Non-Clairvoyant Scheduling for Mean Slowdown

N. Bansal ¢ K. Dhamdhere ® J. Konemann ¢
A. Sinha ¢

Dec 2001
CMU-CS-01-167

%School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
nikhil@cs.cmu.edu Supported by IBM Research Fellowship.

®School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
kedar@cs.cmu.edu

¢Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh,
PA 15213. jochen@cmu.edu

4Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh,
PA 15213. asinha@andrew.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider the problem of scheduling jobs online non-clairvoyantly, that is, when the job sizes are
not known. Our focus is on minimizing mean slowdown, defined as the ratio of response time to
the size of the job. We first show that no (deterministic or randomized) algorithm can achieve a
competitive ratio of Q(n), where n is the number of jobs.

Resource augmentation is the concept of allowing the online algorithm a speed-up to make up
for its non-clairvoyance, since the competitive ratio is obtained by comparing against an optimal
offline, clairvoyant algorithm. We show that our lower bound continues to hold even with resource
augmentation.

Finally, we consider the case when the ratio of job sizes (denoted B) is bounded. In this case, we
show that any non-clairvoyant algorithm needs at least €(log B) speed up to be constant competi-
tive. We provide an algorithm which is O(log2 B) competitive when the speed up is O(log B). In
the special case when all the jobs arrive at the same time we provide an algorithm which is constant
competitive and uses a O(log B) speed up.

Keywords: Scheduling, slowdown, resource augmentation, online algorithms

1 Introduction

Scheduling jobs which arrive over a period of time is a fundamental problem that occurs in several
situations. A scheduler has to schedule the jobs so as to optimize a certain chosen metric, such
as throughput, makespan, mean response time, or slowdown. These scheduling problems have
been studied extensively in the context of approximation and online algorithms. For some nice
surveys see [14, 8, 4, 10]. Most scheduling algorithms assume that the sizes of all jobs are known
when they arrive. However, this need not always be the case. For example, when jobs arrive at
a UNIX processor, there is often no knowledge about the processing time the jobs will require.
Hence the scheduling algorithm has to perform its task without any clue about the sizes of the jobs.
Such a scheduler is called non-clairvoyant. The study of non-clairvoyant scheduling algorithms was
initiated by Motwani, et al [12].

Although non-clairvoyance models the reality faced by several schedulers, one may wonder what
can be achieved without even seemingly basic knowledge of the job sizes. Kalyanasundaram and
Pruhs [7] introduced the idea of augmenting the resources of the non-clairvoyant scheduler by
increasing its speed. When the scheduler is non-clairvoyant, they proved a very remarkable result
about minimizing mean response time (the response time of a job is the time it spends in the system,
which can be defined as the difference between the completion time and the release time of the job).
They show that if the non-clairvoyant scheduler is allowed a (1 4 ¢) times faster processor, then
it can achieve a response time within a (1-+-%) factor achievable by the best possible clairvoyant
algorithm.

However, in certain situations average response time may not be the most appropriate measure.
For example, users who are willing to pay more may expect smaller response times for their jobs.
This has motivated the study of algorithms for minimizing average weighted response time [3, 9].
Another metric of interest, introduced by Bender et al [1], is the average slowdown, where the
slowdown of a job is defined as the ratio of the response time to the size of the job. This is a
special case of the weighted response time, and has been widely used to measure the “fairness” of a
scheduling algorithm [11, 5, 6]. Intuitively, having a low slowdown ensures that jobs have response
times in proportion to their sizes. Thus users which submit smaller jobs are equally satisfied as
users which submit larger jobs.

Recently, Muthukrishnan, et al [13] considered the problem of scheduling jobs to minimize
average slowdown clairvoyantly, that is, when job sizes are known upon arrival. They proved that
the Shortest Remaining Processing Time (SRPT) scheduling policy is 2-competitive for minimizing
mean slowdown on uniprocessor machines.

This raises the question of what can be done to minimize mean slowdown when job sizes are
not known upon arrival. In this paper, we provide various lower bounds on what a non-clairvoyant
algorithm can achieve for minimizing mean slowdown, for algorithms which are deterministic or
randomized, and even for algorithms which have their resources augmented by means of a speed
up for the processor. What is perhaps surprising here is that unlike for response times, a constant
speed up given to any non-clairvoyant algorithm does not help. Even for the case when the ratio
of job sizes is bounded by B, a speed up of at least Q(log B) is needed by any algorithm to be
constant competitive.

On the positive side, we provide a non-clairvoyant algorithm which achieves competitive ratio
of O(log2 B) using a speed up of O(log B). In the special case when all jobs arrive for processing at
the same time (i.e. static input), we give a non-clairvoyant algorithm which is optimal in the sense
that it is constant competitive and requires only a O(log B) speed up, thus matching our lower

bound.

1.1 Model

A scheduling problem of size n consists of a collection of n independent jobs J = {j1,Ja,...,jn}-
Each job j; has an ezecution time or processing requirement (or size) p; and a release time r;. The
release time of job j; is the time at which the job is first available for processing. We assume
(without loss of generality) that all job sizes are integers.

In this paper, we restrict ourselves to preemptive scheduling where the execution of a job can
be suspended at any time and resumed later from the point of preemption without any penalty for
context switching. Without pre-emption, there can be no guarantees on the performance ratio of a
non-clairvoyant algorithm for minimizing mean slowdown.

A schedule is an assignment of some time intervals to each job on the processor, such that the
total time assigned to job j; equals p;. No two time intervals may overlap. In this paper, we consider
algorithms which are resource augmented (i.e. the processor has speed ¢, for some ¢ > 1). In this
case, we assume that the total time assigned by the processor to job j; equals p;/c.

Definition 1 The Completion time c¢; of a job j; is the time at which it completes its execution.
The response time t; is the amount of time between its release and completion, i.e. t; = ¢; — r;.

Definition 2 The Slowdown of a job j; is the ratio of its response time to its size, i.e. s(j;) =
t;/pi. The slowdown of a set of jobs K C J is Zj,eK s(Ji), and the total slowdown of the input

instance is S(J). The mean slowdown is S = S/n.

Our goal is to minimize the mean slowdown of jobs in an input instance, where the minimum
is taken over all possible input instances. Hence we are doing a worst-case analysis, as opposed to
analyzing expected slowdown over a given distribution of the input.

A clairvoyant scheduling algorithm may use knowledge of the jobs’ execution times (sizes)
to assign time intervals to jobs. A non-clairvoyant scheduling algorithm assigns time intervals
to jobs without knowing the execution times of jobs that have not yet terminated. We will al-
ways assume that the processor of the optimal algorithm has speed 1, whereas the non-clairvoyant
algorithm has a speed ¢ processor for some ¢ > 1.

