundness errors; rather than
diminishing the surveyed work, these errors emphasize the need for an axiomatic, sound,
and uniform way of analyzing ODE liveness instead of relying on ad hoc approaches.

• �e approach identi�es common re�nement steps that form a basis for the surveyed
liveness arguments drawn from various applications. �is library of building blocks
enables sound development and justi�cation of new ODE liveness proof rules, e.g., by

76

generalizing individual re�nement steps or by exploring di�erent combinations of those
steps, e.g., in Corollaries 4.19, 4.21, and 4.30.

Another key insight is that all of the surveyed liveness arguments are based on reducing
liveness properties of ODEs to assumptions about su�cient existence duration for their solutions.
In fact, many of those arguments become signi�cantly simpler (and sound) when the ODEs
of concern are assumed to have global solutions, i.e., they do not blow up in �nite time. It
is reasonable and commonplace to make such an assumption for the continuous dynamics in
models of CPSs [6, Section 6]. For example, control systems are designed to always operate
near stable equilibria and they always have global solutions near those equilibria [71, �eorem
3.1]. Logically though, making an a priori assumption of global existence for ODEs means
that the correctness of any subsequent veri�cation results for the ODEs and hybrid system
models are conditional on an unproved existence duration hypothesis. While global existence is
known to hold for linear systems, even the simplest nonlinear ODEs (see Section 4.3) fail to meet
the hypothesis of having global solutions without further assumptions. �is chapter therefore
adopts the view that (global) existence should be proved rather than assumed for the continuous
dynamics in hybrid system models.

• Section 4.3 presents deductive dL proofs of global existence for ODE solutions. Together
with the liveness proofs of Sections 4.4 and 4.5, this yields unconditional proofs of ODE
liveness properties within the re�nement framework, without existence presuppositions.

• Section 4.6 draws further practical insights from Sections 4.3–4.5 by implementing their
liveness proof rules as tactics in KeYmaera X. �is includes: i) the design of proof rules
that are practically useful and well-suited for implementation (Section 4.6.1) and ii) the
design of proof support to aid users in existence and liveness proofs (Section 4.6.2).

�e liveness proofs of Sections 4.3–4.5 �t particularly well with an implementation in
KeYmaera X because axiomatic re�nement closely mirrors KeYmaera X’s design principles.
KeYmaera X implements dL’s uniform substitution calculus [142] with a minimal, soundness-
critical trusted kernel; on top of this, KeYmaera X’s non-soundness-critical tactics framework [55]
adds support and automation for proofs. Liveness proofs are similarly based on a series of
small re�nement steps which are, in turn, implemented as tactics based on a small basis of
derived re�nement axioms. More complicated liveness arguments, such as those from Table 4.1
or from new user insights, are implemented by piecing those tactics together using tactic
combinators [55]. �e implementation required minor changes to ≈155 lines of soundness-
critical code in KeYmaera X, while the remaining ≈1500 lines implement ODE existence and
liveness proof rules as non-soundness-critical tactics. �ese additions su�ce to prove all of the
examples in this chapter and in ODE models elsewhere [22, 176] (Section 4.6.2).

Reminder (Extended Term Language). �is chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the
dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. �e material for this chapter is drawn from Tan and Platzer [192, 195].

77

-1 0 1 u

-1

0

1

v

-1 0 1 u

-1

0

1

v

Figure 4.1: Visualization of αl (le�) and αn (right). Solutions of αl globally spiral towards the
origin. In contrast, solutions ofαn spiral inwards within the inner red disk (dashed boundary), but
spiral outwards otherwise. For both ODEs, solutions starting on the black unit circle eventually
enter their respective shaded green goal regions. �e ODE αn also exhibits �nite-time blow up
of solutions from all initial states outside the red disk.

t=0

t=0.3

t=0.4

t=0.5

t=0.55

t=0.56 t=0.57

0 2 4 6 8 u

0

2

4

v

0 0.2 0.4 0.6 t

1

10

100

1000

u
2
+v

2

Figure 4.2: Two views of the ODE αn evolving from initial state u = 1, v = 0 over time t. �e
le� plot shows its trajectory in the u, v plane (cf. Fig. 4.1) while the right plot shows the squared
Euclidean norm u2 + v2 evolving over time t (with logarithmic scaling for the vertical axis). �e
solution blows up in �nite time with norm approaching∞ as t approaches 0.58 (rounded up,
black dashed asymptote). Nevertheless, the solution reaches the green goal region u2 + v2 ≥ 2
from Fig. 4.1 at t ≈ 0.31 (rounded up, green dot) before blowing up.

4.2 ODE Liveness via Box Re�nements
�is section explains step-by-step re�nement for proving ODE liveness properties in dL. �e
following two running example ODEs αl and αn are visualized in Fig. 4.1 with directional arrows
corresponding to their RHS evaluated at points on the plane:

αl ≡ u′ = −v − u, v′ = u− v (4.1)

αn ≡ u′ = −v − u(
1

4
− u2 − v2), v′ = u− v(

1

4
− u2 − v2) (4.2)

�e ODE αl is linear because its RHS depends linearly on variables u and v while αn is
nonlinear because of the cubic terms in its RHS. �e nonlinearity of αn results in more complex
behavior for its solutions, e.g., the di�erence in spiraling behavior inside or outside the red disk
shown in Fig. 4.1. In fact, solutions of αn blow up in �nite time i� they start outside the disk
characterized by u2 + v2 ≤ 1

4
, whereas �nite-time blow up is impossible for linear ODEs like

78

αl [33, 204]. An illustration of �nite-time blow up for αn from an initial state outside the red
disk is shown in Fig. 4.2. �is phenomenon is precisely de�ned and investigated in Section 4.3,
which enables formal proofs of the aforementioned (absence of) �nite-time blow up.

Figure 4.1 suggests that formulas1 〈αl〉
(

1
4
≤ ‖(u, v)‖∞ ≤

1
2

)
and 〈αn〉u2 + v2 ≥ 2 are

true for initial states ω on the unit circle. �ese liveness properties are rigorously proved in
Examples 4.17 and 4.22 respectively, using the re�nement approach discussed next.

4.2.1 Liveness Re�nement
Suppose that an initial liveness property 〈x′ = f(x) &Q0〉P0 is known for the ODE x′ = f(x).
How could this be used to prove a desired liveness property 〈x′ = f(x) &Q〉P for that ODE?
Logically, this amounts to proving the following implication:

〈x′ = f(x) &Q0〉P0 → 〈x′ = f(x) &Q〉P (4.3)

-1 0 1 u

-1

0

1

vProving implication (4.3) re�nes knowledge of the initial liveness
property to the desired liveness property. As an example of such a re�ne-
ment, consider the desired liveness property 〈αl〉

(
1
4
≤ ‖(u, v)‖∞ ≤

1
2

)
for ODE αl (4.1) starting from the initial circle u2 + v2 = 1 (cf. Fig. 4.1).
Suppose the initial liveness property 〈αl〉u2 + v2 = 1

4
is already proved,

e.g., using the techniques of Section 4.4. As visualized on the right, ODE
solutions starting from the black circle u2 + v2 = 1 eventually reach
the dashed blue circle u2 + v2 = 1

4
. Since the blue circle is entirely

contained in the green goal region, solutions that reach it must (trivially) also reach the goal
region. Formally, the following instance of implication (4.3) is provable by monotonicity M〈·〉
because the implication P0 → P between their respective postconditions is provable by R.

〈αl〉
(
u2 + v2 =

1

4

)︸ ︷︷ ︸
P0

→ 〈αl〉
(1

4
≤ ‖(u, v)‖∞ ≤

1

2

)︸ ︷︷ ︸
P

(4.4)

-1 0 1 u

-1

0

1

vSimilarly, if the implication between domain constraintsQ0 → Q is
provable, then implication (4.3) is proved by monotonicity, because any
solution staying in the smaller domain Q0 must also stay in the larger
domain Q. However, neither of these monotonicity-based arguments
are su�ciently powerful for liveness proofs because they do not account
for the speci�c ODE x′ = f(x) under consideration at all. Returning to
the ODE αl, suppose instead that the initial (known) liveness property
is 〈αl〉u2 +v2 = 1

25
. �is is visualized on the right with a smaller dashed

blue circle. �e following instance of implication (4.3) is also valid for solutions starting from the
black circle u2 + v2 = 1, but it does not follow from a straightforward monotonicity argument

1‖·‖∞ denotes the supremum norm, with ‖x‖∞ ≡ maxni=1|xi| for an n-dimensional vector x. �e inequality
‖(u, v)‖∞ ≤

1
2 is expressible in �rst-order real arithmetic as u2 ≤ 1

4 ∧ v
2 ≤ 1

4 . Similarly, 1
4 ≤ ‖(u, v)‖∞ is

expressible as 1
16 ≤ u

2 ∨ 1
16 ≤ v

2.

79

because the smaller dashed blue circle u2 + v2 = 1
25

is not contained in the green goal region,
i.e., implication P0 → P is not valid.

〈αl〉
(
u2 + v2 =

1

25

)︸ ︷︷ ︸
P0

→ 〈αl〉
(1

4
≤ ‖(u, v)‖∞ ≤

1

2

)︸ ︷︷ ︸
P

(4.5)

Instead, a proof of implication (4.5) requires additional information about solutions of the
ODE αl, namely, that they are continuous and the system αl is planar. Informally, observe that
it is impossible to draw a line (without li�ing your pen o� the page) that connects the black
circle to the (smaller) dashed blue circle without crossing the green goal region. �e continuous
solutions of αl are analogous to such lines and therefore must enter the green goal region
before reaching the blue circle. To formalize such reasoning, this chapter’s approach is built
on re�nement axioms that conclude instances of implication (4.3), like (4.4) and (4.5), from box
modality formulas involving the ODE x′ = f(x).

4.2.2 Liveness Re�nement Axioms
�e following are four ODE re�nement axioms of dL that are used for the approach. Crucially,
these axioms are derived from their corresponding box modality axioms by exploiting the logical
duality between the box and diamond modalities of dL. �is makes it possible to build liveness
arguments from dL’s sound and parsimonious logical foundation.

Lemma 4.1 (Diamond ODE re�nement axioms). �e following 〈·〉 ODE re�nement axioms are
derivable in dL. In axioms BDG〈·〉, DDG〈·〉, y = (y1, . . . , ym) is an m-dimensional vector of fresh
variables (not appearing in x) and g(x, y) is a corresponding m-dimensional vector of terms. Terms
e(x), L(x),M(x) and formulas P (x), Q(x) are dependent only on free variables x (and not y).

K〈&〉 [x′ = f(x) &Q ∧ ¬P]¬G→
(
〈x′ = f(x) &Q〉G→ 〈x′ = f(x) &Q〉P

)
DR〈·〉 [x′ = f(x) &R]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
BDG〈·〉 [x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2

2 ≤ e(x)

→
(
〈x′ = f(x) &Q(x)〉P (x)→ 〈x′ = f(x), y′ = g(x, y) &Q(x)〉P (x)

)
DDG〈·〉 [x′ = f(x), y′ = g(x, y) &Q(x)] 2y · g(x, y) ≤ L(x) ‖y‖2

2 +M(x)

→
(
〈x′ = f(x) &Q(x)〉P (x)→ 〈x′ = f(x), y′ = g(x, y) &Q(x)〉P (x)

)
Proof Summary (Appendix B.1.2). �e axioms are all derived by duality using 〈·〉, except DDG〈·〉
which derives from BDG〈·〉 by bounding solutions of the ghost ODE y′ = g(x, y) using the
a�ne bound 2y · g(x, y) ≤ L(x) ‖y‖2

2 +M(x) on the Lie derivative of ‖y‖2
2.

Axiom K〈&〉 is best understood in the contrapositive. Formula [x′ = f(x) &Q ∧ ¬P]¬G
says G never happens along the solution while ¬P holds. �us, the solution cannot get to G
unless it gets to P �rst. Axiom K〈&〉 formalizes the informal reasoning used for implication (4.5)
above in the contrapositive, with G ≡ u2 + v2 = 1

25
and P ≡

(
1
4
≤ ‖(u, v)‖∞ ≤

1
2

)
. In the

(partial) derivation shown below, the le� premise requires a proof that the dashed blue circle

80

G cannot be reached while staying outside the green goal region P while the right premise
requires a proof of the initial liveness property 〈αl〉

(
u2 + v2 = 1

25

)
for αl. In a sequent calculus

proof, re�nement steps are naturally read from top-to-bo�om (downwards), while deduction
steps, i.e., axiom or rule applications, are read bo�om-to-top (upwards).
Deductionx

...
u2 + v2 = 1 ` [αl &¬

(
1
4 ≤ ‖(u, v)‖∞ ≤

1
2

)
]¬
(
u2 + v2 = 1

25

) ...
u2 + v2 = 1 ` 〈αl〉

(
u2 + v2 = 1

25

)
K〈&〉 u2 + v2 = 1 ` 〈αl〉

(
1
4 ≤ ‖(u, v)‖∞ ≤

1
2

)

y
Re�nement

Re�nement axiom DR〈·〉 is used in Chapter 3 but it is repeated here for clarity. In the axiom,
formula [x′ = f(x) &R]Q says that the ODE solution never leaves Q while staying in R, so
if the solution gets to P within R, then it also gets to P within Q. �e la�er two re�nement
axioms BDG〈·〉, DDG〈·〉 are both derived from axiom BDG below, a new vectorial generalization
of axiom DG that allows di�erential ghosts with provably bounded ODEs to be added.

Lemma 4.2 (Bounded di�erential ghosts). �e following bounded di�erential ghosts axiom BDG
is sound, where y = (y1, . . . , ym) is a m-dimensional vector of fresh variables (not appearing in x),
g(x, y) is a corresponding m-dimensional vector of terms, and ‖y‖2

2 is the squared Euclidean norm
of y. Term e(x) and formulas P (x), Q(x) are dependent only on free variables x (and not y).

BDG [x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2
2 ≤ e(x)

→
(
[x′ = f(x) &Q(x)]P (x)↔ [x′ = f(x), y′ = g(x, y) &Q(x)]P (x)

)
Proof Summary (Appendix B.1.1). �e proof of BDG is similar to that for the di�erential ghosts
axiom DG [142], but generalizes it to support vectorial, nonlinear ODEs by adding a syntactic
precondition on boundedness of solutions of the added di�erential ghosts y′ = g(x, y).

Like axiom DG, axiom BDG allows an arbitrary vector of ghost ODEs y′ = g(x, y) to be
added syntactically to the ODEs. However, it places no syntactic restriction on the RHS of the
ODE (such as linearity in axiom DG). For soundness, BDG instead adds a new precondition with
a bound ‖y‖2

2 ≤ e(x) in terms of x on the squared norm of y along solutions of the augmented
ODE. �is syntactic precondition ensures that y cannot blow up before x, so that solutions of
x′ = f(x), y′ = g(x, y) have existence intervals as long as those of the solutions of x′ = f(x).
Section 4.3 shows how to prove these preconditions in order to use axiom BDG in ODE existence
proofs through the re�nement approach.

Returning to axioms BDG〈·〉, DDG〈·〉, the (nested) re�nement in both axioms say that, if the
ODE x′ = f(x) can reach P (x), then the ODE x′ = f(x), y′ = g(x, y), with the added variables
y, can also reach P (x). Axiom BDG〈·〉 is the derived diamond version of BDG, obtained by
directly dualizing the inner equivalence of BDG with 〈·〉 and propositional simpli�cation. �e
intuition behind BDG〈·〉 is identical to BDG: if the added ghost ODEs y never blow up in norm,
then they do not a�ect whether the solution of the original ODEs x′ = f(x) can reach P (x).

Derived axiom DDG〈·〉 is a di�erential version of BDG〈·〉. Instead of bounding the squared
norm ‖y‖2

2 explicitly, DDG〈·〉 instead limits the rate of growth of the ghost ODEs by bounding
the Lie derivative Lx′=f(x),y′=g(x,y)(‖y‖

2
2) = 2y · g(x, y) of the squared norm. �is derivative

81

bound in turn implicitly bounds the squared norm of the ghost ODEs by the solution of the linear
di�erential equation z′ = L(x)z +M(x), with dependency on the value of x along solutions
of the ODE x′ = f(x), which ensures that premature blow-up of y before x itself blows up
is impossible. Any re�nement step using axiom DDG〈·〉 can also use axiom BDG〈·〉 since the
former is derived from the la�er. �e advantage of DDG〈·〉 is it builds in canonical di�erential
reasoning steps once-and-for-all (see Lemma 4.1 and Section 4.3) which simpli�es the proofs.

Axioms K〈&〉, DR〈·〉, BDG〈·〉, DDG〈·〉 all prove implication (4.3) in just one re�nement step.
Logical implication is transitive though, so a sequence of such steps can be chained together to
prove implication (4.3). �is is shown in (4.6), with neighboring implications informally chained
together for illustration:

〈x′ = f(x) &Q0〉P0

DR〈·〉 with [x′=f(x) &Q0]Q1︷︸︸︷−→ 〈x′ = f(x) &Q1〉P0

K〈&〉 with [x′=f(x) &Q1∧¬P1]¬P0︷︸︸︷−→ 〈x′ = f(x) &Q1〉P1

−→ · · · (4.6)
−→ 〈x′ = f(x) &Q〉P

�e box modality formulas annotated above each implication in (4.6) are side conditions to be
proved for the chain of re�nements (4.6) in order to prove the desired implication (4.3). However,
an unconditional proof of the liveness property 〈x′ = f(x) &Q〉P at the end of the chain still
needs a proof of the hypothesis 〈x′ = f(x) &Q0〉P0 at the beginning of the chain. Typically,
this hypothesis is a (simple) existence assumption for the di�erential equation. Formalizing and
proving such existence properties is the focus of Section 4.3. �ose proofs are also based on
re�nements and make use of axioms BDG〈·〉, DDG〈·〉.

Re�nement with axiom DR〈·〉 requires proving the formula [x′ = f(x) &R]Q. Naı̈vely, one
might expect that adding ¬P to the domain constraint should also work, i.e., the solution only
needs to be in Q while it has not yet go�en to P :

DR〈·〉� [x′ = f(x) &R ∧ ¬P]Q→
(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
�is conjectured axiom is unsound (indicated by �) as the solution could sneak out of Q

exactly when it crosses from ¬P into P . In continuous se�ings, the language of topology makes
precise what this means (recall Section 2.2.2, page 19). �e following topological re�nement
axioms soundly restrict what happens at the crossover point:

Lemma 4.3 (Topological ODE re�nement axioms). �e following topological 〈·〉 ODE re�nement
axioms are sound. In axiom COR, formulas P,Q either both characterize topologically open or both
characterize topologically closed sets over variables x.

COR ¬P ∧ [x′ = f(x) &R ∧ ¬P]Q→
(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
SAR [x′ = f(x) &R ∧ ¬(P ∧Q)]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
Proof in Appendix B.1.2.

Axiom COR is the more informative topological re�nement axiom. Like the (unsound) axiom
candidate DR〈·〉�, it allows formula ¬P to be assumed in the domain constraint when proving

82

the box re�nement. For soundness though, axiom COR has crucial topological side conditions on
formulas P,Q so it can only be used when those conditions are met. Several variations of COR
are possible (with similar soundness proofs), but they require alternative topological restrictions
and additional topological notions. One useful variation involving the topological interior is
given in Lemma 4.35. For the sake of generality, this chapter gives semantic topological side
conditions with associated semantic soundness proofs in Appendix B.1.2. Axiom SAR applies
more generally than COR but only assumes the less informative formula¬(P ∧Q) in the domain
constraint for the box modality. Its proof crucially relies on Q being a semianalytic formula so
that the set it characterizes has tame topological behavior [14], see the proof in Appendix B.1.2
for more details. By topological considerations, axiom SAR is also sound if formula P (or resp. Q)
characterizes a topologically closed (resp. open) set over the ODE variables x. �ese additional
cases are also proved in Appendix B.1.2 without relying on the fact that Q is semianalytic.

4.3 Finite-Time Blow Up and Global Existence
�is section explains how global existence properties can be proved for a given ODE x′ = f(x),
subject to assumptions Γ about the initial states for the ODE. �e existence and uniqueness
theorems for ODEs [33, 204] guarantee that (su�ciently smooth) ODEs x′ = f(x) always have
a unique, right-maximal solution from any initial state, ϕ : [0, T) → S for some 0 < T ≤ ∞.
However, these theorems give no guarantees about the precise duration T . In particular, ODEs
can exhibit a technical phenomenon known as �nite-time blow up of solutions [33], where ϕ is
only de�ned on a bounded time interval [0, T) with T < ∞. Intuitively, this happens when
the solution blows up because its norm tends to∞ as time t tends to T , as shown in Fig. 4.2.
Additionally, it is possible that such �nite-time blow up phenomena only happen for some initial
conditions (and corresponding solutions) of the ODE. �ese initial conditions (with �nite-time
blow up) are typically irrelevant to the model of concern, especially when the dynamics of the
corresponding real-world system is controlled to stay away from the blow up. For example,
αn (4.2) exhibits �nite blow up of solutions only outside the red disk as shown in Fig. 4.1 and
the blow up occurs well a�er its solutions have reached the target region, see Fig. 4.2. As an
additional example, consider the following nonlinear ODE:

αb ≡ v′ = −v2 (4.7)

�e solution to this ODE is v(t) = v0

v0+t
, where v0 6= 0 is the initial value of v at time t = 0

(if v0 = 0, then v(t) = 0 for all t). If v0 < 0 initially, then this solution is only de�ned to the
right for the �nite time interval [0,−v0), because the denominator v0 + t is 0 at t = −v0. On the
other hand, for v0 ≥ 0, the existence interval to the right is [0,∞). �us, αb exhibits �nite-time
blow up of solutions, but only for v0 < 0.

4.3.1 Global Existence Proofs
�e discussion above uses the mathematical solution v(t) of the ODE αb (4.7) as a function of
time. For deductive proofs, the (global) existence of solutions can be expressed in dL as a special
form of an ODE liveness property. �e �rst step is to add a fresh variable t with t′ = 1 that

83

tracks the progress of time.2 �en, using a fresh variable τ not in x, t, the following formula
syntactically expresses that the ODE has a global solution because its solutions exceeds time τ ,
for any arbitrary τ :

∀τ 〈x′ = f(x), t′ = 1〉 t > τ (4.8)

Proving formula (4.8) shows global existence of solutions for the ODE x′ = f(x). �e simplest
instance of (4.8) is for ODE t′ = 1 by itself without any ODE x′ = f(x). �e formula (4.8) is
valid because t′ = 1 is an ODE with constant RHS, as shown below in axiom TEx.

Lemma 4.4 (Time existence). �e following axiom is derivable in dL.

TEx ∀τ 〈t′ = 1〉t > τ

Proof. Axiom TEx is derived directly from dL’s solution axiom [142] but it also has an easy
semantic soundness proof which is given here. Consider an initial state ω and the corresponding
modi�ed state ωdτ where the value of variable τ is replaced by an arbitrary d ∈ R. �e (right-
maximal) solution of ODE t′ = 1 from state ωdτ is given by the function ϕ : [0,∞)→ S, where
ϕ(ζ)(t) = ωdτ (t) + ζ = ω(t) + ζ , and ϕ(ζ)(y) = ωdτ (y) for all other variables y. In particular,
ϕ(ζ)(τ) = d. �us, at any time ζ > d− ω(t), ϕ(ζ)(t) = ω(t) + ζ > d = ϕ(ζ)(τ). �is time ζ
witnesses 〈t′ = 1〉t > τ .

Other instances of (4.8) can be proved by re�ning axiom TEx using axioms BDG〈·〉, DDG〈·〉
with appropriate assumptions about the initial conditions for the additional ODEs x′ = f(x).
�is is exempli�ed for the ODE αb next.

Example 4.5 (Velocity of particle with air resistance). �e ODE αb can be viewed as a model
of the velocity of a particle that is slowing down due to air resistance. Of course, it does not
make physical sense for the velocity of such a particle to “blow up”. However, the solution of αb
only exists globally if the particle starts with positive initial velocity v > 0, otherwise, it only
has short-lived solutions. �e reason is that αb only makes physical sense for positive velocities
v > 0, so that the air resistance term −v2 slows the particle down instead of speeding it up.
Indeed, global existence (4.8) can be proved for αb if its initial velocity is positive, i.e., the dL
formula v > 0→ ∀τ 〈v′ = −v2, t′ = 1〉t > τ is valid.

∗
dbx<v > 0 ` [v′ = −v2, t′ = 1] v > 0
M[·] v > 0 ` [v′ = −v2, t′ = 1] 2v · (−v2) ≤ 0

∗
TEx ` 〈t′ = 1〉t > τ

DDG〈·〉 v > 0 ` 〈v′ = −v2, t′ = 1〉t > τ
→R, ∀R ` v > 0→ ∀τ 〈v′ = −v2, t′ = 1〉t > τ

�e derivation shown above starts with basic propositional steps (→R, ∀R), a�er which
axiom DDG〈·〉 is used with v′ = −v2 as the di�erential ghost equation with the trivial choice
of bounds L = 0,M = 0. �is yields two premises, the right of which is proved by TEx. �e
resulting le� premise requires proving the formula 2v·(−v2) ≤ 0 along the ODE. Mathematically,

2For consistency, the ODE x′ = f(x) is assumed to not mention t even if this is not always strictly necessary.

84

this says that the derivative of the squared norm v2 is non-negative along αb, so that v2 is non-
increasing and cannot blow up.3 An M[·] step strengthens the postcondition to v > 0 since
v > 0 implies 2v · (−v2) ≤ 0 in real arithmetic. �e resulting premise is an invariance property
for v > 0 which is proved using rule dbx< from Corollary 3.6 (page 41) with cofactor g = −v.
�e initial assumption v > 0 is crucially used in this invariance proof step, as expected. 4

�e idea of re�nements from Section 4.2 o�ers another view of the derivation in Example 4.5
as a single re�nement step in the chain (4.6), recall that re�nement steps are read from top-to-
bo�om. Here, an initial existence property for the ODE t′ = 1 is re�ned to the desired existence
property for the ODE v′ = −v2, t′ = 1. �e re�nement step is justi�ed using DDG〈·〉 with the
box modality formula [v′ = −v2, t′ = 1] 2v · (−v2) ≤ 0.

〈t′ = 1〉t > τ
DDG〈·〉
−→ 〈v′ = −v2, t′ = 1〉t > τ

�is chain can be extended to prove global existence for more complicated ODEs x′ = f(x)
in a stepwise fashion, and (possibly) alternating between uses of DDG〈·〉 or BDG〈·〉 for the
re�nement step. To do this, note that any ODE x′ = f(x) can be wri�en in dependency order,
where each group yi is a vector of variables and each gi corresponds to the respective vectorial
RHS of the ODE for yi for i = 1, . . . , k. �e RHS of each y′i is only allowed to depend on the
preceding vectors of variables (inclusive) y1, . . . , yi.

y′1 = g1(y1), y′2 = g2(y1, y2), y′3 = g3(y1, y2, y3), . . . , y′k = gk(y1, y2, y3, . . . , yk)︸ ︷︷ ︸
x′=f(x) wri�en in dependency order

(4.9)

Corollary 4.6 (Dependency order existence). Let the ODE x′ = f(x) be in dependency or-
der (4.9), and τ be a fresh variable not in x, t. �e following rule with k stacked premises is derived
from BDG〈·〉, DDG〈·〉 and TEx, where the postcondition of each premise Pi for 1 ≤ i ≤ k can be
chosen to be either of the form:

B Pi ≡ ‖yi‖2
2 ≤ ei(t, y1, . . . , yi−1) for some term ei with the indicated dependencies, or,

D Pi ≡ 2yi · gi(y1, . . . , yi) ≤ Li(t, y1, . . . , yi−1) ‖yi‖2
2 + Mi(t, y1, . . . , yi−1) for some terms

Li,Mi with the indicated dependencies.

DEx

Γ ` [y′1 = g1(y1), t′ = 1]P1

Γ ` [y′1 = g1(y1), y′2 = g2(y1, y2), t′ = 1]P2
...

Γ ` [y′1 = g1(y1), . . . , y′k = gk(y1, . . . , yk), t
′ = 1]Pk

Γ ` ∀τ 〈x′ = f(x), t′ = 1〉t > τ

Proof Summary (Appendix B.2.1). �e derivation proceeds (backward) by successive re�nements
using either BDG〈·〉 for premises corresponding to the form B or DDG〈·〉 for those correspond-
ing to D , with the ghost equations for gi and the respective bounds ei or Li,Mi at each step for
i = k, . . . , 1.

3�e fact that v2 is non-increasing can also be used in an alternative derivation with axiom BDG〈·〉 and the
bound e = v20 , where v0 syntactically stores the initial value of v.

85

Rule DEx corresponds to a re�nement chain (4.6) of length k, with successive BDG〈·〉
or DDG〈·〉 re�nement steps, e.g.:

〈t′ = 1〉t > τ
BDG〈·〉
−→ 〈y′1 = g1(y1), t′ = 1〉t > τ

DDG〈·〉
−→ · · ·

−→ 〈y′1 = g1(y1), . . . , y′k = gk(y1, . . . , yk), t
′ = 1〉t > τ

In rule DEx any choice of the shape of premises (B and D) is sound as these correspond to
an underlying choice of axiom BDG〈·〉, DDG〈·〉 to apply at each re�nement step, respectively.
Another source of �exibility arises when choosing the dependency ordering (4.9) for the ODE
x′ = f(x), as long as the requisite dependency requirements are met. For example, one can
always choose the coarsest dependency order y1 ≡ x, g1 ≡ f(x) to directly prove global
existence in one step using appropriate choice of bounds L1,M1. �e advantage of using �ner
dependency orders in DEx is it allows the user to choose the bounds Li,Mi in a step-by-step
manner for i = 1, . . . , k. On the other hand, the �exibility of rule DEx can also be a drawback
because it relies on manual e�ort from users to choose the partition and to prove the resulting
premises. Section 4.3.2 explains useful recipes for using the �exibility behind rule DEx, e.g.,
Corollaries 4.8 and 4.12, while Section 4.6.2 shows how to automate those proofs.

�e discussion thus far proves global existence for ODEs with an explicit time variable t.
�is is not a restriction for the liveness proofs in later sections of this chapter because such a
fresh time variable can always be added using the rule dGt below, which is derived from DG.
�e rule also adds the assumption t = 0 initially without loss of generality for ease of proof.

dGt
Γ, t = 0 ` 〈x′ = f(x), t′ = 1 &Q〉P

Γ ` 〈x′ = f(x) &Q〉P

�e derivation of rule dGt is shown below, using axiom 〈·〉 to switch between the box and
diamond modalities and axiom DG∀ to introduce a universally quanti�ed time variable t which
is then instantiated by ∀L to t = 0.

Γ, t = 0 ` 〈x′ = f(x), t′ = 1 &Q〉P
〈·〉, ¬LΓ, t = 0, [x′ = f(x), t′ = 1 &Q]¬P ` false
∀L Γ,∀t [x′ = f(x), t′ = 1 &Q]¬P ` false

DG∀ Γ, [x′ = f(x) &Q]¬P ` false
〈·〉, ¬R Γ ` 〈x′ = f(x) &Q〉P

4.3.2 Derived Existence Axioms

For certain classes of ODEs and initial conditions, there are well-known mathematical techniques
to prove global existence of solutions. �ese techniques have purely syntactic renderings in dL as
special cases of BDG〈·〉, DDG〈·〉, and DEx. In particular, this section shows how axioms GEx, BEx
(shown below), which were proved semantically in an earlier presentation [192], can be derived
syntactically. �e re�nement approach also yields natural generalizations of these axioms.

86

Globally Lipschitz ODEs

A function f : Rm → Rn is globally Lipschitz continuous if there is a (positive) Lipschitz constant
C ∈ R such that the inequality ‖f(x)− f(y)‖ ≤ C ‖x− y‖ holds for all x, y ∈ Rm, where ‖·‖
are appropriate norms. Since norms are equivalent on �nite dimensional vector spaces [204,
§5.V], without loss of generality, the Euclidean norm is used for the following discussion. An
ODE x′ = f(x) is globally Lipschitz if its RHS f(x) is globally Lipschitz continuous. Solutions
of globally Lipschitz ODEs always exist globally for all time [204, §10.VII]. Global Lipschitz
continuity is satis�ed, e.g., by αl (4.1), and more generally by linear (or even a�ne) ODEs of
the form x′ = Ax, where A is a matrix of (constant) parameters [204] because of the following
(mathematical) inequality with Lipschitz constant ‖A‖F , the Frobenius norm of A:

‖Ax− Ay‖2 = ‖A(x− y)‖2 ≤ ‖A‖F ‖x− y‖2

�is calculation uses norms ‖·‖2 , ‖·‖F , which are not terms in dL because they are not
polynomials (nor extended terms of Section 3.2, e.g., ‖x‖2 is not di�erentiable at x = 0). �us,
a subtle technical challenge in proofs is to appropriately rephrase mathematical inequalities,
typically involving norms, into ones that can be reasoned about soundly also in the presence
of di�erentiation. In this respect, the Euclidean norm is useful, because expanding the valid
arithmetic inequality 0 ≤ (1− ‖x‖2)2 and rearranging yields:

2 ‖x‖2 ≤ 1 + ‖x‖2
2 (4.10)

Notice that, unlike the Euclidean norm ‖x‖2, the RHS of the square inequality (4.10) can be
represented syntactically. Indeed, the squared Euclidean norm is already used in axiom BDG and
its derived versions BDG〈·〉, DDG〈·〉. To support intuition, the proof sketches below continue
to use mathematical inequalities involving Euclidean norms, while the proofs in the appendix
rephrase them with (4.10) instead. �e following corollary shows how global existence for
globally Lipschitz ODEs is derived using a norm inequality as a special case of rule DEx.

Corollary 4.7 (Global existence). �e following global existence axiom is derived from DDG〈·〉 in
dL, where τ is a fresh variable not in x, t, and x′ = f(x) is globally Lipschitz.

GEx ∀τ 〈x′ = f(x), t′ = 1〉t > τ

Proof Summary (Appendix B.2.1). Let C be the Lipschitz constant for f . �e proof uses DDG〈·〉
and two (mathematical) inequalities. �e �rst inequality (4.11) bounds ‖f(x)‖2 linearly in ‖x‖2.
�e constant 0 is chosen here to simplify the resulting arithmetic.

‖f(x)‖2 = ‖f(x)− f(0) + f(0)‖2 ≤ ‖f(x)− f(0)‖2 + ‖f(0)‖2

≤ C ‖x− 0‖2 + ‖f(0)‖2 = C ‖x‖2 + ‖f(0)‖2 (4.11)

�e next inequality (4.12) below uses bound (4.11) on ‖f(x)‖2 to further bound 2x · f(x)
linearly in ‖x‖2

2 along the ODE with appropriate choices of L,M that only depend on the

87

(positive) Lipschitz constant C and ‖f(0)‖2.

2x · f(x) ≤ 2 ‖x‖2 ‖f(x)‖2

(4.11)
≤ 2 ‖x‖2

(
C ‖x‖2 + ‖f(0)‖2

)
= 2C ‖x‖2

2 + 2 ‖x‖2 ‖f(0)‖2

(4.10)
≤ 2C ‖x‖2

2 + (1 + ‖x‖2
2) ‖f(0)‖2 (4.12)

=
(
2C + ‖f(0)‖2

)︸ ︷︷ ︸
L

‖x‖2
2 + ‖f(0)‖2︸ ︷︷ ︸

M

�e derivation of axiom GEx uses DDG〈·〉, but global existence extends to more complicated
ODEs with the aid of DEx as long as appropriate choices of L,M can be made. A useful example
of such an extension is global existence for ODEs that have an a�ne dependency order (4.9),
i.e., each y′i = gi(y1, . . . , yi) is a�ne in yi with y′i = Ai(y1, . . . , yi−1)yi + bi(y1, . . . , yi−1) where
Ai, bi are respectively matrix and vector terms with appropriate dimensions and the indicated
variable dependencies.

Corollary 4.8 (A�ne dependency order global existence). Axiom GEx is derivable from DDG〈·〉
in dL for ODEs x′ = f(x) with a�ne dependency order.

Proof Summary (Appendix B.2.1). �e proof is similar to Corollary 4.7 but uses DEx to prove
global existence step-by-step for the dependency order. It uses the following (mathematical)
inequality and corresponding choices of Li,Mi (shown below) for i = 1, . . . , k at each step:

2yi · (Aiyi + bi) = 2(yi · (Aiyi) + yi · bi) ≤ 2 ‖Ai‖F ‖yi‖
2
2 + 2 ‖yi‖2 ‖bi‖2

≤ 2 ‖Ai‖F ‖yi‖
2
2 + (1 + ‖yi‖2

2) ‖bi‖2

= (2 ‖Ai‖F + ‖bi‖2)︸ ︷︷ ︸
Li

‖yi‖2
2 + ‖bi‖2︸ ︷︷ ︸

Mi

(4.13)

�is inequality is very similar to the one used for Corollary 4.7, where ‖Ai‖F corresponds
to C , and ‖bi‖2 corresponds to ‖f(0)‖2. �e di�erence is that terms Li,Mi are allowed to
depend on the preceding variables y1, . . . , yi−1. Importantly for soundness, both terms meet
the appropriate variable dependency requirements of DDG〈·〉 because the terms Ai, bi are not
allowed to depend on yi in the a�ne dependency order.

With the extended re�nement chain underlying DEx, Corollary 4.8 enables more general
proofs of global existence for certain multi-a�ne ODEs that are not necessarily globally Lipschitz.

Example 4.9 (Multi-a�ne ODE). Consider the multi-a�ne ODE u′ = u, v′ = uv. �e RHS of

this ODE is given by the function
(
u
v

)
7→
(
u
uv

)
which is not globally Lipschitz.4 Nevertheless,

the ODE meets the dependency requirements of Corollary 4.8 and has provable global solutions.

4 For the function to be globally Lipschitz, there must exist a constantC ∈ R such that for all
(
u1
v1

)
,

(
u2
v2

)
∈ R2,

the norm inequality
∥∥∥∥(u1 − u2
u1v1 − u2v2

)∥∥∥∥
2

≤ C
∥∥∥∥(u1 − u2v1 − v2

)∥∥∥∥
2

is satis�ed. No suchC exists because the u1v1−u2v2
component on the LHS grows quadratically while the corresponding component v1− v2 on the RHS grows linearly
(consider se�ing ui = vi for i = 1, 2).

88

�e following derivation illustrates the proof of Corollary 4.8. In the �rst step, rule DEx
is used with dependency order y1 ≡ u, y2 ≡ v and Lipschitz constants L1(t) = 2, L2(u, t) =
2u,M1(t) = 0,M2(u, t) = 0. �e dependency requirements of the Lipschitz constants, notably
for L2, are satis�ed by these choices and the resulting premises are proved by dW, R because
the postconditions are valid real arithmetic formulas.

∗
R ` 2(u)(u) ≤ (2)u2

dW ` [u′ = u, t′ = 1]2(u)(u) ≤ (2)u2

∗
R ` 2(v)(uv) ≤ (2u)v2

dW ` [u′ = u, v′ = uv, t′ = 1]2(v)(uv) ≤ (2u)v2

DEx ` ∀τ 〈u′ = u, v′ = uv, t′ = 1〉t > τ

Observe that the premises of DEx remove the ODEs for u, v in a step-by-step fashion. �is
is the key for generalizing global existence for globally Lipschitz ODEs [204, §10.VII] to more
general classes of ODEs. 4

Bounded Existence

Returning to the example ODEs αn (4.2) and αb (4.7), note that axiom GEx applies to neither of
those ODEs because they do not have a�ne dependency order. �is should be unsurprising—as
observed earlier in Fig. 4.1 and Example 4.5 respectively, neither αn nor αb have global solutions
from all initial states. Although Example 4.5 shows how global existence for αb can be proved
from assumptions motivated by physics, it is also useful to have general axioms (similar to GEx)
corresponding to well-known mathematical techniques for proving global existence of solutions
for nonlinear ODEs under particular assumptions.

Suppose that the solution of ODE x′ = f(x) is trapped within a bounded set (whose compact
closure is contained in the domain of the ODE), then, the ODE solution exists globally [71,
Corollary 2.5][89, �eorem 3.3]. In control theory, this principle is used to show the global
existence of solutions near stable equilibria [71, 89]. It also applies in case the model of interest
has state variables that are a priori known to range within a bounded set [6, Section 6].

�is discussion suggests that the following formula is valid for any ODE x′ = f(x), where
B(x) characterizes a bounded set over the variables x so the assumption [x′ = f(x)]B(x) says
that the ODE solution is always trapped within the bounded set characterized by B(x).

[x′ = f(x)]B(x)→ ∀τ 〈x′ = f(x), t′ = 1〉t > τ (4.14)

Formula (4.14) is (equivalently) rewri�en succinctly in the following corollary by negating
the box modality.

Corollary 4.10 (Bounded existence). �e following bounded existence axiom derives from BDG〈·〉
in dL, where τ is a fresh variable not in x, t, and formula B(x) characterizes a bounded set over
variables x.

BEx ∀τ 〈x′ = f(x), t′ = 1〉(t > τ ∨ ¬B(x))

Proof Summary (Appendix B.2.1). �e squared norm ‖x‖2
2 function is continuous in x so it is

bounded above by a constant D on the compact closure of the set characterized by B(x). �e
proof uses axiom BDG〈·〉 with e(x) = D and rephrases formula (4.14) with axiom 〈·〉.

89

Example 4.11 (Trapped solutions). Axiom BEx proves global existence for αn (4.2) within the
compact disk u2 + v2 ≤ 1

4
by showing that solutions starting in the disk are trapped in it. A�er

the �rst ∀R step, a K〈&〉 step adds a disjunction to the postcondition. On the resulting right
premise, axiom BEx �nishes the proof. �e le� premise abbreviated 1 is an ODE invariance
property u2 + v2 ≤ 1

4
` [αn, t

′ = 1 &¬(t > τ)](u2 + v2 ≤ 1
4
), whose elided invariance proof is

easy using the techniques of Chapter 3.

1
∗

BEx ` 〈αn, t′ = 1〉(t > τ ∨ ¬(u2 + v2 ≤ 1
4
))

K〈&〉u2 + v2 ≤ 1
4
` 〈αn, t′ = 1〉t > τ

∀R u2 + v2 ≤ 1
4
` ∀τ 〈αn, t′ = 1〉t > τ 4

Axiom BEx removes the global Lipschitz (or a�ne dependency) requirement of GEx but
weakens the postcondition to say that solutions must either exist for su�cient duration or blow
up and leave the bounded set characterized by formula B(x). Like axiom GEx, axiom BEx is
derived by re�nement using axiom BDG〈·〉. �is commonality yields a more general version
of BEx, which also incorporates ideas from GEx.

Corollary 4.12 (Dependency order bounded existence). Consider the ODE x′ = f(x) in de-
pendency order (4.9), and where τ is a fresh variable not in x, t. �e following axiom is derived
from BDG〈·〉, DDG〈·〉 in dL, where the indices i = 1 . . . , k are partitioned into two disjoint index
sets L,N such that:

• For each i ∈ L, y′i = gi(y1, . . . , yi) is a�ne in yi.

• For each i ∈ N , Bi(yi) characterizes a bounded set over the variables yi.

GBEx ∀τ 〈x′ = f(x), t′ = 1〉
(
t > τ ∨

∨
i∈N ¬Bi(yi)

)
Proof Summary (Appendix B.2.1). �e derivation is similar to rule DEx, with an internal DDG〈·〉
step (similar to GEx) for i ∈ L and an internal BDG〈·〉 step (similar to BEx) for i ∈ N .

�e index set L in Corollary 4.12 indicates those variables of x′ = f(x) whose solutions are
guaranteed to exist globally (with respect to the other variables). On the other hand, the index
set N indicates the variables that may cause �nite-time blow up of solutions. �e postcondition
of axiom GBEx says that solutions either exist for su�cient duration or they blow up and leave
one of the bounded sets indexed by N . An immediate modeling application of Corollary 4.12
is to identify which of the state variables in a model must be proved (or assumed) to take
on bounded values [6, Section 6]. �is idea underlies the automated existence proof support
discussed in Section 4.6.2.

4.3.3 Completeness for Global Existence
�e derivation of the existence axioms GEx, BEx, GBEx and rule DEx illustrate the use of
liveness re�nement for proving existence properties. Moreover, BDG〈·〉 is the sole ODE diamond
re�nement axiom underlying these derivations (recall DDG〈·〉 is derived from BDG〈·〉). �is

90

raises a natural question: are there ODEs whose solutions exist globally, but whose global
existence cannot be proved syntactically using BDG〈·〉? �e next completeness result gives a
conditional completeness answer: all global existence properties can be proved using BDG〈·〉, if
the corresponding ODE solutions are syntactically representable by proof in dL.

Proposition 4.13 (Global existence completeness). If the ODE x′ = f(x) has a global solution
representable in the (extended) dL term language, then the global existence formula (4.8) is derivable
for x′ = f(x) from axiom BDG〈·〉.

Proof Summary (Appendix B.2.1). Suppose that ODE x′ = f(x) has a global solution syntactically
represented in dL as termX(t) dependent only on the free variable t, the (symbolic) initial values
x0 of variables x, and the (constant) parameters for the ODE. �e equality x = X(t) is provable
along the ODE x′ = f(x), t′ = 1 by the complete proof rule dRI from �eorem 3.11 (page 48)
because solutions are equational invariants. �e proof uses BDG〈·〉 with the bounding term
e = ‖X(t)‖2

2, so that the required hypothesis of BDG〈·〉, i.e., [x′ = f(x), t′ = 1] ‖x‖2
2 ≤ ‖X(t)‖2

2

proves trivially using the equality x = X(t).

Notably, the proof of Proposition 4.13 actually only uses a syntactically representable and
provable upper boundX(t) with ‖x‖2

2 ≤ ‖X(t)‖2
2, rather than an equality. Such an upper bound,

if syntactically representable in dL, also su�ces for proving global existence. �e following
remarks illustrate the usage and limitations of Proposition 4.13 (even with an upper bound).
Remark 4.14 (Syntactically representable solutions). Consider the example ODE u′ = u, v′ = uv
proved to have global solutions in Example 4.9. Mathematically, its solution is given by the
following functions (de�ned for all t ∈ R), where u0, v0 are the initial values of u, v at time
t = 0 and exp is the real exponential function.

u(t) = u0 exp(t), v(t) =
v0

exp(u0)
exp(u0 exp(t)) (4.15)

Since the solution (4.15) is de�ned globally, Proposition 4.13 seemingly provides an alternative
way to prove global existence for the ODE. �e caveat is that Proposition 4.13 only applies when
a bound on the solution is syntactically representable as a term X(t) in the term language. In
this case, (4.15) requires an extended term language with the real exponential function and
arithmetic over those terms.
Remark 4.15 (Global solutions with no syntactic bound). A further caveat is that there is a �xed
polynomial ODE y′ = p(y), constructed by Bournez and Pouly [25, �eorem 1.3], such that
for any term language extension, there is an initial value for the ODE whose solution exists
globally but cannot be bounded above by any syntactic tower of function compositions that can
be wri�en down in the extension.5

More precisely, consider a term language extension with a unary �xed function symbol that
has smooth interpretation h : R→ R. Without loss of generality,6 assume that h grows at least
linearly, i.e., t ≤ h(t) for all t ∈ R. De�ne the function g : N→ R with g(n) = hn which
diagonalizes h on natural number inputs, where iterated function compositions are de�ned with

5�anks to Jeremy Avigad (personal communication) for help with this result.
6Otherwise, replace h with ĥ(t) = h(t)2 + t2 + 1.

91

h[0](n) = n and h[i+1](n) = h(hn) for all n ∈ N using the usual injection from N to R. �e
function g is constructed such that g(n) ≥ h[i](n) for all n ≥ i, n, i ∈ N, which is proved by
repeated use of the inequality t ≤ h(t) for all t ∈ R:

h[i](n) ≤ h[i+1](n) ≤ h[i+2](n) ≤ · · · ≤ hn = g(n) (4.16)

De�ne the (linear) interpolation H : R→ R of g as follows, where d·e, b·c denote the ceiling
and �oor functions respectively:

H(t) =

{
g(0) if t < 0

g(btc) +
(

(g(dte)− g(btc)) · (t− btc)
)

otherwise
(4.17)

�e function Ĥ(t) = H(t) + 2 is continuous because H is continuous so, by Bournez and
Pouly [25, �eorem 1.3], the ODE y′ = p(y) has an initial value y0 such that the resulting unique
and global solution y(t) with y(0) = y0 satis�es the bound Ĥ(t) = H(t)+2 ≤ ‖y(t)‖+1 for all
t ∈ R. For any i ∈ N and su�ciently large n ≥ i, the ODE solution y(t) satis�es the following
lower bound on its norm at time n:

h[i](n) ≤︸︷︷︸
(4.16)

g(n) =︸︷︷︸
(4.17)

H(n) < H(n) + 1 ≤ ‖y(n)‖

�us, a bound on the ODE solution y(t) cannot be syntactically represented by the i-th fold
composition h[i](t) for any i because the bound is violated at the points n ∈ N shown above.

�e complicated closed form solution (4.15) and the lack of explicit, representable bounds on
solutions in term language extensions highlight the advantage of axioms BDG〈·〉, DDG〈·〉 and
their use in the derived axioms of Corollaries 4.7–4.12 because they implicitly deduce global
existence without needing an explicitly representable solution for the ODEs.

4.4 Liveness Without Domain Constraints
�is section presents proof rules for liveness properties of ODEs x′ = f(x) without domain
constraints, i.e., where Q is the formula true . Errors and omissions in the surveyed techniques
are highlighted in blue.

Notational Conventions (Global Existence). �e rest of this chapter develops ODE liveness
proof rules that rely on the global existence proofs from Section 4.3. In all subsequent proof rules,
the ODE x′ = f(x) is said to have provable global solutions if the global existence formula (4.8)
for x′ = f(x) is provable. For example, if x′ = f(x) were globally Lipschitz (or, as a special case,
linear), then its global existence can be proven using axiom GEx from Corollaries 4.7 and 4.8.
For uniformity, all proof steps utilizing this assumption are marked with GEx, although proofs
of global existence could use various other techniques described in Section 4.3. All proof rules
can also be soundly presented with explicit su�cient duration assumptions like dVΓ

< below, but
those are omi�ed for brevity.

92

4.4.1 Di�erential Variants
�e fundamental technique for verifying liveness of discrete loops are loop variants, i.e., well-
founded quantities that always increase (or always decrease) on each loop iteration. Di�erential
variants [137] are their continuous analog, where the value of a given term e is shown to
increase along ODE solutions by showing that its rate of change is bounded below by a positive
constant ε() > 0 along those solutions. Recall the notational convention (Section 2.1.1, page 15)
for variable dependencies, so term ε() is not allowed to depend on any of the free variables
x1, . . . , xn appearing in the ODE and must therefore remain constant along the ODE solution.

Corollary 4.16 (Atomic di�erential variants [137]). �e following proof rules (where < is either
≥ or >) are derivable in dL. Terms ε(), e0() are constant for ODE x′ = f(x), t′ = 1. In rule dV<,
the ODE x′ = f(x) has provable global solutions.

dVΓ
<

¬(e < 0) ` .
e ≥ ε()

Γ, e = e0(), t = 0, 〈x′ = f(x), t′ = 1〉
(
e0() + ε()t > 0

)
` 〈x′ = f(x), t′ = 1〉e < 0

dV<
¬(e < 0) ` .

e ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

Proof Summary (Appendix B.2.2). Rule dV< is derived in Appendix B.2.2 as a corollary of rule dVΓ
<

because the ODE x′ = f(x) is assumed to have solutions which (provably) exist globally.
Rule dVΓ

< is derived from axiom K〈&〉 with the choice of formula G ≡
(
e0() + ε()t > 0

)
:

K〈&〉
Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]

(
e0() + ε()t ≤ 0

)
Γ, e = e0(), t = 0, 〈x′ = f(x), t′ = 1〉

(
e0() + ε()t > 0

)
` 〈x′ = f(x), t′ = 1〉e < 0

Monotonicity M[′] strengthens the postcondition to e ≥ e0()+ε()twith the domain constraint
¬(e < 0). A subsequent use of dI< completes the derivation:

¬(e < 0) ` .
e ≥ ε()

dI<Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]
(
e ≥ e0() + ε()t

)
M[′]Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]

(
e0() + ε()t ≤ 0

)
In both rules dVΓ

<, dV<, the lower bound ε() > 0 on the Lie derivative .
e ensures that the

value of e strictly increases along solutions to the ODE. Geometrically, as illustrated in Fig. 4.3a,
the value of e is bounded below over time t by the line e0() + ε()t with o�set e0() and positive
slope ε(). Since e0() + ε()t is non-negative for su�ciently large values of t, the (lower bounded)
value of e is also eventually non-negative.

Two key subtleties underlying rules dVΓ
<, dV< are illustrated in Figs. 4.3c and 4.3d. �e �rst

subtlety, shown in Fig. 4.3c, is that ODE solutions must exist for su�ciently long for e or, more
precisely its lower bound, to become non-negative. �is is usually le� as a soundness-critical
side condition in liveness proof rules [137, 176], but any such side condition is antithetical
to approaches for minimizing the soundness-critical core in implementations [142] because
it requires checking the (semantic) condition that solutions exist for su�cient duration. �e
conclusion of rule dVΓ

< formalizes this side condition as an assumption. In contrast, rule dV<

requires provable global existence for the ODEs (provable as in Section 4.3). �e second subtlety,

93

e

e0()+ε ()t

0 0.1 0.2 0.3 0.4 0.5 0.6 t

e0

(a) e = 2u+ 3v − 4, initial value u = 1, v = 0

e

e0()+ e

0()t +ε ()

t2

2 !

0 1 2 3 4 5 6 t

e0

(b) e = −2 + 2u− u2 − 5u3 + 5v + uv − 2u3v +
v2 − 5uv2 − uv3, initial value u = −0.52, v = 0

e

e0()+ε ()t

0 0.1 0.2 0.3 0.4 0.5 0.6 t

e0

(c) e = u+ v − 3, initial value u = 1, v = 0

e

0 2 4 6 8 10 12 t

e0

(d) e=−10(u2 +v2)−1, initial value u=0.49, v=0

Figure 4.3: �e solid blue and red curves show the value of various terms e evaluated along
solutions of the ODE αn (4.2) from respective initial values e0 over time t. �e blue curves
in Figs. 4.3a and 4.3b are respectively bounded below by a dashed black line (corresponding
to Corollary 4.16) and a dashed quadratic curve (corresponding to Corollary 4.19) which imply
that e is eventually non-negative along their respective ODE solutions. �e red curve in Fig. 4.3c
is also bounded below by the dashed black line, but its solution only exists for 0.575 time units
(vertical red dashed asymptote) so the linear bound from Corollary 4.16 does not su�ce for
proving that e is eventually non-negative along the solution. �e red curve in Fig. 4.3d has
strictly positive derivative .

e > 0 but the derivative tends to zero as t approaches∞ so the value
of e asymptotically increases towards a negative value (horizontal red dashed asymptote).

shown in Fig. 4.3d, is that rules dVΓ
<, dV< crucially need a constant positive lower bound on

the Lie derivative .
e ≥ ε() for soundness [137] instead of merely requiring .

e > 0. In the la�er
case, even though the value of e is strictly increasing along solutions, it is not guaranteed to
become non-negative in �nite time because the rate of increase can itself converge to zero. In
fact, as Fig. 4.3d shows, e may stay negative by asymptotically increasing towards a negative
value as t approaches∞.

�e following example shows how rule dV can be applied in combination with re�nements.

Example 4.17 (Linear liveness). �e liveness property that Fig. 4.1 suggested for the linear
ODE αl (4.1) is proved by rule dV<. �e proof is shown below and visualized on the right. �e
�rst monotonicity step M〈′〉 strengthens the postcondition to the inner blue circle u2 + v2 = 1

4

contained within the green goal region, see re�nement (4.4). Next, since solutions satisfy

94

u2 + v2 = 1 initially (black circle), the K〈&〉 re�nement step requires a proof of the box modality
formula [αl &u2 + v2 6= 1

4
]u2 + v2 > 1

4
(omi�ed below). Intuitively, this formula expresses an

intermediate value property: the continuous solution cannot reach u2 + v2 ≤ 1
4

unless it crosses
u2 + v2 = 1

4
. �e postcondition is rearranged before dV< is used with ε() = 1

2
. Its premise is

proved by R because the Lie derivative of 1
4
− (u2 + v2) with respect to αl is 2(u2 + v2), which

is bounded below by 1
2

under the assumption 1
4
− (u2 + v2) < 0. �is Lie derivative calculation

also shows that the value of u2 + v2 decreases along solutions of αl with rate (at least) 1
2

per
unit time, which is visualized by the shrinking (dashed) circles with radii eventually smaller
than 1

4
. Since the initial states satisfy u2 + v2 = 1, a concrete upper bound on the time required

for the solution to satisfy u2 + v2 ≤ 1
4

is given by (1− 1
4
) / 1

2
= 3

2
time units.

∗
R 1

4
< u2 + v2 ` 2(u2 + v2) ≥ 1

2
1
4
− (u2 + v2) < 0 ` 2(u2 + v2) ≥ 1

2
dV< u2 + v2 = 1 ` 〈αl〉14 − (u2 + v2) ≥ 0

u2 + v2 = 1 ` 〈αl〉u2 + v2 ≤ 1
4

K〈&〉 u2 + v2 = 1 ` 〈αl〉u2 + v2 = 1
4

M〈′〉 u2 + v2 = 1 ` 〈αl〉
(

1
4
≤ ‖(u, v)‖∞ ≤

1
2

)
-1 0 1 u

-1

0

1

v

It is also instructive to examine the chain of re�nements (4.6) underlying the proof above.
Since αl is a linear ODE, the �rst dV< step re�nes the initial liveness property from GEx, i.e., that
solutions exist globally (so for at least 3

2
time units), to the property u2 + v2 ≤ 1

4
. Subsequent

re�nement steps can be read o� from the steps above from top-to-bo�om:

〈αl, t′ = 1〉t > 3

2

dV<

−→ 〈αl〉u2 + v2≤1

4

K〈&〉
−→ 〈αl〉u2 + v2 =

1

4

M〈′〉
−→ 〈αl〉

(1

4
≤‖(u, v)‖∞≤

1

2

)
4

�e la�er two steps in Example 4.17 illustrate the idea behind the next two surveyed proof
rules. In their original presentation [191], the ODE x′ = f(x) is only assumed to be locally
Lipschitz continuous, which is insu�cient for global existence of solutions, making the original
rules unsound, see Appendix B.3 for counterexamples. Compared to Corollary 4.16, Corollary 4.18
below uses the fact that the value of di�erential variant e evolves continuously along an ODE
solution so it changes from e ≤ 0 to e > 0 by crossing e = 0.

Corollary 4.18 (Equational di�erential variants [191]). �e following proof rules are derivable in
dL. Term ε() is constant for ODE x′ = f(x) and the ODE has provable global solutions.

dV=

e < 0 ` .
e ≥ ε()

Γ, ε() > 0, e ≤ 0 ` 〈x′ = f(x)〉e = 0
dVM

=

e = 0 ` P e < 0 ` .
e ≥ ε()

Γ, ε() > 0, e ≤ 0 ` 〈x′ = f(x)〉P

Proof. Rule dVM
= is derived directly from dV= with a M〈′〉 monotonicity step:

e = 0 ` P
e < 0 ` .

e ≥ ε()
dV=Γ, ε() > 0, e ≤ 0 ` 〈x′ = f(x)〉e = 0

M〈′〉Γ, ε() > 0, e ≤ 0 ` 〈x′ = f(x)〉P

95

Rule dV= derives using axiom K〈&〉 with G ≡ e ≥ 0 and rule dV< (with < being ≥) on the
resulting right premise, which yields the sole premise of dV= (on the right, a�er dV<):

e ≤ 0 ` [x′ = f(x) & e 6= 0]e < 0

e < 0 ` .
e ≥ ε()

dV<Γ, ε() > 0 ` 〈x′ = f(x)〉e ≥ 0
K〈&〉 Γ, ε() > 0, e ≤ 0 ` 〈x′ = f(x)〉e = 0

From the le� premise a�er using K〈&〉, axiom DX allows the domain constraint e 6= 0 to be
assumed true initially, which strengthens the antecedent e ≤ 0 to e < 0. Rule Barr proves the
invariance of formula e < 0 for the ODE x′ = f(x) & e 6= 0 because the antecedents e 6= 0, e = 0
in its resulting premise are contradictory.

∗
R e 6= 0, e = 0 ` .

e < 0
Barr e < 0 ` [x′ = f(x) & e 6= 0]e < 0
DX e ≤ 0 ` [x′ = f(x) & e 6= 0]e < 0

Rule dV= extends the re�nement chain of dV< with an additional K〈&〉 step:

〈x′ = f(x), t′ = 1〉t > e()
dV<

−→ 〈x′ = f(x)〉e ≥ 0
K〈&〉
−→ 〈x′ = f(x)〉e = 0

�e re�nement behind this additional step is an intermediate value property: if e ≤ 0 is
true initially then the (continuous) solution can never reach states satisfying e ≥ 0 without �rst
reaching one that satis�es e = 0. �e view of dV< as a re�nement of GEx in Example 4.17 also
yields generalizations of dV< to higher Lie derivatives. Indeed, it su�ces that any higher Lie
derivative .e(k) is bounded below by a positive constant ε() rather than just the �rst. Geometrically,
this guarantees that e is bounded below by a degree k polynomial in time variable t that is
non-negative for large enough t, see Fig. 4.3b for an illustration with k = 2.

Corollary 4.19 (Atomic higher di�erential variants). �e following proof rule (where < is either
≥ or >) is derivable in dL. Term ε() is constant for ODE x′ = f(x), k ≥ 1 is a freely chosen natural
number, and the ODE has provable global solutions.

dVk
<

¬(e < 0) ` .
e(k) ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

Proof Summary (Appendix B.2.2). Since .
e(k) is strictly positive outside the goal (e < 0), all lower

Lie derivatives .
e(i) of e for i < k, including e =

.
e(0), eventually become positive. �e derivation

uses a sequence of dC, dI< steps to prove a (polynomial) lower bound in t.

4.4.2 Staging Sets
�e staging sets [176] proof rule adds �exibility to rules such as dVM

= above by allowing users to
choose a staging set formula S that the ODE can only leave by entering the goal region P . Staging
sets are leaky invariants in the sense that they are almost invariant, except that they can be
le� by reaching the goal P . �is staging property is expressed in the contrapositive by the box
modality formula [x′ = f(x) &¬P]S.

96

Corollary 4.20 (Staging sets [176]). �e following proof rule is derivable in dL. Term ε() is
constant for ODE x′ = f(x) and the ODE has provable global solutions.

SP
Γ ` [x′ = f(x) &¬P]S S ` e ≤ 0 ∧ .

e ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x)〉P

Proof Summary (Appendix B.2.2). �e derivation starts by using re�nement axiom K〈&〉 with
G ≡ ¬S. �e rest of the derivation is similar to dVΓ

<, dV<.

�e added choice of staging set formula S allows users to choose a staging set that, e.g.,
enables a liveness proof that uses a simpler di�erential variant e because e only needs to satisfy
derivative bound .

e ≥ ε() in the staging set S as opposed to everywhere outside the goal,
as in dVΓ

<, dV<. Furthermore, proof rules can be signi�cantly simpli�ed by choosing S with
desirable topological properties. For example, all of the liveness proof rules derived so far either
have an explicit su�cient duration assumption (like dVΓ

<) or assume that the ODEs have provable
global solutions (like dV< using axiom GEx). An alternative is to use axiom BEx, by choosing
the staging set formula S(x) to characterize a bounded or compact set over the variables x as in
the following corollary. �e advantage of such a choice is the resulting staging set proof rules
show (implicitly) that solutions must exist for long enough to reach the goal.

Corollary 4.21 (Bounded/compact staging sets). �e following proof rules are derivable in dL.
Term ε() is constant for x′ = f(x). In rule SPb, formula S characterizes a bounded set over variables
x. In rule SPc, it characterizes a compact, i.e., closed and bounded, set over those variables.

SPb
Γ ` [x′ = f(x) &¬P]S S ` .

e ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x)〉P
SPc

Γ ` [x′ = f(x) &¬P]S S ` .
e > 0

Γ ` 〈x′ = f(x)〉P

Proof Summary (Appendix B.2.2). Rule SPb is derived using axiom BEx with di�erential variant
e to establish a time bound. Rule SPc is an arithmetical corollary of SPb, using the fact that
continuous functions on compact domains a�ain their extrema.

Example 4.22 (Nonlinear liveness). �e liveness property that Fig. 4.1 suggested for the nonlin-
ear ODEαn (4.2) is proved using rule SPc by choosing the staging set formulaS ≡ 1 ≤ u2+v2 ≤ 2
and the di�erential variant e = u2 + v2. �e proof is shown on the le� and visualized on the
right below; the goal u2 + v2 ≥ 2 is shown in green while S is shown as a blue annulus.

∗
S ` [αn &¬(u2 + v2≥2)]S

cut, Ru2 + v2=1 ` [αn &¬(u2 + v2≥2)]S

∗
RS ` .

e > 0
SPc u2 + v2=1 ` 〈αn〉u2 + v2≥2

-1 0 1 u

-1

0

1

v

�e Lie derivative .
e with respect to αn is 2(u2 + v2)(u2 + v2 − 1

4
), which is bounded below

by 3
2

in S. �us, the right premise of SPc closes trivially. �e le� premise requires proving that
S is an invariant within the domain constraint ¬(u2 + v2 ≥ 2). Intuitively, this is true because

97

the ODE can only leave the blue annulus by entering the goal. �e elided invariance proof for S
is easy using the techniques of Chapter 3.

�is proof exploits the �exibility provided by staging sets in two ways. First, the formula S
is chosen to characterize a compact set (as required by rule SPc). As explained in Section 4.3,
solutions of αn can blow up in �nite time which necessitates the use of BEx for proving its
liveness properties. Second, S cleverly excludes the red disk (dashed boundary) characterized
by u2 + v2 ≤ 1

4
. Solutions of αn behave di�erently in this region, e.g., the Lie derivative .

e is
non-positive in this disk. �e chain of re�nements (4.6) behind this proof can be seen from
the derivation of rules SPb, SPc in Appendix B.2.2. �e chain starts from the initial liveness
property BEx with concrete7 time bound 2

3
. �e �rst K〈&〉 step shows that the staging set is

ultimately exited (〈αn〉¬S), while the la�er shows the desired liveness property:

〈αn, t′ = 1〉(t > 2

3
∨ ¬S)

K〈&〉
−→ 〈αn〉¬S

K〈&〉
−→ 〈αn〉u2 + v2 ≥ 2 4

�e need to use axiom BEx (or otherwise, assume global existence) is subtle and is o�en
overlooked in the surveyed liveness arguments. An example of this is an incorrect claim [157,
Remark 3.6] that an associated liveness argument [157, �eorem 3.5] works without assuming
that the relevant sets are bounded. �is chapter’s axiomatic approach can be used to �nd and
�x errors involving these subtleties from dL’s sound reasoning foundations. As another example,
the following set Lyapunov function proof rule adapts ideas from the literature [159, �eorem
2.4, Corollary 2.5] for proving liveness when the postcondition P characterizes an open set.
�e la�er assumption on P enables a convenient choice of staging set in rule SPc because ¬P
characterizes a closed set.
Corollary 4.23 (Set Lyapunov functions [159]). �e following proof rule is derivable in dL.
Formula K characterizes a compact set over variables x, while formula P characterizes an open set
over those variables.

SLyap
e ≥ 0 ` K ¬P,K ` .

e > 0

Γ, e < 0 ` 〈x′ = f(x)〉P

Proof. Rule SLyap is derived from rule SPc with S ≡ ¬P ∧K , since the intersection of a closed
set (characterized by ¬P) with a compact set (characterized by K) is compact. �e resulting
right premise from using SPc is the right premise of SLyap:

Γ, e < 0 ` [x′ = f(x) &¬P](¬P ∧K) ¬P,K ` .
e > 0

SPc Γ, e < 0 ` 〈x′ = f(x)〉P
Continuing from the le� premise, a monotonicity step with the premise e ≥ 0 ` K turns

the postcondition to e < 0. Rule Barr is used, which, along with the premise e ≥ 0 ` K results
in the premises of rule SLyap:

e ≥ 0 ` K
R¬P, e < 0 ` ¬P ∧K

¬P,K ` .
e > 0

e ≥ 0 ` K
R¬P, e = 0 ` K

cut ¬P, e = 0 ` .
e > 0

Barr e < 0 ` [x′ = f(x) &¬P]e < 0
M[′] Γ, e < 0 ` [x′ = f(x) &¬P](¬P ∧K)

7�e value of u2 + v2 grows at rate 3
2 per time unit along solutions and the initial states satisfy u2 + v2 = 1.

�us, a lower bound on time required to leave the staging set (when u2 + v2 > 2) is (2− 1) / 3
2 = 2

3 time units.

98

Rule SLyap was claimed [159, �eorem 2.4, Corollary 2.5] to hold for any closed setK , when,
in fact, K crucially needs to be compact as assumed implicitly in the associated proofs [159].

4.5 Liveness With Domain Constraints
�is section presents proof rules for liveness properties ODEs x′ = f(x) &Q with non-trivial
domain constraints Q. �ese properties are signi�cantly more subtle than liveness without
domain constraints, because the limitation to a domain constraint Q may make it impossible for
an ODE solution to reach a desired goal region before leaving Q.

-1 0 1 u

-1

0

1

v

Consider the following liveness property for αl (4.1) (shown
on the right), which adds domain constraint Q ≡ u2 + v2 6= 9

16

restricting solutions from crossing the red dashed circle before
reaching the green goal region.

〈αl &u2 + v2 6= 9

16
〉
(1

4
≤ ‖(u, v)‖∞ ≤

1

2

)
(4.18)

As proved in Example 4.17, solutions starting from the black circle u2+v2 = 1 reach the green
goal region. However, the continuous solutions must cross the red dashed circle u2 + v2 = 9

16

to reach the goal, see discussion of implication (4.5). �is violates the domain constraint and
falsi�es (4.18) for initial states on the black circle.

Axiom DR〈·〉 with R ≡ true provides one way of soundly and directly generalizing the
proof rules from Section 4.4, as shown in the following example.

Example 4.24 (Nonlinear liveness with domain). �e ODE liveness property u2 + v2 = 1→
〈αn〉u2 + v2 ≥ 2 was proved in Example 4.22 for the nonlinear ODE αn (4.2). �e following
derivation proves a stronger liveness property with the added domain constraint 1 ≤ u2 + v2 by
extending the proof from Example 4.22 with a DR〈·〉 re�nement step. �e resulting le� premise
is an invariance property of the ODE whose proof is elided (see Chapter 3); intuitively, solutions
starting from u2 + v2 = 1 grow outwards, and so they remain in the domain 1 ≤ u2 + v2

(see Fig. 4.1). �e resulting right premise is proved in Example 4.22.
∗

u2 + v2 = 1 ` [αn]1 ≤ u2 + v2

∗
u2 + v2 = 1 ` 〈αn〉u2 + v2 ≥ 2

DR〈·〉 u2 + v2 = 1 ` 〈αn & 1 ≤ u2 + v2〉u2 + v2 ≥ 2 4

More generally, proof rules from Section 4.4 can be used from the right premise a�er re�ne-
ment with DR〈·〉:

Γ ` [x′ = f(x)]Q Γ ` 〈x′ = f(x)〉P
DR〈·〉 Γ ` 〈x′ = f(x) &Q〉P

�is derivation extends all chains of re�nements (4.6) from Section 4.4 with a DR〈·〉 step:

· · · −→ 〈x′ = f(x)〉P
DR〈·〉
−→ 〈x′ = f(x) &Q〉P

99

However, liveness arguments become much more intricate when a�empting to generalize
beyond domain constraint re�nement with DR〈·〉, e.g., recall the unsound conjecture DR〈·〉�.
Indeed, unlike the technical glitches of Section 4.4, this chapter uncovers several subtle soundness-
critical errors in the literature. With dL’s deductive approach, these intricacies are isolated to
the topological axioms (Lemma 4.3) which have been proved sound once-and-for-all. Errors and
omissions in the surveyed techniques are again highlighted in blue.

�e following proof rule generalizes di�erential variants dV< to handle domain constraints.
Like rule dV<, the di�erential variant e is guaranteed to eventually become non-negative along
solutions with constant positive lower bound .

e ≥ ε() on its Lie derivative. �e additional
twist is that the domain constraint Q must be proved to hold as long as e is still negative, i.e.,
while the goal has not been reached. �is is expressed in the contrapositive by the formula
[x′ = f(x) &¬(e < 0)]Q in the le� premise of the rule.

Corollary 4.25 (Atomic di�erential variants with domains [137]). �e following proof rule (where
< is either ≥ or >) is derivable in dL. Term ε() is constant for the ODE x′ = f(x) and the ODE has
provable global solutions. Formula Q characterizes a closed (resp. open) set when < is ≥ (resp. >).

dV<&
Γ ` [x′ = f(x) &¬(e < 0)]Q ¬(e < 0), Q ` .

e ≥ ε()

Γ, ε() > 0,¬(e < 0) ` 〈x′ = f(x) &Q〉e < 0

Proof Summary (Appendix B.2.3). �e derivation uses axiom COR choosing R ≡ true , noting
that e ≥ 0 (resp. e > 0) characterizes a topologically closed (resp. open) set so the appropriate
topological requirements of COR are satis�ed. �e highlighted ¬(e < 0) assumption is crucial
for soundly using axiom COR:

Γ ` [x′ = f(x) &¬(e < 0)]Q

¬(e < 0), Q ` .
e ≥ ε()

. . .
Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

COR Γ, ε() > 0,¬(e < 0) ` 〈x′ = f(x) &Q〉e < 0

�e derivation steps on the right premise are similar to the ones used in dV< although an
intervening dC step is used to additionally assume Q in the antecedents.

Rule dV<& uses the topological re�nement axiom COR to extend the re�nement chain
for dV< as follows:

· · ·
dV<

−→ 〈x′ = f(x)〉e < 0
COR
−→ 〈x′ = f(x) &Q〉e < 0 (4.19)

A subtle advantage of placing the re�nement COR at the end of the re�nement chain (4.19)
is that it decouples reasoning about domain constraint Q from earlier re�nement steps. Notably,
earlier re�nement steps like dV< in the chain above can focus on handling other subtleties,
such as su�cient duration existence of solutions (Section 4.3), without worrying about domain
constraints. �e original presentation of rule dV<& [137] omits the highlighted ¬(e < 0)
assumption, but the rule is unsound without it. In addition, the original presentation uses a
form of syntactic weak negation [137], which is unsound for open postconditions, as pointed
out earlier [176], see Appendix B.3 for counterexamples.

100

�e proofs of the next two corollaries also make use of axiom COR to derive the proof
rule dVM

= & [191] and the adapted rule SLyap& [159]. �ese rules respectively generalize dVM
=

and SLyap from Section 4.4 to handle domain constraints. �e soundness issues in their original
presentations [159, 191], which were identi�ed in Section 4.4, remain highlighted here. Like
rule dV<&, rules dV=&, dVM

= & below have an additional premise requiring that the domain
constraint Q provably holds while the goal has not yet been reached [x′ = f(x) & e < 0]Q.

Corollary 4.26 (Equational di�erential variants with domains [191]). �e following proof rules
are derivable in dL. Term ε() is constant for the ODE x′ = f(x) and the ODE has provable global
solutions for both rules. Formula Q characterizes a closed set over variables x.

dV=&
Γ ` [x′ = f(x) & e < 0]Q e < 0, Q ` .

e ≥ ε()

Γ, ε() > 0, e ≤ 0, Q ` 〈x′ = f(x) &Q〉e = 0

dVM
= &

Q, e = 0 ` P Γ ` [x′ = f(x) & e < 0]Q e < 0, Q ` .
e ≥ ε()

Γ, ε() > 0, e ≤ 0, Q ` 〈x′ = f(x) &Q〉P

Proof Summary (Appendix B.2.3). Rules dV=&, dVM
= & are both derived from rule dV<& with

≥ for <, since Q characterizes a closed set. �eir derivations are respectively similar to the
derivation of dV=, dVM

= from dV< and require the provable global solutions assumption for
soundly applying rule dV<&.

Rule SLyap& below has identical premises to the corresponding SLyap rule (without domain
constraints). �e additional insight is that, assuming e > 0 is true initially, those same premises
can be used to conclude the stronger liveness property 〈x′ = f(x) & e > 0〉P because e can
be additionally proved to stay positive along the solutions using the premises. �is stronger
conclusion can be used with a monotonicity step to prove more general liveness properties with
an arbitrary domain constraint Q as exempli�ed by rule SLyapM&.

Corollary 4.27 (Set Lyapunov functions with domains [159]). �e following proof rules are deriv-
able in dL. Formula K characterizes a compact set over variables x, while formula P characterizes
an open set over those variables.

SLyap&
e ≥ 0 ` K ¬P,K ` .

e > 0

Γ, e > 0 ` 〈x′ = f(x) & e > 0〉P

SLyapM&
e ≥ 0 ` K ¬P,K ` .

e > 0 e > 0 ` Q
Γ, e > 0 ` 〈x′ = f(x) &Q〉P

Proof Summary (Appendix B.2.3). Rule SLyapM& is derived from rule SLyap& by monotonicity
on the domain constraints with the additional premise e > 0 ` Q. Rule SLyap& is derived
from SLyap a�er a re�nement step with COR since both formulas e > 0 and P characterize
open sets as sketched below.

e ≥ 0 ` K ¬P,K ` .
e > 0

. . .
Γ, e > 0 ` [x′ = f(x) &¬P]e > 0

e ≥ 0 ` K ¬P,K ` .
e > 0

SLyap Γ, e > 0 ` 〈x′ = f(x)〉P
COR Γ, e > 0 ` 〈x′ = f(x) & e > 0〉P

101

�e le� premise proves the invariance of e > 0 for ODE x′ = f(x) with domain constraint
P . �e elided derivation (see proof) reduces to two premises which are identical to those of
rule SLyap. �e right premise uses rule SLyap, which necessitates the compactness assumption
for formula K for soundness.

�e following staging sets with domain constraints proof rule SP& [176] generalizes rule SP
using axiom SAR. Notably, unlike the preceding rules, rule SP& requires no topological assump-
tions8 about the domain constraint Q nor of the goal region P so it can be used in proofs of
more general liveness properties.

Corollary 4.28 (Staging sets with domains [176]). �e following proof rule is derivable in dL.
Term ε() is constant for ODE x′ = f(x) and the ODE has provable global solutions.

SP&
Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q ∧ e ≤ 0 ∧ .

e ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x) &Q〉P

Proof Summary (Appendix B.2.3). �e derivation starts with a SAR re�nement step. On the
resulting le� premise, an M[′] monotonicity step yields the le� premise and �rst (le�most)
conjunct of the right premise of rule SP&. On the resulting right premise, rule SP is used with
a similar (see full proof) monotonicity step, which yields the remaining conjuncts of the right
premise of rule SP&.

Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q
M[′] Γ ` [x′ = f(x) &¬(P ∧Q)]Q

S ` e ≤ 0 ∧ .
e ≥ ε()

. . .
SP Γ ` 〈x′ = f(x)〉P

SAR Γ ` 〈x′ = f(x) &Q〉P

�e rules derived in Corollaries 4.25–4.28 demonstrate the �exibility of dL’s re�nement
approach for deriving the surveyed liveness arguments as proof rules. Indeed, their deriva-
tions are mostly straightforward adaptations of the corresponding domain-free rules presented
in Section 4.5, with the appropriate addition of either a COR or SAR axiomatic re�nement step.
Moreover, the derived rules are sound, in contrast to (most of) the liveness arguments which
were missing subtle assumptions in the literature (summarized in Table 4.1). �e �exibility and
soundness of this chapter’s approach is not limited to the surveyed liveness arguments because
re�nement steps can also be freely mixed-and-matched for speci�c liveness questions.

Example 4.29 (Strengthening). �e liveness property u2 + v2 = 1 → 〈αn〉u2 + v2 ≥ 2 for
αn (4.2) was proved in Example 4.22 using the staging set formula S ≡ 1 ≤ u2 + v2 ≤ 2,
and provably strengthened in Example 4.24 by adding the domain constraint u2 + v2 ≥ 1
with a DR〈·〉 re�nement. Since S and u2 + v2 ≥ 2 characterize closed sets, the re�nement
axiom COR proves an even stronger liveness property with the strengthened domain S, as
shown in the derivation below. �e derivation starts with axiom COR which yields three
premises. �e le�most premise is proved by R since it is a real arithmetic fact; the middle premise

8Aside from the key notational convention (Section 3.2.1) that P,Q are semianalytic formulas which is crucial
for the soundness of axiom SAR.

102

u2 + v2 = 1 ` [αn &¬(u2 + v2 ≥ 2)]S (abbreviated 1 , proof elided) proves because S is an
invariant of the ODE αn (see Chapter 3), and the rightmost premise is proved in Example 4.22.

∗
Ru2 + v2 = 1 ` ¬(u2 + v2 ≥ 2) 1

∗
u2 + v2 = 1 ` 〈αn〉u2 + v2 ≥ 2

COR u2 + v2 = 1 ` 〈αn &S〉u2 + v2 ≥ 2

Axiom COR extends the chain of re�nements (4.6) from Example 4.22 as follows:

〈αn, t′ = 1〉(t > 2

3
∨ ¬S)

K〈&〉
−→ 〈αn〉¬S

K〈&〉
−→ 〈αn〉u2 + v2 ≥ 2

COR
−→ 〈αn &S〉u2 + v2 ≥ 2

�e alternative staging set formula S̃ ≡ 1 ≤ u2 + v2 < 2 can also be used to prove Exam-
ple 4.22 with a similar re�nement chain (using SPb instead of SPc), but S̃ does not characterize a
closed set. �e topological restriction of axiom COR crucially prevents its unsound use (indicated
by � in the chain below):

〈αn, t′ = 1〉(t > 2

3
∨ ¬S̃)

K〈&〉
−→ 〈αn〉¬S̃

K〈&〉
−→ 〈αn〉u2 + v2 ≥ 2︸ ︷︷ ︸

Similar to Example 4.22

COR�
−→︸︷︷︸

Unsound step!

〈αn &S〉u2 + v2 ≥ 2

�e liveness property 〈αn & S̃〉u2 + v2 ≥ 2 is unsatis�able because S̃ does not overlap with
u2 + v2 ≥ 2. Notice that the weakening of an inequality between domain constraints S and S̃
leads to a wholly di�erent conclusion! 4

�e re�nement approach also enables the discovery of new, general liveness proof rules by
combining the underlying re�nement steps in alternative ways. As an example, the following
chimeric proof rule combines ideas from Corollaries 4.19, 4.21, and 4.28:

Corollary 4.30 (Combination proof rule). �e following proof rule is derivable in dL. Formula S
characterizes a compact set over variables x.

SPkc&
Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q ∧ .

e(k) > 0

Γ ` 〈x′ = f(x) &Q〉P

Proof Summary (Appendix B.2.3). �e derivation combines re�nement steps used in the deriva-
tions of dVk

< (generalizing dV< to higher derivatives), SPc (compact staging sets), and SP&
(re�ning domain constraints).

�e logical approach of dL derives complicated proof rules like SPkc& from a small set of
sound logical axioms, which ensures their correctness. �e proof rule Ec& below is derived from
rule SPkc& (for k = 1) and is adapted from the literature [157, �eorem 3.5], where additional
restrictions were imposed on the sets characterized by Γ, P,Q, and di�erent conditions were
given compared to the le� premise of Ec& (highlighted below). �ese original conditions were
overly permissive as they are checked on sets that are smaller than necessary for soundness,
see Appendix B.3 for counterexamples to those original conditions.

103

Corollary 4.31 (Compact eventuality [157]). �e following proof rule is derivable in dL. Formula
Q ∧ ¬P characterizes a compact set over variables x.

Ec&
Γ ` [x′ = f(x) &¬(P ∧Q)]Q Q,¬P ` .

e > 0

Γ ` 〈x′ = f(x) &Q〉P

Proof. Rule Ec& is derived from SPkc& with S ≡ Q ∧ ¬P and k = 1 because formula Q ∧ ¬P is
assumed to characterize a compact set, as required by rule SPkc&:

Γ ` [x′ = f(x) &¬(P ∧Q)]Q
M[′]Γ ` [x′ = f(x) &¬(P ∧Q)](Q ∧ ¬P)

Q,¬P ` .
e > 0

Q,¬P ` Q ∧ .
e > 0

SPc Γ ` 〈x′ = f(x) &Q〉P

�e M[′] step uses the propositional tautology ¬(P ∧Q) ∧Q→ Q ∧ ¬P .

4.6 ODE Liveness Proofs in Practice
�e preceding sections show how axiomatic re�nement can be used to fruitfully navigate
and understand the zoo of ODE existence and liveness arguments from various applications
(Table 4.1). �e generality of the approach enables the sound and foundational derivation of those
arguments from a parsimonious basis of re�nement steps. �is section provides a complementary
study of how the re�nement approach and its derived ODE existence and liveness proof rules are
best implemented in practice. �ere are two canonical approaches for such an implementation:

1. Implement the foundational re�nement steps and let users build their own arguments
using those steps, e.g., by following the derivations and proofs from Sections 4.3–4.5.

2. Implement the zoo of proof rules from Sections 4.3–4.5 directly and let users pick from
those rules for their particular ODE liveness applications.

�e low-level �exibility of Approach 1 is also its drawback in practice because users need to
tediously reconstruct high-level ODE liveness arguments from basic re�nements for each proof.
Approach 2 provides users with those high-level arguments but limits users to proof rules that
have been implemented, which squanders the generality of the re�nement approach. Moreover,
users would still need to navigate the redundancies and tradeo�s among the zoo of proof rules
to select one that is best-suited for their proof. To account for these drawbacks, this section
advocates for a middle ground between those two extremes: implementations should provide
users with the basic re�nement steps, bundled with a set of carefully curated, high-level proof
rules (Section 4.6.1) and associated proof support (Section 4.6.2) that help users navigate the
common cases in their liveness proofs.

�ese ideas are put into practice through an implementation of ODE existence and liveness
proof rules in KeYmaera X [54]. Proof rules and proof support are implemented as tactics
in KeYmaera X [55], which are not soundness-critical. Such an arrangement allows for the
implementation of useful ODE liveness proof rules and their associated proof support with
KeYmaera X’s sound kernel as a safeguard against implementation errors or mistakes in their
derivations and side conditions. �is core design decision underlying KeYmaera X is discussed

104

elsewhere [54, 55, 142]. All of the ODE liveness examples in this chapter have been formally
proved in KeYmaera X (Section 4.6.2). By leveraging existing infrastructure for hybrid programs
in KeYmaera X, the implementation can also be used as part of liveness proofs for hybrid systems.
For example, it is used for the liveness proofs of a case study involving a robot model driving
along circular arcs in the plane [22].

�e basic re�nements steps from Section 4.2 and the proof rules in Sections 4.3–4.5 are
mostly straightforward to implement by following their respective proofs. �us, Sections 4.6.1
and 4.6.2 focus on a select number of new proof rules and proof support that are bene�cial in
the implementation. For the sake of completeness, syntactic derivations of all liveness proof
rules presented in these sections are given in Appendix B.2.4.

4.6.1 Liveness Proof Rules
Atomic di�erential variants dV< is a useful primitive proof rule to implement in KeYmaera X
because many ODE liveness proof rules, e.g., dVM

= , SP, derive from it. From a practical perspective
though, rule dV< as presented in Corollary 4.16 still requires users to provide a choice of the
constant ε(), e.g., the proof in Example 4.17 uses ε() = 1

2
. �e following slight rephrasing of dV<

enables a more automated implementation.

Corollary 4.32 (Existential atomic di�erential variants [137]). �e following proof rule (where
< is either ≥ or >) is derivable in dL, where ε is a fresh variable and ODE x′ = f(x) has provable
global solutions.

dV∃<
Γ ` ∃ε>0 ∀x

(
¬(e < 0)→ .

e ≥ ε
)

Γ ` 〈x′ = f(x)〉e < 0

Proof. �e derivation starts with a cut of the sole premise of dV∃< (the le� premise abbreviated
1 below). �e existentially bound variable is renamed to δ throughout the derivation for clarity.
A�er Skolemizing (with ∃L), rule dV< is used with ε() = δ. �e universally quanti�ed antecedent
is constant for the ODE x′ = f(x) so it is soundly kept across the application of dV<. �e proof
is completed propositionally ∀L,→L.

1

∗
∀L,→L∀x

(
¬(e < 0)→ .

e ≥ δ
)
,¬(e < 0) ` .

e ≥ δ
dV< δ > 0,∀x

(
¬(e < 0)→ .

e ≥ δ
)
` 〈x′ = f(x) &Q〉e < 0

∃L, ∧L ∃δ > 0∀x
(
¬(e < 0)→ .

e ≥ δ
)
` 〈x′ = f(x) &Q〉e < 0

cut Γ ` 〈x′ = f(x) &Q〉e < 0

Just like rule dV<, rule dV∃< requires a positive lower bound ε > 0 on the derivative of e along
solutions. �e di�erence is that the premise of rule dV∃< is rephrased to ask a purely arithmetical
question about the existence of a suitable choice for ε. �is can be decided automatically to save
user e�ort in identifying ε, but such automation comes at added computational cost because the
decision procedure must �nd a suitable instance of ε for the ∃ quanti�er (or decide that none
exist) rather than simply check a user-provided instance. �us, the implementation gives users
control over the desired degree of automation in their proof by giving them the option of either

105

invoking an arithmetic decision procedure R on the premise of dV∃< or manually instantiating
the existential quanti�er with a speci�c term for ε by rule ∃R.

Another useful variation of rule dV< is its semianalytic generalization, i.e., where the goal
region is described by a formula P formed from conjunctions and disjunctions of (in)equalities.
Rules dVM

= , SP provide examples of such a generalization, but they are indirect generalizations
because users must still identify an underlying (atomic) di�erential variant e as input when
applying either rule. In contrast, the new semianalytic generalization of dV< below directly
examines the syntactic structure of the goal region described by formula P . Its implementation
is enabled by KeYmaera X’s ODE invariance proving capabilities based on Chapter 3.

Corollary 4.33 (Semianalytic di�erential variants). Let b be a fresh variable, and term ε() be
constant for ODE x′ = f(x), t′ = 1. Let P be a semianalytic formula in the following normal
form (3.7) and GP be its corresponding ε-progress formula, also in normal form (3.7):

P ≡
M∨
i=0

(m(i)∧
j=0

eij ≥ 0 ∧
n(i)∧
j=0

ẽij > 0
)

GP ≡
M∨
i=0

(m(i)∧
j=0

eij − (b+ ε()t) ≥ 0 ∧
n(i)∧
j=0

ẽij − (b+ ε()t) ≥ 0
)

�e following proof rule is derivable in dL, where the ODE x′ = f(x) has provable global solutions,

and
.

(¬P)(∗),
.

(GP)(∗) are semianalytic progress formulas Def. 3.24 with respect to x′ = f(x), t′ = 1.

dV
¬P,

.
(¬P)(∗), GP `

.
(GP)(∗)

Γ, ε() > 0 ` 〈x′ = f(x)〉P

dV∃
Γ ` ∃ε>0 ∀b ∀t∀x

(
¬P ∧

.
(¬P)(∗) ∧GP →

.
(GP)(∗))

Γ, ε() > 0 ` 〈x′ = f(x)〉P

Proof Summary (Appendix B.2.4). Rule dV∃ is derived from dV like the derivation of rule dV∃<
from dV<. �e derivation of dV is similar to rules dVΓ

<, dV<, but replaces the use of rule dI<
with complete ODE invariance reasoning (Chapter 3). �e fresh variable b is used as a lower
bound along solutions of the ODE of the value of all terms eij, ẽij appearing in P .

�e intuition behind rule dV is similar to rule dV<, as long as the solution has not yet
reached the goal P , it grows towards P at “rate” ε(). �e technical challenge is how to formally
phrase the “rate” of growth for a semianalytic formula P , which does not have a well-de�ned
notion of derivative. Rule dV uses the ε-progress formula GP , together with the semianalytic
progress formulas

.
(¬P)(∗),

.
(GP)(∗) and dL’s complete ODE invariance reasoning from Chapter 3

for this purpose. �ese formulas give su�cient, although implicit, arithmetical conditions for
proving liveness for P . Rule dV∃ rephrases dV with an arithmetical premise, similar to how dV∃<
rephrases dV<, to give users the added �exibility of choosing between invoking an automated
decision procedure or manually instantiating the existential quanti�er for ε and reasoning about
the resulting progress formulas. More explicit arithmetical premises for dV, dV∃ can be obtained
by unfolding the de�nitions of

.
(¬P)(∗),

.
(GP)(∗) as exempli�ed below.

106

Example 4.34 (Non-di�erentiable progress functions [176]). Consider the following liveness
formula with two inequalities in its postcondition:

〈u′ = −u〉(−1 ≤ u ≤ 1) (4.20)
Formula (4.20) can be wri�en equivalently with an atomic inequality using the min function:

〈u′ = −u〉min(1− u, u+ 1) ≥ 0 (4.21)
However, the postcondition of (4.21) is not a formula of real arithmetic and it does not have

well-de�ned dL semantics. Indeed, rule dV< does not prove (4.21) because the Lie derivative of
its postcondition is not well-de�ned. One possible solution is to generalize dV< by considering
directional derivatives of continuous (but non-di�erentiable) functions such as min,max [176,
Section 5.2]. However, justifying the correctness of this option would require delicate changes to
dL semantics [21, 142, 143]. Rule dV instead proves (4.20) directly without requiring rephrasing,
nor complications associated with directional derivatives. �e proof is as follows, with ε() = 1
and P ≡ u + 1 ≥ 0 ∧ 1 − u ≥ 0, GP ≡ u + 1 − (b + t) ≥ 0 ∧ 1 − u − (b + t) ≥ 0. �e le�
conjunct in the succedent is abbreviated with R ≡ u+ 1− (b+ t) = 0→ −u− 1 > 0 and the
right conjunct is omi�ed for brevity since the subsequent argument given below is symmetric.

∗
Ru+ 1 < 0 ∨ 1− u < 0, u+ 1− (b+ t)≥0 ∧ 1− u− (b+ t)≥0 ` R ∧ . . .

¬P,GP `
.

(GP)(∗)

¬P,
.

(¬P)(∗), GP `
.

(GP)(∗)

dV ` 〈u′ = −u〉(−1 ≤ u ≤ 1)

�e proof starts by using rule dV, where the assumption
.

(¬P)(∗) in its premise is weakened
as it is unnecessary for the proof. Unfolding the de�nition of

.
(GP)(∗) and simplifying leaves an

arithmetical question in the succedent with two conjuncts. �e le� conjunctR in the succedent is
proved by R because the assumptions u+1−(b+t) = 0 and u+1−(b+t) ≥ 0∧1−u−(b+t) ≥ 0
imply 1−u ≥ u+1. �is, in turn, implies−u−1 > 0 using the assumption u+1 < 0∨1−u < 0.

More generally, for a liveness postcondition comprising a conjunction of atomic inequalities
e < 0 ∧ ẽ < 0 (where < is either ≥ or > in either conjunct), the premise resulting from
applying dV can be simpli�ed in real arithmetic to the following arithmetical premise:

¬(e < 0 ∧ ẽ < 0) ` (e < ẽ→ .
e > ε()) ∧ (e > ẽ→

.
ẽ > ε()) ∧ (e = ẽ→ .

e > ε() ∧
.
ẽ > ε())

(4.22)
�e arithmetical premise (4.22) is equivalent to the arithmetical progress conditions for

min(p, q) ≥ 0 [176, Example 14], and both are decidable in real arithmetic. �e intuition
behind (4.22) is that whenever e is further from the goal than ẽ, then e is required to make ε
progress towards the goal (symmetrically when ẽ is further than e from the goal). A similar
simpli�cation of dV for a disjunctive postcondition e < 0 ∨ ẽ < 0 is shown in (4.23), which asks
for the term closer to the goal to make ε progress towards the goal instead. Further simpli�cations
for semianalytic formulas P are obtained as nested combinations of (4.22) and (4.23).

¬(e < 0 ∨ ẽ < 0) ` (e < ẽ→
.
ẽ > ε()) ∧ (e > ẽ→ .

e > ε()) ∧ (e = ẽ→ .
e > ε() ∨

.
ẽ > ε())

(4.23)

107

�is example shows the intricate de�nition of semianalytic progress formulas, even for the
simple-looking conjunctive postcondition −1 ≤ u ≤ 1, which highlights the need for a careful
and trustworthy implementation of rules dV, dV∃, as provided by KeYmaera X. 4

�e variations of dV< shown in Corollaries 4.32 and 4.33 (and their implementation) allow
users to focus on high-level liveness arguments in KeYmaera X rather than low-level derivation
steps. Another key usability improvement a�orded by an implementation is the sound and
automatic enforcement of the appropriate side conditions for every proof rule. �e common
side conditions for ODE liveness proof rules presented in this chapter can be broadly classi�ed
as follows:

1. Freshness side conditions on variables, e.g., in rules dV<, dV∃<, dV, dV∃. �ese are auto-
matically enforced in the implementation because KeYmaera X’s kernel insists on fresh
names when required for soundness. Various forms of renaming with fresh variables are
automatically supported [142].

2. Global existence of ODE solutions. �ese are semi-automatically proved (Section 4.6.2).

3. Topological side conditions, e.g., in axiom COR and rules dV<&, dVM
= &. �ese conditions

are important to correctly enforce because they may otherwise lead to subtle soundness
errors (Section 4.5). �e implementation uses syntactic criteria for checking these side
conditions (Appendix B.1.3).

An example topological re�nement axiom (Lemma 4.3) and its corresponding proof rule
implemented in KeYmaera X with syntactic topological side conditions is given next.

Lemma 4.35 (Closed domain re�nement axiom). �e following topological 〈·〉 ODE re�nement
axiom is sound, where formula Q characterizes a topologically closed set over variables x, and
formula Q̊ characterizes the topological interior of the set characterized by Q.

CR ¬P ∧ [x′ = f(x) &R ∧ ¬P]Q̊→
(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
Proof in Appendix B.1.2.

Corollary 4.36 (Closed domain re�nement rule). �e following proof rule is derivable in dL,
where formula Q is formed from �nite conjunctions and disjunctions of non-strict inequalities≥,≤,
and formula Q>

≥ is identical to Q but with strict inequalities >,< in place of ≥,≤ respectively.

cR
Γ ` Q Γ ` [x′ = f(x) &R ∧ ¬P ∧Q]Q>

≥ Γ ` 〈x′ = f(x) &R〉P
Γ ` 〈x′ = f(x) &Q〉P

Proof in Appendix B.2.4.

Axiom CR is a variant of axiom COR with di�erent topological conditions. It says that
if the ODE solution can reach goal P while staying in domain R then it can also reach that
goal while staying in the new (closed) domain Q, provided that it stays within the interior
Q̊ of the new domain while it has not yet reached P . Solutions cannot sneak out of the

108

topologically open interior Q̊ as it enters the goal because, by de�nition of an open set, the
solution must locally remain in Q̊ for a short time as it enters the goal (see the proof for a
detailed explanation). In contrast to the semantical conditions of CR, its corresponding derived
rule cR gives syntactic side conditions for the formulas Q,Q>

≥ which are easily checked in an
implementation. In particular, formula Q>

≥, which syntactically underapproximates the interior
Q̊, can be automatically generated from Q through its syntactic structure. Another advantage
of the derived rule cR is that the closed domain constraint Q can be additionally assumed when
proving that solutions stay within Q>

≥ in its middle premise. �is addition makes rule cR a
powerful primitive for re�ning domain constraints amongst other options such as axiom DR〈·〉.

4.6.2 Proof Support
Beyond enabling the sound implementation of complex ODE liveness proof rules such as those
in Section 4.6.1, tactics can also provide substantial proof support for users.

Automatic Dependency Ordering

Recall derived axiom GBEx from Corollary 4.12, which proves (global) existence of solutions
for an ODE x′ = f(x). Users of the axiom must still identify precisely which dependency
order (4.9) to use, and provide the sequence of bounded sets Bi for each group of variables yi
involving nonlinear ODEs. �e canonical choice of such a dependency order can be automatically
produced by a tactic using a topological sort of the strongly connected components (SCCs)9 of the
dependency graph of the ODE.

More precisely, to prove global existence for an ODE x′ = f(x), consider the dependency
graph G where each variable xi is a vertex and with a directed edge xi −→ xj if the RHS fj(x)
for x′j depends on free variable xi. First, compute the SCCs of G, and then topologically sort the
SCCs. �e groups of variables yi in dependency order can be chosen according to the vertices
in each SCC in topological order. An illustrative dependency graph with four SCCs for the
following 8-dimensional ODE is shown in Fig. 4.4.

x′1 = x5, x
′
2 = x3 + x2

6, x
′
3 = x2

3, x
′
4 = x1 + x2

3 + x2
6,

x′5 = x4, x
′
6 = x2

2, x
′
7 = x8, x

′
8 = −x7 (4.24)

A�er �nding the appropriate SCC-induced dependency order (as in Fig. 4.4), the global exis-
tence tactic can prove global existence for the variable clusters yi that have a�ne dependencies
within the cluster automatically. For example, the SCC y4 ≡ {x1, x4, x5} has a�ne dependencies
because the RHS of the ODEs x′1, x′4, x′5 are a�ne in x1, x4, x5, so the solution of ODE (4.24)
is automatically proved to be global in those variables following the proof of Corollary 4.8.
�e generated dependency order enables such a proof even though the RHS of x′4 depends
nonlinearly on variables x3, x6 from earlier clusters. For the SCC y3 ≡ {x2, x6} which has
nonlinear dependencies on x2, x6, users are prompted to input a bounded set (or a bound on
derivatives) over variables x2, x6 in order to prove global existence for those variables. �is

9A strongly connected component of a directed graph is a maximal subset of vertices that are pairwise connected
by paths.

109

x1 x4

x5
y4

x2

x6

y3

x3

y2

x7

x8
y1

Figure 4.4: A dependency graph for the ODE (4.24) over the variables x1, . . . , x8. �ere is a
directed edge xi −→ xj if the RHS for x′j depends on free variable xi. Each dashed rectangle is a
strongly connected component. Topologically sorting these components (according to the order
induced by the edges) yields one possible grouping of the variables y1, . . . , y4 in dependency
order. �e vertices in y1 are not connected to those in y2, y3, y4, so the order between these
groups can be chosen arbitrarily.

x

f(x)

r1 r2 r3 r4

Figure 4.5: �e univariate ODE x′ = x4 − 5x2 + 4 is illustrated by plo�ing its RHS f(x) =
x4 − 5x2 + 4 (vertical axis) against x (horizontal axis). Points on the horizontal axis evolve
towards the right (red arrow) when f(x) ≥ 0 and towards the le� (blue arrow) when f(x) ≤ 0.
�e �xed points r1, r2, r3, r4 are roots of the polynomial RHS where f(x) = 0. �ese �xed points
either a�ract trajectories (like r1, r3), or repel them (like r2, r4). All points on the horizontal axis
evolve asymptotically towards exactly one �xed point or approach∞.

continues similarly for the SCCs y2 (nonlinear dependency) and y1 (a�ne dependency) until
global existence is proved for the full ODE. �is semi-automated proof support minimizes the
manual e�ort required of the user in proving global existence by focusing their a�ention on the
nonlinear parts of the ODE that may cause �nite-time blowup of solutions.

To drive global existence proof automation further, key special cases can be added to the
method described above. One such special case for univariate ODEs is shown below.
Remark 4.37 (Global existence for univariate ODEs). Consider the case where a variable group
has just one variable and no incoming dependencies, e.g., y2 ≡ {x3} in Fig. 4.4 or αb (4.7). Global
existence for such univariate polynomial ODEs is decidable [68], even if the RHS is highly
nonlinear, because all of its solutions either asymptotically approach one of the (�nitely many)
roots of the polynomial RHS or diverge to in�nity.

�is result is best illustrated through the dynamical systems view of ODEs shown in Fig. 4.5
for the ODE x′ = x4 − 5x2 + 4. �is example ODE has global solutions from all initial states
satisfying x ≤ r4 because the solution from all such states are globally a�racted to one of the
�xed points. Conversely, for all other initial conditions (x > r4), the ODE blows up in �nite
time because the RHS is quartic in x.

110

More generally, for a nonlinear univariate polynomial ODE x′ = f(x) and initial assumptions
Γ, it su�ces to check validity of the following arithmetical sequent to decide global existence
from a set of initial assumptions Γ on the state variable x:

Γ ` ∃r
(
f(r) = 0 ∧ (f(x) ≥ 0 ∧ r ≥ x︸ ︷︷ ︸

a
∨ f(x) ≤ 0 ∧ r ≤ x︸ ︷︷ ︸

b

)
)

�e existentially quanti�ed variable r corresponds to a �xed point (a root with f(r) = 0).
Disjunct a checks whether the solution approaches r from the le�, e.g., the points between
r2 and r3 in Fig. 4.5 approach r3 from the le�. Alternatively, disjunct b checks whether the
solution approaches r from the right. �e implementation checks validity of this sequent for
univariate nonlinear ODEs and then proves global existence using BDG〈·〉 because the solution
is provably trapped between the initial value of x and the �xed point r.

Di�erential Cuts for Liveness Proofs

Di�erential cuts dC provide a convenient way to structure and stage safety proofs for ODEs in
dL. An in-depth discussion is available elsewhere [144, Part II], but the idea is illustrated by the
following derivation outline:

Γ ` [x′ = f(x) &Q]C1

. . .

Q ∧ C1 ∧ C2 ∧ · · · ∧ Cn ` P
dW ...
dC Γ ` [x′ = f(x) &Q ∧ C1 ∧ C2]P

dC Γ ` [x′ = f(x) &Q ∧ C1]P
dC Γ ` [x′ = f(x) &Q]P

�e outline uses a sequence of di�erential cut steps to progressively add cuts C1, C2, . . . , Cn
to the domain constraint. A �nal dW step completes the proof when the postcondition P
is already implied by the (now strengthened) domain constraint. Intuitively, the di�erential
cuts are akin to dynamical lemmas in this derivation. For example, by proving the premise
Γ ` [x′ = f(x) &Q]C1, the cut C1 can now be assumed in the domain constraints of subsequent
steps. Just like the cut rule from sequent calculus, di�erential cuts dC allow safety proofs for
ODEs to be staged through a sequence of lemmas about those ODEs.

For proof modularity and maintainability, it is desirable to enable a similar kind of staging
for ODE liveness proofs. Suppose that the formula [x′ = f(x) &Q]C has been proved as a cut:

Γ ` [x′ = f(x) &Q]C · · ·
cut Γ ` 〈x′ = f(x) &Q〉P

�e challenge is how to (soundly) use this lemma in subsequent derivation steps (shown as
· · ·). Naı̈vely replacing Q with Q ∧ C in the domain constraint of the succedent is sound but
may even do more harm than good because the resulting ODE liveness question becomes more
di�cult (Section 4.5). �e re�nement-based approach to ODE liveness provides a natural answer:
recall that each re�nement step in the chain (4.6) requires the user to prove an additional box
modality formula. �e insight is that, for these box modality formulas, any relevant lemmas
that have been proved can be soundly added to the domain constraint. For example, suppose

111

that rule K〈&〉 is used to continue the proof a�er the cut. �e le� premise of K〈&〉 can now be
strengthened to include C in its domain constraint:

Γ, [x′=f(x) &Q]C ` [x′=f(x) &Q∧¬P∧C]¬G
dCΓ, [x′=f(x) &Q]C ` [x′=f(x) &Q∧¬P]¬G Γ, [x′=f(x) &Q]C ` 〈x′=f(x) &Q〉G

K〈&〉 Γ, [x′=f(x) &Q]C ` 〈x′=f(x) &Q〉P

Users could manually track and apply lemmas using dC as shown above, but this becomes
tedious in larger liveness proofs. �e implementation instead provides users with tactics that
automatically search the antecedents Γ for compatible assumptions that can be used to strengthen
the domain constraints. �ese tactics also use a form of ODE uni�cation when determining
compatibility. More precisely, consider the sequent Γ ` [x′ = f(x) &Q]P , which may arise as a
box re�nement during a liveness proof. An antecedent formula [y′ = g(y) &R]C in Γ is called
a compatible assumption for the succedent [x′ = f(x) &Q]P if:

1. �e set of ODEs y′ = g(y) is a subset of the set of ODEs x′ = f(x) and g(y) does not
mention free variables in x \ y. �is is order-agnostic, e.g., the ODE u′ = v, v′ = u is a
subset of the ODE v′ = u, u′ = v, w′ = u+ v + w.

2. �e domain constraint Q implies domain constraint R, i.e., Q→ R is valid.

Under these conditions, the ODE y′ = g(y) &R permits more trajectories than the ODE
x′ = f(x) &Q. �us, if formula C is always true along solutions of the former ODE, then it
also stays true along solutions of the la�er. Combining compatible assumptions with imple-
mentations of liveness proof rules yields turbo-charged versions of those rules. For example, in
rule dV∃<, instead of simply assuming the negation of the postcondition (¬(e < 0)→ · · ·) when
determining the existence of suitable ε, all postconditions of compatible assumptions can be
assumed, e.g., with ¬(e < 0) ∧ C → · · · for postcondition C of a compatible assumption.

Microbenchmarks

�e KeYmaera X implementation is used to formally prove all of the ODE liveness examples
from this chapter and elsewhere [22, 176]. Table 4.2 provides a summary of statistics from
these proofs, where all experiments were run on an Ubuntu 18.04 laptop with a 2.70 GHz Intel
Core i7-6820HQ CPU and 16GB memory. None of the proofs have been optimized to favor any
speci�c metric. �e speci�c timings and proof steps are naturally subject to change on di�erent
hardware and as various aspects of the KeYmaera X theorem prover are improved. Nevertheless,
the key takeaways from these microbenchmarks remain broadly applicable.

(M)anual and (A)utomatic Proofs. �e implementation provides users with powerful proof
support but also exposes low-level primitives for users who prefer more �ne-grained control over
(parts of) their proofs. Both types of proofs are shown for this chapter’s examples in Table 4.2.
Proofs that heavily exploit the proof support and automation are more convenient for users
and require fewer manual tactic invocations. Indeed, all of the automated proofs require fewer
tactic invocations than the corresponding manual proofs (where both proofs are available for
comparison). An example of this gap is Example 4.34, where the 28 step manual proof uses

112

Table 4.2: Proof statistics for ODE existence and liveness properties proved using the implemen-
tation. For this chapter’s Examples 4.5–4.34, two proofs are presented: (M)anual proofs closely
follow the pen-and-paper derivations shown in this chapter, while (A)utomatic proofs make
extensive use of the implemented proof support. �e cells in bold font indicate lower (more
desirable) values. �e stronger ODE liveness property proved in Example 4.29 implies those from
Examples 4.22 and 4.24. Examples 11, 12 and 15 refer to the correspondingly numbered examples
from Sogokon and Jackson [176]. “Dimension” is the number of continuously evolving state
variables in the ODEs; “Parameters” is the number of parameters (non-state variables) in the
liveness speci�cation; “Max Degree” is the maximum degree of polynomials with respect to the
state variables in the liveness speci�cation; “Tactic Steps” counts the number of (manual) user
proof steps; “Kernel Steps” counts the number of internal steps taken by the soundness-critical
KeYmaera X kernel; and “Proof Time” measures the time taken (in seconds, averaged over 5
runs, rounded to 3 decimal places) for the proof to execute in KeYmaera X.

Liveness Property Dimension Parameters Max Degree
Example 4.5 1 1 2
Example 4.9 2 0 2
Example 4.11 2 0 3
Example 4.17 2 0 2
Example 4.29 (Examples 4.22 and 4.24) 2 0 3
Example 4.34 1 0 1
Sogokon and Jackson [176, Example 11] 2 0 4
Sogokon and Jackson [176, Example 12] 2 0 2
Sogokon and Jackson [176, Example 15] 2 0 1
Bohrer et al. [22, Goal Position Reachable] 3 4 2
Bohrer et al. [22, Velocity Bounds Reachable] 3 4 2

Liveness Property Tactic Steps Kernel Steps Proof Time (s)
(M) (A) (M) (A) (M) (A)

Example 4.5 7 3 2040 12156 1.778 3.716
Example 4.9 8 2 962 898 0.220 0.203
Example 4.11 7 3 1562 1580 0.551 0.759
Example 4.17 29 5 3958 3501 3.286 3.034
Example 4.29 (Examples 4.22 and 4.24) 50 20 5549 6141 1.714 1.952
Example 4.34 28 1 1747 2571 0.575 0.990
Sogokon and Jackson [176, Example 11] - 50 - 11272 - 9.090
Sogokon and Jackson [176, Example 12] - 19 - 4818 - 1.388
Sogokon and Jackson [176, Example 15] - 1 - 4781 - 1.730
Bohrer et al. [22, Goal Position Reachable] - 34 - 8159 - 2.182
Bohrer et al. [22, Velocity Bounds Reachable] - 37 - 10521 - 3.042

113

a re�nement step K〈&〉 to equivalently replace postcondition −1 ≤ u ≤ 1 by u2 ≤ 1 and
then completes the proof by manually following the derivation of rule dV<. In contrast, the
automated proof requires just one dV step.

On the other hand, the automated proofs are slower than their manual counterparts on
four out of six examples. Most of this overhead arises when there is signi�cant proof search in
the automation. In particular, the automated proof of Example 4.5 is signi�cantly slower and
requires almost six times more kernel steps compared to its manual counterpart. �is gap arises
because the automated proof uses the decision procedure for univariate global existence outlined
in Remark 4.37 while the manual proof uses the direct argument in Example 4.5. However,
the la�er proof required user insight about the physical system as a model of air resistance
(see Example 4.5). �is illustrates the need for a �exible implementation that lets users navigate
the convenience and e�ciency tradeo� according to their needs and proof insights.

Finally, the automated proofs are in fact faster for Examples 4.9 and 4.17, which both involve
linear ODEs. �e speedups here can be a�ributed to the well-tuned implementation of global
existence proofs for a�ne systems and to the use of rule dV∃< for the la�er example. �us, the
aforementioned tradeo� can be further skewed towards favoring user convenience by tuning
the implemented automation.

Trusted Kernel with Untrusted Tactics. All of the proofs in Table 4.2 make extensive use of
KeYmaera X’s existing tactics framework [55] to handle low-level interactions with KeYmaera X
soundness-critical kernel, as shown by the large number of kernel steps that each proof requires.
�e soundness guarantee provided by the KeYmaera X kernel makes this implementation e�ort
a worthy tradeo� because it ensures that the proved results in Table 4.2 are trustworthy without
needing to trust the implementation of the tactics.

Applicability. �e insights of this section are not limited to this chapter’s examples and they
scale to larger case studies (Table 4.2). Notably, the example from Sogokon and Jackson [176,
Example 11] consists of two liveness sub-properties for the same ODE, which makes it the largest
(and slowest) microbenchmark. �e examples from Bohrer et al. [22] are liveness properties
drawn from a larger case study with a hybrid system model of a robot driving along circular
arcs in the plane [22]. Proof automation is indispensable for handling the scale of these proofs.

4.7 Related Work
Existence and Liveness Proof Rules. �e ODE liveness arguments surveyed in this chapter
were originally presented in various notations, ranging from proof rules [137, 176, 191] to other
mathematical notation [156, 157, 159, 176]. All of them were justi�ed directly through semantical
or mathematical means. �is chapter uni�es and corrects all of these arguments, and presents
them as dL proof rules which are syntactically derived by re�nement from dL axioms.

�is chapter is also the �rst to present a deductive approach for syntactic proofs of existence
properties for ODEs. In the surveyed liveness arguments [137, 156, 157, 159, 176, 191], su�cient
existence duration is either assumed explicitly or is implicitly used in the correctness proofs.
Such a hypothesis is unsatisfactory, since the global existence of solutions for (nonlinear) ODEs

114

is a non-trivial question; in fact, it is undecidable even for polynomial ODEs [68]. Formal proofs
of any underlying existence assumptions thus yield stronger (unconditional) ODE liveness
proofs. Of course, such existence properties are an additional proof burden, but Section 4.6
also shows that proof support can help by automating easy existence questions, e.g., for a�ne
systems where global existence is well-known. A related problem arising in the study of hybrid
systems is Zeno phenomena [75, 214], where a trajectory of a hybrid model makes in�nitely many
(discrete) transitions in �nite (continuous) time. Like �nite-time blow up, Zeno phenomena
typically occur as abstraction artifacts of hybrid systems models, and they do not occur in real
systems. �us, analogous to the question of global existence, absence of Zeno phenomena must
either be assumed (or Zeno trajectories explicitly excluded) [75, 137], or proved when specifying
and verifying properties of such systems [214].

�e re�nement-based approach to ODE existence and liveness proofs underlies this chap-
ter’s implementation described in Section 4.6. Compared to an earlier implementation in
KeYmaera [147], where rules like dV<& are implemented monolithically, this chapter’s ap-
proach and implementation build those rules from smaller building blocks which yields a �exible
implementation together with powerful (core-checked) proof support. �e high-level lessons
discussed in Section 4.6 are also broadly applicable to other deductive tools for ODEs and hybrid
systems [50, 206] that all currently lack support for ODE liveness proofs.

Other Liveness Properties. �e liveness properties studied in this chapter are the contin-
uous analogues of eventually [109] or eventuality [157, 176] from temporal logics. In discrete
se�ings, temporal logic speci�cations give rise to a zoo of other liveness properties [109]. In
continuous se�ings, weak eventuality (requiring almost all initial states to reach the goal re-
gion) and eventuality-safety have been studied [156, 157]. In adversarial se�ings, di�erential
game variants [143] enable proofs of winning strategies for di�erential games. In dynamical
systems and controls, the study of asymptotic stability requires both stability (an invariance
property) with asymptotic a�raction towards a �xed point or periodic orbit (an eventuality-
like property) [33, 159]. For hybrid systems, various authors have proposed generalizations
of classical asymptotic stability, such as persistence [179], stability [151], and inevitability [46].
Controlled versions of these properties are also of interest, e.g., (controlled) reachability and
a�ractivity [1, 191]. Eventuality(-like) properties are fundamental to all of these advanced
liveness properties. �e formal understanding of eventuality in this chapter is therefore a key
step towards enabling formal analysis of more advanced liveness properties.

Automated Liveness Proofs. Automated reachability analysis tools [31, 53] can also be used
to answer certain liveness veri�cation questions. For an ODE and initial set X0, computing an
over-approximation O of the reachable set Xt ⊆ O at time t shows that all states in X0 reach O
at time t [179] (if solutions do not blow up). Similarly, an under-approximation U ⊆ Xt shows
that some state in X0 eventually reaches U [67] (if U is non-empty). Neither approach handles
domain constraints [67, 179] and, unlike deductive approaches, the use of reachability tools
limits them to proving liveness speci�cations with concrete time bounds t and bounded initial
sets X0. Deductive liveness approaches can also be (partially) automated, as shown in Section 4.6.
Lyapunov functions guaranteeing (asymptotic) stability can be found by sum-of-squares (SOS)

115

optimization [130]. Liveness arguments can be similarly combined with SOS optimization to
�nd suitable di�erential variants [156, 157]. Other approaches are possible, e.g., a constraint
solving-based approach can be used for �nding the so-called set Lyapunov functions [159] (e.g.,
the term e used in SLyap, SLyap&). Crucially, automated approaches must ultimately be based
on sound underlying liveness arguments. �e correct justi�cation of these arguments is precisely
what this chapter enables.

Re�nement Calculi. �is chapter’s view of ODE liveness arguments as step-by-step re�ne-
ments is closely related to re�nement proof calculi [11, 93]. �e shared idea is that the proof
of a complex property, like ODE liveness or program correctness, should be broken down into
(simpler) step-by-step re�nements. �e key di�erence is that, for re�nement calculi, re�ne-
ment typically takes place between programs (or implementations) and their speci�cation. For
example, a concrete implementation β is said to re�ne its abstract speci�cation α if the set of
transitions of β is a subset of those of α [11]. Proving such a re�nement for hybrid programs
α, β would, for example, prove the implication:

〈β〉P → 〈α〉P (4.25)

Program re�nement is not directly applicable to this chapter’s focus on proving liveness
for speci�c ODEs. Instead, as hinted by (4.25), program re�nement plays an important role for
generalizing this chapter’s results beyond ODEs to hybrid systems, where, e.g., one may use
implications like (4.25) as part of a re�nement chain (4.6). �ere are a number of re�nement
calculi for hybrid systems [30, 50, 106, 164]. Notably, di�erential re�nement logic [106] formally
extends dL with a re�nement operator β ≤ α, and can be used together with this chapter’s
results. Another direction for generalizing this chapter’s results is to consider larger classes of
continuous dynamics, such as di�erential inclusions, di�erential-algebraic constraints [137], and
di�erential games [143]. �ese open up the possibility of proving re�nements between concrete
(ODE) descriptions and their more abstract continuous counterparts [47, 50, 137, 143].

4.8 Discussion
�is chapter presents a re�nement-based approach for proving liveness and, as a special case,
global existence properties for ODEs in dL. �e associated KeYmaera X implementation demon-
strates the utility of this approach for formally proving concrete ODE liveness questions. Beyond
the particular proof rules derived in this chapter, the exploration of new and more general ODE
liveness proof rules is enabled by simply piecing together more re�nement steps in dL, or in
the KeYmaera X implementation of those steps. Given its wide applicability and correctness
guarantees, this approach is a suitable framework for justifying ODE liveness arguments, even
for readers less interested in the logical aspects.

116

Chapter 5

Stability for Ordinary Di�erential
Equations

�is chapter studies deductive stability veri�cation for ordinary di�erential equations (ODEs)
in dL. Stability is required for real-world controlled systems as it ensures that those systems
can tolerate small, real-world perturbations around their desired operating states. In contrast to
the previous chapters, the question of how to formally specify stability is interesting because
there are numerous variations of stability properties of interest in the literature, each with
subtly di�erent speci�cations. �e key insight is to specify ODE stability by suitably nesting
dL’s dynamic modalities with �rst-order logic quanti�ers. Elucidating the logical structure of
stability properties in this way has three key bene�ts: i) it provides a �exible means of formally
specifying various stability properties of interest in the common language of dL, ii) it yields
rigorous proofs of those stability properties using dL’s ODE safety and liveness proof principles
from Chapters 3 and 4, and iii) it enables formal analysis of the relationships between various
stability properties which, in turn, inform proofs of those properties. �ese ODE stability proofs
lay the groundwork for the study of hybrid (switched) system stability proofs in Chapter 6.

5.1 Introduction
�e study of stability has its roots in e�orts to understand mechanical systems, particularly
those arising in celestial mechanics [77, 98, 153]. Today, it is an important part of numerous
applications in dynamical systems [187] and control theory [71, 89]. For example, in feedback
control systems [71, 89], stability of continuous controllers modeled by ODEs is a key correctness
requirement [6] that deserves fully rigorous proofs alongside proofs of other key properties
such as the ODE safety and liveness properties studied in Chapters 3 and 4. Despite this, formal
stability veri�cation has received less a�ention compared to proofs of safety and liveness, e.g.,
through reachability or deductive techniques [45].

Stability for a continuous system (or ODEs) requires that i) its system state always stays
close to some desired operating state(s) when initially slightly perturbed from those operating
state(s) and ii) those perturbations are eventually dissipated so that the system returns to a
desired operating state. �ese properties are especially crucial for engineered systems because

117

those systems must be robust to real-world perturbations deviating from idealized models.

22

11 0

34 0

1
2

Figure 5.1: A pendulum
(in green) hung by a rigid
rod from a pivot (in black)
perturbed from its resting
state (bo�om) and from its
inverted, upright position
(top). Perturbed states (with
dashed boundaries and lines)
are faded out to indicate the
progression of time.

Simple pendulums provide canonical examples of stability
phenomena: they are always observed to se�le in the rest position
of Fig. 5.1 (bo�om) a�er some time regardless of how they are ini-
tially released. In contrast, the inverted pendulum in Fig. 5.1 (top)
is theoretically also at a resting position but can only be observed
transiently in practice because the slightest real-world pertur-
bation will cause the pendulum to fall due to gravity. Stability
explains these observations—the resting position is (asymptoti-
cally) stable while the inverted position is unstable and requires
active control to ensure its stability. Proofs of safety and liveness
properties are still required for the inverted pendulum under con-
trol, e.g., its controller must never generate unsafe amounts of
torque and the pendulum must eventually reach the inverted po-
sition. �e triumvirate of safety, liveness, and stability is required
for holistic correctness of the inverted pendulum controller.

�e classical way of distinguishing the aforementioned sta-
bility situations is by designing a Lyapunov function [98], i.e.,
an energy-like auxiliary measure satisfying certain arithmetical
conditions [71, 89, 165] which implies that the auxiliary energy
decreases along system trajectories towards local minima at the
stable resting state(s), see Fig. 5.2. Prior approaches [3, 61, 88, 104,
170] have emphasized the need to formally verify those arithmeti-
cal conditions in order to guarantee that a conjectured Lyapunov
function correctly implies stability for a given system.

t

Lyapunov Function

2

3
4

1

Figure 5.2: A Lyapunov func-
tion that decreases along the
pendulum trajectory shown
in Fig. 5.1 (bo�om).

�is chapter shows how deductive proofs of ODE stability
can be carried out in dL. �e key insight is to specify stability
properties by suitably nesting the dynamic modalities of dL with
quanti�ers of �rst-order logic. �is makes it possible to syntac-
tically derive stability for a given system by combining the ODE
safety and liveness proof principles of Chapters 3 and 4 with
arithmetic and �rst-order quanti�er reasoning in dL. �is com-
bination enables trustworthy implementation of stability proofs
in KeYmaera X [54, 142]. Notably, the approach directly veri�es
stability speci�cations, which goes beyond verifying arithmetic
that imply those speci�cations [3, 61, 88, 104, 170]. �is is crucial
for advanced stability notions because those variations generally
require subtle twists to the required arithmetical conditions on
their Lyapunov functions [71]. Proofs of stability speci�cations alleviate the onus on system
designers to correctly pick and check the appropriate conditions for their applications.

Section 5.2 shows how various stability properties for ODE equilibria can be formally speci�ed
and proved in dL with Lyapunov function techniques. Section 5.3 then generalizes those stability
speci�cations, yielding unambiguous formal speci�cations of advanced stability properties from
the literature [71, 89], along with their derived proof rules. �ese speci�cations also provide

118

rigorous insights into the logical relationship between various stability notions, which are used
to inform their respective proofs. Section 5.4 illustrates the practicality of the dL approach
through several stability case studies formalized in KeYmaera X. Section 5.5 examines input-to-
state stability, a form of stability with respect to perturbation of the system dynamics [71, 89],
and discusses the syntactic limitations of dL for specifying and analyzing this form of stability.

Reminder (Extended Term Language). �is chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the
dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. �e material for this chapter is drawn from Tan and Platzer [194].

5.2 Asymptotic Stability of an Equilibrium Point
�is section presents Lyapunov’s classical notion of asymptotic stability [98] and its formal
speci�cation in dL. �is formalization enables the derivation of dL stability proof rules using
Lyapunov functions [71, 89, 98, 165]. Several related stability concepts are formalized in dL,
along with their relationships and proof rules. �e following parametric ODE model of a simple
pendulum is used as a running example.

Example 5.1 (Pendulum model). �e ODE αp ≡ θ′ = ω, ω′ = − g
L

sin(θ) − bω models a
pendulum (illustrated below, right) suspended from a pivot by a rod of length L, where θ is the
angle of displacement, ω is the angular velocity of the pendulum, and g > 0 is the gravitational
constant. Parameter a = g

L
is a positive scaling constant and parameter b ≥ 0 is the coe�cient

of friction for angular velocity. �e symbolic parameters a, b make analysis of αp apply to a
range of concrete values, e.g., pendulums that are suspended by a long rod (with large L) are
modeled by small positive values of a, while frictionless pendulums have b = 0.

L

g

-ω

θ

For illustrative purposes, a simpli�cation of αp is used because stability
analyses o�en concern the behavior of the pendulum near its resting (or in-
verted) state where θ = 0. For such nearby states with θ ≈ 0, the small angle
approximation sin(θ) ≈ θ yields a linear ODE αl.1

αl ≡ θ′ = ω, ω′ = −aθ − bω (5.1)

g

u

ω

θ

An inverted pendulum is modeled by a similar ODE (illustrated on the
right) under a change of coordinates. Such a pendulum requires an external
torque input u(θ, ω) to maintain its stability. An appropriate input u(θ, ω) is
determined and proved correct in Section 5.4.

αi ≡ θ′ = ω, ω′ = aθ − bω − u(θ, ω) (5.2) 4
1Mathematically, this linearization is justi�ed by the Hartman-Grobman theorem [33]. A nonlinear polynomial

approximation, such as sin(θ) ≈ θ − θ3

6 , can also be used.

119

5.2.1 Mathematical Preliminaries
An equilibrium point of ODE x′ = f(x) is a point x0 ∈ Rn where f(x0) = 0, so a system
that starts at x0 stays at x0 along its continuous evolution. Such points are o�en interesting
in real-world systems, e.g., the equilibrium point θ = 0, ω = 0 for αl from (5.1) is the resting
state of a pendulum. For a controlled system, equilibrium points o�en correspond to desired
steady system states where no further continuous control input (modeled as part of f(x)) is
required [89]. For brevity, assume the origin 0 ∈ Rn is an equilibrium point of interest. Any
other equilibrium point(s) of interest x0 ∈ Rn can be translated to the origin with the change of
coordinates x 7→ x− x0 for the ODE, see Lemma C.1. �e following de�nition of asymptotic
stability is standard [71, 89, 165], where the Euclidean norm ‖·‖2 is used throughout without
loss of generality because norms are equivalent on �nite dimensional vector spaces [204, §5.V].2

De�nition 5.2 (Asymptotic stability [71, 89, 165]). �e origin 0 ∈ Rn of ODE x′ = f(x) is

• stable if, for all ε > 0, there exists δ > 0 such that for all initial states x = x(0) with
‖x‖2 < δ, the right-maximal ODE solution x(t) : [0, T)→ Rn satis�es ‖x(t)‖2 < ε for all
times 0 ≤ t < T ,

• attractive if there exists δ > 0 such that for all x = x(0) with ‖x‖2 < δ, the right-maximal
ODE solution x(t) : [0, T)→ Rn satis�es limt→T x(t) = 0, and

• asymptotically stable if it is stable and a�ractive.

�ese de�nitions can be understood using the resting state of the pendulum from Fig. 5.1
(bo�om) which is asymptotically stable. When the pendulum is given a light push from its
bo�om resting state (formally, ‖x‖2 < δ), it gently oscillates near that resting state (formally,
‖x(t)‖2 < ε). In the presence of friction, these oscillations eventually dissipate so the pendulum
asymptotically returns to its resting state (formally, limt→T x(t) = 0). �is behavior is local, i.e.,
for any given ε > 0, there exists a su�ciently small δ > 0 perturbation of the initial state that
results in gentle oscillations with ‖x(t)‖2 < ε, see Fig. 5.3 (le�). A strong push, e.g., with δ > ε,
could instead cause the pendulum to spin around on its pivot.
Remark 5.3. Stability and a�ractivity do not imply each other [165, Chapter I.2.7], see example
αu in Section 5.4. However, if the origin is stable, a�ractivity can be equivalently de�ned in a
simpler way. �is is proved in dL, a�er characterizing stability and a�ractivity syntactically.

5.2.2 Formal Speci�cation
�e formal speci�cation of asymptotic stability in dL combines i) the dynamic modalities of dL,
which are used to quantify over the dynamics of the ODE and ii) the �rst-order logic quanti�ers,
which are used to express combinations of (topologically) local and asymptotic properties of
those dynamics. For a formula P , the ε-neighborhood of P with respect to x is de�ned as the

2Some de�nitions of asymptotic stability in the literature require, or implicitly assume, right-maximal solutions
x(t) to be global, i.e., with T =∞, see [89, De�nition 4.1] and associated discussion. �e de�nition given here is
be�er suited for subsequent generalizations.

120

Figure 5.3: Solutions from points in the δ ball around the origin, like the green initial point x,
remain within the ε ball around the origin 0 ∈ Rn (black dot) and asymptotically approach the
origin. �e la�er two plots illustrate how asymptotic stability for an ODE can be broken down
into a pair of (quanti�ed) ODE safety and liveness properties.

formula Uε(P)
def≡ ∃y

(
‖x− y‖2

2 < ε2 ∧P (y)
)
, where the existentially quanti�ed variables y are

fresh in P . �e neighborhood formula Uε(P) characterizes the set of states within (set) distance
ε from P , with respect to the dynamically evolving variables x, which is useful for syntactically
expressing small ε perturbations, e.g., appearing in Def. 5.2. For formulas P of �rst-order real
arithmetic (over polynomial terms), the ε-neighborhood, Uε(P), can be equivalently expressed in
quanti�er-free form by quanti�er elimination [14, 197]. For example, the neighborhood formula
Uε(x = 0) is equivalent to the formula ‖x‖2

2 < ε2.

Lemma 5.4 (Asymptotic stability in dL). �e origin of ODE x′ = f(x) is, respectively, i) stable,
ii) a�ractive, and iii) asymptotically stable i� the dL formulas i) Stab(x′ = f(x)), ii) Attr(x′ =
f(x)), and iii) AStab(x′ = f(x)) , respectively, are valid. Variables ε, δ are fresh, i.e., not in x, f(x).

Stab(x′ = f(x)) ≡ ∀ε>0∃δ>0∀x
(
Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0)

)
Attr(x′ = f(x)) ≡ ∃δ>0∀x

(
Uδ(x = 0)→ Asym(x′ = f(x), x = 0)

)
AStab(x′ = f(x)) ≡ Stab(x′ = f(x)) ∧ Attr(x′ = f(x))

Formula Asym(x′ = f(x), P) ≡ ∀ε>0 〈x′ = f(x)〉[x′ = f(x)]Uε(P) characterizes the set of
states that asymptotically approach P along ODE solutions.

Proof. �e correctness of these speci�cations follows directly from the semantics of dL for-
mulas [142, 144] because they syntactically express the logical connectives and quanti�ers
from Def. 5.2 in dL. �e open neighborhood formulas Uδ(x = 0) and Uε(x = 0) are true in
states where ‖x‖2 < δ and ‖x‖2 < ε respectively. �e main subtlety is formula Attr(x′ = f(x))
which characterizes the limit limt→T x(t) = 0 using its subformula Asym(x′ = f(x), x = 0) as
follows. Unfolding the semantics, formula Asym(x′ = f(x), P) is true in an initial state i� for
any ε > 0, the right-maximal ODE solution to x′ = f(x) (restricted to variables x) denoted
x(t) : [0, T) → Rn has a time τ ∈ [0, T) where, because of uniqueness of ODE solutions [33,
�eorem 1.2], for all future times t with τ ≤ t < T , the solution at x(t) satis�es formula Uε(P).
For P ≡ x = 0, this implies the bound ‖x(t)‖2 < ε at those future times, which is the real
analytic de�nition of the limit limt→T x(t) = 0 [168, De�nition 4.1].

Formula Stab(x′ = f(x)) is a syntactic dL rendering of the corresponding quanti�ers
from Def. 5.2. �e safety property Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0) expresses that solutions

121

starting from the δ-neighborhood of the origin always (for all times) stay safely in the ε-
neighborhood, as visualized in Fig. 5.3 (middle). Formula Attr(x′ = f(x)) uses the subformula
Asym(x′ = f(x), x = 0) which characterizes the limit in Def. 5.2. Recall limt→T x(t) = 0 i� for
all ε > 0 there exists a time τ with 0 ≤ τ < T such that for all times t with τ ≤ t < T , the
solution satis�es ‖x(t)‖2 < ε, i.e., the limit requires for all distances ε > 0, the ODE solution
will eventually always be within distance ε of the origin, as visualized in Fig. 5.3 (right). �is limit
is characterized using nested 〈·〉[·] modalities, together with �rst-order quanti�cation according
to Def. 5.2. More generally, formula Asym(x′ = f(x), P) characterizes the set of initial states
where the right-maximal ODE solution asymptotically approaches the set characterized by
formula P ; this set is known as the region of a�raction of P [89]. �us, a�ractivity requires that
the region of a�raction of the origin contains an open neighborhood Uδ(x = 0) of the origin.

Proving validity of the formula AStab(x′ = f(x)) yields a rigorous proof of asymptotic
stability for x′ = f(x). Indeed, the syntactic shape of the formulas from Lemma 5.4 immediately
suggests how such a proof can be carried out using earlier thesis chapters: Stab(x′ = f(x))
needs ODE safety reasoning (Chapter 3) for its inner box modality, while, at a �rst glance,
Attr(x′ = f(x)) needs more complicated ODE liveness reasoning (Chapter 4) for the inner,
nested diamond-box 〈·〉[·] modalities. However, if the origin is stable, then Corollary 5.5 below
simpli�es the syntactic characterization of the region of a�raction for the stable equilibrium from
a nested 〈·〉[·] formula to a 〈·〉 formula, which is then directly amenable to liveness reasoning
(Chapter 4). �is corollary is used to simplify proofs of asymptotic stability in the next section.

Corollary 5.5 (Stable a�ractivity). �e following axiom is derivable in dL.

SA�r Stab(x′ = f(x))→
(
Asym(x′ = f(x), x = 0)↔ ∀ε>0 〈x′ = f(x)〉 Uε(x = 0)

)
Proof. A full proof is omi�ed as axiom SA�r is an instance of the more general axiom SetSA�r
derived in Corollary 5.21 (where P ≡ x = 0). Brie�y, the “→” direction of the inner equivalence
is valid even without assuming stability because postcondition [x′ = f(x)]Uε(x = 0) mono-
tonically implies postcondition Uε(x = 0). �e more interesting “←” direction of the inner
equivalence uses the stability assumption by choosing δ > 0 su�ciently small so that solutions
reaching Uδ(x = 0) must stay in Uε(x = 0) therea�er because of stability.

Notational Conventions (Abbreviations). All derived axioms and proof rules are presented
directly using the respective stability formula abbreviations, e.g., as listed in Lemma 5.4.

5.2.3 Lyapunov Functions
Lyapunov functions are the standard tool for showing stability of general, non-linear ODEs [71,
89, 165] and �nding suitable Lyapunov functions is an important problem in its own right [3, 49,
61, 88, 104, 130, 131, 170, 200]. �is section shows how a candidate Lyapunov function, once
found, can be used to rigorously prove stability. �e following derived proof rules formalize
Lyapunov stability arguments [71, 89, 165] syntactically in dL.

Lemma 5.6 (Lyapunov functions). �e following Lyapunov function proof rules are derivable in
dL, where the Lyapunov function V is a dL term.

122

Lyap≥
` f(0) = 0 ∧ V (0) = 0 ` ∃γ>0∀x

(
0 < ‖x‖2

2 ≤ γ2 → V > 0 ∧
.
V ≤ 0

)
` Stab(x′ = f(x))

Lyap>
` f(0) = 0 ∧ V (0) = 0 ` ∃γ>0∀x

(
0 < ‖x‖2

2 ≤ γ2 → V > 0 ∧
.
V < 0

)
` AStab(x′ = f(x))

Proof Summary (Appendix C.1.1). Rule Lyap≥ is derived by showing that, for carefully chosen
(symbolic) constants 0 < γ ≤ ε and W > 0, the formula ‖x‖2

2 < γ2 ∧ V < W is an invariant
of the ODE x′ = f(x). Here, γ is chosen su�ciently small so that the le� conjunct ‖x‖2

2 < γ2

implies ‖x‖2
2 < ε2 as required in the stability postcondition, while the right conjunct V < W

characterizes a smaller invariant set in the ball ‖x‖2
2 < γ2 (see proof).

�e derivation of rule Lyap> uses Lyap≥ as a stepping stone and the derived logical re-
lationship SA�r to simplify the proof. �e derivation starts with a cut that proves stability
using rule Lyap≥ because the premises of Lyap> are identical to those of Lyap≥ except for a
stronger, strict inequality requirement on the Lie derivative of V . �e right conjunct of the right
premise of Lyap> is cut and Skolemized with ∃L; the resulting antecedent is abbreviated with
a ≡ ∀x

(
0 < ‖x‖2

2 ≤ γ2 →
.
V < 0

)
below. Next, instantiating ε = γ in the stability antecedent

with ∀L and Skolemizing yields an initial disturbance δ > 0 so that the ODE solutions from
states satisfying ‖x‖2

2 < δ2 always stay within the γ ball ‖x‖2
2 < γ2. �e resulting antecedent is

abbreviated with b ≡ ∀x
(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
.

Stab(x′ = f(x)), a , δ > 0, b ` Attr(x′ = f(x))
∀L, ∃L Stab(x′ = f(x)), γ > 0, a ` Attr(x′ = f(x))
cut, ∃L Stab(x′ = f(x)) ` Attr(x′ = f(x))

cut, Lyap≥ ` AStab(x′ = f(x))

�e existential quanti�er in the succedent is witnessed by δ from the antecedents with ∃R and
the resulting sequent is simpli�ed by Skolemization and instantiation of b before axiom SA�r
is used to further simplify the succedent using the stability antecedent.

a , [x′=f(x)] ‖x‖2
2 < γ2, ε>0 ` 〈x′=f(x)〉 ‖x‖2

2 < ε2

∀R a , [x′=f(x)] ‖x‖2
2 < γ2 ` ∀ε>0 〈x′=f(x)〉 ‖x‖2

2 < ε2

SA�r Stab(x′=f(x)), a , [x′=f(x)] ‖x‖2
2 < γ2 ` Asym(x′=f(x), x=0)

∀L,→L Stab(x′=f(x)), a , b , ‖x‖2
2 < δ2 ` Asym(x′=f(x), x=0)

∀R,→R Stab(x′=f(x)), a , b ` ∀x
(
‖x‖2

2 < δ2 → Asym(x′=f(x), x=0)
)

∃R Stab(x′=f(x)), a , δ > 0, b ` Attr(x′=f(x))

�e remaining open premise is a liveness property which is proved using rule SPc from Corol-
lary 4.21 (page 97) with the choice of compact staging set S ≡ ε2 ≤ ‖x‖2

2 ≤ γ2 and e ≡ V .
∗

dW, R ` [x′ = f(x) & ‖x‖2
2 ≥ ε2 ∧ ‖x‖2

2<γ
2]S

dC [x′ = f(x)] ‖x‖2
2<γ

2 ` [x′ = f(x) & ‖x‖2
2 ≥ ε2]S

∗
a , ε>0, S `

.
V < 0

SPc a , [x′ = f(x)] ‖x‖2
2<γ

2, ε>0 ` 〈x′ = f(x)〉 ‖x‖2
2<ε

2

123

�e le� premise proves with a di�erential cut dC of the antecedent and dW, R from the
resulting strengthened domain constraint ‖x‖2

2 ≥ ε2∧‖x‖2
2<γ

2. �e right premise proves using
a with antecedents S and ε>0 to prove its implication LHS.

Rule Lyap≥ uses the Lyapunov function V as an auxiliary, energy-like function near the
origin which has non-positive derivative

.
V ≤ 0. Intuitively, this guarantees that the energy

of the system is non-increasing along ODE solutions near the origin so those solutions (with
su�ciently low energy) must stay close to the stable origin (energy V (0) = 0). Rule Lyap> is
similar, except the derivative is strictly negative

.
V < 0 so the energy decreases along system

trajectories towards 0 at the asymptotically stable origin, see Fig. 5.2. �e right premise of both
rules use ∃γ>0 ∀x

(
0< ‖x‖2

2≤γ2 → · · ·
)

to require that the Lyapunov function conditions are
true in a γ-neighborhood of the origin. �e subtle di�erence in sign condition for

.
V between

rules Lyap≥, Lyap> is illustrated for the pendulum in the following example.

Example 5.7 (Pendulum asymptotic stability). For ODE αl from (5.1), a suitable Lyapunov
function for proving its stability [89] is V = a θ

2

2
+ (bθ+ω)2+ω2

4
, where the Lie derivative of V

along αl is
.
V = − b

2
(aθ2 + ω2). Stability3 is formally proved in dL for any parameter values

a > 0, b ≥ 0 using rule Lyap≥ because both of its resulting arithmetical premises are provable
by R. �e derivation is shown below, where the le� premise resulting from rule Lyap≥ is omi�ed
as it proves trivially by evaluation. �e existentially quanti�ed right premise proves by R since
V is positive except at the origin and its Lie derivative is non-positive.

∗
R a > 0, b ≥ 0 ` ∃τ>0∀θ ∀ω

(
0 < θ2 + ω2 ≤ τ 2 → V > 0 ∧ − b

2
(aθ2 + ω2) ≤ 0

)
Lyap≥a > 0, b ≥ 0 ` Stab(αl)

When b > 0, i.e., friction is non-negligible, an identical derivation with Lyap> instead
of Lyap≥ proves asymptotic stability because − b

2
(aθ2 + ω2) is negative except at the origin.

Indeed, displacements to the pendulum’s resting state can only be dissipated in the presence of
friction and not when b = 0. 4

5.2.4 Asymptotic Stability Variations
Asymptotic stability is a strong guarantee about the local behavior of ODE solutions near
equilibrium points of interest. In certain applications, stronger stability guarantees may be
needed for those equilibria [89]. �is section examines two standard stability variations, shows
how they can be proved in dL, and analyzes their logical relationship with asymptotic stability.

Exponential Stability

As its name suggests, the �rst stability variation, exponential stability, guarantees an exponential
rate of convergence towards the equilibrium point from an initial displacement.

3Recall αl is a linearization of the trigonometric pendulum ODE model αp from Example 5.1 for simplicity. �e
Lyapunov function V = a(1− cos(θ)) + (bθ+ω)2+ω2

4 with Lie derivative
.
V = − b

2 (aθ sin(θ) + ω2) proves stability
for αp [89] but requires arithmetic reasoning over trigonometric functions.

124

De�nition 5.8 (Exponential stability [71, 89, 165]). �e origin 0 ∈ Rn of ODE x′ = f(x)
is exponentially stable if there are positive constants α, β, δ > 0 such that for all initial
states x = x(0) with ‖x‖2 < δ, the right-maximal ODE solution x(t) : [0, T) → Rn satis�es
‖x(t)‖2 ≤ α ‖x(0)‖2 exp (−βt) for all times 0 ≤ t < T .

Exponential stability bounds the norm of solutions to ODE x′ = f(x) near the origin by a
decaying exponential. It is speci�ed in dL as follows.

Lemma 5.9 (Exponential stability in dL). �e origin of ODE x′ = f(x) is exponentially stable
i� the following dL formula is valid. Variables α, β, δ, y are fresh, i.e., not in x, f(x).

EStab(x′ = f(x)) ≡∃α>0∃β>0 ∃δ>0∀x
(
Uδ(x = 0)→

[y := α2 ‖x‖2
2 ;x′ = f(x), y′ = −2βy] ‖x‖2

2 ≤ y
)

Proof. �e quanti�ers ∃α>0∃β>0∃δ>0∀x
(
Uδ(x = 0) → · · ·

)
syntactically express the re-

spective quanti�ers in the de�nition of exponential stability from Def. 5.8 in dL. For an initial
state satisfying Uδ(x = 0), i.e., with ‖x(0)‖2 < δ, the assignment y := α2 ‖x‖2

2 sets the ini-
tial value of fresh variable y (before the ODE) to α2 ‖x(0)‖2

2. Let x(t) : [0, T) → Rn and
y(t) : [0, T) → R respectively be the x and y projections of the unique, right-maximal so-
lution of the ODE x′ = f(x), y′ = −2βy. By construction, the unique ODE solution for the
y-coordinates is y(t) = α2 ‖x(0)‖2

2 exp (−2βt), so the postcondition ‖x‖2
2 ≤ y of the box modal-

ity expresses that for all times 0 ≤ t < T , ‖x(t)‖2
2 ≤ α2 ‖x(0)‖2

2 exp (−2βt) or, equivalently,
‖x(t)‖2 ≤ α ‖x(0)‖2 exp (−βt), as required.

Formula EStab(x′ = f(x)) uses a fresh ghost variable y with ODE y′ = −2βy and initialized
toα2 ‖x‖2

2 so that y di�erentially axiomatizes (Proposition 3.34) the squared decaying exponential
function α2 ‖x(0)‖2

2 exp (−2βt) along ODE solutions which bounds the squared norm term ‖x‖2
2.

An alternative (explicit) speci�cation of exponential stability can also be given in an extended
term language with the exponential function exp, using fresh variables y to syntactically store
the initial norm value and t to syntactically track the progression of time with t′ = 1:

EStabE(x′ = f(x)) ≡∃α>0 ∃β>0 ∃δ>0 ∀x
(
Uδ(x = 0)→

[y := α2 ‖x‖2
2 ; t := 0;x′ = f(x), t′ = 1] ‖x‖2

2 ≤ y exp (−2βt)
)

Corollary 5.10 (Exponential stability characterizations). �e following axiom is derivable in dL,
where variables y, t are fresh in ODE x′ = f(x).

EStabE [y := α2 ‖x‖2
2 ; t := 0;x′ = f(x), t′ = 1] ‖x‖2

2 ≤ y exp (−2βt)

↔ [y := α2 ‖x‖2
2 ;x′ = f(x), y′ = −2βy] ‖x‖2

2 ≤ y

Proof in Appendix C.1.1.

�e explicit characterization EStabE(x′ = f(x)) corresponds more directly to Def. 5.8 but
needs explicit reasoning over the exponential function in the postcondition of the box modality.
In contrast, the implicit polynomial characterization of exponential decay given in EStab(x′ =
f(x)) allows syntactic proof steps to use decidable real arithmetic reasoning [14, 197] if the
provided Lyapunov functions V are also polynomial terms. Corollary 5.10 shows that the two
characterizations can be used interchangeably in proofs.

125

Lemma 5.11 (Lyapunov function for exponential stability). �e following Lyapunov function
proof rule for exponential stability is derivable in dL, where k1, k2, k3 ∈ Q are positive constants.

LyapE
` ∃γ>0 ∀x

(
‖x‖2

2≤γ2 → k2
1 ‖x‖

2
2 ≤ V ≤ k2

2 ‖x‖
2
2 ∧

.
V ≤ −2k3V)

` EStab(x′ = f(x))

Proof in Appendix C.1.1.

Rule LyapE enables proofs of exponential stability in dL where the Lyapunov function
derivative condition

.
V ≤ −2k3V guarantees that the (auxiliary) system energy V is bounded

above by the decaying exponential exp (−2k3t) as required in EStab(x′ = f(x)) (with β = k3);
the factor 2 arises from the use of the squared norm in the speci�cation. In fact, the proof
of Lemma 5.11 yields quantitative bounds, where EStab(x′ = f(x)) is explicitly witnessed with
scaling constant α = k2

k1
and decay rate β = k3. �ese can be used to calculate time bounds

when the system state will return su�ciently close to the origin. Similarly, the disturbance δ
in EStab(x′ = f(x)) is quantitatively witnessed by k1

k2
γ for any γ witnessing validity of the

premise of rule LyapE. �is yields a provable estimate of the region around the origin where
exponential stability holds; this la�er estimate is explored next.

Region of Attraction

Formulas Attr(x′ = f(x)) and EStab(x′ = f(x)) both feature a subformula of the form
∃δ>0 ∀x (Uδ(x = 0)→ · · ·) which expresses that a�ractivity (or exponential stability) is locally
true in some δ neighborhood of the origin. In many applications, it is useful to �nd and rigorously
prove that a given set is a�ractive or exponentially stable with respect to the origin [89, Chapter
8.2]. �e second stability variation yields provable subsets of the region of a�raction, including
the special case where it is the entire state space. �is is formalized using the following variants
of Attr(x′ = f(x)) and EStab(x′ = f(x)) within a region characterized by the formula P .

AttrP(x′ = f(x), P) ≡ ∀x
(
P → Asym(x′ = f(x), x = 0)

)
EStabP(x′ = f(x), P) ≡ ∃α>0 ∃β>0∀x

(
P →

[y := α2 ‖x‖2
2 ;x′ = f(x), y′ = −2βy] ‖x‖2

2 ≤ y
)

�e formula AttrP(x′ = f(x), P) is valid i� the set characterized by P is a subset of the
origin’s region of a�raction [89]. For example, Attr(x′ = f(x)) is equivalent to an existentially
quanti�ed region of a�raction ∃δ > 0 AttrP(x′ = f(x),Uδ(x = 0)). �e �exibility a�orded by
the choice of P is useful for formalizing stronger notions of stability in dL, such as the following
global stability notions [71, 89].

De�nition 5.12 (Global stability [71, 89, 165]). �e origin 0 ∈ Rn of ODE x′ = f(x) is globally
asymptotically stable if it is stable and its region of a�raction is the entire state space, i.e., for
all x = x(0) ∈ Rn, the right-maximal ODE solution x(t) : [0, T)→ Rn satis�es limt→T x(t) = 0.
�e origin is globally exponentially stable if there are positive constants α, β > 0 such that
for all initial states x = x(0) ∈ Rn, the right-maximal ODE solution x(t) : [0, T)→ Rn satis�es
‖x(t)‖2 ≤ α ‖x(0)‖2 exp (−βt) for all times 0 ≤ t < T .

126

Lemma 5.13 (Global stability in dL). �e origin of ODE x′ = f(x) is globally asymptotically
stable i� the dL formula Stab(x′ = f(x))∧AttrP(x′ = f(x), true) is valid. �e origin is globally
exponentially stable i� the dL formula EStabP(x′ = f(x), true) is valid.

Proof. �e proof is identical to Lemmas 5.4 and 5.9, respectively, except the existential quan-
ti�cation over a local neighborhood of the origin ∃δ > 0∀x (Uδ(x = 0) → · · ·) is replaced
by universal quanti�cation over all initial states (where P ≡ true), i.e., ∀x (true → · · ·), as
required by the global stability de�nitions.

Global stability ensures that all perturbations to the system state are eventually dissipated.
�eir proof rules are similar to Lyap> and LyapE respectively.

Lemma 5.14 (Lyapunov function for global stability). �e following Lyapunov function proof rules
for global asymptotic and exponential stability are derivable in dL. In rule LyapG

E , k1, k2, k3 ∈ Q
are positive constants.

LyapG
>

` f(0) = 0 ∧ V (0) = 0 x 6=0 ` V >0 ∧
.
V <0 ` ∀b ∃γ>0 ∀x

(
V≤b→ Uγ(x = 0)

)
` Stab(x′ = f(x)) ∧ AttrP(x′ = f(x), true)

LyapG
E
` k2

1 ‖x‖
2
2 ≤ V ≤ k2

2 ‖x‖
2
2 ∧

.
V ≤ −2k3V

` EStabP(x′ = f(x), true)

Proof in Appendix C.1.1.

Example 5.15 (Pendulum global exponential stability). For simplicity, instantiate Example 5.7
with parameters a = 1, b = 1. �e Lyapunov function then simpli�es to V = θ2

2
+ (θ+ω)2+ω2

4
with

Lie derivative
.
V = − (θ2+ω2)

2
, which satis�es the real arithmetic inequalities θ2+ω2

4
≤ V ≤ θ2+ω2

and
.
V ≤ −1

2
V . �us, rule LyapG

E proves global exponential stability of αl with k1 = 1
2
, k2 = 1,

and k3 = 1
4
. An important caveat is that Example 5.7 used a local small angle approximation, so

this global phenomenon does not hold for a real-world pendulum (nor for αp). 4

Logical Relationships

With the proliferation of stability variations just introduced, it is useful to take stock of their
logical relationships. An important example is shown in the following corollary.

Corollary 5.16 (Exponential stability implies asymptotic stability). �e following axioms are
derivable in dL.

EStabStab EStab(x′ = f(x))→ Stab(x′ = f(x))

EStabA�r EStabP(x′ = f(x), P)→ AttrP(x′ = f(x), P)

Proof in Appendix C.1.1.

Derived axioms EStabStab, EStabA�r show that exponential stability implies asymptotic
stability. In proofs, EStabA�r allows the region of a�raction to be estimated using the region
where solutions are exponentially bounded.

127

5.3 General Stability
�is section provides stability de�nitions and proof rules that generalize stability for an equilib-
rium point from Section 5.2 to the stability of sets. �ese de�nitions are useful when the desired
stable system state(s) is not modeled by a single equilibrium point, but may instead, e.g., lie
on a periodic trajectory [89], a hyperplane, or a continuum of equilibrium points within the
state space [71]. �e generalized de�nition is used to formalize two stability notions from the
literature [71, 89] and to justify their Lyapunov function proof rules.

5.3.1 General Stability and General Attractivity
�e following general stability formula de�nes stability in dL with respect to an ODE x′ = f(x)
and formulas P,R. �e quanti�ed variables ε, δ are assumed to be fresh by bound renaming, i.e.,
do not appear in x, f(x), P or R.

StabP
R(x′ = f(x), P, R) ≡ ∀ε>0 ∃δ>0∀x

(
Uδ(P)→ [x′ = f(x)]Uε(R)

)
�is formula generalizes stability of the origin Stab(x′ = f(x)) by adding two logical tuning

knobs that can be intuitively understood as follows. �e precondition P characterizes the initial
states from which the system state is expected to be disturbed by some disturbance δ. �e
postcondition R characterizes the set of desired operating states that the system must remain
close (within the ε neighborhood of R) a�er being disturbed from its initial states.

�e general a�ractivity formula similarly generalizes AttrP(x′ = f(x), P) with a postcon-
dition R towards which the ODE solutions from initial states satisfying precondition P are
asymptotically a�racted.

AttrP
R(x′ = f(x), P, R) ≡ ∀x

(
P → Asym(x′ = f(x), R)

)
Lemma 5.17 (General Lyapunov functions). �e following Lyapunov function proof rule for
general stability with two stacked premises is derivable in dL, where formulas ∂(Uγ(R)) and Uγ(R)
characterize the topological boundary and closure of the set characterized by Uγ(R), respectively
(see Section 2.2.2 and Appendix B.1.3).

