Probabilistic Reuse of Past Policies

Fernando Fernandez Manuela Veloso

July 2005
CMU-CS-05-173

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was conducted while the first author wasmigi@iarnegie Mellon from the Universidad Carlos I1I
de Madrid, supported by a generous grant from the Spaniskstirof Education and Fullbright. The second au-
thor was partially sponsored by Rockwell Scientific Co., Lul@er subcontract no. B4U528968 and prime contract
no. W911W6-04-C-0058 with the US Army, and by BBNT SolutiphsC under contract no. FA8760-04-C-0002
with the US Air Force. The views and conclusions containe@ineare those of the authors and should not be inter-
preted as necessarily representing the official policiesxdorsements, either expressed or implied, of the spargsori
institutions, the U.S. Government or any other entity.

Keywords: Reinforcement Learning, Policy Reuse, Transfer Learning.

Abstract

A past policy provides a bias to guide the exploration of tnr@nment and speed up the learning
of a new action policy. The success of this bias depends ohehéhe past policy is “similar”
to the actual policy or not. In this report we describe a neyoathm, PRQ-Learning, that reuses
a set of past policies to bias the learning of a new one. Thepmdisies are ranked following a
similarity metric that estimates how useful is to reuse eaictihhose past policies. This ranking
provides a probabilistic bias for the exploration in the Hearning process. Several experiments
demonstrate that PRQ-Learning finds a balance betweeni@tjgo of the ongoing learned policy,
exploration of random actions, and exploration toward th&t policies.

1 Introduction

Reinforcement Learning [7] is a widely used tool to learn ¢dve different tasks in different
domains. Bydomainwe mean the rules that define how the actions of the learniegtagfluence
the environment, i.e. the state transition function. tBskwe mean the specific problem that the
agent is trying to solve in the domain, which is defined thirotige reward function.

The goal of this work is to study how action policies that aa&rhed to solve a defined set of
tasks can be used to solve a new and previously unseen taskst Adproach is to use a policy
through the transfer of the Q function. The past Q functiomsied to seed the learning of the new
one. However, any past policy when followed greedily, pdeg a whole plan that maximizes the
expected reward in the past task. This plan depends on thaid@md the past task but not on the
new task. Thus, Q function transfer between tasks is usdfahvthe reward functions of the new
and old tasks are very similar, but provides very poor restithey are different [2].

There are other areas in RL in which sub-policies are reuBedinstance, some algorithms
use macro-actions to learn new action policies in Semi-aiRecision Processes, as it is the
case of TTree [11] and Intra-Option Learning [8]. HieraoahiRL uses different abstraction levels
to organize subtasks [3].

Policy Reuse [5] is a learning technique guided by past [@dito balance among exploitation
of the ongoing learned policy, exploration of random actioand exploration toward the past
policies. Thus, itis very related with the exploration vspleitation problem, which tries to define
whether to explore new or exploit the knowledge already aeduln the literature, different kinds
of exploration strategies can be found. A random strategyd selects randomly the action to
execute. The-greedy strategy selects with a probabilityeahe best action suggested by the Q
function learned up to that moment, and it selects a randdiorewith probability of(1 —). In
alternative, Boltzmann strategy ranks the actions to bd,yz®viding with a higher probability
to the actions with a higher value of Q. Directed exploratstrategies memorize exploration-
specific knowledge that is used for guiding the exploratiearsh [9]. These strategies are based
in heuristics that bias the learning so unexplored statebtie have a higher probability of being
explored that recently visited ones. None of these strasegiclude knowledge of past policies,
but knowledge obtained in the current learning process.

Nevertheless, several examples found in the Al bibliogydpve demonstrated that informa-
tion of past problems can be useful for solving new ones, disyPBeuse does. For instance,
past plans can be used to guide the search of new ones throagblaules in a planning sys-
tem [12]. Also, way-points followed in past paths can be usdunias the search of new paths in a
path-planning system, and to speed up the search [1].

In this work, we contribute PRQ-Learning, an algorithm timplements Policy Reuse ideas
efficiently. This algorithm allows us to reuse past policiedearn a new one, improving the
results of learning from scratch. The improvement is addewithout prior knowledge about
which policies are useful, and not even knowing whether éulis@e exists or not.

The report is organized as follows. Section 2 describes thi@ mlements of Policy Reuse.
Firstly, the concepts of domain and task are related withikielaiDecision Processes. Second,
Policy Reuse is formally defined. Third, thereuse exploration strategy is introduced, which
is able to balance the exploration of new actions, the etgilon of the current policy, and the
exploitation of a past predefined policy [5]. And last, th@cept of similarity between policies is

motivated.

