
Fast Cache for Your Text: Accelerating Exact
Pattern Matching with Feed-Forward Bloom

Filters
Iulian Moraru and David G. Andersen

September 2009
CMU-CS-09-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper presents an algorithm for exact pattern matching based on a new type of Bloom filter that
we call a feed-forward Bloom filter. Besides filtering the input corpus, a feed-forward Bloom filter
is also able to reduce the set of patterns needed for the exact matching phase. We show that this
technique, along with a CPU architecture aware design of the Bloom filter, can provide speedups
between 2× and 30×, and memory consumption reductions as large as 50× when compared with
grep, while the filtering speed can be as much as 5× higher than that of a normal Bloom filters.

This research was supported by grants from the National Science Foundation, Google, Network Appliance, Intel
Corporation and Carnegie Mellon Cylab.

Keywords: feed-forward Bloom filter, text scanning, cache efficient

1 Introduction
Matching a large corpus of data against a database of thousands or millions of patterns is an im-
portant component of virus scanning [18], data mining and machine learning [1] and bioinfor-
matics [19], to name a few problem domains. Today, it is not uncommon to match terabyte or
petabyte-sized corpuses or gigabit-rate streams against tens to hundreds of megabytes of patterns.

Conventional solutions to this problem build an exact-match trie-like structure using an algo-
rithm such as Aho-Corasick [3]. These algorithms are in one sense optimal: matching n elements
against m patterns requires only O(m + n) time. In another important sense, however, they are
far from optimal: the per-byte processing overhead can be high, and the DFAs constructed by
these algorithms can occupy gigabytes of memory, leading to extremely poor cache use that crip-
ples throughput on a modern CPU. Figure 1 shows a particularly graphic example of this: When
matching against only a few thousand patterns, GNU grep can process over 130 MB/sec (using
an algorithm that improves on Aho-Corasick [11]). But as the number of patterns increases, the
throughput drops drastically, to under 15MB/sec. The cause is shown by the line in the graph: the
size of the DFA grows to rapidly exceed the size of cache.

Un-cached memory accesses on modern CPUs are dauntingly expensive1. The Intel Core 2
Quad Q6600 CPU used in the above example with grep, for instance, is capable of sequentially
streaming over 5GB/sec from memory and (optimistically) executing several billion instructions
per second. The achieved 15MB/sec is therefore a disappointing fraction of the machine’s capabil-
ity.

Furthermore, there are situations when running a full-scale Aho-Corasick implementation is
very expensive because memory is limited—e.g., multiple pattern matching on netbooks, mobile
devices, embedded systems, or some low-power computing clusters [4]. Running Aho-Corasick
in these settings would require splitting the patterns into smaller, more manageable chunks, doing
multiple passes over the input data, and thus taking a longer time to complete. Other applica-
tions, such as virus scanning, benefit from efficient memory use in order to reduce the impact on
foreground tasks.

This paper makes two contributions that together can significantly boost the speed of this type
of processing, while at the same time reducing their memory requirements. They both center
around making more efficient use of the cache memory.

Feed-Forward Bloom Filters: For exact-match acceleration, Bloom filters [5] are typically
used as a filter before a traditional matching phase, which we refer to as the “grep cleanup” phase.
Like a traditional Bloom filter, the feed-forward Bloom filter reduces the size of the corpus before
cleanup. Unlike traditional filters, however, it also uses information determined while filtering the
corpus to eliminate many of the patterns from the second phase. As a result, it reduces drastically
the memory used for cleanup.

Cache-partitioned Bloom filters: A lookup in a typical Bloom filter involves computing a
number of hash values for a query, and using these values as indices when accessing a bit vector.
Because the hash values must be randomly distributed for the filter to be effective, and since, for
millions of patterns, the bit vector needs to be a lot larger than the cache available on modern

1On a 65 nm Intel Core 2 CPU, for example, a cache miss requires 165 cycles.

1

 0

 20

 40

 60

 80

 100

 120

 140

 0 1e+06 2e+06 3e+06 4e+06
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

M
em

o
ry

 (
M

B
)

Number of phrases

throughput
memory

Figure 1: The grep processing rate and memory consumption for various numbers of patterns.
The average length of the patterns is 29 characters.

CPUs, Bloom filter implementations have poor cache performance.
Our solution to this problem is to split the Bloom filter into two parts. The first part is smaller

than the largest CPU cache available (typically L2 cache) and is the only one accessed for the wide
majority of the lookups2. In consequence, it will remain entirely cache-resident. The second part
of the filter is larger, but is accessed infrequently (e.g. for true or false positive queries). Its role
is to keep the false positive rate small. The result is that the cache-partitioned Bloom filter is as
effective as the classic Bloom filter, but has much better cache performance, and is as much as 5×
faster, as a result.

We describe these techniques in section 3 and evaluate them in section 4. We show that pat-
tern matching for highly redundant English text can be accelerated by 2× while consuming 4×
less memory, while random ASCII text can be searched 37× faster with 57× less memory, when
compared with grep.

2 Background and Related Work

2.1 Multiple Pattern Search
The classic multiple pattern search algorithm is Aho-Corasick [3]. It is a generalization of the
Knuth-Morris-Pratt linear-time matching algorithm that uses a trie structure in which each node
represents a state of a finite-state machine: For each input character, the automaton goes to the

2Assuming that the percentage of true positive queries is small.

2

state that represents the longest prefix of any match that is still possible. The algorithm generates
an output every time a state that represents a full match is reached.