For a scheduling problem J of size n, let SA,C(J) be the mean slowdown with respect to the
schedule produced by algorithm A, using a ¢ speed processor. The optimal clairvoyant algorithm
OPT minimizes SopTyl(J) for each J. The performance ratio (or, in the context of online
algorithms, competitive ratio) of a non-clairvoyant algorithm A is defined as

sup SA,C(J)

Rac(n) = PAel)
acn) = 5 =n Sorra(J)

A non-clairvoyant scheduling algorithm is said to be (f(n,c),c)-competitive if R4 .(n) <
f(n,¢). For notational convenience, we will omit ¢ when ¢ = 1.

1.2 Related work

Motwani, et al [12] first analyzed non-clairvoyant algorithms with respect to mean response time
as their metric. They showed that any deterministic algorithm is Q(n)-competitive and any ran-
domized algorithm is Q(log n)-competitive against an optimal offline clairvoyant adversary.

More recently, Muthukrishnan, et al [13] considered the problem of online job scheduling on
uniprocessor and multiprocessor machines with respect to stretch or slowdown as their metric. They
show that SRPT is 2-competitive for uniprocessor and 14-competitive for multiprocessor problems
respectively. However, their algorithm is clairvoyant.

Kalyanasundaram and Pruhs [7] introduced the idea of allowing a non-clairvoyant algorithm
more resources than the offline algorithm. Specifically, they speed-up the non-clairvoyant processor

by a factor of (1+ €) times the offline processor. They use this resource augmentation technique to
analyze a non-clairvoyant algorithm for mean response time. They show that the competitive ratio
of their algorithm is (1 + 1).

Berman and Coulston [2] improved the above results. They proved that with a v-speed processor
(v > 2), the algorithm of Kalyanasundaram and Pruhs is 2/v-competitive.

1.3 Our results

We first consider the basic problem of scheduling jobs online without knowledge of the sizes of the
jobs. We show that any deterministic algorithm cannot have competitive ratio better than Q(n)
for mean slowdown. In fact, using the same instance of the scheduling problem, we show that no
randomized algorithm can perform better than ©(n). These results are proved in Section 2.1.

We next investigate (Section 2.2) the problem by applying the technique of resource augmen-
tation. Specifically, we provide the online scheduling algorithm a processor which is k& times faster
than the adversary. However, we find that even resource augmentation doesn’t help. We show that
any deterministic or randomized algorithm is Q(n/k3, k) competitive.

One feature of all the examples we study to obtain these results is that job sizes keep growing
in an unbounded manner. One may therefore ask what can be achieved when the ratio of job sizes
is bounded. In Section 2.3, we show that if B is the ratio of job sizes, then the competitive ratio
achievable by any deterministic algorithm is Q(B).

In view of the lower bound above, we consider the case when job sizes are bounded and our
non-clairvoyant processor is allowed a faster processor (Section 3 and Section 4). In this case, we
show that any non-clairvoyant algorithm needs Q(log B) speed up to achieve a constant competitive
ratio.

Our main contribution is a non-clairvoyant algorithm which is (O log? B, O(log B)) competitive,
when the ratio of job sizes is bounded by B. In the special case when all the jobs are available at
the beginning (the static case), we show that the Round Robin scheduling policy is (O(1), O(log B)
competitive. Moreover, we show that this is the best possible ratio achievable in the static case.

We prove the main result by comparing the performance of our algorithm to the Shortest Job
First (SJF) scheduling policy. Hence we also prove a theorem (in Section 5) showing that SJF is
constant-competitive for mean slowdown, even when SJF is allowed to round the job sizes to powers
of two.

2 Lower Bounds

2.1 Scheduling without resource augmentation

Our first result concerns non-clairvoyant scheduling for minimizing mean slowdown in the absence
of resource augmentation.

Theorem 1 Any online non-clairvoyant deterministic job scheduling algorithm has an Q(n) per-
formance ratio for mean slowdown.

Proof: We present an adversary strategy which forces any non-clairvoyant algorithm A to have
mean slowdown (n), whereas the SRPT algorithm has a constant slowdown. This proves that A
is Q(n)-competitive, since Muthukrishnan, et al [13] proved that SRPT is 2-competitive.

The adversary gives jobs in the following order. At each timestep, i = 0,1,...,n — 1, the
adversary gives 2 jobs, j; and k;. Let the job sets be denoted by J = {jo,J1,.-.,Jn-1} and
K = {ko,k1,..., kn—1}. Exactly one of each j; and k; is of size 1. The other one is of size 2t Let
we(j) denote the amount of work done on job j by time ¢. As time proceeds, one of w(j;) and

we (ki) will reach value 1 first. Without loss of generality, call it j;. If neither reaches 1 by time n,
then let j; be such that wy,(j;) > wn(k;). Now the adversary sets p(j;) = 2! and p(k;) = 1.

Being a work-conserving algorithm, A has done n amount of work by time t = n. Now w, (j;) >
wy (ki). So at least n/2 jobs from the set K have had less than 1 amount of work done on them.
This is because if more than n/2 jobs in K have received one unit of work, then wy, (k;) +w, (ji) > 2,
and thus the total work done till time ¢ = n would be strictly greater than n, giving a contradiction.

Now among the jobs in K, let L = {l1,l2,...,1,/2}, denote the jobs which are unfinished at
time t = n, where the order of jobs in L is the same as in K. The job I; is in the system for at least
n/2—1i seconds. Thus s({;) > n/2—i. Hence total slowdown for L is S(L) > Z:l:/f(n/Q—z) > n?/8.
Therefore the mean slowdown for jobs in L is g(L) = n/8. Since there are 2n jobs in the entire
input, we have S = Q(n).

On the same input instance, SRPT (which is a clairvoyant algorithm) does the following. It
finishes all jobs in K (all of which have size 1) as soon as they come. So by time t = n, it will
have finished all jobs in K, and S(K) = n. The jobs in J are still remaining, and will be served

in order of their size. Hence the total slowdown for J’s will be S(J) = 27:_01(%?1—_1) This
is clearly less than 2n 4 2n, where the first term comes from geometric progression and the second
term comes from the 2i+1/2% part of summand.

Thus for SRPT, the total slowdown is O(n). Hence the mean slowdown is O(1).

This proves that any non-clairvoyant algorithm is €(n)-competitive. a

Given that the adversary chose job sizes so as to defeat our algorithm, one might ask if random-

ization helps the online algorithm do better. In the next theorem, we prove otherwise.

Theorem 2 Any randomized non-clairvoyant online scheduling algorithm for mean slowdown has
Q(n) competitive ratio.

