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Abstract

Homotopy type theory is a new branch of mathematics which merges insights from abstract ho-
motopy theory and higher category theory with those of logic and type theory. It allows us to
represent a variety of mathematical objects as basic type-theoretic constructions, higher inductive
types. We present a proof that in homotopy type theory, the torus is equivalent to the product of
two circles. This result indicates that the synthetic definition of torus as a higher inductive type is
indeed correct.
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1 Introduction
Homotopy type theory (HoTT) [15] is a new branch of mathematics which merges insights from
abstract homotopy theory and higher category theory with those of logic and type theory. A num-
ber of well-known results in algebraic topology have been established within HoTT and formally
verified using the proof assistants Agda [11] and Coq [14]; these include the calculation of πn(Sn)
([9, 7]); the Freudenthal Suspension Theorem [15]; the Blakers-Massey Theorem [15], the van
Kampen theorem [15], and the Mayer-Vietoris theorem [1].

As a formal system, HoTT is an extension of Martin-Löf’s dependent type theory with two
new concepts: Voevodsky’s univalence axiom ([3, 16]) and higher inductive types ([10, 12]). The
univalence axiom can be paraphrased as stating that equivalent types are equal, and hence we can
reason about them using the identity elimination principle. While we do not make an explicit use of
the axiom in this paper, we use one of its most important consequences - the function extensionality
principle - which states that two pointwise equal functions are in fact equal ([2], Ch. 4.9 of [15]).

The second main feature of HoTT, higher inductive types, are a higher-dimensional generaliza-
tion of ordinary inductive types which allows us to declare constructors involving the path spaces
of the type X being defined, rather than just X itself. This means that we can define the higher
inductive type X e.g., by means of the constructors base : X , loop : base =X base. While base is
an ordinary nullary constructor, akin to the constant 0 in the definition of natural numbers, loop is
a term of an identity type over X , not X itself. Intuitively, we can draw the type X as consisting
of the point base and a loop from base to base - also known as the circle:

base

loop

This is not an isolated occurrence: higher inductive types turn out to be well suited for rep-
resenting a wide variety of mathematical objects, and the definitions generally require very little
prior development. Most of the difficult work then lies in showing that such a “synthetic” definition
is indeed the “right” one, in the sense that the higher inductive type representing, e.g., the circle
or the torus does possess the expected mathematical properties. For instance, we would like to be
able to show that in HoTT, the fundamental group of the circle is the group of integers, and that
the torus is the product of two circles.

The former result was shown by Licata and Shulman in [9] and notably, the proof they give is
much more concise than its homotopy-theoretic counterpart. In this paper, we present the full proof
of the latter result that the torus T 2 is equivalent, in a precise sense, to the product S1 × S1 of two
circles. This problem was brought to the author’s attention during the Special Year on Univalent
Foundations at the Institute for Advanced Study in 2012/2013. During that time, the author gave
a sketch of the proof1 and a year later expanded it into a full writeup [13], which was included
in the HoTT Book exercise solutions file but never published. In summer of 2014, Dan Licata

1In personal correspondence, P. Lumsdaine stated he also had a sketch of a proof, which has not been made public.
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and Guillaume Brunerie produced a similar, formalized proof of the result which builds upon their
cubical library for the Agda proof assistant. This proof later appeared in a published paper [8]. In
the conclusion we provide a more detailed comparison of how the proof presented here compares
to the one by Licata and Brunerie.

Licata later presented a proof of the same result in cubical type theory [6]. This proof is much
simpler since the cubical type theory seems better suited for arguments involving higher paths;
however, this new theory is itself still under development.

2 Preliminaries
Summarizing from [15], HoTT is a dependent type theory with

• dependent pair types Σx:AB(x) and dependent function types Πx:AB(x). The non-dependent
versions are denoted by A×B and A→ B.

• intensional identity types x =A y. We have the usual formation and introduction rules, where
the identity path on x : A will be denoted by 1x. The elimination and computation rules are
recalled below:

E : Πx,y:Ax =A y → type d : Πx:AE(x, x, 1x)

J(E, d) : Πx,y:AΠp:x=AyE(x, y, p)

E : Πx,y:Ax =A y → type d : Πx:AE(x, x, 1x) a : A

J(E, d)(a, a, 1a) ≡ d(a) : E(a, a, 1a)

As usual, these rules are applicable in any context Γ, which we generally omit. If the type
x =A y is inhabited, we call x and y equal. If we do not care about the specific equality
witness, we often simply say that x =A y. A term p : x =A y will be often called a path and
the process of applying the identity elimination rule will be referred to as path induction.
Definitional equality between x, y : A will be denoted as x ≡ y : A.

