
Performance Modeling of Storage Devices

using Machine Learning

Mengzhi Wang

CMU-CS-05-185

January 23, 2006

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Anastassia Ailamaki, Chair

Anthony Brockwell

Christos Faloutsos

Gregory R. Ganger

John Wilkes, Hewlett Packard Laboratories

Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Copyright Notation

This research was sponsored by the National Science Foundation under grant nos.
BES-0329549, CCR-0205544, CCR-0326453, IIS-0133686, and CCR-0085938. It was
also sponsored through generous grants from the EMC Corporation and the Intel
Corporation, and a fellowship from the IBM Corporation. The views and conclusions
contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Dedicated to Michelle and Hongliang

Abstract

Performance models of storage devices make it possible to evaluate storage resource config-

urations efficiently, allowing systems to search automatically a large number of candidates

before locating an optimal or near-optimal one. This thesis explores the feasibility of using

machine learning techniques to build such performance models. The models are constructed

through “training”, during which the model construction algorithm observes storage devices

under a set of training traces and builds the models based on the observations. The main ad-

vantage of the approach is the automation of the model construction algorithm, in addition

to the high efficiency in both computation and storage.

In our design, the models represent an I/O workload as vectors, and model its perfor-

mance on storage devices as functions over the vectors using a regression tool. We have

identified that vector representation of workloads, the regression tool, and training traces

are three important factors in model quality. This thesis provides a thorough evaluation of

existing techniques in addressing these issues. In addition, we have proposed the entropy

plot to characterize the spatio-temporal behavior of I/O workloads and the PQRS model

to generate traces of given characteristics to augment existing work in workload character-

ization.

Our experiments on real-world traces have shown that the learning-based models are

fast and accurate when the training and testing traces are similar. Offline training using

synthetic traces, however, is less effective because the synthetic trace generators fail to

capture the strong correlations between requests. Our error analyses have shown both the

vector representation and synthetic trace generators have space for further improvement.

i

Acknowledgements

During my years in Carnegie Mellon University, I have received help from a lot of people.

This thesis would never exist without them.

First, I would like to express my deep appreciation to my advisor, Dr. Anastassia

Ailamaki, for her insight and guidance, for her financial and moral support in my work, for

her strong confidence in me, and for everything else she has done for me throughout my

graduate studies. She has taught me not only how to do research, but also to keep faith in

myself. This precious gift has helped me to get through my Ph.D. study, and will keep on

benefiting me for my entire life. I can never enumerate all the things I have learned from

her, just like that I can never express my thanks enough.

I would also like to thank Dr. Christos Faloutsos for always welcoming me with an open

door and sharing his wisdom with me. I have benefited a lot from the fruitful discussions

during these years. A special thank you needs to be given to Dr. Gregory R. Ganger for

the support and inspirations I have received from him. Thanks to Dr. Anthony Brockwell

for sharing his expertise and research experience with me. I would also like to express my

gratitude to Dr. John Wilkes for the highly constructive feedback during my work and the

necessary traces and software he provided to finish my thesis.

I would also like to thank IBM Toronto for their financial support and hospitality in

hosting my CAS projects. It has been a great pleasure to know and work with Berni

Schiefer, Kelly Lyons, Calisto Zuzarte, and Sunil Kamath.

I feel extremely blessed to have had the support of many people throughout my graduate

studies. I would like to thank all the members of the database group and PDL, including but

not limited to Stavros Harizopoulos, Kinman Au, Stratos Papadomanolakis, Minglong Shao,

Jiri Schindler, Spiros Papadimitriou, Eno Thereska, Jay Wiley, John Strunk, Mike Mesnier,

Brandon Salmon. Karen Lindenfelser, Joan Digney, Charlotte Yano, and Sharon Burks

are among the others that have provided me with their fast responses to my miscellaneous

requests.

Last but not the least, I would like to thank my family for the their love and support.

iii

Table of Contents

1 Introduction 1

1.1 Autonomic Systems . 1

1.2 Problem Definition and Challenges . 3

1.3 Automated Device Modeling . 4

1.4 Organization of Thesis . 6

2 Related Work 9

2.1 Automated System Administration . 9

2.2 Storage Device Modeling . 10

2.3 Workload Characterization . 13

3 Toward Learning-Based Device Modeling 15

3.1 Challenges and Contributions . 15

3.1.1 Vector Representation of Workloads 17

3.1.2 Selecting A Regression Tool . 19

3.1.3 Training Trace Generation . 20

3.2 Evaluation Methodology . 20

3.2.1 Trace-Based Analysis . 21

3.2.2 Case Study . 26

3.3 Summary . 26

4 Internal Workload Representation 29

4.1 Challenges . 30

4.1.1 Complexity in Storage Devices . 30

4.1.2 Complexity in I/O Workloads . 32

4.1.3 Identifying Important Workload Characteristics 35

4.2 Request Description . 36

4.2.1 Composition of Disk Service Time 36

v

vi TABLE OF CONTENTS

4.2.2 Request Description . 37

4.2.3 Evaluation . 39

4.3 Workload-Level Description . 46

4.3.1 Previous Work in Workload Characterization 47

4.3.2 Entropy Plot . 48

4.3.3 Workload-Level Description . 53

4.3.4 Evaluation . 55

4.4 Comparison of Two Representations . 66

4.5 Summary . 69

5 Selecting A Regression Tool 73

5.1 Device Modeling Using Regression Tools . 73

5.2 Regression Tools . 74

5.2.1 Linear Regression . 74

5.2.2 Artificial Neural Networks . 75

5.2.3 Support Vector Machine . 76

5.2.4 Classification And Regression Trees 78

5.2.5 K-Nearest Neighbors . 79

5.2.6 Comparison . 80

5.3 Model Tuning . 81

5.3.1 Underfitting And Overfitting . 81

5.3.2 Data Transformation . 82

5.4 Selecting A Tool for Device Modeling . 84

5.5 Understanding the Model . 87

5.6 Summary . 90

6 Training Workload Generation 91

6.1 Design Considerations . 91

6.1.1 Design Alternatives . 91

6.1.2 Diverse Synthetic Traces by Sampling 92

6.1.3 Difference from Traditional Synthetic Workload Generation 92

6.2 Bounding the Workload Description Space 93

6.3 Sampling Over the Workload Description Space 94

6.4 Generating Traces From Samples . 95

6.4.1 Generator List . 96

6.4.2 B-model and PQRS Model . 96

6.4.3 Mixing versus Bagging . 99

TABLE OF CONTENTS vii

6.5 Experimental Results . 100

6.5.1 Effectiveness of Trace Generators . 100

6.5.2 Comparison of Mixing and Bagging 102

6.6 Summary . 104

7 Error Analysis 107

7.1 Error Breakdown . 107

7.1.1 Error Sources . 107

7.1.2 Experimental Results . 109

7.2 Coverage . 111

7.2.1 Methodology . 111

7.2.2 Experimental Results . 112

7.3 Online Model Adaptation . 115

7.4 Summary . 116

8 Case Study 119

8.1 Design . 119

8.1.1 Target Application . 119

8.1.2 Methodology . 120

8.2 Experimental Results . 122

8.3 Understanding Results . 126

8.4 Summary . 128

9 Conclusions 129

10 Future Work 133

A DiskSim Parameter Files 135

B Various Distribution Functions 139

B.1 Comparing Against Original Response Times 139

B.2 Response Time Distribution . 139

B.3 Workload-Level Description Parameters . 140

C Configuring the TPC-H Database 141

C.1 Server Parameters . 141

C.2 SQL Commands Used in Database Creation 142

C.3 Database Configurations . 146

List of Figures

1.1 The learning-based modeling approach for storage devices. 5

3.1 Model construction through training. 16

3.2 Modeling storage devices at the request and workload levels. 19

3.3 Aggregate performance on Atlas 10K. 24

3.4 Response time distribution of real-world traces. 25

4.1 Mechanical components of a disk driver . 30

4.2 Visual presentation of a sample disk trace. 34

4.3 Device models working at two levels . 36

4.4 Comparison of two types of request descriptions on cello99a. 41

4.5 Comparison of two types of request descriptions on cello99b. 42

4.6 Comparison of two types of request descriptions on cello99c. 43

4.7 Comparison of summary response time statistics on count-based request-level

models. 44

4.8 Importance of request description parameters. 45

4.9 Selecting fragment length . 47

4.10 Entropy plot on arrival time. 50

4.11 Entropy plot calculation. 52

4.12 Joint entropy plot for other correlations. 52

4.13 Entropy plot on cello99a. 56

4.14 Mutual information plot involving request type and size. 56

4.15 Distributions of entropy plot slopes for real-world traces. 57

4.16 Distributions of interarrival time, seek distance, and request size. 58

4.17 Comparison of different ways of characterizing distributions. 59

4.18 Workload-level model accuracy on cello99a. 61

4.19 Workload-level model accuracy on cello99b. 62

4.20 Workload-level model accuracy on cello99c. 63

ix

x LIST OF FIGURES

4.21 Workload-level model accuracy in predicting four percentile response times. 64

4.22 Relative and absolute error distribution in modeling Atlas 10K. 65

4.23 Model error grouped by the request counts in the fragments. 65

4.24 Parameter importance in workload-level models. 67

4.25 Model accuracy comparison of request and workload-level device models . . 70

4.26 Model accuracy comparison of request and workload-level device models . . 71

4.27 Model accuracy comparison of request and workload-level device models . . 72

5.1 Linear regression model example . 75

5.2 Artificial neural network example . 76

5.3 Support vector machine example. 78

5.4 CART model for the sample data set. 79

5.5 A kNN model on the sample data set. 80

5.6 Training and testing error as a function over model complexity. 82

5.7 Residual error without and with the logarithm transformation. 85

5.8 Comparison of models constructed without and with the logarithm transfor-

mation on the output value. 85

5.9 Comparison of regression tools. 85

5.10 Comparing three ways of measuring parameter importance. 89

5.11 A CART model constructed for Atlas 10K. 90

6.1 Bounding box in workload-level description space. 94

6.2 B-model construction algorithm . 98

6.3 PQRS model construction algorithm . 99

6.4 Performance comparison of synthetic and real traces. 101

6.5 Comparison of Mixing and Bagging in constructing device models for Atlas

10K. 103

6.6 Model error analysis by combinations from Table 6.2. 104

6.7 Effects of removing combination 2 and 4 in the training set. 105

7.1 Error sources in learning-based modeling approach. 108

7.2 Error breakdown on Atlas 10K based on Equation 7.3. 110

7.3 Coverage and performance of the synthetic workloads. 113

7.4 Performance comparison between real traces by leaf nodes. 114

7.5 Effectiveness of online adaptation. 116

7.6 Breakdown of predictions by trees used in prediction. 117

8.1 Data layout evaluation using storage device models. 121

LIST OF FIGURES xi

8.2 Disk activities of power-runs on a 10GB TPC-H database. 123

8.3 I/O and CPU time breakdown on TPC-H power-runs. 125

8.4 Comparison of actual and predicted volume on individual disks. 125

B.1 Comparison of the original cello system performance and the three devices

under study. 139

B.2 Response time distribution of real-world traces. 140

B.3 Distributions of interarrival time, seek distance, and request size. 140

List of Tables

3.1 Symbol table. 18

3.2 Summary statistics of I/O traces. 22

3.3 Important characteristics of the three devices in our experiments. 23

3.4 Performance summary of I/O traces on modeled devices. 24

4.1 Demerits of the count-based request-level models. 40

4.2 Parameters in workload-level descriptions. 54

4.3 Overhead comparison of request- and workload-level device models. 66

5.1 Comparison of existing regression tools . 81

5.2 Comparison of regression tools. 86

6.1 Generators maintained for training trace generation 97

6.2 Trace generator combinations used in the experiments. 102

8.1 Four candidate database designs. 122

8.2 Comparison of workload characteristics. 124

8.3 Predicted performance for the four physical layouts. 126

xiii

Chapter 1

Introduction

Automated system administration is becoming more and more important as system man-

agement cost becomes the dominant factor. One aspect of autonomic systems requires the

ability of dynamic resource reallocation to deliver optimal performance and to cope with

workload and hardware changes. Performance models of system components provide an

efficient evaluation of resource allocation plans. This thesis explores the feasibility of using

machine learning tools in modeling storage devices.

This chapter gives a brief overview of the entire thesis by starting with the motivation

and background of the storage device modeling problem in Section 1.1. Section 1.2 pro-

vides the formal problem definition and the thesis statement. Section 1.3 summarizes my

contributions, and Section 1.4 presents the organization of the thesis.

1.1 Autonomic Systems

The scale and complexity of large computer systems have grown too rapidly for human

administration to keep up [50, 71]. For example, storage management cost is typically

twice the cost of storage systems [89, 90], and a similar breakdown is observed in database

systems, too [27]. Both industry and academia are taking initiatives to build autonomic

systems that can understand and monitor themselves, adapt to varying circumstances,

and allocate resources to deliver optimal performance. A large number of active research

projects aim at automating system management for various applications, including general-

purpose resource allocation [17, 72], file systems [57], e-commerce sites [56], storage system

management [10, 41, 101, 121] and database systems [28, 52, 81].

In traditional hand-optimization, system administrators typically pick several candidate

configurations based on their experience and select the best one by evaluating the candi-

1

2 CHAPTER 1. INTRODUCTION

dates in actual deployment. Unfortunately, this approach is less feasible nowadays for two

reasons. First, it is extremely challenging for administrators to achieve a comprehensive

understanding of today’s systems simply because of their scale and complexity. At the same

time, the number of possible configurations scales exponentially with system sizes, and so

does the difficulty in locating good candidate configurations. Second, evaluating candi-

dates in actual deployment is expensive and sometimes unfeasible. For example, during

online performance tuning, the resources can be in use, thus unavailable for such evalua-

tion. Therefore, it is valuable to be able to evaluate resource allocation plans efficiently

without the need of physical deployment.

Performance models of system components offer such an ability. These models can take

workloads as input and predict their performance on system components accurately and

quickly. Consequently, systems can use the models to evaluate a large number of candidate

configurations and automatically locate high-quality ones in a short period of time. In

fact, some work has formulated resource planning into an optimization problem, and used

performance models to find good solutions [8]. The following two sample applications further

illustrate the importance of storage device models in storage resource management.

Application 1: Automatic data layout. The data layout problem is to find a good

layout of a set of data objects on a set of storage devices for a given workload. The data

objects can be files or logical volumes for file servers or tables and indexes for database

servers. The workload consists of the disk accesses of the data objects. A good layout could

be defined on some desired performance metrics, such as the maximum throughput or the

average response time over a certain period of time.

A good layout should not only balance the load across all the devices, but take into

consideration the interleaving and compatibility of the accesses on different objects. For

example, if two objects are never accessed simultaneously, we can safely put them on the

same device even though the total traffic volume could be high. When formulated as an

optimization problem, the automatic data layout evaluation algorithm can take advantage

of performance models to efficiently evaluate the performance of candidate data layouts.

Application 2: Storage provisioning. Storage provisioning finds a set of storage de-

vices for a given workload to meet both financial and performance goals. Unlike in the

previous problem setting, one is free to choose storage devices. Finding a good storage

configuration involves two steps: a) search among a large number of storage devices and

b) evaluate the performance of each set of devices. Similarly, efficient and accurate device

models are useful in comparing candidates.

1.2. Problem Definition and Challenges 3

The above two sample applications have shown that performance models for storage de-

vices are valuable in autonomic storage resource allocation. This thesis focuses on explor-

ing the feasibility of using machine learning techniques to build such performance models.

Unlike traditional analytical models and disk simulators, our approach bases our device

models on machine learning tools, and the models are constructed by observing storage de-

vices under a set of training traces. The main advantage is automated model construction,

in addition to high efficiency, accuracy, and a compact model representation. The model

construction algorithm treats modeled devices as “black boxes”, requiring no knowledge of

the device internals and no human intervention, making it accessible to a larger audience.

The approach also allows manufacturers to ship device models together with their products

without the worry of revealing their technologies.

1.2 Problem Definition and Challenges

Performance models for storage devices are useful in evaluating storage resource allocation

plans. Our thesis considers only block-storage devices, such as single SCSI or IDE disks and

disk arrays consisting of multiple disks. A performance model for a given storage device

takes an I/O workload as input and predicts the aggregate performance of the workload on

the modeled storage device. We define an I/O workload as a sequence of requests, ris, and

the aggregate performance metric can be any percentile or the average response time over

a certain period of time. We choose to predict the aggregate performance Pj in the j-th

time interval, also known as the j-th fragment. The model does not predict the maximum

throughput. Instead, we assume an open system, and the model predicts the aggregate

response time given a detailed I/O trace, which consists of a sequence of disk requests. The

storage device can be either a single disk or a disk array. The model should be efficient,

accurate, compact, and easy to construct.

Traditional models for storage devices fall into two categories: disk simulators and

analytic models. Disk simulators simulate the physical mechanism of storage devices using

software and can therefore estimate per-request response times accurately given calibrated

device parameters. Running simulations is slow and expensive, not suitable for resource

planning tasks. Analytic models apply a set of formulas to input workload characteristics to

predict device performance. Similar to disk simulators, building analytic models requires a

deep understanding of the storage device internals. Incorporating new features into existing

models usually involves human effort to understand the new features. The learning-based

modeling approach, in contrast, removes humans from the development cycle, making model

construction fully automated.

4 CHAPTER 1. INTRODUCTION

The learning-based models are difficult to construct because of the complexity of storage

devices and I/O workloads. Storage devices show strong non-linear behavior because of the

physical machinery in disks. Performance optimization, such as prefetching and caching,

further complicates the situation. In addition, I/O workloads usually exhibit bursty arrivals

and complex access patterns, and device performance depends on these characteristics.

Performance modeling of storage devices requires a deep understanding of the interaction

between workload characteristics and storage device behavior.

1.3 Automated Device Modeling

This thesis explores the feasibility of the learning-based approach in modeling storage de-

vices. Our approach employs a special kind of machine learning tool, “regression tools”, to

model target performance as functions of input I/O workloads. The models learn the func-

tions by observing storage devices under a set of training traces for a certain period of time,

known as “training”. This thesis investigates the design space of the learning-based mod-

eling approach and evaluates the effectiveness of some existing techniques in implementing

the approach.

Existing regression tools model real-value functions on a multi-dimensional Cartesian

space. Therefore, an I/O workload should be internally represented as vectors in such a

space before one can use regression tools to model device behavior. Figure 1.1 illustrates the

automated model construction algorithm. First, a set of training traces are replayed on the

target device to obtain response time information. Second, the important characteristics of

the traces are represented as vectors. The vectors and response time information provide a

set of samples for a regression tool to build the device model. A sample consists of the vector

presentation of a sequence of disk requests and the aggregate performance of the requests.

Third, a regression tool is used to build the device model from the samples. The model

consists of the feature extraction algorithm and a regression model, which maps the vector

representation of workloads to their performance on the modeled device. Once properly

designed, the training can be fully automated.

During prediction, the feature extraction algorithm first converts an input I/O workload

into vectors, and the regression model predicts workload performance from the vectors.

With an appropriate regression tool, performance prediction can be accurate and efficient.

Implementing this approach involves three issues.

1. Design the vector representation of I/O workloads. The vector representation should

capture sufficient workload characteristics for the regression tool to distinguish work-

loads of different performance. Moreover, the representation should be compact to

1.3. Automated Device Modeling 5

. . . model
Regression

In
p

u
t

W
o

rk
lo

ad

model
Regression

T
ra

in
in

g
W

o
rk

lo
ad

. .
 . . .

 .

. .
 .

. .
 .

. .
 .

. .
 .

3r

r 2

r 1

2

3

1

2W
1W

2

1

r3

r 2

r 1

2P
1P

r3

r 2

r 1

2W
1W

Feature
extraction Regressioning

Feature
extraction

T
ra

ce
 r

ep
la

y

1. Training phase

Storage device

2. Predicting phase

Regression

RT

RT

RT

P

P

Figure 1.1: The learning-based modeling approach for storage devices. The device
model takes an I/O workload as input and predicts the aggregate performance Pjs
of the workload on the modeled device. During training, the response times, RTis,
of training traces are obtained by replaying the traces on the device. The traces are
then broken into fragments, a pair (Wj , Pj) is produced for each fragment, with Wj

describing the important workload characteristics and Pj the aggregate performance
of the fragment. A regression tool then models Pj as a function of Wj. During
prediction, a workload is first converted into Wj, and the regression model predicts
Pj from Wj.

have a fast training because the training length is linear to the number of samples

needed to cover the vector space, and the number of samples is usually exponential

to the dimensionality of the vectors. This phenomenon is known as the “curse of

dimensionality” [16].

2. Select an appropriate regression tool to deliver accurate, efficient, and compact re-

gression models.

3. Provide a set of training traces. The traces should offer a wide range of access pat-

terns for device models to capture device behavior under different types of workloads

because the models rely on training to learn device behavior.

In this thesis, we have explored the effectiveness of existing techniques in solving the above

three issues and have designed two new tools, the entropy plot and PQRS model, to augment

6 CHAPTER 1. INTRODUCTION

existing work in workload characterization. In addition, we use a sample application to

illustrate the effectiveness of the device models in helping resource allocation.

Thesis statement. The learning-based approach can provide accurate, efficient, and

compact models of storage devices for evaluating resource allocation plans if online

model adaptation is allowed.

The major contributions of the thesis include:

• Evaluating the effectiveness of existing work in implementing the learning-based mod-

eling approach for storage devices. Experiments on real-world traces have shown that

when the testing traces are similar to the training traces used, these models can make

decent predictions (a median relative error of 10% to 40% for most traces and devices.)

Otherwise, the prediction error could be more than doubled due to the poor quality

of synthetic training traces compared to the former case. We further show that when

training data is collected and added to the models continuously, the model accuracy

can be improved greatly.

• Proposing two new tools, the entropy plot and PQRS model. The former can efficiently

characterize the arrival and locality patterns of I/O workloads with three scalars,

becoming an important part of the vector representation of I/O workloads. The

latter can generate traces with given characteristics and provide traces for training.

• Developing a methodology to analyze model error using empirical studies, including

error breakdowns by error sources and performance comparisons between synthetic

and real-world traces. The analysis has shown that the quality of the training traces

is a major error source.

• Evaluating the usefulness of the learning-based models in a sample resource allocation

application, physical database design. The device models have provided a correct

ranking of the candidate designs even with inaccurate predictions.

1.4 Organization of Thesis

This thesis describes the learning-based modeling approach for storage devices. Chapter 2

summarizes previous work in related areas, including autonomic computing, storage device

modeling, and workload characterization. Chapter 3 gives an overview of our approach and

identifies three important issues in implementing the algorithm. The next three chapters,

starting from Chapter 4 to 6, give a detailed description of our contributions in addressing

1.4. Organization of Thesis 7

the three issues. Chapter 7 presents an error analysis methodology and shows that synthetic

trace generators need further improvement in order to provide realistic traces for construct-

ing accurate device models. Chapter 8 illustrates the effectiveness of our device models

using a real application. Finally, Chapter 9 summarizes the conclusions, and Chapter 10

discusses future work.

Chapter 2

Related Work

This chapter lists representative work in the areas of automated system administration,

storage device modeling, and workload characterization.

2.1 Automated System Administration

System administration has become more and more expensive due to the increasing scale and

complexity of large computer systems. Research teams from both industry and academia

have started to build autonomic systems that can carry out a large range of administration

tasks by themselves to reduce administration cost [23, 32, 50, 53, 71, 101, 118]. Auto-

nomic systems have four aspects: self-managing, self-configuring, self-protecting, and self-

healing [50]. Commercial products, such as AutoRAID [121], SQL Sever [52], DB2 [100],

and Oracle [81], include self-management components to reduce administrators’ burden.

Performance modeling is an important element in implementing the self-configuring

feature of autonomic systems because it can allow a fast and efficient evaluation of sys-

tem performance for making resource allocation decisions. Some systems, such as Au-

toRAID [121], use heuristic rules to make resource management decisions. Full-fledged

performance models, however, can handle more complex interaction between workloads

and the storage devices than heuristic rules. One technique for automated resource man-

agement is control-theoretic feedback loops [39, 48, 56, 57]. Some systems employ static

or simple dynamic rules to guide resource allocation [102, 114, 118]. Others formulate the

problem as an optimization problem and take advantage of combinatorial search techniques

and performance models to find a good allocation plan [8, 17, 72]. Performance models al-

low the systems to compare different allocation plans efficiently and accurately without the

need for actual deployment of workloads. For example, analytic queuing network models are

9

10 CHAPTER 2. RELATED WORK

used in resource allocation for large data centers [17, 72]. Anderson et al. [8, 10] combined

a randomized greedy search algorithm and table-based models for storage devices to solve

the storage provisioning problem. Borowsky et al. [19] studied capacity planning under

intermixing phased workloads. Recent work by Thereska et al. [105] provided a framework

to monitor system activities for answering “what-if” questions using operational laws.

Commercial database systems have also incorporated various features to achieve easy

management [52]. Capacity planning is known as physical database design in database

terminology. Several projects have studied the automated physical database design prob-

lem [3, 67, 88]. AutoPart [83] optimizes sequential accesses to scientific databases by

automatically partitioning databases. Oracle [81] provides Automated Storage Manage-

ment(ASM), which automatically replicates and stripes data across all the devices, to reduce

administrators’ tasks. LEO [100], the DB2’s LEarning Optimizer, uses statistics collected

in query execution to correct inaccurate histogram information of stored data. Another

important task for database administrators is to create subsidiary data structures, such

as indexes and materialized views, for speeding up data manipulation. For example, DB2

has DB2 Advisor [111] to help administrators choosing the index set for a given query set.

Agrawal et al. [4] have studied automated selection of materialized views and indexes for

Microsoft SQL servers.

Performance models of system components can provide fast and accurate predictions of

system performance under different configurations, making them an useful element in auto-

mated resource allocation. This thesis focuses on building performance models for storage

devices because they are important in making storage resource management decisions.

2.2 Storage Device Modeling

Storage devices are difficult to model because of their non-linear, state-dependent behavior.

Early research work in file systems either assumed a constant service time or selected times

from a uniform distribution. Ruemmler and Wilkes [94] laid the basis for the disk modeling

work by simulating the axial and rotational head positions, allowing the seek, rotation,

and transfer times to be computed. Later work started to handle complex storage devices,

such as cache-enabled disk arrays [24, 30, 62, 77, 119]. These models usually fall into

two categories, simulators and analytic models, both requiring expert knowledge of storage

devices. A new approach, black-box modeling, on the other hand, treats storage devices as

black boxes, thus requiring no information about storage device internals.

2.2. Storage Device Modeling 11

Simulators. Simulators produce per-request response times by simulating the physical

mechanism of storage devices in software. Pantheon [119], DiskSim [24], and RAIDframe [51]

represent the current state of the art in disk storage array simulation. These simulators can

simulate complex storage systems given accurate specifications for caches, buses, controllers,

adapters, and disk drivers.

While such simulators are helpful in understanding storage device performance, espe-

cially when devices are not immediately available, developing a simulator is challenging.

Model developers should have access to the internal implementation details, such as the

interconnection between devices, the caching policy, and layout. Unfortunately, this infor-

mation is not always available for public access. Tools have been designed to extract disk

parameters by issuing controlled disk accesses to disks [95, 103]. Recent work from Denehy

et al. [38] has applied a similar technique to disk arrays to extract the number of disks,

RAID level, and stripe unit size.

Moreover, replaying traces on a disk simulator is expensive in both time and resources,

making it inappropriate for online planning applications.

Analytic Models. Analytic models use a set of equations to describe disk behavior.

Therefore, prediction is usually fast. Early analytic models aim at single disks. Simple

models simulate the head position and use functions to approximate the seek and rotation

time. These models are useful in performance optimization, e.g. in disk scheduling [54, 97,

123], data layout [93], and developing disk simulators [24, 119].

With the great success of disk arrays [29], analytic models started to handle disk arrays.

Disk arrays introduce more complexity to the modeling, including replication, striping,

prefetching, and caching. Kim and Tantawi [61] were among the first to present an analytic

method for approximating the disk service time of requests striped across n disks. Merchant

et al. [76] modeled individual disks in a disk array using M/G/1 queuing model and design

the best striping strategies for the replicated data on the disk array. Chen et al. [30] incor-

porated both redundancy and queuing in their performance models of RAID 5 disk arrays

in normal mode. Lee and Katz [66] used a closed queuing model to build the utilization,

response time, and throughput models for disk arrays. Merchant and Yu [75, 77] then ana-

lyzed RAID 5 and RAID 1 disk arrays in both normal and recovery modes. A throughput

model for RAID 0/1 and RAID 5 arrays [74] was used in the automatic storage provisioning

tool, Minerva [7]. Thomasian and Menon [106, 107], and Kuratti and Sanders [62] further

studied normal, degraded, and rebuild modes in their RAID 5 performance model. Bach-

mat and Schindler [12] analyzed reconstruction in RAID 1 disk arrays. Menon [73] modeled

explicit read-ahead and write-back by the array cache of a RAID 5 disk array.

12 CHAPTER 2. RELATED WORK

Work by Shriver et al. [99] took a modular approach to support algebraic descriptions

of disk driver components and composed them to model the mean disk service times. Uysal

et al. [110] used a similar approach to predict the mean throughput of disk arrays under

asynchronous I/O workloads. Vartki et al. [112] analyzed the effects of caching policies and

parallelism of disks along with array controller optimizations on the performance of a disk

array using queuing theories.

Performance prediction through analytic models is fast in computation. Building an-

alytic models, however, is even more difficult than developing simulators because model

developers not only face the same challenges, but also should have the ability to distill I/O

workloads into a handful of parameters and summarize the interaction between modeled

devices and workloads into equations.

Black-box models. In contrast to simulators and analytic models, black-box models

assume little knowledge on the internal implementation details of storage devices, resulting

in a fully automatable model construction algorithm.

The simplest form of such models is device specifications provided by manufacturers.

The specifications usually contain the maximum throughput and the average seek time of

the devices. In reality, the achieved throughput can be lower than the maximum depending

on workloads.

The table-based approach by Anderson et al. [9] built throughput models for disk arrays

that take workload characteristics as model input. The models view the behavior of a storage

device as a mapping from workloads to their performance. In the training period, a set of

synthetic or real traces are replayed on the modeled device, and a table records the mapping

for the training traces. Prediction is achieved by interpolating among the table entries of

similar characteristics. More data can be added to the table during online operation to

improve model accuracy. Our device models are an enhancement to the table-based models.

Our goal is to explore the design space and evaluate the effectiveness of existing techniques,

such as workload models and regression tools, in building such learning-based device models.

Later work by Kelly et al. [60] focused on online prediction for per-request response time

using machine learning tools. Their model takes workload information and system status

(i.e., the number of pending requests) as input and predicts whether the requests can be

served quickly or not. Our models, on the other hand, do not use any system status as

input.

2.3. Workload Characterization 13

2.3 Workload Characterization

Workload characterization has been an active area since the birth of computer systems and

has involved various workloads on different components of the systems, such as memory

references [15, 31, 58], accesses in file systems [13, 45, 78, 82, 87], I/O requests [40, 43],

and network traffic [36, 68]. I/O workloads, in particular, show complex arrival and access

patterns. These characteristics play an important role in determining the workload perfor-

mance [40, 64]. Rome, a QoS specification language for storage systems [120], has provided

a formal language for specifying workload characteristics.

Arrival process. Most recent work in workload characterization aims at the arrival pro-

cess of network traffic after the groundbreaking discovery of self-similarity in Ethernet

traffic [68]. Various computer-generated traffic have been shown to exhibit strong bursti-

ness and self-similarity [36, 42, 68], including I/O workloads [43]. In these workloads, the

burstiness observed in small time scales does not disappear after aggregation in large time

scales, which invalidates the traditional assumption of independent arrivals used in queuing

theory [33]. Instead, long range dependence between requests exist. Studies [1, 2, 46, 69, 80]

have shown that self-similarity has a detrimental effect on network performance, leading to

an increased packet loss rate, delay, and the need of a large buffer size and source traffic

control. The Hurst exponent [68] has been proposed to quantify the degree of self-similarity

in the arrival process. In addition, trace generation with fractal Brownian motion for a

given Hurst exponent requires intensive computation. It is, however, not necessarily a good

metric because self-similarity does not always lead to burstiness.

Several statistical self-similar processes, including fractal Brownian motion [68, 80, 85],

fractional ARIMA [109], and Multifractal Wavelet Models [91], have been employed to

generate realistic arrival processes for network traffic. These self-similar processes have

solid mathematical bases and can be easy to analyze, but are computationally intensive to

generate traces.

