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Abstract
Machine learning (ML) has become one of the most powerful classes of tools for

artificial intelligence, personalized web services and data science problems across
fields. Within the field of machine learning itself, there had been quite a number of
paradigm shifts caused by the explosion of data size, computing power, modeling
tools, and the new ways people collect, share, and make use of data sets.

Data privacy, for instance, was much less of a problem before the availability of
personal information online that could be used to identify users in anonymized data
sets. Images, videos, as well as observations generated over a social networks, often
have highly localized structures, that cannot be captured by standard nonparametric
models. Moreover, the “common task framework” that is adopted by many sub-
disciplines of AI has made it possible for many people to collaboratively and repeated
work on the same data set, leading to implicit overfitting on public benchmarks. In
addition, data collected in many internet services, e.g., web search and targeted ads,
are not iid, but rather feedbacks specific to the deployed algorithm.

This thesis presents technical contributions under a number of new mathematical
frameworks that are designed to partially address these new paradigms.
• Firstly, we consider the problem of statistical learning with privacy constraints.

Under Vapnik’s general learning setting and the formalism of differential privacy
(DP), we establish simple conditions that characterizes the private learnability,
which reveals a mixture of positive and negative insight. We then identify
generic methods that reuses existing randomness to effectively solve private
learning in practice; and discuss weaker notions of privacy that allows for more
favorable privacy-utility tradeoff.

• Secondly, we develop a few generalizations of trend filtering, a locally-adaptive
nonparametric regression technique that is minimax in 1D, to the multivariate
setting and to graphs. We also study specific instances of the problems, e.g.,
total variation denoising on d-dimensional grids more closely and the results
reveal interesting statistical computational trade-offs.

• Thirdly, we investigate two problems in sequential interactive learning: a) off-
policy evaluation in contextual bandits, that aims to use data collected from one
algorithm to evaluate the performance of a different algorithm; b) the problem
of adaptive data analysis, that uses randomization to prevent adversarial data
analysts from a form of “p-hacking” through multiple steps of sequential data
access.

In the above problems, we will provide not only performance guarantees of
algorithms but also certain notions of optimality. Whenever applicable, careful
empirical studies on synthetic and real data are also included.
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Chapter 1

Introduction

Machine learning (ML) is an interdisciplinary field that studies how computers can learn to
perform tasks, e.g., prediction, decision making, by looking at examples, and keep improving as
it sees more examples. The idea of machine learning dates back to Alan Turing [227] and his
seminal 1950 article on “computing machinery and intelligence”, where he describes emphatically
a “learning machine” that can “learn from experience”. The first such machine that was designed is
arguably Rosenblatt’s perceptron algorithm [179] in 1958. However, limited by the computational
resources, systematic studies and practical use of machine learning have not really started until
late 1980s.

Classical applications of machine learning include recognizing spoken words [141] and hand-
written digits [139], detecting fraudulent activities in credit card transactions [52], indexing and
summarizing complex collection of textual documents [34, 63], finding hidden group structures in
social networks [5], recommending new movies to users based on their past viewing/rating history
[132], labeling sentences with part-of-speech tags [135] and so on.

These applications are supported by decades of theoretical research in machine learning that
provides concrete theoretical guarantees for many learning algorithms. In particular, the field of
statistical learning focuses on understanding learning algorithms statistically and characterizing
the relationship among the number of training examples, prediction accuracy and computational
cost [229, 234].

Thanks to the explosion of data size and the availability of high performance computing lately,
machine learning has become one of the most powerful classes of tools for artificial intelligence,
personalized web services and data science problems across many fields. Machine learning
has been increasingly recognized and deployed as the state-of-the-art methods for industry-scale
computer vision problems such as object recognition/segmentation with a thousand classes, natural
language processing problems such as parsing, sequence labeling and machine translation (see
[140] and the references therein). As of today, technologies empowered by machine learning have
already revolutionized many aspects of our daily life.

The wide applicability of machine learning also poses new theoretical challenges to the field
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itself. Many such challenges require us to incorporate new considerations or revisit the underlying
assumptions of statistical learning. Here is a partial list of them:

• The use of ML in medical, financial, political and many other sensitive areas is greatly
limited due to privacy concerns. Formal tools for data sharing, data processing and running
machine learning without breaching the privacy of individual data record are much needed
but lack mainstream attention.

• New data formats such as images, videos, geographic regions, social networks are often
modeled as noisy observations of underlying signals with certain regularity structures.
Standard denoising techniques based on kernels and splines often require the underlying
signals to be homogeneous smooth, therefore are unable to effectively denoise and preserve
fine-grained localized structures at the same time. Can we weaken such assumptions, e.g., to
allowing heterogeneity in smoothness without losing much in statistical and computational
complexity? Or is there a price to pay?

• Learning systems are often interactive. In many ML systems, e.g., web search, recommen-
dation system, the algorithms being used will largely affect the data being collected. In this
case, how can we evaluate new algorithms and make sure they outperform old ones without
actually running them on real users?

• Real-life applications of ML are often sequential and with humans in the loop. The choices
of models for your next ImageNet entry are likely to be based on previously reported
results. Similarly, the scientific questions to investigate and results to include into your
next publication on genome-wise association studies will most likely be an outcome of an
exploratory data analysis and some manual eye-balling of visualized results. Such selections
can implicitly cause overfitting, which is largely the root of false discoveries in science
[86, 138] and overly optimistic performance numbers in computer vision benchmarks [226].

This thesis focuses on formally addressing these questions under a range of practically-applicable
mathematical frameworks, which I refer to as “new paradigms”. For instance, in private machine
learning, the new paradigm is to only privately release the recommendation engine as web services
rather than trying to privatize the raw data set. Similarly, in “adaptive data analysis”, we consider
the case when each model is chosen adaptively based on the results of previous models.

The remainder of the thesis will be broken into three parts.

The first part describes a sequence of investigations on the theory and algorithms of private
statistical learning — a setting that aims at designing algorithms to learn from a data set as a whole
while protecting individual records in the data set from being identified. We will be working with
differential privacy [84] and its variants and establish intriguing connections between the task of
privacy and learning-theoretic quantities.

The second part will be devoted to efforts in generalizing “trend filtering” [129, 221], a recent
development in locally adaptive nonparametric regression, to graphs and higher dimensions, such
that it is more broadly applicable to a wide range of practical problems.

The third part contains new technical results on two modern sequential learning models: contextual
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bandits and adaptive data analysis that are designed to address respectively the third and fourth
problem listed above.

The main contribution of these thesis will be about theoretical analysis that yields upper bounds
for learning performance guarantees and information-theoretical lower bounds for certifying
optimality and/or revealing (sometimes surprising) fundamental limits. From my humble point
of view, theoretical guarantees are still highly relevant for ML methods, because one can never
enumerate enough empirical evidence to conclude that the method will work on new problems, or
to be confident about whether a particular approach cannot be improved further for solving a class
of problems.

1.1 Organization and notation

As we explained earlier, the thesis will be organized in to three parts, with each part consisting
a few chapters, presenting a sequence of work under that category. Each chapter is based on a
previously published article (or one that is under review), and will be made as independent as
possible. They will have their own introduction and conclusion as well as self-contained proofs of
technical results. In this way, readers can pick up any chapter and understand the context of the
results without needing to keep referring to other parts of the thesis.

We will however provide a synopsis at the beginning of each part to sketch the “big picture”,
which motivates the general line of research and explains the connections and dependence of each
chapters within that part. At the end of every part, we will briefly describe the subsequent work in
the line of research and applications including both our own work that did not make to the thesis
and follow-up work in the literature.

As we will be presenting a very heterogeneous list of topics, no effort has been made to ensure
all chapters use the same notations. However, standard mathematical notations will remain the
same and consistent throughout the thesis. We will define the specific notations in each chapter
separately.
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Part I

Towards practical machine learning with
privacy guarantee
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Motivation and overview

Increasing public concerns regarding data privacy have posed obstacles in the development and
application of new machine learning methods in medical, financial, political and many other
sensitive areas as data collectors and curators may no longer be able to share data for research
purposes. Here is an example of the many requests from practitioners that our group has received
(with direct identifiers removed):

“Please let me introduce myself, my name is ******, and I am a
researcher at the Office of Financial Research (OFR), at the ******.
The OFR is charged at providing analytics and data driven research
for monitoring and managing financial stability, across the regulatory
community. One major issue we have been facing is how to share
confidential data and analysis across regulatory agencies, or when
collaborating with academics outside of the federal government.”

In today’s big data era, stories about privacy breaches from even anonymized data appear regularly
(e.g., medical records,1 Netflix,2 NYC Taxi,3) and the general public is becoming increasingly
informed and also alarmed about how their data are being used. We know that the potential harm
is not limited to the data release itself but also inferences that can be made about individuals with
the potential aid of auxiliary information. Therefore, it is not surprising that individuals and data
collectors are reluctant to share their data, even when there is a strong scientific incentive to do
so.

We attribute such conservativeness in data sharing in part to the lack of practical statistical
machine learning tools for conducting private data analysis. Existing techniques include statistical
confidentiality and disclosure control [76, 117] developed in the statistics community beginning
in the 1970s and differential privacy (see, e.g. [80]) popularized by the theoretical computer
science and cryptography communities since 2006 [77, 84]. The traditional statistical approaches
focus on the macroscopic statistical tradeoff between disclosure risk and data utility but are

1 “Anonymized” data really isn’t and here’s why not," by Nate Anderson http://arstechnica.com/
tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

2“How To Break Anonymity of the Netflix Prize Dataset"http://arxiv.org/abs/cs/0610105
3“Lessons from improperly anonymized taxi logs," by Nathan Yau, http://flowingdata.com/2014/

06/23/lessons-from-improperly-anonymized-taxi-logs/
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fragile under auxiliary information. Differential privacy has three main advantages over other
approaches:

(1) it rigorously quantifies the privacy property of any data analysis mechanism;

(2) it controls the amount of privacy leakage regardless of the attacker’s resource or knowledge;

(3) it has useful interpretations from the perspectives of Bayesian inference and statistical
hypothesis testing, and hence fits naturally in the general framework of statistical machine
learning, e.g., see [78, 144, 202, 245, 249], as well as applications involving regression
[55, 217] and GWAS data [254], etc.

However there is still a huge gap between theory and its wide application to practical problems.
The key drawback of DP is precisely its strength: it is a worst-case guarantee that protects
the privacy of an arbitrary data point in an arbitrary dataset, which does not take into account
properties of a real dataset. DP also does not easily scale to the kinds of big data setting of greatest
interest to the machine learning community.

This part of the thesis presents a sequence of work that attempts to understand the pros and
cons of differential privacy in statistical learning and to make DP more practical. This involves
incorporating the notion of DP as a key resource in the standard theory of statistics and machine
learning, and developing generic and easy-to-use tools for learning with DP. The challenge is
often not about privacy alone but rather how we can maximize the utility of the learned model
from a fixed dataset under privacy constraint, or equivalently, how we can minimize the sample
complexity under privacy constraint. DP is intricately connected to notions such as stability,
generalization and robustness [78, 87, 246, 247] in learning theory; also, randomization for
various other purposes can potentially be exploited for privacy [245]. Therefore, instead of
considering differential privacy directly in its own right, it makes sense to formally put it as a new
resource in the statistical machine learning framework and to consider it jointly with all other
desiderata.

We will also consider designing general-purposed and practical algorithms for differentially
private statistical learning. In particular, the algorithm that samples from a Gibbs distribution
induced by the loss function to be minimized, or equivalently the posterior distribution seems
to be a natural candidate, and is used quite extensively for other purposes that is not related to
privacy at all. This is first investigated in Chapter 3 and subsequently additional properties of this
algorithm was studied in Chapter 4, and its guarantees substantially improved for specific models
in Chapter 5.

Another underlying thread of the chapters involves (weakened or more adaptive) notions of
differential privacy that allows for weaker assumptions, more favorable privacy-utility trade-offs,
closer connections to learning tasks and ability to take advantage of structures in the data set. In
Chapter 4 we will propose On-Average KL Privacy, which measures the average privacy cost of an
data distribution when running an algorithm on data set is drawn from the same data distribution.
It turns out that On-Average KL Privacy is equivalent to generalization for the posterior sampling
algorithm. In Chapter 5, we will unify differential privacy and On-Average KL Privacy by a more
low-level definition called per-instance differential privacy (pDP). This can be used to calculate
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the heterogeneous privacy loss incurred for each individual (in the data set or outside the data
set) separately, and also be used as a low-level tool to provide tighter privacy analysis of a given
algorithm.
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Chapter 2

Characterizing learnability under a
differential privacy constraint

While machine learning has proven to be a powerful data-driven solution to many real-life
problems, its use in sensitive domains has been limited due to privacy concerns. A popular
approach known as differential privacy offers provable privacy guarantees, but it is often observed
in practice that it could substantially hamper learning accuracy. In this chapter we study the
learnability (whether a problem can be learned by any algorithm) under Vapnik’s general learning
setting with differential privacy constraint, and reveal some intricate relationships between privacy,
stability and learnability. In particular, we show that a problem is privately learnable if an only if
there is a private algorithm that asymptotically minimizes the empirical risk (AERM). In contrast,
for non-private learning AERM alone is not sufficient for learnability. This result suggests that
when searching for private learning algorithms, we can restrict the search to algorithms that
are AERM. In light of this, we propose a conceptual procedure that always finds a universally
consistent algorithm whenever the problem is learnable under privacy constraint. We also propose
a generic and practical algorithm and show that under very general conditions it privately learns
a wide class of learning problems. Lastly, we extend some of the results to the more practical
(ε, δ)-differential privacy and establish the existence of a phase-transition on the class of problems
that are approximately privately learnable with respect to how small δ needs to be.

2.1 Introduction

In this chapter we focus on the following fundamental question about differential privacy and
machine learning:

What problems can we learn with differential privacy?

Most literature focuses on designing differentially private extensions of various learning algo-
rithms, where the methods depend crucially on the specific context and differ vastly in nature.
But with the privacy constraint, we have less choice in developing learning and data analysis
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algorithms. It remains unclear how such a constraint affects our ability to learn, and if it is possible
to design a generic privacy-preserving analysis mechanism that is applicable to a wide class of
learning problems.

Our Contributions We provide a general answer to the relationship between learnability and
differential privacy under Vapnik’s General Learning Setting [235] in four aspects.

1. We characterize the subset of problems in the General Learning Setting that can be learned
under differential privacy. Specifically, we show that a sufficient and necessary condition for a
problem to be privately learnable is the existence of an algorithm that is differentially private and
asymptotically minimizes the empirical risk. This characterization generalizes previous studies of
the subject [19, 124] that focus on binary classification in discrete domain under the PAC learning
model. Technically, the result relies on the now well-known intuitive observation that “privacy
implies algorithmic stability” and the argument in Shalev-Shwartz et al. [191] that shows a variant
of algorithmic stability is necessary for learnability.

2. We also introduce a weaker notion of learnability, which only requires consistency for a class of
distributions D. Problems that are not privately learnable (a surprisingly large class that includes
simple problems such as 0-1 loss binary classification in continuous feature domain [54]) are
usually private D-learnable for some “nice” distribution class D. We characterize the subset of
private D-learnable problems that are also (non-privately) learnable using conditions analogous to
those in distribution-free private learning.

3. Inspired by the equivalence between privacy learnability and private AERM, we propose a
generic (but impractical) procedure that always finds a consistent and private algorithm for any
privately learnable (or D-learnable) problems. We also study a specific algorithm that aims at
minimizing the empirical risk while preserving the privacy. We show that under a sufficient
condition that relies on the geometry of the hypothesis space and the data distribution, this
algorithm is able to privately learn (or D-learn) a large range of learning problems including
classification, regression, clustering, density estimation and etc, and it is computationally efficient
when the problem is convex. In fact, this generic learning algorithm learns any privately learnable
problems in the PAC learning setting [19]. It remains an open problem whether the second
algorithm also learns any privately learnable problem in the General Learning Setting.

4. Lastly, we provide a preliminary study of learnability under the more practical (ε, δ)-differential
privacy. Our results reveal that whether there is separation between learnability and approximate
private learnability depends on how fast δ is required to go to 0 with respect to the size of the data.
Finding where the exact phase transition occurs is an open problem of future interest.

Our primary objective is to understand the conceptual impact of differential privacy and learnability
under a general framework and the rates of convergence obtained in the analysis may be suboptimal.
Although we do provide some discussion on polynomial time approximations to the proposed
algorithm, learnability under computational constraints is beyond the scope of this chapter.
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Related work While a large amount of work has been devoted to finding consistent (and rate
optimal) differentially private learning algorithms in various settings [e.g., 17, 55, 121, 128], the
characterization of privately learnable problems were only studied in a few special cases.

Kasiviswanathan et al. [124] showed that, for binary classification with a finite discrete hypothesis
space, anything that is non-privately learnable is privately learnable under the agnostic Probably
Approximately Correct (PAC) learning framework, therefore “finite VC-dimension” characterizes
the set of private learnable problems in this setting. Beimel et al. [19] extends Kasiviswanathan
et al. [124] by characterizing the sample complexity of the same class of problems, but the
result only applies to the realizable (non-agnostic) case. Chaudhuri and Hsu [54] provided a
counter-example showing that for continuous hypothesis space and data space, there is a gap
between learnability and learnability under privacy constraint. They proposed to fix this issue by
either weakening the privacy requirement to labels only or by restricting the class of potential
distribution. While meaningful in some cases, these approaches do not resolve the learnability
problem in general.

A key difference of our work from Beimel et al. [19], Chaudhuri and Hsu [54], Kasiviswanathan
et al. [124] is that we consider a more general class of learning problems and provide a proper
treatment in a statistical learning framework. This allows us to capture a wider collection of
important learning problems (see Figure 2.1a and Table 2.1).

It is important to note that despite its generality, Vapnik’s general learning setting still does
not nearly cover the full spectrum of private learning. In particular, our results do not apply to
improper learning (learning using a different hypothesis class) as considered in Beimel et al. [19]
or to structural loss minimization (the loss function jointly take all data points as input) considered
in Beimel et al. [20]. Also, our results do not address the sample complexity problem, which
remains open in the general learning setting even for learning without privacy constraints.

Our characterization of private learnability (and private D-learnability) in Section 2.3 uses a
recent advance in the characterization of general learnability given by Shalev-Shwartz et al. [191].
Roughly speaking, they showed that a problem is learnable if and only if there exists an algorithm
that (i) is stable under small perturbation of training data, and (ii) behaves like empirical risk
minimization (ERM) asymptotically. We also makes use of a folklore observation that “Privacy
⇒ Stability⇒ Generalization”. The connection of privacy and stability appeared as early as 2008
in a conference version of Kasiviswanathan et al. [124]. Further connection to “generalization”
recently appeared in blog posts1, stated as a theorem in Appendix F of Bassily et al. [17], and was
shown to hold with strong concentration in Dwork et al. [87].

Dwork et al. [87] is part of an independent line of work [18, 36, 86, 109] on adaptive data
analysis, which also stems from the observation that privacy implies stability and generalization.
Comparing to adaptive data analysis works, our focus is quite different. Adaptive data analysis

1For instance, Frank McSherry described in a blog post an example of exploiting differ-
ential privacy for measure concentration http://windowsontheory.org/2014/02/04/
differential-privacy-for-measure-concentration/; Moritz Hardt discussed the connec-
tion of differential privacy to stability and generalization in his blog post http://blog.mrtz.org/2014/01/
13/false-discovery.
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work focus on the impact of k on how fast the maximum absolute error of k-adaptively chosen
queries goes to 0 as a function of n, while this chapter is concerned with whether the error can
go to 0 at all for each learning problem when we require the learning algorithm be differentially
private with ε <∞. Nonetheless, we acknowledge that Theorem 7 in Dwork et al. [87] provides
an interesting alternative proof for “differentially private learners have small generalization
error”, when choosing the statistical query as evaluating a loss function at a privately learned
hypothesis. The connection is not quite obvious and we provide a more detailed explanation in
Section 2.9.

The main tool used in the construction of our generic private learning algorithm in Section 2.4 is the
Exponential Mechanism [156], which provides a simple and differentially-private approximation
to the maximizer of a score function among a candidate set. In the general learning context, we
use the negative empirical risk as the utility function, and apply the exponential mechanism to
a possibly pre-discretized hypothesis space. This exponential mechanism approach was used
in Bassily et al. [17] for minimizing convex and Lipschitz functions. The sample discretization
procedure has been considered in Chaudhuri and Hsu [54] and Beimel et al. [19]. Our scope
and proof techniques are different. Our strategy is to show that, under some general regularity
conditions, the exponential mechanism is stable and behaves like ERM. Our sublevel set condition
has the same flavor as that in the proof of Bassily et al. [17, Theorem 3.2], although we do not
need the loss function to be convex or Lipschitz.

Stability, privacy and generalization were also studied in Thakurta and Smith [217] with different
notions of stability. More importantly, their stability is used as an assumption rather than a
consequence, so their result is not directly comparable to ours.

2.2 Background

2.2.1 Learnability under the General Learning Setting

In the General Learning Setting of Vapnik [235], a learning problem is characterized by a triplet
(Z,H, `). Here Z is the sample space (with a σ-algebra). The hypothesis spaceH is a collection
of models such that each h ∈ H describes some structures of the data. The loss function
` : H × Z → R measures how well the hypothesis h explains the data instance z ∈ Z . For
example, in supervised learning problems Z = X × Y where X is the feature space and Y is
the label space; H defines a collection of mapping h : X → Y; and `(h, z) measures how well
h predicts the feature-label relationship z = (x, y) ∈ Z . This setting includes problems with
continuous input/output in potentially infinite dimensional spaces (e.g. RKHS methods), hence
is much more general than PAC learning. In addition, the general learning setting also covers
a variety of unsupervised learning problems, including clustering, density estimation, principal
component analysis (PCA) and variants (e.g., Sparse PCA, Robust PCA), dictionary learning,
matrix factorization and even Latent Dirichlet Allocation (LDA). Details of these examples are
given in Table 2.1 (the first few are extracted from Shalev-Shwartz et al. [191]).
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(a) Illustration of general learning setting. Examples of known DP extensions are circled in
maroon.

(b) Our characterization of private learnable problems in the general learning setting (in blue).

Figure 2.1: Illustration of general learning setting and our contribution in understanding differen-
tially private learnability.
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To account for the randomness in the data, we are primarily interested in the case where the data
Z = {z1, ..., zn} ∈ Zn are independent samples drawn from an unknown probability distribution
D on Z . We denote such a random sample by Z ∼ Dn. For a given distribution D, let R(h) be
the expected loss of hypothesis h and R̂(h, Z) the empirical risk from a sample Z ∈ Zn:

R(h) = Ez∼D`(h, z), R̂(h, Z) =
1

n

n∑

i=1

`(h, zi) .

The optimal risk R∗ = infh∈HR(h) and we assume that it is achieved by an optimal h∗ ∈ H.
Similarly, the minimal empirical risk R̂∗(Z) = infh∈H R̂(h, Z) is achieved by ĥ∗(Z) ∈ H. For a
possibly randomized algorithm A : Zn → H that learns some hypothesis A(Z) ∈ H given data
sample Z, we say A is consistent if

lim
n→∞

EZ∼Dn
(
Eh∼A(Z)R(h)−R∗

)
= 0. (2.1)

In addition, we say A is consistent with rate ξ(n) if

EZ∼Dn
(
Eh∼A(Z)R(h)−R∗

)
≤ ξ(n), where lim

n→∞
ξ(n)→ 0. (2.2)

Since the distribution D is unknown, we cannot adapt the algorithm A to D, especially when
privacy is a concern. Also, even if A is pointwise consistent for any distribution D, it may
have different rates for different D and potentially be arbitrarily slow for some D. This makes
it hard to evaluate whether A indeed learns the learning problem and forbids the study of the
learnability problem. In this study, we adopt the stronger notion of learnability considered in
Shalev-Shwartz et al. [191], which is a direct generalization of PAC-learnability [229] and agnostic
PAC-learnability [126] to the General Learning Setting as studied by Haussler [111].
Definition 2.1 (Learnability, [191]). A learning problem is learnable if there exists an algorithm
A and rate ξ(n), such that A is consistent with rate ξ(n) for any distribution D defined on Z .

This definition requires consistency to hold universally for any distribution D with a uniform
(distribution-independent) rate ξ(n). This type of problem is often called distribution-free learning
[229], and an algorithm is said to be universally consistent with rate ξ(n) if it realizes the
criterion.

2.2.2 Differential privacy

Differential privacy requires that if we arbitrarily perturb a database by only one data point,
the output should not differ much. Therefore, if one conducts a statistical test for whether any
individual is in the database or not, the false positive and false negative probabilities cannot both
be small [249]. Formally, define “Hamming distance”

d(Z,Z ′) := #{i = 1, ..., n : zi 6= z′i} . (2.3)
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Problem Hypothesis classH Z or X × Y Loss function `
Binary classification H ⊂ {f : {0, 1}d → {0, 1}} {0, 1}d × {0, 1} 1(h(x) 6= y)
Regression H ⊂ {f : [0, 1]d → R} [0, 1]d × R |h(x)− y|2
Density Estimation Bounded distributions on Z Z ⊂ Rd − log(h(z))
K-means Clustering {S ⊂ Rd : |S| = k} Z ⊂ Rd min

c∈h
‖c− z‖2

RKHS classification Bounded RKHS RKHS×{0, 1} max{0, 1− y〈x, h〉}
RKHS regression Bounded RKHS RKHS×R |〈x, h〉 − y|2
Sparse PCA Rank-r projection matrices Rd ‖hz − z‖2 + λ‖h‖1
Robust PCA All subspaces in Rd Rd ‖Ph(z)− z‖1 + λrank(h)
Matrix Completion All subspaces in Rd Rd × {1, 0}d min

b∈h
‖y ◦ (b− x)‖2 + λrank(h)

Dictionary Learning All dictionaries ∈ Rd×r Rd min
b∈Rr
‖hb− z‖2 + λ‖b‖1

Non-negative MF All dictionaries ∈ Rd×r+ Rd min
b∈Rr

+

‖hb− z‖2

Subspace Clustering A set of k rank-r subspaces Rd min
b∈h
‖Pb(z)− z‖2

Topic models (LDA) {P(word|topic)} Documents − max
b∈{P(Topic)}

∑
w∈z

logPb,h(w)

Table 2.1: An illustration of problems in the General Learning setting.

Definition 2.2 (ε-Differential Privacy, [77]). An algorithm A is ε-differentially private, if

P(A(Z) ∈ H) ≤ exp(ε)P(A(Z ′) ∈ H)

for ∀ Z, Z ′ obeying d(Z,Z ′) = 1 and any measurable subset H ⊆ H.

There are weaker notions of differential privacy. For example (ε, δ)-differential privacy allows
for a small probability δ where the privacy guarantee does not hold. In this chapter, we will
mainly work with the stronger ε-differential privacy. In Section 2.6 we discuss the problem of
(ε, δ)-differential privacy and extend some of the results to this setting.

Our objective is to understand whether there is a gap between learnable problems and privately
learnable problems in the general learning setting, and to quantify the tradeoff required to protect
privacy. To achieve this objective, we need to show the existence of an algorithm that learns a
class of problems while preserving differential privacy. More formally, we define
Definition 2.3 (Private learnability). A learning problem is privately learnable with rate ξ(n) if
there exists an algorithm A that satisfies both universal consistency (as in Definition 2.1) with
rate ξ(n) and ε-differential privacy with privacy parameter ε <∞.

We can view the consistency requirement Definition 2.3 as a measure of utility. This utility is not a
function of the observed data, however, but rather how the results generalize to unseen data.

The following lemma shows that the above definition of private learnability is actually equivalent
to a seemingly much stronger condition with a vanishing privacy loss ε.
Lemma 2.4. If there is an ε-DP algorithm that is consistent with rate ξ(n) for some constant
0 < ε <∞, then there is a 2√

n
(eε − e−ε)-DP algorithm that is consistent with rate ξ(

√
n).

The proof, given in Section 2.8.1, uses a subsampling theorem adapted from Beimel et al. [21,
Lemma 4.4]. The intuition behind the lemma is that when we subsample randomly with probability
1/
√
n, then with only probability 1/

√
n will the two data sets be different and that reduces the
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privacy cost by a factor that is proportional to 1/
√
n. The same result also holds for (ε, δ)-DP, in

Section 2.6, we will prove a subsampling lemma for (ε, δ)-DP.

There are many approaches to design differentially private algorithms, such as noise perturbation
using Laplace noise [77, 84] and the Exponential Mechanism [156]. Our construction of generic
differentially private learning algorithms applies the Exponential Mechanism to penalized empiri-
cal risk minimization. Our argument will make use of a general characterization of learnability
described below.

2.2.3 Stability and Asymptotic ERM

An important breakthrough in learning theory is a full characterization of all learnable problems in
the General Learning Setting in terms of stability and empirical risk minimization [191]. Without
assuming uniform convergence of empirical risk, Shalev-Shwartz et al. showed that a problem is
learnable if and only if there exists a “strongly uniform-RO stable” and “always asymptotically
empirical risk minimization” (Always AERM) randomized algorithm that learns the problem.
Here “RO” stands for “replace one”. Also, any strongly uniform-RO stable and “universally”
AERM (weaker than “always” AERM) learning rule learns the problem consistently. Here we
give detailed definitions.
Definition 2.5 (Universally/Always AERM, [191]). A (possibly randomized) learning rule A is
Universally AERM if for any distribution D defined on domain Z

EZ∼Dn
[
Eh∼A(Z)R̂(h, Z)− R̂∗(Z)

]
→ 0, as n→∞

where R̂∗(Z) is the minimum empirical risk for data set Z. We say A is Always AERM, if in
addition,

sup
Z∈Zn

Eh∼A(Z)R̂(h, Z)− R̂∗(Z)→ 0, as n→∞ .

Definition 2.6 (Strongly Uniform RO-Stability, [191]). An
algorithm A is strongly uniform RO-stable if

sup
z∈Z

sup
Z,Z′ ∈ Zn,
d(Z,Z′) = 1

|Eh∼A(Z)`(h, z)− Eh∼A(Z′)`(h, z)| → 0 as n→∞.

where d(Z,Z ′) is defined in (4.1), in other word, Z and Z ′ can differ by at most one data point.

Since we will not deal with other variants of algorithmic stability in this chapter (e.g., hypothesis
stability [125], uniform stability [38] and leave-one-out (LOO) stability in Mukherjee et al. [162]),
we simply call Definition 2.6 stability or uniform stability. Likewise, we will refer to ε-differential
privacy as just “privacy” although there are several other notions of privacy in the literature.
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Figure 2.2: A summary of the relationships of various notions revealed by our analysis.

2.3 Characterization of private learnability

We are now ready to state our main result. The only assumption we make is the uniform
boundedness of the loss function. This is also assumed in Shalev-Shwartz et al. [191] for the
learnability problem without privacy constraints. Without loss of generality, we can assume
0 ≤ `(h, z) ≤ 1.
Theorem 2.7. Given a learning problem (Z,H, `), the following statements are equivalent.

1. The problem is privately learnable.

2. There exists a differentially private universally AERM algorithm.

3. There exists a differentially private always AERM algorithm.

The proof is simple yet revealing, we will present the arguments for 2⇒ 1 (sufficiency of AERM)
in Section 2.3.1 and 1⇒ 3 (necessity of AERM) in Section 2.3.2. 3⇒ 2 follows trivially from
the definition of “always” and “universal” AERM.

The theorem says that we can stick to ERM-like algorithms for private learning, despite that ERM
may fail for some problems in the (non-private) general learning setting [191]. Thus a standard
procedure for finding universally consistent and differentially private algorithms would be to
approximately minimize the empirical risk using some differentially private procedures [17, 55,
128]. If the utility analysis reveals that the method is AERM, we do not need to worry about
generalization as it is guaranteed by privacy. This consistency analysis is considerably simpler
than non-private learning problems where one typically needs to control generalization error
either via uniform convergence (VC-dimension, Rademacher complexity, metric entropy, etc) or
to adopt the stability argument [191].

This result does not imply that privacy is helping the algorithm to learn in any sense, as the
simplicity is achieved at the cost of having a smaller class of learnable problems. A concrete
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example of a problem being learnable but not privately learnable is given in [54] and we will
revisit it in Section 2.3.3. For some problems where ERM fails, it may not be possible to make
it AERM while preserving privacy. In particular, we were not able to privatize the problem in
Section 4.1 of Shalev-Shwartz et al. [191].

To avoid any potential misunderstanding, we stress that Theorem 3 is a characterization of
learnability, not learning algorithms. It does not prevent the existence of a universally consistent
learning algorithm that is private but not AERM. Also, the characterization given in Theorem 3
is about consistency, and it does not claim anything on sample complexity. An algorithm that is
AERM may be suboptimal in terms of convergence rate.

2.3.1 Sufficiency: Privacy implies stability

A key ingredient in the proof of sufficiency is a well-known heuristic observation that differential
privacy by definition implies uniform stability, which is useful in its own right.
Lemma 2.8 (Privacy⇒ Stability). Assume 0 ≤ `(h, z) ≤ 1, any ε-differentially private algorithm
satisfies (eε − 1)-stability. Moreover if ε ≤ 1 it satisfies 2ε-stability.

The proof of this lemma comes directly from the definition of differential privacy so it is algorithm
independent. The converse, however, is not true in general (e.g., a non-trivial deterministic
algorithm can be stable, but not differentially private.)
Corollary 2.9 (Privacy + Universal AERM⇒ Consistency). If a learning algorithm A is ε(n)-
differentially private and A is universally AERM with rate ξ(n), then A is universally consistent
with rate ξ(n) + eε(n) − 1 = O(ξ(n) + ε(n)).

The proof of Corollary 2.9, provided in the Section 9.7, combines Lemma 2.8 and the fact that
consistency is implied by stability and AERM (Theorem 2.35). Our Theorem 2.35 is based on
minor modifications of Theorem 8 in Shalev-Shwartz et al. [191]. In fact, Corollary 2.9 can be
stated in a stronger per distribution form, since universality is not used in the proof. We will
revisit this point when we discuss a weaker notion of private learnability below.

Lemma 2.4 and Corollary 2.9 together establishes 2⇒ 1 in Theorem 3.

If for a problem privacy and always AERM cannot coexist, then the problem is not privately
learnable. This is what we will show next.

2.3.2 Necessity: Consistency implies Always AERM

To prove that the existence of an always AERM learning algorithm is necessary for any pri-
vate learnable problems, it suffices to construct such a learning algorithm for each learnable
problem.
Lemma 2.10 (Consistency + Privacy⇒ Private Always AERM). If A is a universally consistent
learning algorithm satisfying ε-DP with any ε > 0 and consistent with rate ξ(n), then there is
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another universally consistent learning algorithm A′ that is always AERM with rate ξ(
√
n) and

satisfies 2√
n
(eε − e−ε)-DP.

Lemma 2.10 is proved in Section 2.8.2. The proof idea is to run A on a size O(
√
n) random

subsample of Z, which will be universally consistent with a slower rate, differentially private with
ε(n)→ 0 (Lemma 2.34), and at the same time always AERM. The last part uses an argument in
Lemma 24 of Shalev-Shwartz et al. [191] which appeals to the universality of A’s consistency on
a specific discrete distribution supported on the given data set Z.

As pointed out by an anonymous reviewer, there is a simpler proof by invoking Theorem 10 of
Shalev-Shwartz et al. [191] that says any consistent and generalizing algorithm must be AERM
and a result [e.g., 17, Appendix F] that says “privacy⇒ generalization”. This is a valid observation.
But their Theorem 10 is proven using a detour through “generalization”, which leads to a slower
rate than what we are able to obtain in Lemma 2.10 using a more direct argument.

2.3.3 Private Learnability vs. Non-private Learnability

Now we have a characterization of all privately learnable problems, a natural question to ask is
that whether any learnable problem is also privately learnable. The answer is “yes” for learning
in Statistical Query (SQ)-model and PAC Learning model (binary classification) with finite
hypothesis space, and is “no” for continuous hypothesis space [54].

By definition, all privately learnable problems are learnable. But now that we know that privacy
implies generalization, it is tempting to hope that privacy can help at least some problem to learn
better than any non-private algorithm. In terms of learnability, the question becomes: Could there
be a (learnable) problem that is exclusively learnable through private algorithms? We now show
that such a problem does not exist.
Proposition 2.11. If a learning problem is learnable by an ε-DP algorithm A, then it is also
learnable by a non-private algorithm.

The proof is given in Section 2.8.3. The idea is that A(Z) defines a distribution over H. Pick
an z ∈ Z . If z /∈ Z, algorithm A′ = A. Otherwise, A′(Z) samples from a slightly different
distribution than A(Z) that does not affect the expectation much.

On the other hand, not all learnable problems are privately learnable. This can already be seen
from Chaudhuri and Hsu [54], where the gap between learning and private learning is established.
We revisit Chaudhuri and Hsu’s example in our notation under the general learning setting and
produce an alternative proof by showing that differential privacy contradicts always AERM, then
invoking Theorem 3 to show the problem is not privately learnable.
Proposition 2.12 ([54, Theorem 5]). There exists a problem that is learnable by a non-private
algorithm, but not privately learnable. In particular, any private algorithm cannot be always
AERM in this problem.

We describe the counterexample and re-establish the impossibility of private learning for this
problem using the contrapositive of Theorem 3, which suggests that if privacy and always AERM
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algorithm cannot coexist for some problem, then the problem is not privately learnable.

Consider the binary classification problem with X = [0, 1], Y = {0, 1} and 0-1 loss function. Let
H be the collection of threshold functions that output h(x) = 1 if x > h and h(x) = 0 otherwise.
This class has VC-dimension 1, and hence the problem is learnable.

Next we will construct K = dexp(εnn)e data sets such that if K − 1 of them obey AERM, the
remaining one cannot be. Let η = 1/ exp(εn), K := d1/ηe. Let h1, h2, ..., hK be a disjoint
thresholds such that they are at least η apart and [hi − η/3, hi + η/3] are disjoint intervals.

If we take Zi ⊆ [hi − η/3, hi + η/3] with half of the points in [hi − η/3, hi) and the other
half in (hi, hi + η/3] and we label each data point in it with 1(z > hi), then empirical risk
R̂(hi, Zi) = 0 ∀i = 1, ..., K. So for any AERM learning rule, Eh∼A(Zi)R̂(h, Zi) → 0 for all i.
For some sufficiently large n, Eh∼A(Zi)R̂(h, Zi) < 0.1.

Now consider Z1,

P(A(Z1) /∈ [h1 − η/3, h1 + η/3]) ≥
K∑

i=2

P(A(Z1) ∈ [hi − η/3, hi + η/3]),

since these intervals are disjoint. Then by the definition of ε-DP,

P(A(Z1) ∈ [hi − η/3, hi + η/3]) ≥ exp(−εn)P(A(Zi) ∈ [hi − η/3, hi + η/3]). (2.4)

It follows that P(A(Zi) ∈ [hi − η/3, hi + η/3]) > 0.9 otherwise Eh∼A(Zi)R̂(h, Zi) ≥ 0.1,
therefore

P(A(Z1) /∈ [h1 − η/3, h1 + η/3]) ≥ K exp(−εn)0.9 ≥ 0.9, (2.5)

and Eh∼A(Zi)R̂(h, Zi) ≥ 0.9 × 1 = 0.9, which violates the “always AERM” condition that
requires Eh∼A(Z1)R̂(h, Z1) < 0.1. Therefore, the problem is not privately learnable.

As is pointed out by an anonymous reviewer, the same conclusion of this impossibility result of
privately learning thresholds on [0, 1] can be drawn numerically through the characterization of
the sample complexity [19], via the bound that depends logarithmically on the log(|H|) and on
[0, 1] this number is infinite. The above analysis provides different insights about the problem.
We will be using it again for understanding the separation of learnability and learnability under
(ε, δ)-Differential Privacy later in Section 2.6.

2.3.4 Private D-learnability

The above example implies that even very simple learning problems may not be privately learnable.
What this suggests is that often one cannot hope to obtain the same kind of uniform learnability
results typical in nonprivate learning. However, most data sets of practical interest have nice
distributions. Therefore, it makes sense to consider a smaller class of distributions, e.g., distribu-
tions with smooth densities that have bounded kth order derivative, or those having bounded total
variation. These are common assumptions in non-parametric statistics, such as kernel density
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estimation, smoothing spline regression and mode clustering. Similarly, in high dimensional
statistics, there are often assumptions on the structures of the underlying distribution, such as
sparsity, smoothness, and low-rank conditions.
Definition 2.13 ((Private) D-learnability). We say a learning problem (Z,H, `) is D-learnable if
there exists a learning algorithm A that is consistent for every unknown distribution D ∈ D. If in
addition, the problem is D-learnable under ε-differential privacy for some 0 ≤ ε <∞, then we
say the problem is privately D-learnable.

Almost all of our arguments hold in a per distribution fashion, therefore they also hold for any
such subclass D. The only exception is the necessity of “always AERM” (Lemma 2.10), where
we used the universal consistency on an arbitrary discrete uniform distribution in the proof. The
characterization still holds if the class D contains all finite discrete uniform distributions. For
general distribution classes, we characterize private D-learnability using a weaker “universally
AERM” (instead of “always AERM”) under the assumption that the problem itself is learnable in
a distribution-free setting without privacy constraints.
Lemma 2.14 (private D-learnability⇒ private D-universal AERM). If an ε-DP algorithm A is
D-universally consistent with rate ξ(n) and the problem itself is learnable in a distribution-free
sense with rate ξ′(n), then there exists a D-universally consistent learning algorithm A′ that is
D-universally AERM with rate 12ξ′(n1/4) + 37√

n
+ ξ(
√
n) and satisfies 2√

n
(eε − e−ε)-DP.

The proof, given in Section 2.8.4, shows that the algorithm A′ that applies A to a random
subsample of size b√nc is AERM for any distribution in the class D.
Theorem 2.15 (Characterization of private D-learnability). A problem is privately D-learnable if
there exists an algorithm that is D-universally AERM and differentially private with privacy loss
ε(n)→ 0. If in addition, the problem is (distribution-free and non-privately) learnable, then the
converse is also true.

Proof. The “if” part is exactly the same as the argument in Section 2.3.1, since both Lemma 2.8
and Lemma 2.9 holds for each distribution independently. Under the additional assumption that
the problem itself is learnable (distribution-free and non-privately), the “only if” part is given by
Lemma 2.14.

This result may appear to be unsatisfactory due to the additional assumption of learnability. It
is clearly a strong assumption because many problems that are D-learnable for a practically
meaningful D are not actually learnable. We provide one such example here.

Example 2.16. Let the data space be [0, 1], the hypothesis space be the class of all finite subset
of [0, 1] and the loss function `(h, z) = 1z /∈h. This problem is not learnable, and not even D-
learnable when D is the class of all discrete distributions with finite number of possible values.
But it is D-learnable when D is further restricted with an upper bound on the total number of
possible values.

Proof. For any discrete distribution with a finite support set, there is an h ∈ H such that the
optimal risk is 0. Assume the problem is learnable with rate ξ(n), then for some n ξ(n) < 0.5.
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However, we can always construct a uniform distribution over 3n elements and it is information-
theoretically impossible for any estimators based on n samples from the distribution to achieve a
risk better than 2/3. The problem is therefore not learnable. When we assume an upper bound N
on the maximum number of bins of the underlying distribution, then the ERM which outputs just
the support of all observed data will be universally consistent with rate ξ(n) = N/n.

It turns out that we cannot hope to completely remove the assumption from Theorem 2.15. The
following example illustrates that some form of qualification (implied by the learnability assump-
tion) is necessary for the converse statement to be true.

Example 2.17. Consider the learning problem in Example 2.16. Let D be the class of all
continuous distributions. There is a learning problem that is s privately D-learnable but no
private AERM algorithm exists.

Proof. Let the learning problem be that in Example 2.16 and D be the class of all continuous
distributions defined on [0, 1]. Consider The learning algorithm A(Z) always returns h = ∅.
The optimal risk for any continuous distribution is 1 because any finite subset is of measure 0,
output ∅ is 0-consistent and 0-generalizing, but not AERM, since the minimum empirical risk is 0.
A is also 0-differentially private, therefore the problem is privately D-learnable for D being the
set of all continuous distributions.
However, it is not privately D-learnable via an AERM, i.e., no private AERM algorithm exists
for this problem. We prove this by contradiction. Assume an ε-DP AERM algorithm exists, the
subsampling lemma ensures the existence of an ε(n)-DP AERM algorithm A′ with ε(n)→ 0. A′
is therefore generalizing by stability, and it follows that the A′ has risk Eh∼A′(Z)R(h) converging
to 0. But there is no h ∈ H such that R(h) < 1, giving the contradiction.

Interestingly, this problem is D-learnable via a non-private AERM algorithm, which always
outputs h = Z. This is 0-consistent, 0-AERM but not generalizing. This example suggests that
D-learnability and learnability are quite different because for learnable problems, if an algorithm
is consistent and AERM, then it must also be generalizing [191, Theorem 10].

2.3.5 A generic learning algorithm

The characterization of private learnability suggests a generic (but impractical) procedure that
learns all privately learnable problems (in the same flavor as the generic algorithm in Shalev-
Shwartz et al. [191] that learns all learnable problems). This is to solve

argmin
(A, ε) :

A : Zn →H,
A is ε-DP

[
ε+ sup

Z∈Zn

(
Eh∼A(Z)R̂(h, Z)− inf

h∈H
R̂(h, Z)

)]
, (2.6)
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or to privately D-learn the problem when (2.6) is not feasible

argmin
(A, ε) :

A : Zn →H,
A is ε-DP

[
ε+ sup

D∈D
EZ∼Dn

(
Eh∼A(Z)R̂(h, Z)− inf

h∈H
R̂(h, Z)

)]
. (2.7)

Theorem 2.18. Assume the problem is learnable. If the problem is private learnable, (2.6) will
always output a universally consistent private learning algorithm. If the problem is private
D-learnable, (2.7) will always output a D-universally consistent private learning algorithm.

Proof. If the problem is private learnable, by Theorem 3 there exists an algorithm A that is
ε(n)-DP and always AERM with rate ξ(n) and ε(n) + ξ(n) → 0. This A is a witness in the
optimization so we know that any minimizer of (2.6) will have a objective value that is no greater
than ε(n) + ξ(n) for any n. Corollary 2.9 concludes its universal consistency. The second claim
follows from the characterization of private D-learnability in Theorem 2.15.

It is of course impossible to minimize the supremum over any data Z, nor is it possible to
efficiently search over the space of all algorithms, let alone DP algorithms. But conceptually, this
formulation may be of interest to theoretical questions related to the search of private learning
algorithms and the fundamental limit of machine learning under privacy constraints.

2.4 Private learning for penalized ERM

Now we describe a generic and practical class of private learning algorithms, based on the idea of
minimizing the empirical risk under privacy constraint:

minimize
h∈H

F (Z, h) =
1

n

n∑

i=1

`(h, zi) + gn(h). (2.8)

The first term is empirical risk and the second term vanishes as n increases so that this estimator is
asymptotically ERM. The same formulation has been studied before in the context of differentially
private machine learning [55, 128], but our focus is more generic and does not require the objective
function to be convex, differentiable, continuous, or even have a finite dimensional Euclidean
space embedding, hence covers a larger class of learning problems.

Our generic algorithm for differentially private learning is summarized in Algorithm 1. It applies
the exponential mechanism [156] to penalized ERM. We note that this algorithm implicitly
requires that

∫
H exp( ε(n)

2∆q
q(h, Z))dh < ∞, otherwise the distribution is not well-defined and it

does not make sense to talk about differential privacy. In general, if H is a compact set with a
finite volume (with respect to a base measure, such as the Lebesgue measure or counting measure),
then such a distribution always exists. We will revisit this point and discuss the practicality of this
assumption in the Section 2.5.3.
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Algorithm 1 Exponential Mechanism for regularized ERM

Input: Data points Z = {z1, ..., zn} ∈ Zn, loss function `, regularizer gn, privacy parameter
ε(n) and a hypothesis spaceH.
1. Construct utility function q(h, Z) := − 1

n

∑n
i=1 `(h, zi) − gn(h), and its sensitivity ∆q :=

suph∈H,d(Z,Z′)=1 |q(h, Z)− q(h, Z ′)| ≤ 2
n

suph∈H,z∈Z |`(h, z)| .
2. Sample h ∈ H with probability P(h) ∝ exp( ε(n)

2∆q
q(h, Z)).

Output: h.

Using the characterization results developed so far, we are able to give sufficient conditions
for consistency of private learning algorithms without having to establish uniform convergence.
Define the sublevel set as

SZ,t = {h ∈ H | F (Z, h) ≤ t+ inf
h∈H

F (Z, h)} , (2.9)

where F (h, Z) is the regularized empirical risk function defined in (2.8). In particular, we assume
the following conditions:

A1. Bounded loss function: 0 ≤ `(h, z) ≤ 1 for any h ∈ H, z ∈ Z.
A2. Sublevel set condition: There exist constant positive integer n0, positive real number t0, and
a sequence of regularizer gn satisfying suph∈H |gn(h)| = o(n), such that for any 0 < t < t0,
n > n0

EZ∼Dn
(
µ(H)

µ(SZ,t)

)
≤ K

(
1

t

)ρ
, (2.10)

where K = K(n), ρ = ρ(n) satisfy logK + ρ log n = o(n). Here the measure µ may depend on
context, such as Lebesgue measure (H is continuous) or counting measure (H is discrete).

The first condition of boundedness is common. It is assumed in Vapnik’s characterization for
ERM learnability and Shalev-Shwartz et al.’s general characterization of all learnable problems.
In fact, we can always considerH to be a sublevel set such that the boundedness condition holds.
For the second condition, the intuition is that we require the sublevel set to be large enough such
that the sampling procedure will return a good hypothesis with large probability. µ(St) is a critical
parameter in the utility guarantee for the exponential mechanism [156]. Also, it is worth pointing
out that A2 implies that the exponential distribution is well-defined.
Theorem 2.19 (General private learning). Let (Z,H, `) be any problem in the general learning
setting. Suppose we can choose gn such that A.1 and A.2 are satisfied with (ρ,K, gn, n0, t0) for a
distribution D, then Algorithm 1 satisfies ε(n)-privacy and is consistent with rate

ξ(n) =
9[logK + (ρ+ 2) log n]

nε(n)
+ 2ε(n) + sup

h∈H
|gn(h)|. (2.11)

In particular, if ε(n) = o(1), suph∈H |gn(h)| = o(1) and logK + ρ log n = o(nε(n)) for all D
(in D) Algorithm 1 privately learns (D-learns) the problem.

We give an illustration of the proof in Figure 2.3. The detailed proof, based on the stability
argument [191], is deferred to Section 2.8.5.
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Figure 2.3: Illustration of Theorem 2.19: conditions for private learnability in general learning
setting.

To see that Theorem 2.19 actually contains a large number of problems in the general learning
setting. We provide concrete examples that satisfy A1 and A2 below for both privately learnable
and privately D-learnable problems that can be learned using Algorithm 1.

2.4.1 Examples of privately learnable problems

We start from a few cases where Algorithm 1 is universally consistent for all distributions.
Example 2.20 (Finite discreteH). SupposeH can be fully encoded by M -bits, then

µ(St)/µ(H) ≥ |H|−1 = 2−M ,

since there are at least 1 optimal hypothesis for each function and now µ is the counting measure.
In other word, we can take K = 2M and ρ = 0 in the (2.11). Plug this into the expression and take
gn ≡ 0, ε(n) =

√
(M + log n)/n, we get a rate of consistency ξ(n) = O(M+logn√

n
). In addition,

if we can find a data-independent covering set for a continuous space, then we can discretize the
space and the result same results follow. This observation will be used in the construction of many
private learning algorithms below.
Example 2.21 (Lipschitz functions/Hölder class). LetH be a compact, βp-regular subset of Rd

satisfying µ(B ∩H) ≥ βpµ(B) for any `p ball B ⊂ Rd that is small enough. Assume that F (Z, ·)
is L-Lipschitz onH: for any h, h′ ∈ H,

|F (Z, h)− F (Z, h′)| ≤ L‖h− h′‖p .

Then for sufficiently small t, we have Lebesgue measure

µ(St) ≥ βp (t/L)d

and Condition A.2 holds with K = µ(H)β−1
p Ld, ρ = d. Furthermore, if we take ε(n) =√

d(logL+logn)+log(µ(H)/βp)

n
, the algorithm isO

(√
d(logL+logn)+log(µ(H)/βp)

n
+ sup

h∈H
|gn(h)|

)
-consistent.
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This shows that condition A2 holds for a large class of low-dimensional problems of interest
in machine learning and one can learn the problem privately without actually needing to find a
covering set algorithmically. Specifically, the example includes many practically used methods
such as logistic regression, linear SVM, ridge regression, even multi-layer neural networks, since
the loss functions in these methods are jointly bounded in (Z, h) and Lipschitz in h.

The example also raises an interesting observation that while differentially private classification
is not possible in a distribution-free setting for 0-1 loss function [54], it is learnable under
smoother surrogate loss, e.g., logistic loss or hinge loss. In other words, private learnability and
computational tractability both benefit from the same relaxation.

The Lipschitz condition still requires the dimension of the hypothesis space to be o(n). Thus it
does not cover high-dimensional machine learning problems where d� n, nor does it contain the
example of Shalev-Shwartz et al. [191] that ERM fails.

For high dimensional problems where d grows with n, typically some assumptions or restrictions
need to be made either on the data or on the hypothesis space (so that it becomes essentially
low-dimensional). We give one example here for the problem of sparse regression.
Example 2.22 (Best subset selection). Consider H = {h ∈ Rd : ‖h‖0 < s, ‖h‖2 ≤ 1} and let
`(h, z) be an L-Lipschitz loss function. The solution can only be chosen from

(
d
s

)
< ds different s-

dimensional subspaces. We can apply Algorithm 1 twice to first sample a support set S with utility
function being the −minh∈HS F (Z, h), and then sample a solution in the chosen s-dimensional
subspace. By the composition theorem this two-stage procedure is differentially private. Moreover,
by the arguments in Example 2.20 and Example 2.21 respectively, we have an µ(St) ≥

(
1
d

)s for
the subset selection and µ(St) ≥ ( t

L
)s for the low-dimensional regression. Note that ρ = 0 in both

cases and the dependency on the ambient dimension d is on the logarithm. The first stage ensures
that for the chosen support set S , minh∈HS F (Z, h) is close to minh∈H F (Z, h) by O( s log d+logn

nε(n)
)

in expectation and ( the second stage ensures that the sampled hypothesis fromHS would have
objective function close to minh∈HS F (Z, h) by O( s logL+s logn+log(µ(HS)/βp)

nε(n)
). This leads to an

overall rate of consistency (they simply add up) of O( s(log d+logn+L)+log(µ(HS)/βp)√
n

) if we choose
ε(n) = 1/

√
n.

2.4.2 Examples of privately D-learnable problems.

For problems where private learnability is impossible to achieve, we may still apply Theorem 2.19
to prove the weaker private D-learnability for some specific class of distributions.
Example 2.23 (Finite Representation Dimension in the General Learning Setting). For binary
classification problems with 0-1 loss (PAC learning), this has been well-studied. In particular,
Beimel et al. [19] characterized the sample complexity of privately learnable problems using
a combinatorial condition they call a “Probabilistic Representation”, which basically involves
finding a finite, data-independent set of hypotheses to approximate any hypothesis in the class.
Their claim is that if the “representation dimension” is finite, then the problem is privately
learnable, otherwise it is not. We can extend the notion of probabilistic representation beyond the
finite discrete and countably infinite hypothesis class considered in Beimel et al. [19] to cases
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when the problem is not privately learnable (e.g, learning threshold functions on [0, 1]). The
existence of probabilistic representation for all distributions in D would lead to a D-universally
private learning algorithm.

Another way to define a class of distribution D is to assume the existence of a reference distribution
that is close to any distribution of interest as in [54].
Example 2.24 (Existence of a public reference distribution). To deal with the 0-1 loss classifica-
tion problems on a continuous hypothesis domain, Chaudhuri and Hsu [54] assume that there
exists a data-independent reference distribution D∗, which by multiplying a fixed constant on its
density, uniformly dominates any distributtion of interest. This essentially produces a subset of
distributions D. The consequence is that one can build an ε-net ofH with metric defined on the
risk under D∗ and this will also be a (looser) covering set of any distribution D ∈ D, thereby
learning the problem for any distribution in the set.

The same idea can be applied to the general learning setting. For any fixed reference distribution
D∗ defined on Z and constant c,

D = {D = (Z,F ,P) | PD(z ∈ A) ≤ cPD∗(z ∈ A) for ∀A ∈ F}

is a valid set of distributions and we are able to D-privately learn this problem whenever we can
construct a sufficiently small cover set with respect to D∗ and reduce the problem to Example 2.20.
This class of problems includes high-dimensional and infinity dimensional problems such as
density estimation, nonparametric regression, kernel methods and essentially any other problems
that are strictly learnable [234], since they are characterized by one-sided uniform convergence
(and the corresponding entropy condition).

2.4.3 Discussion on uniform convergence and private learnability

Uniform convergence requires that EZ∼Dn suph∈H |R̂(h, Z) − R(h)| → 0 for any distribution
D with a distribution independent rate. Most machine learning algorithms rely on uniform
convergence to establish consistency result (e.g., through complexity measure such as VC-
dimension, Rademacher Complexity, covering and bracketing numbers and so on). In fact, the
learnability of ERM algorithm is characterized by the one-sided uniform convergence [234],
which is only slightly weaker than requiring uniform convergence on both sides.

A key point in Shalev-Shwartz et al. [191] is that the learnability (by any algorithm) in general
learning setting is no longer characterized by variants of uniform convergence. However, the class
of privately learnable problems is much smaller. Clearly, uniform convergence is not sufficient for
a problem to be privately learnable (see Section 2.3.3), but is it necessary?

In binary classification with discrete domain (agnostic PAC Learning), since VC-dimension
being finite characterizes the class of privately PAC learnable problems, the necessity of uniform
convergence is clear. This could also be more explicitly seen from Beimel et al. [19] where the
probabilistic representation dimension is a form of uniform convergence on its own.
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In the general learning setting, the problem is still open. We were not able to prove that private
learnability implies uniform convergence, but we could not construct a counter example either.
All our examples in this section do implicitly or explicitly uses uniform convergence, which seems
to hint at a positive answer.

2.5 Practical concerns

2.5.1 High confidence private learning via boosting

We have stated all results so far in expectation. We can easily convert these to the high-confidence
learning paradigm by applying Markov’s inequality, since convergence in expectation to the
minimum risk implies convergence in probability to the minimum risk. While the 1/δ dependence
on the failure probability δ is not ideal, we can apply a similar meta-algorithm “boosting”[188]
as in Shalev-Shwartz et al. [191, Section 7] to get a log(1/δ) rate. The approach is similar to
cross-validation. Given a pre-chosen positive integer a, the original boosting algorithm randomly
partitions the data into (a+ 1) subsamples of size n/(a+ 1), and applies Algorithm 1 on the first
a partitions, obtaining a candidate hypotheses. The method then returns the one hypothesis with
smallest validation error, calculated using the remaining subsample. To ensure differential privacy,
our method instead uses the exponential mechanism to sample the best candidate hypothesis,
where the logarithm of sampling probability is proportional to the negative validation error.
Theorem 2.25 (High-confidence private learning). If an algorithm A privately learns a problem
with rate ξ(n) and privacy parameter ε(n), then the boosting algorithm A′ with a = log 3

δ
is

max
{
ε
(

n
log(3/n)+1

)
, log(3/δ)+1√

n

}
-differentially private, its output h obeys

R(h)−R∗ ≤ eξ

(
n

log(3/δ) + 1

)
+ C

√
log(3/δ)

n

for an absolute constant C with probability at least 1− δ.

2.5.2 Efficient sampling algorithm for convex problems

Our proposed exponential sampling based algorithm is to establish a more explicit geometric
condition upon which AERM holds, hence the algorithm may not be computationally tractable.
Ignoring the difficulty of constructing the ε-covering set of an exponential number of elements,
sampling from the set alone is not a polynomial time algorithm. But we can solve a subset of the
continuous version of our Algorithm 1 described in Theorem 2.19 in polynomial time to arbitrary
accuracy (see also Bassily et al. [17, Theorem 3.4]).
Proposition 2.26. If n−1

∑n
i=1 `(h, zi) + gn(h) is convex in h and H is a convex set, then the

sampling procedure in Algorithm 1 can be solved in polynomial time.
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Proof. When n−1
∑n

i=1 `(h, zi) + gn(h) is convex, the utility function q(h, Z) is concave in h.
The density to be sampled from in Algorithm 1 is proportional to exp( εnq(h,Z)

B
) and is log-concave.

The Markov chain sampling algorithm in Applegate and Kannan [11] is guaranteed to produce a
sample from a distribution that is arbitrarily close to the target distribution (in the total variation
sense) in polynomial time.

2.5.3 Exponential mechanism in infinite domain

As we mention earlier, the results in Section 2.4 based on the exponential mechanism implicitly
assumes certain regularity conditions that ensures the existence of a probability distribution.

WhenH is finite, the existence is trivial. On the other hand, an infinite setH is tricky in that there
may not exist a proper distribution that satisfies P(h) ∝ e

ε
2∆q

q(Z,h) for at least some q(Z, h). For
instance, if H = R and q(Z, h) ≡ 1 then

∫
R e

ε
2∆q

q(Z,h)dh =∞. Such distributions that are only
defined up to scale with no finite normalization constants are called improper distributions. In
case of finite dimensional non-compact set, this translates into an additional assumption on the
loss function and the regularization term.

Things get even trickier when H is an infinite dimensional space, such as a subset of a Hilbert
space. While probability measures can still be defined, no density function can be defined on
such spaces. Therefore, we cannot use exponential mechanism to define a valid probability
distribution.

The practical implication is that exponential mechanism is really only applicable to cases when
the hypothesis space H allows for definitions of densities in the usual sense, or then H can
be approximated by such a space. For example, a separable Hilbert space can be studied by
finite-dimensional projections. Also, we can approximate RKHS induced by translation invariant
kernels via random Fourier features [174].

2.6 Results for learnability under (ε, δ)-differential privacy

Another way to weaken the definition of private learnability is through (ε, δ)-approximate differ-
ential privacy.
Definition 2.27 ([83]). An algorithm A obeys (ε, δ)-differential privacy if for any Z,Z ′ such that
d(Z,Z ′) ≤ 1, and for any measurable set S ⊂ H

Ph∼A(Z)(h ∈ S) ≤ eεPh∼A(Z′)(h ∈ S) + δ.

We define a version of the problem to be
Definition 2.28 (Approximately Private Learnability). We say a learning problem is ∆(n)-
approximately privately learnable for some pre-specified family of rate ∆(n) if for some ε <∞,
δ(n) ∈ ∆(n), there exists a universally consistent algorithm that is (ε, δ(n))-DP.
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This is a completely different subject to study and the class of approximately privately learnable
problems could be substantially larger than the pure privately learnable problems. Moreover, the
picture may vary with respect to how small δ(n) is required to be. In this section, we present our
preliminary investigation on this problem.

Specifically, we will consider two questions:

1. Does the existence of an (ε, δ)-DP always AERM algorithm characterize the class of
approximately private learnable problems?

2. Are all learnable problems approximately privately learnable for different choices of ∆(n)?

The minimal requirement in the same flavor of Definition 2.3 would be to require ∆(n) =
{δ(n)|δ(n)→ 0}. The learnability problem turns out to be trivial under this definition due to the
following observation.
Lemma 2.29. For any algorithm A that acts on Z, A′ that runs A on a randomly chosen subset
of Z of size

√
n is (0, 1√

n
)-DP.

Proof. Let Z and Z ′ be adjacent datasets that differs only in data point i. For any i and any
S ∈ σ(H).

P(A′(Z) ∈ S) = PI(A(ZI) ∈ S|i ∈ I)P(i ∈ I) + PI(A(ZI) ∈ S|i /∈ I)P(i /∈ I)

= PI(A(ZI) ∈ S|i ∈ I)P(i ∈ I) + PI(A(Z ′I) ∈ S|i /∈ I)P(i /∈ I)

= P(A′(Z ′) ∈ S) + [PI(A(ZI) ∈ S|i ∈ I)− PI(A′(ZI) ∈ S|i ∈ I)]P(i ∈ I)

≤ P(A′(Z ′) ∈ S) + P(i ∈ I)

= e0P(A′(Z ′) ∈ S) +
1√
n
.

This verifies the (0, 1/
√
n)-DP of algorithm A′.

The above lemma suggests that if δ(n) = o(1) is all we need for the approximately private
learnability, then any consistent learning algorithm can be made approximately DP by simply sub-
sampling. In other words, any learnable problem is also learnable under approximate differential
privacy.

To get around this triviality, we need to specify a sufficiently fast rate of δ(n) going to 0. While it
is common to require that δ(n) = o(1/poly(n)) 2 for cryptographically strong privacy protection,
requiring δ(n) = o(1/n) is already enough to invalidate the above subsampling argument and
makes the problem of learnability a non-trivial one.

Again, the question is whether AERM characterizes approximately private learnability and whether
there is a gap between the class of learnable and approximately privately learnable problems.

Here we show that the “folklore” Lemma 2.8 and subsampling lemma (Lemma 2.34) can be
extended to work with (ε, δ)-DP and then we provide a positive answer to the first question.

2Here the notation “o(1/poly(n))” means “decays faster than any polynomial of n”. A sequence a(n) =
o(1/poly(n)) if and only if a(n) = o(n−r) for any r > 0.
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Lemma 2.30 (Stability of (ε, δ)-DP). IfA is (ε, δ)-DP, and 0 ≤ `(h, z) ≤ 1, thenA is (eε−1+δ)-
Strongly Uniform RO-stable.

Proof. For any Z,Z ′ such that d(Z,Z ′) ≤ 1 and for any z ∈ Z . Let the event E = {h|p(h) ≥
p′(h)},

∣∣Eh∼A(Z)`(h, z)− Eh∼A(Z′)`(h, z)
∣∣ =

∣∣∣∣
∫

h

`(h, z)p(h)dh−
∫

h

`(h, z)p′(h)dh

∣∣∣∣

≤ sup
h,z

`(h, z)

∫

E

p(h)− p′(h)dh ≤
∫

E

p(h)− p′(h)dh = Ph∼A(Z)(h ∈ E)− Ph∼A(Z′)(h ∈ E)

≤(eε − 1)Ph∼A(Z′)(h ∈ E) + δ ≤ eε − 1 + δ.

The last line applies the definition of (ε, δ)-DP.

Lemma 2.31 (Subsampling Lemma of (ε, δ)-DP). IfA is (ε, δ)-DP, thenA′ that acts on a random
subsample of Z of size γn obeys (ε′, δ′)-DP with ε′ = log(1 + γeε(eε − 1)) and δ′ = γeεδ.

Proof. For any event E ∈ σ(H), let i be the coordinate where Z and Z ′ differs

Ph∼A′(Z)(h ∈ E) = γPh∼A(ZI)(h ∼ E|i ∈ I) + (1− γ)Ph∼A(ZI)(h ∼ E|i /∈ I)

=γPh∼A(ZI)(h ∼ E|i ∈ I) + (1− γ)Ph∼A(Z′I)(h ∼ E|i /∈ I)

=γPh∼A(ZI)(h ∼ E|i ∈ I)− γPh∼A(Z′I)(h ∼ E|i ∈ I) + γPh∼A(Z′I)(h ∼ E|i ∈ I)

+ (1− γ)Ph∼A(Z′I)(h ∼ E|i /∈ I)

=Ph∼A′(Z′)(h ∈ E) + γ[Ph∼A(ZI)(h ∼ E|i ∈ I)− Ph∼A(Z′I)(h ∼ E|i ∈ I)]

≤Ph∼A′(Z′)(h ∈ E) + γ(eε − 1)Ph∼A(Z′I)(h ∼ E|i ∈ I) + γδ, (2.12)

where in last line, we apply (ε, δ)-DP of A.

It remains to show that Ph∼A(Z′I)(h ∼ E|i ∈ I) is similar to Ph∼A′(Z′)(h ∈ E). First,

Ph∼A′(Z′)(h ∈ E) = γPh∼A(Z′I)(h ∈ E|i ∈ I) + (1− γ)Ph∼A(Z′I)(h ∈ E|i /∈ I). (2.13)

Denote I1 = {I|i ∈ I}, I2 = {I|i /∈ I}. We known |I1| =
(
n−1
γn−1

)
, and |I2| =

(
n−1
γn

)
and

|I1|/|I2| = γn/(n − γn). For every I ∈ I2 there are precisely γn elements J ∈ I1 such that
d(I, J) = 1. Likewise, for every J ∈ I1, there are n− γn elements I ∈ I2 such that d(I, J) = 1.
It follows by symmetry that if we apply (ε, δ)-DP to 1/γn of each I ∈ I2 and change I to their
corresponding J ∈ I1, then each J ∈ I1 will receive (n− γn)/γn “contribution” in total from
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the sum over all I ∈ I2.

Ph∼A(Z′I)(h ∈ E|i /∈ I) =
1

|I2|
∑

I∈I2

Ph∼A(Z′I)(h ∈ E)

=
1

|I2|
∑

I∈I2

γn∑

j=1

1

γn
Ph∼A(Z′I)(h ∈ E)

≥|I1|
|I2|

1

|I1|
∑

J∈I1

n− γn
γn

e−ε(Ph∼A(Z′J )(h ∈ E)− δ)

=
1

|I1|
∑

J∈I1

e−ε(Ph∼A(Z′J )(h ∈ E)− δ) = e−εPh∼A(Z′I)(h ∈ E|i ∈ I)− e−εδ

Substitute into (2.13), we get

Ph∼A(Z′I)(h ∈ E|i ∈ I) ≤ 1

γ + (1− γ)e−ε
Ph∼A′(Z′)(h ∈ E) +

(1− γ)e−ε

γ + (1− γ)e−ε
δ.

We further relax the upper bound to a simple form eεPh∼A′(Z′)(h ∈ E) + δ and substitute into
(2.12), we have

Ph∼A′(Z)(h ∈ E) ≤ (1 + γeε(eε − 1))Ph∼A′(Z′)(h ∈ E) + γδ + γ(eε − 1)δ,

which concludes the proof.

Using the above two lemmas, we are able to establish the same result which says that AERM
characterizes the approximate private learnability for certain classes of ∆(n).
Theorem 2.32. A problem is ∆(n)-approximately privately learnable implies that there exists an
always AERM algorithm that is (ε(n), n−1/2eεδ(

√
n))-DP for some ε(n)→ 0 and δ(

√
n) ∈ ∆(n).

The converse is also true if n−1/2eεδ(
√
n) ∈ ∆(n).

Proof. If we have an always AERM algorithm with ξerm(n) that is (ε(n), δ(n))-DP for δ(n) ∈
∆(n). Then by Lemma 2.30, this algorithm is strongly uniform RO-stable with rate eε(n)−1+δ(n).
By Theorem 2.35, the algorithm is universally consistent with rate ξerm(n) + eε(n) − 1 + δ(n).
This establishes the “if” part.

To see the “only if” part, by definition if a problem is ∆(n)-approximately privately learnable with
ε and δ(n) ∈ ∆(n). Then by Lemma 2.31 with γ = 1/

√
n, we get an algorithm that obeys the

privacy condition. It remains to prove always AERM, which requires exactly the same arguments
in the proof of Lemma 2.10. Details are omitted.

Note that the results above suggest that in the two canonical settings ∆(n) = o(1/n) or ∆(n) =
o(1/poly(n)), existence of a private AERM algorithm that satisfies the stronger constraint ε(n) =
o(1) characterizes the learnability.

The next question that whether any learnable problems are also approximately privately learnable
would depend on how fast δ(n) is required to decay. We know that when we only have ∆(n) =
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o(1), all learnable problems are approximately privately learnable, and when we have ∆(n) = {0},
only a strict subset of these problems is privately learnable. The following result establishes that
when δ(n) needs to go to 0 with a sufficiently fast rate, there is separation between learnability
and approximately private learnability.
Proposition 2.33. Let ∆(n) = {δ(n)|δ(n) ≤ δ̃(n)} for some sequence δ̃(n)→ 0. The following
statements are true.

• All learnable problems are ∆(n)-approximately privately learnable, if δ̃(n) = ω(1/n).

• There exists a problem that is learnable but not ∆(n)-approximately privately learnable, if
δ̃(n) ≤ exp(−ε(n2)n2)

n

Proof. The first claim follows from the same argument in Lemma 2.29. If a problem is learnable,
there exists a universally consistent learning algorithm A. The algorithm that applies A on a
δ̃(n)-fraction random subsample of the dataset is (0, δ̃(n))-DP and universally consistent with
rate ξ(nδ̃(n)). Since δ̃(n) = ω(1/n), nδ̃(n)→∞.

We now show that when we require a fast decaying δ(n), then suddenly the example in Sec-
tion 2.3.3 due to Chaudhuri and Hsu [54] becomes not approximately privately learnable even for
(ε, δ)-DP. Let Z,Z ′ be two completely different data sets, by repeatedly applying the definition of
(ε, δ)-DP, for any set S ⊂ H

P(A(Z) ∈ S) ≤ enεP(A(Z) ∈ S) +
n∑

i=1

e(i−1)εδ ≤ enεP(A(Z ′) ∈ S) + ne(n−1)εδ.

When we shift the inequality around, we get

P(A(Z ′) ∈ S) ≤ e−nεP(A(Z ′) ∈ S)− e−εnδ.

Consider the same example in Section 2.3.3 where we hope to learn a threshold on [0, 1]. Assuming
there exists an algorithm A that is universally AERM and (ε(n), δ(n))-DP for ε(n) < ∞ and
δ(n) ≤ 0.4ne−εn.

Everything up to (2.4) remains exactly the same. Now, apply the above implication of (ε, δ)-DP,
we can replace (2.4) for each i = 2, ..., K, by

P(A(Z1) ∈ [hi − η/3, hi + η/3]) ≥ exp(−εn)P(A(Zi) ∈ [hi − η/3, hi + η/3])− nδ(n).

Then (2.5) becomes

P(A(Z1) /∈ [h1 − η/3, h1 + η/3]) ≥ K exp(−εn)0.9−Ke−εnδ(n) ≥ 0.9 ≥ 0.5,

where the last inequality follows by K > exp(εn) and δ(n) ≤ 0.4ne−εn. This yields the same
contradiction to always AERM ofA onZ1, which requires P(A(Z1) /∈ [h1−η/3, h1+η/3]) < 0.1.
Therefore, such AERM does not exist. By the contrapositive of Theorem 2.32, the problem is not
approximately privately learnable for δ̃(n) ≤ exp(−ε(n2)n2)

n
.