The popular GNU fgrep utility uses the Commentz-Walter algorithm [11] for multiple string
search. It combines Aho-Corasick with the Boyer-Moore single pattern matching algorithm [7],
which achieves sub-linear running time by skipping characters in the input text according to the
“bad character” and “good suffix” heuristics. As illustrated in figure 1, the size of the DFA used
by Aho-Corasick-like algorithms grows quickly with the number of patterns. This increases setup
time (building the trie) and reduces search speed because of poor cache performance.

Another Boyer-Moore style algorithm for multiple pattern search is the Wu-Manber algorithm
[22], employed by the agrep tool. It uses the “bad character” heuristic to skip over characters
in the input text. The difference is that it does so not by comparing individual characters, but by
comparing the hash values of groups of consecutive characters. This algorithm is most effective
for relatively small numbers of patterns—hundreds to tens of thousands of patterns. For larger
numbers of patterns, it becomes more memory-hungry and thus less cache-efficient. Lin et al.
show that the Wu-Manber algorithm has worse cache performance and worse overall performance
than Aho-Corasick as the number of patterns increases [18].

Complementary approaches to multiple pattern matching investigated the idea of encoding the
text and the patterns using a compact scheme, such that a word comparison is equivalent to multiple
symbol comparisons [15].

The inspiration for the work described in this paper is the algorithm that Rabin and Karp pre-
sented in [14]. The patterns—which must be all of the same length—are hashed and the hash val-
ues are inserted into a set data structure that allows for fast search (e.g. a Bloom filter, a hashtable
or both a bit vector and a hashtable [20]). The actual search consists of a window—of size equal
to the size of the patterns—slid over the input text, and a hash value being computed for the text
in the window, at each position. This value is then searched in the set of hashes computed from
the patterns. If found, it denotes a possible match, which needs to be checked by comparing the
string in the current window with every pattern that has the same hash value as it. The average
case running time for this algorithm is linear if the hash computations required when sliding the
window are done in O(1). This can be achieved by using a rolling hash function—i.e. the hash
value for the current window is computed from the hash value of the previous window, the last
character in the current window, and the first character in the previous window.

In this paper, we present several improvements to the basic Rabin-Karp technique. They enable
fast and memory-inexpensive search for millions of patterns at once.

2.2 Bloom Filters
A Bloom filter [5] is a data structure used for testing set membership for very large sets. It allows
a small percentage of false positives in exchange for space and speed.

Concretely, for a given set S, a Bloom filter uses a bit array of size m, and k hash functions
to be applied to objects of the same type as the elements in S. Each hash application produces
an integer value between 1 and m, used as an index into the bit array. In the filter setup phase,
the k hash functions are applied to each element in S, and the bit indexed by each resulting value
is set to 1 in the array (thus, for each element in S, there will be a maximum of k bits set in the

3

bit array—fewer if two hash functions yield the same value, or if some bits had already been set
for other elements). When testing membership, the k hash functions are also applied to the tested
element, and the bits indexed by the resulting values are checked. If they are all 1, the element is
potentially a member of the set S. Otherwise, if at least one bit is 0, the element is definitely not
part of the set (false negatives are not possible).

The number of hash functions used and the size of the bit array determine the false positive rate
of the Bloom filter. For a set with n elements, the asymptotic false positive probability of a test is�
1− e−km/n

�k (see section 3.2).
The larger m is, the smaller the false positive rate. Furthermore, since hits in the Bloom filter

(false or true positives) are more expensive than misses (we can stop a query as soon as one hash
function misses), a larger m may also improve the performance (search speed) of the filter. On the
other hand, random accesses in a large bit array have poor cache performance on today’s machines.

For a fixed m, k = ln2 ×m/n minimizes the expression of the false positive rate. In practice
however, k is often chosen smaller than optimum for speed considerations: a smaller k means
computing fewer hash functions.

The performance and effectiveness of the Bloom filter is also highly dependent on the hash
functions chosen. A hash function with good uniformity will reduce the false positive rate, making
the filter more effective. On the other hand, hash functions that are expensive to compute will
impact the speed of the filter.

In this paper we discuss these trade-offs and show how to choose the optimal set of parameters
for a given application.

Improving the performance of Bloom filters has also been the subject of much research. Kirsch
and Mitzenmacher [17] show that computing all the hash functions as linear combinations of just
two independent hash functions does not affect the false positive rate of a Bloom filter. We use this
result, as explained in section 3.4. Putze et al. propose blocked Bloom filters in [21], which achieve
better cache performance than regular Bloom filters by putting all the hashes of an element in the
same cache line of the bit vector. This scheme is most effective for applications with a high true
positive search rate, while the cache-friendly technique that we propose in this paper is better suited
for applications with a low true positive rate. Hao et al. [13] use partitioned hashing (the elements
are divided into groups and each group is hashed with a different set of functions) to reduce the
Bloom filter fill factor, and therefore its false positive rate. This optimization is orthogonal to ours.

There exist various extensions to the Bloom filter functionality as well: Counting Bloom fil-

ters [12] allow for deletions by replacing the bit array with an array of counters—each counter
keeps track of how many elements hashed to that location. Bloomier filters [8] implement asso-
ciative arrays that allow a small false positive look-up rate, and are especially effective when the
number of keys is small. Distance-sensitive Bloom filters [16] are designed to answer queries of
the type “is x close to any element in the set S”, for a certain, suitable metric. Spectral Bloom

filters [10] allow for queries on the multiplicity of items in a multiset. In section 3.2 we present
our own extension to Bloom filters which we call feed-forward Bloom filters.

4

Figure 2: Diagram of the pattern matching algorithm using feed-forward Bloom filters.

