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Abstract
In healthcare, a tsunami of medical data has emerged, including electronic health

records, images, literature, etc. These data are heterogeneous and noisy, which ren-
ders clinical decision-makings time-consuming, error-prone, and suboptimal. In this
thesis, we develop machine learning (ML) models and systems for distilling high-
value patterns from unstructured clinical data and making informed and real-time
medical predictions and recommendations, to aid physicians in improving the effi-
ciency of workflow and the quality of patient care. When developing these models,
we encounter several challenges: (1) How to better capture infrequent clinical pat-
terns, such as rare subtypes of diseases; (2) How to make the models generalize well
on unseen patients? (3) How to promote the interpretability of the decisions? (4)
How to improve the timeliness of decision-making without sacrificing its quality?
(5) How to efficiently discover massive clinical patterns from large-scale data?

To address challenges (1-4), we systematically study diversity-promoting learn-
ing, which encourages the components in ML models (1) to diversely spread out to
give infrequent patterns a broader coverage, (2) to be imposed with structured con-
straints for better generalization performance, (3) to be mutually complementary for
more compact representation of information, and (4) to be less redundant for better
interpretability. The study is performed in both frequentist statistics and Bayesian
statistics. In the former, we develop diversity-promoting regularizers that are empir-
ically effective, theoretically analyzable, and computationally efficient, and propose
a rich set of optimization algorithms to solve the regularized problems. In the latter,
we propose Bayesian priors that can effectively entail an inductive bias of “diversity”
among a finite or infinite number of components and develop efficient posterior in-
ference algorithms. We provide theoretical analysis on why promoting diversity can
better capture infrequent betters and improve generalization. The developed regular-
izers and priors are demonstrated to be effective in a wide range of ML models.

To address challenge (5), we study large-scale learning. Specifically, we de-
sign efficient distributed ML systems by exploiting a system-algorithm co-design
approach. Inspired by a sufficient factor property of many ML models, we design
a peer-to-peer system – Orpheus – that significantly reduces communication and
fault tolerance costs. We also provide theoretical analysis showing that algorithms
executed on Orpheus are guaranteed to converge. The efficiency of our system is
demonstrated in several large-scale applications.

We apply the proposed diversity-promoting learning (DPL) techniques and the
distributed ML system to solve healthcare problems. In a similar-patient retrieval
application, DPL shows great effectiveness in improving retrieval performance on
infrequent diseases, enabling fast and accurate retrieval, and reducing overfitting.
In a medical-topic discovery task, our Orpheus system is able to extract tens of
thousands of topics from millions of documents in a few hours. Besides these two
applications, we also design effective ML models for hierarchical multi-label tagging
of medical images and automated ICD coding.
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Chapter 1

Introduction

1.1 Thesis Introduction and Scope
With the widespread adoption of electronic health records (EHR) systems, and the rapid devel-
opment of new technologies such as high-throughput medical imaging devices, low-cost genome
profiling systems, networked and even wearable sensors, mobile applications, and rich accumu-
lation of medical knowledge/discoveries in databases, a tsunami of medical and healthcare data
has emerged. It was estimated that 153 exabytes (one exabyte equals one billion gigabytes) of
healthcare data were produced in 2013 [431]. In 2020, an estimated 2314 exabytes will be pro-
duced. From 2013 to 2020, an overall rate of increase is at least 48 percent annually [431]. In
addition to the sheer volume, the complexity of healthcare data is also overwhelming. As shown
in Figure 1.1, it includes clinical notes, medical images, lab values, vital signs, etc., coming from
multiple heterogeneous modalities including texts, images, tabular data, time series, graph and so
on. The rich clinical data is becoming an increasingly important source of holistic and detailed
information for both healthcare providers and receivers. Collectively analyzing and digesting
these rich information generated from multiple sources; uncovering the health implications, risk
factors, and mechanisms underlying the heterogeneous and noisy data records at both individ-
ual patient and whole population levels; making clinical decisions including diagnosis, triage,
and treatment thereupon, are now routine activities expected to be conducted by medical profes-
sionals including physicians, nurses, pharmacists and so on. As the amount and complexity of
medical data are rapidly growing, these activities are becoming increasingly more difficult for
human experts. The information overload makes medical analytics and decisions-making time-
consuming, error-prone, suboptimal, and less-transparent. As a result, physicians, patients, and
hospitals suffer a number of pain points, quality-wise and efficiency-wise. For example, in terms
of quality, 250,000 Americans die each year from medical errors, which has become the third
leading cause of death in the US [90]. 12 million Americans are misdiagnosed each year [305].
Preventable medication errors impact more than 7 million patients and cost almost $21 billion
annually [87]. 15 to 25 percent of patients are readmitted within 30 days and readmissions are
costly (e.g., $41.3 billion in 2011) [158]. In terms of inefficiency, patients wait on average 6
hours in emergency rooms [12]. Nearly 400,000 patients wait 24 hours or more. Physicians
spend only 27 percent of their office day on direct clinical face time with patients [306]. The
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Figure 1.1: Different types of clinical data.

Figure 1.2: Thesis goal: develop machine learning algorithms and systems to transform the raw
clinical data into actionable insights.

U.S. healthcare system wastes $750 billion annually due to unnecessary services, inefficient care
delivery, excess administrative costs, etc [308].

The advancement of machine learning (ML) technology opens up opportunities for next gen-
eration computer-aided medical data analysis and data-driven clinical decision making, where
machine learning algorithms and systems can be developed to automatically and collectively di-
gest massive medical data such as electronic health records, images, behavioral data, and the
genome, to make data-driven and intelligent diagnostic predictions. An ML system can auto-
matically analyze multiple sources of information with rich structure; uncover the medically-
meaningful hidden concepts from low-level records to aid medical professionals to easily and
concisely understand the medical data; and create a compact set of informative diagnostic pro-
cedures and treatment courses and make healthcare recommendations thereupon.

In this thesis, we aim at leveraging the power of machine learning in automatically distilling
insights from large-scale heterogeneous data for automatic smart data-driven medical predic-
tions, recommendations, and decision-making, to assist physicians and hospitals in improving
the quality and efficiency of healthcare (Figure 1.2). We develop machine learning algorithms
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Figure 1.3: (Left) Frequencies of 8 antihypertensive medications. (Right) F1 scores on individual
medications in a discharge medication prediction task.

and systems that turn the raw clinical data into actionable insights. Specifically, we focus on
the following clinical applications: retrieving similar patients [376], discovering medical topics
from large-scale texts, hierarchical tagging of medical images, and automatically assigning ICD
codes [378].

During the development of these algorithms, we identify several fundamental issues.
• How to better capture infrequent patterns? At the core of ML-based healthcare is to dis-

cover the latent patterns (e.g., topics in clinical notes, disease subtypes, phenotypes) under-
lying the observed clinical data. Under many circumstances, the frequency of patterns is
highly imbalanced [376]. Some patterns have very high frequency while others occur less
frequently. For instance, Figure 1.3(Left) shows the frequencies that 8 antihypertensive medi-
cations are prescribed. Metoprolol and furosemide are used very frequently while the rest less
often. Existing ML models lack the capability of capturing infrequent patterns. We applied
a convolutional neural network model to classify the aforementioned 8 antihypertensive med-
ications [393]. Figure 1.3(Right) shows the F1 scores (the higher, the better) on individual
medications. As can be seen, while achieving high F1 scores on frequent medications, CNN
performs less well on the infrequent ones. Such a deficiency of existing models possibly results
from the design of their objective function used for training [371]. For example, a maximum
likelihood estimator would reward itself by modeling the frequent patterns well as they are the
major contributors to the likelihood function. On the other hand, infrequent patterns contribute
much less to the likelihood, thereby it is not very rewarding to model them well and they tend
to be ignored. Figure 1.4(Left) presents an illustration. Since dominant patterns denoted by
these two large circles are the major contributors of the likelihood function, ML models would
allocate a number of triangles to cover the large circles as best as possible. On the other hand,
the infrequent patterns denoted by the small circles contribute less to the likelihood function,
thereby it is not very rewarding to model them well and ML models tend to ignore them. In-
frequent patterns are of crucial importance in clinical settings. For example, many infrequent
diseases are life-threatening [363]. It is critical to capture them.

• How to alleviate overfitting? In certain clinical applications, the number of medical records
available for training is limited. For example, when training a diagnostic model for an infre-
quent disease, we typically have no access to a sufficiently large number of patient cases due to
the rareness of this disease. Under such circumstances, overfitting easily happens: the trained
model works well on the training data but generalizes poorly on unseen patients. To alleviate
overfitting, we need to incorporate prior beliefs of the model structure.
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Figure 1.4: In this illustration, circles denote patterns and triangles denote the components. The
size of a circle is proportional to the frequency of the corresponding pattern. (Left) Without
diversification, ML models allocate a lot of components to cover the frequent patterns as best
as possible. For the infrequent patterns, since they are weak signals, ML models tend to ignore
them. (Right) With diversification, components that are originally cluttered around the frequent
patterns are pushed apart. They diversely spread out. Some components that are originally
cluttered around the frequent patterns are spared to cover the infrequent patterns.

• How to improve interpretability? Being interpretable and transparent is a must for an ML
model to be willingly used by human physicians. Oftentimes, the patterns extracted by exist-
ing ML methods have a lot of redundancy and overlap [350], which are ambiguous and diffi-
cult to interpret. For example, in computational phenotyping from EHRs, it is observed that
the learned phenotypes by the standard matrix and tensor factorization [350] algorithms have
much overlap, causing confusion such as two similar treatment plans are learned for the same
type of disease [350]. It is necessary to make the learned patterns distinct and interpretable.

• How to compress model size without sacrificing modeling power? In clinical practice,
making a timely decision is crucial for improving patient outcome. To achieve time efficiency,
the size (specifically, the number of weight parameters) of ML models needs to be kept small.
However, reducing the model size, which accordingly reduces the capacity and expressivity
of this model, typically sacrifice modeling power and performance. It is technically appealing
but challenging to compress model size without losing performance.

• How to efficiently learn large-scale models? In certain healthcare applications, both the
model size and data size are large, incurring substantial computation overhead that exceeds
the capacity of a single machine. It is necessary to design and build distributed systems to
efficiently train such models.

To solve the first four problems, we study diversity-promoting learning (DPL) [223, 367,
369, 371, 372, 373, 376, 379, 380, 381]. Many ML models are equipped with components, each
aiming at capturing a latent pattern and is parameterized by a weight vector. For instance, in a
topic model [49], the components are referred to as topics, aiming at discovering the semantics
underlying documents. Each topic is associated with a multinomial vector. In neural networks,
the components are called hidden units. Each unit, parameterized by a weight vector, is desired to
capture a latent feature. DPL aims at encouraging the component vectors to be “diverse”. First,
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Figure 1.5: Thesis scope. To address the first four challenges, we study diversity-promoting
learning, which encourages the components in ML models to be diverse. To address the fifth
challenge, we study large-scale distributed learning by exploiting a system and algorithm co-
design approach. Then we apply the methods developed in these two learning paradigms to
solve problems in heathcare.

regarding better capturing infrequent patterns, if the model components are biased to be far apart
from each other, then one would expect that such components will tend to be less overlapping
and less aggregated over frequent patterns. They diversely spread out to different regions in the
pattern space and give the infrequent patterns a better chance to be captured [369], as illustrated
in Figure 1.4(Right). Second, regarding alleviating overfitting, promoting diversity imposes a
structural constraint on model parameters, which reduces the model capacity and therefore im-
proves generalization performance on unseen data [372]. Third, regarding interpretability, if
components are encouraged to be distinct from each other and non-overlapping, then it would be
cognitively easy for a human to associate each component to an object or concept in the physical
world [350]. Fourth, regarding performance-lossless model-compression, “diversified” compo-
nents bear less redundancy and are mutually complementary, making it possible to capture infor-
mation sufficiently well with a small set of components [367]. To address the fifth problem, we
design efficient distributed ML systems [370, 377, 384, 411], by exploiting a system-algorithm
co-design approach: system design is tailored to the unique mathematical properties of ML al-
gorithms, and algorithms can be re-designed to better exploit the system architecture. We apply
the developed diversity-promoting learning techniques and distributed ML systems to healthcare
applications. Figure 1.5 summarizes the scope of this thesis.

1.2 Contributions
Overall, the contributions of this thesis are made in three areas: diversity-promoting learning,
large-scale distributed learning, and ML for healthcare.
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Figure 1.6: Study scope of diversity-promoting learning.

1.2.1 Diversity-promoting Learning
This thesis work represents the first one that systematically studies this new learning paradigm:
diversity-promoting learning. In statistics, there are two paradigms: frequentist-style point es-
timation and Bayesian inference. Our study of diversity-promoting learning is tailored to these
two paradigms. In frequentist-style point estimation, we develop empirically effective, theoret-
ically analyzable, and computationally efficient regularization approaches to encourage model
components to be diverse. In Bayesian inference, we design Bayesian priors that effectively en-
tail an inductive bias of “diversity” among a finite or infinite number of components and develop
efficient posterior inference algorithms. Finally, we provide theoretical analysis regarding the
benefits of promoting diversity. Figure 1.6 summarizes the study scope of diversity-promoting
learning.

Diversity-promoting Regularization

In diversity-promoting regularization, we made the following contributions.
• We propose to characterize “diversity” from two perspectives: uncorrelation and evenness,

based on which we define a uniform eigenvalue regularizer (UER) [376]. Compared with pre-
vious diversity-promoting regularizers, the UER is able to measure “diversity” in a global way,
is insensitive to vector scaling, and is amenable for computation. We apply UER to distance
metric learning [383] and long short-term memory networks [163] and develop an efficient
projected gradient descent algorithm. In various experiments, we demonstrate the effective-
ness of UER in better capturing infrequent patterns, reducing model size without sacrificing
modeling power, and improving generalization performance.

• Considering UER is nonconvex which presents great challenges for optimization, we develop
a family of convex diversity-promoting regularizers [379] based on the Bregman matrix di-
vergence (BMD) [100], where the global optimal is guaranteed to be achievable. We apply
these regularizers to distance metric learning and develop an efficient proximal gradient al-
gorithm [270]. In experiments, we demonstrate the advantages of the convex BMD (CBMD)
regularizers over the nonconvex counterparts. First, because the global optimal solution is
achievable, CBMD obtains better modeling performance. Second, unlike nonconvex regular-
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izers that need multiple (random) restarts for a better local optimal, CBMD runs only once,
hence is computationally more efficient.

• While UER and convex BMD regularizers are empirically effective in alleviating overfitting,
a theoretical analysis of their effectiveness is difficult to establish. In light of this, we pro-
pose a new regularization approach: angular constraints (ACs) [372], that is both empirically
effective and theoretically analyzable. The analysis reveals that properly manipulating the
ACs can achieve the lowest generalization errors. We develop an efficient algorithm based on
ADMM [52] and demonstrate the empirical effectiveness of ACs in alleviating overfitting of
deep neural networks and sparse coding [266]. A connection is also made between the ACs
and the log-determinant divergence regularizer [379].

• We extend the study of diversity-promoting learning from finite-dimensional vectors to infinite-
dimensional functions in the reproducing kernel Hilbert space (RKHS) [374]. We define Breg-
man matrix divergence regularizers on RKHS functions and solve the regularized problems
using functional gradient descent [89]. On two case studies – kernel sparse coding [120] and
kernel distance metric learning [335] – we demonstrate the merits of promoting diversity in
RKHS.

• We combine diversity-promoting regularization with sparsity-promoting regularization, which
jointly bring in an effect of nonoverlapness [380], for the sake of selecting less-overlapped
variables in ML problems that have multiple responses. We propose an LDD-L1 regularizer
and derive efficient coordinate descent algorithms. Experiments on four ML models demon-
strate the effectiveness of LDD-L1 in selecting less-overlapped variables and improving gen-
eralization performance.

Diversity-promoting Bayesian Learning

In diversity-promoting Bayesian learning, we made the following contributions.
• We define a mutual angular process (MAP) [381], which is a Bayesian prior biased towards

components that have large mutual angles. This prior facilitates the development of poste-
rior inference algorithms based on variational inference [340], which is usually more efficient
than sampling-based [127] algorithms. We apply this prior to a Bayesian mixture of experts
model [354] and demonstrate its effectiveness and efficiency in experiments.

• To promote diversity in Bayesian nonparametric models [111], we extend the MAP to infi-
nite MAP (IMAP) which encourages infinitely many components to have large mutual angles.
We apply the IMAP to an infinite latent feature model [143] and develop a posterior infer-
ence algorithm based on slicing sampling [328] and Riemann manifold Hamiltonian Monte
Carlo [129]. Experiments demonstrate the effectiveness of IMAP.

Theoretical Analysis

We performed various analysis to formally understand the effectiveness of promoting diversity
and made the following contributions.
• We analyze why the nonconvex Bregman matrix divergence (BMD) regularizers can better

capture infrequent patterns [379]. In the context of distance metric learning, we define an
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imbalance factor (the lower, the better) to characterize the performance on infrequent patterns.
The analysis shows that decreasing the BMD regularizers can reduce the upper bound of the
imbalance factor and hence achieve better performance on infrequent patterns.

• We analyze how the angular constraints (ACs) affect the generalization error (which is the
sum of estimation error and approximation error) of neural networks [372]. The analysis
reveals that a stronger regularization reduces estimation errors and increases approximation
errors. Properly tuning the regularization strength can achieve the best tradeoff among these
two types of errors and accordingly the optimal generalization performance on unseen data.

• We analyze how the nonconvex [374, 380] and convex [379] BMD regularizers affect the esti-
mation error of distance metric learning. The analysis shows that decreasing these regularizers
can effectively reduce the estimation error bound.

1.2.2 Large-scale Distributed Learning
The second part of this thesis studies large-scale learning. We design efficient distributed ML
systems by exploiting a system-algorithm co-design approach. Specifically, inspired by a math-
ematical property – the sufficient factor (SF) property [370] – that is shared by many ML models
parameterized by matrices, we design a peer-to-peer system [370, 377], that significantly reduces
communication and fault tolerance costs. We made the following contributions.
• For efficient communication, we propose (1) sufficient factor broadcasting (SFB) [370]

which transfers small-sized vectors among machines for the synchronization of matrix-
form parameters, (2) random multicast [377] where each machine randomly selects a sub-
set of machines to communicate within each clock, (3) SF selection [377] that selects a
subset of most representative SFs to communicate. These techniques greatly reduce the
number of network messages and the size of each message.

• For efficient fault tolerance, we propose to represent the parameter matrix using SFs and
propose an incremental SF checkpoint (ISFC) scheme [377]. ISFC continuously saves
new SFs computed at each clock to stable storage and greatly reduces disk IO, avoids
compute-cycle waste, and provides fine-grained (per-clock) rollbacks.

• We provide an easy-to-use programming interface [377] which can automatically identify
the computation of SFs and the transformation from SFs to update matrices.

• We conduct convergence analysis of the SFB computation model [370]. The analysis
shows that though synchronized in a decentralized manner, the parameter replicas on dif-
ferent machines converge to the same optimal.

• We evaluate our system on three representative ML models and show that it achieves high
efficiency and scales well with more machines.

• For ML models having both small-sized and large-sized update matrices, we propose a
structure-aware message passing (SAMP) protocol [411], which is a hybrid communica-
tion approach between the centralized parameter server (PS) [226, 355] and decentralized
SFB. PS and SFB are utilized to transfer small and large matrices respectively. The pro-
tocol leverages the best of these two communication schemes and significantly minimizes
the communication cost. We evaluate this protocol on convolutional neural networks. Un-
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der 8 GPU machines, SAMP improves the speedup from 3.9 to 5.7 on AlexNet [203] and
from 3.8 to 4.8 on GoogLeNet.

1.2.3 ML for Healthcare
In the third part of this thesis, we design ML models and apply the diversity-promoting and
large-scale learning techniques developed in the first two parts to address critical problems in
healthcare. We made the following contributions.
• We apply our diversity-promoting distance metric learning model [379] for similar-patient re-

trieval and demonstrate its effectiveness on two electronic health records datasets. Thanks to
the ability of our method in better capturing infrequent patterns, better retrieval performance
is achieved on infrequent diseases. By promoting diversity, the dimension of latent repre-
sentations (accordingly, the time complexity of retrieval) can be reduced, without sacrificing
the retrieval accuracy. This enables fast and accurate retrieval, which facilitates timely and
sound clinical decision-making. Besides, our diversity-promoting regularizer effectively re-
duces overfitting.

• We implement a distributed topic model (TM) on our Orpheus system [377] and apply it to
large-scale medical-topic discovery. Leveraging the sufficient factor (SF) property of the TM,
Orpheus performs SF broadcasting and incremental SF checkpoint to significantly reduce com-
munication and fault tolerance costs. Using 34 CPU machines, the Orpheus-TM is able to learn
50K topics from 8.2M PubMed documents (vocabulary size is 141K) in 5.4 hours, which is
much faster than FlexiFaCT [207] (33.9 hours) – a Hadoop-based model-parallel system, and
Bosen [355] (23.5) – a parameter server based data-parallel system.

• To solve the problem that medical images are difficult to index and search due to the lack
of textual tags, we study multi-label hierarchical tagging of images. We propose an adver-
sarial learning [134] strategy to capture the correlations among medical concepts, a tree-of-
sequences LSTM model [378] to explore the hierarchical structure of the concept ontology,
and a contextual attention model to localize abnormal regions. Experiments on a pathology
dataset and a radiology dataset demonstrate the effectiveness of our methods.

• We study the automatic assignment of ICD codes based on physicians’ free-form diagnosis
descriptions, to reduce coding errors and costs [378]. A neural architecture is proposed, which
consists of four ingredients: (1) tree-of-sequences LSTM encoding for simultaneously captur-
ing the semantics and hierarchical relationship of codes, (2) adversarial learning for reconcil-
ing the different writing styles of diagnosis descriptions (DDs) and code descriptions (CDs),
(3) isotonic constraints for incorporating the importance order among the assigned codes, and
(4) attentional matching for performing many-to-one and one-to-many mappings from DDs to
CDs. We demonstrate the effectiveness of the proposed methods on a clinical datasets with
59K patient visits.
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1.3 Related Works
In this section, we present a general review of related works in diversity-promoting learning,
large-scale distributed learning, and machine learning for healthcare. Additional related works
are reviewed in individual sections.

1.3.1 Diversity-promoting Learning
Diversity promoting regularization has been studied in ensemble learning [402], latent space
modeling [365, 369, 429], and classification [242]. In ensemble learning, several studies [27,
209, 271, 402] explore how to select a diverse subset of base classifiers or regressors, with the
aim to improve generalization performance. In latent space modeling, several works [29, 82, 429]
encourage components to be mutually different for the sake of reducing redundancy and alleviat-
ing overfitting. In multi-way and hierarchical classification, two works [177, 242, 420] promote
“diversity” among the coefficient vectors of classifiers, for the sake of ensuring model continu-
ity and exploiting the semantic relationship embedded in the class hierarchy. In these works,
various diversity-promoting regularizers have been proposed, based on determinantal point pro-
cess [204, 429], cosine similarity [29, 369, 402] and matrix covariance [82]. In the sequel, we
present a brief review of them.

Determinantal point process (DPP) DPP [204] was used by [246, 429] to encourage the topic
vectors in latent Dirichlet allocation [49], Gaussian mean vectors in Gaussian mixture model and
hidden units in neural network to be “diverse”. DPP is defined over K vectors: p({ai}Ki=1) ∝
det(L), where L is a K ×K kernel matrix with Lij = k(ai, aj) and k(·, ·) is a kernel function.
det(·) denotes the determinant of a matrix. A configuration of {ai}Ki=1 with larger probability is
deemed to be more “diverse”. The underlying intuition is that: det(L) represents the volume of
the parallelepiped formed by vectors in the feature space associated with the kernel k. If these
vectors are more mutually different, the volume is larger, which results in a larger p({ai}Ki=1).
The shortcoming of DPP is that it is sensitive to vector scaling. Enlarging the magnitudes of
vectors results in larger volume, but does not essentially change the “diversity” of vectors.

Pairwise cosine similarity Several works [29, 369, 402] define diversity-promoting regulariz-
ers based on the pairwise cosine similarity among component vectors: smaller cosine similarity
scores imply that the components are more different from each other, hence are more “diverse”.
Cosine similarity is preferred over other distances or similarity measures because of its insen-
sitivity to geometry transformations of vectors such as scaling, translation, and rotation. Given
K component vectors, the cosine similarity sij between each pair of components ai and aj is
computed as sij = ai ·aj/(‖ai‖2‖aj‖2). Then these scores are aggregated to measure the overall
“diversity” of all components. In [402], these scores are aggregated as

∑
1≤i<j≤K(1 − sij). In

[29], the aggregation is performed as − log( 1
K(K−1)

∑
1≤i<j≤K β|sij|)

1
β where β > 0. In [369],

the aggregated score is defined as the mean of arccos(|sij|) minus the variance of arccos(|sij|).
The variance term is utilized to encourage the vectors to evenly spread out to different directions.
Xie et al. [365] define the regularizer as

∑
1≤i<j≤m k(ai, aj) where k(·, ·) is a kernel function.
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These regularizers are applied to classifiers ensemble, neural networks, and restricted Boltzmann
machine [369]. These approaches can only capture second-order (pairwise) relations among vec-
tors. Representing higher-order relations such as how to measure the “diversity” of three vectors
as a whole (without reducing to pairwise dissimilarity) is beyond the capability of these methods.

Covariance Two works [82, 242] defined diversity-promoting regularizers based on matrix co-
variance. Malkin and Bilmes [242] compute the covariance matrix C of the component vectors:
C = 1

K

∑K
i=1(ai−µ)(ai−µ)> where µ = 1

K

∑K
i=1 ai, then encourage diversity by maximizing

the determinant of C. Similar to the DPP, this regularizer is sensitive to vector scaling. Cogswell
et al. [82] designed a regularizer to reduce the correlation among hidden units in neural networks.
Given N activation vectors {hi}Ni=1 computed over N data samples where different dimensions
of each vector correspond to different hidden units, they compute the sample covariance matrix
of hidden units C = 1

N

∑N
i=1(hi−µ)(hi−µ)> where µ = 1

N

∑K
i=1 hi and define the regularizer

as ‖C‖2
F − ‖diag(C)‖2

2, which encourages the off-diagonal entries of C, i.e., the covariance be-
tween different hidden units, to be small. This regularizer is defined over intermediate variables
(which are hidden activations in the neural network case) and influences the weight parame-
ters indirectly. The number of intermediate variables could be much larger than that of weight
parameters (which is the case in convolutional neural networks). This renders this regularizer
computationally inefficient.

1.3.2 Distributed Learning
Many distributed ML systems have been built recently, including (1) dataflow systems such as
Hadoop-based Mahout [93] and Spark-based MLlib [407]; (2) graph computation frameworks
such as Pregel [241] and GraphLab [132]; (3) parameter server (PS) architectures such as Dis-
tBelief [93], Project Adam [78], ParameterServer [226], Bosen PS [355], and GeePS [85]; (4)
hybrid systems such as TensorFlow [13] and MXNet [73]. These systems explore the trade-
offs among correctness of computation, ease of programmability, and efficiency of execution.
Hadoop-Mahout and Spark-MLlib provide an easy-to-use MapReduce-style programming in-
terface and strictly guarantee computational exactness using BSP. However, their speed of ex-
ecution is typically slower than ML-specialized systems, partially because (1) BSP is sensitive
to stragglers [162]; (2) parameter state is immutable, which does not support fast in-place up-
date. Frameworks based on graph abstractions [132, 241] support fine-grained scheduling of
computations and flexible consistency models, which contribute to high efficiency. However, to
run on these frameworks, an ML model needs to be abstracted as a graph, which is very dif-
ficult to achieve for MPMs. Parameter server architectures [78, 85, 94, 226, 355] and hybrid
systems [13, 73] (partially adopting PS) offer a flexible and easy-to-use distributed shared mem-
ory programming abstraction and possess high efficiency by allowing mutable parameter states
and in-place updates, fine-grained partitioning of computation, and flexible consistency models.
However, when used to train MPMs, these systems communicate large matrices, which incur
high communication overhead.

Peer-to-peer (P2P) architectures have been investigated in distributed ML [222, 353, 370,
411]. Li et al. [222] propose to synchronize parameter replicas by exchanging parameter updates
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in a P2P manner to simplify fault-tolerance. Watcharapichat et al. [353] design a decentralized
architecture to exchange partial gradient of deep neural networks among machines, for the sake
of saturating cluster resources. These two works transmit matrices in the network and do not
leverage the SVs to reduce communication cost.

1.3.3 ML for Healthcare
With the prosperity of healthcare data such as electronic health record (EHR), genomic data,
patient behavior data and the growing need of extracting knowledge and insights from these
data, ML-based data-driven healthcare analytics have received much attention recently.

Predictive modeling Predictive modeling in data-driven healthcare is concerned about build-
ing machine learning models to predict diagnosis, prognosis, patient risk factors, readmission,
disease onset and so on. Wang et al. [344] studied disease prognosis by leveraging the informa-
tion of clinically similar patient cohorts which are retrieved using a local spline regression based
similarity measure. Zhou et al. [422] proposed a top-k stability selection method to select the
most informative features for patient risk prediction. Chen et al. [72] developed a cloud-based
predictive modeling system for pediatric asthma readmission prediction. Choi et al. [79] devel-
oped a temporal model using recurrent neural networks to predict the diagnosis and medication
categories for a subsequent visit. Razavian et al. [287] developed predictive models to predict
the onset and assess the risk factors of type 2 diabetes. Razavian et al. [288] used LSTM [163]
networks and convolutional networks for multi-task prediction of disease onset.

Natural language processing and understanding of clinical notes Clinical notes contain
rich medical information. Many studies have developed natural language processing and ma-
chine learning methods to extract useful information from free-form clinical texts. Chen et al.
[75] studied word sense disambiguation using support vector machine and active learning. Tang
et al. [324] developed a temporal information extraction system that can identify events, tempo-
ral expressions, and their temporal relations in clinical texts. Tang et al. [323] studied clinical
entities recognition in hospital discharge summaries using structural support vector machines.
Gobbel et al. [130] designed a tool to assist in the annotation of medical texts, which leverages
interactive training to reduce the annotation time without introducing bias. Tang et al. [325]
performed a comparison study of three types of word representations, including clustering-based
representation, distributional representation, and word embeddings, for biomedical named entity
recognition. Halpern et al. [150] developed a bipartite probabilistic graphical models for joint
prediction of clinical conditions from the electronic medical records.

Computational phenotyping Computational phenotyping, which extracts high-level clinical
concepts and patterns from EHRs, have been widely investigated. Chen et al. [75] integrated an
uncertainty sampling active learning approach with support vector machine for high-throughput
phenotyping. Doan et al. [103] developed an information retrieval system that consists of text
processing tools to standardize phenotype variables and information retrieval tools that support
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queries from users and return ranked results. Ho et al. [161] developed a non-negative tensor fac-
torization method to derive phenotype candidates with minimal human supervision. Wang et al.
[350] proposed a constrained non-negative tensor factorization and completion method for phe-
notyping which incorporates guidance constraints to align with existing medical knowledge, and
pairwise constraints for obtaining less-overlapped phenotypes. Halpern et al. [149] developed
a phenotype library that uses both structured and unstructured data from the EHRs to represent
patients for real-time clinical decision support. Joshi et al. [187] proposed a non-negative matrix
factorization method augmented with domain specific constraints for automated phenotyping of
multiple co-occurring medical conditions.

Patient similarity measure Effectively measuring the similarity between patients can help
with a number of downstream applications such as diagnosis, prognosis, and treatment. Ebadol-
lahi et al. [106] leveraged inter-patient similarity for retrieving patients who display similar trends
in their physiological time-series data. Wang et al. [343] proposed a composite distance integra-
tion approach to combine the individual distance metrics learned from different physicians into
a globally consistent metric. Sun et al. [315] proposed a locally supervised metric learning ap-
proach to learn a generalized Mahalanobis distance that is tailored toward physician feedback
and introduce an interactive metric learning method that can incrementally update an existing
metric based on streaming feedback. Ng et al. [261] applied distance metric learning to find
clinically similar patients and trained personalized predictive models on the retrieved patients.

Disease progression modeling Disease progression modeling is instrumental in early diagno-
sis and personalized care. Jackson et al. [173] developed a hidden Markov model for simul-
taneously estimating the transition rates and the probabilities of stage misclassification. Zhou
et al. [421] proposed a fused group lasso approach for disease progression modeling with known
biomarkers. Exarchos et al. [108] developed a dynamic Bayesian network to model the progres-
sion of coronary atherosclerosis. Wang et al. [348] proposed a probabilistic disease progression
model that learns from discrete-time observations with non-equal intervals and discovers the full
progression trajectory from a set of incomplete records.
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Chapter 2

Diversity-promoting Learning I –
Regularization

In this chapter, we study diversity-promoting learning in the context of frequentist statistics, by
developing regularization techniques.

Figure 2.1 shows an overview of the studies of diversity-promoting regularization. We begin
with defining a uniform eigenvalue regularizer that simultaneously encourages uncorrelation and
evenness among components [376]. This regularizer is nonconvex, presenting great challenges
for optimization. In light of this, we develop convex Bregman matrix divergence regularizers
where the global optimal is achievable [379]. While the uniform eigenvalue regularizer and
the convex Bregman matrix divergence regularizers are empirically effective, theoretically they
are not amenable for the analysis of generalization errors, especially the approximation errors.
Therefore, we propose a new regularization approach called angular constraints [372] which
are not only empirically effective, but also theoretically analyzable. These three regularizers
promote diversity among finite-dimensional vectors. In the next work, we extend the study to
infinite-dimensional functions in the reproducing kernel Hilbert space (RKHS) [373]. Finally, we
combine diversity-promoting regularization with sparsity-promoting regularization [380], which
jointly brings in an effect of reducing overlap among the supports of vectors.

2.1 Uncorrelation and Evenness: A Diversity-promoting Reg-
ularizer

We start with formally defining “diversity” [376]. Several diversity-promoting regularizers have
been proposed, based upon determinantal point process [204, 429], cosine similarity [29, 369,
402], and covariance [82, 242]. While these regularizers demonstrate notable efficacy, they have
certain limitations, such as sensitivity to vector scaling [242, 429], inability to measure diversity
in a global manner [29, 369, 402], and computational inefficiency [82]. To address these limita-
tions, we propose a new diversity-promoting regularizer [376] gaining inspiration from principal
component analysis [185], biological diversity [240], and information theory [83]. We char-
acterize “diversity” by considering two factors: uncorrelation and evenness. Uncorrelation is a
measure of how uncorrelated the components are. Literally, less correlation is equivalent to more
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Figure 2.1: An overview of the studies of diversity-promoting regularization.

diversity. By encouraging the components to be uncorrelated, each of them can independently
capture a unique pattern. Evenness is borrowed from biological diversity [240], which mea-
sures how equally important different species are in maintaining the ecological balance within
an ecosystem. If no species dominates another, the ecosystem is deemed as being more diverse.
Likewise, in ML, we desire the components to play equally important roles and no one dominates
another, such that each component contributes significantly to the modeling of data. Specifically,
we assign each component an “importance” score and encourage these scores to be even.

We study uncorrelation and evenness from a statistical perspective. The components are con-
sidered as random variables and the eigenvalues of their covariance matrix can be leveraged to
characterize these two factors. First, according to the principle component analysis [185], the
disparity of eigenvalues reflects the correlation among components: the more uniform the eigen-
values, the less correlated the components. Second, eigenvalues represent the variance along
principal directions and can be used to measure the “importance” of components. Promoting
uniform importance amounts to encouraging evenness among eigenvalues.

To promote uniformity among the eigenvalues, we encourage the discrete distribution pa-
rameterized by the normalized eigenvalues to have small Kullback-Leibler divergence with the
uniform distribution, based on which, we define a uniform eigenvalue regularizer (UER) [376].
We apply UER to two ML models – distance metric learning (DML) [383] and long short-term
memory (LSTM) network [163] – to encourage their components to be diverse and develop an
efficient projected gradient descent algorithm. Experiments on healthcare, image, and text data
demonstrate that UER (1) greatly improves generalization performance; (2) better captures in-
frequent patterns; (3) reduces model size without sacrificing modeling power; (4) outperforms
other diversity-promoting regularizers.

15



(a) (b) 

D
im

en
si

o
n
s

Component Vectors Random Variables

S
am

p
le

s

Figure 2.2: Two views of the component matrix.
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Figure 2.3: When the principal directions (u1 and u2) are not aligned with the coordinate axis, the
level of disparity between the eigenvalues (λ1 and λ2) indicates the correlation between random
variables (components).

2.1.1 Uniform Eigenvalue Regularizer
We start with characterizing the uncorrelation among components: treating the components as
random variables and measuring their covariance which is proportional to their correlation. Let
A ∈ Rd×m denote the component matrix where in the k-th column is the parameter vector ak
of component k. Alternatively, we can take a row view (Figure 2.2b) of A: each component is
treated as a random variable and each row vector ã>i can be seen as a sample drawn from the
random vector formed by the m components. Let µ = 1

d

∑d
i=1 ãi = 1

d
A>1 be the sample mean,

where the elements of 1 ∈ Rd are all 1. We compute the empirical covariance matrix of the
components as

G = 1
d

∑d
i=1(ãi − µ)(ãi − µ)>

= 1
d
A>A− (1

d
A>1)(1

d
A>1)>.

(2.1)

Imposing the constraint A>1 = 0, we have G = 1
d
A>A. Suppose A is a full rank matrix and

m < d, then G is a full-rank matrix with rank m.
For the next step, we show that the eigenvalues of G play important roles in characterizing the

uncorrelation and evenness of components. We start with uncorrelation. Let G =
∑m

k=1 λkuku
>
k

be the eigen-decomposition where λk is an eigenvalue and uk is the associated eigenvector. As
is well known in principle component analysis [185], an eigenvector uk of the covariance matrix
G represents a principal direction of the data points and the associated eigenvalue λk tells the
variability of points along that direction. As shown in Figure 2.3a, the larger λk is, the more
spread out the points along the direction uk. When the eigenvectors (principal directions) are not
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Figure 2.4: When the principal directions (u1 and u2) are aligned with the coordinate axis, the
magnitude of eigenvalues represents the importance of components.

aligned with the coordinate axis (as shown in Figure 2.3), the level of disparity among eigenval-
ues indicates the level of correlation among the m components (random variables). The more
different the eigenvalues are, the higher the correlation is. As shown in Figure 2.3a, λ1 is about
three times larger than λ2 and there is a high correlation along the direction u1. On the other
hand, in Figure 2.3b, the two eigenvalues are close to each other and the points evenly spread out
in both directions with negligible correlation. In light of this, we would utilize the uniformity
among eigenvalues of G to measure how uncorrelated the components are.

Secondly, we relate the eigenvalues with the other factor of diversity: evenness. When the
eigenvectors are aligned with the coordinate axis (as shown in Figure 2.4), the components are
uncorrelated. In this case, we bring in evenness to measure diversity. As stated earlier, we first
need to assign each component an importance score. Since the eigenvectors are in parallel to the
coordinate axis, the eigenvalues reflect the variance of components. Analogous to PCA which
posits that random variables with larger variance are more important, we use variance to measure
importance. As shown in Figure 2.4a, component 1 has a larger eigenvalue λ1 and accordingly
larger variability, hence is more important than component 2. According to the evenness criteria,
the components are more diverse if their importance scores match, which motivates us to encour-
age the eigenvalues to be uniform. As shown in Figure 2.4b, the two eigenvalues are close and
the two components have roughly the same variability, hence are similarly important.

To sum up, we desire to encourage the eigenvalues to be even in both cases: (1) when the
eigenvectors are not aligned with the coordinate axis, they are preferred to be even to reduce the
correlation of components; (2) when the eigenvectors are aligned with the coordinate axis, they
are encouraged to be even such that different components contribute equally in modeling data.

Next, we discuss how to promote uniformity among eigenvalues. The basic idea is: we
normalize the eigenvalues into a probability simplex and encourage the discrete distribution pa-
rameterized by the normalized eigenvalues to have small Kullback-Leibler (KL) [83] divergence
with the uniform distribution. Given the eigenvalues {λk}mk=1, we first normalize them into a
probability simplex λ̂k = λk∑m

j=1 λj
based on which we define a distribution on a discrete random

variable X = 1, · · · ,m where p(X = k) = λ̂k. In addition, to guarantee the eigenvalues are
strictly positive, we require A>A to be positive definite. To encourage {λ̂k}mk=1 to be uniform,
we encourage the distribution p(X) to be “close” to a uniform distribution q(X = k) = 1

m
,
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where the “closeness” is measured using KL divergence KL(p||q):
m∑
k=1

λ̂k log
λ̂k

1/m
=

∑m
k=1 λk log λk∑m

j=1 λj
− log

m∑
j=1

λj + logm. (2.2)

In this equation,
∑m

k=1 λk log λk is equivalent to tr((1
d
A>A) log(1

d
A>A)), where log(·) denotes

matrix logarithm. To show this, note that log(1
d
A>A) =

∑m
k=1 log(λk)uku

>
k , according to the

property of matrix logarithm. Then we have tr((1
d
A>A) log(1

d
A>A)) equals tr((

∑m
k=1 λkuku

>
k )

(
∑m

k=1 log(λk)uku
>
k )) which equals

∑m
k=1 λk log λk. According to the property of matrix trace,

we have tr(1
d
A>A) =

∑m
k=1 λk. Then the KL divergence can be turned into a diversity-

promoting uniform eigenvalue regularizer (UER):

tr((1
d
A>A) log(1

d
A>A))

tr(1
d
A>A)

− log tr(
1

d
A>A), (2.3)

subject to A>A � 0 and A>1 = 0. In principle, the “closeness” between p and q can be mea-
sured by other distances such as the total variation distance, Hellinger distance, etc. However,
the resultant formula defined on the eigenvalues (like the one in Eq.(2.2)) is very difficult (if
possible) to be transformed into a formula defined on A (like the one in Eq.(2.3)). Consequently,
it is very challenging to perform estimation of A. In light of this, we choose to use the KL
divergence.

Compared with previous diversity-promoting regularizers, UER has the following benefits:
(1) It measures the diversity of all components in a holistic way, rather than reducing to pair-
wise dissimilarities as other regularizers [29, 369, 402] do. This enables UER to capture global
relations among components. (2) Unlike determinant-based regularizers [242, 429] that are sen-
sitive to vector scaling, UER is derived from normalized eigenvalues where the normalization
effectively removes scaling. (3) UER is amenable for computation. First, unlike the decorrela-
tion regularizer [82] that is defined over data-dependent intermediate variables and thus incurs
computational inefficiency, UER is directly defined on model parameters and is independent of
data. Second, unlike the regularizers proposed in [29, 369] that are non-smooth, UER is a smooth
function. In general, smooth functions are more amenable for deriving optimization algorithms
than non-smooth functions. The dominating computation in UER is matrix logarithm. It does
not substantially increase computational overhead as long as the number of components is not
too large (e.g., less than 1000).

Compared with commonly-used regularizers that are not designed for promoting diversity,
such as L2, L1, and the trace norm [62], UER has the following limitations. First, it is compu-
tationally heavier. It involves eigen-decomposition that incurs O(m3) time complexity where m
is the number of components. Second, in modern deep learning, most computation is conducted
on GPUs. UER is not amenable for GPU implementation, which hinders its applicability. Third,
it is a non-convex function, which renders the optimization of the regularized ML problems to
be NP hard. Fourth, it is less amenable for theoretical analysis than L2, L1, and the trace norm.

We apply UER to promote diversity in ML models. Let L(A) denote the objective function
of a model, then a UE-regularized problem can be defined as

minA L(A) + λ
(

tr(( 1
d
A>A) log( 1

d
A>A))

tr( 1
d
A>A)

− log tr(1
d
A>A)

)
s.t. A>1 = 0, A>A � 0.

(2.4)
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where λ is the regularization parameter. Similar to other diversity-promoting regularizers, UER
is non-convex. Since L(A) in most models is non-convex, adding UER does not substantially
increase difficulty for optimization.

Connection with the von Neumann entropy We make a connection between UER and the von
Neumann entropy [39]. A matrix M is referred to as a density matrix [39] if its eigenvalues are
strictly positive and sum to one, equivalently, M � 0 and tr(M) = 1. The von Neumann entropy
of M is defined as S(M) = −tr(M log M), which is essentially the Shannon entropy [83] of
its eigenvalues. If the covariance matrix G of components is a density matrix, then we can
use its von Neumann entropy to define a UER. To encourage the eigenvalues {λk}mk=1 of G
to be even, we directly encourage the KL divergence

∑m
k=1 λk log λk

1/m
=
∑m

k=1 λk log λk +
logm between the distribution parameterized by the eigenvalues (without normalization) and the
uniform distribution to be small, which is equivalent to encouraging the Shannon entropy of the
eigenvalues−

∑m
k=1 λk log λk, i.e., the von Neumann entropy of G to be large. Then a new UER

can be defined as the negative von Neumann entropy of G: tr((1
d
A>A) log(1

d
A>A)), subject to

the constraints: (1) A>A � 0; (2) tr(1
d
A>A) = 1; (3) A>1 = 0. This new UER is a special

case of the previous one defined in Eq.(2.3) by adding the new constraint tr(1
d
A>A) = 1.

Connection with the von Neumann divergence Next we make a connection between UER
and the von Neumann divergence [206]. Given two positive definite matrices X and Y, their von
Neumann divergence is defined as tr(X log X−X log Y−X+Y), which measures the closeness
between the two matrices. Given two vectors x,y ∈ Rm, their generalized KL divergence can be
defined as

∑m
k=1 xk log(xk

yk
)− (xk − yk), which measures the closeness between two vectors. To

encourage uniformity among the eigenvalues of the covariance matrix G, we can decrease the
generalized KL divergence between these eigenvalues and an all-1 vector:∑m

k=1 λk log(λk
1

)− (λk − 1) = tr((1
d
A>A) log(1

d
A>A))− tr(1

d
A>A)) +m, (2.5)

which is the von Neumann divergence between G and an identity matrix. Hence, encouraging
uniformity among eigenvalues can be achieved by making G close to an identity matrix based
on the von Neumann divergence.

2.1.2 Case Studies
In this section, we apply the uniform eigenvalue regularizer to promote diversity in two ML mod-
els: distance metric learning (DML) [383] and long short-term memory (LSTM) [163] networks.

Distance metric learning Given data pairs either labeled as “similar” or “dissimilar”, DML
[92, 146, 383] aims at learning a distance metric under which similar pairs would be placed close
to each other and dissimilar pairs are separated apart. The learned distance can benefit a wide
range of tasks, including retrieval, clustering, and classification. Following [357], we define the
distance metric between x,y ∈ Rd as ‖A>x −A>y‖2

2 where A ∈ Rd×m is a parameter matrix
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whose column vectors are called components. Built upon the DML formulation in [367], an
uniform-eigenvalue regularized DML (UE-DML) problem can be formulated as

minA

∑
(x,y)∈S

‖A>x−A>y‖2
2 +

∑
(x,y)∈D

max(0, 1− ‖A>x−A>y‖2
2)

+λ
(

tr(( 1
d
A>A) log( 1

d
A>A))

tr( 1
d
A>A)

− log tr(1
d
A>A)

)
s.t. A>1 = 0, A>A � 0,

(2.6)

where S and D are the set of similar and dissimilar pairs respectively. The first and second term
in the objective function encourage similar pairs to have small distances and dissimilar pairs to
have large distances respectively. The learned metrics are applied for information retrieval.

Our UE-DML method is related to the matching networks (MNs) Vinyals et al. [339] used
for one shot learning. First, in matching networks, distance metrics are utilized to calculate the
similarity between data examples. Second, MNs are designed to achieve accurate classification
performance on infrequent classes; likewise, UE-DML aims at better capturing infrequent pat-
terns (e.g., classes). The difference is: MNs requires the data examples to have class labels
while the classes in UE-DML are latent. Though in the experiments we use the ground-truth
class labels to evaluate UE-DML’s performance on infrequent classes, in practice these labels
are oftentimes not accessible: UE-DML can only access data pairs labeled as being similar or
dissimilar, rather the class labels for individual examples.

Long short-term memory network The LSTM [163] network is a type of recurrent neural
network, that is better at capturing long-term dependency in sequential modeling. At each time
step t where the input is xt, there is an input gate it, a forget gate ft, an output gate ot, a memory
cell ct, and a hidden state ht. The transition equations among them are

it = σ(W(i)xt + U(i)ht−1 + b(i))
ft = σ(W(f)xt + U(f)ht−1 + b(f))
ot = σ(W(o)xt + U(o)ht−1 + b(o))
ct = it � tanh(W(c)xt + U(c)ht−1 + b(c)) + ft � ct−1

ht = ot � tanh(ct),

(2.7)

where W = {W(s)|s ∈ S = {i, f, o, c}} and U = {U(s)|s ∈ S} are gate-specific weight
matrices and B = {b(s)|s ∈ S} are bias vectors. The row vectors in W and U are treated as
components. Let L(W ,U ,B) denote the loss function of an LSTM network andR(·) denote the
UER (including constraints), then a UE-regularized LSTM problem can be defined as

minW,U ,B L(W ,U ,B) + λ
∑

s∈S(R(W(s)) +R(U(s))). (2.8)

The LSTM network is applied for cloze-style reading comprehension (CSRC) [154].

2.1.3 A Projected Gradient Decent Algorithm
We develop a projected gradient descent (PGD) [53] algorithm to solve the UE-regularized prob-
lem in Eq.(2.4). The constraint A>A � 0 ensures the eigenvalues of A>A are positive, such
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that log(A>A) is well-defined. However, it makes optimization very nasty. To address this is-
sue, we add a small perturbation εI over A>A where ε is a close-to-zero positive scalar and
I is an identity matrix, to ensure log(A>A + εI) is always well-defined. Accordingly, the
constraint A>A � 0 can be eliminated. The PGD algorithm iteratively performs three steps:
(1) compute (sub)gradient 4A of the objective function; (2) update A using gradient descent:
Ã← A− η4A; (3) project Ã to the constraint set {A|A>1 = 0}.

In step (1), the derivative of tr((1
d
A>A + εI) log(1

d
A>A + εI)) is 2

d
A(log(1

d
A>A + εI) + I).

To compute the logarithm of 1
d
A>A+ εI, we perform an eigen-decomposition of this matrix into

UΛU>, transform Λ into another diagonal matrix Λ̃ where Λ̃jj = log(Λjj) and then compute
log(1

d
A>A + εI) as UΛ̃U>. The complexity of eigen-decomposing this m-by-m matrix is

O(m3). In our applications,m is no more than 500, soO(m3) is not a big bottleneck. In addition,
this matrix is symmetric and the symmetry can be leveraged for fast eigen-decomposition. In
implementation, we use the MAGMA [7] library that supports efficient eigen-decomposition of
symmetric matrices on both CPUs and GPUs. In step (3), the projection operation amounts to
solving the following problem:

minA
1
2
‖A− Ã‖2

F

s.t. A>1 = 0.
(2.9)

According to the KKT conditions [53], we have A− Ã + 1λ> = 0 and A>1 = 0. Solving this
system of equations, we get

A = (I− 1

d
11>)Ã, (2.10)

which centers the row vectors in Ã so that they have zero mean.

2.1.4 Evaluation
In this section, we present experimental results.

Datasets We used five datasets in the experiments: an electronic health record dataset MIMIC-
III [184]; two image datasets Stanford-Cars [202] and Caltech-UCSD-Birds [358]; two question
answering (QA) datasets CNN and DailyMail [154]. The first three were used for DML and the
last two for LSTM. Their statistics are summarized in Table 2.1.

MIMIC-III contains 58K hospital admissions of patients who stayed within the intensive
care units at the Beth Israel Deaconess Medical Center between 2001 and 2012. Each admission
has a primary diagnosis (a disease), which acts as the class label of this admission. There are
2833 unique diseases. We extracted 7207-dimensional features: (1) 2 dimensions from demo-
graphics, including age and gender; (2) 5300 dimensions from clinical notes, including 5000-
dimensional bag-of-words (weighted using tf-idf ) and 300-dimensional Word2Vec [256]; (3)
1905-dimensions from lab tests where the zero-order, first-order, and second-order temporal fea-
tures were extracted for each of the 635 lab items. In the extraction of bag-of-words features
from clinical notes, we removed stop words, then counted the document frequency (DF) of the
remaining words. Then we selected 5000 words with the largest DFs to form the dictionary.
Based on this dictionary, we extracted tf-idf features. In the extraction of Word2Vec features,
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#Train #Test Dimension #Class
MIMIC 40K 18K 7207 2833
Cars 8144 8041 4096 196
Birds 9000 2788 4096 200
CNN 380K 3198 – –
DailyMail 879K 53K – –

Table 2.1: Dataset statistics.

we trained a 300-dimensional embedding vector for each word using an open source tool1. To
represent a clinical note, we averaged the embeddings of all words in this note. In lab tests,
there are 635 test items in total. Each item is tested at different time points for each admission.
For an item, we extracted three types of temporal features: (1) zero-order: averaging the values
of this item measured at different time points; (2) first-order: taking the difference of values
at every two consecutive time points t and t − 1, and averaging these differences; (3) second-
order: for the sequence of first-order differences generated in (2), taking the difference (called
second-order difference) of values at every two consecutive time points t and t−1, and averaging
these second-order differences. If an item is missing in an admission, we set the zero-order, first-
order, and second-order feature values to 0. For the two image datasets, we used the VGG16
[303] convolutional neural network trained on the ImageNet [95] dataset to extract features,
which are the 4096-dimensional outputs of the second fully-connected layer. For MIMIC-III,
Stanford-Cars, and Caltech-UCSD-Birds, the features were normalized using min-max normal-
ization along each dimension. We used PCA to reduce the feature dimension to 1000. In the two
QA datasets, each data example consists of a passage, a question, and an answer. The question
is a cloze-style [154] task where an entity is replaced by a placeholder and the goal is to infer
this missing entity (answer) from all the possible entities appearing in the passage. For Stanford-
Cars, CNN, and DailyMail, we used a single train/test split specified by the data providers; for
the other two, five random splits were performed and the results were averaged over the five runs.

Experimental setup In the DML experiments, two data examples were labeled as similar if be-
longing to the same class and dissimilar if otherwise. The learned distance metrics were applied
for retrieval whose performance was evaluated using precision@K: among the top K retrieved
examples, what is the percentage of samples that share the same class label with the query exam-
ple? We compared with two sets of regularizers: (1) diversity-promoting regularizers based on
determinant of covariance matrix (DCM) [242], cosine similarity (CS) [402], determinantal point
process (DPP) [204, 429], InCoherence (IC) [29], mutual angles (MA) [369], and decorrelation
(DC) [82]; (2) regularizers that are designed for other purposes, including L2 norm for small
norm, L1 norm for sparsity, low-rankness [290], and dropout [282, 313]. All these regularizers
were applied to the same DML formulation (Eq.(2.6) without the UER regularizer). In addition,
we compared with the vanilla Euclidean distance (EUC) and other distance learning methods
including information theoretic metric learning (ITML) [92], logistic discriminant metric learn-
ing (LDML) [146], and geometric mean metric learning (GMML) [405]. We used 5-fold cross

1https://code.google.com/archive/p/word2vec/
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MIMIC Cars Birds
DML 72.5 ± 0.3 53.1 ± 0.0 55.9 ± 0.5
EUC 58.3 ± 0.1 37.8 ± 0.0 43.2 ± 0.0
ITML [92] 69.3 ± 0.4 50.1 ± 0.0 52.9 ± 0.3
LDML [146] 70.9 ± 0.9 51.3 ± 0.0 52.1 ± 0.2
GMML [405] 71.2 ± 0.3 54.2 ± 0.0 53.7 ± 0.6
L2-DML 72.9 ± 0.1 53.4 ± 0.0 57.1 ± 0.4
L1-DML 72.6 ± 0.6 53.7 ± 0.0 56.4 ± 0.2
LowRank-DML [290] 72.5 ± 0.7 53.3 ± 0.0 56.1 ± 0.6
Dropout-DML [282] 73.1 ± 0.3 53.5 ± 0.0 56.6 ± 0.3
DCM-DML [242] 73.7 ± 0.4 57.1 ± 0.0 56.5 ± 0.4
CS-DML [402] 73.5 ± 0.5 55.7 ± 0.0 57.4 ± 0.2
DPP-DML [429] 74.2 ± 0.3 55.9 ± 0.0 56.9 ± 0.7
IC-DML [29] 74.3 ± 0.2 56.3 ± 0.0 57.8 ± 0.2
MA-DML [367] 73.6 ± 0.4 55.8 ± 0.0 58.2 ± 0.1
DC-DML [82] 72.6 ± 0.1 56.2 ± 0.0 56.2 ± 0.8
UE-DML 75.4 ± 0.3 58.2 ± 0.0 59.4 ± 0.2

Table 2.2: Precision@10 (%) on three datasets. The Cars dataset has a single train/test split,
hence the standard error is 0. UE-DML is our method. On the second panel (EUC, etc.) are
well established or state of the art distance metric learning baselines. On the the third panel
(L2-DML, etc.) and the fourth panel (DCM-DML, etc.) are DML methods regularized by non-
diversity regularizers and previously proposed diversity-promoting regularizers.

validation to tune the regularization parameter in {10−5, 10−4, · · · , 105} and the number of com-
ponents in {50, 100, 200, · · · , 500}. The best tuned regularization parameters of UER are: 0.001
for MIMIC, 0.01 for Cars and Birds. The best tuned component numbers are: 200 for MIMIC,
100 for Cars, and 200 for Birds. The learning rate of the PGD algorithm was set to 0.001.

In the LSTM experiments, the network architecture and experimental settings followed that in
the BIDirectional Attention Flow (BIDAF) [296] model, which consists of the following layers:
character embedding, word embedding, contextual embedding, attention flow, modeling, and
output. The contextual and modeling layers are based on LSTM. In the character embedding
based on convolutional neural networks, 100 1D filters were used, each with a width of 5. The
hidden state size was set to 100. AdaDelta [409] was used for optimization with a minibatch size
of 48. Dropout [313] with probability 0.2 was used for all LSTM layers. The model was trained
for 8 epochs with an early stop when the validation accuracy started to drop. We compared UER
with other diversity-promoting regularizers including DCM, CS, DPP, IC, MA, and DC.

Results Table 2.2 shows the retrieval precision (K = 10) on three datasets, where we observe:
(1) UE-DML achieves much better precision than DML, proving that UER is an effective regular-
izer in improving generalization performance; (2) UER outperforms other diversity-promoting
regularizers possibly due to its capability of capturing global relations among all components
and insensitivity to vector scaling; (3) diversity-promoting regularizers perform better than other
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MIMIC Cars Birds Average
DML 300 300 500 367
L2-DML 300 300 500 367
L1-DML 300 300 500 367
LowRank-DML [290] 400 300 400 367
Dropout-DML [282] 300 300 400 333
DCM-DML [242] 200 400 400 333
CS-DML [402] 300 100 300 233
DPP-DML [429] 200 300 300 267
IC-DML [29] 400 300 200 300
MA-DML [367] 300 200 300 267
DC-DML [82] 300 400 300 333
UE-DML 200 100 200 167

Table 2.3: Optimal number of components.

types of regularizers such as L2, L1, low rank, and dropout, demonstrating the efficacy of induc-
ing diversity; (4) UE-DML outperforms other popular distance learning methods such as ITML,
LDML, and GMML.

Table 2.3 shows the number of components that achieves the precision in Table 2.2. Com-
pared with DML, UE-DML uses much fewer components to achieve better precision. For exam-
ple, on the Cars dataset, UE-DML achieves a 58.2% precision with 100 components. In contrast,
with more components (300), DML achieves a much lower precision (53.1%). This demonstrates
that by encouraging the components to be diverse, UER is able to reduce model size without sac-
rificing modeling power. UER encourages equal “importance” among components such that each
component plays a significant role in modeling data. As a result, it suffices to use a small num-
ber of components to achieve larger modeling power. Compared with other diversity-promoting
regularizers, UER achieves better precision with fewer components, demonstrating its ability to
better promote diversity.

Next, we verify whether “diversifying” the components in DML can better capture infrequent
patterns. In the MIMIC-III dataset, we consider diseases as patterns and consider a disease as
“frequent” if more than 1000 hospital admissions are diagnosed with this disease and “infre-
quent” if otherwise. Table 2.4 shows the retrieval precision on frequent diseases and infrequent
diseases. As can be seen, compared with the baselines, UE-DML achieves more improvement
on infrequent diseases than on frequent diseases. This indicates that by encouraging the com-
ponents to diversely spread out, UER is able to better capture infrequent patterns (diseases in
this case) without compromising the performance on frequent patterns. On infrequent diseases,
UE-DML outperforms other diversity-promoting methods, showing the advantage of UER over
other diversity-promoting regularizers. To further verify this, we select 3 most frequent dis-
eases (hypertension, AFib, CAD) and randomly select 5 infrequent ones (helicobacter pylori,
acute cholecystitis, joint pain-shlder, dysarthria, pressure ulcer), and show the precision@10 on
each individual disease in Table 2.5. As can be seen, on the five infrequent diseases, UE-DML
achieves higher precision than baselines while on the three frequent diseases UE-DML achieves
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Frequent Infrequent
DML 77.6 ± 0.2 64.2 ± 0.3
EUC 58.7 ± 0.1 57.6 ± 0.2
ITML [92] 74.2 ± 0.6 61.3 ± 0.3
LDML [146] 76.1 ± 0.8 62.3 ± 0.9
GMML [405] 75.9 ± 0.1 63.5 ± 0.4
L2-DML 77.5 ± 0.3 65.4 ± 0.1
L1-DML 77.4 ± 0.5 64.8 ± 0.8
LowRank-DML [290] 77.7 ± 0.5 64.0 ± 0.8
Dropout-DML [282] 78.1 ± 0.2 64.9 ± 0.4
DCM-DML [242] 77.9 ± 0.4 66.8 ± 0.2
CS-DML [402] 78.0 ± 0.5 66.2 ± 0.7
DPP-DML [429] 77.3 ± 0.2 69.1 ± 0.5
IC-DML [29] 78.5 ± 0.3 67.4 ± 0.2
MA-DML [367] 76.8 ± 0.2 68.4 ± 0.4
DC-DML [82] 77.1 ± 0.1 65.3 ± 0.1
UE-DML 78.3 ± 0.3 70.7 ± 0.4

Table 2.4: Precision@10 (%) on frequent and infrequent diseases of the MIMIC-III dataset.

comparable precision.
We empirically verified whether UER can promote uncorrelation and evenness. Given m

component vectors, we computed the empirical correlation (cosine similarity) of every two vec-
tors, then averaged these pairwise correlation scores to measure the overall correlation of the m
vectors. We performed the study by learning distance metrics that have 200 components, on the
MIMIC-III dataset. The average correlation under unregularized DML and UE-DML is 0.73 and
0.57 respectively. This shows that UER can reduce correlation. To measure evenness, we first
measured the “importance” of components. For each component with a parameter vector a, we
projected the training examples {xi}Ni=1 onto a: {x>i a}Ni=1, then used the variance of {x>i a}Ni=1 to
measure the importance of this component. After that, we mapped these importance scores into
a probabilistic simplex using softmax. Finally, the evenness was measured by the KL divergence
between the discrete distribution parameterized by these probabilities and a uniform distribution.
A smaller KL divergence indicates larger evenness. On MIMIC-III with 200 components, the KL
divergence under unregularized DML and UE-DML is 3.54 and 2.92 respectively. This suggests
that our regularizer is able to encourage evenness.

Table 2.6 shows the runtime taken by DML methods to reach convergence. Compared with
unregularized DML, UE-DML does not increase the training time substantially. The relative
increase is 11.2% on MIMIC, 15.4% on Cars, and 13.9% on Birds. The runtime of UE-DML is
close to DML regularized by other diversity-promoting regularizers.

In the LSTM experiments, Table 2.7 shows state of the art accuracy on the two QA datasets.
Compared with the original BIDAF [296], our method UE-BIDAF achieves better accuracy,
further demonstrating UER’s ability to improve generalization performance. Besides, UER out-
performs other regularizers.
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1 (3566) 2 (3498) 3 (2757) 4 (204) 5 (176) 6 (148) 7 (131) 8 (121)
DML 80.2 ± 0.5 79.4 ± 0.8 80.9 ± 0.7 5.6 ± 1.6 6.1 ± 0.8 4.9 ± 0.8 4.3 ± 1.7 5.2 ± 0.6
EUC 66.4 ± 1.2 69.6 ± 1.2 61.8 ± 0.4 7.2 ± 1.0 6.9 ± 0.6 3.1 ± 1.4 6.8 ± 1.2 2.4 ± 0.7
ITML [92] 75.4 ± 1.0 76.3 ± 0.9 79.3 ± 0.9 5.3 ± 1.2 3.7 ± 1.3 6.0 ± 0.9 3.3 ± 0.9 5.0 ± 1.0
LDML [146] 77.0 ± 0.8 75.7 ± 1.0 78.1 ± 0.6 3.2 ± 1.3 5.6 ± 1.8 3.8 ± 1.1 6.7 ± 1.4 5.0 ± 1.3
GMML [405] 76.3 ± 0.4 78.7 ± 0.8 79.8 ± 0.8 3.9 ± 1.8 5.9 ± 1.5 11.9 ± 1.4 6.1 ± 0.6 6.3 ± 1.5
L2-DML 81.0 ± 0.5 79.3 ± 0.8 77.6 ± 0.4 4.4 ± 1.1 5.6 ± 0.9 3.7 ± 0.9 4.9 ± 1.2 6.2 ± 1.1
L1-DML 78.2 ± 1.0 79.9 ± 1.1 80.8 ± 1.2 6.3 ± 1.9 4.8 ± 1.1 9.5 ± 1.0 7.7 ± 1.0 5.6 ± 1.7
LowRank-DML [290] 79.6 ± 0.4 79.7 ± 0.5 75.4 ± 0.5 3.1 ± 1.0 9.2 ± 1.2 5.5 ± 1.4 4.8 ± 0.6 4.5 ± 1.5
Dropout-DML [282] 81.6 ± 0.5 78.7 ± 0.7 80.7 ± 0.5 3.2 ± 1.5 4.2 ± 1.9 6.1 ± 0.9 4.2 ± 0.8 6.2 ± 1.9
DCM-DML [242] 77.9 ± 1.0 77.3 ± 0.9 80.3 ± 1.2 7.1 ± 0.8 8.9 ± 0.9 9.7 ± 1.4 11.9 ± 0.7 9.0 ± 1.6
CS-DML [402] 80.0 ± 0.5 80.3 ± 0.7 80.8 ± 0.6 9.4 ± 1.3 4.8 ± 1.7 8.9 ± 1.9 9.7 ± 0.7 9.0 ± 1.0
DPP-DML [429] 79.8 ± 0.8 77.6 ± 0.2 77.4 ± 0.7 10.1 ± 1.1 10.3 ± 0.8 8.8 ± 1.7 11.7 ± 1.2 8.4 ± 1.3
IC-DML [29] 78.8 ± 1.3 79.2 ± 1.1 77.0 ± 0.8 11.8 ± 0.6 9.2 ± 1.4 5.7 ± 1.6 8.7 ± 1.4 9.6 ± 0.7
MA-DML [367] 77.3 ± 1.1 80.1 ± 1.0 81.0 ± 0.7 11.5 ± 1.1 9.9 ± 1.1 4.9 ± 1.1 7.6 ± 1.2 10.4 ± 1.4
DC-DML [82] 80.7 ± 0.5 78.8 ± 0.7 80.5 ± 1.1 10.5 ± 0.8 11.4 ± 1.2 9.2 ± 0.7 9.8 ± 1.2 10.4 ± 1.2
UE-DML 81.4 ± 0.9 82.4 ± 0.8 80.5 ± 0.4 14.3 ± 0.9 11.2 ± 1.3 10.7 ± 1.8 15.8 ± 1.4 13.2 ± 0.7

Table 2.5: Precision@10 (%) on three frequent and five infrequent diseases. The number next to
a disease ID is its frequency.

MIMIC Cars Birds
DML 20.5 9.1 10.1
DCM-DML [242] 22.3 10.9 11.7
CS-DML [402] 20.9 9.7 10.5
DPP-DML [429] 22.6 10.6 11.2
IC-DML [29] 21.1 9.7 10.5
MA-DML [367] 21.3 9.4 10.6
DC-DML [82] 21.7 10.1 10.8
UE-DML 22.8 10.5 11.5

Table 2.6: Average runtime (hours) of DML methods regularized by different diversity-
promoting regularizers.

2.2 Convex Diversity-promoting Regularizers
The UE regularizer is nonconvex and is difficult to be convexified. As a result, the UE-regularized
ML problems are nonconvex where achieving the global optimal is NP-hard. To achieve a better
local optima, the algorithm needs to rerun multiple times, each with a different random initial-
ization of the model, and selects the best solution among them, which incurs substantial compu-
tational overhead. Even so, the obtained optimal is a local (therefore inferior) one that might be
far from the global optimal.

In this section, we design new diversity-promoting regularizers that make convex relax-
ation easy [379]. Similar to [74, 122, 342, 347, 367], we use near-orthogonality to represent
“diversity”: projection vectors are more “diverse” if they are closer to orthogonality. Near-
orthogonality is promoted by encouraging the Gram matrix of vectors to be close to an identity
matrix and the “closeness” is measured using the Bregman matrix divergence (BMD) [206]. As a
result, a family of nonconvex BMD regularizers are defined. Then we perform convex relaxations
of them by exploring the properties of eigenvalues. We apply the convex BMD regularizers to
distance metric learning [383] and develop efficient proximal gradient descent [270] algorithms.
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CNN DailyMail
Dev Test Dev Test

Kadlec et al. [188] 68.6 69.5 75.0 73.9
Kobayashi et al. [197] 71.3 72.9 – –
Sordoni et al. [309] 72.6 73.3 – –
Trischler et al. [334] 73.4 74.0 – –
Chen et al. [68] 73.8 73.6 77.6 76.6
Dhingra et al. [101] 73.0 73.8 76.7 75.7
Cui et al. [86] 73.1 74.4 – –
Shen et al. [301] 72.9 74.7 77.6 76.6
BIDAF [296] 76.31 76.94 80.33 79.63
DCM-BIDAF [242] 76.36 76.98 80.51 79.68
CS-BIDAF [402] 76.43 77.10 80.37 79.71
DPP-BIDAF [429] 76.32 77.04 80.45 79.77
IC-BIDAF [29] 76.41 77.21 80.49 79.83
MA-BIDAF [369] 76.49 77.09 80.42 79.74
DC-BIDAF [82] 76.35 77.15 80.38 79.67
UE-BIDAF 76.58 77.27 80.63 79.86
Dhingra et al. [101] 77.9 77.9 81.5 80.9
Dhingra et al. [102] 79.2 78.6 – –

Table 2.7: Accuracy (%) on the two QA datasets. On the second panel (BIDAF, etc.), we compare
different diversity-promoting regularizers. On the first panel (Kadlec et al., etc.) and the third
panel (Dhingra et al., etc) are other state-of-the-art baselines.

