A Modal Language for the Safety of Mobile Values

Sungwoo Park
Computer Science Department
Carnegie Mellon University

gla@cs.cmu.edu

April 25, 2005
CMU-CS-05-124

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present a modal language for distributed computation which addresses the safety of mobile values as well
as mobile code. The safety of mobile code is achieved with the modakithich corresponds to necessity

of modal logic. For the safety of mobile values, we introduce a new modalityhich expresses that

given code evaluates to a mobile value. We demonstrate the use of modal types with three communication
constructs: remote evaluation, futures, and asynchronous channels.

Keywords: Modal language, Distributed computation, Type system

1 Introduction

A distributed computation is a cooperative process taking place in a network of nodes. Each node is capable
of performing a stand-alone computation and also communicating with other nodes to distribute and collect
code and data. Thus a distributed computation has the potential to make productive use of all the nodes in
the network simultaneously.

Usually a distributed computation assumes a heterogeneous group of nodes with diffeaéme-
sources A local resource can be either a permanent/physical object available at a particulaerpde (
printer, database) or an ephemeral/semantic object created during a stand-alone compigatiea cell,
abstract data type). Local resources are accessed via their referegedmbdle for a database file, pointer
to a heap cell).

Local resources, however, give rise to an issue not found in stand-alone computations: the safety of
mobile codeor in our terminology, the safety ahobile termsvhere a term represents a piece of code. In
essence, a node cannot access remote resources in the same way that it accesses its own local resources,
but it may receive mobile terms in which references to remote resources are exposed. Therefore the safety
of mobile terms is achieved either by supporting direct access to remote resaug;asifiote file access,
remote memory access) or by preventing references to remote resources from being dereferenced. This
paper focuses on the second case with the assumption that references to remote resources are allowed in
mobile terms as long as they are never dereferenced.

One approach to the safety of mobile terms is to build a modal type system with the madHlity 2,

9, 13]. The basic idea is that a value of modal t{/pé contains a mobile term that can be evaluated at any
node. An indexed modal tyag,, A is used for mobile terms that can be evaluated at nodBy requiring
that a mobile term be from a value of typeA or O], A, we ensure its safety without recourse to runtime
checks.

A type system augmented with the modalifyis not, however, expressive enough for the safe commu-
nication ofvalues i.e., the safety oimobile values In other words, we cannot rely solely on modal types
JA and,, A to verify that a value communicated from one node to another is mabie When a remote
procedure call returns, or when a value is written to a channel). The reason is that in general, a value of type
A or O,A containsnot a mobile value but a mobile ternThe evaluation of such a mobile term (with
the intention of obtaining a mobile value) may result in a value that is not necessarily mobile because of
references to local resources created during the evaluation.

As an example, consider a term of tyipé -> int in an ML-like language:

let

val new _reference = ref O

val f = fn x => x + lnew _reference
in

f
end

The above term may be used in building a mobile term of tyiget -> int) , since it can be eval-
uated at any node. The resultant vafuehowever, is not mobile because it accesses a local resource
new_reference . In contrast, the following term, also of tyjr@ -> int , cannot be used in building

a mobile term, but the resultant value is mobile because it does not access any local resource:

let
val v = Isome _existing _reference
val f = fh x => x + v

in
f

end

Hence the modality is irrelevant to the safety of mobile values, which should now be verified by program-
mers themselves.

This paper investigates a new modalitywhich expresses that a given term evaluates to a mobile value.
The basic idea is that a term contained in a value of modal @pevaluates to a value that is valid at any
node. Similarly taJ,, A, an indexed modal typ®,, A is used if the resultant value is valid at nade To
obtain a value to be communicated to other nodes, we evaluate a term contained in a valuesof type
OwA. In this way, we achieve the safety of mobile values.

Since the mobility of a term is independent of the mobility of the value to which it evaluates, the two
modalitiesT] andO are developed in an orthogonal way:

Owd — A — OA

|
0,4

We use combinations &fl andO to express various properties of mobile terms:
e [JOA: evaluates at any node to a value valid at any node.
e 1O, A: evaluates at any node to a value valid at node
e [,0A: evaluates at node to a value valid at any node.
e 1,0, A: evaluates at node to a value valid at node’.

We first develop a modal languagejo by extending the\-calculus with the modalitieS! andO. We
formulate its type system in the natural deduction style by giving introduction and elimination rules for each
connective and modality. The modality requires us to introduce a typing judgment differentiating values
from terms. This typing judgment induces a substitution defined inductively on the structure of the term
being substituted instead of the term being substituted into. We then develop another modal lapgifage
by extendingh\go with the indexed modalitiesl,, andO,,.

We also present a network operational semantics\fer” which is capable of modeling distributed
computations. We demonstrate the use of modal types in the network operational semantics with three
communication constructsemote evaluationfutures andasynchronous channel§ he safety of mobile
terms and mobile values is shown by the type safety of the network operational semamfidts, type
preservation and progress properties.

Depending on the degree of code mobility and data mobility, languages for distributed computation are
classified into four paradigmslient/serverremote evaluatiojcode on demané@ndmobile agent$4]. The
client/server paradigm allows only data to be transmitted to remote nodes. The remote evaluation paradigm
extends the client/server paradigm by allowing both code and data to be transmitted to remote nodes. The
code on demand paradigm is similar to the remote evaluation paradigm, but both code and data are fetched
from remote nodes. In the mobile agents paradigm, autonomous code migrates to remote nodes by itself and

also carries its state.\q" belongs to the remote evaluation paradigm as its primary capability is to transmit
and evaluate mobile terms at remote nodes. The two modadlitiésd O deal withname resolution5], a
safety issue in languages for distributed computation.

This paper is organized as follows. In Section 2, we develop the modal languagdn Section 3, we
develop the modal language;oV. In Section 4, we present the network operational semantics and prove
its type safety. Section 5 discusses how to handle local resources in distributed computations and compares
oo with other modal languages for distributed computation. Section 6 concludes with future work. See
Appendix for details of all proofs.

2 Modal Language)qo

Sincelo is an extension of th&-calculus, we first review the type system of thealculus in the context
of distributed computations.
The syntax of the\-calculus is standard; we use metavariable for types andV/, N for terms:

type A == ADA

term M = z|Xx:AM|MM
value Vi = Xx:AM

typing context I' == -|T z: A

A variablez with bindingz : A is assumed to hold a term and is not regarded as a value. We use a typing
judgmentl’ - M : A to mean that termd/ has typeA under typing context':

x:Ael Fz:A-M:B 'FM:A>B THN:A

Tre: AV TrowAM-A>EB - TFMN:B ok

The s-reduction rule for the connective uses a capture-avoiding substitutigif /x| N defined in a
standard way:
(M:A.N)M —p5 [M/z]N

It may be seen as the reduction of a typing derivation in which the introductiorniukefollowed by the
elimination ruleDE. The following proposition shows that the reduction is indeed type-preserving:

Proposition 2.1. If ' M : AandI',z: AF- N : B, thenI' - [M/z]N : B.

In the context of distributed computations, A in a typing contexfi’ means that variable holds a
term of typeA that is valid at a hypothetical node where typechecking takes place, which we aalrtaet
nodethroughout the paper. Then a typing judgmert M : A means that if typing context is satisfied,
the evaluation of termd/ at the current node returns a valdeof type A. It does not, however, tell us ¥/
is a mobile term that can be evaluated at other nodes. Nor does it telVuis i mobile value that is valid
at other nodes. Therefore the above type system is not expressive enough for the safety of mobile terms and
mobile values in distributed computations.

We first develop a modal language; which extends the\-calculus with the modality] to ensure
the safety of mobile terms\ is based upon the type system for necessity of modal logic by Pfenning and
Davies [14]. Next we develop another modal languagewnhich extends tha-calculus with the modalityp
to ensure the safety of mobile valués; and Ao extend the\-calculus in an orthogonal way: the modality
O is concerned witlwhere we can evaluate a given tewhereas the modalit® is concerned wittwhere
we can use the result of evaluating a given tefithus we mergen and Ao to obtain the modal language
Aoo, which ensures the safety of both mobile terms and mobile values.

2.1 \gfor term mobility

The idea behind the modalityl is that if a termM is well-typed under an empty typing contexg.,
-+ M : A, we can evaluate it at any node. Intuitively is valid at any node, aglobally valid because it
does not depend on any local resource. Thus welWise building a valuebox M of modal type]A.

The syntax of\p is as follows:

type A == .- |OA
term M = ---|box M |letboxx = M in M
value Vo= ... |box M

If M evaluates tbox M’, thenletbox x = M in N substitutes\/’, without evaluating itfor z in N.
Now a variabler can hold a term that is globally valié.@, letbox x = box M in N). Accordingly we
introduce amobile typing contex\. I is now called docal typing context

mobile typing context A = -|Ajx: A
local typing context I' == -|[[Lx:A

z :: Ain A means that variable holds a globally valid term of typé; hence a mobile typing context does
not affect the mobility of a term being typechecked.

We use a typing judgmen; " - M : A to mean that under mobile typing conteXtand local typing
contextl’, term M evaluates to a value of typ& valid at the current node.

r:Ac A or x;AeI‘C A-FM:A al ATHEM:O0A Az A, TEN:B
A:THz: A var A;T'Fbox M : OA A:T'Fletboxe =M inN : B

The ruleCvar replaces the rul®ar. The rulelJI implies thatM is globally valid if it is well-typed under an
empty local typing context and thus no assumption is made on the current node. Therefore the premise of
the ruledl implicitly uses an arbitrary node as the current node in typecheckingtérm
The S-reduction rule for the modalit{] uses a capture-avoiding substitutigi /=] N extended in a
standard way:
letbox z = box M in N —pg [M/z|N

As with the connective, this §-reduction rule may be seen as the reduction of a typing derivation in which
the introduction ruleél is followed by the elimination rul€JE. The following proposition shows that the
reduction is indeed type-preserving:

Proposition 2.2. If A;- = M : AandA,z :: A;T'F N : B, thenA; '+ [M/z]N : B.

2.2 \o for value mobility

The typing judgment of tha-calculus determines if a term is valid at a given node; if the term is well-typed,
it evaluates to a value valid at that node. In contrast, the type system should be able to check if the
value to which a term evaluates is valid at a given node. This is a property that cannot be verified by the type
system of the\-calculus. Therefore we need an additional typing judgment for the type system of
As in the type system of, we split a typing context into two parts. We also introduce a new form of
bindingv ~ A:
mobile typing context A = -|Ajv~A
local typing context I' == [T ax:A

v is called avalue variableand holds a value; hence it itself is also regarded as a valteA in A means
thatv holds a globally valid value of typ4d.

We use a typing judgmenk; "= M ~ A to mean that\/ evaluates to a globally valid value of type
A. In order to express that the value is valid at the current node, we use an ordinary typing judgment
A;T'F M : A. For any language construct producing local resources, we can use only an ordinary typing
judgment €.g, for a memory allocation construct which returns pointers to heap cells).

The following typing rules hold independently of the syntax\ef:

v~ AEA A-bV:4a
A;THv: A var ATHFV ~ A a

The ruleVvar says that a value variable in~ A is valid at the current node. The rilal conforms to the
definition of the new typing judgment: the premise of the Nk checks ifV is globally valid, in which
case the conclusion holds becali5ses already a value.

The syntax of\o is as follows:

type A == ---|OA
teem M = .- |v|cir M |letcirv =M in M
value V. o= ... |vu|crM

cir M has a modal typ® A, whereM evaluates to a globally valid valuktcir v = M in N expectsM to
evaluate ta:ir M’; it conceptually finishes the evaluation bf’ before substituting the resultant value for
in N, sincev holds a value.

cir M corresponds to the introduction rule for the modalityNote that inletcir v = M in N, the type
of M does not determine the form of the typing judgment for the whole term. That is, regardless of the type
of M, there are two possibilities for where the result of evaluafihig valid: at the current node and at any
node. Therefore each instance of the modalitigas one introduction rule and two elimination rules:

A;TEM~ A A THFM:0A Av~ATEN:B
ATFarM:0A4© ATFletcro=MinN: B

A;THFM:0A Av~ATHFN~B
A;'Fletcirv=MinN ~B

The g-reduction rule for the modality) reducedetcir v = cir M in N. In this case, we analyz&/
instead ofN. The reason is that only a value can be substituted fout A/ may not be a value; therefore
we analyzeM to decide how to transform the whole term so that eventually replaced by a value.
ConceptuallyV should be replicated at those places withinwhere the evaluation d¥/ is finished, so that
M andN are evaluated exactly once and in that ordef/lis already a valu&’, we reduce the whole term
into [V/v]N. Thus we are led to define a new form of substitutid#i/v) N which is defined inductively on
the structure of\/ instead ofV, and use it in thes-reduction rule for the modalitg:

OE

OF’

(V/o)N = [V/u]N
(letcir v/ = M in M'/v)N = letcirv' = M in (M'/v)N

letcirv =cir M inN —go (M/v)N

Note that we do not defin@/ M’/v) N becauseir M M’ cannot be well-typed: there is no derivation
of A;T'= M M’ ~ A, which would require us to refine types of lambda abstractions. In practice, ordinary
type A D OB for M suffices in conjunction withetcir v = M M’ in v to simulate such a derivation.

As with the connective, the G-reduction rule may be seen as the reduction of a typing derivation in
which the introduction rulel is followed by the elimination rul®E. The following proposition shows that
the reduction is indeed type-preserving:

Proposition 2.3.
IfA;THM~AandAjv ~ A;TF N : C,thenA;T' - (M/v)N : C.
If A;THM~AandA,v ~ A;T'F N ~ C, thenA; T (M/v)N ~ C.

Proof. By induction on the structure g/ (not V). O

2.3 \go for term mobility and value mobility

Afo is a modal language which incorporates bathand\o. Since A and Ao are orthogonal extensions
of the A-calculus, all their individual properties continue to hold\ifo .

We decide to allowetbox z = M in N in the typing judgment for value mobility. The decision is based
upon the observation that a substitution of a mobile termzfoloes not preveniv from evaluating to a
mobile value. For example, may not appear itV at all. Therefore we introduce a new elimination rule for
the modality(] as follows:

A;THEM:O0A4 Az A TEN~B
A;T+ letboxx =M inN ~B

O’

Sincecir letbox z = M in M’ can now be well-typed, we defifétbox z = M in M’ /v)N:
(letbox x = M in M'/v)N = letboxx = M in (M'/v)N

An easy induction shows that Proposition 2.3 continues to hold. The following proposition shows that the
B-reduction rule for the modality] continues to be type-preserving:

Proposition 2.4. If A;-+ M : AandA,z : A;T = N ~ B, thenA;T' - [M/z]N ~ B.

2.4 Primitive types

A primitive type is one for which value mobility is an inherent property. For example, a boolean value, of
typebool, is atomic and does not contain references to local resources. Therefore boolean values are always
globally valid andA;T" - M : bool semantically implieg\;T" = M ~ bool. Under the above type system,
however, value mobility for primitive types should be expressed explicitly by programmers.

As an example, consider a primitive typet for natural numbers:

type A = ---|nat
teem M = ... |zero|succ M
value V= ... |zero|succV

We use the following construct for primitive recursion owvet:

teem M o= ---|rec M of f(zero) = M / f(succx) = M
A;TH M :nat A;T'F M : nat
A;THM: A AT My~ A
AT,z :nat, f(x): AFM; - A A f(z) ~A;T,z:natE My~ A)
A;T - rec M of f(zero) = My : A & A;T - rec M of f(zero) = My ~ A Rec
/ f(succz) = M, / f(succz) = M,

Now, for any termM/ such thatA;I' - M : nat, we explictly express its value mobility with the following
term M ™, which evaluates to the same valueldsand also satisfied;I" - M~ ~ nat:

M™ = rec M of f(zero) = zero/ f(succ z) = letcir v = cir f(x) in succ v

6

type A == ADA|OA|OA

term M = xz|Ax:A.M|M M |box M |letbox x = M in M |
v|cir M |letcirv =M in M
value V= AXz:A.M |box M |v|cir M
rz:AeA or :E:AEFC v~ AEA V A;-FV A Val
ATFz:A V& ATrFov:A YV ATFV~A4Y?
A;T,z: A-M: B | ATHFM:ADB A TEN:A E
ATFM:AM:A>5B "~ ATFMN:B -
A;-FM:A A;THFM:OA4 Az A, T'FN:B
A;T'Fbox M :OA Ll A;T'Fletboxe =M inN : B

A;THFM:OA Az A TFN~B ,
ATFletboxzs = MinN~B _ -F

ATEM~A | A;THEM:0A Av~ATHEN:B
ATFarM:04° ATFletiro—=MinN:B _ °F
A;THM:OA AijA;FI—NNBOE/

A;'Fletciro=MinN ~B
AT =M Aprim
Prim~
AT M~ Apri,

Figure 1: Syntax and type system af;o.

We choose to take advantage of the fact that every tefrof a primitive type can be converted into
an equivalent termd/~ with value mobility as illustrated above, and introduce the following typing rule in
which value mobility for primitive types is built-in:

AT =M Aprim
Prim~
A; M~ Aprim

Here A, is a primitive type @ D A, OA, andOA cannot be a primitive type). With the ruRrim~ in
the type system, we can easily express value mobility for primitive types.

The price we pay for the rulerim~ is that3-reduction— 3 is no longer validletcir v = cir M in N
may typecheck whilé)M /v) N is not defined. For examplé/ = M, M, of typenat satisfiesA; I' - M ~ nat
by the rulePrim~, but (M; My /v)N is not defined. Intuitively the rul€rim~ disguises an unanalyzable
term of a primitive type as an analyzable term.

A quick fix is to reducdetcir v = cir M in N only if M is already a valu&’:

letcirv =cir Vin N —go [V/v|N (—po redefined)

Note that we writdV/v]N for (V//v)N. Thus, in order to redudetcir v = cir M in N, we are forced to
reduce)M into a value first, instead of analyzing to transform the whole term. Such a reduction strategy
is reflected in the operational semantics, as we will see in Section 4.

Now we have introduced all typing rules afio (See Figure 1.) All the previous propositions, ex-
cept Proposition 2.3, continue to hold for the type systemf. The following proposition proves that
A;T'H M ~ Ais stronger thad\; '+ M : A:

Proposition 2.5. The following typing rule is admissible:

ATEM~A
ATEM:A

Proof. By induction on the structure ak;I" - M ~ A. O

2.5 Example

To express term mobility and value mobility for each new constitictve provide a rule for ordinary typing
judgmentA; '+ M : A and optionally another rule for typing judgmef\tI' - M ~ A. As an example,
consider constructs for memory allocation. We regard a heap cell as a local resource; hence its pointer is
assumed to be valid only at the node where it is allocated. We useptypé for pointers to heap cells
containing values of typd. For the sake of brevity, we do not consider typing rules for pointers.

type A == ptrA
teem M = new M |read M | write M M

The three constructs work as follows:

e If M evaluates to a valug, thennew M allocates a new heap cell containivicgand returns its pointer
l.

e If M evaluates to a pointérthenread M returns the contents of the heap cell pointed td.by

e If M evaluates to a pointérand N evaluates to a valug, thenwrite M N writesV to the heap cell
pointed to byl and returnd/.