One conjecture on the cause of the self-similarity is the heavy-tailed distributions of

users’ active and idle time. This conjecture leads to structural ON/OFF models [14, 122],

which aggregate multiple ON/OFF sources to produce web traffic. Gomez et al. [44] mixed

the ON/OFF models and M/G/1 processes to model permanent and transience processes in

I/O workloads. To generate a trace of similar characteristics to a given one, the ON/OFF

models require a large number of parameters to be obtained from the original trace, such as

the number of sources, the average ON and OFF period lengths for each source. In addition,

the number of parameters depends on the number of sources in the workload, unsuitable

for our storage device models because the models need compact workload representations

14 CHAPTER 2. RELATED WORK

as input for performance prediction.

Access patterns. Access patterns for I/O workloads have both the spatial and temporal

locality as well as correlations involving request types and sizes.

I/O traffic is more difficult to model than network traffic because of the richness in

access patterns. Network traffic assumes a categorical address space, so spatial locality

usually concerns whether two requests have the same destination. Both the Independent

Reference Model [22] and the LRU stack distance [6, 14] are used for generating the location

information in web traffic. In contrast, the address space of I/O workloads is ordered, and

the response time difference can be several orders of magnitude between sequential and

random accesses. In practice, the locality of an I/O trace is usually represented by the

empirical distributions of the access frequencies of the disk blocks and/or the sequential run

length [44, 65, 109]. Seldom do these models consider the correlations between subsequent

requests in LBN, request size, and operation type. Ganger et al. [40] experimented with

real I/O workloads to show that no existing models were able to capture the complexity of

I/O workloads at that time.

Our learning-based modeling approach uses regression tools to model storage device be-

havior as functions over I/O workloads and learn the functions by observing training traces

on the devices. Because regression tools take only vectors as input, workloads will be rep-

resented as vectors of scalars internally. In addition, the model construction requires traces

of rich access patterns. Existing work focuses mostly on extracting workload characteristics

and generating traces similar to given traces. This thesis, on the other hand, emphasizes

generating traces with diverse access patterns. In addition, it proposes the entropy plot and

PQRS model to augment existing work in the workload characterization area. The former

is an effective tool to quantify the spatio-temporal behavior of an I/O workload with three

scalars. The latter can generate I/O traces with given characteristics.

Chapter 3

Toward Learning-Based Device

Modeling

Our modeling approach distinguish itself from traditional modeling approaches by treating

storage devices largely as black boxes. This chapter gives a brief overview of the design and

the evaluation methodology of our device models.

Section 3.1 gives a high-level description of the approach and introduces the three main

issues in implementing the approach. Section 3.2 presents the two methods for evaluating

the effectiveness of various techniques. Section 3.3 concludes the chapter.

3.1 Challenges and Contributions

Our learning-based modeling approach learns the behavior of storage devices by observing

them under a set of training traces. A performance model for a given storage device takes

an I/O workload as input and produces as output its performance on the device. An I/O

workload is specified as a sequence of disk requests, with each request, ri, defined by four

attributes

ri = (Timei,LBNi,Sizei,Typei),

specifying the arrival time, the device logical block number (LBN) of the first requested

disk block, the request size in the number of disk blocks, and the request type (read or

write).∗ The performance is an aggregate performance metric, such as the mean or percentile

response time over one-minute intervals. A storage device can be a single disk or a disk

array.

∗We assume a device LBN is mapped to a single or multiple physical disk blocks on a storage device for

simplicity.

15

16 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

. . . model
Regression

T
ra

in
in

g
W

o
rk

lo
ad

s

2. Which regression tool to use?

1. How to represent workloads as vectors?

3. What traces to use in training?

. .
 . . .

 .

. .
 .

3r

r 2

r 1

2

3

1

2W
1W

2

1

r3

r 2

r 1

Feature
extraction RegressioningT

ra
ce

 r
ep

la
y

RT

RT

RT

P

P

Figure 3.1: Model construction algorithm in the learning-based approach and three
important issues in implementing the algorithm.

The black-box nature of the approach offers three advantages over traditional models,

such as disk simulators and analytic models. First, by treating storage devices as black

boxes, the model construction algorithm requires no prior knowledge of the device imple-

mentation details. Modeling a new device requires little human intervention. Second, by

taking advantage of existing machine learning tools, it is possible for the device models to

achieve high efficiency and accuracy because existing machine learning tools usually have

strong mathematical roots and have experienced great successes in practice. Third, black-

box models are attractive when privacy is a concern. Manufacturers can ship these models

with their storage devices without revealing the technologies used in constructing these

devices. All these features make black-box models attractive in practice.

This thesis explores the feasibility of using machine learning techniques to construct

performance models for storage devices. During “training”, the algorithm observes how

the modeled device behaves under a set of training workloads and builds the models based

upon these observations as shown in Figure 3.1. The system models device behavior as a

mapping from workloads to their performance on the device. I/O workloads are internally

represented as vectors and a regression tools models the target performance as a function

over the vectors. Therefore, the device model consists of both the regression model built

from training and the feature extraction algorithm. We identify three important issues in

implementing this approach and evaluate the effectiveness of existing techniques in address-

ing them.

1. Internal workload representation. Regression tools model real-value functions

over the multi-dimensional Cartesian space that input vectors live. Therefore, we

need a feature extraction algorithms to convert workloads into vectors in such a space

3.1. Challenges and Contributions 17

before applying regression tools. It is difficult to achieve such vector representations

due to the complex arrival and access patterns of I/O workloads.

2. Selecting an appropriate regression tool. There are a wide range of regression

tools that offer different characteristics. We need to select an appropriate one to meet

the efficiency and accuracy requirements.

3. High-quality training traces. The quality of training traces plays an important role

in the resulting device models. The algorithm builds regression models by observing

devices under a set of training traces. The model can only predict with high accuracy

those workloads that are similar to the training traces. The training traces, therefore,

should contain workloads of diverse characteristics for the device model to predict a

real-world workload with high confidence. At the same time, the traces should be as

short as possible to limit the training time.

The three issues are orthogonal, so we address them separately in three chapters. In each

chapter, we explore the design space of the corresponding problem by always using the best

solutions for the other two. The remainder of this section discusses the challenges and our

main conclusions in detail. Table 3.1 lists the important symbols used in this thesis.

3.1.1 Vector Representation of Workloads

In our learning-based approach, an I/O workload is internally represented as vectors in

a multi-dimensional Cartesian space, and the target performance metric is modeled as

functions over the vectors. This step, therefore, is to determine the vector representation of

I/O workloads, that is, the axes of the multi-dimensional space. It is impossible to model

per-request response time RTi as a function over ri because the response time depends

not only on the current request but also on those that arrived before the current one. It

is, therefore, important to design a vector representation that can capture the correlations

between the requests.

Converting traces to vectors can be viewed as “feature extraction”, and the vectors

are “feature vectors” that capture the important features of input data sets. The features

are the axes of the multi-dimensional space and the important workload characteristics

in determining device performance. I/O workloads exhibit strong correlations between

requests, and show bursty arrivals and complex access patterns. Powerful tools are required

to capture these important characteristics efficiently with vectors.

Vectors can work at different granularities on I/O workloads, as shown in Figure 3.2.

A request description characterizes a single request, and the corresponding request-level

18 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

Symbol Meaning

ri a disk request in a workload, which is specified by four attributes, arrival
time T imei, location LBNi, size Sizei, and Typei.

RTi the response time of request ri on the modeled device

Ri request description, describing the per-request workload characteristics. The
request-level device model models RTi as a function on ri.

Pj the aggregate performance measure for a workload fragment of a pre-defined
length (in time).

Wj workload-level description for a workload fragment. The workload-level de-
vice model models Pj as a function on Wj .

Timediffi(t) the difference in arrival time between ri−2t and ri for t = 0, 1, . . . , tmax

Counti(w) the number of requests arrived in [Timei − 10w−1,Timei] for w =
1, 2, . . . , wmax

LBNdiffi(l) the distance in LBN between ri−l and ri for l = 1, 2, . . . , lmax

tmax the maximum value for calculating Timediff.

lmax the maximum value for calculating LBNdiff.

LRUstacki LRU stack distance of the current request.

Seqi flag indicating whether the current request is a sequential access

Rtimediff
i request description which uses the difference in arrival time from the current

request to precedent requests to model the queuing time

Rcount
i request description which uses the number of history requests in a set of

windows to model the queuing time

Table 3.1: Symbol table.

models predict per-request response times from request descriptions. Similarly, a workload-

level description works on a sequence of requests, and workload-level models model the

aggregate performance of sequences directly from their workload-level description.

Chapter 4 presents the design and evaluation of these vector representations. When

training traces and testing traces offer similar characteristics, both models can make pre-

dictions with a median relative error ranging from 10% to 40% on real-world traces. This

indicates the effectiveness of the vectors in capturing most important workload character-

istics. The comparison between request- and workload-level models shows a clear trade-off

between training and predicting time: the former are fast in training and slow in predict-

ing, and the latter are just the opposite. Since workload-level models are more stable in

prediction accuracy and fast in prediction, we chose the workload-level models for further

investigation in our thesis.

3.1. Challenges and Contributions 19

Aggregate
Performance P

W

1R

2R

nR

. . .
Regression
model

RT1

RT2

RTn
r 1

r 2

r n
. .

 .

description
workload−level

per−request
response time

response time
aggregated

P
Regression
model

Workload−level device model

Request−level device model

an
 I/

O
 t

ra
ce

request descriptions

Aggregating RTs

Figure 3.2: Modeling storage devices at the request and workload levels.

3.1.2 Selecting A Regression Tool

The learning-based modeling approach uses a regression tool to model device performance

as a function over request or workload-level descriptions. To be useful in making resource

allocation decisions, the chosen regression tool should offer accurate and fast predictions, low

storage requirement, and an easy construction algorithm for device models. For example,

the prediction accuracy should be high enough for resource planning. One study reported

that an analytic model with an average relative error around 20% was accurate enough

for their resource planning applications [7]. The prediction time should be in the order

of milliseconds for evaluating the performance of an I/O trace of reasonable length. In

addition, the ideal scenario is for the regression models to reside comfortably on storage

devices or to be included in resource management software. So models under 1 MB should

be tolerable. Easy model visualization and error analysis can be of additional value in

understanding the models. There are a wide range of regression tools available, including

linear regression, Classification And Regression Trees (CART), Artificial Neural Networks

(ANN), Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). These tools

offer different properties. We need to select one that fits our needs the best. Chapter 5

investigates these tools and justifies our choice of CART after empirical studies.

We have chosen to use CART models because they are accurate, compact, and easy to

use. CART models use piece-wise linear functions to approximate a real-value function.

Both the model construction and prediction are fast. In addition, model construction

needs little human intervention, and the resulting models are compact, taking only several

kilobytes to store.

20 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

3.1.3 Training Trace Generation

Training traces play an important role in the quality of the constructed models. On the

one hand, the traces should be diverse enough to exercise storage devices during training so

that the models can predict a workload with high confidence. On the other hand, training

traces should be short to limit the training time.

Using real-world traces in training imposes three difficulties. First, real-world traces

may not cover all the interesting workloads well. In addition, advanced sampling algo-

rithms could require iteratively generating new traces with specific characteristics to aug-

ment training traces, and may not work with real-world traces because it can be difficult to

alter the characteristics of existing traces into the desired ones. Second, these traces could

incur large storage overhead. Finally, because of data privacy issues, these traces may not

be publicly available. As a result, we chose to use synthetic traces in training.

Synthetic trace generation in our system has a subtle difference from previous work on

the same area. Existing work has focused on generating traces of similar characteristics

to a given trace, and these algorithms can choose appropriate parameters at their own

will. Bootstrapping used in [104] can increase the confidence by testing on samples that

are repeatedly drawn from the original sample set, but it can not produce samples that

are missing in the original set. Our focus is to generate traces of diverse behavior with or

without any real-world traces as samples.

Training trace generation involves two steps: a) produce a set of workload-level de-

scriptions by sampling the workload-level description space, that is, the vector space which

workload-level descriptions live in, and b) synthesize traces with the characteristics specified

by the sample workload-level descriptions. Various sampling techniques exist, so the chal-

lenge lies in the second step. The workload-level descriptions are composed of scalars, and

one needs to make additional assumptions to generate traces. Chapter 6 explores the design

space of using synthetic traces in constructing the learning-based models. Our analysis has

shown that the quality of our trace generators needs further improvement.

3.2 Evaluation Methodology

We use trace-based analysis and a resource planning application to evaluate our learning-

based models. This section briefly describes the workloads and devices used in the evalua-

tion.

3.2. Evaluation Methodology 21

3.2.1 Trace-Based Analysis

The trace-based analysis evaluates our device models using real-world traces. We com-

pare the predicted performance against the measurements from simulations to quantify the

effectiveness of the device models.

Traces. Table 3.2 lists the real-world traces we have used throughout this work.

The cello99 traces are typical computer system research I/O workloads, collected at

HP Labs in 1999 [44]. The system is a successor to the system described in [94]. We use the

activities on the three most active devices (physical device number 0x1f068000, 0x1f034000,

and 0x1f003000) among the 23 devices and label them as cello99a, cello99b, and cello99c

respectively. The accesses to each trace fits in a 9 GB disk perfectly, so no trace editing is

necessary. We report experimental results on a four-week snapshot (Feb. 1 to 28, 1999.) In

cello99b, the two busiest hours (3 - 5 am) from each day are omitted because the simulated

devices do not have sufficient resources to replay these traces.

The SAP traces were collected on an Oracle database server running SAP ISUCCS

2.5B in a power utility company [116]. The server has 3,000 users, and the disk accesses

reflect the retrieval of customer invoices for updating and reviewing. The original trace is

15 minutes long. We use the activities on the four most active devices from the traces in

our evaluation. The four traces have similar characteristics as the vector representations of

the traces are clustered in the vector space, so we concatenate them to form an one-hour

trace. The requests are mostly read-only in the traces.

The Financial traces and WebSearch traces are the two sets of traces published by

Storage Performance Council (SPC) [34]. The Financial traces are from OLTP applications

running at two large financial institutions. They are rescaled to double the interarrival time

(i.e. 2× slowdown) for the traces to run on Atlas 10K disks. The WebSearch traces are

from a popular search engine, and are read-only.

Unfortunately, we were unable to use other traces, such as the TPC-H and OpenMail

traces [11, 63] because DiskSim does not provide models of storage devices of sufficient

capacity. For example, the maximum LBN in OpenMail trace is 63 billion, and the trace

will require a storage device of 32 TB to run.

Devices. We use our device modeling approach to model the following three devices.

Table 3.3 lists the important configuration parameters of the devices. We obtain the re-

sponse time for all the traces on these three devices using the state-of-the-art disk simulator,

DiskSim 3.0 [24].

22 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

Name Length IO operations per
second (IOPS)

reads sequential
accesses

mean request
size

cello99a 1 month 29.42 (39.45) 20% 4% 7.12 KB (10.4)

cello99b 1 month 25.01 (52.25) 35% 13% 8.75 KB (4.26)

cello99c 1 month 33.05 (67.92) 25% 32% 8.25 KB (7.85)

SAP 1 hour 300.00 (81.98) 100% 27% 15.44 KB (15.86)

Financial1 1 day 61.49 (30.98) 23% 4% 3.52 KB (6.56)

Financial2 22 hours 45.45 (21.94) 82% 2% 2.31 KB (6.26)

WebSearch1 2 hours 166.45 (36.50) 100% 3% 15.04 KB (9.87)

WebSearch2 8.5 hours 147.73 (41.33) 100% 2.3% 15.00 KB (9.44)

Table 3.2: Summary statistics of I/O traces. The numbers in parentheses are the
standard deviations.

• Single disk: a 9GB Atlas 10K SCSI disk model. The DiskSim 3.0 source code

includes a calibrated model for the Atlas 10K disk.

• RAID 1/0 disk array: a RAID 1/0 disk array consisting of 16 Atlas 10K SCSI

disks equipped with a 4GB cache.

• RAID 5 disk array: the same disk array as the RAID 1/0 except for the RAID

level.

DiskSim provides a calibrated model of Atlas 10K, and Appendix A lists the DiskSim

parameter files used in the simulating the two disk arrays. Table 3.4 summarizes the per-

formance of the traces on these devices. We seeded the simulator differently for five runs

of the traces on the modeled devices, and the response times stay the same across all the

runs. The response time of a request is the time it spends in the devices. The cello traces

have the response time information from the original cello system. Figure B.1 on page 139

compares the original response time distributions with the simulated ones.

Aggregate performance metrics. The device models are designed to predict the ag-

gregate performance of a workload on storage devices. The aggregate performance can be

the average or any percentile response time over a certain period of time. Generally, high

percentile response times are more difficult to predict than low percentiles, and the medians

are more stable than the averages. The variance of the aggregated performance decreases

with the granularity of aggregation. A coarse-grained one may miss transient performance

outrages. A fine granularity imposes more challenge in the vector representations because

the queuing and caching effects from previous fragments become more significant on a frag-

ment’s performance. We selected to break the traces into one-minute-long fragments and

3.2. Evaluation Methodology 23

Parameter Value/Units

size of the array cache 4 GB

cache replacement policy LRU

cache line size 32 MB

flush policy on demand: the dirty blocks are written back only
when the allocation/replacement policy needs to re-
claim them

read/write prefetching disabled

write policy Write-back: completion is reported immediately and
dirty blocks are held in the cache for some time before
being written back to disks

stripe unit size 32 KB

number of disks in disk array 16

disk type Atlas 10K

disk capacity 9 GB

revolutions per minute 10,000

maximum seek time 10.83 ms

Table 3.3: Important characteristics of the three devices in our experiments.

built models to predict the aggregate performance over the fragments because we think one

minute hits the right balance. Some requests of the traces suffer from large response times

because the disks are too slow to handle the traces. As a result, the queuing time becomes

a significant component of the response times, making accurate predictions more difficult

to achieve.

Figure 3.3 shows how the variance in the aggregate performance changes with regard to

the percentiles on the cello99 fragments on Atlas 10K. As expected, the median value for

the median response time increases with the percentile, and so does the standard deviation.

Because of the increasing standard deviation, predicting high-percentile response times

could be more difficult.

Figure 3.4 compares the cumulative response time distribution of the three cello99

traces on the three devices. We observe that even though the three traces are from the

same workload, they show different behavior on the devices. The response time distribution

is highly skewed for the two busy traces, cello99a and cello99b. A large number of

the requests have small response times, but a small portion of them have extremely large

response time. cello99c is relatively smooth compared to the other two, and the maximum

is usually less than 40 milliseconds. The high degree of skew leads to the high variance in

the response time. For example, the standard deviation of the response times can be more

than triple of the average for cello99a. The difficulty in performance prediction, however,

24 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

Traces Atlas 10K RAID 1/0 RAID 5

cello99a 96.19 (253.86) 11.75 (40.90) 30.53 (95.50)

cello99b 106.20 (309.48) 34.68 (89.50) 106.55 (251.53)

cello99c 3.74 (3.26) 3.05 (2.57) 177.67 (502.54)

SAP - 12.67 (31.60) 19.07 (42.31)

Financial1 14.07 (17.33) 3.54 (5.71) 9.29 (23.25)

Financial2 5.07 (4.97) 2.62 (2.97) 3.27 (3.85)

WebSearch1 - 9.56 (4.47) 10.00 (5.51)

WebSearch2 - 9.27 (4.26) 9.66 (5.17)

Table 3.4: Average response time (in milliseconds) of the traces on modeled devices
of one simulation run. The values in parentheses are the standard deviations of the
response times.

Figure 3.3: Median (left) and standard deviation (right) of the four response time
percentiles over all the one-minute fragments on Atlas 10K. The graphs compare
four response time percentiles: 25%, 50%, 75%, and 90%.

is not due to the large variance of the response times, but the complexity in determining

and quantifying important workload characteristics so that the device models can capture

device behavior as a function over these characteristics.

Error Metrics. We use the relative and absolute error to quantify model accuracy in

both the per-request response time and aggregate performance prediction.







Absolute error = |Prediction − Actual value|.

Relative error = Absolute error
Actual value .

(3.1)

The actual performance is obtained from simulation on DiskSim 3.0. When we construct a

model to predict the logarithm of the target performance, we convert the predictions back

3.2. Evaluation Methodology 25

0 %

25 %

50 %

75 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

(a) Atlas 10K

0 %

25 %

50 %

75 %

100 %

 1 10 100 1000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

(b) RAID 1/0

0 %

25 %

50 %

75 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000 100000

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

(c) Raid 5

Figure 3.4: Response time distribution of the three cello99 traces on the three
devices. (cumulative distribution functions on the left and negative cumulative ones
on the right). The probability distribution functions are available in Figure B.2 on
page 140.

26 CHAPTER 3. TOWARD LEARNING-BASED DEVICE MODELING

to the original scale before calculating the error. We report the median of the relative and

absolute errors throughout this thesis because medians are more stable to extreme values

than averages. Note that this value is different from the average relative error reported by

previous studies [99, 74], which use the ratio between the average absolute error and the

average simulated values as the average relative error. To make a fair comparison, we also

report the latter when appropriate.

Another popular error metric is demerit [94], defined as the root mean square of the

horizontal difference between the simulated and predicted cumulative response time dis-

tributions for evaluating storage device models. Request-level device models predict per-

request response times, and workload-level models directly predict aggregate performance.

Therefore, we only report the demerit numbers for request-level models.

3.2.2 Case Study

The ultimate use of our device models is for evaluating candidate configurations in resource

allocation. In the case study, we use a sample application to demonstrate the effectiveness

of our device models for such applications.

We use the device models to compare candidate physical database designs for a TPC-H

workload. For large databases, the number of possible designs can be overwhelming, and it

is difficult for administrators to find a good physical database design even with thorough

knowledge of the workloads and the performance characteristics of the storage devices in use.

Accurate performance models for storage devices are useful in evaluating a large number of

candidate designs efficiently, making it possible to automate the design process.

Chapter 8 presents the design of the case study. The experiments have shown that even

with inaccurate predictions from our models, the relative ranking matches the actual ranking

of the candidate designs, suggesting the usefulness of the models in resource planning.

3.3 Summary

Our learning-based modeling approach aims to build efficient and accurate performance

models for storage devices by observing the devices under a set of synthetic traces. I/O

workloads are internally represented as vectors in a multi-dimensional Cartesian space,

and a regression tool models the target performance as functions over the vectors. The

models can be both efficient and accurate if we can capture important characteristics of

I/O workloads with the vectors, and if the training traces are of high quality. This thesis

investigates the effectiveness of existing techniques in addressing these issues. The next three

3.3. Summary 27

chapters present the results on internal workload representation, regression tool selection,

and training trace generation.

Chapter 4

Internal Workload Representation

The learning-based device models use vectors to represent an I/O workload and employ a

regression tool to approximate device behavior as a function over the vectors. The vectors

should efficiently capture the important workload characteristics so that the regression tool

can distinguish workloads of different performance. Identifying and quantifying important

workload characteristics can be useful in building other types of storage device models, too.

For example, analytic models can include these characteristics in their input. The vector

representation, however, is difficult to achieve because of the complex correlation structures

in I/O workloads.

This chapter presents the design and evaluation of two types of vector representations.

As we have mentioned in Chapter 3, there are total of three issues we address in this thesis,

and we use the best solution for the other two when evaluating the design choices for one

of them. That is, we always use CART models and real-world traces to construct device

models in this chapter to study the effectiveness of different vector representations.

This chapter starts with a brief overview of the challenges in designing the vector repre-

sentation and presents two types of vectors: request descriptions in Section 4.2 and workload-

level descriptions in Section 4.3. The former describes the characteristics of single requests,

and is used in per-request response time prediction. The latter describes the characteristics

of sequences of disk requests and is used for predicting the aggregate performance measures.

Both descriptions convert the complex correlations of I/O workloads into vectors of scalars.

Section 4.4 compares the two vector presentations.

29

30 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

arm
assembly

sector track

head

arm

arm
pivot

arm
head spindle

platter

cylinder

(a) a side view (b) a top view

.

Figure 4.1: The mechanical components of a disk driver. The graphics are derived
from [94].

4.1 Challenges

An I/O workload is internally represented as vectors in a multi-dimensional Cartesian space,

and regression tools rely on the vectors to predict workload performance. The vectors

should, therefore, capture important workload characteristics for storage device models to

distinguish workloads of different performance. In addition, the vectors should be of a low

dimensionality to keep the model compact and the training process fast.

The complexity in storage devices and I/O workloads both contribute to the workloads’

performance on the devices. The vector representations should capture all of them.

4.1.1 Complexity in Storage Devices

Device performance is a result of the interaction between I/O workloads and storage devices.

Different workload characteristics could be important on different storage devices. For

example, the important set of workload characteristics is different on single disks and disk

arrays, and on devices with or without caches.

Single disks without cache. The simplest form of storage devices are single disks.

A disk consists of two major components: a mechanism and a controller [94]. In the

mechanism, the recording media consists of a set of round platters and a set of heads for

accessing the data recorded on the platters, as shown in Figure 4.1. The stack of the platters

rotates in lockstep on a central spindle. Data on the platters are stored on concentric circles,

known as “tracks”. Each track is divided into sectors, that is, disk blocks, which are the

smallest unit for data transfer between the mechanism and the controller. The heads float

4.1. Challenges 31

on top of the platters and perform the read and write operation on the media. The heads

are attached to the arm assembly, which can position the heads to a desired track on the

platters. The rotational speed determines the speed of the data transfer from the media

to the disk controller. The disk controller performs the mapping from incoming logical

addresses to the physical location of the data on the platters and manages the retrieval and

storage of data.

The above physical organization of disks leads to strong non-linear performance. The

service time of a request consists of four parts: the queuing time spent in the buffer of the

controller, the seek time it takes for the heads to moved to the desired track, the rotational

latency, and the data transfer time for the actual read or write. As a result, the correlations

between a request and previous requests are important in determining the response time

of the current request depending on how closely these previous requests are to the current

request in arrival time and location.

Various techniques exist for performance optimization on single disks. For example,

reordering requests [97] and changing disk block layout [5, 26] can reduce total seek time.

Freeblock scheduling [70] uses the rotational latency delays of foreground requests to serve

background requests. All these optimizations further complicate the workload characteriza-

tion problem because workload characteristics should include new ones that affect workload

performance on these devices.

Disk arrays. Single disks can be combined to form a disk array, allowing opportunities

to deliver high performance and reliability [84, 29]. The main two parameters of disk arrays

are the size of contiguous data stored on single disks in striping, known as the striping unit,

and the redundancy scheme. The RAID level indicates the combination of the redundancy

and the parity schema. For example, RAID 1/0 arrays use striping and mirroring, and

RAID 5 arrays use striping and rotated parity.

Striping can greatly improve the throughput of I/O systems. With striping, the data

is distributed across several disks in a round-robin fashion so that multiple independent

requests can be served by separate disks in parallel. In this case, the seek time and rotational

latency depend on previous requests that access the same disk, and these requests are not

necessarily the ones that arrive just before the current request. In addition, requests that

access more blocks than the striping unit can be served by multiple disks in coordination

to take full advantage of the bandwidth. Therefore, the operation time will be a function

of the striping unit and the request size besides other factors.

Redundancy can be implemented using either mirroring or parity. In a disk array with

mirroring, the disks are divided into two or more sets, and each set maintains a copy of the

32 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

data. A read request will typically be served by the copy that offers a shorter operation

time. A write request will need to update all the copies. The parity scheme maintains an

error correction code to deal with disk failures. The parity data can be on dedicated disks

or uniformly distributed across all the disks, known as rotated parity. The request size is

an important factor in determining the write time in this case. Large writes touch blocks

on all disks and can compute the parity easily. Small writes require four separate I/Os,

two reads to read the old data blocks and parity and two writes to write the new data and

parity.

Optimization techniques. Buffering and caching are two common optimizations in I/O

systems [29]. Write buffering, or asynchronous writes, allows returning control to appli-

cations before actual writes on media are completed. This feature is especially helpful in

reducing the response time for small write requests on RAID 5 arrays.

Read caching can improve the response time and system throughput by storing recently-

accessed disk blocks so that future reads of the same data can be served quickly. The

common cache replacement policy is the least-recent-used algorithm (LRU), and the LRU

stack distance, which measures the number of distinctive disk blocks between two subsequent

accesses to same disk blocks, becomes a useful metric in quantifying the temporal locality.

In addition, caching makes prefetching possible. The prefetched data can wait in the cache

for future accesses.

Different write policies can be enforced on caches to determines whether a write needs

to wait for the operation to complete. For a write-back cache, a write request is deemed

to be completed by applications as soon as the data is cached. The data will be written to

the media later by the devices. The write-through cache, on the other hand, needs to wait

until the data is written on the magnetic media. In these devices, the request type makes

a difference in device performance. Modern disk arrays usually use the write-back policy.

The different implementation of storage devices leads to the difference in device perfor-

mance. The vector representation of I/O workloads should capture sufficient important

workload characteristics that might affect performance.

4.1.2 Complexity in I/O Workloads

I/O workloads show complex correlation structures. The correlations exist between current

and previous requests on all the four attributes. The performance of an I/O workload could

depend on all these correlations.

4.1. Challenges 33

Bursty arrivals. The arrival process exhibits strong burstiness and dependence between

requests [43, 115]. The long range dependence leads to a longer tail in the queue length then

the traditional Poisson or Markovian traffic [80]. It is, therefore, important for the vector

representations of I/O workloads to capture the temporal burstiness and the long-range

dependence. Previous work [68] has employed the Hurst exponent to describe the degree

of self-similarity in addition to the average arrival rate, but self-similar processes, such as

fractal Brownian motion, may not be bursty.

Access patterns. Access patterns refer to the correlations between requests in location,

request size, and type. A typical I/O workload usually contains both sequential and random

accesses. Sequential runs can be interleaved, incomplete, noisy, or of different strides,

making them difficult to detect [59]. It is important to detect the sequential accesses because

storage devices handle sequential accesses more efficiently than random accesses. Random

accesses could show various degrees of temporal and spatial locality. The former refers to

the tendency that accesses to the same objects happen closely in time. The latter means

that nearby objects are more likely to be accessed closely in time than objects that are far

away in space. Storage devices depend on strong locality in I/O workloads to perform well.

Access patterns are difficult to characterize because the characterization process needs

tools to quantify correlations on high-dimensional data sets. For example, quantifying the

correlation between reads and writes requires the ability to quantify correlations between

multi-dimensional data sets because both reads and writes are request streams of three

attributes: arrival time, location, and size. In network traffic, the addresses of target objects

are usually categorical, so there is no notion of “distance” between two objects. The direct

application of network traffic models is inadequate because of the difference in the locality

model. Some work has used the percentage of sequential accesses and the average run size

to characterize the sequentiality of an I/O workload and the access frequency distribution

of disk blocks for random accesses [44, 40].

Figure 4.2 gives visual evidence of the complex correlations in arrival time and location

using a real I/O workload, one hour worth of activities on cello99a. The top-left plot

shows the projection of the trace on the time-LBN plane. The requests are clustered,

indicating strong correlations between the arrival time and location of the requests. On the

bottom are the number of requests that arrived in each time interval, the interval being a

second and a millisecond respectively. The burstiness in the arrival process is significant

at both time scales. The two plots on the right show the access frequencies of disk blocks

aggregated by 1,024 and 16 disk blocks respectively. Strong skew exists in both plots.

34 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Zoom out

Z
oo

m
 o

ut

L
B

N

Time

 0

 1
00

 2
00

 3
00

 4
00

 0
 4

00
0

 8
00

0
 1

20
00

 1
60

00

of requests per 1K blocks

LB
N

 (a
gg

re
ga

te
d

by
 1

K
 b

lo
ck

s)

 0

 50

 100

 150

 0 600 1200 1800 2400 3000 3600

of

 r
eq

ue
st

s
pe

r
se

co
nd

arrival time (seconds)

on the time−LBN plane

 0

 20

 40

 60

0 200 400 600 800 1000

of

 r
eq

ue
st

s
pe

r
m

ill
is

ec
on

d

arrival time (seconds)

 0 2
0

 4
0

 6
0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

of requests per 16 blocks

LB
N

 (a
gg

re
ga

te
d

by
 1

6
bl

oc
ks

)

projection of a sample trace

Figure 4.2: Visual presentation of a sample disk trace (the hour starting from
12:00am on Feb. 1, 1999 of cello99a). The clustered requests in the top-left plot
indicate strong temporal-spatial locality in the sample trace. The two plots on the
right show the access frequencies on LBN at different aggregation levels, and strong
skew exists. The two plots on the bottom left show the number of requests arrived
in each time interval at two scales, and strong burstiness is observed.

4.1. Challenges 35

The vector representation should capture all these characteristics in order to build accurate

performance models for storage devices.