Proof: To prove this theorem, we use Yao’s Minimax principle [15]. This states that the expected
running time of the optimal deterministic algorithm for an arbitrarily chosen input distribution is
a lower bound on the expected running time of the optimal randomized algorithm. Hence we only
need to prove a lower bound on the expected performance ratio of any deterministic algorithm on
problem instances chosen from a specific probability distribution. This gives a lower bound on the
competitive ratio of all randomized algorithms.

Consider the same input instance as in Theorem 1. Let two jobs j;, k; arrive at time ¢ = ¢, for
t=20,1,...,n — 1. Now consider the following distribution on the sizes of the jobs. Independently
for each i, with probability 1/2 we have p(j;) = 1 and p(k;) = 2¢, and otherwise p(j;) = 2° and
p(kl) =1.

Now we look at the number N of size 1 jobs remaining in the system at time ¢ = n. Let X;
denote a random variable, such that X; = 1, if a size 1 job from pair ¢ is remaining, and otherwise
X; = 0. Clearly, N = Z?:_ol X;. Note that in a pair j;, k; of jobs, if wy,(j;) + w, (ki) < 1, then
X; = 1. Call the number of such pairs tg. If 1 < wy(j;) + wn (k) < 2, then at most one of j; and
k; is finished, so X; = 1 with probability at least 1/2. Call the number of such pairs ¢;. Finally, let
the number of pairs for which at least 2 units of work has been done be t5. So we have

to+t1+t2 =n
t1+ 2ty <n

These two equations combined imply that ¢g + (1/2)t; > n/2. Thus E{N} = Z?:_ol E{X;} >

Thus the expected number of size 1 jobs remaining at time ¢ = n is n/2. Again applying a
similar argument as in Theorem 1, we see that expected mean slowdown for the online randomized
algorithm is Q(n). Since the input instance is the same, the clairvoyant adversary (in particular,
SRPT) can again achieve a mean slowdown of O(1).

This shows that for any randomized algorithm, the performance ratio is Q(n). a

Clearly, the above bounds are achievable. Consider the Round Robin algorithm (RR), which
works at the same rate on all jobs simultaneously. That is, for any time period ¢ > 0, RR works for
t/n time on each unfinished job, where n is the number of unfinished jobs. Clearly the slowdown
of every job is no more than n in the Round Robin algorithm. Hence the lower bounds proved in
Theorems 1 and 2 can be matched by upper bounds via the Round Robin algorithm.

2.2 Resource augmentation

Having seen that in general the competitive ratio of a non-clairvoyant algorithm can be quite
bad, we now investigate the effect of resource augmentation on the competitive ratio. In resource
augmentation, the online scheduler is given more resources to make up for its lack of clairvoyance. In
particular, we look at the case when the online algorithm has a k& times faster processor. However
we find that even with a faster processor, the competitive ratio for a non-clairvoyant algorithm
doesn’t improve much. Formally, we prove that:

Theorem 3 Any k-speed deterministic non-clairvoyant algorithm has Q(n/k3, k) performance ratio
for minimizing mean slowdown.

Proof: We modify the example from Theorem 1 to get a bad example for this case. At each
timestep t = 0,1,...,n — 1, a group of k + 1 jobs arrive. Exactly one of them has size 1 (how-
ever, the non-clairvoyant algorithm doesn’t know which one). The remaining k jobs have sizes
22’1«’ 2ik+1’ . 2ik+k—1.

We look at how much each job has been worked on by time n. If among the ith group there was
a job on which less than one unit of work was done, then the adversary chooses a job on which the
smallest amount of work has been done and assigns it size 1. The rest of the sizes in that group
are assigned arbitrarily. On the other hand, if our algorithm did at least 1 unit of work on all jobs
in group %, then there must be a job in that group, say j;, on which our algorithm finished doing 1
amount of work last. In that case, the adversary sets the size of j; as 1 and thus it is finished. But
at the same time, our online algorithm A was forced to do at least £ 4+ 1 amount of work on this
group.

By time n, algorithm A was able to do nk amount of work in total, since its processor operates
at speed k. So if f is the number of jobs of size 1 finished, then by the above observation, algorithm
A did at least (k4 1)f work. Hence (k + 1)f < nk. Thus number of unfinished jobs of size 1 is at
least n/(k 4+ 1). Once again, this means that the contribution to total slowdown by these n/(k+ 1)
jobs is Q(n?/k?), since the same argument as in Theorem 1 proves that each of these jobs gets a
linear slowdown. Finally, since there are n(k + 1) jobs in all, the mean slowdown is Q(n/k> k).

Once again SRPT with a speed 1 processor will have constant slowdown for this scheduling
instance, again using an analysis identical to Theorem 1.

Hence the performance ratio is Q(n/k3, k). O

Since a k-speed processor can simulate £ unit speed processors, we also have the following
corollary.

Corollary 1 Any non-clairvoyant algorithm which has its resources augmented by having k pro-
cessors has an Q(n/k®) competitive ratio for mean slowdown.

An argument similar to Theorem 2, using Yao’s Minimax Principle allows us to prove the
following.

Corollary 2 Any k-speed randomized non-clairvoyant algorithm has an Q(n/k3, k) competitive ra-
tio for minimizing mean slowdown.

2.3 Bounded job sizes

The negative results in the previous sections all rely on unbounded job sizes. In particular, the job
sizes grow exponentially with time. One might argue that this is an unrealistic assumption, and
that in reality, job sizes are bounded. In this section (and in the following section), we investigate
what can be done when the ratio of the maximum job size to the minimum job size is bounded by
B. For simplicity, we assume that the smallest job size is 1 and the largest job size is B. Note that
in this section, there is no resource augmentation.

Theorem 4 No deterministic, non-clairvoyant algorithm has a performance ratio less than Q(B)
for mean slowdown, where B is the ratio of job sizes.

Proof: To prove this theorem, we provide a family of input instances parametrized by a positive
integer m. Our input instance is a two-stage job arrival sequence. In the first stage, mB jobs arrive
at time 0. We will describe the second stage after examining the behavior of the online algorithm
on the first stage jobs. If a job receives B amount of service, we declare it finished, since B is an
upper bound on job sizes. Let ¢ be the first time instant when the online algorithm gives at least
B — 1 amount of service to at least m jobs. Observe that some jobs might have finished by time
t. Let z; be the amount of service received by the jobs remaining by time ¢. Set the size of job i,
pi = min(z; + 1, B).

At this point the adversary releases this information about the job sizes to the online algorithm.
(This can only help the online algorithm.) Observe that there are at least m(B — 1) jobs left with
remaining work 1 and at most m jobs with remaining work less than 1. At time ¢, the second stage
consisting of jobs (z will be defined later) of size 1 arrive at the rate of one per unit time for a
period of z time units. We assume that the online algorithm knows that the size of the jobs that
arrive after time ¢ is 1. Once again, this is not a problem since this information can only help the
algorithm.