Proofs of identity behave much like paths in topological spaces: they can be reversed, concate-
nated, mapped along functions, etc. Below we summarize a few of these properties:

• For any path p : x =A y there is a path p−1 : y =A x, and we have (1x)
−1 ≡ 1x.

• For any paths p : x =A y and q : y =A z there is a path p � q : x =A z, and we have
1x � 1x ≡ 1x.

• Associativity of composition: for any paths p : x =A y, q : y =A z, r : z =A u we have
(p � q) � r = p � (q � r).

• We have 1x � p = p and p � 1y = p for any p : x =A y.

• For any p : x =A y, q : y =A z we have p � p−1 = 1x, p−1 � p = 1y, and (p−1)
−1

= p,
(p � q)−1

= q−1 � p−1.
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• For any P : A→ type and p : x =A y there is a function transP (p) : P (x)→ P (y) called
the transport. We furthermore have transP (1x) ≡ λx:P (x)x.

• We have transP (p � q) = transP (q) ◦ transP (p) for any P : A → type and p : x =A y,
q : y =A z.

• For any function f : A→ B and path p : x =A y, there is a path apf (p) : f(x) =B f(y) and
we have apf (1x) ≡ 1f(x).

• We have apf (p
−1) = apf (p)

−1 and apf (p � q) = apf (p) � apf (q) for any f : A → B and
p : x =A y, q : y =A z.

• Given a dependent function f : Πx:AB(x) and path p : x =A y, there is a path apdf (p) :
transB(p, f(x)) =B(y) f(y) and we have apdf (1x) ≡ 1f(x).

• All constructs respect propositional equality.

Definition 1. For f, g : Πx:AB(x), we define the type

f ∼ g := Πa:A(f(a) =B(a) g(a))

and call it the type of homotopies between f and g.

Definition 2. For f, g : X → Y , p : x =X y, α : f ∼ g, there is a path

natα(p) : apf (p) � α(y) = α(x) � apg(p)

defined in the obvious way by induction on p and referred to as the naturality of the homotopy α.
Pictorially, we have

natα(p)

f(x)

f(y)

g(x)

g(y)

apf (p)

α(x)

α(y)

apg(p)

A crucial concept in HoTT is that of an equivalence between types.

Definition 3. A map f : A→ B is called an equivalence if it has both a left and a right inverse:

iseq(f) :=
(
Σg:B→A(g ◦ f ∼ idA)

)
×
(
Σh:B→A(f ◦ h ∼ idB)

)
We define

(A ' B) := Σf :A→B iseq(f)

and call A and B equivalent if the above type is inhabited.
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We call A and B logically equivalent if there are exist functions f : A → B, g : B → A.
In practice, we often show that two types A and B are equivalent by first exhibiting the logical
equivalence of A and B and then showing that the functions f and g compose to identity on both
sides. In this case we refer to f and g as forming a quasi-equivalence and say that f and g are
quasi-inverses of each other. A pair of quasi-inverses can always be turned into an equivalence.

Many “diagram-like” operations on paths turn out to be equivalences. For instance:

• For any u : a =A b, v : b =A d, w : a =A c, z : c =A d, as in the diagram

a b

c d

u

w v

z

we have functions

I : (u � v = w � z)→ (u−1 � w � z = v)

I−1 : (u−1 � w � z = v)→ (u � v = w � z)

defined by path induction on u and z, which form a quasi-equivalence.

Finally, we show how to construct paths in pair and function types. Given two pairs c, d : A×B,
we can easily construct a function

proj=c,d : (c = d)→ (π1(c) = π1(d))× (π2(c) = π2(d)).

We can show:

Lemma 4. The map proj=c,d is an equivalence for any c, d : A×B.