4.1.3 Identifying Important Workload Characteristics

Identifying important workload characteristics is an essential part of workload characteri-

zation. Early work in queuing theory assumed Poisson arrivals and an exponential service

time distribution to calculate the throughput of closed systems [33]. Recent work has ex-

plored more realistic arrivals and service time distributions [66, 76, 79, 80]. Some analytic

models of storage devices take workload characteristics as input and study device behavior

as functions over these characteristics [99, 110]. They, however, do not address how to

extract workload characteristics and measure their effects on device performance.

Kurmas et al. [65] designed the Distiller to automatically identify the set of important

workload characteristics for a given workload, and the tool is used in Rubicon for workload

characterization and trace generation [113]. The idea is to study the importance of workload

characteristics by comparing the performance of traces before and after one attribute is

replaced with synthetic values. The tool can efficiently search among a given characteristic

set to find a subset that characterizes the given trace the best.

Hong et al. [49] studied the important range of the dependence between requests in

I/O workloads by time-slicing the traces and shuffling the slices. If the shuffled traces

offer similar performance as the original one, the dependence beyond the slice length is not

important in determining device behavior. Their work identified that the difference was

negligible when the slices were 1 minute long or longer.

Our vector representations attempt to take advantage of the findings in these studies.

However, due to the difference in the problem setting, we are unable to use all of these

parameters. For example, the Distiller included the distribution of the request location

to characterize real-world traces under study. Our work can not use such characteristics

because vector representations take only scalar parameters. Instead, we design a new tool,

entropy plot, to quantify the skew in the access frequencies of disk blocks as well as the

bursty arrivals and locality of I/O workloads.

We have explored two types of vector representations. A request description, Ri, char-

acterizes a individual request, ri, and is used to predict its response time. A workload-level

description Wj captures the characteristics of a sequence of requests, and a regression model

can predict the aggregate performance Pj directly from Wj . Figure 4.3 illustrates the two

types of learning-based device models based on these two representations.

Our current design uses a fixed workload description across all the workloads and de-

vices. By taking advantage of the above work, a more advanced system could automatically

36 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Aggregate
Performance P

W

1R

2R

nR

. . .
Regression
model

RT1

RT2

RTn
r 1

r 2

r n

. .
 .

description
workload−level

per−request
response time

response time
aggregated

P
Regression
model

Workload−level device model

Request−level device model

an
 I/

O
 t

ra
ce

request descriptions

Aggregating RTs

Figure 4.3: Request and workload-level device models.

identify important workload characteristics to be included in workload-level descriptions.

We leave this to future work. The remainder of this chapter presents the design and evalu-

ation of the two vector representations.

4.2 Request Description

A request description, Ri, captures the characteristics that determine the response time of

request ri. A request-level model, then, models the response time RTi as a function on

Ri. Even though ri is a vector of four dimensions, using ri as Ri, unfortunately, does not

render accurate device models because RTi relies not only on the current request, but also

those requests that arrive before the current one. For example, if a request arrives at the

system at an idle period, it can be served immediately by the device. If the same request

arrives right in the middle of a burst of requests, the request will have to wait in the device

queue for a long time before getting served, and the actual response time depends highly

on the queue length. The request description, therefore, should capture the important

dependencies between previous requests and the current one.

4.2.1 Composition of Disk Service Time

It is helpful to understand how storage devices handle requests before one designs request

descriptions. For bursty traffic, the queuing time could be a significant component of the

response time. The queuing time refers to the waiting time before a request gets served.

The actual operation time of a read request depends on whether a request can be served

by cache. The answer is yes if the device is equipped with a cache and the requested data is

4.2. Request Description 37

available in there. A write request, in contrast, returns control to the caller as soon as the

content is buffered if the device is configured to use the write-back policy and has space in

its cache. Otherwise, the request has to wait for the completion of the actual write on the

media.

If the request can not be fulfilled by the cache, the disk will need to access the media.

In this case, the rest of the service time typically consists of three parts: the seek time,

rotational latency, and data transfer time. A sequential access can be an exception here.

For single disks, a sequential access starts from the end of its previous request, therefore,

experiencing no seeking and rotational latency. On disk arrays, two requests can be turned

into sequential accesses if the stride between them allow them to be mapped to the same

disk to form a sequential run.

The composition of response times are slightly different in disk arrays. The queuing

time still exists, and multiple levels of cache exist. The operation time strongly depends on

the request size and type as we have discussed in Section 4.1.1.

4.2.2 Request Description

The request descriptions consist of four sets of parameters, each characterizing one particular

response time component.

• Modeling the queuing time. The volume of requests arrived just before the current

request plays an important role in the queuing time of a request. If a large number

of requests do so, the chance for the current request to have a long queuing time

increases.

We can capture the queue length in two ways. The first option is to calculate the

difference in arrival time between previous requests and the current one. The more

closely these requests in arrivals, the more likely the current request suffers from a

long queuing time. We define

TimeDiffi(t) = Timei − Timei−2t , for t = 0, 1, . . . , tmax. (4.1)

The subscript describes the sequence number of the requests. Therefore, TimeDiffi(t)

is the difference in arrival time between the i-th request and the one that arrives 2t

requests before the current one. The value tmax determines the maximum number of

requests used in calculating the request description.

An alternative is to count the number of requests arrived before the current request

in a set of fixed-sized windows. Similarly, the more requests in the windows, the more

38 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

likely the current request has to wait for a long time before being served.

Counti(w) = N(Timei − 10w,Timei), for w = 0, 1, . . . , wmax. (4.2)

with 10w specifying the window size in milliseconds and N being the number of re-

quests arrived within the given time interval.

In our experiments, we use a value of 10 for tmax (corresponding to a maximum of

1,024 requests) and 5 for wmax (maximum window size of 105 milliseconds). We

evaluated the effectiveness of using either parameter set in constructing the request-

level device models in our experiments and concluded that the count-based approach

is more effectively than the timediff-based one even though it uses fewer parameters.

The fixed-sized windows allow the request descriptions to account for more requests

for busy workloads, in which the queuing time dominates the response time.

• Served by cache or not. If a request asks for disk blocks that have been accessed

recently, it is more likely to find the disk blocks in the cache. We use the LRU stack

distance of the current request, LRUstacki, to characterize this feature. The LRU

stack distance measures the number of distinct requests between the last access to the

same disk blocks and the current request.

• Seek time and rotational latency. The sum of the two depends on the original

head position and the location of the current request. We use the seek distance

LBNDiff(l) in addition to the address of the current request to quantify this part of

the disk service time.

LBNdiffi(l) = LBNi − LBNi−l, l = 1, 2, . . . , lmax, (4.3)

To account for the request reordering, we look back more than one request for the

seek distance. lmax is the maximum number of requests we use in the calculation.

We set lmax to 3 in our experiment. The experiments show that the seek distance is

insignificant in predicting per-request response times, especially in busy workloads.

Increasing the value of lmax will not bring enough benefit.

• Data transfer time. The transfer time is usually proportional to the request size.

We use Typei and Sizei to predict the transfer time.

• Sequential accesses. A flag, Seqi, indicates whether the current request is a se-

quential access. To account for both the sequential and strided accesses, we classify

two contiguous requests as sequential accesses if the two requests have the same seek

4.2. Request Description 39

distance. For example, if three contiguous requests all have a seek distance of 16

blocks, we classify all three requests as sequential.

In modeling per-request response times on disk arrays, the queuing time, sequentiality,

request size, and operation type are all important characteristics. These parameters should,

therefore, be applicable to modeling the performance of disk arrays, too. This suggests that

black-box models may still need some general knowledge on how these storage devices handle

devices, but do not require specific knowledge on individual device parameters.

In summary, we provide two types of vectors for capturing the per-request characteristics

depending on which approach used in modeling the queuing time. A timediff-based request

description Rtimediff uses the difference in arrival time for fixed numbers of requests to

model the queuing time. A count-based request description Rcount maintains the number

of requests for windows of fixed sizes. The two request descriptions contain the following

parameters:

Rtimediff
i = {Timediffi(1), . . . ,Timediffi(10),

LBNi,LBNdiffi(1), . . . ,LBNdiffi(3),

Typei,Sizei,LRUstacki,Seqi};

Rcount
i = {Counti(1), . . . ,Counti(6),

LBNi,LBNdiffi(1), . . . LBNdiffi(3),

Typei,Sizei,LRUstacki,Seqi};

(4.4)

4.2.3 Evaluation

We investigate the effectiveness of the proposed request descriptions by an empirical study

on real-world traces. We use the logarithm transformation on the response time before

constructing the regression models to improve model accuracy. CART is used in the re-

gression. (Please refer to Section 5.3.2 and 5.2.4 for a detailed discussion on the logarithm

transformation and CART models.) We use the activities of Feb. 1, 1999 from the three

traces in training and Feb. 2, 1999 in testing. The training trace is a mixture of the request

descriptions drawn from three traces in a round-robin fashion. For the testing traces, we

first calculate the request descriptions for all the requests and use a uniform sampling rate

of 0.1% to reduce the data volume.

Comparing the two types of request descriptions. The graphs on the left column in

Figure 4.4 to 4.6 compare the effectiveness of two types of request descriptions on the three

cello99 traces. We observe that count-based request descriptions consistently outperform

timediff-based ones. The advantage is drastic especially for busy traffic such as cello99a

40 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Trace Atlas 10K RAID 1/0 RAID 5

cello99a 327 ms (217%) 67 ms (302%) 136 ms (268%)

cello99b 293 ms (158%) 189 ms (159%) 485 ms (137%)

cello99c 45 ms (1122%) 10 ms (361%) 523 ms (196%)

Table 4.1: Demerits (absolute values and percentages over average response times)
of the counted-based request-level models.

and cello99b. The major reason is that the timediff-based ones can investigate no more

than 1,024 requests, which is much less than 5,853 requests, the median value of Count(5)

for the mixed training trace. The performance difference between the two types of request

descriptions tends to decrease from the single disk to the disk arrays because the queuing

time is a smaller portion of the response time on disk arrays than single disks for the same

workload. In summary, the count-based request descriptions are effective in characterizing

the queuing time, leading to the superior performance for busy traffic. For the remainder

of this thesis, we always use count-based request descriptions to construct request-level

models.

The graphs on the right column compare the response time distributions predicted by

Rcount against the simulated ones. The predicted distributions matches the simulated ones

better than one may expect from a median relative error of 50% in the per-request response

time prediction. Aggregation in generating the distributions helps to reduce the prediction

error by canceling out the over- and under-prediction errors. Table 4.1 lists the demerits on

these workload and device combinations. The demerit figures, both the absolute and relative

values, are high partially because of the logarithm transformation. The demerit metric is

the root mean square of the horizontal distance between two cumulative distributions, and

therefore penalizes mispredictions on requests with large response times. The logarithm

transformation makes regression models favor requests with small response times, leading

to a good match at the head part of the distributions.

Figure 4.7 compares the median and standard deviation of the predicted and simulated

response times. The predicted medians match the simulated ones much better than the

standard deviations do. The reduced standard deviations for predictions are due to two

reasons. First, CART models use the average value of the training requests that have

similar characteristics to the predicted request as the prediction and treat the variance of

the training requests as the intrinsic randomness of device behavior. Such variance includes

the difference in device initial states and unobservable parameters. The averaging effectively

removes the variance in the predicted values. Second, other errors come from the imperfect

request descriptions. Some important characteristics are not captured by the descriptions.

4.2. Request Description 41

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(a) On Atlas 10K

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(b) On RAID 1/0

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(c) On RAID 5

Figure 4.4: Comparison of two types of request descriptions in predicting the per-
request response time of cello99a.

42 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(a) On Atlas 10K

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(b) On RAID 1/0

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(c) On RAID 5

Figure 4.5: Comparison of two types of request descriptions in predicting the per-
request response time of cello99b.

4.2. Request Description 43

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(a) On Atlas 10K

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(b) On RAID 1/0

0 %

25 %

50 %

75 %

100 %

 0 2 4 6 8 10

m
ed

ia
n

re
la

tiv
e

er
ro

r

training samples (in 1,000)

Timediff
Count

0 %

25 %

50 %

75 %

100 %

 0.1 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

Simulated
Predicted

(c) On RAID 5

Figure 4.6: Comparison of two types of request descriptions in predicting the per-
request response time of cello99c.

44 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

(a) Median response time (b) Standard deviation

Figure 4.7: Comparison of summary response time statistics on count-based request-
level models.

For example, a request following a large bursts of sequential accesses has a smaller response

time than one that follows a burst of random requests even though the two might have

the same count-based request descriptions. In this case, the regression models can not

distinguish between the two, and the prediction depends on which type of requests the

models have seen in training.

Importance of the parameters. Because of the non-linear dependence between request

descriptions and response times, traditional metrics, such as the Pearson coefficient, can not

correctly quantify the importance of the parameters in the request descriptions. As a result,

we use the CART-specific approach described in Section 5.5 on page 87 in our analysis. In

this approach, the importance of a parameter is measured by its contribution to error

reduction. Please refer to Section 5.5 for more details of the calculation.

We need caution to interpret the results because the simulated measurements depend

on the traces used in constructing the model. For example, if a training trace does not

have any sequential accesses, then it is unlikely that sequentiality will have any importance

in the constructed model. In addition, one parameter may overshadow another if the two

are highly correlated, so the actual importance can be underestimated. Ideally, all the

parameters should be independent in request descriptions because most regression analysis

assumes independent parameters. The parameters in both types of request descriptions are

strongly correlated, and overshadowing may exist.

Figure 4.8 compares the importance of the parameters in the count-based request de-

scriptions for all the workload/device pairs. That is, for each workload and device pair, we

construct a request-level model and measure the parameter importance. The measurements

4.2. Request Description 45

(a) Atlas 10K

(b) RAID 1/0

(c) RAID 5

Figure 4.8: Importance of request description parameters calculated on 12 work-
load/device combinations.

46 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

are obtained from the constructed models, so no prediction is involved. The detail of the

algorithm is discussed in Section 5.5.

In general, the measurements are consistent with the simulated behavior of these traces

on the modeled devices. For busy workloads like cello99a and cello99b, queuing time

dominates response time, so the request counts are highly important. Using a large wmax

would have little benefit because the significance of the counts diminishes after w = 4. For

idle traces like cello99c, the request size shows significant contributions as data transfer

time is more prominent in response time. None of the seek distances (LBNDiff) is important,

indicating we can probably remove them from the request descriptions for the particular

workload and device combinations we have studied.

The above experiments have shown that count-based request descriptions are effective in

capturing some important per-request characteristics, in particularly, the queuing effects.

This is consistent with the observation in [94], in which modeling the queuing time can

improve the model accuracy dramatically over a model of constant service time. We will

investigate the design of workload-level descriptions in next section.

4.3 Workload-Level Description

In contrast to request descriptions, a workload-level description describes a sequence of disk

requests, also known as a “workload fragment”, and a workload-level model predicts the

aggregate performance of the fragment based on its workload-level description.

The fragment length should reflect the correct balance between the dependence within

and across the fragments. Inter-fragment dependence decreases when the fragment length

grows, as Figure 4.9(a) illustrates. Inter-fragment dependence exists for several reasons.

First, it is possible that when a new fragment starts, a storage device is still busy serving the

requests from the previous fragment(s). Second, even if the device is idle, the performance

of a fragment depends on other system status, such as the cache content and head position.

At the finest granularity, each fragment contains only one request, and the performance of

the request is highly dependent on the requests that arrive before the current one.

Intra-fragment dependence is the dependence between requests within a fragment. When

the fragment length grows, the influence of the initial system status decreases, and the intra-

fragment dependence becomes more important. The vector representation of a fragment, in

this case, the workload-level description, should put more emphasis on the internal structure

of the fragment. However, using a large fragment length may sometimes fail to identify

transient performance outrage. The right choice of fragment length will balance the needs

and maximize accurate predictions from our storage device models.

4.3. Workload-Level Description 47

Fragment length

D
e

p
e

n
d

e
n

ce
Intra−fragmentInter−fragment

0 %

10 %

20 %

30 %

 1 10 100 1000

%
 o

f f
ra

gm
en

ts

fragment length (seconds)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

(a) inter- and intra-fragment dependence (b) percentage of fragments starting with
a busy system

Figure 4.9: Fragment length chosen as a balance between the dependence in and
across the fragments.

To select the fragment length in our experiments, we plot the percentage of fragments

that start with a non-empty device against the fragment length in Figure 4.9(b). We

selected 6 hours of different traffic volume from the cello99 traces, and used fragment

lengths ranging from 1 second to 200 seconds. The device under study is Atlas 10K. The

percentages drop sharply for all the sample data when the fragment length increases from 1

second to 30 seconds, and then approach zero gradually, indicating that a fragment length

larger than 30 seconds should have negligible influence from the queuing effects of previous

fragments. The influence of cache content depends on the volume and footprint size, and

could be slow to decay when the cache is large. Therefore, we have chosen to use 1 minute

to increase the chance of detecting transient performance fluctuation.

This section describes the challenges in designing workload-level description and presents

the entropy plot as an efficient tool for characterizing I/O workloads.

4.3.1 Previous Work in Workload Characterization

A workload-level description is a set of scalar parameters that captures important workload

characteristics of a workload fragment. Even with a long history of workload characteri-

zation work, it is still a difficult task to determine what characteristics are important and

how to quantify them efficiently because of the complexity in both storage devices and the

correlation structures of I/O workloads.

For arrival processes, the average rate is the only parameter needed to describe a Poisson

arrival. Modern systems, however, produce traffic that is far more complex than Poisson

arrivals. Various types of computer-generated traffic have been shown to exhibit the self-

48 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

similarity [36, 42, 43, 68]. Some work has used a statistical metric, the Hurst exponent [18],

to quantify the degree of self-similarity. Other work [99] has divided the requests into bursts

of requests based on a pre-set threshold on the interarrival time and used the average size

of the bursts and the average arrival rate within the bursts as their model input. The

threshold is selected to be the mean response time, which is, in turn, calculated from the

performance of input workloads on the modeled device. The threshold selected based on

one trace is not necessary optimal for others.

Limited work has addressed the locality patterns for I/O workloads. The LRU stack

distance is a common metric of temporal locality in both web and I/O traffic to model

the effects of caching [60, 110]. Spatial locality is much more difficult to quantify. Even

detecting sequential accesses can be challenging [59]. The run count and run size are among

popular parameters used to capture the sequentiality of I/O workloads [74, 99, 110]. Some

work [40, 44] uses the seek distance distribution or the access frequencies of disk blocks

incorporated with sequential accesses.

The correlation between reads and writes imposes more challenges if we model reads

and writes as two three-dimensional data sets, and effectively quantifying the correlations

between high-dimensional data sets remains a great research challenge. Simple models just

record the percentage of reads [99]. Ganger [40] built a Markov model to model the change

in request type from a request to its subsequent one. Other models maintain separate

statistics for reads and writes [60].

Previous workload characterization work emphasizes on identifying important character-

istics for generating I/O workloads and understanding device behavior. Our device modeling

work needs a small set of important workload characteristics to make performance predic-

tions. Because of the limitation of existing regression tools, the models uses only scalar

metrics in characterizing workloads, which makes the problem even more difficult than it

already is. In the following text, we introduce the entropy plot, an efficient tool for quan-

tify the spatio-temporal behavior of I/O traffic, to supplement existing work in workload

characterization.

4.3.2 Entropy Plot

The entropy plot takes advantage of entropy and mutual information to capture the spatio-

temporal behavior of I/O workloads with three scalars. This section gives a brief introduc-

tion of the tool. Please refer to [115, 117] for more details on the tool.

Entropy and mutual information. Entropy is a well-known concept in information

theory, and it measures the uniformity of a discrete probability function [98]. Recall that

4.3. Workload-Level Description 49

entropy on a random variable E, (e.g. LBN of a disk request), is defined as

H(E) = −

n
∑

i=1

pi log2 pi, (4.5)

where pi is the probability that event Ei will happen (e.g. the i-th block will be accessed)

and n is the total number of possible outcomes (e.g. the total number of disk blocks). H

is close to 0 for a highly-skewed distribution and reaches its maximum value of log2 n for a

uniform distribution.

The joint entropy on two random variables is defined similarly: for a given probability

function P = {pi,j} on two random variables {E} and {F}, (e.g. arrival time and LBN of

a request), where pi,j gives the probability that both event Ei and event Fj will happen,

(e.g. a disk request on the j-th block will arrive at time i), the joint entropy on E and F

is defined as

H(E,F) = −
∑

i,j

pi,j log2 pi,j. (4.6)

The mutual information between the two variables is

I(E;F) = H(E) + H(F) − H(E,F), (4.7)

which quantifies the degree of dependence between E and F . It becomes zero if E and F

are independent. Otherwise, the value is positive.

Entropy plot. Since entropy can quantify the irregularity of a discrete probability distri-

bution, and mutual information the degree of dependence between two random variables,

they should be useful in quantifying the bursty arrivals and the locality patterns of I/O

workloads. The question is, then, at which granularity (i.e., time scale) we should apply

them. The answer depends on the workloads. Intuitively, large time scales are preferred

for busy traffic because of the long queuing time. Our answer is to calculate the entropy

value at all granularities and use the rate of change as the characteristic value of the trace.

Because of the strong self-similarity in I/O workloads, the rate stays the same at all time

scales. Plotting the entropy value against the time scale gives the entropy plot.

In calculating mutual information, we need to decide the aspect ratio between arrival

time and LBN, that is, the ratio between the interval lengths on the arrival time and LBN

at a certain granularity. Our current design divides both dimensions into an equal number

of units in calculation. Future work could explore the best aspect ratio.

50 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

 0

 50

 100

 150

 0 600 1200 1800 2400 3000 3600

#
 o

f
re

q
u
e
st

s
p
e
r

se
co

n
d

arrival time (seconds)

 0

 4

 8

 12

 0 5 10 15

en
tr

op
y

va
lu

e

scale (k)

entropy on time

(2)P (1) (2)P (2) (2)P (4)(2)P (3)

Figure 4.10: Calculating entropy plot on arrival time for the sample disk trace. At
scale 2, the entire length of the arrival time is divided into 22 intervals of equal
length. The entropy value at scale 2 is, then, calculated from the observed probabil-
ities P (2)(j). The entire length of the trace is 1 hour. An interval at scale 2 is 15
minutes (1 hour divided by 22.)

Entropy plot in quantifying the temporal burstiness. For a given trace, calculating

the entropy plot on arrival time involves two steps. First, counting the number of requests

arrived in each time tick gives the marginal distribution of the trace on arrival time. We

start from the finest granularity provided by the trace. If the arrival time of a time is

accurate to microseconds, a time tick for calculating the distribution can be a microsecond.

Second, aggregating the distribution at different scales enables one to calculate the entropy

values. Assume that the trace is 2n time ticks long. At scale k, we divide the entire length

of the trace into 2k equi-length internals and estimate the probability that a request arrives

in each interval. The entropy value calculated on the 2k intervals is the entropy value on

arrival time at scale k. Plotting the entropy values against the scale gives the entropy plot

on arrival time.

Figure 4.10 shows the entropy plot on arrival time for the sample trace in Figure 4.2.

Because of the self-similarity in the trace, the points sit closely to a line of slope 0.702. The

slope of the line characterizes how the entropy value or how the temporal burstiness changes

from one scale to the next. For smooth traffic, the requests are evenly distribution between

the time ticks, therefore, the entropy value increments by 1 at each scale. Otherwise, the

increment becomes less as the burstiness grows. This indicate that the entropy plot slope

can be used to quantify the burstiness of the arrival process. The slope has a maximum

value of 1, corresponding to smooth traffic, and a smaller value for bursty traffic. The

entropy plot slope in Figure 4.10 is 0.767, indicating the strong burstiness of the trace.

4.3. Workload-Level Description 51

Entropy plot to measure the skew in the access frequencies of disk blocks. We

can apply the entropy plot on LBN for a given trace using the same method. The slope

characterizes the skew in the popularity of the disk blocks.

Joint entropy plot to quantify locality. To quantify the correlation between arrival

time and LBN, we apply the entropy plot algorithm on the two-dimensional projection of

the trace on arrival time and LBN to obtain the joint entropy plot. Similarly, at scale k,

we divide the entire rectangle covered by the trace into 2k × 2k rectangles and estimate the

probability that a request falls into the rectangles. Plotting the joint entropy value against

the scale gives the joint entropy plot.

We can obtain a fourth line, the mutual information, by subtracting the joint entropy

plot from the sum of the entropy plots on arrival time and LBN. The mutual information

measures the dependence between the arrival time and LBN in the given trace.

Figure 4.11 shows the four entropy plot lines for the sample trace in Figure 4.2. The

entropy plot slope on time and LBN are 0.767 and 0.711 respectively, indicating strong

temporal and spatial burstiness. The mutual information is positive, suggesting strong

spatio-temporal correlation in the trace. In addition, all the four lines show strong linearity,

which allows us to use the slopes of these lines to quantify the spatio-temporal behavior of

the sample trace, that is, three parameters to capture the spatio-temporal behavior of the

entire trace, including the temporal burstiness, the skew in disk block access frequencies,

and the spatio-temporal correlation.

Joint entropy plot for other correlation structures. The limited value range of

request type and size imposes difficulties on extending the entropy plot to handle dependence

involving these two attributes. Actually, the entropy plot on request type has only one point

in it, with the value controlled by the read/write ratio.

A quick solution is to use a fixed scale on the request size and type but change the scale

on the other attributes. For example, to calculate the joint entropy plot on arrival time and

request type, the scale change happens only on arrival time. Figure 4.12(a) illustrates the

idea. All the requests on the two-dimensional space reside on two lines, reads on one and

writes on the other. To calculate the joint entropy value at scale 2, we divide the length

of time into 4 intervals and the joint entropy is then calculated on 8 rectangles. When the

time scale grows, the number of intervals changes on the time dimension only. This allows

us to measure the correlation between arrival time and request type.

Figure 4.12 shows the joint entropy plot involving request type and size on the sample

trace. Both the joint entropy and mutual information grow linearly with the scale, making

52 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

 0

 50

 100

 150

 0 600 1200 1800 2400 3000 3600

#
 o

f
re

q
u
e
st

s
p
e
r

se
co

n
d

arrival time (seconds)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

e
n

tr
o

p
y

va
lu

e

scale (k)

time
LBN

joint entropy
mutual info

 0

 1
00

 2
00

 3
00

 4
00

 0
 4

00
0

 8
00

0
 1

20
00

 1
60

00

of requests per 1K blocks

LB
N

 (
ag

gr
eg

at
ed

 b
y

1K
 b

lo
ck

s)

Arrival time
L

B
N

margin on time

entropy plot

m
ar

gi
n

on
 L

B
N

Figure 4.11: Entropy plot calculation on the sample trace in Figure 4.2.

WriteRead

T
im

e

 0

 5

 10

 15

 0 4 8 12

en
tr

op
y

scale (k)

H(time,type)
I(time;type)

H(LBN;type)
I(LBN;type)

 0

 5

 10

 15

 0 4 8 12

en
tr

op
y

va
lu

e

scale (k)

H(time,size)
I(time,size)

H(LBN,size)
I(LBN,size)

(a) Joint entropy
at scale 2

(b) joint entropy plot on type (c) joint entropy plot on size

Figure 4.12: Joint entropy plots for size- and type-related dependence on the sample
trace in Figure 4.2.

4.3. Workload-Level Description 53

it possible to use the slopes to summarize the dependence. The dependence, however, is

relatively small compared to the spatio-temporal correlation for this particular trace.

4.3.3 Workload-Level Description

A workload-level description characterizes a workload fragment. The fragment length is

selected to minimize inter-fragment lengths and maximize the possibility of capturing tran-

sient performance outrage. We would like to add use many parameters as possible to capture

all the characteristics that might be important in determining device performance, but we

would also like to limit the description size for a reasonable training time. Our design

requires sampling over the workload-level description space to provide training traces of a

good coverage over real-world traces. Therefore, the training time could be exponential to

the number of dimensions.

Table 4.2 lists the 12 parameters in our workload-level description, which includes nearly

all the scalar metrics for quantifying workload characteristics from existing work. Our

evaluation has shown that these parameters are effective in capturing most of the important

workload characteristics. Future work could explore the possibility of using automatic

workload characterizers [65].

The parameters in our workload-level description can be categorized into three groups.

The first set of parameters focuses on the arrival patterns of I/O workloads. ReqCount

quantifies the traffic volume in a workload fragment. BurstSize and BurstRate are the

average size of request bursts and the average interarrival time within bursts. The two

parameters need a pre-set threshold (10 milliseconds in our design) to break a request

stream into bursts of requests. A burst of request starts with a request with an interarrival

time larger than the threshold, and all the other requests belong to some bursts. Future

work could investigate the effects of the threshold value on model accuracy. EntropyTime,

the entropy plot slope on arrival time, describes the temporal burstiness.

The second group of parameters characterize the locality patterns, including two entropy

plot slopes (EntropyLBN and MutualInfo,) percentage of sequential accesses (Sequentiality,)

the average run length (RunLength,) and the average re-reference intervals (LRUStack.)

The rest of the parameters describes characteristics involving request size and type, such

as the percentage of reads (ReadRatio) and the average request size (ReqSize.)

Five of these parameters are the average values derived from distributions. The average

values are not necessarily the best way to capture the distributions. We have investigated

another two ways of converting the distributions into scalars in our experiments as shown in

Figure 4.17 on page 59, and all three approaches yield similar performance. Further analysis

has shown that it is more important to capture the dependence between the requests than

54 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Parameters Description Note

ReqCount The number of requests in a fragment
Arrival
process

BurstSize,
BurstRate

The average size of request bursts in terms of the
number of requests and the average request rate
within bursts

[99]

EntropyTime Temporal burstiness measured by the entropy
plot slope

Proposed

EntropyLBN The degree of skew on the popularity of disk
blocks measured by the entropy plot slope

Proposed

Seek The average seek distance
Locality LRUStack The average distance between two subsequent re-

quests to the same disk blocks in the number of
distinctive requests

[6, 110]

RunLength The average run length in the number of requests [99, 110]
Sequentiality Percentage of sequential accesses [99]
MutualInfo The entropy plot slope of the mutual information

between arrival time and LBN.
Proposed

ReadRatio Percentage of read requests [44, 110]
Others ReqSize Average request size in terms of numbers of disk

blocks

Table 4.2: Parameters in workload-level descriptions. A workload-level descrip-
tion describes the characteristics of a workload fragment. We use 1 minute as the
fragment length in our work.

4.3. Workload-Level Description 55

these distributions.

4.3.4 Evaluation

We evaluate the effectiveness of this workload-level description using traced-based analysis

in this section.

Validating linear entropy plot. The entropy plot assumes linear dependence between

the entropy value and the scale at which the value is calculated. Otherwise, it is inappropri-

ate to fit a line and use the slope to characterize the plot. Fortunately, strong self-similarity

in I/O workloads usually leads to linear entropy plots.

Figure 4.13 and Figure 4.14 show the entropy plot for five one-minute fragments from

cello99a. Strong linearity is observed in most plots and strong dependence exists between

time and LBN for these fragments. In particular, one fragment shows a much larger slope

in the entropy plot on time because its traffic is less bursty than the other ones. In contrast,

the dependence involving request type and size is weaker, and the plots are not as linear as

the ones shown in Figure 4.14. Our workload-level description includes the three types of

entropy plot slopes in Figure 4.13.

Figure 4.15 shows the distributions of the three entropy plot slopes for all the traces.

We observe that the cello99 traces, especially cello99b, show stronger burstiness than

the others, leading to their large response times. This shows from another perspective that

the entropy plot is able to distinguish workloads of different characteristics.

Whether to use averages in workload-level descriptions. We have selected to use

the mean values to represent the distributions in our workload-level description. For com-

plex distributions, the average value is not descriptive enough to represent the distributions.

For example, the median values are more stable than the averages for long-tailed distribu-

tions, and therefore might be a better metric for characterizing the distributions. Figure 4.16

shows that the distributions derived from real-world traces are neither Gaussian or long-

tailed. Figure B.3 in Appendix B on page 140 shows the probability distribution functions

of these distributions.

