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Abstract

We present a modal language for distributed computation which addresses the safety of mobile values as well
as mobile code. The safety of mobile code is achieved with the modality� which corresponds to necessity
of modal logic. For the safety of mobile values, we introduce a new modality© which expresses that
given code evaluates to a mobile value. We demonstrate the use of modal types with three communication
constructs: remote evaluation, futures, and asynchronous channels.
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1 Introduction

A distributed computation is a cooperative process taking place in a network of nodes. Each node is capable
of performing a stand-alone computation and also communicating with other nodes to distribute and collect
code and data. Thus a distributed computation has the potential to make productive use of all the nodes in
the network simultaneously.

Usually a distributed computation assumes a heterogeneous group of nodes with differentlocal re-
sources. A local resource can be either a permanent/physical object available at a particular node (e.g.,
printer, database) or an ephemeral/semantic object created during a stand-alone computation (e.g., heap cell,
abstract data type). Local resources are accessed via their references (e.g., handle for a database file, pointer
to a heap cell).

Local resources, however, give rise to an issue not found in stand-alone computations: the safety of
mobile code, or in our terminology, the safety ofmobile termswhere a term represents a piece of code. In
essence, a node cannot access remote resources in the same way that it accesses its own local resources,
but it may receive mobile terms in which references to remote resources are exposed. Therefore the safety
of mobile terms is achieved either by supporting direct access to remote resources (e.g., remote file access,
remote memory access) or by preventing references to remote resources from being dereferenced. This
paper focuses on the second case with the assumption that references to remote resources are allowed in
mobile terms as long as they are never dereferenced.

One approach to the safety of mobile terms is to build a modal type system with the modality� [1, 12,
9, 13]. The basic idea is that a value of modal type�A contains a mobile term that can be evaluated at any
node. An indexed modal type�ωA is used for mobile terms that can be evaluated at nodeω. By requiring
that a mobile term be from a value of type�A or �ωA, we ensure its safety without recourse to runtime
checks.

A type system augmented with the modality� is not, however, expressive enough for the safe commu-
nication ofvalues, i.e., the safety ofmobile values. In other words, we cannot rely solely on modal types
�A and�ωA to verify that a value communicated from one node to another is mobile (e.g., when a remote
procedure call returns, or when a value is written to a channel). The reason is that in general, a value of type
�A or �ωA containsnot a mobile value but a mobile term. The evaluation of such a mobile term (with
the intention of obtaining a mobile value) may result in a value that is not necessarily mobile because of
references to local resources created during the evaluation.

As an example, consider a term of typeint -> int in an ML-like language:

let
val new reference = ref 0
val f = fn x => x + !new reference

in
f

end

The above term may be used in building a mobile term of type�(int -> int) , since it can be eval-
uated at any node. The resultant valuef , however, is not mobile because it accesses a local resource
new reference . In contrast, the following term, also of typeint -> int , cannot be used in building
a mobile term, but the resultant value is mobile because it does not access any local resource:
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let
val v = !some existing reference
val f = fn x => x + v

in
f

end

Hence the modality� is irrelevant to the safety of mobile values, which should now be verified by program-
mers themselves.

This paper investigates a new modality© which expresses that a given term evaluates to a mobile value.
The basic idea is that a term contained in a value of modal type©A evaluates to a value that is valid at any
node. Similarly to�ωA, an indexed modal type©ωA is used if the resultant value is valid at nodeω. To
obtain a value to be communicated to other nodes, we evaluate a term contained in a value of type©A or
©ωA. In this way, we achieve the safety of mobile values.

Since the mobility of a term is independent of the mobility of the value to which it evaluates, the two
modalities� and© are developed in an orthogonal way:

�A
|

©ωA − A − ©A
|

�ωA

We use combinations of� and© to express various properties of mobile terms:

• �©A: evaluates at any node to a value valid at any node.

• �©ωA: evaluates at any node to a value valid at nodeω.

• �ω©A: evaluates at nodeω to a value valid at any node.

• �ω©ω′A: evaluates at nodeω to a value valid at nodeω′.

We first develop a modal languageλ�© by extending theλ-calculus with the modalities� and©. We
formulate its type system in the natural deduction style by giving introduction and elimination rules for each
connective and modality. The modality© requires us to introduce a typing judgment differentiating values
from terms. This typing judgment induces a substitution defined inductively on the structure of the term
being substituted instead of the term being substituted into. We then develop another modal languageλ�©W

by extendingλ�© with the indexed modalities�ω and©ω.
We also present a network operational semantics forλ�©W which is capable of modeling distributed

computations. We demonstrate the use of modal types in the network operational semantics with three
communication constructs:remote evaluation, futures, andasynchronous channels. The safety of mobile
terms and mobile values is shown by the type safety of the network operational semantics,i.e., its type
preservation and progress properties.

Depending on the degree of code mobility and data mobility, languages for distributed computation are
classified into four paradigms:client/server, remote evaluation, code on demand, andmobile agents[4]. The
client/server paradigm allows only data to be transmitted to remote nodes. The remote evaluation paradigm
extends the client/server paradigm by allowing both code and data to be transmitted to remote nodes. The
code on demand paradigm is similar to the remote evaluation paradigm, but both code and data are fetched
from remote nodes. In the mobile agents paradigm, autonomous code migrates to remote nodes by itself and
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also carries its state.λ�©W belongs to the remote evaluation paradigm as its primary capability is to transmit
and evaluate mobile terms at remote nodes. The two modalities� and© deal withname resolution[5], a
safety issue in languages for distributed computation.

This paper is organized as follows. In Section 2, we develop the modal languageλ�© . In Section 3, we
develop the modal languageλ�©W . In Section 4, we present the network operational semantics and prove
its type safety. Section 5 discusses how to handle local resources in distributed computations and compares
λ�©W with other modal languages for distributed computation. Section 6 concludes with future work. See
Appendix for details of all proofs.

2 Modal Languageλ�©

Sinceλ�© is an extension of theλ-calculus, we first review the type system of theλ-calculus in the context
of distributed computations.

The syntax of theλ-calculus is standard; we use metavariablesA,B for types andM,N for terms:

type A ::= A ⊃ A
term M ::= x | λx :A.M | M M
value V ::= λx :A.M
typing context Γ ::= · | Γ, x : A

A variablex with bindingx : A is assumed to hold a term and is not regarded as a value. We use a typing
judgmentΓ ` M : A to mean that termM has typeA under typing contextΓ:

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A ` M : B

Γ ` λx :A.M : A ⊃ B
⊃I

Γ ` M : A ⊃ B Γ ` N : A
Γ ` M N : B

⊃E

The β-reduction rule for the connective⊃ uses a capture-avoiding substitution[M/x]N defined in a
standard way:

(λx :A.N) M →β⊃ [M/x]N

It may be seen as the reduction of a typing derivation in which the introduction rule⊃I is followed by the
elimination rule⊃E. The following proposition shows that the reduction is indeed type-preserving:

Proposition 2.1. If Γ ` M : A andΓ, x : A ` N : B, thenΓ ` [M/x]N : B.

In the context of distributed computations,x : A in a typing contextΓ means that variablex holds a
term of typeA that is valid at a hypothetical node where typechecking takes place, which we call thecurrent
nodethroughout the paper. Then a typing judgmentΓ ` M : A means that if typing contextΓ is satisfied,
the evaluation of termM at the current node returns a valueV of typeA. It does not, however, tell us ifM
is a mobile term that can be evaluated at other nodes. Nor does it tell us ifV is a mobile value that is valid
at other nodes. Therefore the above type system is not expressive enough for the safety of mobile terms and
mobile values in distributed computations.

We first develop a modal languageλ� which extends theλ-calculus with the modality� to ensure
the safety of mobile terms.λ� is based upon the type system for necessity of modal logic by Pfenning and
Davies [14]. Next we develop another modal languageλ© which extends theλ-calculus with the modality©
to ensure the safety of mobile values.λ� andλ© extend theλ-calculus in an orthogonal way: the modality
� is concerned withwhere we can evaluate a given termwhereas the modality© is concerned withwhere
we can use the result of evaluating a given term. Thus we mergeλ� andλ© to obtain the modal language
λ�© , which ensures the safety of both mobile terms and mobile values.
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2.1 λ� for term mobility

The idea behind the modality� is that if a termM is well-typed under an empty typing context,i.e.,
· ` M : A, we can evaluate it at any node. IntuitivelyM is valid at any node, orglobally valid, because it
does not depend on any local resource. Thus we useM in building a valuebox M of modal type�A.

The syntax ofλ� is as follows:

type A ::= · · · | �A
term M ::= · · · | box M | letbox x = M in M
value V ::= · · · | box M

If M evaluates tobox M ′, thenletbox x = M in N substitutesM ′, without evaluating it, for x in N .
Now a variablex can hold a term that is globally valid (e.g., letbox x = box M in N ). Accordingly we

introduce amobile typing context∆. Γ is now called alocal typing context.

mobile typing context ∆ ::= · | ∆, x :: A
local typing context Γ ::= · | Γ, x : A

x :: A in ∆ means that variablex holds a globally valid term of typeA; hence a mobile typing context does
not affect the mobility of a term being typechecked.

We use a typing judgment∆; Γ ` M : A to mean that under mobile typing context∆ and local typing
contextΓ, termM evaluates to a value of typeA valid at the current node.

x :: A ∈ ∆ or x : A ∈ Γ
∆; Γ ` x : A

Cvar
∆; · ` M : A

∆; Γ ` box M : �A
�I

∆; Γ ` M : �A ∆, x :: A; Γ ` N : B

∆; Γ ` letbox x = M in N : B
�E

The ruleCvar replaces the ruleVar. The rule�I implies thatM is globally valid if it is well-typed under an
empty local typing context and thus no assumption is made on the current node. Therefore the premise of
the rule�I implicitly uses an arbitrary node as the current node in typechecking termM .

The β-reduction rule for the modality� uses a capture-avoiding substitution[M/x]N extended in a
standard way:

letbox x = box M in N →β� [M/x]N

As with the connective⊃, thisβ-reduction rule may be seen as the reduction of a typing derivation in which
the introduction rule�I is followed by the elimination rule�E. The following proposition shows that the
reduction is indeed type-preserving:

Proposition 2.2. If ∆; · ` M : A and∆, x :: A; Γ ` N : B, then∆; Γ ` [M/x]N : B.

2.2 λ© for value mobility

The typing judgment of theλ-calculus determines if a term is valid at a given node; if the term is well-typed,
it evaluates to a value valid at that node. In contrast, the type system ofλ© should be able to check if the
value to which a term evaluates is valid at a given node. This is a property that cannot be verified by the type
system of theλ-calculus. Therefore we need an additional typing judgment for the type system ofλ© .

As in the type system ofλ�, we split a typing context into two parts. We also introduce a new form of
bindingv ∼ A:

mobile typing context ∆ ::= · | ∆, v ∼ A
local typing context Γ ::= · | Γ, x : A

v is called avalue variableand holds a value; hence it itself is also regarded as a value.v ∼ A in ∆ means
thatv holds a globally valid value of typeA.
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We use a typing judgment∆; Γ ` M ∼ A to mean thatM evaluates to a globally valid value of type
A. In order to express that the value is valid at the current node, we use an ordinary typing judgment
∆; Γ ` M : A. For any language construct producing local resources, we can use only an ordinary typing
judgment (e.g., for a memory allocation construct which returns pointers to heap cells).

The following typing rules hold independently of the syntax ofλ© :

v ∼ A ∈ ∆
∆; Γ ` v : A

Vvar
∆; · ` V : A

∆; Γ ` V ∼ A
Val

The ruleVvar says that a value variable inv ∼ A is valid at the current node. The ruleVal conforms to the
definition of the new typing judgment: the premise of the ruleVal checks ifV is globally valid, in which
case the conclusion holds becauseV is already a value.

The syntax ofλ© is as follows:

type A ::= · · · | ©A
term M ::= · · · | v | cir M | letcir v = M in M
value V ::= · · · | v | cir M

cir M has a modal type©A, whereM evaluates to a globally valid value.letcir v = M in N expectsM to
evaluate tocir M ′; it conceptually finishes the evaluation ofM ′ before substituting the resultant value forv
in N , sincev holds a value.

cir M corresponds to the introduction rule for the modality©. Note that inletcir v = M in N , the type
of M does not determine the form of the typing judgment for the whole term. That is, regardless of the type
of M , there are two possibilities for where the result of evaluatingN is valid: at the current node and at any
node. Therefore each instance of the modality© has one introduction rule and two elimination rules:

∆; Γ ` M ∼ A

∆; Γ ` cir M : ©A
©I

∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N : B

∆; Γ ` letcir v = M in N : B
©E

∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N ∼ B

∆; Γ ` letcir v = M in N ∼ B
©E′

The β-reduction rule for the modality© reducesletcir v = cir M in N . In this case, we analyzeM
instead ofN . The reason is that only a value can be substituted forv, butM may not be a value; therefore
we analyzeM to decide how to transform the whole term so thatv is eventually replaced by a value.
ConceptuallyN should be replicated at those places withinM where the evaluation ofM is finished, so that
M andN are evaluated exactly once and in that order. IfM is already a valueV , we reduce the whole term
into [V/v]N . Thus we are led to define a new form of substitution〈M/v〉N which is defined inductively on
the structure ofM instead ofN , and use it in theβ-reduction rule for the modality©:

〈V/v〉N = [V/v]N
〈letcir v′ = M in M ′/v〉N = letcir v′ = M in 〈M ′/v〉N

letcir v = cir M in N →β© 〈M/v〉N

Note that we do not define〈M M ′/v〉N becausecir M M ′ cannot be well-typed: there is no derivation
of ∆; Γ ` M M ′ ∼ A, which would require us to refine types of lambda abstractions. In practice, ordinary
typeA ⊃ ©B for M suffices in conjunction withletcir v = M M ′ in v to simulate such a derivation.

As with the connective⊃, theβ-reduction rule may be seen as the reduction of a typing derivation in
which the introduction rule©I is followed by the elimination rule©E. The following proposition shows that
the reduction is indeed type-preserving:
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Proposition 2.3.
If ∆; Γ ` M ∼ A and∆, v ∼ A; Γ ` N : C, then∆; Γ ` 〈M/v〉N : C.
If ∆; Γ ` M ∼ A and∆, v ∼ A; Γ ` N ∼ C, then∆; Γ ` 〈M/v〉N ∼ C.

Proof. By induction on the structure ofM (notN ).

2.3 λ�© for term mobility and value mobility

λ�© is a modal language which incorporates bothλ� andλ© . Sinceλ� andλ© are orthogonal extensions
of theλ-calculus, all their individual properties continue to hold inλ�© .

We decide to allowletbox x = M in N in the typing judgment for value mobility. The decision is based
upon the observation that a substitution of a mobile term forx does not preventN from evaluating to a
mobile value. For example,x may not appear inN at all. Therefore we introduce a new elimination rule for
the modality� as follows:

∆; Γ ` M : �A ∆, x :: A; Γ ` N ∼ B

∆; Γ ` letbox x = M in N ∼ B �E′

Sincecir letbox x = M in M ′ can now be well-typed, we define〈letbox x = M in M ′/v〉N :

〈letbox x = M in M ′/v〉N = letbox x = M in 〈M ′/v〉N

An easy induction shows that Proposition 2.3 continues to hold. The following proposition shows that the
β-reduction rule for the modality� continues to be type-preserving:

Proposition 2.4. If ∆; · ` M : A and∆, x : A; Γ ` N ∼ B, then∆; Γ ` [M/x]N ∼ B.

2.4 Primitive types

A primitive type is one for which value mobility is an inherent property. For example, a boolean value, of
typebool, is atomic and does not contain references to local resources. Therefore boolean values are always
globally valid and∆; Γ ` M : bool semantically implies∆; Γ ` M ∼ bool. Under the above type system,
however, value mobility for primitive types should be expressed explicitly by programmers.

As an example, consider a primitive typenat for natural numbers:

type A ::= · · · | nat
term M ::= · · · | zero | succ M
value V ::= · · · | zero | succ V

We use the following construct for primitive recursion overnat:

term M ::= · · · | rec M of f(zero) ⇒ M / f(succ x) ⇒ M

∆; Γ ` M : nat
∆; Γ ` M0 : A
∆; Γ, x : nat, f(x) : A ` M1 : A

∆; Γ ` rec M of f(zero) ⇒ M0

/ f(succ x) ⇒ M1

: A
Rec

∆; Γ ` M : nat
∆; Γ ` M0 ∼ A
∆, f(x) ∼ A; Γ, x : nat ` M1 ∼ A

∆; Γ ` rec M of f(zero) ⇒ M0

/ f(succ x) ⇒ M1

∼ A
Rec′

Now, for any termM such that∆; Γ ` M : nat, we explictly express its value mobility with the following
termM∼, which evaluates to the same value asM and also satisfies∆; Γ ` M∼ ∼ nat:

M∼ = rec M of f(zero) ⇒ zero / f(succ x) ⇒ letcir v = cir f(x) in succ v
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type A ::= A ⊃ A | �A | ©A
term M ::= x | λx :A.M | M M | box M | letbox x = M in M |

v | cir M | letcir v = M in M
value V ::= λx :A.M | box M | v | cir M

x :: A ∈ ∆ or x : A ∈ Γ
∆; Γ ` x : A

Cvar
v ∼ A ∈ ∆
∆; Γ ` v : A

Vvar
∆; · ` V : A

∆; Γ ` V ∼ A
Val

∆; Γ, x : A ` M : B

∆; Γ ` λx :A.M : A ⊃ B
⊃I

∆; Γ ` M : A ⊃ B ∆; Γ ` N : A

∆; Γ ` M N : B
⊃E

∆; · ` M : A

∆; Γ ` box M : �A
�I

∆; Γ ` M : �A ∆, x :: A; Γ ` N : B

∆; Γ ` letbox x = M in N : B
�E

∆; Γ ` M : �A ∆, x :: A; Γ ` N ∼ B

∆; Γ ` letbox x = M in N ∼ B �E′

∆; Γ ` M ∼ A

∆; Γ ` cir M : ©A
©I

∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N : B

∆; Γ ` letcir v = M in N : B
©E

∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N ∼ B

∆; Γ ` letcir v = M in N ∼ B
©E′

∆; Γ ` M : Aprim

∆; Γ ` M ∼ Aprim
Prim∼

Figure 1: Syntax and type system ofλ�© .

We choose to take advantage of the fact that every termM of a primitive type can be converted into
an equivalent termM∼ with value mobility as illustrated above, and introduce the following typing rule in
which value mobility for primitive types is built-in:

∆; Γ ` M : Aprim

∆; Γ ` M ∼ Aprim
Prim∼

HereAprim is a primitive type (A ⊃ A, �A, and©A cannot be a primitive type). With the rulePrim∼ in
the type system, we can easily express value mobility for primitive types.

The price we pay for the rulePrim∼ is thatβ-reduction→β© is no longer valid:letcir v = cir M in N
may typecheck while〈M/v〉N is not defined. For example,M = M1 M2 of typenat satisfies∆; Γ ` M ∼ nat
by the rulePrim∼, but 〈M1 M2/v〉N is not defined. Intuitively the rulePrim∼ disguises an unanalyzable
term of a primitive type as an analyzable term.

A quick fix is to reduceletcir v = cir M in N only if M is already a valueV :

letcir v = cir V in N →β© [V/v]N (→β© redefined)

Note that we write[V/v]N for 〈V/v〉N . Thus, in order to reduceletcir v = cir M in N , we are forced to
reduceM into a value first, instead of analyzingM to transform the whole term. Such a reduction strategy
is reflected in the operational semantics, as we will see in Section 4.

Now we have introduced all typing rules ofλ�© (See Figure 1.) All the previous propositions, ex-
cept Proposition 2.3, continue to hold for the type system ofλ�© . The following proposition proves that
∆; Γ ` M ∼ A is stronger than∆; Γ ` M : A:

Proposition 2.5. The following typing rule is admissible:

∆; Γ ` M ∼ A

∆; Γ ` M : A
∼ :

7



Proof. By induction on the structure of∆; Γ ` M ∼ A.

