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Abstract

We characterize the search landscape of random instances of the job shop scheduling problem
(JSSP). Specifically, we investigate how the expected values of (1) backbone size, (2) distance
between near-optimal schedules, and (3) makespan of random schedules vary as a function of the
job to machine ratio%). For the limiting case% — 0 and% — oo we provide analytical

results, while for intermediate values Q&‘ we perform experiments. We prove that%s—> 0,
backbone size approaches 100%, whil%as» oo the backbone vanishes. In the process we show
that as% — 0 (resp.% — 00), simple priority rules almost surely generate an optimal schedule,
suggesting a theoretical account of the “easy-hard-easy” pattern of typical-case instance difficulty
in job shop scheduling. We also draw connections between our theoretical results and the “big
valley” picture of JSSP landscapes.
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1 Introduction

1.1 Motivations

The goal of this work is to provide a picture of the typical landscape of random instances of the job
shop scheduling problem (JSSP), and to determine how this picture changes as a function of the
job to machine ratio%). Such a picture is potentially useful in (1) understanding how typical-case
instance difficulty varies as a function %f and (2) designing search heuristics that take advantage

of regularities in typical instances of the JSSP.

1.1.1 Understanding instance difficulty as a function of]\%

In the job shop scheduling literature there is a conventional wisdom that square JSSPs (those
with % = 1) are more difficult to solve than rectangular instances [7]. This work makes both
theoretical and empirical contributions toward understanding this phenomenon. Empirically, we
show that random schedules (resp. random local optima) are furthest from optimalit»%}/vﬁeh
Analytically, we prove that in the two limiting case%(—> 0 and% — o0) there exist simple
priority rules that almost surely produce an optimal schedule, providing theoretical evidence of an
“easy-hard-easy” pattern of instance difficulty in the JSSP.

1.1.2 Informing the design of search heuristics

Heuristics based on local search (e.g., taboo search [8, 18], iterated local search [12]) have shown
excellent performance on benchmark instances of the job shop scheduling problem [9, 10]. In
order to design an effective heuristic, one must (explicitly or implicitly) make assumptions about
the search landscape of instances to which the heuristic will be applied. For example, Nowicki and
Smutnicki motivate the use @ath relinkingin their state-of-the-at TSAB algorithm by citing
evidence that the JSSP has a “big valley” distribution of local optima [20]. One of the conclusions
of our work is that the typical landscape of random instances can only be thought of as a big
valley for values of% close to 1; for larger values q‘-g (including values common in benchmark
instances), the landscape breaks into many big valleys, suggesting that modificaiidri&AB

may allow it to better handle this case.

1.2 Contributions

The contributions of this paper are twofold. First, we design a novel set of experiments and run
these experiments on random instances of the JSSP. Second, we derive analytical results that con-
firm and provide insight into the trends suggested by our experiments.

The main contributions of our empirical work are as follows.

e For low values ofl, we show that low-makespan schedules are clustered in a small region
of the search space and many attributes (i.e., directed disjunctive graph edges) are common
to all low-makespan schedules. %sincreases, low-makespan schedules become dispersed



throughout the search space and there are no attributes common to all low-makespan sched-
ules.

e We introduce a statistic (neighborhood exactness) that can be used to quantitatively measure
the “ruggedness” of a search landscape, and estimate the expected value of this statistic for
random instances of the JSSP. These results, in combination with the results on clustering,
suggest that the landscape of typical instances of the JSSP can be described as a big valley

only for low values of%; for high values of% there are many separate big valleys.

For the limiting case% —0 and% — 00, We derive analytical results. Specifically, we prove
that

° as% — 0, the expected size of the backbone (i.e., the set of problem variables that have
a common value in all global optima) approaches 100%, whil%as» oo, the expected
backbone size approaches 0%; and

° as% — 0 (resp. % — 00), a randomly-generated schedule will almost surely have a

makespan that is near-optimal, and will be located “close” (in a sense to be precisely defined)
to an optimal schedule.

2 Related Work

There are at least three threads of research that have conducted search space analyses related to
the ones we conduct here. These include literature on the “big valley” distribution common to a
number of combinatorial optimization problems, studies of backbone size in boolean satisfiability,
and a statistical mechanical analysis of the TSP. We briefly review these three areas below, as well
as relevant work on phase transitions and the “easy-hard-easy” pattern of instance difficulty.

2.1 The Big Valley

The term “big valley” originated in a paper by Boese et al. [4] that examined the distribution of
local optima in the Traveling Salesman Problem (TSP). Based on a sample of local optima obtained
by next-descent starting from random TSP tours, Boese calculated two correlations:

1. the correlation between the cost of a locally optimal tour and its average distance to other
locally optimal tours, and

2. the correlation between the cost of a locally optimal tour and the distance from that tour to
the best tour in the sample.

The distance between two TSP tours was defined as the total number of edges minus the number
of edges that are common to the two tours. Based on the fact that both of these correlations were
surprisingly high, and the fact that the mean distance between random local optima was small
relative to the mean distance between random tours, Boese conjectured that local optima in the
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TSP are arranged in a “big valley”. The term does not have a formal definition, but intuitively it
means that if the search space could be locally smoothed in some manner it would then have a
single basin of attraction with respect to common TSP move operators such as Lin 2-opt.

Boese’s analysis has been applied to other combinatorial problems [11], including the permu-
tation flow shop scheduling problem [28, 21] and the JSSP [19]. Correlations observed for the
JSSP are generally weaker than those observed for the TSP.

2.2 Backbone Size

Thebackbonef a problem instance is the set of attributes common to all globally optimal solutions

of that instance. For example, in the boolean satisfiability problem (SAT), the backbone is the set
of variable assignments that are common to all satisfying assignments. In the JSSP, the backbone
has been defined as the number of disjunctive edife)(that have a common orientation in all
globally optimal schedules (a formal definition is giver#).

There is a large literature on backbones in combinatorial optimization problems, including
many empirical and analytical results [23, 17]. In an analysis of problem difficulty in the JSSP,
Watson et al. [29] present histograms of backbone size for random 6x6 (6 job, 6 machine) and
6x4 (6 job, 4 machine) JSSP instances. Summarizing experiments not reported in their paper,
Watson et al. note that “For [job:machine ratios]L.5, the bias toward small backbones becomes
more pronounced, while for ratigs 1, the bias toward larger backbones is further magnifigdl.”
generalizes these observations and proves two theorems that give insight into why this phenomenon
occurs.

2.3 Statistical Mechanical Analyses

A large and growing literature applies techniques from statistical mechanics to the analysis of
combinatorial optimization problems [14]. At least one result obtained in this literature concerns
clustering of low-cost solutions. In a study of the TSReadrd and Parisi [16] obtain an ex-
pression for the expected overlap (number of common edges) between random TSP tours drawn
from a Boltzmann distribution. They show that as the temperature parameter of the Boltzmann
distribution is lowered (placing more probability mass on low-cost TSP tours), expected overlap
approaches 100%. Though we do not use a Boltzmann weigl§bngf, this paper examines how
expected overlap between random JSSP schedules changes as more probability mass is placed on
low-makespan schedules.

