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Abstract

We characterize the search landscape of random instances of the job shop scheduling problem
(JSSP). Specifically, we investigate how the expected values of (1) backbone size, (2) distance
between near-optimal schedules, and (3) makespan of random schedules vary as a function of the
job to machine ratio (N

M
). For the limiting casesN

M
→ 0 and N

M
→ ∞ we provide analytical

results, while for intermediate values ofN
M

we perform experiments. We prove that asN
M
→ 0,

backbone size approaches 100%, while asN
M
→∞ the backbone vanishes. In the process we show

that asN
M
→ 0 (resp. N

M
→ ∞), simple priority rules almost surely generate an optimal schedule,

suggesting a theoretical account of the “easy-hard-easy” pattern of typical-case instance difficulty
in job shop scheduling. We also draw connections between our theoretical results and the “big
valley” picture of JSSP landscapes.
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1 Introduction

1.1 Motivations

The goal of this work is to provide a picture of the typical landscape of random instances of the job
shop scheduling problem (JSSP), and to determine how this picture changes as a function of the
job to machine ratio (N

M
). Such a picture is potentially useful in (1) understanding how typical-case

instance difficulty varies as a function ofN
M

and (2) designing search heuristics that take advantage
of regularities in typical instances of the JSSP.

1.1.1 Understanding instance difficulty as a function ofN
M

In the job shop scheduling literature there is a conventional wisdom that square JSSPs (those
with N

M
= 1) are more difficult to solve than rectangular instances [7]. This work makes both

theoretical and empirical contributions toward understanding this phenomenon. Empirically, we
show that random schedules (resp. random local optima) are furthest from optimality whenN

M
u 1.

Analytically, we prove that in the two limiting cases (N
M
→ 0 and N

M
→ ∞) there exist simple

priority rules that almost surely produce an optimal schedule, providing theoretical evidence of an
“easy-hard-easy” pattern of instance difficulty in the JSSP.

1.1.2 Informing the design of search heuristics

Heuristics based on local search (e.g., taboo search [8, 18], iterated local search [12]) have shown
excellent performance on benchmark instances of the job shop scheduling problem [9, 10]. In
order to design an effective heuristic, one must (explicitly or implicitly) make assumptions about
the search landscape of instances to which the heuristic will be applied. For example, Nowicki and
Smutnicki motivate the use ofpath relinkingin their state-of-the-arti-TSAB algorithm by citing
evidence that the JSSP has a “big valley” distribution of local optima [20]. One of the conclusions
of our work is that the typical landscape of random instances can only be thought of as a big
valley for values ofN

M
close to 1; for larger values ofN

M
(including values common in benchmark

instances), the landscape breaks into many big valleys, suggesting that modifications toi-TSAB
may allow it to better handle this case.

1.2 Contributions

The contributions of this paper are twofold. First, we design a novel set of experiments and run
these experiments on random instances of the JSSP. Second, we derive analytical results that con-
firm and provide insight into the trends suggested by our experiments.

The main contributions of our empirical work are as follows.

• For low values ofN
M

, we show that low-makespan schedules are clustered in a small region
of the search space and many attributes (i.e., directed disjunctive graph edges) are common
to all low-makespan schedules. AsN

M
increases, low-makespan schedules become dispersed

1



throughout the search space and there are no attributes common to all low-makespan sched-
ules.

• We introduce a statistic (neighborhood exactness) that can be used to quantitatively measure
the “ruggedness” of a search landscape, and estimate the expected value of this statistic for
random instances of the JSSP. These results, in combination with the results on clustering,
suggest that the landscape of typical instances of the JSSP can be described as a big valley
only for low values ofN

M
; for high values ofN

M
there are many separate big valleys.

For the limiting casesN
M
→ 0 and N

M
→∞, we derive analytical results. Specifically, we prove

that

• as N
M
→ 0, the expected size of the backbone (i.e., the set of problem variables that have

a common value in all global optima) approaches 100%, while asN
M
→ ∞, the expected

backbone size approaches 0%; and

• as N
M

→ 0 (resp. N
M

→ ∞), a randomly-generated schedule will almost surely have a
makespan that is near-optimal, and will be located “close” (in a sense to be precisely defined)
to an optimal schedule.

2 Related Work

There are at least three threads of research that have conducted search space analyses related to
the ones we conduct here. These include literature on the “big valley” distribution common to a
number of combinatorial optimization problems, studies of backbone size in boolean satisfiability,
and a statistical mechanical analysis of the TSP. We briefly review these three areas below, as well
as relevant work on phase transitions and the “easy-hard-easy” pattern of instance difficulty.

2.1 The Big Valley

The term “big valley” originated in a paper by Boese et al. [4] that examined the distribution of
local optima in the Traveling Salesman Problem (TSP). Based on a sample of local optima obtained
by next-descent starting from random TSP tours, Boese calculated two correlations:

1. the correlation between the cost of a locally optimal tour and its average distance to other
locally optimal tours, and

2. the correlation between the cost of a locally optimal tour and the distance from that tour to
the best tour in the sample.

The distance between two TSP tours was defined as the total number of edges minus the number
of edges that are common to the two tours. Based on the fact that both of these correlations were
surprisingly high, and the fact that the mean distance between random local optima was small
relative to the mean distance between random tours, Boese conjectured that local optima in the
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TSP are arranged in a “big valley”. The term does not have a formal definition, but intuitively it
means that if the search space could be locally smoothed in some manner it would then have a
single basin of attraction with respect to common TSP move operators such as Lin 2-opt.

Boese’s analysis has been applied to other combinatorial problems [11], including the permu-
tation flow shop scheduling problem [28, 21] and the JSSP [19]. Correlations observed for the
JSSP are generally weaker than those observed for the TSP.

2.2 Backbone Size

Thebackboneof a problem instance is the set of attributes common to all globally optimal solutions
of that instance. For example, in the boolean satisfiability problem (SAT), the backbone is the set
of variable assignments that are common to all satisfying assignments. In the JSSP, the backbone
has been defined as the number of disjunctive edges (§3.2) that have a common orientation in all
globally optimal schedules (a formal definition is given in§4).

There is a large literature on backbones in combinatorial optimization problems, including
many empirical and analytical results [23, 17]. In an analysis of problem difficulty in the JSSP,
Watson et al. [29] present histograms of backbone size for random 6x6 (6 job, 6 machine) and
6x4 (6 job, 4 machine) JSSP instances. Summarizing experiments not reported in their paper,
Watson et al. note that “For [job:machine ratios]> 1.5, the bias toward small backbones becomes
more pronounced, while for ratios< 1, the bias toward larger backbones is further magnified.”§4
generalizes these observations and proves two theorems that give insight into why this phenomenon
occurs.

2.3 Statistical Mechanical Analyses

A large and growing literature applies techniques from statistical mechanics to the analysis of
combinatorial optimization problems [14]. At least one result obtained in this literature concerns
clustering of low-cost solutions. In a study of the TSP, Mézard and Parisi [16] obtain an ex-
pression for the expected overlap (number of common edges) between random TSP tours drawn
from a Boltzmann distribution. They show that as the temperature parameter of the Boltzmann
distribution is lowered (placing more probability mass on low-cost TSP tours), expected overlap
approaches 100%. Though we do not use a Boltzmann weighting,§5 of this paper examines how
expected overlap between random JSSP schedules changes as more probability mass is placed on
low-makespan schedules.

2.4 Phase Transitions and the Easy-hard-easy Pattern

Loosely speaking, a phase transition occurs in a system when the expected value of some statis-
tic varies discontinuously (asymptotically) as a function of some parameter. As an example, for
any ε > 0 it holds that random instances of the 2-SAT problem are satisfiable with probability
asymptotically approaching 1 when the clause to variable ratio (m

n
) is 1 − ε, but are satisfiable

with probability approaching 0 when the clause to variable ratio is1 + ε. A similar statement is
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Figure 1: (A) A JSSP instance, (B) a feasible schedule for the instance, and (C) the disjunctive
graph representation of the schedule. Boxes represent operations; operation durations are propor-
tional to the width of a box; and the machine on which an operation is performed is represented
by texture. In (C), solid arrows represent conjunctive arcs and dashed arrows represent disjunctive
arcs.

conjectured to hold for 3-SAT; the critical valuek of m
n

(if it exists) must satisfy3.42 ≤ k ≤ 4.51
[1].