2.5 Example

To express term mobility and value mobility for each new constructM , we provide a rule for ordinary typing
judgment∆; Γ ` M : A and optionally another rule for typing judgment∆; Γ ` M ∼ A. As an example,
consider constructs for memory allocation. We regard a heap cell as a local resource; hence its pointer is
assumed to be valid only at the node where it is allocated. We use typeptr A for pointers to heap cells
containing values of typeA. For the sake of brevity, we do not consider typing rules for pointers.

type A ::= ptr A
term M ::= new M | read M | write M M

The three constructs work as follows:

• If M evaluates to a valueV , thennew M allocates a new heap cell containingV and returns its pointer
l.

• If M evaluates to a pointerl, thenread M returns the contents of the heap cell pointed to byl.

• If M evaluates to a pointerl andN evaluates to a valueV , thenwrite M N writesV to the heap cell
pointed to byl and returnsV .

The rules for the ordinary typing judgment reflect how these three constructs work:

∆; Γ ` M : A

∆; Γ ` new M : ptr A
New

∆; Γ ` M : ptr A

∆; Γ ` read M : A
Read

∆; Γ ` M : ptr A ∆; Γ ` N : A

∆; Γ ` write M N : A
Write

Thus any of these constructs is mobile if its argument is globally valid. For example,box new M (of type
� ptr A) typechecks ifM is globally valid, which means that allocating a new heap cell itself can be done
at any node. Once we finish evaluatingnew M , however, the result is no longer mobile (because it is a
pointer), which implies that the following rule is not allowed:

· · ·
∆; Γ ` new M ∼ ptr A

(wrong)

Since the value contained in a heap cell is not necessarily globally valid, we do not allow the following rule:

· · ·
∆; Γ ` read M ∼ A

(wrong)

The following rule is safe to use becausewrite M N returns the value to whichN evaluates:

∆; Γ ` M : ptr A ∆; Γ ` N ∼ A

∆; Γ ` write M N ∼ A Write′

As an example involving primitive types, let us build a mobile term adding two natural numbers. The
following term does not typecheck because variablesx andy are not added to the mobile typing context:

λx :nat. λy :nat. box (x + y)

We can make it typecheck by convertingx andy into value variablesvx andvy (using the rulePrim∼):

λx :nat. λy :nat. letcir vx = cir x in
letcir vy = cir y in
box (vx + vy)
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The following term copies mobiles terms contained in variablesx andy, and the evaluation of the resultant
mobile term may take longer than adding two natural numbers:

λx :�nat. λy :�nat. letbox x′ = x in
letbox y′ = y in
box (x′ + y′)

The following term first finishes evaluating mobile terms contained in variablesx andy:

λx :�nat. λy :�nat. letbox x′ = x in letcir vx = cir x′ in
letbox y′ = y in letcir vy = cir y′ in
box (vx + vy)

2.6 Logic for λ�©

Modal types�A in λ�© use the same type system for necessity of modal logic of Davies and Pfenning [6,
14]. A minor difference is that our interpretation of the modality� is spatial (�A means thatA is true at
every node), whereas their interpretation is temporal or proof-theoretic.

The type system for modal types©A is unusual in that it differentiates values (i.e., terms in weak head
normal form) from ordinary terms, as shown in the ruleVal. This differentiation implies that the logic
corresponding to the modality© requires a judgment that inspects not only hypotheses in a proof but also
inferences rules in it. Thus the modality© sets itself apart from other modalities and is not found in any
other logic.

A substitution〈M/v〉N for the modality© is similar to (and was inspired by) those substitutions for
modal possibility and lax truth in [14] in that it is defined inductively on the structure of the term being
substituted (i.e., M ) instead of the term being substituted into (i.e., N ). In fact, we may even think of
〈M/v〉N as substitutingN into M because conceptuallyN is replicated at those places withinM where
the evaluation ofM is finished.

We close this section with a discussion of the properties of the modalities� and©. Note that the two
modalities interact with each other, although they are developed in an orthogonal way.

• �A ⊃ A λx :�A. letbox y = x in y
A mobile term is a special case of an ordinary term.

• �A ⊃ ��A λx :�A. letbox y = x in box box y
A mobile term itself is mobile.

• �(A ⊃ B) ⊃ �A ⊃ �B λx :�(A ⊃ B). λy :�A. letbox x′ = x in letbox y′ = y in box x′ y′

• ©A ⊃ A λx :©A. letcir v = x in v
A mobile value is a special case of an ordinary term.

• ©A ⊃ ©©A λx :©A. letcir v = x in cir cir v
A mobile value itself is mobile.

• ©A ⊃ �A λx :©A. letcir v = x in box v
A mobile value is a special case of a mobile term.

• �A ⊃ ©�A λx :�A. letbox y = x in cir box y
box M is a mobile value.
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• ©A ⊃ �©A λx :©A. letcir v = x in box cir v
cir V is a mobile term.

• �©A ⊃ �A λx :�©A. letbox y = x in box letcir v = y in v
(derivable from�©A ⊃ ©A ⊃ �A)

• ©�A 6⊃ ©A
If ©�A ⊃ ©A held,�A and©A would be equivalent because of©A ⊃ �A and�A ⊃ ©�A ⊃ ©A.

3 Modal languageλ�©
W with indexed modalities

In the definition ofλ�© , “mobile” is synonymous with “globally valid”: a mobile term or value is valid at
any node in the network. Such a model for distributed computation is adequate if all participating nodes are
assumed to be homogeneous and have the same permanent local resources. In a grid computing environment,
for example, a mobile term valid at a particular remote node is also globally valid and can be evaluated at any
other remote node. For a heterogenous group of nodes with different permanent local resources, however,
λ�© becomes inadequate because a mobile term or value is not always globally valid. For example, a client
node may transmit to a printer server a “mobile” term for printing a document; such a mobile term can be
evaluated only at printer servers and is not globally valid. Since this notion of restricted mobility is useful
in practice, we extendλ�© to allow terms and values valid only at specific nodes.

The main design issue is whether or not the type system specifies a node at which a mobile term or value
is valid. As an example, consider a mobile termM that is valid only at printer servers (e.g., for printing
a document). There are two approaches to expressing its mobility with a type. In one approach, the type
system does not specify the node at whichM is to be evaluated; instead it only indicates that there exists a
certain node at whichM can be evaluated. In this case, it is the linker or the runtime system that decides
where to evaluate such a mobile term. In the other approach, the type system specifies explicitly the node at
which M is to be evaluated. In this case, it is the type system that decides where to evaluate such a mobile
term.

The first approach is attractive because the type system abstracts from any particular network configu-
ration. For example, new printer servers can be deployed into the network and old printer servers can be
removed without changing the type system. The second approach is useful if the network configuration is
static. For example, if the set of available printer servers is published and never changes, programmers can
specify a printer server with an appropriate type involving its identifier. In this paper, we adopt the second
approach to extendλ�© and leave it as future work to apply the first approach.

We extendλ�© with two indexed modalities�ω and©ω with the following interpretation:

• A valueboxω M of indexed modal type�ωA contains termM which is valid at nodeω.

• A valuecirω M of indexed modal type©ωA contains termM which evaluates to a value valid at node
ω.

Since the type system ofλ�© is incapable of expressing properties of a term with respect to specific nodes,
we replace the typing judgments ofλ�© by a new form of typing judgment∆; Γ `ω M ∼ A @ ω′:

• ∆; Γ `ω M ∼ A @ ω′ means that under mobile typing context∆ and local typing contextΓ, termM
at nodeω evaluates to a value of typeA valid at nodeω′.

• ∆; Γ `ω M : A is a shorthand for∆; Γ `ω M ∼ A @ ω, whereω may be thought of as the current
node for typecheckingM . Note that it isnot a separate judgment.
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A mobile typing context∆ is defined as before, but a local typing contextΓ now contains only those binding
relativized to a specific node:

mobile typing context ∆ ::= · | ∆, x :: A | ∆, v ∼ A
local typing context Γ ::= · | Γ, x : A @ ω | Γ, v ∼ A @ ω

• x :: A in ∆ means thatx holds a globally valid term of typeA.

• v ∼ A in ∆ means thatv holds a globally valid value of typeA.

• x : A @ ω in Γ means thatx holds a term valid at nodeω.

• v ∼ A @ ω in Γ means thatv holds a value valid at nodeω.

Note that the use of typing judgment∆; Γ `ω M ∼ A @ ω′ implies that a term may evaluate to a value that
is not valid at the node at which it is evaluated. For example, a term may scan a list of handles for remote
files and select one; the evaluation is safe as long as the selected handle is not dereferenced. We refer to our
new modal language with indexed modalities asλ�©W .

The syntax ofλ�©W is as follows:

type A ::= A ⊃ A | �A | �ωA | ©A | ©ωA
term M ::= x | λx :A.M | M M | box M | boxω M | letbox x = M in M |

v | cir M | cirω M | letcir v = M in M
value V ::= λx :A.M | box M | boxω M | v | cir M | cirω M

For the sake of simplicity, we reuseletbox x = M in N and letcir v = M in N to expose terms inside
boxω M ′ andcirω M ′ (as well asbox M ′ andcir M ′). Thus bothletbox x = box M ′ in N andletbox x =
boxω M ′ in N substituteM ′ for x in N ; similarly bothletcir v = cir M ′ in N andletcir v = cirω M ′ in N
first reduceM ′ to a value, which is then substituted forv in N .

Figure 2 shows the typing rules ofλ�©W . All these typing rules look similar to those ofλ�© , except
that we explicitly annotate every typing judgment with a node at which the evaluation is to take place and
another node at which its end result is valid. For each formV of value, we provide a typing rule for the
judgment∆; Γ `ω V : A only; in order to decide where elseV is valid, we use the ruleValW . Note that
in the rule�IW , the local typing contextΓ of the conclusion is carried over to the premise (whereas in the
rule �I of λ�© , it is replaced by an empty local typing context). This is safe because an arbitrary nodeω′

(instantiated byfresh ω′) serves as the current node in the premise.
The rulesCvarW andVvarW prevent references to local resources from being dereferenced at remote

nodes. Supposex : A @ ω ∈ Γ, v ∼ A @ ω ∈ Γ, andω′ 6= ω. In order to “evaluate” the term inx
(which perhaps contains references to local resources belonging toω) at ω′, we should be able to derive
∆; Γ `ω′ x ∼ A @ ω′′ for a certain nodeω′′, which is impossible because of the ruleCvarW ; in order to
“use” the value inv (which is perhaps a reference to a local resource belonging toω) at ω′, we should be
able to derive∆; Γ `ω′ v : A, which is impossible because of the ruleVvarW . Note, however, that we can
derive∆; Γ `ω′ v ∼ A @ ω, which implies that a reference to a local resource may be present at remote
nodes as long as it is not dereferenced.

As value mobility for primitive types is built-in in the rulePrim∼W , we reduceletcir v = cir M in N
andletcir v = cirω M in N only if M is already a value, as inλ�© . Thus allβ-reduction rules are defined
in terms of an ordinary substitution[M/x]N or [V/v]N :

(λx :A.N) M →β⊃ [M/x]N
letbox x = box M in N →β� [M/x]N

letbox x = boxω M in N →β�′ [M/x]N
letcir v = cir V in N →β© [V/v]N

letcir v = cirω V in N →β©′ [V/v]N
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x :: A ∈ ∆ or x : A @ ω ∈ Γ
∆; Γ `ω x : A

CvarW
v ∼ A ∈ ∆ or v ∼ A @ ω ∈ Γ

∆; Γ `ω v : A
VvarW

∆; Γ `ω′ V : A

∆; Γ `ω V ∼ A @ ω′
ValW (ω 6= ω′)

∆; Γ, x : A @ ω `ω M : B

∆; Γ `ω λx :A.M : A ⊃ B
⊃IW

∆; Γ `ω M : A ⊃ B ∆; Γ `ω N : A

∆; Γ `ω M N : B
⊃EW

fresh ω′ ∆; Γ `ω′ M : A

∆; Γ `ω box M : �A
�IW

∆; Γ `ω M : �A ∆, x :: A; Γ `ω N ∼ B @ ω′

∆; Γ `ω letbox x = M in N ∼ B @ ω′
�EW

∆; Γ `ω′ M : A

∆; Γ `ω boxω′ M : �ω′A
�I′W

∆; Γ `ω M : �ω′′A ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′

∆; Γ `ω letbox x = M in N ∼ B @ ω′
�E′W

fresh ω′ ∆; Γ `ω M ∼ A @ ω′

∆; Γ `ω cir M : ©A
©IW

∆; Γ `ω M : ©A ∆, v ∼ A; Γ `ω N ∼ B @ ω′

∆; Γ `ω letcir v = M in N ∼ B @ ω′
©EW

∆; Γ `ω M ∼ A @ ω′

∆; Γ `ω cirω′ M : ©ω′A
©I′W

∆; Γ `ω M : ©ω′′A ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′

∆; Γ `ω letcir v = M in N ∼ B @ ω′
©E′W

∆; Γ `ω M : Aprim

∆; Γ `ω M ∼ Aprim @ ω′
Prim∼W (ω 6= ω′)

Figure 2: Typing rules ofλ�©
W .

The following propositions imply that all theseβ-reductions are type-preserving:

Proposition 3.1. If ∆; Γ `ω′′ M : A and∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′, then∆; Γ `ω [M/x]N ∼ B @ ω′.

Proposition 3.2. If ∆; Γ `ω′′ M : A for any nodeω′′ and∆, x :: A; Γ `ω N ∼ B @ ω′, then∆; Γ `ω [M/x]N ∼ B @ ω′.

Proposition 3.3. If ∆; Γ `ω′′ V : A and∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′, then∆; Γ `ω [V/v]N ∼ B @ ω′.

Proposition 3.4. If ∆; Γ `ω′′ V : A for any nodeω′′ and∆, v ∼ A; Γ `ω N ∼ B @ ω′, then∆; Γ `ω [V/v]N ∼ B @ ω′.

3.1 λ�©W as an extension ofλ�©

Since all theβ-reduction rules ofλ�© are included inλ�©W , any reduction sequence inλ�© is also valid in
λ�©W . All the typing rules ofλ�© can also be rewritten in terms of typing judgments inλ�©W . Intuitively
∆; Γ `ω M ∼ A @ ω′ is more expressive than∆; Γ ` M : A and∆; Γ ` M ∼ A becauseω andω′ can be
instantated into arbitrary nodes. Given a local typing contextΓ in λ�© , we write [Γ]ω for a local typing
context inλ�©W that attaches@ ω to every bindingx : A in Γ:

[Γ]ω = {x : A @ ω | x : A ∈ Γ}

The following proposition shows how to interpret typing judgments inλ�© in terms of those inλ�©W :

Proposition 3.5.
If ∆; Γ ` M : A, then∆; [Γ]ω `ω M : A for any nodeω.
If ∆; Γ ` M ∼ A, then∆; [Γ]ω `ω M ∼ A @ ω′ for any nodesω andω′.
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3.2 Logic for λ�©W

As every typing judgment inλ�©W is relative to a certain node, the logic forλ�©W requires judgments
relativized to nodes. For example,x : A @ ω in a local typing context corresponds to a judgment thatA is
true at nodeω. Since the indexed modalities�ω and©ω directly internalize nodes within propositions, the
logic for λ�©W is a restricted form of hybrid logic [2].

The notion of judgment relativized to nodes is also a suitable basis for the semantics of modal logic.
For example, Simpson [15] provides a natural deduction system for intuitionistic modal logic based upon
relative truth. The fragment ofλ�©W without the indexed modalities can be explained in a similar way,
with the assumption that all nodes are visible (or accessible) from each other. This assumption is justified
because in a distribution computation, all nodes can communicate with each other.

The type system presented in this section is appropriate for understanding the roles of the modalities
� and© and the indexed modalities�ω and©ω. It is not, however, expressive enough for distributed
computations in which communication constructs may generate terms whose type is determined byremote
nodes. For example, a synchronization variable produced by a future construct (to be explained in the next
section) is essentially a pointer to a remote node, which determines its type. In the next section, we extend
the type system ofλ�©W so that we can typecheck such terms, and also develop a network operational
semantics which is capable of modeling distributed computations.

4 λ�©
W for distributed computation

In this section, we develop an extended type system and a network operational semantics forλ�©W . We
demonstrate the use of modal types with three communication constructs: remote evaluation, futures, and
asynchronous channels. We prove the type safety of the network operational semantics,i.e., its type preser-
vation and progress properties, in the presence of these communication constructs. The type safety implies
the safety of mobile terms and mobile values.

4.1 Physical nodes and logical nodes

So far, we have restricted ourselves to physical nodes by interpretingω as an identifier of a physical node.
For example,ω may refer to a printer server or a database server. While appropriate for the type system,
this interpretation poses a problem when we model distributed computations. For example, if a database
server initiates a stand-alone computation for each query it receives, we cannot distinguish between these
stand-alone computations with different node identifiers. Therefore there arises a need forlogical nodes,
each of which performs a single stand-alone computation. In order for a physical node to perform multiple
stand-alone computations concurrently, it spawns the same number of logical nodes.

We distinguish between physical nodes and logical nodes as separate syntactic categories:

physical node ω
logical node γ

A logical node on physical nodeω inherits all permanent local resources belonging toω. Therefore a term
valid at physical nodeω is valid at every logical node onω.

We assume two primitives,new γ andnew γ @ ω, for creating logical nodes.P(γ) stands for the
physical node with which logical nodeγ is associated, as defined below. Note that it is not defined as the
actual physical node where logical nodeγ resides:

• new γ creates a new logical nodeγ which may reside at an arbitrary physical node (including the
physical node invokingnew γ itself). If γ is created withnew γ, thenP(γ) is a fresh physical node
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ω (which is different from any existing physical node).
Example:new γ searches for an idle computer in the network and establishes a logical nodeγ on it.

• new γ @ ω creates a new logical nodeγ at physical nodeω. If γ is created withnew γ @ ω, then
P(γ) = ω.
Example:new γ @ ω contacts a database serverω and requests a logical nodeγ on it.

We assume that every physical nodeω publishes a local typing contextΓperm
ω which records the type

of its permanent local resources with bindingsv ∼ A @ ω, wherev may be thought of as a reference to
a permanent local resource. We require thatA not be a primitive type (to ensure the progress property in
Theorem 4.5). We writeΓperm for the union of all known local typing contextsΓperm

ω .

4.2 Configuration

We represent the state of a network with aconfigurationC which records the term being evaluated at each
logical node. Aconfiguration typeΛ records the type of the term and the mobility of the resultant value. We
assume that no logical node appears more than once inC and considerC as an unordered set.

configuration C ::= · | C,M at γ
configuration type Λ ::= · | Λ, γ ∼ A @ ω | Λ, γ ∼ A @ ?

• M at γ in C means that logical nodeγ is currently evaluating termM .

• γ ∼ A @ ω in Λ means that the term at logical nodeγ evaluates to a value of typeA valid at physical
nodeω.

• γ ∼ A @ ? in Λ means that the term at logical nodeγ evaluates to a globally valid value of typeA.

The extended type system is formulated with aconfiguration typing judgmentC :: Λ, which means that
configurationC has configuration typeΛ. The network operational semantics is formulated with aconfigu-
ration transition judgmentC =⇒ C ′, which means that configurationC reduces or evolves to configuration
C ′. We first consider the extended type system and then the network operational semantics.

4.3 Extended type system

In order to be able to typecheck those terms whose type is determined by remote nodes, we introduce an
extended typing judgmentwhich includes a configuration type as part of its typing context:

• An extended typing judgmentΛ; ∆; Γ `ω M ∼ A @ ω′ means that under configuration typeΛ, mo-
bile typing context∆, and local typing contextΓ, termM at any logical node on physical nodeω
evaluates to a value of typeA valid at physical nodeω′. We assumeΓperm ⊂ Γ, which means that all
references to permanent local resources are public.

• Λ; ∆; Γ `ω M : A is a shorthand forΛ; ∆; Γ `ω M ∼ A @ ω.

