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Abstract

Data mining in large data sets often requires a sampling or summarization step to form an in-core

representation of the data that can be processed more e�ciently. Uniform random sampling is fre-

quently used in practice and also frequently criticized because it will miss small clusters. Many natural

phenomena are known to follow Zipf's distribution and the inability of uniform sampling to �nd small

clusters is of practical concern. Density Biased Sampling is proposed to probabilistically under-sample

dense regions and over-sample light regions. A weighted sample is used to preserve the densities of the

original data. Density biased sampling naturally includes uniform sampling as a special case. A memory

e�cient algorithm is proposed that approximates density biased sampling using only a single scan of the

data. We empirically evaluate density biased sampling using synthetic data sets that exhibit varying

cluster size distributions. Our proposed method scales linearly and out performs uniform samples when

clustering realistic data sets.



1 Introduction

Uniform sampling is often used in database and data mining applications and Olken provides an excellent

argument for the need to include sampling primitives in databases [17]. Whether or not uniform sampling

is the \best" sampling technique must be evaluated on an application by application basis. Some records

may be of more value in the sample than others. If we knew the value of each record, we could sample

by assigning a probability proportional to the importance of the record. It is unlikely that we can

de�ne the value of each record in the database and, worse yet, it may be di�cult to generalize results

obtained from such a sample because the sample is no longer representative of the database. Instead,

we'll consider applications in which it is possible to de�ne sets of equivalent records and use the size

of these sets to bias our sample while ensuring that the sample is still representative. Data mining

applications on spatial data are a natural application because we have a simple notion of equivalent

points: points that are close. To show the applicability of using groups of equivalent points to bias the

sample, we will concentrate on clustering a database.

Clustering can be generally de�ned as the following problem. Given N points in d dimensional

feature space, �nd interesting groups of points. There is no de�nitive way to quantify \interesting" but

many algorithms assume that the number of clusters, k, is known a priori and �nd the k clusters that

minimize some error metric. Other algorithms look at areas of space that are denser than some threshold

parameter and then form clusters from these dense regions. Clustering is of practical importance in

many settings. For example, clustering can be used for classi�cation problems in machine learning [16],

in information retrieval to identify concepts [4] or to improve the presentation of web search results [22],

by physicists to �nd the spatial grouping of stars into galaxies [15] and in general to �nd relationships in

the data and to succinctly model the data distribution. Interesting problems for all of these applications

involve data sets that have at least a million points.

A typical clustering algorithm will initialize the parameters of the model (randomly or based on a

sample) and iteratively use the model to assign the data to group(s). According to this assignment, a

new model is constructed. This iterative process involves the entire data set at each step and take an

unbounded number of steps to converge. It's essential that we reduce the data size. One solution is to

summarize the data and create a new representation that is more compact. The best algorithms based

on data summarization use the current model to summarize a subset of the data [2, 3]. As such, it's

imperative that the initial model for a summarizing clustering algorithm be representative of the data.

Alternatively, many people use a p-uniform sample (a sample in which each element has probability

p of being selected). A sample is selected from the database and clustered. Provided that the sample

was representative of the data, the clustering is expected to generalize to the entire data set. Once the

sample has been clustered, a single pass over the database to correct for small errors (due to sampling)

1



A
B

9.,900

9,900

DC

100 100

Figure 1: Example: four clusters with very skewed sizes

is recommended. To see why uniform sampling is not necessarily ideal, consider the example in �gure 1.

This example and much of the discussion is based on data generated by the \mixture model." The

mixture model assumes that the data is generated by a mixture of k Gaussian distributions. Each

distribution has a corresponding mean and covariance matrix and points are assumed to have been

generated by one of these Gaussians. Our example contains 4 clusters and the distribution of points

between clusters has been dramatically skewed: clusters A and B each contain 9,900 points while clusters

C and D each contain only 100 points. The shaded area contains most of the points of each cluster (the

dense core of the Gaussian distribution). A 1% sample of this data set would be expected to draw

around 99 points from each of A and B and a single point from each of C and D. For any given sample, if

one or more points are actually selected from the C and D clusters, they will likely be treated as noise

by the clustering algorithm. That is, we expect that clusters C and D will be completely missed!