We will denote the quasi-inverse of proj=c,d by pair=c,d. For brevity we will often omit the subscripts.
Analogously, given two functions f, g : Πx:AB(x), we can construct a function

hapf,g : (f = g)→ (f ∼ g)

Showing that this map is an equivalence (or even constructing a map in the opposite direction) is
much harder, and is in fact among the chief consequences of the univalence axiom:

Lemma 5. The map hapf,g is an equivalence for any f, g : Πx:AB(x).

Proof. See Ch. 4.9 of [15].

We will denote the quasi-inverse of hapf,g by funextf,g.
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3 The circle S1 and the torus T 2

The circle S1 is a higher inductive type generated by the constructors

base : S1,

loop : base = base.

The recursion principle says that given a type C : type and terms

b : C,

l : b = b

there exists a recursor f : S1 → C for which f(base) ≡ b and apf (loop) = l. The induction
principle says that given a family E : S1 → type and terms

b : E(base),

l : transE(loop, b) = b

there exists an inductor f : Πx:S1E(x) for which f(base) ≡ b and apdf (loop) = l.

The torus T 2 is a higher inductive type generated by the constructors

b : T 2,

p : b = b,

q : b = b,

t : p � q = q � p

as pictured below:

b b

b b

⇓ t

p

q q

p

The recursion principle says that given a type C : type and terms

b′ : C,

p′ : b′ = b′,

q′ : b′ = b′,

t′ : p′ � q′ = q′ � p′,

there exists a recursor f : T 2 → C for which f(b) ≡ b′ and there exist paths β : apf (p) = p′ and
γ : apf (q) = q′ making the following diagram commute:
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apf (p � q) apf (q � p)

apf (p) � apf (q) apf (q) � apf (p)

p′ � q′ q′ � p′

via t

via β, γ via γ, β

t′

Here, each edge represents an equality between its vertices. Unlabeled edges stand for the “ob-
vious” equalities which follow from the basic properties of identity types, such as the path from
apf (p �q) to apf (p) �apf (q). Edges labeled with, e.g., “via β, γ” stand for an application of congru-
ence: here β is a path from apf (p) to p′ and γ is a path from apf (q) to q′. Since path concatenation
respects equality, combining β and γ in a straightforward fashion yields a path from apf (p) �apf (q)
to p′ � q′.

We note that there may be several natural ways how to implement, e.g., the congruence of path
concatenation with respect to path equality: we can perform path induction on the first argument,
on the second, or on both. For our purposes the exact definition is immaterial as they are all equal
up to a higher path, which is why we only specify the arguments (in this case β and γ). From now
on, all paths and diagrams will be annotated in this style.

The induction principle for T 2 is more complicated; it says that given a familyE : T 2 → type,
in order to get an inductor f : Πx:T 2E(x) we require terms

b′ : E(b)

p′ : transE(p, b′) = b′

q′ : transE(q, b′) = b′

t′ :
(
apα 7→transE(α,b′)(t)

)−1 �
(
Tf (E, p, q, b′) � aptransE(q)(p

′) � q′
)

=

Tf (E, q, p, b′) � aptransE(p)(q
′) � p′

where for any family E : T 2 → type, paths α : x =T 2 y, α′ : y =T 2 z and point u : E(x), the
path

Tf (E,α, α′, u) : transE(α � α′, u) = transE(α′, transE(α, u))

is obtained by path induction on α and α′. The inductor f then has the property that f(b) ≡ b′.
Furthermore, there exist paths β : apdf (p) = p′ and γ : apdf (q) = q′ satisfying a higher coherence
law, which we omit since we do not need it.

4 Logical equivalence between S1 × S1 and T 2

Left-to-right We define a function f : S1 → T 2 by circle recursion, mapping base 7→ b and
loop 7→ p. Thus, we have a definitional equality f(base) ≡ b and a path βf : apf (loop) = p.
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We define a function F→ : S1 → S1 → T 2 again by circle recursion, mapping base 7→ f and
loop 7→ funext(H), where H : Πx:S1f(x) = f(x) is defined by circle induction as follows. We
map base to q and loop to the path

transz 7→f(z)=f(z)(loop, q)

apf (loop)−1 � q � apf (loop)

q

T1(loop, q)