Let us compare the behavior of the clairvoyant SRPT algorithm and the non-clairvoyant online
algorithm.

Look at the m(B — 1) jobs with 1 unit of work remaining on them in the online algorithm.
These jobs are smaller than the rest of the m jobs. So SRPT will work on the m(B — 1) smaller
jobs first and will finish them by time ¢. Thus, the SRPT algorithm has at most m jobs of size B
remaining at time ¢. Moreover, the SRPT algorithm processes the unit jobs after time ¢ until time
t 4+ x and finally finishes off the remaining jobs of size B.

On the other hand, the online algorithm at time ¢ has at least m(B — 1) jobs with remaining
size at least 1. Next, we observe that in order to minimize the slowdown, it is best for the online
algorithm to execute the new incoming jobs of size 1.

Let Ssgpr and Sonp denote the total slowdown of the SRPT and the online algorithms re-
spectively. We now lower bound Sonr. Observe that jobs of size 1 contribute at least to SonrL.
Moreover, the m(B — 1) jobs remaining at time ¢ contribute at least M?l to Sonr. Thus
SoNL > ;l‘m(l — %)

To upper bound Ssgpr, observe first that the total slowdown due to the unit jobs (second stage)
is . The slowdown due to the initial m(B — 1) jobs which finish by time ¢ is at most mB - mB?.
Finally the slowdown due to the m jobs of size B which finish in the end is at most mmB2+++mB.

Thus Ssrpr < 2 4+ m?B3 4+ m?B +m? + =

Setting = mB* and letting m > B, we get Ssrpr < 2m?B3(1+0(1)) and Sonr > m?B*(1 —
+), which gives the desired ratio of Q(B) for the competitive ratio of the online algorithm. O

Note that in this example, the relation between the number of jobs n and the upper bound B
on job sizes is roughly n = O(B*). Hence this lower bound is weaker than the lower bounds proved
in Sections 2.1 and 2.2.

We observe from results in Sections 2.1, 2.2 and 2.3, that bounded job sizes and speed up are
both necessary to obtain interesting results. The next question that arises is whether resource
augmentation helps us when job sizes are bounded. We have good news on this front. We next
give an algorithm which is (O(log® B), ©(log B)) competitive. While the ©(log B) speed up might
appear excessive, we will show in Theorem 6 below that a speed of Q(log B) is necessary to obtain
a constant competitive ratio. For the static case, where all jobs are available for processing at the
same time, we give an (O(1), ©(log B)) competive algorithm. We first describe the simpler static
case.

3 Static scheduling

The results of Sections 2.1, 2.2 and 2.3 do not preclude a sub-linear competitive algorithm when the
job sizes are bounded and we have resource augmentation. In this section we look at a restricted
class of scheduling problems with bounded job sizes and resource augmentation. A scheduling
problem is said to be static if all the release times are 0, i.e., all jobs are available for execution at
the beginning itself.

Recall that the Round Robin algorithm (RR) works at the same rate on all unfinished jobs simul-
taneously. In this section, we prove that RR has a competitive ratio of ©(log B) for mean slowdown.
Since the scheduling instance is static, this implies that RR is (©(log B)/k, k) competitive. We also
prove that no deterministic or randominzed non-clairvoyant algorithm is (o(log B/k, k) competi-
tive, for the static scheduling problem. Hence, RR is optimal for static scheduling (upto constant
factors).

Before we analyze RR, we note that the optimal clairvoyant algorithm for minimizing mean
slowdown in the static case is exactly SRPT. This is because if the optimal algorithm ever delayed
a smaller job to finish a larger job first, then the contribution to the total slowdown from these two
jobs alone can be improved by making the algorithm process the smaller job before the larger job.

3.1 Competitive ratio of Round Robin

To find a bound on the competitive ratio of the Round Robin algorithm, we compare its performance
on a particular input instance with that of the SRPT on the same instance.

Lemma 1 For a scheduling instance with n jobs, RR has a ©(n) mean slowdown.

Proof: First we note that if a job is sharing the processor with at most & other jobs throughout
its execution, then it has at most £ slowdown. Also, if a job shares the processor with at least &
jobs throughout its execution, then its slowdown is at least k. Since the scheduling instance has n
jobs, no job can have slowdown more than n. Hence the mean slowdown is O(n).

Now let us look at the execution of RR closely. Let j1,ja,...,jn be the jobs in sorted order of
size. Clearly, RR will finish the jobs in the same order. Assume, for the time being, that no two
jobs have the same size. Now, the ith job must share the processor with at least n — ¢ jobs. Thus
the total slowdown is at least > . (n — i) = (n — 1)(n — 2)/2. Now if some p(j;) = p(ji+1) (that
is, jobs j; and ji41 have the same size), then the slowdown for both j; and j;41 is at least n — 4,
whereas we counted it as n — 7 and n — i — 1. So if some jobs did have the same size, then the total
slowdown is worse. Hence the total slowdown is Q(n?). Therefore, the mean slowdown for RR is

Q(n). o

Lemma 2 For any scheduling instance with n jobs, the SRPT algorithm has Q(n/log B) mean
slowdown.

Proof: We prove this by proving a lower bound of Q(n?/log B) on the total slowdown of the SRPT
algorithm. As stated in the assumptions, we have integer job sizes. Let’s assume that there are z;
jobs with size ¢, for : = 1,2, ..., B. The total number of jobs in the instance is Z _,o; =n. With
this minimal assumption, we estlmate the total slowdown incurred by the SRPT algorithm.

We note that, the jobs with size ¢ will be processed only after all the smaller jobs are finished.
Thus processing ofJobs with size ¢ starts at time Z _1 Jzj. After this point, SRPT finished each
of the size 7 job i m an average i(z; + 1)/2. Hence, the total slowdown for the size i jobs is given by

(dxl—-Hl + ZZ 1 _]IJ) Summing this expression over all the possible job sizes, we get the total

B T .
slowdown SsrPT =) iy /(+1 + Z] 1]15])
We divide the job sizes into logB buckets as follows: the jobs with size s, such that 2i-1 <
s < 2°, go to bucket B;. In the sum Ssgpr, we consider only the terms of the form Z—.ximj (or

%ximj, if ¢ = j), where ¢ and j belong to the same bucket By. Also note that the z;z; term

appears only for j < i. So we have 281 < j < i < 2*. Hence %l‘zl‘] > %mixj. Therefore, we
log B 1 1 . . .
have Ssppr > § o8 (§ i€By gr? +5 ji€Byj<i TTiT)- Now, let S = > ieB, Ti- This gives us:

logB 1 o2 logB E:ElB Skv2 n?
SsrpT 2 Y 121 75% (S) = s .