The algorithms only run once with a single initialization, hence are more efficient than exist-
ing nonconvex methods. Since the global optimal can be achieved, our methods can potentially
yield more effective diversity-biased distance metrics. We apply the learned distance metrics
for information retrieval on healthcare, texts, images, and sensory data. Compared with non-
convex baselines, our methods achieve: (1) higher computational efficiency; (2) better retrieval
performance with fewer projection vectors; (3) better performance on infrequent classes.

2.2.1 Nonconvex Bregman Matrix Divergence Regularizers
We begin with defining nonconvex regularizers based on the Bregman matrix divergence, then
discuss how to convexify them. We first introduce another measure of “diversity” – near-
orthogonality [379]: the component vectors are deemed to be more diverse if they are closer
to being orthogonal. To encourage near-orthogonality between two vectors ai and aj , one way is
to make their inner product a>i aj close to zero and their `2 norm ‖ai‖2, ‖aj‖2 close to one. Form
vectors A ∈ Rm×d, their near-orthogonality can be achieved in the following manner: computing
the Gram matrix G whereGij = a>i aj , then encouraging G to be close to an identity matrix. Off
the diagonal of G and I are a>i aj and zero respectively. On the diagonal of G and I are ‖ai‖2

2

and one respectively. Making G close to I effectively encourages a>i aj to be close to zero and
‖ai‖2 close to one, which therefore encourages ai and aj to get close to being orthogonal.
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One straightforward distance between G and I is based on the squared Frobenius norm
(SFN): ‖G−I‖2

F . The SFN can be factorized into pairwise inner products:
∑m

i=1

∑m
j 6=i(〈ai, aj〉)2+∑m

i=1(‖ai‖2 − 1)2. As a result, it measures orthogonality of functions in a pairwise manner. We
conjecture that measuring orthogonality in a global manner is more desirable (the conjecture is
validated in experiments). To achieve this goal, we resort to another measure: Bregman ma-
trix divergence (BMD) [100]. Let Sn denote real symmetric n × n matrices. Given a strictly
convex, differentiable function φ : Sn → R, the BMD is defined as Dφ(X,Y) = φ(X) −
φ(Y) − tr((5φ(Y))>(X −Y)), where tr(A) denotes the trace of matrix A. Different choices
of φ(X) lead to different divergences. If φ(X) = tr(X log X − X), where log X denotes the
matrix logarithm of X, the divergence becomes Dvnd(X,Y) = tr(X log X−X log Y−X+Y),
which is referred to as von Neumann divergence (VND) [336]. If φ(X) = − log det X where
det(X) denotes the determinant of X, we get the log-determinant divergence (LDD) [206]:
Dldd(X,Y) = tr(XY−1) − log det(XY−1) − n. Interestingly, SFN is a special case of BMD
when φ(X) = ‖X‖2

F . To encourage near-orthogonality among components, we encourage the
BMD between their Gram matrix AA> and an identity matrix I to be small, which results in
a family of BMD regularizers: Ωφ(A) = Dφ(AA>, I). Ωφ(A) can be specialized to different
instances, according to the choices of Dφ(·, ·). Under VND, Ωφ(A) becomes

Ωvnd(A) = tr(AA> log(AA>)−AA>) +m. (2.11)

Under LDD, Ωφ(A) becomes

Ωldd(A) = tr(AA>)− log det(AA>)−m. (2.12)

Under SFN, Ωφ(A) becomes
Ωsfn(A) = ‖AA> − I‖2

F . (2.13)

Different from the SFN regularizer, VND and LDD do not admit a pairwise factorization, and
hence allow one to measure orthogonality globally. Unlike DPP [204], LDD utilizes an addi-
tional term tr(G) =

∑m
i=1 ‖ai‖2

2 to control the magnitude of vectors, and thus avoiding DPP’s
sensitivity to scaling. Similarly, VND and SFN are also insensitive to scaling since they encour-
age ‖a‖2 to be close to one.

Applying these regularizers to ML models, e.g., distance metric learning (DML, Section 2.1.2),
we define the following BMD-regularized DML (BMD-DML) problem:

minA
1

|S|
∑

(x,y)∈S

‖Ax−Ay‖2
2 +

1

|D|
∑

(x,y)∈D

max(0, 1− ‖Ax−Ay‖2
2) + λΩφ(A), (2.14)

which is nonconvex.

2.2.2 Convex Bregman Matrix Divergence Regularizers
Next, we discuss how to relax the nonconvex BMD regularizers into convex functions. The
relaxations are based on the properties of eigenvalues. Given a full-rank matrix A ∈ Rm×d

(m < d), we know that AA> ∈ Rm×m is a full-rank matrix with m positive eigenvalues (de-
noted by λ1, · · · , λm) and A>A ∈ Rd×d is a rank-deficient matrix with d − m zero eigenval-
ues and m positive eigenvalues that equal λ1, · · · , λm. For a general positive definite matrix
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Z ∈ Rm×m whose eigenvalues are γ1, · · · , γm, we have ‖Z‖2
F =

∑m
j=1 γ

2
j , tr(Z) =

∑m
j=1 γj ,

and log det Z =
∑m

j=1 log γj . Next, we leverage these facts to seek convex approximations of
the BMD regularizers.

Convex SFN regularizer The eigenvalues of AA> − Im are λ1 − 1, · · · , λm − 1 and those
of A>A − Id are λ1 − 1, · · · , λm − 1,−1, · · · ,−1. According to the fact ‖Z‖2

F =
∑m

j=1 γ
2
j ,

we have ‖A>A − Id‖2
F =

∑m
j=1(λj − 1)2 +

∑d
j=m+1(−1)2 = ‖AA> − Im‖2

F + d − m. Let
M denote A>A, then the SFN regularizer ‖AA> − Im‖2

F equals to ‖A>A− Id‖2
F − d + m =

‖M− Id‖2
F − d+m, where m = rank(A>A) = rank(M). It is well-known that the trace norm

of a matrix is a convex envelope of its rank [311]. We use tr(M) to approximate rank(M) and
get ‖AA> − Im‖2

F ≈ ‖M− Id‖2
F + tr(M)− d, where the right hand side is a convex function.

Dropping the constant, we get the convex SFN (CSFN) regularizer defined over M

Ω̂sfn(M) = ‖M− Id‖2
F + tr(M). (2.15)

Convex VND regularizer Given AA> = UΛU> where Λjj = λj , according to the property
of matrix logarithm, we have log(AA>) = UΛ̂U> where Λ̂jj = log Λjj . Then (AA>) log(AA>)−
(AA>) = U(ΛΛ̂ − Λ)U>, where the eigenvalues are {Λjj log Λjj − Λjj}mj=1. Since tr(M) =∑m

j=1 λj , we have Ωvnd(A) =
∑m

j=1(Λjj log Λjj − Λjj) +m. For A>A + εId, where ε > 0 is a
small scalar and the matrix’s eigenvalues are λ1 + ε, · · · , λm + ε, ε, · · · , ε, we have

Dvnd(A
>A + εId, Id)

= tr((A>A + εId) log(A>A + εId)− (A>A + εId)) + d

=
∑m

j=1((λj + ε) log(λj + ε)− (λj + ε)) +
∑d

j=m+1(ε log ε− ε) + d

=
∑m

j=1((λj + ε)(log λj + log(1 + ε
λj

))− (λj + ε)) + (d−m)(ε log ε− ε) + d

=
∑m

j=1(λj log λj − λj + λj log(1 + ε
λj

) + ε(log λj + log(1 + ε
λj

))− ε) + (d−m)(ε log ε− ε) + d

= Ωvnd(A)−m+
∑m

j=1(λj log(1 + ε
λj

) + ε(log λj + log(1 + ε
λj

))− ε) + (d−m)(ε log ε− ε) + d.

(2.16)
Since ε is small, we have log(1+ ε

λj
) ≈ ε

λj
. Then λj log(1+ ε

λj
) ≈ ε and the last line in the above

equation can be approximated with Ωvnd(A)−m+ d+O(ε), and therefore

Ωvnd(A) ≈ Dvnd(A
>A + εId, Id) +m− d, (2.17)

where O(ε) is close to zero since ε is small, and can be dropped. Replacing A>A with M,
approximating m with tr(M) and dropping the constant d, we get the convex VND (CVND)
regularizer:

Ω̂vnd(M) = DvN(M + εId, Id) + tr(M) ∝ tr((M + εId) log(M + εId)), (2.18)

whose convexity is shown in [264].

Convex LDD regularizer Since tr(M) =
∑m

j=1 λj and log det M =
∑m

j=1 log λj , we have
Ωldd(A) =

∑m
j=1 λj −

∑m
j=1 log λj − m and Dldd(A

>A + εId, Id) =
∑m

j=1 λj + dε − (d −
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m) log ε−
∑m

j=1 log(λj + ε). Further,

Dldd(A
>A + εId, Id)

=
m∑
j=1

λj + dε− (d−m) log ε−
m∑
j=1

log(λj + ε)

=
m∑
j=1

λj + dε− (d−m) log ε−
m∑
j=1

(log λj + log(1 + ε
λj

))

≈
m∑
j=1

(λj − log λj) +m log ε− ε
m∑
j=1

1
λj

+ dε− d log ε

= Ωldd(A) +m+m log ε+O(ε)− d log ε.

(2.19)

Dropping O(ε), we obtain

Ωldd(A) = Dldd(A
>A + εId, Id)− (log ε+ 1)m+ d log ε. (2.20)

Replacing A>A with M, approximating m with tr(M) and discarding constants, we obtain the
convex LDD (CLDD) regularizer:

Ω̂ldd(M) = Dldd(M + εId, Id)− (1 + log ε)tr(M) ∝ −logdet(M + εId) + (log 1
ε
)tr(M),

(2.21)
where the convexity of logdet(M + εId) is proved in [53]. In [92, 280], an information theo-
retic regularizer based on the log-determinant divergence Dldd(M, I) = −logdet(M) + tr(M) is
applied to encourage the Mahalanobis matrix to be close to an identity matrix. This regularizer
requires M to be full rank while our convex LDD regularizer encourages M to be low-rank by
associating a large weight log 1

ε
to the trace norm tr(M). Since M = A>A, reducing the rank of

M effectively reduces the number of components in A.

Approximation errors We discuss the errors of convex approximation, which are generated
from two sources: one is the approximation of Ωφ(A) using Dφ(A>A + εId, Id) where the
error is controlled by ε and can be arbitrarily small (by setting ε to be very small); the other
is the approximation of the matrix rank using the trace norm. Though the error of the second
approximation can be large, it has been both empirically and theoretically [62] demonstrated
that decreasing the trace norm can effectively reduce rank. As validated in our experiments,
though bearing approximation errors, these convex regularizers yield better performance than
the original non-convex ones.

DML with convex BMD regularization Given these convex BMD (CBMD) regularizers (de-
noted by Ω̂φ(M) uniformly), we can relax the nonconvex BMD-DML problems into convex
CBMD-DML formulations by replacing ‖Ax − Ay‖2

2 with (x − y)>M(x − y) and replacing
the nonconvex BMD regularizers Ωφ(A) with Ω̂φ(M):

minM
1
|S|

∑
(x,y)∈S

(x− y)>M(x− y) + 1
|D|

∑
(x,y)∈D

max(0, 1− (x− y)>M(x− y)) + λΩ̂φ(M)

s.t. M � 0.
(2.22)

This convex problem facilitates optimization: the global optimal is guaranteed to be achievable.
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2.2.3 A Proximal Gradient Descent Algorithm
We use the stochastic proximal subgradient descent algorithm [270] to solve the CBMD-DML
problems. The algorithm iteratively performs the following steps until convergence: (1) ran-
domly sampling a mini-batch of data pairs, computing the subgradient4M of the data-dependent
loss (the first and second term in the objective function) defined on the mini-batch, then perform-
ing a subgradient descent update: M̃ = M − η 4M, where η is a small stepsize; (2) applying
proximal operators associated with the regularizers Ω̃φ(M) to M̃. In step (1), the gradient of
CBMD is log(M+εId)+Id. To compute log(M+εId), we first perform an eigen-decomposition:
M + εId = UΛU>; then take the log of every eigenvalue in Λ, resulting in a new diagonal ma-
trix Λ̃; finally compute log(M + εId) as UΛ̃U>. In the CLDD regularizer, the gradient of
logdet(M + εId) is (M + εId)

−1, which can be computed by eigen-decomposition as well. In
step (2), the proximal operators associated with the regularizer Ω̃φ(M) are derived by minimiz-
ing 1

2η
‖M − M̃‖2

2 + λΩ̃φ(M) subject to M � 0. Let {λ̃j}dj=1 be the eigenvalues of M̃ and
{xj}dj=1 be the eigenvalues of M, then this problem can be equivalently written as:

min{xj}dj=1

1
2η

d∑
j=1

(xj − λ̃j)2 + λ
d∑
j=1

hφ(xj)

s.t. ∀j = 1, · · · , d, xj ≥ 0,

(2.23)

where hφ(xj) is a regularizer-specific scalar function. Further, this problem can be decomposed
into d independent problems: (a) minxj f(xj) = 1

2η
(xj − λ̃j)2 + λhφ(xj) subject to xj ≥ 0, for

j = 1, · · · , d, which can be solved individually.

SFN For SFN where Ω̃φ(M) = ‖M − Id‖2
F + tr(M) and hφ(xj) = (xj − 1)2 + xj , problem

(a) is simply a quadratic programming problem. The optimal solution is x∗j = max(0,
λ̃j+ηλ

1+2ηλ
).

VND For VND where Ω̃φ(M) = tr((M+εId) log(M+εId)) and hφ(xj) = (xj+ε) log(xj+ε),
by taking the derivative of the objective function f(xj) in problem (a) w.r.t xj and setting the
derivative to zero, we get ηλ log(xj + ε) + xj + ηλ − λ̃j = 0. The root of this equation is:
ηλω(

ε−ηλ+λ̃j
ηλ

− log(ηλ)) − ε, where ω(·) is the Wright omega function [137]. If this root is
negative, then the optimal xj is 0; if this root is positive, then the optimal xj could be either this
root or 0. We pick the one that yields the lowest f(xj). Formally, x∗j = argminxj f(xj), where

x ∈ {max(ηλω(
ε−ηλ+λ̃j

ηλ
− log(ηλ))− ε, 0), 0}.

LDD For LDD where Ω̃φ(M) = −logdet(M + εId) + (log 1
ε
)tr(M) and hφ(xj) = − log(xj +

ε) + xj log 1
ε
, by taking the derivative of f(xj) w.r.t xj and setting the derivative to zero, we

get a quadratic equation: x2
j + axj + b = 0, where a = ε − λ̃j − ηλ log ε and b = ηλ(1 −

ε log ε). The optimal solution is achieved either at the positive roots (if any) of this equation
or 0. We pick the one that yields the lowest f(xj). Formally, x∗j = argminxj f(xj), where

x ∈ {max(−b+
√
b2−4ac

2a
, 0),max(−b−

√
b2−4ac

2a
, 0), 0}.
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#Train #Test Dimension #Class
MIMIC 40K 18K 1000 2833
EICU 53K 39K 1000 2175
Reuters 4152 1779 1000 49
News 11307 7538 1000 20
Cars 8144 8041 1000 196
Birds 9000 2788 1000 200
Act 7352 2947 561 6

Table 2.8: Dataset statistics.

Computational complexity In this algorithm, the major computation workload is eigen-decomposition
of m-by-m matrices, with a complexity of O(m3). In our experiments, since m is no more
than 1000, O(m3) is not a big bottleneck. Besides, these matrices are symmetric, the struc-
tures of which can thus be leveraged to speed up eigen-decomposition. In implementation, we
use the MAGMA [7] library that supports efficient eigen-decomposition of symmetric matri-
ces on GPUs. Note that the unregularized convex DML problem [383] also requires eigen-
decomposition (of M), hence adding these CBMD regularizes does not substantially increase
additional computation cost.

2.2.4 Evaluation
In this section, we present experimental results on regularized distance metric learning, which
demonstrate that compared with nonconvex BMD regularizers, the proposed convex regularizers
are computationally more efficient and are more capable of capturing infrequent patterns and
reducing model size without sacrificing modeling power.

Datasets We used seven datasets in the experiments: two electronic health record datasets
MIMIC-III [184] and EICU (version 1.1) [131]; two text datasets Reuters [10] and 20-Newsgroups
(News) [1]; two image datasets Stanford-Cars (Cars) [202] and Caltech-UCSD-Birds (Birds)
[358]; and one sensory dataset 6-Activities (Act) [21]. The details of MIMIC-III, Cars, and
Birds have been introduced in Section 2.1.4. The class labels in MIMIC are the primary diag-
noses of patients. The EICU dataset contains hospital admissions of patients who were treated as
part of the Philips eICU program across intensive care units in the United States between 2014
and 2015. Each admission has a primary diagnosis (a disease), which acts as the class label of
this admission. There are 2175 unique diseases. There are 474 lab test items and 48 vital sign
items. Each admission has a past medical history, which is a collection of diseases. There are
2644 unique past diseases. We extracted the following features: (1) age and gender; (2) zero,
first, and second order temporal features of lab tests and vital signs; (3) past medical history: we
used a binary vector to encode them; if an element in the vector is 1, then the patient had the
corresponding disease in the past. The original Reuters-21578 dataset contains 21578 documents
in 135 classes. We removed documents that have more than one labels, and removed classes that
have less than 3 documents, which left us 5931 documents and 48 classes. Documents in Reuters
and News are represented with tf-idf vectors where the vocabulary size is 5000. The 6-Activities
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dataset contains sensory recordings of 30 subjects performing 6 activities (which are the class
labels). The features are 561-dimensional sensory signals. For all the datasets except Act, the
features are normalized using min-max normalization along each dimension. We used PCA to
reduce the feature dimension to 1000 to reduce the computational complexity (performing eigen-
decomposition of the Mahalanobis matrix bears cubic complexity in term of feature dimension).
Since there is no standard split of the train/test set, we performed five random splits and averaged
the results of the five runs. Dataset statistics are summarized in Table 2.8.

Experimental settings Two examples are considered as being similar if they belong to the
same class and dissimilar if otherwise. The learned distance metrics were applied for retrieval
(using each test example to query the rest of the test examples). For each test example, we used it
to query the rest of test examples based on the learned distance metric. If the distance between x
and y is smaller than a threshold s and they have the same class label, then this is a true positive.
By choosing different values of s, we obtained a receiver operating characteristic (ROC) curve.
The retrieval performance was evaluated using the area under (ROC) curve (AUC) [243] which is
the higher, the better. For AUC on infrequent classes, we used examples belonging to infrequent
classes to query the entire test set (excluding the query). AUC on frequent classes was measured
in a similar way. Note that the learned distance metrics can also be applied to other tasks such as
clustering and classification. In this work, we focus on retrieval.

We compared the proposed convex diversity-promoting regularizers CSFN, CVND, CLDD
with two sets of baseline regularizers. The first set aims at promoting near-orthogonality (“di-
versity”), which are based on determinant of covariance matrix (DCM) [242], cosine similar-
ity (CS) [402], determinantal point process (DPP) [204, 429], InCoherence (IC) [29], varia-
tional Gram function (VGF) [177, 420], decorrelation (DC) [82], mutual angles (MA) [369],
squared Frobenius norm (SFN) [74, 114, 122, 347], von Neumann divergence (VND) (Sec-
tion 2.2.1), log-determinant divergence (LDD) (Section 2.2.1), and orthogonal constraint (OC)
AA> = I [233, 342]. These regularizers were applied to the nonconvex DML (NCDML) for-
mulation in Eq.(2.14). Though VGF is convex, when it is used to regularize NCDML, the overall
problem is non-convex and it is unclear how to seek a convex relaxation. The other set of regu-
larizers are not designed particularly for promoting diversity but are commonly used, including
`2 norm, `1 norm [280], `2,1 norm [399], trace norm (Tr) [234], information theoretic (IT) reg-
ularizer −logdet(M) + tr(M) [92], and dropout [313]. All these regularizers were applied to
the convex DML (CDML) formulation in Eq.(2.22). One common way of dealing with class-
imbalance is over-sampling (OS) [116], which repetitively draws samples from the empirical
distributions of infrequent classes until all classes have the same number of samples. In addition,
we compared with the vanilla Euclidean distance (EUC) and other distance learning methods in-
cluding large margin nearest neighbor (LMNN) metric learning [357], information theoretic met-
ric learning (ITML) [92], logistic discriminant metric learning (LDML) [146], metric learning
from equivalence constraints (MLEC) [200], geometric mean metric learning (GMML) [405],
and independent Laplacian hashing with diversity (ILHD) [63]. In LMNN [357], there is a non-
convex formulation and a convex formulation. We used the convex one. In GMML [405], the
prior matrix was set to an identity matrix. ILHD [63] has several variants, among which we used
ILTITF.
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MIMIC EICU Reuters News Cars Birds Act
NCDML 62.1 66.6 5.2 11.0 8.4 10.1 3.4
CDML 3.4 3.7 0.3 0.6 0.5 0.6 0.2
DCM-NCDML [242] 424.7 499.2 35.2 65.6 61.8 66.2 17.2
CS-NCDML [402] 263.2 284.8 22.6 47.2 34.5 42.8 14.4
DPP-NCDML [429] 411.8 479.1 36.9 61.9 64.2 70.5 16.5
IC-NCDML [29] 265.9 281.2 23.4 46.1 37.5 45.2 15.3
DC-NCDML [82] 458.5 497.5 41.8 78.2 78.9 80.7 19.9
VGF-NCDML [177] 267.3 284.1 22.3 48.9 35.8 38.7 15.4
MA-NCDML [367] 271.4 282.9 23.6 50.2 30.9 39.6 17.5
OC-NCDML [233] 104.9 118.2 9.6 14.3 14.8 17.0 3.9
SFN-NCDML [74] 261.7 277.6 22.9 46.3 36.2 38.2 15.9
VND-NCDML 401.8 488.3 33.8 62.5 67.5 73.4 17.1
LDD-NCDML 407.5 483.5 34.3 60.1 61.8 72.6 17.9
CSFN-CDML 41.1 43.9 3.3 7.3 6.5 6.9 1.8
CVND-CDML 43.8 46.2 3.6 8.1 6.9 7.8 2.0
CLDD-CDML 41.7 44.5 3.4 7.5 6.6 7.2 1.8

Table 2.9: Training time (hours) on seven datasets. On the second panel (DCM-NCDML,
etc.) are NCDML methods regularized by previously proposed diversity-promoting regularizers.
On the third panel (VND-NCDML, etc.) are NCDML methods regularized by our proposed
nonconvex BMD regularizers. On the fourth panel (CSFN-CDML, etc.) are CDML methods
regularized by our proposed convex BMD regularizers.

The NCDML-based methods except NCDML-OC were solved with stochastic subgradient
descent (SSD). NCDML-OC was solved using the algorithm proposed in [359]. The CDML-
based methods were solved with proximal SSD. The learning rate was set to 0.001. The mini-
batch size was set to 100 (50 similar pairs and 50 dissimilar pairs). We used 5-fold cross valida-
tion to tune the regularization parameter among {10−3, · · · , 100} and the number of components
of the NCDML methods among {50, 100, 200, · · · , 500}. In CVND and CLDD, ε was set to
1e − 5. The margin t was set to 1. In LMNN, the weighting parameter µ was set to 0.5. In
GMML [405], the regularization parameter λ was set to 0.1. The step length t of geodesic was
set to 0.3. In ILHD [63], the hash function was set to the kernel SVM [294] with a radial basis
function kernel whose scale parameter was chosen to be 0.1. Each method was implemented on
top of GPUs using the MAGMA [7] library. The experiments were conducted on a GPU-cluster
with 40 machines.

For computational efficiency, in CDML-based methods, we do not use (x−y)>M(x−y) to
compute distance directly. Given the learned matrix M (which is of rank m), we can decompose
it into L>L where L ∈ Rm×d. Let UΛU> be the eigen-decomposition of M. Let λ1, · · · , λm
denote the m nonzero eigenvalues and ui, · · · ,um denote the corresponding eigenvectors. Then
L is the transpose of [

√
σ1u1, · · · ,

√
σmum]. Given L, we can use it to transform each input d-

dimensional feature vector x into a new m-dimensional vector Lx, then perform retrieval on the
new vectors based on the Euclidean distance. Note that only when computing Euclidean distance
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between Lx and Ly, we have that ‖Lx − Ly‖2
2 is equivalent to (x − y)>M(x − y). For other

distances or similarity measures between Lx and Ly, such as L1 distance and cosine similarity,
this does not hold. Performing retrieval based on ‖Lx−Ly‖2

2 is more efficient than that based on
(x−y)>M(x−y) whenm is smaller than d. Given n test examples, the computation complexity
of ‖Lx−Ly‖2

2-based retrieval isO(nmd+n2m), while that of (x−y)>M(x−y)-based retrieval
is O(n2d2).

Results The training time taken by different methods to reach convergence is shown in Table
2.9. For NCDML-based methods, we report the total time taken by the following computation:
tuning the regularization parameter (4 choices) and the number of components (NCs, 6 choices)
on a two-dimensional grid via 3-fold cross validation (4 × 6 × 3 = 72 experiments in total);
for each of the 72 experiments, the algorithm restarted 5 times, each with a different initializa-
tion, and we picked the one yielding the lowest objective value. In total, the number of runs is
72 × 5 = 360. For the CDML-based methods, there is no need to restart multiple times or tune
the NCs. The total number of runs is 4 × 3 = 12. As can be seen from the table, the proposed
convex methods are much faster than the non-convex ones, due to the greatly reduced number
of experimental runs, although for each single run the convex methods are less efficient than
the non-convex methods due to the overhead of eigen-decomposition. The unregularized CDML
takes the least time to train since it has no parameters to tune and runs only once. On average,
the time of each single run in (CSFN,CVND,CLDD)-CDML is close to that in the unregular-
ized CDML, since an eigen-decomposition is required anyway regardless of the presence of the
regularizers. Unregularized NCDML runs faster that regularized NCDML methods because it
has no need to tune the regularization parameter, which reduces the number of experimental runs
by 4 times. Unregularized CDML runs faster than regularized CDML methods because it has
no need to tune the regularization parameter or the number of projection vectors, which reduces
the number of experimental runs by 12 times. (DCM,DPP,VND,LDD)-NCDML methods take
longer time than other regularized NCDML methods since they need eigen-decomposition to
compute the gradients. OC-NCDML has no regularization parameter to tune, hence its number
of experimental runs is 4 times fewer than other regularized NCDML methods.

Next, we verify whether CSFN, CVND, and CLDD are able to better capture infrequent
patterns. On three datasets MIMIC, EICU, and Reuters where the classes are imbalanced, we
consider a class as being “frequent” if it contains more than 1000 examples, and “infrequent” if
otherwise. We measure AUCs on all classes (AUC-All), infrequent classes (AUC-IF), and fre-
quent classes (AUC-F). As can be seen, in most DML methods, the AUCs on infrequent classes
are worse than those on frequent classes, showing that DML is sensitive to the imbalance of
class-frequency and tends to be biased towards frequent classes and is less capable of capturing
infrequent classes. This is in accordance with the previous findings [369]. Adding our pro-
posed CSFN, CVND, CLDD regularizers to CDML, the AUCs on infrequent classes are greatly
improved. This demonstrates that these convex regularizers can effectively capture infrequent
patterns. By encouraging the components to be close to being orthogonal, our methods can re-
duce the redundancy among vectors. Mutually complementary vectors can achieve a broader
coverage of latent features, including those associated with infrequent classes. As a result, these
vectors improve the performance on infrequent classes.
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Thanks to their convexity nature, our methods can achieve the global optimal solution and
outperform the non-convex ones that can only achieve a local optimal and hence a sub-optimal
solution. (C)VND and (C)LDD outperform (C)SFN, possibly because they measure near-orthogonality
in a global way while (C)SFN conducts that in a pairwise fashion. Comparing OS-(NCDML,CDML)
with the unregularized NCDML/CDML, we can see that over-sampling indeed improves perfor-
mance on infrequent classes. However, this improvement is less significant than that achieved
by our methods. In general, the diversity-promoting (DP) regularizers outperform the non-DP
regularizers, suggesting the effectiveness of promoting diversity. The orthogonal constraint
(OC) [233, 342] imposes strict orthogonality, which may be too restrictive that hurts perfor-
mance. ILHD [63] learns binary hash codes, which makes retrieval more efficient. However, it
achieves lower AUCs due to the quantization errors. (CSFN,CVND,CLDD)-CDML outperform
popular DML approaches including LMNN, LDML, MLEC, and GMML, demonstrating their
competitive standing in the DML literature.

Next we verify whether the proposed CDML methods are able to reduce model size without
sacrificing modeling power. Table 2.12 shows the numbers of components that achieve the AUCs
in Table 6.1 and 2.11. For CDML-based methods, the number of components (NC) is the rank of
the Mahalanobis matrix since M = A>A. We define a compactness score (CS) which is the ratio
between AUC-All and NC. A higher CS indicates the better ability of using fewer components
to achieve higher AUC. From Table 2.12, we see that the convex methods achieve larger CS
than the baseline methods, demonstrating its better ability of conducting performance-lossless
reduction of model size. (C)VND and (C)LDD perform better than (C)SFN, demonstrating the
necessity of promoting diversity in a global manner. The proposed convex diversity-promoting
(DP) regularizers outperform nonconvex DP regularizers, demonstrating their better ability in
promoting diversity thanks to their convex nature. Note that the reduced component number
improves the efficiency of retrieval where the computational complexity grows linearly with this
number.

As can be seen from Table 6.1 and 2.11, our methods (CSFN,CVND,CLDD)-CDML achieve
the best AUC-All on the test set. Table 6.3 shows the difference between training AUC and
testing AUC. Our methods have the smallest gap between training and testing AUCs. This in-
dicates that our methods are better capable of reducing overfitting and improving generalization
performance.

2.3 Angular Constraints for Improving Generalization Per-
formance

In previous two sections, we have empirically demonstrated that diversity-promoting regular-
ization can improve generalization performance. One intuitive explanation could be: promoting
diversity imposes a structural constraint on model parameters, which reduces model capacity and
therefore alleviates overfitting. However, in theory why larger “diversity” results in lower gen-
eralization error (which is the sum of estimation and approximation errors) is still missing. The
uniform eigenvalue regularizer and the Bregman matrix divergence (BMD) regularizers studied
previously are not amenable for such analysis, especially for the approximation errors. In this
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section, we aim at bridging this gap, by proposing a diversity-promoting approach that is both
empirically effective and theoretically analyzable. Similar to Section 2.2, we continue to use
near-orthogonality to represent “diversity”, but via a different regularization approach – angular
constraints (ACs) [372] where the angle between components is constrained to be close to π

2
,

which hence encourages the components to be close to being orthogonal. Using neural network
as a study case, we analyze how ACs affect its generalization error (Section 4.2.1). The analysis
shows that the more close to π

2
the angles are, the smaller the estimation error is and the larger the

approximation error is. The best tradeoffs of these two errors can be explored by properly tuning
the angles. We develop an algorithm based on the alternating direction method of multipliers
(ADMM) [52] to solve the angle-constrained problems. In various experiments, we demonstrate
that ACs improve the generalization performance and outperform other diversity-promoting reg-
ularization approaches.

2.3.1 Angular Constraints
Similar to the BMD regularizers (Section 2.2), angular constraints (ACs) use near-orthogonality
to characterize “diversity” and encourage the angles between component vectors to be close to
π/2. The ACs are defined as requiring the absolute value of the cosine similarity between each
pair of components to be less equal to a small value τ , which leads to the following angle-
constrained problem

min
W
L(W)

s.t. 1 ≤ i < j ≤ m,
|wi·wj |

‖wi‖2‖wj‖2 ≤ τ,
(2.24)

whereW = {wi}mi=1 denotes the component vectors and L(W) is the objective function of this
problem. The parameter τ controls the level of near-orthogonality (or diversity). A smaller τ
indicates that the vectors are more close to being orthogonal, and hence are more diverse. As
will be shown later, representing diversity using the angular constraints facilitates theoretical
analysis and is empirically effective as well.

Case study I: sparse coding Given a set of data samples {xi}ni=1, where x ∈ Rd, sparse
coding (SC) [266] aims at using a set of “basis” vectors (referred to as dictionary)W = {wj}mj=1

to reconstruct the data samples. Each data sample x is reconstructed by taking a sparse linear
combination of the basis vectors x ≈

∑m
j=1 αjwj where {αj}mj=1 are the linear coefficients

(referred to as sparse codes) and most of them are zero. The reconstruction error is measured
using the squared `2 norm ‖x −

∑m
j=1 αjwj‖2

2. To achieve sparsity among the coefficients, `1-
regularization is utilized:

∑m
j=1 |αj|1. To avoid the degenerated case where most coefficients are

zero and the basis vectors are of large magnitude, `2-regularization is applied to the basis vectors:
‖wj‖2

2. Putting these pieces together, we learn the basis vectors and sparse codes (denoted by
A) by minimizing the following objective function: L(W ,A) = 1

2

∑n
i=1(‖xi−

∑m
j=1 αijwj‖2

2 +

λ1

∑m
j=1 |αij|1) + λ2

∑m
j=1 ‖wj‖2

2. We can use the ACs to encourage the basis vectors to be
“diverse”.
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Case study II: neural networks In a neural network (NN) with L hidden layers, each hidden
layer l is equipped withm(l) units and each unit i is connected with all units in layer l−1. Hidden
unit i at layer l is parameterized by a weight vector w

(l)
i . These hidden units aim at capturing

latent features underlying the data. We can apply ACs to the weight vectors of hidden units (in
the same layer) to encourage diversity.

Connection with the log-determinant divergence regularizer

In this section, we make a connection between the angular constraints and the log-determinant
divergence (LDD) regularizer (Section 2.2.1). Let sij =

|〈wi,wj〉|
‖wi‖2‖wj‖2 be the absolute value of the

cosine similarity between wi and wj . The angular constraints can be equivalently written as

s(W) = (max1≤i<j≤m sij) ≤ τ. (2.25)

It can be proved that the negative gradient of the LDD regularizer Ωldd(W) is an descent direction
of s(W), which is formally given in the following lemma.
Lemma 1. Let Ŵ = {ŵi}mi=1 be a set of vectors where ŵi = wi − ηgi and gi is the gradient of
Ωldd(W) w.r.t wi. Then ∃δ > 0 such that ∀η ∈ (0, δ), s(Ŵ) ≤ s(W).

This implies that Ωldd(W) and s(W) are closely aligned. Decreasing Ωldd(W) effectively
decreases s(W) and drives the angles among components to approach π/2.

In addition, it can be showed that the variance of angles can be reduced by minimizing
Ωldd(W). Consider a set of angles {θij} where θij = arccos(sij), for all i 6= j. Let var({θij})
denote the variance of the angles. Then we have the following lemma.
Lemma 2. Let Ŵ = {ŵi}mi=1 be a set of vectors where ŵi = wi − ηgi and gi is the gradient of
Ωldd(W) w.r.t wi. Let ŝij =

|〈ŵi,ŵj〉|
‖ŵi‖2‖ŵj‖2 and θ̂ij = arccos(ŝij). Then ∃δ > 0 such that ∀η ∈ (0, δ),

var({θ̂ij}) ≤ var({θij}).

2.3.2 An ADMM-based Algorithm
In this section, we develop an ADMM-based algorithm to solve the AC regularized problems.
To make it amenable for optimization, we first factorize each weight vector w into its `2 norm
g = ‖w‖2 and direction w̃ = w

‖w‖2 . Under such a factorization, w can be reparameterized as
w = gw̃, where g > 0 and ‖w̃‖2 = 1. Then the problem defined in Eq.(2.24) can be transformed
into

min
W̃,G

L(W̃ ,G)

s.t. ∀j, gj ≥ 0, ‖w̃j‖2 = 1
∀i 6= j, |w̃i · w̃j| ≤ τ,

(2.26)

where W̃ = {w̃j}mj=1 and G = {gj}mj=1. We solve this new problem by alternating between W̃
and G. With W̃ fixed, the problem defined over G is: minG L(G) subject to ∀j, gj ≥ 0, which
can be solved using projected gradient descent. With G fixed, the sub-problem defined over W̃
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is
min
W̃
L(W̃)

s.t. ∀j, ‖w̃j‖2 = 1
∀i 6= j, |w̃i · w̃j| ≤ τ,

(2.27)

which we solve using an ADMM-based algorithm. There areR = m(m−1) pairwise constraints
|w̃i · w̃j| ≤ τ . For the r-th constraint, let p(r) and q(r) be the index of the first and second vector
respectively, i.e., the r-th constraint is |w̃p(r) · w̃q(r)| ≤ τ . First, we introduce auxiliary variables
{v(r)

1 }Rr=1 and {v(r)
2 }Rr=1, to rewrite the problem in Eq.(2.27) into an equivalent form. For each

pairwise constraint: |w̃p(r) · w̃q(r)| ≤ τ , we introduce two auxiliary vectors v
(r)
1 and v

(r)
2 , and let

w̃p(r) = v
(r)
1 , w̃q(r) = v

(r)
2 , ‖v(r)

1 ‖2 = 1, ‖v(r)
2 ‖2 = 1, |v(r)

1 · v
(r)
2 | ≤ τ . To this end, we obtain the

following problem

min
W̃,V

L(W̃)

s.t. ∀j, ‖w̃j‖2 = 1

∀r, w̃p(r) = v
(r)
1 , w̃q(r) = v

(r)
2

∀r, ‖v(r)
1 ‖2 = 1, ‖v(r)

2 ‖2 = 1, |v(r)
1 · v

(r)
2 | ≤ τ,

(2.28)

where V = {(v(r)
1 ,v

(r)
2 )}Rr=1. Then we define the augmented Lagrangian, with Lagrange multi-

pliers Y = {(y(r)
1 ,y

(r)
2 )}Rr=1 and parameter ρ

min
W̃,V,Y

L(W̃) +
R∑
r=1

(y
(r)
1 · (w̃p(r) − v

(r)
1 ) + y

(r)
2 · (w̃q(r) − v

(r)
2 ) + ρ

2
‖w̃p(r) − v

(r)
1 ‖2

2

+ρ
2
‖w̃q(r) − v

(r)
2 ‖2

2)

s.t. ∀j, ‖w̃j‖2 = 1

∀r, ‖v(r)
1 ‖2 = 1, ‖v(r)

2 ‖2 = 1, |v(r)
1 · v

(r)
2 | ≤ τ,

(2.29)

which can be solved by alternating between W̃ , V , Y .

Solve W̃ The sub-problem defined over W̃ is

min
W̃
L(W̃) +

R∑
r=1

(y
(r)
1 · w̃p(r) + y

(r)
2 · w̃q(r) + ρ

2
‖w̃p(r) − v

(r)
1 ‖2

2 + ρ
2
‖w̃q(r) − v

(r)
2 ‖2

2)

s.t. ∀j, ‖w̃j‖2 = 1.

(2.30)

For sparse coding, we solve this sub-problem using coordinate descent. At each iteration, we
update w̃j by fixing the other variables. For neural network, this sub-problem can be solved using
projected gradient descent which iteratively performs the following three steps: (1) compute the
gradient of w̃j using backpropagation; (2) perform a gradient descent update of w̃j; (3) project
each vector onto the unit sphere: w̃j ← w̃j/‖w̃j‖2.
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Solve v
(r)
1 ,v

(r)
2 The corresponding sub-problem is

min
v
(r)
1 ,v

(r)
2

−y
(r)
1 · v

(r)
1 − y

(r)
2 · v

(r)
2 + ρ

2
‖w̃p(r) − v

(r)
1 ‖2

2 + ρ
2
‖w̃q(r) − v

(r)
2 ‖2

2

s.t. ‖v(r)
1 ‖2 = 1, ‖v(r)

2 ‖2 = 1,v
(r)
1 · v

(r)
2 ≤ τ,−v

(r)
1 · v

(r)
2 ≤ τ.

(2.31)

Let γ1, γ2, λ1 ≥ 0, λ2 ≥ 0 be the KKT multipliers associated with the four constraints in this
sub-problem. According to the KKT conditions [53], we have

− y
(r)
1 + ρ(v

(r)
1 − w̃p(r)) + 2γ1v

(r)
1 + (λ1 − λ2)v

(r)
2 = 0 (2.32)

− y
(r)
2 + ρ(v

(r)
2 − w̃q(r)) + 2γ2v

(r)
2 + (λ1 − λ2)v

(r)
1 = 0. (2.33)

We solve these two equations by examining four cases.

Case 1 First, we assume λ1 = 0, λ2 = 0, then (ρ+2γ1)v
(r)
1 = y

(r)
1 +ρw̃p(r) and (ρ+2γ2)v

(r)
2 =

y
(r)
2 + ρw̃q(r). According to the primal feasibility [53] ‖v(r)

1 ‖2 = 1 and ‖v(r)
2 ‖2 = 1, we know

v
(r)
1 =

y
(r)
1 + ρw̃p(r)

‖y(r)
1 + ρw̃p(r)‖2

, v
(r)
2 =

y
(r)
2 + ρw̃q(r)

‖y(r)
2 + ρw̃q(r)‖2

. (2.34)

Then we check whether the constraint |v(r)
1 · v

(r)
2 | ≤ τ is satisfied. If so, then v

(r)
1 and v

(r)
2 are

the optimal solution.

Case 2 We assume λ1 > 0 and λ2 = 0, then

(ρ+ 2γ1)v
(r)
1 + λ1v

(r)
2 = y

(r)
1 + ρw̃p(r) (2.35)

(ρ+ 2γ2)v
(r)
2 + λ1v

(r)
1 = y

(r)
2 + ρw̃q(r). (2.36)

According to the complementary slackness condition [53], we know v
(r)
1 · v

(r)
2 = τ . For the

vectors on both sides of Eq.(2.35), taking the square of their `2 norm, we get

(ρ+ 2γ1)2 + λ2
1 + 2(ρ+ 2γ1)λ1τ = ‖y(r)

1 + ρw̃p(r)‖2
2. (2.37)

Similarly, from Eq.(2.36), we get

(ρ+ 2γ2)2 + λ2
1 + 2(ρ+ 2γ2)λ1τ = ‖y(r)

2 + ρw̃q(r)‖2
2. (2.38)

Taking the inner product of the two vectors on the left hand sides of Eq.(2.35,2.36), and those on
the right hand sides, we get

(2ρ+ 2γ1 + 2γ2)λ1 + ((ρ+ 2γ1)(ρ+ 2γ2) + λ2
1)τ = (y

(r)
1 + ρw̃p(r))

>(y
(r)
2 + ρw̃q(r)).

(2.39)
Solving the system of equations consisting of Eq.(2.37-2.39), we obtain the optimal values of γ1,
γ2, and λ1. Plugging them into Eq.(2.35) and Eq.(2.36), we obtain a solution of v

(r)
1 and v

(r)
2 .

Then we check whether this solution satisfies −v
(r)
1 · v

(r)
2 ≤ τ . If so, this is an optimal solution.

In Case 3, we discuss λ1 = 0, λ2 > 0. In Case 4, we discuss λ1 > 0, λ2 > 0. The
corresponding problems can be solved in a similar way as Case 2.
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Solve y
(r)
1 ,y

(r)
2 We simply perform the following updates:

y
(r)
1 = y

(r)
1 + ρ(w̃p(r) − v

(r)
1 ) (2.40)

y
(r)
2 = y

(r)
2 + ρ(w̃q(r) − v

(r)
2 ). (2.41)

Compared with a vanilla backpropagation algorithm, the major extra cost in this ADMM-
based algorithm comes from solving the R = m(m− 1) pairs of vectors {v(r)

1 ,v
(r)
2 }Rr=1. Solving

each pair incurs O(m) cost. The R pairs bring in a total cost of O(m3). Such a cubic cost is also
incurred in other diversity-promoting methods such as [29, 213]. In practice, m is typically less
than 1000. This O(m3) cost does not substantially bottleneck computation, as we will validate
in experiments.

2.3.3 Evaluation
In this section, we empirically show the effectiveness of the angular constraints. The theoretical
analysis is deferred to Section 4.2.1.

Sparse Coding

Following [392], we applied sparse coding for image feature learning. We used three datasets in
the experiments: Scenes-15 [212], Caltech-256 [141], and UIUC-Sport [224]. For each dataset,
five random train/test splits were performed and the results were averaged over the five runs. We
extracted pixel-level dense SIFT [237] features with step size 8 and and patch size 16. On top
of the SIFT features, we used sparse coding methods to learn a dictionary and represented each
SIFT feature into a sparse code. To obtain image-level features, we applied max-pooling [392]
and spatial pyramid matching [212, 392] over the pixel-level sparse codes. Then a linear SVM
was applied to classify the images. We compared with other diversity-promoting regularizers
including determinant of covariance matrix (DCM) [242], cosine similarity (CS) [402], determi-
nantal point process (DPP) [204, 429], InCoherence (IC) [29], and mutual angles (MA) [369].
We used 5-fold cross validation to tune τ in {0.3, 0.4, · · · , 1} and the number of basis vectors in
{50, 100, 200, · · · , 500}. The parameter ρ in ADMM was set to 1.

Table 2.14 shows the classification accuracy on three datasets, from which we can see that
compared with unregularized SC, AC-SC greatly improves performance. For example, on the
Sports dataset, AC improves the accuracy from 87.4% to 90.9%. This suggests that AC is ef-
fective in reducing overfitting and improving generalization performance. Compared with other
diversity-promoting regularizers, AC achieves better performance, demonstrating its better effi-
cacy in promoting diversity.

Neural Networks

We evaluated AC on three types of neural networks: fully-connected NN (FNN) for phone recog-
nition [159], CNN for image classification [203], and RNN for question answering [296]. In the
main paper, we report results on four datasets: TIMIT [11], CIFAR-10 [5], CNN [154], and
DailyMail [154].
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FNN for phone recognition The TIMIT dataset contains a total of 6300 sentences (5.4 hours),
divided into a training set (462 speakers), a validation set (50 speakers), and a core test set (24
speakers). We used the Kaldi [277] toolkit to train the monophone system which was utilized to
perform forced alignment and to get labels for speech frames. The toolkit was also utilized to
preprocess the data into log-filter banks. Among FNN-based methods, Karel’s recipe in Kaldi
achieves state of the art performance. We applied AC to the FNN in this recipe. The inputs of
the FNN are the FMLLR [117] features of 21 neighboring frames, which are mean-centered and
normalized to have unit variance. The number of hidden layers was 4. Each layer had 1024
hidden units. Stochastic gradient descent (SGD) was used to train the network. The learning
rate was set to 0.008. We compared with four diversity-promoting regularizers: CS, IC, MA,
and DeCorrelation (DC) [82]. The regularization parameter in these methods were tuned in
{10−6, 10−5, · · · , 105}. The β parameter in IC was set to 1.

Table 2.15 shows state of the art phone error rate (PER) on the TIMIT core test set. Methods
in the first panel are mostly based on FNN, which perform less well than Kaldi. Methods in
the third panel are all based on RNNs which in general perform better than FNN since they are
able to capture the temporal structure in speech data. In the second panel, we compare AC with
other diversity-promoting regularizers. Without regularization, the error is 18.53%. With AC, the
error is reduced to 18.41%, which is very close to a strong RNN-based baseline – connectionist
temporal classification (CTC) [139]. Besides, AC outperforms other regularizers.

CNN for image classification The CIFAR-10 dataset contains 32x32 color images from 10
categories, with 50,000 images for training and 10,000 for testing. We used 5000 training images
as the validation set to tune hyperparameters. The data was augmented by first zero-padding the
images with 4 pixels on each side, then randomly cropping the padded images to reproduce
32x32 images. We applied AC to the wide residual network (WideResNet) [406] where the
depth was set to 28 and the width was set to 10. SGD was used for training, with epoch number
200, initial learning rate 0.1, minibatch size 128, Nesterov momentum 0.9, dropout probability
0.3, and weight decay 0.0005. The learning rate was dropped by 0.2 at 60, 120, and 160 epochs.
The performance was the median of 5 runs. We compared with CS, IC, MA, DC, and locally
constrained decorrelation (LCD) [291].

Table 2.16 shows state of the art classification error on the test set. Compared with the
unregularized WideResNet which achieves an error of 3.89%, applying AC reduces the error to
3.63%. AC achieves lower error than other regularizers.

LSTM for question answering We applied AC to the long short-term memory (LSTM) [163]
network (Section 2.1.2). On the row vectors of each gate-specific weight matrix, the AC was
applied. The LSTM was used for a question answering (QA) task on two datasets: CNN and
DailyMail [154], each containing a training, development, and test set with 300k/4k/3k and
879k/65k/53k examples respectively. Each example consists of a passage, a question, and an an-
swer. The question is a cloze-style task where an entity is replaced by a placeholder and the goal
is to infer this missing entity (answer) from all the possible entities appearing in the passage.
The LSTM architecture and experimental settings followed the BIDirectional Attention Flow
(BIDAF) [296] model, which consists of the following layers: character embedding, word em-
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Figure 2.5: Phone error rate on TIMIT with varying τ .

bedding, contextual embedding, attention flow, modeling and output. LSTM was applied in the
contextual embedding and modeling layer. Character embedding was based on one-dimensional
convolutional neural network, where the number of filters was set to 100 and the width of recep-
tive field was set to 5. In LSTM, the size of hidden state was set to 100. Optimization was based
on AdaDelta [409], where the minibatch size and initial learning rate were set to 48 and 0.5. The
model was trained for 8 epochs. Dropout [313] with probability 0.2 was applied. We compared
with four diversity promoting regularizers: CS, IC, MA and DC.

Table 6.8 shows state of the art accuracy on the two datasets. As can be seen, after applying
AC to BIDAF, the accuracy is improved from 76.94% to 77.23% on the CNN test set and from
79.63% to 79.88% on the DailyMail test set. Among the diversity-promoting regularizers, AC
achieves the highest accuracy.

Sensitivity to the parameter τ Figure 2.5 shows how the phone error rates vary on the TIMIT
core test set. As can be seen, the lowest test error is achieved under a moderate τ (= 0.75).
Either a smaller or a larger τ degrades the performance. This suggests that τ effectively incurs
a tradeoff between estimation and approximation errors. When τ is close to 0, the hidden units
are close to being orthogonal, which yields much poorer performance. This confirms that the
strict-orthogonality constraint proposed by [213] is too restrictive and is less favorable than a
“soft” regularization approach.

Computational time We compare the computational time of neural networks under different
regularizers. Table 2.18 shows the total runtime time of FNNs on TIMIT and CNNs on CIFAR-
10 with a single GTX TITAN X GPU, and the runtime of LSTM networks on the CNN dataset
with 2 TITAN X GPUs. Compared with no regularization, AC incurs a 18.2% extra time on
TIMIT, 12.7% on CIFAR-10, and 14.8% on CNN. The runtime of AC is comparable to that of
other diversity-promoting regularizers.
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2.3.4 Appendix: Proofs and Details of Algorithms
Proof of Lemma 1

To prove Lemma 1, we need the following Lemma.
Lemma 3. Let G be the Gram matrix defined onW = {wi}mi=1. Let g′i be the gradient of det(G)
w.r.t wi, then 〈g′i,wj〉 = 0 for all j 6= i, and 〈g′i,wi〉 > 0.

Proof. We decompose wi into wi = w
‖
i +w⊥i . w

‖
i is in the span ofW/{wi}: w

‖
i =

∑m
j 6=i αjwj ,

where {αj}mj 6=i are the linear coefficients. w⊥i is orthogonal to W/{wi}: 〈w⊥i ,wj〉 = 0 for all
j 6= i. Let cj denote the j-th column of G. Subtracting

∑m
j 6=i αjcj from the i-th column, we get

det(G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈w1,w1〉 · · · 0 · · · 〈w1,wm〉
〈w2,w1〉 · · · 0 · · · 〈w2,wm〉

... . . . ... . . . ...
〈wi,w1〉 · · · 〈w⊥i ,wi〉 · · · 〈wi,wm〉

... . . . ... . . . ...
〈wm,w1〉 · · · 0 · · · 〈wm,wm〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.42)

Expanding the determinant according to the i-th column, we get

det(G) = det(G−i)〈w⊥i ,wi〉, (2.43)

where G−i is the Gram matrix defined onW/{wi}. Then the functional gradient g′i of det(G)
w.r.t wi is det(G−i)w

⊥
i , which is orthogonal to wj for all j 6= i. Since G is full rank, we

know det(G) > 0. From Eq.(2.43) we know 〈w⊥i ,wi〉 is non-negative. Hence 〈g′i,wi〉 =
det(G−i)〈w⊥i ,wi〉 > 0.

Now we are ready to prove Lemma 1. We first compute ŝij:

ŝij =
|〈ŵi,ŵj〉|
‖ŵi‖‖ŵj‖ =

|〈wi−ηgi,wj−ηgj〉|√
‖wi−ηgi‖2

√
‖wj−ηgj‖2

. (2.44)

The functional gradient of log det(G) w.r.t wi is computed as g′′i = 1
det(G)

g′i. According to
Lemma 3 and the fact that det(G) > 0, we know 〈g′′i ,wj〉 = 0 for all j 6= i, and 〈g′′i ,wi〉 > 0.
Then we have

|〈wi − ηgi,wj − ηgj〉|
= |〈wi − η(2wi − 2g′′i ),wj − η(2wj − 2g′′j )〉|
= |〈(1− 2η)wi + 2ηg′′i , (1− 2η)wj + 2ηg′′j 〉|
= |(1− 2η)2〈wi,wj〉+ 4η2〈g′′i ,g′′j 〉|
= |〈wi,wj〉||(1− 2η)2 + 4η2〈g′′i ,g′′j 〉/〈wi,wj〉|,

(2.45)

and
1√

‖wi−ηgi‖2

= 1√
‖wi‖2−2η〈wi,gi〉+η2‖gi‖2

= 1√
‖wi‖2(1−2η〈wi,gi〉/‖wi‖2+η2‖gi‖2/‖wi‖2)

= 1

‖wi‖
√

1− 2η〈wi,gi〉
‖wi‖2

+
η2‖gi‖2

‖wi‖2

.

(2.46)
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According to the Taylor expansion, we have

1√
1 + x

= 1− 1

2
x+ o(x). (2.47)

Then

1√
1− 2η〈wi,gi〉

‖wi‖2
+
η2‖gi‖2

‖wi‖2

= 1− 1
2

(
−2η〈wi,gi〉

‖wi‖2 + η2‖gi‖2
‖wi‖2

)
+ o

(
−2η〈wi,gi〉

‖wi‖2 + η2‖gi‖2
‖wi‖2

)
, (2.48)

where
2η〈wi,gi〉
‖wi‖2 =

2η〈wi,2wi−2g′′i 〉
‖wi‖2 = 4η − 4η

〈wi,g
′′
i 〉

‖wi‖2 . (2.49)

Hence
1√

1+
2η〈wi,gi〉
‖wi‖2

+
η2‖gi‖2

‖wi‖2

= 1 + 2η − 2η
〈wi,g

′′
i 〉

‖wi‖2 + o(η), (2.50)

and

1√
1+

2η〈wi,gi〉
‖wi‖2

+
η2‖gi‖2

‖wi‖2

1√
1+

2η〈wj ,gj〉
‖wj‖2

+
η2‖gj‖2

‖wj‖2

= (1 + 2η)2 − 2η
(
〈wi,g

′′
i 〉

‖wi‖2 +
〈wj ,g

′′
j 〉

‖wj‖2

)
+ o(η).

(2.51)
Then

ŝij =
|〈wi,wj〉|
‖wi‖‖wj‖

∣∣∣(1− 2η)2 +
4η2〈g′′i ,g′′j 〉
〈wi,wj〉

∣∣∣ ((1 + 2η)2 − 2η
(
〈wi,g

′′
i 〉

‖wi‖2 +
〈wj ,g

′′
j 〉

‖wj‖2

)
+ o(η)

)
=

|〈wi,wj〉|
‖wi‖‖wj‖

(
(1− 2η)2 +

4η2〈g′′i ,g′′j 〉
〈wi,wj〉

)(
(1 + 2η)2 − 2η

(
〈wi,g

′′
i 〉

‖wi‖2 +
〈wj ,g

′′
j 〉

‖wj‖2

)
+ o(η)

)
= sij

(
1− 2η

(
〈wi,g

′′
i 〉

‖wi‖2 +
〈wj ,g

′′
j 〉

‖wj‖2

)
+ o(η)

)
< sij

(2.52)
where in the second step, the absolute value can be removed because there always exists a
sufficiently small η such that (1 − 2η)2 +

4η2〈g′′i ,g′′j 〉
〈wi,wj〉 > 0. Eq.(2.52) holds for all i, j, hence

s(Ŵ) < s(W). The proof completes.

Proof of Lemma 2

To prove this lemma, we need the following lemma.
Lemma 4. Given a nondecreasing sequence b = (bi)

n
i=1 and a strictly decreasing function g(x)

which satisfies 0 ≤ g(bi) ≤ min{bi+1− bi : i = 1, 2, · · · , n− 1, bi+1 6= bi}, we define a sequence
c = (ci)

n
i=1 where ci = bi + g(bi). If b1 < bn, then var(c) < var(b), where var(·) denotes

the variance of a sequence. Furthermore, let n′ = max{j : bj 6= bn}, we define a sequence
b′ = (b′i)

n
i=1 where b′i = bi + g(bn) + (g(bn′)− g(bn))I(i ≤ n′) and I(·) is the indicator function,

then var(c) ≤ var(b′) < var(b).
The intuition behind the proof of Lemma 2 is: when the stepsize η is sufficiently small, we

can make sure the changes of smaller angles (between consecutive iterations) are larger than the
changes of larger angles, then Lemma 4 can be used to prove that the variance decreases. Let θij
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denote arccos(sij). We sort θij in nondecreasing order and denote the resultant sequence as θ =

(θk)
n
k=1, then var((θij)) = var(θ). We use the same order to index θ̂ij = arccos(ŝij) and denote

the resultant sequence as θ̂ = (θ̂k)
n
k=1, then var((θ̂ij)) = var(θ̂). Let g(θij) =

2cos(θij)√
1−cos(θij)2

η if

θij <
π
2

and 0 if θij = π
2
, then g(θij) is a strictly decreasing function. Let θ̃k = θk + g(θk). It is

easy to see when η is sufficiently small, 0 ≤ g(θk) ≤ min{θk+1−θk : k = 1, 2, · · · , n−1, θk+1 6=
θk}. According to Lemma 4, we have

var(θ̃) < var(θ),

where θ̃ = (θ̃k)
n
k=1. Furthermore, let n′ = max{j : θj 6= θn}, θ′k = θk + g(θn) + (g(θn′) −

g(θn))I(k ≤ n′), then
var(θ̃) ≤ var(θ′) < var(θ),

where θ′ = (θ′k)
n
k=1. var(θ′) can be written as:

= 1
n

∑n
i=1(θ′i − 1

n

∑n
j=1 θ

′
j)

2

= 1
n

∑n
i=1(θi + (g(θn′)− g(θn))I(i ≤ n′)− 1

n

∑n
j=1 θj −

n′

n
(g(θn′)− g(θn)))2

= var(θ) + 2
n

∑n
i=1(θi − 1

n

∑n
j=1 θj)(g(θn′)− g(θn))(I(i ≤ n′)− n′

n
)

+ 1
n

∑n
i=1(g(θn′)− g(θn))2(I(i ≤ n′)− n′

n
)2

(2.53)

Let λ = 2
n

∑n
i=1(θi − 1

n

∑n
j=1 θj)(I(i ≤ n′)− n′

n
), which can be further written as

= 2
n

∑n′

i=1(θi − 1
n

∑n
j=1 θj)(1−

n′

n
) + 2

n

∑n
i=n′+1(θi − 1

n

∑n
j=1 θj)(−

n′

n
)

= 2
n
(
∑n′

i=1 θi −
n′

n

∑n
j=1 θj)(1−

n′

n
) + 2

n
(
∑n

i=n′+1 θi −
n−n′
n

∑n
j=1 θj)(−

n′

n
)

= 2n′(n−n′)
n2 ( 1

n′

∑n′

i=1 θi −
1

n−n′
∑n

i=n′+1 θi)

(2.54)

As (θk) is nondecreasing and θn 6= θn′ , we have λ < 0. Let µ =
2cos(θn′ )√
1−cos(θn′ )

2
− 2cos(θn)√

1−cos(θn)2
when

θn <
π
2

and µ =
2cos(θn′ )√
1−cos(θn′ )

2
when θn = π

2
, then g(θn′)− g(θn) = µη and µ > 0. Substituting λ

and µ into var(θ′), we can obtain:

var(θ′) = var(θ) + λµη + 1
n

∑n
i=1(I(i ≤ n′)− n′

n
)2µ2η2

= var(θ) + λµη + o(η)

Note that λ < 0 and µ > 0, so ∃δ1, such that

η < δ1 ⇒ var(θ′) < var(θ) +
λµ

2
η.

As var(θ̃) < var(θ′), we can draw the conclusion that

var(θ̃) < var(θ) +
λµ

2
η.

Further,
var(θ̂) = 1

n

∑n
i=1(θ̂i − 1

n

∑n
j=1 θ̂j)

2

= 1
n

∑n
i=1(θ̃i + o(η)− 1

n

∑n
j=1 θ̃j + o(η))2

= 1
n

∑n
i=1(θ̃i − 1

n

∑n
j=1 θ̃j)

2 + o(η)

= var(θ̃) + o(η).
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So ∃δ2 > 0 such that η < δ2 ⇒ var(θ̂) < var(θ̃)− λµ
4
η. Let δ = min{δ1, δ2}, then

η < δ ⇒ var(θ̂) < var(θ) + λµ
4
η < var(θ)

⇒ var(θ̂) < var(θ).

The proof completes.

Proof of Lemma 4

The intuition behind the proof is that we can view the difference between corresponding elements
of the sequence b and sequence c as “updates”, and we can find that the updates lead to smaller
elements “catch up” larger elements. Alternatively, we can obtain the new sequence c through a
set of updates. First, we update the whole sequence b by the update value of the largest elements,
then the largest elements have found their correct values. Then we pick up the elements that
are smaller than the largest elements, and update those by the update value of the second largest
elements minus the previous update, then the second largest elements have found their correct
values. In this manner, we can obtain a sequence of sequences, where the first sequence is b, the
third sequence is b′, the last sequence is c, and the adjacent sequences only differ by a simpler
update: to the left of some element, each element is updated by the same value; and to the
right of the element, each value remains unchanged. We can prove that such simpler update
can guarantee to decrease the variance under certain conditions, and we can use that to prove
var(c) ≤ var(b′) < var(b).

The formal proof starts here. First, following the intuition stated above, we construct a se-
quence of sequences with decreasing variance, in which the variance of the first sequence is
var(b) and the variance of the last sequence is var(c). We sort the unique values in b in ascending
order and denote the resultant sequence as d = (dj)

m
j=1. Let l(j) = max{i : bi = dj}, u(i) =

{j : dj = bi}, we construct a sequence of sequences h(j) = (h
(j)
i )ni=1 where j = 1, 2, · · · ,m+ 1,

in the following way:
• h(1)

i = bi, where i = 1, 2, · · · , n;

• h(j+1)
i = h

(j)
i , where j = 1, 2, · · · ,m and l(m− j + 1) < i ≤ n;

• h(2)
i = h

(1)
i + g(dm), where 1 ≤ i ≤ l(m);

• h(j+1)
i = h

(j)
i + g(dm−j+1)− g(dm−j+2), where j = 2, 3, · · · ,m and 1 ≤ i ≤ l(m− j+ 1).

From the definition of h(j), we know var(h(1)) = var(b). As b1 < bn, we have m ≥ 2. Now we
prove that var(h(m+1)) = var(c) and ∀j = 1, 2, · · · ,m, var(h(j+1)) < var(h(j)). First, we prove
var(h(m+1)) = var(c). Actually, we can prove h(m+1) = c:

h
(m+1)
i =

m∑
j=1

(h
(j+1)
i − h(j)

i ) + h
(1)
i

=

m+1−u(i)∑
j=1

(h
(j+1)
i − h(j)

i ) +
m∑

j=m+2−u(i)

(h
(j+1)
i − h(j)

i ) + bi.
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As j ≥ m+ 2− u(i)⇐⇒ u(i) ≤ m+ 2− j ⇐⇒ dm+2−j ≥ du(i) = bi ⇐⇒ l(m+ 1− j) < i,
we know that

h
(j+1)
i =


h

(j)
i , when j ≥ m+ 2− u(i)

h
(j)
i + g(dm−j+1)− g(dm−j+2), when 2 ≤ j ≤ m+ 1− u(i)

h
(j)
i + g(dm), when j = 1.

So we have

h
(m+1)
i =

m+1−u(i)∑
j=1

(h
(j+1)
i − h(j)

i ) + bi

= g(dm) +

m+1−u(i)∑
j=2

(g(dm−j+1)− g(dm−j+2)) + bi

= g(dm) + g(du(i))− g(dm) + bi

= g(du(i)) + bi

= g(bi) + bi

= ci.

So var(h(m+1)) = var(c). Then we prove that ∀j = 1, 2, · · · ,m, var(h(j+1)) < var(h(j)). First,
we need to prove that for any j, h(j)

i is a non-decreasing sequence in terms of i. In order to
prove that, we only need to prove ∀j = 2, · · · , n, h(j+1)

i − h(j)
i < h

(j)
l(m−j+1)+1 − h

(j)
l(m−j+1). Then

from h(j+1) to h(j), since elements before l(m − j + 1) are updated by the same value, and
elements after l(m − j + 1) + 1 are unchanged, if the l(m− j + 1)th element does not exceed
the l(m− j + 1) + 1th element, then the order of the whole sequence remains the same during
the update. The proof is as follows: ∀j ≥ 2, h(j)

l(m−j+1)+1 =
∑j−1

k=1(h
(k+1)
l(m−j+1)+1− h

(k)
l(m−j+1)+1) +

h
(1)
l(m−j+1). As k ≤ j−1⇒ l(m−k+ 1) ≥ l(m− j+ 2) = l(m− j+ 1 + 1) ≥ l(m− j+ 1) + 1,

from the definition of h we know that

h
(k+1)
l(m−j+1)+1 − h

(k)
l(m−j+1)+1 =

{
g(dm−k+1)− g(dm−k+2), when k ≥ 2

g(dm), when k = 1.

So we have

h
(j)
l(m−j+1)+1 =

j−1∑
k=1

(h
(k+1)
l(m−j+1)+1 − h

(k)
l(m−j+1)+1) + h

(1)
l(m−j+1)

= g(dm) +

j−1∑
k=2

(g(dm−k+1)− g(dm−k+2)) + bl(m−j+1)+1

= g(dm−j+2) + bl(m−j+1)+1.

From the definition of l(·), we have that bl(m−j+1)+1 = dm−j+2, so h(j)
l(m−j+1)+1 = g(bl(m−j+1)) +

bl(m−j+1)+1. Similarly, h(j)
l(m−j+1) = bl(m−j+1) + g(bl(m−j+2)) = bl(m−j+1) + g(bl(m−j+1)) −
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(g(dm−j+1)− g(dm−j+2)). So h(j)
l(m−j+1)+1 − h

(j)
l(m−j+1) = bl(m−j+1)+1 − bl(m−j+1)

+ (g(bl(m−j+1)+1)− g(bl(m−j+1))) + (g(dm−j+1)− g(dm−j+2)). As the function g(x) is bounded
between 0 and bi+1 − bi, we have g(bl(m−j+1)+1) − g(bl(m−j+1)) > −(bl(m−j+1)+1 − bl(m−j+1)).
So

h
(j)
l(m−j+1)+1 − h

(j)
l(m−j+1) = bl(m−j+1)+1 − bl(m−j+1) + (g(bl(m−j+1)+1)− g(bl(m−j+1)))

+(g(dm−j+1)− g(dm−j+2))
> 0 + (g(dm−j+1)− g(dm−j+2))
= g(dm−j+1)− g(dm−j+2).

(2.55)
As h(j+1)

i − h(j)
i is either 0 or g(dm−j+1)− g(dm−j+2) which is positive, we have proved ∀j ≥ 2,

h
(j+1)
i − h(j)

i < h
(j)
l(m−j+1)+1 − h

(j)
l(m−j+1). According to the former discussion, for a fixed j, h(j)

i

is a non-decreasing sequence.
We can prove var(h(j+1)) < var(h(j)) now. If j = 1, l(m) = n, ∀i = 1, 2, · · · , n, h(2)

i −
h

(1)
i = g(dm), so var(h(2)) = var(h(1)). For j ≥ 2, let ∆(j) = g(dm−j+1) − g(dm−j+2), let
l = l(m− j + 1), we first use the recursive definition of h to represent h(j+1) by h(j):

var(h(j+1)) =
1

n

n∑
i=1

(h
(j+1)
i − 1

n

n∑
i=1

h
(j+1)
i )2

=
1

n

n∑
i=1

(h
(j)
i + I(i ≤ l)∆(j) − 1

n

n∑
i=1

h
(j)
i −

l

n
∆(j))2.

Then following simple algebra to expand the above equation, we have

var(h(j+1)) = var(h(j)) +
l∆(j)

n
[2(

1

l

l∑
i=1

h
(j)
i −

1

n

n∑
i=1

h
(j)
i ) +

n− l
n

∆(j)]

= var(h(j)) +
l∆(j)

n
[2(

1

l

l∑
i=1

h
(j)
i −

1

n

l∑
i=1

h
(j)
i −

1

n

n∑
i=l+1

h
(j)
i ) +

n− l
n

∆(j)].

Noting that h(j)
l+1 − h

(j)
l = ∆(j), we can further obtain

var(h(j+1)) = var(h(j)) +
l∆(j)

n
[2(

1

l

l∑
i=1

h
(j)
i −

1

n

l∑
i=1

h
(j)
i −

1

n

n∑
i=l+1

(h
(j)
i − h

(j)
l+1 + h

(j)
l ))− n− l

n
∆(j)].

Since for a fixed j, h(j)
i is a non-decreasing sequence, we have ∀i ≥ l + 1, h(j)

i − h
(j)
l+1 + h

(j)
l ≥

h
(j)
l+1−h

(j)
l+1 +h

(j)
l = h

(j)
l and 1

l

∑l
i=1 h

(j)
i ≤ h

(j)
l . So 1

l

∑l
i=1 h

(j)
i − 1

n

∑l
i=1 h

(j)
i − 1

n

∑n
i=l+1(h

(j)
i −

h
(j)
l+1 + h

(j)
l ) ≤ 0 and var(h(j+1)) ≤ var(h(j))− l∆(j)

n
n−l
n

∆(j) < var(h(j)).
Putting the above results together, since var(h(j+1)) < var(h(j)) and var(h(m+1)) = var(c),

we know that var(c) < var(h(1)) = var(b). Furthermore, let n′ = max{j : bj 6= bn}, then
∀i, h(2)

i = h
(1)
i + g(dm) = bi + g(bn), h(3)

i = h
(2)
i + (g(dm−1) − g(dm))I(i ≤ l(m − 1)) =

bi + g(bn) + (g(bn′)− g(bn))I(i ≤ n′) = b′i, so var(c) ≤ var(b′) < var(b). The proof completes.
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Solve W̃

The sub-problem defined over W̃ is

min
W̃

L(W̃) +
R∑
r=1

(y
(r)
1 · w̃p(r) + y

(r)
2 · w̃q(r) + ρ‖w̃p(r) − v

(r)
1 ‖2

2 + ρ‖w̃q(r) − v
(r)
2 ‖2

2)

s.t. ∀j, ‖w̃j‖2 = 1.