Section 3 introduces the PRQ-Learning algorithm. The erparts described in Section 4
demonstrate three capabilities of the PRQ-Learning algori Firstly, that a ranking of similar-
ity between past policies can be estimated simultaneouoslgarning the new policy. Second,
that PRQ-Learning is able to use the previously defined ranta find a correct balance among
exploiting past policies, exploring new actions, or expg the policy that is currently being
learned. And third, that PRQ-Learning can improve learrpegormance when compared with
learning from scratch. Lastly, Section 5 concludes with nesearch lines.

2 Domains, Tasks and Policy Reuse

The goal of this section is to introduce Policy Reuse. To d& the first describe the concepts of
task, domain, and gain. Then, we define how the reuse of a phsy [s used as a bias in a new
exploratory process. Last, we define a similarity concepiveen policies, which motivation is
deeply described in [5].

2.1 Domain, Tasks and MDPs

A Markov Decision Process [6] is represented with a tuplé, A, 6, R >, whereS is the set of
all possible statesd is the set of all possible actions,s an unknown stochastic state transition
function, : S x A x § — R, andR is an unknown stochastic reward functidd, S x A — R.
We focus in RL domains where differetdskscan be solved. We introduce a task as a specific
reward function, but the other concepts, A and stay constant for all the tasks. Thus, we
extend the concept of an MDP introducing two new conceptsialo and task. We characterize
a domain,D, as a tuple< S, 4,0 >. We define a task, as a tuple< D, Rg >, whereD is a
domain as defined before, aitl, is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absgrboal states. Thus, H; is a
goal stateg(s;, a,s;) = 1, 0(s;,a,s;) = 0fors; # s;, andR(s;,a) = 0, foralla € A. A trial
starts by locating the learning agent in a random positiainénenvironment. Each trial finishes
when a goal state is reached or when a maximum number of si@p#,, is achieved. Thus, the
goal is to maximize the expected average reinforcementipérdayll’, as defined in equation 1:

1 K H .
W:EZZV Tkh 1)
k=0 h=0

wherey (0 < v < 1) reduces the importance of future rewards, angldefines the immediate
reward obtained in the stépof the trial%, in a total of K trials.

An action policy,IT : S — A, defines for each state, the action to execute. The actiacypol
IT* is optimal if it maximizes the gain W in such a task, $&y. Action policies can be represented
using the action-value functio®'(s, a) that defines for each statec S, a € A, the expected
reward that will be obtained if the agent starts to act frgnexecutinga, and after it follows
the policyIl. So, the RL problem is translated to learning the previoustion, Q" (s, a). This
learning can be performed using different algorithms, dse@rning [13].

2.2 Policy Reuse

The goal of Policy Reuse is to describe how learning can be apef different policies, which
solve different tasks, are used to bias the explorationgg®of the learning of the action policy of
another similar task. Then, the scope of this work is sunuedras:

e We need to solve the task i.e. learnlIy,.

e We have previously solved the set of tagks,,...,,}, so we have the set of policies,
{115, ..., II* }, to solve them respectively.

e How can we use the previous policiék; to learn the new ond],?

To solve this problem we have developed the PRQ-Learningridttgn. This algorithm auto-
matically answer two questions: (i) what policy, from thegé;, ... II* }, is used to bias the new
learning process? (ii) once a poli€y; is selected, how is it integrated in the learning process?
The algorithm is based on an exploration strategggeuse, which is able to bias the learning of a
new policy with only one past policy. From this strategy, miarity metric between policies is
obtained, providing a method to select the most accurateyol reuse. Both the-reuse strategy
and the similarity metric, defined in [5], are summarizechi@ hext subsections.

2.3 Exploiting a Past Policy

Reusing a defined past policy requires integrating the kedge of the past policy into the current
learning process. Our approach is to bias the exploratmygss of the new policy with the past
one.

We denote the old policy withi®, and the one we are currently learning with We assume
that we are using a direct RL method to learn the action po$ioywe are learning its relateg
function. Any algorithm can be used to learn thdunction, with the only requirement that it can
learn off-policy, i.e. it can learn a policy while executiaglifferent one, as Q-Learning does [13].