The rules for extended typing judgments are derived from (and given the same name as) those in Figure 2
by prepending a configuration typeΛ to every judgment∆; Γ `ω M ∼ A @ ω′.
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The configuration typing judgment is defined in terms of extended typing judgments. It has only one
inference rule, which may be regarded as its definition:

for each M at γ ∈ C,
γ ∼ A @ ω ∈ Λ and Λ; ·; Γperm `P(γ) M ∼ A @ ω, or
γ ∼ A @ ? ∈ Λ and Λ; ·; Γperm `P(γ) M ∼ A @ ω for a fresh node ω.

C :: Λ
Tcfg

We assume|C| = |Λ| to maintain a one-to-one correspondence betweenC andΛ; henceΛ contains exactly
one element for each logical node inC.

4.4 Network operational semantics

The configuration transition judgment uses evaluation contexts in a call-by-name style; we could equally
choose a call-by-value style with another case(λx :A.M) κ for evaluation contexts:

evaluation context κ ::= [] | κ M | letbox x = κ in M |
letcir v = κ in M | letcir v = cir κ in M | letcir v = cirω κ in M

An evaluation contextκ is a term with a hole[] in it, where the hole indicates the position where a reduction
may occur. The following rule shows how to use theβ-reduction rules ofλ�©W in the network operational
semantics;−→ refers to the one of theβ-reduction rules→β⊃,→β�,→β�′ ,→β© ,→β©′ of λ�©W :

M −→ N
C, κ[M ] at γ =⇒ C, κ[N ] at γ

Rcfg

Note that a configuration transition is nondeterministic, since the ruleRcfg can choose an arbitrary logical
nodeγ from a given configuration.

We also need another configuration transition rule to deal with value variables inΓperm. Suppose that a
value variablev is a reference to a permanent local resourceV of a physical nodeω (hencev ∼ A @ ω ∈
Γperm). For example,V could be a printing function at a printer serverω. At a logical nodeγ such that
P(γ) 6= ω, v does not need to reduce toV becauseV is not valid atγ anyway. IfP(γ) = ω, however,
v reduces toV by accessing the local resource. Thus, for each bindingv ∼ A @ ω ∈ Γperm, we define a
reduction

v →perm V

such thatV is not another value variable and·; ·; Γperm `ω V : A holds. The following rule specifies that a
reference to a permanent local resource reduces to a value only at the node to which it belongs:

v ∼ A @ ω ∈ Γperm v →perm V P(γ) = ω

C, κ[v] at γ =⇒ C, κ[V ] at γ
Rvalvar

Thus the ruleRvalvar ensures that references to permanent local resources are never dereferenced at remote
nodes.

4.5 Communication constructs

The network operational semantics becomes interesting only with communication constructs; without com-
munication constructs, all logical nodes perform stand-alone computations independently of each other and
the type safety holds trivially. Below we give three examples of communication constructs. Each construct
is defined with extended typing rules and configuration transition rules.
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type A ::= · · · | unit
term M ::= · · · | () | eval M
value V ::= · · · | ()
evaluation context κ ::= · · · | eval κ

Λ; ∆; Γ `ω () : unit
T() Λ; ∆; Γ `ω M : �A

Λ; ∆; Γ `ω eval M : unit
Teval

Λ; ∆; Γ `ω M : �ω′A

Λ; ∆; Γ `ω eval M : unit
Teval@

new γ′

C, κ[eval box M ] at γ =⇒ C, κ[()] at γ, M at γ′
Reval

new γ′ @ ω′

C, κ[eval boxω′ M ] at γ =⇒ C, κ[()] at γ, M at γ′
Reval@

Figure 3: Definition of the remote evaluation construct.

4.5.1 Remote evaluation

In order to be able to evaluate a mobile term at a remote node, we introduce a remote evaluation construct
eval M . It expectsM to evaluate tobox N or boxω N and transmitsN to a remote node. Unlike a remote
procedure call, it does not expect the result of evaluatingN and immediately returns a value() of typeunit.

Figure 3 shows the definition of the remote evaluation construct. The ruleReval creates a new logical
nodeγ′ with new γ′ becauseM may be evaluated at any node. In contrast, the ruleReval@ creates a new
logical nodeγ′ with new γ′ @ ω′ becauseM may be evaluated only at nodeω′.1

4.5.2 Futures

A future construct [8] is similar to a remote procedure call in that it initiates a stand-alone computation at a
remote node and also expects the result. The difference is that it does not wait for the result and immediately
returns asynchronization variablewhich points to the remote node. When the result is needed, it is requested
through a synchronization operation. If the remote node has finished the computation, the result is returned;
otherwise the synchronization operation is suspended until the result becomes ready. We can simulate
a remote procedure call by performing a synchronization operation immediately after evaluating a future
construct.

Figure 4 shows the definition of the future constructfuture M . It expectsM to be of type�©A, �ω©A,
�©ω′A, or�ω©ω′A. If M evaluates tobox N , it initiates a stand-alone computation ofletcir v = N in v at
a new logical nodeγ created withnew γ and returns a synchronization variablesyncvar γ of typeA sync;
if M evaluates toboxω N , it initiates the same stand-alone computation at a new logical nodeγ created
with new γ @ ω and returns a synchronization variablesyncvar γ of typeA syncω. SinceN has type©A
or ©ω′A, letcir v = N in v evaluates to a mobile value of typeA that is valid either at any node or at node
ω′. The result is requested through a synchronization operationsyncwith syncvar γ.

Note that a synchronization variable itself is inherently mobile and we can synchronize with itat any
node. Intuitively it is just a pointer to a certain logical node and hence is globally valid. The result of a
synchronization operation may not be valid at the node where it takes place, but the typing system correctly

1A remote evaluation construct can be simulated by a future construct; we present the remote evaluation construct
only as a simple example of using modal types�A and �ωA. As we will see below, eval M is simulated as
let = future (letbox x = M in box let = x in cir ()) in () wherelet x = M in N is standardlet-binding and is a wildcard
pattern.
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indicates the mobility of the result. For example, in the ruleTswith′, the result of evaluatingsyncwith M is
valid only at nodeω′, which is correctly indicated by@ ω′ in the typing judgment of the conclusion.

The rulesTsvar andTsvar′ show that a configuration typeΛ is necessary in extended typing judgments
in order to typecheck synchronization variables. Since synchronization variables are created only by the
future construct and do not appear in a source program, we need these rules only for proving the type safety.

type A ::= · · · | A sync | A syncω

term M ::= · · · | future M | syncvar γ | syncwith M
value V ::= · · · | syncvar γ
evaluation context κ ::= · · · | future κ | syncwith κ

Λ; ∆; Γ `ω M : �©A

Λ; ∆; Γ `ω future M ∼ A sync @ ω∗
Tfuture

Λ; ∆; Γ `ω M : �ω′©A

Λ; ∆; Γ `ω future M ∼ A sync @ ω∗
Tfuture@

Λ; ∆; Γ `ω M : �©ω′′A

Λ; ∆; Γ `ω future M ∼ A syncω′′ @ ω∗
Tfuture′

Λ; ∆; Γ `ω M : �ω′©ω′′A

Λ; ∆; Γ `ω future M ∼ A syncω′′ @ ω∗
Tfuture@′

γ ∼ A @ ? ∈ Λ
Λ; ∆; Γ `ω syncvar γ : A sync

Tsvar
γ ∼ A @ ω′ ∈ Λ

Λ; ∆; Γ `ω syncvar γ : A syncω′
Tsvar′

Λ; ∆; Γ `ω M : A sync

Λ; ∆; Γ `ω syncwith M ∼ A @ ω∗
Tswith

Λ; ∆; Γ `ω M : A syncω′

Λ; ∆; Γ `ω syncwith M ∼ A @ ω′
Tswith′

new γ′

C, κ[future box M ] at γ =⇒ C, κ[syncvar γ′] at γ, letcir v = M in v at γ′
Rfuture

new γ′ @ ω′

C, κ[future boxω′ M ] at γ =⇒ C, κ[syncvar γ′] at γ, letcir v = M in v at γ′
Rfuture@

C, κ[syncwith syncvar γ′] at γ, V at γ′ =⇒ C, κ[V ] at γ, V at γ′
Rswith

Figure 4: Definition of the future construct.ω∗ may be read as “any node.”

4.5.3 Asynchronous channels

An asynchronous channel is a first-in-first-out buffer containing values communicated among nodes. A
write operation adds a value to the buffer and always succeeds. A read operation removes the oldest value
from the buffer; if the buffer is empty, it waits until a new value is written. We assume that an asynchronous
channel is accessible to every node. This means that a value written to it must be globally valid, which in
turn means that a value read from it is also globally valid. A similar idea can be used to implementshared
variables, for which a write operation overwrites a single-entry buffer and a read operation leaves the buffer
intact.

We implement an asynchronous channel for typeA as a special node holding a list of values of type
A. The node updates the list when a read or write operation is performed on the channel. It maintains the
invariant that every value in the list is globally valid.

Figure 5 shows the definition of asynchronous channels.nil andVh :: Vt, both of typeA vlist, are
constructs for lists.newchanA creates a new logical nodeγ to implement an asynchronous channel for type
A, and returns achannel variablechanvar γ of typeA chan. A channel variable points to an asynchronous
channel and is globally valid. The rulesRreadc andRwritec show how read and write operations manipulate
the node associated with an asynchronous channel.
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Like synchronization variables for future constructs, channel variables are created only bynewchanA

and do not appear in a source program. Therefore we need the ruleTchanv only for proving the type safety.

type A ::= · · · | A chan | A vlist
term M ::= · · · | nil | V :: V | chanvar γ | newchanA | readchan M | writechan M M
value V ::= · · · | nil | V :: V | chanvar γ
evaluation context κ ::= · · · | readchan κ | writechan κ M | writechan (chanvar γ) κ

Λ; ∆; Γ `ω nil : A vlist
Tvnil

Λ; ∆; Γ `ω Vh : A Λ; ∆; Γ `ω Vt : A vlist

Λ; ∆; Γ `ω Vh :: Vt : A vlist
Tvcon

γ ∼ A vlist @ ? ∈ Λ
Λ; ∆; Γ `ω chanvar γ : A chan

Tchanv Λ; ∆; Γ `ω newchanA ∼ A chan @ ω∗
Tnewc

Λ; ∆; Γ `ω M : A chan

Λ; ∆; Γ `ω readchan M ∼ A @ ω∗
Treadc

Λ; ∆; Γ `ω M : A chan fresh ω′ Λ; ∆; Γ `ω N ∼ A @ ω′

Λ; ∆; Γ `ω writechan M N ∼ A @ ω∗
Twritec

new γ′

C, κ[newchanA] at γ =⇒ C, κ[chanvar γ′] at γ, nil at γ′
Rnewc

C, κ[readchan chanvar γ′] at γ, Vh :: Vt at γ′ =⇒ C, κ[Vh] at γ, Vt at γ′
Rreadc

C, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: nil at γ′ =⇒
C, κ[V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′

Rwritec

Figure 5: Definition of asynchronous channels.ω∗ may be read as “any node.”

4.6 Type safety

The type safety of the network operational semantics consists of two properties: configuration type preser-
vation (Theorem 4.1) and configuration progress (Theorem 4.5). Configuration type preservation states that
a configuration transition does not alter the type and mobility of the term being evaluated at each node. Con-
figuration progress states that we can apply a configuration transition rule until every node has finished its
stand-alone computation or waits for a result from another node (by the rulesRswith, Rreadc, andRwritec).

Theorem 4.1 (configuration type preservation).
If C :: Λ andC =⇒ C ′, thenC ′ :: Λ′ such thatΛ ⊂ Λ′.

Proof. By case analysis onC =⇒ C ′. There are three cases:
1) C0, κ[M ] at γ =⇒ C0, κ[N ] at γ
2) C0, κ[M ] at γ =⇒ C0, κ[N ] at γ, N ′ at γ′

3) C0, κ[M ] at γ, M ′ at γ′ =⇒ C0, κ[N ] at γ, N ′ at γ′

In each case, we show thatN preserves the type and mobility ofM . In case 3), we also show thatN ′

preserves the type and mobility ofM ′.

Lemma 4.2 (Canonical forms). If Λ; ·; Γperm `ω V ∼ A @ ω′, then
V = v,
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A is a primitive type,
A = A1 ⊃ A2 andV = λx :A1.M ,
A = �B andV = box M ,
A = �ω′′B andV = boxω′′ M ,
A = ©B andV = cir M ,
A = ©ω′′B andV = cirω′′ M ,
A = unit andV = (),
A = B sync andV = syncvar γ,
A = B syncω′′ andV = syncvar γ,
A = B chan andV = chanvar γ,
A = B vlist andV = nil,
or A = B vlist andV = Vh :: Vt.

Proof. Suppose thatV 6= v andA is not a primitive type.
If A = A1 ⊃ A2, thenΛ; ·; Γperm `ω V ∼ A @ ω′ is derived by the rule⊃IW , optionally followed by

the ruleValW . HenceV = λx :A1.M .
All the other cases are analogous.

Lemma 4.3. If Λ; ·; Γperm `ω M ∼ A @ ω′, then

M = V 6= v, M = v andv ∼ A @ ω′ ∈ Γperm,
M = κ[v] andv ∼ B @ ω ∈ Γperm, M = κ[N ] whereN −→ N ′,
M = κ[eval box N ], M = κ[eval boxω′′ N ],
M = κ[future box N ], M = κ[future boxω′′ N ],
M = κ[syncwith syncvar γ], M = κ[newchanB],
M = κ[readchan chanvar γ], or M = κ[writechan (chanvar γ) V ].

Proof. By induction on the structure ofΛ; ·; Γperm `ω M ∼ A @ ω′. We present one case.

Case
Λ; ·; Γperm `ω M : Aprim

Λ; ·; Γperm `ω M ∼ Aprim @ ω′
Prim∼W (ω 6= ω′) :

If M = V 6= v by induction hypothesis, we are done.
M = v andv ∼ Aprim @ ω ∈ Γperm cannot happen by induction hypothesis, since the assumption on

Γperm requires that permanent local resources not be of a primitive type.
If M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ B @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB,

readchan chanvar γ, or writechan (chanvar γ) V ,
then we are done.

Lemma 4.4. If Λ; ∆; Γ `ω κ[M ] ∼ A @ ω′, then there existB andω′′ such thatΛ; ∆; Γ `ω M ∼ B @ ω′′.

Proof. By induction on the structure ofκ.

Theorem 4.5 (configuration progress).
If C :: Λ, then either there existsC ′ such thatC =⇒ C ′, or C consists only of the following:

V at γ,
κ[syncwith syncvar γ′] at γ,
κ[readchan chanvar γ′] at γ,
κ[writechan (chanvar γ′) V ] at γ.
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Proof. SupposeC = C0,M at γ. By the ruleTcfg, we haveΛ; ·; Γperm `ω M ∼ A @ ω′ for P(γ) = ω
and a certain nodeω′. We do case analysis according to Lemma 4.3. We present one case.
CaseM = κ[writechan (chanvar γ′) V ]:

By Lemma 4.4, we haveΛ; ·; Γperm `ω writechan (chanvar γ′) V ∼ B @ ω′′.
By the ruleTwritec (optionally preceded by the rulePrim ∼W if B is a primitive type), we have

Λ; ·; Γperm `ω chanvar γ′ : B chan.
By the ruleTchanv, we haveγ′ ∼ B vlist @ ? ∈ Λ.
SinceC :: Λ, we haveC = C ′

0,M at γ, N at γ′ andΛ; ·; Γperm `P(γ′) N ∼ B vlist @ ω∗ for a fresh
nodeω∗.

If N = V1 :: · · · :: Vn :: nil (where0 ≤ n), then

C ′
0, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: nil at γ′ =⇒

C ′
0, κ[V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′

Rwritec

.

OtherwiseN 6= V1 :: · · · :: Vn :: nil andM is not further reduced.

The two casesκ[syncwith syncvar γ′] at γ andκ[readchan chanvar γ′] at γ in Theorem 4.5 can occur
during a distributed computation. Here is an example of a configuration whose transition gives rise to the
two cases:

syncwith future box cir (readchan newchanA) at γ
=⇒ syncwith syncvar γ′ at γ, letcir v = cir (readchan newchanA) in v at γ′

=⇒ syncwith syncvar γ′ at γ, letcir v = cir (readchan chanvar γ′′) in v at γ′, nil at γ′′

Here nodeγ waits for a result from nodeγ′, which in turns waits for a value to be written to nodeγ′′. Since no
value can be written to nodeγ′′, the last configuration is stuck. The caseκ[writechan (chanvar γ′) V ] at γ
in Theorem 4.5 occurs only when the term being evaluated at nodeγ′ cannot be reduced to a list of values
(whether empty or not), as clarified in the proof above. This case, however, does not actually occur because
an asynchronous channel is always initialized asnil by the ruleRnewc and never holds a term that is not a
list.

The type safety of the network operational semantics implies that mobile terms and mobile values are
both safe to use: well-typed terms never go wrong even in the presence of mobile terms and mobile values.

4.7 Example

Consider a network of two nodesS (server) andC (client). NodeS has a printer attached to it, and provides
a functionprint for printing pdf files of typepdf. The printer accepts pdf files written only with local fonts,
and provides a functionconvertS for converting ordinary pdf files into a suitable format. NodeC has its
own conversion functionconvertC.

Γperm
S = fileS ∼ pdf @ S, convertS ∼ ©(pdf ⊃ ©Spdf) @ S, print ∼ pdf ⊃ unit @ S

Γperm
C = fileC ∼ pdf @ C, convertC ∼ pdf ⊃ ©Spdf @ C

We give three examples (similar to those in [9]) to illustrate how to describe tasks inλ�©W . All terms below
have type�Sunit and typecheck at any node. We use syntactic sugarrpc M for syncwith future M .

Printing a pdf filefileS of nodeS:
boxS (print fileS)

Printing a pdf filefileC of nodeC after converting it withconvertC:

letcir v = cirS rpc boxC (convertC fileC) in
boxS (print v)
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Printing a pdf filefileC of nodeC after converting it withconvertS:

boxS letcir v = convertS in
letcir v′ = cirS rpc boxC (v fileC) in
print v′

5 Related work

5.1 Local resources in distributed computations

In designing a distributed system, there are several ways to handle references to local resources when they
are transmitted (as part of a mobile term) to a remote node. If the underlying system supports direct access
to remote resources, such a reference can be replaced in the remote node by a proxy which automatically
redirects all requests for the resource to the originating node. Obliq [3] adopts such a computation model,
in which local referencesare replaced bynetwork referencesin a remote node.

λ�©W allows references to remote resources in mobile terms, but it also ensures that they are never
dereferenced. In essence, references to local resources become invalid when they are transmitted to remote
nodes, but their validity is restored when they are brought back to the original node. For example, if a term
M accesses local resources of nodeω and returns a globally valid value of typeA, then

syncwith future boxω cir M

can be evaluatedat any node: wherever the above term is evaluated, it calls back with the same termM to
nodeω, where all references inM again point to their corresponding local resources. The same computation
model is used by Mascoloet al. [11] in their treatment of references.

References to remote resources, as used in the above two computation models, are suitable for persistent
resources such as printers and databases, but they can be problematic for ephemeral resources which are
eventually destroyed. For example, the presence of references to remote heap cells incurs the problem of
distributed garbage collection [7]. An alternative computation model is one that permits no references to
remote resources either by rejecting mobile terms containing such references or by transmitting copies of
local resources along with mobile terms. Facile [10] supports such a computation model, in which local
resources are copied whenever their references (calledsingular values) are transmitted to a remote node.
Thus the problem with ephemeral resources is resolved at an increased cost of transmitting mobile terms.

