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Abstract

This dissertation explores the use of machines connected to wide-area networks to
provide the parallelism needed to work on large coarse-grain parallel applications. Large
applications, such as circuit simulations, integer factoring, graphics applications, and NP-
complete approximations, have potential coarse-grain parallelism that exceeds the parallel
processing facilities at any single site. At the same time, the machines connected to wide-
area networks represent a large and growing source of under-utilized computing power.
However, in order to transform the idlemachines on awide-area network into a large scale,
wide-area distributed computing system, a number of problems need to be addressed:
latency, failure, security, process management, scale, and system administration. This
dissertation describes a prototype wide-area distributed computation system, calledWax,
that has been built and used to explore solutions to these problems.

Wax implements a programming model that takes into consideration the problems
that exist in distributed computing environments, particularly wide-area ones. The key
differences from traditionalparallel programmingmodels are a reducedglobal consistency
guarantee, the explicit incorporation of failure into the model, and reduced access to the
local executionmachine. The first two differences allowWax to expose the effects of some
these wide-area problems (failure, latency, scale) to the application programmer. Themost
appropriate solutions to these problems often require application-specific knowledge. The
third difference allows Wax to incorporate mechanisms to protect the resources used to
process applications from abuse by those applications.

Instead of providing a global consistency guarantee, which not all applications require,
Wax handles some of the other wide-area problems (processor failure, process manage-
ment) that existing distributed computation systems leave to their users. By deemphasiz-
ing consistency,Wax is also able to provide applications with greater potential parallelism.

Since theWaxprogrammingmodel differs from those supported by existingdistributed
computation systems, the dissertation also identifies a class of applications that can be
solved using the model. In addition, the dissertation reports the performance of Wax
implementations of several applications from the general class.
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Chapter 1

Introduction

Large applications, such as circuit simulations, integer factoring, graphics applications,
and NP-complete approximations, have potential coarse-grain parallelism that exceeds
the parallel processing facilities at any single site. The largest multi-processing super-
computers have on the order of 1000 nodes, but suchmachines are not common. My thesis
is that themachines connected to a wide-area network can provide the parallelism needed
to work on large coarse-grain parallel applications. In order to prove my thesis, I have
built a prototype wide-area distributed computing system called Wax. My work provides
a number of contributions in the area of distributed and parallel computing:

� I have identified a high capacity computing resource and the problems that must be
addressed in order to turn the raw resource into a useful multiprocessor.

� I have designed a programming model that recognizes many of the problems which
exist in a distributed computing environment and is, therefore, feasible to implement
and use in such an environment. Since the model differs from those supported by
existingdistributed computation systems, I have also identifieda classof applications
that can be solved using the model.

� I have built and evaluated a prototype wide-area distributed computing system,
called Wax.

The remainder of this introduction provides an overview of the research I performed to
demonstratemy thesis and a roadmap through the remaining chapters ofmy dissertation.

The impetus for this thesiswas the realization thatwide-area networks represent a large
and growing source of under-utilized computing power. More and more workstations
and personal computers are being connected to local-area networks, which are themselves
being linked to wide-area networks, such as the Internet. As of January 1994, the Internet
connected 2.2 million machines and had a growth rate of about 5% a month [Lot94]. In
addition, surveys [DO89, Nic87, TLC85] of local-area networks have shown that many of
the machines connected to such networks are idle at any given time.

In order to transform the idle machines on a wide-area network into a large scale,
wide-area distributed computing system, a number of problems need to be addressed:

� Latency. The communication links that make up a wide-area network tend to have
low throughput and high latency. The communication speeds of wide-area networks
range from .1 megabits per second (Mb/s) to 5 Mb/s, as compared with 10 Mb/s
to 1000 Mb/s for local-area networks and traditional multiprocessors. The physical

1



2 Chapter 1. Introduction

separation of machines on wide-area networks provides a lower bound on the com-
munication latency is approximately 1ms per 200 miles. In general, latency is higher
than this lower bound due to delays introduced by intermediate network nodes.

� Failure. Machine and network failures happen regularly. The mean-time-to-failure
(MTTF) for a host on the Internet is approximately 18 days [LCP91]. The MTTF of
a distributed computation decreases linearly as the number of machines that are
used increases. Furthermore, in a system that only uses otherwise idle resources,
computationswill also be interruptedwhen a previously idlemachine is used locally.
Any interruptions or failures must be handled without requiring that the entire
computation be restarted.

� Process Management. This problem can be divided into two pieces: resource iden-
tification and resource allocation. Resource identification covers the mechanisms
that allow application programmers to identify which machines can be used by a
computation, and resources providers to control which machines can be used by
the distributed computing system. The mechanism used by resource providers will
typically have both a static and a dynamic part. The (relatively) static part defines
the set of machines that can potentially be used, while the dynamic part determines
which of those machines is currently available. The definition of “available” is a
major policy issue for a distributed computing system. The resource allocation is-
sues include how to assign machines amongst multiple computations and what to
do when a failure occurs. The latter issue, at least in the case of network failures, can
be viewed a computation competing with itself for resources.

� Security. The distributed computation system must protect the resources that people
and organizations are making accessible for use in a wide-area computation. For
small systems running on private networks with all machines belonging to one
group, this issue may not be very important, but as the system grows larger (used
by more people or multiple organizations) they become critical. Mechanisms are
needed for preventing accidental or malicious attacks on the resources that are local
to the remote machines. There should also be a means of tracking where a job has
executed, so that problems can be identified if necessary. Protecting the applications
that are being processed by the computation system is harder (impossible), because
the remotemachine that is executing the computation has complete control over that
application.

� Scale. Many of the proceeding problems become harder as the number of machines
involved grows. A large-scale distributed computation system should be able to
manage thousands of processors; individual computations might use hundreds of
processors. To be able to grow to such size, the mechanisms used to solve the
problems in the distributed computation system must scale appropriately.

� System Administration. The structure of a distributed computation system must
not conflict with the autonomy of the various organizations whose machines are
connected to the system. Within one organization, there may exist multiple levels of
control, for example: company/university, a department, a group, and the primary
user of amachine. Adistributed computing systemneeds to allow resourceproviders
to quickly and independently recover the use of their resources from the distributed
computing system.



3

Withmore andmore machines being networked together, these problems can arise even in
inter-networks, such as the one at CMU, that geographically one thinks of as being local-
area networks. Therefore, in this thesis, I will use “wide-area distributed computation
system” to refer to any distributed computation system that must handle two or more of
these problems.

Chapter 2 examines how these problems have been handled in existing distributed
computation systems. While these systems are a source of ideas, the direct applicability of
their solutions is unclear, because the systems are, in general, intended for use bymedium-
sized groups of people sharing a common pool of resources on a local-area network. The
larger, more public, and less secure environment of a wide-area, distributed computing
system requires solutions that are more tolerant of failures, more security conscious, and
more scalable. This thesis provides a stepping stone across the gap between the existing
distributed computation systems and a large scale, wide-area, distributed computation
system that would allow programmers to exploit the computing resources of the Internet
as they now do the data resources of the Internet [Cat92, Kah91, Sch89].

One of the stepping stones provided bymy thesis is a programming model that reflects
the problems that exist in distributed computing environments, particularly wide-area
ones. The key differences in the model, as compared to traditional parallel programming
models, are a reduced consistency guarantee, the explicit incorporation of failure into the
model, and reduced access to the local execution machine. The first two differences allow
an implementation to expose the effects of some problems (failure, latency, scale) to the
application programmer. Another effect of the second difference is that an implementation
of the model must handle some of the problems (processor failure, process management)
that the existing distributed computation systems leave to their users. The third difference
allows an implementation to incorporate mechanisms to protect the resources used by the
implementation. Chapter 3 describes the model in more detail.

In Chapter 4, I describe the implementation of the prototype system,Wax, that I built to
demonstrate theutilityofmyprogrammingmodel. Wax alsoprovidesameansof exploring
the security, process management, and resource management issues raised by large scale
distributed computing. In particular,Wax incorporates anumber ofmechanisms that allow
resource providers to control when and by whom their resources are used and to protect
those resources while they are being used by Wax. Wax has been in regular operation at
CMU and the University of Washington for the past nine months.

What is Wax? To the application programmer, Wax is a library of routines that, when
linked into an application, (potentially) allow the programmer to execute pieces of the
application in parallel and to share data between those pieces. To the user of such an
application,Wax looks much like a traditional batch system. The user submits a job toWax
for processing, the system schedules the job for execution, and then returns any output.
Behind these interfaces are a collection of system processes that make Wax function (see
Figure 4.1).

In Chapter 5, I identify the class of applications that can be solved with this model.
The applications in the class generally have a large amount of coarse-grain parallelism
and do not depend much on global consistency. The class includes applications such as
independent distributed simulation [JCRB89], graphics and film animation, many proba-
bilistic algorithms, and integer factoring [LM89], that require no communication between
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the elements of the computation. It also includes applications, such as the quadratic as-
signment problem [PC89], that share intermediate results in order to reduce the amount of
computation. Chapter 5 also sketches out possible Wax implementations for several appli-
cations, and provides a framework that application programmers can use to evaluate the
feasibility of implementing a particular application using theWax programming model.

In Chapter 6, I evaluate the contributions ofmy thesis by examiningWax’s performance
for several applications and its impact on resource providers. I also explore the lessons
that can be learned from having built Wax, and suggest some future work along the path
towards the goal of building a large scale, wide-area, distributed computation system.

I conclude the thesis by summarizing my results and contributions in Chapter 7.



Chapter 2

Related Work

The earliest distributed computation systems ran on theArpanet in the late 70’s. One of
thefirstwasCreeper,whichmovedbetweenTenexmachinesas it printedafile. The “Worm”
programs [SH82], built by Shoch and Hupp at Xerox PARC in the early 80’s, created and
used the first general-purpose distributed computation system. The Cambridge Processor
Bank [NH82] was another early system to support remote execution. It dynamically
assigned processors selected from a pool of machines to users when they logged in.

Anumberofdistributed computation systemshavebeendeveloped since the early80’s.
These systems can be divided into general-purpose systems, which support the execution
of arbitrary application code, and special-purpose systems, where the remote execution
mechanism is an integral part of a specific application. The next section provides a brief
overview of a number of systems, which cover the range of possible implementations.
Four criteria will then be used to examine howWax fits into the existing body of research:
programming model, failure model, process management, and system security.

2.1 Current Systems

Distributed computation systems have existed for many years. They have been im-
plemented both as user-level tools, and as part of operating systems. Most of the current
distributed computation systems are user-level implementations. Two exceptions are dis-
cussed in this section: Sprite [DO89] and the V system [The86, TLC85]. The user-level
implementations tend to be more portable, since many operating systems support similar
application programming interfaces. On the other hand, direct access to the operating
system internals can make some features easier to implement, such as process migration.

All of the user-level implementations have system processes that run on any machine
that is to be accessible to the computation system. These system processes typically
monitor the status of the machine and handle task creation and termination. The user-
level implementations also limit users to machines for which they have login accounts.

The rest of this section provides brief sketches ofWax anda numberof the other existing
distributed computing systems. These sketches will serve as a basis for comparing some
of the important features, such as programming model, failure model, security, etc., of the
various systems later in the chapter.

5
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2.1.1 Butler

The Butler system [Nic90] at Carnegie Mellon University allows users to access other
machines in the same cell of the Andrew File System (AFS1) as their home machine. A
special command is used to start a process on a remote machine with a specified machine
type and software environment. The system starts the task if an appropriate machine
is available in the pool of idle workstations. Butler does not provide mechanisms for
monitoring tasks or automatically restarting tasks. In particular, if the owner of a machine
returns, the process started by Butler is terminated by the local Butler daemon. AFS is used
for data sharing, and provides a common execution and authentication environment.

2.1.2 Condor

Condor [LLM88], developed at the University of Wisconsin, allows users to build a
multiprocessor out of the machines connected to a local area network. The machine from
which the user starts a computation is the master processor. The system dynamically
allocates other idle machines to serve as slave processors. The only supported inter-
process communication mechanism is the file system on the master machine. Condor uses
a special library to redirect file operations back to the master processor. This dependence
on themaster machine means that it must always be available. Condor can checkpoint and
move tasks between remote machines when a slave processor is reclaimed by its owner.

2.1.3 Marionette

TheMarionette [SA89] systemfromtheUniversityofCalifornia at Berkleyuses amaster-
slave model of computation and requires the user to define the set of available machines.
It also provides facilities for using a collection of heterogeneous machines. Marionette
provides shared data that can be updated by the master and read by the slaves. A special
program is used to create and distribute the slave executables to the available slaves and
then start the master process. The slave operations are automatically assigned to available
processors by the run-time system. While Marionette does not support explicit process
migration, it will restart an operation on another slave if a slave crashes.

2.1.4 PVM

PVM [GBD+93] provides users with a “parallel virtual machine” made up of a hetero-
geneous collection of machines connected on a network. Users can program this virtual
machine much like a conventional multiprocessor, as PVM supports both message-based
communication and either distributed shared-memory (versions 1 and 2) or a sychronous
blackboard (version 3).

APVM application consists of one ormore user defined components. When instantiated
as a PVM process, a component will perform one piece of a computation, for example,
solve a matrix. A component defines a mapping between a name and a set of executable
images that can be used to create PVM processes, one for each machine type. When

1AFS is a registered trademark of the Transarc Corporation.
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instantiating a component, the system selects an available machine from the pool defined
by the executable images associated with that component.

2.1.5 Spawn

Spawn [WHH+92] is a distributed computing system developed at Xerox PARC.Spawn
is designed to run on idle workstations connected in a local area network. It serves as both
a source of computing cycles and as a test bed for exploring resource allocation policies.
Computing resources are allocated using an auction mechanism.

A Spawn computation is structured as a tree of tasks, where each Spawn task is actually
a pair of processes: an application manager and an application worker. The application worker
performs the desired computation and transmits (implicitly or explicitly) the results to
its corresponding application manager. This manager process then merges the results with
those produced by any sub-tasks that it has spawned and passes the merged results to its
parent manager. With an appropriate application manager, the application worker can be
a program that does not directly interact with Spawn.

2.1.6 Sprite

The Sprite [DO89] network operating system, which was developed at the University
of California at Berkeley, is designed to run on a local-area network. Every machine in
the network runs an operating system kernel that provides shared access to a common
distributed file system. The system supports two forms of task migration. The first allows
users to explicitly start or move tasks to a remote machine. The second is used by the
system to return a migrated task to its originating host when the workstation on which
it is executing becomes busy. The system does not support the direct migration of tasks
between remote machines.

2.1.7 Utopia

Utopia [ZWZD92], developed at the University of Toronto, is designed to balance the
load on a heterogeneous collection of networked computers. The system does not directly
provide any inter-process communication mechanisms, but depends on the availability of
a distributed file system with a uniform name space on all machines.

Utopia is primarily intended to function in a local-area environment, but it has a
clusteringmechanism that can be used to extend the system to larger numbers ofmachines
or more widely distributed groups of machines. The system load balances only at process
startup. It does not provide any automated recovery mechanisms.

Utopia and its commercial derivative, LSF2, provide a wide range of user interfaces. A
user can access the system implicitly using a modified version of the Berkeley C-shell or
explicitly from either shell scripts or C programs or by using a distributed batch system.

2LSF is a registered trademark of the Platform Computing Corporation.
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2.1.8 V

V [The86, TLC85] is a network operating system developed at Stanford. The V-kernel,
which implements processes, address spaces, and network transparent inter-process com-
munication, runs on every machine in the network. Most traditional operating system
services are implemented by servers outside of the kernel. These servers, and all other
tasks, can move among machines to balance the work load.

2.1.9 Zilla

Zilla [Cra90] is a distributed computation system for networks of Next computers. To
perform a computation, a user creates a “network” of machines, assigns a program to
each one, and starts them. A master process is used to control the slave programs on the
remote machines. NFS is typically used to collect the results. There are limited facilities
for attaching non-Next computers to the Zilla network.

2.1.10 Wax

Wax allowsprogrammers touse the computingpower available in the idleworkstations
connected to local and wide-area networks as though it were a giant multiprocessor. Wax
supports a programming model that provides a task heap-based execution model and a
shared-data store that provides only limited consistency guarantees. The data store, called
a blackboard, is an associative memory with information stored as (key, value)-tuples.
With this programming model Wax is able to avoid performing global synchronization
operations that can be costly in environments that have relatively slow, high latency,
communication links and may involve large numbers of nodes. The system provides
automated task management and uses process checkpointing to recover from failures and
support process migration.

The Wax blackboard is loosely modeled after the tuple-spaces used in the Linda sys-
tem [CG89]. The key difference between the two mechanisms is the consistency that they
guarantee. Linda maintains a globally consistent tuple space, which allows tuples to be
used for inter-task synchronization. Wax, on the other hand, only guarantees that individ-
ual data store read and write operations are atomic. Different Wax tasks may see different
sets of keys in a blackboard and/or different values for a particular key.

In order to provide the organizations making their machines available to Wax with
autonomous control of those machines, Wax is structured as a collection of cooperating
domains. Each domain consists of machines belonging to one organization.

2.1.11 Special Purpose Systems

While there are no general purpose wide-area computation systems, there are several
special purpose ones. These include network games, such asNetTrek, and the system built
by Lenstra andManasse [LM89] for factoring large numbers. NetTrek uses a central server
to coordinate communication among a small number (up to 16) of clients. Each client
maintains its own view of the system based on the the updates reported by the server.
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The players must adapt to the delays and inconsistencies introduced by slow or congested
network links.

Lenstra andManasse’s system uses available machines to attack one problem at a time.
A master machine assigns parts of the factorization to participating hosts. Electronic mail
is used for inter-host communication. Additional instances of the system must be run to
work on more than one factoring problem.

Another important special purpose system was the Internet Worm [Spa88], which
raised concerns among potential resource providers about the potential risks of support-
ing distributed computation. One concern is that an application could monopolize the
resources on a machine or network. Another is that a distributed computation system
could be used to examine or modify data that is not otherwise accessible across the net-
work.

2.2 ProgrammingModels

While the previous section described each system in isolation, this section, and the rest
of the chapter, examines their commonalities and differences in a number of areas. The
purpose of this examination is to determine both which features should be incorporated
in large scale computation system, and which features may be difficult to support. The
rest of this section focuses on the programming model supported by the various systems.

Existingdistributed computation systemshave typically attempted tomakea collection
of workstations connected to a local area network appear to be a single machine. They,
therefore, support programming models that are similar to those used on uniprocessors
and conventional multiprocessors.

A programmingmodel defines a process or executionmodel, one ormore inter-process
communication (IPC) mechanisms, and a data consistency model. The process model
determines howan application can be decomposed into pieces for scheduling andpossibly
parallel execution. The data consistency model defines guarantees about the ordering of
process and IPCoperations performed by an individual process and byprocesses executing
in parallel.

2.2.1 Process Models

The existing distributed computation systems support a variety of process models.
Each model is suited to different types of applications.

Butler, Condor, Marionette, and Zilla implement a master-slave model. In the master-
slave model, the initial, master, process in a computation controls the execution of remain-
ing (slave) processes. Slaves will generally communicate directly with only the master.
This model is appropriate for computations where the various components are indepen-
dent of each other.

Spawn, Sprite, Utopia, and V support a task tree model. The task-tree model is a gen-
eralization of the master-slave model that allows multiple levels in the process hierarchy.
This is a natural process model for applications that use recursive decomposition to solve
a problem, for example, branch-and-bounds searches.
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PVM uses a peer-to-peer model. The peer-to-peer model treats all processes as equals,
which makes it more flexible. In particular, any process can wait for the termination of
any other, and communication links may exist between any pair of processes. A master-
slave or task-tree process model can be implemented on top of a peer-to-peer system.
The opposite, however, may not be true, because the termination of a non-leaf process
in a master-slave or task-tree system may terminate, or disconnect, all processes below
the dead process. A peer-to-peer model is best suited for computations where multiple
processes are performing similar tasks on a common data store.

Wax uses a task-heap model. In the task-heap model a computation is divided into
pieces that can be, but do not have to be, executed in parallel. There is no guaranteemade
about which, if any, of the tasks in the task heap will be executed in parallel. Applications
using futures for speculative execution or probabilistic algorithms are well suited to this
model.

2.2.2 Inter-Process Communication

The existing distributed computation systems also support a wide variety of inter-
process communication (IPC) mechanisms. While Butler, Utopia, and Zilla do not directly
support any IPC mechanisms, they all require the environment in which they are used
to provide a distributed file system. A user of any of these systems could, in principle,
implement any other IPC mechanism they needed. This dependence on a distributed file
system is a possible impediment to using these systems across organizational boundaries,
because cooperating organizationswouldneed to support the samedistributed file system.
In addition, if authenticated access to the file system is desired, then some means of inter-
organizational authentication would also be necessary.

IPC in Condor is also done through the file system, but Condor does not require a
distributed file system. Applications are linked with a library containing special versions
of the C input/output routines, which redirect file operations back to the master machine.

Marionette goes beyondfile-based IPCandalso provides a restricted form of distributed
shared-memory, where only the master process may modify the shared-memory. Mari-
onette provides both function-shipping and data-shipping mechanisms for updating the
shared memory. All update operations are ordered relative to the invocation of “worker”
operations. A worker operation performs an idempotent piece of the whole computation.
In particular, a worker operation is defined to be a function of the arguments passed to
the operation and the state of the shared data structures at the time the operation is in-
voked. Each slave process will typically execute many worker operations in the course
of a computation. The state of a slave process only needs to be updated at the start of an
operation. Marionette delays propagating updates of shared memory in order to eliminate
intermediate updates.

Message passing is theprimary formof IPC in Spawn. Tasksmay communicate through
a distributed file system if one is available.

PVM provides its users with the broadest range of communication options. While
message passing is the recommended form of IPC, the system also provides distributed
shared memory and permits tasks to access files.
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2.2.3 Data Consistency

All of the existing distributed computation systems provide consistency guarantees
that are similar to those provided on uniprocessor and traditional multiprocessors. While
strong data consistency guarantees make it easier for programmers to reason about the
behavior of their programs, they come at a cost: additional processing, communication
overhead, and extra delays to maintain event ordering. These costs can limit the paral-
lelism available to applications. Furthermore, the performance cost of maintaining data
consistency is often exacerbated by the failure of the machines and networks being used
by a computation.