The goal of ther-reuse strategy is to balance random exploration, expioitaof the past
policy, and exploitation of the new policy, which is beinguteed currently. The-reuse strategy
follows the past policy with a probability af. However, with a probability of — v, it exploits the
new policy. Obviously, random exploration is always reqdirso when exploiting the new policy,
it follows ane-greedy strategy, as is defined in Table 1. Lastly«thgmarameter allows the decay
of the value ofi in each trial.

The interesting of ther-reuse estrategy is that it also contributes a similarityrim@mong
policies, as it is summarized in the next subsection.

2.4 A Similarity Metric Between Policies

The exploration strategy-reuse, as defined in Table 1, returns the learned pdligy,, and the
average gain obtained in its learning process. Let'sidalto the gain obtained while executing
ther-reuse exploration strategy, reusing the past pdlicy

We call IT§, the optimal action policy for solving the task W is the gain obtained when
using the optimal policyIs,, to solveS). Therefore W is the maximum gain that can be obtained

3

n-reuse [yq, K, H, 9, v).
fork=1to K
Set the initial states, randomly.
Sety; ¢
forh=1t0 H
With a probability ofyy,, a = I,4(s)
With a probability ofl — ¢, a = e-greedyIl,,c.,(s))
Receive current staté, and rewardyy 5,
UpdateQ™ <« (s, a), and thereforell,,..,
Setyy 1 — Ypv
Sets « s’
W= % Ef:o Ztho Vhrkvh
ReturnWV andIl,,.,,

Table 1:7-reuse Exploration Strategy.

in Q. Then, we can use the difference betwégj andV; to measure how useful to reuse the
policy II; is to learn to solve the new task, using the distance metawshn equation 2.
d_(IL;, IT) = Wg — W; (2)
Then, the most useful policy to reuse, from afét, ..., IL,}, is:

argp, min(Wg — W), i=1,...,n 3)
However,lW* is independent of, so the previous equation is equivalent to:
argy, max(W;),i=1,...,n 4

This equation is not possible to compute, given that the sét;ovalues, fori = 1,...,nis
unknown a priori. However, it can be estimated on-line atdhme time that the new policy is
computed. This idea is formalized in the PRQ-Learning atgor.

3 PRQ-Learning Algorithm

We are focused on learning to solve a taski.e. to learn an action policil,. We haven past
optimal policies to solve: different tasks respectively. For simplicity in the notati we will call
these policiedly, ..., II,, and(y,...,Q, the tasks. Also, let's callV;" the expected average
reward that is received when following the poli€ly and using an action selection strategy
This strategy could be Boltzmann;reuse or any other strategy. Also, let’s calf; the average
reward that is received when following the polildy, and using an action selection strategy

When deciding which action to execute in each step of theiegmprocess of the policii,
the following decisions must be taken: (i) what policy iddéated from the sefIlq, 11y, ..., 11,}?
(i) once a policy is selected, what exploration/explogatstrategy is followed?

The answer proposed to the first question is to follow a softsteategy, using the valuég3
andWW", as defined in equation 5, where a temperature paramédencluded. Notice also that
this value is also computed fok,, which we assume to bé,.

eTWfi
P(1l) = ————= 5
(T1;) VL (5)
Once the policy to follow has been chosen, whether to foltogreéedily, or to introduce also

an exploratory element, must be decided, i.e. we need tdeleandz;, fori = 1,...,n. If the
policy chosen idlg,, a completely greedy strategy is followed. However, if théqy chosen id1;
(: =1,...,n), ther-reuse action selection strategy, defined in previousaeds followed. The
whole algorithm, which we have called PRQ-Learning (PoRause in Q-Learning) is shown in
Table 2. The learning algorithm used is Q-Learning. It haanbshosen because it is an off-policy
algorithm. Any other off-policy algorithm could be chosen.

4 Experiments

In this section we demonstrate three main results. Firsernga set of past policies, the most
similar policy to the new one can be learned simultaneouslgarning the new policy. Second,
a balance between exploring new actions, exploiting pastips, and exploiting the new policy

that is being learned currently is successfully achievend third, performance can be improved
if we can bias the exploration with past policies even if: (&) have several past policies, (b) we
do not know a priori which one is the most similar. The nextsadtion describes the application
domain.