To study the effectiveness of the averages in our workload-level description, we have built

three storage device models using three ways to characterize the distributions and compared

their accuracy. The first model, average, is based on the workload-level description listed

in Table 4.2. The second model, average+stdev, uses the standard deviations of the

distributions in addition to the ones use in the first model. The last model, median, replaces

all the averages in model average with the median values of the distributions. Figure 4.17

56 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

en
tr

op
y

on
 ti

m
e

scale (k)

 0

 2

 4

 6

 8

 0 2 4 6 8 10 12

en
tr

op
y

on
 L

B
N

scale (k)

 0

 2

 4

 6

 0 4 8 12

m
ut

ua
l i

nf
or

m
at

io
n

scale (k)

(a) entropy plot on time (b) entropy plot on LBN (c) mutual information

Figure 4.13: Entropy plot on five one-minute fragments from cello99a (0:00 - 0:05
am Feb. 1, 1999).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

en
tr

op
y

va
lu

e

scale (k)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

en
tr

op
y

va
lu

e

scale (k)

(a) time vs. type (b) LBN vs. type

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14

en
tr

op
y

va
lu

e

scale (k)

 0

 1

 2

 3

 0 2 4 6 8 10 12 14

en
tr

op
y

va
lu

e

scale (k)

(c) time vs. size (d) LBN vs. size

Figure 4.14: Mutual information plot involving request type and size for five one-
minute fragments from cello99a.

4.3. Workload-Level Description 57

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

entropy plot slope on time

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

entropy plot slope on time

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

(a) Entropy plot on time

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

entropy plot slope on LBN

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

entropy plot slope on LBN

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

(b) Entropy plot on LBN

0 %

15 %

30 %

45 %

60 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

mutual information

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.2 0.4 0.6 0.8 1

%
 o

f f
ra

gm
en

ts

mutual information

cello99a
cello99b
cello99c

Financial1
Financial2

SAP
WebSearch1
WebSearch2

(c) Mutual information

Figure 4.15: Distributions of entropy plot slopes for real-world traces (probability
distribution functions on the left and cumulative ones on the right). cello99b tends
to have smaller entropy slopes on time, suggesting strong burstiness in its arrival.

58 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000 100000

%
 o

f r
eq

ue
st

s

interarrival time (ms)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

0 %

20 %

40 %

60 %

80%

100 %

 1 10 100 1000 10000 100000

%
 o

f r
eq

ue
st

s

interarrival time (ms)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

(a) interarrival time distribution

0 %

20 %

40 %

60 %

80 %

100 %

 1 100 10000 1e+06 1e+08

%
 o

f r
eq

ue
st

s

seek distance

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

0 %

20 %

40 %

60 %

80 %

100 %

 1 100 10000 1e+06 1e+08

%
 o

f r
eq

ue
st

s

seek distance

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

(b) seek distance distribution

 0 %

20 %

40 %

60 %

80 %

100 %

 0 20 40 60

%
 o

f r
eq

ue
st

s

request size (in KB)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100

%
 o

f r
eq

ue
st

s

request size (in KB)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

(c) request size distribution

Figure 4.16: Distributions of the interarrival time, seek distance, and request size
from 6 hours of different volumes from the three cello99 traces (cumulative dis-
tribution functions on the left and negative cumulative ones on the right). The
distributions are far from Gaussian or long-tailed Pareto distributions. In addi-
tion, the distributions are of different characteristics on different traces.

4.3. Workload-Level Description 59

compares the prediction accuracy of the three models using cello99a. The training trace

is 100,000 minutes of activities from the first week of cello99a (Feb. 1 - 7, 1999), and

the testing trace is 3 days of activities from the second week of the same trace (Feb. 8 -

10, 1999). The three models perform similarly, suggesting that the averages provide the

same amount of information about the distributions as the medians do, and the standard

deviations provide little extra information. We argue that the majority of the remaining

prediction error comes from the uncaptured correlations across the requests as suggested in

Chapter 7. Therefore, we should rather focus on better characterization of the correlations

for any further improvement of our models.

0 %

20 %

40 %

60 %

80 %

 0 2000 4000 6000 8000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

average
average+stdev

median

 0

 2

 4

 6

 0 2000 4000 6000 8000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

average
average+stdev

median

(a) Median relative error (b) Median absolute error

Figure 4.17: Comparison of three ways of characterizing the distributions used in
the workload-level description.

Effectiveness of workload-level description. In this set of experiments, we first ex-

plore the number of samples needed for workload-level models to achieve their best accuracy.

Please note that each sample is a one-minute-long fragment, so the training length is the

number of samples. We use the cello99 traces in this experiments because the other traces

are too short to provide enough data for conducting this experiment. The training data

is the mixture of the workload-level descriptions drawn from three days of cello99 (Feb.

1-3, 1999,) in a round-robin fashion to allow a proper mix in the training traces. CART

models are used to predict the logarithm of the median response time over one minute, and

we calculate the error after recovering the predicted value to the original scale. The rest of

these traces (Feb. 4 - 28, 1999) are used in testing. Each trace is divided into seven groups,

labeled as test1 to test7.

Figure 4.18 to 4.20 show how the model error (in median relative and absolute error)

changes with the number of samples used in training. Because of the training traces contain

60 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

fragments similar to the predicted ones, the model error is small with only 200 minutes of

training and converges to its best case after 3,000 minutes (samples) of training. The final

median relative error is around 25% and the absolute less than 2 milliseconds except for

cello99b. If we calculate the average absolute error over the average response time, the

values are 18%, 13%, 21% respectively for the three cello99 traces on Atlas 10K, 15%,

12%, 25% on RAID 1/0, and 21%, 18%, 4% on RAID 5. These numbers are comparable

to the ones reported in some analytic models [74, 99, 110]. Figure 4.15(a) shows that,

in cello99b, more fragments show high burstiness in arrival time (entropy plot slope less

than 0.3) than the other traces, making it difficult to predict the performance of cello99b.

The additional observation is that all the groups of cello99 perform consistently on the

model. The good prediction accuracy indicates the workload-level description is effective in

capturing most important workload characteristics.

Next, we explore the capability of the models in predicting other percentile response

times. We use 3,000 minutes from the mixed training traces as more training does not

provide significant improvement. Figure 4.21 compares the model accuracy in predicting

the 25th, 50th, 75th, and 90th percentile response times on one-minute intervals. That

is, we build four CARTs for each device, one for predicting each percentile response time.

Generally, because of the large value and variance of the high-percentile response times, the

absolute error grows with the percentiles, but the median relative error stays at the same

level across all the workloads and devices.

We conduct a little error analysis here. Chapter 7 provides a more systematic analysis

to study the error sources in our approach. Figure 4.22 shows the distribution of the

relative and absolute error in modeling the median response time on the Atlas 10K. The

main observation is that the model can predict more than half of the fragments with high

accuracy, but does poorly on a few of them by mostly underpredicting. One suspicion is

that the large error happens on a certain type of fragments. The simplest form might be

that the error depends on one parameter value.

To test whether the simple conjecture is true, we bucketize the value of single workload-

level description parameters and calculate the aggregate prediction errors by buckets. A

clear trend of the prediction error may suggest that the conjecture is true. Figure 4.23 shows

the results of such aggregation on the three cello99 traces by bucketizing the request count.

First, the fragment count distribution is different from trace to trace, confirming the dif-

ference in the three traces. Second, the model error shows little dependence on the request

count. We have repeated the same experiment on other workload-level description parame-

ters and made the same observation: there is little dependence between any workload-level

description parameters and the model error. The conclusion is that the error either depends

4.3. Workload-Level Description 61

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 2

 4

 6

 8

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(a) Modeling Atlas 10K

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(b) Modeling RAID 1/0

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(c) Modeling RAID 5

Figure 4.18: Workload-level model accuracy on cello99a in predicting the median
response time over one-minute intervals.

62 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 10

 20

 30

 40

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(a) Modeling Atlas 10K

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 2

 4

 6

 8

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(b) Modeling RAID 1/0

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 10

 20

 30

 40

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(c) Modeling RAID 5

Figure 4.19: Workload-level model accuracy on cello99b in predicting the median
response time over one-minute intervals.

4.3. Workload-Level Description 63

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(a) Modeling Atlas 10K

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(b) Modeling RAID 1/0

0 %

15 %

30 %

45 %

60 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

test1
test2
test3
test4
test5
test6
test7

(c) Modeling RAID 5

Figure 4.20: Workload-level model accuracy on cello99c in predicting the median
response time over one-minute intervals.

64 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

(a) Modeling Atlas 10K

(b) Modeling RAID 1/0

(c) Modeling RAID 5

Figure 4.21: Workload-level model accuracy in predicting the 25th, 50th, 75th, and
90th percentile response times over one-minute intervals.

4.3. Workload-Level Description 65

on more than one parameters, or is distributed in the workload-level description space ran-

domly. This could be due to unobserved variables in the modeling approach and/or missing

characteristics in workload-level descriptions. Distinguishing these two types of error is

challenging.

0 %

25 %

50 %

75 %

100 %

0.1 % 1 % 10 % 100 % 1000 %

%
 o

f f
ra

gm
en

ts

median relative error

cello99a
cello99b
cello99c

Financial1
Financial2

0 %

25 %

50 %

75 %

100 %

-400 -200 0 200 400 600 800

%
 o

f f
ra

gm
en

ts

actual - predicted response time (ms)

cello99a
cello99b
cello99c

Financial1
Financial2

Figure 4.22: Relative and absolute error distribution in modeling Atlas 10K.

(a) fragment counts (b) median relative error

Figure 4.23: Model error grouped by the request counts in the fragments.

Importance of workload-level description parameters. We can calculate the im-

portance of the workload-level description parameters using the CART-specific method

described in Section 5.5. We explore how the importance changes along three dimensions:

the devices being modeled, the target performance metric, and the training traces, as shown

by the three plots in Figure 4.24. In (a), we use the mixture of the training part of the

cello99 and Financial in building storage devices for the three storage devices to predict

the median response time over one-minute intervals. In (b), we build four storage devices

models for Atlas 10K using the above mixed trace to predict four percentile response times

66 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Feature request-level model workload-level model

Trace replay 4,000 requests(5 minutes) 3,000 minutes
(2.4 millions of requests)

Training Feature extraction 1 minute 45 minutes
Total 6 minutes 3,045 minutes

Feature extraction 60 minutes 12 minutes
Prediction Regression 34 minutes 0.57 second

Total 94 minutes 12 minutes

Table 4.3: Comparison of request and workload-level device models in computational
and storage overhead. All the numbers are based on predicting three one-day-long
traces from cello99.

over one-minute intervals. In (c), we build five storage devices based on five individual traces

and predict the median response time over one-minute intervals. Generally, the interarrival

time, burst size, and burst rate are the most important because of the dominating queuing

time in the training traces.

In summary, the experiments on real-world traces have shown that the workload-level

models offer decent predictions in predicting aggregate performance when the training and

testing traces are similar, indicating the effectiveness of the workload-level descriptions. For

traffic of low load, data transfer time becomes an important component in response time,

and the average request size makes significant contribution in prediction. For busy traffic,

the temporal burstiness becomes important as queuing time dominates response time.

4.4 Comparison of Two Representations

We have introduced two types of learning-based models depending on the vectors they

work on. The request-level models predict per-request response times from request descrip-

tions. The workload-level models predict aggregate performance of workload fragments

from workload-level descriptions.

Computational overhead. Table 4.3 shows the overhead of the two types of models

in predicting three traces from cello99, one day from each. We observe a clear tradeoff

between training and prediction time for the two types of models.

Prediction is more efficient in workload-level models. The actual saving in computation

depends on the volume of the testing trace. The prediction phase includes two steps:

generating the descriptions and running the descriptions against a regression model. In

4.4. Comparison of Two Representations 67

(a) Modeling three devices

(b) Modeling different percentile response times

(c) Trained on different workloads

Figure 4.24: Parameter importance in workload-level models on different devices,
target performance metrics, and training traces.

68 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

request-level models, each request becomes a vector, so the prediction time is linear in

the number of requests. For workload-level models, each one-minute fragment produces a

vector, so prediction is much faster. For example, workload-level models are more than 7

times faster when measured on cello99.

For the same reason, request-level models require less training time than workload-level

models. A one-minute-long trace produces only one sample for the latter, but can contain

hundreds of requests, that is, hundreds of samples for the former. In our experiments, we

use 4,000 requests (around 5 minutes) to construct request-level models and 3,000 minutes

of traces to construct workload-level models.

When based on efficient regression tools such as CARTs, the regression models usually

only take less than 10 KB storage space, which can easily fit in devices themselves. Note

that request-level device models are able to generate the entire response time distribution.

A workload-level model can predict only one target aggregate performance metric. One

needs to build a separate workload-level model for each metric, but the storage overhead

remains small even if building several regression models.

Model accuracy. Figures 4.25 to 4.27 compare the accuracy of the request- and workload-

level models in predicting the four percentile response times on the three devices using all

the real-world traces. Table 3.4 on page 24 lists the average response times of these traces

on the three devices. The main observation is that there is no clear winner between the

two because the ranking depends on the workloads used in evaluation. The workload-level

models seem to be more consistent.

First, both models can predict most traces with a median relative error less than 30%.

In some cases, the request-level models show a huge relative error probably because of their

small response time and because of the inadequacy of request descriptions. For example, the

models perform poorly because sequentiality is not entirely captured by request descriptions.

The Count parameters take into consideration only the number of requests arrived just

before a request, but not their response times. Consequently, the models can not distinguish

requests that follow a sequential run from ones that follow a burst of random accesses,

while in practice, the latter should experience a longer waiting time. Overall, both vector

representations can capture some important workload characteristics, and the performance

of the workload-level models is more consistent.

Second, a similar relative error is observed across percentiles. Large percentiles are

usually more difficult to predict than small ones due to the large variance in their values. As

a result, the absolute error tends grow with the percentile. Since the actual values increase

at the same time, the relative error usually stays the same. The observation suggests that

4.5. Summary 69

the characteristics captured by the descriptions are equally important for all the devices

and percentiles.

In some cases, the two types of models can rank differently in relative and absolute errors.

For example, in prediciting the 90th percentile response times for cello99b on RAID 5,

the request-level models are better than the workload-level models in median relative error,

but worse in median absolute error. The difference is due to our error calculation method.

Because we calculate the median relative error by first computing the relative errors for

all the data points and taking the median, a different absolute error distribution of the

same median absolute error can lead to a different median relative error. Other studies

have reported the average relative error as the ratio between the average absolute error and

the average response time, in which case, the average absolute and relative errors should

always produce the same ranking [74, 99]. Our error measurement is more consistent with

the statistical meaning of the median relative error, and the different ranking is the natural

result of the algorithm.

We select workload-level models over request-level models for further investigation in

this work because of their stable performance and low prediction overhead. Long train-

ing is tolerable because one only needs to build models once, and it could be done by

manufacturers.

4.5 Summary

This chapter presents the issues and solutions involved in obtaining the vector represen-

tations of I/O workloads. The vector representation can operate at two levels. A request

description characterizes a single request and captures the important characteristics in de-

termining its response time. A workload-level description, on the other hand, summarizes

the characteristics of a sequence of disk requests. As a result, the former requires more

intensive computation during the prediction phase. The experiments have shown that the

vectors can offer models of comparable accuracies for most workloads. The workload-level

models are more efficient in computation and provide more stable predictions with median

relative errors of 10% to 50%.

70 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

(a) median relative error

(b) median absolute error

Figure 4.25: Comparison of request- and workload-level device models in modeling
Atlas 10K.

4.5. Summary 71

Figure 4.26: Comparison of request- and workload-level device models in modeling
RAID 1/0.

72 CHAPTER 4. INTERNAL WORKLOAD REPRESENTATION

Figure 4.27: Comparison of request- and workload-level device models in modeling
RAID 5.

Chapter 5

Selecting A Regression Tool

A regression tool models a real-value function over vectors in a multi-dimensional Cartesian

space. In our device models, it models the target performance as a function over I/O

workloads, with workloads represented as vectors. This chapter evaluates the effectiveness

of popular regression tools in modeling such storage device behavior.

The chapter starts with the desired features of the regression tool in the learning-based

models in Section 5.1. Section 5.2 briefly describes five popular regression tools, and Sec-

tion 5.3 discusses various parameter tuning algorithms. Finally, we justify our choice of

CART by empirical studies in Section 5.4 and provide several analysis techniques for un-

derstanding the models in Section 5.5.

5.1 Device Modeling Using Regression Tools

The learning-based models uses a regression tool to model device behavior as a function

over the vector representations of an I/O workload. That is, the target performance metric,

Y , is modeled as a function of vector X.

Y = f(X) + ε (5.1)

where X ∈ <d, Y ∈ <, and ε is zero-mean noise. Here, <d is a d-dimensional Cartesian space.

The term, ε, captures the intrinsic randomness of the data and the variability contributed

by unobservable variables. For example, the random error could come from different initial

status of storage devices and randomness of the physical mechanism and measurement.

The previous chapter presents two vector designs. In request-level models, X is a request

description, and Y is the response time of the corresponding request. In workload-level

models, X is a description of a workload fragment, and Y is an aggregate performance of

73

74 CHAPTER 5. SELECTING A REGRESSION TOOL

the fragment.

In both types of models, the regression tool learns the mapping from X to Y through

training. The model construction algorithm replays training traces on a given device and

collects their response time information. The regression tool can use the set of Xs and

Y s derived from the training traces to construct a regression model. The model will be

consulted to predict the Y for a given X in prediction. Therefore, the regression tool

should store the mapping efficiently and make fast and accurate predictions. We first give

a brief introduction to five popular regression tools before evaluating their effectiveness in

constructing storage device models.

5.2 Regression Tools

Regression tools are designed to model real-value functions on a multi-dimensional Cartesian

space. Regression tools differ in the way they store the information and in the assumptions

they make on the structure of the data.

We give a brief description of popular regression tools in this section using a synthetic

one-dimensional data set. The data set is generated using

yi = x2
i + εi, i = 1, 2, . . . , 100, (5.2)

where xi is uniformly distributed within (0,100), and εi follows a Gaussian distribution of

N(0, 100). That is, the Guassian distribution has a mean value of 0, and standard deviation

of 100. We use 100 data points in training.

5.2.1 Linear Regression

A linear regression model [96] uses a linear function of X to approximate the value of Y .

The model uses f̂ to approximate f , where

f̂(Xi) = β̂0 +

d
∑

j=1

β̂j × X
(j)
i ; βj ∈ <forallj = 0, 1, . . . , d.

The values of βis are selected to minimize the error, usually measured by the mean squared

error, on the training data. This can be achieved using simple matrix operations over the

training data.

β̂ = (X ′X)−1X ′Y,

5.2. Regression Tools 75

-2000

 0

 2000

 4000

 6000

 8000

 10000

 0 25 50 75 100
y

x

training data
99.46 * x - 1616.13

Figure 5.1: Linear regression model on the sample data set.

where

β̂ =













β̂0

β̂1

...

β̂k













X =













1 X1

1 X2

...

1 Xn













Y =













Y1

Y2

...

Yn













Linear regression models are easy to construct and efficient in prediction. However,

they can incur large errors when the target function is not linear, as shown in Figure 5.1.

Therefore, linear regression models are inappropriate for storage device modeling because

of the non-linear behavior of storage devices. Some regression models using polynomials

and splines can model non-linear functions, but require users to select the degree of the

polynomials and/or the division points. The parameter selection could be difficult for high-

dimensional data sets. We do not consider these regression tools in our study.

5.2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) [92] are inspired by the way biological nervous systems,

such as brains, process information. An ANN usually consists of a set of highly intercon-

nected processing elements, known as “neurons”, working in unison to approximate the

target function.

A neuron is a device of many inputs and one output, as shown in Figure 5.2(a). It deter-

mines the output by making a transformation of the weighted sum of the inputs according

to a pre-defined function. Common transfer functions include linear, threshold, and sigmoid

functions. A set of neurons can be connected to approximate complex non-linear functions.

76 CHAPTER 5. SELECTING A REGRESSION TOOL

x 1
x2

x

y

i

. . .

x1 y1

yj

x2

x i

. . .
. . .

Input layer
Hidden layer

Output layer

 0

 2000

 4000

 6000

 8000

 10000

 0 25 50 75 100

y

x

training data
ANN(3)

(a) A neuron (b) A 3-layer feedforward network (c) Regression line

Figure 5.2: Artificial neural network example. (c) shows the regression line for the
network constructed on the sample data set.

A typical network usually consists of three layers: the input, hidden, and output layers, and

the topology is constrained to be feedforward, as shown in Figure 5.2(b). The number of

neurons in the output and input layers are equal to the output and input variables respec-

tively. The number of neurons in the hidden layer determines the power of the network.

Complex functions need more hidden nodes. A network of two hidden layers is powerful

enough to model any function [47]. Users need to specify the network structure and the

transfer function. The training phase involves the process of finding the set of weights that

minimizes the model error during the training phase. The popular back-propagation algo-

rithm iteratively adjusts the weights by an amount proportional to the difference between

the desired output and the actual output. An additional parameter, the learning rate, con-

trols the amount of the adjustment in each step. An ANN requires the input and output

values to be within the range of [0,1], so data sets may need rescaling in the pre-processing

step.

Figure 5.2(c) shows the regression line produced by a network with 3 hidden nodes for

the sample data set. The regression line matches the actual function closely.

5.2.3 Support Vector Machine

A Support Vector Machine (SVM) [25] transforms the input data into a feature space F ,

by Φ(X) = X → F , and builds a linear model in the feature space. The feature space, F ,

is usually of a higher dimensionality than the original vector space. A non-linear mapping

allows SVMs to solve non-linear problems.

Consider the linear regression model f(Φ(X)) on the feature space.

f(Φ(X)) = 〈w,Φ(X)〉 + b with w ∈ F , b ∈ < (5.3)

where 〈·, ·〉 denotes the dot product in F . In ε-SV regression, the goal is to find w and b

5.2. Regression Tools 77

so that f(Φ(xi)) has at most ε deviation from Yi for the training data. That is, the error

for all the data points should be smaller than ε. Such a solution, however, is not always

feasible. The Vapnik’s ε-insensitive loss function can be added to the model to relax the

constraint. The loss function is defined as

|Y − f(X)|ε := max{0, |Y − f(X)| − ε}. (5.4)

Figure 5.3(a) depicts the loss function graphically.

The target of the regression is then to minimize

1

2
‖ w ‖2 +C

n
∑

i=1

|Yi − f(Xi)|ε. (5.5)

Written as a constrained optimization problem, this is equivalent to the following optimiza-

tion problem after the application of the Lagrange multipliers.

maximize −ε
∑n

i=1(αi + α∗

i) +
∑n

i=1(αi − α∗

i)Yi

−1
2

∑n
i,j=1(αi − α∗

i)(αj − α∗

j)〈Φ(Xi),Φ(Xj)〉

subject to







∑n
i=1(αi − α∗

i) = 0

αi, α
∗

i ∈ [0, C]

(5.6)

The regression estimate takes the form

f(X) =

n
∑

i=1

(αi − α∗

i)〈Φ(Xi),Φ(x)〉 + b. (5.7)

The importance of the above equation is that the SV algorithm depends only on the dot

products between Φ(Xi)s. This allows us to solve the equations without computing Φ(x)

as long as we can compute their dot products. This is achieved using kernel functions

k(Xi, Xj) := 〈Φ(Xi),Φ(Xj)〉. (5.8)

Therefore, the final solution can be written as

w =

n
∑

i=1

(αi − α∗

i)Φ(Xi) and f(X) =

n
∑

i=1

(αi − α∗

i)k(Xi, X) + b. (5.9)

We can calculate the predictions from the dot products between the predicting vector and

the training data.

78 CHAPTER 5. SELECTING A REGRESSION TOOL

ξ

0 +ε−ε

x

x

x
x

x
x

x

x

xx
ξ

+ε

−ε
0

 0

 2000

 4000

 6000

 8000

 10000

 0 25 50 75 100

training data
svm model

(a) Soft margin loss (b) Regression line of SVM

Figure 5.3: A support vector machine example. (a) shows the soft margin loss
corresponding to a linear support vector machine. (b) shows the regression line for
the support vector machine built on the sample data set.

The kernel functions should have certain mathematical properties. One commonly used

kernel function is the radial basis function because of its localized and finite responses across

the entire range of the real x-axis.

K(xi, x) = exp(γ||x − xi||
2). (5.10)

Figure 5.3(b) shows the regression line for the SVM constructed on the sample data set

using the radial basis function. We use an efficient implementation, SV M light [55], in our

experiment. We normalize the input data set so that the values on all the dimensions have

a zero mean and unit standard deviation. SVMs are able to model non-linear functions.

5.2.4 Classification And Regression Trees

Classification And Regression Trees [21] approximate the target function using piece-wise

constant functions that can be visualized as binary trees. Figure 5.4(a) shows the CART

model constructed on the sample data set. The binary tree divides the input vector space

into disjoint regions. The root node represents the entire vector space, and each internal

node divides its corresponding region along one dimension into two regions, one for each of

the two subtrees. A leaf node holds a value that is the prediction for all the data points

that fall into the corresponding leaf node region. The value is estimated using the mean of

all the training data points within the region. The disjoint regions degenerate into intervals

for one-dimensional data sets. Figure 5.4(b) shows the regression line of the CART model

in (a).

The model construction algorithm is a recursive process. It starts with a root node

and grows the tree downward by finding the best splitting point in each step. CART

5.2. Regression Tools 79

13
4.

60
21

.1
1

78
5.

82

13
14

.3
7

31
.1

2
42

.0
0

23
10

.6
6

32
43

.8
6

38
70

.7
1

53
.6

1
59

.8
5

49
40

.5
3

75
.5

4

80
.5

1

96
.4

489
.9

985
.5

065
.9

4

68
68

.4
4

62
08

.3
8

75
55

.7
2

88
77

.7
7

94
78

.0
5

 0

 2000

 4000

 6000

 8000

 10000

 0 25 50 75 100

y

x

training data
CART

(a) Fitted tree (b) Data points and regression line

Figure 5.4: CART model for the sample data set.

models could use different splitting criteria to suit applications’ needs. For regression, the

common criteria is the reduction in mean squared error measured on the training data.

Using information gain leads to decision trees, popular for classification.

The splitting can continue until each region has only one training data point in it. In this

case, the error on the training data is zero. However, the training error is a poor estimation

of testing error, and the testing error increases if the tree grows too deep. Such a situation

is called “overfitting”. The splitting should stop earlier to avoid overfitting. Please refer to

Section 5.3.1 for more information on methods to deal with overfitting.

CART models can model non-linear functions, and are fast in construction and predic-

tion. Further improvements on CART models include Multivariate Adaptive Regression

Splines (MARS), which fit a linear model within each leaf to improve the model accuracy.

5.2.5 K-Nearest Neighbors

The k-Nearest Neighbors (kNN) [37] algorithm is different from all the previous models

in its internal model representation. The kNN algorithm is “memory-based” because the

model simply remembers all the training data during training. All the computation is done

during prediction. For a given query point, the algorithm selects the k points from the

training data that are the closest to the query point, and the average output of the k data

points is the prediction. A more sophisticated approach can use a weighted sum of the k

or all the data points, with the weights calculated based on the distances from the query

point.

f̂(x) =

k
∑

i=1

W (xi, x)yi (5.11)

80 CHAPTER 5. SELECTING A REGRESSION TOOL

 0

 2000

 4000

 6000

 8000

 10000

 0 25 50 75 100

y

x

training data
kNN (k=5)

Figure 5.5: A kNN model on the sample data set. The kNN model uses the average
of the 5 nearest neighbor as the predictions. The distance function is the Euclidean
distance function.

In this case, k can be arbitrarily large because a distant data point will have a small weight

and little effect on the prediction.

The distance function and the k are two important parameters that can strongly in-

fluence the quality of the predictions. The distance function defines how we quantify the

distance between two data points in the d dimensional space. Popular functions include

Euclidean, Euclidean squared, City-block, and Chebychev. All the distance functions re-

quire that the values along each dimension are normalized so that the unit length has the

same influence on the target value. This can be difficult for multi-dimensional data sets.

For example, both the request and workload-level descriptions are such data sets, and it is

not clear how we should scale these parameters to make them comparable.

Choosing the right value of k is also important in obtaining an accurate model. k should

be set to a value large enough to minimize the prediction error and small enough so that

the k nearest neighbors are close enough to the predicting data point. The cross-validation

algorithm can be used to estimate the value of k. If we select to use the weighted sum, k

can be arbitrarily large, but the weight function needs careful adjustment.

Figure 5.5 shows the regression line for the sample data set using a k value of 5. The

kNN model is fast in training but computationally intensive in prediction. In addition, the

storage requirement is high because the model needs to remember all the training data.

5.2.6 Comparison

We have described five popular regression tools using a sample data set. Table 5.1 compares

the multi-regression tools with regard to the features that we are interested in.

5.3. Model Tuning 81

Feature Linear ANN SVM CART kNN

predictive power linear non-linear non-linear non-linear non-linear

computation in prediction fast fast fast fast slow

model construction fast slow fair fast fast

model compactness good good good good poor

parameter tuning no difficult difficult no fair

Table 5.1: Comparison of regression tools on desired features for device modeling.

Linear regression models are inappropriate because of the non-linearity of storage device

performance. The k-NN algorithm is expensive in prediction and storage. ANN and SVM

are powerful enough to model non-linear functions, but parameter tuning and scaling the

input vector space could be challenging. CART models offer good accuracy, compact model

representation, and efficient predictions, with little parameter tuning. Section 5.4 presents

an evaluation of these regression tools in the context of the learning-based device models.

5.3 Model Tuning

Almost all the regression models need some degree of tuning in order to achieve the best

prediction accuracy. We discuss how to select the best parameter fit and pre-process data.

5.3.1 Underfitting And Overfitting

Nearly all the regression models have a complexity parameter that has to be determined.

For example, the parameter can be the size of a CART, the value of k in kNN, or the

number of hidden nodes in a three-layer ANN. Take CART models as an example. A

CART can keep growing until each leaf node contains only one training data point. In this

case, the prediction error on the training data becomes zero. The training error, however,

is a poor estimation of testing error. Figure 5.6 shows the typical curves of the training

and testing error as a function of model size or complexity. As a model becomes more and

more complex, the training error keeps on decreasing. The testing error, on the other hand,

increases when the model becomes overly complex. We need to find the optimal model

complexity to avoid both “underfitting” (the shaded area on the left) and “overfitting” (the

shaded area on the right).

Cross-validation is a well-established technique for estimating prediction error [47]. The

general idea is to divide training data into groups and estimate the error by building and

validating models using different groups of the data. Cross-validation helps to determine

the optimal tree size for the CART models and the k value for the kNN. In our experiments,

82 CHAPTER 5. SELECTING A REGRESSION TOOL

pr
ed

ic
tio

n
er

ro
r

low high
model complexity

underfitting overfitting

testing error

training error

Figure 5.6: Training and testing error as a function over model complexity.

we use two-fold cross-validation to select the optimal CART size. In specific, we use two

sets of data, one for training and one for testing, and plot the testing error curve to choose

the optimal tree size. For request-level models, a typical model contains 80 to 160 leaves

depending on the modeled device. The workload-level models can contain up to 500 leaves.

The cross validation on CART can be fully-automated. Other regression tools still need

human effort to determine certain parameter values. For example, one needs to decide the

network topology of a neural network before she can use cross validation to decide when

the weight adjusting should stop under the given topology.

5.3.2 Data Transformation

Some data sets may need transformation before being fed into regression tools. Such trans-

formations can serve three purposes. First, regression tools such as SVM and ANN, work

only on data sets of certain ranges. For example, we normalize data sets to have a zero

mean and unit standard deviation on all dimensions before building a SVM. An ANN re-

quires that the values on all the dimensions are within range [0,1], so rescaling is needed in

pre-processing.

Second, some regression tools may require the unit length on all the dimensions to have

the same semantics. For example, the Euclidean distance function in kNN measures the

distance between two data points using the weighted sum of the squared distances on all the

dimensions, so the dimensions should be scaled so that all the dimensions are comparable.

The rescaling could be difficult when the semantic meanings of the dimensions are unclear.

For example, it is difficult to determine how the request count should correlate the average

seek distance in the workload-level descriptions.

5.3. Model Tuning 83

Third, the transformation can help to change the structure of the data. For example,

we can take the logarithm of both the input and output of the sample data set to convert

the dependence between them into a linear one so that linear regression models can model

the data with high accuracy.

y = x2 + ε becomes ln y = 2 ln x + ε′. (5.12)

However, it is usually difficult to detect the structure of the data to select an appropriate

transformation, especially for high-dimensional data sets.

A common pre-processing procedure is the logarithm transformation on output value.

The transformation is useful for data sets with multiplicative error terms. The transfor-

mation converts the multiplicative error term into an additive one, making mathematical

analysis easier. In addition, model accuracy will also be improved. Take CART models as

example. Real-world traces show long tails in response time distributions: a small number

of requests show large response times. Without the logarithm transformation, the splitting

focuses on these requests because of their large prediction error. After the transformation,

the prediction errors for requests of small response times are magnified, and these requests

get more attention from the splitting. Therefore, the model is more accurate in predicting

these requests. Because there are more requests of small response times, the overall model

accuracy is greatly improved. Figure 5.7 in Section 5.4 compares the standard deviation of

the residual error without and with the logarithm transformation in building workload-level

models. After the transformation, the increasing trend is removed and model accuracy is

greatly improved, too, as shown in Figure 5.8.