Let us consider what has happened with this uniform sample to see what properties are needed by

a good sampling technique. First, it's important that the sample contain many points from the shaded

region because they will be the best representatives of the cluster. Uniform sampling has this property

since the shaded area is the dense core of the Gaussian. But, as we saw, the uniform sample fails

because it is not representative of all the groups of points. We want to sample more evenly from all

the di�erent groups. For example, if we already knew the clusters, we'd rather randomly pick 50 points

from each cluster to form the sample. Using the size of the groups to bias the sample is the heart of our

proposed method and we call this a Density Biased Sample. The density biased sample here will still

contain more points from the shaded regions. It is not necessarily a good sample because it is no longer

representative of the data (it makes A and C appear to be the same size). Instead, we notice that each

sampled point from clusters A and B is representing 9;900
50

= 198 points, while each sampled point from

cluster C and D is only representing 2 points. Augmenting the sample with a weighting of the points is

called a Weighted Sample.

Clusters sizes are not actually expected to be skewed as dramatically as was shown in the example.

Instead, it seems more likely that cluster sizes will follow a Zipf distribution. Zipf distributions occur
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extremely frequently in practice: they have been found in the frequency distribution of vocabulary words

in text (English and Latin works of literature [24]; Bible [6]); the distribution of city populations [24];

distribution of �rst and last names of people [5]; sales patterns [6]; income distributions (the \Pareto

law" [20]); and distribution of web-site hits [13].

The main contribution of this paper is to introduce a new sampling technique and an e�cient

algorithm that improves on uniform sampling when cluster sizes are skewed. The rest of the paper

is organized as follows. First, we present density biased sampling in general terms, parameterized to

form a set of sampling techniques that includes uniform sampling as a special case. We then comment

on related work. Next, we develop a one-pass algorithm that produces an approximate density biased

sample and informally characterize its behaviour. Experimental results follow which demonstrate that

density biased sampling is more e�ective than uniform sampling when the size of the clusters is skewed.

2 Density Biased Sampling

Suppose that we have N values x1; x2; � � � ; xN that are partitioned into g groups that have sizes

n1; n2; � � � ; ng and we want to generate a sample with expected size M in which the probability of

point xi is dependent on the group sizes (particularly dependent on the size of the group containing xi).

Our example from �gure 1 suggested the criteria that we want our sampling to satisfy. We will de�ne

a probability function and a corresponding weighting of the sample points that satis�es:

i) Within a group, points are selected uniformly.

ii) The sample is density preserving.

iii) The sample is biased by group size.

iv) Expected sample size is M .

Density preserving means that the expected sum of the weights of the points in the sample from a

group is proportional to that group's size. That is, if group i contains the points fx1; x2; � � � ; xnig, point

xj is included in the sample with weight wj with probability P (xj), then

niX
j=1

wj � P (xj) = �ni

for some constant �. This formalizes the notion of \representative of the data distribution."

To satisfy criterion i), we de�ne P(selecting point x j x in group i) = f(ni). Each point in the group

then has the same probability of being selected and we assign each point from the group equal weight
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w(ni) = 1=f(ni). The expected weight of the points in group i is:

niX
j=1

P (selecting point xi) � w(ni) =
niX
j=1

f(ni) � 1=f(ni) = ni

which satis�es property ii). To bias the sample by group size, we de�ne f(ni) =
�
ne
i

for any constant

e. Notice that for e = 0, we have simply de�ned a uniform sample (independent of group assignments)

and for e = 1 we expect to select the same number of points per group (as in the example). We de�ne

� such that the expected sample size is M (requirement iv):

E(# points in the sample) =
gX

i=1

E(# points in the sample from group i)

M =
gX

i=1

nif(ni) =
gX
i=1

ni
�

nei

) � =
MPg

i=1 n
1�e
i

The following observations apply in general and will be useful when we discuss an implementation

of density biased sampling. First, if there are g groups of size n
g
then every point is assigned the same

probability and weight. That is, we have implemented uniform sampling. The second observation is

that if each point is randomly assigned to a group, we will approximate uniform sampling. Since each

point is randomly assigned to a group, the expected group size is n=g. That is, the expected behaviour

will be to approximate a uniform sample when points are randomly assigned to groups.