I(γ)

where for any α : x =S1 y and u : f(x) = f(x), the path

T1(α, u) : transz 7→f(z)=f(z)(α, u) = apf (α)−1 � u � apf (α)

is obtained by a straightforward path induction on α, and γ is the path

apf (loop) � q

p � q

q � p

q � apf (loop)

via βf

t

via β−1f

Having defined a function F→ : S1 → S1 → T 2, it is now straightforward to define its curried
version F : S1 × S1 → T 2. We note that F→(base) ≡ f , and in particular F (base, base) ≡ b.
Furthermore, we have a path βF→ : apF→(loop) = funext(H). Since hap and funext form a
quasi-equivalence, we have a path

β∗F→ : hap(apF→(loop)) = H

The function H is a homotopy between f and f such that H(base) ≡ q and the following diagram
commutes:

(1)

apf (loop) � q

p � q

q � apf (loop)

q � p

via βf

t

natH(loop)

via βf
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To show this, we note that for any α : x =S1 y, applying I−1 to the path

apf (α)−1 �H(x) � apf (α)

transz 7→f(z)=f(z)(α,H(x))

H(y)

T1(α,H(x))
−1

apdH(α)

yields natH(α): this follows by a path induction on α and a subsequent generalization and path
induction on H(x). The second computation rule for H tells us that

apdH(loop) = T1(loop, q) � I(γ)

Thus
natH(loop) = I−1

(
T1(loop, q)−1 � apdH(loop)

)
= γ

which proves the commutativity of (1).
Finally, we note that for any α : x =T 2 x′ and α′ : y =T 2 y′, we have path families

µx(α
′) : apF (pair=(1x, α

′)) = apF→(x)(α
′)

νy(α) : apF (pair=(α, 1y)) = hap(apF→(α), y)

defined by path induction on α′ and α respectively.

Right-to-left We define a function G : T 2 → S1 × S1 by torus recursion as follows. We map
b 7→ (base, base), p 7→ pair=(1base, loop), q 7→ pair=(loop, 1base), and t 7→ Φloop,loop, where for
any α : x =S1 x′, α′ : y =S1 y′, the path

Φα,α′ :
(
pair=(1x, α

′) � pair=(α, 1y′)
)

=
(
pair=(α, 1y) � pair

=(1x′ , α
′)
)

is defined by induction on α and α′.
Then we have a definitional equality G(b) ≡ (base, base) and paths

βpG : apG(p) = pair=(1base, loop)

βqG : apG(q) = pair=(loop, 1base)

which make the following diagram commute:
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(2)

apG(p � q) apG(q � p)

apG(p) � apG(q) apG(q) � apG(p)

pair=(1, loop) � pair=(loop, 1) pair=(loop, 1) � pair=(1, loop)

via t

via βp
G, βq

G via βq
G, βp

G

Φloop,loop

5 Equivalence between S1 × S1 and T 2

Left-to-right We need to show that for any x, y : S1 we have G(F (x, y)) = (x, y). We do this
by circle induction on the first argument. We need a path family ε : Πy:S1G(f(y)) = (base, y).
The definition of ε itself proceeds by circle induction: we map base to the path 1(base,base) and loop
to the path

transz 7→G(f(z))=(base,z)(loop, 1(base,base))

apG(apf (loop))−1 � 1(base,base)
� pair=(1base, loop)

1(base,base)

T2(loop, 1(base,base))

I(δ)

where for any α : x =S1 y and u : G(f(x)) = (base, x), the path

T2(α, u) : transz 7→G(f(z))=(base,z)(α, u) = apG(apf (α))−1 � u � pair=(1base, α)

is defined by path induction on α and δ is the path
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apG(apf (loop)) � 1(base,base)

apG(apf (loop))

apG(p)

pair=(1base, loop)

1(base,base)
� pair=(1base, loop)

via βf

βp
G

This finishes the definition of ε. We now need to prove that

transx 7→Π(y:S1)G(F (x,y))=(x,y)(loop, ε) = ε

By function extensionality, it suffices to show that for any y : S1 we have

transx 7→Π(z:S1)G(F (x,z))=(x,z)(loop, ε) y = ε(y)

Straightforward path induction shows that for any α : base =S1 x, we have

transw 7→Π(z:S1)G(F (w,z))=(w,z)(α, ε) y = apG(hap(apF→(α), y))−1 � ε(y) � pair=(α, 1y)

It thus suffices to show that

apG(hap(apF→(loop), y)) � ε(y) = ε(y) � pair=(loop, 1y)