3 Design and Implementation

3.1 Overview
The multiple pattern matching algorithm that we present in this paper was designed to perform
well for situations where a very large numbers of patterns generate a relatively small number of
matches. It takes into account the memory hierarchy of modern computers.

The diagram in figure 2 presents a high-level view of our approach:

1. First, a feed-forward Bloom filter (FFBF) is built from the large set of patterns.

2. It is used to scan the corpus and discard every item (e.g. line of text, if the patterns cannot
span multiple lines, or input fragment) that does not generate hits in the filter and therefore
cannot contain any matches.

3. The set of patterns is then scanned using feed-forward information obtained during the cor-
pus scan. Only those patterns for which there is a chance of a match in the filtered corpus
are kept for the next phase.

4. At this point, all that is left to do is search for a small fraction of the initial number of
patterns in a small fragment of the text corpus. Therefore, this exact matching step can be
performed quickly and with minimal memory requirements using any traditional multiple
pattern matching algorithm (e.g. Aho-Corasick). Notice that the large set of patterns does
not have to be memory-resident at any point during the execution of our algorithm—we only
need to stream it sequentially from external media.

The starting point for our work is the combination of the Rabin-Karp algorithm and Bloom
filters. This multiple pattern matching approach was augmented with two techniques that improve
its speed and memory efficiency: feed-forward Bloom filters and cache-friendly Bloom filters.

We present the algorithm as a whole in this section, and then describe and evaluate the two
techniques in detail. Even though they were designed to improve the performance of our algorithm,
we believe that they are independently useful.

We begin by describing the traditional way of using Bloom filters in the Rabin-Karp algorithm.
The patterns, all of which must be of the same length, represent the set that is used to build the
Bloom filter. During the scan, a window of the same length as the patterns is slid through the text

5

and tested against the filter. A hit denotes either a true match, or a false positive. To distinguish
between the two, the string in the current window needs to be compared with each pattern. This
step can be performed during or after the Bloom filter scan. Performing the comparison during
the scan is efficient only if additional structures (e.g. hash tables) are used to reduce the number
of patterns that need to be tested. This means that the entire set of patterns needs to be memory
resident and therefore contradicts our design goals. The alternative is to do the exact matching
step after the Bloom filter scan. This involves saving the regions of text—usually lines of text—
that generated hits in the Bloom filter, and running an exact multiple pattern matching algorithm
only on this smaller input. The disadvantage in this case is that all the patterns need to be used
for this second phase run, so it will require large amounts of memory and will exhibit poor cache
performance.

Feed-forward Bloom filters help with the second phase scan by providing a subset containing
all the patterns that will generate matches, and possibly a small number of patterns that will not.
In other words, feed-forward Bloom filters not only filter the corpus like regular Bloom filters, but
also filter the set of patterns. Usually, the resulting subset contains only a small fraction of the
initial number of patterns, so the speed and memory efficiency of the second phase exact matching
scan are drastically improved.

In practice, it often happens that the patterns are not all of the same length. One solution is to
take the size of the shortest pattern (l), and consider for the first phase only l consecutive characters
of every pattern (e.g. the first l characters). If, however, l is too small, then the filtering will not
be very effective, since the chance of any combination of only a few characters is likely to be very
common in the text. The solution in this case is to remove the shortest patterns from the first phase,
and look for them separately in an exact match scan. This scan is faster for fewer small patterns,
so choosing l is a trade-off between the effectiveness of the filtering phase—and as a result, the
performance of the second phase scan—and the performance of the separate exact match scan for
the short patterns.

Another common case when filtering effectiveness may be reduced is that when a small number
of patterns generate many matches. In this situation, the filtering would only discard a small
percentage of the corpus text. A good way of dealing with this case is to test the frequency of the
patterns in a sample of the corpus. The most frequent patterns could then be excluded from the
filtering phase, and join the short patterns in a separate exact matching scan.

A pseudocode description of the algorithm is presented in figure 3.

6

{P is the set of all fixed-string patterns}
{T is the set of input string elements}

Phase 1 - Preprocessing
1. find F ⊂ P , the subset of the most frequent patterns
2. choose l, the minimum size for the patterns to be included in the Bloom filter
3. compute S ⊂ P , the subset of all patterns shorter than l

4. build feed-forward Bloom filter FFBF from P \ (F ∪ S)
Phase 2 - Filtering
1. (T �, P �) ← FFBF (T)
with
T � ⊂ T and
P � ⊂ (P \ (F ∪ S))

Phase 3 - Exact matching
1. T1 ← exact match[F ∪ S](T)
2. T2 ← exact match[P �](T �)
3. output T1 ∪ T2

Figure 3: Pseudocode for the multiple pattern matching algorithm based on feed-forward Bloom
filters

A critical aspect of the performance of Bloom filters is the way they use the CPU caches.
Section 3.3 presents a technique for making Bloom filters take advantage of the architectural char-
acteristics of modern CPUs.

3.2 Feed-forward Bloom Filters

n = |S| the number of items in the set
k the number of hashes used for the Bloom filter
m the number of bits in the Bloom filter
u the number of bits set in the first bit vector
w the number of queries

Table 1: The notation used in section 3.2.

Bloom filters are used to test set membership: given a set S, a Bloom filter is able to answer
questions of the form “does x belong to S?” (we will write x ∈? S) with a certain false positive
probability.