35



�(n)

O(e�n2 log n)!(1/n)
Learnability 

= 
Approx. Private Learnability

Learnability 

 ≠
Approx. Private Learnability

? 

Slower Faster

Figure 2.4: Illustration of Proposition 2.33 and the open problem.

The bound can be further improved to exp(−ε(n)n)/n if we directly work with universal consis-
tency on various distributions rather than through always AERM on specific data points. Even
that is likely to be suboptimal as there might be more challenging problems and less favorable
packings to consider.

The point of this exposition, however, is to illustrate that (ε, δ)-DP alone does not close the gap
between learnability and private learnability. Additional relaxation on the specified rate of decay
on δ does. We now know that the phase transition occurs when δ(n) is somewhere between
Ω(exp(−n2 log n)) and O(1/n); but there is still a substantial gap between the upper and lower
bounds. 3.

2.7 Conclusion and future work

In this chapter, we revisited the question “What can we learn privately?” and considered a broader
class of statistical machine learning problems than those studied previously. Specifically, we
characterized the learnability under privacy constraint by showing any privately learnable problems
can be learned by a private algorithm that asymptotically minimizes the empirical risk for any
data, and the problem is not privately learnable otherwise. This allows us to construct a conceptual
procedure that privately learns any privately learnable problem. We also propose a relaxed notion
of private learnability called private D-learnability, which requires the existence of an algorithm
that is consistent for any the distribution within a class of distributions D. We characterized
private D-learnability too with a weaker notion of AERM. For problems that can be formulated as
penalized empirical risk minimization, we provide a sampling algorithm with a set of meaningful
sufficient conditions on the geometry of the hypothesis space and demonstrate that it covers a
large class of problems. In addition, we further extended the characterization to learnability under

3After the paper was accepted for publication, we became aware that the phase transition occurs sharply at
O(1/n). The result follows from a sharp lower bound of sample complexity in learning threshold functions in Bun
[45, Theorem 4.5.2], which improves over a previously published result that requires O(n−1−α) for any α > 0 in
Bun et al. [44]. The consequence is that the general learning setting is hard for (ε, δ)-DP too unless δ becomes
meaninglessly large for privacy purposes.
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(ε, δ)-differential privacy and provided a preliminary analysis which establishes the existence of
a phase transition from all learnable problems being approximately private learnable to some
learnable problems being not approximately private learnable at some non-trivial rate of decay on
δ(n).

Future work includes understanding the conditions under which privacy and AERM are contradic-
tory (recall that we only have one example on learning thresholding functions due to Chaudhuri
and Hsu [54]), characterizing the rate of convergence, searching for practical algorithms that
generically learns all privately learnable problems, and better understanding the gap between
learnability and approximate private learnability.

2.8 Proofs of technical results

In this section, we provide detailed proofs to the technical results that in the main text.

2.8.1 Privacy in subsampling

Proof of Lemma 2.4. Let A be the consistent ε-DP algorithm. Consider A′ that apply A to a
random subsample of b√nc data points. By Lemma 2.34 with γ = b

√
nc
n
≤ 1√

n
, we get the privacy

claim. For the consistency claim, note that the given sample is an iid sample of size
√
n from the

original distribution.

Lemma 2.34 (Subsampling theorem). If Algorithm A is ε-DP for Z ∈ Zn for any n = 1, 2, 3, ...,
then the algorithm A′ that output the result of A to a random subsample of size γn data points
preserves 2γ(eε − e−ε)-DP.

Proof of Lemma 2.34 (Subsampling theorem). This is a corollary of Lemma 4.4 in Beimel et al.
[21]. To be self-contained, we reproduce the proof here in our notation.

Recall that A′ is the algorithm that first randomly subsample γn data points then apply A. Let Z
and Z ′ be any neighboring databases and assume they differ on the ith data point. Let S ⊂ [n] be
the indices of the random subset of the entries that are selected, andR ⊂ [n]\{i} be a index size
of size γn− 1. We apply the law of total expectation twice and argue that for any adjacent Z, Z ′,
any event E ⊂ H,

Ph∼A′(Z)(h ∈ E)

Ph∼A′(Z′)(h ∈ E)
=
γPh∼A(ZS)(h ∈ E|i ∈ S) + (1− γ)Ph∼A(ZS)(h ∈ E|i /∈ S)

γPh∼A(Z′S)(h ∈ E|i ∈ S) + (1− γ)Ph∼A(Z′S)(h ∈ E|i /∈ S)

=

∑
R∈[n]\{i} P(R)

[
γPh∼A(ZS) (h ∈ E|S = R∪ {i}) + (1− γ)Ph∼A(ZS) (h ∈ E|S = R∪ {j}, j 6= i)

]
∑
R∈[n]\{i} P(R)

[
γPh∼A(Z′S) (h ∈ E|S = R∪ {i}) + (1− γ)Ph∼A(Z′S) (h ∈ E|S = R∪ {j}, j 6= i)

]

By the given condition that A is ε-DP, we can replace R ∪ {i} with R ∪ {j} for an arbitrary j
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with bounded changes in the probability and the above likelihood ratio can be upper bounded by

(γeε+1−γ)ER∈[n]\{i},j 6=iPh∼A(ZS )(h∈E|S=R∪{j})
(γe−ε+1−γ)ER∈[n]\{i},j 6=iPh∼A(ZS )(h∈E|S=R∪{j}) = γeε+1−γ

γe−ε+1−γ = 1+γ(eε−1)
1+γ(e−ε−1)

.

By definition, the privacy loss of the algorithm A′ is therefore

ε′ ≤ log (1 + γ[eε − 1])− log
(
1 + γ

[
e−ε − 1

])
.

Note that ε > 0 implies that −1 ≤ e−ε − 1 < 0 and 0 < eε − 1 < ∞. The result follows by
applying the property of the natural logarithm:

log(1 + x) ≤ x

2

2 + x

1 + x
≤ x for 0 ≤ x <∞

log(1 + x) ≥ x

2

2 + x

1 + x
≥ x

1 + x
for − 1 ≤ x ≤ 0

to upper bound the expression.

2.8.2 Characterization of private learnability

Privacy implies stability Lemma 2.8 says that an ε-differentially private algorithm is (eε − 1)-
stable (and also 2ε-stable if ε < 1).

Proof of Lemma 2.8. Construct Z ′ by replacing an arbitrary data point in Z with z′ and let the
probability density/mass defined by A(Z) and A(Z ′) be p(h) and p′(h) respectively, then we can
bound the stability as follows

∣∣Eh∼A(Z)`(h, z)− Eh∼A(Z′)`(h, z)
∣∣

=

∣∣∣∣
∫

h

`(h, z)p(h)dh−
∫

h

`(h, z)p′(h)dh

∣∣∣∣ =

∣∣∣∣
∫

h

`(h, z)(p(h)− p′(h))dh

∣∣∣∣

≤ sup
h,z
|`(h, z)|

∫

p(h)≥p′(h)

p(h)− p′(h)dh ≤ 1 ·
∫

p(h)≥p′(h)

p′(h)(
p(h)

p′(h)
− 1)dh

≤(eε − 1)

∫

p(h)≥p′(h)

p′(h)dh ≤ (eε − 1).

For ε < 1 we have exp(ε)− 1 < 2ε.
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Stability + AERM⇒ consistency
Theorem 2.35 (Randomized version of Shalev-Shwartz et al. 191, Theorem 8).
If any algorithm is ξ1(n)-stable and ξ2(n)-AERM then it is consistent with rate ξ(n) = ξ1(n) +
ξ2(n).

Proof. We will show the following the two steps as in Shalev-Shwartz et al. [191]

1. Uniform RO stability⇒ On average stability⇔ On average generalization

2. AERM + On average generalization⇒ consistency

The definition of these quantities is self-explanatory.

To show that “stability implies generalization”, we have
∣∣∣EZ∼Dn

(
Eh∼A(Z)R(h)− Eh∼A(Z)R̂(h, Z)

) ∣∣∣

=
∣∣∣EZ∼Dn

(
Ez∼DEh∼A(Z)`(h, z)−

1

n
Eh∼A(Z)

n∑

i=1

`(h, zi)

)∣∣∣

=
∣∣∣EZ∼Dn,{z′1,...,z′n}∼Dn

(
1

n

n∑

i=1

Eh∼A(Z)`(h, z
′
i)−

1

n

n∑

i=1

Eh∼A(Z(i))`(h, z
′
i)

)∣∣∣

≤ sup
Z,Z(i)∈Zn,d(Z,Z(i))=1,z′∈Z

∣∣∣Eh∼A(Z)`(h, z
′)− Eh∼A(Z(i))`(h, z

′)
∣∣∣ ≤ ξ1(n) ,

where Z(i) is obtained by replacing the ith entry of Z with z′i. Next, we show that “general-
ization and AERM implies consistency”. Let h∗ ∈ arg infh∈HR(h). By definition, we have
EZ∼DnR̂(h∗, Z) = R∗. It follows that

EZ∼Dn [Eh∈A(Z)R(h)−R∗] = EZ∼Dn [Eh∈A(Z)R(h)− R̂(h∗, Z)]

= EZ∼Dn [Eh∈A(Z)R(h)− Eh∈A(Z)R̂(h, Z)] + EZ∼Dn [Eh∈A(Z)R̂(h, Z)− R̂(h∗, Z)]

≤ EZ∼Dn [Eh∈A(Z)R(h)− Eh∈A(Z)R̂(h, Z)] + EZ∼Dn [Eh∈A(Z)R̂(h, Z)− R̂∗(Z)]

≤ ξ1(n) + ξ2(n) .

Privacy + AERM⇒ consistency

Proof of Corrollary 2.9. It follows by combining Lemma 2.8 and Theorem 2.35.

Necessity

Proof of Lemma 2.10. We construct an algorithm A′ by subsampling the data points using a
random subset of

√
n and then running A. The privacy claim follows from Lemma 2.34 directly.
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To prove the “always AERM” claim, we adapt the proof of Lemma 24 in Shalev-Shwartz et al.
[191]. For any fixed data set Z ∈ Zn,

R̂(A′(Z), Z)− R̂∗(Z) = EZ′⊂Z,|Z′|=b√nc
[
R̂(A(Z ′), Z)− R̂∗(Z)

]

= EZ′∼Unif(Z)b
√
nc

[
R̂(A(Z ′), Z)− R̂∗(Z)| no duplicates

]

≤
EZ′∼Unif(Z)b

√
nc

[
R̂(A(Z ′), Z)− R̂∗(Z)

]

P(no duplicates)
,

where Unif(Z) is the uniform distribution defined on the n points inZ. We need to condition on the
event that there are no duplicates for the second equality to hold because Z ′ is a subsample taken
without replacements. The last inequality is by the law of total expectation and the non-negativity
of the conditional expectation. But P(no duplicates) =

∏b√nc−1
i=0 (1− i/n) ≥ 1−∑b

√
nc−1

i=0 i/n ≥
1/2. By universal consistency, A is consistent on the discrete uniform distribution defined on Z,
so

R̂(A′(Z), Z)− R̂∗(Z) ≤ 2EZ′∼Unif(Z)bnc

[
R̂(A(Z ′), Z)− R̂∗(Z)

]
≤ 2ξ(

√
n).

It is obvious that A′ is consistent with rate
√
n as it applies A on a random sample of size

√
n. By

Lemma 2.4, A′ is 2n−1/2(eε − e−ε) differentially private. By Corollary 2.9, the new algorithm A′
is universally consistent.

2.8.3 Proofs for Section 2.3.3

Proof of Proposition 2.11. If A(Z) is a continuous distribution, we can pick h ∈ H at any point
where A(Z) has finite density and set A′(Z)|z ∈ Z to be h with probability 1/n and the same as
A(Z) with probability 1− 1/n. This breaks privacy because conditioned on two databases with z
or without z, A, the probability ratio of outputting h is∞.

If A(Z) is a discrete distribution or a mixed distribution, it must have the same support of the
point mass for all Z. Otherwise it violates DP because we need Ph∈A(Z)(h)

Ph∈A(Z′)
≤ exp(nε) for any

Z,Z ′ ∈ Zn. Specifically, let the discrete set of point mass be H̃ ifH\H̃ 6= ∅, then we can use the
same technique as in the continuous case by adding a small probability 1/n onH\H̃ when z ∈ Z.

If H̃ = H, then H is a discrete set, if |H| < n, then by boundedness and Hoeffding, ERM is a
deterministic algorithm that learns any learnable problem. On the other hand, if |H| > n, then by
pigeon hole principle, there always exists a hypothesis h that has probability smaller than 1/n
in A(Z) for any Z ∈ Zn and we can construct A′ by outputting a sample of A(Z) if z is not
observed and outputting a sample A(Z)|A(Z) 6= h whenever z is observed.

The consistency of A′ follows easily as its risk is at most 1/n larger than that of A.
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2.8.4 Proofs for characterization of private D-learnability

Proof of Lemma 2.14. Let A′ be the algorithm that applies A to a random subsample of size
b√nc. If we can show that, for any D ∈ D,

(a) the empirical risk of A′ converges to the the optimal population risk R∗ in expectation;

(b) the empirical risk of the ERM learning rule also converges to R∗ in expectation,

then by triangle inequality, the empirical risk of A′ must also converge to the empirical risk of
ERM, i.e., A′ is D-universal AERM.

We will start with (a). For any distribution D ∈ D, we have

EZ∼DnR̂(A′(Z), Z) = EZ∼Dn
[
EZ′⊂Z,|Z′|=b√ncR̂(A(Z ′), Z)

]

=EZ′∼Db√nc
[b√nc

n
R̂(A(Z ′), Z ′) + EZ′′∼Dn−b√nc

(
n− b√nc

n
R̂(A(Z ′), Z ′′)

)]

=EZ′∼Db√nc
[b√nc

n
R̂(A(Z ′), Z ′) +

n− b√nc
n

R(A(Z ′))

]
≤ 1√

n
+R∗ + ξ(

√
n). (2.14)

The last inequality uses the boundedness of the loss function to get R̂(A(Z ′), Z ′) ≤ 1 and the
D-consistency of A to bound the excess risk of EZ′R(A(Z ′)).

To show (b), we need to exploit the assumption that the problem is (non-privately) learnable. By
Shalev-Shwartz et al. [191, Theorem 7], the problem being learnable implies that there exists
a universally consistent algorithm B (not restricted to D), that is universally AERM with rate
3ξ′(n

1
4 ) + 8√

n
and stable with rate 2√

n
. Moreover, by Shalev-Shwartz et al. [191, Theorem 8], B’s

stability and AERM implies that B is also generalizing, with rate 6ξ′(n
1
4 ) + 18√

n
. Here the term

“generalizing” means that the empirical risk is close to the population risk. Therefore, we can
establish (b) via the following chain of approximations

EZ∼DnR̂∗(Z) ≈
↑

AERM of B

EZ∼DnR̂(B(Z), Z)
Generalization of B

↓≈ R(B(Z)) ≈
↑

Consistency of B

R∗.

More precisely,
∣∣∣EZ∼DnR̂∗(Z)−R∗

∣∣∣

≤
∣∣∣EZ∼DnR̂∗(Z)− EZ∼DnR̂

∣∣∣+
∣∣∣EZ∼DnR̂−R(B(Z), Z)

∣∣∣+ |R(B(Z), Z)−R∗|

≤[3ξ′(n
1
4 ) +

8√
n

] + [6ξ′(n
1
4 ) +

18√
n

] + [3ξ′(n
1
4 ) +

10√
n

] = 12ξ(n
1
4 ) +

36√
n
. (2.15)

Combine (2.14) and (2.15), we obtain the AERM of A′ with rate 12ξ′(n1/4) + 37√
n

+ ξ(
√
n) as

required. The privacy of A′ follows from Lemma 2.34.
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2.8.5 Proof for Theorem 2.19

We first present the proof for Theorem 2.19. Recall that the roadmap of the proof is summarized
in Figure 2.3.

For readability, we denote ε(n) by simply ε.

Recall that the objective function is F (h, Z) = 1
n

∑n
i=1 `(h, zi) + gn(h) and the corresponding

utility function q(h, Z) = −F (h, Z). By the boundedness assumption, it is easy to show that if
we replace one data point in any Z with something else, then sensitivity

∆q = sup
h∈H,d(Z,Z′)=1

|q(Z, h)− q(Z ′, h)| ≤ 2

n
. (2.16)

Then by McSherry and Talwar [156, Theorem 6], Algorithm 1 that outputs h ∈ H with P(h) ∝
exp( ε

2∆q
q(h, Z)) naturally ensures ε-differential privacy.

Denote shorthand F ∗ := inff∈H F (Z, h) and q∗ := −F ∗, we can state an analog of the utility
theorem of the exponential mechanism in [156].
Lemma 2.36 (Utility). Assuming ε < log n (otherwise the privacy protection is meaningless
anyway), if assumption A1, A2 hold for distribution D, then

EZ∼DnEh∼A(Z)q(Z, h) ≥ −EZ∼DnF ∗ −
9[(ρ+ 2) log n+ logK]

nε
. (2.17)

Proof. By the boundedness of ` and g

q(Z, h) = − 1

n

∑

i

`(h, zi)− gn(h) ≥ −(1 + ζ(n)).

By Lemma 7 in McSherry and Talwar [156] (translated to our case),

Ph∼A(Z) [q(Z, h) < −F ∗ − 2t] ≤ µ(H)

µ(St)
e−

ε
2∆q

t, (2.18)

Apply (2.16), take expectation over the data distribution on both sides, and applying assumption
A2, we get

EZ∼DnPh∼A(Z) [q(Z, h) < −F ∗ − 2t] ≤ Kt−ρe−
εnt
4 = e−

εnt
4

+logK−ρ log t := e−γ. (2.19)

Take t =
4
[

(ρ+2) logn+log(K)
]

εn
, by the assumption that ε < log n, we get log(nt) > 0. Substitute t

into the expression of γ we obtain

γ =
εn

4
t− logK + ρ log t = 2 log n+ ρ log(nt) ≥ 2 log n,

and therefore
EZ∼DnPh∼A(Z) [q(Z, h) < −F ∗ − 2t] ≤ n−2.
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Denote Ph∼A(Z)[q(Z, h) < −F ∗ − 2t] =: p, we can then bound the expectation from below as
follows:

EZ∼DnEh∼A(Z)q(Z, h) ≥EZ∼Dn(−F ∗ − 2t)(1− p) + min
h∈H,Z∈Zn

q(Z, h)EZ∼Dnp

≥EZ∼Dn(−F ∗ − 2t) + (−1− ζ(n))n−2

≥− EZ∼DnF ∗ −
8
[
(ρ+ 2) log n+ log(K)

]

εn
− (1 + ζ(n))n−2

≥− EZ∼DnF ∗ −
9
[
(ρ+ 2) log n+ log(K)

]

εn
.

Now we can say something about the learning problem. In particular, the AERM follows directly
from the utility result and stability follows from the definition of differential privacy.
Lemma 2.37 (Universal AERM). Assume A1 and A2, and ε ≤ log n (so Lemma 2.36 holds), then

EZ∼Dn
[
Eh∼A(Z)R̂(h, Z)− R̂∗(Z)

]
≤ 9[(ρ+ 2) log n+ log(1/K)]

nε
+ ζ(n).

Proof. This is a simple consequence of boundedness and Lemma 2.36.

EZ∼Dn
[
Eh∼A(Z)R̂(h, Z)− R̂∗(Z)

]

=EZ∼DnEh∼A(Z)
1

n

∑

i

`(h, zi)− EZ∼Dn inf
h

1

n

∑

i

`(h, zi)

≤EZ∼DnEh∼A(Z)

[
1

n

∑

i

`(h, zi) + gn(h)

]
− Eh∼A(Z)gn(h)

− EZ∼Dn inf
h

[
1

n

∑

i

`(h, zi) + gn(h)

]
+ sup

h
(gn(h))

=EZ∼Dn(−F ∗ − Eh∼A(Z)q(Z, h)) + sup
h
gn(h)− Eh∼A(Z)gn(h)

≤9[(ρ+ 2) log n+ log(1/K)]

nε
+ 2ζ(n).

The last step applies Lemma 2.36 and suph |gn(h)| ≤ ζ(n) as in Assumption A2 by using the
fact that suph gn(h)− Egn(h) ≤ 2 suph |gn(h)| for any distribution of h the expectation is taken
over.

The above theorem shows that Algorithm 1 is asymptotic ERM. By Theorem 2.8, the fact that this
algorithm is ε-differential private implies that it is 2ε-stable. Now the proof follows by applying
Theorem 2.35 which says that stability and AERM of an algorithm certify its consistency. Noting
that this holds for any distribution D completes our proof for learnability in Theorem 2.19.

43



2.8.6 Proofs of other technical results

High confidence private learning.

Proof of Theorem 2.25. The algorithm A privately learns the problem with rate ξ(n) implies that

EZ∈DnEh∼A(Z)R(h)−R∗ ≤ ξ(n).

Let h ∼ A(Z) and Z ∼ Dn, by Markov’s inequality, with probability at least 1− 1/e,

R(h)−R∗ ≤ eξ(n).

If we split the data randomly into a+ 1 parts of size n/(a+ 1) and run A on the first a partitions,
then we get hj ∼ A(Zj). Then with probability at lest 1− (1/e)a, at least one of them has risk

min
j∈[a]

R(hj)−R∗ ≤ eξ(
n

a+ 1
). (2.20)

Since the (a+ 1)th partition are iid data, and ` is bounded, we can apply Hoeffding’s inequality
and union bound, so that with probability 1− δ1 for all j = 1, ..., a+ 1

R̂(hj, Za+1)−R(hj) ≤
√

log(2a/δ1)

2n
. (2.21)

This means that if exponential mechanism picked the one with the best validation risk it will be
almost as good as the one with the best risk. Assume h1 is the one that achieves the best validation
risk.

Now it remains to bound the probability that exponential mechanism pick an h ∈ {h1, ..., ha} that
is much worse than h1.

Recall that the utility function is the negative validation risk which depends only on the last
partition Ia+1.

q(X, h) =
1

n/(a+ 1)

∑

i∈Ia+1

`i(zi, h).

This is in fact a random function of the data because we are picking the the validation set Ia+1

randomly from the data. Suppose we arbitrarily replace one data point j from the dataset, the
distribution of the output of function q(Z, h) is a mixture of the two cases: j ∈ Ia+1 and j /∈ Ia+1.
Since in the first case, q(Z, h) = q(Z ′, h) for all h, sensitivity for this case is 0. In the second
case, by the boundedness assumption, the sensitivity is at most 2(a+ 1)/n. For the exponential
mechanism guarantee ε differential privacy, it suffices to take the sensitivity parameter to be
2(a+ 1)/n.

By the utility theorem of the exponential mechanism,

P
[
R̂(h) > R̂(h1) +

8(η log n+ log a)

εn/(a+ 1)

]
≤ n−η. (2.22)
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Combine (2.20)(2.21) and(2.22) we get

P

[
R(h)−R∗ > eξ(

n

a+ 1
) +

√
log(2a/δ1)

2n
+

8(η log n+ log a)

εn/(a+ 1)

]
≤ n−η + δ1 + e−a.

Now by appropriately choosing η = log(3/δ)/ log n, a = log(3/δ), δ1 = δ/3, we get

P

[
R(h)−R∗ > eξ(

n

log(3/δ) + 1
) +

√
log(2 log(3/δ)) + log(3/δ)

2n

+
8(log(3/δ) + log log(3/δ))

εn/(log(3/δ) + 1)

]
≤ δ

combine the terms and take ε = log(3/δ)+1√
n

, we get the bound of the excess risk in the theorem.

To get the privacy claim, note that we are applying A on disjoint partitions of the data so the
privacy parameter does not aggregate. Take the worst over all partitions, we get the overall privacy
loss max

{
ε
(

n
log(3/n)+1

)
, log(3/δ)+1√

n

}
as stated in the theorem.

The Lipschitz example.

Proof of Example 2.21. Let h∗ ∈ argminh∈H F (Z, h), the Lipschitz condition dictates that for
any h,

|F (h)− F (h∗)| ≤ L‖h− h∗‖p.

Choose a small enough t < t0 such that h is in the small neighborhood of h∗, and we can construct
a function F̃ that within the sublevel set St, such that the above inequality (when we replace F
with F̃ ) is equality, then for any h ∈ St0 , F̃ (h) ≥ F (Z, h). Verify that the sublevel set of F̃ (h),
denoted by S̃t always contains St. In addition, we can compute the measure µ(S̃t) explicitly, since
the function is a cone and

L‖h− h∗‖p = |F̃ (h)− F̃ (h∗)| = F̃ (h)− F̃ (h∗) ≤ t,

therefore
S̃t = {h | L‖h− h∗‖p ≤ t}.

SinceH is βp-regular, µ(B ∩H) ≥ βpµ(B) for any `p ball B ⊂ Rd, the measure of the sublevel
set can be lower bounded by βp times the volume of the `p ball with radius t/L and since S̃t ⊆ St,
we have

µ(St) ≥ µ(S̃t) ≥ βpµ (B(t/L)) = βp (t/L)d

as required.
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2.9 Alternative proof of Corollary 2.9 via Dwork et al. [87,
Theorem 7]

In this section, we describe how the results in Dwork et al. [87] can be used to obtain the forward
direction of our characterization without going through a stability argument. We first restate the
result here in our notation:
Lemma 2.38 (Theorem 7 in Dwork et al. 87). Let B be an ε-DP algorithm such that given a
dataset Z, B outputs a function from Z to [0, 1]. For any distribution D over Z and random
variable Z ∼ Dn, we let φ ∼ B(Z). Then for any β > 0, τ > 0 and n ≥ 12 log(4/β)/τ 2, setting
ε < τ/2 ensures

Pφ∼B(Z),Z∼Dn

[∣∣∣∣∣Ez∼Dφ(z)− 1

n

∑

z∈Z

φ(z)

∣∣∣∣∣ ≥ τ

]
≤ β.

This lemma was originally stated to prove the claim that privately generated mechanisms for
answering statistical queries always generalize.

For statistical learning problems, we can simply take the statistical query φ to be the loss function
`(h, ·) parameterized by h ∈ H. If an algorithm A that samples from a distribution on H upon
observing data Z is ε-DP, then B : Z → `(A(Z), ·) is also ε-DP. The result therefore reduces to
that the empirical risk and population risk are close with high probability. Due to the boundedness
assumption, we can translate the high probability result to the expectation form, which verifies the
definition of “generalization”.

However, “generalization” alone still does not imply “consistency”, as we also need

Eφ∼B(Z)
1

n

∑

z∈Z

φ(z)→ R∗ = min
φ∈Φ

Ez∼Dφ(z)

as Z gets large, which does not hold for all DP-output φ. But when φ = `(h, ·), it can be obtained
if we assume A is AERM. This is shown via the following inequality

EZ∈DnEφ∼B(Z)
1

n

∑

z∈Z

φ(z)→ EZ∈Dn min
φ∈Φ

1

n

∑

z∈Z

φ(z) ≤ EZ∈Dn
1

n

∑

z∈Z

φ∗(z) = Eφ∗(z) = R∗,

where φ∗ = `(h∗, ·) and h∗ is an optimal hypothesis function. This wraps up the proof of
consistency.

The above proof of “consistency” via Lemma 2.38 and “AERM”, however, leads to a looser bound
comparing to our result (Corollary 2.9) when the additional assumption on n and τ (equivalently
ε) is active, i.e., when ε(n)

log(1/ε(n))
< O

(
1√
n

)
. In this case it only implies a ξ(n) + logn√

n
bound due

to that ε-DP implies ε′-DP for any ε′ > ε. Our proof of Corollary 2.9 is considerably simpler and
more general in that it does not require any assumption on the number of data points n.

This can easily lead to worse overall error bound for very simple learning problems with suffi-
ciently fast rate. For example, in the problem of learning the mean of X ∈ [0, 1], let the loss
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function be |x− h|10. Consider the ε(n)-DP algorithm that outputs ERM + Laplace( 2
ε(n)n

) where
ε(n) is chosen to be n−9/10. This algorithm is AERM with rate ξ(n) = 10!2!

(ε(n)n)10 = O(n−1). By
Corollary 2.9 we get an overall rate of O(n−9/10) while through Lemma 2.38 and the argument
that follows, we only get Õ(n−1/2).
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Chapter 3

Privacy for free: Posterior sampling and
stochastic gradient Monte Carlo

In this chapter, we consider the problem of Bayesian learning on sensitive datasets and present two
simple but somewhat surprising results that connect Bayesian learning to “differential privacy”, a
cryptographic approach to protect individual-level privacy while permitting database-level utility.
Specifically, we show that under standard assumptions, getting one single sample from a posterior
distribution is differentially private “for free”. We will see that estimator is statistically consistent,
near optimal and computationally tractable whenever the Bayesian model of interest is consistent,
optimal and tractable. Similarly but separately, we show that a recent line of works that use
stochastic gradient for Hybrid Monte Carlo (HMC) sampling also preserve differentially privacy
with minor or no modifications of the algorithmic procedure at all, these observations lead to
an “anytime” algorithm for Bayesian learning under privacy constraint. We demonstrate that it
performs much better than the state-of-the-art differential private methods on synthetic and real
datasets.

3.1 Introduction

Bayesian models have proven to be one of the most successful classes of tools in machine learning.
It stands out as a principled yet conceptually simple pipeline for combining expert knowledge and
statistical evidence, modeling with complicated dependency structures and harnessing uncertainty
by making probabilistic inferences [98, 99]. In the past few decades, the Bayesian approach
has been intensively used in modeling speeches [173], text documents [34], images/videos [90],
social networks [6], brain activity [171], and is often considered gold standard in many of these
application domains. Learning a Bayesisan model typically involves sampling from a posterior
distribution, therefore the learning process is inherently randomized.

Differential privacy (DP) is a cryptography-inspired notion of privacy [77, 84]. It is designed
to provide a very strong form of protection of individual user’s private information and at the
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same time allow data analyses to be conducted with proper utility. Any algorithm that preserves
differential privacy must be appropriately randomized too. For instance, one can differential-
privately release the average salary of Californian males by adding a Laplace noise proportional
to the sensitivity of this figure upon small perturbation of the data sample.

In this chapter, we connect the two seemingly unrelated concepts by showing that under standard
assumptions, the intrinsic randomization in the Bayesian learning can be exploited to obtain a
degree of differential privacy. In particular, we show that:

• Any algorithm that produces a single sample from the exact (or approximate) posterior
distribution of a Bayesian model with bounded log-likelihood is ε (or (ε, δ))-differentially
private1. By the classic results in asymptotic statistics [137, 232], we show that this
posterior sample is a consistent estimator whenever the Bayesian model is consistent; and
near optimal whenever the asymptotic normality and efficiency of the maximum likelihood
estimate holds.

• The popular large-scale sampler Stochastic Gradient Langevin Dynamics [250] and ex-
tensions, e.g. Ahn et al. [4], Chen et al. [56], Ding et al. [65] obey (ε, δ)-differentially
private with no algorithmic changes when the stepsize is chosen to be small. This gives us
a procedure that can potentially output many (correlated) samples from an approximate
posterior distribution.

These simple yet interesting findings make it possible for differential privacy to be explicitly
considered when designing Bayesian models, and for Bayesian posterior sampling to be used
as a valid DP mechanism. We demonstrate empirically that these methods work as well as or
better than the state-of-the-art differential private empirical risk minimization (ERM) solvers
using objective perturbation [55, 128].

The results presented in this chapter are closely related to a number of previous work, e.g., Bassily
et al. [17], Dimitrakakis et al. [64], McSherry and Talwar [156], Mir [158]. Proper comparisons
with them would require the knowledge of our results, thus we will defer detailed comparisons to
Section 3.6 near the end of the paper.

3.2 Notations and preliminary

Throughout the paper, we assume data point x ∈ X and θ ∈ Θ is the model. This can be the
finite dimensional parameter of a single exponential family model or a collection of these in a
graphical model, or a function in a Hilbert space or other infinite dimensional objects if the model
is nonparametric. π(θ) denotes a prior belief of the model parameters and p(x|θ) and `(x|θ)
are the likelihood and log-likelihood of observing data point x given model parameter θ. If we

1Similar observations were made in Mir [158] and Dimitrakakis et al. [64] under slightly different regimes and
assumptions, and we will review them among other related work in Section 3.6.
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observe X = {x1, ...,xn}, the posterior distribution

π(θ|X) =
π(θ)

∏N
i=1 p(xi|θ)∫ ∏N

i=1 p(xi|θ)π(θ)dπ

denotes the updated belief conditioned on the observed data. Learning Bayesian models corre-
spond to finding the mean or mode of the posterior distribution, but often, the entire distribution
is treated as the output, which provides much richer information than just a point estimator. In
particular, we get error bars of the estimators for free (credibility intervals).

Ignoring the philosophical disputes of Bayesian methods for the moment, practical challenges of
Bayesian learning are often computational. As the models get more complicated, often there is
not a closed-form expression for the posterior. Instead, we often rely on Markov Chain Monte
Carlo methods, e.g., Metropolis-Hastings algorithm [110] to generate samples. This is often
prohibitively expensive when the data is large. One recent approach to scale up Bayesian learning
is to combine stochastic gradient estimation as in Robbins and Monro [177] and Monte Carlo
methods that simulates stochastic differential equations, e.g. Neal [163]. These include Stochastic
Gradient Langevin dynamics (SGLD) [250], Stochastic Gradient Fisher scoring (SGFS) [4],
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [56] as well as more recent Stochastic
Gradient Nosé-Hoover Thermostat (SGNHT) [65]. We will describe them with more details and
show that these series of tools provide differential privacy as a byproduct of using stochastic
gradient and requiring the solution to not collapse to a point estimate.

3.2.1 Differential privacy

We now restate the definition of differential privacy and approximate differential privacy that we
saw in Chapter 2 and write two lemmas that we need to use in this chapter. Let the space of data
be X and data points X, Y ∈ X n. Define d(X, Y ) to be the edit distance or Hamming distance
between data set X and Y , for instance, if X and Y are the same except one data point, then
d(X, Y ) = 1.
Definition 3.1. (Differential Privacy) We call a randomized algorithm A (ε, δ)-differentially
private with domain X n if for all measurable set S ⊂ Range(A) and for all X, Y ∈ X n such that
d(X, Y ) ≤ 1, we have

P(A(X) ∈ S) ≤ exp(ε)P(A(Y ) ∈ S) + δ.

If δ = 0, then A is the called ε-differential private.

This definition naturally prevents linkage attacks and the identification of individual data from
adversaries having arbitrary side information and infinite computational power. The promise of
differential privacy has been interpreted in statistical testing, Bayesian inference and information
theory for which we refer readers to Chapter 1 of [80].

There are several interesting properties of differential privacy that we will exploit here. Firstly,
the definition is closed under post-processing.
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Lemma 3.2 (Post-processing immunity). If A is an (ε, δ)-DP algorithm, B ◦ A is also (ε, δ)-DP
algorithm for any B.

This is natural because otherwise the whole point of differential privacy will be forfeited. Also,
the definition automatically allows for cases when the sensitive data are accessed more than
once.
Lemma 3.3 (Composition rule). If algorithm A1 is (ε1, δ1)-DP, and A2 is (ε2, δ2)-DP then
(A1 ⊗A2) is (ε1 + ε2, δ1 + δ2)-DP.

We will describe more advanced properties of DP as we need in Section 3.4.

3.3 Posterior sampling and differential privacy

In this section, we make a simple observation that under boundedness condition of a log-likelihood,
getting one single sample from the posterior distribution (denoted by “OPS mechanism” from here
onwards) preserves a degree of differential privacy for free. Then we will cite classic results in
statistics and show that this sample is a consistent estimator in a Frequentist sense and near-optimal
in many cases.

3.3.1 Implicitly Preserving Differential Privacy

To begin with, we show that sampling from the posterior distribution is intrinsically differentially
private.
Theorem 3.4. If supx∈X ,θ∈Θ |log p(x|θ)| ≤ B, releasing one sample from the posterior distribu-
tion p(θ|Xn) with any prior preserves 4B-differential privacy. Alternatively, if X is a bounded
domain (e.g., ‖x‖∗ ≤ R ∀x ∈ X ) and log p(x|θ) is an L-Lipschitz function in ‖ · ‖∗ for any
θ ∈ Θ, then releasing one sample from the posterior distribution preserves 4LR-differential
privacy.

Proof. The posterior distribution p(θ|x1, ...,xn) =
∏n
i=1 p(xi|θ)p(θ)∫

θ

∏n
i=1 p(xi|θ)p(θ)dθ

. For any x1, ...,xn, x
′
k,

The ratio can be factorized into

p(θ|x1, ..., x
′
k, ...,xn)

p(θ|x1, ...,xk, ...,xn)
=
p(x′k|θ)

∏
i=1:n,i 6=k p(xi|θ)p(θ)∏n

i=1 p(xi|θ)p(θ)︸ ︷︷ ︸
Factor 1

×
∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ∫

θ
p(x′k|θ)

∏
i=1:n,i 6=k p(xi|θ)p(θ)dθ

︸ ︷︷ ︸
Factor 2

.
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Algorithm 2 One-Posterior Sample (OPS ) estimator

input DataX , log-likelihood function `(·|·) satisfying supx,θ ‖`(x|θ)‖ ≤ B a prior π(·). Privacy
loss ε.
1. Set ρ = min{1, ε

4B
}.

2. Re-define log-likelihood function and the prior `′(·|·) := ρ`(·|·) and π′(·) := (π(·))ρ.
output θ̂ ∼ P (θ|X) ∝ exp

(∑N
i=1 `

′(θ|xi)
)
π′(θ).

It follows that

Factor 1 =
p(x′k|θ)

p(xk|θ)
= elog p(x′k|θ)−log p(xk|θ) ≤ e2B,

Factor 2 =

∫
θ

∏
i 6=k p(xi|θ)p(θ)p(xk)dθ∫

θ
p(x′k|θ)

∏
i 6=k p(xi|θ)p(θ)dθ

=

∫
θ

∏
i 6=k p(xi|θ)p(θ)p(x′k|θ)p(xk)

p(x′k)
dθ

∫
θ
p(x′k|θ)

∏
i 6=k p(xi|θ)p(θ)dθ

=

∫
θ

∏
i 6=k p(xi|θ)p(θ)p(x′k|θ)elog p(xk|θ)−log p(x′k|θ)dθ∫

θ
p(x′k|θ)

∏
i 6=k p(xi|θ)p(θ)dθ

≤ e2Bm(x1, ...,x
′
k, ...,xn)

m(x1, ...,x′k, ...,xn)
= e2B.

where we use m(X) to denote the marginal distribution. As a result, the whole thing is bounded
by e4B.

Alternatively, we can use the Lipschitz constant and boundedness to get log p(x′k|θ)−log p(xk|θ) ≤
L‖x′k − xk‖∗ ≤ 2LR.

Readers familiar with differential privacy must have noticed that this is actually an instance of the
exponential mechanism [156], a general procedure that preserves privacy while making outputs
with higher utility exponentially more likely. If one sets the utility function to be the log-likelihood
and the privacy parameter being 4B, then we get exactly the one-posterior sample mechanism.
This exponential mechanism point of view provides an an simple extension which allows us to
specify ε by simply scaling the log-likelihood (see Algorithm 2). We will overload the notation
OPS to also represent this mechanism where we can specify ε. The nice thing about this algorithm
is that there is almost zero implementation effort to extend all posterior sampling-based Bayesian
learning models to have differentially privacy of any specified ε.

Assumption on the boundedness. The boundedness on the loss-function (log-likelihood here)
is a standard assumption in many DP works [17, 55, 128, 205]. Lipschitz constant L is usually
small for continuous distributions (at least when the parameter space Θ is bounded). This is a
bound on log p(x|θ)) so as long as p(x|θ) does not increase or decrease super exponentially fast
at any point, L will be a small constant. R can also be made small by a simple preprocessing step
that scales down all data points. In the aforementioned papers that assume L, it is typical that they
also assume R = 1 for convenience. So we will do the same. In practice, we can algorithmically
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remove large data points from the data by some predefined threshold or using the “Propose-Test-
Release” framework in [79] or perform weighted training where we can assign lower weight to
data points with large magnitude. Note that this is a desirable step for the robustness to outliers
too. Exponential families (in Hilbert space) are an example, see e.g. Bialek et al. [32], Hofmann
et al. [115], Wainwright and Jordan [241].

3.3.2 Consistency and Near-Optimality

Now we move on to study the consistency of the OPS estimator. In great generality, we will show
that the one-posterior sample estimator is consistent whenever the Bayesian model is posterior
consistent. Since the consistency in Bayesian methods can have different meanings, we briefly
describe two of them according to the nomenclature in Orbanz [168].
Definition 3.5 (Posterior consistency in the Bayesian Sense). For a prior π, we say the model is
posterior consistent in the Bayesian sense, if θ ∼ π(θ), x1, ...,xn ∼ pθ, and the posterior

π(θ|x1, ...,xn)
weakly−→ δθ a.s. π.

δθ is the Dirac-delta function at θ.

In great generality, Doob’s well-known theorem guarantees posterior consistency in the Bayesian
sense for a model with any prior under no conditions except identifiability and measurability. A
concise statement of Doob’s result can be found in Van der Vaart [232, Theorem 10.10]).

An arguably more reasonable definition is given below. It applies to the case when the statistician
who chooses the prior π does not know about the true parameter.
Definition 3.6 (Posterior consistency in the Frequentist Sense). For a prior π, we say the model
is posterior consistent in the Frequentist sense, if for every θ0 ∈ Θ, x1, ...,xn ∼ pθ, the posterior

π(θ|x1, ...,xn)
weakly−→ δθ0 a.s. pθ0 .

This type of consistency is much harder to satisfy especially when Θ is an infinite dimensional
space, in which case the consistency often depends on the specific priors to use. A promising
series of results on the consistency for Bayesian nonparametric models can be found in Ghosal
[100]).

Regardless which definition one favors, the key notion of consistency is that the posterior distribu-
tion to concentrates around the true underlying θ that generates the data.
Proposition 3.7. The one-posterior sample estimator is consistent if and only if the Bayesian
model is posterior consistent (in either Definition 3.5 or 3.6 ).

Proof. The equivalence follows from the standard equivalence of convergence weakly and con-
vergence in probability when a random variable converges weakly to a point mass.

How about the rate of convergence? In the low dimensional setting when θ ∈ Θ ⊂ Rd and pθ(x)
is suitably differentiable and the prior is supported at the neighborhood of the true parameter,
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then by the Bernstein-von Mises theorem [137], the posterior mean is an asymptotically efficient
estimator and the posterior distribution converges in L1-distance to a normal distribution with
covariance being the inverse Fisher Information.
Proposition 3.8. Under the regularity conditions where Bernstein-von Mises theorem holds, the
One-Posterior sample θ̂ ∼ π(θ|x1, ..,xn) obeys

√
n(θ̂ − θ0)

weakly−→ N (0, 2I−1),

i.e., the One-Posterior sample estimator has an asymptotic relative efficiency of 2.

Proof. Let the One-Posterior sample θ̂ ∼ π(θ|x1, ..,xn). By Bernstein-von Mises theorem
√
n(θ̂ − θ̃)

weakly→ N (0, I−1). By the asymptotic normality and efficiency of the posterior mean

estimator
√
n(θ̃ − θ0)

weakly→ N (0, I−1). The proof is complete by taking the sum of the two
asymptotically independent Gaussian vectors (θ̃ and θ̂ − θ̃ are asymptotically independent).

The above proposition suggests that in many interesting classes of parametric Bayesian models,
the One-Posterior Sample estimator is asymptotically near optimal. Similar statements can also be
obtained for some classes of semi-parametric and nonparametric Bayesian models [100], which
we leave as future work.

The drawback of the above two propositions is that it is only stated for the version of the OPS
when ε = 4B. Using results in De Blasi and Walker [61] and Kleijn et al. [130] for misspecified,
we can prove consistency, asymptotic normality for any ε and parameterize the asymptotic relative
efficiency of the OPS estimator as a function of ε. The key idea is that when scaling the log-
likelihood and sample from a different distribution, we are essentially fitting a model that may
not include the data-generating true distribution. De Blasi and Walker [61] shows that under
mild conditions, when the model is misspecified, the posterior distribution will converge to a
point mass θ∗ that minimizes the KL-divergence between between the true distribution and the
corresponding distribution in the misspecified model. θ∗ is essentially MLE and in our case, since
we only scaled the distribution, the MLE will remain exactly the same. De Blasi and Walker
[61]’s result is quite general and covers both parametric and nonparametric Bayesian models and
whenever their assumptions hold, the OPS estimator is consistent. Using a similar argument
and the modified Bernstein-Von-Mises theorem in Kleijn et al. [130], we can prove asymptotic
normality and near optimality for the subset of problems where regularities of MLE hold.
Proposition 3.9. Under the same assumption as Proposition 3.8, if we set a different ε by rescaling
the log-likelihood by a factor of ε

4B
, then the the One-Posterior sample estimator obeys

√
n(θ̂ − θ0)

weakly−→ N
(

0, (1 +
4B

ε
)I−1

)
,

in other word, the estimator has an ARE of (1 + 4B
ε

).

Proof. By scaling the log-likelihood, we are essentially changing the correct model pθ to a
misspecified model (pθ)

ε
4B . Let the true log-likelihood be ` and the misspecified log-likelihood
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be ˜̀= ε
4B
`, in addition, define

V (θ) := Eθ∇˜̀(θ)∇˜̀(θ)T =
ε2

16B2
Eθ∇`(θ)∇`(θ)T =

ε2

16B2
I(θ)

J(θ) := −Eθ∇2 ˜̀(θ) = − ε

4B
Eθ∇2`(θ) = − ε

4B
I(θ).

The last equality holds under the standard regularity conditions. By the sandwich formula, the
maximum likelihood estimator θ̂ under the misspecified model is asymptotically normal:

√
n(θ̂ − θ∗) weakly→ N (0, J−1V J(−1)) = N (0, I−1)

where θ∗ defines the closest (in terms of KL-divergence) model in the misspecified class of
distributions to the true distribution that generates the data. Since the difference is only in scaling,
the minimum KL-divergence is obtained at θ∗ = θ. Now under the same regularity conditions, we
can invoke the modified Bernstein-Von-Mises theorem for misspecified models [130, Lemma 2.2],
which says that the posterior distribution p(θ|Xn) (of the misspecified model) converges in
distribution to N (θ̂, (nJ)−1). In our case, (nJ)−1 = 4B

nε
I−1. The proof is concluded by noting

that the posterior sample is an independent draw.

We make a few interesting remarks about the result.

1. Proposition 3.9 suggests that for models with bounded log-likelihood, OPS is only a
factor of (1 + 4B/ε) away from being optimal. This is in sharp contrast to most previous
statistical analysis of DP methods that are only tight up to a numerical constant (and often

a logarithmic term). In `2-norm, the convergence rate is O(

√
1+4B/ε‖I−1‖F√

n
). The bound

depends on the dimension through the Frobenius norm which is usually O(
√
d). The bound

can be further sharpened using assumptions on the intrinsic rank, incoherence conditions or
the rate of decays in eigenvalues of the Fisher information. In `∞-norm, the convergence

rate is
√

1+4B/ε‖I−1‖2√
n

, which does not depend on the dimension of the problem.

2. Another implication is on statistical inference. Proposition 3.9 essentially generalizes that
classic results in hypothesis testing and confidence intervals, e.g., Wald test, generalized
likelihood ratio test, can be directly adopted for the private learning problems, with an
appropriate calibration using ε. We can control the type I error in an asymptotically exact
fashion. In addition, the trade-off with ε and the test power is also explicitly described, so
in cases where the power of the tests are well-studied [142], the same handle can be used to
analyze the most-powerful-test under privacy constraints.

3. Lastly, Kleijn et al. [130]’s result is much more general. It is easy to extend the guarantee
for OPS to handle private Bayesian learning in a fully agnostic setting and in non-iid cases.
We will leave the formalization of these claims as future directions.
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3.3.3 (Efficient) sampling from approximate posterior

The privacy guarantee in Theorem 3.4 requires sampling from the exact posterior. In practice,
however, exact samplers are rare. As Bayesian models get more and more complicated, often
the only viable option is to use Markov Chain Monte Carlo (MCMC) samplers which are almost
never exact. There are exceptions, e.g., Propp and Wilson [172] but they only apply to problems
with very special structures. A natural question to ask is whether we can still say something
meaningful about privacy when the posterior sampling is approximate. It turns out that we can,
and the level of approximation in privacy is the same as the level of approximation in the sampling
distribution.
Proposition 3.10. If A that sampling from distribution PX preserves ε-differential privacy, then
any approximate sampling procedures A′ that produces a sample from P ′X such that ‖PX −
P ′X‖L1 ≤ δ for any X preserves (ε, (1 + eε)δ)-differential privacy.

Proof. For any S ∈ Range(A′), and d(X,X ′) ≤ 1

P (A′(X) ∈ S) =

∫

S

dP ′X ≤
∫

S

dPX + δ

≤ eε
∫

S

dPX′ + δ ≤ eε
∫

S

dPX′

≤ eε
∫

S

dP ′X′ + (1 + eε)δ

= eεP (A′(X ′) ∈ S) + (1 + eε)δ,

This is (ε, (1 + eε)δ)-DP by definition.

We are using L1 distance of the distribution because it is a commonly accepted metric to measure
the convergence rate MCMC [180], and Proposition 3.10 leaves a clean interface for computational
analysis in determining the number of iterations needed to attain a specific level of privacy
protection.

A note on computational efficiency. The (unsurprising) bad news is that even approximate
sampling from the posterior is NP-Hard in general, see, e.g. Sontag and Roy [206, Theorem 8].
There are however interesting results on when we can (approximately) sample efficiently. Ap-
proximation is easy for sampling LDA when α > 1 while NP-Hard when α < 1. A more general
result in Applegate and Kannan [11] suggests that we can get a sample with arbitrarily close
approximation in polynomial time for a class of near log-concave distributions. The log-concavity
of the distributions would imply convexity in the log-likelihood, thus, this essentially confirms the
computational efficiency of all convex empirical risk minimization problems under differential
privacy constraint (see Bassily et al. [17]).

The nice thing is that since we do not modify the form of the sampling algorithm at all, the OPS
algorithm is going to be a computationally tractable DP method whenever the Bayesian learning
model of interest is proven to be computationally tractable.
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This observation provides an interesting insight into the problem of computational lower bound
of differential private machine learning. Unlike what is conjectured in Dwork et al. [87], our
observation seems to suggest that the computational barrier is not specific to differential privacy,
but rather the barrier of learning in general. The argument seems to hold at least for some
class of problems, where the posterior sample achieves the optimal statistical rate and is at least
4B-DP.

3.3.4 Discussions and comparisons

OPS has a number of advantages over the state-of-the-art differentially private ERM method:
objective perturbation [55, 128] (OBJPERT from here onwards). OPS works with arbitrary
bounded loss functions and priors while OBJPERT needs a number of restrictive assumptions
including twice differentiable loss functions, strongly convexity parameter to be greater than a
threshold and so on. These restrictions rule out many commonly used loss functions, e.g., `1-loss,
hinge loss, Huber function just to name a few.

Also, OBJPERT ’s privacy guarantee holds only for the exact optimal solution, which is often
hard to get in practice. In contrast, OPS works when the sample is drawn from an approximate
posterior distribution. From a practical point of view, since OPS stems from the intrinsic privacy
protection of Bayesian learning, it requires very little implementation effort to deploy it for
practical applications. It also requires the problem to be strong convexity with a minimum strong
convexity parameter. When the condition is not satisfied, OBJPERT will need to add additional
quadratic regularization to make it so, which may bias the problem unnecessarily.

3.4 Stochastic Gradient MCMC and (ε, δ)-Differential privacy

Given a fixed privacy budget, we see that the single posterior sample produces an optimal point
estimate, but what if we want multiple samples? Can we use the privacy budget in a different way
that produces many approximate posterior samples?

In this section we will provide an answer to it by looking at a class of Stochastic Gradient MCMC
techniques developed over the past few years. We will show that they are also differentially private
for free if the parameters are chosen appropriately.

The idea is to simply privately release an estimate of the gradient (as in Bassily et al. [17], Song
et al. [205]) and leverage upon the following two celebrated lemmas in differential privacy in
the same way as Bassily et al. [17] does in deriving the near-optimal (ε, δ)-differentially private
SGD.

The first lemma is the advanced composition which allows us to trade off a small amount of δ to
get a much better bound for the privacy loss due to composition.
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Lemma 3.11 (Advanced composition, c.f.,Theorem 3.20 in [80]). For all ε, δ, δ′ ≥ 0, the class of
(ε, δ)-DP mechanisms satisfy (ε′, kδ + δ′)-DP under k-fold adaptive composition for:

ε′ =
√

2k log(1/δ′)ε+ kε(eε − 1).

Remark 3.12. When ε = c√
2k log(1/δ′)

< 1 for some constant c <
√

log(1/δ′), we can simplify

the above expression into ε′ ≤ 2c. To see this, apply the inequality eε − 1 ≤ 2ε (easily shown via
Taylor’s theorem and the assumption that ε ≤ 1).

In addition, we will also make use of the following lemma due to Beimel et al. [21].
Lemma 3.13 (Privacy for subsampled data. Lemma 4.4 in Beimel et al. [21].). Over a domain of
data sets XN , if an algorithm A is (ε, δ) differentially private (with ε < 1), then for any data set
X ∈ XN , running A on a uniform random γN -entries of X ensures (2γε, δ)-DP.

To make sense of the above lemma, notice that we are subsampling uniform randomly and the
probability of any single data point being sampled is only γ. Thus, if we arbitrarily perturb one of
the data points, its impact is evenly spread across all data points thanks to random sampling.

Let f : X n → Rd be an arbitrary d-dimensional function. Define the `2 sensitivity of f to be

∆2f = sup
Y :d(X,Y )≤1

‖f(X)− f(Y )‖2.

Suppose we want to output f(X) differential privately, “Gaussian Mechanism” output f̂(X) =
f(X) +N (0, σ2Id) for some appropriate σ.
Theorem 3.14 (Gaussian Mechanism, c.f. Dwork and Roth [80]). Let ε ∈ (0, 1) be arbitrary.

“Gaussian Mechanism” with σ ≥ ∆2f
√

2 log(1.25/δ)/ε is (ε, δ)-differentially private.

This will be the main workhorse that we use here.

3.4.1 Stochastic Gradient Langevin Dynamics

SGLD iteratively update the parameters to by running a perturbed version of the minibatch
stochastic gradient descent on the negative log-posterior objective function

−
N∑

i=1

log p(xi|θ)− log π(θ) =:
N∑

i=1

`(xi;θ) + r(θ)

where `(xi;θ) and r(θ) are loss-function and regularizer under the empirical risk minimiza-
tion.

If one were to run stochastic gradient descent or any other optimization tools on this, one would
eventually a deterministic maximum a posteriori estimator. SGLD avoids this by adding noise in
every iteration. At iteration t SGLD first samples uniform randomly τ data points {xt1 , ...,xt2}
and then updates the parameter using

θt+1 = θt − ηt
(
∇r(θ) +

N

τ

τ∑

i=1

∇`(xti|θ)

)
+ zt, (3.1)
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where zt ∼ N (0, ηt) and τ is the mini-batch size.

For the ordinary stochastic gradient descent to converge in expectation, the stepsize ηt can be
chosen as anything that

∑∞
i=1 ηt = ∞ and

∑∞
i=1 η

2
t < ∞ [177]. Typically, one can chooses

stepsize ηt = a(b+ t)−γ with γ ∈ (0.5, 1]. In fact, it is shown that for general convex functions
and µ-strongly convex functions 1√

t
and 1

µt
can be used to obtain the minimax optimal O(1/

√
t)

and O(1/t) rate of convergence. These results substantiate the first phase of SGLD: a convergent
algorithm to the optimal solution. Once it gets closer, however, it transforms into a posterior
sampler. According to Welling and Teh [250] and later formally proven in Sato and Nakagawa
[187], if we choose ηt → 0, the random iterates θt of SGLD converges in distribution to the
p(θ|X). The idea is that as the stepsize gets smaller, the stochastic error from the true gradient
due to the random sampling of the minibatch converges to 0 faster than the injected Gaussian
noise.

In addition, if we use some fixed stepsize lower bound, such that ηt = max{1/(t + 1), η0} (to
alleviate the slow mixing problem of SGLD), the results correspond to a discretization approxima-
tion of a stochastic differential equation (Fokker-Planck equation), which obeys the following
theorem due to Sato and Nakagawa [187] (simplified and translated to our notation).
Theorem 3.15 (Weak convergence [187]). Assume f(θ|X) is differentiable,∇f(θ|X) is gradient
Lipschitz and bounded 2. Then

∣∣Eθ∼p(θ|X)[h(θ)]− Eθ∼SGLD[h(θ(t))]
∣∣ = O(ηt),

for any continuous and polynomial growth function h.

This theorem implies that one can approximate the posterior mean (and other estimators) using
SGLD. Finite sample properties of SGLD is also studied in [238].

Now we will show that with a minor modification to just the “burn-in” phase of SGLD, we will
be able to make it differentially private (see Algorithm 3).
Theorem 3.16 (Differentially private Minibatch SGLD). Assume initial θ1 is chosen independent
of the data, also assume `(x|θ) is L-smooth in ‖ · ‖2 for any x ∈ X and θ ∈ Θ. In addition,

2We use boundedness to make the presentation simpler. Boundedness trivially implies the linear growth condition
in Sato and Nakagawa [187, Assumption 2].

Algorithm 3 Differentially Private Stochastic Gradient Langevin Dynamics (DP-SGLD)
Require: Data X of size N , Size of minibatch τ , number of data passes T , privacy parameter
ε, δ, Lipschitz constant L and initial θ1. Set t = 1.
for t = 1 : bNT/τc do

1. Random sample a minibatch S ⊂ [N ] of size τ .
2. Sample each coordinate of zt iid from N

(
0, 128NTL2

τε2
log
(

2.5NT
τδ

)
log(2/δ)η2

t ∨ ηt
)
.

3. Update θt+1 ← θt − ηt
(
∇r(θ) + N

τ

∑
i∈S∇`(xi|θ)

)
+ zt,

4. Return θt+1 as a posterior sample (after a pre-defined burn-in period).
5. Increment t← t+ 1.

end for
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let ε, δ, τ, T be chosen such that T ≥ ε2N
32τ log(2/δ)

. Then Algorithm 3 preserves (ε, δ)-differential
privacy.

Proof. In every iteration, the only data access is
∑

i∈S∇`(xi|θ) and by the L-Lipschitz condi-
tion, the sensitivity of

∑
i∈S∇`(xi|θ) is at most 2L. Get the essential noise that is added to∑

i∈S∇`(xi|θ) by removing the N2η2
t

τ2 factor from the variance σ2 in the algorithm, and Gaussian
mechanism, ensures the privacy loss to be smaller than ε

√
N√

32τT log(2/δ)
with probability > 1− τδ

2NT
.

Using the same technique in Bassily et al. [17], we can further exploit the fact that the subset S
that we use to compute the stochastic gradient is chosen uniformly randomly. By Lemma 3.13,
the privacy loss for this iteration is in fact

ε
√
N√

32τT log(2/δ)
· 2τ

N
=

ε/2√
2(NT/τ) log(2/δ)

.

Verify that we can indeed do that as ε
√
N√

32τT log(2/δ)
< 1 from the assumption on T . Note that to get

T data passes with minibatches of size τ , we need to go through at most bNT
τ
c ≤ NT

τ
iterations.

Apply the advanced composition theorem (Remark 3.12), we get an upper bound of the total
privacy loss ε and failure probability δ = δ

2
+ τδ

2NT
· NT

τ
accordingly.

The proof is complete by noting that choosing a larger noise level when ηt is bigger can only
reduces the privacy loss under the same failure probability.

α-Phase transition. For any α ∈ (0, 1), if we choose ηt = αε2

128L2 log(2.5NT/(τδ)) log(2/δ)t
, then

whenever t > αNT/τ , then we are essentially running SGLD for the last (1−α)NT/τ iterations,
and we can collect approximate posterior samples from there.

Small constant η0. Instead of making ηt to converge to 0 as t increases, we may alternatively
use constant η0 after t is larger than a threshold. This is a suggested heuristic in Welling and Teh
[250] and is inline with the analysis in Sato and Nakagawa [187] and Vollmer et al. [238].

Algorithm 4 Hybrid Posterior Sampling Algorithm

Require: Data X of size N , log-likelihood function `(·|θ) with Lipschitz constant L in the first
argument, assume supx∈X ‖x‖, a prior π. Privacy requirement ε.
1. Run OPS estimator: Algorithm 2 with ε/2. Collect sample point θ0

2. Run DP-SGLD (Algorithm 3) or other Stochastic Gradient Monte Carlo algorithms and
collect samples.

output : Return all samples.
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Choice of T and τ By Bassily et al. [17], it takes at least N data passes to converge in
expectation to a point near the minimizer, so taking T = 2N is a good choice. The variance of
both random components in our stochastic gradient is smaller when we use larger τ . Smaller
variances would improve the convergence of the stochastic gradient methods and make the SGLD
a better approximation to the full Langevin Dynamics. The trade-off is that when τ is too large,
we will use up the allowable T datapasses with just O(T ) iterations and the number of posterior
samples we collect from the algorithm will be small.

Overcoming the large-noise in the “Burn-in” phase When the stepsize ηt is not small enough
initially, we need to inject significantly more noise than what SGLD would have to ensure privacy.
We can overcome this problem by initializing the SGLD sampler with a valid output of the
OPS estimator, modified according to the exponential mechanism so that the privacy loss is
calibrated to ε/2. As the initial point is already in the high probability region of the posterior
distribution, we no longer need to “Burn-in” the Monte Carlo sampler so we can simply choose a
sufficiently small constant stepsize so that it remains a valid SGLD. This algorithm is summarized
in Algorithm 4.

Comparing to OPS The privacy claim of DP-SGLD is very different from OPS . It does not
require sampling to be nearly correct to ensure differential privacy. In fact, DP-SGLD privately
releases the entire sequence of parameter updates, thus ensures differential privacy even if the
internal state of the algorithm gets hacked. However, the quality of the samples is usually worse
than OPS due to the random-walk like behavior. The interesting fact, however, is that if we run
SGLD indefinitely without worrying about the stronger notion of internal privacy, it leads to a
valid posterior sample. We can potentially modify the posterior distribution to sample from into
the “scaled” version so as to balancing the two ways of getting privacy.

3.4.2 Hamiltonian Dynamics, Fisher Scoring and Nose-Hoover Thermo-
stat

One of the practical drawback of SGLD is its random walk-like behavior which slows down
the mixing significantly. In this section, we describe three extensions of SGLD that attempts
to resolve the issue by either using auxiliary variables to counter the noise in the stochastic
gradient[56, 65], or to exploit second order information so as to use Newton-like updates with
large stepsize [4].

We note that in all these methods, stochastic gradients are the only form of data access, therefore
similar results like what we described for SGLD follow nicely. We briefly describe each method
and how to choose their parameters for differential privacy.

Stochastic Gradient Hamiltonian Monte Carlo. According to Neal [163], Langevin Dy-
namics is a special limiting case of Hamiltonian Dynamics, where one can simply ignore the
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“momentum” auxiliary variable. In its more general form, Hamiltonian Monte Carlo (HMC) is
able to generate proposals from distant states and hence enabling more rapid exploration of the
state space. Chen et al. [56] extends the full “leap-frog” method for HMC in Neal [163] to work
with stochastic gradient and add a “friction” term in the dynamics to “de-bias” the noise in the
stochastic gradient.

{
θt = θt−1 + htrt−1

pt = pt−1 − ht∇̂ − ηtApt−1 +N (0, 2(A− B̂)ht).
(3.2)

where B̂ is a guessed covariance of the stochastic gradient (the authors recommend restricting B̂
to a single number or a diagonal matrix) and A can be arbitrarily chosen as long as A � B̂. If
the stochastic gradient ∇̂ ∼ N (∇, B) for some B and B̂ = B, then this dynamics is simulating
a dynamic system that yields the correct distribution. Note that even if the normal assumption
holds and we somehow set B̂ = B, we still requires ht to go to 0 to sample from the actual
posterior distribution, and as ht converges to 0 the additional noise we artificially inject dominates
and we get privacy for free. All we need to do is to set A, B̂ and ht so that 2(A − B̂)/ht �
128NTL2

τε2
log
(

2.5NT
τδ

)
log(2/δ)In. Note that as ht → 0 this quickly becomes true.

Stochastic Gradient Nosé-Hoover Thermostat As we discussed, the key issue about SGHMC
is still in choosing B̂. Unless B̂ is chosen exactly as the covariance of true stochastic gradient, it
does not sample from the correct distribution even as ht → 0 unless we trivially set B̂ = 0. The
Stochastic Gradient Nosé-Hoover Thermostat (SGNHT) overcomes the issue by introducing an
additional auxiliary variable ξ, which serves as a thermostat to absorb the unknown noise in the
stochastic gradient. The update equations of SGNHT are given below




pt = pt−1 − ξt−1pt−1ht − ∇̂ht +N (0, 2Aht);
θt = θt−1 + htpt−1;
ξt = ξt−1 + ( 1

n
pTt pt − 1)ht.

(3.3)

Similar to the case in SGHMC, appropriately selected discretization parameter ht and the friction
term A will imply differential privacy.

Chen et al. [56], Ding et al. [65] both described a reformulation that can be interpret as SGD with
momentum. This is by setting parameters η = h2, a = hA, b̂ = hB̂ for SGHMC:

{
θt = θt−1 + vt−1

vt = vt−1 − ηt∇̂ − av +N (0, 2(a− b̂)ηtI);
(3.4)

and v = ph, ηt = h2
t , α = ξh and a = Ah for SGNHT:



vt = vt−1 − αt−1vt−1 − ∇̂(θt−s)ηt +N (0, 2aηtI);
θt = θt−1 + ut−1;
αt = αt−1 + ( 1

n
vTt vt − ηt).

(3.5)

where 1− a is the momentum parameter and η is the learning rate in the SGD with momentum.
Again note that to obtain privacy, we need 2a

ηt
≥ 128NTL2

τε2
log(2NT

τδ
) log(1/δ).
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Note that as ηt gets smaller, we have the flexibility of choosing a and ηt within a reasonable
range.

Stochastic Gradient Fisher Scoring Another extension of SGLD is Stochastic Gradient Fisher
Scoring (SGFS), where Ahn et al. [4] proposes to adaptively interpolate between a preconditioned
SGLD (see preconditioning [101]) and a Markov Chain that samples from a normal approximation
of the posterior distribution. For parametric problem where Bernstein-von Mises theorem holds,
this may be a good idea. The heuristic used in the SGFS is that the covariance matrix of θ|X ,
which is also the inverse Fisher information I−1

N is estimated on the fly. The key features of SGFS
is that one can use the stepsize to trade off speed and accuracy, when the stepsize is large, it
mixes rapidly to the normal approximation, as the stepsize gets smaller the stationary distribution
converges to the true posterior. Further details of SGFS and ideas to privatize it is described in
Section 3.8.

3.4.3 Discussions and caveats.

So far, we have proposed a differentially private Bayesian learning algorithm that is memory
efficient, statistically near optimal for a large class of problems, and we can release many
intermediate iterates to construct error bars. Given that differential privacy is usually very
restrictive, some of these results may appear too good to be true. This is a reasonable suspicion
due to the following caveats.

Small η helps both privacy and accuracy. It is true that as η goes to 0, the stationary distri-
bution that these method samples from gets closer to the target distribution. On the other hand,
since the variance of the noise we need to add for privacy scales in O(η2) and that for posterior
sampling scales like O(η), privacy and accuracy benefits from the same underlying principle. The
caveat is that we also have a budget on how many samples can we collect. Also the smaller the
stepsize η is, the slower it mixes, as a result, the samples we collect from the monte carlo sampler
is going to be more correlated to each other.

Adaptivity of SGNHT. While SGNHT is able to adaptively adjust the temperature so that the
samples that it produces remain “unbiased” in some sense as η → 0. The reality is that if the level
of noise is too large, either we adjust the stepsize to be too small to search the space at all, or the
underlying stochastic differential equation becomes unstable and quickly diverges. As a result,
the adaptivity of SGNHT breaks down if the privacy parameter gets to small.

Computationally efficiency. For a large problem, it is usually the case that we would like
to train with only one pass of data or very small number of data passes. However, due to the
condition in Lemma 3.13, our result does not apply to one pass of data unless τ is chosen to be as
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Figure 3.1: Illustration of stochastic gradient langevin dynamics and its private counterpart at
ε = 10.

large as N . While we can still choose T to be sufficiently large and stop early, but we amount of
noise that we add in each iteration will remain the same.

The Curse of Numerical constant. The analysis of algorithms often involves larger numerical
constants and polylogarithmic terms in the bound. In learning algorithms these are often fine
because there are more direct ways to evaluate and compare methods’ performances. In differential
privacy however, constants do matter. This is because we need to use these bounds (including
constants) to decide how much noise or perturbation we need to inject to ensure a certain degree of
privacy. These guarantees are often very conservative, but it is intractable to empirically evaluate
the actual ε of differential privacy due to its “worst” case definition. Our stochastic gradient based
differentially private sampler suffers from exactly that. For moderate data size, the product of
the constant and logarithmic terms can be as large as a few thousands. That is the reason why it
does not perform as well as other methods despite the theoretically being optimal in scaling (the
optimality result is due to SGD [17]).

3.5 Experiments

Figure 8.5 is a plain illustration of how these stochastic gradient samplers work using a randomly
generated linear regression model (note the its posterior distribution will be normal, as the contour
illustrates). On the left, it shows how these methods converge like stochastic gradient descent to
the basin of convergence. Then it becomes a posterior sampler. The figure on the right shows that
the stochastic gradient thermostat is able to produce more accurate/unbiased result and the impact
of differential privacy at the level of ε = 10 becomes negligible.

To evaluate how our proposed methods work in practice, we selected two binary classification
datasets: Abalone and Adult, from the first page of UCI Machine Learning Repository and
performed privacy constrained logistic regression on them. Specifically, we compared two
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(a) Synthetic: classification of two normals.
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(b) Abalone: 9 features, 4177 data points.

−5 −4 −3 −2 −1 0 1 2 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Privacy loss: ε in log−scale

T
es

t a
cc

ur
ac

y

 

 

Non−private
One−Posterior sample
Objective perturbation
Output perturbation
Hybrid+DP−SGNHT

(c) Adult: 109 features, 32561 data points.

Figure 3.2: Comparison of Differential Private methods.
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of our proposed methods, OPS mechanism and hybrid algorithm against the state-of-the-art
empirical risk minimization algorithm OBJPERT [55, 128] under varying level of differential
privacy protection. The results are shown in Figure 3.2. As we can see from the figure, in both
problems, OPS significantly improves the classification accuracy over OBJPERT . The hybrid
algorithm also works reasonably well, given that it collected N samples after initializing it from
the output of a run of OPS with privacy parameter ε/2. For fairness, we used the (ε, δ)-DP
version of the objective perturbation [128] and similarly we used Gaussian mechanism (rather
than Laplace mechanism) for output perturbation. All optimization based methods are solved
using BFGS algorithm to high numerical accuracy. OPS is implemented using SGNHT and we
ran it long enough so that we are confident that it is a valid posterior sample. Minibatch size and
number of data passes in the hybrid DP-SGNHT are chosen to be both

√
N .

We note that the plain DP-SGLD and DP-SGNHT without an initialization using OPS does not
work nearly as well. In our experiments, it often performs equally or slightly worse than the
output perturbation. This is due to the few caveats (especially “the curse of numerical constant”)
we described earlier.

3.6 Related work

We briefly discuss related work here. For the first part, we become aware recently that Mir [158]
and Dimitrakakis et al. [64] independently developed the idea of using posterior sampling for
differential privacy. Mir [158, Chapter 5] used a probabilistic bound of the log-likelihood to
get (ε, δ) − DP but focused mostly on conjugate priors where the posterior distribution is in
closed-form. Dimitrakakis et al. [64] used Lipschitz assumption and bounded data points (implies
our boundedness assumption) to obtain a generalized notion of differential privacy. Our results
are different in that we also studied the statistical and computational properties. Bassily et al.
[17] used exponential mechanism for empirical risk minimization and the procedure is exactly
the same as OPS . Our difference is to connect it to Bayesian learning and to provide results
on limiting distribution, statistical efficiency and approximate sampling. We are not aware of a
similar asymptotic distribution with the exception of Smith [201], where a different algorithm (the
subsample-and-aggregate scheme) is proven to give an estimator that is asymptotically normal
and efficient (therefore, stronger than our result) under a different set of assumptions. Specifically,
Smith [201]’s method requires boundedness of the parameter space while ours method can work
with potentially unbounded space so long as the log-likelihood is bounded.

Related to the general topic, Kasiviswanathan and Smith [123] explicitly modeled the “semantics”
of differential privacy from a Bayesian point of view, Xiao and Xiong [253] developed a set of
tools for performing Bayesian inference under differential privacy, e.g., conditional probability
and credibility intervals. Williams and McSherry [252] studied a related but completely differ-
ent problem that uses posterior inference as a meta-post-processing procedure, which aims at
“denoising” the privately obfuscated data when the private mechanism is known. Integrating
Williams and McSherry [252] with our procedure might lead to some further performance boost,
but investigating its effect is beyond the scope of the current paper.
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For the second part, the idea to privately release stochastic gradient has been well-studied. Bassily
et al. [17], Song et al. [205] explicitly used it for differentially private stochastic gradient descent.
And Rajkumar and Agarwal [175] used it for private multi-party training. Our Theorem 3.16 is
a simple modification of Theorem 2.1 in Bassily et al. [17]. Bassily et al. [17] also showed that
the differential private SGD using Gaussian mechanism with τ = 1 matches the lower bound up
to constant and logarithmic, so we are confident that not many algorithms can do significantly
better than Algorithm 3. Our contribution is to point out the interesting algorithmic structures of
SGLD and extensions that preserves differential privacy. The method in Song et al. [205] requires
disjoint minibatches in every data pass, and it requires adding significantly more noise in settings
when Lemma 3.13 applies. Song et al. [205] are however applicable when we are doing only a
small number of data passes and for these cases, it gets a much better constant. Rajkumar and
Agarwal [175]’s setting is completely different as it injects a fixed amount of noise to the gradient
corresponds to each data point exactly once. In this way, it replicates objective perturbation [55]
(assuming the method actually finds the optimal solution).

Objective perturbation is originally proposed in Chaudhuri et al. [55] and the (ε, δ) version that
we refer to first appears in Kifer et al. [128]. Comparing to our two mechanisms that attempts
to sample from the posterior, their privacy guarantee requires the solution to be exact while ours
does not. In comparison, OPS estimator is differentially private allows the distribution it samples
from to be approximate, DP-SGLD on the other hand releases all intermediate results and every
single iteration is public.