(2.56)

In sparse coding, this problem becomes

min
W̃

1
2

n∑
i=1

‖xi −
∑m

j=1 αijgjw̃j‖2
2 + λ2

m∑
j=1

‖gjw̃j‖2
2 +

R∑
r=1

(y
(r)
1 · w̃p(r) + y

(r)
2 · w̃q(r)

+ρ‖w̃p(r) − v
(r)
1 ‖2

2 + ρ‖w̃q(r) − v
(r)
2 ‖2

2)

s.t. ∀j, ‖w̃j‖2 = 1.

(2.57)

We solve this sub-problem using coordinate descent. At each iteration, we update w̃j by fixing
the other variables. The sub-problem defined on w̃j can be written as

min
W̃

1
2

n∑
i=1

‖bi − αijgjw̃j‖2
2 + λ2‖gjw̃j‖2

2 +
R∑
r=1

(I(p(r) = j)(y
(r)
1 · w̃p(r) + ρ‖w̃p(r) − v

(r)
1 ‖2

2)

+I(q(r) = j)(y
(r)
2 · w̃q(r) + ρ‖w̃q(r) − v

(r)
2 ‖2

2))
s.t. ∀j, ‖w̃j‖2 = 1,

(2.58)
where bi = xi−

∑m
k 6=j αikgkw̃k. Let γ be the KKT multiplier. According to the KKT conditions,

we have
n∑
i=1

αijgj(αijgjw̃j − bi) + 2λ2g
2
j w̃j + yj + 2ρNw̃j − 2ρvj + 2γw̃j = 0, (2.59)

and
‖w̃j‖2 = 1, (2.60)

where yj =
R∑
r=1

(I(p(r) = j)y
(r)
1 +I(q(r) = j)y

(r)
2 ), vj =

R∑
r=1

(I(p(r) = j)v
(r)
1 +I(q(r) = j)v

(r)
2 ),

and N =
R∑
r=1

(I(p(r) = j) + I(q(r) = j)). From Eq.(2.59), we get

w̃j =

n∑
i=1

αijgjbi − yj + 2ρvj

n∑
i=1

α2
ijg

2
j + 2λ2g2

j + 2ρN + 2γ
. (2.61)

Plugging Eq.(2.61) into Eq.(2.60), we get the solution of γ. Then plugging γ back into Eq.(2.61),
we get the solution of w̃j .
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Solve v
(r)
1 ,v

(r)
2 in Case 3 and 4

Case 3 We assume λ1 = 0 and λ2 > 0, then

(ρ+ 2γ1)v
(r)
1 − λ2v

(r)
2 = y

(r)
1 + ρw̃p(r) (2.62)

(ρ+ 2γ2)v
(r)
2 − λ2v

(r)
1 = y

(r)
2 + ρw̃q(r). (2.63)

According to the complementary slackness condition, we know v
(r)
1 · v

(r)
2 = −τ . For the vectors

on both sides of Eq.(2.62), taking the square of their `2 norm, we get

(ρ+ 2γ1)2 + λ2
2 + 2(ρ+ 2γ1)λ2τ = ‖y(r)

1 + ρw̃p(r)‖2
2. (2.64)

Similarly, from Eq.(2.63), we get

(ρ+ 2γ2)2 + λ2
2 + 2(ρ+ 2γ2)λ2τ = ‖y(r)

2 + ρw̃q(r)‖2
2. (2.65)

Taking the inner product of the two vectors on the left hand sides of Eq.(2.62,2.63), and those on
the right hand sides, we get

−(2ρ+ 2γ1 + 2γ2)λ2 − ((ρ+ 2γ1)(ρ+ 2γ2) + λ2
2)τ = (y

(r)
1 + ρw̃p(r))

>(y
(r)
2 + ρw̃q(r)).

(2.66)
Solving the system of equations consisting of Eq.(2.64-2.66), we obtain the optimal values of γ1,
γ2, and λ2. Plugging them into Eq.(2.62) and Eq.(2.63), we obtain a solution of v

(r)
1 and v

(r)
2 .

Then we check whether this solution satisfies v
(r)
1 · v

(r)
2 ≤ τ . If so, this is an optimal solution.

Case 4 We assume λ1 = 0 and λ2 = 0, then according to the complementary slackness con-
dition, we know v

(r)
1 · v

(r)
2 = τ and v

(r)
1 · v

(r)
2 = −τ . This only holds when τ = 0. Then the

sub-problem defined on v
(r)
1 ,v

(r)
2 becomes

min
v
(r)
1 ,v

(r)
2

−y
(r)
1 · v

(r)
1 − y

(r)
2 · v

(r)
2 + ρ

2
‖w̃p(r) − v

(r)
1 ‖2

2 + ρ
2
‖w̃q(r) − v

(r)
2 ‖2

2

s.t. ‖v(r)
1 ‖2 = 1, ‖v(r)

2 ‖2 = 1,v
(r)
1 · v

(r)
2 = 0.

Let γ1, γ2, γ3 be the KKT multipliers associated with the three constraints in this sub-problem.
According to the KKT conditions, we have

(2γ1 + ρ)v
(r)
1 + γ3v

(r)
2 = y

(r)
1 + ρw̃p(r) (2.67)

(2γ2 + ρ)v
(r)
2 + γ3v

(r)
1 = y

(r)
2 + ρw̃q(r). (2.68)

For the vectors on both sides of Eq.(2.67), taking the square of their `2 norm, we get

(2γ1 + ρ)2 + γ2
3 = ‖y(r)

1 + ρw̃p(r)‖2
2. (2.69)
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For the vectors on both sides of Eq.(2.68), taking the square of their `2 norm, we get

(2γ2 + ρ)2 + γ2
3 = ‖y(r)

2 + ρw̃q(r)‖2
2. (2.70)

Taking the inner product of the two vectors on the left hand sides of Eq.(2.67,2.68), and those on
the right hand sides, we get

(2ρ+ 2γ1 + 2γ2)γ3 = (y
(r)
1 + ρw̃p(r))

>(y
(r)
2 + ρw̃q(r)). (2.71)

Solving the system of equations consisting of Eq.(2.69-2.71), we obtain the optimal values of γ1,
γ2, and γ3. Plugging them into Eq.(2.67) and Eq.(2.68), we obtain a solution of v

(r)
1 and v

(r)
2 .

This is an optimal solution.

2.4 Diversity in the RKHS: Orthogonality-promoting Regu-
larization of Kernel Methods

In previous sections, we study how to promote diversity among finite-dimensional vectors. In
this section, we extend the study to infinite-dimensional functions [374] in the reproducing kernel
Hilbert space (RKHS) [294], which is presumably more challenging.

Kernel methods perform learning in reproducing kernel Hilbert spaces (RKHSs) of functions
[294]. The RKHS represents a high-dimensional feature space that can capture nonlinear patterns
in the lower-dimensional observed data. This Hilbert space is associated with a kernel function
k, and the inner product in the RKHS can be implicitly computed by evaluating k in the lower-
dimensional input space (known as the kernel trick). Well-established kernel methods include
support vector machine [294], kernel principal component analysis [293], kernel independent
component analysis [25], to name a few. Even though their large model-capacity leads to high
representational power, it also incurs substantial risk of overfitting.

One key ingredient in kernel methods is regularization, which reduces overfitting by control-
ling the complexity of the RKHS functions [251, 294]. Regularizers proposed previously such
as RKHS norm, derivatives, green functions, and splines mostly focus on encouraging a small
norm [251] and smoothness of functions [294]. Notably, the most widely-used regularizer is the
squared RKHS norm.

We are interested in whether diversity-promoting regularization can outperform the existing
regularizers in reducing overfitting and whether its ability of better capturing infrequent patterns
and reducing model size without sacrificing modeling power holds in the RKHS. Similar to Sec-
tion 2.2 and 2.3, we use near-orthogonality to characterize diversity. Similar to Section 2.2.1,
to promote near-orthogonality among a set of RKHS functions {fi}Ki=1, we compute their Gram
matrix G where Gij = 〈fi, fj〉, and encourage G to be close to an identity matrix I where
the closeness is measured using the Bregman matrix divergences [100]. We apply the proposed
BMD regularizers to two kernel methods – kernel distance metric learning (KDML) [176, 335]
and kernel sparse coding (KSC) [120], and develop an optimization algorithm based on the al-
ternating direction method of multipliers (ADMM) [52] where the RKHS functions are learned
using functional gradient descent (FGD) [89]. Experimental results show that the proposed near-
orthogonality regularizers (1) greatly improve the generalization performance of KDML and
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KSC; (2) can reduce model size without sacrificing modeling power; (3) can better capture in-
frequent patterns in the data; and (4) outperform other orthogonality-promoting regularizers and
the squared Hilbert norm.

2.4.1 Bregman Matrix Divergence Regularized Kernel Methods
We consider kernel methods that are parameterized by a set of RKHS functionsF = {fi}Ki=1. Ex-
amples include kernel principal component analysis (PCA) [293], kernel independent component
analysis (ICA) [25], kernel distance metric learning [176, 335] and kernel sparse coding [120],
to name a few. We promote diversity among these functions by encouraging them to be close
to being orthogonal. Similar to the vector case in Section 2.2.1, we compute a Gram matrix G
where Gij = 〈fi, fj〉H and encourage G to be close to an identity matrix I by minimizing the
Bregman matrix divergences (BMD) between G and I. A family of BMD regularizers can be
defined, based on the (1) squared Frobenius norm (SFN): ‖G − I‖2

F ; (2) von Neumann diver-
gence (VND): tr(G log G−G); (3) log determinant divergence (LDD): tr(G)− log det(G). To
apply the VND and LDD regularizers, the Gram matrix G is required to be positive definite. In
our experiments, this condition is always satisfied since VND and LDD encourage the RKHS
functions to be close to being orthogonal (therefore linearly independent). We use these regu-
larizers to encourage near-orthogonality among RKHS functions, and define BMD regularized
kernel methods (BMD-KM):

minF L(F) + λΩ(F), (2.72)

where L(F) is the objective function of the kernel method, and λ is the regularization parameter.
Compared to kernel PCA and ICA in which the functions are required to be strictly-orthogonal,
BMD-KM can be seen as a relaxed counterpart where the functions are encouraged to be close
to, but not necessarily strictly, being orthogonal. As we will demonstrate in the experiments,
strict-orthogonality can compromise performance in certain applications.

We apply the BMD regularizers to two instances of kernel methods: kernel distance metric
learning and kernel sparse coding.

Case study I: kernel distance metric learning (KDML) KDML [176, 335] is equipped
with K RKHS functions F = {fi}Ki=1 that map a data example x into a vector h(x) in a K-
dimensional latent space, where h

(x)
i = fi(x). Given two examples x and y, their distance

is defined as dF(x,y) = ‖h(x) − h(y)‖2
2, which is parameterized by F . Given N training ex-

amples, {xn,yn, tn}Nn=1, where xn and yn are similar if the label tn equals 1 and dissimilar if
tn = 0, following [146], we learn the distance metric by minimizing

∑N
n=1 log(1 + exp((2tn −

1)dF(xn,yn)). Using Ω(F) to promote near-orthogonality, we obtain the BMD-regularized
KDML (BMD-KDML) problem:

min
F

N∑
n=1

log(1 + exp((2tn − 1)dF(xn,yn)) + λΩ(F). (2.73)

Case study II: kernel sparse coding (KSC) In KSC [120], a data example x is mapped into
k(x, ·) in an RKHS induced by the kernel function k(·, ·) and a dictionary of RKHS functions
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F = {fi}Ki=1 are learned to reconstruct k(x, ·). Given the training data {xn}Nn=1,F can be learned
by minimizing 1

2

∑N
n=1 ‖k(xn, ·)−

∑K
i=1 anifi‖2

H+ λ1

∑N
n=1 ‖an‖1 + λ2

2

∑K
i=1 ‖fi‖2

H, where the
reconstruction error is measured by the squared Hilbert norm and an are the linear coefficients.
The `1 regularizer ‖an‖1 is applied to encourage the coefficients to be sparse. To avoid the
degenerated case where the RKHS functions are of large norm while the coefficients are close to
zero, the squared Hilbert norm regularizer ‖fi‖2

H is applied to the RKHS functions to keep their
magnitude small. By adding Ω(F), we obtain the BMD-regularized KSC (BMD-KSC) problem:

min
F ,A

1
2

N∑
n=1

‖k(xn, ·)−
K∑
i=1

anifi‖2
H + λ1

N∑
n=1

‖an‖1 + λ2
2

K∑
i=1

‖fi‖2
H + λ3Ω(F), (2.74)

where A denotes all the sparse codes.

2.4.2 A Functional Gradient Descent Algorithm
In this section, we develop an ADMM [52] based algorithm to solve the BMD-KM problem.
First, by introducing auxiliary variables F̂ = {f̂i}Ki=1 which are a set of RKHS functions and
A ∈ RK×K , we rewrite the BMD-KM problem into an equivalent form that is amenable for
developing ADMM-based algorithms:

min
F ,F̂ ,A

L(F) + λDφ(A, I)

s.t. ∀i, fi = f̂i
∀i, j, 〈fi, f̂j〉 = Aij, 〈fi, f̂j〉 = Aji,

(2.75)

where A is required to be positive definite when Dφ(A, I) is a VND or LDD regularizer. The
constraints 〈fi, f̂j〉 = Aij and 〈fi, f̂j〉 = Aji imply that A is symmetric. We define the augmented
Lagrangian with parameter ρ > 0: L(F)+λDφ(A, I)+

∑K
i=1〈gi, fi−f̂i〉+

∑K
i=1

∑K
j=1(Pij(〈fi, f̂j〉−

Aij)+Qij(〈fi, f̂j〉−Aji)+ ρ
2
(〈fi, f̂j〉−Aij)2 + ρ

2
(〈fi, f̂j〉−Aji)2), where G = {gi}Ki=1 is another

set of RKHS functions, and P,Q ∈ RK×K are Lagrange multipliers. Then we minimize this
Lagrangian function by alternating among F , F̂ , G, A, P, Q.

Solve A Given H ∈ RK×K where Hij = 〈fi, f̂j〉, we learn A by minimizing λDφ(A, I) −
〈P,A〉 − 〈Q>,A〉 + ρ

2
‖H −A‖2

F + ρ
2
‖H> −A‖2

F , which is a convex problem. Dφ(A, I) has
three cases, which we discuss separately. When Dφ(A, I) is the VND, we first perform an eigen-
decomposition of D = P + Q> + ρ(H + H>): D = ΦΣΦ−1, then the optimal solution of A

can be obtained as A = ΦΣ̂Φ−1 where

Σ̂ii =
λω
(

Σii
λ
− log

(
λ
2ρ

))
2ρ

, (2.76)

and ω(·) is the Wright omega function [137]. It can be shown that A is positive definite. When
Dφ(A, I) is the LDD, the optimal solution is:

A = −1
2
B + 1

2

√
B2 − 4C, (2.77)
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where B = 1
ρ
(λI−P−Q> − ρ(H + H>)) and C = −λ

ρ
I. It can be verified that A is positive

definite. When Dφ(A, I) is the SFN, the optimal solution for A is:

A = (2λI + P + Q> + ρ(H + H>))/(2λ+ 2ρ). (2.78)

Solve fi We solve fi by minimizing Υ = L(F)+〈gi, fi〉+
∑K

j=1(Pij+Qij)〈fi, f̂j〉+ρ
2

∑K
j=1((〈fi, f̂j〉−

Aij)
2 + (〈fi, f̂j〉 − Aji)

2). The first issue we need to address is how to represent fi. When
f ∈ F is regularized by the RKHS norm, according to the representer theorem [294], the op-
timal solution f ∗ can be expressed as a linear combination of kernel functions evaluated at the
training data: f ∗(x) =

∑N
n=1 αnk(xn,x), which we refer to as representer theorem representa-

tion (RTR). This endows f ∗ an explicit parametrization that greatly eases learning: the search
space of f ∗ is reduced from the infinite-dimensional RKHS H to an N -dimensional space of
coefficients {αn}Nn=1. However, in Υ, due to the presence of the inner products between fi
with other functions, the representer theorem does not hold and fi does not admit an RTR form.
To address this issue, we learn fi directly using functional gradient descent [89]. A functional
F : H → R maps functions in H to real numbers. A functional gradient ∇F [f ] is defined
implicitly as the linear term of the change in a function due to a small perturbation ε in its input:
F [f+εg] = F [f ]+ε〈∇F [f ], g〉+O(ε2). Of particular interest is the evaluation functional Fx[f ]
which is parameterized by an input vector x and evaluates f at x: Fx[f ] = f(x). The functional
gradient of Fx[f ] is k(x, ·) [89] where k is the kernel associated with the RKHS. The gradient of
an inner product functional Fg[f ] = 〈f, g〉 is g.

The form of L(F) depends on a specific kernel method. Here, we consider KDML where
L(F) is given in Eq.(2.73). In KDML, fi appears in two types of functionals: evaluation func-
tionals in dF(xn,yn) (such as fi(xn)) and inner product functionals (such as 〈gi, fi〉). The func-
tional gradient of Υ is4fi = 2

∑N
n=1 σ((2tn−1)dF(xn,yn))(2tn−1)(fi(xn)−fi(yn))(k(xn, ·)−

k(yn, ·))+gi+
∑K

j=1(Pij +Qij +ρ(2〈fi, f̂j〉−Aij−Aji))f̂j , where σ(x) = 1/(1+exp(−x)) is
a sigmoid function. Given this functional gradient, we can perform gradient descent to update fi
until convergence: fi ← fi−η4fi, where η is the learning rate. In the algorithm, we initialize fi,
gi, and f̂j as zero functions. Then as will be proven later on, during the algorithm execution, fi,
gi, and f̂j are all in the form of RTR. So updating fi amounts to updating the linear coefficients
in the RTR.

Solve f̂j The sub-problem defined over f̂j is:

minf̂j − 〈gj, f̂j〉+
K∑
i=1

((Pij +Qij)〈fi, f̂j〉+
ρ

2
((〈fi, f̂j〉 − Aij)2 + (〈fi, f̂j〉 − Aji)2)), (2.79)

which is a convex problem. Setting the derivative of the objective function to zero, we get an
equation:

(2ρ
K∑
i=1

fi ⊗ fi)f̂j =
K∑
i=1

(ρ(Aij + Aji)− (Pij +Qij))fi + gj, (2.80)

where ⊗ denotes the outer product in the RKHS. As will be proven later on, f̂j , gj , and fi are
all in the form of RTR. Let Φ = [k(x1, ·), · · · , k(xN , ·)], then fi = Φai,

∑K
i=1(ρ(Aij + Aji) −
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(Pij + Qij))fi + gj = Φb, f̂j = Φc, where ai, b, c are coefficient vectors. ai and b are known
and c is to be estimated. Then Eq.(2.80) can be written as

(2ρ
K∑
i=1

aia
>
i )Φ>Φc = b, (2.81)

where (Φ>Φ)ij = k(xi,xj) and c = ((2ρ
∑K

i=1 aia
>
i )Φ>Φ)−1b. In practice, inverting theN×N

matrix (2ρ
∑K

i=1 aia
>
i )Φ>Φ is computationally prohibitive when N is large. In that case, we can

switch to a stochastic FGD method to solve this problem.
The update rules for P, Q and gj are simple:

Update P P = P + ρ(H−A)

Update Q Q = Q + ρ(H−A>)

Update gj gj = gj + ρ(fj − f̂j)

RTR form of the RKHS functions Next, we present the proof that as long as the RKHS
functions fi, gi, and f̂j are initialized to be zero, they are always in the RTR form during the
entire execution of the algorithm. We prove this by induction. For the base case (iteration t = 0),
these functions are all zero, hence admitting the RTR form. For the inductive step, assuming the
statement is true at iteration t − 1, we prove it holds for iteration t. We begin with fi, which is
solved by functional gradient descent (FGD). At iteration t, the input of the algorithm is f (t−1)

i

and the output is f (t)
i . The first term of the functional gradient 4fi is in the RTR form, so are

gi and f̂j (according to the inductive hypothesis). Then 4fi is in the RTR form. Starting from
f

(t−1)
i which is in the RTR form according to the inductive hypothesis, fi is updated iteratively

in the following way: f (s)
i ← f

(s−1)
i − η4 f (s−1)

i (where s indexes the FGD iterations), resulting
in f (t)

i which is also in the RTR form.
Next, we prove that if g(t−1)

j and f (t−1)
i are in the RTR form, so will be f̂j . The proof is

similar to that of the representer theorem [294]. We decompose f̂j into f̂ ‖j and f̂⊥j , where f̂ ‖j is
in S = {

∑N
n=1 αnk(xn,x), {αn}Nn=1 ⊂ R} (i.e., in the RTR form) and f̂⊥j is perpendicular to S,

hence 〈gj, f̂⊥j 〉 = 0, 〈fi, f̂⊥j 〉 = 0. The problem defined in Eq.(2.79) can be equivalently written
as:

min
f̂
‖
j
− 〈gj, f̂ ‖j 〉+

K∑
i=1

((Pij +Qij)〈fi, f̂ ‖j 〉+
ρ

2
((〈fi, f̂ ‖j 〉 −Aij)2 + (〈fi, f̂ ‖j 〉 −Aji)2)). (2.82)

Hence the optimal solution of f̂j is in the RTR form. For gj , from its update equation gj =

gj +ρ(fj− f̂j), it is easy to see that if f (t−1)
j and f̂ (t−1)

j are in the RTR form, so will be g(t)
j . Note

that these RKHS functions are in the RTR form because of the algorithmic procedure (namely,
initializing these functions as zero and using FGD to solve f ) rather than the representer theorem.
If we choose another way of initialization, f may not be in the RTR form.
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Scalable representation of the RKHS functions based on random Fourier features When
the RKHS functions are in the RTR form,O(N2D) computational cost is incurred whereN is the
number of training examples and D is the input feature dimension. On large-sized datasets, this
is not scalable. In this section, we investigate a scalable representation of RKHS functions based
on random Fourier features (RFFs) [284]. Given a shift-invariant kernel k(x,y) = k(x − y)
such as the radial basis function (RBF) kernel, it can be approximated with RFFs: k(x,y) =
〈k(x, ·), k(y, ·)〉 ≈ z(x)>z(y), where z(x) ∈ RQ is the RFF transformation of x, and can be
seen as an approximation of k(x, ·). z(x) is generated in the following way: (1) compute the
Fourier transform p(ω) of the kernel k; (2) draw Q i.i.d samples ω1, · · · ,ωQ ∈ RD from p(ω)
and Q i.i.d samples b1, · · · , bQ ∈ R from the uniform distribution on [0, 2π]; (3) let z(x) =√

2
Q

[cos(ω>1 x + b1), · · · , cos(ω>Qx + bQ)]>. For f ∈ H where H is an RKHS induced by a

shift-invariant kernel, we know that f(x) = 〈f, k(x, ·)〉. Using z(x) to approximate k(x, ·) and
w ∈ RQ to approximate f , we get f(x) ≈ w>z(x). As such, the infinite-dimensional function f
can be approximately represented as a finite-dimensional vector w, and the BMD-KM problem
defined in Eq.(2.72) can be written as:

minW L(W) + λΩ(W), (2.83)

whereW = {wi}Ki=1 and Ω(W) = D(G, I) with Gij = w>i wj . Now, learning can be conducted
overW , and the computational cost is reduced fromO(N2D) toO(NQ), whereQ is the number
of RFFs and is much smaller than ND.

2.4.3 Evaluation
In this section, we present experimental results on BMD-KDML and BMD-KSC.

Datasets We used six datasets in the experiments: an electronic health record dataset MIMIC-
III [184]; five image datasets including Stanford-Cars (Cars) [202], Caltech-UCSD-Birds (Birds)
[358], Scenes-15 [212], Caltech-256 [141], and UIUC-Sports [224]. The first three were used
for KDML and the last three for KSC. Their statistics are summarized in Table 2.19. For each
dataset, five random train/test splits were performed, and the results were averaged over the five
runs. For the MIMIC-III dataset, we extracted features from demographics (including age and
gender), clinical notes (including bag-of-words and Word2Vec [256]), and lab tests (including
zero-order, first-order, and second-order temporal features). The total feature dimension is 7207.
The features for Cars and Birds datasets were extracted using the VGG16 [303] convolutional
neural network trained on the ImageNet [95] dataset, which were the outputs of the second
fully-connected layer with 4096 dimensions. For Scenes-15, Caltech-256, and UIUC-Sport, we
extracted pixel-level dense SIFT [237] features where the step size and patch size were 8 and 16,
respectively.

Experimental setup For BMD-KDML and BMD-KSC, we experimented with six combina-
tions between three regularizers including SFN, LDD, and VND, and two representations of
RKHS functions including RTR and RFF. In DML experiments, two data examples were la-
beled as similar if belonging to the same class and dissimilar if otherwise. The learned distance
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metrics were applied for retrieval whose performance was evaluated using precision@k. Pre-
cision@k is defined as n/k where n is the number of examples (among the top k retrieved
examples) that have the same class label with the query. We compared with three groups of
baseline methods: (1) KDML (Eq.(2.73) without the regularizer Ω(F)) and its variants under
different regularizers including squared Hilbert norm (SHN), DPP [429] and Angle [369]; (2)
other kernel DML methods including the ones proposed in [335] (Tsang) and [176] (Jain), multi-
ple kernels DML (MK-DML) [345] and pairwise constrained component analysis (PCCA) [252];
(3) non-kernel metric learning (ML) methods, including information theoretic ML (ITML) [92],
logistic discriminant ML (LDML) [146], DML with eigenvalue optimization (DML-Eig) [398],
information-theoretic semi-supervised ML via entropy regularization (Seraph) [265] and geo-
metric mean ML (GMML) [405]; (4) Euclidean distance (EUC). For methods in group (1), the
RKHS functions are represented in the RTR form. In sparse coding experiments, on top of the
SIFT features, we used kernel sparse coding to learn a set of RKHS functions and represented
each SIFT feature into a sparse code. To obtain image-level features, we applied max-pooling
[392] and spatial pyramid matching [212, 392] over the pixel-level sparse codes. The following
baselines were compared with: sparse coding (SC) [392], unregularized kernel SC (KSC) [120],
KSC regularized by SHN, DPP, and Angle. In these methods, the RKHS functions are repre-
sented in the RTR form. We used 5-fold cross validation to tune the regularization parameters
in {10−5, 10−4, · · · , 105}, the number of RKHS functions in {50, 100, 200, · · · , 500}, and the
dimension of RFF in {1, 2, · · · , 10}×D where D is the feature dimension of the input data. The
kernel function was chosen to be the radial basis function (RBF) exp(−γ‖x − y‖2

2) where the
scale parameter γ was tuned in {10−3, 10−2, · · · , 103}. The parameter ρ in the ADMM-based
algorithm was set to 1. The learning rate in functional gradient descent was set to 0.001.

Results Table 2.20 shows the retrieval precision@10 on three datasets, where we observe
the following. First, BMD-KDML methods including KDML-(SFN,VND,LDD)-(RTR,RFF)
greatly outperform unregularized and SHN-regularized KDML, which demonstrates that near-
orthogonality regularization is an effective way to reduce overfitting. Second, BMD regularizers
including SFN, VND, and LDD outperform other near-orthogonality regularizers including DPP
and Angle, possibly because they are insensitive to vector scaling and amenable for optimization.
Third, VND and LDD achieve comparable performance and outperform SFN, possibly because
they measure near-orthogonality in a global way while SFN conducts that in a pairwise fash-
ion. Fourth, the RFF representation of RKHS functions performs comparably to RTR, in spite
of the fact that it is an approximation method. Finally, the BMD-KDML methods achieve better
performance than non-kernel DML methods and other kernel DML methods, suggesting their
competitive ability in learning effective distance metrics.

Table 6.2 shows the number of RKHS functions under which the precision@10 in Table
2.20 is achieved. It can be seen that the BMD-KDML methods utilize much fewer functions
than KDML while achieving better precision@10. For instance, KDML-VND-RTR achieves
77.1% precision@10 with 100 functions on the MIMIC-III dataset while KDML achieves 73.8%
precision@10 with 300 functions. These results demonstrate the ability of the BMD regularizers
in reducing model size without sacrificing modeling power. By encouraging the functions to
be near-orthogonal, the BMD regularizers decrease the redundancy among functions and make
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Figure 2.6: Precision@10 versus the regularization parameter λ on MIMIC-III.

the functions highly complementary. As a result, a small number of such functions are able to
capture the patterns in the data sufficiently well. In addition, the BMD regularizers achieve better
precision@10 with fewer functions than other near-orthogonality regularizers including DPP and
Angle, suggesting their better efficacy in promoting near-orthogonality.

In the next experiment, we investigate whether near-orthogonality regularization can better
capture infrequent patterns. We select 3 frequent diseases (patterns) and 5 infrequent ones from
the MIMIC-III dataset. A disease is regarded as being frequent if the number of hospital admis-
sions diagnosed with this disease is greater than 300. Table 2.22 shows the precision@10 on the
8 diseases, from which we observe that: (1) on the 5 infrequent diseases (labeled as D4–D8), the
BMD-KDML methods achieve much higher precision@10 than the unregularized KDML, sug-
gesting that by encouraging the functions to be close to being orthogonal, the BMD regularizers
can better capture infrequent patterns; (2) on the 3 frequent diseases (labeled as D1–D3), the
precision@10 achieved by the BMD-KDML methods is comparable with that achieved by the
unregularized KDML, indicating that the BMD regularizers do not compromise the modeling
efficacy on the frequent patterns. On the infrequent diseases, the BMD-KDML methods outper-
form KDML-DPP and KDML-Angle, suggesting that the BMD regularizers have better ability
in promoting near-orthogonality than DPP and Angle.

Further, Figure 2.6 shows how the precision@10 on MIMIC-III varies as we increase the reg-
ularization parameter λ in KDML-VND-RTR. As can be seen, the best precision@10 is achieved
under a modest λ. A very large λ would make the functions strictly orthogonal, as kernel PCA
and ICA do, which would result in excessively strong regularization and therefore poor perfor-
mance.

We also compare the convergence time of BMD-KDML under two representations: RTR and
RFF. As shown in Table 2.23, RFF results in much faster convergence since this representation
does not depend on the training data. While computationally efficient, RFF does not sacrifice
much modeling power. Table 2.20 shows that RFF achieves precision@10 that is comparable to
RTR.

Next, we present the kernel sparse coding results. Table 2.24 shows the classification ac-
curacy on three datasets, from which we observe similar results as in the KDML experiments.
First, KSC-(SFN,VND,LDD)-(RTR,RFF) achieve better accuracy than the unregularized and the
SHN-regularized KSC. Second, the BMD regularizers outperform other near-orthogonality reg-
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ularizers including DPP and Angle. Third, VND and LDD are superior to SFN. Fourth, the
RFF representation of RKHS functions performs comparably to RTR. Finally, the BMD-KSC
methods outperform the non-kernel SC methods and other kernel SC methods. These observa-
tions demonstrate the efficacy of the BMD regularizers in reducing overfitting and promoting
near-orthogonality.

2.4.4 Appendix: Details of Algorithms
Detailed Derivation of Solving A

Given H ∈ RK×K where Hij = 〈fi, f̂j〉, the sub-problem defined over A is

minA λDφ(A, I)− 〈P,A〉 − 〈Q>,A〉+ ρ
2
‖H−A‖2

F + ρ
2
‖H> −A‖2

F . (2.84)

Dφ(A, I) has three cases, which we discuss separately. When Dφ(A, I) is the squared Frobenius
norm, the problem becomes

minA λ‖A− I‖2
F − 〈P,A〉 − 〈Q>,A〉+ ρ

2
‖H−A‖2

F + ρ
2
‖H> −A‖2

F . (2.85)

Taking the derivative and setting it to zero, we get the optimal solution for A:

A = (2λI + P + Q> + ρ(H + H>))/(2λ+ 2ρ). (2.86)

When Dφ(A, I) is the log-determinant divergence, the problem is specialized to

minA λ(tr(A)− log det(A))− 〈P,A〉 − 〈Q>,A〉+ ρ
2
‖H−A‖2

F + ρ
2
‖H> −A‖2

F

s.t. A � 0.
(2.87)

Taking the derivative of the objective function w.r.t A and setting it to zero, we get

A2 + 1
ρ
(λI−P−Q> − ρ(H + H>))A− λ

ρ
I = 0. (2.88)

Let B = 1
ρ
(λI−P−Q> − ρ(H + H>)) and C = −λ

ρ
I, Eq.(2.88) can be written as

A2 + BA + C = 0. (2.89)

According to [156], since B and C commute, the solution of this equation is

A = −1
2
B + 1

2

√
B2 − 4C. (2.90)

Taking an eigen-decomposition of B = ΦΣΦ−1, we can compute A as A = ΦΣ̂Φ−1, where Σ̂
is a diagonal matrix with

Σ̂kk = −1

2
Σkk +

1

2

√
Σ2
kk +

4λ

ρ
.

Since
√

Σ2
kk + 4λ

ρ
> Σkk, we know Σ̂kk > 0. Hence A is positive definite.
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When Dφ(A, I) is the von Neumann divergence, the problem becomes

minA λtr(A log A−A)− 〈P,A〉 − 〈Q>,A〉+ ρ
2
‖H−A‖2

F + ρ
2
‖H> −A‖2

F

s.t. A � 0.
(2.91)

Setting the gradient of the objective function w.r.t A to zero, we get

λ log A + 2ρA = P + Q> + ρ(H + H>). (2.92)

Let D = P + Q> + ρ(H + H>). We perform an eigen-decomposition of D = ΦΣΦ−1 and
parameterize A as A = ΦΣ̂Φ−1, then we obtain

λ log A + 2ρA = Φ(λ log Σ̂ + 2ρΣ̂)Φ−1. (2.93)

Plugging this equation into Eq.(2.92), we get the following equation

λ log Σ̂ + 2ρΣ̂ = Σ, (2.94)

which amounts to solving K independent one-variable equations taking the form

λ log Σ̂ii + 2ρΣ̂ii = Σii, (2.95)

where i = 1, · · · , K. This equation has a closed-form solution

Σ̂ii =
λω(Σii

λ
− log( λ

2ρ
))

2ρ
, (2.96)

where ω(·) is the Wright omega function [137]. Due to the presence of log, Σ̂ii is required to
be positive and the solution always exists since the range of λ log Σ̂ii + 2ρΣ̂ii and Σii are both
(−∞,∞). Hence A is guaranteed to be positive definite.

An ADMM-based Algorithm for BMD-KSC

The BMD-KSC model has two set of parameters: sparse codes {an}Nn=1 and a dictionary of
RKHS functions {fi}Ki=1. We use a coordinate descent algorithm to learn these two parameter
sets, which iteratively performs the following two steps: (1) fixing {fi}Ki=1, solving {an}Nn=1; (2)
fixing {an}Nn=1, solving {fi}Ki=1, until convergence. We first discuss step (1). The sub-problem
defined over an is

minan
1
2
‖k(xn, ·)−

∑K
i=1 anifi‖2

H + λ1‖an‖1. (2.97)

‖k(xn, ·) −
∑K

i=1 anifi‖2
H = k(xn,xn) − 2a>nh + a>nGan where h ∈ RK , hi = 〈fi, k(xn, ·)〉,

G ∈ RK×K and Gij = 〈fi, fj〉. This is a standard lasso [331] problem and can be solved
using many algorithms. Next we discuss step (2), which learns {fi}Ki=1 using the ADMM-based
algorithm outlined in the main paper. The updates of all variables are the same as those in BMD-
KDML, except fi. Let bni = k(xn, ·)−

∑K
j 6=i anjfj , the sub-problem defined over fi is:

minfi
1
2

∑N
n=1 ‖bni − anifi‖2

H + λ2
2
‖fi‖2

H + 〈gi, fi〉+
∑K

j=1 Pij〈fi, f̂j〉+
∑K

j=1Qij〈fi, f̂j〉
+ρ

2

∑K
j=1(〈fi, f̂j〉 − Aij)2 + ρ

2

∑K
j=1(〈fi, f̂j〉 − Aji)2.

(2.98)
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This problem can be solved with functional gradient descent. The functional gradient of the
objective function w.r.t fi is

N∑
n=1

ani(anifi − bni) + λ2fi + gi +
K∑
j=1

(Pij +Qij + 2ρ〈fi, f̂j〉 − ρ(Aij + Aji))f̂j. (2.99)

2.5 Diversity and Sparsity: Nonoverlapness-promoting Reg-
ularization

In this section, we combine diversity with sparsity, which jointly bring in an effect of nonover-
lapness [380], for the sake of selecting less-overlapped variables. Variable selection [331] is
a classic problem in machine learning, widely used to find important explanatory factors, and
improve generalization performance and interpretability of ML models.

Among the many criteria of evaluating model quality, two are typically considered: (1) ac-
curacy of prediction on unseen data; (2) interpretation of the model. For (2), scientists prefer a
simpler model because it puts more light on the relationship between the response and covariates.
Parsimony [331] is especially an important issue when the number of predictors is large. With
a large number of predictors, we often would like to determine a smaller subset that exhibits the
strongest effects.

To produce accurate prediction while selecting a subset of important factors, regularization-
based variable-selection methods [331, 404, 428] have been widely studied. The most notable
one is `1 regularization [331], which encourages the model coefficients to be sparse. Its variants
including `1/`2-norm [404] that brings in a group sparsity effect and elastic net [428] which
encourages strongly correlated predictors to be in or out of the model together, among many
others.

In many ML problems, multiple responses are to be predicted based on the same set of
covariates. For example, in multi-task classification, the classifiers of m classes are built on
top of a shared feature set and each classifier has a class-specific coefficient vector. In topic
modeling [49], multiple topics are learned over the same vocabulary and each topic has a unique
multinomial distribution on the words. Different responses are relevant to different subsets of
covariates. For example, an education topic is relevant to words like student, university, professor
while a political topic is relevant to words like government, president, election, etc. To account
for the difference between different responses when performing variable selection, we desire the
selected variables for different responses to be less-overlapped.

The problem is formally formulated as follows. Consider m responses sharing d covariates.
Each response has a specific d-dimensional weight vector w where each dimension corresponds
to a covariate. Let s(w) = {k|wk 6= 0} – the support of w – index the selected variables for
a response. For any two responses i and j, we desire their selected variables s(wi) and s(wj)

are less overlapped, where the overlapness is measured by |s(wi)∩s(wj)|
|s(wi)∪s(wj)| . To achieve this effect,

we propose a regularizer that simultaneously encourages different weight vectors to be close to
being orthogonal and each vector to be sparse, which jointly encourage vectors’ supports to have
small overlap. Empirically, we verify that minimizing this regularizer reduces overlap among
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Figure 2.7: (a) Under L1 regularization, the vectors are sparse, but their supports are overlapped;
(b) Under LDD regularization, the vectors are orthogonal, but their supports are overlapped; (c)
Under LDD-L1 regularization, the vectors are sparse and mutually orthogonal and their supports
are not overlapped.

selected variables. We apply this regularizer to four models: multiclass logistic regression, dis-
tance metric learning, sparse coding, and deep neural networks. Efficient algorithms are derived
to solve these regularized problems. In particular, we develop an algorithm based on ADMM and
coordinate descent for regularized sparse coding. In experiments, we demonstrate the empirical
effectiveness of this regularizer in selecting non-overlap variables and improving generalization.

Related works Variable selection based on regularization has been widely studied. lasso [331]
uses `1-norm to encourage the coefficient vector of the linear regression model to be sparse. The
lasso is able to recover the exact support of a sparse model from data generated by this model if
the covariates are not too correlated [417]. Elastic net [428] uses the weighted sum of the `1 and
`2 norm to encourage strongly-correlated variables to be co-selected. Group lasso [404] uses the
`1/`2 penalty, which is defined as the sum of the `2 norms of sub-weight-vectors corresponding
to predefined groups, to select groups of variables. It recovers the support of a model if the
support is a union of groups and if covariates of different groups are not too correlated. Zhao
et al. [418] proposed composite absolute penalties for hierarchical selection of covariates, e.g.,
when one has a hierarchy over the covariates and wants to select covariates only if their ancestors
in the hierarchy are also selected. Graphical lasso [113] uses matrix `1 norm for covariance (or
neighborhood) selection.

In the context of group variable selection, several works [24, 174, 418] consider the cases
where variables from different groups are (non)overlapping. Their problem settings are different
from ours. In their problems, the (non)overlapping structure is with respect to groups and is
known as a prior while in our problem it is with respect to different responses and is unknown.

2.5.1 Nonoverlap-promoting Regularization
We assume the model has m responses and each is parameterized by a weight vector. For a
vector w, its support s(w) is defined as {i|wi 6= 0} – the indices of nonzero entries in w.
And the support contains indexes of the selected variables. We first define a score õ(wi,wj) to
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measure the overlap between selected variables of two responses:

õ(wi,wj) =
|s(wi) ∩ s(wj)|
|s(wi) ∪ s(wj)|

, (2.100)

which is the Jaccard index of the supports. The smaller õ(wi,wj) is, the less overlapped the
two sets of selected variables are. For m variable sets, the overlap score is defined as the sum of
pairwise scores

o({wi}mi=1) =
1

m(m− 1)

m∑
i 6=j

õ(wi,wj). (2.101)

This score function is not smooth, which will result in great difficulty for optimization if used as
a regularizer. Instead, we propose a smooth function that is motivated from õ(wi,wj) and can
achieve a similar effect as o(W). The basic idea is: to encourage small overlap, we can encourage
(1) each vector has a small number of non-zero entries and (2) the intersection of supports among
vectors is small. To realize (1), we use an L1 regularizer to encourage the vectors to be sparse.
To realize (2), we encourage the vectors to be close to being orthogonal. For two sparse vectors,
if they are close to being orthogonal, then their supports are landed on different positions. As a
result, the intersection of supports is small. To promote orthogonality, similar to Section 2.2.1,
we encourage the Gram matrix G (Gij = w>i wj) of weight vectors to be close to an identity
matrix I and measure the “closeness” between two matrices using the log-determinant divergence
(LDD), which results in the LDD regularizer tr(G)− log det(G). Combining the orthogonality-
promoting LDD regularizer with the sparsity-promoting L1 regularizer together, we obtain the
following LDD-L1 regularizer

Ω(W) = tr(G)− log det(G) + γ
m∑
i=1

|wi|1, (2.102)

where γ is a tradeoff parameter between these two regularizers. As verified in experiments, this
regularizer can effectively promote nonoverlap. The formal analysis of the relationship between
Eq.(2.102) and Eq.(2.101) will be left for future study. It is worth noting that either L1 or LDD
alone is not sufficient to reduce overlap. As illustrated in Figure 2.7a where only L1 is applied,
though the two vectors are sparse, their supports are completely overlapped. In Figure 2.7b
where the LDD regularizer is applied, though the two vectors are very close to being orthogonal,
their supports are completely overlapped since they are dense. In Figure 2.7c where the LDD-L1
regularizer is used, the two vectors are sparse and are close to being orthogonal. As a result, their
supports are not overlapped.

We apply LDD-L1 to four ML models: multiclass logistic regression, distance metric learn-
ing, sparse coding, and neural networks.
• Multiclass logistic regression (MLR) aims at classifying a data example x ∈ Rd (whose

features are treated as covariates) into one of the m classes (treated as responses). It is
parameterized by a coefficient matrix W ∈ Rd×m where the i-th column is the coefficient
vector of class i and d is the feature dimension of x. In inference, MLR calculates p =
softmax(W>x + b) ∈ Rm where pi denotes the probability that x belongs to class i and
b ∈ Rm is a bias vector. x is assigned to the class yielding the largest probability. Given
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N training examples {xn, yn}Nn=1, MLR learns W by minimizing the cross-entropy loss
between pn and the ground-truth class label yn. The LDD-L1 regularizer can be applied to
encourage the coefficient vectors of different classes to have less-overlapped supports.

• Distance metric learning (DML) has wide applications in classification, clustering, and
information retrieval [92, 146, 383]. Given data pairs labeled as similar or dissimilar,
DML aims at learning a distance metric such that similar pairs would be placed close to
each other and dissimilar pairs are separated apart. Following [357], we define the distance
metric between x,y ∈ Rd as ‖W>x−W>y‖2

2 where W ∈ Rd×m contains m projection
vectors which are treated as responses. The features in a data example are treated as
covariates. GivenN training examples, {xn,yn, tn}Nn=1, where xn and yn are similar if the
label tn equals 1 and dissimilar if tn = 0, following [146], we learn the distance metric by
minimizing

∑N
n=1 log(1 + exp((2tn − 1)‖W>x−W>y‖2

2)). Using LDD-L1 to promote
nonoverlap among the projection vectors in W, we obtain the LDD-L1 regularized DML
problem:

min
F

N∑
n=1

log(1 + exp((2tn − 1)‖W>(x− y)‖2
2 + λΩ(W). (2.103)

• Sparse Coding (SC) and Deep Neural Networks (DNNs) have been introduced in Sec-
tion 2.3.1. In SC, the features of data examples are treated as covariates and the basis vec-
tors are treated as responses. We apply the LDD-L1 regularizer to encourage the supports
of the basis vectors to have small overlap. In DNNs, hidden units in a layer l are treated
as a group of responses. Their weight vectors are encouraged to have less-overlapped sup-
ports by the LDD-L1 regularizer. In the experiments, we study two popular instances of
DNNs: long short-term memory (LSTM) network [163] and convolutional neural network
(CNN).

2.5.2 A Coordinate Descent Algorithm
For LDD-L1-regularized MLR, NN, and DML problems, we solve them using proximal gradient
descent [270]. The proximal operation is with respect to the L1 regularizer in LDD-L1. The
algorithm iteratively performs the following three steps until convergence: (1) calculate gradient
ofL(W)+λ(tr(W>W)−logdet(W>W)) whereL(W) is the loss function of the unregularized
ML model and tr(W>W) − logdet(W>W) is the LDD regularizer in LDD-L1; (2) perform
gradient descent update of W; (3) apply the proximal operator of the L1 regularizer to W.

For LDD-L1-SC, we solve it by alternating between A and W: (1) updating A with W
fixed; (2) updating W with A fixed. These two steps alternate until convergence. With W fixed,
the sub-problem defined over A is minA

1
2
‖X −WA‖2

F + λ1|A|1, which can be decomposed
into n lasso problems (P1): for i = 1, · · · , n, minai

1
2
‖xi −Wai‖2

2 + λ1|ai|1 where ai is the
coefficient vector of the i-th sample. lasso can be solved by many algorithms, such as proximal
gradient descent (PGD). Fixing A, the sub-problem defined over W is (P2): minW

1
2
‖X −

WA‖2
F + λ2

2
‖W‖2

F +λ4|W|1 + λ3
2

(tr(W>W)− log det(W>W)). We solve this problem using
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an ADMM-based algorithm. First, we write the problem into an equivalent form:

minW
1
2
‖X−WA‖2

F + λ2
2
‖W‖2

F + λ4|W̃|1 + λ3
2

(tr(W>W)− log det(W>W))

s.t. W = W̃.
(2.104)

Then we write down the augmented Lagrangian function (P3): 1
2
‖X −WA‖2

F + λ2
2
‖W‖2

F +

λ4|W̃|1 + 〈U,W − W̃〉 + ρ
2
‖W − W̃‖2

F + λ3
2

(tr(W>W) − log det(W>W)). We minimize
this Lagrangian function by alternating among W, W̃, and U.

Update W The subproblem defined on W is (P4):

minW
1
2
‖X−WA‖2

F + λ2
2
‖W‖2

F + 〈U,W〉+ λ3
2

(tr(W>W)− log det(W>W)) + ρ
2
‖W − W̃‖2

F ,
(2.105)

which can be solved using a coordinate descent (CD) algorithm. In each iteration of CD, one
basis vector is chosen for update while the others are fixed. Without loss of generality, we
assume it is w1. The loss function defined over w1 is 1

2

∑n
i=1 ‖xi −

∑m
l=2 ailwl − ai1w1‖2

2 +
λ2+λ3

2
‖w1‖2

2− λ3
2

logdet(W>W) +u>w1 + ρ
2
‖w1− w̃1‖2

2. The optimal solution can be obtained
via the following procedures: (1) calculate M = I −W¬1(W>

¬1W¬1)−1W>
¬1, where W¬1 =

[w2, · · · ,wm]; (2) perform eigen-decomposition: M = UΣU>; (3) solve the scalar quadratic

equation γ
d∑

s=m

(U>b)2
s = (γc − λ3)2 w.r.t γ, where c =

∑n
i=1 a

2
i1 + λ2 + λ3 + ρ and b =∑n

i=1 ai1(xi −
∑m

l=2 ailwl)− u + ρw̃j; (4) calculate w1 as:

w1 = γU(γcI− λ3Σ)−1U>b. (2.106)

The detailed derivation is deferred to Section 2.5.4.

Update W̃ The subproblem defined on W̃ is (P5) : minW̃ λ4|W̃|1−〈U,W̃〉+ ρ
2
‖W−W̃‖2

F ,
which is an lasso problem and can be solved using proximal gradient descent [270].

Update U The update equation of U is simple: U = U + (W − W̃).

2.5.3 Evaluation
In this section, we present experimental results.

Simulation Study

The simulation study was performed on the multiclass logistic regression model. We set the num-
ber of classes to 10. Each class is relevant to 5 variables. The variables of different classes have
no overlap. We generated 1000 data samples from a multivariate Gaussian distribution with zero
mean and the covariance matrix was set to an identity matrix. In the coefficient vector of each
class, the entries corresponding to the relevant variables were uniformly sampled from [−1, 1]
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Algorithm 1: Algorithm for solving the LDD-L1-SC problem.
Initialize W and A
repeat

Update A with W being fixed, by solving n lasso problems (P1).
repeat

repeat
for i← 1 to m do

Update the i-th column vector wi of W using Eq.(2.106)
end for

until convergence of the problem (P4)
Update W̃ by solving the lasso problem (P5)
U← U + (W − W̃)

until convergence of the problem (P3)
until convergence of the LDD-L1-SC problem

and the rest entries were set to zero. Given a generated sample x and the generated coefficient ma-
trix W ∈ R10×50, the class label of sample x was determined as y = argmaxk [Wx+b]k, where
b ∈ R10 was a randomly generated bias vector whose entries were sampled independently from a
univariate normal distribution. We split the dataset into train/validation/test set with 600/200/200
examples respectively. The regularization parameter was tuned on the validation set to achieve
the best prediction performance. We generated 50 simulated datasets. The performance was av-
eraged over these 50 datasets. We compared our method with L1-regularization [331] and elastic
net [428]. We did not compare with LDD since it is not able to select variables.

Following [193], we use sensitivity (true positive rate) and specificity (true negative rate)
to measure the performance of recovering the true supports of the coefficient vectors, shown in
the second and third column of Table 2.25. Our method outperforms the baselines with a large
margin. LDD-L1 encourages the supports of different weight vectors to have less overlap, which
makes it more suitable to select nonoverlapping variables. We also compare the performance of
different methods in terms of prediction errors, shown in the fourth column of Table 2.25. LDD-
L1 achieves the lowest error rate. Since the variables selected by our method are closer to the
ground-truth, the predictions made by our method based upon these selected variables are more
accurate.

Experiments on Real Data

We applied the LDD-L1 regularizer to three ML models and four datasets and verified whether
it is able to improve generalization performance. In each experiment, the hyperparameters were
tuned on the validation set.

Sparse coding for text representation learning The SC experiments were conducted on two
text datasets: 20-Newsgroups (20-News) [1] and Reuters Corpus Volume 1 (RCV1) [10]. The
20-News dataset contains newsgroup documents belonging to 20 categories, where 11314, 3766,
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Figure 2.8: Visualization of basis vectors.

and 3766 documents were used for training, validation, and testing respectively. The original
RCV1 dataset contains documents belonging to 103 categories. Following [60], we chose the
largest 4 categories which contain 9625 documents, to carry out the study. The number of train-
ing, validation, and testing documents are 5775, 1925, 1925 respectively. For both datasets,
stopwords were removed and all words were changed into lower-case. Top 1000 words with the
highest document frequency were selected to form the vocabulary. We used tf-idf to represent
documents and the feature vector of each document was normalized to have unit L2 norm. For
20-News, the number of basis vectors in LDD-L1-SC was set to 50. λ1, λ2, λ3, and λ4 were set
to 1, 1, 0.1, and 0.001 respectively. For RCV1, the number of basis vectors was set to 200. λ1,
λ2, λ3, and λ4 were set to 0.01, 1, 1 and 1 respectively. We compared LDD-L1 with LDD-only
and L1-only.

To evaluate the model performance quantitatively, we applied the dictionary learned on the
training data to infer the linear coefficients (A in SC) of test documents, then performed k-nearest
neighbors (KNN) classification on A. Table 2.26 shows the classification accuracy on test sets
of 20-News and RCV1 and the gap between the accuracy on training and test sets. Without reg-
ularization, SC achieves a test accuracy of 0.592 on 20-News, which is lower than the training
accuracy by 0.119. This suggests that an overfitting to training data occurs. With LDD-L1 regu-
larization, the test accuracy is improved to 0.612 and the gap between training and test accuracy
is reduced to 0.099, demonstrating the ability of LDD-L1 in alleviating overfitting. Though LDD
alone and L1 alone improve test accuracy and reduce train/test gap, they perform less well than
LDD-L1, which indicates that for overfitting reduction, encouraging nonoverlap is more effec-
tive than solely promoting orthogonality or solely promoting sparsity. Similar observations are
made on the RCV1 dataset. Interestingly, the test accuracy achieved by LDD-L1-SC on RCV1
is better than the training accuracy.

Table 2.27 shows the selected variables (words that have nonzero weights) for 9 exemplar
basis vectors learned by LDD-L1-SC on the 20-News dataset. From the selected words, we
can see basis vector 1-9 represent the following semantics respectively: crime, faith, job, war,
university, research, service, religion, and Jews. The selected words of different basis vectors
have no overlap. As a result, it is easy to associate each vector with a unique concept, in other
words, easy to interpret. Figure 2.8 visualizes the learned vectors where the black dots denote
vectors’ supports. As can be seen, the supports of different basis vectors are landed on different
words and their overlap is small.

LSTM for language modeling We applied LSTM networks [163] to learn language models
on the Penn Treebank (PTB) dataset [244], which consists of 923K training, 73K validation,
and 82K test words. Following [254], top 10K words with the highest frequency were selected
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to form the vocabulary. All other words were replaced with a special token UNK. The LSTM
network architecture follows the word language model (PytorchTM) provided in Pytorch [3].
The number of hidden layers was set to 2. The embedding size was 1500. The size of hidden
state was 1500. Following [279], the word embedding and softmax weights were tied. The
number of training epochs was 40. Dropout with 0.65 was used. The initial learning rate was
20. Gradient clipping threshold was 0.25. The size of mini-batch was 20. In LSTM training, the
network was unrolled for 35 iterations. Perplexity was used for evaluating language modeling
performance (lower is better). The weight parameters were initialized uniformly between [-0.1,
0.1]. The bias parameters were initialized as 0. We compared with the following regularizers: (1)
L1 regularizer; (2) orthogonality-promoting regularizers based on cosine similarity (CS) [402],
incoherence (IC) [29], mutual angle (MA) [369], decorrelation (DC) [82], angular constraint
(AC) (Section 2.3.1), and LDD (Section 2.2.1).

Table 2.28 shows the perplexity on the PTB test set. Without regularization, PytorchLM
achieves a perplexity of 72.3. With LDD-L1 regularization, the perplexity is significantly re-
duced to 71.1. This shows that LDD-L1 can effectively improve generalization performance.
Compared with the sparsity-promoting L1 regularizer and orthogonality-promoting regularizers,
LDD-L1 – which promotes nonoverlap by simultaneously promoting sparsity and orthogonality
– achieves lower perplexity. For the convenience of readers, we also list the perplexity achieved
by other state of the art deep learning models. The LDD-L1 regularizer can be applied to these
models as well to potentially boost their performance.

CNN for image classification The CNN experiments were performed on the CIFAR-10 dataset [5].
It consists of 32x32 color images belonging to 10 categories, where 50,000 images were used
for training and 10,000 for testing. 5000 training images were used as the validation set for hy-
perparameter tuning. We augmented the dataset by first zero-padding the images with 4 pixels
on each side, then randomly cropping the padded images to reproduce 32x32 images. The CNN
architecture follows that of the wide residual network (WideResNet) [406]. The depth and width
were set to 28 and 10 respectively. The networks were trained using SGD, where the epoch
number was 200, the learning rate was set to 0.1 initially and was dropped by 0.2 at 60, 120,
and 160 epochs, the minibatch size was 128 and the Nesterov momentum was 0.9. The dropout
probability was 0.3 and the L2 weight decay was 0.0005. Model performance was measured
using error rate, which was the median of 5 runs. We compared with (1) the L1 regularizer; (2)
orthogonality-promoting regularizers including CS, IC, MA, DC, AC, LDD and the one based
on locally constrained decorrelation (LCD) [291].

Table 2.29 shows classification errors on the CIFAR-10 test set. Compared with the unreg-
ularized WideResNet which achieves an error rate of 3.89%, the proposed LDD-L1 regularizer
greatly reduces the error to 3.60%. LDD-L1 outperforms the L1 regularizer and orthogonality-
promoting regularizers, demonstrating that encouraging nonoverlap is more effective than en-
couraging sparsity alone or orthogonality alone in improving generalization performance. The
error rates achieved by other state of the art methods are also listed.
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Figure 2.9: Overlap score versus the regularization parameter.

LDD-L1 and Nonoverlap

We verified whether the LDD-L1 regularizer is able to promote nonoverlap. The study was
performed on the SC model and the 20-News dataset. The number of basis vectors was set to
50. For 5 choices of the regularization parameter of LDD-L1: {10−4, 10−3, · · · , 1}, we ran the
LDD-L1-SC model until convergence and measured the overlap score (defined in Eq.(2.101)) of
the basis vectors. The tradeoff parameter γ inside LDD-L1 was set to 1. Figure 2.9 shows that the
overlap score consistently decreases as the regularization parameter of LDD-L1 increases, which
implies that LDD-L1 can effectively encourage nonoverlap. As a comparison, we replaced LDD-
L1 with LDD-only and L1-only, and measured the overlap scores. As can be seen, for LDD-only,
the overlap score remains to be 1 when the regularization parameter increases, which indicates
that LDD alone is not able to reduce overlap. This is because under LDD-only, the vectors remain
dense, which renders their supports to be completely overlapped. Under the same regularization
parameter, LDD-L1 achieves lower overlap score than L1, which suggests that LDD-L1 is more
effective in promoting nonoverlap. Given that γ – the tradeoff parameter associated with the L1
norm in LDD-L1 – was set to 1, the same regularization parameter λ imposes the same level of
sparsity for both LDD-L1 and L1-only. Since LDD-L1 encourages the vectors to be mutually
orthogonal, the intersection between vectors’ supports is small, which consequently results in
small overlap. This is not the case for L1-only, which hence is less effective in reducing overlap.

2.5.4 Appendix: Details of Algorithms
In each iteration of the CD algorithm, one basis vector is chosen for update while the others are
fixed. Without loss of generality, we assume it is w1. The sub-problem defined over w1 is

minw1

1
2

n∑
i=1

‖xi −
∑m

l=2 ailwl − ai1w1‖2
2 + λ2+λ3

2
‖w1‖2

2 − λ3
2

logdet(W>W) + u>w1 + ρ
2
‖w1 − w̃1‖2

2.

(2.107)
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To obtain the optimal solution, we take the derivative of the objective function and set it to zero.
First, we discuss how to compute the derivative of logdet(W>W) w.r.t w1. According to the
chain rule, we have

∂logdet(W>W)

∂w1

= 2W(W>W)−1
:,1 , (2.108)

where (W>W)−1
:,1 denotes the first column of (W>W)−1. Let W¬1 = [w2, · · · ,wm], then

W>W =

[
w>1 w1 w>1 W¬1

W>
¬1w1 W>

¬1W¬1.

]
(2.109)

According to the inverse of block matrix[
A B
C D

]−1

=

[
Ã B̃

C̃ D̃

]
, (2.110)

where Ã = (A−BD−1C)−1, B̃ = −(A−BD−1C)−1BD−1, C̃ = −D−1C(A−BD−1C)−1,
D̃ = D−1 + D−1C(A−BD−1C)−1BD−1, we have (W>W)−1

:,1 equals [a b>]> where

a = (w>1 w1 −w>1 W¬1(W>
¬1W¬1)−1W>

¬1w1)−1, (2.111)

b = −(W>
¬1W¬1)−1W>

¬1w1a. (2.112)

Then

W(W>W)−1
:,1 =

[
w1 W¬1

] [a
b

]
= Mw1

w>1 Mw1
, (2.113)

where
M = I−W¬1(W>

¬1W¬1)−1W>
¬1. (2.114)

To this end, we obtain the full gradient of the objective function in Eq.(2.107):∑n
i=1 ai1(ai1w1 +

∑m
l=2 ailwl − xi) + (λ2 + λ3)w1 − λ3

Mw1

w>1 Mw1
+ ρ(w1 − w̃1) + u.

(2.115)
Setting the gradient to zero, we get

((
∑n

i=1 a
2
i1 + λ2 + λ3 + ρ)I− λ3M/(w>1 Mw1))w1 =

∑n
i=1 ai1(xi −

∑m
l=2 ailwl)− u + ρw̃1.

(2.116)
Let γ = w>1 Mw1, c =

∑n
i=1 a

2
i1 +λ2 +λ3 +ρ, b =

∑n
i=1 ai1(xi−

∑m
l=2 ailwl)−u +ρw̃j , then

(cI − λ3
γ

M)w1 = b and w1 = (cI − λ3
γ

M)−1b. Let UΣU> be the eigen decomposition of M,
we have

w1 = γU(γcI− λ3Σ)−1U>b. (2.117)

Then
w>1 Mw1

= γ2b>U(γcI− λ3Σ)−1U>UΣU>U(γcI− λ3Σ)−1U>b
= γ2b>U(γcI− λ3Σ)−1Σ(γcI− λ3Σ)−1U>b

= γ2
d∑
s=1

(U>b)2sΣss
(rc−λ3Σss)2

= γ.

(2.118)
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The matrix A = W¬1(W>
¬1W¬1)−1W>

¬1 is idempotent, i.e., AA = A, and its rank is m − 1.
According to the property of idempotent matrix, the first m− 1 eigenvalues of A equal one and
the rest equal zero. Thereafter, the first m− 1 eigenvalues of M = I−A equal zero and the rest
equal one. Based on this property, Eq.(2.118) can be simplified as

γ
d∑

s=m

(U>b)2
s

(rc− λ3)2
= 1. (2.119)

After simplification, it is a quadratic function where γ has a closed form solution. Then we plug
the solution of γ into Eq.(2.117) to get the solution of w1.
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MIMIC EICU Reuters
AUC-All AUC-F AUC-IF AUC-All AUC-F AUC-IF AUC-All AUC-F AUC-IF

NCDML 0.634 0.654 0.608 0.671 0.690 0.637 0.949 0.963 0.916
CDML 0.641 0.659 0.617 0.677 0.693 0.652 0.952 0.961 0.929
EUC 0.559 0.558 0.562 0.583 0.584 0.581 0.887 0.888 0.885
LMNN [357] 0.628 0.643 0.609 0.662 0.678 0.633 0.943 0.951 0.913
LDML [146] 0.619 0.638 0.594 0.667 0.678 0.647 0.934 0.946 0.906
MLEC [200] 0.621 0.633 0.605 0.679 0.692 0.656 0.927 0.933 0.916
GMML [405] 0.607 0.621 0.588 0.668 0.679 0.648 0.931 0.938 0.905
ILHD [63] 0.577 0.590 0.560 0.637 0.652 0.610 0.905 0.919 0.893
`2-CDML 0.648 0.664 0.627 0.695 0.706 0.676 0.955 0.967 0.930
`1-CDML [280] 0.643 0.666 0.615 0.701 0.715 0.677 0.953 0.964 0.948
`2,1-CDML [399] 0.646 0.658 0.630 0.703 0.727 0.661 0.963 0.970 0.936
Tr-CDML [234] 0.659 0.672 0.642 0.696 0.709 0.673 0.961 0.966 0.934
IT-CDML [92] 0.653 0.675 0.626 0.692 0.705 0.668 0.954 0.964 0.920
Dropout-CDML [282] 0.647 0.660 0.630 0.701 0.718 0.670 0.959 0.968 0.937
OS-CDML [116] 0.649 0.665 0.626 0.689 0.711 0.679 0.957 0.961 0.938
DCM-NCDML [242] 0.652 0.662 0.639 0.706 0.717 0.686 0.962 0.976 0.943
CS-NCDML [402] 0.661 0.676 0.641 0.712 0.736 0.670 0.967 0.973 0.954
DPP-NCDML [429] 0.659 0.679 0.632 0.714 0.725 0.695 0.958 0.971 0.937
IC-NCDML [29] 0.660 0.674 0.642 0.711 0.728 0.685 0.972 0.984 0.954
DC-NCDML [82] 0.648 0.666 0.625 0.698 0.711 0.675 0.965 0.977 0.960
VGF-NCDML [177] 0.657 0.673 0.634 0.718 0.730 0.697 0.974 0.985 0.952
MA-NCDML [367] 0.659 0.670 0.644 0.721 0.733 0.703 0.975 0.983 0.959
OC-NCDML [233] 0.651 0.663 0.636 0.705 0.716 0.685 0.955 0.966 0.931
OS-NCDML [116] 0.639 0.658 0.614 0.675 0.691 0.641 0.951 0.962 0.928
SFN-NCDML [74] 0.662 0.677 0.642 0.724 0.736 0.701 0.973 0.984 0.947

VND-NCDML 0.667 0.676 0.655 0.733 0.748 0.706 0.976 0.983 0.971
LDD-NCDML 0.664 0.674 0.651 0.731 0.743 0.711 0.973 0.981 0.964
CSFN-CDML 0.668 0.679 0.653 0.728 0.741 0.705 0.978 0.991 0.968
CVND-CDML 0.672 0.678 0.664 0.735 0.744 0.718 0.984 0.996 0.982
CLDD-CDML 0.669 0.678 0.658 0.739 0.750 0.719 0.981 0.993 0.980

Table 2.10: On three imbalanced datasets – MIMIC, EICU, Reuters, we show the mean AUC
(averaged on 5 random train/test splits) on all classes (AUC-All), frequent classes (AUC-F),
and infrequent classes (AUC-IF). On the second panel (EUC, etc.) are well established or state
of the art baselines. On the third panel (`2-CDML, etc.) are CDML methods regularized by
non-diversity regularizers. On the fourth panel (DCM-NCDML, etc.) are NCDML methods
regularized by previously proposed diversity-promoting regularizers. On the fifth panel (VND-
NCDML, etc.) are NCDML methods regularized by our proposed nonconvex BMD regularizers.
On the sixth panel (CSFN-CDML, etc.) are CDML methods regularized by our proposed convex
BMD regularizers.
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News Cars Birds Act
NCDML 0.757 0.714 0.851 0.949
CDML 0.769 0.722 0.855 0.952
EUC 0.645 0.663 0.764 0.875
LMNN [357] 0.731 0.728 0.832 0.912
LDML [146] 0.748 0.706 0.847 0.937
MLEC [200] 0.761 0.725 0.814 0.917
GMML [405] 0.738 0.707 0.817 0.925
ILHD [63] 0.711 0.686 0.793 0.898
`2-CDML 0.774 0.728 0.872 0.958
`1-CDML [280] 0.791 0.725 0.868 0.961
`2,1-CDML [399] 0.783 0.728 0.861 0.964
Tr-CDML [234] 0.785 0.731 0.875 0.955
IT-CDML [92] 0.771 0.724 0.858 0.967
Dropout-CDML [282] 0.787 0.729 0.864 0.962
OS-CDML [116] 0.779 0.732 0.869 0.963
DCM-NCDML [242] 0.773 0.736 0.882 0.964
CS-NCDML [402] 0.803 0.742 0.895 0.971
DPP-NCDML [429] 0.797 0.751 0.891 0.969
IC-NCDML [29] 0.801 0.740 0.887 0.967
DC-NCDML [82] 0.786 0.728 0.860 0.958
VGF-NCDML [177] 0.806 0.747 0.894 0.974
MA-NCDML [367] 0.815 0.743 0.898 0.968
OC-NCDML [233] 0.779 0.727 0.875 0.956
OS-NCDML [116] 0.764 0.716 0.855 0.950
SFN-NCDML [74] 0.808 0.749 0.896 0.970

VND-NCDML 0.814 0.754 0.902 0.972
LDD-NCDML 0.816 0.751 0.904 0.971
CSFN-CDML 0.813 0.753 0.905 0.972
CVND-CDML 0.822 0.755 0.908 0.973
CLDD-CDML 0.819 0.759 0.913 0.971

Table 2.11: AUC-All on 4 balanced datasets.

MIMIC EICU Reuters News Cars Birds Act
NC CF NC CF NC CF NC CF NC CF NC CF NC CF

NCDML 300 2.1 400 1.7 300 3.2 300 2.5 300 2.4 500 1.7 200 4.7
CDML 247 2.6 318 2.1 406 2.3 336 2.3 376 1.9 411 2.1 168 5.7
LMNN [357] 200 3.1 400 1.7 400 2.4 300 2.4 400 1.8 500 1.7 300 3.0
LDML [146] 300 2.1 400 1.7 400 2.3 200 3.7 300 2.4 400 2.1 300 3.1
MLEC [200] 487 1.3 493 1.4 276 3.4 549 1.4 624 1.2 438 1.9 327 2.8
GMML [405] 1000 0.6 1000 0.7 1000 0.9 1000 0.7 1000 0.7 1000 0.8 1000 0.9
ILHD [63] 100 5.8 100 6.4 50 18.1 100 7.1 100 6.9 100 7.9 50 18.0
`2-CDML 269 2.4 369 1.9 374 2.6 325 2.4 332 2.2 459 1.9 179 5.4
`1-CDML [280] 341 1.9 353 2.0 417 2.3 317 2.5 278 2.6 535 1.6 161 6.0
`2,1-CDML [399] 196 3.3 251 2.8 288 3.3 316 2.5 293 2.5 326 2.6 135 7.1
Tr-CDML [234] 148 4.5 233 3.0 217 4.4 254 3.1 114 6.4 286 3.1 129 7.4
IT-CDML [92] 1000 0.7 1000 0.7 1000 1.0 1000 0.8 1000 0.7 1000 0.9 1000 1.0
Dropout-CDML [282] 183 3.5 284 2.5 315 3.0 251 3.1 238 3.1 304 2.8 147 6.5
DCM-NCDML [242] 100 6.5 300 2.4 100 9.6 200 3.9 200 3.7 300 2.9 100 9.6
CS-NCDML [402] 200 3.3 200 3.6 200 4.8 100 8.0 100 7.4 200 4.5 50 19.4
DPP-NCDML [429] 100 6.6 200 3.6 100 9.6 100 8.0 200 3.8 200 4.5 100 9.7
IC-NCDML [29] 200 3.3 200 3.6 200 4.9 100 8.0 200 3.7 100 8.9 100 9.7
DC-NCDML [82] 200 3.2 300 2.3 200 4.8 200 3.9 200 3.6 200 4.3 100 9.6
VGF-NCDML [177] 200 3.3 200 3.6 200 4.9 100 8.1 200 3.7 200 4.5 100 9.7
MA-NCDML [367] 200 3.3 200 3.6 100 9.8 100 8.2 100 7.4 200 4.5 50 19.4
SFN-NCDML [74] 100 6.6 200 3.6 100 9.7 100 8.1 100 7.5 200 4.5 50 19.4
OC-NCDML [233] 100 6.5 100 7.1 50 19.1 50 15.6 100 7.3 100 8.8 50 19.1

VND-NCDML 100 6.7 100 7.3 50 19.5 100 8.1 100 7.5 100 9.0 50 19.4
LDD-NCDML 100 6.6 200 3.7 100 9.7 100 8.2 100 7.5 100 9.0 50 19.4
CSFN-CDML 143 4.7 209 3.5 174 5.6 87 9.3 62 12.1 139 6.5 64 15.2
CVND-CDML 53 12.7 65 11.3 61 16.0 63 13.0 127 5.9 92 9.9 68 14.3
CLDD-CDML 76 8.8 128 5.8 85 11.5 48 17.1 91 8.3 71 12.9 55 17.7

Table 2.12: The numbers of components that achieve the AUCs in Table 6.1 and 2.11.

