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Abstract

Flow monitoring is increasingly used for a wide range of ratnsecurity and anomaly detection
applications. These applications require that flow momtpinfrastructures provide high flow
coverage and be able to support fine-grained network-wigectibes. Coordinated Sampling
(cSamp) is a recent proposal for improving the flow monitproapabilities of ISPs to address
these demands. In this paper, we address a key deploymeadiim@nt for cSamp-like solutions
—the requirement that each router must determine the Gigstination (OD) pair of each packet
it observes. We cast cSamp in a new framework called cSanatenhables us to apply powerful
results from the theory of maximizing submodular set fumtsito build effective flow monitoring
solutions in which each router works widimly local information We show that cSamp-T provides
near-ideal performance in maximizing the total flow coverag the network. Further, with a
small amount of additional targeted provisioning or upgrgé small number of ingress routers to
add OD-pair identifiers, cSamp-T obtains near-optimal mézation of the minimum fractional
coverage across all OD-pairs. We demonstrate these resutigange of real topologies. From
a practical perspective, these results are promising siregeexpand the applicability of cSamp-
like solutions to ISPs where OD-pair identification is cbatjing and also provides an incremental
deployment path for ISPs. Additionally, we believe that snahthe techniques we develop here
are more broadly applicable to other aspects of network gemant and measurement.






1 Introduction

Applications of flow monitoring in ISPs have far exceeded shepe of traditional traffic engi-
neering and accounting applications [8]. Today, flow mamigpsupports several critical network
management tasks such as anomaly detection [23], idemdifynwanted application traffic [6],
understanding traffic structure at various granulariti€k, [39], botnet analysis [28], and even
forensic analysis [38]. These applications impose sigamfily greater demands on flow moni-
toring infrastructures: greater flow coverage (number ofjua flows logged) and the ability to
achieve network-wide flow measurement goals.

To meet these growing demands, recent work (e.g., [5, 4,@80¢ulates the case for network-
wide rather than router-centric approaches for flow momigpr\We take one such proposal, namely
Coordinated Sampling (cSamp) [30], as our starting poithigmpaper. We choose cSamp because
compared to current solutions, it provides higher flow cager achieves fine-grained network-
wide flow coverage goals, efficiently leverages availabl@mooing capacity on routers and min-
imizes redundant measurements, and naturally load balaesponsibilities to avoid monitoring
hotspots.

In order to simplify the underlying algorithmic formulatis, cSamp assumes that each router
on receiving a packet can immediately ascertain the Oigatination (OD) pair for the packet,
specified by the ingress and egress routers. However, dueetid-pggregation and multi-exit
peers, interior routers in the network cannot identify tHa-@air given just the source and desti-
nation IP addresses. Thus, cSamp imposes two requirenfgntsdifications to packet headers
to carry OD-pair identifiers, and (ii) upgrades to borderteos to compute the OD-pair identi-
fiers [11] for each packet. Both modifications present sigaifi deployment barriers for many
ISPs. Thus, while cSamp is an elegant architecture thatiegsatential to improve flow monitor-
ing, in its current form it is an impractical solution with mmediate deployment path for ISPs
today.

To address this impediment, in this work, we reformulate phablem of implementing a
cSamp-like architecture into the scenario where OD-pantifiers are not available. The goal
of such an architecture, to which we refer as cSarhpisTto realize the benefits of cSamp and at
the same time be immediately deployable. An immediate apresece of this reformulation is that
the known algorithms [30] for efficiently maximizing eithtére total flow coverage or minimum
fractional coverage across all OD-pairs, no longer apptyfatt, we show that these problems
are NP-hard. Consequently, a central challenge is to dgatmrithms for efficiently computing
sampling strategies so as to optimize these measures, exthetly or approximately.

In this paper, we present substantial progress toward ngettis challenge. For the measure
of total flow coverage (total number of unique flows logged},watice that the objective function
is submodular This is important because even though it is hard to find anteatimal solution,
we can implement efficient greedy algorithms with good apipnation guarantees that leverage
this submodularity property. We borrow and extend resuttsifa rich theory of optimizing sub-
modular functions subject to budget constraints (e.g., 25219, 21]) to this specific application.
We show that on realistic topologies, this approach yiek mptimal total flow coverage.

lcSamp-T denotes cSamp minus Tags for OD-pairs



The minimum fractional coverage objective (i.e., the minimacross all OD-pairs of the frac-
tion of flows logged per OD-pair) is not submodular, howeasg so does not inherit these ap-
proximation guarantees with a greedy approach [21]. Mae®n realistic topologies the greedy
approach performs poorly. So, in this case we turn to examgitiie additional resources needed
in order to obtain good performance. We consider two praksicenarios for ISPs to alleviate this
concern: (a) augmenting targeted routers with more menasgurces and (b) incremental deploy-
ment of cSamp by upgrading a small subset of border routdrstive functionality to compute
OD-pair identifiers and add them into packet headers. Ouittsei® this direction are promising:
we show that a few such router upgrades can significantlytiibesninimum fractional coverage
obtained in realistic topologies.

cSamp-T thus makes cSamp-like solutions more immediatghjogtable by relaxing the de-
pendence on the OD-pair identifiers. Further, it providesaremental deployment path for ISPs
to transition their flow monitoring infrastructures to cSarwhile in the interim partial deployment
phase it provides performance comparable to cSamp. We aelevy®that many of the specific al-
gorithmic techniques and heuristic extensions we devetop ke.g., applying results from the
theory of submodular set maximization, intelligent reseysrovisioning, hybrid cSamp/cSamp-T
deployment) can be more broadly applied to other aspectstafark management and measure-
ment.

2 Background and Motivation

Why cSamp: Applications of flow monitoring continue to grow and alreadglude several
anomaly detection and security applications (e.g., [23,1639, 38, 28]). Motivated by this trend,
Sekar et al. [30] identify five main goals for flow monitoringlstions: (i) provide high flow
coverage (i.e., log as many flows as possible) to supportetgrity applications that need a fine-
grained understanding of “who-talked-to-whom”, (ii) mimie redundant reports (i.e., use router
resources efficiently and reduce the overhead in processiplicate measurements), (iii) satisfy
network-wide flow monitoring objectives (e.g., specify sosubsets of traffic as more important
than others or ensure fairness across different subs&)shdrk within (possibly heterogeneous)
router resource constraints, and (v) be general enouglpfmsta wide spectrum of flow monitor-
ing applications.

Synthesizing arguments from several previous papers 6,234, 4, 31, 7], Sekar et al [30]
argue that these goals necessitate three design choigegflosr sampling instead of packet sam-
pling to avoid the well-known biases of packet sampling aglesmall flows [16], coordinating the
routers to leverage available monitoring resources effiyi@nd to avoid redundant sampling, and
a network-wide framework for assigning flow monitoring respibilities to routers to optimally
achieve ISP objectives.

Description of cSamp: For completeness, we provide a brief overview of the cSangpoggh.
We refer the reader to [30] for further details. The inputc8amp are the flow-level traffic
matrix (number of flows per OD-pair), router-level path(sy €ach OD-pair, the resource con-
straints of routers, and a ISP objective function (specifigdrms of the fractional flow coverages



per OD-pair). The output is a set sampling manifestspecifying the monitoring responsibility
of each router in the network. The sampling manifest in cS&rg set of tuples of the form
(OD, [start, end]), where[start, end] C [0, 1] denotes a hash range.