Other transformations, such as dimension reduction techniques, are also useful. First,

some regression tools, such as linear, ANN, SVM, and kNN, are sensitive to irrelevant

input features. The irrelevant parameters can confuse the model construction algorithm,

leading to models of poor quality. Removing those irrelevant parameters will improve

model accuracy. A common method is stepwise regressions [47], which are essentially a

greedy algorithm. The search can happen in two directions. In forward selection, the

algorithm starts with an empty set and adds parameters to the set one at time, ordered

by the strength of their influence on the output. The best set size is then identified by

investigating the prediction error curve. A backward algorithm starts with a full set and

removes one parameter at a time. A hybrid one considers both the forward and backward

moves in each step.

Second, the dependence between input dimensions can also complicate the model con-

struction algorithm. Techniques such as Principle Component Analysis (PCA) and Inde-

pendent Component Analysis (ICA), can reduce the dependence by projecting the data onto

84 CHAPTER 5. SELECTING A REGRESSION TOOL

a different sets of vectors. In PCA, the new vector sets, known as the principle components

(PCs,) are the eigenvectors of the training data, and the direction of the PCs see the max-

imum variances of data in decreasing order. Therefore, the projection of the data on the

last several PCs can be removed from the vector with little information loss if the variances

in these directions are small. In this case, the dependence between input dimensions is

reduced, and so is the dimensionality of the data set.

In our device models, we do not consider these advanced techniques because our analysis

has shown that most of the error comes from other parts of the system.

5.4 Selecting A Tool for Device Modeling

The selected regression tool should be compact, computationally efficient, and accurate.

Ease of use can be an additional value. In this section, we compare the afore-mentioned

regression tools in constructing the learning-based models for storage devices. We use the

regression tools to build workload-level device models for Atlas 10K. Without special notice,

the models are constructed on 3,000 minutes from the mixture of the cello99 traces (Feb.

1-3, 1999.) and tested on one day worth of cello99 (Feb. 4, 1999.)

Effectiveness of the logarithm transformation. The logarithm transformation re-

moves the dependence between the error term ε and the output value Y if the error term is

multiplicative on Y . If the random error grows with the target value, the model will per-

form poorly on data points of small target values. This is exactly the case in performance

prediction for storage devices: busy periods usually show a larger variance in response time

than idle periods because bursty arrivals make queuing effects worse. Taking the logarithm

effectively removes the dependence, and improves model accuracy.

Figure 5.7 shows the effectiveness of the logarithm transformation in turning the mul-

tiplicative error term into an additive one. Two graphs plot the standard deviation of the

residual error, |Ŷ −Y |, against Y for the models built on the original and transformed data.

Since we do not know the actual function, we generate the graphs in the following way. We

build two CART-based models using the same training trace. One model is constructed

to predict the median response time, and the other predicts the logarithm of the median

response time. A CART model naturally divides training data into groups of similar char-

acteristics and performance, one for each leaf node. We plot the standard deviation of the

residual error against the mean target value for all the leaf nodes in the two trees. Fig-

ure 5.7(a) is on the CART model without the transformation. Even though we only have

limited data points with large target values, the increasing trend is obvious. In (b), the plot

5.4. Selecting A Tool for Device Modeling 85

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

st
de

v
by

 le
af

 n
od

es

median by leaf node (ms)

 0

 0.5

 1

 1.5

 2 4 6 8

st
de

v
by

 le
af

 n
od

es

ln(median response time in ms)

standard deviation by leaves

(a) on original data (b) on transformed data

Figure 5.7: Residual error without and with the logarithm transformation measured
on the CART models. The standard deviation of the residual error, which shows
an increasing trend to the mean of the target value, becomes randomly distributed
with the logarithm transformation.

(a) without the transformation (b) with the transformation

Figure 5.8: Comparison of models constructed without and with the logarithm trans-
formation on the output value.

(a) median relative error (b) median absolute error

Figure 5.9: Comparison of regression tools.

86 CHAPTER 5. SELECTING A REGRESSION TOOL

Feature Linear ANN SVM kNN CART

Accuracy 58% 35% 28% 31% 23%

Prediction time 210 ms 138 ms 560 ms 30 sec 300 ms

Storage requirement 60 Bytes 600 Bytes 22KB 180 KB 2 KB

Model construction 270 ms 45 min 90 ms 0 570 ms

Tuning parameters 0 > 2 > 2 > 2 0

Pre-processing No Rescaling Normalization Normalization No

Interpretability Good Poor Poor Poor Good

Table 5.2: Comparison of regression tools in interesting features. The accuracy is
the averaged median relative error of the three cello99 traces (Feb 4 - 6, 1999). The
logarithm transformation is not considered as pre-processing in the table because we
deem it an optimization rather than a necessary step before applying the model.

is for the CART model built on the data after the logarithm transformation. No significant

dependence between the error term and the target value is observed in this case, indicating

the effectiveness of the transformation in removing the dependence.

Figure 5.8 compares the accuracy of two workload-level device models. Note that we

always recover the predicted values by the model with the logarithm transformation to

their original scale. The logarithm transformation brings dramatic improvements for all

the traces. The improvement is more prominent in the average errors than the relative

errors because the logarithm transformation allows the model to focus on requests of small

response times, which incur huge error without the transformation. Therefore, we always

use the transformation in all the experiments.

Comparison across regression tools. Figure 5.9 compares the prediction accuracy of

the models built using the five regression tools in predicting the median response time

over one-minute intervals on Atlas 10K. The linear regression models incur a much larger

prediction error than the other tools because of the non-linear device behavior. All the

other tools behave similarly in terms of model accuracy although kNN seems to have the

largest variance.

Table 5.2 summarizes the comparison. All the tools have similar prediction accuracy

except linear regression. In terms of computational and storage requirements, all the models

are efficient and compact except kNN, which needs to remember all training data and makes

predictions by scanning the training data. CART and linear regression require no manual

parameter tuning at all in model construction.∗ from the In ANN, the number of hidden

nodes and the learning rate are the two most important parameters. In SVM, one needs to

∗The size of CART models can be automatically chosen by cross validation.

5.5. Understanding the Model 87

determine the kernel function and the relaxation factor. In kNN, one needs to specify the

value of k and the distance function.

We chose to use CART models as our device models because of their competitive ac-

curacy and high efficiency. In addition to these desired features, CART models come with

good interpretability: one can easily visualize and understand a CART model, which is

useful when diagnosing faults in device models. We have designed several CART-specific

techniques for analyzing model error in Chapter 7.

5.5 Understanding the Model

It is useful to determine the importance of workload characteristics on device performance.

Such measurements provide a ranking of the parameters for the stepwise regression algo-

rithms and help in understanding the interaction between storage devices and I/O work-

loads. Such understanding can be useful in designing new storage devices, or redesigning

applications to exploit device characteristics to improve performance.

The importance measurements are not easy to obtain, especially when the parameters

are correlated with each other, and the dependence between input parameters and output

is not linear. Pearson’s correlation coefficient measures the degree of linear dependence

between two random variables. Linear regression models use Z-score to determine the

importance of a parameter. These metrics are inappropriate in our device models because

of the non-linear behavior of storage devices. Instead, we use empirical studies to measure

the importance of a parameter. Caution is needed in interpreting the results because the

results highly depend on the data used in the studies.

Two model-independent approaches exist for measuring the “relative” importance of

parameters. These measurements are “relative” because they are intended for comparison

only. The additive approach builds a model using single parameters and uses the model

accuracy as their importance. In particular, we first construct a “total” model using all

the parameters, and record its accuracy using its total error reduction on the training

trace. We use the mean squared error in our calculation because CART models use this

criteria to compare two models. To evaluate the importance of a parameter, we build a

model using only that parameter and calculate the model accuracy in the same way. The

ratio in accuracy between this model and the “total” model is the relative importance of

the parameter. Figure 5.10(a) shows the measurements for the workload-level description

parameters using the additive approach on the three devices. The models are constructed

using the same training trace as in Section 5.4 to predict median response time. We can

clearly see that BurstSize and BurstRate are significantly more important than the other

88 CHAPTER 5. SELECTING A REGRESSION TOOL

parameters. The results are as expected since the queuing time dominates the response time.

Surprisingly, ReqSize alone offers good accuracy, too, suggesting strong correlations between

the arrival and request sizes in the training trace. Figure 5.11 plots the first three levels of

the CART model built on Atlas 10K. It is not surprising to see these two parameters appear

to be so high in the tree hierarchy multiple times. The additive approach can measure the

degree of dependence between the evaluated parameter and the target value, but is unable

to handle the cases when a parameter combination is needed to make good predictions.

The subtractive approach, on the other hand, builds a model using all the parameters

except the one being evaluated. Intuitively, missing an important parameters leads to an

inferior model, so we can use the extra model error as the importance of the parameter.

The subtractive approach can not correctly measure the importance of strongly-correlated

parameters because excluding any one of them will not degrade the model much. Unfor-

tunately, the workload-level description parameters are strongly correlated, and the model

accuracy stays almost the same when we omit any parameter as shown in Figure 5.10(b).

One can still conclude that BurstSize and BurstRate are more important than the others.

The additive and subtractive approaches are applicable to any regression tool. Model-

specific methods exist, too. For example, the Z-score is such a metric in linear regression.

We introduce another CART-specific approach here. Each split in a CART tree reduces

model error by a certain amount. One can summarize the contribution of a parameter

in error reduction for a given tree and use the sum as the importance of the parameter.

Because all the parameters are used in constructing the model, the “overshadowing” problem

in the subtractive approach still exists. For example, if two parameters are correlated,

the model may pick only one in constructing the tree. Applying the above approach will

show that the unpicked one is not important even though both should be. Ideally, the

dependence between parameters should be removed before the application of regression tools

to maximize performance. Our workload-level descriptions exhibit strong dependence, and

future work could explore the effectiveness of PCA and ICA in reducing the dependence

between parameters. Figure 5.10(c) shows the importance measured by this approach.

As BurstSize and BurstRate are both shown to be of similar importance by the additive

approach, BurstRate seems to be overshadowed, so is ReqSize.

We have used the CART-specific approach in Chapter 4 to measure the importance of

the parameters in request and workload-level descriptions because of its effectiveness and

efficiency. Of course, one needs to be cautious in interpreting the results because of the

“overshadowing” problem.

5.5. Understanding the Model 89

Figure 5.10: Comparison of three ways of measuring the parameter importance.
The training traces are the mixture of cello99a, cello99b, and cello99c. The
model predicts the median response time over 1-minute intervals on the three de-
vices.

90 CHAPTER 5. SELECTING A REGRESSION TOOL

BurstRate

BurstSize

B
ur

st
R

at
e

co
un

t

Sequentiality

Se
qu

en
tia

lit
y

BurstSize

B
ur

st
R

at
e

B
ur

st
R

at
e

BurstSize

B
ur

st
R

at
e

...
...

...
......

Figure 5.11: The first three levels of a CART model constructed for Atlas 10K using
3,000 minutes of a mixture of cello99. BurstSize and BurstRate appear high and
frequently here, suggesting their importance in determining workload performance.

5.6 Summary

This chapter uses empirical studies to select an appropriate regression tool for our learning-

based models. The regression tool takes request or workload-level descriptions as input to

predict device performance. The desired features for the chosen tool include accurate and

fast predictions, a compact model representation, and an automated model construction

algorithm.

We briefly describe a set of popular regression tools and use real-world traces to compare

them. The experiments have shown CART models offer competitive prediction accuracy

and are compact, efficient, and easy to use. Therefore, we select CART models as the basis

of the learning-based models for storage devices.

Chapter 6

Training Workload Generation

The learning-based modeling approach learns a storage device’s behavior by observing it

under a set of training traces. The training traces should be diverse enough to cover a

large range of workloads for device models to predict the performance of an I/O workload

accurately because the models can only predict workloads that are similar to the training

traces. Moreover, the training traces should be as short as possible to have a short training

time. This chapter discusses our design of the training traces.

We elected to use synthetic traces in training because of their low storage overhead

and high controllability. The process consists of two steps: a) producing a small set of

workload-level descriptions that offers a broad coverage over the workload-level description

space using effective sampling techniques (presented in Section 6.3) and b) generating traces

for the sample workload-level descriptions (presented in Section 6.4.) Section 6.5 evaluates

the effectiveness of these techniques and concludes that synthetic trace generators need

further improvement to deliver accurate device models.

6.1 Design Considerations

The quality of training traces determines the accuracy of our learning-based models. This

section explores the design space of the training traces.

6.1.1 Design Alternatives

The learning-based models construct themselves by observing how storage devices handle

training traces. One option is to use real-world traces in training. We selected to use

synthetic traces instead for three reasons. First, collecting real-world traces could require

human effort to build the infrastructure. Second, the collected traces may offer only a

91

92 CHAPTER 6. TRAINING WORKLOAD GENERATION

limited coverage, and there is limited work on how to alter the characteristics of existing

traces. Finally, publishing real traces invokes data privacy issues.

The advantage of synthetic traces is that one can control the characteristics of the

synthetic traces to ensure a maximum coverage over the workload-level description space.

Moreover, little storage space is required since the traces can be generated on the fly. On the

other hand, replicating realistic correlation structures in synthetic traces can be difficult,

as is knowing whether and which such correlations matter.

6.1.2 Diverse Synthetic Traces by Sampling

To ensure the coverage, we generate traces from a set of workload-level descriptions drawn

from the workload-level description space using sampling techniques. In this case, the

training trace generation involves three steps.

1. Step 1: Determine the region in the workload-level description space that needs

sampling.

2. Step 2: Sample over the region to produce a set of workload-level descriptions that

offers a good coverage.

3. Step 3: Generate traces from the sample workload-level descriptions.

Sampling ensures the region is covered efficiently by a small number of workload-level de-

scriptions. With realistic synthetic trace generators, the final traces will meet both the

coverage and length requirements.

6.1.3 Difference from Traditional Synthetic Workload Generation

Synthetic workload generation has always been an active area because of the efficiency and

convenience offered by synthetic workloads in system evaluation. It is, however, difficult for

our system to employ previous work in workload generation because of the subtle difference

in the problem setting.

First, we have a different goal from traditional trace generation. Existing work usually

focused on generating traces with given characteristics, and the characteristics are usu-

ally specified in the form of a sample trace. So the target is to produce traces of similar

characteristics, hence similar performance to the given trace. Consequently, their focus is

on extracting important characteristics from workloads and faithfully reproducing them in

synthetic traces. In contrast, we emphasize producing traces of a variety of arrival and

access patterns. Consequently, we are also responsible for producing reasonable parameter

combinations in addition to the “real” trace generation.

6.2. Bounding the Workload Description Space 93

Second, our generators may receive an impossible parameter combination as input. The

sampling step generates workload-level descriptions, with little knowledge of the dependence

between the workload-level description parameters. As a result, some samples can contain

contradictory parameter values. For example, it is impossible for a workload to have an

average run length of 10 when its sequentiality is 0%. In traditional trace generators, the

parameters are extracted from real workloads, and such contradiction will not happen.

Third, our generators are limited to use only scalar parameters in specifying workload

characteristics because our regression tools only receive scalar vectors as input. We could

potentially add the first, second, and even third moments of a distribution to the workload-

level descriptions, but the generators still need to make assumptions to generate the entire

distribution in generating synthetic traces. Traditional trace generators, on the other hand,

can use both scalars and distributions to characterize a given workload, minimizing the

number of assumptions they need to make. For example, the access frequencies of disk

blocks are commonly used to characterize the locality pattern.

Fourth, traditional trace generators can choose to use parameters that are convenient

in their models to specify workloads. Our generators, on the other hand, have a fixed

parameter set, that is, the workload-level description, and no existing generators use the

same parameters as we do.

In summary, trace generation in our system imposes different challenges than the tra-

ditional one because of the difference in the problem setting. We present the three steps in

our trace generation next.

6.2 Bounding the Workload Description Space

Before sampling, we need to determine the region in the workload-level description space

that needs samples. This region should effectively cover all the possible workloads that can

run on the modeled device without saturation. If the region is too large, we could waste

time in producing sample traces that would never be able to run on the device.

We currently take the bounding box of all traces as the sampling region. Even though

we have observed saturation on some sample traces, it does not necessarily mean that the

bounding box covers all the possible workloads that can run on the device. Figure 6.1 shows

such a scenario. Even with a bounding box that misses workloads, we could still experience

saturations from traces within the bounding box. For the purpose of our experiments, the

bounding box of all the traces should be enough to cover all the workloads tested.

94 CHAPTER 6. TRAINING WORKLOAD GENERATION

All workloads that the device can handle

Bounding box of real−world workloads

Figure 6.1: Bounding box in the workload-level description space.

6.3 Sampling Over the Workload Description Space

Sampling is responsible for generating a small set of workload-level descriptions to cover

the sampling region. The simplest one is uniform sampling, which generates samples using

a uniform distribution over the entire region. Uniform sampling is straightforward to im-

plement, but uses the samples inefficiently. The sampling rate stays the same for all the

regions of the input vector space, regardless of the variance of the target value, that is, the

aggregate performance in performance modeling of storage devices in our problem setting.

Consequently, one may need a large number of samples to ensure high fidelity for the models

to capture device behavior over high-variance regions.

Ideally, the sampling rate should be biased, with the rate adapting to the variance

of the target value. It is reasonable to devote more samples to regions of high variance.

This allows a more efficient use of the samples: the same number of samples can provide

more information about the target function in biased sampling than in uniform sampling.

Therefore, training can be shorter.

Implementing biased sampling, however, requires the knowledge of the target function

for estimating the variance. In a static approach, one can use expert knowledge to pre-

determine the sample distribution over the workload-level description space. For example,

traces of high traffic volume can have a larger variance in workload performance and there-

fore, the models need more sample traces of high volume to capture device behavior under

heavy loads. The sample rate could grow with the arrival rate. The static biased sam-

pling is easy to implement, but requires domain-specific knowledge to design the sample

distribution.

A more sophisticated approach is a dynamic one, which estimates the variance of the

target value from observed behavior and adjusts the sampling rate accordingly without any

prior assumptions on the target function. This approach is also known as adaptive sampling,

and is widely used in statistical experiment designs [108]. Adaptive sampling requires an

6.4. Generating Traces From Samples 95

iterative model construction algorithm in which more training traces are continuously added

to improve model accuracy.

We used uniform sampling in our experiments because error analysis has shown the

major error source is the synthetic trace generators. Therefore, immediate efforts should

be directed to improve the quality of trace generators.

None of the sampling techniques described above takes into consideration the depen-

dence between the workload-level description parameters. They draw parameter values

independently. It is difficult to enforce dependence in sampling because we lack a com-

prehensive understanding of the dependence. Ignoring the dependence leads to impossible

workload-level descriptions. We incorporated the following two simple rules in sampling to

avoid such contradictions, and leave the rest to the trace generators.

1. When the sequentiality is 0, the average run length will be set to 0. Otherwise, it will

be set to a value larger than 2. A sequential run has at least two requests as defined

by our feature extraction algorithm.

2. The joint entropy plot slope should be smaller than the sum of the entropy plot slopes

on arrival and LBNs to have positive mutual information.

We enforce the rules by simply discarding any samples that do not meet the requirements.

This does not affect the coverage of the samples because such workloads should never exist

in practice. Such early pruning is beneficial in reducing the unnecessary work in generating

traces for these samples.

6.4 Generating Traces From Samples

Once the sample workload-level descriptions are available, the next step is to generate

traces with the specified characteristics. The synthetic traces should exhibit the given

characteristics and, at the same time, provide similar performance on the modeled device

to the real traces with similar characteristics. This is difficult to achieve for three reasons.

• A workload-level description contains correlated parameters. It is difficult to develop

a unified trace generator to accept the workload-level description as a whole and

produce traces with all matching characteristics.

• One needs to make assumptions to generate traces. Ideally, a workload-level descrip-

tion should capture all the important workload characteristics so that any additional

assumptions will have little impact on the performance of synthetic workloads. Our

workload-level description, however, is not yet ideal.

96 CHAPTER 6. TRAINING WORKLOAD GENERATION

• Even if two traces have the same characteristics, they could perform differently be-

cause of the intrinsic variance in device behavior. The variance can come from the

initial system status and unobservable variables not captured by our workload-level

descriptions. The variance tends to grow with the load because the strong correlations

between requests make the queueing effects more prominent.

We choose to maintain a set of generators to meet both the coverage and faithfulness

requirements. The next section presents the design in detail.

6.4.1 Generator List

In our trace generation, a generator usually takes a subset of the workload-level descrip-

tions as input, and is responsible for generating one attribute value independently from

the other attributes. Table 6.1 lists all the generators in the system. For example, the

B-model can generate request arrival times independently from their location, request type,

and size. As a result, to generate a synthetic trace for a given workload-level description,

we pick a generator for each attribute and use the combination to generate synthetic traces.

An exception is the PQRS model, which can generate request arrival time and location

simultaneously. As a result, (Burst, LBNDiff, Markov, Exponential) is a valid combina-

tion, and so is (PQRS, PQRS, Markov, Exponential). The synthetic traces will match the

characteristics specified by all the parameters used in the generator combination, but not

necessarily match the others. Since there is no unified model to take all the parameters as

input, combining various generators is the best effort we can offer with this approach to

meet specified workload-level descriptions. In addition, this approach naturally resolves the

contradicting samples because it reduces the dependence between the input parameter set

of each combination to a minimum.

The next sections describe the two new generators, B-model and PQRS.

6.4.2 B-model and PQRS Model

The B-model and PQRS models are designed to take advantage of the entropy plot to

generate synthetic traces. The B-model can generate either the arrival process or the access

frequency distribution of disk blocks given an entropy plot slope. The PQRS model extends

the B-model to simultaneously generate the arrival time and LBN of a disk trace with given

entropy plot slopes. Please refer to [115, 117] for further details on the two models.

B-model. The B-model takes a parameter, bias b, as input and generates a one-dimensional

probability distribution function. The bias controls the burstiness of the distribution func-

6.4. Generating Traces From Samples 97

Attribute Generator Description Parameters

Gamma Use the gamma distribution to generate
the interarrival time of each request inde-
pendently

ReqCount
(equivalent to
arrival rate)

Arrival
time

Burst Generate bursts of requests, with the
burst size and interarrival time within
bursts following the exponential distribu-
tion

BurstSize,
BurstRate

B-model Generate arrivals with the B-model [117] EntropyTime
PQRS model Use the PQRS model [115] to generate

correlated arrival time and location
ReqCount, En-
tropyTime

Sequential Generate sequential runs of
exponentially-distributed size

RunLength,
Sequentiality

LBNDiff Assume an exponential distribution of
the seek distance and generate the loca-
tion of next request by adding the seek
distance to the current location

Seek

LBN Reuse Assume an exponential distribution of
the LRU distance for the current request

ReuseReq

B-model Use B-model to generate the access fre-
quency of disk blocks and draw location
from the distribution

EntropyLBN

PQRS model Use the PQRS model to generate corre-
lated arrival time and location

EntropyLBN,
MutualInfo

Ratio Generate the request type independently ReadRatio
Type Markov Model the type transition of previous re-

quest to current request using Markov
model

ReadRatio

Size Exponential Draw request size from exponential dis-
tribution

ReqSize

Table 6.1: Generators maintained in the system. The sequential generator is incor-
porated in all the LBN generators: when generating the LBN for a new request, the
algorithm will check the current percentage of sequential accesses. If more sequen-
tial requests are needed, the request will become the starting request of a sequential
run, whose run size is drawn from an exponential distribution with the given mean.

98 CHAPTER 6. TRAINING WORKLOAD GENERATION

1

b

b^2

1 1 11/2 1/2

0

25

50

75

100

0 250 500 750 1000

of

 r
eq

ue
st

time

(a) construction algorithm (b) a sample B-model trace

Figure 6.2: The recursive construction algorithm of B-model. (b) shows a sample
B-model trace generated with b = 0.7. The sample trace has linear entropy plot of
slope 0.881.

tion, and is usually estimated from the entropy plot slope from a real trace. Figure 6.2(a)

illustrates the recursive generation process. The recursive split stops when the desired gran-

ularity is met. Once the distribution is available, the model can distribute data points along

the dimension using the distribution. For example, we can apply the B-model to the arrival

time to generate the arrival process of an I/O trace. Applying the model to LBN produces

the access frequency distribution of the disk blocks.

B-model traces have linear entropy plots. The burstiness stays the same at all the

granularities because the same parameter b is used in each recursive split. The slope of the

entropy plot depends on the value of b.

E = −b log2 b − (1 − b) log2(1 − b) (6.1)

The B-model trace in Figure 6.2(b) has a linear entropy plot of slope 0.881, which corre-

sponds to the bias value of 0.7 used in generating the trace.

PQRS model. The PQRS model is a natural extension of the B-model to handle two-

dimensional data sets. The model takes four parameters, p + q + r + s = 1, as input,

and generates traffic of given burstiness and locality. Figure 6.3(a) illustrates the recursive

cascading algorithm to generate a PQRS trace. The synthetic traces have linear entropy

plots because the same parameter values are used in all the steps. The slope of the entropy

6.4. Generating Traces From Samples 99

p*s

p*rp*p

p*q

q
p

s
r

1

 0

 5

 10

 15

 20

 0 2 4 6 8 10

en
tr

op
y

va
lu

e

scale

time
LBN

joint entropy
mutual info

(a) trace generation (b) a sample trace (c) entropy plot

Figure 6.3: The recursive construction algorithm of the PQRS model. (b) shows
a sample PQRS model trace with (p, q, r, s) = (0.2, 0.3, 0.1, 0.4). The sample trace
has linear entropy plots with slopes of 1, 0.881, 1.722, 0.159.

plot is controlled by the p, q, r, s values.

Etime = −(p + q) log2(p + q) − (r + s) log2(r + s)

ELBN = −(p + r) log2(p + r) − (q + s) log2(q + s)

Ejoint = −p log2 p − q log2 q − r log2 r − s log2 s

(6.2)

Figure 6.3(b) shows the trace generated from the PQRS model with parameter values of

(0.2,0.3,0.4,0.1), and (c) shows the entropy plot for the synthetic PQRS trace. The PQRS

trace has linear entropy plots, and the slopes match the values given in Equation 6.2. The

trace looks different from the real-world trace shown in Figure 4.2 because of the different

entropy plot slopes in the two traces.

The beauty of the B-model and PQRS model lies in their simplicity and flexibility. A

small set of scalar parameters controls the characteristics of entire traces, and the models

can simulate traffic of different burstiness and locality.

6.4.3 Mixing versus Bagging

Once we have the synthetic traces generated by different generator combinations, there are

two ways of using these traces in training. The “mixing” approach constructs a single model

based on all the traces. The other option, “bagging”, builds separate models, one for each

generator combination, and uses the bag of the models to determine the final prediction [20].

In this approach, each model produces a prediction and its “confidence” in the prediction,

and the prediction with the highest confidence becomes the final answer. Generally, the

confidence should grow with the number of the samples used in generating the prediction,

and decrease with the standard deviation of the samples. The following are two simple ways

100 CHAPTER 6. TRAINING WORKLOAD GENERATION

of calculating the confidence in CART.

• count. Use the number of samples in generating the prediction as the confidence

measure.

• stdev. Use the reciprocal of the standard deviation of the samples generating the

prediction as the confidence measure.

In CART models, both can be easily computed by looking at the training data that fall into

the same leaf node as the predicted data. Bagging can work with online model adaptation

easily. A new model based on new training data to improve can be added to participate in

prediction. The mixing approach, however, requires remembering all the existing training

data before one can add new training data to construct a better model.

6.5 Experimental Results

We study the effectiveness of sampling and our trace generators in generating useful training

traces for our learning-based models in this section.

6.5.1 Effectiveness of Trace Generators

The trace generators should produce traces that are similar to real traces in both work-

load characteristics and performance. In this set of experiments, we get workload-level

descriptions from real traces and use our generators to generate synthetic traces for these

workload-level descriptions. Ideally, the synthetic traces should have the same workload-

level descriptions and performance as the real ones.

We randomly select 150 one-minute fragments from the three cello99 traces, 50 from

each. For each fragment, we use our generators to generate 30 fragments and compare

their performance against the real traces. Though these data points may not offer a good

coverage of the workload-level description space, they offer diverse access patterns as we

can see from the different distributions of the entropy plots in Figure 4.15,

Figure 6.4 compares the performance of the real and synthetic traces. We calculate the

average of the median response time for each group of 30 fragments and plot the value

against the actual median of the real traces. Ideally, the data points should lie close to

the diagonal line. We observe that, in Figure 6.4(a), Burst generates traces with smaller

response times than the real traces because the synthetic traces are less bursty (the graph

on the left). On the other hand, when the traffic is smooth and light, LBNDiff produces

traces of poorer locality than real ones, leading to larger response times (the graph on

6.5. Experimental Results 101

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

sy
nt

he
tic

 tr
ac

e
pe

rf
or

m
an

ce
 (

m
s)

real trace performance (ms)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

sy
nt

he
tic

 tr
ac

e
pe

rf
or

m
an

ce
 (

m
s)

real trace performance (ms)

(a) (Burst, LBNDiff, Markov, Exponential) combination

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

sy
nt

he
tic

 tr
ac

e
pe

rf
or

m
an

ce
 (

m
s)

real trace performance (ms)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

sy
nt

he
tic

 tr
ac

e
pe

rf
or

m
an

ce
 (

m
s)

real trace performance (ms)

(b) (PQRS, PQRS, Markov, Exponential) combination

Figure 6.4: Comparison of synthetic and real traces in their median response times
on cello99b and cello99c (right.) cello99b (left) is of higher volume than
cello99c. Each data point is the average of 30 synthetic trace fragments generated
from the workload-level description of a real trace fragment.

the right). The performance difference is due to the ignorance of the strong dependence

between requests. For example, in both Burst and LBNDiff, the attribute values of each

current request are generated independently from the other attributes and from the previous

requests. In reality, strong correlations exist, so requests tend to arrive in batches and are

likely to clustered along the LBN space. Ignoring the correlations leads to smoothy traffic

of poor locality.

Figure 6.4(b) compares another generator combination. The PQRS model generates

traces of stronger burstiness in arrivals because of huge spike in the arrival process leads to

a long queue. The total number of disk blocks accessed by a PQRS trace is small, and the

locality is better.

In summary, it is difficult to generate realistic traces from workload-level descriptions

using our method. The provided generators are inaccurate in reproducing the character-

102 CHAPTER 6. TRAINING WORKLOAD GENERATION

index Arrival time LBN Type Size

1 Burst LBNDiff Markov Exponential

2 Burst Reuse Markov Exponential

3 Burst B-model Markov Exponential

4 Burst Zipf Markov Exponential

5 Bmodel LBNDiff Markov Exponential

6 Bmodel Reuse Markov Exponential

7 PQRS PQRS Markov Exponential

8 Gamma LBNDiff Markov Exponential

9 Gamma Reuse Markov Exponential

Table 6.2: Trace generator combinations used in the experiments.

istics in real traces for synthetic traces to have the same performance as real ones. The

unfaithfulness is due to the ignorance of the correlations between requests.

6.5.2 Comparison of Mixing and Bagging

As presented in Section 6.4.3, we can use Mixing or Bagging to build device models from

synthetic traces. We compare the two approaches in this set of experiments. Both count and

stdev are used in bagging to select the predictions. We use the 9 generator combinations

listed in Table 6.2 to generate synthetic traces. All the combinations use the same generators

for request type and size because we discover that if we replace the values of these two

attributes in the original traces with the new values generated from these two generators,

the change in performance is negligible. We bound the workload-level description space by

taking the bounding box of all the cello99 traces, and produce 3,000 sample points using

a uniform sampling. More samples do offer any improvement.

Figure 6.5 shows the comparison results. The models are built to predict the median

response time on Atlas 10K. The main observation is that there is little distinction between

Mixing and Bagging. In both cases, model error is more than doubled than if we build

the model using real traces. The additional error is due to the poor quality of the training

traces as we have shown previously. Even though the synthetic traces are generated from

the given workload-level descriptions, unrealistic assumptions, such as the ignorance of the

long range dependence between requests, lead to unrealistic synthetic traces. The next

chapter systematically analyzes model error and confirms this observation.