74



MIMIC EICU Reuters News Cars Birds Act
NCDML 0.175 0.145 0.043 0.095 0.149 0.075 0.045
CDML 0.187 0.142 0.045 0.087 0.124 0.066 0.042
LMNN [357] 0.183 0.153 0.031 0.093 0.153 0.073 0.013
LDML [146] 0.159 0.139 0.034 0.079 0.131 0.072 0.068
MLEC [200] 0.162 0.131 0.042 0.088 0.151 0.039 0.043
GMML [405] 0.197 0.157 0.051 0.063 0.118 0.067 0.036
ILHD [63] 0.164 0.162 0.048 0.077 0.117 0.045 0.059
`2-CDML 0.184 0.136 0.037 0.072 0.105 0.053 0.041
`1-CDML [280] 0.173 0.131 0.042 0.064 0.113 0.061 0.026
`2,1-CDML [399] 0.181 0.129 0.034 0.073 0.121 0.044 0.024
Tr-CDML [234] 0.166 0.138 0.024 0.076 0.111 0.058 0.037
IT-CDML [92] 0.174 0.134 0.033 0.061 0.109 0.036 0.013
Dropout-CDML [282] 0.182 0.140 0.021 0.076 0.114 0.063 0.024
OS-CDML [116] 0.166 0.133 0.032 0.063 0.108 0.057 0.031
DCM-NCDML [242] 0.159 0.131 0.035 0.069 0.127 0.064 0.035
CS-NCDML [402] 0.163 0.135 0.031 0.083 0.103 0.045 0.033
DPP-NCDML [429] 0.147 0.140 0.038 0.067 0.117 0.072 0.041
IC-NCDML [29] 0.155 0.127 0.018 0.075 0.116 0.074 0.029
DC-NCDML [82] 0.164 0.123 0.023 0.082 0.125 0.051 0.033
VGF-NCDML [177] 0.158 0.136 0.014 0.064 0.136 0.035 0.028
MA-NCDML [367] 0.143 0.128 0.023 0.078 0.102 0.031 0.042
OC-NCDML [233] 0.161 0.142 0.032 0.061 0.111 0.063 0.034
OS-NCDML [116] 0.169 0.137 0.015 0.083 0.119 0.058 0.042
SFN-NCDML [74] 0.153 0.126 0.022 0.069 0.127 0.043 0.028

VND-NCDML 0.148 0.135 0.019 0.078 0.116 0.067 0.035
LDD-NCDML 0.146 0.121 0.017 0.054 0.111 0.036 0.021
CSFN-CDML 0.142 0.124 0.019 0.062 0.092 0.043 0.019
CVND-CDML 0.137 0.115 0.008 0.055 0.094 0.038 0.013
CLDD-CDML 0.131 0.118 0.012 0.058 0.089 0.026 0.016

Table 2.13: The gap of training AUC and testing AUC.

Scene Caltech Sports
SC [392] 83.6 ± 0.2 42.3 ± 0.4 87.4 ± 0.5
DCM-SC [242] 85.4 ± 0.5 44.7 ± 0.8 89.6 ± 0.1
CS-SC [402] 84.8 ± 0.6 45.4 ± 0.5 88.3 ± 0.3
DPP-SC [429] 84.6 ± 0.3 43.5 ± 0.3 88.1 ± 0.2
IC-SC [29] 85.5 ± 0.1 43.9 ± 0.7 90.2 ± 0.7
MA-SC [369] 86.1 ± 0.5 45.6 ± 0.4 89.7 ± 0.4
AC-SC 86.5 ± 0.7 46.1 ± 0.3 90.9 ± 0.3

Table 2.14: Classification accuracy (%) on three datasets. We compare the proposed ACs with
existing diversity-promoting regularizers.
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Network Error
Segmental NN [14] 21.9
MCRBM [88] 20.5
DSR [326] 19.9
Rectifier NN [332] 19.8
DBN [313] 19.7
Shallow CNN [22] 19.5
Structured DNN [391] 18.8
Posterior Modeling [278] 18.5
Kaldi [277] 18.53
CS-Kaldi [402] 18.48
IC-Kaldi [29] 18.46
MA-Kaldi [369] 18.51
DC-Kaldi [82] 18.50
AC-Kaldi 18.41
CTC [139] 18.4
RNN Transducer [139] 17.7
Attention RNN [80] 17.6
CTC+SCRF [239] 17.4
Segmental RNN [238] 17.3
RNNDrop [259] 16.9
CNN [333] 16.7

Table 2.15: Phone error rate (%) on the TIMIT test set. On the second panel (Kaldi, etc.),
we compare AC with previously proposed diversity-promoting regularizers. On the first panel
(Segmental NN, etc.) and the third panel (CTC, etc.) are other state of the art baselines.
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Network Error
Maxout [135] 9.38
NiN [229] 8.81
DSN [217] 7.97
Highway Network [314] 7.60
All-CNN [310] 7.25
ResNet [153] 6.61
ELU-Network [81] 6.55
LSUV [257] 5.84
Fract. Max-Pooling [138] 4.50
WideResNet [406] 3.89
CS-WideResNet [402] 3.81
IC-WideResNet [29] 3.85
MA-WideResNet [369] 3.68
DC-WideResNet [82] 3.77
LCD-WideResNet [291] 3.69
AC-WideResNet 3.63
ResNeXt [382] 3.58
PyramidNet [307] 3.48
DenseNet [169] 3.46
PyramidSepDrop [388] 3.31

Table 2.16: Classification error (%) on the CIFAR-10 test set.
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CNN DailyMail
Dev Test Dev Test

Hermann et al. [154] 61.6 63.0 70.5 69.0
Hill et al. [157] 63.4 6.8 - -
Kadlec et al. [188] 68.6 69.5 75.0 73.9
Kobayashi et al. [197] 71.3 72.9 - -
Sordoni et al. [309] 72.6 73.3 - -
Trischler et al. [334] 73.4 74.0 - -
Chen et al. [68] 73.8 73.6 77.6 76.6
Cui et al. [86] 73.1 74.4 - -
Shen et al. [301] 72.9 74.7 77.6 76.6
BIDAF [296] 76.31 76.94 80.33 79.63
CS-BIDAF [402] 76.43 77.10 80.37 79.71
IC-BIDAF [29] 76.41 77.21 80.49 79.83
MA-BIDAF [369] 76.49 77.09 80.42 79.74
DC-BIDAF [82] 76.35 77.15 80.38 79.67
AC-BIDAF 76.62 77.23 80.65 79.88
Dhingra et al. [101] 77.9 77.9 81.5 80.9
Dhingra et al. [102] 79.2 78.6 – –

Table 2.17: Accuracy (%) on two QA datasets.

TIMIT CIFAR-10 CNN
No regularization 1.1 6.3 69.4
CS [402] 1.2 6.8 74.8
IC [29] 1.2 6.7 76.1
MA [369] 1.3 7.0 78.6
DC [82] 1.5 7.6 82.9
LCD [291] – 6.8 –
AC 1.3 7.1 79.7

Table 2.18: Average runtime (hours). We compare AC with existing diversity-promoting regu-
larizers.

#Train #Test Dimension #Class
MIMIC-III 40K 18K 7207 2833
Cars 8144 8041 4096 196
Birds 9000 2788 4096 200
Scenes-15 3140 1345 – 15
Caltech-256 20846 8934 – 256
UIUC-Sports 1254 538 – 8

Table 2.19: Dataset statistics.
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MIMIC-III Cars Birds
EUC 58.3 ± 0.1 37.8 ± 0.0 43.2 ± 0.0
ITML [92] 69.3 ± 0.4 50.1 ± 0.0 52.9 ± 0.3
LDML [146] 70.9 ± 0.9 51.3 ± 0.0 52.1 ± 0.2
DML-Eig [398] 70.6 ± 0.7 50.7 ± 0.0 53.3 ± 0.8
Seraph [265] 71.7 ± 0.2 53.6 ± 0.0 52.9 ± 0.2
GMML [405] 71.2 ± 0.3 54.2 ± 0.0 53.7 ± 0.6
Tsang [335] 73.5 ± 0.2 55.8 ±0.0 53.9 ± 0.4
MKDML [345] 75.1 ± 0.9 53.5 ±0.0 54.4 ± 0.1
Jain [176] 74.9 ± 1.1 53.9 ±0.0 55.9 ± 0.6
PCCA [252] 73.4 ± 0.5 56.4 ±0.0 55.1 ± 0.9
KDML 73.8 ± 0.9 54.9 ±0.0 54.7 ± 0.5
KDML-SHN [294] 74.2 ± 0.6 55.4 ±0.0 54.8 ± 0.9
KDML-DPP [429] 75.5 ± 0.8 56.4 ±0.0 57.3 ± 0.3
KDML-Angle [369] 75.9 ± 0.2 56.8 ±0.0 57.1 ± 0.6
KDML-SFN-RTR 76.3 ± 0.7 56.6 ± 0.0 56.4 ± 0.1
KDML-VND-RTR 77.1 ± 0.6 57.7 ± 0.0 58.9 ± 0.7
KDML-LDD-RTR 76.7 ± 0.3 57.4 ± 0.0 59.2 ± 0.3
KDML-SFN-RFF 75.9 ± 0.1 56.5 ± 0.0 56.0 ± 0.2
KDML-VND-RFF 76.9 ± 0.4 57.2 ± 0.0 58.8 ± 0.6
KDML-LDD-RFF 76.8 ± 0.8 57.1 ± 0.0 58.5 ± 0.4

Table 2.20: Retrieval precision@10 (%) on three datasets. On the first panel (EUC, etc.) are
non-kernel DML methods. On the second panel (Tsang, etc.) are well established or state of
the art kernel DML methods. On the third panel (KDML, etc.) are KDML methods regularized
by existing regularizers. On the fourth panel (KDML-SFN-RTR, etc.) are KDML methods
regularized by our proposed near-orthogonality regularizers.

MIMIC-III Cars Birds Average
KDML 300 400 300 333
KDML-SHN [294] 300 400 300 333
KDML-DPP [429] 200 300 300 267
KDML-Angle [369] 200 300 200 233
KDML-SFN-RTR 200 200 200 200
KDML-VND-RTR 100 200 200 167
KDML-LDD-RTR 100 200 200 167
KDML-SFN-RFF 100 200 200 167
KDML-VND-RFF 100 200 200 167
KDML-LDD-RFF 100 200 200 167

Table 2.21: The number of RKHS functions achieving the precision@10 in Table 2.20
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D1 (3566) D2 (3498) D3 (2757) D4 (204) D5 (176) D6 (148) D7 (131) D8 (121)
Tsang [335] 80.3 ± 0.3 82.8 ± 0.7 81.9 ± 0.4 6.3 ± 0.7 3.9 ± 0.5 4.5 ± 0.5 6.7 ± 0.9 5.1 ± 0.2
MKDML [345] 83.1 ± 0.2 83.4 ± 0.7 82.3 ± 0.6 3.7 ± 1.2 5.5 ± 0.1 9.3 ± 0.8 10.0 ± 0.5 3.7 ± 0.4
Jain [176] 82.7 ± 0.7 84.6 ± 0.5 82.9 ± 0.4 7.2 ± 0.4 8.2 ± 0.4 3.4 ± 0.9 6.2 ± 0.7 8.7 ± 0.3
PCCA [252] 82.2 ± 0.2 82.1 ± 0.6 82.1 ± 0.3 9.4 ± 0.8 7.7 ± 0.2 5.2 ± 0.4 6.1 ± 0.1 3.2 ± 0.4
KDML 82.6 ± 0.7 83.9 ± 1.2 81.7 ± 0.6 7.4 ± 1.0 5.3 ± 0.9 5.7 ± 0.3 3.8 ± 0.8 3.5 ± 0.4
KDML-SHN [294] 82.1 ± 0.5 83.6 ± 0.4 82.4 ± 0.9 8.3 ± 0.1 5.1 ± 0.8 4.7 ± 0.2 3.4 ± 0.9 3.7 ± 0.8
KDML-DPP [429] 83.4 ± 0.4 84.7 ± 0.7 82.7 ± 1.0 11.5 ± 0.3 9.7 ± 0.5 10.4 ± 0.4 7.3 ± 0.2 7.9 ± 0.1
KDML-Angle [369] 83.7 ± 0.1 84.3 ± 0.1 81.8 ± 0.3 10.6 ± 0.2 10.2 ± 0.8 9.5 ± 0.6 8.8 ± 0.5 7.2 ± 0.3
KDML-SFN-RTR 82.5 ± 0.8 84.2 ± 1.2 82.2 ± 0.1 15.0 ± 0.3 13.4 ± 0.1 13.8 ± 0.2 12.1 ± 0.6 10.9 ± 0.5
KDML-VND-RTR 83.9 ± 0.9 84.5 ± 0.8 82.6 ± 0.2 15.5 ± 0.9 16.2 ± 0.7 14.3 ± 0.7 12.4 ± 0.8 14.7 ± 0.8
KDML-LDD-RTR 83.7 ± 0.1 83.8 ± 0.9 82.2 ± 0.6 14.8 ± 0.4 14.2 ± 0.1 13.7 ± 0.3 10.3 ± 0.1 12.8 ± 0.2
KDML-SFN-RFF 82.3 ± 0.9 84.1 ± 0.6 81.1 ± 0.5 15.1 ± 0.2 14.9 ± 0.5 15.2 ± 0.9 13.5 ± 0.1 10.8 ± 0.3
KDML-VND-RFF 83.4 ± 0.2 83.6 ± 0.5 82.7 ± 0.4 15.2 ± 0.5 15.6 ± 0.9 10.6 ± 0.8 12.0 ± 1.1 10.3 ± 0.7
KDML-LDD-RFF 82.9 ± 0.2 84.0 ± 1.0 82.5 ± 0.9 14.4 ± 0.9 13.9 ± 1.2 15.4 ± 0.5 13.9 ± 0.2 14.4 ± 0.1

Table 2.22: Retrieval precision@10 (%) on three frequent and five infrequent diseases in the
MIMIC-III dataset. The number next to a disease ID is its frequency. Note that diseases D1–D3
are frequent diseases, while that D4–D8 are infrequent ones.

MIMIC-III Cars Birds
KDML-SFN-RTR 69.4 17.2 18.6
KDML-VND-RTR 69.8 17.4 18.9
KDML-LDD-RTR 69.9 17.5 18.9
KDML-SFN-RFF 12.6 2.7 2.9
KDML-VND-RFF 12.9 2.8 3.1
KDML-LDD-RFF 12.8 2.8 3.1

Table 2.23: Convergence time (hours) on three datasets.

Scenes-15 Caltech-256 UIUC-Sports
SC [266] 83.6 ± 0.2 42.3 ± 0.4 87.4 ± 0.5
KSC [120] 85.4 ± 0.5 44.7 ± 0.8 88.2 ± 0.1
KSC-SHN [294] 85.8 ± 0.6 45.4 ± 0.5 88.3 ± 0.3
KSC-DPP [429] 86.3 ± 0.3 47.3 ± 0.8 89.3 ± 0.2
KSC-Angle [369] 86.8 ± 0.1 46.1 ± 0.8 89.5 ± 0.5
KSC-SFN-RTR 87.1 ± 0.5 47.2 ± 0.5 89.9 ± 0.3
KSC-VND-RTR 87.9 ± 0.7 48.6 ± 0.3 91.3 ± 0.5
KSC-LDD-RTR 87.4 ± 0.4 48.1 ± 0.6 90.7 ± 0.2
KSC-SFN-RFF 86.8 ± 0.6 46.5 ± 0.1 89.5 ± 0.7
KSC-VND-RFF 87.5 ± 0.5 48.2 ± 0.4 90.4 ± 0.8
KSC-LDD-RFF 87.2 ± 0.1 47.8 ± 0.2 90.2 ± 0.4

Table 2.24: Classification accuracy (%) on three datasets.

Sensitivity Specificity Error rate
L1 [331] 0.76 0.71 0.31
Elastic Net [428] 0.74 0.72 0.30
LDD-L1 0.82 0.75 0.24

Table 2.25: Sensitivity and specificity for support recovery and error rate for prediction.
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Method
20-News RCV1

Test Gap Test Gap
SC [266] 0.592 0.119 0.872 0.009
LDD-SC 0.605 0.108 0.886 0.005

L1-SC [331] 0.606 0.105 0.897 0.005
LDD-L1-SC 0.612 0.099 0.909 -0.015

Table 2.26: Classification accuracy on the test sets of 20-News and RCV1, and the gap between
training and test accuracy.

Basis Vector Selected Words
1 crime, guns
2 faith, trust
3 worked, manager
4 weapons, citizens
5 board, uiuc
6 application, performance, ideas
7 service, quality
8 bible, moral
9 christ, jews, land, faq

Table 2.27: Selected words of 9 exemplar basis vectors.
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Network Test
RNN [253] 124.7
RNN+LDA [253] 113.7
Deep RNN [273] 107.5
Sum-Product Network [76] 100.0
RNN+LDA+KN-5+Cache [253] 92.0
LSTM (medium) [408] 82.7
CharCNN [194] 78.9
LSTM (large) [408] 78.4
Variational LSTM [115] 73.4
PytorchLM [3] 72.3
CS-PytorchLM [402] 71.8
IC-PytorchLM [29] 71.9
MA-PytorchLM [369] 72.0
DC-PytorchLM [82] 72.2
AC-PytorchLM 71.5
LDD-PytorchLM 71.6
L1-PytorchLM [331] 71.8
LDD-L1-PytorchLM 71.1
Pointer Sentinel LSTM [250] 70.9
Ensemble of 38 Large LSTMs [408] 68.7
Variat. LSTM Ensem. [115] 68.7
Variational RHN [426] 68.5
Variational LSTM + REAL [170] 68.5
Neural Architecture Search [427] 67.9
Variational RHN + RE [170] 66.0
Variational RHN + WT [426] 65.4
Variational RHN+WT+Dropout [426] 64.4
Architecture Search + WT V1 [427] 64.0
Architecture Search + WT V2 [427] 62.4

Table 2.28: Word-level perplexities on the PTB test set. On the second panel (PytorchLM, etc.),
we compare LDD-L1 with the L1 regularizer and orthogonality-promoting regularizers. On the
first panel (RNN, etc.) and the third panel (Pointer Sentinel LSTM, etc.) are other state of the art
baselines.
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Network Error
Maxout [135] 9.38
NiN [229] 8.81
DSN [217] 7.97
Highway Network [314] 7.60
All-CNN [310] 7.25
ResNet [153] 6.61
ELU-Network [81] 6.55
LSUV [257] 5.84
Fract. Max-Pooling [138] 4.50
WideResNet [406] 3.89
CS-WideResNet [402] 3.81
IC-WideResNet [29] 3.85
MA-WideResNet [369] 3.68
DC-WideResNet [82] 3.77
LCD-WideResNet [291] 3.69
AC-WideResNet 3.63
LDD-WideResNet 3.65
L1-WideResNet [331] 3.81
LDD-L1-WideResNet 3.60
ResNeXt [382] 3.58
PyramidNet [307] 3.48
DenseNet [169] 3.46
PyramidSepDrop [388] 3.31

Table 2.29: Classification error (%) on the CIFAR-10 test set.
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Chapter 3

Diversity-promoting Learning II –
Bayesian Inference

In the last chapter, we have studied diversity-promoting learning under a frequentist-style regu-
larized optimization framework, where the component vectors are deterministic and are learned
via point estimation [352]. In this chapter, we study how to promote diversity under an alterna-
tive learning paradigm: Bayesian inference [46, 172, 260], where the components are considered
as random variables of which a posterior distribution shall be computed from data under certain
priors. Compared with point estimation, Bayesian learning offers complementary benefits. First,
it offers a “model-averaging” [46, 172] effect for ML models when they are used for decision-
making and prediction because the parameters shall be integrated under a posterior distribution,
thus can potentially alleviate overfitting on training data. Second, it provides a natural way to
quantify uncertainties of model parameters, and downstream decisions and predictions made
thereupon [46, 172, 260]. Affandi et al. [16] investigated the “diversification” of Bayesian mod-
els using the determinantal point process (DPP) [204] prior. DPP has two drawbacks. First, it is
not applicable to Bayesian nonparametric models where the number of components is infinite.
Second, it is not amenable to developing variational-inference [340] based posterior inference
algorithms which are usually more efficient than sampling-based [127] methods. In this chapter,
we develop new diversity-promoting priors to address these limitations. Bayesian models can
be classified into parametric models where the number of components is finite and nonparamet-
ric [111] models where the number of components is infinite in principle and can dynamically
grow with data. To promote diversity among a finite number of components in parametric mod-
els, we propose a prior called mutual angular process [371] that encourage the components to
have large mutual angles. In nonparametric models, we study an infinite mutual angular pro-
cess [381] which encourages infinitely many components to be diverse.

3.1 Diversity-promoting Learning of Bayesian Parametric Mod-
els

We start with promoting diversity in Bayesian parametric models where the number of com-
ponents is finite and fixed. We investigate two approaches: (1) prior control, which defines
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diversity-promoting priors and uses them to affect the posterior via the Bayes rule; (2) posterior
regularization, which directly performs diversity-promoting regularization over post-data distri-
butions [424]. These two approaches have complementary advantages which will be discussed
in detail below.

Following Section 2.3, we adopt a notion of diversity that component vectors are more diverse
provided the pairwise angles between them are larger. In the prior control method, we define a
mutual angular process (MAP) [371], which assigns higher probability density to components
that have larger mutual angles. Specifically, we build a Bayesian network [198] where the nodes
represent the directional vectors of the components and the local probabilities are parameterized
by von Mises-Fisher [245] distributions that entail an inductive bias towards vectors with larger
mutual angles. The MAP is amenable for approximate posterior inference of model components.
In particular, they facilitate variational inference (VI) [340], which is usually more efficient than
sampling-based [127] methods. In contrast, it is difficult to derive VI-based algorithms for the
determinant point process (DPP) [204] prior. Bardenet and Titsias [30] derived bounds on the
likelihood of a DPP and use these bounds for variational inference. This method is applicable
when DPP is used to define the likelihood. However, when DPP is applied as a prior of com-
ponents in Bayesian models, it is unclear how to apply this method for variational inference of
components’ posterior.

It is not always the case that a Bayesian prior can be defined to capture a certain desired
effect. For example, Xie et al. [369] posit that one ingredient of diversity is evenness: the vectors
are desired to uniformly spread out to different directions and each vector is evenly different from
all other vectors. To achieve this, they defined a regularizer to encourage the variance of angles
between vectors to be small. However, it is very difficult to define a Bayesian prior to achieve
such an effect. The major technical difficulty lies in how to ensure the prior integrates to one.
To address this issue, we adopt a posterior regularization approach [424], in which a diversity-
promoting regularizer is directly imposed over the post-data distributions to encourage diversity
and the regularizer can be flexibly defined to accommodate various desired diversity-promoting
goals.

We apply these two approaches to “diversify” the “experts” (components) in the Bayesian
mixture of experts model [354]. Posterior inference algorithms based on both variational in-
ference and Markov chain Monte Carlo sampling are developed. Experiments demonstrate the
effectiveness and efficiency of our methods.

3.1.1 Mutual Angular Process
We start with defining diversity-promoting Bayesian priors. We desire the priors to have two
traits. First, to favor diversity, they assign a higher density to components having larger mutual
angles. Second, the priors should facilitate posterior inference. In Bayesian learning, the easiness
of posterior inference relies heavily on the prior [47, 341]. One possible solution is to turn a
diversity-promoting regularizer Ω(A) (e.g., the uniform eigenvalue regularizer in Section 2.1)
into a distribution p(A) = 1

Z
exp(Ω(A)) based on the Gibbs measure [195], where Z is the

partition function guaranteeing p(A) integrates to one. However, it is not sure whether Z =∫
A

exp(Ω(A))dA is finite, i.e., whether p(A) is proper. When an improper prior is utilized in
Bayesian learning, the posterior is also highly likely to be improper, except in a few special cases
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Figure 3.1: A Bayesian network representation of the mutual angular process.

[352]. Performing inference on improper posteriors is problematic.
At a high-level, we define such a prior in a sequential manner: each time we add one com-

ponent to the component pool and encourage the new component to be different from the exist-
ing ones. This sequential manner has two benefits. First, it can easily define both parametric
and nonparametric priors by controlling the number of components to be added. Repeating the
adding process K times, we obtain a parametric prior defined on K components. Likewise, a
nonparametric prior on an infinite set of components can be obtained by repeating the adding
process infinitely many times. Second, priors defined in this sequential manner can be nat-
urally decomposed into a sequence of “simpler” distributions, which makes the derivation of
variational-inference-based algorithms relatively easier.

Following [369], we adopt a notion of diversity that component vectors are more diverse pro-
vided the pairwise angles between them are larger. Given a component vector a, let g = ‖a‖2

be its magnitude and ã be the directional vector (‖ã‖2 = 1), where a = gã. Noting that the an-
gle between two vectors is invariant to their magnitudes, we can construct the angle-based prior
by sequentially adding the directional vectors (DVs) and encouraging the new DV to have large
angles with the existing ones. We use a Bayesian network (BNs) (shown in Figure 3.1) to model
this adding process, where nodes represent the DVs and the parents of ãi are ã1, · · · , ãi−1. To en-
courage large angles between ãi and ã1, · · · , ãi−1, we define a local probability based on the von
Mises-Fisher (vMF) [245] distribution. The probability density function of the vMF distribution
is f(x) = Cp(κ) exp(κµ>x), where the random variable x ∈ Rp lies on a p − 1 dimensional
sphere (‖x‖2 = 1), µ is the mean direction with ‖µ‖2 = 1, κ > 0 is the concentration param-
eter, and Cp(κ) is the normalization constant. The vMF-based local probability p(ãi|pa(ãi)) is
defined as

p(ãi|pa(ãi)) = Cp(κ) exp

κ(− ∑i−1
j=1 ãj

‖
∑i−1

j=1 ãj‖2

)>
ãi

 , (3.1)

which encourages large angles: ã>j ãi is the cosine of the angle between ãi and ãj; if ãi has
larger angles with {ãj}i−1

j=1, then the average negative cosine similarity (−
∑i−1

j=1 ãj)
>ãi would be

larger; accordingly p(ãi|pa(ãi)) would be larger. For the magnitudes {gi}Ki=1 of the components,
we sample them independently from a gamma distribution with shape parameter α1 and rate
parameter α2. The generative process of A is summarized as follows:
• Draw ã1 ∼ vMF(µ0, κ)

• For i = 2, · · · , K, draw ãi ∼ vMF(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

, κ)

• For i = 1, · · · , K, draw gi ∼ Gamma(α1, α2)
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• For i = 1, · · · , K, ai = ãigi
The probability distribution over A can be written as

p(A) = Cp(κ) exp(κµ>0 ã1)
∏K

i=2Cp(κ) exp

(
κ

(
−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>
ãi

)∏K
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)
.

(3.2)
According to the factorization theorem [198] of Bayesian networks, it is easy to verify

∫
A
p(A)dA =

1, thus p(A) is a proper prior.
When inferring the posterior of model components using a variational inference method, we

need to compute the expectation of 1/‖
∑i−1

j=1 ãj||2 appearing in the local probability p(ãi|pa(ãi)),
which is extremely difficult. To address this issue, we define an alternative local probability that
achieves similar modeling effect as p(ãi|pa(ãi)), but greatly facilitates variational inference:

p̂(ãi|pa(ãi)) ∝ exp(κ(−
∑i−1

j=1 ãj)
>ãi)

∝ exp

(
κ‖
∑i−1

j=1 ãj‖2

(
−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>
ãi

)

= Cp(κ‖
∑i−1

j=1 ãj‖2) exp

(
κ‖
∑i−1

j=1 ãj‖2

(
−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>
ãi

)
= Cp(κ‖

∑i−1
j=1 ãj‖2) exp(κ(−

∑i−1
j=1 ãj)

>ãi),

(3.3)

which is another vMF distribution with mean direction −
∑i−1

j=1 ãj/‖
∑i−1

j=1 ãj‖2 and concentra-
tion parameter κ‖

∑i−1
j=1 ãj‖2. This local probability is proportional to (−

∑i−1
j=1 ãj)

>ãi, which
measures the negative cosine similarity between ãi and its parents. Thereby, p̂(ãi|pa(ãi)) still
encourages large mutual angles. The difference between p̂(ãi|pa(ãi)) and p(ãi|pa(ãi)) is that
in p̂(ãi|pa(ãi)) the term ‖

∑i−1
j=1 ãj‖2 is moved from the denominator to the normalizer, thus we

can avoid computing the expectation of 1/‖
∑i−1

j=1 ãj‖2. Though it incurs a new problem that
we need to compute the expectation of logCp(κ‖

∑i−1
j=1 ãj‖2), which is also difficult due to the

complex form of the Cp(·) function, we managed to resolve this problem as detailed in Section
3.1.2. We refer to the mutual angular process defined in Eq.(3.2) as type-I MAP and that with
local probability defined in Eq.(3.3) as type-II MAP.

3.1.2 Approximate Inference Algorithms
We develop algorithms to infer the posteriors of components under the MAP priors. Since exact
posteriors are intractable, we resort to approximate inference techniques. Two main paradigms
of approximate inference methods are: (1) variational inference (VI) [340]; (2) Markov chain
Monte Carlo (MCMC) sampling [127]. These two approaches possess benefits that are mutually
complementary. MCMC can achieve a better approximation of the posterior than VI since it
generates samples from the true posterior while VI seeks an approximation of the posterior.
However, VI can be computationally more efficient [164]. In this section, we focus on deriving
the VI-based algorithm and leave the details of MCMC-based algorithms (which is relatively
straightforward) to the appendix.
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The basic idea of VI [340] is to use a “simpler” variational distribution q(A) to approximate
the true posterior by minimizing the Kullback-Leibler divergence between these two distribu-
tions, which is equivalent to maximizing the following variational lower bound w.r.t q(A):

Eq(A)[log p(D|A)] + Eq(A)[log p(A)]− Eq(A)[log q(A)], (3.4)

where p(A) is the MAP prior and p(D|A) is the data likelihood. Here we choose q(A) to be
a mean field variational distribution q(A) =

∏K
k=1 q(ãk)q(gk), where q(ãk) = vMF(ãk|âk, κ̂)

and q(gk) = Gamma(gk|rk, sk). Given the variational distribution, we first compute the an-
alytical expression of the variational lower bound, in which we particularly discuss how to
compute Eq(A)[log p(A)]. If choosing p(A) to be the type-I MAP prior (Eq.(3.2)), we need

to compute E[(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi] which is very difficult to deal with due to the presence of

1/‖
∑i−1

j=1 ãj‖2. Instead we choose the type-II MAP prior. Under type-II MAP, we need to
compute Eq(A)[logZi] for all i, where Zi = 1/Cp(κ‖

∑i−1
j=1 ãj‖2) is the partition function of

p(ãi|pa(ãi)). The analytical form of this expectation is difficult to derive as well due to the com-
plexity of the Cp(x) function: Cp(x) = xp/2−1

(2π)p/2Ip/2−1(x)
where Ip/2−1(x) is the modified Bessel

function of the first kind at order p/2 − 1 [245]. To address this issue, we derive an upper
bound of logZi and compute the expectation of the upper bound, which is relatively easy to
do. Consequently, we obtain a further lower bound of the variational lower bound and learn
the variational and model parameters w.r.t the new lower bound. Now we proceed to derive the
upper bound of logZi, which equals log

∫
exp(κ(−

∑i−1
j=1 ãj) · ãi)dãi. Applying the inequality

log
∫

exp(x)dx ≤ γ+
∫

log(1+exp(x−γ))dx [50], where γ is a variational parameter, we have

logZi ≤ γ +
∫

log(1 + exp(κ(−
∑i−1

j=1 ãj) · ãi − γ)dãi. (3.5)

Then applying the inequality log(1 + e−x) ≤ log(1 + e−ξ)− x−ξ
2
− 1/2−g(ξ)

2ξ
(x2− ξ2) [50], where

ξ is another variational parameter and g(ξ) = 1/(1 + exp(−ξ)), we have

logZi
≤ γ +

∫
[log(1 + e−ξ)− (κ(

∑i−1
j=1 ãj) · ãi + γ − ξ)/2− 1/2−g(ξ)

2ξ
((κ(

∑i−1
j=1 ãj) · ãi + γ)2 − ξ2)]dãi.

(3.6)
Finally applying the following integrals on a high-dimensional sphere: (1)

∫
‖y‖2=1

1dy = 2π(p+1)/2

Γ( p+1
2

)
,

(2)
∫
‖y‖2=1

x>ydy = 0, (3)
∫
‖y‖2=1

(x>y)2dy ≤ ‖x‖2
2

2π(p+1)/2

Γ( p+1
2

)
, we get

logZi
≤ −1/2−g(ξ)

2ξ
κ2‖

∑i−1
j=1 ãj‖2

2
2π(p+1)/2

Γ( p+1
2

)
+ γ + [log(1 + e−ξ) + ξ−γ

2
+ 1/2−g(ξ)

2ξ
(ξ2 − γ2)]2π(p+1)/2

Γ( p+1
2

)
.

(3.7)
The expectation of this upper bound is much easier to compute. Specifically, we need to tackle
Eq(A)[‖

∑i−1
j=1 ãj‖2

2], which can be computed as

Eq(A)[‖
∑i−1

j=1 ãj‖2
2]

= Eq(A)[
∑i−1

j=1 ã>j ãj +
∑i−1

j=1

∑i−1
k 6=j ã>j ãk]

=
∑i−1

j=1 tr(Eq(ãj)[ãjã>j ]) +
∑i−1

j=1

∑i−1
k 6=j Eq(ãj)[ãj]>Eq(ãk)[ãk]

=
∑i−1

j=1 tr(cov(ãj)) +
∑i−1

j=1

∑i−1
k=1 Eq(ãj)[ãj]>Eq(ãk)[ãk],

(3.8)
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where Eq(ãj)[ãj] = Ap(κ̂)âj , cov(ãj) = h(κ̂)
κ̂

I + (1 − 2ν+1
κ̂
h(κ̂) − h2(κ̂))âjâ

>
j , h(κ̂) = Iν+1(κ̂)

Iν(κ̂)
,

Ap(κ̂) =
Ip/2(κ̂)

Ip/2−1(κ̂)
and ν = p/2− 1.

3.1.3 Diversity-promoting Posterior Regularization
In practice, one may desire to achieve more than one diversity-promoting effects. For example,
the mutual angular regularizer [369] aims at encouraging the pairwise angles between compo-
nents to have not only large mean, but also small variance such that the components are uniformly
“different” from each other and evenly spread out to different directions in the space. It would
be extremely difficult, if ever possible, to define a proper prior that can accommodate all desired
effects. To overcome such inflexibility of the prior control method, we resort to a posterior reg-
ularization approach [424]. Instead of designing a Bayesian prior to encode the diversification
desideratum and indirectly influencing the posterior, posterior regularization directly imposes a
control over the post-data distributions to achieve diversity.

The basic idea of posterior regularization [424] is: formulate the posterior estimation prob-
lem as an optimization problem defined over a family of distributions; add a regularizer, which
encodes the desideratum, on the distributions to be optimized. In general, designing a regular-
izer is much easier than designing a proper prior. Giving the prior π(A) and the data likelihood
p(D|A), computing the posterior p(A|D) is equivalent to solving the following optimization
problem [424]

supq(A) Eq(A)[log p(D|A)π(A)]− Eq(A)[log q(A)], (3.9)

where q(A) is any valid probability distribution. To bring in diversity into the posterior, we
impose a diversity-promoting regularizerR(q(A)) over q(A) and solve the following regularized
problem:

supq(A) Eq(A)[log p(D|A)π(A)]− Eq(A)[log q(A)] + λR(q(A)), (3.10)

where λ is a tradeoff parameter.
Here we present a specific example of R(q(A)) while noting that many other choices are

applicable. Gaining insight from [369], we defineR(q(A)) as

Ω({Eq(ai)[ai]}Ki=1) = 1
K(K−1)

K∑
i=1

K∑
j 6=i

θij − γ 1
K(K−1)

K∑
i=1

K∑
j 6=i

(
θij − 1

K(K−1)

K∑
p=1

K∑
q 6=p

θpq

)2

, (3.11)

where θij = arccos( |E[ai]·E[aj ]|
‖E[ai]‖2‖E[aj ]‖2 ) is the angle measuring the dissimilarity between E[ai] and

E[aj], and the regularizer is defined as the mean of pairwise angles minus their variance. The
intuition behind this regularizer is: if the mean of angles is larger (indicating these vectors are
more different from each other on the whole) and the variance of the angles is smaller (indicating
these vectors evenly spread out to different directions), then these vectors are more diverse.

While posterior regularization is more flexible, it lacks some strengths possessed by the prior
control method. First, prior control is a more natural way of incorporating prior knowledge, with
solid theoretical foundation. Second, prior control can facilitate sampling-based algorithms that
are not applicable in posterior regularization.

89



k

z

x

y

N K

k
K



0

1

2



0

1

2

Figure 3.2: Bayesian mixture of experts with mutual angular process.

3.1.4 Case Study: Bayesian Mixture of Experts Model
In this section, we apply the two approaches developed above to “diversify” the Bayesian mixture
of experts model (BMEM) [354].

BMEM with mutual angular process The mixture of experts model (MEM) [186] has been
widely used for machine learning tasks where the distribution of input data is so complicated
that a single model (“expert”) cannot be effective for all the data. The MEM model assumes that
the input data inherently belongs to multiple latent groups and one single “expert” is allocated
to each group to handle the data therein. Here we consider a binary classification task. Let
D = {(xi, yi)}Ni=1 be the training data where x is the input feature vector and yi ∈ {1, 0} is
the class label. MEM assumes there are K latent experts where each expert is a classifier with a
coefficient vectorβ. Given a test sample x, it first goes through a gate function that decides which
expert is best suitable to classify this sample and the decision is made in a probabilistic way. A
discrete variable z is utilized to indicate the selected expert and the probability of assigning
sample x to expert k (z = k) is exp(η>k x)/

∑K
j=1 exp(η>j x) where ηk is a coefficient vector

characterizing the selection of expert k. Given the selected expert, the sample is classified using
the coefficient vector β corresponding to that expert. As described in Figure 3.2, the generative
process of {(xi, yi)}Ni=1 is as follows
• For i = 1, · · · , N

Draw zi ∼ Multi(ζ), ζk =
exp(η>k xi)∑K
j=1 exp(η>j xi)

Draw yi ∼ Bernoulli( 1
1+exp(−β>zixi)

)

As of now, the model parameters B = {βk}Kk=1 and H = {ηk}Kk=1 are deterministic variables.
Next we place a prior over them to enable Bayesian learning [354] and desire this prior to be
able to promote diversity among the experts to retain the advantages of “diversification” as stated
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before. The mutual angular processes can be applied to achieve this goal

p(B) = Cp(κ) exp(κµ>0 β̃1)
∏K

i=2Cp(κ) exp

(
κ

(
−

∑i−1
j=1 β̃j

||
∑i−1
j=1 β̃j ||2

)>
β̃i

)∏K
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)
,

(3.12)

p(H) = Cp(κ) exp(κξ>0 η̃1)
∏K

i=2 Cp(κ) exp

(
κ

(
−

∑i−1
j=1 η̃j

||
∑i−1
j=1 η̃j ||2

)>
η̃i

)∏K
i=1

ω
ω1
2 h

ω1−1
i e−hiω2

Γ(ω1)
,

(3.13)
where βk = gkβ̃k and ηk = hkη̃k.

BMEM with diversity-promoting posterior regularization As an alternative approach, the
diversity among the experts can be imposed by placing the mutual angular regularizer (Eq.(3.11))
over the post-data posteriors. The latent variables in BMEM include B, H, z = {zi}Ni=1.
The post-data distribution over them is defined as q(B,H, z) = q(B)q(H)q(z). For compu-
tational tractability, we define q(B) and q(H) to be: q(B) =

∏K
k=1 q(β̃k)q(gk) and q(H) =∏K

k=1 q(η̃k)q(hk) where q(β̃k), q(η̃k) are von Mises-Fisher distributions and q(gk), q(hk) are
gamma distributions, and define q(z) to be multinomial distributions: q(z) =

∏N
i=1 q(zi|φi)

where φi is a multinomial vector. The priors over B and H are specified to be: π(B) =∏K
k=1 p(β̃k)p(gk) and π(H) =

∏K
k=1 p(η̃k)p(hk) where p(β̃k), p(η̃k) are vMF distributions and

p(gk), p(hk) are gamma distributions. Under such a parameterization, we solve the following
diversity-promoting posterior regularization problem

supq(B,H,z) Eq(B,H,z)[log p({yi}Ni=1, z|B,H)π(B,H)]− Eq(B,H,z)[log q(B,H, z)]

+λ1Ω({Eq(β̃k)[β̃k]}Kk=1) + λ2Ω({Eq(η̃k)[η̃k]}Kk=1).
(3.14)

Note that other parameterizations are also valid, such as placing Gaussian priors over B and H
and setting q(B), q(H) to be Gaussian.

3.1.5 Evaluation
Using the Bayesian mixture of experts model as an instance, we conducted experiments to verify
the effectiveness and efficiency of our proposed approaches.

Datasets We used two binary-classification datasets. The first one is the Adult-9 [275] dataset,
which has ∼33K training instances and ∼16K testing instances. The feature dimension is 123.
The other dataset is SUN-Building compiled from the SUN [364] dataset, which contains ∼6K
building images and 7K non-building images randomly sampled from other categories, where
70% of images were used for training and the rest for testing. We used SIFT-based [236] bag-of-
words to represent the images with a dimension of 1000.

Experimental settings To understand the effects of diversification in Bayesian learning, we
compared with the following methods: (1) mixture of experts model (MEM) with L2 regular-
ization (MEM-L2) where the L2 regularizer is imposed over “experts” independently; (2) MEM
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K 5 10 20 30
MEM-L2 82.6 83.8 84.3 84.7

MEM-MAR [369] 85.3 86.4 86.6 87.1
BMEM-G 83.4 84.2 84.9 84.9

BMEM-DPP [429] 85.1 85.8 86.5 86.1
BMEM-MAP-I 87.1 88.3 88.6 88.9
BMEM-MAP-II 86.4 87.8 88.1 88.4

BMEM-PR 86.2 87.9 88.7 88.1

Table 3.1: Classification accuracy (%) on the Adult-9 dataset.

K 5 10 20 30
MEM-L2 76.2 78.8 79.4 79.7

MEM-MAR [369] 81.3 82.1 82.7 82.3
BMEM-G 76.5 78.6 80.2 80.4

BMEM-DPP [429] 80.4 81.6 83.7 84.5
BMEM-MAP-I 82.1 83.6 85.3 85.2
BMEM-MAP-II 80.9 82.8 84.9 84.1

BMEM-PR 81.7 84.1 83.8 84.9

Table 3.2: Classification accuracy (%) on the SUN-Building dataset.

with diversity-promoting mutual angular regularization [369] (MEM-MAR); (3) Bayesian MEM
with a Gaussian prior (BMEM-G) where the “experts” are independently drawn from a Gaussian
prior; (4) BMEM with a diversity-promoting determinantal point process [429] prior (BMEM-
DPP); (5) BMEM with type-(I,II) mutual angular process priors (BMEM-MAP-I, BMEM-MAP-
II); (6) BMEM with posterior regularization (BMEM-PR). BMEM-MAP-I was inferred with
MCMC sampling and BMEM-MAP-II was inferred with variational inference. In BMEM-
DPP [204], a Metropolis-Hastings sampling algorithm was adopted (variational inference and
Gibbs sampling [16] are not applicable). The key parameters involved in the above methods are:
(1) the regularization parameter λ in MEM-L2, MEM-MAR, and BMEM-PR; (2) the concen-
tration parameter κ in the mutual angular processes and variational distributions; (3) the scale
parameter of the radial basis function kernel in DPP. All parameters were tuned using 5-fold
cross validation. Besides internal comparison, we also compared with 5 well-established clas-
sification methods achieving state of the art performance. They are: (1) kernel support vector
machine (KSVM) [58]; (2) random forest (RF) [55]; (3) deep neural network (DNN) [160]; (4)
infinite SVM (ISVM) [423].

Results Table 3.1 and 3.2 show the classification accuracy under different number of “experts”
on the Adult-9 and SUN-Building dataset respectively. From these two tables, we observe that:
(1) MAP-(I,II) outperform Gaussian, demonstrating the effectiveness of promoting diversity in
Bayesian models. (2) MAP-(I,II) outperform DPP, showing their better capability in promoting
diversity than DPP. (3) Bayesian learning achieves better performance than point estimation,
which is manifested by comparing BMEM-G with MEM-L2, and comparing BMEM-MAP-

92



Adult-9 SUN-Building
BMEM-DPP 8.2 11.7

BMEM-MAP-I 7.5 10.5
BMEM-MAP-II 2.9 4.1

BMEM-PR 3.3 4.9

Table 3.3: Training time (hours) of different methods with K = 30.

Category ID C18 C17 C12 C14 C22 C34 C23 C32 C16
Number of Documents 5281 4125 1194 741 611 483 262 208 192

BMEM-G Accuracy (%) 87.3 88.5 75.7 70.1 71.6 64.2 55.9 57.4 51.3
BMEM-MAP-I Accuracy (%) 88.1 86.9 74.7 72.2 70.5 67.3 68.9 70.1 65.5

Relative Improvement (%) 1.0 -1.8 -1.3 2.9 -1.6 4.6 18.9 18.1 21.7

Table 3.4: Accuracy on 9 subcategories of the CCAT category in the RCV1.Binary dataset.

(I,II)/BMEM-PR with MEM-MAR. (4) BMEM-MAP-I works better than BMEM-MAP-II and
BMEM-PR. The possible reason is that BMEM-MAP-I inferred with MCMC draws samples
from the true posterior while BMEM-MAP-II and BMEM-PR inferred with variational inference
(VI) seek an approximation of the posterior.

However, BMEM-MAP-II is computationally more efficient than BMEM-MAP-I. Table 3.3
compares the time (hours) taken by each method to achieve convergence, with K set to 30.
BMEM-MAP-II is more efficient than BMEM-MAP-I, due to the higher efficiency of VI than
MCMC. Since VI is not applicable for DPP, BMEM-DPP is inferred using MCMC sampling,
hence is less efficient than BMEM-MAP-II.

To verify whether our methods can better capture infrequent patterns, from the RCV1 [220]
dataset we picked up a subset of documents such that the frequencies of categories have a power-
law distribution. Specifically, we chose documents from 9 subcategories (shown in the 1st row of
Table 3.4) of the CCAT category as the positive instances, and randomly sampled 15K documents
from non-CCAT categories as negative instances. The 2nd row shows the number of documents
in each of the 9 categories. The distribution of these document frequencies is in a power-law
fashion, where frequent categories (such as C18 and C17) have a lot of documents while infre-
quent categories (such as C32 and C16) have a small number of documents. The 3rd and 4th row
show the accuracy achieved by BMEM-G and BMEM-MAP-I on each category. The 5th row
shows the relative improvement of BMEM-MAP-I over BMEM-G, which is defined as Amap−Ag

Ag
,

whereAmap andAg denote the accuracy achieved by BMEM-MAP-I and BMEM-G respectively.
While achieving accuracy comparable to BMEM-G on the frequent categories, BMEM-MAP-I
obtains much better performance on the infrequent categories. For example, the relative im-
provements on infrequent categories C32 and C16 are 18.1% and 21.7%. This demonstrates that
BMEM-MAP-I can effectively capture infrequent patterns.

Our proposed diversity-promoting methods can reduce model size without sacrificing mod-
eling power. As can be seen from Table 3.1 and 3.2, using a smaller number of components,
BMEM-MAP-(I,II) and BMEM-PR achieve accuracy that is comparable to or even better than
the non-diversified BMEM-G model. For example, on the Adult-9 dataset (Table 3.2), with 5
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Adult-9 SUN-Building
KSVM [58] 85.2 84.2

RF [55] 87.7 85.1
DNN [160] 87.1 84.8
ISVM [423] 85.8 82.3

BMEM-MAP-I 88.9 85.3
BMEM-MAP-II 88.4 84.9

BMEM-PR 88.7 84.9

Table 3.5: Classification accuracy (%) on two datasets.

experts BMEM-MAP-I is able to achieve an accuracy of 87.1%, which cannot be achieved by
BMEM-G with even 30 experts.

Table 3.5 presents the comparison with state of the art classification methods. Our methods
outperform the baselines.

3.1.6 Appendix: Details of Algorithms
Variational Inference for Type I MAP

In this section, we present details on how to derive the variational lower bound

Eq(A)[log p(D|A)] + Eq(A)[log p(A)]− Eq(A)[log q(A)], (3.15)

where the variational distribution q(A) is chosen to be

q(A) =
∏K

k=1 q(ãk)q(gk) =
K∏
k=1

vMF(ãk|âk, κ̂)Gamma(gk|rk, sk). (3.16)

Among the three expectation terms, Eq(A)[log p(A)] and Eq(A)[log q(A)] are model-independent
and we discuss how to compute them in this section. Eq(A)[log p(D|A)] depends on the specific
model and a concrete example will be given later on.

First we introduce some equalities and inequalities. Let a ∼ vMF(µ, κ), then
(I) E[a] = Ap(κ)µ where Ap(κ) =

Ip/2(κ)

Ip/2−1(κ)
, and Iv(·) denotes the modified Bessel function of

the first kind at order v.
(II) cov(a) = h(κ)

κ
I + (1− 2ν+1

κ
h(κ)− h2(κ))µµT , where h(κ) = Iν+1(κ)

Iν(κ)
and ν = p/2− 1.

Please refer to [15] for the derivation of E[a] and cov(a).
(III) E[aTa] = tr(cov(a)) + A2

p(κ)µTµ.

Proof
E[tr(aTa)] = E[tr(aaT )] = tr(E[aaT ])
= tr(cov(a) + E[a]E[a]T ) = tr(cov(a)) + tr(E[a]E[a]T )
= tr(cov(a)) + A2

p(κ)µTµ
(3.17)

Let g ∼ Gamma(α, β), then
(IV) E[g] = α

β
.
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(V) E[log g] = ψ(α)− log β.
(VI) log

∑K
k=1 exp(xk) ≤ γ +

∑K
k=1 log(1 + exp(xk − γ)) and log

∫
exp(x)dx ≤ γ +

∫
log(1 +

exp(x− γ))dx, where γ is a variational parameter. See [50] for the proof.
(VII) log(1 + e−x) ≤ log(1 + e−ξ)− x−ξ

2
− 1/2−g(ξ)

2ξ
(x2− ξ2), log(1 + ex) ≤ log(1 + eξ) + x−ξ

2
−

1/2−g(ξ)
2ξ

(x2 − ξ2), where ξ is a variational parameter and g(ξ) = 1/(1 + exp(−ξ)). See [50] for
the proof.
(VIII)

∫
‖y‖2=1

1dy = 2π(p+1)/2

Γ( p+1
2

)
, which is the surface area of the p-dimensional unit sphere. Γ(·) is

the gamma function.
(IX)

∫
‖y‖2=1

xTydy = 0, which can be shown according to the symmetry of the unit sphere.

(X)
∫
‖y‖2=1

(xTy)2dy ≤ ‖x‖2
2

2π(p+1)/2

Γ( p+1
2

)
.

Proof ∫
‖y‖2=1

(xTy)2dy

= ‖x‖2
2

∫
‖y‖2=1

(( x
‖x‖2 )Ty)2dy

= ‖x‖2
2

∫
‖y‖2=1

(eT1 y)2dy

(according to the symmetry of unit sphere)
≤‖x‖2

2

∫
‖y‖2=1

1dy

= ‖x‖2
2

2π(p+1)/2

Γ( p+1
2

)

(3.18)

Given these equalities and inequalities, we can upper bound logZi and use this upper bound to
lower-bound Eq(A)[log p(A)]

Eq(A)[log p(A)]

= Eq(A)[log p(ã1)
∏K

i=2 p(ãi|{ãj}
i−1
j=1)

∏K
i=1 q(gi)]

= Eq(A)[log p(ã1)
K∏
i=2

exp(κ(−
∑i−1
j=1 ãj)·ãi)
Zi

K∏
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)
]

≥ κµT
0Eq(ã1)[ã1] +

∑K
i=2(−κ

∑i−1
j=1 Eq(ãj)[ãj] · Eq(ãi)[ãi] − γi − (log(1 + e−ξi) + ξi−γi

2

+1/2−g(ξi)
2ξi

(ξ2
i − γ2

i ))
2π(p+1)/2

Γ( p+1
2

)
+ 1/2−g(ξi)

2ξi
κ2Eq(A)[‖

∑i−1
j=1 ãj‖2

2]2π(p+1)/2

Γ( p+1
2

)
) +K(α1 logα2

− log Γ(α1)) +
K∑
i=1

(α1 − 1)Eq(gi)[log gi]− α2Eq(gi)[gi] + const

≥ κAp(κ̂)µT
0 â1 +

∑K
i=2(−κAp(κ̂)2

∑i−1
j=1 âj · âi − γi − (log(1 + e−ξi) + ξi−γi

2

+1/2−g(ξi)
2ξi

(ξ2
i − γ2

i ))
2π(p+1)/2

Γ( p+1
2

)
+ 1/2−g(ξi)

2ξi
κ2(A2

p(κ̂)
∑i−1

j=1

∑i−1
k 6=j âj · âk +

∑i−1
j=1(tr(Λj)

+A2
p(κ̂)âTj âj))

2π(p+1)/2

Γ( p+1
2

)
) +K(α1 logα2 − log Γ(α1)) +

∑K
i=1(α1 − 1)(ψ(ri)− log(si))− α2

ri
si

+ const,
(3.19)

where Λj = h(κ̂)
κ̂

I + (1− 2ν+1
κ̂
h(κ̂)− h2(κ̂))âjâ

T
j .

The other expectation term Eq(A)[log q(A)] can be computed as

Eq(A)[log q(A)]

= Eq(A)[log
K∏
k=1

vMF(ãk|âk, κ̂)Gamma(gk|rk, sk)]

=
K∑
k=1

κ̂Ap(κ̂)‖α̂k‖2
2 + rk log sk − log Γ(rk) + (rk − 1)(ψ(rk)− log(sk))− rk.

(3.20)
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Variational Inference for BMEM-MAP-II

In this section, we discuss how to derive the variational lower bound for BMEM-MAP-II. The
latent variables are {βk}Kk=1, {ηk}Kk=1, and {zn}Nn=1. The joint distribution of all variables is

p({βk}Kk=1, {ηk}Kk=1, {xn, yn, zn}Nn=1)
= p({yn}Nn=1|{xn}Nn=1, {zn}Nn=1, {βk}Kk=1)p({zn}Nn=1|{xn}Nn=1, {ηk}Kk=1)p({βk}Kk=1)p({ηk}Kk=1).

(3.21)
To perform variational inference, we employ a mean field variational distribution

Q = q({βk}Kk=1, {ηk}Kk=1, {zn}Nn=1)

=
K∏
k=1

q(βk)q(ηk)
∏N

n=1 q(zn)

=
K∏
k=1

vMF(β̃k|β̂k, κ̂)Gamma(gk|rk, sk)vMF(η̃k|η̂k, κ̂)Gamma(hk|tk, uk)
N∏
n=1

q(zn|φn).

(3.22)
Accordingly, the variational lower bound is

EQ[log p({βk}Kk=1, {ηk}Kk=1, {xn, yn, zn}Nn=1)]− EQ[log q({βk}Kk=1, {ηk}Kk=1, {zn}Nn=1)]
= EQ[log p({yn}Nn=1|{xn}Nn=1, {zn}Nn=1, {βk}Kk=1)] + EQ[log p({zn}Nn=1|{xn}Nn=1, {ηk}Kk=1)]
+EQ[log p({βk}Kk=1)]) + EQ[log p({ηk}Kk=1)])− EQ[log q({βk}Kk=1)]− EQ[log q({ηk}Kk=1)]
−EQ[log q({zn}Nn=1)],

(3.23)
where EQ[log p({βk}Kk=1)] and EQ[log p({ηk}Kk=1)] can be lower bounded in a similar way as that
in Eq.(3.19). EQ[log q({βk}Kk=1)] and EQ[log q({ηk}Kk=1)] can be computed in a similar manner
as that in Eq.(3.20). Next we discuss how to compute the remaining expectation terms.

Compute EQ[log p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1)] First, p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1) is defined
as

p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1)

=
N∏
n=1

p(zn|xn, {ηk}Kk=1)

=
N∏
n=1

K∏
k=1

[exp(ηT
kxn)]znk∑K

j=1 exp(ηT
j xn)

.

(3.24)
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log p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1) can be lower bounded as

log p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1)

=
N∑
n=1

K∑
k=1

znkη
T
k xn − log(

∑K
j=1 exp(ηT

j xn))

=
N∑
n=1

K∑
k=1

znkhkη̃
T
k xn − log(

∑K
j=1 exp(ηT

j xn))

≥
N∑
n=1

K∑
k=1

znkhkη̃
T
k xn − cn −

∑K
j=1 log(1 + exp(ηT

j xn − cn))(Using Inequality VI)

≥
N∑
n=1

K∑
k=1

znkhkη̃
T
k xn − cn −

∑K
j=1[log(1 + e−dnj)− cn−ηT

j xn−dnj
2

− 1/2−g(dnj)
2dnj

((ηT
j xn − cn)2 − d2

nj)]

(Using Inequality VII)
(3.25)

The expectation of log p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1) can be lower bounded as

E[log p({zn}Nn=1|{ηk}Kk=1, {xn}Nn=1)]

= Ap(κ̂)
N∑
n=1

K∑
k=1

φnk
tk
uk
η̂T
k xn − cn −

∑K
j=1[log(1 + e−dnj)− (cn − Ap(κ̂)

tj
uj
η̂T
j xn − dnj)/2

−1/2−g(dnj)
2dnj

(
tj+t

2
j

u2j
E[η̃T

j xnx
T
n η̃j]− 2cnAp(κ̂)

tj
uj
η̂T
j xn + c2

n − d2
nj)],

(3.26)
where

E[η̃T
k xnx

T
n η̃k]

= E[tr(η̃T
k xnx

T
n η̃k)]

= E[tr(xnx
T
n η̃kη̃

T
k )]

= tr(xnx
T
nE[η̃kη̃

T
k ])

= tr(xnx
T
n(E[η̃k]E[η̃k]

T + cov(η̃k))).

(3.27)

Compute E[log p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1)] p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1) is defined as

p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1)

=
N∏
n=1

p(yn|zn, {βk}Kk=1)

=
N∏
n=1

1
K∏
k=1

[1+exp(−(2yn−1)βT
kxn)]znk

.

(3.28)

log p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1) can be lower bounded by

log p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1)

= −
N∑
n=1

K∑
k=1

znk log(1 + exp(−(2yn − 1)βT
k xn))

≥
N∑
n=1

K∑
k=1

znk[− log(1 + e−enk) + ((2yn − 1)βT
k xn − enk)/2 + 1/2−g(enk)

2enk
((βT

k xn)2 − e2
nk)].

(3.29)
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E[log p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1)] can be lower bounded by

E[log p({yn}Nn=1|{βk}Kk=1, {zn}Nn=1)]

≥
N∑
n=1

K∑
k=1

φnk[− log(1 + e−enk) + (Ap(κ̂) rk
sk
β̂T
k xn − enk)/2 + 1/2−σ(enk)

2enk
(
rk+r2k
s2k

E[β̃T
k xnx

T
nβ̃k]− e2

nk)]

(Using Inequality VII)
(3.30)

where E[β̃T
k xnx

T
nβ̃k] can be computed in a similar way as that in Eq.(3.27).

Compute E[log q(zi)]

E[log q(zi)] =
K∑
k=1

φik log φik. (3.31)

In the end, we can get a lower bound of the variational lower bound, then learn all the pa-
rameters by optimizing the lower bound via coordinate ascent. In each iteration, we select one
parameter x and fix all other parameters, which leads to a sub-problem defined over x. Then we
optimize the sub-problem w.r.t x. For some parameters, the optimal solution of the sub-problem
is in closed form. If not the case, we optimize x using the gradient ascent method. This pro-
cess iterates until convergence. We omit the detailed derivation here since it only involves basic
algebra and calculus, which can be done straightforwardly.

MCMC Sampling for Type-I MAP

The type-I MAP prior is not amenable for variational inference. Instead, we use an alternative
approximation inference method — Markov chain Monte Carlo (MCMC) [127] sampling, which
draws samples directly from the true posterior distribution and uses the samples to represent the
posterior. Specifically we choose the Metropolis-Hastings (MH) algorithm [127] which gener-
ates samples from an adaptive proposal distribution, computes acceptance probabilities based on
the unnormalized true posterior, and uses the acceptance probabilities to decide whether a sam-
ple should be accepted or rejected. The most commonly used proposal distribution is based on
the random walk: the newly proposed sample t + 1 comes from a random perturbation around
the previous sample t. For the directional variables {ãi}Ki=1 and magnitude variables {gi}Ki=1, we
define the proposal distributions to be a von Mises-Fisher distribution and a normal distribution
respectively:

q(ã
(t+1)
i |ã(t)

i ) = Cp(κ̂) exp
(
κ̂ã

(t+1)
i · ã(t)

i

)
q(g

(t+1)
i |g(t)

i ) = 1
σ
√

2π
exp

{
− (g

(t+1)
i −g(t)i )2

2σ2

}
.

(3.32)

g
(t+1)
i is required to be positive, but the Gaussian distribution may generate non-positive samples.

To address this problem, we adopt a truncated sampler [360] which repeatedly draws samples
until a positive value is obtained. Under such a truncated sampling scheme, the MH acceptance
ratio needs to be modified accordingly.

The MAP is parameterized by several deterministic parameters including κ, µ0, α1, α2.
Among them, we tune κ manually via cross validation and learn the others via an expectation
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maximization (EM) framework. Let x denote the observed data, z denote all random variables,
and θ denote the deterministic parameters {µ0, α1, α2}. EM is an algorithm aiming at learning
θ by maximizing the log-likelihood p(x;θ) of data. It iteratively performs two steps until con-
vergence. In the E step, θ is fixed and the posterior p(z|x) is inferred using the aforementioned
Metropolis-Hastings algorithm. In the M step, θ is learned by optimizing a lower bound of the
log-likelihood Ep(z|x)[log p(x, z;θ)], where the expectation is computed w.r.t the posterior p(z|x)
inferred in the E step. The parameters κ̂ and σ in the proposal distributions are tuned manually.

Algorithm for Posterior-Regularized BMEM

In this section, we present the algorithm details of the posterior-regularized BMEM. Recall that
the problem is

supq(B,H,z) Eq(B,H,z)[log p({yi}Ni=1, z|B,H)π(B,H)]− Eq(B,H,z)[log q(B,H, z)]

+λ1Ω({Eq(β̃k)[β̃k]}Kk=1) + λ2Ω({Eq(η̃k)[η̃k]}Kk=1),
(3.33)

where B = {βk}Kk=1, H = {ηk}Kk=1, and z = {zi}Ni=1 are latent variables and the post-data
distribution over them is defined as q(B,H, z) = q(B)q(H)q(z). For computational tractability,
we define q(B) and q(H) to be: q(B) =

∏K
k=1 q(β̃k)q(gk) and q(H) =

∏K
k=1 q(η̃k)q(hk) where

q(β̃k), q(η̃k) are von-Mises Fisher distributions and q(gk), q(hk) are gamma distributions, and
define q(z) to be multinomial distributions: q(z) =

∏N
i=1 q(zi|φi) where φi is a multinomial

vector. The priors over B and H are specified to be: π(B) =
∏K

k=1 p(β̃k)p(gk) and π(H) =∏K
k=1 p(η̃k)p(hk) where p(β̃k), p(η̃k) are von-Mises Fisher distributions and p(gk), p(hk) are

gamma distributions.
The objective in Eq.(3.33) can be further written as

Eq(B,H,z)[log p({yi}Ni=1, z|B,H)π(B,H)]− Eq(B,H,z)[log q(B,H, z)] + λ1Ω({Eq(β̃k)[β̃k]}Kk=1)

+λ2Ω({Eq(η̃k)[η̃k]}Kk=1)
=Eq(B,z)[log p({yi}Ni=1|z,B)] + Eq(H,z)[log p(z|H)] + Eq(H)[log π(H)] + Eq(B)[log π(B)]

−Eq(B)[log q(B)]− Eq(H)[log q(H)]− Eq(z)[log q(z)] + λ1Ω({Eq(β̃k)[β̃k]}Kk=1)

+λ2Ω({Eq(η̃k)[η̃k]}Kk=1).
(3.34)

Among these expectation terms, Eq(B,z)[log p({yi}Ni=1|z,B)] can be computed via Eq.(3.28-3.30)
and Eq(H,z)[log p(z|H)] can be computed via Eq.(3.24-3.27). Eq(H)[log π(H)], Eq(B)[log π(B)],
Eq(B)[log q(B)], Eq(H)[log q(H)] can be computed in a way similar to that in Eq.(3.20). Eq(z)[log q(z)]
can be computed via Eq.(3.31). Given all these expectations, we can get an analytical expression
of the objective in Eq.(3.33) and learn the parameters by optimizing this objective. Regarding
how to optimize the mutual angular regularizers Ω({Eq(β̃k)[β̃k]}Kk=1) and Ω({Eq(η̃k)[η̃k]}Kk=1),
please refer to [369] for details.
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3.2 Diversity-promoting Learning of Bayesian Nonparamet-
ric Models

In the last section, we study how to promote diversity among a finite number of components in
parametric models. In this section, we investigate how to achieve this goal in Bayesian nonpara-
metric (BNP) [111] models where the component number is infinite in principle, by extending
the mutual angular process (Section 3.1.1) to an infinite MAP (IMAP).

Different from parametric models where the component number is set to an finite value and
does not change throughout the entire execution of algorithm, in BNP models the number of
components is unlimited and can reach infinite in principle. As more data accumulates, new
components are dynamically added. Compared with parametric models, BNP models possess
the following advantages: (1) they are highly flexible and adaptive: if new data cannot be well
modeled by existing components, new components are automatically invoked; (2) in BNP mod-
els, the “best” number of components is determined according to the fitness to data, rather than
being manually set which is a challenging task even for domain experts.

A BNP model consists of an infinite number of components, each parameterized by a vector.
For example, in the Dirichlet process Gaussian mixture model (DP-GMM) [48, 286], the compo-
nents are called clusters, each parameterized with a Gaussian mean vector. In the Indian buffet
process latent feature model (IBP-LFM) [143], the components are called features, each parame-
terized by a weight vector. Given infinitely many components, BNP models design some proper
mechanism to select one or a finite subset of components to model each observed data example.
For example, in DP-GMM, a Chinese restaurant process (CRP) [18] is designed to assign each
data example to one of the infinitely many clusters. In IBP-LFM, an Indian buffet process (IBP)
[143] is utilized to select a finite set of features from the infinite feature pool to reconstruct each
data example. A BNP model typically consists of two priors. One is a base distribution from
which the parameter vectors of components are drawn. The other is a stochastic process – such
as CRP and IBP – which designates how to select components to model data. The IMAP prior
proposed in this section belongs to the first regime. It is commonly assumed that the parameter
vectors of components are independently drawn from the same base distribution. For example,
in both DP-GMM and IBP-LFM, the mean vectors and weight vectors are independently drawn
from a Gaussian distribution. In our work, we aim at designing a prior that encourages the com-
ponent vectors to be mutually different and “diverse”, under which the component vectors are
not independent anymore, which presents great challenges for posterior inference.

To “diversify” BNP models, we extend the mutual angular process to an infinite MAP (IMAP)
that encourages infinitely many components to have large angles. In this prior, the components
are mutually dependent, which is challenging to perform posterior inference. We develop an
efficient posterior inference algorithm based on slice sampling [329] and Riemann manifold
Hamiltonian Monte Carlo [129]. We apply the IMAP to induce diversity in the infinite latent
feature model (ILFM) [142] and experiments on various datasets demonstrate that the IMAP
is able to (1) achieve better performance with fewer components, (2) better capture infrequent
patterns, and (3) reduce overfitting.
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Related works Several works studied how to promote diversity in Bayesian nonparametric
models. In Xu et al. [386], the component number is treated as a random variable. To obtain
a unknown number of “diverse” components, they first sample a component number K from
a prior, then generate K “diverse” component vectors using DPP. They apply this approach to
“diversify” the cluster centers in the Dirichlet process mixture model (DPMM) [111] and feature
allocation vectors in the infinite latent feature model (ILFM). However, it is unclear how to apply
this method to “diversify” the weight vectors of the latent features in ILFM when it is coupled
with the Indian buffet process [142]. They use a reversible jump MCMC algorithm for posterior
inference, which is not scalable for high-dimensional problems. Xie and Xu [366] proposed a
Bayesian repulsive Gaussian mixture model where the cluster centers in DPMM are encouraged
to be “diverse”. Their approach for inducing diversity is not applicable to the ILFM model.

3.2.1 Infinite Mutual Angular Process
In this section, we aim at designing a Bayesian nonparametric prior to promote diversity among
infinitely many components, which is very challenging and presumably much more difficult than
inducing diversity among a finite set of components. Taking the determinantal point process
(DPP) [204] as example, in the finite case, a kernel matrix is computed over the component
vectors and the determinant of this matrix is employed as a measure of diversity. In the infinite
case, the kernel matrix would have an infinite number of rows and columns, whose determinant
cannot be defined.