The rules for the ordinary typing judgment reflect how these three constructs work:

ATEM: A N A;THM:ptr A R A;THEM:ptrA A;TENGA
ATFnew M ptr A N ATF read M : 4 Re2d ATFwite MN: A

Write

Thus any of these constructs is mobile if its argument is globally valid. For exatpleew M (of type

O ptr A) typechecks ifM is globally valid, which means that allocating a new heap cell itself can be done
at any node. Once we finish evaluatingv M, however, the result is no longer mobile (because it is a
pointer), which implies that the following rule is not allowed:

A;TFnew M ~ ptr A (wrong)

Since the value contained in a heap cell is not necessarily globally valid, we do not allow the following rule:

A;THread M ~ A (wrong)

The following rule is safe to use becaugedte M N returns the value to whiclV evaluates:

A;THFM:ptrA A;TENA~A
A;THwrite M N~ A

Write’
As an example involving primitive types, let us build a mobile term adding two natural numbers. The
following term does not typecheck because variablesdy are not added to the mobile typing context:
Az :nat. \y:nat. box (z + y)
We can make it typecheck by convertingndy into value variables, andv, (using the rulePrim~):

Az :nat. A\y:nat. letcir v, = cirzin
letcir v, = cir yin
box (v + vy)

8

The following term copies mobiles terms contained in variablesdy, and the evaluation of the resultant
mobile term may take longer than adding two natural numbers:

Az :Onat. A\y:Onat. letbox 2’ = xin
letbox v/ = y in
box (2’ + ¥/)

The following term first finishes evaluating mobile terms contained in variabsesly:

Az :Onat. A\y:Onat. letbox 2’ = x in letcir v, = cir 2/ in
letbox ' = y in letcir v, = cir y/ in
box (v + vy)

2.6 Logic for A\go

Modal typed]A in Ago use the same type system for necessity of modal logic of Davies and Pfenning [6,
14]. A minor difference is that our interpretation of the modalitys spatial (JA means thatd is true at
every node), whereas their interpretation is temporal or proof-theoretic.

The type system for modal typ€sA is unusual in that it differentiates valuase(, terms in weak head
normal form) from ordinary terms, as shown in the ri&. This differentiation implies that the logic
corresponding to the modality requires a judgment that inspects not only hypotheses in a proof but also
inferences rules in it. Thus the modalify sets itself apart from other modalities and is not found in any
other logic.

A substitution()M /v) N for the modalityO is similar to (and was inspired by) those substitutions for
modal possibility and lax truth in [14] in that it is defined inductively on the structure of the term being
substituted i(e., M) instead of the term being substituted int@(N). In fact, we may even think of
(M/v)N as substitutingV into M because conceptually is replicated at those places withid where
the evaluation of\/ is finished.

We close this section with a discussion of the properties of the modalitesd O. Note that the two
modalities interact with each other, although they are developed in an orthogonal way.

e [JADA Azx:0A. letboxy =z iny
A mobile term is a special case of an ordinary term.

e [JADOOA Az :A. letbox y = x in box box y
A mobile term itself is mobile.

e J(ADB)DUOADOB Az:[0(A D B). \y:0A. letbox 2’ = x in letbox iy = y in box 2’ ¢/

e OAD A Az:OA.letcirv =x inv

A mobile value is a special case of an ordinary term.

e OA D OOA Az :OA. letcir v = x in cir cirv
A mobile value itself is mobile.

e OADOA Ax:OA. letcir v = x in box v
A mobile value is a special case of a mobile term.

e [JA D OLA Az :A. letbox y = x in cir box y
box M is a mobile value.

e OA D OOCA Ax:OA. letcir v = z in box cir v
cir V' is a mobile term.

e [JOADOA Az :[OOA. letbox y = x in box letcir v = y in v
(derivable fromJOA D OA D JA)

e OA p OA
If OOA D OA held,0A andOA would be equivalent because®©f D JA andJA D OOA D OA.

3 Modal languageA;d¥ with indexed modalities

In the definition ofAgo, “mobile” is synonymous with “globally valid”: a mobile term or value is valid at

any node in the network. Such a model for distributed computation is adequate if all participating nodes are
assumed to be homogeneous and have the same permanent local resources. In a grid computing environment,
for example, a mobile term valid at a particular remote node is also globally valid and can be evaluated at any
other remote node. For a heterogenous group of nodes with different permanent local resources, however,
Ano becomes inadequate because a mobile term or value is not always globally valid. For example, a client
node may transmit to a printer server a “mobile” term for printing a document; such a mobile term can be
evaluated only at printer servers and is not globally valid. Since this notion of restricted mobility is useful

in practice, we extendo to allow terms and values valid only at specific nodes.

The main design issue is whether or not the type system specifies a node at which a mobile term or value
is valid. As an example, consider a mobile tefhthat is valid only at printer serverg.g, for printing
a document). There are two approaches to expressing its mobility with a type. In one approach, the type
system does not specify the node at whidhis to be evaluated; instead it only indicates that there exists a
certain node at whicld/ can be evaluated. In this case, it is the linker or the runtime system that decides
where to evaluate such a mobile term. In the other approach, the type system specifies explicitly the node at
which M is to be evaluated. In this case, it is the type system that decides where to evaluate such a mobile
term.

The first approach is attractive because the type system abstracts from any particular network configu-
ration. For example, new printer servers can be deployed into the network and old printer servers can be
removed without changing the type system. The second approach is useful if the network configuration is
static. For example, if the set of available printer servers is published and never changes, programmers can
specify a printer server with an appropriate type involving its identifier. In this paper, we adopt the second
approach to extendgo and leave it as future work to apply the first approach.

We extend\no with two indexed modalitiegl,, andO,, with the following interpretation:

e Avaluebox, M of indexed modal typ&l,, A contains term\/ which is valid at nodev.

e Avaluecir,, M of indexed modal typ&,, A contains term\/ which evaluates to a value valid at node
w.

Since the type system ofjo is incapable of expressing properties of a term with respect to specific nodes,
we replace the typing judgments bf;o by a new form of typing judgmenh; '+, M ~ A @Q W'

e A;T'H, M ~ A @ " means that under mobile typing contéxiand local typing context, term M/
at nodew evaluates to a value of typé valid at node.’.

e A:T'H, M : Ais a shorthand fo\;T' -, M ~ A @ w, wherew may be thought of as the current
node for typechecking/. Note that it isnot a separate judgment.

10

A mobile typing context\ is defined as before, but a local typing contéxtow contains only those binding
relativized to a specific node:

mobile typing context A = -|Ajxz:A|Ajv~A

local typing context I' == - |INz:AQuw|INv~AQuw
e z :: Ain A means that holds a globally valid term of typd.
e v ~ Ain A means that holds a globally valid value of typ4d.
e z: AQuwinTI means that holds a term valid at node.

e v~ A QwinI means that holds a value valid at node.

Note that the use of typing judgmeftT' -, M ~ A @ o’ implies that a term may evaluate to a value that
is not valid at the node at which it is evaluated. For example, a term may scan a list of handles for remote
files and select one; the evaluation is safe as long as the selected handle is not dereferenced. We refer to our
new modal language with indexed modalities\agy" .

The syntax ob\pgdV is as follows:

type A = ADA|0OA|O,A|OA|OLA

teem M = x| Ax:A.M|M M |box M | box, M |letbox z = M in M |
v | cir M | cir, M | letcirv =M in M

value Vo= AXz:A.M |box M |box, M |v|cir M |cir, M

For the sake of simplicity, we reusetbox x = M in N andletcir v = M in N to expose terms inside
box,, M’ andcir, M’ (as well asbox M’ andcir M’). Thus botHetbox x = box M’ in N andletbox z =
box, M’ in N substituteM’ for z in N; similarly bothletcir v = cir M’ in N andletcir v = cir, M’ in N
first reduceM’ to a value, which is then substituted fom N.

Figure 2 shows the typing rules af50". All these typing rules look similar to those afo, except
that we explicitly annotate every typing judgment with a node at which the evaluation is to take place and
another node at which its end result is valid. For each foiraf value, we provide a typing rule for the
judgmentA; T+, V : A only; in order to decide where eldé is valid, we use the rul¥aly;,. Note that
in the ruledlyy, the local typing contexE' of the conclusion is carried over to the premise (whereas in the
rule Ol of Ao, it is replaced by an empty local typing context). This is safe because an arbitrarwhode
(instantiated byfresh ') serves as the current node in the premise.

The rulesCvary andVvary, prevent references to local resources from being dereferenced at remote
nodes. Suppose: AQuw € I v~AQuw € T, andw’ # w. In order to “evaluate” the term in
(which perhaps contains references to local resources belongingabw’, we should be able to derive
AT, x~ A@Q@w" for a certain nodev”, which is impossible because of the rdleary; in order to
“use” the value inv (which is perhaps a reference to a local resource belonging &t w’, we should be
able to deriveA;I" -, v : A, which is impossible because of the rMeary;,. Note, however, that we can
derive A;T F, v ~ A @ w, which implies that a reference to a local resource may be present at remote
nodes as long as it is not dereferenced.

As value mobility for primitive types is built-in in the rulerim~y, we reducdetcir v = cir M in N
andletcir v = cir, M in N only if M is already a value, as ikqo. Thus all3-reduction rules are defined
in terms of an ordinary substitutidd//z| N or [V/v]N:

(M:A.N)M —p5 [M/x]N

letbox z = box M in N —pn [M/z|N
letbox x = box, M in N —pgzy [M/x]N
letcirv=cirVinN —go [V/UIN
letcir v =cir, Vin N —g~ [V/U]N

11

v~AEA or v~AQuweT
ATy v A

zu:2AEA or z:AQuweTl
ATy x: A

Cvaryy Vvary

ATye:AQuwk, M : B AT, M:ADB ATH,NGA
ATF, i AM:ASE W ATF,MN:B “Ew
fresh &' A;FI—M/M:AE”W A;T R, M :OA A,x::A.;F}—wNNB@w’
A;T F, box M : A A;T F, letboxx = Min N ~ B@uW
ATy M: A ar AT, M :O0A AT,2: AQW'H, N~BQdW
AT, boxy M :O,A W A;T F,, letboxx = Min N ~ B@QuW
fresh &' A;FI_—WMNA@UJ’ Olyy A;I‘I_WM:OA.A,UNA;FFWNNB@(U,
A;TH, cir M : OA A;THy letcirv=Min N ~B@uW
AT, M~ AQW , ATH,M:OA AT,v~AQW'F,N~BQud
A;T kR, ciryy M : O, A Clw ATk, letcirv=Min N~ B@W
ATy M Aprim,
AT, M~ Aprin, Qw

DEw

m[=

OEw

O}

> Prim~yy (w # W)
Figure 2: Typing rules ofAqo".

The following propositions imply that all thegkreductions are type-preserving:

Proposition 3.1.If A;T' F,» M : AandA;T,z: AQuw”" F, N ~ B@QuW' thenA;T +, [M/2z]N ~ B QW'
Proposition 3.2. 1f A; T +,» M : Aforany nodes” andA,z :: A;T+, N ~ B@Q W', thenA;T +, [M/z]N ~ B QW'
Proposition3.3.If A;T H,» V: AandA;T,o ~ AQuw”"FH, N ~ B@uW', thenA;T -, [V/v]N ~ B @ W'
Proposition 3.4.1f A;T' +,» V : Aforany nodes” andA,v ~ A;T+, N ~ B @ W/, thenA;T F, [V/u]N ~ B@Q W',

3.1 \gd"¥ as an extension of\po

Since all thes-reduction rules oAqo are included il\gd", any reduction sequence o is also valid in
AoV . All the typing rules ofA\go can also be rewritten in terms of typing judgments\ifiyV . Intuitively
AT, M ~ A@ W' is more expressive thaly; ' M : AandA;T'+ M ~ A becausev andw’ can be
instantated into arbitrary nodes. Given a local typing conkekt A\go, we write [I']“ for a local typing
context in\gdV that attache® w to every bindinge : Ain T

I ={z:AQuw|z:AeTl}
The following proposition shows how to interpret typing judgment&ip, in terms of those ihgd”:

Proposition 3.5.
If A;T'= M : A, thenA; [T -, M : Afor any nodew.
If A;T'+ M ~ A, thenA; [I'“ +, M ~ A @' for any nodess andw’.

12

3.2 Logic for \gd”

As every typing judgment i\ is relative to a certain node, the logic fapd" requires judgments
relativized to nodes. For example; A @ w in a local typing context corresponds to a judgment thas
true at nodev. Since the indexed modalitiés,, andO,, directly internalize nodes within propositions, the
logic for A\gdV is a restricted form of hybrid logic [2].

The notion of judgment relativized to nodes is also a suitable basis for the semantics of modal logic.
For example, Simpson [15] provides a natural deduction system for intuitionistic modal logic based upon
relative truth. The fragment 0¥ without the indexed modalities can be explained in a similar way,
with the assumption that all nodes are visible (or accessible) from each other. This assumption is justified
because in a distribution computation, all nodes can communicate with each other.

The type system presented in this section is appropriate for understanding the roles of the modalities
0 and O and the indexed modalitids,, andO,,. It is not, however, expressive enough for distributed
computations in which communication constructs may generate terms whose type is determaradtby
nodes For example, a synchronization variable produced by a future construct (to be explained in the next
section) is essentially a pointer to a remote node, which determines its type. In the next section, we extend
the type system ohApgdv so that we can typecheck such terms, and also develop a network operational
semantics which is capable of modeling distributed computations.

4 \pdY for distributed computation

In this section, we develop an extended type system and a network operational semanigs*forWe
demonstrate the use of modal types with three communication constructs: remote evaluation, futures, and
asynchronous channels. We prove the type safety of the network operational semantitsstype preser-

vation and progress properties, in the presence of these communication constructs. The type safety implies
the safety of mobile terms and mobile values.

4.1 Physical nodes and logical nodes

So far, we have restricted ourselves to physical nodes by interpretasgan identifier of a physical node.
For examplew may refer to a printer server or a database server. While appropriate for the type system,
this interpretation poses a problem when we model distributed computations. For example, if a database
server initiates a stand-alone computation for each query it receives, we cannot distinguish between these
stand-alone computations with different node identifiers. Therefore there arises a nemgictmrnodes
each of which performs a single stand-alone computation. In order for a physical node to perform multiple
stand-alone computations concurrently, it spawns the same number of logical nodes.

We distinguish between physical nodes and logical nodes as separate syntactic categories:

physical node w
logical node 7y

A logical node on physical node inherits all permanent local resources belonging td' herefore a term
valid at physical node is valid at every logical node ap.

We assume two primitivespew v and new v @ w, for creating logical nodesP(y) stands for the
physical node with which logical nodeis associated, as defined below. Note that it is not defined as the
actual physical node where logical nogeesides:

e new <y creates a new logical nodewhich may reside at an arbitrary physical node (including the
physical node invokingrew itself). If v is created withhew ~y, thenP(v) is a fresh physical node

13

w (which is different from any existing physical node).
Example:new ~ searches for an idle computer in the network and establishes a logical ruodie.

e new v @ w creates a new logical nodeat physical nodev. If v is created withnew v @ w, then
P(y) =w.
Example:new v @Q w contacts a database serueand requests a logical nogeon it.

We assume that every physical nadgublishes a local typing conteXt,""™ which records the type
of its permanent local resources with bindings- A @ w, wherev may be thought of as a reference to
a permanent local resource. We require thatot be a primitive type (to ensure the progress property in
Theorem 4.5). We writ&P™ for the union of all known local typing context¥,"™.

4.2 Configuration

We represent the state of a network withanfigurationC' which records the term being evaluated at each
logical node. Aconfiguration type\ records the type of the term and the mobility of the resultant value. We
assume that no logical node appears more than onCegind conside€’ as an unordered set.

configuration C == -|C,Mat~y
configuration type A 1= |[Ay~AQuw|Ay~AQx%

e M at v in C' means that logical nodeis currently evaluating term/.

e v~ A @win A means that the term at logical noglevaluates to a value of typé valid at physical
nodew.

e v~ A @ xin A means that the term at logical nogl@valuates to a globally valid value of type

The extended type system is formulated wittoafiguration typing judgmend :: A, which means that
configurationC' has configuration typa. The network operational semantics is formulated witoafigu-
ration transition judgmen€ = C’, which means that configuratid@rireduces or evolves to configuration
C’. We first consider the extended type system and then the network operational semantics.

4.3 Extended type system

In order to be able to typecheck those terms whose type is determined by remote nodes, we introduce an
extended typing judgmenthich includes a configuration type as part of its typing context:

e An extended typing judgment; A;T' -, M ~ A @ ' means that under configuration tyfie mo-
bile typing contextA, and local typing context’, term M at any logical node on physical node
evaluates to a value of typé& valid at physical node’. We assumé&Pe™ c I", which means that all
references to permanent local resources are public.

e A;A;T'H, M : Aisashorthand foh; A;T'H, M ~ A Q@ w.

The rules for extended typing judgments are derived from (and given the same name as) those in Figure 2
by prepending a configuration tygeto every judgmenf\;T" -, M ~ A @ /.

14

The configuration typing judgment is defined in terms of extended typing judgments. It has only one
inference rule, which may be regarded as its definition:

for each M at v € C,
y~AQweAand A; TP bpy M~ AQuw, or
y~AQxeAand A; TP bpy M ~ A Quw for a fresh node w.
C:A

Tcfg

We assuméC'| = |A| to maintain a one-to-one correspondence betwi@andA; henceA contains exactly
one element for each logical nodeGh

4.4 Network operational semantics

The configuration transition judgment uses evaluation contexts in a call-by-name style; we could equally
choose a call-by-value style with another cése: A. M) « for evaluation contexts:

evaluation context x = []| Kk M |letboxz = kin M |
letcir v = k in M | letcir v = cir k in M | letcir v = ciry, K in M

An evaluation context is a term with a holé] in it, where the hole indicates the position where a reduction
may occur. The following rule shows how to use theeduction rules oAgd"v in the network operational
semantics;— refers to the one of th@-reduction rules— g, — g0, — s, —0, —gor Of AmdV:

M — N
C,k[M] at v = C,K[N] at

Rcfg

Note that a configuration transition is nondeterministic, since theRdig can choose an arbitrary logical
node~ from a given configuration.

We also need another configuration transition rule to deal with value variabl&#§fh Suppose that a
value variablev is a reference to a permanent local resourcef a physical node (hencev ~ A Q w €
reem™), For exampleV could be a printing function at a printer server At a logical nodey such that
P(v) # w, v does not need to reduce 0 becausé/ is not valid aty anyway. IfP(y) = w, however,
v reduces td/ by accessing the local resource. Thus, for each bindingd @ w € T'P*'™, we define a
reduction

UV —perm V

such that/” is not another value variable and; I'P*"™ -, V' : A holds. The following rule specifies that a
reference to a permanent local resource reduces to a value only at the node to which it belongs:

v~y AQuweTP™ v —pem Vo P(y) =w
C, kv at v = C,k[V] at v

Rvalvar

Thus the ruleRvalvar ensures that references to permanent local resources are never dereferenced at remote
nodes.

45 Communication constructs

The network operational semantics becomes interesting only with communication constructs; without com-
munication constructs, all logical nodes perform stand-alone computations independently of each other and
the type safety holds trivially. Below we give three examples of communication constructs. Each construct
is defined with extended typing rules and configuration transition rules.

15

type A = -+ |unit

term M == - |()]eval M
value Vo ou= 1)
evaluation context x u= --- |evalk

T() ANATH,M:0OA Teval ANATH, MO, A
A AT H, () : unit A AT Fy eval M :unit &V A; AT Fy, eval M : unit

Teval@

new '
C, kleval box M| at v = C, k[()] at v, M at ~

;7 Reval

new v Q o’
C, k[eval box,, M| at v = C, k[()] at v, M at ~y

;> Reval@

Figure 3: Definition of the remote evaluation construct.

45.1 Remote evaluation

In order to be able to evaluate a mobile term at a remote node, we introduce a remote evaluation construct
eval M. It expectsM to evaluate tdox /N or box,, N and transmitsV to a remote node. Unlike a remote
procedure call, it does not expect the result of evaluaNnand immediately returns a valigof typeunit.