We have evaluated two algorithms, count and stdev as presented in Section 6.4.3, in

selecting predictions in Bagging. Figure 6.6 studies the frequency and accuracy of individual

models used in stdev. Figure 6.6(a) shows the percentage of predictions used as the final

prediction for each generator combination, and Figure 6.6(b) shows the prediction error

6.5. Experimental Results 103

0 %

25 %

50 %

75 %

100 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

mix
bagging-count
bagging-stdev

real

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

mix
bagging-count
bagging-stdev

real

(a) tested on cello99a

0 %

25 %

50 %

75 %

100 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

mix
bagging-count
bagging-stdev

real

 0

 10

 20

 30

 40

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

mix
bagging-count
bagging-stdev

real

(b) tested on cello99b

0 %

100 %

200 %

300 %

400 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

mix
bagging-count
bagging-stdev

real

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

mix
bagging-count
bagging-stdev

real

(c) tested on cello99c

Figure 6.5: Comparison of Mixing and Bagging in constructing device models for
Atlas 10K.

104 CHAPTER 6. TRAINING WORKLOAD GENERATION

(a) count breakdown (b) error aggregated by combinations

Figure 6.6: Model error analysis by combinations from Table 6.2.

grouped by the combinations. We observe that combination 2 and 4 do not contribute

much to final predictions, and when they do, their predictions are far from accurate. We

should exclude the traces produced by those two models in our voting algorithm.

Figure 6.7 shows the model error of Bagging after combination 2 and 4 are removed

from the training set. We observe a slight improvement in the model accuracy, but the

overall model error is still large compared to the ones built on the real traces. This result

is expected because the prediction accuracy on other combinations are far from ideal as

shown in Figure 6.6(b). This experiment has indicated that high-quality trace generators

are needed to deliver accurate models.

In summary, our trace generators are too naive to produce realistic traces for construct-

ing the learning-based models of storage devices. Our experiments have compared Mixing

and Bagging, but because of the poor quality of our trace generators, it is difficult to

make concrete conclusions based on inaccurate models. Future work should investigate the

difference between real and synthetic traces with higher quality trace generators.

6.6 Summary

The quality of the learning-based models depends highly on the training traces used in

constructing the models. The traces should cover as many access patterns as possible for

the constructed models to predict I/O workloads, but the training traces should be as short

as possible to speed up trace replay. This chapter has explored the design space of using

synthetic traces in training.

The trace generation process involves sampling over the workload-level description space

and generating synthetic traces from the sample workload-level descriptions. The goal of

6.6. Summary 105

0 %

25 %

50 %

75 %

100 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

bagging-stdev
bagging-stdev2

real

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

bagging-stdev
bagging-stdev2

real

(a) tested on cello99a

0 %

25 %

50 %

75 %

100 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

bagging-stdev
bagging-stdev2

real

 0

 15

 30

 45

 60

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

bagging-stdev
bagging-stdev2

real

(b) tested on cello99b

0 %

50 %

100 %

150 %

200 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

bagging-stdev
bagging-stdev2

real

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

bagging-stdev
bagging-stdev2

real

(c) tested on cello99c

Figure 6.7: Effects of removing combination 2 and 4 in the training set.
voting-stdev and voting-stdev2 are the models constructed before and after re-
moving combination 2 and 4 from the train set respectively.

106 CHAPTER 6. TRAINING WORKLOAD GENERATION

sampling is to generate a small number of sample workload-level descriptions to efficiently

cover the interesting region in the workload-level description space, and trace generation

produces synthetic traces from the sample workload-level descriptions. We have evaluated

uniform sampling and several generators in generating training traces for our learning-

based models and discovered that the synthetic trace generators are not effective enough

to produce traces that are similar to real traces mostly. The unfaithfulness is due to the

unrealistic assumptions of independence between requests. The next chapter presents a

detailed analysis of model error to determine the major error source.

Chapter 7

Error Analysis

The previous chapters have described the model construction algorithm of our learning-

based approach. The experiments have shown that the device models are not 100% accurate.

It is important to understand where these errors come from to further improve the quality

of the device models. This chapter provides a systematic analysis of the model error based

on empirical studies.

Section 7.1 discusses the error sources and provides the breakdown of the model error.

Section 7.2 provides a set of tools to study the coverage of synthetic traces and to compare

the performance between synthetic and real traces. We also investigate the possibility of

online model adaptation in Section 7.3.

7.1 Error Breakdown

Each step of the model construction algorithm introduces errors to the device models, in

addition to the intrinsic variance in device behavior. This section studies the composition

of the model error and introduces an approach to break down the model error based on

empirical studies.

7.1.1 Error Sources

Figure 7.1 shows the errors introduced in model construction. We divide the model error

into four parts, depending on the sources.

Error = Errorcoverage + Errorgeneration + Errorvector + Errorrandom. (7.1)

1. Errorcoverage refers to the error introduced by the insufficient coverage from sampling

107

108 CHAPTER 7. ERROR ANALYSIS

T
ra

in
in

g
W

o
rk

lo
ad

s

Device
model

Insufficient coverage

Inaccurate trace generators

sa
m

p
le

s

Information loss from the vector representation

Prediction error from regression tool

. .
 . . .

 .

. .
 .. .
 .

3r

r 2

r 1

2

3

1

2W
1W

2

1
r3

r 2

r 1

2W
1W

generation
Trace

tool
RegressionTrace

replay RT

RT

RT

P

P

Figure 7.1: Error sources the learning-based modeling approach.

the input workload-level description space. The device models learn device behavior

by observing storage devices under a set of sample traces. The device models can not

predict traces that exhibit access patterns not seen in training. Sufficient coverage is

mandatory to build an accurate device model that can predict an interesting workload.

2. Errorgeneration refers to the error introduced by inaccurate trace generators. The device

models base their predictions on the performance of training traces. The predictions

will be off if the synthetic and real-world traces are of similar characteristics but of

different performance.

3. Errorvector is the error caused by the information loss from the internal workload-level

representation. The vector representation is a compression of actual I/O workloads.

Missing important workload characteristics makes it difficult for the models to distin-

guish workloads of different performance on the target device.

4. Errorrandom describes all the other errors that are not covered by the above three

terms. These errors include the intrinsic variance of the modeled devices and the

prediction error of the regression tool.

Breaking down model error by error sources is helpful in directing future efforts to

improve model quality. Analytical analysis is difficult to achieve because of the complex

interaction between workloads and devices. Otherwise, we could easily build analytic disk

models. Instead, we choose to use empirical studies to achieve the breakdown. One needs

to be cautious in interpreting the results because they depend on the storage devices and

the workloads used in the evaluation.

We use the following three types of models as a vehicle to understand the partial sums

of the four error terms in Equation 7.1.

• The real models use traces that are similar to the ones being predicted in training.

The sampling and synthetic trace generation steps are eliminated from the construc-

7.1. Error Breakdown 109

tion algorithm. Therefore, the model error of the real models, Ereal, approximates

the sum of Errorrandom and Errorvector.

• The replicate models are built from synthetic traces generated from the workload-

level descriptions of traces in evaluation. Such device models simulate the scenario of

an ideal set of samples on the workload-level description space for the testing traces

and experience minimal sampling error. As a result, the model error of replicate,

Ereplicate, can approximate the sum of Errorgeneration, Errorvector, and Errorrandom.

• The uniform models are constructed on synthetic traces generated from a uniform

sampling over the workload-level description space. This is the model constructed

with no information from the testing traces. The model error, Erroruniform, is the sum

of all four error terms.

Once the above three types of models are available, one can use the difference between

these models to estimate the error terms in Equation 7.1 as follows.



















Errorreal = Errorrandom + Errorvector

Errorreplicate = Errorrandom + Errorvector + Errorgeneration

Erroruniform = Errorrandom + Errorvector + Errorgeneration + Errorcoverage

(7.2)

is equal to


















Errorrandom + Errorvector = Errorreal

Errorgeneration = Errorreplicate − Errorreal

Errorcoverage = Erroruniform − Errorreplicate

(7.3)

The above approach allows us to break model error down into three parts. It is, however,

difficult to further distinguish Errorrandom from Errorvector because we lack full knowledge

of the device behavior of the modeled devices.

7.1.2 Experimental Results

Figure 7.2 uses the above methodology to break down the errors in modeling the median

response time on Atlas 10K. We use the mixture of the three cello99 traces (February 1-3,

1999) in training and test the models on the activities from cello99 (Feb 4-6, 1999). We

built three device models, real, replicate, and uniform, to estimate Ereal, Ereplicate, and

Euniform. Then, we use Equation 7.3 to breakdown the prediction error. The real model

is constructed using the training trace. The training trace in replicate is generated from

the workload-level descriptions of the training trace using the 9 generator combinations in

110 CHAPTER 7. ERROR ANALYSIS

0%

20%

40%

60%

80%

100%

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

E_coverage
E_generation

E_random + E_vector

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

E_coverage
E_generation

E_random + E_vector

(a) tested on cello99a

0%

20%

40%

60%

80%

100%

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

E_coverage
E_generation

E_random + E_vector

 0

 10

 20

 30

 40

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

E_coverage
E_generation

E_random + E_vector

(b) tested on cello99b

0 %

100 %

200 %

300 %

400 %

 0 2000 4000 6000 8000 10000

m
ed

ia
n

re
la

tiv
e

er
ro

r

training length (minutes)

E_coverage
E_generation

E_random + E_vector

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

m
ed

ia
n

ab
so

lu
te

 e
rr

or
 (

m
s)

training length (minutes)

E_coverage
E_generation

E_random + E_vector

(c) tested on cello99c

Figure 7.2: Error breakdown on Atlas 10K based on Equation 7.3.

7.2. Coverage 111

Table 6.2. The uniform model is based on the mixture of the uniform-sampled synthetic

traces, same as the ones used in Section 6.5.

The main observation is that the model error breakdown does depend on the workloads

used in the evaluation. For cello99a and cello99b, the sum of Errorrandom + Errorvector

is higher than either of Errorcoverage or Errorgeneration in median relative error, indicating

the vector workload representation may miss some important workload characteristics. For

cello99c, Errorcoverage is the most significant error source. One possibility is that the

uniform samples do not provide enough coverage on cello99c as the replicate traces do.

Or, the workload-level description does not cover all the important workload characteristics

so that synthetic traces perform differently from real traces. We use a CART-specific

approach in the next section to further study the model error. The results indicates that

both contribute to the model error.

In conclusion, the coverage provided by the synthetic traces seems to be, in general,

sufficient for the real-world traces we have evaluated. The majority of the model error comes

from the unrealistic trace generators and imperfect workload descriptions. We introduce a

CART-specific approach in the next section to validate these observations.

7.2 Coverage

We study the coverage of the synthetic traces and compare the performance difference

between the synthetic and real-world traces in this section. The training traces should

cover the portion of the workload-level description space that will actually be encountered in

practice. Visual inspection of the coverage is impossible because of the high dimensionality

of the workload-level description space. This section introduces a CART-specific method

to achieve the goal.

7.2.1 Methodology

CART models naturally group data points into sets, one for each leaf. All the data points in

the same leaf belong to a hypercube in the input vector space and have similar output values

such that there is no effective split on the hypercube to further reduce model error. We

take advantage of this knowledge to study the coverage of synthetic traces over real-world

traces.

We build a device model based on the mixture of synthetic and real-world traces and

then investigate the composition of the data points in each leaf node. If all the leaves

containing data points from the real trace also contain data points from the synthetic one,

112 CHAPTER 7. ERROR ANALYSIS

we can conclude that the synthetic trace has a reasonably good coverage for predicting the

real one.

Moreover, we can also compare the performance of the two traces grouped by each

leaf node. Ideally, all the data points in a leaf node, from both traces, should perform

similarly. If the performance difference is significant, then it means either the synthetic

trace generators need improvement, or the workload-level description does not capture all

the important characteristics that determine workload performance.

7.2.2 Experimental Results

We use the methodology described above to study the model built for Atlas 10K. We use

5,000 minutes of the uniform traces and 5,000 minutes from the mixture of the three

cello99 traces to build a workload-level model for Atlas 10K. Figure 7.3 shows the com-

parison of the number of data points and the performance measurements between the two

traces grouped by the leaves in the CART model. The graphs show only those leaf nodes

that have significant number of data points from the cello99 traces.

Figure 7.3(a) shows the percentage of the fragments on these leaf nodes. We observe

that the real-world traces are clustered in the workload-level description space as a small

number of leaves account for the majority of the fragments. In addition, the three traces

cover different portions of the workload-level description space, indicating one may need

to use more real traces to achieve enough coverage if deciding to use real-world traces in

training. The uniform trace covers these leaves, too, but poorly because the number of

data points per leaf ranges from 10 to 50, which may not be enough to remove the inherent

variance in trace generation. A large portion of the uniform trace is devoted to regions

that are never seen in the three cello99 traces. Future work could investigate more real-

world traces to direct the sampling algorithm to important regions in the workload-level

description space.

If we compare the mean and standard deviation of the aggregate performance measure-

ments of the fragments by the leaf nodes, we observe that, for some leaf nodes, such as

leaf 1, 12, and 14, the performance of the synthetic and real-world traces are similar. For

some other leaf nodes, such as leaf 3, 10, and 18, even the real-world traces show different

performance from each other, indicating that some important characteristics are missing in

workload-level descriptions.

In general, the standard deviation of the performance scales with the mean value. For

example, leaf 1 has fragments with small response times, and the standard deviation on leaf

1 is small, too. For leaf 13, 19, and 20, the standard deviation becomes large as the mean

value is large. The trend suggests that the prediction is more difficult for heavy-load traffic.

7.2. Coverage 113

(a) percentage of total fragments by leaf nodes

(b) average performance by leaf nodes

(c) standard deviation of performance by leaf nodes

Figure 7.3: Fragment counts and performance by leaf nodes on the CART model
constructed on mixture of synthetic and real-world traces.

114 CHAPTER 7. ERROR ANALYSIS

(a) percentage of total fragments by leaf nodes

(b) average performance by leaf nodes

(c) standard deviation of performance by leaf nodes

Figure 7.4: Fragment counts and performance by lead nodes on CART model con-
structed on mixture of synthetic and real-world traces.

7.3. Online Model Adaptation 115

To further study the effectiveness of our workload-level descriptions, we conduct the

same experiment on the device model constructed on the real-world traces only. Exclud-

ing the synthetic traces leads to a more accurate model for us to study the performance

difference between the fragments from different trace.

Figure 7.4 shows the coverage analysis using only the real-world traces in training. Please

note that there is no one-to-one mapping between the leaves in Figure 7.3 and Figure 7.4,

because the two CART models are totally different.

First, we observe that the fragments from cello99b and cello99c live in two totally

different sets of leaves. The fragments from cello99a are distributed more sparsely across

the leaves. This suggests that the workload-level descriptions are enable to distinguish

workloads of different characteristics to some extent. If we compare the performance of the

three traces on the leaf nodes, we observe that some leaf nodes, such as leaf 1 to 9, see similar

performance from cello99a and cello99b. (There is no data point from cello99c on leaf

1 to 9.) Other nodes, from leaf 10 to 18, show different behavior across traces within leaves.

The difference indicates that some important characteristics are still missing in workload-

level descriptions. Further study on these fragments should be helpful in identifying the

missing characteristics. Including parameters to describe these characteristics in workload-

level descriptions should improve the quality of the learning-based models.

From the above experiments, we conclude that the synthetic trace generators and

workload-level descriptions still have space for further improvement to deliver accurate

performance models for storage devices. Therefore, future work should focus on identifying

important workload characteristics and developing effective trace generators.

7.3 Online Model Adaptation

During online operation, a system can observe system performance and make necessary

adjustments to performance models to improve model accuracy. We call such adjustment

online model adaptation. As we have shown in Chapter 4, our device models incur only

10% to 40% of median relative error if we use real-world traces that are similar to the

predicted ones in training. Consequently, online adaptation should be able to improve

model accuracy. The following experiment is to show the possibility of online adaptation

in the learning-based device models.

We first construct a model to predict the median response time over one-minute intervals

of Atlas 10K using 5,000 minutes of the uniform trace. The trace is the same trace we used

in producing Figure 6.6. That is, the trace is a mixture of uniform samples from combination

1, 3, 4, 5, 6, 7 listed in Table 6.2, each combination providing the same amount of fragments.

116 CHAPTER 7. ERROR ANALYSIS

0 %

40 %

80 %

120 %

160 %

 0 500 1000 1500 2000 2500 3000

m
ed

ia
n

re
la

tiv
e

er
ro

r

real traces added (minutes)

cello99a
cello99b
cello99c

 0

 10

 20

 30

 40

 0 500 1000 1500 2000 2500 3000

m
ed

ia
n

ab
so

lu
te

 e
rr

or

real traces added (minutes)

cello99a
cello99b
cello99c

Figure 7.5: Model error reduction versus the amount of real-world traces added to
the training set.

We build a bag of trees, one from each combination and select the final predictions using

the stdev criteria. Later on, we augment the bag of trees with ones constructed from real-

world traces, the same training trace used in Section 4.4, one tree per 500 minutes of traces.

That is, the original model has 6 trees, and with every 500 minutes of real-world traces, the

number of trees grows by 1.

Figure 7.5 shows how the model error decreases as the amount of real-world traces in

the training grows. The testing traces are the first set of testing traces used in Section 4.3.4,

and have no overlap with the ones used in training. Adding one tree can effectively reduce

the model error significantly, especially for cello99c, which was poorly predicted by the

original model. The benefit of adding more traces to the training set is small because the

first 500 minutes have already captured most of device behavior under the predicted traces.

Figure 7.6 shows the frequency that each tree is selected by the stdev criteria for final

predictions. Once real-workload traces are added to the model, the model chooses to use the

trees constructed on the real-world traces for most predictions, leading to the improvement

in overall model accuracy.

This experiments have shown that when online adaptation is available, our device mod-

els can use information collected online to correct themselves, delivering better prediction

accuracy.

7.4 Summary

The learning-based device models introduce error to the models in each step of the con-

struction algorithm. The error sources include insufficient coverage of training traces over

the workload-level description space, unrealistic assumptions used in generating synthetic

7.4. Summary 117

(a) on cello99a

(b) on cello99b

(c) on cello99c

Figure 7.6: Breakdown of predictions by trees used in prediction.

118 CHAPTER 7. ERROR ANALYSIS

traces from workload-level descriptions, information loss from the transformation from I/O

workloads to workload-level descriptions, and intrinsic variance of storage device behavior.

This section has presented two ways to diagnose the models. The first approach uses

different traces in training in order to break down model error by their error sources. The

second approach takes advantage of the properties of CART models to study the coverage

of synthetic traces on the workload-level description space and compare the performance

between real-world and synthetic traces. The empirical studies have shown that sampling

has probably provided enough coverage over the studied traces, but the quality of the

workload-level description and trace generators need further improvement.

Online adaptation allows device models to use information collected during online op-

eration to correct themselves. The experiments have shown that our models can benefit

significantly after a small amount of real-world traces (500 minutes).

Chapter 8

Case Study

The target application of performance models is to evaluate system performance under

different resource allocation plans for systems to make resource management decisions.

All the previous chapters have used trace-based analysis to evaluate the effectiveness of

our device models. This chapter presents a resource planning application to evaluate how

effective our models are in helping making decisions for storage configuration.

The chapter starts with the design and the evaluation methodology of the application

in Section 8.1. Section 8.2 shows the experimental results. Finally, Section 8.4 concludes

the chapter.

8.1 Design

The goal of the case study is to evaluate the effectiveness of our learning-based models in

facilitating resource allocation. This section presents the design of the sample application

and the evaluation methodology.

8.1.1 Target Application

The chosen application is physical database design evaluation. Databases store information

in database objects, including relations and indexes. Physical database design refers to

the task of assigning storage space to these database objects, equivalent to data layout in

file systems. To achieve optimal or near-optimal performance, one needs to understand

both workloads and storage devices. Large-scale databases usually contain hundreds of

database objects. The number of possible designs is overwhelming, making it impossible

for administrators to locate a good physical design. It is, therefore, desirable to automate

the process by using performance models to evaluate individual database designs.

119

120 CHAPTER 8. CASE STUDY

In the case study project, we used our learning-based device models to predict the per-

formance of different physical database designs for a TPC-H workload. A TPC-H workload

consists of both sequential and random accesses, making it ideal to show the effectiveness

of our device models.

TPC-H is a prevailing benchmark simulating decision support systems [35]. A TPC-

H database consists of eight tables, and the database size can scale from 1 GB to 1 TB.

A power-run includes 22 complex queries in random order. The access patterns include

both sequential and random accesses. We run the TPC-H benchmark on DB2 Version 8.2

FixPak 1 (equivalent to Version 2.1 FixPak 8) on a RedHat Linux server. The server is

equipped with a 2.6 GHz Intel Pentium IV CPU and 2 GB memory, and runs RedHat

Linux 9 (Shrike) with kernel version 2.4.27. In addition to the three 17GB SCSI disks of

model ST318406LW by SEAGATE for storing database objects, we store the temporary

and log files on a separate Maxtor 6Y080P0 ATA 40GB IDE disk. All the disks have single

partitions managed by the ext2 file system. The database size is 10 GB, and the buffer

pool size is 32 MB. The database uses a main-memory page size of 8 KB. Appendix C on

page 141 lists the important server information and the parameter files we used to set up

the database.

8.1.2 Methodology

Given a layout plan, that is, a physical database design, it takes three steps to estimate

the overall system performance. Figure 8.1 illustrates the steps. The algorithm takes a

workload and a layout plan as input. The input consists of the access streams on all data

objects, and the layout plan determines which storage device each data object resides on.

In a more sophisticated layout, data objects can be striped across several devices.

1. Layout mapping: construct the disk request streams on each storage device using

the layout plan and the workload.

2. Performance prediction: predict the performance of each storage device using the

performance models. These performance models take the request streams as input

and output the aggregate performance measurements.

3. Aggregation: derive the overall system performance from the individual device per-

formance. For example, we can calculate the overall average response time if we know

the averages and request counts for all the fragments. Or, we can use the maximum

of all the fragments.

8.1. Design 121

Device
model

Device
model

Device
model

In
p

u
t:

 d
is

k
ac

ce
ss

es
 o

n
 d

at
a

o
b

je
ct

s
step 1

Input: layout

step 2

O
u

tp
u

t:
 o

ve
ra

ll
sy

st
em

 p
er

fo
rm

an
ce

 Pstep 3
aggregation

... ...

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

performance prediction
layout mapping

r3

r 2

r 1

r3

r 2

r 1

r3

r 2

r 1

1

2

1

2

1

2

r3

r 2

r 1

r3

r 2

r 1

r3

r 2

r 1

P
P

P
P

P
P

Figure 8.1: Data layout evaluation using performance models for storage devices.
Given a workload consisting of all the accesses to the data objects, the first step
is to reconstruct the disk request streams on each storage device under the given
layout. Performance models then predict the individual device performance, and
aggregating them offers the overall system performance.

This approach requires the workload to be presented as the access streams on individual

objects. We need to collect traces of running systems and determine the target object of

each request to do the layout mapping. The evaluation of our device models, therefore,

involves three steps: collecting traces, constructing disk models, and evaluating the layouts.

We collect the traces of 5 power-runs on a 10GB TPC-H database. The machine is

rebooted after every run in order to flush the memory cache. We patched the Linux kernel

with the dtb package to intercept all the accesses to the three SCSI disks. Dtb is a low-level

kernel patch for Linux, which allows one to collect I/O activities on SCSI disks [86]. We

create the database using system-managed table spaces. That is, each table lives in a file

managed by the file system. By scanning these files, we are able to know the LBN of each

data block in these files, and therefore, determine the target table of each disk request in

the I/O trace. Appendix C.2 list the SQL statement we used to create the table spaces

and the tables. Because the file system makes their best effort in allocating contiguous disk

blocks to files, we observe nearly all the disk blocks are contiguous in the LBN space.

We used 3,000 minutes of uniform trace and the collected TPC-H runs to construct

device models for the SCSI disks. Because the three SCSI disks are identical, we only

122 CHAPTER 8. CASE STUDY

Layout Tables on each disk Measured performance
index disk 1 disk 2 disk3 run time request count response time

1 all (empty) (empty) 8334(22) 1.64 million 3.34ms

2 rest lineitem partsupp,
part

8198(19) 1.65 million 3.16ms

3 lineitem,
rest

lineitem,
part

lineitem 5880(69) 1.32 million 4.46 ms

4 all all all 5143(175) 1.18 million 6.96 ms

Table 8.1: Four candidate database designs. If a table is shown in more than one
column, the data and index on the table are striped across these devices with stripe
size 256 KB. The “rest” stands for the accesses other than the ones on the specified
tables. The run time is the average of 8 runs and is presented in seconds. The
values in parenthesis are the standard deviation of the 8 runs.

replay synthetic traces on one using Buttress [11] to construct a model to predict the

average response time over one-minute intervals.

8.2 Experimental Results

We use our device models to compare the ranking of different physical database designs for

TPC-H databases. This section presents the experimental results.

Physical database designs. Table 8.1 lists four physical designs. We implement the

striping by assigning the tables to a table space consisting of three files on the three disks.

The database system automatically stripes data across the three files with the extent size

as the stripe unit, which is 512 KB in our configuration. For each layout, we ran 8 power-

runs and reported the average run time as well as the standard deviation in parentheses.

Table 8.1 also lists the measured performance of the four physical layouts. For each layout,

the average and standard deviation of the run time are based on 8 power-runs. The request

counts are calculated on traces collected on separate power-runs.

Because the sequential runs on different tables are not interleaved, moving entire tables

to different disks, such as layout 2, offers only little advantage over layout 1. If we stripe

table lineitem across the three disks as in layout 3, we observe a 30% reduction in the

running time. Further striping all the tables (layout 4) helps even more.

The speedup offered by good layouts comes from two sources. First, the total number of

I/O requests tends to decrease for good layouts because the average request size is larger,

and the total bytes accessed by the application decreases, too. Table 8.2 lists the summary

characteristics of the workload. Second, the sequentiality increases from layout 1 to 4, too,

8.2. Experimental Results 123

 1e+07

 2e+07

 3e+07

 4e+07

 0 20 40 60 80 100 120 140

L
B

N

Time (in minutes)

index on lineitem

table order
table partsupp

table lineitem

(a) Time-space plot

(b) Breakdown by tables

Figure 8.2: Disk activities of 5 power-runs on a 10GB TPC-H database. (a) shows
the activity of a power-run. (b) shows the request breakdown by tables. There is
little variance across different runs. (For the tables shown in the figure, the standard
deviation of the request counts is less than 1% of the average.)

124 CHAPTER 8. CASE STUDY

Layout Real trace characteristics Predicted trace characteristics Predicted
index request count request size seq. request count request size seq. response time
1 1.64 million 93.7 KB (46.9) 33% 1.64 million 93.7 KB 33% 4.21 ms
2 1.65 million 93.0 KB (46.9) 33% 1.64 million 93.7 KB 33% 3.68 ms
3 1.32 million 100.7 KB (43.8) 43% 1.64 million 93.7 KB 42% 3.32 ms
4 1.18 million 102.6 KB (43.7) 53% 1.64 million 93.7 KB 47% 3.11 ms

Table 8.2: Comparison of workload characteristics between the real traces and the
ones produced by layout mapping and the predicted response times. We report the
average and standard deviation (in parentheses) request size in the table. All the
predicted request counts and request sizes are the same as the ones for the actual
layout 1 trace because layout mapping uses the actual layout 1 trace as input.

leading to more efficient I/O accesses. As a result, layout 4 is the best physical one among

the four layouts.

Figure 8.3(a) shows the execution time breakdown for the four layouts. The breakdown

is the average of 8 power-runs. During each run, we used the iostat command to collect

the computation time and I/O blocking time every 30 seconds. The graph shows that the

speedup from layout 1 to 4 is mainly due to the decreasing I/O blocking time. At the same

time, the computation time decreases, too, that is, 10% for layout 3 and 22% for layout

4. A part of the decrement comes from the decreased I/O overhead, and the rest may

be the result of the increased chance of instruction-level parallelism enabled by fast I/O

operations. The standard deviation of the total running time tends to increase from layout

1 to 4 because a greater chance of the overlapping between I/O and computation leads to

a higher variance in the running time.

TPC-H power-run characteristics. Figure 8.2 shows the characteristics of the TPC-H

power-runs. During trace collecting, we put all the tables on a single SCSI disk. The run is

dominated by the sequential runs on table lineitem, which comprise more than 80% of the

total activity. The accesses on table order account for another 10% of the requests. Less

than 3% of the requests are on the file system meta data and the temporary table space.

The breakdown across different runs is stable, which is ideal for performance prediction.

Effectiveness of layout mapping. Figure 8.4 compares the actual and predicted re-

quest counts on the three SCSI disks for layout 2 to 4. Our layout mapping algorithm, as

illustrated in Figure 8.1, takes a layout plan and a layout 1 trace to reconstruct the request

streams received by the three disks under the planned layout. First, we notice that the total

number of requests on layout 3 and 4 is significantly lower than the total number of requests

on layout 1. Table 8.2 lists the statistics. As a result, the predicted volumes on layout 3

8.2. Experimental Results 125

Figure 8.3: Measured runtime breakdown for the four physical database design ob-
tained by the iostat command on Linux. The CPU time is the product of the CPU
utilization and the elapsed time. We report the rest of the elapsed time as I/O time.

Figure 8.4: Comparison of the actual and predicted volume received by individual
disks in the three physical data designs.

and 4 are higher than the actual volumes because the algorithm uses the trace collected on

layout 1 to construct the streams. Second, the mapping tends to overestimate the volume

on disk 1 percentage-wise because the mapping algorithm directs all the accesses to the file

system meta data to disk 1.

Table 8.2 compares the characteristics between the actual traces collected on the four

layouts and the traces constructed by the layout mapping algorithm. The predicted request

count and size are the same as the actual workload on layout 1 because layout mapping

uses this trace as input. The sequentiality of the predicted traces increases from the first

two layouts to the last two layouts, following the same trend as observed in the actual

traces though the actual sequentiality is underestimated by the algorithm. As a result, we

should expect to see that the predicted response time is higher than the actual response

time because of the increased volume and reduced sequentiality for layout 3 and 4.

126 CHAPTER 8. CASE STUDY

Layout Predicting Predicting constructed Predicting Measured
index constructed traces traces after rescaling collected traces response time

1 4.21 ms 4.21 ms 4.21 ms 3.21 ms
2 3.68 ms 5.56 ms 3.36 ms 3.16 ms
3 3.32 ms 8.88 ms 4.80 ms 4.46 ms
4 3.11 ms 12.15 ms 5.13 ms 6.96 ms

Table 8.3: Predicted performance for the four physical layouts. Before rescaling,
the requests inherit their arrival times from the layout 1 trace, so the length of
the constructed traces are the running time of a power-run under layout 1. After
rescaling the arrivals, the lengths are equal to the average running time on the
layouts.

Effectiveness of storage device models. We used 3,000 minutes of uniform trace and

the collected TPC-H runs to construct device models for the SCSI disks. The traces were

collected on a 10GB database deployed with layout 1. We calculate the overall average

response time by weighting the average response times on individual disks using their vol-

ume. The last column in Table 8.2 reports the predicted performance. The observation

is that the predicted response times rank the four layouts in the same order as the actual

running time does. However, comparing against the measured response times as reported in

Table 8.1, we observe that a significant difference exist between the predicted and measured

response times. We need to understand where the difference comes from before we can

make conclusions on the usefulness of our storage device models. The next section provides

more analysis in understanding the difference.

8.3 Understanding Results

To verify the validity of the predictions, we have conducted an additional set of experiments,

and this section presents the results and our conclusion. The predicted response times for

the four layouts are ranked similarly as the actual running times. Column 1 of Table 8.3

reports the predicted response times on the constructed traces. These numbers are the same

as the ones in the last column of Table 8.2. Column 4 of Table 8.3 reports the measured

response times (the same as the ones in Table 8.1), and these response times are for the

actual deployment of the layouts, that is, on the collected traces. The difference between

column 1 and 4 comes from the following three sources.

1. Difference in time scales between the collected and constructed traces. The con-

structed request streams use the timestamps generated from layout 1, which span a

longer period of time than the actual runs. As a result, the average arrival rate in

the constructed traces is lower than in the actual traces. To show the contribution of

8.3. Understanding Results 127

the difference in time scales, we introduce a third set of traces, the rescaled traces,

in which the arrival times have been rescaled so that the rescaled traces have the

same length as the collected traces. That is, the rescaled traces are the same as the

constructed traces except for the arrival times. Table 8.3 reports the predicted re-

sponse times on the rescaled traces in column 2. We observe that rescaling makes

a significant difference in the predictions, and the predictions on the rescaled traces

provide nearly the same order as the measured response times do. All the predictions

for layout 1 stay the same because we use the layout 1 trace in layout mapping and

the constructed and rescaled traces are the same for layout 1.

2. Difference in trace characteristics between the collected and constructed traces. Ta-

ble 8.3 reports the predicted response times on the collected traces in column 3. The

predictions on the rescaled traces are significantly higher than the ones on the collected

traces because of reduced sequentiality and increased traffic volume in the rescaled

traces as the summary statistics in Table 8.2 shows. As a result, the predictions for

the collected traces are lower than the ones on the rescaled traces.