2.4 Phase Transitions and the Easy-hard-easy Pattern

Loosely speaking, a phase transition occurs in a system when the expected value of some statis-
tic varies discontinuously (asymptotically) as a function of some parameter. As an example, for
anye > 0 it holds that random instances of the 2-SAT problem are satisfiable with probability
asymptotically approaching 1 when the clause to variable rétjoig 1 — ¢, but are satisfiable

with probability approaching 0 when the clause to variable ratib-jse. A similar statement is
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Figure 1: (A) A JSSP instance, (B) a feasible schedule for the instance, and (C) the disjunctive
graph representation of the schedule. Boxes represent operations; operation durations are propor-
tional to the width of a box; and the machine on which an operation is performed is represented
by texture. In (C), solid arrows represent conjunctive arcs and dashed arrows represent disjunctive
arcs.

conjectured to hold for 3-SAT; the critical valdieof ™ (if it exists) must satisfy3.42 < k < 4.51
[1].

For some problems that exhibit phase transitions (notably 3-SAT), average-case instance diffi-
culty (for typical solvers) appears to first increase and then decrease as one increases the relevant
parameter, with the hardest instances appearing close to the threshold value [6]. This phenomenon
has been referred to as an “easy-hard-easy” pattern of instance difficulty [1§3].4lmve discuss
evidence of an easy-hard-easy pattern of instance difficulty in the JSSP, though (to our knowledge)
it is not associated with any phase transition.

3 The Job Shop Scheduling Problem

We adopt the notatio| = {1,2,...,n}.

3.1 Problem Definition

Definition (JSSP instance).An N by M JSSP instancéy ,, = {J',J?, ..., JV} is a set ofN
jobs, where each jo* = (JF J¥ ... J¥ ) is a sequence af/ operationsand each operation
JF is atriple (k,m, 7) wherem € [M] is amachine numbeand7 > 0 is aduration We require
that each job use each machine exactly once (i.e., for gdck Iy, andm € [M], we have
{o= (k,m/,7) € J:m'=m}| =1). We define

1. OpS(IN7M) = {0 eJ:Je [N,]W}1



m((k,m,T)) =m,
T((k,m,T)) =T,

7(0) = ,co 7(0) (WhereO is any set of operations), and

a M W DN

thejob-predecessay (JF) of an operation/* as

JEifi>1
oY otherwise

g0 ={

whereo? is a fictitious operations(o?) = 0, andm(a?) is undefined.

Definition (JSSP schedule) A JSSP schedule for an instanie,, is a functionS : ops(Iy ) —
R, that associates with each operatione ops(Iy /) a start timeS(o). We make the following
definitions.

1. Thecompletion timeof an operatiorv is S*(0) = S(0) + 7(0).

2. LetO(o) = {0 € ops(Iyn) : m(6) = m(0),S(6) < S(0)} denote the set of operations
scheduled to run before an operatioron o’s machine. Thenachine-predecessadvt(o) of

o is defined as B
_ [ argmax,es ) S(0) ifO(o) #0
M(o) = { o’ otherwise.

3. Sis afeasibleschedule ifS(0) > max(S™(J(0)), ST(M(0))) Yo € ops(In ).

4. The quantity
((S)= max ST(o)

ocops(In a)

is called themakesparof S.

We consider the makespan-minimization version of the JSSP, in which the goal is to find a
schedule that minimizes the makespan.
For the remainder of the paper, whenever we refer to a JSSP scltedelshall assume that

S(0) = max(S™(J(0)), ST(M(0))) Yo € ops(In,u) (3.1)

(i.e., S is a so-calledsemi-activeschedule). In other words, we ignore schedules with superfluous
idle time between the end of one operation and the start of another.

Figure 1 (A) and (B) depict, respectively, a JSSP instance and a feasible schedule for that
instance.



3.2 Disjunctive Graphs

A schedule satisfying (3.1) can be uniquely represented by a weighted, directed graph called its
disjunctive graph

Definition (disjunctive graph). The disjunctive graptt: = G(Ix s, S) of a scheduleS for a
JSSP instancéy ,, is the weighted, directed gragh = (V, E, w) defined as follows.

o V = ops(Iya) U {0® o'}, whered® (resp.o*) is a fictitious operation withr(0?) = 0 and
m(o?) undefined.

e [ = CUD, where

— C = {(01,02) : {01,002} C ops(Inar), T(02) = o1} U{( J) : J € Inas}
U {(JM,O*) J e IN,M}y and

~- D= {(01,02) : {01,02} C ops(Inar), m(o1) = m(o2),S(01) < S(02)}.
e w((01,09)) = 7(01).

The arcs inC' are calledconjunctive arcswhile those inD are calleddisjunctive arcs We make
the following definitions

1. The sett'(Iy ) of disjunctive edgesf I y, is defined by
E(Inm) = {{o1,02} Cops(Ina) : m(o1) = m(oz)}
2. Foradisjunctive edge € E(Iy ), the functiore(.S) returns the unique are € {(o01, 02), (02,01)}
which appears irG(Iy , S).

3. Thedisjunctive graph distanckS; — S.|| between two schedules and S, for Iy, is

defined by
|51 = Saf| = [{e € E(Inum) : €(S1) # €(52)}]

It is straightforward to verify the following Proposition [22].

Proposition 1. If S'is a feasible schedule fdiy , satisfying assumptio¢8.1), then/(S) is equal
to the length of the longest weighted path frahto o* in G (Iy 1, S).

Figure 1 (C) depicts the disjunctive graph for the schedule depicted in Figure 1 (B).



3.3 Random Schedules and Instances

We define a uniform distribution over JSSP instances as follows.

Definition (random JSSP instance).A randomN by M JSSP instancéy , is generated as
follows.

1. Letoy, ¢o,. .., ¢n be random permutations @i/].

2. Let the elements dfr,; : £ € [N],i € [M]} be drawn independently at random from a
common distribution ove(0, 7,,...] with meanyu variances? > 0.
3. Definely = {J*, J%, ..., JV}, whereJF = (¢x (i), 7h4)-

Note that we assume a maximum operation duration. We choose operation durations from
a uniform distribution ovef1,2, ..., 100} for the experiments described in this paper.
To define a distribution over JSSP schedules, it is convenient to first make the following defi-
nition.
Definition (priority rule). A priority rule = is a function that, given an instandg ,,, returns
a sequencd’ = w(Iyna), Where the set of elements 6fis ops(Iy ), and where, for any
{JF, J5} € ops(Inn) withi < j, Jf appears beforg/} in T,
The schedul& = S(r, Iy ) associated withr is defined by the following procedure.

1. Setl’ := n(Iy). LetT; denote the'” operation inT.
2. SetS(0) := 0o Vo € ops(Iy ) and setS(o?) := 0.
3. Fori from 1 toN M do:
(8) SetS(T;) := max(S* (I (T3)), SH(M(T))) -
A priority rule is calledinstance-independeiit!” = w(/y ) depends only oV and M.

Our definition of random schedules is equivalent to the one proposed by Mattfeld [15].

Definition (random schedule). A random schedule for alv by M instancely ,, is a schedule
obtained using the priority ruler, .4, Wheren,.,a(Ix ) returns a random element of the set
{T = n(In ) : wis apriority rule}.

4 Number of Common Attributes as a Function of Makespan

In this section we compute the expected valuépdiackbone| (defined below) as a function ef
for randomN by M JSSP instances, and examine how the shape of this curve changes as a function
of % We make the following definition (a related definition appears in [23]).