Each router's sampling algorithm is as follows. For eachkpgahe router first identifies the
OD-pair from the packet header. Next, it computes a hashefidv 5-tuple §rclP, dstlP, srcport,
dstport, protocol and checks if the hash value lies in the hash range assigneibt the OD-pair
(the function FAsH returns a value in the range, 1]). Each router maintains Blowtable of the
flows it is currently logging. If the packet has been selectiee router either creates a new entry
(if none exists) or updates counters for the corresponditiy én the Flowtable.

The key idea is that all routers are bootstrapped with theedaash function but are assigned
disjoint hash ranges per OD-pair. This coordinates the Bagactions of routers in the network.
Coordination makes it easy to achieve network-wide flow cage goals in terms of the per OD-
pair coverages and also ensures that the sets of flows samptifierent routers do not overlap.

cSamp formulation: Each OD-PairOD; (i = 1,..., M) is characterized by its router-level path
P; and T;, the number of distinct IP-level flows in a measurement irtee.g., five minutes).
Each routerR?; (j = 1,..., N) is primarily constrained by the availabheemoryfor maintaining
per-flow counters in SRAM [10]Z, denotes the number of flows; can record and report in a
given measurement interval.

d;; denotes the fraction of flows @D, that routerR; logs. (If k; does not lie on patl#;, then
the variabled;; will not appear in the formulation.) Fer=1, ..., M, let C; denote the fraction of
flows on OD; that is logged.

The specific goal in [30] is a two-step objective. First, thgest possible minimum fractional
coverage per OD-painin;{ C;} subject to the resource constraints is found. Next, thigevé
used as the parametaerto the linear program shown below in (4) and the total flow cage
> (T x C;) is maximized.

Maximize) . (T; x C;), subjectto

Vi, Direr, [dig x Ti) < L (1)
Vi, Cz == Zj:RjePi dij (2)
Vi, a<(<1 (4)

The solutiond* = {d}; } to this two-step procedure yields the optimal samplingsgy Next,
this solution is mapped via a simple algorithm into gampling manifestspecifying the flow
monitoring responsibility for each router.

Assumptions in cSamp:There are three main assumptions: (i) a centralized modukeskigning
router responsibilities that has access to routing anfidmnaatrices, (ii) routers implement hash-
based flow sampling, and (iii) routers obtain OD-pair infatian from packet headers.

2For simplicity, we assume that each OD-pair has a singlémgtével path. It is easy to extend the framework to
accommodate multi-path routing [30].



The first two assumptions are feasible within current tetdgioal and operational realities.
First, centralization is viable if the router configuratsoare generated in a reasonable amount of
time (say at most 1-2 minutes). Further, recent trends shat$Ps increasingly favor centraliza-
tion of the network management functions [2, 14] and thatingLand traffic matrices are typically
already available [11, 40]. The second assumption thaerswwupport hash-based flow sampling
is also feasible within capabilities available today. Thgquirements on such hash functions are
quite simple [32, 7] (e.g., no strong cryptographic guagas} and thus they are amenable to fast
hardware implementations [29]. Further, routers alreatlylément hardware hash functions for
other tasks. Flow sampling requires flow table lookups fahegaacket; the flow table, therefore,
needs to be implemented in fast SRAM. Prior work has shownrttaantaining such counters is
feasible [10, 18]. For simplicity, cSamp assumes that the fiounters are maintained in SRAM
and the amount of SRAM is the resource constraint that détesrihe number of flows a router
can log.

The assumption that routers can obtain OD-pair identifiergldfies cSamp’s design and
makes the optimization problem theoretically tractablpeically, (2) implicitly assumes that
the hash-ranges assigned to different routers for the sdbapal are non-overlapping. Thus, the
coverage of each OD-pair is simply the sum of the fractionakcages of the routers on the path.
If OD-pair identifiers were not available, this would no l@mdnold. As we argue next, for many
ISPs this assumption is not practical.

Challenges in OD-pair identification: Obtaining OD-pair information is quite challenging for
many ISPs today. First, it requires routers to be aware ofp@iDidentifiers. This may require
ISPs to migrate to MPLS-style routing. Second, routers cadertermine the OD-pair based on
the IP header and local routing information alone. For eXamp the case of traffic destined to a
multi-exit peer (i.e., a neighboring AS with which an ISP &t multiple peering points), prefix
information alone is not sufficient to determine the exacesg. To complicate matters further,
interior routers only see aggregated prefix informatiogyéss routers are in a better position to
identify the egress when a packet first enters the networkus,ThSamp assumes that ingress
routers explicitly add OD-pair identifiers to packet headerhis leads to another limitation — it
imposes additional computational effort on border routerg., replicating some of the routing
logic to resolve the egress router) and requires modificatio packet headers.

3 cSamp-T: Problem Statement

Motivating question: The above challenges in OD-pair identification bring us t® mhotivat-
ing question for our work: Can we implement a cSamp-like apph without requiring OD-pair
identifiers? Intuitively, we want to specify each routerspling manifest at anuch coarser
granularity relying only onlocal informationrather than the global OD-pair identifiers, while still
achieving the coverage guarantees of cSamp. We call thieppwach cSamp-T.

cSamp-T eliminates the need for ISPs to (a) upgrade bordeenowith additional intelli-
gence for OD-pair identification, (b) modify packet headeraccommodate these identifiers, and
(c) overhaul their routing infrastructures. Thus, cSammdkes the benefits of cSamp-like solu-
tions available to network operators without incurring tiverhead for OD-pair identification that
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Four OD-pairs: P1:11-E1, P2: 11-E2, P3: 12-E1, P4: 12-E2
With OD-pair identifiers

Coverage:
P1:0.2+0.3=0.5

@ P2:03 +03=0.6
B1.100.2] P1,[0.2.0.5] P3,00.1,0.3 gif 8; +04=05
P2, [0,0.3] P2,[0.3,0.6] P4,[0,0.5] 0

P3,[0,0.1]

Without OD-pair identifiers; Use only local information

Coverage:

<R1,RZ,R3>, [0.1,0.2] P1: [0,0.2]U10.1,0.2]U[0.1,0.3] = 0.3

@ P2: [0,0.2]U[0.1,0.2]U[0.1,0.2] = 0.2

P3: [0,0.1]U[0.1,0.2]U[0.1,0.3] = 0.3

<11,R1,R2>, [0,0.2] <R2,R3,E1>, [0,1,0.37~_P4: [0,0.1]U[0.1,0.2]U[0.1,0.2] = 0.2
<I2,R1,R2>, [0,0.1] <R2,R3,E2>, [0.1,0.2]

Figure 1: Example topology showing the intuition behind ¢&amp-T approach

cSamp imposes.

High-level approach: The key insight behind the cSamp-T approach is to onlylasa informa-
tion at each router to specify the router’'s sampling resjditges. The coverage of each OD-pair
is obtained by “stitching” together the coverages providgeach router on the path.

Consider the example shown in Figure 1 with 2 ingresses, @segs, and 4 OD-pairs P1—
P4. The top-half shows a cSamp configuration; OD-pair ifiensiare available and each router’s
responsibilities are in terms of hash-ranges per OD-pairfaneach OD-pair the ranges on the
routers on its path are non-overlapping.