Wax provides more limited consistency guarantees: different processes can observe
different views of the shared data store, and individual processes can be executed more
thanonce. Limitedblanket guarantees andmechanisms that allowprogrammers to enforce
consistency as necessary make it possible forWax to maximize the parallelism available to
applications.

2.3 Failure Models

Distributed computation systems generally ignore the issue of failure. Given that they
were designed for use in local-area networks, where failures are infrequent, this decision
is neither surprising nor unreasonable. All of the systems, except PVM, are vulnerable to
the failure of a single process: the master process or the root of the task tree.

Only Condor andMarionette have mechanisms for recovering from the failure of slave
processes. The ordering of memory updates and task invocations used by Marionette to
implement its distributed sharedmemory is also used to recover from the failure of a slave.
If a slave crashes, the necessary application state is restored in another slave by replaying
the recorded memory updates.

Condor periodically writes checkpoint records so that it can quickly release resources
when amachine is reclaimed. These checkpoint records are stored on themachine running
the master process. If a machine crashes, Condor can recover the interrupted process by
shipping themost recent checkpoint record to anothermachine. TheCondor programming
model leaves no residual dependencies on previously used slave machines.

The remaining systems only provide mechanisms to monitor the status of executing
processes. They leave process recovery entirely to the application programmer. Any
application-specific failure recovery mechanism for the systems using master-slave or
task-tree process models would have to be incorporated into the master or root process.

A PVM application can be made failure tolerant by adding a task management com-
ponent. An instantiation of this component monitors the status of the other processes
working on the computation and initiates appropriate recovery code when a failure is de-
tected. Multiple instances of the task management component are needed to avoid having
a single point of failure. In PVM versions 1 and 2, this mechanismc could only handle
the failure of a PVM user process. In those versions of PVM, the death of a PVM system
process would cause the remaining system processes to exit.
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2.4 Process Management

A basic requirement of a distributed computation system is the ability to locate an
available machine and to start a task on that machine. All of the existing distributed
computation systems provide this; however, the definition of “available” varies from
system to system. In Butler,Condor, Sprite,Wax, andZilla amachine is available if no one is
using the machine’s console and the system load is below a certain threshold. Marionette,
PVM, Utopia, and V always consider machines to be available. While Utopia and V will
choose the least loaded machine, Marionette and PVM use round-robin assignment. In
Spawn, an auction mechanism is used to allocate idle machines.

Condor, Sprite, V, and Wax also support process migration. Condor and Wax migrate
tasks to other available machines, when the machine currently being used by a task be-
comes busy or crashes. Sprite returns a task to themachine where it was created, when the
current machine becomes busy. V uses process migration to balance the load amongst the
pool of available processors.

2.5 System Security

The security requirements of distributed computation systems can be divided into two
broad categories: protecting resources and protecting the system’s users. In principal,
the resources connected to a distributed computation system should be as secure as they
are in the absence of that system. To achieve this goal, resource providers must be able
to control who can use their resources. In addition, a task executing in the computation
system must have no more ability to attack the machine on which it is executing than if it
were executing elsewhere in the network.

2.5.1 Protecting Resources

Protecting the resources used by a computation system has usually been a secondary
consideration in the design of such systems. The existing systems have tended to either
ignore the problem or rely on the security mechanisms of the underlying operating system.

Condor, Marionette, PVM, and Zilla users must have a login account on every machine
that they use. The executing processes then have whatever privileges the user has on that
particular machine.

Butler relies on the security provided by AFS. Given that Butlerwas designed to run in
clusters of public workstations where all personal files are stored in AFS and users have
accounts on all machines, this is probably a reasonable decision.

The mechanism used by Condor to relay file operations back to the host running the
master task leaves thatmachine open to attack fromanymachine that is currently executing
a slaveprocess. Theproxyprocesson themastermachine that performsfile operationsdoes
not distinguish Condor slave processes from other process executing on slave processors.

A problemwith relying on the operating system for security is that an operating system
consists of a large amount of code and has many interfaces. Ascertaining that applications
cannot exploit security weaknesses in that code or those interfaces is difficult. As a result,
the absence of system-specific security measures leads potential resource providers to
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worry that connectingmachines and networks to a distributed computation systemmakes
the resources more susceptible to attack.

Wax incorporates a number of mechanisms to protect the resources it makes available.
In particular, Access Control Lists (ACLs) are used to protect all machines used by the
system. In order to be able to enforce the access controls, a mutual authentication protocol
is performed when communication links are set up. For most Wax communication links,
the authentication protocol is implemented as part of a communication package that is
similar to the secure remote procedure call (RPC) mechanism developed at Xerox PARCby
Birrell [Bir85]. Wax also logs where all computations are processed, so as to provide an
audit trail should problems arise.

2.5.2 Protecting the User of a Computation System

Protecting the user of a distributed computation system is harder than protecting
resources. It is currently beyond the scope of a distributed computation system to provide
an execution environment that is as secure as a single machine connected to a network.
Just as a user is ultimately forced to trust themachine towhich they are directly connected,
they are also forced to trust all of the machines that are used to process their computation.
While a task is executing, the host onwhich it is runninghas complete control over all data
that is accessible to that task.

Atpresent, the onlyway toprotect tasks fromattack is to allow theusers of a distributed
computation system to control which machines are used to process a computation. With
this ability, users can choose the right balance between security and computing power. To
facilitate tracing problems that are discovered after a computation has been processed, it
should also be possible to tracewhere the various pieces of the computationwere executed.

The development of secure co-processor systems, such as the Dyad system from
CMU [TY91, Yee94], offers the prospect of a future network environment in which a
distributed computation system will be able to provide better protection for both resource
users and resource providers. A secure co-processor system uses a physically secure com-
ponent (a special chip or card), containing a processor and some non-volatile memory, to
bootstrap a secure execution environment on the primary processor of a standard PC or
workstation. In an environmentwhere co-processors are in use, a distributed computation
system could be configured to use only those machines that are known to running secure
operating systems or users could be allowed to specify that a computation should only
use such machines. In addition, a secret key stored in the co-processor could be used to
uniquely identify each of the machines used by the distributed computation system.

2.6 HowWax Compares

Figure 2.1 lists the major features provided by each of the distributed computation
systems discussed in this chapter. Twomajor features distinguishWax from all of the other
distributed computation systems: integrated security mechanisms and better tolerance for
failures. The ability of Wax to tolerate failures is in part due to the limited consistency
guarantees of its shared data store. While none of the existing systems provides the same
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Figure 2.1: This table lists the features provided by the distributed computation systems

discussed in this chapter. An x indicates the system supports the feature, while a blank
means the feature is missing. A 1 means that the system emulates file access on top

of its native shared data store. A 2 means that the system automatically recovers from
the failure of slave processes, but not the master process. A 3 means that the system

provides mechanisms which allow the application to be notified of failures.

set of services as Wax, each of Wax’s other features has been implemented in one or more
of the other systems.



Chapter 3

Programming Model and Interface

This chapter describes the programming model seen by users of Wax. The chapter
starts with an overview of the features of the programming model. It then discusses some
of the features that themodel lacks. Following this overview is a description of failure-free
behavior of the operations provided by the model. The last part of the description is a
discussion of how applications can synchronize the execution of component tasks, given
the lack of a global consistency guarantee. The remainder of the chapter focuses on the
existence of failures is incorporated into the model.

As was described in the previous chapter, distributed computation systems that sup-
port traditional multiprocessor programming models do not deal well with failure, and
will have difficulty scaling to large numbers of processors. TheWax programming model
was specifically designed to allow the implementation of a computation system capable
of tolerating the latency and failures that occur in distributed systems. There is a clear
feedback loop between the model and the implementation. As expected, themodel drives
the implementation, but some features of themodel are present strictly because they admit
a reasonable implementation. For example, the Wax data model does not automatically
guarantee that data written by onemachine will be instantly, or even ever, seen by another
machine. Instead, the system implementation distributeswrites through to othermachines
in the network as resources permit. Where synchronous distribution of data is required,
Wax provides interfaces that enable it, but with a cost that is clearly exposed to the ap-
plication programmer. There are also features in the model that are included to handle
real-world problems that an implementation would face. This applies, in particular, to the
inclusion of access controls.

3.1 Basic Concepts

The Wax programming model supports a number of concepts that can be applied to
parallel distributed applications:

� processors and memory to execute tasks

� automated process scheduling and management

� a namespace for shared data

� atomic read and write operations

15
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Object Operations

Job,
Task spawn, list, kill, exit, status

Blackboard,
Tuple read, write, delete, directory, fetch

ACL initialize

Table 3.1: Summary of operations that can be performed on each of the objects defined
by theWax programming model.

� mechanisms for controlling the distribution of shared data

The model does not, however, provide several features that are common in other dis-
tributed programming models:

� a guarantee that processes will have consistent views of the shared data store

� at-most-once or exactly-once execution of processes

� a guarantee that processes will execute in parallel

� unrestricted access to the processors used by the application

The Wax programming model includes five basic objects: job, task, blackboard, tuple,
andACL. A job represents a singledistributedparallel computation. As shown inFigure 3.1,
each job consists of a set of tasks, each of which is a basic piece of the computation, and a
set of blackboards, which are used to share data among the tasks in the job. A job is theWax
unit of resource allocation, somewhat analogous to a UNIX

1 process. A task on the other
hand represents a locus of execution, and is equivalent to a thread in many other parallel
programming models. A blackboard is an associative memory with information stored
as tuples, each of which consists of a unique key and a set of values. The set of values
associated with a key can be arbitrarily large, as can each of the values in that set. An ACL

allows the owner of an object to restrict access to the object. For each job, there is a source
that creates the job and initializes its state using resources, such as files and user input,
that are outside the scope of the Wax programming model. Similarly, each job has a sink
that consumes the results produced by the job.

The basic model of a Wax computation is a loosely-coupled collection of tasks that are
cooperating to solve a problem. Tasks and blackboard data diffuse out from where they
are created. As tasks execute, their results diffuse to other tasks. Eventually, the diffusion
process will return the results of a computation to its creator.

Table 3.1 summarizes the operations that can be performed on blackboards, tasks, and
ACLs. The operations will be described in greater detail later in the chapter.

Figure 3.2 shows ageneral pseudo-code framework for aWax application. The function
Source is the piece of the application that is executed by the source of the job. It creates
the job and sets up its initial state. The function Task, which is executed by each task in
the job, performs the actual work of the job. If a task is initially unable to read the input
data, it uses the fetch operation to actively force the system to move the data. Using the

1
UNIX is a registered trademark in the United States and other countries, licensed exclusively through

X/Open Company Limited.
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TaskTask
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Key:Key: HEIGHT NAME

Values: Values:3 feet Gladiolus

Blackboard 1

Blackboard 2

Job

Key:
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Key: COLOR

Values: Red, Gold

TYPE Key:

Values: 5000K

TEMPERATURE

White Dwarf

SinkSource

Figure 3.1: Logical structure of a Wax job. A Wax job corresponds to a single, loosely-
coupled, parallel distributed programmade up of one or more tasks, where each task is

a unit of work that can be independently scheduled on a computer. Within a job, tasks
interact through shared data stores, called blackboards. Each job has access to at least

one blackboard. Information on a blackboard is stored as tuples, each of which has a
unique key and one or more values.
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Source()
{
Create job and blackboard;

Write application input to blackboard;

Partition problem;
For each piece of problem {
Spawn a Wax task;

}
}

Task()
{
Process arguments to identify assigned portion of the computation;

Read input;
If input not found {
Fetch input;
Read input;

}

While not done {
Compute;
If assigned portion is too large {
Divide portion and spawn additional tasks for each piece;

}
Write output to blackboard;

}

Call exit;
}

Sink()
{
While computation not done {
Wait for new output to appear;
Read new output;
Combine new output with existing output;

Decide whether computation is done;
}

Delete job and blackboard;
}

Figure 3.2: A pseudo-code example of aWax application.
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fetch operation is a better choice than waiting passively for them, because while the task
is waiting for the data it is tying up a processor without performing productive work.
After reading the input, the task computes the assigned problem and writes output to the
blackboard. If a task decides that its problem is too big, it can spawn additional tasks
to spread the workload. The Sink function collects the output produced by the tasks
within the job. The example sink function waits passively for the system to make the task
output available, because the data may not be written immediately. Each fetch operation,
regardless of whether it moves any user data, consumes communication resources, which
are limited in any real world implementation of the model. If the termination criteria for
the application depend on the status of the tasks within the job, the sink operation can
execute list and status operations to retrieve that information. Additional examples are
described in Chapter 5.

3.1.1 Execution Model

A job defines the state that is visible/accessible to the tasks within that job. The
blackboards associated with a job are the only shared data stores available to the tasks
within the job. A task may only interact with other tasks of the same job through a
blackboard.

Limiting the resources accessible to a task allows an implementation of the model
to restrict the interface that a task has to the machine executing it. In particular, the
machines used to executeWax tasks are only visible to those tasks as sources of processor
cycles andmemory (physical and virtual). This restricted interface allows, for example, an
implementation of the model to provide tasks with no access to the file systems accessible
from the machines used to process them. Such a restriction helps convince resource
providers that the system cannot be used to snoop or modify data that should otherwise
be inaccessible to the creator of the job.

In the Wax programming model, tasks are automatically assigned to processors for
execution. This relieves programmers of having to identify a set of processors to use and
of having to monitor the status of each of those processors. For the same reasons that tasks
are not guaranteed consistent views of a blackboard, the programming model does not
define the order in which tasks will be executed. In particular, tasks may be executed in a
different order from the one in which they are created. In addition, they may, or may not,
be executed in parallel.

The execution order is undefined, because ordering task execution implies synchro-
nization with all its associated costs and sensitivity to failures. In particular, some of the
synchronization required to implement any task orderingwould occur before scheduling a
task for execution can be done. If a communication failure occurred during such synchro-
nization, some or all of the processors being used byWaxmight sit idle, even though there
were tasks waiting to be executed. Without a defined execution order, tasks can continue
to be processed as long as there are compatible processors available.

A side effect of not defining the execution order of tasks is that a job that has inter-task
dependencies may deadlock. For example, if tasks A and B each depend on intermediate
output from the other, and Wax has only one processor available, the job may never
terminate. However, if the number of dependencies is small relative to the number of
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available processors, deadlock is unlikely to occur. If necessary, an application can use
the list and directory operations to monitor the global progress of the computation and to
detect deadlocks.

3.1.2 Data Model

Blackboardsprovide adistributedprogramaconvenientmechanismfornamingshared
data and communicating between tasks. Because real distributed programs consist of
asynchronously executing processes connected by fallible, finite-speed communication
links, theWax programming model does not guarantee that all tasks within a job will have
consistent views of the tuples on a blackboard. Allowing a blackboard implementation
to be inconsistent makes the implementation scalable and fault-tolerant. It is scalable
because the blackboard can be allowed to become “more” inconsistent as the system
grows. It is fault-tolerant because a failure (network or processor) merely results in another
inconsistency in the contents of the blackboard; some processors may observe updates,
while othersmay not. Application writers are responsible for handling any inconsistencies
observed by their jobs.

The programming model allows a job to have multiple blackboards, so that in a dis-
tributed implementation of the model, a large data set can be stored in a blackboard that
is shared by several jobs. This would allow a job to benefit from any data distribution and
caching that was done during the execution of previous jobs. In addition, if such a shared
blackboard is used only as a source of input, the blackboard could bewrite-protected. This
would prevent the machines processing the Wax tasks that need to read the blackboard
from modifying the data it contains.

The only operations for which the Wax programming model provides any atomicity
guarantees are reading or writing blackboard tuples and spawning a new task. Read
operations are guaranteed to return only values that have been previously recorded by a
write operation. The write and spawn operations are atomic in that other tasks will never
be able to examine the contents of the blackboard or job and observe a state in which such
an operation is partially performed.

3.2 Controlling Execution

The Wax programming model supports creating, monitoring, and terminating tasks.
The source and sink for a jobmust specify the job being examinedormodified as an explicit
argument, because they are outside of the Wax programming model and may therefore
be able to access multiple jobs. For Wax tasks, on the other hand, the job is implicitly
specified, since a task belongs to exactly one job and is only able to interact with tasks and
tuples that are part of that job.

The spawn operation creates a new task in the specified job. The arguments to the
operation are the program that implements the functionality of the task, the arguments
that should be passed to the task when it is started, and the ACL for the new task. The
operation records the new task in the meta-data for the job and returns a unique identifier
for the new task. The operation will fail and signal an error if the invoker of the operation
does not have permission to create new tasks.
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The list operation returns a list of the tasks in the specified job. The operation will fail
and signal an error if the invoker of the operation does not have permission to examine
the job.

The kill operation takes a task as an argument and records that the specified task has
terminated. If the task is currently active on a processor, then the system may halt its
execution. The operation will fail and signal an error if the invoker of the operation does
not have permission to kill tasks.

The exit operation halts execution of the task that invokes the operation and records its
termination in the meta-data for the job.

The status operation returns the current status of the specified task. If the returned
status indicates that the task has called exit, then this operation guarantees that a fetch
operation has been successfully executed for all tuples written by the specified task and
that all tasks spawned by the specified task can be observed by invoking a list operation.
The operation will fail and signal an error if the invoker of the operation does not have
permission to examine the job.

3.3 Manipulation of Data

The operations provided by the Wax programming model for manipulating black-
boards can be divided into two groups. The first group (read, write, delete, directory)
consists of the operations that examine or modify the contents of a blackboard. The write
and delete operations modify the contents of the blackboard by adding or removing tuples,
respectively. The directory and read operations return information about the contents of the
blackboard namespace or of a tuple, respectively. The second group, which consists of the
fetch operation, provides the application programmer with a tool to combat the inconsis-
tencies that can arise in a real world implementation of the model. All of the operations
require a blackboard to be passed as an argument. The additional arguments and effects
of each operation are described in the remainder of the section.

3.3.1 Tuple Operations

Thewriteoperation is passed a key andvalue to be added to the specified blackboard. If
a tuple with the specified key does not exist in the blackboard, then a new tuple is created
with the specified key and the set of values initialized to contain the specified value,
otherwise the specified value is added to the set of values in the tuple. The operation will
fail and signal an error if the invoker of the operation does not have write access to the
blackboard.

The read operation takes a key as an argument and returns one of the values from
the tuple in blackboard with a matching key. The operation is non-destructive. If the
matching tuple has multiple values, then the choice of which value to return is left to the
implementor of the model. The operation will fail and signal an error if either the invoker
of the operation does not have read access to the blackboard, or the specified key is not
found in the blackboard.
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3.3.2 Blackboard Namespace Operations

The delete operation takes a key as an argument. The operation removes the tuple with
the specified key and all of its associated values from the blackboard. The delete operation
is intended to provide jobs with a mechanism for handling the real world problem that
there is only finite space available to store tuples. The operation will fail and signal an
error if either the invoker of the operation does not have delete access to the blackboard,
or a matching tuple is not found in the blackboard.

The directory operation allows its caller to determine what tuples exist in the black-
board, and to wait for new tuples or values to be written. The operation takes a regular
expression and returns the keys from all accessible tuples whose keys match the given
regular expression. This operation does not cause data to be moved. The operation will
fail and signal an error if the invoker of the operation does not have read access to the
blackboard.

3.3.3 Data Distribution Operations

The fetch operation takes a regular expression as an argument. This operation allows
the invoker to make sure that it can access the tuples whose keys match the given regular
expression that were produced (written, but not deleted) by tasks that the invoker can
observe with the list operation (see Section 3.2). These semantics allow a job to define a
partial ordering of blackboard operations, without requiring that an implementation of the
model provide consistent global snapshots of a blackboard. A fetch operation will fail and
signal an error if the invoker of the operation does not have read access to the blackboard.

The Wax programming model does not provide a blackboard flush operation, which
would push data away from the invoker, rather than pull it as the fetch operation does,
because correctly implementing such an operation might require global synchronization
prior to executing a task. Consider, for example, an implementation that caches the
contents of a blackboard in multiple locations. The problem arises when such an imple-
mentation decides to use an additional cache. Before starting a task using that cache, the
implementation would have to identify all flush operations that were performed by other
tasks that could haveknown of the existence of the newtask, and ensure that the cache con-
tains all of the data that was distributed by those operations. An implementation might,
however, provide programmers with a flush operation that could be used to indicate to
the implementation which tuples the job considers most important to distribute.

An implementation is free to distribute data between caches independent of any explic-
itly invokedflush or fetch operations. Such asynchronous transferswould hopefully allow
the communication latency to be hidden by overlapping it with task internal computation.

3.4 Controlling Access

Every Wax job, blackboard, task, and machine used to process tasks belongs to a user
(owner). The owner of an object may attach an ACL to the object in order to restrict who
may access the object. An ACL identifies the set of principals (users andmachines) that can
access the associated object, and the type of access each principal is allowed. The set of
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supported access types includes at least read, write, and administer. The last access right
would grant the specified principal the right to manage the object.

The Wax programming model defines only one ACL operation, initialize, for the ACLs
associated with jobs, blackboards, and tasks. When one of those objects is created, the
initialize operation is automatically invoked to set the ACL on the object. The ACL on such
objects cannot be changed, because that would require a globally consistent update. While
the existence of ACLs to protect the machines used to process Wax tasks is part of the Wax
programming model, the mechanisms for initializing and changing them are not.

3.5 Synchronization

The Wax programming model does not provide any global consistency guarantees,
because maintaining global consistency requires synchronization that would make an
implementation too sensitive to processor and network failure. In fact, the model does
not provide anymechanism for ensuring that an observed state of a blackboard is globally
consistent. A programmer cannot determine, on the basis of blackboard operations alone,
whether the value read for a particular key is the only value associated with that key or
one of many values. Similarly, a programmer cannot be sure that the set of keys returned
by a directory operation represents a consistent snapshot.