3.7 Conclusion and future work

In this chapter, we described two simple but conceptually interesting examples that Bayesian
learning can be inherently differentially private. Specifically, we show that getting one sample
from the posterior is a special case of exponential mechanism and this sample as an estimator
is near-optimal for parametric learning. On the other hand, we illustrate that the algorithmic
procedures of stochastic gradient Langevin Dynamics (and variants) that attempts to sample
from the posterior also guarantee differential privacy as a byproduct. Preliminary experiments
suggests that the One-Posterior-Sample mechanism works very well in practice and it substantially
outperforms earlier privacy mechanism in logistic regression. While suffering from a large
constant, our second method is also theoretically and practically meaningful in that it provides
privacy protection in intermediate steps.

To carry the research forward, we think it is important to identify other cases when the existing
randomness can be exploited for privacy. Randomized algorithms such as hashing and sketching,
dropout and other randomization used in neural networks might be another thing to look at. More
on the application end, we hope to explore the one-posterior sample approach in differentially pri-
vate movie recommendation. Ultimately, the goal is to make differential privacy more practical to
the extent that it can truly solve the real-life privacy problems that motivated its very advent.
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3.8 Privatizing other stochastic gradient based sampling tech-
niques

3.8.1 Fisher Scoring and Stochastic Gradient Fisher Scoring

Fisher scoring is simply the Newton’s method for solving maximum likelihood estimation problem.
The score function S(θ) is the gradient of the log-likelihood. So intuitively, if we solve the equation
S(θ) = 0, we can obtain the maximum likelihood estimate. Often this equation is highly non-
linear, so we consider the an iterative update for the linearized score function (or a quadratic
approximation of the likelihood) by Taylor expand it at the current point θ0

S(θ) ≈ S(θ0) + I(θ0)(θ − θ0)

where I(θ0) = −∑n
i=1∇∇T `(Zi; θ) is the observed Fisher information evaluated at θ0.

By the fact that S(θ∗) = 0, and plug in the above equation, we get θ∗ = θ0 + I−1(θ0)S(θ0) Note
that this is a fix point iteration and it gives us an iterative update rule to search for θ∗ via

θk+1 = θk + I−1(θk)S(θk).

Recall that S is the gradient of the score function and I−1 is the covariance of the score function
and (under mild regularity conditions) the Hessian of the log-likelihood. As a result, this is often
the same as Newton iterations.

An intuitive idea to avoid passing the entire dataset in every iteration is to simply replacing the
gradient (the score function) with stochastic gradient and somehow estimate the Fisher information.
Stochastic Gradient Fisher Scoring can be thought of as a Quasi-Newton method.

3.8.2 Privacy extension

By invoking a more advanced version of the Gaussian Mechanism, we will show that similar
privacy guarantee can be obtained for a modified version of SGFS (described in Algorithm 5)
while preserving its asymptotic properties. Specifically, under the assumption that IN is given,
when ηt is big, it also samples from a normal approximation (with larger variance), when ηt is
small, the private algorithm becomes exactly the same as SGFS. Moreover, for a sequence of
samples from the posterior, the online estimate in the Fisher Information converges an O(1/N)
approximation of true Fisher Information as in Ahn et al. [4, Theorem 1].

The privacy result relies on a more specific smoothness assumption. Assume that for any parameter
θ ∈ Rd, and X ∈ XN the ellipsoid E = FBd defined by transforming the unit ball Bd using a
linear map F contains the symmetric polytope spanned by {±∇`(x1, θ), ...,±∇`(xN , θ)}. From
a differential private point of view, this implies that ∇θ`(x, θ)’s sensitivity is different towards
different direction. Then the non-spherical gaussian mechanism states
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Algorithm 5 Differentially Private Stochastic Gradient Fisher Scoring (DP-SGFS)
Require: Data X of size N , Size of minibatch τ , number of data passes T , stepsize ηt

for t = 1, ..., bNT/τc, a public Lipschitz matrix F , and initial θ1. Set t = 1, σ2 =
32T log(2.5NT/τδ) log(2/δ)

Nτε2

for t = 1 : bNT/τc do
1. Random sample a minibatch S ⊂ [N ] of size τ , compute ḡ = 1

τ

∑
i∈S∇`(xi|θ).

2. Sample Zt ∼ N (0, σ2 ∨ 1
N2ηt

Id), Wij ∼ N (0, 49‖F‖4σ2).
3. Compute private stochastic gradient and sample covariance matrix

g̃ = ḡ + FZt, and V = PSd+

{
1

τ − 1

∑

i∈S

{∇`i(θt)− ḡ} {∇`i(θt)− ḡ}T +W

}
.

4. Update the guessed Fisher Information estimate Ît = (1− κt)Ît−1 + κtV .

5. Update and return θt+1 ← θt + 2
(

(τ+N)N
τ

Ît + 4FFT

ηt

)−1

(∇r(θt) +Ng̃) .

6. Increment t← t+ 1.
end for

Lemma 3.17 (Non-Spherical Gaussian Mechanism). Output
∑N

i=1∇`(xi, θ) + Fw where w ∼
N (0,

(1+
√

1 log(1/δ))2

ε2
Id) obeys (ε, δ)-DP.

Theorem 3.18. Let F be that `(x; θ′) ≤ `θ + ∇`(x; θ)T (θ′ − θ) + 1
2
‖F (θ′ − θ)‖2 for any

x ∈ X , θ ∈ Θ. Moreover, let ε, δ, τ, T be chosen such that T ≥ ε2N
32τ log(2/δ)

. Then Algorithm 5
guarantees (2ε, 2δ)-differential privacy.

Proof. First of all, ‖F‖2 is an upper bound for any ∇`(x|θ), so by applying Lemma 3.19 on
the every set of subsamples in each iteration, by Gaussian mechanism (Lemma 3.14) and the
invariance to post-processing, we know that V is a private release. Then the proof follows by the
same line of argument (subsampling and advanced composition) as in Theorem 3.16 for g̃ and V
respectively, then the result follows by applying the simple composition theorem.

Lemma 3.19 (Sensitivity of the sample covariance operator). Let ‖x‖ ≤ L for any x ∈ X , n > 4,
then

sup
k,x1,...,xn,x′k

‖Ĉov(x1, ..., xk, ..., xn)− Ĉov(x1, ..., x
′
k, ..., xn)‖F ≤

7L2

n− 1
.

Proof. We prove by taking the difference of two adjacent covariance matrices and bound the
residual.

Ĉov(X ′) =Ĉov(X) +
1

n− 1
(xxT − x′[x′]T ) +

1

n(n− 1)
(xxT + x′[x′]T − x[x′]T − x′xT )

− 1

n− 1
µ(x− x′)T − 1

n− 1
(x− x′)µT .

Now assume n > 4 and take the upper bound of every term, we get ∆2 (Cov(X)) ≤ 7L2

n−1
.
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Chapter 4

On-Average Kullback-Leibler-privacy and
its properties

In this chapter, we define On-Average KL-Privacy and present its properties and connections to
differential privacy, generalization and information-theoretic quantities including max-information
and mutual information. The new definition significantly weakens differential privacy, while
preserving its minimalistic design features such as composition over small group and multiple
queries as well as closeness to post-processing. Moreover, we show that On-Average KL-Privacy
is equivalent to generalization for a large class of commonly-used tools in statistics and machine
learning that samples from Gibbs distributions—a class of distributions that arises naturally from
the maximum entropy principle. In addition, a byproduct of our analysis yields a lower bound for
generalization error in terms of mutual information which reveals an interesting interplay with
known upper bounds that use the same quantity.

4.1 Introduction

All previous chapters tries to understand how differential privacy work in the learning setting and
come up with practical algorithms. In many cases, we can easily get a DP learning algorithm
that is consistent, but when the loss function is discontinuous or the domain becomes unbounded,
DP could easily become intractable. In addition, even if DP is possible, in practice it often
requires adding noise with a very large magnitude, hence resulting in unsatisfactory utility, cf.,
[94, 228, 254].

Henceforth, a growing literature focuses on weakening the notion of differential privacy to
make it applicable and for a more favorable privacy-utility trade-off. Popular attempts include
(ε, δ)-approximate differential privacy [83], personalized differential privacy [88, 147], random
differential privacy [108] and so on. They each have pros and cons and are useful in their specific
contexts. There is a related literature addressing the folklore observation that “differential privacy
implies generalization” [18, 85, 87, 109, 211, 246].
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The implication of generalization is a minimal property that we feel any notion of privacy should
have. This brings us to the natural question:

• Is there a weak notion of privacy that is equivalent to generalization?

In this chapter, we provide a partial answer to this question. Specifically, we define On-Average
Kullback-Leibler(KL)-Privacy and show that it characterizes On-Average Generalization1 for
algorithms that draw sample from an important class of maximum entropy/Gibbs distributions,
i.e., distributions with probability/density proportional to

exp(−L(Output,Data))π(Output)

for a loss function L and (possibly improper) prior distribution π. Note that this is exactly the
same class of sampling algorithms that we described in the previous chapter.

We argue that this is a fundamental class of algorithms that covers a big portion of tools in modern
data analysis including Bayesian inference, empirical risk minimization in statistical learning as
well as the private releases of database queries through Laplace and Gaussian noise adding. From
here onwards, we will refer this class of distributions “MaxEnt distributions” and the algorithm
that output a sample from a MaxEnt distribution “posterior sampling”.

Related work: This work is closely related to the various notions of algorithmic stability in
learning theory [38, 125, 162, 191]. In fact, we can treat differential privacy as a very strong notion
of stability. Thus On-average KL-privacy may well be called On-average KL-stability. Stability
implies generalization in many different settings but they are often only sufficient conditions.
Exceptions include [162, 191] who show that notions of stability are also necessary for the
consistency of empirical risk minimization and distribution-free learnability of any algorithms.
Our specific stability definition, its equivalence to generalization and its properties as a privacy
measure has not been studied before. KL-Privacy first appears in [14] and is shown to imply
generalization in [18]. On-Average KL-privacy further weakens KL-privacy. A high-level
connection can be made to leave-one-out cross validation which is often used as a (slightly biased)
empirical measure of generalization, e.g., see [161].

4.2 Symbols and Notation

We will use the standard statistical learning terminology where z ∈ Z is a data point, h ∈ H is a
hypothesis and ` : Z ×H → R is the loss function. One can think of the negative loss function as
a measure of utility of h on data point z. Lastly, A is a possibly randomized algorithm that maps a
data set Z ∈ Zn to some hypothesis h ∈ H. For example, if A is the empirical risk minimization
(ERM), then A chooses h∗ = argminh∈H

∑n
i=1 `(zi, h).

Just to point out that many data analysis tasks can be casted in this form, e.g., in linear regression,
zi = (xi, yi) ∈ Rd×R, h is the coefficient vector and ` is just ‖yi−xTi h‖2; in k-means clustering,

1We will formally define these quantities.
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z ∈ Rd is just the feature vector, h = {h1, ..., hk} is the collection of k-cluster centers and
`(z, h) = minj ‖z − hj‖2. Simple calculations of statistical quantities can often be represented in
this form too, e.g., calculating the mean is equivalent to linear regression with identity design, and
calculating the median is the same as ERM with loss function |z − h|.

We also consider cases when the loss function is defined over the whole data set Z ∈ Z , in this
case the loss function is also evaluated on the whole data set by the structured loss L : h×Z → R.
We do not require Z to be drawn from some product distribution, but rather any distribution D.
Generally speaking, Z could be a string of text, a news article, a sequence of transactions of a
credit card user, or rather just the entire data set of n iid samples. We will revisit this generalization
with more concrete examples later. However we would like to point out that this is equivalent to
the above case when we only have one (much more complicated) data point and the algorithm A
is applied to only one sample.

4.3 Main Results

We first describe differential privacy and then it will become very intuitive where KL-privacy
and On-Average KL-privacy come from. Roughly speaking, differential privacy requires that
for any datasets Z and Z ′ that differs by only one data point, the algorithm A(Z) and A(Z ′)
samples output h from two distributions that are very similar to each other. Recall that we use the
“Hamming distance” to measure the distance between two data sets

d(Z,Z ′) := #{i = 1, ..., n : zi 6= z′i} . (4.1)

Assume the range of A is the whole spaceH, and also assume A(Z) defines a density onH with
respect to a base measure on H2, then ε-Differential Privacy (see Definition 2.2 in Chapter 2)
requires

sup
Z,Z′:d(Z,Z′)≤1

sup
h∈H

log
pA(Z)(h)

pA(Z′)(h)
≤ ε.

Replacing the second supremum with an expectation over h ∼ A(Z) we get the maximum
KL-divergence over the output from two adjacent datasets. This is KL-Privacy as defined in
Barber and Duchi [14], and by replacing both supremums with expectations we get what we call
On-Average KL-Privacy. For Z ∈ Zn and z ∈ Z , denote [Z−1, z] ∈ Zn the data set obtained from
replacing the first entry of Z by z. Also recall that the KL-divergence between two distributions
F and G is DKL(F‖G) = EF dFdG .
Definition 1 (On-Average KL-Privacy). We say A obeys ε-On-Average KL-privacy for some
distribution D if

EZ∼Dn,z∼DDKL(A(Z)‖A([Z−1, z])) ≤ ε.

2These assumptions are only for presentation simplicity. The notion of On-Average KL-privacy can naturally
handle mixture of densities and point masses.
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Note that by the property of KL-divergence, the On-Average KL-Privacy is always nonnegative
and is 0 if and only if the two distributions are the same almost everywhere. In the above case, it
happens when z = z′.

Unlike differential privacy that provides a uniform privacy guarantee for any users in Z , on-
average KL-Privacy is a distribution-specific quantity that measures the amount of average privacy
loss of an average data point z ∼ D suffer from running data analysis A on an data set Z drawn
iid from the same distribution D.

We argue that this kind of average privacy protection is practically useful because it is able to
adapt to benign distributions and is much less sensitive to outliers. After all, when differential
privacy fails to provide a meaningful ε due to peculiar data sets that exist in Zn but rarely appear
in practice, we would still be interested to gauge how a randomized algorithm protects a typical
user’s privacy.

Now we define what we mean by generalization. Let the empirical risk R̂(h, Z) = 1
n

∑n
i=1 `(h, zi)

and the actual risk be R(h) = Ez∼D`(h, z).
Definition 2 (On-Average Generalization). We say an algorithmA has on-average generalization
error ε if

∣∣∣ER(A(Z))− ER̂(A(Z), Z)
∣∣∣ ≤ ε.

This is slightly weaker than the standard notion of generalization in machine learning which
requires E|R(A(Z))− R̂(A(Z), Z)| ≤ ε. Nevertheless, on-average generalization is sufficient
for the purpose of proving consistency for methods that approximately minimizes the empirical
risk.

4.3.1 The equivalence to generalization

It turns out that when A assumes a special form, that is, sampling from a Gibbs distribution, we
can completely characterize generalization of A using On-Average KL-Privacy. This class of
algorithms include the most general mechanism for differential privacy — exponential mechanism
[156], which casts many other noise adding procedures as special cases. We will discuss a more
compelling reason why restricting our attention to this class is not limiting in Section 4.3.3.
Theorem 3 (On-Average KL-Privacy⇔Generalization). Let the loss function `(z, h) = − log p(z|h)
for some model p parameterized by h, and let

A(Z) : h ∼ p(h|Z) ∝ exp

(
−

n∑

i=1

`(z, h)− r(h)

)
.

If in addition A(Z) obeys that for every Z, the distribution p(h|Z) is well-defined (in that the
normalization constant is finite), then A satisfy ε-On-Average KL-Privacy if and only if A has
on-average generalization error ε.

The proof, given in the Section 9.7, uses a ghost sample trick and the fact that the expected
normalization constants of the sampling distribution over Z and Z ′ are the same.
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Remark 4.1 (Structural Loss). Take n = 1, and loss function be L. Then for an algorithm A that
samples with probability proportional to exp(−L(h, Z) − r(h)): ε-On-Average KL-Privacy is
equivalent to ε-generalization of the structural loss.
Remark 4.2 (Dispersion parameter γ). The case when A ∝ exp(−γ[L(h, Z) − r(h)]) for a
constant γ can be handled by redefining L′ = γL. In that case, εγ-On-Average KL-Privacy with
respect to L′ implies εγ/γ generalization with respect to L. For this reason, larger γ may not
imply strictly better generalization.
Remark 4.3 (Comparing to differential Privacy). Note that here we do not require ` to be
uniformly bounded, but if we do, i.e. supz∈Z,h∈H |`(z, h)| ≤ B, then the same algorithm A above
obeys 4Bγ-Differential Privacy [156, 245] and it implies O(Bγ)-generalization. This, however,
could be much larger than the actual generalization error (see our examples in Section 9.5).

4.3.2 Preservation of other properties of DP

We now show that despite being much weaker than DP, On-Average KL-privacy does inherent
some of the major properties of differential privacy (under mild additional assumptions in some
cases).
Lemma 4 (Closeness to Post-processing). Let f be any (possibly randomized) measurable
function fromH to another domainH′, then for any Z,Z ′

DKL(f(A(Z))‖f(A(Z ′))) ≤ DKL(A(Z)‖A(Z ′)).

Proof. This directly follows from the data processing inequality for the Rényi divergence in
Van Erven and Harremoës [233, Theorem 1].

Lemma 5 (Small group privacy). Let k ≤ n. Assume A is posterior sampling as in Theorem 3.
Then for any k = 1, ..., n, we have

E[Z,z1:k]∼Dn+kDKL (A(Z)‖A([Z−1:k, z1:k])) = kE[Z,z]∼Dn+1DKL (A(Z)‖A([Z−1, z])) .

Lemma 6 (Composition Theorem). 1. [Nonadaptive composition] Let A be ε1-(On-Average)
KL-Private and B be ε2-(On-Average) KL-Privacy, then the non-adaptive composition
(A,B) is (ε1 + ε2)-(On-Average) KL-Privacy.

2. [Adaptive composition] Let A be ε1-On-Average KL Private and B(·, h) be ε2-KL-Privacy
for every h ∈ ΩA where the support of random function A is ΩA. Then (A,B) jointly is
(ε1 + ε2)-On-Average KL-Privacy.

We prove Lemma 5 and 6 in the Section 9.7. Note that On-Average KL privacy does not compose
adaptively, but KL-privacy does 3. However, if we generalize the notion of On-Average KL-privacy
and parameterize B’s on-average KL privacy loss ε by h, data distribution and target distribution,
then an adaptively chosen B will lead to an on-average KL privacy of exactly

ε1(Dn,D) + Eh[ε2(h,Dn|h,D)].

3We thank Thomas Steinke and Jon Ullman for pointing out an error in a previous version.
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How larger this quantity is relative to ε1(Dn,D) + ε2(Dn,D) depends on the extent B changes as
a function of h.

4.3.3 Posterior Sampling as Max-Entropy solutions

In this section, we give a few theoretical justifications why restricting to posterior sampling is not
limiting the applicability of Theorem 3 much. First of all, Laplace, Gaussian and Exponential
Mechanism in the Differential Privacy literature are special cases of this class. Secondly, among all
distributions to sample from, the Gibbs distribution is the variational solution that simultaneously
maximizes the conditional entropy and utility. To be more precise on the claim, we first define
conditional entropy.
Definition 7 (Conditional Entropy). Conditional entropy

H(A(Z)|Z) = −EZEh∼A(Z) log p(h|Z)

where A(Z) ∼ p(h|Z).
Theorem 8. Let Z ∼ Dn for any distribution D. A variational solution to the following convex
optimization problem

min
A

− 1

γ
EZ∼DnH(A(Z)|Z) + EZ∼DnEh∼A(Z)

n∑

i=1

`i(h, zi) (4.2)

is A that outputs h with distribution p(h|Z) ∝ exp (−γ∑n
i=1 `i(h, zi)) .

Proof. This is an instance of Theorem 3 in Mir [159] (first appeared in Tishby et al. [225])
by taking the distortion function to be the empirical risk. Note that this is a simple convex
optimization over the functions and the proof involves substituting the solution into the optimality
condition with a specific Lagrange multiplier chosen to appropriately adjust the normalization
constant.

The above theorem is distribution-free, and in fact works for every instance of Z separately.
Condition on each Z, the variational optimization finds the distribution with maximum information
entropy among all distributions that satisfies a set of utility constraints. This corresponds to the
well-known principle of maximum entropy (MaxEnt) [122]. Many philosophical justifications
of this principle has been proposed, but we would like to focus on the statistical perspective
and treat it as a form of regularization that penalizes the complexity of the chosen distribution
(akin to Akaike Information Criterion [7]), hence avoiding overfitting to the data. For more
information, we refer the readers to references on MaxEnt’s connections to thermal dynamics
[122], to Bayesian inference and convex duality [8] as well as its modern use in modeling natural
languages [28].

Note that the above characterization also allows for any form of prior π(h) to be assumed.
Denote prior entropy H̃(h) = −Eh∼π(h) log(π(h)), and define information gain Ĩ(h;Z) =

H̃(h)−H(h|Z). The variational solution of p(h|Z) that minimizes Ĩ(h;Z) + γEZEh|ZL(Z, h)
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is proportional to exp(−L(Z, h))π(h). This provides an alternative way of seeing the class of
algorithmsA that we consider. Ĩ(h;Z) can be thought of as a information-theoretic quantification
of privacy loss, as described in [159, 257]. As a result, we can think of the class ofA that samples
from MaxEnt distributions as the most private algorithm among all algorithms that achieves a
given utility constraint.

4.4 Max-Information and Mutual Information

Recently, Dwork et al. [85] defined approximate max-information and used it as a tool to prove
generalization (with high probability). Russo and Zou [183] showed that the weaker mutual
information implies on-average generalization under a distribution assumption of the entire space
of {L(h, Z)|h ∈ H} induced by distribution of Z. In this section, we compare On-Average
KL-Privacy with these two notions. Note that we will use Z and Z ′ to denote two completely
different datasets rather than adjacent ones as we had in differential privacy.
Definition 9 (Max-Information, Definition 11 in [85]). We say A has an β-approximate max-
information of k if for every distribution D,

Iβ∞(Z;A(Z)) = max
(H,Z)⊂H×Zn:P(h∈H,Z∈Z̃)>β

log
P(h ∈ H,Z ∈ Z̃)− β
P(h ∈ H)p(Z ∈ Z̃)

≤ k.

This is alternatively denoted by Iβ∞(A, n) ≤ k. We say A has a pure max-information of k if
β = 0.

It is shown that differential privacy and short description length imply bounds on max-information
[85], hence generalization. Here we show that the pure max-information implies a very strong
On-Average-KL-Privacy for any distribution D when we take A to be a posterior sampling
mechanism.
Lemma 10 (Relationship to max-information). If A is a posterior sampling mechanism as
described in Theorem 3, then I∞(A, n) ≤ k implies that A obeys k/n-On-Average-KL-Privacy
for any data generating distribution D.

An immediate corollary of the above connection is that we can now significantly simplify the
proof for “max-information⇒ generalization” for posterior sampling algorithms.
Corollary 11. LetA be a posterior sampling algorithm. I∞(A, n) ≤ k implies thatA generalizes
with rate k/n.

We now compare to mutual information and draw connections to [183].
Definition 12 (Mutual Information). The mutual information

I(A(Z);Z) = EZEh∼A(Z) log
p(h, Z)

p(h)p(Z)

where A(Z) ∼ p(h|Z), p(Z) = Dn and p(h) =
∫
p(h|Z)p(Z)dZ.
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Lemma 13 (Relationship to Mutual Information). For any randomized algorithm A, let A(Z) be
an RV, and Z,Z ′ be two datasets of size n. We have

I(A(Z);Z) = DKL(A(Z)‖A(Z ′)) + EZEh∼A(Z)

[
EZ′ log p(A(Z ′))− logEZ′p(A(Z ′))

]
,

which by Jensen’s inequality implies I(A(Z), Z) ≤ DKL(A(Z)‖A(Z ′)).

A natural observation is that for MaxEnt A defined with L, mutual information lower bounds its
generalization error. On the other hand, Proposition 1 in Russo and Zou [183] states that under the
assumption that L(h, Z) is σ2-subgaussian for every h, then the on-average generalization error
is always smaller than σ

√
2I(A(Z);L(·, Z)). Similar results hold for sub-exponential L(h, Z)

[183, Proposition 3].

Note that in their bounds, I(A(Z);L(·, Z)) is the mutual information between the choice of
hypothesis h and the loss function for which we are defining generalization on. By data processing
inequality, we have I(A(Z);L(·, Z)) ≤ I(A(Z);Z). Further, when A is posterior distribution,
it only depends on Z through L(·, Z), namely L(·, Z) is a sufficient statistic for A. As a result
A ⊥ Z|L(·, Z). Therefore, we know I(A(Z);L(·, Z)) = I(A(Z);Z). Combine this observation
with Lemma 13 and Theorem 3, we get the following characterization of generalization through
mutual information.
Corollary 14 (Mutual information and generalization). Let A be an algorithm that samples
∝ exp (−γL(h, Z)), and L(h, Z)−R(h) is σ2-subgaussian for any h ∈ H, then

1

γ
I(A(Z);Z) ≤

∣∣EZEh∼A(Z)[L(h, Z)−R(h)]
∣∣ ≤ σ

√
2I(A(Z);Z).

If L(h, Z) − R(h) is σ2-subexponential with parameter (σ, b) instead, then we have a weaker
upper bound bI(A(Z);Z) + σ2/(2b).

The corollary implies that for each γ we have an intriguing bound that says I(A;Z) ≤ 2γ2σ2 for
any distribution of Z,H and L such that L(·, Z) is σ2-subgaussian. One interesting case is when
γ = 1/σ. This gives

σI(A(Z);Z) ≤
∣∣EZEh∼A(Z)[L(h, Z)−R(h)]

∣∣ ≤ σ
√

2I(A(Z);Z).

The lower bound is therefore sharp up to a multiplicative factor of
√
I(A(Z);Z).

4.5 Connections to Other Attempts to Weaken DP

We compare and contrast the On-Average KL-Privacy with other notions of privacy that are
designed to weaken the original DP. The (certainly incomplete) list includes (ε, δ)-approximate
differential privacy (Approx-DP) [83], random differential privacy (Rand-DP) [108], Personalized
Differential Privacy (Personal-DP) [88, 147] and Total-Variation-Privacy (TV-Privacy) [14, 18].
Table 4.1 summarizes and compares of these definitions.
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Privacy definition Z z Distance (pseudo)metric
Pure DP supZ∈Zn supz∈Z D∞(P‖Q)

Approx-DP supZ∈Zn supz∈Z Dδ
∞(P‖Q)

Personal-DP supZ∈Zn for each z D∞(P‖Q) or Dδ
∞(P‖Q)

KL-Privacy supZ∈Zn supz∈Z DKL(P‖Q)
TV-Privacy supZ∈Zn supz∈Z ‖P −Q‖TV

Rand-Privacy 1− δ1 any Dn 1− δ1 any D Dδ2
∞(P‖Q)

On-Avg KL-Privacy EZ∼Dn for each D EZ∼D for each D DKL(P‖Q)

Table 4.1: Summary of different privacy definitions.

Pure-DP

Approx-DP

KL-Privacy

TV-Privacy

On-Avg KL-Privacy

Personal-DP

Random-DP 1-‐𝛿	  Generalization

|E Generalization|	  

E|Generalization|	  

MarkovIf 
Bounded

Pinsker
For insensitive queries

For MaxEnt Sampling

If small
varianceJensen

Figure 4.1: Relationship of different privacy definitions and generalization.

A key difference of On-Average KL-Privacy from almost all other previous definitions of privacy,
is that the probability is defined only over the random coins of private algorithms. For this reason,
even if we convert our bound into the high probability form, the meaning of the small probability
δ would be very different from that in Approx-DP. The only exception in the list is Rand-DP,
which assumes, like we do, the n+ 1 data points in adjacent data sets Z and Z ′ are draw iid from
a distribution. Ours is weaker than Rand-DP in that ours is a distribution-specific quantity.

Among these notions of privacy, Pure-DP and Approx-DP have been shown to imply generalization
with high probability [18, 87]; and TV-privacy was more shown to imply generalization (in
expectation) for a restricted class of queries (loss functions) [18]. The relationship between our
proposal and these known results are clearly illustrated in Fig. 4.1. To the best of our knowledge,
our result is the first of its kind that crisply characterizes generalization.

Lastly, we would like to point out that while each of these definitions retains some properties
of differential privacy, they might not possess all of them simultaneously and satisfactorily. For
example, (ε, δ)-approx-DP does not have a satisfactory group privacy guarantee as δ grows
exponentially with the group size.
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Figure 4.2: Comparison of On-Avg KL-Privacy and Differential Privacy on two examples.

4.6 Experiments

In this section, we validate our theoretical results through numerical simulation. Specifically, we
use two simple examples to compare the ε of differential privacy, ε of on-average KL-privacy, the
generalization error, as well as the utility, measured in terms of the excess population risk.

The first example is the private release of mean, we consider Z to be the mean of 100 samples
from standard normal distribution truncated between [−2, 2]. Hypothesis space H = R, loss
function L(Z, h) = |Z − h|. A samples with probability proportional to exp(−γ|Z − h|). Note
that this is the simple Laplace mechanism for differential privacy and the global sensitivity is 4, as
a result this algorithm is 4γ-differentially private.

The second example we consider is a simple linear regression in 1D. We generate the data
from a simple univariate linear regression model y = xh + noise, where x and the noise are
both sampled iid from a uniform distribution defined on [−1, 1]. The true h is chosen to be 1.
Moreover, we use the standard square loss `(zi, h) = (yi − xih)2. Clearly, the data domain
Z = Y × X = [−1, 1] × [−2, 2] and if we constrain H to be within a bounded set [−2, 2],
supx,y,β(y − xβ)2 ≤ 16 and the posterior sampling with parameter γ obeys 64γ-DP.

Fig. 4.2 plots the results over an exponential grid of parameter γ. In these two examples, we
calculate on-Average KL-Privacy using known formula of the KL-divergence of Laplace and
Gaussian distributions. Then we stochastically estimate the expectation over data. We estimate
the generalization error in the direct formula by evaluating on fresh samples. As we can see,
appropriately scaled On-Average KL-Privacy characterizes the generalization error precisely as
the theory predicts. On the other hand, if we just compare the privacy losses, the average ε from
a random dataset given by On-Avg KL-Privacy is smaller than that for the worst case in DP by
orders of magnitudes.

80



4.7 Conclusion

In this chapter, we presented On-Average KL-privacy as a new notion of privacy (or stability)
on average. We showed that this new definition preserves properties of differential privacy
including closedness to post-processing, small group privacy and composition over multiple data
access. Moreover, we showed that On-Average KL-privacy/stability characterizes a weak form of
generalization for a large class of sampling distributions that simultaneously maximize entropy
and utility. This equivalence and connections to certain information-theoretic quantities allowed
us to provide the first lower bound of generalization using mutual information. Lastly, we conduct
numerical simulations which confirm our theory and demonstrate the substantially more favorable
privacy-utility trade-off.

4.8 Proofs of technical results

Proof of Theorem 3. We prove this result using a ghost sample trick.

Ez∼D,Z∼DnEh∼A(Z)

[
`(z, h)− 1

n

n∑

i=1

`(zi, h)

]

=EZ′∼Dn,Z∼DnEh∼A(Z)

[
1

n

n∑

i=1

`(z′i, h)− 1

n

n∑

i=1

`(zi, h)

]

=
1

n

n∑

i=1

Ez′i∼D,Z∼DnEh∼A(Z)

[
`(z′i, h)− `(zi, h)

]

=
1

n

n∑

i=1

Ez′i∼D,Z∼DnEh∼A(Z)


`(z′i, h) +

∑

j 6=i
`(zj , h) + r(h)− `(zi, h)−

∑

j 6=i
`(zj , h)− r(h)




=
1

n

n∑

i=1

Ez′i∼D,Z∼DnEA(Z)

[
− log pA([Z−i,z′i])

(h) + log pA(Z)(h)(h) + logKi − logK ′i

]

=
1

n

n∑

i=1

Ez′i∼D,Z∼DnEA(Z)

[
log pA(Z)(h)− log pA([Z−i,z′i])

(h)
]

=Ez∼D,Z∼DnEh∼A(Z)

[
log pA(Z)(h)− log pA([Z−1,z])(h)

]
.

The Ki and K ′i are partition functions of pA(Z)(h) and pA([Z−i,z′i])
(h) respectively. Since zi ∼ z′i,

we know EKi − EK ′i = 0. The proof is complete by noting that the On-Average KL-privacy
is always non-negative and so is the difference of the actual risk and expected empirical risk
(therefore we can take absolute value without changing the equivalence).
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Proof of Lemma 5. Let k = 2, we have

E[Z,z′1,z
′
2]∼Dn+2Eh∼A(Z) log

pA(Z)(h)

pA([Z−1:2,z′1,z
′
2])(h)

=E[Z,z′1]∼Dn+1Eh∼A(Z)

[
log

pA(Z)(h)

pA([Z−1,z′1])(h)

]

+ E[Z,z′1,z
′
2]∼Dn+2Eh∼A(Z)

[
log

pA([Z−1,z′1])(h)

pA([Z−1:2,z′1,z
′
2])(h)

]

≤ε+ E[Z,z′1,z
′
2]∼Dn+2Eh∼A(Z)

[
log

pA([Z−1,z′1])(h)

pA([Z−1:2,z′1,z
′
2])(h)

]
.

The technical issue is that the second term does not have the correct distribution to take expectation
over. By the property of A being a posterior sampling algorithm, we can rewrite the second term
of the above equation into

EZ∼Dn,z′1,z′2∼DEh∼A(Z) [log p(z2, h)− log p(z′2, h)− logK + logK ′]

whereK andK ′ are normalization constants of exp(log p(z′1, h)+
∑n

i=2 log p(zi, h)) and exp(log p(z′1, h)+
log p(z′2, h)+

∑n
i=3 log p(zi, h)) respectively. The expected log-partition functions are the same so

we can replace them with normalization constants of exp(
∑n

i=1 log p(zi, h)) and exp(log p(z′2, h)+∑
i 6=2 log p(zi, h)). By adding and subtracting the missing log-likelihood functions on z1, z3, ..., zn,

we get

EZ∼Dn,z′1,z′2∼DEh∼A(Z)

[
log

pA([Z−1,z′1])(h)

pA([Z−1:2,z′2])(h)

]

=EZ∼Dn,z′1,z′2∼DEh∼A(Z)

[
log

pA(Z)(h)

pA([Z−2,z′2])(h)

]
≤ ε

This completes the proof for k = 2. Apply the same argument recursively by different decomposi-
tions of , we get the results for k = 3, ..., n.

The second statement follows by the same argument with all “≤” changed into “=”.

Proof of Lemma 6.

Eh1∼A(Z)Eh2∼B(Z,h1) log

[
pB(Z,h1)(h2)

pB(Z′,h1)(h2)

pA(Z)(h1)

pA(Z′)(h1)

]

=Eh1∼A(Z)Eh2∼B(Z,h1) log

[
pB(Z,h1)(h2)

pB(Z′,h1)(h2)

]
+ Eh1∼A(Z)Eh2∼B(Z,h1) log

[
pA(Z)(h1)

pA(Z′)(h1)

]

Take E over Z and z such that Z ′ = [Z−1, z] on both sides, we get On-Average-KL privacy of
(A,B) on the left, and on the right, if B is not adaptive to h1, we get ε2 + ε1.

If B is adaptive to h1, then we can swap the order of the integral in the joint distribution of Z and
h1, and get

Eh1

[
EZ|h1

[
Eh2∼B(Z,h1) log

[
pB(Z,h1)(h2)

pB(Z′,h1)(h2)

] ∣∣h1

]]
+ ε1.
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If B is KL-private, then it works for any pairs of adjacent data set, including those drawn from
the conditional distribution Z|h1 for any h1, then Eh2∼B(Z,h1) log

[
pB(Z,h1)(h2)

pB(Z′,h1)(h2)

]
≤ ε2. This implies

that we can upper bound the RHS by ε2 + ε1.

Proof of Lemma 10. By Lemma 12 in Dwork et al. [85], I∞(A, n) = supZ,Z′∈Zn D∞(A(Z)||A(Z ′)).

D∞(A(Z)||A(Z ′)) = sup
h

log
pA(Z)(h)

pA(Z′)(h)

= sup
h

n∑

i=1

log
pA([Z−1:(i−1),Z

′
1:(i−1)

])(h)

pA([Z−1:(i),Z
′
1:(i)

])(h)

≥ Eh∼A(Z)

n∑

i=1

log
pA([Z−1:(i−1),Z

′
1:(i−1)

])(h)

pA([Z−1:(i),Z
′
1:(i)

])(h)

≥
n∑

i=1

Eh∼A(Z) log
pA([Z−1:(i−1),Z

′
1:(i−1)

])(h)

pA([Z−1:(i),Z
′
1:(i)

])(h)

=
n∑

i=1

Eh∼A(Z)(log p(zi;h)− log p(z′i;h)− logKi + logK ′i)

whereKi andK ′i are normalization constants for distribution pA([Z−1:(i−1),Z
′
1:(i−1)

])(h) and pA([Z−1:(i),Z
′
1:(i)

])(h)

respectively.

Take expectation over Z and Z ′ on both sides, by symmetry, the expected normalization constants
are equal no matter which size n subset of [Z,Z ′] this posterior distribution h is defined over.
Define Z(i) := [z1, ..., zi−1, z

′
i, zi+1, ..., zn]. Let K be the normalization constant of A(Z) and

K(i) be the normalization constant of A(Z(i)). We get

EZ,Z′∼DnD∞(A(Z)||A(Z ′)) ≥ EZ,Z′∼Dn
n∑

i=1

Eh∼A(Z)(log p(zi;h)− log p(z′i;h))

=EZ,Z′∼Dn
n∑

i=1

Eh∼A(Z)

[
n∑

j=1

log ph(zj)−
∑

j 6=i

log ph(zj)− log ph(z
′
i)− logK + logK(i)

]

=EZ,Z′∼Dn
n∑

i=1

Eh∼A(Z)

[
log

pA(Z)(h)

pA(Z(i))(h)

]

=
n∑

i=1

EZ∼Dn,z′i∼DEh∼A(Z)

[
log

pA(Z)(h)

pA(Z(i))(h)

]

Note that
RHS = nEZ∼Dn,z∼DKL(A(Z)‖A([Z−1, z])),

and

LHS = EZ,Z′∼DnD∞(A(Z)‖A(Z ′)) ≤ sup
Z,Z′∈Zn

D∞(A(Z)‖A(Z ′)) = I∞(A, n).
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Collecting the three systems of inequalities above, we get that A is k/n-On-Average-KL-Privacy
as claimed.

Proof of Lemma 13. Denote p(A(Z)) = p(h|Z). p(h, Z) = p(h|Z)p(Z). The marginal distribu-
tion of h is therefore p(h) =

∫
Z
p(h, Z)dZ = EZp(A(Z)). By definition,

I(A(Z);Z) = EZEh|Z log
p(h|Z)p(Z)

p(h)p(Z)

=EZEh|Z log p(h|Z)− EZEh|Z logEZ′p(h|Z ′)
=EZEh|Z log p(h|Z)− EZ,Z′Eh|Z log p(h|Z ′)

+ EZ,Z′Eh|Z log p(h|Z ′)− EZEh|Z logEZ′p(h|Z ′)

=EZ,Z′Eh|Z log
p(h|Z)

p(h|Z ′) + EZ,Z′Eh|Z log p(h|Z ′)− EZEh|Z logEZ′p(h|Z ′)

=DKL(A(Z),A(Z ′)) + EZEh|Z [EZ′ log p(A(Z ′))− logEZ′p(A(Z ′))]

≤DKL(A(Z),A(Z ′)).

The last line follows from Jensen’s inequality.

84



Chapter 5

Per-instance differential privacy, leverage
scores and the statistical efficiency

In this chapter, we continues the pursuit on finding a more reasonable notation of privacy. Despite
the usefulness of On-Average KL-privacy in some cases and its connection to learning-theoretic
quantities, it is hard to justify that this is a strong enough notion of privacy to use, as the protection
is for an average person from the population and says very little about individuals and could
be especially bad for minorities or people with unique characteristics, as they will be the most
vulnerable persons in the first place. Just imagine, if the agency wanting to collect my data tells
me that most people’s privacy will be protected fine, but “your mileage may vary”, it will be
unlikely for me to take the agency seriously.

Recall that differential privacy is too strong for two reasons. First, it requires that the probability
ratio bound any potential output of the algorithm even if the output happens with negligible
probability. This is already somewhat satisfactorily addressed by the widely accepted weaker
notion: (ε, δ)-DP. Secondly, it requires the bound to hold for any two adjacent data sets, even
including those that will never occur in practice. This often means that the privacy loss achieved
by differential private algorithm might be overly conservative.

We address this issue by a new and more fine-grained notion of differential privacy — per instance
differential privacy (pDP), which captures the privacy of a specific individual with respect to
a fixed data set. We show that this is a strict generalization of the standard DP and inherits
all its desirable properties, e.g., composition, invariance to side information and closedness to
postprocessing, except that they all hold for every instance separately. When the data is drawn
from a distribution, we show that per-instance DP implies generalization. Moreover, we provide
explicit calculations of the per-instance DP for the output perturbation on a class of smooth
learning problems. The result reveals an interesting and intuitive fact that an individual has
stronger privacy if he/she has small “leverage score” with respect to the data set and if he/she can
be predicted more accurately using the leave-one-out data set. Using the developed techniques,
we provide a novel analysis of the One-Posterior-Sample (OPS) estimator and show that when
the data set is well-conditioned it provides (ε, δ)-pDP for any target individuals and matches the
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exact lower bound up to a 1 + Õ(n−1ε−2) multiplicative factor. We also propose AdaOPS which
uses adaptive regularization to achieve the same results with (ε, δ)-DP. Simulation shows several
orders-of-magnitude more favorable privacy and utility trade-off when we consider the privacy of
only the users in the data set.

5.1 Introduction

While modern statistics and machine learning had seen amazing success, their applications to
sensitive domains involving personal data remain challenging due to privacy issues. Differential
privacy [84] is a mathematical notion that allows strong provable protection of individuals from
being identified by an arbitrarily powerful adversary, and has been increasingly popular within the
machine learning community as a solution to the aforementioned problem [1, 55, 147, 155]. The
strong privacy protection however comes with a steep price to pay. Differential privacy almost
always lead to substantial and often unacceptable drop in utility, e.g., in contingency tables [93]
and in genome-wide association studies [255]. This motivated a large body of research to focus
on making differential privacy more practical [43, 79, 81, 96, 166, 197, 245] by exploiting local
structures and/or revising the privacy definition.

Majority of these approaches adopt the “privacy-centric” model, which involves theoretically
proving that an algorithm is differentially private for any data (within a data domain), then
carefully analyzing the utility of the algorithm under additional assumptions on the data. For
instance, in statistical estimation it is often assumed that the data is drawn i.i.d. from a family
of distributions. In nonparametric statistics and statistical learning, the data are often assumed
to having specific deterministic/structural conditions, e.g., smoothness, incoherence, eigenvalue
conditions, low-rank, sparsity and so on. While these assumptions are strong and sometimes
unrealistic, they are often necessary for a model to work correctly, even without privacy constraints.
Take high-dimensional statistics for example, “sparsity” is almost never true, but if the true model
is dense and unstructured, it is simply impossible to recover the true model anyways in the “small
n large d” regime. That is why Friedman et al. [97] argued that one should “bet on sparsity”
regardless and hope that it is a reasonable approximation of the reality. This is known as adaptivity
in that an algorithm can perform provably better when some additional conditions are true.

The effect of these assumptions on privacy is unclear, mostly because there are no tools available
to analyze such adaptivity in privacy. Since differential privacy is a worst-case quantity — a
property of the randomized algorithm only (independent to the data) — it is unlikely that the
obtained privacy loss ε could accurately quantify the privacy protection on a given data set at hand.
It is always an upper bound, but the bound could be too conservative to be of any use in practice
(e.g., when ε = 100).

To make matter worse, the extent to which DP is conservative is highly problem-dependent. In
cases like, releasing counting queries, the ε clearly measures the correct information leakage,
since the sensitivity of such queries do not change with respect to the two adjacent data sets;
however, in the context of machine learning and statistical estimation (as we will show later), the
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ε of DP can be orders of magnitude larger than the actual limit of information leakage that the
randomized algorithm guarantees. That is why in practice, it is challenging even for experts of
differential privacy to provide a consistent recommendation on standard questions such as:

“What is the value of ε I should set in my application?”

In this chapter, we take a new “algorithm-centric” approach of analyzing privacy. Instead of design-
ing algorithms that take the privacy loss ε as an input, we consider a fixed randomized algorithm
and then analyze its privacy protection for every pair of adjacent data sets separately.

Our contribution is three-fold.

1. First, we develop per-instance differential privacy as a strict generalization of the standard
pure and approximate DP. It provides a more fine-grained description of the privacy protec-
tion for each target individual and a fixed data set. We show that it inherits many desirable
properties of differential privacy and can easily recover differential privacy for a given class
of data and target users.

2. Secondly, we quantify the per-instance sensitivity in a class of smooth learning problems
including linear and kernel machines. The result allows us to explicitly calculate per-instance
DP of multivariate Gaussian mechanism. For an appropriately chosen noise covariance,
the per-instance DP is proportional to the norm of the pseudo-residual in norm specified
by the Hessian matrix. In particular, in linear regression, the per-instance sensitivity for a
data point is proportional to its square root statistical leverage score and its leave-one-out
prediction error.

3. Lastly, we analyze the procedure of releasing one sample from the posterior distribution
(the OPS estimator) for ridge regression as an output perturbation procedure with a data
dependent choice of covariance matrix. We show using the pDP technique that, when con-
ditioning on a data set drawn from the linear regression model or having a well-conditioned
design matrix, OPS achieves (ε, δ)-pDP for while matching the Cramer-Rao lower bound
up to a 1 + Õ(n−1ε−2) multiplicative factor. OPS unfortunately cannot achieve DP with
a constant ε while remaining asymptotically efficient. We fixed that by a new algorithm
called ADAOPS , which provides (ε, δ)-DP and 1 + Õ(n−1ε−2)-statistical efficiency at the
same time.

5.1.1 Symbols and notations

Throughout the paper, we will use the standard notation in statistical learning. Data point
z ∈ Z . In supervised learning setting, z = (x, y) ∈ X × Y = Z . We use θ ∈ Θ to denote
either the predictive function X → Y or the parameter vector that specifies such a function.
` : Θ × Z → R to denote the loss function or in a statistical model, ` represents the negative
log-likelihood − log pθ(z). For example, in linear regression, X ⊂ Rd, Y ⊂ R, Θ ⊂ Rd and
`(θ, (x, y)) = (y − xT θ)2. We use A : Zn → PΘ to denote a randomized algorithm that outputs
a draw from a distribution defined on a model space. Capital Z denotes a data set, ε and ε(Z, z)
will be used to denote privacy loss.

87



5.2 Per-instance differential privacy

In this section, we define notion of per-instance differential privacy, and derive its properties. We
begin by restating and parsing the standard definition of differential privacy.
Definition 5.1 (Differential privacy [84]). We say a randomized algorithm A satisfies (ε, δ)-DP if
for all data set Z and data set Z ′ that can be constructed by adding or removing one row z from
Z,

Pθ∼A(Z)(θ ∈ S) ≤ eεPθ∼A(Z′)(θ ∈ S) + δ, ∀ measurable set S.

When δ = 0, this is also known as pure differential privacy, and it is much stronger because
for each data set Z, the protection holds uniformly over all privacy target z. When δ > 0, then
the protection becomes much weaker, in that the protection is stated for each privacy target
separately.

It is helpful to understand what differential privacy is protecting against — a powerful adversary
that knows everything in the entire universe, except one bit of information: whether a target z is
in the data set or not in the data set. The optimal strategy for such an adversary is to conduct a
likelihood ratio test (or posterior inference) on this bit, and differential privacy uses randomization
to limit the probability of success of such test [249].

In the above, we described the original “In-or-Out” version of DP definition (see, e.g., [80,
Definition 2.3, 2.4]). This is slightly different from the “Replace-One” version of the DP definition
that we used in Chapter ?? and 4 that preserves the cardinality of the data set and makes it more
convenient in those settings. The “replace-one” differential privacy protects against a slightly
stronger adversary who know data set Z except one row and can limit the possibility of the
unknown row to either z or z′. Again, this is only 1-bit of information that the adversary tries to
infer and the optimal strategy for the adversary is to conduct a likelihood ratio test. In this chapter,
we choose to work with the “In-or-Out” version of the differential privacy, although everything
we derived can also be stated for the alternative version of differential privacy.

Note that the adversary always knows Z and has a clearly defined target z, and it is natural to
evaluate the winnings and losses of the “player”, the data curator by conditioning on the same
data set and privacy target. This gives rise to the following generalization of DP.
Definition 5.2 (Per-instance Differential Privacy). For a fixed data set Z and a fixed data point z.
We say a randomized algorithm A satisfy (ε, δ)-per-instance-DP for (Z, z) if for all measurable
set S ⊂ Θ, it holds that

Pθ∼A(Z)(θ ∈ S) ≤ eεPθ∼A([Z,z])(θ ∈ S) + δ,

Pθ∼A([Z,z])(θ ∈ S) ≤ eεPθ∼A(Z)(θ ∈ S) + δ.

This definition is different from DP primarily because DP is the property of the A only and pDP
is the property of both A, Z and z. If we take supremum over all Z ∈ Zn and z ∈ Z , then it
recovers the standard differential privacy.

Similarly, we can define per-instance sensitivity for (Z, z).
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Definition 5.3 (per-instance sensitivity). LetH = Rd, for a fixed Z and z. The per-instance ‖ · ‖∗
sensitivity of a function f : Data→ Rd is defined as ‖f(Z)− f([Z, z])‖∗, where ‖ · ‖∗ could be
`p norm or ‖ · ‖A =

√
(·)TA(·) defined by a positive definite matrix A.

This definition also generalizes quantities in the classic DP literature. If we condition on Z but
maximize over all z, we get local-sensitivity [166]. If we maximize over all Z and z we get global
sensitivity [80, Definition 3.1]. These two are often infinite in real-life problems, but for fixed
data Z and target z to be protected, we could still get meaningful per-instance sensitivity.

Immediately, the per-instance sensitivity implies pDP for a noise adding procedure.
Lemma 5.4 (Multivariate Gaussian mechanism). Let θ̂ be a deterministic map from a data
set to a point in Θ, e.g., a deterministic learning algorithm, and let the A-norm per-instance
sensitivity ∆A(Z, z) be ‖θ̂([Z, z])− θ̂(Z)‖A. Then adding noise with covariance matrix A−1/γ
obeys (ε(Z, z), δ)-pDP for any δ > 0 with

ε(Z, z) = γ∆A(Z, z)
√

log(1.25/δ).

The proof, which is standard and we omit, simply verifies the definition of (ε, δ)-pDP by calculat-
ing a tail bound of the privacy loss random variable and invokes Lemma 5.25.

5.2.1 Properties of pDP

We now describe properties of per-instance DP, which mostly mirror those of DP.
Fact 5.5 (Strong protection against identification). Let A obeys (ε, δ)-pDP for (Z, z), then for
any measurable set S ⊂ Θ where min{Pθ∼A(Z)(θ ∈ S),Pθ∼A(Z)(θ ∈ S)} ≥ δ/ε then given any
side information aux

−2ε ≤ log
Pθ∼A(Z)(θ ∈ S|aux)

Pθ∼A([Z,z])(θ ∈ S|aux)
≤ 2ε.

Proof. Note that after fixing Z, θ is a fresh sample from A(Z), as a result, θ ⊥⊥ aux|Z. The
claimed fact then directly follows from the definition.

Note that the log-odds ratio measures how likely one is able to tell one distribution from another
based on side information and an event S of the released result θ. When the log-odds ratio is close
to 0, the outcome θ is equally likely to be drawn from either distributions.
Fact 5.6 (Convenient properties directly inherited from DP). For each (Z, z) separately we have:

1. Simple composition: Let A and B be two randomized algorithms, satisfying (ε1, δ1)-pDP,
(ε2, δ2)-pDP, then (A,B) jointly is (ε1 + ε2, δ1 + δ2)-pDP.

2. Advanced composition: Let A1, ...,Ak be a sequence of randomized algorithms, where Ai
could depend on the realization ofA1(Z), ...,Ai(Z), each with (ε, δ)-pDP, then jointlyA1:k

obeys O(
√
k log(1/δ)ε), O(kδ)-pDP.

3. Closedness to post-processing: If A satisfies (ε1, δ1)-pDP, for any function f , f(A(·)) also
obeys (ε1, δ1)-pDP.
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4. Group privacy: If A obeys (ε, δ)-pDP with ε, δ parameterized by (Data,Target), then

Pθ∼A(Z)(θ ∈ S) ≤ eε(Z,z1)+ε([Z,z1],z2)+...+ε([Z,z1:k−1],zk)Pθ∼A([Z,z1:k])(θ ∈ S) + δ̃.

Pθ∼A([Z,z1:k])(θ ∈ S) ≤ eε(Z,z1)+ε([Z,z1],z2)+...+ε([Z,z1:k−1],zk)Pθ∼A(Z)(θ ∈ S) + δ̃.

for δ̃ =
∑

i=1:k

[
δ([Z, z1:i−1], zi)

∏
j=1:i−1 e

ε([Z,z1:j−1],zj)
]
.

Proof. These properties all directly follow from the proof of these properties for differential
privacy (see e.g., [80]), as the uniformity over data sets is never used in the proof. The only
property that gets slightly different for the new definition is group privacy, since the size of the
data set changes as the size of the privacy target (now a fixed group of people) gets larger. The
claim follows from a simple calculation that repeatedly apply the definition of pDP for a different
(Z, z).

5.2.2 Moments of pDP, generalization and domain adaptation

One useful notion to consider in practice is to understand exactly how much privacy is provided for
those who participated in the data sets. This is practically relevant, because if a cautious individual
decides to not submit his/her data, he/she would necessarily do it by rejecting a data-usage
agreement and therefore the data collector is not legally obligated to protect this person and in
fact does not have access to his/her data in the first place. After all, the only type of identification
risk that could happen to this person is that the adversary can be quite certain that he/she is not
in the data set. For instance, in a study of graduate student income, a group of 200 students are
polled and their average income is revealed with some small noise added to it. While an adversary
can be almost certain based on the outcome that Bill Gates did not participate in the study, but
that is hardly a any privacy risk to him. One advantage of pDP is that it offers a very natural way
to analyze and also empirically estimate any statistics of the pDP losses over a data set or over a
distribution of data points corresponding to a fixed randomized algorithm A.
Definition 5.7 (Moment pDP for a distribution). Let (Z, z) be drawn from some distribution (not
necessarily a product distribution) P , it induces a distribution of ε(Z, z). Then we say that the
distribution obeys kth moment per-instance DP with parameter vector (Eε,E[ε2], ...,E[εk], δ).

For example, one can treat the problem of estimating privacy loss for a fixed data set Z by
choosing P to be a discrete uniform distribution supported on {(Z−i, zi)}ni=1 with probability 1/n
for each i. Taking k = 2 allows us to calculate mean and variance of the privacy loss over the data
set.

Similarly, if the data set is drawn iid from some unknown distributionD— a central assumption in
statistical learning theory — then we can take P = Dn−1 ×D. This allows us to use the moment
of pDP losses to capture on average, how well data points drawn fromD are protected. It turns out
that this also controls generalization error, and more generally cross-domain generalization.
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Definition 5.8 (On-average generalization). Under the standard notations of statistical learning,
the on average generalization error of an algorithm A is defined as

Gen(A,D, n) =

∣∣∣∣∣EZ∼Dn,z∼DEθ∼A(Z)
1

n

n∑

i=1

`(θ, zi)− `(θ, z)

∣∣∣∣∣

Proposition 5.9 (Moment pDP implies generalization). Assume bounded loss function 0 ≤
`(θ, z) ≤ 1. Then the on-average generalization is smaller than

EZ∼Dn(Ez∼D[eε(Z,z)|Z])2 − 1 + EZ∼Dn,z∼Dδ(Z, z) + (EZ∼DnEz∼D[eε(Z,z)|Z]Ez∼D[δ(Z, z)|Z].

Note that this can also be used to capture the privacy and generalization of transfer learning
(also known as domain adaptation) with a fixed data set or a fixed distribution. Let the training
distribution be D and target distribution be D′,
Take P = Dn ⊗D′ or P = δZ ⊗D′. In practice, this allows us to upper bound the generalization
to the Asian demographics group, when the training data is drawn from a distribution that is
dominated by white males (e.g., the current DNA sequencing data set). We formalize this idea as
follows.
Definition 5.10 (Cross-domain generalization). Assume 0 ≤ `(θ, z) ≤ 1. The on-average cross-
domain generalization with base distribution D to target distribution D′ is defined as:

Gen(A,D,D′, n) ≤
∣∣∣∣∣EZ∼Dn,z∼D′Eθ∼A(Z)

[
1

n

n∑

i=1

ρi`(θ, zi)− `(θ, z)

]∣∣∣∣∣ .

where ρi = D′(zi)/D(zi) is the inverse propensity (or importance weight) to account for the
differences in the two domains.
Proposition 5.11. The cross-domain on-average generalization can be bounded as follows:

Gen(A,D,D′, n) = EZ∼Dn−1,{z′}∼D,z′′∼D′ [(e
ε(Z,z′)+ε(Z,z′′) − 1) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)]

The expressions in Proposition 5.9 and 5.11 are a little complex, we will simplify it to make it
more readable.
Corollary 5.12. Let supZ,z δ(Z, z) ≤ δ, and ED[e2ε(Z,z)] ≤ 1 and for simplicity, we write
EZ∼Dn,z∼Dε(Z, z) = EDf and EZ∼Dn,z∼D′ε(Z, z) = ED′f . Then the cross domain on-average
generalization is smaller than

1

2
[EDe2ε + ED′e2ε]− 1 + 2δ =

1

2

[
∞∑

i=1

2i

i!
EDεi + ED′εi

]
+ 2δ.

5.2.3 Related notions

We now compare the proposed privacy definition with existing ones in the literature. Most
attempts to weaken differential privacy aims at more careful accounting of privacy loss by treating
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the ε = log[p(θ)/p′(θ)] as a random variable. This produces nice connection of (ε, δ)-DP to
concentration inequalities and in particular, it produces advanced composition of privacy loss
via Martingale concentration. More recently, the idea is extended to defining weaker notions of
privacy such as concentrated-DP [43, 81] and Rényi-DP [160] that allows for more fine-grained
understanding of Gaussian mechanisms. Our work is complementary to this line of work, because
we consider adaptivity of ε to a fixed pair of data-set and privacy target, and in some cases, ε being
a random variable jointly parameterized by Z, z and θ. We summarize the differences of these
definitions in the following table. It is clear from the table that if we ignore the differences in

Data set private target probability metric parametrized by
Pure-DP[84] supZ supz D∞(P‖Q) A only

Approx-DP[83] supZ supz Dδ
∞(P‖Q) A only

(z/m)-CDP[43, 81] supZ supz DsubG(P‖Q) A only
Rényi-DP[160] supZ supz Dα(P‖Q) A only

Personal-DP[88, 147] supZ fixed z Dδ
∞(P‖Q) A and z

TV-privacy[14] supZ supz ‖P −Q‖TV A only
KL-privacy[14] supZ supz DKL(P‖Q) A only

On-Avg KL-privacy[247] EZ∼Dn Ez∼D DKL(P‖Q) A and D
Per-instance DP fixed Z fixed z Dδ

∞(P‖Q) A, Z and z

Table 5.1: Comparing variances of differential privacy.

the probability metric used, per-instance DP is arguably the most general, and adaptive, since it
depends on specific (Z, z) pairs.

The closest existing definition to ours is perhaps the personalized-DP, first seen in Ebadi et al.
[88], Liu et al. [147]. It also tries to capture a personalized level of privacy. The difference is
that personalized-DP requires the sensitivity of the private target to hold globally for all data
sets.

On-Avg KL-privacy is also an adaptive quantity that measures the average privacy loss when
the individuals in the data set and private target are drawn from the same distribution D. pDP
on the other hand measures the approximate worst-case privacy for a fixed (Z, z) pair that is
not necessarily random. Not surprisingly, on-Avg KL-privacy and expected per-instance DP are
intricately related to each other, as the following remark suggests.
Remark 5.13. Let A(Z) = f(Z) +N (0, σ2I), namely, Gaussian noise adding. Then On-avg
KL-privacy is

EZ∼Dn,z∼DDKL(p(θ|Z)‖pθ|Z′) = EZ,Z′∼Dn‖f(Z)− f([Z−1, z])‖2/σ2.

Second moment of per-instance DP is

EZ∼Dn,z∼D



(

∆2f(Z)
√

1.25/δ

σ

)2

 = EZ∼Dn,z∼D‖f(Z)− f([Z, z])‖2 log(1.25/δ)/σ2.
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The two notions of privacy are almost equivalent. They differ only by a logarithmic term and
by a minor change in the way perturbation is defined. In general, for Gaussian mechanism,
ε-KL-privacy implies (

√
ε log(1.25/δ), δ)-DP for any δ.

5.3 Per-instance sensitivity in smooth learning problems

In this section, we present our main results and give concrete examples in which per-instance
sensitivity (hence per-instance privacy) can be analytically calculated. Specifically, we consider
following regularized empirical risk minimization form:

θ̂ = argmin
θ

∑

i

`(θ, zi) + r(θ). (5.1)

or in the non-convex case, finding a local minimum. `(θ, z) and r(θ) are the loss functions and
regularization terms. We make the following assumptions:

A.1. ` and r are differentiable in argument θ.

A.2. The partial derivatives are absolute continuous, i.e., they are twice differentiable almost
everywhere and the second order partial derivatives are Lebesgue integrable.

Our results under these assumptions will cover learning problems such as linear and kernel ma-
chines as well as some neural network formulations (e.g., multilayer perceptron and convolutional
net with sigmoid/tanh activation), but not non-smooth problems like lasso, `1-SVM or neural
networks ReLU activation. We also note that these conditions are implied by standard assumptions
of strong smoothness (gradient Lipschitz) and do not require the function to be twice differentiable
everywhere. For instance, the results will cover the case when either ` or r is a Huber function,
which is not twice differentiable.

Technically, these assumptions allow us to take Taylor expansion and have an integral form of the
remainder, which allows us to prove the following stability bound.
Lemma 5.14. Assume ` and r satisfy Assumption A.1 and A.2. Let θ̂ be a stationary point
of
∑

i `(θ, zi) + r(θ), θ̂′ be a stationary point
∑

i `(θ, zi) + `(θ, z) + r(θ) and in addition, let
ηt = tθ̂ + (1− t)θ̂′ denotes the interpolation of θ̂ and θ̂′. Then the following identity holds:

θ̂ − θ̂′ =
[∫ 1

0

(∑

i

∇2`(ηt, zi) +∇2`(ηt, z) +∇2r(ηt)

)
dt

]−1

∇`(θ̂, z)

= −
[∫ 1

0

(∑

i

∇2`(ηt, zi) +∇2r(ηt)

)
dt

]−1

∇`(θ̂′, z).

The proof uses first order stationarity condition of the optimal solution and apply Taylor’s theorem
on the gradient. The lemma is very interpretable. It says that the perturbation of adding or
removing a data point can be viewed as a one-step quasi-newton update to the parameter. Also
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note that∇`(θ̂′, z) is the “score function” in parametric statistical models, and is called a “pseudo-
residual” in gradient boosting [see e.g., 97, Chapter 10].

The result implies that the per-instance sensitivity in ‖ · ‖A for some p.d. matrix A can be stated
in terms of certain norm of the “score function” specified by a quadratic form H−1AH−1, and
therefore by Lemma 5.4, the output perturbation algorithm:

θ̃ ∼ N (θ̂(X), A−1/γ), (5.2)

obeys (ε, δ)-pDP for any δ > 0 and

ε(Z, z) =

√
∇`(θ̂′, z)TH−1AH−1∇`(θ̂′, z) log(1.25/δ). (5.3)

This is interesting because for most loss functions the “score function” is often proportional to
the prediction error of the fitted model θ̂′ on data point z and this result suggests that the more
accurately a model predicts a data point, the more private this data point is. This connection is
made more explicit when we specialize to linear regression and the per-instance sensitivity

∆A(Z, z) = |y−xT θ̂|
√
xT ([X ′]TX ′)−1A([X ′]TX ′)−1x = |y−xT θ̂′|

√
xT (XTX)−1A(XTX)−1x.

(5.4)
is clearly proportional to prediction error. In addition, when we choose A ≈ XTX , the sec-
ond term becomes either µ := xT ([X, x]T [X, x])−1x or µ′ := xT (XTX)−1x, which are “in-
sample” and “out-of-sample” statistical leverage scores of x. Leverage score measures the
importance/uniqueness of a data point relative to the rest of the data set and it is used extensively
in regression analysis [53] (for outlier detection and experiment design), compressed sensing (for
adaptive sampling) [208] and numerical linear algebra (for fast matrix computation)[73]. For
the best of our knowledge, this is the first time leverage scores are shown to be connected to
differential privacy.

5.4 Case study: The adaptivity of OPS in ridge regression

So far we have described output perturbation algorithms with a fixed noise adding procedure.
However in practice it is not known ahead of time how to choose A. Assume all x are normalized
to ‖x‖ = 1, denote µ2(x) := xT (XTX)−2x, µ1(x) := xT (XTX)−1x. We discuss the pros and
cons of the three natural choices.

• A ≈ λminI: This corresponds to the standard `2-sensitivity and it adds an isotropic noise and
provides a uniform guarantee for all data-target pairs where XTX has smallest eigenvalue
λmin, because supx

√
µ2(x) ≤ 1/λmin, but it adds more noise than necessary for those with

much smaller µ2(x).

• A ≈ (XTX)2: We call this the “democratic” choice conditioned on the data set, as it
homogenizes the “leverage” part of the per-instance sensitivity of points to ‖x‖ = 1 so any
x gets about the same level of privacy. It however is not robust to if our data-independent
choice of A is in fact far away from the actual (XTX)2.
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• A ≈ XTX: We call this the “Fisher”-choice, because the covariance matrix will be
proportional to the inverse Fisher information, which is the natural estimation error of θ̂
under the linear regression assumption. The advantage of this choice is that conducting
statistical inference, e.g., t-test and ANOVA for linear regression coefficients would be
trivial.

In fact, for linear and ridge regression, the third choice is closely related to the one-posterior-
sampling (OPS) mechanism proposed in [64, 245] with an important difference being that in OPS,
A is not fixed, but rather depends on the data. As a result, Lemma 5.4 does not work. In fact,
if the data-target can be arbitrary and r = 0, the data-independent choice of A could imply an
unbounded ε (consider an arbitrarily near singular X and x in its null space).

Indeed, existing analysis of OPS requires additional assumption. [245] assumes that the loss
function is bounded (by modifying it or constraining the domain Θ) so that the exponential
mechanism [156] would apply. It was later pointed out in [96] that OPS is asymptotically
inefficient in that it has an asymptotic relative efficiency (ARE) inversely proportional to ε, while
simple sufficient statistics perturbation can achieve asymptotic efficiency comparable to [201].
This is far from satisfactory.

Based on insight from pDP, we propose a direct analysis of OPS which reveals that if (ε, δ)-DP is
all we need, then OPS is also asymptotically efficient under the same data assumption in [96]. In
addition, it effectively converges to the “Fisher”-choice of noise adding in the same asymptotic
regime and offers dimension and condition number independent expected pDP loss.

The first result calculates the pDP loss of OPS.
Theorem 5.15 (The adaptivity of OPS in Linear/Ridge Regression). Consider the algorithm that
samples from

p(θ|X,y) ∝ e−
γ
2 (‖y−Xθ‖2+λ‖θ‖2).

Let θ̂ and θ̂′ be the ridge regression estimate with data set X × y and [X, x]× [y, y] and defined
the out of sample leverage score µ := xT (XTX + λI)−1x = xTH−1x and in-sample leverage
score µ′ := xT [(X ′)TX ′+ λI]−1x = xT (H ′)−1x. Then for every δ > 0, privacy target (x, y), the
algorithm is (ε, δ)-pDP with

ε(Z, z) ≤1

2

∣∣∣∣− log(1 + µ) +
γµ

(1 + µ)
(y − xT θ̂)2

∣∣∣∣+
µ

2
log(2/δ) +

√
γµ log(2/δ)|y − xT θ̂|

(5.5)

=
1

2

∣∣∣∣− log(1− µ′)− γµ′

1− µ′ (y − x
T θ̂′)2

∣∣∣∣+
µ′

2
log(2/δ) +

√
γµ′ log(2/δ)|y − xT θ̂′|.

(5.6)

The two equivalent upper bounds are both useful. (5.5) is ideal for calculating pDP when x is not
in the data set and (5.6) is perfect for the case when x is in the data set.
Remark 5.16. The bound (5.5) can be simplified to

µ

2
(1 + log(2/δ)) +

1

2
γmin(µ, 1)|y − xT θ̂′|2 +

√
γµ log(2/δ)|y − xT θ̂′|.
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If µ = o(log(2/δ))1 and we choose γ such that
√
γµ′ log(2/δ)|y− xT θ̂′| ≤ 1, then the bound can

be simplified to
ε(Z, z) ≤ 2

√
γµ log(2/δ)|y − xT θ̂|+ o(1).

This matches the order of Gaussian mechanism with a fixed (data-independent) covariance matrix.

The results in [96] are stated for general exponential family models under a set of assumptions
that translate into the following for linear regression:

(a) data x1, ..., xn is drawn i.i.d. from D supported on X where X ⊂ B‖·‖2(1).

(b) population covariance matrix m
d
I � EDxxT � M

d
I for constant m and M ,

(c) yi ∼ N (xTi θ0, σ
2) for some θ0.

To simplify the presentation, we also assume n scales with respect to d such that

(d) with high probability, XXT � mn
2d
I .

The last assumption measures how quickly the empirical covariance matrix 1
n
XXT concentrates

to Ex∼DxxT . It has been shown that if X is an appropriately scaled subgaussian random matrix,
this happens with probability 1− n−10 whenever n > max(10d, 10d−2/3 log n).
Proposition 5.17. The sequence of OPS algorithm with parameter γn, λn obeys the following
properties.

1. pDP and DP in agnostic setting. Assume ‖x‖ ≤ 1 for every x ∈ X . The algorithm obeys
(εn, δ)-pDP, for each data set (X,y) and target (x, y),

εn =

√
γn log(2/δ)

λn + λmin

|y − xT θ̂|+ γn|y − xT θ̂|2
2 max{λn + λmin, 1}

+
γn(1 + log(2/δ))

2(λn + λmin)
. (5.7)

If we further assume |y| < 1, then sup(X,y),(x,y) |y−xT θ̂| = 1+n1/2λ
−1/2
n and the algorithm

obeys (εn, δ)-DP with

εn =

√
2(n+ λn)γn log(2/δ)

λ2
n

+
2(n+ λn)γn
λn max{1, λn}

+
γn(1 + log(2/δ))

2λn
. (5.8)

2. pDP under model assumption. Assume conditions (a)(b)(c)(d) above are true, and also
γn = ω(1), λn = o(

√
n). Then with high probability over the joint distribution of (X,y),

the algorithm with γn ≤ 4n log(2/δ)
max{d,(1+log(2/δ))2} obeys (εn, δ)-pDP with

εn =





O

(√
(1+‖θ0‖)2dγn

mn
log(2

δ
)

)
for all (x,y) satisfying ‖x‖ = O(1) and y = O(1).

O

(√
σ2dγn
mn

log(2
δ
) log( 2

δ′
)

)
for any x ∈ X with probability 1− δ′ over y ∼ N (θT0 x, σ

2).

1 This is not an unrealistic assumption because µ and µ′ are o(1) as long as x is bounded and the minimum
eigenvalue of XTX + λI is ω(1). This is required for (agnostic) linear regression to be consistent and is implied by
the condition that the the population covariance matrix 1

nEX
TX is full rank.

96



Moreover, with probability 1− nδ′ over the conditional distribution y|X , the privacy loss
of (x1, y1), ..., (xn, yn) obeys

1

n

n∑

i=1

εn
(
(X,y), (xi, yi)

)2
= O

(σ2dγn
n

log(2/δ) log(2/δ′)
)
,

which does not depend on m — the smallest eigenvalue of dXTX/n.

3. Statistical efficiency. for every realization of data setX such that n > d and let the smallest
eigenvalue of XTX be λmin, then

Ey∼N (Xθ0,σ2In)

[
‖θ̃ − θ0‖2

∣∣∣X
]

= σ2tr[(XTX+λnI)−1](1+γ−1
n )+λ2

n‖(XTX+λnI)−1θ0‖2

If λmin = Ω(d/n) ( this is true with high probability under assumption (b)(d)) Then we get

Ey∼N (Xθ0,σ2In)

[
‖θ̃ − θ0‖2

∣∣∣X
]

= σ2tr[(XTX + λnI)−1](1 + γ−1
n ) +O(

λ2
nd

2‖θ0‖2

n2
)

In other word, the estimator is asymptotically efficient, for all λn = o(n1/2) and γn = ω(1).

We now discuss a few aspects of the above results.

pDP vs DP in agnostic setting. Firstly, it highlights the key advantage of pDP over DP. DP is
not able to take advantage of desirable structures in the data set, while pDP provides a principled
framework to handle them.

In particular, let us compare the pDP and DP in the agnostic setting, for the OPS that uses the same
randomization. DP measures something that is completely data independent, and corresponds
specifically to a contrivedly constructed data set (X,y) such that y is an eigenvector of XXT

corresponding to a specific eigenvalue of magnitude
√
λn, this makes ‖θ̂‖2 as large as

√
n/
√
λn.

Moreover, a target data point is chosen so that x match the direction of θ̂. While this is a legitimate
construction in theory, but it does not directly correspond to the specific data set that a statistician
just spent two years collecting, and it is unreasonable that he/she will have to calibrate the amount
of noise to inject to provide more reasonable protection to a pathological case that has nothing to
do with the reality.

pDP on the other hand, makes it possible for the statistician to condition on the data set. If the
statistician finds out that ‖θ̂‖2 = O(1), then the pDP loss is as small as

√
γn log(2/δ)/λn for

everyone in the population. With γn = nα/2 and λn = n1/2−α/2 for any α > 0, the algorithm
remains to be statistically efficient with an ARE of (1 + n−α) yet can provide a strong privacy
guarantee of εn = n−1/4+α/2. If in addition, the statistician realized that the data set is well-
conditioned, that is, the maximum and minimum eigenvalue of XTX are on the same order of
n/d, then we can further improve the bound by replacing λn with λmin + λn. The statistician can
happily get away with the same privacy guarantee (εn = n−1/4) while not having to add too much
noise or even regularize at all (setting γn = n1/2 and λn = 0). Note that the condition number
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is a desirable property that governs how reliably one can hope to estimate the linear regression
coefficients using the given data set.