GLyap

` P → R

` ∀ε>0 ∃0<γ≤ε∃W

 ∀x (∂(Uγ(R))→ V ≥ W)∧
∃0<δ≤γ ∀x (Uδ(P)→ R ∨ V <W)∧
∀x
(
R ∨ V <W → [x′=f(x) &Uγ(R)](R ∨ V <W)

)

` StabP
R(x′=f(x), P,R)

Proof Summary (Appendix C.1.2). �e derivation of rule GLyap generalizes the ideas behind the
derivation of rule Lyap≥, where the second (lower) premise of the rule gives an (unsimpli�ed)
condition on the Lyapunov function V for proving general stability.

Rule GLyap proves general stability for precondition P and postcondition R. It generalizes
the Lyapunov function reasoning underlying rule Lyap≥ to support arbitrary pre- and postcon-
ditions. �e conjunct ∀x (∂(Uγ(R)) → V ≥ W) requires V ≥ W on the boundary of Uγ(R)

128

while the middle conjunct requires V < W for some small neighborhood of P excluding R.
�e conjunct ∀x

(
R ∨ V < W → · · ·

)
asserts that R ∨ V < W is an invariant of the ODE

within closed domain Uγ(R). �is invariance question is provably equivalent in dL to a formula
of arithmetic (Chapter 3), so the premises of rule GLyap are, in theory, even decidable by R

for a given candidate (polynomial) Lyapunov function V and for semialgebraic formulas P,R
(Section 3.2.1). In practice, it is prudent to consider specialized stability notions, for which the
premise of rule GLyap can be arithmetically simpli�ed. Proof rules for generalized a�ractivity
are also derivable for specialized instances.

5.3.2 Specialization
General stability specializes to several stability notions in the literature.

Set Stability

An important special case of StabP
R(x′ = f(x), P,R) is when the desired operating states are

exactly the states from which disturbances are expected, i.e., R ≡ P . �is leads to the notion of
set stability of the set characterized by P [71, 89]. �e following set stability de�nitions are
standard [71, 89], except (compared to the literature) the following de�nitions do not assume
any topological properties of the set characterized by formula P . �e motivation for additional
topological restrictions is explained in Corollary 5.21.

De�nition 5.18 (Set stability [71, 89]). Let dist(x, P) denote the distance of a point x ∈ Rn to
the set characterized by formula P . �e set characterized by formula P is

• stable if, for all ε>0, there exists δ>0 such that for all initial states x = x(0) with
dist(x, P) < δ, the right-maximal ODE solution x(t) : [0, T)→ Rn satis�es the distance
bound dist(x(t), P) < ε for all times 0 ≤ t < T ,

• attractive if there exists δ>0 such that for all initial states x = x(0) with dist(x, P) < δ,
the right-maximal ODE solution x(t) : [0, T)→ Rn approaches the set characterized by
P asymptotically with limt→T dist(x(t), P) = 0,

• asymptotically stable if it is stable and a�ractive, and
• globally asymptotically stable if it is stable and for all initial states x = x(0) ∈ Rn, the

right-maximal ODE solution x(t) : [0, T)→ Rn satis�es the limit limt→T dist(x(t), P)=0.

Lemma 5.19 (Set Stability in dL). For the ODE x′ = f(x), the set characterized by formula P is
i) stable, ii) a�ractive, iii) asymptotically stable, and iv) globally asymptotically stable i�
the following dL formulas are valid, respectively:

i) StabP
R(x′ = f(x), P, P),

ii) ∃δ>0 AttrP
R(x′ = f(x),Uδ(P), P),

iii) StabP
R(x′ = f(x), P, P) ∧ ∃δ>0 AttrP

R(x′ = f(x),Uδ(P), P), and

iv) StabP
R(x′ = f(x), P, P) ∧ AttrP

R(x′ = f(x), true, P).

129

Proof. Like Lemma 5.4, the correctness of these de�nitions is immediate from the semantics
of dL formulas because these de�nitions directly syntactically express the de�nitions in dL.
For ε > 0, the neighborhood formula Uε(P) characterizes the set of points x ∈ Rn within
distance ε from P , i.e., dist(x, P) < ε. Formula Asym(x′ = f(x), P) syntactically expresses the
limit limt→T dist(x(t), P) = 0 for the right-maximal ODE solution x(t) : [0, T)→ Rn in dL, as
shown in the proof of Lemma 5.4.

�e intuition for Lemma 5.19 is similar to Lemmas 5.4 and 5.13, except formula P (instead of
the origin) characterizes the set of desirable states. An application of set stability is shown in
the following example.

Example 5.20 (Tennis racket theorem [9]). �e following system of ODEs models the rotation
of a 3D rigid body [33, 71], where x1, x2, x3 are angular velocities and I1 > I2 > I3 > 0 are the
principal moments of inertia along the respective axes.

αr ≡ x′1 =
I2 − I3

I1

x2x3, x′2 =
I3 − I1

I2

x3x1, x′3 =
I1 − I2

I3

x1x2

When such a rigid object is spun or rotated on each of its axes, a well-known physical
curiosity [9] is that the rotation is stable in the �rst and third axes, whilst additional (unstable)
twisting motion is observed for the intermediate axis. Mathematically, a perfect rotation, e.g.,
about x1, corresponds to a (large) initial value for x1 with no rotation in the other axes, i.e.,
x2 = 0, x3 = 0. Accordingly the real-world observation of stability for rotations about the �rst
principal axis is explained by stability with respect to small perturbations in x2, x3, as formally
speci�ed by formula (5.3) below. Note that the set characterized by formula x2 = 0 ∧ x3 = 0 is
the entire x1 axis, not just a single point. Similarly, rotations are stable about the third principal
axis i� formula (5.4) is valid.

StabP
R(αr, x2 = 0 ∧ x3 = 0, x2 = 0 ∧ x3 = 0) (5.3)

StabP
R(αr, x1 = 0 ∧ x2 = 0, x1 = 0 ∧ x2 = 0) (5.4)

�e validity of formulas (5.3) and (5.4) are proved in Example 5.23. 4

�e formal speci�cation of set stability yields three provable logical consequences which are
important stepping stones for the set stability proof rules.

Corollary 5.21 (Set stability properties). �e following axioms are derivable in dL. In ax-
iom SClosure, formula P characterizes the topological closure of formula P (see Section 2.2.2
and Appendix B.1.3). In axiom SClosed, formula P characterizes a closed set.

SetSA�r StabP
R(x′ = f(x), P, P)→

(
Asym(x′ = f(x), P)↔ ∀ε>0 〈x′ = f(x)〉 Uε(P)

)
SClosure StabP

R(x′ = f(x), P, P)↔ StabP
R(x′ = f(x), P , P)

SClosed StabP
R(x′ = f(x), P, P)→ ∀x

(
P → [x′ = f(x)]P

)
Proof in Appendix C.1.2.

130

Axiom SetSA�r generalizes SA�r and provides a syntactic simpli�cation of the region of
a�raction for formula P when P is stable. Axiom SClosure says that stability of P is equivalent
to stability of its closure P , because for any perturbation δ > 0, the neighborhoods Uδ(P) and
Uδ(P) are provably equivalent in real arithmetic. Axiom SClosed says that for closed formulas
P , invariance of P is a necessary condition for stability of P . Without loss of generality, it
su�ces to develop proof rules for stability of formulas characterizing closed (using SClosure)
and invariant (using SClosed) sets. Indeed, standard de�nitions of set stability [71, 89] usually
assume that the set of concern is closed and invariant.

Lemma 5.22 (Set stability Lyapunov functions). �e following Lyapunov function proof rules for
set stability are derivable in dL. In derived rules SLyap≥ and SLyap>, formula P characterizes a
compact (i.e., closed and bounded) set. In derived rule SLyap∗≥, the two premises are stacked and
there are no topological restrictions on formula P .

SLyap≥
P ` [x′ = f(x)]P ¬P ` V > 0 ∧

.
V ≤ 0 ∂P ` V ≤ 0

` StabP
R(x′ = f(x), P, P)

SLyap>
P ` [x′ = f(x)]P ¬P ` V > 0 ∧

.
V < 0 ∂P ` V ≤ 0

` StabP
R(x′ = f(x), P, P) ∧ ∃δ>0 AttrP

R(x′ = f(x),Uδ(P), P)

SLyap∗≥

P ` [x′ = f(x)]P

` ∀ε>0∃0<γ≤ε

 ∃W
(
∀x (∂(Uγ(P))→ V ≥ W)∧
∃0<δ≤γ ∀x (Uδ(P) ∧ ¬P → V < W)

)
∧

∀x (Uγ(P) ∧ ¬P →
.
V ≤ 0)

` StabP

R(x′ = f(x), P, P)

Proof in Appendix C.1.2.

All three proof rules have the necessary premise P ` [x′ = f(x)]P which says that for-
mula P is an invariant of the ODE x′ = f(x). Rules SLyap≥, SLyap> are slight generaliza-
tions of Lyapunov function proof rules for set stability [71] and they respectively generalize
rules Lyap≥, Lyap> to prove stability for an invariant P . Importantly, both rules assume that P
characterizes a compact, i.e., closed and bounded set, which simpli�es the arithmetical condi-
tions on V in their premises. �e rule without the boundedness requirement on P suggested
in the remark a�er [89, De�nition 8.1], is unsound, see Counterexample C.2. For asymptotic
stability (in rule SLyap>), boundedness also guarantees that perturbed ODE solutions always
exist for su�cient duration, which is a fundamental step in the ODE liveness proofs (Section 4.3).
Rule SLyap∗≥ is derived from rule GLyap using invariance of P by the �rst premise; it provides
a means of formally proving the set stability properties (5.3) and (5.4) from Example 5.20.

Example 5.23 (Stability of rigid body motion). �e proof for (5.3) uses the Lyapunov function
V = 1

2
(I1−I2

I3
x2

2 − I3−I1
I2

x2
3), whose Lie derivative is

.
V = 0, and rule SLyap∗≥ with formula P ≡

x2 = 0 ∧ x3 = 0. �e proof for (5.4) is symmetric. For the top premise of rule SLyap∗≥, formula
P is a provable invariant of the ODE αr by DRI. �e bo�om premise, although arithmetically
complicated, can be simpli�ed by choosing γ = ε and deciding the resulting formula by R.

131

Recall that the x1 axis is not a compact set so neither of the standard proof rules for set
stability SLyap≥, SLyap> would be sound for this proof. 4

Epsilon-Stability

Motivated by numerical robustness of proofs of stability, Gao et al. [61] de�ne ε-stability for
ODEs as follows, except the �rst quanti�cation over γ > ε below is strict whereas in the original
de�nition [61] it is γ ≥ ε. �is di�erence is immaterial for the purpose of ε-stability as ε is
a numerical parameter for the radius of a ball around which disturbances to the origin are to
be ignored. In particular, an ODE is ε-stable by the following de�nition is αε-stable for any
α ∈ (0, 1) by its original de�nition [61].

De�nition 5.24 (Epsilon-Stability [61]). �e origin 0 ∈ Rn of ODE x′ = f(x) is ε-stable for
a positive constant ε > 0 if, for all γ > ε, there exists δ > 0 such that for points x = x(0)
with ‖x‖2 < δ, the right-maximal ODE solution x(t) : [0, T) → Rn satis�es the norm bound
‖x(t)‖2 < γ for all times 0 ≤ t < T .

Lemma 5.25 (ε-Stability in dL). �e origin of ODE x′ = f(x) is ε-stable for constant ε > 0 i�
the dL formula StabP

R(x′ = f(x), x = 0,Uε(x = 0)) is valid.

Proof. �e formula StabP
R(x′ = f(x), x = 0,Uε(x = 0)) is valid i� for all γ > 0, there

exists δ > 0 such that for points x = x(0) with ‖x‖2 < δ, the right-maximal ODE solution
x(t) : [0, T)→ Rn satis�es ‖x(t)‖2 < ε+ γ for all times 0 ≤ t < T , where the neighborhood
Uγ(Uε(x = 0)) is equivalently characterized by ‖x‖2

2 < γ + ε. �is unfolded semantics is
equivalent to the mathematical de�nition of ε-stability in Def. 5.24 by reindexing the universal
quanti�er with γ 7→ γ + ε instead.

Unlike set stability, ε-stability is an instance of general stability where the pre- and post-
conditions di�er. In ε-stability, systems are perturbed from the precondition x = 0 (the origin),
but the postcondition enlarges the set of desired states to a ε > 0 neighborhood of the origin,
which is considered indistinguishable from the origin itself [61]. An immediate consequence
of Lemma 5.25 is that rule GLyap can be used to prove ε-stability, as shown in the next section.

5.4 Stability in KeYmaera X

�is section puts the dL stability speci�cations and derivations from the preceding sections
into practice through proofs for several case studies in the KeYmaera X theorem prover [54].4
Examples 5.7, 5.15, 5.20, 5.23 have also been formalized. �e insights from these proofs are
discussed a�er an overview of the case studies.

4See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/ODE.
Git hash: c856fddb383232adbd86679ef65567f9b90190bf

132

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/ODE

Inverted Pendulum. �e stability of the resting state of the pendulum is investigated in
Examples 5.7 and 5.15. For the inverted pendulum αi from (5.2), the controlled torque u(θ, ω)
must be designed and rigorously proved to ensure feedback stabilization [89] of the inverted po-
sition. A standard PD (Proportional-Derivative) feedback controller can be used for stabilization,
where the continuous control input has the form u(θ, ω) = k1θ + k2ω for tuning parameters
k1, k2, based on the values of the state variables θ (proportional term) and ω (derivative term).
Asymptotic stability of the inverted position is achieved for any control parameter choice where
k1 > a and k2 > −b. �e sequent a > 0, b ≥ 0, k1 > a, k2 > −b ` AStab(αi) is proved in
KeYmaera X using the Lyapunov function (k1−a)θ2

2
+ ((b+k2)θ+ω)2+ω2

4
.

Frictional Tennis Racket�eorem. �e stability of a 3D rigid body is investigated for αr in
Examples 5.20 and 5.23. �e following ODEs model additional frictional forces that oppose the
rotational motion in each axis of the rigid body, where α1, α2, α3 > 0 are coe�cients of friction:

αf ≡ x′1 =
I2 − I3

I1

x2x3 − α1x1, x
′
2 =

I3 − I1

I2

x3x1 − α2x2, x
′
3 =

I1 − I2

I3

x1x2 − α3x3

In the presence of friction, rotations of the rigid body are globally asymptotically stable in
the �rst and third principal axes, as proved in KeYmaera X.

Γ ≡ I1 > I2, I2 > I3, I3 > 0, α1 > 0, α2 > 0, α3 > 0

Γ ` StabP
R(αf , x2 = 0 ∧ x3 = 0, x2 = 0 ∧ x3 = 0) ∧ AttrP

R(αf , true, x2 = 0 ∧ x3 = 0)

Γ ` StabP
R(αf , x1 = 0 ∧ x2 = 0, x1 = 0 ∧ x2 = 0) ∧ AttrP

R(αf , true, x1 = 0 ∧ x2 = 0)

Both asymptotic stability properties are proved using SLyap∗≥ and the liveness property
(Chapter 4) that the kinetic energy I1x

2
1 + I2x

2
2 + I3x

2
3 of the system tends to zero over time.

�e la�er property implies that solutions of αf exist globally and that the values of x1, x2, x3

asymptotically tend to zero, which proves global asymptotic stability with the aid of SetSA�r.
Even though a proof rule for (global) asymptotic stability of general nonlinear ODEs and
unbounded sets is not available (Section 5.3), this example shows that formalized stability
properties can still be proved on a case-by-case basis using dL’s ODE reasoning principles.

x

(1 + x)2(1− x)

−1 1

Attractive but Unstable System. Consider the ODE
αu ≡ x′ = (1 + x)2(1− x) which has equilibrium points
at x = ±1 as visualized on the right. �e set characterized
by formula P ≡ x = 1 ∨ x = −1 is globally a�ractive but
not stable, i.e., the formulas AttrP

R(x′ = f(x), true, P) and
¬StabP

R(x′ = f(x), P, P) are valid. Intuitively, all points
to the le� of x = −1 are a�racted towards the blue equilibrium point while all other points are
a�racted to the red equilibrium point. However, the set consisting of both equilibria is not set
stable because states arbitrarily close to the right of the blue point are a�racted towards the
red point, so those points a�ain a maximal distance of 1 from both equilibria at x = 0 (un�lled
black square). �e proof of global a�ractivity in KeYmaera X follows the above intuition by case
spli�ing on x ≤ −1 ∨ −1 < x < 1 ∨ x ≥ 1. �e proof of instability shows that points close to
the right of x = −1 eventually reach x = 0 (violating set stability) on their way towards x = 1.

133

Table 5.1: Proof statistics for ODE stability properties proved in Section 5.4. Examples 5–11
refer to the correspondingly numbered examples from Ahmed et al. [3]. “Dim.” is the number
of continuously evolving state variables in the ODEs; “Param.” is the number of parameters
(non-state variables) in the stability speci�cation; “Deg.” is the maximum degree of polynomials
with respect to the state variables in the ODEs; “Tactic Steps” counts the number of (manual)
user proof steps; and “Proof Time” measures the time taken (in seconds, averaged over 5 runs,
rounded to 3 decimal places) for the proof to execute in KeYmaera X.

Stability Property Dim. Param. Deg. Tactic Steps Proof Time (s)
Example 5.7 2 2 1 119 6.757
Example 5.15 2 2 1 20 4.533
Inverted Pendulum 2 4 1 119 31.427
Examples 5.20 and Example 5.23 3 3 2 58 5.801
Frictional Tennis Racket �eorem 3 6 2 162 11.919
A�ractive but Unstable System 1 0 3 93 21.911
Moore-Greitzer Jet Engine [61] 2 0 3 34 6.258
Ahmed et al. [3, Example 5] 6 0 3 86 26.440
Ahmed et al. [3, Example 6] 2 0 3 31 0.673
Ahmed et al. [3, Example 7] 3 0 3 33 1.835
Ahmed et al. [3, Example 8] 2 0 5 31 0.978
Ahmed et al. [3, Example 9] 4 0 3 54 4.694
Ahmed et al. [3, Example 10] 2 1 1 31 1.126
Ahmed et al. [3, Example 11] 2 4 3 31 11.460

Moore-Greitzer Jet Engine [61]. �e origin of the ODE modeling a simpli�ed jet engine
αm ≡ x′1 = −x2 − 3

2
x2

1 − 1
2
x3

1, x
′
2 = 3x1 − x2 is ε-stable for ε = 10−10 [61]. �e sequent

ε = 10−10 ` StabP
R(αm, x

2
1 + x2

2 = 0, x2
1 + x2

2 < ε2) is proved in KeYmaera X. �e key proof
ingredients are a ε-Lyapunov function which can be automatically generated [61] and manual
arithmetic steps, e.g., instantiating existential quanti�ers appearing in the speci�cation of
ε-stability with appropriate values [61].

Other Examples [3]. Stability for several ODEs with Lyapunov functions generated by an
inductive synthesis technique [3, Examples 5–11] were successfully veri�ed in KeYmaera X.
�e proof for the largest, 6-dim. nonlinear ODE [3, Example 5] required substantial manual
arithmetic reasoning in KeYmaera X.5 �e arithmetical conditions in [3, Equation 1] are identical
to the premises of rule Lyap≥ except [3, Equation 1] unsoundly omits the condition V (0) = 0,
see Counterexample C.3. �e generated Lyapunov functions remain correct because the inductive
synthesis technique [3] implicitly guarantees this omi�ed condition.

5�e Lyapunov function as given in [3, Example 5] does not work for its associated ODE. It works if the ODE is
corrected with ẋ1 = −x31 + 4x32 − 6x3x4, as in the literature [130].

134

Summary. �ese case studies demonstrate the feasibility of carrying out proofs of various
(advanced) stability properties within KeYmaera X using this chapter’s stability speci�cations.
Table 5.1 provides a summary of statistics from these proofs, where all experiments were run
on an Ubuntu 18.04 laptop with a 2.70 GHz Intel Core i7-6820HQ CPU and 16GB memory. �e
proofs share similar high-level proof structure, which suggests that proof automation could
signi�cantly reduce proof e�ort [55]. Such automation should also support user input of key
insights for di�cult reasoning steps, e.g., real arithmetic reasoning with nested, alternating
quanti�ers. �ese insights are used in the implementation of (more general) switched system
stability automation in Chapter 6.

5.5 Input-to-State Stability
�is chapter has, thus far, focused on stability of ODEs with respect to perturbations of the system
state. �is section takes a brief detour to examine stability properties of ODEs under perturbations
of the system dynamics, e.g., for a system under continuous feedback control, the system designer
may wish to account for noisy or unexpected perturbations to the continuous inputs, in addition
to state disturbances. A key barrier to formalizing stability under continuous perturbations
using ODEs in dL, i.e., without extensions like di�erential games [143] or di�erential-algebraic
programs [137], is those properties o�en need higher-order quanti�cation over functions that
model perturbations of ODEs. As an example, consider the notion of input-to-state stability [71,
89, 181, 182] for an ODE x′ = f(x, u(t)) with time-dependent control u(t) de�ned below.

De�nition 5.26 (Input-to-state stability [71, 89, 181, 182]). �e ODE x′ = f(x, u(t)) with
time-dependent input u(t) and f(0, 0) = 0 is input-to-state stable i�

• the unforced ODE (with 0 input) x′ = f(x, 0) is globally asymptotically stable and
• the ODE x′ = f(x, u(t)) has the asymptotic gain property, i.e., for all E > 0, there

exists ∆ > 0, such that for all bounded functions u(t) with supremum norm ‖u(t)‖∞ ≤ ∆
and for all x = x(0), the right-maximal ODE solution x(t) : [0, T) → Rn satis�es
lim supt→T ‖x(t)‖ ≤ E.

�e notion of input-to-state stability says that, without the forcing perturbation u(t), the
ODE x′ = f(x, 0) has the usual asymptotic stability with respect to perturbations of the system
state at the origin. In addition, for a bounded perturbation modeled by function u(t), the ODE
remains asymptotically close to a ball around the origin with radius dependent on the magnitude
of the perturbing input. In particular, su�ciently small bounded perturbations to the continuous
dynamics cannot force the system arbitrarily far from the origin. Note that Def. 5.26 di�ers
slightly from the controls literature [71, 89, 181, 182] for uniformity with the rest of this chapter.
It is common to de�ne input-to-state stability using so-called comparison functions, see the
literature [182, Section A]. �e de�nition of input-to-state stability as a combination of global
asymptotic stability and asymptotic gain is one of many mathematically equivalent de�nitions
of input-to-state stability, as shown by Sontag and Wang [182, �eorem 1].

Turning to dL speci�cation, by Lemma 5.13, global asymptotic stability of x′ = f(x, 0) is
speci�ed by the formula Stab(x′ = f(x, 0)) ∧ AttrP(x′ = f(x, 0), true). �e asymptotic gain

135

property, however, presents a challenge because the �rst-order quanti�er syntax ∀x /∃x in
dL can only directly quantify over real numbers x. �e following “formula” almost captures
the de�nition of asymptotic gain, where the required asymptotic bound on the norm of x(t)
is expressed by formula Asym({x′ = f(x, u(t)), t′ = 1},UE(x = 0)) from Lemma 5.4. How-
ever, the “formula” is not syntactically allowed in dL because it uses higher-order (dependent)
quanti�cation over all ∆-bounded functions u, as highlighted in red.

∀E>0∃∆>0∀‖u‖∞≤∆∀x (Asym({x′ = f(x, u(t)), t′ = 1},UE(x = 0)))

An alternative is to use dynamical extensions of dL that can express continuous perturbations
directly. For example, with the di�erential game [143] {x′ = f(x, u)&d ‖u‖∞ ≤ ∆}, where the
input u is modeled by a continuous adversary that is constrained to output values u within the
domain ‖u‖∞ ≤ ∆, or the di�erential-algebraic program [137] {∃ux′ = f(x, u) ∧ ‖u‖∞ ≤ ∆},
which models an input u that is chosen nondeterministically at each (continuous) time instant.

�e base hybrid program language (without extensions) can be used to directly model
some sub-classes of perturbations u(t). As a preview of Chapter 6, consider the case where
the perturbations are piecewise constant, so they discretely switch between di�erent values
on each time interval. Formally, the perturbations u(t) of interest are restricted to piecewise
constant functions with �nitely many pieces on each �nite time interval, so each u(t) is de�ned
by a sequence of switching times 0 = τ0 < τ1 < τ2 < . . . with τi → ∞ and a sequence
p1, p2, · · · ∈ R, such that u(t) = pi for all τi−1 ≤ t ≤ τi, 1 ≤ i. �e looping hybrid program
αpiece below nondeterministically chooses a value with ‖u‖∞ ≤ ∆ on each loop iteration, and
then follows the ODE x′ = f(x, u) for a nondeterministic duration.

αpiece ≡ (u := ∗; ? ‖u‖∞ ≤ ∆;x′ = f(x, u))
∗ (5.5)

Proposition 5.27. A state is reachable by hybrid program αpiece i� it is reachable in �nite
time by the time-dependent ODE x′ = f(x, u(t)) for some piecewise constant function u(t) with
‖u(t)‖∞ ≤ ∆,∆ ∈ R and �nitely many pieces on each �nite time interval.

Proof Summary (Appendix D.1.1). �e full proof is deferred to Chapter 6 because it is similar to
the proofs of the adequacy theorems for switched systems in that chapter. In the “⇒” direction,
a piecewise constant function u(t) is constructed from the sequence of choices for u := ∗ from
the semantics of the loop in αpiece. In the “⇐” direction, a trace of hybrid program αpiece is
constructed from the de�ning sequences 0 = τ0 < τ1 < τ2 < . . . and p1, p2, · · · ∈ R for u(t),
where each time interval [τi, τi+1] corresponds to one loop iteration in αpiece.

�anks to Proposition 5.27, the box modality formula [αpiece]P expresses that for piecewise
constant u(t) (bounded with ‖u(t)‖∞ ≤ ∆), the solution of ODE x′ = f(x, u(t)) satis�es
postconditionP at all times. Hence, safety properties of ODEs with piecewise constant (bounded)
perturbations can be speci�ed and reasoned about in dL. Hybrid program models for other
switching mechanisms and their corresponding safety (and stability) speci�cations are explained
in more detail in Chapter 6.

Dually, the diamond modality formula 〈αpiece〉P expresses that for some piecewise con-
stant perturbations u(t), the solution of ODE x′ = f(x, u(t)) eventually satis�es postcondi-
tion P . �is leads to an important subtlety for stability speci�cation because the formula

136

∀ε>0 〈αpiece〉[αpiece]Uε(P) (similar to Lemma 5.4) characterizes that αpiece asymptotically ap-
proaches P for all u(t) with some (in red) piecewise constant pre�x. A similar subtlety arises
for the di�erential game {x′ = f(x, u)&d ‖u‖∞ ≤ ∆} and di�erential-algebraic program
{∃ux′ = f(x, u) ∧ ‖u‖∞ ≤ ∆} discussed above, where, intuitively, the quanti�cation over
all or some adversarial choice (or nondeterministic input ∃u · · ·) depends on the modality
in which the game appears (or di�erential-algebraic program) [143]. �e question of how to
specify asymptotic gain for these models is subtle and le� out of scope for this thesis. Neverthe-
less, Chapter 6 shows how to sidestep these subtleties for switched systems using the notion
of pre-a�ractivity from the controls literature [65, 66] which is speci�ed as a quanti�ed safety
property of switched system models.

5.6 Related Work
Stability is a fundamental property of interest across many di�erent �elds of mathematics [33,
77, 98, 153, 165, 187] and engineering [71, 89, 99]. �is related work discussion focuses on formal
approaches to stability of ODEs.

Logical Speci�cation of Stability. Rouche et al. [165] provide a pioneering example of
using logical notation to specify and classify stability properties of ODEs. Alternative logical
frameworks have also been used to specify stability and related properties: stability is expressed
in HyperSTL [123] as a hyperproperty relating the trace of an ODE against two constant traces;
ε-stability is studied in the context of δ-complete reasoning over the reals [61]; region stability for
hybrid systems [151] is discussed using CTL*; the syntactic speci�cation of Asym(x′ = f(x), P)
resembles the limit de�nition using �lters [78]. �is chapter uses dL as a sweet spot logical
framework, general enough to specify various stability properties of interest, e.g., asymptotic or
exponential stability, and the stability of sets, while simultaneously enabling syntactic, formal
proofs of those properties within the logic.

Formal Veri�cation of Stability. �ere is a vast literature on �nding Lyapunov functions
for stability, e.g., through numerical [130, 131, 200] and algebraic methods [49, 104]. Formal ap-
proaches are o�en based on �nding Lyapunov function candidates and certifying the correctness
of those generated candidates [3, 61, 88, 170]. �is chapter’s approach directly proves stability
speci�cations by step-by-step derivation using dL’s parsimonious axiomatization [139, 142, 144],
which goes beyond certi�cation of arithmetic conditions on Lyapunov functions that imply
stability. �is dL formalization yields logical insights into relationships between stability proper-
ties (e.g., Section 5.2.4 and Corollary 5.21). Furthermore, the practical application of the stability
derivations in KeYmaera X [54, 142] enables highly trustworthy certi�cation of Lyapunov
function candidates generated by the aforementioned approaches (Section 5.4). Sections 5.3
and 5.4 also show that this chapter’s approach supports veri�cation of advanced stability prop-
erties [61, 71, 89] within the same dL framework. New stability proof rules like GLyap can also
be soundly and syntactically justi�ed in dL without the need for (low-level) semantic reason-
ing about the underlying ODE mathematics. As an example of the la�er, semantic approach,

137

LaSalle’s invariance principle is formalized in Coq [37] and used to verify the correctness of an
inverted pendulum controller [166].

5.7 Discussion
George Box’s famous quote—“All models are wrong, but some are useful”—is an important
adage to keep in mind whenever one is working with a model of a real-world system. Proofs
of stability for a model give increased con�dence that conclusions drawn about that model
are useful because the models are su�ciently robust to real-world deviations. Such proofs are
especially important for justifying the correctness of control systems which must be designed
to operate robustly in the presence of real-world perturbations. �is chapter shows how ODE
stability can be formalized in dL using the key idea that stability properties are ∀ /∃ -quanti�ed
dynamical formulas. �ese speci�cations, their proof rules, and their logical relationships are all
syntactically derived from dL’s sound proof calculus, which enables trustworthy KeYmaera X
proofs that rigorously verify every step in an ODE stability argument, from arithmetical premises
down to dynamical reasoning for ODEs. Of course, the same adage applies to hybrid system
models of CPSs, which must also exhibit stability from both modeling and control perspectives.
�e next chapter begins the exploration of hybrid system stability by extending the ideas and
derivations of this chapter to systems that discretely switch between a family of ODEs.

138

Chapter 6

Stability for Switched Systems

�is chapter applies the safety, liveness, and stability results for ordinary di�erential equa-
tions (ODEs) from the preceding chapters to deductive veri�cation for switched systems. Dis-
crete switching between continuous controllers is a simple yet powerful hybrid control design
paradigm, but switched systems are known to exhibit subtle (in)stability behaviors so system de-
signers must carefully analyze the stability of closed-loop systems that arise from their proposed
switching control laws. �is chapter begins by modeling various classes of switched systems
as looping hybrid programs so that safety and liveness properties for switched systems can
be compositionally veri�ed by combining dL’s hybrid program reasoning principles with the
ODE safety and liveness reasoning developed in Chapters 3 and 4. Deductive proofs of switched
system stability for those models further blend classical ideas from the controls and veri�cation
literature using dL: from controls, the approach uses standard stability notions for various
classes of switching mechanisms and their corresponding Lyapunov function-based analysis
techniques; from veri�cation, ODE invariants underlying stability proofs from Chapter 5 are
li�ed to switched systems by identifying appropriate loop invariants for each switching mecha-
nism, i.e., properties that are preserved across every switching loop iteration for their respective
looping hybrid program models. �is blend of ideas enables a trustworthy implementation
of switched system stability veri�cation in KeYmaera X, providing fully automated stability
proofs for standard classes of switching mechanisms. �e generality of the dL approach also
allows for veri�cation of switching control laws that require non-standard stability arguments
by modifying loop invariants to suitably express speci�c intuitions behind those control laws.
�is �exibility is demonstrated on several case studies drawn from the literature.

6.1 Introduction
�e study of hybrid systems, i.e., mathematical models that combine discrete and continuous
dynamics, is motivated by the need to understand the hybrid dynamics present in many real-
world systems [6, 28, 45, 66, 75, 144] (see Chapter 1). Various formalisms can be used to describe
hybrid systems, for example, impulsive di�erential equations [72]; switched systems [99, 189];
hybrid time combinations of discrete and continuous dynamics [65, 66]; hybrid automata [75];
and language-based models [45, 135, 144, 164, 188, 208, 213]. �ese formalisms di�er in their

139

generality and in how the discrete-continuous dynamical combination is modeled, e.g., ranging
from di�erential equations with discontinuous right-hand sides, to combinators that piece
together discrete and continuous programs. Consequently, di�erent formalisms may be be�er
suited for di�erent hybrid system applications and it is worthwhile to explore connections
between di�erent formalisms in order to exploit their various strengths for a given application.
�is chapter investigates the connection between switched systems and dL’s hybrid programs.

A switched system consists of a family of continuous ODEs together with a discrete switching
signal which prescribes the active ODE that the system follows at each time. Switched systems
provide a powerful mathematical paradigm for the design and analysis of discontinuous (or
nondi�erentiable) control mechanisms [43, 99, 118, 189]. Examples of such mechanisms include:
bang-bang controllers that switch between on/o� modes; gain schedulers that switch between a
family of locally valid linear controllers; and supervisory control, where a supervisor switches
between candidate continuous controllers based on logical criteria [99, 118]. Switching con-
trol laws can be used to stabilize systems that cannot otherwise be stabilized by continuous
feedback control [99] (see Section 6.5.3). However, switched systems are known to exhibit
subtle (in)stability behaviors—recall Fig. 1.4 (page 6) which shows that switching between stable
subsystems can lead to instability [99]—so it is important for system designers to adequately
justify the stability of their proposed switching designs.

Hybrid programs model hybrid dynamics by combining discrete programming constructs
with continuous ODEs (see Section 2.1.3). �is combination yields a rich and �exible language for
describing hybrid systems, e.g., with event- or time-triggered design paradigms [144]. Section 6.2
shows how various classes of switched systems can be fruitfully modeled using looping hybrid
programs, as illustrated by the following snippet. �e switching loop body runs a discrete
controller u := ctrl(x) which selects a mode u, followed by the continuous plant x′ = fu(x)
which evolves according to the selected mode.

{ u := ctrl(x); // switching controller (discrete dynamics)
x′ = fu(x) // actuate decision (continuous dynamics) (6.1)

}∗@invariant(…) // switching loop with invariant annotation

�ese models enable sound and compositional veri�cation of switched systems in dL, e.g.,
the completeness results for ODE invariants from Chapter 3 are generalized to switched systems,
yielding an e�ective technique for proving switched system safety. Subtleties associated with
those models are also investigated, along with methods for detecting and avoiding those pitfalls.

Section 6.3 develops stability proofs for various classes of switching mechanisms using their
hybrid program models. �e key insight is that control-theoretic stability arguments for switch-
ing control can be formally justi�ed by blending techniques from discrete program veri�cation
with analysis of continuous di�erential equations using dL. Similar to Chapter 5, switched system
stability is speci�ed by nesting dL’s �rst-order quanti�cation with its dynamic modalities, with
the added twist that the speci�cations must quantify over all switching behaviors of the system.
�e resulting speci�cations are proved by combining fundamental ideas from veri�cation and
control, namely: i) identi�cation of appropriate loop invariants, @invariant in (6.1), i.e., proper-
ties of the (discrete) switching loop that are preserved across all executions of the loop body,
ii) compositional veri�cation for separately analyzing the discrete u := ctrl(x) and continuous

140

x′ = fu(x) dynamics of the loop body, and iii) Lyapunov functions, i.e., auxiliary energy func-
tions that enable stability analysis for the continuous dynamics. Crucially, these stability proofs
are syntactically derived from dL’s sound foundations for hybrid program reasoning [142, 144],
without the need to introduce new mathematical concepts such as non-classical weak solutions
or nondi�erentiable Lyapunov functions [39, 65]. �e remaining practical challenge is how to
(automatically) �nd suitable Lyapunov function candidates for a given switching mechanism;
the correctness of any generated candidates can be soundly checked in dL.

Section 6.4 adds support for switched systems to KeYmaera X [54], including a modeling in-
terface for switched systems, sum-of-squares search for Lyapunov function candidates [129, 154],
and fully automatic veri�cation of stability speci�cations for standard switching mechanisms.
Notably, the implementation requires no extensions to KeYmaera X’s soundness-critical core and
thereby directly inherits all of KeYmaera X’s correctness guarantees [54, 115]. �is trustwor-
thiness is necessary for computer-aided veri�cation of complex switching designs because the
number of correctness conditions on their Lyapunov functions scales quadratically with the
number of switching modes (Section 6.3.3), making pen-and-paper proofs potentially error-prone
or infeasible. Section 6.5 further applies the deductive approach on three case studies, chosen
because each require subtle twists to standard switched system stability arguments.

• Longitudinal �ight control [26]: �is model is parametric (5 parameters, 2 state variables)
and its stability justi�cation due to Branicky uses a “noncustomary” Lyapunov function [26,
43] with intricate arithmetic reasoning. �e proof uses ghost switching, where virtual
switching modes are introduced for the sake of stability analysis, analogous to the use of
ghost variables in program veri�cation [127] or in proofs for ODEs (Chapters 3 and 4).

• Automatic cruise control [126]: �is hybrid automaton features switching between several
modes based on speci�c guard conditions: standard/emergency braking, accelerating, and
PI control. Lyapunov function candidates can be numerically generated with existing
tools, e.g., Stabhyli [116], but the results must be corrected for soundness.

• Brocke�’s nonholonomic integrator [29]: A large class of control systems can be trans-
formed to the nonholonomic integrator but this system is not stabilizable by continuous
feedback [29, 99]. �e stability argument must account for an initial control mode that
drives the system into a suitable region before a stabilizing control law can be applied.

�ese case studies are veri�ed semi-automatically in KeYmaera X, with user guidance to
design and prove modi�ed loop invariants that suitably capture the speci�c intuitions behind
their respective control laws. �e �exibility and generality of the deductive approach enables
such (modi�ed) stability arguments, while ensuring that every step in the argument remains
rigorously justi�ed using sound dL logical foundations.

Reminder (Extended Term Language). �is chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the
dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. �e material for this chapter is drawn from Tan and Platzer [193] and from Tan
et al. [196].

141

A) x := e;x′ = f(x)

B) x′=f(x) ∪ x′=g(x)

C.i) ?Q (true) C.ii) ?Q (false)

D) (Guarded) state-dependent
switchingt = 0

t = 1

t = 2
t ≥ τ

E) Time-dependent switching

F) Controlled
switching

G) α∗

Figure 6.1: �e green initial state evolves according to a hybrid program featuring (clockwise
from top): A) a discrete assignment (dashed line) followed sequentially by continuous ODE
evolution (solid line); B) a choice between two ODEs; C) a test that aborts (red ×) system
evolutions leaving Q; D) switching when the system state crosses the thick blue switching
surface; E) switching a�er time t ≥ τ has elapsed; F) switching control that is designed to drive
the system state close to its initial position; and G) a loop that repeats system evolution.

6.2 Switched Systems as Hybrid Programs
�is section explains how hybrid programs are used to model various classes of switching
mechanisms. Following the nomenclature from Liberzon [99], these mechanisms can be broadly
categorized into: autonomous switching (Section 6.2.2), i.e., without an explicit control logic [28,
99] and controlled switching (Section 6.2.3), like (6.1) where a discrete controller u := ctrl(x)
decides the ODE x′ = fu(x) to switch to on each switching loop iteration. �e evolution of
various switching mechanisms and hybrid programs are illustrated in Fig. 6.1.

6.2.1 Mathematical Preliminaries
Switching phenomena can either be modeled explicitly as a function of time, or implicitly,
e.g., as a state predicate, depending on the real-world switching mechanism being modeled.
Mathematically, a switched system is described by the following data:

1. an open, connected set D ⊆ Rn which is the state space of interest for the system,

2. a �nite (non-empty) family P of ODEs x′ = fp(x) for modes p ∈ P , and,

3. for each initial state ω ∈ D, a set of switching signals σ : [0,∞)→ P prescribing the ODE
x′ = fσ(t)(x) to follow at time t for the system’s evolution from ω.

Switching signals σ : [0,∞)→ P are always assumed to be well-de�ned [99, 189], i.e., every
σ has �nitely many discontinuities on each �nite time interval in its domain [0,∞), so that
they model physically realizable switching. For �nite P , this means σ is a piecewise constant
function with �nitely many pieces on each �nite time interval where, σ prescribes a mode

142

p ∈ P to switch to on each piece. For simplicity, σ is also assumed to be right-continuous [66],
so for neighboring discontinuities at times a < b, σ has a constant value on the interval [a, b)
and its value changes at time b. With these assumptions, switching signals are equivalently
de�ned by a sequence of switching times 0 = τ0 < τ1 < τ2 < . . . with τi →∞ and a sequence
p1, p2, · · · ∈ P where pi for i ≥ 1 speci�es the value taken by σ on the time interval [τi−1, τi):

σ(t) =

p1 if τ0 ≤ t < τ1

p2 if τ1 ≤ t < τ2

· · ·
pi if τi−1 ≤ t < τi

(6.2)

For a switching signal σ and initial state ω ∈ Rn, the solution ϕ of the switched system is
the function generated inductively on the sequences τi and pi as follows. De�ne ϕ(0) = ω. For
switching time τi with i ≥ 1, if ϕ is de�ned at time τi−1, then the de�nition of ϕ is extended by
considering the unique, right-maximal solution to the ODE x′ = fpi(x) starting fromϕ(τi−1) [33],
i.e., ψi : [0, ζi)→ Rn withψi(0) = ϕ(τi−1), dψi(t)

dt = fpi(ψi(t)), and 0 < ζi ≤ ∞. If ζi ≤ τi−τi−1,
then the system blows up before reaching the next switching time τi, so de�ne ϕ(τi−1 +t) = ψi(t)
on the bounded time interval t ∈ [0, ζi). Otherwise, ζi > τi−τi−1, then de�neϕ(τi−1+t) = ψi(t)
on the time interval t ∈ [0, τi − τi−1]. �is inductive construction uniquely de�nes a solution
ϕ : [0, ζ)→ Rn associated with ω and σ for (right-maximal) time ζ > 0. �e switched system
reaches ϕ(t) at time t ∈ [0, ζ). When the system is associated with a family of domains Qp,
p ∈ P , the switched system reaches ϕ(t) while obeying the domains i� for all i ≥ 1 and time
γ ∈ [τi−1, τi] ∩ [0, t], the state ϕ(γ) satis�es Qpi . �e truncated solution ϕ : [0, Tϕ] → Rn for
Tϕ < ζ is domain-obeying if the system obeys the domains for all times t ∈ [0, Tϕ].

For simplicity, this chapter assumes that the state space is D = Rn. More general de�nitions
of switched systems are possible but are le� out of scope [99]. For example, P can more generally
be an (uncountably) in�nite family, like αpiece from Proposition 5.27, and some switched systems
may have impulse e�ects where the system state is allowed to make instantaneous, discontinuous
jumps during the system’s evolution, such as the dashed jump in part A of Fig. 6.1.

6.2.2 Autonomous Switching
�is section examines hybrid program models of autonomous switching mechanisms; these
models are syntactically simpler in the sense that they do not need an explicit program to model
their switching control logics [28, 99]. Nevertheless, models of these switching mechanisms
are useful because they can be used to describe real-world systems where discrete switching
behaviors occur nondeterministically outside of the system designer’s control [99]. Safety proofs
for these models account for all nondeterministic switching behaviors.

Arbitrary Switching

Real world systems can exhibit switching behaviors that are uncontrolled, a priori unknown,
or too complicated to describe succinctly in a model. For example, a driving vehicle may
encounter several di�erent road conditions depending on the time of day, weather, and other

143

unpredictable factors—given the multitude of combinations to consider, it is desirable to have a
single model that exhibits and switches between all of those road conditions without needing
explicit descriptions of exactly when and how switching between di�erent conditions can occur.

t

x

Figure 6.2: Evolution of αarb that
switches between ODEs x′ = x
(solid blue), x′ = 1 (do�ed black),
and x′ = −x (dashed red) from the
initial state (black circle). Switch-
ing steps are marked by green cir-
cles and faded colors illustrate pro-
gression in loop iterations for the
loop operator in αarb.

Arbitrary switching is a useful tool for modeling such
systems because it considers all possible switching signals
and their corresponding system evolutions. It is modeled by
the following hybrid program αarb and illustrated in Fig. 6.2.

αarb ≡
(⋃
p∈P

x′ = fp(x)
)∗

(6.3)

Intuitively, αarb models arbitrary switching analogously
to a computer simulation: on each loop iteration, the pro-
gram makes a (discrete) nondeterministic choice of switch-
ing decision

⋃
p∈P

(
·
)

to select an ODE x′ = fp(x) which
it then follows continuously for an arbitrarily chosen du-
ration before repeating the switching loop. Two subtle be-
haviors are illustrated by the bo�om trajectory in Fig. 6.2:
αarb can switch to the same ODE across a loop iteration or
it can cha�er by making several discrete switches without
continuously evolving its state between those switches [177]. �ese behaviors are harmless for
safety veri�cation because they do not change the set of reachable states of the switched system.
�e adequacy of αarb as a model of arbitrary switching is shown in the following proposition.

Proposition 6.1. A state is reachable by hybrid program αarb i� it is reachable in �nite time by a
switched system x′ = fp(x) for p ∈ P following a switching signal σ.

Proof. �is follows from the subsequent Proposition 6.2 with Qp ≡ true for all p ∈ P .

By Proposition 6.1, the dL formula [αarb]P speci�es safety for arbitrary switching, i.e., for all
switching signals σ, all states reached by switching according to σ satisfy the safety postcondition
P . Dually, formula 〈αarb〉P expresses that the system eventually reaches the goal P for some
switching signal σ. Proofs of these speci�cations exploit compositionality [144] by combining
dL reasoning for the discrete loop and choice operators in αarb with ODE safety and liveness
reasoning from Chapters 3 and 4. Conversely, reasoning principles for ODEs compositionally
li� to αarb through dL axioms, so dL also has complete invariance reasoning principles for αarb.
�is is shown next, a�er a slight generalization to state-dependent switching models.

State-Dependent Switching

Arbitrary switching can be constrained by enabling switching to the ODE x′ = fp(x) only
when the system state belongs to a corresponding domain speci�ed by formula Qp. �is yields
the state-dependent switching paradigm, which is useful for modeling real systems that are
either known or designed to have particular switching surfaces. State-dependent switching also
provides a simple means of modeling ODEs with continuous but nondi�erentiable right-hand
sides, without extending dL’s smooth term language semantics [21, 142, 143]. For example, an

144

ODE x′ = max(e, ẽ) can be modeled as a system that switches between the ODEs x′ = e& e ≥ ẽ
and x′ = ẽ& e ≤ ẽ within the domains where the ODE RHS is dominated by e or ẽ respectively
(see Section 6.5.1). For the �nite family of ODEs with domains x′ = fp(x) &Qp, p ∈ P , state-
dependent switching is modeled as follows:

αstate ≡
(⋃
p∈P

x′ = fp(x) &Qp

)∗
(6.4)

Operationally, if the system is currently evolving in domain Qi and is about to leave the
domain, it must switch to another ODE with domain Qj that is true in the current state to
continue its evolution. Arbitrary switching αarb is the special case of αstate with no domain
restrictions (Qp ≡ true for all p ∈ P). �e following adequacy result generalizes Proposition 6.1
to consider only states that are reachable while obeying the speci�ed domains.

Proposition 6.2. A state is reachable by hybrid program αstate i� it is reachable in �nite time by
a switched system x′ = fp(x) for p ∈ P following a switching signal σ while obeying the speci�ed
domains Qp.

Proof. Both directions of the proposition are proved separately for an initial state ω ∈ Rn using
the dL semantics of hybrid programs [135, 139, 142, 144] (see Section 2.2.2).

“⇒” Suppose (ω, ν) ∈ [[αstate]]. By the semantics of dL loops, there is a sequence of states
ω = ω0, ω1, . . . , ωn = ν for some n ≥ 0 and for each 1 ≤ i ≤ n, the states transition
according to the loop body, i.e., (ωi−1, ωi) ∈ [[

⋃
p∈P x

′ = fp(x) &Qp]]. In particular, for
each 1 ≤ i ≤ n, there is a choice pi where state ωi−1 reaches ωi by following the ODE
x′ = fpi(x) for some time ζi ≥ 0 and staying within the domainQpi for all times 0 ≤ t ≤ ζi
during its evolution.
�e �nite sequences (ω0, ω1, . . . , ωn), (ζ1, . . . , ζn) and (p1, . . . , pn) correspond to a well-
de�ned switching signal as follows. First, remove from all sequences the cha�ering indexes
1 ≤ i ≤ n with ζi = 0. �is yields new sequences (ω̃0, ω̃1, . . . , ω̃m), (ζ̃1, . . . , ζ̃m), and
(p̃1, . . . , p̃m) with times ζ̃i > 0. Consider the switching signal σ with switching times
τi =

∑i
j=1 ζ̃j for 1 ≤ i < m and τi = τi−1 + 1 for i ≥ m, so τ1 < τ2 < . . . and τi →∞.

Furthermore, extend the sequence of switching choices with p̃i = p̃m for i > m. By
construction using (6.2), σ is well-de�ned and the solution ϕ associated with σ from ω
reaches ν at time

∑m
j=1 ζ̃j and obeys the domains Qp̃i until that time.

“⇐” Let σ be a switching signal and ϕ : [0, ζ)→ Rn be the associated switched system solution
from ω. Suppose that the switched system reaches ϕ(t) for t ∈ [0, ζ) while obeying the
domains Qp. To show (ω, ϕ(t)) ∈ [[αstate]], by the semantics of dL loops, it su�ces to
construct a sequence of states ω = ω0, ω1, . . . , ωn for some �nite n, with ωn = ϕ(t), and
(ωi−1, ωi) ∈ [[

⋃
p∈P x

′ = fp(x) &Qp]] for 1 ≤ i ≤ n.
By (6.2), σ is equivalently de�ned by a sequence of switching times τ0 < τ1 < τ2 < . . . and
a sequence of switching choices p1, p2, . . . , where pi ∈ P . Let τn be the �rst switching time
such that t ≤ τn; the index n exists since τi →∞. De�ne the state sequence ωi = ϕ(τi)
for 0 ≤ i < n and ωn = ϕ(t). Note that ω0 = ω by de�nition of ϕ(0). It su�ces to
show (ωi−1, ωi) ∈ [[x′ = fpi(x) &Qpi]] for 1 ≤ i ≤ n, but this follows by construction of

145

ϕ because ωi is reached from ωi−1 by following the solution to ODE x′ = fpi(x), and, by
assumption, ϕ(γ) satis�es Qpi for γ ∈ [τi−1, τi] ∩ [0, t].

Similar to αarb, Proposition 6.2 shows that dL’s box and diamond modality formulas express
safety (for all switching signals) and liveness (for some switching signal) properties of αstate,
respectively. �e next result syntactically derives sound and complete invariance reasoning
principles for state-dependent (and arbitrary) switching in dL.

�eorem 6.3. �e following axioms are derivable in dL where P and all ODE domains Qp for

p ∈ P are semianalytic formulas. Formulas
.

(Qp)
(∗)
fp
,

.
(P)

(∗)
fp
,

.
(Qp)

(∗)
−fp ,

.
(¬P)

(∗)
−fp are the respective

semianalytic progress formulas Def. 3.24 with respect to the indicated ODEs for mode p ∈ P .

Invstate ∀x (P → [αstate]P)↔
∧
p∈P ∀x (P → [x′ = fp(x) &Qp]P)

SAIstate ∀x (P → [αstate]P)↔
∧
p∈P

(
∀x
(
P ∧Qp ∧

.
(Qp)

(∗)
fp
→

.
(P)

(∗)
fp

)
∧

∀x
(
¬P ∧Qp ∧

.
(Qp)

(∗)
−fp →

.
(¬P)

(∗)
−fp

))

Proof Summary (Appendix D.1.1). Axiom SAIstate derives immediately from Invstate by equiva-
lently rewriting its RHS using the derived equivalent characterization of ODE invariants SAI&
from �eorem A.11 (page 212). Both directions of the equivalence Invstate are derived separately.
�e “←” direction, uses dL’s loop invariant rule to prove that P is a loop invariant of αstate.
�e “→” direction shows that a run of ODE x′ = fp(x) &Qp, p ∈ P must also be a run of αstate,
so if formula P is true for all runs of αstate, it must also be true for all runs of the ODEs.

Axiom Invstate equivalently characterizes invariants of αstate with invariants of each of its
constituent ODEs separately. �us, when searching for an invariant of αstate, it su�ces to search
for a common invariant of every constituent ODE. �e invariance of any candidate (common)
invariant P can be equivalently turned into an arithmetic question in dL by axiom SAIstate
which derives using dL’s complete axiomatization for ODE invariance from Chapter 3. In the
case where all ODEs in αstate and P are all described by polynomials, axiom SAIstate shows that
invariance for those state-dependent switching models is decidable because its RHS is a decidable
formula of real arithmetic [14, 197]. Following Chapter 3, the completeness result (but not
decidability) also applies to Noetherian functions, e.g., exponentials and trigonometric functions,
that can be used to describe state-dependent switching mechanisms. Indeed, for Noetherian
extensions, Corollary 3.39 shows that safety questions [αstate]P with analytic postconditions P
are provably equivalent to arithmetic because αstate is assignment-free.

Modeling Subtleties

�e model αstate as de�ned above makes no a priori assumptions about how the ODEs and
their domains x′ = fp(x) &Qp are designed, so results like �eorem 6.3 apply generally to all
state-dependent switching designs. However, state-dependent switching can exhibit some well-
known subtleties [99, 177] and it becomes the onus of modelers to appropriately account for
these subtleties. �is section examines various subtleties that can arise in αstate and prescribes
su�cient arithmetical criteria for avoiding them; like �eorem 6.3, these arithmetical criteria

146

are decidable for systems with polynomial terms [14, 197]. As a running example, let the line
x1 = x2 be a switching surface, i.e., the example systems described below are intended to exhibit
switching when their system state reaches this line.

Well-de�ned Switching. First, observe that the union of domains Qp for p ∈ P must
cover the entire state space; otherwise, there would be system states of interest where no
continuous dynamics is active. �is can be formally guaranteed by checking validity of the
formula 1 :

∨
p∈P Qp. Next, consider the following pair of ODEs (illustrated below, right):

x′1 = 0, x′2 = 1 & x1 ≥ x2︸ ︷︷ ︸
x′=fA(x) &QA in green

x′1 = −1, x′2 = 0 & x1 < x2︸ ︷︷ ︸
x′=fB(x) &QB in blue

A system evolution starting in QA ≡ x1 ≥ x2 is illustrated on the
right. When the system reaches x1 = x2 (illustration o�set for clarity),
it is about to locally progress into QB ≡ x1 < x2 by switching to ODE
x′ = fB(x) but it gets stuck because it cannot make the in�nitesimal
jump from QA to enter QB . Augmenting the domain QB to x1 ≤ x2 enables the switch. More
generally, to avoid systems ge�ing stuck on in�nitesimal jumps, domains Qp can be augmented
to include states that locally progress into Qp under the ODE x′ = fp(x) and, symmetrically,
states that locally exit Qp [177]. Local progress (and exit) for ODEs is formalized using the
local progress © modality introduced in Section 3.5: recall that formula 〈x′ = f(x) &Q〉©
characterizes the states from which ODE x′ = f(x) locally progresses into Q; conversely,
〈x′ = −f(x) &Q〉© characterizes those from which the ODE locally exits Q. By the derived
axiom LP from �eorem 3.26 (page 60), local progress and local exit are provably characterized
by arithmetic formulas

.
(Q)

(∗)
f ,

.
(Q)

(∗)
−f respectively. To avoid the stuck states exempli�ed above

for ODEs x′ = fp(x) &Qp, p ∈ P in αstate, it su�ces to check validity of the formula 2 :
.

(Qp)
(∗)
fp
∨

.
(Qp)

(∗)
−fp → Qp for each p ∈ P , which expresses that states locally entering or exiting

Qp for ODE x′ = fp(x) are included in Qp. Condition 2 is syntactically simpler but equivalent
to the domain augmentation presented in Sogokon et al. [177] for piecewise continuous models,
a form of state-dependent switching.

Sliding Modes. �e preceding subtlety arose from incomplete domain constraint speci�ca-
tions. Another subtlety that can arise because of incomplete speci�cation of ODE dynamics, as
exempli�ed by the following pair of ODEs (illustrated below, right):

x1≥x2

x1≤x2

x1

x2

x′1 = 0, x′2 = 1 & x1 ≥ x2︸ ︷︷ ︸
x′=fA(x) &QA in green

x′1 = 1, x′2 = 0 & x1 ≤ x2︸ ︷︷ ︸
x′=fB(x) &QB in blue

Systems starting in QA ≡ x1 ≥ x2 or QB ≡ x1 ≤ x2 eventually
reach the line x1 = x2 (in red) but they then get stuck because the
ODEs on either side of x1 = x2 drive system evolution onto the line.
Mathematically, the system enters a sliding mode [99] along x1 = x2. �is can be thought of
as in�nitely fast switching between the ODEs that results in a new sliding dynamics along the

147

switching surface x1 = x2 (dashed grey trajectory). When the sliding dynamics can be calculated
exactly, it su�ces to add those dynamics explicitly to the switched system, e.g., adding the
sliding dynamics x′1 = 1

2
, x′2 = 1

2
&x1 = x2 to the example above allows stuck system states

on x1 = x2 to continuously progress along the line (illustrated below, le�). An alternative is
hysteresis switching [99] which enlarges domains adjacent to the sliding mode so that a system
that reaches the sliding surface is allowed to brie�y continue following its current dynamics
before switching. For example, for a �xed ε > 0, the enlarged domains QA ≡ x1 ≥ x2 − ε and
QB ≡ x1 ≤ x2 + ε allows the stuck states to evolve o� the line for a short distance ε > 0. �is
yields arbitrary switching in the overlapped part of both domains (illustrated below, right). For
domains Qp, p ∈ P meeting conditions 1 and 2 , hysteresis switching is modeled by replacing
each Qp with its closed ε-neighborhood for ε > 0. Another way of modeling hysteresis using an
auxiliary memory variable to remember the current system mode is shown in the next section.

x1≥x2

x1≤x2

x 1
=
x 2

x1

x2

Explicit sliding: x′1 = 0, x′2 = 1 &x1 ≥ x2

x′1 = 1, x′2 = 0 &x1 ≤ x2

x′1 =
1

2
, x′2 =

1

2
&x1 = x2

x1≥x2-1

x1≤x2+1

x1

x2

Hysteresis: x′1 = 0, x′2 = 1 &x1 ≥ x2 − 1

x′1 = 1, x′2 = 0 &x1 ≤ x2 + 1

Both approaches can be used (and can be mixed) in the hybrid program model αstate. To
guarantee the absence of stuck states, it su�ces to check validity of the formula 3 :

∨
p∈P

.
(Qp)

(∗)
fp

,
i.e., every point in the state space can switch to an ODE which locally progresses in its associated
domain. Models meeting conditions 2 and 3 also meet condition 1 .

Zeno Behavior. Hybrid and switched system models can also exhibit Zeno behavior, where
the model makes in�nitely many discrete transitions in a �nite time interval [99, 214], see
also [144, Expedition 9.1]. Such behaviors are an artifact of the model and are not re�ective of
the real world. As such, Zeno traces are typically excluded when reasoning about hybrid system
models [99, 214], e.g., all switching signals considered in this section (Section 6.2.1) are assumed
to be well-de�ned (thus non-Zeno) and Proposition 6.2 speci�es safety for all �nite executions
of state-dependent switching. �e detection of Zeno behavior in switched systems is le� out of
scope for this thesis and the (upcoming) speci�cation of switched system stability in Section 6.3
implicitly excludes them from consideration

6.2.3 Controlled Switching
�is section turns to controlled switching models, where an explicit controller program is re-
sponsible for making logical switching decisions between the ODEs x′ = fp(x), p ∈ P . �e
discrete fragment of hybrid programs can be used to �exibly model (computable) switching

148

logics, e.g., those that combine state-dependent and time-dependent switching constraints, or
make complex switching decisions based on the state of the system. Controlled switching is
modeled by the hybrid program αctrl in (6.5):

αctrl ≡ αi
↓

initialization

;
(switching controller
↑

αu;

αp (plant, actuate decision)︷ ︸︸ ︷⋃
p∈P

(
?u = p;x′ = fp(x, y), y′ = gp(x, y) &Qp

))∗
(6.5)

�e modelαctrl resembles the shape of standard models of event-triggered and time-triggered
systems in dL [144] but is adapted for controlled switching. It uses three subprograms: αi initial-
izes the system, then αu (modeling the switching controller) and αp (modeling the continuous
plant dynamics) are run in a switching loop. �e discrete programs αi, αu decide on values
for the control output u = p, p ∈ P and the plant program αp responds to this output by
evolving the corresponding ODE x′ = fp(x, y), y′ = gp(x, y) &Qp. �e programs αi, αu must
not modify the system state variables x, but they may modify other auxiliaries, including aux-
iliary continuous state variables y used to model timers or integral terms used in controllers,
see Section 6.5.2. �is control-plant loop is a typical structure for hybrid systems modeled in
dL [135, 144]. As an example, the controller αu below models the discrete switching logic present
in hybrid automata [28, 75, 135], without discrete jumps in the system state:

αu ≡
⋃
p∈P

(
?u = p; (

⋃
q∈P

(
?Gp,q;Rp,q;u := q

)
∪ u := u)

)
Rp,q ≡ y1 := e1; y2 := e2; . . . ; yk := ek

(6.6)

For each mode p ∈ P , the switching controller may nondeterministically switch to mode
q ∈ P if the guard formula Gp,q (with free variables x, y) is true in the current state. By default,
the controller can trivially choose to stay in the current mode with u := u. If the transition is
taken, the reset map Rp,q sets the values of auxiliary state variables y1, . . . , yk respectively to
the value of terms e1, . . . , ek. Two important classes of switching mechanisms are modeled as
special instances of αctrl next.

Guarded State-Dependent Switching

�e instance αguard corresponds to the automata controller from (6.6) with αi ≡
⋃
p∈P u := p

and guard formulas Gp,q ≡ Gp,q(x). It does not use auxiliaries y nor the reset map Rp,q.

αguard ≡

αi ≡

⋃
p∈P

u := p

αu ≡
⋃
p∈P

(
?u = p; (

⋃
q∈P

(?Gp,q;u := q) ∪ u := u)
) (6.7)

�e model αguard adds a form of hysteresis [86] to the state-dependent switching model
from Section 6.2.2, so that switching decisions at each guard Gp,q depend explicitly on memory
of the current discrete mode u in addition to the continuous state. For simplicity, the system
is initialized by αi to start in any mode p ∈ P , although this can be modi�ed for di�erent
applications, e.g., if the system has known initial mode(s).

149

Proposition 6.4. A state is reachable by hybrid program αguard i� it is reachable in �nite time by
a switched system x′ = fp(x) for p ∈ P following a switching signal σ while obeying the speci�ed
domains Qp and guards Gp,q for modes p, q ∈ P .

Proof Summary (Appendix D.1.1). �e proof is similar to Proposition 6.2; in the “⇒” direction,
the proof constructs a suitable switching signal from the execution of hybrid program αguard; in
the “⇐” direction, the proof shows that a given switching signal corresponds to a run of αguard.
�e main di�erence in both directions is to show that the fresh auxiliary variable u used to
control the switching signal produces the intended hysteresis e�ect(s).

�e model αpiece from (5.5) in Section 5.5 (page 135) similarly uses an auxiliary variable u
to model a piecewise continuous function. �e deferred proof of adequacy for αpiece (Proposi-
tion 5.27, page 136) is given in Appendix D.1.1.

Time-Dependent Switching

�e instance αtime shown below models time-dependent switching, where switching decisions
are based on the time elapsed in each mode. Here, time is tracked by an auxiliary timer variable
τ with τ ′ = 1 added to each ODE.

αtime ≡

αi ≡ τ := 0;
⋃
p∈P

u := p

αu ≡
⋃
p∈P

(
?u = p; (

⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u)

)
αp ≡

⋃
p∈P

(
?u = p;x′ = fp(x), τ ′ = 1 & τ ≤ Θp

) (6.8)

�e controller program αu enables switching from mode p ∈ P to q ∈ P a�er a minimum
dwell time 0 ≤ θp,q ≤ τ has elapsed and resets the timer whenever such a switch occurs.
Conversely, the plant αp restricts modes with a maximum dwell time τ ≤ Θp for Θp > 0, p ∈ P ;
an unbounded dwell time Θp =∞ is represented by the domain constraint true . A special case
of αtime is slow switching, where the system is allowed to switch arbitrarily between ODEs but
there is a global minimum dwell time θ > 0 where θp,q = θ for all p, q ∈ P . A su�ciently large
minimum dwell time θ can be used to stabilize switching between any family of stable linear
ODEs [99]. Dwell time restrictions can also be used to stabilize systems that switch between
stable and unstable modes [211]. Intuitively, the system should stay in stable modes for su�cient
duration (θp,q ≤ τ) while it should avoid staying in unstable modes for too long (τ ≤ Θp).

Proposition 6.5. A state is reachable by hybrid program αtime i� it is reachable in �nite time by
a switched system x′ = fp(x) for p ∈ P following a switching signal σ that spends at least time
θp,q ≥ 0 for each switch p ∈ P to q ∈ P along the solution and at most time Θp > 0 for each
mode p ∈ P entered along the solution.

Proof in Appendix D.1.1.

Building on Propositions 6.1–6.5, the next section turns to the study of switched system
stability in dL through their hybrid program models.

150

6.3 Switched System Stability
�is section explains how stability for hybrid program models of switched systems is formally
speci�ed and veri�ed using dL. Similar to ODEs, various stability notions are of interest in
the continuous and hybrid systems literature [61, 66, 99, 126, 151, 189]. Stability variations for
switched systems can also be formally speci�ed (see Chapter 5) but this chapter focuses on
proving one form of stability (UGpAS, de�ned below) for variations of switching mechanisms.

6.3.1 Stability as�anti�ed Loop Safety
�is section studies uniform global pre-asymptotic stability (UGpAS) for switched systems [65,
66, 99], de�ned as follows:

De�nition 6.6 (UGpAS [65, 66]). Let Φ(x) denote the set of all (domain-obeying) solutions
ϕ : [0, Tϕ]→ Rn for a switched system from state x ∈ Rn. �e origin 0 ∈ Rn is:

• uniformly stable if, for all ε > 0, there exists δ > 0 such that from all initial states
x ∈ Rn with ‖x‖2 < δ, all solutions ϕ ∈ Φ(x) satisfy ‖ϕ(t)‖2 < ε for all times 0 ≤ t ≤ Tϕ,

• uniformly globally pre-attractive if, for all ε > 0, δ > 0, there exists T ≥ 0 such that
from all initial states x ∈ Rn with ‖x‖2 < δ, all solutions ϕ ∈ Φ(x) satisfy ‖ϕ(t)‖2 < ε
for all times T ≤ t ≤ Tϕ, and

• uniformly globally pre-asymptotically stable if the system is uniformly stable and
uniformly globally pre-a�ractive.

�e UGpAS de�nition can be understood intuitively for a system with a given switching
control mechanism analogously to stability for ODEs (e.g., Section 5.2.1 from page 120):

• stability means the mechanism keeps the system close to the origin if the system is initially
perturbed close to the origin,

• global pre-a�ractivity means the mechanism drives the system to the origin asymptotically
as t→∞, and

• uniform means the stability and pre-a�ractivity properties are independent of both the
nondeterminism in the switching mechanism (e.g., arbitrary switching) and the choice of
initial states satisfying ‖x‖2 < δ; for brevity in subsequent sections, “uniform” is elided
when describing stability properties.

Remark 6.7. Switched systems whose solutions are all uniformly bounded in time, i.e., there
exists Tm such that for all solutions ϕ, Tϕ ≤ Tm, are trivially pre-a�ractive. Goebel et al. [65, 66]
introduce the notion of pre-a�ractivity as opposed to a�ractivity for hybrid systems because it
separates considerations about whether a hybrid system’s solutions are complete, i.e., solutions
exist for all (forward) time, from conditions for stability and a�ractivity. Pre-a�ractivity also
sidesteps the di�cult question of whether a switched system exhibits Zeno behavior (recall
modeling subtleties in Section 6.2.2) [99, 214]. Indeed, it is common in the hybrid and switched

151

systems literature to either ignore incomplete solutions or assume the models under consideration
only have complete solutions [99, 116, 214]. Instead of predicating proofs on these hypotheses,
this chapter formalizes the (weaker) notion of UGpAS for switched systems, leaving proofs of
completeness of solutions out of scope.

�e de�nition of UGpAS nests alternating quanti�cation over real numbers with temporal
quanti�cation over the solutions ϕ of switched systems. Accordingly, UGpAS for switched
systems is formally speci�ed by nesting dL’s box modality with the �rst-order quanti�ers; when
program α models a switched system, the box modality [α](·) quanti�es (uniformly) over all
times for all switching signals arising from the switching mechanism.

Notational Conventions (Norm Bounds). For notational simplicity in this chapter, Eu-
clidean norm bound formulas are directly wri�en with ‖x‖2 ∼ ε

def≡ (
∑n

i=1 x
2
i) ∼ ε2 (for ε ≥ 0)

for comparison operators ∼ ∈ {=, 6=,≥, >,≤, <}.

Lemma 6.8 (UGpAS in di�erential dynamic logic). �e origin 0 ∈ Rn for a switched system
modeled by hybrid program α is UGpAS i� the dL formula UGpAS(α) is valid. Variables ε, δ, T, t
are fresh in α:

UStab(α) ≡ ∀ε>0∃δ>0∀x
(
‖x‖2 < δ → [α] ‖x‖2 < ε

)
UGpAttr(α) ≡ ∀ε>0∀δ>0∃T≥0 ∀x

(
‖x‖2 < δ → [t := 0;α, t′ = 1] (t ≥ T → ‖x‖2 < ε)

)
UGpAS(α) ≡ UStab(α) ∧ UGpAttr(α)

Here, UStab(α) and UGpAttr(α) characterize stability and global pre-a�ractivity of α, re-
spectively. In UGpAttr(α), α, t′ = 1 denotes the hybrid program obtained from α by augmenting
its continuous dynamics so that variable t tracks the progression of time.

Proof. Let Φ(x) be the set of all domain-obeying solutions ϕ : [0, Tϕ]→ Rn for a given switched
system from state x ∈ Rn as in Def. 6.6. Hybrid program α models the given switched system
if, for any initial state ω ∈ Rn, the state ν is reachable from state ω, i.e., (ω, ν) ∈ [[α]] by dL’s
hybrid program semantics [142, 144], i� ν = ϕ(τ) for some ϕ ∈ Φ(ω) and τ ∈ [0, Tϕ]. For the
augmented program α, t′ = 1, in particular, t syntactically tracks the progression of time so
that (ω, ν) ∈ [[α, t′ = 1]] i� ν = ϕ(τ) for some ϕ ∈ Φ(ω) and τ = ν(t)− ω(t). �e adequacy of
looping hybrid program models for several switching mechanisms is proved in Section 6.2.

�e formulas UStab(α) and UGpAttr(α) syntactically express their respective quanti�ers
from Def. 6.6, where the box modality [·] is used in both formulas to quantify over all reachable
states of α (and α, t′ = 1), i.e., all times τ ∈ [0, Tϕ] along all solutions ϕ ∈ Φ. �us, the
correctness of these speci�cations follows directly from the de�nition of dL’s formula seman-
tics [142, 144]. In UGpAttr(α), the clock variable t is set to 0 initially and has ODE t′ = 1 so it
tracks the progression of time along the continuous evolution of program α. �e implication
t ≥ T → . . . in the postcondition of the box modality restricts temporal quanti�cation to all
times τ with T ≤ τ ≤ Tϕ for all solutions ϕ ∈ Φ(ω) for uniform pre-a�ractivity.

Formulas UStab(α) and UGpAttr(α) syntactically formalize in dL the corresponding quan-
ti�ers in Def. 6.6. In UGpAttr(α), the fresh clock variable t is initialized to 0 and syntactically

152

tracks the progression of time along switched system solutions. �e program α, t′ = 1 can,
e.g., be constructed by adding a clock ODE t′ = 1 to all ODEs in the switched system model
α. Accordingly, the postcondition t ≥ T → ‖x‖2 < ε expresses that the system state norm is
bounded by ε a�er T time units along any switching trajectory, as required in Def. 6.6. �e key
(derived) dL proof rule used to prove UGpAS speci�cations is the loop rule [144], recalled below.

loop
Γ ` Inv Inv ` [α] Inv Inv ` φ

Γ ` [α∗]φ

�e loop rule says that, in order to prove validity of the conclusion (below the rule bar), it
su�ces to prove the three premises (above the rule bar), respectively from le� to right: i) the
initial assumptions Γ imply Inv, ii) Inv is preserved across the loop body α, i.e., Inv is a loop
invariant for α∗, and iii) Inv implies the postcondition φ. �e identi�cation of loop invariants is
crucial for formal proofs of UGpAS for looping models of switched systems, as illustrated by the
following deductive proof skeleton for stability (a similar skeleton is used for pre-a�ractivity):

loop

∗
Γ ` Inv

Γ1 ` φ1 · · · Γk ` φk
...
(hybrid program

reasoning for α

)
Inv ` [α] Inv

∗
Inv ` ‖x‖2 < ε

Γ ` [α∗] ‖x‖2 < ε
...
(logic/arithmetic

reasoning for Γ

)
` UStab(α∗)

�e proof skeleton above syntactically derives a proof rule that reduces a stability proof for
α∗ to proofs of its top-most premises, Γ1 ` φ1 · · · Γk ` φk. �ese correspond to required logical
and arithmetical conditions on Lyapunov functions for various switching mechanisms. �e
choice of loop invariant (highlighted in red) crucially ties together these arithmetic conditions
on Lyapunov functions with hybrid program reasoning for switched systems. �roughout this
section, loop invariants are progressively tweaked to account for new design insights behind
increasingly complex switching mechanisms from Section 6.2.

6.3.2 Stability for Autonomous Switching
�is section identi�es loop invariants for proving UGpAS under autonomous switching mecha-
nisms with Lyapunov functions [27, 89, 99]; relevant mathematical arguments are presented
brie�y, see Appendix D.1.2 for more details.

Arbitrary Switching

Stability for the arbitrary switching model αarb from (6.3) in Section 6.2.2 can be veri�ed by
�nding a so-called common Lyapunov function V for all of the ODEs x′ = fp(x), p ∈ P satisfying
the following arithmetical conditions [99, 189]:

i) V (0) = 0 and V (x) > 0 for all ‖x‖2 > 0,

153

ε

δ

0

V <W

Lfp (V)≤0

Stability

ε

δ

0

V <W
(bounded)

V≥U→
V <W+ktV <U

Pre-a�ractivity
Figure 6.3: Loop invariants for UGpAS (arbitrary switching), stability (le�) and pre-a�ractivity
(right). Switching trajectories are illustrated by alternating black and green arrows.

ii) V is radially unbounded, i.e., for all b, there exists γ > 0 such that ‖x‖2 < γ for all
V (x) ≤ b, and

iii) for each ODE x′ = fp(x), p ∈ P , the Lie derivative Lfp(V) satis�es: Lfp(V)(0) = 0 and
Lfp(V)(x) < 0 for all ‖x‖2 > 0.

Conditions i)–iii) are generalizations of well-known conditions for stability of ODEs [33, 89]
to arbitrary switching. Intuitively, conditions i) and iii) ensure that V acts as an auxiliary
energy function whose value decreases asymptotically to zero (at the origin) along all switching
trajectories of the system; the radial unboundedness condition ii) ensures that this argument
applies to all system states for global pre-a�ractivity [89]. Correctness of these conditions can
be proved in dL using loop invariants, see Fig. 6.3 (explained below).

Stability. �e speci�cation UStab(αarb) requires that all trajectories of αarb stay in the grey
ball ‖x‖2 < ε, starting from a chosen ball ‖x‖2 < δ, see Fig. 6.3 (le�). Condition i) guarantees that
the ball ‖x‖2 < ε contains (a connected component of) the sublevel set V <W for some W>0
(dashed blue curve) and this sublevel set contains a smaller ball ‖x‖2 < δ [33, 89]. Condition iii)
shows that this sublevel set is invariant for each ODE x′ = fp(x), p ∈ P because Lfp(V)(x) ≤ 0,
illustrated by the dashed black and green arrows for two switching choices p ∈ P both locally
pointing inwards on the boundary of the sublevel set. Formula Invs ≡ ‖x‖2 < ε ∧ V < W ,
which characterizes the blue sublevel set, is an invariant for all possible switching choices in the
loop body of αarb. �us, Invs is a suitable loop invariant for UStab(αarb).

Pre-Attractivity. �e speci�cation UGpAttr(αarb) requires that all trajectories of αarb stay
in the grey ball ‖x‖2 < ε a�er a chosen time T , starting from the initial ball ‖x‖2 < δ, see Fig. 6.3
(right). �e ball ‖x‖2 < δ is bounded, so it is contained in a sublevel set satisfying V < W for
some W > 0 (outer dashed blue curve); this sublevel set is bounded by condition ii). Like the
stability argument, condition i) guarantees that there is a sublevel set V < U for some U > 0
(inner dashed blue curve) contained in the ball ‖x‖2 < ε, and condition iii) shows that the
sublevel sets characterized by V < W and V < U are both invariants for every ODE in the loop
body of αarb. �e set characterized by formula V ≥ U ∧ V ≤ W is compact and bounded away

154

from the origin, which implies by condition iii) that there is a uniform bound k < 0 on this set,
where for each ODE x′ = fp(x), p ∈ P , Lfp(V)(x) ≤ k. �us, the value of Lyapunov function
V decreases at rate k, regardless of switching choices in the loop body of αarb, as long as it has
not entered V < U . �e loop invariant for UGpAttr(αarb) syntactically expresses this intuition:
Inva ≡ V < W ∧ (V ≥ U → V < W + kt). For su�ciently large T with W + kT ≤ U ,
trajectories at time t ≥ T satisfy V < U so they are contained in the ‖x‖2 < ε ball.

�e loop invariants identi�ed above enable derivation of a formal dL stability proof rule
for αarb (deferred to a more general version for αstate in Corollary 6.9 below). In fact, since
arbitrary switching is the most permissive form of switching [99], UGpAS for any switching
mechanism can be soundly justi�ed using the loop invariants above in case a suitable common
Lyapunov function can be found (see Table 6.1, common Lyapunov function column).