After simplifying the left endpoint using hap(β∗F→ , y) it suffices to show that

apG(H(y)) � ε(y) = ε(y) � pair=(loop, 1y)

for any y : S1. We proceed yet again by circle induction. We map base to the path η below:

apG(q) � 1(base,base)

apG(q)

pair=(loop, 1base)

1(base,base)
� pair=(loop, 1base)

βq
G
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All that now remains to show is

transy 7→apG(H(y)) � ε(y)=ε(y) � pair=(loop,1y)(loop, η) = η

However, this follows at once from the fact that the circle S1, and hence the product S1 × S1, is a
1-type (as shown e.g., by Licata and Shulman [9]): this means that for any two points x, y : S1×S1,
any two paths α, α′ : x = y, and any two higher paths γ, γ′ : α = α′, we necessarily have γ = γ′.

Right-to-left We need to show that for any x : T 2 we have F (G(x)) = x. We use torus induction
with b′ := 1b. We let p′ be the path

transx 7→F (G(x))=x(p, 1b)

apF (apG(p))−1 � 1b � p

1b

T3(p, 1b)

I(κp)

where for any α : x =T 2 y and u : F (G(x)) = x, the path

T3(α, u) : transx 7→F (G(x))=x(α, u) = apF (apG(α))−1 � u � α

is defined by path induction on α and κp is the path

apF (apG(p)) � 1b

apF (apG(p))

apF (pair=(1base, loop))

apf (loop)

p

1b � p

via βp
G

µbase(loop)

βf
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Similarly, let q′ be the path

transx 7→F (G(x))=x(q, 1b)

apF (apG(q))−1 � 1b � q

1b

T3(q, 1b)

I(κq)

where κq is the path

apF (apG(q)) � 1b

apF (apG(q))

apF (pair=(loop, 1base))

hap(apF→(loop), base)

q

1b � q

via βq
G

νbase(loop)

hap(β∗F→ , base)

All that remains now is to show that the following diagram commutes:

transx 7→F (G(x))=x(p � q, 1b)

transx7→F (G(x))=x(q, transz 7→F (G(x))=x(p, 1b))

transx 7→F (G(x))=x(q, 1b)

1b

transx 7→F (G(x))=x(q � p, 1b)

transx 7→F (G(x))=x(p, transz 7→F
×(G(z))=z(q, 1b))

transx 7→F (G(x))=x(p, 1b)

via t

via p′

q′

via q′

p′
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We proceed in four steps.

Step 1 For terms α1 : x =T 2 y, α2 : y =T 2 z, α′1 : a =T 2 b, α′2 : b =T 2 c, ux : F (G(x)) = a,
uy : F (G(y)) = b, uz : F (G(z)) = c, η1 : apF (apG(α1)) � uy = ux � α′1, η2 : apF (apG(α2)) � uz =
uy � α′2, let ζ(α1, α2, α

′
1, α

′
2, ux, uy, uz, η1, η2) be the path

apF (apG(α1
� α2)) � uz

(
apF (apG(α1)) � apF (apG(α2))

)
� uz

apF (apG(α1)) �
(
apF (apG(α2)) � uz

)

apF (apG(α1)) � (uy � α′2)

(
apF (apG(α1)) � uy

)
� α′2

(ux � α′1) � α′2

ux � (α′1 � α
′
2)

via η2

via η1

Now for α1 : x =T 2 y, α2 : y =T 2 z, ux : F (G(x)) = x, uy : F (G(y)) = y, uz : F (G(z)) = z,
η1 : apF (apG(α1)) � uy = ux � α1, η2 : apF (apG(α2)) � uz = uy � α2, we claim the path

transw 7→F (G(w))=w(α1
� α2, ux)

transw 7→F (G(w))=w(α2, trans
w 7→F (G(w))=w(α1, ux))

transw 7→F (G(w))=w(α2, uy)

uz

via T3(α1, ux) � I(η1)

T3(α2, uy) � I(η2)
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is equal to the path

transw 7→F (G(w))=w(α1
� α2, ux)

apF (apG(α1
� α2))

−1 � ux � (α1
� α2)

uz

T3(α1
� α2, ux)

via I(ζ(α1, α2, α1, α2, ux, uy, uz, η1, η2))

To show this, we proceed by path induction on α1 and α2. Hence we have to establish the
claim for α1 := 1x, α2 := 1x, ux, uy, uz : F (G(x)) = x, and η1 : 1F (G(x))

� uy = ux � 1x,
η2 : 1F (G(x))

� uz = uy � 1x.
We note, however, that the types of η1, η2 are equivalent to ux = uy and uy = uz respectively.