For some problems that exhibit phase transitions (notably 3-SAT), average-case instance diffi-
culty (for typical solvers) appears to first increase and then decrease as one increases the relevant
parameter, with the hardest instances appearing close to the threshold value [6]. This phenomenon
has been referred to as an “easy-hard-easy” pattern of instance difficulty [13]. In§7.4 we discuss
evidence of an easy-hard-easy pattern of instance difficulty in the JSSP, though (to our knowledge)
it is not associated with any phase transition.

3 The Job Shop Scheduling Problem

We adopt the notation[n] ≡ {1, 2, . . . , n}.

3.1 Problem Definition

Definition (JSSP instance).An N by M JSSP instanceIN,M = {J1,J2, . . . , JN} is a set ofN
jobs , where each jobJk = (Jk

1 , Jk
2 , . . . , Jk

M) is a sequence ofM operations, and each operation
Jk

i is a triple (k, m̄, τ̄) wherem̄ ∈ [M ] is a machine numberand τ̄ > 0 is a duration. We require
that each job use each machine exactly once (i.e., for eachJk ∈ IN,M and m̄ ∈ [M ], we have
|{o = (k, m̄′, τ̄) ∈ J : m̄′ = m̄}| = 1). We define

1. ops(IN,M) ≡ {o ∈ J : J ∈ IN,M},
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2. m((k, m̄, τ̄)) ≡ m̄,

3. τ((k, m̄, τ̄)) ≡ τ̄ ,

4. τ(O) ≡
∑

o∈O τ(o) (whereO is any set of operations), and

5. thejob-predecessorJ (Jk
i ) of an operationJk

i as

J (Jk
i ) ≡

{
Jk

i−1 if i > 1
o∅ otherwise

whereo∅ is a fictitious operation,τ(o∅) = 0, andm(o∅) is undefined.

Definition (JSSP schedule).A JSSP schedule for an instanceIN,M is a functionS : ops(IN,M) →
<+ that associates with each operationo ∈ ops(IN,M) a start timeS(o). We make the following
definitions.

1. Thecompletion timeof an operationo is S+(o) ≡ S(o) + τ(o).

2. Let Ō(o) = {ō ∈ ops(IN,M) : m(ō) = m(o), S(ō) < S(o)} denote the set of operations
scheduled to run before an operationo on o’s machine. Themachine-predecessorM(o) of
o is defined as

M(o) ≡
{

arg maxō∈Ō(o) S(ō) if Ō(o) 6= ∅
o∅ otherwise.

3. S is a feasibleschedule ifS(o) ≥ max(S+(J (o)), S+(M(o))) ∀o ∈ ops(IN,M).

4. The quantity
`(S) ≡ max

o∈ops(IN,M )
S+(o)

is called themakespanof S.

We consider the makespan-minimization version of the JSSP, in which the goal is to find a
schedule that minimizes the makespan.

For the remainder of the paper, whenever we refer to a JSSP scheduleS we shall assume that

S(o) = max(S+(J (o)), S+(M(o))) ∀o ∈ ops(IN,M) (3.1)

(i.e.,S is a so-calledsemi-activeschedule). In other words, we ignore schedules with superfluous
idle time between the end of one operation and the start of another.

Figure 1 (A) and (B) depict, respectively, a JSSP instance and a feasible schedule for that
instance.
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3.2 Disjunctive Graphs

A schedule satisfying (3.1) can be uniquely represented by a weighted, directed graph called its
disjunctive graph.

Definition (disjunctive graph). The disjunctive graphG = G(IN,M , S) of a scheduleS for a
JSSP instanceIN,M is the weighted, directed graphG = (V, ~E, w) defined as follows.

• V = ops(IN,M) ∪ {o∅, o∗}, whereo∅ (resp. o∗) is a fictitious operation withτ(o∅) = 0 and
m(o∅) undefined.

• ~E = ~C ∪ ~D, where

– ~C = {(o1, o2) : {o1, o2} ⊆ ops(IN,M),J (o2) = o1} ∪
{
(o∅, J1) : J ∈ IN,M

}
∪ {(JM , o∗) : J ∈ IN,M}, and

– ~D = {(o1, o2) : {o1, o2} ⊆ ops(IN,M), m(o1) = m(o2), S(o1) < S(o2)}.

• w((o1, o2)) = τ(o1).

The arcs in~C are calledconjunctive arcs, while those in~D are calleddisjunctive arcs. We make
the following definitions

1. The setE(IN,M) of disjunctive edgesof IN,M is defined by

E(IN,M) ≡ {{o1, o2} ⊆ ops(IN,M) : m(o1) = m(o2)}

2. For a disjunctive edgee ∈ E(IN,M), the function~e(S) returns the unique arca ∈ {(o1, o2), (o2, o1)}
which appears inG(IN,M , S).

3. Thedisjunctive graph distance‖S1 − S2‖ between two schedulesS1 and S2 for IN,M is
defined by

‖S1 − S2‖ ≡ |{e ∈ E(IN,M) : ~e(S1) 6= ~e(S2)}|

It is straightforward to verify the following Proposition [22].

Proposition 1. If S is a feasible schedule forIN,M satisfying assumption(3.1), then`(S) is equal
to the length of the longest weighted path fromo∅ to o∗ in G(IN,M , S).

Figure 1 (C) depicts the disjunctive graph for the schedule depicted in Figure 1 (B).
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3.3 Random Schedules and Instances

We define a uniform distribution over JSSP instances as follows.

Definition (random JSSP instance).A randomN by M JSSP instanceIN,M is generated as
follows.

1. Letφ1, φ2, . . . , φN be random permutations of[M ].

2. Let the elements of{τk,i : k ∈ [N ], i ∈ [M ]} be drawn independently at random from a
common distribution over(0, τmax] with meanµ varianceσ2 > 0.

3. DefineIN,M = {J1, J2, . . . , JN}, whereJk
i = (φk(i), τk,i).

Note that we assume a maximum operation durationτmax. We choose operation durations from
a uniform distribution over{1, 2, . . . , 100} for the experiments described in this paper.

To define a distribution over JSSP schedules, it is convenient to first make the following defi-
nition.

Definition (priority rule). A priority rule π is a function that, given an instanceIN,M , returns
a sequenceT = π(IN,M), where the set of elements ofT is ops(IN,M), and where, for any
{Jk

i , Jk
j } ⊆ ops(IN,M) with i < j, Jk

i appears beforeJk
j in T .

The scheduleS = S(π, IN,M) associated withπ is defined by the following procedure.

1. SetT := π(IN,M). LetTi denote theith operation inT .

2. SetS(o) := ∞ ∀o ∈ ops(IN,M) and setS(o∅) := 0.

3. For i from 1 toNM do:

(a) SetS(Ti) := max(S+(J (Ti)), S
+(M(Ti))) .

A priority rule is calledinstance-independentif T = π(IN,M) depends only onN andM .

Our definition of random schedules is equivalent to the one proposed by Mattfeld [15].

Definition (random schedule).A random schedule for anN by M instanceIN,M is a schedule
obtained using the priority ruleπrand, whereπrand(IN,M) returns a random element of the set
{T = π(IN,M) : π is a priority rule}.

4 Number of Common Attributes as a Function of Makespan

In this section we compute the expected value of|ρ backbone| (defined below) as a function ofρ
for randomN by M JSSP instances, and examine how the shape of this curve changes as a function
of N

M
. We make the following definition (a related definition appears in [23]).

Definition (ρ backbone). LetŜ be an optimal schedule for a JSSP instanceIN,M . Letρ opt(IN,M) ≡
{S : `(S) ≤ (1+ρ)`(Ŝ)} be the set of schedules whose makespan is within a factorρ of optimality.
Then

ρ backbone(IN,M) ≡ {e ∈ E(IN,M) : ~e(S) = ~e(S ′) ∀{S, S ′} ⊆ ρ opt(IN,M)} .
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4.1 Computing |ρ backbone|
For an arbitrary JSSP instance, we compute|ρ backbone| for all ρ using multiple runs of a branch
and bound algorithm.

Let opt(a) denote the minimum makespan among schedules whose disjunctive graphs contain
the arca. In branch and bound algorithms for the JSSP, nodes in the search tree represent choices
of orientations for a subset of the disjunctive edges. Thus, by constructing a root search tree node
that hasa as a fixed arc, we can determineopt(a) using existing branch and bound algorithms. We
use an algorithm due to Brucker et al. [5] because it is efficient and because the code for it is freely
available via ORSEP.