5.2 Modal languages for distributed computation

Borghuis and Feijs [1] present a typedλ-calculusMTSN(Modal Type System for Networks). It assumes
stationary services (i.e., stationary code) and mobile data, and belongs to the client/server paradigm. An
indexed modal type�ω(A → B) represents services transforming data of typeA into data of typeB at
nodeω (similarly to�ω(A ⊃ B) in λ�©W ). MTSN is a task description language rather than a programming
language, since services are all “black boxes” whose inner workings are unknown. For example, terms of
typetex → dvi all describe procedures to convert tex files to dvi files. Thus reduction on terms is tantamount
to simplifying procedures to achieve a certain task.

Jia and Walker [9] present a modal languageλrpc which belongs to the remote evaluation paradigm.
It is based upon hybrid logic [2], and every typing judgment explicitly specifies the current node where
typechecking takes place. The modalities� and♦ are used for mobile terms that can be evaluated at any
node and at a certain node, respectively.

Murphyet al.[13] present a modal languageLambda 5which addresses both code mobility and resource
locality. It also belongs to the remote evaluation paradigm, and is based upon modal logic S5 where all
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judgments are relativized to nodes. A value of type�A contains a mobile term that can be evaluated at any
node, and a value of type♦A contains alabel, a reference to a local resource. A label may appear at remote
nodes, but the type system guarantees that it is dereferenced only at the node where it is valid.

Although the intuition behind the modality� is the same,λrpc and Lambda 5 are fundamentally different
fromλ�©W in their use of modal types�A in remote procedure calls. In both languages, a remote procedure
call, by thepull construct inλrpc and by thefetch construct in Lambda 5, is given a specific node where
the evaluation is to occur, and thereforedoes not expect a term contained in a value of type�A. Instead
it expects just a term of type�A, which itself may not be mobile but eventually produces a mobile term
valid at any node including the caller node. The resultant mobile term is delivered to (i.e., pulled orfetched
by) the caller node, which needs to further evaluate it to obtain a value. As such, neither language needs
to address the issue of value mobility. In contrast, a remote procedure call inλ�©W (by theeval or future
construct) transmits a termcontained in a value of type�A and relies on the modality© for return values.
Such use of the modality� is natural inλ�©W , since it supports remote procedure calls to unknown nodes.

Moody [12] presents a system which is based upon modal logic S4 and belongs to the remote evaluation
paradigm. The modality� is used for mobile terms that can be evaluated at any node, and the modality♦ is
used for terms located at some node. As inλ�©W , remote procedure calls use modal types�A to transmit
mobile terms to unknown remote nodes. Moody’s system uses the elimination rules for the modalities�
and♦ to send mobile terms to remote nodes, and does not provide a separate construct for remote procedure
calls.

6 Conclusion and future work

We present a modal languageλ�©W which ensures the safety of both mobile terms and mobile values. It
provides a flexible programming environment for various kinds of distributed computations. For example, if
the network evolves dynamically and no permanent local resources are known in advance, only modal types
�A and©A are necessary; if the network is static and every node publishes its permanent local resources,
we can program exclusively with indexed modal types�ωA and©ωA.

The modality© is useful inλ�©W only because the unit of communication includes a value. That is, if
the unit of communication was just a term and did not include a value, the modality© would be unnecessary.
Then, however, the future construct would have to be redefined in a similar way to thepull construct ofλrpc

and thefetch construct of Lambda 5, and asynchronous channels would be difficult to implement.
The three communication constructs ofλ�©W are all defined separately. A better approach would be

to introduce a few primitive operations and then implement various communication constructs using these
primitive operations. For example, we could introduce asend operation for the modality� and areceive
operation for the modality©, and then implement the future construct using these operations. Because of
technical difficulties arising from asynchronous channels, however, we do not adopt this approach and define
all communication constructs separately.

A drawback ofλ�©W is that in general, references to ephemeral local resources cannot be transmitted
to remote nodes. As an example, consider a pointerv of typeptr A at a logical nodeγ created withnew γ.
Nodeγ wishes to usev as a shared pointer among all its child nodes,i.e., those nodes created with theeval
andfuture constructs. No child node, however, even knows the existence ofv because the physical nodeω
in a bindingv ∼ A @ ω is not known statically. (If nodeγ was created withnew γ @ ω, thenv could be
transmitted to remote nodes.)

To overcome this drawback, we are currently investigating how to augmentλ�© (not λ�©W ) with a
modality♦ similar to that of Jia and Walker [9]. The idea is that a termM in dia M of type♦A can be
evaluated at a certain node, which is unknown to the type system but known to the runtime system. The use
of the modality♦ will allow us to dispense with indexed modalies�ω and©ω.
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A Proofs of the properties ofλ�©

Proposition A.1.
If ∆; Γ ` M : A and∆; Γ, x : A ` N : B, then∆; Γ ` [M/x]N : B.
If ∆; Γ ` M : A and∆; Γ, x : A ` N ∼ B, then∆; Γ ` [M/x]N ∼ B.

Proof. By simulataneous induction on the structure of of the derivation of∆; Γ, x : A ` N : B and∆; Γ, x : A ` N ∼ B.
Proof of the first clause:
CaseN = x: [M/x]N = M

By the ruleCvar, ∆; Γ, x : A ` N : B impliesA = B.
∆; Γ ` M : A implies∆; Γ ` [M/x]N : A.
Therefore∆; Γ ` [M/x]N : B.

CaseN = y, y 6= x: [M/x]N = y
By the ruleCvar, ∆; Γ, x : A ` N : B impliesy :: B ∈ ∆ or y : B ∈ Γ, x : A.
Sincey 6= x, we havey :: B ∈ ∆ or y : B ∈ Γ.
By the ruleCvar, ∆; Γ ` y : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = v: [M/x]N = v
By the ruleVvar, ∆; Γ, x : A ` N : B impliesv ∼ B ∈ ∆.
By the ruleVvar, ∆; Γ ` v : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = λy :B′. N ′, y 6= x, y not a free variable ofM : [M/x]N = λy :B′. [M/x]N ′

By the rule⊃I, ∆; Γ, x : A ` N : B implies∆; Γ, x : A, y : B′ ` N ′ : B′′ andB = B′ ⊃ B′′.
By weakening,∆; Γ ` M : A implies∆; Γ, y : B′ ` M : A.
By induction hypothesis,∆; Γ, y : B′ ` [M/x]N ′ : B′′.
By the rule⊃I, ∆; Γ ` λy :B′. [M/x]N ′ : B′ ⊃ B′′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = N1 N2: [M/x]N = [M/x]N1 [M/x]N2

By the rule⊃E, ∆; Γ, x : A ` N : B implies∆; Γ, x : A ` N1 : B′ ⊃ B and∆; Γ, x : A ` N2 : B′.
By induction hypothesis,∆; Γ ` [M/x]N1 : B′ ⊃ B and∆; Γ ` [M/x]N2 : B′.
By the rule⊃E, ∆; Γ ` [M/x]N1 [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = box N ′: [M/x]N = box [M/x]N ′

By the rule�I, ∆; Γ, x : A ` N : B implies∆; · ` N ′ : B′ andB = �B′.
Sincex is not a free variable ofN ′, we have[M/x]N ′ = N ′.
By the rule�I, ∆; Γ ` box [M/x]N ′ : �B′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

By the rule�E, ∆; Γ, x : A ` N : B implies∆; Γ, x : A ` N1 : �B1 and∆, y :: B1; Γ, x : A ` N2 : B.
By weakening,∆; Γ ` M : A implies∆, y :: B1; Γ ` M : A.
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By induction hypothesis,∆; Γ ` [M/x]N1 : �B1 and∆, y :: B1; Γ ` [M/x]N2 : B.
By the rule�E, ∆; Γ ` letbox y = [M/x]N1 in [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = cir N ′: [M/x]N = cir [M/x]N ′

By the rule©I, ∆; Γ, x : A ` N : B implies∆; Γ, x : A ` N ′ ∼ B′ andB = ©B′.
By induction hypothesis,∆; Γ ` [M/x]N ′ ∼ B′.
By the rule©I, ∆; Γ ` cir [M/x]N ′ : ©B′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

By the rule©E, ∆; Γ, x : A ` N : B implies∆; Γ, x : A ` N1 : ©B1 and∆, v ∼ B1; Γ, x : A ` N2 : B.
By weakening,∆; Γ ` M : A implies∆, v ∼ B1; Γ ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : ©B1 and∆, v ∼ B1; Γ ` [M/x]N2 : B.
By the rule©E, ∆; Γ ` letcir v = [M/x]N1 in [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

Proof of the second clause:
If the rulePrim∼ is used to deduce∆; Γ, x : A ` N ∼ B:

∆; Γ, x : A ` N : B andB is a primitive type.
By induction hypothesis,∆; Γ ` [M/x]N : B.
By the rulePrim∼, ∆; Γ ` [M/x]N ∼ B.

Now N cannot be an applicationN1 N2 or a variabley.
CaseN = V :

By the ruleVal, ∆; Γ, x : A ` N ∼ B implies∆; · ` N : B.
Sincex is not a free variable ofN , we have[M/x]N = N .
By the ruleVal, ∆; Γ ` [M/x]N ∼ B.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

By the rule�E′, ∆; Γ, x : A ` N ∼ B implies∆; Γ, x : A ` N1 : �B1 and∆, y :: B1; Γ, x : A ` N2 ∼ B.
By weakening,∆; Γ ` M : A implies∆, y :: B1; Γ ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : �B1 and∆, y :: B1; Γ ` [M/x]N2 ∼ B.
By the rule�E′, ∆; Γ ` letbox y = [M/x]N1 in [M/x]N2 ∼ B.
Therefore∆; Γ ` [M/x]N ∼ B.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

By the rule©E′, ∆; Γ, x : A ` N ∼ B implies∆; Γ, x : A ` N1 : ©B1 and∆, v ∼ B1; Γ, x : A ` N2 ∼ B.
By weakening,∆; Γ ` M : A implies∆, v ∼ B1; Γ ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : ©B1 and∆, v ∼ B1; Γ ` [M/x]N2 ∼ B.
By the rule©E′, ∆; Γ ` letcir v = [M/x]N1 in [M/x]N2 ∼ B.
Therefore∆; Γ ` [M/x]N ∼ B.

Proof of Proposition 2.2 and Proposition2.4:

Proof. By simulataneous induction on the structure of the derivation of∆, x :: A; Γ ` N : B and∆, x :: A; Γ ` N ∼ B.
Proof of Proposition 2.2:
CaseN = x: [M/x]N = M

∆; · ` M : A implies∆; · ` [M/x]N : A.
By weakening,∆; · ` [M/x]N : A implies∆; Γ ` [M/x]N : A.
∆, x :: A; Γ ` N : B impliesA = B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = y, y 6= x: [M/x]N = y
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By the ruleCvar, ∆, x :: A; Γ ` N : B impliesy :: B ∈ ∆, x :: A or y : B ∈ Γ.
Sincey 6= x, we havey :: B ∈ ∆ or y : B ∈ Γ.
By the ruleCvar, ∆; Γ ` y : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = v: [M/x]N = v
By the ruleVvar, ∆, x :: A; Γ ` N : B impliesv ∼ B ∈ ∆, x :: A, which meansv ∼ B ∈ ∆.
By the ruleVvar, ∆; Γ ` v : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = λy :B′. N ′, y 6= x, y not a free variable ofM : [M/x]N = λy :B′. [M/x]N ′

By the rule⊃I, ∆, x :: A; Γ ` N : B implies∆, x :: A; Γ, y : B′ ` N ′ : B′′ andB = B′ ⊃ B′′.
By induction hypothesis,∆; Γ, y : B′ ` [M/x]N ′ : B′′.
By the rule⊃I, ∆; Γ ` λy :B′. [M/x]N ′ : B′ ⊃ B′′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = N1 N2: [M/x]N = [M/x]N1 [M/x]N2

By the rule⊃E, ∆, x :: A; Γ ` N : B implies∆, x :: A; Γ ` N1 : B′ ⊃ B and∆, x :: A; Γ ` N2 : B′.
By induction hypothesis,∆; Γ ` [M/x]N1 : B′ ⊃ B and∆; Γ ` [M/x]N2 : B′.
By the rule⊃E, ∆; Γ ` [M/x]N1 [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = box N ′: [M/x]N = box [M/x]N ′

By the rule�I, ∆, x :: A; Γ ` N : B implies∆, x :: A; · ` N ′ : B′ andB = �B′.
By induction hypothesis,∆; · ` [M/x]N ′ : B′.
By the rule�I, ∆; Γ ` box [M/x]N ′ : �B′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

By the rule�E, ∆, x :: A; Γ ` N : B implies∆, x :: A; Γ ` N1 : �B1 and∆, x :: A, y :: B1; Γ ` N2 : B.
By weakening,∆; · ` M : A implies∆, y :: B1; · ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : �B1 and∆, y :: B1; Γ ` [M/x]N2 : B.
By the rule�E, ∆; Γ ` letbox y = [M/x]N1 in [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

CaseN = cir N ′: [M/x]N = cir [M/x]N ′

By the rule©I, ∆, x :: A; Γ ` N : B implies∆, x :: A; Γ ` N ′ ∼ B′ andB = ©B′.
By induction hypothesis,∆; Γ ` [M/x]N ′ ∼ B′.
By the rule©I, ∆; Γ ` cir [M/x]N ′ : ©B′.
Therefore∆; Γ ` [M/x]N : B.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

By the rule©E, ∆, x :: A; Γ ` N : B implies∆, x :: A; Γ ` N1 : ©B1 and∆, x :: A, v ∼ B1; Γ ` N2 : B.
By weakening,∆; · ` M : A implies∆, v ∼ B1; · ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : ©B1 and∆, v ∼ B1; Γ ` [M/x]N2 : B.
By the rule©E, ∆; Γ ` letcir v = [M/x]N1 in [M/x]N2 : B.
Therefore∆; Γ ` [M/x]N : B.

Proof of Proposition 2.4:
If the rulePrim∼ is used to deduce∆, x :: A; Γ ` N ∼ B:

∆, x :: A; Γ ` N : B andB is a primitive type.
By induction hypothesis,∆; Γ ` [M/x]N : B.
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By the rulePrim∼, ∆; Γ ` [M/x]N ∼ B.
Now N cannot be an applicationN1 N2 or a variabley.
CaseN = V :

By the ruleVal, ∆, x :: A; Γ ` N ∼ B implies∆, x :: A; · ` N : B.
By induction hypothesis,∆; · ` [M/x]N : B.
By the ruleVal, ∆; Γ ` [M/x]N ∼ B.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

By the rule�E′, ∆, x :: A; Γ ` N ∼ B implies∆, x :: A; Γ ` N1 : �B1 and∆, x :: A, y :: B1; Γ ` N2 ∼ B.
By weakening,∆; · ` M : A implies∆, y :: B1; · ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : �B1 and∆, y :: B1; Γ ` [M/x]N2 ∼ B.
By the rule�E′, ∆; Γ ` letbox y = [M/x]N1 in [M/x]N2 ∼ B.
Therefore∆; Γ ` [M/x]N ∼ B.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

By the rule©E′, ∆, x :: A; Γ ` N ∼ B implies∆, x :: A; Γ ` N1 : ©B1 and∆, x :: A, v ∼ B1; Γ ` N2 ∼ B.
By weakening,∆; · ` M : A implies∆, v ∼ B1; · ` M : A.
By induction hypothesis,∆; Γ ` [M/x]N1 : ©B1 and∆, v ∼ B1; Γ ` [M/x]N2 ∼ B.
By the rule©E′, ∆; Γ ` letcir v = [M/x]N1 in [M/x]N2 ∼ B.
Therefore∆; Γ ` [M/x]N ∼ B.

Lemma A.2.
If ∆; · ` V : A and∆, v ∼ A; Γ ` N : B, then∆; Γ ` [V/v]N : B.
If ∆; · ` V : A and∆, v ∼ A; Γ ` N ∼ B, then∆; Γ ` [V/v]N ∼ B.

Proof. By simulataneous induction on the structure of the derivation of∆, v ∼ A; Γ ` N : B and∆, v ∼ A; Γ ` N ∼ B.
Proof of the first clause:
CaseN = x: [V/v]N = x

By the ruleCvar, ∆, v ∼ A; Γ ` N : B impliesx :: B ∈ ∆, v ∼ A orx : B ∈ Γ, which meansx :: B ∈ ∆
or x : B ∈ Γ.

By the ruleCvar, ∆; Γ ` x : B.
Therefore∆; Γ ` [V/v]N : B.

CaseN = v: [V/v]N = V
∆; · ` V : A implies∆; · ` [V/v]N : A.
By weakening,∆; · ` [V/v]N : A implies∆; Γ ` [V/v]N : A.
∆, v ∼ A; Γ ` N : B impliesA = B.
Therefore∆; Γ ` [V/v]N : B.

CaseN = w, w 6= v: [V/v]N = w
By the ruleVvar, ∆, v ∼ A; Γ ` N : B impliesw ∼ B ∈ ∆, v ∼ A, which meansw ∼ B ∈ ∆.
By the ruleVvar, ∆; Γ ` w : B.
Therefore∆; Γ ` [V/v]N : B.

CaseN = λx :B′. N ′, x not a free variable ofV : [V/v]N = λx :B′. [V/v]N ′

By the rule⊃I, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; Γ, x : B′ ` N ′ : B′′ andB = B′ ⊃ B′′.
By induction hypothesis,∆; Γ, x : B′ ` [V/v]N ′ : B′′.
By the rule⊃I, ∆; Γ ` λx :B′. [V/v]N ′ : B′ ⊃ B′′.
Therefore∆; Γ ` [V/v]N : B.

CaseN = N1 N2: [V/v]N = [V/v]N1 [V/v]N2

By the rule⊃E, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; Γ ` N1 : B′ ⊃ B and∆, v ∼ A; Γ ` N2 : B′.
By induction hypothesis,∆; Γ ` [V/v]N1 : B′ ⊃ B and∆; Γ ` [V/v]N2 : B′.
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By the rule⊃E, ∆; Γ ` [V/v]N1 [V/v]N2 : B.
Therefore∆; Γ ` [V/v]N : B.

CaseN = box N ′: [V/v]N = box [V/v]N ′

By the rule�I, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; · ` N ′ : B′ andB = �B′.
By induction hypothesis,∆; · ` [V/v]N ′ : B′.
By the rule�I, ∆; Γ ` box [V/v]N ′ : �B′.
Therefore∆; Γ ` [V/v]N : B.

CaseN = letbox x = N1 in N2, x not a free variable ofV : [V/v]N = letbox x = [V/v]N1 in [V/v]N2

By the rule�E, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; Γ ` N1 : �B1 and∆, v ∼ A, x :: B1; Γ ` N2 : B.
By weakening,∆; · ` V : A implies∆, x :: B1; · ` V : A.
By induction hypothesis,∆; Γ ` [V/v]N1 : �B1 and∆, x :: B1; Γ ` [V/v]N2 : B.
By the rule�E, ∆; Γ ` letbox x = [V/v]N1 in [V/v]N2 : B.
Therefore∆; Γ ` [V/v]N : B.

CaseN = cir N ′: [V/v]N = cir [V/v]N ′

By the rule©I, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; Γ ` N ′ ∼ B′ andB = ©B′.
By induction hypothesis,∆; Γ ` [V/v]N ′ ∼ B′.
By the rule©I, ∆; Γ ` cir [V/v]N ′ : ©B′.
Therefore∆; Γ ` [V/v]N : B.

CaseN = letcir w = N1 in N2, w 6= v, w not a free variable ofV : [V/v]N = letcir w = [V/v]N1 in [V/v]N2

By the rule©E, ∆, v ∼ A; Γ ` N : B implies∆, v ∼ A; Γ ` N1 : ©B1 and∆, v ∼ A,w ∼ B1; Γ ` N2 : B.
By weakening,∆; · ` V : A implies∆, w ∼ B1; · ` V : A.
By induction hypothesis,∆; Γ ` [V/v]N1 : ©B1. and∆, w ∼ B1; Γ ` [V/v]N2 : B.
By the rule©E, ∆; Γ ` letcir w = [V/v]N1 in [V/v]N2 : B.
Therefore∆; Γ ` [V/v]N : B.