Combining the results of these two lemmas, we get the following result:

Theorem 5 For static scheduling with bounded job sizes, the Round Robin algorithm is O(log B)-
compeltitive.

3.2 Lower bound

In this part, we prove a lower bound of Q(log B) on any deterministic as well as randomized non-
clairvoyant algorithm.

Lemma 3 No deterministic algorithm can have performance ratio better than Q(log B).

Proof: For an arbitrary integer m, consider the following instance: m jobs of size 1, m jobs of size
2, m jobs of size 4 and so on. Since job sizes can be at most B, we have mlog B jobs.

We first look at how SRPT behaves on this problem instance. Total slowdown for SRPT is
ZB (WK’—-F11 + Z] =i= 1_]Ij). Here, z; = m iff 1 is a power of two. The first term in the

i=1 ¢
summation will contribute ﬂ";—ﬂl log B to the total slowdown. To compute the other part, we
first evaluate Z]:Z_l jzj. This is m(2% — 1) where k is the smallest power of 2 bigger than i — 1.
Thus, ZZ s Z] simt Jzj =Y gicp %m(2' — 1) < m?log B. Thus the total slowdown for SRPT
is O(m?log B). -

Now we want to show that for any non-clairvoyant deterministic algorithm A, the adversary can
force the total slowdown to be Q(m?log® B).

The adversary adopts the following strategy: At any time ¢, the adversary sorts the jobs in
increasing order of the amount of service received by them under the online algorithm. Let r(J)
denote the service received by job J at time t. Thus we have the labelling Jo, J1, ..., JmiogB-1
satisfying r(Jo) < r(J1) <

The adversary declares a job finished iff J; receives a service of 2lwm/.

Observe that this defines a valid strategy for the adversary, in the sense that the adversary can
follows this strategy throughout the execution of the online algorithm and still enforce that the job
sizes satisfy the conditions above.

We are now ready to prove the result. For a given online algorithm, let ¢; denote the time when
the first job of size 2! finishes under the strategy adopted by the adversary.

Since the online algorithm is forced to work on at least m(log B — i) bigger jobs before time ¢;,
we get, ¢; > m(log B —1)2¢~ 1.

Thus, the total slowdown of jobs of size 2i=1 is at least mt;/2:~! = m?(log B — i). Hence the
total slowdown of all the jobs is at least nyoB m?(log B — i) = Q(m®log® B).

Since the integer m is arbitrary, we get an infinite family of examples for which any algorithm

has Q(log B) competitive ratio. O

One may be inclined to think that it is possible to foil the adversary’s strategy by randomizing.
However, we are able to show that above lower bound holds even for a randomized algorithm. We
will once again use Yao’s Minimax principle to prove this.

Lemma 4 Any randomized, non-clairvoyant, online algorithm has performance ratio Q(log B).

Proof: Consider the family of input instances obtained by taking all possible permutations of the
input instance used in Lemma 3. We use the uniform distribution on this set of input instances. We
prove a lower bound on the expected value of the total slowdown experienced by any deterministic
algorithm on this input distribution.

For a given online algorithm A, let ¢; denote the time when half of the jobs of size 2 finish. We
lower bound #; as follows. Let us discount any work done by the algorithm A on jobs smaller than
21, We also discount the work done by A above the level of 2 on the jobs bigger than 2¢. So, we
have following simplified scenario: algorithm A does work 0 < w; < 2% on each job j with size > 27
The number of such jobs is m(log B —¢). To finish half the jobs of size 2*, A will have to do 2* work
on half of the m(log B — i) jobs (in expectation). Thus time ¢; > 2'm(log B — i)/2. This means
that, for the other half of size 2 jobs, the slowdown is at least m(log B — 7). Thus the expected
slowdown for size 2¢ jobs is at least m?(log B — i)/2. Hence the expected total slowdown is at least
S8 P m(log B — i)/2 = Q(m? log? B).

As shown in Lemma 3, the total slowdown for SRPT is ©(m?log B). Hence the randomized
algorithm has a competitive ratio of Q(log B). O

Theorem 6 Any k-speed deterministic or randomized, non-clairvoyant algorithm has an Q(log B/ k)
competitive ratio for minimizing mean slowdown, in the static scheduling case (and hence in the
online case).

Proof: Since the input instance is a static one, a k-speed processor improves all the response times
by a factor of k. Hence the mean slowdown goes down by the same factor. a

4 Dynamic Scheduling

4.1 Context

We now present an algorithm which bounds the mean slowdown when the job sizes are not known.
We have seen in the earlier sections that we cannot do anything unless we have bounded job
sizes, and resource augmentation. In this section, we develop an algorithm which uses resource
augmentation and bounded job sizes, and has a competitive ratio of O(log2 B, log B) against the
best possible clairvoyant scheduling algorithm, where B is the upper bound on job sizes. We begin
with some preliminaries.

4.2 Algorithm Description

The input consists of a stream of jobs arriving over a period of time. More than one job may arrive
at a given instant of time. Job sizes are integers. We also assume that all job sizes are powers of 2.
The justification of this assumption is provided in Corollary 4.

Instead of comparing against the best possible clairvoyant scheduling algorithm, we compare
ourselves against the Shortest Job First (SJF') policy. Formally, this policy is a pre-emptive policy
which always works on the unfinished job which has the smallest size. If more than one job of the
same size are available for processing, then the tie is broken according to the FCFS (First Come
First Serve) rule. This implies that at any point of time, all but at most one job of any given
size have received no work at all. We show in Theorem 8 that SJF is constant-competitive for
minimizing mean slowdown when job sizes are powers of two.

We now describe our resource-augmented processor, and our scheduling algorithm. In view of
the strong results which reinforce the difficulty of this problem, our algorithm has its resources very
heavily augmented. In particular, we allow ourselves log B 4+ 1 processors, labelled 0,1,..., L =
log B. Each of these processors runs twice as fast as the adversary’s (SJF’s) processor.

Our scheduling algorithm is as follows. Each processor operates on an FCFS basis. When a
new job arrives, it is queued at processor 0. It becomes eligible for receiving service at processor
0 when all the other jobs preceding it disappear. At processor 0, the job receives 1 unit of work.
If it is a size 1 job, then it gets finished. Otherwise it is sent to the (FCFS) queue of processor 1.
For i > 1, the job receives 2'~1 amount of work at processor i. Thus by the time processor i gets
through with the job, it has received 2 work in all. If it does not get completed after receiving 2¢~*
work at processor ¢, then it is sent to the queue of processor ¢ + 1. Since job sizes are bounded by
B and we have L = log B processors, every job is eventually completed. We call this the Special
FCFS algorithm, SFCF S for short. Note that our policy does not need any knowledge of job sizes.