If a density biased sample is being used for clustering purposes and the data truly was generated

by a mixture model, then the ideal de�nition of groups appears to be the clusters themselves. The

parameter, e, controls the sampling balance based on cluster sizes. For the special case that all clusters

are of equal size, the ideal groups are the cluster and so, because the groups are equal sized, ideal density

biased sampling is equivalent to uniform sampling. This observation will be useful in our experiments

to quantify the e�ects of using a simple set of groups.

3 Related Work

Sampling has attracted much interest in databases: Olken et al. give algorithms for uniform sampling

from hash tables and index trees [17]; Hellerstein et al. use sampling to give approximate answers to

aggregation queries [12]; Haas et al. use sampling to make estimates for the number of distinct values

of an attribute for query optimization [10].

Sampling is also used extensively for data mining: Commercial vendors of statistical packages (eg.,

SAS, at http://www.sas.com/) typically use uniform sampling to handle large datasets.
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Clustering is one of the typical operations in data mining. There is a huge literature on clustering

for Information Retrieval (see [18] for a recent survey), with additional interest in social and biological

sciences (see [11]). Clustering for large datasets has attracted a lot of interest in the database �eld.

Zhang et al. proposed the BIRCH algorithm which was the �rst to explicitly use a data summa-

rization step [23]. A tree of spherical groups of points (a CF-tree) is built and the size of spheres is

grown as memory is exhausted. The assumption that the points may be summarized as spheres is often

criticized and more recently Bradley, Fayyad and Reina have used the current model of the data to select

points that should be summarized by their su�cient statistics [2, 3]. They show that this model based

summarization is more e�ective than the BIRCH CF tree summarization. To produce good clustering

results, they assume that the data is randomized (or at least the initial portion of the data is a random

sample). It seems that a density biased sample would be ideal to \seed" their initial model.

Uniform sampling has also been used directly for clustering. CURE uses a uniform random sample

and a new hierarchical clustering algorithm that out-performs BIRCH in experiments using non-spherical

clusters that are unevenly sized with noise in the data [9]. They ensure that the sample is large enough to

adequately cover all clusters. Salem directly compares uniform sampling against CF-tree summarization

�nding the uniform sampling is as good a representation for su�ciently large samples [14]. Sampling in

both papers is done using Vitter's reservoir sampling [21].

Density Biased Sampling (DBS) is related to previous sampling techniques. In particular, Probability

Proportional to Size (PPS) sampling has similarities to DBS. PPS sampling is a multi-stage sampling

technique. The data is grouped and then some subset of the groups are chosen. From the chosen groups,

elements are added to the sample. In PPS sampling, the selection of groups is biased proportionally

to their size. DBS will be inversely biased by group size and is a one stage sampling technique. PPS

sampling would be di�cult if not impossible to implement as a one pass algorithm. Strati�ed sampling

is used for spatial analysis (for example, [19]). Strati�ed sampling is another form of two stage sampling.

4 Approximating Density Biased Sampling

Density biased sampling requires that the data be partitioned into \groups." We have no a priori

knowledge of how the data will be distributed and adopt the obvious technique for grouping the points.

Numerical attributes are divided into G bins and categorical attributes have a bin for each category.

When dealing entirely with d-dimensional numerical data, the space is divided into bins by placing a

d-dimensional grid over the data. If the data is drawn from a low dimensional space and the number

of occupied bins, B, is small, we can compute the bin counts using O(d � B) bytes. We call this an

exact density biased sample. If too many of the bins are occupied, an approximate histogram algorithm

can be used [8]. But, in higher dimensions, it becomes prohibitively expensive to merely represent the
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Figure 2: Density approximation by hashing

occupied bins.

Those potential implementations su�er from the lack of available memory. We propose a hashing

based approach where all available memory is used to create an array of bin counts. Call this array n

(then n[i] corresponds to ni in the previous section) and assume that it has H entries (indexed from 0).

To index into this array, we will use a hash function from the bin label to array index (see �gure 2). The

bin labels are integers (either in the range 0; � � � ; G� 1 for numerical data or 0; � � � ; c� 1 for categorical

data with c categories). Hashing bin labels should be similar to hashing strings since each element is

expected to be drawn from a relatively small range and we expect values to frequently di�er in only

one position (adjacent bins). Aho, Sethi and Ullman suggest that the hash function shown in �gure 3

is appropriate for the symbol table of a compiler [1]. For simplicity, assume that h(x) is a function

that takes value x, quantizes it and then invokes hash on the quantized version. Then the two pass

algorithm using a hash function to approximate density biased sampling is trivial and shown in �gure 4.