Feed-forward Bloom filters extend this functionality. After answering a number of queries, a
feed-forward Bloom filter provides a subset S � ⊂ S, such that:

1. If z ∈? S was answered and z ∈ S, then z ∈ S �.

7

2. If y ∈ S �, then there is a high probability that y ∈? S was answered.

To implement this functionality, feed-forward Bloom filters use two bit arrays instead of one.
The first array is used like a regular Bloom filter bit array. The second one, of the same size as the
first, starts with all bits 0, and is modified during the querying process: for every positive test, the
bits indexed by the hash values of the tested item—which are set in the first array, since the test
is positive—are also set in the second array. After a number of queries, S � is obtained by testing
every item in S against the Bloom filter that uses the second array as its bit array, and putting all
the items that generate positive results in S �.

To understand why this implementation is correct, consider that the query x ∈? S has been
answered for a certain x ∈ S. Then, according to the procedure described above, the bits indexed
by the hash values of x (the values obtained by applying the Bloom filter hash functions to x) have
also been set in the second array. In the next phase, when all the items in S are queried using the
second array, x will again be hashed using the same hash functions, yielding the same hash values.
The bits associated to these values have all been set in the second array, so the test will be positive
and x will be included in S �.

Next, given an item y ∈ S which was not queried against the Bloom filter, we compute the
probability that y ∈ S �—in other words, the feed-forward false positive probability. Intuitively,
this depends on the number of bits set in the second array, which in turn is determined by (1) the
same factors that affect the false positive rate of the Bloom filter that uses the first bit array, since
fewer hits in the first array mean fewer bits set in the second, and, for the same reason, (2) the
number of queries that are run against the first array.

Table 1 contains the notations used in this section.
Consider a Bloom filter of size m (the filter’s bit array has m bits) and let k be the number

of hashes used for every item insertion/search. Assuming perfect hash functions, after inserting
n = |S| items into the filter, the probability that any particular bit is still 0 is:

P0 =

�
1− 1

m

�kn

Then, the number of bits that are set is:

u = m ∗
�

1−
�

1− 1

m

�kn
�

The probability of a false positive when searching in the Bloom filter is then3:

PFP =

�
1−

�
1− 1

m

�kn
�k

We begin by ignoring true positives (in most applications the number of true positives is negli-
gible when compared with the number of false positives), but we factor them in the next subsection.
For now, we can write:

3As shown in [6], this formula is not the exact expression for the false positive rate of a Bloom filter, but it is a
good approximation if m is very large and k is small, which is the case for most Bloom filter applications.

8

Phit = PFP + PTP ≈ PFP

After doing w queries against the Bloom filter, the probability that a particular 1 bit did not
correspond to any hashes of the queries that did hit—so the probability of a bit set in the first array
not being set in the second array—will be:

P1,0 =

�
1− 1

u

�kwPhit

Thus, the fraction of items that are covered by the hits (i.e. their hash values are amongst those
of the positive queries), and will be selected to be part of S � is:

|S �|
|S| =

�
1−

�
1− 1

u

�kwPhit
�k

≈



1−
�

1− 1

m (1− e−kn/m)

�kw(1−e−kn/m)
k



k

≈

�
1− e

−k w
m(1−e−kn/m)

k−1�k

This expression is represented in figures 4 and 5 as a function of w/m, for different values of
k and m/n.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50 100 150 200 250 300

fe
ed

-fo
rw

ar
d

fa
lse

 p
os

iti
ve

 ra
te

w/m

k = 2

k = 4

k = 6

Figure 4: The feed-forward false positive rate as a function of w/m when m/n = 20 and k =
2, 4, 6.

9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50 100 150 200 250 300

fe
ed

-fo
rw

ar
d

fa
lse

 p
os

iti
ve

 ra
te

w/m

m/n = 10

m/n = 20

m/n = 30

m/n = 10

m/n = 20

m/n = 30

Figure 5: The feed-forward false positive rate as a function of w/m when k = 4 and m/n =
10, 20, 30.

3.2.1 Factoring in True Positives

Intuitively, it is not the number of true positives that affects the feed-forward false positive rate, but
the percentage of items that generate them. For example, if only one item generates a very large
number of true positives, then only k bits will be set in the second bit array.

Assume that there are n� items from S that will generate true positives (we usually expect n�

n to
be small). The number of bits that are 1 in the first bit array due to these n� items is:

u
� = m

�
1−

�
1− 1

m

�kn�
�

Then, the probability that a bit set in the first array is also set in the second array, after w tests
that are not true positives and any number of test that are true positives, is:

P1,1 = (1− P1,0)

�
1− u�

u

�
+

u�

u

The probability of a feed-forward false positive becomes:

Pfeed−fwdFP = P
k
1,1

Figure 6 presents the same cases as figure 4, and shows how the feed-forward false positive
rate is affected if n�

n = 0.1. The effects of n�

n = 0.5 are presented in figure 7. We conclude that the
effect of the true positives is negligible if we expect only a small percent (≤ 10%) of items to be
present in the corpus.

10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50 100 150 200 250 300

fe
ed

-fo
rw

ar
d

fa
lse

 p
os

iti
ve

 ra
te

w/m

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

Figure 6: The feed-forward false positive rate as a function of w/m when m/n = 20 and k =
2, 4, 6. The green lines show the effect of 10% of the items generating true positives.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50 100 150 200 250 300

fe
ed

-fo
rw

ar
d

fa
lse

 p
os

iti
ve

 ra
te

w/m

k = 2

k = 4

k = 6

k = 2

k = 4

k = 6

Figure 7: The feed-forward false positive rate as a function of w/m when m/n = 20 and k =
2, 4, 6. The green lines show the effect of 50% of the items generating true positives.