We would like to emphasize that the pDP guarantee in the wo cases we discussed above applies to
everyone in the population {(x, y)|‖x‖ ≤ 1, |y| ≤ 1}, therefore such (ε, δ)-pDP guarantee is as
powerful as (ε, δ)-DP after the data set is collected.

pDP of all vs average pDP on the data set. Secondly, unlike DP which always provides a
crude upper bound for everyone, pDP is able to reflect the differences in the protection of different
target person. Under the model assumption, the average privacy loss of people in the data set, is
scale-invariant and interestingly, also independent to the condition number (smallest eigenvalue).
It is a factor of (1 + |θ0|)2/m times smaller than the pDP guarantee for everyone in the population.
This is significant for finite sample performance since (1 + ‖θ0‖)/m (although they do not change
with n), can be quite large.

pDP under covariate shift. Lastly, if we consider a setting in between the above two, where the
target x can be drawn from any distribution defined on X that could be arbitrarily different from
the training data distribution, then the scale-invariant property remains (the factor of (1 + ‖θ0‖)
is dropped). This is relevant in causal learning when the E(y|x) is specified by some physical
principles that’s invariant to the distribution of x. In this case, the moments of the pDP would imply
a much stronger notion of cross-domain generalization than what we show in Proposition 5.11
since it does not depend on target covariate distribution of interest.

Improved DP guarantee for OPS. The proposition also improves the existing analysis for
the OPS algorithm as a byproduct. The first statement shows that OPS preserves a meaningful
(almost constant) differential privacy when γn = 1 and λn =

√
n/d without requiring a constant

boundedness in the domain Θ or clipping the loss function like in Wang et al. [245]. As a matter
of fact, the ridge regression solution θ̂ could be in a ball of radius Θ(n1/4), and even if we impose
the smallest domain bound that covers θ̂, by exponential mechanism, the algorithm only obeys
a pure O(n1/2)-DP, in contrast to the (O(log(1/δ)), δ)-DP that we showed in the proposition
above.

Despite the improvement, the DP guarantee is still a little unsatisfactory. If we require (ε, δ)-DP
with constant ε, then the OPS algorithm with λn =

√
n is not asymptotically efficient (although it

does achieve the optimal O(1/n) rate).

Meanwhile, there are algorithms that attain asymptotic efficiency either by subsample-and-
aggregate [201] or by simply adding noise to the sufficient statistics [82, 96].

So the question becomes: can we modify OPS such that it become asymptotically efficient with
(εn, δ)-differentially private with εn = o(1)?

We address this issue in the next section.
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5.5 Statistical efficient linear regression with differential pri-
vacy using ADAOPS

In this section, we resolve the dilemma described earlier using the idea of Dwork and Lei [79]. The
new algorithm, which we call ADAOPS , adaptively and differentially privately chooses the tuning
parameter λn and γn according to properties of the data set and privacy requirement. A pseudocode
of ADAOPS is given in Algorithm 6. We acknowledge that the same idea of adaptively adding
regularization term is not new and had been used by Blocki et al. [35], Kifer et al. [128], Sheffet
[197] for analyzing other related differentially private algorithms. Our contribution here is only to
assemble the ideas together into a working algorithm.

Algorithm 6 ADAOPS : One-Posterior Sample estimator with adaptive regularization
input Data X , y. Privacy target: ε, δ. And parameter κ satisfying κ ≤ nε

4d(1+log(4/δ))

1. Calculate the minimum eigenvalue λmin(X
TX).

2. Private release λ̃min = λmin +

√
log(4/δ)

ε/2
Z, where Z ∼ N (0, 1).

3. Get one sample
θ̃ ∼ P(θ|X,y) ∝ e−

γn
2 (‖y−Xθ‖2+λn‖θ‖2)

with parameter

λn = min

{
0,
n

dκ
− λ̃min +

log(4/δ)

ε/2

}

γn = min

{
nε2

16κ2d2 log(4/δ)
,
nε

8κ2d2

}

output θ̃

The κ parameter is the largest acceptable condition number in the data set. Often it can be
determined independent to the data. It is used in the algorithm to rule out the pathological case.
We now analyze the properties of ADAOPS .
Proposition 5.18. 1. Assume data domain is ‖x‖2 ≤ 1 and |y| ≤ 1. The ADAOPS estimator

preserves (ε, δ)-DP.

2. If assumption (a)(b)(c) is true and in addition for the specific realization of X ,

λmin(XTX) >
n

κd
+

√
log(10n) log(4/δ)

ε/2

(which is true with high probability if m > 2/κ and X is an appropriately scaled subgaus-
sian random matrix), then, we have

E[‖θ̃ − θ0‖2|X] = [1 + γn]σ2tr[(XTX)−1] +O(n−10)‖θ0‖2.

In other word, since γn ≤ min{κ2d2 log(4/δ)
nε2

, κ
2d2

nε
}, the ADAOPS estimator achieves asymp-

totic efficiency whenever ε obeys that min{nε2, sε} = o(κ2d2 log(4/δ)/n).
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Figure 5.1: Left: (ε, δ)-DP and distribution of (ε(z, Z), δ)-pDP data points in linear regression
with isotropic Gaussian noise adding. Right: Comparing the pDP privacy loss to the ε-DP
obtained through exponential mechanism [245] using the same posterior sampling algorithm. In
both experiment δ = 1e− 6.

This proposition reveals that ADAOPS improves over previous results in the literature [96, 201]
in several ways. First of all, we only need nε2 = o(1) to achieve asymptotic efficiency. In
contrast, [96] does not provide non-asymptotic results with explicit dependence and [201]’s
bound for the subsample-and-aggregate method requires n−1/5ε−6/5 = o(1) to achieve asymptotic
efficiency.

Secondly, both [96] and [201] suffer from additional polynomial dependence on the dimension
in the supposedly lower order term, and that affects finite sample performance. While we
haven’t yet solved the problem, we managed to slightly improve the dimension dependence. In
particular, our bound on the additive difference from exactly matching the Cramer-Rao lower
bound of (σ2tr((XTX)−1)) translates into σ2tr[(XTX)−1] + d3/(n2ε2). In contrast, there is a
clear dependence of d5/n2ε2 in the sufficient statistics perturbation approach2 and even higher
polynomial dependence in the subsample-and-aggregate approach.

We conclude the section with two simulate experiments (shown in the two panes of Figure 5.1).
In the first experiment, we consider the algorithm of adding isotropic Gaussian noise to linear
regression coefficients, and then compare the worst-case DP and the distribution of per-instance DP
for points in the data set (illustrated as box plots). In the second experiment, we compare different
notions of privacy to utility (measured as excess risk) of the fixed algorithm that samples from a
scaled posterior distribution. In both cases, the average per-instance differential privacy over the
data sets is several orders of magnitude smaller than the worst-case differential privacy.

2This comes from the iid noise with standard deviation proportional to
√
d2 log(2/δ)/ε added to XTX to obtain

(ε, δ)-DP, which results in a random noise matrix E1 with average eigenvalue not smaller than d1.5. By Lemma 5.20,
we see that the difference of the OLS solution on the noisy sufficient statistics θ̃ and that on the true sufficient statistics
θ̂ is (XTX + E1)−1(E2 − E1), which if we assume ‖θ̂‖2 and a well-conditioned X , gives rise to an MSE on the
order of σ2tr[(XTX)−1] +O(d5/n2ε2).
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5.6 Conclusion

In this chapter, we proposed to use per-instance differential privacy (pDP) for quantifying the
fine-grained privacy loss of a fixed individual against randomized data analysis conducted on a
fixed data set. We analyzed its properties and showed that pDP is proportional to well-studied
quantities, e.g., leverage scores, residual and pseudo-residual in statistics and statistical learning
theory. This formalizes the intuitive idea that the more one can “blend into the crowd” like a
chameleon, the more privacy one gets; and that the better a model fits the data, the easier it
is to learn the model differentially privately. Moreover, the new notion allows us to conduct
statistical learning and inference and take advantage of desirable structures of the data sets to gain
orders-of-magnitude more favorable privacy guarantee than the worst case. This makes it highly
practical in applications.

Specifically, we conducted a detailed case-study on linear regression to illustrate how pDP can
be used. The pDP analysis allows us to identify and account for key properties of the data set,
like the well-conditionedness of the feature matrix and the magnitude of the fitted coefficient
vector, thereby provides strong uniform differential privacy coverage to everyone in the population
whenever such structures exist. As a byproduct, the analysis also leads to an improved differential
privacy guarantee for the OPS algorithm [64, 245] and also a new algorithm called ADAOPS that
adaptively chooses the regularization parameters and improves the guarantee further. In particular,
ADAOPS achieves asymptotic statistical efficiency and differential privacy at the same time with
stronger parameters than known before.

The introduction of pDP also raises many open questions for future research. First of all, how
do we tell individuals what their εs and δs of pDP are? This is tricky because the pDP loss itself
is a function of the data, thus needs to be privatized against possible malicious dummy users.
Secondly, the problem gets substantially more interesting when we start to consider the economics
of private data collection. For instance, what happens if what we tell the individuals would affect
their decision on whether they will participate in the data set? In fact, it is unclear how to provide
an estimation of pDP in the first place if we are not sure what would the data be at the end of
the day. Thirdly, from the data collector’s point of view, the data is going to be “easier” and
the model will have a better “goodness-of-fit” on the collected data, but that will be falsely so
to some extent, due to the bias incurred during data collection according to pDP. How do we
correct for such bias and estimate the real performance of a model on the population of interest?
Addressing these problems thoroughly would require the joint effort of the community and we
hope the exposition in this chapter will encourage researchers to play with pDP in both theory and
practical applications.

5.7 Proofs of technical results

Proof of Proposition 5.9. We first show that implies on-average stability and then on-average
stability implies on-average generalization.
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Let Z ′ = [Z, z′], Z ′′ = [Z, z′′] and fix z. We first prove stability. Let S = θ|p(θ) ≥ p′(θ)

∣∣Eθ∼A(Z′)`(θ, z)− Eθ∼A(Z′′)`(θ, z)
∣∣

= sup
θ,z

`(θ, z)[PZ′(θ ∈ S)− PZ′′(θ ∈ S)]

≤eε(Z,z′)PZ(θ ∈ S) + δ((Z, z′))− PZ′′(θ ∈ S)

≤(eε(Z,z
′)+ε(Z,z′′) − 1)PZ′′(θ ∈ S) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)

≤(eε(Z,z
′)+ε(Z,z′′) − 1) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)

Note that the bound is independent to z.

Now we will show stability implies generalization using a “ghost sample” trick in which we
resample Z ′ ∼ Dn and construct Z(i) by replacing the ith data point from the ith data point of Z ′.

∣∣∣∣∣EZ∼Dn
(
Eθ∼A(Z)Ez∼D`(θ, z)− Eθ∼A(Z)

1

n

n∑

i=1

`(θ, zi)

)∣∣∣∣∣

=

∣∣∣∣∣EZ∼Dn,{z′1,...,z′n}∼Dn
(

1

n

n∑

i=1

Eθ∼A(Z)`(θ, z
′
i)−

1

n

n∑

i=1

Eθ∼A(Z(i))`(θ, z
′
i)

)∣∣∣∣∣

≤EZ∼Dn,{z′1,...,z′n}∼Dn
1

n

n∑

i=1

∣∣Eθ∼A(Z)`(θ, z
′
i)− Eθ∼A(Z(i))`(θ, z

′
i)
∣∣

≤EZ∼Dn−1,{z′,z′′}∼D2 [(eε(Z,z
′)+ε(Z,z′′) − 1) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)]

The last step simply substitutes the stability bound. Take expectation on both sides, we get a
generalization upper bound of form:

ξ = EZ∼Dn(Ez∼D[eε(Z,z)|Z])2−1+EZ∼Dn,z∼Dδ(Z, z)+(EZ∼DnEz∼D[eε(Z,z)|Z]Ez∼D[δ(Z, z)|Z].

Proof of Proposition 5.11. The stability argument remains the same, because it is applied to a
fixed pair of (Z, z). We will modify the ghost sample arguments with and additional change of
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measure.
∣∣∣∣∣EZ∼Dn

(
Eθ∼A(Z)Ez∼D′`(θ, z)− Eθ∼A(Z)

1

n

n∑

i=1

ρ(zi)`(θ, zi)

)∣∣∣∣∣

=

∣∣∣∣∣EZ∼Dn
(
Eθ∼A(Z)Ez∼Dρ(z)`(θ, z)− Eθ∼A(Z)

1

n

n∑

i=1

ρ(zi)`(θ, zi)

)∣∣∣∣∣

=

∣∣∣∣∣EZ∼Dn,{z′1,...,z′n}∼Dn
(

1

n

n∑

i=1

Eθ∼A(Z)ρ(z′i)`(θ, z
′
i)−

1

n

n∑

i=1

Eθ∼A(Z(i))ρ(z′i)`(θ, z
′
i)

)∣∣∣∣∣

≤EZ∼Dn,{z′1,...,z′n}∼Dn
1

n

n∑

i=1

ρ(z′i)
∣∣Eθ∼A(Z)`(θ, z

′
i)− Eθ∼A(Z(i))`(θ, z

′
i)
∣∣

≤EZ∼Dn−1,{z′,z′′}∼D2ρ(z′′)[(eε(Z,z
′)+ε(Z,z′′) − 1) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)]

=EZ∼Dn−1,z′∼D,z′′∼D′ [(e
ε(Z,z′)+ε(Z,z′′) − 1) + δ(Z, z′) + ε(Z, z′)δ(Z, z′′)].

Proof of Corollary 5.12.

E
[
ED[eε(Z,z)|Z]ED′ [eε(Z,z)|Z]

]
− 1 + δ(1 + E[eε(Z, z)]) ≤

√
EDe2εED′e2ε − 1 + 2δ.

The inequality uses Jensen’s inequality E
[
E[eε(Z,z)|Z]2

]
≤ Ee2ε(Z,z) and the monotonicity of

moment generating function on non-negative random variables. The statement is obtained by
Taylor’s series on Ee2ε(Z,z). Lastly, we use the algebraic mean to upper bound the geometric mean
in the first term and then use Taylor expansion.

Proof of Lemma 5.14. By the stationarity of θ̂
∑

i

∇`(θ̂, zi) +∇r(θ̂) = 0

Add and subtract `(θ̂, z) and apply first order Taylor’s Theorem centered at θ̂′ on
∑

i∇`(θ̂, zi) +

∇`(θ̂, zi) +∇r(θ̂), we get
∑

i

∇`(θ̂′, zi) +∇`(θ̂′, zi) +∇r(θ̂′) +R−∇`(θ̂, z) = 0.

where if we define ηt = (1− t)θ̂′ + tθ̂, the remainder term R ∈ Rd can be explicitly written as

R =

[∫ 1

0

(∑

i

∇2`(ηt, zi) +∇2`(ηt, z) +∇2r(ηt)

)
dt

]
(θ̂ − θ̂′).

By the mean value theorem for Frechet differentiable functions, we know there is a t such that we
can take ηt such that the integrand is equal to the integral.
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Since θ̂′ is a stationary point, we have
∑

i

∇`(θ̂′, zi) +∇`(θ̂′, z) +∇r(θ̂′) = 0

and thus under the assumption that
[∫ 1

0
(
∑

i∇2`(ηt, zi) +∇2`(ηt, z) +∇2r(ηt)) dt
]

is invertible,
we have

θ̂ − θ̂′ =
[∫ 1

0

(∑

i

∇2`(ηt, zi) +∇2`(ηt, z) +∇2r(ηt)

)
dt

]−1

∇`(θ̂, z).

The other equality follows by symmetry.

Proof of Theorem 5.15. LetX ′ = [X;x], y′ = [y; y]. DenoteH := XTX+λI ,H ′ := (X ′)TX ′+
λI , g := XTy and g′ := (X ′)Ty′. Correspondingly, the posterior mean θ̂ = H−1g and θ̂′ =
[H ′]−1g′.

The covariance matrix of the two distributions are H/γ and H ′/γ. Using the fact that the
normalization constant is known for Gaussian, the log-likelihood ratio at output θ is

log
|H−1|−1/2e−

γ
2
‖θ−θ̂‖2H

|[H ′]−1|−1/2e−
γ
2
‖θ−θ̂′‖2

H′

= log

√
|H|
|H ′|

︸ ︷︷ ︸
(#)

+
γ

2

[
‖θ − θ̂′‖2

H′ − ‖θ − θ̂‖2
H

]

︸ ︷︷ ︸
(∗)

.

Note that H ′ = H + xxT . By Lemma 5.22,

|H|
|H ′| =

|H|
|H|(1 + µ)

=
|H ′|(1− µ′)
|H ′| ,

so
(#) = log

√
(1 + µ)−1 = log

√
1− µ′.

The second term in the above equation can be expanded into

(∗) =θT [H ′ −H]θ + (θ̂′)TH ′θ̂′ − θ̂THθ̂ − 2(θ̂′)TH ′θ + 2θ̂THθ

=(xT θ)2 + (y′)TX ′[H ′]−1X ′Ty′ − yTX(H)−1XTy︸ ︷︷ ︸
(∗∗)

−2y(xT θ) (5.9)

(∗∗) =
[
(y′)TX ′[(X ′)TX ′ + λI]−1X ′Ty′ − yTX(XTX + λI)−1XTy

]
=
[
(y′)TΠ′y′ − yTΠy

]
,
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where we denote the“hat” matrices Π := X(XTX + λI)−1XT and Π′ = X ′[(X ′)TX ′ +
λI]−1(X ′)T . Also define v := X(XTX + λI)−1x. By Sherman-Morrison-Woodbury formula,
we can write

Π′ =

[
X
xT

] [
H−1 −H−1x(1 + µ)−1xTH−1

] [
XT x

]

=

[
Π− (1 + µ)−1vvT , v − µ(1 + µ)−1v
vT − vT (1 + µ)−1µ, µ− µ2(1 + µ)−1

]

Note that vTy = xT θ̂ and 1− µ(1 + µ)−1 = (1 + µ)−1, therefore

(∗∗) = −(1 + µ)−1(xT θ̂)2 + 2(1 + µ)−1xT θ̂ + µ(1 + µ)−1y2

= −(1 + µ)−1(y − xT θ̂)2 + y2.

Substitute into (5.9), we get

(∗) = (y − xT θ)2 − (1 + µ)−1(y − xT θ̂)2.

And the log-probability ratio is

log
p(θ|X,y)

p(θ|X ′,y′) = log
√

(1 + µ)−1 +
γ

2

[
(y − xT θ)2 − (1 + µ)−1(y − xT θ̂)2

]

= log
√

(1 + µ)−1 +
γ

2

[
(xT θ̂ − xT θ)2 + 2(y − xT θ̂)(xT θ̂ − xT θ) +

µ

1 + µ
(y − xT θ̂)2

]

Under the distribution of θ when the data is (X,y), xT θ − xT θ̂ follows a univariate normal
distribution with mean 0 and variance µ/γ. By the standard tail probability of normal random
variable,

P
(
|xT θ − xT θ̂| >

√
µ

γ
log(2/δ)

)
≤ 2e− log(2/δ)

log(2/δ)
=

δ

log(2/δ)
≤
↑

When δ < 2/e

δ.

we can calculate (ε, δ)-pDP for every δ > 0. In particular, under p(θ|X, y)

P(

∣∣∣∣log
p(θ|X,y)

p(θ|X ′,y′)

∣∣∣∣ ≥ ε) < δ

for

ε =
1

2

∣∣∣∣− log(1 + µ) +
µγ

(1 + µ)
(y − xT θ̂)2

∣∣∣∣+
µ

2
log(2/δ) + |y − xT θ̂|

√
µγ log(2/δ).

By Lemma 5.25 this implies (ε, δ)-DP.

Now, we will work out an equivalent representation of the log-probability ratio that depends on θ̂′.

Let µ′ be the in-sample leverage score of x with respect to X ′, namely, µ′ := xT [H ′]−1x. By
Sherman-Morrison-Woodbury formula

H−1 = [H ′ − xxT ]−1 = [H ′]−1 + [H ′]−1x(1− µ′)−1xT [H ′]−1.. (5.10)
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Standard matrix algebra gives us

yTΠy = (y′)TX ′H−1(X ′)Ty′ − yxTH−1xy − 2yxTH−1XTy

= (y′)TX ′H−1(X ′)Ty′ − 2yxTH−1(X ′)Ty′ + yxTH−1xy.

Substitute (5.10) into the above, we get

yTΠy = (y′)TΠ′y′ + (1− µ′)−1(xT θ̂′)2 − 2yxT θ̂′
[
1 + µ′(1− µ′)−1

]
+ y2µ′ + y2(µ′)2(1− µ′)−1

= (y′)TΠ′y′ + (1− µ′)−1(xT θ̂′)2 − 2yxT θ̂′(1− µ′)−1 + y2(1− µ′)−1 − y2

Therefore,
(∗∗) = −(y − xT θ̂′)2(1− µ′)−1 + y2,

and
(∗) = (y − xT θ)2 − (1− µ′)−1(y − xT θ̂′)2.

The corresponding log-probability ratio

log
p(θ|X,y)

p(θ|X ′,y′) = − log(
√

1− µ′) +
γ

2

[
(y − xT θ)2 − (1− µ′)−1(y − xT θ̂′)2

]

= − log(
√

1− µ′) +
γ

2

[
(xT θ̂′ − xT θ)2 + 2(xT θ̂′ − xT θ)(y − xT θ̂′)− µ′

1− µ′ (y − x
T θ̂′)2

]

Under the posterior distribution of (X ′,y′), the mean of xT θ is centered at xT θ̂′ with variance
µ′/γ. We can then derive a tail bound of the privacy loss random variable and it implies an
(ε, δ)− pDP guarantee by Lemma 5.25. Specifically, it implies that the method is (ε, δ)-pDP with

ε =
1

2

∣∣∣∣− log(1− µ′)− γµ′

1− µ′ (y − x
T θ̂′)2

∣∣∣∣+
µ′

2
log(2/δ) +

√
γµ′ log(2/δ)|y − xT θ̂′|.

This complete the second statement of the proof.

Proof of Proposition 5.17. The proof mostly involves applying Theorem 5.15 and substituting
bounds over either a bounded domain assumption (typical for DP analysis), or a model assumption
of how data are generated (typical for statistical analysis).

Proof of Statement 1 in the agnostic setting. For any x ∈ X , and any data set X , using the
choice of regularization term, we can bound µ = 1/λn. Substitute that into Theorem 5.15, and
use the inequality that log(1 + x) ≤ x we get the first expression.

Now, restricting ourselves to the bounded domain. Under the choice of λn, we can choose an X ,y
with a singular value equal to

√
λn and the corresponding singular vector v ∈ {−1, 1}n such that

the following upper bounds are attained

‖(XTX + λnI)−1XT‖ ≤ 1

2
√
λn
.
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‖θ̂‖ ≤ ‖(XTX + λnI)−1XT‖‖y‖ ≤
√
n

2
√
λn
.

Now choose (x, y) such that |xT θ̂| = ‖x‖‖θ̂‖, we get that sup(X,y),(x,y) |y − θ̂Tx| = 1 +
√
n

2
√
λn

.
The DP claim follows by substituting the upper bound into the pDP’s expression.

Proof of Statement 2 under the model assumption. To prove the second claim, note that by
Assumption (b)(d), the smallest eigenvalue of XTX is lower bounded by d/nm. Also under the
model assumption, the ridge regression estimator concentrates around θ0.

In particular, under the model assumption, the ridge regression estimate

θ̂ = (XTX + λnI)−1XTy = (XTX + λnI)−1XTXθ0 + (XTX + λnI)−1XTZ (5.11)

With high probability over the distribution of Z

‖θ̂ − θ0‖2 = O(
dσ2 log(n)

n
+
λ2
nd

2‖θ0‖2

n2
),

thus for all (x, y) satisfying ‖x‖ ≤ 1 y ≤ 1, we get

|y − xT θ̂| ≤ |y − xT θ0|+ |xT (θ̂ − θ0)| = O(1 + ‖θ0‖).

Under the assumption that n > 10d log n, ‖θ0‖ = O(1) and σ = O(1) this is effectively a
constant.

For x ∈ X and y ∼ N (θT0 x, σ
2), using standard Gaussian tail bound, with high probability the

perturbation is bounded, therefore |y − xT θ0|2 ≤ σ2 log(2/δ′).

Lastly, for the case of the average pDP loss over the empirical data distribution. Besides taking into
the above bound on |y− xT θ̂|, we further consider adding the different parts over the distributions.
Since this is to deal with data points in the data set, we will instantiate the bound (5.6). Our
assumption on γn, λn ensures that the dominant term is the third term, thus

1

n

n∑

i=1

εn((X, t), (xi, yi))
2 ≤ Cγn

1

n

n∑

i=1

(yi − xTi θ̂′)2xTi (XTX + λnI)−1xi.

Under the high probability event that the noise is bounded by σ
√

2/δ′ for all data points, we can
extract them out then note that

1

n

n∑

i=1

xTi (XTX)−1xi =
1

n
tr(

n∑

i=1

xix
T
i (XTX + λnI)) ≤ 1

n
tr(I) =

d

n
.

Substitute these bounds into Theorem 5.15, and we obtain the Statement 2.
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Proof of Statement 3 under the model assumption. By (5.11) and the fact that OPS can
be thought of as adding an independent multivariate Gaussian noise with covariance matrix
(XTX + λnI)−1XTX(XTX + λnI)−1/γn, we get

θ̃ = (XTX + λnI)−1XTXθ0 +
√

1 + γn(XTX + λnI)−1XTZ.

By a bias-variance decomposition, we get

E(‖θ̃ − θ0‖2
2|X) = Var(θ̃|X) + ‖Eθ̃ − θ0‖2

=(1 + γ−1
n )σ2tr

[
(XTX + λnI)−1XTX(XTX + λnI)−1

]
+
∥∥[I − (XTX + λnI)−1XTX

]
θ0

∥∥2

=(1 + γ−1
n )σ2

d∑

i=1

σ2
i

(σ2
i + λn)2

+ λ2
nθ

T
0 (XTX + λnI)−2θ0

≤(1 + γ−1
n )σ2tr(XTX + λnI)−1 + λ2

nm
−2n−2‖θ0‖2

The proof is complete by substitute the values of γn and λn into the inequality and noting that
m = Ω(1) and under the model assumption ‖θ0‖ does not grow with n. Clearly, if γn = ω(1) and
λn = o(

√
n), then the algorithm is asymptotically efficient.

Proof of Proposition 5.18. We will first prove the claim on differential privacy and then analyze
the statistical efficiency.

Proof of differential privacy. First of all, by Weyl’s theorem, and the assumption that ‖xxT‖2 ≤
1, we get that the global sensitivity of λmin(XTX) is 1. We will use λmin as the short hand of
λmin(XTX) in the rest of the proof. So releasing λ̃min is (ε/2, δ/2)-DP using the standard
Gaussian mechanism. Secondly, under the same event with probability at least 1− δ/2, we have

λmin −
log(4/δ)

ε
≤ λ̃min ≤ λmin +

log(4/δ)

ε
.

Therefore, by our selection rule of the regularization parameter λn,

n

dκ
≤ λmin(XTX + λnI) ≤ max{λmin,

n

dκ
+

log(4/δ)

ε
}.

The lower bound implies that for any (x, y) satisfying the condition, the out of sample leverage
score

µ = xT (XTX + λnI)−1x ≤ κd

n
. (5.12)

It also implies an upper bound on the prediction error:

|y − xT θ̂| ≤ 1 + ‖θ̂‖ ≤ 1 + ‖(XTX + λnI)−1XT‖2‖y‖2 ≤ min
√

2dκ. (5.13)

We will prove the final inequality above using the following lemma with h = n/dκ and then note
that ‖y‖2 ≤

√
n.
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Lemma 5.19. For any matrix X , and any λ ≥ 0. If λmin(XTX + λI) ≥ h, then

‖(XTX + λI)−1XT‖ ≤
√

2/h.

The proof is technical so we defer it to later.

Now combine (5.12)(5.13) with Theorem 5.15, we get that the OPS step which obeys (ε̃, δ/2)-pDP
with

ε̃((X,y), (x, y)) ≤ µ

2
(1 + log(4/δ)) +

1

2
γn min(µ, 1)(y − xT θ̂)2 +

√
γµ log(4/δ)|y − xT θ̂|

≤ κd(1 + log(4/δ))

2n
+
γn
2

κd

n
2κd+

√
γn
2

κd

n
2κd log(4/δ)

≤ ε/8 + ε/8 + ε/4 ≤ ε/2

Note that in the last step, we made use of the choice of γn and the condition that concerns ε and
κ as stated in the algorithm. Since this upper bound holds for all data set (X,y) and all privacy
target (x, y). The OPS algorithm also satisfies (ε/2, δ/2)−DP .

The proof of the first claim is complete when we compose the two data access.

Proof of the statistical efficiency. Now we switch gear to analyze the estimation error bound.

Let event E be the event that λ̃min > λmin −
√

10 log(n)
√

log(4/δ)

ε/2
, which happens with probability

1− n−10. Under E, we have λ0 = 0. By our assumption, this happens with

Applying the third claim in Proposition 5.17, we get that

E[‖θ̃ − θ0‖2|X,E] ≤ (1 + γ−1
n )σ2tr((XTX)−1).

Under the small probability event Ec, we use a crude upper bound that takes the sum of the
maximum square bias and maximum variance.

E[‖θ̃ − θ0‖2|X,Ec] ≤ (1 + γ−1
n )σ2tr((XTX)−1) + ‖θ0‖2

by law of total expectation, for an event E

E[‖θ̃ − θ0‖2|X] = E[‖θ̃ − θ0‖2|X,E]P(E|X) + E[‖θ̃ − θ0‖2|X,Ec]P(Ec|X)

≤ (1 + γ−1
n )σ2tr((XTX)−1) + P(Ec)‖θ0‖2 = (1 + γ−1

n )σ2tr((XTX)−1) +O(n−10).

The proof is complete by substituting γn into the bound.

Proof of Lemma 5.19. Take SVD of X = UΣV T , we can write

‖(XTX + λnI)−1XT‖2 = max
i∈[d]

Σii

Σ2
ii + λn
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We now discuss two cases. First, for those i ∈ [d] such that Σ2
ii ≤ λn. In this case, adding λn on

both sides ensures that

h ≤ λmin(XTX + λnI) = λmin + λn ≤ Σ2
ii + λn ≤ 2λn.

and therefore if Σii > 0

Σii

Σ2
ii + λn

=
1

Σii + λn/Σii

≤ 1

2
√
λn
≤
√

1/(2h). (5.14)

The final inequality is also true for Σii = 0. If on the other hand, for those i ∈ [d] such that,
Σ2
ii > λn. This time by adding Σ2

ii on both sides, we get

2Σ2
ii > λn + Σ2

ii ≥ λn + λmin = λmin(XTX + λnI) ≥ n

κ
.

This implies that
Σii

Σ2
ii + λn

≤ 1

Σii

≤
√

2/h. (5.15)

Combine (5.14) and (5.15) we get

‖(XTX + λnI)−1XT‖2 ≤
√

2/h

5.8 Technical lemmas

Lemma 5.20. Let θ̂′ = (XTX + E1)−1(Xy + E2) for any matrix E1, E2.

θ̂′ − θ̂ = (XTX + E1)−1(E2 − E1θ̂)

Proof.

θ̂′ =(XTX + E1)−1(XTy + E2)

=(XTX + E1)−1(XTX)(XTX)−1XTy + (XTX + E1)−1E2

=θ̂ +
[
(XTX + E1)−1(XTX + E1)− (XTX + E1)−1E1 − Id

]
θ̂ + (XTX + E1)−1E2

=θ̂ − (XTX + E1)−1E1θ̂ + (XTX + E1)−1E2

=θ̂ + (XTX + E1)−1(E2 − E1θ̂)

Lemma 5.21 (Sherman-Morrison-Woodbury Formula). Let A,U,C, V be matrices of compatible
size, assume A,C and C−1 + V A−1U are all invertible, then

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1A−1.
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Lemma 5.22 (Determinant of Rank-1 perturbation). For invertible matrix A and vector c, d of
compatible dimension

det(A+ cdT ) = det(A)(1 + dTA−1c).

Lemma 5.23 (Weyl’s eigenvalue bound [212, Theorem 1]). Let X, Y,E ∈ Rm×n, w.l.o.g., m ≥ n.
If X − Y = E, then |σi(X)− σi(Y )| ≤ ‖E‖2 for all i = 1, ..., n.
Lemma 5.24 (Gaussian tail bound). Let X ∼ N (0, 1). Then

P(|X| > ε) ≤ 2e−ε
2/2

ε
.

Lemma 5.25 (Tail bound to (ε, δ)-DP conversion). Let ε(θ) = log( p(θ)
p′(θ)

) where p and p′ are
densities of θ. If

P(|ε(θ)| > t) ≤ δ

then for any measurable set S

Pp(θ ∈ S) ≤ etPp′(θ ∈ S) + δ.

and
Pp′(θ ∈ S) ≤ etPp(θ ∈ S) + δ

Proof. Since log( p(θ)
p′(θ)

) = − log(p
′(θ)
p(θ)

) and the tail bound is two-sided. It suffices for us to prove
just one direction. Let E be the event that |ε(θ)| > t.

Pp(θ ∈ S) = Pp(θ ∈ S∪Ec)+Pp(θ ∈ S∪E) ≤ Pp′(θ ∈ S∪E)et+Pp(θ ∈ E) ≤ etPp′(θ ∈ S)+δ.

Lemma 5.26 (Matrix Hoeffding inequality [151]). Consider a finite sequence X1, ..., Xn of
independent random and self-adjoint matrices with dimension d and A1, ..., An be a sequence
of fixed self-adjoint matrices. In addition, let EXi = 0 and X2

i � A2
i almost surely for all

i = 1, ..., n. Then, for all t ≥ 0

P

{
λmax(

n∑

i=1

Xi) ≥ t

}
≤ de−t

2/2σ2

where σ2 ≤ ‖∑n
i=1A

2
i ‖.
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Subsequent work and applications

In Part I, we presented a coherent sequence of work on differentially private machine learning with
contributions in both theory and practice. In this section, we briefly mention a few connections to
subsequent work in the literature.

We will mostly discuss our work on the posterior sampling algorithm (OPS ). It has drawn
substantial practical interest mainly because it is one of the first few cases that demonstrated
the success of differentially private algorithms in real-life machine learning problems; but also
because of the fact that it can be efficiently implemented using stochastic gradient based MCMC
methods [4, 56, 65, 250], which is an interesting area of study on its own right. Specifically, our
paper [147] describes an application of the SGLD approach to privately learn a recommendation
system using the matrix factorization model; and Wang et al. [243] compared the approach with
a number of other methods on the problem of differentially private subspace clustering. These
examples suggest that the posterior sampling can be very attractive in practice and it often achieves
a reasonable level of privacy protection while not substantially affecting the model accuracy.

After our work was published, there had been a lot of interest in refining and extending the
work, and coming up with various applications. Notably, Minami et al. [157] provided the
(ε, δ)-DP of the same method, under convex and Lipschitz assumptions, Park et al. [170] used a
similar subsample-and-composition approach (and a more modern way of analyzing advanced
composition), to do variational inference graphical models with latent variables; Foulds et al.
[96] addresses the issue of asymptotic inefficiency of our proposed approaches and used the
sufficient statistics perturbation approach on the Bayesian learning problems. It allows more
samples to be drawn and is asymptotically efficient, and to some extent, the work of Foulds
et al. [96] motivated our refined analysis of OPS presented in Chapter 5, which showed that in
more restricted setting, OPS can be made asymptotically efficient, while preserving approximate
differential privacy.

We now mention two general future directions.

Practical differential privacy. As of writing, differential privacy has been slowly shifting from
a purely theoretical object into a practical technology. However, the bulk of the existing literature
however focuses on advancing the theory, and very few applications have been seen in the industry
beyond locally differentially private data collection. There is a huge void that calls for both
practical algorithms, implementation and appropriate empirical benchmarking.
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Closer connections to statistics. As we have seen in the work presented in this thesis, differen-
tial privacy is very closely related to statistics and machine learning. We find it very important to
shift from a privacy-centric model to an algorithm-centric model that is more utility-aware and
allows assumptions on the data set to be useful to both utility and privacy. Statistics also have a
role to play in coming up with sensible post-processing approaches that “denoise” the differential
private releases, and in addressing the question of which ε to use in practice.
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Part II

Towards locally adaptive nonparametric
machine learning
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Motivation and overview

Nonparametric regression has a rich history in statistics, carrying well over 50 years of associated
literature. It solves the following fundamental problem:

• Let y = f(x) + Noise. How to estimate function f using data points (x1, y1), ..., (xn, yn)
in conjunction with the knowledge that f belongs to some function class F?

Nonparametric regression is closely related to the denoising problem in the signal processing
community, and has seen numerous applications in science, economics and medicine.

At its heart, nonparametric regression is motivated by the need to learn from data without making
strong (parametric) model assumptions. This is very similar to what motivated statistical machine
learning in that both aims at using very expressive function classes, but they differ in assumptions
and objective. Machine learning opted for minimizing the regret (excess risk) relative to a weaker
oracle (the best within class) so that the results hold uniformly over all data distributions, while
nonparametric regression aims at making weak assumptions (e.g., smooth function classes) on
data distributions but at the end of the day, its success is measured by the extent to which we can
estimate the true underlying functions.

We consider a recent and successful class of nonparametric regression technique called trend
filtering [129, 209, 221, 244], that was shown to have properties of local adaptivity in both theory
and practice. The term “local adaptivity” will reappear many times in this chapter. We say a
nonparametric regression technique is locally adaptive if it is able to cater to local differences in
smoothness, hence allowing more effective estimation of function classes that contain functions
with heterogeneous smoothness. Examples of local adaptive nonparametric regression techniques
include wavelet shrinkage [70], smoothing kernels with Lepski’s method [145] and locally adaptive
regression splines [152]. These methods, while well-developed and often generically applicable,
either do not work well in finite sample or computationally expensive. Trend filtering, on the
other hand, seems to be able to sidestep these issues, at least in the limited cases where one knows
how to do it — smoothing univariate functions.

This part of the thesis collects a sequence of work that expands the scope of trend filtering, so that
it can be used as a generic and widely applicable tools for a variety of ML problems, e.g., those
that come with multivariate features variables, spatiotemporal variations, or those with signals
observed on a non-Euclidean structures, such as vertices of a graph.

Before describing the content of each chapter, we first build intuition by reviewing how univariate
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trend filtering works. For simplicity, assume x1, ..., xn ∈ R are evenly spaced, say (x1, ..., xn) =
(1, ..., n), and y1, ..., yn are observations at location x1, ..., xn. Given an integer k ≥ 0, the kth
order univariate trend filtering estimate θ̂ = (θ̂1, . . . θ̂n) is defined as

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖D(k+1)θ‖1,

where λ ≥ 0 is a tuning parameter, and D(k+1) is the discrete difference operator of order k + 1.
When k = 0, the problem above employs the first difference operator,

D(1) =




−1 1 0 . . . 0
0 −1 1 . . . 0
... . . . . . .
0 0 . . . −1 1


 .

Therefore ‖D(1)θ‖1 =
∑n−1

i=1 |θi+1 − θi|, and the 0th order trend filtering estimate reduces to the
1-dimensional fused lasso estimator [220], also called 1-dimensional total variation denoising
[182]. For k ≥ 1 the operator D(k+1) is defined recursively by

D(k+1) = D(1)D(k),

with D(1) above denoting the (n− k − 1)× (n− k) version of the first difference operator above.
In words, D(k+1) is given by taking first differences of kth differences. The interpretation is hence
that univariate trend filtering penalizes the changes in the kth discrete differences of the fitted
trend. The estimated components θ̂1, . . . θ̂n exhibit the form of a kth order piecewise polynomial
function, evaluated over the input locations x1, . . . xn.

Intuitively, the `1 norm induces sparsity in the discrete (k + 1)th order derivatives, which corre-
sponds to the number of pieces in the piecewise polynomials estimates. The fact that the none-zero
locations are chosen automatically suggests that the algorithm is able to automatically allocate
more “parameters” to locations that are intrinsically more complex than other locations. The use
of `1-norm is not surprising given the insight from high-dimensional statistics and compressed
sensing [46, 219], however the use of finite difference estimators, the continuous extension to
splines and its computational benefits are rather intriguing and delicate.

The generalization of univariate trend filtering in the subsequent chapters often involve substituting
a different regularization operator that mimics a kth order “derivatives” over the observations in
each respective settings.

In Chapter 6, we develop the theory and algorithms for trend filtering on signals observed
on a graph. We do so by recursively specifying a sequence of regularization operators using
incidence matrices and graph Laplacian matrices. These regularizers naturally induce piecewise
“polynomials” on graphs. Applications to image-denoising, graph-based semi-supervised learning
as well as event detection on NYC taxi data suggest that there are substantial benefits of using
trend filtering over traditional approaches.

It is however, unclear whether graph trend filtering is optimal for the class of problems it tries
to solve. In Chapter 7, we partially answer this question for the important special image/video
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TV-denoising problems on d-dimensional grid graphs. This turns out to be a very important open
problem of nonparametric regression, where the problem in 1D is completely studied in [70]. It is
worth mentioning that the corresponding regularization operator used in this case is also the `1

norm of all the discrete partial derivatives of a multivariate functions defined on [0, n1/d]d.

In Chapter 8, we switch gears to discuss continuous extensions of the fitted discrete vectors in 1D
trend filtering. We propose a spline-like basis function called the falling factorial basis, which
illustrates, from an alternative point of view, why trend filtering can be solved very efficiently
even in cases with nonuniform observations. The falling factorial basis can be interpreted as an
“inverse” of a regularization operator that resembles the “divided difference” approximation of the
discrete derivatives.

Lastly, we note that the presented results are part of a bigger agenda to develop and complete the
picture of trend filtering as a full-fledged nonparametric regression methods. In Section 8, we will
briefly mention other published and ongoing work that aims at (a) understanding the minimax rate
of the trend filtering problems in all dimension and all order; (b) interpolating signals on grids
and on graphs to continuous domain. We will also mention a few interesting applications of trend
filtering, graph trend filtering.
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Chapter 6

Trend filtering on Graphs

We first consider the problem of nonparametric estimation on graphs, which can be used to
describe supervised/unsupervised and semisupervised learning problems through neighborhood
graph embedding of the data points in possibly high-dimensional space. Graph embeddings can
be used to effectively capture smooth low-dimensional manifold structures of the data, according
to [25, 239].

Specifically, we introduce a family of adaptive estimators on graphs, based on penalizing the `1

norm of discrete graph differences. This generalizes the idea of trend filtering [129, 221], used
for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph trend
filtering exhibits a level of local adaptivity unmatched by the usual `2-based graph smoothers. It
is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or
Newton algorithms). We demonstrate the merits of graph trend filtering through both examples
and theory.

6.1 Introduction

The goal of this chapter is to port a successful idea in univariate nonparametric regression, trend
filtering [129, 209, 221, 244], to the setting of estimation on graphs. The proposed estimator,
graph trend filtering, shares three key properties of trend filtering in the univariate setting.

1. Local adaptivity: graph trend filtering can adapt to inhomogeneity in the level of smooth-
ness of an observed signal across nodes. This stands in contrast to the usual `2-based
methods, e.g., Laplacian regularization [203], which enforce smoothness globally with
a much heavier hand, and tends to yield estimates that are either smooth or else wiggly
throughout.

2. Computational efficiency: graph trend filtering is defined by a regularized least squares
problem, in which the penalty term is nonsmooth, but convex and structured enough to
permit efficient large-scale computation.
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3. Analysis regularization: the graph trend filtering problem directly penalizes (possibly
higher order) differences in the fitted signal across nodes. Therefore graph trend filtering
falls into what is called the analysis framework for defining estimators. Alternatively, in
the synthesis framework, we would first construct a suitable basis over the graph, and
then regress the observed signal over this basis; e.g., Shuman et al. [198] survey a number
of such approaches using wavelets; likewise, kernel methods regularize in terms of the
eigenfunctions of the graph Laplacian [131]. An advantage of analysis regularization is that
it easily yields complex extensions of the basic estimator by mixing penalties.

As a motivating example, consider a denoising problem on 402 census tracts of Allegheny County,
PA, arranged into a graph with 402 vertices and 2382 edges obtained by connecting spatially
adjacent tracts. To illustrate the adaptive property of graph trend filtering we generated an artificial
signal with inhomogeneous smoothness across the nodes, and two sharp peaks near the center
of the graph, as can be seen in the top left panel of Figure 6.1. (The signal was formed using a
mixture of five Gaussians, in the underlying spatial coordinates.) We drew noisy observations
around this signal, shown in the top right panel of the figure, and we fit graph trend filtering, graph
Laplacian smoothing, and wavelet smoothing to these observations. Graph trend filtering is to be
defined in Section 6.2 (here we used k = 2, quadratic order); the latter two, recall, are defined by
the optimization problems

min
θ∈Rn

‖y − θ‖2
2 + λθ>Lθ (Laplacian smoothing),

min
θ∈Rn

1

2
‖y −Wθ‖2

2 + λ‖θ‖1 (wavelet smoothing),

where y ∈ Rn the vector of observations measured over the n = 402 nodes in the graph, L ∈ Rn×n

is the graph Laplacian matrix, and W ∈ Rn×n is a wavelet basis built over the graph. The wavelet
smoothing problem displayed above is really an oversimplified representation of the class of
wavelets methods, since it only encapsulates estimators that employ an orthogonal wavelet basis
W (and soft-threshold the wavelet coefficients). For the present experiment, we constructed
W according to the spanning tree wavelet design of Sharpnack et al. [195]; we found this
construction performed best among the graph wavelet designs we considered for the data at hand.
For completeness, the results from alternative wavelet designs are given in Section 6.8.

Graph trend filtering, Laplacian smoothing, and wavelet smoothing each have their own regular-
ization parameters λ, and these parameters are not generally on the same scale. Therefore, in our
comparisons we use effective degrees of freedom (df) as a common measure for the complexities
of the fitted models. The top right panel of Figure 6.1 shows the graph trend filtering estimate
with 68 df. We see that it adaptively fits the sharp peaks in the center of the graph, and smooths
out the surrounding regions appropriately. The graph Laplacian estimate with 68 df (bottom left),
substantially oversmooths the high peaks in the center, while at 132 df (bottom middle), it begins
to detect the high peaks in the center, but undersmooths neighboring regions. Wavelet smoothing
performs quite poorly across all df values—it appears to be most affected by the level of noise in
the observations.

As a more quantitative assessment, Figure 6.2 shows the mean squared errors between the
estimates and the true underlying signal. The differences in performance here are analogous to

122



True signal Noisy observations Graph trend filtering, 68 df

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.056
0.111
0.167
0.223
0.278
0.334
0.389
0.445
0.501
0.556
0.612
0.667
0.723
0.779
0.834
0.89
0.945
1.001
1.057
1.112

Laplacian smoothing, 68 df Laplacian smoothing, 132 df Wavelet smoothing, 160 df

Figure 6.1: Color maps for the Allegheny County example.

the univariate case, when comparing trend filtering to smoothing splines [221]. At smaller df
values, Laplacian smoothing, due to its global considerations, fails to adapt to local differences
across nodes. Trend filtering performs much better at low df values, and yet it matches Laplacian
smoothing when both are sufficiently complex, i.e., in the overfitting regime. This demonstrates
that the local flexibility of trend filtering estimates is a key attribute.

Here is an outline for the rest of this article. Section 6.2 defines graph trend filtering and gives
underlying motivation and intuition. Section 6.3 covers basic properties and extensions of the
graph trend filtering estimator. Section 6.4 examines computational approaches, and Section 6.5
looks at a number of both real and simulated data examples. Section 6.6 presents asymptotic error
bounds for graph trend filtering. Section 10.4 concludes with a discussion. As for notation, we
write XA to extract the rows of a matrix X ∈ Rm×n that correspond to a subset A ⊆ {1, . . .m},
and X−A to extract the complementary rows. We use a similar convention for vectors: xA and
x−A denote the components of a vector x ∈ Rm that correspond to the set A and its complement,
respectively. We write row(X) and null(X) for the row and null spaces of X , respectively, and
X† for the pseudoinverse of X , with X† = (X>X)†X> when X is rectangular.
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Figure 6.2: Mean squared errors for the Allegheny County example. Results were averaged over
10 simulations; the bars denote ±1 standard errors.

6.2 Trend Filtering on Graphs

In this section, we motivate and formally define graph trend filtering. As we defined in the
“motivation and overview” of this part, the univariate trend filtering solves:

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖D(k+1)θ‖1, (6.1)

where D(k+1) is the discrete difference operator of order k+ 1, that can be recursively constructed
by

D(k+1) = D(1)D(k), (6.2)

The estimated components θ̂1, . . . θ̂n exhibit the form of a kth order piecewise polynomial function,
evaluated over the input locations x1, . . . xn. This can be formally verified [221, 244] by examining
a continuous-time analog of (8.13).

6.2.1 Higher order derivatives and trend filtering over a graph

Let G = (V,E) be an graph, with vertices V = {1, . . . n} and undirected edges E = {e1, . . . em},
and suppose that we observe y = (y1, . . . yn) ∈ Rn over the nodes. Following the univariate
definition in (8.13), we define the kth order graph trend filtering (GTF) estimate θ̂ = (θ̂1, . . . θ̂n)
by

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∆(k+1)θ‖1. (6.3)

124



In broad terms, this problem (like univariate trend filtering) is a type of generalized lasso problem
[222], in which the penalty matrix ∆(k+1) is a suitably defined graph difference operator, of order
k + 1. In fact, the novelty in our proposal lies entirely within the definition of this operator.

When k = 0, we define first order graph difference operator ∆(1) in such a way it yields the
graph-equivalent of a penalty on local differences:

‖∆(1)θ‖1 =
∑

(i,j)∈E

|θi − θj|.

so that the penalty term in (6.3) sums the absolute differences across connected nodes in G.
To achieve this, we let ∆(1) ∈ {−1, 0, 1}m×n be the oriented incidence matrix of the graph G,
containing one row for each edge in the graph; specifically, if e` = (i, j), then ∆(1) has `th
row

∆
(1)
` = (0, . . .−1

↑
i

, . . . 1
↑
j

, . . . 0), (6.4)

where the orientations of signs are arbitrary. Like trend filtering in the 1d setting, the 0th order
graph trend filtering estimate coincides with the fused lasso (total variation regularized) estimate
over G [114, 193, 222].

For k ≥ 1, we use a recursion to define the higher order graph difference operators, in a manner
similar to the univariate case. The recursion alternates in multiplying by the first difference
operator ∆(1) and its transpose (taking into account that this matrix not square):

∆(k+1) =

{
(∆(1))>∆(k) = L

k+1
2 for odd k

∆(1)∆(k) = DL
k
2 for even k.

(6.5)

Above, we abbreviated the oriented incidence matrix ∆(1) by D of G, and exploited the fact that
L = D>D is one representation for the graph Laplacian matrix. Note that ∆(k+1) ∈ Rn×n for odd
k, and ∆(k+1) ∈ Rm×n for even k.

An important point is that our defined graph difference operators (6.4), (6.5) reduce to the
univariate ones (8.9), (8.10) in the case of a chain graph (in which V = {1, . . . n} and E =
{(i, i+ 1) : i = 1, . . . n− 1}), modulo boundary terms. That is, when k is even, if one removes
the first k/2 rows and last k/2 rows of ∆(k+1) for the chain graph, then one recovers D(k+1); when
k is odd, if one removes the first and last (k + 1)/2 rows of ∆(k+1) for the chain graph, then one
recovers D(k+1). Further intuition for our graph difference operators is given next.

6.2.2 Piecewise Polynomials over Graphs

We give some insight for our definition of graph difference operators (6.4), (6.5), based on
the idea of piecewise polynomials over graphs. In the univariate case, sparsity of θ under the
difference operator D(k+1) implies a specific kth order piecewise polynomial structure for the
components of θ [221, 244]. Since the components of θ correspond to (real-valued) input locations

125



x = (x1, . . . xn), the interpretation of a piecewise polynomial here is unambiguous. But for a
graph, one might ask: does sparsity of ∆(k+1)θ mean that the components of θ are piecewise
polynomial? And what does the latter even mean, as the components of θ are defined over the
nodes? To address these questions, we intuitively define a piecewise polynomial over a graph, and
show that it implies sparsity under our constructed graph difference operators.

• Piecewise constant (k = 0): we say that a signal θ is piecewise constant over a graph G
if many of the differences θi − θj are zero across edges (i, j) ∈ E in G. Note that this
is exactly the property associated with sparsity of ∆(1)θ, since ∆(1) = D, the oriented
incidence matrix of G.

• Piecewise linear (k = 1): we say that a signal θ has a piecewise linear structure over G if
θ satisfies

θi −
1

ni

∑

(i,j)∈E

θj = 0,

for many nodes i ∈ V , where ni is the number of nodes adjacent to i. In words, we are
requiring that the signal components can be linearly interpolated from its neighboring values
at many nodes in the graph. This is quite a natural notion of (piecewise) linearity: requiring
that θi be equal to the average of its neighboring values would enforce linearity at θi under
an appropriate embedding of the points in Euclidean space. Again, this is precisely the
same as requiring ∆(2)θ to be sparse, since ∆(2) = L, the graph Laplacian.

• Piecewise polynomial (k ≥ 2): We say that θ has a piecewise quadratic structure over G if
the first differences αi−αj of the second differences α = ∆(2)θ are mostly zero, over edges
(i, j) ∈ E. Likewise, θ has a piecewise cubic structure over G if the second differences
αi − 1

ni

∑
(i,j)∈E αj of the second differences α = ∆(2)θ are mostly zero, over nodes i ∈ V .

This argument extends, alternating between leading first and second differences for even and
odd k. Sparsity of ∆(k+1)θ in either case exactly corresponds to many of these differences
being zero, by construction.

In Figure 6.3, we illustrate the graph trend filtering estimator on a 2d grid graph of dimension 20×
20, i.e., a grid graph with 400 nodes and 740 edges. For each of the cases k = 0, 1, 2, we generated
synthetic measurements over the grid, and computed a GTF estimate of the corresponding order.
We chose the 2d grid setting so that the piecewise polynomial nature of GTF estimates could be
visualized. Below each plot, the utilized graph trend filtering penalty is displayed in more explicit
detail.

6.2.3 `1 versus `2 Regularization

It is instructive to compare the graph trend filtering estimator, as defined in (6.3), (6.4), (6.5) to
Laplacian smoothing [203]. Standard Laplacian smoothing uses the same least squares loss as in
(6.3), but replaces the penalty term with θ>Lθ. A natural generalization would be to allow for
a power of the Laplacian matrix L, and define kth order graph Laplacian smoothing according
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Figure 6.3: Graph trend filtering estimates of orders k = 0, 1, 2 on a 2d grid. The utilized `1 graph
difference penalties are shown in elementwise detail below each plot (first, second, and third order
graph differences).
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to
θ̂ = argmin

θ∈Rn
‖y − θ‖2

2 + λθ>Lk+1θ. (6.6)

The above penalty term can be written as ‖L(k+1)/2θ‖2
2 for odd k, and ‖DLk/2θ‖2

2 for even k;
i.e., this penalty is exactly ‖∆(k+1)θ‖2

2 for the graph difference operator ∆(k+1) defined previ-
ously.

As we can see, the critical difference between graph Laplacian smoothing (6.6) and graph trend
filtering (6.3) lies in the choice of penalty norm: `2 in the former, and `1 in the latter. The effect
of the `1 penalty is that the GTF program can set many (higher order) graph differences to zero
exactly, and leave others at large nonzero values; i.e., the GTF estimate can simultaneously be
smooth in some parts of the graph and wiggly in others. On the other hand, due to the (squared)
`2 penalty, the graph Laplacian smoother cannot set any graph differences to zero exactly, and
roughly speaking, must choose between making all graph differences small or large. The relevant
analogy here is the comparison between the lasso and ridge regression, or univariate trend filtering
and smoothing splines [221], and the suggestion is that GTF can adapt to the proper local degree
of smoothness, while Laplacian smoothing cannot. This is strongly supported by the examples
given throughout this chapter.

6.2.4 Related Work

Some authors from the signal processing community, e.g., Bredies et al. [40], Setzer et al.
[190], have studied total generalized variation (TGV), a higher order variant of total variation
regularization. Moreover, several discrete versions of these operators have been proposed. They
are often similar to the construction that we have. However, the focus of these works is mostly on
how well a discrete functional approximates its continuous counterpart. This is quite different
from our concern, as a signal on a graph (say a social network) may not have any meaningful
continuous-space embedding at all. In addition, we are not aware of any study on the statistical
properties of these regularizers. In fact, our theoretical analysis in Section 6.6 may be extended to
these methods too.

6.3 Properties and Extensions

We first study the structure of graph trend filtering estimates, then discuss interpretations and
extensions.

6.3.1 Basic Structure and Degrees of Freedom

We describe the basic structure of graph trend filtering estimates and present an unbiased estimate
for their degrees of freedom. Let the tuning parameter λ be arbitrary but fixed. By virtue of the `1

penalty in (6.3), the solution θ̂ satisfies supp(∆(k+1)θ̂) = A for some active set A (typically A is
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smaller when λ is larger). Trivially, we can reexpress this as ∆
(k+1)
−A θ̂ = 0, or θ̂ ∈ null(∆

(k+1)
−A ).

Therefore, the basic structure of GTF estimates is revealed by analyzing the null space of the
suboperator ∆

(k+1)
−A .

Lemma 6.1. Assume without a loss of generality that G is connected (otherwise the results apply
to each connected component of G). Let D,L be the oriented incidence matrix and Laplacian
matrix of G. For even k, let A ⊆ {1, . . .m}, and let G−A denote the subgraph induced by
removing the edges indexed by A (i.e., removing edges e`, ` ∈ A). Let C1, . . . Cs be the connected
components of G−A. Then

null(∆
(k+1)
−A ) = span{1}+ (L†)

k
2 span{1C1 , . . .1Cs},

where 1 = (1, . . . 1) ∈ Rn, and 1C1 , . . .1Cs ∈ Rn are the indicator vectors over connected
components. For odd k, let A ⊆ {1, . . . n}. Then

null(∆
(k+1)
−A ) = span{1}+ {(L†) k+1

2 v : v−A = 0}.

The proof of Lemma 6.1 appears in the Section 9.7. The lemma is useful for a few reasons. First,
as motivated above, it describes the coarse structure of GTF solutions. When k = 0, we can
see (as (L†)0/2 = I) that θ̂ will indeed be piecewise constant over groups of nodes C1, . . . Cs of
G. For k = 2, 4, . . ., this structure is smoothed by multiplying such piecewise constant levels
by (L†)k/2. Meanwhile, for k = 1, 3 . . ., the structure of the GTF estimate is based on assigning
nonzero values to a subset A of nodes, and then smoothing through multiplication by (L†)(k+1)/2.
Both of these smoothing operations, which depend on L†, have interesting interpretations in terms
of to the electrical network perspective for graphs. This is developed in the next subsection.

A second use of Lemma 6.1 is that it leads to a simple expression for the degrees of freedom,
i.e., the effective number of parameters, of the GTF estimate θ̂. From results on generalized
lasso problems [222, 223], we have df(θ̂) = E[nullity(∆

(k+1)
−A )], with A denoting the support of

∆(k+1)θ̂, and nullity(X) the dimension of the null space of a matrix X . Applying Lemma 6.1
then gives the following.
Lemma 6.2. Assume that G is connected. Let θ̂ denote the GTF estimate at a fixed but arbitrary
value of λ. Under the normal error model y ∼ N (θ0, σ

2I), the GTF estimate θ̂ has degrees of
freedom given by

df(θ̂) =

{
E [max {|A|, 1}] odd k,
E [number of connected components of G−A] even k.

Here A = supp(∆(k+1)θ̂) denotes the active set of θ̂.

As a result of Lemma 6.2, we can form simple unbiased estimate for df(θ̂); for k odd, this is
max{|A|, 1}, and for k even, this is the number of connected components of G−A, where A is
the support of ∆(k+1)θ̂. When reporting degrees of freedom for graph trend filtering (as in the
example in the introduction), we use these unbiased estimates.
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6.3.2 Electrical Network Interpretation

Lemma 6.1 reveals a mathematical structure for GTF estimates θ̂, which satisfy θ̂ ∈ null(∆
(k+1)
−A )

for some set A. It is interesting to interpret the results using the electrical network perspective for
graphs [236]. In this perspective, we imagine replacing each edge in the graph with a resistor of
value 1. If u ∈ Rn describes how much current is going in at each node in the graph, then v = Lu
describes the induced voltage at each node. Provided that 1>c = 0, which means that the total
accumulation of current in the network is 0, we can solve for the current values from the voltage
values: u = L†v.

The odd case in Lemma 6.1 asserts that

null(∆
(k+1)
−A ) = span{1}+ {(L†) k+1

2 v : v−A = 0}.

For k = 1, this says that GTF estimates are formed by assigning a sparse number of nodes in
the graph a nonzero voltage v, then solving for the induced current L†v (and shifting this entire
current vector by a constant amount). For k = 3, we assign a sparse number of nodes a nonzero
voltage, solve for the induced current, and then repeat this: we relabel the induced current as input
voltages to the nodes, and compute the new induced current. This process is again iterated for
k = 5, 7, . . ..

The even case in Lemma 6.1 asserts that

null(∆
(k+1)
−A ) = span{1}+ (L†)

k
2 span{1C1 , . . .1Cs}.

For k = 2, this result says that GTF estimates are given by choosing a partition C1, . . . Cs of the
nodes, and assigning a constant input voltage to each element of the partition. We then solve
for the induced current (and potentially shift this by an overall constant amount). The process is
iterated for k = 4, 6, . . . by relabeling the induced current as input voltage.

The comparison between the structure of estimates for k = 2 and k = 3 is informative: in a sense,
the above tells us that 2nd order GTF estimates will be smoother than 3rd order estimates, as a
sparse input voltage vector need not induce a current that is piecewise constant over nodes in the
graph. For example, an input voltage vector that has only a few nodes with very large nonzero
values will induce a current that is peaked around these nodes, but not piecewise constant.

6.3.3 Extensions

Several extensions of the proposed graph trend filtering model are possible. Trend filtering over a
weighted graph, for example, could be performed by using a properly weighted version of the edge
incidence matrix in (6.4), and carrying forward the same recursion in (6.5) for the higher order
difference operators. As another example, the Gaussian regression loss in (6.3) could be changed
to another suitable likelihood-derived losses in order to accommodate a different data type for y,
say, logistic regression loss for binary data, or Poisson regression loss for count data.
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In Section 6.5.2, we explore a modest extension of GTF, where we add a strongly convex prior
term to the criterion in (6.3) to assist in performing graph-based imputation from partially observed
data over the nodes. In Section 6.5.3, we investigate a modification of the proposed regularization
scheme, where we add a pure `1 penalty on θ in (6.3), hence forming a sparse variant of GTF.
Other potentially interesting penalty extensions include: mixing graph difference penalties of
various orders, and tying together several denoising tasks with a group penalty. Extensions such
as these are easily built, recall, as a result of the analysis framework used by the GTF program,
wherein the estimate defined through direct regularization via an analyzing operator, the `1-based
graph difference penalty ‖∆(k+1)θ‖1.

6.4 Computation

Graph trend filtering is defined by a convex optimization problem (6.3). In principle this means
that, at least for small or moderately sized problems, its solutions can be reliably computed
using a variety of standard algorithms. In order to handle larger scale problems, we describe two
specialized algorithms that improve on generic procedures by taking advantage of the structure of
∆(k+1).

6.4.1 A Fast ADMM Algorithm

We reparametrize (6.3) by introducing auxiliary variables, so that we can apply ADMM. For even
k, we use a special transformation that is critical for fast computation (following Ramdas and
Tibshirani [176] in univariate trend filtering); for odd k, this is not possible. The reparametrizations
for even and odd k are

min
θ,z∈Rn

1

2
‖y − θ‖2

2 + λ‖Dz‖1 s.t. z = L
k
2x,

min
θ,z∈Rn

1

2
‖y − θ‖2

2 + λ‖z‖1 s.t. z = L
k+1

2 x,

respectively. Recall that D is the oriented incidence matrix and L is the graph Laplacian. The
augmented Lagrangian is

1

2
‖y − θ‖2

2 + λ‖Sz‖1 +
ρ

2
‖z − Lqθ + u‖2

2 −
ρ

2
‖u‖2

2,

where S = D or S = I depending on whether k is even or odd, and likewise q = k/2 or
q = (k + 1)/2. ADMM then proceeds by iteratively minimizing the augmented Lagrangian over
θ, minimizing over z, and performing a dual update over u. The θ and z updates are of the form,
for some b,

θ ← (I + ρL2q)−1b, (6.7)

z ← argmin
x∈Rn

1

2
‖b− x‖2

2 +
λ

ρ
‖Sx‖1, (6.8)
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The linear system in (6.7) is well-conditioned, sparse, and can be solved efficiently using the
preconditioned conjugate gradient method. This involves only multiplication with Laplacian
matrices. For a small enough choices of ρ > 0 (the augmented Lagrangian parameter), the system
in (6.7) is diagonally dominant, special Laplacian/SDD solvers can be applied, which run in
almost linear time [127, 133, 207].

For S = I , the update in (6.8) is simply given by soft-thresholding, and for S = D, it is given by
graph TV denoising, i.e., given by solving a graph fused lasso problem. Note that this subproblem
has the exact structure of the graph trend filtering problem (6.3) with k = 0. A direct approach
for graph TV denoising is available based on parametric max-flow [51], and this algorithm is
empirically much faster than its worst-case complexity [39]. In the special case that the underlying
graph is a grid, a promising alternative method employs proximal stacking techniques [16].

6.4.2 A Fast Newton Method

As an alternative to ADMM, a projected Newton-type method [15, 30] can be used to solve (6.3)
via its dual problem:

v̂ = argmin
v∈Rr

‖y − (∆(k+1))>v‖2
2 s.t. ‖v‖∞ ≤ λ.

The solution of (6.3) is then given by θ̂ = y − (∆(k+1))>v̂. (For univariate trend filtering, Kim
et al. [129] adopt a similar strategy, but instead use an interior point method.) The projected
Newton method performs updates using a reduced Hessian, so abbreviating ∆ = ∆(k+1), each
iteration boils down to

v ← a+ (∆>I )†b, (6.9)

for some a, b and set of indices I . The linear system in (6.9) is always sparse, but conditioning
becomes an issue as k grows (note that the same problem does not occur in (6.7) because of the
addition of the identity matrix I). We have found empirically that a preconditioned conjugate
gradient method works quite well for (6.9) for k = 1, but struggles for larger k.

6.4.3 Computation Summary

In our experience, the following algorithms work well for the various order k of graph trend
filtering. We remark that orders k = 0, 1, 2 are of most practical interest (and solutions of
polynomial order k ≥ 3 are less likely to be sought in practice).1

1Loosely speaking, each order k = 0, 1, 2 provides solutions that exhibit a different class of structure: k = 0
gives piecewise constant solutions, k = 1 gives piecewise linear, and k = 2 gives piecewise smooth. All orders k ≥ 3
continue to give piecewise smooth fits, with less and less transparent differences (the practical differences between
piecewise quadratic versus piecewise linear fits is greater than piecewise cubic versus piecewise quadratic, etc.).
Since the conditioning of the graph trend filtering operator ∆(k+1) worsens as k increases, which makes computation
more difficult, it makes most practical sense to simply choose k = 2 whenever a piecewise smooth fit is desired.
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Order Algorithm
k = 0 Parametric max-flow
k = 1 Projected Newton method
k = 2, 4, . . . ADMM with parametric max-flow
k = 3, 5, . . . ADMM with soft-thresholding

Figure 6.4 compares performances of the described algorithms on a moderately large simulated
example, using a 2d grid graph. We see that when k = 1, the projected Newton method converges
faster than ADMM (superlinear versus at best linear convergence). When k = 2, the story is
reversed, as the projected Newton iterations quickly become stagnant, and the ADMM enjoys
better convergence.

GTF with k = 1 GTF with k = 2

Clock time in second (4 iterations per bullet)
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Figure 6.4: Convergence plots for projected Newton method and ADMM for solving GTF with
k = 1 and k = 2. The algorithms are all run on a 2d grid graph (an 512 × 512 image) with
262,144 nodes and 523,264 edges. For projected Newton, we plot the duality gap across iterations;
for ADMM, we plot the average of the primal and dual residuals (which also serves as a valid
suboptimality bound in the ADMM framework).

6.5 Examples

In this section, we present a variety of examples of running graph trend filtering on real
graphs.

6.5.1 Trend Filtering over the Facebook Graph

In the Introduction, we examined the denoising power of graph trend filtering in a spatial setting.
Here we examine the behavior of graph trend filtering on a nonplanar graph: the Facebook
graph from the Stanford Network Analysis Project (http://snap.stanford.edu). This is
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composed of 4039 nodes representing Facebook users, and 88,234 edges representing friendships,
collected from real survey participants; the graph has one connected component, but the observed
degree sequence is very mixed, ranging from 1 to 1045 (refer to McAuley and Leskovec [154] for
more details).

We generated synthetic measurements over the Facebook nodes (users) based on three different
ground truth models, so that we can precisely evaluate and compare the estimation accuracy of
GTF, Laplacian smoothing, and wavelet smoothing. For the latter, we again used the spanning tree
wavelet design of Sharpnack et al. [195], because it performed among the best of wavelets designs
in all data settings considered here. Results from other wavelet designs are presented in the
Section 6.8. The three ground truth models represent very different scenarios for the underlying
signal x, each one favorable to different estimation methods. These are:

1. Dense Poisson equation: we solved the Poisson equation Lx = b for x, where b is arbitrary
and dense (its entries were i.i.d. normal draws).

2. Sparse Poisson equation: we solved the Poisson equation Lx = b for x, where b is sparse
and has 30 nonzero entries (again i.i.d. normal draws).

3. Inhomogeneous random walk: we ran a set of decaying random walks at different starter
nodes in the graph, and recorded in x the total number of visits at each node. Specifically,
we chose 10 nodes as starter nodes, and assigned each starter node a decay probability
uniformly at random between 0 and 1 (this is the probability that the walk terminates at
each step instead of travelling to a neighboring node). At each starter node, we also sent out
a varying number of random walks, chosen uniformly between 0 and 1000.

In each case, the synthetic measurements were formed by adding noise to x. We note that model 1
is designed to be favorable for Laplace smoothing; model 2 is designed to be favorable for GTF;
and in the inhomogeneity in model 3 is designed to be challenging for Laplacian smoothing, and
favorable for the more adaptive GTF and wavelet methods.

Figure 6.5 shows the performance of the three estimation methods, over a wide range of noise
levels in the synthetic measurements; performance here is measured by the best achieved mean
squared error, allowing each method to be tuned optimally at each noise level. The summary:
GTF estimates are (expectedly) superior when the Laplacian-based sparsity pattern is in effect
(model 2), but are nonetheless highly competitive in both other settings—the dense case, in
which Laplacian smoothing thrives, and the inhomogeneous random walk case, in which wavelets
thrive.

6.5.2 Graph-Based Transductive Learning over UCI Data

Graph trend filtering can used for graph-based transductive learning, as motivated by the work of
Talukdar and Crammer [213], Talukdar and Pereira [214], who rely on Laplacian regularization.
Consider a semi-supervised learning setting, where we are given only a small number of seed
labels over nodes of a graph, and the goal is to impute the labels on the remaining nodes. Write
O ⊆ {1, . . . n} for the set of observed nodes, and assume that each observed label falls into
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Figure 6.5: Performance of GTF and others for three generative models on the Facebook graph.
The x-axis shows the negative SnR: 10 log10(nσ2/‖x‖2

2), where n = 4039, x is the underlying
signal, and σ2 is the noise variance. Hence the noise level is increasing from left to right. The
y-axis shows the denoised negative SnR: 10 log10(MSE/‖x‖2

2), where MSE denotes mean squared
error, so the achieved MSE is increasing from bottom to top.
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{1, . . . K}. Then we can define the modified absorption problem under graph trend filtering
regularization (MAD-GTF) by

B̂ = argmin
B∈Rn×K

K∑

j=1

∑

i∈O

(Yij −Bij)
2 + λ

K∑

j=1

‖∆(k+1)Bj‖1 + ε

K∑

j=1

‖Rj −Bj‖2
2. (6.10)

The matrix Y ∈ Rn×K is an indicator matrix: each observed row i ∈ O is described by Yij = 1 if
class j is observed and Yij = 0 otherwise. The matrix B ∈ Rn×K contains fitted probabilities,
with Bij giving the probability that node i is of class j. We write Bj for its jth column, and
hence the middle term in the above criterion encourages each set of class probabilities to behave
smoothly over the graph. The last term in the above criterion ties the fitted probabilities to some
given prior weights R ∈ Rn×K . In principle ε could act as a second tuning parameter, but for
simplicity we take ε to be small and fixed, with any ε > 0 guaranteeing that the criterion in (6.10)
is strictly convex, and thus has a unique solution B̂. The entries of B̂ need not be probabilites in
any strict sense, but we can still interpret them as relative probabilities, and imputation can be
performed by assigning each unobserved node i /∈ O a class label j such that B̂ij is largest.
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Figure 6.6: Ratio of the misclassification rate of MAD-GTF to MAD-Laplacian, for graph-based
imputation, on the 11 most popular UCI classification data sets.