4.1 Navigation Domain

This domain consists of a robot moving inside of an office gasahown in Figure 1, similar to the
one used in other RL works [4, 10]. The environment is repregseby walls, free positions and
goal areas, all of them of sidex 1. The whole domain isV x M (24 x 21 in this case). The possible
actions that the robot can execute are “North”, “East”, “®d@and “West”, all of size one. The
final position after each action is noised by a random vagi&dilowing a uniform distribution in
the rangd —0.20, 0.20). The robot knows its location in the space through contisumordinates
(x,y) provided by some localization system. In this work, we asstinat we have the optimal
uniform discretization of the state space (which consi§td4ox 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks thetexeofiactions that would crash it into
a wall. The goal in this domain is to reach the area marked \W@ithwhen the robot reaches it, it
is considered a successful trial, and it receives a rewatd Otherwise, it receives a reward of 0.

Figure 1 shows six different tasks in the same dom@in (2, 3, 24, 25 and(?, given that
the goal states, and therefore, the reward functions, #exetht. All these different tasks will be
used in the experiments.

Policy Reuse in Q-Learning

e Given:

A set ofn tasks{1,...,Qn}.
Their respective optimal policie$]I;, . .., I} } to solve them
A new task2 we want to solve

A maximum number of trials to executs,

o~ wnN e

A maximum number of steps per tridi]
e Initialize:

1. Qa(s,a) =0,Vs€ S,ac A

2. Initialize W to O

3. Initialize W;"? to 0

4. |Initialize the number of trials where polidyg, has been choseb;, = 0

5. Initialize the number of trials where poli¢¥; has been choset; = 0,Vi=1,...,n
e Fork=1to K do

— Choose an action policy];, randomly, assigning to each policy the probability of lgeselected computed by the following
equation (equation 5):

o
TW. 7
e i

Ply) = ————=
ZZ:O eTpr

— Initialize the states to a random state
— SetR=0
— forh =1to H do

* Usell; to compute the next action to execuig following the exploitation strategy;.
+* Executea

x Receive current state;

* Receive current reward,

x UpdateQgq (s, a) using Q-Learning update function:

Q(s,0) = (1 = a)Q(s,a) + alr + ymax Q(s', a’)]

* SetR= R+~"r

x Sets «— s’

i w; WIUHR
Seth =TT

- SetlU; = U; + 1

— Setr =17+ A1

Table 2: PRQ-Learning

4.2 Learning Curves

In the following subsections, we will describe differenaliring processes of a new policy. For
each of them we will present two results showing two diff¢@mves, the learning curve, and the
test curve.

The learning curve of each strategy describes the perfarenahsuch strategy in the learning
process. Learning has been performed using the Q-Learihgogitam, for fixed parameters of

(EE T

(a) Task), (b) Task, c) Task(;
(d) Task€y, (e) Task; (f) TaskQ

Figure 1: Office Domain.

~v = 0.95 anda = 0.05, which have been empirically demonstrated to be accuratedoning. A
learning trial consists of executing = 2000 trials. Each trial consists of following the defined
strategy until the goal is achieved or until the maximum namif steps,H = 100, is executed.
In the figures containing the curves, thexis shows the trial number. Theaxis represents the
gain obtained. Thus, a value of 0.2 for the trial 200 meansttieaaverage gain obtained in the
200 first trials has been 0.2.

The test curve represents the evolution of the performamndheopolicy while it is being
learned. Each 100 trials of the learning process, the Q ifnmdearned up to that moment is
stored. Thus, after the learning process, we can test aktholicies. Each test consists on 1000
trials where the robot follows a completely greedy stratefyus, the x axis shows the learning
trial in which that policy was generated, and thaxis show the result of the test, measured as the
average number of steps executed to achieve the goal in @@etéét trials.

For both the learning and test curves, the results providetha average of ten executions. In
the curves, error bars provide the standard deviation iteth@executions.

4.3 Learning from Scratch

We want to learn the task described in Figure 1(f). For comparreasons, the learning and test
processes have been executed firstly following differeptaratory strategies that do not use any
past policy. Specifically, we have used four different sigégs. The first one is a random strategy.
The second one is a completely greedy strategy. The thirdsongreedy, for an initial value of
e = 0, which is incremented by 0.0005 in each trial. Lastly, Baolénn strategy has been used,
initializing 7 = 0, and increasing it in 5 in each learning trial. Figure 2 shidveslearning and test
curves for all of them.

Figure 2(a) shows the learning curve. We see that when actimgomly, the average gain
in learning is almost 0, given that acting randomly is a veopmpstrategy. However, when a
greedy behavior is introduced, (strategy 1-greedy), threecshows a slow increment, achieving

values of almost 0.1. The problem with the 1-greedy straiedlyat it also produces a very high
standard deviation in the 10 executions performed, shothiaiga completely greedy strategy may
produce very different results. The curve obtained by th#zBwann strategy do not offer any
improvements over-greedy. However, thegreedy strategy seems to compute an accurate policy
in the initials trials, and obtain the highest average gath@end of the learning.