Definition (p_backbone). LetS be an optimal schedule for a JSSP instance,. Letp_opt(In ) =
{5 :¢(S) < (14p)¢(S)} be the set of schedules whose makespan is within a factosptimality.
Then

p-backbone(In ) = {e € E(Iyn) : €(S) = e(S") V{S, S5} C popt(Innm)} -
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4.1 Computing |p_backbone]

For an arbitrary JSSP instance, we comgptéackbone| for all p using multiple runs of a branch
and bound algorithm.

Let opt(a) denote the minimum makespan among schedules whose disjunctive graphs contain
the arca. In branch and bound algorithms for the JSSP, nodes in the search tree represent choices
of orientations for a subset of the disjunctive edges. Thus, by constructing a root search tree node
that has: as a fixed arc, we can determing (a) using existing branch and bound algorithms. We
use an algorithm due to Brucker et al. [5] because it is efficient and because the code for it is freely
available via ORSEP.

Suppose we are interested in all schedules whose makespan is at=mpst/, where/ is the
optimum makespan for the given instance. Consider an arbirary disjunctive edde, , 0, }, with
orientationsa; = (01, 05) anday = (02,01). It must be the case thatin(opt(a,), opt(as)) = L.

If ¢ < max(opt(ai),opt(az)), then one of the two orientations efprecludes schedules with
makesparx ¢, soe must belong to the_backbone. Thus

|p-backbone| = Z [t < max(opt((o1,02)), 0pt((02,01))] (4.1)

{Ol,OQ}GE

where the [...] notation indicates a function that returns 1 if the predicate enclosed in the
brackets is true, O otherwise.

Using (4.1), we can determing_backbone| for all p by performingl + M({j) runs of branch
and bound. The first branch and bound run is used to find a globally optimal schedule, which gives
the value ofopt for one of the two possible orientations of each of Me@’ ) disjunctive edges.
A separate branch and bound run is used to determine the valugs fof theM(g) alternative
orientations.

Figure 2 graphs the fraction of disjunctive edges that belong t@ the-kbone as a function
of p for instance ft10 (a 10 job, 10 machine instance) from the OR library [3]. Note that by
definition the curve is non-increasing with respecpi@nd that the curve is exact for all It is
noteworthy that among schedules within 0.5% of optimality, 80% of the disjunctive edges have a
fixed orientation. We will see that this behavior is typical of JSSP instances%fvi:thl.

4.2 Results

We plotted|p_backbone| as a function op for all instances in the OR library having 10 or fewer
jobs and 10 or fewer machines. The results are available online [25]. Inspection of the graphs
revealed that the shape of the curve is largely a function of the job:machine ratio. To investigate this
further, we repeated these experiments on a large number of randomly generated JSSP instances.
We use randomly-generated instances with 7 different combinationsaxfdM to study in-
stances withl equal to 1, 2, or 3. Fofl = 1 we use 6x6, 7x7, and 8x8 instances; for= 2
we use 8x4 and 10x5 instances; andﬁ)r: 3 we use 9x3 and 12x4 instances. We generate 1000
random instances for each combinatiomdand M.
Figure 3 presents the expected fraction of edges belonging i@ ltaekbone as a function of
p for each combination oV and M, grouped according t%. For the purposes of this study the
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Figure 2: Normalizedp_backbone| as a function op for OR library instance ft10.

two most important observations about Figure 3 are as follows.

e The curves depend on both the size of the instance (V.&7) and the shape (i.e%). Of
these two factorsj% has by far the stronger influence on the shape of the curves.

e Forall values ofp, the expected fraction of edges belonging tohte.ckbone decreases as
& increases.

4.3 Analysis

We now give some insight into Figure 3 by analyzing two limiting cases. We prove tHat-as,
the expected fraction of disjunctive edges that belong to the backbone approaches 1, while as
%—wo this expected fraction approaches 0.

Intuitively, what happens is as follows. Aj{é,—>0 (i.e., N is held constant and/— o) each
of the jobs becomes very long. Individual disjunctive edges then represent precedence relations
among operations that should be performed very far apart in time. For example, if there are 10,000
machines (and so each job consists of 10,000 operations), a disjunctive edge might specify whether
operation 1,200 of job! is to be performed before operation 8,500 of @b Clearly, waiting for
job B to complete 8,500 of its operations before allowing jobo complete 12% of its operations
is likely to produce an inefficient schedule. Thus, orienting a single disjunctive edge in the “wrong”
direction is likely to prevent a schedule from being optimal, and so any particular edge will likely
have a common orientation in all globally optimal schedules.

In contrast, Whenj\%—mo, it is the workloads of the machines that become very long. The
order in which the jobs are processed on a particular machine does not matter much as long as the
machine with the longest workload is kept busy, and so the fact that a particular edge is oriented
a particular way is unlikely to prevent a schedule from being optimal. All of this is formalized
below.



E[frac. edges in p-backbone] E[frac. edges in p-backbone]

E[frac. edges in p-backbone]

(A) Job:machine ratio 1:1

i
081 3 x  6x6 instances
064 . 7x7 instances
U + 8x8 instances
04{ i
02
11: ;;xxxxXxx
0 i : ,Hu’4”“H?’“§¥¥¥Xx‘xxtxxxxxxx‘x
1 1.1 1.2 1.3 1.4 15
P
(B) Job:machine ratio 2:1
1+
0.8 )
«  8x4 instances
0.6 - 10x5 instances
0.4
0.2 - -
0 .'-‘:().(X T T T T
1.1 1.2 1.3 1.4 1.5
P
(C) Job:machine ratio 3:1
1 -
0.8 )
« 9x3 instances
0.6 1 12x4 instances
0.4
0.2 4§
0 .T).(z(%(x T T T T T
1.1 1.2 13 14 15

Figure 3: Expected fraction of edgesgrbackbone as a function pffor random JSSP instances.
Graphs (A), (B), and (C) depict curves for random instances %@im 1, 2, and 3, respectively.
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We will make use of the following well-known definition.
Definition (whp). A sequence of evergsoccurs with high probability (whp) ifim,, .. P[¢,] = 1.

Lemma 1 and Theorem 1 show that for constant randomly chosen edge of a randdhby
M JSSP instance will be in the backbone whp fas-oc). Lemma 2 and Theorem 2 show that
for constant)/, a randomly chosen edge of a randdmby M JSSP instance will not be in the
backbone whp (a8 —o0). The proof of Lemma 2 appears in Appendix A.

Lemma 1. Let/y ,, be arandomV by M JSSP instance, and I8t= S(r, Iy ) be the schedule
for Iy »s obtained using some instance-independent priority tulBor an arbitrary job.J € Iy ar,
let AS = S*(Jy) — 7(J) be the amount of time by which the completion/a$ delayed due to
resource constraints. ThéifA ;] is O(N).