The model does, however, provide an application programmer with two guarantees
about the ordering of operations that will be observed by individual tasks. If a task, Alice,
has observed the existence of a tuple with the key TO-DO-LIST (via a directory operation
for example), then Alice will be able to read that tuple, as long as no task invokes a
delete operation with the argument TO-DO-LIST. Alicewill be able to observe the effects of
all blackboard and task operations performed by another task, Bob, before being able to
observe that the fact that Bob has invoked the exit operation.

3.5.1 Barrier Synchronization

If finer-grained operation ordering is required, application programmers can use the
fetch anddirectory operations to synchronize the execution of tasks. For example, consider
the following possible implementation of barrier synchronization. If an application can
enumerate the set of synchronizing tasks, a barrier can be implemented as a collection
of keys in the namespace of a blackboard. The set of synchronizing tasks can either be
embedded in the program used to instantiate the tasks or recorded in blackboard tuple that
is retrieved by each of the synchronizing tasks. When a task arrives at a barrier for the Nth
time, it writes a tuple of the form barrier-id.N.task-id. A task can only pass a barrier when it
observes that such tuples have been written by all tasks with which it is synchronizing. A
task canwait by alternately executingdirectory operations and some form of internal delay
operation. Fetch operations can be added to the loop, if desired, to potentially reduce the
wait.
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3.5.2 A Mutual Exclusion Primitive

The global consistency guarantees of the Wax programming model are weak enough
that a mutual exclusion primitive cannot be constructed within the model. Two obvious
candidate techniques for constructing a mutual exclusion primitive (a master task, and
Lamport’s algorithm [Lam87] using atomic reads and writes) require more consistency
than the model provides.

The master task mechanism uses one task to arbitrate access to the critical sections
of the application. This technique achieves mutual execution by relying on there being a
single instance of the master task. Unfortunately, the Wax programming model does not
guarantee that tasks are executed at-most once.

Lamport’s technique uses a set of variables to implement a sequence of barriers that
a process must pass through without being interrupted by another process in order to
acquire the lock. In principle, the values of the necessary variables could be stored either
in the values of blackboard tuples or encoded in the names of a set of tuples. Using tuple
values will not work, because the Wax read operation, while atomic, does not guarantee
that two tasks will necessarily read the same value for a tuple that has multiple values.
Using the names of tuples to encode the values does not work, because the model does
not provide a mechanism for taking a globally consistent snapshot of the namespace of a
blackboard.

At a fundamental level, the concept of mutual exclusion runs against the grain of the
Wax programming model. Mutual exclusion requires the synchronization and global con-
sistency that theWaxmodel is attempting to avoid. As a result, a distributed computation
system that implemented theWax programming model would have to step outside of that
model to support applications that require mutual exclusion.

3.6 Dealing with Failures

The processors and networks that make up a distributed computation system can fail.
If an implementation of the Wax programming model caches the state of a job and its
blackboards in multiple locations, these failures can create inconsistencies in the contents
of thevarious caches. Since themodel does not guarantee the consistency of thedistributed
caches in the absence of failure, jobs must already incorporate any mechanisms that they
need to handle such inconsistencies. Processor failures can also result in the loss of the
state internal to an executing task.

Another possible source of “failures” in a distributed computation system is the recla-
mation of resources, machines and cache space, by their providers. Such failures, however,
can be modeled as an appropriately chosen set of processor and network failures.

The ideal-world behavior of the blackboard and task operations is modified slightly,
so as to expose the transitory communication failures that will occur in a distributed
implementation. In particular, an implementation will signal an error if a temporary
communication error prevents it from performing an operation successfully. Requiring an
implementation to signal an error is in keeping with the model’s basic design idea that
failures should be exposed to an application, so that it can chose the most appropriate
recovery mechanism.
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Under the Wax programming model, a job will be able to make forward progress
as long as the sink for the job does not fail permanently and there exists at least one
task within the job that is able to make forward progress. A job may actually continue
making forward progress after the permanent failure of its sink, but the progress will be
undetectable outside of the job.

The inability of a job to make forward progress, because one or more tasks are incom-
patible with all of the processors that can access those tasks is beyond the scope of theWax
failure model. The model cannot force an implementation to create resources that do not
exist. As an example, consider a job that contains a task, PartN, with an ACL that restricts
PartN to running on a machine named Cray. If there does not exist a machine with that
name, then PartNwill never execute and the job will stop making forward progress when
all of the other tasks in the job terminate.

A task will be able to make forward progress so long as not all of the work done while
executing on a processor is lost when that processor fails. Thework done by a task consists
of the sequence of operations that the task executes that change either the job containing
the task (writing/deleting tuples, spawning tasks) or the state of the processor (memory
and registers) executing the task. Assuming that the probability that a machine will crash
or that a task will be evicted by the owner of themachine is constant, the probability that a
failure will occur at some point during the execution of a task increases with the execution
time of the task.

In order to support tasks with arbitrarily long execution times, an implementation of
the model must provide some mechanism that enables such tasks to continue to make
forward progress. One possible mechanism is to periodically checkpoint executing tasks.
This would allow the implementation to resume interrupted tasks from checkpoints of
intermediate states. A task will then be able to make forward progress if, each time it is
restarted after an interruption, it is restored to a state later in the work sequence than the
states restored by all previous restarts. Since the checkpoint process itself is susceptible to
failure, task checkpointing only makes it probable that a task will be able to make forward
progress, where the probability is a function of the time between checkpoints and the
expected time between failures. In general, for a given failure rate, shortening the time
between checkpoints will increase the probability that a task will be able to make forward
progress.

3.7 Conclusion

TheWax programming model is designed to allow an implementation of the model to
make as much as possible of the parallelism provided by the underlying computing re-
sources available to executing jobs. This is accomplished by exposing the inconsistencies
that latency and failure create in any asynchronously executing, distributed system, and
providing application writers with the mechanisms needed to enforce any application-
specific consistency requirements. Each job only has to pay overhead for the synchroniza-
tion overhead that it requires.

The Wax programming model provides the users of coarse-grain parallel applica-
tions with several benefits, including potential access to a new computation resource and
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automated process management. By simplifying the implementation of a distributed com-
putation system, the Wax model facilitates the creation of a system that would allow the
machines connected to wide-area networks to be used as a distributed multiprocessor.
Such a system provides the users of coarse-grain parallel applications with a powerful
new computing resource. In addition, the semantics of the Wax programming model
require that an implementation of themodel handle the assignment of processes to proces-
sors and automatically recover from the failure of those processors. This automated task
management can ease the user’s job of managing the execution of large computations. An
implementation could expose this management mechanism in order to allow the user to
monitor, and perhaps modify, the computation’s behavior.

Eliminating the consistency guarantees of traditional parallel programming models
simplifies the implementation of a distributed computation system that supports theWax
programming model. It also makes the resulting system easier to scale and more tolerant
of the failures that will occur in a system spread across a wide-area network. Chapter 4
describes the implementation of a prototype wide-area distributed computation system
that supports theWax programming model.



Chapter 4

The Implementation ofWax

In order to show that the programming model described in Chapter 3 is feasible to
implement in a distributed environment, I builtWax, a prototype distributed computation
system. Wax further shows that the limited processor interfacedefinedby themodel allows
an implementation to preventWax tasks from abusing the resources local to the processors
used to execute those tasks. The rest of this chapter describes the implementation ofWax.

The chapter begins with an overview of the structure ofWax, which provides a frame-
work for the presentation of the implementation details. The system is described from the
bottom up: first the tools used to implement various pieces of Wax, then the implemen-
tation of those pieces, and finally the programming and shell-level interfaces provided by
Wax. At each stage, the security mechanisms built into Wax are discussed along with the
objects that they protect. At the endof the chapter, the implementation ofWax is evaluated.

At the bottom level, Wax consists of a library of interface routines, which are linked
into application programs, and a collection of system processes that make Wax function.
Figure 4.1 shows the overall structure ofWax and and the interactions between the various
pieces of the system.

Externalprocesses, which are processes that can access bothWax and resources external
to Wax, such as disks and monitors, that are beyond the scope of the Wax programming
model, serve as bridges between those external resources and Wax computations. They
create jobs, blackboards, and tasks, and provide the input for and consume the output of
the computations performed by those tasks.

Wax uses three types of system processes to manage the processing of tasks and the
distribution of data. The Task Managers distribute tasks to processors for execution. A
Host Manager serves as Wax’s local agent on each processor used to execute tasks, and
handles thedetails of executing those tasks. TheDistributionManagersmovedata between
blackboard caches.

Processors are grouped into domains, where each domain consists of machines belong-
ing to a single organization. Each domain maintains its cache of blackboard data. The
Task and Distribution Managers can be replicated to improve fault tolerance and support
larger domains.

Each domain must have one or more trusted, physically secure, operator-attended
machine on which to run the trusted components of Wax: the Task and Distribution
Managers. The rest of the machines connected to Wax, the ones used to process tasks,
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Figure 4.1: The structure of Wax. A domain consists of a group of machines belonging
to a single organization. The processing ofWax tasks is controlled by the Task Manager
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are expected to be workstations under the control of one or more primary users, and thus
neither physically secure nor trustable.

By partitioning domains along organizational boundaries,Wax allows organizations to
retain autonomous control of the resources they are providing toWax. Default access and
resource usage policies are expected to be defined on a per-domain basis. For example, the
current implementation allows domains to assign jobs created in other domains a lower
priority than the default priority of locally created ones. In a production version of the
system, organizations might want the ability to allocate resources on an even finer-grained
basis, such as per user or group of users.

In addition to the benefits they provide to the resource providers, domains also make
Wax easier to scale. Domains, and their users, can potentially make use of machines
in other domains without having to know how many machines there are, or what their
names are. Each Wax domain only needs to known about the machines that are available
internally, and any other domains with which it cooperates.

Domains also allow resource providers to hide information. Most of the internal
implementation and structure of a domain is invisible outside of that domain. The only
part of a domain that must be externally visible in order to interact with other domains
is the interface to the mechanism used to exchange blackboard and job data between
domains. (see Section 4.6.) In general, a domain will also want to provide other domains
with general information about the domain, such as, types of processors available and
amount of cache space available.

The libraries and server processes that constituteWax, and the RPC interfaces that inter-
connect them, are implemented on theMach 3.0 operating system [ABB+86]. Wax exploits
several features of the Mach operating system environment. Specifically, it relies on the
following operating system services:

� An RPC interface and messaging system that can be used to pass control and data
between cooperating processes on the same and different machines.

� Multiple threads of control within the same address space. This is used in imple-
menting theWax system services, and can also be used in applications.

� A system-call redirection mechanism that can insulate a process and its host from
one another.

� Avirtualmemory system that allows one process to read andwrite the address space
of another. This is used to implement a task checkpoint and restart mechanism that
can reduce the amount of computation lost when a task is interrupted.

While, in general, using Mach 3.0 limits the size of the available host base, there were
a large number of such machines available at CMU when the implementation of Wax
began. Furthermore, I felt that it was important to work within the context of an operating
system offering more modern facilities that are likely to become commonplace over time.
Section 4.8 examines how the system could be ported to other, more widely available,
operating systems.

Having sketched the outline of the implementation of Wax, I will now start filling in
the details. The first step is to examine how the various processes that make up a Wax
computation communicate with each other. The focus will then shift to how the various
processes can identify with whom they are communicating, which is necessary in order to
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be able to control access to resources. After authentication and authorization are covered,
the presentation will move on to the implementation of the objects defined by the Wax
programming model: blackboards, jobs, and tasks. This followed by a discussion of how
Wax tasks are executed, and the techniques used to create a secure execution environment
on eachprocessor usedbyWax. From there the presentationmoves on to theWax interfaces
that are directly visible to the application programmers and users.

4.1 Inter-process Communication

Wax uses the Mach RPC facilities to communicate between processes running in the
same domain. The Mach Interface Generator (MIG) [DJT89] is used to produce the code
that marshals and unmarshals the data exchanged via RPC. These interface stubs then
use the message passing facilities provided by theMach kernel to move the data between
Mach tasks. While the Mach kernel only supports passing messages between tasks on a
single machine, theMachNetwork Message Server (NetMsgServer) [Gro89] transparently
extends the message-passing mechanism between machines.

Wax provides and uses a “connection”module that manages the creation and destruc-
tion of communication links, such as the ones between a Wax user and a Wax system
process or a pair of Wax system processes, that may cross machine boundaries. The con-
nection module provides functionality similar to Birrell’s secure RPC mechanism [Bir85].
An important implementation difference between the two systems is that the security fea-
tures in theWax connection module are implemented on top of, rather than as an integral
part of, the RPCmechanism. While this difference allowsWax to use the standardMach RPC

tools, it does complicate the implementation of the security mechanisms, as is described
in more detail in Section 4.2.2.

Inter-process communication (IPC) in Mach uses kernel-protected capabilities, called
ports, to represent the end-points of communication channels. Within a task, each port
has a unique integer name. However, different tasks may, and usually do, have different
names for the same port. For example, port Pmight be named 17 in task A and named 26
in task B.

A task may transmit a message to any port for which it holds a send right. Similarly,
a task may receive a message from a port only if it holds a receive right. The Mach 3.0
IPC mechanism also supports a send-once right, which allows the holder to send only one
message to the port. For every port, there is exactly one task holding a receive right and
zero or more tasks with send or send-once rights. The holder of a send or receive right
may create additional send rights that can be sent to other tasks in a message.

For taskA to communicate with task B,Amust have a send right to a port P for which
B holds a receive right. To facilitate the creation of such links, the NetMsgServer provides
a name service, which tasks can use to register send rights that other tasks can look up.
For example, B could register P with the NetMsgServer under the name “my-port”,
which A could then retrieve. However, A needs to have a send right for the port that the
NetMsgServer uses to accept name service requests. This bootstrapping problem is solved
by theMach kernel automatically providing every task with a send right for the port used
by the NetMsgServer.
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4.2 Controlling Access to Resources

As required by the programming model, Wax provides ACLs to protect the resources
accessible through the system. Enforcing access controls requires the ability to name, au-
thenticate, and authorize every entity attempting to access a protected object. Section 4.2.1
describes the naming scheme used by Wax. Section 4.2.2 presents the mechanisms used
to authenticate the identity of an entity. Section 4.2.3 covers the features of the ACLs
themselves.

4.2.1 Naming

Every principal1 (user, machine, and Wax system process) that may access Wax is
assigned a unique identifier. Each domain is allowed to independently assign names. The
canonical form of a principal’s name consists of a domain-specific identifier, a separator
(’@’), and the name of the principal’s homedomain. For example, my user name in theCMU
Wax domain is pds@cs.cmu.edu. The homedomain of a user is the domain that provides
the user with access to Wax. A user allowed to natively access Wax in multiple domains
may have multiple canonical identifiers. The home domain of a machine is the domain
that has physical possession of the machine. Within the home domain of a principal, the
domain-specific identifier may be used without the separator and domain name.

In the current implementation, principal names that begin with the string “hm:” are
interpreted as the name of a machine connected toWax, all other names are considered to
be user names. The canonical form of a machine name includes the name of the machine
as registered with the Domain Name Service (DNS) [Moc87a, Moc87b, Moc89, Man92] of
the appropriate domain. Synonyms consisting of the prefix and any portion of amachine’s
name that the DNS of the appropriate domain will map to the complete name are also al-
lowed. For example, hm:pds@cs.cmu.edu andhm:pds.mach.cs.cmu.edu@cs.cmu.edu
both refer to the same machine. The prefix is needed to be able to distinguish between
users and machines in some cases. For example, without the prefix, the meaning of
pds@cs.cmu.edu would be ambiguous.

Wax also provides support for groups of principals. In the current implementation,
this is limited to two groups, all-users and all-hm, whose membership is implicitly
defined. The first group refers to all users within the domain, while the second refers to
all machines within the domain.

4.2.2 Authentication

Controlling access to resources requires that theWax agent checking an access request
be able to determine the identity of the requester. This implies a need for some form
of authenticated communication. The best technique for performing the authentication
depends in part on the type of communication being performed: local to one machine,
between two machines in a single domain, and between two machines in different do-
mains. In general, the operating system on a machine can be trusted to protect local

1This terminology is adopted from the Kerberos system, which is used to implement authentication within
a domain.
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communication.2

For communication between two machines, the authentication problem is harder. In
general, the machines connected to Wax are neither physically secure nor trusted, in a
distributed sense. For example, the primary user of amachine could modify themachine’s
operating system so that that user could claim any desired identity. Furthermore, the links
that make up local- and wide-area networks are rarely secure. In particular, a user with
access to one machine may be able to eavesdrop on all communication on any network
connected to that machine. In addition, the user may also be able to modify messages
exchanged among other machines and/or to masquerade their machine as a different
host.

A distributed authentication mechanism is required. For communication between
machines within a domain, Wax uses a mechanism based on version four of the Kerberos
system [SNS88] from MIT. The Kerberos Authentication Server uses secret-key cryptogra-
phy, based on the Data Encryption Standard (DES) [Nat77], to provide trusted third-party
authentication. For communication between domains, Wax uses a mechanism based on
public-key encryption. I chose not to use a Kerberos-based mechanism for such communi-
cation, because just as the users of one machine may not be willing to trust the operating
system on another machine, Wax domains may not be willing to trust Kerberos servers
running in another domain.

The Intra-domain Solution

The Kerberos system supports the definition, and authentication, of principals, and
specific instances of those principals. A Kerberos principal typically identifies a particular
user or system service, while instances are used to define additional attributes about the
principal. For example, a Kerberos principal might have a number of instances, each of
which was only to be used on a particular host. If a request from such an instance was
received from a different host, it might imply the existence of a security problem.

Every Wax principal has a corresponding Kerberos principal or instance. The map-
ping between Wax user principals and corresponding Kerberos principal is the identity
function. The mapping for Wax machine principals involves transforming the canon-
ical form of the principal into an instance of a single Kerberos principal by replacing
the “hm:”-prefix with “wax.”. For example, hm:pds.mach.cs.cmu.edu becomes
wax.pds.mach.cs.cmu.edu, whichKerberos interprets asbeing thepds.mach.cs.cmu.edu
instance of the Kerberos principal Wax.

A Kerberos principal, or an instance thereof, verifies its identity to the Kerberos Au-
thentication Server by demonstrating the knowledge of a password/key that is known
only to the principal, or the appropriate instance of the principal, and the Authentication
Server. In general, a user does this by entering the secret password at the beginning of
a login session, perhaps as part of the login process, or when starting an authenticated
process. Server processes typically read their Kerberos key from a (protected) file stored in
the local file system of the machine on which they run. The security of this key depends,
of course, on the security of the local file system.3 This dependency can be avoided if the

2If this is false, then there exists no other mechanism that could protect such communication.
3The possible security problems created by this dependency may well be the motivation for Kerberos
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server process is always started by a system operator, who would also enter the server’s
password. Alternatively, if there is a secure co-processor attached to the machine, the key
can be stored in the non-volatile memory of the co-processor.

After the Authentication Server has verified the identity of the principal, it issues
the principal a ticket-granting-ticket, which is valid for a fixed period of time.4 While
a ticket-granting-ticket is valid, a principal can use it to acquire a service-ticket for any
principal/instance with which it wants to communicate. The service-ticket can then be
used to perform mutual authentication when establishing a communication link, and to
establish the secret-key to be used to protect/authenticate the data exchanged over that
link (see [SNS88] for more details).

The connection module, mentioned in Section 4.1, automatically performs Kerberos-
based mutual authentication each time a communication link is established. It also deals
with renewing the authentication when the service ticket expires, assuming that the prin-
cipal has acquired a new ticket-granting-ticket if necessary. Authenticated communication
allows the Task or Distribution Manager to properly control access to resources used by
and the data stored in Wax. It also prevents attackers from masquerading as one of these
trusted components.

If aWax user has a valid ticket-granting-ticket, then theWax utilities, at both the shell
and library-level, will automatically acquire the service-tickets needed to authenticate the
user to theWax system processes. In an environment such as the one at CMU, where users
already depend on Kerberos for a variety of other services, this means that authenticated
access to Wax is provided seamlessly, without any additional user effort.

Data Integrity

In conjunction with authenticating the principals at each end of a communication
channel, Kerberos provides each of the communicating processes with a DES key, the
session key, that can be used to protect data exchanged on the channel. The connection
modules at each of the channel use the key to generate cryptographic checksums of each
message that is sent. These checksums allow the receiving party to determine whether
the data has been modified while in transit. The checksums do not, however, prevent
third-parties from reading the message data.

The checksum is generated by performing a DES encryption, in cipher-block-chaining
mode [Nat80], of the user data in the message. The final block of the ciphertext used as
the checksum value. Because the Mach kernel may change some of the system data, in
particular, the names of port rights, the checksum is only performed on the user data in
the message. Also, the connection module is built on top of the MIG generated stubs,
so it does not have access to the additional data that MIG adds to messages. From the
perspective of MIG, the checksum is just another argument in the RPC.

The DES checksum value, the number of arguments to the RPC, an error code, the
current time, and a flag indicating whether the message is a request or a reply message are
then encrypted, using the appropriate session key, and the resulting ciphertext included
in the message that is actually sent across the network. The error code is included in

supporting multiple (potentially location-specific) instances of a principal.
4The Authentication Servers at CMU will issue tickets with lifetimes ranging from five minutes to 30 days.
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this data in order to work around an optimization used by MIG. In reply messages, MIG
only includes the values for user arguments, including the checksum itself, if the server
indicates that the operation was completed successfully. The work around has the RPC

operations report their true return code as part of the checksum data, and always return a
success status to MIG. In request messages, the error code is always zero. The timestamp
and the direction flag allow the receiver of a message to protect against reply attacks.
While the connection module does not currently check for duplicates, such checks could
easily be added if deemed necessary.

The Inter-domain Solution

The only time in Wax that processes in different domains need to communicate is
when Distribution Managers are exchanging data between a pair of domains. These
communication links are authenticated using public-key cryptography and the protocol
proposed by Needham and Schroeder [NS78]. The advantage of this mechanism, over one
based on secret-key cryptography, is that no trusted third-party is necessary, as long as the
domains have a secure means of exchanging public-keys, such as a phone call between
domain administrators.