Figure 3 shows the definition of the remote evaluation construct. TheRewid creates a new logical
node~’ with new +' becausé/ may be evaluated at any node. In contrast, the Relal@Q creates a new
logical nodey’ with new ' @ ' because\/ may be evaluated only at nodé.!

45.2 Futures

A future construct [8] is similar to a remote procedure call in that it initiates a stand-alone computation at a
remote node and also expects the result. The difference is that it does not wait for the result and immediately
returns asynchronization variablevhich points to the remote node. When the result is needed, it is requested
through a synchronization operation. If the remote node has finished the computation, the result is returned;
otherwise the synchronization operation is suspended until the result becomes ready. We can simulate
a remote procedure call by performing a synchronization operation immediately after evaluating a future
construct.

Figure 4 shows the definition of the future constriuttire M. It expectsM to be of typd1OA, [0,,0A,
OO0,/ A, ord,0, A. If M evaluates tox NN, it initiates a stand-alone computationlefcir v = N in v at
a new logical nodey created withnew ~ and returns a synchronization variabj@cvar ~ of type A sync;
if M evaluates tibox,, N, it initiates the same stand-alone computation at a new logical nadeated
with new v @ w and returns a synchronization variabj@cvar v of type A sync,,. SinceN has typeOA
or O, A, letcir v = N in v evaluates to a mobile value of typethat is valid either at any node or at node
w’. The result is requested through a synchronization opersfianvith syncvar .

Note that a synchronization variable itself is inherently mobile and we can synchronize aftary
node Intuitively it is just a pointer to a certain logical node and hence is globally valid. The result of a
synchronization operation may not be valid at the node where it takes place, but the typing system correctly

A remote evaluation construct can be simulated by a future construct; we present the remote evaluation construct
only as a simple example of using modal typesd and OO,A. As we will see below,eval M is simulated as
let _ = future (letbox z = M in box let _ = z incir ()) in () wherelet x = M in N is standardet-binding and. is a wildcard
pattern.

16

indicates the mobility of the result. For example, in the rldavith’, the result of evaluatingyncwith M is
valid only at node.’, which is correctly indicated bf «’ in the typing judgment of the conclusion.
The rulesTsvar and Tsvar’ show that a configuration typeis necessary in extended typing judgments
in order to typecheck synchronization variables. Since synchronization variables are created only by the
future construct and do not appear in a source program, we need these rules only for proving the type safety.

type A = ... | Async| Async,
term M == ... |future M |syncvar vy | syncwith M
value Vo= ... |syncvarvy
evaluation context x = --- |future k| syncwith K
ANATH, M :OOCA T ANATH,M:0,0A T Q
A; AT H,, future M ~ A sync @ w* uture A; AT H,, future M ~ A sync @ w* uture
AAT R, M OO, A , AATE,M:O,OnA ,
A; AT, future M ~ A sync,» Q w* Tfuture A; AT, future M ~ A sync,» Q w* Tfuture@
vy~ AQxeA - y~AQW A ,
A; AT, syncvar 7y : A sync svar A; A; T+, syncvar v : A sync,, Tsvar
A; AT =, M : Async _ A AT H, M2 Async,, L
. = Tswith - ; Tswith
A AT H, synewith M ~ A Q w A AT H, syncwith M ~ A Q w
new '
7 . . ; Rfuture
C, k[future box M| at v = C, k[syncvar 7] at ~, letcirv = M inv at
new v Q ' Rfuture@
C, k[future box,, M| at v = C, k[syncvar 7'] at v, letcir v = M in v at +/ uture
- Rswith

C, k[syncwith syncvar 7] at v,V at v/ = C,k[V] at v,V at v

Figure 4: Definition of the future constructo* may be read as “any node.”

4.5.3 Asynchronous channels

An asynchronous channel is a first-in-first-out buffer containing values communicated among nodes. A
write operation adds a value to the buffer and always succeeds. A read operation removes the oldest value
from the buffer; if the buffer is empty, it waits until a new value is written. We assume that an asynchronous
channel is accessible to every node. This means that a value written to it must be globally valid, which in
turn means that a value read from it is also globally valid. A similar idea can be used to impkEmesd
variables for which a write operation overwrites a single-entry buffer and a read operation leaves the buffer
intact.

We implement an asynchronous channel for typas a special node holding a list of values of type
A. The node updates the list when a read or write operation is performed on the channel. It maintains the
invariant that every value in the list is globally valid.

Figure 5 shows the definition of asynchronous channelsandV;, :: V;, both of typeA vlist, are
constructs for listsnewchan 4 creates a new logical nodeto implement an asynchronous channel for type
A, and returns ahannel variablechanvar v of type A chan. A channel variable points to an asynchronous
channel and is globally valid. The rul@seadc andRwritec show how read and write operations manipulate
the node associated with an asynchronous channel.

17

Like synchronization variables for future constructs, channel variables are created ardwdivin 4
and do not appear in a source program. Therefore we need thEdhdev only for proving the type safety.

type A = ... | Achan| Avlist

term M == .- |nil|V : V|chanvar v | newchan4 | readchan M | writechan M M
value Vo u= - |nil |V V|chanvar vy

evaluation context x = --- |readchan k | writechan k M | writechan (chanvar) &

ANATE VA ANA T,V Avlist -
AN ATF, V, Vi Avlist veon

A AT, nil: Aviist ' VNil

v~ Avlist@x € A Teh -
A; A; T H,, chanvar v : A chan chanv A; A; T+, newchang ~ A chan @ w* newc

A AT, M : A chan
A; AT F,, readchan M ~ A @ w* Treadc

A; A;T R, M : Achan freshw’ A;ATH,N~AQW
A; AT F,, writechan M N ~ A Q w*

new '

Twritec

C, k[newchan 4] at ¥ = C, k[chanvar /] at v, nil at +/ Rnewc

C, k[readchan chanvar 7/ at v, V}, : V; at o/ = C,k[V}] at v, V, at v/ Rreadc

Rwritec
C, k[writechan (chanvar /) V] at v, V; i -+ = V,, i nilat o/ = e

C,k[V]at v, Vi -V, Vonilat o/

Figure 5: Definition of asynchronous channels: may be read as “any node.”

4.6 Type safety

The type safety of the network operational semantics consists of two properties: configuration type preser-
vation (Theorem 4.1) and configuration progress (Theorem 4.5). Configuration type preservation states that
a configuration transition does not alter the type and mobility of the term being evaluated at each node. Con-
figuration progress states that we can apply a configuration transition rule until every node has finished its
stand-alone computation or waits for a result from another node (by theRaidth, Rreadc, andRwritec).

Theorem 4.1 (configuration type preservation).
If C:: AandC = C’, thenC’ :: A’ such thatA C A’.

Proof. By case analysis o = C’. There are three cases:

1) Cp, k[M] at v = Cy, k[N] at ~y

2) Cy, k[M] at v = Cy, k[N] at v, N" at +/

3) Co, k[M] at v, M' at v/ = Cy, k[N] at v, N" at v/

In each case, we show that preserves the type and mobility 8f. In case 3), we also show that’
preserves the type and mobility 6f’. O

Lemma 4.2 (Canonical forms).If A;;TP*™F, V ~ A @Q /', then
V =,

18

A is a primitive type,

A=A; D AsandV = \zx:A1. M,
A=0BandV = box M,

A= O, B andV = box,,» M,
A=0BandV =cir M,
A=0O,BandV =cir,» M,

A =unitandV = (),

A = BsyncandV = syncvar v,
A = B sync,» andV = syncvar 7,
A = B chan andV = chanvar +,
A = BvlistandV = nil,

or A= ByvlistandV =V, :: V.

Proof. Suppose thal” ## v and A is not a primitive type.

If A= A; D Ay, thenA; ;TP V ~ A QW' is derived by the ruleoly,, optionally followed by
the ruleValy, . HenceV = A\z: A;. M.

All the other cases are analogous. O

Lemma4.3. If A;;TPe™ -, M ~ A Q/, then

M=V #w, M =vandv ~ A Qw' € TPe™,
M = k[v]andv ~ B @Q w € I'Pe™, M = k[N] whereN — N/,

M = k[eval box N], M = k[eval box,» N],

M = k[future box N, M = g[future box,» NJ,

M = k[syncwith syncvar 7], M = k[newchang],

M = k[readchan chanvar 7], or M = k|writechan (chanvar v) V].

Proof. By induction on the structure of; -;T'P*™ -, M ~ A @ w’. We present one case.
A; R reem -, M : Aprim
Ay TPEM = Mo~ Appin, Qw
If M =V # v by induction hypothesis, we are done.
M = vandv ~ Ay, @w € T'P™ cannot happen by induction hypothesis, since the assumption on
'Pe™™ requires that permanent local resources not be of a primitive type.
If M = x[M’] by induction hypothesis where
M =vandv~ B Qw g I'Perm,
M’ — N, or
M’ is eval box N’, eval box,» N’, future box N’, future box,» N’, syncwith syncvar v, newchanp,
readchan chanvar v, or writechan (chanvar) V,
then we are done. O

Case s Prim~yy (w# W)

Lemmad.4.If A; AT+, k[M] ~ A Q@ W/, then there exisB andw” such that\; A;T' -, M ~ B @ W".
Proof. By induction on the structure &f. O]

Theorem 4.5 (configuration progress).
If C :: A, then either there exists’ such thatC = C’, or C consists only of the following:
V at ~,
k[syncwith syncvar /] at +,
k[readchan chanvar 7] at ~,
k|writechan (chanvar 4/) V] at ~.

19

Proof. Suppose”' = Cy, M at . By the ruleTcfg, we haveA; ;TP*™ , M ~ A Q' for P(y) = w
and a certain node’. We do case analysis according to Lemma 4.3. We present one case.
CaseM = k|writechan (chanvar) V]:

By Lemma 4.4, we havd; -; TP*™ I, writechan (chanvar7/) V ~ B @ ".

By the rule Twritec (optionally preceded by the rulerim ~y, if B is a primitive type), we have
A;-;TP¢™ | chanvar 7/ : B chan.

By the ruleTchanv, we havey’ ~ B vlist @ x € A.

SinceC :: A, we haveC' = Cj, M at v, N at o/ andA; -, TP*™ 5,y N ~ Bvlist @ w* for a fresh
nodew®.

If N=1Vy .-V, il (where0 < n), then
Rwrit
C\, k|writechan (chanvary') V]at v, Vi ::--- 2 V,, cnil at o/ = writee
Cy,k[V]at, Vi -2V, 0V oenilat o/
OtherwiseN # V; :: --- :: V,, :: niland M is not further reduced. O

The two cases[syncwith syncvar 7/] at v andx[readchan chanvar 4/] at v in Theorem 4.5 can occur
during a distributed computation. Here is an example of a configuration whose transition gives rise to the
two cases:

syncwith future box cir (readchan newchany) at v
— syncwith syncvar ' at ~, letcir v = cir (readchan newchan 4) in v at ~/
= syncwith syncvar 7/ at 7, letcir v = cir (readchan chanvar 7”) in v at 7/, nil at +”

Here nodey waits for a result from node’, which in turns waits for a value to be written to noede Since no
value can be written to nod¢’, the last configuration is stuck. The cageritechan (chanvar v') V] at
in Theorem 4.5 occurs only when the term being evaluated at focnnot be reduced to a list of values
(whether empty or not), as clarified in the proof above. This case, however, does not actually occur because
an asynchronous channel is always initializedhid®y the ruleRnewc and never holds a term that is not a
list.

The type safety of the network operational semantics implies that mobile terms and mobile values are
both safe to use: well-typed terms never go wrong even in the presence of mobile terms and mobile values.

4.7 Example

Consider a network of two nod&s(server) andC (client). NodeS has a printer attached to it, and provides
a functionprint for printing pdf files of typepdf. The printer accepts pdf files written only with local fonts,
and provides a functiononverts for converting ordinary pdf files into a suitable format. NaoQehas its
own conversion functiomonvertc.

= fileg ~ pdf @ S, convertg ~ O(pdf D Ogpdf) @ S, print ~ pdf D unit @ S

Fgerm
cherm = fileg ~ pdf @Q C, convertc ~ pdf D Ogpdf @ C

We give three examples (similar to those in [9]) to illustrate how to describe tasksifi. All terms below
have typdlsunit and typecheck at any node. We use syntactic sygah/ for syncwith future M.
Printing a pdf filefileg of nodesS:
boxg (print fileg)

Printing a pdf filefilec of nodeC after converting it withconvertc:

letcir v = cirg rpc boxc (convertc filec) in
boxg (print v)

20

Printing a pdf filefilec of nodeC after converting it withconverts:

boxg letcir v = converts in
letcir v' = cirg rpc boxc (v filec) in
print v’

5 Related work

5.1 Local resources in distributed computations

In designing a distributed system, there are several ways to handle references to local resources when they
are transmitted (as part of a mobile term) to a remote node. If the underlying system supports direct access
to remote resources, such a reference can be replaced in the remote node by a proxy which automatically
redirects all requests for the resource to the originating node. Obliq [3] adopts such a computation model,
in whichlocal referencesre replaced byetwork referenceim a remote node.

Aod” allows references to remote resources in mobile terms, but it also ensures that they are never
dereferenced. In essence, references to local resources become invalid when they are transmitted to remote
nodes, but their validity is restored when they are brought back to the original node. For example, if a term
M accesses local resources of nadand returns a globally valid value of typg then

syncwith future box,, cir M

can be evaluatedt any node wherever the above term is evaluated, it calls back with the sameMEtm
nodew, where all references il again point to their corresponding local resources. The same computation
model is used by Mascolet al.[11] in their treatment of references.

References to remote resources, as used in the above two computation models, are suitable for persistent
resources such as printers and databases, but they can be problematic for ephemeral resources which are
eventually destroyed. For example, the presence of references to remote heap cells incurs the problem of
distributed garbage collection [7]. An alternative computation model is one that permits no references to
remote resources either by rejecting mobile terms containing such references or by transmitting copies of
local resources along with mobile terms. Facile [10] supports such a computation model, in which local
resources are copied whenever their references (csiltegilar value} are transmitted to a remote node.

Thus the problem with ephemeral resources is resolved at an increased cost of transmitting mobile terms.

5.2 Modal languages for distributed computation

Borghuis and Feijs [1] present a typaecalculusMTSN (Modal Type System for Networks). It assumes
stationary serviced.€., stationary code) and mobile data, and belongs to the client/server paradigm. An
indexed modal typé&1“(A — B) represents services transforming data of typato data of typeB at
nodew (similarly toCJ,,(A D B) in A\gd”). MTSN is a task description language rather than a programming
language, since services are all “black boxes” whose inner workings are unknown. For example, terms of
typetex — dvi all describe procedures to convert tex files to dvi files. Thus reduction on terms is tantamount
to simplifying procedures to achieve a certain task.

Jia and Walker [9] present a modal languagg. which belongs to the remote evaluation paradigm.
It is based upon hybrid logic [2], and every typing judgment explicitly specifies the current node where
typechecking takes place. The modalitiesand{ are used for mobile terms that can be evaluated at any
node and at a certain node, respectively.

Murphyet al.[13] present a modal languagambda 5vhich addresses both code mobility and resource
locality. It also belongs to the remote evaluation paradigm, and is based upon modal logic S5 where all

21

judgments are relativized to nodes. A value of tihé contains a mobile term that can be evaluated at any
node, and a value of typgA contains dabel, a reference to a local resource. A label may appear at remote
nodes, but the type system guarantees that it is dereferenced only at the node where it is valid.
Although the intuition behind the modality is the same),,. and Lambda 5 are fundamentally different
from A\go in their use of modal typdslA in remote procedure calls. In both languages, a remote procedure
call, by thepull construct in\,,c and by thefetch construct in Lambda 5, is given a specific node where
the evaluation is to occur, and therefatees not expect a term contained in a value of typ& Instead
it expects just a term of typelA, which itself may not be mobile but eventually produces a mobile term
valid at any node including the caller node. The resultant mobile term is delivered.tpylled orfetched
by) the caller node, which needs to further evaluate it to obtain a value. As such, neither language needs
to address the issue of value mobility. In contrast, a remote procedure dalHti (by theeval or future
construct) transmits a teroontained in a value of typelA and relies on the modalit® for return values.
Such use of the modalityl is natural in\goJd", since it supports remote procedure calls to unknown nodes.
Moody [12] presents a system which is based upon modal logic S4 and belongs to the remote evaluation
paradigm. The modality] is used for mobile terms that can be evaluated at any node, and the mgdality
used for terms located at some node. AsiifyV, remote procedure calls use modal typés to transmit
mobile terms to unknown remote nodes. Moody’s system uses the elimination rules for the modalities
and¢ to send mobile terms to remote nodes, and does not provide a separate construct for remote procedure
calls.

6 Conclusion and future work

We present a modal language,d¥ which ensures the safety of both mobile terms and mobile values. It
provides a flexible programming environment for various kinds of distributed computations. For example, if
the network evolves dynamically and no permanent local resources are known in advance, only modal types
JA andOA are necessary; if the network is static and every node publishes its permanent local resources,
we can program exclusively with indexed modal typésA andO,, A.

The modalityO is useful inA\gd” only because the unit of communication includes a value. That is, if
the unit of communication was just a term and did not include a value, the modaltyuld be unnecessary.

Then, however, the future construct would have to be redefined in a similar waygoltitenstruct of\,.
and thefetch construct of Lambda 5, and asynchronous channels would be difficult to implement.

The three communication constructs)ofd" are all defined separately. A better approach would be
to introduce a few primitive operations and then implement various communication constructs using these
primitive operations. For example, we could introducs operation for the modality] and areceive
operation for the modality), and then implement the future construct using these operations. Because of
technical difficulties arising from asynchronous channels, however, we do not adopt this approach and define
all communication constructs separately.

A drawback ofAgdV is that in general, references to ephemeral local resources cannot be transmitted

to remote nodes. As an example, consider a pointdrtype ptr A at a logical nodey created withnew .
Node~ wishes to use as a shared pointer among all its child nodes, those nodes created with theal
andfuture constructs. No child node, however, even knows the existencdetause the physical node
in a bindingv ~ A @ w is not known statically. (If node was created witlew v @ w, thenv could be
transmitted to remote nodes.)

To overcome this drawback, we are currently investigating how to augment(not A\gdv) with a
modality ¢ similar to that of Jia and Walker [9]. The idea is that a tekiin dia M of type 0 A can be
evaluated at a certain node, which is unknown to the type system but known to the runtime system. The use
of the modality$ will allow us to dispense with indexed modaliel, andO,,.

22

Acknowledgment

I am grateful to Tom Murphy and Jonathan Moody for their helpful comments on an earlier draft of this
paper, and Karl Crary for his helpful comments on the type system.

References

[1] T. Borghuis and L. Feijs. A constructive logic for services and information flow in computer networks.
The Computer Journa#t3(4):275-289, 2000.

[2] T. Braiiner. Natural deduction for hybrid logiclournal of Logic and Computatiori4(3):329-353,
2004.

[3] L. Cardelli. A language with distributed scope. Pnoceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesgyes 286—297. ACM Press, 1995.

[4] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applications with mobile code
paradigms. IrProceedings of the 19th international conference on Software enginepeggs 22—-32.
ACM Press, 1997.

[5] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing mobile code languageSeldated
Presentations and Invited Papers Second International Workshop on Mobile Object Systems - Towards
the Programmable Interngpages 93-110. Springer-Verlag, 1997.

[6] R. Davies and F. Pfenning. A modal analysis of staged computalmrnal of the ACM48(3):555—
604, 2001.

[7] F. L. Fessant, |. Piumarta, and M. Shapiro. An implementation of complete, asynchronous, distributed
garbage collection. IRroceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementatippages 152-161. ACM Press, 1998.