Suppose we are interested in all schedules whose makespan is at mostt = ρ · ˆ̀, whereˆ̀ is the
optimum makespan for the given instance. Consider an arbirary disjunctive edgee = {o1, o2}, with
orientationsa1 = (o1, o2) anda2 = (o2, o1). It must be the case thatmin(opt(a1), opt(a2)) = ˆ̀.
If t < max(opt(a1), opt(a2)), then one of the two orientations ofe precludes schedules with
makespan≤ t, soe must belong to theρ backbone. Thus

|ρ backbone| =
∑

{o1,o2}∈E

[t < max(opt((o1, o2)), opt((o2, o1))] (4.1)

where the [...] notation indicates a function that returns 1 if the predicate enclosed in the
brackets is true, 0 otherwise.

Using (4.1), we can determine|ρ backbone| for all ρ by performing1 + M
(

N
2

)
runs of branch

and bound. The first branch and bound run is used to find a globally optimal schedule, which gives
the value ofopt for one of the two possible orientations of each of theM

(
N
2

)
disjunctive edges.

A separate branch and bound run is used to determine the values ofopt for theM
(

N
2

)
alternative

orientations.
Figure 2 graphs the fraction of disjunctive edges that belong to theρ backbone as a function

of ρ for instance ft10 (a 10 job, 10 machine instance) from the OR library [3]. Note that by
definition the curve is non-increasing with respect toρ, and that the curve is exact for allρ. It is
noteworthy that among schedules within 0.5% of optimality, 80% of the disjunctive edges have a
fixed orientation. We will see that this behavior is typical of JSSP instances withN

M
= 1.

4.2 Results

We plotted|ρ backbone| as a function ofρ for all instances in the OR library having 10 or fewer
jobs and 10 or fewer machines. The results are available online [25]. Inspection of the graphs
revealed that the shape of the curve is largely a function of the job:machine ratio. To investigate this
further, we repeated these experiments on a large number of randomly generated JSSP instances.

We use randomly-generated instances with 7 different combinations ofN andM to study in-
stances withN

M
equal to 1, 2, or 3. ForN

M
= 1 we use 6x6, 7x7, and 8x8 instances; forN

M
= 2

we use 8x4 and 10x5 instances; and forN
M

= 3 we use 9x3 and 12x4 instances. We generate 1000
random instances for each combination ofN andM .

Figure 3 presents the expected fraction of edges belonging to theρ-backbone as a function of
ρ for each combination ofN andM , grouped according toN

M
. For the purposes of this study the
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Figure 2: Normalized|ρ backbone| as a function ofρ for OR library instance ft10.

two most important observations about Figure 3 are as follows.

• The curves depend on both the size of the instance (i.e.,NM ) and the shape (i.e.,N
M

). Of
these two factors,N

M
has by far the stronger influence on the shape of the curves.

• For all values ofρ, the expected fraction of edges belonging to theρ backbone decreases as
N
M

increases.

4.3 Analysis

We now give some insight into Figure 3 by analyzing two limiting cases. We prove that asN
M
→0,

the expected fraction of disjunctive edges that belong to the backbone approaches 1, while as
N
M
→∞ this expected fraction approaches 0.
Intuitively, what happens is as follows. AsN

M
→0 (i.e., N is held constant andM→∞) each

of the jobs becomes very long. Individual disjunctive edges then represent precedence relations
among operations that should be performed very far apart in time. For example, if there are 10,000
machines (and so each job consists of 10,000 operations), a disjunctive edge might specify whether
operation 1,200 of jobA is to be performed before operation 8,500 of jobB. Clearly, waiting for
job B to complete 8,500 of its operations before allowing jobA to complete 12% of its operations
is likely to produce an inefficient schedule. Thus, orienting a single disjunctive edge in the “wrong”
direction is likely to prevent a schedule from being optimal, and so any particular edge will likely
have a common orientation in all globally optimal schedules.

In contrast, whenN
M
→∞, it is the workloads of the machines that become very long. The

order in which the jobs are processed on a particular machine does not matter much as long as the
machine with the longest workload is kept busy, and so the fact that a particular edge is oriented
a particular way is unlikely to prevent a schedule from being optimal. All of this is formalized
below.
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Figure 3: Expected fraction of edges inρ-backbone as a function ofρ for random JSSP instances.
Graphs (A), (B), and (C) depict curves for random instances withN

M
= 1, 2, and 3, respectively.
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We will make use of the following well-known definition.

Definition (whp). A sequence of eventsξn occurs with high probability (whp) iflimn→∞ P[ξn] = 1.

Lemma 1 and Theorem 1 show that for constantN , a randomly chosen edge of a randomN by
M JSSP instance will be in the backbone whp (asM→∞). Lemma 2 and Theorem 2 show that
for constantM , a randomly chosen edge of a randomN by M JSSP instance will not be in the
backbone whp (asN→∞). The proof of Lemma 2 appears in Appendix A.

Lemma 1. LetIN,M be a randomN byM JSSP instance, and letS = S(π, IN,M) be the schedule
for IN,M obtained using some instance-independent priority ruleπ. For an arbitrary jobJ ∈ IN,M ,
let ∆S

J ≡ S+(JM) − τ(J) be the amount of time by which the completion ofJ is delayed due to
resource constraints. ThenE[∆J ] is O(N).

Proof. We assumeN = 2 andM > 1. The generalization to largerN is straightforward, while
the casesN = 1 andM = 1 are trivial. LetIN,M = {J1, J2} and letJ = J1. We say that an
operationJ1

i overlapswith an operationJ2
j if

1. J2
j appears beforeJ1

i in π(IN,M), and

2. [S(J2
j ), S+(J2

j )] ∩ [S+(J1
i−1), S

+(J1
i−1) + τ(J1

i )] 6= ∅ .

If additionally m(J1
i ) = m(J2

j ), we say thatJ1
i contendswith J2

j . Let θi,j (resp. δi,j) be an
indicator for the event thatJ1

i overlaps (resp. contends) withJ2
j . Let Ci ≡ {J2

j : θi,j = 1} be the
set of operations inJ2 thatJ1

i overlaps with. Then|Ci ∩
⋃

i′>i Ci′| ≤ 1. Thus∑
i

|Ci| =
∑

i

|Ci \
⋃
i′>i

Ci′|+
∑

i

|Ci ∩
⋃
i′>i

Ci′| ≤ 2M . (4.2)

Let Ī = IN,M−1 be a randomN byM−1 JSSP instance, and defineθ̄i,j, δ̄i,j, andC̄i analogously
to the above. Then fori, j ≤ M − 1,

P
[
θi,j = 1|m(J1

i ) = m(J2
j )

]
= P

[
θ̄i,j = 1

]
.

This is true becauseP[θi,j = 1] is a function of the joint distribution of the operations in the set
{J1

i′ : i′ < i} ∪ {J2
j′ : j′ < j}; and, as far as this joint distribution is concerned, conditioning on

the eventm(J1
i ) = m(J2

j ) is like deleting the operations that use the machinem(J1
i ).

ThusE [δi,j] = 1
M

E
[
θi,j|m(J1

i ) = m(J2
j )

]
= 1

M
E

[
θ̄i,j

]
. Therefore,∑M

i=1

∑M
j=1 E[δi,j] ≤ 2 +

∑M−1
i=1

∑M−1
j=1 E[δi,j]

= 2 + 1
M

∑M−1
i=1

∑M−1
j=1 E[θ̄i,j]

= 2 + 1
M

∑M−1
i=1 E[|C̄i|]

≤ 4

where in the last step we have used (4.2). It follows thatE[∆S
J ] ≤ 4τmax (τmax is the maximum

operation duration defined in§3). When we consider arbitraryN , we getE[∆S
J ] ≤ 4τmax(N − 1).

11



Corollary 1. Let IN,M be a randomN by M JSSP instance. Then for fixedN , it holds whp (as
M →∞) that an optimal schedulêS for IN,M has`(Ŝ) = maxk∈[N ] τ(Jk).

Proof. Let πk be an instance-independent priority rule that first schedules all the operations in the
job Jk, then schedules the remaining operations in some arbitrary order. Letπmax be a priority
rule (not instance-independent) that first computesk∗ = arg maxk∈[N ] τ(Jk), and then invokes
πk∗. Using Lemma 1, we have

E[∆πmax
J ] ≤

∑
k

E[∆πk
J ] = O(N2)

whereJ ∈ IN,M and we define∆π
J ≡ ∆

S(π,IN,M )
J . Then by Markov’s inequality,∆πmax

J < M
1
4

∀J ∈ IN,M whp. By the Central Limit Theorem, eachτ(J) is asymptotically normally distributed
with meanµM and standard deviationσ

√
M . It follows that whp,τ(Jk∗)−τ(Jk) > M

1
4 ∀k 6= k∗.