Our specification of MAD-GTF only deviates from the MAD proposal of Talukdar and Crammer
[213] in that these authors used the Laplacian regularization term

∑K
j=1B

>
j LBj , in place of

`1-based graph difference regularizer in (6.10). If the underlying class probabilities are thought to
have heterogeneous smoothness over the graph, then replacing the Laplacian regularizer with the
GTF-designed one might lead to better performance. As a broad comparison of the two methods,
we ran them on the 11 most popular classification data sets from the UCI Machine Learning
repository (http://archive.ics.uci.edu/ml/).2 For each data set, we constructed a 5-

2We used all data sets here, except the “forest-fires” data set, which is a regression problem. Also, we zero-filled
the missing data in “internet-ads” data set and used a random one third of the data in the “poker” data set.
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iris adult wine car breast abalone wine-qual. poker heart ads yeast
# of classes 3 2 3 4 2 29 6 10 2 2 10
# of samples 150 32,561 178 1,728 569 4,177 1,599 3,000 303 3,279 1,484

Laplacian 0.085 0.270 0.060 0.316 0.064 0.872 0.712 0.814 0.208 0.306 0.566
GTF, k = 0 0.102 0.293 0.055 0.294 0.500 0.888 0.709 0.801 0.472 0.212 0.726

p-value 0.254 0.648 0.406 0.091 0.000 0.090 0.953 0.732 0.000 0.006 0.000
GTF, k = 1 0.087 0.275 0.055 0.293 0.063 0.874 0.713 0.813 0.175 0.218 0.563

p-value 0.443 0.413 0.025 0.012 0.498 0.699 0.920 0.801 0.134 0.054 0.636
GTF, k = 2 0.084 0.259 0.052 0.309 0.059 0.865 0.738 0.774 0.175 0.244 0.552

p-value 0.798 0.482 0.024 0.523 0.073 0.144 0.479 0.138 0.301 0.212 0.100

Table 6.1: Misclassification rates of MAD-Laplacian and MAD-GTF for imputation in the UCI
data sets. We also compute p-values over the 10 repetitions for each data set (10 draws of nodes
to serve as seed labels) via paired t-tests. Cases where MAD-GTF achieves significantly better
misclassification rate, at the 0.1 level, are highlighted in green; cases where MAD-GTF achieves
a significantly worse miclassification rate, at the 0.1 level, are highlighted in red.

nearest-neighbor graph based on the Euclidean distance between provided features, and randomly
selected 5 seeds per class to serve as the observed class labels. Then we set ε = 0.01, used
prior weights Rij = 1/K for all i and j, and chose the tuning parameter λ over a wide grid of
values to represent the best achievable performance by each method, on each experiment. Figure
6.6 and Table 6.1 summarize the misclassification rates from imputation using MAD-Laplacian
and MAD-GTF, averaged over 10 repetitions of the randomly selected seed labels. We see that
MAD-GTF with k = 0 (basically a graph partition akin to MRF-based graph cut, using an Ising
model) does not seem to work as well as the smoother alternatives. Importantly, MAD-GTF with
k = 1 and k = 2 both perform at least as well, and sometimes better, than MAD-Laplacian on
each one of the UCI data sets. Recall that these data sets were selected entirely based on their
popularity, and not at all on the belief that they might represent favorable scenarios for GTF
(i.e., not on the prospect that they might exhibit some heterogeneity in the distribution of class
labels over their respective graphs). Therefore, the fact that MAD-GTF nonetheless performs
competitively in such a broad range of experiments is convincing evidence for the utility of the
GTF regularizer.

6.5.3 Event Detection with NYC Taxi Trips Data

We illustrate a sparse variant of our proposed regularizers, given by adding a pure `1 penalty to
the coefficients in (6.3), as in

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ1‖∆(k+1)θ‖1 + λ2‖θ‖1. (6.11)

We call this sparse graph trend filtering, now with two tuning parameters λ1, λ2 ≥ 0. Under
the proper tuning, the sparse GTF estimate will be zero at many nodes in the graph, and will
otherwise deviate smoothly from zero. This can be useful in situations where the observed signal
represents a difference between two smooth processes that are mostly similar, but exhibit (perhaps
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significant) differences over a few regions of the graph. Here we apply it to the problem of
detecting events based on abnormalities in the number of taxi trips at different locations of New
York city. This data set was kindly provided by authors of Doraiswamy et al. [72], who obtained
the data from NYC Taxi & Limosine Commission.3 Specifically, we consider the graph to be
the road network of Manhattan, which contains 3874 nodes (junctions) and 7070 edges (sections
of roads that connect two junctions). For measurements over the nodes, we used the number of
taxi pickups and dropoffs over a particular time period of interest: 12:00–2:00 pm on June 26,
2011, corresponding to the Gay Pride parade. As pickups and dropoffs do not generically occur at
road junctions, we used interpolation to form counts over the graph nodes. A baseline seasonal
average was calculated by considering data from the same time block 12:00–2:00 pm on the
same day of the week across the nearest eight weeks. Thus the measurements y were then taken
to be the difference between the counts observed during the Gay Pride parade and the seasonal
averages.

Note that the nonzero node estimates from sparse GTF applied to y, after proper tuning, mark
events of interest, because they convey substantial differences between the observed and expected
taxi counts. According to descriptions in the news, we know that the Gay Pride parade was a giant
march down at noon from 36th St. and Fifth Ave. all the way to Christopher St. in Greenwich
Village, and traffic was blocked over the entire route for two hours (meaning no pickups and
dropoffs could occur). We therefore hand-labeled this route as a crude “ground truth” for the
event of interest, illustrated in the left panel of Figure 6.7.

In the bottom two panels of Figure 6.7, we compare sparse GTF with k = 0 (i.e., the sparse
graph fused lasso) and a sparse variant of Laplacian smoothing, obtained by replacing the first
regularization term in (6.11) by θ>Lθ. For a qualitative visual comparison, the smoothing
parameter λ1 was chosen so that both methods have 200 degrees of freedom (without any sparsity
imposed). The sparsity parameter was then set as λ2 = 0.2. Similar to what we have seen
already, GTF is able to better localize its estimates around strong inhomogenous spikes in the
measurements, and is able to better capture the event of interest. The result of sparse Laplacian
smoothing is far from localized around the ground truth event, and displays many nonzero node
estimates throughout distant regions of the graph. If we were to decrease its flexibility (increase
the smoothing parameter λ1 in its problem formulation), then the sparse Laplacian output would
display more smoothness over the graph, but the node estimates around the ground truth region
would also be grossly shrunken.

6.6 Estimation Error Bounds

In this section, we assume that y ∼ N (θ0, σ
2I), and study asymptotic error rates for graph trend

filtering. (The assumption of a normal error model could be relaxed, but is used for simplicity).

3These authors also considered event detection, but their topological definition of an “event” is very different
from what we considered here, and hence our results not directly comparable.
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True parade route Unfiltered signal

Sparse trend filtering Sparse Laplacian smoothing

Figure 6.7: Comparison of sparse GTF and sparse Laplacian smoothing. We can see qualitatively
that sparse GTF delivers better event detection with fewer false positives (zoomed-in, the sparse
Laplacian plot shows a scattering of many non-zero colors).

139



Our analysis actually focuses more broadly on the generalized lasso problem

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∆θ‖1, (6.12)

where ∆ ∈ Rr×n is an arbitrary linear operator, and r denotes its number of rows. Throughout,
we specialize the derived results to the graph difference operator ∆ = ∆(k+1), to obtain concrete
statements about GTF over particular graphs. All proofs are deferred to Section 9.7.

6.6.1 Basic Error Bounds

Using similar arguments to the basic inequality for the lasso [42], we have the following prelimi-
nary bound.
Theorem 6.3. Let M denote the maximum `2 norm of the columns of ∆†. Then for a tuning
parameter value λ = Θ(M

√
log r), the generalized lasso estimate θ̂ in (6.12) has average squared

error
‖θ̂ − θ0‖2

2

n
= OP

(
nullity(∆)

n
+
M
√

log r

n
· ‖∆θ0‖1

)
.

Recall that nullity(∆) denotes the dimension of the null space of ∆. For the GTF operator ∆(k+1)

of any order k, note that nullity(∆(k+1)) is the number of connected components in the underlying
graph.

When both ‖∆θ0‖1 = O(1) and nullity(∆) = O(1), Theorem 6.3 says that the estimate θ̂
converges in average squared error at the rate M

√
log r/n, in probability. This theorem is quite

general, as it applies to any linear operator ∆, and one might therefore think that it cannot yield
fast rates. Still, as we show next, it does imply consistency for graph trend filtering in certain
cases.
Corollary 6.4. Consider the trend filtering estimator θ̂ of order k, and the choice of the tuning
parameter λ as in Theorem 6.3. Then:

1. for univariate trend filtering (i.e., essentially GTF on a chain graph),

‖θ̂ − θ0‖2
2

n
= OP

(√
log n

n
· nk‖D(k+1)θ0‖1

)
;

2. for GTF on an Erdos-Renyi random graph, with edge probability p, and expected degree
d = np ≥ 1,

‖θ̂ − θ0‖2
2

n
= OP

(√
log(nd)

nd
k+1

2

· ‖∆(k+1)θ0‖1

)
;

3. for GTF on a Ramanujan d-regular graph, and d ≥ 1,

‖θ̂ − θ0‖2
2

n
= OP

(√
log(nd)

nd
k+1

2

· ‖∆(k+1)θ0‖1

)
.
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Cases 2 and 3 of Corollary 6.4 stem from the simple inequality M ≤ ‖∆†‖2, the largest singular
value of ∆†. When ∆ = ∆(k+1), the GTF operator of order k + 1, we have

‖(∆(k+1))†‖2 ≤ 1/λmin(L)(k+1)/2,

where λmin(L) is the smallest nonzero eigenvalue of the Laplacian L (also known as the Fiedler
eigenvalue [92]). In general, λmin(L) can be very small, leading to loose error bounds, but
for the particular graphs in question, it is well-controlled. When ‖∆(k+1)θ0‖1 is bounded,
cases 2 and 3 of the corollary show that the average squared error of GTF converges at the
rate

√
log(nd)/(nd(k+1)/2). As k increases, this rate is stronger, but so is the assumption that

‖∆(k+1)θ0‖1 is bounded.

Case 1 in Corollary 6.4 covers univariate trend filtering (which, recall, is basically the same
as GTF over a chain graph; the only differences between the two are boundary terms in the
construction of the difference operators). The result in case 1 is based on direct calculation of M ,
using specific facts that are known about the univariate difference operators. It is natural in the
univariate setting to assume that nk‖D(k+1)θ0‖1 is bounded (this is the scaling that would link θ0 to
the evaluations of a piecewise polynomial function f0 over [0, 1], with TV(f

(k)
0 ) bounded). Under

such an assumption, the above corollary yields a convergence rate of
√

log n/n for univariate
trend filtering, which is not tight. A more refined analysis shows the univariate trend filtering
estimator to converge at the minimax optimal rate n−(2k+2)/(2k+3), proved in Tibshirani [221] by
using a connection between univariate trend filtering and locally adaptive regression splines, and
relying on sharp entropy-based rates for locally adaptive regression splines from Mammen and
van de Geer [152]. We note that in a pure graph-centric setting, the latter strategy is not generally
applicable, as the notion of a spline function does not obviously extend to the nodes of an arbitrary
graph structure.

In the next subsections, we develop more advanced strategies for deriving fast GTF error rates,
based on incoherence, and entropy. These can provide substantial improvements over the basic
error bound established in this subsection, but are only applicable to certain graph models.
Fortunately, this includes common graphs of interest, such as regular grids. To verify the sharpness
of these alternative strategies, we will show that they can be used to recover optimal rates of
convergence for trend filtering in the 1d setting.

6.6.2 Strong Error Bounds Based on Incoherence

A key step in the proof of Theorem 6.3 argues, roughly speaking, that

ε>∆†∆x ≤ ‖(∆†)>ε‖∞‖∆x‖1 = OP(M
√

log r‖∆x‖1), (6.13)

where ε ∼ N (0, σ2I). The second bound holds by a standard result on maxima of Gaussians
(recall that M is largest `2 norm of the columns of ∆†). The first bound above uses Holder’s
inequality; note that this applies to any ε,∆, i.e., it does not use any information about the
distribution of ε, or the properties of ∆. The next lemma reveals a potential advantage that can be
gained from replacing the bound (6.13), stemming from Holder’s inequality, with a “linearized”
bound.
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Lemma 6.5. Denote ε ∼ N (0, σ2I), and assume that

max
x∈S∆(1)

ε>x− A
‖x‖2

= OP(B), (6.14)

where S∆(1) = {x ∈ row(∆) : ‖∆x‖1 ≤ 1}. With λ = Θ(A), the generalized lasso estimate θ̂
satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
nullity(∆)

n
+
B2

n
+
A

n
· ‖∆θ0‖1

)
.

The inequality in (6.14) is referred to as a “linearized” bound because it implies that for x ∈
S∆(1),

ε>x = OP(A+B‖x‖2),

and the right-hand side is a linear function of ‖x‖2. Indeed, for A = M
√

2 log r and B = 0, this
encompasses the bound in (6.13) as a special case, and the result of Lemma 6.5 reduces to that of
Theorem 6.3. But the result in Lemma 6.5 can be much stronger, if A,B can be adjusted so that
A is smaller than M

√
2 log r, and B is also small. Such an arrangement is possible for certain

operators ∆; e.g., it is possible under an incoherence-type assumption on ∆.
Theorem 6.6. Let q = rank(∆), and let ξ1 ≤ . . . ≤ ξq denote the singular values of ∆, in
increasing order. Also let u1, . . . uq be the corresponding left singular vectors. Assume that these
vectors are incoherent:

‖ui‖∞ ≤ µ/
√
n, i = 1, . . . q,

for some constant µ ≥ 1. For i0 ∈ {1, . . . q}, let

λ = Θ


µ

√√√√ log r

n

q∑

i=i0+1

1

ξ2
i


 .

Then the generalized lasso estimate θ̂ has average squared error

‖θ̂ − θ0‖2
2

n
= OP


nullity(∆)

n
+
i0
n

+
µ

n

√√√√ log r

n

q∑

i=i0+1

1

ξ2
i

· ‖∆θ0‖1


 .

Theorem 6.6 is proved by leveraging the linearized bound (6.14), which holds under the inco-
herence condition on the singular vectors of ∆. Compared to the basic result in Theorem 6.3,
the result in Theorem 6.6 is clearly stronger as it allows us to replace M—which can grow like
the reciprocal of the minimum nonzero singular value of ∆—with something akin to the average
reciprocal of larger singular values. But it does, of course, also make stronger assumptions
(incoherence). It is interesting to note that the functional in the theorem,

∑q
i=i0+1 ξ

−2
i , was also

determined to play a leading role in error bounds for a graph Fourier based scan statistic in the
hypothesis testing framework [196].

Applying the above theorem to the GTF estimator requires knowledge of the singular vectors
of ∆ = ∆(k+1), the (k + 1)st order graph difference operator. The validity of an incoherence
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assumption on these singular vectors depend on the graph G in question. When k is odd, these
singular vectors are eigenvectors of the Laplacian L; when k is even, they are left singular
vectors of the edge incidence matrix D. Loosely speaking, these vectors will be incoherent when
neighborhoods of different vertices look roughly the same. Most social networks will have this
property for the bulk of their vertices (i.e., with the exception of a small number of high degree
vertices). Grid graphs also have this property. First, we consider trend filtering over a 1d grid, i.e.,
a chain (which, recall, is essentially equivalent to univariate trend filtering).
Corollary 6.7. Consider the GTF estimator θ̂ of order k, over a chain graph, i.e., a 1d grid graph.
Letting

λ = Θ

(
n

2k+1
2k+3 (log n)

1
2k+3‖∆(k+1)θ0‖

− 2k+1
2k+3

1

)
,

the estimator θ̂ (here, essentially, the univariate trend filtering estimator) satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
n−

2k+2
2k+3 (log n)

1
2k+3 ·

(
nk‖∆(k+1)θ0‖1

) 2
2k+3

)
.

We note that the above corollary essentially recovers the optimal rate of convergence for the
univariate trend filtering estimator, for all orders k. (To be precise, it studies GTF on a chain graph
instead, but this is basically the same problem.) When nk‖∆(k+1)θ0‖1 is assumed to be bounded,
a natural assumption in the univariate setting, the corollary shows the estimator to converge at
the rate n−(2k+2)/(2k+3)(log n)1/(2k+3). Ignoring the log factor, this matches the minimax optimal
rate as established in Tibshirani [221], Wang et al. [244]. Importantly, the proof of Corollary 6.7,
unlike that used in previous works, is free from any dependence on univariate spline functions; it
is completely graph-theoretic, and only uses on the incoherence properties of the 1d grid graph.
The strength of this approach is its wider applicability, which we demonstrate by moving up to 2d
grids.
Corollary 6.8. Consider the GTF estimator θ̂ of order k, over a 2d grid graph, of size

√
n×√n.

Letting

λ = Θ

(
n

2k+1
2k+5 (log n)

1
2k+5‖∆(k+1)θ0‖

− 2k+1
2k+5

1

)
,

the estimator θ̂ satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
n−

2k+4
2k+5 (log n)

1
2k+5 ·

(
n
k
2 ‖∆(k+1)θ0‖1

) 4
2k+5

)
.

The 2d result in Corollary 6.8 is written in a form that mimics the 1d result in Corollary 6.7, as we
claim that the analog of boundedness of nk‖∆(k+1)θ0‖1 in 1d is boundedness of nk/2‖∆(k+1)θ0‖1

in 2d.4 Thus, under the appropriate boundedness condition, the 2d rate shows improvement over
the 1d rate, which makes sense, since regularization here is being enforced in a richer manner.
It is worthwhile highlighting the result for k = 0 in particular: this says that, when the sum of
absolute discrete differences ‖∆(1)θ0‖1 is bounded over a 2d grid, the 2d fused lasso (i.e., 2d total
variation denoising) has error rate n−4/5. This is faster than the n−2/3 rate for the 1d fused lasso,
when the sum of absolute differences ‖D(1)θ0‖1 is bounded. Rates for higher dimensional grid
graphs (for all k) follow from analogous arguments, but we omit the details.

4This is because 1/
√
n is the distance between adjacent 2d grid points, when viewed as a 2d lattice over [0, 1]2.
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6.6.3 Strong Error Bounds Based on Entropy

A different “fractional” bound on the Gaussian contrast ε>x, over x ∈ S∆(1), provides an alternate
route to deriving sharper rates. This style of bound is inspired by the seminal work of van de Geer
[230].
Lemma 6.9. Denote ε ∼ N (0, σ2I), and assume that for a constant w < 2,

max
x∈S∆(1)

ε>x

‖x‖1−w/2
2

= OP(K), (6.15)

where recall S∆(1) = {x ∈ row(∆) : ‖∆x‖1 ≤ 1}. Then with

λ = Θ

(
K

2
1+w/2 · ‖∆θ0‖

− 1−w/2
1+w/2

1

)
,

the generalized lasso estimate θ̂ satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
nullity(∆)

n
+
K

2
1+w/2

n
· ‖∆θ0‖

w
1+w/2

1

)
.

The main motivation for bounds of the form (6.15) is that they follow from entropy bounds on
the set S∆(1). Recall that for a set S, the covering number N(δ, S, ‖ · ‖) is the fewest number of
balls of radius δ that cover S, with respect to the norm ‖ · ‖. The log covering or entropy number
is logN(δ, S, ‖ · ‖). In the next result, we make the connection between between entropy and
fractional bounds precise; this follows closely from Lemma 3.5 of van de Geer [230].
Theorem 6.10. Suppose that there exist a constant w < 2 such that for n large enough,

logN(δ,S∆(1), ‖ · ‖2) ≤ E
(√n
δ

)w
, (6.16)

for δ > 0, whereE can depend on n. Then the fractional bound in (6.15) holds withK =
√
Enw/4,

and as a result, for

λ = Θ

(
E

1
1+w/2n

w/2
1+w/2‖∆θ0‖

− 1−w/2
1+w/2

1

)
,

the generalized lasso estimate θ̂ has average squared error

‖θ̂ − θ0‖2
2

n
= OP

(
nullity(∆)

n
+ E

1
1+w/2n−

1
1+w/2 · ‖∆θ0‖

w
1+w/2

1

)
.

To make use of the result in Theorem 6.10, we must obtain an entropy bound as in (6.16), on
the set S∆(1). The literature on entropy numbers is rich, and there are various methods for
computing entropy bounds, any of which can be used for these purposes as long as the bounds fit
the form of (6.16), as required by the theorem. For bounding the entropy of a set like S∆(1), two
common techniques are to use a characterization of the spectral decay of ∆†, or an analysis of the
correlations between columns of ∆†. For a nice review of such strategies and their applications,
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we refer the reader to Section 6 of van de Geer and Lederer [231] and Section 14.12 of Buhlmann
and van de Geer [42]. We do not pursue either of these two strategies in the current paper. We
instead consider a third, somewhat more transparent strategy, based on a covering number bound
of the columns of ∆†.
Lemma 6.11. Let g1, . . . gr denote the “atoms” associated with the operator ∆, i.e., the columns
of ∆†, and let G = {±gi : i = 1, . . . r} denote the symmetrized set of atoms. Suppose that there
exists constants ζ, C0 with the following property: for each j = 1, . . . 2r, there is an arrangement
of j balls having radius at most

C0

√
nj−1/ζ ,

with respect to the norm ‖ · ‖2, that covers G. Then the entropy bound in (6.16) is met with
w = 2ζ/(2 + ζ) and E = O(1). Therefore, the generalized lasso estimate θ̂, with

λ = Θ

(
n

ζ
2+2ζ ‖∆θ0‖

− 1
1+ζ

1

)
,

satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
nullity(∆)

n
+ n−

2+ζ
2+2ζ · ‖∆θ0‖

ζ
1+ζ

1

)
.

The entropy-based results in this subsection (Lemma 6.9, Theorem 6.10, and Lemma 6.11) may
appear more complex than those involving incoherence in the previous subsection (Lemma 6.5 and
Theorem 6.6). Indeed, the same can be said of their proofs, which can be found in the Section 9.7.
But after all this entropy machinery has all been established, it can actually be remarkably easy to
use, say, Lemma 6.11 to produce sharp results. We conclude by giving an example.
Corollary 6.12. Consider the 1d fused lasso, i.e., the GTF estimator with k = 0 over a chain
graph. In this case, we have ∆ = D(1), the univariate difference operator, and the symmetrized
set G of atoms can be covered by j balls with radius at most

√
2n/j, for j = 1, . . . 2(n − 1).

Hence, with λ = Θ(n1/3‖D(1)θ0‖−1/3
1 ), the 1d fused lasso estimate θ̂ satisfies

‖θ̂ − θ0‖2
2

n
= OP

(
n−2/3 · ‖D(1)θ0‖2/3

1

)
.

This corollary rederives the optimal convergence rate of n−2/3 for the univariate fused lasso,
assuming boundedness of ‖D(1)θ0‖1, as has been already shown in Mammen and van de Geer
[152], Tibshirani [221]. Like Corollary 6.7 (but unlike previous works), its proof does not rely
on any special facts about 1d functions of bounded variation. It only uses a covering number
bound on the columns of the operator (D(1))+, a strategy that, in principle, extends to many other
settings (graphs). It is worth emphasizing just how simple this covering number construction is,
compared to the incoherence-based arguments that lead to the same result; we invite the curious
reader to compare the proofs of Corollaries 6.7 and 6.12.
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6.7 Discussion

In this work, we proposed graph trend filtering as a useful alternative to Laplacian and wavelet
smoothers on graphs. This is analogous to the usefulness of univariate trend filtering in nonpara-
metric regression, as an alternative to smoothing splines and wavelets [221]. We have documented
empirical evidence for the superior local adaptivity of the `1-based GTF over the `2-based graph
Laplacian smoother, and the superior robustness of GTF over wavelet smoothing in high-noise
scenarios. Our theoretical analysis provides a basis for a deeper understanding of the estimation
properties of GTF. More precise theoretical characterizations involving entropy will be the topic
of future work, as will comparisons between the error rates achieved by GTF and other common
estimators, such as Laplacian smoothing. These extensions, and many others, are well within
reach.

6.8 Additional Analysis from Alternative Wavelet Designs

We provide detailed comparisons to a few recently proposed wavelet approaches for graph
smoothing.

6.8.1 Allegheny County Example

In addition to considering the wavelet design of Sharpnack et al. [195] for the Allegheny County
example, we also considered designs of Coiman and Maggioni [58]—a classic method that builds
diffusion wavelets on a graph, and Irion [120]—a more recent graph wavelet construction. In
contrast to Sharpnack et al. [195], which produces a single signal-independent orthogonal basis
for a graph, both Coiman and Maggioni [58], Irion [120] build wavelet packets from a given graph
structure. A wavelet packet is an overcomplete basis indexed by a hierarchical data structure
that can be used to generate an exponential number of orthogonal bases. This construction
is computationally expensive as it typically involves computing eigendecompositions of large
matrices. Once the wavelet packet has been constructed, for each input signal that one observes
over the graph in question, one runs a “best basis” algorithm to choose a particular orthogonal
basis from the wavelet packet by optimizing a particular cost function of the eventual wavelet
coefficients. This is based on a message-passing-like dynamic programming algorithm, and
can be quite efficient. Lastly, the denoising procedure is defined as usual (e.g., as in Donoho
and Johnstone [69]), namely, one performs the basis transformation, soft-thresholds (or hard-
thresholds) the coefficients, and then reconstructs the denoised signal.

In our experiments, we used the wavelet implementations released by the authors of Coiman and
Maggioni [58], Irion [120] with their default settings. In particular, the former implementation
of Coiman and Maggioni [58] builds wavelets from a diffusion operator constructed from the
adjacency matrix of a graph, and the cost function for the best basis is defined by the `1 norm of
the wavelet coefficients. The latter implementation of Irion [120] uses a more exhaustive search,
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building wavelet packets through a hierarchical partitioning and eigentransform of three different
Laplacian matrices and a fourth generalized Haar-Walsh transform (GHWT), then choosing the
best basis from all four collections by optimizing a meta cost function of the `p norm of wavelet
coefficients over p ∈ {0.1, 0.2, . . . 2}. This is the “cumulative relative error” defined in equation
(7.5) of Irion [120].

In the left panel of Figure 6.8, we plot the mean squared errors for these new wavelet methods
over the same 10 simulations from the Allegheny County example in Figure 6.2 of Section 6.8.1.
The middle and right panels of the figure show the denoised signals from the new methods fit to
the data in Figure 6.1, at their optimal degrees of freedom (df) values (in terms of the achieved
MSE). We can see that the spanning tree wavelet design of Sharpnack et al. [195] is the best
performer among the three candidate wavelet designs. In a rough sense, the construction of Irion
[120] seems to perform similarly to that of Sharpnack et al. [195], in that the MSE is best for
larger df values (corresponding to more nonzero wavelet coefficients, i.e., complex fitted models),
whereas the construction of Coiman and Maggioni [58] performs best for smaller df values (fewer
nonzero wavelet coefficients, i.e., simpler fitted models).

MSE comparison Irion wavelets, 194 df Coifman wavelets, 78 df
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Figure 6.8: Additional wavelet analysis of the Allegheny County example.

6.8.2 Facebook Graph Example

Again, we consider the designs of Coiman and Maggioni [58], Irion [120] for the Facebook
graph example of Section 6.5.1. Due to practical reasons, we had to change some of the default
settings in the implementations provided by the authors of these wavelet methods; in the wavelet
implementation of Coiman and Maggioni [58], we took the power of the diffusion operator to
be 1 instead of 4 (since the latter choice threw an error in the provided code); and in the wavelet
implementation of Irion [120], we used another “best basis” algorithm that only searches within
the basis collection from the GHWT eigendecomposition, as the original algorithm was too slow
due to the larger scale considered in this example. (In most examples in Irion [120], the chosen
bases come from the GHWT eigendecomposition.) We view these changes as minor, because
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when the same changes were applied to the methods of Coiman and Maggioni [58], Irion [120]
on the smaller Allegheny County example, there are no obvious differences in the results.

Figure 6.9 shows the results for the two new wavelet methods on the Facebook graph simulation,
using the same setup as in Figure 6.5. Once again, we find that the spanning tree wavelets
of Sharpnack et al. [195] perform better or on par with the other two wavelet methods across
essentially all scenarios.
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Figure 6.9: Additional wavelet analysis of the Facebook graph example.

6.9 Proofs of Theoretical Results

Here we present proofs of our theoretical results presented in Sections 6.3 and 6.6.
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6.9.1 Proof of Lemma 6.1

For even k, we have ∆(k+1) = DLk/2, so if A denotes a subset of edges, then ∆
(k+1)
−A = D−AL

k/2.
Recall that for a connected graph, null(L) = span{1}, and the same is true for any power of L.
This means that we can write

null(∆(k+1)) = span{1}+ span{1}⊥ ∩ {u : DL
k
2u = 0}.

Note that if 1>u = 0, then v = L
k
2u ⇐⇒ u = (L†)

k
2u. Moreover, if G−A has connected

components C1, . . . Cs, then null(D−A) = span{1C1 , . . .1Cs}. Putting these statements together
proves the result for even k. For k odd, the arguments are similar.

6.9.2 Proof of Theorem 6.3

By assumption we can write
y = θ0 + ε, ε ∼ N (0, σ2I).

Denote R = row(∆), the row space of ∆, and R⊥ = null(∆), the null space of ∆. Also let PR
be the projection onto R, and PR⊥ the projection onto R⊥. Consider

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∆θ‖1,

θ̃ = argmin
θ∈Rn

1

2
‖PRy − θ‖2

2 + λ‖∆θ‖1.

The first quantity θ̂ ∈ Rn is the estimate of interest, the second one θ̃ ∈ R is easier to analyze.
Note that

θ̂ = PR⊥y + θ̃,

and write ‖x‖R = ‖PRx‖2, ‖x‖R⊥ = ‖PR⊥x‖2. Then

‖θ̂ − θ0‖2
2 = ‖ε‖2

R⊥ + ‖θ̃ − θ0‖2
R.

The first term is on the order dim(R⊥) = nullity(∆), and it suffices to bound the second term.
Now we establish a basic inequality for θ̃. By optimality of θ̃, we have

1

2
‖y − θ̃‖2

R + λ‖∆θ̃‖1 ≤
1

2
‖y − θ0‖2

R + λ‖∆θ0‖1,

and after rearranging terms,

‖θ̃ − θ0‖2
R ≤ 2ε>PR(θ̃ − θ0) + 2λ‖∆θ0‖1 − 2λ‖∆θ̃‖1. (6.17)

This is our basic inequality. In the first term above, we use PR = ∆†∆, and apply Holder’s
inequality:

ε>∆†∆(θ̃ − θ0) ≤ ‖(∆†)>ε‖∞‖∆(θ̃ − θ0)‖1. (6.18)
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If λ ≥ ‖(∆†)>ε‖∞, then from (6.17), (6.18), and the triangle inequality, we see that

‖θ̃ − θ0‖2
R ≤ 4λ‖∆θ0‖1.

Well, ‖(∆†)>ε‖∞ = OP(M
√

log r) by a standard result on the maximum of Gaussians (derived
using the union bound, and Mills’ bound on the Gaussian tail), where recall M is the maximum
`2 norm of the columns of ∆†. Thus with λ = Θ(M

√
log r), we have from the above that

‖θ̃ − θ0‖2
R = OP

(
M
√

log r‖∆θ0‖1

)
,

as desired.

6.9.3 Proof of Corollary 6.4

Case 1. When θ̂ is the univariate trend filtering estimator of order k, we are considering a
penalty matrix ∆ = D(k+1), the univariate difference operator of order k + 1. Note that D(k+1) ∈
R(n−k−1)×n, and its null space has constant dimension k + 1. We show in Lemma 6.13 of
Section 9.7 6.9.4 that (D(k+1))† = PRH

(k)
2 /k!, where R = row(D(k+1)), and H(k)

2 ∈ Rn×(n−k−1)

contains the last n− k − 1 columns of the order k falling factorial basis matrix [244], evaluated
over the input points x1 = 1, . . . xn = n. The largest column norm of PRH

(k)
2 /k! is on the order

of nk+1/2, which proves the result.

Cases 2 and 3. When G is the Ramanujan d-regular graph, the number of edges in the graph is
O(nd). The operator ∆ = ∆(k+1) has number of rows r = n when k is odd and r = O(nd) when
k is even; overall this is O(nd). The dimension of the null space of ∆ is constant (it is in fact
1, since the graph is connected). When G is the Erdos-Renyi random graph, the same bounds
apply to the number of rows and the dimension of the null space, except that the bounds become
probabilistic ones.

Now we apply the crude inequality, with ei, i = 1, . . . r denoting the standard basis vectors,

M = max
i=1,...r

∆†ei ≤ max
‖x‖2≤1

∆†x = ‖∆†‖2,

the right-hand side being the maximum singular value of ∆†. As ∆ = ∆(k+1), the graph difference
operator of order k + 1, we claim that

‖∆†‖2 ≤ 1/λmin(L)
k+1

2 , (6.19)

where λmin(L) denotes the smallest nonzero eigenvalue of the graph Laplacian L. To see this,
note first that ‖∆†‖2 = 1/σmin(∆), where the denominator is the smallest nonzero singular value
of ∆. Now for odd k, we have ∆(k+1) = L(k+1)/2, and the claim follows as

σmin(L
k+1

2 ) = min
x∈R:‖x‖2≤1

‖L k+1
2 x‖2 ≥

(
σmin(L)

) k+1
2 ,
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and σmin(L) = λmin(L), since L is symmetric. Above, R denotes the row space of L (the space
orthogonal to the vector 1 of all 1s). For even k, we have ∆(k+1) = DLk/2, and again

σmin(DL
k
2 ) = min

x∈R:‖x‖2≤1
‖DL k+1

2 x‖2 ≥ σmin(D)
(
σmin(L)

) k
2 ,

where σmin(D) =
√
λmin(L), since D>D = L. This verifies the claim.

Having established (6.19), it suffices to lower bound λmin(L) for the two graphs in question.
Indeed, for both graphs, we have the lower bound

λmin(L) = Ω(d−
√
d).

e.g., see Lubotzky et al. [150], Marcus et al. [153] for the Ramanujan graph and Chung and
Radcliffe [57], Feige and Ofek [91] for the Erdos-Renyi graph. This completes the proof.

6.9.4 Calculation of (D(k+1))†

Lemma 6.13. The (k + 1)st order discrete difference operator has pseudoinverse

(D(k+1))† = PRH
(k)
2 /k!,

where we denote R = row(D(k+1)), and H(k)
2 ∈ Rn×(n−k−1) the last n− k− 1 columns of the kth

order falling factorial basis matrix.

Proof. We abbreviate D = D(k+1), and consider the linear system

DD>x = Db (6.20)

in x, where b ∈ Rn is arbitrary. We seek an expression for x = (DD>)−1D> = (D†)>b, and this
will tell us the form of D†. Define

D̃ =

[
C
D

]
∈ Rn×n,

where C ∈ R(k+1)×n is the matrix that collects the first row of each lower order difference operator,
defined in Lemma 2 of Wang et al. [244]. From this same lemma, we know that

D̃−1 = H/k!,

where H = H(k) is falling factorial basis matrix of order k, evaluated over x1, . . . xn. With this in
mind, consider the expanded linear system

[
CC> CD>

DC> DD>

] [
w
x

]
=

[
a
Db

]
. (6.21)

The second equation reads
DC>w +DD>x = Db,
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and so if we can choose a in (6.21) so that at the solution we have w = 0, then x is the solution in
(6.20). The first equation in (6.21) reads

CC>w + CD>x = a,

i.e.,
w = (CC>)−1(a− CD>x).

That is, we want to choose

a = CD>x = CD>(DD>)−1Db = CPRb,

where PR is the projection onto row space of D. Thus we can reexpress (6.21) as

D̃D̃>
[
w
x

]
=

[
CPRb
Db

]
= D̃PRb

and, using D̃−1 = H/k!, [
w
x

]
= H>PRb/k!.

Finally, writing H2 for the last n− k− 1 columns of H , we have x = H>2 PRb/k!, as desired.

Remark. The above proof did not rely on the input points x1, . . . xn; indeed, the result holds true
for any sequence of inputs used to define the discrete difference matrix and falling factorial basis
matrix.

6.9.5 Proof of Lemma 6.5

We follow the proof of Theorem 6.3, up until the application of Holder’s inequality in (6.18). In
place of this step, we use the linearized bound in (6.14), which we claim implies that

ε>PR(θ̃ − θ0) ≤ B̃‖θ̃ − θ0‖R + A‖∆(θ̃ − θ0)‖1,

where B̃ = OP(B). This simply follows from applying (6.14) to x = PR(θ̃ − θ0)/‖∆(θ̃ − θ0)‖1,
which is easily seen to be an element of S∆(1). Hence we can take take λ = Θ(A), and argue as
in the proof of Theorem 6.3 to arrive at

‖θ̃ − θ0‖2
R ≤ B̃‖θ̃ − θ0‖R + Ã‖∆θ0‖1,

where Ã = OP(A). Note that the above is a quadratic inequality of the form ax2 − bx− c ≤ 0
with x = ‖θ̃ − θ0‖R. As a > 0, the larger of its two roots serves as a bound for x, i.e., x ≤
(b+

√
b2 + 4ac)/(2a) ≤ b/a+

√
c/a, or x2 ≤ 2b2/a2 + 2c/a, which means that

‖θ̃ − θ0‖2
R ≤ 2B̃2 + 2Ã‖∆θ0‖1 = OP

(
B2 + A‖∆θ0‖1

)
,

completing the proof.
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6.9.6 Proof of Theorem 6.6

For an index i0 ∈ {1, . . . q}, let

C = µ

√√√√2 log 2r

n

q∑

i=i0+1

1

ξ2
i

.

We will show that

max
x∈S∆(1)

ε>x− 1.001σC

‖x‖2

= OP(
√
i0).

Invoking Lemma 6.5 with A = 1.001σC and b =
√
i0 would then give the result.

Henceforth we denote [i] = {1, . . . i}. Recall that q = rank(∆). Let the singular value decompo-
sition of ∆ be

∆ = UΣV >,

where U ∈ Rr×q, V ∈ Rn×q are orthogonal, and Σ ∈ Rq×q has diagonal elements (Σ)ii = ξi > 0
for i ∈ [q]. First, let us establish that

∆† = V Σ−1U>.

Consider an arbitrary point x = PRz ∈ S∆(1). Denote the projection P[i0] = V[i0]V
>

[i0] where V[i0]

contains the first i0 right singular vectors. We can decompose

ε>PRz = ε>P[i0]PRz + ε>(I − P[i0])PRz.

The first term can be bounded by

ε>P[i0]PRz ≤ ‖P[i0]ε‖2‖z‖R = OP(
√
i0‖z‖R),

using the fact that ‖P[i0]ε‖2
2
d
=
∑i0

i=1 ε
2
i . We can bound the second term by

ε>(I − P[i0])PRz = ε>(I − P[i0])∆
†∆z ≤ ‖(∆†)>(I − P[i0])ε‖∞,

using PR = ∆†∆, Holder’s inequality, and the fact that ‖∆z‖1 ≤ 1. Define gj = (I − P[i0])∆
†ej

for j ∈ [r] with ej the jth canonical basis vector. So,

‖gj‖2
2 = ‖[ 0 V[n]\[i0] ] · Σ−1U>ej‖2

2 ≤
µ2

n

q∑

i=i0+1

1

ξ2
i

,

by rotational invariance of ‖ · ‖2 and the incoherence assumption on the columns of U . By a
standard result on maxima of Gaussians,

‖(∆†)>(I − P[i0])ε‖∞ = max
j∈[r]

|g>j ε| ≤ 1.001σ

√√√√2 log(2r)
µ2

n

q∑

i=i0+1

1

ξ2
i

= 1.001σC,

with probability approaching 1. Putting these two terms together completes the proof, as we have
shown that

ε>PRz − 1.001σC

‖z‖R
= OP(

√
i0),

with the probability bound on the right-hand side not depending on z.
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6.9.7 Proof of Corollary 6.7

We focus on the k odd and k even cases separately.

Case for k odd. When k is odd, we have ∆ = ∆(k+1) = L(k+1)/2, where L the graph Laplacian
of a chain graph (i.e., 1d grid graph), to be perfectly explicit,

L =




1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
... . . . . . . . . .
0 0 . . . −1 2 −1
0 0 . . . 0 −1 1



.

In numerical methods for differential equations, this matrix L is called the finite difference
operator for the 1d Laplace equation with Neumann boundary conditions [e.g., 59, 102], and is
known to have eigenvalues and eigenvectors

ξi = 4 sin2
(π(i− 1)

2n

)
, for i = 1, . . . n,

uij =





1√
n

if i = 1
√

2
n

cos
(
π(i−1)(j−1/2)

n

)
otherwise

, for i, j = 1, . . . n.

Therefore, the eigenvectors of L are incoherent with constant µ =
√

2. This of course implies the
same of L(k+1)/2, which shares the eigenvectors of L. Meanwhile, the eigenvalues of L(k+1)/2 are
just given by raising those of L to the power of (k + 1)/2, and for i0 ∈ {1, . . . n}, we compute
the partial sum of their squared reciprocals, as in

1

n

n∑

i=i0+1

1

ξk+1
i

=
1

n

n∑

i=i0+1

1

4k+1 sin2k+2(π(i− 1)/(2n))
≤
∫ (n−2)/n

(i0−1)/n

1

4k+1 sin2k+2(πx/2)
dx,

where we have used the fact that the right-endpoint Riemann sum, for a monotone nonincreasing
function, is an underestimate of its integral. Continuing on, the above integral can be bounded
by

1

4k+1 sin2k(πi0/(2n))

∫ 1

(i0−1)/n

1

sin2(πx/2)
dx =

2 cot(πi0/(2n))

4k+1π sin2k(πi0/(2n))
≤ 1

4k+1π

(
2n

πi0

)2k+1

,

the last step using a Taylor expansion around 0. Hence to choose a tight a bound as possible in
Theorem 6.6, we seek to balance i0 with

√
(n/i0)2k+1 log n · ‖∆(k+1)θ0‖1. This is accomplished

by choosing

i0 = n
2k+1
2k+3 (log n)

1
2k+3‖∆(k+1)θ0‖

2
2k+3

1 ,

and applying Theorem 6.6 gives the result for k odd.
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Case for k even. When k is even, we instead have ∆ = ∆(k+1) = DLk/2, where D is the edge
incidence matrix of a 1d chain, and L = D>D. It is clear that the left singular vectors of
DLk/2 are simply the left singular vectors of D, or equivalently, the eigenvectors of DD>. To be
explicit,

DD> =




2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
... . . . . . . . . .
0 0 . . . −1 2 −1
0 0 . . . 0 −1 2



,

which is called the finite difference operator associated with the 1d Laplace equation under
Dirichlet boundary conditions in numerical methods [e.g., 59, 102], and is known to have eigen-
vectors

uij =

√
2

n
sin
(πij
n

)
, for i, j = 1, . . . n− 1.

It is evident that these vectors are incoherent, with constant µ =
√

2. Furthermore, the singular
values of DLk/2 are exactly the eigenvalues of L raised to the power of (k + 1)/2, and the
remainder of the proof goes through as in the k odd case.

6.9.8 Proof of Corollary 6.8

Again we treat the k odd and even cases separately.

Case for k odd. As k is odd, the GTF operator is ∆ = ∆(k+1) = L(k+1)/2, where the L is the
Laplacian matrix of a 2d grid graph. Writing L1d ∈ R`×` for the Laplacian matrix over a 1d grid
of size ` =

√
n (and I ∈ R`×` for the identity matrix), we note that

L = I ⊗ L1d + L1d ⊗ I,
i.e., the 2d grid Laplacian L is the Kronecker sum of the 1d grid Laplacian L1d, so its eigenvectors
are given by all pairwise Kronecker products of eigenvectors of L1d, of the form ui⊗uj . Moreover,
it is not hard to see that each ui⊗uj has unit norm (since ui, uj do) and ‖ui⊗uj‖∞ ≤ 2/

√
n. This

allows us to conclude that the eigenvectors of L obey the incoherence property with µ = 2.

The eigenvalues of L are given by all pairwise sums of eigenvalues in the 1d case. Indexing by 2d
grid coordinates, we may write these as

ξj1,j2 = 4 sin2
(π(j1 − 1)

2`

)
+ 4 sin2

(π(j2 − 1)

2`

)
, for j1, j2 = 1, . . . `.

Eigenvalues of L(k+1)/2 are just given by raising the above to the power of (k + 1)/2, and for
j0 ∈ {1, . . . `}, we let i0 = j2

0 , and compute the sum

1

n

∑

max{j1j2}>j0

1

ξk+1
j1,j2

≤ 2

n

∑̀

j1=j0+1

∑̀

j2=1

1

ξk+1
j1,j2

≤ 2

`

∑̀

j1=j0+1

1

4k+1 sin2k+2(π(j1 − 1)/(2`))
.
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Just as we argued in the 1d case (for k odd), the above is bounded by

2

4k+1π

(
2`

πj0

)2k+1

,

and thus we seek to balance i0 = j2
0 with

√
(`/j0)2k+1 log n · ‖∆(k+1)θ0‖1. This yields

j0 = `
2k+1
2k+5 (log n)

1
2k+5‖∆(k+1)θ0‖

2
2k+5

1 ,

i.e.,
i0 = n

2k+1
2k+5 (log n)

2
2k+5‖∆(k+1)θ0‖

4
2k+5

1 ,

and applying Theorem 6.6 gives the result for k odd.

Case for k even. For k even, we have the GTF operator being ∆ = ∆(k+1) = DLk/2, where D is
the edge incidence matrix of a 2d grid, and L = D>D. It will be helpful to write

D =

[
I ⊗D1d

D1d ⊗ I

]
,

where D1d ∈ R(`−1)×` is the difference operator for a 1d grid of size ` =
√
n (and I ∈ R`×` is the

identity matrix). It suffices to check the incoherence of the left singular vectors of DLk/2, since
the eigenvalues of DLk/2 are those of L raised to the power of (k + 1)/2, and so the rest of the
proof then follows precisely as in the case when k is odd. The left singular vectors of DLk/2 are
the same as the left singular vectors of D, which are the eigenvectors of DD>. Observe that

DD> =

[
I ⊗D1dD

>
1d D>1d ⊗D1d

D1d ⊗D>1d D1dD
>
1d ⊗ I

]
.

Let ui, i = 1, . . . ` − 1 be the eigenvectors of D1dD
>
1d, corresponding to eigenvalues λi, i =

1, . . . `− 1. Define vi = D>1dui/
√
λi, i = 1, . . . `− 1, and e = 1/

√
`, where 1 = (1, . . . 1) ∈ R`

is the vector of all 1s. A straightforward calculation verifies that

DD>
[
vi ⊗ ui
ui ⊗ vi

]
= 2λi

[
vi ⊗ ui
ui ⊗ vi

]
, for i = 1, . . . `− 1,

DD>
[
e⊗ ui

0

]
= λi

[
e⊗ ui

0

]
, for i = 1, . . . `− 1,

DD>
[

0
ui ⊗ e

]
= λi

[
0

ui ⊗ e

]
, for i = 1, . . . `− 1.

Hence we have derived 3(`− 1) eigenvectors of DD>. Note that the vectors vi, i = 1, . . . `− 1
are actually the eigenvectors of L1d = D>1dD1d (corresponding to the `− 1 nonzero eigenvalues),
and from our work in the 1d case, recall, both vi, i = 1, . . . ` − 1 (studied for k odd) and ui,
i = 1, . . . ` − 1 (studied for k even) are unit vectors satisfying the incoherence property with
µ =
√

2. This means that the above eigenvectors are all unit norm, and are also incoherent, with
constant µ = 2.
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There are (`− 1)(`− 2) more eigenvectors of DD>, as the rank of DD> is n− 1 = `2 − 1. A
somewhat longer but still straightforward calculation verifies that

DD>




vi ⊗ uj + vj ⊗ ui√
λi
λj
ui ⊗ vj +

√
λj
λi
uj ⊗ vi


 = (λi + λj)




vi ⊗ uj + vj ⊗ ui√
λi
λj
ui ⊗ vj +

√
λj
λi
uj ⊗ vi


 , for i < j,

DD>



√

λj
λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi


 = (λi + λj)



√

λj
λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi


 , for i < j.

Modulo the appropriate normalization, we have derived the remaining (`− 1)(`− 2) eigenvectors
ofDD>. It remains to check their incoherence, once we have normalized them (to have unit norm).
As the eigenvectors in the first and second expressions above are simply (block) rearrangements of
each other, it does not matter which form we study; consider, say, those in the second expression,
and fix i < j. The entrywise absolute maximum of the eigenvector in question is at most√
λj/λi(4/

√
n). Thus it suffices show that the normalization constant for this eigenvector is on

the order of
√
λj/λi. Observe that

∥∥∥∥∥∥



√

λj
λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi



∥∥∥∥∥∥

2

2

=

∥∥∥∥∥

[ √
λj
λi
vi ⊗ uj

ui ⊗ vj

]∥∥∥∥∥

2

2

+

∥∥∥∥∥

[ √
λi
λj
vj ⊗ ui

uj ⊗ vi

]∥∥∥∥∥

2

2

.

Here the cross-term is (v>i ⊗ u>j )(vj ⊗ ui) = (v>i vj)(u
>
i uj) = 0, as v>i vj = 0 and u>i uj = 0. This

means that the normalization constant lies within [
√
λj/λi + 2,

√
2λj/λi + 2]. In particular,

the lower bound shows that the incoherence property holds with µ = 4. This completes the
proof.

6.9.9 Proof of Lemma 6.9

As before, we follow the proof of Theorem 6.3 up until the application of Holder’s inequality in
(6.18), but we use the fractional bound in (6.15) instead. We claim that this implies

ε>PR(θ̃ − θ0) ≤ K̃‖θ̃ − θ0‖1−w/2
R (‖∆θ̃‖1 + ‖∆θ0‖1)w/2,

where K̃ = OP(K). This is verified by noting that x = PR(θ̃ − θ0)/(‖∆θ̃‖1 + ‖∆θ0‖1) ∈ S∆(1),
applying (6.15) to x, and then rearranging. Therefore, as in the proof of Theorem 6.3, we
have

‖θ̃ − θ0‖2
R ≤ 2K̃‖θ̃ − θ0‖1−w/2

R (‖∆θ̃‖1 + ‖∆θ0‖1)w/2 + 2λ(‖∆θ0‖1 − ‖∆θ̃‖1), (6.22)

We now set

λ = Θ

(
K

2
1+w/2‖∆θ0‖

− 1−w/2
1+w/2

1

)
,

and in the spirit of Mammen and van de Geer [152], van de Geer [230], we proceed to argue in
cases.
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Case 1. Suppose that 1
2
‖∆θ̃‖1 ≥ ‖∆θ0‖1. Then we see that (6.22) implies

0 ≤ ‖θ̃ − θ0‖2
R ≤ K̃‖θ̃ − θ0‖1−w/2

R

(3

2

)w/2
‖∆θ̃‖w/21 − λ‖∆θ̃‖1, (6.23)

so that
λ‖∆θ̃‖1 ≤ K̃‖θ̃ − θ0‖1−w/2

R ‖∆θ̃‖w/21 ,

where for simplicity have absorbed a constant factor 2(3/2)w/2 into K̃ (since this does not change
the fact that K̃ = OP(K)), and thus

‖∆θ̃‖1 ≤
(K̃
λ

) 1
1−w/2‖θ̃ − θ0‖R.

Plugging this back into (6.23) gives

‖θ̃ − θ0‖2
R ≤ K̃‖θ̃ − θ0‖1−w/2

R

(K̃
λ

) w/2
1−w/2‖θ̃ − θ0‖w/2R ,

or

‖θ̃ − θ0‖R ≤ K̃
1

1+w/2

(1

λ

) w/2
1−w/2

= OP

(
K

1
1+w/2‖∆θ0‖

w/2
1+w/2

1

)
,

as desired.

Case 2. Suppose that 1
2
‖∆θ̃‖1 ≤ ‖∆θ0‖1. Then from (6.22),

‖θ̃ − θ0‖2
R ≤ 2λ‖∆θ0‖1︸ ︷︷ ︸

a

+ 2K̃‖θ̃ − θ0‖1−w/2
R 3w/2‖∆θ0‖w/21︸ ︷︷ ︸

b

,

and hence either ‖θ̃ − θ0‖2
R ≤ 2a, or ‖θ̃ − θ0‖2

R ≤ 2b, and a ≤ b. The first subcase is straightfor-
ward and leads to

‖θ̃ − θ0‖R ≤ 2
√
λ‖∆θ0‖1 = OP

(
K

1
1+w/2‖∆θ0‖

w/2
1+w/2

1

)
,

as desired. In the second subcase, we have by assumption

‖θ̃ − θ0‖2
R ≤ 2K̃‖θ̃ − θ0‖1−w/2

R ‖∆θ0‖w/21 , (6.24)

2λ‖∆θ0‖1 ≤ K̃‖θ̃ − θ0‖1−w/2
R ‖∆θ0‖w/21 , (6.25)

where again we have absorbed a constant factor 2(3w/2) into K̃. Working from (6.25), we
derive

‖∆θ0‖1 ≤
( K̃

2λ

) 1
1−w/2‖θ̃ − θ0‖R,

and plugging this back into (6.24), we see

‖θ̃ − θ0‖2
R ≤ 2K̃‖θ̃ − θ0‖1−w/2

R

( K̃
2λ

) w/2
1−w/2‖θ̃ − θ0‖w/2R ,

and finally

‖θ̃ − θ0‖R ≤ 2K̃
1

1+w/2

(1

λ

) w/2
1−w/2

= OP

(
K

1
1+w/2‖∆θ0‖

w/2
1+w/2

1

)
.

This completes the second case, and the proof.

158



6.9.10 Proof of Theorem 6.10

The proof follows closely from Lemma 3.5 of van de Geer [230]. However, this author uses a
different problem scaling than ours, so some care must be taken in applying the lemma. First
we abbreviate S = S∆(1), and define S̃ = S · √n/M , where recall M is the maximum column
norm of ∆†. Now it is not hard to check that

S = {x ∈ row(∆) : ‖∆x‖1 ≤ 1} = ∆†{α ∈ col(∆) : ‖α‖1 ≤ 1},
so that maxx∈S ‖x‖2 ≤M , and maxx∈S̃ ‖x‖2 ≤

√
n. This is important because Lemma 3.5 of

van de Geer [230] concerns a form of “local” entropy that allows for deviations on the order of√
n in the norm ‖ · ‖2, or equivalently, constant order in the scaled metric ‖ · ‖n = ‖ · ‖2/

√
n.

Hence, the entropy bound in (6.16) translates into

logN(δ, S̃, ‖ · ‖2) ≤ E
(√n
M

)w(√n
δ

)w
,

that is,

logN(δ, S̃, ‖ · ‖n) ≤ E
(√n
M

)w
δ−w.

Now we apply Lemma 3.5 of van de Geer [230]: in the scaled metric used by this author,

max
x∈S̃

ε>x
√
n‖x‖1−w/2

n

= OP

(√
E
(√n
M

)w/2)
,

that is,

max
x∈S̃

ε>x

‖x‖1−w/2
2

= OP

(√
E
(√

n
)w/2(

√
n

M

)w/2)
,

and finally,

max
x∈S

ε>x

‖x‖1−w/2
2

= OP

(√
E
(√

n
)w/2)

,

as desired.

6.9.11 Proof of Corollary 6.11

For each j = 1, . . . 2r, if G is covered by j balls having radius at most C0

√
nj−1/ζ , with respect

to the norm ‖ · ‖2, then it is covered by j balls having radius at most C0j
−1/ζ , with respect

to the scaled norm ‖ · ‖n = ‖ · ‖2/
√
n. By Theorem 1 of Carl [47], this implies that for each

j = 1, 2, 3, . . ., the convex hull conv(G) is covered by 2j balls having radius at most C ′0j
−(1/2+1/ζ),

with respect to ‖ · ‖n, for another constant C ′0. Converting this back to an entropy bound in our
original metric, and noting that conv(G) = S∆(1), we have

log(δ,S∆(1), ‖ · ‖2) ≤ C ′′0

(√n
δ

) 1
1/2+1/ζ

,

for a constant C ′′0 , as needed. This proves the lemma.
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6.9.12 Proof of Corollary 6.12

According to Lemma 6.13, we know that (D(1))† = P⊥1 H , where H is an n × (n − 1) lower
triangular matrix with Hij = 1 if i > j and 0 otherwise, and P⊥1 is the projection map orthogonal
to the all 1s vector. Thus gi = P⊥1 hi, i = 1, . . . n− 1, with h1, . . . hn−1 denoting the columns of
H . It is immediately apparent that

‖gi − g`‖2 ≤ ‖hi − h`‖2 ≤
√
i− `,

for all i > `. Now, given 2j balls at our disposal, consider centering the first j balls at

gd, g2d, . . . gjd,

where d = bn/jc. Also let these balls have radius
√
n/j. By construction, then, we see that

‖g1 − gd‖2 ≤
√
n/j, ‖gd − g2d‖2 ≤

√
n/j, . . . ‖gjd − gn−1‖2 ≤

√
n/j,

which means that we have covered g1, . . . gn−1 with j balls of radius
√
n/j.

We can cover −g1, . . . ,−gn−1 with the remaining j balls analogously. Therefore, we have shown
that 2j balls require a radius of

√
n/j, or in other words, j balls require a radius of

√
2n/j.
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Chapter 7

Discrete TV-classes and Minimax
Denoising on kD-Grids

In the previous section, we showed that in many commonly used graphs, we obtain faster rates
using GTF then the standard Laplacian smoothing, but it is unclear whether GTF is optimal. In
this chapter, we answer this question for a specific subset of the problems where the underlying
graphs are regular lattice grids.

More specifically, we consider the problem of estimating a function defined over n locations on a
d-dimensional grid (having all side lengths equal to n1/d). When the function is constrained to have
discrete total variation bounded by Cn, we derive the minimax optimal (squared) `2 estimation
error rate, parametrized by n and Cn. Total variation denoising, also known as the fused lasso,
is seen to be rate optimal. Several simpler estimators exist, such as Laplacian smoothing and
Laplacian eigenmaps. A natural question is: can these simpler estimators perform just as well?
We prove that these estimators, and more broadly all estimators given by linear transformations of
the input data, are suboptimal over the class of functions with bounded variation. This extends
fundamental findings of Donoho and Johnstone [70] on 1-dimensional total variation spaces to
higher dimensions. The implication is that the computationally simpler methods cannot be used
for such sophisticated denoising tasks, without sacrificing statistical accuracy. We also derive
minimax rates for discrete Sobolev spaces over d-dimensional grids, which are, in some sense,
smaller than the total variation function spaces. Indeed, these are small enough spaces that linear
estimators can be optimal—and a few well-known ones are, such as Laplacian smoothing and
Laplacian eigenmaps, as we show. Lastly, we investigate the problem of adaptivity of the total
variation denoiser to these smaller Sobolev function spaces.

7.1 Introduction

Let G = (V,E) be a d-dimensional grid graph, i.e., a lattice graph, with equal side lengths. Label
the nodes as V = {1, . . . , n}, and edges as E = {e1, . . . , em}. Consider data y = (y1, . . . , yn) ∈
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Rn observed over the nodes, from a model

yi ∼ N(θ0,i, σ
2), i.i.d., for i = 1, . . . , n, (7.1)

where θ0 = (θ0,1, . . . , θ0,n) ∈ Rn is an unknown mean parameter to be estimated, and σ2 > 0 is
the marginal noise variance. It is assumed that θ0 displays some kind of regularity over the grid G,
e.g., θ0 ∈ Td(Cn) for some Cn > 0, where

Td(Cn) =
{
θ : ‖Dθ‖1 ≤ Cn

}
, (7.2)

andD ∈ Rm×n is the edge incidence matrix ofG. This has `th rowD` = (0, . . . ,−1, . . . , 1, . . . , 0),
with a −1 in the ith location, and 1 in the jth location, provided that the `th edge is e` = (i, j)
with i < j. Equivalently, L = DTD is the graph Laplacian matrix of G, and thus

‖Dθ‖1 =
∑

(i,j)∈E

|θi − θj|, and ‖Dθ‖2
2 = θTLθ =

∑

(i,j)∈E

(θi − θj)2.

We will refer to the class in (7.2) as a discrete total variation (TV) class, and to the quantity
‖Dθ0‖1 as the discrete total variation of θ0, though for simplicity we will often drop the word
“discrete”.

The problem of estimating θ0 given a total variation bound as in (7.2) is of great importance in
both nonparametric statistics and signal processing, and has many applications, e.g., changepoint
detection for 1d grids, and image denoising for 2d and 3d grids. There has been much methodolog-
ical and computational work devoted to this problem, resulting in practically efficient estimators in
dimensions 1, 2, 3, and beyond. However, theoretical performance, and in particularly optimality,
is only really well-understood in the 1-dimensional setting. Results presented in this chapter seek
to change that, and offers theory in d-dimensions that parallel more classical results known in the
1-dimensional case.

Estimators under consideration. Central role to our work is the total variation (TV) denoising
or fused lasso estimator (e.g., [16, 50, 114, 182, 194, 220, 222, 237]), defined by the convex
optimization problem

θ̂TV = argmin
θ∈Rn

‖y − θ‖2
2 + λ‖Dθ‖1, (7.3)

where λ ≥ 0 is a tuning parameter. Another pair of methods that we study carefully are Laplacian
smoothing and Laplacian eigenmaps, which are most commonly seen in the context of clustering,
dimensionality reduction, and semi-supervised learning, but are also useful tools for estimation in
a regression setting like ours (e.g., [10, 22, 23, 24, 25, 26, 192, 204, 256, 258]). The Laplacian
smoothing estimator is given by

θ̂LS = argmin
θ∈Rn

‖y − θ‖2
2 + λ‖Dθ‖2

2, i.e., θ̂LS = (I + λL)−1y, (7.4)

for a tuning parameter λ ≥ 0, where in the second expression we have written θ̂LS in closed-form
(this is possible since it is the minimizer of a convex quadratic). For Laplacian eigenmaps,
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Noisy image Laplacian smoothing TV denoising

Figure 7.1: Comparison of Laplacian smoothing and TV denoising for the common “cameraman” image.
TV denoising provides a more visually appealing result, and also achieves about a 35% reduction in MSE
compared to Laplacian smoothing (MSE being measured to the original image). Both methods were tuned
optimally.

we must introduce the eigendecomposition of the graph Laplacian, L = V ΣV T , where Σ =
diag(ρ1, . . . , ρn) with 0 = ρ1 < ρ2 ≤ . . . ≤ ρn, and where V = [V1, V2, . . . , Vn] ∈ Rn×n has
orthonormal columns. The Laplacian eigenmaps estimator is

θ̂LE = V[k]V
T

[k]y, where V[k] = [V1, V2, . . . , Vk] ∈ Rn×k, (7.5)

where now k ∈ {1, . . . , n} acts as a tuning parameter.

Laplacian smoothing and Laplacian eigenmaps are appealing because they are (relatively) simple:
they are just linear transformations of the data y. Indeed, as we are consideringG to be a grid, both
estimators in (7.4), (7.5) can be computed very quickly, in nearly O(n) time, since the columns
of V here are discrete cosine transform (DCT) basis vectors when d = 1, or Kronecker products
thereof, when d ≥ 2 (e.g., [59, 102, 134, 165, 242]). The TV denoising estimator in (7.3), on the
other hand, cannot be expressed in closed-form, and is much more difficult to compute, especially
when d ≥ 2, though several advances have been made over the years (see the references above,
and in particular [16] for an efficient operator-splitting algorithm and nice literature survey).
Importantly, these computational difficulties are often worth it: TV denoising often practically
outperforms `2-regularized estimators like Laplacian smoothing (and also Laplacian eigenmaps)
in image denoising tasks, as it is able to better preserve sharp edges and object boundaries (this is
now widely accepted, early references are, e.g., [3, 51, 66]). See Figure 7.1 for an example, using
the often-studied “cameraman” image.

In the 1d setting, classical theory from nonparametric statistics draws a clear distinction be-
tween the performance of TV denoising and estimators like Laplacian smoothing and Laplacian
eigenmaps. Perhaps surprisingly, this theory has not yet been fully developed in dimensions
d ≥ 2. Arguably, the comparison between TV denoising and Laplacian smoothing and Laplacian
eigenmaps is even more interesting in higher dimensions, because the computational gap between
the methods is even larger (the former method being much more expensive, say in 2d and 3d, than
the latter two). Shortly, we review the 1d theory, and what is known in d-dimensions, for d ≥ 2.
First, we introduce notation.
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Notation. For deterministic (nonrandom) sequences an, bn we write an = O(bn) to denote that
an/bn is upper bounded for all n large enough, and an � bn to denote that both an = O(bn)
and a−1

n = O(b−1
n ). Also, for random sequences An, Bn, we write An = OP(Bn) to denote that

An/Bn is bounded in probability. We abbreviate a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
an estimator θ̂ of the parameter θ0 in (7.1), we define its mean squared error (MSE) to be

MSE(θ̂, θ0) =
1

n
‖θ̂ − θ0‖2

2.

The risk of θ̂ is the expectation of its MSE, and for a set K ⊆ Rn, we define the minimax risk and
minimax linear risk to be

R(K) = inf
θ̂

sup
θ0∈K

E
[
MSE(θ̂, θ0)

]
and RL(K) = inf

θ̂ linear
sup
θ0∈K

E
[
MSE(θ̂, θ0)

]
,

respectively, where the infimum on in the first expression is over all estimators θ̂, and in the second
expression over all linear estimators θ̂, meaning that θ̂ = Sy for a matrix S ∈ Rn×n. We will also
refer to linear estimators as linear smoothers. Note that both Laplacian smoothing in (7.4) and
Laplacian eigenmaps in (7.5) are linear smoothers, but TV denoising in (7.3) is not. Lastly, in
somewhat of an abuse of nomenclature, we will often call the parameter θ0 in (7.1) a function,
and a set of possible values for θ0 as in (7.2) a function space; this comes from thinking of the
components of θ0 as the evaluations of an underlying function over n locations on the grid. This
embedding has no formal importance, but it is convenient notationally, and matches the notation
in nonparametric statistics.

Review: TV denoising in 1d. The classical nonparametric statistics literature [70, 71, 152]
provides a more or less complete story for estimation under total variation constraints in 1d. See
also [221] for a translation of these results to a setting more consistent (notationally) to that in the
current paper. Assume that d = 1 and Cn = C > 0, a constant (not growing with n). The results
in [70] imply that

R(T1(C)) � n−2/3. (7.6)

Further, [152] showed that the TV denoiser θ̂TV in (7.3), with λ � n1/3, satisfies

MSE(θ̂TV, θ0) = OP(n−2/3), (7.7)

for all θ0 ∈ T1(C), and is thus minimax rate optimal over T1(C). (In assessing rates here and
throughout, we do not distinguish between convergence in expectation versus convergence in
probability.) Wavelet denoising, under various choices of wavelet bases, also achieves the minimax
rate. However, many simpler estimators do not. To be more precise, it is shown in [70] that

RL(T1(C)) � n−1/2. (7.8)

Therefore, a substantial number of commonly used nonparametric estimators—such as running
mean estimators, smoothing splines, kernel smoothing, Laplacian smoothing, and Laplacian
eigenmaps, which are all linear smoothers—have a major deficiency when it comes to estimating
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functions of bounded variation. Roughly speaking, they will require many more samples to
estimate θ0 within the same degree of accuracy as an optimal method like TV or wavelet denoising
(on the order of ε−1/2 times more samples to achieve an MSE of ε). Further theory and empirical
examples (e.g., [67, 70, 221]) offer the following perspective: linear smoothers cannot cope with
functions in T (C) that have spatially inhomogeneous smoothness, i.e., that vary smoothly at some
locations and vary wildly at others. Linear smoothers can only produce estimates that are smooth
throughout, or wiggly throughout, but not a mix of the two. They can hence perform well over
smaller, more homogeneous function classes like Sobolev or Holder classes, but not larger ones
like total variation classes (or more generally, Besov and Triebel classes), and for these, one must
use more sophisticated, nonlinear techniques. A motivating question: does such a gap persist in
higher dimensions, between optimal nonlinear and linear estimators, and if so, how big is it?

Review: TV denoising in multiple dimensions. Recently, [248] established rates for TV
denoising over various graph models, including grids, and [118] made improvements, particularly
in the case of d-dimensional grids with d ≥ 2. We can combine Propositions 4 and 6 of
[118] with Theorem 3 of [248] to give the following result: if d ≥ 2, and Cn is an arbitrary
sequence (potentially unbounded with n), then the TV denoiser θ̂TV in (7.3) satisfies, over all
θ0 ∈ Td(Cn),

MSE(θ̂TV, θ0) = OP

(
Cn log n

n

)
for d = 2, and MSE(θ̂TV, θ0) = OP

(
Cn
√

log n

n

)
for d ≥ 3,

(7.9)
with λ � log n for d = 2, and λ � √log n for d ≥ 3. Note that, at first glance, this is a very
different result from the 1d case. We expand on this next.

7.2 Summary of results

A gap in multiple dimensions. For estimation of θ0 in (7.1) when d ≥ 2, consider, e.g., the
simplest possible linear smoother: the mean estimator, θ̂mean = ȳ1 (where 1 = (1, . . . , 1) ∈ Rn,
the vector of all 1s). Lemma 7.8, given below, implies that over θ0 ∈ Td(Cn), the MSE of the
mean estimator is bounded in probability by C2

n log n/n for d = 2, and C2
n/n for d ≥ 3. Compare

this to (7.9). When Cn = C > 0 is a constant, i.e., when the TV of θ0 is assumed to be bounded
(which is assumed for the 1d results in (7.6), (7.7), (7.8)), this means that the TV denoiser and the
mean estimator converge to θ0 at the same rate, basically (ignoring log terms), the “parametric
rate” of 1/n, for estimating a finite-dimensional parameter! That TV denoising and such a trivial
linear smoother perform comparably over 2d and 3d grids could not be farther from the story in
1d, where TV denoising is separated by an unbridgeable gap from all linear smoothers, as shown
in (7.6), (7.7), (7.8).

Our results in Section 7.3 clarify this conundrum, and can be summarized by three points.

• We argue in Section 7.3.1 that there is a proper “canonical” scaling for the TV class defined
in (7.2). E.g., when d = 1, this yields Cn � 1, a constant, but when d = 2, this yields
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Figure 7.2: Comparison of minimax rate and minimax linear rates in 1 dimension and d-dimension.
Left: well-known results in 1-dim due to [70]. Right: summary of our results in d-dim under
canonical scaling Cn = O(n1−1/d).

Cn �
√
n, and Cn also diverges with n for all d ≥ 3. Sticking with d = 2 as an interesting

example, we see that under such a scaling, the MSE rates achieved by TV denoising and
the mean estimator respectively, are drastically different; ignoring log terms, these are

Cn
n
� 1√

n
and

C2
n

n
� 1, (7.10)

respectively. Hence, TV denoising has an MSE rate of 1/
√
n, in a setting where the mean

estimator has a constant rate, i.e., a setting where it is not even known to be consistent.

• We show in Section 7.3.3 that our choice to study the mean estimator here is not somehow
“unlucky” (it is not a particularly bad linear smoother, nor is the upper bound on its MSE
loose): the minimax linear risk over Td(Cn) is on the order C2

n/n, for all d ≥ 2. Thus, even
the best linear smoothers have the same poor performance as the mean over Td(Cn).

• We show in Section 7.3.2 that the TV estimator is (essentially) minimax optimal over
Td(Cn), as the minimax risk over this class scales as Cn/n (ignoring log terms).

To summarize, these results reveal a significant gap between linear smoothers and optimal
estimators like TV denoising, for estimation over Td(Cn) in d dimensions, with d ≥ 2, as long
as Cn scales appropriately. Roughly speaking, the TV classes encompass a challenging setting
for estimation because they are very broad, containing a wide array of functions—both globally
smooth functions, said to have homogeneous smoothness, and functions with vastly different
levels of smoothness at different grid locations, said to have heterogeneous smoothness. Linear
smoothers cannot handle heterogeneous smoothness, and only nonlinear methods can enjoy good
estimation properties over the entirety of Td(Cn) (see a summary in Figure 7.2). To reiterate, a
telling example is d = 2 with the canonical scaling Cn �

√
n, where we see that TV denoising

achieves the optimal 1/
√
n rate (up to log factors), meanwhile, the best linear smoothers have

max risk that is constant over T2(
√
n). See Figure 7.3 for an illustration.

Minimax rates over smaller function spaces, and adaptivity. Sections 7.4 and 7.5 are fo-
cused on different function spaces, discrete Sobolev spaces, which are `2 analogs of discrete TV
spaces as we have defined them in (7.2). Under the canonical scaling of Section 7.3.1, Sobolev
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Figure 7.3: MSE curves for estimation over a 2d grid, under two very different scalings of Cn: constant
and
√
n. The parameter θ0 was a “one-hot” signal, with all but one component equal to 0. For each n,

the results were averaged over 5 repetitions, and Laplacian smoothing and TV denoising were tuned for
optimal average MSE.

spaces are contained in TV spaces, and the former can be roughly thought of as containing func-
tions of more homogeneous smoothness. The story now is more optimistic for linear smoothers,
and the following is a summary.

• In Section 7.4, we derive minimax rates for Sobolev spaces, and prove that linear smoothers—
in particular, Laplacian smoothing and Laplacian eigenmaps—are optimal over these spaces.

• In Section 7.5, we discuss an interesting phenomenon, a phase transition of sorts, at d = 3
dimensions. When d = 1 or 2, the minimax rates for a TV space and its inscribed Sobolev
space match; when d ≥ 3, they do not, and the inscribed Sobolev space has a faster
minimax rate. Aside from being an interesting statement about the TV and Sobolev function
spaces in high dimensions, this raises an important question of adaptivity over the smaller
Sobolev function spaces. As the minimax rates match for d = 1 and 2, any method optimal
over TV spaces in these dimensions, such as TV denoising, is automatically optimal over
the inscribed Sobolev spaces. But the question remains open for d ≥ 3—does, e.g., TV
denoising adapt to the faster minimax rate over Sobolev spaces? We present empirical
evidence to suggest that this may be true, and leave a formal study to future work.

Other considerations and extensions. There are many problems related to the one that we
study in this chapter. Clearly, minimax rates for the TV and Sobolev classes over general graphs,
not just d-dimensional grids, are of interest. Our minimax lower bounds for TV classes actually
apply to generic graphs with bounded max degree, though it is unclear whether to what extent they
are sharp beyond grids; a detailed study will be left to future work. Another related topic is that of
higher-order smoothness classes, i.e., classes containing functions whose derivatives are of (say)
bounded variation. The natural extension of TV denoising here is called trend filtering, defined
via the regularization of discrete higher-order derivatives. In the 1d setting, minimax rates, the
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optimality of trend filtering, and the suboptimality of linear smoothers is already well-understood
[221]. Trend filtering has been defined and studied to some extent on general graphs [248], but
no notions of optimality have been investigated beyond 1d. This will also be left to future work.
Lastly, it is worth mentioning that there are other estimators (i.e., other than the ones we study in
detail) that attain or nearly attain minimax rates over various classes we consider in this chapter.
E.g., wavelet denoising is known to be optimal over TV classes in 1d [70]; and comparing recent
upper bounds from [118, 164] with the lower bounds in this work, we see that wavelet denoising
is also nearly minimax in 2d (ignoring log terms).