One possible reason that renders DPP fails to be extended to the infinite case is that DPP
measures the diversity of components in a batch mode: the similarity between each pair of com-
ponents is measured in one shot, then these similarity scores is aggregated into a diversity score
(via the determinant). In the infinite case, the number of similarity scores is infinite. How to
aggregate infinitely many scores into one single score and meanwhile guarantee the prior distri-
bution derived thereafter is proper (integrating to one) is a highly challenging issue. As discussed
in Section 3.1.1, one way to solve this problem is to bring in diversity in a sequential mode: each
time we add one component to the component pool and encourage the new component to be
different from the existing ones. The number of existing components is always finite, hence
the (dis)similarity measurement always occurs between one component (the new one) and a fi-
nite set of components (the existing ones), which stands in contrast with the batch mode where
each component is measured against infinitely many components. This adding process can be
repeated infinitely many times, providing a natural way to accommodate an infinite number of
components into the BNP models.

Similar to the mutual angular process in Section 3.1.1, we use a Bayesian network (BN)
[198] to model the adding process of components and design local probability at each node of
the BN to encourage the components to have large mutual angles. Repeating the adding process
infinitely many times, we end up with a prior that encourages an infinite number of components
to have large mutual angles

p({ãi}∞i=1) = p(ã1)
∞∏
i=2

p(ãi|pa(ãi)), (3.35)
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where {ãi}∞i=1 are the directional vectors of components. The factorization theorem [198] of
Bayesian networks ensures that p({ãi}∞i=1) integrates to one. The magnitudes {gi}∞i=1 do not
affect angles, which can be generated independently from a gamma distribution.

The generative process of components {ai}∞i=1 can be summarized as follows:
• Sample ã1 ∼ vMF(µ0, κ)

• For i = 2, · · · ,∞, sample ãi ∼ vMF(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

, κ)

• For i = 1, · · · ,∞, sample gi ∼ Gamma(α1, α2)

• For i = 1, · · · ,∞, ai = ãigi
The probability distribution of {ai}∞i=1 can be written as

p({ai}∞i=1) = Cp(κ) exp(κµ>0 ã1)
∏∞

i=2 Cp(κ) exp

(
κ

(
−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>
ãi

)∏∞
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)
.

(3.36)

3.2.2 Case Study: Infinite Latent Feature Model
In this section, using the infinite latent feature model (ILFM) [142] as a study case, we show how
to promote diversity among the components therein with the IMAP prior. Given a set of data
examples X = {xn}Nn=1 where xn ∈ RD, ILFM aims at invoking a finite subset of features from
an infinite feature collectionA = {ak}∞k=1 to construct these data examples. Each feature (which
is a component in this BNP model) is parameterized by a vector ak ∈ RD. For each data example
xn, a subset of features are selected to construct it. The selection is denoted by a binary vector
zn ∈ {0, 1}∞ where znk = 1 denotes the k-th feature is invoked to construct the n-th example and
znk = 0 otherwise. Given the parameter vectors of features {ak}∞k=1 and the selection vector zn,
the example xn can be represented as: xn ∼ N (

∑∞
k=1 znkak, σ

2I). The binary selection vectors
Z = {zn}Nn=1 can be either drawn from an Indian buffet process (IBP) [143] or a stick-breaking
construction [329]. Let µk be the prior probability that feature k is present in a data example
and the features are permuted such that their prior probabilities are in a decreasing ordering:
µ(1) > µ(2) > · · · . According to the stick-breaking construction, these prior probabilities can
be generated in the following way: νk ∼ Beta(α, 1), µ(k) = νkµ(k−1) =

∏k
l=1 νl. Given µ(k),

the binary indicator znk is generated as znk|µ(k) ∼ Bernoulli(µ(k)). To reduce the redundancy
among the features, we impose the IMAP over their parameter vectors A to encourage them to
be mutually different, which results in an IMAP-LFM model.

3.2.3 A Sampling-based Inference Algorithm
In this section, we develop a sampling algorithm to infer the posteriors ofA and Z in the IMAP-
LFM model. Two major challenges need to be addressed. First, the prior overA is not conjugate
to the likelihood function p(x). Second, the parameter vectors A are usually high-dimensional,
rendering slow mixing. To address the first challenge, we adopt a slicing sampling algorithm
[329]. This algorithm introduces an auxiliary slice variable s|Z, µ(1:∞) ∼ uniform[0, µ∗], where
µ∗ = min{1, min

k:∃n,znk=1
µk} is the prior probability of the last active feature. A feature k is active

102



Algorithm 2: A manifold Hamiltonian Monte Carlo algorithm for sampling ã.
01. v ∼ N (0, I)
02. v← v − (I− ãã>)v
03. h← log p(ã|rest)− 1

2
v>v

04. ã∗ ← ã
05. for τ = 1, · · · , T do
06. v← v + ε

2
∇ã∗ log p(ã∗|rest)

07. v← v − ãã>v
08. ã∗ ← cos(ε‖v‖2)ã∗ + ‖v‖−1

2 sin(ε‖v‖2)v
09. v← −‖v‖2 sin(ε‖v‖2)ã∗ + cos(ε‖v‖2)v
10. v← v + ε

2
∇ã∗ log p(ã∗|rest)

11. v← v − ãã>v
12. end for
13. h∗ ← log p(ã∗|rest)− 1

2
v>v

14. u ∼ uniform(0, 1)
15. if u < exp(h∗ − h)
16. ã← ã∗

17. end if

if there exists an example n such that znk = 1 and is inactive otherwise. In the sequel, we discuss
the sampling of other variables.

Sample new features Let K∗ be the maximal feature index with µ(K∗) > s and K+ be the
index such that all active features have index k < K+ (K+ itself would be an inactive feature).
If the new value of s makes K∗ ≥ K+, then we draw K∗ − K+ + 1 new (inactive) features,
including the parameter vectors and prior probabilities. The prior probabilities {µ(k)} are drawn
sequentially from p(µ(k)|µ(k−1)) ∝ exp(α

∑N
n=1

1
n
(1 − µ(k))

n)µα−1
(k) (1 − µ(k))

NI(0 ≤ µ(k) ≤
µ(k−1)) using the adaptive rejection sampling (ARS) [128] method. The parameter vectors are
drawn sequentially from

p(ak|{aj}k−1
j=1) = p(ãk|{ãj}k−1

j=1)p(gk) = Cp(κ) exp

(
κ

(
−

∑k−1
j=1 ãj

‖
∑k−1
j=1 ãj‖2

)>
ãk

)
α
α1
2 g

α1−1
i e−giα2

Γ(α1)
,

(3.37)
where we draw ãk from p(ãk|{ãj}k−1

j=1) which is a von Mises-Fisher distribution and draw gk
from a gamma distribution, then multiply ãk and gk together since they are independent. For
each new feature k, the corresponding binary selection variables z:,k are initialized to zero.

Sample existing µ(k) (1 ≤ k ≤ K+ − 1) We sample µ(k) from p(µ(k)|rest) ∝ µmk−1
(k) (1 −

µ(k))
N−mkI(µ(k+1) ≤ µ(k) ≤ µ(k−1)), where mk =

∑N
n=1 znk.

Sample znk (1 ≤ n ≤ N, 1 ≤ k ≤ K∗) Given s, we only need to sample znk for k ≤ K∗ from
p(znk = 1|rest) ∝ µ(k)

µ∗
p(xn|zn,¬k, znk = 1, {aj}K

+

j=1), where p(xn|zn,¬k, znk = 1, {aj}K
+

j=1) =
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Dataset IBP-LFM PYP-LFM IMAP-LFM
Yale 447±7 432±3 419±4

Block (×10−2) 6.3±0.4 5.8±0.1 4.4±0.2
AR 926±4 939±11 871±7

EEG (+2.1× 106) 5382±34 3731±15 575±21
Piano (×10−4) 5.3±0.1 5.7±0.2 4.2±0.2

Table 3.6: L2 test error.

Dataset IBP-LFM PYP-LFM IMAP-LFM
Yale -16.4±0.3 -14.9 ±0.4 -12.7±0.1

Block-Image -2.1±0.2 -1.8±0.1 -1.4±0.1
AR -13.9±0.3 -14.6±0.7 -8.5±0.4

EEG -14133±54 -12893 ±73 -9735±32
Piano -6.8±0.6 -6.9±0.2 -4.2±0.5

Table 3.7: Test log-likelihood.

N (xn|ak +
∑K+

j 6=k znjaj, σI) and zn,¬k denotes all other elements in z except the k-th one and
aj = ãjgj .

Sample ak (k = 1, · · · , K+) We draw ak = ãkgk from the following conditional probability

p(ãkgk|rest) ∝ p(ãkgk|{aj}K
+

j 6=k)
N∏
n=1

p(xn|zn,1:K+ , {aj}K
+

j 6=k, ãkgk), (3.38)

where p(ãkgk|{aj}K
+

j 6=k) ∝ p(ãkgk|{ai}k−1
i=1 )

∏K+

j=k+1 p(aj|{ai}
j−1
i 6=k , ãkgk) and p(xn|zn,1:K+ , {aj}K

+

j 6=k,

ãkgk) = N (xn|ãkgk +
∑K+

j 6=k znjaj, σI). In the vanilla IBP latent feature model [143], the prior
over ak is a Gaussian distribution, which is conjugate to the Gaussian likelihood function. In that
case, the posterior p(ak|rest) is again a Gaussian, from which samples can be easily drawn. But
in Eq.(3.38), the posterior does not have a closed form expression since the prior p(ãkgk|{aj}K

+

j 6=k)
is no longer a conjugate prior, making the sampling very challenging.

We sample ãk and gk separately. gk can be efficiently sampled using the Metropolis-Hastings
(MH) [152] algorithm. For ãk which is a random vector, the sampling is much more diffi-
cult. The random walk based MH algorithm suffers slow mixing when the dimension of ãk
is large (which is typically the case). In addition, ãk lies on a unit sphere. The sampling
algorithm should preserve this geometric constraint. To address these two issues, we study
a Riemann manifold Hamiltonian Monte Carlo (RM-HMC) method [59, 129]. HMC lever-
ages the Hamiltonian dynamics to produce distant proposals for the Metropolis-Hastings al-
gorithm, enabling a faster exploration of the state space and faster mixing. The RM-HMC
algorithm introduces an auxiliary vector v and defines a Hamiltonian function H(ãk,v) =
− log p(ãk|rest) + log |G(ãk)| + 1

2
v>G(ãk)

−1v, where G is the metric tensor associated with
the Riemann manifold, which in our case is a unit sphere. After a transformation of the coordi-
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Dataset IBP-LFM PYP-LFM IMAP-LFM
Reuters 45.4±0.3 43.1±0.4 48.2±0.6

TDT 48.3±0.7 47.5±0.3 53.2±0.4
20-News 21.5±0.1 23.7±0.2 25.2±0.1

15-Scenes 22.7±0.2 21.9±0.4 25.3±0.2
Caltech-101 11.6±0.4 12.1±0.1 14.7±0.2

Table 3.8: Clustering accuracy (%).

Dataset IBP-LFM PYP-LFM IMAP-LFM
Reuters 41.7±0.5 38.6±0.2 45.4±0.4

TDT 44.2±0.1 46.7±0.3 49.6±0.6
20-News 38.9±0.8 35.2±0.5 44.6±0.9

15-Scenes 42.1±0.7 44.9±0.8 47.5±0.2
Caltech-101 34.2±0.4 36.8±0.4 40.3±0.3

Table 3.9: Normalized mutual information (%).

nate system, H(ãk,v) can be re-written as

H(ãk,v) = − log p(ã|rest) +
1

2
v>v. (3.39)

p(ãk|rest) needs not to be normalized and log p(ãk|rest) ∝ κ(−
∑k−1
j=1 ãj

‖
∑k−1
j=1 ãj‖2

)>ãk +
∑K+

j=k+1

κ(−
∑j−1
i 6=k ãi+ãkgk

‖
∑j−1
i 6=k ãi+ãkgk‖2

)>ãj +
∑N

n=1
1
σ
(xn −

∑K+

j 6=k znjaj)
>ãkgk − 1

2σ
‖ãkgk‖2

2. A new sample of

ãk can be generated by approximately solving a system of differential equations characterizing
the Hamiltonian dynamics on the manifold [129]. Following [59], we solve this problem based
upon geodesic flow, which is shown in Line 6-11 in Algorithm 2. Line 6 performs an update
of v according to the Hamiltonian dynamics, where ∇ã∗ log p(ã∗|rest) denotes the gradient of
log p(ã∗|rest) w.r.t ã∗. Line 7 performs the transformation of the coordinate system. Line 8-9
calculate the geodesic flow on the unit sphere. Line 10-11 repeat the update of v as done in
Line 6-7. These procedures are repeated T times to generate a new sample ã∗, which then goes
through an acceptance/rejection procedure (Line 3, 13-17).

3.2.4 Evaluation
We evaluated the effectiveness of the IMAP prior in alleviate overfitting, reducing model size
without sacrificing modeling power, and capturing infrequent patterns, on a wide range of datasets.

Datasets We used ten datasets from different domains including texts, images, audio, and EEG
signals: Yale [125], Block-Images [361], AR [249], EEG [165], Piano [276], Reuters [10],
TDT [4], 20-News [1], 15-Scenes [212], and Caltech-101 [110]. The first five datasets were
represented as raw data without feature extraction. The documents in Reuters, TDT, and 20-
News were represented with bag-of-words vectors, weighted using tf-idf. The images in 15-
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Method
Yale AR

Train Test Train Test
IBP-LFM [142] -9.2 -16.4 -6.7 -13.9

IMAP-LFM -9.8 -12.7 -7.2 -8.5

Table 3.10: Log-likelihood on the training and testing sets of Yale and AR.

Yale AR
# Features L2 Error # Features L2 Error

IBP-LFM [142] 162 445 175 922
IMAP-LFM 165 419 176 871

Table 3.11: Number of latent features and L2 test errors.

Scenes [212] and Caltech-101 [110] were represented with visual bag-of-words vectors based
on the SIFT [237] features. The train/test split of each dataset was 70%/30%. The results were
averaged over five random splits.

Experimental setup For each dataset, we used the IMAP-LFM model to learn the latent fea-
tures A on the training set, then used A to reconstruct the test data. The reconstruction per-
formance was measured using log-likelihood (the larger, the better). Meanwhile, we used A to
infer the representations Z of test data and performed data clustering on Z . Clustering perfor-
mance was measured using accuracy and normalized mutual information (NMI) (the higher, the
better) [61]. We compared with two baselines: the Indian buffet process LFM (IBP-LFM) [142]
and the Pitman-Yor process LFM (PYP-LFM) [327]. In IBP-LFM, posterior inference was per-
formed with the slice sampling algorithm [329]. For PYP-LFM inference, we used the algorithm
proposed in [327]. To attain a better local optimal, for each experiment run, we performed 5
random restarts and chose the best solution. The initialization for all models were the same.
Following [105], all datasets were centered to have zero mean. We used grid search and 5-fold
cross-validation to tune the hyper-parameters for all methods. In our method, κ in Eq.(3.36) was
set to 1. σ2 was set to 0.25σ̂ where σ̂ is the standard deviation of data across all dimensions. α
was set to 2. The hyper-parameters of the RM-HMC algorithm followed those in [59].

Results We first verify whether the features learned by IMAP-LFM are diverse. We computed
the average of the cosine similarities between each pair of latent features. Features with smaller
average cosine similarity (ACS) are considered to be more diverse. On the Reuters dataset,
the ACS for IBP-LFM, PYP-LFM, and IMAP-LFM are 0.72, 0.69, 0.61, respectively. IMAP-
LFM also achieves smaller ACS on other datasets. This shows that IMAP effectively promotes
diversity.

Table 3.6 and 3.7 present the L2 error and log-likelihood (mean±standard error) on the test
set of the first five datasets. The standard errors were computed from the 5 random train/test
splits for each dataset. As can be seen, IMAP-LFM achieves much lower L2 error and higher
log-likelihood than IBP-LFM and PYP-LFM. Table 3.8 and 3.9 show the clustering accuracy
and NMI (mean±standard error) on the last 5 datasets which have class labels. IMAP-LFM
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Dataset IBP-LFM [142] PYP-LFM [327] IMAP-LFM
Yale 201±5 220±8 165±4

Block-Image 8±2 9±4 11±4
AR 257±11 193±5 176±8

EEG 14±2 9±2 12±1
Piano 37±4 34±6 28±3

Reuters 354±12 326±5 294±7
TDT 297±6 311±9 274±3

20-News 442±8 408±3 369±5
15-Scenes 192±3 218±5 171±8

Caltech-101 127±7 113±6 96±6

Table 3.12: Number of features.

outperforms the two baseline methods with a large margin.
Regarding why IMAP-LFM outperforms the baselines, we conjecture the reasons are two-

fold. First, IMAP is more capable of alleviating overfitting. To verify this, we show the log-
likelihood on the training and testing sets of Yale and AR in Table 3.10. Compared with IBP-
LFM, IMAP-LFM achieves lower training log-likelihood and higher test log-likelihood. In
IMAP-LFM, the gap between training and testing log-likelihood is smaller than that in IBP-
LFM. This demonstrates that IMAP can better reduce overfitting. In both IBP-LFM and PYP-
LFM, the weight vectors of latent features are drawn independently from a Gaussian distribution,
which is unable to characterize the relations among features. In contrast, IMAP-LFM imposes a
structure over the features, encouraging them to be “diverse” and less redundant. This diversity-
biased structural constraint reduces model complexity of LFM, thus alleviating overfitting on the
training data and achieving better reconstruction of the test data. Second, “diversified” features
presumably have higher representational power and are able to capture richer information and
subtle aspects of data, thus achieving a better modeling effect.

The L2 error and log-likelihood depend on two major factors: (1) model size, which is pro-
portional to the number of latent features; (2) the level of “diversity” among the latent features.
To clearly see the effect of (2), we removed the impact of (1) by tuning the hyperparameters of
IBP-LFM and IMAP-LFM so that they have roughly the same feature number. Table 3.11 shows
the number of features learned on the training set and the L2 error on the test set of Yale and AR.
IMAP-LFM has almost the same feature number as IBP-LFM, but achieves significantly lower
L2 error on the test set. This indicates that diversified features are better than non-diversified
features.

Table 3.12 shows the number of features (mean±standard error) obtained by each model
when the algorithm converges. Analyzing Table 3.6-3.9 and 3.12 simultaneously, we see that
IMAP-LFM uses much fewer features to achieve better performance than the baselines. For
instance, on the Reuters dataset, with 294 features, IMAP-LFM achieves a 48.2% clustering
accuracy. In contrast, IBP-LFM uses 60 more features, but achieves 2.8% (absolute) lower accu-
racy. This suggests that IMAP is able to reduce the size of LFM (the number of features) without
sacrificing modeling power. Because of IMAP’s diversity-promoting mechanism, the learned
features bear less redundancy and are highly complementary to each other. Each feature captures
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Categories 1 2 3 4 5 6 7 8 9
Frequencies of categories 3713 2055 321 298 245 197 142 114 110

Precision@100 (%) of IBP 73.7 45.1 7.5 8.3 6.9 7.2 2.6 3.8 3.4
Precision@100 (%) of IMAP 81.5 78.4 36.2 37.8 29.1 20.4 8.3 13.8 11.6

Relative improvement (%) 11 74 382 355 321 183 219 263 241

Table 3.13: Per-category precision@100 on the Reuters dataset.

IBP-LFM [142] IMAP-LFM
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
government saddam nuclear turkish game president clinton olympic school space
house white iraqi soviet gold clinton government team great operation
baghdad clinton weapons government team legal lewinsky hockey institute shuttle
weapons united united weapons season years nuclear good program research
tax time work number april state work baseball study life
years president spkr enemy man baghdad minister gold japanese satellite
white baghdad president good number church weapons ball office launch
united iraq people don work white india medal reading lunar
state un baghdad citizens baseball united years april level device
bill lewinsky state due years iraqi white winter number program

Table 3.14: Visualization of features learned on the 20-News dataset.

a significant amount of information. As a result, a small number of such features are sufficient to
model data well. In contrast, the features in IBP-LFM and PYP-LFM are drawn independently
from a base distribution, which lacks the mechanism to reduce redundancy. IMAP achieves more
significant reduction of feature numbers on datasets that have larger feature dimensions. This is
possibly because higher-dimensional data contains more redundancy, giving IMAP a larger room
to improve.

To verify whether IMAP helps to better capture infrequent patterns, on the learned features
of the Reuters dataset we performed a retrieval task and measured the precision@100 on each
category. For each test document, we retrieved 100 documents from the training set based on
the Euclidean distance. Precision@100 is defined as n/100, where n is the number of retrieved
documents that share the same category label with the query document. We treat each category
as a pattern and define its frequency as the number of documents belonging to it. A category
with more than 1000 documents is labeled as being frequent. Table 3.13 shows the per-category
precision. The last row shows the relative improvement of IMAP-LFM over IBP-LFM, defined as
(Pimap−Pibp)/Pibp. As can be seen, on the infrequent categories 3-9, IMAP-LFM achieves much
better precision than IBP-LFM, while on the frequent categories 1 and 2, their performance are
comparable. This demonstrates that IMAP is able to better capture infrequent patterns without
losing the modeling power on frequent patterns.

On the 20-News dataset, we visualized the learned features. For a latent feature with param-
eter vector a, we picked up the top 10 words corresponding to the largest values in a. Table 3.14
shows 5 exemplar features learned by IBP-LFM and IMAP-LFM. As can be seen, the features
learned by IBP-LFM have much overlap and redundancy and are hard to distinguish, whereas
those learned by IMAP-LFM are more diverse.

Figure 3.3 shows how the L2 reconstruction error on the Yale test dataset varies as the pa-
rameter κ increases. κ controls the level of “diversity”. A larger κ results in more “diversity”.
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Figure 3.3: L2 error on the Yale test set versus the concentration parameter κ.

Block-Images 20-News
RW-MH 7.6 93.7
RM-HMC 4.4 58.7

Table 3.15: Runtime (hours) of RM-HMC and RW-MH.

As can be seen from this figure, the L2 error decreases as κ increases from 0.01 to 1, which sug-
gests that increasing the “diversity” among latent features is beneficial. This is possibly because
the “diversity” effect acts as a type of inductive bias that controls the complexity of the model
class, which thereby improves the generalization performance on unseen data. However, further
increasing κ from 1 to 100 causes the L2 error to increase. A possible explanation is: if κ is
too large, the diversity-promoting inductive bias is excessively strong, which compromises the
quality of data-fitting.

We compared the convergence speed of the RM-HMC algorithm (Algorithm 2) with a random-
walk based Metropolis Hastings (RW-MH) algorithm. The runtime is given in Table 3.15. As can
be seen, RM-HMC is much more efficient than RW-MH, since it leverages the gradient informa-
tion of p(ãk|rest) to search for “better” proposals of ãk. Compared with IBP-LFM, IMAP-LFM
has an additional overhead of running the RM-HMC algorithm to sample ã. Fortunately, RM-
HMC converges very quickly, therefore this extra overhead is not substantial. For example, on
the Block-Images dataset, the runtime of IBP-LFM and IMAP-LFM is 3.6 and 4.4 hours, respec-
tively. On the 20-News dataset, the runtime of IBP-LFM and IMAP-LFM is 43.3 and 58.1 hours,
respectively.
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Chapter 4

Diversity-promoting Learning III –
Analysis

In the previous two chapters, we have demonstrated the effectiveness of the proposed regularizers
and Bayesian priors in (1) better capturing infrequent patterns, (2) achieving better generalization
performance, and (3) reducing model size without sacrificing modeling power, via empirical
studies. In this chapter, we provide theoretical analysis on why these regularizers/priors can
achieve such effects.

4.1 Analysis of Better Capturing of Infrequent Patterns
On the distance metric learning model, we analyze why encouraging diversity using the noncon-
vex Bregman matrix divergence (NCBMD) regularizers [379] (Section 2.2.1) can better capture
infrequent patterns [379]. In the analysis, we first define a score (the lower, the better) to quantify
how well the infrequent patterns are captured. Then we upper bound this score using increasing
functions of the NCBMD regularizers. Putting the two pieces together, we can conclude that
reducing the NCBMD regularizers leads to better capturing of the infrequent patterns.

The analysis focuses on the following projection matrix:

A∗ = arg min
A

ES,D

 1

|S|
∑

(x,y)∈S

‖Ax−Ay‖2
2 +

1

|D|
∑

(x,y)∈D

max(0, τ − ‖Ax−Ay‖2
2) + γΩφ(A)

 .
(4.1)

We assume the data examples in S and D are from K classes (which are considered as patterns),
where class k has a distribution πk and the corresponding expectation is µk. Let pk denote
the prior probability of drawing a data example from class k. We assume these classes are
“imbalanced” in the sense that the variance of prior probabilities {pk}Kk=1 is large. A class is
considered as being “frequent” if it has a large p and “infrequent” if otherwise. We use µk to
represent class k and define the Mahalanobis distance between two classes j and k as: djk =
(µj − µk)>A∗>A∗(µj − µk).

An imbalance factor (IF; the lower, the better) is defined to quantify how well the infrequent
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Figure 4.1: Large and small circles denote frequent and infrequent classes respectively. The
objective function of DML tends to make the inter-class distance to be large. (Left) The frequent
classes are dominant in the training objective of DML, and hence are given higher priority for
being pushed far away from each other. The infrequent classes are paid less attention to. Their
distance ends up being small since DML is constrained by inner-class data pairs which need
to have small distances. (Right) By promoting diversity, the infrequent classes are paid more
attention to and their distance d2 is enlarged. As a result, the ratio between d1 and d2 decreases.

classes are captured:

η =
maxj 6=k djk
minj 6=k djk

, (4.2)

which is the ratio between the largest and smallest inter-class distance. Figure 4.1 illustrates why
η can reflect how well the infrequent classes are captured. For two frequent classes (denoted by
large circles), since they have more training examples and hence contributing more in learning
A∗, DML intends to make their distance (d1) large; whereas for two infrequent classes (denoted
by small circles), since they contribute less in learning (and DML is constrained by similar pairs
which need to have small distances), their distance (d2) may end up being small. Consequently, if
classes are imbalanced, some between-class distances can be large while others small, resulting
in a large IF (the ratio between d1 and d2), as shown in Figure 4.1(left). By promoting-diversity,
the DML model pays more attention to infrequent classes and tries to make their inter-class
distance (d2) large, as shown Figure 4.1(right). As a result, the IF decreases. To sum up, if the
infrequent patterns are better captured, the imbalance factor is smaller.

Next, we upper bound the IF using increasing functions of the NCBMD regularizers. We
define ξk = Ex∼πk [sup‖v‖2=1 |v>(x − µk)|] and ξ = maxk ξk. Further, we assume A∗ has
full rank R (which is the number of the projection vectors), and let UΛU> denote the eigen-
decomposition of A∗A∗>, where Λ = diag(λ1, λ2, · · ·λR) with λ1 ≥ λ2 ≥ · · · ≥ λR. The basic
idea of deriving the upper bounds is as follows. First, we define G = span{µj−µk : j 6= k} and
prove that G ⊂ span(A∗>) under certain conditions where span(A∗>) denotes the column space
of matrix A∗>. Next, we show that if G ⊂ span(A∗>) holds, we can bound η with the condition
number of A∗A∗>. Finally, we bound this condition number with the NCBMD regularizers,
including the von Neumann divergence (VND) regularizer and the log-determinant divergence
(LDD) regularizer. Putting the pieces together, we obtain NCBMD-based upper bounds of the
IF.
Theorem 1. Let C denote the ratio between maxj 6=k‖µj − µk‖2

2 and minj 6=k‖µj − µk‖2
2 and
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assume maxj,k ‖µj − µk‖2 ≤ B0. Suppose the regularization parameter γ and distance margin
τ are sufficiently large: γ ≥ γ0 and τ ≥ τ0, where γ0 and τ0 depend on {pk}Kk=1 and {µk}Kk=1. If
R ≥ K−1 and ξ ≤ (−B0 +

√
B2

0 + λK−1βK−1/(2tr(Λ))/4, then we have the following bounds
for the IF.
• For the VND regularizer Ωvnd(A

∗), if Ωvnd(A
∗) ≤ 1, the following bound of the IF η holds:

η ≤ Cg(Ωvnd(A
∗)),

where g(·) is an increasing function defined in the following way. Let f(c) = c1/(c+1)(1+1/c),
which is strictly increasing on (0, 1] and strictly decreasing on [1,∞) and let f−1(c) be the
inverse function of f(c) on [1,∞), then g(c) = f−1(2− c) for c < 1.

• For the LDD regularizer Ωldd(A
∗), we have

η ≤ 4CeΩldd(A∗).

As can be seen, the bounds are increasing functions of the NCBMD regularizers Ωvnd(A
∗)

and Ωldd(A
∗). Decreasing these regularizers would reduce the upper bounds of the imbalance

factor, hence abridging the gap between infrequent and frequent classes. For the squared Frobe-
nius norm (SFN) regularizer which is also an instance of the NCBMD regularizers, such a bound
cannot be derived.

4.2 Analysis of Generalization Errors
In this section, we analyze why diversity-promoting regularization can improve the generaliza-
tion performance on unseen data.

4.2.1 Generalization Error Analysis for the Angular Constraints
Using neural networks as a study case, we analyze how the angular constraints [372] (Section 2.3)
affect the generalization performance. The generalization error of a hypothesis f represented
with a neural network is defined as L(f) = E(x,y)∼p∗ [`(f(x), y)], where p∗ is the distribution
of the input-output pair (x, y) and `(·, ·) is the loss function. The training error is L̂(f) =
1
n

∑n
i=1 `(f(x(i)), y(i)), where n is the number of training samples. Let f ∗ ∈ argminf∈FL(f) be

the true risk minimizer and f̂ ∈ argminf∈F L̂(f) be the empirical risk minimizer. We aim at ana-
lyzing the generalization error L(f̂) of the empirical risk minimizer f̂ . L(f̂) can be decomposed
into L(f̂) = L(f̂)−L(f ∗) +L(f ∗), where L(f̂)−L(f ∗) is the estimation error and L(f ∗) is the
approximation error.

For simplicity, we start with a “simple” fully connected network with one hidden layer of m
units, used for univariate regression (one output unit) with squared loss. Analysis for more com-
plicated NNs with multiple hidden layers can be achieved in a straightforward way by cascading
our analysis for this “simple” NN. Let x ∈ Rd be the input vector and y be the response value.
For simplicity, we assume max{‖x‖2, |y|} ≤ 1. Let wj ∈ Rd be the weights connecting the j-th
hidden unit with the input units, with ‖wj‖2 ≤ C. Let α be a vector where αj is the weight
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connecting the hidden unit j to the output unit, with ‖α‖2 ≤ B. We assume the activation func-
tion h(t) applied on the hidden units is Lipschitz continuous with a constant L. Commonly used
activation functions such as rectified linear h(t) = max(0, t), tanh h(t) = (et − e−t)/(et + e−t),
and sigmoid h(t) = 1/(1 + e−t) are all Lipschitz continuous with L = 1, 1, 0.25, respectively.
Consider the hypothesis set

F = {x 7→
m∑
j=1

αjh(w>j x) | ‖α‖2 ≤ B, ‖wj‖2 ≤ C, ∀i 6= j, |wi ·wj| ≤ τ‖wi‖2‖wj‖2}.

The estimation error represents how well the algorithm is able to learn. We bound it in the
following way. We first upper bound the estimation error using the Rademacher complexity
(RC) [32] R(F) of F , then further bound R(F) using the hyperparameter τ in the angular
constraints. When bounding the RC, we leverage the composition property [32]: if a scalar
function φ is Lipschitz with constant Lφ and satisfies φ(0) = 0, then R(φ ◦ F) ≤ 2LφR(F).
Lφ involves pairwise interactions between the weight vectors of hidden units, thus can be upper
bounded using τ . Putting the pieces together, we obtain the following estimation error bound.
Theorem 2. Let the activation function h be L-Lipschitz continuous and the loss `(ŷ, y) =
1
2
(ŷ − y)2. Then, with probability at least 1− δ:

L(f̂)− L(f ∗) ≤
γ2
√

2 ln(4/δ) + 4γB(2CL+ |h(0)|)
√
m√

n
, (4.3)

where γ = 1 +BCL
√

(m− 1)τ + 1 +
√
mB|h(0)|.

Note that γ, hence the above bound on estimation error, decreases as τ becomes smaller. The
bound goes to zero as n (sample size) goes to infinite. The inverse square root dependence on
n matches existing results [32]. We note that it is straightforward to extend our bound to any
bounded Lipschitz continuous loss `.

The approximation error indicates how capable the hypothesis setF is to approximate a target
function g = E[y|x], where the error is measured by minf∈F‖f−g‖L2 and ‖f−g‖2

L2 =
∫

(f(x)−
g(x))2P (dx). Following [31], we assume the target function g satisfies certain smoothness con-
dition that is expressed in the first moment of its Fourier representation:

∫
‖ω‖2|g̃(ω)|dω ≤ B/2

where g̃(ω) is the Fourier representation of g(x). To study the approximation error, we first de-
fine an auxiliary function class F̄ = {x 7→

∑m
j=1 αjh(w>j x) | ‖α‖2 ≤ B, ‖wj‖2 ≤ C}. F̄

differs from F in that the angular constraints ∀i 6= j, |wi · wj| ≤ τ‖wi‖2‖wj‖2 are removed.
Note that for f ∈ F and f̄ ∈ F̄ , we have ‖g−f‖L2 ≤ ‖g− f̄‖L2 +‖f̄−f‖L2 . For ‖f̄−f‖L2 , we
derive an upper bound which is a quantity involving τ . For ‖g − f̄‖L2 , its upper bound has been
derived in [31]. Consequently, we obtain the upper bound of ‖g − f‖L2 , which is given in the
following theorem. In order to derive explicit constants we restrict h to be the sigmoid function,
but other Lipschitz continuous activation function can be similarly handled.
Theorem 3. Let C > 1, m ≤ 2(b

π
2
−θ
θ
c + 1), where θ = arccos(τ), and h(t) = 1/(1 + e−t).

Then, there is a function f ∈ F such that

‖f − g‖L2 ≤ B( 1√
m

+ 1+2 lnC
C

) + 2
√
mBC sin(min(3mθ,π)

2
).
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This theorem implies that whether to use the angular constraint (AC) or not has a significant
influence on the approximate error bound: without using AC (τ = 1), the bound is a decreasing
function of m (the number of hidden units); using AC (τ < 1), the bound increases with m. This
striking phrase-change indicates the impact of AC. Given a fixed m, the bound decreases with
τ , implying that a stronger regularization (smaller τ ) incurs larger approximation error. When
τ = 1, the second term in the bound vanishes and the bound is reduced to the one in [31], which
is a decreasing function of m (and C, the upper bound on the weights). When τ < 1, the second
term increases with m up to the upper bound 2(b

π
2
−θ
θ
c + 1). This is because a larger number

of hidden units bear a larger difficulty in satisfying the pairwise ACs, which causes the function
space F to shrink rapidly; accordingly, the approximation power of F decreases quickly.

The analysis in the two theorems shows that τ incurs a tradeoff between the estimation error
and the approximation error: decreasing τ reduces the estimation error and enlarges the approx-
imation error. Since the generalization error is the sum of the two errors, τ has an optimal value
to yield the minimal generalization error.

4.2.2 Estimation Error Analysis for the Nonconvex Bregman Matrix Di-
vergence Regularizers

In this section, we analyze how the nonconvex Bregman matrix divergence (BMD) regulariz-
ers [379] (Section 2.2.1) affect the estimation error of ML models. We use the distance metric
learning (DML) model to perform the study. In DML, the hypothesis function is u(x,y) =
‖W>(x − y)‖2

2 and the loss function ` is the logistic loss `(u(x,y), t) = log(1 + exp((2t −
1)u(x,y))). Let U = {u : (x,y) 7→ ‖W>(x− y)‖2

2,Ω(W) ≤ τ} denote the hypothesis set and
A = {` : (x,y, t) 7→ `(u(x,y), t), u ∈ U} denote the loss class, which is the composition of the
loss function with each of the hypotheses. In U , we add the constraint Ω(W) ≤ τ to incorporate
the impact of the BMD regularizers Ω(W). τ controls the strength of regularization. A smaller
τ entails stronger promotion of diversity. τ is controlled by the regularization parameter λ in
Eq.(2.14). Increasing λ reduces τ . Given the joint distribution p∗ of the input data pair (x,y)
and the binary label t indicating whether this data pair is similar or dissimilar, the risk of the
hypothesis u is L(u) = E(x,y,t)∼p∗ [`(u(x,y), t)]. Its empirical counterpart (training error) can be
defined as L̂(u) = 1

N

∑N
n=1 `(u(xn,yn), tn). The estimation error of a hypothesis u is defined

as L(u) − L̂(u), which represents how well the algorithm can learn and usually depends on the
complexity of the hypothesis class and the number of training examples.

To upper bound the estimation error, we define a capacity variable on W.
Definition 1 (Capacity Variable). Let π1, · · · , πm be the eigenvalues of W>W. Then the capac-
ity variable is defined as:

C(W) =
m∑
j=1

|πj − 1|.

The following inequality helps us to understand the intuitive meaning of C(W):

1

m
‖W>W − Im‖1 ≤ C(W). (4.4)
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1
m
‖W>W − Im‖1 measures the closeness between the Gram matrix W>W and an identity

matrix using L1 norm. The smaller this quantity is, the closer to being orthogonal the vectors
in W are. Being an upper bound of this quantity, C(W) essentially determines the level of
near-orthogonality among vectors.

We first prove that the estimation error can be upper bounded by an increasing function of the
capacity variable. Then we show that the capacity variable can be upper bounded by an increasing
function of the nonconvex BMD regularizers, including the log-determinant divergence (LDD)
regularizer, the von Neumann divergence (VND) regularizer, and the squared Frobenius norm
(SFN) regularizer. Combining these two steps we reveal the relationship between the estimation
errors and the BMD regularizers, which is given in the following theorem.
Theorem 4. Suppose sup(x,y)‖x−y‖2 ≤ B0 and any column vector w of W satisfies ‖w‖2 ≤ D.
With probability at least 1− δ, we have:
• For the LDD regularizer,

L(u)− L̂(u) ≤ 4B2
0D

√
m(g−1

ldd(τ/m)m+1)

N
+ [B2

0m(g−1
ldd(τ/m) + 1) + 1]

√
2 log(1/δ)

N
, (4.5)

where gldd(x) = x− log(x+ 1).
• For the VND regularizer,

L(u)− L̂(u) ≤ 4B2
0D

√
m(g−1

vnd(τ/m)m+1)

N
+ [B2

0m(g−1
vnd(τ/m) + 1) + 1]

√
2 log(1/δ)

N
,

(4.6)
where gvnd(x) = (x+ 1) log(x+ 1)− x.

• For the SFN regularizer,

L(u)− L̂(u) ≤ (4 +
√

2 log(1/δ))B2

√
τm

N
+

4B2m+ (B2m+ 1)
√

2 log(1/δ)√
N

. (4.7)

From these estimation error bounds (EEBs), we can see two major implications. First, BMD
regularizers can effectively control the EEBs. Increasing the strength of BMD regularization
(by enlarging λ) reduces τ , which decreases the EEBs since they are increasing functions of τ .
Second, the EEBs converge with rate O(1/

√
N), where N is the number of training data pairs.

This rate matches with that in [37, 338].

4.2.3 Estimation Error Analysis for the Convex Bregman Matrix Diver-
gence Regularizers

In this section, we analyze how the convex BMD (CBMD) regularizers [379] (Section 2.2.2)
affect the estimation error of CBMD-regularized distance metric learning problem (Eq.(2.22)).
Following [338], we use distance-based error to measure the quality of a Mahalanobis distance
matrix M. Given the sample S and D where the total number of data pairs is m = |S|+ |D|, the
empirical error is defined as L̂(M) = 1

|S|
∑

(x,y)∈S(x−y)>M(x−y)+ 1
|D|
∑

(x,y)∈Dmax(0, τ −
(x − y)>M(x − y)) and the expected error is L(M) = ES,D[L̂(M)]. Let M̂∗ be the optimal
matrix learned by minimizing the empirical error: M̂∗ = argminML̂(M). We are interested in

115



how well M̂∗ performs on unseen data. The performance is measured using the estimation error:
E = L(M̂∗) − L̂(M̂∗). To incorporate the impact of the CBMD regularizers Ωφ(M), we define
the hypothesis class of M to beM = {M � 0 : Ωφ(M) ≤ C}. The upper bound C controls
the strength of regularization. A smaller C entails stronger promotion of orthogonality. C is
controlled by the regularization parameter γ in Eq.(4.1). Increasing γ reduces C. We perform
the estimation error analysis as follows. We first establish an upper bound of the estimation
error based on the Rademacher complexity R(M) ofM. Then we upper bound R(M) using
the trace of M. Finally, we derive upper bound of the trace based on the CBMD regularizers.
Combining the three steps together, we establish upper bounds of the estimation error based on
the CBMD regularizers, including the convex von Neumann divergence (CVND) regularizer, the
convex log-determinant divergence (CLDD) regularizer, and the convex squared Frobenius norm
(CSFN) regularizer:
Theorem 5. Suppose sup‖v‖2≤1,(x,y)∈S |v>(x−y)| ≤ B, then with probability at least 1− δ, we
have:
• For the CVND regularizer,

E ≤ (4B2C + max(τ, B2C)
√

2 log(1/δ)) 1√
m
.

• For the CLDD regularizer,

E ≤ ( 4B2C
log(1/ε)−1

+ max(τ, C−Dε
log(1/ε)−1

)
√

2 log(1/δ)) 1√
m
.

• For the CSFN regularizer,

E ≤ (2B2 min(2C,
√
C) + max(τ, C)

√
2 log(1/δ)) 1√

m
.

From these estimation error bounds (EEBs), we can see two major implications. First, CBMD
regularizers can effectively control the EEBs. Increasing the strength of CBMD regularization
(by enlarging γ) reduces C, which decreases the EEBs since they are all increasing functions
of C. Second, the EEBs converge with rate O(1/

√
m), where m is the number of training data

pairs. This rate matches with that in [37, 338].

4.3 Appendix: Proofs

4.3.1 Proof of Theorem 1
Proof Sketch

We make the following two assumptions.
• The size of the similar and dissimilar set |S| and |D| are fixed.
• A∗ has full row rank R.

Denote the K classes as C1, C2, · · · CK . The probability that a sample is drawn from the k-th
class is pk, and

∑K
k=1 pk = 1. Denote the class membership of an example x as c(x). Denote

the probability that x ∈ Cj,y ∈ Ck where (x,y) ∈ D as pjk = pjpk/(1 −
∑K

l=1 p
2
l ). Define
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the singular value decomposition (SVD) of the matrix A∗ as U
√

ΛV> where U ∈ RR×R, Λ ∈
RR×R, and V ∈ RD×R. Λ = diag(λ1, λ2, · · ·λR). Then A∗>A∗ = VΛV>. Denote V =
[v1,v2, · · ·vR]. Then ∀z = x− y, we have z>A∗>A∗z =

∑R
r=1 λr(v

>
r z)2. We see z>A∗>A∗z

can be written as a sum of R terms. Inspired by this, we define a vector function α(·) as α(u) =∑K
j,k=1 pjk(u

>(µj −µk))2. This function measures the weighted sum of (u>(µj −µk))2 across
all classes. Define G = span{µj − µk : j 6= k}.
Definition 2 (feature values and feature vectors). For a linear space G, define vectors w1,w2, · · · ,wK−1

and positive real numbers β1, β2, · · · , βK−1 as

w1 = arg min
‖u‖=1,u∈G

α(u), β1 = α(w1),

wr = arg min
‖u‖ = 1,u ∈ G
u ⊥ wj , ∀j < r

α(u), βr = α(wr), ∀r > 1

∀r > K − 1, define βr = 0, and wr as an arbitrary vector which has norm 1 and is orthogonal
to w1,w2, · · · ,wr−1. w1,w2, · · · ,wK−1 are called feature vectors of G, and β1, β2, · · · , βK−1

are called feature values of G.
We give a condition on the regularizers.

Condition 1. For a regularizer Ωφ(·), there exists a unique matrix function ϕ(·) such that for
any A∗,

Ωφ(A∗) = ϕ(A∗A∗>) = ϕ(Λ).

The VND and LDD regularizer satisfy this condition. For the VND regularizer, ϕ(Λ) =
tr(Λ log Λ − Λ) + R; for the LDD regularizer, ϕ(Λ) = tr(Λ) − log det(Λ) − R. The SFN
regularizer does not satisfy this condition.

Now we have enough preparation to give the following lemma. It shows that the linear space
G can be recovered if the second moment of noise is smaller than a certain value.
Lemma 5. Suppose R ≥ K − 1, maxj∈k ‖µj −µk‖2 ≤ B0, and the regularization parameter γ

and distance margin τ satisfy γ ≥ γ0, τ ≥ τ0. If ξ ≤ −B0+
√
B2

0+γK−1βK−1/(2tr(Λ))

4
, then

G ⊂ span(A∗>). (4.8)

Here span(A∗>) denotes the column space of matrix A∗>. Both λ0 and τ0 depend onµ1,µ2, · · · ,µK
and p1, p2, · · · , pK .

The next lemma shows that if Eq.(4.8) holds, we can bound the imbalance factor η with
the condition number of A∗A∗> (denoted by cond(A∗A∗>)). Note that the BMD regularizers
Ωφ(A∗) encourage A∗A∗> to be close to an identity matrix, i.e., encouraging the condition
number to be close to 1.
Lemma 6. If Eq.(4.8) holds, and there exists a real function g such that

cond(A∗A∗>) ≤ g(Ωφ(A∗)),

then we have the following bound for the imbalance factor

η ≤ g(Ωφ(A∗))
maxj 6=k‖µj − µk‖2

minj 6=k‖µj − µk‖2
.
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Next, we derive the explicit forms of g for the VND and LDD regularizers.
Lemma 7. For the VND regularizer Ωvnd(A

∗), define f(c) = c1/(c+1)(1 + 1/c), then f(c) is
strictly increasing on (0, 1] and strictly decreasing on [1,∞). Define the inverse function of f(·)
on [1,∞) as f−1(·). Then if Ωvnd(A

∗) < 1, we have

cond(A∗A∗>) ≤ f−1(2− Ωvnd(A
∗)).

For the LDD regularizer Ωldd(A
∗), we have

cond(A∗A∗>) ≤ 4eΩldd(A∗).

Combining Lemma 5, 6, and 7, we finish the proof of Theorem 1.

Proof of Lemma 5

In order to prove Lemma 5, we first need some auxiliary lemmas on the properties of the function
α(·). Denote µjk = µj − µk,∀j 6= k.
Lemma 8. Suppose u1,u2, · · ·ur and v1,v2, · · ·vr are two sets of standard orthogonal vectors
in Rd, and span(u1,u2, · · ·ur) = span(v1,v2, · · ·vr), then we have

r∑
l=1

α(ul) =
r∑
l=1

α(vl).

Proof. By the definition of these two sets of vectors, there exists a r × r standard orthogonal
matrix B = (bjk), such that (u1,u2, · · ·ur) = (v1,v2, · · ·vr)B. Then we have

r∑
l=1

α(ul) =
r∑
l=1

∑
j 6=k

pjk((
r∑
s=1

blsvs)
>µjk)

2

=
r∑
l=1

∑
j 6=k

pjk

r∑
s,t=1

blsbltv
>
s µjkv

>
t µjk

=
r∑
s=1

∑
j 6=k

pjk(v
>
s µjk)

2

r∑
l=1

b2
ls +

∑
j 6=k

pjk

r∑
s,t=1

v>s µjkv
>
t µjk

r∑
l=1

blsblt.

Since B is a standard orthogonal matrix, we have ∀s,
∑r

l=1 b
2
ls = 1 and ∀s 6= t,

∑r
l=1 blsblt = 0.

Further, we have
r∑
l=1

α(ul) =
r∑
l=1

α(vl).

Lemma 9. For any positive integer r, any set of standard orthogonal vectors u1,u2, · · ·ur ∈ Rd,
and real numbers γ1 ≥ γ2 ≥ · · · ≥ γr ≥ 0, we have

r∑
l=1

γlα(ul) ≤
r∑
l=1

γlβl, (4.9)

where βl is the l-th feature value.
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Proof. We first prove the situation that γ1 = γ2 = · · · = γr = 1, i.e.,
r∑
l=1

α(ul) ≤
r∑
l=1

βl. (4.10)

We prove it by induction on r. For r = 1, by the definition of feature values and feature
vectors, Eq.(4.10) holds. Now supposing Eq.(4.10) holds for r = s, we prove it holds for
r = s + 1 by contradiction. If Eq.(4.10) does not hold, then there exist standard orthogonal
vectors u1,u2, · · ·us+1 ∈ Rd, such that

s+1∑
l=1

α(ul) >
s+1∑
l=1

α(wl), (4.11)

where wl are feature vectors. Since the dimension of span(u1,u2, · · ·us+1) is s+ 1, there exists
w̃s+1 ∈ span(u1,u2, · · ·us+1), such that w̃s+1 ⊥ wl,∀1 ≤ l ≤ s. By the definition of the
feature vector ws+1, we have

s+1∑
l=1

α(wl) ≥
s∑
l=1

α(wl) + α(w̃s+1). (4.12)

Let w̃1, w̃2, · · · w̃s+1 be a set of standard orthogonal basis of span(u1,u2, · · ·us+1), by Lemma
8, we have

s+1∑
l=1

α(ul) =
s+1∑
l=1

α(w̃l). (4.13)

Combining equation (4.11), (4.12) and (4.13) we get
s+1∑
l=1

α(w̃l) >
s∑
l=1

α(wl) + α(w̃s+1).

Thus we have
s∑
l=1

α(w̃l) >
s∑
l=1

α(wl).

This contradicts with our induction assumption. The proof for the γ1 = γ2 = · · · = γr = 1 case
completes.

Next, we prove the situation that γl are not all equal to 1, by utilizing Eq.(4.10).
r∑
l=1

γlα(ul) =
r−1∑
l=1

[(γl − γl+1)
l∑

t=1

α(ut)] + γr

r∑
t=1

α(ut)

≤
r−1∑
l=1

[(γl − γl+1)
l∑

t=1

βt] + γr

r∑
t=1

βt

≤
r∑
l=1

γlβl

The proof completes.
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Note that in Lemma 9, r can be larger than the number of nonzero feature values K−1. This
will be used in the proof of Lemma 5 later on.

Another auxiliary lemma needed to prove Lemma 5 is given below.
Lemma 10. Suppose w0 ∈ G, define a linear space H = {v ∈ G : v ⊥ w0}. Then there
are K − 2 nonzero feature values of H. Denote them as β′1, β

′
2, · · · β′K−2, then ∀ r ≤ K − 2,

∀ γ1 ≥ γ2 ≥ · · · ≥ γr ≥ 0,
r∑
l=1

γlβ
′
l ≤

r∑
l=1

γlβl.

Proof. Note that the dimension ofH is K − 2, then there are K − 2 nonzero feature values. The
feature vectors ofH are also standard orthogonal vectors of the linear space G. By Lemma 9, we
have

∑r
l=1 γlβ

′
l ≤

∑r
l=1 γlβl, ∀ r ≤ K − 2.

Now we are ready to prove Lemma 5.

Proof. (of Lemma 5) We conduct the proof by contradiction. Assuming Eq.(4.8) does not
hold, we prove A∗ can not be the global optimal solution. Let U

√
ΛV> be the SVD of A∗.

Define W = (w1,w2, · · ·wR) as a matrix whose columns contain the feature vectors. Let
Ã = U

√
ΛW>. Then by Condition 1, we have Ωφ(A∗) = Ωφ(Ã). Define

L(A) = E
[ 1

|S|
∑

(x,y)∈S

‖Ax−Ay‖2
2 +

1

|D|
∑

(x,y)∈D

max(0, τ − ‖Ax−Ay‖2
2)
]
.

Assuming Eq.(4.8) does not hold, we prove L(A∗) > L(Ã), i.e., A∗ is not the optimal solution.
We consider two cases: ξ = 0 and ξ 6= 0. Define h(A∗, ξ) = L(A∗) and h(Ã, ξ) = L(Ã). When
ξ = 0, we have:

h(A∗, 0) = E
[ 1

|S|
∑

(x,y)∈S

‖A∗µc(x) −A∗µc(y)‖2
2 +

1

|D|
∑

(x,y)∈D

max(0, τ − ‖A∗µc(x) −A∗µc(y)‖2
2)
]

=
∑
j 6=k

pjk max(0, τ − ‖A∗(µj − µk)‖2
2),

and
h(Ã, 0) =

∑
j 6=k

pjk max(0, τ − ‖Ã(µj − µk)‖2
2).

Since Eq.(4.8) does not hold by assumption, there exists a w0 satisfying w0 ∈ G and w0 /∈
span(A∗). Denote H = {v ∈ G : v ⊥ w0} and its K − 2 nonzero feature values as
β′1, β

′
2, · · · β′K−2. ∀u ∈ span(A∗), let u′ be the projection of u to the spaceH and u′ is rescaled to

have norm 1. Then α(u′) ≥ α(u). Thus, ∀r, the r-th feature value of span(A∗) is no larger than
the r-th feature value of G. By Lemma 10, we have

∑r
l=1 γlβ

′
l ≤

∑r
l=1 γlβl. By the definition of

feature values, we have

∑
j 6=k

pjk‖A∗(µj − µk)‖2
2 =

R∑
l=1

γlα(al) ≤
R∑
l=1

γlβ
′
l.
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SinceH has only K − 2 nonzero feature values, we have

R∑
l=1

γlβ
′
l =

K−2∑
l=1

γlβ
′
l ≤

K−2∑
l=1

γlβl =
K−1∑
l=1

γlα(wl)−γK−1βK−1 =
∑
j 6=k

pjk‖Ã(µj−µk)‖2
2−γK−1βK−1.

So we have ∑
j 6=k

pjk‖Ã(µj − µk)‖2
2 ≥

∑
j 6=k

pjk‖A∗(µj − µk)‖2
2 + γK−1βK−1.

Next, we establish a relationship between h(A∗, 0) and h(Ã, 0), which is given in the fol-
lowing lemma.

Lemma 11. There exist constants τ0, γ0 which are determined by p1, p2, · · · pK andµ1,µ2, · · · ,µK ,
such that if τ ≥ τ0, γ ≥ γ0, then we have

h(A∗, 0)− h(Ã, 0) >
1

2
γK−1βK−1.

Proof. If ‖Ã(µj − µk)‖2
2 ≤ τ and ‖A∗(µj − µk)‖2

2 ≤ τ for all j 6= k, we have h(A∗, 0) −
h(Ã, 0) = γK−1βK−1. Since maxj 6=k ‖µj − µk‖2 = B0, we have

‖A∗(µj − µk)‖2
2 ≤ tr(Λ)B2

0 , ‖Ã(µj − µk)‖2
2 ≤ tr(Λ)B2

0 , ∀j 6= k. (4.14)

Select τ0 such that τ0 ≥ K(1 + ε0)B2
0 , where ε0 is any positive constant. For the VND and LDD

regularizers, as γ →∞, Λ→ IR. Thereby, there exists γ0, such that if γ ≥ γ0, ∀j, |λj − 1| ≤ ε.
Hence, if γ ≥ γ0, τ ≥ τ0,

tr(Λ)B2
0 ≤ K(1 + ε0)B2

0 ≤ τ0.

Combining this inequality with Eq.(4.14), we finish the proof.

Now we continue to prove Lemma 5. In Lemma 11, we have already proved that h(A∗, 0)

is strictly larger than h(Ã, 0). We then prove that if the noise is smaller than a certain value,
h(A∗, ξ) is strictly larger than h(Ã, ξ). By the definition of ξ, we have

|h(A∗, ξ)− h(A∗, 0)|

≤E
1

|S|
∑

(x,y)∈S

‖A∗(x− y)‖2
2 + E

1

|D|
∑

(x,y)∈D

[‖A∗(x− y)‖2
2 − ‖A∗(µc(x) − µc(y))‖2

2]

≤4tr(Λ)ξ2 + (4B0ξ + 4ξ2)tr(Λ)

=8ξ2tr(Λ) + 4B0ξtr(Λ). (4.15)

Similarly, we have

|h(A∗, ξ)− h(A∗, 0)| ≤ 8ξ2tr(Λ) + 4B0ξtr(Λ). (4.16)

Combining Lemma 11 with Eq.(4.15) and Eq.(4.16), we have if ξ ≤ −B0+
√
B2

0+γK−1βK−1/(2tr(Λ))

4
,

then L(A∗) > L(Ã), i.e., A∗ is not the global optimal solution. By contradiction, Eq.(4.8) holds.
The proof completes.
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Proof of Lemma 6

Proof. For any vector u ∈ G, since the condition of Lemma 5 is satisfied, we have u ∈
span(A∗). Recall A∗>A∗ = VΓV> and V = [v1,v2, · · ·vR]. We can denote u as u =
‖u‖

∑R
j=1 tjvj , where

∑R
j=1 t

2
j = 1. Then we have ∀u ∈ G,

u>A∗>A∗u =
R∑
j=1

〈vj,u〉2λj =
R∑
j=1

‖u‖2t2jλj ≤ ‖u‖2λ1.

Similarly, we have u>A∗>A∗u ≥ ‖u‖2λR. Noting ∀j 6= k, µj − µk ∈ G, we have

η ≤ cond(A∗A∗>)
maxj 6=k‖µj − µk‖2

minj 6=k‖µj − µk‖2
.

Combining this inequality with cond(A∗A∗>) ≤ g(Ωφ(A∗)), we complete the proof.

Proof of Lemma 7

Proof. We first prove the result about the VND regularizer. Define a scalar function s(x) =
x log x− x+ 1 and denote cond(A∗A∗>) = c. Since s′(x) = log x, and s(1) = 0, we have

Ωvnd(A
∗) =

R∑
j=1

s(λj)

≥ s(λ1) + s(λR)

= λ1 log λ1 − λ1 +
λ1

c
log

λ1

c
− λ1

c
+ 2.

Define F (λ1, c) = λ1 log λ1 − λ1 + λ1
c

log λ1
c
− λ1

c
+ 2. We aim at maximizing c, so

∂

∂λ1

F (λ1, c) = 0.

This equation has a unique solution: log λ1 = log c
c+1

. Therefore we have

c1/(c+1)(1 +
1

c
) ≥ 2− Ωvnd(A

∗).

Define f(c) = c1/(c+1)(1 + 1
c
). Its derivative is: f ′(c) = − log c

c(c+1)
c1/(c+1). Analyzing f ′(c),

we know that f(c) increases on (0, 1], decreases on [1,∞), and f(1) = 2. Also we have the
following limits:

lim
c→0

f(c) = 0, lim
c→∞

f(c) = 1.

We denote the inverse function of f(·) on [1,∞) as f−1(·). Then for any Ωvnd(A
∗) < 1, we have

cond(A∗A∗>) ≤ f−1(2− Ωvnd(A
∗)).
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Next we prove the result for the LDD regularizer Ωldd(A
∗). Define a scalar function s(x) =

x− log x− 1 and denote cond(A∗A∗>) = c. Since s′(x) = 1− 1
x

and s(1) = 0, we have

Ωldd(A
∗) =

R∑
j=1

s(λj)

≥ s(λ1) + s(λR)

= λ1 − log λ1 +
λ1

c
− log

λ1

c
− 2.

Therefore we have

log c ≤ Ωldd(A
∗) + 2 log λ1 − λ1(1 +

1

c
) + 2

≤ Ωldd(A
∗) + 2 log λ1 − λ1 + 2

≤ Ωldd(A
∗) + 2 log 2− 2 + 2

= Ωldd(A
∗) + 2 log 2.

The third inequality is obtained from the following fact: the scalar function log x − x gets its
maximum when x = 2. Further, we have

c ≤ 4eΩldd(A∗).

The proof completes.

4.3.2 Proof of Theorem 2
A well established result in learning theory is that the estimation error can be upper bounded
by the Rademacher complexity [32]. We start from the Rademacher complexity, seek a further
upper bound of it, and show how the diversity of the hidden units affects this upper bound. The
Rademacher complexityRn(` ◦ F) of the function class F composed with the loss function ` is
defined as

Rn(` ◦ F) = E sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

σi`(f(x(i)), y(i))

∣∣∣∣∣ , (4.17)

where {σi} are independent and uniform over {−1, 1} and {(x(i), y(i))}ni=1 are i.i.d samples
drawn from p∗. Note that for later convenience, we take the absolute value in the above definition.

We can use the Rademacher complexity to upper bound the estimation error, as shown in
Lemma 12.
Lemma 12 ([298, Theorem 26.5]). With probability at least 1− δ:

L(f̂)− L(f ∗) ≤ 4Rn(` ◦ F) + 2γ

√
2 log(4/δ)

n
, (4.18)

for γ ≥ supx,y,f |`(f(x), y)|.
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Our analysis starts from this lemma and we seek a further upper bound on Rn(` ◦ F). The
analysis needs an upper bound of the Rademacher complexity of the hypothesis set F , which is
given in Lemma 13.
Lemma 13. Let Rn(F̄) denote the Rademacher complexity of the hypothesis set F̄ = {f(x) =
m∑
j=1

αjh(w>j x) | ‖α‖2 ≤ B, ‖wj‖2 ≤ C, ‖x‖2 ≤ 1}, and h be L-Lipschitz, then

Rn(F̄) ≤ B(2CL+ |h(0)|)
√
m

n
. (4.19)

Proof. The proof is analogous to that of [32, Theorem 18]. First, we have from [298, Lemma
26.11] that the Rademacher complexity of the class of linear functions L = {x 7→ w>x :
‖w‖2 ≤ C,w ∈ Rd} is

Rn(L) ≤ C/
√
n. (4.20)

Since composing with a 1-Lipschitz function h that vanishes at 0 can only increase the Rademacher
complexity by a factor of two [216, Theorem 4.12], we have

Rn(h ◦ L) ≤ Rn((h− h(0)) ◦ L) + |h(0)|/
√
n (4.21)

≤ (2CL+ |h(0)|)/
√
n. (4.22)

Lastly, since taking the (absolute) convex hull of a set of functions does not increase the Rademacher
complexity [32, Theorem 12.2], we have

Rn(F̄) ≤ Rn(
√
mB · absconv(h ◦ L)) ≤ B(2CL+ |h(0)|)

√
m

n
. (4.23)

We note that if instead we consider

F ′ = {f(x) =
m∑
j=1

αjh(wT
j x) | ‖α‖1 ≤ B, ‖wj‖1 ≤ C, ‖x‖2 ≤ 1},

then a similar argument confirms thatRn(F ′) ≤ B(2CL+ |h(0)|)
√

2 ln(2d)
n

.

In addition, we need the following uniform bound on the output of the network.
Lemma 14. For any ‖x‖2 ≤ 1, ‖α‖2 ≤ B and L-Lipschitz continuous h, we have

sup

‖wj‖2≤C,∀i 6=j,
|w>
i

wj |
‖wi‖2‖wj‖2

≤τ

∣∣∣∣∣
m∑
j=1

αjh(w>j x)

∣∣∣∣∣ ≤ BCL
√

1− τ +mτ +
√
mB|h(0)|. (4.24)

Proof. Indeed, let uj = h(w>j x)− h(0). Then, |uj| ≤ L|w>j x|, hence∣∣∣∣∣
m∑
j=1

αj[h(w>j x)− h(0)]

∣∣∣∣∣ ≤ ‖α‖2‖u‖2 (4.25)

≤ BL‖W>x‖2 (4.26)
≤ BL‖W‖sp, (4.27)
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where W = [w1, . . . ,wm], and ‖W‖sp is the spectral norm, which we bound as follows:

‖W‖2
sp = max

‖x‖2≤1
x>W>Wx (4.28)

≤ max
‖x‖2≤1

∑
i,j

|xi||xj||w>i wj| (4.29)

≤ max
‖x‖2≤1

(1− τ)
∑
i

x2
i ‖wi‖2

2 + τ
∑
i,j

|xi||xj|‖wi‖2‖wj‖2 (4.30)

≤ C2[(1− τ) +mτ ]. (4.31)

Plugging the bound on ‖W‖sp into (4.27) and applying the triangle inequality completes the
proof.

We are now ready to prove Theorem 2. The square loss function `y(t) = `(t, y) = 1
2
(t− y)2

is Lipschitz continuous with constant

γ = sup
‖x‖2≤1,|y|≤1,f∈F

|f(x)− y| ≤ sup
x,y,f

(|f(x)|+ |y|) (4.32)

≤ 1 +BCL
√

1− τ +mτ +
√
mB|h(0)|, (4.33)

where the last inequality follows from Lemma 14. Applying the contraction property [298,
Lemma 26.9] of the Rademacher complexity, we have

Rn(` ◦ F) ≤ (1 +BCL
√

1− τ +mτ +
√
mB|h(0)|)Rn(F) (4.34)

≤ (1 +BCL
√

1− τ +mτ +
√
mB|h(0)|)Rn(F̄). (4.35)

Using Lemma 13 and Lemma 12 the claim follows.
In our proof we bound the Rademacher complexity ofF using that of F̄ which simply ignores

the pairwise correlation constraints. This step is likely very loose and it would be interesting to
refine the bound so that it enjoys a reasonable dependence on τ .

4.3.3 Proof of Theorem 3
We need the following approximation error bound due to [31]:
Lemma 15 ([31, Theorem 3]). Consider the function class

F̄ = {x 7→
m∑
j=1

αjh(w̄T
j x) | ‖α‖2 ≤ B, ‖w̄j‖2 ≤ C, ‖x‖2 ≤ 1}, (4.36)

where the activation function h(t) = 1/(1 + e−t). Then, for any square integratable function g
with ∫

ω

‖ω‖2|g̃(ω)|dω ≤ B/2,

where g̃(ω) is the Fourier representation of g(x), there exists f̄ ∈ F̄ such that

‖g − f̄‖L2 ≤ B(
1√
m

+
1 + 2 lnC

C
). (4.37)
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We remark that [31] used instead the `1 constraint ‖α‖1 ≤ B in the definition of the function
class F̄ . For our purpose the `2 constraint on α is more natural, and it is clear that we can
only increase the function class F̄ by using the `2 constraint. As C and m tend to infinity, the
above bound indicates that any square integratable function g can be approximated (under the
L2 metric) by the function class F̄ . This is the well-known universal approximation property of
neural networks. Moreover, if we choose C ≥

√
m lnm, then the approximation error decreases

at the usual rate 1/
√
m.

Our key idea is to approximate the function class F̄ by the function class F , where the
pairwise angle constraint θjk ≥ θ is enforced. Of course, this is possible only when m is not too
large.
Lemma 16. Let θ = arccos(τ) ∈ (0, π

2
) and m ≤ 2(b

π
2
−θ
θ
c + 1). For any unit vectors (w̄j)

m
j=1,

there exist unit vectors (wj)
m
j=1 such that

∀j 6= k ∈ {1, · · · ,m}, |wj ·wk| ≤ τ, (4.38)
∀j ∈ {1, · · · ,m}, wj · w̄j ≥ cos[min(3mθ, π)]. (4.39)

Assuming Lemma 16 holds for now we can proceed to prove Theorem 3. According to
Lemma 15, there exists some f̄ =

∑m
j=1 αjh(w̄>j x) ∈ F̄ such that

‖g − f̄‖L2 ≤ B(
1√
m

+
1 + 2 lnC

C
). (4.40)

Since

‖g − f‖L2 ≤ ‖g − f̄‖L2 + ‖f̄ − f‖L2 , (4.41)

we need only bound the last term as follows. Let us define f =
∑m

j=1 αjh(w>j x), where (wj)
m
j=1

are given in Lemma 16 and scaled so that ‖wj‖2 = ‖w̄j‖2. Straightforward calculation shows:

‖f − f̄‖2
L2 =

∫
‖x‖2≤1

(f(x)− f̄(x))2dµ(x) (4.42)

=

∫
‖x‖2≤1

(∑
j

αj

(
h(w>j x)− h(w̄>j x)

))2

dµ(x) (4.43)

≤
∫
‖x‖2≤1

‖α‖2
2

∑
j

|w>j x− w̄>j x|2dµ(x) (4.44)

≤ B2
∑
j

‖wj − w̄j‖2
2 (4.45)

= 2B2
∑
j

‖wj‖2
2 −w>j w̄j (4.46)

≤ 2B2(1− cos[min(3mθ, π)])
∑
j

‖wj‖2
2 (4.47)

≤ 4mB2C2 sin2 min(3mθ, π)

2
. (4.48)
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Substituting back to (4.41) we have

‖g − f‖L2 ≤ ‖g − f̄‖L2 + ‖f̄ − f‖L2 (4.49)

≤ B(
1√
m

+
1 + 2 lnC

C
) + 2

√
mBC sin

min(3mθ, π)

2
, (4.50)

which was to be proved.

Proof of Lemma 16

The following simple lemma will be useful in our proof.
Lemma 17. For any three unit vectors u1, u2, and u3:

∠(u1,u3) ≤ ∠(u1,u2) + ∠(u2,u3), (4.51)

with the convention ∠(x,y) ∈ [0, π).

Proof. Without loss of generality, let u2 = e1. Let θ12 = ∠(u1,u2), θ23 = ∠(u2,u3), and
θ13 = ∠(u1,u3). Then, u1 = cos θ12 · u2 + sin θ12 · v where the first element of the unit vector
v equals 0. Similarly, u3 = cos θ23 · u2 + sin θ23 ·w where the first element in the unit vector w
equals 0. Therefore,

cos θ13 = u>1 u3 (4.52)

= (cos θ12 · u2 + sin θ12 · v)>(cos θ23 · u2 + sin θ23 ·w) (4.53)

= cos θ12 cos θ23 + sin θ12 sin θ23v
>w (4.54)

≥ cos θ12 cos θ23 − sin θ12 sin θ23 (4.55)
= cos(θ12 + θ23). (4.56)

If θ12 + θ23 < π, arccos(cos(θ12 + θ23)) = θ12 + θ23. As arccos(·) is monotonically decreasing,
we have θ13 ≤ θ12 + θ23. Otherwise, θ13 < π ≤ θ12 + θ23.

We now begin to prove Lemma 16. Let φ(a,b) = arccos( a·b
‖a‖2‖b‖2 ), ρ(a,b) = arccos( |a·b|

‖a‖2‖b‖2 ).

We begin our proof by considering a 2-dimensional case (d = 2). Let k = b
π
2
−θ
θ
c. Define an

index set I = {−(k + 1),−k, · · · ,−1, 1, 2, · · · , k + 1}. We define a set of vectors (ei)i∈I :
ei = (sin θi, cos θi), where θi ∈ (−π

2
, π

2
) is defined as follows:

θi = sgn(i)(
θ

2
+ (|i| − 1)θ). (4.57)

From the definition we have:

∀i 6= j ∈ I, ρ(ei, ej) ≥ θ,
−π

2
+ θ

2
≤ θ−(k+1) < −π

2
+ 3

2
θ,

π
2
− 3

2
θ < θk+1 ≤ π

2
− θ

2
.

(4.58)

And we can further verify that ∀i ∈ I, there exist different i1, · · · , i2k+1 ∈ I\i such that
φ(ei, eij) ≤ jθ. For any e = (sin β, cos β) with β ∈ [−π

2
, π

2
], we can find an i ∈ I such

that φ(ei, e) ≤ 3
2
θ:
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• If β ≥ θk+1, taking i = k + 1, we have φ(ei, e) ≤ π
2
− θk+1 <

3
2
θ.