[8] R. H. Halstead, Jr. Multilisp: a language for concurrent symbolic computafi@M Transactions on
Programming Languages and Systeif(@):501-538, 1985.

[9] L. Jia and D. Walker. Modal proofs as distributed programs (extended abstract). In D. Schmidt, editor,
Proceedings of the European Symposium on Programming, LNCS [28@&s 219-233. Springer, Apr.
2004.

[10] F. C. Knabe. Language Support for Mobile Agent®hD thesis, Department of Computer Science,
Carnegie Mellon University, 1995.

[11] C. Mascolo, G. P. Picco, and G.-C. Roman. A fine-grained model for code mobiligroteedings
of the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT interna-
tional symposium on Foundations of software engineepages 39-56. Springer-Verlag, 1999.

[12] J. Moody. Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194,
Carnegie Mellon University, Oct. 2003.

[13] T. Murphy, VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for dis-
tributed computing. IfProceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS
2004) IEEE Press, July 2004.

23

[14] F. Pfenning and R. Davies. A judgmental reconstruction of modal Idgi@thematical Structures in
Computer Sciengd 1(4):511-540, 2001.

[15] A. K. Simpson.The Proof Theory and Semantics of Intuitionistic Modal Lo&ikD thesis, Department
of Philosophy, University of Edinburgh, 1994.

A Proofs of the properties of \rqo

Proposition A.1.
If A;THM:AandA; T,z : A- N : B, thenA;T'+ [M/z]N : B.
If A;TFM: AandA;T,z: AF N ~ B, thenA; T - [M/z]N ~ B.

Proof. By simulataneous induction on the structure of of the derivatiah;df,z : A- N : BandA;I',z: A- N ~ B.
Proof of the first clause:
CaseN =z: [M/z]N =M
By the ruleCvar, A;T',z: AF N : BimpliesA = B.
A;T'HM : AimpliesA;T' = [M/x]N : A.
ThereforeA; I' - [M /z]N : B.
CaseN =y,y#x: [M/x]N =y
By the ruleCvar, A;T,z: A- N : Bimpliesy:: Be Aory: BeT,z: A.
Sincey # x,we havey :: Be Aory: BeTl.
By the ruleCvar, A;T +y : B.
ThereforeA; '+ [M/x]N : B.
CaseN =v: [M/z]N =v
By the ruleVvar, A;T, 2 : A- N : Bimpliesv ~ B € A.
By the ruleVvar, A;T' o : B.
ThereforeA; I' - [M/z]N : B.
CaseN = \y:B’'. N', y # z, y not a free variable oM: [M/x]N = \y:B’.[M/x]N’
By the ruledl, A;T,z: A+ N : BimpliesA;T',x: A,y : B+ N': B”andB = B’ > B”.
By weakeningA;T' = M : AimpliesA; T,y : B’ M : A.
By induction hypothesis)\; ',y : B'+ [M/x]N' : B”.
By the ruleDl, A;T' = \y: B'.[M/z|N' : B’ > B".
ThereforeA; ' - [M/z]N : B.
CaseN = Nj No: [M/l']N = [M/Z]Nl [M/x]Ng
By the ruleDE, A;T,z: A+ N : BimpliesA;T,2: AN, : B D BandA;T',z: A~ Ny : B'.
By induction hypothesis)\; ' - [M/z]N; : B > BandA;T'+ [M/xz|Ns : B’.
By the ruleDE, A; T+ [M/x] Ny [M/x]Ns : B.
ThereforeA; I' - [M/z]N : B.
CaseN = box N": [M/x]N = box [M/x]N'
By the rule]l, A;T,z : A= N : BimpliesA;-+ N’ : B'andB = OB'.
Sincez is not a free variable aN’, we have[M /z|N' = N'.
By the ruledI, A;T' + box [M/z]N' : OB’.
ThereforeA; '+ [M/x]N : B.
CaseN = letbox y = N7 in N, y # x, y not a free variable ol :
[M/x]N = letbox y = [M /x| Ny in [M/x] N
BytheruledE, A;T',z : AF N : BimpliesA;T',x: A- Ny : OByandA,y :: By;T,x: AF Ny : B.
By weakeningA; ' M : AimpliesA,y :: By;;T'E M : A.

24

By induction hypothesis)\;I' - [M /x| Ny : OBy andA,y :: By; ' [M/x] Ny : B.
By the ruleJE, A; T F letbox y = [M/x] Ny in [M/z]Ny : B.
ThereforeA; '+ [M/x]N : B.
CaseN =cir N': [M/xz]N = cir [M/x]N'
By the ruleOl, A;T,z : A+ N : BimpliesA;T',z: A~ N' ~ B"andB = OB'.
By induction hypothesis); T' - [M/z|N' ~ B'.
By the ruleOl, A; T+ cir [M/x]N' : OB'.
ThereforeA;T' - [M/z]N : B.
CaseN = letcir v = Nj in Ny, v not a free variable oM: [M/z]|N = letcir v = [M/x]Ny in [M/x]No
BytheruleOE, A;T',z: AE N : BimpliesA; T,z : AF- Ny : OByandA,v ~ By;T,x: A- Ns : B.
By weakeningA;T'+ M : AimpliesA,v ~ B;;T'F M : A.
By induction hypothesis); I' = [M /x| Ny : OBy andA,v ~ By;I' = [M /x| N : B.
By the ruleOE, A; T F letcir v = [M/x] Ny in [M/z]Ny : B.
ThereforeA; '+ [M/x]N : B.
Proof of the second clause:
If the rule Prim~ is used to deducA;I",x : A~ N ~ B:
A;T,z: A N : BandB is a primitive type.
By induction hypothesis); I' - [M/z]N : B.
By the rulePrim~, A;T'+ [M/z]N ~ B.
Now N cannot be an applicatioN; N> or a variabley.
CaseN =V:
By the ruleVal, A;T, 2 : A N ~ BimpliesA;-+ N : B.
Sincez is not a free variable oV, we havelM /z|N = N.
By the ruleVal, A; ' [M/z]N ~ B.
CaseN = letbhox y = Ny in Ns, y # z, y not a free variable o/ :
[M/z]N = letbox y = [M /x| Ny in [M /x] N
BytheruledJE', A;T,x: A- N ~ BimpliesA;I',x: A~ Ny : OByandA,y :: By;I,x: A+ Ny ~ B.
By weakeningA;T'- M : AimpliesA,y :: By; ' M : A.
By induction hypothesis); " - [M/z]|N; : OB; andA,y :: By;T' = [M /2] Ny ~ B.
By the ruledJE’, A; T+ letbox y = [M/x] Ny in [M/x]Ny ~ B.
ThereforeA; I' - [M /z]N ~ B.
CaseN = letcir v = Nj in Na, v not a free variable oM: [M/z]N = letcir v = [M /x| Ny in [M/x]No
BytheruleOE', A;T,z: A- N ~ BimpliesA;T,z: AF Ny : OBy andA,v ~ By;T,z: A+ Ny ~ B.
By weakeningA; '+ M : AimpliesA,v ~ B;;T'H M : A.
By induction hypothesis); I' - [M/z]N; : OBy andA,v ~ By;I' = [M /x| Ny ~ B.
By the ruleOE’, A; T F letcir v = [M /2| Ny in [M /x| Ny ~ B.
ThereforeA; '+ [M/z]N ~ B. O

Proof of Proposition 2.2 and Proposition2.4:

Proof. By simulataneous induction on the structure of the derivatiah,af :: A;I'- N : BandA,z :: A;T'F N ~ B.

Proof of Proposition 2.2:
CaseN =z: [M/z]N =M
A;-F M : AimpliesA; -+ [M/z]N : A.
By weakeningA; -+ [M/z]N : AimpliesA;T'F [M/z]N : A.
A,x:: A;THN: BimpliesA = B.
ThereforeA; T' - [M/x]N : B.
CaseN =y, y#x: [M/x]N =y

25

By the ruleCvar, A,z :: A; T N : Bimpliesy : Be A,x:: Aory: Bel.
Sincey # x,we havey :: Be Aory: BeT.
By the ruleCvar, A;T Fy : B.
ThereforeA; ' - [M/z]N : B.
CaseN =v: [M/z]N =v
By the ruleVvar, A,z :: A;T' = N : Bimpliesv ~ B € A,z :: A, which means ~ B € A.
By the ruleVvar, A;T v : B.
ThereforeA;T' - [M/z]N : B.
CaseN = \y:B'.N',y # z, y not a free variable oM: [M/z|N = \y:B'.[M/z]N’
By theruledl, A,z :: A;T'+ N : BimpliesA,z :: A;T',y: B’ N': B”andB = B’ > B".
By induction hypothesis)\; ',y : B'+ [M/x]N' : B”.
By the ruleDl, A;T' = \y: B'.[M/z]N': B’ > B".
ThereforeA; I' - [M /z]N : B.
CaseN = Ny No: [M/z]N = [M/x]Ny [M/x] N,
By the ruleDE, A,z :: A;T'+ N : BimpliesA,z :: A;TF Ny : B'D> BandA,z :: A;T'+ Ny : B'.
By induction hypothesis)\; ' - [M/z|Ny : B’ > B andA;T' - [M/z]N, : B'.
By the ruleDE, A;T' F [M/x] Ny [M/x]Ns : B.
ThereforeA; '+ [M/z]N : B.
CaseN = box N": [M/x]N = box [M/x]N'
By the ruleldl, A,z :: A;T'+ N : BimpliesA,z :: A;-+ N’ : B'’andB = OB'.
By induction hypothesis); - - [M /x| N’ : B’.
By the ruledI, A;T' + box [M/z]N' : OB’.
ThereforeA;T' - [M/z]N : B.
CaseN = letbox y = N7 in No, y # x, y not a free variable o/ :
[M/x]N = letbox y = [M/xz]|Ny in [M /x| Ny
BytheruledE, A,z :: A;T+ N : BimpliesA,x:: A;TF N, :0OByandA,z :: Ajy :: By;T'F Ny @ B.
By weakeningA;-+ M : AimpliesA,y :: By;-+ M : A.
By induction hypothesis);T' + [M /x| Ny : OBy andA,y :: By;T'F [M/x] Ny : B.
By the ruleCJE, A; T+ letbox y = [M /] Ny in [M/z]N, : B.
ThereforeA;T' - [M/z]N : B.
CaseN =cir N': [M/x]N = cir [M/z]N’
By the ruleOl, A,z :: A;TF N : BimpliesA,z:: A; T N ~ B "andB = OB'.
By induction hypothesis)\;T' - [M/z]N' ~ B'.
By the ruleOl, A;T' F cir [M/x]N' : OB'.
ThereforeA;I' - [M /z]N : B.
CaseN = letcir v = Nj in Ny, v not a free variable oM: [M/z|N = letcir v = [M/x]Ny in [M/x]No
BytheruleOE, A,z :: A;T'+ N : BimpliesA,x :: A;T'F N, : OByandA,z :: Ajv ~ B;;T'F Ny : B.
By weakeningA; -+ M : AimpliesA,v ~ By;- = M : A.
By induction hypothesis); I' = [M /x| Ny : OBy andA,v ~ By;T'+= [M /x| Ny : B.
By the ruleOE, A;T' F letcir v = [M /x| Ny in [M/x]Ny : B.
ThereforeA;T' - [M/z]N : B.
Proof of Proposition 2.4:
If the rulePrim~ is used to deducA, z :: A; ' N ~ B:
A,z :: A;TH N : BandB is a primitive type.
By induction hypothesis);I' - [M/z|N : B.

26

By the rulePrim~, A;T' - [M/z]N ~ B.
Now N cannot be an applicatioN; N> or a variabley.
CaseN =V:
By the ruleVal, A,z :: A;TH N ~ BimpliesA,x:: A;-+ N : B.
By induction hypothesis); - - [M/x]N : B.
By the ruleVal, A;T' - [M/z]N ~ B.
CaseN = letbox y = N7 in N, y # x, y not a free variable ol :
[M/z]N = letbox y = [M/x]Ny in [M/x]No
BytheruledE', A,z :: A;T'F N ~ BimpliesA,z :: A;T' - Ny :OByandA,x :: A,y :: B;T'F Ny ~ B,
By weakeningA; -+ M : AimpliesA,y :: By;- M : A.
By induction hypothesis); ' - [M/z]|N; : OB; andA,y :: By;T' = [M /2] Ny ~ B.
By the rulelJE’, A; T+ letbox y = [M/x] Ny in [M/x]Ny ~ B.
ThereforeA;I' - [M /z]N ~ B.
CaseN = letcir v = Nj in Ny, v not a free variable oM: [M/z]|N = letcir v = [M/x]Ny in [M/x] N
BytheruleOE', A,z :: A;T'F N ~ BimpliesA,z :: A;T - N; : OByandA,z :: A,v ~ By;IT' Ny ~ B.
By weakeningA;-+ M : AimpliesA,v ~ By;-+ M : A.
By induction hypothesis); I' = [M /x| Ny : OBy andA,v ~ By;T'+= [M/x] N2 ~ B.
By the ruleOE’, A; Tt letcir v = [M/z] Ny in [M /x| Ny ~ B.
ThereforeA;T' - [M/z]N ~ B. O

Lemma A.2.
IfA;-FV:AandA,v ~ A;T'F N : B, thenA;T'F [V/v]N : B.
If A;-FV:AandA,v ~ A;THN ~ B, thenA; T+ [V/v]N ~ B.

Proof. By simulataneous induction on the structure of the derivatioh,af ~ A;T'+ N : BandA,v ~ A; T N ~ B.
Proof of the first clause:
CaseN =z: [V/v]N =z
BytheruleCvar, A,v ~ A; '+ N : Bimpliesx :: B€ A,v~ Aorx: B € I',whichmeans :: B€ A
orr:Bel.
By the ruleCvar, A;T +x : B.
ThereforeA; I' - [V/v]N : B.
CaseN =v: [V/uIN =V
A;-FV i AimpliesA; - F [V/u]N : A.
By weakeningA; -+ [V/u]N : AimpliesA;T F [V/v]N : A.
A,v~A;T'H N : BimpliesA = B.
ThereforeA; '+ [V/v]N : B.
CaseN =w,w #v: [V/v]N =w
By the ruleVvar, A,v ~ A;T'H N : Bimpliesw ~ B € A,v ~ A, which meansy ~ B € A.
By the ruleVvar, A;T'FHw : B.
ThereforeA; '+ [V/v]N : B.
CaseN = \z:B'. N', z not a free variable of: [V/u|N = \x:B’. [V /v]N'
By the ruledl, A,v ~ A;T'F N : BimpliesA,v ~ A;T',x : B+ N': B”andB = B’ > B”.
By induction hypothesis); T,z : B'+ [V/v]N' : B”.
By the ruleDl, A;T' - Xz: B'.[V/v]N' : B’ D B”.
ThereforeA; T' - [V/v]N : B.
CaseN = N Ns: [V/U]N = [V/’U]Nl [V/U]NQ
By the ruleDE, A,v ~ A;T'+ N : BimpliesA,v ~ A;T'+ Ny : B D BandA,v ~ A;T'F Ny : B'.
By induction hypothesis); T' - [V/v]N; : B’ D B andA;T' - [V/u]Ny : B'.

27

By the ruleDE, A;T' - [V/v] Ny [V/v] N2 : B.
ThereforeA; I' - [V/v]N : B.
CaseN = box N": [V/v]N = box [V/v]N’
By the rulel]l, A,v ~ A;T'+ N : BimpliesA,v ~ A;-+ N': B'andB = OB'.
By induction hypothesis); -+ [V/v]N' : B'.
By the ruleCI, A;T'F box [V/v|N' : OB'.
ThereforeA; '+ [V/v]N : B.
CaseN = letbox z = Nj in Ny, z not a free variable oV: [V /v]N = letbox x = [V/v] Ny in [V /v] Ny
BytheruledE, A,v ~ A;T'F N : BimpliesA,v ~ A;T'H Ny : OByandA,v ~ A,x :: B;;T'H Ny : B.
By weakeningA;-+V : AimpliesA,x :: By;-FV . A.
By induction hypothesis); I" - [V/v] Ny : OBy andA, z :: By;T'F [V/v]Ns : B.
By the rulelJE, A; T |- letbox x = [V/v]Ny in [V/v] N2 : B.
ThereforeA; I' - [V/v]N : B.
CaseN =cir N': [V/v]N = cir [V/u]N'
By the ruleOl, A,v ~ A;T'+ N : BimpliesA,v ~ A;T'+- N’ ~ B"andB = OB'.
By induction hypothesis); ' - [V /v]N' ~ B'.
By the ruleOl, A; T F cir [V/v]N' : OB'.
ThereforeA; '+ [V/v]N : B.
CaseN = letcirw = Nj in No, w # v, wnotafreevariable of: [V /v]N = letcirw = [V/v] Ny in [V/v] N2
By theruleOE, A,v ~ A;T'F N : BimpliesA,v ~ A;T'H Ny : OByandA,v ~ A,w ~ B1;T'F Ny : B.
By weakeningA; -+ V : AimpliesA,w ~ By;-+V . A.
By induction hypothesis); I" - [V /v] Ny : OB;. andA,w ~ By; '+ [V/v]Na : B.
By the ruleOE, A; T I letcir w = [V/v]Ny in [V/v] Ny : B.
ThereforeA; I' - [V/v]N : B.
Proof of the second clause:
If the rule Prim~ is used to deducA,v ~ A;I'+- N ~ B:
A,v~ A;T'H N : BandB is a primitive type.
By induction hypothesis); I' - [V/v]N : B.
By the rulePrim~, A;T' - [V/v]N ~ B.
Now NN cannot be an applicatiaN; N5 or a variabler.
CaseN =V":
By theruleVal, A,v ~ A;TF N ~ BimpliesA,v ~ A;- - N : B.
By induction hypothesis); - + [V/v]N : B.
By the ruleVal, A;T' - [V/v]N ~ B.
CaseN = letbox x = N7 in No, x not a free variable oV:
[V/v]N = letbox x = [V//v]Ny in [V//v] N2
By theruledJE', A,v ~ A;T' = N ~ BimpliesA,v ~ A;T'F Ny : OBy andA,v ~ A,z :: B;;T' - Ny ~ B.
By weakeningA; -+ V : AimpliesA,z :: By;-FV @ A.
By induction hypothesis);T' - [V/v]|Ny : OBy andA, z :: By;T'F [V/v]Ny ~ B.
By the ruledJE’, A; T F letbox = = [V/v] Ny in [V/v]Ny ~ B.
ThereforeA; ' - [V/v]N ~ B.
CaseN = letcirw = Ny in Ny, w # v, wnotafreevariable df: [V /v]N = letcirw = [V/v]Nyin [V/v] N2
By theruleOE',A,v ~ A; T N ~ BimpliesA,v ~ A;T = Ny : OByandA,v ~ A,w ~ By;T'+ Ny ~ B.
By weakeningA; -+ V : AimpliesA,w ~ By;- -V : A.
By induction hypothesis);I' - [V/v]| Ny : OB; andA,w ~ By;I'F [V/v]Ny ~ B.
By the ruleOE’, A; T - letcir w = [V/v] Ny in [V/v] Ny ~ B.
ThereforeA;T'F [V/v]N ~ B. O

28

Proof of Proposition 2.3:

Proof. By induction on the structure a¥/.
Proof of the first clause:
CaseM =V: (M/v)N = [M/v]N
By the ruleVal, A;T' F M ~ AimpliesA; -+ M : A.
By Lemma A.2, we have\;T" - [M /v]N : B.
ThereforeA; '+ (M /v)N : B.
CaseM = letbox x = My in My: (M /v)N = letbox x = Mj in (Ms/v) N
By the ruledJE', A;T - M ~ AimpliesA;T = M; : OA; andA, z :: AT = My ~ A.
By weakeningA,v ~ A;T'H N : BimpliesA,v ~ A,z :: A;;T'+ N : B.
By induction hypothesis on/y, A,z :: A;;T'F (M /v)N : B.
By the ruledJE’, A;T F letbox = My in (Ms/v)N : B.
ThereforeA;T'+ (M /v)N : B.
CaseM = letcir w = My in My: (M /v)N = letcir w = My in (Ma/v)N
By the ruleOE’, A;T - M ~ AimpliesA;T = M; : OA; andA,w ~ Ay; T = My ~ A.
By weakeningA,v ~ A;TH N : BimpliesA,v ~ Ajw ~ A;;THN : B.
By induction hypothesis oy, A, w ~ Ay; T+ (Ms/v)N : B.
By the ruleOE’, A; T - letcir w = My in (My/v)N : B.
ThereforeA;T'+ (M /v)N : B.
Proof of the second clause:
CaseM =V: (M/v)N = [M/v]N
By the ruleVal, A;T' M ~ AimpliesA;-+ M : A.
By Lemma A.2, we have\; T' - [M/v]N ~ B.
ThereforeA;T' = (M /v)N ~ B.
CaseM = letbox x = My in My: (M /v)N = letbox x = Mj in (Ms/v)N
By the ruledJE', A;T = M ~ AimpliesA;T = M; : OA; andA, x :: Aj; T = My ~ A.
By weakeningA,v ~ A;T'F N ~ BimpliesA,v ~ A,z :: A;;THFN ~ B.
By induction hypothesis on/y, A,z :: A;;T'F (Mo /v)N ~ B.
By the ruledJE’, A; T I letbox x = M; in (M /v)N ~ B.
ThereforeA; T' - (M/v)N ~ B.
CaseM = letcir w = My in My: (M /v)N = letcir w = My in (Ms/v)N
By the ruleOE’, A;T = M ~ AimpliesA;T'F M; : OA; andA,w ~ A;T = My ~ A.
By weakeningA,v ~ A; ' N ~ BimpliesA,v ~ A,w ~ A;;TEFN ~ B.
By induction hypothesis oy, A, w ~ Ay;T'F (My/v)N ~ B.
By the ruleOE’, A;T' = letcir w = My in (My/v)N ~ B.
ThereforeA; T'+ (M /v)N ~ B.