4.3 Overview of proof

When a job arrives for service in SFCFS, its slowdown is a function only of the current state of
SFCFS, that is, its slowdown is independent of the future. This is easy to see from the description
of our algorithm. We will critically use this idea to prove a bound on the slowdown of this job.

Our argument relies on bounding the slowdown of any newly arrived job by some portion of
the slowdown experienced by SJF at the instant of time when this new job arrived. We do this
bounding carefully so that different jobs charge different (non-overlapping) portions of the SJF
slowdown. Hence we need to show an invariant that at any instant of time, if a job arrives, then
the slowdown experienced by it is bounded by some function of the current state of SJF.

Before we state and prove the main result, we need some notation. Consider some instant of
time. Let n; € IRT denote the quantity of unfinished jobs of size 2¢ in SJF. That is, there are a
total of [n;] jobs of size 2 remaining, and one of them has already received [n;] — n; amount of
work. The others have not received any work, since the tie breaking rule of SJF is FCFS.

We next lower bound the slowdown experienced by a new job in SJF.

Lemma 5 Suppose a job (J) of size 2% arrives at time t. Let sjf(k) denote the slowdown of this
job under SJF. Then,

k
sif(k) = 2 n,
i=0

Proof: By the nature of SJF, J cannot begin execution before all the work made up by jobs of size
no more than 2¢ is completed. (Note that we are using the FCFS tie-breaking rule of SJF here.)
This quantity of work to be done is exactly Zf:o 2'n;. In fact, there may be future arrivals which
further delay the execution of J. The proof follows by factoring in the size of job J, which is 2%, O

4.4 Bounding the slowdown of SFCFS: Charging

Let s(k) denote the slowdown experienced by a job J of size 2% in SFCFS if it arrives at the current
instant of time. As noted earlier, s(k) is not affected by future arrivals.

10

At this point of time, if SJF is empty, then so is SFCFS, hence J experiences slowdown 1 in
both situations. Conversely, if SFCFS is not empty, then neither is SJF. We charge the slowdown of
J to some portion of the slowdown experienced by some jobs which are currently alive in SJF. We
use a potential function to achieve this charging. The potential function also ensures that different
jobs are charged to non-overlapping portions of the slowdown of jobs in SJF.

The idea is as follows: assume there are n; jobs of size 2/ in SJF’s queue. Then, at least one of
these jobs, say jg, contributes at least n; to the total slowdown of SJF. Whenever a job j; of size
2! 1 < i, arrives we will charge a part of the slowdown that SFCFS incurs for j; to the slowdown
that SJF incurs for jg. There are two things to take care of:

1. We must have a bound on the number of times we charge to a job jg.
2. We are not allowed to charge to a job that SJF has finished at the current time.

In order to achieve the above two goals, we define potentials
0<wuj;<n

for j < ¢. Intuitively, u;; denotes the number of active jobs in SJF of size 27 that have not yet
received any charge for incoming jobs of size 27. Whenever a job j of size 2' enters, we do two
things:

1. We charge parts of the slowdown that j incurs in SFCFS to jobs of size 2 for i > [. Whenever
we charge to a job of size 2', we decrement wu;;. This ensures that a single job of size 2* does
not receive too much charge.

2. We increment u;, by one for all 0 < ¢ <. This means that we allow smaller jobs of size 2¢
for ¢ <1 to use j’s slowdown in SJF to charge their slowdown in SFCFS to.

We also want to decrement u;; for all j < 7 whenever SJF finishes working on a job of size 2. Refer
to Figure 1 for a possible situation during the execution of SFCFS and SJF.

Ny =45

Uij=25

Figure 1: Relation between charge potential u;; and n;.

More formally, we let u;; = 0 = n; Ve, 7, initially. The following are the update rules for u;;:

e New job arrival: On arrival of a new job of size 2¥, we increment ugj forall 7 =0,1,... k.
We don’t update ug; for j > k since jobs of size more than k do not affect the slowdown of

job J in SJF.

11

We also apply the following update to u;; for i > k and ug, > 0:

1
uir < max{u;g — T 0}
e Passage of time: Whenever SJF is working on a job of type i, then dg—t“‘ = —%Vk < i such

that u;x > 0. That is, we remove a job from the list of uncharged jobs if SJF finishes it.

The following lemma bounds the slowdown s(k) that SFCFS incurs for a job of size 2% that
comes in at the current point of time. Consider the set S of jobs in the levels 0 to &, at the current
time. Let w(k) be the total work that needs to be done on jobs in S, so that these jobs are no
longer are present in level 0,..., k. In words, jobs in SFCFS of size 2¢ which are present in levels

0, ...,k contribute at most 2% to w(k), and jobs of size 2! for i < k contribute at most 2¢.
Note that s(k) < w(k)27%.

Lemma 6 Under the update rules defined above,

L k
w(k)?‘k <2 Z Uik + Z Qi_kni
=0

i=k+1

Before proving Lemma 6, notice that we know from Lemma 5 that the second sum on the right
hand side of the above bound is at most the slowdown that SJF incurs for an incoming job of size
2% The first sum involves active jobs in SJF that are larger than 2%. It is this part of the bound
that we charge to larger uncharged jobs in SJF.

Proof of Lemma 6: If a job of size 2¢ arrives for i < k, then u;; is not updated. The increase in
the LHS is precisely 2% which is identical to the increase in the RHS since n; increases by 1.

If a job of size 2 for i > k arrives, then w(k) increases by 2*. Now the increase in u; is 2, so
the inequality holds.

If a job of size exactly 2* arrives, then both sides go up by one.

At other times, w(k) is depleting by a rate of at least 2. On the other hand, SJF is either
working on a job smaller than k, in which case RHS is depleting by rate 27* (because n; goes down
by 2i~ which is weighted by 2:=%) or SJF is working on a job of size bigger than 2%, then u; goes
down by at most 27%, thus making the rate of RHS 2 x 27%. Thus we have LHS < RHS at all
times. a

As a corollary, we can bound the slowdown incurred under SFCFS by a job of size 2%,

Corollary 3

L k
s(k) <2) e+ 2 Fn
i=0

i=k+1

Essentially, this lemma allows us to charge s(k) to a portion of each of the higher size jobs in
SFCFS. We charge exactly O(%) of s(k) to the higher size jobs; hence we are able to account for
only a O(%) fraction of the total slowdown experienced by jobs of size 2%. Moreover, since each
job in SJF creates upto L charging potentials u;;’s, we find that each job in SJF is charged upto L
times. Hence the total slowdown of SFCFS is no more than O(L?) times the slowdown of SJF.

This allows us to state the following theorem.

Theorem 7 SFCFS is an O(log2B,log B) competitive non-clairvoyant algorithm for minimizing
mean slowdown.