This implies`(Ŝ) ≤ `(S(πmax, IN,M)) = τ(Jk∗).

Theorem 1. Let IN,M be a randomN by M JSSP instance, and lete be a randomly selected
element ofE(IN,M). Then for fixedN , it holds whp (asM→∞) that e ∈ 1 backbone(IN,M).

Proof. Let e = {Ji, J
′
j} with i ≤ j, let a = (J ′j, Ji), and letSa = {S : ~e(S) = a}. We show that

whp,minS∈Sa `(S) > maxJ∈IN,M
τ(J). By Corollary 1, this impliese ∈ 1 backbone(IN,M) whp.

Assumej − i ≥ M
3
4 (holds whp). LetŜ = arg minS∈Sa

`(S). Then

P = (o∅, J ′1, J
′
2, . . . , J

′
j, Ji, Ji+1, . . . , JM , o∗)

is a directed path inG(IN,M , Ŝ) that passes through at least3 + M + M
3
4 vertices. By

Proposition 1,̀ (Ŝ) ≥ w(P ), wherew(P ) is the weighted length ofP . It remains to show that
w(P ) > maxJ∈IN,M

τ(J) whp. For any fixedP , it follows by the Central Limit Theorem thatw(P )

is asymptotically normally distributed with meanµ(|P | − 2) and standard deviationσ
√

(|P | − 2),
while for eachJ , τ(J) is asymptotically normally distributed with meanµM and standard devia-
tion σ

√
M . Thatw(P ) > maxJ∈IN,M

τ(J) whp follows by Chebyshev’s inequality.

Lemma 2. Let IN,M be a randomN by M JSSP instance. Letφ be an arbitrary permutation of
[N ], and consider the priority ruleπ defined by

π(IN,M) = T1T2 . . . TM

where

Ti = (J
φ(1)
i , J

φ(2)
i , . . . , J

φ(N)
i ) .

Then for fixedM , there exists aK > 0 such that with probability1 − o(exp(−KN)), the
schedulêS = S(π, IN,M) has the property that

Ŝ(o) = Ŝ+(M(o)) ∀o ∈ ops(IN,M) .

12



Proof. See Appendix A.

Corollary 2. Let IN,M be a randomN byM JSSP instance, and let̂S be an optimal schedule for
IN,M . Letτ(m̄) ≡ τ({o ∈ ops(IN,M) : m(o) = m̄}) denote the workload of machinēm. Then for
fixedM , it holds whp (asN→∞) that `(Ŝ) = maxm̄∈[M ] τ(m̄).

Corollary 2 confirms a conjecture of Taillard [26].

Theorem 2. Let IN,M be a randomN by M JSSP instance, and lete be a randomly selected
element ofE(IN,M). Then for fixedM , it holds whp (asN→∞) that e /∈ 1 backbone(IN,M).

Proof. Let e = {Ji, J
′
j}. Remove bothJ andJ ′ from IN,M to create a new instanceIN−2,M , which

comes from the same distribution as a randomN − 2 by M JSSP instance. Lemma 2 shows that
whp there exists an optimal scheduleŜ for IN−2,M with the property described in the statement of
the lemma.

Let τ(m̄) ≡ τ({o ∈ ops(IN,M) : m(o) = m̄}) denote the workload of machinēm. By the
Central Limit Theorem, eachτ(m̄) is asymptotically normally distributed with meanµ(N − 2)

and standard deviationσ
√

N − 2. It follows that whp,|τ(m̄)− τ(m̄′)| > N
1
4 ∀m̄ 6= m̄′.

Thus whp there will be only one machine still processing operations during the interval[`(Ŝ)−
N

1
4 , `(Ŝ)]. Becausemax(τ(J), τ(J ′)) ≤ Mτmax = O(1), we can use this interval to construct

optimal schedules containing the disjunctive arc(Ji, J
′
j) as well as optimal schedules containing

the disjunctive arc(J ′j, Ji).

5 Clustering as a Function of Makespan

In this section we estimate the expected distance between random schedules within a factorρ of
optimality, as a function ofρ for various combinations ofN andM . We examine how the shape
of this curve changes as a function ofN

M
. More formally, if

• IN,M is a randomN by M JSSP instance,

• Ŝ is an optimal schedule forIN,M ,

• ρ opt(IN,M) ≡ {S : `(S) ≤ (1 + ρ)`(Ŝ)}, and

• Sρ
1 andSρ

2 are drawn independently at random fromρ opt(IN,M),

we wish to computeE[‖Sρ
1 − Sρ

2‖].
The experiments of the previous section provide an upper bound on this quantity:

E [‖Sρ
1 − Sρ

2‖] ≤ M

(
N

2

)
− E [|ρ backbone|]

but provide no lower bound.

13



5.1 Methodology

We generate “random” samples fromρ opt(IN,M) by running the simulated annealing algorithm of
van Laarhoven et al. [27] until it finds such a schedule. More precisely, our procedure for sampling
distances is as follows.

1. Generate a randomN by M JSSP instanceI.

2. Using the branch and bound algorithm of Brucker et al. [5], determine the optimal makespan
of I.

3. Perform two runs,R1 andR2, of the van Laarhoven et al. [27] simulated annealing algorithm.
Restart each run as many times as necessary for it to find a schedule whose makespan is
optimal.

4. For eachρ ∈ {1, 1.01, 1.02, ..., 2}, find the first schedule, call itsi(ρ), in each runRi whose
makespan is within a factorρ of optimality. Add the distance betweens1(ρ) ands2(ρ) to the
sample of distances associated withρ.

Note that the distances for different values ofρ are dependent, but that for a givenρ all the
sampled distances are independent, so that our estimates are unbiased. Figure 4 presents the results
of running this procedure on 1000 random JSSP instances for the same 7 combinations ofN and
M that were used in§4.2.

From examination of Figure 4, we see that forρ near 1, theρ-optimal schedules are in fact
dispersed widely throughout the search space forN

M
= 3, and that this is true to a lesser extent for

N
M

= 2.
An immediate implication of Figure 4 is that whether or not they exhibit the two correlations

that are the operational definition of a big valley, typical landscapes for JSSP instances withN
M

= 3
cannot be expected to be big valleys in the intuitive sense of these words. If anything, one might
posit the existence of multiple big valleys, each leading to a separate global optimum. The next
section expands upon these observations.

6 The Big Valley

In the section we formalize the notion of a big valley landscape, conduct experiments to determine
the extent to which random JSSP instances exhibit such a landscape as we varyN

M
, and present

analytical results for the limiting casesN
M
→ 0 and N

M
→∞.

6.1 Formalization

The following three definitions allow us to formalize the notion of a big valley landscape.

Definition (NeighborhoodNr). Let I be an arbirary JSSP instance, and letU be the set of all
schedules forI. The neighborhoodNr : U → 2U is defined by

Nr(S) ≡ {S ′ ∈ U : ‖S − S ′‖ ≤ r} .

14



(A) Job:machine ratio 1:1

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4 1.6 1.8 2
ρ

E
[d

is
t.

 b
et

w
ee

n
 s

ch
ed

u
le

s]
6x6 instances

7x7 instances

8x8 instances

(B) Job:machine ratio 2:1

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4 1.6 1.8 2

ρ

E
[d

is
t.

 b
et

w
ee

n
 s

ch
ed

u
le

s]

8x4 instances

10x5 instances

(C) Job:machine ratio 3:1

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4 1.6 1.8 2

ρ

E
[d

is
t.

 b
et

w
ee

n
 s

ch
ed

u
le

s]

9x3 instances

12x4 instances

Figure 4: Expected distance between random schedules within a factorρ of optimality, as a func-
tion of ρ. Graphs (A), (B), and (C) depict curves for random instances withN

M
= 1, 2, and 3,

respectively.
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Definition ((r, δ)-valley). LetI andU be as above, and letr andδ be non-negative integers. A set
V ⊆ U is an(r, δ)-valley if V has the following two properties.

1. For anyS ∈ V ,
`(S) = min

S̄∈Nr(S)
`(S̄) ⇒ `(S) = min

S̄∈U
`(S̄)

(i.e., if S that is locally optimal w.r.t.Nr it must also be globally optimal), while

`(S) > min
S̄∈Nr(S)

`(S̄) ⇒ `(S) > min
S̄∈Nr(S)∩V

`(S̄)

(i.e., if S is not locally optimal then some schedule inNr ∩ V must improve upon it).