State-Dependent Switching

State-dependent switching is modeled by hybrid program αstate from (6.4) in Section 6.2.2. �e
same loop invariants for αarb are used for αstate to derive the following proof rule. For brevity,
premises of all derived stability proof rules are implicitly conjunctively quanti�ed over p ∈ P .
Corollary 6.9 (UGpAS for state-dependent switching, CLF). �e following proof rule for common
Lyapunov function V with three stacked premises is derivable in dL.

CLF

` V (0) = 0 ∧ ∀x (‖x‖2 > 0→ V (x) > 0)
` ∀b ∃γ ∀x (V (x) ≤ b→ ‖x‖2 ≤ γ)
` Lfp(V)(0) = 0 ∧ ∀x (‖x‖2 > 0 ∧Qp → Lfp(V)(x) < 0)

` UGpAS(αstate)
(for all p ∈ P)

Proof in Appendix D.1.2.

Corollary 6.9 syntactically derives a slight generalization of conditions i)–iii) from Sec-
tion 6.3.2 for αstate, where the Lie derivatives Lfp(V)(x) for each p ∈ P are required to be
negative on their respective domain closures1 Qp. �is generalization is justi�ed by the same loop
invariants explained in Section 6.3.2 because the ODE invariance properties are only required to
hold in their respective domains.

�e domain asymmetry in αstate suggests another way of generalizing the stability argu-
ments, namely, through the use of multiple Lyapunov functions, where a (possibly) di�erent
Lyapunov function Vp is associated to each mode p ∈ P [27]. Here, the function Vp is responsi-
ble for justifying stability within domain Qp, i.e., its value decreases along system trajectories
whenever the system is within Qp, as illustrated in Fig. 6.4. Constraints on these functions are
obtained by modifying the loop invariants to account for this intuition.

Stability. �e stability loop invariant is modi�ed by case spli�ing disjunctively on the domains
Qp, p ∈ P , and requiring that the sublevel set characterized by Vp < W is invariant within its
respective domain Qp: Invs ≡ ‖x‖2 < ε ∧

∨
p∈P

(
Qp ∧ Vp < W

)
. Like Section 6.3.2, the bound

W is chosen so that each sublevel set characterized by Vp < W is contained in the ball ‖x‖2 < ε.
1�e topological closure Q of domain Q is needed for soundness of a technical compactness argument used in

the pre-a�ractivity proof, see Appendix D.1.2.

155

p : x′1=−4.6x1+5.5x2, x
′
2=−5.5x1+4.4x2 &x1x2≥0

q : x′1= 4.4x1+5.5x2, x
′
2=−5.5x1−4.6x2 &x1x2≤0

-0.2 -0.1 0.1 0.2 x1

-0.15

-0.1

-0.05

0.05

0.1

0.15

x2

Vp = x2
1 − 1.65x1x2 + x2

2

Vq = x2
1 + 1.65x1x2 + x2

2

0 2 4 6 t

0.005

0.01

0.015

0.02

0.025

V

Figure 6.4: A switching trajectory for Example 7 from Section 6.4.2 with state-dependent switch-
ing (le�) and the value of two Lyapunov functions along that trajectory (right, log-scale on
vertical axis). Solid lines indicate the active Lyapunov function at time t. Two sublevel sets
Vp, Vq < W = 0.012 are shown dashed on the le� within which the switching trajectory is
respectively trapped at any given time.

Pre-Attractivity. �e pre-a�ractivity loop invariant is similarly modi�ed by disjunctively
requiring that each Vp decreases along system trajectories when the system is in their respective
domains Qp: Inva ≡

∨
p∈P

(
Qp ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt)

)
. �e constants

U,W, k, T are chosen as appropriate lower or upper bounds for all the Lyapunov functions
(see proof of Corollary 6.10). Arithmetical conditions for the Lyapunov functions Vp, p ∈ P are
derived from the modi�ed invariants in the following rule.

Corollary 6.10 (UGpAS for state-dependent switching, MLF). �e following proof rule for
multiple Lyapunov functions Vp, p ∈ P with four stacked premises is derivable in dL.

MLF

` Vp(0) = 0 ∧ ∀x (‖x‖2 > 0→ Vp(x) > 0)
` ∀b∃γ ∀x (Vp(x) ≤ b→ ‖x‖2 ≤ γ)
` Lfp(Vp)(0) = 0 ∧ ∀x (‖x‖2>0 ∧Qp → Lfp(Vp)(x)<0)

`
∧
q∈P

(
Qp ∧Qq → Vp = Vq

)
` UGpAS(αstate)

(for all p ∈ P)

Proof in Appendix D.1.2.

�e top three premises of Corollary 6.10 are similar to those of Corollary 6.9, but are now
required to hold for each Lyapunov function Vp, p ∈ P separately. �e (new) bo�om premise
corresponds to a compatibility condition between the Lyapunov functions arising from the loop
invariants. For example, consider the stability loop invariant (similarly for pre-a�ractivity) and
suppose the system currently satis�es disjunct Qp ∧ Vp < W with Vp justifying stability in
domain Qp. If the system switches to the ODE x′ = fq(x) within domain Qq, then Lyapunov
function Vq becomes the active Lyapunov function which must satisfy Vq < W to preserve the

156

stability loop invariant. �e premise Qp ∧ Qq → Vp = Vq says that the Lyapunov functions
Vp, Vq take on equal values whenever such a switch is possible (in either direction), i.e., when
their domains Qp, Qq overlap. �is is illustrated in Fig. 6.4 (right), where the plo�ed Lyapunov
functions values are equal whenever switching occurs (black to green, or vice versa).

6.3.3 Stability for Controlled Switching
Stability analysis for controlled switching proceeds by identifying suitable loop invariants Inv for
αctrl from (6.5) in Section 6.2.3. Compositional reasoning [135, 144] allows for separate analysis
of the discrete (αi, αu) and continuous (αp) dynamics and then li�ing those results to the full
hybrid dynamics. �is idea is exempli�ed by the following derived variation of the loop rule:

loopT
Γ ` [αi] Inv Inv ` [αu] Inv Inv ` [αp] Inv Inv ` φ

Γ ` [αi; (αu;αp)
∗]φ

Rule loopT says that loop invariant Inv is maintained throughout αctrl ≡ αi; (αu;αp)
∗,

i.e., system initialization αi puts the system into a state satisfying the invariant Inv and Inv is
compositionally preserved by both the discrete switching logic αu and the continuous dynamics
αp. �is rule is used to analyze the two instances of αctrl introduced in Section 6.2.3 next.

Guarded State-Dependent Switching

�e instance αguard from (6.7) adds hysteresis to state-dependent switching through the auxiliary
memory variable u which tracks the current mode of the system. �is design change is re�ected
in the loop invariants and in the corresponding proof rule below.

Stability. �e stability loop invariant is modi�ed (cf. Section 6.3.2) to case split on the possible
discrete modes u = p rather than the ODE domains: Invs ≡ ‖x‖2 < ε∧

∨
p∈P

(
u = p∧Vp < W

)
.

Pre-Attractivity. �e pre-a�ractivity loop invariant is modi�ed similarly to case split on the
discrete modes, with: Inva ≡

∨
p∈P

(
u = p ∧ Vp<W ∧ (Vp ≥ U → Vp < W + kt)

)
.

Corollary 6.11 (UGpAS for guarded state-dependent switching, MLF). �e following proof rule
for multiple Lyapunov functions Vp, p ∈ P with four stacked premises is derivable in dL.

MLFG

` Vp(0) = 0 ∧ ∀x (‖x‖2 > 0→ Vp(x) > 0)
` ∀b∃γ ∀x (Vp(x) ≤ b→ ‖x‖2 ≤ γ)
` Lfp(Vp)(0) = 0 ∧ ∀x (‖x‖2>0 ∧Qp → Lfp(Vp)(x)<0)

`
∧
q∈P

(
Gp,q → Vq ≤ Vp

)
` UGpAS(αguard)

(for all p ∈ P)

Proof in Appendix D.1.2.

�e premises of rule MLFG are identical to those from MLF except the bo�om premise, which
derives from loopT and unfolding the controller αu with dL’s hybrid program axioms, e.g., the

157

following proof skeleton shows the unfolding for the stability loop invariant Invs corresponding
to a switch from mode p to mode q:

x
Unfold

` Gp,q → Vq ≤ Vp
R Vp < W ` Gp,q → Vq < W

[;], [?], [:=]u = p ∧ Vp < W ` [?Gp,q;u := q](u = q ∧ Vq < W)
[∪] Invs ` [αu]Invs

Arithmeticx
Unlike rule MLF, the bo�om premise of rule MLFG only uses an inequality, because the

guards Gp,q determine permissible switching.

Time-Dependent Switching

To reason about stability for instance αtime from (6.8), consider Lyapunov function conditions
Lfp(Vp)(x) ≤ −λpVp, where λp is a constant associated with each mode p ∈ P . �is condition
bounds the value of Vp along the solution of x′ = fp(x) by either a decaying exponential for stable
modes (λp > 0) or a growing exponential for unstable modes (λp ≤ 0). Let S = {p ∈ P , λp > 0}
and U = {p ∈ P , λp ≤ 0} be the indexes of the stable and unstable modes in the loop invariants
below and assume an extended term language (Section 3.2) where exp (·) denotes the real
exponential function.

Stability. �e stability loop invariant expresses the required exponential bounds with a case
split depending if p ∈ S or p ∈ U :

Invs ≡ τ ≥ 0 ∧ ‖x‖2 < ε ∧

∨
p∈S

(
u = p ∧ Vp < W exp(−λpτ)

)
∨∨

p∈U

(
u = p ∧ Vp < W exp(−λp(τ −Θp)) ∧ τ ≤ Θp

)

For p ∈ S , exp(−λpτ) is the accumulated decay factor for Vp a�er staying in the stable mode
for time τ . For p ∈ U , exp(−λp(τ −Θp)) is a bu�er factor for the growth of Vp in the unstable
mode so that Vp < W still holds at the maximum dwell time τ = Θp. In both cases, the internal
timer variable is non-negative (τ ≥ 0).

Pre-Attractivity. �e pre-a�ractivity loop invariant has similar exponential decay and growth
bounds for each p ∈ P in the current mode. In addition, it has an overall exponential decay term
exp(−σ(t− τ)) for some σ > 0, which ensures that the value of Vp tends to 0 as t→∞ for all
switching trajectories; recall t is the global clock introduced in the speci�cation of pre-a�ractivity
in Lemma 6.8 while τ is the auxiliary timer used to track time in the model αtime.

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧
∨
p∈S

(
u = p ∧ Vp < W exp(−σ(t− τ)) exp(−λpτ)

)
∨∨

p∈U

(
u = p ∧ Vp < W exp(−σ(t− τ)) exp(−λp(τ −Θp)) ∧ τ ≤ Θp

)

158

Term exp(−σ(t − τ)) in both p ∈ S,U cases is the accumulated overall decay factor for
Vp until the switch to mode p at time t− τ . Term exp(−λpτ) (resp. exp(−λp(τ −Θp))) is the
current decay (resp. growth) factor since the switch to mode p ∈ S (resp. p ∈ U).

Corollary 6.12 (UGpAS for time-dependent switching, MLF). �e following proof rule for multiple
Lyapunov functions Vp, p ∈ P with �ve stacked premises is derivable in dL.

MLFτ

` Vp(0) = 0 ∧ ∀x (‖x‖2 > 0→ Vp(x) > 0)
` ∀b ∃γ ∀x (Vp(x) ≤ b→ ‖x‖2 ≤ γ)
` Lfp(Vp) ≤ −λpVp

Invs ` [αu]Invs Inva ` [αu]Inva
` UGpAS(αtime)

(for all p ∈ P)

�e two red premises on the bo�om row are expanded to arithmetical conditions on Vp by
unfolding the program structure of αu with dL axioms in Appendix D.1.2.

Proof in Appendix D.1.2.

�e bo�om premises of MLFτ and MLFG exemplify a key bene�t of dL stability reasoning:
conditions on Vp that arise from Invs, Inva are derived by systematically unfolding the discrete
dynamics of αu with sound dL axioms. �is enables automatic, correct-by-construction derivation
of those conditions, which is especially important for controlled switching because the number
of possible transitions scales quadratically |P|2 with the number of modes |P|.

6.4 KeYmaera X Implementation
�is section presents a prototype implementation of a switched system modeling and proof
package for KeYmaera X [54]. �e implementation consists of≈2700 lines and, crucially, does not
require any extension to KeYmaera X’s existing soundness-critical core. Accordingly, veri�cation
results for switched systems obtained through this implementation directly inherit the strong
correctness properties guaranteed by the design of KeYmaera X [54, 115].

6.4.1 Modeling and Proof Interface
�e implementation extends KeYmaera X’s proof IDE [114] with a convenient interface for
modeling switching mechanisms, as shown in Fig. 6.5. �e interface allows users to express
switching mechanisms intuitively by rendering automaton plots while abstracting away the
underlying hybrid programs. It provides templates for switched systems following the switching
mechanisms of Section 6.2: state-dependent (autonomous), guarded, timed, and general con-
trolled switching (tabs “Autonomous”, “Guarded”, “Timed”, “Generic” in Fig. 6.5). From these
templates, KeYmaera X automatically generates programs and stability speci�cations, ensuring
that they have the correct dL hybrid program and formula structure.

Switched systems are represented internally with a common interface SwitchedSystem

which is implemented by four classes: StateDependent αstate, Guarded αguard, Timed αtime,
and Controlled αctrl. �e SwitchedSystem interface provides default stability and pre-
a�ractivity speci�cations, which can be adapted by users on the UI if needed. Corollaries 6.9–6.12

159

Figure 6.5: Screenshot of the KeYmaera X switched systems editor: automata input on top-le�,
rendered automaton top-right, generated hybrid program and speci�cation(s) in dL at the bo�om.

Table 6.1: Available tactics in KeYmaera X for switched systems stability proofs and Lyapunov
function generation.

SwitchedSystem
Common Lyap. Multiple Lyap.
Proof Gen. Proof Gen.

StateDependent αstate X X X X
Guarded αguard X X X X
Timed αtime X X X —
Controlled αctrl X X — —

are implemented as UGpAS proof tactics in KeYmaera X’s Bellerophon tactic language [55]. �ese
tactics automate all of the reasoning steps underlying stability proofs for their respective switch-
ing mechanisms, so that users only need to input candidate Lyapunov functions for KeYmaera X
to (a�empt to) complete their proofs. Additionally, when candidates are not provided by the
user, the implementation uses sum-of-squares programming [129, 154] to automatically generate
candidate Lyapunov functions for a subset of switching designs. �e generated candidates are
checked for correctness by KeYmaera X so the generator does not need to be trusted for cor-
rectness of the resulting proofs. Table 6.1 summarizes the available proof tactics and Lyapunov
function generation for classes of switching mechanisms.

6.4.2 Examples
�e implementation is tested on a suite of examples drawn from the literature [27, 86, 154, 189]
featuring various switching mechanisms.2 Table 6.2 summarizes the proof statistics, where all
experiments were run on a MacBook Pro 2019 with Intel Core i7 (6-core, 2.6GHz) and 32GB

2See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/UGpAS (including
case studies from Section 6.5). Git hash: c856fddb383232adbd86679ef65567f9b90190bf

160

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/UGpAS

Table 6.2: Stability proofs for examples drawn from the literature. �e “Time” columns indicate
time (in seconds, rounded to 1 d.p.) to run the KeYmaera X proofs for stability (Stab.) and
a�ractivity (A�r.), × indicates incomplete proof. A X in the “Gen.” column indicates successful
Lyapunov function(s) generation, ? indicates that a candidate was generated but with numerical
issues, and — indicates inapplicability. In the la�er two cases (?, —) known Lyapunov functions
from the literature were used for the proofs (if available).

Example Model Time (Stab.) Time (A�r.) Gen.
1 [27, Ex. 2.1] αstate 2.6 3.0 X
2 [86, Motiv. ex.] αstate 2.2 2.3 X
3 [86, Ex. 1] αstate 3.3 4.1 X
4 [86, Ex. 2 & 3] αguard 2.8 3.8 ?
5 [154, Ex. 6] αguard × × ?
6 [189, Ex. 2.45] αarb 19.4 11.1 X
7 [189, Ex. 3.25] αstate 2.4 2.9 X
8 [189, Ex. 3.49] αtime 4.4 5.6 —
9 [211, Ex. 1] αtime 4.7 5.3 —
10 [211, Ex. 2] αtime 256.9 × —

memory. All examples have a 2 dimensional state space and switch between 2 modes except
Example 4 (2 dimensions, 4 modes) and Example 6 (3 dimensions, 2 modes). �e proof tactics
successfully prove most of the examples across various switching mechanisms. For Example
5, a suitable Lyapunov function (without numerical errors) could not be found.3 For the time-
dependent switching models (Examples 8–10), KeYmaera X internally uses veri�ed polynomial
Taylor approximations to the exponential function for decidability of arithmetic [14, 197];
Example 10 needs a high degree approximation (15 terms in the polynomial) for su�cient
accuracy and its a�ractivity proof could not be completed in reasonable time. Overall, this suite
of examples shows the feasibility of (fully) automated stability veri�cation for various classes
of switched systems in KeYmaera X. Future work could improve internal arithmetic reasoning
steps (e.g., Examples 8–10) to shorten proof times.

6.5 Case Studies
�is section presents three case studies applying the deductive veri�cation approach to justify
various non-standard switched system stability arguments in KeYmaera X.

6.5.1 Canonical Max System
Branicky [26] investigates the longitudinal dynamics of an aircra� with an elevator controller
that mediates between two control objectives: i) tracking potentially unsafe pilot input and

3Prajna and Papachristodoulou [154, Ex. 6] report that a sextic (degree 6) Lyapunov function can be generated
with sum-of-squares techniques, but do not provide the generated function explicitly.

161

ii) respecting safety constraints on the aircra�’s angle of a�ack. Assuming a state feedback
control law, the model is transformed to the following canonical max system [26, Remark 5],
with state variables x, y and parameters a, b, f, g, γ satisfying a, b, a− f, b− g > 0 and γ ≤ 0.

x′ = y, y′ = −ax− by + max(fx+ gy + γ, 0) (6.9)
�e right-hand side of system (6.9) is non-di�erentiable but the equations can be equivalently

rewri�en with state-dependent switching between a family of two ODEs corresponding to either
possibility for the max(fx+ gy + γ, 0) term in the equation for y′ as follows, where the system
follows ODE A in domain fx+ gy + γ ≤ 0 and ODE B in domain fx+ gy + γ ≥ 0.

A ≡ x′ = y, y′ = −ax− by B ≡ x′ = y, y′ = −(a− f)x− (b− g)y + γ

Stability of this parametric system is not directly provable using standard techniques for
state-dependent switching presented in Section 6.3.2. For example, the ODE A stabilizes the
system to the origin but the ODE B stabilizes to the point (− γ

a−f , 0), away from the origin
for γ < 0. Instead, Branicky [26] proves global asymptotic stability of (6.9) with the following
“noncustomary” [43] Lyapunov function involving a nondi�erentiable integrand:

V =
1

2
y2 +

∫ x

0

aξ −max(fξ + γ, 0)dξ (6.10)

�e key idea used to deductively prove stability here is ghost switching: analogous to ghost
variables in program veri�cation which are added for the sake of program proofs [127, 144]
or in proofs for ODEs (Chapters 3 and 4), ghost switching modes do not change the physical
dynamics of the system but are introduced for the purposes of the stability analysis. Here, ghost
switching between fx+ γ ≤ 0 and fx+ γ ≥ 0 is used to obtain closed form representations
for the integral in (6.10). �is yields an instance of state-dependent switching αstate with 4
switching modes and the stability speci�cation Pm:

αm ≡
(

A 1 ∪ A 2 ∪ B 1 ∪ B 2

)∗
p ≡ fx+ gy + γ q ≡ fx+ γ

A 1 ≡ A & p ≤ 0 ∧ q ≤ 0 A 2 ≡ A & p ≤ 0 ∧ q ≥ 0

B 1 ≡ B & p ≥ 0 ∧ q ≤ 0 B 2 ≡ B & p ≥ 0 ∧ q ≥ 0

Pm ≡ a>0 ∧ b>0 ∧ a−f>0 ∧ b−g>0 ∧ f 6=0 ∧ γ≤0→ UGpAS(αm)

�e ghost switching modes enable a multiple Lyapunov function argument for stability using
the following modi�ed closed-form representations of Branicky’s Lyapunov function (6.10), with
V1 for A 1, B 1 and V2 for A 2, B 2.4

V1(x, y) =
1

2
(bcx2 + 2cxy + y2) +

∫ x
0 aξ−max(fξ+γ,0)dξ where fξ + γ ≤ 0︷︸︸︷

a

2
x2

V2(x, y) =
1

2
(bcx2 + 2cxy + y2) +

a

2
x2 − (fx+ γ)2

2f︸ ︷︷ ︸∫ x
0 aξ−max(fξ+γ,0)dξ where fξ + γ ≥ 0

4An important technical requirement for V2 to be well-de�ned is f 6= 0. �e case with f = 0 is also veri�ed in
KeYmaera X but the details are omi�ed here for brevity. It does not require ghost switching and uses only V1 as its
common Lyapunov function.

162

�e Lyapunov functions V1, V2 are also modi�ed from (6.10) to use a quadratic form with
an additional constant c satisfying constraints 0 < c < b, c < b− g, c < (a−f)(b−g)

a−f+g2 , c < a(b−g)
a+g2

(such a constant always exists under the assumptions on a, b, f, g). �is technical modi�cation
is required to prove UGpAS for αm directly with the Lyapunov functions.

Another challenging aspect of this case study is veri�cation of the parametric arithmetical
conditions for V1, V2, i.e., stability is veri�ed for all possible parameter values a, b, f, g, γ that
satisfy the assumptions in Pm. Such questions are decidable in theory [14, 197], but are di�cult
for automated solvers in practice (even out of reach of solvers that require numerically bounded
parameters [60]). KeYmaera X enables a user-aided proof of the required arithmetic conditions.
For example, the Lie derivative of the Lyapunov function V1 for B 1 is given by:

.
V1 = Lx′=y,y′=−(a−f)x−(b−g)y+γ(V1) = −(b− c)y2 − acx2 + (cx+ y)(fx+ gy + γ)

Here,
.
V1 is required to be strictly negative away from the origin for stability. �e arithmetical

argument uses domain constraint fx + gy + γ ≥ 0 ∧ fx + γ ≤ 0 from B 1 as follows: if
cx+ y ≤ 0, then by constraint fx+ gy+γ ≥ 0,

.
V1 satis�es

.
V1 ≤ −(b− c)y2−acx2. Otherwise,

cx + y > 0, then by constraint fx + γ ≤ 0,
.
V1 satis�es

.
V1 ≤ −(b − g − c)y2 − acx2 + gcxy.

In either case, the RHS bound is a negative de�nite quadratic form by the earlier choice of
parameter c and therefore,

.
V1 is negative away from the origin. �e veri�cation of Pm and all of

the required arithmetic reasoning is done in KeYmaera X.

6.5.2 Automated Cruise Control
Oehlerking [126, Sect. 4.6] veri�es the stability of an automatic cruise controller modeled as a
hybrid automaton with 6 operating modes and 11 transitions between them: normal proportional-
integral (PI) control, acceleration, service braking (2 modes), and emergency braking (2 modes).
Figure 6.6 shows an abridged version of the corresponding KeYmaera X model (using αctrl)
with the PI control mode, where v is the relative velocity to be controlled to v = 0 and x, t are
auxiliary integral and timer variables used in the controller. Brie�y, this controller is designed
to use the PI controller near v = 0 for stability, while its other control modes drive the system
toward v = 0 by accelerating or braking.

Lyapunov function candidates for this model can be successfully generated using the Stab-
hyli [116] stability tool for hybrid automata, but Stabhyli (with default con�gurations) outputs
a Lyapunov function candidate for the PI control mode that is numerically unsound, see Ap-
pendix D.2 for the output and a counterexample; this is a known issue with Stabhyli for control
modes at the origin [116]. For this case study, the issue is manually resolved by truncating terms
with very small magnitude coe�cients in the generated output and then checking in KeYmaera X
that the arithmetical conditions for the PI mode are satis�ed for the truncated candidate.

Insights from the controller design are used in the UGpAS proof in KeYmaera X. Since stability
only concerns states and modes that are active near the origin, the stability argument only needs
to mention a single Lyapunov function for the PI control mode, while choosing δ (in Def. 6.6)
su�ciently small so that none of the other modes can be entered. In fact, the PI controller
equations are exactly those of a linearized pendulum, which has known Lyapunov functions [89]

163

normalPI("v’ = -0.001*x-0.052*v, x’ = v, t’ = 0

& -15 <= v & v <= 15

& -500 <= x & x <= 500")

normalPI -->|"?(13 <= v & v <= 15 &

-500 <= x & x <= 500);

t := 0;"| sbrakeact

normalPI -->|"?(-15 <= v & v <= -14 &

-500 <= x & x <= 500);"| accelerate

... // Other modes

\forall eps (eps > 0 -> // Abridged stability specification

...

[

... // Initialization

{

{ // Switching controller

... ++ // Transitions for other modes

?mode = normalPI();

{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++

?-15 <= v & v <= -14 & -500 <= x & x <= 500;

mode := accelerate(); ++

mode := mode; }

}

{ // Plant

... ++ // Plant ODEs for other modes

?mode = normalPI();

{ v’ = -0.001*x-0.052*v, x’ = v, t’ = 0 &

-15 <= v & v <= 15 & -500 <= x & x <= 500 }

}

}* // Switching loop

] v^2 < eps^2

Figure 6.6: Snippets of an automated cruise controller [126] modeled as a (switching) hybrid au-
tomaton. Users express the automaton within the description language (top le�) and KeYmaera X
visualizes the automaton on-the-�y (top le�). �e implementation automatically generates the
appropriate hybrid program representation and UGpAS speci�cation (bo�om); ++,&,() denote
choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

(see Example 5.7, page 124)—it could be interesting to modify Stabhyli to accept user-provided
Lyapunov function hints for certain modes. Similarly, pre-a�ractivity only requires reasoning
about asymptotic convergence to the origin for the PI control mode so it su�ces to show that
the system leaves all other modes in �nite time.

164

6.5.3 Brockett’s Nonholonomic Integrator
Veri�cation of stabilizing control laws for Brocke�’s nonholonomic integrator [29] is of signi�-
cant interest because stability for a large class of models can be reduced to that of the integrator
via coordinate transformations, e.g., Liberzon [99] transforms a unicycle model to the integrator
and provides a stabilizing switching control law corresponding to parking of the unicycle. �e
nonholonomic integrator is described by the following system of di�erential equations with
state variables x, y, z and state feedback control inputs u = u(x, y, z), v = v(x, y, z) (to be
determined further below).

x′ = u, y′ = v, z′ = xv − yu

Notably, this is a classical example of a system that is not stabilizable by purely continuous
feedback control. Intuitively, no choice of controls u, v can produce motion along the z-axis
(x = y = 0). �us, to stabilize the system to the origin, the controller must �rst drive the system
away from the z-axis before switching to a control law that stabilizes the system from states away
from the z-axis. �is intuition can be realized using two di�erent switching strategies that are
analogous to the event-triggered and time-triggered CPS design paradigms respectively [144].

Event-Triggered Controller

Bloch and Drakunov [13] use the switching controller u = −x+ay sign(z), v = −y−ax sign(z)
to asymptotically stabilize the integrator in the region a

2
(x2 + y2) ≥ |z| for any given constant

a > 0. �is controller �rst drives the system towards the plane z = 0 and, once it reaches
the plane, slides along the plane towards the origin. �e closed-loop system is modeled as an
instance of state-dependent switching αstate with 3 modes depending on the sign of z and
speci�cation Pe:

A ≡ x′ = −x+ ay, y′ = −y − ax, z′ = −a(x2 + y2) & z ≥ 0

B ≡ x′ = −x− ay, y′ = −y + ax, z′ = a(x2 + y2) & z ≤ 0

C ≡ x′ = −x, y′ = −y, z′ = 0 & z = 0 αe ≡
(

A ∪ B ∪ C
)∗

Pe ≡ a > 0→ UStab(αe)∧

∀δ>0∀ε>0∃T≥0 ∀x, y, z
(
‖x, y, z‖2 < δ ∧ a

2
(x2 + y2) ≥ |z| →

[t := 0;αe, t
′ = 1](t ≥ T → ‖x, y, z‖2 < ε

)
�e speci�cation Pe is identical to UGpAS except it restricts pre-a�ractivity to the applicable

region a
2
(x2 + y2) ≥ |z| for Bloch and Drakunov [13]’s controller.5 It is veri�ed using the squared

norm term V = x2 + y2 + z2 as a common Lyapunov function for A – C . �e key modi�cation
to the pre-a�ractivity proof, cf. Section 6.3.2, is to use (and verify) the fact that a

2
(x2 + y2) ≥ |z|

is a loop invariant of αe. �is additional invariant corresponds to the fact that the controller
keeps the system within its applicable region (if the system is initially within that region). In

5�e applicable region is equivalently characterized by the real arithmetic formula
(z ≥ 0→ a

2 (x2 + y2) ≥ z) ∧ (z ≤ 0→ a
2 (x2 + y2) ≥ −z), omi�ed for brevity.

165

fact, αe can be extended to a globally stabilizing controller, as modeled by αê below (if, else
branching is supported as an abbreviation in KeYmaera X [144]):

D ≡ x′ = u, y′ = v, z′ = xv − yu&
a

2
(x2 + y2) ≤ |z|

E ≡ x′ = u, y′ = v, z′ = xv − yu&
a

2
(x2 + y2) ≥ |z|

αê ≡

if
(a

2
(x2 + y2) ≥ |z|

) {
A ∪ B ∪ C

}
else

{
if((x− y)z ≤ 0){u := c; v := c} else{u :=−c; v :=−c};{

D ∪ E
} }

∗

Pê ≡ a > 0 ∧ c > 0→ UGpAS(αê)

If the system is in the applicable region (outer if branch), then the previous controller from
αe is used. Otherwise, outside the applicable region (outer else branch), the system applies a
constant control c > 0 chosen to drive the system into the applicable region. �e pair of ODEs
D and E model an event-trigger in dL [144], where the switching controller is triggered to
make its next decision when the system reaches the switching surface a

2
(x2 + y2) = |z|.

�e speci�cation Pê is proved by modifying the loop invariants to account for an initial
period where the system is outside the applicable region. For example, the stability loop invariant
Invs ≡ (¬a

2
(x2 + y2) ≥ |z| → |z| < δ) ∧ (a

2
(x2 + y2) ≥ |z| → ‖x, y, z‖2 < ε) expresses that

the controller keeps |z| su�ciently small with |z| < δ to preserve stability outside the applicable
region. �e pre-a�ractivity loop invariant is similarly split between the two cases, with an
explicit time estimate on the time it takes for the system to enter the applicable region.

Time-Triggered Controller

�e time-triggered switching strategy [144], modeled by ατ below, is similar to that proposed
by Liberzon [99, Section 4.2]. If the system is on the z-axis and away from the origin A , the
controller sets an internal stopwatch τ and drives the system away from the axis for maximum
duration T0 > 0 with u = z, v = z. Otherwise B , the controller drives the system towards the
origin along a parabolic curve of the form a

2
(x2 + y2) = z.

ατ ≡

if(x = 0 ∧ y = 0 ∧ z 6= 0)
{
τ := 0;x′ = z, y′ = z, z′ = xz − yz& τ ≤ T0

}
A

else
{
a :=

2z

x2 + y2
;x′ = −x+ ay, y′ = −y − ax, z′ = −a(x2 + y2)

}
B

∗
Pτ ≡ T0 > 0→ UGpAS(ατ)

�e speci�cation Pτ is again proved by analyzing both cases of the controller in the loop
invariants, e.g., with the pre-a�ractivity invariant Inva:(

x = 0 ∧ y = 0 ∧ z 6= 0→ |z| < δ ∧ t = 0
)
∧(

¬(x = 0 ∧ y = 0 ∧ z 6= 0)→ ‖x, y, z‖2 > ε→ ‖x, y, z‖2
2 < δ2(2T 2

0 + 1)− ε2(t− T0)
)

166

�e top conjunct says the system may start transiently on the z-axis (with z 6= 0) at time
t = 0. �e bo�om conjunct gives explicit bounds on ‖x, y, z‖2, which, for su�ciently large
t ≥ T , implies that the system enters ‖x, y, z‖2 < ε as required for pre-a�ractivity. �e transient
term δ2(2T 2

0 +1) upper bounds the (squared) norm of the system state a�er starting on the z-axis
in ball ‖x, y, z‖2 < δ and following mode A for the maximum stopwatch duration τ = T0.

6.6 Related Work
Hybrid System Formalisms. �ere are numerous hybrid system formalisms in the litera-
ture [65, 66, 72, 75, 99, 102, 135, 144, 164, 189]; see the cited articles and textbooks for further
references. Connections between several formalisms have been examined in prior work. Platzer
[135] shows how hybrid automata can be embedded into hybrid programs for their safety veri�-
cation; dL can also be generalized with (disjunctive) di�erential-algebraic constraints that can
be used to model and verify continuous dynamics with state-dependent switching [135, Chapter
3]. �is chapter models switching with discrete program operators which enables compositional
reasoning for the hybrid dynamics in switched systems. Sogokon et al. [177] study hybrid
automata models for ODEs with piecewise continuous right-hand sides and highlight various
subtleties in the resulting models; similar subtleties for state-dependent switching models are
presented in Section 6.2.2. Goebel et al. [65, 66] show how impulsive di�erential equations,
hybrid automata, and switched systems can all be understood as hybrid time models, and de-
rive their properties using this connection. �e decidability of invariance for state-dependent
switched systems is proved in �eorem 6.3 using their dL hybrid program models.

Switched Systems in Control. Comprehensive introductions to the analysis and design of
switching control can be found in the literature [43, 99, 189]. An important design consideration
(which this chapter sidesteps, cf. Remark 6.7) is whether a given switched or hybrid system
has complete solutions [65, 66, 107, 214]. Justi�cation of such design considerations, and other
stability notions of interest for switching designs, e.g., quadratic, region, or set-based stability [65,
66, 99, 151, 189], can be done in dLwith appropriate formal speci�cations of the desired properties
from the literature [135, 144]. Another complementary question is how to design a switching
control law that stabilizes a given system. Switching design approaches are o�en guided by
underlying stability arguments [99, 160, 189]; the loop invariants from Section 6.3 are expected
to help guide correct-by-construction synthesis of such controllers.

Stability Analysis and Veri�cation. Corollaries 6.9–6.12 formalize Lyapunov function-
based stability arguments from the literature [27, 211] using loop invariants, yielding trustworthy,
computer-checked stability proofs in KeYmaera X [54, 55]. Other computer-aided approaches
for switched system stability analysis are based on �nding Lyapunov functions that satisfy
the requisite arithmetical conditions [88, 116, 126, 154, 170, 173]. Although the search for such
functions can o�en be done e�ciently with numerical techniques [116, 129, 154], various au-
thors have emphasized the need to check that their outputs satisfy the arithmetical conditions
exactly, i.e., without numerical errors compromising the resulting stability claims [3, 88, 167]
(see, e.g., Section 6.5.2). �is chapter’s deductive approach goes further as it comprehensively

167

veri�es all steps of the stability argument down to its underlying discrete and continuous rea-
soning steps [142, 144]. �e generality of this approach is precisely what enables veri�cation of
various classes of switching mechanisms all within a common logical framework (Section 6.3)
and veri�cation of non-standard stability arguments (Section 6.5). Alternative approaches to
stability veri�cation are based on abstraction [62, 183] and model checking [151].

6.7 Discussion
�is chapter provides a blueprint for developing and verifying hybrid program models of
switched systems. In particular, it shows how to deductively verify switched system stability,
using dL’s nested quanti�cation over hybrid programs to specify stability, and dL’s axiomatics to
prove those speci�cations. Loop invariants—a classical technique from veri�cation—are used to
succinctly capture the desired properties of a given switching design; through deductive proofs,
these invariants yield systematic, correct-by-construction derivation of the requisite arithmetical
conditions on Lyapunov functions for stability arguments in implementations. An interesting
direction for future work is to add other Lyapunov function generation techniques [88, 116,
126, 173] to the implementation, which—thanks to the presented approach—do not have to be
trusted since their results can be checked independently by KeYmaera X. �is would enable fully
automated, yet sound and trustworthy veri�cation of switched system stability based on dL’s
parsimonious hybrid program reasoning principles.

168

Chapter 7

Conclusion

An inspiration for the material of this thesis is the following snippet from the introduction to
Liberzon’s textbook on switched control systems [99]:

�e �eld of hybrid systems has a strong interdisciplinary �avor, and di�erent commu-
nities have developed di�erent viewpoints. One approach, favored by researchers in
computer science, is to concentrate on studying the discrete behavior of the system, while
the continuous dynamics are assumed to take a relatively simple form. Basic issues
in this context include well-posedness, simulation, and veri�cation. Many researchers
in systems and control theory, on the other hand, tend to regard hybrid systems as
continuous systems with switching and place a greater emphasis on properties of the
continuous state. �e main issues then become stability analysis and control synthesis.

�is thesis takes a signi�cant step in reconciling the two viewpoints mentioned by Liberzon.
Chapters 3 and 4 show that deductive reasoning techniques from computer science scale to
non-trivial safety and liveness properties of non-trivial ODEs, while Chapters 5 and 6 further
show that those syntactic techniques are also well-suited for the formal study of control-theoretic
stability for continuous and hybrid (switched) systems. Deductive reasoning crucially enables
comprehensive and trustworthy veri�cation results throughout this thesis—the modus operandi
of the aforementioned chapters is to i) identify logical building blocks for reasoning about their
respective speci�cations; then ii) generalize and/or combine those building blocks to obtain
powerful new reasoning principles while retaining con�dence in the correctness of the results
by soundly and syntactically justifying every step from a parsimonious axiomatic foundation.

7.1 �esis Summary
Di�erential dynamic logic (dL) is used as the common logical foundation throughout this thesis,
which comes with three key bene�ts:

• Syntactic deduction in dL provides a means of formally proving a comprehensive set of
speci�cations of interest—safety, liveness, and stability—for a given system, all within
the same logical framework. �ese speci�cations come with powerful derived reasoning

169

principles, such as the complete invariance reasoning principles of Chapter 3, re�nement
reasoning for liveness in Chapter 4, and the compositional combination of �rst-order and
hybrid systems reasoning for stability speci�cations in Chapters 5 and 6.

• �e uniform logical treatment yields trustworthy derived reasoning principles because the
correctness of those principles syntactically reduce to the soundness of dL’s parsimonious
axiomatic foundations. Of course, an important caveat for pen-and-paper renditions of
proof rules in this thesis is that one must trust the correctness of syntactic derivations
presented in Chapters 3–6 (and their appendices). While every e�ort has been made to
check the thesis results, the implementation of these derivations as (untrusted) tactics in
KeYmaera X provides an additional correctness safeguard in practice because all proof steps
are checked against KeYmaera X’s microkernel implementation of dL [54, 55, 115, 142].

• �e compositional reasoning principles of dL is used throughout this thesis to li� thesis
results for ODEs to corresponding results for hybrid systems, notably Corollaries 3.14
and 3.39 which equivalently reduce analytic safety questions for analytic hybrid programs
to arithmetic questions; and Chapter 6 which derives stability veri�cation techniques for
switched systems by combining (discrete) loop invariants with (continuous) Lyapunov
function reasoning. �e ODE reasoning principles for dL’s box modality (Chapter 3) and
diamond modality (Chapter 4) developed in this thesis also provide practical building blocks
for proving sub-questions about continuous dynamics that arise, through compositional
reasoning, as part of larger hybrid systems proofs in dL and KeYmaera X.

�e thesis statement (recalled below) provides a lens with which to view these bene�ts and
to summarize the results of Chapters 3–6.

Deductive reasoning provides a powerful, uniform, and foundational way of proving
properties of ordinary di�erential equations. �is logical foundation, in turn, yields
new insights towards the veri�cation of continuous and hybrid systems.

7.2 Future Directions
Various avenues for future investigation have been discussed in Chapters 3–6. �ese avenues
are summarized below, along with other potential directions.

Dynamical Generalizations. Ordinary di�erential equations (ODEs) are the quintessential
model of continuous dynamics used throughout this thesis. A natural avenue for generalizing the
thesis results is to investigate syntactic reasoning for alternative, or more general, descriptions of
continuous dynamics, such as di�erential games [143] and di�erential-algebraic programs [137].
As suggested in Section 5.5, such dynamical extensions could even be useful for specifying
properties of ODEs; recall, e.g., the continuous adversarial dynamics of a di�erential game
can be used to model noisy perturbations of an ODE. Broadly speaking, the term language
extensions from Chapter 3 are examples of practically fruitful dynamical generalizations be-
cause they expand the class of di�erential equations that can be directly modeled in dL while

170

retaining sound and complete reasoning for their ODE invariants. Indeed, an implementation of
Noetherian term language extensions for KeYmaera X is ongoing work [58]. Future work could
examine the question posed at the end of Chapter 3, i.e., are there function classes that meet
the chapter’s extended term conditions but are not Noetherian functions? Or, more generally,
is sound and complete syntactic reasoning for ODE invariants possible for function classes
that do not necessarily meet those conditions? For example, dL can be extended with de�nite
descriptions [21] which yields terms that are not necessarily smooth (not even di�erentiable)
and it would be interesting to explore sound ODE reasoning principles for such an extension.

Syntactic Deduction and Control. Chapters 5 and 6 show how to carry out formal, syntactic
proofs of stability(-like) properties for di�erential equations and switched systems. Various
additional properties of control mechanisms are of interest in the literature [71, 89] and further
work could investigate how to formally specify and verify these properties within dL. As
argued in Section 5.5, such speci�cations may provide an avenue for exploring compositional
extensions of dL with other forms of dynamics [136, 137, 138, 141, 143]; or for using extensions
of dL’s speci�cation language [17, 19, 85, 90, 106, 133] to (more directly) syntactically express
the control-theoretic properties of interest. �is investigation is practically useful because it
would identify extensions of KeYmaera X (if any) that are needed to enable its use as a powerful,
semi-automated reasoning tool for trustworthy veri�cation of continuous and hybrid control
designs. Existing automation in KeYmaera X can also be improved for this purpose, e.g., the
stability proof tactics for switched systems from Chapter 6 can be further complemented with a
collection of methods for automatically generating Lyapunov function candidates for ODEs and
switched systems, similar to the Pegasus tool [180] for generating ODE invariant candidates.

Veri�ed Veri�cation. From a bird’s eye view, this thesis can also be seen as an instance of
veri�ed veri�cation, i.e., the use of one veri�cation technique (syntactic reasoning in dL) to study
and justify other veri�cation tools or techniques. �is is best exempli�ed by the re�nement-
based approach to ODE liveness in Chapter 4, which is used to formally survey and correct
existing liveness arguments from the literature. �e self-evident bene�t of veri�ed veri�cation
is it adds an additional, alternative layer of correctness guarantee to the resulting veri�cation
tools, which adds to their overall trustworthiness; this is especially useful for safety-critical
application domains, such as CPS veri�cation [6, 144], where any added guarantee is worthwhile.
An additional, subtle bene�t is that the new perspectives a�orded by alternative veri�cation
techniques may also lend themselves well to new veri�cation insights. For example, the uniform
re�nement approach of Chapter 4 reveals building blocks behind ODE liveness arguments in the
literature that can be generalized and pieced together to form new liveness arguments. Future
work can explore veri�ed veri�cation in alternative domains, such as so�ware and hardware
veri�cation, where the resulting correctness guarantees and generalizable insights are bene�cial.

171

172

Bibliography

[1] Alessandro Abate, Alessandro D’Innocenzo, Maria Domenica Di Benede�o, and Shankar
Sastry. Understanding deadlock and livelock behaviors in hybrid control systems. Nonlin-
ear Anal. Hybrid Syst., 3(2):150 – 162, 2009. doi: 10.1016/j.nahs.2008.12.005.

[2] Oskar Abrahamsson. A veri�ed proof checker for higher-order logic. J. Log. Algebraic
Methods Program., 112:100530, 2020. doi: 10.1016/j.jlamp.2020.100530.

[3] Daniele Ahmed, Andrea Peru�o, and Alessandro Abate. Automated and sound syn-
thesis of Lyapunov functions with SMT solvers. In Armin Biere and David Parker,
editors, TACAS, volume 12078 of LNCS, pages 97–114. Springer, 2020. doi: 10.1007/
978-3-030-45190-5_6.

[4] Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An automatic theorem prover
for real-valued special functions. J. Autom. Reason., 44(3):175–205, 2010. doi: 10.1007/
s10817-009-9149-2.

[5] Ma�hias Altho�. An introduction to CORA 2015. In Goran Frehse and Ma�hias Altho�,
editors, ARCH, volume 34 of EPiC Series in Computing, pages 120–151. EasyChair, 2015.
doi: 10.29007/zbkv.

[6] Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

[7] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, �omas A. Henzinger, Pei-
Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. �e
algorithmic analysis of hybrid systems. �eor. Comput. Sci., 138(1):3–34, 1995. doi:
10.1016/0304-3975(94)00202-T.

[8] Abhishek Anand and Ross A. Knepper. ROSCoq: Robots powered by constructive reals.
In Christian Urban and Xingyuan Zhang, editors, ITP, volume 9236 of LNCS, pages 34–50.
Springer, 2015. doi: 10.1007/978-3-319-22102-1_3.

[9] Mark S. Ashbaugh, Carmen C. Chicone, and Richard H. Cushman. �e twisting tennis
racket. Journal of Dynamics and Di�erential Equations, 3:67–85, 1991. doi: 10.1007/
BF01049489.

[10] Jeremy Avigad, Robert Y. Lewis, and Cody Roux. A heuristic prover for real inequalities.
J. Autom. Reason., 56(3):367–386, 2016. doi: 10.1007/s10817-015-9356-y.

[11] Ralph-Johan Back and Joakim von Wright. Re�nement Calculus - A Systematic Introduction.
Springer, 1998. doi: 10.1007/978-1-4612-1674-2.

173

http://dx.doi.org/10.1016/j.nahs.2008.12.005
http://dx.doi.org/10.1016/j.jlamp.2020.100530
http://dx.doi.org/10.1007/978-3-030-45190-5_6
http://dx.doi.org/10.1007/978-3-030-45190-5_6
http://dx.doi.org/10.1007/s10817-009-9149-2
http://dx.doi.org/10.1007/s10817-009-9149-2
http://dx.doi.org/10.29007/zbkv
http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1007/978-3-319-22102-1_3
http://dx.doi.org/10.1007/BF01049489
http://dx.doi.org/10.1007/BF01049489
http://dx.doi.org/10.1007/s10817-015-9356-y
http://dx.doi.org/10.1007/978-1-4612-1674-2

[12] Gal Binyamini. Density of algebraic points on Noetherian varieties. Geom. Funct. Anal.,
29(1):72–118, 2019. doi: 10.1007/s00039-019-00475-7.

[13] Anthony Bloch and Sergey Drakunov. Stabilization and tracking in the nonholonomic
integrator via sliding modes. Systems & Control Le�ers, 29(2):91–99, 1996. doi: 10.1016/
S0167-6911(96)00049-7.

[14] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry. Springer,
Heidelberg, 1998. doi: 10.1007/978-3-662-03718-8.

[15] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian
Schilling. JuliaReach: A toolbox for set-based reachability. In Necmiye Ozay and Pavithra
Prabhakar, editors, HSCC, pages 39–44. ACM, 2019. doi: 10.1145/3302504.3311804.

[16] Rose Bohrer. Di�erential dynamic logic. Archive of Formal Proofs, February 2017. https:
//isa-afp.org/entries/Differential_Dynamic_Logic.html, Formal proof devel-
opment.

[17] Rose Bohrer and André Platzer. A hybrid, dynamic logic for hybrid-dynamic information
�ow. In Anuj Dawar and Erich Grädel, editors, LICS, pages 115–124. ACM, 2018. doi:
10.1145/3209108.3209151.

[18] Rose Bohrer and André Platzer. Constructive hybrid games. In Nicolas Peltier and Viorica
Sofronie-Stokkermans, editors, IJCAR, volume 12166 of LNCS, pages 454–473. Springer,
2020. doi: 10.1007/978-3-030-51074-9_26.

[19] Rose Bohrer and André Platzer. Re�ning constructive hybrid games. In Zena M. Ariola,
editor, FSCD, volume 167 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi: 10.4230/LIPIcs.FSCD.2020.14.

[20] Rose Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer. Formally
veri�ed di�erential dynamic logic. In Yves Bertot and Viktor Vafeiadis, editors, CPP, pages
208–221. ACM, 2017. doi: 10.1145/3018610.3018616.

[21] Rose Bohrer, Manuel Fernández, and André Platzer. dlι: De�nite descriptions in di�erential
dynamic logic. In Pascal Fontaine, editor, CADE, volume 11716 of LNCS, pages 94–110.
Springer, 2019. doi: 10.1007/978-3-030-29436-6_6.

[22] Rose Bohrer, Yong Kiam Tan, Stefan Mitsch, Andrew Sogokon, and André Platzer. A
formal safety net for waypoint-following in ground robots. IEEE Robot. Autom. Le�., 4(3):
2910–2917, 2019. doi: 10.1109/LRA.2019.2923099.

[23] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: a
survey of proof assistants and libraries. Math. Struct. Comput. Sci., 26(7):1196–1233, 2016.
doi: 10.1017/S0960129514000437.

[24] Nicolas Bourbaki. Commutative Algebra. Chapters 1–7. Springer, Berlin, 1998.

[25] Olivier Bournez and Amaury Pouly. A universal ordinary di�erential equation. Log.
Methods Comput. Sci., 16(1), 2020. doi: 10.23638/LMCS-16(1:28)2020.

174

http://dx.doi.org/10.1007/s00039-019-00475-7
http://dx.doi.org/10.1016/S0167-6911(96)00049-7
http://dx.doi.org/10.1016/S0167-6911(96)00049-7
http://dx.doi.org/10.1007/978-3-662-03718-8
http://dx.doi.org/10.1145/3302504.3311804
https://isa-afp.org/entries/Differential_Dynamic_Logic.html
https://isa-afp.org/entries/Differential_Dynamic_Logic.html
http://dx.doi.org/10.1145/3209108.3209151
http://dx.doi.org/10.1007/978-3-030-51074-9_26
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.14
http://dx.doi.org/10.1145/3018610.3018616
http://dx.doi.org/10.1007/978-3-030-29436-6_6
http://dx.doi.org/10.1109/LRA.2019.2923099
http://dx.doi.org/10.1017/S0960129514000437
http://dx.doi.org/10.23638/LMCS-16(1:28)2020

[26] Michael S. Branicky. Analyzing continuous switching systems: theory and examples. In
ACC, volume 3, pages 3110–3114, 1994. doi: 10.1109/ACC.1994.735143.

[27] Michael S. Branicky. Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Trans. Autom. Control., 43(4):475–482, 1998. doi: 10.1109/9.
664150.

[28] Michael S. Branicky. Introduction to hybrid systems. In Dimitrios Hristu-Varsakelis and
William S. Levine, editors, Handbook of Networked and Embedded Control Systems, pages
91–116. Birkhäuser, 2005. doi: 10.1007/0-8176-4404-0_5.

[29] R. W. Brocke�. Asymptotic stability and feedback stabilization. In Di�erential Geometric
Control �eory, pages 181–191. Birkhauser, 1983.

[30] Michael J. Butler, Jean-Raymond Abrial, and Richard Banach. Modelling and re�ning
hybrid systems in Event-B and Rodin. In Luigia Petre and Emil Sekerinski, editors, From
Action Systems to Distributed Systems - �e Re�nement Approach, pages 29–42. Chapman
and Hall/CRC, 2016. doi: 10.1201/b20053.

[31] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of LNCS, pages 258–263, Heidelberg, 2013. Springer. doi: 10.1007/

978-3-642-39799-8_18.

[32] Xin Chen, Sriram Sankaranarayanan, and Erika Ábrahám. Under-approximate �owpipes
for non-linear continuous systems. In Koen Claessen and Viktor Kuncak, editors, FMCAD,
pages 59–66. IEEE, 2014. doi: 10.1109/FMCAD.2014.6987596.

[33] Carmen Chicone. Ordinary Di�erential Equations with Applications. Springer, New York,
second edition, 2006. doi: 10.1007/0-387-35794-7.

[34] Pete L. Clark. �e instructor’s guide to real induction. Math. Mag., 92(2):136–150, 2019.
doi: 10.1080/0025570X.2019.1549902.

[35] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël Ouaknine, Olaf
Stursberg, and Michael �eobald. Abstraction and counterexample-guided re�nement in
model checking of hybrid systems. Int. J. Found. Comput. Sci., 14(4):583–604, 2003. doi:
10.1142/S012905410300190X.

[36] Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic geometry: from ordered
�elds to quanti�er elimination. Log. Methods Comput. Sci., 8(1), 2012. doi: 10.2168/
LMCS-8(1:2)2012.

[37] Cyril Cohen and Damien Rouhling. A formal proof in Coq of LaSalle’s invariance principle.
In Mauricio Ayala-Rincón and César A. Muñoz, editors, ITP, volume 10499 of LNCS, pages
148–163. Springer, 2017. doi: 10.1007/978-3-319-66107-0_10.

175

http://dx.doi.org/10.1109/ACC.1994.735143
http://dx.doi.org/10.1109/9.664150
http://dx.doi.org/10.1109/9.664150
http://dx.doi.org/10.1007/0-8176-4404-0_5
http://dx.doi.org/10.1201/b20053
http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1109/FMCAD.2014.6987596
http://dx.doi.org/10.1007/0-387-35794-7
http://dx.doi.org/10.1080/0025570X.2019.1549902
http://dx.doi.org/10.1142/S012905410300190X
http://dx.doi.org/10.2168/LMCS-8(1:2)2012
http://dx.doi.org/10.2168/LMCS-8(1:2)2012
http://dx.doi.org/10.1007/978-3-319-66107-0_10

[38] Katherine Cordwell, Yong Kiam Tan, and André Platzer. A veri�ed decision procedure for
univariate real arithmetic with the BKR algorithm. In Liron Cohen and Cezary Kaliszyk,
editors, ITP, volume 193 of LIPIcs, pages 14:1–14:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi: 10.4230/LIPIcs.ITP.2021.14.

[39] Jorge Cortes. Discontinuous dynamical systems. IEEE Control Systems Magazine, 28(3):
36–73, 2008. doi: 10.1109/MCS.2008.919306.

[40] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certi�cates revisited. J. Symb.
Comput., 80:62–86, 2017. doi: 10.1016/j.jsc.2016.07.010.

[41] Jean-Gaston Darboux. Mémoire sur les équations di�érentielles algébriques du premier
ordre et du premier degré. Bull. Sci. Math., 2(1):151–200, 1878.

[42] Jared Davis and Magnus O. Myreen. �e re�ective Milawa theorem prover is sound
(down to the machine code that runs it). J. Autom. Reason., 55(2):117–183, 2015. doi:
10.1007/s10817-015-9324-6.

[43] Raymond A. Decarlo, Michael S. Branicky, Stefan Pe�ersson, and Bengt Lennartson.
Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings
of the IEEE, 88(7):1069–1082, 2000. doi: 10.1109/5.871309.

[44] Raymond A. Decarlo, Michael S. Branicky, Stefan Pe�ersson, and Bengt Lennartson.
Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE,
88(7):1069–1082, 2000. doi: 10.1109/5.871309.

[45] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Veri�cation of hybrid
systems. In Edmund M. Clarke, �omas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 1047–1110. Springer, 2018. doi:
10.1007/978-3-319-10575-8_30.

[46] Parasara Sridhar Duggirala and Sayan Mitra. Lyapunov abstractions for inevitability of
hybrid systems. In �ao Dang and Ian M. Mitchell, editors, HSCC, pages 115–124, New
York, 2012. ACM. doi: 10.1145/2185632.2185652.

[47] Guillaume Dupont, Yamine Aı̈t Ameur, Marc Pantel, and Neeraj Kumar Singh. Handling
re�nement of continuous behaviors: A proof based approach with Event-B. In Dominique
Méry and Shengchao Qin, editors, TASE, pages 9–16. IEEE, 2019. doi: 10.1109/TASE.
2019.00-25.

[48] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Sridhar Duggirala.
Automatic reachability analysis for nonlinear hybrid models with C2E2. In Swarat Chaud-
huri and Azadeh Farzan, editors, CAV, volume 9779 of LNCS, pages 531–538. Springer,
2016. doi: 10.1007/978-3-319-41528-4_29.

[49] K. Forsman. Construction of Lyapunov functions using Gröbner bases. In CDC, volume 1,
pages 798–799. IEEE, 1991. doi: 10.1109/CDC.1991.261424.

176

http://dx.doi.org/10.4230/LIPIcs.ITP.2021.14
http://dx.doi.org/10.1109/MCS.2008.919306
http://dx.doi.org/10.1016/j.jsc.2016.07.010
http://dx.doi.org/10.1007/s10817-015-9324-6
http://dx.doi.org/10.1109/5.871309
http://dx.doi.org/10.1109/5.871309
http://dx.doi.org/10.1007/978-3-319-10575-8_30
http://dx.doi.org/10.1145/2185632.2185652
http://dx.doi.org/10.1109/TASE.2019.00-25
http://dx.doi.org/10.1109/TASE.2019.00-25
http://dx.doi.org/10.1007/978-3-319-41528-4_29
http://dx.doi.org/10.1109/CDC.1991.261424

[50] Simon Foster, Jonathan Julián Huerta y Munive, and Georg Struth. Di�erential Hoare
logics and re�nement calculi for hybrid systems with Isabelle/HOL. In Uli Fahrenberg,
Peter Jipsen, and Michael Winter, editors, RAMiCS, volume 12062 of LNCS, pages 169–186.
Springer, 2020. doi: 10.1007/978-3-030-43520-2_11.

[51] Simon Foster, Jonathan Julián Huerta y Munive, Mario Gleirscher, and Georg Struth.
Hybrid systems veri�cation with Isabelle/HOL: Simpler syntax, be�er models, faster
proofs. In Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan, editors, FM, volume
13047 of LNCS, pages 367–386. Springer, 2021. doi: 10.1007/978-3-030-90870-6_20.

[52] Goran Frehse. PHAVer: Algorithmic veri�cation of hybrid systems past HyTech. In
Manfred Morari and Lothar �iele, editors, HSCC, volume 3414 of LNCS, pages 258–273.
Springer, 2005. doi: 10.1007/978-3-540-31954-2_17.

[53] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Sco� Co�on, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, �ao Dang, and Oded Maler. SpaceEx: Scalable
veri�cation of hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
CAV, volume 6806 of LNCS, pages 379–395, Heidelberg, 2011. Springer. doi: 10.1007/
978-3-642-22110-1_30.

[54] Nathan Fulton, Stefan Mitsch, Jan-David �esel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty
and Aart Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538, Cham, 2015.
Springer. doi: 10.1007/978-3-319-21401-6_36.

[55] Nathan Fulton, Stefan Mitsch, Rose Bohrer, and André Platzer. Bellerophon: Tactical
theorem proving for hybrid systems. In Mauricio Ayala-Rincón and César A. Muñoz,
editors, ITP, volume 10499 of LNCS, pages 207–224, Cham, 2017. Springer. doi: 10.1007/
978-3-319-66107-0_14.

[56] Andrei Gabrielov and Askold Khovanskii. Multiplicity of a Noetherian intersection. In
Geometry of Di�erential Equations, pages 119–130. Amer. Math. Soc., Providence, 1998.
doi: 10.1090/trans2/186/03.

[57] Andrei Gabrielov and Nicolai Vorobjov. Complexity of computations with Pfa�an and
Noetherian functions. In Normal Forms, Bifurcations and Finiteness Problems in Di�erential
Equations, pages 211–250. Kluwer Acad. Publ., Netherlands, 2004.

[58] James Gallicchio, Yong Kiam Tan, Stefan Mitsch, and André Platzer. Implicit de�nitions
with di�erential equations for KeYmaera X (system description). CoRR, abs/2203.01272,
2022. URL http://arxiv.org/abs/2203.01272.

[59] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-decidability over the reals. In
LICS, pages 305–314. IEEE Computer Society, 2012. doi: 10.1109/LICS.2012.41.

[60] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Maria Paola Bonacina, editor, CADE, volume 7898 of LNCS,
pages 208–214, Heidelberg, 2013. Springer. doi: 10.1007/978-3-642-38574-2_14.

177

http://dx.doi.org/10.1007/978-3-030-43520-2_11
http://dx.doi.org/10.1007/978-3-030-90870-6_20
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-319-66107-0_14
http://dx.doi.org/10.1007/978-3-319-66107-0_14
http://dx.doi.org/10.1090/trans2/186/03
http://arxiv.org/abs/2203.01272
http://dx.doi.org/10.1109/LICS.2012.41
http://dx.doi.org/10.1007/978-3-642-38574-2_14

[61] Sicun Gao, James Kapinski, Jyotirmoy V. Deshmukh, Nima Roohi, Armando Solar-Lezama,
Nikos Aréchiga, and Soonho Kong. Numerically-robust inductive proof rules for continu-
ous dynamical systems. In Isil Dillig and Serdar Tasiran, editors, CAV, volume 11562 of
LNCS, pages 137–154. Springer, 2019. doi: 10.1007/978-3-030-25543-5_9.

[62] Miriam Garcı́a Soto and Pavithra Prabhakar. Abstraction based veri�cation of stability of
polyhedral switched systems. Nonlinear Analysis: Hybrid Systems, 36:100856, 2020. doi:
https://doi.org/10.1016/j.nahs.2020.100856.

[63] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by di�erential
radical invariants. In Erika Ábrahám and Klaus Havelund, editors, TACAS, volume 8413 of
LNCS, pages 279–294, Heidelberg, 2014. Springer. doi: 10.1007/978-3-642-54862-8_
19.

[64] Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy of proof rules for
checking positive invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst.
Struct., 47:19–43, 2017. doi: 10.1016/j.cl.2015.11.003.

[65] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid dynamical systems. IEEE
Control Systems Magazine, 29(2):28–93, 2009. doi: 10.1109/MCS.2008.931718.

[66] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[67] Eric Goubault and Sylvie Putot. Forward inner-approximated reachability of non-linear
continuous systems. In Goran Frehse and Sayan Mitra, editors, HSCC, pages 1–10, New
York, 2017. ACM. doi: 10.1145/3049797.3049811.

[68] Daniel S. Graça, Jorge Buescu, and Manuel Lameiras Campagnolo. Boundedness of the
domain of de�nition is undecidable for polynomial ODEs. Electron. Notes �eor. Comput.
Sci., 202:49–57, 2008. doi: 10.1016/j.entcs.2008.03.007.

[69] Daniel S. Graça, Manuel L. Campagnolo, and Jorge Buescu. Computability with polynomial
di�erential equations. Adv. Appl. Math., 40(3):330 – 349, 2008. doi: 10.1016/j.aam.2007.
02.003.

[70] �omas H. Grönwall. Note on the derivatives with respect to a parameter of the solutions
of a system of di�erential equations. Ann. Math., 20(4):292–296, 1919. doi: 10.2307/
1967124.

[71] Wassim M. Haddad and VijaySekhar Chellaboina. Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton University Press, 2008.

[72] Wassim M. Haddad, VijaySekhar Chellaboina, and Sergey G. Nersesov. Impulsive and
Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press,
2006.

[73] David Harel. First-Order Dynamic Logic, volume 68 of LNCS. Springer, 1979. doi:
10.1007/3-540-09237-4.

178

http://dx.doi.org/10.1007/978-3-030-25543-5_9
http://dx.doi.org/https://doi.org/10.1016/j.nahs.2020.100856
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1016/j.cl.2015.11.003
http://dx.doi.org/10.1109/MCS.2008.931718
http://dx.doi.org/10.1145/3049797.3049811
http://dx.doi.org/10.1016/j.entcs.2008.03.007
http://dx.doi.org/10.1016/j.aam.2007.02.003
http://dx.doi.org/10.1016/j.aam.2007.02.003
http://dx.doi.org/10.2307/1967124
http://dx.doi.org/10.2307/1967124
http://dx.doi.org/10.1007/3-540-09237-4

[74] John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus Schneider
and Jens Brandt, editors, TPHOLs, volume 4732 of LNCS, pages 102–118. Springer, 2007.
doi: 10.1007/978-3-540-74591-4_9.

[75] �omas A. Henzinger. �e theory of hybrid automata. In LICS, pages 278–292. IEEE
Computer Society, 1996. doi: 10.1109/LICS.1996.561342.

[76] �omas A. Henzinger. It’s about time: Real-time logics reviewed. In Davide Sangiorgi and
Robert de Simone, editors, CONCUR, volume 1466 of LNCS, pages 439–454, Heidelberg,
1998. Springer. doi: 10.1007/BFb0055640.

[77] Morris W. Hirsch. �e dynamical systems approach to di�erential equations. Bull. Amer.
Math. Soc. (N.S.), 11(1):1–64, 07 1984.

[78] Johannes Hölzl, Fabian Immler, and Brian Hu�man. Type classes and �lters for math-
ematical analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, ITP, volume 7998 of LNCS, pages 279–294. Springer, 2013. doi:
10.1007/978-3-642-39634-2_21.

[79] Fabian Immler. A veri�ed ODE solver and the Lorenz a�ractor. J. Autom. Reason., 61(1-4):
73–111, 2018. doi: 10.1007/s10817-017-9448-y.

[80] Fabian Immler and Johannes Hölzl. Numerical analysis of ordinary di�erential equations
in Isabelle/HOL. In Lennart Beringer and Amy P. Felty, editors, ITP, volume 7406 of LNCS,
pages 377–392. Springer, 2012. doi: 10.1007/978-3-642-32347-8_26.

[81] Fabian Immler and Johannes Hölzl. Ordinary di�erential equations. Archive of For-
mal Proofs, April 2012. https://isa-afp.org/entries/Ordinary_Differential_

Equations.html, Formal proof development.

[82] Fabian Immler and Yong Kiam Tan. �e Poincaré-Bendixson theorem in Isabelle/HOL.
In Jasmin Blanche�e and Catalin Hritcu, editors, CPP, pages 338–352. ACM, 2020. doi:
10.1145/3372885.3373833.

[83] Fabian Immler and Christoph Traut. �e �ow of ODEs: Formalization of variational
equation and poincaré map. J. Autom. Reason., 62(2):215–236, 2019. doi: 10.1007/

s10817-018-9449-5.

[84] Fabian Immler, Ma�hias Altho�, Luis Benet, Alexandre Chapoutot, Xin Chen, Marcelo
Forets, Luca Gere�i, Niklas Kochdumper, David P. Sanders, and Christian Schilling. ARCH-
COMP19 category report: Continuous and hybrid systems with nonlinear dynamics. In
Goran Frehse and Ma�hias Altho�, editors, ARCH, volume 61 of EPiC Series in Computing,
pages 41–61. EasyChair, 2019. doi: 10.29007/m75b.

[85] Jean-Baptiste Jeannin and André Platzer. dTL2: Di�erential temporal dynamic logic with
nested temporalities for hybrid systems. In Stéphane Demri, Deepak Kapur, and Christoph
Weidenbach, editors, IJCAR, volume 8562 of LNCS, pages 292–306. Springer, 2014. doi:
10.1007/978-3-319-08587-6_22.

179

http://dx.doi.org/10.1007/978-3-540-74591-4_9
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1007/BFb0055640
http://dx.doi.org/10.1007/978-3-642-39634-2_21
http://dx.doi.org/10.1007/s10817-017-9448-y
http://dx.doi.org/10.1007/978-3-642-32347-8_26
https://isa-afp.org/entries/Ordinary_Differential_Equations.html
https://isa-afp.org/entries/Ordinary_Differential_Equations.html
http://dx.doi.org/10.1145/3372885.3373833
http://dx.doi.org/10.1007/s10817-018-9449-5
http://dx.doi.org/10.1007/s10817-018-9449-5
http://dx.doi.org/10.29007/m75b
http://dx.doi.org/10.1007/978-3-319-08587-6_22

[86] Martin Johansson and Anders Rantzer. Computation of piecewise quadratic Lyapunov
functions for hybrid systems. IEEE Trans. Autom. Control., 43(4):555–559, 1998. doi:
10.1109/9.664157.

[87] Eduard Kamburjan. From post-conditions to post-region invariants: deductive veri�cation
of hybrid objects. In Sergiy Bogomolov and Raphaël M. Jungers, editors, HSCC, pages
9:1–9:11. ACM, 2021. doi: 10.1145/3447928.3456633.

[88] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Aréchiga.
Simulation-guided Lyapunov analysis for hybrid dynamical systems. In Martin Fränzle
and John Lygeros, editors, HSCC, pages 133–142. ACM, 2014. doi: 10.1145/2562059.
2562139.

[89] Hassan K. Khalil. Nonlinear systems. Macmillan Publishing Company, New York, 1992.

[90] Juraj Kolcák, Jérémy Dubut, Ichiro Hasuo, Shin-ya Katsumata, David Sprunger, and
Akihisa Yamada. Relational di�erential dynamic logic. In Armin Biere and David Parker,
editors, TACAS, volume 12078 of LNCS, pages 191–208. Springer, 2020. doi: 10.1007/
978-3-030-45190-5_11.

[91] Hui Kong, Fei He, Xiaoyu Song, William N. N. Hung, and Ming Gu. Exponential-condition-
based barrier certi�cate generation for safety veri�cation of hybrid systems. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 242–257. Springer,
2013. doi: 10.1007/978-3-642-39799-8_17.

[92] Margarita V. Korovina and Nicolai Vorobjov. Pfa�an hybrid systems. In Jerzy
Marcinkowski and Andrzej Tarlecki, editors, CSL, volume 3210 of LNCS, pages 430–441,
Heidelberg, 2004. Springer. doi: 10.1007/978-3-540-30124-0_33.

[93] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443,
1997. doi: 10.1145/256167.256195.

[94] Steven G. Krantz and Harold R. Parks. A Primer of Real Analytic Functions. Birkhäuser,
Boston, second edition, 2002. doi: 10.1007/978-0-8176-8134-0.

[95] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Sco� Owens. HOL with de�-
nitions: Semantics, soundness, and a veri�ed implementation. In Gerwin Klein and
Ruben Gamboa, editors, ITP, volume 8558 of LNCS, pages 308–324. Springer, 2014. doi:
10.1007/978-3-319-08970-6_20.

[96] Gerardo La�erriere, George J. Pappas, and Shankar Sastry. O-minimal hybrid systems.
Math. Control Signals Systems, 13(1):1–21, 2000. doi: 10.1007/PL00009858.

[97] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate poly-
nomial problems using untrusted certi�cates in Isabelle/HOL. J. Autom. Reason., 62(1):
69–91, 2019. doi: 10.1007/s10817-017-9424-6.

[98] A. Liapouno�. Probléme général de la stabilité du mouvement. Annales de la Faculté des
sciences de Toulouse : Mathématiques, 9:203–474, 1907.

180

http://dx.doi.org/10.1109/9.664157
http://dx.doi.org/10.1145/3447928.3456633
http://dx.doi.org/10.1145/2562059.2562139
http://dx.doi.org/10.1145/2562059.2562139
http://dx.doi.org/10.1007/978-3-030-45190-5_11
http://dx.doi.org/10.1007/978-3-030-45190-5_11
http://dx.doi.org/10.1007/978-3-642-39799-8_17
http://dx.doi.org/10.1007/978-3-540-30124-0_33
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1007/978-0-8176-8134-0
http://dx.doi.org/10.1007/978-3-319-08970-6_20
http://dx.doi.org/10.1007/PL00009858
http://dx.doi.org/10.1007/s10817-017-9424-6

[99] Daniel Liberzon. Switching in Systems and Control. Systems & Control: Foundations &
Applications. Birkhäuser, 2003. doi: 10.1007/978-1-4612-0017-8.

[100] Timm Liebrenz, Paula Herber, and Sabine Glesner. Deductive veri�cation of hybrid
control systems modeled in Simulink with KeYmaera X. In Jing Sun and Meng Sun,
editors, ICFEM, volume 11232 of LNCS, pages 89–105. Springer, 2018. doi: 10.1007/
978-3-030-02450-5_6.

[101] Qin Lin, Stefan Mitsch, André Platzer, and John M. Dolan. Safe and resilient practical
waypoint-following for autonomous vehicles. IEEE Control. Syst. Le�., 6:1574–1579, 2022.
doi: 10.1109/LCSYS.2021.3125717.

[102] Jiang Liu, Jidong Lv, Zhao �an, Naijun Zhan, Hengjun Zhao, Chaochen Zhou, and Liang
Zou. A calculus for hybrid CSP. In Kazunori Ueda, editor, APLAS, volume 6461 of LNCS,
pages 1–15. Springer, 2010. doi: 10.1007/978-3-642-17164-2_1.

[103] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Computing semi-algebraic invariants for
polynomial dynamical systems. In Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K.
Baruah, and Sebastian Fischmeister, editors, EMSOFT, pages 97–106, New York, 2011.
ACM. doi: 10.1145/2038642.2038659.

[104] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Automatically discovering relaxed Lyapunov
functions for polynomial dynamical systems. Math. Comput. Sci., 6(4):395–408, 2012. doi:
10.1007/s11786-012-0133-6.

[105] Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou. Abstraction of elementary hy-
brid systems by variable transformation. In Nikolaj Bjørner and Frank S. de Boer, ed-
itors, FM, volume 9109 of LNCS, pages 360–377, Cham, 2015. Springer. doi: 10.1007/
978-3-319-19249-9_23.

[106] Sarah M. Loos and André Platzer. Di�erential re�nement logic. In Martin Grohe, Eric
Koskinen, and Natarajan Shankar, editors, LICS, pages 505–514. ACM, 2016. doi: 10.
1145/2933575.2934555.

[107] John Lygeros, Karl Henrik Johansson, Slobodan N. Simic, Jun Zhang, and Shankar S.
Sastry. Dynamical properties of hybrid automata. IEEE Trans. Autom. Control., 48(1):2–17,
2003. doi: 10.1109/TAC.2002.806650.

[108] Evgeny Makarov and Bas Spi�ers. �e Picard algorithm for ordinary di�erential equations
in Coq. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, ITP, vol-
ume 7998 of LNCS, pages 463–468. Springer, 2013. doi: 10.1007/978-3-642-39634-2_
34.

[109] Zohar Manna and Amir Pnueli. �e Temporal Logic of Reactive and Concurrent Systems -
Speci�cation. Springer, New York, 1992. doi: 10.1007/978-1-4612-0931-7.

[110] João Martins, André Platzer, and João Leite. Dynamic doxastic di�erential dynamic
logic for belief-aware cyber-physical systems. In Serenella Cerrito and Andrei Popescu,
editors, TABLEAUX, volume 11714 of LNCS, pages 428–445. Springer, 2019. doi: 10.1007/
978-3-030-29026-9_24.

181

http://dx.doi.org/10.1007/978-1-4612-0017-8
http://dx.doi.org/10.1007/978-3-030-02450-5_6
http://dx.doi.org/10.1007/978-3-030-02450-5_6
http://dx.doi.org/10.1109/LCSYS.2021.3125717
http://dx.doi.org/10.1007/978-3-642-17164-2_1
http://dx.doi.org/10.1145/2038642.2038659
http://dx.doi.org/10.1007/s11786-012-0133-6
http://dx.doi.org/10.1007/978-3-319-19249-9_23
http://dx.doi.org/10.1007/978-3-319-19249-9_23
http://dx.doi.org/10.1145/2933575.2934555
http://dx.doi.org/10.1145/2933575.2934555
http://dx.doi.org/10.1109/TAC.2002.806650
http://dx.doi.org/10.1007/978-3-642-39634-2_34
http://dx.doi.org/10.1007/978-3-642-39634-2_34
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-3-030-29026-9_24
http://dx.doi.org/10.1007/978-3-030-29026-9_24

[111] �e mathlib Community. �e Lean mathematical library. In Jasmin Blanche�e and Catalin
Hritcu, editors, CPP, pages 367–381. ACM, 2020. doi: 10.1145/3372885.3373824.

[112] Sco� McCallum and Volker Weispfenning. Deciding polynomial-transcendental problems.
J. Symb. Comput., 47(1):16–31, 2012. doi: 10.1016/j.jsc.2011.08.004.

[113] Sean McLaughlin and John Harrison. A proof-producing decision procedure for real
arithmetic. In Robert Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages 295–314.
Springer, 2005. doi: 10.1007/11532231_22.

[114] Stefan Mitsch and André Platzer. �e KeYmaera X proof IDE: Concepts on usability in
hybrid systems theorem proving. In Catherine Dubois, Paolo Masci, and Dominique
Méry, editors, 3rd Workshop on Formal Integrated Development Environment, volume 240
of EPTCS, pages 67–81, 2016. doi: 10.4204/EPTCS.240.5.

[115] Stefan Mitsch and André Platzer. A retrospective on developing hybrid system provers in
the KeYmaera family - A tale of three provers. In Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, Reiner Hähnle, and Ma�ias Ulbrich, editors, Deductive So�ware Veri�cation:
Future Perspectives - Re�ections on the Occasion of 20 Years of KeY, volume 12345 of LNCS,
pages 21–64. Springer, 2020. doi: 10.1007/978-3-030-64354-6_2.

[116] Eike Möhlmann and Oliver E. �eel. Stabhyli: a tool for automatic stability veri�cation
of non-linear hybrid systems. In Calin Belta and Franjo Ivancic, editors, HSCC, pages
107–112. ACM, 2013. doi: 10.1145/2461328.2461347.

[117] Eike Möhlmann and Oliver E. �eel. Stabhyli, 2021. URL https://uol.de/svs/

forschung/avacs/stabhyli. [Online; accessed 27-October-2021].

[118] A. S. Morse. Control using logic-based switching. In Alberto Isidori, editor, Trends in Con-
trol, pages 69–113, London, 1995. Springer London. doi: 10.1007/978-1-4471-3061-1_
4.

[119] Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and André
Platzer. Tactical contract composition for hybrid system component veri�cation. Int. J.
So�w. Tools Technol. Transf., 20(6):615–643, 2018. doi: 10.1007/s10009-018-0502-9.

[120] César A. Muñoz, Anthony J. Narkawicz, and Aaron Dutle. A decision procedure for
univariate polynomial systems based on root counting and interval subdivision. J. Formaliz.
Reason., 11(1):19–41, 2018. doi: 10.6092/issn.1972-5787/8212.

[121] Anthony Narkawicz, César A. Muñoz, and Aaron Dutle. Formally-veri�ed decision
procedures for univariate polynomial computation based on Sturm’s and Tarski’s theorems.
J. Autom. Reason., 54(4):285–326, 2015. doi: 10.1007/s10817-015-9320-x.

[122] Eva M. Navarro-López and Rebekah Carter. Deadness and how to disprove liveness in
hybrid dynamical systems. �eor. Comput. Sci., 642:1–23, 2016. doi: 10.1016/j.tcs.
2016.06.009.