• If β ≤ θ−(k+1), taking i = −(k + 1), we also have φ(ei, e) ≤ 3
2
θ.

• Otherwise, taking i = sgn(β)dβ−
θ
2

θ
e, we also have φ(ei, e) ≤ θ < 3

2
θ.

Recall that for any i, there exist different i1, · · · , i2k+1 ∈ I\i such that φ(ei, eij) ≤ jθ, and using
Lemma 17, we can draw the conclusion that for any e = (sin β, cos β) with β ∈ [−π

2
, π

2
], there

exist different i1, · · · , i2k+2 such that φ(ei, eij) ≤ 3
2
θ + (j − 1)θ = (j + 1

2
)θ. For any (w′j)

m
j=1,

assume w′j = ‖w′j‖2(sin βj, cos βj), and assume βj ∈ [−π
2
, π

2
]. Using the above conclusion,

for w′1, we can find some r1 such that φ(w′1, er1) ≤ 3
2
θ. For w′2, we can find different i1, i2

such that φ(w′2, ei1) ≤ 3
2
θ < (3

2
+ 1)θ and φ(w′2, ei2) ≤ (3

2
+ 1)θ. So we can find r2 6= r1

such that φ(w′2, er2) ≤ (3
2

+ 1)θ. Following this scheme, we can find rj /∈ {r1, · · · , rj−1} and
φ(w′j, erj) ≤ (j + 1

2
)θ < 3mθ for j = 1, · · · ,m, as we have assumed that m ≤ 2(k + 1). Let

wj = ‖w′j‖2erj , then we have constructed (wj)
m
j=1 such that

∀j ∈ {1, · · · ,m}, φ(w′j,wj) ≤ 3mθ, (4.59)

∀j ∈ {1, · · · ,m}, ‖w′j‖2 = ‖wj‖2, (4.60)

∀j 6= k, ρ(wj,wk) ≥ θ. (4.61)

Note that we have assumed ∀j = 1, · · · ,m, βj ∈ [−π
2
, π

2
]. In order to show that the conclusion

holds for general w′j , we need to consider the cases where βj ∈ [−3
2
π,−π

2
]. For those cases,

we can let β′j = βj + π, then β′j ∈ [−π
2
, π

2
]. Let w′′j = ‖w′j‖2(sin β′j, cos β′j), we can find

an erj such that φ(w′′j , erj) ≤ mθ following the same procedure. Let wj = −‖w′j‖2erj , then
φ(w′j,wj) = φ(w′′j , erj) ≤ 2mθ. Since ρ(−erj , ek) = ρ(erj , ek), the ρ(wj,wk) ≥ θ condition
is still satisfied. Also noting that φ(a,b) ≤ π for any a, b, we complete the proof for the 2-
dimensional case.

Now we consider a general d-dimensional case. Similar to the 2-dimensional case, we con-
struct a set of vectors with unit L2 norm such that the pairwise angles ρ(wj,wk) ≥ θ for j 6= k.
We perform the construction in two phases. In the first phase, we construct a sequence of unit
vector sets indexed by I = {−(k + 1), · · · ,−1, 1, · · · , k + 1}:

∀i ∈ I, Ei = {e ∈ Rd|‖e‖2 = 1, e · (1, 0, · · · , 0) = cos θi}, (4.62)

where θi = sgn(i)( θ
2

+ (|i| − 1)θ) is defined in Eq.(4.57). It can be shown that ∀i 6= j, ∀ei ∈
Ei, ej ∈ Ej ,

ρ(ei, ej) ≥ θ. (4.63)

The proof is as follows. First, we write ei as ei = (cos θi, 0, · · · , 0) + ri, where ‖ri‖2 = | sin θi|.
Similarly, ej = (cos θj, 0, · · · , 0) + rj , where ‖rj‖2 = | sin θj|. Hence we have

ei · ej = cos θi cos θj + ri · rj. (4.64)

Hence

cos(ρ(ei, ej)) = |ei · ej| (4.65)
≤ cos θi cos θj + | sin θi sin θj| (4.66)
= max(cos(θi + θj), cos(θi − θj)). (4.67)
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We have shown in the 2-dimensional case that cos(θi + θj) ≥ cos θ and cos(θi − θj) ≥ cos θ,
hence ρ(ei, ej) ≥ θ. In other words, we have proved that for any two vectors from Ei and Ej ,
their pairwise angle is lower bounded by θ. Now we proceed to construct a set of vectors for each
Ei such that the pairwise angles can also be lower bounded by θ. The construction is as follows.
First, we claim that for any Ei, ifW ⊂ E satisfies

∀wj 6= wk ∈ W , φ(wj,wk) ≥ θ, (4.68)

then |W | is finite. In order to prove that, we first define B(x, r) = {y ∈ Rn : ‖y − x‖2 < r}.
Then Ei ⊂ ∪e∈EiB(e,

1−cos θ
2

1+cos θ
2

). According to the definition of Ei, it is a compact set. Therefore

the open cover has a finite subcover. Therefore we have ∃V ⊂ Ei with |V | being finite and

Ei ⊂ ∪v∈V B

(
v,

1− cos θ
2

1 + cos θ
2

)
. (4.69)

Furthermore, we can verify that ∀v ∈ V, ∀e1, e2 ∈ B(v,
1−cos θ

2

1+cos θ
2

), φ(e1, e2) ≤ θ. So ifW ⊂ Ei

satisfies ∀wj 6= wk ∈ W , φ(wj,wk) ≥ θ, then for each v ∈ V , |B(v,
1−cos θ

2

1+cos θ
2

) ∩ W| = 1. As
W ⊂ Ei, we have

|W | = |W ∩ Ei| (4.70)

=

∣∣∣∣∣W ∩
(
∪v∈VB

(
v,

1− cos θ
2

1 + cos θ
2

))∣∣∣∣∣ (4.71)

=

∣∣∣∣∣∪v∈VW ∩B

(
v,

1− cos θ
2

1 + cos θ
2

)∣∣∣∣∣ (4.72)

≤
∑
v∈V

∣∣∣∣∣W ∩B
(

v,
1− cos θ

2

1 + cos θ
2

)∣∣∣∣∣ (4.73)

≤
∑
v∈V

1 (4.74)

= |V | . (4.75)

Therefore, we have proved that |W | is finite. Using this fact, we can construct a sequence of
vectors wj ∈ Ei(j = 1, · · · , l) in the following way:

1. Let w1 ∈ Ei be any vector in Ei.
2. For j ≥ 2, let wj ∈ Ei be any vector satisfying

∀k = 1, · · · , j − 1, φ(wj,wk) ≥ θ, (4.76)
∃k ∈ {1, · · · , j − 1}, φ(wj,wk) = θ, (4.77)

until we cannot find such vectors any more.

3. As we have proved that |W | is finite, the above process will end in finite steps. Assume
that the last vector we found is indexed by l.
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We will verify that such constructed vectors satisfy

∀j 6= k ∈ {1, · · · , l}, ρ(wj,wk) ≥ θ. (4.78)

According to the construction, φ(wj,wk) ≥ θ. As ρ(wj,wk) = min(φ(wj,wk), π−φ(wj,wk)),
we only need to show that π − φ(wj,wk) ≥ θ. To show this is true, we use the definition
of Ei to write wj as wj = (cos θi, 0, · · · , 0) + rj , where ‖rj‖2 = | sin θi|. Similarly, wk =
(cos θi, 0, · · · , 0)+rk, where ‖rk‖2 = | sin θi|. Therefore cos(φ(wj,wk)) = wj ·wk ≥ cos2 θi−
sin2 θi = cos(2θi) ≥ cos(π − θ), where the last inequality follows from the construction of θi.
So π − φ(wj,wk) ≥ θ, the proof for ρ(wj,wk) ≥ θ is completed.

Now we will show that ∀e ∈ Ei, we can find j ∈ {1, · · · , l} such that φ(e,wj) ≤ θ. We prove
it by contradiction: assume that there exists e such that minj∈{1,··· ,l} φ(e,wj) > θ, then as Ej is a
connected set, there is a path q : t ∈ [0, 1]→ Ej connecting e to w1. When t = 0, the path starts
at q(0) = e; when t = 1, the path ends at q(1) = w1. We define functions rj(t) = φ(q(t),wj) for
t ∈ [0, 1] and j = 1, · · · , l. It is straightforward to see that rj(t) is continuous, hence minj(rj(t))
is also continuous. As minj(rj(0)) > θ and minj(rj(0)) = 0 < θ, there exists t∗ ∈ (0, 1) such
that minj(rj(0)) = θ. Then q(t∗) satisfies Condition 4.76, which contradicts the construction in
W as the construction only ends when we cannot find such vectors. Hence we have proved that

∀e ∈ Ei, ∃j ∈ {1, · · · , l}, φ(e,wj) ≤ θ. (4.79)

Now we can proceed to prove the main lemma. For each i ∈ I, we use Condition 4.76 to
construct a sequence of vectors wij . Then such constructed vectors have pairwise angles greater
than or equal to θ. Then for any e ∈ Rd with ‖e‖2 = 1, we write e in sphere coordinates as e =
(cos r1, sin r1 cos r2, · · · ,

∏d
j=1 sin rj). Use the same method as we did for the 2-dimensional

case, we can find θi such that |θi−r| ≤ 3
2
θ. Then e′ = (cos θi, sin θi cos r2, · · · , sin θi

∏d
j=2 sin rj) ∈

Ei. It is easy to verify that φ(e, e′) = |θi−r| ≤ 3
2
θ. As e′ ∈ Ei, there exists wij as we constructed

such that φ(e′,wij) ≤ θ. So φ(e,wij) ≤ φ(e, e′) + φ(e′,wij) ≤ 5
2
θ < 3θ. So we have proved

that for any e ∈ Rd with ‖e‖2 = 1, we can find wij such that φ(e,wij) < 3θ.
For any wij , assume i + 1 ∈ I, we first project wij to w∗ ∈ Ei+1. We have proved that

φ(wij,w
∗) ≤ 3

2
θ and also proved that we can find wi+1,j′ ∈ Ei+1 such that φ(wi+1,j′ ,w

∗) ≤ θ.
So we have found wi+1,j′ such that φ(wij,wi+1,j′) ≤ 5

2
θ < 3θ. We can use similar scheme

to prove that ∀wij , there exist different wi1,j1 · · · ,wi2k+1,j2k+1
such that (ir, jr) 6= (i, j) and

φ(wij,wir,jr) ≤ 3rθ. Following the same proof as the 2-dimensional case, we can prove that if
m ≤ 2k + 1, then we can find a set of vectors (wj)

m
j=1 such that

∀j ∈ {1, · · · ,m}, φ(w′j,wj) ≤ min(3mθ, π), (4.80)

∀j ∈ {1, · · · ,m}, ‖w′j‖2 = ‖wj‖2, (4.81)

∀j 6= k, ρ(wj,wk) ≥ θ. (4.82)

The proof completes.
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4.3.4 Proof of Theorem 4
Proof Sketch

Define W = {W ∈ Rd×m|Ω(W) ≤ τ} and C̃(W) = supW∈W C(W). The following lemma
shows that the estimation error can be upper bounded using C(W).
Lemma 18. Suppose sup(x,y)‖x−y‖2 ≤ B0 and ‖w‖2 ≤ D, then with probability at least 1−δ,
we have

L(u)− L̂(u) ≤ 4B2
0D

√
(C̃(W)+1)m

N
+ [B2

0(C̃(W) +m) + 1]
√

2 log(1/δ)
N

. (4.83)

The upper bound is an increasing function of C̃(W). The following lemma shows that C(W)
can be upper bounded by an increasing function of the LDD regularizer Ωldd(W).
Lemma 19. Let g(x) = x− log(x+ 1). Then we have

C(W) ≤ g−1(Ωldd(W)/m)m.

where g−1(·) is the inverse function of g on [0,∞) and is an increasing function.
Since Ωldd(W) ≤ τ , we have C(W) ≤ g−1(τ/m)m for any W ∈ W , i.e., C̃(W) ≤

g−1(τ/m)m. Substituting this inequality into Lemma 18, we obtain the bound in Eq.(4.5) in
Theorem 4.

Proof of Lemma 18

Proof. Let U = {u : (x,y)→ ‖W(x−y)‖2
2} be the set of hypothesis u(x,y) = ‖W(x−y)‖2

2,
andR(U) be the Rademacher complexity [32] of U which is defined as:

R(U) = ESN ,σ sup
u∈U

1

n

N∑
n=1

σn‖W(xn − yn)‖2
2,

where SN = ((x1,y1, t1), (x2,y2, t2) · · · (xn,yn, tN)) are the training examples, σn ∈ {−1, 1}
are the Rademacher variables, and σ = (σ1, σ2, · · ·σN).

Lemma 20 shows that the estimation error can be bounded using the Rademacher complexity.
Its proof is adapted from [32]. Readers only need to notice x + 1 is an upper bound of log(1 +
exp(x)) for x > 0.

Lemma 20. With probability at least 1− δ, we have

L(u)− L̂(u) ≤ 2R(U) + sup
x,y,W′∈W

(‖W′(x− y)‖2
2 + 1)

√
2 log(1/δ)

N
. (4.84)

We then boundR(U) and supx,y,W′∈W ‖W′(x−y)‖2
2. The result is in the following lemma.

Lemma 21. Suppose sup(x,y)‖x− y‖2 ≤ B0 and ‖w‖2 ≤ D, then we have

R(U) ≤ 2B2
0D
√
m√

N

√
C̃(W) + 1,
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and
sup

x,y,W′∈W
‖W′(x− y)‖2

2 ≤ B2
0(C̃(W) +m).

Proof. We first give bound onR(U). LetR(S) = {s : (x,y)→
∑m

j=1 |〈wj,x− y〉|,W ∈ W}
be the set of hypothesis s(x,y) =

∑m
j=1 |〈wj,x−y〉|. Denote |〈wj,xn−yn〉| = 〈wj, an,j(xn−

yn)〉, where an,j ∈ {−1, 1}. Then

R(S) = ESN ,σ sup
W∈W

1

N

N∑
n=1

σn

m∑
j=1

〈wj, an,j(xn − yn)〉. (4.85)

We first boundR(S).

R(S) = ESN ,σ sup
W∈W

1

N

m∑
j=1

〈wj,

N∑
n=1

σnan,j(xn − yn)〉

= ESN ,σ sup
W∈W

1

N
〈
m∑
j=1

wj,
N∑
n=1

σnan,j(xn − yn)〉

≤ ESN ,σ sup
W∈W

1

N
‖
m∑
j=1

wj‖2‖
N∑
n=1

σnan,j(xn − yn)‖2

= ESN ,σ sup
W∈W

1

N

√√√√〈 m∑
j=1

wj,
m∑
j=1

wj〉

√√√√〈 N∑
n=1

σnan,j(xn − yn),
N∑
n=1

σnan,j(xn − yn)〉.

(4.86)

Applying Jensen’s inequality to Eq.(4.86), we have

R(S) ≤ ESN sup
W∈W

1

N

√√√√ m∑
j,k=1

|〈wj,wk〉|

√√√√Eσ〈
N∑
n=1

σnan,j(xn − yn),
N∑
n=1

σnan,j(xn − yn)〉.

(4.87)
Combining Eq.(4.87) with the inequality

∑m
j,k=1 |〈wj,wk〉 − δj,k| ≤ mC(W), we have

R(S) ≤ ESN sup
W∈W

1

N

√
mC(W) +m

√√√√ N∑
n=1

‖xn − yn‖2

≤
√
m√
N

sup
W∈W

√
(C(W) + 1)B0.

Let w denote any column vector of W ∈ W and x denote any data example. According to the
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composition property of Rademacher complexity (Theorem 12 in [32]), we have

R(U) ≤ 2 sup
w,x
〈w,x〉R(S)

≤ 2 sup
w
‖w‖2B0R(S)

≤ 2B2
0D
√
m√

N

√
C̃(W) + 1.

Next we give bound on supx,y,W′∈W ‖W′(x− y)‖2
2.

sup
x,y,W′∈W

‖W′(x− y)‖2
2 ≤ sup

W′∈W

m∑
j=1

〈w′j,w′j〉 sup
(x,y)

‖x− y‖2
2

= sup
W′∈W

tr(W
′>W′) sup

(x,y)

‖x− y‖2
2

≤ (C̃(W) +m)B2
0

Combining Lemma 21 with Lemma 20, we complete the proof of Lemma 18.

Proof of Lemma 19

Proof. The function g(x) = x− log(x+1) is decreasing on(−1, 0], increasing on [0,∞), g(0) =
0, and g(−t) > g(t) for ∀0 ≤ t < 1. We have

Ωldd(W) = tr(W>W)− log det(W>W)−m

=
m∑
j=1

g(πj − 1)

≥
m∑
j=1

g(|πj − 1|)

≥ g(
1

m

m∑
j=1

|πj − 1|)m

= g(C(W)/m)m.

The first inequality is due to g(−t) > g(t), and the second inequality can be attained by Jensen’s
inequality. Finally we have

g(C(W)/m)m ≤ Ωldd(W).

Thus, we have
C(W) ≤ g−1(Ωldd(W)/m)m.

133



Extend the Analysis to the VND Regularizer

Next, we extend the estimation error analysis to the VND regularizer. The following lemma
shows that C(W) can be upper bounded by an increasing function of the VND regularizer
Ωvnd(W).
Lemma 22. Define a real function g = (x + 1) log(x + 1) − x, which is increasing on [0,∞).
Then we have:

C(W) ≤ mg−1(Ωvnd(W)/m),

where g−1 is the inverse function of g.

Proof. g is decreasing on (−1, 0] and increasing on [0,∞). g(0) = 0, g(−t) > g(t) for ∀0 ≤
t < 1. We have

Ωvnd(W) = tr(G log G)− tr(G) +m

=
m∑
j=1

g(πj − 1)

≥
m∑
j=1

g(|πj − 1|)

≥ mg(
1

m

m∑
j=1

|πj − 1|)

= mg(C(W)/m),

where G = W>W and {πj}mj=1 are the eigenvalues of G. The first inequality is due to g(−t) >
g(t), and the second inequality can be attained by Jensen’s inequality. Finally we have

g(C(W)/m) ≤ Ωvnd(W).

Thus, we have
C(W) ≤ mg−1(Ωvnd(W)/m).

Combining Lemma 22 with Lemma 18, we obtain the bound in Eq.(4.6) in Theorem 4.

Analysis of the SFN Regularizer

For SFN, the analysis approach is different. Instead of leveraging the intermediate capacity
variable, we directly bound the estimation error with SFN. The following lemma gives an upper
bound of the Rademacher complexity.
Lemma 23. Suppose sup(x,y)‖x− y‖ ≤ B, then we have

R(U) ≤ 2B2
√
m√

N
(‖W>W − I‖F +

√
m),

and
sup

x,y,W′∈W
‖W′(x− y)‖2

2 ≤ sup
W′∈W

(
√
m‖W>W − I‖F +m)B2.
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Proof. We first prove the bound of R(U). Recall the definition of R(S) in Eq.(4.85). By the
proof of Lemma 21, we have

R(S) ≤ B√
N

ESN sup
W∈W

√√√√ m∑
j,k=1

|〈wj,wk〉|, (4.88)

R(U) ≤ 2 sup
W∈W

‖wj‖2BR(S). (4.89)

By the properties of matrix norm, we have ‖W>W‖F ≤ ‖W>W − I‖F + ‖I‖F ≤ ‖W>W −
I‖F +

√
m. Further, by Jensen’s inequality, we have

sup
W∈W

√√√√ m∑
j,k=1

|〈wj,wk〉| ≤ 4

√
m2‖W>W‖2

F ≤
√
m

√
‖W>W − I‖F +

√
m. (4.90)

Also note that

sup
W∈W

‖wj‖2 =
√
〈wj,wj〉 ≤

√
‖W>W‖F ≤

√
‖W>W − I‖F +

√
m. (4.91)

Combining Eq.(4.88) and Eq.(4.91), we have

R(U) ≤ 2B2
√
m√

N
(‖W>W − I‖F +

√
m).

We then drive the bound on supx,y,W′∈W ‖W′(x− y)‖2
2.

sup
x,y,W′∈W

‖W′(x− y)‖2
2 ≤ sup

W∈W
tr(W>W) sup

(x,y)

‖x− y‖2

≤
√
m‖W>W‖2

FB
2

≤ (
√
m‖W>W − I‖F +m)B2

Combining Lemma 23 with Lemma 20 and noting that ‖W − I‖2
F ≤ τ , we complete the

proof of the estimation error bound w.r.t SFN given in Eq.(4.7).

4.3.5 Proof of Theorem 5
Proof Sketch

Part of the proof is tailored to the CVND regularizer. Extensions to CSFN and CLDD are given
later. The proof is based on the Rademacher complexity (RC) [32], which measures the com-
plexity of a hypothesis class. The Rademacher complexity R(M) of the function class M is
defined as:
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R(M) = ES,D,σ sup
M∈M

1

m

m∑
i=1

σi(xi − yi)
>M(xi − yi),

where m is the number of data pairs in the training data (m = |S| + |D|), σi ∈ {−1, 1} is the
Rademacher variable, and σ = (σ1, σ2, · · ·σm).

We first establish an upper bound of the estimation error based on RC. Intuitively, a less-
complicated hypothesis class generalizes better on unseen data. Then we upper bound the RC
based on the CBMD regularizers. Combining the two steps together, we establish upper bounds
of the estimation error based on the CBMD regularizers. The following lemma presents the
RC-based upper bound of the estimation error. Its proof is adapted from [32].
Lemma 24. With probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2R(M) + max(τ, sup
(x,y) ∈ S
M ∈M

(x− y)>M(x− y))

√
2 log(1/δ)

m
.

(4.92)
For the second term in the bound, it is easy to verify

sup
(x,y) ∈ S
M ∈M

(x− y)>M(x− y) ≤ sup
M∈M

tr(M) sup
(x,y)∈S

‖x− y‖2
2. (4.93)

Now we focus on the first term. We denote z = x− y, zi = xi − yi.
Lemma 25. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ 2B2

√
m

sup
M∈M

tr(M). (4.94)

We next show that tr(M) can be bounded by the CVND regularizer Ω̂vnd(M).
Lemma 26. For the convex VND regularizer Ω̂vnd(M), for any positive semidefinite matrix M,
we have

tr(M) ≤ Ω̂vnd(M).

Combining Lemma 24, 25, 26 and Eq.(4.93) and noting that E = L(M̂∗)−L̂(M̂∗) ≤ supM∈M(L(M)−
L̂(M)) and Ω̂vnd(M) ≤ C (C is the upper bound in the hypothesis classM), we complete the
proof of the first bound in Theorem 5. In the sequel, we present detailed proofs of these lemmas
and extend the results to CSNF and CLDD.

Proof of Lemma 25

Proof. For any M ∈ M, denote its spectral decomposition as M = VΠV>, where V is a
standard orthogonal matrix and Π is a diagonal matrix. Denote V = (v1,v2, · · ·vD), Π =
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diag(π1, π2, · · · πD), then we have

R(M) = ES,D,σ sup
M∈M

[
1

m

m∑
i=1

σiz
T
i Mzi

]

=
1

m
ES,D,σ sup

M∈M

[
m∑
i=1

σi

D∑
j=1

πj(v
>
j zi)

2

]

=
1

m
ES,D,σ sup

M∈M

[
D∑
j=1

πj

m∑
i=1

σi(v
>
j zi)

2

]

=
1

m
ES,D,σ sup

M∈M

[
D∑
j=1

πj sup
‖v‖2≤1

m∑
i=1

σi(v
>zi)

2

]

=
1

m
ES,D,σ sup

Π

D∑
j=1

πj sup
‖v‖2≤1

m∑
i=1

σi(v
>zi)

2

≤ 1

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

m∑
i=1

σi(v
>zi)

2.

Since (v>z)2 is Lipschitz continuous w.r.t v>z with constant 2 sup‖v‖2≤1,z v>z, according to
the composition property [32] of Rademacher complexity on Lipschitz continuous functions, we
have

R(M) ≤ 1

m
2 sup
‖v‖2≤1,z

(v>z) sup
M∈M

tr(M)ES,D,σ sup
‖v‖2≤1

m∑
i=1

σiv
>zi

= 2
B

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

m∑
i=1

σiv
>zi

≤ 2
B

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

‖v‖2‖
m∑
i=1

σizi‖2

= 2
B

m
sup

M∈M
tr(M)ES,D,σ

√√√√(
m∑
i=1

σizi)2.

By Jensen’s inequality, we have

R(M) ≤ 2
B

m
sup

M∈M
tr(M)ES,D

√√√√Eσ(
m∑
i=1

σizi)2

=≤ 2
B

m
sup

M∈M
tr(M)ES,D

√√√√ m∑
i=1

z2
i

≤ 2B2

√
m

sup
M∈M

tr(M).
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Proof of lemma 26

Proof. By the definition of the convex VND regularizer, we have

Ω̂vnd(M) =Γvnd(M + εID, ID) + tr(M)

=tr[(M + εID) log(M + εID)− (M + εID) log ID − (M + ε) + ID] + tr(M)

=
D∑
j=1

[(πj + ε) log(πj + ε)− (πj + ε) + 1] +
D∑
j=1

πj

=
D∑
j=1

[(λj + ε) log(λj + ε)− ε+ 1].

Denote π̄ = (
∑D

j=1 πj)/D = tr(M)/D, then by Jensen’s inequality, we have

D∑
j=1

(λj + ε) log(λj + ε) ≥ D(π̄ + ε) log(π̄ + ε).

Since ∀x ∈ R+, x− 1 ≤ x log x, we have

π̄ + ε− 1 ≤ (π̄ + ε) log(π̄ + ε)

≤ 1

D

D∑
j=1

(λj + ε) log(λj + ε)

≤ 1

D
Ω̂vnd(M) + ε− 1.

Therefore we have
tr(M) ≤ Ω̂vnd(M).

Estimation Error Bound for the Convex SFN Regularizer

In this section we prove estimation error bounds for the convex SFN regularizer. The CSFN is
composed of two parts. One is the squared Frobenius norm of M− ID and the other is the trace
of M. We have already established a relationship between tr(M) and R(M). Now we analyze
the relationship between ‖M− ID‖F andR(M), which is given in the following lemma.
Lemma 27. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ B2

√
m

sup
M∈M

‖M− ID‖F . (4.95)
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Proof. Denote M(j, k) = ajk, and δjk = I{j=k}, zi = (zi1, zi2, · · · zid), then we have

R(M) =
1

m
ES,D,σ sup

M∈M

[∑
j,k

ajk

m∑
i=1

σizijzik

]

=
1

m
ES,D,σ sup

M∈M

[∑
j,k

(ajk − δjk)
m∑
i=1

σizijzik +
∑
j,k

δjk

m∑
i=1

σizijzik

]

≤ 1

m
ES,D,σ sup

M∈M

‖M− ID‖F

√√√√∑
j,k

(
m∑
i=1

σizijzik)2

 .
Here the inequality is attained by Cauchy’s inequality. Applying Jensen’s inequality, we have

R(M) ≤ 1

m
sup

M∈M
‖M− ID‖F ES,D

√√√√Eσ

∑
j,k

(
m∑
i=1

σizijzik)2


=

1√
m

sup
M∈M

‖M− ID‖F ES,D

√∑
j,k

z2
ijz

2
ik

 .
Recalling the definition of B, we have

R(M) ≤ B2

√
m

sup
M∈M

‖M− ID‖F .

We now bound the estimation error with the convex SFN regularizer, which is given in the
following lemma.
Lemma 28. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then with probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)) + max(τ, Ω̂sfn(M))

√
2 log(1/δ)

m
.

Proof. For the convex SFN regularizer Ω̂sfn(M), we have tr(M) ≤ Ω̂sfn(M) and ‖M− ID‖ ≤
Ω̂sfn(M). By Eq.(4.93), we have

sup
(x,y) ∈ S
M ∈M

(x− y)>M(x− y) ≤ sup
M∈M

Ω̂sfn(M)B2. (4.96)

By Lemma 25 and 27, we have

R(M) ≤ B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)). (4.97)
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Substituting Eq.(4.97) and Eq.(4.96) into Lemma 24, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)) + max(τ, Ω̂sfn(M))

√
2 log(1/δ)

m
.

Noting that E = L(M̂∗) − L̂(M̂∗) ≤ supM∈M(L(M) − L̂(M)) and Ω̂sfn(M) ≤ C, we

conclude E ≤ 2B2
√
m

min(2C,
√
C) + max(τ, C)

√
2 log(1/δ)

m
.

Estimation Error Bound for the Convex LDD Regularizer

Starting from Lemma 24, we boundR(M) and supM∈M tr(M) which are given in the following
two lemmas.
Lemma 29. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ B√
m

Ω̂ldd(M)

log(1/ε)− 1
.

Proof. We first perform some calculation on the convex LDD regularizer.

Ω̂ldd(M) = Γldd(M + εID, ID)− (1 + log ε)tr(M)
= tr((M + εID)I−1

D )− log det((M + εID)I−1
D )−D − (1 + log ε)tr(M)

=
∑D

j=1(πj + ε)−
∑D

j=1 log(πj + ε)−D − (1 + log ε)
∑D

j=1 πj
= log(1

ε
)
∑D

j=1 πj −
∑D

j=1 log(πj + ε)−D(1− ε).

(4.98)

Now we upper bound the Rademacher complexity using the CLDD regularizer.

log(
1

ε
)R(M) =

log(1
ε
)

m
ES,D,σ sup

M∈M

[
D∑
j=1

πj

m∑
i=1

σi(v
>
j zi)

2

]

≤ 1

m
ES,D,σ sup

Π

D∑
j=1

[(log(
1

ε
)πj − log(πj + ε)) + log(πj + ε)] sup

‖v‖2≤1

m∑
i=1

σi(v
>zi)

2.

Similar to the proof of Lemma 25, we have

log(1
ε
)R(M)≤ 2B2

√
m

supΠ

∑D
j=1[(log(1

ε
)πj − log(πj + ε)) + log(πj + ε)]

≤ 2B2
√
m

[supM∈M Ω̂ldd(M) + supM∈M
∑D

j=1 log(πj + ε)].
(4.99)

Denoting A =
∑D

j=1 log(πj + ε), we bound A with Ω̂ldd(M). Denoting π̄ = (
∑D

j=1 πj)/D =
tr(M)/D, by Jensen’s inequality, we have

A ≤ D log(π̄ + ε), (4.100)
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then π̄ ≥ eA/D − ε. Replacing π̄ with A in Eq.(4.98), we have

Ω̂ldd(M) ≥D log(1/ε)(eA/D − ε)− A−D(1− ε)

≥D log(1/ε)(
A

D
+ 1− ε)− A−D(1− ε)

=(log(1/ε)− 1)A+ [log(
1

ε
)− 1]D(1− ε).

Further,

A ≤ Ω̂ldd(M)

log(1
ε
)− 1

−D(1− ε). (4.101)

Substituting this upper bound of A into Eq.(4.99), we have

R(M) ≤ 2B2

√
m

supM∈M Ω̂ldd(M)

log(1/ε)− 1
.

The next lemma shows the bound of tr(M).
Lemma 30. For any positive semidefinite matrix M, we have

tr(M) ≤ Ω̂ldd(M)−Dε
log(1

ε
)− 1

.

Proof.

Ω̂ldd(M) ≥D log(1/ε)π̄ −D log(π̄ + ε)−D(1− ε)
≥D log(1/ε)π̄ +D(1− π̄)−D(1− ε)
=D[log(1/ε)− 1]π̄ +Dε.

Then

tr(M) = Dπ̄ ≤ Ω̂ldd(M)−Dε
log(1

ε
)− 1

.

Combining Lemma 29, 30, and 24, we get the following estimation error bound w.r.t the
convex LDD regularizer.
Lemma 31. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then with probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 4B2 Ω̂ldd(M)√
m [log(1/ε)− 1]

+ max
(
τ,

Ω̂ldd(M)−Dε
log(1

ε
)− 1

)√2 log(1/δ)

m
.
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Chapter 5

Large-scale Learning via System and
Algorithm Co-design

In this chapter, we present another line of research in this thesis: large-scale machine learning,
where we design efficient distributed systems [370, 377] for healthcare applications at scale.

To execute ML algorithms efficiently on a distributed system, it is important to perform
system and algorithm co-design. On one hand, ML algorithms possess unique properties such as
iterativeness and error tolerance [162], which can be leveraged to design efficient systems. On
the other hand, based on the features of the system such as parallelism and (a)synchronicity, ML
algorithms can be adjusted for more efficient execution.

Through a principled system and algorithm co-design, we build the Orpheus system for train-
ing matrix-parameterized models (MPMs), a very general class of ML models including multi-
class logistic regression (MLR), deep neural networks, sparse coding [266], collaborative filter-
ing [54], topic models [49], etc. In MPMs, model parameters can be represented by a matrix W.
For example, in MLR, rows of W represent the classification coefficient vectors corresponding
to different classes; whereas in SC rows of W correspond to the basis vectors used for recon-
structing the observed data. A learning algorithm, such as stochastic gradient descent (SGD),
would iteratively compute an update ∆W from data, to be aggregated with the current version
of W.

Learning MPMs in large scale ML problems is challenging: ML application scales have
risen dramatically, a good example being the ImageNet [95] compendium with millions of im-
ages grouped into tens of thousands of classes. To ensure fast running times when scaling up
MPMs to such large problems, it is desirable to turn to distributed computation; however, a
unique challenge to MPMs is that the parameter matrix grows rapidly with problem size, causing
straightforward parallelization strategies to perform less ideally. Consider a data-parallel algo-
rithm, in which every worker uses a subset of the data to update the parameters — a common
paradigm is to synchronize the full parameter matrix and update matrices amongst all workers
[78, 93, 94, 136, 222, 304]. However, this synchronization can quickly become a bottleneck: take
MLR for example, in which the parameter matrix W is of size J × D, where J is the number
of classes and D is the feature dimensionality. In one application of MLR to Wikipedia [272],
J = 325k and D > 10, 000, thus W contains several billion entries (tens of GBs of mem-
ory). Because typical computer cluster networks can only transfer a few GBs per second at the
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most, inter-machine synchronization of W can dominate and bottleneck the actual algorithmic
computation. In addition to the communication overhead, checkpointing these matrices for fault
tolerance purposes incurs substantial disk IO.

In recent years, many distributed frameworks have been developed for large scale machine
learning, including bulk synchronous parallel (BSP) systems such as Hadoop [93] and Spark
[407], graph computation frameworks such as GraphLab [132], and bounded-asynchronous key-
value stores such as TensorFlow [13], Bosen [162, 355], Project Adam [78], and [226]. When
using these systems to learn MPMs, it is common to transmit the full parameter matrices W
and/or matrix updates ∆W between machines, usually in a server-client style [78, 93, 94, 136,
222, 304]. As the matrices become larger due to increasing problem sizes, so do communication
costs and synchronization delays — hence, reducing such costs is a key priority when using these
frameworks.

To facilitate system-algorithm co-design, we begin by investigating the structure of matrix
parameterized models. Many MPMs bear the following property: when the parameter matrix W
is optimized with SGD [78, 94, 162] or stochastic dual coordinate ascent (SDCA) [167, 299], the
update4W computed over one (or a few) data sample(s) is of low-rank, e.g. it can be written as
the outer product of two vectors u and v: 4W = uv>. The vectors u and v are sufficient factors
(SF, meaning that they are sufficient to reconstruct the update matrix4W). A rich set of models
[78, 218, 266, 383] fall into this family: for instance, when solving an MLR problem using SGD,
the stochastic gradient is4W = uv>, where u is the prediction probability vector and v is the
feature vector. Similarly, when solving an `2 regularized MLR problem using SDCA, the update
matrix4W also admits such as a structure, where u is the update vector of a dual variable and v
is the feature vector. Other models include neural networks [78], distance metric learning [383],
sparse coding [266], non-negative matrix factorization [218], and principal component analysis,
to name a few.

Leveraging this property, we propose a computation model called sufficient factor broad-
casting (SFB). The basic idea is to send sufficient factors (SFs) between workers, which then
reconstruct matrix updates 4W locally, thus greatly reducing inter-machine parameter com-
munication. This stands in contrast to the well-established parameter server idiom [78, 226],
a centralized design where workers maintain a “local” image of the parameters W, which are
synchronized with a central parameter image W (stored on the “parameter servers”). In existing
parameter server designs, the (small, low-rank) updates 4W are accumulated into the central
parameter server’s W, and the low-rank structure of each update 4W is lost in the process.
Thus, the parameter server can only transmit the (large, full-rank) matrix W to the workers,
inducing extra communication that could be avoided. We address this issue by a decentralized,
peer-to-peer architecture that performs SFB, where each worker keeps its own image of the pa-
rameters W (either in memory or on local disk), and sends sufficient factors to other workers
for parameter synchronization. SFB is highly communication-efficient; transmission costs are
linear in the dimensions of the parameter matrix, and the resulting faster communication greatly
reduces waiting time in synchronous systems (e.g. Hadoop and Spark), or improves parameter
freshness in (bounded) asynchronous systems (e.g. GraphLab, Petuum-PS and [226]). Most im-
portantly, such savings are achieved without compromising the mathematical equivalence of the
new ML solution to the original one. SFs have been used to speed up some (but not all) network
communication in deep learning [78]; our work differs primarily in that we always transmit SFs,
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never full matrices.
In addition to the SFB computation model, we propose a battery of system designs (SD) and

algorithm designs (ADs) for efficient communication, light-weight fault tolerance and recovery,
and easiness of programming. In communication, an AD – SF selection and a SD – random mul-
ticast are used to further reduce the size of each network message and the number of messages.
In fault tolerance, based on an AD – using SFs to represent parameter states, an SD – incremen-
tal SF checkpoint (ISFC) – is used, which continuously saves new SFs computed at each clock
to stable storage. Compared with checkpointing parameter matrices, ISFC greatly reduces disk
IO, avoids compute-cycle waste, and provides fine-grained (per-clock) rollbacks. In addition,
we provide an easy-to-use programming model where the generation of SFs is automatically
identified rather than being specified by users, which reduces users’ programming efforts.

We provide theoretical analysis which shows that the algorithms executed using SFB are
guaranteed to converge. We also extend SFB to a hybrid communication model where decen-
tralized SFB and centralized parameter server are used together to train convolutional neural
networks. Evaluations on a wide range of ML applications demonstrate the efficiency and scala-
bility of our systems.

5.1 Sufficient Factor Property
The core goal of sufficient factor broadcasting (SFB) is to reduce network communication costs
for matrix-parameterized models; specifically, those that follow an optimization formulation

(P) min
W

1
N

N∑
i=1

fi(Wai) + h(W), (5.1)

where the model is parametrized by a matrix W ∈ RJ×D. The loss function fi(·) is typically
defined over a set of training samples {(ai,bi)}Ni=1, with the dependence on bi being suppressed.
We allow fi(·) to be either convex or nonconvex, smooth or nonsmooth (with subgradient every-
where); examples include `2 loss and multiclass logistic loss, amongst others. The regularizer
h(W) is assumed to admit an efficient proximal operator proxh(·). For example, h(·) could be
an indicator function of convex constraints, `1-, `2-, trace-norm, to name a few. The vectors ai
and bi can represent observed features, supervised information (e.g., class labels in classifica-
tion, response values in regression), or even unobserved auxiliary information (such as sparse
codes in sparse coding [266]) associated with data sample i. The key property we exploit below
ranges from the matrix-vector multiplication Wai. This optimization problem (P) can be used to
represent a rich set of ML models [78, 218, 266, 383], such as the following:
• Distance metric learning (DML) [383] improves the performance of other ML algorithms,

by learning a new distance function that correctly represents similar and dissimilar pairs of
data samples; this distance function is a matrix W that can have billions of parameters or
more, depending on the data sample dimensionality. The vector ai is the difference of the
feature vectors in the i-th data pair and fi(·) can be either a quadratic function or a hinge loss
function, depending on the similarity/dissimilarity label bi of the data pair. In both cases, h(·)
can be an `1-, `2-, trace-norm regularizer or simply h(·) = 0 (no regularization).
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• Sparse coding (SC) [266] learns a dictionary of basis from data, so that the data can be re-
represented sparsely (and thus efficiently) in terms of the dictionary. In SC, W is the dictionary
matrix, ai are the sparse codes, bi is the input feature vector, and fi(·) is a quadratic function
[266]. To prevent the entries in W from becoming too large, each column Wk must satisfy
‖Wk‖2 ≤ 1. In this case, h(W) is an indicator function which equals 0 if W satisfies the
constraints and equals∞ otherwise.

To solve the optimization problem (P), it is common to employ either (proximal) stochastic
gradient descent (SGD) [78, 94, 162, 222] or stochastic dual coordinate ascent (SDCA) [167,
299], both of which are popular and well-established parallel optimization techniques.

Proximal SGD In proximal SGD, a stochastic estimate of the gradient,4W, is first computed
over one data sample (or a mini-batch of samples), in order to update W via W←W− η4W
(where η is the learning rate). Following this, the proximal operator proxηh(·) is applied to W.
Notably, the stochastic gradient 4W in (P) can be written as the outer product of two vectors
4W = uv>, where u = ∂f(Wai,bi)

∂(Wai)
, v = ai, according to the chain rule. Later, we will show

that this low rank structure of4W can greatly reduce inter-worker communication.

Stochastic DCA SDCA applies to problems (P) where fi(·) is convex and h(·) is strongly con-
vex (e.g. when h(·) contains the squared `2 norm); it solves the dual problem of (P), via stochastic
coordinate ascent on the dual variables. Introducing the dual matrix U = [u1, . . . ,uN ] ∈ RJ×N

and the data matrix A = [a1, . . . , aN ] ∈ RD×N , the dual problem of (P) can be written as

(D) min
U

1
N

N∑
i=1

f ∗i (−ui) + h∗( 1
N

UA>), (5.2)

where f ∗i (·) and h∗(·) are the Fenchel conjugate functions of fi(·) and h(·), respectively. The
primal-dual matrices W and U are connected by W = ∇h∗(Z), where the auxiliary matrix
Z := 1

N
UA>. Algorithmically, we need to update the dual matrix U, the primal matrix W,

and the auxiliary matrix Z: every iteration, we pick a random data sample i, and compute the
stochastic update 4ui by minimizing (D) while holding {uj}j 6=i fixed. The dual variable is
updated via ui ← ui−4ui, the auxiliary variable via Z← Z−4uia

>
i , and the primal variable

via W ← ∇h∗(Z). Similar to SGD, the update of Z is also the outer product of two vectors:
4ui and ai, which can be exploited to reduce communication cost.

Sufficient factor property in SGD and SDCA In both SGD and SDCA, the parameter matrix
update can be computed as the outer product of two vectors — we call these sufficient factors
(SFs). This property can be leveraged to improve the communication efficiency of distributed
ML systems: instead of communicating parameter/update matrices among machines, we can
communicate the SFs and reconstruct the update matrices locally at each machine. Because the
SFs are much smaller in size, synchronization costs can be dramatically reduced.

More generally, the update matrix4W may not be exactly rank-1, but still of very low rank.
For example, when each machine uses a mini-batch of size K, 4W is of rank at most K; in
restricted Boltzmann machines, the update of the weight matrix is computed from four vectors
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u1,v1,u2,v2 as u1v
>
1 −u2v

>
2 , i.e. rank-2; for the BFGS algorithm [40], the update of the inverse

Hessian is computed from two vectors u,v as αuu>−β(uv>+vu>), i.e. rank-3. Even when the
update matrix4W is not genuinely low-rank, to reduce communication cost, it might still make
sense to send only a certain low-rank approximation. We intend to investigate these possibilities
in future work.

5.2 Orpheus: A Light-weight Peer-to-peer System
In this section, we present a peer-to-peer framework Orpheus where the system design is driven
by the sufficient factor property. Orpheus is a decentralized system that executes data-parallel
[78, 85, 94, 226, 355] distributed training of matrix-parameterized ML models. Orpheus runs on
a group of worker machines connected via a peer-to-peer (P2P) network. Unlike the client-server
architectures including the parameter server [78, 85, 94, 162, 226, 355], machines in Orpheus
play equal roles without server/client asymmetry and every pair of machines can communicate.
Each machine holds one shard of the data and a replica of the model parameters. Machines
synchronize their model replicas to ensure consistency, by exchanging parameter-(pre)updates
via network communication. Under this general framework, Orpheus applies a battery of system-
algorithm co-designs to achieve efficiency in communication and fault tolerance.

For efficient communication, the main idea is to represent the parameter update matrices
by their corresponding SFs, which can be understood as “pre-updates”, meaning that the actual
update matrices must be computed on each client upon receiving fresh SFs, and the update ma-
trices themselves are never transmitted. Since the size of SFs is much smaller than matrices,
the communication cost can be substantially reduced. Under a P2P architecture, in addition to
void transmitting update matrices, Orpheus can also avoid transmitting parameter matrices, while
still achieving synchrony. Besides, random multicast, under which each machine sends SFs to a
randomly-chosen subset of machines, is leveraged to reduce the number of messages. SF selec-
tion, which chooses a subset of representative SFs to communicate, is used to further reduce the
size of each message.

Orpheus uses incremental SF checkpoint for fault tolerance, motivated by the fact that the
parameter states can be represented as a dynamically growing set of SFs. Machines continuously
save the new SFs computed in each logical time onto stable storage. To recover a parameter
state, Orpheus transforms the saved SFs into a matrix. Compared with checkpointing parameter
matrices [13, 407], saving vectors requires much less disk IO and does not require the application
program to halt. Besides, the parameters can be rollbacked to the state in any logical time.

In programming abstraction, the SFs are explicitly exposed such that system-level optimiza-
tions based on SFs can be exploited. Orpheus is able to automatically identify the symbolic
expressions representing SFs and updates, relieving users’ burden to manually specify them.

Orpheus supports two consistency models: bulk synchronous parallel (BSP) [42] and stale-
ness synchronous parallel (SSP) [162]. BSP sets a global barrier at each clock. A worker cannot
proceed to the next clock until all workers reach this barrier. SSP allows workers to have different
paces as long as their difference in clock is no more than a user-defined staleness threshold.
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Figure 5.1: Sufficient factor broadcasting.

5.2.1 Communication: Sufficient Factor Broadcasting (SFB)
Orpheus explores system-algorithm co-design to perform efficient communication. To ensure
the consistency among different parameter replicas, the updates computed at different machines
need to be exchanged. One popular system architecture that enables this is parameter server
(PS) [78, 85, 94, 226, 355], which conceptually consists of a server machine that maintains
shared state of the parameters and a set of worker machines each having a local cache of the
parameters. In PS, the updates computed at worker machines are aggregated at the server and
applied to the shared state. The shared state is subsequently sent back to workers to refresh
their local caches. When PS is used to train MPMs, the update and parameter matrices – which
could contain billions of elements [214] – are transferred, incurring substantial communication
overhead.

Sufficient Factor Broadcasting

Leveraging the SF property of the update matrix in problems (P) and (D), we propose a sufficient
factor broadcasting (SFB) computation model that supports efficient (low-communication) dis-
tributed learning of the parameter matrix W. We assume a setting with P workers, each of which
holds a data shard and a copy of the parameter matrix1 W. Stochastic updates to W are gen-
erated via proximal SGD or SDCA, and communicated between machines to ensure parameter
consistency. In proximal SGD, on every iteration, each worker p computes SFs (up,vp), based
on one data sample xi = (ai,bi) in the worker’s data shard. The worker then broadcasts (up,vp)
to all other workers; once all P workers have performed their broadcast (and have thus received
all SFs), they re-construct the P update matrices (one per data sample) from the P SFs, and
apply them to update their local copy of W. Finally, each worker applies the proximal operator
proxh(·). When using SDCA, the above procedure is instead used to broadcast SFs for the auxil-
iary matrix Z, which is then used to obtain the primal matrix W = ∇h∗(Z). Figure 5.1 illustrates
the SFB operation: 4 workers compute their respective SFs (u1,v1), . . . , (u4,v4), which are then

1For simplicity, we assume each worker has enough memory to hold a full copy of the parameter matrix W. If
W is too large, one can either partition it across multiple machines [94, 226], or use local disk storage (i.e. out of
core operation). We plan to investigate these strategies as future work.
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Figure 5.2: Random multicast.

broadcast to the other 3 workers. Each worker p uses all 4 SFs (u1,v1), . . . , (u4,v4) to exactly
reconstruct the update matrices 4Wp = upv

>
p , and update their local copy of the parameter

matrix: Wp ←Wp −
∑4

q=1 uqv
>
q . While the above description reflects synchronous execution,

it is easy to extend to (bounded) asynchronous execution.
The communication cost of transmitting SFs is O(J + D) which is linear in matrix dimen-

sions while that of transmitting update matrices (UMs) is O(JD) which is quadratic in matrix
dimensions. Hence SF-transfer can greatly reduce communication overhead. The transformation
from SFs to a UM is mathematically exact, without compromising computational correctness.

In PS, the one-sided communication cost from workers to the server can be reduced by trans-
mitting SFs [78]: each worker sends the new SFs to the server, where the received SFs are
transformed to UMs to update the shared parameter state. However, since the parameter matrix
cannot be computed from a few SFs, from server to workers the newly-updated parameters needs
to be sent as a matrix, which still incurs high communication overhead. To avoid transmitting
parameter matrices, Orpheus adopts a decentralized peer-to-peer architecture where worker ma-
chines synchronize their parameter replicas by exchanging updates in the form of SFs. Unlike
PS, the P2P architecture does not maintain the shared parameter state and can completely avoid
transmitting any type of matrices.

While SF-transfer greatly reduces communication cost, it increases computation overhead.
Each group of SFs are transformed into the same update multiple times (on different receivers).
However, in-memory computation is usually much more efficient than inter-machine network
communication, especially with the advent of GPU computing, hence the reduction in commu-
nication cost overshadows the increase of computation overhead.

Random Multicast

While P2P transfer of SFs greatly reduces the size of each message (from a matrix to a few
vectors), its limitation is SFs need to be sent from each machine to every other machine, which
renders the number of messages per clock to be quadratic in the number of machines P . To
address this issue, Orpheus adopts random multicast: in each clock, each machine randomly
selects Q(Q < P − 1) machines to send SFs to. This cuts messages per clock from O(P 2) to
O(PQ). Figure 5.2 shows an example. In each iteration t, an update U t

p generated by machine
p is sent only to machines that are directly connected with p (and the update U t

p takes effect at
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iteration t + 1). The effect of U t
p is indirectly and eventually transmitted to every other machine

q, via the updates generated by machines sitting between p and q in the topology. This happens at
iteration t+τ , for some delay τ > 1 that depends onQ and the location of p and q in the network
topology. Consequently, the P machines will not have the exact same parameter image W,
even under bulk synchronous parallel execution — yet this does not empirically (Section 5.2.5)
compromise algorithm accuracy as long as Q is not too small. We hypothesize that this property
is related to the tolerance of ML algorithms to bounded-asynchronous execution and random
error, and we provide a theoretical analysis in Section 5.4.

Two random selection methods are provided. One is uniform selection: each machine has the
same probability to be selected. The other is prioritized selection for load-balancing purpose.
Each machine is assigned a priority score based on its progress (measured by clock). A machine
with faster progress (higher priority) is selected with higher probability and receives more SFs
from slower machines. It spends more compute cycles to consume these remote SFs and slows
down the computation of new SFs, giving the slower machines a grace time to catch up.

Unlike a deterministic multicast topology [222] where each machine communicates with a
fixed set of machines throughout the application run, random multicast provides several bene-
fits. First, dynamically changing the topology in each clock gives every two machines a chance
to communicate directly, which facilitates more symmetric synchronization. Second, random
multicast is more robust to network connection failures since the failure of a network connec-
tion between two machines will not affect their communication with other one. Third, random
multicast makes resource elasticity simpler to implement: adding and removing machines re-
quire minimal coordination with existing ones, unlike a deterministic topology which must be
modified every time a worker joins or leaves.

SF Selection

In ML practice, parameter updates are usually computed over a small batch (whose size typically
ranges from tens to hundreds) of examples. At each clock, a batch of K training examples are
selected and an update is generated with respect to each example. When represented as matrices,
these K updates can be aggregated into a single matrix to communicate. Hence the commu-
nication cost is independent of K. However, this is not the case in sufficient factors transfer:
the K SFGs cannot be aggregated into one single SFG; they must be transferred individually.
Therefore, communication cost grows linearly with K. To alleviate this cost, Orpheus provides
SF selection (SFS), which chooses a subset of C SFGs (where C < K) – that best represent the
entire batch – to communicate.

We design an efficient sampling-based algorithm called joint matrix column subset selection
(JMCSS) to perform SFS. Given the P matrices X(1), · · · , X(P ) where X(p) stores the p-th SF of
all SFGs, JMCSS selects a subset of non-redundant column vectors from each matrix to approxi-
mate the entire matrix. The selection of columns in different matrices are tied together, i.e., if the
i-th column is selected in one matrix, for all other matrices their i-th column must be selected as
well to atomically form an SFG. Let I = {i1, · · · , iC} index the selected SFGs and S(p)

I be a ma-
trix whose columns are from X(p) and indexed by I . The goal is to find out the optimal selection
I such that the following approximation error is minimized:

∑P
p=1 ‖X(p) − S

(p)
I (S

(p)
I )†X(p)‖2,
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Algorithm 3: Joint matrix column subset selection.
Input: {X(p)}Pp=1

Initialize: ∀ p, X(p)
0 = X(p), S(p)

0 = []
for t ∈ {1, . . . , C} do

Compute the squared L2 norm of column vectors in {X(p)
t−1}Pp=1

Sample a column index it
∀ p, X(p)

t ← X
(p)
t−1/{x

(p)
it
}, S(p)

t ← S
(p)
t−1 ∪ {x

(p)
it
}

∀ p, X(p)
t ← X

(p)
t − S

(p)
t (S

(p)
t )†X

(p)
t

end for
Output: {S(p)}Pp=1

where (S
(p)
I )† is the pseudo-inverse of S(p)

I .
Finding the exact solution of this problem is NP-hard. To address this issue, we develop

a sampling-based method (Algorithm 3), which is an adaptation of the iterative norm sampling
algorithm [99]. Let S(p) be a dynamically growing matrix that stores the column vectors to be se-
lected from X(p) and S(p)

t denote the state of S(p) at iteration t. Accordingly, X(p) is dynamically
shrinking and its state is denoted byX(p)

t . At the t-th iteration, an index it is sampled and the it-th
column vectors are taken out from {X(p)}Pp=1 and added to {S(p)}Pp=1. it is sampled in the fol-
lowing way. First, we compute the squared L2 norm of each column vector in {X(p)

t−1}Pp=1. Then
sample it (1 ≤ it ≤ K+1− t) with probability proportional to

∏P
p=1 ‖x

(p)
it
‖2

2, where x(p)
it

denotes

the it-th column vector in X(p)
t−1. The selected column vector is removed from X

(p)
t−1 and added to

S
(p)
t−1. Then a back projection is utilized to transformX

(p)
t : X(p)

t ← X
(p)
t −S

(p)
t (S

(p)
t )†X

(p)
t . After

C iterations, we obtain the selected SFs contained in {S(p)}Pp=1 and pack them into SFGs, which
are subsequently sent to other machines. Under JMCSS, the aggregated update generated from
the C SFGs is close to that computed from the entire batch. Hence SFS does not compromise
parameter-synchronization quality.

The selection of SFs is pipelined with their computation and communication to increase
throughput. Two FIFO queues (denoted by A and B) containing SFs are utilized for coordination.
The computation thread adds newly-computed SFs into queue A. The selection thread dequeues
SFs from A, executes the selection and adds the selected SFs to queue B. The communication
thread dequeues SFs from B and sends them to other machines. The three modules operate
asynchronously: for each one, as long as its input queue is not empty and output queue is not
full, the operation continues. The two queues can be concurrently accessed by their producer and
consumer.

Cost Analysis

Figure 5.3 compares the communications, space and time (to apply updates to W) costs of peer-
to-peer SFB, against parameter server (PS) architectures [94, 226, 355]. For SFB with a broad-
casting scheme, in each mini-batch, every worker broadcasts K SF pairs (u,v) to P − 1 other
workers, i.e. O(P 2K(J + D)) values are sent per iteration — linear in matrix dimensions J,D,
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O(PKJD) at clients

Figure 5.3: Cost of using SFB versus PS. K is the mini-batch size, J,D are the dimensions of
W, and P is the number of workers.

and quadratic in P . For SFB with a multicast scheme, every worker communicates SF pairs with
Q < P peers, hence the communication cost is reduced to O(PQK(J +D)). Because SF pairs
cannot be aggregated before transmission, the cost has a dependency on K. In contrast, the com-
munication cost in PS is O(PJD), linear in P , quadratic in matrix dimensions, and independent
of K. For both SFB and PS, the cost of storing W is O(JD) on every machine. As for the
time taken to update W per iteration, PS costs O(PJD) at the server (to aggregate P client up-
date matrices) and O(PKJD) at the P clients (to aggregate K updates into one update matrix).
By comparison, SFB bears a cost of O(P 2KJD) under broadcasting and O(PQKJD) under
multicast due to the additional overhead of reconstructing each update matrix P or Q times.

Compared with PS, SFB achieves communication savings by paying an extra computation
cost. In a number of practical scenarios, such a tradeoff is worthwhile. Consider large problem
scales where min(J,D) ≥ 10000, and moderate mini-batch sizes 1 ≤ K ≤ 100 (as studied in
this work); when using a moderate number of machines (around 10-100), the O(P 2K(J + D))
communications cost of SFB is lower than the O(PJD) cost for PS, and the relative benefit of
SFB improves as the dimensions J,D of W grow. In data center scale computing environments
with thousands of machines, we can adopt the multicast scheme. As for the time needed to apply
updates to W, it turns out that the additional cost of reconstructing each update matrix P or
Q times in SFB is negligible in practice — we have observed in our experiments that the time
spent computing SFs, as well as communicating SFs over the network, greatly dominates the
cost of reconstructing update matrices using SFs. Overall, the communication savings dominate
the added computational overhead, which we validated in experiments.

5.2.2 Fault Tolerance
In this section, further exploring the SF update property, we propose to represent the parameter
matrix using SFs. Based on such a representation, a light-weight fault tolerance approach is
developed.

SF-based Representation of Parameters

We first show the parameter matrix can be represented as a set of SFs. At clock T , the parameter
stateWT is mathematically equal toW0 +

∑T
t=14Wt where4Wt is the update matrix computed

151



at clock t and W0 is the initialization of the parameters. As noted earlier,4Wt can be computed
from an SFG Gt: 4Wt = h(Gt), using a transformation h. Following the standard practice of
initializing ML models using randomization, we randomly generate an SFG G0, then let W0 =
h(G0). To this end, the parameter state can be represented as WT =

∑T
t=0 h(Gt), using a set of

SFGs.

Incremental SF Checkpoint

Based on the SF-representation (SFR) of parameters and inspired by the asynchronous and in-
cremental checkpointing methods [17, 263], Orpheus provides an incremental SF checkpoint
(ISFC) mechanism for fault tolerance and recovery: each machine continuously saves the new
SFGs computed in each clock to stable storage and restores the parameters from the saved SFGs
when machine failure happens. Unlike existing systems [13, 407] which checkpoint large matri-
ces, saving small vectors consume much less disk bandwidth. To reduce the frequency of disk
write, the SFGs generated after each clock are not immediately written onto the disk, but staged
in the host memory. When a large batch of SFGs are accumulated, Orpheus writes them together.

ISFC does not require the application program to halt while checkpointing the SFs. The IO
thread reads the SFs and the computing thread writes the parameter matrix. There is no read/write
conflict. In contrast, in matrix-based checkpointing, the IO thread reads the parameter matrix,
which requires the computation thread to halt to ensure consistency, incurring waste of compute
cycles.

ISFC is able to rollback the parameters to the state at any clock. To obtain the state at clock
T , Orpheus collects the SFGs computed up to T and transforms them into a parameter matrix.
This granularity is much more fine-grained than checkpointing parameter matrices. Since saving
large-sized matrices to disk is time-consuming, the system can only afford to perform a check-
point periodically and the parameter states between two checkpoints are lost. The restore(T)
API is used for recovery where T is a user-specified clock which the parameters are to be roll-
backed to. The default T is the latest clock.

5.2.3 Programming Model
The Orpheus programming model provides a data abstraction called sufficient factor group (SFG)
and two user-defined functions that generate and consume SFGs to update model parameters.
Each SFG contains a set of SFs that are generated with respect to one data example and atomi-
cally produces a parameter update. The SFs are immutable and dense, and their default type is
float. Inside an SFG, each SF has an index. To program an Orpheus application, users specify
two functions: (1) compute svg which takes the current parameter state and one data example
as inputs and computes vectors that collectively form an SFG; (2) compute update which
takes an SFG and produces a parameter update. These two functions are invoked by the Orpheus
engine to perform data-parallel distributed ML: each of the P machines holds one shard of the
training data and a replica of parameters; different parameter replicas are synchronized across
machines to retain consistency (consistency means different replicas are encouraged to be as
close as possible). Every machine executes a sequence of operations iteratively: in each clock, a
small batch of training examples are randomly selected from the data shard and compute svg
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Algorithm 4: Execution semantics.
Allocate an empty SFG set S = {}
Select a small batch of training examples X
for each x ∈ X

Compute an SFG s = compute svg (W (old), x)
Add s to S

end for
Send S to other machines
Receive the SFG set T from other machines
for each s ∈ S ∪ T

Compute an update u = compute update(s)
Update parameters W (new) ← W (old) + u

end for

is invoked to compute an SFG with respect to each example; the SFGs are then sent to other
machines for parameter synchronization; compute update is invoked to transform locally-
generated SFGs and remotely-received SFGs into updates which are subsequently added to the
parameter replica. The execution semantics (per-clock) of the Orpheus engine is shown in Algo-
rithm 4. Unlike existing systems which directly compute parameter updates from training data,
Orpheus breaks this computation into two steps and explicitly exposes the intermediate SFs to
users, which enables SF-based system-level optimizations to be exploited.

Below shows how these two functions are implemented in MLR. The inputs of the compute svg
function include the parameter replica Parameters and a data example Data and the output
is a SFG. A SFG is declared via SFG([d1, · · · , dJ]) where dj is the length of the j-th SF. In
MLR, an SFG contains two SFs: the first one is the difference between the prediction vector
softmax(W*smp.feats) and the label vector smp.label; the second one is the feature
vector smp.feats. The update matrix is computed as the outer product between the two SFs.

def compute_svg(Parameters W, Data smp):
svg=SFG([W.nrows, W.ncols])
x=softmax(W*smp.feats)-smp.label
svg.sv[0]=x
svg.sv[1]=smp.feats
return svg

def compute_update(SFG svg):
return outproduct(svg.sv[0],svg.sv[1])

Automatic Identification of SFs and Updates

When ML models are trained using gradient descent or quasi-Newton algorithms, the computa-
tion of SFGs and updates can be automatically identified by the Orpheus engine, which relieves
users from writing the two functions compute svg and compute update. The only input
required from users is a symbolic expression of the loss function, which is in general much easier
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Type Inputs Outputs Examples
1 vector scalar L2 norm
2 vector vector softmax
3 vector, vector scalar cross entropy
4 vector, vector vector addition, subtraction
5 matrix, vector vector matrix-vector product

Table 5.1: Different types of operators.

to program compared with the two functions. Note that this is not an extra burden: in most ML
applications, users need to specify this loss function to measure the progress of execution.

The identification procedure of SFs depends on the optimization algorithm – either gradient
descent or quasi-Newton – specified by the users for minimizing the loss function. For both algo-
rithms, automatic differentiation techniques [13, 34] are needed to compute the gradient of vari-
ables. Given the symbolic expression of the loss function, such as f=cross entropy(softmax
(W*x),y) in MLR, the Orpheus engine first parses it into an expression graph [43] as shown
in Figure 5.4. In the graph, circles denote variables including terminals such as W, x, y and in-
termediate ones such as a=W*x, b=softmax(a); boxes denote operators applied to variables.
According to their inputs and outputs, operators can be categorized into different types, shown
in Table 5.1. Given the expression graph, Orpheus uses automatic differentiation to compute
the symbolic expressions of the gradient ∂f/∂z of f w.r.t to each unknown variable z (either
a terminal or an intermediate one). The computation is executed recursively in the backward
direction of the graph. For example, in Figure 5.4, to obtain ∂f/∂a, we first compute ∂f/∂b,
then transform it into ∂f/∂a using an operator-specific matrix A. For a type-2 operator (e.g.,
softmax) in Table 5.1, Aij = ∂bj/∂ai.

If W is involved in a type-5 operator (Table 5.1) which takes W and a vector x as inputs and
produces a vector a and the gradient descent algorithm is used to minimize the loss function, then
the SFG contains two SFs which can be automatically identified: one is ∂f/∂a and the other is
x. Accordingly, the update of W can be automatically identified as the outer product of the two
SFs.

If quasi-Newton methods are used to learn ML models parameterized by a vector x, Orpheus
can automatically identify the SFs of the update of the approximated Hessian matrix W . First
of all, automatic differentiation is applied to compute the symbolic expression of the gradient
g(x) = ∂f/∂x. To identify the SFs at clock k, we plug in the states xk+1 and xk of the parameter
vector in clock k + 1 and k into g(x) and calculate a vector yk = g(xk+1) − g(xk). We also
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compute another vector sk = xk+1 − xk. Then based on sk, yk, and Wk (the state of W at
clock k), we can identify the SFs which depend on the specific quasi-Newton algorithm instance.
For BFGS, the procedures are: (1) set yk ← yk/

√
y>k sk; (2) compute vk = Wksk; (3) set

yk ← yk/
√
s>k vk. Then the SFs are identified as yk and vk and the update of Wk is computed as

yky
>
k −vkv>k . For DFP, the procedures are: (1) set sk ← sk/

√
y>k sk; (2) compute vk = Wkyk; (2)

set vk ← vk/
√
y>k vk. Then the SFs are identified as sk and vk and the update of Wk is computed

as sks>k − v>k vk.

5.2.4 Implementation
Orpheus is a decentralized system, where workers are symmetric, running the same software
stack, which is conceptually divided into three layers (Figure 5.5): (1) an ML application layer
including ML programs implemented on top of Orpheus, such as multiclass logistic regression,
topic models, deep learning models, etc.; (2) a service layer for automatic identification of SFs,
SF selection, fault tolerance, etc.; (3) a P2P communication layer for sufficient factor transfer
and random multicast.

The major modules in the Orpheus engine include: (1) an interpreter that automatically iden-
tifies the symbolic expressions of SFs and parameter updates; (2) a SF generator that selects
training examples from local data shard and computes an SFG for each example using the sym-
bolic expressions of SFs produced by the interpreter; (3) an SF selector that chooses a small
subset of most representative SFs out of those computed by the generator for communication;
(4) a communication manager that transfers the SFs chosen by the selector using broadcast or
random multicast and receives remote SFs; (5) an update generator which computes update ma-
trices from locally-generated and remotely-received SFs and updates the parameter matrix; (6)
a central coordinator for periodic centralized synchronization, parameter-replicas rotation, and
elasticity.
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Heterogeneous computing The Orpheus programming interface exposes a rich set of oper-
ators, such as matrix multiplication, vector addition, and softmax, through which users write
their ML programs. To support heterogeneous computing, each operator has a CPU implemen-
tation and a GPU implementation built upon highly optimized libraries such as Eigen, cuBLAS,
and cuDNN. In the GPU implementation, Orpheus performs kernel fusion which combines a
sequence of kernels into a single one, to reduce the number of kernel lunches that bear large
overhead. The Orpheus engine generates a dependency graph of operators by parsing users’
program and traverses the graph to fuse consecutive operators into one CUDA kernel.

Elasticity Orpheus is elastic to resource adjustment. Adding new machines and preempting
existing machines do not interrupt the current execution. To add a new machine, the central
coordinator executes the following steps: (1) launching the Orpheus engine and application pro-
gram on the new machine; (2) averaging the parameter replicas of existing machines and placing
the averaged parameters on the new machine; (3) taking a chunk of training data from each ex-
isting machine and assigning the data to the new machine; (4) adding the new machine into the
P2P network. When an existing machine is preempted, it is taken off from the P2P network and
its data shard is re-distributed to other machines.

Periodic centralized synchronization Complementary to the P2P decentralized parameter
synchronization, Orpheus performs a centralized synchronization periodically. The centralized
coordinator sets a global barrier every R clocks. When all workers reach this barrier, the coor-
dinator calls the AllReduce(average) interface to average the parameter replicas and set
each replica to the average. After that, workers perform decentralized synchronization until the
next barrier. Centralized synchronization effectively removes parameter-replicas’ discrepancy
accumulated during decentralized execution and it will not incur substantial communication cost
since it is invoked periodically.

Rotation of parameter replicas Orpheus adopts data parallelism, where each worker has ac-
cess to one shard of the data. Since computation is usually much faster than communication, the
updates computed locally are much more frequent than those received remotely. This would ren-
der imbalanced updating of parameters: a parameter replica is more frequently updated based on
the local data residing in the same machine than data shards on other machines. This is another
cause of out-of-synchronization. To address this issue, Orpheus performs parameter-replica ro-
tation, which enables each parameter replica to explore all data shards on different machines.
Logically, the machines are connected via a ring network. Parameter-replicas rotate along the
ring periodically (every S iterations) while each data shard sits still on the same machine during
the entire execution. We choose to rotate the parameters rather than data since the size of pa-
rameters is much smaller than data. A centralized coordinator sets a barrier every S iterations.
When all workers reach the barrier, it invokes the Rotate API which triggers the rotation of
parameter replicas.

Data prefetching The loading of training data from CPU to GPU is overlapped with the SF
generator via a data queue. The next batches of training examples are prefetched into the queue
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while the generator is processing the current one. In certain applications, each training example
is associated with a data-dependent variable (DDV). For instance, in topic model, each document
has a topic proportion vector. The states of DDVs need to be maintained throughout execution.
Training examples and their DDVs are stored in consecutive host/device memory for locality and
are prefetched together. At the end of a clock, GPU buffer storing examples is immediately ready
for overwriting. The DDVs are swapped from GPU memory to host memory, which is pipelined
using a DDV queue.

Hardware/software-aware SF Transfer

Orpheus provides a communication library for efficient message broadcasting. It contains a
collection of broadcast methods designed for different hardware and software configurations,
including (1) whether the communication is CPU-to-CPU or GPU-to-GPU; (2) whether Infini-
Band [6] is available; (3) whether the consistency model is BSP or SSP.
• CPU-to-CPU, BSP In this case, we use the MPI Allgather [8] routine to perform all-to-all

broadcast. In each clock, it gathers the SFs computed by each machine and distributes them
to all machines. MPI Allgather is a blocking operation (i.e. the control does not return to the
application until the receiving buffer is ready to receive SFs from all machines). This is in
accordance with the BSP consistency model where the execution cannot proceed to the next
clock until all machines reach the global barrier.