The bottom-half of Figure 1 shows a scenario where routemsaaobtain OD-pairs. The
sampling manifests are specified based on just local infbomaeach router is assignedhash-
range per router 3-tupleonsisting of the previous hop, current router, and the hegt Note
that for each packet, a router can ascertain the previousahdmext hop just based on local
information (e.g., the interface the packet arrives on dredrtext hop router determined by the
routing table). The coverage for each OD-pair will then beuthion of the ranges assigned to its
constituent path-segments (the 3-tuples on each pathsexiaimple).

This example demonstrates two key differences between g%achcSamp-T. First, the sam-
pling responsibilities are specified using locally avdgainformation rather than global OD-pair
identifiers. Second, the coverage for each OD-pair is nodoegnply the sum of the coverage of
each router on the path; it is the union of the ranges assignthe routers on the path.

Now, how do we assign sampling responsibilities in cSamp-maximize specific flow cov-
erage objectives while operating within each router’s uese constraints? The following sections
present a formal framework to address this.

Problem Formulation for cSamp-T: We borrow two assumptions from cSamp: (a) sampling
responsibilities are generated at a centralized module aatess to routing and traffic matrices
and (b) routers implement hash-based flow sampling usinghbRAunters and the amount of
SRAM is the primary resource constraint on the number of flawsuter can log. As discussed
earlier, both are reasonable assumptions. Next, we disisastesign of the centralized logic for
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SamplingSpecs SamplingAtoms

<R1,R3,R4>, [0,0.25]
<RLR3,R4> —7 R1'R3R4> | [0.75.1]

| <R2,R3,R4> -~ <R2,R3,R4>,[0,0. 25]

| <R1R3,R2><R4 R3,RI> _ (3 ‘
@ | <R4.R3,R2> <R2,R3,R1> ~ /
— — @

Figure 2: Example to illustrate the definitions showing tlaenplingSpecs and assigned Samplin-
gAtoms at router R3.

assigning sampling responsibilities in the absence of @Digentifiers.

We first define the notion of &amplingSpeto capture the granularity at which each router’s
sampling decisions are made. For the current discussierSamplingSpecs are three-tuples of
router identifiers R;,, R,,, R;,) that appear contiguously on some path in the network, and so i
particularR;, andR;, are neighbors oft;,. Let ¢, denote a generic SamplingSpec in our system.

The notationy;, € P; captures the idea of a SamplingSpec being on the pattr OD,.2 For
example, if the pathP; uses routers- - , R;,, R;,, Rj,,--- in that order, then the SamplingSpec
a = (R;,, Rj,, R;;) € P;. This is a natural extension similar to the notion of a routetbeing
on pathP;. We uset;,, = Emke p, Ti to denote the total traffic that travers@s Our framework
maps SamplingSpecs to routers in a many-to-one fashion;enetd the set of SamplingSpecs
assigned tar; by R, .specs. In this way, R, is assigned sampling responsibilities corresponding to
all a, € R;.specs. In this paper, ifo, = (R;,, R;,, R;,), thena, € R,, specs.

From the above discussion, it is clear thatiif.specs > a, thenR; is in a position to log
(some or all) of the traffic on paths > ;. But which fraction should it log? To this end, if the
entire traffic corresponding ta, is mapped to points in the unit intervil, 1] (say, by hashing)
then the router will be responsible for some subse0of]. In particular, we discretiz), 1] into
% equal-sized intervals of lengthi, = [(I — 1), 1], and assign ta, some of thesé-intervals.

We formalize this by creating a set 8amplingAtors. A SamplingAtom is a paifay, h),
where g, is a SamplingSpec antd C [0, 1] is a “hash-range”—a subset of the unit interval of
lengthd. For any SamplingAtomg,, = (a, lu), if @, € Rj.specs, then routerR; will log the
flows that traverse;, such that the hash of the flow falls in. We useh(g;) as a shortcut for the
hash-range associated with.

EXAMPLE: Figure 2 illustrates the above definitions with an example has three SamplingSpecs
in the forward direction (and three similar SamplingSpedhe reverse direction):R1, R3, R4),
(R1,R3,R2) and(R2, R3, R). R3 is assigned three SamplingAtoms, two fd@t1, R3, R4),
one for(R2, R3, R4), and none fofR1, R3, R2). Sayd = 0.25. Consider paths of the form
{..,R1,R3, R/,..} (there may be many such pathsRi3 will log all flows along these paths
whose hashes fall either in the ran{§e0.25] or [0.75,1], and flows along paths of the form
{.., R2, R3, R4, ..} such that the hash of the flow falls in the range.25).

3Since this notion of “on-path”-ness is quite general, oyrapch works even in the case of multi-path routing.



Notation Explanation
M Number of OD-pairs
N Number of routers
OD; OD-pairi
C; Fraction of flows on OD-paii covered
R; Routerj
L; Available resources oR;
Load ; Total monitoring load o2
ay, SamplingSpeé&
R;.specs set of SamplingSpecs a;
78 Total traffic traversing SamplingSpeg
9kl SamplingAtom/ on ay,
Tl an assigned or selected SamplingAtom
h(gki) | hash-range [0, 1] in SamplingAtomgy,

Table 1: Notation in the problem statement

Measures of GoodnessGiven a set of assigned SamplingAtonjs,; }, thefractional coverage
for OD; is as follows. The coverage due to one particular Samplieg@p € P; is U; h(gg) C
[0, 1], and hence the total coverage is

coverageC; = }Uakepi U h(gk\l)‘ (5)

Here, given an intervad C [0, 1], we us€.S| to denote the fraction of the unit interval covered
by this subset. Note that the coverage for a path isuttien of the assigned hash-ranges across
all the constituent SamplingSpecs — if tt@mehash-range is assigned to several SamplingSpecs
along a path, then the same set of flows gets sampled and we detramy extra coverage.

Themonitoring loadon a router is given by summing, over all SamplingSpgcs R;.specs,
the portion of the traffic through, that R; logs:

LO(Zdj = ZakeRj.specs te X |Ul h(gk\l” (6)

Given the(;s for the various OD-pairs, the specific functions we conside thetotal traffic
coveragef,,, = >, T;C;, and theminimum fractional coverag¢,,,, = min; C;. Formally, the
goal of our algorithms is to obtain the set of assigned Sargplioms{ g;;} such that we maximize
either f;,, or f,..,, while operating within the router resource constraints (Load; < L, for all
7). We choose these specific objective functions becausewiite in cSamp [30]; our framework
can accommodate a wider range of objective functions spda® convex combinations of tidg
values.

The maximization problem: We can rewrite the above maximization problems as followmn-C
sider a “ground set’V which contains as its elements all possible SamplingAtonss; V =
{{ax, I} for all possible SamplingSpees and all ; hash-ranges;, }. Suppose a subsstC V of
these SamplingAtoms are chosen and assigned to their pondifig routers. These give us the
fractional coverages defined by (5) and router loads givef®yNow, f;,; or f,.., can be viewed
as functions from subsets bfto the reals. The problem is to select tyimal S* C V, satisfying
Load; < Lj;, that maximizes,,; or fn.



Exact Solutions are Hard: Finding the optimalS* to maximizef;,; or f,.., subject to the load
constraints on routers is NP-hard. Appendix A demonstthtesardness via a reduction from the
3-SAT problem. Moreover, it is infeasible for practical ®m sizes. For example, we cast the
problem into an integer linear programming (ILP) formuatby assigning 0-1 indicator variables
for eachgy, to denote whether it is “assigned” or not. Even on the Int&i&pology with just 11
routers, the commercial solve€PLEX did not converge to a solution after a day. It is because of
this intractability of solving the problem exactly that vesort to greedy approximations. However,
as we will see, our algorithms will yield results that congé#avorably to the original cSamp
performance.