7.3 Analysis over TV classes

7.3.1 Canonical scalings for TV and Sobolev classes

We start by establishing what we call a “canonical” scaling for the radius Cn of the TV ball Td(Cn)
in (7.2), as well as the radius C ′n of the Sobolev ball Sd(C ′n), defined as

Sd(C ′n) =
{
θ : ‖Dθ‖2 ≤ C ′n

}
. (7.11)

Proper scalings for Cn, C ′n will be critical for properly interpreting our new results in d dimensions,
in a way that is comparable to known results for d = 1 (which are usually stated in terms of the
1d scalings Cn � 1, C ′n � 1/

√
n). To study (7.2), (7.11), it helps to introduce a third function

space,

Hd(1) =
{
θ : θi = f(i1/` . . . , id/`), i = 1, . . . , n, for some f ∈ Hcont

d (1)
}
. (7.12)

Above, we have mapped each location i on the grid to a multi-index (i1, . . . , id) ∈ {1, . . . , `}d,
where ` = n1/d, andHcont

d (1) denotes the (usual) continuous Holder space on [0, 1]d, i.e., functions
that are 1-Lipschitz with respect to the `∞ norm. We seek an embedding that is analogous to the
embedding of continuous Holder, Sobolev, and total variation spaces in 1d functional analysis,
namely,

Hd(1) ⊆ Sd(C ′n) ⊆ Td(Cn). (7.13)

Our first lemma provides a choice of Cn, C ′n that makes the above true. Its proof, as with all
proofs in this chapter, can be found in Section 9.7.
Lemma 7.1. For d ≥ 1, the embedding in (7.13) holds with choicesCn � n1−1/d andC ′n � n1/2−1/d.
Such choices are called the canonical scalings for the function classes in (7.2), (7.11).

As a sanity check, both the (usual) continuous Holder and Sobolev function spaces in d dimensions
are known to have minimax risks that scale as n−2/(2+d), in a standard nonparametric regression
setup (e.g., [106]). Under the canonical scaling C ′n � n1/2−1/d, our results in Section 7.4 show
that the discrete Sobolev class Sd(n1/2−1/d) also admits a minimax rate of n−2/(2+d).
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7.3.2 Minimax rates over TV classes

The following is a lower bound for the minimax risk of the TV class Td(Cn) in (7.2).
Theorem 7.2. Assume n ≥ 2, and denote dmax = 2d. Then, for constants c > 0, ρ1 ∈
(2.34, 2.35),

R(Td(Cn)) ≥ c ·





σCn
√

1 + log(σdmaxn/Cn)

dmaxn
if Cn ∈ [σdmax

√
log n, σdmaxn/

√
ρ1]

C2
n/(d

2
maxn) ∨ σ2/n if Cn < σdmax

√
log n

σ2/ρ1 if Cn > σdmaxn/
√
ρ1

.

(7.14)

The proof uses a simplifying reduction of the TV class, via Td(Cn) ⊇ B1(Cn/dmax), the latter
set denoting the `1 ball of radius Cn/dmax in Rn. It then invokes a sharp characterization of
the minimax risk in normal means problems over `p balls due to [33]. Several remarks are in
order.
Remark 7.3. The first line on the right-hand side in (7.14) often provides the most useful lower
bound. To see this, recall that under the canonical scaling for TV classes, we have Cn = n1−1/d.
For all d ≥ 2, this certainly implies Cn ∈ [σdmax

√
log n, σdmaxn/

√
ρ1], for large n.

Remark 7.4. Even though its construction is very simple, the lower bound on the minimax risk in
(7.14) is sharp or nearly sharp in many interesting cases. Assume thatCn ∈ [σdmax

√
log n, σdmaxn/

√
ρ1].

The lower bound rate is Cn
√

log(n/Cn)/n. When d = 2, we see that this is very close to the
upper bound rate of Cn log n/n achieved by the TV denoiser, as stated in (7.9). These two differ
by at most a log n factor (achieved when Cn � n). When d ≥ 3, we see that the lower bound
rate is even closer to the upper bound rate of Cn

√
log n/n achieved by the TV denoiser, as in

(7.9). These two now differ by at most a
√

log n factor (again achieved when Cn � n). We hence
conclude that the TV denoiser is essentially minimax optimal in all dimensions d ≥ 2.
Remark 7.5. When d = 1, and (say)Cn � 1, the lower bound rate of

√
log n/n given by Theorem

7.2 is not sharp; we know from [70] (recall (7.6)) that the minimax rate over T1(1) is n−2/3. The
result in the theorem (and also Theorem 7.6) in fact holds more generally, beyond grids: for an
arbitrary graph G, its edge incidence matrix D, and Td(Cn) as defined in (7.2), the result holds
for dmax equal to the max degree of G. It is unclear to what extent this is sharp, for different graph
models.

7.3.3 Minimax linear rates over TV classes

We now turn to a lower bound on the minimax linear risk of the TV class Td(Cn) in (7.2).
Theorem 7.6. Recall the notation dmax = 2d. Then

RL(Td(Cn)) ≥ σ2C2
n

C2
n + σ2d2

maxn
∨ σ

2

n
≥ 1

2

(
C2
n

d2
maxn

∧ σ2

)
∨ σ

2

n
. (7.15)

The proof relies on an elegant meta-theorem on minimax rates from [71], which uses the concept
of a “quadratically convex” set, whose minimax linear risk is the same as that of its hardest
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rectangular subproblem. An alternative proof can be given entirely from first principles. See
Section 9.7.
Remark 7.7. When C2

n grows with n, but not too fast (scales as
√
n, at most), the lower bound

rate in (7.15) will be C2
n/n. Compared to the Cn/n minimax rate from Theorem 7.2 (ignoring log

terms), we see a clear gap between optimal nonlinear and linear estimators. In fact, under the
canonical scaling Cn � n1−1/d, for any d ≥ 2, this gap is seemingly huge: the lower bound for
the minimax linear rate will be a constant, whereas the minimax rate from Theorem 7.2 (ignoring
log terms) will be n−1/d.

We now show that the lower bound in Theorem 7.6 is essentially tight, and remarkably, it is certified
by analyzing two trivial linear estimators: the mean estimator and the identity estimator.
Lemma 7.8. Let Mn denote the largest column norm of D†. For the mean estimator θ̂mean = ȳ1,

sup
θ0∈Td(Cn)

E
[
MSE(θ̂mean, θ0)

]
≤ σ2 + C2

nM
2
n

n
,

From Proposition 4 in [118], we have Mn = O(
√

log n) when d = 2 and Mn = O(1) when
d ≥ 3.

The risk of the identity estimator θ̂id = y is clearly σ2. Combining this logic with Lemma 7.8 gives
the upper bound RL(Td(Cn)) ≤ (σ2 + C2

nM
2
n)/n ∧ σ2. Comparing this with the lower bound

described in Remark 7.7, we see that the two rates basically match, modulo the M2
n factor in the

upper bound, which only provides an extra log n factor when d = 2. The takeaway message:
in the sense of max risk, the best linear smoother does not perform much better than the trivial
estimators.

We summarize the complete picture of the minimax rate in Figure 7.4. Additional empirical
experiments, similar to those shown in Figure 7.3, are given in Section 9.7.

7.4 Analysis over Sobolev classes

Our first result here is a lower bound on the minimax risk of the Sobolev class Sd(C ′n) in
(7.11).
Theorem 7.9. For a universal constant c > 0,

R(Sd(C ′n)) ≥ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 ∧ nσ2 ∧ n2/d(C ′n)2

)
+
σ2

n
.

Elegant tools for minimax analysis from [71], which leverage the fact that the ellipsoid Sd(C ′n) is
orthosymmetric and quadratically convex (after a rotation), are used to prove the result.

The next theorem gives upper bounds, certifying that the above lower bound is tight, and showing
that Laplacian eigenmaps and Laplacian smoothing, both linear smoothers, are optimal over
Sd(C ′n) for all d and for d = 1, 2, or 3 respectively.
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Figure 7.4: Illustration of the matching lower bounds for TV-class with every pair of Cn and σ.
The yellow region indicates the statistical gain of using more computationally expensive nonlinear
estimators.

Theorem 7.10. For Laplacian eigenmaps, θ̂LE in (7.5), with k � ((n(C ′n)d)2/(d+2) ∨ 1) ∧ n, we
have

sup
θ0∈Sd(C′n)

E
[
MSE(θ̂LE, θ0)

]
≤ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 ∧ nσ2 ∧ n2/d(C ′n)2

)
+
cσ2

n
,

for a universal constant c > 0, and n large enough. When d = 1, 2, or 3, the same bound holds for
Laplacian smoothing θ̂LS in (7.5), with λ � (n/(C ′n)2)2/(d+2) (and a possibly different constant
c).
Remark 7.11. As shown in the proof, Laplacian smoothing is nearly minimax rate optimal over
Sd(C ′n) when d = 4, just incurring an extra log factor. It is unclear to us whether this method is
still (nearly) optimal when d ≥ 5; based on insights from our proof technique, we conjecture that
it is not.

7.5 A phase transition, and adaptivity

The TV and Sobolev classes in (7.2) and (7.11), respectively, display a curious relationship. We
reflect on Theorems 7.2 and 7.9, using, for concreteness, the canonical scalings Cn � n1−1/d and
C ′n � n1/2−1/d, that, recall, guarantee Sd(C ′n) ⊆ Td(Cn). (Similar statements could also be made
outside of this case, subject to an appropriate relationship with Cn/C ′n �

√
n.) When d = 1, both

the TV and Sobolev classes have a minimax rate of n−2/3 (this TV result is actually due to [70],
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Function class Dimension 1 Dimension 2 Dimension d ≥ 3

TV ball Td(n1−1/d) n−2/3 n−1/2
√

log n n−1/d
√

log n

Sobolev ball Sd(n1/2−1/d) n−2/3 n−1/2 n−
2

2+d

Table 7.1: Summary of rates for canonically-scaled TV and Sobolev spaces.

Linear signal in 2d Linear signal in 3d

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.54)
Laplacian smoothing (-tted slope -0.62)
TV-ball minimax rate: n!1=2

Sobolev-ball minimax rate: n!1=2

n
102 103 104 105

M
S

E
10-3

10-2

10-1

100

TV denoising (-tted slope -0.44)
Laplacian smoothing (-tted slope -0.50)
TV-ball minimax rate: n!1=3

Sobolev-ball minimax rate: n!2=5

Figure 7.5: MSE curves for estimating a “linear” signal, a very smooth signal, over 2d and 3d grids. For
each n, the results were averaged over 5 repetitions, and Laplacian smoothing and TV denoising were
tuned for best average MSE performance. The signal was set to satisfy ‖Dθ0‖2 � n1/2−1/d, matching the
canonical scaling.

as stated in (7.6), not Theorem 7.2). When d = 2, both the TV and Sobolev classes again have
the same minimax rate of n−1/2, the caveat being that the rate for TV class has an extra

√
log n

factor. But for all d ≥ 3, the rates for the canonical TV and Sobolev classes differ, and the smaller
Sobolev spaces have faster rates than their inscribing TV spaces. This may be viewed as a phase
transition at d = 3; see Table 7.1.

We may paraphrase to say that 2d is just like 1d, in that expanding the Sobolev ball into a larger TV
ball does not hurt the minimax rate, and methods like TV denoising are automatically adaptive,
i.e., optimal over both the bigger and smaller classes. However, as soon as we enter the 3d
world, it is no longer clear whether TV denoising can adapt to the smaller, inscribed Sobolev ball,
whose minimax rate is faster, n−2/5 versus n−1/3 (ignoring log factors). Theoretically, this is an
interesting open problem that we do not approach in this chapter and leave to future work.

We do, however, investigate the matter empirically: see Figure 7.5, where we run Laplacian
smoothing and TV denoising on a highly smooth “linear” signal θ0. This is constructed so that
each component θi is proportional to i1 + i2 + . . .+ id (using the multi-index notation (i1, . . . , id)
of (7.12) for grid location i), and the Sobolev norm is ‖Dθ0‖2 � n1/2−1/d. Arguably, these are
among the “hardest” types of functions for TV denoising to handle. The left panel, in 2d, is a case
in which we know that TV denoising attains the minimax rate; the right panel, in 3d, is a case
in which we do not, though empirically, TV denoising surely seems to be doing better than the
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slower minimax rate of n−1/3 (ignoring log terms) that is associated with the larger TV ball.

Even if TV denoising is shown to be minimax optimal over the inscribed Sobolev balls when
d ≥ 3, note that this does not necessarily mean that we should scrap Laplacian smoothing in
favor of TV denoising, in all problems. Laplacian smoothing is the unique Bayes estimator in a
normal means model under a certain Markov random field prior (e.g., [192]); statistical decision
theory therefore tells that it is admissible, i.e., no other estimator—TV denoising included—can
uniformly dominate it.

7.6 Discussion

We conclude with a quote from Albert Einstein: “Everything should be made as simple as possible,
but no simpler”. In characterizing the minimax rates for TV classes, defined over d-dimensional
grids, we have shown that simple methods like Laplacian smoothing and Laplacian eigenmaps—or
even in fact, all linear estimators—must be passed up in favor of more sophisticated, nonlinear
estimators, like TV denoising, if one wants to attain the optimal max risk. Such a result was
previously known when d = 1; our work has extended it to all dimensions d ≥ 2. We also
characterized the minimax rates over discrete Sobolev classes, revealing an interesting phase
transition where the optimal rates over TV and Sobolev spaces, suitably scaled, match when d = 1
and 2 but diverge for d ≥ 3. It is an open question as to whether an estimator like TV denoising
can be optimal over both spaces, for all d.

7.7 Proofs

We present proofs of all results, according to the order in which they appear in the paper.

7.7.1 Proof of Lemma 7.1 (canonical scaling)

Suppose that θ ∈ Hd(1) that is a discretization of a 1-Lipschitz function f , i.e., θi = f(i1/` . . . , id/`),
i = 1, . . . , n. We first we compute and bound its squared Sobolev norm

‖Dθ‖2
2 =

∑

(i,j)∈E

(θi − θj)2 =
∑

(i,j)∈E

(
f(i1/`, . . . , id/`)− f(j1/`, . . . , jd/`)

)2

≤
∑

(i,j)∈E

∥∥(i1/`, . . . , id/`)− (j1/`, . . . , jd/`)
∥∥2

∞

= m/`2,

where, recall, we denote by m = |E| the number of edges in the grid. In the second line we used
the 1-Lipschitz property of f , and in the third we used that multi-indices corresponding to adjacent
locations on the grid are exactly 1 apart, in `∞ distance. Thus we see that setting C ′n =

√
m/`
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gives the desired containment Sd(C ′n) ⊇ Hd(1). It is always true that m � n for a d-dimensional
grid (though the constant may depend on d), so that

√
m/` � n1/2−1/d. This completes the proof

for the Sobolev class scaling.

As for TV class scaling, the result follows from the simple fact that ‖x‖1 ≤
√
m‖x‖2 for any

x ∈ Rm, so that we may take Cn =
√
mC ′n = n1−1/d.

7.7.2 Proof of Theorem 7.2 (minimax rates over TV classes)

Here and henceforth, we use the notation Bp(r) = {x : ‖x‖p ≤ r} for the `p ball of radius r,
where p, r > 0 (and the ambient dimension will be determined based on the context).

We begin with a very simple lemma, that embeds an `1 ball inside the TV ball Td(Cn).
Lemma 7.12. Let G be a graph with maximum degree dmax, and let D ∈ Rm×n be its incidence
matrix. Then for any r > 0, it holds that B1(r/dmax) ⊆ Td(r).

Proof. Write Di for the ith column of D. The proof follows from the observation that, for any θ,

‖Dθ‖1 =

∥∥∥∥
n∑

i=1

Diθi

∥∥∥∥
1

≤
n∑

i=1

‖Di‖1|θi| ≤
(

max
i=1,...,n

‖Di‖1

)
‖θ‖1 = dmax‖θ‖1.

To prove Theorem 7.2, we will rely on a result from Birge and Massart [33], which gives a lower
bound for the risk in a normal means problem, over `p balls. Another related, earlier result is that
of Donoho and Johnstone [68]; however, the Birge and Massart result places no restrictions on the
radius of the ball in question, whereas the Donoho and Johnstone result does. Translated into our
notation, the Birge and Massart result is as follows.
Lemma 7.13 (Proposition 5 of Birge and Massart [33]). Assume i.i.d. observations yi ∼ N(θ0,i, σ

2),
i = 1, . . . , n, and n ≥ 2. Then the minimax risk over the `p ball Bp(rn), where 0 < p < 2,
satisfies

n ·R(Bp(rn)) ≥ c ·





σ2−prpn

[
1 + log

(
σpn

rpn

)]1−p/2

if σ
√

log n ≤ rn ≤ σn1/p/
√
ρp

r2
n if rn < σ

√
log n

σ2n/ρp if rn > σn1/p/
√
ρ

.

Here c > 0 is a universal constant, and ρp > 1.76 is the unique solution of ρp log ρp = 2/p.

Finally, applying Lemma 7.13 to B1(Cn/dmax) almost gives the lower bound as stated in The-
orem 7.2. However, note that the minimax risk in question is trivially lower bounded by σ2/n,
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because

inf
θ̂

sup
θ0∈Td(Cn)

1

n
E‖θ̂ − θ0‖2

2 ≥ inf
θ̂

sup
θ0:θ0,1=...=θ0,n

1

n

n∑

i=1

E(θ̂i − θ0,1)2

= inf
θ̂1

sup
θ0,1

E(θ̂1 − θ0,1)2

=
σ2

n
.

In the second to last line, the problem is to estimate a 1-dimensional mean parameter θ0,1, given
the observations yi ∼ N(θ0,1, σ

2), i.i.d., for i = 1, . . . , n; this has a well-known minimax risk of
σ2/n. What this means for our TV problem: to derive a lower bound for the minimax rate over
Td(Cn), we may take the maximum of the result of applying Lemma 7.13 to B1(Cn/dmax) and
σ2/n. One can see that the term σ2/n only plays a role for small Cn, i.e., it effects the case when
Cn < σdmax

√
log n, where the lower bound becomes C2

n/(d
2
maxn) ∨ σ2/n.

7.7.3 Proof of Theorem 7.6 (minimax linear rates over TV classes)

First we recall a few definitions, from Donoho et al. [71]. Given a set A ⊆ Rk, its quadratically
convex hull qconv(A) is defined as

qconv(A) =
{

(x1, . . . , xk) : (x2
1, . . . , x

2
k) ∈ conv(A2

+)
}
, where

A2
+ =

{
(a2

1, . . . , a
2
k) : a ∈ A, ai ≥ 0, i = 1, . . . , k

}
.

(Here conv(B) denotes the convex hull of a set B.) Furthermore, the set A is called quadrat-
ically convex provided that qconv(A) = A. Also, A is called orthosymmetric provided that
(a1, . . . , ak) ∈ A implies (σ1a1, . . . , σkak) ∈ A, for any choice of signs σ1, . . . , σk ∈ {−1, 1}.
Now we proceed with the proof. Following from equation (7.2) of Donoho et al. [71],

qconv
(
B1(Cn/dmax)

)
= B2(Cn/dmax).

Theorem 11 of Donoho et al. [71] states that, for orthosymmetric, compact sets, such as
B1(Cn/dmax), the minimax linear risk equals that of its quadratically convex hull. Moreover,
Theorem 7 of Donoho et al. [71] tells us that for sets that are orthosymmetric, compact, convex,
and quadratically convex, such as B2(Cn/dmax), the minimax linear risk is the same as the min-
imax linear risk over the worst rectangular subproblem. We consider B∞(Cn/(dmax

√
n)), and

abbreviate rn = Cn/(dmax

√
n). It is fruitful to study rectangles because the problem separates

across dimensions, as in

inf
θ̂ linear

sup
θ0∈B∞(rn)

E
[

1

n

n∑

i=1

(θ̂i − θ0,i)
2

]
=

1

n

n∑

i=1

[
inf

θ̂i linear
sup
|θ0,i|≤rn

E(θ̂i − θ0,i)
2

]

= inf
θ̂1 linear

sup
|θ0,1|≤rn

E(θ̂1 − θ0,1)2.
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Thus it suffices to compute the minimax linear risk over the 1d class {θ0,1 : |θ0,1| ≤ rn}. It is
easily shown (e.g., see Section 2 of Donoho et al. [71]) that this is r2

nσ
2/(r2

n + σ2
2), and so this is

precisely the minimax linear risk for B2(Cn/dmax), and for B1(Cn/dmax).

To get the first lower bound as stated in the theorem, we simply take a maximum of r2
nσ

2/(r2
n + σ2

2)
and σ2/n, as the latter is the minimax risk for estimating a 1-dimensional mean parameter given
n observations in a normal model with variance σ2, recall the end of the proof of Theorem 7.2. To
get the second, we use the fact that 2ab/(a+ b) ≥ min{a, b}. This completes the proof.

7.7.4 Alternative proof of Theorem 7.6

Here, we reprove Theorem 7.6 using elementary arguments. We write y = θ0+ε, for ε ∼ N(0, σ2I).
Given an arbitary linear estimator, θ̂ = Sy for a matrix S ∈ Rn×n, observe that

E
[
MSE(θ̂, θ0)

]
=

1

n
E‖θ̂ − θ0‖2

2 =
1

n
E‖S(θ0 + ε)− θ0‖2

2

=
1

n
E‖Sε‖2

2 +
1

n
‖(S − I)θ0‖2

2

=
σ2

n
‖S‖2

F +
1

n
‖(S − I)θ0‖2

2, (7.16)

which we may view as the variance and (squared) bias terms, respectively. Now denote by ei the
ith standard basis vector, and consider

σ2

n
‖S‖2

F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖2

2

)
≥ σ2

n
‖S‖2

F +
C2
n

d2
maxn

(
max
i=1,...,n

‖(I − S)ei‖2
2

)

≥ σ2

n
‖S‖2

F +
C2
n

d2
maxn

2

n∑

i=1

‖(I − S)ei‖2
2

=
σ2

n
‖S‖2

F +
C2
n

d2
maxn

2
‖(I − S)‖2

F

≥ σ2

n

n∑

i=1

S2
ii +

C2
n

d2
maxn

2

n∑

i=1

(1− Sii)2

=
1

n

n∑

i=1

(
σ2S2

ii +
C2
n

d2
maxn

(1− Sii)2

)
.

Here Sii, i = 1, . . . , n denote the diagonal entries of S. To bound each term in the sum, we apply
the simple inequality ax2 + b(1− x)2 ≥ ab/(a+ b) for all x (since a short calculation shows that
the quadratic in x here is minimized at x = b/(a+ b)). We may continue on lower bounding the
last displayed expression, giving

σ2

n
‖S‖2

F +

(
sup

θ0:‖Dθ0‖1≤Cn

1

n
‖(S − I)θ0‖2

2

)
≥ σ2C2

n

C2
n + σ2d2

maxn
.

Lastly, we may take the maximum of this with σ2/n in order to derive a final lower bound, as
argued in the proof of Theorem 7.6.
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7.7.5 Proof of Lemma 7.8 (mean estimator over TV classes)

For this estimator, the smoother matrix is S = 11T/n and so ‖S‖2
F = 1. From (7.16), we

have

E
[
MSE(θ̂mean, θ0)

]
=
σ2

n
+

1

n
‖θ0 − θ̄01‖2

2,

where θ̄0 = (1/n)
∑n

i=1 θ0,i. Now

sup
θ0:‖Dθ0‖1≤Cn

1

n
‖θ0 − θ̄01‖2

2 = sup
x∈row(D):‖Dx‖1≤Cn

1

n
‖x‖2

2

= sup
z∈col(D):‖z‖1≤Cn

1

n
‖D†z‖2

2

≤ sup
z:‖z‖1≤Cn

1

n
‖D†z‖2

2

=
C2
n

n
max
i=1,...,n

‖D†i‖2
2

≤ C2
nM

2
n

n
,

which establishes the desired bound.

7.7.6 Proof of Theorem 7.9 (minimax rates over Sobolev classes)

Recall that we denote by L = V ΣV T the eigendecomposition of the graph Laplacian L = DTD,
where Σ = diag(ρ1, . . . , ρn) with 0 = ρ1 < ρ2 ≤ . . . ≤ ρn, and where V ∈ Rn×n has
orthonormal columns. Also denote by D = UΣ1/2V T the singular value decomposition of the
edge incidence matrix D, where U ∈ Rm×n has orthonormal columns.1 First notice that

‖Dθ0‖2 = ‖UΣ1/2V T θ0‖2 = ‖Σ1/2V T θ0‖2.

This suggests that a rotation by V T will further simplify the minimax risk over Sd(C ′n), i.e.,

inf
θ̂

sup
θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖θ̂ − θ0‖2

2 = inf
θ̂

sup
θ0:‖Σ1/2V T θ0‖2≤C′n

1

n
E‖V T θ̂ − V T θ0‖2

2

= inf
γ̂

sup
γ0:‖Σ1/2γ0‖2≤C′n

1

n
E‖γ̂ − γ0‖2

2, (7.17)

where we have rotated and now consider the new parameter γ0 = V T θ0, constrained to lie in

Ed(C ′n) =

{
γ :

n∑

i=2

ρiγ
2
i ≤ (C ′n)2

}
.

1When d = 1, we have m = n−1 edges, and so it is not be possible for U to have orthonormal columns; however,
we can just take its first column to be all 0s, and take the rest as the eigenbasis for Rn−1, and all the arguments given
here will go through.
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To be clear, in the rotated setting (7.17) we observe a vector y′ = V Ty ∼ N(γ0, σ
2I), and the

goal is to estimate the mean parameter γ0. Since there are no constraints along the first dimension,
we can separate out the MSE in (7.17) into that incurred on the first component, and all other
components. Decomposing γ0 = (α0, β0) ∈ R1×(n−1), with similar notation for an estimator
γ̂,

inf
γ̂

sup
γ0∈Ed(C′n)

1

n
E‖γ̂ − γ0‖2

2 = inf
α̂

sup
α0

1

n
E(α̂− α0)2 + inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖2

2

=
σ2

n
+ inf

β̂
sup

β0∈P−1(Ed(C′n))

1

n
E‖β̂ − β0‖2

2, (7.18)

where P−1 projects onto all coordinate axes but the 1st, i.e., P−1(x) = (0, x2, . . . , xn), and in the
second line we have used the fact that the minimax risk for estimating a 1-dimensional parameter
α0 given an observation z ∼ N(α0, σ

2) is simply σ2.

Let us lower bound the second term in (7.18), i.e., R(P−1(Ed(C ′n))). The ellipsoid P−1(Ed(C ′n))
is orthosymmetric, compact, convex, and quadratically convex, hence Theorem 7 in Donoho
et al. [71] tells us that its minimax linear risk is the minimax linear risk of its hardest rectangular
subproblem. Further, Lemma 6 in Donoho et al. [71] then tells us the minimax linear risk of its
hardest rectangular subproblem is, up to a constant factor, the same as the minimax (nonlinear)
risk of the full problem. More precisely, Lemma 6 and Theorem 7 from Donoho et al. [71]
imply

5

4
R(P−1(Ed(C ′n))) ≥ RL(P−1(Ed(C ′n))) = sup

H⊆P−1(Ed(C′n))

RL(H), (7.19)

where the supremum above is taken over all rectangular subproblems, i.e., all rectangles H
contained in P−1(Ed(C ′n)).

To study rectangular subproblems, it helps to reintroduce the multi-index notation for a location
i on the d-dimensional grid, writing this as (i1, . . . , id) ∈ {1, . . . , `}d, where ` = n1/d. For a
parameter 2 ≤ τ ≤ `, we consider rectangular subsets of the form2

H(τ) =
{
β ∈ Rn−1 : |βi| ≤ ti(τ), i = 2, . . . , n

}
, where

ti(τ) =

{
C ′n/(

∑
j1,...,jd≤τ ρj1,...,jd)

1/2 if i1, . . . , id ≤ τ

0 otherwise
, for i = 2, . . . , n.

It is not hard to check that H(τ) ⊆ {β ∈ Rn−1 :
∑n

i=2 ρiβ
2
i ≤ (C ′n)2} = P−1(Ed(C ′n)). Then,

from (7.19),

5

4
R(P−1(Ed(C ′n))) ≥ sup

τ
RL(H(τ)) = sup

τ

1

n

n∑

i=1

ti(τ)2σ2

ti(τ)2 + σ2

= sup
τ

1

n

(τ d − 1)σ2(C ′n)2

(C ′n)2 +
∑

j1,...,jd≤τ ρj1,...,jd
.

2Here, albeit unconvential, it helps to index β ∈ H(τ) ⊆ Rn−1 according to components i = 2, . . . , n, rather
than i = 1, . . . , n− 1. This is so that we may keep the index variable i to be in correspondence with positions on the
grid.
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The first equality is due to the fact that the minimax risk for rectangles decouples across dimen-
sions, and the 1d minimax linear risk is straightforward to compute for an interval, as argued
in the proof Theorem 7.6; the second equality simply comes from a short calculation following
the definition of ti(τ), i = 2, . . . , n. Applying Lemma 7.15, on the eigenvalues of the graph
Laplacian matrix L for a d-dimensional grid, we have that for a constant c > 0,

(τ d − 1)σ2(C ′n)2

(C ′n)2 +
∑

j1,...,jd≤τ ρj1,...,jd
≥ (τ d − 1)σ2(C ′n)2

(C ′n)2 + cσ2τ d+2/`2
≥ 1

2

σ2(C ′n)2

(C ′n)2τ−d + cσ2τ 2/`2
.

We can choose τ to maximize the expression on the right above, given by

τ ∗ =

(
`2(C ′n)2

cσ2

) 1
d+2

.

When 2 ≤ τ ∗ ≤ `, this provides us with the lower bound on the minimax risk

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(τ ∗)) ≥ 1

2n

τ dσ2(C ′n)2

2(cσ2)
d
d+2 (C ′n)

4
d+2 `−

2d
d+2

=
c1

n
(nσ2)

2
d+2 (C ′n)

2d
d+2 ,

(7.20)
for a constant c1 > 0. When τ ∗ < 2, we can use τ = 2 as lower bound on the minimax risk,

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(2)) ≥ 1

2n

σ2`2(C ′n)2

`2(C ′n)22−d + cσ222
≥ c2

n
`2(C ′n)2, (7.21)

for a constant c2 > 0, where in the last inequality, we used the fact that `2(C ′n)2 ≤ cσ22d+2 (just
a constant) since we are in the case τ ∗ < 2. Finally, when τ ∗ > `, we can use τ = ` as a lower
bound on the minimax risk,

5

4
R(P−1(Ed(C ′n))) ≥ RL(H(`)) ≥ 1

2n

σ2(C ′n)2

`−d(C ′n)2 + cσ2
≥ c3σ

2, (7.22)

for a constant c3 > 0, where in the last inequality, we used that cσ2 ≤ `−d(C ′n)2 as we are in the
case τ ∗ > `. Taking a minimum of the lower bounds in (7.20), (7.21), (7.22), as a way to navigate
the cases, gives us a final lower bound on R(P−1(Ed(C ′n))), and completes the proof.

7.7.7 Proof of Theorem 7.10 (Laplacian eigenmaps and Laplacian smooth-
ing over Sobolev classes)

We will prove the results for Laplacian eigenmaps and Laplacian separately.

Laplacian eigenmaps. The smoother matrix for this estimator is Sk = V[k]V
T

[k], for a tuning
parameter k = 1, . . . , n. From (7.16),

E
[
MSE(θ̂LE, θ0)

]
=
σ2

n
k +

1

n
‖(I − Sk)θ0‖2

2.

179



Now we write k = τ d, and analyze the max risk of the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sk)θ0‖2

2 = sup
z:‖z‖2≤C′n

1

n
‖(I − Sk)D†z‖2

2

=
(C ′n)2

n
σ2

max

(
(I − Sk)D†

)

≤ (C ′n)2

n

1

4 sin2(πτ/(2`))

≤ (C ′n)2

n

4`2

π2τ 2
.

Here we denote by σmax(A) the maximum singular value of a matrix A. The last inequality above
used the simple lower bound sin(x) ≥ x/2 for x ∈ [0, π/2]. The earlier inequality used that

(I − Sk)D† = (I − V[k]V
T

[k])V
T (Σ†)1/2UT =

[
0, . . . , 0, Vk+1, . . . , Vn

]
(Σ†)1/2UT ,

where we have kept the same notation for the singular value decomposition of D as in the proof of
Theorem 7.9. Therefore σ2

max((I − Sk)D†) is the reciprocal of the (k + 1)st smallest eigenvalue
ρk+1 of the graph Laplacian L. For any subset A of the set of eigenvalues λ(L) = {ρ1, . . . , ρn}
of the Laplacian, with |A| = k, note that ρk+1 ≥ min λ(L) \ A. This means that, for our
d-dimensional grid,

ρk+1 ≥ min λ(L) \ {ρi1,...,id : i1, . . . , id ≤ τ}
= 4 sin2(πτ/(2`)),

where recall ` = n1/d, as explained by (7.23), in the proof of Lemma 7.15.

Hence, we have established

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LE, θ0)

]
≤ σ2

n
+
σ2

n
τ d +

(C ′n)2

n

4`2

π2τ 2
.

Choosing τ to balance the two terms on the right-hand side above results in τ ∗ = (2`C ′n/(πσ))
2
d+2 .

Plugging in this choice of τ , while utilizing the bounds 1 ≤ τ ≤ `, very similar to the arguments
given at the end of the proof of Theorem 7.9, gives the result for Laplacian eigenmaps.

Laplacian smoothing. The smoother matrix for this estimator is Sλ = (I +λL)−1, for a tuning
parameter λ ≥ 0. From (7.16),

E
[
MSE(θ̂LS, θ0)

]
=
σ2

n

n∑

i=1

1

(1 + λρi)2
+

1

n
‖(I − Sλ)θ0‖2

2.
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When d = 1, 2, or 3, the first term upper is bounded by c1σ
2/n+ c2σ

2/λd/2, for some constants
c1, c2 > 0, by Lemma 7.16. As for the second term,

sup
θ0:‖Dθ0‖2≤C′n

1

n
‖(I − Sλ)θ0‖2

2 = sup
z:‖z‖2≤C′n

‖(I − Sλ)D†z‖2
2

=
(C ′n)2

n
σ2

max

(
(I − Sλ)D†

)

=
(C ′n)2

n
max
i=2,...,n

(
1− 1

1 + λρi

)2
1

ρi

=
(C ′n)2

n
λ max
i=2,...,n

λρi
(1 + λρi)2

≤ (C ′n)2λ

4n
.

In the third equality we have used the fact the eigenvectors of I − Sλ are the left singular vectors
of D†, and in the last inequailty we have used the simple upper bound f(x) = x/(1 + x)2 ≤ 1/4
for x ≥ 0 (this function being maximized at x = 1).

Therefore, from what we have shown,

sup
θ0:‖Dθ0‖2≤C′n

E
[
MSE(θ̂LS, θ0)

]
≤ c1σ

2

n
+
c2σ

2

λd/2
+

(C ′n)2λ

4n
.

Choosing λ to balance the two terms on the right-hand side above gives λ∗ = c(n/(C ′n)2)2/(d+2),
for a constant c > 0. Plugging in this choice, and using upper bounds from the trivial cases
λ = 0 and λ =∞ when C ′n is very small or very large, respectively, gives the result for Laplacian
smoothing.

Remark 7.14. When d = 4, Lemma 7.16 gives a slightly worse upper bound on
∑n

i=1 1/(1 + λρi)
2,

with an “extra” term (nc2/λ
d/2)) log(1 + c3λ), for constants c2, c3 > 0. It is not hard to show, by

tracing through the same arguments as given above that we can use this to establish an upper
bound on the max risk of

sup
θ0∈Sd(C′n)

E
[
MSE(θ̂LE, θ0)

]
≤ c

n

(
(nσ2)

2
d+2 (C ′n)

2d
d+2 log(n/(C ′n)2) ∧ nσ2 ∧ n2/d(C ′n)2

)
+
cσ2

n
,

only slightly worse than the minimax optimal rate, by a log factor.

When d ≥ 5, our analysis provides a much worse bound for the max risk of Laplacian smoothing,
as the integral denoted I(d) in the proof of Lemma 7.16 grows very large when d ≥ 5. We
conjecture that this not due to slack in our proof technique, but rather, to the Laplacian smoothing
estimator itself, since all inequalities the proof are fairly tight.
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7.8 Utility lemmas used in the proofs of Theorems 7.9 and
7.10

This section contains some calculations on the partial sums of eigenvalues of the Laplacian matrix
L, for d-dimensions grids. These are useful for the proofs of both Theorem 7.9 and Theorem
7.10.
Lemma 7.15. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid graph,
and ρi1,...,id , (i1, . . . , id) ∈ {1, . . . , `}d be its eigenvalues, where ` = n1/d. Then there exists a
constant c > 0 (dependent on d) such that, for any 1 ≤ τ ≤ `,

∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤ c

τ d+2

`2
.

Proof. The eigenvalues of L can be written explicitly as

ρi = 4 sin2
(π(i1 − 1)

2`

)
+ . . .+ 4 sin2

(π(id − 1)

2`

)
, (i1, . . . , id) ∈ {1, . . . , `}d. (7.23)

This follows from known facts about the eigenvalues for the Laplacian matrix of a 1d grid, and
the fact that the Laplacian matrix for higher-dimensional grids can be expressed in terms of a
Kronecker sum of the Laplacian matrix of an appropriate 1d grid (e.g., [59, 118, 134, 165, 242,
248]). We now use the fact that sin(x) ≤ x for all x ≥ 0, which gives us the upper bound

∑

(i1,...,id)∈{1,...,τ}d
ρi1,··· ,id ≤

π2

`2

∑

(i1,...,id)∈{1,...,τ}d

(
(i1 − 1)2 + . . .+ (id − 1)2

)

≤ π2d

`2
τ d−1

τ∑

i=1

(i− 1)2

≤ π2d

`2
τ d−1τ 3

=
π2d

`2
τ d+2,

as desired.

Lemma 7.16. Let L ∈ Rn×n denote the graph Laplacian matrix of a d-dimensional grid graph,
and ρi, i = 1, . . . , n be its eigenvalues. Let λ ≥ 0 be arbitrary. For d = 1, 2, or 3, there are
constants c1, c2 > 0 such that

n∑

i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2
.

For d = 4, there are constants c1, c2, c3 > 0 such that
n∑

i=1

1

(1 + λρi)2
≤ c1 + c2

n

λd/2

(
1 + log(1 + c3λ)

)
.
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Proof. We will use the explicit form of the eigenvalues as given in the proof of Lemma 7.15. In
the expressions below, we use c > 0 to denote a constant whose value may change from line to
line. Using the inequality sinx ≥ x/2 for x ∈ [0, π/2],

n∑

i=1

1

(1 + λρi)2
≤

∑

(i1,...,id)∈{1,...,`}d

1
(
1 + λ π2

4`2

∑d
j=1(ij − 1)2

)2

≤ 1 +

∫

[0,`]d

1
(
1 + λπ

2

4

∑d
j=1 x

2
j/`

2
)2 dx

= 1 + c

∫ `
√
d

0

1
(
1 + λπ

2

4
r2/`2

)2 r
d−1 dr

= 1 + c
n

λd/2

∫ π
2

√
λd

0

ud−1

(1 + u2)2
du

︸ ︷︷ ︸
I(d)

.

In the second inequality, we used the fact that the right-endpoint Riemann sum is always an
underestimate for the integral of a function that is monotone nonincreasing in each coordinate. In
the third, we made a change to spherical coordinates, and suppressed all of the angular variables,
as they contribute at most a constant factor. It remains to compute I(d), which can be done by
symbolic integration:

I(1) =
π
√
d

4
(
1 + π2

4
λd
) +

1

2
tan−1

(π
2

√
λd
)
≤ 1

4
+
π

4
,

I(2) =
1

2
− 1

2
(
1 + π2

4
λd
) ≤ 1

2
,

I(3) =
1

2
tan−1

(π
2

√
λd
)
≤ π

4
, and

I(4) =
1

2
log
(

1 +
π2

4
λd
)

+
1

2
(
1 + π2

4
λd
) − 1

2
≤ 1

2
log
(

1 +
π2

4
λd
)

+
1

2
.

This completes the proof.
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7.9 Additional experiments comparing TV denoising and Lapla-
cian smoothing for piecewise constant functions

Piecewise constant signal in 2d Piecewise constant signal in 3d

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.68)
Laplacian smoothing (-tted slope -0.36)
Minimax rate: n!1=2

Minimax linear rate: constant

n
102 103 104 105

M
S

E

10-3

10-2

10-1

100

TV denoising (-tted slope -0.57)
Laplacian smoothing (-tted slope -0.27)
Minimax rate: n!1=3

Minimax linear rate: constant

Figure 7.6: MSE curves for estimating a “piecewise constant” signal, having a single elevated region,
over 2d and 3d grids. For each n, the results were averaged over 5 repetitions, and the Laplacian
smoothing and TV denoising estimators were tuned for best average MSE performance. We set θ0 to satisfy
‖Dθ0‖1 � n1−1/d, matching the canonical scaling. Note that all estimators achieve better performance
than that dictated by their minimax rates.
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Chapter 8

Falling factorial basis and continuous
extensions

In this section, we backtrack a little bit to the univariate trend filtering and discuss ways to extrap-
olate from the discrete fitted values of trend filtering to functions. This is needed because if you
recall, nonparametric regression in its canonical form, demands the output to be a function..

This is a natural feat for any methods that starts from a variational formulation and then discretized
through certain “representer theorem”. However, trend filtering starts with discrete domain to
begin with and it is unclear whether there is a natural set of basis functions that it actually
corresponds to in the continuous domain.

Specifically, we study a novel spline-like basis, which we name the “falling factorial basis”,
bearing many similarities to the classic truncated power basis. The advantage of the falling
factorial basis is that it enables rapid, linear-time computations in basis matrix multiplication
and basis matrix inversion. The falling factorial functions are not actually splines, but are close
enough to splines that they provably retain some of the favorable properties of the latter functions.
We examine their application in two problems: trend filtering over arbitrary input points, and a
higher-order variant of the two-sample Kolmogorov-Smirnov test.

8.1 Introduction

Splines are an old concept, and they play important roles in various subfields of mathematics and
statistics; see e.g., de Boor [62], Wahba [240] for two classic references. In words, a spline of
order k is a piecewise polynomial of degree k that is continuous and has continuous derivatives of
orders 1, 2, . . . k − 1 at its knot points. In this chapter, we look at a new twist on an old problem:
we examine a novel set of spline-like basis functions with sound computational and statistical
properties. This basis, which we call the falling factorial basis, is particularly attractive when
assessing higher order of smoothness via the total variation operator, due to the capability for
sparse decompositions. A summary of our main findings is as follows.
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• The falling factorial basis and its inverse both admit a linear-time transformation, i.e., much
faster decompositions than the spline basis, and even faster than, e.g., the fast Fourier
transform.

• For all practical purposes, the falling factorial basis shares the statistical properties of the
spline basis. We derive a sharp characterization of the discrepancy between the two bases
in terms of the polynomial degree and the distance between sampling points.

• We simplify and extend known convergence results on trend filtering, a nonparametric
regression technique that implicitly employs the falling factorial basis.

• We also extend the Kolmogorov-Smirnov two-sample test to account for higher order
differences, and utilize the falling factorial basis for rapid computations. We provide no
theory but demonstrate excellent empirical results, improving on, e.g., the maximum mean
discrepancy [104] and Anderson-Darling [9] tests.

In short, the falling factorial function class offers an exciting prospect for univariate function
regularization.

Now let us review some basics. Recall that the set of kth order splines with knots over a fixed set
of n points forms an (n+ k + 1)-dimensional subspace of functions. Here and throughout, we
assume that we are given ordered input points x1 < x2 < . . . < xn and a polynomial order k ≥ 0,
and we define a set of knots T = {t1, . . . tn−k−1} by excluding some of the input points at the left
and right boundaries, in particular,

T =

{
{xk/2+2, . . . xn−k/2} if k is even,
{x(k+1)/2+1, . . . xn−(k+1)/2} if k is odd.

(8.1)

The set of kth order splines with knots in T hence forms an n-dimensional subspace of functions.
The canonical parametrization for this subspace is given by the truncated power basis, g1, . . . gn,
defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k · 1{x ≥ tj}, j = 1, . . . n− k − 1.
(8.2)

These functions can also be used to define the truncated power basis matrix, G ∈ Rn×n, by

Gij = gj(xi), i, j = 1, . . . n, (8.3)

i.e., the columns ofG give the evaluations of the basis functions g1, . . . gn over the inputs x1, . . . xn.
As g1, . . . gn are linearly independent functions, G has linearly independent columns, and hence
G is invertible.

As noted, our focus is a related but different set of basis functions, named the falling factorial
basis functions. We define these functions, for a given order k ≥ 0, as

hj(x) =

j−1∏

`=1

(x− x`), j = 1, . . . k + 1,

hk+1+j(x) =
k∏

`=1

(x− xj+`) · 1{x ≥ xj+k}, j = 1, . . . n− k − 1.

(8.4)
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(Our convention is to take the empty product to be 1, so that h1(x) = 1.) The falling factorial basis
functions are piecewise polynomial, and have an analogous form to the truncated power basis
functions in (8.2). Loosely speaking, they are given by replacing an rth order power function in the
truncated power basis with an appropriate r-term product, e.g., replacing x2 with (x−x2)(x−x1),
and (x− tj)k with (x− xj+k)(x− xj+k−1) · . . . (x− xj+1). Similar to the above, we can define
the falling factorial basis matrix, H ∈ Rn×n, by

Hij = hj(xi), i, j = 1, . . . n, (8.5)

and the linear independence of h1, . . . hn implies that H too is invertible.

Note that the first k + 1 functions of either basis, the truncated power or falling factorial basis,
span the same space (the space of kth order polynomials). But this is not true of the last n− k− 1
functions. Direct calculation shows that, while continuous, the function hj+k+1 has discontinuous
derivatives of all orders 1, . . . k at the point xj+k, for j = 1, . . . n − k − 1. This means that
the falling factorial functions hk+2, . . . hn are not actually kth order splines, but are instead
continuous kth order piecewise polynomials that are “close to” splines. Why would we ever
use such a seemingly strange basis as that defined in (8.4)? To repeat what was summarized
above, the falling factorial functions allow for linear-time (and closed-form) computations with
the basis matrix H and its inverse. Meanwhile, the falling factorial functions are close enough to
the truncated power functions that using them in several spline-based problems (i.e., using H in
place of G) can be statistically legitimized. We make this statement precise in the sections that
follow.

As we see it, there is really nothing about their form in (8.4) that suggests a particularly special
computational structure of the falling factorial basis functions. Our interest in these functions
arose from a study of trend filtering, a nonparametric regression estimator, where the inverse of
H plays a natural role. The inverse of H is a kind of discrete derivative operator of order k + 1,
properly adjusted for the spacings between the input points x1, . . . xn. It is really the special,
banded structure of this derivative operator that underlies the computational efficiency surrounding
the falling factorial basis; all of the computational routines proposed in this chapter leverage this
structure.

Here is an outline for rest of this article. In Section 8.2, we describe a number of basic properties
of the falling factorial basis functions, culminating in fast linear-time algorithms for multiplication
H and H−1, and tight error bounds between H and the truncated power basis matrix G. Section
8.3 discusses B-splines, which provide another highly efficient basis for spline manipulations; we
explain why the falling factorial basis offers a preferred parametrization in some specific statistical
applications, e.g., the ones we present in Sections 8.4 and 8.5. Section 8.4 covers trend filtering,
and extends a known convergence result for trend filtering over evenly spaced input points [221]
to the case of arbitrary input points. The conclusion is that trend filtering estimates converge at the
minimax rate (over a large class of true functions) assuming only mild conditions on the inputs. In
Section 8.5, we consider a higher order extension of the classic two-sample Kolmogorov-Smirnov
test. We find this test to have better power in detecting higher order (tail) differences between
distributions when compared to the usual Kolmogorov-Smirnov test; furthermore, by employing
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the falling factorial functions, it can computed in linear time. In Section 8.6, we end with some
discussion.

8.2 Basic properties

Consider the falling factorial basis matrix H ∈ Rn×n, as defined in (8.5), over input points
x1 < . . . < xn. The following subsections describe a recursive decomposition for H and its
inverse, which lead to fast computational methods for multiplication by H and H−1 (as well as
HT and (HT )−1). The last subsection bounds the maximum absolute difference bewteen the
elements of H and G, the truncated power basis matrix (also defined over x1, . . . xn). Lemmas
8.1, 8.2, 8.4 below were derived in Tibshirani [221] for the special case of evenly spaced inputs,
xi = i/n for i = 1, . . . n. We reiterate that here we consider generic input points x1, . . . xn. In the
interest of space, we defer all proofs to Section 8.7.

8.2.1 Recursive decomposition

Our first result shows that H decomposes into a product of simpler matrices. It helpful to define,
for k ≥ 1,

∆(k) = diag
(
xk+1 − x1, xk+2 − x2, . . . xn − xn−k

)
,

the (n− k)× (n− k) diagonal matrix whose diagonal elements contain the k-hop gaps between
input points.
Lemma 8.1. Let Im denote the m × m identity matrix, and Lm the m × m lower triangular
matrix of 1s. If we write H(k) for the falling factorial basis matrix of order k, then in this notation,
we have H(0) = Ln, and for k ≥ 1,

H(k) = H(k−1) ·
[
Ik 0
0 ∆(k)Ln−k

]
. (8.6)

Lemma 8.1 is really a key workhorse behind many properties of the falling factorial basis
functions. E.g., it acts as a building block for results to come: immediately, the representation
(8.6) suggests both an analogous inverse representation for H(k), and a computational strategy for
matrix multiplication by H(k). These are discussed in the next two subsections. We remark that
the result in the lemma may seem surprising, as there is not an apparent connection between the
falling factorial functions in (8.4) and the recursion in (8.6), which is based on taking cumulative
sums at varying offsets (the rightmost matrix in (8.6)). We were led to this result by studying the
evenly spaced case; its proof for the present case is considerably longer and more technical, but
the statement of the lemma is still quite simple.
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8.2.2 The inverse basis

The result in Lemma 8.1 clearly also implies a result on the inverse operators, namely, that
(H(0))−1 = L−1

n , and

(H(k))−1 =

[
Ik 0
0 L−1

n−k(∆
(k))−1

]
· (H(k−1))−1 (8.7)

for all k ≥ 1. We note that

L−1
m =




1 0 . . . 0
1 1 . . . 0
...
1 1 . . . 1




−1

=

[
eT1
D(1)

]
, (8.8)

with e1 = (1, 0, . . . 0) ∈ Rm being the first standard basis vector, and D(1) ∈ R(m−1)×m the first
discrete difference operator

D(1) =




−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1


 , (8.9)

With this in mind, the recursion in (8.7) now looks like the construction of the higher order
discrete difference operators, over the input x1, . . . xn. To define these operators, we start with the
first order discrete difference operator D(1) ∈ R(n−1)×n as in (8.9), and define the higher order
difference discrete operators according to

D(k+1) = D(1) · k · (∆(k))−1 ·D(k), (8.10)

for k ≥ 1. As D(k+1) ∈ R(n−k−1)×n, leading matrix D(1) above denotes the (n− k− 1)× (n− k)
version of the first order difference operator in (8.9).

To gather intuition, we can think of D(k) as a type of discrete kth order derivative operator across
the underlying points x1, . . . xn; i.e., given an arbitrary sequence u = (u1, . . . un) ∈ Rn over the
positions x1, . . . xn, respectively, we can think of (D(k)u)i as the discrete kth derivative of the
sequence u evaluated at the point xi. It is not difficult to see, from its definition, that D(k) is a
banded matrix with bandwidth k + 1. The middle (diagonal) term in (8.10) accounts for the fact
that the underlying positions x1, . . . xn are not necessarily evenly spaced. When the input points
are evenly spaced, this term contributes only a constant factor, and the difference operators D(k),
k = 1, 2, 3, . . . take a very simple form, where each row is a shifted version of the previous, and
the nonzero elements are given by the kth order binomial coefficients (with alternating signs); see
Tibshirani [221].

By staring at (8.7) and (8.10), one can see that the falling factorial basis matrices and discrete
difference operators are essentially inverses of each other. The story is only slightly more
complicated because the difference matrices are not square.
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Lemma 8.2. IfH(k) is the kth order falling factorial basis matrix defined over the inputs x1, . . . xn,
andD(k+1) is the (k+1)st order discrete difference operator defined over the same inputs x1 . . . xn,
then

(H(k))−1 =

[
C

1
k!
·D(k+1)

]
, (8.11)

for an explicit matrix C ∈ R(k+1)×n. If we let Ai denote the ith row of a matrix A, then C has
first row C1 = eT1 , and subsequent rows

Ci+1 =

[
1

(i− 1)!
· (∆(i))−1 ·D(i)

]

1

, i = 1, . . . k.

Lemma 8.2 shows that the last n− k − 1 rows of (H(k))−1 are given exactly by D(k+1)/k!. This
serves as the crucial link between the falling factorial basis functions and trend filtering, discussed
in Section 8.4. The route to proving this result revealed the recursive expressions (8.6) and (8.7),
and in fact these are of great computational interest in their own right, as we discuss next.

8.2.3 Fast matrix multiplication

The recursions in (8.6) and (8.7) allow us to apply H(k) and (H(k))−1 with specialized linear-time
algorithms. Further, these algorithms are completely in-place: we do not need to form the matrices
H(k) or (H(k))−1, and the algorithms operate entirely by manipulating the input vector (the vector
to be multiplied).
Lemma 8.3. For the kth order falling factorial basis matrix H(k) ∈ Rn×n, over arbitrary sorted
inputs x1, . . . xn, multiplication by H(k) and (H(k))−1 can each be computed in O(nk) in-place
operations with zero memory requirements (aside from storing the input points and the vector
to be multiplied), i.e., we do not need to form H(k) or (H(k))−1. Algorithms 7 and 8 give the
details. The same is true for matrix multiplication by (H(k))T and [(H(k))T ]−1; Algorithms 9 and
10, found in Section 8.7.3, give the details.

Note that the lemma assumes presorted inputs x1, . . . xn (sorting requires an extra O(n log n)
operations). The routines for multiplication by H(k) and (H(k))−1, in Algorithms 7 and 8, are
really just given by inverting each term one at a time in the product representations (8.6) and
(8.7). They are composed of elementary in-place operations, like cumulative sums and pairwise
differences. This brings to mind a comparison to wavelets, as both the wavelet and inverse
wavelets operators can be viewed as highly specialized linear-time matrix multplications.

Borrowing from the wavelet perspective, given a sampled signal yi = f(xi), i = 1, . . . n, the
action (H(k))−1y can be thought of as the forward transform under the piecewise polynomial
falling factorial basis, and H(k)y as the backward or inverse transform under this basis. It might
be interesting to consider the applicability of such transforms to signal processing tasks, but this
is beyond the scope of the current paper, and we leave it to potential future work.

We do however include a computational comparison between the forward and backward falling
factorial transforms, in Algorithms 8 and 7, and the well-studied Fourier and wavelet transforms.
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Algorithm 7 Multiplication by H(k)

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by H(k)y.
for i = k to 0 do
y(i+1):n = cumsum(y(i+1):n),
where ya:b denotes the subvector (ya, ya+1, ..., yb) and cumsum is the cumulative sum opera-
tor.
if i 6= 0 then
y(i+1):n = (x(i+1):n − x1:(n−i)) .∗ y(i+1):n,
where .∗ denotes entrywise multiplication.

end if
end for
Return y.

Algorithm 8 Multiplication by (H(k))−1

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by (H(k))−1y.
for i = 0 to k do

if i 6= 0 then
y(i+1):n = yi+1:n ./ (x(i+1):n − x1:(n−i]),

end if
y(i+2):n = diff(y(i+1):n),
where diff is the pairwise difference operator.

end for
Return y.

Figure 8.1a shows the runtimes of one complete cycle of falling factorial transforms (i.e., one
forward and one backward transform), with k = 3, versus one cycle of fast Fourier transforms and
one cycle of wavelet transforms (using symmlets). The comparison was run in Matlab, and we
used Matlab’s “fft” and “ifft” functions for the fast Fourier transforms, and the Stanford WaveLab’s
“FWT_PO” and “IWT_PO” functions (with symmlet filters) for the wavelet transforms [41]. These
functions all call on C implementations that have been ported to Matlab using MEX-functions, and
so we did the same with our falling factorial transforms to even the comparison. For each problem
size n, we chose evenly spaced inputs (this is required for the Fourier and wavelet transforms,
but recall, not for the falling factorial transform), and averaged the results over 10 repetitions.
The figure clearly demonstrates a linear scaling for the runtimes of the falling factorial transform,
which matches their theoretical O(n) complexity; the wavelet and fast fourier transforms also
behave as expected, with the former having O(n) complexity, and the latter O(n log n). In fact, a
raw comparison of times shows that our implementation of the falling factorial transforms runs
slightly faster than the highly-optimized wavelet transforms from the Stanford WaveLab.

For completeness, Figure 8.1b displays a comparison between the falling factorial transforms
and the corresponding transforms using the truncated power basis (also with k = 3). We see that
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Figure 8.1: Comparison of runtimes for different transforms. The experiments were performed on
a laptop computer.

the latter scale quadratically with n, which is again to be expected, as the truncated power basis
matrix is essentially lower triangular.

8.2.4 Proximity to truncated power basis

With computational efficiency having been assured by the last lemma, our next lemma lays the
footing for the statistical credibility of the falling factorial basis.
Lemma 8.4. Let G(k) and H(k) be the kth order truncated power and falling factorial matrices,
defined over inputs 0 ≤ x1 < . . . < xn ≤ 1. Let δ = maxi=1,...n(xi − xi−1), where we write
x0 = 0. Then

max
i,j=1,...n

|G(k)
ij −H(k)

ij | ≤ k2δ.

This tight elementwise bound between the two basis matrices will be used in Section 8.4 to prove
a result on the convergence of trend filtering estimates. We will also discuss its importance in
the context of a fast nonparametric two-sample test in Section 8.5. To give a preview: in many
problem instances, the maximum gap δ between adjacent sorted inputs x1, . . . xn is of the order
log n/n (for a more precise statement see Lemma 8.6), and this means that the maximum absolute
discrepancy between the elements of G(k) and H(k) decays very quickly.
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8.3 Why not just use B-splines?

B-splines already provide a computationally efficient parametrization for the set of kth order
splines; i.e., since they produce banded basis matrices, we can already perform linear-time basis
matrix multiplication and inversion with B-splines. To confirm this point empirically, we included
B-splines in the timing comparison of Section 8.2.3, refer to Figure 8.1a for the results. So, why
not always use B-splines in place of the falling factorial basis, which only approximately spans
the space of splines?

A major reason is that the falling factorial functions (like the truncated power functions) admit a
sparse representation under the total variation operator, whereas the B-spline functions do not.
To be more specific, suppose that f1, . . . fm are kth order piecewise polynomial functions with
knots at the points 0 ≤ z1 < . . . < zr ≤ 1, where m = r + k + 1. Then, for f =

∑m
j=1 αjfj , we

have

TV(f (k)) =
r∑

i=1

∣∣∣∣∣
m∑

j=1

(
f

(k)
j (zi)− f (k)

j (zi−1)
)
· αj
∣∣∣∣∣ ,

denoting z0 = 0 for ease of notation. If f1, . . . fm are the falling factorial functions defined over
the points z1, . . . zr, then the term f

(k)
j (zi)− f (k)

j (zi−1) is equal to 0 for all i, j, except when
i = j − k − 1 and j ≥ k + 2, in which case it equals 1. Therefore, TV(f (k)) =

∑m
j=k+2 |αj|, a

simple sum of absolute coefficients in the falling factorial expansion. The same result holds for
the truncated power basis functions. But if f1, . . . fm are B-splines, then this is not true; one can
show that in this case TV(f (k)) = ‖Cα‖1, where C is a (generically) dense matrix. The fact that
C is dense makes it cumbersome, both mathematically and computationally, to use the B-spline
parametrization in spline problems involving total variation, such as those discussed in Sections
8.4 and 8.5.

8.4 Trend filtering for arbitrary inputs

We will now apply the results in previous sections to generalize the univariate trend filtering as
we described in the “motivation and overview”. We first quickly recap the setting. Suppose that
we observe

yi = f0(xi) + εi, i = 1, . . . n, (8.12)

for a true (unknown) regression function f0, inputs x1 < . . . < xn ∈ R, and errors ε1, . . . εn. The
task is to come up with estimators of f0.

The trend filtering estimator was first proposed by Kim et al. [129], and further studied by
Tibshirani [221] with a spline-like continuous extension specified for the case where xi = i/n,
i = 1, . . . n.

In the present section, we allow x1, . . . xn to be arbitrary, and extend the convergence guarantees
for trend filtering, utilizing the properties of the falling factorial basis derived in Section 8.2.
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The new trend filtering estimate θ̂ of order k ≥ 0 is defined by

θ̂ = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ · 1

k!
‖D(k+1)θ‖1, (8.13)

where y = (y1, . . . yn) ∈ Rn, D(k+1) ∈ R(n−k−1)×n is the (k + 1)st order discrete difference
operator defined in (8.10) over the input points x1, . . . xn, and λ ≥ 0 is a tuning parameter. We can
think of the components of θ̂ as defining an estimated function f̂ over the input points. To give an
example, in Figure 8.2, we drew noisy observations from a smooth underlying function, where the
input points x1, . . . xn were sampled uniformly at random over [0, 1], and we computed the trend
filtering estimate θ̂ with k = 3 and a particular choice of λ. From the plot (where we interpolated
between (x1, θ̂1), . . . (xn, θ̂n) for visualization purposes), we can see that the implicitly defined
trend filtering function f̂ displays a piecewise cubic structure, with adaptively chosen knot points.
Lemma 8.2 makes this connection precise by showing that such a function f̂ is indeed a linear
combination of falling factorial functions. Letting θ = H(k)α, where H(k) ∈ Rn×n is the kth
order falling factorial basis matrix defined over the inputs x1, . . . xn, the trend filtering problem in
(8.13) becomes

α̂ = argmin
α∈Rn

1

2
‖y −H(k)α‖2

2 + λ ·
n∑

j=k+2

|αj|, (8.14)

equivalent to the functional minimization problem

f̂ = argmin
f∈Hk

1

2

n∑

i=1

(
yi − f(xi)

)2
+ λ · TV

(
f (k)), (8.15)

where Hk = span{h1, . . . hn} is the span of the kth order falling factorial functions in (8.4),
TV(·) denotes the total variation operator, and f (k) denotes the kth weak derivative of f . In other
words, the solutions of problems (8.13) and (8.15) are related by θ̂i = f̂(xi), i = 1, . . . n. The
trend filtering estimate hence verifiably exhibits the structure of a kth order piecewise polynomial
function, with knots at a subset of x1, . . . xn, and this function is not necessarily a spline, but is
close to one (since it lies in the span of the falling factorial functions h1, . . . hn).

In Figure 8.2, we also fit a smoothing spline estimate to the same example data. A striking
difference: the trend filtering estimate is far more locally adaptive towards the middle of plot,
where the underlying function is less smooth (the two estimates were tuned to have the same
degrees of freedom, to even the comparison). This phenomenon is investigated in Tibshirani
[221], where it is shown that trend filtering estimates attain the minimax convergence rate over a
large class of underlying functions, a class for which it is known that smoothing splines (along
with any other estimator linear in y) are suboptimal. This latter work focused on evenly spaced
inputs, xi = i/n, i = 1, . . . n, and the next two subsections extend the trend filtering convergence
theory to cover arbitrary inputs x1, . . . xn ∈ [0, 1]. We first consider the input points as fixed, and
then random. All proofs are deferred until Section 8.7.

8.4.1 Fixed input points

The following is our main result on trend filtering.
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Figure 8.2: Example trend filtering and smoothing spline estimates.

Theorem 8.5. Let y ∈ Rn be drawn from (8.12), with fixed inputs 0 ≤ x1 < . . . < xn ≤ 1,
having a maximum gap

max
i=1,...n

(xi − xi−1) = O(log n/n), (8.16)

and i.i.d., mean zero sub-Gaussian errors. Assume that, for an integer k ≥ 0 and constant C > 0,
the true function f0 is k times weakly differentiable, with TV(f

(k)
0 ) ≤ C. Then the kth order trend

filtering estimate θ̂ in (8.13), with tuning parameter value λ = Θ(n1/(2k+3)), satisfies

1

n

n∑

i=1

(
θ̂i − f0(xi)

)2
= OP(n−(2k+2)/(2k+3)). (8.17)

Remark 1. The rate n−(2k+2)/(2k+3) is the minimax rate of convergence with respect to the class
of k times weakly differentiable functions f such that TV(f (k)) ≤ C (see, e.g., Nussbaum
[167], Tibshirani [221]). Hence Theorem 8.5 shows that trend filtering estimates converge at the
minimax rate over a broad class of true functions f0, assuming that the fixed input points are
not too irregular, in that the maximum adjacent gap between points must satisfy (8.16). This
condition is not stringent and is naturally satisfied by continuously distributed random inputs, as
we show in the next subsection. We note that Tibshirani [221] proved the same conclusion (as in
Theorem 8.5) for unevenly spaced inputs x1, . . . xn, but placed very complicated and basically
uninterpretable conditions on the inputs. Our tighter analysis of the falling factorial functions
yields the simple sufficient condition (8.16).

Remark 2. The conclusion in the theorem can be strengthened, beyond the the convergence of
θ̂ to f0 in (8.17); under the same assumptions, the trend filtering estimate θ̂ also converges to
f̂ spline at the same rate n−(2k+2)/(2k+3), where we write f̂ spline to denote the solution in (8.15) with
Hk replaced by Gk = span{g1, . . . gn}, the span of the truncated power basis functions in (8.2).
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This asserts that the trend filtering estimate is indeed “close to” a spline, and here the bound in
Lemma 8.4, between the truncated power and falling factorial basis matrices, is key. Moreover, we
actually rely on the convergence of θ̂ to f̂ spline to establish (8.17), as the total variation regularized
spline estimator f̂ spline is already known to converge to f0 at the minimax rate [152].

8.4.2 Random input points

To analyze trend filtering for random inputs, x1, . . . xn, we need to bound the maximum gap
between adjacent points with high probability. Fortunately, this is possible for a large class of
distributions, as shown in the next lemma.
Lemma 8.6. If 0 ≤ x1 < . . . < xn ≤ 1 are sorted i.i.d. draws from an arbitrary continuous
distribution supported on [0, 1], whose density is bounded below by p0 > 0, then with probability
at least 1− 2p0n

−10,

max
i=1,...n

(xi − xi−1) ≤ c0 log n

p0n
,

for a universal constant c0.

The proof of this result is readily assembled from classical results on order statistics; we give a
simple alternate proof in Section 8.7. Lemma 8.6 implies the next corollary.
Corollary 8.7. Let y ∈ Rn be distributed according to the model (8.12), where the inputs
0 ≤ x1 < . . . < xn ≤ 1 are sorted i.i.d. draws from an arbitrary continuous distribution on [0, 1],
whose density is bounded below. Assume again that the errors are i.i.d., mean zero sub-Gaussian
variates, independent of the inputs, and that the true function f0 has k weak derivatives and
satisfies TV(f

(k)
0 ) ≤ C. Then, for λ = Θ(n1/(2k+3)), the kth order trend filtering estimate θ̂

converges at the same rate as in Theorem 8.5.

8.5 A higher order Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test is a standard nonparametric hypothesis test
of equality between two distributions, say PX and PY , from independent samples x1, . . . xm ∼
PX and y1, . . . yn ∼ PY . Writing X(m) = (x1, . . . xm), Y(n) = (y1, . . . yn), and Z(m+n) =
(z1, . . . zm+n) = X(m) ∪ Y(n) for the joined samples, the KS statistic can be expressed as

KS(X(m), Y(n)) = max
zj∈Z(m+n)

∣∣∣∣∣
1

m

m∑

i=1

1{xi ≤ zj} −
1

n

n∑

i=1

1{yi ≤ zj}
∣∣∣∣∣ . (8.18)

This examines the maximum absolute difference between the empirical cumulative distribution
functions from X(m) and Y(n), across all points in the joint set Z(m+n), and so the test rejects for
large values of (8.18). A well-known alternative (variational) form for the KS statistic is

KS(X(m), Y(n)) = max
f : TV(f)≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ , (8.19)
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where ÊX(m)
denotes the empirical expectation underX(m), so that ÊX(m)

[f(X)] = 1/m
∑m

i=1 f(xi),
and similarly for ÊY(n)

. The equivalence between (8.19) and (8.18) comes from the fact that maxi-
mum in (8.19) is achieved by taking f to be a step function, with its knot (breakpoint) at one of
the joined samples z1, . . . zm+n.

The KS test is perhaps one of the most widely used nonparametric tests of distributions, but it
does have its shortcomings. Loosely speaking, it is known to be sensitive in detecting differences
between the centers of distributions PX and PY , but much less sensitive in detecting differences
in the tails. In this section, we generalize the KS test to “higher order” variants that are more
powerful than the original KS test in detecting tail differences (when, of course, such differences
are present). We first define the higher order KS test, and describe how it can be computed
in linear time with the falling factorial basis. We then empirically compare these higher order
versions to the original KS test, and several other commonly used nonparametric two-sample tests
of distributions.

8.5.1 Definition of the higher order KS tests

For a given order k ≥ 0, we define the kth order KS test statistic between X(m) and Y(n) as

KS
(k)
G (X(m), Y(n)) =

∥∥∥∥(G
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
. (8.20)

Here G(k) ∈ R(m+n)×(m+n) is the kth order truncated power basis matrix over the joined samples
z1 < . . . < zm+n, assumed sorted without a loss of generality, and G(k)

2 is the submatrix formed
by excluding its first k+ 1 columns. Also, 1X(m)

∈ R(m+n) is a vector whose components indicate
the locations of x1 < . . . < xm among z1 < . . . < zm+n, and similarly for 1Y(n)

. Finally, ‖ · ‖∞
denotes the `∞ norm, ‖u‖∞ = maxi=i,...r |ui| for u ∈ Rr.

As per the spirit of our paper, an alternate definition for the kth order KS statistic uses the falling
factorial basis,

KS
(k)
H (X(m), Y(n)) =

∥∥∥∥(H
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
, (8.21)

where now H(k) ∈ R(m+n)×(m+n) is the kth order falling factorial basis matrix over the joined
samples z1 < . . . < zm+n. Not surprisingly, the two definitions are very close, and Hölder’s
inequality shows that

|KS
(k)
G (X(m), Y(n))−KS

(k)
H (X(m), Y(n))| ≤ max

i,j=1,...m+n
2|G(k)

ij −H(k)
ij | ≤ 2k2δ,

the last inequality due to Lemma 8.4, with δ the maximum gap between z1, . . . zm+n. Recall that
Lemma 8.6 shows δ to be of the order log(m+ n)/(m+ n) for continuous distributions PX ,PY
supported nontrivially on [0, 1], which means that with high probability, the two definitions differ
by at most 2k2 log(m+ n)/(m+ n), in such a setup.

The advantage to using the falling factorial definition is that the test statistic in (8.21) can be
computed in O(k(m+ n)) time, without even having to form the matrix H(k)

2 (this is assuming
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Figure 8.3: ROC curves for experiment 1, normal vs. t.
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Figure 8.4: ROC curves for experiment 2, Laplace vs. Laplace.

sorted points z1, . . . zm+n). See Lemma 8.3, and Algorithm 9 in Section 8.7.3. By comparison, the
statistic in (8.20) requires O((m+ n)2) operations. In addition to the theoretical bound described
above, we also find empirically that the two definitions perform quite similarly, as shown in the
next subsection, and hence we advocate the use of KS

(k)
H for computational reasons.

A motivation for our proposed tests is as follows: it can be shown that (8.20), and therefore (8.21),
approximately take a variational form similar to (8.19), but where the constraint is over functions
whose kth (weak) derivative has total variation at most 1. See Section 8.7.

8.5.2 Numerical experiments

We examine the higher order KS tests by simulation. The setup: we fix two distributions P,Q.
We draw n i.i.d. samples X(n), Y(n) ∼ P , calculate a test statistic, and repeat this R/2 times; we
also draw n i.i.d. samples X(n) ∼ P , Y(n) ∼ Q, calculate a test statistic, and repeat R/2 times.
We then construct an ROC curve, i.e., the true positive rate versus the false positive rate of the
test, as we vary its rejection threshold. For the test itself, we consider our kth order KS test, in
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both its G and H forms, as well as the usual KS test, and a number of other popular two-sample
tests: the Anderson-Darling test [9, 189], the Wilcoxon rank-sum test [251], and the maximum
mean discrepancy (MMD) test, with RBF kernel [104].

Figures 8.3 and 8.4 show the results of two experiments in which n = 100 and R = 1000. (See
Section 8.8 for more experiments.) In the first we used P = N(0, 1) and Q = t3 (t-distribution
with 3 degrees of freedom), and in the second P = Laplace(0) and Q = Laplace(0.3) (Laplace
distributions of different means). We see that our proposed kth order KS test performs favorably
in the first experiment, with its power increasing with k. When k = 3, it handily beats all
competitors in detecting the difference between the standard normal distribution and the heavier-
tailed t-distribution. But there is no free lunch: in the second experiment, where the differences
between P,Q are mostly near the centers of the distributions and not in the tails, we can see
that increasing k only decreases the power of the kth order KS test. In short, one can view our
proposal as introducing a family of tests parametrized by k, which offer a tradeoff in center versus
tail sensitivity. A more thorough study will be left to future work.

8.6 Discussion

We formally proposed and analyzed the spline-like falling factorial basis functions. These basis
functions admit attractive computational and statistical properties, and we demonstrated their
applicability in two problems: trend filtering, and a novel higher order variant of the KS test.
These examples, we feel, are just the beginning. As typical operations associated with the falling
factorial basis scale merely linearly with the input size (after sorting), we feel that this basis may
be particularly well-suited to a rich number of large-scale applications in the modern data era, a
direction that we are excited to pursue in the future.

8.7 Proofs and technical details

8.7.1 Proof of Lemma 8.1 (recursive decomposition)

The falling factorial basis matrix, as defined in (8.4), (8.5), can be expressed asH(k) = [H
(k)
1 H

(k)
2 ],

where

H
(k)
1 =




1 0 0 · · · 0
1 x2 − x1 0 · · · 0

1 x3 − x1 (x3 − x2)(x3 − x1) · · · ...
...

...
... . . . ...

1 xk+1 − x1 (xk+1 − x2)(xk+1 − x1) · · · ∏k
`=1(xk+1 − x`)

...
...