The second pass over the data makes this an unappealing algorithm. If 0 � e � 1, this algorithm

can be converted into a one pass reservoir style algorithm. The following lemma is needed to produce

a correct algorithm:

Lemma 1 If, when the data is restricted to the �rst j records, the probability of outputting some

record x is Pj . Then for j � j0, Pj � Pj0 .

Proof. Sketch ne and n1�e are monotone increasing functions and the probability function that we use
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hash((v1, ..., vd)) =

for i = 1 to d do h = h*65599 + vi

return h MOD H

Figure 3: Hash function

FOR each input point x DO n[h(x)] = n[h(x)]+1

Reset the input and compute alpha

FOR each input point x DO

with probability alpha/n[h(x)]^e, output (n[h(x)]^e/alpha, x)

Figure 4: Two-pass hash approximation to density biased sampling

is of the form

P =
M

nex
Pg

i=1 n
1�e
g

As more data is processed the number of terms in the summation will never decrease nor will any

value of n decrease and consequently the denominator of the probability function will be monotone

increasing and the probabilities will be monotone decreasing. 2

A bu�er of points that have some chance of being in the sample will be maintained. The bu�er

contains elements f< Pi; xi >g to indicate that xi was added to the bu�er with probability Pi. Suppose

that at some later point, xi would have probability P 0

i of being output. We can convert the current

output bu�er into a bu�er that is a density biased sample of the currently processed data. The lemma

tells us that P 0

i � Pi and consequently we will never erroneously discard a point due to an underestimate

of its probability. If we keep < P 0

i ; xi > in the bu�er with probability P 0

i=Pi (otherwise, remove this

entry from the bu�er), then xi is in the bu�er with probability P 0

i . The weight of a point is just 1=P 0

i

which means that we can output the weighted sample from the reduced bu�er. The one pass algorithm

is shown in detail in �gure 5

Assuming that reduce always removes at least one entry, this algorithm is equivalent to the 2-pass

version. It is equivalent because the current output bu�er is always a superset of a density biased sample

and the reduce operation converts it to a density biased sample of the data process to this point. When

reduce fails to remove any entries, we randomly select an entry to evict. This happens quite rarely in

practice1. In our experiments, the output bu�er is of size 1:1�M to generate a sample of expected size

M . The two lines marked with (*) compute the current denominator of � in constant time (instead of

time proportional to the number of bins).

1This approach, of course, creates a small bias toward points later in the database. It is trivial to correct this problem

by recording the number of times that each point in the bu�er \survived" one of the random evictions and using this to

weight the selection of the point to evict. But, since this does appear to be insigni�cant, it is not developed further.
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alpha_den = 0

FOR each input point x DO

IF n[h(x)] != 0 THEN alpha_den = alpha_den - n[h(x)]^(1-e) (*)

n[h(x)] = n[h(x)] + 1

alpha_den = alpha_den + n[h(x)]^(1-e) (*)

WITH probability P = min{ M/(alpha_den * n[h(x)]^e), 1 } DO

IF the output buffer is full THEN reduce()

add <P, x> to the output buffer

reduce()

FOR each output buffer entry <Pi, xi> DO output <1/Pi, xi>

reduce() is

FOR each output buffer entry <Pi, xi> DO

Let P'i = min{ M/(alpha_den*n[h(x)]^e), 1 }.

WITH probability P'i/Pi replace this entry with <P'i, xi>

OTHERWISE remove this entry

Figure 5: One pass hash approximation to density biased sampling

Obviously this one pass algorithm can be used for any representation of the bin densities. Hashing

is only used to map from input point to group size and any other mapping could be used here instead.