Proof. We assumeV = 2 andM > 1. The generalization to largéeY is straightforward, while
the casesV = 1 andM = 1 are trivial. Letly, = {J', J°} and letJ = J'. We say that an
operationJ;' overlapswith an operation/; if

1. J? appears beford} in 7(Iy ), and
2. [S(JF), ST(IDIN[SH(TL,), ST(Ty) +7(J)] # 0.

If additionally m(J}) = m(J7), we say that/; contendswith J7. Let6;; (resp. ¢;;) be an
indicator for the event that! overlaps (resp. contends) witl. LetC; = {J7 : 6;; = 1} be the
set of operations io? that.J! overlaps with. ThenC; N ..., Ci| < 1. Thus

>0

dolci=> e+ IcinJcr <2m. (4.2)

P> % >4

Let] = Iy 1 be arandonV by M —1 JSSP instance, and defifig, J; ;, andC; analogously
to the above. Thenfarj < M — 1,

This is true becausB[#; ; = 1] is a function of the joint distribution of the operations in the set
{Jy - < iy U{J} : j/ < j}; and, as far as this joint distribution is concerned, conditioning on
the eventn(J}) = m(J?) is like deleting the operations that use the machirfe; ).
ThusE [6;;] = E [0, ;/m(J}) = m(J})] = +E [0:;]. Therefore,
S Y By <24 Xty ;]
=2+ 5 2 i Eldy)
=2+ 3 i ElIG]
<4

where in the last step we have used (4.2). It follows @3] < 47,40 (Timae iS the maximum
operation duration defined §8). When we consider arbitrary, we getE[AS] < 47,0 (N — 1).
O
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Corollary 1. Let Iy be arandomV by M JSSP instance. Then for fix@d it holds whp (as
M — oo) that an optimal schedulg for Iy »; has((S) = maxe(n 7(J*).

Proof. Let 7, be an instance-independent priority rule that first schedules all the operations in the
job J*, then schedules the remaining operations in some arbitrary ordetr,J.gtbe a priority

rule (not instance-independent) that first computes= arg max;¢y 7(J*), and then invokes

T+ Using Lemma 1, we have

E[A7] < 3 E[AT] = O(N?)

whereJ € Iy and we define\7 = Ai(”’IN’M). Then by Markov’s inequalityA7 > < M 1
VJ € Iy whp. By the Central Limit Theorem, eacli.J) is asymptotically normally distributed
with meany M and standard deviatian/A1. It follows that whp,r(J**) —7(J*) > M1 Vk # k*.
This impliest(S) < (S (Tmaz; Inag)) = 7(JF). O

Theorem 1. Let Iy ), be a randomN by M JSSP instance, and letbe a randomly selected
element ofy (1 5,). Then for fixedV, it holds whp (as\/ —oo) thate € 1_backbone(In ).

Proof. Lete = {J;, J;} with i < j, leta = (J}, J;), and letS, = {S : €(S) = a}. We show that
whp, mingeg, £(S) > max e, ,, 7(J). By Corollary 1, this implieg € 1_backbone(Ix 1) Whp.
Assumej —i > M7 (holds whp). LetS = arg mingcg_ ¢(S). Then
P=("J, g5 T i T, Jar, 0F)
is a directed path irG(]MM,S‘) that passes through at least M + M?1 vertices. By
Proposition 1,/(3) > w(P), wherew(P) is the weighted length oP. It remains to show that
w(P) > maxyery ,, 7(J) whp. For any fixedP, it follows by the Central Limit Theorem that(P)

is asymptotically normally distributed with megi| P| — 2) and standard deviati (|P| - 2),
while for eachJ, 7(J) is asymptotically normally distributed with mear/ and standard devia-
tionov M. Thatw(P) > max e, ,, 7(J) whp follows by Chebyshev’s inequality.

O

Lemma 2. Let Iy 5, be a randomV by M JSSP instance. Letbe an arbitrary permutation of
[N], and consider the priority rule defined by

7T(IN7M) = T1T2 Ce TM
where

T = (JPW, 029,y

2

Then for fixedM, there exists @ > 0 such that with probabilityl — o(exp(—KN)), the
scheduleS = S(r, Iy ) has the property that

A

S(0) = 5T (M(0)) Yo € ops(In ) -
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Proof. See Appendix A. m

Corollary 2. LetIy ) be arandomV by M JSSP instance, and |8tbe an optimal schedule for
In . Letr(m) = 7({o € ops(Iy ) : m(o) = m}) denote the workload of machime. Then for

~

fixed M, it holds whp (asV—oo) that/(S) = maxsepan 7(m).
Corollary 2 confirms a conjecture of Taillard [26].

Theorem 2. Let Iy ), be a randomN by M JSSP instance, and letbe a randomly selected
element o/ (1 ;). Then for fixedV/, it holds whp (asV—oo) thate ¢ 1_backbone(In ).

Proof. Lete = {J;, J;}. Remove both/ and.J’ from Iy ), to create a new instandg _»,»;, which
comes from the same distribution as a randdm- 2 by M JSSP instance. Lemma 2 shows that
whp there exists an optimal schedldor In_5 p With the property described in the statement of
the lemma.

Let 7(m) = 7({o € ops(Iym) : m(o) = m}) denote the workload of machine. By the
Central Limit Theorem, each(m) is asymptotically normally distributed with meat N — 2)
and standard deviationyN — 2. It follows that whp,|7(in) — 7(im/)| > N Vin # /.

Thus whp there will be only one machine still processing operations during the in[lﬂ@/}}k
N, ((3)]. Becausanax(7(.J),7(J')) < Mtma = O(1), we can use this interval to construct
optimal schedules containing the disjunctive @ig J}) as well as optimal schedules containing

the disjunctive ar¢.J;, J;). O

5 Clustering as a Function of Makespan

In this section we estimate the expected distance between random schedules within adactor
optimality, as a function op for various combinations oV and M. We examine how the shape
of this curve changes as a function%f More formally, if

e In ) is arandomV by M JSSP instance,
e S is an optimal schedule fdfy ,,

o p,opt(_[]\[’]\/[> = {S : E(S) < (1 + p)€<5>}, and

e S? andSh are drawn independently at random frenapt (Iy i),

we wish to comput&]||S7 — S5]|].
The experiments of the previous section provide an upper bound on this quantity:

E (IS¢ - s8] < M(JQV ) _ E(|p-backbone]]

but provide no lower bound.
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5.1 Methodology

We generate “random” samples frgmopt (I »r) by running the simulated annealing algorithm of
van Laarhoven et al. [27] until it finds such a schedule. More precisely, our procedure for sampling
distances is as follows.

1. Generate a rando by M JSSP instance.

2. Using the branch and bound algorithm of Brucker et al. [5], determine the optimal makespan
of I.

3. Perform two runs; andR,, of the van Laarhoven et al. [27] simulated annealing algorithm.
Restart each run as many times as necessary for it to find a schedule whose makespan is
optimal.

4. For eactp € {1,1.01,1.02, ...,2}, find the first schedule, call §(p), in each rurR; whose
makespan is within a facterof optimality. Add the distance betweeg(p) ands,(p) to the
sample of distances associated with

Note that the distances for different valuespofre dependent, but that for a giverall the
sampled distances are independent, so that our estimates are unbiased. Figure 4 presents the results
of running this procedure on 1000 random JSSP instances for the same 7 combinafibasf
M that were used i64.2.

From examination of Figure 4, we see that fonear 1, thep-optimal schedules are in fact

dispersed widely throughout the search spac&%’fo# 3, and that this is true to a lesser extent for
N
N =9,
M

An immediate implication of Figure 4 is that whether or not they exhibit the two correlations
that are the operational definition of a big valley, typical landscapes for JSSP instanc%s with
cannot be expected to be big valleys in the intuitive sense of these words. If anything, one might
posit the existence of multiple big valleys, each leading to a separate global optimum. The next

section expands upon these observations.

6 The Big Valley

In the section we formalize the notion of a big valley landscape, conduct experiments to determine
the extent to which random JSSP instances exhibit such a landscape as vy@;ﬁ \amyl present
analytical results for the limiting cases — 0 and$> — oc.

6.1 Formalization

The following three definitions allow us to formalize the notion of a big valley landscape.