Proof of Proposition 2.5:

Proof. By induction on the structure of the derivation&fI' - M ~ A.
A-FV A dM = V-
—A;I‘I—VNAvaI an =V
By weakeningA; -+ V : AimpliesA;T'+V : A.
ThereforeA;T'F M : A.
A;THM, 041 Az A THEMy~ A , dM = leth ML in Mo
AT letboxa = My in My ~ A Db @ndid =letboxz = Ay in My:

By induction hypothesis o\, z :: A1;T'F My ~ A, we haveA, z :: A;T'F Mo @ A.

Case

Case

29

By the rulelJE, A;T'F letbox z = M7 in M5 : A

ThereforeA;T'F M : A.
A:THEM : QA1 Av~ATHEMy~ A , . .)
AT F letcirv = My in My ~ A OFE' andM = letcir v = My in Ms:

By induction hypothesis o\, v ~ A;T'F My ~ A, we haveA, v ~ A; T+ M, : A.

By the ruleOE, A; T F letcir v = My in Ms : A.

ThereforeA;:T'+ M : A.

ATEM:A

Case m Prim~

The premise gived; '+ M : A. O

Case

B Proofs of the properties of \nd"

Proof of Proposition 3.1:
Lemma B.1. [M/x]V is a value.
Proof. By case analysis df . O

Proof. By induction on the structure of the derivation&fI',z : A Q W’ =, N ~ B Q /.
If N =V and the ruleValy, is used to deducA: T,z : AQ W'+, N ~ BQ W'

AT,z: AQuW"+, N:B.

By induction hypothesis); T" -,/ [M/z]N : B.

By the ruleCvary, A; T+, [M/z]N ~ B Q ' becaus¢M /x| N is a value by Lemma B.1.
If the rule Prim~yy is used to deducA;: ',z : AQw”" -, N ~ BQ W'

A;T,z: AQW", N : BandB is a primitive type.

By induction hypothesis); T' -, [M/x]N : B.

By the rulePrim~y, A;T -, [M/z]N ~ B @Q u'.
Now we assume that the rul€sary, andCvary, are not used to dedueg, I',z: AQw" -, N ~ B @ /.
CaseN =z: [M/z]N =M

By the ruleCvary, A;T,2: AQ W', N ~ B @' impliesd = Bandw =’ =w".

A;THM:A implieSA; I [M/x]N D A

ThereforeA; T+, [M/z|N ~ B @ /.
CaseN =y, y#z: [M/z]N =y

By theruleCvary, A;T,2: AQuwW"FH, N ~BQuw' impliesy:: Be Aory: BQuwel,z: AQdW",
andw = w'.

Sincey # z,we havey :: Be Aory: BQuw eT.

By the ruleCvaryy, A;T' F, y @ B.

ThereforeA; T+, [M/z|N ~ B @Q /.
CaseN =v: [M/z]N =v

By the ruleVvary, A;T,2: AQwW"F, N ~ B@Quw impliesv~Be Aorv~BQuwel,z: AQuw’,
andw = W'.

Sincev # z,we havev ~ B Aorv~ BQuw €T

By the ruleVvary, A;T' -, v : B.

ThereforeA; '+, [M/z]N ~ B @Q W',
CaseN = \y:B'. N', y # z, y not a free variable oM: [M/x]N = \y:B’.[M/x]N’

By the ruledly, A;T,2: AQ W'+, N ~ BQw' impliesA;T,z: AQuw",y: B Quwt, N : B,
B =B >B" andw = /.

30

By weakeningA; T~ M : AimpliesA;T,y: B' Qw b M : A.
By induction hypothesis)\; ',y : B’ Q w b, [M/z]|N' : B”.
By the ruledlyy, AT F, A\y:B'.[M/x]N' : B > B".
ThereforeA; T+, [M/z|N ~ B @ /.
CaseN = Nj No: [M/J?]N = [M/Z]Nl [M/x]Ng
By the rule DEy, A;T,z: AQuW'F, N~ B@uw' implies A;T,2: AQuw"+, Ny : B DB,
A;T,x: AQW'F, Ny : B',andw = W'.
By induction hypothesis); " -, [M/x]Ny : B’ D BandA;T' -, [M/xz|Ns : B'.
By the ruleSEyy, A;T' -, [M /2] N, [M/z]N; : B.
ThereforeA; T+, [M/z|N ~ B @Q /.
CaseN = box N': [M/x]N = box [M/x]N'
By the rulely, A;T,z: AQ W'+, N ~ BQW impliesA;T',z: AQuW"+,« N : B, B=0B,
andw = ' wherew* is a fresh node.
By induction hypothesis); T' .« [M/x]N' : B’.
By the ruleQlyy, A;T -, box [M/z]N': OB'.
ThereforeA; '+, [M/z]N ~ B @Q W',
CaseN = box,+» N': [M/x]N = box,+ [M/x]N'
By the ruledly,, A; T2 : AQW” -, N ~ B@Quw'impliesA;T,z: AQw’ ,« N': B, B=0,+B,
andw = ',
By induction hypothesis)\; T b« [M/x]N' : B'.
By the ruledl};,, A; T &, box,« [M/z]N': O,+B'.
ThereforeA; '+, [M/x]N ~ B QW'
CaseN = letbox y = Ny in Ny, y # z, y not a free variable of/:
[M/x]N = letbox y = [M /x| Ny in [M /x| Ny
If the rule0dEy, is used to deducA; ',z : AQ W’ -, N ~ B Q ',
Al,z:AQuW"+, N~BQd implies AT, z: AQW"+, Ny : OBy and
Ayy:B;;T,x: AQuW' F, Ny ~ BQuW.
By weakeningA; T, M : AimpliesA,y :: B1; T F,0 M : A.
By induction hypothesis); T' b, [M/x]Ny : OB; andA,y :: By; 'k, [M/z]Ny ~ B Q W'.
By the ruleQCEy, A; T+, letbox y = [M/x] Ny in [M/z]|Ny ~ B Q W'.
ThereforeA; T+, [M/x]N ~ B Q «/'.
If the ruleJE},, is used to deducA; T,z : A Qw" -, N ~ BQd/,
Al,z:AQuW"+, N~BQdw implies AT, 2: AQuW"+, Ny : OBy and
AT,2: AQW",y: By Quw*t, Ny ~ BQW.
By weakeningA;T' v M : AimpliesA; T,y : By Qw* F» M : A.
By induction hypothesis); T +,, [M/x]N; : O+ By andA; T,y : By Q w* b, [M/2]Ny ~ B @Q u'.
By the rulelJE};,, A; Tk, letbox y = [M /2| Ny in [M/z]Noy ~ B @ o',
ThereforeA; T+, [M/x]N ~ B Q «/'.
CaseN =cir N': [M/z]N = cir [M/z|N'
BytheruleOly,A;T,z: AQ W'+, N ~ B@Qw' impliesA;T,z: AQuw”"+, N ~ B Quw*, B=0OBF,
andw = ' wherew* is a fresh node.
By induction hypothesis); T' -, [M/z]N' ~ B’ @ w*.
By the ruleOlyy, A;T -, cir [M/z]N' : OB’.
ThereforeA; 'k, [M/x]N ~ B Q /'
CaseN =cir,« N': [M/z]N = cir,« [M/x]N’
By the rule Oljy,, A;T,x: AQw"F, N~ BQw' implies A;T,z2: AQuw", N ~ B @ w*,
B =0,B,andw = /.

31

By induction hypothesis); T -, [M/z]N' ~ B" @ w*.
By the ruleOl},,, A;T k-, cir [M/z]N' : Oy« B'.
ThereforeA; T+, [M/z|N ~ B Q /.
CaseN = letcir v = Nj in Ny, v not a free variable oM: [M/z]N = letcir v = [M/x]Ny in [M/x] N2
If the rule OEyy is used to deducA; T,z : AQw" F, N ~ B@Q /,
AT,z:AQuW"+, N~BQd implies AT,z: AQW"+, Ny : OBy and
Av~B;Ix: AQuWw'F, Ngo~BQdW.
By weakeningA; T, M : AimpliesA,v ~ By;I'En M : A.
By induction hypothesis); ' -, [M/x]Ny : OBy andA,v ~ By; 'k, [M/z]Ny ~ B Q W',
By the ruleOEy, A; Tk, letcir v = [M/x]Ny in [M/x]Ny ~ B Q /'.
ThereforeA; T+, [M/x]N ~ B Q «'.
If the rule OE};, is used to deducA;T',z: A Quw" -, N ~ BQu',
Al,z:AQuW"+, N~BQd implies AT, 2: AQuW"+, Ny : OBy and
AT, 2: AQuwW" v~By Quw*r, No~ B Q.
By weakening A; T' v M : AimpliesA; T, v ~ By Q w* - M : A.
By induction hypothesis); T' -, [M/z] Ny : Oy« By andA; T, v ~ By Q w* -, [M/x]Ny ~ B Q /.
By the ruleOE},,, A;T +,, letcir v = [M/x]Ny in [M/z]Ny ~ B Q w'.
ThereforeA; T+, [M/x]N ~ B Q «/'. O

Proof of Proposition 3.2:

Proof. By induction on the structure of the derivation&fz :: A;T'+, N ~ BQ /.
If N =V and the ruleValy, is used to deducA,z :: A;T'+, N ~ B @ '
Ax:: A;TH,y N:B.
By induction hypothesis); T" -,/ [M/z]N : B.
By the ruleCvary, A; T+, [M/z]N ~ B Q ' becaus¢M /x| N is a value by Lemma B.1.
If the rule Prim~yy is used to deducA,z :: A;T'+, N ~ BQ '
A,z A;TH, N : BandB is a primitive type.
By induction hypothesis); T' -, [M/x]N : B.
By the rulePrim~y, A;T -, [M/z]N ~ B @Q u'.
Now we assume that the rul€sary, andCvaryy are not used to dedud®, x :: A;I'+, N ~ B Q /.
CaseN =z: [M/z]N =M
By the ruleCvary, A,z :: A;TH, N ~ B Q' impliesA = B andw = /.
AT Eon M AimpliesA; T, M : A.
ThereforeA; T+, [M/z|N ~ B @ /.
CaseN =y, y#z: [M/z]N =y
By the ruleCvary, A,z :: A;TH, N~ BQW impliesy:: B e A,x:: Aory: BQuw € T, and
w=uw.
Sincey # z,we havey :: Be Aory: BQuw eT.
By the ruleCvary, A;T F, v : B.
ThereforeA; T+, [M/z|N ~ B @Q /.
CaseN =v: [M/x]N =v
By the ruleVvary,, A,z :: A;TH, N ~ B QW' impliesv~B e A,z :: Aorv~B@Qw €T, and
w=uw.
Sincev # x,we havev ~ B€ Aorv ~BQuw € T.
By the ruleVvary, A;T' -, v : B.
ThereforeA; '+, [M/z]N ~ B @Q W',
CaseN = \y:B'. N', y # z, y not a free variable oM: [M/x]N = \y:B’.[M/x]N’

32

Bytheruledly,, A,z :: A;T+, N ~ B@duw'impliesA,z :: A;T',y: B Quwk,N :B" B=B">B",
andw = w'.
By weakeningA; T ,» M : AimpliesA;T,y: B Qw bk » M : A.
By induction hypothesis)\; T,y : B’ Q w b, [M/z|N' : B”.
By the ruleDlyy, A; T+, A\y: B'.[M/x]N' : B > B”.
ThereforeA; T+, [M/z|N ~ B @ /.
CaseN = Ny No. [M/.I']N = [M/.%]Nl [M/x]Ng
By the rule DEwy, Axz:ATF,N~B@w implies A,z: AT+, N :B DB,
A,z A;TH, No: B, andw = W',
By induction hypothesis); I" -, [M/x]Ny : B’ D BandA;T' -, [M/z|Ns : B'.
By the ruledEy, A;T b, [M /2] N, [M/z]N, : B.
ThereforeA; T+, [M/z|N ~ B @Q /.
CaseN = box N': [M/x]N = box [M/x]N'
By theruledly, A,z :: A;TH, N ~ B@Q W impliesA,z :: A;T'F,« N : B',B=0B,andw = '
wherew* is a fresh node.
By induction hypothesis); T -« [M/x]N' : B'.
By the ruleOly, A; T+, box [M/z|N': OB’.
ThereforeA; '+, [M/z]N ~ B @Q W',
CaseN = box,+ N': [M/x]N = box,+ [M/x]N'
By the rulel},, A,z :: A;TF, N ~ B Q' impliesA,z:: A; T+, N': B, B = O,-B’, and
w=uw.
By induction hypothesis); T" .« [M/x]N' : B'.
By the ruledl}y,, A; T+, box,« [M/z|N': O,«B'.
ThereforeA; '+, [M/x]N ~ B Q W'
CaseN = letbox y = Ny in Ns, y # z, y not a free variable o/ :
[M/z]N = letbox y = [M /x| Ny in [M /x| N
If the ruleEyy is used to deducA, z :: A;T'+, N ~ BQ W/,
Az ATH,N~BQJW implies Az AT R, Ny OBy and
Ay By,x:: AT+, No~ BQuW.
By weakeningA;T' v M : AimpliesA,y :: B1;T o M : A.
By induction hypothesis); T' -, [M/x]Ny : OBy andA,y :: By;T -, [M/2]No ~ B Q W',
By the ruleQCEy, A; T+, letbox y = [M/x] Ny in [M/z]|Ny ~ B Q W'.
ThereforeA; T+, [M/x]N ~ B Q «/'.
If the ruleJEY, is used to deducA, z :: A;T' -, N ~ B@Qu/,
Az ATH, N~BQuW implies A,z AT R, Ny OBy and
Az AT,y: By Quw*k, No~BQuW.
By weakeningA;T" v M : AimpliesA; Ty : By Qw* F» M : A.
By induction hypothesis)\; T -, [M/z] Ny : O,+«ByandA; T,y : By Qw* b, [M/z]No ~ B Q W',
By the rulelJE};,, A; Tk, letbox y = [M /x| Ny in [M/z]No ~ B @ o',
ThereforeA; T+, [M/x]N ~ B Q «'.
CaseN =cir N: [M/z]N = cir [M/z|N’
By the ruleOly, A,z :: A;T+, N ~ BQ ' impliesA,z:: A;T'+, N ~ B'@Qw*, B=0B', and
w = w’ wherew* is a fresh node.
By induction hypothesis); T' -, [M/x]N' ~ B’ @ w*.
By the ruleOlyy, A;T =, cir [M/x]N' : OB’.
ThereforeA; '+, [M/x]N ~ B Q W'
CaseN =cir,« N': [M/z]N = cir,« [M/x]N’

33

By the rule Olj,, A,xz:A;T'F,N~BQuw implies A,z: A;TF,N ~ B Qw*
B =0,B' andw = w'.
By induction hypothesis); T -, [M/x]N' ~ B’ @ w*.
By the ruleOl,,, A; T &, cir [M/x]N' : Oy« B'.
ThereforeA; '+, [M/z]N ~ B @Q W',
CaseN = letcir v = Nj in No, v not a free variable oM: [M/z]N = letcir v = [M /x| Ny in [M/x]No
If the rule OEyy is used to deducA, z :: A;T'+, N ~ BQ W/,
Az ATH,N~BQJW implies A,z AT H, N : OB and
Ao~ B,z A;TH, No~ BQW'.
By weakeningA; ', M : AimpliesA,v ~ By; ' M : A.
By induction hypothesis); T' -, [M/x]Ny : OBy andA,v ~ By; 'k, [M/z]Ny ~ B Q o',
By the ruleOEy, A; T+, letcir v = [M/x]Ny in [M/x]Ny ~ B Q /.
ThereforeA; 'k, [M/x]N ~ B Q W'
If the rule OE};, is used to deducA, z :: A;T' -, N ~ B@Qu/,
Az ATH, N~BQuW implies A,z AT F, Ny : Ou«By and
Az AT v~B Quw*k, No~BQW.
By weakeningA; T, M : AimpliesA;T',v ~ By @Qw* F,» M : A.
By induction hypothesis); T' -, [M/z] Ny : O,+ By andA; T, v ~ By Q w* -, [M/x]Ny ~ B Q /.
By the ruleOEj,,, A;T +,, letcir v = [M/x]Ny in [M/z]Ny ~ B Q w'.
ThereforeA; T+, [M/x]N ~ B Q «/'. O

Proof of Proposition 3.3:

Proof. By induction on the structure of the derivation&fI',v ~ A Q w" F, N ~ B @ /.
If N is avalue and the rulalyy is used to deducA;T',v ~ AQ W’ -, N ~ B Q@ '
AT,o~AQW"F, N: B.
By induction hypothesis); T' ., [V/v]N : B.
By the ruleCvary, A; T+, [V/v]N ~ B @ o' becausgV/v|N is a value by Lemma B.1.
If the rule Prim~yy is used to deducA;I',v ~ A QW+, N ~ BQ W'
A;T,v~AQuw'+, N: BandB is a primitive type.
By induction hypothesis); T' -, [V/v]N : B.
By the rulePrim~y,, A; T, [V/v]N ~ B Q /',
Now we assume that the rul€sary; andCvaryy are not used todeducg I',v ~ A Q W’ +, N ~ B@Q /.
CaseN =z: [V/v]N =z
By the ruleCvary, A;T, o~ AQ W'+, N ~ B@w' impliesr:: Be Aorz: BQwel,v~AQuw",
andw = w'.
Sincer # v,we haver:: Be Aorx: BQuw €eT.
By the ruleCvaryy, A;T F, z : B.
ThereforeA; Tk, [V/v]N ~ B Q «'.
CaseN =v: [V/u]N =V
By the ruleVvary, A;T,v ~ AQ W'+, N ~ BQ W impliesA = Bandw =o' = w".
AT E, Vi AimpliesA; T+, V : B.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN =w,w #v: [V/v]N =w
By the ruleVvary, A;T,v ~ AQw" =, N ~ BQ &' impliesw ~ B e Aorw~BQweTl,v~AQu",
andw = ',
Sincew # v,we havew ~ B€ Aorw ~ B Quw € T.
By the ruleVvary, A;T'H, w : B.