Proof of the second clause:
If the rulePrim∼ is used to deduce∆, v ∼ A; Γ ` N ∼ B:

∆, v ∼ A; Γ ` N : B andB is a primitive type.
By induction hypothesis,∆; Γ ` [V/v]N : B.
By the rulePrim∼, ∆; Γ ` [V/v]N ∼ B.

Now N cannot be an applicationN1 N2 or a variablex.
CaseN = V ′:

By the ruleVal, ∆, v ∼ A; Γ ` N ∼ B implies∆, v ∼ A; · ` N : B.
By induction hypothesis,∆; · ` [V/v]N : B.
By the ruleVal, ∆; Γ ` [V/v]N ∼ B.

CaseN = letbox x = N1 in N2, x not a free variable ofV :
[V/v]N = letbox x = [V/v]N1 in [V/v]N2

By the rule�E′, ∆, v ∼ A; Γ ` N ∼ B implies∆, v ∼ A; Γ ` N1 : �B1 and∆, v ∼ A, x :: B1; Γ ` N2 ∼ B.
By weakening,∆; · ` V : A implies∆, x :: B1; · ` V : A.
By induction hypothesis,∆; Γ ` [V/v]N1 : �B1 and∆, x :: B1; Γ ` [V/v]N2 ∼ B.
By the rule�E′, ∆; Γ ` letbox x = [V/v]N1 in [V/v]N2 ∼ B.
Therefore∆; Γ ` [V/v]N ∼ B.

CaseN = letcir w = N1 in N2, w 6= v, w not a free variable ofV : [V/v]N = letcir w = [V/v]N1 in [V/v]N2

By the rule©E′, ∆, v ∼ A; Γ ` N ∼ B implies∆, v ∼ A; Γ ` N1 : ©B1 and∆, v ∼ A,w ∼ B1; Γ ` N2 ∼ B.
By weakening,∆; · ` V : A implies∆, w ∼ B1; · ` V : A.
By induction hypothesis,∆; Γ ` [V/v]N1 : ©B1 and∆, w ∼ B1; Γ ` [V/v]N2 ∼ B.
By the rule©E′, ∆; Γ ` letcir w = [V/v]N1 in [V/v]N2 ∼ B.
Therefore∆; Γ ` [V/v]N ∼ B.
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Proof of Proposition 2.3:

Proof. By induction on the structure ofM .
Proof of the first clause:
CaseM = V : 〈M/v〉N = [M/v]N

By the ruleVal, ∆; Γ ` M ∼ A implies∆; · ` M : A.
By Lemma A.2, we have∆; Γ ` [M/v]N : B.
Therefore∆; Γ ` 〈M/v〉N : B.

CaseM = letbox x = M1 in M2: 〈M/v〉N = letbox x = M1 in 〈M2/v〉N
By the rule�E′, ∆; Γ ` M ∼ A implies∆; Γ ` M1 : �A1 and∆, x :: A1; Γ ` M2 ∼ A.
By weakening,∆, v ∼ A; Γ ` N : B implies∆, v ∼ A, x :: A1; Γ ` N : B.
By induction hypothesis onM2, ∆, x :: A1; Γ ` 〈M2/v〉N : B.
By the rule�E′, ∆; Γ ` letbox x = M1 in 〈M2/v〉N : B.
Therefore∆; Γ ` 〈M/v〉N : B.

CaseM = letcir w = M1 in M2: 〈M/v〉N = letcir w = M1 in 〈M2/v〉N
By the rule©E′, ∆; Γ ` M ∼ A implies∆; Γ ` M1 : ©A1 and∆, w ∼ A1; Γ ` M2 ∼ A.
By weakening,∆, v ∼ A; Γ ` N : B implies∆, v ∼ A,w ∼ A1; Γ ` N : B.
By induction hypothesis onM2, ∆, w ∼ A1; Γ ` 〈M2/v〉N : B.
By the rule©E′, ∆; Γ ` letcir w = M1 in 〈M2/v〉N : B.
Therefore∆; Γ ` 〈M/v〉N : B.

Proof of the second clause:
CaseM = V : 〈M/v〉N = [M/v]N

By the ruleVal, ∆; Γ ` M ∼ A implies∆; · ` M : A.
By Lemma A.2, we have∆; Γ ` [M/v]N ∼ B.
Therefore∆; Γ ` 〈M/v〉N ∼ B.

CaseM = letbox x = M1 in M2: 〈M/v〉N = letbox x = M1 in 〈M2/v〉N
By the rule�E′, ∆; Γ ` M ∼ A implies∆; Γ ` M1 : �A1 and∆, x :: A1; Γ ` M2 ∼ A.
By weakening,∆, v ∼ A; Γ ` N ∼ B implies∆, v ∼ A, x :: A1; Γ ` N ∼ B.
By induction hypothesis onM2, ∆, x :: A1; Γ ` 〈M2/v〉N ∼ B.
By the rule�E′, ∆; Γ ` letbox x = M1 in 〈M2/v〉N ∼ B.
Therefore∆; Γ ` 〈M/v〉N ∼ B.

CaseM = letcir w = M1 in M2: 〈M/v〉N = letcir w = M1 in 〈M2/v〉N
By the rule©E′, ∆; Γ ` M ∼ A implies∆; Γ ` M1 : ©A1 and∆, w ∼ A1; Γ ` M2 ∼ A.
By weakening,∆, v ∼ A; Γ ` N ∼ B implies∆, v ∼ A,w ∼ A1; Γ ` N ∼ B.
By induction hypothesis onM2, ∆, w ∼ A1; Γ ` 〈M2/v〉N ∼ B.
By the rule©E′, ∆; Γ ` letcir w = M1 in 〈M2/v〉N ∼ B.
Therefore∆; Γ ` 〈M/v〉N ∼ B.

Proof of Proposition 2.5:

Proof. By induction on the structure of the derivation of∆; Γ ` M ∼ A.

Case
∆; · ` V : A

∆; Γ ` V ∼ A
Val andM = V :

By weakening,∆; · ` V : A implies∆; Γ ` V : A.
Therefore∆; Γ ` M : A.

Case
∆; Γ ` M1 : �A1 ∆, x :: A1; Γ ` M2 ∼ A

∆; Γ ` letbox x = M1 in M2 ∼ A �E′ andM = letbox x = M1 in M2:

By induction hypothesis on∆, x :: A1; Γ ` M2 ∼ A, we have∆, x :: A1; Γ ` M2 : A.
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By the rule�E, ∆; Γ ` letbox x = M1 in M2 : A
Therefore∆; Γ ` M : A.

Case
∆; Γ ` M1 : ©A1 ∆, v ∼ A1; Γ ` M2 ∼ A

∆; Γ ` letcir v = M1 in M2 ∼ A
©E′ andM = letcir v = M1 in M2:

By induction hypothesis on∆, v ∼ A1; Γ ` M2 ∼ A, we have∆, v ∼ A1; Γ ` M2 : A.
By the rule©E, ∆; Γ ` letcir v = M1 in M2 : A.
Therefore∆; Γ ` M : A.

Case
∆; Γ ` M : A

∆; Γ ` M ∼ A
Prim∼

The premise gives∆; Γ ` M : A.

B Proofs of the properties ofλ�©
W

Proof of Proposition 3.1:

Lemma B.1. [M/x]V is a value.

Proof. By case analysis ofV .

Proof. By induction on the structure of the derivation of∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′.
If N = V and the ruleValW is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′:

∆; Γ, x : A @ ω′′ `ω′ N : B.
By induction hypothesis,∆; Γ `ω′ [M/x]N : B.
By the ruleCvarW , ∆; Γ `ω [M/x]N ∼ B @ ω′ because[M/x]N is a value by Lemma B.1.

If the rulePrim∼W is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′:
∆; Γ, x : A @ ω′′ `ω N : B andB is a primitive type.
By induction hypothesis,∆; Γ `ω [M/x]N : B.
By the rulePrim∼W , ∆; Γ `ω [M/x]N ∼ B @ ω′.

Now we assume that the rulesCvarW andCvarW are not used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′.
CaseN = x: [M/x]N = M

By the ruleCvarW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ impliesA = B andω = ω′ = ω′′.
∆; Γ `ω′′ M : A implies∆; Γ `ω′′ [M/x]N : A.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = y, y 6= x: [M/x]N = y
By the ruleCvarW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ impliesy :: B ∈ ∆ ory : B @ ω ∈ Γ, x : A @ ω′′,

andω = ω′.
Sincey 6= x, we havey :: B ∈ ∆ or y : B @ ω ∈ Γ.
By the ruleCvarW , ∆; Γ `ω y : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = v: [M/x]N = v
By the ruleVvarW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ impliesv ∼ B ∈ ∆ orv ∼ B @ ω ∈ Γ, x : A @ ω′′,

andω = ω′.
Sincev 6= x, we havev ∼ B ∈ ∆ or v ∼ B @ ω ∈ Γ.
By the ruleVvarW , ∆; Γ `ω v : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = λy :B′. N ′, y 6= x, y not a free variable ofM : [M/x]N = λy :B′. [M/x]N ′

By the rule⊃IW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, x : A @ ω′′, y : B′ @ ω `ω N ′ : B′′,
B = B′ ⊃ B′′, andω = ω′.
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By weakening,∆; Γ `ω′′ M : A implies∆; Γ, y : B′ @ ω `ω′′ M : A.
By induction hypothesis,∆; Γ, y : B′ @ ω `ω [M/x]N ′ : B′′.
By the rule⊃IW , ∆; Γ `ω λy :B′. [M/x]N ′ : B′ ⊃ B′′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = N1 N2: [M/x]N = [M/x]N1 [M/x]N2

By the rule ⊃EW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N1 : B′ ⊃ B,
∆; Γ, x : A @ ω′′ `ω N2 : B′, andω = ω′.

By induction hypothesis,∆; Γ `ω [M/x]N1 : B′ ⊃ B and∆; Γ `ω [M/x]N2 : B′.
By the rule⊃EW , ∆; Γ `ω [M/x]N1 [M/x]N2 : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = box N ′: [M/x]N = box [M/x]N ′

By the rule�IW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, x : A @ ω′′ `ω∗ N ′ : B′, B = �B′,
andω = ω′ whereω∗ is a fresh node.

By induction hypothesis,∆; Γ `ω∗ [M/x]N ′ : B′.
By the rule�IW , ∆; Γ `ω box [M/x]N ′ : �B′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = boxω∗ N ′: [M/x]N = boxω∗ [M/x]N ′

By the rule�I′W , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, x : A @ ω′′ `ω∗ N ′ : B′, B = �ω∗B
′,

andω = ω′.
By induction hypothesis,∆; Γ `ω∗ [M/x]N ′ : B′.
By the rule�I′W , ∆; Γ `ω boxω∗ [M/x]N ′ : �ω∗B

′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

If the rule�EW is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N1 : �B1 and

∆, y :: B1; Γ, x : A @ ω′′ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆, y :: B1; Γ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : �B1 and∆, y :: B1; Γ `ω [M/x]N2 ∼ B @ ω′.
By the rule�EW , ∆; Γ `ω letbox y = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

If the rule�E′W is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N1 : �ω∗B1 and

∆; Γ, x : A @ ω′′, y : B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆; Γ, y : B1 @ ω∗ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : �ω∗B1 and∆; Γ, y : B1 @ ω∗ `ω [M/x]N2 ∼ B @ ω′.
By the rule�E′W , ∆; Γ `ω letbox y = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = cir N ′: [M/x]N = cir [M/x]N ′

By the rule©IW , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, x : A @ ω′′ `ω N ′ ∼ B′ @ ω∗, B = ©B′,
andω = ω′ whereω∗ is a fresh node.

By induction hypothesis,∆; Γ `ω [M/x]N ′ ∼ B′ @ ω∗.
By the rule©IW , ∆; Γ `ω cir [M/x]N ′ : ©B′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = cirω∗ N ′: [M/x]N = cirω∗ [M/x]N ′

By the rule ©I′W , ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N ′ ∼ B′ @ ω∗,
B = ©ω∗B

′, andω = ω′.
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By induction hypothesis,∆; Γ `ω [M/x]N ′ ∼ B′ @ ω∗.
By the rule©I′W , ∆; Γ `ω cir [M/x]N ′ : ©ω∗B

′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

If the rule©EW is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N1 : ©B1 and

∆, v ∼ B1; Γ, x : A @ ω′′ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆, v ∼ B1; Γ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : ©B1 and∆, v ∼ B1; Γ `ω [M/x]N2 ∼ B @ ω′.
By the rule©EW , ∆; Γ `ω letcir v = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

If the rule©E′W is used to deduce∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, x : A @ ω′′ `ω N1 : ©ω∗B1 and

∆; Γ, x : A @ ω′′, v ∼ B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆; Γ, v ∼ B1 @ ω∗ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : ©ω∗B1 and∆; Γ, v ∼ B1 @ ω∗ `ω [M/x]N2 ∼ B @ ω′.
By the rule©E′W , ∆; Γ `ω letcir v = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

Proof of Proposition 3.2:

Proof. By induction on the structure of the derivation of∆, x :: A; Γ `ω N ∼ B @ ω′.
If N = V and the ruleValW is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′:

∆, x :: A; Γ `ω′ N : B.
By induction hypothesis,∆; Γ `ω′ [M/x]N : B.
By the ruleCvarW , ∆; Γ `ω [M/x]N ∼ B @ ω′ because[M/x]N is a value by Lemma B.1.

If the rulePrim∼W is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′:
∆, x :: A; Γ `ω N : B andB is a primitive type.
By induction hypothesis,∆; Γ `ω [M/x]N : B.
By the rulePrim∼W , ∆; Γ `ω [M/x]N ∼ B @ ω′.

Now we assume that the rulesCvarW andCvarW are not used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′.
CaseN = x: [M/x]N = M

By the ruleCvarW , ∆, x :: A; Γ `ω N ∼ B @ ω′ impliesA = B andω = ω′.
∆; Γ `ω′′ M : A implies∆; Γ `ω M : A.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = y, y 6= x: [M/x]N = y
By the ruleCvarW , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies y :: B ∈ ∆, x :: A or y : B @ ω ∈ Γ, and

ω = ω′.
Sincey 6= x, we havey :: B ∈ ∆ or y : B @ ω ∈ Γ.
By the ruleCvarW , ∆; Γ `ω y : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = v: [M/x]N = v
By the ruleVvarW , ∆, x :: A; Γ `ω N ∼ B @ ω′ impliesv ∼ B ∈ ∆, x :: A or v ∼ B @ ω ∈ Γ, and

ω = ω′.
Sincev 6= x, we havev ∼ B ∈ ∆ or v ∼ B @ ω ∈ Γ.
By the ruleVvarW , ∆; Γ `ω v : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = λy :B′. N ′, y 6= x, y not a free variable ofM : [M/x]N = λy :B′. [M/x]N ′

32



By the rule⊃IW , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies∆, x :: A; Γ, y : B′ @ ω `ω N ′ : B′′, B = B′ ⊃ B′′,
andω = ω′.

By weakening,∆; Γ `ω′′ M : A implies∆; Γ, y : B′ @ ω `ω′′ M : A.
By induction hypothesis,∆; Γ, y : B′ @ ω `ω [M/x]N ′ : B′′.
By the rule⊃IW , ∆; Γ `ω λy :B′. [M/x]N ′ : B′ ⊃ B′′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = N1 N2: [M/x]N = [M/x]N1 [M/x]N2

By the rule ⊃EW , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N1 : B′ ⊃ B,
∆, x :: A; Γ `ω N2 : B′, andω = ω′.

By induction hypothesis,∆; Γ `ω [M/x]N1 : B′ ⊃ B and∆; Γ `ω [M/x]N2 : B′.
By the rule⊃EW , ∆; Γ `ω [M/x]N1 [M/x]N2 : B.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = box N ′: [M/x]N = box [M/x]N ′

By the rule�IW , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies∆, x :: A; Γ `ω∗ N ′ : B′, B = �B′, andω = ω′

whereω∗ is a fresh node.
By induction hypothesis,∆; Γ `ω∗ [M/x]N ′ : B′.
By the rule�IW , ∆; Γ `ω box [M/x]N ′ : �B′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = boxω∗ N ′: [M/x]N = boxω∗ [M/x]N ′

By the rule�I′W , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω∗ N ′ : B′, B = �ω∗B
′, and

ω = ω′.
By induction hypothesis,∆; Γ `ω∗ [M/x]N ′ : B′.
By the rule�I′W , ∆; Γ `ω boxω∗ [M/x]N ′ : �ω∗B

′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = letbox y = N1 in N2, y 6= x, y not a free variable ofM :
[M/x]N = letbox y = [M/x]N1 in [M/x]N2

If the rule�EW is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′,
∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N1 : �B1 and

∆, y :: B1, x :: A; Γ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆, y :: B1; Γ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : �B1 and∆, y :: B1; Γ `ω [M/x]N2 ∼ B @ ω′.
By the rule�EW , ∆; Γ `ω letbox y = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

If the rule�E′W is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′,
∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N1 : �ω∗B1 and

∆, x :: A; Γ, y : B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆; Γ, y : B1 @ ω∗ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : �ω∗B1 and∆; Γ, y : B1 @ ω∗ `ω [M/x]N2 ∼ B @ ω′.
By the rule�E′W , ∆; Γ `ω letbox y = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = cir N ′: [M/x]N = cir [M/x]N ′

By the rule©IW , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies∆, x :: A; Γ `ω N ′ ∼ B′ @ ω∗, B = ©B′, and
ω = ω′ whereω∗ is a fresh node.

By induction hypothesis,∆; Γ `ω [M/x]N ′ ∼ B′ @ ω∗.
By the rule©IW , ∆; Γ `ω cir [M/x]N ′ : ©B′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = cirω∗ N ′: [M/x]N = cirω∗ [M/x]N ′
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By the rule ©I′W , ∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N ′ ∼ B′ @ ω∗,
B = ©ω∗B

′, andω = ω′.
By induction hypothesis,∆; Γ `ω [M/x]N ′ ∼ B′ @ ω∗.
By the rule©I′W , ∆; Γ `ω cir [M/x]N ′ : ©ω∗B

′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

CaseN = letcir v = N1 in N2, v not a free variable ofM : [M/x]N = letcir v = [M/x]N1 in [M/x]N2

If the rule©EW is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′,
∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N1 : ©B1 and

∆, v ∼ B1, x :: A; Γ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆, v ∼ B1; Γ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : ©B1 and∆, v ∼ B1; Γ `ω [M/x]N2 ∼ B @ ω′.
By the rule©EW , ∆; Γ `ω letcir v = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

If the rule©E′W is used to deduce∆, x :: A; Γ `ω N ∼ B @ ω′,
∆, x :: A; Γ `ω N ∼ B @ ω′ implies ∆, x :: A; Γ `ω N1 : ©ω∗B1 and

∆, x :: A; Γ, v ∼ B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ M : A implies∆; Γ, v ∼ B1 @ ω∗ `ω′′ M : A.
By induction hypothesis,∆; Γ `ω [M/x]N1 : ©ω∗B1 and∆; Γ, v ∼ B1 @ ω∗ `ω [M/x]N2 ∼ B @ ω′.
By the rule©E′W , ∆; Γ `ω letcir v = [M/x]N1 in [M/x]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [M/x]N ∼ B @ ω′.

Proof of Proposition 3.3:

Proof. By induction on the structure of the derivation of∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′.
If N is a value and the ruleValW is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′:

∆; Γ, v ∼ A @ ω′′ `ω′ N : B.
By induction hypothesis,∆; Γ `ω′ [V/v]N : B.
By the ruleCvarW , ∆; Γ `ω [V/v]N ∼ B @ ω′ because[V/v]N is a value by Lemma B.1.

If the rulePrim∼W is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′:
∆; Γ, v ∼ A @ ω′′ `ω N : B andB is a primitive type.
By induction hypothesis,∆; Γ `ω [V/v]N : B.
By the rulePrim∼W , ∆; Γ `ω [V/v]N ∼ B @ ω′.