Definition (Neighborhood V,). Let I be an arbirary JSSP instance, and [Etbe the set of all
schedules fof. The neighborhoodV, : U — 2V is defined by

N(S)={SeU:|S-95<r}.

14
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Definition ((r, §)-valley). Let/ andU be as above, and letando be non-negative integers. A set
V C Uisan(r,d)-valleyif V has the following two properties.

1. ForanyS eV,

0(S) = min ¢(S) = ¢(S) = min (S
(S) éﬁ%)()é (S) gg()

(i.e., if S that is locally optimal w.r.t N, it must also be globally optimal), while

(S in £(S) = ¢(S in  £(S
()>§5$® ()$'<)>§Jﬁ§mf()

(i.e., if S is not locally optimal then some scheduleNfi N V' must improve upon it).

2. Forany{S;, 5>} C V such that/(S;) = ¢(S2) = mingcy 4(5), [|S1 — Saf| <.

Definition ((r, 6, p) landscape).Let I andU be as above, and It be a random schedule fdr.
Then! has an(r, §, p) landscapéf there exists & C U such that

1. Visan(r,0)-valley, and
2. P[S € V] >p.

Any JSSP instancé trivially has an(M (%), M (%), 1) landscape.! could be described as
having a big valley landscape ifhas an(r, 6, p) landscape for small ando in combination with

phear 1.
In this section we seek to determine the combinations afidp for which random JSSP in-

stances typically have anm, M(g’),p) landscape. We do this using a statistic calbethhborhood
exactnessdefined below.

Definition (L(S,N)). LetI, U, and N be as above, and let be a schedule fof. The schedule
L(S,N) is obtained by executing the following procedure.

1. Let V'(S) = {50, S1,...,Sns)} (Where the elements of are indexed in a fixed but
arbitrary manner).

2. Seti := min{j : £(S;) < £(S)}. If no suchi exists, returnS; otherwise setS := S; and go
to 1.

Definition (Neighborhood exactness)Let I, U, and N be as above, and let be a random
schedule forl. The exactness of the neighborhabdon the instancd is the probability that
L(S,N) is a global optimum.

If the exactness ok, is p, thenl has an(r, M(g),p) landscape (leV’ consist of all schedules
S such thatZ(S, ) is a global optimum). We will estimate thexpectedexactness ofV, as
a function ofr for various combinations oV and M. Examination of the resulting curves will
allow us to draw conclusions about how the extent to which typical JSSP landscapes are big valleys
changes as a function %

16



6.2 Estimating Neighborhood Exactness

For given values ofV and M, we compute thexpectedexactness ofV, for 1 < r < M(JQV)
by repeatedly executing the following procedure. To efficiently search for an improving schedule
within A/, we have developed a “radius-limited” branch and bound algorithm.

1. Generate a rando by M JSSP instance.
2. Using the algorithm of Brucker et al. [5], compute the optimal makespdn of
3. Lets be a random feasible schedule;stet 1; and letopt = false.

4. Whileopt = false do:

(a) Starting froms, apply next-descent under the neighborhdgdo generate a local op-
timum (each step of next-descent uses our radius-limited branch and bound algorithm).
Let s be this local optimum.

(b) Update the expected exactness\gf appropriately, based on whether or nois a
globally optimum.

(c) If sis a globally optimum, seipt = true. Otherwise increment.
5. Forallr’ such that < »' < M (];’ ) update the expected exactnes\of appropriately.

For eachr, the data used to estimate the expected exactnes§ afe independent, so our
estimates are unbiased (data for distinct radii are dependent, however).

Our radius-limited branch and bound algorithm uses the branching rule of Balas [2] combined
with the lower bounds and branch ordering heuristic of Brucker et al. [5].

6.3 Results

We use three combinations of and M with % = % (3x15, 4x20, and 5x25 instances), three
combinations with?: = 1 (6x6, 7x7, and 8x8 instances) and two combinations wWjtk- 5 (15x3
and 20x4 instances). We generate 1000 random instances for each combinafianai/ .

Figure 5 plots expected exactness as a function of neighborhood radius (normalized by the
number of disjunctive edges) for each of these three valu%s of

6.4 Discussion

When 4> = 1 or % = 5, a small (normalized) value of suffices to ensure that a random local
optimum drawn unded,. is very likely to be a global optimum. Using the methodologyéfwe

found that the expected backbone fractions for 3x15, 4x20, and 5x25 instances are 0.94, 0.93, and
0.92, respectively, while the expected distance between global optima was 0.02 in all three cases.
This suggests that the typical Iandscape%pr: % can be described as a big valley. In contrast,

the expected backbone fractions for 15x3 and 20x4 instances are near-zero, while the expected
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distances between global optima are 0.33 and 0.28, respectively. Thg;s:fo& the data suggest
the existence of many big valleys rather than just one.

For % = 1, the normalized value of must be much larger in order to achieve the same
expected exactness. The data frgnshow that global optima are fairly tightly clustered when
% = 1, so typical landscapes can still be roughly described as big valleys. However,%vhem
the valley is rougher than it is for the more extreme value%of

6.5 Analysis

We first establish the behavior of the curves depicted in Figure 5 in the limiting éases) and
% — o0o0. We then use these results to characterize the landscapes of random JSSP instances using
the(r, §, p) notation introduced i§6.1.

The following two lemmas show that qf\% — 0 (resp. % — 00), a random schedule will

almost surely be “close” to an optimal schedule. The proofs are given in Appendix A.

Lemma 3. Let/y 5, be arandomV by M JSSP instance, and I8tbe a random schedule fag; ;.
Let S be an optimal schedule fdiy 5, such that|S — S| is minimal. Letf (M) be any unbounded,
increasing function of\/. Then for fixedV, it holds whp (as\/ — o) that||.S — S|| < f(M).

Lemma 4. Let Iy ), be a randomV by M JSSP instance, |t be a random schedule fdy »/,
and letS be an optimal schedule fdiy 5, such that/|.S — S|| is minimal. Then for fixed/ and
e > 0, it holds whp (asV — oo) that||S — S| < N'*e,

The following are immediate corollaries.

Corollary 3. For fixedN, the expected exactness\of ;) approaches 1 a8/ — oo, wheref (M)
is any unbounded, increasing function/af.

Corollary 4. For fixedM ande > 0, the expected exactness/\df;:+. approaches 1 ad/ — oo.

Because the total number of disjunctive edgeM@’), these two corollaries imply that as
% — 0 (resp.% — 00), the curve depicted in Figure 5 approaches a horizontal line at a height of
The following two theorems characterize the landscape of random JSSP instances using the

(r, 6, p) notation of§6.1.

Theorem 3. Let v, be arandomV by M JSSP instance. Lg{(1/) be any unbounded, increas-
ing function ofA/. For fixed N ande, ¢ > 0, it holds whp (as\M/ — oo) that Iy, has a(r, d, p)
landscape for = f(M),5 = eM(}) andp =1 — €.

Proof. Let V' be the set of all schedulessuch thatZ (S, \,) is a global optimum. It follows by
Corollary 3 that whp/y 5 is such that a random schedwfléelongs to” with probability at least
p. It remains to show that” is an(r, §)-valley whp. Part 1 of the definition of am, §)-valley is
satisfied by the definition df’. Part 2 follows from Theorem 1. O
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Theorem 4. Let Iy, be a randomV by M JSSP instance, and Iétbe a random schedule for
In . There exists a sét' (Iy ) = U, V; of schedules fofy 5, such that for fixed\/ and
€1, €2, €3 > 0, V has the following properties whp:

1. SeV;

2. Viisan(r,d)-valley withr = N'*<2 andd = 1 Vi € [n];
3. n> N!(1—-¢3);and

4. maxyg, s,1cv [|S1 — Sof > Q(N?).