2. For any{S1, S2} ⊆ V such that̀ (S1) = `(S2) = minS̄∈U `(S̄), ‖S1 − S2‖ ≤ δ.

Definition ((r, δ, p) landscape).Let I andU be as above, and letS be a random schedule forI.
ThenI has an(r, δ, p) landscapeif there exists aV ⊆ U such that

1. V is an(r, δ)-valley, and

2. P[S ∈ V ] ≥ p.

Any JSSP instanceI trivially has an(M
(

N
2

)
, M

(
N
2

)
, 1) landscape.I could be described as

having a big valley landscape ifI has an(r, δ, p) landscape for smallr andδ in combination with
p near 1.

In this section we seek to determine the combinations ofr andp for which random JSSP in-
stances typically have an(r, M

(
N
2

)
, p) landscape. We do this using a statistic calledneighborhood

exactness, defined below.

Definition (L(S,N )). Let I, U , andN be as above, and letS be a schedule forI. The schedule
L(S,N ) is obtained by executing the following procedure.

1. LetN (S) = {S0, S1, . . . , S|N (S)|} (where the elements ofN are indexed in a fixed but
arbitrary manner).

2. Seti := min{j : `(Sj) < `(S)}. If no suchi exists, returnS; otherwise setS := Si and go
to 1.

Definition (Neighborhood exactness).Let I, U , andN be as above, and letS be a random
schedule forI. The exactness of the neighborhoodN on the instanceI is the probability that
L(S,N ) is a global optimum.

If the exactness ofNr is p, thenI has an(r, M
(

N
2

)
, p) landscape (letV consist of all schedules

S such thatL(S,N ) is a global optimum). We will estimate theexpectedexactness ofNr as
a function ofr for various combinations ofN andM . Examination of the resulting curves will
allow us to draw conclusions about how the extent to which typical JSSP landscapes are big valleys
changes as a function ofN

M
.
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6.2 Estimating Neighborhood Exactness

For given values ofN andM , we compute theexpectedexactness ofNr for 1 ≤ r ≤ M
(

N
2

)
by repeatedly executing the following procedure. To efficiently search for an improving schedule
within Nr we have developed a “radius-limited” branch and bound algorithm.

1. Generate a randomN by M JSSP instanceI.

2. Using the algorithm of Brucker et al. [5], compute the optimal makespan ofI.

3. Lets be a random feasible schedule; letr = 1; and letopt = false.

4. Whileopt = false do:

(a) Starting froms, apply next-descent under the neighborhoodNr to generate a local op-
timum (each step of next-descent uses our radius-limited branch and bound algorithm).
Let s be this local optimum.

(b) Update the expected exactness ofNr appropriately, based on whether or nots is a
globally optimum.

(c) If s is a globally optimum, setopt = true. Otherwise incrementr.

5. For allr′ such thatr < r′ ≤ M
(

N
2

)
update the expected exactness ofNr′ appropriately.

For eachr, the data used to estimate the expected exactness ofNr are independent, so our
estimates are unbiased (data for distinct radii are dependent, however).

Our radius-limited branch and bound algorithm uses the branching rule of Balas [2] combined
with the lower bounds and branch ordering heuristic of Brucker et al. [5].

6.3 Results

We use three combinations ofN andM with N
M

= 1
5

(3x15, 4x20, and 5x25 instances), three
combinations withN

M
= 1 (6x6, 7x7, and 8x8 instances) and two combinations withN

M
= 5 (15x3

and 20x4 instances). We generate 1000 random instances for each combination ofN andM .
Figure 5 plots expected exactness as a function of neighborhood radius (normalized by the

number of disjunctive edges) for each of these three values ofN
M

.

6.4 Discussion

When N
M

= 1
5

or N
M

= 5, a small (normalized) value ofr suffices to ensure that a random local
optimum drawn underNr is very likely to be a global optimum. Using the methodology of§4, we
found that the expected backbone fractions for 3x15, 4x20, and 5x25 instances are 0.94, 0.93, and
0.92, respectively, while the expected distance between global optima was 0.02 in all three cases.
This suggests that the typical landscape forN

M
= 1

5
can be described as a big valley. In contrast,

the expected backbone fractions for 15x3 and 20x4 instances are near-zero, while the expected
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Figure 5: Expected exactness as a function of normalized neighborhood radius. Graphs (A), (B),
and (C) depict curves for random instances withN

M
= 1

5
, 1, and 5, respectively.
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distances between global optima are 0.33 and 0.28, respectively. Thus forN
M

= 5, the data suggest
the existence of many big valleys rather than just one.

For N
M

= 1, the normalized value ofr must be much larger in order to achieve the same
expected exactness. The data from§5 show that global optima are fairly tightly clustered when
N
M

= 1, so typical landscapes can still be roughly described as big valleys. However, whenN
M

= 1
the valley is rougher than it is for the more extreme values ofN

M
.

6.5 Analysis

We first establish the behavior of the curves depicted in Figure 5 in the limiting casesN
M
→ 0 and

N
M
→∞. We then use these results to characterize the landscapes of random JSSP instances using

the(r, δ, p) notation introduced in§6.1.
The following two lemmas show that asN

M
→ 0 (resp. N

M
→ ∞), a random schedule will

almost surely be “close” to an optimal schedule. The proofs are given in Appendix A.

Lemma 3. LetIN,M be a randomN byM JSSP instance, and letS be a random schedule forIN,M .
Let Ŝ be an optimal schedule forIN,M such that‖S− Ŝ‖ is minimal. Letf(M) be any unbounded,
increasing function ofM . Then for fixedN , it holds whp (asM →∞) that‖S − Ŝ‖ < f(M).

Lemma 4. Let IN,M be a randomN by M JSSP instance, letS be a random schedule forIN,M ,
and letŜ be an optimal schedule forIN,M such that‖S − Ŝ‖ is minimal. Then for fixedM and
ε > 0, it holds whp (asN →∞) that‖S − Ŝ‖ < N1+ε.

The following are immediate corollaries.

Corollary 3. For fixedN , the expected exactness ofNf(M) approaches 1 asM →∞, wheref(M)
is any unbounded, increasing function ofM .

Corollary 4. For fixedM andε > 0, the expected exactness ofNN1+ε approaches 1 asN →∞.

Because the total number of disjunctive edges isM
(

N
2

)
, these two corollaries imply that as

N
M
→ 0 (resp. N

M
→∞), the curve depicted in Figure 5 approaches a horizontal line at a height of

1.
The following two theorems characterize the landscape of random JSSP instances using the

(r, δ, p) notation of§6.1.

Theorem 3. LetIN,M be a randomN byM JSSP instance. Letf(M) be any unbounded, increas-
ing function ofM . For fixedN andε, ε′ > 0, it holds whp (asM → ∞) that IN,M has a(r, δ, p)
landscape forr = f(M), δ = εM

(
N
2

)
andp = 1− ε′.

Proof. Let V be the set of all schedulesS such thatL(S,Nr) is a global optimum. It follows by
Corollary 3 that whp,IN,M is such that a random scheduleS belongs toV with probability at least
p. It remains to show thatV is an(r, δ)-valley whp. Part 1 of the definition of an(r, δ)-valley is
satisfied by the definition ofV . Part 2 follows from Theorem 1.
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Theorem 4. Let IN,M be a randomN by M JSSP instance, and letS be a random schedule for
IN,M . There exists a setV (IN,M) = ∪n

i=1Vi of schedules forIN,M such that for fixedM and
ε1, ε2, ε3 > 0, V has the following properties whp:

1. S ∈ V ;

2. Vi is an(r, δ)-valley withr = N1+ε2 andδ = 1 ∀i ∈ [n];

3. n > N !(1− ε3); and

4. max{S1,S2}⊆V ‖S1 − S2‖ > Ω(N2).

Proof. Let{Ŝ1, Ŝ2, . . . , Ŝn} be the set of globally optimal schedules forIN,M , and defineVi(IN,M) ≡
{S : L(S,N 1+ε2) = Ŝi}. Property 1 holds whp by Lemma 4. Property 2 holds by definition ofVi.

The fact that property 3 holds whp is a consequence of Lemma 2. The number of possible
choices of the permutationφ (used in the statement of Lemma 2) isN !. Let f be the number
of choices ofφ that fail to yield a globally optimal schedule. Property 3 can only fail to hold if
f ≥ ε3N !. But E[f ] is o(exp(−KN)N !); hencef < ε3N ! whp by Markov’s inequality.