Now we assume that the rulesCvarW andCvarW are not used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′.
CaseN = x: [V/v]N = x

By the ruleCvarW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ impliesx :: B ∈ ∆ orx : B @ ω ∈ Γ, v ∼ A @ ω′′,
andω = ω′.

Sincex 6= v, we havex :: B ∈ ∆ or x : B @ ω ∈ Γ.
By the ruleCvarW , ∆; Γ `ω x : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = v: [V/v]N = V
By the ruleVvarW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ impliesA = B andω = ω′ = ω′′.
∆; Γ `ω′′ V : A implies∆; Γ `ω V : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = w, w 6= v: [V/v]N = w
By the ruleVvarW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ impliesw ∼ B ∈ ∆ orw ∼ B @ ω ∈ Γ, v ∼ A @ ω′′,

andω = ω′.
Sincew 6= v, we havew ∼ B ∈ ∆ or w ∼ B @ ω ∈ Γ.
By the ruleVvarW , ∆; Γ `ω w : B.
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Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.
CaseN = λx :B′. N ′, x not a free variable ofV : [V/v]N = λx :B′. [V/v]N ′

By the rule⊃IW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, v ∼ A @ ω′′, x : B′ @ ω `ω N ′ : B′′,
B = B′ ⊃ B′′, andω = ω′.

By weakening,∆; Γ `ω′′ V : A implies∆; Γ, x : B′ @ ω `ω′′ V : A.
By induction hypothesis,∆; Γ, x : B′ @ ω `ω [V/v]N ′ : B′′.
By the rule⊃IW , ∆; Γ `ω λx :B′. [V/v]N ′ : B′ ⊃ B′′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = N1 N2: [V/v]N = [V/v]N1 [V/v]N2

By the rule⊃EW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N1 : B′ ⊃ B,
∆; Γ, v ∼ A @ ω′′ `ω N2 : B′, andω = ω′.

By induction hypothesis,∆; Γ `ω [V/v]N1 : B′ ⊃ B and∆; Γ `ω [V/v]N2 : B′.
By the rule⊃EW , ∆; Γ `ω [V/v]N1 [V/v]N2 : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = box N ′: [V/v]N = box [V/v]N ′

By the rule�IW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, v ∼ A @ ω′′ `ω∗ N ′ : B′, B = �B′,
andω = ω′ whereω∗ is a fresh node.

By induction hypothesis,∆; Γ `ω∗ [V/v]N ′ : B′.
By the rule�IW , ∆; Γ `ω box [V/v]N ′ : �B′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = boxω∗ N ′: [V/v]N = boxω∗ [V/v]N ′

By the rule�I′W , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies∆; Γ, v ∼ A @ ω′′ `ω∗ N ′ : B′, B = �ω∗B
′,

andω = ω′.
By induction hypothesis,∆; Γ `ω∗ [V/v]N ′ : B′.
By the rule�I′W , ∆; Γ `ω boxω∗ [V/v]N ′ : �ω∗B

′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = letbox x = N1 in N2, x not a free variable ofV :
[V/v]N = letbox x = [V/v]N1 in [V/v]N2

If the rule�EW is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N1 : �B1 and

∆, x :: B1; Γ, v ∼ A @ ω′′ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆, x :: B1; Γ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : �B1 and∆, x :: B1; Γ `ω [V/v]N2 ∼ B @ ω′.
By the rule�EW , ∆; Γ `ω letbox x = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

If the rule�E′W is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N1 : �ω∗B1 and

∆; Γ, v ∼ A @ ω′′, x : B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆; Γ, x : B1 @ ω∗ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : �ω∗B1 and∆; Γ, x : B1 @ ω∗ `ω [V/v]N2 ∼ B @ ω′.
By the rule�E′W , ∆; Γ `ω letbox x = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = cir N ′: [V/v]N = cir [V/v]N ′

By the rule©IW , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N ′ ∼ B′ @ ω∗,
B = ©B′, andω = ω′ whereω∗ is a fresh node.

By induction hypothesis,∆; Γ `ω [V/v]N ′ ∼ B′ @ ω∗.
By the rule©IW , ∆; Γ `ω cir [V/v]N ′ : ©B′.
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Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.
CaseN = cirω∗ N ′: [V/v]N = cirω∗ [V/v]N ′

By the rule©I′W , ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N ′ ∼ B′ @ ω∗,
B = ©ω∗B

′, andω = ω′.
By induction hypothesis,∆; Γ `ω [V/v]N ′ ∼ B′ @ ω∗.
By the rule©I′W , ∆; Γ `ω cir [V/v]N ′ : ©ω∗B

′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = letcir w = N1 in N2, w 6= v, w not a free variable ofV : [V/v]N = letcir w = [V/v]N1 in [V/v]N2

If the rule©EW is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N1 : ©B1 and

∆, w ∼ B1; Γ, v ∼ A @ ω′′ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆, w ∼ B1; Γ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : ©B1 and∆, w ∼ B1; Γ `ω [V/v]N2 ∼ B @ ω′.
By the rule©EW , ∆; Γ `ω letcir w = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

If the rule©E′W is used to deduce∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′,
∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′ implies ∆; Γ, v ∼ A @ ω′′ `ω N1 : ©ω∗B1 and

∆; Γ, v ∼ A @ ω′′, w ∼ B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆; Γ, w ∼ B1 @ ω∗ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : ©ω∗B1 and∆; Γ, w ∼ B1 @ ω∗ `ω [V/v]N2 ∼ B @ ω′.
By the rule©E′W , ∆; Γ `ω letcir w = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

Proof of Proposition 3.4:

Proof. By induction on the structure of the derivation of∆, v ∼ A; Γ `ω N ∼ B @ ω′.
If N is a value and the ruleValW is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′:

∆, v ∼ A; Γ `ω′ N : B.
By induction hypothesis,∆; Γ `ω′ [V/v]N : B.
By the ruleCvarW , ∆; Γ `ω [V/v]N ∼ B @ ω′ because[V/v]N is a value by Lemma B.1.

If the rulePrim∼W is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′:
∆, v ∼ A; Γ `ω N : B andB is a primitive type.
By induction hypothesis,∆; Γ `ω [V/v]N : B.
By the rulePrim∼W , ∆; Γ `ω [V/v]N ∼ B @ ω′.

Now we assume that the rulesCvarW andCvarW are not used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′.
CaseN = x: [V/v]N = x

By the ruleCvarW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ impliesx :: B ∈ ∆, v ∼ A or x : B @ ω ∈ Γ, and
ω = ω′.

Sincex 6= v, we havex :: B ∈ ∆ or x : B @ ω ∈ Γ.
By the ruleCvarW , ∆; Γ `ω x : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = v: [V/v]N = V
By the ruleVvarW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ impliesA = B andω = ω′.
∆; Γ `ω′′ V : A implies∆; Γ `ω V : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = w, w 6= v: [V/v]N = w
By the ruleVvarW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ impliesw ∼ B ∈ ∆, v ∼ A or w ∼ B @ ω ∈ Γ, and

ω = ω′.
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Sincew 6= v, we havew ∼ B ∈ ∆ or w ∼ B @ ω ∈ Γ.
By the ruleVvarW , ∆; Γ `ω w : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = λx :B′. N ′, x not a free variable ofV : [V/v]N = λx :B′. [V/v]N ′

By the rule⊃IW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies∆, v ∼ A; Γ, x : B′ @ ω `ω N ′ : B′′, B = B′ ⊃ B′′,
andω = ω′.

By weakening,∆; Γ `ω′′ V : A implies∆; Γ, x : B′ @ ω `ω′′ V : A.
By induction hypothesis,∆; Γ, x : B′ @ ω `ω [V/v]N ′ : B′′.
By the rule⊃IW , ∆; Γ `ω λx :B′. [V/v]N ′ : B′ ⊃ B′′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = N1 N2: [V/v]N = [V/v]N1 [V/v]N2

By the rule⊃EW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies∆, v ∼ A; Γ `ω N1 : B′ ⊃ B, ∆, v ∼ A; Γ `ω N2 : B′,
andω = ω′.

By induction hypothesis,∆; Γ `ω [V/v]N1 : B′ ⊃ B and∆; Γ `ω [V/v]N2 : B′.
By the rule⊃EW , ∆; Γ `ω [V/v]N1 [V/v]N2 : B.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = box N ′: [V/v]N = box [V/v]N ′

By the rule�IW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies∆, v ∼ A; Γ `ω∗ N ′ : B′, B = �B′, andω = ω′

whereω∗ is a fresh node.
By induction hypothesis,∆; Γ `ω∗ [V/v]N ′ : B′.
By the rule�IW , ∆; Γ `ω box [V/v]N ′ : �B′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = boxω∗ N ′: [V/v]N = boxω∗ [V/v]N ′

By the rule�I′W , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω∗ N ′ : B′, B = �ω∗B
′, and

ω = ω′.
By induction hypothesis,∆; Γ `ω∗ [V/v]N ′ : B′.
By the rule�I′W , ∆; Γ `ω boxω∗ [V/v]N ′ : �ω∗B

′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = letbox x = N1 in N2, x not a free variable ofV :
[V/v]N = letbox x = [V/v]N1 in [V/v]N2

If the rule�EW is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′,
∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω N1 : �B1 and

∆, x :: B1, v ∼ A; Γ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆, x :: B1; Γ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : �B1 and∆, x :: B1; Γ `ω [V/v]N2 ∼ B @ ω′.
By the rule�EW , ∆; Γ `ω letbox x = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

If the rule�E′W is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′,
∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω N1 : �ω∗B1 and

∆, v ∼ A; Γ, x : B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆; Γ, x : B1 @ ω∗ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : �ω∗B1 and∆; Γ, x : B1 @ ω∗ `ω [V/v]N2 ∼ B @ ω′.
By the rule�E′W , ∆; Γ `ω letbox x = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = cir N ′: [V/v]N = cir [V/v]N ′

By the rule©IW , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies∆, v ∼ A; Γ `ω N ′ ∼ B′ @ ω∗, B = ©B′, and
ω = ω′ whereω∗ is a fresh node.
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By induction hypothesis,∆; Γ `ω [V/v]N ′ ∼ B′ @ ω∗.
By the rule©IW , ∆; Γ `ω cir [V/v]N ′ : ©B′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = cirω∗ N ′: [V/v]N = cirω∗ [V/v]N ′

By the rule ©I′W , ∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω N ′ ∼ B′ @ ω∗,
B = ©ω∗B

′, andω = ω′.
By induction hypothesis,∆; Γ `ω [V/v]N ′ ∼ B′ @ ω∗.
By the rule©I′W , ∆; Γ `ω cir [V/v]N ′ : ©ω∗B

′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

CaseN = letcir w = N1 in N2, w 6= v, w not a free variable ofV : [V/v]N = letcir w = [V/v]N1 in [V/v]N2

If the rule©EW is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′,
∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω N1 : ©B1 and

∆, w ∼ B1, v ∼ A; Γ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆, w ∼ B1; Γ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : ©B1 and∆, w ∼ B1; Γ `ω [V/v]N2 ∼ B @ ω′.
By the rule©EW , ∆; Γ `ω letcir w = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

If the rule©E′W is used to deduce∆, v ∼ A; Γ `ω N ∼ B @ ω′,
∆, v ∼ A; Γ `ω N ∼ B @ ω′ implies ∆, v ∼ A; Γ `ω N1 : ©ω∗B1 and

∆, v ∼ A; Γ, w ∼ B1 @ ω∗ `ω N2 ∼ B @ ω′.
By weakening,∆; Γ `ω′′ V : A implies∆; Γ, w ∼ B1 @ ω∗ `ω′′ V : A.
By induction hypothesis,∆; Γ `ω [V/v]N1 : ©ω∗B1 and∆; Γ, w ∼ B1 @ ω∗ `ω [V/v]N2 ∼ B @ ω′.
By the rule©E′W , ∆; Γ `ω letcir w = [V/v]N1 in [V/v]N2 ∼ B @ ω′.
Therefore∆; Γ `ω [V/v]N ∼ B @ ω′.

Proof of Proposition 3.5:

Proof. By simultaneous induction on the structure of the derivation of∆; Γ ` M : A and∆; Γ ` M ∼ A.
(Below we reuse metavaribleM and typeA.)

Case
x :: A ∈ ∆ or x : A ∈ Γ

∆; Γ ` x : A
Cvar :

x :: A ∈ ∆ or x : A ∈ Γ impliesx :: A ∈ ∆ or x : A @ ω ∈ [Γ]ω.
Then,

x :: A ∈ ∆ or x : A @ ω ∈ [Γ]ω

∆; [Γ]ω `ω x : A
CvarW

Case
v ∼ A ∈ ∆
∆; Γ ` v : A

Vvar :

v ∼ A ∈ ∆ impliesv ∼ A ∈ ∆ or v ∼ A @ ω ∈ [Γ]ω.
Then,

v ∼ A ∈ ∆ or v ∼ A @ ω ∈ [Γ]ω

∆; [Γ]ω `ω v : A
VvarW

Case
∆; · ` V : A

∆; Γ ` V ∼ A
Val :

By induction hypothesis on∆; · ` V : A, we have∆; · `ω′ V : A.
By weakening,∆; · `ω′ V : A implies∆; [Γ]ω `ω′ V : A.
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Then,
∆; [Γ]ω `ω′ V : A

∆; [Γ]ω `ω V ∼ A @ ω′
ValW

Case
∆; Γ, x : A ` M : B

∆; Γ ` λx :A.M : A ⊃ B
⊃I :

By induction hypothesis on∆; Γ, x : A ` M : B, we have∆; [Γ]ω, x : A @ ω `ω M : B.
Then,

∆; [Γ]ω, x : A @ ω `ω M : B

∆; [Γ]ω `ω λx :A.M : A ⊃ B
⊃IW

Case
∆; Γ ` M : A ⊃ B ∆; Γ ` N : A

∆; Γ ` M N : B
⊃E :

By induction hypothesis on∆; Γ ` M : A ⊃ B, we have∆; [Γ]ω `ω M : A ⊃ B.
By induction hypothesis on∆; Γ ` N : A, we have∆; [Γ]ω `ω N : A.
Then,

∆; [Γ]ω `ω M : A ⊃ B ∆; [Γ]ω `ω N : A

∆; [Γ]ω `ω M N : B
⊃EW

Case
∆; · ` M : A

∆; Γ ` box M : �A
�I :

By induction hypothesis on∆; · ` M : A, we have∆; · `ω′ M : A.
By weakening,∆; · `ω′ M : A implies∆; [Γ]ω `ω′ M : A.
Then,

∆; [Γ]ω `ω′ M : A

∆; [Γ]ω `ω box M : �A
�IW

Case
∆; Γ ` M : �A ∆, x :: A; Γ ` N : B

∆; Γ ` letbox x = M in N : B
�E :

By induction hypothesis on∆; Γ ` M : �A, we have∆; [Γ]ω `ω M : �A.
By induction hypothesis on∆, x :: A; Γ ` N : B, we have∆, x :: A; [Γ]ω `ω N : B.
∆, x :: A; [Γ]ω `ω N : B is equivalent to∆, x :: A; [Γ]ω `ω N ∼ B @ ω.
Then,

∆; [Γ]ω `ω M : �A ∆, x :: A; [Γ]ω `ω N ∼ B @ ω

∆; [Γ]ω `ω letbox x = M in N ∼ B @ ω
�EW

∆; [Γ]ω `ω letbox x = M in N ∼ B @ ω is equivalent to∆; [Γ]ω `ω letbox x = M in N : B.

Case
∆; Γ ` M : �A ∆, x :: A; Γ ` N ∼ B

∆; Γ ` letbox x = M in N ∼ B �E′ :

By induction hypothesis on∆; Γ ` M : �A, we have∆; [Γ]ω `ω M : �A.
By induction hypothesis on∆, x :: A; Γ ` N ∼ B, we have∆, x :: A; [Γ]ω `ω N ∼ B @ ω′.
Then,

∆; [Γ]ω `ω M : �A ∆, x :: A; [Γ]ω `ω N ∼ B @ ω′

∆; [Γ]ω `ω letbox x = M in N ∼ B @ ω′
�EW

Case
∆; Γ ` M ∼ A

∆; Γ ` cir M : ©A
©I :

By induction hypotheis on∆; Γ ` M ∼ A, we have∆; [Γ]ω `ω M ∼ A @ ω′.
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Then,
∆; [Γ]ω `ω M ∼ A @ ω′

∆; [Γ]ω `ω cir M : ©A
©IW

Case
∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N : B

∆; Γ ` letcir v = M in N : B
©E :

By induction hypothesis on∆; Γ ` M : ©A, we have∆; [Γ]ω `ω M : ©A.
By induction hypothesis on∆, v ∼ A; Γ ` N : B, we have∆, v ∼ A; [Γ]ω `ω N : B.
∆, v ∼ A; [Γ]ω `ω N : B is equivalent to∆, v ∼ A; [Γ]ω `ω N ∼ B @ ω.
Then,

∆; [Γ]ω `ω M : ©A ∆, v ∼ A; [Γ]ω `ω N ∼ B @ ω

∆; [Γ]ω `ω letcir v = M in N ∼ B @ ω
©EW

∆; [Γ]ω `ω letcir v = M in N ∼ B @ ω is equivalent to∆; [Γ]ω `ω letcir v = M in N : B.

Case
∆; Γ ` M : ©A ∆, v ∼ A; Γ ` N ∼ B

∆; Γ ` letcir v = M in N ∼ B
©E′ :

By induction hypothesis on∆; Γ ` M : ©A, we have∆; [Γ]ω `ω M : ©A.
By induction hypothesis on∆, v ∼ A; Γ ` N ∼ B, we have∆, v ∼ A; [Γ]ω `ω N ∼ B @ ω′.
Then,

∆; [Γ]ω `ω M : ©A ∆, v ∼ A; [Γ]ω `ω N ∼ B @ ω′

∆; [Γ]ω `ω letcir v = M in N ∼ B @ ω′
©EW

Case
∆; Γ ` M : Aprim

∆; Γ ` M ∼ Aprim
Prim∼ :

By induction hypothesis on∆; Γ ` M : Aprim , we have∆; [Γ]ω `ω M : Aprim .
Then,

∆; [Γ]ω `ω M : Aprim

∆; [Γ]ω `ω M ∼ Aprim @ ω′
Prim∼W

C Proofs of the type safety ofλ�©
W

Proposition C.1.
If Λ; ∆; Γ `ω′′ M : A andΛ; ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′, thenΛ; ∆; Γ `ω [M/x]N ∼ B @ ω′.

Proof. By induction on the structure of the derivation ofΛ; ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′.

Proposition C.2.
If Λ; ∆; Γ `ω′′ M : A for any nodeω′′ andΛ; ∆, x :: A; Γ `ω N ∼ B @ ω′, thenΛ; ∆; Γ `ω [M/x]N ∼ B @ ω′.

Proof. By induction on the structure of the derivation ofΛ; ∆, x :: A; Γ `ω N ∼ B @ ω′.

Proposition C.3.
If Λ; ∆; Γ `ω′′ V : A andΛ; ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′, thenΛ; ∆; Γ `ω [V/v]N ∼ B @ ω′.

Proof. By induction on the structure of the derivation ofΛ; ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′.

Proposition C.4.
If Λ; ∆; Γ `ω′′ V : A for any nodeω′′ andΛ; ∆, v ∼ A; Γ `ω N ∼ B @ ω′, thenΛ; ∆; Γ `ω [V/v]N ∼ B @ ω′.
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Proof. By induction on the structure of the derivation ofΛ; ∆, v ∼ A; Γ `ω N ∼ B @ ω′.

Proofs of Propositions C.1 to C.4 are similar to those of Propositions 3.1 to 3.4. Cases for communica-
tion constructs are also straightforward, as substitutions on communication constructs are all structural:

[M/x]() = ()
[M/x]eval N = eval [M/x]N

[M/x]future N = future [M/x]N
[M/x]syncvar γ = syncvar γ

[M/x]syncwith N = syncwith [M/x]N
[M/x]nil = nil

[M/x]V1 :: V2 = [M/x]V1 :: [M/x]V2

[M/x]chanvar γ = chanvar γ
[M/x]newchanA = newchanA

[M/x]readchan N = readchan [M/x]N
[M/x]writechan N1 N2 = writechan [M/x]N1 [M/x]N2

Lemma C.5. If Λ; ∆; Γ `ω M ∼ A @ ω′ andM −→ N , thenΛ; ∆; Γ `ω N ∼ A @ ω′.