3. Prediction errors of the storage device model. Comparing the predicted and measured

response times on the collected traces (column 3 and 4 in Table 8.3) shows that the

predicted response times are ranked similarly to the measured response times, despite

that the model has a median relative error of 18% and a 1 ms median absolute error.

The correct ranking by the predictions suggests that the storage device models can

provide accurate performance predictions when given good training traces. The result

further confirms that the storage device model has made reasonable predictions for

making resource planning decisions.

In summary, the above three factors contribute to the difference between the first and

fourth columns in Table 8.3.

Diff(predicted response times, measured response times)

= Diff(column 1, column 4) = −0.87 ms

= Difference in time scales

+Difference in trace characteristics

+Prediction error of storage device model

= Diff(column 1, column 2)

+Diff(column 2, column 3)

+Diff(column 3, column 4)

= −4.19 ms + 3.33 ms − 0.07 ms

(8.1)

128 CHAPTER 8. CASE STUDY

where we define Diff(a, b) = Average(a - b). From the above analysis, we conclude that

the performance predictions from our storage device model lead to the right decision in

this case study. The result demonstrates the usefulness of our learning-based storage device

models: the models can provide fast and accurate predictions without physical deployment

of workloads, making them a useful tool in resource planning.

Another lesson we have learned from this experiment is that, in practice, the average

response time do not always have a strong correlation with the running time because asyn-

chronous I/O allows applications to hide the I/O latency and the number of I/Os can also

change from one storage configuration to another. As a result, the actual response time

is not a good metric for such resource planning, and it is more appropriate to predict the

throughput or device utilization, the maximum volume of traffic that a storage device can

sustain.

8.4 Summary

The ultimate goal of our device models is fast and efficient evaluation of storage resource

allocation plans. This chapter employs a real application, physical database design, to

illustrate the usage of the device models. We have shown that our device models can

provide accurate rankings of physical database designs for a TPC-H workload, proving the

usefulness of such performance models in making resource planning decisions.

In evaluating resource allocation plans, it is more important for the models to give an

accurate ranking rather than accurate predictions because the ultimate goal is to use the

predictions to compare those plans. This poses an interesting question: how to evaluate a

device model if only the relative ranking is important. The question is difficult to answer.

The closer our predictions are to the actual measurements, the better chance the models

can rank resource allocation plans correctly. How good is good enough for a device model

to be useful in practice depends on applications, and it requires another thesis to answer

this question.

Chapter 9

Conclusions

Performance models can provide fast estimations of system performance for autonomic

systems to make resource allocation decisions. This thesis has focused on the feasibility of

using machine learning techniques to construct performance models for storage devices. A

major advantage of the learning-based models is the fully-automated model construction

algorithm. Storage devices are treated as black boxes, so no prior knowledge about the

devices are required. The models learn device behavior by observing the devices under a set

of training traces and model the behavior as functions over input workloads. Internally, an

I/O workload is represented as vectors, and a regression tool models the target performance

measurements as functions over the vectors.

The main contributions of the thesis include exploring the design space of the learning-

based approach, evaluating existing techniques in addressing these issues, and an error

analysis framework based on model analysis. We have discovered that when the training

and testing traces are similar, the models can make decent predictions. Offline training

using synthetic traces is less effective because of the less-than-ideal vector representations of

workloads and unrealistic synthetic traces. Online model adaptive could remove most model

error introduced by the offline training. In particular, our contributions and conclusions

are:

• We have designed and evaluated two types of vector representations of I/O workloads.

A request description characterizes the characteristics of a single request and is used to

predict its response time. A workload-level description captures the important char-

acteristics of a sequence of requests, and a workload-level model models the aggregate

performance of the sequence as a function over the workload-level description. We

have used several real-world traces to evaluate the effectiveness of these vector repre-

sentations in capturing important workload characteristics. The experimental results

129

130 CHAPTER 9. CONCLUSIONS

have shown that both can yield models of a median relative error around 10% to 40%

(less than 10 milliseconds) for most traces and devices when the training and testing

traces are similar in workload characteristics. This result suggests the effectiveness of

the descriptions in capturing important workload characteristics.

• We have compared popular regression tools to select an appropriate one as the basis of

our models. The final answer is CART models after an empirical study on real-world

traces. CART models offer competitive accuracy and efficiency in both computation

and storage, in addition to good interpretability.

• We have explored the effectiveness of using synthetic traces in training to construct

accurate device models. Sample workload-level descriptions are produced first to offer

a good coverage over the interesting region of the workload-level description space,

and the system generates synthetic traces for these sample workload-level descriptions.

Our evaluation used the uniform sampling technique and a set of trace generators to

generate traces. The experimental results have shown that the trace generators are

unable to produce training traces of high quality, the reason being the ignoring of the

strong correlations between requests. Model error is more than doubled if we compare

the models constructed from the synthetic traces against the ones built using real-

world traces.

• We have proposed a set of tools based on empirical studies to analyze model error

systematically. We have identified four error sources in our modeling approach. By

breaking down the error by the error sources and comparing workloads of similar char-

acteristics, we conclude that both the trace generators and workload-level descriptions

have space for future improvement.

Other contributions include:

• We have proposed two tools, the entropy plot and the PQRS model, to supplement

existing work in workload characterization. The entropy plot takes advantage of

self-similarity of I/O workloads and quantifies the spatio-temporal behavior of I/O

workloads using three scalars. The PQRS model can take the entropy plot slope

measurements as input and produce traces of specified characteristics. The two tools

become important parts of workload-level descriptions and trace generators respec-

tively in our modeling approach.

• We have evaluated the effectiveness of our device models in helping making resource

allocation decisions using a real application. The evaluation has shown that even with

131

inaccurate predictions, the device models can provide a correct ranking of different

resource allocation plans.

• We have presented three ways to quantify the importance of the parameters in the

vector representations of I/O workloads in determining device performance. The

measurements can help us to understand the interaction between storage devices and

I/O workloads.

Chapter 10

Future Work

This thesis has explored the feasibility of using machine learning techniques to build per-

formance models for storage devices. The following issues could be interesting to explore

but are not addressed in this thesis.

• Improving the workload-level descriptions. We have shown in the error analysis

that our workload-level descriptions still miss important characteristics even though

they have captured a small set of them to make decent predictions. It is worthy

to study the difference between workloads with similar characteristics but different

performance to identify the missing characteristics.

• Fine tuning of the parameters in the workload-level descriptions. One possi-

bility is to explore different values for preset thresholds. For example, we currently use

10 milliseonds to break I/O traces into bursts of requests for calculating BurstSize and

BurstRate, and one minute as the window size for aggregate performance. Another

direction is to design other methods than the average to characterize a distribution in

workload-level descriptions. For long-tailed distributions, the sample mean is a poor

predictor of the actual mean. It could be interesting to investigate the benefits of

using other ways to capture distributions.

• Applying the parameter selection and dimension reduction algorithms as

described in Chapter 5. Strong correlations exist between the parameters of our

descriptions, imposing difficulties in understanding the models and producing mean-

ingful samples from the vector space for the training trace generation. Techniques

such PCA and ICA could potentially reduce the dependence.

• Improving the synthetic trace generators. This step is tightly bounded to

workload-level descriptions because the generators use them as input. Our error anal-

133

134 CHAPTER 10. FUTURE WORK

ysis has shown unrealistic synthetic traces used in training make significant contri-

butions to the model error. A next step should investigate the difference between

synthetic traces and real-world ones.

Other issues related to the device modeling problem include:

• Automatic feature extraction. Our current design uses a pre-defined set of param-

eters to characterize I/O workloads on all the devices. Since devices perform differ-

ently, the set of important parameters could vary. The model construction algorithm

can incorporate existing work on identifying important workload characteristics [65]

to automatically acquire a compact and effective vector representation.

• Answering “how good is good enough” for device models to be useful in resource

management. This answer may depend on applications, storage devices, and the

search algorithm used in locating the optimal solution. Understanding the dependence

will help us to determine the target accuracy of our device models.

• Finding effective ways to describe mixed workloads. In evaluating candidate

resource allocation plans, our current approach takes a detailed I/O trace as input

and generates request streams on individual devices by mapping requests to target

devices. Ideally, we would like to keep a compressed version of the trace and derive

the characteristics of the request streams from the compressed data to reduce storage

overhead.

Our current approach assumes that a device is physically available for training. In

addition, new training is required if the device changes its configuration, such as the cache

capacity and/or the RAID level. It is helpful for us to predict performance changes after a

reconfiguration without new training. A possible solution is to build a set of performance

models for a set of configurations, and use an interpolation algorithm to predict device

performance of other configurations. In addition, it could be interesting to extend the

learning-based approach to other system components, such as networks, memory systems,

etc.

Appendix A

DiskSim Parameter Files

We list the important part of the DiskSim parameter file used in simulating the RAID

1/0 array as follows. Please refer to the DiskSim 3.0 manual [24] for the meaning of the

parameters.

disksim_iodriver DRIVER0 {

type = 1,

Constant access time = 0.0,

Scheduler = disksim_ioqueue {

Scheduling policy = 3,

Cylinder mapping strategy = 1,

Write initiation delay = 0.0,

Read initiation delay = 0.0,

Sequential stream scheme = 0,

Maximum concat size = 0,

Overlapping request scheme = 0,

Sequential stream diff maximum = 0,

Scheduling timeout scheme = 0,

Timeout time/weight = 30,

Timeout scheduling = 3,

Scheduling priority scheme = 0,

Priority scheduling = 3

}, # end of Scheduler

Use queueing in subsystem = 0

} # end of DRV0 spec

disksim_bus BUS0 {

type = 2,

Arbitration type = 1,

Arbitration time = 0.0,

Read block transfer time = 0.0,

Write block transfer time = 0.0,

Print stats = 0

} # end of BUS0 spec

135

136 APPENDIX A. DISKSIM PARAMETER FILES

disksim_bus BUS1 {

type = 1,

Arbitration type = 1,

Arbitration time = 0.0,

Read block transfer time = 0.0,

Write block transfer time = 0.0,

Print stats = 0

} # end of BUS0 spec

disksim_ctlr CTLR0 {

type = 1,

Scale for delays = 0.0,

Bulk sector transfer time = 0.0,

Maximum queue length = 0,

Print stats = 1,

Cache = disksim_cachemem {

Cache size = 8196,

SLRU segments = [1.0],

Line size = 64,

Bit granularity = 1,

Lock granularity = 64,

Shared read locks = 1,

Max request size = 512,

Replacement policy = 2,

Allocation policy = 0,

Write scheme = 3,

Flush policy = 0,

Flush period = 0.0,

Flush idle delay = -1.0,

Flush max line cluster = 8,

Read prefetch type = 0,

Write prefetch type = 0,

Line-by-line fetches = 0,

Max gather = 7

} # end of cachemem spec

}

disksim_ctlr CTLR1 {

type = 1,

Scale for delays = 0.0,

Bulk sector transfer time = 0.0,

Maximum queue length = 0,

Print stats = 1

}

source atlas10k.diskspecs

component instantiation

137

instantiate [statfoo] as Stats

instantiate [outerctlr0, outerctlr1] as CTLR1

instantiate [ctlr0, ctlr1] as CTLR0

instantiate [outerbus, middlebus0, middlebus1] as BUS0

instantiate [bus0, bus1] as BUS1

instantiate [disk0 .. disk15] as QUANTUM_TORNADO_validate

instantiate [driver0] as DRIVER0

end of component instantiation

system topology

topology disksim_iodriver driver0 [

disksim_bus outerbus [

disksim_ctlr outerctlr0 [

disksim_bus middlebus0 [

disksim_ctlr ctlr0 [

disksim_bus bus0 [

disksim_disk disk0 [],

disksim_disk disk1 [],

disksim_disk disk2 [],

disksim_disk disk3 [],

disksim_disk disk4 [],

disksim_disk disk5 [],

disksim_disk disk6 [],

disksim_disk disk7 []

] # bus0

] # ctlr0

] # middlebus0

], # outerctlr0

disksim_ctlr outerctlr1 [

disksim_bus middlebus1 [

disksim_ctlr ctlr1 [

disksim_bus bus1 [

disksim_disk disk8 [],

disksim_disk disk9 [],

disksim_disk disk10 [],

disksim_disk disk11 [],

disksim_disk disk12 [],

disksim_disk disk13 [],

disksim_disk disk14 [],

disksim_disk disk15 []

] # bus2

] # ctlr1

] # middlebus1

] # outerctlr1

] # outerbus

]

disksim_logorg org0 {

Addressing mode = Array,

138 APPENDIX A. DISKSIM PARAMETER FILES

Distribution scheme = Striped,

Redundancy scheme = Shadowed,

devices = [disk0 .. disk15],

Stripe unit = 64,

Synch writes for safety = 0,

Number of copies = 2,

Copy choice on read = 6,

RMW vs. reconstruct = 0.5,

Parity stripe unit = 64,

Parity rotation type = 1,

Time stamp interval = 0.000000,

Time stamp start time = 60000.000000,

Time stamp stop time = 10000000000.000000,

Time stamp file name = stamps

} # end of logorg org0 spec

The parameter file used for simulating the RAID 5 array shares almost the same con-

figuration with the previous except the logical organization of the disks, which is listed

below.

disksim_logorg org0 {

Addressing mode = Array,

Distribution scheme = Striped,

Redundancy scheme = Parity_rotated,

devices = [disk0 .. disk15],

Stripe unit = 64,

Synch writes for safety = 0,

Number of copies = 2,

Copy choice on read = 6,

RMW vs. reconstruct = 0.5,

Parity stripe unit = 64,

Parity rotation type = 1,

Time stamp interval = 0.000000,

Time stamp start time = 60000.000000,

Time stamp stop time = 10000000000.000000,

Time stamp file name = stamps

} # end of logorg org0 spec

Appendix B

Various Distribution Functions

We show additional plots for various distributions in this section in addition to the cumu-

lative and negative cumulative distribution functions shown in the formal text.

B.1 Comparing Against Original Response Times

The cello99 traces come with the response time information collected in the original sys-

tem. Figure B.1 compares the original response time distributions and the ones calculated

from the simulated runs on the three devices we studied in this work.

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

original
Atlas

RAID 1/0
RAID 5

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000

%
 o

f r
eq

ue
st

s

response time (ms)

original
Atlas

RAID 1/0
RAID 5

0 %

20 %

40 %

60 %

80 %

100 %

 1 10 100 1000 10000

%
 o

f r
eq

ue
st

s

response time (ms)

original
Atlas

RAID 1/0
RAID 5

(a) cello99a (b) cello99b (c) cello99c

Figure B.1: Comparison of the original cello system performance against the sim-
ulated runs.

B.2 Response Time Distribution

Figure B.2 shows the probability distribution functions of the response times for the three

cello99 traces on the three storage devices under investigation. The cumulative and neg-

ative cumulative distribution functions are in Figure 3.4 on page 25. In generating these

139

140 APPENDIX B. VARIOUS DISTRIBUTION FUNCTIONS

plots, we bucketize the x-axis by the powers of two. That is, we count the number of re-

quests within intervals [0−1], (1−2], (2−4], (4−8], . . ., and plot the percentage of requests

against the logarithm of the middle values of the intervals.

0 %

20 %

40 %

60 %

 1 16 256 4096 65536

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

0 %

20 %

40 %

60 %

 1 16 256 4096

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

0 %

20 %

40 %

60 %

 1 16 256 4096 65536

%
 o

f r
eq

ue
st

s

response time (ms)

cello99a
cello99b
cello99c

(a) Atlas 10K (b) RAID 1/0 (c) RAID 5

Figure B.2: Response time distribution of the three cello99 traces on the three
devices.

B.3 Workload-Level Description Parameters

Figure B.3 shows the probability distribution functions of the three parameters estimated on

six hours of cello99 traces. The cumulative and negative cumulative distribution functions

are in Figure 4.16 on page 58. The same method as mention in the previous paragraph is

used.

0 %

20 %

40 %

60 %

80 %

 0 4 8 12 16 20 24

%
 o

f r
eq

ue
st

s

log_2(interarrival time (ms))

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

0 %

20 %

40 %

60 %

80 %

 0 4 8 12 16 20 24 28

%
 o

f r
eq

ue
st

s

log_2(seek distance)

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

0 %

20 %

40 %

60 %

80 %

100 %

 0 4 8

%
 o

f r
eq

ue
st

s

log_2(request size (KB))

cello99a-houra
cello99a-hourb
cello99b-houra
cello99b-hourb
cello99c-houra
cello99c-hourb

(a) interarrival time distribution (b) seek distance distribution (c) request size distribution

Figure B.3: Distributions of the interarrival time, seek distance, and request size
from 6 hours of different volumes from the three cello99 traces.

Appendix C

Configuring the TPC-H Database

C.1 Server Parameters

The database server rans on a RedHat 9 (Shrike) server with a kernel version of 2.4.27. The

server is equipped with a 2.6 GHz Intel Pentium IV CPU and 2 GB memory, and has total

of 1 IDE disk and 4 SCSI disks. The disks are partitioned and mounted as follows.

> more /proc/partitions

major minor #blocks name rio rmerge rsect ruse wio wmerge wsect wuse running\

use aveq

8 0 17921835 sda 20 108 256 80 0 0 0 0 0 80 80

8 1 17920476 sda1 19 105 248 70 0 0 0 0 0 70 70

8 16 17921835 sdb 2864 11416 113634 6230 290806 75476 2932224 4441190 0 \

191020 4447420

8 17 17920476 sdb1 2863 11413 113626 6230 290806 75476 2932224 4441190 0 \

191020 4447420

8 32 17921835 sdc 36 88 386 200 295 0 2360 21960 0 3350 22160

8 33 17920476 sdc1 35 85 378 190 295 0 2360 21960 0 3340 22150

8 48 8891620 sdd 12 68 160 70 0 0 0 0 0 70 70

8 49 8883913 sdd1 11 65 152 70 0 0 0 0 0 70 70

3 0 80043264 hda 98154 256529 2834842 581260 11293467 9525260 166988898 \

39353497 -4 32757510 38488915

3 1 104391 hda1 32 73 210 130 86 43 258 198940 0 99700 199070

3 2 2040255 hda2 13 41 168 40 672 9235 79296 34730 0 960 34770

3 3 20474842 hda3 41527 32035 588466 207290 2817366 517124 27105688 \

27872922 0 1111380 28677012

3 4 1 hda4 0 0 0 0 0 0 0 0 0 0 0

3 5 10241406 hda5 18818 176678 1563554 98970 12679 30841 348376 21543950 0 \

236860 21642920

3 6 23591421 hda6 37409 47602 679506 270820 8456738 8968017 139407872 \

10286218 0 1585880 10660468

3 7 23583388 hda7 350 85 2898 3930 5926 0 47408 22366410 0 195890 22370340

141

142 APPENDIX C. CONFIGURING THE TPC-H DATABASE

> more /etc/fstab

LABEL=/ / ext2 defaults 1 1

LABEL=/boot /boot ext2 defaults 1 2

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

LABEL=/usr0 /usr0 ext2 defaults 1 2

LABEL=/usr1 /usr1 ext2 defaults 1 2

LABEL=/usr2 /usr2 ext2 defaults 1 2

/dev/hda2 swap swap defaults 0 0

/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0

/dev/sda1 /usr3 ext2 defaults 1 2

/dev/sdb1 /usr4 ext2 defaults 1 2

/dev/sdc1 /usr5 ext2 defaults 1 2

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

We store the database objects on sda1, sdb1, and sdc1 (3 17GB SCSI disks of model

ST318406LW by SEAGATE) and the log files on partition / , which is on a Maxtor 6Y080P0

ATA 40GB IDE disk.

C.2 SQL Commands Used in Database Creation

The following SQL commands are used to create the TPC-H database in the case study.

CREATE TEMPORARY TABLESPACE TPCDTEMP1

PAGESIZE 8k

MANAGED BY system

USING (’/usr3/mzwang/tpch1_db2_tblsp/tpcdtemp1’)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDNATION

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdnation’ 500)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDREGION

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdregion’ 500)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDPART

PAGESIZE 8k

C.2. SQL Commands Used in Database Creation 143

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdpart’ 5000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDSUPPLIER

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdsupplier’ 1000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDPARTSUPP

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdpartsupp’ 30000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDCUSTOMER

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdcustomer’ 10000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDORDER

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdorder’ 50000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDLINEITEM

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdlineitem’ 200000)

BUFFERPOOL bp8k;

CREATE REGULAR TABLESPACE TPCDINDEX

PAGESIZE 8k

MANAGED BY database

USING

(file ’/usr3/mzwang/tpch1_db2_tblsp/tpcdindex’ 20000)

BUFFERPOOL bp8k;

commit work;

144 APPENDIX C. CONFIGURING THE TPC-H DATABASE

CREATE TABLE TPCD.NATION (N_NATIONKEY INTEGER NOT NULL,

N_NAME CHAR(25) NOT NULL,

N_REGIONKEY INTEGER NOT NULL,

N_COMMENT VARCHAR(152))

IN TPCDNATION;

CREATE TABLE TPCD.REGION (R_REGIONKEY INTEGER NOT NULL,

R_NAME CHAR(25) NOT NULL,

R_COMMENT VARCHAR(152))

IN TPCDREGION;

CREATE TABLE TPCD.PART (P_PARTKEY INTEGER NOT NULL,

P_NAME VARCHAR(55) NOT NULL,

P_MFGR CHAR(25) NOT NULL,

P_BRAND CHAR(10) NOT NULL,

P_TYPE VARCHAR(25) NOT NULL,

P_SIZE INTEGER NOT NULL,

P_CONTAINER CHAR(10) NOT NULL,

P_RETAILPRICE FLOAT NOT NULL,

P_COMMENT VARCHAR(23) NOT NULL)

IN TPCDPART;

CREATE TABLE TPCD.SUPPLIER (S_SUPPKEY INTEGER NOT NULL,

S_NAME CHAR(25) NOT NULL,

S_ADDRESS VARCHAR(40) NOT NULL,

S_NATIONKEY INTEGER NOT NULL,

S_PHONE CHAR(15) NOT NULL,

S_ACCTBAL FLOAT NOT NULL,

S_COMMENT VARCHAR(101) NOT NULL)

IN TPCDSUPPLIER;

CREATE TABLE TPCD.PARTSUPP (PS_PARTKEY INTEGER NOT NULL,

PS_SUPPKEY INTEGER NOT NULL,

PS_AVAILQTY INTEGER NOT NULL,

PS_SUPPLYCOST FLOAT NOT NULL,

PS_COMMENT VARCHAR(199) NOT NULL)

IN TPCDPARTSUPP;

CREATE TABLE TPCD.CUSTOMER (C_CUSTKEY INTEGER NOT NULL,

C_NAME VARCHAR(25) NOT NULL,

C_ADDRESS VARCHAR(40) NOT NULL,

C_NATIONKEY INTEGER NOT NULL,

C_PHONE CHAR(15) NOT NULL,

C_ACCTBAL FLOAT NOT NULL,

C_MKTSEGMENT CHAR(10) NOT NULL,

C_COMMENT VARCHAR(117) NOT NULL)

IN TPCDCUSTOMER;

CREATE TABLE TPCD.ORDERS (O_ORDERKEY INTEGER NOT NULL,

C.2. SQL Commands Used in Database Creation 145

O_CUSTKEY INTEGER NOT NULL,

O_ORDERSTATUS CHAR(1) NOT NULL,

O_TOTALPRICE FLOAT NOT NULL,

O_ORDERDATE DATE NOT NULL,

O_ORDERPRIORITY CHAR(15) NOT NULL,

O_CLERK CHAR(15) NOT NULL,

O_SHIPPRIORITY INTEGER NOT NULL,

O_COMMENT VARCHAR(79) NOT NULL)

IN TPCDORDER;

CREATE TABLE TPCD.LINEITEM (L_ORDERKEY INTEGER NOT NULL,

L_PARTKEY INTEGER NOT NULL,

L_SUPPKEY INTEGER NOT NULL,

L_LINENUMBER INTEGER NOT NULL,

L_QUANTITY FLOAT NOT NULL,

L_EXTENDEDPRICE FLOAT NOT NULL,

L_DISCOUNT FLOAT NOT NULL,

L_TAX FLOAT NOT NULL,

L_RETURNFLAG CHAR(1) NOT NULL,

L_LINESTATUS CHAR(1) NOT NULL,

L_SHIPDATE DATE NOT NULL,

L_COMMITDATE DATE NOT NULL,

L_RECEIPTDATE DATE NOT NULL,

L_SHIPINSTRUCT CHAR(25) NOT NULL,

L_SHIPMODE CHAR(10) NOT NULL,

L_COMMENT VARCHAR(44) NOT NULL)

IN TPCDLINEITEM;

COMMIT WORK;

--TERMINATE;

create unique index tpcd.c_ck on tpcd.customer (c_custkey asc) pctfree 0;

create index tpcd.c_nk on tpcd.customer (c_nationkey asc) pctfree 0;

create unique index tpcd.p_pk on tpcd.part (p_partkey asc) pctfree 0;

create unique index tpcd.s_sk on tpcd.supplier (s_suppkey asc) pctfree 0;

create index tpcd.s_nk on tpcd.supplier (s_nationkey asc) pctfree 0;

create index tpcd.ps_pk on tpcd.partsupp (ps_partkey asc) pctfree 0;

create index tpcd.ps_sk on tpcd.partsupp (ps_suppkey asc) pctfree 0;

create unique index tpcd.ps_pk_sk on tpcd.partsupp (ps_partkey asc,

ps_suppkey asc) pctfree 0;

create unique index tpcd.ps_sk_pk on tpcd.partsupp (ps_suppkey asc,

ps_partkey asc) pctfree 0;

create unique index tpcd.o_ok on tpcd.orders (o_orderkey asc) pctfree 3;

create index tpcd.o_ck on tpcd.orders (o_custkey asc) pctfree 3;

146 APPENDIX C. CONFIGURING THE TPC-H DATABASE

create index tpcd.o_od on tpcd.orders (o_orderdate asc) pctfree 3;

create index tpcd.l_ok on tpcd.lineitem (l_orderkey asc) pctfree 3;

create index tpcd.l_pk on tpcd.lineitem (l_partkey asc) pctfree 3;

create index tpcd.l_sk on tpcd.lineitem (l_suppkey asc) pctfree 3;

create index tpcd.l_sd on tpcd.lineitem (l_shipdate asc) pctfree 3;

create index tpcd.l_cd on tpcd.lineitem (l_commitdate asc) pctfree 3;

create index tpcd.l_rd on tpcd.lineitem (l_receiptdate asc) pctfree 3;

create index tpcd.l_pk_sk on tpcd.lineitem (l_partkey asc,

l_suppkey asc) pctfree 3;

create index tpcd.l_sk_pk on tpcd.lineitem (l_suppkey asc,

l_partkey asc) pctfree 3;

create unique index tpcd.n_nk on tpcd.nation (n_nationkey asc) pctfree 0;

create index tpcd.n_rk on tpcd.nation (n_regionkey asc) pctfree 0;

create unique index tpcd.r_rk on tpcd.region (r_regionkey asc) pctfree 0;

C.3 Database Configurations

We list the database manager and database configuration below. The configurations are re-

ported by the “get database manager configuration” and “get database configuration”

commands.

Database Manager Configuration

Node type = Enterprise Server Edition with local and remote clients

Database manager configuration release level = 0x0a00

CPU speed (millisec/instruction) (CPUSPEED) = 3.306410e-07

Communications bandwidth (MB/sec) (COMM_BANDWIDTH) = 1.000000e+02

Max number of concurrently active databases (NUMDB) = 8

Data Links support (DATALINKS) = NO

Federated Database System Support (FEDERATED) = NO

Transaction processor monitor name (TP_MON_NAME) =

Default charge-back account (DFT_ACCOUNT_STR) =

Java Development Kit installation path (JDK_PATH) = /opt/IBMJava2-131

Diagnostic error capture level (DIAGLEVEL) = 3

Notify Level (NOTIFYLEVEL) = 3

Diagnostic data directory path (DIAGPATH) =

C.3. Database Configurations 147

Default database monitor switches

Buffer pool (DFT_MON_BUFPOOL) = OFF

Lock (DFT_MON_LOCK) = OFF

Sort (DFT_MON_SORT) = OFF

Statement (DFT_MON_STMT) = OFF

Table (DFT_MON_TABLE) = OFF

Timestamp (DFT_MON_TIMESTAMP) = ON

Unit of work (DFT_MON_UOW) = OFF

Monitor health of instance and databases (HEALTH_MON) = ON

SYSADM group name (SYSADM_GROUP) =

SYSCTRL group name (SYSCTRL_GROUP) =

SYSMAINT group name (SYSMAINT_GROUP) =

SYSMON group name (SYSMON_GROUP) =

Client Userid-Password Plugin (CLNT_PW_PLUGIN) =

Client Kerberos Plugin (CLNT_KRB_PLUGIN) =

Group Plugin (GROUP_PLUGIN) =

GSS Plugin for Local Authorization (LOCAL_GSSPLUGIN) =

Server Plugin Mode (SRV_PLUGIN_MODE) = UNFENCED

Server List of GSS Plugins (SRVCON_GSSPLUGIN_LIST) =

Server Userid-Password Plugin (SRVCON_PW_PLUGIN) =

Server Connection Authentication (SRVCON_AUTH) = NOT_SPECIFIED

Database manager authentication (AUTHENTICATION) = SERVER

Cataloging allowed without authority (CATALOG_NOAUTH) = NO

Trust all clients (TRUST_ALLCLNTS) = YES

Trusted client authentication (TRUST_CLNTAUTH) = CLIENT

Bypass federated authentication (FED_NOAUTH) = NO

Default database path (DFTDBPATH) = /home/mzwang

Database monitor heap size (4KB) (MON_HEAP_SZ) = 90

Java Virtual Machine heap size (4KB) (JAVA_HEAP_SZ) = 512

Audit buffer size (4KB) (AUDIT_BUF_SZ) = 0

Size of instance shared memory (4KB) (INSTANCE_MEMORY) = AUTOMATIC

Backup buffer default size (4KB) (BACKBUFSZ) = 1024

Restore buffer default size (4KB) (RESTBUFSZ) = 1024

Sort heap threshold (4KB) (SHEAPTHRES) = 8000

Directory cache support (DIR_CACHE) = YES

Application support layer heap size (4KB) (ASLHEAPSZ) = 15

Max requester I/O block size (bytes) (RQRIOBLK) = 32767

Query heap size (4KB) (QUERY_HEAP_SZ) = 1000

Workload impact by throttled utilities(UTIL_IMPACT_LIM) = 10

148 APPENDIX C. CONFIGURING THE TPC-H DATABASE

Priority of agents (AGENTPRI) = SYSTEM

Max number of existing agents (MAXAGENTS) = 400

Agent pool size (NUM_POOLAGENTS) = 200(calculated)

Initial number of agents in pool (NUM_INITAGENTS) = 0

Max number of coordinating agents (MAX_COORDAGENTS) = (MAXAGENTS - NUM_INITAGENTS)

Max no. of concurrent coordinating agents (MAXCAGENTS) = MAX_COORDAGENTS

Max number of client connections (MAX_CONNECTIONS) = MAX_COORDAGENTS

Keep fenced process (KEEPFENCED) = YES

Number of pooled fenced processes (FENCED_POOL) = MAX_COORDAGENTS

Initial number of fenced processes (NUM_INITFENCED) = 0

Index re-creation time and redo index build (INDEXREC) = RESTART

Transaction manager database name (TM_DATABASE) = 1ST_CONN

Transaction resync interval (sec) (RESYNC_INTERVAL) = 180

SPM name (SPM_NAME) =

SPM log size (SPM_LOG_FILE_SZ) = 256

SPM resync agent limit (SPM_MAX_RESYNC) = 20

SPM log path (SPM_LOG_PATH) =

TCP/IP Service name (SVCENAME) = tpch1

Discovery mode (DISCOVER) = SEARCH

Discover server instance (DISCOVER_INST) = ENABLE

Maximum query degree of parallelism (MAX_QUERYDEGREE) = 1

Enable intra-partition parallelism (INTRA_PARALLEL) = NO

No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = 4096

Number of FCM request blocks (FCM_NUM_RQB) = AUTOMATIC

Number of FCM connection entries (FCM_NUM_CONNECT) = AUTOMATIC

Number of FCM message anchors (FCM_NUM_ANCHORS) = AUTOMATIC

Node connection elapse time (sec) (CONN_ELAPSE) = 10

Max number of node connection retries (MAX_CONNRETRIES) = 5

Max time difference between nodes (min) (MAX_TIME_DIFF) = 60

db2start/db2stop timeout (min) (START_STOP_TIME) = 10

Database Configuration for Database tpcd

Database configuration release level = 0x0a00

Database release level = 0x0a00

Database territory = US

Database code page = 819

Database code set = ISO8859-1

Database country/region code = 1

Database collating sequence = BINARY

C.3. Database Configurations 149

Alternate collating sequence (ALT_COLLATE) =

Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE

Discovery support for this database (DISCOVER_DB) = ENABLE

Default query optimization class (DFT_QUERYOPT) = 5

Degree of parallelism (DFT_DEGREE) = 1

Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO

Default refresh age (DFT_REFRESH_AGE) = 0

Default maintained table types for opt (DFT_MTTB_TYPES) = SYSTEM

Number of frequent values retained (NUM_FREQVALUES) = 10

Number of quantiles retained (NUM_QUANTILES) = 20

Backup pending = NO

Database is consistent = YES

Rollforward pending = NO

Restore pending = NO

Multi-page file allocation enabled = YES

Log retain for recovery status = NO

User exit for logging status = NO

Data Links Token Expiry Interval (sec) (DL_EXPINT) = 60

Data Links Write Token Init Expiry Intvl(DL_WT_IEXPINT) = 60

Data Links Number of Copies (DL_NUM_COPIES) = 1

Data Links Time after Drop (days) (DL_TIME_DROP) = 1

Data Links Token in Uppercase (DL_UPPER) = NO

Data Links Token Algorithm (DL_TOKEN) = MAC0

Database heap (4KB) (DBHEAP) = 1024

Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC

Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)