Collisions are a possible problem for this algorithm. It seems that the ideal value of e would be 1

because the sample will always be density preserving. If bins g and g + 1 collided to form bin g then

the expected weight of the points from bin g + 1 in the sample is:

ng+1 � P (selecting a point from g + 1) � weight of a point

= ng+1 �

M
g

ng + ng+1
� (ng + ng+1) =

M

g
ng+1

This computation is particularly interesting because it illustrates why collisions will not be a serious

problem in practice. If ng >> ng+1 then any points in bin g + 1 will be heavily over-weighted in the

sample. But, the probability of selecting one of the incorrectly weighted points will be very small. This

means that with high probability we will not output any points from bin g + 1. If two bins of about

equal size collide, an exact density biased sample would be expected to output more points from each

of these bins. Collisions perturb the sample but we see that a relatively small number of collisions will

not tend to dramatically change the sample.

Finally, a few words about the sensitivity of this algorithm to the parameters. For very small values

of H (the hash table size), the bins will be essentially randomly distributed to the various elements of

n and this will generate an approximation of a uniform sample (by our observation of random group

assignments). Similarly, if G is too large and each bin has occupancy 1 or 0 then this algorithm outputs

a uniform sample (because each occupied bin will be of equal size). For very poor choices of the hash
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table size or the number of bins per attribute, hash based density biased sampling will reduce to a

uniform sample. That is, the algorithm is expected to be quite robust to poor parameter choices.

5 Experiments

There are several unknowns that will be explored in our experiments. First, and foremost, we wish to

see that density biased sampling provides better clustering results than uniform sampling and BIRCH

when the cluster sizes follow a Zipf distribution. The Zipf data set will constitute an average case and

we explore a very skewed distribution of cluster sizes and a data set in which cluster sizes are all equal

to observe a range of behaviours.

We have chosen to represent groups by binning the data. This will have some e�ectiveness implica-

tions. Using equal sized clusters makes uniform sampling equivalent to ideal density biased sampling.

We can measure the e�ect of the binning by looking at this extreme case. We will �nd that binning

introduces a small error that is acceptable given the signi�cant improvements seen for realistic cluster

size distributions.

Our approximation uses hashing to map bins to their respective counts. This introduces an error

resulting from collisions. We will measure the e�ects of collisions and �nd that they make little to no

di�erence in the e�ectiveness of the sample.

5.1 Methodology

Several sampling or summarizing algorithms are compared experimentally. An experiment consists
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of selecting a data distribution, a clustering algorithm and then varying the amount of available memory

to measure performance for various sample sizes. All the contending methods use a single pass over

the data to generate a sample, weighted sample, or a summarized representation of the data. The

algorithms used are:

i) BIRCH. Summarization is done with CF-trees and the maximum available memory will be limited

to 2x the space needed to hold the sample [23].

ii) Uniform random sampling. A reservoir sampling algorithm is used and requires only the amount

of memory needed to represent the sample [21].

iii) Hash based approximation to density biased sampling. The amount of memory used is twice

the amount of memory needed to represent the sample. We will use two values for e for density

biased sampling. Using e = 1 is Inverse Biased Sampling (IBS) and e = :5 is Inverse Root Biased

Sampling (IRBS).

iv) Exact density biased sampling. The occupied bins are represented explicitly and the memory

needed is not restricted. The only di�erence between iii) and iv) are collisions in the hash table.

For e = 1, call this Exact IBS and, for e = :5, call this Exact IRBS .

BIRCH is included because it is extensively studied and has recently been directly compared to

uniform sampling for equal sized clusters in low dimensional space [14]. Our experiments extend the

cases in which BIRCH and uniform sampling have been directly compared. The hash based algorithm

requires auxiliary memory. The hierarchical clustering algorithm uses about twice the memory needed

to represent the sample and thus the decision to allow BIRCH and the hash based algorithm the

opportunity to use this memory is reasonable.

BIRCH is provided with a default con�guration that uses the framework shown in �gure 6. The

sampling and the re�nement step will be those used by BIRCH and are considered to be \o� the

shelf" components that are beyond our control. In BIRCH, the sampling step builds the CF-trees,

the clustering step uses a simple hierarchical clustering algorithm and the re�nement step implements a

single iteration of the k-means algorithm (the output clusters are the center of mass of all the points that

are included in the cluster). This framework is used by all our competing algorithms and consequently

any di�erences in performance are directly attributable to the sampling/summarizing technique.