Public-key cryptography uses different keys to encrypt and decrypt data. Each prin-
cipal publishes one of these keys as its public-key, and retains the other as its private-key.
A principal, Alice, can create a message that only a specific principal, Bob, can read by
encrypting the message with Bob’s public key. Similarly, Alice can use encryption with
her private key to “sign” messages. Any principal with access to Alice’s public key will
be able to read such messages, and will know that no other principal could have written
the message.

4.2.3 Authorization

This section describes the features of Wax ACLs, in particular, the external format and
the supported access rights. Other details about ACLs, such as the exact meaning of each
access right, how an ACL is stored and enforced, etc. depends on the type of object to
which the ACL is attached, and are therefore described later in the chapter, along with the
implementation of each of type of object. Wax ACLs are modeled after the ones used in the
Andrew File System (AFS) [SHN+85].

Every job, blackboard, task, machine, and domain has an associated ACL. Each ACL

has a set of positive entries and a, possibly empty, set of negative entries. An ACL entry
consists of a principal identifier and a set of access rights. A Wax principal may access an
object if the requested type of access is associated with the principal in the positive list,
but not in the negative list. The types of access granted to a principal is the union of the
rights in applicable positive entries minus (set difference) the union of the rights in the
applicable negative entries. The current implementation of Wax supports three types of
access rights: read, write, and administer.

ACL entries may also contain identifiers that refer to groups of principals. Such entries
give all members of the specified group the same positive, or negative, access rights.
Additional rights can then be granted, or denied, to specific users by mentioning them
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g all-users rw
g all-hm rw
u wax.TaskManager rwa
u wax rwa
- Negative Entries
u pds w
.

+ Positive Entries

Figure 4.2: An exampleWax access control list (ACL).

explicitly in the positive, or negative, set of entries.

The external form of aWax ACL is a sequence of newline separated records. Five record
types are supported: blank, comment, section header, ACL entry, and terminator. Blank
records, which consist of only whitespace, and comment records, which consist of optional
whitespace and the comment character (’%’) followed by arbitrary text, are ignored. The
section headings indicate whether entries encountered before the next section heading,
or terminator, are positive entries or negative entries. A section heading line contains
optional whitespace, and a single control character (’+’ for positive entries, ’-’ for negative
entries). Any text between the control character and the end of the of the section heading
record is ignored. A section that contains no ACL entries is considered to be empty. Each
ACL entry consists of three required fields and an optional comment. The first field in an
entry is either a ’g’ or a ’u’, and indicates whether the identifier in the second field refers to
a group or a user, respectively.5 The third field is a set of access rights: ’r’ for read access,
’w’ for write access, and ’a’ for administer access. The terminator record, which marks the
end of an ACL, consists of a period (’.’), optionally surrounded by whitespace. A valid
ACL has at least one non-empty positive section and a terminator record. The order of the
sections in an ACL is not significant.

Figure 4.2 shows an example Wax ACL. The effect of the ACL is that all users and
machines in the local domain, except pds, wax.TaskManager, and wax, have read and
write access to the associated object. The users wax.TaskManager and wax also have
administer access, while pds only has read access, because that user’s write access is
removed by the negative entry. The read and write accesses listed in the entries for wax
and wax.TaskManager are not strictly necessary, because the all-users group entry
all ready gives them those rights.

The nesting of various objects defined by the Wax programming model, for example,
tasks inside of jobs, creates an ACL hierarchy, which is shown in Figure 4.3. The ACL on a
domain defines a defaultACL for all machines in that domain and for all jobs created in that
domain. Within the constraints of this default ACL, users can further restrict access to their
machines and/or jobs by reducing the scope of the positive rights, increasing the scope
of the negative rights, or both. Hierarchical ACLs allow domain administrators to define
a base-level of security, while leaving Wax users the flexibility to define more restrictive
controls.

5This is intended to allow the support for groups to be generalized from the two pre-defined groups
provided by the current implementation to arbitrary groups, which may result in users and groups with the
same name.
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Task

Domain

Job MachineBlackboard

Figure 4.3: The ACL hierarchy supported byWax. Starting from the top, the solid arrows

indicate the sequence of ACLs thatmust be checked in order to access each type of object.
The dashed arrow between a job and a blackboard is there because while a blackboard

can be accessed independently from the job(s) that use it, access to a job is necessary
in order to examine the list of blackboards it uses, which is generally a pre-cursor to

accessing a blackboard.

The ACLs on domains and machines are initially defined when the resource is made
accessible to Wax. The administrator of a domain or machine can change the ACL on the
object at any time.

TheACLson jobs, tasks, andblackboardsaredefinedwhen theobject is created,and they
may not be changed thereafter. The ACLs cannot be changed, because the ACL information
is itself stored as a tuple in a blackboard, and there is no mechanism for globally updating
the value of a tuple.

The ACL that is actually attached to a Wax object is a function of the ACL specified by
the creator of the object (the specified ACL) and the ACL attached to parent of the object
in the ACL hierarchy (the parent ACL). In other words, Wax pre-evaluates the restrictions
defined by the parent in order to simplify the access checks that need to be performed
when accessing an object. If the specified ACL has no positive or negative entries, then the
parent ACL is attached to the newobject. If the specified ACL has only negative entries, then
an ACL consisting of the positive entries from the parent ACL and the union of the negative
entries from the parent and specified ACLs is attached to the new object. Otherwise, an
ACL consisting of the intersection of the positive entries and the union of the negative
entries of the parent and specified ACLs is attached to the new object. The slightly unusual
behavior in the case of a specified ACL containing only negative rights is to simplify the
use of redundant computation to verify the results produced by a task, see Section 4.4.4.
Furthermore, combining an ACL with no positive entries with any other ACL yields an ACL
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that allows no one access, which is not particularly useful. 6

4.3 Blackboards

The Wax blackboards are implemented using a library of subroutines and RPCs, AFS,
and the Wax Distribution Manager. AFS is used to store and transfer blackboard data
within a domain. The Distribution Managers move blackboard data between domains.
And, the library of subroutines and RPCs provides a wrapper to glue everything together
and hide the details of the implementation from the user.

Each blackboard is stored in a separate AFS directory, with tuples stored as separate
files. Each domain records only one of the values associated with a key. This is sufficient
to satisfy theWax data model, and saves space compared to storing the entire set.

AFS uses a local disk cache, managed by the AFS Cache Manager, to reduce network
communication requirements. The consistency of the cached files is maintained using a
callback-based mechanism. When a file is updated, the changes are not sent to the file
server until the file is closed. At file close time, the copies cached by all other, accessible,
CacheManagers are invalidated. Wax relies on thesemechanisms to propagate blackboard
updates within a domain.

By default, AFS does not wait for a modified file to be stored on the file server before
returning from the UNIX close system call. If a communication error occurs while the file
is being stored, then the file can be corrupted by truncation. The first mechanism used by
Wax to detect such failures was to store the length of a tuple value, as a newline-terminated
ASCII string, at the beginning of the file containing the value. The second mechanism,
which was discovered and implemented later, involves forcing AFS to wait for the file to
be stored before returning. This allows the failure to be reported to the invoker of the
operation, rather than be observed as data corruption later. While the second mechanism
makes the first mechanismunnecessary, the former has not been removed from the system.

Wax assigns each blackboard a unique two-part identifier. The first part identifies the
domain in which the blackboard was created. The second part distinguishes the black-
board from all others created by the same domain. A blackboard identifier is represented
internally as two 32-bit values and externally as an ASCII encoding of those values. The
value identifying a domain can be chosen arbitrarily, so long as it is distinct from the values
used by other domains. Because I chose the IP address of the machine cs.cmu.edu as the
domain identifier for the like namedWax domain, the ASCII representation of the domain
portion of a blackboard identifier is formated using the standard Internet “.” notation.
For example, if the internal identifier for a blackboard has a domain identifier of 02030410
(hex), and a per-domain identifier of 1, then the ASCII representations of the identifier will
be “<1@2.3.4.16>”.

Each blackboard contains two distinct namespaces: one external, the other internal.
The external namespace contains user data, that is the tuples that are read and written by
Wax tasks. The internal namespace is used by Wax itself to record system data. The name
of a tuple file starts with a prefix that identifies the namespace to which it belongs: “int ”
for internal tuples and “ext ” for external ones. The rest of the name of a tuple file is the

6At least, in environment where you cannot subsequentlymodify the ACL.
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/afs/cs.cmu.edu/project/wax/blackboards/<1@128.2.222.173>
IntegerFactoring
pds@cs.cmu.edu
+
g all-hm@cs.cmu.edu rw
u wax.TaskManager@cs.cmu.edu rwa
u pds@cs.cmu.edu rwa
u wax@cs.cmu.edu rwa
-
.

Figure 4.4: An example blackboard descriptor. The first line of the descriptor is the
path of the directory used to store the blackboard. The second line lists the name of the
blackboard. The third line contains the principal who created, and therefore owns, the

blackboard. The rest of the value is the ACL for the blackboard.

key portion of the tuple. For example, if a task wrote a tuple with the key COLOR, the tuple
would be stored in the file “ext color”.

The Wax blackboard access mechanism is implemented in a recursive fashion. Each
domain has a master blackboard, which is stored in a well known location.7 The other
blackboards that exist in a domain are described by tuples recorded in the master black-
board. Figure 4.4 shows the information stored in a blackboard descriptor tuple. This is,
in fact, the descriptor for the blackboard used by the first Wax job.

4.3.1 Implementation of the Blackboard Operations

This section describes the implementation of theWax blackboard operations. The first
part explains the internal structure of the libraries that application writers use to access
blackboards. This is followed by a description of the functionality common to all of the
blackboard operations, which includes mapping blackboard identifiers to AFS directories
and validating the keys. The remainder of the section then focuses on the implementation
of the individual operations.

As mentioned previously, the user interface to the blackboard is implemented as a
library of subroutines and RPCs. This library supports two different interfaces: one for use
by external processes and another for use by Wax tasks. The routines in the first interface
directly invoke the internal library of routines that implements most of the blackboard
functionality. The routines in the second interface are wrappers around RPCs to the Host
Manager executing the task. The Host Manager then invokes the appropriate internal
library routine on behalf of the task. Wax system processes all directly invoke the internal
interface to access the blackboard, in part, because it provides functionally, such as creating
and deleting blackboards, that is not directly exported to Wax applications.

The names of the routines in the two user interfaces are identical except for the in-
terface prefix: “Wax ” for the first interface and “WaxExt ” for the second. The only
difference between the two interfaces is that the routines in the “WaxExt ” interface re-
quire a blackboard identifier as an argument. A Host Manager can infer the necessary

7In theWax domain at CMU, this is: /afs/cs.cmu.edu/project/wax/blackboards/master.
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blackboard identifier for operations performed through the “Wax ” interface because the
current implementation supports only one blackboard per job.

When a process attempts to access a blackboard, the internal library subroutines look
for a mapping from the blackboard identifier provided by the caller to the path of the AFS
directory used to store the blackboard. An internal cache is checked first. If no mapping
is recorded in the cache, the library attempts to read the blackboard descriptor tuple from
the master blackboard. When such a tuple is found, themapping it contains is recorded in
the internal cache for use by subsequent operations. If a mapping is not found, then all of
the blackboard operations will return an error code that indicates which of the following
errors occured: no mapping exists for the identifier or a communication error occured
while checking for a mapping. The well-known mapping for the master blackboard is
inserted into the internal cache by the initialization code for the library.

Once the blackboard identifier has been mapped into an AFS directory path, the key
passed to the operation is validated. Wax currently supports two types of keys: strings
and regular expressions. A string key is valid if is a NUL-terminated sequence of ASCII
characters, except for “/”, and the sequence is less than 224 characters long. The length
restriction and the restriction on the character set is dictated by the use of keys in file names.
A regular-expression key is a NUL-terminated character string, and is considered valid if
it can be parsed by the regular expression package used by Wax.8 While the fetch, flush,
and directory operations accept both types of keys, the read, write, and delete operations,
which operate on individual tuples, accept only string keys.

Each of the exported library routines uses a series of UNIX file operations on files
stored in the blackboard’s AFS directory to implement the operations defined by the Wax
programming model. All of the operationswill fail and signal an error if a communication
failure occurs during the execution of theoperation. The remainder of this section provides
the implementation details for each of the exported routines.

The Bb Write routine implements the write operation. It creates a new tuple file
containing the value specified as an argument. The value, which the caller specifies by
address and a length, is treated as an uninterpreted byte sequence by Wax. The operation
is made to appear atomic by writing the new value to a temporary file, rather than directly
to the tuple file. If the temporary file is successfully stored on the file server, then it is
renamed to correct name for the tuple file. In order to ensure that the names assigned
to the temporary files are unique, they are given names based on the host on which the
operation is performed and the unique identifier of the thread executing the operation.9

The operation will fail and signal an error if the invoker of the operation does not have
write access to the blackboard, or there is not enough space to store the new value.

The Bb Read routine implements the read operation by reading the tuple file that cor-
responds to the specified key and returning the recorded value. TheAFS caching/callback
mechanism is used to ensure the atomicity of read operations. If the caller of the routine
does not have read access to the blackboard or necessary tuple file does not exist, the
operation will signal an error.

8This package is a thread-safe re-implementation of the standardUNIX regular expression utilities.
9This naming scheme is flawed, because thread identifiers are only guaranteed to be unique within a task.

The scheme could be fixed by adding a process identifier to the name.
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The Bb DeleteEntry routine implements the delete operation by removing the tuple
file that corresponds to the specified key from the AFS directory of the blackboard. The
routine will fail and signal an error if either the invoker does not have write access to the
blackboard, or the appropriate tuple file does not exist.

The Bb GetList routine implements a generalization of the directory operation. The
routine allows the caller to specify lower and upper bound times, so that the caller can use
the routine to wait for new tuples to appear. The routine scans the directory containing
the blackboard looking for the tuples files that match the specified key and have been
modified since the lower bound time. As long as no matching tuples are found, then the
scan is repeated every three minutes until the upper bound time is reached. If a string key
is specified, then the size of the tuple is also returned. The routine will fail and signal an
error if either the invoker of the routine does not have read access to the blackboard or the
upper bound time is reached without finding a matching tuple.

The Bb Fetch routine implements the fetch operation. After checking the validity of
its arguments and the ability of its caller to access the specified blackboard, this routines
use an RPC to the forward its arguments to a Distribution Manager for actual processing.

The Bb Flush routine allows users to provide the system with a hint that they would
like a set of tuples distributed to other tasks. If the routine returns successfully, then the
matching tuples have been distributed to all tasks that were executingwhen the operation
was invoked. The routine is implemented as an RPC to a Distribution Manager.

The Bb Create routine creates a new blackboard. The operation is passed the name of
the blackboard, its owner, and theACL to associate with the newblackboard. The operation
first creates an AFS directory to hold the new blackboard. The specified Wax ACL is then
used to set the AFS ACL on the newly created directory. The mapping between Wax and
AFS ACLs is described in Section 4.3.2. Finally, the path to that directory and the arguments
passed to the operation are recorded in the descriptor tuple for the new blackboard. This
operation will fail if the ACL on the local domain does not give the invoker of the operation
write access.

The Bb Delete routine removes a blackboard and its contents from the local cache.
This involves deleting the blackboard’s associated AFS directory, and its contents, and
removing the descriptor tuple for the blackboard from the master blackboard. This op-
eration will fail and signal an error if the caller does not have administer access on the
blackboard.

The Bb interfaces also provides routines that allow a tuple to be read or written in
pieces, much like a file. The library ensures that the values read andwritten in this manner
are consistent with the atomicity guarantees required by the programming model. In
particular, the technique of writing to a temporary file and renaming is used to make the
write operations appear atomic to other tasks or processes accessing the blackboard. The
ability to read and write tuples in pieces is used byWaxwhen accessing large tuples, such
as the programs used to instantiate tasks (see Section 4.4) and the checkpoint records used
to save the intermediate state of executing tasks (see Section 4.5.3).

4.3.2 Blackboard Security

Waxdepends onAFS to control access to blackboards, since external processes andHost
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Managers access blackboards without passing through one of the trusted components of
Wax. These processes are allowed direct access in order to avoid creating a potential
performance bottleneck. When an AFS directory is created to cache the contents of a
blackboard in a domain, its ACL is set from the Wax ACL associated with the blackboard.
The AFS andWax support similar, but not identical ACLs, whichmakes mapping fromWax
to AFS straightforward.

AFS ACLs support finer-grained types of access thanWax. There is, however, a simple
one-way mapping between the set of access types (read, write, and administer) used by
Wax and those provided by AFS. In particular, the following set of AFS access types are
used to implement each of theWax access types:

� Wax read -> AFS read, lookup

� Waxwrite -> AFS write, insert, lookup, delete

� Wax administer -> AFS administer

The mapping betweenWax principals andAFS principals is similarly straightforward,
however, part of it is many-to-one, which eliminates some of the fine-grain control that
Wax ACLs are intended to provide. Both Wax and AFS use Kerberos to implement their
authentication mechanisms, therefore, every Wax user principal is expected to have an
identically named AFS identity. TheWax group all-users is mapped to the AFS group
system:authuser.

Unfortunately, AFS does not support Kerberos concept of instances, which creates a
problem for theHostManager instances. Towork around this deficiency, all HostManager
instances, and theWaxgroupall-hm, share a commonAFS identity: wax.hostmanager.10 ;11

In order to minimize the security impact of sharing a common identity, the Host Managers
do not have access to the password for their AFS identity. Instead, they request the nec-
essary AFS authentication token, which is actually a Kerberos service ticket, from a Task
Manager, which has the password and is therefore able to acquire such tokens. If the secu-
rity of a host is compromised and this is detected, then the vulnerability of the blackboard
cache is limited by the lifetime of an AFS token. Furthermore, this mechanism allows a
host to be shut off from Wax without having to distribute a new password for the Host
Manager identity to all of the remaining machines.

The use ofAFS to store the blackboards weakens the data integrity guarantees thatWax
can provide. While AFS authenticates communication links, it does not protect user data
against modification. All data stored in or communicated via AFS are, therefore, subject
to modification by anyone with access to the local network. This lack of security forces
users to trust all machines in a domain, and limits the utility of being able to restrict tasks
to particular machines. Within a domain, this problem could be solved by modifying the
blackboard module to use a different, secure, data transport and storage mechanism.

In order to ensure the integrity of the system data that Wax stores in AFS, such data
could include a cryptographic checksum that is signed by the agent that wrote the data.
Thiswould serve to verify both the integrity of thedata and the authorof thedata. The data
that would need to be protected are the descriptor tuples for jobs, tasks, and blackboards.

10Unlike Kerberos, AFS treats the “.” as part of the principal name, not as a separator between principal and
instance.

11While it would be possible to allocate a separate AFS identity for each Host Manager, the administrators
of the CMU CS computing facility balked at doing this for a prototype system.
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While the appropriate places for performing such checksumming have been identified in
the current implementation, it has not actually been implemented.

4.4 Jobs and Tasks

EveryWax job is part of the task heap, fromwhichWax selects tasks for processing. This
task heap is implemented as a collection ofWax blackboards. Each domain has one ormore
TaskManagers thatmaintain that domain’s cache of theWax task heap. TheTaskManagers
control theprocessing of taskswithin adomain. Any task that is not recorded as terminated
in the portion of job visible in a particular domain is eligible for assignment to a processor
in that domain. The number of TaskManagers used by a domain’s administrators depends
on the number of machines in the domain and the degree of failure tolerance desired.

Using the blackboard mechanism to store jobs provides Wax with the same failure
tolerance that the mechanism provides to Wax applications. It also means that the Task
Managers must handle any inconsistencies that may occur due to communication and/or
processor failures. In some sense, the Task Managers are tasks in a meta-Wax job whose
computation involves processing Wax tasks.

EachWax job and task is assigned a unique identifier of the same format as blackboard
identifiers. In fact, the same identifier allocation mechanism used to generate blackboard
identifiers is used to create both the job and task identifiers. The domain field of a task
identifier specifies the domain where that particular taskwas created, andmay be different
from the domain field of the identifier for the job containing the task. While task identifiers
happen to be globally unique in the current version of Wax, they are only guaranteed to
be uniquewithin a job since tasks only exist within the context of a job.

Even though the Wax programming model allows jobs to use multiple blackboards,
Wax currently supports only one blackboard per job. In fact, a single blackboard is used
to store both user and system data. A one-to-one correspondence between jobs and
blackboards makes the prototype system slightly simpler to implement, and provides
equivalent computational power. The drawback is that jobs that use identical sets of input
tuples cannot share those tuples: to save blackboard space or to make use of previously
distributed values.

4.4.1 External Data Structures

Job data can be divided into three groups: information about the job itself, information
about the programs used to instantiate the tasks within the job, and information describing
each of those tasks.

Thefirst groupof data consists of thenameof the job, who created it, theACL attached to
it, andan execution priority. All of this information, except the executionpriority, is passed
along to the Bb Create operation used to create the blackboard that will contain the job,
and is therefore stored in the blackboard’s descriptor tuple in the master blackboard. The
execution priority of a job is recorded in a tuple stored in the job’s blackboard.

The second group of data contains the programs that are available to instantiate the
tasks in the job. Programs are stored separate from the task descriptor tuples, because
multiple tasks will often share a single program. Storing a copy of a program in each
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Figure 4.5: An example task descriptor taken from the integer factoring application.
The first line of the tuple is the name of the task. The second line identifies the program

that should used to instantiate the task. The third line specifies how many ’command
line’ arguments the task has. Those arguments follow immediately after the count, one

to a line. After the arguments is the ACL for the task.

task descriptor could waste a lot of blackboard space, and network bandwidth. Each
program has a user-defined name and one or more processor-type-specific instances. The
name of a program is defined when an external process loads it into the blackboard.
Instances of a program are stored in tuples with keys that include the program name and
the machine architecture for which the instance is appropriate. For example, the instance
of the program called “mpqs piece” that would run on a PC running Mach 3.0 would
have the key Program.mpqs piece.i386 mach.

The third group of data consists of the tuples that describe each of the tasks in the job.
All of the information that is specified when spawning a task is recorded in a single tuple.
This includes the name of the task, the arguments that should be passed to it when it is
scheduled, the name of the program to use to instantiate the task, and the ACL for the task.
Figure 4.5 shows an example.