34

ThereforeA; 'k, [V/v]N ~ B Q «'.
CaseN = \z:B’. N', z not a free variable of: [V/u]|N = A\x:B'. [V /v]N’
By theruledly, A;T,v ~ AQ W', N ~ BQ W' impliesA;T,vo~AQuW",2: B Quwt, N : B”,
B = B> B’ andw = /.
By weakening A;T' F» V : AimpliesA;T,z : B’ Qw b, V : A.
By induction hypothesis); T,z : B’ Qw +,, [V/v]N' : B”.
By the ruledlyy, A;T =, Az: B'.[V/u|N': B’ > B”.
ThereforeA; Tk, [V/v]N ~ B Q «'.
CaseN = Nj No: [V/’U]N = [V/’U]Nl [V/’U]NQ
By the rule DEy, A;T,o~AQW'+, N ~B@dw' implies A;T,vo~AQuWw"+, Ny : B DB,
A;T,o~AQwW"F, Ny : B',andw = /.
By induction hypothesis); ' -, [V/v]N; : B’ D BandA;T' +,, [V/v]Ny : B'.
By the ruleSEyy, A;T' -, [V/v] Ny [V/v]Ny : B.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN = box N': [V/v]N = box [V/v]N’
Bytheruledly,A;T,o ~AQw"+, N ~ BQ &' impliesA;T,vo~AQuwW"+,« N : B',B=0B,
andw = ' wherew* is a fresh node.
By induction hypothesis)\; T" -, [V/v]N' : B'.
By the ruleQlyy, A;T =, box [V/v]N': OB'.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN = box,« N: [V/v]N = box,+ [V/v]N’
By the ruleddl};,, A;T,v ~ AQw" F, N ~ BQ «'impliesA;T,v ~ AQw" -, N': B, B =0, B,
andw = ',
By induction hypothesis); T' -« [V/v]N' : B'.
By the ruledl;,, A; T -, box,+ [V/v]N’ : O,-B.
ThereforeA; T+, [V/v]N ~ B @Q W'
CaseN = letbox x = N7 in No, x not a free variable o¥:
[V/v]N = letbox z = [V/v]Ny in [V//v] N3
If the ruleJEyy is used to deducA; T, v ~ AQw" F, N ~ BQ W/,
AT,o~AQuW'F, N~ BQuW implies AT,v~AQuwW'+, Ny : 0B and
Az Bbv~AQW' F, No ~BQW.
By weakeningA; T, V : AimpliesA,x :: By;T'H 0 V1 A,
By induction hypothesis); T+, [V/v] Ny : OBy andA, z :: By;T'H, [V/v]Na ~ B @Q W',
By the ruleCEy, A; Tk, letbox x = [V/v] Ny in [V/v]Ny ~ B Q w'.
ThereforeA; T+, [V/v]N ~ B @Q W'
If the ruleJEY, is used to deducA;T,v ~ AQw”"+, N ~ B@Qd/,
AT,o~AQW'+, N~B@d implies AT, vo~AQwW"+, Ny :O,+By and
AT,o~AQwW" z: B Qw*F, No~BQW.
By weakeningA;T' -, V : AimpliesA;T,z: By Quw* F,» V : A.
By induction hypothesis); ' -, [V/v] Ny : O, By andA; T,z : By Qw* F,, [V/v]Ny ~ B@Q W',
By the ruledE},, A;T +,, letbox z = [V/v]Ny in [V/v]Ny ~ B @ W',
ThereforeA; T+, [V/v]N ~ B @Q W/'.
CaseN =cir N': [V/v]N = cir [V/u]N'
By the ruleOly, A;T, o ~AQuwW"+, N ~ B QW implies A;T,v ~AQuw"+, N ~ B @Quw*,
B = OB/, andw = ' wherew* is a fresh node.
By induction hypothesis); T' -, [V/v]N' ~ B" @ w*.
By the ruleOlyy, A; T+, cir [V/v]N' : OB'.

35

ThereforeA; 'k, [V/v]N ~ B Q «'.
CaseN =cir,« N': [V/u]N = cirg,+ [V/v]N'
By the ruleOlj,, A;T, o~ AQw" -, N~ B Q' implies A;T,v~AQuw'F, N ~ B Qw*,
B =0,B' andw = w'.
By induction hypothesis); T' -, [V/v]N' ~ B’ @ w*.
By the ruleQly,,, A;T +, cir [V/v]N' : O« B'.
ThereforeA; T+, [V/v]N ~ B Q «'.
CaseN = letcirw = Ny in Ny, w # v, wnotafreevariable dof’: [V/v]N = letcirw = [V/v] Ny in [V/v] N2
If the rule OEyy is used to deducA;T',v ~ AQw" -, N ~ BQ W/,
AT,o~AQuW'F, N~ BQuW implies AT, v~AQuwW'+, Ny :0B; and
Aw~BTbv~AQW' F, No ~BQW.
By weakeningA; T F,» V : AimpliesA,w ~ By; T, Vi A.
By induction hypothesis); '+, [V/v] Ny : OBy andA,w ~ By; T, [V/v]Na ~ B @Q W',
By the ruleOEy, A; T k-, letcir w = [V/v]Ny in [V/v]Ny ~ B Q W'.
ThereforeA; T+, [V/v]N ~ B @ W'
If the rule OEy;, is used to deducA;T,v ~ AQw’"+, N ~ B @d/,
AT,o~AQW'F, N~B@d implies AT, o~AQuw"F, Ni:OyB and
A;T,o~AQwW" w~ B Qu*k, Ny ~BQW.
By weakeningA; T F,» V : AimpliesA;T',w ~ By Qw* F_» V : A.
By induction hypothesis\; T -, [V/v] Ny : Oy« By andA; T, w ~ By Q w* b, [V/v]Ny ~ BQ W/'.
By the ruleOEy,,, A; T +,, letcir w = [V/v]Ny in [V/v]Ny ~ B @ o',
ThereforeA; T+, [V/v]N ~ B @Q u/'. O

Proof of Proposition 3.4:

Proof. By induction on the structure of the derivation&fv ~ A;T'F, N ~ B @Q /.
If N is avalue and the rulalyy is used to deducA,v ~ A;T'F, N ~ B @ o':
Av~ATH, N :B.
By induction hypothesis); T' -,/ [V/v]N : B.
By the ruleCvary,, A; T, [V/v]N ~ B @ w' becausgV/v|N is a value by Lemma B.1.
If the rule Prim~yy is used to deducA,v ~ A;T'+, N ~ BQ W':
Ao~ A;T'H, N: BandB is a primitive type.
By induction hypothesis);T" -, [V/v]N : B.
By the rulePrim~y,, A; T+, [V/v]N ~ B @ /'
Now we assume that the rul€sary, andCvaryy, are not used to deduce,v ~ A;T'+, N ~ BQ /.
CaseN =z: [V/v]N =z
By the ruleCvary, A,v ~ A;TF, N ~ B@Q ' impliesz:: B € A,v~Aorz: BQw € I, and
w=uw.
Sincer # v,we haver:: Be Aorx: BQuw eT.
By the ruleCvaryy, A;T F, = : B.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN =v: [V/u]N =V
By the ruleVvary, A,v ~ A;T'+, N ~ B @ ' impliesA = B andw = /.
AT E Vi AimpliesA; T+, V . B.
ThereforeA; T+, [V/v]N ~ B Q «/'.
CaseN =w,w #v: [V/v]N =w
By the ruleVvary, A,v ~ A;T+, N ~ B Q&' impliesw ~ B e A,v~Aorw~ BQuweT,and

w=uw.

36

Sincew # v,we havew ~ Be Aorw~ BQw €.
By the ruleVvary,, A;T -, w : B.
ThereforeA; T+, [V/v]N ~ B @Q W'
CaseN = \z:B’. N', z not a free variable of’: [V/v]N = A\x:B’. [V/v]N’
By theruledly, A,v ~ A;T +, N ~ B @ o' impliesA,v~ A;T,2: B Quwk, N :B",B=B > B”,
andw = ',
By weakening A; Tt V : AimpliesA;T,z: B Quw k- V : A.
By induction hypothesis)\; ',z : B’ Qw bk, [V/v]N' : B”.
By the ruledly, A;T' -, Az: B'.[V/u|N': B’ > B”.
ThereforeA; Tk, [V/v]N ~ B Q «'.
CaseN = N1 No: [V/U]N = [V/’U]Nl [V/'U]NQ
By theruleDEy, A,v ~ A; T, N ~ B @ o' impliesA,v ~ A; T+, Ny : B > B,A,v~ A;T'F, Ny : B,
andw = W'.
By induction hypothesis); ' -, [V/v]N; : B D BandA;T +,, [V/v]Ny : B'.
By the ruleDEy, A; T, [V/v]Ny [V/v]Nay @ B.
ThereforeA; '+, [V/v]N ~ B Q «'.
CaseN = box N": [V/v]N = box [V/v]N’
By theruledly, A, v ~ A;T'H, N ~ B Q' impliesA,v ~ A;T'+,« N': B', B=0B',andw = '
wherew* is a fresh node.
By induction hypothesis)\; T" -, [V/v]|N' : B'.
By the ruleQlyy, A;T =, box [V/v]N': OB'.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN = box,« N: [V/v]N = box,+ [V/v]N'
By the ruleOl},, A,v ~ A; T+, N ~ B@Qw' implies A,v ~ A;T +, N': B', B=0,B, and
w=uw.
By induction hypothesis); ' -« [V/v]N' : B'.
By the ruledl}y,, A; T &, box,« [V/v]N': Oy« B'.
ThereforeA; Tk, [V/v]N ~ B Q u'.
CaseN = letbox x = N7 in N, not a free variable oV:
[V/v]N = letbox z = [V/v]Ny in [V//v] N
If the ruleJEyy is used to deducA,v ~ A;T'+, N ~ B Q /,
Av~ATEF, N~ BQJW implies Av~ATEF, N :0B and
A,z By,v~A;TF, No~BQuW'.
By weakeningA; T, V : AimpliesA,x :: By;T'H 0 V1 A,
By induction hypothesis); '+, [V/v] Ny : OBy andA, z :: By;T'H, [V/v]Na ~ B@Q W',
By the ruleQCEy, A; T -, letbox z = [V/v]Ny in [V/u]Ny ~ B @Q W',
ThereforeA; T+, [V/v]N ~ B @ W'
If the ruleJEY,, is used to deducé&,v ~ A;T'+, N ~ B@Qu/,
Av~ATH,N~Ba@d implies Ao~ AT, Ny : OBy and
Av~AT,2: B Quw*k, No ~ BQW.
By weakeningA; T, V : AimpliesA; ',z : By Qw* F,» V : A.
By induction hypothesis); ' -, [V/v] Ny : O, By andA; T,z : By Qw* F,, [V/v]Ny ~ B@Q W',
By the ruledJE},, A;T +,, letbox z = [V/v]Ny in [V/v]Ny ~ B @ W',
ThereforeA; T+, [V/v]N ~ B @ W/'.
CaseN =cir N': [V/v]N = cir [V/u]N'
By the ruleOly, A,v ~ A;T'+, N ~ B @ &' impliesA,v ~ A;T'+, N' ~ B'Qw*, B=OB’,and
w = w’ wherew* is a fresh node.

37

By induction hypothesis); T' -, [V/v]N' ~ B’ @ w*.
By the ruleOly, A;T =, cir [V/v]N': OB'.
ThereforeA; T+, [V/v]N ~ B @Q W'
CaseN =cir,« N': [V/u]N = cir,+ [V/v]N’
By the rule O, Auv~ATkF,N~BQw implies A,v~ ATk, N ~ B Qw*
B =0,B' andw = w'.
By induction hypothesis); T' -, [V/v]N' ~ B’ @ w*.
By the ruleQly,,, A;T +, cir [V/v]N' : O« B'.
ThereforeA;T'F,, [V/v]N ~ B Q «'.
CaseN = letcirw = Nj in Ny, w # v, wnotafreevariable of: [V /v]N = letcirw = [V/v] Ny in [V/v] N2
If the rule OEyy is used to deducA,v ~ A;T'+, N ~ B Q /,
Av~ATEF,N~BQuW implies Ao~ AT H, N : OBy and
A,wn~ By,v~A;TH, No ~ BQuW.
By weakeningA; T v V : AimpliesA,w ~ By; T, Vi A
By induction hypothesis);T' -, [V/v]Ny : OBy andA,w ~ By; T, [V/v]Nay ~ B @ W/'.
By the ruleOEy, A; T+, letcir w = [V/v]Ny in [V/v]Ny ~ B @Q W',
ThereforeA; T+, [V/v]N ~ B QW'
If the rule OEj;, is used to deducA,v ~ 4;T' -, N ~ B @/,
Av~ATF, N~BQuW implies Ao~ AT H, Ny :OyBy and
Ajv~A;T,w~ B Quw*k, Ny~ BQw'.
By weakeningA; T F,» V : AimpliesA;T',w ~ By Quw* F» V : A.
By induction hypothesis\; T -, [V/v] Ny : Oy« By andA; T, w ~ By Q w* b, [V/v]Ny ~ B Q /.
By the ruleOEj,,, A; T+, letcir w = [V/v]Ny in [V/v]Na ~ B @ o',
ThereforeA; T+, [V/v]N ~ B @Q o' O

Proof of Proposition 3.5:

Proof. By simultaneous induction on the structure of the derivatiodhoF - M : A andA;T'F M ~ A.

(Below we reuse metavariblel and typeA.)
rv:AeA or xz:Ael

Case ATrFaz:A Cvar :
xuAeAorz: Aelimpliesz:: A€ Aorz: AQuw € [I']“.
Then,

rr:AeA or z:AQuwe[l¥
AT,z A

Cvaryy

v~ Ae A _
Casem Vvar :

v~ AeAimpliesv~AecAorv~AQuw e [I'Y.

Then,
v~AeA or v~AQuwe ¥ v
AT Fyv: A vanw
c A;-FV A)
ase—A;FkVNA Val :

By induction hypothesis on\; -+ V : A, we haveA; -+ V : A.
By weakeningA; -+, V : AimpliesA; [[']“ . V : A.

38

Then,

AT,z : A-M : B | -
ATF\M:AM:A>B -
By induction hypothesis o\;T",z : AF M : B, we haveA;[I'“, z: AQwt, M : B.
Then,

Case

A;T9z:AQwh, M : B |
ATl Fore:AM:A5B -

ATHFM:ADB A;TENGA _
Case ATFMN:B DE :
By induction hypothesis o;T'+ M : A D B, we haveA; [T'¥ +, M : A D B.
By induction hypothesis o\;T' - N : A, we haveA; [I'“ +,, N : A.
Then,

ATk, M:ADB A;JIYFH,N:A
AT, MN:B

OEw

A;-FM:A _
ATFbox M 049"
By induction hypothesis on; - - M : A, we haveA; -+, M : A.
By weakeningA; -+, M : AimpliesA; [['¥ . M : A.
Then,

Case

ATy M A
A;[T]% F, box M : OA

Oy

A;THFM:OA Az A, 'FN:B
Case ~ AT T letboxz = MinN : B
By induction hypothesis o\; " - M : (A, we haveA; [T']“ -, M : OA.
By induction hypothesis o\, x :: A;T'+ N : B, we haveA, z :: A; [+, N : B.
A,z A [T F, N : Bisequivalenttad,z :: A;[I'“ F, N ~ B Q w.
Then,

AT F, M:O0A Az A;N“F,N~BQuw
A;[I% Fy, letbox x = M in N ~ BQuw

A; Ik, letbox z = M in N ~ B @Qw is equivalent ta\; [[']“ F,, letbox z = M in N : B.
A;THM:OA Az A, TEN~B .

ATFletboxz = MinN~B HE:
By induction hypothesis o\; ' - M : (A, we haveA; [T']“ I, M : OA.
By induction hypothesis o\, z :: A;T'+ N ~ B, we haveA, z :: A;[T'“+H, N ~B QW'
Then,

Ew

Case

ATk, M:O0A Az ATNYH,N~BQd
A;[T)" Fo letboxz = Min N ~ B @ o

Ew

ATEFM~A
ATFarM:04
By induction hypotheis ol\;T' - M ~ A, we haveA; [I']“ F, M ~ A Q ',

Case

39

Then,
AT, M~AQW

A; [T] b, cir M : OA Olw

A TEM:0A Av~ATEFN:B
Case A;T'Fletcirvo=MinN:B OF
By induction hypothesis o\;T" - M : OA, we haveA; [[']“ -, M : OA.
By induction hypothesis o\, v ~ A;T'+ N : B, we haveA, v ~ A; [I']“ -, N : B.
A,v~ A;[I'¥F, N: Bisequivalentta\,v ~ A;[I'“ F, N ~ BQw.
Then,

AT F, M:0A Ao~ AT, N~BQu OF
A; [Tk, letcirv=MinN ~BQuw W

A; [T b, letcirv = M in N ~ B @Q wis equivalent ta\; [I']“ k,, letcirv = M in N : B.
A TEM:0A Ajv~ATHN~B .

A;TFHletcirv=MinN ~ B OF":
By induction hypothesis o\;T" - M : OA, we haveA; [[']“ -, M : OA.
By induction hypothesis o\, v ~ A;T'+ N ~ B, we haveA,v ~ A;[I'“ +, N ~ B@Q '
Then,

Case

AT o M:OA Av~ AT o N ~ B@ W
A;[T]% bk, letcirv=Min N ~ B@QdW'

Ew

AT =M Aprim _ _

ATF M ~ Ay 1M

By induction hypothesis o\; " = M : A, we haveA; [I']“ -, M : Appim,.
Then,

Case

A C°Fy M Aprim
AT Fy M~ Appign, @ W'

Prim~y,

C Proofs of the type safety of\pd"

Proposition C.1.
If A; AT Hr M AandA; ATz AQw”H, N~ B@QuW, thenA; A;T H, [M/z]N ~ BQW'.

Proof. By induction on the structure of the derivation®fA; T,z : AQ W'+, N ~ BQ W' O

Proposition C.2.
If A; A;T v M : Aforany nodes” andA; A,z :: A;TH, N ~ B @, thenA; A;T' -, [M/x]N ~ B QW'

Proof. By induction on the structure of the derivation®fA,z :: A;T'+, N ~ BQ W'. O

Proposition C.3.
fA; AT V:AandA; AT, o~ AQwW” -, N~ BQW, thenA; AT -, [V/o]N ~ B QW

Proof. By induction on the structure of the derivation®fA;T',v ~ A Q w"+, N ~ BQ /. O
Proposition C.4.
If A; A;T v Vo Aforany nodes” andA; Ao ~ A;TH, N ~ B@Q W', thenA; A;T H, [V/o]N ~ B@Q W',

40

Proof. By induction on the structure of the derivation®fA,v ~ A; T, N ~ B @Q /. O

Proofs of Propositions C.1 to C.4 are similar to those of Propositions 3.1 to 3.4. Cases for communica-
tion constructs are also straightforward, as substitutions on communication constructs are all structural:

[M/z)() = ()
[M/z]leval N = eval [M/z]N
[M/x]future N future [M/x]N
[M/x]syncvar syncvar y
[M/z]syncwith N syncwith [M /] N

[M/z]nil = nil
[M/z)Vi 2 Vo = [M/x]Vy 2 [M/z]Va
[M/z]|chanvar v = chanvar~

[M /x]newchan 4 newchan 4
[M/z]|readchan N readchan [M/x]N
[M /x]writechan Ny Ny = writechan [M /x| Ny [M/x] N2

LemmaC.b5. If A;A;TH, M ~AQw andM — N, thenA; A;TH, N~ AQ W,

Proof. By induction on the structure of the derivationofA;T' -, M ~ A @ . (Below we reuse metavari-
ble M and typeA.)