5.2 Evaluation Metrics

The natural evaluation metric for the BIRCH algorithm is the root mean square (RMS) distance to

cluster centers. If we assign each point xi = (x1i ; � � � ; x
d
i ) to the closest cluster center, ci = (c1i ; � � � ; c

d
i ),
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Param. Value(s) Interpretation

N 200,000 Number of points

d 20 or 50 Number of dimensions

k 500 Number of clusters

� .05 Measure of standard deviation

p1; � � � ; pk Varies Probability of cluster membership

Figure 7: Parameters for data generation

then the distance from the center is the standard Euclidean distance

k xi � ci k2=

vuut dX
a=1

(xai � cai )
2

and the root mean square error is de�ned to besPn
i=1 k xi � ci k

2
2

n

RMS distance does not provide all of the information that we need. We are particularly concerned

with the number of clusters that are actually found by the respective algorithms. RMS distance does

not provide this information and we introduce a very simple metric to count the number of clusters that

are \found."

Suppose that we knew that the true cluster centers were fc1; c2; � � � ; ckg and we wish to evalu-

ate a system that found cluster centers fĉ1; ĉ2; � � � ; ĉk0g. We say that cluster ci is found if 9 ĉj with

k ci � ĉj k2 < �. We select � = 0:001 and de�ne the metric Number of Clusters found (NC) to be the

number of the true clusters that are \found." Notice that algorithms are not rewarded for �nding the

same cluster more than once nor are they rewarded for merging clusters.

5.3 Data Generation

We randomly generate data based on the parameters in �gure 7 using a mixture model. There are k

clusters and N points in the d-dimensional unit hypercube. Each of the d attributes for a cluster center

are generated in the range [:1; :9]. A diagonal covariance matrix is generated by computing a variance

in the range [0; �2] and using the square root of the variance. Covariances computed in this fashion are

in the range [0; �] but will have very few small values. Since � = :05 and the centers are generated in

the range [:1; :9], the majority of the points will be in the unit hypercube. For simplicity we discard

the few points that are outside the hypercube. To generate the data, each point is randomly assigned

to a cluster using the the probability distribution P (cluster i) = pi. Once assigned to a cluster, the

appropriate mean and covariance is used to generate a point according to a Gaussian distribution.
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The center of mass of each cluster is recorded for future use in computing NC. By using the center

of mass and not the randomly generated mean, any clustering that correctly classi�es all the points will

be guaranteed to \�nd" the cluster.

Three di�erent cluster membership distributions are used:

i) Even: All clusters are equally likely (pi = 1=k).

ii) Zipf : Cluster sizes follow a Zipf distribution (pi = 1=(Hk � i) where Hk is the kth harmonic

number).

iii) OneBig : One cluster has most of the points, all other clusters have 100 points (p1 = (n� 100(k�

1))=n and pi = 100=n for 2 � i � k).

Figure 8 shows a very small example of the data that is generated. This data was generated with

Zipf sizes, k = 10, n = 2000 and all other parameters unchanged. The clusters are fairly well separated

but we see that several clusters overlap in the bottom right quadrant. It will be very di�cult to exactly

�nd every cluster in data generated by this procedure.
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Figure 9: Zipf sizes (d=20): RMS Error predicted and NC for the same experiment

6 Results

Figure 9 shows performance for the algorithms for various sample sizes (equivalently memory size)

for 20-dimensional data with Zipf cluster sizes. We see that the relative orderings of the contending

algorithms is identical for the two metrics and we can see similar relative performance. This relationship

is true for all the experiments reported. Either metric could be used to draw similar conclusions. Due

to space limitations, we can only present one metric and use NC because it is easier to unambiguously

interpret.

BIRCH performs quite poorly in these experiments. BIRCH appears to require memory that is 10%

of the total database size to perform well in our 20 and 50 dimensional experiments. BIRCH tends to

do slightly better under the RMS distance metric than NC metric but is generally still quite poor.

In the average case, IBS and IRBS are much better than uniform sampling. Figure 11 shows NC for

various sample sizes for 20 and 50 dimensional data with Zipf cluster sizes. For 1% samples, IBS and

IRBS �nd approximately 2.3 times as many clusters as uniform sampling in 20 dimensions and more

than twice as many clusters in 50 dimensions. A 2.5% IRBS or IBS sample �nds 90% of the clusters

while a 2.5% uniform sample �nds fewer than 70% of the clusters.