EveryWax task is in one of the following states:

Queued - The task is waiting to be executed.

Checkpointed - The task is waiting to be executed, and it will be resumed from an
intermediate state.

Active - The task is believed to be executing.

Exited - The task has terminated.

Killed - The task was terminated by a user or another task.

Died - The task is considered to have terminated, because the process used to instantiate
it died before invoking theWax exit operation.

The first three states are used to manage the execution of Wax tasks unterminated tasks.
For a particular priority level, a Task Manager will attempt to schedule Checkpointed
tasks beforeQueued tasks, so as to be able to recover the resources used to store the check-
point record. The three terminated states are intended to provide users will additional
information about the execution of their computations. In addition, when aHost Manager
reports that a task has entered theDied state, the Task Manager recording that event will
not attempt to terminate any other executing instances of that task. The idea behind this
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<4015@128.2.222.173>.Checkpointed.200.0.0.0.0
<4015@128.2.222.173>.Queued.0.0.0.0.0
<4015@128.2.222.173>.Active.0.128.2.242.194
<4015@128.2.222.173>.Active.0.128.2.205.7

Figure 4.6: A hypothetical set of tuples describing the state of task

<4015@128.2.222.173>. The first tuple records the existence of a checkpoint record
that can be used on processors of type 200 (hex), which are PCs running Mach 3.0.

The second tuple contains the information needed to instantiate the task. The last
two tuples indicates that the task is currently assigned to hosts 128.2.242.194 and

128.2.205.7. A status query on this task would indicate that the task is active.

distinction is that an instance of a task might die due to local resource exhaustion on one
machine, but another instance may successful complete execution.

The current state of a task is recorded using the keys of one or more tuples. Each key
includes the unique identifier of the task to which the state information applies, the name
of a task state, and up to two more pieces of state-specific information. The key for a
task in the checkpointed state will indicate the type of processor that wrote the checkpoint
record. The key for an active task record includes the host on which the task is believed
to be executing. Keys for tuples recording the various terminated states will include the
host where the operation that produced the termination record was invoked and the type
of termination recorded by that operation. Since a task may be executing on multiple
machines, and/or have checkpoint records for multiple processor types, there may be
multiple tuples recording such states.

The current state of a task is determined by examining the keys of all of the tuples that
are prefixed with the unique identifier of the task. For example, based on the tuples listed
in Figure 4.6, task <4015@128.2.222.173> would be considered to be in the active state,
because instances of the task are believed to be executing on hosts 128.2.242.194 and
128.2.205.7. The task also has a checkpoint record that can be used by processors of
type 200 (hex), which are PCs runningMach 3.0.

The task state information is recorded in the keys, rather than in a tuple value, because
a value-based mechanism could lose state information. If the current state was recorded
by writing it to a single tuple, then that tuple would have multiple values, and the Wax
programmingmodel does not definewhich value is returned if a tuple hasmultiple values.
While the current blackboard implementation deterministically returns the most recently
written value, relying on that behavior wouldmake the TaskManager sensitive to changes
in the internal implementation of the blackboard mechanism. If a value-basedmechanism,
instead, deleted any existing version of the state tuple before writing a new value, then the
state of the task would be lost should the Task Manager crash after deleting the old value,
but before writing the new value.

4.4.2 Job and Task Operations

The user interface to theWax task heap is implemented as a library of wrappers around
RPCs. As with the blackboard module, the library provides separate interfaces for external
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processes and for Wax tasks. The routines in the first interface are wrappers around RPCs
directly to a Task Manager. The routines in the second interface are wrappers around
RPCs to the Host Manager executing the Wax task, which then forwards the RPC to a Task
Manager.

The rest of this section describes the implementation of the various job and task oper-
ations. The descriptions of the operations are grouped according to which interfaces they
are part of. Thefirst groupdescribes the operations that exist in both interfaces. The second
group covers those routines that exist in the interface used by external processes. These
include operations for manipulating Wax jobs. The third group describes one operation
that onlyWax tasks can invoke.

All of the job and task operations that manipulate an existing job will fail and signal an
error if the the servicing TaskManager is unable tomap the job identifier into an accessible
blackboard. Similarly, all task operations that manipulate an existing task will signal an
error if the servicing Task Manager specified task identifier does not correspond to a task
in the specified job.

Routines Common to Both Interfaces

The GetTaskList routine implements the list operation. The routine returns a list
containing the current state, status, and location information for tasks in the specified job.
The list will include all tasks known to the servicing Task Manager for which the invoker
has read access. Successive operations that are serviced by different Task Manager may
return different sets of tasks. If the caller of the routine does not have read access to the
job, the operation will signal an error.

The TaskGetInfo routine implements the status operation. It returns the name of the
specified task and its current state, status, and location. If the caller of routine does not
have read access to the specified job and task, the operation will signal an error.

The TaskKill routine implements the kill operation. If the specified task has not
already exited, the Task Manager will record the task as having been killed in the task
heap. The servicing Task Manager will attempt to notify any Host Managers that the Task
Manager believes to be processing the task. Since the kill operation is only intended to be
used to optimize resource utilization, no error is signalled if the Task Manager is unable
to contact such a Host Manager.12 If the caller of the routine does not have write access to
the specified job and task, the operation will signal an error.

The TaskSpawn routine implements the spawn operation. It creates a new task in
the specified job. The caller of the routine passes the name of the program to be used to
instantiate the task, the arguments to passed to the task when it is first started, and the
ACL for the task as arguments to the routine. The servicing Task Manager records that
information in the tuple that indicates that the task is in theQueued state (see 4.4.1). If the
caller of the routine does not have write access to the specified job or the program needed
to instantiate the task does not exist, the operation will signal an error.

12Even if all known active instances of a task are interrupted, active instancesmay still exist due to previous
network partitions or the limited consistency maintained between Task Managers.
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Additional Routines in the External Interfaces

The WaxExt JobCreate routine creates a new Wax job. The operation is passed the
name of the job, the execution priority for the job, and the ACL to associate with the new
job. The operation uses this information to create a new blackboard, which will be used
to store the user and meta-data for the job. Wax requires that the jobs belonging to a
particularWax principal must have unique names. If a jobwith the specified name already
exists, the operation will signal an error. The operation will also fail if the Task Manager
processing the request is unable to parse the ACL for the new job.

The WaxExt GetJobByName routine returns the unique identifier for a job given the
user assigned name of the job. The operation will fail if the caller of the routine does not
have a job with the specified name.

The WaxExt GetJobList routine returns the unique identifier of each job for which
the invoker of the operation has read access.

The WaxExt JobAddProgram routine adds a program image to a job. The caller
specifies a job, the (network accessible) path of the program to add, the job internal name
for the program, and type of processor onwhich the program can run. If the TaskManager
can access the external copy of the program, then a copy of the program is stored in a tuple
on the blackboard for the specified job. If the program has previously been added to the
job, then the old copy of the program is replaced. The operation will fail if the the caller of
the routine does not have administrative access to the specified job.

The WaxExt JobDelete routine deletes the specified job. If there are still executing
instances of tasks in the job, the servicing Task Manager will attempt to terminate the
execution of those instances. The blackboard used to hold the job will then be deleted. If
the caller of the routine does not have administrative access to the job, the operation will
signal an error.

The WaxExt JobGetInfo routine returns the owner, name, and execution priority of
a job. If the caller of the operation does not have read access to the job, the operation will
signal an error.

Additional Routines in the Wax Task Interface

TheWane routine implements the exitoperation. Theoperation informs theWax system
that a task has finished executing and provides an exit status code that can be retrieved
using the TaskGetInfo operation. In addition, the operation terminates execution of the
Mach task that is used to instantiate theWax task. This operation never returns to its caller.

4.4.3 Task Manager

When a Host Manager requests a task, the Task Manager selects the highest priority
task whose resource requirements are satisfied by the requestingmachine. After recording
the machine that will receive the task, the Task Manager sends a descriptor for the task to
the Host Manager. The task descriptor consists of the job to which the task belongs, its
blackboard, the name of the task, the program to be executed, and any arguments specified
by the spawning task. The Task Manager monitors the status of all machines executing



4.4 Jobs and Tasks 47

tasks. If it determines that a machine is down or malfunctioning, it marks the task as
available for assignment to another machine.

All operations that read or write task heap information are performed by a Task
Manager. Each time a principal makes a request, the TaskManager checks the appropriate
job and taskACLs before executing the requested operation. TaskManagers checkmachine
ACLs when assigning tasks to machines. After finding a task that the requesting machine
can access, the Task Manager checks that the principal who owns the task may use the
requestingmachine. If the principal may not use the machine, the Task Manager will look
for another task to assign.

A Task Manager functions independently of any other Task Managers that may be
active. Eachmaintains an internal cache of the jobs and tasks that exist in the local domain.
Initial scheduling decisions are made using the data in this internal cache.

The only communication between Task Managers is through Wax blackboards. In
particular, a Task Manager does not know whether there are any other Task Managers
active in the same domain. In order to keepmultiple TaskManagers loosely synchronized,
each instance will periodically attempt to scan all of the jobs known in the local domain.
The inability of a Task Manager to complete a scan due to network or processor failures
does not effect its ability to correctly schedule tasks, since the Wax programming model
provides at-least-once semantics for the execution of tasks.

4.4.4 Enforcing Job and Task ACLs

The ACL for a job is defined by the user creating it. Tasks inherit the ACL of the job to
which they belong, subject to additional restrictions specified at task creation. ACLs for
tasks and jobs can only be specified when they are created, because there is no mechanism
in Wax for synchronously updating all copies of a blackboard entry, such as, a job or task
descriptor.

TheACLson jobsand tasks can also beused to protectWax computations frommalicious
resource providers, by allowing users to control the spread of their computations. When
a user creates a job, Wax is provided with a list of the machines the user trusts to perform
the computation. If a user wants to use a domain or machine that is not fully trusted,
redundant computation can be used to check the results. For example, if a task was
processed by a suspect machine/domain, another task could be spawned to perform the
same piece of the computation, with themachine or domain used by the first task added to
thenegativeACL of thenew task to avoidhaving the samemachine performboth tasks. The
user or “master” task controlling the redundant computation would use the list operation
to determine where the first task had executed.13 In this usage, the ACLs might be bettered
viewed as distribution control lists.

13The reliability of this technique, given that Waxmay migrate executing tasks among several machines, is
unclear.
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4.5 Host Managers

Every machine that executes tasks for Wax runs a Host Manager. The Host Manager
monitors activity on its machine, starts tasks for the system, and connects tasks executing
on its machine to the rest of Wax. When the Host Manager determines that its machine
is idle, it contacts the local Task Manager, requesting a task to execute. If there is a task
available that can execute on the Host Manager’s machine, the Task Manager sends it to
the Host Manager. The Host Manager then starts the task and waits for it to finish. As
described in Sections 4.3.1 and 4.4.2, a task sends all of its blackboard and task operations
to its local Host Manager via RPCs. The HostManager performs the blackboard operations
directly and relays the task heap operations to a Task Manager.

4.5.1 Monitoring Machine State

In addition to serving as Wax’s local agent on a machine, the Host Manager works on
behalf of the primary users of the machine to keep Wax tasks from interfering with local
work. To achieve this goal, the Host Manager monitors process and user activity. Process
activity is monitored by using the Mach system call host info to track the average number
of Mach threads that are executing. A one minute load average is used, because that is
longest period provided by Mach. By default, the Host Manager will check the load every
15 seconds. This period was chosen as a compromise between checking only occasionally
so as to not consume too many CPU cycles when the machine is busy with local work,
and checking frequently so that Wax tasks will be shutdown quickly when local activity
resumes after the machine has been idle. The Host Manager monitors user activity by
checking the access and modification times of the console device attached to the machine.

A machine is considered to be busy with local work if the machine’s console is being
used or the average process load exceeds a certain threshold, by default 1.4 runnable
threads on a single processor workstation. Conversely, a machine is considered to be idle
if the machine’s console has not been used recently and the process load is below a certain
threshold. The default thresholds for a machine to be considered idle are that the console
has not been used for ten minutes and the load average is below 0.25 runnable threads.
The various parameters that affect the determination of whether a machine is considered
busy or idle can be adjusted with command-line arguments to a Host Manager.

Using the access times on a machines console is not necessarily a reliable means of
detecting when a user is actively using the machine. Windowing systems, particularly
older releases of X Windows [SG86], do not necessarily update the access time of the
console device when a user types on the keyboard or clicks a mouse button. As a compile-
time option, Host Managers can be configured to also query a locally running X server for
keyboard activity. This option is disabled by default because linking the Host Manager
with the necessary X libraries significantly increases the size of the resulting binary, and
most machines at CMU are now running version of X that do update the access time on
the console device. Furthermore, the X libraries are not reentrant, with the result that X
activity can only be monitored until the X server is shutdown for the first time after a Host
Manager is started. While this problem may be fixed in Release 6 of X11, and could be
avoided by restarting theHostManager, whenever the connection to the X server is closed,
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the incremental benefit of being able to identify more types of user activity may not be
worth the cost in monitoring overhead.

4.5.2 Starting Wax Tasks

When a Host Manager receives a task from a Task Manager, the Host Manager first
reads the tuple that contains the task descriptor for that task. If theHostManager is unable
to read the necessary tuple, it will report the failure to the Task Manager and request a
different task. Once the task descriptor has been successfully read and parsed, the Host
Manager will attempt to read a checkpoint record for the task. If such a tuple exists,
the Host Manager will restore the saved state into a new Mach task, otherwise the Host
Manager will (re-)start the task from the beginning. TheHost Manager always attempts to
read a checkpoint record, because such records may be created without the Task Manager
being informed. In particular, aHostManagermay crash afterwriting a checkpoint record,
but before it is able to notify a Task Manager that it checkpointed the task.

In the Wax programming model, the machines that execute Wax tasks only need to
provide processor cycles and (virtual) memory. This limited model of a machine allows
Wax to isolate executingWax from other tasks and resources on the samemachine. A Host
Manager uses two features of Mach 3.0 to isolate executing Wax tasks. First, the Mach 3.0
system-call redirectionmechanism [Jon92] is disabled. Second, theHostManager prevents
the Mach tasks used to process Wax tasks from receiving a copy of the send right needed
to access the name service provided by the NetMsgServer.

In Mach 3.0, most of the typical operating system services are provided by servers
running outside of the Mach kernel. A system-call redirection mechanism in the kernel is
used to redirect hardware system calls made by a task to one or more emulation routines
in that are located in the task’s virtual memory. The emulation routines either perform the
operation or forward the request to the appropriate server. In particular, the standard UNIX

system calls are provided on most machines running Mach by the UX server [GDFR90].
The UX server automatically installs the necessary emulation code in the address space
of every task created with the UNIX fork operation. When the redirection mechanism is
disabled, the kernel returns an error whenever a task makes an unsupported system-call.
Wax tasks are run without special privileges so the Mach 3.0 system calls cannot be used
to examine objects outside of a task.

The send right needed to access the NetMsgServer is propagated from task to task by
theMach operation, task create, used to create new tasks. Themach ports register operation
allows a task to change, or remove, the send right that any tasks subsequently created by
thefirst task could use to contact theNetMsgServer. HostManagers usemach ports register,
when they first start running, to remove the send right, thereby isolating Wax tasks from
all tasks that do not explicitly provide them with send rights.

A Host Manager instantiates aWax task using aMach task, one or more Mach threads,
and either a checkpoint record or the program specified in the task descriptor for theWax
task. A Host Manager creates a Mach task and initializes its virtual memory to contain
the text and data stored in the task’s program or checkpoint record (see Section 4.5.3).
When the Wax task is started for the first time, that is from the program rather than a
checkpoint record, the Host Manager will also allocate and initialize a stack segment for
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the first thread. The stack segment is set up to contain the arguments listed in the Wax
task’s task descriptor. The arguments are arranged such that the C runtime initialization
code in the task will be able to use them as the standard argc and argv arguments to the
routine in the program called main.

Having prevented the newly created Mach task from accessing the NetMsgServer,
the Host Manager must explicitly give the task the send rights it will need in order to
communicate with the Host Manager. The Host Manager does this with theMach system
call mach port insert right, which allows one task to insert port rights into another. The
Host Manager gives the port a name that is known to theWax runtime library.

Once a Host Manager has set up the Mach task and the necessary communication
links, it uses task resume to set the task running, and then waits for the task to invoke Wax
operations.

Implementation Bug

Having aHost Manager re-start a task when a network failure prevents it from reading
the checkpoint record for the task breaks the forward progress guarantee of the Wax
programming model. If a checkpoint record exists for a task, but is inaccessible when the
task is assigned to a machine, the Host Manager manager on that machine will restart the
task, andmay thenoverwrite the checkpoint recordwith one for a less advanced state. This
bug can be fixed by having the Task Manager tell the Host Manager when a checkpoint
record must exist. If the Host Manager was unable to find the checkpoint record for such
a task, it would then report the error to a Task Manager and request a different task.

4.5.3 Process Checkpointing

Host Managers checkpoint executing tasks at hourly intervals and when a machine
becomes busy with local work. The checkpoint record for a task is recorded incremen-
tally. The first step in the process is to force the Mach tasks and threads into a state
where a consistent snapshot can be taken that does not leave any residual dependen-
cies on the current host. The second step updates the resource usage information that
is kept for every Wax task. Finally, the internal state of Mach task is scanned and then
recorded in a tuple in the internal namespace of the job’s blackboard. The key for
the tuple storing the checkpoint record consists of the unique identifier for the task,
the string “.Checkpoint.”, and a string identifying the processor-type of the host
performing the checkpoint operation. For example, a checkpoint record for the task
“<2@128.2.222.173>” made by a Host Manager running on a DECstation 5000 would
stored with the key “<2@128.2.2.22.173>.Checkpoint.pmax mach”.

Implementing a checkpointmechanism for theprocesses used to runWax tasks is easier
than building such a mechanism for standard UNIX processes. The restricted machine
model provided by the Wax programming model reduces the possible dependencies that
Wax task can have on the machine executing it. As a result, checkpointing a Wax task
involves recording the state of the Mach task and threads that are being used to process
theWax task, and the state of the communication links between the task and its local Host
Manager.
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The Mach system call task suspend is used to stop the execution of all the threads that
exist in theWax task. This prevents the threads from executing any further user-level code,
but threads may still be executing, or blocked, inside of the Mach kernel. Mach provides
the thread abort function that forces threads to return to user-level code. When the aborted
thread is allowed to execute again, it will either repeat the Mach operation or return an
error code indicating that itwas interrupted. Since thread abort has no effect on threads that
are not executing Mach system calls, the Host Manager calls thread abort on every thread
that exists in the task being checkpointed. After this has been done, all of the threads are
in states where they can be migrated to another machine.

Once theMach task has been forced into this completely suspended state, information
about the resources used by theMach task are retrieved from theMach kernel. These new
statistics are merged with the information from any previous periods of execution, and
recorded in the task checkpoint record.

Determining the state ofMach communication links is themost complicated step in the
checkpoint process. Mach provides a mechanism, mach port names, for determining what
ports exist in aMach taskandextracting the task-specific state of thoseports. Unfortunately,
Mach does not provide as straightforward amechanism for identifying towhat other tasks,
and which ports in those tasks, the first set of ports connects. The restricted machine
model supported by Wax, however, helps the situation by restricting the range of possible
communication endpoints. Without access to theMachNetMsgServer (see Section 4.1), all
ports in the task being checkpointed must be for communication links between the task
and the Host Manager, between the Task Manager and theMach kernel, or within the task
itself. This restricted domain for the ports in the task, enables theHost Manager to identify
the other endpoints for each of the ports under most circumstances.

The port identification process consists of extracting each unidentified send right from
the target task into the Host Manager. The name of extracted port right is then checked
against the set of end points that are known to exist: in the kernel for task and thread ports,
or for any of the communication links that exist between the Host Manager and the task.
If the port matches any of the known communication links, then the pairing is recorded.
If it does not, and the task has only send rights for the port, the Host Manager aborts
making the checkpoint, because the complete communication state of the task could not
be successfully checkpointed.14

A similar matching process is performed for the receive rights found in the target task.
Since the Host Manager has no means of verifying that it has found all of the matching
send rights for a receive right, the Host Manager simply assumes that it has, which is a
reasonable assumption for well-behaved tasks.

There are unfortunately a few types of port rights that are impossible to checkpoint,
because Mach provides no means of identifying the other end of the communication link.
While most of these rights are rarely used, the send-once right is used by the Mach RPC

mechanism for most reply ports. Based on the thousands of checkpoint records that
have been written by the prototype system, this does not seem to be a problem that is
encountered often. Computationally intensive tasks, which are the type of task best suited
to Wax, are unlikely to spend much time sending messages. So, most checkpoints will

14This has never been observed in practice, and would probably be a sign that the security mechanisms in
Wax, and/or theMach kernel, had been breached.
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probably be made when such tasks are computing, rather than communicating.

Once all the ports in target task have been identified, the information relating to each
port, including any queued messages, is extracted from the kernel and written to the
checkpoint record. After the ports have been recorded, the register state of each thread in
the tasks is written to the checkpoint record. And, finally the current state of the virtual
memory of the task is recorded.

If all these operations are completed without errors, the record is saved in the black-
board, and in any case theMach task is terminated. The task must be terminated, because
the checkpoint process corrupts the state of the communication links used by the task.
In particular, the Host Manager removes all receive rights from the task, so that it record
any messages that may be waiting to be received. Wax originally checkpointed tasks only
when the task was going to be terminated because the local machine had become busy,
which meant there was no need to leave the state unchanged, and assuming that the task
will be terminated simplifies the effort of extracting the port information. As a result, the
incremental checkpointing that Wax now provides requires checkpointing the task and
creating a new Mach task from the new checkpoint record. This two step mechanism
has idled machines unnecessarily when temporary network failures have prevented the
storing or retrieving of the checkpoint record.

A Host Manager will fail to write a checkpoint record in several situations. These
situations include the blackboard used by the task being unreachable, the Host Manager
being unable to completely determine the communication state of the executing task, and
the checkpoint record being too large to store in the blackboard. The first situation is the
only one that has actually been observed with the prototype system. If the Host Manager
is unable to checkpoint a task, any work since the last successful checkpoint that is not yet
recorded in the blackboard of the task is lost.