12

5 Shortest Job First

The scheduling policy Shortest Job First (SJF) always executes the shortest released job that has
not yet been finished. In this section, we evaluate its performance in the dynamic, clairvoyant
setting. We compare SJF against SRPT which we know is 2-competitive in this scenario. The main
result is that SJF with constant speedup performs within a constant factor of SRPT on any given
dynamic scheduling instance.

Our comparison of SJF and SRPT makes use of the fact that all job sizes are powers of two.
We first show, that we can in fact take any given instance and transform it into an instance with
job sizes that are powers of two. This does not increase the slowdown incurred by SRPT by more
than a constant factor provided that we increase the speed of its processor adequately.

In the following we let SRPTy denote the SRPT algorithm that uses a processor with speedup

k.
Lemma 7 Given a scheduling problem J = {j1,...,jn}, release times {ry,...,r,} and execution
times {p1,...,pn}, define a scheduling problem J on the same jobs and with the same release times

but execution times

ﬁi — 2[logp,]

for all 1 <i<n. We execute SRPT on instance J and let t(SRPT,j) be the response time of job
j. Similarly, SRPTy works on instance J and we denote by t(SRP T2, j) the response time of job
j. We then must have

z”: HSRPTa) _ z": HSRPT, j)

=1 p; i=1 pj
Proof: The idea is as follows: we first design a simple algorithm ALG that uses a processor with
speedup two and mimics SRPT on instance J. Let t(ALG, j) be the time that ALG needs to finish
job j. We show that E?Il t(ALG, j)/p; is at most the slowdown of SRPT on J. We then use the
fact the SRPT5 is 2-competitive for slowdown in the dynamic, clairvoyant setting and the definition
of p; in order to bound Z?:l t(SRPT,, j)/p; in terms SRPT’s slowdown.

We now define ALG: ALG works on the scheduling problem J and mimics SRPT’s behavior on
J. We run SRPT on instance J and let j(SRPT,t) be the job executed by SRPT at time t. ALG
then executes the same job j(SRPT,t) at time ¢. If the remaining processing of j(SRPT,t) for
ALG is 0 at time ¢, we let ALG be idle.

Notice, that it follows from the definition of p; that ALG has worked p; time on job j at time
t whenever SRPT has worked time p; on the same job in j. In other words, the set of jobs that
ALG finishes by time ¢ is the same as the set of jobs that SRPT finishes by the same time. We
immediately obtain a bound on the total slowdown of SRPT on instance J:

s(SRPT, J) = zn: t(SRpi’j) > zn: Méﬂ. (1)

j=1 j=1

Recall that SRPT; is 2-competitive for slowdown in the dynamic, clairvoyant setting. We have

2": t(SRPTs, j)
p;

< z”: H(ALG, j)

> 7

. z": t(ALG, j)

bj

IN

j=1 j=1 j=1

where the first inequality follows uses the 2-competitiveness of SRPT. Combining the last inequality
with (1) completes the proof. |
The following corollary to Lemma 7 justifies the assumption of exponential job-sizes.

13

Corollary 4 Let J and J be defined as in Lemma 7. We now run algorithm ALG on J and let
t(ALG, j) be the response time of job j. Suppose, we also know that

"N t(ALG, j) <. "~ t(SRPTs, j)
j=1 Pj B j=1 b;
It then follows that
1AL “~ {(SRPT
(ALG D) _ . (SRPT, j)
= P i=1 P
Proof: It follows from 3 7_, t(}‘;%G’j) < 3 “S}{;& and from the definition of p; that

An application of Lemma 7 finishes the proof. a
Hence, from now on, we assume that all job-sizes are powers of two.

Theorem 8 We are given a scheduling problem J = {ji,...,jn}, release times {r1,...,r,} and
execution times {p1,...,pn} such that p; is a power of two for all 1 < i < n. Let s(SRPT,j) be
the slowdown that job j incurs in SRPT’s schedule. Similarly, let s(SJF,j) be the slowdown that
job j incurs in SJF’s schedule where we assume that SJF uses a processor which is twice as fast as
the one of SRPT. We also assume that SJF and SRPT break ties in the same way. Then, we must

have
n

> s(SIFj) <2 zn: s(SRPT, j).

j=1 j=1
Proof: Assume that SRPT finishes working on the given scheduling problem at time 7. We say
that ¢t € [0,T] is an event of
[Type 1] if SRPT finishes executing a job at time ¢ or
[Type 2] if a new job arrives at time ¢ or

[Type 3] if SJF finishes a job at time ¢.

Notice, that SRPT switches active jobs only at event points of type 1 and 2. Let e;,...,¢; be all
events in SRPT’s execution.

At any time t € [0,T7], let t(SRPT,j,t) (t(SJF,j,t)) be the total work done by SRPT (SJF)
on job j. Also, for 0 <t < T, let j(SRPT,t) and j(SJF,t) be the active jobs in SRPT’s and
SJF’s schedule, respectively. If ¢ is an event point e;, then j(SRPT, ¢;) refers to the job that SRPT
was working on just before event ¢;, and likewise for j(SJF,e;). We maintain the following two
invariants by induction over 1 < i <!. We show that at time ¢ = e; we have

[I1] V1 < j < n :t(SRPT,j,t) < t(SJF,j,t) and whenever t(SRPT, j,t) < p;/2 we must have
%(SRPT, j,t) < t(SJF,j,t) and

[I2] either j(SRPT,t) = j(SJF,t), i.e. SJF and SRPT work on the same job at time ¢, or SJF
has finished working on j(SRPT,t) at time ¢t and either

® Dj(sJFt) 2 Pj(SRPTt) OF

14

® pj(sirt) < Pi(srpr,y and H(SRPT,j(SJF,t),t) =0, i.e. if SJF works on a smaller job
than SRPT at time ¢ then SRPT has not worked on this job at all.

Notice, that the claim trivially holds at time e; = r1. Now, let ¢ > 1 and assume that the claim
holds for 1 < j < 7. We look at three different cases depending on the type of €;.
Case 1: ¢; is of type 1
Let j be the job that SRPT just finished and let j° be the job that it switches to. We first claim
that SJF must have finished job j by time e; as well (i.e. we show that invariant I1 is maintained).
It follows from our inductive hypothesis that at time e;_; either SJF also worked on j or it had
already finished working on j. We are fine in the latter case. So, assume that at time e;_; SJF
worked on job j.

Inductive hypothesis I1 tells us that

t(SRPT:ja ei—l) S t(SJF:ja ei—l)

N | —

whenever ¢(SJF, j,e;_1) < p; and
t(SRPT:ja ei—l) S t(S‘]F:ja ei—l)

otherwise. The only way SJF might have done less work on j than SRPT by time ¢; is that SJF
switches jobs at some time ¢;_1; < t < e;. But this means that ¢ is the arrival of a new job and
hence, t* must have been an event of type 2. A contradiction.