As the cluster sizes become more skewed, this di�erence in performance increases. Figure 10 shows

the same information for data sets in which the OneBig cluster sizes are used. For 1% sample sizes,

IBS and IRBS �nd between 4 and 6 times as many clusters as uniform sampling. A 2.5% IBS or IRBS

sample �nds more than 95% of the clusters while a 2.5% uniform sample still �nds fewer than 70% of

the clusters.

Figure 12 shows that binning is a good approximation to the ideal groups for IRBS but not as good

for IBS. In 20 dimensions, IRBS is typically within 7.5% of uniform and in 50 dimensions generally

within 16%. On the other hand, IBS is only within 20% and 43% in 20 and 50 dimensions respectively.
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Figure 10: OneBig sizes (d=20/50): Ideal case for density biased sampling
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Figure 11: Zipf sizes (d=20/50): Data moderately skewed, density biased sampling excellent
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Figure 12: Even sizes (d=20/50): Ideal case for uniform sampling
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Figure 13: Zipf sizes (d=20/50): Collisions only cause minor di�erences

We see that IBS is sensitive to the quality of the groupings generated by binning the data but that

IRBS is hardly a�ected by our grid-based choice of group assignments.

Finally, �gure 13 shows that collisions have essentially no e�ect on clustering the Zipf cluster sizes

data set. In both 20 and 50 dimensions, the approximation is typically within 10 clusters of exact IBS

and exact IRBS.

To summarize:

� IRBS and IBS are much better than uniform sampling for clustering data sets with skewed cluster

sizes.

� Using bins is a reasonable choice for IRBS.

� Collisions do not reduce the e�ectiveness of IBS or IRBS.

We generally conclude that IRBS gives the best performance of any of the algorithms considered.

The running time of all the algorithms is linear in the database size and completely dominated by

the cost of reading the data. Figure 14 shows the wall clock running time to generate a 1% sample for

a 20 dimensional data set with Zipf cluster sizes. \Read-only" is the time is takes to read the data and

perform no other processing. The second row is the wall clock time less the time that it takes to read

the data. All algorithms are quite e�cient.

7 Applications and Further Research

We have used density biased sampling as a preprocessing step for clustering. Good summarization algo-

rithms assume that the data appears in a random order and that the �rst component is representative
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Method Read-only Sample BIRCH IRBS

Time (secs) 16.7 17.7 18.1 18.1

Time - \Read-only" 1.0 1.4 1.4

Figure 14: Zipf sizes (d=20): Wall clock execution times

of the data [2, 3]. Using a density biased sample is more likely to satisfy these assumptions than a

uniform sample of equal size (in bytes). So, not only can IRBS be used to cluster, it can also be used to

improve summarization based algorithms (such as [2, 3]) and to develop better initial models (as done

with uniform sampling in [7]).

More generally, density biased sampling o�ers a representative sample of the data that includes

more of the unexpected points. Any algorithm that does not require that all inputs be distinct can

be trivially extended to support a weighted sample. Many statistical algorithms use multiple samples

to reduce variability. Density biased samples should reduce the variability of the algorithms because

we can include more of the \unusual" points (ie, the points that are likely to induce variability) while

ensuring a representative sample.

Finally, it appears that it should be possible to e�ciently construct a density biased sample using

an R-tree index by descending in the R-tree only as far as needed to compute the bin sizes. Using an

existing index may make it possible to construct samples without reading the entire database.

8 Conclusions

We proposed a new sampling technique: Density Biased Sampling . Density biased sampling naturally

includes uniform sampling as a special case. We implemented density biased sampling using a hashing

function to map bins in space to a linear ordering allowing it to work with very limited memory. The

hash based approximation to density biased sampling with e = :5 (IRBS) is more e�ective for clustering

than either a uniform sample or a CF-tree summarization (for realistic data). We found that binning

is particular appropriate for IRBS and that collisions had little to no impact on the e�ectiveness of the

sample generated by IRBS and IBS.

The method favours clusters containing fewer points. Uniform sampling tends to miss these smaller

clusters. These clusters are the most likely to contain interesting results because the domain experts

are likely aware of the very large clusters. Using a Zipf distribution of cluster sizes (an \average" case)

and taking a 1% sample, IBS and IRBS �nd more than twice as many clusters as uniform sampling. As

the cluster sizes become even more skewed this increases to between 4 times and 6 times for 20 and 50

dimensions respectively.