Proof. By induction on the structure of the derivation ofΛ; ∆; Γ `ω M ∼ A @ ω′. (Below we reuse metavari-
bleM and typeA.)

Case
Λ; ∆; Γ `ω M : Aprim

Λ; ∆; Γ `ω M ∼ Aprim @ ω′
Prim∼W (ω 6= ω′) :

By induction hypothesis,Λ; ∆; Γ `ω N : Aprim .
By the rulePrim∼W , Λ; ∆; Γ `ω N ∼ Aprim @ ω′.

Now we now assume that the rulePrim∼W is not used to deriveΛ; ∆; Γ `ω M ∼ A @ ω′.
Case(λx :A.N) M →β⊃ [M/x]N :

The only possible derivation is:

Λ; ∆; Γ, x : A @ ω `ω N : B

Λ; ∆; Γ `ω λx :A.N : A ⊃ B
⊃IW Λ; ∆; Γ `ω M : A

Λ; ∆; Γ `ω (λx :A.N) M : B
⊃EW

By Proposition C.1,Λ; ∆; Γ `ω [M/x]N : B.
Caseletbox x = box M in N →β� [M/x]N :

The only possible derivation is:

fresh ω′′ Λ; ∆; Γ `ω′′ M : A

Λ; ∆; Γ `ω box M : �A
�IW Λ; ∆, x :: A; Γ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letbox x = box M in N ∼ B @ ω′
�EW

By Proposition C.2,Λ; ∆; Γ `ω [M/x]N ∼ B @ ω′.
Caseletbox x = boxω′′ M in N →β�′ [M/x]N :

The only possible derivation is:

Λ; ∆; Γ `ω′′ M : A

Λ; ∆; Γ `ω boxω′′ M : �ω′′A
�I′W Λ; ∆; Γ, x : A @ ω′′ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letbox x = boxω′′ M in N ∼ B @ ω′
�E′W

By Proposition C.1,Λ; ∆; Γ `ω [M/x]N ∼ B @ ω′.
Caseletcir v = cir V in N→β© [V/v]N :
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The only possible derivation is:

fresh ω′′
Λ; ∆; Γ `ω′′ V : A

Λ; ∆; Γ `ω V ∼ A @ ω′′
ValW

Λ; ∆; Γ `ω cir V : ©A
©IW Λ; ∆, v ∼ A; Γ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letcir v = cir V in N ∼ B @ ω′
©EW

By Proposition C.4,Λ; ∆; Γ `ω [V/v]N ∼ B @ ω′.
Caseletcir v = cirω′′ V in N→β©′ [V/v]N :

The only possible derivation is:

Λ; ∆; Γ `ω V ∼ A @ ω′′

Λ; ∆; Γ `ω cirω′′ V : ©ω′′A
©I′W Λ; ∆; Γ, v ∼ A @ ω′′ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letcir v = cirω′′ V in N ∼ B @ ω′
©E′W

FromΛ; ∆; Γ `ω V ∼ A @ ω′′, we haveΛ; ∆; Γ `ω′′ V : A, whetherω = ω′′ or ω 6= ω′′.
By Proposition C.3,Λ; ∆; Γ `ω [V/v]N ∼ B @ ω′.

Lemma C.6.
Consider two termsM0 and N0 such thatΛ; ∆; Γ `ω M0 ∼ A0 @ ω0 impliesΛ; ∆; Γ `ω N0 ∼ A0 @ ω0

for anyA0 andω0.
If Λ; ∆; Γ `ω M ∼ A @ ω′, then for anyκ such thatM = κ[M0], it holdsΛ; ∆; Γ `ω κ[N0] ∼ A @ ω′.

Proof. If κ = [], thenM = M0 and κ[N0] = N0. HenceΛ; ∆; Γ `ω κ[N0] ∼ A @ ω′ holds by the
assumption onM0 andN0.

Supposeκ 6= [], which means thatM 6= x, M 6= v, andM 6= V .
Now we apply induction on the structure ofΛ; ∆; Γ `ω M ∼ A @ ω′. (Below we reuse metavaribleM

and typeA.)

Case
Λ; ∆; Γ `ω M : Aprim

Λ; ∆; Γ `ω M ∼ Aprim @ ω′
Prim∼W (ω 6= ω′) , M = κ[M0]:

By induction hypothesis,Λ; ∆; Γ `ω κ[N0] : Aprim .
By the rulePrim∼W , Λ; ∆; Γ `ω κ[N0] ∼ Aprim @ ω′.

Case
Λ; ∆; Γ `ω M : A ⊃ B Λ; ∆; Γ `ω N : A

Λ; ∆; Γ `ω M N : B
⊃EW , M N = κ[M0] = κ′[M0] N :

By induction hypothesis onΛ; ∆; Γ `ω M : A ⊃ B, we haveΛ; ∆; Γ `ω κ′[N0] : A ⊃ B.
By the rule⊃EW , Λ; ∆; Γ `ω κ′[N0] N : B, andκ′[N0] N = κ[N0].

Case
Λ; ∆; Γ `ω M : �A Λ; ∆, x :: A; Γ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letbox x = M in N ∼ B @ ω′
�EW ,

letbox x = M in N = κ[M0] = letbox x = κ′[M0] in N :
By induction hypothesis onΛ; ∆; Γ `ω M : �A, we haveΛ; ∆; Γ `ω κ′[N0] : �A.
By the rule�EW , Λ; ∆; Γ `ω letbox x = κ′[N0] in N ∼ B @ ω′, andletbox x = κ′[N0] in N = κ[N0].

Case�E′W is similar to Case�EW .

Case
Λ; ∆; Γ `ω M : ©A Λ; ∆, v ∼ A; Γ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letcir v = M in N ∼ B @ ω′
©EW

If letcir v = M in N = κ[M0] = letcir v = κ′[M0] in N andM = κ′[M0],
By induction hypothesis onΛ; ∆; Γ `ω M : ©A, we haveΛ; ∆; Γ `ω κ′[N0] : ©A.
By the rule©EW , Λ; ∆; Γ `ω letcir v = κ′[N0] in N ∼ B @ ω′, andletcir v = κ′[N0] in N = κ[N0].

If letcir v = M in N = κ[M0] = letcir v = cir κ′[M0] in N andM = cir κ′[M0],
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We have
fresh ω′′ Λ; ∆; Γ `ω κ′[M0] ∼ A @ ω′′

Λ; ∆; Γ `ω cir κ′[M0] : ©A
©IW .

By induction hypothesis onΛ; ∆; Γ `ω κ′[M0] ∼ A @ ω′′, we haveΛ; ∆; Γ `ω κ′[N0] ∼ A @ ω′′.
Then,
fresh ω′′ Λ; ∆; Γ `ω κ′[N0] ∼ A @ ω′′

Λ; ∆; Γ `ω cir κ′[N0] : ©A
©IW Λ; ∆, v ∼ A; Γ `ω N ∼ B @ ω′

Λ; ∆; Γ `ω letcir v = cir κ′[N0] in N ∼ B @ ω′
©EW

andletcir v = cir κ′[N0] in N = κ[N0].
If letcir v = M in N = κ[M0] = letcir v = cirω′′ κ′[M0] in N andM = cirω′′ κ′[M0],

There is no rule for derivingΛ; ∆; Γ `ω M : ©A.
Case©E′W is similar to Case©EW .

Case
Λ; ∆; Γ `ω M : �A

Λ; ∆; Γ `ω eval M : unit
Teval , eval M = κ[M0] = eval κ′[M0]:

By induction hypothesis onΛ; ∆; Γ `ω M : �A, we haveΛ; ∆; Γ `ω κ′[N0] : �A
By the ruleTeval, Λ; ∆; Γ `ω eval κ′[N0] : unit, andeval κ′[N0] = κ[N0].

CaseTeval@ is similar to CaseTeval.

Case
Λ; ∆; Γ `ω M : �©A

Λ; ∆; Γ `ω future M ∼ A sync @ ω∗
Tfuture , future M = κ[M0] = future κ′[M0]:

By induction hypothesis onΛ; ∆; Γ `ω M : �©A, we haveΛ; ∆; Γ `ω κ′[N0] : �©A.
By the ruleTfuture, Λ; ∆; Γ `ω future κ′[N0] ∼ A sync @ ω∗, andfuture κ′[N0] = κ[N0].

CasesTfuture@, Tfuture′, Tfuture@′ are similar to CaseTfuture.

Case
Λ; ∆; Γ `ω M : A sync

Λ; ∆; Γ `ω syncwith M ∼ A @ ω∗
Tswith , syncwith M = κ[M0] = syncwith κ′[M0]:

By induction hypothesis onΛ; ∆; Γ `ω M : A sync, we haveΛ; ∆; Γ `ω κ′[N0] : A sync.
By the ruleTswith, Λ; ∆; Γ `ω syncwith κ′[N0] ∼ A @ ω∗, andsyncwith κ′[N0] = κ[N0].

CaseTswith′ is similar to CaseTswith.
Case Λ; ∆; Γ `ω newchanA ∼ A chan @ ω∗

Tnewc :
There is noκ such thatnewchanA = κ[M0] andκ 6= [].

Case
Λ; ∆; Γ `ω M : A chan

Λ; ∆; Γ `ω readchan M ∼ A @ ω∗
Treadc , readchan M = κ[M0] = readchan κ′[M0]:

By induction hypothesis onΛ; ∆; Γ `ω M : A chan, we haveΛ; ∆; Γ `ω κ′[N0] : A chan.
By the ruleTreadc, Λ; ∆; Γ `ω readchan κ′[N0] ∼ A @ ω∗, andreadchan κ′[N0] = κ[N0].

Case
Λ; ∆; Γ `ω M : A chan fresh ω′ Λ; ∆; Γ `ω N ∼ A @ ω′

Λ; ∆; Γ `ω writechan M N ∼ A @ ω∗
Twritec :

If writechan M N = κ[M0] = writechan κ′[M0] N andM = κ′[M0],
By induction hypothesis onΛ; ∆; Γ `ω M : A chan, we haveΛ; ∆; Γ `ω κ′[N0] : A chan.
By the ruleTwritec, Λ; ∆; Γ `ω writechan κ′[N0] N ∼ A @ ω∗, andwritechan κ′[N0] N = κ[N0].

If writechan M N = κ[M0] = writechan M κ′[M0] andN = κ′[M0] whereM = chanvar γ,
By induction hypothesis onΛ; ∆; Γ `ω N ∼ A @ ω′, we haveΛ; ∆; Γ `ω κ′[N0] ∼ A @ ω′.
By the ruleTwritec, Λ; ∆; Γ `ω writechan M κ′[N0] ∼ A @ ω∗, andwritechan M κ′[N0] = κ[N0].

Lemma C.7.
If C,M at γ :: Λ, γ ∼ A @ ω andΛ, γ ∼ A @ ω; ·; Γperm `P(γ) N ∼ A @ ω,

thenC,N at γ :: Λ, γ ∼ A @ ω.

Proof. C,M at γ :: Λ, γ ∼ A @ ω implies that for eachM ′ at γ′ ∈ C,
γ′ ∼ A′ @ ω′ ∈ Λ, γ ∼ A @ ω andΛ, γ ∼ A @ ω; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′, or
γ′ ∼ A′ @ ? ∈ Λ, γ ∼ A @ ω andΛ, γ ∼ A @ ω; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′′ for a fresh nodeω′′.
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By the ruleTcfg andΛ, γ ∼ A @ ω; ·; Γperm `P(γ) N ∼ A @ ω, we haveC,N at γ :: Λ, γ ∼ A @ ω.

Lemma C.8.
If C,M at γ :: Λ, γ ∼ A @ ? andΛ, γ ∼ A @ ?; ·; Γperm `P(γ) N ∼ A @ ω for a fresh nodeω,

thenC,N at γ :: Λ, γ ∼ A @ ?.

Proof. C,M at γ :: Λ, γ ∼ A @ ? implies that for eachM ′ at γ′ ∈ C,
γ′ ∼ A′ @ ω′ ∈ Λ, γ ∼ A @ ? andΛ, γ ∼ A @ ?; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′, or
γ′ ∼ A′ @ ? ∈ Λ, γ ∼ A @ ? andΛ, γ ∼ A @ ?; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′′ for a fresh nodeω′′.

By the ruleTcfg andΛ, γ ∼ A @ ?; ·; Γperm `P(γ) N ∼ A @ ω, we haveC,N at γ :: Λ, γ ∼ A @ ?.

Proof of Lemma 4.4:

Proof. By induction on the structure ofκ.
Caseκ = []:

B = A andω′′ = ω′.
If κ 6= [], it suffices to consider those cases in which the rulePrim∼W is not used to deduceΛ; ∆; Γ `ω κ[M ] ∼ A @ ω′;
if the rulePrim∼W is used, we repeat the same case analysis on the premise of the rule.
Caseκ = κ0 M0:

By the rule⊃EW and induction hypothesis onκ0.
Caseκ = letbox x = κ0 in M0:

By the rule�EW or �E′W and induction hypothesis onκ0.
Caseκ = letcir v = κ0 in M0:

By the rule©EW or©E′W and induction hypothesis onκ0.
Caseκ = letcir v = cir κ0 in M0:

By the rules©EW and©IW and induction hypothesis onκ0.
Caseκ = letcir v = cirω0 κ0 in M0:

By the rules©E′W and©I′W and induction hypothesis onκ0.
Caseeval κ0:

By the ruleTeval or Teval@ and induction hypothesis onκ0.
Casefuture κ0:

By the ruleTfuture, Tfuture@, Tfuture′, or Tfuture@′, and induction hypothesis onκ0.
Casesyncwith κ0:

By the ruleTswith or Tswith′ and induction hypothesis onκ0.
Casereadchan κ0:

By the ruleTreadc and induction hypothesis onκ0.
Casewritechan κ0 M0:

By the ruleTwritec and induction hypothesis onκ0.
Casewritechan (chanvar γ) κ0:

By the ruleTwritec and induction hypothesis onκ0.

Proposition C.9 (Weakening).
Suppose

C :: Λ,
Λ; ·; Γperm `ω M : A,
ω = P(γ), whereγ is not found inΛ.

ThenC,M at γ :: Λ, γ ∼ A @ ω.

44



Proof.
If M ′ at γ′ ∈ C andγ′ ∼ A′ @ ω′ ∈ Λ,

By the ruleTcfg, Λ; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′

By weakening onΛ, we haveΛ, γ ∼ A @ ω; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′

If M ′ at γ′ ∈ C andγ′ ∼ A′ @ ? ∈ Λ,
By the ruleTcfg, Λ; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′ for a fresh nodeω′.
By weakening onΛ, we haveΛ, γ ∼ A @ ω; ·; Γperm `P(γ′) M ′ ∼ A′ @ ω′

ForM at γ,
By weakeningΛ; ·; Γperm `ω M : A, we haveΛ, γ ∼ A @ ω; ·; Γperm `ω M : A.
That is,Λ, γ ∼ A @ ω; ·; Γperm `P(γ) M ∼ A @ ω.

ThereforeC,M at γ :: Λ, γ ∼ A @ ω by the ruleTcfg.

Lemma C.10.
If

C,M at γ :: Λ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) N ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) N ′ ∼ Aγ′ @ ω∗ for an arbitrary nodeω∗,

then
C,N at γ, N ′ at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

Proof. FromC,M at γ :: Λ, γ ∼ Aγ @ ω,
for eachM0 at γ0 ∈ C,

γ0 ∼ A0 @ ω0 ∈ Λ andΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ0) M0 ∼ A0 @ ω0, or
γ0 ∼ A0 @ ? ∈ Λ andΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ0) M0 ∼ A0 @ ω0 for an arbitrary nodeω0.

By weakening onΛ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ0) M0 ∼ A0 @ ω0, or
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ0) M0 ∼ A0 @ ω0 for an arbitrary nodeω0.

By the ruleTcfg, we haveC,N at γ, N ′ at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

Lemma C.11.
If

C,M at γ :: Λ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) N ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ′) N ′ ∼ Aγ′ @ ω′,

then
C,N at γ, N ′ at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′.

Lemma C.12.
If

C,M at γ :: Λ, γ ∼ Aγ @ ?,
Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) N ∼ Aγ @ ω∗ for an arbitrary nodeω∗,
Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) N ′ ∼ Aγ′ @ ω∗ for an arbitrary nodeω∗,

then
C,N at γ, N ′ at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ?.

Lemma C.13.
If

C,M at γ :: Λ, γ ∼ Aγ @ ?,
Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) N ∼ Aγ @ ω∗ for an arbitrary nodeω∗,

45



Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ′) N ′ ∼ Aγ′ @ ω′,
then

C,N at γ, N ′ at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ω′.

Proof. Similar to the proof of Lemma C.10.

Proof of Theorem 4.1:

Proof. By case analysis ofC =⇒ C ′. (Below we reuse all metavariables.)

Case
M −→ N

C, κ[M ] at γ =⇒ C, κ[N ] at γ
Rcfg :

If C, κ[M ] at γ :: Λ, γ ∼ Aγ @ ω, thenΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[M ] ∼ Aγ @ ω.
SinceM −→ N , Lemmas C.5 and C.6 implyΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[N ] ∼ Aγ @ ω.
By Lemma C.7, we haveC, κ[N ] at γ :: Λ, γ ∼ Aγ @ ω.

If C, κ[M ] at γ :: Λ, γ ∼ Aγ @ ?, thenΛ, γ ∼ Aγ @ ?; ·; Γperm `P(γ) κ[M ] ∼ Aγ @ ω for a fresh node
ω.

SinceM −→ N , Lemmas C.5 and C.6 implyΛ, γ ∼ Aγ @ ?; ·; Γperm `P(γ) κ[N ] ∼ Aγ @ ω.
By Lemma C.8, we haveC, κ[N ] at γ :: Λ, γ ∼ Aγ @ ?.

Case
new γ′

C, κ[eval box M ] at γ =⇒ C, κ[()] at γ, M at γ′
Reval :

If C, κ[eval box M ] at γ :: Λ, γ ∼ Aγ @ ω, thenΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[eval box M ] ∼ Aγ @ ω.
By Lemma 4.4,eval box M typechecks:

fresh ω′ Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ M : A

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) box M : �A
�IW

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) eval box M : unit
Teval

SinceΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) () : unit,
Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[()] ∼ Aγ @ ω by Lemma C.6.

By Lemma C.7,
C, κ[()] at γ :: Λ, γ ∼ Aγ @ ω.

From
C, κ[()] at γ :: Λ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ M : A where we letω′ = P(γ′),

we haveC, κ[()] at γ, M at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ω′ by Proposition C.9.
The case forC, κ[eval box M ] at γ :: Λ, γ ∼ Aγ @ ? is similar, except that we use Lemma C.8 instead

of Lemma C.7.

Case
new γ′ @ ω′

C, κ[eval boxω′ M ] at γ =⇒ C, κ[()] at γ, M at γ′
Reval@ :

The proof is similar to CaseReval, except that we useω′ without creating a fresh node.

Case
new γ′

C, κ[future box M ] at γ =⇒ C, κ[syncvar γ′] at γ, letcir v = M in v at γ′
Rfuture :

If C, κ[future box M ] at γ :: Λ, γ ∼ Aγ @ ω, thenΛ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[future box M ] ∼ Aγ @ ω.
By Lemma 4.4,future box M typechecks:

fresh ω′ Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ M : ©A

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) box M : �©A
�IW

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) future box M ∼ A sync @ ω∗
Tfuture

or
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fresh ω′ Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ M : ©ω′′A

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) box M : �©ω′′A
�IW

Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) future box M ∼ A syncω′′ @ ω∗
Tfuture

In the first case,
Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[future box M ] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) future box M ∼ A sync @ ω∗ for an arbitrary nodeω∗,
Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ M : ©A for a fresh nodeω′,
Λ, γ ∼ Aγ @ ω; ·; Γperm `ω′ letcir v = M in v ∼ A @ ω∗ for an arbitrary nodeω∗,
and we letω′ = P(γ′).