MNATE, M Aprim,
MNATE,M ~ Api, Qu

By induction hypothesis; A;T' =y, N @ Ay

By the rulePrim~y, A; A;T =, N ~ Appi, @ W'
Now we now assume that the rifeim~y; is not used to derivd; A; T -, M ~ A Q /.
Case(\x:A.N) M —p~ [M/x]N:

The only possible derivation is:

AAT 2 AQuwk,N: B |
AMATH A:AN:ADB v ANATEH M:A SE
ANATFH, (Ae:AN)M: B W

Case - Prim~yy (w # W)

By Proposition C.1A; A; T+, [M/x]N : B.
Caséetbox x = box M in N — g [M /x| N:
The only possible derivation is:

fresh " A;A;T kR M2 A O
A; AT H, box M : OA WO ANAz ATH,N~B@QW
A; AT, letbox x = box M in N ~ B @ W'

DEw

By Proposition C.2\; A; T+, [M/x]N ~ B @Q /.
Caseéletbox x = box,» M in N — gy [M/x]N:
The only possible derivation is:

ANATEHM:A ar
A AT F, boxyr M:OA—W AAT,z2:AQW'F, N~ BQd
A; A;T F,, letbox = box,» Min N ~ B @ W/

m[=

By Proposition C.1A; A; T+, [M/x]N ~ B Q /.
Caséetcir v = cir Vin N—o [V/v]N:

41

The only possible derivation is:

ANATHVA
fresh " AN AT H,V ~AQW ol
A AT, cirV: OA W AAv~ATH,N~B@Quw

7 VaIW

E
A ATy letcirvo =cirVin N ~ B @ OFw
By Proposition C.4\; A;T -, [V/v]N ~ B@Q W',
Caséetcir v = cir,» V in N—go/ [V/v]N:
The only possible derivation is:
ANATH,V~AQW o
ANATH,cirgr V:OpwA ™~ W AAT,v~AQW' F,N~BQW ,
)=

A; AT =, letcirv =ciryr Vin N ~ B @ o/

FromA; A;TH, V ~ AQW”, we haved; A;T F,» V@ A, whetherw = w” orw # W”.
By Proposition C.3\; A; T+, [V/v]N ~ B @Q W'. O

Lemma C.6.

Consider two term3fy and Ny such thatA; A; '+, My ~ Ag @ wg impliesA; AT H, Ng ~ Ag @ wy
for any Ap andwy.

If A; AT, M ~ AQ@ W, then for anyk such thathM = x[Mp], itholdsA; A;T F,, k[No| ~ A @ o',

Proof. If x = [], thenM = M, andk[Nyg] = Ny. HenceA;A;T F, x[Ng] ~ A @ ' holds by the
assumption o/, and Ny.

Supposex # [], which means that/ # x, M # v, andM # V.

Now we apply induction on the structure &f A;T' -, M ~ A @ /. (Below we reuse metavarible/

and typeA.)
NATE, M Apriy, B N M = M
Case N AT by M~ Ay @ rim~w (w # W) , M = k[My):
By induction hypothesish; A; T' -, k[No| : Aprim.
By the rulePrim~yy, A; A;T b, k[No] ~ Aprim @ W'

MATH, M:ADB MATH,N:A , _
Case AATI MN:-B DEw , M N = k[My] = k'[My] N:
By induction hypothesis on; A; T+, M : A D B, we haveA; A;T' H, £'[Ng] : A D B.
By the ruleDEy, A; ATk, &'[No] N : B, andx/[Ng] N = k[No].

MATH, M:O04 AMAz:ATH,N~BQJW OF
A AT H, letboxz = Min N~ B@d W
letbox = M in N = k[Mg] = letbox x = k/[Mp] in N:
By induction hypothesis on; A;T' -, M : A, we have\; A; T+, '[N : OA.
By the ruleDEy, A; A;T F, letbox . = k'[N in N ~ B @ &', andletbox x = &'[Ny] in N = k[Np].
CasellEy;, is similar to Casé&JEyy .
ANATE, M:0A AMAv~ATH,N~B@d

A AT, letcirv=MinN ~BQdu

If letcir v = M in N = k[My] = letcir v = &'[Mp] in N andM = r'[My],
By induction hypothesis on; A; T, M : OA, we haveA; A; Tk, /[No] : OA.
By the ruleOEyy, A; A;T =, letcir v = /[Ng] in N ~ B @ ', andletcir v = &/[Ng] in N = k[No].
If letcir v = M in N = k[My] = letcir v = cir &'[M)p] in N andM = cir '[M)],

Case

Case Ew

42

fresh " Ay AT b, K [My] ~ A QW
A; AT H, cir &/ [Mp] : OA
By induction hypothesis oi; A; T' -, «'[My] ~ A @ ", we haveA; A;T -, &'[Ng] ~ A Q w".
Then,
fresh " A; AT F,, K [No] ~ A QW
A; AT H, cir €' [Ng] : OA ANAv~ATH, N~BQJW
A; AT, letcir v = cir k'[Ng] in N ~ B @ o/ ©
andletcir v = cir '[Ny in N = k[Ny].
If letcir v = M in N = k[My] = letcir v = ciryn £'[Mp] in N andM = cir,» &'[Mp],
There is no rule for deriving; A;T' =, M : OA.
CaseOEy;, is similar to CaseDEyy .
ANATH,M:0OA ,)
A AT, eval M : unit Teval , eval M = k[My] = eval &'[Mp]:
By induction hypothesis on; A; T+, M : OA, we haveA; A; T+, «'[Np] : OA
By the ruleTeval, A; A; Tk, eval /[Np] : unit, andeval '[Ng] = k[No].
CaseTeval@ is similar to Caséleval.
s AT :JOA
A AT, future M ~ A sync Q w
By induction hypothesis on; A;T' -, M : JOA, we haveA; A; Tk, /[No] : JOA.
By the ruleTfuture, A; A; T, future £'[Ng] ~ A sync @ w*, andfuture k'[Ng] = k[Np].
CasesTfuture@, Tfuture’, Tfuture@’ are similar to Cas@& future.
A AT R, M Async
A AT H, syncwith M ~ A Q w
By induction hypothesis on; A;T' -, M : A sync, we haveA; A; Tk, /[No] : A sync.
By the ruleTswith, A; A; T+, syncwith <'[Ny] ~ A @ w*, andsyncwith x'[Ny] = x[Np].
CaseTswith’ is similar to Casd swith.
Case A; A: T, newchan, ~ A chan @ * 1 "eWC :
There is nos such thanewchan 4 = k[Mp] andx # |].
A, AT, M 2 A chan , .
A AT, readchan M ~ A @ w* Treadc , readchan M = k[My] = readchan /[Mj]:
By induction hypothesis on; A;T' -, M : A chan, we haveA; A; T+, /[Np] : A chan.
By the ruleTreadc, A; A; T F,, readchan /[Ny] ~ A @ w*, andreadchan /[Ny| = k[Ny).
A; A;TH, M : Achan freshw’ AN AT H,N~AQW o
Case A AT, writechan M N ~ 4 @ o* Twritec :
If writechan M N = k[M;] = writechan x'[My] N andM = x'[My],
By induction hypothesis on; A; T, M : A chan, we haveA; A; T -, /[No] : A chan.
By the ruleTwritec, A; A; T+, writechan &'[Nyg] N ~ A @ w*, andwritechan /'[No] N = x[Np].
If writechan M N = k[My] = writechan M «'[My] andN = «'[My] whereM = chanvar ~,
By induction hypothesis on; A;T' -, N ~ A @ o/, we haveA; A; T, k'[No] ~ A Q o',
By the ruleTwritec, A; A; T' b, writechan M «/'[Ny] ~ A @ w*, andwritechan M £'[Ng] = k[No].
O

We have Olw .

Olyy

Ew

Case

Case - Tfuture , future M = x[My] = future x’[My):

Case + Tswith , syncwith M = k[Mjy] = syncwith /[M):

Case

Lemma C.7.
IfC,Maty:Ay~AQuwandA,y~AQuw;TP"Mkp)y N~ A4Qu,
thenC,Naty: Ay~ AQuw.

Proof. C, M at v :: A,y ~ A @Q w implies that for eacd/’ at v € C,
Y ~AQu e Ny~ AQuandA,y ~ AQ w; TP Epny M~ A" @', or
Y ~AQ@rxe Ay~ AQuandA, vy~ AQuw; TP bp iy M ~ A’ @ " for a fresh nodes”.

43

By the ruleTcfg andA, v ~ A Q w; ;TP Fp(y N ~ A Quw, we haveC, N at v :: A,y ~ A Quw.
O

Lemma C.8.
IfC,Maty:Ay~AQxandA,y~ AQx; ;TP py N ~ AQ w forafresh nodey,
thenC,N at v:: A,y ~ A Q *.

Proof. C, M at v :: A,y ~ A @ x implies that for eacld/’ at 7' € C,
Y~ AQW e Ay~ AQxandA,y ~ A QTP bEpny M~ A" @ W', or
Y~ A Qre Ay~ AQxandA,y ~ AQx; TP py M~ A" @ w" for a fresh nodey”.
By the ruleTcfg and A,y ~ A @ x; ;TP Fpy N ~ A Qw, we haveC, N at v :: A,y ~ A Q «.
O

Proof of Lemma 4.4:

Proof. By induction on the structure @f.
Casex = ||
B =Aandw” = '
If k # [], it suffices to consider those cases in which the Pulev~yy is not used to deduc; A; T+, k[M] ~ A Q ';
if the rule Prim~yy is used, we repeat the same case analysis on the premise of the rule.
Casex = ko My:
By the ruleDEy, and induction hypothesis oty.
Casex = letbox x = kg in My:
By the ruledJEy, or OE}; and induction hypothesis oty.
Casex = letcir v = kg in Mjy:
By the ruleOEyy or OE};, and induction hypothesis oty.
Casex = letcir v = cir kg in My:
By the rulesOEy andOly and induction hypothesis oty,.
Casex = letcir v = cir,, Ko in My:
By the rulesOEy;, andOly,, and induction hypothesis ofy.
Casecval kyp:
By the ruleTeval or Teval@ and induction hypothesis oty.
Casefuture k-
By the ruleTfuture, Tfuture@, Tfuture’, or Tfuture@’, and induction hypothesis ot.
Casesyncwith xg:
By the ruleTswith or Tswith” and induction hypothesis of.
Casereadchan kg:
By the ruleTreadc and induction hypothesis oty.
Casewritechan xg My:
By the ruleTwritec and induction hypothesis ot,.
Casewritechan (chanvar 7) ko:
By the ruleTwritec and induction hypothesis of. O

Proposition C.9 (Weakening).
Suppose

C A,

Ay TP, M A,

w = P(v), wherey is not found inA.
ThenC, M at v :: A,y ~ AQw.

44

Proof.
If M"at ' € Candy ~ A’ @ u' € A,
By the ruleTcfg, A; ;TP Fp)y M' ~ A" @ W'
By weakening on\, we haveA, y ~ A Q w; ;TP bp 1y M' ~ A" @
If M"at ' € Candy’ ~ A’ @ x € A,
By the ruleTcfg, A; s TP*™ Fp(,y M' ~ A" @ &' for a fresh node.’.
By weakening on\, we haveA, y ~ A Q w; ;TP by M' ~ A" @
For M at ~,
By weakeningA; -;TPe™ , M : A, we haveA,v ~ A @Q w; ;TP -, M : A.
Thatis, A,y ~ AQ w; TP bpy M ~ AQ w.
ThereforeC, M at v :: A,v ~ A @Q w by the ruleTcfg.

Lemma C.10.
If

C,Maty:Avy~A, Qu,

Ay ~AyQuy ~ Ay Qo s TPIM) N~ A Qu,

Ay ~AyQuy ~ Ay Qx5 TP Epy N~ Ay @ w* for an arbitrary nodew*,
then

C,Naty,N aty A y~A, Qu,v ~ A, Qx,

Proof. FromC, M at vy :: A,y ~ A, Qu,
for eachMj at v € C,
Yo ~ Ay Quwg e A andA,fy ~ AA/ @ w; - perm l_P(’YO) My ~ Ay Q wy, Or
Yo~ Ao @x e AandA,y ~ A, @ w; TPI™ b5 v My ~ Ap @ wy for an arbitrary nodev.
By weakening om\,y ~ A, Q w,
Ay~ Ay Quy ~ Ay Qg TPEM Ep iy Mo ~ Ag @ wo, OF
Ay~ Ay Quy ~ Ay Qo TP by Mo ~ Ag @ wy for an arbitrary nodey.
By the ruleTcfg, we haveC, N at v, N" at 7/ : A,y ~ A, Quw,y ~ A, Q «,

Lemma C.11.
If
C,Maty:Ay~A, Quw,
Ay~AyQuy ~ Ay QU TP bp)y N~ Ay Qw,
Ay~A,Quy ~ Ay QW5 TP by N~ Ay @,
then
C,Naty,Naty =Ay~A, Quy ~A,Qu.

Lemma C.12.
If
C,Mat~y:Ay~A, Qx,
Ay~A,Qxy ~ Ay QTP Fpy) N ~ A, @w* for an arbitrary node.*,
Ay~ Ay Qx,y ~ Ay @y TPEM by NY ~ Ay @ w* for an arbitrary nodew*,
then
C,Naty,Naty = Ay~A, Qx5 ~A, Q-

Lemma C.13.
If
C,Maty:Ay~A, Qx,
Ay~ Ay Qx,y ~ Ay Qo5 TPI™ b5) N ~ A, @ w* for an arbitrary nodew*,

45

Ay~ Ay Qx,y ~ Ay Qo TPIMbp oy N~ Ay @
then
C,Naty,Naty :Ay~A, Qx+ ~A,Qu.

Proof. Similar to the proof of Lemma C.10. O
Proof of Theorem 4.1:

Proof. By case analysis af' = C". (Below we reuse all metavariables.)
M — N Refg -

Case C,k[M] at v = C,k[N] at v
If C,x[M]at v Ay~ A, Qu,thenA, v ~ A, Quw; TP p) K[M] ~ A, Q.
SinceM — N, Lemmas C.5 and C.6 imply,y ~ A, @ w; ;TP™ bp(y K[N] ~ A, Q w.
By Lemma C.7, we hav€',k[N] at v :: A,y ~ A, Qu.
If C,k[M] at v :: A,y ~ Ay Q x, thenA,y ~ A, @ x; ;TP b5y K[M] ~ A, @ wforafresh node

Ww.
SinceM — N, Lemmas C.5 and C.6 imply,y ~ A, @ x; ;TP™ =5y K[N] ~ A, Q w.
By Lemma C.8, we hav€', kx[N] at v :: A,y ~ A, @ *.
new 7'
Case 7 Reval :

C, kleval box M| at v = C, k[()] at v, M at ~
If C, kleval box M at v :: A,y ~ A, Qw,thenA,y ~ A, @ w; s TP™ F-p)y k[eval box M] ~ A, @ w.
By Lemma 4.4 ¢gval box M typechecks:

freshw' Ay~ Ay, Qu;TPE™ b M : A
Ay~ Ay Qu; TP p)y box M : A
Ay~ Ay Qs TPE™M b5y eval box M : unit

Ol

Teval

SinceA,y ~ Ay @ w; s TPE™ bp)y () @ unit,

Ay~ Ay Qu; TP bp) k()] ~ Ay @ w by Lemma C.6.
By Lemma C.7,

C,el()]aty A,y ~ A, Qu.
From

C,el()]aty Ay~ A, Qu,

Ay~ A, Qu; TP, M : A where we let)’ = P(v/),
we haveC, k[()] at v, M at v :: A,y ~ A, Qw,~ ~ A @' by Proposition C.9.
The case fol”, k[eval box M] at v :: A,y ~ A, @ « is similar, except that we use Lemma C.8 instead

of Lemma C.7.
new vy Q '

C, k[eval box,, M| at v = C, k[()] at v, M at ~/
The proof is similar to CasReval, except that we use’ without creating a fresh node.
new 7'

C, k[future box M| at v = C, k[syncvar /] at v, letcir v = M in v at
If C, k[future box M at v :: A,y ~ A, Qw,thenA,y ~ A, @Q w; s TP™ b-p)y k[future box M] ~ A, Q w.

By Lemma 4.4 future box M typechecks:

Case Reval@

Case ; Rfuture :

freshw' Ay~ A, Qu;TP™ - M :OA O
Ay~ Ay Quy TP p)) box M : OA w
Ay~ Ay Qi TPEM) future box M ~ A sync @ w*

Tfuture

or

46

fresh ' Ay~ A, Qu; TPy M : O, A |
Ay~ Ay Qu; TP bp)y box M : LIO,n A w
A,y ~ Ay @Qu; - TP Ep) future box M ~ A sync,,» @ w*

Tfuture

In the first case,
A,y ~ Ay Qi TPE™ p) kfuture box M| ~ A, Q w,
Ay~ Ay Qs TPE™M b)) future box M ~ A sync @ w* for an arbitrary node*,
Ay~ A, Qu; - TP M : OA for a fresh nodeV/,
Ay~ A, QTP = letcirv = M inv ~ A @Q w* for an arbitrary nodev™,
and we let,’ = P(v').
By weakening om\,y ~ A, Q w,
Ay~ Ay, Quy ~ AQ ;- TP™ by klfuture box M] ~ A, @ w,
Ay~ Ay Qu,y' ~ AQx; TP) future box M ~ A sync @ w* for an arbitrary node*,
Ay~A, Qu, v ~AQx; - TP™ | letcirv = M inv ~ A Q w* for an arbitrary nodes*.
By the rulesTsvar andValyy,
Ay~ A, Quy' ~ AQx; TP™ 5y syncvar o' ~ A sync @ w* for an arbitrary node*,
By Lemma C.6,
Ay~ Ay Qu,y ~ AQy; TP b5y k[syncvar o] ~ A, Q w,
By applying Lemma C.10 to
C, k[future box M] at v :: A,y ~ A, Q w,
Ay~ A, Quy ~ AQx; TP Ep)y k[syncvar 7] ~ A, Q w,
Ay~A, Qu,y ~AQx;;TP™ 1, letcirv = M inv ~ A @ w* for an arbitrary node*,
we haveC, k[syncvar 7] at v,letcirv = M invaty = A,y ~ A, Quw,y ~ A Q.
In the second case, we pro@ex[syncvar 7] at «, letcirv = M invaty = Ay~ A, Quw,v ~ AQuw";
the proof is similar to the first case, except that we use Lemma C.11.
The case fot”, k[future box M| at v :: A,y ~ A, @ % is similar, except that we use Lemmas C.12 and
C.13.

new vy Q '
Case

C, fi[future bOXw/ M] at v = 07 K/[sync\/ar /y/] at 7, letcirv = M in v at ’}/ Rfuture@ :

The proof is similar to CasBfuture, except that we use’ without creating a fresh node.
Rswith .
/ .