11

3.3 Cache-partitioned Bloom Filters
Consider a machine with a simple memory hierarchy: a small cache memory4 that can be accessed
rapidly and a large main memory that is accessed more slowly. In the cases we examine, hits in the
Bloom filter are rare. A Bloom filter miss requires one or more lookups in the bit array, where the
number of lookups is inversely proportional to the fraction of bits that are set to 1—the filter returns
“NO” when it finds the first 0 bit. These lookups therefore, have a computational cost to hash the
data and compute the Bloom filter bit index, and a memory lookup cost that depends heavily upon
whether the lookup hits in L2 cache and whether it incurs a TLB miss. Because of the large cost
penalty for cache misses, reducing the number of cache misses for negative Bloom filter lookups
can substantially reduce the total running time. We therefore propose an improvement to Bloom
filters that we call cache-partitioned Bloom filters.

The bit array for a cache-partitioned Bloom filter is split into two components: a small bit array
that fits completely in cache and a large bit array that resides only in main memory. The first s

hash functions hash into the small cache-resident array, while the other q = k − s functions hash
only into the non-cache-resident part. Figure 8 gives the intuition behind cache-partitioned Bloom
filters. Unlike for the regular and k-partitioned Bloom filters5, in cache-partitioned filters most
accesses are made to the part that resides in cache: the first bits checked are always in cache, and
most of the time one of them will be unset, which will determine the lookup to be aborted.

Table 2 contains the notation used in this section.
Cache behavior. We assume that the cache uses an approximation of least-recently-used with

some degree of set associativity (≥ 2). As a result, pages for the cache-resident part of the filter
are likely to remain in cache. We ensure this further by doing non-temporal reads6 when accessing
the non-cache resident part of the bit array.

TLB behavior. We use the large pages support available in most modern processors to ensure
that the number of pages required by the bit array is smaller than the number of TLB entries.
Avoiding TLB miss penalties improves speed by 15%. This optimization also simplifies our anal-
ysis because it lets us ignore TLB effects.

After inserting n phrases in the filter, the probability that any particular bit is 1 in the cache
resident part is:

P1c = 1−
�

1− 1

c

�sn

For the non-resident part, the corresponding probability is:

P1m = 1−
�

1− 1

m

�qn

4For a multi-level cache hierarchy this will usually be the largest cache.
5A k-partitioned Bloom filter uses a bit array that is split into as many parts as there are hash functions. Each hash

function is used to set and test bits in only one part of the array—in other words, a k-partitioned Bloom filter is the
composition of k smaller Bloom filters, each using only one hash function

6In fact non-temporal prefetches with the prefetchNTA instruction available for Intel CPUs.

12













Figure 8: Comparison between the patterns of access in a regular Bloom filter, a k-partitioned
Bloom filter and a cache-partitioned Bloom filter, with k = 4 and s = 2. Darker areas have a
higher access density (average number of accesses per bit).

n the number of patterns
k total number of hash functions used
s the number of hashes used for the cache-resident

part of the filter
q the number of hashes used for the non-resident

part of the filter
c the number of bits in the cache-resident part of

the filter
m the number of bits in the non-resident part of

the filter
tc cache access time
tm memory access time
tp branch misprediction penalty

Table 2: Notation used in section 3.3.

Assuming that the cache-resident part will only rarely evicted from cache, the average time
spent per Bloom filter lookup will be:

t̄lookup = tc + tcP1c + tcP
2
1c + ... + tcP

s−1
1c +

tmP s
1c + tmP s

1cP1m + ... + tmP s
1cP

q−1
1m

= tc
1−P s

1c
1−P1c

+ tmP s
1c

1−P q
1m

1−P1m

To refine this model further, note that for CPUs that perform branch prediction, the branch
predictor will be wrong every time a bit vector access hits a set bit, thus incurring a branch mis-
prediction penalty tp. The average lookup time becomes:

t̄lookup = tc
1− P s

1c

1− P1c
+ tmP

s
1c

1− P
q
1m

1− P1m
+

tp

�
1− P s

1c

1− P1c
− 1 + P

s
1c

1− P
q
1m

1− P1m

�

13

3.4 Fast Rolling Hash Functions
Besides the cache behavior, another possible bottleneck in a Bloom filter implementation is the
computation of the hash functions.

When using Bloom filters for scanning text, most implementations employ rolling hash func-
tions to easily update the hash values based on the characters sliding out of, and into the current
window, respectively. The classic rolling hash function used in the Rabin-Karp algorithm com-
putes the hash value of a string as the value of the corresponding ASCII sequence in a large base.
This computation, however, requires multiplications and the expensive modulo operation, and can
thus have a high overhead.

An inexpensive and effective rolling hash method is hashing by cyclic polynomials [9]. It uses
a substitution box to assign random 32-bit values to characters, and combines these values with bit-
wise rotations and the exclusive-OR operation, avoiding multiplications and modulo operations.

In our implementation, we use cyclic polynomial hashing to obtain two distinct hash values for
each window. We then use the idea of Kirsch and Mitzenmacher [17] and compute all the hash
functions needed in the Bloom filter algorithm as linear combinations of these two values.

4 Evaluation
Unless specified otherwise, we run our tests on a 2.4 GHz Intel Core 2 Quad Q6600 CPU with split
8 MB L2 cache (each core only has access to 4 MB), and 4 GB of RAM memory. All tests are
performed with a warm file system buffer cache. Every time we compare with grep, we discount
the grep initialization time.

4.1 Overall Performance
We compare our algorithm with grep version 2.5.4, run as fgrep, which is optimized for fixed-
string patterns. We use cache-optimized feed-forward Bloom filters for the first phase, and grep
for the second phase. We report aggregate throughput, initialization time, and memory consump-
tion.