We need to take care of invariant 12. Let e, be the last event preceding e; where SRPT switches
away from a job j” to j such that

t(SRPT, i,) < pjr.

It is clear from this definition that SRPT switches to job j at time ¢;, i.e. j/ = j".
We subdivide into two cases depending on whether SJF has finished working on j’ by time ¢;

or not.
Subcase 1: t(SJF, j', e;) < pj
It follows by induction (I2) that SJF must have executed job j’ prior to time e,. SRPT has finished
all jobs that have arrived in the interval [eq, €;] and so has SJF (using the inductive hypothesis I1).
Hence, at time €;, 7' must be the smallest job with positive remaining work for SJF as well.
Subcase 2: t(SJF,j', e:) = p;r
Assume SJF is working on job j! at time e;. We are fine if pjt > pjr. So, assume p;t < pj and
hence p;+ < pj:/2. Since SRPT is switching to job j' and cannot have finished job j' by time e;,
we must have

pjr —t(SRPT,j', e;) < pjt.
Let ¢ be such that

pjr —t(SRPT, j/,t) = pjt-
Job j1 must have been released after time ¢, i.e. r;+ >, since otherwise SRPT would finish job 4t
before finishing job j’ which is a contradiction. But this means that t(SRPT, j!,¢;) = 0 since job
j' was active throughout [r;+, e;]. This finishes the proof of case 1.
Case 2: ¢; is of type 2
Assume first, that SRPT switches away from job j to the new job j' at time e;. In this case, we

must have
pjr < pj —H(SRPT, j, e;)

and hence p;; < p;. It is now easy to see that SJF switches to j' too. This is clear if

j(SRPT, 61) Ij(SJF,ez)

15

Suppose SJF is executing a job j(SJF,e;) # j(SRPT,e;) at time e;. In this case, the inductive
hypothesis 12 guarantees that either

Pj(SRPT,e;) < Pj(SJIF,e;)

or
Pj(SRPT,e;) > Pj(5JF,e;) and t(SRPT, j(SJF,e;),e;) = 0.

We are fine in the first case. In the latter case, we can use the fact that SRPT has not worked at
all on j(SJF,e;). If SRPT switches to a job j' # j(SJF,e;) then, we must have

Pjt S Pi(SIFe)

and hence SJF switches to j’ as well since it employs the same tie-breaking rule as SRPT.
Now, assume that SRPT does not switch to j’. Suppose that SRPT has finished less than half
of job j, i.e.
{(SRPT, j,e;) < %.

In this case, we know that p;: > p;. Hence, SJF does not switch either since SJF and SRPT break
ties in the same way.

On the other hand suppose that SRPT has finished at least half of j. In this case, SJF has
finished j using inductive hypothesis 12. Hence, assume that SJF works on another job j” at time
e; and has switched to it at time e; < e;. Again, we are fine if p;» > p;. So, let’s consider the case
when p;» < p; and hence p;jn < p;/2.

Let ¢t € [0, T] be the point in time when SRPT finishes half of job J;, i.e.

{(SRPT, j,t) = %.

As before, since SRPT switches to job j’ at time e;, we must have
it S riu S €;.

Again, by a similar argument as above, we conclude that SRPT cannot have worked on j” at all
by time €; since j’ was active throughout the whole interval.

Case 3: ¢; is of type 3

Let j' be the job that SJF switches to at time e; and also assume that SRPT works on job j at
time e;. We are fine whenever p; < p;/. So, assume that p;; < p; and hence

g < =,
p]_Q

We know that

and let ¢ be defined such that
p; —t(SRPT, j,t) = pj.

Using the standard argument as in the preceding cases, we conclude that j' cannot have been
released before time ¢, i.e. 7;» > t. But j was active throughout the interval [¢, ¢;] and hence SRPT
cannot have worked on j’ at all by time ;.

This finishes the proof since it follows that at any time 0 < ¢ < 7" and for any jobindex 1 < j < n,
we must have t(SRPT, j,t) < t(SJF,j,t). This bound on the response time immediately implies
the claimed bound on the total slowdown of SRPT and SJF. a

16

6 Open questions

We have shown an algorithm that achieves a slowdown of O(log® B) with a O(log B) speed up,
where B is the ratio of the size of the largest job to the size of the smallest job. We believe that
it should be possible to obtain a slowdown of O(1) using a speed up of O(log B) for we do not
know of any stronger lower bound. It also remains open to find an algorithm which is polylog(B)
competitive given an O(1) speed up.

Another problem which lies in between our problem and clairvoyant scheduling is that of min-
imizing the weighted response time where the weights of the jobs are known but the job sizes are
unknown.

Acknowledgements

The authors would like to thank Avrim Blum for useful discussions.

References

[1] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling
continuous job streams. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
270-279, 1998.

[2] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. Nordic Journal of
Computing, 6(2):181-193, 1999.

[3] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time. In ACM
Symposium on Theory of Computing (STOC), pages 84-93, 2001.

[4] L. Hall. Approximation algorithms for scheduling. In Approzimation algorithms for NP-hard
problems, eds. D. S. Hochbaum, pages 1-45. PWS Publishing Company, 1997.

[5] M. Harchol-Balter, M. Crovella, and C. Murta. Task assignment in a distributed server. In
Conference on Modeling Techniques and Tools for Computer Performance Evaluation, 1998.

[6] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley, New York, 1991.

[7] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,
47(4):617-643, 2000.

[8] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In CRC handbook of theoretical

computer science, 1999.

[9] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability
results for minimizing total flow time on a single machine. In ACM Symposium on Theory of

Computing (STOC), pages 418-426, 1996.

[10] E. Lawler, J. Lenstra, A. Kan, and D. Shmoys. Sequencing and scheduling: algorithms and
complexity. In Logistics of Production and Inventory: Handbooks in Operations Research and
Management Science, volume 4, pages 445-522. North-Holland, 1993.

[11] M. Mehta and D. J. DeWitt. Dynamic memory allocation for multiple-query workloads. In
International Conference on Very Large Data Bases, pages 354-367, 1993.

[12] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Computer
Science, 130(1):17-47, 1994.

17

[13] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Online scheduling to minimize
average stretch. In IEFE Symposium on Foundations of Computer Science (FOCS), pages

433-442,1999.

[14] J. Sgall. Online scheduling. In Online Algorithms: The State of the Art, eds. A. Fiat and G.
J. Woeginger, pages 196-231. Springer-Verlag, 1998.

[15] A. C-C. Yao. Probabilistic computations: Toward a unified measure of complexity (extended
abstract). In IEEE Symposium on Foundations of Computer Science (FOCS), 1977.

18