4 Submodularity and Algorithms

Overview and Intuition: In the previous section, we saw that obtaining exact salstfor maxi-
mizing the total coverage or the minimum fractional coveragthe cSamp-T framework is hard.
Fortunately, as we will see in the next sections, there dreiezft practical algorithms to obtain
the sampling strategies in cSamp-T. The key insight is tiatcbverage functions have a natural
“submodularity” property (defined next) which allows us fuply powerful results from the the-
ory of maximizing submodular set functions to our contextisTis particularly promising, since
submodularity implies that the greedy algorithm yields astant-factor approximation [12].

More specifically, the coverage functions are “submodwdad the memory constraints at each
router are “knapsack” constraints; our problem is then\ejant to the problem of maximizing
submodular functions subject to knapsack constraints. Wetbeoretical bounds (Appendix B)
and also show that the greedy algorithms work very well ircfica. We also give results for
maximizing f,,:, using algorithms for max-min submodular maximization [21]

4.1 Submodularity

Definition: A function F' : 2¥ — R mapping subsets of a ground 3&to the reals isubmodular
if for all setsS C S’ C V, all elements; € V,

F(SU{s}) — F(S) > F(S'U{s}) — F(S")

i.e.,the marginal benefit obtained from addingo a larger set is smallef12]. This captures the
intuitive property of diminishing returns. The functidnis monotone (nondecreasing)V.sS C
S',F(S) < F(S5).

Submodular set maximization: The goal is to pick a subsét C V maximizing F'(S); what
makes this problem hard is that we also have a “budget” cainstof the formc¢(S) < B; i.e.,
given “costs’c(s) for all s € V, the total cost:(S) := Y _.c(s) of elements picked in sef
cannot exceed the “budgeB. This submodular maximization problem is NP-hard [12], dpaibd
approximation guarantees are known. In particular, therdalgm specified in Figure 3 either greed-
ily picks elements that give the greatest marginal beneditdmnot violate the budget constraints,



SUBMODULARGREEDY(F, V, cbflag, B)

// F : 2V — R submodular is total budget
// if cbflag ist r ue use benefit/cost instead of benefit
S —10
while (3s € V\ S: ¢(SU{s}) < B) do
forseV\ Sdo
norm « ((cbflag = true) 7 c¢(s) : 1)
5,  PEULD=F(S)
§* «— argmaxq g0s
S — Su{s*}
return(S, £'(.5))

O~NOO1T A WNEPE

Figure 3: Basic greedy algorithm

or greedily picks the elements that give the maximum matdiaaefitper unit element-cogte-
pending on whethetbflag is true or false), as long as the budget is not violated. Itad-known
that the better of these two algorithms is a constant fagipraimation algorithm [37].

4.2 Application to cSamp-T

It is easy to check the coveragé€sviewed as a functions frolf = SamplingAtoms — R are
monotone submodular functions, and hence so is their wadgdumy,,; = > 7 C;.

Budget constraints in cSamp-T:The budget constraints in cSamp-T come from the bounds on
router load. To model router load, we need a knapsack camsfrend; < L; for each router?;.

A naive approach is to consider the cSamp-T problem as a siilarsset maximization problem
with multiple knapsack constraints. This naive approaehdg aO (N ) approximation, wherev

is the number of routers. This is clearly undesirable, esfigdor large networks. Specifically,
since eachbampling Atom contributes to the load on exactly one router, this resuli collec-
tion of non-overlappingnapsack constraints. We call the resulting probterdimodular function
maximization subject to partition-knapsack constraifEsach “partition” corresponds to a differ-
ent router, and the “knapsack” comes from the load congtfaimthat router). In Appendix B
we show that a modified greedy algorithm—an extension of cora Figure 3—gives a constant-
factor approximation.

Maximizing f;.:: To match the theoretical guarantees [37] (see Appendix B)um two separate
invocations of the greedy algorithm—with and without theéi-cost flag set to true, and return
the solution with better performance. In practice, bothehsimilar performance (Section 6.1).

Maximizing f,...: To maximizef,.,, we need to go from one submodular functibrto many
submodular functions, F,, . .., Fiy—in our case, these are the fractional coverages. ., Cy;.
The problem is now to pickk C V to (approximately) maximizé™(S) = min; F;(S), the
minimumvalue across these different functions. This new funcfigt is no longer submodular;
indeed, obtaining any non-trivial approximation guararfta this max-min optimization problem
is NP-hard [21]. However, we can give an algorithm to maxaniz"® when we are allowed
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GREEDYMAXMIN(Fy, ..., Fy,€6,V, B,7)
// Maximizemin,{F;}

// Vi, F;:2Y — [0,1] is submodular
Tlower < O’ Tupper < 1

while (Tyupper — Tiower > €) dO

N -

¢ Tupper +Tlower
Teurrent 2

// Define the modified objective function
4 Vi, F; =min(F, Touren); F =3, F
// Run greedy without budget constraints
5 Biged — SUBMODULARGREEDY(F, V, true, 0o)
// Compare resource usage
6 if MAXUSAGE(Bseq, B) > 7 then
/] Tewrent 1S infeasible, reduce upper bound

w

7 Tupper < Teurrent
8 else

/] Teurrens 1S fe@sible, increase lower bound
9 Tlower <~ Tcurrent

10 Returnmyyer

Figure 4. Maximizing the minimum of a set of submodular fumes with resource augmentation

to exceed the budget constraint by some factor [21]. FoymillS* is an optimal set satisfying
budget constraints, the algorithm in Figure 4 finds aSsefth /™ (S) > F™in(S*) — ¢ but which
exceeds the budget constraints by a factoy,afherey = O(log(2 Y .\, Fi(v))).

The key idea is this: the modified objective functiBn= 3" min(F}, 7) is submodular. For
any, F, has the property that its maximum valuelsx 7 and at this maximum valué, F; > 7.
Running the greedy algorithm assuming no resource conttraiways gives a set such that the
actual resource usage at roufeyis at mosty x Load;. Notice that this holds for att, and in
particular, for the optimal valug* = F™(S*). Since the optimat* is not known, the algorithm
in Figure 4 uses binary search over

Router algorithm: Given a solution to the problem of maximizing,; or f,..., Figure 5 shows
each router’'s sampling algorithm. Note that the router mgér requires the OD-pair information
for a packet; it only requires the coarser SamplingSpeamméion which can be immediately
discerned using only the packet headers and other locahmafiion (e.g., what interface the packet
arrives/leaves on). We allow for thieunges for each SamplingSpec to be a set of non-contiguous
hash ranges; thus, the router samples the packet if the bhsifalls inany of the ranges.