182

http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1016/j.jsc.2011.08.004
http://dx.doi.org/10.1007/11532231_22
http://dx.doi.org/10.4204/EPTCS.240.5
http://dx.doi.org/10.1007/978-3-030-64354-6_2
http://dx.doi.org/10.1145/2461328.2461347
https://uol.de/svs/forschung/avacs/stabhyli
https://uol.de/svs/forschung/avacs/stabhyli
http://dx.doi.org/10.1007/978-1-4471-3061-1_4
http://dx.doi.org/10.1007/978-1-4471-3061-1_4
http://dx.doi.org/10.1007/s10009-018-0502-9
http://dx.doi.org/10.6092/issn.1972-5787/8212
http://dx.doi.org/10.1007/s10817-015-9320-x
http://dx.doi.org/10.1016/j.tcs.2016.06.009
http://dx.doi.org/10.1016/j.tcs.2016.06.009

[123] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh, and Taylor T.
Johnson. Hyperproperties of real-valued signals. In Jean-Pierre Talpin, Patricia Derler,
and Klaus Schneider, editors, MEMOCODE, pages 104–113. ACM, 2017. doi: 10.1145/
3127041.3127058.

[124] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof As-
sistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. doi: 10.1007/
3-540-45949-9.

[125] Dimitri Novikov and Sergei Yakovenko. Trajectories of polynomial vector �elds and
ascending chains of polynomial ideals. Ann. I. Fourier, 49(2):563–609, 1999. doi: 10.5802/
aif.1683.

[126] Jens Oehlerking. Decomposition of stability proofs for hybrid systems. PhD thesis, Carl von
Ossietzky University of Oldenburg, 2011.

[127] Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976. doi: 10.1145/360051.360224.

[128] Susan S. Owicki and Leslie Lamport. Proving liveness properties of concurrent programs.
ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982. doi: 10.1145/357172.357178.

[129] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. A. Par-
rilo, M. M. Peet, and D. Jagt. SOSTOOLS: Sum of squares optimization tool-
box for MATLAB. http://arxiv.org/abs/1310.4716, 2021. Available from
https://github.com/oxfordcontrol/SOSTOOLS.

[130] Antonis Papachristodoulou and Stephen Prajna. On the construction of Lyapunov func-
tions using the sum of squares decomposition. In CDC, pages 3482–3487. IEEE, 2002. doi:
10.1109/CDC.2002.1184414.

[131] Pablo A. Parrilo. Structured semide�nite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[132] Andrea Peru�o, Daniele Ahmed, and Alessandro Abate. Automated and formal synthesis of
neural barrier certi�cates for dynamical models. In Jan Friso Groote and Kim Guldstrand
Larsen, editors, TACAS, volume 12651 of LNCS, pages 370–388. Springer, 2021. doi:
10.1007/978-3-030-72016-2_20.

[133] André Platzer. A temporal dynamic logic for verifying hybrid system invariants. In
Sergei N. Artëmov and Anil Nerode, editors, LFCS, volume 4514 of LNCS, pages 457–471.
Springer, 2007. doi: 10.1007/978-3-540-72734-7_32.

[134] André Platzer. Di�erential dynamic logic for hybrid systems. J. Autom. Reasoning, 41(2):
143–189, 2008. doi: 10.1007/s10817-008-9103-8.

[135] André Platzer. Logical Analysis of Hybrid Systems - Proving �eorems for Complex Dynamics.
Springer, 2010. doi: 10.1007/978-3-642-14509-4.

183

http://dx.doi.org/10.1145/3127041.3127058
http://dx.doi.org/10.1145/3127041.3127058
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.5802/aif.1683
http://dx.doi.org/10.5802/aif.1683
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1145/357172.357178
http://dx.doi.org/10.1109/CDC.2002.1184414
http://dx.doi.org/10.1007/978-3-030-72016-2_20
http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4

[136] André Platzer. �anti�ed di�erential dynamic logic for distributed hybrid systems. In
Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of LNCS, pages 469–483. Springer,
2010. doi: 10.1007/978-3-642-15205-4_36.

[137] André Platzer. Di�erential-algebraic dynamic logic for di�erential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010. doi: 10.1093/logcom/exn070.

[138] André Platzer. Stochastic di�erential dynamic logic for stochastic hybrid programs. In
Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE, volume 6803 of LNCS,
pages 446–460. Springer, 2011. doi: 10.1007/978-3-642-22438-6_34.

[139] André Platzer. �e complete proof theory of hybrid systems. In LICS, pages 541–550.
IEEE Computer Society, 2012. doi: 10.1109/LICS.2012.64.

[140] André Platzer. �e structure of di�erential invariants and di�erential cut elimination.
Log. Meth. Comput. Sci., 8(4):1–38, 2012. doi: 10.2168/LMCS-8(4:16)2012.

[141] André Platzer. Di�erential game logic. ACM Trans. Comput. Log., 17(1):1:1–1:51, 2015.
doi: 10.1145/2817824.

[142] André Platzer. A complete uniform substitution calculus for di�erential dynamic logic. J.
Autom. Reason., 59(2):219–265, 2017. doi: 10.1007/s10817-016-9385-1.

[143] André Platzer. Di�erential hybrid games. ACM Trans. Comput. Log., 18(3):19:1–19:44,
2017. doi: 10.1145/3091123.

[144] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Cham, 2018. doi:
10.1007/978-3-319-63588-0.

[145] André Platzer. Uniform substitution at one fell swoop. In Pascal Fontaine, editor, CADE, vol-
ume 11716 of LNCS, pages 425–441. Springer, 2019. doi: 10.1007/978-3-030-29436-6_
25.

[146] André Platzer and Edmund M. Clarke. Computing di�erential invariants of hybrid
systems as �xedpoints. Formal Methods Syst. Des., 35(1):98–120, 2009. doi: 10.1007/
s10703-009-0079-8.

[147] André Platzer and Jan-David �esel. KeYmaera: A hybrid theorem prover for hybrid sys-
tems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, vol-
ume 5195 of LNCS, pages 171–178. Springer, 2008. doi: 10.1007/978-3-540-71070-7_
15.

[148] André Platzer and Yong Kiam Tan. Di�erential equation axiomatization: �e impressive
power of di�erential ghosts. In Anuj Dawar and Erich Grädel, editors, LICS, pages 819–828,
New York, 2018. ACM. doi: 10.1145/3209108.3209147.

[149] André Platzer and Yong Kiam Tan. Di�erential equation invariance axiomatization. J.
ACM, 67(1):6:1–6:66, 2020. doi: 10.1145/3380825.

184

http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.1145/2817824
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1145/3091123
http://dx.doi.org/10.1007/978-3-319-63588-0
http://dx.doi.org/10.1007/978-3-030-29436-6_25
http://dx.doi.org/10.1007/978-3-030-29436-6_25
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1145/3209108.3209147
http://dx.doi.org/10.1145/3380825

[150] André Platzer, Jan-David �esel, and Philipp Rümmer. Real world veri�cation. In
Renate A. Schmidt, editor, CADE, volume 5663 of LNCS, pages 485–501. Springer, 2009.
doi: 10.1007/978-3-642-02959-2_35.

[151] Andreas Podelski and Silke Wagner. Model checking of hybrid systems: From reachability
towards stability. In João P. Hespanha and Ashish Tiwari, editors, HSCC, volume 3927 of
LNCS, pages 507–521. Springer, 2006. doi: 10.1007/11730637_38.

[152] Henri Poincaré. Mémoire sur les courbes dé�nies par une équation di�érentielle. J. Math.
Pures Appl., 1881.

[153] Henri Poincaré. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris,
1892–1899.

[154] S. Prajna and A. Papachristodoulou. Analysis of switched and hybrid systems - beyond
piecewise quadratic methods. In ACC, volume 4, pages 2779–2784 vol.4, 2003. doi:
10.1109/ACC.2003.1243743.

[155] Stephen Prajna and Ali Jadbabaie. Safety veri�cation of hybrid systems using barrier
certi�cates. In Rajeev Alur and George J. Pappas, editors, HSCC, volume 2993 of LNCS,
pages 477–492, Heidelberg, 2004. Springer. doi: 10.1007/978-3-540-24743-2_32.

[156] Stephen Prajna and Anders Rantzer. Primal-dual tests for safety and reachability. In
Manfred Morari and Lothar �iele, editors, HSCC, volume 3414 of LNCS, pages 542–556,
Heidelberg, 2005. Springer. doi: 10.1007/978-3-540-31954-2_35.

[157] Stephen Prajna and Anders Rantzer. Convex programs for temporal veri�cation of
nonlinear dynamical systems. SIAM J. Control Optim., 46(3):999–1021, 2007. doi: 10.
1137/050645178.

[158] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and
stochastic safety veri�cation using barrier certi�cates. IEEE Trans. Autom. Control., 52(8):
1415–1428, 2007. doi: 10.1109/TAC.2007.902736.

[159] Stefan Ratschan and Zhikun She. Providing a basin of a�raction to a target region of
polynomial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.,
48(7):4377–4394, 2010. doi: 10.1137/090749955.

[160] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Counter-example guided synthesis of
control Lyapunov functions for switched systems. In CDC, pages 4232–4239. IEEE, 2015.
doi: 10.1109/CDC.2015.7402879.

[161] Rachid Rebiha, Arnaldo Vieira Moura, and Nadir Matringe. Generating invariants for
non-linear hybrid systems. �eor. Comput. Sci., 594:180–200, 2015. doi: 10.1016/j.tcs.
2015.06.018.

[162] Daniel Richardson. Some undecidable problems involving elementary functions of a real
variable. J. Symb. Log., 33(4):514–520, 1968. doi: 10.2307/2271358.

185

http://dx.doi.org/10.1007/978-3-642-02959-2_35
http://dx.doi.org/10.1007/11730637_38
http://dx.doi.org/10.1109/ACC.2003.1243743
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1007/978-3-540-31954-2_35
http://dx.doi.org/10.1137/050645178
http://dx.doi.org/10.1137/050645178
http://dx.doi.org/10.1109/TAC.2007.902736
http://dx.doi.org/10.1137/090749955
http://dx.doi.org/10.1109/CDC.2015.7402879
http://dx.doi.org/10.1016/j.tcs.2015.06.018
http://dx.doi.org/10.1016/j.tcs.2015.06.018
http://dx.doi.org/10.2307/2271358

[163] Daniel Ricke�s, Gregory Malecha, Mario M. Alvarez, Vignesh Gowda, and Sorin Lerner.
Towards veri�cation of hybrid systems in a foundational proof assistant. In MEMOCODE,
pages 248–257. IEEE, 2015. doi: 10.1109/MEMCOD.2015.7340492.

[164] Mauno Rönkkö, Anders P. Ravn, and Kaisa Sere. Hybrid action systems. �eor. Comput.
Sci., 290(1):937–973, 2003. doi: 10.1016/S0304-3975(02)00547-9.

[165] Nicolas Rouche, P. Habets, and M. Laloy. Stability �eory by Liapunov’s Direct Method.
Springer, New York, 1977. doi: 10.1007/978-1-4684-9362-7.

[166] Damien Rouhling. A formal proof in Coq of a control function for the inverted pendulum.
In June Andronick and Amy P. Felty, editors, CPP, pages 28–41. ACM, 2018. doi: 10.
1145/3167101.

[167] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validating numerical
semide�nite programming solvers for polynomial invariants. Form. Methods Syst. Des., 53
(2):286–312, 2018. doi: 10.1007/s10703-017-0302-y.

[168] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

[169] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constructing invari-
ants for hybrid systems. Form. Methods Syst. Des., 32(1):25–55, 2008. doi: 10.1007/
s10703-007-0046-1.

[170] Sriram Sankaranarayanan, Xin Chen, and Erika Ábrahám. Lyapunov function synthesis
using Handelman representations. In Sophie Tarbouriech and Miroslav Krstic, editors,
NOLCOS, pages 576–581. IFAC, 2013. doi: 10.3182/20130904-3-FR-2041.00198.

[171] Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André Platzer. Veri�ed quadratic
virtual substitution for real arithmetic. In Marieke Huisman, Corina S. Pasareanu, and
Naijun Zhan, editors, FM, volume 13047 of LNCS, pages 200–217. Springer, 2021. doi:
10.1007/978-3-030-90870-6_11.

[172] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan Kowalewski. HyPro:
A C++ library of state set representations for hybrid systems reachability analysis. In
Clark W. Barre�, Misty Davies, and Temesghen Kahsai, editors, NFM, volume 10227 of
LNCS, pages 288–294, 2017. doi: 10.1007/978-3-319-57288-8_20.

[173] Zhikun She and Bai Xue. Discovering multiple Lyapunov functions for switched hybrid
systems. SIAM J. Control. Optim., 52(5):3312–3340, 2014. doi: 10.1137/130934313.

[174] J. Tanner Slagel, Lauren White, and Aaron Dutle. Formal veri�cation of semi-algebraic
sets and real analytic functions. In Catalin Hritcu and Andrei Popescu, editors, CPP, pages
278–290. ACM, 2021. doi: 10.1145/3437992.3439933.

[175] Andrew Sogokon. Direct methods for deductive veri�cation of temporal properties in
continuous dynamical systems. PhD thesis, Laboratory for Foundations of Computer
Science, School of Informatics, University of Edinburgh, 2016.

186

http://dx.doi.org/10.1109/MEMCOD.2015.7340492
http://dx.doi.org/10.1016/S0304-3975(02)00547-9
http://dx.doi.org/10.1007/978-1-4684-9362-7
http://dx.doi.org/10.1145/3167101
http://dx.doi.org/10.1145/3167101
http://dx.doi.org/10.1007/s10703-017-0302-y
http://dx.doi.org/10.1007/s10703-007-0046-1
http://dx.doi.org/10.1007/s10703-007-0046-1
http://dx.doi.org/10.3182/20130904-3-FR-2041.00198
http://dx.doi.org/10.1007/978-3-030-90870-6_11
http://dx.doi.org/10.1007/978-3-319-57288-8_20
http://dx.doi.org/10.1137/130934313
http://dx.doi.org/10.1145/3437992.3439933

[176] Andrew Sogokon and Paul B. Jackson. Direct formal veri�cation of liveness properties
in continuous and hybrid dynamical systems. In Nikolaj Bjørner and Frank S. de Boer,
editors, FM, volume 9109 of LNCS, pages 514–531, Cham, 2015. Springer. doi: 10.1007/
978-3-319-19249-9_32.

[177] Andrew Sogokon, Khalil Ghorbal, and Taylor T. Johnson. Operational models for
piecewise-smooth systems. ACM Trans. Embed. Comput. Syst., 16(5s):185:1–185:19, 2017.

[178] Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer. Vector barrier
certi�cates and comparison systems. In Klaus Havelund, Jan Peleska, Bill Roscoe, and
Erik P. de Vink, editors, FM, volume 10951 of LNCS, pages 418–437. Springer, 2018. doi:
10.1007/978-3-319-95582-7_25.

[179] Andrew Sogokon, Paul B. Jackson, and Taylor T. Johnson. Verifying safety and persistence
in hybrid systems using �owpipes and continuous invariants. J. Autom. Reasoning, 63(4):
1005–1029, 2019. doi: 10.1007/s10817-018-9497-x.

[180] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell, and André Platzer.
Pegasus: Sound continuous invariant generation. Form. Methods Syst. Des., 58:5–41, 2021.
doi: 10.1007/s10703-020-00355-z.

[181] Eduardo D. Sontag and Yuan Wang. On characterizations of the input-to-state stability
property. Systems & Control Le�ers, 24(5):351–359, 1995. doi: https://doi.org/10.
1016/0167-6911(94)00050-6.

[182] Eduardo D. Sontag and Yuan Wang. New characterizations of input-to-state stability. IEEE
Trans. Autom. Control., 41(9):1283–1294, 1996. doi: 10.1109/9.536498.

[183] Miriam Garcı́a Soto and Pavithra Prabhakar. Averist: Algorithmic veri�er for stability
of linear hybrid systems. In Maria Prandini and Jyotirmoy V. Deshmukh, editors, HSCC,
pages 259–264. ACM, 2018. doi: 10.1145/3178126.3178154.

[184] Ma�hieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and �éo Winterhalter.
Coq Coq correct! veri�cation of type checking and erasure for Coq, in Coq. Proc. ACM
Program. Lang., 4(POPL):8:1–8:28, 2020. doi: 10.1145/3371076.

[185] Patrick Speissegger. �e Pfa�an closure of an o-minimal structure. J. Reine Angew. Math.,
508:189–211, 1999. doi: 10.1515/crll.1999.026.

[186] �omas Strathmann and Jens Oehlerking. Verifying properties of an electro-mechanical
braking system. In Goran Frehse and Ma�hias Altho�, editors, ARCH, volume 34 of EPiC
Series in Computing, pages 49–56. EasyChair, 2015. doi: 10.29007/x87p.

[187] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Westview Press, Boulder, CO, second edition, 2015.

[188] Kohei Suenaga and Ichiro Hasuo. Programming with in�nitesimals: A WHILE-language
for hybrid system modeling. In Luca Aceto, Monika Henzinger, and Jirı́ Sgall, ed-
itors, ICALP, volume 6756 of LNCS, pages 392–403. Springer, 2011. doi: 10.1007/

978-3-642-22012-8_31.

187

http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-3-319-95582-7_25
http://dx.doi.org/10.1007/s10817-018-9497-x
http://dx.doi.org/10.1007/s10703-020-00355-z
http://dx.doi.org/https://doi.org/10.1016/0167-6911(94)00050-6
http://dx.doi.org/https://doi.org/10.1016/0167-6911(94)00050-6
http://dx.doi.org/10.1109/9.536498
http://dx.doi.org/10.1145/3178126.3178154
http://dx.doi.org/10.1145/3371076
http://dx.doi.org/10.1515/crll.1999.026
http://dx.doi.org/10.29007/x87p
http://dx.doi.org/10.1007/978-3-642-22012-8_31
http://dx.doi.org/10.1007/978-3-642-22012-8_31

[189] Zhendong Sun and Shuzhi Sam Ge. Stability �eory of Switched Dynamical Sys-
tems. Communications and Control Engineering. Springer, 2011. doi: 10.1007/

978-0-85729-256-8.

[190] Ankur Taly and Ashish Tiwari. Deductive veri�cation of continuous dynamical systems.
In Ravi Kannan and K. Narayan Kumar, editors, FSTTCS, volume 4 of LIPIcs, pages 383–394,
Dagstuhl, 2009. Schloss Dagstuhl. doi: 10.4230/LIPIcs.FSTTCS.2009.2334.

[191] Ankur Taly and Ashish Tiwari. Switching logic synthesis for reachability. In Luca P.
Carloni and Stavros Tripakis, editors, EMSOFT, pages 19–28, New York, 2010. ACM. doi:
10.1145/1879021.1879025.

[192] Yong Kiam Tan and André Platzer. An axiomatic approach to liveness for di�erential equa-
tions. In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, FM, volume
11800 of LNCS, pages 371–388. Springer, 2019. doi: 10.1007/978-3-030-30942-8_23.

[193] Yong Kiam Tan and André Platzer. Switched systems as hybrid programs. In Raphaël M.
Jungers, Necmiye Ozay, and Alessandro Abate, editors, ADHS, volume 54 of IFAC-
PapersOnLine, pages 247–252. Elsevier, 2021. doi: 10.1016/j.ifacol.2021.08.506.

[194] Yong Kiam Tan and André Platzer. Deductive stability proofs for ordinary di�erential
equations. In Jan Friso Groote and Kim Guldstrand Larsen, editors, TACAS, volume 12652
of LNCS, pages 181–199. Springer, 2021. doi: 10.1007/978-3-030-72013-1_10.

[195] Yong Kiam Tan and André Platzer. An axiomatic approach to existence and liveness
for di�erential equations. Formal Aspects Comput., 33(4):461–518, 2021. doi: 10.1007/
s00165-020-00525-0.

[196] Yong Kiam Tan, Stefan Mitsch, and André Platzer. Verifying switched system stability
with logic. In Ezio Bartocci and Sylvie Putot, editors, HSCC. ACM, 2022. doi: 10.1145/
3501710.3519541. To appear.

[197] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. RAND Corporation,
Santa Monica, CA, 1951.

[198] Giuseppina Terzo. Consequences of Schanuel’s Conjecture in Exponential Algebra. PhD
thesis, University of Naples Federico II, 2007.

[199] Gerald Teschl. Ordinary Di�erential Equations and Dynamical Systems. Graduate Studies
in Mathematics. American Mathematical Society, 2012.

[200] Ufuk Topcu, Andrew K. Packard, and Peter J. Seiler. Local stability analysis using
simulations and sum-of-squares programming. Autom., 44(10):2669–2675, 2008. doi:
10.1016/j.automatica.2008.03.010.

[201] Jean-Claude Tougeron. Algèbres analytiques topologiquement noethériennes. Théorie de
Khovanskiı̆. Ann. I. Fourier, 41(4):823–840, 1991. doi: 10.5802/aif.1275.

188

http://dx.doi.org/10.1007/978-0-85729-256-8
http://dx.doi.org/10.1007/978-0-85729-256-8
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2334
http://dx.doi.org/10.1145/1879021.1879025
http://dx.doi.org/10.1007/978-3-030-30942-8_23
http://dx.doi.org/10.1016/j.ifacol.2021.08.506
http://dx.doi.org/10.1007/978-3-030-72013-1_10
http://dx.doi.org/10.1007/s00165-020-00525-0
http://dx.doi.org/10.1007/s00165-020-00525-0
http://dx.doi.org/10.1145/3501710.3519541
http://dx.doi.org/10.1145/3501710.3519541
http://dx.doi.org/10.1016/j.automatica.2008.03.010
http://dx.doi.org/10.5802/aif.1275

[202] Lou van den Dries. Remarks on Tarski’s problem concerning (R, +, *, exp). In Gabriele Lolli,
Giuseppe Longo, and Annalisa Marcja, editors, Logic Colloquium ’82, volume 112, pages
97–121. North-Holland, Amsterdam, 1984. doi: 10.1016/S0049-237X(08)71811-1.

[203] Lou van den Dries. Tame Topology and O-Minimal Structures. Cambridge University Press,
Cambridge, 1998. doi: 10.1017/CBO9780511525919.

[204] Wolfgang Walter. Ordinary Di�erential Equations. Springer, New York, 1998. doi:
10.1007/978-1-4612-0601-9.

[205] Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen. Synthe-
sizing invariant barrier certi�cates via di�erence-of-convex programming. In Alexandra
Silva and K. Rustan M. Leino, editors, CAV, volume 12759 of LNCS, pages 443–466. Springer,
2021. doi: 10.1007/978-3-030-81685-8_21.

[206] Shuling Wang, Naijun Zhan, and Liang Zou. An improved HHL prover: An interactive
theorem prover for hybrid systems. In Michael J. Butler, Sylvain Conchon, and Fatiha
Zaı̈di, editors, ICFEM, volume 9407 of LNCS, pages 382–399. Springer, 2015. doi: 10.1007/
978-3-319-25423-4_25.

[207] Alex J. Wilkie. A theorem of the complement and some new o-minimal structures. Sel.
Math. New Ser., 5(4):397–421, 1999. doi: 10.1007/S000290050052.

[208] Jonathan Julián Huerta y Munive and Georg Struth. Verifying hybrid systems with
modal Kleene algebra. In Jules Desharnais, Walter Gu�mann, and Stef Joosten, edi-
tors, RAMiCS, volume 11194 of LNCS, pages 225–243. Springer, 2018. doi: 10.1007/
978-3-030-02149-8_14.

[209] Zhengfeng Yang, Chao Huang, Xin Chen, Wang Lin, and Zhiming Liu. A linear program-
ming relaxation based approach for generating barrier certi�cates of hybrid systems. In
John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou, editors,
FM, volume 9995 of LNCS, pages 721–738, 2016. doi: 10.1007/978-3-319-48989-6_44.

[210] Xia Zeng, Wang Lin, Zhengfeng Yang, Xin Chen, and Lilei Wang. Darboux-type barrier
certi�cates for safety veri�cation of nonlinear hybrid systems. In Petru Eles and Rahul
Mangharam, editors, EMSOFT, pages 11:1–11:10. ACM, 2016. doi: 10.1145/2968478.
2968484.

[211] Guisheng Zhai, Bo Hu, Kazunori Yasuda, and Anthony N. Michel. Stability analysis of
switched systems with stable and unstable subsystems: An average dwell time approach.
Int. J. Syst. Sci., 32(8):1055–1061, 2001. doi: 10.1080/00207720116692.

[212] Bohua Zhan, Bin Gu, Xiong Xu, Xiangyu Jin, Shuling Wang, Bai Xue, Xiaofeng Li, Yao
Chen, Mengfei Yang, and Naijun Zhan. Brief industry paper: Modeling and veri�cation
of descent guidance control of Mars lander. In RTAS, pages 457–460. IEEE, 2021. doi:
10.1109/RTAS52030.2021.00051.

189

http://dx.doi.org/10.1016/S0049-237X(08)71811-1
http://dx.doi.org/10.1017/CBO9780511525919
http://dx.doi.org/10.1007/978-1-4612-0601-9
http://dx.doi.org/10.1007/978-3-030-81685-8_21
http://dx.doi.org/10.1007/978-3-319-25423-4_25
http://dx.doi.org/10.1007/978-3-319-25423-4_25
http://dx.doi.org/10.1007/S000290050052
http://dx.doi.org/10.1007/978-3-030-02149-8_14
http://dx.doi.org/10.1007/978-3-030-02149-8_14
http://dx.doi.org/10.1007/978-3-319-48989-6_44
http://dx.doi.org/10.1145/2968478.2968484
http://dx.doi.org/10.1145/2968478.2968484
http://dx.doi.org/10.1080/00207720116692
http://dx.doi.org/10.1109/RTAS52030.2021.00051

[213] Naijun Zhan, Shuling Wang, and Hengjun Zhao. Formal modelling, analysis and ver-
i�cation of hybrid systems. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors,
Unifying �eories of Programming and Formal Engineering Methods, volume 8050 of LNCS,
pages 207–281. Springer, 2013. doi: 10.1007/978-3-642-39721-9_5.

[214] Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid
systems. Int. J. Robust Nonlinear Control., 11(5):435–451, 2001. doi: 10.1002/rnc.592.

190

http://dx.doi.org/10.1007/978-3-642-39721-9_5
http://dx.doi.org/10.1002/rnc.592

Appendix A

Appendix: Safety and Invariance for
Ordinary Di�erential Equations

A.1 Di�erential Dynamic Logic Axiomatization

A.1.1 Extended Axiomatization Soundness
�is section proves the soundness of the axiomatic extension from Section 3.5. For the solution
ϕ : [0, T]→ S, its truncation to the interval [0, t] for some 0 ≤ t ≤ T is denoted ϕ|t : [0, t]→ S,
with ϕ|t(ζ) = ϕ(ζ) for ζ ∈ [0, t]. �e shorthand notation ϕ([a, b]) ∈ [[P]] means ϕ(ζ) ∈ [[P]] for
all a ≤ ζ ≤ b, where the interval [a, b] is required to be a closed subinterval of the interval [0, T].
Analogously, ϕ((a, b)) is used when the interval is open, and similarly for the half-open cases.

As explained in Section 3.5, the soundness of the extended axioms requires that the ODE
system x′ = f(x) always locally evolves x. An easy syntactic way to ensure this condition is to
check that the system already contains an equation x′1 = 1 to track the passage of time, which
can be added using axiom DG if necessary before using the axioms. However, the soundness
proofs below are more general and only use the assumption that the ODE system locally evolves
x, whether by x′1 = 1 or otherwise.

�e soundness proofs make use of dL’s coincidence lemmas [142, Lemmas 10,11]:

Lemma A.1 (Coincidence for terms and formulas [142]). �e following coincidence properties
hold for dL, where free variables FV(e), FV(φ) are de�ned as expected [142, Sections 2.3 and 2.4].

• If the states ω, ν agree on the free variables of term e (FV(e)), then ω[[e]] = ν[[e]].

• If the states ω, ν agree on the free variables of formula φ (FV(φ)), then ω ∈ [[φ]] i� ν ∈ [[φ]].

Existence, Uniqueness, and Continuity. First, the axioms from Lemma 3.15 internalizing
basic existence and uniqueness properties of solutions of di�erential equations are proved sound.

Proof of Lemma 3.15. Let ω be an arbitrary initial state. When interpreted as a function of the
variables x, the RHS f(x) of the ODE system x′ = f(x) is continuously di�erentiable. By the
Picard-Lindelöf theorem [204, §10.VI], from ω, there is an interval [0, τ), τ > 0 on which there

191

is a unique, continuous solution ϕ : [0, τ) → S with ϕ(0) = ω on {x′}{. �e solution can be
uniquely extended in time up to its right-maximal open interval of existence [204, §10.IX].

Uniq �e “→” direction follows directly from monotonicity of domain constraints because of
the propositional tautology Q1 ∧Q2 → Q1 (and similarly for Q2). For the “←” direction,
suppose that initial state ω satis�es both conjuncts with ω ∈ [[〈x′ = f(x) &Q1〉P]] and
ω ∈ [[〈x′ = f(x) &Q2〉P]]. Expanding the de�nition of the diamond modality, there exist
two solutions ϕ1 : [0, T1] → S, ϕ2 : [0, T2] → S from ω such that ϕ1 |= x′ = f(x) ∧ Q1

and ϕ2 |= x′ = f(x) ∧Q2, with both ϕ1(T1) ∈ [[P]] and ϕ2(T2) ∈ [[P]]. Suppose T1 ≤ T2.
Since ϕ2([0, T2]) ∈ [[Q2]] and, by uniqueness, ϕ1 is a truncation of ϕ2 to a smaller existence
interval, ϕ1 |= x′ = f(x) ∧ (Q1 ∧Q2). At time T1, the solution satis�es ϕ1(T1) ∈ [[P]], so
ω ∈ [[〈x′ = f(x) &Q1 ∧Q2〉P]], as required. �e case for T2 < T1 is similar, except with
ϕ2 |= x′ = f(x) ∧ (Q1 ∧Q2) and satisfying ϕ2(T2) ∈ [[P]] at time T2 instead.

Cont Assume that ω satis�es the outermost implication, i.e., ω ∈ [[x = y]]. �e (inner) “→”
direction follows by de�nition because in order for there to be a solution staying in e > 0
at all, the initial state ω must already satisfy e > 0 (evolution domains are di�erential-free).
For the (inner) “←” direction, suppose further that ω ∈ [[e > 0]]. Since x′ is not a free
variable of term e as e is di�erential-free (Section 2.3.3), coincidence (Lemma A.1) implies
ϕ(0) ∈ [[e > 0]]. As a composition of continuous evaluation [142, De�nition 5] with the
continuous solution ϕ, ϕ(t)[[e]] is a continuous function of time t. �us, ϕ(0) ∈ [[e > 0]]
implies ϕ([0, T]) ∈ [[e > 0]] for some 0 < T ≤ τ and the truncated solution ϕ|T satis�es
ϕ|T |= x′ = f(x)∧e > 0. Since y is constant for the ODE but x′ = f(x) was assumed to lo-
cally evolve (for example with x′1 = 1), there is a time 0 < ε ≤ T at which ϕ(ε) ∈ [[x 6= y]].
�e truncation ϕ|ε witnesses ω ∈ [[〈x′ = f(x) & e > 0〉x 6= y]].

Dadj �e “←” direction follows immediately from the “→” direction by swapping the names
x, y, because −(−f(x)) = f(x). �erefore, it su�ces to prove the “→” direction. Sup-
pose ω ∈ [[〈x′ = f(x) &Q(x)〉x = y]]. Unfolding the semantics, there is a solution ϕ :
[0, T]→ S, of the system x′ = f(x), with ϕ(0) = ω on {x′}{, with ϕ([0, T]) ∈ [[Q(x)]] and
ϕ(T) ∈ [[x = y]]. Since the variables y do not appear in the di�erential equations x′ = f(x),
their values are constant along the solution ϕ. Consider the time- and variable-reversal
ψ : [0, T]→ S, where:

ψ(τ)(z)
def
=

ϕ(T − τ)(xi) z = yi

−ϕ(T − τ)(x′i) z = y′i
ω(z) otherwise

By construction, ψ(0) agrees with ω on {y′}{ because ϕ(T) ∈ [[x = y]]. �e signs of
the di�erential variables y′i are negated along ψ. By uniqueness, the solutions of x′ =
−f(x) are the time-reversed solutions of x′ = f(x). As constructed, ψ is the time-
reversed solution for x′ = f(x) except the x were replaced by y instead. Moreover, since
ϕ([0, T]) ∈ [[Q(x)]], by construction and coincidence (Lemma A.1), ψ([0, T]) ∈ [[Q(y)]].
�erefore, ψ |= y′ = −f(y)∧Q(y). Finally, observe that ψ(T)(y) = ϕ(0)(x), but ψ holds
the values of x constant, thus ψ(T)(x) = ω(x) = ϕ(0)(x) and so ψ(T) ∈ [[y = x]] and ψ
witnesses ω ∈ [[〈y′ = −f(y) &Q(y)〉y = x]]

192

Real Induction. �e following real induction axiom with domain constraints is proved sound.
Axiom RI from Lemma 3.19 follows as an instance with no domain constraint, i.e., Q ≡ true .

RI& [x′ = f(x) &Q]P ↔ ∀y [x′ = f(x) &Q ∧ (P ∨ x=y)]
(
x=y →

P︸︷︷︸
a

∧
(
〈x′ = f(x) &Q ∨ x=y〉x 6= y → 〈x′ = f(x) &P ∨ x=y〉x 6= y

)︸ ︷︷ ︸
b

)

Similar to axiom RI, the axiom RI& is based on the real induction principle [34] but also
accounts for an arbitrary domain constraint Q. Its RHS conjuncts labeled a and b correspond
to 1 and 2 in Def. 3.17 respectively. �e quanti�cation ∀y [. . .&Q]

(
x = y → . . .

)
now only

considers �nal states (x = y) reachable by trajectories that always stay within Q, and within
P except possibly at the endpoint x = y. �e conjunct a expresses that P is still true at such
an endpoint. �e conjunct b expresses that P continues to remain true locally but only when
Q itself remains true locally. �is added assumption for Q corresponds to the “If ζ < b then
. . . ” assumption in 2 of Def. 3.17. �e conjunct b can be rewri�en succinctly with the local
progress© modality as:

〈x′ = f(x) &Q〉© → 〈x′ = f(x) &P 〉©

With completeness for local progress (�eorem 3.26), this gives a �rst hint at how RI& will
be used to obtain a complete proof rule for semianalytic invariants with domain constraints
in Appendix A.2.

Lemma A.2 (Real induction with domain constraints). �e real induction axiom RI& is sound,
where y is fresh in [x′ = f(x) &Q]P .

Proof (implies Lemma 3.19). �e conjuncts on the RHS of RI& are labeled as a and b respec-
tively, as shown above. Consider an initial state ω, both directions of the axiom are proved
separately.

“→” Assume the LHS of RI& is true initially with ? ω ∈ [[[x′ = f(x) &Q]P]]. Unfolding the
quanti�cation and box modality on the RHS, letωy be identical toω except where the values
for y are replaced with any arbitrary values d ∈ Rn. Consider any solution ϕy : [0, T]→ S
where ϕy |= x′ = f(x) ∧

(
Q ∧ (P ∨ x = y)

)
, ϕy(0) = ωy on {x′}{, and ϕy(T) ∈ [[x = y]].

�e following similar solution ϕ : [0, T]→ S keeps y constant at their initial values in ω:

ϕ(t)(z)
def
=

{
ϕy(t)(z) z ∈ {y}{

ω(z) z ∈ {y}

By construction, ϕ(0) is identical to ω on {x′}{ and ϕ is identical to ϕy on {y}{. Since y
is fresh in x′ = f(x) &Q, by coincidence (Lemma A.1) the la�er implies that ϕ |= x′ =
f(x)∧Q. By assumption ? , ϕ(T) ∈ [[P]], which implies that ϕy(T) ∈ [[P]] by coincidence
(Lemma A.1) since y is fresh in P . �is proves conjunct a . Unfolding the implication
and diamond modality of conjunct b , assume there is another solution ψy : [0, τ] → S

193

from ϕy(T) with ψy |= x′ = f(x) ∧ (Q ∨ x = y) and ψy(τ) ∈ [[x 6= y]]. Note that
ψy(0) = ϕy(T) exactly rather than just on {x′}{, because both states have the same
values for the di�erential variables. To show the RHS of the implication in b , i.e., that
ϕy(T) ∈ [[〈x′ = f(x) &P ∨ x = y〉x 6= y]], it su�ces to show: ψy |= x′ = f(x) ∧ P ,
because P propositionally implies P ∨ x = y. In particular, since ψy already satis�es the
requisite di�erential equations and ψy(τ) ∈ [[x 6= y]], it remains to show that ψy stays in
the evolution domain P for its entire duration, i.e., ψy([0, τ]) ∈ [[P]]. Let 0 ≤ ζ ≤ τ and
consider the concatenated solution Φ : [0, T + ζ]→ S de�ned by:

Φ(t)(z)
def
=

ϕy(t)(z) t ≤ T, z ∈ {y}{

ψy(t− T)(z) t > T, z ∈ {y}{

ω(z) z ∈ {y}

As with ϕ, the solution Φ is constructed to keep y constant at their initial values in ω.
Since ψy must uniquely extend ϕy [204, §10.IX], the concatenated solution Φ is a solution
starting from ω, solving the system x′ = f(x). It stays in Q for its entire duration by
coincidence (Lemma A.1) because ϕy(T) ∈ [[Q]] and all states satisfying x = y agree
with ϕy(T) on the free variables of formula Q. In other words, Φ |= x′ = f(x) ∧ Q.
By ? , Φ(T + ζ) ∈ [[P]], which implies ψ(ζ) ∈ [[P]] by coincidence (Lemma A.1) and so
ψy([0, ζ]) ∈ [[P]], as required.

“←” Assume the RHS of RI& is true in initial state ω and show the LHS. Consider an arbitrary
solution ϕ : [0, T] → S starting from ω such that ϕ |= x′ = f(x) ∧ Q. To show
ϕ([0, T]) ∈ [[P]], using the real induction principle (Proposition 3.18), it su�ces to show
that the set of times S def

= {ζ : ϕ(ζ) ∈ [[P]]} is an inductive subset of [0, T], i.e., it satis�es
properties 1 and 2 in Def. 3.17. So, assume that [0, ζ) ⊆ S for some time 0 ≤ ζ ≤ T .
�e proof instantiates quanti�ed variables y on the RHS of RI& to match the values of
x at ϕ(ζ). Since y is constant for the ODE, this allows properties of ϕ(ζ) to be deduced
using the RHS (namely a , b) by mediating between ϕ and its augmentation ϕy below.
More precisely, consider the state ωy identical to ω, except where the values for variables
y are replaced with the corresponding values of x in ϕ(ζ). Correspondingly, consider the
solution ϕy : [0, ζ]→ S identical to ϕ but which keeps y constant at those initial values
in ωy rather than in ω:

ωy(z)
def
=

{
ω(z) z ∈ {y}{

ϕ(ζ)(xi) z = yi
ϕy(t)(z)

def
=

{
ϕ(t)(z) z ∈ {y}{

ωy(z) z ∈ {y}

By construction and coincidence (Lemma A.1), ϕy is a solution from initial state ωy , solving
ϕy |= x′ = f(x) ∧Q and ϕy(ζ) ∈ [[x = y]]. By assumption and coincidence (Lemma A.1),
ϕy([0, ζ)) ∈ [[P]]. �erefore, ϕy([0, ζ]) ∈ [[Q ∧ (P ∨ x = y)]]. Unfolding the quanti�cation,
box modality and implication on the RHS yields ϕy(ζ) ∈ [[a ∧ b]].

1 By a , ϕy(ζ) ∈ [[P]] so by coincidence (Lemma A.1), ϕ(ζ) ∈ [[P]] as required for 1 .
2 Further assume that ζ < T and show ϕ((ζ, ζ + ε]) ∈ [[P]] for some ε > 0. Observe

that since ζ < T , there is a solution that extends from state ϕ(ζ), i.e., ψ : [0, T−ζ]→

194

S, whereψ(τ)
def
= ϕ(τ+ζ) and withψ |= x′ = f(x)∧Q. Construct the corresponding

solution ψy : [0, T − ζ]→ S that extends from state ϕy(ζ) and still keeps y constant
at their values in ωy:

ψy(t)(z)
def
=

{
ψ(t)(z) z ∈ {y}{

ϕy(ζ)(z) z ∈ {y}

By coincidence (Lemma A.1), ψy |= x′ = f(x) ∧ Q, so by weakening the domain
constraint, ψy |= x′ = f(x) ∧ (Q ∨ x = y). Since ϕy(ζ) ∈ [[x = y]] by construction
and the di�erential equation is assumed to always locally evolve (for example with
x′1 = 1), there must be some duration 0 < δ < T − ζ (recall T − ζ > 0) a�er
which the value of x has changed from its initial value held constant in y, i.e.,
ψy(δ) ∈ [[x 6= y]]. �e truncation ψy|δ witnesses the LHS of the implication in b
with: ϕy(ζ) ∈ [[〈x′ = f(x) &Q ∨ x = y〉x 6= y]]. Using this with the implication in
b yields ϕy(ζ) ∈ [[〈x′ = f(x) &P ∨ x = y〉x 6= y]]. Unfolding the semantics, this
gives a solution which, by uniqueness, is a truncation ψy|ε of ψy, for some ε > 0,
that satis�es ψy|ε([0, ε]) ∈ [[P ∨ x = y]]. From a and coincidence (Lemma A.1), all
states satisfying x = y agree with ϕ(ζ) on the free variables of formula P thus
ψy|ε([0, ε]) ∈ [[P]]. By construction, ψy|ε(τ) coincides with ϕ(τ + ζ) on x for all
0 ≤ τ ≤ ε, which implies ϕ((ζ, ζ + ε]) ∈ [[P]] by Lemma A.1.

Conjunct b of RI& can be wri�en as 〈x′ = f(x) &Q〉x 6= y → 〈x′ = f(x) &P 〉x 6= y be-
causeQ andP can be assumed true in the context where the conjunct appears. �is �exibility can
be seen from its soundness proof above and will be made explicit syntactically in Corollary A.3.

A.1.2 Extended Derived Rules and Axioms
�is section derives additional rules and axioms that make use of the axiomatic extensions
from Section 3.5.

Local Progress Properties. �e local progress modality© excludes the initial state (x = y)
in the domain constraint when expressing local progress for formula Q. Recall:

〈x′ = f(x) &Q〉© def≡ 〈x′ = f(x) &Q ∨ x = y〉x 6= y

�e disjunct x = y in the domain constraint makes local progress an interesting question for
formulas characterizing sets that are not topologically closed (e.g., open sets as characterized by
the formula e > 0). As axiom Cont shows, the formula 〈x′ = f(x) & e > 0〉x 6= y which does
not exclude x = y in the evolution domain constraint is already equivalent to e > 0. A precise
syntactic characterization of this di�erence is shown by the following derived axiom.

Corollary A.3 (Initial state inclusion). �e following axiom derives in dL. Variables y are fresh
in the ODE x′ = f(x) and formula Q.

Init x=y →
(
〈x′ = f(x) &Q〉x 6= y ↔ Q ∧ 〈x′ = f(x) &Q〉©

)
195

Proof. First, by dualizing via 〈·〉 both sides of axiom DX, the following equivalence is derived:

〈x′ = f(x) &Q〉P ↔ (Q ∧ (P ∨ 〈x′ = f(x) &Q〉P))

�e derivation of Init starts by using this derived equivalence (DX, 〈·〉), followed by a series
of equivalent propositional rewrites that simplify the logical structure of the succedent. �e
propositional steps are shown below, �rst removing the disjunct x 6= y using the assumption
x=y, and then pulling out the common conjunct Q as an antecedent assumption.

x=y,Q ` 〈x′ = f(x) &Q〉x 6= y ↔ 〈x′ = f(x) &Q〉©
x=y ` Q ∧ 〈x′ = f(x) &Q〉x 6= y ↔ Q ∧ 〈x′ = f(x) &Q〉©
x=y ` Q ∧ (x 6= y ∨ 〈x′ = f(x) &Q〉x 6= y)↔ Q ∧ 〈x′ = f(x) &Q〉©

DX, 〈·〉 x=y ` 〈x′ = f(x) &Q〉x 6= y ↔ Q ∧ 〈x′ = f(x) &Q〉©

Both directions of the resulting equivalence are proved separately by unfolding the abbrevia-
tion©. In the “→” direction, a dRW〈·〉 step su�ces using the tautology Q→ Q ∨ x=y:

∗
dRW〈·〉x=y,Q, 〈x′ = f(x) &Q〉x 6= y ` 〈x′ = f(x) &Q ∨ x=y〉x 6= y

In the “←” direction, the derivation starts with a DR〈·〉 step which reduces to the box
modality. Since the formulas x = y and Q are true initially, a V, DC step introduces the constant
assumption Q(y) into the domain constraint, which is Q with y in place of x. �e derivation
closes with dW using the strengthened domain constraint.

∗
dW ` [x′ = f(x) & (Q ∨ x=y) ∧Q(y)]Q

V, DC x=y,Q ` [x′ = f(x) &Q ∨ x=y]Q
DR〈·〉x=y,Q, 〈x′ = f(x) &Q ∨ x=y〉x 6= y ` 〈x′ = f(x) &Q〉x 6= y

It is not possible to locally progress into both formula P and its negation ¬P simultaneously,
by uniqueness. �is is the “→” direction of the duality axiom ¬© for local progress from
Corollary 3.27. �e converse “←” direction is more involved and relies on the characterization
axiom LP to be derived later.

Corollary A.4 (Local progress duality “→”). �e following axiom derives from Uniq. Variables y
are fresh in the ODE x′ = f(x) and formula P .

¬©→ x=y →
(
〈x′ = f(x) &P 〉© → ¬〈x′ = f(x) &¬P 〉©

)
Proof. �e derivation starts with ¬R, a�er which the resulting local progress antecedents are
combined by axiom Uniq, giving a conjunction of their domain constraints because the formula
(P ∨ x=y) ∧ (¬P ∨ x=y) is propositionally equivalent to (P ∧ ¬P) ∨ x=y. �e conjunction
P ∧ ¬P in the domain constraint is propositionally equivalent to false and, intuitively, no local
progress is possible into an empty set of states.

〈x′ = f(x) &P ∧ ¬P 〉© ` false
Uniq〈x′ = f(x) &P 〉©, 〈x′ = f(x) &¬P 〉© ` false
¬R 〈x′ = f(x) &P 〉© ` ¬〈x′ = f(x) &¬P 〉©

196

�e derivation is completed by unfolding the© syntactic abbreviation, and shi�ing to the
box modality by 〈·〉 duality. �e �nal step a�er using dW is a propositional tautology:

∗
(P ∧ ¬P) ∨ x = y ` x = y

dW ` [x′ = f(x) & (P ∧ ¬P) ∨ x = y]x = y
〈·〉, ¬L〈x′ = f(x) & (P ∧ ¬P) ∨ x = y〉x 6= y ` false

〈x′ = f(x) &P ∧ ¬P 〉© ` false

Re�ection. �e next two derived axioms r�〈·〉 and r� internalize a mathematical property
of ODE invariants, namely, the formula P is invariant for the forward ODE x′ = f(x) i� its
negation ¬P is invariant for the backward ODE x′ = −f(x). �is invariant re�ection principle
is used in Appendix A.2 for proving completeness for semianalytic invariants and to �ip the
signs in the second premise of rule rI. It is useful in its own right as it allows freely switching
between proving invariance for either the forward or backward ODEs, e.g., if one direction
yields simpler arithmetic.

Corollary A.5 (Re�ection). �e re�ection axioms r�〈·〉, r� derive from Dadj:

r�〈·〉 ∃x (P (x) ∧ 〈x′ = f(x) &Q(x)〉R(x))↔ ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))

r� ∀x
(
P (x)→ [x′ = f(x) &Q(x)]P (x)

)
↔ ∀x

(
¬P (x)→ [x′ = −f(x) &Q(x)]¬P (x)

)
Proof. Axiom r� derives from r�〈·〉 by instantiating with R(x)

def≡ ¬P (x) and negating both
sides of the equivalence with 〈·〉. �e diamond re�ection axiom r�〈·〉 is derived from Dadj. Both
implications are proved separately and the “←” direction follows by instantiating the proof of
the “→” direction, since −(−f(x)) = f(x). �e “→” direction is proved below.

In the derivation below, the formulas are bound renamed [142] for clarity. A�er Skolemizing,
the �rst K〈·〉, dW step introduces an existentially quanti�ed y under the diamond modality in the
antecedent by monotonicity using the provable �rst-order formula R(x)→ ∃y (x = y ∧R(y)).

P (x), 〈x′ = f(x) &Q(x)〉∃y (x = y ∧R(y)) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
K〈·〉, dW P (x), 〈x′ = f(x) &Q(x)〉R(x) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
∃L, ∧L ∃x (P (x) ∧ 〈x′ = f(x) &Q(x)〉R(x)) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))

�e ODE Barcan B′ axiom moves the existentially quanti�ed y out of the diamond modality
since y is not in x′ = f(x). A subsequent V step also moves the postcondition R(y) out from
the diamond modality into the antecedents.

P (x), R(y), 〈x′ = f(x) &Q(x)〉x = y ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
V P (x), 〈x′ = f(x) &Q(x)〉(x = y ∧R(y)) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
∃LP (x),∃y 〈x′ = f(x) &Q(x)〉(x = y ∧R(y)) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
B′P (x), 〈x′ = f(x) &Q(x)〉∃y (x = y ∧R(y)) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))

�e derivation continues using di�erential adjoints Dadj to syntactically �ip the antecedent
di�erential equations from evolving x forward to evolving y backward. �e V, K〈·〉 step then

197

strengthens the postcondition to P (y) exploiting that the (negated) ODE does not modify x so
that P (x) remains true along the ODE. �is completes the proof using y as a witness for ∃y.

∗
∃R R(y), 〈y′ = −f(y) &Q(y)〉P (y) ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))

V, K〈·〉P (x), R(y), 〈y′ = −f(y) &Q(y)〉y = x ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))
Dadj P (x), R(y), 〈x′ = f(x) &Q(x)〉x = y ` ∃y (R(y) ∧ 〈y′ = −f(y) &Q(y)〉P (y))

Real Induction Rule. �e real induction rule with domain constraints corresponding to
axiom RI& is derived next. It is stated with the© modality from Section 3.5. �e real induction
rule rI from Corollary 3.20 derives as an instance with domain constraint Q ≡ true .

Corollary A.6 (Real induction rule with domain constraints). �e real induction proof rule rI&
(with two stacked premises) derives from RI&, Dadj, Uniq. Variables y are fresh in the ODE x′ = f(x)
and formulas P,Q.

rI&

x=y, P,Q, 〈x′ = f(x) &Q〉© ` 〈x′ = f(x) &P 〉©
x=y,¬P,Q, 〈x′ = −f(x) &Q〉© ` 〈x′ = −f(x) &¬P 〉©

P ` [x′ = f(x) &Q]P

Proof (implies Corollary 3.20). �e derivation starts by rewriting the succedent with RI&, the
resulting right conjunct is abbreviated withR def≡ 〈x′ = f(x) &Q〉© → 〈x′ = f(x) &P 〉©. �e
M[′] step rewrites the postcondition with propositional tautology P ∧R↔ P ∧ (P → R) which
allows the le� conjunct P to be assumed when proving the right conjunct R (the implication
x=y is also distributed over the conjunction). �e two conjuncts are then split by [·]∧, ∧R, with
the resulting two premises labeled 1 and 2 respectively. �ese are shown and proved below.

1 2
[·]∧, ∧R P ` [x′ = f(x) &Q ∧ (P ∨ x=y)]

(
(x=y → P) ∧ (x=y ∧ P → R)

)
M[′] P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P ∧R)
∀R P ` ∀y [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P ∧R)

RI& P ` [x′ = f(x) &Q]P

�e premise 2 yields the top premise of rule rI& directly (unfolding the abbreviation for R):
x=y, P,Q, 〈x′ = f(x) &Q〉© ` 〈x′ = f(x) &P 〉©

→R, ∧L Q ` (x=y ∧ P → R)
dW P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y ∧ P → R)

Continuing from premise 1 , the derivation splits classically on whether x=y is true initially,
yielding two further premises labeled 3 when x=y and 4 when x 6= y.

3 4
∨Lx=y ∨ x 6= y, P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P)
cut P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P)

198

From 3 , the antecedents x=y and P imply that P (y) is true initially by a cut. Since y is held
constant by the ODE x′ = f(x), a monotonicity step M[′] followed by V completes the proof:

∗
V P (y) ` [x′ = f(x) &Q ∧ (P ∨ x=y)]P (y)

cut, M[′]x=y, P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P)

From 4 , the derivation continues by dualizing to the diamond modality with 〈·〉, ¬R.

〈·〉, ¬R
x 6=y, P, 〈x′ = f(x) &Q ∧ (P ∨ x=y)〉(x=y ∧ ¬P) ` false

x 6=y, P ` [x′ = f(x) &Q ∧ (P ∨ x=y)](x=y → P)

From the resulting premise, axiom r�〈·〉 is used to syntactically reverse the diamond modality
ODE in the antecedent from x′ = f(x) to x′ = −f(x). �e dRW〈·〉 step weakens the resulting
postcondition of the diamond modality with the propositional tautology x 6=y ∧ P → x 6=y.

x=y,¬P, 〈x′ = −f(x) &Q ∧ (P ∨ x=y)〉x 6=y ` false
dRW〈·〉x=y,¬P, 〈x′ = −f(x) &Q ∧ (P ∨ x=y)〉(x 6=y ∧ P) ` false

r�〈·〉 x 6=y, P, 〈x′ = f(x) &Q ∧ (P ∨ x=y)〉(x=y ∧ ¬P) ` false

�e diamond modality in the antecedent splits by axiom Uniq into two assumptions with
domain constraints Q and P ∨ x=y respectively. With a use of derived axiom Init, all the
antecedents of the bo�om premise of rule rI& are gathered, leaving only its succedent.

x=y,¬P,Q, 〈x′ = −f(x) &Q〉©, 〈x′ = −f(x) &P 〉© ` false
Init x=y,¬P, 〈x′ = −f(x) &Q〉x 6= y, 〈x′ = −f(x) &P ∨ x=y〉x 6= y ` false

Uniq x=y,¬P, 〈x′ = −f(x) &Q ∧ (P ∨ x=y)〉x 6= y ` false

Continuing with the derived implication ¬©→ results in the bo�om premise of rule rI&:
x=y,¬P,Q, 〈x′ = −f(x) &Q〉© ` 〈x′ = −f(x) &¬P 〉©

¬L x=y,¬P,Q, 〈x′ = −f(x) &Q〉©,¬〈x′ = −f(x) &¬P 〉© ` false
¬©→ x=y,¬P,Q, 〈x′ = −f(x) &Q〉©, 〈x′ = −f(x) &P 〉© ` false

�e rule rI& discards any additional context in the antecedents of its premises. �is is due
to the use of RI& which focuses on particular states along trajectories of the ODE x′ = f(x). It
would be unsound to keep any assumptions about the initial state that depend on x because the
state being examined may not be the initial state! On the other hand, assumptions that do not
depend on x remain true along the ODE. �ese constant assumptions can be kept with uses of V
throughout the derivation above or added into Q before using rI& by a DC that proves with V.
Following the notational conventions (Section 2.3.2), such additional steps are elided and rule
rI& is used directly while keeping these constant assumptions around.

A.2 Completeness
�is appendix gives completeness proofs for the derived rules dRI, sAI and the derived local
progress characterization LP. Completeness of dRI is proved by showing that DRI is a derived
axiom and similarly for sAI by showing that SAI is a derived axiom. �is syntactic approach
to proving completeness of dRI and sAI demonstrates the versatility of the dL calculus and it

199

also enables complete disproofs of invariance properties as opposed to just failing to apply a
complete proof rule. To conclude that invariance is disproved a�er applying an algorithmic
procedure (like the presentations of (semi)algebraic dRI and sAI [63, 103]), one would need to
trust, in addition to soundness, that no completeness errors are present in the implementation.

Recall that axioms Cont, RI& have an additional syntactic requirement, e.g., the presence of
x′1 = 1, which is assumed to be met throughout this appendix, using axiom DG if necessary.

A.2.1 Progress Formulas
�roughout this section, progress formulas are with respect to ODE x′ = f(x). �e following
are useful logical rearrangements of the progress formulas for extended term e.

Proposition A.7 (Atomic progress formula equivalences). Let N be the rank of extended term e.
�e following are provable equivalences on the progress and di�erential radical formulas for e:

.
e(∗) > 0↔ e > 0 ∨ (e = 0 ∧ .

e > 0) ∨ . . . (A.1)
∨
(
e = 0 ∧ .

e = 0 ∧ · · · ∧ .
e(N−3) = 0 ∧ .

e(N−2) > 0
)

∨
(
e = 0 ∧ .

e = 0 ∧ · · · ∧ .
e(N−2) = 0 ∧ .

e(N−1) > 0
)

.
e(∗) ≥ 0↔ e ≥ 0 ∧

(
e = 0→ .

e ≥ 0
)
∧ . . . (A.2)

∧
(
e = 0 ∧ .

e = 0 ∧ · · · ∧ .
e(N−3) = 0→ .

e(N−2) ≥ 0
)

∧
(
e = 0 ∧ .

e = 0 ∧ · · · ∧ .
e(N−2) = 0→ .

e(N−1) ≥ 0
)

¬(
.
e(∗) > 0)↔

.
(−e)(∗) ≥ 0 ¬(

.
e(∗) ≥ 0)↔

.
(−e)(∗) > 0 (A.3)

¬(
.
e(∗) = 0)↔ .

e(∗) > 0 ∨
.

(−e)(∗) > 0 (A.4)

Proof. �e equivalences are proved one at a time. By linearity of Lie derivatives,
.

(−e)(i) = −(
.
e(i))

proves in real arithmetic for any i. �e proof also uses these provable real arithmetic equivalences:

e ≥ 0↔ e = 0 ∨ e > 0 − e ≥ 0 ∧ e ≥ 0↔ e = 0 ¬(e > 0)↔ −e ≥ 0

(A.1) �is equivalence follows by real arithmetic, and simplifying with propositional rearrange-
ment as follows (here, the remaining conjuncts of .e(∗) > 0 are abbreviated to . . .):

e ≥ 0 ∧
(

(e = 0→ .
e ≥ 0) ∧ . . .

)
↔ e > 0 ∧

(
(e = 0→ .

e ≥ 0) ∧ . . .
)

∨ e = 0 ∧
(

(e = 0→ .
e ≥ 0) ∧ . . .

)
�e �rst disjunct on the RHS simpli�es by real arithmetic to e > 0 since all of its implica-
tional conjuncts contain e = 0 on the le� of an implication. �e la�er disjunct simpli�es
to e = 0 ∧

(.
e ≥ 0 ∧ . . .

)
, yielding the provable equivalence:

.
e(∗) > 0↔ e > 0 ∨ e = 0 ∧

(.
e ≥ 0 ∧ . . .

)
�e equivalence (A.1) proves by iterating this expansion on the RHS of this equivalence
for its nested conjuncts with higher Lie derivatives.

200

(A.2) �is equivalence proves by expanding the formula .
e(∗) ≥ 0 which yields a disjunction

between .
e(∗) > 0 and .

e(∗) = 0. �e la�er formula is used to relax the strict inequality in
the last conjunct of .e(∗) > 0 to a non-strict inequality.

(A.3) �e equivalence for ¬(
.
e(∗) > 0) follows by negating both sides of equivalence (A.1) and

moving negations on the RHS inwards propositionally, yielding the provable equivalence:

¬(
.
e(∗) > 0)↔

(
¬(e > 0) ∧ (e = 0→ ¬(

.
e > 0)) ∧ . . .

∧
(
e=0 ∧ .

e=0 ∧ · · · ∧ .
e(N−2)=0→ ¬(

.
e(N−1) > 0)

))
�e desired equivalence derives by negating the inequalities and by equivalence (A.2)
for

.
(−e)(∗) ≥ 0. �e equivalence for ¬(

.
e(∗) ≥ 0) derives by negating both sides of the

equivalence for ¬(
.
e(∗) > 0), since −(−e) = e.

(A.4) By (A.3), the following equivalence is provable:

¬(
.
e(∗) > 0) ∧ ¬(

.
(−e)(∗) > 0)↔ (

.
(−e)(∗) ≥ 0) ∧ (

.
e(∗) ≥ 0)

By rewriting with (A.2), the RHS of this equivalence is provably equivalent to the formula
.
e(∗) = 0 in real arithmetic. Negating both sides yields the provable equivalence (A.4).

�e provable equivalences (A.3) are particularly important, because they underlie the next
proposition, from which the complete characterization of local progress follows:

Proposition A.8 (Negated semianalytic progress formula). Let semianalytic formula P be in

normal form (3.7), then ¬P can be put into normal form such that ¬(
.
P (∗))↔

.
(¬P)(∗) is provable:

¬P ≡
N∨
i=0

(a(i)∧
j=0

dij ≥ 0 ∧
b(i)∧
j=0

d̃ij > 0
)

Proof. �e proof uses the propositional tautologies ¬(A ∧B)↔ ¬A ∨ ¬B and ¬(A ∨B)↔
¬A ∧ ¬B. Formula P is negated (in normal form (3.7)) and all sub-terms are negated so the
inequalities have 0 on the RHS, yielding the following provable equivalence. �e resulting RHS
is abbreviated by φ:

¬P ↔
M∧
i=0

(m(i)∨
j=0

−eij > 0 ∨
n(i)∨
j=0

−ẽij ≥ 0
)

︸ ︷︷ ︸
φ

�e progress formula
.
P (∗) for the normal form of P satis�es the equivalence (by de�nition):

.
P (∗) ↔

M∨
i=0

(m(i)∧
j=0

.
eij

(∗) ≥ 0 ∧
n(i)∧
j=0

.
ẽij

(∗) > 0
)

201

Negating both sides of the progress formula for P and simplifying propositionally proves:

¬(
.
P (∗))↔

M∧
i=0

(m(i)∨
j=0

¬(
.
eij

(∗) ≥ 0) ∨
n(i)∨
j=0

¬(
.
ẽij

(∗) > 0)
)

Rewriting the RHS with equivalences (A.3) from Proposition A.7 yields the following provable
equivalence. �e resulting RHS is abbreviated by ψ:

¬(
.
P (∗))↔

M∧
i=0

(m(i)∨
j=0

.
(−eij)(∗) > 0 ∨

n(i)∨
j=0

.
(−ẽij)(∗) ≥ 0

)
︸ ︷︷ ︸

ψ

Observe that φ, ψ have the same conjunctive normal form shape. Distribute the outer conjunction
over the inner disjunctions in φ to obtain the following provable equivalence, whose RHS is a
normal form for ¬P (for some indices N, a(i), b(i) and extended terms dij, d̃ij):

¬P ↔
N∨
i=0

(a(i)∧
j=0

dij ≥ 0 ∨
b(i)∧
j=0

d̃ij > 0
)

Distribute the disjunction in ψ following the same syntactic steps taken for φ to obtain the
following provable equivalence:

ψ ↔
N∨
i=0

(a(i)∧
j=0

.
dij

(∗) ≥ 0 ∨
b(i)∧
j=0

.
d̃ij

(∗) > 0
)

Rewriting with the equivalences derived so far, and using the above normal form for ¬P , yields
the required, provable equivalence:

¬(
.
P (∗))↔

.
(¬P)(∗)

A.2.2 Local Progress
�is section derives the characterizations of local progress from Section 3.6.1. �ese characteri-
zations are used in the completeness proofs for both analytic and semianalytic invariants.

Atomic Inequalities. �e proof of Lemma 3.23 was outlined in Section 3.6.1. �e case where
< is ≥ is proved �rst, while the more technical case where < is > is proved subsequently.

Proof of Lemma 3.23 (LP≥∗). Let N be the rank of extended term e with respect to x′ = f(x)
from (3.2). For the derivation of LP≥∗ , the additional �exibility of the©modality with a disjunct
x = y in the domain constraint is not needed. �is disjunction is removed a�er unfolding the
© abbreviation using a dRW〈·〉 monotonicity step. �e de�nition of .e(∗) ≥ 0 is also unfolded,

202

with both disjuncts handled separately. �e resulting premises are labeled 1 (for the .
e(∗) > 0

disjunct) and 2 (for the .
e(∗) = 0 disjunct).

1 2
∨L x=y,

.
e(∗) > 0 ∨ .

e(∗) = 0 ` 〈x′ = f(x) & e ≥ 0〉x 6= y
dRW〈·〉x=y,

.
e(∗) > 0 ∨ .

e(∗) = 0 ` 〈x′ = f(x) & e ≥ 0 ∨ x = y〉x 6= y
x=y,

.
e(∗) ≥ 0 ` 〈x′ = f(x) & e ≥ 0〉©

From 2 , dRW〈·〉 strengthens the inequality e ≥ 0 in the domain constraint to an equation
e = 0. �e derivation continues using DR〈·〉, because by dRI, e = 0 is provably invariant. �e
proof is completed with Cont using the trivial arithmetic fact 1 > 0:

∗
dRI.e(∗) = 0 ` [x′ = f(x) & 1 > 0]e = 0

∗
Contx=y ` 〈x′ = f(x) & 1 > 0〉x 6= y

DR〈·〉 x=y,
.
e(∗) = 0 ` 〈x′ = f(x) & e = 0〉x 6= y

dRW〈·〉 x=y,
.
e(∗) = 0 ` 〈x′ = f(x) & e ≥ 0〉x 6= y

From 1 , the premise is lined up for the derived step axiom LPi≥. �e proof proceeds by
closing the (le�) premises obtained by iterating LPi≥ for higher Lie derivatives. In this way, the
derivation continues until the �nal (rightmost) open premise which is abbreviated here with . . .
and continued below:

∗
R.e(∗) > 0 ` e ≥ 0

∗
R.e(∗) > 0, e = 0 ` .

e ≥ 0
x=y,

.
e(∗) > 0, . . . ` . . .

LPi≥ . . .
LPi≥ x=y,

.
e(∗) > 0, e = 0 ` 〈x′ = f(x) &

.
e ≥ 0〉x 6= y

LPi≥ x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e ≥ 0〉x 6= y

�e remaining open premise corresponds to the last conjunct of .e(∗) > 0. �e implication
in the conjunct uses the gathered antecedents e = 0, . . . ,

.
e(N−2) = 0 a�er which Cont, dRW〈·〉

completes the proof:
∗

Cont, dRW〈·〉 x=y,
.
e(N−1) > 0 ` 〈x′ = f(x) &

.
e(N−1) ≥ 0〉x 6= y

cut x=y,
.
e(∗) > 0, e = 0, . . . ,

.
e(N−2) = 0 ` 〈x′ = f(x) &

.
e(N−1) ≥ 0〉x 6= y

Unlike the non-strict case just derived for Lemma 3.23, the strict case (where < is>) crucially
uses the fact that the©modality excludes the initial state, so that it is possible to locally progress
into the strict inequality e > 0 without already satisfying it in the initial state. Topological
considerations made this exclusion irrelevant for the non-strict case (see Section 3.6.1), as derived
axiom Init explains logically. �e idea behind the remaining proof of Lemma 3.23 for the strict
case is to syntactically embed this di�erence into the derivation of LP>∗ . Moreover, this syntactic
transformation reduces the proof to the non-strict case, so that the derived step axiom LPi≥ can
again be used to progressively analyze higher Lie derivatives. �e following proposition is used
for the transformation:

Proposition A.9. Let d = ek for some k ≥ 1 and x′ = f(x) be an ODE with extended terms
e, d, f(x). For each 0 ≤ i ≤ k − 1, there (computably) exists an extended term cofactor g such that
the following identity is provable in real arithmetic:

.
d(i) = ge

203

Proof. �e proof proceeds by induction on k.
• For k = 1, d = e1 so .

e(0) = e hence the cofactor g = 1 su�ces.
• For d = ek+1, the j-th Lie derivative of d for 0 ≤ j ≤ k is given by Leibniz’s rule:

.
d(j) = L(j)

f(x)(e
ke) =

j∑
i=0

(
j

i

) .
(ek)(j−i) .e(i)

�e induction hypothesis implies
.

(ek)(j−i) = gie is a provable identity for some computable
extended term cofactor gi for each 1 ≤ i ≤ j. �e �nal summand for i = 0 is:(

j

0

) .
(ek)(j) .e(0) =

.
(ek)(j)e

�us, the cofactor g =
.

(ek)(j) +
∑j

i=1

(
j
i

)
gi
.
e(i) yields the identity

.
d(j) = ge. �is identity

is provable because it only depends on �rst-order properties of real arithmetic.

For d = ek, k ≥ 1, Proposition A.9 shows that formula e = 0→
∧k−1
i=0

.
d(i) = 0 is provable in

real arithmetic for extended terms e, d, which enables the remaining proof of Lemma 3.23.

Proof of Lemma 3.23 (LP>∗). LetN ≥ 1 be the rank of extended term ewith respect to x′ = f(x).
�is rank bounds the number of higher Lie derivatives of e that need to be considered.

�e derivation starts by unfolding the syntactic abbreviation of the©modality and reducing
to the non-strict case with dRW〈·〉 and the real arithmetic fact e−d ≥ 0→ e > 0 ∨ x = y for
the abbreviation d def

= |x− y|2N , which is a (polynomial) term:
(
(x1− y1)2 + · · ·+ (xn− yn)2

)N .
∗

Re−d ≥ 0 ` e > 0 ∨ x = y x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

dRW〈·〉 x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e > 0 ∨ x = y〉x 6= y

x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e > 0〉©

Next, the initial assumption x=y in the antecedent is used. �e �rst cut proves using the
formula of real arithmetic: x=y → |x− y|2 = 0. As remarked, with |x− y|2 = 0 and N ≥ 1,
by Proposition A.9, |x − y|2 = 0 →

∧N−1
i=0

.
d(i) = 0 is a provable real arithmetic formula. �e

second cut proves using this fact. �e proof of the remaining open premise is continued below.
x=y,

∧N−1
i=0

.
d(i) = 0,

.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

cut, R x=y, |x− y|2 = 0,
.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

cut, R x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

To continue, observe that for 0 ≤ i ≤ N − 1, by linearity of the Lie derivative:

L(i)

f(x)(e−d) =
.
e(i) −

.
d(i)

Using the conjunction
∧N−1
i=0

.
d(i) = 0 in the antecedents, the formula

.
(e−d)(i) =

.
e(i) proves

by a cut and real arithmetic for 0 ≤ i ≤ N − 1. �is justi�es the next real arithmetic step from

204

the open premise, with the assumptions Γd
def≡
∧N−1
i=0

.
(e−d)(i) =

.
e(i). Intuitively, Γd allows the

derivation to locally work with higher Lie derivatives of e instead of higher Lie derivatives of
e− d in subsequent steps.

Γd, x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

cut, Rx=y,
∧N−1
i=0

.
d(i) = 0,

.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

�e derivation is completed using the same technique of iterating LPi≥, as shown in the
earlier proof of Lemma 3.23 for the non-strict case LP≥∗ . It starts with a single LPi≥ step. �e
le� premise closes by real arithmetic because .

e(∗) > 0 has the conjunct e ≥ 0, and Γd provides
e− d = e, which imply e− d ≥ 0. �e remaining open premise on the right is proved below.

∗
RΓd,

.
e(∗) > 0 ` e−d ≥ 0 Γd, x=y,

.
e(∗) > 0, e−d = 0 ` 〈x′ = f(x) &

.
(e−d)(1)≥0〉x 6= y

LPi≥ Γd, x=y,
.
e(∗) > 0 ` 〈x′ = f(x) & e−d ≥ 0〉x 6= y

Continuing from the open premise, local progress for the �rst Lie derivative of e−d is proved.
�e �rst step simpli�es formula e−d=0 in the antecedents using Γd. �e derived axiom LPi≥,
together with Γd, simpli�es and proves the le� premise. �e right premise is abbreviated 1
(shown and continued below).

∗
Re = 0→ .

e ≥ 0, e = 0 ` .
e(1) ≥ 0

R Γd,
.
e(∗) > 0, e = 0 `

.
(e−d)(1)≥0 1

LPi≥ Γd, x=y,
.
e(∗) > 0, e = 0 ` 〈x′ = f(x) &

.
(e−d)(1)≥0〉x 6= y

R Γd, x=y,
.
e(∗) > 0, e−d = 0 ` 〈x′ = f(x) &

.
(e−d)(1)≥0〉x 6= y

�e derivation continues from 1 similarly for higher Lie derivatives of e−d, using Γd to
replace

.
(e−d)(i) with .

e(i), and then using the corresponding conjunct of .e(∗) > 0. �e �nal open
premise obtained from 1 by iterating LPi≥ corresponds to the last conjunct of .e(∗) > 0:

Γd, x=y,
.
e(∗) > 0, e=0, . . . ,

.
e(N−2)=0 ` 〈x′ = f(x) &

.
(e−d)(N−1)≥0〉x 6= y

LPi≥ . . .
LPi≥ Γd, x=y,

.
e(∗) > 0, e = 0,

.
e(1) ≥ 0 ` 〈x′ = f(x) &

.
(e−d)(2)≥0〉x 6= y

R Γd, x=y,
.
e(∗) > 0, e=0,

.
(e−d)(1)≥0 ` 〈x′ = f(x) &

.
(e−d)(2)≥0〉x 6= y

�e gathered antecedents e = 0, . . . ,
.
e(N−2) = 0 are respectively obtained from Γd by real

arithmetic. �e proof is closed with dRW〈·〉, Cont, similarly to the non-strict case.
∗

Cont x=y,
.

(e−d)(N−1)>0 ` 〈x′ = f(x) &
.

(e−d)(N−1)>0〉x 6= y
cut, R Γd, x=y,

.
e(N−1)>0 ` 〈x′ = f(x) &

.
(e−d)(N−1)>0〉x 6= y

dRW〈·〉 Γd, x=y,
.
e(N−1)>0 ` 〈x′ = f(x) &

.
(e−d)(N−1)≥0〉x 6= y

cut Γd, x=y,
.
e(∗) > 0, e=0, ..,

.
e(N−2)=0 ` 〈x′ = f(x) &

.
(e−d)(N−1)≥0〉x 6= y

205

Semianalytic Formulas. �e proof in the semianalytic case is outlined in Section 3.6.1. It
li�s derived axioms LP≥∗ and LP>∗ according to the homomorphic de�nition of the semianalytic
progress formula, using axiom Uniq to prove local progress into a conjunction of two formulas
simultaneously.

Proof of Lemma 3.25. By congruential equivalence [142], assume, without loss of generality, that
formula P is propositionally rewri�en to the same normal form (3.7) as in the corresponding
semianalytic progress formula

.
P (∗). �roughout this proof, similar premises are collapsed in

proofs and directly indexed by i, j. �e i-th disjunct of P is abbreviated with

Pi
def≡

m(i)∧
j=0

eij ≥ 0 ∧
n(i)∧
j=0

ẽij > 0

�e derivation starts by spli�ing the (outermost) disjunction in
.
P (∗) with ∨L. For each

resulting premise (indexed by i), local progress is proved for the corresponding disjunct Pi of P .
�e domain change with dRW〈·〉 proves because Pi ∨ x = y → P ∨ x = y is a propositional
tautology for each i.

x=y,
∧m(i)
j=0

.
eij

(∗) ≥ 0 ∧
∧n(i)
j=0

.
ẽij

(∗) > 0 ` 〈x′ = f(x) &Pi〉©
dRW〈·〉x=y,

∧m(i)
j=0

.
eij

(∗) ≥ 0 ∧
∧n(i)
j=0

.
ẽij

(∗) > 0 ` 〈x′ = f(x) &P 〉©
∨L x=y,

.
P (∗) ` 〈x′ = f(x) &P 〉©

It su�ces now to prove local progress in Pi. �e uniqueness axiom Uniq splits conjuncts
in Pi then the dRW〈·〉 step distributes x=y in domain constraint from© over conjunctions
using the propositional tautology (R1 ∧R2) ∨ x=y ↔ (R1 ∨ x=y) ∧ (R2 ∨ x = y). �is leaves
premises (indexed by j) for the non-strict and strict inequalities of Pi which are closed by LP≥∗
and LP>∗ respectively (labeled 1 and 2 respectively and shown immediately below).

1 2
Uniq, ∧R, dRW〈·〉x=y,

∧m(i)
j=0

.
eij

(∗) ≥ 0∧
∧n(i)
j=0

.
ẽij

(∗) > 0 ` 〈x′=f(x) &Pi〉©

From 1 :
∗

LP≥∗x=y,
.
eij

(∗) ≥ 0 ` 〈x′=f(x) & eij ≥ 0〉©

From 2 :
∗

LP>∗x=y,
.
ẽij

(∗) > 0 ` 〈x′=f(x) & ẽij > 0〉©

�e implicational semianalytic local progress axiom LPR from Lemma 3.25 is strengthened
to an equivalent characterization of semianalytic local progress using Proposition A.8.

Proof of �eorem 3.26. By congruential equivalence [142], assume, without loss of generality,
that formula P is propositionally rewri�en to the same normal form (3.7) as in the corresponding
semianalytic progress formula

.
P (∗). By Proposition A.8, there is a normal form for ¬P with

the provable equivalence ¬(
.
P (∗)) ↔

.
(¬P)(∗). �e “←” direction of the inner equivalence is

206

LPR. �e derivation in the “→” direction of the inner equivalence starts by reducing to the
contrapositive statement by propositional logic transformations. �e �nal step rewrites the
negation in the antecedents using the above normal form for ¬P from Proposition A.8.

x=y,
.

(¬P)(∗) ` ¬〈x′ = f(x) &P 〉©
R x=y,¬(

.
P (∗)) ` ¬〈x′ = f(x) &P 〉©

cut, ¬L, ¬Rx=y, 〈x′ = f(x) &P 〉© `
.
P (∗)

By the derived axiom LPR from Lemma 3.25, the progress formula for ¬P in the antecedent
implies local progress for ¬P . �e proof is completed with derived axiom ¬©→ of Corollary A.4:

∗
¬©→x=y, 〈x′ = f(x) &¬P 〉© ` ¬〈x′ = f(x) &P 〉©
LPR x=y,

.
(¬P)(∗) ` ¬〈x′ = f(x) &P 〉©

Proof of Corollary 3.27. Self-duality axiom ¬© derives by using LP twice together with the prov-
able equivalence ¬(

.
P (∗))↔

.
(¬P)(∗) from Proposition A.8 (and double negation elimination).
∗

LPx=y ` 〈x′ = f(x) &P 〉© ↔
.
P (∗)

Rx=y ` 〈x′ = f(x) &P 〉© ↔ ¬
.

(¬P)(∗)

LPx=y ` 〈x′ = f(x) &P 〉© ↔ ¬〈x′ = f(x) &¬P 〉©

Local progress congruence rule CLP derives similarly by introducing an initial assumption
x=y with cut, R, ∃L, equivalently rewriting with LP, and congruential equivalence [142] in the
last step.

` P ↔ R
` 〈x′ = f(x) &P 〉© ↔ 〈x′ = f(x) &R〉©

LP x=y `
.
P (∗) ↔

.
R(∗)

cut, R, ∃L `
.
P (∗) ↔

.
R(∗)

A.2.3 Analytic Invariants
�is section derives the analytic completeness axiom DRI (and its generalization DRI&), thus
proving completeness for analytic (Noetherian) invariants and also for analytic postconditions.