• CPU-to-CPU, SSP Under SSP, each machine is allowed to have a different pace to compute
and broadcast SFs. To enable this, the all-to-all broadcast is decomposed into multiple one-
to-all broadcast. Each machine separately invokes the MPI Bcast routine to broadcast its
messages to others. MPI Bcast is a blocking operation: the next message cannot be sent until
the current one finishes. This guarantees the SFs are received in order: SFs generated at clock
t arrive early than those at t+1. This order is important for the correctness of ML applications:
the updates generated earlier should be applied first.

• CPU-to-CPU, BSP, InfiniBand An all-gather operation is executed by leveraging the Remote
Direct Memory Access (RDMA) feature [318] provided by InfiniBand, which supports zero-
copy networking by enabling the network adapter to transfer data directly to or from applica-
tion memory, without going through the operating system. The recursive doubling (RD) [145]
algorithm is used to implement all-gather, where pairs of processes exchange their SFs via
point-to-point communication. In each iteration, the SFs collected during all previous itera-
tions are included in the exchange. RDMA is used for the point-to-point transfer during the
execution of RD.

• CPU-to-CPU, SSP, InfiniBand Each machine performs one-to-all broadcast separately, us-
ing the hardware supported broadcast (HSB) in InfiniBand. HSB is topology-aware: packets
are duplicated by the switches only when necessary; therefore network traffic is reduced by
avoiding the cases that multiple identical packets travel through the same physical link. The
limitation of HSB is that messages can be dropped or arrive out of order, which degrades the
correctness of ML execution. To retain reliability and in-order delivery, on top of HSB an-
other layer of network protocol [232] is added, where (1) receivers send ACKs back to the
root machine to confirm message delivery; (2) a message is re-transmitted using point-to-point
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reliable communication if no ACK is received before timeout; (3) receivers use a continuous
clock counter to detect out-of-order messages and put them in order.

• GPU-to-GPU To reduce the latency of inter-machine SF transfer between two GPUs, we use
the GPUDirect RDMA [2] provided by CUDA, which allows network adapters to directly
read from or write to GPU device memory, without staging through host memory. Between
two network adaptors, the SFs are communicated using the methods listed above.

Similar to broadcast, several multicast methods tailored to different system configurations
are provided.
• CPU-to-CPU We use MPI group communication primitives for CPU-to-CPU multicast. In

each clock, MPI Comm split is invoked to split the communicator MPI COMM WORLD into
a target group (containing the selected machines) and a non-target group. Then the message is
broadcast to the target group.

• CPU-to-CPU, InfiniBand The efficient but unreliable multicast method supported by Infini-
Band at hardware level and a reliable point-to-point network protocol are used together. Infini-
Band combines the selected machines into a single multicast address and sends the message
to it. Point-to-point re-transmission is issued if no ACK is received before timeout. Since the
selection of receivers is random, any machine does not receive messages in continuous clocks
from another machine, making it difficult to detect out-of-order messages. We adopt a simple
approach: a message is discarded if it arrives late.

• GPU-to-GPU GPUDirect RDMA is used to copy buffers from GPU memory to network adap-
tor. Then the communication between network adaptors is handled using the two methods
given above.

5.2.5 Evaluation
We evaluate Orpheus on three ML applications: multiclass logistic regression (MLR), topic
model (TM) [207], and long short-term memory (LSTM) [163] network.

Experimental Setup

Cluster setup We used two clusters: (1) a CPU cluster having 34 machines each with 64 cores
and 128 GB memory, connected by FDR10 Infiniband; (2) a GPU cluster having 40 machines
each with one TitanX GPU and 64GB memory, connected by 40Gbps Ethernet. We trained MLR
and TM on the CPU cluster and trained LSTM on the GPU cluster. Unless otherwise noted, the
experiments were performed using all machines in each cluster.

Baseline systems We compared with (1) Spark-MLR from Spark MLlib-2.0.0, which is based
on an L-BFGS algorithm (Spark-MLR has an SGD-based implementation, which converges
slower than L-BFGS); (2) Bosen-MLR and Bosen-TM: MLR and TM implemented using a
recent parameter server (PS) Bosen [355], with additional system features (e.g., parameter-
update filtering) borrowed from another PS [226]; (3) TensorFlow-MLR and TensorFlow-LSTM:
TensorFlow-1.0 implementation of MLR and TensorFlow-1.7 implementation of LSTM, which
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Figure 5.6: Convergence curves in the MLR experiments.

are partially based on PS; (4) MXNet-MLR and MXNet-LSTM: MXNet-0.7 [73] implemen-
tation of MLR and MXNet-1.1 implementation of LSTM, using PS-based data parallelism; (5)
Gopal-MLR [136]: a model-parallel MLR based on Hadoop; (6) FlexiFaCT-TM [207]: a Hadoop
implementation of TM. Note that Spark and Tensorflow implement a probabilistic topic model –
latent Dirichlet allocation [49], which is different from the non-probabilistic TM in Orpheus.

Utilization of system features All system features except elasticity were used in the exper-
iments. Most broadcast and multicast methods were utilized since our experiments span vari-
ous hardware-level configurations (CPU, GPU, InfiniBand, Ethernet) and software-level settings
(broadcast, multicast, BSP, SSP).

Datasets Three datasets were used in the experiments: Wikipedia [272], PubMed [9], and
1B-Word [67]. The Wikipedia dataset contains ∼2.4 million documents from 325K classes.
Documents are represented with 20K-dimensional bag-of-words vectors. The PubMed dataset
contains 8.2M documents and∼0.74B words. The vocabulary size is 141K. The 1B-Word dataset
contains∼0.8B words with a vocabulary size of∼0.8M. The MLR, TM, and LSTM experiments
were conducted on the Wikipedia, PubMed, and 1B-Word dataset respectively.

ML and system hyper-parameter setup The topic number in TM and the state-vector dimen-
sion in LSTM was set to 50K and 40K respectively. As a result, the parameter matrix in MLR,
TM, and LSTM has a size of 325K×20K, 50K×141K, 40K×40K, containing ∼6.5B, ∼7.1B,
∼1.6B entries respectively. The parameters in all applications were trained using the SGD algo-
rithm with a mini-batch size of 100. In SF selection, the number of selected SFs was set to 25. In
random multicast, the number of destinations each machine sends message to was set to 4. The
consistency model was set to SSP with a staleness value of 4.

Overall Results

Comparison with other systems We first compare the convergence speed of these systems.
In this comparison, no system uses fault tolerance. By convergence, it means the loss function
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MLR
# CPU Machines 12 34 Speedup

Spark 37.3 19.6 1.9
Gopal 31.7 15.1 2.1

TensorFlow-1.0 16.9 8.9 1.9
Bosen 15.7 7.1 2.2

MXNet-0.7 12.8 8.4 1.5
SFB 5.1 2.7 1.9

Orpheus 4.4 1.9 2.3
TM

# CPU Machines 12 34 Speedup
FlexiFaCT 61.1 33.9 1.8

Bosen 49.4 23.5 2.1
SFB 20.1 9.7 2.1

Orpheus 13.2 5.4 2.4
LSTM

# GPU Machines 12 40 Speedup
TensorFlow-1.7 14.2 5.9 2.4

MXNet-1.1 12.5 4.6 2.7
Orpheus 11.9 4.1 2.9

Table 5.2: The second and third columns show the convergence time (hours) of each system,
under a different number of machines. The third column shows the speedup of each system
when the number of machines is increased from 12 to 34 (in MLR and TM), or from 12 to 40 (in
LSTM).

value (e.g., cross-entropy loss in MLR, negative log-likelihood in TM and LSTM) on the training
set levels off. A better system takes less time to converge. In each of our experiments, different
systems converged to the same loss value. Figure 5.6 shows the convergence curves for MLR
(34 machines). The second and third columns of Table 5.2 shows the convergence time of each
system, under a different number of machines. On all three models, Orpheus converges faster
than the baseline systems.

We first compare Orpheus with parameter server (PS) based systems including Bosen [355],
TensorFlow-1.0 [13], and MXNet-0.7 [73]. On MLR, with 34 CPU machines, the speedup of
Orpheus over Bosen, TensorFlow-1.0, MXNet-0.7 and SFB is 3.7x, 4.7x, 4.4x and 1.4x respec-
tively. On TM, with 34 CPU machines, Orpheus is 4.4x and 1.8x faster than Bosen and SFB
respectively. On LSTM, with 40 GPU machines, Orpheus is 1.4x faster than TensorFlow-1.7 and
1.1x faster than MXNet-1.1. As we will further show later, these speedups are achieved mainly
because Orpheus is more efficient in communication. Compared with SFB, Orpheus reduces the
number of sent SFs using SF selection and provides a random multicast scheme which works
better than the deterministic multicast scheme utilized in SFB. Similar to SFB, Orpheus trans-
mits small-sized vectors instead of large-sized matrices, which greatly reduces network traffic,
compared with PS-based systems.
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Figure 5.7: Scalability with more machines: (left) Orpheus-MLR; (right) Orpheus-LSTM.

Next, we compare Orpheus with the rest of baseline systems. Using 34 CPU machines,
Orpheus is 10.3x and 7.9x faster than Spark and Gopal on MLR, and 6.3x faster than FlexiFaCT
on TM. Gopal outperforms Spark possibly because it uses a better distributed-algorithm which is
based on model-parallelism. However, it is slower than PS systems due to the disk IO overhead
of Hadoop. So is FlexiFaCT, which is a Hadoop-based system. Spark is at least two times slower
than PS systems (implemented with C++) due to the overhead incurred by resilient distributed
datasets and Java virtual machine.

Scalability We evaluated how Orpheus scales up as the number of machines increases. The
results on MLR and LSTM are shown in Figure 5.7. With 34 CPU machines, Orpheus achieved
a 27.3x speedup on MLR. With 40 GPU machines, a 32.2x speedup is achieved on LSTM. The
scalability of Orpheus is better than baseline systems, as shown in the fourth column of Table 5.2,
where we measured the speedups for MLR and TM when the number of CPU/GPU machines
increases from 12 to 34 and the speedups for LSTM when the number of GPU machines increases
from 12 to 40. For example, in LSTM experiments with 40 GPU machines, Orpheus achieves a
speedup of 2.9 compared with using 12 machines.

Evaluation of individual components

In this section, we evaluate the impact of each individual component. We compare the fol-
lowing systems: (1) Matrix+PS: synchronizing parameter copies by transmitting full matrices
using a parameter server (PS) architecture; (2) SFB: SF broadcasting (SFB); (3) SFB+SFS:
adding SF selection (SFS) to SFB; (4) SFB+SFS+RM: adding random multicast (RM); (5)
SFB+SFS+RM+PCS: adding periodic centralized synchronization (PCS); (6) SFB+SFS+RM+PRR:
adding parameter-replicas rotation (PRR). In these systems, no checkpointing is used. The num-
ber of machines in MLR, TM, and LSTM is set to 34, 34 and 40 respectively. Table 5.3 shows
the convergence time of these systems, where we make the following observations. First, SFB is
much more efficient than Matrix+PS. SFB is 2.6x, 2.4x and 2x faster than Matrix+PS on MLR,
TM, and LSTM respectively. The reason is: SFB transmits small-sized vectors while Matrix+PS
transmits large matrices; the communication cost of SFB is much smaller. Second, adding SFS
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MLR TM LSTM
Matrix+PS 7.1 23.5 16.8
SFB 2.7 9.7 8.6
SFB+SFS 2.3 7.9 6.9
SFB+SFS+RM 2.1 6.6 5.5
SFB+SFS+RM+PCS 2.0 5.9 4.9
SFB+SFS+RM+PCS+PRR 1.9 5.4 4.1

Table 5.3: Convergence time (hours) of different system configurations.

325k
mlr CPS SVB

0 19.4 3.24 16.16 4.5 3.35 1.15
5 17.3 3.27 14.03 3.9 3.38 0.52

10 16.7 3.28 13.42 3.8 3.42 0.38
20 15.7 3.3 12.4 3.7 3.69 0.01
50 16.1 3.9 12.2 3.83 3.829 0.001
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Figure 5.8: Breakdown of network waiting time (hours) and computation time (hours).

to SFB further reduces the runtime – by 15%, 19%, and 20% – on MLR, TM, and LSTM respec-
tively. SFS selects a subset of SFGs for communication, which reduces network traffic. Third,
incorporating RM reduces the runtime of SFB+SFS by 9%, 16%, and 20% on the three applica-
tions. Under RM, in each clock, each machine selects a subset of machines to send SFs to, which
reduces the number of network messages. Fourth, adding PCS further speeds up convergence.
Via PCS, the incoherence among different parameter copies is alleviated, which reduces noise
and improves convergence quality. Fifth, comparing the last two rows of this table, we confirm
the effectiveness of PRR in reducing convergence time. Under PRR, each parameter replica has
the chance to explore all data shards on different machines, which facilitates symmetric update
of parameters.

Figure 5.8 shows the breakdown of network waiting time and computation time for four con-
figurations. Compared with Matrix+PS, SFB greatly reduces network waiting time by avoiding
transmitting matrices. It slightly increases the computation time since the same SFG needs to
be converted into an update matrix at each worker. Adding SFS further decreases network time
since it reduces the number of transmitted SFs. SFS causes the increase of computation time
because of the overhead of executing the JMCSS algorithm (Algorithm 3). The network time is
further reduced by using RM, which decreases the number of network messages. RM has little
impact on the computation time.

In the sequel, we present more detailed evaluations of several key components.
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Figure 5.9: How the system parameterQ in random multicast (left) and C in SF selection (right)
affect the running time of Orpheus for MLR.

Random multicast (RM) Figure 5.9 (left) shows the convergence time of MLR under varying
Q – the number of destinations each machine sends messages to. As can be seen, communicating
with all machines (i.e., Q = 33) incurs much more running time than using random multicast
(Q = 4), which demonstrates the effectiveness of RM in improving communication efficiency.
The efficiency results from RM’s ability of reducing the number of network messages. However,
Q cannot be too small. Otherwise, the running time increases (e.g., when Q = 1), due to the
severe synchronization delays.

We compared RM with two multicast schemes: (1) deterministic multicast (DM) [222] where
each sending machine sends messages to a fixed set of 4 receiving machines; the set of 4 receiv-
ing machines is different for each sending machine and is chosen to balance network load across
the cluster and prevent network hot spots; (2) round-robin multicast (RRM) [222, 353] where
every two workers communicate with each other periodically according to a deterministic circu-
lar order. Figure 5.10 (left) shows the convergence time of MLR and LSTM under DM, RRM,
and RM. In both applications, RM takes less time to converge. Compared with DM, RM uses a
randomly changing multicast topology to enable each pair of machines to have some chance to
communicate directly, thus facilitating more symmetric (hence faster) synchronization of param-
eter replicas. Compared with RRM, the randomness of RM facilitates faster “mixing” [148] of
parameter copies and hence speeds up convergence.

To examine the robustness of RM against network connection failures, we simulated the
effect that in each clock the connections between 10% of machine pairs are “broken” randomly.
Figure 5.10 (right) shows the relative increase of convergence time when failure happens. As
can be seen, the relative increase under RM is much smaller than that under DM and RRM,
confirming that RM is more robust, due to its random nature.

SF selection Figure 5.9 (right) shows the convergence time for MLR under varying C – the
number of selected SFs. Compared with using the entire batch (C = 100), selecting a subset
(e.g., C = 25) of SFs to communicate significantly speeds up convergence, thanks to the re-
duced network traffic. On the other hand, C cannot be too small, which otherwise incurs large
approximation errors in parameter updates. For example, the convergence time under C = 5 is
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Figure 5.10: (Left) Convergence time in Orpheus under deterministic, round-robin, and random
broadcast for MLR and LSTM. (Right) Relative increase of convergence time when network
connection fails.

MLR LSTM
No checkpoint 1.9 4.1
Matrix-based checkpoint 2.4 5.2
SF-based checkpoint 1.9 4.2
Matrix-based recovery 2.9 6.7
SF-based recovery 2.3 4.8

Table 5.4: Convergence time (hours) under different configurations of fault tolerance and recov-
ery.

worse than that under C = 100.

Fault tolerance and recovery We compare the following configurations: (1) no checkpoint;
(2) matrix-based checkpoint: every 100 clocks2, Orpheus saves the parameter matrix onto the
disk; when saving matrices, the computation halts to ensure consistency; (3) SF-based check-
point; (4) matrix-based recovery: we simulated the effect that in each clock, each machine fails
with a probability of 0.01; when failure happens, a recovery is performed based on the check-
pointed matrices; (5) SF-based recovery: machine failure is simulated in the same way as (4) and
recovery is based on the saved SFs. For (2) and (3), no machine failure happens.

Table 5.4 shows the convergence time of MLR (34 machines) and LSTM (40 machines) un-
der different configurations. From this table, we observe the following. First, compared with
no-checkpoint, matrix-based checkpoint method substantially increases the convergence time
while our SF-based checkpointing incurs very little increase. The reasons are twofold: (1) sav-
ing vectors consumes much less disk bandwidth than saving matrices; (2) checkpointing SFs
does not halt computation, wasting no compute cycles, which is not the case in checkpointing
matrices. Second, in the case where machine failure happens, matrix-based recovery causes more
slowing-down of convergence than SF-based recovery. This is because in matrix-based recovery,
the parameters can only be rolled back to the state that is saved every 100 clocks. If the failure
happens at clock 199, the parameters are rolled back to the state saved at clock 100. The com-

2Choosing a number smaller than 100 would entail more disk-IO waiting.
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putation from clock 101 to 198 are wasted. However, in SF-based recovery, the parameter state
after every clock is preserved. It can always roll back to the latest parameter state (e.g., the state
after clock 198) and no computation is wasted.

5.3 Poseidon: A Hybrid Architecture of SFB and Parameter
Server

Many ML models are parameterized by multiple matrices. For example, in a convolutional
neural network (CNN), the convolution layers and fully-connected layers have their own layer-
specific weight matrices. Some of these matrices are of large size (in the sense that they have
thousands of rows and columns at least) while others are small-sized (hundreds of rows/columns).
For instance, in the first convolutional layer of AlexNet [203], the weight matrix of 96 filters
has a size of 96×363 which is relatively small while that in the fully-connected (FC) layer is
4096×4096 which is much larger.

When these weight matrices are trained using stochastic gradient descent (SGD), their up-
dates can be constructed by vectors, i.e., having the sufficient factor property. Take the J × D
weight matrix W between two FC layers li and li+1 as an example. In the forward pass, one
data sample is fed into the network and the activations of layer li is produced as ai. During
back-propagation (BP), an error message ei+1, which is a J-dimensional vector, is passed back
from li+1 to li. The gradients 4W thus can be exactly reconstructed by two vectors ei+1 and
ai: 4W = ei+1a

>
i . As a result, these weight matrices can be learned using the sufficient factor

broadcasting (SFB) architecture of Orpheus.
In Section 5.2.1, we present a cost analysis of SFB and parameter server (PS) architec-

tures [94, 226, 355]. The analysis shows that SFB outperforms PS if the matrix size is sig-
nificantly larger (at least 10 times) than the mini-batch size in SGD and the number of worker
machines, and PS has an advantage over SFB if otherwise. In CNN, both cases exist, which
motivates us to design a hybrid communication protocol that adopts both SFB and PS, based on
which a distributed deep learning system called Poseidon [411] is built.

5.3.1 Structure-aware Message Passing (SACP) Protocol
We propose the SACP [411] protocol, which hybridizes the client-server PS scheme with the
peer-to-peer SFB scheme, for GPU-based distributed deep learning. In addition to PS and SFB,
SACP also supports SF-based PS (SFPS) [78]. SFPS is much like a PS except that instead of
transmitting update matrices from workers to the server as PS does, SFPS transmits SFs gen-
erated on the workers to the server and transform these SFs into update matrices at the server.
Figure 5.11 illustrates the three communication schemes.

The SACP is structure-aware, as it intelligently determines the optimal communication method,
according to the matrix size J × D, the SGD batch size K, and the number of workers P . Re-
call that under the bulk synchronous parallel consistency model where all workers proceed at
the same pace, the communication costs of PS, SFB, and SFPS are 2PJD, (P − 1)2K(J +D),
PK(J +D) +PJD respectively. In general, SFB and SFPS have a lower cost than PS when the
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Figure 5.11: The illustration of three types of communications: (a) Full matrices communica-
tions via centralized parameter server (PS); (b) Sufficient factor broadcasting via decentralized
P2P scheme; (c) SF-based PS: from workers to the server, SFs are transferred; from the server to
workers, full matrices are transmitted.

matrix size is large, and the mini-batch size and the number of workers are small.
In CNN, a convolution layer has a J ×D weight matrix, where J is the number of filters and

the D is the size of the local receptive field. J and D are usually small. For example, in the first
convolution layer of AlexNet, J andD are 96 and 363 respectively. These filters slide over a grid
of locations in each image. At each location, an update matrix of the weights is generated, which
can be written as the outer-product of two vectors (SFs). Let L denote the number of locations in
each image, then the costs of SFB and SFPS would be (P−1)2KL(J+D), PKL(J+D)+PJD.
The value of L could be several thousand or more (e.g., in the first convolution layer of AlexNet,
L equals 3136), which renders the costs of SFB and SFPS to be larger than PS’s cost that is
independent of L. Therefore, we choose PS for synchronizing weight matrices in convolution
layers.

For fully-connected (FC) layers, their weight matrices are in general much larger than those
in convolutional layers. In AlexNet, J and D are 4096 in the FC layers. Different from the
convolutional layers where multiple update matrices are generated at different locations of an
image, in FC layers there is only one update matrix for each image. The mini-batch size K is
usually around 100. Putting these pieces together, we conclude that in most cases the costs of
SFB and SFPS are lower than that of PS. Hence, we choose either SFB or SFPS to communi-
cate matrices in FC layers. To choose between SFB and SFPS, we directly compare their costs
(P − 1)2K(J + D), PK(J + D) + PJD, and select the one yielding lower cost. Algorithm 5
summarizes how SACP works.

5.3.2 Evaluation
We evaluated Poseidon on image classification tasks and used three datasets: CIFAR-10 [5],
ILSFRC-2012 [95] which contains about one million ImageNet [95] images from 1000 classes,
and ImageNet-22K which contains all ImageNet images from 22K classes. The experiments
show that Poseidon significantly accelerates the training of CNNs, while guaranteeing the correct
convergence. Ablation studies were performed to justify the effectiveness of SACP.
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Algorithm 5: Structure-aware communication protocol (SACP).
At iteration t on worker p:
Input: Layer li, J ×D gradient matrix4Wp

i , number of workers P , batch size K.
Task : Push out gradients4Wp

i and then update Wp
i .

if li is not an FC layer then
Send4Wp

i to the master node.
Synchronize updated Wi from the master node.

end
else

Recast4Wp
i into two SFs, i.e.4Wp

i = upiv
p
i
>.

if (P − 1)2K(J +D) ≤ PK(J +D) + PJD then
Broadcast upi ,v

p
i to all other workers.

Receive SFs uji ,v
j
i , j 6= p from all other workers.

Update Wi: Wi ←Wi +
∑

j ujiv
j
i

>
.

end
else

Send upi ,v
p
i to the master node.

Synchronize updated Wi from the master node.
end

end

Cluster Configuration

We conducted all experiments on the PRObE Susitna cluster [235], where each node has a 4×16-
core 2.1GHz AMD Opteron 6272 CPU, 128GB of RAM, and an NVIDIA Tesla K20C GPU
with 4799MB memory. All cluster nodes have shared access to a network file system (NFS)
with 1x Hitachi 1.0 TB HDD and 2x Hitachi 3.0 TB HDD. We used the 40GbE network. The
Caffe framework [182] (the Oct 2014 version) was used as the single node baseline, and it was
modified using Poseidon’s client library API for distributed execution.

Image Classification

We demonstrate Poseidon’s performance on three benchmark datasets.

Classification on CIFAR-10 We first evaluate Poseidon on the CIFAR-10 [5] dataset, which
contains 32× 32 images from 10 classes. Each class has 6K images. An official train/test split is
provided where 50K images are used for training and 10K for testing.

We employed the built-in cifar10 quick solver and cifar10 quick train test network struc-
ture in Caffe3, consisting of 3 convolutional (CONV) layers and 1 fully-connected (FC) layer
followed by a 10-way softmax classifier. This network has 145, 578 parameters in total. It con-
verges to a 70% test accuracy with 4 epochs of training in a single machine without decreasing

3github.com/BVLC/caffe/tree/master/examples/cifar10.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: The comparison of training different CNNs to convergence between Poseidon on 8
GPU nodes and Caffe on a single node: (a)-(b) cifar10 quick train test; (c)-(d) bvlc alexnet; (e)-
(f) bvlc googlenet. Test errors are shown with respect to (left) training time, and (right) training
iterations.

the learning rate. We deployed Poseidon onto 8 Susitna nodes. Since a larger batch size usu-
ally hurts the SGD performance, we reduced the batch size from 100 to 50 and also slightly
decreased the base learning rate from 0.01 to 0.007, while keeping other hyperparameter settings
in cifar10 quick solver unchanged. For better comparison, in the distributed setting, we used the
bulk synchronous parallel consistency model.

Similar to the single machine setting, we trained the network to convergence without adjust-
ing the learning rate. The test accuracy achieves nearly 75%. Figure 5.12(a)-(b) plot how the test
error decreases along with training time and iterations for Poseidon on 8 nodes and Caffe on a
single node. Under the same setting, the single-machine Caffe takes more than 4 times of train-
ing time to converge to 70% accuracy, while Poseidon quickly converges to 72% in 19 seconds
and attains a higher accuracy 75% in 25 seconds with 8 GPU nodes.
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Model Speedup Top-1 accuracy
CIFAR-10 quick 4× 75%

AlexNet 4.5× 56.5%
GoogLeNet 4× 67.1%

Table 5.5: Speedups and converged top-1 accuracies of Poseidon by training models on 8 GPU
nodes and on the CIFAR-10 and ILSFRC-2012 dataset, compared to Caffe on a single machine.

Classification on ILSFRC-2012 We then experiment on ImageNet ILSFRC-2012, consist-
ing of 1.28 million training images and 50K validation images on 1,000 categories. We down-
sampled all images to 256× 256× 3 before feeding them into the networks, and report the top-1
accuracy on the validation set.

We evaluate Poseidon on AlexNet [203] and GoogLeNet [319]. The AlexNet has 5 CONV
layers, 2 FC layers, and a 1000-class softmax classifier. It contains 61.3 million parameters in
total. GoogLeNet has 22 layers and 5 million parameters. For fair comparisons, we employed the
open implementations of AlexNet4 and GoogLeNet5 provided in Caffe, denoted as bvlc alexnet
and bvlc googlenet. In single machine training of AlexNet, we used the standard solver in Caffe,
where the batch size was 256 and the number of epochs was 70. During training, the learning
rate was decreased 3 times. For the training of GoogLeNet, we employed the quick solver,
which uses the polynomial learning rate policy, and trains for 60 epochs with a batch size of
32. In the distributed setting, we deployed both AlexNet and GoogLeNet onto 8 GPU nodes
using Poseidon, and kept the network structure and the batch size exactly the same as those in
the single machine setting. Specifically, for AlexNet, we trained it on 8 nodes for about 60K
iterations, with the base learning rate set to 0.005, which was decreased 5 times during the entire
training process. For GoogLeNet, we used a standard step learning rate policy by setting the base
learning rate to 0.005 and decreasing it 90 times during training.

Figure 5.12(c)-(d) and Figure 5.12(e)-(f) show the performance of training AlexNet and
GoogLeNet using Poseidon with a GPU cluster of 8 nodes, compared to single-machine Caffe,
respectively. For AlexNet, Poseidon attains 56.5% top-1 accuracy on the validation set after 27
hours of training, achieving a 4.5× speedup against single machine Caffe which needs 5 days to
achieve such an accuracy. For GoogLeNet, Poseidon converges to 67.1% top-1 accuracy after
130 hours of training, whereas single-machine Caffe only achieves 50% top-1 accuracy after 250
hours of training and 57% after near 350 hours of training (Poseidon only needs less than 48
hours to achieve 50% and 75 hours to achieve 57%, with a near 5× speedup).

The speedups achieved by Poseidon in terms of algorithm convergence are summarized in
Table 5.5. Besides, we report the speedups on throughput (i.e. number of images processed
per seconds) in Figure 5.13 when training AlexNet and GoogLeNet using Poseidon on different
numbers of GPU nodes, compared to single machine Caffe. The staleness synchronous paral-
lel [162] consistency model was used and the throughput speedups are compared under different
settings of the staleness value.

4github.com/BVLC/caffe/tree/master/models/bvlc_alexnet.
5github.com/BVLC/caffe/tree/master/models/bvlc_googlenet.
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(b) GoogLeNet(a) AlexNet

Figure 5.13: The speedups on throughput with different values of staleness, when training using
Poseidon on 8 nodes, compared to Caffe on a single node. (a) AlexNet with batch size 256, and
(b) GoogLeNet with batch size 32.

Framework Data # machines/cores Time Train accuracy Test accuracy

Poseidon
7.1M ImageNet-22K images
for training, 7.1M for testing 8/8 GPUs 3 days 41% 23.7%

Adam [78]
7.1M ImageNet-22K images
for training, 7.1M for testing 62 machines/? 10 days N/A 29.8%

MxNet [73]
All ImageNet-22K images for

training, no testing results 1/4 GPUs 8.5 days 37.2% N/A

Le et al. [214] w/ pretrain
7.1M ImageNet-22K and
10M unlabeled images for
training, 7.1M for testing

1,000/1,6000 CPU cores 3 days N/A 15.8%

Table 5.6: Comparisons of image classification results on ImageNet-22K.

Classification on ImageNet-22K

ImageNet-22K is the largest public dataset for image classification, including 14,197,087 la-
beled images from 21,841 categories, which is rarely touched by the research community due
to its massive data size and complexity. We experiment on ImageNet-22K to demonstrate the
scalability of Poseidon. As no official test data exists for evaluation, following previous settings
in [78, 94, 214], we randomly split the whole set into two parts, and used the first 7.1 million
images for training and the rest for testing. Similar to ILSFRC-2012, we resized all images to
256× 256 and report the top-1 test accuracy.

We designed an AlexNet-like architecture. Specifically, the CNN takes a random 227× 227
crop from the original image as input, and forwards it into 5 CONV layers and 2 FC layers before
prediction. The CNN has convolution filters with sizes 7×7, 5×5, and 3×3. Similar to AlexNet,
the first, second, and fifth CONV layers are followed by max pooling layers with size 3× 3 and
stride 2. Two FC layers with 3,000 neurons each are put at the top of the network, followed
by a softmax layer for 21,841-way classification. We trained the CNN with data-parallelism by
equally partitioning the training data into 8 GPU nodes. The batch size was set to 256. The
network was trained using the step learning rate policy, with a base learning rate of 0.005, which
is decreased 6 times during training.

Table 5.6 compares our results to those achieved by previous works including Adam [78],
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Figure 5.14: Speedups against the single-machine Caffe in terms of throughput, under different
number of GPU nodes: (a) AlexNet with a batch size of 256; (b) GoogLeNet with a batch size
of 32.

MXNet [73], and Le et al. [214]. Note that at this point a complete fair comparison between
different frameworks is not possible, because the experiment protocol of ImageNet-22K is not
standardized, the source codes are not fully available yet, and large variations exist in system
configurations, models, and implementation details. However, in general Poseidon achieves a
competitive accuracy 23.7% with shorter training time and less machines. Our system achieves
23.7% accuracy which is close to that achieved by Adam [78], using a model whose size is close
to that of Adam. But our system takes much less training time (30% of Adam) and much fewer
machines (13% of Adam). Compared with MXNet which achieves 37.2% training accuracy with
8.5 days of training on 4 GPUs, our system achieves a higher training accuracy (41%) with 3
days of training on 8 GPUs.

Internal Comparison

In this section, we conduct internal comparison to validate the effectiveness of SACP in reducing
communication cost for GPU-based distributed deep learning. We measure the speedups against
the single-machine Caffe in terms of throughput, which is defined as the number of images pro-
cessed per second. Figure 5.14 compares the speedups for training AlexNet and GoogLeNet
under the following two settings with different number of nodes: (1) w/o SACP: weight ma-
trices in all layers are synchronized using PS; (2) w/ SACP: SACP is enabled. We used the
BSP consistency model and set the batch size to 256 for AlexNet and 32 for GoogLeNet (differ-
ent batch sizes will lead to slightly different speedups on throughput). With SACP enabled, the
speedup on throughput is improved. Particularly, when training on 8 nodes, SACP greatly in-
creases the speedups of AlexNet training from 4 to 6, with a 50% improvement. For GoogLeNet
with fewer FC layers, SACP achieves approximately 20% improvement on the speedup.

5.4 Convergence Analysis
In this section, we analyze the convergence of algorithms executed using SFB. We first study the
convergence of mini-batch SGD under full broadcasting SFB for nonconvex optimization. Since
SFB is a peer-to-peer decentralized computation model, we need to show that parameter copies
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on different workers converge to the same limiting point without a centralized coordination,
even under delays in communication due to bounded asynchronous execution. In this respect,
our analysis differs from that of centralized parameter server systems [162], which instead show
convergence of global parameters on the central server. More specifically, We are interested in
solving the optimization problem minW f(W), where f(W) corresponds to the loss of a set of
training samples.

Consider a distributed system with P machines. Each machine p keeps a local variable Wp.
We assume that the total loss f is distributed among the P worker machines, i.e., f =

∑P
p=1 fp,

and fp denotes the loss stored in the p-th machine. Given a parameter matrix W and a random
variable ξ, each machine p has access to a stochastic gradient oracle Gp(W, ξ) that satisfies
EξGp(W, ξ) = ∇fp(W). We further assume that every machine calls the stochastic oracle K
times at each iteration (K is also referred to as the mini-batch size) and generates the stochastic
gradient 1

K

∑K
j=1Gp(W

c
p, ξc,j), where Wc

p denotes the local variable of machine p at iteration c.
At each iteration, machine p updates its local variable by aggregating the stochastic gradients

from all machines and performing a proximal update. Specifically, the aggregated stochastic
gradients on machine p at iteration c is Gc

p =
∑P

q=1
1
K

∑K
j=1Gq(W

τqp (c)
q , ξτqp (c),j), where τ qp (c) is

the number of iterations machine q has transmitted to machine p when machine p conducts its
c-th iteration. We assume that τ pp (c) = c and 0 ≤ c − τ qp (c) ≤ s, i.e., machine p has access
to the fresh information on itself, and receives delayed updates of machine q that are within s
iterations. Denote the stepsize as η > 0, the local update rule of machine p is expressed as

Wc+1
p = Wc

p − ηcGc
p, where 0 ≤ c− τ qp (c) ≤ s. (5.3)

This formulation, in which s is the maximum “staleness” allowed between any update and
any worker, covers bulk synchronous parallel broadcasting (s = 0) and bounded-asynchronous
broadcasting (s > 0). We also define an undelayed version of the aggregated stochastic gradient
Gc =

∑P
q=1

1
K

∑K
j=1 Gq(W

c
q, ξc,j). We adopt the following assumptions for our analysis.

Assumption 1. (1) For all p = 1, . . . , P , fp is continuously differentiable and F is bounded
from below; (2) ∇f , ∇fp are Lipschitz continuous with constants Lf and Lp, respectively, and
let L =

∑P
p=1 Lp; (3) There exists B, σ2 > 0 such that for all p and c, we have ‖Wc

p‖F ≤ B and
E‖Gc −

∑P
p=1∇fp(Wc

p)‖2
F ≤ σ2

KP
almost surely.

The assumptions in item 1 and 2 are standard smoothness assumptions for gradient methods.
In the case of full synchronization (i.e., Wc

p = Wc for all p), the assumption in item 3 reduces to
the standard bounded variance assumption for mini-batch SGD methods. Our analysis is based
on the following auxiliary update sequence

Wc+1 = Wc − ηcGc. (5.4)

Compare to the local update in Eq.(5.3) on machine p, essentially this auxiliary update uses the
undelayed aggregated stochastic gradients Gc generated by all machines, instead of the delayed
ones Gc

p. We show that all local machine parameter sequences {Wc
p} are asymptotically consis-

tent with this auxiliary sequence {Wc}, and their limit points are all stationary points of f .
Theorem 6. Denote {Wc

p}, p = 1, . . . , P , and {Wc} as the local sequences and the auxiliary
sequence generated by SFB, respectively. Let Assumption 1 hold. Then, with learning rate
ηc = O( KP

(Ls+Lf )σ2
√
c
), we have
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• lim
c→∞

maxp ‖Wc −Wc
p‖F = 0, i.e. the maximal disagreement between all local sequences

and the auxiliary sequence converges to 0;

• We have min
c≤C

E‖
∑P

p=1∇fp(Wc
p)‖2 ≤ O

(√
(Ls+Lf )σ2

KPC

)
. Moreover, there exists a com-

mon subsequence of {Wc
p} and {Wc} that converges almost surely to a stationary point.

Intuitively, Theorem 6 says that, given a properly-chosen learning rate, all local worker pa-
rameters {Wc

p} eventually converge to stationary points (i.e. local minima) of the objective
function F , despite the fact that SF transmission can be delayed by up to s iterations. Thus, SFB
learning is robust even under bounded-asynchronous communication (such as SSP). Our analysis
differs from [41] in two ways: (1) Bertsekas and Tsitsiklis [41] explicitly maintain a consensus
model which would require transmitting the parameter matrix among worker machines — a
communication bottleneck that we were able to avoid; (2) we allow subsampling in each worker
machine. Accordingly, our theoretical guarantee is probabilistic, instead of the deterministic one
in [41].

We now consider the multicast setting, where each machine updates its local variable by ag-
gregating the stochastic gradients from a subset of the other machines. Specifically, we denote
δqp(c) ∈ {0, 1} as whether machine p and machine q are connected at c-th iteration on ma-
chine p. The aggregated stochastic gradients on machine p at iteration c is denoted as Gc

p(δ) =∑P
q=1 δ

q
p(c)

1
K

∑K
j=1 Gq(W

τqp (c)
q , ξτqp (c),j). We assume that each machine is connected to Q num-

ber of other machines at each iteration, i.e.,
∑P

q=1 δ
q
p(c) = Q for all p and c. Denote the stepsize

as η > 0, the local update rule of machine p is expressed as

Wc+1
p = Wc

p − ηcGc
p(δ), where 0 ≤ c− τ qp (c) ≤ s,

∑P
q=1 δ

q
p(t) = Q. (5.5)

We obtain the following result for the multicast setting.
Corollary 1. Denote {Wc

p}, p = 1, . . . , P , and {Wc} as the local sequences and the auxiliary
sequence generated by multicast SFB, respectively, and assume that each machine aggregates
the stochastic gradients from Q < P other machines at every iteration. Let Assumption 1 hold.
Then, with learning rate ηc ≡ O( 1

L(P−Q)C
), we have

min
c=1,...,C

E‖
∑P

p=1∇fp(Wc
p)‖2 ≤ O

(
L(P −Q) +

(Ls+ Lf )σ
2

KPL(P −Q)C

)
.

In the multicast setting, we need to use a smaller stepzie ηc = O( 1
L(P−Q)C

) to compensate
the errors caused by multicast SFB. The algorithm eventually converges to an O(L(P − Q))
neighbourhood of stationary point, i.e., if we broadcast the stochastic gradient updates to more
machines, the variable sequence is more close to a stationary point. In the experiments, we
observe that SFB under multicast converges to the same objective value as SFB under broadcast
with a comparable convergence, while multicast can significantly reduce the communication
cost.
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5.4.1 Appendix: Proof of Theorem 6
Proof. Throughout, we denote gc :=

∑P
p=1∇fp(Wc

p) = EGc. By the descent lemma [41], we
have

f(Wc+1)− f(Wc) ≤ 〈Wc+1 −Wc,∇f(Wc)〉+
Lf
2
‖Wc+1 −Wc‖2

F

(i)
= −ηc〈Gc,∇f(Wc)〉+

Lf
2
η2
c‖Gc‖2,

where (i) follows from the observation that Wc+1−Wc = −ηcGc. Taking expectations on both
sides, and note that EGc = gc,E‖Gc‖2 ≤ ‖gc‖2 + σ2

KP
, we obtain that

Ef(Wc+1)− Ef(Wc) ≤ −ηE〈gc,∇f(Wc)〉+
Lfη

2
c

2
E‖Gc‖2

F +
Lfη

2
cσ

2

2KP

= −ηE‖gc‖2 − ηE〈gc,∇f(Wc)− gc〉+
Lfη

2
c

2
E‖Gc‖2 +

Lfη
2
cσ

2

2KP

≤ (
Lf
2
η2
c − ηc)E‖gc‖2 + ηcE‖gc‖

P∑
p=1

Lp‖Wc
p −Wc‖+

Lfη
2
cσ

2

2KP
.

(5.6)

Next, we bound the term ‖Wc
p −Wc‖. Note that Wc =

∑c−1
t=0 ηtG

t,Wc
p =

∑c−1
t=0 ηtG

t
p,

both of which are aggregations of the stochastic gradient updates. Since Gt
p contains the delayed

stochastic gradients with maximum staleness s, the discrepancy between Wc
p and Wc is at most

the updates {Gc−s+1, . . . ,Gc−1}, and we obtain that

‖Wc −Wc
p‖ ≤

c−1∑
t=c−s+1

ηt‖Gt‖. (5.7)

We note that this is only a coarse estimate for simplicity of the derivation. In general, less
discrepancy may occur and does not affect the order of the final convergence rate. With Eq.(5.7),
Eq.(5.6) can be further bounded as

Ef(Wc+1)− Ef(Wc)

≤ (
Lf
2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

Eηcηt‖gc‖‖Gt‖+
Lfη

2
cσ

2

2KP

≤ (
Lf
2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

E[η2
c‖gc‖2 + η2

t ‖Gt‖2] +
Lfη

2
cσ

2

2KP

≤ (
Lf + 2Ls

2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

η2
t [E‖Gt‖2 +

σ2

KP
] +

Lfη
2
cσ

2

2KP
.
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Telescoping over c from 0 toC−1 and note that
∑C−1

c=0

∑c−1
t=c−s+1 rt ≤ s

∑C−1
c=0 rc for the positive

sequence {rt}, we obtain that

inf f(W)− Ef(W0)

≤
C−1∑
c=0

(
Lf + 4Ls

2
η2
c − ηc)E‖gc‖2 + Ls

C−1∑
c=0

η2
c

σ2

KP
+

C−1∑
c=0

Lfη
2
cσ

2

2KP

≤
C−1∑
c=0

(
Lf + 4Ls

2
η2
c − ηc)E‖gc‖2 +

C−1∑
c=0

η2
c

(Ls+ Lf )σ
2

KP
. (5.8)

It then follows that

min
c=1,...,C

E‖gc‖2 ≤
f(W0)− inf f(W) +

(Ls+Lf )σ2

KP

∑C−1
c=0 η

2
c∑C−1

c=0 (ηc − Lf+4Ls

2
η2
c )

≈
f(W0)− inf f(W) +

(Ls+Lf )σ2

KP

∑C−1
c=0 η

2
c∑C−1

c=0 ηc
,

where we ignore the higher order term in the last equation for simplicity, as we will use a dimin-
ishing stepsize ηc = O(1/

√
c) and this does not affect the order of the final estimate. Now we

can apply [35, Theorem 4.2] to the above equation to conclude that

min
c=1,...,C

E‖gc‖2 ≤
√

[f(W0)− inf f(W)](Ls+ Lf )σ2

KPC
,

with the choice of stepsize

ηc =
4[f(W0)− inf f(W)]KP

(Ls+ Lf )σ2

1√
c
. (5.9)

Hence we must have lim infc→∞ E‖gc‖2 = 0. By our assumption, {Wc
p}p,c and {Wc}c are

bounded and hence have limit points. Also note that the gradient of fj is continuous. Thus, ‖Gt‖
is bounded. Since ηc = 1√

c
→ 0, Eq.(5.7) implies that ‖Wc −Wc

p‖ → 0. This further implies
that {Wc} and {Wc

p} share the same set of limit points. Lastly, by the fact that ‖Wc−Wc
p‖ → 0

and the Lipschitz continuity of ∇fp, we conclude that lim inf E‖∇f(Wc)‖2 → 0. Thus, there
exists a common subsequence of {Wc} and {Wc

p} that converges to a stationary point almost
surely.

Proof of Corollary 1

The proof strategy is similar to that of Theorem 6. Specifically, the main difference from the
proof of Theorem 6 is the bound of ‖Wc −Wc

p‖. In the multicast setting, we have Wc =∑c−1
t=0 ηtG

t,Wc
p =

∑c−1
t=0 ηtG

t
p(δ). Despite the discrepancy of gradients cause by the delay s, the

multicast scheme makes Gt
p(δ) only aggregates Q stochastic gradients from other machines at
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each iteration, resulting in a P − Q stochastic gradient discrepancy compared to Gt. Thus, we
obtain

‖Wc −Wc
p‖ ≤

c−1∑
t=c−s+1

ηt‖Gt‖+
c−s∑
t=1

ηt(P −Q)R, (5.10)

where R is an absolute constant that bounds the norm of the gradients. The rest of the proof
follows that of Theorem 6. Specifically, with Eq.(5.10), Eq.(5.6) further becomes

Ef(Wc+1)− Ef(Wc)

≤ (
Lf
2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

Eηcηt‖gc‖‖Gt‖+ L
c−s∑
t=1

Eηc‖gc‖ηt(P −Q)R +
Lfη

2
cσ

2

2KP

≤ (
Lf
2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

E[η2
c‖gc‖2 + η2

t ‖Gt‖2] + L
c−s∑
t=1

E[η2
c‖gc‖2(P −Q)R + η2

t (P −Q)R]

+
Lfη

2
cσ

2

2KP

≤ (
Lf + 2Lc(P −Q)R

2
η2
c − ηc)E‖gc‖2 + L

c−1∑
t=c−s+1

η2
t [E‖Gt‖2 +

σ2

KP
] + L(P −Q)R

c−s∑
t=1

η2
t +

Lfη
2
cσ

2

2KP
.

Telescoping over c from 0 toC−1 and noting that
∑C−1

c=0

∑c−1
t=c−s+1 rt ≤ s

∑C−1
c=0 rc,

∑C−1
c=0

∑c−s
t=1 rt ≤

(c− s)
∑C−1

c=0 rc for the positive sequence {rt}, we obtain

inf f(W)− Ef(W0)

≤
C−1∑
c=0

(
Lf + 2L(c(P −Q)R + s)

2
η2
c − ηc)E‖gc‖2 + L(P −Q)R

C−s∑
c=1

η2
c +

C−1∑
c=0

η2
c

(Ls+ Lf )σ
2

KP
.

It then follows that

min
c=1,...,C

E‖gc‖2 ≤
f(W0)− inf f(W) + L(P −Q)R

∑C−s
c=1 η

2
t +

(Ls+Lf )σ2

KP

∑C−1
c=0 η

2
c∑C−1

c=0 (ηc − Lf+2L(c(P−Q)R+s)

2
η2
c )

≈
f(W0)− inf f(W) + [L(P −Q)R +

(Ls+Lf )σ2

KP
]β

2

C

β − β2L(P−Q)R
2

,

where we have chosen the constant stepsize ηc ≡ β/C. Setting β = 1
L(P−Q)R

, we obtain that

min
c=1,...,C

E‖gc‖2 ≤ O

(
L(P −Q) +

(Ls+ Lf )σ
2

KPL(P −Q)C

)
.
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Chapter 6

Applications in Healthcare

In this chapter, we design machine learning models for several healthcare applications: (1) re-
trieving similar patients, (2) discovering topics from medical texts, (3) tagging pathology and
radiology images, and (4) assigning ICD codes, which involve various data modalities, including
texts, images, time series, and tabular data. We apply diversity-promoting learning (DPL) tech-
niques (developed in Chapters 2-4) for the first application to better capture infrequent patterns,
reduce overfitting, shrink model size without sacrificing modeling power and apply large-scale
distributed learning systems (developed in Chapter 5) for the second application to improve train-
ing efficiency.

6.1 Diversity-promoting Learning for Similar-patient Retrieval
Patient similarity measurement (PSM) [315, 343], which decides whether two patients are sim-
ilar or dissimilar based on their electronic health records (EHRs), is a critical task for patient
cohort identification and finds wide applications in clinical decision-making. For instance, with
an effective similarity measure in hand, one can perform case-based retrieval of similar patients
for a target patient, who can be subsequently diagnosed and treated by synthesizing the diag-
nosis outcomes and treatment courses of the retrieved patients. Other applications powered by
patient similarity include classification of epidemiological data on hepatic steatosis [155], patient
risk prediction [261, 281], personalized treatment for hypercholesterolemia [413], personalized
mortality prediction [219], near-term prognosis [106, 344], to name a few. Several approaches
have applied distance metric learning (DML) [383] to learn patient-similarity measures, where
physicians provide feedback on whether two patients are similar or dissimilar, and the algorithm
learns a distance metric such that similar patients would have small distance while dissimilar
patients are separated apart.

When using DML for patient similarity measurement, we encountered the following prob-
lems. First, it performs less well on infrequent diseases. As an example, the top and bottom plots
in Figure 6.1(a) show the frequencies of eight diseases and the retrieval performance (preci-
sion@K) on individual diseases. As can be seen, the performance on infrequent diseases is much
worse than that on frequent diseases. Second, in clinical decision-making, timeliness is very
important. For PSM-based applications, how to retrieve similar patients efficiently is critical.
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Figure 6.1: (a) Retrieval performance on frequent and infrequent diseases. (b) Retrieval AUCs
on the training and test sets.

The time complexity of retrieval increases linearly with the dimension of the latent representa-
tions learned in DML. An immediate solution for fast retrieval is to reduce the latent dimension.
However, this would sacrifice the expressivity of DML and compromise retrieval performance.
Third, DML generalizes less well on unseen patients. As can be seen from Figure 6.1(b), the
performance on test set is much worse than that on training set.

To address these issues, we resort to diversity-promoting regularization that has been demon-
strated to have the ability of better capturing infrequent patterns, reducing model size without
sacrificing modeling power, and improving generalization performance (Chapter 2-4). Among
the various diversity-promoting regularizers, we choose to use the convex Bregman matrix di-
vergence regularizers (Section 2.2.2) since they guarantee to achieve the global optimal solution
in optimization. Specifically, we solve the following problem:

minM
1
|S|

∑
(x,y)∈S

(x− y)>M(x− y) + 1
|D|

∑
(x,y)∈D

max(0, 1− (x− y)>M(x− y)) + λΩ̂φ(M)

s.t. M � 0.
(6.1)

6.1.1 Experimental Settings
The evaluation has been reported in Section 2.2.4. For readers’ convenience, we re-summarize
them here. Two clinical datasets are used: MIMIC-III [184] and EICU [131]. MIMIC-III con-
tains 58K hospital admissions of patients who stayed within the intensive care units at the Beth
Israel Deaconess Medical Center between 2001 and 2012. We extracted 7207-dimensional fea-
tures: (1) 2 dimensions from demographics, including age and gender; (2) 5300 dimensions
from clinical notes, including 5000-dimensional bag-of-words (weighted using tf-idf ) and 300-
dimensional word2vec [256]; (3) 1905-dimensions from lab tests where the zero-order, first-
order, and second-order temporal features are extracted for each of the 635 lab items. In the
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extraction of bag-of-words features from clinical notes, we removed stop words, then counted
the document frequency (DF) of the remaining words. Then we selected the largest 5000 words
to form the dictionary. Based on this dictionary, we extracted tfidf features. In the extraction of
word2vec features, we trained a 300-dimensional embedding vector for each word using an open
source word2vec tool1. To represent a clinical note, we averaged the embeddings of all words in
this note. In lab tests, there are 635 test items in total. An item is tested at different time points
for each admission. For an item, we extracted three types of temporal features: (1) zero-order:
averaging the values of this item measured at different time points; (2) first-order: taking the
difference of values at every two consecutive time points t and t− 1, and averaging these differ-
ences; (3) second-order: for the sequence of first-order differences generated in (2), taking the
difference (called second-order difference) of values at every two consecutive time points t and
t − 1, and averaging these second-order differences. If an item is missing in an admission, we
set the zero-order, first-order, and second-order feature values to 0.

The EICU dataset contains hospital admissions of patients who were treated as part of the
Philips eICU program across intensive care units in the United States between 2014 and 2015.
There are 474 lab test items and 48 vital sign items. Each admission has a past medical history,
which is a collection of diseases. There are 2644 unique past diseases. We extracted the following
features: (1) age and gender; (2) zero-, first- and second- order temporal features of lab test and
vital signs; (3) past medical history: we used a binary vector to encode them; if an element in
the vector is 1, then the patient had the corresponding disease in the past. For both datasets, the
features were normalized using min-max normalization along each dimension. We used PCA to
reduce the feature dimension to 1000 to reduce the computational complexity (performing eigen-
decomposition of the Mahalanobis matrix bears cubic complexity in term of feature dimension).
In either dataset, each admission has a primary diagnosis (a disease). MIMIC-III and EICU have
2833 and 2175 unique diseases respectively.

Two admissions are considered as similar if they have the same primary diagnosis and dis-
similar if otherwise. In similar-patient retrieval, we used each test example to query the rest
of the test examples based on the learned distance metric. If the distance between x and y is
smaller than a threshold s and they have the same primary diagnosis, then this is a true positive.
By choosing different values of s, we obtained a receiver operating characteristic (ROC) curve.
We evaluated the retrieval performance using the area under (ROC) curve (AUC) [243] which
is the higher, the better. We compared the proposed convex BMD regularizers with two sets of
baseline regularizers. The first set aims at promoting orthogonality, which are based on determi-
nant of covariance (DC) [242], cosine similarity (CS) [402], determinantal point process (DPP)
[204, 429], InCoherence (IC) [29], variational Gram function (VGF) [177, 420], decorrelation
(DeC) [82], mutual angles (MA) [369], squared Frobenius norm (SFN) [74, 114, 122, 347],
von Neumann divergence (VND), log-determinant divergence (LDD), and orthogonal constraint
(OC) AA> = I [233, 342]. All these regularizers were applied to the non-convex projection
matrix-based DML (PDML, Eq.(2.14) in Section 2.2.1). The other set of regularizers are not
designed particularly for promoting orthogonality but are commonly used, including `2 norm,
`1 norm [280], `2,1 norm [399], trace norm (Tr) [234], information theoretic (IT) regularizer
−logdet(M) + tr(M) [92], and dropout (Drop) [313]. All these regularizers were applied to the

1https://code.google.com/archive/p/word2vec/
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MIMIC EICU
AUC-All AUC-F AUC-IF AUC-All AUC-F AUC-IF

NCDML 0.634 0.654 0.608 0.671 0.690 0.637
CDML 0.641 0.659 0.617 0.677 0.693 0.652
EUC 0.559 0.558 0.562 0.583 0.584 0.581
LMNN [357] 0.628 0.643 0.609 0.662 0.678 0.633
LDML [146] 0.619 0.638 0.594 0.667 0.678 0.647
MLEC [200] 0.621 0.633 0.605 0.679 0.692 0.656
GMML [405] 0.607 0.621 0.588 0.668 0.679 0.648
ILHD [63] 0.577 0.590 0.560 0.637 0.652 0.610
`2-CDML 0.648 0.664 0.627 0.695 0.706 0.676
`1-CDML [280] 0.643 0.666 0.615 0.701 0.715 0.677
`2,1-CDML [399] 0.646 0.658 0.630 0.703 0.727 0.661
Tr-CDML [234] 0.659 0.672 0.642 0.696 0.709 0.673
IT-CDML [92] 0.653 0.675 0.626 0.692 0.705 0.668
Dropout-CDML [282] 0.647 0.660 0.630 0.701 0.718 0.670
OS-CDML [116] 0.649 0.665 0.626 0.689 0.711 0.679
DCM-NCDML [242] 0.652 0.662 0.639 0.706 0.717 0.686
CS-NCDML [402] 0.661 0.676 0.641 0.712 0.736 0.670
DPP-NCDML [429] 0.659 0.679 0.632 0.714 0.725 0.695
IC-NCDML [29] 0.660 0.674 0.642 0.711 0.728 0.685
DC-NCDML [82] 0.648 0.666 0.625 0.698 0.711 0.675
VGF-NCDML [177] 0.657 0.673 0.634 0.718 0.730 0.697
MA-NCDML [367] 0.659 0.670 0.644 0.721 0.733 0.703
OC-NCDML [233] 0.651 0.663 0.636 0.705 0.716 0.685
OS-NCDML [116] 0.639 0.658 0.614 0.675 0.691 0.641
SFN-NCDML [74] 0.662 0.677 0.642 0.724 0.736 0.701

VND-NCDML 0.667 0.676 0.655 0.733 0.748 0.706
LDD-NCDML 0.664 0.674 0.651 0.731 0.743 0.711
CSFN-CDML 0.668 0.679 0.653 0.728 0.741 0.705
CVND-CDML 0.672 0.678 0.664 0.735 0.744 0.718
CLDD-CDML 0.669 0.678 0.658 0.739 0.750 0.719

Table 6.1: On MIMIC and EICU, we show the mean AUC (averaged on 5 random train/test
splits) on all diseases (AUC-All), frequent diseases (AUC-F), and infrequent diseases (AUC-IF).
On the second panel (EUC, etc.) are well established or state of the art baselines. On the third
panel (`2-CDML, etc.) are CDML methods regularized by non-diversity regularizers. On the
fourth panel (DCM-NCDML, etc.) are NCDML methods regularized by previously proposed
diversity-promoting regularizers. On the fifth panel (VND-NCDML, etc.) are NCDML methods
regularized by our proposed nonconvex BMD regularizers. On the sixth panel (CSFN-CDML,
etc.) are CDML methods regularized by our proposed convex BMD regularizers.

Mahalanobis distance-based DML (MDML, Eq.(6.1) in Section 2.2.2). In addition, we com-
pared with the vanilla Euclidean distance (EUC) and other distance learning methods including
large margin nearest neighbor (LMNN) metric learning, information theoretic metric learning
(ITML) [92], logistic discriminant metric learning (LDML) [146], metric learning from equiva-
lence constraints (MLEC) [200], geometric mean metric learning (GMML) [405], and indepen-
dent Laplacian hashing with diversity (ILHD) [63].

For computational efficiency, in MDML-based methods, we did not use (x−y)>M(x−y) to
compute distance directly. Given the learned matrix M (which is of rank k), we can decompose
it into L>L where L ∈ Rk×d. Let UΛU> be the eigen-decomposition of M. Let λ1, · · · , λk
denote the k nonzero eigenvalues and ui, · · · ,uk denote the corresponding eigenvectors. Then
L is the transpose of [

√
σ1u1, · · · ,

√
σkuk]. Given L, we can use it to transform each input d-

dimensional feature vector x into a new k-dimensional vector Lx, then perform retrieval on the
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MIMIC EICU
PDML 0.634 300 2.1 0.671 400 1.7
MDML 0.641 247 2.6 0.677 318 2.1
EUC 0.559 1000 0.6 0.583 1000 0.6
LMNN 0.628 200 3.1 0.662 400 1.7
LDML 0.619 300 2.1 0.667 400 1.7
MLEC 0.621 487 1.3 0.679 493 1.4
GMML 0.607 1000 0.6 0.668 1000 0.7
ILHD 0.577 100 5.8 0.637 100 6.4
MDML-`2 0.648 269 2.4 0.695 369 1.9
MDML-`1 0.643 341 1.9 0.701 353 2.0
MDML-`2,1 0.646 196 3.3 0.703 251 2.8
MDML-Tr 0.659 148 4.5 0.696 233 3.0
MDML-IT 0.653 1000 0.7 0.692 1000 0.7
MDML-Drop 0.647 183 3.5 0.701 284 2.5
PDML-DC 0.652 100 6.5 0.706 300 2.4
PDML-CS 0.661 200 3.3 0.712 200 3.6
PDML-DPP 0.659 100 6.6 0.714 200 3.6
PDML-IC 0.660 200 3.3 0.711 200 3.6
PDML-DeC 0.648 200 3.2 0.698 300 2.3
PDML-VGF 0.657 200 3.3 0.718 200 3.6
PDML-MA 0.659 200 3.3 0.721 200 3.6
PDML-OC 0.651 100 6.5 0.705 100 7.1
PDML-SFN 0.662 100 6.6 0.724 200 3.6
PDML-VND 0.667 100 6.7 0.733 100 7.3
PDML-LDD 0.664 100 6.6 0.731 200 3.7
MDML-CSFN 0.668 143 4.7 0.728 209 3.5
MDML-CVND 0.672 53 12.7 0.735 65 11.3
MDML-CLDD 0.669 76 8.8 0.739 128 5.8

Table 6.2: Area under ROC curve (AUC), number of projection vectors (NPV), and compactness
score (CS,×10−3).

new vectors based on Euclidean distance. Note that only when computing Euclidean distance
between Lx and Ly, we have that ‖Lx − Ly‖2

2 is equivalent to (x − y)>M(x − y). For other
distances or similarity measures between Lx and Ly, such as L1 distance and cosine similarity,
this does not hold. Performing retrieval based on ‖Lx−Ly‖2

2 is more efficient than that based on
(x−y)>M(x−y) when k is smaller than d. Givenm test examples, the computation complexity
of ‖Lx−Ly‖2

2-based retrieval isO(mkd+m2k), while that of (x−y)>M(x−y)-based retrieval
is O(m2d2).

6.1.2 Results
First, we verify whether CSFN, CVND, and CLDD are able to improve the performance on in-
frequent diseases. On MIMIC and EICU, we consider a disease as being “frequent” if it contains
more than 1000 examples, and “infrequent” if otherwise. We measure AUCs on all diseases
(AUC-All), infrequent diseases (AUC-IF), and frequent diseases (AUC-F). As can be seen, in
most DML methods, the AUCs on infrequent diseases are worse than those on frequent diseases,
showing that DML is sensitive to the imbalance of diseases’ frequencies and tends to be biased
towards frequent diseases and is less capable of capturing infrequent diseases. This is in accor-
dance with the previous findings [369]. Adding our proposed CSFN, CVND, CLDD regularizers
to CDML, the AUCs on infrequent diseases are greatly improved. By encouraging the compo-
nents to be close to being orthogonal, our methods can reduce the redundancy among vectors.
Mutually complementary vectors can achieve a broader coverage of latent features, including
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MIMIC EICU
NCDML 0.175 0.145
CDML 0.187 0.142
LMNN [357] 0.183 0.153
LDML [146] 0.159 0.139
MLEC [200] 0.162 0.131
GMML [405] 0.197 0.157
ILHD [63] 0.164 0.162
`2-CDML 0.184 0.136
`1-CDML [280] 0.173 0.131
`2,1-CDML [399] 0.181 0.129
Tr-CDML [234] 0.166 0.138
IT-CDML [92] 0.174 0.134
Dropout-CDML [282] 0.182 0.140
OS-CDML [116] 0.166 0.133
DCM-NCDML [242] 0.159 0.131
CS-NCDML [402] 0.163 0.135
DPP-NCDML [429] 0.147 0.140
IC-NCDML [29] 0.155 0.127
DC-NCDML [82] 0.164 0.123
VGF-NCDML [177] 0.158 0.136
MA-NCDML [367] 0.143 0.128
OC-NCDML [233] 0.161 0.142
OS-NCDML [116] 0.169 0.137
SFN-NCDML [74] 0.153 0.126

VND-NCDML 0.148 0.135
LDD-NCDML 0.146 0.121
CSFN-CDML 0.142 0.124
CVND-CDML 0.137 0.115
CLDD-CDML 0.131 0.118

Table 6.3: The gap of training AUC and testing AUC.

those associated with infrequent diseases. As a result, these vectors improve the performance on
infrequent diseases.

Thanks to their convexity nature, our methods can achieve the global optimal solution and
outperform the non-convex ones that can only achieve a local optimal and hence a sub-optimal
solution. (C)VND and (C)LDD outperform (C)SFN, possibly because they measure near-orthogonality
in a global way while (C)SFN conducts that in a pairwise fashion. Comparing OS-(NCDML,CDML)
with the unregularized NCDML/CDML, we can see that over-sampling indeed improves perfor-
mance on infrequent diseases. However, this improvement is less significant than that achieved
by our methods. In general, the diversity-promoting (DP) regularizers outperform the non-DP
regularizers, suggesting the effectiveness of promoting diversity. The orthogonal constraint
(OC) [233, 342] imposes strict orthogonality, which may be too restrictive that hurts perfor-
mance. ILHD [63] learns binary hash codes, which makes retrieval more efficient. However, it
achieves lower AUCs due to the quantization errors. (CSFN,CVND,CLDD)-CDML outperform
popular DML approaches including LMNN, LDML, MLEC, and GMML, demonstrating their
competitive standing in the DML literature.

Table 6.2 shows the area under ROC curve (AUC) and the numbers of the projection vectors
(NPVs) that achieve the AUCs. For MDML-based methods, the NPV equals the rank of the
Mahalanobis matrix since M = A>A. We define a compactness score (CS) which is the ratio
between AUC and NPV. A higher CS indicates achieving higher AUC by using fewer projec-
tion vectors. From Table 6.2, we can see that on both datasets, MDML-(CSFN,CVND,CLDD)
achieve larger CSs than the baseline methods, demonstrating their better capability in learning
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compact distance metrics. CSFN, CVND, and CLDD perform better than non-convex regulariz-
ers, and CVND, CLDD perform better than CSFN. The reduction of NPV improves the efficiency
of retrieval since the computational complexity grows linearly with this number.

Table 6.3 shows the difference between training AUC and testing AUC. Our methods have
the smallest gap between training and testing AUCs. This indicates that our methods are better
capable of reducing overfitting and improving generalization performance.

6.2 Large-scale Distributed Learning for Medical Topic Dis-
covery

Discovering medical topics from clinical documents has many applications, such as consumer
medical search [84], mining FDA drug labels [44], investigating drug repositioning opportuni-
ties [45], to name a few. In practice, the clinical text corpus can contain millions of documents
and the medical dictionary is comprised of hundreds of thousands of terminologies. These large-
scale documents contain rich medical topics, whose number can be tens of thousands. How to
efficiently discover so many topics from such a large dataset is computationally challenging. We
resort to the Orpheus system (Section 5.2) we have developed.

We begin with introducing how to learn the topics. For each document, we represent it with
a bag-of-words vector d ∈ RV where V is the dictionary size. Similar to [207], we assume
each document is approximately a linear combination of K topics: d ≈ Wθ. W ∈ RV×K is
the topic matrix, where each topic is represented with a vector w ∈ RV . wv ≥ 0 denotes the
association strength between the v-th word and this topic, and

∑V
v=1 wv = 1. θ ∈ RK are the

linear combination weights satisfying θk ≥ 0 and
∑K

k=1 θk = 1. θk denotes how relevant topic k
is to this document. Given the unlabeled documents {di}Ni=1, we learn the topics by solving the
following problem [207]:

min{θi}Ni=1,W
1
2

∑N
i=1 ‖di −Wθi‖2

2

s.t. ∀k = 1, · · · , K, v = 1, · · · , V,Wkv ≥ 0,
∑V

v=1Wkv = 1;

∀i = 1, · · · , N, k = 1, · · · , K, θik ≥ 0,
∑K

k=1 θik = 1,

(6.2)

where {θi}Ni=1 denotes all the linear coefficients.
This problem can be solved by alternating between {θi}Ni=1 and W. The N sub-problems

defined on {θi}Ni=1 can be solved independently by each machine based on the data shard it has.
No inter-machine communication is needed. For the sub-problem defined on W, we use the
Orpheus system to solve it. Each machine maintains a local copy of W and different copies
are synchronized to ensure convergence. The projected stochastic gradient descent algorithm
is applied, which iteratively performs two steps: (1) stochastic gradient descent; (2) projection
onto the probability simplex. In the first step, the stochastic gradient matrix computed over one
document can be written as the outer product of two vectors: (Wθi − di)θ

>
i . In other words,

this problem has a sufficient factor (SF) property and fits into the sufficient factor broadcasting
framework. In each iteration, each machine computes a set of SFs, sends them to other machines
and uses the SFs to update its own parameter copy. On the receiver side, the received SFs are
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System Runtime (hours)
FlexiFaCT [207] 33.9
Bosen [355] 23.5
Orpheus 5.4

Table 6.4: Convergence time (hours) in Orpheus and baseline systems for topic model.
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Mononuclear
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Figure 6.2: (a) A medical image has multiple tags which are correlated clinically or biologi-
cally. (b) The medical concepts are organized into a hierarchical tree. (c) The abnormal regions
(marked by red contours) are small.

converted to gradient matrices which are applied to the receiver’s parameter copy. A projection
operation follows the gradient descent update.

We applied the Orpheus-based topic model (TM) to learn medical topics from the PubMed [9]
dataset which contains 8.2M documents and ∼0.74B words. The dictionary size is 141K. The
number of topics was set to 50K. The mini-batch size was set to 100. In random multicast, the
number of destinations each machine sends a message to was set to 4. In SF selection, the number
of selected SFs was set to 25. The consistency model was set to SSP with a staleness value
of 4. Table 6.4 shows the convergence time of TM under Orpheus and two baseline systems:
Bosen [355] – a parameter server framework and FlexiFaCT [207] – a Hadoop implementation
of TM. As can be seen, Orpheus is much more efficient than the baselines systems. With 34 CPU
machines, the training of Orpheus-TM can be finished in 5.4 hours.

6.3 Hierarchical Multi-label Tagging of Medical Images
Medical images generated from radiography, computed tomography (CT) scans, magnetic res-
onance imaging (MRI), ultrasound, biopsy etc. are widely used in hospitals and clinics for
diagnosis, treatment, and surgery. Once read, these images are dumped into the picture archiving
and communication system (PACS). Lacking accurate and rich textual labels, these images are
difficult to index and search. As a result, the utilization of these images is under-explored. To
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address this issue, we study the automatic tagging of medical images, where the obtained textual
tags improve the accessibility of images. For example, physicians can search images that are
tagged with “chest x-ray” and “pneumonia” and perform a cohort study on them.

Automatically tagging clinical images with medical concepts is challenging. First, a medi-
cal image usually contains rich information. As a result, it can be simultaneously tagged with
multiple concepts. Figure 6.2a shows an example where the image is tagged with “capillary”,
“fibroblast”, and “mononuclear”. These concepts have strong clinical or biological correlations.
For example, mononuclear cell and fibroblast have an interaction in scleroderma [133]. Capillar-
ies and fibroblast have a dynamic interaction in the heart [51]. Such correlations can be explored
to improve tagging accuracy. Here is an example. Since capillary is visually similar to Mallory
bodies, it is difficult to distinguish these two based on image features. But Mallory bodies have
little correlation with fibroblast and mononuclear cell. Leveraging the concept-correlations, we
can correctly choose capillary rather than Mallory body as the label. Technically, how to capture
these correlations is nontrivial.