4.3 Practical Issues

Reducing computation time: The computation time of the algorithm of Figure 3 can be reduc
by using the insight that for each elementc V), the marginal benefit obtained by pickirg
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CSAMP-T_ROUTER(pkt, Manifest)
/] Manifest = {g = (a,h)}
1 a < GETSAMPLINGSPEC(pkt)
// Ranges is a set of hash-range blocks
2 Ranges « GETRANGES(a)
// HASH returns a value if0, 1]
3 hyk — HASH(FLOWHEADER(pkt))
// Log if the hash value falls in one of the ranges
if hpre € Ranges then
Create an entry irlowtable if none exists
Update byte and packet counters for the entry

o 01 b~

Figure 5: Implementing cSamp-T on routey

decreases monotonically across iterations of the greegbyitim [25, 13]. Thus, we can use a
lazy evaluatiomalgorithm [25, 13]. The main intuition behind lazy evalwaetiis that not allj
values need to be recomputed in Figure 3 (Step 5); only a esnmlbset of that are likely to affect
the choice ok* in Step 6 need to be computed. We omit further details of {gisreihm for brevity
and refer the reader to the references [25, 13]. We can replanstances of the procedure call
SUBMODULARGREEDY with the lazy evaluation version. Section 6.2 shows that teduces the
computation time by more than an order of magnitude.

Generalizing SamplingSpecsWe assumed that the SamplingSpecs are defined at the gignular
of router three-tuples. Note, however, that the greedyrdlgus and the per-router sampling
algorithm are quite generic; they do not depend on SampfiagSbeing router three-tuples. We
can generalize the algorithms and results to differentonstiof a SamplingSpec. For example,
the SamplingSpecs can be router identifiers (in which casedhter applies the same sampling
decisions to every path passing through it), or router s (previous hop and current router),
or incorporate IP-prefix information as well.

Practical issues in discretization: Section 3 defined discretization intervadlsuch thatg,, =

{ag, [(1 — 1)8,18]), for valuesl € {1,...,}. There are two practical issues to note here. First, we
can make the width arbitrarily small; there is a tradeoff between (potenyiglietter coverage vs.
the time to compute the solution. In our evaluations, wejfix 0.02 since we find that it works
well in practice. Secondly, instead of considerifgiisjoint intervals, we can also consider the
%2 hash-ranges of the forfm.d, (m + n)d] to make assignments as contiguous as possible. This
increases the computation time quadratically without jgog any additional coverage benefits.

In practice, we avoid this and instead run a simple mergegoha® (Section 6.3) to compress the
sampling manifests.
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5 Heuristic Extensions

While the theoretical guarantees ffy;, are encouraging, achieving good performanceffqy, is
less promising. The theoretical results suggests thaegwmurce augmentationrequired to obtain
any non-trivial guarantee is quite high.

In this section, we consider three practical extensionsmorove the performance fof;,,;,.
The first extension uses a targeted provisioning heuristiseé fewer resources in aggregate. The
second extension evaluates an incremental deploymenarsoemhere a small subset of ingress
routers can be upgraded to add OD-pair identifiers. We ptéisese in the specific context of the
fmin Objective. However, these two techniques we develop fgetad provisioning and partial
marking can be more generally applied to other network-vabjectives where the greedy algo-
rithm performs poorly. We also consider an alternative sodhmhar objective function for getting
better performance fof,,,;,

5.1 Intelligent Provisioning

The theoretical bounds from the previous section assunteetitd router in the network is uni-
formly given~ times more resources. In practice, this may be quite exeessice it might be
very expensive to add times more SRAM capacity to each router. An interesting tjoess
whether it is possible get better performance if we can adetmmemory on routers intelligently —
instead of upgrading all routers, we seek to augment a snsalbset of routers and still get similar
performance. The rationale behind the approach is thatytsu#fice to upgrade a small number
of heavily loaded routers.

Problem provisioning:

Maximizemin; C;, subjectto

v, Zk:akeRj.specs we X b < Ly (7)
>_; Lj < Budget (8)

Vj,LB; < L; < UB; 9)

Vi, G = 3 paer; U (10)

Yk, u, > 0 (11)

Vi, C; <1 (12)

To address this question, we consider the above provigigmoblem. The network operator
specifies a total budget of memory resources to be distdladess different routers (e.g., defined
by a total monetary budget and the cost of SRAM). Each rolitdras a lower bound(5 ) for
the default memory configuration and a technology upper 8¢ui& ;) on the maximum amount
of memory that can be provisioned. (There are natural tdolgieal limits on the amount of fast
SRAM that can be added to linecards [36].) The inputs to tbelpm are the total memory budget
Budget, LB;, and UB;. The output is the specific allocation of resources to reutieroptimize

fmin-
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However, it is difficult to model the coverag€; of each OD-pair provided by the greedy
algorithm under a given set of resources. Thus, we make difimg assumption that the hash
ranges (represented by the variabigsallocated across the different SamplingSpecs on a given
path are mutually non-overlapping. This allows us to madeas simply the sum of the ranges
ug in (10). Under this assumption, the resource provisioniraplem can be solved as a linear
programprovisioning. While this is not optimal compared to faithfully modelingetC; as the
union of the ranges, this is a reasonable assumption sirragoallis to obtain general guidelines
for resource provisioning. As we will see in Section 6.4stheuristic works well in practice.

There are two steps to the intelligent provisioning heiaistThe first step solves the LP
provisioning. Next, given the resource allocation output pypvisioning, we run the greedy
algorithm in Figure 4 withy = 1 to ensure that we are strictly within the resource condsain
Adding a variance term to the objective: In practice, we find that it is useful to add a variance
term to the objective function. We modify the above objeefunctionmin; C; to be{min; C;} —
g({L3}), whereg is a function of the second-moments of thealues. The negative term denotes
that our intent is tamninimizethe variance across the values (with appropriate normalization
to ensure that the variance term and the coverage term daametwildly different magnitudes).
Among the different configurations that maximinén; C;, the goal is to pick the configuration that
distributes the resources most uniformly across the reufris offsets two potential undesirable
effects. First, the LP solver may not necessarily use allatredlable resources to achieve the
optimal minimum fractional coverage. Second, the LP sofuthay result in a skewed resource
allocation which may be undesirable for the greedy algoritind less robust to changes in traffic
or routing inputs. The variance term forces the optimizasolver (now a quadratic program
instead of a LP) to use up the available resources efficiamttlyalso reduces the skew. While this
works well for most common cases, it may not prevent skewledations wherg >> ~.

5.2 Partial OD-pair identification

Next, we consider a scenario in which a network operator ¢temoge to upgrade some border
routers. For example, this can be achieved using a softwatate to the router or by adding a
simple two-port middlebox (using a software switch runnamgcommodity hardware [27] or using
FPGA [17]) that processes each packet, modifies the heatHig@avards them to the router. These
few upgraded nodes (routers or router plus middlebox) ttee lthe capabilities to identify the
OD-pairs and add the identifiers to packet headers. We asthatnall routers run both cSamp and
cSamp-T sampling algorithms —i.e., a router logs a flow iftthgh of the flow falls in a hash-range
correspondingitherto the OD-pair or the SamplingSpec for the packet.