In this comparison we use three workloads, described below:

Read the Web: The Read the Web project [1] aims at building a probabilistic knowledge base
using the content of the Web. The workload that we use in our evaluation consists in deter-
mining semantic classes for English words by putting those words in phrases with similar
structure and finding the relative frequencies of these phrases in Web documents. In total,
there are approximately 4.5 million phrases that we search in 244 MB of Web documents.
Note that, because of the way they were built, the patterns are very similar, which means
that this workload is almost the best case for grep and the worst case for the feed-forward
Bloom filter. Around 90% of these patterns are over 19 characters, so we choose the first
19 characters of each phrase (that is long enough) to put in the Bloom filter. The results

14

 0

 20

 40

 60

 80

 100

 1e+06 2e+06 3e+06 4e+06
 0

 20

 40

 60

 80

 100

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

In
it

ia
li

za
ti

o
n
 t

im
e

(s
)

Number of phrases

FFBF throughput
grep throughput

FFBF initialization time
grep initialization time

Figure 9: Comparison between scanning text from the Read the Web project with feed-forward
Bloom filters and using grep. The FFBF throughput is the overall throughput including the first
(filter) and second (grep cleaning) phase.

presented in figure 9 are for phrase sets that do not contain any short patterns. Since the dis-
tribution of pattern lengths is highly application-specific, we present results for experiments
with short patterns separately, in section 4.2.

Random ASCII text: We search for random 19-character strings consisting of printable ASCII
characters in a random corpus. Each line of the corpus has 118 lines (there are 100 Bloom
filter lookups per line) and there are one million lines in the corpus. Since there is no redun-
dancy in the patterns, and the probability that a patterns will be found in the corpus is very
small, this workload represents the best case for Bloom filters, but the worst case for grep.
The results are presented in figure 10. Note that at 2.5 million patterns, grep requires more
memory than available, making it unusable.

DNA: This consists in looking for 200,000 random DNA sequences of various lengths (9, 10, 15
and 20 base pairs) in the genomes of three strains of Streptococcus Suis [2] 7. Our goal is
to assess the limitations of our approach for a potentially important application which has
the particularity that the alphabet is very small (four base pairs). The results are presented in
figure 11.

7We do not claim this to be representative of workloads in bioinformatics, even though popular sequence alignment
algorithms, such as BLAST, start with a multiple-patterns matching phase (the patterns are usually 11 base pairs for a
human genome).

15

 0

 20

 40

 60

 80

 100

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

In
it

ia
li

za
ti

o
n

 t
im

e
(s

)

Number of phrases

grep runs out of memory

FFBF throughput
grep throughput

FFBF initialization time
grep initialization time

Figure 10: Comparison between scanning random text (printable ASCII characters) with feed-
forward Bloom filters and using grep. At 2.5 million phrases grep requires more than the avail-
able 4 GB of RAM, which practically makes it unusable. The FFBF throughput is the overall
throughput including both the first (filter) and second (grep cleaning) phase.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of base pairs / pattern

FFBF throughput
grep throughput

Figure 11: Comparison between scanning a DNA genome (Streptococcus Suis strains P1/7,
BM407 and SC84 [2]) for random DNA sequences of different length with feed-forward Bloom
filters and grep. The FFBF throughput is the overall throughput including the first (filter) and
second (grep cleaning) phase.

16

 0

 20

 40

 60

 80

 100

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 3600

 4000

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

M
em

o
ry

 (
M

B
)

Number of phrases

grep runs out of memory

FFBF + grep throughput
CPBF + grep throughput

FFBF + grep memory
CPBF + grep memory

Figure 12: Throughput and memory consumption comparison between FFBF + grep and simple
cache-partitioned Bloom filter (no feed-forward) + grep for scanning random ASCII text. At 2.5
million phrases grep requires more than the available 4 GB of RAM.

 0

 20

 40

 60

 80

 100

 1e+06 2e+06 3e+06 4e+06
 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 3600

 4000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

M
em

o
ry

 (
M

B
)

Number of phrases

FFBF + grep throughput
CPBF + grep throughput

FFBF + grep memory
CPBF + grep memory

Figure 13: Throughput and memory consumption comparison between FFBF + grep and simple
cache-partitioned Bloom filter (no feed-forward) + grep for scanning text from the Read the Web
project with. The simple Bloom filter uses all our performance enhancing techniques.

17

A comparison between the memory requirements of the two approaches is presented for the
Read the Web and random text workloads in figures 12 and 13 (the cache-partitioned Bloom filter
(CPBF) + grep requires only 34 MB—the size of the bit vector—more than grep).

As expected, feed-forward Bloom filters are much better than grep for the random text work-
load. Grep builds a very large DFA because the alphabet is large and all symbols occur in the
pattern set with almost equal frequency, while the feed-forward Bloom filter only needs to run the
first pass, since there are no patterns false positives (even if there are false positive matches in the
corpus).

The Read the Web scenario is more favorable to grep because there are many similar patterns
(i.e. the first 19 characters that we use to build the feed-forward Bloom filter are the same for many
patterns), so the number of patterns that must be checked in the second phase is large. Even so,
feed-forward Bloom filters perform substantially better.

Grep works well for DNA lookups because the alphabet is very small (four symbols) and
usually the patterns are short, so the DFA that grep builds is small. Furthermore, with patterns
containing only four distinct characters, the hash functions will be less uniform. As the size of the
sequences increases, however, the relative performance of feed-forward Bloom filters improves,
making them a viable solution even in this settings.