The random strategy ardgreedy outperforms the other strategies in the test curoes in
Figure 2(b). This is due to the fact that both strategied) tié defined parameters, are less greedy
than the other policies in the initial steps. Typically, inég exploration at the beginning results in
more accurate policies.

0.25 0.4

035 - B
02 B
03~

0.15 - - 025
0.1

ol {@Hﬂj&élﬁ Ei ﬁ ﬁl@ wf A } T

005~ 1.

ot I I | I I | | I 0 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Trials Trials

Random I-greedy - e—greedy -~ Bolzmann - Random —— l-greedy "~~~ - e—greedy -~ Bolzmann -

(a) Learning Curve (b) Test Curve

Figure 2: Learning and test evolution when learning fronatxr

4.4 Learning with PRQ-Learning

In this section, we introduce the experiments performed wie PRQ-Learning algorithm. In the
following we will demonstrate three main issues. Firsthattperformance can be improved if
we can bias the exploration with past policies, even if weehsaveral and we do not know, “a
priori”, which one is the most similar. Second, that whiclthis most useful policy can be learned
simultaneously to learning the new policy. And third, théiedance between exploring, exploiting
past policies, and exploiting the new policy that is beingrhéng currently can be successfully
achieved.

We use the PRQ-Learning algorithm for learning the taslefined in Figure 1(f). We assume
that we have previously learned 3 different set of tasks, salistinguish three different cases. In
the first one, called “Case 1", the past tasks@se(2; and(),, defined in Figure 1(b), (c) and (d)
respectively. Then, we can use their respective poli¢ies]I; andIl, to bias the learning of the
new onellg. All these tasks are very different from the one we want teesao their policies are
not supposed to be very useful in learning the new one. Ingbersl case, the set of past policies
is also composed with,, 115, I14, but in this case, the polidy, is also added. The third case uses
the policiedl,, 113, I, andll;

The PRQ-Learning algorithm is executed for the three cafhs.learning curves are shown
in Figure 3(a). The parameters used are the same used 0523 The only new parameters
are the ones of the Boltzmann policy selection strategy, 0, andAr = 0.05, obtained empiri-

8

0.3

0.25

0.2

2 015

0.1

0.05F I .~

T -
ol 0 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Trials Trials

Learning fromQ.,, Q3, Q— Learning frofd; ,Q,, Q3, Q, Learning fromQ.,, Q3, Q— Learning frofd; ,Q,, 93, Q,
Learning fromQ,, Qg, Q,, Qg -~~~ Learning fromQ,, Qq, Q,, Qg -~~~
(a)Learning Curve (b) Test Curve

Figure 3: Learning and test curves when learning the taskguir€ 1(f) reusing different sets of
policies.

cally. The result obtained when learning from scratch uBioljizmann exploration strategy is also
included for comparison.

Figure 3(a) shows two main conclusions. On the one hand, \aheally similar policy is
included in the set of policies that are reused, the impr@réraon learning is very high. In both
cases (when reusirig;, andll;), average gain is greater than 0.1 in only 500 iterationd,raare
than 0.25 at the end of the trial. On the other hand, the legrurve when no similar policy is used
(case 1) is similar to the results obtained when learninmfsaratch with the 1-greedy strategy
(which is the strategy followed by PRQ-Learning for the neiqy, as defined in section 3). That
demonstrates that the PRQ-learning algorithm has disedwbiat reusing the past policies is not
useful. Therefore, it follows the best strategy availaktbich is to follow the 1-greedy strategy
with the new policy.

Figure 3(b) shows the test curves for all the cases. The fghuess that when reusing similar
past policies in learning, a policy which provides a gainemghan 0.3 is obtained in 1000 trials.
That is a strong improvement over the strategies that leam $cratch.

The good results obtained when reusing past similar pslicaa be easily understood if we
look in the Figure 4(a). The figure shows the evolution of thierage gain computed for each
policy involved, W5, W, W3, W,, andW,. That values correspond with one of the learning
processes performed when reusiihg 11, 115, I14. It demonstrates how the most similar policy is
computed. On the axis, the number of trials is shown, while theaxis shows thél” value for
each policy. The figure shows that fids, 113 andIl,, the W values stabilize below 0.05. However,
for the policyIls, the value increases up to 0.15. The gain of the new poliayssta increase
around iteration 100, achieving a value higher than 0.3dmaiion 500.