Let P. denote the set of “enabled” OD-pairs whose packets carryp@bidentifiers and let
‘P denote the set of all OD-pairs. We compute the maximum mimrfractional coverage using
a binary search ovet. The key difference between the new algorithm and Figurethaseach
iteration of the binary search has two logical steps. In tret &tep, we solve a cSamp-style
linear program over the enabled OD-pairs. In the second stepdefine the capped functions
Ci(t) = min;(C;, 7) for the non-enabled OD-pairs and use the greedy algorithmagimize
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Problem enabledODs(a, P,):

Minimize ) L;, subjectto

J

V), 2 ieponser (dig X T;) < Lj (13)
Vi € Py G = Xy en, i (14)
Vi € Py, Vi, dyy > 0 (15)
VieP,a<C<l (16)

In each iteration, for the current valag,,.....;, the first step involves solving the Ldabled O Ds.
The inputto the LP is the set of enabled OD-p&rsand the target fractional coverage= 7..,ren: -
The objective of the LP is to minimize the total amount of rgses used across the different
routers to ensure that eachD; € P, gets coverage at least= 7.,.cn:. Solving the LP returns
the resources allotted to each router or returns an infleestiéitus if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the néadtation of the binary search. If
the LP is feasible, then we obtain the new budget per routesutyracting the resources used
in the LP stage from the original budget per router. Next, urethe greedy algorithm with the
reduced budget and modified objective specified over theemaried OD-pairs. By construction,
the maximum valug can take i M — |P.|) X Tewrrent WherelM is the total number of OD-pairs
and|P.| is the number of enabled OD-pairs. This maximum value iseaed if and only if each
of the non-enabled OD-pairs (i.e., in the &{ P, ) achieves a fractional coverage equatig. ...

If the greedy algorithm achieves this objective value, thep.,; is feasible and we try a higher
value in the next iteration; else we try a lower value in thetmeration.

5.3 Using thea-fair objective function

Thea-fairness notion has been traditionally used in the comgesbntrol literature (e.g., [26]) to
generalize the max-min notion of fair allocation. Givemiter;, and a total resourc€ we want
to allocate the total resource to the items in a “fair” manfiére a-fairness function is defined as
> U(x;), whereU(z) = ﬁf: The parameter can take values iff), o), and the valuea = 0,
a = 1,*anda — oo correspond to achieving maximum throughput, proportida@hess, and
max-min fairness respectively.

In our problem setting, eacty corresponds to the submodular functibn= C;. It is easy to
verify that the functiord . U(C;) is submodular; thus we can use theBMODULAR GREEDY with
a set to some large value. To avoid numerical instabilities,usec = 100 and also add a small
additive constant to each; at the beginning since the functi@dn(z) is undefined when: = 0.
Note that unlike the above heuristics, using théair function is tightly coupled to maximizing
the minimum fractional coverage.

4At o = 1, the function is defined a3 (x) = log(x).
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Topology (AS#) | PoPs| OD-pairs | Flows | Packets
x 106 x 106
NTT (2914) 70 4900 51 204
Level3 (3356) 63 3969 46 196
Sprint (1239) 52 2704 37 148
Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GEANT 22 484 16 64
Internet2 11 121 8 32

Table 2: Parameters for the experiments

6 Evaluation

Evaluation Setup: We compare the performance of cSamp and cSamp-T at a PdRjtave-
larity, i.e., treating each PoP as a “router” in the networsdel. Our evaluation setup (Table 2)
consists of several PoP-level network topologies from atiacal backbones and tier-1 ISP back-
bones inferred by Rocketfuel [33]. We use shortest-pattinmguo construct paths between every
OD-pair. The traffic matrix is modeled using a gravity modaséd on city populations [31]. We
assume that each PoP is provisioned to log up te 400, 000 flow records’> For cSamp-T, we
discretize the hash-range in increments ef 0.02.

6.1 Coverage and Overlap

Performance gap between cSamp and cSamp-Tthe approximation guarantees compare the
performance of the greedy algorithms with the optimal sotufor the cSamp-T problem. A
related question is the gap between the optimal solutionsSamp-T and cSamp. It is hard to
reason about the optimal cSamp-T solution. Instead, we acepe theoretical upper bound for
the cSamp-T problem by considering a relaxed LP-versioh@ptoblem (similar tprovisioning

in Section 5). Figures 6(a) and 6(b) show that this perfoceagap for the total flow coverage
and the minimum coverage respectively using a router Ztgmnularity for cSamp-T. The figure
shows that the upper bound on cSamp-T performance can be3@¥¢dower than cSamp.

Total flow coverage: We are interested in two aspects: (a) the granularity of Sagfppecs and
(b) is there a significant difference in performance betwberbenefit or benefit-cost tradeoff ver-
sions of the greedy algorithm. Figure 7 shows that usingupletgranularity provides a significant
improvement (25-30%) over the coarser router-level foatiah. The figure also shows the per-
formance of maximal flow sampling [30]. In maximal flow sanmgjj the flow sampling rate for a
router ismin(1, £), wherel is the number of flow records it is provisioned to hold arisithe total
number of flows it observes; each node maximally utilizesaveglable resources. cSamp-T with
the tuple formulation is closest to cSamp. Comparing thib\wigure 6(a), we also see that the

SAssuming 12 bytes per flow record [30], this translates i, 000 x 12 = 4.8 MB of SRAM per PoP, which is
well within the 8 MB technology limit per linecard suggestadVarghese [36].
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Figure 7: Total flow coverage

greedy algorithm is very close to the theoretical upper bidoncSamp-T.

The theoretical guarantee for total flow coverage dependaioning the two greedy algo-
rithms: with and without the cost-benefit flag. We want to ustind if there is a clear difference
in performance between the two configurations. Figure 8 stibat both configurations have very
similar performance and that the algorithm with the costdii¢ flag cbflag = false is slightly
better.

Minimum fractional coverage: We saw in Section 4 that it is impossible to maximjzg, using a
greedy algorithm without resource augmentation. Thus,watiate the performance as a function
of the resource augmentation factowhere each router’s budgetis< 400, 000. As in the previous
scenario, we consider both router and tuple granularilieBigure 9, we normalize the minimum
fractional coverage by the optimal value achieved by cSattheabaseline provisioning (i.e.,
cSamp aty = 1). For example, if the greedy algorithm returned a valué.pfaty = 3 and the
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solution for cSamp has valwe4 aty = 1, the normalized y-axis value correspondingyte- 3 is

92 — 0.5,

o First, withy > 4, cSamp-T has performance comparabtes0%) to cSamp for all topologies.
Second, the difference between the router and tuple fotlnnkbecomes even more pronounced
with the minimum fractional coverage result — there is a icgmt advantage to be gained in using
more fine-grained SamplingSpecs. With router-level Samydpecs, even at= 5, four out of the
seven topologies only reach 40% of cSamp’s performancetheosamey = 5, with tuple-level
SamplingSpecs, five out seven topologies achieve at le&sod@Samp’s performance.

Figure 10 shows the corresponding result when we usettaérness objective function with
the tuple formulation. We see that this function gives glighetter performance compared to the
capped-minfrac technique used above.

The ~ at which cSamp has good performance is much better than éueetical bound in
Section 4. In Section 6.4, we show that targeted provisgpraduces this even further.
Duplicated flow reports: A secondary objective of cSamp is to minimize the total antodialu-
plicated flow reports. This reduces the data managemenheadrin processing and eliminating
duplicated flow measurements. Figure 11 shows the ratiogfahied flow reports to the number
of unique flow reports comparing cSamp-T (at the tuple graniy) and maximal flow sampling.
Compared to maximal flow sampling, cSamp-T hasx2f8wer duplicated flow reports. Com-
pared to cSamp (zero duplicated reports) this is not ideakeer, this performance penalty is
unavoidable since cSamp-T operates at a much coarser grigyul

6.2 Algorithm running time

In order for cSamp-T to be reasonably responsive to netwymkiohics, we want the time to com-
pute sampling manifests to be within few tens of seconds.ypical measurement epoch spans
a few minutes; we expect that manifests are recomputed saefpschs, not within epochs.) Ta-
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Topology | Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy
NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6

Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7
GEANT 3.06 0.28 542 7.6
Internet2 | 0.22 0.05 38.4 1.9

Table 3: Time to compute sampling strategy comparing thélaagreedy algorithm with the lazy
evaluation optimization

ble 3 shows the computation times using the “vanilla” gregak lazy evaluation algorithms. Lazy
evaluation provides more than an order of magnitude reolu@ti the total computation time. The

reduction is even more significant for the minimum fractioc@verage since it involves multiple

invocations of the greedy subroutine during the binarydeanith this reduction, cSamp-T scales
to larger topologies.