4.2 The Impact of Short Patterns
We repeat the comparison with grep for the Read the Web workload at the 4 million phrases
point, but this time 15% of the phrases are shorter than 19 characters. Simple grep achieves
a throughput of 6.4 MB/s. When using feed-forward Bloom filters, if we search for the short
patterns in a separate scan, we will obtain a throughput of 6.7 MB/s. A better strategy is to apply
the feed-forward technique recursively. For example, using three FFBFs—one for patterns at least
19 characters, another for patterns at least 14 characters and at most 18, and another for patterns
between 10 and 13 characters long—and a separate scan for the shortest patterns (shorter than 10
characters in length), we can achieve a throughput of 8.3 MB/s.

4.3 The Benefit of Individual Optimizations
Feed-forward. Figures 12 and 13 present the results of comparing feed-forward Bloom filters
with cache-partitioned Bloom filters (no feed-forward) for random text and Read the Web work-
loads. The no-feed-forward implementation gains time by not having to process the phrases after
filtering the corpus, but needs an expensive grep cleanup phase using all the phrases. Although
the FFBF-based implementation achieves higher throughput only for the random text case, it uses
much less memory. This is important because the amount of available memory limits the size
of the pattern set that we can search for. For example, we are not able to search for 2.5 million
phrases on a machine with 4 GB of internal memory, in the random text case. Even the Read the
Web workload is problematic for a low-power system (like the one that we used to run the test that
corresponds to figure 15)—with 1 GB of RAM we can search for no more than 1 million Read the
Web phrases.

18

 0

 1

 2

 3

 4

 5

 6

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
im

e
(s

)

Number of phrases

SP (classic BF) time
CP+SP (no NTR) time
CP+NTR (no SP) time

CP+SP+NTR time

Figure 14: The graph shows the benefit of each optimization: CP (cache-partitioning), SP (super
pages), and NTR (non-temporal reads). The filters were run on 114 MB of random ASCII text, for
different numbers of 19-characters phrases. The cache-partitioned filters use five hash functions
(two of which are for the cache-resident part) while the non-partitioned filter uses four. They are of
similar size: 32 MB for the non-partitioned Bloom filter, and 2 + 32 MB for the cache-partitioned
ones.

Cache-partitioning. Figure 14 shows the benefits of each of the following three optimizations:
cache-partitioning, non-temporal reads and super pages. Cache-partitioning is the optimization
that provides the biggest speed-up. Note that we used more hash functions for the partitioned
filters because, even if this made them slightly slower, we wanted their false positive rate to be at
least as small as that of the non-partitioned filter. Table 3 compares the false positive rates of the
two variations of filters for 3 million phrases and different numbers of hash functions. Figure 15
shows that cache-partitioning is effective in providing speedups even for CPUs that have small
caches. In our experiment we used the Intel Atom 330, which has an L2 cache of only 512 KB.

Filter Type Number of Hashes FP Rate
Classic 4 0.205%

Partitioned 4 0.584%
Partitioned 5 0.039%

Table 3: The false positive rates for cache-partitioned and non-partitioned filters for the random
text workload.

Super pages. Using super pages provides an almost constant time reduction, since most of the
TLB misses are triggered by one of the first Bloom filter lookups—even the cache-resident part of

19

the filter is too large for the number of 4 KB pages it contains to fit in the TLB.

Non-temporal reads. As the number of phrases increases, the non-temporal reads optimization
becomes more important, because there are more accesses to the non-resident part of the filter.
When non-temporal reads are not used, these accesses determine fragments of the cache-resident
part to be evicted from cache, and this produces cache misses during the critical first lookups.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

T
im

e
(s

)

F
al

se
 p

o
si

ti
v

e
ra

te
 (

%
)

Number of phrases

Classic Bloom filter time
Cache-partitioned time

Classic Bloom filter fp rate
Cache-partitioned fp rate

Figure 15: Comparison between the cache-partitioned Bloom filter and the classic Bloom filter on
an Atom 330 CPU with 512 KB L2 cache. The filters were run on 114 MB of random ASCII
text, for different numbers of phrases. Both filters use four hash functions (two-and-two for the
cache-partitioned), and are of similar size: 16 MB for the classic Bloom filter, and 512 K + 16
MB for the cache-partitioned one. The classic Bloom filter was implemented using large virtual
memory pages, just like the cache-partitioned one.

4.4 Choosing Parameters
In this section we describe the way we choose the feed-forward Bloom filter parameters.

The size of the bit vector and its partitioning depend on:

• The amount of memory we are willing to allocate for the filter.

• The number of TLB entries for super pages. Once the required number of super pages is too
large, there will be a TLB miss penalty that will add to the average filter lookup time.

• The size of the largest CPU cache. We determined empirically that for CPUs with large
caches, the filter is faster when we don’t use the entire cache. This is because there will

20

usually be some cache contention between the Bloom filter and other processes or other
parts of the program (e.g. reading the input data). In our case, since our hash functions are
faster if the size of their codomain is a power of 2, we used half of the available L2 cache.
For CPUs with small caches on the other hand, using less than the entire cache may produce
too many false positives in the first part of the filter for cache-partitioning to provide any
benefit.

The number of hash functions affects not only the false positive rate of the filter, but also its
speed. The average lookup time model that we presented in section 3.3 is useful for determining
how many hash functions to use in each section of the feed-forward Bloom filter, if we aim for
optimal speed. Figure 16 shows a comparison between the speed of the fastest filter and that of the
filter that uses the setting recommended by our model.8

After determining the settings that provide the best speed, the desired false positive rate can be
achieved by increasing the number of hash function in the non-resident part—assuming a low true
positive rate, lookups in this section have little influence on the speed of the filter. Notice the large
decrease of the false positive rate reported in table 3 after adding just one more hash function to
the non-resident section of the filter.