Proof. Let{S,95,,...,5,} be the set of globally optimal schedules far,;, and defind/; (Iy.,) =
{S: L£(S,N'te) = 5;}. Property 1 holds whp by Lemma 4. Property 2 holds by definitiol; of

The fact that property 3 holds whp is a consequence of Lemma 2. The number of possible
choices of the permutation (used in the statement of Lemma 2)Nd. Let f be the number
of choices of¢ that fail to yield a globally optimal schedule. Property 3 can only fail to hold if
f > esN!. ButE[f]is o(exp(—KN)N!); hencef < e3sN! whp by Markov’s inequality.

To establish property 4, choose permutatipngnd¢, that list the elements diV] in reverse
order (i.e.,p1(i) = ¢o(N — 1) Vi € [N]). These permutations define schedutgsand S, (via
Lemma 2) which are both globally optimal whp. But for any disjunctive edge{./;, J; } we must
havee(S,) # €(52), hencel|Sy — So|| > [{{J,J'} C Iy : m(J1) =m(J])} > (Nj‘g_l). O

Theorem 3 shows that a% — 0, a random JSSP instance almost certainly hagrahp)
landscape where grows arbitrarily slowly as a function af/, the normalized value of (i.e.,
%) is arbitrarily small, andg is arbitrarily close to 1. In contrast, Theorem 4 shows that as

2

— 00, a random JSSP instance almost surely does not have, &p) landscape unless
is Q(N?). Instead, the landscape contaipéN!) (r, 1)-valleys, with the normalized value of
approaching 0. Random instances with intermediate vaIu% @‘.g.,% ~ 1) can be seen as an
interpolation between these two extremes.

M
N

7 Quality of Random Schedules

7.1 Methodology

In this section we examine how the quality of randomly-generated schedules changes as a function
of the job:machine ratio. Specifically, for various combinations\oind M, we estimate the
expected value of the following four quantities:

(A) the makespan of a random schedule,

(B) the makespan of a locally optimal schedule obtained by starting at a random schedule and
applying next-descent using thé move operator,

(C) the makespan of an optimal schedule, and
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(D) the lower bound on the makespan of an optimal schedule given by the maximum of the
maximum job duration and the maximum machine workload:

max | max 7(J), max E 7(0)
JEIN’N[ me[M] B
ocops(In,n),m(o)=m

The values off> considered in our experiments are those in thefset {3, £, 1, 1, 3, 3, 2,
1,2,2,3,4,5,6, 7 }. We consider all combinations &f and/ in the setS = |J, . S,, where
Sy ={(N,M): & =r,min(N, M) > 2,max(N, M) > 6, NM < 1000}. For each{N, M) € S,
we generate 1000/ by M instances, and compute quantities (A), (B), and (D) for each of these
instances. For some combinatididé, M) € S C S, it was also practical to compute quantity (C).
We choseS so that|S N S| > 4Vr € R\ {2}, while|S N Ss| =3.

7.2 Results

Figure 6 plots the mean values of (A), (B), and (C), respectively, against the mean value of (D), for
various combinations oV and M. The data points for each combinationéfand M/ are assigned
a symbol based on the value %f Examining Figure 6, we see that the set of data points for each
value of% are approximately (though not exactly) collinear. Furthermore, in all three graphs the
slope of the line formed by the data points with= r is maximized when = 1, and decreases
asr gets further away from 1.

To further investigate this trend, we performed least squares linear regression on the set of data
points for each value o% The slopes of the resulting lines are shown as a functicﬁ% of Figure
7.

From examination of Figure 7, it is apparent that

e as the value of% becomes more extreme (i.e., approaches either &Qrthe expected
makespan of random schedules (resp. random local optima) comes closer to the expected
value of the lower bound on makespan; and

¢ the difference between the expected makespan of random schedules (resp. random local

optima) and the expected value of the lower bound on makespan is maximized at a value of
N

M.

M —

The first of these two observations suggests tha%aapproaches eithdr or oo, a random
schedule is almost certainly near-optim@l.3 contains two theorems that confirm this.

The second of these two observations suggests that the expected difference between the makespan
of arandom schedule and the makespan of an optimal schedule is maximized at a %lsxmné
where in the neighborhood of 1. This observation is particularly interesting given the conventional
wisdom that square instances of the JSSP (i.e., those]]—\)}vi:th 1) are harder to solve than rectan-
gular ones [7]. We come back to this observatiof .
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Figure 6: Expected makespan of (A) random schedules, (B) random local optima, and (C) optimal
schedules vs. expected lower bound, for various combinations afid A/ (grouped by symbol

according tolY).
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Figure 7: Slope of the least squares fits to the data in Figure 6 (A), (B), and (C) as a funcfjon of
(includes values o{% not depicted in Figure 6).

7.3 Analysis

The following two theorems show that, % approaches eithér or co, a random schedule will
almost surely be near-optimal (proofs are given in Appendix A).

Theorem 5. Let Iy 5, be a random JSSP instance, lebe a random schedule fdiy 5;, and let
S be an optimal schedule fdiy 5,. Then for fixedV ande > 0, it holds whp (as\V/ — oo) that
0(S) < (1+¢€)l(S).

Theorem 6. Let Iy ), be a randomV by M/ JSSP instance, l&f be a random schedule fdi /,
and letS be an optimal schedule fdiy 5. Then for fixedV/ ande > 0, it holds whp (asV — oo)

A~

that£(S) < (1 + €)((S).

7.4 Easy-hard-easy pattern of instance difficulty

The proofs of Corollary 1 (resp. Lemma 2) show tha%as—> 0 (resp.% — 00) there exist simple
priority rules that almost surely produce an optimal schedule. Moreover, Theorems 5 and 6 show
that in these two limiting cases, even a random schedule will almost surely have makespan that is
very close to optimal. Thus, both % — 0and as]% — 00, almost all JISSP instances are “easy”.

In contrast, for% ~ 1, Figure 7 suggests that random schedules (as well as random local
optima) are far from optimal. The literature on the JSSP as well as our own computational experi-
ence in using the algorithm of Brucker et al. [5] lead us to believe that random JSSP instances with
& =~ 1 are “hard”. Thus we conjecture that, as in 3-SAT, typical instance difficulty in the JSSP
follows an “easy-hard-easy” pattern as a function of a certain parameter.
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8 Conclusions

8.1 Summary of Experimental Results

Empirically, we demonstrated that for low values of the job to machine r@%m low-makespan
schedules are clustered in a small region of the search space and the backbone size is%li'gh. As
creases, low-makespan schedules become dispersed throughout the search space and the the back-
bone vanishes. For both extremely low and extremely high valugﬁ tiie expected makespan of
random schedules comes very close to that of optimal schedules, and the normalized disjunctive
graph distance between a random schedule and the nearest optimal schedule becomes very small.
The quality of random schedules (resp. random local optima) appears to be the worst at a value of
N ~

§6.4 discussed the implications of our results for the “big valley” picture of JSSP search land-
scapes. Fo% ~ 1, we concluded that typical landscapes can be described as a big valley, while
for larger values of% (e.g., ¥ > 3) there are many big valleys;7.4 discussed how our data

M
support the idea that JSSP instance difficulty exhibits an “easy-hard-easy” pattern as a function of
N

M

8.2 An Overall Picture

Let I i be arandomV by M JSSP instance; I&t,.,,,; be a random schedule fé; ,,, and letS
be an optimal schedule fdk », such that|.S,.,.. — S|| is minimal. Table 1 shows the asymptotic

expected values of normalized backbone s g)ld), and the normalized distance frosf,,,, to

S for various values o%. The values in the first and third columns are provably correct, as shown
by theorems 1 through 6. The values in the middle column are conservative conjectures based on
our experimental results.