6.3 Size of sampling manifests

Compared to cSamp, cSamp-T increases the size of the sgmpéhnifests. This is because,
unlike cSamp, the hash-ranges assigned for each Sampéog®e no longer contiguous blocks.
As discussed earlier in Section 4.3, to reduce the size ofhweifests, we implement a simple
compression heuristic to merge hash-ranges after the yrdgdrithm computes the manifests.
This looks for maximally contiguous hash ranges in the aagsampling manifest and merges
them into a single hash range.

We evaluate the overhead of disseminating manifests ineTéblFirst, the merge algorithm
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Topology Total (KB) Max. per PoP (KB)
Naive | Merged | Naive | Merged
NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6
GEANT 45.5 6.5 5.6 0.6
Internet2 | 14.5 5.0 4.5 0.7

Table 4: Size of the sampling manifests (in kilobytes of mfiguration files) with cSamp-T

reduces the manifest sizes roughlyxl0Second, we notice that the total bandwidth overhead of
disseminating the manifests is not large — 25KB in the waaise@fter the merge routine. Finally,
on a per-router basis, the worst case size of the manifestusmd 3KB which is quite low.

6.4 Intelligent Resource Provisioning

As a specific scenario, we sétB; = L = 400,000 for all ;. We model the total budget as
Budget = v x N x L (N is the number of PoPs) and the technology limitias L. We vary~y and

[ and for each pair of values. Figures 12(a) and 12(b) showasdtrfor two of the topologies,
Level3 (AS3356) and Telstra (AS1221) respectively. We elthese topologies because the greedy
algorithm performed poorly with respect to cSamp in FigureA® interesting result is that the
curve levels off as a function of; i.e., there is not much to be gained with increasing thd tota
budget. However, there is significant improvement by insiregs, the technology upper bound.
In fact, even with a moderate increage= 1.2, we see that the performance gets within 80% of
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the cSamp performance.

Sinceg is more crucial to the overall performance thgrfor the remaining topologies we fix
~ = 1.5 and analyze the normalized minimum fractional coveragefasction of 3 in Figures 13
and 14. Withg = 5, all the topologies achieve at least 60% of the ideal cSamfoipeance.
Similar to the previous results, tlaefair shows slightly better performance. Contrasting thsult
with Figures 9 and 10, the main difference is that we do natirecall PoPs to be augmented with
five times as many resources — the total resource budgesithias1.5 x.

6.5 Partial OD-pair identification

We try three strategies for selecting the enabled OD-fairsupgrading the top-k PoPs that (a)
observe the maximum amount of traffic, (b) lie on most numlbeowoting paths, or (c) originate
the most traffic. Here, upgrading implies that we enable @iigentifiers on all OD-pairs having
one of these top-k PoPs as origins. For eflache run the two-step procedure from Section 5.2 for
all valuesini, . .., k and pick the configuration with the highest;,, .

Figures 15(a) and 15(b) show the normalized minimum fraeticoverage for the Level3 and
Telstra topologies as a function bfilnumber of top-k PoPs). First, we observe that enabling even
on a small number (around 8%) significantly improves thegrarance. Second, enabling identi-
fiers on routers that observe the most traffic performs muttiertdan the other two strategies.

6.6 Hybrid Coverage objective

cSamp maximizes the total flow coverage subject to achiahadighest possible minimum frac-
tional coverage across OD pairs. So far, in cSamp-T we ceraildhese two objectives separately.
A natural question is if there is an effective algorithm foaximizing the hybrid objective, i.e.,
maximize total coverage subject to achieving the maximumimum fractional coverage. It is
relatively simple to extend the algorithm in Figure 4 to &sfai this — first run the greedy algorithm
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Figure 12: Understanding the impact of total resource augatien ¢) and technology upper
bound (3) in the resource allocation formulation.

AS Greedy-Minfrac Greedy-Total
NoHybrid | Hybrid
NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63
GEANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

Table 5: Comparing the performance of the hybrid maximizato the greedy algorithm for max-
imizing the total flow coverage alone

to optimize the capped minimum fractional objectivé) @nd then modify the objective function
to optimize the total coverageif,,..: iS feasible.

To evaluate this hybrid approach, we consider the resownéguration obtained using the
targeted provisioning approach with= 1.5 ands = 5. Table 5 compares the total coverage
obtained with three strategies: maximizing the minimursticmal coverage, maximizing the total
flow coverage, and the above two-step heuristic. Not sunglig we find that maximizing the
minimum fractional coverage alone does not work well for tbial coverage. This is because
the greedy algorithm terminates when it has achieved tigetad coverage for all OD pairs even
if it has additional resources that can be used to boost tiakdoverage. The table also shows
that total coverage obtained by the hybrid approach is viergecto that of the greedy algorithm
for maximizing the total coverage alone. While it is hard toyide theoretical guarantees for the
hybrid objective, Table 5 shows that the our approach woekg well in practice.
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7 Discussion

More fine-grained local information: Our current choice of SamplingSpecs is topology-driven;
we model the granularity of sampling manifests in terms dhfegments (e.g., router or router
3-tuple). One direction of future work is to expand the sctipaclude prefix and routing table
information. For example, it might be possible to approxiehaestimate the OD-pair information
given the source and destination address of a packet angldhatde routing table information or
alternatively providing additional information (e.g.sttibuting IP-prefix to ingress-egress maps
to routers [1]). This creates the possibility of a cSamp+Trfalation with more fine-grained infor-
mation to bring the performance closer to cSamp.

Sensitivity of router upgrades: Section 5 suggests two heuristics for upgrading routengeiith
additional memory or the ability to insert OD-pair identifien packet headers. The provisioning
and partial marking formulations, as presented, assuntie staiting and a static traffic matrix.
Real-world routing and traffic matrices typically have sodmninant structural patterns that are
invariant to localized dynamics. Thus, we can apply thesafitations and perform upgrades after
extracting these dominant patterns. Evaluating the geitginf the performance improvements to
traffic or routing dynamics and designing upgrade stragagibust to dynamics are topics of future
work.

8 Related Work

Theory of submodularity: Submodular set-functions have long been studied as désaretlogs
of convex functions: in particular, maximizing a submodudlanction subject to side constraints
has a rich history; see, e.g., [3, 37, 35] and the refereinesin.

Sampling solutions: Most of the related work focuses on the single-router cadeoarproviding
incremental solutions to work around the limitations offarmn packet sampling. This includes
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work on adaptive sampling [9, 18], heavy-hitter detectit®|] inverting sampled measurements [8,
16], and data streaming algorithms [22, 24]. The closestedlwork is cSamp [30], which we
discussed in Section 2.