Restoring a task from a checkpoint record is a simple matter, only slightly more com-
plex than setting up a task from a program. The Host Manager reverses the process of
checkpointing the task. First, the statistics are read and saved for later use. Then, the port
information is read from the checkpoint record and used to created the necessary ports in
the newMach task. In particular, the links between the task and theHost Manager and the
kernel are reestablished. Then, the thread information is extracted, and newMach threads
are created and initialized. Finally, the contents of the Mach task’s virtual memory are
initialized form the checkpoint record.

4.6 Distributed Blackboard and Job Data

Distribution Managers are the only externally visible part of a domain, and allow an
organization to be part ofWaxwithout having to reveal its internal structure. Distribution
Managers transfer tasks among domains and provide remote domains with copies of
blackboard tuples that can be cached. When moving data for a job between domains, the
Distribution Managers always update the contents of the job’s blackboard and propagate
new task creation records before transferring any task termination records. By ordering
data transfers in this way, a Wax user in the domain where a job was created can always
determine whether the job has terminated without having to check with other domains.
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Distribution Managers also enforce restrictions on the spread of information between
domains. ACLs attached to every task and blackboard specify the domains that may access
the object. These ACLs are specified by the task creator. Every domain has a resource
usage policy that defines which internal users and which external domains may use the
domain’s resources and to what extent. When Distribution Managers exchange tasks and
blackboard entries, the sender checks the ACL on the entry. If the entry may be sent to the
remote domain, the receiver checks whether the creator of the entry may use the domain’s
resources. The sharing of information between domains does not have to be symmetric;
the fact that one domain may process tasks from another does not require that the second
domain also process tasks from the first.

A Distribution Manager always pulls information from other Distribution Managers,
information is never pushed onto a domain. Pulling data allows a domain to fetch data at
its convenience, rather than at the demand of another domain. While data is always pulled
into a domain, a domain can request that another domain initiate a fetch. The ability to
make such requests is needed to support the Bb Flush operation.15

The ACL on a domain cs.cmu.edu defines the set of domains that may access data
belonging to cs.cmu.edu. The Distribution Managers in cs.cmu.edu also use the domain
ACL to determine the domains from which to accept data. For example, if the ACL on
cs.cmu.edu lists domains cs.washington.edu and wesleyan.edu, then the Distribution
Managers in cs.cmu.edu will only send data to Distribution Managers in those domains
and will only accept data belonging to domains cs.cmu.edu, cs.washington.edu, and
wesleyan.edu. While exchanging data, Distribution Managers also check the ACLs on
individual blackboards for additional restrictions.

4.7 AdditionalWax Interfaces

Wax provides users with several additional interfaces to the system beyond those
needed to support theWax programming model. In particular, Wax provides an alternate
interface to the blackboard, as a replacement for the UNIX system calls that manipulate files
in order to simplify the effort required to port an application toWax. The other interfaces
are a set of shell-level tools that allow users to examine and interact with Wax jobs.

4.7.1 Alternate Blackboard Interface

The Waxio interface, modeled after the UNIX stdio routines, maps file operations into
operations on blackboard tuples. With this interface, an applications can be ported toWax
without writing any new code, if the programmer can identify all of the files accessed by
the program. First, a program that can be used to instantiate a Wax task is created by
linking the existing application with the Wax libraries. Second, a companion shell-level
tool wax run, described in Section 4.7.2, is used to submit the new binary to Wax for
processing.

15In the absence of the second domain needed to test, and use, DistributionManagers, I have not completed
the implementation of the Wax DistributionManager.
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/afs/cs.cmu.edu/user/pds/application
/afs/cs.cmu.edu/user/pds/application/input WaxIo.1 0
/afs/cs.cmu.edu/user/pds/application/output WaxIo.2 0

Figure 4.7: This is the contents of the Waxio file descriptor tuple for a hypothetical job.
The first line specifies the current working directory for any tasks in this job. The

remaining lines identify all the files that tasks may attempt to access using the Waxio
package. The first field on each line is the name the file that the application expects to

be accessing. The second field is the name of the blackboard tuple that contains, or will
contain, the contents of the corresponding file. The third field is used to mark files that
theWaxio package should automatically associate (open) with particular file descriptors.

Zero indicates that the file will only be explicitly opened.

The Waxio package provides a simple emulation of the UNIX file operations that is
sufficient to support applications that use files to store input and output. Because Wax
blackboards do not provide the same consistency semantics as are provided by the UNIX
file system, Waxio is not capable of supporting simultaneous access to a file by different
tasks.

The package uses a separate blackboard tuple to store each file that the application will
access. When a task opens a file for reading or updating, the tuple is read into the task’s
virtual memory. All read and write operations effect the contents of the tuple cached in
the task’s virtual memory. When a task closes a file that it had opened for writing, the
package will write a new tuple to memory.

The file names used by aWaxio application cannot be directly used as the names of the
tuples that will store the file data, because theymay be too long or contain characters (’/’)
that are not allowed in tuple’s names. To solve this problem, the Waxio package uses an
extra tuple to record a mapping between file names and tuple names that is determined
when a job is first created, usually by the wax run program. When a task first attempts to
access a file, the package reads the tuple that contains the mapping and caches it.

Figure 4.7 contains an example of the extra tuple used by the Waxio package to map
betweenfilenamesand tuples. Thefirst line of the tuple specifies the initial currentworking
directory for all tasks in the job using the descriptor. This allows the Waxio package to
map any relative pathnames used by the application into the abolute pathnames recorded
in the descriptor tuple. The remainder of the tuple defines the mapping between two files
(input and output) and their corresponding blackboard tuples.

4.7.2 Shell-level Tools

The tools described in this section allow users to interact with the Wax system. Each
of the user-level programs is presented separately.

wax admin

The wax admin program allows domain administrators to control and monitor the
status of TaskManagers. In particular, administrators can use this program to force a Task
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Manager to re-read the file that contains the ACL for the local domain. The program also
can be used to get a Task Manager to dump status information about memory usage and
open communication links to a log file.

wax extract

The wax extract program removes tuples created by an application using the Waxio
package from the blackboard of a job and stores them in the files the application code
believed it was accessing. Command line switches allow the invoker to extract all of the
tuples, or only those tuples that correspond to particular files.

The program can also be used to list the status of some or all of the tuples used
by the Waxio package. The difference between using wax extract and wax ls to list this
information is that wax extract will print the information in terms of the application
specified file names, while wax ls would list the name of the tuples used to store the files.

wax ls

Thewax lsprogramenablesusers tomonitor the statusof jobs that havebeen submitted
to Wax. The program also allows users to list the blackboard contents of their jobs, but
there is not currently a shell-level Wax tool for accessing blackboard tuples.

wax rm

Thewax rm program removes a job and its associated blackboard and tasks fromWax.
Any active tasks are killed, and the blackboard storage used by the job is freed.

wax run

The wax run program allows users to submit jobs that will use the Waxio package.
The program accepts a list of input and output files that the a job will access and a list of
tasks to spawn. The program creates a job, copies in all the input files to the blackboard of
the job, writes the mapping tuple needed by theWaxio package, and spawns the specified
tasks.

4.8 Evaluation of the Implementation

This section examines the implementation ofWax. The examination focus, in particular,
on the implementation’s use of various features of theMach operating system. WhileMach
has provided a useful testbed for building and evaluating Wax, its limited availability
restricts the use ofWax at other sites. Several design choices are evaluated and alternatives
to Mach-specific solutions are proposed.

4.8.1 The Use of the Mach System Call Mechanism

The Mach system call redirection mechanism is one of the key techniques that Wax
uses to protect resources connected to the system. Unfortunately, the technique is not
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directly portable to other operating systems. However, the “/proc” file system provided
by System V compliant operating systems, which include OSF/1 and Solaris, is a possible
replacement. Amongother features, thefile systemallowsoneprocess to trap the execution
of all system calls performed by anotherprocess. TheHostManagerwould use this feature
to check that Wax tasks were only accessing the files used to store blackboard tuples and
no others.

4.8.2 The Use of Mach IPC

The use of Mach IPC between processes on different machines was a mistake. The
NetMsgServer was designed to extend the IPC mechanism provided by Mach 2.5 kernels.
Since very few people use Mach IPC between machines, the code has not been heavily
tested, or well maintained. In addition, it does not support any of the new features
provided by Mach 3.0 IPC. In particular, a task waiting for a message to arrive on a port
will not be notified that a message can never arrive, because no tasks have send, or send-
once, rights for the port. Given the ways thatWax uses the RPC mechanism, this problem
typically occurs as the result of a machine crashing. If this happens when a task is waiting
for the reply message of an RPC, the task will wait forever. The only mechanism thatMach
provides for avoiding this problems is the use of a timeout on the RPC, which places an
arbitrary upper bound on the time a server has to perform an operation.

To avoid having to rely on a time out mechanism to recover from such failures, the
connection module explicitly manages the ports used to receive reply messages for any
connections that may go between two machines. The connection module associates each
reply port R with the port P (send right) that is used to send the request message. If
the task holding the receive right for P dies, the Mach kernel, perhaps with the aid of
the NetMsgServer, will eventually notify the connection module that P is no longer valid.
When the connectionmodule receives such a notification, it deallocatesR, whichwill cause
any pending Mach message operation, in particular, mach msg with the receive option,
using R to return an error.

4.8.3 The Use of Mach/C Threads

I havemade heavyuse ofMach threads, in general, and theC-Threads package [CD88],
in particular, in implementing the Wax system processes. As a result, those processes are
only readily portable to other operating systems that provide pre-emptively scheduled
threads, such asSolaris andOSF/1. Suchoperating systemspresently, orwill soon, support
the emerging POSIX threads (Pthreads) standard [P10], which provides replacements for
the C-Threads routines that Wax currently uses. Most of the work needed to port Wax
from C-Threads to Pthreads is isolated in two files.

4.8.4 AFS as the Blackboard Store

AFS is not the right storage mechanism for Wax blackboards. While it provided a
convenient mechanism to use in the prototype implementation, the AFS failure model is
too pessimistic for Wax. In order to approximate the consistency guarantee of the UNIX
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file system, AFS will not allow processes to access cached files when the Cache Manager
is unable to contact a file server to verify the validity of the cached data.

Another problem with AFS is that it locks up a machine when the Host Manager
records a checkpoint record. This is particular troublesome when a Host Manager is
attempting to checkpoint a task when a user reclaims the machine. AFS operations that
are in progress seem to interfere with the UX server’s ability to perform other, non-AFS,
operations. From simple experiments using FTP, the interference seems to be greater for
AFS related operations than for other network operations.

A possible alternative to using AFS would be the Coda file system [SKK+90, KS92].
Coda, which is derived from anearly version ofAFS, uses optimistic replication to improve
data availability. The limited consistency guarantees of the Wax data model would make
it easy to automate failure recovery. The drawback to Coda is that it is not as widely
distributed as AFS.

4.8.5 The Waxio Package

The Waxio package was added to Wax largely as an after thought. In hindsight, this
package is an important part of Wax, because it can greatly simplify the work that an
application programmer must perform to port an application to Wax. For computations,
where many runs of a serial application are needed, porting can be as easy as relinking the
object file.
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Chapter 5

Applications

Chapter 3 described a programming model that was designed to be feasible to imple-
ment in a distributed computing environment. In order for that model, or an implementa-
tion of the model, such as the one described in Chapter 4, to be interesting and/or useful,
there must exist a class of applications that can be solved using the model. In this chapter,
I identify and describe such a class of applications. In addition to describing the general
characteristics of applications that can be solved using themodel, this chapter outlines the
implementations for several example applications. The remainder of the chapter presents
guidelines to help an application programmer determine whether or not a particular ap-
plication can be implemented using Wax, and explores some of the programming issues
that need to be considered in implementing an application usingWax.

The Wax programming model can, in principle, be used to solve all applications that
have only a limited reliance on global data consistency. This class of applications in-
cludes applications where the individual tasks are independent, that is pairs of task do not
exchange results. Examples of such applications include independent distributed simu-
lation [JCRB89], graphics and film animation [LC92], and many probabilistic algorithms,
such as Manasse’s integer factoring application [LM89]. The class also includes applica-
tions, such as the quadratic assignment problem [PC89], that share intermediate results
solely in order to reduce the amount of computation. In addition, applications that have
multiple phases with data shared between tasks in different phases can also be imple-
mented with the aide of the barrier synchronization mechanism described in Section 3.5.1.

The applications that will perform well on a distributed implementation of the model
have the following additional characteristics:

� coarse-grain parallelism

� individual pieces that are computationally intensive

� moderately-sized data sets

The first two properties are needed to take advantage of the parallel processing capabil-
ities of an implementation in a distributed computing environment and to minimize the
impact of the overhead of distributing pieces of a computation to processors. However,
coarse-grain parallel applications in which large amounts of data are shared among the
processing elementsmay not be able to take advantage of the parallelism provided by such
an implementation, because of the need to wait for large amounts of data to be moved
across (relatively) slow networks.

59
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Wax Model Provides The Programmer Provides

Access to computing resources, such as
processors, physical and virtual memory,
and blackboard storage

Hints about the resources needed to
process a job/task

Automated task scheduling, including
checkpointing active tasks and restarting
failed tasks

Mechanisms to recover from
inconsistencies created by multiple
execution of tasks

A shared-data store (blackboard) Mechanisms to maintain application
required consistency of the data store

Table 5.1: The division of features between those provided by Wax and those provided

by the application programmer.

For an implementation that uses theworkstations of a distributed computing environ-
ment, the cost of communication will prevent some applications from being implemented
on top ofWax.

5.1 Deciding Whether to UseWax for a Particular Application

This section provides application programmers with a framework for evaluating the
feasibility of implementing a specific application using, in general, theWax programming
model and, in particular, a distributed implementation of that model.

As part of the evaluating an application, an application programmer should consider
whether there is more than one algorithm that can be used to solve the problem. Different
algorithms may result in different data consistency requirements and/or affect the size of
the blackboard working set of individual tasks. While a distributed computation system
implementing the Wax model provides the programmer with a shared data store, the
algorithm that works best on a (tightly-coupled) shared-memory multiprocessor may not
be the right one to use with the distributed system, since the relative costs of computation
and communication in a distributed computation system differ from those of a traditional
multiprocessor.

In order to use the evaluation framework, a programmer must first understand what
the Wax programming model provides, and what it does not provide. Table 5.1 lists
the features that the model supplies to an application programmer and those that the
programmer must supply. The programmer can then use the flow charts in Figures 5.1
and 5.2 to evaluate the applicability of Wax to specific applications. The first flow chart
outlines the evaluation process in general, while the second flow chart focuses on the
questions used to characterize the global consistency requirements of the application. The
rest of the section explores in greater detail each of the decision points listed in the two
flow charts.
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Figure 5.1: This flow chart outlines the process that an application programmer should

use in evaluating whether or not a particular application can be solved using the Wax
programming model, and whether the application is compatible with a distributed

implementation of the model. Question 2, about global consistency, is expanded in
more detail in the subsidiary flow chart shown in Figure 5.2.
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5.1.1 Application Parallelism

The first decision point in the evaluation process is whether the application contains
any internal parallelism, that is: can it be broken up into two or more pieces? Such
parallelism is both good and bad. On the positive side, a parallel application will be able
to use the potential parallelism provided by a distributed computation system. On the
negative side, that parallelism raises the possibility that the various component tasks may
require global consistency to execute correctly. Global consistency requirements can, at
the least, create additional programming work for the application writer, and, at theworst,
make the application impossible to solve within theWax programming model.

If the application has no internal parallelism, the next step in the evaluation is to
determine if there are other reasons for using the Wax model. Several possible reasons
are explored in Section 5.1.2. If the application does have internal parallelism, the next
decision point involves evaluating the global consistency requirements of the application,
which is described in Section 5.1.3.

5.1.2 Serial Applications

All serial applications can, in principal, be implemented using the Wax programming
model, since they have only local consistency requirements. The task performing the
application might still need to execute fetch operations to bring the input data to where
it is executing, but that is a data availability, rather than data consistency issue. For
serial applications, using a distributed computation system is an uncertain means of a
reducing execution time, particularly in an environment where the machines available to
the computation system are identical to those directly available to the people using such
applications. As a result, the decision to use such a distributed computation system for
serial applications depends on what other benefits the system provides.

A serial application can benefit from a distributed computation system if it has external
parallelism, that is, it will be run multiple times. In addition to the obvious benefit
of parallel execution, the automated process management of a distributed computation
system can relieve the application’s user of theneed to schedule andmonitor the individual
runs of the application.

Even if the programmer expects an application to be run only a few times, the fault
tolerance provide by a system implementing theWaxmodelmaymake using such a system
valuable if each run of the application will execute for a “long time.” The exact definition
of what is a “long time” depends on theMTTF of themachines that the programmer would
otherwise use to process the application, and the programmer’s tolerance for risk. For an
observed MTTF and a given expected execution time, the programmer can determine the
probability that the machine executing the application will crash before the application
finishes. A long time is then that length of time at which the risk of failure exceeds the
programmer’s risk tolerance.

Applications that will only be run a few times and do not execute for a long time can
be solved using theWax programming model and a distributed computation system, but
they are unlikely to benefit from the parallelism and fault tolerance that such as system
provides. If the extra processor cycles available through the computation system are not
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important, then the application programmer is probably advised to use the local resources
of a single personal workstation.

The evaluation of serial applications that the programmer decides to implement using
theWaxmodel continues in Section 5.1.4.

5.1.3 Evaluating Global Consistency Requirements

The Wax programming model was designed to allow distributed implementations of
themodel to provide applications with asmuch of the potential parallelism available in the
underlying resources as possible. Themodel achieves this goal by allowing such an imple-
mentation to reveal the inconsistencies and failures that occur in a distributed computing
environment. The price of this parallelism, however, is that application programmers
must explicitly maintain the consistency requirements of their applications.

If an application isdependent onglobal consistency, then theblackboard fetchesneeded
to maintain the global consistency guarantees may (significantly) reduce the amount of
parallelism that can be realized. For all such applications, the effective parallelism will be
reduced by the delays caused by waiting for the consistency enforcing operations (fetches)
to successfully complete.

Applications may depend on global consistency in several ways: through constraints
on shared data, by relying on the order in which tasks are executed, and/or by assuming
that individual tasks are executed exactly once. Some of the consistency requirements
of an application’s shared data are obvious, for example, a counter that is used to order
events clearly needs to be updated atomically; while requirements, such as a dependence
of one piece of the application on the output of another piece of the application, might not
be so obvious.

Question 1 in Figure 5.2 explores whether the various tasks in the application interact.
If the tasks are independent, that is they share neither data nor depend on the execution
order of other tasks, then the application has no global data consistency requirements. The
evaluation of such application continues in Section 5.1.4.

When an application uses interacting tasks, the programmer must, as indicated in
Question 2 of the consistency flow chart, characterize the type of each interaction. If the
interaction isused solelyas anoptimizationhint, then it doesnot create a global consistency
requirement. If the interaction is needed for the correct execution of the algorithm, then
there is a global consistency requirement. If the all of the interactions are optimizations,
then the evaluation of the application continues in Section 5.1.4.

Correctness dependencies aremore of a problem for potentialWax applications. Ques-
tions 3 and4 in the consistencyflowchart (Figure 5.2) are basically prompts to the program-
mer to consider whether there are ways to work around such dependencies. Question 3
looks at whether the dependencies are related to different phases in the application, for
example, is the output of tasks in one phase used as input by tasks in the next phase. If
so, then the barrier synchronization primitive, described in Section 3.5.1, can be used to
maintain the necessary dependencies.

Question 4 explores the possibility of using other techniques to avoid the dependency.
The programmer can look for brute force means, such as by duplicating computation,
to turn a correctness dependency into an optimization. As an example, consider an
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application, such as a particle simulation, where the output of one phase is used as input
for the next, andeach phase of the computation could be divided amongst a numberofWax
tasks. When a task finished with its assigned portion, it could start working on the piece
assigned to another task that is not currently known to be executing. Alternatively, the
programmer can explore restructuring the application in order to remove the dependency.
For example, if many runs of a particle simulator are required, a single task could be used
for each run and parallelism achieved by executingmultiple runs simultaneously.

If the correctness dependencies can be managed, or avoided, then the application
can be implemented using the Wax programming model. The feasibility of computing
the application on a distributed implementation of the model is evaluated starting in
Section 5.1.4. If thedependencies cannot bemanaged, then the application, or theparticular
algorithm under consideration for performing the application, cannot be implemented
using theWax programming model.

5.1.4 Practical Considerations in Using a Distributed Computation System

When the programmer has determined that the application can be implemented using
the Wax programming model, the focus shifts to whether the application is feasible to
process using a distributed computation system. The answer to this question depends, in
part, on the characteristics of the distributed computing environment that is used by the
computation system. In order to provide a general guideline, suggestions will be made
based on experiences with the prototype system described in Chapter 4 and the network
environment at Carnegie Mellon University and across the Internet.

As in any parallel programming environment, the time required to create a task, assign
it to a processor for execution, and recover its results is overhead that needs to be balanced
against the benefit of overlapped (parallel) execution. The programmer must keep in
mind that this overhead will be much higher in a distributed computation system than on
a traditionalmultiprocessor, since eachof these activities requiresnetwork communication.
For example, in theprototype system, assigning a task to a processor and starting it running
typically takes 3-5 seconds. Asa result of thehigher overhead, the application programmer
may need to adjust the decomposition of the application into tasks so that each task does
more work.

As with traditional multiprocessors, the amount of data used by a Wax application
will affect its performance. Because the communication bandwidth available to tasks
executing in adistributed computation systemis less than that available onmost traditional
multiprocessors, the size of the data set will have a greater performance impact on theWax
implementation than on a traditional multiprocessor implementation. In particular, the
blackboard mechanism in the prototype system canmove data across a local-area network
at 100-200 kilobytes/second (KB/s). Golding’smeasurements of end-to-endperformances
betweenvarioushostson the Internet indicate that the effective communication rates across
wide-area networks are in the 5-50 KB/s range [Gol92].