Log buffer size (4KB) (LOGBUFSZ) = 128

Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000

Buffer pool size (pages) (BUFFPAGE) = 64000

Extended storage segments size (4KB) (ESTORE_SEG_SZ) = 16000

Number of extended storage segments (NUM_ESTORE_SEGS) = 0

Max storage for lock list (4KB) (LOCKLIST) = 100

Max size of appl. group mem set (4KB) (APPGROUP_MEM_SZ) = 30000

Percent of mem for appl. group heap (GROUPHEAP_RATIO) = 70

Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 128

Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = (SHEAPTHRES)

Sort list heap (4KB) (SORTHEAP) = 25600

SQL statement heap (4KB) (STMTHEAP) = 1024

150 APPENDIX C. CONFIGURING THE TPC-H DATABASE

Default application heap (4KB) (APPLHEAPSZ) = 512

Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8)

Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384

Interval for checking deadlock (ms) (DLCHKTIME) = 10000

Percent. of lock lists per application (MAXLOCKS) = 10

Lock timeout (sec) (LOCKTIMEOUT) = -1

Changed pages threshold (CHNGPGS_THRESH) = 60

Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1

Number of I/O servers (NUM_IOSERVERS) = 5

Index sort flag (INDEXSORT) = YES

Sequential detect flag (SEQDETECT) = YES

Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC

Track modified pages (TRACKMOD) = OFF

Default number of containers = 1

Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32

Max number of active applications (MAXAPPLS) = AUTOMATIC

Average number of active applications (AVG_APPLS) = 1

Max DB files open per application (MAXFILOP) = 64

Log file size (4KB) (LOGFILSIZ) = 1000

Number of primary log files (LOGPRIMARY) = 5

Number of secondary log files (LOGSECOND) = 20

Changed path to log files (NEWLOGPATH) =

Path to log files = /home/mzwang/mzwang\

/NODE0000/SQL00001/SQLOGDIR/

Overflow log path (OVERFLOWLOGPATH) =

Mirror log path (MIRRORLOGPATH) =

First active log file =

Block log on disk full (BLK_LOG_DSK_FUL) = NO

Percent of max active log space by transaction(MAX_LOG) = 0

Num. of active log files for 1 active UOW(NUM_LOG_SPAN) = 0

Group commit count (MINCOMMIT) = 1

Percent log file reclaimed before soft chckpt (SOFTMAX) = 100

Log retain for recovery enabled (LOGRETAIN) = OFF

User exit for logging enabled (USEREXIT) = OFF

HADR database role = STANDARD

HADR local host name (HADR_LOCAL_HOST) =

HADR local service name (HADR_LOCAL_SVC) =

HADR remote host name (HADR_REMOTE_HOST) =

HADR remote service name (HADR_REMOTE_SVC) =

HADR instance name of remote server (HADR_REMOTE_INST) =

HADR timeout value (HADR_TIMEOUT) = 120

C.3. Database Configurations 151

HADR log write synchronization mode (HADR_SYNCMODE) = NEARSYNC

First log archive method (LOGARCHMETH1) = OFF

Options for logarchmeth1 (LOGARCHOPT1) =

Second log archive method (LOGARCHMETH2) = OFF

Options for logarchmeth2 (LOGARCHOPT2) =

Failover log archive path (FAILARCHPATH) =

Number of log archive retries on error (NUMARCHRETRY) = 5

Log archive retry Delay (secs) (ARCHRETRYDELAY) = 20

Vendor options (VENDOROPT) =

Auto restart enabled (AUTORESTART) = ON

Index re-creation time and redo index build (INDEXREC) = SYSTEM (RESTART)

Log pages during index build (LOGINDEXBUILD) = OFF

Default number of loadrec sessions (DFT_LOADREC_SES) = 1

Number of database backups to retain (NUM_DB_BACKUPS) = 12

Recovery history retention (days) (REC_HIS_RETENTN) = 366

TSM management class (TSM_MGMTCLASS) =

TSM node name (TSM_NODENAME) =

TSM owner (TSM_OWNER) =

TSM password (TSM_PASSWORD) =

Automatic maintenance (AUTO_MAINT) = OFF

Automatic database backup (AUTO_DB_BACKUP) = OFF

Automatic table maintenance (AUTO_TBL_MAINT) = OFF

Automatic runstats (AUTO_RUNSTATS) = OFF

Automatic statistics profiling (AUTO_STATS_PROF) = OFF

Automatic profile updates (AUTO_PROF_UPD) = OFF

Automatic reorganization (AUTO_REORG) = OFF

152 APPENDIX C. CONFIGURING THE TPC-H DATABASE

Bibliography

[1] A. Adas and A. Mukherjee. On resource management and QoS guarantees for long range

dependent traffic. In The IEEE Conference on Computer Communications (INFOCOM),

Boston, MA, pages 779–787. IEEE Computer Society, April 1995.

[2] R. G. Addie, M. Zukerman, and T. Neame. Fractal traffic: measurements, modeling, and

performance evaluation. In The IEEE Conference on Computer Communications

(INFOCOM), Boston, MA, pages 977–984. IEEE Computer Society, April 1995.

[3] Sanjay Agrawal, Surajit Chaudhuri, Abhinandan Das, and Vivek Narasayya. Automating

layout of relational databases. In The 19th International Conference on Data Engineering

(ICDE), Bangalore, India, pages 607–618. IEEE Computer Society, March 2003.

[4] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated selection of

materialized views and indexes for SQL databases. In Proceeding of International Conference

on Very Large Data Bases (VLDB), Cairo, Egypt, pages 496–505. Morgan Kaufmann

Publishers Inc., San Francisco, CA, September 2000.

[5] Sedat Akyürek and Kenneth Salem. Adaptive block rearrangement. ACM Transactions on

Computer Systems (TOCS), 13(2):89–121, May 1995.

[6] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Characterizing

reference locality in the WWW. In Proceedings of the IEEE Conference on Parallel and

Distributed Information Systems (PDIS), Miami Beach, FL, pages 92–103. IEEE Computer

Society, December 1996.

[7] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer, Ralph

Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Alistair Veitch, and

John Wilkes. Minerva: An automated resource provisioning tool for large-scale storage

systems. ACM Transactions on Computer Systems (TOCS), 19(4):483–518, November 2001.

[8] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang. Ergastulum:

Quickly finding near-optimal storage system designs. Technical Report HPL-SSP-2001-05,

HP Laboratories, Palo Alto, CA, June 2002. Available at

http://hpl.hp.com/research/ssp/papers/ergastulum-paper.pdf (last accessed on September

12, 2005).

[9] Eric Anderson. Simple table-based modeling of storage devices. Technical Report

HPL-SSP-2001-4, HP Laboratories, Palo Alto, CA, July 2001. Available at

http://www.hpl.hp.com/research/ssp/papers/HPL-SSP-2001-04.pdf (last accessed on

September 12, 2005).

[10] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair

Veitch. Hippodrome: Running circles around storage administration. In Proceedings of the

1st USENIX Conference on File And Storage Technologies (FAST’02), Monterey, CA, pages

175–188, January 2002.

BIBLIOGRAPHY 153

[11] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram Swaminathan. Buttress: A

toolkit for flexible and high fidelity I/O benchmarking. In Proceedings of the 3rd USENIX

Conference on File And Storage Technologies (FAST’04), San Fransisco, CA, pages 45–58.

USENIX, Berkeley, CA, April 2004.

[12] Eitan Bachmat and Jiri Schindler. Analysis of methods for scheduling low priority disk drive

tasks. In Proceedings of the 2002 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, Marina Del Rey, CA, pages 55–65. ACM

Press, June 2002.

[13] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.

Ousterhout. Measurements of a distributed file system. In Proceedings of 13th ACM

Symposium on Operating Systems Principles (SOSP), Pacific Grove, CA, pages 198–212.

ACM Press, October 1991.

[14] Paul Barford and Mark Crovella. Generating representative web workloads for network and

server performance evaluation. In Proceedings of the 1998 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, Madison, WI, pages

151–160. ACM Press, June 1998.

[15] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system

characterization of commercial workloads. In Proceedings of the 25th International

Symposium on Computer Architecture (ISCA’98), Barcelona, Spain, pages 3–14. IEEE

Computer Society, June 1998.

[16] Richard Ernest Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, Princeton, NJ, 1961.

[17] Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for autonomic data

centers using analytic performance models. In The 2nd IEEE International Conference on

Autonomic Computing (ICAC-05), Seattle, WA, pages 229–240. IEEE Computer Society,

June 2005.

[18] Jan Beran. Statistics for Long-Memory Processes. Chapman & Hall, New York, NY, 1994.

[19] E. Borowsky, R. Golding, P. Jacobson, A. Merchant, L. Schreier, M. Spasojevic, and

J. Wilkes. Capacity planning with phased workloads. In Proc. of the 1st Workshop on

Software and Performance (WOSP), Santa Fe, NW, pages 199–207. ACM Press, October

1998.

[20] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

[21] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, Belmont, CA, January 1 1984.

[22] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and zipf-like

distributions: Evidence and implications. In The IEEE Conference on Computer

Communications (INFOCOM), New York, NY, pages 126–134. IEEE Computer Society,

March 1999.

154 APPENDIX C. CONFIGURING THE TPC-H DATABASE

[23] Aaron B. Brown, Joseph Hellerstein, Matt Hogstrom, Tony Lau, Sam Lightstone, Peter

Shum, and Mary Peterson Yost. Benchmarking autonomic capabilities: Promises and

pitfalls. In The 1st International Conference on Autonomic Computing (ICAC-04), New

York, NY, pages 266–267, May 2004.

[24] John S. Bucy, Gregory R. Ganger, and Contributors. The DiskSim simulation environment

version 3.0 reference manual. Technical Report CMU-CS-03-102, Carnegie Mellon University,

Pittsburgh, PA, January 2003. Code and reference manual available at

http://www.pdl.cmu.edu/DiskSim/.

[25] Christopher J. C. Burges. A tutorial on Support Vector Machines for pattern recognition.

Knowledge Discovery and Data Mining, 2(2):121–167, June 1998.

[26] Scott D. Carson. A system for adaptive disk rearrangement. Software – practice and

experience, 20(3):225–242, March 1990.

[27] Surajit Chaudhuri, Benôıt Dageville, and Guy M. Lohman. Self-managing technology in

database management systems. In Tutorial on International Conference on Very Large Data

Bases (VLDB), Toronto, CA, page 1243. Morgan Kaufmann Publishers Inc., San Francisco,

CA, August 2004.

[28] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architecture: towards

a self-tuning RISC-style database system. In Proceeding of International Conference on Very

Large Data Bases (VLDB), Cairo, Egypt, pages 1–10. Morgan Kaufmann Publishers Inc.,

San Francisco, DA, September 2000.

[29] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson.

RAID: High-performance, reliable secondary storage. ACM Computing Surveys (SCUR),

26(2):145–185, June 1994.

[30] Shenze Chen and Don Towsley. A performance evaluation of RAID architectures. IEEE

Transactions on Computers, 45(10):1116–1130, October 1996.

[31] Trishul M. Chilimbi. Efficient representations and abstractions for quantifying and exploiting

data reference locality. In Proceeding of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation (PLDI), Snowbird, UT, pages 191–202.

ACM Press, June 2001.

[32] Hewlett-Packard Company. Adaptive enterprise. Available at

http://www.hp.com/products1/promos/adaptive enterprise/us/adaptive enterprise.html

(last accessed on September 12, 2005).

[33] Robert B. Cooper. Introduction to queueing theory (2nd edition). North-Holland (Elservier),

1981.

[34] Storage Performance Council and University of Massachusetts. UMass trace repository.

Traces available at http://signl.cs.umass.edu/repository/walk.php?cat=Storage (last

accessed on September 12, 2005).

BIBLIOGRAPHY 155

[35] Transaction Processing Performance Council. TPC benchmark H (TPC-H). Specifications

available at http://www.tpc.org/tpch/default.asp (last accessed on September 12, 2005).

[36] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web traffic: Evidence and

possible causes. In Proceedings of the 1996 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, Philadelphia, PA, pages 160–169. ACM

Press, May 1996.

[37] Belur V. Dasarathy, editor. Neareast neighbor pattern classification techniques (Nn Norms:

Nn Pattern Classification Techniques). IEEE Computer Society Press, December 1990.

[38] Timothy E. Denehy, John Bent, Florentina Popovici, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Deconstructing storage arrays. In Proceeding of the 11th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), Boston, MA, pages 59–71. ACM Press, October 2004.

[39] Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital control of dynamic

systems. Prentice Hall, December 1998.

[40] Gregory R. Ganger. Generating representative synthetic workloads: An unsolved problem.

In Proceedings of the Computer Measurement Group Conference (CMG), Nashville, TN,

pages 1263–1269. Computer Measurement Group, December 1995.

[41] Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman. Self-* storage: Brick-based

storage with automated administration. Technical Report CMU-CS-03-178, Carnegie Mellon

University, Pittburgh, PA, August 2003. Available at

http://www.pdl.cmu.edu/PDL-FTP/SelfStar/selfstar.pdf (last accessed on September 12,

2005).

[42] Mark W. Garrett and Walter Willinger. Analysis, modeling, and generation of self-similar

VBR video traffic. In Proceedings of the ACM SIGCOMM’94 Conference on

Communications Architectures, Protocols and Applications, London, United Kingdom, pages

269–280. ACM Press, August 1994.

[43] Maŕıa E. Gómez and Vicente Santonja. Analysis of self-similarity in I/O workload using

structural modeling. In Proceedings of the 7th International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOT’99),

College Park, Maryland, pages 234–243. IEEE Computer Society, October 1999.

[44] Maŕıa E. Gómez and Vicente Santonja. A new approach in the modeling and generation of

synthetic disk workload. In Proceedings of 9th International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOT’00), San

Francisco, CA, pages 199–206. IEEE Computer Society, August 2000.

[45] Steven D. Gribble, Gurmeet Singh Manku, Drew Roselli, Eric A. Brewer, Timothy J.

Gibson, and Ethan L. Miller. Self-similarity in file systems. In Proceedings of the 1998 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, Madison, WI, pages 141–150. ACM Press, June 1998.

156 APPENDIX C. CONFIGURING THE TPC-H DATABASE

[46] Matthias Grossglauser and Jean-Chrysostome Bolot. On the relevance of long-range

dependence in network traffic. IEEE/ACM Transactions on Networking (TON),

7(5):629–640, October 1999.

[47] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York, NY, 2001.

[48] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback control of

computing systems. Wiley-IEEE Press, Hoboken, NJ, August 2004.

[49] Bo Hong and Tara Madhyastha. The relevance of long-range dependence in disk traffic and

implications for trace synthesis. In Proceedings of the 22nd IEEE / 13th NASA Goddard

Conference on Mass Storage Systems and Technologies (MSST 2005), Monterey, CA, pages

316–326. IEEE Computer Society, April 2002.

[50] IBM. Autonomic computing: IBM’s perspective on the state of information technology.

Available at http://www.research.ibm.com/autonomic/ (last accessed on September 12,

2005).

[51] William V. Courtright II, Garth Gibson, Mark Holland, and Jim Zelenka. A structured

approach to redundant disk array implementation. In Proceedings of IEEE International

Computer Performance and Dependability Symposium (IPDS), Urbana, IL, page 11. IEEE

Computer Society, September 1996.

[52] Microsoft Inc. AutoAdmin project at Microsoft Research. Available at

http://research.microsoft.com/dmx/AutoAdmin/, (last accessed on September 12, 2005).

[53] Microsoft Inc. Dynamic systems initiative. Available at

http://www.microsoft.com/windowsserversystem/dsi/default.mspx (last accessed September

12, 2005).

[54] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational

position. Technical Report HPL-CSP-91-7, HP Laboratories, Palo Alto, CA, May 1991.

Available at http://www.hpl.hp.com/research/ssp/papers/HPL-CSP-91-7rev1.pdf, (last

accessed on September 12, 2005).

[55] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and

A. Smola, editors, Advances in Kernel Methods – Support Vector Learning. MIT-Press, 1999.

[56] Abhinav Kamra, Vishal Misra, and Erich M. Nahum. Yaksha: A self-tuning controller for

managing the performance of 3-tiered web sites. In International workshop on Quality of

Service (IWQoS), Montreal, Canada, pages 47–56. IEEE Computer Society, June 2004.

[57] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: performance isolation and differentiation

for storage systems. In International workshop on Quality of Service (IWQoS), Montreal,

Canada, pages 67–74. IEEE Computer Society, June 2004.

BIBLIOGRAPHY 157

[58] K. Keeton, D. A. Patternson, Y. Q. He, R. C. Raphael, and W. E. Baker. Performance

characterization of a quad pentium pro SMP using OLTP workloads. In Proceedings of the

25th International Symposium on Computer Architecture (ISCA’98), Barcelona, Spain, pages

15–26. IEEE Computer Society, June 1998.

[59] Kimberly Keeton, Guillermo A. Alvarez, Erik Riedel, and Mustafa Uysal. Characterizing

I/O-intensive workload sequentiality on modern disk arrays. In The Fourth Workshop On

Computer Architecture Evaluation Using Commercial Workloads (CAECW-2001),

Monterrey, Mexico, January 2001.

[60] Terence Kelly, Ira Cohen, Moises Goldszmidt, and Kimberly Keeton. Inducing models of

black-box storage arrays. Technical Report HPL-2004-108, HP Laboratories, Palo Alto, CA,

June 2004. Available at http://www.hpl.hp.com/techreports/2004/HPL-2004-108.html, (last

accessed on September 12, 2005).

[61] Michelle Y. Kim and Asser N. Tantawi. Asynchronous disk interleaving: Approximating

access delays. IEEE Transactions on Computers, 40(7):801–810, July 1991.

[62] A. Kuratti. Performance analysis of the RAID5 disk array. In Proceedings of the IEEE

International Computer Performance and Dependability Symposium (IPDS’95), Erlangen,

Germany, pages 236–245. IEEE Computer Society, April 1995.

[63] Zachary Kurmas and Kimberly Keeton. Using the Distiller to direct the development of

self-configuration software. In Proceedings of the International Conference on Automatic

Computing (ICAC-04), New York, NY, pages 172–179. IEEE Computer Society, May 2004.

[64] Zachary Kurmas, Kimberly Keeton, and Ralph Becker-Szendy. Iterative development of an

I/O workload characterization. In 4th workshop on computer architecture evaluation using

commercial workloads (CAECW), Monterrey, Mexico, January 2001.

[65] Zachary Kurmas, Kimberly Keeton, and Kenneth Mackenzie. Synthesizing representative

I/O workloads using iterative distillation. In Proceedings of the 11th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems (MASCOTS), Orlando, FL, pages 6–15. IEEE Computer Society, October 2003.

[66] Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays. In

Proceedings of the 1993 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, Santa Clara, CA, pages 98–109, May 1993.

[67] Mong Li Lee, Masaru Kitsuregawa, Beng Chin Ooi, Kian-Lee Tan, and Anirban Mondal.

Towards self-tuning data placement in parallel database systems. In Proceedings of the 2000

ACM SIGMOD international conference on Management of data, Dallas, Texas, pages

225–236. ACM Press, May 2000.

[68] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the

self-similar nature of Ethernet traffic. In Proceedings of the ACM SIGCOMM’93 Conference

on Communications Architectures, Protocols and Applications, San Francisco, CA, pages

183–193. ACM Press, September 1993.

158 APPENDIX C. CONFIGURING THE TPC-H DATABASE

[69] N. Likhanov and B. Tsybakov. Analysis of an ATM buffer with self-similar (”fractal”) input

traffic. In The IEEE Conference on Computer Communications (INFOCOM), Boston, MA,

pages 985–992. IEEE Computer Society, April 1995.

[70] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Freeblock scheduling outside

of disk firmware. In Proceedings of the 1st USENIX Conference on File And Storage

Technologies (FAST’02), Monterey, CA, pages 275–288. USENIX, Janurary 2002.

[71] Brian Melcher and Bradley Mitchell. Towards an autonomic framework: Self-configuring

network services and developing autonomic applications. Intel Technology Journal, 8(4),

November 2004. Available at

http://developer.intel.com/technology/itj/2004/volume08issue04/art03 autonomic/p01 abstract.htm

(last accessed on September 12, 2005).

[72] D.A. Menascé and M.N.Bennani. On the use of performance models to design self-managing

computer systems. In Proceedings of the Computer Measurement Group Conference (CMG),

Dallas, TX, pages 7–12. Computer Measurement Group, December 2003.

[73] J. Menon. Performance of RAID 5 disk arryas with read and write caching. Distributed and

Parallel Databases, 2(3):115–129, 1994.

[74] Arif Merchant and Guillermo A. Alvarez. Disk array models in Minerva. Technical Report

HPL-2001-118, HP Laboratories, Palo Alto, CA, May 2001. Available at

http://www.hpl.hp.com/techreports/2001/HPL-2001-118.html, last accessed on September

12, 2005).

[75] Arif Merchant and Philip S.Yu. An analytical model for reconstruction time in mirrored

disks. Performance evaluation, 20(1-3):115–129, 1994.

[76] Arif Merchant and Philip S.Yu. Analytic modeling and comparison of striping strategies for

replicated disk arrays. IEEE Transactions on Computers, 44(3):419–433, 1995.

[77] Arif Merchant and Philip S. Yu. Analytical modeling of clustered RAID with mapping based

on nearly random permutation. IEEE Transactions on Computers, 45(3):367–373, 1996.

[78] Ethan L. Miller and Randy H. Katz. Input/output behavior of supercomputer applications.

In Proceedings of ACM/IEEE Supercomputing, Albuquerque, New Mexico, pages 567–576.

ACM Press, November 1991.

[79] Philippe Nain. Impact of bursty traffic on queues. Statistical Inference for Stochastic

Processes, 5(3):307–320, 2002.

[80] Ilkka Norros. A storage model with self-similar input. Queueing Systems, 16:387–396, 1994.

[81] Oracle Corporation. Oracle Database 10g. Introduction available at

http://www.oracle.com/technology/software/products/database/oracle10g/index.html.

BIBLIOGRAPHY 159

[82] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Michael D. Kupfer,

and James G. Thompson. A trace-driven analysis of the UNIX 4.2 BSD file system. In

Proceedings of the 10th ACM Symposium on Operating System Principles (SOSP’85), Orcas

Island, WA, pages 15–24. ACM Press, December 1985.

[83] Stratos Papadomanolakis and Anastassia Ailamaki. AutoPart: Automating schema design

for large scientific databases using data partitioning. In Proceedings of the 16th International

Conference on Scientific and Statistical Database Management (SSDBM), Santorini Island,

Greece, pages 383–392. IEEE Computer Society, June 2004.

[84] David A. Pattern, Garth Gibson, and Randy H. Katz. A case for redundant arrays of

inexpensive disk (RAID). In Proceeding of the 1988 SIGMOD International Conference on

Management of Data, Chicago, IL, pages 109–116. ACM Press, June 1988.

[85] Vern Paxson. Fast, approximate synthesis of fractional Gaussian noise for generating

self-similar network traffic. ACM SIGCOMM Computer communication review, 27(5):5–18,

October 1997.

[86] Brigham Young Univeristy Performance Evaluation Laboratory. Dtb trace format

specification. Available at http://traces.byu.edu/new/Documentation/ (last accessed on

October 10, 2005).

[87] K. K. Ramakrishnan, Prabuddha Biswas, and Ramakrishna Karedla. Analysis of file I/O

traces in commercial computing environments. In Proceedings of the 1992 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, Newport, RI, pages 78–90. ACM Press, June 1992.

[88] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. Automating physical database

design in a parallel database. In Proceeding of the 2002 SIGMOD International Conference

on Management of Data, Madison, WI, pages 558–569. ACM Press, June 2002.

[89] Gartner Group/Dataquest report. Server storage and RAID worldwide, 1999.

[90] ITCentrix report. Storage on tap: Understanding the business value of storage service

providers, 2001.

[91] Rudolf H. Riedi, Matthew S. Crouse, Vinay J. Ribeiro, and Richard G. Baraniuk. A

multifractal wavelet model with application to network traffic. IEEE Transactions on

Information Theory, 45(3):992–1018, April 1999.

[92] B. D. Ripley. Pattern recognitions and neural networks. Cambridge University Press, 1996.

[93] Chris Ruemmler and John Wilkes. Disk shuffling. Technical Report HPL-91-156, HP

Laboratories, Palo Alto, CA, October 1991. Available at

http://www.hpl.hp.com/research/ssp/papers/HPL-91-156.pdf (last accessed on September

12, 2005),.

[94] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE Computer,

27(3):17–28, March 1994.

160 APPENDIX C. CONFIGURING THE TPC-H DATABASE

[95] Jiri Schindler and Gregory R. Ganger. Automated disk drive characterization. Technical

Report CMU-CS-99-176, Carnegie Mellon University, December 1999. Available at

http://www.pdl.cmu.edu/Dixtrac/ (last accessed on September 12, 2005),.

[96] George A. F. Seber. Multivariate observations. John Wiley & Sons Inc. New York, NY, 1984.

[97] Margo Seltzer, Peter Chen, and John. Ousterhout. Disk scheduling revisited. In Proceedings

of the Winter 1990 USENIX Technical Conference, Washington, DC, pages 313–324.

USENIX Association, January 1990.

[98] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication.

University of Illinois Press, 1963.

[99] Elizabeth Shriver, Arif Merchant, and John Wilkes. An analytical behavior model for disk

drives with readahead caches and request reordering. In Proceedings of ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, Madison,

WA, pages 182–191. ACM Press, June 1998.

[100] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO - DB2’s

LEarning Optimizer. In Proceedings of the 27th International Conference on Very Large

Data Bases (VLDB), Rome, Italy, pages 19–28. Morgan Kaufmann Publishers Inc.,

September 2001.

[101] John D. Strunk and Gregory R. Ganger. A human organization analogy for Self-* systems.

In First Workshop on Algorithms and Architectures for Self-Managing Systems, in

conjunction with Federated Computing Research Conference, pages 1–6, 2003.

[102] David G. Sullivan and Margo Seltzer. A resource management framework for central servers.

In 200 USENIX Annual Technical Conference, San Diego, CA, pages 337–350. USENIX

Association, 2000.

[103] Nisha Talagala, Remzi H. Arpaci-Dusseau, and David Patterson. Microbenchmark-based

extraction of local and global disk characteristics. Technical Report CSD-99-1063, University

of California, Berkeley, 1999. Available at

http://www.cs.wisc.edu/ remzi/Postscript/disk.pdf (last accessed on September 12, 2005).

[104] Chandramohan A. Thekkath, John Wilkes, and Edward D. Lazowska. Techniques for file

system simulation. Software-Practice and Experience, 24(11):981–999, November 1994.

[105] Eno Thereska, Dushyanth Narayanan, and Gregory R. Ganger. Towards self-predicting

systems: What if you could ask ”what-if”? August 2005.

[106] Alexander Thomasian and Jai Menon. Performance analysis of RAID 5 disk arrays with a

vacationing server model for rebuild mode operation. In Proceedings of the 10th

International Conference on Data Engineering (ICDE’94), Houston, TX, pages 111–119.

IEEE Computer Society, February 1994.

[107] Alexander Thomasian and Jai Menon. RAID 5 performance with distributed sparing. IEEE

Transactions on Parallel and Distributed Systems, 8(6):640–657, June 1997.

BIBLIOGRAPHY 161

[108] Steven K. Thompson and George A. F. Seber. Adaptive sampling. John Wiley and Sons,

New York, NY, June 1996.

[109] Nancy Tran and Daniel A. Reed. Automatic ARIMA time series modeling for adaptive I/O

prefetching. IEEE Transactions on Parallel and Distributed Systems, 15(4):362–377, April

2004.

[110] Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A modular, analytical throughput

model for modern disk arrays. In Proceedings of 9th International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’01),

Cincinnati, OH, pages 183–192. IEEE Computer Society, August 2001.

[111] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohnman, and Alan Skelley. DB2

advisor: An optimizer smart enough to recommend its own indexes. In The 16th

International Conference on Data Engineering (ICDE’00), San Diego, CA. IEEE Computer

Society, February 2000.

[112] Elizabeth Varki, Arif Merchant, Juanzhang Xu, and Xiaozhou Qiu. Issues and challenges in

the performance analysis of real disk arrays. IEEE Transactions on Parallel and Distributed

Systems, 15(6):559–574, June 2004.

[113] Alistair Veitch and Kim Keeton. The Rubicon workload characterization tool. Technical

Report HPL-SSP-2003-13, HP Laboratories SSP technical report, Palo Alto, CA, March

2003. Available at http://www.hpl.hp.com/research/ssp/papers/rubicon-tr.pdf (last accessed

on September 12, 2005).

[114] Carl A. Waldspurger. Memory resource management in VMWare ESX server. In Symposium

on Operating Systems Design and Implementation (OSDI’02), Boston, MA, pages 181–194.

USENIX Association, December 2002.

[115] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing the spatio-temporal

behavior of real traffic data. Performance Evaluation, 49(1/4):147–163, 2002.

[116] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos,

and Gregory R. Ganger. Storage device performance prediction with CART models.

Technical Report CMU-PDL-04-103, Carnegie Mellon University, Pittsburgh, PA, 2004.

Available at http://www.pdl.cmu.edu/Workload/index.html (Last accessed on September

12, 2005).

[117] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chan, Spiros Papadimitrioun, and Christos

Faloutsos. Data mining meets performance evaluation: Fast algorithms for modeling bursty

traffic. In The 18th Internal Conference on Data Engineering (ICDE’02), San Jose, CA,

pages 507–516. IEEE Computer Society, March 2002.

[118] Jonathan Wildstrom, Peter Stone, Emmett Witchel, Raymond J. Mooney, and Mike Dahlin.

Towards self-configuring hardware for distributed computer systems. In The 2nd

International Conference on Autonomic Computing (ICAC-05), Seattle, WA, pages 241–249.

IEEE Computer Society, June 2005.

162 APPENDIX C. CONFIGURING THE TPC-H DATABASE

[119] John Wilkes. The Pantheon storage-system simulator. Technical Report HPL-SSP-95-14, HP

Laboratories, Palo Alto, CA, 1995. Available at

http://www.hpl.hp.com/research/ssp/papers/PantheonOverview.pdf (last accessed on

September 12, 2005).

[120] John Wilkes. Traveling to Rome, QoS specifications for automated storage system

management. In Proc. Intl. Workshop on Quality of Service (IWQoS’2001),Karlsruhe,

Germany, pages 75–91. Springer-Verlag Lecture Notes in Computer Science 2092, June 2001.

[121] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID

heirarchical storage system. IEEE Transaction on computer systems, 14(1):108–136,

February 1996.

[122] Walter Willinger, Vern Paxson, and Murad S. Taqqu. Self-similarity and heavy tails:

structural modeling of network traffic. In R. Alder, R. Feldman, and M. S. Taqqu, editors, A

practical guide to heavy tails: statistical techniques and applications, pages 27–53. Birkhauser

Boston Inc., 1998.

[123] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling algorithms for

modern disk drivers. In Proceedings of the 1994 ACM SIGMETRIC International

Conference on Measurement and Modeling of Computer Systems, Nashville, Tennessee, pages

241–251. ACM Press, May 1994.