Hence it suffices to show that given ux, uy, uz : F (G(x)) = x, η′1 : ux = uy, η′2 : uy = uz, we
can establish the claim for the special case when η1 and η2 have been obtained from η′1 and η′2,
respectively, by using the aforementioned equivalences.

But we can now perform path induction on η′1 and η′2, leaving us with ux : F (G(x)) = x and
η′1 := 1ux , η′2 := 1ux . We finish the proof by generalizing the endpoints of ux and performing a
final path induction.

By what we have just shown, it suffices to prove that the following diagram commutes:

transw 7→F (G(w))=w(p � q, 1b)

apF (apG(p � q))−1 � 1b � (p � q)

1b

transx 7→F (G(w))=w(q � p, 1b)

apF (apG(q � p))−1 � 1b � (q � p)

via t

T3(p � q, 1b) T3(q � p, 1b)

I(ζ(p, q, p, q, 1b, 1b, 1b, κp, κq)) I(ζ(q, p, q, p, 1b, 1b, 1b, κq, κp))

Step 2 We observe the following: given terms α, α′ : x =T 2 y, θ : α = α′, ux : F (G(x)) = x,
uy : F (G(y)) = y, η : apF (apG(α)) � uy = ux � α, and η′ : apF (apG(α′)) � uy = ux � α′, the
commutativity of the diagram
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transw 7→F (G(w))=w(α, ux)

apF (apG(α))−1 � ux � α

uy

transw 7→F (G(w))=w(α′, ux)

apF (apG(α′))−1 � ux � α′

via θ

T3(α, ux) T3(α′, ux)

I(η) I(η′)

is equivalent to the commutativity of the diagram

apF (apG(α)) � uy

ux � α

apF (apG(α′)) � uy

ux � α′

via θ

η

via θ

η′

To show this, we proceed by path induction on θ and a subsequent path induction on α. After
simplifying it remains to prove that for ux, uy : F (G(x)) = x, η, η′ : 1F (G(x))

� uy = ux � 1x, we
have (I(η) = I(η′)) ' (η = η′). But this follows since I is an equivalence.

By what we have just shown, it suffices to prove that the following diagram commutes:

apF (apG(p � q)) � 1b

1b � (p � q)

apF (apG(q � p)) � 1b

1b � (q � p)

via t

ζ(p, q, p, q, 1b, 1b, 1b, κp, κq)

via t

ζ(q, p, q, p, 1b, 1b, 1b, κq, κp)

Step 3 We observe the following: for k ∈ {1, 2} and x1, x2, x3 : T 2 let terms α1
k : xk = xk+1;

α2
k : G(xk) = G(xk+1); α3

k, α
4
k : F (G(xk)) = F (G(xk+1)); ι1k : apG(α1

k) = α2
k; ι

2
k : apF (α2

k) =
α3
k; ι

3
k : α3

k = α4
k be given. Then the path
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apF (apG(α1
1
� α1

2)) � 1F (G(x3))

apF (apG(α1
1
� α1

2))

apF

(
apG(α1

1) � apG(α1
2)
)

apF (α2
1
� α2

2)

apF (α2
1) � apF (α2

2)

α3
1
� α3

2

α4
1
� α4

2

1F (G(x1))
� (α4

1
� α4

2)

via ι11, ι
1
2

via ι21, ι
2
2

via ι31, ι
3
2

is equal to the path ζ
(
α1

1, α
1
2, α

4
1, α

4
2, 1F (G(x1)), 1F (G(x2)), 1F (G(x3)), η1, η2

)
where ηk is the path
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apF (apG(α1
k)) � 1F (G(xk+1))

apF (apG(α1
k))

apF (α2
k)

α3
k

α4
k

1F (G(xk))
� α4

k

via ι1k

ι2k

ι3k

To show this, we proceed by path induction (with one endpoint fixed) on ι1k, ι
2
k, ι

3
k and a subse-

quent path induction on α1
k.