Case (' k[syncwith syncvar v/] at v,V at v/ = C, k[V] at v,V at
If C, k[syncwith syncvar v at v,V at v = A,y ~ A, Qu,y ~ A, @/, then
Ay~ A, Quy ~ Ay @' TPI™ 5y k[syncwith syncvar 7] ~ A, @ w,
Ay~AyQuy ~ Ay QU5 TP M Epy Ve Ay QW
By Lemma 4.4 and the ruléBsvar’ and Tswith’,
Ay~ Ay Quy' ~ Ay Qu's TP 5y syncwith syncvar 7/ ~ A, @ W'
If P(7') = (whetherP(y) = P(+') or not),
Ay~ Ay Quy ~ Ay Qs TPEM py Vv Ay @ W' by the ruleValyy .
If P(v') # o'
Ay~A,Qu,y ~ Ay Qo' TPE™ = V2 Ay by the ruleValy,, and
Ay~A, Qu,v ~ Ay Qufy - TPE™ ey Vv Ay @ w' by the ruleValyy .
By Lemma C.6,
Ay~A,Quy ~ Ay QU5 TPM Epy K[V ~ Ay Q o,
By Lemma C.7,
C.,klViaty,Vaty 2 Av~A, Qu,y ~A,Qu'.
The case for”, k[syncwith syncvar '] at v,V at 7/ = A,y ~ A, Quw,y' ~ A, @ xis similar.

47

The cases for
C, k[syncwith syncvar 7'l at v,V at v = A,y ~ A, Q%7 ~ A, Q" and
C, k[syncwith syncvar 7] at v,V at 7 = A,y ~ A, Q%7 ~ A,y Q@ x
are also similar, except that we L/Jse Lemma C.8 instead of Lemma C.7.
new vy

Case Rnewc :

C, k[newchan 4] at v = C, k[chanvar ~'] at ~, nil at +/
If C, k[newchany] aty:: A,y ~ A, Quw, then

Ay~ Ay Qu; 5 TPE™ o) k[newchana] ~ A, Q w.
By weakening om\,y ~ A, @ w,

Ay~ Ay Qu,y ~ Avlist @ ;- TPE™ b5y k[newchana] ~ A, @ w.
By Lemma 4.4pewchan 4 typechecks:

Ay~ Ay Qu,y' ~ Avlist @ x; ;TP =5y newchany ~ A chan @ w* Tnewc

By the rulesTchanv andValyy,

Ay~ A, Qu,y' ~ Avlist @ x; -, TP™ b=y chanvar 4/ ~ A chan @ w*
By Lemma C.6,

Ay~ Ay Qu, g ~ Avlist @ x; - TP™ =5) k[chanvar 7] ~ A, @ w.
By the ruleTvnil andValyy,

Ay ~A, Qu, vy ~ Avlist @ ;- TPerm Fp(yy nil ~ A vlist @ w* for an arbitrary node*.
By applying Lemma C.10 to

C, k[newchany] at v : A,y ~ A, Q w,

Ay~ Ay Quy ~ Avlist @ x; - TP™ b5y k[chanvar 7] ~ A, @ w,

Ay~ Ay Qu,y' ~ Avlist @ x; - TPE™ Ep) nil ~ A vlist @ w* for an arbitrary nodey”,
we have

C, k[chanvar '] at v,nilat v/ == A,y ~ A, Qw,~' ~ A vlist @ *.
The case fol, k[newchany] at v :: A,y ~ A, @ «x is similar, except that we use Lemma C.12.
; Rreadc .

Case (O, k[readchan chanvar 7] at v, V}, :: V; at v/ = C, k[V}] at v, V; at v
If C, k[readchan chanvary/] at v, V), = Viat 7' : A,y ~ A, Quw,v ~ A, @ x, then
Ay~ A, Quy ~ Ay @y TP b5y k[readchan chanvar 7] ~ A, @ w,
Ay~ Ay Quy' ~ Ay Qg TP By Vi Vi ~ Ay @ w* for an arbitrary nodey™.
By the rulesValy, andTvcon,
Ay = Avlist,
Ay~A, Quy ~ Ay Qug s TPMbEp) Vi ~ A QW
A,'y ~ A7 @ w,’y/ ~ A,y/ (@ x5 perm |_73(’y’) V;g ~ A,y/ @ w*.
By Lemma 4.4 and the ruléBchanv andTreadc,
Ay~ Ay Quy ~ Ay @ TPE™ |y readchan chanvar o/ ~ A @ w*,
By Lemma C.6,
A,’y ~ A7 @ w,fy’ ~ AW' @ x50 rperm l_’p(,y) H[Vh] ~ A,y Q@ w.
By Lemma C.7,
C.kVp)at v,V = Viaty t Ay~ A, Qu,y ~ Ay Qx,
By Lemma C.8,
C.kVp]aty,Viaty = Ay~ A, Qu,v' ~ Ay Q«.
The case foC, k[readchan chanvar 7| at 7,V = Vi at o/ = A,y ~ A, Q 4" ~ A,y @Q « is similar,
except that we use Lemma C.8 instead of Lemma C.7.

48

The two cases with’ ~ A, @ o’ for some nodes’ are impossible because of the rilehanv.

Case C.r[writechan (chanvar’) V]at~, V-V, unilat /' = Ruritec .
C,k[V]at vy, ViV, Vnilat o
If C, k[writechan (chanvary') V]at v, Vi -+ =V nilat v/ A,y ~ Ay Qw4 ~ Ay @ %, then
Ay~ Ay Quy ~ Ay @ TPE™ by k[writechan (chanvar 7) V] ~ A, @ w,
Ay~ Ay Quy ~ Ay Qo TP by Voo Vil ~ Ay @ w* for an arbitrary node
w*.
By the rulesValy, andTvcon,
A,yl = A vlist,
Ay~ Ay Quy ~ Ay Qg TP Epy V1~ A Q W,
Ay~ Ay Quy ~ Ay Qxg s TP Epy Vi~ AQ w5
By Lemma 4.4 and the ruléBchanv, Twritec, andValy,
Ay~A, Qu,y ~ Ay Qx;;TPe™ Fp(y) writechan (chanvar 7') V'~ A @ w*,
Ay~A,Quy ~ Ay Qo TPM bR) Ve AQ W,
Ay~ Ay Quy ~ Ay Qo s TPIM b5 Ve A Q W,
By Lemma C.6,
Ay~ Ay Quy ~ Ay Qo TP by KV~ Ay Q.
By Lemma C.7,
C.klViaty,Viu---uVyunilaty s Ay~ A, Qu,y/ ~ Ay @,
By the rulesValyy, Tvcon, Tvnil,
Ay~ Ay Quy ~ Ay Qo TP bp oy VeV Vil v Ay @ w0
By Lemma C.8,
C.klViaty, Vi uVyuVounilaty s Ay~ A, Qu,y ~ Ay Q@
The case fo€, k|writechan (chanvarv') V]at v, Vi - o Vo o Vonilat o/ s A,y ~ Ay Qx, 9/ ~ Ay Q%

is similar, except that we use Lemma C.8 instead of Lemma C.7.
The two cases with’ ~ A, @ ' for some node.’ are impossible because of the rilehanv.
Ve AQuweTP™ y—pem Vo P(y) =w
C, kv at v = C,k[V] at v
If C,k[v] at v :: A,y ~ A, @Qu/', then
Ay~ Ay QU TPEM by K[v] ~ Ay @ W
Sincev ~ A Qw € TP andP(v) = w,
Ay~ Ay QU5 TP by v A
By the assumption ol and weakening,
Ay~ A, Qo5 TPME, VA,
SinceP(v) = w,
Ay~ Ay QTP p) K[V] ~ Ay @ W' by Lemma C.6.
By Lemma C.7,
C,klV]aty:Ay~A, Qu.
The case fo€, k[V] at v :: A,y ~ A, @Q xis similar, except that we use Lemma C.8 instead of Lemma C.7.
O

Case

Rvalvar :

Proof of Lemma 4.3:

Proof. By induction on the structure of; -;T'P*™ -, M ~ A @ o’. (Below we reuse all metavariables.)
CaseCvaryy:

49

impossible.
CaseVvaryy:
M=v,w=uw,andv ~ A Q' € TPe™,
Casesolyy, Olyy, Oy, Oly, Olyy, T(), Tsvar, Tsvar’, Tvnil, Tvcon, Tchanv:
M=V #w.
A;TPemi s Vi A N
Case A TP LV ~ A G Valy (w # ') -
If V =, thenv ~ A @' € T'P*"™ by the ruleVvaryy .
AP M:ADB A TPEME,N: A _
Case A TP M N:B DEw :
If M=V #£w,
M = M\z:A. M by Lemma 4.2.
M N = ([)[(Ax:A.M'") NJand(Az: A. M') N — [N/x] M.
If M =,
v~AD BQuw e T'P*™ by the ruleVvaryy.
M N = ([] N)[vJandv ~ A D BQuw € I'Pe™,
If M #V,
M = k[M'] by induction hypothesis where
M =vandv ~ A’ @Qw e TPem,
M' — N/, or
M'iseval box N’, eval box,» N’, future box N', future box,» N’, syncwith syncvar 7, newchanpg,
readchan chanvar 7, or writechan (chanvar) V.

Then we letM N = (k N)[M’].
A TPemM b M :OA Aoz A;TPPME, N~ BQW _
Case A;-;TPEM |- letbox z = M in N ~ BQ W' HEw
If M=V #£nv,
M = box M’ by Lemma 4.2.
letbox © = M in N = ([])[letbox x = box M’ in N] andletbox = box M’ in N — [M'/z|N.
If M =,
v~ [OAQw e I'P*™ by the ruleVvaryy.
letbox z = M in N = (letbox z = [| in N)[v] andv ~ [JA @ w € T'Pe™,
If M £V,
M = k[M'] by induction hypothesis where
M =vandv ~ A’ @Qw e TPem,
M' — N/, or
M'iseval box N’, eval box,» N’, future box N’, future box,» N’, syncwith syncvar 7, newchanpg,
readchan chanvar -, or writechan (chanvar v) V.
Then we letetbox x = M in N = (letbox z = k in N)[M'].
CasellEy};, is similar to Casé&JEyy .
A; TP - M :OA Aj- o~ ATPEME N~ BQW o
Case AP letcirv— MinN ~ B Qo OFw :
If M=V #4,

M = cir M’ by Lemma 4.2 and

fresh w* A TPE™M - M ~ A Q@ w*
A; - TPerm - cir M/ : OA

Olyy
DIFM =V £,

50

letcir v = M in N = ([])[letcir v = cir V' in N] andletcir v = cir V' in N — [V//v]N.
2) M’ =" is impossible.
) IFM AV,
M’ = k[M"] by induction hypothesis where
M" =o" andv” ~ A’ @ w e TPerm,
M" — N', or
M" iseval box N’, eval box,» N, future box N, future box,,» N’, syncwith syncvar ~y, newchanpr,
readchan chanvar -, or writechan (chanvar) V.
Then we letetcir v = M in N = (letcir v = cir k in N)[M"].
If M =4,
v~ OA Qw € I'P*™ by the ruleVvaryy,.
letcir v = M in N = (letcirv = [in N)[v'] andv’ ~ OA @Q w € TPe™,
If M £V,
M = k[M’] by induction hypothesis where
M = andv ~ A" @ w € T'Perm,
M — N’, or
M'iseval box N’, eval box,» N', future box N’, future box,» N’, syncwith syncvar ~, newchanp,
readchan chanvar ~, or writechan (chanvar v) V.
Then we leetcir v = M in N = (letcir v = k in N)[M'].
CaseOEy,;, is similar to CaseDEyy, except that Subcases 1) and 2) are now combined as follows:
If M' =V,
letcir v = M in N = ([])[letcir v = cir» V' in N] andletcir v = cir« V' in N — [V’ /v]N.
A TP b M2 Apri,
Ay TP b M~ Apri, @ W/
If M =V # v by induction hypothesis, we are done.
M =wvandv ~ Ay, @ w € I'PS™ cannot happen by the assumptionlds™.
If M = x[M’] by induction hypothesis where
M' =vandv ~ A’ @Qw e TPem,
M’ — N/, or
M’ is eval box N’, eval box,» N’, future box N’, future box,,» N/, syncwith syncvar -y, newchanpg,
readchan chanvar 7, or writechan (chanvar) V’,
then we are done.
A TPemb M :OA
A; - TPEM = eval M : unit
If M=V #£v,
M = box M’ by Lemma 4.2.
eval M = ([])[eval box M'].
If M =w,
v~ A Qw e I'P™ by the ruleVvaryy .
eval M = (eval [])[v] andv ~ A Q w € I'Pe™,
If M #V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ @Qw € IT'Pe™,
M' — N', or
M’ iseval box N, eval box,» N’, future box N, future box,» N’, syncwith syncvar ~, newchanpgy,
readchan chanvar -y, or writechan (chanvar v) V.

Case Prim~w (w # w') :

Case Teval :

51

Then we leteval M = (eval k)[M'].

CaseTeval@ is similar to Caséleval.
c A TPeM - M - OOA .
ase A; - TPE™ | future M ~ A sync @Q w* Tfuture :

If M =V # v,
M = box M’ by Lemma 4.2.
future M = ([])[future box M'].
If M =,
v~ OOA @ w € T'P'™ by the ruleVvaryy .
future M = (future [])[v] andv ~ OOA Q@ w € T'P*™,
If M #V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ @Qw e I'Pe™,
M' — N', or
M'iseval box N’, eval box,» N', future box N’, future box,,» N’, syncwith syncvar -y, newchanp,
readchan chanvar -y, or writechan (chanvar v) V.
Then we lefuture M = (future k)[M’].
CasesT future@, Tfuture/, andTfuture@’ are similar to Cas@& future.
A TPEM =, M . A sync _
A; - TPE™M | syncwith M ~ A Q w* Tswith :
T w SY
If M=V #v,
M = syncvar v by Lemma 4.2.
syncwith M = ([])[syncwith syncvar 7).
If M =w,
v~ Async @w € I'P*"™ by the ruleVvary,.
syncwith M = (syncwith [|)[v] andv ~ A sync Q w € I'Pe™,
If M £V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ @Qw € I'Pe™,
M' — N', or
M’ iseval box N, eval box,» N’, future box N, future box,» N’, syncwith syncvar ~, newchanpgy,
readchan chanvar -y, or writechan (chanvar v) V.
Then we lekyncwith M = (syncwith x)[M].
CaseTswith’ is similar to Casd swith.
Case A;.;TPe™ |-, newchany ~ A chan @ w
newchan4 = ([])[newchany4].
A; - TPE™ =, M : A chan
A; ;TP | readchan M ~ A Q w
If M=V #v,
M = chanvar v by Lemma 4.2.
readchan M = ([])[readchan chanvar 7.
If M =,
v ~ A chan @ w € T'P*"™ by the ruleVvaryy.
readchan M = (chanvar [|)[v] andv ~ A chan @ w € T'Pe™,
If M #V,
M = k[M’] by induction hypothesis where
M =vandv ~ A’ Qw e I'Pe™,
M' — N’ or

Case

= Tnewc .

Case ~ Treadc :

52

M'iseval box N’, eval box,» N’, future box N’, future box,» N’, syncwith syncvar 7, newchanpg,
readchan chanvar -, or writechan (chanvar v) V.
Then we leteadchan M = (readchan x)[M'].
A TPe™ = M : A chan freshw' A;TPEME, N ~ AQW
€ A; - T'Pe™ | writechan M N ~ A @Q w*
If M=V #£w,
M = chanvar v by Lemma 4.2.
DIEN=V £,
writechan M N = ([])[writechan (chanvar) V.
2) If N = ¢’ isimpossible.
N AV,
N = k[N'] by induction hypothesis where
N' =7 andv ~ A’ @ w € TPe™,
N' — N, or
N' is eval box N”, eval box,» N”, future box N”, future box,» N”, syncwith syncvar v/,
newchan g/, readchan chanvar +/, or writechan (chanvar 1) V",
Then we letwritechan M N = (writechan (chanvar v) k)[N'].
If M =,
v ~ A chan @ w € T'P*'™ by the ruleVvaryy .
writechan M N = (writechan [| N)[v] andv ~ A chan @ w € T'Pe™,
If M #V,
M = k[M'] by induction hypothesis where
M =vandv ~ A’ @ w e TPem,
M' — N/, or
M'iseval box N’, eval box,» N’, future box N', future box,» N’, syncwith syncvar 7, newchanpg,
readchan chanvar ~, or writechan (chanvar v) V.
Then we letwritechan M N = (writechan k N)[M']. O

Cas Twritec :

Proof of Theorem 4.5:

Proof.
Suppose” = Cy, M at . By the ruleTcfg, we haveA; ;TP™ -, M ~ A@Q ' for P(y) = w and a
certain node.’. By Lemma 4.3, we consider the following cases:

o M =V #w.
e M = v (wherev ~ A @' € TPe™)
o M =k[v],v~BQweI'P™ and

v~ BQuwelP™ v —pem V. P(y) =w
Co, k[v] at v = Cp, k[V] at v

Rvalvar

e M = k[N]whereN — N’, and

N — N’
Co, k[N] at v = Cp, k[N'] at ~y

Rcfg

53

M = kleval box N] and

new '
Co, k[eval box N] at v = Cy, k[()] at v, N at

7 Reval

M = kleval box,» N]and

new v Q w”
Co, k[eval box,» N] at v = Cy, k[()] at v, N at ~y

; Reval@

M = k[future box N| and

new '

C(], KJ[fUtUre box N] at Y — CO, /{[Syncvar ’7/] at ~, letcirv = N in v at ,y/ Rfuture‘

M = k[future box,» N]and

new v Q "

Co, r[future box,» N] at v = Cy, r[syncvar 7'] at 7, letcir v = N in v at 7/ Rfuture@.

M = k[syncwith syncvar 4] andV at v & Cy. (.9, M at v/ € Cp andM is not a value.)

M = k[syncwith syncvar +'], V at v/ € Cp, and

Co, k[syncwith syncvar 7] at v = C, k[V] at v RSWIth.

M = k[newchanp] and

new 7'

Co, k[newchang] at v = Cj, k[chanvar /] at v, nil at v/ Rnewc'
M = k[readchan chanvar «/].
By Lemma 4.4,
A; - TP¢™ | readchan chanvary/ ~ B @ w".
By the ruleTreadc (optionally preceded by the ruRrim~yy if B is a primitive type),
A; ;TP |- chanvar v/ : B chan.
By the ruleTchanv,
v ~ Bvlist @ x € A.
SinceC :: A,
C = Cy, M at v, N at o/ andA; ;TP Fp,) N ~ B vlist @ w* for a fresh nodev*.

- N=V,:V,and

C\), k[readchan chanvar '] at v, V}, :: V; at v/ = C{, s[V},] at v, V; at o/ Rreadc.

- N#V, V.

54

e M = k|writechan (chanvar /) V].

By Lemma 4.4,
A; - TPe™ 1, writechan (chanvarv') V ~ B @ w".

By the ruleTwritec (optionally preceded by the ruRrim~yy if B is a primitive type),
A;;TPe™ |- chanvar 7/ : B chan.

By the ruleTchanv,
v ~ Bvlist @ % € A.

SinceC :: A,
C = Cy, M at v, N at o/ andA; ;TP Fp,) N ~ B vlist @ w* for a fresh nodev™.

- N=Vi:u:- 2V, niland
5 : Rwritec
C\), k|writechan (chanvar ') V] at v, Vi i: --- 2 V,, i nil at o/ =
Cy,k[V]at v, ViV o Vonilat o/
- N#Vp Vil
Therefore, if there exists n@’ such thalC’ = C’, C consists only of the following:

V at 7,
k[syncwith syncvar '] at v (whereV at v & C),
k[readchan chanvar 7| at v (whereV}, :: V; at o/ ¢ O),
r[writechan (chanvar o) V] at v (whereV; :: .-+ :: V,, i nil at o/ & C). O

55