Table 1. Attributes of random JSSP instances as a functic%. of

N0 L =k>0,N—o00|&—>00
B :lback]l\);ELJS/()]N,Al)|:| 1 €0,1] 0
E :“izgd)] 1 > 1 1
E :—”S;;’(j;‘)g”} 0 >0 0
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Appendix A: Additional Proofs

We make use of the following inequality [24].

Azuma’s Perimetric Inequality (A.P.l.). LetX = (X3, X5, ..., X,,) be avector ofi independent
random variables. Let the functiof{x) take as input a vectar = (xy, 23, ..., x,), Wherex; is a
realization ofX; for i € [n], and produce as output a real number. Suppose that for sbmé) it
holds that for any two vectorsandz’ that differ on at most one coordinate,

f(z) — f(@)] < 8.
Then for anyx > 0,

Oé2
The same inequality holds ft{X < E[X] — a+/n].

Lemma 2. Let I », be a randomV by M JSSP instance. Letbe an arbitrary permutation of
[N], and consider the priority rule- defined by

7T<[N,M> = TlTQTM

where

T = (JPW, 7P,y

(2

Then for fixedM, there exists @ > 0 such that with probabilityl — o(exp(—KN)), the
scheduleS = S(, Iy ) has the property that

S(0) = 5T (M(0)) Yo € ops(In ) -

Proof. Let Iy = {J',J?,...,J"}, and assume without loss of generality thét) = i Vi €
[N]. Let the (not necessarily feasible) schedsilbe defined by

S =7 ({J] € ops(Inar) : (h < iV j<k)Am(J) =m(J)})
for J¥ € ops(Iy ).
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S clearly has the property described in the statement of the lemma. It is straightforward to
check that ifS is feasible, it is identical t&. Thus it remains to show that for sonié > 0,
S is infeasible with probability(exp(—K N)). By definition, S will be infeasible iff. there is
some operation € ops(Iy ) such thatS™(M(o)) < ST(J(0)). It suffices to show that for any
o € ops(In ), P[ST(M(0)) < S (T (0))] < exp(—eN), for some fixedt > 0.

If i =1, P[ST(M(JF)) < ST(T(JF))] = 0. Otherwise,

(i-ON+k-1 (i-2N+k-1 N
M H M — M

E[ST(M(JF)) = ST (J)] = u

The value ofST(M(JF)) — SH(J(JF)) is a function of N independent events (namely, the
definition of each of theV jobs in Iy ), and altering a particular job changes the value of this
expression by at most,... Thus by A.P.I.,

P[ST(M(J])) < ST(T(JF))] < exp (—Wim) '

]

Lemma 3. LetIy 5, be arandomV by M JSSP instance, and I8tbe a random schedule fag ;.
LetS be an optimal schedule fdk 5, such thaf|S — S|| is minimal. Letf (/) be any unbounded,
increasing function oft/. Then for fixedV, it holds whp (as\/ — oo) that ||S — S| < f(M).

Proof. Let.J = argmax ey, 7(J). LetS = m,.q.(In ) be the schedule obtained by the priority

rule ., (discussed in the proof of Corollary 1) that first schedules the operatiods tinen
schedules the remaining operationsi@f,, in some arbitrary order. The proof of Corollary 1
showed that for any/, E[AS] is O(N?). Thus it holds whp that\5 < log(f(M)) VJ. The
procedure used to produceis a mixture of instance-independent priority rules, each subject to
Lemma 1. Thus for any, E[A5]is O(N), so whpA¥5 < log(f(M)) VJ.

Let Onear (i) = {Jj + J" # L[ X0 7(Jr) — Zj’<j T(J]/")| < 2log(f(M))}. (Onear(Ji)
is the set of operations that would be scheduled “near” in timé tbresource constraints were
ignored.) LetF,co, = {e = {Ji, Ji} € E(Ixum) : Jj € Onear(J;) }. Under the assumptions of the
previous paragraph (each of which hold whpy, — S|| < |Eyear|- FOr anyJ;, E[|Opear(J;)]] IS
O(Nlog f(M)), and each/; € O,car(J;) has probabilityﬁ of using the same machine ds It
follows thatE|| E,,...|] is O(N?log f(M)). Thus|E,...| does not exceedi( M) whp.

O

For the purpose of the remaining proofs, it is convenient to introduce some additional notation.
LetT = (T3, T, ..., Tir|) be a sequence of operations. We define

® (i) = {Tz 1 <1 < ig}, and

¢ T(lﬁiviz] ={Ti € Tii, i) : m(T3) = m} .
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Lemma 4. Let Iy ), be a randomV by M JSSP instance, |t be a random schedule fdiy y/,
and letS be an optimal schedule fdiy 5, such that/|.S — S|| is minimal. Then for fixed/ and
e > 0, it holds whp (asV — oo) that||S — S| < N'*e,

Proof. LetT' = m,4n4(In 1) b€ the sequence used to constigicind letl; denote the'" operation
in T'. Consider the scheduledefined by the following procedure:

1. SetS(0) := oo Vo € ops(Iy ).
2. Set@ := (). LetQ; denote the'*" operation inQ.

3. Let the functionready(o) return true ifS* (M (o)) > S*(J (o)), false otherwise.

4. Fori from 1 to N M do:

@) If ready(T;), setS(o) := ST(M(T;)). Otherwise append; onto(Q.
(b) Forj from 1 to|Q@| do:
i. If ready(Q;), setS(Q;) == S*(M(Q,)) and remove); from Q.

5. Schedule any remaining operation(pfn a manner to be specified.

The construction of is just like the construction of, except for the manipulations involving
@. The purpose of) is to delay the scheduling of any operatiothat, if scheduled immediately,
might produce a schedule in whid{o) > S*(M(o)). We first show thal{S — S|| < N whp;
then we show tha$ is optimal whp.

Let Q' denote@ as it exists aftern iterations of step 4 have been performed. Lket) =
S Mo N Q| be the number of iterations during whiehe Q. We claim that||S — S| <
D ocops(in o) 4(0) + (N = 1)|QVM]. Letting E* = {e € E(Iy ) : €(S) # €(5)}, we have

|1S=5| ={e€e EF:en@Q"M =0} +|{e € EZ : e n QVM # 0}|
<Hee B :en Q"M =0} 4+ (N — 1)|QV"|
so it suffices to show{e € E7 : en Q" = 0} < 3 .1, 2(0)- To see this, let
e = {01,090} € E7 be such that N QM = (). We must havey(o;) + ¢(02) > 0. We charge
to the operation i{o;, 02} that was inserted int@ first. It is easy to see that an operation can be

charged for at most one edge per iteration it spendg, iestablishing our claim. Thus it suffices
to show that|S — S| < 3= c iy ) €(0) + (N = DIQNM| < N whp.