The gain values computed for each policy are used to compet@robability of selecting
them in each iteration of the learning process, using thmddea introduced in equation 5, and the
parameters introduced above (initial= 0, and A7 = 0.05). Figure 4(b) shows the evolution
of these probabilities. In the initial steps, all the padigies have the same probability of being
chosen (0.2) given that the gain of all them is initializedtd/Nhile the gain values are updated,
only the policyll, stays in a high value, while for the other policies, this eatlecreases down
to 0. However, for the new policy, the value also increasds tiachieves the value of 1, given

9

that its value is the higher after 400 iterations, as showsignre 4(a). This demonstrates how the
balance between exploiting the past policies or the new ®aehieved.

0.35 1 —
L

03t
A 08t K .
0.25F e : /

02f 9 g 06 ‘ 1
=)

Probability

L RN R)
0.15 04l . N
SR

0.1f

o 0.2 (e
0.05T: ':\\w " B

o) TY AL LA IALALEAS SAALEALE MARASRA B By Ml I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800

Trials Trials

0

Wy - W - wo - - P)—— Py Pl P(ls): LODEES

(a)Evolution oflV; (b) Evolution of P(I1;)
Figure 4: Evolution of/; and P(I1,)

5 Conclusions and Future Work

In all the works cited in the related work in Section 1, opipmacro-actions, and/or policies
are used as part of a hierarchy, so learning the new learmogegs that is performed stays in a
higher abstract level above the sub-policies used. The difisrence with our work is that we
use past policies which are useful by themselves to sol¥erdift tasks, and that can help to bias
the learning of “similar” ones.

This work contributes an efficient algorithm for policy reu$?RQ-learning. The algorithm
demonstrates that if a useful policy is in the pool of pobkcavailable, the algorithm finds it and
reuse it efficiently. If no policy is useful, the algorithnsaldiscovers it, and move its behavior to
learning from scratch. Thus, the algorithm obtains a cotvatance among exploring new actions,
exploiting past policies or exploiting the new one. Lasis thork opens a wide range of research
lines, as policy transfer among different tasks, domaind/a agents.

References

[1] James Bruce and Manuela Veloso. Real-time randomiz#éédganning for robot navigation.
In Proceedings of IROS-2003witzerland, October 2002. An earlier version of this pape
appears in the Proceedings of the RoboCup-2002 Symposium.

[2] James Carroll and Todd Peterson. Fixed vs. dynamic ausfer in reinforcement learn-
ing. InProceedings of the International Conference on Machinehieg and Applications
2002.

[3] Thomas G. Dietterich. Hierarchical reinforcement teéag with the MAXQ value function
decompositionJournal of Artificial Intelligence Research3:227-303, 2000.

10

[4]

[5]

[6]

[7]

[8]

Fernando Fernandez and Daniel Borrajo. On determitiandling while learning reduced
state space representations Phoceedings of the European Conference on Atrtificial Intell
gence (ECAI 2002)yon (France), July 2002.

Fernando Fernandez and Manuela Veloso. Exploratiehpanticy reuse. Technical Report
CMU-CS-05-172, School of Computer Science, Carnegie Mdllniversity, 2005.

M. L. Puterman.Markov Decision Processes - Discrete Stochastic DynamigiRmming
John Wiley & Sons, Inc., New York, NY., 1994.

R. S. Sutton and A. G. BartoReinforcement Learning: An IntroductioMIT Press, Cam-
bridge, Massachusetts, 1998.

Richard S. Sutton, Doina Precup, and Satinder Singhradoption learning about tempo-
rally abstract actions. IRroceedings of the Internacional Conference on Machineriieg
(ICML’98), 1998.

[9] Sebastian Thrun. Efficient exploration in reinforcemkarning. Technical Report C,I-CS-

[10]

[11]

[12]

[13]

92-102, Carnegie Mellon University, January 1992.

Sebastian Thrun and A. Schwartz. Finding structureinforcement learning. I1Advances
in Neural Information Processing SystemdWT Press., 1995.

William T. B. Uther. Tree Based Hierarchical Reinforcement LearnifiD thesis, Carnegie
Mellon University, August 2002.

Manuela M. Veloso and Jaime G. Carbonell. Derivati@aralogy in PRODIGY: Automating
case acquisition, storage, and utilizatidmachine Learning10(3):249-278, March 1993.

C. J. C. H. Watkins.Learning from Delayed Reward€?hD thesis, King’'s College, Cam-
bridge, UK, 1989.

11