16



References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers. Principles, Techniques and Tools.

Addison{Wesley, 1986. Pages 433{438.

[2] P.S Bradley, Usama Fayyad, and Cory Reina. Scaling clustering algorithms to large databases.

In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining

(KDD{98), pages 9{15, New York City, New York, August 1998. AAAI Press.

[3] P.S Bradley, Usama Fayyad, and Cory Reina. Scaling EM (expectation maximization) clustering to

large databases. Technical Report MSR-TR-98-35, Microsoft Research, Redmond, WA, November,

1998.

[4] Chris Buckley, Mandar Mitra, Janet Walz, and Clarie Cardie. Using clustering and superconcepts

within SMART: TREC 6. In Sixth Text REtrieval Conference (TREC-6), Gaithersburg, Maryland,

November 1997. National Institute of Standards and Technology (NIST), United States Department

of Commerce.

[5] Christos Faloutsos and H.V. Jagadish. On B-tree indices for skewed distributions. In 18th VLDB

Conference, pages 363{374, Vancouver, British Columbia, Aug. 23-27 1992.

[6] Christos Faloutsos, Yossi Matias, and Avi Silberschatz. Modeling skewed distributions using mul-

tifractals and the `80-20 law'. VLDB, September 1996.

[7] Usama M. Fayyad, Cory A. Reina, and Paul S. Bradley. Initialization of iterative re�nement clus-

tering algorithms. In Proceedings of the Fourth International Conference on Knowledge Discovery

and Data Mining (KDD{98), pages 194{198, New York City, New York, August 1998. AAAI Press.

[8] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics for improving ap-

proximate query answers. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD-98), volume 27,2 of ACM SIGMOD Record, pages 331{342, New York,

June1{4 1998. ACM Press.

[9] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An e�cient clustering algorithm for

large databases. In Proceedings of the ACM SIGMOD International Conference on Management of

Data (SIGMOD-98), volume 27,2 of ACM SIGMOD Record, pages 73{84, New York, June1{4 1998.

ACM Press.

17



[10] Peter J. Haas, Je�rey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-based estimation of

the number of distinct values of an attribute. In Proc. of VLDB, pages 311{322, Zurich, Switzerland,

September 1995.

[11] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

[12] Joseph M. Hellerstein, Peter J. Haas, and Helen Wang. Online aggregation. In SIGMOD Confer-

ence, pages 171{182, 1997.

[13] Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, and Rajan M. Lukose. Strong

regularities in world wide web sur�ng. Science, 280(5360):95{97, April 3 1998.

[14] Najmeh Joze-Hkajavi and Kenneth Salem. Two-phase clustering of large datasets, 1998. Manuscript

in preperation.

[15] Jeremy Kepner, Xiaohui Fan, Neta Buhcall, James Gunn, Robert Lupton, and Ghohung Xu. An

automated cluster �nder: the adaptive matched �lter. The Astrophysics Journal, 517, 1999.

[16] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[17] Frank Olken, Doron Rotem, and Ping Xu. Random sampling from hash �les. In Proceedings of

the 1990 ACM SIGMOD International Conference on Management of Data, volume 19,2 of ACM

SIGMOD Record, pages 375{386. ACM Press, June1{4 1990.

[18] Edie Rasmussen. Clustering algorithms. In William B. Frakes and Ricardo Baeza-Yates, editors,

Information Retrieval: Data Structures and Algorithms, pages 419{442. Prentice Hall, 1992.

[19] Brian D. Ripley. Spatial Statistics. John Wiley & Sons, 1981.

[20] Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from an In�nite Paradise. W.H.

Freeman and Company, New York, 1991.

[21] Je�rey Scott Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software, 11(1):37{57, March 1985.

[22] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstration. In Proceed-

ings of the 21st Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 46{54, 1998.

18



[23] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an e�cient data clustering method

for very large databases. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, volume 25, 2 of ACM SIGMOD Record, pages 103{114, New York, June4{6 1996.

ACM Press.

[24] G.K. Zipf. Human Behavior and Principle of Least E�ort: An Introduction to Human Ecology.

Addison Wesley, Cambridge, Massachusetts, 1949.

19