... . . . ...
1 xn − x1 (xn − x2)(xn − x1) · · · ∏k

`=1(xn − x`)




∈ Rn×(k+1),
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and

H
(k)
2 =




0(k+1)×1 0(k+1)×1 · · · 0(k+1)×1∏k
`=1(xk+2 − x1+`) 0 · · · 0∏k
`=1(xk+3 − x1+`)

∏k
`=1(xk+3 − x2+`) · · · 0

...
... . . . ...∏k

`=1(xn − x1+`)
∏k

`=1(xn − x2+`) · · · ∏k
`=1(xn − xn−k−1+`)



∈ Rn×(n−k−1).

Lemma 8.1 claims that H(0) = Ln, the lower triangular matrix of 1s, which can be seen directly
by inspection (recalling our convention of defining thee empty product to be 1). The lemma
further claims that H(k) can be recursively factorized into the following form:

H(k) = H(k−1) ·
[
Ik 0
0 ∆(k)

]
·
[
Ik 0
0 Ln−k

]
, (8.22)

for all k ≥ 1. We prove the above factorization in this current section. In what follows, we denote
the last n− k − 1 columns of the product (8.22) by M̃ (k) ∈ Rn×(n−k−1), and also write

M̃ (k) =

[
0(k+1)×(n−k−1)

L̃(k),

]
,

i.e., we use L̃(k) to denote the lower (n− k − 1)× (n− k − 1) submatrix of M̃ (k). To prove the
lemma, we show that M̃ (k) is equal to the corresponding block H(k)

2 , by induction on k. The proof
that the first block of k + 1 columns of the product is equal to H(k)

1 follows from the arguments
given for the proof of the second block, and therefore we do not explicitly rewrite the proof for
this part.

We begin the inductive proof by checking the case k = 1. Note

M̃ (1) =

[
02×(n−2)

L̃(1)

]
=

[
01×(n−1)

Ln−1

]
(∆(k))−1

[
01×(n−2)

Ln−2

]

=




02×1 02×1 · · · 02×1

x3 − x2 0 · · · 0
x4 − x2 x4 − x3 · · · 0

...
... . . . ...

xn − x2 xn − x3 · · · xn − xn−1



.

This gives precisely the last n− 2 columns of H(1), as defined in (8.4).

Next we verify that if the statement holds for some k ≥ 1, then it is true for k + 1. To avoid
confusion, we will use i, j as indices H(k+1) and α, θ as indices of L̃(k+1). The universal rule for
the relationship between the two sets of indices is

(
i
j

)
=

(
α
θ

)
+ k + 2.
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We consider an arbitrary element, L̃(k+1)
αθ . Due to the upper triangular shape of L̃(k), we have

L̃
(k)
αθ = 0 if α < θ. For α ≥ θ, we plainly calculate, using the inductive hypothesis

L̃
(k+1)
αθ =

1+α∑

q=1+θ

L̃
(k)
1+α,q · (∆(k+1))−1

qq

=
1+α∑

q=1+θ

k∏

`=1

(xk+2+α − xq+`) · (xk+1+q − xq)

=
k+1∏

`=1

(xk+2+α − xθ+`) · A = H
(k)
ij · A,

where A is the sum of terms that scales each summand to the desired quantity (by multiplying and
dividing by missing factors). To complete the inductive proof, it suffices to show that A = 1. It
turns out that there are two main cases to consider, which we examine below.

Case 1. When α− θ ≤ k, the term A can be expressed as

A =
xk+1+1+θ − x1+θ

xk+2+α − x1+θ

+
(xk+1+2+θ − x2+θ)(xk+2+α − xk+1+1+θ)

(xk+2+α − x1+θ)(xk+2+α − x2+θ)

+ · · ·+ (xk+1+γ+θ − xγ+θ)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+γ+θ)

(xk+2+α − x1+θ) · · · (xk+2+α − xγ−1+θ)(xk+2+α − xγ+θ)

+ · · ·+ (xk+1+α − xα)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+θ) · · · (xk+2+α − xα−1)(xk+2+α − xα)

+((
((((

((((xk+2+α − x1+α)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+θ) · · · (xk+2+α − xα)((((
(((

((
(xk+2+α − x1+α)

.

Note that in the last term, the factor (xk+2+α − x1+α) in both the denominator and numerator
cancels out, leaving the denominator to be the same as the second to last term. Combining the last
two terms, we again get a common factor (xk+2+α − xα) in denominator and numerator, which
cancels out, and makes the denominator of this term the same as that previous term. Continuing
in this manner, we can recursively eliminate the terms from last to the first, leaving

��
��xk+2+θ − x1+θ + xk+2+α −����xk+2+θ

xk+2+α − x1+θ

= 1.

In other words, we have shown that A = 1.

Case 2. When α − θ ≥ k + 1, the denominators in terms of A will remain the same after they
reach

(xk+2+α − x1+θ) · · · (xk+2+α − x1+k+θ) =
k+1∏

`=1

(xk+2+α − xθ+`) := B.
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Again, we begin by expressing A explicitly as

A =
xk+1+1+θ − x1+θ

xk+2+α − x1+θ

+
(xk+1+2+θ − x2+θ)(xk+2+α − xk+1+1+θ)

(xk+2+α − x1+θ)(xk+2+α − x2+θ)

+ · · ·+ (xk+1+γ+θ − xγ+θ)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+γ+θ)

(xk+2+α − x1+θ) · · · (xk+2+α − xγ−1+θ)(xk+2+α − xγ+θ)

+ · · ·+ (xk+1+k+1+θ − xk+1+θ)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+k+1+θ)

(xk+2+α − x1+θ) · · · (xk+2+α − x1+k+θ)

+
(xk+1+k+2+θ − xk+2+θ)(xk+2+α − xk+3+θ) · · · (xk+2+α − xk+k+2+θ)

(xk+2+α − x1+θ) · · · (xk+2+α − x1+k+θ)

+ · · ·+ (xk+1+α − x1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

(xk+2+α − x1+θ) · · · (xk+2+α − x1+k+θ)

+
(xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+θ) · · · (xk+2+α − x1+k+θ)
.

Now we divide first factor of the transition term, in the third line above, into two halves by

xk+1+k+1+θ − xk+1+θ = (xk+2+α − x1+k+θ) + (xk+1+k+1+θ − xk+2+α).

The first half triggers the recursive reduction on the first k terms exactly as in the first case, so the
sum of the first k terms equal to 1 and we get

B(A− 1) =− (xk+2+α − xk+k+2+θ)(xk+2+α − xk+2+θ) · · · (xk+2+α − xk+k+1+θ)

+ (xk+1+k+2+θ − xk+2+θ)(xk+2+α − xk+3+θ) · · · (xk+2+α − xk+k+2+θ)

+ · · ·+ (xk+1+α − x1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

+ (xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α).

Now we can do a recursive reduction starting from the first two terms, the sum of which is
[
xk+1+k+2+θ − xk+2+θ − (xk+2+α − xk+2+θ)

]
(xk+2+α − xk+3+θ) · · · (xk+2+α − xk+k+2+θ)

=− (xk+2+α − xk+1+k+2+θ)(xk+2+α − xk+3+θ) · · · (xk+2+α − xk+k+2+θ)

This can be combined with the third term in a similar fashion and the recursion continues. At the
end, we get

B(A− 1) =− (xk+2+α − xk+1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

+ (xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α)

=
[
xk+1+1+α − x1+α − (xk+2+α − x1+α)

]
(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α) = 0.

That is, we have shown that A = 1.

With A = 1 proved between these two cases, we have completed the inductive argument, and
hence the proof of the lemma.
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8.7.2 Proof of Lemma 8.2 (inverse representation)

We prove Lemma 8.2, which claims that he inverse of falling factorial basis matrix is

(H(k))−1 =

[
C

1
k!
·D(k+1)

]
, (8.23)

where D(k+1) is the (k + 1)st order discrete difference operator defined in (8.10), and the rows of
the matrix C ∈ R(k+1)×n obey C1 = e1 and

Ci+1 =

[
1

i!
· (∆(i))−1 ·D(i)

]

1

, i = 1, . . . k.

Again we use induction on k. When k = 0, it is easily verified that

(H(0))−1 = L−1
n =

[
e1

D(1)

]
=

[
e1

1
0!
·D(1)

]
.

The rest of the inductive proof is relatively straightforward, following from Lemma 8.1, i.e., from
(8.22). Inverting both sides of (8.22) gives

(H(k))−1 =

[
Ik 0
0 Ln−k

]−1

·
[
Ik 0
0 ∆(k)

]−1

· (H(k−1))−1

=

[
Ik 0
0 L−1

n−k

]
·
[
Ik 0
0 (∆(k))−1

]
· (H(k−1))−1.

Now, using that L−1
n−k =

[
e1

D(1)

]
, and assuming that (H(k−1))−1 obeys (8.23),

(H(k))−1 =



Ik 0

0

[
e1

D(1)

]

 ·
[
Ik 0
0 (∆(k))−1

]
·




e1[
1
1!

(∆(1))−1D(1)
]

1...[
1

(k−1)!
(∆(k−1))−1D(k−1)

]
1

1
(k−1)!

·D(k)




=




e1[
1
1!

(∆(1))−1D(1)
]

1...[
1

(k−1)!
(∆(k−1))−1D(k−1)

]
1

1
k!

[
e1

D(1)

]
· k(∆(k))−1 ·D(k)




=




e1[
1
1!

(∆(1))−1D(1)
]

1...[
1

(k−1)!
(∆(k−1))−1D(k−1)

]
1[

1
(k)!

(∆(k))−1D(k)
]

1
1
k!
·D(k+1)




=

[
C

1
k!
·D(k+1)

]
,

as desired.
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8.7.3 Algorithms for multiplication by (H(k))T and [(H(k))T ]−1

Recall that, given a vector y, we write ya:b to denote its subvector (ya, ya+1, . . . yb), and we write
cumsum and diff for the cumulative sum pairwise difference operators. Furthermore, we define
flip to be the operator the reverses the order of its input, e.g., flip((1, 2, 3)) = (3, 2, 1), and we
write ◦ to denote operator composition, e.g., flip ◦ cumsum. The remaining two algorithms from
Lemma 8.3 are given below, in Algorithms 9 and 10.

Algorithm 9 Multiplication by (H(k))T

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by (H(k))Ty.
for i = 0 to k do

if i 6= 0 then
y(i+1):n = y(i+1):n ./ (x(i+1):n − x1:(n−i)).

end if
y(i+1):n = flip ◦ cumsum ◦ flip(y(i+1):n).

end for
Return y.

Algorithm 10 Multiplication by [(H(k))T ]−1

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by [(H(k))T ]−1y.
for i = k to 0 do
y(i+1):n−1 = flip ◦ diff ◦ flip(y(i+1):n).
if i 6= 0 then
y(i+1):n = (x(i+1):n − x1:(n−i))

−1 .∗ y(i+1):n.
end if

end for
Return y.

8.7.4 Proof of Lemma 8.4 (proximity to truncated power basis)

Recall that we denote

δ = max
i=1,...n

(xi − xi−1),
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and write x0 = 0 for notational convenience. Taking the elementwise difference between the
falling factorial and truncated power basis matrices, we get

Hij−Gij =





0 for i = 1, . . . n, j = 1∏j−1
`=1(xi − x`)− xj−1

i for i > j − 1, j = 2, . . . k + 1

−xj−1
i for i ≤ j − 1, j = 2, . . . k + 1

0 for i ≤ j − dk/2e, j ≥ k + 2

−(xi − xj−dk/2e)k for j − dk/2e < i ≤ j − 1, j ≥ k + 2∏k
`=1(xi − xj−k−1+`)− (xi − xj−dk/2e)k for i > j − 1, j ≥ k + 2.

(8.24)
In the above, we use dze to denote the least integer greater than or equal to z (the ceiling function).
We will bound the absolute value of each nonzero difference Hij −Gij in (8.24). Starting with
the second row,
∣∣∣∣∣

j−1∏

`=1

(xi − x`)− xj−1
i

∣∣∣∣∣ ≤ xj−1
i − (xi − xj−1)j−1

= xj−1

[
xj−2
i + xj−3

i (xi − xj−1) + . . .+ xi(xi − xj−1)j−3 + (xi − xj−1)j−2
]

≤ xj−1 · (j − 1) · xj−2
i ≤ kδ · k · 1 ≤ k2δ.

In the second line above, we used the expansion

ak − bk = (a− b)(ak−1 + ak−2b+ . . .+ bk−1), (8.25)

and in the third line, we used the fact that j − 1 ≤ k, so that xj−1 ≤ kδ, and also 0 ≤ xi ≤ 1. The
third row of (8.24) is simpler. Since 0 ≤ xi ≤ 1 and i ≤ j − 1 < k,

| − xj−1
i | ≤ xi ≤ kδ.

For the fourth row in (8.24), using the range of i, j, and the fact that kδ ≤ 1,

| − (xi − xj−dk/2e)k| ≤ (xj−1 − xj−dk/2e)k ≤ (kδ)k ≤ kδ.

This leaves us to deal with the last row in (8.24). Defining p = i, q = j − (k + 1), the problem
transforms into bounding

k∏

`=1

(xp − x`+q)− (xp − xb k+2
2
c+q)

k,

for any p = k+2, k+3, . . . n, q = 1, . . . p−k, where now bzc denotes the greatest integer less than
or equal to z (the floor function). We let µpq = xp − xb k+2

2
c+q and ηq = xp − xq+1 − µpq. Note

that ηq is the gap between the maximum multiplicant in the first term above and µpq. Then

ηq = xb k+2
2
c+q − xq+1 ≤ kδ.
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Therefore

k∏

`=1

(xp − x`+q)− (xp − xb k+2
2
c+q)

k ≤ (xp − x1+q)
k − µkpq

= (µpq + ηq)
k − µkpq

= kδ ·
k−1∑

`=0

(µpq + ηq)
`µk−`pq

≤ k2δ · (µpq + ηq)
k ≤ k2δ.

The third line above follows again from the expansion (8.25), and the fact that ηq ≤ kδ. The
fourth line uses µpq + ηq ≥ µpq, and ultimately µpq + ηq = xp − x1+q ∈ [0, 1]. This completes the
proof.

8.7.5 Proof of Theorem 8.5 (trend filtering rate, fixed inputs)

This proof follows the same strategy as the convergence proofs in Tibshirani [221]. Recall that
the trend filtering estimate (8.13) can be expressed in terms of the lasso problem (8.14), in that
θ̂ = H(k)α̂; also consider consider the problem

θ̂ = argmin
θ∈Rn

1

2
‖y −G(k)θ‖2

2 + λ′ ·
n∑

j=k+2

|θj|, (8.26)

where G(k) is the truncated power basis matrix of order k. Let µ = (f0(x1), . . . f0(xn)) ∈ Rn

denote the true function evaluated across the inputs. Then under the assumptions of Theorem 8.5,
it is known that

‖G(k)θ̂ − µ‖2
2 = OP(n−(2k+2)/(2k+3)),

when λ = Θ(n1/(2k+3)); see Theorem 10 of Mammen and van de Geer [152]. It now suffices to
show that ‖H(k)α̂−G(k)θ̂‖2

2 = OP(n−(2k+2)/(2k+3)), since

‖H(k)α̂− µ‖2
2 ≤ 2‖H(k)α̂−G(k)θ̂‖2

2 + 2‖G(k)θ̂ − µ‖2
2.

For this, we can use the results in Appendix B of Tibshirani [221], specifically Corollary 4 of this
work, to argue that we have ‖H(k)α̂−G(k)θ̂‖2

2 = OP(n−(2k+2)/(2k+3)) as long as λ = (1 + δ)λ′

for any δ > 0, and

n(2k+2)/(2k+3) · max
i,j=1,...n

|G(k)
ij −H(k)

ij | → 0 as n→∞.

But by Lemma 8.4, and our condition (8.16) on the inputs, we have maxi,j=1,...n |G(k)
ij −H(k)

ij | ≤ k2 log n/n,
which verifies the above, and hence gives the result.

206



8.7.6 Proof of Lemma 8.6 (maximum gap between random inputs)

Given sorted i.i.d. draws x1 ≤ . . . ≤ xn from a continuous distribution supported on [0, 1], whose
density is bounded below by p0 > 0, we consider the maximum gap δ = maxi=1,...n(xi − xi−1)
(recall that we set x0 = 0 for notational convenience). This is a well-studied quantity. In the
case of a uniform distribution on [0, 1], we know that the spacings vector follows a symmetric
Dirichelet distribution, which is equivalent to uniform sampling from an n-simplex, e.g., see
David and Nagaraja [60]. Furthermore, the asymptotics of the kth largest gap have also been
extensively studied, e.g., in Barbe [13]. Here, we provide a simple finite sample bound on δ,
without using distributional or geometric characterizations, but rather a direct argument based on
binning.

Consider an arbitrary point x in [0, 1− α]. Then the probability that at least one draw from our
underlying distribution occurs in [x, x + α] is bounded below by 1 − (1 − p0α)n. Now divide
[0, 1] into bins of length α (the last bin can be overlapping with the second to last bin). Note that
the event in which there is at least one sample point in each bin implies that the maximum gap δ
between adjacent points is less than or equal to 2α. By the union bound, this event occurs with
probability at least 1− d 1

α
e(1− p0α)n.

Let α = r log n/(p0n), and assume n is sufficiently large so that r log n/(p0n) < 1. Then we
have

⌈ 1

α

⌉
(1− p0α)n ≤

( 1

α
+ 1
)

(1− p0α)n =
p0n+ r log n

r log n

(
1− r log n

n

)n

≤ 2p0n exp(−r log n) = 2p0n
1−r.

Plugging in r = 11, we get the desired result for C = 22, i.e., with probability at least 1−2p0n
−10,

the maximum gap satisfies δ ≤ 22 log n/(p0n).

8.7.7 Proof of Corollary 8.7 (trend filtering rate, random inputs)

The proof of this result is entirely analogous to the proof of Theorem 8.5; the only difference is
that

max
i=1,...n−1

(xi+1 − xi) = OP(log n/n),

(i.e., convergence in probability now), and so accordingly,

n(2k+2)/(2k+3) · max
i,j=1,...n

|G(k)
ij −H(k)

ij |
p→ 0 as n→∞,

employing Lemmas 8.4 and 8.6. The same arguments now apply; the stability result in Corollary
4 in Appendix B of Tibshirani [221] must now be applied to random predictor matrices, but this is
an extension that is straightforward to verify.
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8.8 The higher order KS test

8.8.1 Motivating arguments

As described in the text, the classical KS test is

KS(X(m), Y(n)) = max
zj∈Z(m+n)

∣∣∣∣∣
1

m

m∑

i=1

1{xi ≤ zj} −
1

n

n∑

i=1

1{yi ≤ zj}
∣∣∣∣∣ , (8.27)

over samples X(m) = (x1, . . . xm) and Y(n) = (y1, . . . yn), written in combined form as Z(m+n) =
X(m) ∪ Y(n) = (z1, . . . zm+n). It is well-known that the above definition is equivalent to

KS(X(m), Y(n)) = max
f : TV(f)≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ , (8.28)

where we write ÊX(m)
for the empirical expectation underX(m), so ÊX(m)

[f(X)] = 1/m
∑m

i=1 f(xi),
and similarly for ÊY(n)

. The equivalence between these two definitions follows from the fact
that the maximum in (8.28) always occurs at an indicator function, f(x) = 1{x ≤ zi}, for some
i = 1, . . .m+ n.

We now will step through a sequence of motivating arguments that lead to the definition of the
higher order KS test in (8.20). The basic idea is to alter the constraint set in (8.28), and consider
functions of bounded variation in their kth derivative, for some fixed k ≥ 0. This gives

max
f : TV(f (k))≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ . (8.29)

Is it possible to compute such a quantity? By a variational result in Mammen and van de Geer
[152], the maximum in (8.29) is always achieved by a kth order spline function. In principle, if
we knew some finite set T containing the knots of the maximizing spline, then we could restrict
our attention to the space of splines with knots in T . However, when k ≥ 2, such a set T is not
generically easy to find, because the knots of the maximizing spline in (8.29) can lie outside of the
set of data samples Z(m+n) = {z1, . . . zm+1} [152]. Therefore, we further restrict the functions in
consideration in (8.29) to be kth order splines with knots contained in Z = Z(m+n). Letting S(k)

Z

denote the space of such spline functions, we hence examine

max
f∈S(k)

Z : TV(f (k))≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ . (8.30)

As S(k)
Z is a finite-dimensional function space (in fact, (m+n)-dimensional), we can rewrite (8.30)

in a parametric form, similar to (8.27). Let g1, . . . gm+n denote the kth order truncated power basis
with knots over the set of joined data samples Z. Then any function f ∈ S(k)

Z with TV(f (k)) ≤ 1
can be expressed as f =

∑m+n
j=1 αjgj , where the coefficients satisfy

∑m+n
j=k+2 |αj| ≤ 1. In terms of

the evaluations of the function f over z1, . . . zm+n, we have
(
f(z1), . . . f(zm+n)

)
= G(k)α,
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whereG(k) is the truncated power basis matrix, i.e., its columns give the evaluations of g1, . . . gm+n

over the points z1, . . . zm+n. Therefore (8.30) can be re-expressed as

max∑m+n
j=k+2 |αj |≤1

∣∣∣∣
1

m
1TX(m)

G(k)α− 1

n
1TY(n)

G(k)α

∣∣∣∣ . (8.31)

Here 1X(m)
is an indicator vector of length m+ n, indicating the membership of each point in the

joined sample Z(m+n) to the set X(m). The analogous definition is made for 1Y(n)
.

Upon inspection, some care must be taken in evaluating the maximum in (8.31). Let us decompose
the coefficient vector into blocks as α = (α1, α2), where α1 denotes the first k+ 1 coefficients and
α2 the last m+ n− k − 1. Then the constraint in (8.31) is simply ‖α2‖1 ≤ 1, and it is not hard
to see that since α1 is unconstrained, we can choose it to make the criterion in (8.31) arbitrarily
large. Therefore, in order to make (8.31) well-defined (finite), we employ the further restriction
α1 = 0, yielding

max
‖α2‖1≤1

∣∣∣∣
1

m
1TX(m)

G
(k)
2 α2 −

1

n
1TY(n)

G
(k)
2 α2

∣∣∣∣ , (8.32)

where G(k)
2 denotes the last m− n− k − 1 columns of G(k). A simple duality argument shows

that (8.32) can be written in terms of the `∞ norm, finally giving

KS
(k)
G (X(m), Y(n)) =

∥∥∥∥(G
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
, (8.33)

matching the our definition of the kth order KS test in (8.20). Note that when k = 0, this reduces
to the usual (classic) KS test in (8.27).

For k ≥ 1, unlike the usual KS test which requires O(m+ n) operations, the kth order KS test in
(8.33) requires O((m+ n)2) operations, due to the lower triangular nature of G(k). Armed with
our falling factorial basis, we can approximate KS

(k)
G (Xm, Y n) by

KS
(k)
H (X(m), Y(n)) =

∥∥∥∥(H
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
, (8.34)

where H(k) is the kth order falling factorial basis matrix (and H(k)
2 its last m+n−k− 1 columns)

over the points z1, . . . zm+n. After sorting z1, . . . zm+n, the statistic in (8.34) can be computed in
O(k(m+ n)) time; see Algorithm 9, described above in Section 8.7.3.

8.8.2 Additional experiments

In the main text, we presented two numerical experiments, on testing between samples from
different distributions P,Q. In the first experiment P = N(0, 1) and Q = t3, so the difference
between P,Q was mainly in the tails; in the second, P = Laplace(0) and Q = Laplace(0.3), and
the difference between P,Q was mainly in the centers of the distributions. The first experiment
demonstrated that the power of the higher order KS test generally increased as we increased
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Figure 8.5: An illustration of distribution P vs. Q in our numerical experiments.

the polynomial degree k, the second demonstrated the opposite, i.e., that its power generally
decreased for increasing k. Refer back to Figures 8.3 and 8.4 in the main text.

We should note that the first experiment was not carefully crafted in any way; the same performance
is seen with a number of similar setups. However, we did have to look carefully to reveal the
negative behavior shown in the second experiment. For example, in detecting the difference
between mean-shifted standard normals (as opposed to Laplace distributions), the higher order
KS tests do not encounter nearly as much difficulty. To demonstrate this, we examine a third
experiment here with P = N(0, 1) and Q = N(0.3, 1). Figure 8.5 gives a visual illustration of
the distributions across the three experimental setups (the first two considered in the main text,
and the third investigated here).

The ROC curves for experiment 3 are given in Figure 8.6. The left panel shows that the test
for k = 1 improves on the usual test (k = 0), even though the difference between the two
distributions is mainly near their centers. The right panel shows that the higher order KS tests
are competitive with other commonly used nonparametric tests in this setting. The results of this
experiment hence suggest that the higher order KS tests provide a utility beyond simply detecting
finer tail differences, and the tradeoff induced by varying the polynomial order k is not completely
explained as a tradeoff between tail and center sensitivity.

We also study the sample complexity of tests in the three experimental setups. Specifically, over
R = 1000 repetitions, we find the true positive rate associated with a 0.05 false positive rate, as
we let n vary over 10, 20, 50, 100, 200, . . . 1000. The results for this sample complexity sudy are
shown in Figures 8.7, 8.8, and 8.9. We see that the higher order KS tests perform quite favorably
the first experimental setup, not so favorably in the second, and somewhere in the middle in the
third.
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Figure 8.6: ROC curves for experiment 3, normal vs. shifted normal.
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Figure 8.7: Sample complexities at the level α = 0.05 for experiment 1, normal vs. t.
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Figure 8.8: Sample complexities at level α = 0.05 in experiment 2, Laplace vs. shifted Laplace.
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Figure 8.9: Sample complexities at level α = 0.05 in experiment 3, normal vs. shifted normal.

212



Subsequent work and applications

We conclude Part II of the thesis with some pointers to our more recent findings and applications
that did not make it to the thesis, and also a few notable related work that builds upon our
work.

Chapter 7 is part of a bigger agenda that aims at extending trend filtering to multiple dimensions
and understanding the behavior of multivariate trend filtering for signals on grids. The GTF that
we described in Chapter 6 is one specific way to construct such an estimator and it is unclear
whether it is the right way. The results in Chapter 7 suggest that GTF indeed achieves the optimal
rate for the TV-classes with k = 0 and all constant d, but k = 0 is a very specific case where
different ways of defining total variation are the same.

Our new paper [185] addresses the issue by defining discrete higher order total variation classes
from the first principle. It identifies subtle issues that causes GTF to be suboptimal even for a
discretized Hölder class, due to some boundary artifact of discretization. This also motivated us
to consider a new classes of estimators, which we show to achieve the minimax rate using proof
techniques from Chapter 6. The results characterizes the minimax rate for d = 2 and all constant
k ≥ 1. We summarize the minimax rates that is known so far for TV-classes on grids in Table 8.1.
The major open problem right now is to characterize the minimax rate for higher order TV classes
ford ≥ 3.

As we mentioned earlier in Chapter 6, trend filtering-based techniques are easy to adapt to specific
application domain since it follows an analysis framework. As a result, we can conduct graph

k = 0 Lower k = 0 Upper k ≥ 1 Lower k ≥ 1 Upper

d = 1 n−2/3Cn[70] n−2/3Cn[70, 224] n−
2k+2
2k+3C

2
2k+3
n [70] n−

2k+2
2k+3C

2
2k+3
n [70, 224].

d = 2 n−1Cn
√

log n n−1Cn log n [118] n−
2
k+2C

2
k+2
n n−

2
k+2C

2
k+2
n (log n)

2
k+2

d ≥ 3 n−1Cn
√

log n n−1Cn
√

log n[118] n−
2d

2k+2+dC
2d

2k+2+d
n ?

Table 8.1: Summary of the minimax bounds for GTF on grids. Assuming constant noise. The
corresponding canonical rate in corresponding continuous domain TV-class is given in brackets.
Results from from Chapter 7 and [185] are highlighted in red and blue respectively. The lower
bounds for k ≥ 1 and d ≥ 3 do not have a matching upper bound, and in fact, we have reason to
believe that they are suboptimal.
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transductive trend filtering, generalized linear model trend filtering and so on, by simply modifying
the loss function. On the other hand, when there are multiple features in a time varying regression
problem, it makes sense to assume the effect of features are additive and they change smoothly
over time. Such additive trend filtering is formally studied in [184].

A concrete application of the additive trend filtering is to solve the cybersecurity problem of
“attributing hacks”. In [148], we derived an additive trend filtering based survival analysis model.
The local adaptivity of trend filtering allows sharp changes of certain features’ contribution to
the hazard function, and therefore allows identifications of major release of certain exploits and
subsequent hacker campaigns.

We conclude Part II by mentioning some concurrent and follow-up work in the literature. Padilla
et al. [169] realized that a chain-graph is the worst graph and provided a linear-time denoising
algorithm by constructing a chain through running DFS over general graphs. El Alaoui et al. [89]
picks up the problem of semisupervised learning on graphs with `p graph-structure regularization,
and provided conditions under which the regularizations are asymptotically meaningful. Hutter
and Rigollet [118] first realized an Cn log n/n rate for the k = 0 case, and their result motivated
us to consider the scaling factors more carefully. Trend filtering on graphs fit naturally into the
emerging field signal processing on graphs [186, 198]. [105] investigated the adaptivity of trend
filtering to piecewise polynomial signals, with a sparse number of “discrete spline” basis, then
the algorithm achieves faster rate. “Discrete splines” [209] are closely related to falling factorials
basis that we described in Chapter 8, but do not easily support non-even spacing.
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Part III

Minimax theory for modern sequential
learning models
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Motivation and overview

In Part I and Part II, we have been exclusively considering the batch learning setting, where a
data set is given and we are fitting a fixed model class that is specified independent to the data. In
practice, however, this ideal scenario of a batch learning setting is seldomly true.

Learning systems are often interactive. In many machine learning systems, e.g., web search,
recommendation system, the algorithms being used will largely affect the data being collected. To
give a concrete example in web search:

1. My algorithm chooses the top-k search results to show to a user, upon receiving the search
query and its corresponding context.

2. The user provides feedbacks through clicks, page flips, or revised search queries.

3. My user will not see anything outside the top-k, therefore, I will never know what would
happen if I show them a different set of choices (that comes from a different algorithm).

In the above example, the collected data, e.g., in forms of CONTEXT×ACTION×FEEDBACK,
will be specific to the algorithm being used.

Even in cases where the data comes from carefully designed experiments, it is unlikely for the
data analyst to only look at the data once. Instead, an experienced statistician or data scientist will
first conduct an exploratory data analysis to figure out what model to use. This is also often what
is being taught and recommended in modern statistics and machine learning education. Doing
exploratory data analysis and trial and errors too extensively, however, could have serious issues.
Here we give two examples.

1. An oncologist collects DNA sequences of a few thousands subjects. However, the first
couple of attempts to finding features that are associated with cancer do not prove to be
statistically significant. The oncologist is not going to let the years of effort in data collection
to go in vain, so he decided to work a lot harder, and come up with more features of interest
by looking into the data. Luckily after looking at 100 of these, 6 of them have p-value
smaller than 0.05.

2. The National Institute of Standard and Technology (NIST) collected a large hand-written
digit data set and splitted it into a training set of 60, 000 images and a test set of 10, 000.
They also made the data set public. Ever since, thousands of algorithms had been tested on
this data set, each potentially depends on the results of previous attempts. Now we have
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algorithms that can achieve 99.9% accuracy on the test data set.

The first example clearly reduces the power of a statistical test to null, and the second example
might suggest that there are implicit overfitting, and the actual performance of the algorithm
achieving near-perfect test error might be a few percentages off on new data.

In this part of the thesis, we study the aforementioned two problems under reasonable mathematical
models (and its associated assumptions). In Chapter 9, we address the problem of off-policy
evaluation under the contextual bandits model — this is to evaluate a new algorithm when the
data sets were collected while running an old algorithm. In Chapter 10, we model the process of
choosing what to do with the data set as a partial information game, and design estimators that
can be successful despite a sequence of adversarial choices.

In both cases, we find it natural to address the problem in a minimax framework and our main
technical contributions are information-theoretical lower bounds. These lower bounds are not
necessarily negative results. Instead, they reveal whether the underlying models are reasonable
and what we need to assume to further improve upon them.

In the concluding remarks, we will discuss connections of the two models studied and mention
some ongoing work in the interactive learning setting that is not included in the thesis.

218



Chapter 9

Optimal and adaptive off-policy evaluation
in contextual bandits

We study the off-policy evaluation problem—estimating the value of a target policy using data
collected by another policy—under the contextual bandit model. We consider the general (ag-
nostic) setting without access to a consistent model of rewards and establish a minimax lower
bound on the mean squared error (MSE). The bound is matched up to constants by the inverse
propensity scoring (IPS) and doubly robust (DR) estimators. This highlights the difficulty of
the agnostic contextual setting, in contrast with multi-armed bandits and contextual bandits with
access to a consistent reward model, where IPS is suboptimal. We then propose the SWITCH

estimator, which can use an existing reward model (not necessarily consistent) to achieve a better
bias-variance tradeoff than IPS and DR. We prove an upper bound on its MSE and demonstrate its
benefits empirically on a diverse collection of data sets, often outperforming prior work by orders
of magnitude.

9.1 Introduction

Contextual bandits refer to a learning setting where the learner repeatedly observes a context, takes
an action and observes a reward for the chosen action in the observed context, but no feedback
on any other action. An example is movie recommendation, where the context describes a user,
actions are candidate movies and the reward measures if the user enjoys the recommended movie.
The learner produces a policy, meaning a mapping from contexts to actions. A common question
in such settings is, given a target policy, what is its expected reward? By letting the policy choose
actions (e.g., recommend movies to users), we can compute its reward. Such online evaluation is
typically costly since it exposes users to an untested experimental policy, and does not scale to
evaluating many different target policies.

Off-policy evaluation is an alternative paradigm for the same question. Given logs from the
existing system, which might be choosing actions according to a very different logging policy
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than the one we seek to evaluate, can we estimate the expected reward of the target policy?
There are three classes of approaches to address this question: the direct method (DM), also
known as regression adjustment, inverse propensity scoring (IPS) [116] and doubly robust (DR)
estimators [12, 74, 75, 178].

Our first goal in this chapter is to study the optimality of these three classes of approaches
(or lack thereof), and more fundamentally, to quantify the statistical hardness of off-policy
evaluation. This problem was previously studied for multi-armed bandits [146] and is related to
a large body of work on asymptotically optimal estimators of average treatment effects (ATE)
[107, 112, 119, 181], which can be viewed as a special case of off-policy evaluation (see a
more detailed exposition in Section 9.9). In both settings, a major underlying assumption is that
rewards can be consistently estimated from the features (i.e., covariates) describing contexts and
actions, either via a parametric model or non-parametrically. Under such consistency assumptions,
it has been shown that DM and/or DR are optimal [119, 146, 181],1 whereas standard IPS is
not [107, 146], but it becomes (asymptotically) optimal when the true propensity scores are
replaced by suitable estimates [112].

Unfortunately, consistency of a reward model can be difficult to achieve in practice. Parametric
models tend to suffer from a large bias (see, e.g., the empirical evaluation of [74]) and non-
parametric models are limited to small dimensions, otherwise non-asymptotic terms become
too large (see, e.g., the analysis of non-parametric regression by [29]). Therefore, here we
ask: What can be said about hardness of policy evaluation in the absence of reward-model
consistency?

In this pursuit, we provide the first rate-optimal lower bound on the mean-squared error (MSE)
for off-policy evaluation in contextual bandits without consistency assumptions. Our lower bound
matches the upper bounds of IPS and DR up to constants, when given a non-degenerate context
distributions. This result is in contrast with the suboptimality of IPS under previously studied
consistency assumptions, which implies that the two settings are qualitatively different.

Whereas IPS and DR are both minimax optimal, our experiments (similar to prior work) show that
IPS is readily outperformed by DR, even when using a simple parametric regression model that is
not asymptotically consistent. We attribute this to a lower variance of the DR estimator. We also
empirically observe that while DR is generally highly competitive, it is sometimes substantially
outperformed by DM. We therefore ask whether it is possible to achieve an even better bias-
variance tradeoff than DR. We answer affirmatively and propose a new class of estimators, called
the SWITCH estimators, that adaptively interpolate between DM and DR (or IPS). We show that
SWITCH has MSE no worse than DR (or IPS) in the worst case, but is robust to large importance
weights and can achieve a substantially smaller variance than DR or IPS.

We empirically evaluate the SWITCH estimators against a number of strong baselines from prior
work, using a previously used experimental setup to simulate contextual bandit problems on
real-world multiclass classification data. The results affirm the superior bias-variance tradeoff of
SWITCH estimators, with substantial improvements across a number of problems.

1The precise assumptions vary for each estimator, and are somewhat weaker for DR than for DM.
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In summary, the first part of our paper initiates the study of optimal estimators in a finite-sample
setting and without making strong modeling assumptions, while the second part shows how to
practically exploit domain knowledge by building better estimators.

9.2 Setup

In contextual bandit problems, the learning agent observes a context x, takes an action a and
observes a scalar reward r for the action chosen in the context. Here the context x is a feature
vector from some domain X ⊆ Rd, drawn according to a distribution λ. Actions a are drawn from
a finite set A. Rewards r have a distribution conditioned on x and a denoted by D(r | x, a). The
decision rule of the agent is called a policy, which maps contexts to distributions over actions,
allowing for randomization in the action choice. We write µ(a | x) and π(a | x) to denote the
logging and target policies respectively. Given a policy π, we extend it to a joint distribution over
(x, a, r), where x ∼ λ, action a ∼ π(a | x), and r ∼ D(r | x, a). With this notation, given n i.i.d.
samples (xi, ai, ri) ∼ µ, we wish to compute the value of π:

vπ = Eπ[r] = Ex∼λEa∼π(·|x)Er∼D(·|a,x)[r]. (9.1)

In order to correct for the mismatch in the action distributions under µ and π, it is typical to
use importance weights, defined as ρ(x, a) :=π(a | x)/µ(a | x). For consistent estimation, it is
standard to assume that ρ(x, a) 6=∞, corresponding to absolute continuity of π with respect to µ,
meaning that whenever π(a | x) > 0, then also µ(a | x) > 0. We make this assumption throughout
the paper. In the remainder of the setup we present three common estimators of vπ.

The first is the inverse propensity scoring (IPS) estimator [116], defined as

v̂πIPS =
n∑

i=1

ρ(xi, ai)ri. (9.2)

IPS is unbiased and makes no assumptions about how rewards might depend on contexts and
actions. When such information is available, it is natural to posit a parametric or non-parametric
model of E[r | x, a] and fit it on the logged data to obtain a reward estimator r̂(x, a). Policy
evaluation can now simply be performed by scoring π according to r̂ as

v̂πDM =
1

n

n∑

i=1

∑

a∈A

π(a | xi)r̂(xi, a), (9.3)

where the DM stands for direct method [74], also known as regression adjustment or imputa-
tion [181]. IPS can have a large variance when the target and logging policies differ substantially,
and parametric variants of DM can be inconsistent, leading to a large bias. Therefore, both
in theory and practice, it is beneficial to combine the approaches into a doubly robust estima-
tor [48, 74, 178], such as the following variant,

v̂πDR =
1

n

n∑

i=1

[
ρ(xi, ai)

(
ri − r̂(xi, ai)

)
+
∑

a∈A

π(a | xi)r̂(xi, a)

]
.
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Note that IPS is a special case of DR with r̂ ≡ 0. In the sequel, we mostly focus on IPS and DR,
and then suggest how to improve them by further interpolating with DM.

9.3 Limits of Off-policy Evaluation

In this section, we study the off-policy evaluation problem in a minimax setup. After setting up
the framework, we present our lower bound and the matching upper bounds for IPS and DR under
appropriate conditions.

While minimax optimality is standard in statistical estimations, it is not the only notion of
optimality. An alternative framework is that of asymptotic optimality, which establishes Cramer-
Rao style bounds on the asymptotic variance of estimators. We use the minimax framework,
because it is the most amenable to finite-sample lower bounds, and is complementary to previous
asymptotic results, as we discuss after presenting our main results.

9.3.1 Minimax Framework

Off-policy evaluation is a statistical estimation problem, where the goal is to estimate vπ given n
i.i.d. samples generated according to a policy µ. We study this problem in a standard minimax
framework and seek to answer the following question. What is the smallest MSE that any
estimator can achieve in the worst case over a large class of contextual bandit problems? As
is usual in the minimax setting, we want the class of problems to be rich enough so that the
estimation problem is not trivial, and to be small enough so that the lower bounds are not driven
by complete pathologies. In our problem, we fix λ, µ and π, and only take worst case over a
class of reward distributions. This allows the upper and lower bounds to depend on λ, µ and π,
highlighting how these ground-truth parameters influence the problem difficulty. The family of
reward distributions D(r | x, a) that we study is a natural generalization of the class studied by Li
et al. [146] for multi-armed bandits. We assume we are given maps Rmax : X ×A → R+ and
σ : X ×A → R+, and define the class of reward distributionsR(σ,Rmax) as2

R(σ,Rmax) :=
{
D(r|x, a) : 0≤ED[r|x, a]≤Rmax(x, a)

and VarD[r|x, a]≤σ2(x, a) for all x, a
}
.

Note that σ and Rmax are allowed to change over contexts and actions. Formally, an estimator
is any function v̂ : (X × A × R)n → R that takes n data points collected by µ and outputs an
estimate of vπ. The minimax risk of off-policy evaluation over the classR(σ,Rmax), denoted by
Rn(π;λ, µ, σ,Rmax), is defined as

inf
v̂

sup
D(r|x,a)∈R(σ,Rmax)

E
[
(v̂ − vπ)2

]
. (9.4)

2Technically, the inequalities in the definition of R(σ,Rmax) need to hold almost surely with x ∼ λ and
a ∼ µ(· | x).
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Recall that the expectation is taken over the n samples drawn from µ, along with any randomness
in the estimator. The main goal of this section is to obtain a lower bound on the minimax risk. To
state our bound, recall that ρ(x, a) = π(a | x)/µ(a | x) < ∞ is an importance weight at (x, a).
We make the following technical assumption on our problem instances, described by tuples of the
form (π, λ, µ, σ,Rmax):
Assumption 9.1. There exists ε > 0 such that Eµ [(ρσ)2+ε] and Eµ [(ρRmax)2+ε] are finite.

This assumption is only a slight strengthening of the assumption that Eµ[(ρσ)2] and Eµ[(ρRmax)2]
be finite, which is required for consistency of IPS (see, e.g., [75]). Our assumption holds for
instance when the context space is finite, because then both ρ and Rmax are bounded.

9.3.2 Minimax Lower Bound for Off-policy Evaluation

With the minimax setup in place, we now give our main lower bound on the minimax risk for
off-policy evaluation and discuss its consequences. Our bound depends on a parameter γ ∈ [0, 1]
and a derived indicator random variable ξγ(x, a) := 1(µ(x, a) ≤ γ), which separates out the
pairs (x, a) that appear “frequently” under µ.3 As we will see, the “frequent” pairs (x, a) (where
ξγ = 0) correspond to the intrinsically realizable part of the problem, where consistent reward
models can be constructed. The “infrequent” pairs (where ξγ = 1) constitute the part that is
non-realizable in the worst-case. When X ⊆ Rd and λ is continuous with respect to the Lebesgue
measure, then ξγ(x, a) = 1 for all γ ∈ [0, 1], so the problem is non-realizable everywhere in
the worst-case. Our result uses the following problem-dependent constant (defined with the
convention 0/0 = 0):

Cγ := 22+ε max

{
Eµ[(ρσ)2+ε]2

Eµ[(ρσ)2]2+ε
,
Eµ[ξγ(ρRmax)2+ε]2

Eµ[ξγ(ρRmax)2]2+ε

}
.

Theorem 9.2. Assume that a problem instance satisfies Assumption 9.1 with some ε > 0.
Then for any γ ∈ [0, 1] and any n ≥ max

{
16C

1/ε
γ , 2C

2/ε
γ Eµ[σ2/R2

max]
}

, the minimax risk
Rn(π;λ, µ, σ,Rmax) satisfies the lower bound

Eµ
[
ρ2σ2

]
+ Eµ

[
ξγρ

2R2
max

](
1− 350nγ log(5/γ)

)

700n
.

The bound holds for every γ ∈ [0, 1], and we can take the maximum over γ. In particular, we get
the following simple corollary under continuous context distributions.
Corollary 9.3. Under conditions of Theorem 9.2, assume further that λ has a density relative to
Lebesgue measure. Then

Rn(π;λ, µ, σ,Rmax) ≥ Eµ
[
ρ2σ2

]
+ Eµ

[
ρ2R2

max

]

700n
.

3Formally, µ(x, a) corresponds to µ( {(x, a)} ), i.e., the measure under µ of the set {(x, a)}. For example, when
λ is a continuous distribution then µ(x, a) = 0 everywhere.
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If λ is a mixture of a density and point masses, then γ = 0 will exclude the point masses from
the second term of the lower bound. In general, choosing γ = O

(
1/(n log n)

)
excludes the

contexts likely to appear multiple times, and ensures that the second term in Theorem 9.2 remains
non-trivial (when µ(x, a) ≤ γ with positive probability).

Before sketching the proof of Theorem 9.2, we discuss its preconditions and implications.

Preconditions of the theorem: The theorem assumes the existence of a (problem-dependent)
constant Cγ which depends on the constant γ and various moments of the importance-weighted
rewards. When Rmax and σ are bounded (a common situation), Cγ measures how heavy-tailed
the importance weights are. Note that Cγ <∞ for all γ ∈ [0, 1] whenever Assumption 9.1 holds,
and so the condition on n in Theorem 9.2 is eventually satisfied as long as the random variable
σ/Rmax has a bounded second moment. This is quite reasonable since in typical applications the
a priori bound on expected rewards is on the same order or larger than the a priori bound on the
reward noise. For the remainder of the discussion, we assume that n is appropriately large so the
preconditions of the theorem hold.

Comparison with upper bounds: The setting of Corollary 9.3 is typical of many contextual
bandit applications. In this setting both IPS and DR achieve the minimax risk up to a multiplicative
constant. Let r∗(x, a) := E[r | x, a]. Recall that DR is using an estimator r̂(x, a) of r∗(x, a), and
IPS can be viewed as a special case of DR with r̂ ≡ 0. By Lemma 3.3(i) of Dudík et al. [75], the
MSE of DR is

E[(v̂πDR − vπ)2] =
1

n

(
Eµ[ρ2σ2] + Varx∼DEa∼µ(·|x)[ρr

∗] + Ex∼DVara∼µ(·|x)[ρ(r̂ − r∗)]
)
.

Note that 0 ≤ r∗ ≤ Rmax, so if the estimator r̂ also satisfies 0 ≤ r̂ ≤ Rmax, we obtain that
the risk of DR (with IPS as a special case) is at most O

(
1
n
(Eµ[ρ2σ2] + Eµ[ρ2R2

max])
)
. This

means that IPS and DR are unimprovable, in the worst case, beyond constant factors. Another
implication is that the lower bound of Corollary 9.3 is sharp, and the minimax risk is precisely
Θ
(

1
n
(Eµ[ρ2σ2] + Eµ[ρ2R2

max])
)
. While IPS and DR exhibit the same minimax rates, Eq. (??) also

immediately shows that DR will be better than IPS whenever r̂ is even moderately good (better
than r̂ ≡ 0).

Comparison with asymptotic optimality results: As discussed in Section 9.1, previous work
on optimal off-policy evaluation, specifically the average treatment estimation, assumes that it is
possible to consistently estimate r∗(x, a) = E[r | x, a]. Under such an assumption it is possible
to (asymptotically) match the risk of DR with the perfect reward estimator r̂ ≡ r?, and this is
the best possible asymptotic risk [107]. This optimal risk is 1

n

(
Eµ[ρ2σ2] + Varx∼DEπ[r∗ | x]

)
,

corresponding to the first two terms of Eq. (??), with no dependence on Rmax. Several estimators
achieve this risk, including the multiplicative constant, under various consistency assumptions
[107, 112, 119, 181]. Note that this is strictly below our lower bound for continuous λ. That is,
consistency assumptions yield a better asymptotic risk than possible in the agnostic setting. The
gap in constants between our upper and lower bounds is due to the finite-sample setting, where
lower-order terms cannot be ignored, but have to be explicitly bounded. Indeed, apart from the
result of Li et al. [146], discussed below, ours is the first finite-sample lower bound for off-policy
evaluation.
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Comparison with multi-armed bandits: For multi-armed bandits, equivalent to contextual
bandits with a single context, Li et al. [146] show that the minimax risk equals Θ(Eµ[ρ2σ2]/n)
and is achieved, e.g., by DM, whereas IPS is suboptimal. They also obtain a similar result for
contextual bandits, assuming that each context appears with a large-enough probability to estimate
its associated rewards by empirical averages (amounting to realizability). While we obtain a
larger lower bound, this is not a contradiction, because we allow arbitrarily small probabilities of
individual contexts and even continuous distributions, where the probability of any single context
is zero.

On a closer inspection, the first term of our bound in Theorem 9.2 coincides with the lower bound
of Li et al. [146] (up to constants). The second term (optimized over γ) is non-zero only if there
are contexts with small probabilities relative to the number of samples. In multi-armed bandits, we
recover the bound of Li et al. [146]. When the context distribution is continuous, or the probability
of seeing repeated contexts in a data set of size n is small, we get the minimax optimality of
IPS.

One of our key contributions is to highlight this agnostic contextual regime where IPS is optimal.
In the non-contextual regime, where each context appears frequently, the rewards for each
context-action pair can be consistently estimated by empirical averages. Similarly, the asymptotic
results discussed earlier focus on a setting where rewards can be consistently estimated thanks to
parametric assumptions or smoothness (for non-parametric estimation), with the goal of asymptotic
efficiency. Our work complements that line of research. In many practical situations, we wish to
evaluate policies on high-dimensional context spaces, where the consistent estimation of rewards
is not a feasible option. In other words, the agnostic contextual regime dominates.

The distinction between the contextual and non-contextual regime is also present in our proof,
which combines a non-contextual lower bound due to the reward noise, similar to the analysis
of Li et al. [146], and an additional bound arising for non-degenerate context distributions. This
latter result is a key technical novelty of our paper.

Proof sketch: We only sketch some of the main ideas here and defer the full proof to Sec-
tion 9.7.1. For simplicity, we discuss the case where λ is a continuous distribution. We consider
two separate problem instances corresponding to the two terms in Theorem 9.2. The first part
is relatively straightforward and reduces the problem to Gaussian mean estimation. We focus
on the second part which depends on Rmax. Our construction defines a prior over the reward
distributions, D(r | x, a). Given any (x, a), a problem instance is given by

E[r | x, a] = η(x, a) =

{
Rmax(x, a) w.p. θ(x, a),
0 w.p. 1− θ(x, a),

for θ(x, a) to be appropriately chosen. Once η is drawn, we consider a problem instance defined
by η where the rewards are deterministic and the only randomness is in the contexts. In order to
lower bound the MSE across all problems, it suffices to lower bound Eθ[MSEη(v̂)]. That is, we
can compute the MSE of an estimator for each individual η, and take expectation of the MSEs
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under the prior prescribed by θ. If the expectation is large, we know that there is a problem
instance where the estimator incurs a large MSE.

A key insight in our proof is that this expectation can be lower bounded by MSEEθ[η(x,a)](v̂),
corresponding to the MSE of a single problem instance with the actual rewards, rather than
η(x, a), drawn according to θ and with the mean reward function Eθ[η(x, a)]. This is powerful,
since this new problem instance has stochastic rewards, just like Gaussian mean estimation, and
is amenable to standard techniques. The lower bound by MSEEθ[η(x,a)](v̂) is only valid when the
context distribution λ is rich enough (e.g., continuous). In that case, our reasoning shows that
with enough randomness in the context distribution, a problem with even a deterministic reward
function is extremely challenging.

9.4 Incorporating Reward Models

As discussed in the previous section, it is generally possible to beat our minimax bound when
consistent reward models exist. We also argued that even in the absence of a consistent model,
when DR and IPS both achieve optimal risk rates, the performance of DR on finite samples will
be better than IPS as long as the reward model is even moderately good (see Eq. ??). However,
under a large reward noise σ, DR may still suffer from high variance when the importance weights
are large, even when given a perfect reward model. In this section, we derive a class of estimators
that leverage reward models to directly address this source of high variance, in a manner very
different from the standard DR approach.

9.4.1 The SWITCH Estimators

Our starting point is the observation that insistence on maintaining unbiasedness puts the DR
estimator at one extreme end of the bias-variance tradeoff. Prior works have considered ideas
such as truncating the rewards or importance weights when the importance weights are large (see,
e.g., Bottou et al. 37), which can dramatically reduce the variance at the cost of a little bias. We
take the intuition a step further and propose to estimate the rewards for actions by two distinct
strategies, based on whether they have a large or a small importance weight in a given context.
When importance weights are small, we continue to use our favorite unbiased estimators, but
switch to directly applying the (potentially biased) reward model on actions with large importance
weights. Here, “small” and “large” are defined via a threshold parameter τ . Varying this parameter
between 0 and∞ leads to a family of estimators which we call the SWITCH estimators as they
switch between an agnostic approach (such as DR or IPS) and the direct method.

We now formalize this intuition, and begin by decomposing vπ according to importance weights:

Eπ[r] = Eπ[r1(ρ ≤ τ)] + Eπ[r1(ρ > τ)]

= Eµ[ρr1(ρ ≤ τ)] + Ex∼λ
[∑

a∈A

ED[r | x, a] π(a | x)1(ρ(x, a)>τ)
]
.
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Conceptually, we split our problem into two. The first problem always has small importance
weights, so we can use unbiased estimators such as IPS or DR. The second problem, where
importance weights are large, is addressed by DM. Writing this out leads to the following
estimator:

v̂SWITCH =
1

n

n∑

i=1

[riρi1(ρi ≤ τ)] +
1

n

n∑

i=1

∑

a∈A

r̂(xi, a)π(a | xi)1(ρ(xi, a) > τ). (9.5)

Note that the above estimator specifically uses IPS on the first part of the problem. When DR is
used instead of IPS, we refer to the resulting estimator as SWITCH-DR. The reward model used
within the DR part of the SWITCH-DR estimator can be the same or different from the reward
model used to impute rewards in the second part. We next present a bound on the MSE of the
SWITCH estimator using IPS. A similar bound holds for SWITCH-DR.
Theorem 9.4. Let ε(a, x) := r̂(a, x)−E[r|a, x] be the bias of r̂ and assume r̂(x, a) ∈ [0, Rmax(x, a)]
almost surely. Then for v̂SWITCH, with τ > 0, the MSE is at most

2

n

{
Eµ
[(
σ2+R2

max

)
ρ21(ρ≤ τ)

]
+ Eπ

[
R2

max1(ρ> τ)
] }

+ Eπ
[
ε1(ρ> τ)

]2
.

The proposed estimator interpolates between DM and IPS. For τ = 0, SWITCH coincides with
DM, while τ →∞ yields IPS. Consequently, SWITCH estimator is minimax optimal when τ is
appropriately chosen. However, unlike IPS and DR, the SWITCH and SWITCH-DR estimators are
by design more robust to large (or heavy-tailed) importance weights. Several estimators related to
SWITCH have been previously studied:

1. Bottou et al. [37] consider a special case of SWITCH with r̂ ≡ 0, meaning that all the actions
with large importance weights are eliminated from IPS. We refer to this method as Trimmed
IPS.

2. Thomas and Brunskill [218] study an estimator similar to SWITCH in the more general
setting of reinforcement learning. Their MAGIC estimator can be seen as using several
candidate thresholds τ and then evaluating the policy by a weighted sum of the estimators
corresponding to each τ . Similar to our approach of automatically determining τ , they
determine the weighting of estimators via optimization (as we discuss below).

9.4.2 Automatic Parameter Tuning

So far we have discussed the properties of the SWITCH estimators assuming that the parameter τ
is chosen well. Our goal is to obtain the best of IPS and DM, but a poor choice of τ might easily
give us the worst of the two estimators. Therefore, a method for selecting τ plays an essential role.
A natural criterion would be to pick τ that minimizes the MSE of the resulting estimator. Since we
do not know the precise MSE (as vπ is unknown), an alternative is to minimize its data-dependent
estimate. Recalling that the MSE can be written as the sum of variance and squared bias, we
estimate and bound the terms individually.
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Recall that we are working with a data set (xi, ai, ri) and ρi := π(ai | xi)/µ(ai | xi). Using this
data, it is straightforward to estimate the variance of the SWITCH estimator. Let Yi(τ) denote the
estimated value that π obtains on the data point xi according to the SWITCH estimator with the
threshold τ , that is

Yi(τ) := riρi1(ρi≤τ) +
∑

a∈A

r̂(xi, a)π(a | xi)1(ρ(xi, a)>τ),

and Ȳ (τ) := 1
n

∑n
i=1 Yi(τ). Since v̂SWITCH = Ȳ (τ) and the xi are i.i.d., the variance can be

estimated as

Var(Ȳ (τ)) ≈ 1

n2

n∑

i=1

(Yi(τ)− Ȳ (τ))2 =: V̂arτ , (9.6)

where the approximation above is clearly consistent since the random variables Yi are appropriately
bounded as long as the rewards are bounded, because the importance weights are capped at the
threshold τ .

Next we turn to the bias term. For understanding bias, we look at the MSE bound in Theorem 9.4,
and observe that the last term in that theorem is precisely the squared bias. Rather than using
a direct bias estimate, which would require knowledge of the error in r̂, we will upper bound
this term. We assume that the function Rmax(x, a) is known. This is not limiting since in most
practical applications an a priori bound on the rewards is known. Then we can upper bound the
squared bias as

Eπ
[
ε1(ρ > τ)

]2 ≤ Eπ
[
Rmax1(ρ > τ)

]2
.

Replacing the expectation with an average, we obtain

B̂ias
2

τ :=

[
1

n

n∑

i=1

Eπ
[
Rmax1(ρ > τ)

∣∣ xi
]]2

.

With these estimates, we pick the threshold τ̂ by optimizing the sum of estimated variance and the
upper bound on bias,

τ̂ := argmin
τ

V̂arτ + B̂ias
2

τ . (9.7)

Our upper bound on the bias is rather conservative, as it upper bounds the error of DM at the
largest possible value for every data point. This has the effect of favoring the use of the unbiased
part in SWITCH whenever possible, unless the variance would overwhelm even an arbitrarily
biased DM. This conservative choice, however, immediately implies the minimax optimality of
the SWITCH estimator using τ̂ , because the incurred bias is no more than our upper bound, and
it is incurred only when the minimax optimal IPS estimator would be suffering an even larger
variance.

Our automatic tuning is related to the MAGIC estimator of Thomas and Brunskill [218]. The
key differences are that we pick only one threshold τ , while they combine the estimates with
many different τs using a weighting function. They pick this weighting function by optimizing
a bias-variance tradeoff, but with significantly different bias and variance estimators. In our
experiments, the automatic tuning using Eq. (9.7) generally works better than MAGIC.
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9.5 Experiments

We next empirically evaluate the proposed SWITCH estimators on the 10 UCI data sets previously
used for off-policy evaluation [74]. We convert the multi-class classification problem to contextual
bandits by treating the labels as actions for a policy µ, and recording the reward of 1 if the correct
label is chosen, and 0 otherwise.

In addition to this deterministic reward model, we also consider a noisy reward model for each
data set, which reveals the correct reward with probability 0.5 and outputs a random coin toss
otherwise. Theoretically, this should lead to bigger σ2 and larger variance in all estimators. In
both reward models, Rmax ≡ 1 is a valid bound.

The target policy π is the deterministic decision of a logistic regression classifier learned on the
multi-class data, while the logging policy µ samples according to the probability estimates of a
logistic model learned on a covariate-shifted version of the data. The covariate shift is obtained as
in prior work [74, 103].

In each data set with n examples, we treat the uniform distribution over the data set itself as a
surrogate of the population distribution so that we know the ground truth of the rewards. Then, in
the simulator, we randomly draw i.i.d. data sets of size 100, 200, 500, 1000, 2000, 5000, 10000, . . .
until reaching n, with 500 different repetitions of each size. We estimate MSE of each estimator
by taking the empirical average of the squared error over the 500 replicates; note that we can
calculate the squared error exactly, because we know vπ. For some of the methods, e.g., IPS and
DR, the MSE can have a very large variance due to the potentially large importance weights. This
leads to very large error bars if we estimate their MSE even with 500 replicates. To circumvent
this issue, we report a clipped version of the MSE that truncates the squared error to 1, namely
MSE = E[(v̂ − vπ)2 ∧ 1]. This allows us to get valid confidence intervals for our empirical
estimates of this quantity. Note that this does not change the MSE estimate of our approach at
all, but is significantly more favorable towards IPS and DR. In this section, whenever we refer to
“MSE”, we are referring to this truncated version.

We compare SWITCH and SWITCH-DR against the following baselines: 1. IPS; 2. DM trained
via logistic regression; 3. DR; 4. Truncated and Reweighted IPS (TrunIPS); and 5. Trimmed IPS
(TrimIPS).

In DM, we train r̂ and then evaluate the policy on the same contextual bandit data set. Following
Dudík et al. [74], DR is constructed by randomly splitting the contextual bandit data into two
folds, estimating r̂ on one fold, and then evaluating π on the other fold and vice versa, obtaining
two estimates. The final estimate is the average of the two. TrunIPS is a variant of IPS, where
importance weights are capped at a threshold τ and then renormalized to sum to one [see, e.g.,
27]. TrimIPS is a special case of SWITCH due to Bottou et al. [37] described earlier, where
r̂ ≡ 0.

For SWITCH and SWITCH-DR as well as TrunIPS and TrimIPS we select the parameter τ by our
automatic tuning from Section 9.4.2. To evaluate our tuning approach, we also include the results
for the τ tuned optimally in hindsight, which we refer to as the oracle setting, and also show
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Figure 9.1: The number of UCI data sets where each method achieves at least a given Rel. MSE.
On the left, the UCI labels are used as is; on the right, label noise is added. Curves towards
top-left achieve smaller MSE in more cases. Methods in dashed lines are “cheating” by choosing
the threshold τ to optimize test MSE. SWITCH-DR outperforms baselines and our tuning of τ is
not too far from the best possible. Each data set uses an n which is the size of the data set, drawn
via bootstrap sampling and results are averaged over 500 trials.
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Figure 9.2: MSE of different methods as a function of input data size. Top: optdigits data set.
Bottom: yeast data set.
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results obtained by the multi-threshold MAGIC approach. In all these approaches we optimize
among 21 possible thresholds, from an exponential grid between the smallest and the largest
importance weight observed in the data, considering all actions in each observed context.

In order to stay comparable across data sets and data sizes, our performance measure is the relative
MSE with respect to the IPS. Thus, for each estimator v̂, we calculate

Rel. MSE(v̂) =
MSE(v̂)

MSE(v̂IPS)
.

The results are summarized in Figure 9.1, plotting the number of data sets where each method
achieves at least a given relative MSE.4 Thus, methods that achieve smaller MSE across more data
sets are towards the top-left corner of the plot, and a larger area under the curve indicates better
performance. Some of the differences in MSE are several orders of magnitude large since the
relative MSE is shown on the logaritmic scale. As we see, SWITCH-DR dominates all baselines
and our empirical tuning of τ is not too far from the best possible. The automatic tuning by
MAGIC tends to revert to DM, because its bias estimate is too optimistic and so DM is preferred
whenever IPS or DR have some significant variance. The gains of SWITCH-DR are even greater
in the noisy-reward setting, where we add label noise to UCI data.

In Figure 9.2, we illustrate the convergence of MSE as n increases. We select two data sets
and show how SWITCH-DR performs against baselines in two typical cases: (i) when the direct
method works well initially but is outperformed by IPS and DR as n gets large, and (ii) when
the direct method works poorly. In the first case, SWITCH-DR outperforms both DM and IPS,
while DR improves over IPS only moderately. In the second case, SWITCH-DR performs about
as well as IPS and DR despite a poor performance of DM. In all cases, SWITCH-DR is robust
to additional noise in the reward, while IPS and DR suffer from higher variance. Results for the
remaining data sets are in Section 9.8.

9.6 Conclusion

In this chapter we have carried out minimax analysis of off-policy evaluation in contextual bandits
and showed that IPS and DR are minimax optimal in the worst-case, when no consistent reward
model is available. This result complements existing asymptotic theory with assumptions on
reward models, and highlights the differences between agnostic and consistent settings. Practically,
the result further motivates the importance of using side information, possibly by modeling rewards
directly, especially when importance weights are too large. Given this observation, we propose a
new class of estimators called SWITCH that can be used to combine any importance weighting
estimators, including IPS and DR, with DM. The estimators adaptively switch between DM
when the importance weights are large and either IPS or DR when the importance weights are
small. We show that the new estimators have favorable theoretical properties and also work

4For clarity, we have excluded SWITCH, which significantly outperforms IPS, but is dominated by SWITCH-DR.
Similarly, we only report the better of oracle-TrimIPS and oracle-TrunIPS.
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well on real-world data. Many interesting directions remain open for future work, including
high-probability upper bounds on the finite-sample MSE of SWITCH estimators, as well as sharper
finite-sample lower bounds under realistic assumptions on the reward model.

9.7 Proofs

The proof is organized as follows. In Section 9.7.1, 9.7.2 and 9.7.3, we provide detailed proofs
of the theoretical results in the paper. In Section 9.8, we provide additional figures for the
experiments described in Section 9.5.

9.7.1 Proof of Theorem 9.2

In this section we prove the minimax bound of Theorem 9.2. The result is obtained by combining
the following two lower bounds:
Theorem 9.5 (Lower bound 1). For each problem instance such that Eµ[ρ2σ2] <∞, we have

Rn(π;λ, µ, σ,Rmax) ≥ Eµ[ρ2σ2]

32en


1−

Eµ
[
ρ2σ21

(
ρσ2 > Rmax

√
nEµ[ρ2σ2]/2

)]

Eµ[ρ2σ2]




2

.

Theorem 9.6 (Lower bound 2). Assume that Eµ[ρ2R2
max] <∞, and we are given γ ∈ [0, 1] and

δ ∈ (0, 1]. Write ξ := ξγ and γ′ := max{γ, δ}. Then there exist functions R̂(x, a) and ρ̂(x, a)
such that

R̂2(x, a) ≤ R2
max(x, a) ≤ (1 + δ)R̂2(x, a) , ρ̂2(x, a) ≤ ρ2(x, a) ≤ (1 + δ)ρ̂2(x, a)

and the following lower bound holds:

Rn(π;λ, µ, σ,Rmax)

≥ Eµ[ξρ̂2R̂2]

32en


1−

Eµ
[
ξρ̂2R̂21

(
ξρ̂R̂ >

√
nEµ[ξρ̂2R̂2]/16

)]

Eµ[ξρ̂2R̂2]




2

−γ′ log
(
5/γ′

)
(1+δ)Eµ[ξρ̂2R̂2] .

The reason for introducing γ′ in Theorem 9.6 is to allow γ = 0, which is an important special
case of the theorem. Otherwise, we could just assume 0 < δ ≤ γ. The first bound captures the
intrinsic difficulty due to the variance of reward, and is present even in a vanilla multi-armed
bandit problem without contexts. The second result shows the additional dependence on R2

max,
even when σ ≡ 0, whenever the distribution λ is not too degenerate, and captures the additional
difficulty of the contextual bandit problem. We next show how these two lower bounds yield
Theorem 9.2 and then return to their proofs.
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Proof of Theorem 9.2. Throughout the theorem we write ξ := ξγ . We begin by simplifying the two
lower bounds. Assume that Assumption 9.1 holds with ε. This also means that Eµ[ξ(ρRmax)2+ε]
is finite as well as Eµ[ξ(ρRmax)2] is finite and either both of them are zero or both of them are
non-zero. Similarly, Eµ[(ρσ)2+ε] and Eµ[(ρσ)2] are both finite and either both of them are zero
or both of them are non-zero, so Cγ is a finite constant. Let p = 1 + ε/2 and q = 1 + 2/ε, i.e.,
1/p+ 1/q = 1. Further, let R̂ and ρ̂ be the functions from Theorem 9.6. Then the definition of Cγ
means that

C1/(εq)
γ = C1/(2+ε)

γ = 2 ·max




Eµ
[
ξ(ρ2R2

max)
2+ε

2

] 2
2+ε

Eµ
[
ξρ2R2

max

] ,
Eµ
[
(ρ2σ2)

2+ε
2

] 2
2+ε

Eµ
[
ρ2σ2

]





= 2 ·max

{
Eµ
[
ξ(ρ2R2

max)p
]1/p

Eµ
[
ξρ2R2

max

] ,
Eµ
[
(ρ2σ2)p

]1/p

Eµ
[
ρ2σ2

]
}

≥ 2 ·max

{
Eµ
[
ξ(ρ̂2R̂2)p

]1/p

Eµ
[
ξρ2R2

max

] ,
Eµ
[
(ρ2σ2)p

]1/p

Eµ
[
ρ2σ2

]
}

, (9.8)

and recall that we assume that

n ≥ max
{

16C1/ε
γ , 2C2/ε

γ Eµ[σ2/R2
max]

}
. (9.9)

First, we simplify the correction term in the lower bound of Theorem 9.5. Using Hölder’s
inequality and Eq. (9.8), we have

Eµ
[
ρ2σ21

(
ρσ2 > Rmax

√
nEµ[ρ2σ2]/2

)]

≤ Eµ
[(
ρ2σ2

)p]1/p

· Pµ
[
ρσ2 > Rmax

√
nEµ[ρ2σ2]/2

]1/q

≤ 1

2
Eµ[ρ2σ2] · C1/(εq)

γ · Pµ
[
ρσ2/Rmax >

√
nEµ[ρ2σ2]/2

]1/q

.

We further invoke Markov’s inequality, Cauchy-Schwartz inequality, and Eq. (9.9) in the following
three steps to simplify this event as

≤ 1

2
Eµ[ρ2σ2] · C1/(εq)

γ ·
(
Eµ
[
ρσ · (σ/Rmax)

]
√
nEµ[ρ2σ2]/2

)1/q

≤ 1

2
Eµ[ρ2σ2] · C1/(εq)

γ ·
(√

Eµ[ρ2σ2] ·
√

Eµ[σ2/R2
max]√

nEµ[ρ2σ2]/2

)1/q

=
1

2
Eµ[ρ2σ2] ·

(
C2/ε
γ ·

2Eµ[σ2/R2
max]

n

)1/2q

≤ 1

2
Eµ[ρ2σ2] . (9.10)

233



For the correction term in Theorem 9.6, we similarly have

Eµ
[
ξρ̂2R̂21

(
ξρ̂R̂ >

√
nEµ[ξρ̂2R̂2]/16

)]

≤ Eµ
[(
ξρ̂2R̂2

)p]1/p

· Pµ
[
ξρ̂R̂ >

√
nEµ[ξρ̂2R̂2]/16

]1/q

≤ 1

2
Eµ[ξρ2R2

max] · C1/(εq)
γ · Pµ

[
ξρ̂2R̂2 > nEµ[ξρ̂2R̂2]/16

]1/q

,

so that Markov’s inequality and Eq. (9.9) further yield

≤ 1

2
Eµ[ξρ2R2

max] · C1/(εq)
γ ·

(
Eµ[ξρ̂2R̂2]

nEµ[ξρ̂2R̂2]/16

)1/q

=
1

2
Eµ[ξρ2R2

max] ·
(
C1/ε
γ ·

16

n

)1/q

≤ 1

2
Eµ[ξρ2R2

max] ≤ (1 + δ)2

2
Eµ[ξρ̂2R̂2] . (9.11)

Using Eq. (9.10), the bound of Theorem 9.5 simplifies as

Rn(π;λ, µ, σ,Rmax)

≥ Eµ[ρ2σ2]

32en


1−
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[
ρ2σ21

(
ρσ2 > Rmax

√
nEµ[ρ2σ2]/2

)]

Eµ[ρ2σ2]




2

≥ Eµ[ρ2σ2]

32en

(
1− 1

2

)2

=
Eµ[ρ2σ2]

128en
. (9.12)

Similarly, by Eq. (9.11), Theorem 9.6 simplifies as

Rn(π;λ, µ, σ,Rmax)

≥ Eµ[ξρ̂2R̂2]
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ξρ̂2R̂21

(
ξρ̂R̂ >

√
nEµ[ξρ̂2R̂2]/16

)]

Eµ[ξρ̂2R̂2]




2

− γ′ log(5/γ′)(1 + δ)Eµ[ξρ̂2R̂2]

≥ Eµ[ξρ̂2R̂2]
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− γ′ log(5/γ′)(1 + δ)Eµ[ξρ̂2R̂2]
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Eµ[ξρ̂2R̂2]

128en

(
1− 2δ − δ2

)2 − γ′ log(5/γ′)(1 + δ)Eµ[ξρ̂2R̂2]

≥ Eµ[ξρ2R2
max]

128en

(
1− 2δ − δ2

)2

(1 + δ)2
− γ′ log(5/γ′)(1 + δ)Eµ[ξρ2R2

max] .

Since this bound is valid for all δ > 0, taking δ → 0, we obtain

Rn(π;λ, µ, σ,Rmax) ≥ Eµ[ξρ2R2
max]

128en
− γ log(5/γ)Eµ[ξρ2R2

max] .
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Combining this bound with Eq. (9.12) yields

Rn(π;λ, µ, σ,Rmax)

≥ 1

2
· Eµ[ρ2σ2]

128en
+

1

2
· Eµ[ξρ2R2

max]

128en
− 1

2
· γ log(5/γ)Eµ[ξρ2R2

max]

≥ Eµ[ρ2σ2]

700n
+

Eµ[ξρ2R2
max]

700n
− 1

2
· γ log(5/γ)Eµ[ξρ2R2

max]

=
1

700n

[
Eµ[ρ2σ2] + Eµ[ξρ2R2

max]
(

1− 350nγ log(5/γ)
)]

.

It remains to prove Theorems 9.5 and 9.6. They are both proved by a reduction to hypothesis
testing, and invoke Le Cam’s argument to lower-bound the error in this testing problem. As in
most arguments of this nature, the key contribution lies in the construction of an appropriate
testing problem that leads to the desired lower bounds. Before proving the theorems, we recall the
basic result of Le Cam which underlies our proofs. We point the reader to the excellent exposition
of Lafferty et al. [136, Section 36.4] on more details about Le Cam’s argument.
Theorem 9.7 (Le Cam’s method, [136, Theorem 36.8]). Let P be a set of distributions, let
X1, . . . , Xn be an i.i.d. sample from some P ∈ P , let θ(P ) be any function of P ∈ P , let
θ̂(X1, . . . , Xn) be an estimator, and d be a metric. For any pair P0, P1 ∈ P ,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ ∆

8
e−nDKL(P0‖P1) (9.13)

where ∆ = d(θ(P0), θ(P1)), and DKL(P0‖P1) =
∫

log(dP0/dP1)dP0 is the KL-divergence.