Another consideration for applications with large data sets is how much of the data
is needed by individual tasks. A large per-task blackboard working-set may reduce the
number of processors available to a task, because some Wax processors may not have
enough accessible cache space to hold the working-set. When the accessible cache space
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is exceeded, a task will be unable to fetch or write additional blackboard data. Once this
occurs, all blackboard operations thatwould need to fetch or write datawill fail and return
an error code.

To avoid these problems, the application programmer must develop estimates of the
blackboard working-set requirements for each task and job. The programmer can then
compare those estimates with the distributed computation system’s estimates of the avail-
able resources. A computation system could also use the programmer’s estimates in
making decisions about where to assign a particular task for execution.

5.1.5 Termination of Wax Computations

Detecting and handling the termination of aWax job is left to the application program-
mer and user. Wax will continue to process the tasks in a Wax job as long as there exist
tasks that have not terminated and processors that are compatible with any of those tasks.
In some applications, a task will be able to determine that the job has achieved its goal
and interrupt the execution of any other active tasks. In others, the user of an application
will have make that determination based on observation of the blackboard of the job in
question. In both cases, the extraction of the results of a job from its blackboard, and the
subsequent deallocation of anyWax resources used by the job,must be performed by some
process external toWax.

5.2 Issues in Programming usingWax

After deciding to implement an application usingWax, the programmer must consider
how to map the pieces of the application and their associated data structures onto Wax
tasks and blackboard tuples. Choosing a mapping is often an iterative process with each
iteration consisting of three phases. The first phase requires identifying the parallelism
that exists in the application and assigning pieces toWax tasks. The next phase breaks the
data structures used by the application into the pieces thatwill be stored in separate tuples.
The last phase closes the loop by examining how the selected decomposition of the data
structures affects the implementation of the individual tasks. If the effects on application
performanceor complexityof the implementation are considered toogreat, then theprocess
can be repeated using a different partitioning of the application’s parallelism.

5.2.1 Mapping Application Parallelism toWax Tasks

The partitioning of an application into tasks focuses on the costs of and benefits pro-
vided by each additional task. The costs include thepreviously described generic overhead
of creating, scheduling, and reaping the task, and perhaps application-specific overhead
due to additional mechanisms needed to handle failures or possible data inconsistencies.
The benefits of using additional tasks include overlapping execution and access to more
physical and virtual memory.

An additional issue to consider in splitting an application into tasks is decidingwhether
thisdivision shouldbedoneoncewhena job is first started, ordynamically adjustedduring
the course of its execution. If themaximum potential parallelism can be determined when
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a job is created and the variance in resource requirements (CPU, memory) of the various
pieces is not expected to be a problem, then static partitioning is probably the right choice,
since it is generally easier to implement than dynamic partitioning. Otherwise dynamic
partitioning will probably provide better performance. The class of applications that are
well suited to static partitioning includes integer factoring, 3-D perspective rendering, and
applications, such as simulations, that generate their parallelism by processing multiple
runs simultaneously. Applications that use a branch-and-bound algorithm, in which the
pruning of the search space can result in significant variation in the CPU and memory
usage of individual tasks, should use dynamic partitioning.

5.2.2 Decomposition of Data Structures

The process of decomposing an application’s data structures can be divided into three
steps. The first step is to figure out what data need to be moved into and out of the
blackboard used by a job. The second is to map each piece of the application data onto
one or more blackboard tuples. The last step is to decide how to recover from the potential
unavailability of the data stored in a tuple.

The Wax blackboard contains the only shared data that is accessible to Wax tasks.
Therefore, the process creating a job must copy any input from wherever it is stored
outside ofWax onto the blackboard used by the job. An analogous extraction step must be
performed to remove any results that the submitter of the job wants to save.

In deciding how to group pieces of data into tuples, the application writer should
consider whether there are pieces that are needed simultaneously in order for any one of
them to be useful. If such groups of data exist, then the application may want to write
the entire group to the blackboard as a single tuple. If the pieces are recorded as multiple
tuples, theymay not all diffuse at the same rate with the result that none of the individual
pieces would be usable.

Similarly, groups of information that need to be internally consistent should also be
written as single tuples. For example, a task that produces an N �M matrix, where N
andM are variable, would probably want to record N ,M , and the contents of the matrix
as a single tuple. SinceWax guarantees that individual blackboard writes are atomic, such
a tuple would always be internally consistent. Whereas, if two or three tuples are used
to hold the matrix and its dimensions, and two instances of the task produced matrices
with different dimensions, then another task that attempted to read the matrix might read
the values for N and M written by one instance and the contents of the N 0

�M

0 matrix
written by the other instance. Furthermore, while the reader task would be able to detect
the inconsistency if N �M 6= N

0

�M

0, because the contents of the matrix would be the
wrong size, the inconsistency is not (immediately) detectable if N �M = N

0

�M

0.

On the other hand, the programmer may not want to combine un-related data, or
pieces of data that are used by different tasks. The larger a tuple is the longer it is likely
to take to distribute, since the minimum transfer time for a tuple is the size of the tuple
divided by the effective network bandwidth. If a task needs only a small portion of the
data stored in a tuple, then the unused data simply increases the communication cost (and
delay) of moving the needed data.
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Seller_Task()
{
key_t * list;
unsigned itemPrice = 199;
unsigned numItem;
int count;

Wax_BlackboardWrite("Price", itemPrice); /* Write price to blackboard */

while (Wax_BlackboardRead("Order", &numItem) != SUCCESS) {
Delay(); /* Wait for an order to arrive */

}

/* Process order */
}

Buyer_Task()
{
key_t * list;
unsigned itemPrice;
unsigned numItem;
int count;

while (Wax_BlackboardRead("Price", &numItem) != SUCCESS) {
Delay(); /* Wait for a seller to post a price */

}

numItem = 1000 / itemPrice; /* Determine how many items to order */

Wax_BlackboardWrite("Order", &numItem); /* Submit order */
}

Figure 5.3: Example of how a dependence on the execution order of tasks can result
in deadlock. If only one processor is available, the Wax Read operation executed by

whichever of the Buyer Task or Seller Task is selected for processing will never indicate
successful completion, because the desired tuple will never appear.

5.2.3 Deadlock-Free Parallelism

Another issue that application programmers must consider is the degree of deadlock-
free parallelism that exists in an application. This is the number of tasks that can simulta-
neously be in the task heap, such that the job will execute correctly, and continue to make
forward progress, regardless of the order and degree of concurrency with which those
tasks are executed. For example, the hypothetical application shown in Figure 5.3 will
deadlock if only one processor is available. If the Seller Task is selected for execution, it
will spin waiting for the ORDER tuple to appear, which will never happen. If instead the
Buyer Task is selected for execution, it will spin waiting for the PRICE tuple to appear.

Strictly speaking, the degree of deadlock-free parallelism is the maximum amount of
parallelism that can be used by theWax implementation of an application. However, this
may often be an overly conservative bound, as there will almost always be multiple pro-
cessors available to a job. The list and status operations defined by theWax programming
model (see Section 3.2) provide programmers with the means of estimating the number of
currently available processors (by counting the active tasks). An implementation might
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also provide an interface for explicitly determining the number of available processors.
The programmer can then adjust the behavior of the application based on the current size
of the processor pool.

Any application that relies on tasks executing in parallel for correct execution is suscep-
tible to deadlock when failures reduce the number of available processors. For example,
the barrier synchronization primitive described in Section 3.5.1 provides a convenient
method of synchronizing the phases of a computation, but it will deadlock if not all of
the tasks rendezvousing at the barrier are executing at the same time. The list and sta-
tus operations can be used to detect such a deadlock, since the barrier primitive requires
each participant to know the identity of all the other participants. When a deadlock is
detected, there are at least two possible recovery techniques. The application can recover
by having one or more of the executing tasks perform the work that would have been
executed in parallel by the other tasks if there had been more processors available, and
write the necessary synchronization tuple. Alternatively, one, ormore, of thewaiting tasks
could make processors available by invoking the exit operation. Before calling exit, a task
would spawn a new task that, when assigned to a processor, would perform the rest of
computation assigned to the first task.

This issue could be rendered moot by modifying Wax to support multi-programming
of idle hosts. The multi-programming could be accomplished either cooperatively or
preemptively. In a cooperative implementation, a task that was waiting to synchronize
with other tasks would signal a Task Manager, via its local Host Manager, that it should
be checkpointed and another task allowed to execute. In a system supporting preemp-
tive multi-programming, Task Managers would periodically notify each Host Manager to
checkpoint the currently active task, and start executing another task.

5.3 Example Applications

This section describes how several applications have been or might be implemented
usingWax. Thefirst example,which is ahypothetical implementation of an application that
uses a branch-and-bound algorithm, is described in moderate detail, including pseudo-
code for thepieces that aremost important to understanding theWaxprogrammingmodel.
The remaining applications, which are presented in less detail, include: Manasse’s integer
factoring application, an application that generates images of the Mandelbrot set, an
application that produces an oracle for countingproblems, a threedimensional perspective
rendering application, and RAIDSIM, a simulator for a redundant array of inexpensive
disks (RAID).

5.3.1 Branch-and-Bound Algorithm

This example examines a hypothetical application that uses a branch-and-bound al-
gorithm to find all optimal solutions to a problem. The branching part of the algorithm
produces a tree of solutions by selecting an existing partial solution and generating new
solutions that are one step closer to complete solutions to the problem. The bounding part
uses a cost metric to prune partial solutions that cannot lead to complete solutions that
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are at least as good as those solutions already found. Branch-and-bound algorithms can
be used in applications such as the quadratic assignment problem [KB57]. The quadratic
assignment problem involves identifying (approximately) optimal pairings of one set of
objects to a second set of objects, for example, assigning buildings to sites. In such an
instance of the quadratic assignment problem, the cost metric is a function of the flow of
material between buildings and the distance between sites.

Applications that use branch-and-bound algorithms are well suited to a distributed
implementation of the Wax programming model. The searching of each portion of the
solution space is essentially independent. The only data that tasks might share are im-
provements in the boundvalue. The exchange of suchvalues can optimize the search of the
solution space, but is not necessary for the correct execution of the algorithm. In addition,
the data requirements, at least for the quadratic assignment problem, are minimal: a few
kilobytes.

Within each task that searches the problem space for optimal solutions, there are two
threads: one to monitor the blackboard and one to search the portion of the problem space
assigned to the task. The first thread, Scanner, shown in Figure 5.4, uses theWax directory
operation to check for tuples that contain new bound values that have found by other
tasks. When it detects new tuples, the thread reads them and uses their values to update
the bound value that is used internally by the other thread. The second thread, Searcher,
shown in Figure 5.5, does the actual searching for solutions. Figure 5.6 shows the routines
used to communicate between the two threads. Finally, Figures 5.7 and5.8 show the source
and sink for the job, respectively.

A Problem with Multi-valued Tuples

There is a subtle, but important, point to made about when the tuples recording
solutions are written to the blackboard by the searcher thread. If a task is not idempotent
with respect to the set of tuples and values that it writes to the blackboard, then some of
those values may become lost. A value can be lost if it is only written in tuples that have
multiple values, in which case, subsequentWax read operations may always return one of
the other values associated with those tuples.

In an application designed to find all solutions with the same best cost metric, the
solutions cannot be written until the task has searched all of its portion of the problem
space. Because each instance of a task will use the same sequence of keys to record the
best solutions it finds, writing the solutions to the blackboard as soon as they are found
(replace RecordNode() in Figure 5.5 with Wax Write()) may cause some solutions to
be lost if a task is executed multiple times. Since the execution of these tasks is affected
by the accessible results of other tasks, their execution is not deterministic. As a result, two
instances of the task may record a different number of solutions that are optimal when
they are found, but not at the end of the search. If this happens, then one or more of
the keys used to record solutions will be associated with values that include both optimal
and non-optimal solutions, which could result in an optimal solution being lost. The
potential existence of multiple values is not an issue for the keys used to record the bound
value, because the values observed for those keys only optimize the performance of the
algorithm. They do not affect its correctness.
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/*
* BOUND_PATTERN is a regular expression that matches the keys used to record bound
* values. (See MaybeUpdateBound() for an explanation of the naming scheme.)
*/

#define BOUND_PATTERN "Bound\\.[0-9]+\\.[0-9]+"

/*
* Scanner Thread - Monitors blackboard for output of other tasks.
*/

Scanner()
{
key_t * list;
key_t * oldList;
value_t value;
int i, count, oldCount;

oldList = NULL; oldCount = 0;
while (TRUE) {
/*
* Read the list of blackboard tuples whose keys match the pattern specified by
* the first argument to appear.
*/

Wax_BlackboardGetList(BOUND_PATTERN, &list, &count);

for (i = 0; i < count; i++) {
/*
* Check whether the tuple has been seen (and therefore read) in a previous scan.
*/

if (KeyNotInList(list[i], oldList, oldCount)) {
Wax_BlackboardRead(list[i], &value); /* Read a value associated with a key */
MaybeUpdateBound(value, FALSE); /* Possibly update the bound value */

}
}
oldList = list; oldCount = count; /* update for next iteration */

Sleep(); /* wait for a while before doing another scan */
}

}

Figure 5.4: Example of how to use Wax. The thread executing this routine scans the
blackboard for bound values recorded by other tasks.



72 Chapter 5. Applications

/*
* Searcher Thread - Executes a Branch-and-Bound search of the assigned portion
* of the problem space.
*/

Searcher()
{
key_t key;
node_t curNode;
value_t value;

curNode = SelectNode(); /* Select a node from the search space. */
while (curNode != NULL) { /* While we have not exhausted the space */
value = EvaluateNode(curNode); /* Compute the cost metric. */

if (value <= CurrentBound()) { /* Compare cost of current node to the bound */
MaybeUpdateBound(value, TRUE); /* Possibly update the bound value */
if (Complete(curNode) { /* Is this a complete solution to the problem? */
RecordNode(curNode); /* Yes, save the result. */

} else {
/* Starting from the current partial solution, generate a set of nodes
* that are one step closer to a complete solution. */

ExpandNode(curNode);
}

}
curNode = SelectNode();

}

/*
* Now record all the the best solutions in the blackboard. GenerateKeyForSolution()
* produces a key of the form Solution.<taskId>.<count>, where the taskId field is
* some identifier that is unique amongst all tasks, and the count field is the
* number of solution tuples previously written by this task.
*/

curNode = GetRecordedNode(); /* Get a saved result. */
while (curNode != NULL) {
key = GenerateKeyForSolution();
Wax_BlackboardWrite(key, curNode); /* Record it on the blackboard. */

}
}

Figure 5.5: Example of how to use Wax. The thread executing this routine performs the
search of the assigned portion of the problem space.
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static value_t bound;

value_t CurrentBound(void)
{
value_t value;

LockBound(); /* Prevent other threads from accessing bound. */

value = bound;

UnlockBound(); /* Allow access to other threads */

return value;
}

MaybeUpdateBound(value_t value, boolean_t local)
{
key_t key;

LockBound(); /* Prevent other threads from accessing bound. */

if (value < bound) {
bound = value;
if (local) {

/*
* If this value was found by this task, then the new bound should be recorded
* in the blackboard so the tasks can use it. The function GenerateKeyForBound()
* produces a key of the form Bound.<taskId>.<count>, where the taskId field is
* some identifier that is unique amongst all tasks, and the count field is the
* number of bound tuples previously written by this task.
*/
key = GenerateKeyForBound();
Wax_BlackboardWrite(key, bound); /* Make the new bound available to other tasks. */

}
}
UnlockBound(); /* Allow access to other threads */

}

Figure 5.6: Example of how to use Wax. These routines handle the communication

between the Scanner thread (Fig. 5.4) and the Searcher thread (Fig. 5.5).
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/*
* Start a job and use the program whose name is given by programName and
* executable is pointed to by path.
*/

StartJob(const char *path, const char *programName, wax_acl_t aclBuf)
{
wax_job_t job;
wax_blackboard_t blackboard;
value_t bound;

WaxExt_JobCreate("JobName", /* priority */ 1, aclBuf, &job);

/* Add program instances for PCs and Pmaxen */
WaxExt_JobAddProgram(job, programName, path, PC_ARCHITECTURE);
WaxExt_JobAddProgram(job, programName, path, PMAX_ARCHITECTURE);

WaxExt_JobGetBlackboard(job, &blackboard);

bound = ComputeInitialBound();
WaxExt_BlackboardWrite(blackboard, "InitialBound", bound);

CopyInputToBlackboard(); /* Copy any initial state into the blackboard */

/* Create the individual tasks that will perform the computation. */
Partition computation;
For each piece of the computation {
WaxExt_TaskSpawn(job, programName, taskArguments);

}
}

Figure 5.7: Start a branch-and-bound job in Wax.
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boolean_t JobDone(wax_job_t job) /* Has the job terminated? */
{
wax_task_t * taskList;
int taskCount;
boolean_t done;

/* Get a list of all tasks in this job. */
WaxExt_JobGetTaskList(job, &taskList, &taskCount);
done = TRUE;
for (i = 0; i < taskCount; i++) {
done &= Wax_TaskDone(taskList[i]); /* Has this task terminated? */

}

return done;
}

MonitorJob(wax_job_t job, wax_blackboard_t blackboard)
{
key_t * keyList;
key_t * oldKeyList;
int count, oldCount;
value_t value;
node_t node;

/*
* Collect the results.
*/

oldList = NULL; oldCount = 0;
while (! JobDone(job)) {
WaxExt_BlackboardGetList(blackboard, ".*", &keyList, &count);
for (i = 0; i < count; i++) {

if (KeyNotInList(keyList[i], oldKeyList, oldCount)) { /* Is the tuple new? */
if (Matches(BOUND_PATTERN, keyList[i])) { /* Is this tuple a the bound value? */

WaxExt_BlackboardRead(blackboard, keyList[i], &value);
if (value < bound) {

bound = value;
}

} else {
WaxExt_BlackboardRead(blackboard, keyList[i], &node);
/* Combine node with existing results */;

}
}

}
oldList = list; oldCount = count; /* update for next iteration */

Sleep(); /* wait for a while before doing another scan */
}
Print final results;

}

Figure 5.8: Monitor a branch-and-bound job running inWax.
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The possibility of losing results exists even if the application only needs to produce a
single solution, though the reasoning is slightly different. One might conclude that since
the last solution written by an instance will always be locally optimal, and it doesn’tmatter
which of the optimal solutions is returned by theWax read operation, that the results can
be written immediately. This is true if all task instances execute to completion. However,
if there are multiple instances of a task executed, Wax may interrupt an instance in the
middle of execution with the result that the last solution tuple written by the interrupted
instancemay not be one of the optimal solutions. If the interrupted instance also happened
to produce more (non-optimal) solutions than any of the other instances, because it was
not able to prune the search space as aggressively, then all of the solution keys will be
associated with at least one non-optimal value, which could result in all of the optimal
solutions being lost.

An Alternate Implementation

The implementation described above partitions the search space into a fixed number
of pieces and uses one task per piece. An alternative solution would dynamically partition
the search space. Such an implementation would be more complex to write, but it could
perform better, because it has the potential to better balance the execution times of the
various tasks. In a branch-and-bound application, not all portions of the tree are equally
difficult to search, because the amount of pruning achieved varies from task to task. In
an implementation that used dynamic partitioning, tasks that detected that their memory
usage or running time had exceeded a pre-determined threshold could spawn additional
tasks to handle pieces of the search space.

5.3.2 Integer Factoring

Another example Wax application is the integer factoring problems that Lenstra and
Manasse [LM89] are investigating. Their solution uses a two stage multiple polynomial
variation of the quadratic sieve algorithm. In the first step, which is readily parallelized,
so-called relations are collected. In the second step, Gaussian elimination is used to combine
these relations and produce the factorization.

This application is well-suited to a distributed computation system implementing the
Waxmodel. The tasks executed during the parallel step of the algorithm share data only as
an optimization and each of them requires days of CPU-time to execute to completion. In
addition, the data requirements of the application are relatively modest: tens of kilobytes
of output per task per CPU-day.

To factor a number using this algorithm andWax, the user creates a job and blackboard,
stores the integer to be factored and various other input parameters in the blackboard, and
then spawns the tasks that compute the relations. When each task starts running, it checks
the blackboard for a tuple containing the set of prime numbers that are need to use the
quadratic sieve algorithm. If the tuple is not found, either because it has not yet been
written to the blackboard or it is not recorded in an accessible blackboard cache, the task
will generate the set of primes and attempt to record them on the blackboard.

As a task generates relations, it records them on the blackboard, one per tuple. A
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per task unique identifier and relation counter are used to generate the tuple key. The
factoring algorithm is designed to eliminate duplicate relations, so different instances of a
task writing different values to one tuple key wastes computing power, but does not affect
the correctness of the factorization.

The Gaussian elimination step of the algorithm can be implemented using Wax or
a separate external (to Wax) computation. If it is done within Wax, then every time N
new relations are produced, another task will combine the new and old relations and
eliminate duplicates. This processing can be done either by one of the tasks generating
relations or by a separate task. When enough relations have been found, the tasks that are
generating relations are killed and a task is spawned to perform the Gaussian elimination.
The factorization would then be recorded on the blackboard for later retrieval by the user.

The alternate (external) solution works in much the same manner. The difference
is that the relations rather than the factorization are extracted from the blackboard. In
the existing Wax implementation of Manasse’s program, the relations are extracted from
the blackboard and mailed to the factoring coordinator, where they are combined with
relations produced by others using the original non-Wax implementation of the algorithm.
In either implementation, the user is able to monitor the progress of the computation by
examining the contents of the blackboard.

5.3.3 Mandelbrot Set Generator

The third example application isone that generates imagesof theMandelbrot set [Man83]
for display with X Windows [SG86]. The application has essentially an arbitrary amount
of parallelism since each pixel computation is independent. The computation for each
pixel in the image involves iterating the equation: Z = Z

2
+ C, where Z is initially zero

and C is the location of the pixel in the complex plane. The equation is repeatedly eval-
uated a until Z exceeds a certain threshold or a specified number of iterations have been
performed. The value assigned to a pixel is the number of iterations performed. Given
that for moderate numbers of iterations (�256) the individual pixel computations do not
take long to execute, each task is assigned a group of pixels to generate.