To establish property 4, choose permutationsφ1 andφ2 that list the elements of[N ] in reverse
order (i.e.,φ1(i) = φ2(N − i) ∀i ∈ [N ]). These permutations define schedulesS1 andS2 (via
Lemma 2) which are both globally optimal whp. But for any disjunctive edgee = {J1, J

′
1}we must

have~e(S1) 6= ~e(S2), hence‖S1 − S2‖ ≥ |{{J, J ′} ⊆ IN,M : m(J1) = m(J ′1)}| ≥
(

NM−1

2

)
.

Theorem 3 shows that asN
M
→ 0, a random JSSP instance almost certainly has an(r, δ, p)

landscape wherer grows arbitrarily slowly as a function ofM , the normalized value ofδ (i.e.,
δ

M(N
2 )

) is arbitrarily small, andp is arbitrarily close to 1. In contrast, Theorem 4 shows that as
N
M
→ ∞, a random JSSP instance almost surely does not have an(r, δ, p) landscape unlessδ

is Ω(N2). Instead, the landscape containsΩ(N !) (r, 1)-valleys, with the normalized value ofr
approaching 0. Random instances with intermediate values ofN

M
(e.g., N

M
u 1) can be seen as an

interpolation between these two extremes.

7 Quality of Random Schedules

7.1 Methodology

In this section we examine how the quality of randomly-generated schedules changes as a function
of the job:machine ratio. Specifically, for various combinations ofN andM , we estimate the
expected value of the following four quantities:

(A) the makespan of a random schedule,

(B) the makespan of a locally optimal schedule obtained by starting at a random schedule and
applying next-descent using theN1 move operator,

(C) the makespan of an optimal schedule, and
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(D) the lower bound on the makespan of an optimal schedule given by the maximum of the
maximum job duration and the maximum machine workload:

max

 max
J∈IN,M

τ(J), max
m̄∈[M ]

∑
o∈ops(IN,M ),m(o)=m̄

τ(o)

 .

The values ofN
M

considered in our experiments are those in the setR = {1
7
, 1

6
, 1

5
, 1

4
, 1

3
, 1

2
, 2

3
,

1, 3
2
, 2, 3, 4, 5, 6, 7 }. We consider all combinations ofN andM in the setS ≡

⋃
r∈R Sr, where

Sr ≡ {(N, M) : N
M

= r, min(N, M) ≥ 2, max(N, M) ≥ 6, NM < 1000}. For each(N, M) ∈ S,
we generate 1000N by M instances, and compute quantities (A), (B), and (D) for each of these
instances. For some combinations(N, M) ∈ S̄ ⊆ S, it was also practical to compute quantity (C).
We chosēS so that|S̄ ∩ Sr| ≥ 4 ∀r ∈ R \ {3

2
}, while |S̄ ∩ S 3

2
| = 3.

7.2 Results

Figure 6 plots the mean values of (A), (B), and (C), respectively, against the mean value of (D), for
various combinations ofN andM . The data points for each combination ofN andM are assigned
a symbol based on the value ofN

M
. Examining Figure 6, we see that the set of data points for each

value of N
M

are approximately (though not exactly) collinear. Furthermore, in all three graphs the
slope of the line formed by the data points withN

M
= r is maximized whenr = 1, and decreases

asr gets further away from 1.
To further investigate this trend, we performed least squares linear regression on the set of data

points for each value ofN
M

. The slopes of the resulting lines are shown as a function ofN
M

in Figure
7.

From examination of Figure 7, it is apparent that

• as the value ofN
M

becomes more extreme (i.e., approaches either 0 or∞), the expected
makespan of random schedules (resp. random local optima) comes closer to the expected
value of the lower bound on makespan; and

• the difference between the expected makespan of random schedules (resp. random local
optima) and the expected value of the lower bound on makespan is maximized at a value of
N
M

u 1.

The first of these two observations suggests that asN
M

approaches either0 or ∞, a random
schedule is almost certainly near-optimal.§7.3 contains two theorems that confirm this.

The second of these two observations suggests that the expected difference between the makespan
of a random schedule and the makespan of an optimal schedule is maximized at a value ofN

M
some-

where in the neighborhood of 1. This observation is particularly interesting given the conventional
wisdom that square instances of the JSSP (i.e., those withN

M
= 1) are harder to solve than rectan-

gular ones [7]. We come back to this observation in§7.4.
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Figure 6: Expected makespan of (A) random schedules, (B) random local optima, and (C) optimal
schedules vs. expected lower bound, for various combinations ofN andM (grouped by symbol
according toN

M
).
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7.3 Analysis

The following two theorems show that, asN
M

approaches either0 or ∞, a random schedule will
almost surely be near-optimal (proofs are given in Appendix A).

Theorem 5. Let IN,M be a random JSSP instance, letS be a random schedule forIN,M , and let
Ŝ be an optimal schedule forIN,M . Then for fixedN andε > 0, it holds whp (asM → ∞) that
`(S) ≤ (1 + ε)`(Ŝ).

Theorem 6. Let IN,M be a randomN byM JSSP instance, letS be a random schedule forIN,M ,
and letŜ be an optimal schedule forIN,M . Then for fixedM andε > 0, it holds whp (asN →∞)
that `(S) ≤ (1 + ε)`(Ŝ).

7.4 Easy-hard-easy pattern of instance difficulty

The proofs of Corollary 1 (resp. Lemma 2) show that asN
M
→ 0 (resp. N

M
→∞) there exist simple

priority rules that almost surely produce an optimal schedule. Moreover, Theorems 5 and 6 show
that in these two limiting cases, even a random schedule will almost surely have makespan that is
very close to optimal. Thus, both asN

M
→ 0 and asN

M
→∞, almost all JSSP instances are “easy”.

In contrast, forN
M

u 1, Figure 7 suggests that random schedules (as well as random local
optima) are far from optimal. The literature on the JSSP as well as our own computational experi-
ence in using the algorithm of Brucker et al. [5] lead us to believe that random JSSP instances with
N
M

u 1 are “hard”. Thus we conjecture that, as in 3-SAT, typical instance difficulty in the JSSP
follows an “easy-hard-easy” pattern as a function of a certain parameter.
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8 Conclusions

8.1 Summary of Experimental Results

Empirically, we demonstrated that for low values of the job to machine ratio (N
M

), low-makespan
schedules are clustered in a small region of the search space and the backbone size is high. AsN

M
in-

creases, low-makespan schedules become dispersed throughout the search space and the the back-
bone vanishes. For both extremely low and extremely high values ofN

M
, the expected makespan of

random schedules comes very close to that of optimal schedules, and the normalized disjunctive
graph distance between a random schedule and the nearest optimal schedule becomes very small.
The quality of random schedules (resp. random local optima) appears to be the worst at a value of
N
M

u 1.
§6.4 discussed the implications of our results for the “big valley” picture of JSSP search land-

scapes. ForN
M

u 1, we concluded that typical landscapes can be described as a big valley, while
for larger values ofN

M
(e.g., N

M
≥ 3) there are many big valleys.§7.4 discussed how our data

support the idea that JSSP instance difficulty exhibits an “easy-hard-easy” pattern as a function of
N
M

.

8.2 An Overall Picture

Let IN,M be a randomN by M JSSP instance; letSrand be a random schedule forIN,M , and letŜ
be an optimal schedule forIN,M such that‖Srand − Ŝ‖ is minimal. Table 1 shows the asymptotic
expected values of normalized backbone size,`(Srand)

`(Ŝ)
, and the normalized distance fromSrand to

Ŝ for various values ofN
M

. The values in the first and third columns are provably correct, as shown
by theorems 1 through 6. The values in the middle column are conservative conjectures based on
our experimental results.

Table 1. Attributes of random JSSP instances as a function ofN
M

.

N
M
→ 0 N

M
= k > 0, N →∞ N

M
→∞

E
[
|1 backbone(IN,M )|

M(N
2 )

]
1 ∈ [0, 1] 0

E
[

`(Srand)

`(Ŝ)

]
1 > 1 1

E
[
‖Srand−Ŝ‖

M(N
2 )

]
0 > 0 0
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Appendix A: Additional Proofs

We make use of the following inequality [24].

Azuma’s Perimetric Inequality (A.P.I.). LetX = (X1, X2, . . . , Xn) be a vector ofn independent
random variables. Let the functionf(x) take as input a vectorx = (x1, x2, . . . , xn), wherexi is a
realization ofXi for i ∈ [n], and produce as output a real number. Suppose that for someβ > 0 it
holds that for any two vectorsx andx′ that differ on at most one coordinate,

|f(x)− f(x′)| ≤ β .