We divide the construction of inton = M Nz~ epochs, each consisting &z ' iterations
of step 4, for a to-be-specified > 0. Let z; denote the number of iterations of step 4 that occur
before the end of th¢" epoch, withz; = 0 for j < 0 by convention. Let

o (7' = ngj] \ @* be the set of operations that have been scheduled to ranlpnthe end
of the j** epoch; and
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o Opear = Uje[n]{o € Ty 1z + T(0) € Tiz,_1s10).2,)+ 0E the set of operations whose job-
predecessor belongs to a nearby epoch.

For anyi € [NM], P[T; € Opear] < (M + 2)N-2%<. Thus for anyj € [n], E[|Onear N
Tz s 2] < (M +2)N*. Using A.P.l. it is straightforward to show that whp,

|Onear N T(Zj,l,Zj]| < Nl% v] € [TL] . (81)

We claim that whp, the following statements holg € [n]:

U Q’L g Onear ’ (82)
1<z

JNQ7 1 £0=JNQ% NQY| < |JNQ | v €lvy, (83
RQTNQ7 =0, and (84)
Q7] < MN'F" . (8.5)

We prove this by induction, where each step of the induction fails with exponentially small
probability. Forj = 0, (8.3) and (8.4) hold trivially. (8.2) is true because the operations in
T(0,21] \ Onear are the first operations in their jobs, hence cannot be add@d (8.5) then follows
from (8.2) and (8.1).

Consider the casg > 0. To show (8.2), leb be an arbitrary operation i, , .| \ Onear-

By the induction hypothesis (specifically, equation (8.4))Jp) € C;’i(g(")). Thusg(o) > 0 =

T <C’j"1(§7(°))> > T <Cj"1(f)>. By the induction hypothesis,
m(0) m(J (o)) m(o) e m(J (o))

14

Letting A denote the right hand side of this inequality, we hBy&| = L Nz+ — VN5,
and A.P.l. can be used to show that for sale- 0 independent ofV, P[A < 0] < exp(—=N*).
Thus (8.2) holds with probability at least- exp(—+N<).

To show (8.3), let/ be such that/ N Q%-* # (), and letJ; € Q*-* be chosen so thatis
minimal. ThenJ (J;) € Cj”i(f(‘m). ThusJ; € Q., = 7 <Cj”i(i7(‘7¢))) > T (Cf““”). By (8.1),

14¢

(8.2), and the induction hypothesis (equation (8.5)%| < (M + 1)N = . Using the same
technique as above, we can show that (8.3) holds with probability at]leas;txp(—%Nf') for
someK > 0 independent ofV.

(8.3) implies (8.4). (8.2) and (8.4) together with (8.1) imply (8.5). Thus whp, (8.2) through
(8.5) holdVj € [n].

By (8.2) and (8.4), we have

ocops(In,m

’ [ 2 q<0>] < B[ Onear [MNT < MM +2) N1
)
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and also

E(lQ™] < E[l Ttz s.0] N Onearl] < (M +2)N*

so setting’ = § gives||S — S|l < 3=y 2(0) + (N = D]QYM] < N whp.

It remains to show thaf is optimal whp. The operations scheduled prior to step 5 do not
cause any idle time on any machine, so it is only the operatiogg“if that can causé to be
sub-optimal. Letr(m) = 7({o € ops(In ) : m(o) = m}) denote the workload of machine.
Letsh = arg max,, ., 7(m). Then the following hold whp.

e ThesetZ" =T

\ consists of operations belonging to jobs that diskast.
(NM—2MN% ,NM]

o uNi < 7(Z™) andr(Z™) < 7(m) — 7(in) Vm # .

Thus whp it holds that prior to the execution of stepS5¢ontains a period of length at least
T(Z™) > uNi during which the only operations being processed are thogginwhere{o €
ops(Inar) = J(o) € Z™} = (). Assuming|Q™¥M| < N3¢ (holds whp), we can always schedule
the operations i)™V so as to guarante&S) = (1), which impliesS is optimal.

O

Theorem 5. Let Iy ,, be a random JSSP instance, febe a random schedule fdi 5, and let
S be an optimal schedule fdy »s. Then for fixedV ande > 0, it holds whp (asM/ — oo) that

A~

0(S) < (1+¢€)l(S).

Proof. The procedure used to construct random schedules is a mixture of instance-independent
priority rules, each subject to Lemma 1. Thus for ed¢fit[A}] is O(N). Thus/(S) — ((S) <
>, A5 = O(N?), and thus does not exceed S) whp. O

Theorem 6. Let Iy y, be a randomV by M JSSP instance, l&t be a random schedule fdk; s,
and letS be an optimal schedule fdiy »,. Then for fixed\/ ande > 0, it holds whp (asV — oo)

~

that£(S) < (1 + €)¢(S).

Proof. LetT = m.q,q(1n,1) be the sequence used to constiicand letT; be thei” operation in
T'. Rather than analyz€ directly, we analyze a schedutedefined by the following procedure:

1. Sett :=0.
2. Forifrom 1 toNM do:
(@) SetS(T;) = max(t, ST(J(T;)), ST(M(Ty))) .

(b) If 5*(\7(7})) > g+(M(T;)), sett = max;<; S+(T;/)
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The procedure is identical to the one used to constsuexcept that, whenever an operation
T; is assigned a start timg(7;) > S*(M(T;)), the procedure inserts artificial delays into the
schedule in order to re-synchronize the machines. Foffaiyis clear that/(S) < ¢(S). Thus, it
suffices to show that(S) < (1 + €)¢(S) whp.

We divide the construction &f into n epochs, where each update {in step 2(b)) defines the
beginning of a new epoch. Let be the number of operations scheduled before the end af'the
epoch, withzg = 0 by convention. Let; = max; <., S™(o;) be the (updated) value ofat the end
of thei™ epoch. Define\; = SN ¢, — maxy<i m(r,)=m S*(Tir). Thenf(S) — £(S) < S0 A,
so It suffices to show thgt", A; < ¢/(S) whp.

Let/ = [n|,andletL = {i € I : z; — 2,1 > N%}. We first conside ., A;; then we
considery .\, Ai.

Leti, andi, be arbitrary integers with < iy,i, < NM andiy, —i; > N7. Let7 = T(Tgim).
ThenE[7] = #% For anyT’, 7 is a function of the outcome of at most— ¢; events (namely,

the definition of each of the jobs iV : J NT{;, ;,) # 0}), each of which alters the value ofby
at mostr,,,.... It follows by A.P.1. that

, N26’
]P’[|%—IE[?]|>N€\/Z'2—7J1]§Qexp (—2 5 )

foranye’ > 0. Thus, it holds whp thgt —E[7]| < N°\/i, — 4, for all possible choices af and
i». In particular, whp we hava; < 2M N€\/z; — z;_; Vi, which impliesy . A; < IMN=+e

Now consider) . nr Qi Itcan be easily shown that the probability that an arbitrary set of at
mostN 7 consecutive operations ifi contains two operations from the same job is at niost
SOE[|I\ L|] < N7. ClearlyA; < 7,0 N7 Vi € I\ L, SOE[Y,c;y, A iS O(NF).

ThusE[Y,., A;] is O(N#+) for anye’ > 0,503
see that(S) > u& whp.

.o A < N7+2¢ whp, while it is easy to

]
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