5.3.4 Generating an Oracle for Counting Problems

Diaconis and Efron [DE85] developed a statistical test procedure to compliment the
Fisher significance test [MP83]. Unfortunately, the procedure requires the ability to solve a
counting sub-problem that is ]P -hard. Mount [Mou94] has, however, developed a method
for precomputing a counting“oracle” that can solve the counting sub-problem. Generating
an oracle requires the determination of the coefficients for a large number of multivariate
polynomials.

The application is a goodWax application for several reasons. First, the determination
of each polynomial is independent. Second, for even relatively small oracles, such as
the one for 4 by 4 tables, the number of polynomials that need to be determined is in the
thousands. Third, thedetermination of the coefficients for a polynomial is computationally
intensive. Determining one of the polynomials for the 4 by 4 oracle typically requires 3-4
CPU-hours on current workstations. Furthermore, both the number of polynomials and
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the cost of determining the coefficients for one of those polynomials grow rapidly with
increasing problem size.

5.3.5 Three Dimensional Perspective Rendering

Another application that can be solved using the Wax programming model is three
dimensional perspective rendering, which is used to produce two dimensional images
from an input database that describes a three dimensional surface. The rendering can be
donewith either the ray identification algorithm [LC92] or a ray casting algorithm [HHM86].

The ray identification algorithm developed by Li and Curkendall identifies where, if
anywhere, each location in the input database will appear in the output image. The
evaluation of each input point depends only on that point. The computed value of each
pixel in the output image, is then a function of all of the input points that intersect that
pixel.

The ray casting algorithm works in the other direction: from output image to input
database. For each pixel in the output image, the ray casting algorithm “casts” a ray into
the input database to identify the value of the output pixel. Parallelism is achieved by
partitioning the output image, since the computation of each output pixel is independent.

For an implementation that uses a distributed computation system, the ray identifi-
cation algorithm is more appropriate, because it requires a smaller per-task blackboard
working set. With the ray identification algorithm, each task uses only a piece of the input
database. With the ray casting algorithm, however, each task may need to access the entire
input database.

The ray identification algorithm has three phases: setup, computation, and collection.
The first phase, which would be performed by the source for the job, is to copy the input
database on to the blackboard, partitioned so that the data needed by each task is stored
in a separate tuple, and spawn the desired number of tasks. In the computation phase,
each task identifies which of the points in its piece of the input database may appear in
the output image. After identifying all such points, each task would write a description
of the partial image on the blackboard. The collection phase involves merging the partial
images generated by the tasks in the computation phase into the final image. This can be
done either using a Wax task or a process external to Wax. Additional parallelism can be
achieved by using one job to render multiple images.

5.3.6 RAIDSIM

The RAIDSIM program, which was developed at the University of California at Berke-
ley [Lee90], simulates the performance of a RAID system. For each simulation run, the
user specifies the configuration of the array and a test workload. The program then uses
co-routines to simulate processes performing the specified workload. A simulation runs
until it determines the average response time of an operation within a specified confidence
interval. The program then prints information about the performance of the simulated
RAID configuration.

RAIDSIM is well suited to a distributed computation system, because evaluating one
configurationwill generally require the execution of a numberof runs, eachwith a different



5.4 Conclusion 79

workload. Each run is independent so there are no data consistency requirements. In
addition, the data used or produced by a run is only a few kilobytes in size, so the
communication costs of a distributed computation system should not be an issue.

5.4 Conclusion

In this chapter, I have identified a class of applications that can be implemented us-
ing the Wax programming model, and presented an evaluation process that application
programmers can use to determine whether or not a particular application can or should
be implemented using the model. I have also described how several applications can be
implemented using theWaxmodel. In the next chapter, I will examine the performance of
theWax implementations some of these applications.
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Chapter 6

Evaluation

This chapter presents an evaluation of the prototype system described in theChapter 4.
The first part of the evaluation examines the performance ofWax at the micro-benchmark
level. The next part looks at the performance of Wax implementations of several of the
example applications described in Chapter 5. The last part examines the ability of process
checkpointing to insulate Wax applications from interruptions due to machine failure or
machines becoming busy with local work.

6.1 Performance of Wax Primitives

Table 6.1 shows the cost of executing various Wax primitives in the absence of failure.
The execution times were determined by executing each operation 500 times on a PCwith
an Intel 486DX2/66 processor. All of the operations were measured using the routines in
the “WaxExt ” interface. Wax tasks do not have access to a precise clock, so the direct
measurement of the routines in the “Wax ” interface difficult. The cost of those operations
should be essentially identical to the corresponding external operation, since the only
significant difference in the implementation of routines in the two interfaces is the added
RPC from theWax task to the Host Manager for routines in the “Wax ” interface. The cost
of a local Mach RPC is on the order of a millisecond.

The cost of a Wax read operation when the tuple is already in the local AFS cache is
essentially the same as reading a similarly sized local file (�.01 seconds), which is within
the precision of the available clock. I expect that the cost of the read operation when the
tuple is not in the local cache will be approximately the same as a write operation.1

6.2 Performance of Wax Applications

In order to demonstrate the utility of Wax, and the Wax programming model, I have
ported several applications to run onWax. These applications include a quadratic assign-
ment problem (QAP) solver, the integer factoring application described in Section 5.3.2,

1I have not directly measured the execution time of uncached reads, because setting up a test to reliably
measure such operations is difficult due to the need to flush the AFS cache between each read operation.

81
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Operation Mean Time Std. Dev.

Spawn .14 .05

Write (128 bytes) .075 .013

Write (1k bytes) .077 .013

Write (4k bytes) .091 .015

Write (8k bytes) .108 .018

Write (16k bytes) .136 .015

Write (32k bytes) .21 .05

Write (64k bytes) .35 .05

Write (128k bytes) .72 .12

Table 6.1: Execution time of various Wax primitives in the “WaxExt ” interface on a PC
with an Intel 486DX2/66 processor. Times are in seconds. TBD = to be determined.

the Mandelbrot set generator described in Section 5.3.3, and the program described in
Section 5.3.4 that generates an oracle for counting problems.

The timings presented for the QAP solver and theMandelbrot set generator were mea-
sured using an early version ofWax that was running on a collection of DECstations 5000s,
Omron Luna88ks,2 and Intel 386 and 486-based machines at CMU. The integer factoring
and counting problem jobs were processed by a Wax domain consisting of DECstations
and Intel x86-based machines at CMU and the University of Washington.

Although the measurements encompass one domain and utilize a pool of at most 25
processors, they illustrate both the practicality of the programming model, and the value
of using a collection of hosts to solve a problem. Wax has not been tested on a larger
collection of machines, because many of the machines that once ran Mach 3.0 have been
de-commissioned or are now running other operating systems.

6.2.1 Generating an Oracle for Counting Problems

As part of his Ph.D. research, John Mount used Wax to generate the oracle needed
to settle the 4 by 4 contingency table counting problem. As mentioned in Section 5.3.4,
such oracles are of interest, because they can be used to implement the statistical test
procedure developed by Diaconis and Efron [DE85]. Producing the 4 by 4 oracle requires
the determination of 3694 degree 9 polynomials in 7 variables (yielding 11440 coefficients
and subproblems each). With current workstations, the determination of each polynomial
takes several hours. The oracle generator application is the newest Wax application, and
the first ported and run by someone other than myself.

Mount initially implemented his algorithm, described in [Mou94], as a standard UNIX

program, which he was running on a few HP 700-series workstations. He ported the
application to Wax by compiling the original application code and linking the resulting
object fileswith theWaxiopackage described in Section 4.7.1. The individual jobswere then
submitted andmanaged using the variousWax shell-level tools described in Section 4.7.2.

2The version of Wax for the Omron is no longer up to date, becauseMach 3.0 is no longer supported on that
platform.



6.2 Performance of Wax Applications 83

Wax was used to determine approximately 2500 of the polynomials. The Wax portion
of the computation was performed by a pool of 24 machines over the course of 47 days. In
that time, the computation consumed 399 CPU-days. Even though some of the machines
in the pool were the primary workstation for users, and others were also being used as
cycle-servers for other projects,Waxwas able to provide the applicationwith the equivalent
of 8.5 dedicated processors. The resulting oracle occupies 180MB of storage and solves
previously intractable problems in seconds.3

The performance of Wax on this application has led the application writer to consider
generatingother oracles (3 by5 and4by5), whichhehadpreviously considered impractical
to compute. In computing the oracles for larger tables, the application may use multiple
Wax tasks to compute each polynomial, because the number of sub-problems, and hence
the expected memory usage, grows rapidly with increasing table size.

In addition, the ease of porting applications to Wax and the computational power
provided by the system has resulted in Mount using the system for other computational
projects. In particular, he has usedWax to generate large, high resolution images (2048 by
1365 pixels, 24-bits per pixel) using the algorithms generated by the Internet genetic art
project.

6.2.2 Quadratic Assignment Problem

The quadratic assignment problem determines the optimal assignment of a collection
of buildings to sites, given the distance and amount of communication between each pair
of sites. The Wax implementation, which uses a branch-and-bounds algorithm to find all
optimal solutions, is based on the work of Pardalos and Crouse [PC89]. TheWax version
of the application is structured along the lines of the generic branch-and-boundsalgorithm
described in Section 5.3.1.

I have used the QAP solver to explore the performance of Wax. Table 6.2 shows the
elapsed time, as a function of the number of processors used, to find the optimal solutions
for the Nugent15 [NVR68] input. The baseline (first line of Table 6.2) for our comparisons
is the running time of Pardalos and Crouse’s original FORTRAN program on a single
DECstation 5000.

Pardalos and Crouse also report the performance of their system on a dedicated IBM
3090-400Emultiprocessor. Using all four processors, they observed speed ups of up to 3.6.
However, they were unable to run the four processor version on the Nugent15 input to
completion due to memory constraints.

During the last run listed in Table 6.2, a random Host Manager was killed every two
minutes, left dead for one minute and then restarted. Despite the failures, Wax executed
the computation much faster than the original version. The failure of a Wax task results
in only a portion of the computation being lost. With the original FORTRAN version, in
contrast, the entire computation would be lost. For computations such as the quadratic
assignment problem, where the computation time grows exponentially with the size of the
input, the improved failure tolerance provided by Wax can be of great benefit.

3This oracle is available as a WWW service via
http://mixing.sp.cs.cmu.edu:8001/form4 4.html.
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# of Processors Elapsed Time in minutes Speedup

1 140 –

5 43 3.3

13 26 5.4

25 13 11

25 with Failures 17 8.2

Table 6.2: Elapsed Time for Quadratic Assignment Problem Solver to produce the opti-

mal solutions for the Nugent15 input. The last line in the table shows the performance
when every two minutes a Host Manager was killed, left dead for one minute, and then

restarted.

# of Processors Elapsed Time in minutes Speedup

1 15 –

10 17 .9

14 13 1.2

20 11 1.4

Table 6.3: Elapsed Time for Generating a 512x512 pixel image of the Mandelbrot set.

6.2.3 Mandelbrot Set Generator

The Mandelbrot set generator statically partitions the requested image into a number
of pieces anduses aWax task to generate each piece. As the pieces are produced themaster
portion of the application displays the resulting image.

Table 6.3 shows the elapsed time, as a function of the number of processors used, to
generate a 512 pixel by 512 pixel by 8 bit image of the Mandelbrot set. The one processor
case is measured using a version of the program where the entire computation is executed
in a single process. In the multiple processor cases, the image is divided into 64 squares
that are 32 pixels on side. A separate Wax task is used to generate each square.

The results indicate that the static partitioning of the image does not yield good perfor-
mance. I suspect that a substantial portion of the problem is due to the wide variation in
the amount of work required to generate a block of pixels. When only a few processors are
available, there is a good chance that the computationally expensive squares will not be
evenly distributed over all the processors. Whichever processor receives more of the com-
putationally expensive squares, then becomes the limiting factor in overall performance.
In addition, the cost of storing the shared data in AFS, versus shared-memory in the single
machine case, further reduces the benefit of using multiple processors.

There are several possible ways to improve the Wax performance of this application.
A static partitioning scheme, for N tasks, that assigned a task every Nth pixel from the
image should produce tasks with more balanced execution times. Alternatively, dynamic
partitioning of the image would also help balance the work load and probably improve
performance. Finally, a modified implementation that produced higher resolution images,
larger images, or multiple images in parallel would also make better use ofWax.
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6.2.4 Integer Factoring

The Wax integer factoring program is based on the multi-polynomial quadratic sieve
program distributed by Lenstra and Manasse as part of their “factoring by E-mail”
project [LM89]. The Wax version was created by replacing the input and output routines
(a few hundred lines of C code) in the original version with calls to access a blackboard.
The bulk of the original code, which deals with the actual computation of relations, is
unchanged. The Wax version records the relations on the blackboard, rather than in the
local file system. I then periodically extract the tuples from the blackboard and mail the
relations to the coordinator of factoring project.

The performance of the Wax version is similar to the original version, which is to be
expected given that the bulk of the program is unmodified. Over the course of the nine
months that Wax has been running, the application has used over 460 CPU-days, and
individual tasks have executed for over a CPU-month.

6.3 Process Checkpointing

The process checkpointing mechanism provided by Wax has allowed the applications
computed by the system to ignore process failures and interruptions due to users reclaim-
ing their machines. To demonstrate that process checkpointing is useful, I have used the
logs kept by the Host Managers to determine the execution time of each of the tasks pro-
cessed byWax and the length of the time periods amachinewas computing on a particular
task. Most of the tasks in this sample were part of the integer factoring andoracle generator
applications.

Figure 6.1 shows the total execution time of each of the tasks spawned by the oracle
generator application. The mean task execution time is 227 minutes, and the median time
is 200 minutes.

Figure 6.2 shows the distribution of the length of time a task was able to execute on
a machine before terminating or being interrupted.4 The time span shown in the graph
covers 93% of the execution periods observed in the history of Wax. The mean length of
a task execution period is 88 minutes, and the median length is 38 minutes. The length
of these execution periods suggests that the tasks whose execution times are shown in
Figure 6.1 were typically checkpointed several times before terminating.

Figures 6.3 and 6.4 show the distribution of the length of task execution periods broken
down by the type of theWax host: personal workstation or computation server. Amachine
is considered to be a personal workstation if it is located in a user’s office, where it is
primarily used for interactive work. A machine is considered to be a computation server
if it is not located in a user’s office. The results show that computation servers tend to be
idle for longer periods of time than personal workstations. The time span shown in the
figures covers 97% of the execution periods on the personal workstations, and only 90%
of the execution periods on the computation servers.

The integer factoring application provides even stronger support for the importance
of process checkpointing. Individual tasks in that application have execution times on

4The length of execution periods that are terminated by machine failures cannot be readily determined
from the Host Manager logs.
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the order of weeks or months.5 Such execution times are an order of magnitude greater
than the longest available periods observed during the history of Wax. They are also
substantially longer than the reported MTTF of hosts on the Internet [LCP91].

6.4 Conclusion

In this chapter, I have examined the performance of Wax and several applications that
have been worked on usingWax. The data show thatWax is capable of providing its users
with significant quantities of processing power. The data also demonstrate the importance
of providing automated task management and process checkpointing in a system that
uses idle workstations as a computational resource. These mechanisms allow Wax users
to submit large number of tasks and/or long running tasks without having to deal with
the effects of process failure. Finally, user feedback suggests that the Waxio package is an
important part of Wax, because it provides an easy means of porting applications toWax.

5One task that has been computing off-and-on over the last year has consumed over 49 CPU-days.
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Figure 6.1: The distribution of task execution times for the tasks used to compute the
oracle for the 4 by 4 contingency table counting problem. Each box shows how many

tasks had execution times within a specific ten minute time period.
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The point for the two minute execution periods, which is off the top of the chart, is at
791.
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that are the primary workstation of a user. The graph includes about 7,700 execution
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the top of the chart, are at: 360, 450, and 320, respectively.



90 Chapter 6. Evaluation

0

20

40

60

80

100

120

140

0 60 120 180 240 300

N
um

be
r 

of
 P

er
io

ds
 o

f E
ac

h 
D

ur
at

io
n

Duration of Period (minutes)

Median Period

Mean Period

Length of Task Execution Periods
Mean and Median Periods

Figure 6.4: This graph shows the distribution of the length of time a task was able to

execute before terminating or being interrupted on the 18 machines used by Wax that
are part of a pool of computation servers. The graph includes about 7,300 execution

periods. The point for the two minute execution periods, which is off the top of the
chart, is at 341.



Chapter 7

Conclusion

In thisdissertation, I havedescribedmy research into theuseof themachines connected
to a wide-area network as a distributed computation system. In the first part of the
dissertation, I identified the machines connected to a wide-area network as a powerful,
and under-utilized, computational resource, and enumerated six issues that needed to be
addressed in order to use that resource as a wide-area multiprocessor. I then presented a
set of solutions to those issues in the form of a programming model and a prototype wide-
area distributed computation system, Wax. Finally, in order to demonstrate the utility of
the resulting system, I described a class of applications that can be solved usingWax, and
examined the performance and functional benefits of usingWax to solve some applications
from that class.

The rest of this chapter is divided into three parts. I start by recapitulating the contri-
butions provided by my research. I then suggest some possible areas for future work. I
conclude the thesis with a brief summary of my research.

7.1 Contributions

The research described in this dissertation makes a number of contributions in the area
of parallel and distributed computing:

� I have identified a high capacity computing resource and the problems that must be
addressed in order to use that resource as a distributed computation system.

� I have designed a programming model that takes into accountmany of the problems
that exist in a distributed computing environment and is, therefore, feasible to im-
plement in such an environment. I have also identified a class of applications that
can be solved using the model.

� I have built and evaluated a prototype wide-area distributed computing system,
called Wax.

Theoverall result is ademonstration that it is feasible touse the idleworkstations connected
to a wide-area network as a multiprocessor. This conclusion is supported by the design of
the Wax programming model and the implementation and performance of the prototype
system.

I have designed a programming model that explicitly exposes the inconsistencies that
can arise from the latency and failures that exist in a wide-area distributed computing

91
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environment. Themodel neither guarantees that tasks will observe consistent views of the
blackboards they use to exchange data, nor that tasks will execute in any particular order.
By avoiding consistency guarantees, and the global synchronization that they imply, the
Wax programming model allows the various components of a distributed implementation
the flexibility to work around the failures and delays that occur in a distributed computing
environment. Avoidingsuch guarantees alsomakes an implementation of themodel easier
to scale, since the global data can be allowed to become “more inconsistent” as the system
grows.

In order to avoid making the implementation of Wax susceptible to the problems that
exist in a distributed computing environment, theWax Task Managers function much like
the tasks in a Wax job.1 In particular, the Wax blackboard mechanism is used to store
the data needed to manage the processing of computations submitted to the system, and
Task Managers only interact with each through the blackboard. They are therefore only
indirectly aware of the existence of other Task Managers and/or otherWax domains. This
allows additional Task Managers and/or domains to be added as needed to handle the
addition of machines to the system. Furthermore, the failure of one Task Manager does
not affect the ability of other Task Managers to continue processing tasks.

Additional support for the conclusion is provided by the data in Chapter 6, which
demonstrate that useful work can be done based on the Wax programming model and
that applications can continue to make progress in the face of failures. In particular,
the integer factoring and oracle generator tasks (described in Sections 5.3.2 and 5.3.4,
respectively) processed by Wax have produced useful results for other researchers. While
the measurements were made using only a single domain consisting of 25 machines, the
system continued operation in spite of the same sorts ofmachine and network failures that
will occur in a system spanning a wider area and multiple domains.

7.2 Future Work

WhileWax and this dissertation do demonstrate the feasibility of wide-area distributed
computation systems, there are still a number interesting issues to explore in this area. One
important research area is the choice of appropriate mechanisms for resource identification
and allocation. Another area focuses on mechanisms for billing users of a distributed
computation system, and appropriately rewarding the organizations whose resources are
being used by the system. In addition, there is the porting work described in Section 4.8
that is necessary to removeWax’s dependencies on theMach operating system.

Waxmonitors processor load and user activity to identify the availability of a machine.
A machine is considered idle when the load is below a particular threshold and the time
since the last user activity exceeds another threshold. This means that a Wax task will
execute only when a Host Manager expects the task to have the whole machine itself for
a while. While this is a reasonable first approximation, it can both waste resources and
lead to thrashing. Additional work should be done to explore the possibility of using
dynamic thresholds and/or resource “sharing”. By resource sharing, I mean allowing the

1The first version of Wax was implemented in a transactional style, and, as a result, was susceptible to
delays when failures occurred.
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distributed computation system to use some of the resources on a machine even when a
user or other computations are active.

Wax largely ignores the resource allocation issue, since one of the basic premises in
the design of the system is that computation is cheap. The most obvious impact of this
premise is the belief that redundant computation can, and should, be used to recover
from the latency and failure problems that exist in a wide-area environment. Since the
machines being used by Wax are otherwise idle, this assumption was a reasonable one.
However, a problem arises when a distributed computation systems become popular
enough that the computations submitted to it exceed the available idle capacity. The
distributed computation system must then incorporate mechanisms for allocating the
limited resources amongst the waiting computations.

A real-world problem that Wax has not addressed is billing for resources. Many re-
source ownerswill desire a tangible benefit before theywill bewilling to allowadistributed
computation system to use their resources. In order to reward resource providers, a dis-
tributed computation system will need to be able to reliably monitor resource usage and
bill the consumer. In an environment where failures are expected to occur, implementing
such a mechanism is a non-trivial task. Unfortunately, the lack of a solution to this prob-
lem is probably the principal barrier to the realization of production quality, wide-area
distributed computation system.

7.3 Conclusion

In summary, my work has demonstrated the feasibility of building wide-area dis-
tributed computation systems. With the appropriate choice of a programming model,
a distributed computation system can be implemented that is capable of tolerating the
failure and latency problems that exist in a distributed computing environment. The im-
plementation of Wax also demonstrates that a useful distributed computation system can
incorporate security at a basic level. However, the transition from prototype to production
system will also require the development of solutions to the resource allocation and billing
issues described above.
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