Greedy algorithms for monitor placement: Prior work has applied greedy algorithms for mon-
itor placement to cover all routing paths using as few masits possible [5, 34]. The authors
show that such a formulation is NP-hard and propose greedsogimation algorithms. There
are also extensions to these problems to incorporate paakgpling [34, 4]. However, these do
not satisfy flow coverage objectives, and in fact by relyimgpacket sampling, they can result
in a large amount of redundant flow measurements. cSamp-idesomore fine-grained flow
coverage objectives and reduces duplicated flow reports.

Sensor network monitoring: There has been recent work applying the theory of maximizing
submodular set cover functions in the context of maximizirigrmation obtained from multiple
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sensors [15, 20]. The objective of selecting observatigagt a set of adversarial objectives [21]
is similar to the notion of maximizing the minimum fractidr@verage objective. Krause and
Guestrin [19] provide a good survey of known results andiappbns of these ideas.
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A NP-hardness

First, we show that the decision version of thg cSamp-T problem witlh = 1 is NP-hard via a
reduction from 3-SAT. Then, we extend the result and showi thel case is at least as hard as the
0 =1 case.
Hardness foro = 1: Let the variables in the 3-SAT problem be denoteddhy. . ., zy and the
clauses denoted by, ..., C),. Given an instance of a 3-SAT problem, we construct a cSamp-T
problem as follows.

The set of “routers” in cSamp-T iX UT U FFU D, whereX = {X;,..., Xy}, T =
{T,....ITn}, F={F,...,Fy},andD = {Dy, ..., Dy}. Edges in the graph afgT;, X;)} U
{(F5, X5)} U{(X5, Dj)  U{(D;, Ty} i > 5y U{(D;, Fyr}lj" > )
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Figure 16: Example showing the path corresponding to theseld; = (z; V 7 V z;)

Each SamplingSpeg, can be one of the following(7}, X, D;), (F}, X;, D;), (X;, D;, Tj:),
and(X;, D;, F;y). There is exactly one SamplingAtogy, for eachq;, and is equal tqa, [0, 1]).
The budget constraints fap, F', andT nodes is zero. The only non-zero budgets are onXhe
nodes andBudget(X;) is equal tomax(#clauses withe;, #clauses withr;).

For each clause, we construct a OD-pair/pBffas follows. Without loss of generality, let us
assume that the clauses appear in sorted order of the \eimaltes. If the literat; appears in the
clause, there is a sequence of vertices of the foynX;, D, in the path. If the literak; appears in
the clause, there is a sequence of vertices of the #84nX ;, D; in the path.P; has edges fromb;
to the adjacent (in sorted order of indices) variablg'sor F; depending on whether; appears
in positive or negative form in the clause. Each path hasttaffic, i.e. Vi, T; = 1.

Example: If C; = (z; V7 V 2;), we create a patl;, = (1}, X;, D;, Fy, Dy, T;, X;) as shown in
Fig. 16.

Claim: The decision problem of checkingfif; = M on the above cSamp-T problem is equivalent
to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms are tbé form ({7}, X;, D,), [0, 1])
or ((F;,X;,D;),[0,1]). Note that they specify all-or-nothing responsibilitieBue to the way
the budgets are defined, for eaah exactly one of(7}, X;, D,, [0, 1]) or (F};, X;, D;,[0,1]) is
“active”—in effect this corresponds to setting the var@ab} to be true or false. Hence’; has
unit coverage in the solution of the cSamp-T instance if amigt & there is at least one satisfied
literal in clause’;. Thus, checking if there is a satisfying assignment or niottfe 3-SAT formula
is equivalent to checking if the coveragg, = M or f,,; < M. (In fact, it is also equivalent
to checking iff,,;, = 1 or f,..,, = 0.) This proves the hardness for both cSamp-T problems of
maximizing f;,; and f,,.;, with 6 = 1.

Hardness with finer discretization: Given integerd > 1, the hardness for thé = 1/d < 1
case follows from a reduction from thie= 1 problem. Indeed, given an instance of the cSamp-T
decision problem of deciding if;,; = M with 6 = 1, we construct the following instance with

0 = 1/d: we createl — 1 “dummy” verticesVy, ..., V,_1, and prepend these vertices to all paths
P;. We set the budgets on the dummy vertices tq bel) x M. For every non-dummy vertex
in they = 1 problem, we scale the budgets by a factad. By construction,f,,, = M on the

d = 1/d problem if and only iff,,; = M onthed = 1 problem; an analogous result holds ;..
Thus, they = 1/d problems are at least as hard asdhe 1 problems.
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B Algorithmic Guarantees

Suppose we are given a monotone submodular fundtion U — R with a partitionU =
UywUs W... W Ug. The goal is to pick a sef C U such thatS N U;] < 1 and the value
F(S) is maximized. (In other words, we have a partition matroid(6rand want to maxi-
mize I’ subject toS being independent in this matroid.) If we greedily pick e@nse; <
U; such thate; is an element that-approximately maximizeso( < 1) the marginal benefit
F({e1,ea,...,ei1,ei}) — F({e1, e, ..., €;_1}), then the benefit'({e, ..., e;}) is at least;;
of the optimal benefit possible [3].

A different setting is wherf' : U — R is monotone submodular, we have a “budgBt"and
eache € U has "size”c.: the goal is to pickS C U with ¢(S) := > _qsc. < B. Consider
two greedy algorithms: (a) the “cost/benefit” algorithmegidy keeps picking an elemeatvhich
mammmes'w and does not violate the budget, and (b) the “benefit” algorigreedily keeps
picking element which maximizes the increase i and does not violate the budget. One can
show that the better of these two algorithms gets benefiagte35 times the best possible [37].
In fact, an algorithm based on partial enumeration [35] gateptimal(1 — e~!)-approximation.

We can combine these ideas to solve the problem of “submodudaimization subject to
partition-knapsack constraints”. Formally, we are givemanotone submodular functiof :

Y — R, where there is a partitiod = V, W)V, W ... W V. Each element € V has a size,,

and each par¥; has a budgeB;: we want to pick a set C V such that ifS;, = S NV, then the
knapsack constrairf; _, c. < B; is satisfied. For this problem, we can combine the two ideas
above: imagine each valid knapsack of the elemen¥s ia be a distinct element of the abstract set
U;, andU = wU;. Then considering the pari$ one-by-one, and running the better of the benefit
or cost-benefit algorithms on each part, results in theiotig result:

Theorem B.1. The simple greedy algorithm described above gﬁ% > 0.148-approximation
for the problem of submodular maximization subject to pariknapsack constraints. Using a
knapsack algorithm based on partial enumeration, we car‘aa@g{—1 ~ (0.406-approximation.

As always, note that the results averst-case guaranteesften these greedy algorithms for
submodular maximization perform much better in practice.

The idea can be extended to the max-min problem. The algorith the max-min prob-
lem (subject to a cardinality constraint) from Krause et[2l] uses an(1 — e™!) ~ 0.632-
approximation algorithm for submodular maximization omya black-box fashion. Hence we can
replace that algorithm by the above algorithm for submaduoiaximization subject to partition-
knapsack constraints to get a bicriteria algorithm for thexsmin problem that achieves optimal
benefit, but exceeds each budget by a factétog(3 .., F;(v)))—the fact that we are using an
approximation guarantee 0f148 instead 0).632 only changes the constants in the big-oh.
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