By weakening onΛ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `P(γ) κ[future box M ] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `P(γ) future box M ∼ A sync @ ω∗ for an arbitrary nodeω∗,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `ω′ letcir v = M in v ∼ A @ ω∗ for an arbitrary nodeω∗.

By the rulesTsvar andValW ,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `P(γ) syncvar γ′ ∼ A sync @ ω∗ for an arbitrary nodeω∗,

By Lemma C.6,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `P(γ) κ[syncvar γ′] ∼ Aγ @ ω,

By applying Lemma C.10 to
C, κ[future box M ] at γ :: Λ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `P(γ) κ[syncvar γ′] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?; ·; Γperm `ω′ letcir v = M in v ∼ A @ ω∗ for an arbitrary nodeω∗,

we haveC, κ[syncvar γ′] at γ, letcir v = M in v at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ?.
In the second case, we proveC, κ[syncvar γ′] at γ, letcir v = M in v at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ A @ ω′′;

the proof is similar to the first case, except that we use Lemma C.11.
The case forC, κ[future box M ] at γ :: Λ, γ ∼ Aγ @ ? is similar, except that we use Lemmas C.12 and

C.13.

Case
new γ′ @ ω′

C, κ[future boxω′ M ] at γ =⇒ C, κ[syncvar γ′] at γ, letcir v = M in v at γ′
Rfuture@ :

The proof is similar to CaseRfuture, except that we useω′ without creating a fresh node.
Case C, κ[syncwith syncvar γ′] at γ, V at γ′ =⇒ C, κ[V ] at γ, V at γ′

Rswith :

If C, κ[syncwith syncvar γ′] at γ, V at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′, then
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) κ[syncwith syncvar γ′] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ′) V ∼ Aγ′ @ ω′.

By Lemma 4.4 and the rulesTsvar′ andTswith′,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) syncwith syncvar γ′ ∼ Aγ′ @ ω′.

If P(γ′) = ω′ (whetherP(γ) = P(γ′) or not),
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) V ∼ Aγ′ @ ω′ by the ruleValW .

If P(γ′) 6= ω′

Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `ω′ V : Aγ′ by the ruleValW , and
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) V ∼ Aγ′ @ ω′ by the ruleValW .

By Lemma C.6,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′; ·; Γperm `P(γ) κ[V ] ∼ Aγ @ ω,

By Lemma C.7,
C, κ[V ] at γ, V at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ω′.

The case forC, κ[syncwith syncvar γ′] at γ, V at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ? is similar.
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The cases for
C, κ[syncwith syncvar γ′] at γ, V at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ω′ and
C, κ[syncwith syncvar γ′] at γ, V at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ?

are also similar, except that we use Lemma C.8 instead of Lemma C.7.

Case
new γ′

C, κ[newchanA] at γ =⇒ C, κ[chanvar γ′] at γ, nil at γ′
Rnewc :

If C, κ[newchanA] at γ :: Λ, γ ∼ Aγ @ ω, then
Λ, γ ∼ Aγ @ ω; ·; Γperm `P(γ) κ[newchanA] ∼ Aγ @ ω.

By weakening onΛ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ) κ[newchanA] ∼ Aγ @ ω.

By Lemma 4.4,newchanA typechecks:

Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ) newchanA ∼ A chan @ ω∗
Tnewc

By the rulesTchanv andValW ,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ) chanvar γ′ ∼ A chan @ ω∗

By Lemma C.6,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ) κ[chanvar γ′] ∼ Aγ @ ω.

By the ruleTvnil andValW ,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ′) nil ∼ A vlist @ ω∗ for an arbitrary nodeω∗.

By applying Lemma C.10 to
C, κ[newchanA] at γ :: Λ, γ ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ) κ[chanvar γ′] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?; ·; Γperm `P(γ′) nil ∼ A vlist @ ω∗ for an arbitrary nodeω∗,

we have
C, κ[chanvar γ′] at γ, nil at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ A vlist @ ?.

The case forC, κ[newchanA] at γ :: Λ, γ ∼ Aγ @ ? is similar, except that we use Lemma C.12.

Case C, κ[readchan chanvar γ′] at γ, Vh :: Vt at γ′ =⇒ C, κ[Vh] at γ, Vt at γ′
Rreadc :

If C, κ[readchan chanvar γ′] at γ, Vh :: Vt at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?, then
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) κ[readchan chanvar γ′] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) Vh :: Vt ∼ Aγ′ @ ω∗ for an arbitrary nodeω∗.

By the rulesValW andTvcon,
Aγ′ = A vlist,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) Vh ∼ A @ ω∗,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) Vt ∼ Aγ′ @ ω∗.

By Lemma 4.4 and the rulesTchanv andTreadc,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) readchan chanvar γ′ ∼ A @ ω∗,

By Lemma C.6,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) κ[Vh] ∼ Aγ @ ω.

By Lemma C.7,
C, κ[Vh] at γ, Vh :: Vt at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

By Lemma C.8,
C, κ[Vh] at γ, Vt at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

The case forC, κ[readchan chanvar γ′] at γ, Vh :: Vt at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ? is similar,
except that we use Lemma C.8 instead of Lemma C.7.
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The two cases withγ′ ∼ Aγ′ @ ω′ for some nodeω′ are impossible because of the ruleTchanv.

Case C, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: nil at γ′ =⇒
C, κ[V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′

Rwritec
:

If C, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: nil at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?, then
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) κ[writechan (chanvar γ′) V ] ∼ Aγ @ ω,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) V1 :: · · · :: Vn :: nil ∼ Aγ′ @ ω∗ for an arbitrary node

ω∗.
By the rulesValW andTvcon,

Aγ′ = A vlist,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) V1 ∼ A @ ω∗,
· · ·,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) Vn ∼ A @ ω∗.

By Lemma 4.4 and the rulesTchanv, Twritec, andValW ,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) writechan (chanvar γ′) V ∼ A @ ω∗,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) V ∼ A @ ω∗,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) V ∼ A @ ω∗.

By Lemma C.6,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ) κ[V ] ∼ Aγ @ ω.

By Lemma C.7,
C, κ[V ] at γ, V1 :: · · · :: Vn :: nil at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

By the rulesValW , Tvcon, Tvnil,
Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?; ·; Γperm `P(γ′) V1 :: · · · :: Vn :: V :: nil ∼ Aγ′ @ ω∗.

By Lemma C.8,
C, κ[V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′ :: Λ, γ ∼ Aγ @ ω, γ′ ∼ Aγ′ @ ?.

The case forC, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′ :: Λ, γ ∼ Aγ @ ?, γ′ ∼ Aγ′ @ ?
is similar, except that we use Lemma C.8 instead of Lemma C.7.

The two cases withγ′ ∼ Aγ′ @ ω′ for some nodeω′ are impossible because of the ruleTchanv.

Case
v ∼ A @ ω ∈ Γperm v →perm V P(γ) = ω

C, κ[v] at γ =⇒ C, κ[V ] at γ
Rvalvar :

If C, κ[v] at γ :: Λ, γ ∼ Aγ @ ω′, then
Λ, γ ∼ Aγ @ ω′; ·; Γperm `P(γ) κ[v] ∼ Aγ @ ω′.

Sincev ∼ A @ ω ∈ Γperm andP(γ) = ω,
Λ, γ ∼ Aγ @ ω′; ·; Γperm `P(γ) v : A.

By the assumption onV and weakening,
Λ, γ ∼ Aγ @ ω′; ·; Γperm `ω V : A.

SinceP(γ) = ω,
Λ, γ ∼ Aγ @ ω′; ·; Γperm `P(γ) κ[V ] ∼ Aγ @ ω′ by Lemma C.6.

By Lemma C.7,
C, κ[V ] at γ :: Λ, γ ∼ Aγ @ ω′.

The case forC, κ[V ] at γ :: Λ, γ ∼ Aγ @ ? is similar, except that we use Lemma C.8 instead of Lemma C.7.

Proof of Lemma 4.3:

Proof. By induction on the structure ofΛ; ·; Γperm `ω M ∼ A @ ω′. (Below we reuse all metavariables.)
CaseCvarW :
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impossible.
CaseVvarW :

M = v, ω = ω′, andv ∼ A @ ω′ ∈ Γperm.
Cases⊃IW , �IW , �I′W , ©IW , ©I′W , T(), Tsvar, Tsvar′, Tvnil, Tvcon, Tchanv:

M = V 6= v.

Case
Λ; ·; Γperm `ω′ V : A

Λ; ·; Γperm `ω V ∼ A @ ω′
ValW (ω 6= ω′) :

If V = v, thenv ∼ A @ ω′ ∈ Γperm by the ruleVvarW .

Case
Λ; ·; Γperm `ω M : A ⊃ B Λ; ·; Γperm `ω N : A

Λ; ·; Γperm `ω M N : B
⊃EW :

If M = V 6= v,
M = λx :A.M ′ by Lemma 4.2.
M N = ([])[(λx :A.M ′) N ] and(λx :A.M ′) N −→ [N/x]M ′.

If M = v,
v ∼ A ⊃ B @ ω ∈ Γperm by the ruleVvarW .
M N = ([] N)[v] andv ∼ A ⊃ B @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letM N = (κ N)[M ′].

Case
Λ; ·; Γperm `ω M : �A Λ; ·, x :: A; Γperm `ω N ∼ B @ ω′

Λ; ·; Γperm `ω letbox x = M in N ∼ B @ ω′
�EW :

If M = V 6= v,
M = box M ′ by Lemma 4.2.
letbox x = M in N = ([])[letbox x = box M ′ in N ] andletbox x = box M ′ in N −→ [M ′/x]N .

If M = v,
v ∼ �A @ ω ∈ Γperm by the ruleVvarW .
letbox x = M in N = (letbox x = [] in N)[v] andv ∼ �A @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letletbox x = M in N = (letbox x = κ in N)[M ′].

Case�E′W is similar to Case�EW .

Case
Λ; ·; Γperm `ω M : ©A Λ; ·, v ∼ A; Γperm `ω N ∼ B @ ω′

Λ; ·; Γperm `ω letcir v = M in N ∼ B @ ω′
©EW :

If M = V 6= v′,
M = cir M ′ by Lemma 4.2 and

fresh ω∗ Λ; ·; Γperm `ω M ′ ∼ A @ ω∗

Λ; ·; Γperm `ω cir M ′ : ©A
©IW

.

1) If M ′ = V ′ 6= v′′,
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letcir v = M in N = ([])[letcir v = cir V ′ in N ] andletcir v = cir V ′ in N −→ [V ′/v]N .
2) M ′ = v′′ is impossible.
3) If M ′ 6= V ′,

M ′ = κ[M ′′] by induction hypothesis where
M ′′ = v′′ andv′′ ∼ A′ @ ω ∈ Γperm,
M ′′ −→ N ′, or
M ′′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′′.
Then we letletcir v = M in N = (letcir v = cir κ in N)[M ′′].

If M = v′,
v′ ∼ ©A @ ω ∈ Γperm by the ruleVvarW .
letcir v = M in N = (letcir v = [] in N)[v′] andv′ ∼ ©A @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v′ andv′ ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letletcir v = M in N = (letcir v = κ in N)[M ′].

Case©E′W is similar to Case©EW , except that Subcases 1) and 2) are now combined as follows:
If M ′ = V ′,

letcir v = M in N = ([])[letcir v = cirω∗ V ′ in N ] andletcir v = cirω∗ V ′ in N −→ [V ′/v]N .

Case
Λ; ·; Γperm `ω M : Aprim

Λ; ·; Γperm `ω M ∼ Aprim @ ω′
Prim∼W (ω 6= ω′) :

If M = V 6= v by induction hypothesis, we are done.
M = v andv ∼ Aprim @ ω ∈ Γperm cannot happen by the assumption onΓperm.
If M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′,
then we are done.

Case
Λ; ·; Γperm `ω M : �A

Λ; ·; Γperm `ω eval M : unit
Teval :

If M = V 6= v,
M = box M ′ by Lemma 4.2.
eval M = ([])[eval box M ′].

If M = v,
v ∼ �A @ ω ∈ Γperm by the ruleVvarW .
eval M = (eval [])[v] andv ∼ �A @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
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Then we leteval M = (eval κ)[M ′].
CaseTeval@ is similar to CaseTeval.

Case
Λ; ·; Γperm `ω M : �©A

Λ; ·; Γperm `ω future M ∼ A sync @ ω∗
Tfuture :

If M = V 6= v,
M = box M ′ by Lemma 4.2.
future M = ([])[future box M ′].

If M = v,
v ∼ �©A @ ω ∈ Γperm by the ruleVvarW .
future M = (future [])[v] andv ∼ �©A @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letfuture M = (future κ)[M ′].

CasesTfuture@, Tfuture′, andTfuture@′ are similar to CaseTfuture.

Case
Λ; ·; Γperm `ω M : A sync

Λ; ·; Γperm `ω syncwith M ∼ A @ ω∗
Tswith :

If M = V 6= v,
M = syncvar γ by Lemma 4.2.
syncwith M = ([])[syncwith syncvar γ].

If M = v,
v ∼ A sync @ ω ∈ Γperm by the ruleVvarW .
syncwith M = (syncwith [])[v] andv ∼ A sync @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letsyncwith M = (syncwith κ)[M ′].

CaseTswith′ is similar to CaseTswith.
Case Λ; ·; Γperm `ω newchanA ∼ A chan @ ω∗

Tnewc :
newchanA = ([])[newchanA].

Case
Λ; ·; Γperm `ω M : A chan

Λ; ·; Γperm `ω readchan M ∼ A @ ω∗
Treadc :

If M = V 6= v,
M = chanvar γ by Lemma 4.2.
readchan M = ([])[readchan chanvar γ].

If M = v,
v ∼ A chan @ ω ∈ Γperm by the ruleVvarW .
readchan M = (chanvar [])[v] andv ∼ A chan @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
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M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,
readchan chanvar γ, or writechan (chanvar γ) V ′.

Then we letreadchan M = (readchan κ)[M ′].

Case
Λ; ·; Γperm `ω M : A chan fresh ω′ Λ; ·; Γperm `ω N ∼ A @ ω′

Λ; ·; Γperm `ω writechan M N ∼ A @ ω∗
Twritec :

If M = V 6= v,
M = chanvar γ by Lemma 4.2.
1) If N = V ′ 6= v′,

writechan M N = ([])[writechan (chanvar γ) V ′].
2) If N = v′ is impossible.
3) If N 6= V ′,

N = κ[N ′] by induction hypothesis where
N ′ = v′ andv′ ∼ A′ @ ω ∈ Γperm,
N ′ −→ N ′′, or
N ′ is eval box N ′′, eval boxω′′ N ′′, future box N ′′, future boxω′′ N ′′, syncwith syncvar γ′,

newchanB′ , readchan chanvar γ′, or writechan (chanvar γ′) V ′′.
Then we letwritechan M N = (writechan (chanvar γ) κ)[N ′].

If M = v,
v ∼ A chan @ ω ∈ Γperm by the ruleVvarW .
writechan M N = (writechan [] N)[v] andv ∼ A chan @ ω ∈ Γperm.

If M 6= V ,
M = κ[M ′] by induction hypothesis where

M ′ = v andv ∼ A′ @ ω ∈ Γperm,
M ′ −→ N ′, or
M ′ is eval box N ′, eval boxω′′ N ′, future box N ′, future boxω′′ N ′, syncwith syncvar γ, newchanB′ ,

readchan chanvar γ, or writechan (chanvar γ) V ′.
Then we letwritechan M N = (writechan κ N)[M ′].

Proof of Theorem 4.5:

Proof.
SupposeC = C0,M at γ. By the ruleTcfg, we haveΛ; ·; Γperm `ω M ∼ A @ ω′ for P(γ) = ω and a
certain nodeω′. By Lemma 4.3, we consider the following cases:

• M = V 6= v.

• M = v (wherev ∼ A @ ω′ ∈ Γperm)

• M = κ[v], v ∼ B @ ω ∈ Γperm, and

v ∼ B @ ω ∈ Γperm v →perm V P(γ) = ω

C0, κ[v] at γ =⇒ C0, κ[V ] at γ
Rvalvar

.

• M = κ[N ] whereN −→ N ′, and

N −→ N ′

C0, κ[N ] at γ =⇒ C0, κ[N ′] at γ
Rcfg

.
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• M = κ[eval box N ] and

new γ′

C0, κ[eval box N ] at γ =⇒ C0, κ[()] at γ, N at γ′
Reval

.

• M = κ[eval boxω′′ N ] and

new γ′ @ ω′′

C0, κ[eval boxω′′ N ] at γ =⇒ C0, κ[()] at γ, N at γ′
Reval@

.

• M = κ[future box N ] and

new γ′

C0, κ[future box N ] at γ =⇒ C0, κ[syncvar γ′] at γ, letcir v = N in v at γ′
Rfuture

.

• M = κ[future boxω′′ N ] and

new γ′ @ ω′′

C0, κ[future boxω′′ N ] at γ =⇒ C0, κ[syncvar γ′] at γ, letcir v = N in v at γ′
Rfuture@

.

• M = κ[syncwith syncvar γ′] andV at γ′ 6∈ C0. (e.g., M at γ′ ∈ C0 andM is not a value.)

• M = κ[syncwith syncvar γ′], V at γ′ ∈ C0, and

C0, κ[syncwith syncvar γ′] at γ =⇒ C0, κ[V ] at γ
Rswith

.

• M = κ[newchanB] and

new γ′

C0, κ[newchanB] at γ =⇒ C0, κ[chanvar γ′] at γ, nil at γ′
Rnewc

.

• M = κ[readchan chanvar γ′].

By Lemma 4.4,

Λ; ·; Γperm `ω readchan chanvar γ′ ∼ B @ ω′′.

By the ruleTreadc (optionally preceded by the rulePrim∼W if B is a primitive type),

Λ; ·; Γperm `ω chanvar γ′ : B chan.

By the ruleTchanv,

γ′ ∼ B vlist @ ? ∈ Λ.

SinceC :: Λ,

C = C ′
0,M at γ, N at γ′ andΛ; ·; Γperm `P(γ′) N ∼ B vlist @ ω∗ for a fresh nodeω∗.

– N = Vh :: Vt and

C ′
0, κ[readchan chanvar γ′] at γ, Vh :: Vt at γ′ =⇒ C ′

0, κ[Vh] at γ, Vt at γ′
Rreadc

.

– N 6= Vh :: Vt.
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• M = κ[writechan (chanvar γ′) V ].

By Lemma 4.4,

Λ; ·; Γperm `ω writechan (chanvar γ′) V ∼ B @ ω′′.

By the ruleTwritec (optionally preceded by the rulePrim∼W if B is a primitive type),

Λ; ·; Γperm `ω chanvar γ′ : B chan.

By the ruleTchanv,

γ′ ∼ B vlist @ ? ∈ Λ.

SinceC :: Λ,

C = C ′
0,M at γ, N at γ′ andΛ; ·; Γperm `P(γ′) N ∼ B vlist @ ω∗ for a fresh nodeω∗.

– N = V1 :: · · · :: Vn :: nil and

C ′
0, κ[writechan (chanvar γ′) V ] at γ, V1 :: · · · :: Vn :: nil at γ′ =⇒

C ′
0, κ[V ] at γ, V1 :: · · · :: Vn :: V :: nil at γ′

Rwritec

– N 6= V1 :: · · · :: Vn :: nil.

Therefore, if there exists noC ′ such thatC =⇒ C ′, C consists only of the following:
V at γ,
κ[syncwith syncvar γ′] at γ (whereV at γ′ 6∈ C),
κ[readchan chanvar γ′] at γ (whereVh :: Vt at γ′ 6∈ C),
κ[writechan (chanvar γ′) V ] at γ (whereV1 :: · · · :: Vn :: nil at γ′ 6∈ C).
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