Di�erential Radical Invariants. �e di�erential radical invariants proof rule dRI derives
from rule vdbx by equivalently turning the di�erential radical identity (3.2) into a provable
vectorial Darboux equality.

Proof of �eorem 3.11 . Let e be an extended term satisfying both premises of the dRI proof rule
and let e be the vector of extended terms with components ei

def
=

.
e(i−1) for i = 1, 2, . . . , N .

�e derivation starts by se�ing up the premise for an application of derived rule vdbx. In the
�rst step, axiom DX is used to assume that the domain constraint Q is true initially. On the
le� premise a�er the cut, arithmetic equivalence

∧N−1
i=0

.
e(i) = 0↔ e = 0 is used to rewrite the

207

succedent to the le� premise of dRI. On the right premise, monotonicity M[′] strengthens the
postcondition to e = 0:

Γ, Q `
∧N−1
i=0

.
e(i) = 0

RΓ, Q ` e = 0

e = 0 ` [x′ = f(x) &Q]e = 0
M[′]e = 0 ` [x′ = f(x) &Q]e = 0

cut Γ, Q ` [x′ = f(x) &Q]e = 0
DX Γ ` [x′ = f(x) &Q]e = 0

Continuing from the right premise, the component-wise Lie derivative of e is de�ned as
(
.
e)i = Lf(x)(ei) =

.
e(i). �e vector .

e will be obtained from e by matrix multiplication with
the following N ×N extended term cofactor matrix G with 1 on its superdiagonal, and the gi
cofactors in the last row:

G =

0 1 0 . . . 0

0 0
.

... 0
0 0 . . . 0 1
g0 g1 . . . gN−2 gN−1

 , e =

e
.
e(1)

...

.
e(N−2)

.
e(N−1)

 ,
.
e =

.
e(1)

.
e(2)

...

.
e(N−1)

.
e(N)

�e vectorial equation .

e = Ge is provably equivalent to the equation .
e(N) =

∑N−1
i=0 gi

.
e(i).

To see this, note that for indices 1 ≤ i < N , matrix multiplication yields:

(
.
e)i =

.
e(i) = (e)i+1 = (Ge)i

�erefore, all but the �nal component-wise equality are trivially valid and prove by R. �e
remaining (non-trivial) equation for i = N is (

.
e)N = (Ge)N . �e LHS of this equation simpli�es

with (
.
e)N =

.
e(N), while the RHS simpli�es by matrix multiplication to:

(Ge)N =
N∑
i=1

gi−1(e)i =
N∑
i=1

gi−1
.
e(i−1) =

N−1∑
i=0

gi
.
e(i)

Hence, real arithmetic equivalently turns the formula .
e = Ge into the succedent of the right

premise of rule dRI. An application of derived rule vdbx from Corollary 3.10 with cofactor matrix
G followed by rule R yields the remaining right premise of rule dRI, completing the derivation.

Q ` .
e(N) =

∑N−1
i=0 gi

.
e(i)

R Q ` .
e = Ge

vdbxe = 0 ` [x′ = f(x) &Q]e = 0

�e derivation of rule dRI uses a speci�c choice of cofactor matrix G in rule vdbx to prove
invariance of the equation e = 0. �is su�ces for analytic completeness because analytic
formulas can always be normalized to a single equation in real arithmetic. However, such
normalization may not yield the computationally most e�cient way of proving an analytic
invariant (see Example 3.41).

208

Completeness for Analytic Invariants. �e analytic completeness axiom with semianalytic
domain constraints DRI& from �eorem 3.30 is derived next, making use of LPR from Lemma 3.25.
�e completeness argument can be summarized by taking contrapositives: if the local progress
formula .

e(∗) = 0 is false in an initial state, then some higher Lie derivative of e is non-zero
and gives a de�nite (local) sign to the value of e, which, by LPR implies progress to e 6= 0. For
completeness, axiom DRI& also handles the vacuous case where domain constraint Q is false
initially (Q→ . . . in DRI&) and the stuck case where the domain constraint is true initially but
cannot locally progress (

.
Q(∗) → . . . in DRI&).

Proof of �eorem 3.30 (implies �eorem 3.13). For formulas Q formed from conjunctions and dis-
junctions of strict inequalities, Q→

.
Q(∗) is provable in real arithmetic, so axiom DRI follows as

an arithmetical corollary of DRI&. �e derivation of axiom DRI& starts by rewriting its LHS
equivalently with axiom DX. �is is followed by equivalent propositional rewrites that simplify
the logical structure of the succedent. �e propositional steps are shown below, �rst pulling out
the common implication Q then the common conjunct e = 0 as antecedent assumptions.

Q, e = 0 `
(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

Q `
(
e = 0 ∧ [x′ = f(x) &Q]e = 0

)
↔
(
e = 0 ∧ (

.
Q(∗) → .

e(∗) = 0)
)

`
(
Q→ e = 0 ∧ [x′ = f(x) &Q]e = 0

)
↔
(
Q→ e = 0 ∧ (

.
Q(∗) → .

e(∗) = 0)
)

DX ` [x′ = f(x) &Q]e = 0↔
(
Q→ e = 0 ∧ (

.
Q(∗) → .

e(∗) = 0)
)

Next, a cut of the �rst-order formula ∃y x=y proves trivially in real arithmetic and Skolem-
izing it with ∃L yields an initial state assumption (x=y for fresh variables y). To make use of
this initial state assumption, the derivation continues with a classical case split on whether the
semianalytic progress formula

.
Q(∗) is true initially. �e resulting premises are labeled 1 (for

the
.
Q(∗) disjunct) and 2 (for the ¬(

.
Q(∗)) disjunct) and continued below.

1 2
∨L x=y,Q, e = 0,

.
Q(∗) ∨ ¬(

.
Q(∗)) `

(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

cut x=y,Q, e = 0 `
(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

∃L ∃y x=y,Q, e = 0 `
(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

cut, R Q, e = 0 `
(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

�e premise 2 corresponds to the case where solutions are stuck in the initial state because
no local progress in the domain constraint Q is possible. Topologically, this corresponds to
the situation where initial states are on the boundary of the set characterized by Q (and also
in Q)1 but the ODE locally leaves Q. Since e = 0 is already true in this stuck state, it trivially
remains true for all solutions staying in domain constraint Q. �e derivation from 2 starts with
a propositional simpli�cation of the succedent since its RHS is vacuously equivalent to true by
assumption ¬(

.
Q(∗)). �e local progress characterization axiom LP equivalently rewrites the

sub-formula
.
Q(∗) to local progress for Q before axiom 〈·〉 unfolds the©modality turning it into

1�is situation is impossible for domain constraints Q characterizing topologically open sets, which is the
semantical reason for derived axiom DRI having a simpler RHS characterization than DRI&.

209

a box modality formula.

x=y, e = 0, [x′ = f(x) &Q ∨ x = y]x = y ` [x′ = f(x) &Q]e = 0
〈·〉 x=y, e = 0,¬(〈x′ = f(x) &Q〉©) ` [x′ = f(x) &Q]e = 0
LP x=y, e = 0,¬(

.
Q(∗)) ` [x′ = f(x) &Q]e = 0

R x=y, e = 0,¬(
.
Q(∗)) `

(
[x′ = f(x) &Q]e = 0

)
↔
(.
Q(∗) → .

e(∗) = 0
)

By axiom V, the constant assumption e(y) = 0 (with y in place of x) strengthens the
postcondition of the antecedent box modality to e = 0 using the provable arithmetic formula
e(y) = 0 ∧ x = y → e = 0. A subsequent DMP, dW step �nishes the proof using the
propositional tautology Q→ Q ∨ x = y.

∗
Q ` Q ∨ x = y

DMP, dW [x′ = f(x) &Q ∨ x = y]e = 0 ` [x′ = f(x) &Q]e = 0
V x=y, e = 0, [x′ = f(x) &Q ∨ x = y]x = y ` [x′ = f(x) &Q]e = 0

From premise 1 , the succedent propositionally simpli�es to
(
[x′ = f(x) &Q]e = 0

)
↔

.
e(∗) = 0 by assumption

.
Q(∗). �e two directions of this simpli�ed succedent are proved separately.

In the “←” direction, the derivation uses rule dRI by se�ing N to the rank of extended term e,
so that the succedent of its le� premise is exactly .

e(∗) = 0. �e right premise resulting from dRI
closes by real arithmetic, since N is the rank of e, it must, by de�nition satisfy the provable rank
identity (3.2).

∗
R ` .

e(N) =
∑N−1

i=0 gi
.
e(i)

dRI.e(∗) = 0 ` [x′ = f(x) &Q]e = 0

�e derivation in the “→” direction starts by reducing to the contrapositive statement with
duality 〈·〉 and propositional logical manipulation.

x=y,Q,
.
Q(∗),¬(

.
e(∗) = 0) ` 〈x′ = f(x) &Q〉e 6= 0

¬L, ¬Rx=y,Q,
.
Q(∗),¬〈x′ = f(x) &Q〉e 6= 0 ` .

e(∗) = 0
〈·〉 x=y,Q,

.
Q(∗), [x′ = f(x) &Q]e = 0 ` .

e(∗) = 0

By derived axiom LP, the antecedent assumption
.
Q(∗) is equivalently rewri�en to local

progress for Q before Init (Corollary A.3) is used to strengthen it with the assumption Q. �e
�nal step rewrites the resulting negated di�erential radical formula in the antecedents to two
progress formulas by (A.4) from Proposition A.7. Subsequent spli�ing with ∨L yields two
premises, which are abbreviated 3 (for disjunct .

e(∗) > 0) and 4 (for disjunct
.

(−e)(∗) > 0)
respectively, and continued below.

3 4
∨Lx=y, 〈x′ = f(x) &Q〉x 6= y,

.
e(∗) > 0 ∨

.
(−e)(∗) > 0 ` 〈x′ = f(x) &Q〉e 6= 0

R x=y, 〈x′ = f(x) &Q〉x 6= y,¬(
.
e(∗) = 0) ` 〈x′ = f(x) &Q〉e 6= 0

Init x=y,Q, 〈x′ = f(x) &Q〉©,¬(
.
e(∗) = 0) ` 〈x′ = f(x) &Q〉e 6= 0

LP x=y,Q,
.
Q(∗),¬(

.
e(∗) = 0) ` 〈x′ = f(x) &Q〉e 6= 0

210

Continuing from 3 , the assumption .
e(∗) > 0 is rewri�en with LP>∗ to obtain local progress

for e > 0. Unfolding the© abbreviation, the uniqueness axiom Uniq combines the two diamond
modality formulas in the antecedent:

〈x′ = f(x) &Q ∧ (e > 0 ∨ x = y)〉x 6= y ` 〈x′ = f(x) &Q〉e 6= 0
Uniq 〈x′ = f(x) &Q〉x 6= y, 〈x′ = f(x) & e > 0 ∨ x = y〉x 6= y ` 〈x′ = f(x) &Q〉e 6= 0

〈x′ = f(x) &Q〉x 6= y, 〈x′ = f(x) & e > 0〉© ` 〈x′ = f(x) &Q〉e 6= 0
LP>∗ x=y, 〈x′ = f(x) &Q〉x 6= y,

.
e(∗) > 0 ` 〈x′ = f(x) &Q〉e 6= 0

�e succedent’s domain constraint is strengthened to match the antecedent’s using rule
dRW〈·〉 since Q ∧ (e > 0 ∨ x = y) → Q is a propositional tautology. �e Kripke axiom K〈·〉
reduces the succedent to the box modality, a�er which the proof �nishes with a dW step because
the formula e > 0 ∨ x = y in the domain constraint implies the succedent by real arithmetic.

∗
R Q ∧ (e > 0 ∨ x = y) ` (x 6=y→e6=0)

dW ` [x′=f(x) &Q∧(e>0 ∨ x=y)](x 6=y→e6=0)
K〈·〉 〈x′ = f(x) &Q ∧ (e > 0 ∨ x = y)〉x 6= y ` 〈x′ = f(x) &Q ∧ (e > 0 ∨ x = y)〉e 6= 0

dRW〈·〉〈x′ = f(x) &Q ∧ (e > 0 ∨ x = y)〉x 6= y ` 〈x′ = f(x) &Q〉e 6= 0

�e remaining premise 4 follows similarly, except that the progress formula
.

(−e)(∗) > 0
enables the cut 〈x′ = f(x) &−e > 0〉© which leads to the same postcondition e 6= 0 in the
succedent instead.

A.2.4 Completeness for Semianalytic Invariants with Semianalytic
Evolution Domains

�e following generalized version of rule sAI from �eorem 3.28 additionally handles evolution
domain constraints. It derives from derived rule rI& and derived axiom LP.

�eoremA.10 (Semianalytic invariants with semianalytic domain constraints). �e semianalytic
invariant proof rule with semianalytic domain constraints sAI& derives from RI&, Dadj, Cont, Uniq
for semianalytic formulas P,Q.

sAI&
P,Q,

.
Q(∗) `

.
P (∗) ¬P,Q,

.
Q−(∗) `

.
(¬P)−(∗)

P ` [x′ = f(x) &Q]P

Proof (implies �eorem 3.28). Rule sAI& derives from rule rI& derived in Corollary A.6 and the
characterization of semianalytic local progress LP derived in �eorem 3.26. �e x=y assumptions
provided by rI& are used to convert between local progress modalities and the semianalytic
progress formulas by LP, but, by weakening, x=y can be elided again in the premises of sAI&.

Recalling the earlier discussion for derived rule rI&, axiom V can be used, as usual, to keep
constant context assumptions that do not depend on variables x for the ODEs x′ = f(x) in rule
sAI&, because it immediately derives from rI&, which supports constant contexts. �e proof
rule sAI& is complete for invariance properties. �is is proved syntactically, enabling complete
disproofs of invariance. �e completeness of sAI from �eorem 3.29 follows as a special case,
where Q ≡ true .

211

�eorem A.11 (Semianalytic invariant completeness with semianalytic domains). �e semiana-
lytic invariant axiom with semianalytic domain constraints SAI& derives from RI&, Dadj, Cont,
Uniq for semianalytic formulas P,Q.

SAI& ∀x (P → [x′ = f(x) &Q]P)↔

a︷ ︸︸ ︷
∀x
(
P ∧Q ∧

.
Q(∗) →

.
P (∗))∧

∀x
(
¬P ∧Q ∧

.
Q−(∗) →

.
(¬P)−(∗))︸ ︷︷ ︸

b

Proof (implies �eorem 3.29). �e le� and right conjunct on the RHS of SAI& are abbreviated
a and b respectively. �e “←” direction derives by sAI&. �e antecedents a and b are
�rst-order formulas quanti�ed over x, the variables evolved by the ODE x′ = f(x). �ey are
kept as constant context in the antecedents of the premises when applying rule sAI& and later
instantiated by ∀L.

∗
∀L,→L a , P,Q,

.
Q(∗) `

.
P (∗)

∗
∀L,→L b ,¬P,Q,

.
Q−(∗) `

.
(¬P)−(∗)

sAI& a , b , P ` [x′ = f(x) &Q]P
∀R,→R a , b ` ∀x (P→[x′ = f(x) &Q]P)

In the “→” direction, the derivation proceeds by contraposition in both cases a�er ∧R. For b ,
the derived invariant re�ection axiom (r�) is used to syntactically turn the invariance assumption
for the forward ODE into an invariance assumption for the backward ODE.

∀x (P→[x′ = f(x) &Q]P) ` a
∀x (¬P→[x′ = −f(x) &Q]¬P) ` b

r� ∀x (P→[x′ = f(x) &Q]P) ` b
∧R ∀x (P→[x′ = f(x) &Q]P) ` a ∧ b

Continuing from the le� premise (with a in its succedent), standard logical manipulation is
used to dualize both sides of the sequent. �e ∃L step Skolemizes the existential in the antecedent,
with the resulting x used to witness the (then) existentially quanti�ed succedent with ∃R:

P,Q,
.
Q(∗),¬(

.
P (∗)) ` 〈x′ = f(x) &Q〉¬P

∃R, ∧R P,Q,
.
Q(∗),¬(

.
P (∗)) ` ∃x (P ∧ 〈x′ = f(x) &Q〉¬P)

∃L ∃x
(
P ∧Q ∧

.
Q(∗) ∧ ¬(

.
P (∗))

)
` ∃x (P ∧ 〈x′ = f(x) &Q〉¬P)

〈·〉, ¬L, ¬R ∀x (P→[x′ = f(x) &Q]P) ` ∀x
(
P ∧Q ∧

.
Q(∗)→

.
P (∗))

Next, an initial state assumption x=y is introduced by a cut, R followed by ∃L to Skolemize
the resulting existential quanti�er. �e antecedent assumption ¬(

.
P (∗)) is replaced with

.
(¬P)(∗)

equivalently, by Proposition A.8. Both local progress formulas in the antecedents are then

212

replaced equivalently with the local progress modalities using the derived axiom LP.

x=y, P,Q, 〈x′ = f(x) &Q〉©, 〈x′ = f(x) &¬P 〉© ` 〈x′ = f(x) &Q〉¬P
LP x=y, P,Q,

.
Q(∗),

.
(¬P)(∗) ` 〈x′ = f(x) &Q〉¬P

R x=y, P,Q,
.
Q(∗),¬(

.
P (∗)) ` 〈x′ = f(x) &Q〉¬P

∃L ∃y x=y, P,Q,
.
Q(∗),¬(

.
P (∗)) ` 〈x′ = f(x) &Q〉¬P

cut, R P,Q,
.
Q(∗),¬(

.
P (∗)) ` 〈x′ = f(x) &Q〉¬P

By Init from Corollary A.3, local progress forQ is strengthened, while© can only be unfolded
for ¬P . �e two resulting diamond modality formulas are combined with Uniq:

〈x′ = f(x) &Q ∧ (¬P ∨ x = y)〉x 6= y ` 〈x′ = f(x) &Q〉¬P
UniqP, 〈x′ = f(x) &Q〉x 6= y, 〈x′ = f(x) &¬P ∨ x = y〉x 6= y ` 〈x′ = f(x) &Q〉¬P
Init x=y, P,Q, 〈x′ = f(x) &Q〉©, 〈x′ = f(x) &¬P 〉© ` 〈x′ = f(x) &Q〉¬P

With a K〈·〉, dW step, the diamond modality in the antecedent strengthens to ¬P in its
postcondition with the propositional tautology Q∧ (¬P ∨x = y)→ (x 6= y → ¬P). A dRW〈·〉
step completes the proof using the propositional tautology Q ∧ (¬P ∨ x = y)→ Q.

∗
dRW〈·〉 〈x′ = f(x) &Q ∧ (¬P ∨ x = y)〉¬P ` 〈x′ = f(x) &Q〉¬P

K〈·〉, dW〈x′ = f(x) &Q ∧ (¬P ∨ x = y)〉x 6= y ` 〈x′ = f(x) &Q〉¬P

�e remaining derivation from the right premise (with b in its succedent) is similar using
local progress for the already re�ected backward di�erential equations instead.

213

214

Appendix B

Appendix: Liveness and Existence for
Ordinary Di�erential Equations

B.1 Proof Calculus

�is appendix presents derivations and proofs for dL axioms and proof rules that are used in
the re�nement approach. It also gives a generalized de�nition of the required topological side
conditions for those axioms.

B.1.1 Base Calculus

�e bounded di�erential ghost axiom BDG from Lemma 4.2 (quoted and proved below) is a new
vectorial generalization of DG which allows di�erential ghosts with provably bounded ODEs to
be added.

BDG [x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2
2 ≤ e(x)

→
(
[x′ = f(x) &Q(x)]P (x)↔ [x′ = f(x), y′ = g(x, y) &Q(x)]P (x)

)
Proof of Lemma 4.2. �e proof of BDG follows the proof of the di�erential ghosts axiom [142],
but generalizes it to support vectorial, nonlinear ODEs by adding a precondition on boundedness
of solutions. Let y be a vector of m fresh variables and y′ = g(x, y) be its corresponding vector
of ghost ODEs. Both directions of the (inner) equivalence of axiom BDG are proved separately.

“→” �e (easier) “→” direction does not require the outer bounding assumption of BDG, i.e., the
implication [x′ = f(x) &Q(x)]P (x)→ [x′ = f(x), y′ = g(x, y) &Q(x)]P (x) is valid for
any ODE y′ = g(x, y) meeting the freshness condition on y. �e proof for this direction is
identical to the proof of soundness for di�erential ghosts [142, �eorem 38].

“←” In the “←” direction, consider an initial state ω ∈ S and let ϕ : [0, T)→ S, 0 < T ≤ ∞
be the unique, right-maximal solution [33, 204] to the ODE x′ = f(x) with initial value
ϕ(0) = ω. Similarly, let ϕy : [0, Ty) → S, 0 < Ty ≤ ∞ be the unique, right-maximal
solution to the ODE x′ = f(x), y′ = g(x, y) with initial value ϕy(0) = ω. Assume that ω

215

satis�es both of the following assumptions in BDG:

ω ∈ [[[x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2
2 ≤ e(x)]] (B.1)

ω ∈ [[[x′ = f(x), y′ = g(x, y) &Q(x)]P (x)]] (B.2)

To show ω ∈ [[[x′ = f(x) &Q(x)]P (x)]], unfold the semantics of the box modality and
consider any �nite time τ with 0 ≤ τ < T where ϕ(ζ) ∈ [[Q(x)]] for all 0 ≤ ζ ≤ τ . It
is proved further below that τ is also in the existence interval for solution ϕy, i.e., ? :
τ < Ty . By uniqueness, ϕ, ϕy agree on the values of x on their common existence interval,
which includes the time interval [0, τ] by ? . �erefore, by coincidence for terms and
formulas [142], ϕy(ζ) ∈ [[Q(x)]] for all 0 ≤ ζ ≤ τ . �us, by (B.2), ϕy(τ) ∈ [[P (x)]] and by
coincidence for formulas [142], ϕ(τ) ∈ [[P (x)]].
In order to prove ? , suppose for contradiction that Ty ≤ τ . Let x(·) : [0, T)→ Rn denote
the projection of solution ϕ onto its x coordinates, and let e(x(·)) : [0, T) → R denote
the evaluation of term e along x(·). Since the projection x(·) and its composition with
the smooth term evaluation e(x(·)) are continuous in t [142], e(x(·)) is bounded above by
(and a�ains) its maximum value emax ∈ R on the compact interval [0, τ].
Let y(·) : [0, Ty) → Rm similarly denote the projection of ϕy onto its y coordinates
and ‖y(·)‖2

2 denote the squared norm evaluated along y(·). Since Ty ≤ τ < T , note
that y(·) must be the unique right-maximal solution of the time-dependent di�erential
equation y′ = g(x(t), y). Otherwise, if there is a longer solution ψ : [0, ζ) → Rm for
y′ = g(x(t), y) which exists for time ζ with Ty < ζ ≤ T , then the combined solution given
by (x(t), ψ(t)) : [0, ζ)→ Rn × Rm extends ϕy beyond Ty (by keeping all variables other
than x, y constant at their initial values in state ω). �is contradicts right-maximality of
ϕy. Moreover, for all times 0 ≤ ζ < Ty, by assumption ζ ≤ τ and ϕ(ζ) ∈ [[Q(x)]], so the
solution ϕy satis�es ϕy(ζ) ∈ [[Q(x)]] by coincidence for formulas [142]. From (B.1), for all
times 0 ≤ ζ < Ty , the squared norm is bounded by emax, with ‖y(ζ)‖2

2 ≤ e(x(ζ)) ≤ emax.
Hence, y(·) remains trapped within the compact Rm ball of radius √emax on its domain
of de�nition [0, Ty). By [33, �eorem 1.4], and right-maximality of y(·) for the time-
dependent ODE y′ = g(x(t), y), the domain of de�nition of solution y(·) is equal to the
domain of de�nition of y′ = g(x(t), y), i.e., Ty = T , which contradicts Ty ≤ τ < T .

�e following lemma recalls derived dL ODE invariance proof rules from Chapter 3 that are
used in the derivations in Appendix B.2 for ease of reference.

Lemma B.1 (ODE invariance proof rules of dL). �e following are derived ODE invariance proof

rules of dL. In rule dbx<, g is any cofactor term. In rule sAI&,
.
Q(∗),

.
P (∗),

.
Q−(∗),

.
(¬P)−(∗) are

progress formulas Def. 3.24 with respect to x′ = f(x). In rule Enc, formula P is formed from �nite
conjunctions and disjunctions of strict inequalities >,<, and formula P≥> is identical to P but with
non-strict inequalities ≥,≤ in place of >,< respectively.

dbx<
Q ` .

e ≥ ge

e < 0 ` [x′ = f(x) &Q]e < 0
(< either ≥ or >)

sAI&
P,Q,

.
Q(∗) `

.
P (∗) ¬P,Q,

.
Q−(∗) `

.
(¬P)−(∗)

P ` [x′ = f(x) &Q]P

216

Barr
Q, e = 0 ` .

e > 0

e < 0 ` [x′ = f(x) &Q]e < 0
(where < is ≥ or >)

Enc
Γ ` P≥> Γ ` [x′ = f(x) &Q ∧ P≥>]P

Γ ` [x′ = f(x) &Q]P

Proof. �ese ODE invariance proof rules are all derived from the complete dL axiomatization
for ODE invariants from Chapter 3.

Rule dbx< is the Darboux inequality proof rule, while rule sAI& is dL’s complete proof
rule for ODE invariants from Chapter 3. For closed (resp. open) semianalytic formulas P , the
right (resp. le�) premise of rule sAI& closes trivially (see Section 3.6.2). �is simpli�cation is
useful for obtaining more succinct proof rules, e.g., rule dV makes use of sAI& with a closed
semianalytic formula. Rule Barr is the strict barrier certi�cates proof rule, which derives from DG
for polynomial terms p and as a special case of rule sAI& for extended terms e. Finally, rule Enc
says that, in order to prove that solutions stay in postcondition P which characterizes an open
set, it su�ces to prove it assuming P≥> in the domain constraint, where P≥> relaxes all strict
inequalities in P and thus provides an over-approximation of the topological closure of the
set characterized by P . �e rule can also be understood in the contrapositive: if a continuous
solution leaves P , then it either already started outside the closure (ruled out by le� premise),
or it starts in the closure and leaves P on its topological boundary (included in the closure). �e
la�er case is ruled out by the right premise of Enc, which says that solutions remaining in the
closure must stay in P .

B.1.2 Re�nement Calculus
�e following ODE liveness re�nement axioms are quoted from Lemma 4.1, and their syntactic
derivations in the dL proof calculus are given below.

K〈&〉 [x′ = f(x) &Q ∧ ¬P]¬G→
(
〈x′ = f(x) &Q〉G→ 〈x′ = f(x) &Q〉P

)
DR〈·〉 [x′ = f(x) &R]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
BDG〈·〉 [x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2

2 ≤ e(x)

→
(
〈x′ = f(x) &Q(x)〉P (x)→ 〈x′ = f(x), y′ = g(x, y) &Q(x)〉P (x)

)
DDG〈·〉 [x′ = f(x), y′ = g(x, y) &Q(x)] 2y · g(x, y) ≤ L(x) ‖y‖2

2 +M(x)

→
(
〈x′ = f(x) &Q(x)〉P (x)→ 〈x′ = f(x), y′ = g(x, y) &Q(x)〉P (x)

)
Proof of Lemma 4.1. �e four axioms are derived in order.

K〈&〉 Axiom K〈&〉 is derived as follows, starting with 〈·〉, ¬L, ¬R to dualize the diamond
modalities in the antecedent and succedent to box modalities. A dC step using the right
antecedent completes the proof.

∗
dC [x′ = f(x) &Q ∧ ¬P]¬G, [x′ = f(x) &Q]¬P ` [x′ = f(x) &Q]¬G

〈·〉, ¬L, ¬R [x′ = f(x) &Q ∧ ¬P]¬G, 〈x′ = f(x) &Q〉G ` 〈x′ = f(x) &Q〉P

217

DR〈·〉 Axiom DR〈·〉 is similarly derived from axiom DMP with 〈·〉, see Corollary 3.16.
BDG〈·〉 Axiom BDG〈·〉 is derived from axiom BDG using axiom 〈·〉. �e le�most antecedent is

abbreviated with: R ≡ [x′ = f(x), y′ = g(x, y) &Q(x)] ‖y‖2
2 ≤ e(x).

∗
BDG R, [x′=f(x), y′=g(x, y) &Q(x)]¬P (x) ` [x′=f(x) &Q(x)]¬P (x)

〈·〉, ¬L, ¬R R, 〈x′=f(x) &Q(x)〉P (x) ` 〈x′=f(x), y′=g(x, y) &Q(x)〉P (x)

DDG〈·〉 Axiom DDG〈·〉 is derived as a di�erential version of axiom BDG〈·〉 with the aid of DG.
�e derivation starts with 〈·〉, ¬L, ¬R to turn diamond modalities in the sequent to box
modalities. Axiom DG then introduces a fresh ghost ODE z′ = L(x)z +M(x), where the
antecedents are universally quanti�ed over ghost variable z by DG, while the succedent is
existentially quanti�ed. All quanti�ers are then instantiated using ∀L, ∃R, with z = ‖y‖2

2

so that z stores the initial value of the squared norm of y. Axiom BDG is used with
y′ = g(x, y) as the ghost ODEs and with e(x, z) = z. �e antecedents are abbreviated as
follows and the topmost open premise is abbreviated 1 :

R ≡ [x′=f(x), y′=g(x, y) &Q(x)] 2y · g(x, y) ≤ L(x) ‖y‖2
2 +M(x)

Rz ≡ [x′=f(x), y′=g(x, y), z′=L(x)z+M(x) &Q(x)] 2y · g(x, y) ≤ L(x) ‖y‖2
2 +M(x)

S ≡ [x′=f(x), y′=g(x, y) &Q(x)]¬P (x)

Sz ≡ [x′=f(x), y′=g(x, y), z′=L(x)z +M(x) &Q(x)]¬P (x)

1 ≡ z= ‖y‖2
2 , Rz ` [x′=f(x), y′=g(x, y), z′=L(x)z +M(x) &Q(x)] ‖y‖2

2 ≤ z

1
BDG z = ‖y‖2

2 , Rz, Sz ` [x′ = f(x), z′ = L(x)z +M(x) &Q(x)]¬P (x)
∀L, ∃R ∀z Rz,∀z Sz ` ∃z [x′ = f(x), z′ = L(x)z +M(x) &Q(x)]¬P (x)

DG R, S ` [x′ = f(x) &Q(x)]¬P (x)
〈·〉, ¬L, ¬RR, 〈x′ = f(x) &Q(x)〉P (x) ` 〈x′ = f(x), y′ = g(x, y) &Q(x)〉P (x)

From the open premise 1 , a dC step adds the postcondition ofRz to the domain constraint
of the succedent, while M[′] rearranges the postcondition into the form expected by
rule dbx<. �e proof is completed using dbx< with cofactor g = L(x). Its resulting
arithmetical premise is proved by R because the Lie derivative of z − ‖y‖2

2 is bounded
above by the following calculation, where the inequality from the domain constraint is
used in the second step.

Lx′=f(x),y′=g(x,y),z′=L(x)z+M(x)(z − ‖y‖
2
2) = L(x)z +M(x)− 2y · g(x, y)

≥ L(x)z +M(x)− (L(x) ‖y‖2
2 +M(x))

= L(x)(z − ‖y‖2
2)

�e ODEs x′ = f(x), y′ = g(x, y), z′ = L(x)z+M(x) are abbreviated . . . in the derivation
below and the premise a�er dbx< is abbreviated with:

2 ≡ 2y · g(x, y)≤L(x) ‖y‖2
2 +M(x) ` L(x)z +M(x)− 2y · g(x, y)≥L(x)(z − ‖y‖2

2)

218

∗
R 2

dbx< z = ‖y‖2
2 ` [. . .&Q(x) ∧ 2y · g(x, y) ≤ L(x) ‖y‖2

2 +M(x)] z − ‖y‖2
2 ≥ 0

M[′] z = ‖y‖2
2 ` [. . .&Q(x) ∧ 2y · g(x, y) ≤ L(x) ‖y‖2

2 +M(x)] ‖y‖2
2 ≤ z

dC z = ‖y‖2
2 , Rz ` [. . .&Q(x)] ‖y‖2

2 ≤ z

�e following topological 〈·〉 ODE re�nement axioms are quoted from Lemmas 4.3 and 4.35.
�e topological side conditions for these axioms are listed in Lemmas 4.3 and 4.35 respectively.
For semianalytic postcondition P and domain constraints Q,R, these re�nement axioms are
derived syntactically from the real induction axiom in Section 3.5.2. For the sake of generality,
the proofs below directly use the topological conditions.
COR ¬P ∧ [x′ = f(x) &R ∧ ¬P]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
CR ¬P ∧ [x′ = f(x) &R ∧ ¬P]Q̊→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
SAR [x′ = f(x) &R ∧ ¬(P ∧Q)]Q→

(
〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P

)
Proof of Lemmas 4.3 and 4.35. Let ω ∈ S and ϕ : [0, T) → S, 0 < T ≤ ∞ be the unique, right-
maximal solution [33, 204] to the ODE x′ = f(x) with initial value ϕ(0) = ω. By de�nition,
ϕ is di�erentiable, and therefore continuous. �is proof uses the fact that preimages under
continuous functions of open sets are open [168, �eorem 4.8]. In particular, for an open set O,
if ϕ(t) ∈ O at some time 0 < t < T then the preimage of a su�ciently small open ball Oε ⊆ O
centered at ϕ(t) is open. �us, if t > 0 and ϕ(t) ∈ O, then ϕ stays in the open set O for some
open time interval1around t, i.e., for some ε > 0:

ϕ(ζ) ∈ O for all t− ε ≤ ζ ≤ t+ ε (B.3)

For the soundness proof of axioms COR, CR, and SAR, assume that ω ∈ [[〈x′ = f(x) &R〉P]],
i.e., there is a time τ ∈ [0, T) such that ϕ(τ) ∈ [[P]] and ϕ(ζ) ∈ [[R]] for all 0 ≤ ζ ≤ τ . �e
proofs make use of the following set T containing all times t such that the solution ϕ never
enters P on the time interval [0, t].

T ≡ {t | ϕ(ζ) /∈ [[P]] for all 0 ≤ ζ ≤ t} (B.4)

COR For axiom COR, assume that ω ∈ [[¬P ∧ [x′ = f(x) &R ∧ ¬P]Q]]. �e set of times
T (B.4) is non-empty since ω = ϕ(0) /∈ [[P]] so it has a supremum t with 0 ≤ t ≤ τ and
ϕ(ζ) /∈ [[P]] for all 0 ≤ ζ < t.

• Suppose P,Q both characterize topologically closed sets. Since P characterizes a
topologically closed set, its complement formula ¬P characterizes a topologically
open set. If ϕ(t) /∈ [[P]], i.e., ϕ(t) ∈ [[¬P]], then t < τ and by (B.3), the solution stays
in¬P until time t+ε for some ε > 0, so t is not the supremum of T, which is a contra-
diction. �us,ϕ(t) ∈ [[P]] and 0 < t becauseϕ(0) /∈ [[P]]. Hence,ϕ(ζ) ∈ [[R∧¬P]] for

1In case t = 0, the time interval in (B.3) is truncated to the le� with ϕ(ζ) ∈ O for all 0 ≤ ζ < t+ ε.

219

all 0 ≤ ζ < t, which, together with the assumption ω ∈ [[[x′ = f(x) &R ∧ ¬P]Q]]
implies ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ < t. Since Q characterizes a topologically closed
set, this implies ϕ(t) ∈ [[Q]]; otherwise, ϕ(t) ∈ [[¬Q]] and ¬Q characterizes an open
set, so (B.3) implies ϕ(ζ) ∈ [[¬Q]] for some 0 ≤ ζ < t, which contradicts the earlier
observation that ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ < t. �us, ω ∈ [[〈x′ = f(x) &Q〉P]]
because ϕ(t) ∈ [[P]] and ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ t.

• Suppose P,Q both characterize topologically open sets. �en, ϕ(t) /∈ [[P]]; otherwise,
ϕ(t) ∈ [[P]] and since P characterizes an open set, by (B.3), there is a time 0 ≤ ζ < t
where ϕ(ζ) ∈ [[P]], which contradicts t being the supremum of T. Note that t < τ
and ϕ(ζ) ∈ [[R ∧ ¬P]] for all 0 ≤ ζ ≤ t, which, together with the assumption
ω ∈ [[[x′ = f(x) &R ∧ ¬P]Q]] implies ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ t. Since Q
characterizes a topologically open set, by (B.3), there exists ε > 0 where t+ ε < τ
such that ϕ(t+ ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ ε. By de�nition of the supremum, for every
such ε > 0, there exists ζ where 0 < ζ ≤ ε and ϕ(t + ζ) ∈ [[P]], which yields the
desired conclusion.

CR For axiom CR, assume that ω ∈ [[¬P]] and

ω ∈ [[[x′ = f(x) &R ∧ ¬P]Q̊]] (B.5)

�e set of times T (B.4) is non-empty since ω = ϕ(0) /∈ [[P]] so it has a supremum t
with 0 ≤ t ≤ τ and ϕ(ζ) /∈ [[P]] for all 0 ≤ ζ < t. Furthermore, ϕ(ζ) ∈ [[R ∧ ¬P]] for
all 0 ≤ ζ < t, so by (B.5), ϕ(ζ) ∈ [[Q̊]] for all 0 ≤ ζ < t. By assumption, formula Q̊
characterizes the open topological interior of the closed formula Q so by continuity of ϕ,
ϕ(t) ∈ [[Q]]. Furthermore, the interior of a set is contained in the set itself, i.e., [[Q̊]] ⊆ [[Q]],
so ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ t . Classically, either ϕ(t) ∈ [[P]] or ϕ(t) /∈ [[P]].

• If ϕ(t) ∈ [[P]], then since ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ t, by de�nition, ω ∈
[[〈x′ = f(x) &Q〉P]].

• If ϕ(t) /∈ [[P]], then t < τ and furthermore, by (B.5), ϕ(t) ∈ [[Q̊]]. Since the interior
is topologically open, by (B.3), there exists ε > 0 where t + ε < τ such that
ϕ(t+ ζ) ∈ [[Q̊]] ⊆ [[Q]] for all 0 ≤ ζ ≤ ε. By de�nition of the supremum, for every
such ε > 0, there exists ζ where 0 < ζ ≤ ε and ϕ(t + ζ) ∈ [[P]], which yields the
desired conclusion.

SAR For axiom SAR, assume that

ω ∈ [[[x′ = f(x) &R ∧ ¬(P ∧Q)]Q]] (B.6)

If ω ∈ [[P ∧ Q]], then ω ∈ 〈x′ = f(x) &Q〉P trivially by following the solution ϕ for
duration 0. �us, assume ω /∈ [[P∧Q]]. From (B.6), ω ∈ [[Q]] which further implies ω /∈ [[P]].
�e set of times T (B.4) is non-empty since ω = ϕ(0) /∈ [[P]] and has a supremum t with
0 ≤ t ≤ τ and ϕ(ζ) /∈ [[P]] for all 0 ≤ ζ < t. �us, ϕ(ζ) ∈ [[R ∧ ¬(P ∧Q)]] for all
0 ≤ ζ < t. By (B.6), ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ < t. Classically, either ϕ(t) ∈ [[P]] or
ϕ(t) /∈ [[P]].

220

• Suppose ϕ(t) ∈ [[P]], if ϕ(t) ∈ [[Q]], then ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ t and so,
by de�nition, ω ∈ [[〈x′ = f(x) &Q〉P]]. On the other hand, if ϕ(t) /∈ [[Q]], then
ϕ(ζ) ∈ [[R ∧ ¬(P ∧Q)]] for all 0 ≤ ζ ≤ t, so from (B.6), ϕ(t) ∈ [[Q]], which yields a
contradiction.
If the formula P is further assumed to characterize a closed set, this sub-case (with
ϕ(t) ∈ [[P]]) is the only possibility. Otherwise, ϕ(t) ∈ [[¬P]] and ¬P characterizes
an open set, so by (B.3), for some ε > 0, ϕ(t + ζ) ∈ [[¬P]] for all 0 ≤ ζ < ε which
contradicts t being the supremum of T.

• Suppose ϕ(t) /∈ [[P]], then t < τ and ϕ(ζ) ∈ [[R ∧ ¬(P ∧Q)]] for all 0 ≤ ζ ≤ t, so
from (B.6), ϕ(t) ∈ [[Q]]. Since Q is a semianalytic formula, solutions of the ODEs
either locally progress into the set characterized by Q or ¬Q by Corollary 3.27,2
i.e., there exists ε > 0, where t + ε < τ , such that either 1 ϕ(t + ζ) ∈ [[Q]] for all
0 < ζ ≤ ε or 2 ϕ(t + ζ) /∈ [[Q]] for all 0 < ζ ≤ ε. Since t is the supremum of T,
by de�nition, for every such ε there exists ζ where 0 < ζ ≤ ε and ϕ(t+ ζ) ∈ [[P]].
In case 1 , since ϕ(t + ζ) ∈ [[P]] and ϕ(ν) ∈ [[Q]] for all 0 ≤ ν ≤ t + ζ , then
ω ∈ [[〈x′ = f(x) &Q〉P]]. If the formula Q is further assumed to characterize an
open set, this sub-case (1) is the only possibility, even if Q is not a formula of �rst-
order real arithmetic, because ϕ(t) ∈ [[Q]] implies ϕ continues to satisfy Q for some
time interval to the right of t by (B.3). In case 2 , observe thatϕ(ν) ∈ [[R∧¬(P ∧Q)]]
for all 0 ≤ ν ≤ t+ ζ , from (B.6), ϕ(t+ ζ) ∈ [[Q]], which yields a contradiction.

B.1.3 Topological Side Conditions
In Section 2.2.2, topological conditions are de�ned for formulas φ that only mention free variables
x occurring in an ODE x′ = f(x). For example, φ is said to characterize an open set with respect
to x i� the set [[φ]] is open when considered as a subset of Rn by projecting its semantics over
variables x = (x1, . . . , xn). �is section de�nes a more general notion, where φ is allowed to
mention additional free parameters y that do not occur in the ODE. Adopting these (parametric)
side conditions makes the topological re�nement axioms that use them, like COR, CR, more
general. Let (y1, . . . , yr) = V \ {x} be parameters, and ω ∈ S be a state. For brevity, write
y = (y1, . . . , yr) for the parameters and ω(y) = (ω(y1), . . . , ω(yr)) ∈ Rr for the component-
wise projection, and similarly for ω(x) ∈ Rn. Given the set [[φ]] ⊆ S and γ ∈ Rr, de�ne:

([[φ]])γ
def
= {ω(x) ∈ Rn | ω ∈ [[φ]], ω(y) = γ}

�e set ([[φ]])γ ⊆ Rn is the projection onto variables x of all states ω that satisfy φ and having
values γ for the parameters y. Formula φ characterizes a (topologically) open (resp. closed,
bounded, compact) set with respect to variables x i� for all γ ∈ Rr, the set ([[φ]])γ ⊆ Rn is
topologically open (resp. closed, bounded, compact) with respect to the Euclidean topology.

�ese topological side conditions are even decidable [14, 197] for �rst-order formulas of real
arithmetic over polynomial terms because in Euclidean spaces they can be phrased as conditions

2�is property is speci�c to sets characterized by semianalytic formulas and ODEs (and certain topologically
well-behaved extensions [174, 176]) and is not true for arbitrary sets and ODEs.

221

involving the �rst-order quanti�ers. �e following conditions are standard [14], although special
care is taken to universally quantify over the parameters y. Let P (x, y) be a formula mentioning
variables x and parameters y, then it is (with respect to variables x):

• open if the formula ∀y ∀x
(
P (x, y) → ∃ε>0 ∀z

(
‖x− z‖2

2 < ε2 → P (z, y)
))

is valid,
where the variables z = (z1, . . . , zn) are fresh for P (x, y),

• closed if its complement formula ¬P (x, y) is open,

• bounded if the formula ∀y ∃r>0 ∀x
(
P (x, y) → ‖x‖2

2<r
2
)

is valid, where variable r is
fresh for P (x, y), and

• compact if it is closed and bounded, by the Heine-Borel theorem [168, �eorem 2.4.1].

�ere are also syntactic criteria that are su�cient (but not necessary3) for checking whether
a formula satis�es the semantic conditions. For example, the formula P (x, y) is (with respect to
variables x):

• open if it is formed from �nite conjunctions and disjunctions of strict inequalities (6=, >,<),

• closed if it is formed from �nite conjunctions and disjunctions of non-strict inequalities
(=,≥,≤),

• bounded if it is of the form ‖x‖2
2 4 e(y) ∧R(x, y), where e(y) is a term depending only

on parameters y and R(x, y) is a formula. �is syntactic criterion uses the fact that the
intersection of a bounded set (characterized by ‖x‖2

2 4 e(y)) with any set (characterized
by R(x, y)) is bounded, and the formula P (x, y) is compact if 4 is≤ and R(x, y) is closed.

�e importance of these syntactic criteria is they are easily checkable by an implementation
that inspects the syntactic shape of input formulas P , even if P contains extended terms with
undecidable arithmetic [162]. In contrast, checking the semantic topological conditions for P
requires invoking expensive real arithmetic decision procedures and those procedures are only
guaranteed to work if P is a FOLR formula over polynomial terms. As an example, the syntactic
side condition of rule cR from Corollary 4.36 enables its e�ective implementation, compared to
its underlying axiom CR from Lemma 4.35 which is more general but uses requires checking
semantic side conditions.

Notational Conventions (Topological Side Conditions and Arithmetic). �e deriva-
tions used in this thesis o�en require properties of the smooth term semantics from real analysis.
For example, continuous functions on compact domains a�ain their extrema [168, �eorem 4.16]
so, for any compact formula P (x, y) and term e(x), the formula ∃m∀x (P (x, y)→ e(x) ≤ m)
is a valid arithmetic formula expressing that m is an upper bound of e on P . If e is a polynomial

3If there are no parameters y, these syntactic checks are “necessary” conditions for semialgebraic formulas in
the sense that every open (resp. closed) semialgebraic formula P is provably equivalent in real arithmetic to a
(computable) formula formed from �nite conjunctions and disjunctions of strict (resp. non-strict) inequalities [14,
�eorem 2.7.2].

222

and P is a formula of real arithmetic over polynomial terms, then R proves the existence of
m above. For simplicity, such properties are also assumed to be provable by R in derivations
involving extended terms and the corresponding argument from real analysis is also provided.
�is notational simpli�cation is sound with the implicit understanding that any such real analytic
properties are axiomatized as additional (arithmetic) axioms for extended dL terms.

B.2 Derived Existence and Liveness Proof Rules
�is appendix gives all omi�ed syntactic derivations of the existence and liveness proof rules
in Chapter 4. For ease of reference, this appendix is organized into four sections, corresponding
to Sections 4.3–4.6 of Chapter 4. �e high-level intuition behind these proofs is available as
proof sketches in their respective sections, while motivation for important proof steps is given
directly in the subsequent proofs. Further motivation for the surveyed liveness arguments can
also be found in their original presentations [137, 156, 157, 159, 176, 191].

B.2.1 Proofs for Finite-Time Blow Up and Global Existence
Proof of Corollary 4.6. Assume that the ODE x′ = f(x) is in dependency order (4.9). �e deriva-
tion successively removes the ODEs yk, yk−1, . . . , y1 in reverse dependency order using either
axiom BDG〈·〉 or DDG〈·〉, as shown below. �is continues until all of the ODEs are removed
and the rightmost premise closes by axiom TEx. �e le� premises arising from re�nement
with axioms BDG〈·〉, DDG〈·〉 are the premises of rule DEx. �ey are collectively labeled ? and
explained below.

?

?

?
∗

TExΓ ` 〈t′=1〉t>τ
BDG〈·〉, DDG〈·〉 ...

BDG〈·〉, DDG〈·〉 Γ ` 〈y′1=g1(y1), . . . , y′k−1=gk−1(y1, . . . , yk−1), t′=1〉 t>τ
BDG〈·〉, DDG〈·〉 Γ ` 〈y′1=g1(y1), . . . , y′k−1=gk−1(y1, . . . , yk−1), y′k=gk(y1, . . . , yk), t

′=1〉 t>τ
∀R Γ ` ∀τ 〈y′1=g1(y1), . . . , y′k−1=gk−1(y1, . . . , yk−1), y′k=gk(y1, . . . , yk)︸ ︷︷ ︸

x′=f(x) wri�en in dependency order

, t′=1〉 t>τ

At each step i = k, . . . , 1, the ODE yi in the succeedent is removed using either axiom BDG〈·〉
or DDG〈·〉, depending on the user-chosen form (Corollary 4.6) of postcondition Pi.

B In case formula Pi ≡ ‖yi‖2
2 ≤ ei(t, y1, . . . , yi−1) is of form B (as de�ned in Corollary 4.6),

axiom BDG〈·〉 is used. �is yields the two stacked premises shown below, where the top
premise corresponds to premise ? above. �e dependency order (4.9) enables the sound
use of axiom BDG〈·〉 for this re�nement step because the ODEs for y1, . . . , yi−1 are not
allowed to depend on variables yi. �e term e(t, y1, . . . , yi−1) also meets the dependency
requirements of BDG〈·〉 because it does not depend on yi.

BDG〈·〉

Γ ` [y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), y′i = gi(y1, . . . , yi), t
′ = 1]Pi

Γ ` 〈y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), t′ = 1〉 t > τ

Γ ` 〈y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), y′i = gi(y1, . . . , yi), t′ = 1〉 t > τ

223

D In case formula Pi ≡ 2yi · gi(y1, . . . , yi) ≤ Li(t, y1, . . . , yi−1) ‖yi‖2
2 + Mi(t, y1, . . . , yi−1)

is of form D (as de�ned in Corollary 4.6), axiom DDG〈·〉 is used instead. Again, terms
Li(t, y1, . . . , yi−1),Mi(t, y1, . . . , yi−1) meet the dependency requirements of DDG〈·〉 be-
cause they do not depend on yi. �e top premise corresponds to premise ? above, while
the ODE for yi is removed in the bo�om premise.

DDG〈·〉

Γ ` [y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), y′i = gi(y1, . . . , yi), t
′ = 1]Pi

Γ ` 〈y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), t′ = 1〉 t > τ

Γ ` 〈y′1 = g1(y1), . . . , y′i−1 = gi−1(y1, . . . , yi−1), y′i = gi(y1, . . . , yi), t′ = 1〉 t > τ

Proof of Corollary 4.7. �e proof closely follows the proof sketch for Corollary 4.7 but with
an extra step to ensure that the chosen terms L,M are within the term language of dL. Let
the ODE x′ = f(x) be globally Lipschitz and C be the (positive) Lipschitz constant for f ,
i.e., ‖f(x)− f(y)‖2 ≤ C ‖x− y‖2 . �en f satis�es the following inequality, where the �rst
step (4.12) is proved in the sketch but its RHS contains norms ‖·‖2 which are not in the dL term
syntax. �e inequality (4.12) is prolonged by using inequality (4.10) to remove these non-squared
norm terms, which yields corresponding choices of bounding dL terms L,M .

2x · f(x)
(4.12)
≤
(
2C + ‖f(0)‖2

)
‖x‖2

2 + ‖f(0)‖2

(4.10)
≤
(
2C +

1

2
(1 + ‖f(0)‖2

2)
)︸ ︷︷ ︸

L

‖x‖2
2 +

1

2
(1 + ‖f(0)‖2

2)︸ ︷︷ ︸
M

(B.7)

�e inequality (B.7) is a valid real arithmetic formula and is thus provable by rule R. �is
enables the derivation below using axiom DDG〈·〉 because L,M satisfy the respective variable
constraints of the axiom. �e resulting le� premise is proved, a�er a dW step, by R. �e resulting
right premise, a�er the ODEs x′ = f(x) have been removed, is proved by axiom TEx.

∗
R ` 2x · f(x) ≤ L ‖x‖2

2 +M
dW ` [x′ = f(x), t′ = 1] 2x · f(x) ≤ L ‖x‖2

2 +M

∗
TEx ` 〈t′ = 1〉 t > τ

DDG〈·〉 ` 〈x′ = f(x), t′ = 1〉 t > τ
∀R ` ∀τ 〈x′ = f(x), t′ = 1〉 t > τ

Proof of Corollary 4.8. Assume that ODE x′ = f(x) has a�ne dependency order (4.9) where each
ODE y′i = gi(y1, . . . , yi) is of the a�ne form y′i = Ai(y1, . . . , yi−1)yi + bi(y1, . . . , yi−1) for some
matrix and vector terms Ai, bi respectively with the indicated variable dependencies. From the
proof sketch for Corollary 4.8, Ai, bi satisfy inequality (4.13) for each i = 1, . . . , k. Like the proof
of inequality (B.7), inequality (4.13) is prolonged by inequality (4.10) to remove non-squared
norm terms in its RHS, to obtain corresponding choices of bounding dL terms Li,Mi.

2yi · (Aiyi + bi)
(4.13)
≤ (2 ‖Ai‖F + ‖bi‖2) ‖yi‖2

2 + ‖bi‖2

(4.10)
≤
(
1+ ‖Ai‖2

F +
1

2
(1+ ‖bi‖2

2)
)︸ ︷︷ ︸

Li

‖yi‖2
2 +

1

2
(1+ ‖bi‖2

2)︸ ︷︷ ︸
Mi

(B.8)

224

�e inequality from (B.8) is a valid real arithmetic formula, and thus provable by R for each
i = 1, . . . , k. �e derivation uses rule DEx, where the postcondition of each premise is chosen
to be of form D . �e resulting premises are all proved, a�er a dW step, by R with the above
choice of Li,Mi for each i = 1, . . . , k.

∗
R ` 2y1 · (A1y1+b1)≤L1 ‖y1‖2

2 +M1

dW ` [y′1=g1(y1), t′=1]P1 · · ·

∗
R ` 2yk · (Akyk+bk)≤Lk ‖yk‖2

2 +Mk

dW ` [y′1=g1(y1), . . . , y′k=gk(y1, . . . , yk), t
′=1]Pk

DEx ` ∀τ 〈x′=f(x), t′=1〉 t > τ

Proof of Corollary 4.10. �e derivation starts by Skolemizing with ∀R, then switching the dia-
mond modality in the succedent to a box modality in the antecedent using 〈·〉, ¬R. �e postcon-
dition of the box modality is simpli�ed using the propositional tautologies ¬(φ ∨ ψ)↔ ¬φ∧¬ψ
and ¬¬φ↔ φ. Axiom [·]∧, ∧L splits the conjunction in the antecedent, before 〈·〉 is used again
to �ip the le� antecedent to a diamond modality in the succedent. �ese (mostly) propositional
steps recover the more verbose phrasing of BEx from (4.14).

[x′=f(x), t′=1]B(x) ` 〈x′=f(x), t′=1〉 t > τ
〈·〉, ¬L [x′=f(x), t′=1]¬(t > τ), [x′=f(x), t′=1]B(x) ` false
[·]∧, ∧L [x′=f(x), t′=1](¬(t > τ) ∧B(x)) ` false
〈·〉, ¬R ` 〈x′=f(x), t′=1〉(t > τ ∨ ¬B(x))
∀R ` ∀τ 〈x′=f(x), t′=1〉(t > τ ∨ ¬B(x))

�e formula B(x) is assumed to characterize a bounded set with respect to the variables
x. �e closure of this set (with respect to x) is compact so the continuous norm function ‖·‖2

2

a�ains its maximum value on that set. Hence, the formula ∃D ∀x (B(x)→ ‖x‖2
2 ≤ D) is valid

in �rst-order real arithmetic and is thus provable by rule R (Appendix B.1.3). �e derivation
continues with a cut of this formula and Skolemizing with ∃L. Axiom BDG〈·〉 is then used to
remove the ODE x′ = f(x) with e(x) = D. �e resulting right premise is proved by axiom TEx,
while the resulting le� premise is labeled 1 and continued below.

1
∗

TEx ` 〈t′ = 1〉 t > τ
BDG〈·〉 [x′ = f(x), t′ = 1]B(x),∀x (B(x)→ ‖x‖2

2 ≤ D) ` 〈x′ = f(x), t′ = 1〉 t > τ
cut, R, ∃L [x′ = f(x), t′ = 1]B(x) ` 〈x′ = f(x), t′ = 1〉 t > τ

From premise 1 , a dC step adds the postcondition of the le�most antecedent, B(x), to the
domain constraint. Since the remaining antecedent is universally quanti�ed over variables x,
it is soundly kept across an application of a subsequent dW step and the proof is completed
with ∀L,→L.

∗
∀L,→L ∀x (B(x)→ ‖x‖2

2 ≤ D), B(x) ` ‖x‖2
2 ≤ D

dW ∀x (B(x)→ ‖x‖2
2 ≤ D) ` [x′ = f(x), t′ = 1 &B(x)] ‖x‖2

2 ≤ D
dC [x′ = f(x), t′ = 1]B(x),∀x (B(x)→ ‖x‖2

2 ≤ D) ` [x′ = f(x), t′ = 1] ‖x‖2
2 ≤ D

225

Proof of Corollary 4.12. Assume ODE x′ = f(x) is in dependency order (4.9) and indices i =
1, . . . , k are partitioned into disjoint sets L,N as in Corollary 4.12. �e �rst step in the derivation
Skolemizes the succedent with ∀R.

` 〈x′ = f(x), t′ = 1〉
(
t > τ ∨

∨
j∈N ¬Bj(yj)

)
∀R ` ∀τ 〈x′ = f(x), t′ = 1〉

(
t > τ ∨

∨
j∈N ¬Bj(yj)

)
�e derivation combines ideas from Corollaries 4.6,4.8, and 4.10 to remove the ODE y′i =

gi(y1, . . . , yi) at each step. �e corresponding disjunct ¬Bi(yi) (if present) is also removed from
the succedent when i ∈ N . More precisely, at each step i, the derivation turns a succedent of
the form (B.9) to the form (B.10) below which removes the variables yi from the formula.

〈y′1=g1(y1), . . . , y′i−1=gi−1(y1, . . . , yi−1), y′i=gi(y1, . . . , yi), t
′=1〉

(
t > τ ∨

∨
j∈N∩{1,...,i}

¬Bj(yj)
)

(B.9)

〈y′1=g1(y1), . . . , y′i−1=gi−1(y1, . . . , yi−1), t′=1〉
(
t > τ ∨

∨
j∈N∩{1,...,i−1}

¬Bj(yj)
)

(B.10)

�e derivation proceeds with two cases depending on whether i ∈ L or i ∈ N .
• For each i ∈ L (similarly to Corollary 4.8), the ODE y′i=Ai(y1, . . . , yi−1)yi+bi(y1, . . . , yi−1)

is a�ne for some matrix and vector terms Ai, bi respectively with the indicated variable
dependencies. �e RHS of this a�ne ODE satis�es the inequality (B.8) with terms Li,Mi

as given in (B.8). Axiom DDG〈·〉 is used with those choices of Li,Mi, which removes the
ODEs for yi in the resulting right premise. �e resulting le� premise is labeled 1 and
explained below. Note that the freshness conditions of axiom DDG〈·〉 are met because
the postcondition of the succedent does not mention variables yi for i ∈ L. Similarly, the
indices from j ∈ N ∩{1, . . . , i} are equal to those from j ∈ N ∩{1, . . . , i−1} because i /∈
N . �e preceding ODEs are abbreviated Yi−1 ≡ y′1=g1(y1), . . . , y′i−1=gi−1(y1, . . . , yi−1).

1 ` 〈Yi−1, t
′=1〉

(
t > τ ∨

∨
i∈N∩{1,...,i−1} ¬Bi(yi)

)
DDG〈·〉 ` 〈Yi−1, y

′
i=gi(y1, . . . , yi), t

′=1〉
(
t > τ ∨

∨
i∈N∩{1,...,i} ¬Bi(yi)

)
From premise 1 , the proof is completed with a dW and R step using inequality (B.8).

∗
R ` 2yi · (Aiyi + bi) ≤ Li ‖yi‖2

2 +Mi

dW ` [y′1 = g1(y1), . . . , y′i = gi(y1, . . . , yi), t
′ = 1] 2yi · (Aiyi + bi) ≤ Li ‖yi‖2

2 +Mi

• For each i ∈ N (similarly to Corollary 4.10), the boundedness assumption on yi is �rst
extracted from the succedent, with the abbreviationR ≡ (t > τ∨

∨
j∈N∩{1,...,i−1} ¬Bj(yj)).

�e bo�ommost succedent is similarly abbreviated using the propositional tautology(
t > τ ∨

∨
j∈N∩{1,...,i} ¬Bj(yj)

)
↔ R ∨ ¬Bi(yi). �e preceding ODEs are abbreviated

Yi ≡ y′1 = g1(y1), . . . , y′i = gi(y1, . . . , yi).
[Yi, t

′ = 1]Bi(yi) ` 〈Yi, t′ = 1〉R
〈·〉, ¬L [Yi, t

′ = 1]¬R, [Yi, t′ = 1]Bi(yi) ` false
[·]∧, ∧L [Yi, t

′ = 1]
(
¬R ∧Bi(yi)

)
` false

〈·〉, ¬R ` 〈Yi, t′ = 1〉(R ∨ ¬Bi(yi))

226

�e formula Bi(yi) is assumed to characterize a bounded set with respect to the variables
yi. �us, like Corollary 4.10, the cut of the formula ∃Di ∀yi (Bi(yi) → ‖yi‖2

2 ≤ Di) is
proved by R. �e derivation continues by Skolemizing, abbreviating S ≡ [Yi, t

′ = 1]Bi(yi).
Axiom BDG〈·〉 is then used with e(yi) = Di, which removes the ODEs for yi in the
resulting right premise. �e resulting le� premise is labeled 2 and explained below.

2 ` 〈y′1=g1(y1), . . . , y′i−1=gi−1(y1, . . . , yi−1), t′=1〉R
BDG〈·〉 S,∀yi (Bi(yi)→‖yi‖2

2≤Di) ` 〈Yi, t′=1〉R
cut, R, ∃L S ` 〈Yi, t′=1〉R

�e derivation continues from premise 2 identically to Corollary 4.10, with a dC step to
add the postcondition of the antecedent S to the domain constraint. �e proof is completed
with dW and ∀L,→L. �e universally quanti�ed antecedent ∀yi . . . is soundly kept across
the use of dW since it does not mention any of the bound variables y1, . . . , yi, t of the
ODE free.

∗
∀L,→L∀yi (B(yi)→ ‖yi‖2

2 ≤ Di), B(yi) ` ‖yi‖2
2 ≤ Di

dW ∀yi (B(yi)→ ‖yi‖2
2 ≤ Di) ` [Yi, t

′ = 1 &B(yi)] ‖yi‖2
2 ≤ Di

dC S,∀yi (B(yi)→ ‖yi‖2
2 ≤ Di) ` [Yi, t

′ = 1] ‖yi‖2
2 ≤ Di

Using the steps for i = k, . . . , 1 (where either i ∈ L or i ∈ N) successively removes the
ODEs for yk, . . . , yi from the succedent. �is is shown in the derivation below with abbrevi-
ations Yk ≡ y′1 = g1(y1), . . . , y′k−1 = gk−1(y1, . . . , yk−1), y′k = gk(y1, . . . , yk), Yk−1 ≡ y′1 =
g1(y1), . . . , y′k−1 = gk−1(y1, . . . , yk−1). �e proof is completed using TEx.

∗
TEx ` 〈t′ = 1〉t > τ

` 〈t′ = 1〉
(
t > τ ∨

∨
j∈N∩∅ ¬Bj(yj)

)
...
` 〈Yk−1, t

′ = 1〉
(
t > τ ∨

∨
j∈N∩{1,...,k−1} ¬Bj(yj)

)
` 〈Yk, t′ = 1〉

(
t > τ ∨

∨
j∈N ¬Bj(yj)

)
Proof of Proposition 4.13. �e ODE x′ = f(x) is assumed to have a global solution that is syntac-
tically representable by termX(t) in the term language. Formally, this representability condition
means that for any initial state ω, the mathematical solution ϕ : [0,∞)→ S exists globally and
in addition, for each time τ ∈ [0,∞), the solution satis�es ϕ(τ) = ωτt [[X(t)]], where ωτt [[X(t)]]
is the value of term X(t) in state ω with the value of time variable t set to τ . �is implies that
the following formula is valid because terms x, t − t0 have value ϕ(τ) and τ respectively at
time τ ∈ [0,∞) along the ODE x′ = f(x), t′ = 1. �e variables x0, t0 store the initial values of
x, t respectively, which may be needed for the syntactic representation X(t) of the solution.
Additionally, the syntactic representation X(t) may mention parameters y /∈ x that remain
constant for the ODE x′ = f(x).

t = t0 ∧ x = x0 → [x′ = f(x), t′ = 1]x = X(t− t0) (B.11)

227

Validity of formula (B.11) further implies that (B.11) is provable by dRI from Section 3.4.2
because the rule is complete for equational invariants (assuming that the resulting arithmetic
formula is proved). �e derivation of global existence for x′ = f(x) �rst Skolemizes with ∀R, then
introduces fresh variables x0, t0 storing the initial values of x, t with cut, R, ∃L. Axiom BDG〈·〉
is used with e(t) = ‖X(t− t0)‖2

2 to remove the ODEs x′ = f(x). �e resulting right premise is
proved by axiom TEx, while the resulting le� premise is abbreviated 1 and proved below.

1
∗

TEx ` 〈t′ = 1〉 t > τ
BDG〈·〉 t = t0 ∧ x = x0 ` 〈x′ = f(x), t′ = 1〉 t > τ

cut, R, ∃L ` 〈x′ = f(x), t′ = 1〉 t > τ
∀R ` ∀τ 〈x′ = f(x), t′ = 1〉 t > τ

From 1 , the derivation continues with a dC, dRI step using the provable formula (B.11). �e
premise a�er dW is proved by R a�er rewriting the succedent with the equality x = X(t− t0)
and by re�exivity of ≤.

∗
R x = X(t− t0) ` ‖x‖2

2 ≤ ‖X(t− t0)‖2
2

dW ` [x′ = f(x), t′ = 1 & x = X(t− t0)] ‖x‖2
2 ≤ ‖X(t− t0)‖2

2
dC, dRIt = t0 ∧ x = x0 ` [x′ = f(x), t′ = 1] ‖x‖2

2 ≤ ‖X(t− t0)‖2
2

Note that, instead of assuming that X(t) is a syntactically representable (global) solution for
the ODE x′ = f(x), it also su�ces for this derivation to assume that premise 1 is provable, i.e.,
that the term ‖X(t− t0)‖2

2 (with free variables t, x0, t0 and parameters y) is a provable upper
bound on the squared norm of x along solutions of the ODE.

B.2.2 Proofs for Liveness Without Domain Constraints

Proof of Corollary 4.16. �e complete derivation of rule dVΓ
< using re�nement axiom K〈&〉 and

rule dI< is already given in the proof sketch for Corollary 4.16 so it is not repeated here.
�e derivation of dV< (as a corollary of dVΓ

<) starts by introducing fresh variables e0, i
representing the initial values of e and the multiplicative inverse of ε() respectively using
arithmetic cuts (cut, R) and Skolemizing (∃L). It then uses dGt to introduce a fresh time variable
to the system of di�erential equations:

Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉e < 0
dGt Γ, ε() > 0, e = e0, iε() = 1 ` 〈x′ = f(x)〉e < 0
∃L Γ, ε() > 0, ∃e0 (e = e0),∃i (iε() = 1) ` 〈x′ = f(x)〉e < 0

cut, R Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

Next, an initial liveness assumption 〈x′ = f(x), t′ = 1〉e0 + ε()t > 0 is cut into the an-
tecedents a�er which rule dVΓ

< is used to obtain the premise of dV<. Intuitively, this initial
liveness assumption says that the solution exists for su�ciently long, so that the term e0 + ε()t
(which is proved to lower bound e) becomes positive for su�ciently large t. �is cut is abbreviated

228

1 and proved further below.

¬(e < 0) ` .
e ≥ ε()

dVΓ
<Γ, e = e0, t = 0, 〈x′ = f(x), t′ = 1〉 e0 + ε()t > 0 ` 〈x′ = f(x), t′ = 1〉e < 0 1

cut Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉e < 0

From premise 1 , a monotonicity step M〈′〉 equivalently rephrases the postcondition of the
cut in real arithmetic. �e arithmetic rephrasing works using the constant assumption ε() > 0
and the choice of i as the multiplicative inverse of ε(). Since the ODE x′ = f(x) is assumed to
have provable global solutions, axiom GEx �nishes the derivation by instantiating τ = −ie0,
which is constant for the ODE.

∗
GEx Γ ` 〈x′ = f(x), t′ = 1〉 t > −ie0

R, M〈′〉Γ, ε() > 0, iε() = 1 ` 〈x′ = f(x), t′ = 1〉 e0 + ε()t > 0

Proof of Corollary 4.19. Rule dVk
< can be derived in several ways. For example, because .

e(k) is
strictly positive, one can prove that the solution successively reaches states where .

e(k−1) is
strictly positive and remains positive therea�er, followed by reaching states where .

e(k−2) is
strictly positive (and remains positive therea�er), and so on. �e following derivation shows
how dC can be elegantly used for this argument. �e idea is to extend the derivation of rule dV<

to higher Lie derivatives by (symbolically) integrating with respect to the time variable t using
the following sequence of inequalities, where .

e
(i)
0 is a symbolic constant that represents the

initial value of the i-th Lie derivative of e along x′ = f(x) for i = 0, 1, . . . , k − 1:
.
e(k) ≥ ε()

.
e(k−1) ≥ .

e
(k−1)
0 + ε()t

.
e(k−2) ≥ .

e
(k−2)
0 +

.
e

(k−1)
0 t+ ε()

t2

2
... (B.12)

.
e(1) ≥ .

e
(1)
0 + · · ·+ .

e
(k−1)
0

tk−2

(k − 2)!
+ ε()

tk−1

(k − 1)!

e ≥ e0 +
.
e

(1)
0 t+ · · ·+ .

e
(k−1)
0

tk−1

(k − 1)!
+ ε()

tk

k!︸ ︷︷ ︸
p(t)

�e RHS of the �nal inequality in (B.12) is a polynomial in the time variable t, denoted p(t),
which is positive for su�ciently large values of t because its leading coe�cient ε() is strictly
positive, i.e., with antecedent ε() > 0, formula ∃t1 ∀t > t1 p(t) > 0 is provable in real arithmetic.

�e derivation of dVk
< starts by introducing fresh ghost variables that remember the ini-

tial values of e and the (higher) Lie derivatives .
e(1), . . . ,

.
e(k−1) using cut, R, ∃L. �e resulting

antecedents are abbreviated with Γ0 ≡
(
Γ, e = e0, . . . ,

.
e(k−1) =

.
e

(k−1)
0

)
. It also uses dGt to

introduce a fresh time variable t into the system. �e arithmetic fact that p(t) is eventually

229

positive for all times t > t1 is introduced with cut, R, ∃L.

Γ0, t = 0,∀t > t1 p(t) > 0 ` 〈x′ = f(x), t′ = 1〉e < 0
cut, R, ∃L Γ0, ε() > 0, t = 0 ` 〈x′ = f(x), t′ = 1〉e < 0

dGt Γ, ε() > 0, e = e0, . . . ,
.
e(k−1) =

.
e

(k−1)
0 ` 〈x′ = f(x)〉e < 0

cut, R, ∃L Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

Next, an initial liveness assumption, 〈x′ = f(x), t′ = 1〉p(t) > 0, is cut into the assumptions.
Like the derivation of rule dV<, this initial liveness assumption says that the solution exists for
su�ciently long so that the term p(t) from (B.12), which is proved to lower bound e, becomes
positive for su�ciently large t. �e cut premise is abbreviated 1 and further proved below. �e
derivation continues from the remaining (unabbreviated) premise by re�nement axiom K〈&〉,
with G ≡ p(t) > 0:

Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]p(t) ≤ 0
K〈&〉Γ0, t = 0, 〈x′ = f(x), t′ = 1〉p(t) > 0 ` 〈x′ = f(x), t′ = 1〉e < 0 1

cut Γ0, t = 0,∀t > t1 p(t) > 0 ` 〈x′ = f(x), t′ = 1〉e < 0

From the resulting open premise a�er K〈&〉, monotonicity M[′] strengthens the postcondition
to e ≥ p(t) using the domain constraint¬(e < 0) and the provable real arithmetic fact¬(e < 0)∧
e ≥ p(t) → p(t) ≤ 0. Notice that the resulting postcondition e ≥ p(t) is the �nal inequality
from the sequence of inequalities (B.12):

Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]e ≥ p(t)
M[′]Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]p(t) ≤ 0

�e derivation continues by using dC to sequentially cut in the inequality bounds outlined
in (B.12). �e �rst di�erential cut dC step adds .

e(k−1) ≥ .
e

(k−1)
0 + ε()t to the domain constraint.

�e proof of this di�erential cut yields the premise of dVk
< a�er a dI< step, see the derivation

labeled ? immediately below.
Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0) ∧ .

e(k−1) ≥ .
e

(k−1)
0 + ε()t]e ≥ p(t) ?

dCΓ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]e ≥ p(t)

From ? , the resulting open premise is the premise of rule dVk
<:

¬(e < 0) ` .
e(k) ≥ ε()

dI< Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]
.
e(k−1) ≥ .

e
(k−1)
0 + ε()t

Subsequent dC, dI< steps progressively add the inequality bounds from (B.12) to the domain
constraint until the last step where the postcondition is proved invariant with dI<:

∗
dI< Γ0, t = 0 ` [x′ = f(x), t′ = 1 & · · · ∧ .

e(1) ≥ .
e

(1)
0 + · · ·+ ε() tk−1

(k−1)!
]e ≥ p(t)

dC, dI< ...
dC, dI<Γ0, t = 0 ` [x′ = f(x), t′ = 1 & · · · ∧ .

e(k−2) ≥ .
e

(k−2)
0 +

.
e

(k−1)
0 t+ ε() t

2

2
]e ≥ p(t)

dC, dI<Γ0, t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0) ∧ .
e(k−1) ≥ .

e
(k−1)
0 + ε()t]e ≥ p(t)

230

From premise 1 , a monotonicity step M〈′〉 rephrases the postcondition of the cut using
the (constant) assumption ∀t > t1 p(t) > 0. Axiom GEx, with instance τ = t1, �nishes the
derivation because the ODE x′ = f(x) is assumed to have provable global solutions.

∗
GEx Γ ` 〈x′ = f(x), t′ = 1〉t > t1
M〈′〉Γ,∀t > t1 p(t) > 0 ` 〈x′ = f(x), t′ = 1〉p(t) > 0

Proof of Corollary 4.20. �e derivation of rule SP begins by using axiom K〈&〉 with G ≡ ¬S.
�e resulting le� premise is the le� premise of rule SP, which is the staging property of the
formula S expressing that solutions of the ODE x′ = f(x) can only leave S by entering P :

Γ ` [x′ = f(x) &¬P]S Γ, ε() > 0 ` 〈x′ = f(x)〉¬S
K〈&〉 Γ, ε() > 0 ` 〈x′ = f(x)〉P

�e derivation continues on the right premise, similarly to dV<, by introducing fresh variables
e0, i representing the initial value of e and the multiplicative inverse of ε() respectively using
arithmetic cuts (cut, R). It then uses dGt to introduce a fresh time variable:

Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉¬S
dGt Γ, ε() > 0, e = e0, iε() = 1 ` 〈x′ = f(x)〉¬S
∃L Γ, ε() > 0,∃e0 (e = e0), ∃i (iε() = 1) ` 〈x′ = f(x)〉¬S

cut, R Γ, ε() > 0 ` 〈x′ = f(x)〉¬S

�e next cut introduces an initial liveness assumption where the cut premise is abbreviated 1
and proved identically to the correspondingly abbreviated premise from the derivation of dV<

using axiom GEx because the ODE x′ = f(x) is assumed have provable global solutions.
Γ, e = e0, t = 0, 〈x′ = f(x), t′ = 1〉 e0 + ε()t > 0 ` 〈x′ = f(x), t′ = 1〉¬S 1

cut Γ, ε() > 0, e = e0, i > 0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉¬S

From the remaining open premise, axiom K〈&〉 is used with G ≡ e0 + ε()t > 0:
Γ, e = e0, t = 0 ` [x′ = f(x), t′ = 1 &S] e0 + ε()t ≤ 0

K〈&〉Γ, e = e0, t = 0, 〈x′ = f(x), t′ = 1〉 e0 + ε()t > 0 ` 〈x′ = f(x), t′ = 1〉¬S

A monotonicity step M[′] simpli�es the postcondition using domain constraint S, yielding
the le� conjunct of the right premise of rule SP. �e right premise a�er monotonicity is
abbreviated 2 and continued below.

S ` e ≤ 0
RS, e ≥ e0 + ε()t ` e0 + ε()t ≤ 0 2

M[′] Γ, e = e0, t = 0 ` [x′ = f(x), t′ = 1 &S] e0 + ε()t ≤ 0

From 2 , rule dI< yields the right conjunct of the right premise of rule SP.
S ` .

e ≥ ε()
dI<Γ, e = e0, t = 0 ` [x′ = f(x), t′ = 1 &S] e ≥ e0 + ε()t

Proof of Corollary 4.21. Rule SPb is derived �rst since rule SPc follows from SPb as a corollary.
Both proof rules make use of the fact that continuous functions on compact domains a�ain their
extrema (see Appendix B.1.3). �e derivation of SPb is essentially similar to SP except replacing

231

the use of the global existence axiom GEx with the bounded existence axiom BEx. It starts by
using axiom K〈&〉 with G ≡ ¬S, yielding the le� premise of SPb:

Γ ` [x′ = f(x) &¬P]S Γ, ε() > 0 ` 〈x′ = f(x)〉¬S
K〈&〉 Γ, ε() > 0 ` 〈x′ = f(x)〉P

Continuing on the resulting right from K〈&〉 (similarly to SP), the derivation introduces fresh
variables e0, i representing the initial value of e and the multiplicative inverse of ε() respectively
using arithmetic cuts and Skolemizing (cut, R, ∃L). Rule dGt is also used to introduce a fresh
time variable t with t = 0 initially.

Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉¬S
cut, R, ∃L, dGt Γ, ε() > 0 ` 〈x′ = f(x)〉¬S

�e set characterized by formula S is bounded so its closure is compact (with respect to
variables x). On this compact closure, the continuous semantics of term e a�ains its maximum
value, which implies that the value of e is bounded above in S and cannot increase unboundedly
while staying in S. �at is, the formula ∃e1R(e1) where R(e1) ≡ ∀x (S(x)→ e ≤ e1) is valid
in �rst-order real arithmetic and thus provable by R (Appendix B.1.3). �is formula is added to
the assumptions with a cut, and the existential quanti�er is Skolemized with ∃L. �e resulting
symbolic constant e1 represents the upper bound of e on S. Note that R(e1) is constant for the
ODE x′ = f(x), t′ = 1 because it does not mention any of the variables x (nor t) free:

Γ, ε() > 0, e = e0, iε() = 1, t = 0, R(e1) ` 〈x′ = f(x), t′ = 1〉¬S
∃L Γ, ε() > 0, e = e0, iε() = 1, t = 0,∃e1R(e1) ` 〈x′ = f(x), t′ = 1〉¬S

cut, R Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉¬S

Next, a cut introduces an initial liveness assumption saying that either the solution exists for
su�cient time for the bound e0 + ε()t > e1 to be satis�ed (at su�ciently large t) or the solution
leaves S. �is assumption is abbreviated T ≡ 〈x′ = f(x), t′ = 1〉(e0 + ε()t > e1 ∨ ¬S). �e
main di�erence from SP is that the postcondition of assumption T adds a disjunction for the
possibility of leaving S (which characterizes a bounded set). �is cut premise is abbreviated 1
and proved further below.