Second, medical concepts are usually organized by physicians into a hierarchical ontology.
On the top of the hierarchy are general concepts. From top to bottom, each concept is divided
into more fine-grained sub-concepts. Figure 6.2b shows an example. In this concept tree, each
node represents a disease, whose children represent subtypes of this disease. For instance,
meningomyelocele and anencephaly are both subtypes of neural tube defects. This hierarchi-
cal structure can be leveraged to improve tagging accuracy. On one hand, if A and B are both
children of C, then it is unlikely to use A and B to simultaneously tag an image. For instance,
low power microscopic, middle power microscopic, and high power microscopic are children of
microscopic. A pathology image can only be taken by one of these microscopic techniques. On
the other hand, if the distance between A and B in the concept tree is smaller than that between
A and C and we know A is the correct label, then B is more likely to be the correct label than C,
since concepts with smaller distance are more relevant. For example, abscess is closer to phago-
cytosis than omphalocele. The former two are both under the sub-tree rooted with inflammation.
As a result, if an image is tagged with abscess, it is more likely to be tagged with phagocytosis
than omphalocele. How to explore the hierarchical structure among concepts for better tagging
is technically demanding.

Third, in images showing abnormalities, the abnormal regions are usually very small, occu-
pying a small proportion of the entire image. As shown in Figure 6.2c, the dark round areas
(marked with red contours) show lymph nodes which are involved by the neoplasm. It is difficult
to tag these abnormalities because of the smallness of the abnormal regions. How to detect these
regions and properly tag them is challenging.

We aim at addressing these three challenges. To cope with the first challenge, we design
an adversarial learning [134] approach where a discriminative network is used to distinguish
the predicted labels from physician-provided labels while the predictive network tries to make
them indistinguishable (i.e., cannot tell whether a label vector is predicted or human-provided).
Such indiscernibility ensures the correlations among physician-provided labels are transferred
to the predicted labels. To cope with the second challenge, we design a tree-of-sequences long
short-term memory (LSTM) model which uses sequential LSTMs [163] to encode the individual
concepts and uses a tree-structured LSTM [320, 368] to capture the hierarchical relationship
among concepts. To address the third challenge, we design a contextual attention mechanism
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Figure 6.3: Our model consists of three major modules. Given the medical image, a contex-
tual attention encoder is leveraged to learn a representation vector for this image. The tree-of-
sequences LSTM encoder is used to learn a representation for each concept in the ontology. The
image representation and concept representations are fed into the adversarial multi-label tagger
to generate the tags for this image.

which calculates an importance score of each image-patch according to its contrast with the
entire image. Patches with larger importance are paid more attention in predicting the tags. We
demonstrate the effectiveness of our methods on two medical image datasets.

6.3.1 Methods
Figure 6.3 shows the overview of our model, where the inputs include a medical image and
an ontology of medical concepts, and the outputs are multiple concepts that can be used to
tag this image. In the concept ontology, only the leaf nodes are used for tagging. The model
consists of three major modules: (1) a contextual attention encoder which takes the image as
input, localizes abnormal regions which are given higher importance weights, and generates a
weighted representation for this image; (2) a tree-of-sequences LSTM encoder which takes the
concept ontology as input, uses sequential LSTMs to encode individual concepts and utilizes a
bidirectional tree-structured LSTM to incorporate the hierarchical relationship among concepts
into their representations; (3) an adversarial multi-label tagger which takes the representations of
the image and the concepts as inputs, incorporates label-correlations using adversarial learning,
and outputs multiple concepts to tag this image.

Adversarial Multi-label Tagging

It is often the case that a medical image can be tagged with multiple medical concepts that exhibit
clinical or biological correlations. These correlations can be leveraged to distinguish concepts
that are difficult to be differentiated using visual clues. In this section, we present an adversarial
learning approach to capture such correlations for better multi-label tagging.

When assigning multiple concepts to an image, we need to consider two orthogonal factors:
(1) concept-image relevance – how the content of the image is relevant to each concept; (2)
concept-concept correlation – how strongly these concepts are correlated. To achieve (1), we
build a predictive network which takes the image representation x (produced by the contextual
attention encoder) and representation ci of each concept i (produced by the tree-of-sequences

186



0 1 1 0

Predictive
Network

1 0 1 1

1 0 0 1

0 0 1 1

1 1 1 1

0 1 0 1
1 0 1 1

Training
Set A

Training
Set B

Predicted
Labels

1 1 0 1

1 0 0 1

Groundtruth
Labels

1 1 0 1
0 0 1 1
1 0 1 0

Discriminative
Network

Binary
Classification Loss

Sigmoid Cross
Entropy Loss

Capture	image-label
relevance

Capture	label-label
correlation	

Figure 6.4: Adversarial learning for capturing correlations among concepts. The discriminative
network (DN) aims at distinguishing the labels produced by the predictive network (PN) from
the groundtruth labels provided by physicians. The PN tries to make the two sets of labels
indistinguishable.
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Figure 6.5: Tree-of-sequences LSTM. For each concept name, we build a sequential LSTM
(SLSTM) to capture the semantics of words and the sequential structure among words. Over
the concept hierarchy, we build a tree LSTM (TLSTM) to capture the hierarchical relationship
among concepts. The encodings produced by the SLSTM are the inputs of the TLSTM.

LSTM encoder) as inputs and calculates a score si that measures how relevant this image is to
this concept. To achieve (2), we leverage adversarial learning [134]. The basic idea is to use a
discriminative network to tell which labels are produced by the predictive network and which
are provided by the physicians. The predictive network tries to produce labels in a way that the
discriminative network cannot tell whether they are predicted or human-provided. Such indis-
criminability transfers the correlations manifested in human-provided labels into those predicted
by the network.

Figure 6.4 illustrates the details. The training set is divided into two partitions: A and B.
Partition A is used for learning the relevance between images and concepts. Partition B is used for
learning the correlation among concepts. The groundtruth tagging of each image is represented
by a binary vector t ∈ Rk where k is the number of unique leaf concepts in the ontology and
ti = 1 denotes that the i-th concept is utilized by the physician to label this image. For each image
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x in A, the predictive network (PN) predicts a score vector s = fP (x; WP ) where si ∈ [0, 1]
denotes the confidence that this image should be tagged by concept i and fP (·; WP ) denotes
the PN parameterized by weight parameters WP . Then a sigmoid cross entropy (SCE) loss
is defined on s and t to measure the discrepancy between the prediction and the groundtruth.
For each image in B, similarly the predictive network first generates the score vector s. We
use a discriminative network (DN) to differentiate the predicted score vectors {s(n)}NBn=1 and the
groundtruth label vectors {t(n)}NBn=1, where NB is the number of images in B. This is a binary
classification task. The input to the DN (denoted by fD(·; WD) where WD are the weight
parameters) is a k-dimensional vector and the output is the probability that the vector is predicted.
As for the predictive network, it aims at making {s(n)}NBn=1 indistinguishable from {t(n)}NBn=1, such
that the correlations reflected in {t(n)}NBn=1 can be transferred to {s(n)}NBn=1. Overall, we solve the
following optimization problem:

min
WP

LSCE(WP , A) + max
WD

− LBC(WP ,WD, B). (6.3)

LSCE(WP , A) is the sigmoid cross-entropy loss defined on the training set A:

LSCE(WP , A) =

NA∑
n=1

`(fP (x(n); WP ), t(n)), (6.4)

where `(s, t) = −
∑k

i=1 ti log si + (1 − ti) log(1 − si) is the SCE loss on a single image and
NA is the number of images in A. LBC(WP ,WD, B) is the binary classification loss defined on
training set B:

LBC(WP ,WD, B) =
∑2NB

n=1 `(fD(a(n); WD), b(n)), (6.5)

where a(n) can be either a predicted score vector fP (x; WP ) or a physician-provided label vector
t. In the former case, b = 1. In the latter case, b = 0.

In the overall loss, the PN learns its weight parameters WP by minimizing the SCE loss
and maximizing the BC loss. The DN learns its weights parameters WD by minimizing the BC
loss. Note that the SCE loss and the BC loss cannot be defined on the same training image.
By overfitting the training set, the SCE loss can make the predicted label vector to be the same
as the groundtruth vector. In this case, it is futile to distill concept-correlations using the BC
loss. In AL, designing the architecture of the prediction and discrimination networks is required.
However, this is in general much easier than designing a comprehensive objective function for
multi-label classification. In our experiments, we simply use common CNNs and feedforward
NNs.

Previously, adversarial learning was applied for domain adaptation [119]: a discriminator is
learned to judge whether an example is from the source domain or target domain; an encoder
is learned so that after being encoded, a sample cannot be identified as being from the source
domain or target domain. By doing this, the discrepancy between two domains are eliminated so
that data from the source domain can be utilized to improve the task in the target domain. In our
approach of using adversarial learning for multi-label classification, a similar idea is explored:
using adversarial learning to eliminate the discrepancy between the predicted labels and ground-
truth labels in terms of label-correlation patterns, so that the correlations existing in the ground-
truth labels can be transferred to the predicted labels.
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Tree-of-sequences LSTM Encoder

In this section, we aim at learning embedding vectors for the medical concepts. Each concept has
a name (a sequence of words) that tells the semantics of this concept. We use a sequential LSTM
(SLSTM) to encode this name. Meanwhile, in the hierarchical ontology, the concepts possess
hierarchical relationships. To capture such relationships, on top of the encodings generated by
the SLSTMs, we build a tree LSTM (TLSTM) [320] along the hierarchy, ending up with a tree-
of-sequences LSTM model (Figure 6.5).

Sequential LSTM A sequential LSTM (SLSTM) [163] network is a special type of recurrent
neural network that (1) learns the latent representation (which usually reflects certain semantic
information) of words; (2) models the sequential structure among words. In the word sequence,
each word t is allocated with an SLSTM unit, which consists of the following components: input
gate it, forget gate ft, output gate ot, memory cell ct, and hidden state st. These components
(vectors) are computed as follows:

it = σ(W(i)st−1 + U(i)xt + b(i))
ft = σ(W(f)st−1 + U(f)xt + b(f))
ot = σ(W(o)st−1 + U(o)xt + b(o))
ct = it � tanh(W(c)st−1 + U(c)xt + b(c)) + ft � ct−1

st = ot � tanh(ct),

(6.6)

where xt is the embedding vector of word t. W, U are component-specific weight matrices and
b are bias vectors.

Tree-of-sequences LSTM We use a bi-directional tree LSTM (TLSTM) [320, 368] to capture
the hierarchical relationships among concepts. The inputs of this LSTM include the tree structure
of the concept ontology and hidden states of individual concepts produced the SLSTMs. It
consists of a bottom-up TLSTM and a top-down TLSTM, which produce two hidden states h↑
and h↓ at each node in the tree.

In the bottom-up TLSTM, an internal node (representing a concept C, having M children) is
comprised of the following components: an input gate i↑, an output gate o↑, a memory cell c↑, a
hidden state h↑, and M child-specific forget gates {f (m)

↑ }Mm=1 where f
(m)
↑ corresponds to the m-th

child. The transition equations among components are:

i↑ = σ(
∑M

m=1 W
(i,m)
↑ h

(m)
↑ + U(i)s + b

(i)
↑ )

∀m, f (m)
↑ = σ(W

(f,m)
↑ h

(m)
↑ + U(f,m)s + b

(f,m)
↑ )

o↑ = σ(
∑M

m=1 W
(o,m)
↑ h

(m)
↑ + U(o)s + b

(o)
↑ )

u↑ = tanh(
∑M

m=1 W
(u,m)
↑ h

(m)
↑ + U(u)s + b

(u)
↑ )

c↑ = i↑ � u↑ +
∑M

m=1 f
(m)
↑ � c

(m)
↑

h↑ = o↑ � tanh(c↑),

(6.7)

where s is the SLSTM hidden state that encodes the name of the concept C. {h(m)
↑ }Mm=1 and

{c(m)
↑ }Mm=1 are the bottom-up TLSTM hidden states and memory cells of the children. W, U, b
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Figure 6.6: Contextual attention module. For each patch, an attention score is calculated by
comparing the representation of this patch and that of the entire image. These patches are re-
weighted using the corresponding attention scores to generate an attentional representation for
this image.
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Figure 6.7: Attentional convolution. Each pixel is weighted by the attention score of the patch
containing this pixel. Then the weighted pixels are convoluted with the filter weights.

are component-specific weight matrices and bias vectors. For a leaf node having no children, its
only input is the SLSTM hidden state s and no forget gates are needed. The transition equations
are:

i↑ = σ(U(i)s + b
(i)
↑ )

o↑ = σ(U(o)s + b
(o)
↑ )

u↑ = tanh(U(u)s + b
(u)
↑ )

c↑ = i↑ � u↑
h↑ = o↑ � tanh(c↑).

(6.8)

In the top-down TLSTM, for a non-root node, it has the following components: an input gate
i↓, a forget gate f↓, an output gate o↓, a memory cell c↓, and a hidden state h↓. The transition
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equations are:
i↓ = σ(W

(i)
↓ h

(p)
↓ + b

(i)
↓ )

f↓ = σ(W
(f)
↓ h

(p)
↓ + b

(f)
↓ )

o↓ = σ(W
(o)
↓ h

(p)
↓ + b

(o)
↓ )

u↓ = tanh(W
(u)
↓ h

(p)
↓ + b

(u)
↓ )

c↓ = i↓ � u↓ + f↓ � c
(p)
↓

h↓ = o↓ � tanh(c↓),

(6.9)

where h
(p)
↓ and c

(p)
↓ are the top-down TLSTM hidden state and memory cell of the parent of this

node. For the root node which has no parent, h↓ cannot be computed using the above equations.
Instead, we set h↓ to h↑ (the bottom-up TLSTM hidden state generated at the root node). h↑
captures the semantics of all concepts in this ontology, which is then propagated downwards to
each individual concept via the top-down TLSTM dynamics.

We concatenate the hidden states of the two directions to obtain the bidirectional TLSTM
encoding of each concept h = [h↑; h↓]. The bottom-up TLSTM composes the semantics of chil-
dren (representing sub-concepts) and merges them into the current node, which hence captures
child-to-parent relationship. The top-down TLSTM makes each node inherit the semantics of its
parent, which captures parent-to-child relation. As a result, the hierarchical relationship among
concepts is encoded in the hidden states.

Contextual Attention

When reading a medical image, the physicians care more about the regions that show abnormal-
ities. These abnormalities are usually indicators of diseases and prompt the physicians to take
treatment actions. The abnormal regions are usually small, which are difficult to detect and tag.
It is important to localize these regions and encourage the tagger to pay more attention to them.

The abnormal regions can be spotted by comparing them with their context – the entire image.
It is often the case that majority of an image contains normal tissues, whose visual appearance
differs from the abnormalities. This observation motivates us to design a contextual attention
mechanism that calculates the level of abnormality in each region by contrasting this region with
the entire image.

Figure 6.6 presents an illustration. We first divide the input image into patches. For each
patch, we use a patch encoder to extract its representation. For the entire image (which is deemed
as context), an image encoder is used to capture the holistic information of this image. For each
patch, its representation and the image representation are concatenated and fed into an attention
module which generates a score indicating how abnormal this patch is. Then we use these atten-
tion scores to weight pixels. The weighted pixels are fed into an attentional encoder to generate
an attentional representation for this image. For simplicity, we assume the patches are non-
overlapped, hence each pixel belongs to exactly one patch. The value of a pixel is weighted by
the attention score of the patch containing it. In the attentional encoder, attentional convolution
is performed: the filters take weighted pixels as inputs to calculate the feature map. Figure 6.7
shows an example. The 6×6 image is divided into 4 patches, whose attention scores are 0.6, 0.1,
0.3, and 0.7. When a 3×3 filter (denoted by a red box) is applied, each pixel in the receptive field
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is weighted using the attention score of the patch containing this pixel. Then the convolution is
performed between the weighted pixels and the filter weights, by calculating the following equa-
tion c = f

(∑n
i=1 aipiwi + b

)
where {ai} are the attention scores, {pi} are the pixel values, and

{wi} are the weights of filters. Extending the method to overlapped patches is straightforward:
the weight of a pixel is calculated by averaging the attention scores of overlapping patches that
contain this pixel.

6.3.2 Evaluation
Datasets

We used two medical image datasets obtained from a teaching hospital. The first dataset contains
47933 pathology images which are split into a training set with 33553 images, a validation set
with 7190 images, and a test set with 7190 images. The second dataset contains 39827 radiology
images, which are split into train/validation/test sets with 27879, 5974, and 5974 images respec-
tively. Labels in the first dataset are organized by doctors into a 4-level hierarchy. The number of
labels in level 1-4 are 16, 38, 137, 249 respectively. The number of leaf nodes is 272. The aver-
age labels each image has is 3.7. Each label has a name. The minimum, average, and maximum
number of words in the label names are 1, 5.3, 9 respectively. Labels in the second dataset are
organized by doctors into a 3-level hierarchy. The number of labels in level 1-3 are 12, 51, 196
respectively. The number of leaf nodes is 211. The average labels each image has is 3.1. The
minimum, average, and maximum number of words in the label names are 1, 4.4, 8 respectively.
Each image is labeled by at least 3 doctors and the labels are decided using majority vote. The
kappa statistics (range is [-1,1]) for measuring inter-annotator reliability is 0.83, indicating high
consistency among annotators. Since it is too costly to annotate fine-grained hierarchical labels
for all raw images in the PACS, we did not use all images there. The distribution of classes’
frequencies is imbalanced: some classes appear in many images while others are less frequent.
The number of tags that each image has follows a Gaussian distribution.

Experimental Setup

Data augmentation by cropping and rotating was applied. The images were resized to 3000×2000.
Each image was divided into 16×16 overlapping patches with a stride of 8. In the contextual at-
tentional encoder, both the image encoder and patch encoder were set to ResNet-50 [153], where
the 1000-dimensional vector produced by the fully-connected layer is used as the representa-
tion of an image or a patch. The attention module was a feed-forward network with 2 hidden
layers where the number of unit was 300 and 100 respectively. The activation function was set
to ReLU. The attentional encoder was also set to ResNet-50. In the tree-of-sequences LSTM
encoder, the hidden state size of both the sequential and tree-structured LSTM was set to 100.
The size of word embedding was set to 128. In the adversarial multi-label tagger, 70% training
images were used as set A to learn label-image relevance. The rest were used as set B to learn
label-correlations. Both the predictive and discriminative networks were feed-forward networks
with 2 hidden layers where the number of units was 300 and 100 respectively. We used Ada-
Grad [255] with a learning rate of 0.1 and batch size of 32 to learn model parameters. In LSTM
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Methods
Pathology Radiology

Sensitivity Specificity Sensitivity Specificity
CRF [419] 0.30 0.34 0.48 0.50
SPEN [36] 0.32 0.34 0.46 0.48

CNN-RNN [346] 0.31 0.35 0.48 0.51
DPP [375] 0.32 0.34 0.47 0.49

No-AL 0.30 0.33 0.46 0.48
LET [38] 0.30 0.35 0.48 0.50

HD-CNN [389] 0.31 0.35 0.46 0.49
HybridNet [166] 0.32 0.36 0.45 0.49

B-CNN [425] 0.30 0.34 0.48 0.51
No-TLSTM 0.29 0.34 0.45 0.49

Bottom-up TLSTM 0.33 0.36 0.48 0.51
LPA [385] 0.30 0.35 0.50 0.51

SA [71] 0.31 0.35 0.49 0.49
No-CA 0.30 0.34 0.48 0.49

DTHMLC [337] 0.20 0.23 0.39 0.40
DenseNet-LSTM [396] 0.27 0.29 0.44 0.46

OS [171] 0.22 0.23 0.41 0.44
Our full method 0.33 0.37 0.50 0.52

Table 6.5: Average sensitivity and specificity. On the first, second, and third panel are baselines
compared in the ablation study of (1) adversarial learning for multi-label tagging, (2) tree-of-
sequences LSTM for capturing hierarchical relationship, and (3) contextual attention for identi-
fying abnormalities. On the fourth panel are baselines for holistic comparison.

training, the network was unrolled for 60 iterations. For performance evaluation, we used sen-
sitivity (true positive rate) and specificity (true negative rate), which are the most widely used
evaluation metrics in clinical trial. To address the imbalance issue of classes’ frequency, in the
loss function in Eq.(6.4), we gave infrequent classes larger weights, where the weight of a class
is proportional to the reciprocal of the frequency of this class.

Ablation Study

We perform ablation study to verify the effectiveness of each module.

Adversarial learning for multi-label tagging To evaluate the efficacy of adversarial learning
(AL), we removed it from the model. In Figure 6.4, the branch associated with training set B
(including the discriminative network and binary classification loss) was taken away. All the
training images were put into set A to learn label-image relevance. In addition, we compared
with four state of the art methods proposed for capturing label-correlation in multi-label clas-
sification, by replacing AL with each of them while keeping the other modules intact. These
baselines include (1) conditional random field (CRF) [419]; (2) structured prediction energy net-
work (SPEN) [36]; (3) CNN-RNN [346]; (4) determinantal point process (DPP) [205, 375]. In
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SPEN, The local and global energy networks are chosen to be feed-forward networks consisting
of two hidden layers, with 300 and 150 units in each layer. Gradient descent was applied to make
predictions, where the momentum and learning rate were set to 0.95 and 0.01 respectively. In
CNN-RNN, the size of hidden states in LSTM was set to 128. The network was trained using
SGD with momentum 0.9, weight decay 1e-4, and dropout rate 0.5. In the DPP baseline, we
feed the image representation produced by the contextual attention encoder and concept rep-
resentations produced by the tree-of-sequence LSTM encoder into a conditional kernel function
represented by a label-input dependency network (LIDN) and a label-correlation network (LCN).
The LIDN is configured to be a fully-connected network with 2 hidden layers where the number
of units in the first and second layer is 200 and 100 respectively and the activation function is
ReLU. The LCN has two hidden layers as well, each having 100 and 50 units respectively.

The first panel of Table 6.5 shows the results, from which we observe the following. First, af-
ter AL is removed (denoted by No-AL), the sensitivity and specificity are significantly dropped.
No-AL ignores label-correlations and selects labels purely based on their relevance to the im-
age, hence leading to inferior performance. Second, compared with the four baselines designed
for capturing label-correlations, our full method (which uses AL) achieves better performance,
suggesting that AL is more effective in capturing correlations. These baselines design explicit ob-
jective functions to encode correlations. The correlations might be very complicated and diverse,
which are difficult to be captured by a single objective function. Instead, our approach implicitly
learns such correlation by making the predicted labels indistinguishable from the groundtruth
ones. It has more flexibility and expressivity to capture various types of correlations. The ad-
vantage of DPP is that it is able to capture high-order correlations among labels while being able
to perform the exact learning of model parameters (without approximation) with cubic compu-
tational complexity (in terms of the number of unique classes). Its drawback is exact inference
cannot be achieved in polynomial time. Approximate inference may bear large errors. The dis-
advantage of CRF is both inference and parameter learning cannot be performed exactly.

Tree-of-sequences LSTM To evaluate this module, we compared with the two configurations:
(1) No TLSTM, which removes the tree LSTM and directly uses the hidden states produced by
the sequential LSTM as final representations of concepts; (2) Bottom-up TLSTM, which removes
the hidden states generated by the top-down TLSTM. In addition, we compared with four hi-
erarchical classification baselines including (1) hierarchical deep CNN (HD-CNN) [389], (2)
HybridNet [166], (3) Branch CNN (B-CNN) [425], (4) label embedding tree (LET) [38], by us-
ing them to replace the bidirectional tree LSTM while keeping other modules untouched. The
second panel of Table 6.5 shows the sensitivity and specificity achieved by these methods. We
make the following observations. First, removing tree LSTM (No TLSTM) greatly degrades
performance since the hierarchical relationship among labels is ignored. Second, the bottom-up
tree LSTM alone performs less well than our full method that uses the bi-directional tree LSTM.
This demonstrates the necessity of the top-down TLSTM, which ensures every two labels are
connected by directed paths and can more expressively capture label-relations in the hierarchy.
Third, our full method outperforms the four baselines. The possible reason is that our method
directly builds labels’ hierarchical relationship into their representations while the baselines per-
form representation-learning and relationship-capturing separately.
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Size
Pathology Radiology

IoU Sensitivity Specificity IoU Sensitivity Specificity

Patch

8 0.25 0.32 0.36 0.40 0.47 0.49
16 0.29 0.33 0.37 0.41 0.49 0.50
32 0.28 0.32 0.34 0.43 0.50 0.52
64 0.24 0.30 0.31 0.39 0.47 0.48

Stride
4 0.28 0.30 0.37 0.40 0.48 0.51
8 0.29 0.33 0.37 0.43 0.50 0.52

16 0.27 0.31 0.36 0.42 0.47 0.50

Table 6.6: Performance versus patch sizes and stride sizes.

Contextual attention In the evaluation of this module, we compared with No-CA which re-
moves the contextual attention (CA) module, and two other attention models: (1) label-patch
attention (LPA) [69, 385, 394, 400]; (2) scale attention (SA) [71]. The third panel of Table 6.5
shows the performance scores achieved by these methods. As can be seen, the sensitivity and
specificity under No-CA is lower than our full method which uses CA, which demonstrates the
effectiveness of contextual attention. CA is able to localize the small abnormal regions and pays
more attention to them, which leads to the successful tagging of abnormalities. Compared with
other attention baselines, our full method with CA achieves better performances. This indicates
that for medical images, the contextual information embodied in the entire image is very valuable
for distilling “attention”.

We asked doctors to label the abnormal regions in 100 pathology and 100 radiology im-
ages. We compared the abnormal regions detected by our contextual attention model with the
groundtruth using Intersection over Union (IoU). We evaluated how patch size affects perfor-
mance. Table 6.6 shows IoU and sensitivity/specificity of tagging under different patch sizes (the
stride size is set to 8). As can be seen, a patch size in the middle ground (that best matches the
scale of abnormal regions) yields the best abnormality detection and tagging performance. We
also evaluated how the stride size in overlapping patches affects performance. Fixing the patch
size to 16, we tried stride sizes of 4, 8, and 16 (equivalent to nonoverlap). As can be seen from
the table, overlap with a stride size 8 works better than nonoverlap.

Holistic Comparison with Other Baselines

In addition to evaluating the three modules individually, we also compared the entire model
with three other baselines, including (1) decision trees for hierarchical multi-label classification
(DTHMLC) [337], (2) DenseNet-LSTM designed in [396] for chest x-ray classification, (3) Oc-
clusion sensitivity (OS) used in [171] for abnormality localization in x-rays.

The fourth panel of Table 6.5 shows the comparison with these baselines. As can be seen,
our approach achieves much better performances on both datasets than the baselines. DTHMLC
performs less well probably because it lacks the ability to learn deep visual features. DenseNet-
LSTM lacks the ability to explore concept-hierarchy. OS cannot be trained in an end-to-end
fashion which leads to inferior performance.

We evaluated the effects of tagging on image search. We used the learned models to tag
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images in the PACS. For either pathology or radiology images, we randomly sampled 100 tags
as queries, then performed retrieval by tag matching. We compared with a baseline: retrieval
by checking whether the query tag is contained in the image reports. Retrieval performance was
evaluated using precision@10: among the top 10 retrieved images, how many are relevant to the
query (whether being relevant is labeled by doctors). The precision@10 achieved by reports-
based retrieval is 0.24 for pathology and 0.32 for radiology. Our tagging method improves the
precision@10 to 0.29 for pathology and 0.40 for radiology.

On the pathology dataset, our method is significantly better than CRF, No-AL, LET, B-CNN,
No-TLSTM, LPA, No-CA, DTHMLC, DenseNet-LSTM, OS with p-value < 0.01, and is sig-
nificantly better than SPEN, CNN-RNN, DPP, HD-CNN, HybridNet, SA with p-value < 0.05.
On the pathology dataset, our method is significantly better than SPEN, DPP, No-AL, HD-CNN,
HybridNet, No-TLSTM, No-CA, DTHMLC, DenseNet-LSTM, OS with p-value < 0.01, and is
significantly better than CRF, CNN-RNN, LET, B-CNN, Bottom-up TLSTM, SA with p-value
< 0.05.

6.3.3 Related works
Medical image categorization Many works [107, 208, 230, 321] have been devoted to the
classification of medical images related to skin cancer [107], chest x-ray [349], pathology [178],
to name a few. In [396], label-correlation is considered for more accurate classification of multi-
label chest x-ray images. The localization of abnormality in chest x-rays is studied in [171] using
the occlusion sensitivity method [410]. The problem setting studied in our work is different from
the existing ones. We simultaneously consider two important facts: (1) each image may have
multiple labels; (2) the classes have a hierarchical structure. The existing works consider neither
or only one of them.

Multi-label classification (MLC) In computer vision and machine learning, MLC has been
widely studied [56, 57, 123, 124, 189, 190, 285, 317, 351, 351, 362, 387, 390, 415, 416]. In MLC,
one fundamental problem is how to capture the correlations among labels. Many approaches have
been proposed based on graphical models [36, 70, 126, 147, 151, 201, 227, 316, 322, 412], latent
space projection [36, 180, 183, 221, 228, 356, 397], and class chaining [77, 289, 346]. To retain
computational efficiency, these methods typically make strong assumptions, such as the order of
correlation is less than three [70, 126, 151, 201, 227], the dependency relationship among labels
is linear [147], the labels are independent conditioned on a latent space [36, 228, 356, 397], etc.
Some of these methods [316, 322, 412] lack the flexibility to perform deep visual feature learning
in an end-to-end manner.

The existing methods define explicit objective functions to encode label correlations. In
reality, the correlations might be of a variety of complicated forms which are unknown to the
human modelers. As a result, it is difficult to specify a comprehensive objective to capture all
of them. In this paper, we propose a different approach: instead of manually defining such an
objective, we use adversarial learning to implicitly transfer the correlations manifested in human-
provided labels into predicted labels by making the two types of labels indistinguishable.
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Hierarchical classification Leveraging the hierarchical structure among classes to improve
classification accuracy has been widely studied in [38, 97, 98, 166, 247, 389]. Many methods [28,
121, 166, 231, 389, 425, 430] propose to learn coarse-to-fine classifiers or features along the class
hierarchy. In [38], a method is proposed to learn label embeddings where the learning is guided
by the label tree. Our work also aims at embedding labels into a latent space and uses LSTM
networks to capture long-range nonlinear dependencies among labels. Several works [98, 312,
414] encode the hierarchical relationship among labels as structural constraint, Bayesian priors
and potential functions in conditional random field. A variety of works [96, 140, 181, 225, 248]
study how to automatically learn the tree-structure among labels. Several studies [33, 64, 65, 337]
have been conducted on hierarchical multi-label classification based on decision trees, neural
networks, and hierarchical support vector machines.

Visual attention Visual attention [23, 26, 69, 71, 91, 258, 297, 300, 385, 400] has been widely
utilized in computer vision. In many works [69, 385, 394, 400], the attention is computed be-
tween an image patch and a label (such as a sentence, a word, an attribute) by comparing their
similarity. In a video-based activity recognition task, Sharma et al. [300] use the previous frame
to predict the importance of regions in the current frame. Chen et al. [71] design an attention
model which takes images at different scales as inputs and predicts the importance of regions at
different positions and scales.

6.4 A Neural Architecture for Automated ICD Coding
The International Classification of Diseases (ICD) is a healthcare classification system main-
tained by the World Health Organization [268]. It provides a hierarchy of diagnostic codes of
diseases, disorders, injuries, signs, symptoms, etc. It is widely used for reporting diseases and
health conditions, assisting in medical reimbursement decisions, collecting morbidity and mor-
tality statistics, to name a few.

While ICD codes are important for making clinical and financial decisions, medical cod-
ing – which assigns proper ICD codes to a patient visit – is time-consuming, error-prone and
expensive. Medical coders review the diagnosis descriptions written by physicians in the form
of textual phrases and sentences and (if necessary) other information in the electronic medical
record of a clinical episode, then manually attribute the appropriate ICD codes by following the
coding guidelines [267]. Several types of errors frequently occur. First, the ICD codes are orga-
nized in a hierarchical structure. For a node representing a disease C, the children of this node
represents the subtypes ofC. In many cases, the difference between disease subtypes is very sub-
tle. It is common that human coders select incorrect subtypes. Second, when writing diagnosis
descriptions, physicians often utilize abbreviations and synonyms, which causes ambiguity and
imprecision when the coders are matching ICD codes to those descriptions [302]. Third, in many
cases, several diagnosis descriptions are closely related and should be mapped to a single ICD
code. However, unexperienced coders may code each disease separately. Such errors are called
unbundling. The cost incurred by coding errors and the financial investment spent on improving
coding quality are estimated to be $25 billion per year in the US [109, 210].
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To reduce coding errors and cost, we aim at building an ICD coding model which automat-
ically and accurately translates the free-text diagnosis descriptions into ICD codes. To achieve
this goal, several technical challenges need to be addressed. First, there exists a hierarchical
structure among the ICD codes. This hierarchy can be leveraged to improve coding accuracy.
On one hand, if code A and B are both children of C, then it is unlikely to simultaneously as-
sign A and B to a patient. On the other hand, if the distance between A and B in the code
tree is smaller than that between A and C and we know A is the correct code, then B is more
likely to be a correct code than C, since codes with smaller distance are more clinically relevant.
How to explore this hierarchical structure for better coding is technically demanding. Second,
the diagnosis descriptions and the textual descriptions of ICD codes are written in quite dif-
ferent styles even if they refer to the same disease. In particular, the textual description of an
ICD code is formally and precisely worded, while diagnosis descriptions are usually written by
physicians in an informal and ungrammatical way, with telegraphic phrases, abbreviations, and
typos. Third, it is required that the assigned ICD codes are ranked according to their relevance
to the patient. How to correctly determine this order is technically nontrivial. Fourth, as stated
earlier, there does not necessarily exist an one-to-one mapping between diagnosis descriptions
and ICD codes, and human coders should consider the overall health condition when assigning
codes. In many cases, two closely related diagnosis descriptions need to be mapped onto a single
combination ICD code. On the other hand, physicians may write two health conditions into one
diagnosis description which should be mapped onto two ICD codes under such circumstances.

In this section, we design a neural architecture to automatically perform ICD coding given the
diagnosis descriptions. This architecture uses a tree-of-sequences LSTM network (Section 6.3.1)
to simultaneously capture the hierarchical relationship among codes and the semantics of each
code. An adversarial learning approach is utilized to reconcile the heterogeneous writing styles
of diagnosis descriptions and ICD code descriptions. We use isotonic constraints to preserve
the importance order among codes and develop an algorithm based on ADMM and isotonic
projection to solve the constrained problem. An attentional matching mechanism is employed
to perform many-to-one and one-to-many mappings between diagnosis descriptions and codes.
On a clinical datasets with 59K patient visits, we demonstrate the effectiveness of the proposed
methods.

6.4.1 Methods
Figure 6.8 shows the overview of our approach. The proposed ICD coding model consists of
five modules. The model takes the ICD-code tree and diagnosis descriptions (DDs) of a patient
as inputs and assigns a set of ICD codes to the patient. The encoder of DDs generates a latent
representation vector for a DD. The encoder of ICD codes is the tree-of-sequences long short-
term memory (LSTM) network introduced in Section 6.3.1. It takes the textual descriptions
of the ICD codes and their hierarchical structure as inputs and produces a latent representation
for each code. The representation aims at simultaneously capturing the semantics of each code
and the hierarchical relationship among codes. By incorporating the code hierarchy, the model
can avoid selecting codes that are subtypes of the same disease and promote the selection of
codes that are clinically correlated. The writing styles of DDs and code descriptions (CDs) are
largely different, which makes the matching between a DD and a CD error-prone. To address this
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Figure 6.8: Architecture of the ICD coding model.

issue, we develop an adversarial learning approach to reconcile the writing styles. On top of the
latent representation vectors of the descriptions, we build a discriminative network to distinguish
which ones are DDs and which are CDs. The encoders of DDs and CDs try to make such a
discrimination impossible. By doing this, the learned representations are independent of the
writing styles and facilitate more accurate matching. The representations of DDs and CDs are
fed into an attentional matching module to perform code assignment. This attentional mechanism
allows multiple DDs to be matched to a single code and allows a single DD to be matched to
multiple codes. During training, we incorporate the order of importance among codes as isotonic
constraints. These constraints regulate the model’s weight parameters so that codes with higher
importance are given larger prediction scores.

Representation Learning

We use the tree-of-sequences LSTM network (Section 6.3.1) to encode the ICD codes. Each
code has a description (a sequence of words) that tells the semantics of this code. A sequential
LSTM (SLSTM) is used to encode this description. To capture the hierarchical relationship
among codes, we build a tree-structured LSTM (TLSTM) [320] along the code tree. The inputs
of this LSTM include the code hierarchy and the hidden states of individual codes produced by
the SLSTMs. It consists of a bottom-up TLSTM and a top-down TLSTM, which produce two
hidden states h↑ and h↓ at each node in the tree.

For the diagnosis descriptions of a patient, we use an SLSTM network to encode each de-
scription individually. The weight parameters of this SLSTM are tied with those of the SLSTM
used for encoding code descriptions.
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Attentional Matching

Next, we introduce how to map the DDs to codes. We denote the hidden representations of DDs
and codes as {hm}Mm=1 and {un}Nn=1 respectively, where M is the number of DDs of one patient
and N is the total number of codes in the dataset. The mapping from DDs to codes is not one-
to-one. In many cases, a code is assigned only when a certain combination of K (1 < K ≤ M )
diseases simultaneously appear within the M DDs and the value of K depends on this code.
Among the K diseases, their importance of determining the assignment of this code is different.
For the rest M − K DDs, we can consider their importance score to be zero. We use a soft-
attention mechanism [26] to calculate these importance scores. For a code un, the importance
of a DD hm to un is calculated as anm = u>nhm. We normalize the scores {anm}Mm=1 of all
DDs into a probabilistic simplex using the softmax operation: ãnm = exp(anm)/

∑M
l=1 exp(anl).

Given these normalized importance scores {ãnm}Mm=1, we use them to weight the representations
of DDs and get a single attentional vector of the M DDs: ĥn =

∑M
m=1 ãnmhm. Then we

concatenate ĥn and un, and use a linear classifier to predict the probability that code n should be
assigned: pn = sigmoid(w>n [ĥn; un] + bn), where the coefficients wn and bias bn are specific to
code n.

We train the weight parameters Θ of the proposed model using the data of L patient visits. Θ
includes the sequential LSTM weights Ws, tree LSTM weights Wt, and weights Wp in the final
prediction layer. Let c(l) ∈ RN be a binary vector where c(l)

n = 1 if the n-th code is assigned to
this patient and c(l)

n = 0 if otherwise. Θ can be learned by minimizing the following prediction
loss:

minΘ Lpred(Θ) =
L∑
l=1

N∑
n=1

CE(p(l)
n , c

(l)
n ), (6.10)

where p(l)
n is the predicted probability that code n is assigned to patient visit l and p(l)

n is a function
of Θ. CE(·, ·) is the cross-entropy loss.

Adversarial Reconciliation of Writing Styles

We use an adversarial learning [134] approach to reconcile the different writing styles of diag-
nosis descriptions (DDs) and code descriptions (CDs). The basic idea is: after encoded, if a
description cannot be discerned to be a DD or a CD, then the difference in their writing styles is
eliminated. We build a discriminative network which takes the encoding vector of a description
as input and tries to identify it as a DD or CD. The encoders of DDs and CDs adjust their weight
parameters so that such a discrimination is difficult to be achieved by the discriminative network.
Consider all the descriptions {tr, yr}Rr=1 where tr is a description and yr is a binary label. yr = 1
if tr is a DD and yr = 0 if otherwise. Let f(tr; Ws) denote the sequential LSTM (SLSTM)
encoder parameterized by Ws. This encoder is shared by the DDs and CDs. Note that for CDs,
a tree LSTM is further applied on top of the encodings produced by the SLSTM. We use the
SLSTM encoding vectors of CDs as the input of the discriminative network rather than using the
TLSTM encodings since the latter are irrelevant to writing styles. Let g(f(tr; Ws); Wd) denote
the discriminative network parameterized by Wd. It takes the encoding vector f(tr; Ws) as input
and produces the probability that tr is a DD. Adversarial learning is performed by solving this
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problem:

max
Ws

min
Wd

Ladv =
R∑
r=1

CE(g(f(tr; Ws); Wd), yr). (6.11)

The discriminative network tries to differentiate DDs from CDs by minimizing this classification
loss while the encoder maximizes this loss so that DDs and CDs are not distinguishable.

Isotonic Constraints

Next, we incorporate the importance order among ICD codes. For the D(l) codes assigned to
patient l, without loss of generality, we assume the order is 1 � 2 · · · � D(l) (the order is given
by human coders as groundtruth in the MIMIC-III dataset). We use the predicted probability pi
(1 ≤ i ≤ D(l)) defined in Section 6.4.1 to characterize the importance of code i. To incorporate
the order, we impose an isotonic constraint on the probabilities: p(l)

1 � p
(l)
2 · · · � p

(l)

D(l) , and solve
the following problem:

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p
(l)
1 � p

(l)
2 · · · � p

(l)

D(l)

∀l = 1, · · · , L
(6.12)

where the probabilities p(l)
i are functions of Θ and λ is a tradeoff parameter.

We develop an algorithm based on the alternating direction method of multiplier (ADMM) [52]
to solve the problem defined in Eq.(6.12). Let p(l) be a |D(l)|-dimensional vector where the i-th
element is p(l)

i . We first write the problem into an equivalent form

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p(l) = q(l)

q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(6.13)

Then we write down the augmented Lagrangian

min
Θ,q,v
Lpred(Θ) + maxWd

(−λLadv(Ws,Wd)) + 〈p(l) − q(l),v(l)〉+ ρ
2
‖p(l) − q(l)‖2

2)

s.t. q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(6.14)

We solve this problem by alternating between {p(l)}Ll=1, {q(l)}Ll=1 and {v(l)}Ll=1. The sub-
problem defined over q(l) is

minq(l) −〈q(l),v(l)〉+ ρ
2
‖p(l) − q(l)‖2

2

s.t. q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
(6.15)

which is an isotonic projection problem and can be solved via the algorithm proposed in [403].
With {q(l)}Ll=1 and {v(l)}Ll=1 fixed, the sub-problem is minΘLpred(Θ)+maxWd

(−λLadv(Ws,Wd))
which can be solved using stochastic gradient descent (SGD). The update of v(l) is simple:
v(l) = v(l) + ρ(p(l) − q(l)).
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Diagnosis Descriptions
1. Prematurity at 35 4/7 weeks gestation
2. Twin number two of twin gestation
3. Respiratory distress secondary to transient tachypnea

of the newborn
4. Suspicion for sepsis ruled out
Assigned ICD Codes
1. V31.00 (Twin birth, mate liveborn, born in hospital,

delivered without mention of cesarean section)
2. 765.18 (Other preterm infants, 2,000-2,499 grams)
3. 775.6 (Neonatal hypoglycemia)
4. 770.6 (Transitory tachypnea of newborn)
5. V29.0 (Observation for suspected infectious condition)
6. V05.3 (Need for prophylactic vaccination and inoculation

against viral hepatitis)

Table 6.7: The diagnosis descriptions of a patient visit and the assigned ICD codes. Inside the
parentheses are the descriptions of the codes. The codes are ranked according to descending
importance.

6.4.2 Evaluation
In this section, we present experiment results.

Dataset

We performed the study on the publicly available MIMIC-III dataset [184], which contains de-
identified electronic health records (EHRs) of 58,976 patient visits in the Beth Israel Deaconess
Medical Center from 2001 to 2012. Each EHR has a clinical note called discharge summary,
which contains multiple sections of information, such as ‘discharge diagnosis’, ‘past medical
history’, etc. From the ‘discharge diagnosis’ and ‘final diagnosis’ sections, we extract the di-
agnosis descriptions (DDs) written by physicians. Each DD is a short phrase or a sentence,
articulating a certain disease or condition. Medical coders perform ICD coding mainly based on
DDs. Following such a practice, in this paper, we set the inputs of the automated coding model
to be the DDs while acknowledging that other information in the EHRs is also valuable and is
referred to by coders for code assignment. For simplicity, we leave the incorporation of non-DD
information to future study.

Each patient visit is assigned with a list of ICD codes, ranked in descending order of impor-
tance and relevance. For each visit, the number of codes is usually not equal to the number of
diagnosis descriptions. These groundtruth codes serve as the labels to train our coding model.
The entire dataset contains 6,984 unique codes, each of which has a textual description, de-
scribing a disease, symptom, or condition. The codes are organized into a hierarchy where the
top-level codes correspond to general diseases while the bottom-level ones represent specific dis-
eases. In the code tree, children of a node represent subtypes of a disease. Table 6.7 shows the
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DDs and codes of an exemplar patient.

Experimental Settings

Out of the 6,984 unique codes, we selected 2,833 codes that have the top frequencies to perform
the study. We split the data into a train/validation/test dataset with 40k/7k/12k patient visits re-
spectively. The hyperparameters were tuned on the validation set. The SLSTMs are bidirectional
and dropout with 0.5 probability [313] was used. The size of hidden states in all LSTMs was
set to 100. The word embeddings were trained on the fly and their dimension was set to 200.
The tradeoff parameter λ was set to 0.1. The parameter ρ in the ADMM algorithm was set to
1. In the SGD algorithm for solving minΘ Lpred(Θ) + maxWd

(−λLadv(Ws,Wd)), we used the
Adam [196] optimizer with an initial learning rate 0.001 and a mini-batch size 20. Sensitivity
(true positive rate) and specificity (true negative rate) were used to evaluate the code assignment
performance. We calculated these two scores for each individual code on the test set, then took a
weighted (proportional to codes’ frequencies) average across all codes. To evaluate the ranking
performance of codes, we used the normalized discounted cumulative gain (NDCG) [179].

Ablation Study

We performed ablation study to verify the effectiveness of each module in our model. To evaluate
module X, we remove it from the model without changing other modules and denote such a
baseline by No-X. The comparisons of No-X with the full model are given in Table 6.8.

Tree-of-sequences LSTM To evaluate this module, we compared with the two configurations:
(1) No-TLSTM, which removes the tree LSTM and directly uses the hidden states produced by
the sequential LSTM as the final representations of codes; (2) Bottom-up TLSTM, which re-
moves the hidden states generated by the top-down TLSTM. In addition, we compared with four
hierarchical classification baselines including (1) hierarchical network (HierNet) [389], (2) Hy-
bridNet [166], (3) branch network (BranchNet) [425], (4) label embedding tree (LET) [38], by
using them to replace the bidirectional tree LSTM while keeping other modules untouched. Ta-
ble 6.8 shows the average sensitivity and specificity scores achieved by these methods on the test
set. We make the following observations. First, removing tree LSTM largely degrades perfor-
mance: the sensitivity and specificity of No-TLSTM is 0.23 and 0.28 respectively while our full
model (which uses bidirectional TLSTM) achieves 0.29 and 0.33 respectively. The reason is No-
TLSTM ignores the hierarchical relationship among codes. Second, the bottom-up tree LSTM
alone performs less well than the bidirectional tree LSTM. This demonstrates the necessity of
the top-down TLSTM, which ensures every two codes are connected by directed paths and can
more expressively capture code-relations in the hierarchy. Third, our method outperforms the
four baselines. The possible reason is our method directly builds codes’ hierarchical relation-
ship into their representations while the baselines learn representations and capture hierarchical
relationships separately.

Next, we present some qualitative results. For a patient (admission ID 147798) having a DD
‘E Coli urinary tract infection’, without using tree LSTM, two sibling codes 585.2 (chronic kid-
ney disease, stage II (mild)) – which is the groundtruth – and 585.4 (chronic kidney disease, stage
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Sensitivity Specificity
Larkey and Croft [211] 0.15 0.17
Franz et al. [112] 0.19 0.21
Pestian et al. [274] 0.12 0.21
Kavuluru et al. [191] 0.09 0.11
Kavuluru et al. [192] 0.21 0.25
Koopman et al. [199] 0.18 0.20
LET [38] 0.23 0.29
HierNet [389] 0.26 0.30
HybridNet [166] 0.25 0.31
BranchNet [425] 0.25 0.29
No-TLSTM 0.23 0.28
Bottom-up TLSTM 0.27 0.31
No-AL 0.26 0.31
No-IC 0.24 0.29
No-AM 0.27 0.29
Our full model 0.29 0.33

Table 6.8: Weighted sensitivity and specificity on the test set. On the first panel are baselines
for holistic comparison. On the second panel are baselines compared in the ablation study of
tree-of-sequences LSTM for capturing hierarchical relationship. On the third panel are baselines
compared in the ablation study of adversarial learning for writing-style reconciliation, isotonic
constraints for ranking, and attentional matching.

IV (severe)) are simultaneously assigned possibly because their textual descriptions are very sim-
ilar (only differ in the level of severity). This is incorrect because 585.2 and 585.4 are children
of 585 (chronic kidney disease) and the severity level of this disease cannot simultaneously be
mild and severe. After the tree LSTM is added, the false prediction of 585.4 is eliminated, which
demonstrates the effectiveness of tree LSTM in incorporating one constraint induced by the code
hierarchy: among the nodes sharing the same parent, only one should be selected.

For patient 197205, No-TLSTM assigns the following codes: 462 (subacute sclerosing pa-
nencephalitis), 790.29 (other abnormal glucose), 799.9 (unspecified viral infection), and 285.21
(anemia in chronic kidney disease). Among these codes, the first three are the groundtruth and
the fourth one is incorrect (the groundtruth is 401.9 (unspecified essential hypertension)). Adding
tree LSTM fixes this error. The average distance between 401.9 and the rest of groundtruth codes
is 6.2. For the incorrectly assigned code 285.21, such a distance is 7.9. This demonstrates that
tree LSTM is able to capture another constraint imposed by the hierarchy: codes with smaller
tree-distance are more likely to be assigned together.

Adversarial learning To evaluate the efficacy of adversarial learning (AL), we remove it from
the full model and refer to this baseline as No-AL. Specifically, in Eq.(6.12), the loss term
maxWd

(−Ladv(Ws,Wd)) is taken away. Table 6.8 shows the results, from which we observe
that after AL is removed, the sensitivity and specificity are dropped from 0.29 and 0.33 to 0.26
and 0.31 respectively. No-AL does not reconcile different writing styles of diagnosis descriptions
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Position 2 4 6 8
No-IC 0.27 0.26 0.23 0.20
IC 0.32 0.29 0.27 0.23

Table 6.9: Comparison of NDCG scores in the ablation study of isotonic constraints.

(DDs) and code descriptions (CDs). As a result, a DD and a CD that have similar semantics may
be mismatched because their writing styles are different. For example, a patient (admission ID
147583) has a DD ‘h/o DVT on anticoagulation’, which contains abbreviation DVT (deep vein
thrombosis). Due to the presence of this abbreviation, it is difficult to assign a proper code to
this DD since the textual descriptions of codes do not contain abbreviations. With adversarial
learning, our model can correctly map this DD to a groundtruth code: 443.9 (peripheral vascular
disease, unspecified). Without AL, this code is not selected. As another example, a DD ‘coro-
nary artery disease, STEMI, s/p 2 stents placed in RCA’ was given to patient 148532. This DD is
written informally and ungrammatically, and contains too much detailed information, e.g., ‘s/p
2 stents placed in RCA’. Such a writing style is quite different from that of CDs. With AL, our
model successfully matches this DD to a groundtruth code: 414.01 (coronary atherosclerosis of
native coronary artery). On the contrary, No-AL fails to achieve this.

Isotonic constraint (IC) To evaluate this ingredient, we remove the ICs from Eq.(6.12) during
training and denote this baseline as No-IC. We used NDCG to measure the ranking performance,
which is calculated in the following way. Consider a testing patient-visit l where the groundtruth
ICD codes areM(l). For any code c, we define the relevance score of c to l as 0 if c /∈ M(l) and
as |M(l)| − r(c) if otherwise, where r(c) is the groundtruth rank of c inM(l). We rank codes
in descending order of their corresponding prediction probabilities and obtain the predicted rank
for each code. We calculated the NDCG scores at position 2, 4, 6, 8 based on the relevance
scores and predicted ranks, which are shown in Table 6.9. As can be seen, using IC achieves
much higher NDCG than No-IC, which demonstrates the effectiveness of IC in capturing the
importance order among codes.

We also evaluated how IC affects the sensitivity and specificity of code assignment. As can
be seen from Table 6.8, No-IC degrades the two scores from 0.29 and 0.33 to 0.24 and 0.29
respectively, which indicates that IC is helpful in training a model that can more correctly assign
codes. This is because IC encourages codes that are highly relevant to the patients to be ranked
at top positions, which prevents the selection of irrelevant codes.

Attentional matching (AM) In the evaluation of this module, we compared with a baseline
– No-AM, which performs an unweighted average of the M DDs: ĥn = 1

M

∑M
m=1 hm, con-

catenates ĥn with un, and feeds the concatenated vector into the final prediction layer. From
Table 6.8, we can see our full model (with AM) outperforms No-AM, which demonstrates the
effectiveness of attentional matching. In determining whether a code should be assigned, differ-
ent DDs have different importance weights. No-AM ignores such weights, therefore performing
less well.

AM can correctly perform the many-to-one mapping from multiple DDs to a CD. For exam-
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ple, patient 190236 was given two DDs: ‘renal insufficiency’ and ‘acute renal failure’. AM maps
them to a combined ICD code: 403.91 (hypertensive chronic kidney disease, unspecified, with
chronic kidney disease stage V or end stage renal disease), which is in the groundtruth provided
by medical coders. On the contrary, No-AM fails to assign this code. On the other hand, AM
is able to correctly map a DD to multiple CDs. For example, a DD ‘congestive heart failure,
diastolic’ was given to patient 140851. AM successfully maps this DD to two codes: (1) 428.0
(congestive heart failure, unspecified); (2) 428.30 (diastolic heart failure, unspecified). Without
AM, this DD is mapped only to 428.0.

Holistic comparison with other baselines

In addition to evaluating the four modules individually, we also compared our full model with
four other baselines proposed by [112, 191, 192, 199, 211, 274] for ICD coding. Table 6.8 shows
the results. As can be seen, our approach achieves much better sensitivity and specificity scores.
The reason that our model works better is two-fold. First, our model is based on deep neural
networks, which has arguably better modeling power than linear methods used in the baselines.
Second, our model is able to capture the hierarchical relationship and importance order among
codes, can alleviate the discrepancy in writing styles, and allows flexible many-to-one and one-
to-many mappings from DDs to CDs. These merits are not possessed by the baselines.

6.4.3 Related Works
Larkey and Croft [211] studied the automatic assignment of ICD-9 codes to dictated inpatient
discharge summaries, using a combination of three classifiers: k-nearest neighbors, relevance
feedback, and Bayesian independence classifiers. This method assigns a single code to each pa-
tient visit. However, in clinical practice, each patient is usually assigned with multiple codes.
Franz et al. [112] investigated the automated coding of German-language free-text diagnosis
phrases. This approach performs one-to-one mapping between diagnosis descriptions and ICD
codes. This is not in accordance with the coding practice where one-to-many and many-to-one
mappings widely exist [267]. Pestian et al. [274] studied the assignment of ICD-9 codes to
radiology reports. Kavuluru et al. [191] proposed an unsupervised ensemble approach to auto-
matically perform ICD-9 coding based on textual narratives in electronic health records (EHRs)
Kavuluru et al. [192] developed multi-label classification, feature selection, and learning to rank
approaches for ICD-9 code assignment of in-patient visits based on EHRs. Koopman et al. [199]
explored the automatic ICD-10 classification of cancers from free-text death certificates. These
methods did not consider the hierarchical relationship or importance order among codes.

The tree LSTM network was first proposed by [320] to model the constituent or dependency
parse trees of sentences. Teng and Zhang [330] extended the unidirectional tree LSTM to a
bidirectional one. Xie and Xing [368] proposed a sequence-of-trees LSTM network to model a
passage. In this network, a sequential LSTM is used to compose a sequence of tree LSTMs. The
tree LSTMs are built on the constituent parse trees of individual sentences and the sequential
LSTM is built on the sequence of sentences. Our proposed tree-of-sequences LSTM network
differs from the previous works in two-fold. First, it is applied to a code tree to capture the
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hierarchical relationship among codes. Second, it uses a tree LSTM to compose a hierarchy of
sequential LSTMs.

Adversarial learning [134] has been widely applied to image generation [134], domain adap-
tion [118], feature learning [104], text generation [401], to name a few. In this paper, we use
adversarial learning for mitigating the discrepancy among the writing styles of a pair of sen-
tences.

The attention mechanism was widely used in machine translation [26], image captioning [385],
reading comprehension [295], text classification [395], etc. In this work, we compute attention
scores between sentences to perform many-to-one and one-to-many mappings.
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Chapter 7

Conclusions and Future Directions

In this thesis, we focused on developing diversity-promoting learning methods and large-scale
distributed learning systems for automatic smart data-driven medical predictions, recommenda-
tions, and decision-making, to assist physicians and hospitals to improve the quality and effi-
ciency of healthcare.

7.1 Contributions
We recapitulate the key contributions.

Diversity-promoting Learning

• In frequentist learning, we proposed a number of diversity-promoting regularizers, includ-
ing uniform-eigenvalue regularizer (UER), nonconvex and convex Bregman matrix diver-
gence (BMD) regularizers, angular constraints (ACs), and nonoverlap-promoting regular-
ization. We discussed their advantages, disadvantages, and inter-connections. We val-
idated their effectiveness in a wide spectrum of ML models including distance metric
learning (DML), long short-term memory network (LSTM), convolutional neural network
(CNN), feedforward neural network (FNN), sparse coding (SC), and multiclass logistic re-
gression (MLR). We extended the study of diversity-promoting regularization (DPR) from
finite-dimensional vector space to infinite-dimensional reproducing kernel Hilbert space
and investigated the nonoverlap-promoting effect of DPR when jointly used with sparsity-
promoting regularization.

• In Bayesian learning, we proposed diversity-promoting priors, including the mutual an-
gular process (MAP) and infinite MAP. We validated their effectiveness on two models:
Bayesian mixture of experts model (BMEM) and infinite latent feature model (ILFM).

• In theoretical analysis, we formally justified why promoting diversity can better capture
infrequent patterns, using nonconvex BMD regularizers as study cases. To understand
why DPR can improve generalization performance, we conducted analysis to show that
(1) angular constraints can exploit the tradeoff between estimation error and approximation
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error, and (2) reducing the nonconvex and convex BMD regularizers can reduce estimation
errors.

• In algorithm development, we derived efficient optimization and Bayesian inference meth-
ods, based on projected gradient descent, proximal gradient descent, functional gradient
descent, coordinate ascent, ADMM, KKT conditions, variational inference, and MCMC
sampling, to solve the problems regularized or biased by diversity-promoting regularizers
or priors.

Large-scale Distributed Learning

• We proposed a sufficient factor broadcasting (SFB) computation model by exploring the
sufficient factor property of a large family of ML models. SFB can greatly reduce com-
munication cost. We also proposed a hybrid computation model that leverages the best of
SFB and parameter-server architectures.

• We provided theoretical guarantee on the convergence of algorithms executed using SFB.
The analysis was extended to partial SFB where each machine communicates with a subset
of neighbors.

• Based on SFB, we built a distributed system that provides efficient communication, light
weight fault tolerance, and easy-to-use programming interface. We validated its efficiency
and scalability on three large-scale ML models containing billions of parameters.

Applications in Healthcare

• In terms of problems, we studied similar patient retrieval, medical topic discovery, medical
image tagging, and automated ICD coding.

• In terms of methods, we applied the diversity-promoting and distributed learning tech-
niques for two applications. For the other two applications we proposed tree-of-sequences
encoding for hierarchy modeling, adversarial learning for multi-label classification, con-
textual attention for abnormality localization, adversarial learning for writing-style recon-
ciliation, isotonic constraints for order preservation, etc.

• In terms of evaluation, we validated the effectiveness of our methods on various clinical
datasets including electronic health records from ICU, radiology and pathology images,
medical literature, to name a few.

7.2 Conclusions
We have the following conclusions.
• Promoting diversity can effectively capture infrequent patterns. This is justified both em-

pirically and theoretically. The experiments on (1) DML regularized by UER, nonconvex
and convex BMD, (2) BMEM biased by MAP, and (3) ILFM biased by infinite MAP
demonstrate that promoting diversity improve the performance on infrequent patterns. In
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theory, we proved that decreasing the nonconvex BMD regularizers can reduce an imbal-
ance factor (IF) in DML and a smaller IF indicates better capturing of infrequent patterns.

• Promoting diversity can improve generalization performance, as validated in experiments
and theory. In each section of Chapter 2 and 3, the evaluation shows that adding diversity-
promoting regularizers or priors improves the performance on test data. In theory, our
analysis showed that: (1) a stronger angular constraint yields smaller estimation error and
larger approximation error, which hence can explore the tradeoff between these two types
of errors and seeks the optimal generalization error; (2) decreasing the nonconvex and
convex BMD regularizers can reduce the estimation error.

• Promoting diversity can improve interpretability. It is demonstrated that by encouraging
diversity using the LDD-L1 regularizer and the infinite MAP prior, the basis vectors in
sparse coding and the latent features in the infinite latent feature model are more mutually
distinct and have less overlap, making them easier to interpret.

• Promoting diversity can reduce model size without sacrificing modeling power. In the fol-
lowing experiments: UER-regularized DML, nonconvex/convex BMD regularized DML,
BMD-regularized kernel DML, MAP-biased BMEM, infinite MAP biased ILFM, it is
shown that with diversity-promoting regularization, an ML model can achieve better per-
formance with fewer components.

• System-algorithm co-design is essential for building efficient distributed ML systems, as
evidenced in the Orpheus system. On one hand, we leveraged an algorithmic insight –
sufficient factor property – to drive the design of efficient communication and light-weight
fault tolerance. On the other hand, we designed new algorithms (e.g., joint matrix column
subset selection) to support the realization of system designs (e.g., sufficient factor selec-
tion). Empirical evaluation on various large-scale applications demonstrate the benefits of
system-algorithm co-design.

• When applied to healthcare applications, the proposed diversity-promoting and distributed
learning techniques demonstrate great effectiveness in solving the problems mentioned in
the introduction chapter.

• The additionally proposed ML techniques for healthcare applications are effective, as
demonstrated in extensive evaluations. The tree-of-sequences LSTM model can effectively
capture the hierarchical relationship among classes. Adversarial learning is successful ap-
plied to capture correlations among classes and reconcile the discrepancy between writing
styles. Contextual attention shows great efficacy in identifying abnormal regions in medi-
cal images. Isotonic constraints effectively improve ranking performance.

7.3 Future Directions
We identify the following directions for future work.
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Diversity-promoting Learning

• Promoting structured diversity The diversity-promoting regularizers/priors developed in
this thesis do not consider the structural relationships among components. In many ML
models, the components admit a certain structure, such as multiview, grouping, and hier-
archy. For example, in cross-modal distance metric learning [283], each feature modality
has a separate set of components. In clustered multi-task learning [175], the tasks (com-
ponents) are partitioned into latent groups. In hierarchical topic models [144], the topics
(components) are organized into a tree. In the presence of such structures, how to promote
diversity deserves investigation.

• Provably consistent parameter estimation Most diversity-promoting regularizers devel-
oped in this thesis are nonconvex, rendering the regularized problems to be nonconvex and
therefore vulnerable to local optima. Further, they are difficult, if possible, to be convexi-
fied. It is intriguing to study whether the global optima of these nonconvex problems can
be achieved. We plan to investigate methods of moments and spectral algorithms [168],
which were demonstrated to be computationally efficient and provably consistent estima-
tors in a number of nonconvex problems [20, 66, 269].

• Posterior contraction analysis In Bayesian models, it is interesting to analyze how diversity-
promoting priors affect the contraction rate of components’ posterior. Inspired by [262],
we plan to study how fast the convex hull G of the estimated components contracts to the
convex hull G0 of the “true” components, where the “closeness” between G and G0 can
be measured by the “minimum-matching” Euclidean distance or Hausdorff metric. In the
mutual angular process, the concentration parameter κ represents the level of diversity.
Our goal is to establish a relationship between κ and the contraction rate.

• Information geometry analysis In probabilistic models, there are two types of mani-
folds. First, these models essentially define distributions over the observed data and these
distributions have a manifold structure [215] which is studied by information geometry
[19]. Second, the components in ML models also lie in a manifold. We are interested
in how diversity-promoting regularizers/priors affect the component manifold and further
how they affect the distribution manifold (indirectly via the component manifold).

Large-scale Distributed Learning

• Model parallelism In this thesis, we assume the parameter matrix (PM) can fit into the
memory of each machine, which may not hold when the PM is excessively large. One way
to address this issue is to divide the PM into sub-matrices so that each of which can fit
into the memory of one machine. Multiple machines collaboratively update a single PM
via model parallelism. On the other hand, we retain the parallelism on data by adopting
a hierarchical architecture. The machines are divided into groups. Each group holds one
replica of the PM and one data shard. Machines within the same group hold different
sub-matrices of the PM replica. Data parallelism is executed between machine groups and
model parallelism is conducted within each group.
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Applications in Healthcare

• Never-ending construction of medical knowledge graph Medical knowledge graph (MKG)
which consists of medical entities (e.g., symptoms, diseases, medications) and their rela-
tionships (e.g., medication A can treat disease B, medication A and C have adverse in-
teractions) is a fundamental asset that empowers many clinical applications, such as med-
ical named entity recognition, symptom checking, medication-prescription safety alert,
to name a few. Manually building an MKG is time-consuming and not scalable. There
have been efforts to automatically construct MKGs by analyzing literature and clinical
notes [292]. However, they lack the mechanism to continuously grow the MKGs from
medical texts that are newly generated every day. We plan to build a reinforcement learning
system that constantly digests the new medical texts and ceaselessly expands and refines
the MKG.

• Discharge summary generation When discharging patients, physicians need to collect
a large amount of information accumulated during inpatient stay (e.g., hospital course,
problem list, medications, test results) and consolidate them into a discharge summary.
This process is very time-consuming. It would be helpful to build an ML software that
automatically pulls data from different sources, extracts key information from the raw
data, and summarizes these information into a highly precise and readable discharge note.
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[30] Rémi Bardenet and Michalis Titsias. Inference for determinantal point processes without
spectral knowledge. In Advances in Neural Information Processing Systems, pages 3393–
3401, 2015. 3.1

[31] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal

214



function. IEEE Transactions on Information Theory, 1993. 4.2.1, 4.2.1, 4.3.3, 15, 4.3.3

[32] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:463–482, 2003.
4.2.1, 4.2.1, 4.3.2, 4.3.2, 4.3.2, 4.3.4, 4.3.4, 4.3.5, 4.3.5

[33] Zafer Barutcuoglu, Robert E Schapire, and Olga G Troyanskaya. Hierarchical multi-label
prediction of gene function. Bioinformatics, 22(7):830–836, 2006. 6.3.3

[34] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Ar-
naud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new
features and speed improvements. NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2012. 5.2.3

[35] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters, 2003. 5.4.1

[36] David Belanger and Andrew McCallum. Structured prediction energy networks. In Inter-
national Conference on Machine Learning, 2016. 6.3.2, 6.3.2, 6.3.3

[37] A. Bellet and A. Habrard. Robustness and generalization for metric learning. Neurocom-
puting, 2015. 4.2.2, 4.2.3

[38] Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-
class tasks. In Advances in Neural Information Processing Systems, pages 163–171, 2010.
6.3.2, 6.3.2, 6.3.3, 6.4.2

[39] Ingemar Bengtsson and Karol Zyczkowski. Geometry of quantum states: an introduction
to quantum entanglement. Cambridge University Press, 2007. 2.1.1

[40] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999. 5.1

[41] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, 1989. 5.4, 5.4.1

[42] Kanishka Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. Distributed decision-
tree induction in peer-to-peer systems. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 2008. 5.2

[43] Christian H Bischof, Paul D Hovland, and Boyana Norris. On the implementation of
automatic differentiation tools. Higher-Order and Symbolic Computation, 2008. 5.2.3

[44] Halil Bisgin, Zhichao Liu, Hong Fang, Xiaowei Xu, and Weida Tong. Mining fda drug
labels using an unsupervised learning technique-topic modeling. In BMC bioinformatics,
volume 12, page S11. BioMed Central, 2011. 6.2

[45] Halil Bisgin, Zhichao Liu, Reagan Kelly, Hong Fang, Xiaowei Xu, and Weida Tong. In-
vestigating drug repositioning opportunities in fda drug labels through topic modeling. 13
(15):S6, 2012. 6.2

[46] Christopher M Bishop and Michael E Tipping. Bayesian regression and classification.
Nato Science Series sub Series III Computer And Systems Sciences, 2003. 3

[47] David Blei and John Lafferty. Correlated topic models. In Advances in neural information
processing systems, 2006. 3.1.1

215



[48] David M Blei and Michael I Jordan. Variational inference for Dirichlet process mixtures.
Bayesian analysis, 2006. 3.2

[49] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 2003. 1.1, 1.3.1, 2.5, 5, 5.2.5

[50] Guillaume Bouchard. Efficient bounds for the softmax function, applications to inference
in hybrid models. 2007. 3.1.2, 3.1.2, 3.1.6

[51] Stephanie LK Bowers, Thomas K Borg, and Troy A Baudino. The dynamics of fibroblast–
myocyte–capillary interactions in the heart. Annals of the New York Academy of Sciences,
1188(1):143–152, 2010. 6.3

[52] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and sta-
tistical learning via alternating direction method of multipliers. Foundations and Trends R©
in Machine Learning, 2011. 1.2.1, 2.3, 2.4, 2.4.2, 6.4.1

[53] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 2.1.3, 2.1.3, 2.2.2, 2.3.2, 2.3.2, 2.3.2

[54] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive al-
gorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Un-
certainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc., 1998.
5

[55] Leo Breiman. Random forests. Machine Learning, 2001. 3.1.5, 3.1.5

[56] Serhat S Bucak, Pavan Kumar Mallapragada, Rong Jin, and Anil K Jain. Efficient multi-
label ranking for multi-class learning: application to object recognition. In The IEEE
International Conference on Computer Vision, 2009. 6.3.3

[57] Serhat Selcuk Bucak, Rong Jin, and Anil K Jain. Multi-label learning with incomplete
class assignments. In IEEE Conference on Computer Vision and Pattern Recognition,
2011. 6.3.3

[58] Christopher JC Burges. A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery, 1998. 3.1.5, 3.1.5

[59] Simon Byrne and Mark Girolami. Geodesic monte carlo on embedded manifolds. Scan-
dinavian Journal of Statistics, 2013. 3.2.3, 3.2.3, 3.2.4

[60] Deng Cai and Xiaofei He. Manifold adaptive experimental design for text categorization.
IEEE Transactions on Knowledge and Data Engineering, 2012. 2.5.3

[61] Deng Cai, Xiaofei He, and Jiawei Han. Document clustering using locality preserving
indexing. IEEE Transactions on Knowledge and Data Engineering, 2005. 3.2.4

[62] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Communications of the ACM, 2012. 2.1.1, 2.2.2

[63] Miguel A Carreira-Perpinán and Ramin Raziperchikolaei. An ensemble diversity ap-
proach to supervised binary hashing. In Advances in Neural Information Processing Sys-
tems, 2016. 2.2.4, 2.2.4, 2.2.4, 2.2.4, 2.2.4, 2.2.4, 6.1.1, 6.1.2

[64] Ricardo Cerri, Rodrigo C Barros, and André CPLF De Carvalho. Hierarchical multi-label
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