Then for anyα > 0,

P[X > E[X] + α
√

n] ≤ exp

(
− α2

2β2

)
.

The same inequality holds forP[X ≤ E[X]− α
√

n].

Lemma 2. Let IN,M be a randomN by M JSSP instance. Letφ be an arbitrary permutation of
[N ], and consider the priority ruleπ defined by

π(IN,M) = T1T2 . . . TM

where

Ti = (J
φ(1)
i , J

φ(2)
i , . . . , J

φ(N)
i ) .

Then for fixedM , there exists aK > 0 such that with probability1 − o(exp(−KN)), the
schedulêS = S(π, IN,M) has the property that

Ŝ(o) = Ŝ+(M(o)) ∀o ∈ ops(IN,M) .

Proof. Let IN,M = {J1, J2, . . . , JN}, and assume without loss of generality thatφ(i) = i ∀i ∈
[N ]. Let the (not necessarily feasible) scheduleS̄ be defined by

S̄(Jk
i ) = τ

(
{J j

h ∈ ops(IN,M) : (h < i ∨ j < k) ∧m(J j
h) = m(Jk

i )}
)

for Jk
i ∈ ops(IN,M).

27



S̄ clearly has the property described in the statement of the lemma. It is straightforward to
check that ifS̄ is feasible, it is identical tôS. Thus it remains to show that for someK > 0,
S̄ is infeasible with probabilityo(exp(−KN)). By definition, S̄ will be infeasible iff. there is
some operationo ∈ ops(IN,M) such thatS̄+(M(o)) < S̄+(J (o)). It suffices to show that for any
o ∈ ops(IN,M), P[S̄+(M(o)) < S̄+(J (o))] ≤ exp(−εN), for some fixedε > 0.

If i = 1, P[S̄+(M(Jk
i )) < S̄+(J (Jk

i ))] = 0. Otherwise,

E[S̄+(M(Jk
i ))− S̄+(J (Jk

i ))] = µ
(i− 1)N + k − 1

M
− µ

(i− 2)N + k − 1

M
= µ

N

M
.

The value ofS̄+(M(Jk
i )) − S̄+(J (Jk

i )) is a function ofN independent events (namely, the
definition of each of theN jobs in IN,M ), and altering a particular job changes the value of this
expression by at mostτmax. Thus by A.P.I.,

P[S̄+(M(Jk
i )) < S̄+(J (Jk

i ))] ≤ exp

(
− µ2N

2(Mτmax)2

)
.

Lemma 3. LetIN,M be a randomN byM JSSP instance, and letS be a random schedule forIN,M .
Let Ŝ be an optimal schedule forIN,M such that‖S− Ŝ‖ is minimal. Letf(M) be any unbounded,
increasing function ofM . Then for fixedN , it holds whp (asM →∞) that‖S − Ŝ‖ < f(M).

Proof. Let Ĵ = arg maxJ∈IN,M
τ(J). Let S̄ ≡ πmax(IN,M) be the schedule obtained by the priority

rule πmax (discussed in the proof of Corollary 1) that first schedules the operations inĴ , then
schedules the remaining operations ofIN,M in some arbitrary order. The proof of Corollary 1
showed that for anyJ , E[∆S̄

J ] is O(N2). Thus it holds whp that∆S̄
J < log(f(M)) ∀J . The

procedure used to produceS is a mixture of instance-independent priority rules, each subject to
Lemma 1. Thus for anyJ , E[∆S

J ] is O(N), so whp∆S
J < log(f(M)) ∀J .

Let Onear(Ji) = {J ′j : J ′ 6= J, |
∑

i′<i τ(Ji′) −
∑

j′<j τ(J ′j′)| < 2 log(f(M))}. (Onear(Ji)
is the set of operations that would be scheduled “near” in time toJi if resource constraints were
ignored.) LetEnear = {e = {Ji, J

′
j} ∈ E(IN,M) : J ′j ∈ Onear(Ji)}. Under the assumptions of the

previous paragraph (each of which hold whp),‖S − S̄‖ ≤ |Enear|. For anyJi, E[|Onear(Ji)|] is
O(N log f(M)), and eachJ ′j ∈ Onear(Ji) has probability 1

M
of using the same machine asJi. It

follows thatE[|Enear|] is O(N2 log f(M)). Thus|Enear| does not exceedf(M) whp.

For the purpose of the remaining proofs, it is convenient to introduce some additional notation.
Let T = (T1, T2, . . . , T|T |) be a sequence of operations. We define

• T(i1,i2] ≡ {Ti : i1 < i ≤ i2}, and

• T m̄
(i1,i2] ≡ {Ti ∈ T(i1,i2] : m(Ti) = m̄} .
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Lemma 4. Let IN,M be a randomN by M JSSP instance, letS be a random schedule forIN,M ,
and letŜ be an optimal schedule forIN,M such that‖S − Ŝ‖ is minimal. Then for fixedM and
ε > 0, it holds whp (asN →∞) that‖S − Ŝ‖ < N1+ε.

Proof. LetT = πrand(IN,M) be the sequence used to constructS, and letTi denote theith operation
in T . Consider the schedulēS defined by the following procedure:

1. SetS̄(o) := ∞ ∀o ∈ ops(IN,M).

2. SetQ := (). Let Qj denote thejth operation inQ.

3. Let the functionready(o) return true ifS̄+(M(o)) ≥ S̄+(J (o)), false otherwise.

4. For i from 1 toNM do:

(a) If ready(Ti), setS̄(o) := S̄+(M(Ti)). Otherwise appendTi ontoQ.

(b) Forj from 1 to|Q| do:

i. If ready(Qj), setS̄(Qj) := S̄+(M(Qj)) and removeQj from Q.

5. Schedule any remaining operations ofQ in a manner to be specified.

The construction of̄S is just like the construction ofS, except for the manipulations involving
Q. The purpose ofQ is to delay the scheduling of any operationo that, if scheduled immediately,
might produce a schedule in which̄S(o) > S̄+(M(o)). We first show that‖S − S̄‖ < N1+ε whp;
then we show that̄S is optimal whp.

Let Qi denoteQ as it exists afteri iterations of step 4 have been performed. Letq(o) =∑NM
i=1 |o ∩ Qi| be the number of iterations during whicho ∈ Q. We claim that‖S − S̄‖ ≤∑
o∈ops(IN,M ) q(o) + (N − 1)|QNM |. LettingE 6= = {e ∈ E(IN,M) : ~e(S̄) 6= ~e(S)}, we have

‖S − S̄‖ = |{e ∈ E 6= : e ∩QNM = ∅}|+ |{e ∈ E 6= : e ∩QNM 6= ∅}|
≤ |{e ∈ E 6= : e ∩QNM = ∅}|+ (N − 1)|QNM |

so it suffices to show|{e ∈ E 6= : e ∩ QNM = ∅}| ≤
∑

o∈ops(IN,M ) q(o). To see this, let

e = {o1, o2} ∈ E 6= be such thate ∩ QNM = ∅. We must haveq(o1) + q(o2) > 0. We chargee
to the operation in{o1, o2} that was inserted intoQ first. It is easy to see that an operation can be
charged for at most one edge per iteration it spends inQ, establishing our claim. Thus it suffices
to show that‖S − S̄‖ ≤

∑
o∈ops(IN,M ) q(o) + (N − 1)|QNM | ≤ N1+ε whp.

We divide the construction ofS into n = MN
1
2
−ε′ epochs, each consisting ofN

1
2
+ε′ iterations

of step 4, for a to-be-specifiedε′ > 0. Let zj denote the number of iterations of step 4 that occur
before the end of thejth epoch, withzj = 0 for j ≤ 0 by convention. Let

• Cm̄
j ≡ T m̄

(0,zj ]
\Qzj be the set of operations that have been scheduled to run onm̄ by the end

of thejth epoch; and
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• Onear ≡
⋃

j∈[n]{o ∈ T(zj−1,zj ] : J (o) ∈ T(zj−(M+2),zj ]} be the set of operations whose job-
predecessor belongs to a nearby epoch.