Γ, e = e0, t = 0, R(e1), T ` 〈x′ = f(x), t′ = 1〉¬S 1
cutΓ, ε() > 0, e = e0, iε() = 1, t = 0, R(e1) ` 〈x′ = f(x), t′ = 1〉¬S

Continuing from the open premise on the le�, axiom K〈&〉 is used withG ≡ e0 +ε()t > e1∨¬S:
Γ, e = e0, t = 0, R(e1) ` [x′ = f(x), t′ = 1 &S](e0 + ε()t ≤ e1 ∧ S)

K〈&〉Γ, e = e0, t = 0, R(e1), T ` 〈x′ = f(x), t′ = 1〉¬S

�e postcondition of the resulting box modality is simpli�ed to e ≥ e0 + ε()t with a M[′]
monotonicity step. �is step crucially uses the assumption R(e1) which is constant for the
ODE. A dI< step yields the remaining premise of SPb on the right, see the derivation labeled ?
immediately below:

∗
R S,R(e1) ` e ≤ e1
RS,R(e1), e ≥ e0 + ε()t ` e0 + ε()t ≤ e1 ∧ S ?

M[′] Γ, e = e0, t = 0, R(e1) ` [x′ = f(x), t′ = 1 &S](e0 + ε()t ≤ e1 ∧ S)

232

From ? :
S ` .

e ≥ ε()
dI<Γ, e = e0, t = 0 ` [x′ = f(x), t′ = 1 &S]e ≥ e0 + ε()t

From premise 1 , a monotonicity step M〈′〉 equivalently rephrases the postcondition of the
cut of formula T . Axiom BEx �nishes the proof because formula S(x) is assumed to be bounded
over variables x.

∗
BEx ` 〈x′ = f(x), t′ = 1〉(t > i(e1 − e0) ∨ ¬S)

R, M〈′〉ε() > 0, iε() = 1 ` T

To derive rule SPc from SPb, the compactness of the set characterized by S(x) implies that
formula ∃ε>0A(ε) where A(ε) ≡ ∀x (S(x)→.

e ≥ ε) and formula B ≡ ∀x (S(x)→.
e > 0) are

provably equivalent in �rst-order real arithmetic (Appendix B.1.3). �is provable real arithmetic
equivalence follows from the fact that the continuous semantics of term .

e is bounded below by
its minimum value on the compact set characterized by S(x) and this minimum value is strictly
positive. �e derivation of SPc threads these two formulas through the use of rule SPb. A�er
Skolemizing ∃ε>0A(ε) with ∃L, the resulting formula A(ε) is constant for the ODE x′ = f(x)
so it is kept as a constant assumption across the use of SPb, leaving only the two premises of
rule SPc:

Γ ` [x′ = f(x) &¬P]S
∗

RS,A(ε) ` .
e ≥ ε

SPb Γ, ε > 0, A(ε) ` 〈x′ = f(x)〉P
∃L Γ,∃ε>0A(ε) ` 〈x′ = f(x)〉P

S ` .
e > 0

∀R,→R ` B
R ` ∃ε>0A(ε)

cut Γ ` 〈x′ = f(x)〉P

B.2.3 Proofs for Liveness With Domain Constraints
Proof of Corollary 4.25. �e derivation uses axiom COR with R ≡ true and noting that e ≥ 0
(resp. e > 0) characterizes a topologically closed (resp. open) set so the appropriate topological
requirements of COR are satis�ed. �e resulting le� premise is the le� premise of dV<&:

Γ ` [x′ = f(x) &¬(e < 0)]Q Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0
COR Γ, ε() > 0,¬(e < 0) ` 〈x′ = f(x) &Q〉e < 0

�e proof continues from the resulting right premise (a�er COR) identically to the derivation
of dV< until the step where dVΓ

< is used. �e steps are repeated brie�y here.
Γ, e = e0, t = 0, 〈x′ = f(x), t′ = 1〉 e0 + ε()t > 0 ` 〈x′ = f(x), t′ = 1〉e < 0

cut, GEx Γ, ε() > 0, e = e0, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉e < 0
dGt Γ, ε() > 0, e = e0, iε() = 1 ` 〈x′ = f(x)〉e < 0

cut, R, ∃L Γ, ε() > 0 ` 〈x′ = f(x)〉e < 0

Like the derivation of dVΓ
<, axiom K〈&〉 is used withG ≡ e0() + ε()t > 0. �e key di�erence

is an additional dC step, which adds Q to the domain constraint.4 �e proof of this di�erential
4Notably, the di�erential cuts proof support from Section 4.6.2 can add such a cut automatically.

233

cut uses the le� premise of dV<&, it is labeled 1 and shown below.

K〈&〉

dC
Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0) ∧Q] e0() + ε()t ≤ 0 1
Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)] e0() + ε()t ≤ 0

Γ, e = e0, t = 0, 〈x′ = f(x), t′ = 1〉e0 + ε()t > 0 ` 〈x′ = f(x), t′ = 1〉e < 0

�e derivation from the resulting le� premise (a�er the cut) continues similarly to dVΓ
< using

a monotonicity step M[′] to rephrase the postcondition, followed by dI< which results in the
right premise of dV<&:

¬(e < 0), Q ` .
e ≥ ε()

dI<Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0) ∧Q] e ≥ e0() + ε()t
M[′]Γ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0) ∧Q] e0() + ε()t ≤ 0

�e derivation from 1 removes the time variable t using the inverse direction of ax-
iom DG [142, 144]. Just as rule dGt (which is derived from DG) introduces a fresh time variable
t for the sake of proof, inverse DG simply removes the variable t since it is irrelevant for the
proof of the di�erential cut.

Γ ` [x′ = f(x) &¬(e < 0)]Q
DGΓ, e = e0(), t = 0 ` [x′ = f(x), t′ = 1 &¬(e < 0)]Q

Proof of Corollary 4.26. �e derivations of rules dV=&, dVM
= & are similar to the derivations of

rules dV=, dVM
= respectively. Rule dVM

= & is derived from dV=& by monotonicity:

Q, e = 0 ` P
Γ ` [x′ = f(x) & e < 0]Q e < 0, Q ` .

e ≥ ε()
dV=& Γ, ε() > 0, e ≤ 0, Q ` 〈x′ = f(x) &Q〉e = 0

M〈′〉Γ, ε() > 0, e ≤ 0, Q ` 〈x′ = f(x) &Q〉P
�e derivation of rule dV=& starts by using axiom K〈&〉 with G ≡ e ≥ 0. �e resulting

box modality (right) premise is abbreviated 1 and proved below. On the resulting le� premise,
a DX step adds the negated postcondition e < 0 as an assumption to the antecedents since the
domain constraint Q is true initially. Following that, rule dV<& is used (with < being ≥, since
Q characterizes a closed set). �is yields the two premises of dV=&:

Γ ` [x′ = f(x) & e < 0]Q e < 0, Q ` .
e ≥ ε()

dV<& Γ, ε() > 0, e < 0 ` 〈x′ = f(x) &Q〉e ≥ 0
DX Γ, ε() > 0, Q ` 〈x′ = f(x) &Q〉e ≥ 0 1

K〈&〉 Γ, ε() > 0, e ≤ 0, Q ` 〈x′ = f(x) &Q〉e = 0

From premise 1 , the derivation is completed similarly to dV= using DX and Barr:
∗

R e 6= 0, e = 0 ` .
e < 0

Barr e < 0 ` [x′ = f(x) &Q ∧ e 6= 0]e < 0
DX e ≤ 0 ` [x′ = f(x) &Q ∧ e 6= 0]e < 0

Proof of Corollary 4.27. Rule SLyapM& is derived from SLyap& by a DR〈·〉 monotonicity step
followed by dW on its resulting le� premise and SLyap& on its resulting right premise:

e > 0 ` Q
dWΓ, e > 0 ` [x′ = f(x) & e > 0]Q

e ≥ 0 ` K ¬P,K ` .
e > 0

SLyap& Γ, e > 0 ` 〈x′ = f(x) & e > 0〉P
DR〈·〉 Γ, e > 0 ` 〈x′ = f(x) &Q〉P

234

�e derivation of rule SLyap& starts by adding assumption ¬P to the antecedents, because
if both e > 0 (which is already in the antecedents) and P were true initially, then the liveness
succedent is trivially true by DX. Next, axiom COR is used with R ≡ true , its topological
restrictions are met since both formulas P and e > 0 characterize open sets. From the resulting
right premise, rule SLyap yields the corresponding two premises of SLyap& because formula K
(resp. P) characterizes a compact set (resp. open set):

Γ, e > 0 ` [x′ = f(x) &¬P]e > 0
e ≥ 0 ` K ¬P,K ` .

e > 0
SLyap Γ, e > 0 ` 〈x′ = f(x)〉P

COR Γ, e > 0,¬P ` 〈x′ = f(x) & e > 0〉P
DX Γ, e > 0 ` 〈x′ = f(x) & e > 0〉P

From the le�most open premise a�er COR, rule Barr is used and the resulting e = 0
assumption is turned into K using the le� premise of SLyap&. �e resulting open premises are
the premises of SLyap&:

¬P,K ` .
e > 0

e ≥ 0 ` K
Re = 0 ` K

cut ¬P, e = 0 ` .
e > 0

Barr Γ, e > 0 ` [x′ = f(x) &¬P]e > 0

Proof of Corollary 4.28. �e derivation starts with a SAR re�nement step. On the resulting le�
premise, an M[′] monotonicity step yields the le� premise and �rst (le�most) conjunct of the
right premise of rule SP&. �e derivation continues from the resulting right premise below.

Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q
M[′] Γ ` [x′ = f(x) &¬(P ∧Q)]Q Γ ` 〈x′ = f(x)〉P

SAR Γ ` 〈x′ = f(x) &Q〉P

From the resulting right premise a�er using axiom SAR, rule SP yields the remaining two
premises of SP&. �e dW, DMP monotonicity step uses the propositional tautology ¬P →
¬(P ∧Q) to weaken the domain constraint so that it matches the le� premise of rule SP&.

Γ ` [x′ = f(x) &¬(P ∧Q)]S
dW, DMPΓ ` [x′ = f(x) &¬P]S S ` e ≤ 0 ∧ .

e ≥ ε()
SP Γ ` 〈x′ = f(x)〉P

Proof of Corollary 4.30. �e chimeric proof rule SPkc& amalgamates re�nement ideas behind
the derived rules SP&, dVk

<, SPc. It is therefore unsurprising that the derivation of SPkc& uses
various steps from the derivations of those rules. �e derivation of SPkc& starts similarly to SP&
(following Corollary 4.28) using axiom SAR:

Γ ` [x′ = f(x) &¬(P ∧Q)]Q Γ ` 〈x′ = f(x)〉P
SAR Γ ` 〈x′ = f(x) &Q〉P

From the le� premise a�er SAR, a monotonicity step turns the postcondition into S, yielding
the le� premise and �rst conjunct of the right premise of SPkc&.

Γ ` [x′ = f(x) &¬(P ∧Q)]S S ` Q
M[′] Γ ` [x′ = f(x) &¬(P ∧Q)]Q

235

From the right premise a�er SAR, the derivation continues using K〈&〉 with G ≡ ¬S,
followed by dW, DMP. �e resulting le� premise is (again) the le� premise of SPkc&, while the
resulting right premise is abbreviated 1 and continued below:

Γ ` [x′ = f(x) &¬(P ∧Q)]S
dW, DMPΓ ` [x′ = f(x) &¬P]S 1

K〈&〉 Γ ` 〈x′ = f(x)〉P

�e derivation continues from 1 by interleaving proof ideas from Corollaries 4.19 and 4.21.
First, compactness of the set characterized by S(x) implies that the formula ∃ε>0A(ε) where
A(ε) ≡ ∀x (S(x)→ .

e(k) ≥ ε) and the formula B ≡ ∀x (S(x)→ .
e(k) > 0) are provably equiv-

alent in �rst-order real arithmetic (Appendix B.1.3). �ese facts are added to the assumptions
similarly to the derivation of SPc. �e resulting right open premise is the right conjunct of the
right premise of SPkc&:

Γ, ε > 0, A(ε) ` 〈x′ = f(x)〉¬S
∃L Γ,∃ε>0A(ε) ` 〈x′ = f(x)〉¬S

S ` .
e(k) > 0

∀R,→R ` B
R ` ∃ε>0A(ε)

cut Γ ` 〈x′ = f(x)〉¬S

From the le� premise, recall the derivation from Corollary 4.19 which introduces fresh
variables for the initial values of the Lie derivatives with cut, R, ∃L. �e derivation continues
similarly here, with the resulting antecedents abbreviated Γ0 ≡

(
Γ, e = e0, . . . ,

.
e(k−1) =

.
e

(k−1)
0

)
.

Rule dGt is also used to add time variable t to the system of equations with initial value t = 0.
Γ0, ε > 0, A(ε), t = 0 ` 〈x′ = f(x), t′ = 1〉¬S

dGt Γ0, ε > 0, A(ε) ` 〈x′ = f(x)〉¬S
cut, R, ∃L Γ, ε > 0, A(ε) ` 〈x′ = f(x)〉¬S

Recall from Corollary 4.21 that the formula R(e1) ≡ ∀x (S(x) → e ≤ e1) can be added
to the assumptions using cut, R, ∃L, for some fresh variable e1 symbolically representing the
maximum value of e on the compact set characterized by S:

Γ0, ε > 0, A(ε), t = 0, R(e1) ` 〈x′ = f(x), t′ = 1〉¬S
cut, R, ∃L Γ0, ε > 0, A(ε), t = 0 ` 〈x′ = f(x), t′ = 1〉¬S

One last arithmetic cut is needed to set up the sequence of di�erential cuts (B.12). Recall
the polynomial p(t) from (B.12) is eventually positive for su�ciently large values of t because
its leading coe�cient is strictly positive. �e same applies to the polynomial p(t)− e1 so cut, R
(and Skolemizing with ∃L) adds the formula ∀t > t1 (p(t)− e1 > 0) to the assumptions:

Γ0, ε > 0, A(ε), t = 0, R(e1),∀t > t1 p(t)− e1 > 0 ` 〈x′ = f(x), t′ = 1〉¬S
cut, R, ∃L Γ0, ε > 0, A(ε), t = 0, R(e1) ` 〈x′ = f(x), t′ = 1〉¬S

Once all the arithmetic cuts are in place, an additional cut introduces a (bounded) su�-
cient duration assumption 〈x′ = f(x), t′ = 1〉(p(t) − e1 > 0 ∨ ¬S) (antecedents temporarily
abbreviated with . . . for brevity). �e cut premise, abbreviated 1 , is proved further below:

Γ0, . . . , 〈x′ = f(x), t′ = 1〉(p(t)− e1 > 0 ∨ ¬S) ` 〈x′ = f(x), t′ = 1〉¬S 1
cutΓ0, ε > 0, A(ε), t = 0, R(e1), ∀t > t1 (p(t)− e1 > 0) ` 〈x′ = f(x), t′ = 1〉¬S

236

From the open premise on the le�, axiom K〈&〉 is used with G ≡ p(t)− e1 > 0 ∨ ¬S:

Γ0, ε > 0, A(ε), t=0, R(e1) ` [x′=f(x), t′=1 &S](p(t)− e1 ≤ 0 ∧ S)
K〈&〉Γ0, . . . , 〈x′=f(x), t′=1〉(p(t)− e1 > 0 ∨ ¬S) ` 〈x′=f(x), t′=1〉¬S

Next, a monotonicity step M[′] simpli�es the postcondition using the (constant) assumption
R(e1) and the domain constraint S:

Γ0, t = 0, A(ε) ` [x′ = f(x), t′ = 1 &S]e ≥ p(t)
M[′]Γ0, ε > 0, A(ε), t = 0, R(e1) ` [x′ = f(x), t′ = 1 &S](p(t)− e1 ≤ 0 ∧ S)

�e derivation closes using the chain of di�erential cuts from (B.12). In the �rst dC step, the
(constant) assumption A(ε) is used, see the derivation labeled ? immediately below:

Γ0, t = 0 ` [x′ = f(x), t′ = 1 &S ∧ .
e(k−1) ≥ .

e
(k−1)
0 + ε()t]e ≥ p(t) ?

dCΓ0, t = 0, A(ε) ` [x′ = f(x), t′ = 1 &S]e ≥ p(t)

From ? :
∗

R A(ε), S ` .
e(k) ≥ ε()

dI<Γ0, t = 0, A(ε) ` [x′ = f(x), t′ = 1 &S]
.
e(k−1) ≥ .

e
(k−1)
0 + ε()t

Subsequent dC, dI< steps are similar to the derivation in Corollary 4.19:
∗

dI< Γ0, t = 0 ` [x′ = f(x), t′ = 1 & · · · ∧ .
e(1) ≥ .

e
(1)
0 + · · ·+ ε() tk−1

(k−1)!
]e ≥ p(t)

dC, dI< ...
dC, dI<Γ0, t = 0 ` [x′ = f(x), t′ = 1 &S ∧ .

e(k−1) ≥ .
e

(k−1)
0 + ε()t]e ≥ p(t)

From premise 1 , a monotonicity step M〈′〉 rephrases the postcondition of the cut using
the assumption ∀t > t1 (p(t)− e1 > 0). Axiom BEx �nishes the derivation since formula S(x)
characterizes a compact (and hence bounded) set:

∗
BEx ` 〈x′ = f(x), t′ = 1〉(t > t1 ∨ ¬S)
M〈′〉∀t > t1 (p(t)− e1 > 0) ` 〈x′ = f(x), t′ = 1〉(p(t)− e1 > 0 ∨ ¬S)

B.2.4 Proofs for ODE Liveness Proofs in Practice

Proof of Corollary 4.33. Assume that formulas P,GP are in normal form (3.7) as in Corollary 4.33.
Rule dV is derived �rst since rule dV∃ follows from dV as a corollary. �e derivation of rule dV
uses variable b as a symbolic lower bound on the initial values of all terms eij, ẽij appearing
in formula P . �e formula ∃b

∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
is a valid formula of real

arithmetic and is proved as a cut by R because P is a �nite formula so there exists a lower bound
b smaller than the value of all of the terms eij, ẽij .

237

�e derivation starts similarly to dV< by introducing fresh variables b (for the bound above),
and i representing the multiplicative inverse of ε() using arithmetic cuts cut, R. It then Skolemizes
(∃L) and uses dGt to introduce a fresh time variable to the system of di�erential equations:

Γ, ε() > 0,
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉P

dGt Γ, ε() > 0,
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
, iε() = 1 ` 〈x′ = f(x)〉P

∃L Γ, ε() > 0,∃b
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
,∃i (iε() = 1) ` 〈x′ = f(x)〉P

cut, R Γ, ε() > 0 ` 〈x′ = f(x)〉P

Next, the re�nement axiom K〈&〉 is used with G ≡ (b+ ε()t > 0). �is yields two premises,
the right of which is proved by GEx (a�er monotonic rephrasing with R, M〈′〉) because the
ODE x′ = f(x) is assumed to have provable global solutions. �e le� premise from K〈&〉 is
abbreviated 1 and continued below.

K〈&〉

R, M〈′〉

GEx
∗

Γ ` 〈x′ = f(x), t′ = 1〉t > −ib
1 Γ, ε() > 0, iε() = 1 ` 〈x′ = f(x), t′ = 1〉(b+ ε()t > 0)

Γ, ε() > 0,
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
, iε() = 1, t = 0 ` 〈x′ = f(x), t′ = 1〉P

Continuing from premise 1 , monotonicity strengthens the postcondition from b+ ε()t ≤ 0
to GP under the domain constraint assumption ¬P . �is strengthening is justi�ed because,
assuming that ¬P and GP are true in a given state, then propositionally, at least one of the
following pairs (each pair listed horizontally) of sub-formulas of ¬P and GP for some indices
i, j is true in that state:

eij < 0 eij − (b+ ε()t) ≥ 0

ẽij ≤ 0 ẽij − (b+ ε()t) ≥ 0

Either pair of formulas imply that formula b + ε()t ≤ 0 is also true in that state, so the
strengthening is proved by M[′], R. Next, a cut, R step adds the formula GP to the antecedents
using the assumptions

∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
and t = 0. Rule sAI& yields the

sole premise of rule dV because GP characterizes a closed set.
¬P,

.
(¬P)(∗), GP `

.
(GP)(∗)

sAI& GP ` [x′ = f(x), t′ = 1 &¬P]GP

cut, R Γ,
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
, t = 0 ` [x′ = f(x), t′ = 1 &¬P]GP

M[′], RΓ,
∧M
i=0

(∧m(i)
j=0 eij ≥ b ∧

∧n(i)
j=0 ẽij ≥ b

)
, t = 0 ` [x′ = f(x), t′ = 1 &¬P]

(
b+ ε()t ≤ 0

)
Rule dV∃ is derived from rule dV similarly to the derivation of rule dV∃< from rule dV<. �e

derivation starts with a cut of the sole premise of dV∃ (the le� premise below). �e existentially
bound variable is renamed to δ throughout the derivation for clarity. �e right premise is
abbreviated 2 and shown below.

Γ ` ∃δ>0 ∀b ∀t∀x
(
¬P ∧

.
(¬P)(∗) ∧GP →

.
(GP)(∗)) 2

cut Γ ` 〈x′ = f(x) &Q〉P

238

From 2 , a�er Skolemizing (with ∃L), rule dV is used with ε() = δ. �e universally quanti�ed
antecedent is constant for the ODE x′ = f(x) and the universal quanti�cation over variables
b, t ensure that those variables are fresh in the rest of the sequent so the antecedent is soundly
kept across the application of rule dV. �e proof is completed propositionally ∀L,→L, ∧L.

∗
∀L,→L, ∧L∀b ∀t∀x

(
¬P ∧

.
(¬P)(∗) ∧GP →

.
(GP)(∗)),¬P, .

(¬P)(∗), GP `
.

(GP)(∗)

dV δ>0,∀b ∀t∀x
(
¬P ∧

.
(¬P)(∗) ∧GP →

.
(GP)(∗)) ` 〈x′ = f(x) &Q〉P

∃L, ∧L ∃δ>0∀b ∀t∀x
(
¬P ∧

.
(¬P)(∗) ∧GP →

.
(GP)(∗)) ` 〈x′ = f(x) &Q〉P

Proof of Corollary 4.36. �e derivation of rule cR is seemingly straightforward using axiom CR
followed by rule Enc on the resulting middle premise. �ere is a minor subtlety to address
because the formulaQ>

≥ (with strict inequalities replacing non-strict ones inQ) is only a syntactic
under-approximation of the interior of the set characterized by Q, and so the axiom CR does not
immediately apply as stated. For example, formula x < x characterizes the empty set, while
the formula x ≤ x characterizes the set of all states, whose interior is also the set of all states.
Assume that the interior of Q is characterized by formula Q̊.5

�e derivation starts with a cut of the formulaQwhich yields the le�most premise of rule cR.
�is is followed with DX, which adds formula ¬P to the antecedents because there is nothing
to prove if both formulas Q and P are already true initially. �e derivation then uses CR with
the computable formula Q̊ characterizing the topological interior of formula Q. �is yields two
premises, the right of which corresponds to the rightmost premise of rule cR. From the resulting
le� premise (with postcondition Q̊), an M[′], R monotonicity step strengthens the postcondition
because Q>

≥ → Q̊ is a provable formula of real arithmetic (Appendix B.1.3). Rule Enc completes
the derivation because formula Q>

≥ is formed from �nite conjunctions and disjunctions of strict
inequalities, and (Q>

≥)≥> is syntactically equal to Q by de�nition.

Γ ` Q

Γ ` [x′ = f(x) &R ∧ ¬P ∧Q]Q>
≥

Enc Γ, Q ` [x′ = f(x) &R ∧ ¬P]Q>
≥

M[′], RΓ, Q ` [x′ = f(x) &R ∧ ¬P]Q̊ Γ ` 〈x′ = f(x) &R〉P
CR Γ, Q,¬P ` 〈x′ = f(x) &Q〉P
DX Γ, Q ` 〈x′ = f(x) &Q〉P

cut Γ ` 〈x′ = f(x) &Q〉P

B.3 Counterexamples

�is appendix gives explicit counterexamples to illustrate the soundness errors identi�ed in
Sections 4.4 and 4.5.

5If Q is a semialgebraic formula, there is a computable quanti�er-free formula Q̊ that exactly characterizes its
topological interior [14] which can be used with CR in the syntactic derivation.

239

B.3.1 Finite-Time Blow Up

�e soundness errors identi�ed in Section 4.4 all arise because of incorrect handling of the fact
that solutions may blow up in �nite time. �is phenomenon is studied in detail in Section 4.3,
and it is illustrated by αn (4.2), see Fig. 4.1, or αb (4.7), see Example 4.5. �e following is a
counterexample for the original presentation of dV= (and dVM

= , dV=&, dVM
= &) [191]. Similar

counterexamples can be constructed for [157, Remark 3.6] and for the original presentation
of SLyap, SLyap& [159].

Counterexample B.2. Consider rule dV= without the restriction that the ODE has provable
global solutions. �is unrestricted rule, denoted dV=�, is unsound as shown by the following
derivation using it with ε() = 1:

∗
R v − 2 < 0 ` 1 ≥ 1

dV=�v − 2 ≤ 0 ` 〈u′ = u2, v′ = 1〉v − 2 = 0

�e conclusion of this derivation is not valid. Consider the initial stateωwith valuesω(u) = 1
and ω(v) = 0. �e explicit solution of the ODE from ω is given by u(t) = 1

1−t , v(t) = t for
t ∈ [0, 1). �is solution does not exist beyond the time interval [0, 1) because the u-coordinate
asymptotically approaches∞, i.e., blows up, as time approaches t = 1. It is impossible to reach
a state satisfying v − 2 = 0 from ω along this solution since at least 2 time units are required.

�is counterexample further illustrates the di�culty in handling nonlinear ODEs. Neither
the precondition (v−2 ≤ 0) nor postcondition (v−2 = 0) mention the variable u, and the ODEs
u′ = u2, v′ = 1 do not depend on variables v, u respectively, so it is tempting to disregard the
variable u entirely. Indeed, the liveness property v−2 ≤ 0→ 〈v′ = 1〉v−2 = 0 is valid. Yet, for
liveness questions about the (original) ODE, u′ = u2, v′ = 1, the two variables are inextricably
linked through the time axis of solutions to the ODE. �

B.3.2 Topological Considerations

�e soundness errors identi�ed in Section 4.5 arise because of incorrect topological reasoning in
subtle cases where the topological boundaries of the sets characterized by the domain constraint
and desired liveness postcondition intersect. �e original presentation of dV<& [137] gives
the following proof rule for atomic inequalities p < 0. For simplicity, assume that the ODE
x′ = f(x) is globally Lipschitz continuous so that solutions exist for all time.

dV<&�
Γ ` [x′ = f(x) & p ≤ 0]Q ¬(p < 0), Q ` .

p ≥ ε()

Γ, ε() > 0 ` 〈x′ = f(x) &Q〉p < 0

Compared to dV<&, the unsound rule dV<&� omits the assumption ¬(p < 0), makes no
topological assumptions on the domain constraint Q, and uses syntactic weak negation [137]
for the domain constraint of its le� premise. �e following two counterexamples show that the
two assumptions are necessary.

240

Counterexample B.3. Consider the following derivation using the unsound rule dV<&� with
ε() = 1:

∗
dW, Ru > 1 ` [u′ = 1 &u ≤ 0]u ≤ 1

∗
Ru < 0, u ≤ 1 ` 1 ≥ 1

dV<&� u > 1 ` 〈u′ = 1 &u ≤ 1〉u ≥ 0

�e conclusion of this derivation is not valid. In states where u > 1 is true initially, the
domain constraint is violated immediately so the diamond modality in the succedent is trivially
false in those states. �

Counterexample B.4 ([175]). �is counterexample is adapted from [175, Example 142], which
has a minor typographical error (the sign of an inequality is �ipped). Consider the following
derivation using the unsound rule dV<&� with ε() = 1:

∗
dW, R ` [u′ = 1 &u ≤ 1]u ≤ 1

∗
Ru ≤ 1, u ≤ 1 ` 1 ≥ 1

dV<&� ` 〈u′ = 1 &u ≤ 1〉u > 1

�e conclusion of this derivation is not valid and, in fact, unsatis�able. �e domain constraint
u ≤ 1 and postcondition u > 1 are contradictory so no solution can reach a state satisfying
both simultaneously. �

�e next two counterexamples are for the liveness arguments from [156, Corollary 1] and [157,
�eorem 3.5]. For clarity, the original notation from [157, �eorem 3.5] is used. �e following
conjecture is quoted from [157, �eorem 3.5]:

Conjecture B.5. Consider the system x′ = f(x), with f ∈ C(Rn,Rn). Let X ⊂ Rn, X0 ⊆ X ,
and Xr ⊆ X be bounded sets. If there exists a function B ∈ C1(Rn) satisfying:

B(x) ≤ 0 ∀x ∈ X0 (B.13)
B(x) > 0 ∀x ∈ ∂X \ ∂Xr (B.14)
∂B

∂x
f(x) < 0 ∀x ∈ X \ Xr (B.15)

�en the eventuality property holds, i.e., for all initial conditions x0 ∈ X0, the trajectory x(t)
of the system starting at x(0) = x0 satis�es x(T) ∈ Xr and x(t) ∈ X for all t ∈ [0, T] for some
T ≥ 0. �e notation X (resp. ∂X) denotes the topological closure (resp. boundary) of the set X .

In [156, Corollary 1], stronger conditions are required. In particular, the sets X0,Xr,X are
additionally required to be topologically open, and the inequality in (B.13) is required to be
strict, i.e., B(x) < 0 instead of B(x) ≤ 0.

�e soundness errors in both of these liveness arguments stem from the condition (B.14)
being too permissive. For example, notice that if the sets ∂X , ∂Xr are equal then (B.14) is
vacuously true. �e �rst counterexample below applies for the requirements of [157, �eorem
3.5], while the second applies even for the more restrictive requirements of [156, Corollary 1].

241

-1 0 1 u

-1

0

1

v

-2 -1 0 1 2 u

-2

-1

0

1

2

v

Figure B.1: (Le�) Visualization of Counterexample B.6. �e solution from initial point u =
0, v = 1 (X0, in black) leaves the domain unit disk (X , boundary in blue) immediately without
ever reaching its interior (Xr, in green with dashed boundary). �e interior is slightly shrunk
for clarity in the visualization: the blue and green boundaries should actually overlap exactly.
(Right) Visualization of Counterexample B.7. Solutions from the initial set (X0, in black with
dashed boundary) eventually enter the goal region (Xr, in green with dashed boundary). However,
the domain (X , in blue with dashed boundary) shares an (open) boundary withXr at v = 0 which
solutions are not allowed to cross. �e sets are slightly shrunk for clarity in the visualization:
the blue and green boundaries should actually overlap exactly. �e level curve B = 0 is plo�ed
in red. All points above the curve satisfy B < 0, while all points below it satisfy B > 0.

Counterexample B.6. Let the system x′ = f(x) be u′ = 0, v′ = 1. Let Xr be the open unit
disk characterized by u2 + v2 < 1, X be the closed unit disk characterized by u2 + v2 ≤ 1,
and X0 be the single point characterized by u = 0 ∧ v = 1. All of these sets are bounded.
Note that ∂X \ ∂Xr = ∅ since both topological boundaries are the unit circle u2 + v2 = 1. Let
B(u, v) = −v, so that ∂B

∂x
f(x) = ∂B

∂u
0 + ∂B

∂v
1 = −1 < 0 and B ≤ 0 on X0.

All conditions of [157, �eorem 3.5] are met but the eventuality property is false. �e
trajectory from X0 leaves X immediately and never enters Xr, see Fig. B.1 (Le�). �

Counterexample B.7. Let the system x′ = f(x) be u′ = 0, v′ = 1. Let Xr be the set char-
acterized by the formula u2 + v2 < 5 ∧ v > 0, X be the set characterized by the formula
u2 + v2 < 5 ∧ v 6= 0, and X0 be the set characterized by the formula u2 + (v + 1)2 < 1

2
.

All of these sets are bounded and topologically open. Let B(u, v) = −v + u2 − 2, so that
∂B
∂x
f(x) = ∂B

∂u
0 + ∂B

∂v
1 = −1 < 0, and B < 0 on X0. �e set ∂X \ ∂Xr is characterized by

formula u2 + v2 = 5 ∧ v ≤ 0 and B is strictly positive on this set. �ese claims can be checked
arithmetically, see Fig. B.1 (Right) for a plot of the curve B = 0.

All conditions of [156, Corollary 1] are met but the eventuality property is false. Solutions
starting in X0 eventually enter Xr but can only do so by leaving the domain constraint X at
v = 0, see Fig. B.1 (Right). �

242

Appendix C

Appendix: Stability for Ordinary
Di�erential Equations

C.1 Derived Stability Proof Rules
�is appendix provides proofs for all lemmas and corollaries that were omi�ed from Sections 5.2
and 5.3. For ease of reference, this appendix is organized into two sections, corresponding to
proofs for Section 5.2 and Section 5.3 respectively. �is appendix uses derived proof rules and
axioms from Chapters 3 and 4 (and their Appendices A and B) together with an additional
derived axiom:

DCC [x′ = f(x) &Q ∧ P]R ∧ [x′ = f(x) &Q](¬P → [x′ = f(x) &Q]¬P)

→ [x′ = f(x) &Q](P → R)

Axiom DCC to prove that an implication P → R is always true along an ODE, it su�ces
to prove it assuming P in the domain if, whenever the solution leaves P , then it stays in the
negation ¬P a�erwards (so the implication is trivially true in those states). �e axiom is stated
as a proof rule elsewhere [90] and its axiomatic version is formally veri�ed [16].

C.1.1 Proofs for Asymptotic Stability of an Equilibrium Point
�is section concerns stability for the origin, whose ε neighborhoods Uε(x = 0) are equivalently
unfolded as the formula ‖x‖2

2 < ε2. �e following lemma formalizes the claim in Section 5.2.1
that a point x0 of interest for the ODE x′ = f(x) can be rigorously translated with proof to the
origin so that, without loss of generality, only stability of the origin needs to be considered for
the stability proof rules of Section 5.2.
Lemma C.1 (Translation to origin). �e following axioms are derivable in dL, where the ODE
y′ = f(y + x0) has point x0 translated to the origin and variables y are fresh, i.e., not in ODE
x′ = f(x) or formula P (x).

Trans y = x− x0 →
(
[x′ = f(x)]P (x− x0)↔ [y′ = f(y + x0)]P (y)

)
TransStab Stab(y′ = f(y + x0))→ StabP

R(x′ = f(x), x = x0, x = x0)

243

Proof. Axiom Trans is derived �rst before axiom TransStab is derived from it as a corollary. Only
the “→” direction of the inner equivalence for axiom Trans is derived since the “←” direction
follows from the “→” direction by renaming and translation with respect to −x0.

Let αxy ≡ x′ = f(x), y′ = f(y+x0) abbreviate the combined ODE for variables x and y. �e
derivation starts with a cut of formula [αxy] y = x− x0, which says that the value of y is always
equal to x−x0 (component-wise) along solutions of the combined ODE αxy . �is cut is provable
in dL using axiom DRI which is complete for analytic invariants. Subsequently, axiom BDG
adds the ghost ODE y′ = f(y + x0) to ODE x′ = f(x) in the antecedent box modality and ODE
x′ = f(x) to ODE y′ = f(y + x0) in the succedent box modality. �e resulting boundedness
premises from the use of BDG are respectively abbreviated 1 and 2 and they are both proved
using the cut antecedent as shown further below.

2 [αxy]y = x− x0, [αxy]P (x− x0) ` [αxy]P (y)
BDG 1 [αxy]y = x− x0, [αxy]P (x− x0) ` [y′ = f(y + x0)]P (y)
BDG [αxy]y = x− x0, [x

′ = f(x)]P (x− x0) ` [y′ = f(y + x0)]P (y)
cut, DRI y = x− x0, [x

′ = f(x)]P (x− x0) ` [y′ = f(y + x0)]P (y)

From the (unabbreviated) open right premise, a dC step adds formulas y = x − x0 and
P (x−x0) to the domain constraint of the succedent. A subsequent dW step completes the proof
by substituting y = x− x0 in the succedent P (y).

∗
R y = x− x0 ∧ P (x− x0) ` P (y)

dW ` [αxy & y = x− x0 ∧ P (x− x0)]P (y)
dC [αxy]P (x− x0) ` [αxy & y = x− x0]P (y)
dC [αxy]y = x− x0, [αxy]P (x− x0) ` [αxy]P (y)

For premise 1 , the ghost variables y are provably bounded in (squared) norm by the term
‖x− x0‖2

2 for ODE αxy. �e dC step adds y = x− x0 from the antecedent box modality to the
domain constraint, and the subsequent dW step completes the proof by substituting y = x− x0

and by real arithmetic R.
∗

R y = x− x0 ` ‖y‖2
2 ≤ ‖x− x0‖2

2
dW ` [αxy & y = x− x0] ‖y‖2

2 ≤ ‖x− x0‖2
2

dC [αxy]y = x− x0 ` [αxy] ‖y‖2
2 ≤ ‖x− x0‖2

2

�e derivation for premise 2 is similar, where the ghost variables x are provably bounded
in (squared) norm by the term ‖y + x0‖2

2 for ODE αxy instead.
∗

R y = x− x0 ` ‖x‖2
2 ≤ ‖y + x0‖2

2
dW ` [αxy & y = x− x0] ‖x‖2

2 ≤ ‖y + x0‖2
2

dC [αxy]y = x− x0 ` [αxy] ‖x‖2
2 ≤ ‖y + x0‖2

2

�e derivation of axiom TransStab starts by Skolemizing ε in the succedent with ∀R and
then instantiating the antecedent with the resulting fresh Skolem variable ε using ∀L. �is is
followed by ∃L, ∃R which Skolemizes δ in the antecedent and then witnesses the succedent with

244

δ. Next, ∀R,→R Skolemizes the succedent before ∀L instantiates y in the quanti�ed antecedent,
with the translated coordinate y = x− x0. Formula y = x− x0 ∧ ‖x− x0‖2

2 < δ2 → ‖y‖2
2 < δ2

is provable by substitution in real arithmetic, so →L, R proves the LHS of the implication
(‖y‖2

2 < δ2) in the antecedent before Trans completes the proof. �e formulas are abbreviated
Ry ≡ [y′ = f(y + x0)] ‖y‖2

2 < ε2 and R ≡ [x′ = f(x)] ‖x− x0‖2
2 < ε2, respectively.

∗
Trans y = x− x0, Ry ` R
→L, R y = x− x0, ‖y‖2

2 < δ2 → Ry, ‖x− x0‖2
2 < δ2 ` R

∀L ∀y
(
‖y‖2

2 < δ2 → Ry

)
, ‖x− x0‖2

2 < δ2 ` R
∀R,→R ∀y

(
‖y‖2

2 < δ2 → Ry

)
` ∀x

(
‖x− x0‖2

2 < δ2 → R
)

∃L, ∃R ∃δ>0 ∀y
(
‖y‖2

2 < δ2 → Ry

)
` ∃δ>0∀x

(
‖x− x0‖2

2 < δ2 → R
)

∀R, ∀L Stab(y′ = f(y + x0)) ` StabP
R(x′ = f(x), x = x0, x = x0)

Proof of Lemma 5.6. �e full derivation of rule Lyap> from rule Lyap≥ is given in Lemma 5.6.
�e derivation of rule Lyap≥ begins with a series of arithmetic cuts which are justi�ed stepwise.
For any ε > 0 and an equilibrium point at the origin with f(0) = 0, the second (right) premise
of Lyap≥ can be equivalently strengthened to choose γ ≤ ε, i.e., the second premise provably
implies the following formula in real arithmetic; the universal quanti�er on x is also distributed
across the inner conjunction as shown in conjuncts a and b below:

∃0<γ≤ε
(
∀x (0 < ‖x‖2

2 ≤ γ2 → V > 0)︸ ︷︷ ︸
a

∧∀x (‖x‖2
2 ≤ γ2 →

.
V ≤ 0)︸ ︷︷ ︸

b

)

�e derivation begins with a cut of this formula and Skolemizing with ∃L, yielding an-
tecedents a and b as indicated above. �e postcondition is then monotonically strengthened
to ‖x‖2

2 < γ2 using antecedent γ ≤ ε.
γ > 0, a , b ` ∃δ>0∀x

(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
M[′] γ > 0, γ ≤ ε, a , b ` ∃δ>0∀x

(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < ε2

)
cut, ∃L ε > 0 ` ∃δ>0∀x

(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < ε2

)
∀R ` Stab(x′ = f(x))

From a , the continuous Lyapunov function V is positive on the compact set characterized
by ‖x‖2

2 = γ2 and therefore is bounded below by its minimum W > 0 on that set. Furthermore,
from premise V (0) = 0, by continuity, V must take values smaller than W in a ball with
su�ciently small radius 0 < δ < γ around the origin.1 �us, the following formula proves in
real arithmetic from a .

∃W
(
∀x
(
‖x‖2

2 = γ2 → V ≥ W
)︸ ︷︷ ︸

c

∧ ∃0<δ<γ ∀x
(
‖x‖2

2 < δ2 → V < W
)︸ ︷︷ ︸

d

)
1Recall the notational convention (Appendix B.1.3) that rule R proves these real analytic properties for Lyapunov

functions V over extended terms.

245

�e derivation continues with a cut of the above formula and Skolemizing the resulting
antecedent with ∃L, yielding antecedents c and d as indicated above.

0<δ<γ, b , c , d ` ∃δ>0∀x
(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
cut, R, ∃L γ > 0, a , b ` ∃δ>0∀x

(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
�e succedent existential quanti�er ∃δ>0 is instantiated with the antecedent’s δ using ∃R,

followed by simpli�cation steps, Skolemizing and unfolding the succedent with ∀R,→R then
instantiating d by ∀L,→L with the resulting ‖x‖2

2 < δ2 assumption.
δ<γ, b , c , ‖x‖2

2 < δ2, V < W ` [x′ = f(x)] ‖x‖2
2 < γ2

∀L,→L δ<γ, b , c , d , ‖x‖2
2 < δ2 ` [x′ = f(x)] ‖x‖2

2 < γ2

∀R,→R δ<γ, b , c , d ` ∀x
(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
∃R 0<δ<γ, b , c , d ` ∃δ>0∀x

(
‖x‖2

2 < δ2 → [x′ = f(x)] ‖x‖2
2 < γ2

)
Since formula ‖x‖2

2 < γ2 characterizes an open ball and δ < γ, the antecedent ‖x‖2
2 < δ2

implies ‖x‖2
2 < γ2 arithmetically so rule Enc is used to assume its closure ‖x‖2

2 ≤ γ2 in the
domain constraint of the succedent ODE. With the strengthened domain, dC adds

.
V ≤ 0 to the

domain constraint by V using assumption b which is universally quanti�ed over x.
c , V < W ` [x′ = f(x) & ‖x‖2

2 ≤ γ2 ∧
.
V ≤ 0] ‖x‖2

2 < γ2

dC, V b , c , V < W ` [x′ = f(x) & ‖x‖2
2 ≤ γ2] ‖x‖2

2 < γ2

Enc δ<γ, b , c , ‖x‖2
2 < δ2, V < W ` [x′ = f(x)] ‖x‖2

2 < γ2

�e proof continues using dC to add invariant V < W to the domain constraint; this
di�erential cut proves by dI< using conjunct

.
V ≤ 0 in the domain constraint. �e subsequent dC

step adds ‖x‖2
2 6= γ2 to the domain constraint using the contrapositive direction of the universally

quanti�ed antecedent c . Finally, a dW step completes the proof since conjuncts ‖x‖2
2 ≤ γ2 and

‖x‖2
2 6= γ2 in the resulting domain constraint imply the postcondition ‖x‖2

2 < γ2 by R.
∗

R ‖x‖2
2 ≤ γ2, ‖x‖2

2 6= γ2 ` ‖x‖2
2 < γ2

dW ` [x′ = f(x) & ‖x‖2
2 ≤ γ2 ∧ · · · ∧ ‖x‖2

2 6= γ2] ‖x‖2
2 < γ2

dC c ` [x′ = f(x) & ‖x‖2
2 ≤ γ2 ∧

.
V ≤ 0 ∧ V < W] ‖x‖2

2 < γ2

dI<, dC c , V < W ` [x′ = f(x) & ‖x‖2
2 ≤ γ2 ∧

.
V ≤ 0] ‖x‖2

2 < γ2

Proof of Corollary 5.10. �e two directions of axiom EStabE are derived separately. In the “→”
direction, the derivation starts by unfolding the discrete assignments in the sequent with [:=], [;].
In the derivation, the succedent is bound renamed with variable z [142] and the ODEs are
temporarily hidden with · · · (shown further below).

[:=], [;]
y = α2 ‖x‖2

2 , z = α2 ‖x‖2
2 , t = 0, [· · ·] ‖x‖2

2 ≤ y ` [· · ·] ‖x‖2
2 ≤ z exp (−2βt)

[y := α2 ‖x‖2
2 ; · · ·] ‖x‖2

2 ≤ y ` [z := α2 ‖x‖2
2 ; t := 0; · · ·] ‖x‖2

2 ≤ z exp (−2βt)

Continuing from the resulting premise, the cut, Rexp step adds formula y = z exp(−2βt) to
the antecedent because the exponential sub-term exp(−2βt) simpli�es to 1 when t = 0. �is

246

step requires arithmetic over the exponential function with rule Rexp.

y = z exp(−2βt), [· · ·] ‖x‖2
2 ≤ y ` [· · ·] ‖x‖2

2 ≤ z exp (−2βt)
cut, Rexpy = α2 ‖x‖2

2 , z = α2 ‖x‖2
2 , t = 0, [· · ·] ‖x‖2

2 ≤ y ` [· · ·] ‖x‖2
2 ≤ z exp (−2βt)

Next, the derivation uses axiom DG to add ghost ODE t′ = 1 to the antecedent box modality
and ODE y′ = −2βy to the succedent, respectively. �e resulting ODEs (identical in antecedent
and succedent) is abbreviated αyt ≡ x′=f(x), y′=−2βy, t′ = 1. Rule dC adds the postcondition
of the antecedent box modality to the domain constraint, then M[′] monotonically strengthens
the succedent postcondition to y=z exp(−2βt) using the strengthened domain constraint (by
substitution). �e proof is completed using rule dbx with cofactor g = −2β.

∗
dbx y − z exp(−2βt) = 0 ` [αyt]y − z exp(−2βt) = 0

y=z exp(−2βt) ` [αyt]y=z exp(−2βt)
M[′] y=z exp(−2βt) ` [αyt & ‖x‖2

2 ≤ y] ‖x‖2
2 ≤ z exp (−2βt)

dC y=z exp(−2βt), [αyt] ‖x‖2
2 ≤ y ` [αyt] ‖x‖2

2 ≤ z exp (−2βt)
DGy=z exp(−2βt), [x′=f(x), y′=−2βy] ‖x‖2

2 ≤ y ` [x′=f(x), t′=1] ‖x‖2
2 ≤ z exp (−2βt)

�e derivation in the “←” direction is similar and given brie�y below. �e derivation starts
by unfolding discrete assignments with [:=], [;], where the ODEs temporarily hidden with · · · .
�e cut, Rexp step adds formula y = z exp(−2βt) to the antecedent because the exponential
sub-term exp(−2βt) simpli�es to 1 when t = 0.

[:=], [;]

cut, Rexp

y = z exp(−2βt), [· · ·] ‖x‖2
2 ≤ z exp (−2βt) ` [· · ·] ‖x‖2

2 ≤ y

y = α2 ‖x‖2
2 , z = α2 ‖x‖2

2 , t = 0, [· · ·] ‖x‖2
2 ≤ z exp (−2βt) ` [· · ·] ‖x‖2

2 ≤ y

[z := α2 ‖x‖2
2 ; t := 0; · · ·] ‖x‖2

2 ≤ z exp (−2βt) ` [y := α2 ‖x‖2
2 ; · · ·] ‖x‖2

2 ≤ y

�e derivation then uses axiom DG to add ghost ODEs, where the resulting ODEs (identical
in antecedent and succedent) is abbreviated αyt ≡ x′=f(x), y′=−2βy, t′ = 1. �e remaining
derivation is similar to the “→“ direction (details omi�ed).

∗
dbx y − z exp(−2βt) = 0 ` [αyt]y − z exp(−2βt) = 0

y=z exp(−2βt) ` [αyt]y=z exp(−2βt)
M[′] y=z exp(−2βt) ` [αyt & ‖x‖2

2 ≤ z exp (−2βt)] ‖x‖2
2 ≤ y

dC y=z exp(−2βt), [αyt] ‖x‖2
2 ≤ z exp (−2βt) ` [αyt] ‖x‖2

2 ≤ y
DG y=z exp(−2βt), [· · ·] ‖x‖2

2 ≤ z exp (−2βt) ` [· · ·] ‖x‖2
2 ≤ y

Proof of Lemma 5.11. �e proof starts by instantiating the existentially quanti�ed variables α, β
in EStab(x′ = f(x)) with α = k2

k1
and decay rate β = k3. Since k1, k2, k3 are all positive

constants, these choices satisfy α > 0, β > 0.
` ∃δ>0 ∀x

(
‖x‖2

2 < δ2 → [y := (k2

k1
)2 ‖x‖2

2 ;x′ = f(x), y′ = −2k3y] ‖x‖2
2 ≤ y

)
∃R ` EStab(x′ = f(x))

247

�e subsequent cut step adds the premise of rule LyapE to the antecedents and Skolemizes
it with ∃L. �e resulting antecedent is abbreviated with

a ≡ ∀x
(
‖x‖2

2 ≤ γ2 → k2
1 ‖x‖

2
2 ≤ V ≤ k2

2 ‖x‖
2
2 ∧

.
V ≤ −2k3V)

�en ∃R instantiates the succedent with δ = k1

k2
γ and the sequent is logically simpli�ed. Note a

also implies k1 ≤ k2 as k1, k2 > 0 so δ ≤ γ and ‖x‖2
2 < δ2 implies ‖x‖2

2 < γ in real arithmetic.
�e hybrid program y := (k2

k1
)2 ‖x‖2

2 ;x′ = f(x), y′ = −2k3y is abbreviated with · · · in the �rst
three steps below.

γ > 0, a , ‖x‖2
2 < (k1

k2
γ)2 ` [y := (k2

k1
)2 ‖x‖2

2 ;x′ = f(x), y′ = −2k3y] ‖x‖2
2 ≤ y

∀R,→R,→L γ > 0, a ` ∀x
(
‖x‖2

2 < (k1

k2
γ)2 → [· · ·] ‖x‖2

2 ≤ y
)

∃R γ > 0, a ` ∃δ>0 ∀x
(
‖x‖2

2 < δ2 → [· · ·] ‖x‖2
2 ≤ y

)
cut, ∃L ` ∃δ>0 ∀x

(
‖x‖2

2 < δ2 → [· · ·] ‖x‖2
2 ≤ y

)
�e discrete assignment y := (k2

k1
)2 ‖x‖2

2 sets the value of variable y to (k2

k1
)2 ‖x‖2

2 initially. It
is turned into an equational assumption with the assignment axiom [:=] and [;] as follows [144].

[:=], [;]
γ > 0, a , ‖x‖2

2 < (k1

k2
γ)2, y = (k2

k1
)2 ‖x‖2

2 ` [x′ = f(x), y′ = −2k3y] ‖x‖2
2 ≤ y

γ > 0, a , ‖x‖2
2 < (k1

k2
γ)2 ` [y := (k2

k1
)2 ‖x‖2

2 ;x′ = f(x), y′ = −2k3y] ‖x‖2
2 ≤ y

�e antecedents are abbreviated Γ ≡ γ > 0, a , ‖x‖2
2 < (k1

k2
γ)2, y = (k2

k1
)2 ‖x‖2

2. �e
derivation continues with a di�erential cut dC adding formula ‖x‖2

2 < γ2 to the domain
constraint. �is cut is abbreviated 1 and proved further below. �e next di�erential cut dC adds
formula V ≤ k2

1y to the domain constraint. �is cut is abbreviated 2 and also proved further
below. �e derivation is completed with a dW, R step with the quanti�ed antecedent a and the
domain constraint, since they imply the chain of inequalities k2

1 ‖x‖
2
2 ≤ V ≤ k2

1y, which implies
the succedent (a�er dW) ‖x‖2

2 ≤ y by R.
∗

R a , ‖x‖2
2 < γ2, V ≤ k2

1y ` ‖x‖
2
2 ≤ y

dW 2 Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2
2 < γ2 ∧ V ≤ k2

1y] ‖x‖2
2 ≤ y

dC 1 Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2
2 < γ2] ‖x‖2

2 ≤ y
dC Γ ` [x′ = f(x), y′ = −2k3y] ‖x‖2

2 ≤ y

Returning to premise 1 , the derivation uses Enc to assume ‖x‖2
2 ≤ γ2 in the domain

constraint, since ‖x‖2
2 < γ2 is true initially. �en, a dC, dI< step adds formula V < k2

1γ
2 to the

domain constraint. �is formula is proved true initially by R with antecedents Γ using the chain
of inequalities from a , V ≤ k2

2 ‖x‖
2
2 < k2

2

(
k1

k2
γ
)2

= k2
1γ

2. It is proved invariant by dI< because
domain constraint ‖x‖2

2 ≤ γ2 and quanti�ed antecedent a proves the chain of inequalities
.
V ≤ −2k3V ≤ −2k3(k2

1 ‖x‖
2
2) ≤ 0. A dW, R step completes the proof because the domain

constraint ‖x‖2
2 ≤ γ2 ∧ V < k2

1γ
2 and quanti�ed antecedent a prove the chain of inequalities

248

k2
1 ‖x‖

2
2 ≤ V < k2

1γ
2, which implies the succedent (a�er dW) ‖x‖2

2 < γ2 by R.

∗
R a , ‖x‖2

2 ≤ γ2, V <k2
1γ

2 ` ‖x‖2
2<γ

2

dW, R Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2
2 ≤ γ2 ∧ V <k2

1γ
2] ‖x‖2

2<γ
2

dC, dI< Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2
2 ≤ γ2] ‖x‖2

2<γ
2

Enc Γ ` [x′ = f(x), y′ = −2k3y] ‖x‖2
2<γ

2

For premise 2 , the inequality k2
1y−V ≥ 0 is proved invariant using rule dbx< with cofactor

g = −2k3 as follows.
∗

RΓ ` k2
1y − V ≥ 0

∗
R a , ‖x‖2

2 < γ2 ` −2k2
1k3y −

.
V ≥ −2k3(k2

1y − V)
dbx< Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2

2 < γ2]k2
1y − V ≥ 0

cut, M[′] Γ ` [x′ = f(x), y′ = −2k3y& ‖x‖2
2 < γ2]V ≤ k2

1y

�e resulting le� premise proves by R because the antecedents a and y = (k2

k1
)2 ‖x‖2

2 in
Γ prove the chain of inequalities V ≤ k2

2 ‖x‖
2
2 = k2

1y. For the resulting right premise, the
Lie derivative of k2

1y − V from the LHS of the postcondition is −2k2
1k3y −

.
V . With domain

constraint ‖x‖2
2 < γ2 and quanti�ed antecedent a , this derivative provably satis�es the chain

of inequalities −2k2
1k3y −

.
V ≥ −2k2

1k3y + 2k3V = −2k3(k2
1y − V) by R.

Proof of Lemma 5.14. �e rules are derived in order starting with rule LyapG
> . First, observe that

the �rst two premises of rule LyapG
> imply the premises of Lyap≥ because if the sign conditions

on V and
.
V are true globally, then they also hold for any choice of neighborhood of the origin.

�us, the derivation starts with a cut, Lyap≥ step which proves stability of the origin. Next, the
de�nition of AttrP(x′ = f(x), true) is logically unfolded and axiom SA�r is used to simplify
the succedent, together with logical unfolding steps ∀R,→R.

ε>0 ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

∀R,→R ` ∀ε>0 〈x′ = f(x)〉 ‖x‖2
2 < ε2

SA�r Stab(x′ = f(x)) ` Asym(x′ = f(x), true)
∀R,→R Stab(x′ = f(x)) ` AttrP(x′ = f(x), true)

cut, Lyap≥ ` Stab(x′ = f(x)) ∧ AttrP(x′ = f(x), true)

�e derivation continues with a cut, R, ∃L step, introducing a fresh Skolem variable b which
stores the initial value of the Lyapunov function V . Next, a cut adds the box modality formula
[x′ = f(x)]V ≤ b to the antecedents. �is cut proves by dI< because formula V ≤ b is true
initially and the premises of rule LyapG

> prove the formula
.
V ≤ 0.2

ε>0, [x′ = f(x)]V ≤ b ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

cut, dI< ε>0, V = b ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

cut, R, ∃L ε>0 ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

2When x = 0, the premise f(0) = 0 implies
.
V = 0.

249

�e subsequent M[′] step strengthens the postcondition V ≤ b of the antecedent box modality
to ‖x‖2

2 < γ2 using the (Skolemized) rightmost premise of rule LyapG
> . �is rightmost premise

corresponds to the assumption that the Lyapunov function V is radially unbounded [71, 89].
ε>0, [x′ = f(x)] ‖x‖2

2 < γ2 ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

M[′] ε>0, [x′ = f(x)]V ≤ b ` 〈x′ = f(x)〉 ‖x‖2
2 < ε2

Like the derivation of rule Lyap> in Lemma 5.6, the remaining open premise is an ODE
liveness property which is proved using rule SPc with the choice of compact staging set S ≡
ε2 ≤ ‖x‖2

2 ≤ γ2 and e ≡ V . �e resulting le� premise proves with a di�erential cut dC of the
antecedent and dW. �e resulting right premise proves using R from the middle premise of
rule LyapG

> and antecedents ε>0, S.
∗

dC, dW[x′ = f(x)] ‖x‖2
2<γ

2 ` [x′ = f(x) & ‖x‖2
2 ≥ ε2]S

∗
Rε>0, S `

.
V < 0

SPc ε>0, [x′ = f(x)] ‖x‖2
2<γ

2 ` 〈x′ = f(x)〉 ‖x‖2
2<ε

2

�e derivation of rule LyapG
E is similar to the derivation of rule LyapE from Lemma 5.11. �e

proof steps are repeated brie�y. �e derivation starts by instantiating (using ∃R) the existentially
quanti�ed variables in succedent EStabP(x′ = f(x), true) with α = k2

k1
and decay rate β = k3,

followed by logical unfolding of the sequent.
y=(k2

k1
)2 ‖x‖2

2 ` [x′=f(x), y′=− 2k3y] ‖x‖2
2 ≤ y

[:=], [;] ` [y := (k2

k1
)2 ‖x‖2

2 ;x′=f(x), y′=− 2k3y] ‖x‖2
2 ≤ y

∀R,→R ` ∀x
(
true → [y := (k2

k1
)2 ‖x‖2

2 ;x′=f(x), y′=− 2k3y] ‖x‖2
2 ≤ y

)
∃R ` EStabP(x′=f(x), true)

�e proof continues with a di�erential cut of the formula V ≤ k2
1y, which is proved invariant

with its equivalent rephrasing k2
1y − V ≥ 0 and rule dbx< using cofactor g = −2k3. Similar

to Lemma 5.11, the cut formula is true initially because the antecedent y = (k2

k1
)2 ‖x‖2

2 and the
premise of LyapG

E imply the chain of inequalities V ≤ k2
2 ‖x‖

2
2 = k2

1y. �e premise of LyapG
E are

also used to show that the Lie derivative of k2
1y − V provably satis�es the chain of inequalities

−2k2
1k3y −

.
V ≥ −2k2

1k3y + 2k3V = −2k3(k2
1y − V). �e proof is completed by dW, R using

the premise of rule LyapG
E .

∗
R ` k2

1 ‖x‖
2
2 ≤ V

R V ≤ k2
1y ` ‖x‖

2
2 ≤ y

dW ` [x′ = f(x), y′ = −2k3y&V ≤ k2
1y] ‖x‖2

2 ≤ y
dCy = (k2

k1
)2 ‖x‖2

2 ` [x′ = f(x), y′ = −2k3y] ‖x‖2
2 ≤ y

Proof of Corollary 5.16. �e two axioms are derived in order, starting with axiom EStabStab. �e
derivation of axiom EStabStab starts by Skolemizing the existential quanti�ers in EStab(x′ =
f(x)) with ∃L, then Skolemizing the succedent (∀R) and instantiating (∃R) the existentially
quanti�ed δ>0 in the succedent with γ = min(ε

α
, δ) (note γ > 0). �e sequent is then simpli�ed,

250

noting that γ ≤ δ so that assumption ‖x‖2
2 < γ2 proves the implication LHS ∀x

(
‖x‖2

2 < δ2 →
· · ·
)

in the antecedents. �e subformula with discrete assignment to y in the antecedent is
abbreviated with Ry ≡ [y := α2 ‖x‖2

2 ;x′ = f(x), y′ = −2βy] ‖x‖2
2 ≤ y.

α>0, β>0, δ>0, ε>0, Ry, ‖x‖2
2<γ

2 ` [x′=f(x)] ‖x‖2
2<ε

2

∀R,→R,→Lα>0, β>0, δ>0, ε>0,∀x
(
‖x‖2

2<δ
2→Ry

)
` ∀x

(
‖x‖2

2<γ
2→[x′=f(x)] ‖x‖2

2<ε
2
)

∃R α>0, β>0, δ>0, ε>0,∀x
(
‖x‖2

2<δ
2→Ry

)
` ∃δ>0 ∀x

(
‖x‖2

2<δ
2→ . . .

)
∀R α>0, β>0, δ>0,∀x

(
‖x‖2

2<δ
2→Ry

)
` Stab(x′=f(x))

∃L EStab(x′=f(x)) ` Stab(x′=f(x))

�e discrete assignment in antecedent Ry is unfolded with [:=], [;], similar to the proof
of Lemma 5.11, yielding the antecedent y=α2 ‖x‖2

2 and abbreviated box modality antecedent
Py ≡ [x′ = f(x), y′ = −2βy] ‖x‖2

2 ≤ y. Axiom DG adds di�erential ghost y′ = −2βy to
the succedent ODE and the postcondition is strengthened to y < ε2 by K using assumption
Py. �e proof is completed with a dbx< step with cofactor term −2β because the (rephrased)
postcondition ε2 − y > 0 is proved by R from the antecedents with the chain of inequalities
y = α2 ‖x‖2

2 < α2γ2 ≤ α2(ε
α

)2 = ε2. �e Lie derivative of ε2−y is 2βy which provably satis�es
the inequality 2βy ≥ 2βy − 2βε2 = −2β(ε2 − y) for β > 0.

∗
dbx< α>0, β>0, δ>0, ε>0, y=α2 ‖x‖2

2 , ‖x‖
2
2 < γ2 ` [x′=f(x), y′=−2βy] ε2 − y > 0

M[′] α>0, β>0, δ>0, ε>0, y=α2 ‖x‖2
2 , ‖x‖

2
2 < γ2 ` [x′=f(x), y′=−2βy] y < ε2

K α>0, β>0, δ>0, ε>0, y=α2 ‖x‖2
2 , Py, ‖x‖

2
2 < γ2 ` [x′=f(x), y′=−2βy] ‖x‖2

2 < ε2

DG α>0, β>0, δ>0, ε>0, y=α2 ‖x‖2
2 , Py, ‖x‖

2
2 < γ2 ` [x′=f(x)] ‖x‖2

2 < ε2

[:=], [;] α>0, β>0, δ>0, ε>0, Ry, ‖x‖2
2 < γ2 ` [x′=f(x)] ‖x‖2

2 < ε2

�e derivation of axiom EStabA�r starts by unfolding and Skolemizing the existential quan-
ti�ers for the antecedent, with abbreviated ODE αxy ≡ x′ = f(x), y′ = −2βy and subformula
Ry ≡ [y := α2 ‖x‖2

2 ;αxy] ‖x‖2
2 ≤ y (identically to the preceding derivation for axiom EStabStab).

�e succedent is logically unfolded and the resulting antecedent P proves the implication LHS in
the antecedent ∀x (P → Ry). Succedent Asym(x′ = f(x), x = 0) is then Skolemized with ∀R.3

α>0, β>0, Ry ` 〈x′ = f(x)〉[x′ = f(x)] ‖x‖2
2 < ε2

∀R α>0, β>0, Ry, P ` Asym(x′ = f(x), x = 0)
∀L,→Lα>0, β>0,∀x

(
P → Ry

)
, P ` Asym(x′ = f(x), x = 0)

∀R,→R α>0, β>0,∀x
(
P → Ry

)
` AttrP(x′ = f(x), P)

∃L EStabP(x′ = f(x), P) ` AttrP(x′ = f(x), P)

�e derivation continues with axioms DG, DG∀ to add the linear di�erential ghost y′ =
−2βy to both ODEs in the succedent. �e postcondition of the succedent diamond modality is
monotonically strengthened with M〈′〉 and postcondition (y < ε2 ∧ [αxy] ‖x‖2

2 ≤ y). �e two

3Unlike earlier proofs , the formula is not simpli�ed using a stability assumption because the generalized
formula EStabP(x′ = f(x), P) does not directly imply stability of the origin unless formula P provably contains
a neighborhood of the origin.

251

resulting premises are abbreviated 1 and 2 ; they are shown and proved further below.

1 2
M〈′〉 α>0, β>0, Ry ` 〈αxy〉[αxy] ‖x‖2

2 < ε2

DG, DG∀α>0, β>0, Ry ` 〈x′ = f(x)〉[x′ = f(x)] ‖x‖2
2 < ε2

From premise 1 , a di�erential cut dC proves formula y < ε2 invariant for the succedent
ODE αxy using rule dbx<. �e subsequent dC adds the postcondition of the antecedent to the
domain constraint before dW, R �nish the derivation.

∗
R y < ε2 ∧ ‖x‖2

2 ≤ y ` ‖x‖2
2 < ε2

dW ` [αxy & y < ε2 ∧ ‖x‖2
2 ≤ y] ‖x‖2

2 < ε2

dC [αxy] ‖x‖2
2 ≤ y ` [αxy & y < ε2] ‖x‖2

2 < ε2

dC, dbx<β>0, y < ε2, [αxy] ‖x‖2
2 ≤ y ` [αxy] ‖x‖2

2 < ε2

From premise 2 , the antecedent Ry is unfolded with [:=], [;], then K〈&〉, D[;] remove the
right conjunct of the postcondition because postcondition [αxy] ‖x‖2

2 ≤ y is true a�er all runs
of αxy. Axiom BDG removes the ODEs for x in the succedent because ‖x‖2

2 is bounded using
antecedent [αxy] ‖x‖2

2 ≤ y.
β>0 ` 〈y′ = −2βy〉y < ε2

BDG β>0, [αxy] ‖x‖2
2 ≤ y ` 〈αxy〉y < ε2

K〈&〉, D[;]β>0, [αxy] ‖x‖2
2 ≤ y ` 〈αxy〉

(
y < ε2 ∧ [αxy] ‖x‖2

2 ≤ y
)

[:=], [;] β>0, Ry ` 〈αxy〉
(
y < ε2 ∧ [αxy] ‖x‖2

2 ≤ y
)

�e remaining open premise is an ODE liveness property for variable y. Its proof starts
by introducing a fresh variable y0 storing the initial value of y. �en, rule SPc is used with
S ≡

(
ε2 ≤ y ≤ y0

)
. �e resulting le� premise is an invariance property of the ODE which

proves using M[′], dI<, while the right premise proves by R.
∗

dI<β>0, y = y0 ` [y′ = −2βy& y ≥ ε2]y ≤ y0
M[′]β>0, y = y0 ` [y′ = −2βy& y ≥ ε2]S

∗
Rβ>0, S ` −2βy < 0

SPc β>0, y = y0 ` 〈y′ = −2βy〉y < ε2

cut, ∃L β>0 ` 〈y′ = −2βy〉y < ε2

C.1.2 Proofs for General Stability
�is section derives proof rules for general stability and its specialized instances which are
introduced and motivated in Section 5.3.

Proof of Lemma 5.17. �e derivation of rule GLyap generalizes the ideas behind the derivation of
rule Lyap≥. �e derivation starts with an ∀R step, followed by a cut and Skolemization ∃L of the
second (bo�om) premise of rule GLyap. �e resulting assumptions (for Skolem variables γ, δ,W)
are abbreviated with: a ≡ ∀x (∂(Uγ(R)) → V ≥ W), b ≡ ∀x (Uδ(P) → R ∨ V < W),

252

and c ≡ ∀x
(
R ∨ V < W → [x′ = f(x) &Uγ(R)](R ∨ V < W)

)
. A subsequent M[′] step

strengthens the postcondition monotonically since the formula Uγ(R) → Uε(R) is provable
by R for γ ≤ ε.

0<γ, 0<δ≤γ, a , b , c ` ∃δ>0 ∀x
(
Uδ(P)→ [x′ = f(x)]Uγ(R)

)
M[′], R0<γ≤ε, 0<δ≤γ, a , b , c ` ∃δ>0 ∀x

(
Uδ(P)→ [x′ = f(x)]Uε(R)

)
cut, ∃L ε > 0 ` ∃δ>0 ∀x

(
Uδ(P)→ [x′ = f(x)]Uε(R)

)
∀R ` StabP

R(x′ = f(x), P, R)

�e existentially quanti�ed δ in the succedent is witnessed with the Skolem variable δ in the
antecedents and the sequent is simpli�ed with ∀R,→R,→L, where the implication LHS in b is
proved using antecedent assumption Uδ(P).

0<γ, 0<δ≤γ, a , c ,Uδ(P), R ∨ V < W ` [x′ = f(x)]Uγ(R)
∀R,→R,→L 0<γ, 0<δ≤γ, a , b , c ` ∀x

(
Uδ(P)→ [x′ = f(x)]Uγ(R)

)
∃R 0<γ, 0<δ≤γ, a , b , c ` ∃δ>0 ∀x

(
Uδ(P)→ [x′ = f(x)]Uγ(R)

)
�e derivation continues with rule Enc to assume the closure formula Uγ(R) in the domain

constraint. �is step uses the �rst premise of rule GLyap, i.e., precondition P implies postcondi-
tion R, so that the neighborhood formula Uδ(P) provably implies neighborhood formula Uγ(R)
initially by R for δ ≤ γ. �e subsequent dC step uses the antecedent c to prove the invariance
of formula R∨ V <W for the ODE x′ = f(x) &Uγ(R) and adds it to the domain constraint. �e
derivation is completed using dW, R, where the arithmetic step is justi�ed below.

∗
R 0<γ, a ,Uγ(R), (R ∨ V <W) ` Uγ(R)

dW 0<γ, a , R ∨ V <W ` [x′ = f(x) &Uγ(R) ∧ (R ∨ V <W)]Uγ(R)

dC 0<γ, a , c , R ∨ V <W ` [x′ = f(x) &Uγ(R)]Uγ(R)

Enc0<γ, 0<δ≤γ, a , c ,Uδ(P), R ∨ V <W ` [x′ = f(x)]Uγ(R)

To prove arithmetical premise 0<γ, a ,Uγ(R), R ∨ V <W ` Uγ(R), note that the le� dis-
junct R in the antecedent implies its neighborhood formula Uγ(R) in real arithmetic for γ > 0.
�us, it su�ces to justify the premise for the right disjunct, i.e., a ,Uγ(R), V <W ` Uγ(R).
Antecedent a is instantiated to obtain assumption ∂(Uγ(R))→ V ≥ W . �is assumption says
that the right disjunct V < W does not occur on the boundary of ∂(Uγ(R)) which, together
with antecedent Uγ(R) implies succedent Uγ(R) in real arithmetic (Appendix B.1.3).

Proof of Corollary 5.21. �e three axioms are derived in order.

SetSAttr �e two directions of the inner equivalence of SetSA�r are proved separately. �e
easier “→” direction follows by Skolemizing ε in the succedent with ∀R, choosing the
same ε in the antecedent with ∀L, and then by M〈′〉 because the resulting postcondition
[x′ = f(x)]Uε(P) monotonically implies postcondition Uε(P) by di�erential skip DX.

∗
DX [x′ = f(x)]Uε(P) ` Uε(P)

M〈′〉 〈x′ = f(x)〉[x′ = f(x)]Uε(P) ` 〈x′ = f(x)〉 Uε(P)
∀R, ∀L Asym(x′ = f(x), P) ` ∀ε>0 〈x′ = f(x)〉 Uε(P)

253

�e more interesting “←” direction uses the stability assumption. �e �rst step Skolemizes
the succedent with ∀R, then the stability antecedent is instantiated with ∀L and Skolemized
with ∃L (yielding fresh Skolem variable δ). Using the resulting quanti�ed assumption
∀x
(
Uδ(P) → [x′ = f(x)]Uε(P)

)
, the postcondition of the succedent is monotonically

strengthened to Uδ(P) with M〈′〉. �e derivation is completed by ∀L instantiating the
remaining quanti�ed antecedent with δ.

∗
∀L δ > 0,∀ε>0 〈x′ = f(x)〉 Uε(P) ` 〈x′ = f(x)〉 Uδ(P)

M〈′〉 δ > 0,∀x
(
Uδ(P)→ [x′ = f(x)]Uε(P)

)
,∀ε>0 〈x′ = f(x)〉 Uε(P) ` 〈x′ = f(x)〉[x′ = f(x)]Uε(P)

∀L, ∃L StabP
R(x′ = f(x), P, P),∀ε>0 〈x′ = f(x)〉 Uε(P), ε>0 ` 〈x′ = f(x)〉[x′ = f(x)]Uε(P)

∀R StabP
R(x′ = f(x), P, P),∀ε>0 〈x′ = f(x)〉 Uε(P) ` Asym(x′ = f(x), P)

SClosure �is axiom is derived immediately by equivalently rewriting with arithmetic equiva-
lences because for δ > 0 the open neighborhood formulas Uδ(P) and Uδ(P) are provably
equivalent in real arithmetic by R (Appendix B.1.3).

SClosed �is axiom is proved by contradiction so its derivation starts by negating the invariance
succedent using 〈·〉.

StabP
R(x′ = f(x), P, P), P, 〈x′ = f(x)〉¬P ` false

〈·〉, ¬R StabP
R(x′ = f(x), P, P), P ` [x′ = f(x)]P

∀R,→R StabP
R(x′ = f(x), P, P) ` ∀x

(
P → [x′ = f(x)]P

)
Since formula P characterizes a closed set, every point satisfying ¬P must be contained
in some ε > 0 ball in the interior of the open set characterized by ¬P . Accordingly, these
points are ε > 0 distance away from the set characterized by P and therefore, the formula
¬P ↔ ∃ε>0¬Uε(P) is provable in real arithmetic (Appendix B.1.3). �is equivalence is
used to rewrite the postcondition of the diamond modality antecedent before the resulting
existentially quanti�ed variable ε is commuted with the diamond modality and Skolemized
with B′, ∃L and V to extract the constant assumption ε > 0.

∗
〈·〉 [x′ = f(x)]Uε(P), 〈x′ = f(x)〉¬Uε(P) ` false
∀L,→Lδ > 0,∀x

(
Uδ(P)→ [x′ = f(x)]Uε(P)

)
, P, 〈x′ = f(x)〉¬Uε(P) ` false

∀L, ∃L StabP
R(x′ = f(x), P, P), P, ε > 0, 〈x′ = f(x)〉¬Uε(P) ` false

V StabP
R(x′ = f(x), P, P), P, 〈x′ = f(x)〉

(
ε>0 ∧ ¬Uε(P)

)
` false

B′, ∃L StabP
R(x′ = f(x), P, P), P, 〈x′ = f(x)〉∃ε>0¬Uε(P) ` false

M〈′〉, R StabP
R(x′ = f(x), P, P), P, 〈x′ = f(x)〉¬P ` false

�e stability assumption is instantiated with ε using ∀L and Skolemized with ∃L. Since the
formula P → Uδ(P) is provable in real arithmetic for δ > 0, the implication LHS in the
antecedents is proved with ∀L,→L. �e proof is completed using 〈·〉 since the resulting
box and diamond modality antecedents are contradictory.

Proof of Lemma 5.22. Rule SLyap∗≥ is derived �rst before SLyap≥ and SLyap> are derived us-
ing SLyap∗≥ as a stepping stone further below. �e derivation of rule SLyap∗≥ starts with a GLyap
step. �e (le�) resulting premise P → P proves trivially and is not shown below. For the (right)
resulting premise, the �rst two conjuncts under the nested quanti�ers prove trivially from a cut
of the second (bo�om) premise of rule SLyap∗≥. It remains to prove the �nal conjunct for fresh

254

Skolem variable W with antecedent abbreviated a ≡ ∀x (Uγ(P) ∧ ¬P →
.
V ≤ 0) from the

premise of SLyap∗≥.

GLyap

cut
a , P ∨ V <W ` [x′ = f(x) &Uγ(P)](P ∨ V <W)

` ∀ε>0∃0<γ≤ε∃W

 ∀x (∂(Uγ(P))→ V ≥ W)∧
∃0<δ≤γ ∀x (Uδ(P)→ P ∨ V <W)∧
∀x
(
P ∨ V <W → [x′ = f(x) &Uγ(P)](P ∨ V <W)

)

` StabP
R(x′ = f(x), P, P)

�e derivation continues using rule DCC to prove that V < W is true along ODE solutions
until the invariant P is entered; the �rst step uses an equivalent propositional rephrasing of
P ∨ V < W as ¬P → V < W . �e two resulting premises are abbreviated 1 and 2 . �ey are
shown and proved further below.

1 2
DCC a ,¬P → V < W ` [x′ = f(x) &Uγ(P)](¬P → V < W)

cut, M[′] a , P ∨ V <W ` [x′ = f(x) &Uγ(P)](P ∨ V <W)

From premise 1 , a DX step strengthens the antecedent to V < W using the domain
constraint ¬P . Rule dI< completes the proof because formula

.
V ≤ 0 proves from antecedent a

with domain Uγ(P) ∧ ¬P .

∗
a ,Uγ(P) ∧ ¬P `

.
V ≤ 0

dI< a , V < W ` [x′ = f(x) &Uγ(P) ∧ ¬P]V < W

DX a ,¬P → V < W ` [x′ = f(x) &Uγ(P) ∧ ¬P]V < W

From premise 2 , a dW step reduces the premise to an invariance question for formula P
(since ¬¬P is propositionally equivalent to P). �e DMP step weakens the domain constraint,
which proves using the �rst premise of rule SLyap∗≥.