By what we have just shown, it suffices to prove that the outer rectangle in the following
diagram commutes:
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A

B

C

D

E

apF (apG(p � q)) � 1

apF (apG(p � q))

apF

(
apG(p) � apG(q)

)

apF

(
pair=(1, loop) � pair=(loop, 1)

)

apF (pair=(1, loop)) � apF (pair=(loop, 1))

apf (loop) � hap(apF→(loop), base)

p � q

1 � (p � q)

apF (apG(q � p)) � 1

apF (apG(q � p))

apF

(
apG(q) � apG(p)

)

apF

(
pair=(loop, 1) � pair=(1, loop)

)

apF (pair=(loop, 1)) � apF (pair=(1, loop))

hap(apF→(loop), base) � apf (loop)

q � p

1 � (q � p)

via βpG, βqG

via µbase(loop), νbase(loop)

via βf , hap(β∗F→ , base)

via βqG, βpG

via νbase(loop), µbase(loop)

via hap(β∗F→ , base), βf

via t

via t

via t

via Φloop,loop

nathap(apF→ (loop))(loop)

t

Step 4 It suffices to prove that each of the inner rectangles commutes. Rectangles A and E
commute obviously. Rectangle B is just diagram (2) transported along apF , and hence commutes.
Rectangle C commutes by the following generalization: for any α : x =S1 y, the diagram below
commutes by path induction on α:
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apF

(
pair=(1x, α) � pair=(α, 1y)

)

apF (pair=(1x, α)) � apF (pair=(α, 1y))

apF→(x)(α) � hap(apF→(α), y)

apF

(
pair=(α, 1x) � pair=(1y, α)

)

apF (pair=(α, 1x)) � apF (pair=(1y, α))

hap(apF→(α), x) � apF→(y)(α)

via µx(α), νy(α) via νx(α), µy(α)

via Φα,α

nathap(apF→ (α))(α)

It remains to show that rectangle D commutes. Consider the following diagram:

D1

D2

apf (loop) � hap(apF→(loop), base)

apf (loop) � q

p � q

hap(apF→(loop), base) � apf (loop)

q � apf (loop)

q � p

via hap(β∗F→ , base)

via βf

via hap(β∗F→ , base)

via βf

t

nathap(apF→ (loop))(loop)

natH(loop)

Commutativity of the outer rectangle clearly implies the commutativity of D. It thus remains to
show that D1 and D2 commute. The rectangle D2 is precisely diagram (1), which commutes.
Rectangle D1 commutes by the following generalization: let γ : h1 =f∼f h2 and α : x =S1 y be
given. Then the following diagram commutes by path induction on γ and α:

apf (α) � h1(y)

apf (α) � h2(y)

h1(x) � apf (α)

h2(x) � apf (α)

via hap(γ, y) via hap(γ, x)

nath1(α)

nath2(α)

This finishes the proof.
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6 Conclusion
We have presented a homotopy-type theoretic proof that the torus T 2 is equivalent to the product of
two circles S1 × S1. To compare the proof described here to the one given by Licata and Brunerie
in [8], we first note that the definitions of the back-and-forth functions between T 2 and S1 × S1

are exactly the same. When proving that the functions compose to the identity on S1×S1 we used
the fact that the circle S1 is a 1-type. This simplification is not used by Licata and Brunerie; the
lines 75-76, 82-86 in [4] comprise the path algebra which would be avoided by the aforementioned
simplification. On the other hand, in this fashion Agda is able to automatically infer the terms
loop1-case and loop2-case, which in our notation correspond to the paths η and δ respectively (of
course a paper proof offers no such opportunity).

Similarly, when proving that the functions compose to the identity on T 2, the terms p-case and
q-case, which in our proof correspond to the paths κq and κp, are inferred automatically. Steps 1
and 2 of our proof roughly correspond to lines 403-441 in [5] and 51-57 in [4]; in both proofs, the
purpose of these steps is to mediate between a diagram involving transports (a “square-over”) and
an equivalent diagram which does not (a “cube”). Steps 3 and 4 then roughly correspond to lines
60-67 in [4]; the commuting diagrams (or “cubes”) established in Step 4 are composed together,
using a reordering of operations that is justified by Step 3.
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