For anyi ∈ [NM ], P[Ti ∈ Onear] ≤ (M + 2)N− 1
2
+ε′. Thus for anyj ∈ [n], E[|Onear ∩

T(zj−1,zj ]|] ≤ (M + 2)N2ε′. Using A.P.I. it is straightforward to show that whp,

|Onear ∩ T(zj−1,zj ]| ≤ N
1+ε′

2 ∀j ∈ [n] . (8.1)

We claim that whp, the following statements hold∀j ∈ [n]:

⋃
i≤zj

Qi ⊆ Onear , (8.2)

J ∩Qzj−1 6= ∅ ⇒ |J ∩Qzj−1 ∩Qzj | < |J ∩Qzj−1| ∀J ∈ IN,M , (8.3)

Qzj ∩Qzj−M = ∅ , and (8.4)

|Qzj | ≤ MN
1+ε′

2 . (8.5)

We prove this by induction, where each step of the induction fails with exponentially small
probability. Forj = 0, (8.3) and (8.4) hold trivially. (8.2) is true because the operations in
T(0,z1] \ Onear are the first operations in their jobs, hence cannot be added toQ. (8.5) then follows
from (8.2) and (8.1).

Consider the casej > 0. To show (8.2), leto be an arbitrary operation inT(zj−1,zj ] \ Onear.

By the induction hypothesis (specifically, equation (8.4)),J (o) ∈ C
m(J (o))
j−2 . Thusq(o) > 0 ⇒

τ
(
C

m(J (o))
j−2

)
> τ

(
C

m(o)
j−1

)
. By the induction hypothesis,

τ
(
C

m(o)
j−1

)
− τ

(
C

m(J (o))
j−2

)
≥ τ

(
T

m(o)
(0,zj−1]

)
−MN

1+ε′
2 − τ

(
T

m(J (o))
(0,zj−2]

)
.

Letting ∆ denote the right hand side of this inequality, we haveE[∆] = 1
M

N
1
2
+ε′ −MN

1+ε′
2 ,

and A.P.I. can be used to show that for someK > 0 independent ofN , P[∆ < 0] ≤ exp(− 1
K

N ε′).
Thus (8.2) holds with probability at least1− exp(− 1

K
N ε′).

To show (8.3), letJ be such thatJ ∩ Qzj−1 6= ∅, and letJi ∈ Qzj−1 be chosen so thati is

minimal. ThenJ (Ji) ∈ C
m(J (Ji))
j−1 . ThusJi ∈ Qzj

⇒ τ
(
C

m(J (Ji))
j−1

)
> τ

(
C

m(Ji)
j

)
. By (8.1),

(8.2), and the induction hypothesis (equation (8.5)),|Qzj | ≤ (M + 1)N
1+ε′

2 . Using the same
technique as above, we can show that (8.3) holds with probability at least1 − exp(− 1

K
N ε′) for

someK > 0 independent ofN .
(8.3) implies (8.4). (8.2) and (8.4) together with (8.1) imply (8.5). Thus whp, (8.2) through

(8.5) hold∀j ∈ [n].
By (8.2) and (8.4), we have

E

 ∑
o∈ops(IN,M )

q(o)

 ≤ E[|Onear|]MN
1
2
+ε′ ≤ M2(M + 2)N1+2ε′
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and also

E[|QNM |] ≤ E[|T(zn−M ,zn] ∩Onear|] ≤ (M + 2)N2ε′

so settingε′ = ε
3

gives‖S − S̄‖ ≤
∑

o∈ops(IN,M ) q(o) + (N − 1)|QNM | ≤ N1+ε whp.

It remains to show that̄S is optimal whp. The operations scheduled prior to step 5 do not
cause any idle time on any machine, so it is only the operations inQNM that can causēS to be
sub-optimal. Letτ(m̄) ≡ τ({o ∈ ops(IN,M) : m(o) = m̄}) denote the workload of machinēm.
Let m̂ = arg maxm̄∈[M ] τ(m̄). Then the following hold whp.

• The setZm̂ ≡ T m̂

(NM−2MN
1
4 ,NM ]

consists of operations belonging to jobs that usem̂ last.

• µN
1
4 ≤ τ(Zm̂) andτ(Zm̂) ≤ τ(m̂)− τ(m̄) ∀m̄ 6= m̂.

Thus whp it holds that prior to the execution of step 5,S̄ contains a period of length at least
τ(Zm̂) ≥ µN

1
4 during which the only operations being processed are those inZm̂, where{o ∈

ops(IN,M) : J (o) ∈ Zm̂} = ∅. Assuming|QNM | < N3ε′ (holds whp), we can always schedule
the operations inQNM so as to guaranteè(S̄) = τ(m̂), which impliesS̄ is optimal.

Theorem 5. Let IN,M be a random JSSP instance, letS be a random schedule forIN,M , and let
Ŝ be an optimal schedule forIN,M . Then for fixedN andε > 0, it holds whp (asM → ∞) that
`(S) ≤ (1 + ε)`(Ŝ).

Proof. The procedure used to construct random schedules is a mixture of instance-independent
priority rules, each subject to Lemma 1. Thus for eachJ , E[∆S

J ] is O(N). Thus`(S) − `(Ŝ) ≤∑
J ∆S

J = O(N2), and thus does not exceedε`(Ŝ) whp.

Theorem 6. Let IN,M be a randomN byM JSSP instance, letS be a random schedule forIN,M ,
and letŜ be an optimal schedule forIN,M . Then for fixedM andε > 0, it holds whp (asN →∞)
that `(S) ≤ (1 + ε)`(Ŝ).

Proof. Let T = πrand(IN,M) be the sequence used to constructS, and letTi be theith operation in
T . Rather than analyzeS directly, we analyze a schedulēS defined by the following procedure:

1. Sett := 0.

2. For i from 1 toNM do:

(a) SetS̄(Ti) = max(t, S̄+(J (Ti)), S̄
+(M(Ti))) .

(b) If S̄+(J (Ti)) > S̄+(M(Ti)), sett = maxi′≤i S̄
+(Ti′).
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The procedure is identical to the one used to constructS, except that, whenever an operation
Ti is assigned a start timēS(Ti) > S̄+(M(Ti)), the procedure inserts artificial delays into the
schedule in order to re-synchronize the machines. For anyT , it is clear that̀ (S) ≤ `(S̄). Thus, it
suffices to show that̀(S̄) ≤ (1 + ε)`(Ŝ) whp.

We divide the construction of̄S into n epochs, where each update tot (in step 2(b)) defines the
beginning of a new epoch. Letzi be the number of operations scheduled before the end of theith

epoch, withz0 = 0 by convention. Letti = maxi′≤zi
S+(oi′) be the (updated) value oft at the end

of theith epoch. Define∆i ≡
∑M

m̄=1 ti−maxi′<i,m(Ti′ )=m̄ S+(Ti′). Then`(S̄)− `(Ŝ) ≤
∑n

i=1 ∆i,
so It suffices to show that

∑n
i=1 ∆i ≤ ε`(Ŝ) whp.

Let I = [n], and letL = {i ∈ I : zi − zi−1 ≥ N
2
7}. We first consider

∑
i∈L ∆i; then we

consider
∑

i∈I\L ∆i.

Let i1 andi2 be arbitrary integers with0 ≤ i1, i2 ≤ NM andi2− i1 ≥ N
2
7 . Let τ̄ = τ(T m̄

(i1,i2]).
ThenE[τ̄ ] = µ i2−i1

M
. For anyT , τ̄ is a function of the outcome of at mosti2 − i1 events (namely,

the definition of each of the jobs in{J : J ∩ T(i1,i2] 6= ∅}), each of which alters the value ofτ̄ by
at mostτmax. It follows by A.P.I. that

P[|τ̄ − E[τ̄ ]| > N ε′
√

i2 − i1] ≤ 2 exp

(
− N2ε′

2τ 2
max

)
for anyε′ > 0. Thus, it holds whp that|τ̄−E[τ̄ ]| ≤ N ε

√
i2 − i1 for all possible choices ofi1 and

i2. In particular, whp we have∆i ≤ 2MN ε′√zi − zi−1 ∀i, which implies
∑

i∈K ∆i ≤ 2MN
6
7
+ε′.

Now consider
∑

i∈I\L ∆i. It can be easily shown that the probability that an arbitrary set of at

mostN
2
7 consecutive operations inT contains two operations from the same job is at mostN− 3

7 ,
soE[|I \ L|] ≤ N

4
7 . Clearly∆i ≤ τmaxN

2
7 ∀i ∈ I \ L, soE[

∑
i∈I\L ∆i] is O(N

6
7 ).

ThusE[
∑

i∈I ∆i] is O(N
6
7
+ε′) for any ε′ > 0, so

∑
i∈I ∆i ≤ N

6
7
+2ε′ whp, while it is easy to

see that̀ (Ŝ) ≥ µN
2

whp.
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