∗
P ` [x′ = f(x)]P

DMPP ` [x′ = f(x) &Uγ(P)]P

dW ` [x′ = f(x) &Uγ(P)](¬¬P → [x′ = f(x) &Uγ(P)]¬¬P)

Rule SLyap≥ derives from SLyap∗≥ because the two rules share the invariance premise on P
and the la�er two premises of rule SLyap≥ imply the la�er premise of SLyap∗≥ in real arithmetic
when P characterizes a compact set. �e variable γ is witnessed by ε in the premise a�er SLyap∗≥.

255

�e proof of the arithmetic premise is explained below.

∗

R ε>0 `

 ∃W
(
∀x (∂(Uε(P))→ V ≥ W)∧
∃0<δ≤ε∀x (Uδ(P) ∧ ¬P → V < W)

)
∧

∀x (Uε(P) ∧ ¬P →
.
V ≤ 0)

∀R, ∃R ` ∀ε>0∃0<γ≤ε

 ∃W
(
∀x (∂(Uγ(P))→ V ≥ W)∧
∃0<δ≤γ ∀x (Uδ(P) ∧ ¬P → V < W)

)
∧

∀x (Uγ(P) ∧ ¬P →
.
V ≤ 0)

SLyap∗≥ ` StabP

R(x′ = f(x), P, P)

�e conjunct ∀x (Uε(P) ∧ ¬P →
.
V ≤ 0) proves logically from the right conjunct of the

middle premise of rule SLyap≥. For the existentially quanti�ed conjunct, ∃W
(
· · ·
)
, since

formula P characterizes a compact set, the boundary ∂(Uε(P)) is also compact and therefore the
continuous Lyapunov function V must a�ain its minimum W on that set. �is W witnesses the
quanti�er ∃W and note that W > 0 from the le� conjunct of the middle premise of rule SLyap≥
(because ∂(Uε(P)) implies ¬P for ε > 0). From the rightmost premise of rule SLyap≥, the
Lyapunov function satis�es V ≤ 0 for all points x ∈ Rn on the boundary characterized by
formula ∂P . For each such point y on the boundary, by continuity, there is a radius δ > 0 where
points in the open ball ‖x− y‖2 < δ satisfy V < W because W > 0. �e union of all such balls
over all points on the boundary is an open cover of the compact boundary which therefore has a
�nite subcover. �e minimum radius δ > 0 of balls in this �nite subcover witnesses the formula
∃0<δ≤ε∀x (Uδ(P) ∧ ¬P → V <W), justifying the use of R (Appendix B.1.3).

Rule SLyap> is derived from rule SLyap≥ similar to the derivation of Lyap> from Lyap≥.
�e derivation starts with a cut of the set stability formula StabP

R(x′ = f(x), P, P) which
proves by SLyap≥ because rules SLyap> and SLyap≥ have identical premises except for a strict
inequality on

.
V .

StabP
R(x′=f(x), P, P) ` ∃δ>0 AttrP

R(x′=f(x),Uδ(P), P)
cut, SLyap≥ ` StabP

R(x′=f(x), P, P) ∧ ∃δ>0 AttrP
R(x′=f(x),Uδ(P), P)

�e stability antecedent is instantiated with ε = 1; the positive constant 1 is chosen arbitrarily
to obtain a neighborhood in which solutions are trapped. A�er Skolemization, this yields an
initial disturbance δ > 0 and the antecedent ∀x

(
Uδ(P)→ [x′ = f(x)]U1(P)

)
. �e succedent is

witnessed with δ, and the resulting sequent is simpli�ed with ∀R,→R,→L. �en, axiom SetSA�r
simpli�es the succedent using the stability antecedent.

δ>0, [x′=f(x)]U1(P),Uδ(P) ` ∀ε>0 〈x′=f(x)〉 Uε(P)
SetSA�r StabP

R(x′=f(x), P, P), δ>0, [x′=f(x)]U1(P),Uδ(P) ` Asym(x′=f(x), P)
∀R,→R,→LStabP

R(x′=f(x), P, P), δ>0,∀x
(
Uδ(P)→ [x′=f(x)]U1(P)

)
` AttrPR(x′=f(x),Uδ(P), P)

∃R StabP
R(x′=f(x), P, P), δ>0,∀x

(
Uδ(P)→ [x′=f(x)]U1(P)

)
` ∃δ>0 AttrPR(x′=f(x),Uδ(P), P)

cut, ∃L StabP
R(x′=f(x), P, P) ` ∃δ>0 AttrPR(x′=f(x),Uδ(P), P)

�e proof of the liveness property in the open premise uses rule SPc with the choice of
compact staging set S ≡ U1(P) ∧ ¬Uε(P) and e ≡ V . Note that formula S characterizes a
compact set because P is compact so the neighborhood U1(P) is closed, the negation of the

256

v=0

v=
1

32
v=1v=32

-4 -2 0 2 4 t

-2

-1

0

1

2

y

Figure C.1: An illustration of αc and the Lyapunov function v from Counterexample C.2, with
level curves (where V = k for various k) shown in color.

open ε neighborhood is closed ¬Uε(P), and U1(P) is bounded.

∗
dC, dW[x′ = f(x)]U1(P) ` [x′ = f(x) &¬Uε(P)]S

∗
Rε>0, S `

.
V < 0

SPc δ>0, [x′ = f(x)]U1(P),Uδ(P), ε>0 ` 〈x′ = f(x)〉 Uε(P)
∀R δ>0, [x′ = f(x)]U1(P),Uδ(P) ` ∀ε>0 〈x′ = f(x)〉 Uε(P)

�e le� premise proves with a cut dC of the antecedent and dW. �e right premise proves by real
arithmetic R using the middle premise of rule SLyap> because the antecedents imply ¬P .

C.2 Counterexamples
�is appendix provides counterexamples for the soundness issues highlighted in Sections 5.3
and 5.4. �e �rst counterexample illustrates the need to assume compactness, i.e., formula P
is closed and bounded in rule SLyap≥. �e remark a�er [89, De�nition 8.1] suggests that the
following variant of SLyap≥ is sound for formulas P that characterize a closed, invariant set:

SLyap≥�
P ` V = 0 ¬P ` V > 0 ∧

.
V ≤ 0

` StabP
R(x′ = f(x), P, P)

�e rule SLyap≥� is unsound (indicated by �); indeed, the rule SLyap≥ from Lemma 5.22 is
also unsound if the assumption that formula P characterizes a bounded set is omi�ed.

Counterexample C.2. Consider the ODE αc ≡ y′ = y, t′ = 1 and the formula P ≡ y = 0
which characterizes a closed invariant set of αc that is not bounded. �e Lyapunov function
V = y2 exp(−2t), satis�es all of the premises of rule SLyap≥� because V = 0 when y = 0,
V > 0 for y 6= 0, and

.
V = 0. However, P is not stable for ODE αc, as can be seen from Fig. C.1.

�e norm of the right-maximal solution from all initial states that satisfy y 6= 0 approach∞.
�is counterexample also illustrates the importance of the boundedness assumption for

formula P in Lemma 5.22 for rule SLyap≥ since all other premises of the rule are satis�ed by
the above example. �

257

�e second counterexample below shows that rule Lyap≥ needs the premise V (0) = 0. �is
premise is unsoundly omi�ed from the arithmetical conditions in [3, Equation 1].

Counterexample C.3. Consider the ODE y′ = y with solution y(t) = y0 exp(t) from initial
value y(0) = y0. For all perturbed initial states y0 6= 0, ‖y(t)‖2 approaches∞ as t→∞ so this
ODE is not stable (nor a�ractive). However, the Lyapunov function V = 1 trivially satis�es all
of the premises of rule Lyap≥ except the omi�ed premise V (0) = 0. �

258

Appendix D

Appendix: Stability for Switched
Systems

D.1 Switched System Models and Stability Proof Rules
�is appendix provides proofs for all results that were omi�ed from Sections 6.2 and 6.3. For ease
of reference, this appendix is organized into two sections, corresponding to proofs for Section 6.2
and Section 6.3 respectively. All derived proof rules and axioms used in this appendix are
explained earlier in the thesis and in the preceding appendices.

D.1.1 Proofs for Switched Systems as Hybrid Programs

�is section contains adequacy proofs for hybrid program models of various switching mecha-
nisms de�ned in Section 6.2.

Proof of �eorem 6.3. Axiom SAIstate derives immediately from Invstate by equivalently rewrit-
ing its RHS using the derived equivalent characterization of ODE invariants SAI& from �eo-
rem A.11 (page 212). Both directions of axiom Invstate are derived separately.

“←” �e (easier) “←” direction uses rule loop to prove that P is a loop invariant of αstate.
�e antecedent assumption

∧
p∈P ∀x (P → [x′ = fp(x) &Qp]P) is constant for αstate, so

it is soundly kept across the use of rule loop. �e subsequent [∪], ∧R step unfolds the
nondeterministic choice in αstate’s loop body, yielding a premise for each ODE inP . �ese
premises are indexed by p ∈ P below and they are all proved propositionally from the
antecedent assumption.

∗
∧L, ∀L,→L∧

p∈P ∀x (P → [x′ = fp(x) &Qp]P), P ` [x′ = fp(x) &Qp]P (p ∈ P)
[∪], ∧R ∧

p∈P ∀x (P → [x′ = fp(x) &Qp]P), P ` [
⋃
p∈P x

′ = fp(x) &Qp]P
loop ∧

p∈P ∀x (P → [x′ = fp(x) &Qp]P), P ` [αstate]P
∀R,→R ∧

p∈P ∀x (P → [x′ = fp(x) &Qp]P) ` ∀x (P → [αstate]P)

259

“→” �e “→” direction shows that a run of ODE x′ = fp(x) &Qp, p ∈ P must also be a run of
αstate, so if formula P is true for all runs of αstate, it must also be true for all runs of the
constituent ODEs. �e derivation starts with logical unfolding steps where the resulting
premises are indexed by p ∈ P below.

[αstate]P ` [x′ = fp(x) &Qp]P
∀L,→L ∀x (P → [αstate]P), P ` [x′ = fp(x) &Qp]P (p ∈ P)
∧R, ∀R,→R ∀x (P → [αstate]P) `

∧
p∈P ∀x (P → [x′ = fp(x) &Qp]P)

Next, axiom [∗] unfolds the loop in the antecedent before axiom [∪] chooses the branch
corresponding to p ∈ P in the loop body.

∗
[∗], ∧L [αstate]P ` P

M[·] [x′ = fp(x) &Qp][αstate]P ` [x′ = fp(x) &Qp]P
[∪], ∧L[

⋃
p∈P x

′ = fp(x) &Qp][αstate]P ` [x′ = fp(x) &Qp]P
[∗], ∧L [αstate]P ` [x′ = fp(x) &Qp]P

�e derivation is completed using rule M[·] to monotonically strengthen the postcondition,
then unfolding the resulting antecedent with axiom [∗].

Proof of Proposition 6.4. �e proof is similar to Proposition 6.2 but with fresh auxiliary variable
u used to control the switching signal. �e switched system obeys the guards Gp,q along a
solution if, for any switch from mode p, q, the system state in mode p satis�es a sequence of
guard formulas Gp0,p1 , Gp1,p2 , . . . , Gpn−1,pn with p = p0 and q = pn. Intuitively, this means the
system can take a sequence of zero-time jumps along a sequence of modes and guard conditions
to switch from mode p initially to mode q at the end. Both directions of the proposition are
proved separately for an initial state ω ∈ Rn. �e initialization program αi sets u to a choice of
mode p ∈ P initially but leaves the state variables x unchanged.

“⇒” Suppose (ω, ν) ∈ [[αguard]]. By the semantics of dL programs, there is a sequence of states
ω = ω0, ω1, . . . , ωn = ν for some n ≥ 0 and for each 1 ≤ i ≤ n, there is a run of the loop
body with (ωi−1, ωi) ∈ [[αu;αp]]. Unfolding the sequential composition,1 by the semantics
of the controller program αu, state ωi−1 satis�es u = p for some p ∈ P and the guard
condition Gp,q for some q ∈ P , and there is an intermediate state γ obtained from ωi−1

by se�ing the value of variable u to q. �e plant program αp then runs the selected ODE
for mode q from state γ for some time ζi ≥ 0 to reach state ωi. �us, every state ωi is
associated with its chosen mode pi and time ζi ≥ 0 for which the ODE for mode pi is
followed in that switching step. �e state ωi−1 satis�es guard Gpi−1,pi for i ≥ 1.
Similar to the proof of Proposition 6.2, remove from all sequences the cha�ering indexes
1 ≤ i ≤ n with ζi = 0. �is yields new sequences (ω̃0, ω̃1, . . . , ω̃m), (ζ̃1, . . . , ζ̃m), and
(p̃1, . . . , p̃m) where ζ̃i > 0. Since no continuous evolution occurs when ζi = 0, for each
resulting pairs of adjacent states (ω̃i−1, ω̃i) with i ≥ 1, the state ω̃i−1 satis�es the required

1In case the controller αu leaves the mode unchanged with u := u, the adjacent continuous evolutions belong
to the same mode and can be uniquely concatenated [33, �eorem 1.2]. �us, assume without loss of generality
that the controller always performs a (guarded) switch from mode p ∈ P to some mode q ∈ P .

260

sequence of guard formulas between mode p̃i−1 and mode p̃i by following the (removed)
cha�ering indexes. Consider the switching signal σ with switching times τi =

∑i
j=1 ζ̃j

for 1 ≤ i < m, τm =
∑m

j=1 ζ̃j + 1, and τi = τi−1 + 1 for i > m, so τ1 < τ2 < . . . and
τi →∞. Furthermore, extend the sequence of switching choices with p̃i = p̃m for i > m.2
By construction using (6.2), σ is well-de�ned and the solution ϕ associated with σ from ω
reaches ν at time

∑m
j=1 ζ̃j and it obeys the domains Qp̃i until that time.

“⇐” Let σ be a switching signal and ϕ : [0, ζ)→ Rn be the associated switched system solution
from ω. Suppose that the switched system reaches ϕ(t) for t ∈ [0, ζ) while obeying the
domains Qp and guards Gp,q for modes p, q ∈ P . To show (ω, ϕ(t)) ∈ [[αguard]], by the
semantics of dL loops, it su�ces to construct a sequence of states ω = ω0, ω1, . . . , ωn for
some �nite n, with ωn = ϕ(t), and (ωi−1, ωi) ∈ [[(αu;αp)

∗]] for 1 ≤ i ≤ n, because loop
(αu;αp)

∗ unfolds to a nested self-loop ((αu;αp)
∗)
∗.

By (6.2), σ is equivalently de�ned by a sequence of switching times τ0 < τ1 < τ2 < . . . and
a sequence of switching choices p1, p2, . . . , where pi ∈ P . Let τn be the �rst switching time
such that t ≤ τn; the index n exists since τi →∞. De�ne the state sequence ωi = ϕ(τi)
for 0 ≤ i < n and ωn = ϕ(t). Note that ω0 = ω by de�nition of ϕ(0). It su�ces to
show (ωi−1, ωi) ∈ [[(αu;αp)

∗]] for 1 ≤ i ≤ n. By assumption, the switched system takes a
sequence of zero-time jumps along a sequence of modes and guard conditions when it
switches from mode pi−1 to mode pi. �is sequence is simulated by program (αu;αp)

∗ by
unfolding the loop, switching to the respective mode(s) by αu in each iteration and then
running the chosen ODE in αp for 0 time except for the last iteration (mode pi) where the
ODE x′ = fpi(x) is followed continuously until state ωi is reached.

Proof of Proposition 5.27. �e proof is similar to Proposition 6.4 by reasoning about the e�ect of
the fresh auxiliary variable u used to model the piecewise constant function u(t). �e function
u(t) is viewed as a switching signal that prescribes switching choices on each interval with
associated solution generated according to (6.2). Both directions of the proposition are proved
separately for an initial state ω ∈ Rn.

“⇒” Suppose (ω, ν) ∈ [[αpiece]]. By the semantics of dL programs, there is a sequence of states
ω = ω0, ω1, . . . , ωn = ν for some n ≥ 0 and for each 1 ≤ i ≤ n, there is a run of the
loop body with (ωi−1, ωi) ∈ [[u := ∗; ? ‖u‖∞ ≤ ∆;x′ = f(x, u)]]. Unfolding the dL hybrid
program semantics, there are real value(s) Ui with ‖Ui‖∞ ≤ ∆, such that state ωi is
reached from state ωi−1 by following the ODE x′ = f(x, Ui) for time ζi ≥ 0. De�ne the
sequence of switching choices as pi = Ui for 1 ≤ i ≤ n.
Following the proof of Proposition 6.4, remove from all sequences the cha�ering indexes
1 ≤ i ≤ n with ζi = 0. �is yields new sequences (ω̃0, ω̃1, . . . , ω̃m), (ζ̃1, . . . , ζ̃m), and
(p̃1, . . . , p̃m) where ζ̃i > 0. Consider the associated piecewise constant function u(t) with
switching times τi =

∑i
j=1 ζ̃j for 1 ≤ i < m and τi = τi−1 +1 for i ≥ m, so τ1 < τ2 < . . .

and τi →∞, together with the extended sequence of switching choices with p̃i = p̃m for
i > m. By construction using (6.2), u(t) is a bounded piecewise constant function and the
solution ϕ associated with u(t) from ω reaches ν at time

∑m
j=1 ζ̃j .

2�e choice of mode switches and guards are irrelevant for times t >
∑m
j=1 ζ̃j since they only need to be

obeyed until time
∑m
j=1 ζ̃j .

261

“⇐” Let u(t) be a bounded piecewise constant function with bound ‖u(t)‖∞ ≤ ∆ and let
ϕ : [0, ζ) → Rn be the associated switched system solution from ω. Suppose that the
solution reaches ϕ(t) for t ∈ [0, ζ). To show (ω, ϕ(t)) ∈ [[αpiece]], by the semantics of dL
loops, it su�ces to construct a sequence of states ω = ω0, ω1, . . . , ωn for some �nite n,
with ωn = ϕ(t), and (ωi−1, ωi) ∈ [[u := ∗; ? ‖u‖∞ ≤ ∆;x′ = f(x, u)]] for 1 ≤ i ≤ n.
By (6.2), u(t) is equivalently de�ned by a sequence of switching times τ0 < τ1 < τ2 < . . .
and a sequence of switching choices p1, p2, . . . , where u(t) = pi for all τi−1 ≤ t < τi for
1 ≤ i. Let τn be the �rst switching time such that t ≤ τn; the index n exists since τi →∞.
De�ne the state sequence ωi = ϕ(τi) for 0 ≤ i < n and ωn = ϕ(t). Note that ω0 = ω by
de�nition of ϕ(0). It su�ces to show (ωi−1, ωi) ∈ [[u := ∗; ? ‖u‖∞ ≤ ∆;x′ = f(x, u)]] for
1 ≤ i ≤ n. By assumption, ‖pi‖∞ = ‖u(t)‖∞ ≤ ∆, so choose value pi for variable u in
u := ∗ which passes the test ? ‖u‖∞ ≤ ∆. By construction of ϕ, state ωi is reached from
ωi−1 by following the solution to ODE x′ = f(x, pi).

Proof of Proposition 6.5. �e proof is similar to Proposition 6.4 but with an additional fresh auxil-
iary variable τ which tracks the time spent in each mode. Both directions of the proposition are
proved separately for an initial state ω ∈ Rn.

“⇒” Suppose (ω, ν) ∈ [[αtime]]. By the semantics of dL programs, there is a sequence of states
ω = ω0, ω1, . . . , ωn = ν for some n ≥ 0 and for each 1 ≤ i ≤ n, there is a run of the loop
body with (ωi−1, ωi) ∈ [[αu;αp]]. Unfolding the sequential composition,3 by the semantics
of the controller program αu, state ωi−1 satis�es u = p for some p ∈ P and the minimum
dwell time condition θp,q ≤ τ for some q ∈ P , and there is an intermediate state γ obtained
from ωi−1 by se�ing the mode variable u to q and rese�ing the timer τ to 0. �e plant
program αp then runs the selected ODE for mode q from state γ for some maximum time
Θq ≥ ζi ≥ 0 to reach state ωi, where Θq > 0 by assumption. �us, every state ωi is
associated with its chosen mode pi and time Θpi ≥ ζi ≥ 0 for which the ODE for mode pi
is followed in that switching step. Moreover, minimum dwell time θpi−1,pi ≤ ζi−1 must be
spent in mode pi−1 before switching to mode pi.
Similar to the proof of Proposition 6.2, remove from all sequences the cha�ering indexes
1 ≤ i ≤ n with ζi = 0. �is yields new sequences (ω̃0, ω̃1, . . . , ω̃m), (ζ̃1, . . . , ζ̃m), and
(p̃1, . . . , p̃m) where ζ̃i > 0. Consider the switching signal σ with switching times τi =∑i

j=1 ζ̃j for 1 ≤ i < m and τi = τi−1 + Θp̃m for i ≥ m, so τ1 < τ2 < . . . and τi → ∞.
Furthermore, extend the sequence of switching choices with p̃i = p̃m for i > m. �e
switching times satisfy the maximum dwell times τi− τi−1 ≤ Θp̃i and the minimum dwell
times θp̃i,p̃i+1

≤ τi − τi−1 for i ≥ 1 until time
∑m

j=1 ζ̃j . By construction using (6.2), σ is
well-de�ned and the solution ϕ associated with σ from ω reaches ν at time

∑m
j=1 ζ̃j .

“⇐” Let σ be a switching signal and ϕ : [0, ζ)→ Rn be the associated switched system solution
from ω. Suppose that the switched system reaches ϕ(t) for t ∈ [0, ζ) while spending at
least time τp,q in mode p ∈ P before switching to mode q ∈ P and spends at most Θp > 0
time in mode p ∈ P . To show (ω, ϕ(t)) ∈ [[αtime]], by the semantics of dL loops, it su�ces

3Similar to the proof of Proposition 6.4, assume without loss of generality that the controller always performs
a switch since adjacent continuous evolutions can be uniquely concatenated whenever the controller leaves the
mode unchanged with u := u.

262

to construct a sequence of states ω = ω0, ω1, . . . , ωn for some �nite n, with ωn = ϕ(t),
and (ωi−1, ωi) ∈ [[αu;αp]] for 1 ≤ i ≤ n.
By (6.2), σ is equivalently de�ned by a sequence of switching times τ0 < τ1 < τ2 < . . . and
a sequence of switching choices p1, p2, . . . , where pi ∈ P . Let τn be the �rst switching time
such that t ≤ τn; the index n exists since τi →∞. De�ne the state sequence ωi = ϕ(τi)
for 0 ≤ i < n and ωn = ϕ(t). Note that ω0 = ω by de�nition of ϕ(0). It su�ces to show
(ωi−1, ωi) ∈ [[αu;αp]] for 1 ≤ i ≤ n. By assumption, the minimum dwell time constraint
in αu is satis�ed when switching from mode pi−1 to mode pi (for i = 1, skip with u := u).
�e maximum dwell time constraint on mode pi means that, by construction of ϕ, ωi is
reached from ωi−1 by following the solution to ODE x′ = fpi(x), τ ′ = 1 & τ ≤ Θpi .

D.1.2 Proofs for Switched System Stability
�is section derives stability proof rules for various switching mechanisms using the loop
invariants explained and motivated in Section 6.3. To improve readability in the proofs, formula
and premises are o�en abbreviated, e.g., with a , 1 . To avoid confusion, the scope of these
abbreviations always extend to the end of each paragraph label, i.e., the abbreviations used in
the Stability proofs should not be confused with those used in the Pre-Attractivity proofs.

Proof of Corollary 6.9. Rule CLF is an instance of rule MLF from Corollary 6.10 where the Lya-
punov functions for all modes p ∈ P are chosen identically with Vp = V . Nevertheless, a full
derivation of CLF is given here as it provides the main building blocks used in later derivations.
�e stability and pre-a�ractivity conjuncts of UGpAS(αstate) are proved separately with ∧R:

` UStab(αstate) ` UGpAttr(αstate)
∧R ` UGpAS(αstate)

Stability. �e derivation for stability begins by Skolemizing the succedent with ∀R,→R,
followed by two arithmetic cuts which are justi�ed as follows (recall convention from Ap-
pendix B.1.3). For any ε > 0, the Lyapunov function V a�ains a minimum value on the
compact set characterized by ‖x‖2 = ε. From the �rst (topmost) premise of rule CLF, this
minimum is a�ained away from the origin so it is positive, which proves the �rst cut of formula
∃W>0 a where a ≡ ∀x (‖x‖2 = ε → V ≥ W). A�er Skolemizing W with ∃L, the premise
V (0) = 0 implies, by continuity of dL term semantics [142], that the sublevel set characterized
by V < W with W > 0 (see Fig. 6.3) contains a su�ciently small δ ball around the origin (with
δ ≤ ε). �is proves the second arithmetic cut with the formula ∃δ (0 < δ ≤ ε ∧ b) where
b ≡ ∀x (‖x‖2 < δ → V < W). A�er both cuts, the Skolemized δ from the antecedent is used
to witness the succedent δ by ∃R.

a , δ ≤ ε, b ` ∀x
(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
∃R a , 0 < δ ≤ ε, b ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
cut, R, ∃Lε > 0,W > 0, a ` ∃δ>0∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
cut, R, ∃L ε > 0 ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
∀R,→R ` UStab(αstate)

263

�e derivation continues from the open premise by Skolemizing the succedent with ∀R,→R
and proving the LHS of the implication in b with ∀L,→L. �en, the loop rule is used with
the stability loop invariant Invs ≡ ‖x‖2 < ε ∧ V < W . �is results in three premises: 1
which shows that the invariant is implied by the initial antecedent assumptions; 2 the crucial
premise, which shows that the invariant Invs is preserved across the loop body of αstate; and
3 which shows that the invariant implies the postcondition. �ese premises are shown and
proved further below.

1 2 3
loop a , δ ≤ ε, ‖x‖2 < δ, V < W ` [αstate] ‖x‖2 < ε
∀L,→L a , δ ≤ ε, b , ‖x‖2 < δ ` [αstate] ‖x‖2 < ε
∀R,→R a , δ ≤ ε, b ` ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
Premise 1 proves by R from the antecedents using the inequalities ‖x‖2 < δ and δ ≤ ε.

∗
Rδ ≤ ε, ‖x‖2 < δ, V < W ` Invs

Premise 3 proves trivially since the postcondition ‖x‖2 < ε is part of the loop invariant:
∗

RInvs ` ‖x‖2 < ε

�e derivation continues from premise 2 by unfolding the loop body of αstate with [∪], ∧R.
�is results in one premise for each switching choice p ∈ P , indexed below by p.

a , Invs ` [x′ = fp(x) &Qp]Invs (p ∈ P)
[∪], ∧R a , Invs ` [

⋃
p∈P x

′ = fp(x) &Qp]Invs

Each of these p ∈ P premises is an ODE invariance question, which completely reduces to
an arithmetic question by proof in dL (Chapter 3). �e derivation below shows how to directly
derive arithmetical conditions on V from these premises. �e right conjunct of Invs, V < W ,
is added to the domain constraint with a dC step; the cut premise is labeled 4 and proved
below. A subsequent dC step adds ‖x‖2 6= ε to the domain constraint using the contrapositive
of antecedent a and the derivation is completed with rule Barr since the resulting ‖x‖2 = ε
assumption in its premise contradicts the domain constraint ‖x‖2 6= ε.

∗
R ‖x‖2 6= ε, ‖x‖2 = ε ` false

Barr ‖x‖2 < ε ` [x′ = fp(x) &Qp ∧ V < W ∧ ‖x‖2 6= ε] ‖x‖2 < ε
dC a , ‖x‖2 < ε ` [x′ = fp(x) &Qp ∧ V < W] ‖x‖2 < ε 4
dC a , Invs ` [x′ = fp(x) &Qp]Invs

�e derivation from 4 is completed with a dI< step whose resulting arithmetic is implied by
the bo�om premise of rule CLF.

∗
R Qp ` Lfp(V) ≤ 0

dI<V < W ` [x′ = fp(x) &Qp]V < W

264

Pre-Attractivity. �e derivation for pre-a�ractivity begins by Skolemizing the succedent δ, ε
with ∀R,→R, followed by a series of arithmetic cuts which are justi�ed stepwise. First, the
Lyapunov function V is bounded above on the ball characterized by ‖x‖2 < δ, which justi�es
a cut of the formula ∃W>0 a with a ≡ ∀x

(
‖x‖2 < δ → V < W

)
. A�er Skolemizing

the upper bound W , note that the set characterized by formula V ≤ W is compact by radial
unboundedness (middle premise of rule CLF). �erefore, the set characterized by formula
V ≤ W ∧ ‖x‖2 ≥ ε is an intersection of a compact and closed set, which is itself compact. �us,
V a�ains a minimum U on that set which is positive by the �rst (topmost) premise. �is justi�es
an arithmetic cut of the formula ∃U>0 b with b ≡ ∀x (V ≤ W ∧‖x‖2 ≥ ε→ V ≥ U), where
U is subsequently Skolemized with ∃L. �e steps are shown below, with the box modality in
UGpAttr(αstate) temporarily hidden with . . . as it is not relevant for this part of the derivation.

ε > 0,W > 0, a , U > 0, b ` ∃T≥0∀x
(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0,W > 0, a ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0 ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
∀R,→R ` UGpAttr(αstate)

Intuitively (see Fig. 6.3) the next arithmetic steps syntactically determine T ≥ 0 such that the
value of V decreases fromW toU along all switching trajectories within time T . Consider the set
characterized by formula Qp ∧ U ≤ V ≤ W , which is the set of states (before reaching V < U)
where switching to ODE x′ = fp(x) &Qp(p ∈ P) is possible. From the third (bo�om) premise of
rule CLF, Lfp(V) is negative on the set characterized by the formula Qp ∧U ≤ V ≤ W because
conjunct U ≤ V bounds the set away from the origin as U > 0. Using radial unboundedness
again, V ≤ W is compact, so the set characterized by Qp ∧ U ≤ V ≤ W is an intersection
of closed sets and compact sets which is therefore compact. Accordingly, Lfp(V) a�ains a
maximum value kp < 0 on that set, which justi�es the following arithmetic cut, where the bound
k < 0 is chosen uniformly across all choices of p, e.g., as the maximum over all kp for p ∈ P :

∃k < 0
∧
p∈P

∀x
(
Qp ∧ U ≤ V ≤ W → Lfp(V) ≤ k

)
︸ ︷︷ ︸

c

A�er Skolemizing k, it su�ces to pick T ≥ 0 for the succedent such that W + kT ≤ U .
Such a T always exists since k < 0.

a , b , k < 0, c ,W + kT ≤ U ` ∀x
(
‖x‖2 < δ → . . .

)
∃R ε > 0,W > 0, a , U > 0, b , k < 0, c ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0,W > 0, a , U > 0, b ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
�e derivation continues by Skolemizing with ∀R,→R and proving the LHS of the implication

in a with ∀L,→L. �e assignment t := 0 is unfolded with axioms [;], [:=], then the loop rule is
used with the pre-a�ractivity loop invariant Inva ≡ V < W ∧ (V ≥ U → V < W +kt). Similar
to the stability derivation, this results in three premises, where the crucial premise 2 requires
showing that Inva is preserved across the loop body, while the other premises are labeled 1 and

265

3 (all three premises are shown further below).

1 2 3
loop V < W, b , k < 0, c ,W + kT ≤ U, t = 0 ` [αstate, t

′ = 1] . . .
[;], [:=] V < W, b , k < 0, c ,W + kT ≤ U ` [t := 0;αstate, t

′ = 1] . . .
∀L,→L a , b , k < 0, c ,W + kT ≤ U, ‖x‖2 < δ ` [t := 0;αstate, t

′ = 1] . . .
∀R,→R a , b , k < 0, c ,W + kT ≤ U ` ∀x

(
‖x‖2 < δ → . . .

)
Premise 1 proves by R from the antecedents, using assumption t = 0 to simplify the term

W + kt in Inva.
∗

RV < W, t = 0 ` Inva

Premise 3 proves by R from the loop invariant using the following arithmetic argument.
Suppose for contradiction that there is a state satisfying the negation of the postcondition,
i.e., assume the negation t ≥ T ∧ ‖x‖2 ≥ ε. �en, using the le� conjunct of Inva together
with ‖x‖2 ≥ ε to prove the LHS of the implication in b gives assumption V ≥ U . �e right
conjunct of Inva then yields the chain of inequalities V < W + kt ≤ W + kT ≤ U , which is a
contradiction to assumption V ≥ U . �e steps are outlined below.

∗
RV ≥ U, k < 0,W + kT ≤ U, V < W + kt, t ≥ T ` false
R V ≥ U, k < 0,W + kT ≤ U, Inva, t ≥ T ` false
R b , k < 0,W + kT ≤ U, Inva, t ≥ T, ‖x‖2 ≥ ε ` false
R b , k < 0,W + kT ≤ U, Inva ` t ≥ T → ‖x‖2 < ε

�e proof for premise 2 proceeds by unfolding the loop body with [∪], ∧R, yielding one
premise for each switching choice p ∈ P . A dC step proves the invariance of the le� conjunct
V < W of Inva with dI< (see the stability proof, sublevel sets of V are invariant). �e right
conjunct of Inva is abbreviated I ≡ V ≥ U → V < W + kt and it is proved below using
axiom DCC, which results in premises 4 and 5 (shown and proved further below).

4 5
DCC, ∧R c , I ` [x′ = fp(x), t′ = 1 &Qp ∧ V < W]I
dC, dI< c , Inva ` [x′ = fp(x), t′ = 1 &Qp]Inva (p ∈ P)
[∪], ∧R c , Inva ` [

⋃
p∈P x

′ = fp(x), t′ = 1 &Qp]Inva

From premise 4 , the proof is completed with a dI< step using the quanti�ed assumption c
because the domain constraint Q implies its closure formula Q and the strict inequality V < W
implies the nonstrict inequality V ≤ W which is needed for the LHS of the nested implication
in c . �e Lie derivative of RHS W + kt is k using t′ = 1.

∗
R c , Qp ∧ V < W ∧ V ≥ U ` Lfp(V) ≤ k

dI< c , I ` [x′ = fp(x), t′ = 1 &Qp ∧ V < W ∧ V ≥ U]V < W + kt

From premise 5 , the proof is completed with a generalization G step followed by dI< to
prove the invariance of formula V < U (see the stability proof above, sublevel sets of V are

266

invariant). �e ODE in the outer box modality is elided with . . . here.

∗
dI< V < U ` [x′ = fp(x), t′ = 1 &Qp ∧ V < W]V < U

G,→R ` [. . .](V < U → [x′ = fp(x), t′ = 1 &Qp ∧ V < W]V < U)

Proof of Corollary 6.10. �e derivation of rule MLF builds on the ideas of the derivation of
rule CLF from Corollary 6.9 so similar proof steps are explained in less detail here. �e derivation
starts as usual with an ∧R step for the stability and pre-a�ractivity conjuncts which are proved
separately below.

` UStab(αstate) ` UGpAttr(αstate)
∧R ` UGpAS(αstate)

Stability. �e derivation for stability similarly begins with cut and Skolemization steps. �e
di�erence compared to the derivation of rule CLF is the cut formulas are now conjunctions
over all possible modes p ∈ P for the Lyapunov functions Vp. �e �rst cut is ∃W>0 a with
a ≡

∧
p∈P ∀x (‖x‖2 = ε→ Vp ≥ W), where the upper bound W > 0 is chosen to be the

maximum of the respective bounds for each Vp on the compact set characterized by ‖x‖2 = ε.
A�er Skolemizing W , the second arithmetic cut is the formula ∃δ (0 < δ ≤ ε ∧ b) with
b ≡

∧
p∈P ∀x (‖x‖2 < δ → Vp < W). Such a δ exists by continuity for each Vp, p ∈ P since

Vp(0) = 0 from the �rst (topmost) premise of rule MLF. A�er both cuts, the Skolemized δ from
the antecedent is used to witness the succedent by ∃R.

a , δ ≤ ε, b ` ∀x
(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
∃R a , 0 < δ ≤ ε, b ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
cut, R, ∃Lε > 0,W > 0, a ` ∃δ>0∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
cut, R, ∃L ε > 0 ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
∀R,→R ` UStab(αstate)

�e derivation continues with logical simpli�cation steps, Skolemizing the succedent and
then proving the LHS of the implications in antecedent b .

a , δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W ` [αstate] ‖x‖2 < ε

∀L,→L a , δ ≤ ε, b , ‖x‖2 < δ ` [αstate] ‖x‖2 < ε
∀R,→R a , δ ≤ ε, b ` ∀x

(
‖x‖2 < δ → [αstate] ‖x‖2 < ε

)
Next, a cut, ∨L step case splits on whether the switched system is initially in its domain of

de�nition characterized by formulaQ ≡
∨
p∈P Qp. �e case where the system is not in its domain

is labeled 0 and the proof for this case is deferred to the end. In case the system is in its domain,
the loop rule is used with stability loop invariant Invs ≡ ‖x‖2 < ε∧

∨
p∈P

(
Qp ∧Vp < W

)
. �is

yields three premises labeled 1 – 3 shown and proved further below.
1 2 3

loop a , δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W,Q ` [αstate] ‖x‖2 < ε 0

cut, ∨L a , δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W ` [αstate] ‖x‖2 < ε

267

Premise 1 proves by R from the antecedents using inequalities ‖x‖2 < δ and δ ≤ ε for the
le� conjunct and propositionally from antecedents Q and

∧
p∈P Vp < W for the right conjunct.
∗

Rδ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W,Q ` Invs

Premise 3 proves trivially since the postcondition ‖x‖2 < ε is part of the loop invariant:
∗

RInvs ` ‖x‖2 < ε

�e derivation continues from premise 2 by unfolding the loop body of αstate with [∪], ∧R.
Premises are indexed by p ∈ P in the derivation. �e M[·] step propositionally strengthens the
postcondition to its constituent disjunct ‖x‖2 < ε ∧ Vp < W for the chosen mode p. �en, DX
assumes domain Qp in the antecedent and a cut step adds the assumption ‖x‖2 < ε ∧ Vp < W .
�is cut corresponds to the last (bo�om) premise of rule MLF. It is labeled 4 and explained
below. �e rest of the proof a�er the cut proceeds identically to the corresponding derivation
for rule CLF using the respective conjunct for p ∈ P from a . �e steps are omi�ed here.

∗
a , ‖x‖2 < ε ∧ Vp < W ` [x′ = fp(x) &Qp](‖x‖2 < ε ∧ Vp < W) 4

cut a , Invs, Qp ` [x′ = fp(x) &Qp](‖x‖2 < ε ∧ Vp < W)
DX a , Invs ` [x′ = fp(x) &Qp](‖x‖2 < ε ∧ Vp < W)
M[·] a , Invs ` [x′ = fp(x) &Qp]Invs (p ∈ P)

[∪], ∧R a , Invs ` [
⋃
p∈P x

′ = fp(x) &Qp]Invs

�e cut premise 4 is proved by spli�ing the disjunction in Invs with ∨L (indexed by q ∈ P
below). �e disjunct corresponding to mode p proves trivially. For modes q 6= p, the derivation
yields a compatibility condition for switching from mode q to mode p which is proved using the
last (bo�om) premise of rule MLF. Note that the rule uses succedent Vp = Vq since a symmetric
condition (Vq ≤ Vp) is obtained when the roles of modes p, q ∈ P are swapped.

∗
R Qq, Qp ` Vp ≤ Vq
R p 6= q,Qq, Vq < W,Qp ` Vp < W (q ∈ P)
∨L∨

q∈P
(
Qq ∧ Vq < W

)
, Qp ` Vp < W

Invs, Qp ` ‖x‖2 < ε ∧ Vp < W

Returning to premise 0 , for initial states not in the switched system’s domain, i.e., satisfying
¬Q, no continuous motion is possible within the model. �is is proved using the loop invariant
Inv0

s ≡ ‖x‖2 < ε ∧ ¬Q. �e �rst and third premise resulting from the loop rule are proved
trivially (not shown below). For the remaining premise, ¬Q is preserved (trivially) across the
loop body a�er unfolding it with [∪], ∧R and using DX to show that the system is unable to
switch to the ODE with domain Qp because ¬Q implies ¬Qp propositionally.

∗
DX ¬Q ` [x′ = fp(x) &Qp]Inv0

s (p ∈ P)
[∪], ∧R Inv0

a ` [
⋃
p∈P x

′ = fp(x) &Qp]Inv0
s

loop δ ≤ ε, ‖x‖2 < δ,¬Q ` [αstate] ‖x‖2 < ε

268

Pre-Attractivity. �e derivation for pre-a�ractivity begins with logical simpli�cation fol-
lowed by a series of arithmetic cuts. First, the multiple Lyapunov functions Vp, p ∈ P are
simultaneously bounded above on the ball characterized by ‖x‖2 < δ, with the cut ∃W>0 a
where a ≡

∧
p∈P ∀x

(
‖x‖2 < δ → Vp < W

)
. �e upper bound W is Skolemized, then the next

arithmetic cut uses ∃U>0 b with b ≡
∧
p∈P ∀x (Vp ≤ W ∧ ‖x‖2 ≥ ε→ Vp ≥ U) (using radial

unboundedness of all functions Vp from the second premise of MLF). �en, U is Skolemized
with ∃L. �e steps are shown below, with the box modality in UGpAttr(αstate) temporarily
hidden with . . . as it is not relevant for this part of the derivation.

ε > 0,W > 0, a , U > 0, b ` ∃T≥0∀x
(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0,W > 0, a ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0 ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
∀R,→R ` UGpAttr(αstate)

Like the derivation of rule CLF from Corollary 6.9, the premises of rule MLF prove that, for
each p ∈ P , the Lie derivatives Lfp(Vp) are bounded above by some kp < 0 on the compact set
characterized by formula Qp ∧ U ≤ Vp ≤ W . �is justi�es the following arithmetic cut, where
the bound k < 0 is chosen to be the maximum over all kp across all switching choices p ∈ P :

∃k < 0
∧
p∈P

∀x
(
Qp ∧ U ≤ Vp ≤ W → Lfp(Vp) ≤ k

)
︸ ︷︷ ︸

c

�e derivation continues similarly to rule CLF, �rst picking T > 0 satisfying W + kT ≤ U ,
then Skolemizing and unfolding the succedent propositionally.

a , b , k < 0, c , T > 0,W + kT ≤ U, ‖x‖2 < δ ` . . .
∀R,→R a , b , k < 0, c , T > 0,W + kT ≤ U ` ∀x

(
‖x‖2 < δ → . . .

)
∃R ε > 0,W > 0, a , U > 0, b , k < 0, c ` ∃T≥0. . .

cut, R, ∃L ε > 0,W > 0, a , U > 0, b ` ∃T≥0. . .

�e LHS in antecedent a is proved and the succedent is further unfolded with [;], [:=]. �e
antecedents are abbreviated with Γ ≡ b , k < 0, c , T > 0,W + kT ≤ U below. Similar to
the stability proof, the derivation continues with a cut, ∨L step that case splits on whether the
switched system is initially in its domain of de�nition Q ≡

∨
p∈P Qp. �e case where the system

is not in its domain is labeled 0 and its proof is deferred to the end. In case the system is in
domain Q, the loop rule is used with pre-a�ractivity loop invariant Inva ≡

∨
p∈P

(
Qp ∧ Vp <

W ∧ (Vp ≥ U → Vp < W + kt)
)
. �is results in three premises 1 – 3 which are proved below.

1 2 3
loop Γ,

∧
p∈P Vp < W, t = 0, Q ` [αstate, t

′ = 1] . . . 0
cut, ∨L Γ,

∧
p∈P Vp < W, t = 0 ` [αstate, t

′ = 1] . . .
[;], [:=] Γ,

∧
p∈P Vp < W ` [t := 0;αstate, t

′ = 1] . . .
∀L,→L Γ, a , ‖x‖2 < δ ` [t := 0;αstate, t

′ = 1] . . .

269

Premise 1 proves propositionally from the antecedents a�er simplifying the term W + kt
using assumption t = 0.

∗
R∧

p∈P Vp < W, t = 0, Q ` Inva

Premise 3 proves by R from the loop invariant a�er using ∨L to split the disjuncts of the loop
invariant. �e disjunct for mode p ∈ P is abbreviatedR ≡ Vp < W ∧(Vp ≥ U → Vp < W +kt).
�e rest of the arithmetic argument is identical to the corresponding premise for CLF using the
conjunct for p in b (summarized below).

∗
R Vp ≥ U, k < 0,W + kT ≤ U, Vp < W + kt, t ≥ T ` false
R Vp ≥ U, k < 0,W + kT ≤ U,R, t ≥ T ` false
R b , k < 0,W + kT ≤ U,R, t ≥ T, ‖x‖2 ≥ ε ` false
R b , k < 0,W + kT ≤ U,R ` t ≥ T → ‖x‖2 < ε
∨L b , k < 0,W + kT ≤ U, Inva ` t ≥ T → ‖x‖2 < ε

�e derivation from premise 2 proceeds by unfolding the loop body with [∪], ∧R, DX,
yielding one premise for each switching choice p ∈ P . �e M[·] step selects the disjunct R (as
de�ned above for premise 3) in the postcondition corresponding to mode p and the cut adds
this disjunct to the antecedents (the cut premise 4 is shown and proved below). �e rest of the
proof a�er the cut is omi�ed here as it is identical to the corresponding derivation for rule CLF
using the respective conjunct for mode p in c .

∗
4 c , R ` [x′ = fp(x), t′ = 1 &Qp]R

cut c , Inva, Qp ` [x′ = fp(x), t′ = 1 &Qp]R
M[·] c , Inva, Qp ` [x′ = fp(x), t′ = 1 &Qp]Inva (p ∈ P)

[∪], ∧R, DX c , Inva ` [
⋃
p∈P x

′ = fp(x), t′ = 1 &Qp]Inva

�e cut premise 4 is proved by spli�ing the disjunction in Inva with ∨L (indexed by q ∈ P
below). For modes q 6= p, the derivation needs a compatibility condition which proves using the
last (bo�om) premise of rule MLF, similar to the stability proof.

∗
R Qq, Qp ` Vp ≤ Vq
R p 6= q,Qq ∧ Vq < W ∧ (Vq ≥ U → Vq < W + kt), Qp ` R (q ∈ P)
∨L∨

q∈P
(
Qq ∧ Vq < W ∧ (Vq ≥ U → Vq < W + kt)

)
, Qp ` R

Inva, Qp ` R

Returning to premise 0 , similar to the case for stability, initial states satisfying ¬Q have no
continuous motion possible so they are stuck at the initial state (with global clock t = 0). �is is
proved using the loop invariant Inv0

a ≡ t = 0 ∧ ¬Q. �e �rst and third premise resulting from
the loop rule are proved trivially (not shown below). For the remaining premise, ¬Q is preserved
(trivially) across the loop body a�er unfolding it with [∪], ∧R and using DX to show that the

270

system is unable to switch to the ODE with domain Qp because ¬Q implies ¬Qp propositionally.

∗
DX ¬Q ` [x′ = fp(x), t′ = 1 &Qp]Inv0

a (p ∈ P)
[∪], ∧R Inv0

a ` [
⋃
p∈P x

′ = fp(x), t′ = 1 &Qp]Inv0
a

loop T > 0, t = 0,¬Q ` [αstate, t
′ = 1](t ≥ T → ‖x‖2 < ε)

Proof of Corollary 6.11. �e derivation of rule MLFG is similar to the derivation of rule MLF
from Corollary 6.10, but adapted to the shape of the guarded state-dependent switching model
αguard and its corresponding loop invariants. �e derivation starts as usual with an ∧R step for
the stability and pre-a�ractivity conjuncts which are proved separately below.

` UStab(αguard) ` UGpAttr(αguard)
∧R ` UGpAS(αguard)

Stability. �e derivation for stability proceeds identically to the derivation for rule MLF
from Corollary 6.10 until the step before the stability loop invariant is used. �ese steps are
omi�ed below with . . . and the resulting premise has antecedent formula abbreviated with
a ≡

∧
p∈P ∀x (‖x‖2 = ε→ Vp ≥ W).

a , δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W ` [αguard] ‖x‖2 < ε

. . .
` UStab(αguard)

�e derivation continues using the loopT rule with the modi�ed stability loop invariant
Invs ≡ ‖x‖2 < ε ∧

∨
p∈P

(
u = p ∧ Vp < W

)
. �is yields four premises labeled 1 – 4 , shown

and proved further below.
1 2 3 4

loopT a , δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W ` [αguard] ‖x‖2 < ε

Premise 1 shows that the system state satis�es the invariant Invs a�er running the initial-
ization program αi ≡

⋃
p∈P u := p. �is is proved by R a�er unfolding αi using [∪], [:=].

∗
R δ ≤ ε, ‖x‖2 < δ,

∧
p∈P Vp < W,u = p ` Invs (p ∈ P)

[∪], [:=] δ ≤ ε, ‖x‖2 < δ,
∧
p∈P Vp < W ` [αi]Invs

Premise 4 proves trivially since the postcondition ‖x‖2 < ε is part of the loop invariant.
∗

RInvs ` ‖x‖2 < ε

�e derivation from premise 2 yields correct-by-construction arithmetical conditions on the
Lyapunov functions from unfolding the switching controller in αguard, recall

αu ≡
⋃
p∈P

(
?u = p; (

⋃
q∈P

(?Gp,q;u := q) ∪ u := u)
)

Axiom [∪] unfolds the outer choice
⋃
p∈P

(
·
)
, yielding one premise for each mode p ∈ P .

�en, axioms [;], [?] add the current mode u = p (before switching) to the assumptions. �e cut

271

step propositionally unfolds antecedent loop invariant assumption Invs to the corresponding
disjunct for u = p. �e inner choice

⋃
q∈P
(
·
)

is unfolded next with axioms [∪], [;], [?], yielding
one premise for each possible transition to mode q ∈ P guarded by formula Gp,q; the case with
no switching u := u is trivial since the antecedents imply the postcondition (unchanged). �e
assignment u := q is unfolded with [:=], so the succedent simpli�es to the disjunct for u = q in
Invs. An arithmetic simpli�cation step yieds the bo�om premise of rule MLFG.

∗
R Gp,q ` Vq ≤ Vp
R Vp < W,Gp,q ` Vq < W

[:=] ‖x‖2 < ε, Vp < W,Gp,q ` [u := q]Invs (q ∈ P)
[∪], [;], [?]‖x‖2 < ε, u = p, Vp < W ` [

⋃
q∈P (?Gp,q;u := q) ∪ u := u]Invs

cut Invs, u = p ` [
⋃
q∈P (?Gp,q;u := q) ∪ u := u]Invs

[;], [?] Invs ` [?u = p; (
⋃
q∈P (?Gp,q;u := q) ∪ u := u)]Invs (p ∈ P)

[∪] Invs ` [αu]Invs

�e derivation from premise 3 unfolds the plant modelαp ≡
⋃
p∈P

(
?u = p;x′ = fp(x, y) &Qp

)
.

�e choice
⋃
p∈P

(
·
)

is unfolded with axiom [∪], yielding one premise for each mode p ∈ P .
�en, axioms [;], [?] add the mode selected by αu to the antecedent, where the antecedent
loop invariant assumption Invs is simpli�ed by cut to the disjunct for u = p. Similarly M[·]
strengthens the postcondition to the disjunct for u = p. �e rest of the proof proceeds identically
to the corresponding derivation for rule CLF in Corollary 6.9 so it is omi�ed here.

∗
a , ‖x‖2 < ε, Vp < W ` [x′ = fp(x) &Qp](‖x‖2 < ε ∧ Vp < W)

M[·] a , ‖x‖2 < ε, Vp < W,u = p ` [x′ = fp(x) &Qp]Invs
cut a , Invs, u = p ` [x′ = fp(x) &Qp]Invs

[;], [?] a , Invs ` [?u = p;x′ = fp(x, y) &Qp]Invs (p ∈ P)
[∪] a , Invs ` [αp]Invs

Pre-Attractivity. �e derivation for pre-a�ractivity is also identical to MLF until the step
before the pre-a�ractivity loop invariant is used. �ese steps are omi�ed below with . . . and
the resulting premise has antecedent formulas abbreviated with:

b ≡
∧
p∈P

∀x (Vp ≤ W ∧ ‖x‖2 ≥ ε→ Vp ≥ U)

c ≡
∧
p∈P

∀x
(
Qp ∧ U ≤ Vp ≤ W → Lfp(Vp) ≤ k

)
∧
p∈P Vp < W, b , k < 0, c ,W + kT ≤ U, t = 0 ` [αguard, t

′ = 1] . . .

. . .
` UGpAttr(αguard)

272

�e derivation continues using the loopT rule with pre-a�ractivity loop invariant Inva ≡∨
p∈P

(
u = p ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt)

)
. �is yields four premises labeled 1 – 4

which are shown and proved further below.
1 2 3 4

loopT∧
p∈P Vp < W, b , k < 0, c ,W + kT ≤ U, t = 0 ` [αguard, t

′ = 1] . . .

Premise 1 proves the invariant Inva a�er unfolding the initialization program αi using [∪], [:=].
∗

R ∧
p∈P Vp < W, t = 0, u = p ` Inva

[∪], [:=] ∧
p∈P Vp < W, t = 0 ` [αi]Inva

Premise 4 is proved by R a�er unfolding the disjuncts of the loop invariant with ∨L (the
arithmetical argument is identical to earlier proofs). �e selected disjunct of Inva (indexed by p)
is abbreviated R ≡ u = p ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt).

∗
R b , k < 0,W + kT ≤ U,R ` t ≥ T → ‖x‖2 < ε (p ∈ P)
∨L b , k < 0,W + kT ≤ U, Inva ` t ≥ T → ‖x‖2 < ε

�e derivation from premise 2 unfolds αu using dL’s hybrid program axioms similar to the
stability proof, and an arithmetic simpli�cation step yields the premises of MLFG for guarded
mode switches from p to q, for p, q ∈ P .

∗
R Gp,q ` Vq ≤ Vp
R R,Gp,q ` Vq < W ∧ (Vq ≥ U → Vq < W + kt)

[:=] R,Gp,q ` [u := q]Inva (q ∈ P)
[∪], [;], [?] R ` [

⋃
q∈P (?Gp,q;u := q) ∪ u := u]Inva

cut, ∨L Inva, u = p ` [
⋃
q∈P (?Gp,q;u := q) ∪ u := u]Inva

[;], [?] Inva ` [?u = p; (
⋃
q∈P (?Gp,q;u := q) ∪ u := u)]Inva (p ∈ P)

[∪] Inva ` [αu]Inva

�e derivation from premise 3 unfolds the plant model and proceeds identically to the
corresponding derivation for rule CLF, with R ≡ u = p∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt).

∗
c , R ` [x′ = fp(x), t′ = 1 &Qp]R

M[·] c , R ` [x′ = fp(x), t′ = 1 &Qp]Inva
cut c , Inva, u = p ` [x′ = fp(x), t′ = 1 &Qp]Inva

[;], [?] c , Inva ` [?u = p;x′ = fp(x, y), t′ = 1 &Qp]Inva
[∪] c , Inva ` [αp, t

′ = 1]Inva

Proof of Corollary 6.12. �e derivation of rule MLFτ departs more signi�cantly from the deriva-
tions of rules CLF, MLF, MLFG. For this proof, Rexp is used to indicate arithmetic steps that use
properties of the real exponential function. Although arithmetic over the exponential function
is not known to be decidable, tools are available for answering specialized subsets of such
questions [60]. Additional explanation is given below for Rexp steps that only require elementary
properties of the exponential function.

273

�e proof also shows how to derive arithmetic conditions (arising from the time-dependent
switching controller) in a correct by construction manner through the hybrid program axioms of
dL [142, 144]. Recall from Corollary 6.12 that the modes p ∈ P are partitioned into two subsets
consisting of the stable S = {p ∈ P , λp > 0} and unstable U = {p ∈ P , λp ≤ 0} modes. �e
derivation starts as usual with an ∧R step for the stability and pre-a�ractivity conjuncts which
are proved separately below.

` UStab(αtime) ` UGpAttr(αtime)
∧R ` UGpAS(αtime)

Stability. �e stability derivation begins with cut and Skolemization steps. �e �rst cut is
∃W>0 a with the abbreviation a ≡

∧
p∈P ∀x (‖x‖2 = ε→ Vp ≥ W), where the upper bound

W > 0 is chosen to be the maximum of the respective bounds for each Vp on the compact
set characterized by ‖x‖2 = ε. A�er Skolemizing W , the second arithmetic cut is the formula
∃δ (0 < δ ≤ ε ∧ b), where the conjuncts for p ∈ U need the arithmetic fact exp(λpΘp) > 0.

b ≡
∧
p∈S

∀x (‖x‖2 < δ → Vp < W) ∧
∧
p∈U

∀x (‖x‖2 < δ → Vp < W exp(λpΘp))

Such a δ exists by continuity for each Vp, p ∈ P , Vp(0) = 0 from the premise of rule MLFτ .
A�er both cuts, the Skolemized δ from the antecedent is used to witness the succedent by ∃R.

a , δ ≤ ε, b ` ∀x
(
‖x‖2 < δ → [αtime] ‖x‖2 < ε

)
∃R a , 0 < δ ≤ ε, b ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αtime] ‖x‖2 < ε

)
cut, Rexp, ∃Lε > 0,W > 0, a ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αtime] ‖x‖2 < ε

)
cut, R, ∃L ε > 0 ` ∃δ>0 ∀x

(
‖x‖2 < δ → [αtime] ‖x‖2 < ε

)
∀R,→R ` UStab(αtime)

�e derivation continues a�er both cuts similarly to MLF from Corollary 6.10 by unfolding
and proving the LHS of the implications in antecedent b . �e resulting assumption on the
initial state is abbreviated B ≡

∧
p∈S Vp < W ∧

∧
p∈U Vp < W exp(λpΘp). �en, the loopT rule

is used with the following stability loop invariant Invs, which yields premises 1 – 4 shown and
proved further below:

Invs ≡ τ ≥ 0 ∧ ‖x‖2 < ε ∧

∨
p∈S

(
u = p ∧ Vp < W exp(−λpτ)

)
∨∨

p∈U

(
u = p ∧ Vp < W exp(−λp(τ −Θp)) ∧ τ ≤ Θp

)

1 2 3 4
loopT a , δ ≤ ε, ‖x‖2 < δ,B ` [αtime] ‖x‖2 < ε
∀L,→L a , δ ≤ ε, b , ‖x‖2 < δ ` [αtime] ‖x‖2 < ε
∀R,→R a , δ ≤ ε, b ` ∀x

(
‖x‖2 < δ → [αtime] ‖x‖2 < ε

)
Premise 1 shows that the system state satis�es the invariant Invs a�er initialization with

program αi ≡ τ := 0;
⋃
p∈P u := p. �is is proved from B a�er unfolding αi using [∪], [:=] and

274

substituting τ = 0 in the loop invariant (using exp(0) = 1).

∗
Rexp δ ≤ ε, ‖x‖2 < δ,B, τ = 0, u = p ` Invs

[∪], [:=] δ ≤ ε, ‖x‖2 < δ,B ` [αi]Invs

Premise 4 proves trivially since the postcondition ‖x‖2 < ε is part of the loop invariant.
∗

RInvs ` ‖x‖2 < ε

�e derivation from premise 2 unfolds the switching controller αu in αtime with dL’s hybrid
program axioms, recall:

αu ≡
⋃
p∈P

(
?u = p; (

⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u)

)
�is unfolding yields four possible shapes of premises (abbreviated as . . . and shown im-

mediately below) for a switch from the current mode p to mode q. As usual, the case with
no switching u := u is trivial and proves by [;], [∪]. In each (non-trivial) case, the antecedent
assumption corresponds to the disjunct of Invs for mode p, while the succedent assumption
corresponds to the disjunct for mode q with timer τ reset to 0 by the switching controller αu.

. . .
[∪], [;], [?], [:=]Invs, u = p ` [

⋃
q∈P
(
?θp,q ≤ τ ; τ := 0;u := q

)
]Invs

[;], [∪] Invs, u = p ` [
⋃
q∈P
(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u]Invs

[;], [?] Invs ` [?u = p; (
⋃
q∈P
(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u)]Invs

[∪] Invs ` [αu]Invs
�e four cases correspond to whether p ∈ S or p ∈ U and similarly for q, as labeled below.

θp,q ≤ τ, Vp < W exp(−λpτ) ` Vq < W (p ∈ S, q ∈ S)

θp,q ≤ τ, Vp < W exp(−λpτ) ` Vq < W exp(λqΘq) (p ∈ S, q ∈ U)

θp,q ≤ τ, Vp < W exp(−λp(τ −Θp)), τ ≤ Θp ` Vq < W (p ∈ U , q ∈ S)

θp,q ≤ τ, Vp < W exp(−λp(τ −Θp)), τ ≤ Θp ` Vq < W exp(λqΘq) (p ∈ U , q ∈ U)

�ese premises are correct-by-construction and can be handed to an arithmetic solver
directly. �ey can also be simpli�ed, e.g., for p ∈ S, q ∈ S , the inequalities can be rearranged to
eliminate W and τ . �e �rst R step uses transitivity of < and ≤, while the second Rexp step uses
monotonicity exp(λpθp,q) ≤ exp(λpτ) whenever λp > 0 (since p ∈ S) and θp,q ≤ τ . Intuitively,
the resulting (simpli�ed) premise says that by choosing su�ciently large dwell time θp,q (for
stable mode p), one can o�set an increase in value when switching from Vp to Vq . �e resulting
arithmetic condition Vq ≤ Vp exp(λpθp,q) is a correct-by-construction premise for rule MLFτ .

` Vq ≤ Vp exp(λpθp,q)

Rexp θp,q ≤ τ ` Vq ≤ Vp exp(λpτ)

R θp,q ≤ τ, Vp < W exp(−λpτ) ` Vq < W

275

�e derivation from premise 3 unfolds the plant model αp using dL axioms. �ere are two
possible shapes of the premises resulting from this unfolding, depending if p ∈ S or p ∈ U , these
are abbreviated 5 and 6 respectively. In either case, the derivation shows that the appropriate
upper bound on Vp is preserved for the invariant.

5 6
[;], [?] a , Invs, u = p ` [x′ = fp(x), τ ′ = 1 & τ ≤ Θp]Invs
[;], [?] a , Invs ` [?u = p;x′ = fp(x), τ ′ = 1 & τ ≤ Θp]Invs
[∪] a , Invs ` [αp]Invs

For premise 5 , the proof uses dbx< with cofactor −λp, where the Lie derivative of subterm
W exp(−λpτ) is (−λp)W exp(−λpτ) from τ ′ = 1. �e resulting premise simpli�es to the third
premise of rule MLFτ .

∗
` Lfp(Vp) ≤ −λpVp
` Lfp(Vp)−(−λp)W exp(−λpτ) ≤ −λp(Vp−W exp(−λpτ))

dbx< Vp−W exp(−λpτ) < 0 ` [x′ = fp(x), τ ′ = 1 & τ ≤ Θp]Vp−W exp(−λpτ) < 0
cut, M[·] Vp < W exp(−λpτ) ` [x′ = fp(x), τ ′ = 1 & τ ≤ Θp]Vp < W exp(−λpτ)

�e proof for premise 6 also uses dbx< with cofactor −λp, yielding the third premise of
rule MLFτ again.

∗
` Lfp(Vp) ≤ −λpVp

dbx<Vp < W exp(−λp(τ −Θp)) ` [x′ = fp(x), τ ′ = 1 & τ ≤ Θp]Vp < W exp(−λp(τ −Θp))

Pre-Attractivity. �e pre-a�ractivity proof requires an additional input parameter σ > 0 for
the overall decay factor with σ < λp for p ∈ S (σ must also satisfy other arithmetic properties, to
be derived in a correct-by-construction manner in the proof). �e derivation begins with logical
simpli�cation followed by a series of arithmetic cuts. First, the multiple Lyapunov functions
Vp, p ∈ P are simultaneously bounded above on the ball characterized by ‖x‖2 < δ, with
the cut ∃W>0 a (abbreviated below) where the conjuncts for p ∈ U need the arithmetic fact
exp(λpΘp) > 0 (by Rexp).

a ≡
∧
p∈S

∀x (‖x‖2 < δ → Vp < W) ∧
∧
p∈U

∀x (‖x‖2 < δ → Vp < W exp(λpΘp))

�e upper bound W is Skolemized, then the next arithmetic cut uses ∃U>0 b with b ≡∧
p∈P ∀x (Vp ≤ W ∧ ‖x‖2 ≥ ε→ Vp ≥ U), where U is Skolemized with ∃L.

ε > 0,W > 0, a , U > 0, b ` ∃T≥0∀x
(
‖x‖2 < δ → . . .

)
cut, R, ∃L ε > 0,W > 0, a ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
cut, Rexp, ∃L ε > 0 ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
∀R,→R ` UGpAttr(αtime)

�e derivation continues by picking T ≥ 0 using the abbreviated formula in the derivation
R ≡ W ≤ U exp(σT) ∧

∧
p∈UW ≤ U exp(σT) exp(−σΘp), such a T exists by Rexp because

276

σ > 0 so the exp(σT) term on the RHS of each inequality can be chosen arbitrarily large. �e
quanti�ers in the succedent are unfolded and the LHS of the implications in a are proved. �e
resulting antecedent (from a) is abbreviated B ≡

∧
p∈S Vp < W ∧

∧
p∈U Vp < W exp(λpΘp).

�e loopT rule is used with the following pre-a�ractivity loop invariant Inva, which yields
premises 1 – 4 shown and proved further below:

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧
∨
p∈S

(
u = p ∧ Vp < W exp(−σ(t− τ)) exp(−λpτ)

)
∨∨

p∈U

(
u = p ∧ Vp < W exp(−σ(t− τ)) exp(−λp(τ −Θp)) ∧ τ ≤ Θp

)

1 2 3 4
loopT b , T ≥ 0, R,B, t = 0 ` [αguard, t

′ = 1] . . .
∀L,→L a , b , T ≥ 0, R, ‖x‖2 < δ, t = 0 ` [αguard, t

′ = 1] . . .
[;], [:=] a , b , T ≥ 0, R, ‖x‖2 < δ ` [t := 0;αguard, t

′ = 1] . . .
∀R,→R a , b , T ≥ 0, R ` ∀x

(
‖x‖2 < δ → . . .

)
∃R, Rexp ε > 0,W > 0, a , U > 0, b ` ∃T≥0∀x

(
‖x‖2 < δ → . . .

)
Premise 1 is proved from B a�er unfolding αi using axioms [∪], [:=] and substituting τ = 0

and t = 0 in the loop invariant (using exp(0) = 1).
∗

Rexp B, t = 0, τ = 0, u = p ` Inva
[∪], [:=] B, t = 0 ` [αi]Inva

Premise 4 is proved by unfolding the loop invariant with ∨L. �is yields two possible
premise shapes, corresponding to p ∈ S or p ∈ U . In both cases, assuming the negation of the
succedent proves the corresponding implication LHS in the antecedent assumption b , which
gives V < U as an assumption. �e remaining arithmetic argument underlying these premises
is proved by Rexp by contradicting assumption V < U for each case resulting from ∨L. �e cases
are shown and explained further below.

∗
∨L, Rexp b , R, Inva ` t ≥ T → ‖x‖2 < ε

For p ∈ S , the following sequence of inequalities is used:

Vp < W exp(−σ(t− τ)) exp(−λpτ) (from invariant)
= W exp(−σt) exp(−τ(λp − σ))

≤ W exp(−σT) exp(−τ(λp − σ)) (from t ≥ T, σ > 0)
≤ U exp(−τ(λp − σ)) (from R)
≤ U (from σ < λp, τ ≥ 0, contradiction)

277

For p ∈ U , the following sequence of inequalities is used (note that τ ≤ Θp is in the invariant
Inva for p ∈ U):

Vp < W exp(−σ(t− τ)) exp(−λp(τ −Θp)) (from invariant)
≤ W exp(−σ(t− τ)) (from τ ≤ Θp, λp ≤ 0)
= W exp(−σt) exp(στ)

≤ W exp(−σt) exp(σΘp) (from σ > 0, τ ≤ Θp)
≤ W exp(−σT) exp(σΘp) (from t ≥ T, σ > 0)
≤ U (from R, contradiction)

�e derivation from premise 2 unfolds the switching controller αu in αtime with dL’s hybrid
program axioms. Similar to the derivation for the stability conjunct, this unfolding yields four
possible shapes of premises (abbreviated as . . . and shown immediately below) for maintaining
the invariant Inva a�er a switch from the current mode p to the next mode q.

. . .
[∪], [;], [?], [:=]Inva, u = p ` [

⋃
q∈P
(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u]Inva

[;], [?] Inva ` [?u = p; (
⋃
q∈P
(
?θp,q ≤ τ ; τ := 0;u := q

)
∪ u := u)]Inva

[∪] Inva ` [αu]Inva

t≥τ, θp,q ≤ τ, Vp < W exp(−σ(t− τ)) exp(−λpτ) ` Vq < W exp(−σt)
(p ∈ S, q ∈ S)

t≥τ, θp,q ≤ τ, Vp < W exp(−σ(t− τ)) exp(−λpτ) ` Vq < W exp(−σt) exp(λqΘq)

(p ∈ S, q ∈ U)

t≥τ, θp,q ≤ τ, Vp < W exp(−σ(t− τ)) exp(−λp(τ −Θp)), τ ≤ Θp ` Vq < W exp(−σt)
(p ∈ U , q ∈ S)

t≥τ, θp,q ≤ τ, Vp < W exp(−σ(t− τ)) exp(−λp(τ −Θp)), τ ≤ Θp ` Vq < W exp(−σt) exp(λqΘq)

(p ∈ U , q ∈ U)

�e derivation from premise 3 unfolds the plant model αp. resulting in two possible shapes
of premises, depending if p ∈ S or p ∈ U , which are abbreviated 5 and 6 respectively. In either
case, the key step is to show that the respective upper bound on Vp is preserved along evolution
of the ODE.

5 6
[;], [?]Inva, u = p ` [x′ = fp(x), τ ′ = 1, t′ = 1 & τ ≤ Θp]Inva
[;], [?] Inva ` [?u = p;x′ = fp(x), τ ′ = 1, t′ = 1 & τ ≤ Θp]Inva
[∪] Inva ` [αp]Inva

For premise 5 , the proof uses dbx< with cofactor −λp, with abbreviated term Ps =
W exp(−σ(t − τ)) exp(−λpτ), noting that the Lie derivative of Ps is −λpPs. �is yields the
third premise of rule MLFτ .

∗
` Lfp(Vp) ≤ −λpVp

dbx<Vp < Ps ` [x′ = fp(x), τ ′ = 1, t′ = 1 & τ ≤ Θp]Vp < Ps

278

�e proof for premise 6 also uses rule dbx< with cofactor −λp, with abbreviated term
Pu = W exp(−σ(t− τ)) exp(−λp(τ −Θp)), noting that the Lie derivative of Pa is −λpPa. �is
yields the third premise of rule MLFτ .

∗
` Lfp(Vp) ≤ −λpVp

dbx<Vp < Pu ` [x′ = fp(x), τ ′ = 1, t′ = 1 & τ ≤ Θp]Vp < Pu

D.2 Counterexamples
�e cruise controller automaton from Section 6.5.2 is taken from the suite of examples for the
Stabhyli tool [116, 117]. Using the default instructions on a Linux machine, Stabhyli generates a
success message with the following output (newlines added for readability):

...

SOSSolution(Problem is solved. (accepted); ...

...

Lyapunov template for mode normal_PI: \

+V_23*relV^2+V_22*intV^2+V_21*intV*relV \

+V_20*relV+V_19*intV

Lyapunov function for mode normal_PI: \

+572572089848357/144115188075855872*intV*relV \

+256336575597239/281474976710656*relV^2 \

+6008302119812893/4611686018427387904*intV^2 \

+5787253314511645/618970019642690137449562112*relV \

+5661677770976729/39614081257132168796771975168*intV

...

The hybrid system is stable

�e generated Lyapunov function candidate V does not satisfy all of the required arithmetical
conditions for the normal PI mode [116]. For example, one requirement is that it should be
non-negative in the mode invariant−15 ≤ relV ≤ 15∧−500 ≤ intV ≤ 500. It can be checked
that intV = − 1

17179869184
, relV = 0 is a counterexample, with V = −3.90488× 10−24 < 0.

A heuristic approach to resolve this numerical issue is to truncate terms in the candidate V
with extremely small coe�cients and then check the resulting truncated candidate. �is heuristic
is applied for the case study in Section 6.5.2, where the KeYmaera X proof succeeded using the
truncated candidate together with the rest of the Lyapunov function candidates generated by
Stabhyli (for other automaton modes).

More interestingly, it is also possible for Stabhyli to declare that a system is stable because
of numerical issues even though the system is unstable. Consider the following unstable system
with two modes and no switching allowed between the modes:

• x′ = −x+ 1 & − 1
1000000000

≤ x ≤ 1
1000000000

which is unstable at the origin and

• x′ = −x which is stable.

279

Stabhyli always examines stability of the origin of the given hybrid system [116]. Using the
default instructions as before, Stabhyli generates a success message with the following output
(newlines added for readability):

...

SOSSolution(Problem is solved. (accepted); ...

...

Lyapunov template for mode stable: +V_2*x^2+V_1*x

Lyapunov function for mode stable: \

+603702977637151/18889465931478580854784*x^2

Lyapunov template for mode unstable: +V_4*x^2+V_3*x

Lyapunov function for mode unstable: \

+457363293760441/18889465931478580854784*x^2

-224353181720881/77371252455336267181195264*x

The hybrid system is stable

280

	1 Introduction
	1.1 Thesis Overview
	1.1.1 Safety and Invariance for Ordinary Differential Equations
	1.1.2 Liveness and Existence for Ordinary Differential Equations
	1.1.3 Stability for Ordinary Differential Equations
	1.1.4 Stability for Switched Systems
	1.1.5 Chapter Layout

	1.2 Related Work
	1.2.1 Reachability Approaches
	1.2.2 Numerical and Certificate-Based Approaches
	1.2.3 Syntactic Deduction
	1.2.4 Formalized Mathematics

	2 Background: Differential Dynamic Logic
	2.1 Syntax
	2.1.1 Terms
	2.1.2 Formulas
	2.1.3 Hybrid Programs

	2.2 Semantics
	2.2.1 Terms
	2.2.2 Formulas and Hybrid Programs

	2.3 Axiomatics
	2.3.1 Sequent Calculus
	2.3.2 Base Axioms and Proof Rules
	2.3.3 Differentials and Lie Derivatives
	2.3.4 Differential Equation Axiomatization

	3 Safety and Invariance for Ordinary Differential Equations
	3.1 Introduction
	3.2 Differential Dynamic Logic with Extended Terms
	3.2.1 Syntax
	3.2.2 Semantics
	3.2.3 Axiomatics
	3.2.4 Extended Term Conditions

	3.3 Darboux Invariants
	3.3.1 Darboux Equalities
	3.3.2 Darboux Inequalities
	3.3.3 Barrier Certificates

	3.4 Analytic Invariants
	3.4.1 Vectorial Darboux Equalities
	3.4.2 Completeness for Analytic Invariants

	3.5 Extended Axiomatization
	3.5.1 Existence, Uniqueness, and Continuity
	3.5.2 Real Induction

	3.6 Semianalytic Invariants
	3.6.1 Local Progress
	3.6.2 Completeness for Semianalytic Invariants

	3.7 Noetherian Functions
	3.7.1 Mathematical Preliminaries
	3.7.2 Extended Term Conditions for Noetherian Functions
	3.7.3 Extended Term Language Example

	3.8 Related Work
	3.9 Discussion

	4 Liveness and Existence for Ordinary Differential Equations
	4.1 Introduction
	4.2 ODE Liveness via Box Refinements
	4.2.1 Liveness Refinement
	4.2.2 Liveness Refinement Axioms

	4.3 Finite-Time Blow Up and Global Existence
	4.3.1 Global Existence Proofs
	4.3.2 Derived Existence Axioms
	4.3.3 Completeness for Global Existence

	4.4 Liveness Without Domain Constraints
	4.4.1 Differential Variants
	4.4.2 Staging Sets

	4.5 Liveness With Domain Constraints
	4.6 ODE Liveness Proofs in Practice
	4.6.1 Liveness Proof Rules
	4.6.2 Proof Support

	4.7 Related Work
	4.8 Discussion

	5 Stability for Ordinary Differential Equations
	5.1 Introduction
	5.2 Asymptotic Stability of an Equilibrium Point
	5.2.1 Mathematical Preliminaries
	5.2.2 Formal Specification
	5.2.3 Lyapunov Functions
	5.2.4 Asymptotic Stability Variations

	5.3 General Stability
	5.3.1 General Stability and General Attractivity
	5.3.2 Specialization

	5.4 Stability in KeYmaera X
	5.5 Input-to-State Stability
	5.6 Related Work
	5.7 Discussion

	6 Stability for Switched Systems
	6.1 Introduction
	6.2 Switched Systems as Hybrid Programs
	6.2.1 Mathematical Preliminaries
	6.2.2 Autonomous Switching
	6.2.3 Controlled Switching

	6.3 Switched System Stability
	6.3.1 Stability as Quantified Loop Safety
	6.3.2 Stability for Autonomous Switching
	6.3.3 Stability for Controlled Switching

	6.4 KeYmaera X Implementation
	6.4.1 Modeling and Proof Interface
	6.4.2 Examples

	6.5 Case Studies
	6.5.1 Canonical Max System
	6.5.2 Automated Cruise Control
	6.5.3 Brockett's Nonholonomic Integrator

	6.6 Related Work
	6.7 Discussion

	7 Conclusion
	7.1 Thesis Summary
	7.2 Future Directions

	A Appendix: Safety and Invariance for Ordinary Differential Equations
	A.1 Differential Dynamic Logic Axiomatization
	A.1.1 Extended Axiomatization Soundness
	A.1.2 Extended Derived Rules and Axioms

	A.2 Completeness
	A.2.1 Progress Formulas
	A.2.2 Local Progress
	A.2.3 Analytic Invariants
	A.2.4 Completeness for Semianalytic Invariants with Semianalytic Evolution Domains

	B Appendix: Liveness and Existence for Ordinary Differential Equations
	B.1 Proof Calculus
	B.1.1 Base Calculus
	B.1.2 Refinement Calculus
	B.1.3 Topological Side Conditions

	B.2 Derived Existence and Liveness Proof Rules
	B.2.1 Proofs for Finite-Time Blow Up and Global Existence
	B.2.2 Proofs for Liveness Without Domain Constraints
	B.2.3 Proofs for Liveness With Domain Constraints
	B.2.4 Proofs for ODE Liveness Proofs in Practice

	B.3 Counterexamples
	B.3.1 Finite-Time Blow Up
	B.3.2 Topological Considerations

	C Appendix: Stability for Ordinary Differential Equations
	C.1 Derived Stability Proof Rules
	C.1.1 Proofs for Asymptotic Stability of an Equilibrium Point
	C.1.2 Proofs for General Stability

	C.2 Counterexamples

	D Appendix: Stability for Switched Systems
	D.1 Switched System Models and Stability Proof Rules
	D.1.1 Proofs for Switched Systems as Hybrid Programs
	D.1.2 Proofs for Switched System Stability

	D.2 Counterexamples