Finally, the last parameter that needs to be determined is how to partition the input corpus,
i.e., how many input items (e.g. text lines) to scan before performing the grep cleanup phase. A
coarse partitioning implies fewer cleanup runs, while a finer partitioning determines these runs to
be shorter, because the feed-forward false positive rate will be smaller, as explained in section 3.2.
As seen in section 4.1, this is highly application specific (it depends on the false positive rate), and
therefore we do not attempt to find a general solution.

5 Conclusion
We have presented a new algorithm for exact pattern matching based on two Bloom filter en-
hancements: (1) feed-forward and (2) CPU architecture aware design and implementation. This
algorithm substantially reduces scan time and memory requirements when compared with tradi-
tional DFA-based multiple pattern matching algorithms, especially for large numbers of patterns
that generate relatively few matches.

8The parameters that we used for modeling the behavior of the Intel Core 2 Quad Q6600 CPU are: 14 cycles for
an L1 miss, 165 cycles for an L2 miss and 6 cycles for a branch misprediction.

21

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

P
er

fo
rm

an
ce

 r
at

io
 (

v
s.

 o
p

ti
m

al
)

Number of phrases

optimal
s=1, q=1
s=2, q=1
s=2, q=2
s=3, q=1
s=3, q=2
predicted

Figure 16: The ratio between the speed of scanning using cache-partitioned Bloom filters with
different numbers of hash functions and the speed of the optimal (fastest) setting. The filtered
corpus contains 114 MB of random ASCII text. The predicted line shows the speed of the filter
using the setting that the mathematical model of the average filter lookup time deems to be the
fastest.

References
[1] Read the Web Project Webpage. http://rtw.ml.cmu.edu/readtheweb.html.

[2] Streptococcus Suis Sequencing Webpage. http://www.sanger.ac.uk/Projects/
S_suis.

[3] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340, June 1975.

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan,
and Vijay Vasudevan. FAWN: A fast array of wimpy nodes. In Proc. 22nd ACM Symposium

on Operating Systems Principles (SOSP), Big Sky, MT, October 2009.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13(7):422–426, 1970.

22

http://rtw.ml.cmu.edu/readtheweb.html
http://www.sanger.ac.uk/Projects/S_suis
http://www.sanger.ac.uk/Projects/S_suis

[6] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison,
Michiel Smid, and Yihui Tang. On the false-positive rate of bloom filters. Technical report,
School of Computer Science, Carleton University, 2007.

[7] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.

[8] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, Ayellet Tal, and Oh Boy. The bloomier filter:
An efficient data structure for static support lookup tables. In In Proceedings of the Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA, pages 30–39, 2004.

[9] Jonathan D. Cohen. Recursive hashing functions for n-grams. ACM Transactions on Infor-

mation Systems, 15(3):291–320, 1997.

[10] Saar Cohen and Yossi Matias. Spectral bloom filters. In Proceedings of the 2003 ACM

SIGMOD international conference on Management of data, pages 241–252. ACM, 2003.

[11] Beate Commentz-Walter. A string matching algorithm fast on the average. In Proceedings

of the 6th Colloquium, on Automata, Languages and Programming, pages 118–132, London,
UK, 1979. Springer-Verlag.

[12] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: A scalable wide-
area Web cache sharing protocol. In Proc. ACM SIGCOMM, pages 254–265, Vancouver,
British Columbia, Canada, September 1998.

[13] Fang Hao, Murali Kodialam, and T. V. Lakshman. Building high accuracy bloom filters using
partitioned hashing. SIGMETRICS Performance Evaluation Review, pages 277–288, 2007.

[14] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research Developments, (2):249–260, March 1987.

[15] Sun Kim and Yanggon Kim. A Fast Multiple String-Pattern Matching Algorithm. In Pro-

ceedings of the 17th AoM/IAoM Conference on Computer Science, 1999.

[16] Adam Kirsch and Michael Mitzenmacher. Distance-sensitive bloom filters. In In Proceedings

of the Eighth Workshop on Algorithm Engineering and Experiments (ALENEX), 2006.

[17] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building a better
bloom filter. Random Structures & Algorithms, 33(2):187–218, 2008.

[18] Po-ching Lin, Zhi-xiang Li, Ying-dar Lin, and Yuan-cheng Lai. Profiling and accelerating
string matching algorithms in three network content security applications. IEEE Communi-

cations Surveys & Tutorials, 8, April 2006.

[19] Harry Mangalam. tacg - a grep for dna. BMC Bioinformatics, 3(1):8, 2002.

[20] Robert Muth and Udi Manber. Approximate multiple string search. In Proceedings CPM’96,

LNCS 1075, pages 75–86. Springer-Verlag, 1996.

23

[21] Felix Putze, Peter Sanders, and Singler Johannes. Cache-, hash- and space-efficient bloom
filters. In Experimental Algorithms, pages 108–121. Springer Berlin / Heidelberg, 2007.

[22] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching. Technical Report
TR-94-17, Department of Computer Science, University of Arizona, 1994.

24

	1 Introduction
	2 Background and Related Work
	2.1 Multiple Pattern Search
	2.2 Bloom Filters

	3 Design and Implementation
	3.1 Overview
	3.2 Feed-forward Bloom Filters
	3.2.1 Factoring in True Positives

	3.3 Cache-partitioned Bloom Filters
	3.4 Fast Rolling Hash Functions

	4 Evaluation
	4.1 Overall Performance
	4.2 The Impact of Short Patterns
	4.3 The Benefit of Individual Optimizations
	4.4 Choosing Parameters

	5 Conclusion