While the proofs of the two theorems share a lot of similarities, they have to use reductions to
slightly different testing problems given the different mean and variance constraints in the two
results. We begin with the proof of Theorem 9.5, which has a simpler construction.

Proof of Theorem 9.5

The basic idea of this proof is to reduce the problem of policy evaluation to that of Gaussian
mean estimation where there is a mean associated with each x, a pair. We now describe our
construction.

Creating a family of problems Since we aim to show a lower bound on the hardness of policy
evaluation in general, it suffices to show a particular family of hard problem instances, such
that every estimator requires the stated number of samples on at least one of the problems in
this family. Recall that our minimax setup assumes that π, µ and λ are fixed and the only
aspect of the problem which we can design is the conditional reward distribution D(r | x, a).
For Theorem 9.5, this choice is further constrained to satisfy E[r | x, a] ≤ Rmax(x, a) and
Var(r | x, a) ≤ σ2(x, a). In order to describe our construction, it will be convenient to define the
shorthand E[r | x, a] = η(x, a). We will identify a problem in our family with the function η(x, a)
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as that will be the only changing element in our problems. For a chosen η, the policy evaluation
question boils down to estimating vπη = E[r(x, a)], where the contexts x are chosen according to
λ, actions are drawn from π(x, a) and the reward distribution Dη(r | x, a) is a normal distribution
with mean η(x, a) and variance σ2(x, a)

Dη(r | x, a) = N (η(x, a), σ2(x, a)).

Clearly this choice meets the variance constraint by construction, and satisfies the upper bound so
long as η(x, a) ≤ Rmax(x, a) almost surely. Since the evaluation policy π is fixed throughout, we
will drop the superscript and use vη to denote vπη in the remainder of the proofs. With some abuse
of notation, we also use Eη[·] to denote expectations where contexts and actions are drawn based
on the fixed choices λ and µ corresponding to our data generating distribution, and the rewards
drawn from η. We further use Pη to denote this entire joint distribution over (x, a, r) triples.

Given this family of problem instances, it is easy to see that for any pair of η1, η2 which are both
pointwise upper bounded by Rmax, we have the lower bound:

Rn(λ, π, µ, σ2, Rmax) ≥ inf
v̂

max
η∈η1,η2

Eη
[

(v̂ − vη)2

︸ ︷︷ ︸
`η(v̂)

]
,

where we have introduced the shorthand `η(v̂) to denote the squared error of v̂ to vη. For a
parameter ε > 0 to be chosen later, we can further lower bound this risk for a fixed v̂ as

Rn(v̂) ≥ max
η∈η1,η2

Eη[`η(v̂)] ≥ max
η∈η1,η2

εPη(`η ≥ ε)

≥ ε

2

[
Pη1(`η1(v̂) ≥ ε) + Pη2(`η2(v̂) ≥ ε)

]
, (9.14)

where the last inequality lower bounds the maximum by the average. So far we have been
working with an estimation problem. We next describe how to reduce this to a hypothesis testing
problem.

Reduction to hypothesis testing For turning our estimation problem into a testing problem,
the idea is to identify a pair η1, η2 such that they are far enough from each other so that any
estimator which gets a small estimation loss can essentially identify whether the data generating
distribution corresponds to Pη1 or Pη2 . In order to do this, we take any estimator v̂ and identify
a corresponding test statistic which maps v̂ into one of η1, η2. The way to do this is essentially
identified in Eq. (9.14), and we describe it next.

Note that since we are constructing a hypothesis test for a specific pair of distributions Pη1 and
Pη2 , it is reasonable to consider test statistics which have knowledge of η1 and η2, and hence the
corresponding distributions. Consequently, these tests also know the true policy values vη1 and
vη2 and the only uncertainty is which of them gave rise to the observed data samples. Therefore,
for any estimator v̂, we can a associate a statistic φ(v̂) = argminη {`η1(v̂), `η2(v̂)}.
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Given this hypothesis test, we are interested in its error rate Pη(φ(v̂) 6= η). We first relate the
estimation error of v̂ to the error rate of the test. Suppose for now that

`η1(v̂) + `η1(v̂) ≥ 2ε, (9.15)

so that at least one of the losses is at least ε. Suppose that the data comes from η1. Then if
`η1(v̂) < ε, we know that the test is correct, because by Eq. (9.15) the other loss is greater than
ε, and therefore φ(v̂) = η1. This means that the error under η1 can only occur if `η1(v̂) ≥ ε.
Similarly, the error under η2 can only occur if `η2(v̂) ≥ ε, so the test error can be bounded as

max
η∈η1,η2

Pη(φ(v̂) 6= η) ≤ Pη1(φ(v̂) 6= η1) + Pη2(φ(v̂) 6= η2)

≤ Pη1(`η1(v̂) ≥ ε) + Pη2(`η2(v̂) ≥ ε)

≤ 2

ε
Rn(v̂), (9.16)

where the final inequality uses our earlier lower bound in Eq. (9.14).

To finish connecting our the estimation problem to testing, it remains to establish our earlier
supposition (9.15). Assume for now that η1 and η2 are chosen such that

(vη1 − vη2)2 ≥ 4ε. (9.17)

Then an application of the inequality (a+ b)2 ≤ 2a2 + 2b2 yields

4ε ≤ (vη1 − vη2)2 ≤ 2(v̂ − vη1)2 + 2(v̂ − vη2)2 = 2`η1(v̂) + 2`η2(v̂),

which yields the posited bound (9.14).

Invoking Le Cam’s argument So far we have identified a hypothesis testing problem and a
test statistic whose error is upper bounded in terms of the minimax risk of our problem. In order to
complete the proof, we now place a lower bound on the error of this test statistic. Recall the result
of Le Cam (9.13), which places an upper bound on the attainable error in any testing problem. In
our setting, this translates to

max
η∈η1,η2

Pη(φ(v̂) 6= η) ≥ 1

8
e−nDKL(Pη1 || Pη2 ).

Since the distribution of the rewards is a spherical Gaussian, the KL-divergence is given by the
squared distance between the means, scaled by the variance, that is

DKL(Pη1 || Pη2) = E
[

(η1(x, a)− η2(x, a))2

2σ2(x, a)

]
,

where we recall that the contexts and actions are drawn from λ and µ respectively. Since we
would like the probability of error in the test to be a constant, it suffices to choose η1 and η2 such
that

E
[

(η1(x, a)− η2(x, a))2

2σ2(x, a)

]
≤ 1

n
. (9.18)

237



Picking the parameters So far, we have not made any concrete choices for η1 and η2, apart
from some constraints which we have introduced along the way. Note that we have the constraints
(9.17) and (9.18) which try to ensure that η1 and η2 are not too close that an estimator does not
have to identify the true parameter, or too far that the testing problem becomes trivial. Additionally,
we have the upper and lower bounds of 0 and Rmax on η1 and η2. In order to reason about these
constraints, it is convenient to set η2 ≡ 0, and pick η1(x, a) = η1(x, a)− η2(x, a) = ∆(x, a). We
now write all our constraints in terms of ∆.

Note that vη2 is now 0, so that the first constraint (9.17) is equivalent to

vη1 = Eη1 [ρ(x, a)r(x, a)] = E∆[ρ(x, a)r(x, a)] ≥ 2
√
ε,

where the importance weighting function ρ is introduced since Pη1 is based on choosing actions ac-
cording to µ and we seek to evaluate π. The second constraint (9.18) is also straightforward

E
[

∆2

2σ2

]
≤ 1

n
.

Finally, the bound Rmax and non-negativity of η1 and η2 are enforced by requiring 0 ≤ ∆(x, a) ≤
Rmax(x, a) almost surely.

The minimax lower bound is then obtained by the largest ε in the constraint (9.17) such that the
other two constraints can be satisfied. This gives rise to the following variational characterization
of the minimax lower bound:

max
∆

ε

such that E∆[ρ(x, a)r(x, a)] ≥ 2
√
ε, (9.19)

E
[

∆2

2σ2

]
≤ 1

n
, (9.20)

0 ≤ ∆(x, a) ≤ Rmax(x, a). (9.21)

Instead of finding the optimal solution, we just exhibit a feasible setting of ∆ here. We set

∆ = min

{
ασ2ρ

Eµ[ρ2σ2]
, Rmax

}
, where α =

√
2Eµ[ρ2σ2]

n
. (9.22)

This setting satisfies the bounds (9.21) by construction. A quick substitution also verifies that
the constraint (9.20) is satisfied. Consequently, it suffices to set ε to the value attained in the
constraint (9.19). Substituting the value of ∆ in the constraint, we see that

E∆[ρ(x, a)r(x, a)] = Ex∼λ,a∼µ[ρ(x, a)∆(x, a)]

≥ Ex∼λ,a∼µ
[
ρ

ασ2ρ

Eµ[ρ2σ2]
1
(
ρσ2α ≤ RmaxEµ[ρ2σ2]

)]

= α

(
1− Eµ

[
ρ2σ21

(
ρσ2α > RmaxEµ[ρ2σ2]

)]

Eµ[ρ2σ2]

)

=: 2
√
ε.
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Putting all the foregoing bounds together, we obtain that for all estimators v̂

Rn(v̂) ≥ ε

2
·
(

max
η∈η1,η2

Pη(φ(v̂) 6= η)
)

≥ ε

2
· 1

8
e−nDKL(Pη1 || Pη2 )
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2
· 1

8e
=
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16e

=
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16e
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2

4

(
1− Eµ
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Eµ[ρ2σ2]
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2

.

Proof of Theorem 9.6

We now give the proof of Theorem 9.6. While it shares a lot of reasoning with the proof of
Theorem 9.5, it has one crucial difference. In Theorem 9.5, there is a non-trivial noise in the
reward function, unlike in Theorem 9.6. This allowed the proof to work with just two candidate
mean-reward functions, since any realization in the data is corrupted with noise. However, in the
absence of added noise, the task of mean identification becomes rather trivial: an estimator can
just check whether η1 or η2 matches the observations exactly.

To prevent such a strategy, we instead construct a richer family of reward functions. Instead of
merely two mean rewards, our construction will involve a randomized design of the expected
reward function from an appropriate prior distribution. The draw of the mean reward from a prior
will essentially generate noise even though any given problem is noiseless. The construction will
also highlight the crucial sources of difference between the contextual and multi-armed bandit
problems, since the arguments here rely on having access to a rich context distribution, by which
we mean distribution that puts non-trivial probability on many contexts. In the absence of this
property, the bound of Theorem 9.6 becomes weaker.

Creating a family of problems Our family of problems will be parametrized by the two reals
δ and γ from the statement of the theorem. Our construction begins with a discretization step at
the resolution δ, whose goal is to create a countable partition of the set of pairs X ×A. If sets
X and A are countable or finite, this step is vacuous, but if the sets of contexts or actions have
continuous parts, this step is required.

First, let µ(x, a) denote the joint probability measure obtained by first drawing x ∼ λ and then
a ∼ µ(· | x). In Lemma 9.8, we show that X ×A can be split into countably many disjoint sets
Bi,
⊎
i∈I Bi = X ×A, such that the following conditions are satisfied:
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• Each i ∈ I is associated with numbers Ri ≥ 0, ρi ≥ 0 and ξi ∈ {0, 1} such that

R2
max(x, a) ∈ [R2

i , (1+δ)R2
i ] , ρ2(x, a) ∈ [ρ2

i , (1+δ)ρ2
i ] , ξγ(x, a) = ξi for all (x, a) ∈ Bi.

• Each Bi either satisfies µ(Bi) ≤ δ or consists of a single pair (xi, ai).

The numbers Ri and ρi will be exactly R̂(x, a) and ρ̂(x, a) from the theorem statement.

As before, we parametrize the family of reward distributions in terms of the mean reward function
η(x, a). However, now η(x, a) is itself a random variable, which is drawn from a prior distribution.
The reward function η(x, a) will be constant on each Bi, and its value on Bi, written as η(i), will
be drawn from a scaled Bernoulli, parametrized by a prior function θ(i) as follows:

η(i) =

{
ξiRi with probability θ(i),

0 with probability 1− θ(i). (9.23)

We now set Dη(r | x, a) = η(i) whenever (x, a) ∈ Bi. This clearly satisfies the constraints on
the mean since 0 ≤ E[r | x, a] ≤ Ri ≤ Rmax(x, a) from the property of the partition, and also
Var(r | x, a) = 0 as per the setting of Theorem 9.6. The goal of an estimator is to take n samples
generated by drawing x ∼ λ, a | x ∼ µ and r | x, a ∼ Dη, and output an estimate v̂ such that
Eη[(v̂ − vπη )2] is small. We recall our earlier shorthand vη to denote the value of π under the
reward distribution generated by η. For showing a lower bound on this quantity, it is clearly
sufficient to pick any prior distribution governed by a parameter θ, as in Eq. (9.23), and lower
bound the expectation Eθ [Eη[(v̂ − vη)2 | η]]. If this expectation is large for some estimator v̂, then
there must be some realization η, which induces a large error least one function η(x, a) which
induces a large error Eη[(v̂ − vη)2 | η], as desired. Consequently, we focus in the proof on lower
bounding the expectation Eθ[·]. This expectation can be decomposed with the use of the inequality
a2 ≥ (a+ b)2/2− b2 as follows:

Eθ
[
Eη[(v̂ − vη)2 | η]

]
≥ 1

2
Eθ
[
Eη[(v̂ − Eθ[vη])2 | η]

]
− Eθ

[
(vη − Eθ[vη])2

]
.

Taking the worst case over all problems in the above inequality, we obtain

sup
η

Eη[(v̂ − vη)2] ≥ sup
θ

Eθ
[
Eη[(v̂ − vη)2 | η]

]

≥ sup
θ

1

2
Eθ
[
Eη[(v̂ − Eθ[vη])2 | η]

]

︸ ︷︷ ︸
T1

− sup
θ

Eθ
[
(vη − Eθ[vη])2

]

︸ ︷︷ ︸
T2

. (9.24)

This decomposition says that the expected MSE of an estimator in estimating vη can be related
to the MSE of the same estimator in estimating the quantity Eθ[vη], as long as the variance of
the quantity vη under the distribution generated by θ is not too large. This is a very important
observation, since we can now choose to instead study the MSE of an estimator in estimating
Eθ[vη] as captured by T1. Unlike the distribution Dη which is degenerate, this problem has a
non-trivial noise arising from the randomized draw of η according to θ. Thus we can use similar
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techniques as the proof of Theorem 9.5, albeit where the reward distribution is a scaled Bernoulli
instead of Gaussian. For now, we focus on controlling T1, and T2 will be handled later.

In order to bound T1, we will consider two carefully designed choices θ1 and θ2 to induce
two different problem instances and show that T1 is large for any estimator under one of the
two parameters. In doing this, it will be convenient to use the additional shorthand `θ(v̂) =
(v̂ − Eθ[vη])2. Proceeding as in the proof of Theorem 9.5, we have

T1 =
1

2
sup
θ

Eθ
[
Eη[(v̂ − Eθ[vη])2 | η]

]
=

1

2
sup
θ

Eθ
[
Eη[`θ(v̂) | η]

]

≥ ε

2
sup
θ

Pθ (`θ(v̂) ≥ ε) ≥ ε

2
max
θ∈θ1,θ2

Pθ (`θ(v̂) ≥ ε)

≥ ε

4

[
Pθ1 (`θ1(v̂) ≥ ε) + Pθ2 (`θ2(v̂) ≥ ε)

]
.

Reduction to hypothesis testing As in the proof of Theorem 9.5, we now reduce the estimation
problem into a hypothesis test for whether the data is generated according to the parameter θ1 or θ2.
The arguments here are similar to the earlier proof, so we will be terser in this presentation.

As before, our hypothesis test has entire knowledge of Dη as well as θ1 and θ2. Consequently,
we construct a test based on picking θ1 whenever `θ1(v̂) ≤ `θ2(v̂). As before, we will ensure that
|Eθ1 [vη]− Eθ2 [vη]| ≥ 2

√
ε so that for any estimator v̂, we have

`θ1(v̂) + `θ2(v̂) ≥ 2ε.

Under this assumption, we can similarly conclude that the error of our hypothesis test is at
most

Pθ1 (`θ1(v̂) ≥ ε) + Pθ2 (`θ2(v̂) ≥ ε) .

Invoking Le Cam’s argument Once again, we can lower bound the error rate of our test by
invoking the result of Le Cam. This requires an upper bound on the KL-divergence DKL(Pθ1‖Pθ2).
The only difference from our earlier argument is that these distributions are now Bernoulli instead
of Gaussian, based on the construction in Eq. (9.23). More formally, we have

DKL(Pθ1‖Pθ2) =
∑

i∈I

∑

r∈{0,xiiRi}

log

(
p(r; θ1(i))

p(r; θ2(i))

)
p(r; θ1(i))µ(Bi)

= Eµ
[
ξiDKL

(
Ber(θ1(i))

∥∥ Ber(θ2(i))
) ]
, (9.25)

where i is treated as a random variable under µ, and ξi is included, because the two distributions
assign r = 0 with probability one if ξi = 0.
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Picking the parameters It remains to carefully choose θ1 and θ2. We define θ2(i) ≡ 0.5, and
let θ1(i) = θ2(i) + ∆i, where ∆i will be chosen to satisfy certain constraints as before. Then, by
Lemma 9.10, the KL divergence in Eq. (9.25) can be bounded as

DKL(Pθ1‖Pθ2) ≤ 1

4
Eµ
[
ξi∆

2
i

]
.

It remains to choose ∆i. Following a similar logic as before, we seek to find a good feasible
solution of the maximization problem

max
∆

ε

such that Eµ
[
ρ(x, a)ξi∆iRi

]
≥ 2
√
ε, (9.26)

1

4
Eµ
[
ξi∆

2
i

]
≤ 1

n
, (9.27)

0 ≤ ∆i ≤ 0.5. (9.28)

For some α > 0 to be determined shortly, we set

∆i = min

{
ξiρiRiα

Eµ[ξiρ2
iR

2
i ]
, 0.5

}
.

The bound constraint (9.28) is satisfied by construction and we set α =
√

4Eµ[ξiρ2
iR

2
i ]/n to

satisfy the constraint (9.27). To obtain a feasible choice of ε, we bound Eµ[ρ(x, a)ξi∆iRi] as
follows:

Eµ
[
ρ(x, a)ξi∆iRi

]
≥ Eµ

[
ξiρi∆iRi

]

≥ Eµ

[
ξiρ

2
iR

2
iα1

(
ξiρiRi ≤ Eµ[ξiρ

2
iR

2
i ]/2α

)

Eµ[ξiρ2
iR

2
i ]

]

= α

(
1− Eµ [ξiρ

2
iR

2
i1(ξiρiRi > Eµ[ξiρ

2
iR

2
i ]/2α)]

Eµ[ξiρ2
iR

2
i ]

)

=: 2
√
ε.

Collecting our arguments so far, we have established that

T1 ≥
ε

4
·
(
Pθ1 (`θ1(v̂) ≥ ε) + Pθ2 (`θ2(v̂) ≥ ε)

)

≥ ε

4
· 1

8
e−nDKL(Pθ1‖Pθ2 )

≥ ε

4
· 1

8e
=

ε

32e

=
1

32e
· α

2

4

(
1− Eµ [ξiρ

2
iR

2
i1(ξiρiRi > Eµ[ξiρ

2
iR

2
i ]/2α)]

Eµ[ξiρ2
iR

2
i ]

)2

=
Eµ[ξiρ

2
iR

2
i ]

32en


1−

Eµ
[
ξiρ

2
iR

2
i1
(
ξiρiRi >

√
nEµ[ξiρ2

iR
2
i ]/16

)]

Eµ[ξiρ2
iR

2
i ]




2

.

In order to complete the proof, we need to further upper bound T2 in the decomposition (9.24).
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Bounding T2 We need to bound the supremum over all priors θ. Consider an arbitrary prior
θ and assume that η is drawn according to Eq. (9.23). To bound Eθ

[
(vη − Eθ[vη])2

]
, we view

(vη − Eθ[vη])2 as a random variable under θ and bound it using Hoeffding’s inequality.

We begin by bounding its range. From the definition of η and vη,

0 ≤ vη ≤ Eπ[ξiRi] = Eµ[ρ(x, a)ξiRi] ≤ (1 + δ)1/2Eµ[ξiρiRi] ,

so also 0 ≤ Eθ[vη] ≤ (1 + δ)1/2Eµ[ξiρiRi]. Hence, |vη − Eθ[vη]| ≤ (1 + δ)1/2Eµ[ξiρiRi], and we
obtain the bound

(vη − Eθ[vη])2 ≤ (1 + δ)(Eµ[ξiρiRi])
2 ≤ (1 + δ)Eµ[ξiρ

2
iR

2
i ]. (9.29)

The proof proceeds by applying Hoeffding’s inequality to control the probability that (vη −
Eθ[vη])2 ≥ t2 for a suitable t. Then we can, with high probability, use the bound (vη −Eθ[vη])2 ≥
t2, and with the remaining small probability apply the bound of Eq. (9.29).

To apply Hoeffding’s inequality, we write vη explicitly as

vη =
∑

i∈I

µ(Bi)ρ
′
iηi =:

∑

i∈I

Yi

where ρ′i := Eµ[ρ(x, a) | (x, a) ∈ Bi]. Thus, vη can be written as a sum of countably many
independent variables, but we can only apply Hoeffding’s inequality to their finite subset. Note
that the variables Yi are non-negative and upper-bounded by a summable series, namely Yi ≤
µ(Bi)ρ

′
iRi, where the summability follows because Eµ[ρRmax] ≤ 1 + Eµ[ρ2R2

max] < ∞. This
means that for any δ0 > 0, we can choose a finite set I0 such that

∑
i 6∈I0 Yi ≤ δ0. We will

determine the sufficiently small value of δ0 later; for now, consider the corresponding set I0 and
define an auxiliary variable

v′η :=
∑

i∈I0

Yi ,

which by construction satisfies v′η ≤ vη ≤ v′η + δ0. Note that the summands Yi can be bounded
as

0 ≤ Yi ≤ ξiρ
′
iRiµ(Bi) ≤ ξi(1 + δ)1/2ρiRi

√
µ(Bi)

√
γ′

because ρ′i ≤ (1 + δ)1/2ρi and ξiµ(Bi) ≤ ξi
√
µ(Bi)

√
γ′, because ξi = 0 whenever µ(Bi) >

max{γ, δ} = γ′. By Hoeffding’s inequality, we thus have

P(|v′η − Eθv′η| ≥ t) ≤ 2 exp

{
− 2t2

(1 + δ)
∑

i∈I0 ξiρ
2
iR

2
iµ(Bi)γ′

}

≤ 2 exp

{
− 2t2

(1 + δ)γ′Eµ[ξiρ2
iR

2
i ]

}
.

Now take t =
√
γ′ log(4/γ′)(1 + δ)Eµ[ξiρ2

iR
2
i ]/2 in the above bound, which yields

P
[
(v′η − Eθv′η)2 ≥ t2

]
= P

[
|v′η − Eθv′η| ≥ t

]
≤ γ′

2
.
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Now, we can go back to analyzing vη. We set δ0 sufficiently small, so

t+ δ0 ≤
√
γ′ log(5/γ′)(1 + δ)Eµ[ξiρ2

iR
2
i ]/2.

Thus, using Eq. (9.29), we have

Eθ
[
(vη − Eθvη)2

]
≤ (t+ δ0)2 · P

[
(vη − Eθvη)2 < (t+ δ0)2

]

+ (1 + δ)Eµ[ξiρ
2
iR

2
i ] · P

[
(vη − Eθvη)2 ≥ (t+ δ0)2

]

≤ (t+ δ0)2 + (1 + δ)Eµ[ξiρ
2
iR

2
i ] · P

[
(v′η − Eθv′η)2 ≥ t2

]

=
γ′ log(5/γ′)(1 + δ)Eµ[ξiρ

2
iR

2
i ]

2
+ (1 + δ)Eµ[ξiρ

2
iR

2
i ] ·

γ′

2
≤ γ′ log(5/γ′)(1 + δ)Eµ[ξiρ

2
iR

2
i ] .

Combining this bound with the bound on T1 yields the theorem.
Lemma 9.8. Let Z := X ×A be a subset of Rd, let µ be a probability measure on Z and Rmax

and ρ be non-negative measurable functions on Z . Given γ ∈ [0, 1], define a random variable
ξγ(z) := 1(µ(z) ≤ γ). Then for any δ ∈ (0, 1], there exists a countable index set I and disjoint
setsBi ⊆ Z alongside non-negative realsRi, ρi and ξi ∈ {0, 1} such that the following conditions
hold:

• Sets Bi form a partition of Z , i.e., Z = ]i∈IBi.
• Reals Ri and ρi approximate Rmax and ρ, and ξi equals ξγ as follows:

R2
max(z) ∈ [R2

i , (1 + δ)R2
i ] , ρ2(z) ∈ [ρ2

i , (1 + δ)ρ2
i ] , ξγ(z) = ξi for all z ∈ Bi.

• Each set Bi either satisfies µ(Bi) ≤ δ or consists of a single z ∈ Z .

Proof. Let Z := X ×A. We begin our construction by separating out atoms, i.e., the elements
z ∈ Z such that µ(z) > 0. Specifically, we write Z = Zna ] Za where Za consists of atoms and
Zna of all non-atoms. The set Za is either finite or countably infinite, so Zna is measurable.

By a theorem of Sierpiński [199], since µ does not have any atoms onZna, it must be continuous on
Zna in the sense that ifA is a measurable subset ofZna with µ(A) = a then for any b ∈ [0, a], there
exists a measurable set B ⊆ A such that µ(B) = b. This means that we can decompose Zna into
N := d1/δe sets Zna

1 ,Zna
2 , . . . ,Zna

N such that each has a measure at most δ and Zna =
⊎N
j=1Zna

j .

We next ensure the approximation properties for Rmax and ρ. We begin by a countable decompo-
sition of non-negative reals. We consider the countable index set J := Z ∪ {−∞} and define the
sequence aj := (1 + δ)j/2, for j ∈ Z. Positive reals can then be decomposed into the following
intervals indexed by J :

I−∞ := {0} , Ij := (aj, aj+1] for j ∈ Z.

It will also be convenient to set a−∞ := 0. Thus, the construction of Ij guarantees that for all
j ∈ J and all t ∈ Ij we have a2

j ≤ t2 ≤ (1 + δ)a2
j .
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The desired partition, with the index set I = Za ∪ [N ]× J 2, is as follows:

for i = z ∈ Za : Bi := {z}, Ri := Rmax(z), ρi := ρ(z), ξi := ξγ(z);

for i = (j, jR, jρ) ∈ [N ]× J 2: Bi := Zna
j ∩R−1

max(IjR) ∩ ρ−1(Ijρ),

Ri := ajR , ρi := ajρ , ξi := 1.

9.7.2 Proof of Theorem 9.4

Let Ax := {a ∈ A : ρ(x, a) ≤ τ}. For brevity, we write Ai := Axi . We decompose the mean
squared error into the squared bias and variance and control each term separately,

MSE(v̂SWITCH) =
∣∣E[v̂SWITCH]− vπ

∣∣2 + Var[v̂SWITCH].

We first calculate the bias. Note that bias is incurred only in the terms that fall in Acx, so

E[v̂SWITCH]− vπ = E


∑

a∈Acx

r̂(x, a)π(a|x)


− E


∑

a∈Acx

E[r|x, a] π(a|x)




= Eπ
[(
r̂(x, a)− E[r|x, a]

)
1(a ∈ Acx)

]

= Eπ
[
ε(x, a)1(ρ > τ)

]

where we recall that ε(x, a) = r̂(x, a)− E[r|x, a].

Next we upper bound the variance. Note that the variance contributions from the IPS part and
the DM part are not independent, since the indicators ρ(xi, a) > τ and ρ(xi, a) ≤ τ are mutually
exclusive. To simplify the analysis, we use the following inequality that holds for any random
variable X and Y :

Var(X + Y ) ≤ 2Var(X) + 2Var(Y ).

This allows us to calculate the variance of each part separately.

Var[v̂SWITCH] ≤ 2 Var

[
1

n

n∑

i=1

[riρi1(ai ∈ Ai)]
]

+ 2 Var

[
1

n

n∑

i=1

∑

a∈A

r̂(xi, a)π(a|xi)1(a ∈ Aci)
]

=
2

n
Varµ

[
rρ1(a ∈ Ax)

]
+

2

n
Var


∑

a∈Acx

r̂(x, a)π(a|x)




=
2

n
EµVar

[
rρ1(a ∈ Ax)

∣∣ x, a
]

+
2

n
VarµE

[
rρ1(a ∈ Ax)

∣∣ x, a
]

+
2

n
Var


∑

a∈Acx

r̂(x, a)π(a|x)




≤ 2

n
EµVar

[
rρ1(a ∈ Ax)

∣∣ x, a
]

+
2

n
Eµ
[
E[rρ1(a ∈ Ax) | x, a]2

]
+

2

n
E

[( ∑

a∈Acx

r̂(x, a)π(a|x)
)2
]

≤ 2

n
Eµ
[
σ2ρ21(a ∈ Ax)

]
+

2

n
Eµ
[
R2

maxρ
21(a ∈ Ax)

]
+

2

n
E

[( ∑

a∈Acx

r̂(x, a)π(a|x)
)2
]
.
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To complete the proof, note that the last term is further upper bounded using Jensen’s inequality
as

E

[( ∑

a∈Acx

r̂(x, a)π(a|x)
)2
]

= E

[( ∑

a∈Acx

π(a|x)
)2
( ∑

a∈Acx

r̂(x, a)π(a|x)∑
a∈Acx

π(a|x)

)2
]

≤ E

[( ∑

a∈Acx

π(a|x)
) ( ∑

a∈Acx

r̂(x, a)2π(a|x)

)]

≤ Eπ
[
R2

max1(ρ > τ)
]
,

where the final inequality uses
∑

a∈Acx
π(a|x) ≤ 1 and r̂(x, a) ∈ [0, Rmax(x, a)] almost surely.

Combining the bias and variance bounds, we get the stated MSE upper bound.

9.7.3 Utility Lemmas

Lemma 9.9 ([113, Theorem 2]). Let Xi ∈ [ai, bi] and X1, ..., Xn are drawn independently. Then
the empirical mean X̄ = 1

n
(X1 + ...+Xn) obeys

P(|X̄ − E[X̄]| ≥ t) ≤ 2e
− 2n2t2∑n

i=1
(bi−ai)2 .

Lemma 9.10 (Bernoulli KL-divergence). For 0 < p, q < 1, we have

DKL(Ber(p)‖Ber(q)) ≤ (p− q)2(
1

q
+

1

1− q ).

Proof.

DKL(Ber(p)‖Ber(q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)

≤ p
p− q
q

+ (1− p)q − p
1− q =

(p− q)2

q
+ (p− q) +

(p− q)2

1− q + (q − p)

= (p− q)2

(
1

q
+

1

1− q

)
.

9.8 Additional Figures from the Experiments
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9.9 Relationship to causal effect estimation and its asymptotic
optimality theory in the econometrics

Off-policy evaluation in the bandit literature and mean-effect estimation causal inference are
mathematically equivalent problems but are studied under vastly different assumptions due to the
cultural differences in the two communities. In this section, we connect the two problems and
illustrate how our results fit into the existing literature on causal effect estimation.

We start by explaining the differences in the notations and how the two problems are equivalent. In
causal inference literature, the “action” a is denoted as T for “treatment”. The “treatment” is often
binary, i.e., T ∈ {0, 1}. The “context” x is called “covariates” in the regression sense. The base
policy µ(a = 1|x) is therefore the treatment probability p(T = 1|X) (or just p(X)) for the patient
with covariate X . The reward random variable r(x, a) is simply the response/outcome variable Y
in the “average treatment effect on the treated” (ATT) problem and an affine transformation of the
response variable Y in the “average treatment effect” (ATE) problem. Specifically, the value of a
policy vπ = Eπr(x, a) is the same as ATT when taking π = [1, 0], r = Y ; and it is the same as
ATE when taking π = [0.5, 0.5] and r(x, a = 1) = 2Y (x, a = 1) and r(x, a = 0) = −2Y (x, a =
0).

Therefore our results for estimating policy values can be directly applied to the causal inference
problems of estimating ATE and ATT. We restrict our discussion to ATE estimation but everything
can be trivially stated for ATT estimation.

There are important differences too. In off-policy evaluation, µ(·|x) is often known, but in causal
inference, µ(·|x) needs to be estimated from data unless it is a controlled experiment. More
critically, in off-policy evaluation, we do not make assumptions on what µ(·|x) and E(r|x, a)
could be, while realizable assumptions on these quantities are often needed in the econometrics
literature.

In the remainder of the section, we describe the asymptotic optimality theory, in particular, the
“semi-parametric efficiency” lower bound and the kind of estimators that matches the lower bound,
and then highlight the gap to our minimax lower bound in Theorem 9.2. Our key conclusions are
that

1. the asymptotic efficiency bound implies a strictly smaller rate than our lower bound;

2. all known estimators that achieves the asymptotic efficiency use an assumption that the
expected reward function is within a realizable class of functions that is sufficiently small;

3. and our lower bound implies that the rate of asymptotic efficiency cannot be achieved in
general (without such realizable assumptions).

In addition, we will address the following two related questions:

1. Is knowing propensities helpful in ATE estimation?

2. What are the assumptions hidden in estimators achieving asymptotic efficiency? In particu-
lar, do they suffer from the curse of dimensionality in finite sample?
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Hopefully, the discussion will shed a light on how our bound expands the understanding of the
causal inference problem as a byproduct.

9.9.1 Asymptotic efficiency, efficient estimators and realizability assump-
tion

We start by describing the asymptotic (semi-parametric) efficiency lower bound due to Hahn
[107].
Theorem 9.11 (Theorem 1 of [107] in our notation). No regular (local asymptotically normal)
estimator sequence v̂n of ATE has a (scaled) asymptotic variance limn→∞Var[

√
nv̂n] that is

smaller than

Ex∼D
{

Var(r|x, a = 1)

4µ(a = 1|x)
+

Var(r|x, a = 0)

4(1− µ(a = 1|x))

+

(
E(r|x, a = 1)− E(r|x, a = 0)

2
− E(r|a = 1)− E(r|a = 0)

2

)2
}
.

Using the importance weight ρ(x, a) = 0.5/µ(x, a), the above bound can be rewritten as

Ex∼D
{
Eµ[ρ2Var(r|x, a)|x]

}
+ Varx∼D {Eµ[ρr|x]} . (9.30)

The lower bound can be obtained asymptotically by various estimators under different regularity
assumptions. These are mostly plug-in estimators of form

v̂Hahn =
1

n

n∑

i=1

Ê[rI(a = 1)|xi, a = 1]

µ̂(a = 1|xi)
− Ê[rI(a = 0)|xi, a = 1]

1− µ̂(a = 1|xi)
.

v̂Hirano =
1

n

n∑

i=1

riI(a = 1)

µ̂(a = 1|xi)
− riI(a = 0)

1− µ̂(a = 1|xi)
.

v̂Imbens =
1

n

n∑

i=1

r̂(xi, a = 1)− r̂(xi, a = 0).

where ·̂ is used to denote (nonparametric) estimate of these quantities. Note that the v̂Imbens is
simply the direct method, and v̂Hirano is IPS but with estimated propensity scores. What’s common
about these estimators is that they all require assumptions on these functions of interest so ·̂ would
be consistent with a sufficiently fast rate, which often requires stronger smoothness assumption as
the dimensionality of x gets larger. We describe the flavor of this type of results only for v̂Hirano

below and refer interested readers to a recent paper with a survey of these estimators [181] and
their drawbacks.
Theorem 9.12 (Theorem 1 of [112]). Assume ignorabiltiy, a.k.a, unconfoundedness of treatment
assignment — a ⊥ [r(x, a = 1), r(x, a = 0)]|x — and the following regularity conditions.

(i) the support of x is [0, 1]d

250



(ii) the density of x is bounded and bounded away from 0.

(iii) E(r2|a = 1) <∞, E(r2|a = 0) <∞
(iv) E[r|x, a = 0] and E[r|x, a = 1] are continuously differentiable for all x.

(v) µ(a = 1|x) as a function of x is continuously differentiable of all order s ≥ 7d.

(vi) µ(a = 1|x) is bounded away from 0 and 1 for all x.

Then there is an estimator µ̂(a = 1|x) that estimates µ(a = 1|x) for every x = x1, ..., xn under
which, v̂Hirano attains the lower bound (9.30) at the limit of n→∞.

We note that the assumptions, especially (v), are very strong and they hide the exponential
dimension dependence by making stronger and stronger smoothness assumptions as dimension
gets larger. Also, we note that (iv) is a realizable assumption that constrains E[r|x, a = 0] and
E[r|x, a = 1] to be Hölder class functions.

One interesting, but curious observation by Hahn [107] is that knowing the true propensity scores
(primarily µ(a|x), as π(a|x) is known in the mean-effect estimation) is not useful in efficient
estimation. In fact, it could even be harmful. It’s shown in Hahn [107] and Hirano et al. [112] that
using the true propensities in v̂Hahn or v̂Hirano (that would simply be IPS!) will lead to an estimator
that is no longer asymptotically efficient.
Remark 9.13 (k-arm bandit setting). It is useful to point out another example of this seemingly
magical fact that using a noisy estimate is asymptotically better than using the exact quantity. In
Li et al. [146], it is shown that the DM estimator can in fact be rewritten into IPS with estimated
propensities, therefore in this simple setting at least, v̂Hahn and v̂Hirano are equivalent.

The k-arm bandit example suggests that the regularity assumptions needed for nonparametric
estimation might be just one example of assuming a realizable class of functions such that we
can learn E(r|x, a) as n gets large. Our Theorem 9.2 clearly indicates that when we do not
make such assumption, it is information-theoretically impossible to achieve the semiparametric
efficiency.

To reinforce this point of view, we now compare (9.30) to the error bound of IPS, to our lower
bound in Corollary 9.3 and to the upper bound achieved by the doubly robust estimator with
oracle E(r|x, a).
Remark 9.14 (Comparison to IPS upper bound and Corollary 9.3.). First of all, (9.30) is strictly
smaller than the variance of IPS (therefore also smaller than our lower bound in Corollary 9.3,
which matches IPS variance up to a universal constant for the hardest problem in the class when
x is drawn from a density). Recall that the variance of IPS can be decomposed into

Eµ[ρ2Var(r|x, a)] + Varµ [ρE(r|x, a)] .

The first term matches exactly with the first term in (9.30), while the second term is strictly bigger
than the second term in (9.30), because

Var(x,a)∼µ[ρE(r|x, a)] = Varx∼DEµ(ρr|x) + Ea∼µVarx∼D [E(ρr|x, a)|a] ≥ Varx∼DEµ(ρr|x).
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They differ by a positive term Ea∼µVarx∼D [Eµ(ρ2r|x, a)|a] which is not in (9.30), and this term
cannot be bounded by a constant multiple of either Varx∼DEµ(ρr|x) or Eµ[ρ2Var(r|x, a)].
Remark 9.15 (Comparison to our lower bound.). Assume the context distribution is a probability
density, our minimax lower bound is different from (9.30) in several ways. Ours is a finite sample
bound and applies to all estimators and to every n (not just LAN estimators). Because we do
not restrict the class of estimators, the bound is necessarily a maximum over a class of problems
rather than a per-instance variance lower bound like (9.30). In order to make them comparable,
we ignore the constant factor, take supremum of (9.30) over the classR(σ,Rmax), which gives us

Eµ[ρ2σ2] + Ex∼D
[
Eµ[ρRmax|x]2

]
.

The second term is smaller than our bound in Corollary 9.3 by a Jensen’s inequality.
Remark 9.16 (Comparison to Oracle DR.). By Lemma 3.1(i) of Dudík et al. [75], DR with a
perfect oracle has variance

MSE(v̂Oracle−DR) =
1

n
Eµρ2Var(r|x, a)2 +

1

n
Var

[∑

a∈A

π(a|x)E(r|x, a)

]
.

This exactly matches the Cramer-Rao lower bound (9.30), although it uses oracle information.
In other word, the asymptotic efficiency [107] is effectively a measure of how well an estimator
performs relative to the oracle doubly-robust estimator.

These observations suggest that the realizability assumption is critical. On the one extreme, when
the regression function is known or can be accurately estimated from the data, then it is possible
to achieve a faster rate than the minimax lower bound. One the other extreme, when the regression
function is unknown and we do not assume it can be accurately estimated, then the IPS approach
that makes no assumptions on the regression functions become optimal.

Specifically, our results imply that Assumption (iv) in Theorem 9.12 cannot be removed, otherwise
no estimator could match the rate in the bound of (9.30), let alone achieving asymptotic efficiency,
because otherwise it would violate our lower bound.

9.9.2 Curse of dimensionality and the benefits of knowing the propensity
scores

Recall that the aforementioned estimators all make use of nonparametric estimators of either
E(r|x, a = 0 or 1) or µ(a = 1|x) (or both) as subroutines. Therefore, in order to achieve asymp-
totic efficiency, the rate to estimate these quantities need to be sufficiently fast (typically requiring
the sup-norm convergence rate being op(n−1/4)). This requires stronger smoothness assumptions
of E(r|x, a = 0 or 1) or µ(a = 1|x) (or both) in order to achieve asymptotic efficiency and a much
larger number of samples before the asymptotics become a reasonable assumption. If x ∈ [0, 1]d

and E[r|x, a] is (α)th differentiable in argument x for both actions, then the standard minimax
rate of estimating this function in sup-norm is on the order of n−

α
2α+d . In order word, the n−1/4

rate requires that α > d/2 and as d gets larger the smoothness assumption gets more restrictive.
We encourage readers to checkout the detailed discussion in Rothe [181].
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Rothe [181] also considered a setting more related to us where the propensities µ(a|x) are known
and showed that a doubly robust estimator using an oversmoothed local linear regression estimator
of E[r|x, a] is able to achieve asymptotic efficiency without requiring E(r|x, a = 0 or 1) to be
smoother as dimension increases. We translate the result into our notations as follows.
Theorem 9.17 (Theorem 2 in [181] with l = 0). Assume ignorabiltiy a ⊥ [r(x, a = 1), r(x, a =
0)]|x and the regularity conditions (i)(ii)(iv)(vi) of Theorem 9.12, replace (iii) and (v) with

(iii) E(|r|2+δ|x, a = 1) <∞, E(|r|2+δ|x, a = 0) <∞ for a constant δ > 0 for all x.

(v) µ(a|x) is known for all x and a ∈ {0, 1}.
(Note that (iii) is slightly stronger and (v) gives more power to the estimator but does not require
any regularity assumptions on µ.) Then there exists an estimator v̂ such that

√
n(v̂ − v̂Oracle−DR) = ÕP(n−min{ 2

3d
, 1
2+d}).

In conclusion, Hahn [107]’s observation that it is not useful to know the propensity scores is
not technically true unless we make higher order smoothness assumption with order linear in
dimension d. Knowing the propensity scores allow Rothe [181] to attain asymptotic efficiency
(9.30) under only differentiability assumption on expected reward function. The result hence
applies to all constant d.

However, the finite sample performance of the proposed estimator remains to suffer from“curse-
of-dimensionality” in the supposedly lower order terms. By the results in Bertin et al. [29], the
exact constant of the minimax risk in sup-norm for the class of functions with derivatives bounded
by L is

σ
2

2+dL
d

2+d

[
(d− 1)!(d2 + d3)

2d

] 2
2+d

.

This suggests that the asymptotic approximation is only meaningful when n gets as large as d!,
which can quickly become unrealistic beyond d < 10 in practice.

253



254



Chapter 10

Optimal Gaussian adaptive data
analysis

In modern data analysis, data analysts often have many rounds of interaction with a data set
before deciding on a model to fit, or have a list of scientific questions to answer with the data.
The process is often sequential and adaptive, and can lead to significant bias in the subsequent
inferences. In this chapter, we propose a game-theoretic minimax framework to formally study
this problem under a model called “sequential selective estimation”, where in each round the
data analyst estimates a parameter that is chosen based on the revealed estimates in previous
rounds. Assuming Gaussianity of data, we establish the first sharp minimax lower bound on the
squared error in the order of O(

√
kσ2), where k is the number of sequentially chosen quantities

to estimate, and σ2 is the ordinary signal-to-noise ratio for a single parameter estimate (often
on the order of 1/n in the i.i.d. setting). Our lower bound is based on the construction of an
approximately least favorable adversary who picks a sequence of parameters that are most likely
to be affected by overfitting. The key technical component of the lower bound proof is a reduction
to finding the convoluting distribution that optimally obfuscates the sign of a Gaussian signal.
Our lower bound construction also reveals a transparent and elementary proof of the matching
upper bound as an alternative approach to [183], who used information-theoretic tools to provide
the same upper bound. We believe that the proposed framework opens up opportunities to obtain
insights for many other settings of adaptive data analysis, which would extend the idea to more
practical realms.

10.1 Introduction

In most traditional statistical data analysis, the validity of inference requires the inference proce-
dure (for example, the null hypothesis and test statistic to be considered) to be specified before
looking at the data. In modern scientific and engineering research with large-scale data and
complex hypotheses, it is more natural to choose models and inference tasks in a sequential and
data-driven manner. For example, one may want to fit a second model to the data after seeing
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that the first model did not fit well; or to test significance of the variables chosen by a variable
selection procedure. If traditional frequentist inference procedures are applied to these adaptively
chosen tasks, the validity are often questionable due to overfitting or what is known as “Researcher
Degree of Freedom” [49, 138, 200].

In this chapter, we consider the problem of “sequential selective estimation”, which is designed to
appropriately quantify the amount of additional error due to the selection procedure. It is obvious
that this additional error is determined by how the parameters to be estimated are chosen. For
example, if the parameters to be estimated are determined before seeing the data, then there is no
additional error. On the other hand, as we well see in this chapter, there exists selection methods
that can incur substantial bias in the parameter estimate if traditional methods are used. It is
impractical to know what kind of selection criterion a data analyst will use, so we consider a
worst-case scenario and study the problem from a minimax perspective:

What is the worst-case estimation error among all possible selection methods?

Formally, let {θt : t∈T} be a collection of parameters, and X the observed data, given loss
function L(·, ·), we would like to find out the following minimax risk of selective sequential
estimation.

min
θ̂

max
D

max
T1,...,Tk

max
i=1:k

E
[
L(θ̂Ti , θTi)

]
,

where the minimization is taken over all possible estimators θ̂, T1, ..., Tk is a sequence of adaptively
chosen parameter indices from an index set T , and D is the distribution of X whose unknown
parameter includes θ. Here the expectation takes into account both the randomness of X and
T1, ..., Tk. Our results can be extended to any fixed distribution D, but with some mild restrictions
to the estimators.

We focus on the joint Gaussian model, in which we assume that under the distribution of the data
set:

θt = E(φt(X)) , ∀ t ∈ T , and (φt(X) : t ∈ T ) is a Gaussian process .

Example 10.1 (Sequential estimation of projections). Let X ∈ Rd, drawn from a multivariate
normal distribution. Moreover, assume each column of X is appropriately normalized so that the
marginal variances are equal to σ2/n. Here

T =
{
t ∈ Rd : ‖t‖2 ≤ 1

}

is the class of all unit vectors and φt(X) = 〈t,X〉. It is clear that for any t ∈ T , Var(φt(X)) ≤
σ2

n
. Also, for any fixed finite subset of {t1, ..., tk} ⊂ T , φt1,...,tk(X) is a multivariate normal

distribution.
Example 10.2 (Sequential model selection for linear regression). Let X ∈ Rn×d be a fixed design
matrix, response vector Y ∼ N (µ, σ2I). Choose any feature subset t ⊂ [d] and fit a linear
regression model, and then

θ̂t = φt(X, Y ) = (XT
t Xt)

−1XT
t Y.

Example 10.3 (Hyper-parameter tuning with Bayesian optimization). Let t ∈ T be an index to a
tuple of d hyperparameters, and T could be [0, 1]d. Let X be a hold-out dataset. The objective of
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hyperparameter tuning is to t ∈ T such that ER(h(t), X) is minimized for some risk functional
R, where the expectation is taken over X and the randomness in learning a model h on a fixed
training data set. We can only observe a random variable R̂(h(t), X) with mean ER(h(t), X).
These correspond to φt and µt in our model. In Bayesian optimization, the indices T1, T2, ..., Tk
are chosen sequentially, where for each i, Ti is either a deterministic or randomized function
of (T1, ..., Ti−1, R̂(h(T1), X), ..., R̂(h(Ti−1), X)). It is often assumed that the black box function
R̂(h(t), X) of t is a Gaussian process. This exactly matches our assumption.

In our sequential selective estimation framework, natural plug-in estimators such as θ̂t = φt(X)
will work poorly because each round reveals too much information about the realized data set
too quickly, and there may exist a new t ∈ T such that φt(X) significantly deviates from its
mean. In order to avoid such issues, many estimators for this problem often involve additional
post-randomization of the plug-in estimator [see e.g. 18, 85, 87, 183]. The main idea is that if
the parameters are estimated in a way such that they provide little information about the details
of the dataset, it is unlikely for the subsequent selections to overfit. A good example is to make
the estimators differentially private [85, 87]. These approaches work directly with information-
theoretic quantities, so they are applicable to any selection procedure so long as it is fed with only
sufficiently perturbed releases. These methods tend to be overly conservative, and it is unclear
whether the large random noises added for strong data privacy protection is also necessary for the
conceptually easier sequential selective estimation problem. Also, despite some study in lower
bounds [109, 211] in related settings, it is not well understood whether the existing estimators are
optimal.

Summary of results. In this chapter, we prove the following (informally):
Theorem 10.4 (Main result I (a minimax lower bound)). There is no estimator φ̂ that can
estimate the mean of any k sequentially chosen parameters uniformly better than Ω(

√
kσ2) for

all distributions under the jointly-Gaussian model when |T | = Ω(2k).
Theorem 10.5 (Main result II (a per-instance lower bound)). There is no estimator φ̂ that is

“natural” (which includes all noise adding estimators), that can estimate the mean of any k
sequentially chosen parameters uniformly better than Ω(

√
kσ2) for any fixed distribution, provided

that φT is sufficiently “rich”.

We did not use standard information-theory tools to obtain these results. For the best of our
knowledge, there are no standard information-theoretical proof techniques directly applicable
to our problem. Instead, we resort to a novel constructive proof, which reduces the problem to
finding an optimal noise-adding procedure against a sequence of optimal binary classifiers.

These lower bounds are achieved (up to a constant factor) by the Gaussian noise-adding estimator
due to [183] of the following form:

θ̂Ti = φTi(X) + k1/4σZi, for i = 1, ..., k,

where Zi ∼ N (0, 1), independent of everything else. This indicates that Gaussian noise adding
cannot be significantly improved.
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We also provide an alternative (and much more transparent) analysis for the Gaussian model that
does not use mutual information as in Russo and Zou [183]. This leads to an improved constant
in the upper bound.

The results suggest that, when the set of potential parameters is rich enough and the plug-in
estimators are Gaussian, independent Gaussian noise adding is minimax optimal up to a constant.
We show that for k-step adaptive data analysis, the smallest worst-case amplification factor of the
squared estimation error that can be achieved by any (possibly adaptive) releasing procedures is√
k. Here term “worst-case” refers to any possible adaptive parameter selection mechanism. Our

motivation here has been driven substantially by work on relaxations of the method of differential
privacy, and its primary mechanism of protection through additive noise. We return to that link at
the end of Section 10.2.

Related work The problem of estimating sequentially selected parameters has been studied
under the name “adaptive data analysis” or “preventing false recoveries” in the computer science
community [See, e.g., 18, 85, 87, 109, 183, 211]. The most commonly used setting assumes
the selection mechanism can adaptively choose any low-sensitivity query (i.e. plug-in estimate).
For k-step adaptive data analysis, Dwork et al. [87] produces the first sample complexity upper
bound for Laplace noise adding in the order of Õ(

√
k/ε2.5), where ε is the target error level,

defined as the largest absolute error over all k steps. Here the sample complexity is the number
of iid data points needed for k-step adaptive data analysis to achieve a target error level with
high probability. Bassily et al. [18] improves the bound to Õ(

√
k/ε2) and extends to approximate

differential privacy, as well as convex optimization queries. The factor
√
k is shown to be optimal

[109, 211] for polynomial time algorithms or any algorithms if the dimension of X is sufficiently
large, but the optimal dependence on ε remains open.

Our results apply to a different setting studied in Russo and Zou [183, Proposition 9], where the
plug-in estimates are assumed to be jointly Gaussian. This is neither stronger nor weaker than
the requirement of low-sensitivity as shown in Figure 10.1. We also define the risk differently
as the maximum expected squared error. Due to these differences, our bounds are only loosely
comparable to those in Bassily et al. [18], Dwork et al. [87], Steinke and Ullman [211] in terms of
the maximum expected absolute error — a middle ground that both our bounds and theirs imply.
In particular, our upper bound is on the same order as Bassily et al. [18] and Russo and Zou [183]
with a constant improvement over Russo and Zou [183] due to a more direct proof.

Our lower bound (when taking σ2 = 1/n) becomes Ω(k1/4/n1/2), which is substantially larger
than the best available lower bound in Steinke and Ullman [211] that translates into Ω(min{k1/2/n, 1}).
However, this is not a fair comparison as the settings are not quite the same. We will clarify this
point after we present our results and discuss implications of our work in the setting of Steinke
and Ullman [211] and vice versa in Section 10.4. Both our lower bound and that in Steinke
and Ullman [211] apply to the more general jointly-subgaussian setting, but it remains an open
problem to find an algorithm that matches the lower bound in this more general regime.

When additional assumptions are made, e.g., when we assume X is finite and low-dimensional,
then one can improve the dependence on k exponentially with a computationally inefficient
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Figure 10.1: Relationship of the class of queries.

algorithm [18, 87].

The problem of valid inference for data-dependent tasks has been studied through a different
perspective in the statistics community. Fithian et al. [95], Lockhart et al. [149], Taylor and
Tibshirani [215], Taylor et al. [216] and others developed a series of “selective inference” methods
that work with specific variable selection tools (e.g., Lasso) and adjust the confidence intervals
or p-values accordingly based on the selections such that they have the exact or asymptotically
correct frequentist coverage. There are several major differences between this framework and
the adaptive data analysis framework. First, selective inference essentially considers two-step
problems, where the variables are selected in the first step, and their significance are tested in
the second step. Second, these methods are passive observers in that they release the variable
selection result without randomization, but only adjust the inference in the second step to correct
the selection bias. In other word, the goal of selective inference is to produce valid (but potentially
very large) confidence intervals for even highly biased statistical quantities, whereas the goal of
adaptive data analysis is to prevent “bad” statistical inference tasks from being selected in the first
place.

10.2 A minimax framework

In this section we formulate the minimax problem of sequential selective estimation in a game-
theoretic framework. The game-theoretic approach we take is to cover all possible ways to choose
the parameters to estimate in the sequence. The game goes as follows:

1. Basic context. Both players, the data analyst (i.e. the player) and the adversary, are given a
collection of parameters {θt : t ∈ T }, with each θt ∈ Θt ⊆ R.

2. The game procedure. The game consists of k steps. The ith step works as follows
(1 ≤ i ≤ k):

(a) The adversary announces a Ti ∈ T , which can be a possibly randomized function of
the released estimates up to time i− 1.
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(b) After seeing Ti, the player releases an estimate of θTi , denoted by Ai, which can be
a possibly randomized function of the data X , and the historical parameter indices
T1, ..., Ti−1.

3. Assumptions and remarks.

(a) The data X is drawn such that Eφt(X) = θt for all t ∈ T . The functions φt : X 7→ Θt

are known to both sides of the game.

(b) The joint distribution of {φt(X) : t ∈ T } belongs to D, a family of distributions on∏
t∈T Θt that is known to both sides.

(c) The number of steps, k, in the sequential selective estimation procedure is known to
both sides.

(d) The player designs a k-step strategy (Ai : 1 ≤ i ≤ k) whereAi : (X,T1, ..., Ti, Zi) 7→
Ai ∈ ΘTi where Zi represents a fresh random variable.

(e) The adversary chooses parameters to estimate using a k-step strategy (Wi : 1 ≤
i ≤ k) where Wi : (T1, ..., Ti−1, A1, ..., Ai−1, Ri) 7→ Ti ∈ T , where Ri is another
fresh random variable used inWi. Note thatWi may depend on any deterministic
information, such as the distribution of {φt(X) : t ∈ T }. ButW does not have access
to the data X .

4. Loss function.
max
1≤i≤k

E(Ai − θTi)2 .

The player wants to minimize the loss function while the adversary want to maximize it.

The problem of interest is to identify the optimal “player” strategy (estimators) that will ensure
that if the game is repeatedly played, the expected loss is minimized. Specifically, we consider
the case when � is the “max” operator and the loss function is the standard mean square loss. The
corresponding minimax risk is

R(k,A1:k,W1:k,D) := inf
A1:k∈A1:k

sup
D∈D

sup
W1:k∈W1:k

max
i∈[k]

E(Ai − µTi)2.

We consider D = D(θ, T , σ2) to be the collection of all Gaussian processes indexed by T with
mean (θt : t ∈ T ) and bounded marginal variance:

Var(φt) ≤ σ2 , ∀ t ∈ T .

We would like to point out that this is a challenging partial information game where the adversary
knowsD, the distribution of φT but does not know the specific data set drawn from that distribution.
The player does not know D (and in particular, the mean of φT , which are what he would like to
estimate in the first place) and his strategy is expected to work for all D ∈ D and all adversarial
strategyW1:k. This quantification of the amount of information available to both the “player” and
the “adversary” is important because
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(a) if the “player” knows the distribution, choosing Ai = µTi independent to the data results in
a minimax risk of 0,

(b) if the “adversary” knows the data and the player does not know the distribution, then the
problem becomes the standard uniform convergence problem of characterizing

inf
A1

sup
D∈D

E
[
sup
t∈T

E[(A1 − µt)2|φT ]

]

because even before the game start,W1 would have already chosen the worst t for what A1

to output in this specific realization. This is the central problem in empirical process theory
and statistical learning theory, and has been studied extensively for many years. However,
if T has unbounded “entropy”, the minimax risk could be∞.

The main objective of this chapter is to understand what the minimax rate (minimax risk up to a
universal constant) for interesting and practically relevant choices of A1:k,W1:k and D. In most
of our results, both A1:k andW1:k are defined in an information-theoretical fashion because we
only restrict them to be functions of everything they can see at a certain point of the game. We
also consider smaller classes of A1:k when we aim to get a much stronger per-instance lower
bound where D is fixed and known to both sides of the game. In this sense, such restrictions are
necessary.

Lastly, we acknowledge that this minimax framework has been studied by Steinke and Ullman
[211] under the name “adaptive data analysis”, where both computational and information-
theoretic lower bounds were established when T is the class of all statistical queries and ΦT
is generated by an arbitrary iid distribution defined on {0, 1}d. For the best of our knowledge,
this current chapter is the first concrete treatment of the problem when ΦT is jointly Gaussian
(or a Gaussian process when |T | =∞), which we believe is instrumental in understanding the
implication of adaptive data analysis in statistical theory and practice.

10.3 Results

In this section, we will work out the upper and lower bounds for the minimax risk.

10.3.1 An explicit adversary in the Gaussian model

Before we derive the minimax lower bound, we first provide an alternative proof to the mutual
information-based argument of Russo and Zou [183] using only elementary arguments. This
allows us to understand intuitively what an “adversary” would do, knowing that the “player” will
just be adding Gaussian noise.

We first present results for a simpler version of the adaptive data analysis that has only one step
adaptivity, where the adversary chooses the queries by explicitly maximizing the selection bias in
the form of a conditional expectation. Building upon this result, we extend the argument to form
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an explicit upper bound for the minimax risk in the k-step setting. The proof provides intuition
for constructing the minimax lower bound presented in Section 10.3.2.

1-step adaptivity under Gaussian additive noise

Our first result applies to the case when (T1, ..., Tk−1) take an arbitrary fixed vector (t1, t2, ..., tk−1).
For each i = 1, ..., k, we will choose release protocol Ai to be such that Ai = φti(X) + Zi where
Zi ∼ N (0, w2) is a freshly drawn normal random variable.

After observing the realized values of A1, ..., Ak−1, the adversary samples Tk from a distribution
P on T , with P depending on (T1:k−1, A1:k−1). Again, we emphasize that Tk belongs to the
class

T = {t : |φt(X) ∼ N (µt, σ
2
t ), σ

2
t ≤ σ2}.

The key idea is that the choice of Tk boils down to choosing a covariance vector Σk,1:k−1 with
previously selected φt, ..., φtk−1

. The following result constructs the least favorable choice of
Tk.

We use Σ1:i to denote the covariance matrix of φt1:i
, and Σj,1:i the covariance vector between φtj

and φt1:i
.

Theorem 10.6 (1-step adaptivity). Let t1, ..., tk−1 ∈ T . Moreover, let observation noise Zi ∼
N (0, w2) and Tk generated by any adaptive selection protocol. Then the squared bias

sup
t1,...,tk−1∈T

[E(φTk − µTk)]2 ≤
(k − 1)σ4

w2
.

Moreover, if w2 =
√
k − 1σ2, the square error of the estimate

E(Ak − µTk)2 ≤ (2
√
k − 1 + 1)σ2.

Proof sketch. The proof relies on the law of total expectation that expands the bias into

E(φTk − µTk) = EA1:k−1
ETk|A1:k−1

EφTk |Tk,A1:k−1
(φTk − µTk)

≤ EA1:k−1
sup
tk∈T

Eφtk |A1:k−1
(φtk − µtk).

Since A1:k−1 = φt1:k−1
+ Z1:k−1 and φtk are jointly normal, we can explicitly write down the

conditional expectation

E(φtk − µtk | A1:k−1) = ΣT
k,1:k−1(Σ1:k−1 + w2Ik−1)−1(φt1:k−1

+ Z1:k−1 − µt1:k−1
).

Finding the supremum of tk ∈ T reduces to finding the maximum over the covariance E(φtk −
µtk)(φt1:k−1

− µt1:k−1
) = Σk,1:k−1 =: v and variance Var(φtk) =: w2. These quantities cannot

be arbitrary, since w2 ≤ σ2 and the covariance matrix Σ1:k need to be positive definite. Under
these constraints, this optimization for is a quadratically constrained linear optimization and we
can write down optimal solution in closed form. It remains to evaluate the outer most supremum
over t1, ..., tk−1 ∈ T which is standard calculations. Details are left to the full proof in Appendix
10.6.1.
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Remark 10.7. The bound in Theorem 10.6 is tight for the Gaussian noise-adding algorithm
because if we take t1, ..., tk such that φt1:k−1

∼ N (0, σ2I), then expected squared bias ≥ (k−1)σ4

w2+σ2 .
When w2 � σ2, this nearly attains the upper bound (up to a multiplicative factor of w

2+σ2

w2 ).

k-Step Adaptive Data Analysis: Upper Bound

Now we extend the above argument to k-step adaptive data analysis.
Theorem 10.8 (upper bound for k-step adaptivity). Let the distribution of data X and class
of functions T obey our assumptions. Now let T1, ..., Tk be random variables drawn by any
(potentially randomized) adaptive procedure that chooses Ti ∈ T based on outputs of actively
perturbed statistics A1 ∼ N (φT1 , w

2
1), ..., Ai−1 ∼ N (φTi−1

, w2
i−1). Then for any integer k, the

square bias of φTi−1
obeys

|EφTk − µTk |2 ≤ σ4

k−1∑

i=1

(
1

w2
i

+
σ2

w4
i

)
,

where the expectation is taken over the both the randomness of X , the randomness in the adaptive
choice of (T1, ..., Tk), and the randomness of perturbation used in (A1, ..., Ak). Furthermore, by
taking w2

i =
√
k − 1σ2 for all i < k and wk = 0 we have

max
i=1,..,k

E |Ai − µTi |2 ≤ 2(
√
k − 1 + 1)σ2 .

The k-step adaptive analysis upper bound is on the same order as in Theorem 10.6 where we only
allow one step adaptivity.

Proof Sketch. Similar to the previous theorem, we use the law of total expectation to expand the
expectation. It is more involved in that we need to expand E |φTk − µTk |2 recursively into

EA1ET2|A1EA2|T1:2,A1 ...ETk−1|A1:k−2
EAk−1|T1:k−1,A1:k−2

ETk|T1:k−1,A1:k−1
EφTk |T1:k,A1:k−1

|φTk − µTk |2 .

An upper bound can be obtained by replacing all ETi|A1:i−1
from a specific selection ruleWi with

a supremum over T . By bias and variance decomposition, it can be shown that the dominating
term is the squared bias. Using the same argument as in Theorem 10.6, we can write down the
conditional bias and maximize it explicitly, which gives us E(φTk − µTk) ≤

√
σ2Efk−1 where

fk−1 := (A1:k−1 − µT1:k−1
)T (Σ1:k−1 +W1:k−1)−1Σ1:k−1(Σ1:k−1 +W1:k−1)−1(A1:k−1 − µT1:k−1

).

In the above expression, W1:k−1 is the (diagonal) covariance matrix of the noise we add in the
first k − 1 iterations. Note that f i−1 can be defined for any 1 ≤ i ≤ k.

It turns out that we can “peel off” the supremum one at a time from the inner most conditional
expectation all the way to the first one like an “onion”, using the following formula (details in
Lemma 10.15)

sup
ti−1∈T

EAi−1|T1:i−2,ti−1,A1:i−2
f i−1 ≤ f i−2 +

σ2

w2
i

+
σ4

w4
i

.
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Applying this recursively and summing up the residuals gives us the bound of bias for any k. We
invite readers to check out the detailed proof in Appendix 10.6.2.

Remark 10.9. Since 1-step adaptivity is a special case of k-step adaptivity, the choice of t1, ..., tk
that nearly attains the risk bound also applies here.

Note that the bound in Theorem 10.8 implies a expected absolute error upper bound on the same
order as the result in Russo and Zou [183, Proposition 9]. Our result is slightly stronger as we
bound the square error. That said, Proposition 5 and arguments in the proof of Proposition 9
in Russo and Zou [183] can be combined to obtain the same square error bound. Our proof
leads to a sharper constant and transparent understanding of the least favorable adaptive selection
protocol. Despite the differences in the settings, we remark that our bound is also on the same
order as Bassily et al. [18], modulo that Bassily et al. [18] also has strong concentration — a
characteristic that follows from McDiarmid’s inequality under the low-sensitivity assumption.
Our proof technique is arguably more direct, as we do not rely on differential privacy to control
the generalization error.

10.3.2 Minimax lower bound

In this section, we prove a minimax lower bound that certifies that the Gaussian noise-adding
attains the optimal rate up to a small constant factor in both Gaussian model (and hence trivially
the subgaussian model). The proof will be constructive in that we will construct a strengthened
version of the “adversary” that beats not only Gaussian noise adding, but any estimators.
Theorem 10.10. LetD(σ2, N) = {N (µ,Σ)|Σi,i ≤ σ2 for all i = 1, ..., N}. If |T | ≥ 2k−1+k−1,
then

inf
A1:k

sup
PφT ∈D(σ2,|T |)

sup
W1:k

max
i∈[k]

E(Ai − µTi)2 = Ω(
√
k − 1σ2)

This bound implies that the Gaussian-noise adding approach attains the minimax risk up to
a universal constant. We now provide a sketch of the proof and highlight the key technical
contributions. Detailed proof is presented in a later section.

Proof Sketch. The idea of the proof is that we construct a specific selection ruleW1:k and a nearly
least favorable prior distribution of the parameters of the jointly Gaussian distribution of φT , and
then find a tight Bayes risk lower bound.

Constructing a nearly least-favorable prior, adversary pair. Inspired by our upper bound
proof in Section 10.3.1, we choose W1:k that “explores” in the first k − 1 rounds to learn as
much about the data as possible, then “exploits” in the last round by finding a tk ∈ T such that
the realized value of φtk deviates significantly from its mean µtk . This is jointly achieved by a
carefully chosen prior on the covariance matrix Σ and choices made byW1:k.

In the “exploration” phase,W1:k−1 chooses T1:k−1 = t1:k−1, and the prior distribution ensures that
Σ1:k−1 = σ2Ik−1, i.e., the first k−1 statistics are mutually independent. The cardinality constraint
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ensures that besides t1, ..., tk, there are 2k−1 remaining element in T such that we can dedicate
one for every element s ∈ {−1, 1}k−1; and we choose a prior distribution on Σ such that t(s)
obeys that

P(Cov[φt(s), φt1 ] = σ2s1, ...,Cov[φt(s), φtk−1
] = σ2sk−1)

=P(Cov[φt(s), φt1 ] = −σ2s1, ...,Cov[φt(s), φtk−1
] = −σ2sk−1) = 0.5.

In the “exploitation” phase, the adversaryWk then uses the Bayes classifier to predict the signs of
φti − µti for each i. This is the likelihood ratio test which output 1 if

log
p(A1, ..., Ak−1|φti − µti > 0)

p(A1, ..., Ak−1|φti − µti < 0)
≥ 0

and −1 otherwise. Let the predicted sign vector be ŝ,Wk simply chooses tk = t(ŝ). This implies
that

E[(φtk − µtk)(φt1:k−1
− µt1:k−1

)] =
ŝσ2

√
k − 1

or − ŝσ2

√
k − 1

depending on the random prior.

Intuitively, the adversary tries to maximize the bias in the last step as much as she can. Once
φt1:k−1

is realized, the plan is to choose φtk with maximally allowed correlation with all previously
released queries, where the signs of correlations are chosen such that all bias caused by correlation
will have the same sign. This is the “secret sauce” that the optimal adversary used in our upper
bound proof of Theorem 10.6.

As we will see, the prior distribution on Σ plays an important role that ensures that the direction
of the bias remains agnostic to the “player”. Lastly, we choose a prior distribution for µT that is
independently and uniformly distributed for each t ∈ T . We will supply details of these choices
later.

Concretely, denote the minimax risk byR(k, σ2), we use expectation to lower bound the maximum

R(k, σ2) = inf
A1:k

sup
PφT ∈D(σ2,|T |)

sup
W1:k

max
i∈[k]

E(Ai − µTi)2

≥ inf
A1:k

Eµ,Σ max
i∈[k]

E[(Ai − µTi)2|µ,Σ]

≥ τ ∧ inf
A1:k:E[(Ai−µTi )

2]≤τ ∀i∈[k−1]
E[(Ak − µTk)2]. (10.1)

where · ∧ · denotes the minimum of the two sides. The third line is true because if τ ≥ R(k, σ2),
the lower bound holds trivially. If τ > R(k, σ2), then the restriction is without loss of generality.
This allows us to converted the problem to a constrained form with an unspecified constant τ , so
that we can focus on dealing with the last round first.

Play optimally against the adversary: in the kth round. By Bayesian decision theory, the
optimal Bayes estimator is the conditional expectation, namely,

A∗k = E[µTk |φT , T1:k, A1:k−1].
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Figure 10.2: Illustration of the two cases of the posterior distribution P(µt(ŝ)|φT , µt1:k−1
).

This is somewhat hard to evaluate since taking Tk = tk reveals ŝ to the player, which encodes
the following message: The “adversary” who knows µt1:k−1

uses the optimal test to infer that
sign(φt1:k−1

−µt1:k−1
) is ŝ. Using this info, the the “player” now knows a little bit more about where

µt1:k−1
. Also, note that φT is the common child of µt1:k−1

and µtk so knowledge about µt1:k−1
)

could propagate over to µtk . For a detailed graphical model representation of the dependency
structure, we invite readers to check out Figure 10.3 in the proof.

A cute trick that we used to get around this issue is to consider an estimator Ak that is more pow-
erful. In particular, we give Ak the privilege of seeing µt1:k−1

, which d-separates the information
flow from Tk to µt(s) for all sign vector s, including t(ŝ). This allows us to analytically write
down the posterior distribution of µt(s) for any fixed s.

A side effect is that the player now knows exactly how much the bias is after combining the new
knowledge with the old. In particular, the player now knows that

b(ŝ) = ŝT (φt1:k−1
− µt1:k−1

)/
√
k − 1.

What fortunately remains unknown (or at least unknown most of the times) is whether µt(ŝ) is on
the left or on the right of φt(s).

Under the uniform distribution [−M ′,M ′], the posterior distribution of µt(ŝ) has an interesting
form — basically, if φt(s) happens to be in [−M ′+|b(ŝ)|,M ′−|b(ŝ)|] then the posterior distribution
assigns 0.5 probability to each hypothesis, therefore the posterior mean is simply φt(ŝ) and the
estimator completely consumes a square loss of |b(ŝ)|2. Otherwise, the player can denoise and
estimate µt(ŝ) perfectly. This is illustrated in Figure ??.

Fortunately, we can choose a sequence of priors such that M ′ →∞ and the probability that the
latter event occurs converges to 0.

266



This allows us to write

R(k, σ2) ≥ τ ∧ inf
A1:k−1:E[(Ai−µTi )

2]≤τ ∀i∈[k−1]
E
[(〈ŝ, φt1:k−1

− µt1:k−1
〉√

k − 1

)2
]

≥ τ ∧ inf
A1:k−1:E[(Ai−µTi )

2]≤τ ∀i∈[k−1]

(
E
[
〈ŝ, φt1:k−1

− µt1:k−1
〉
]

√
k − 1

)2

= τ ∧ inf
A1:k−1:E[(Ai−µTi )

2]≤τ ∀i∈[k−1]

1

k − 1

(
k−1∑

i=1

E [ŝi(φTi − µTi)]
)2

(10.2)

Play optimally against the adversary: in the first 1th to (k − 1)th rounds. We will now
show that for a sequence of increasingly flat prior on µt1:k−1

, it becomes without loss of generality
to consider only A1:k−1 that adds zero-mean independent noise.

First of all, since the in (10.2) depends only on the overall expectation, it is not hard to show that
for every dependent estimators Ai that chooses Ai as a function of all past observations, we can
construct an alternative Ãi that behaves the same for as Ai but depends only on φti . Note that this
is equivalent to adding noise Zi to φti where Zi’s distribution could be a function that depends on
φti .

This reduces the problem to solving

inf
Z:E(φi+Zi−µi)2≤τ

max
ŝi

E[ŝi(φi − µi)]

where ŝi is any mapping from φi + Zi, µ to {−1, 1}.
Note that it is intuitively quite pointless for the noise Zi to depends on φti since it does not reveal
much information about µti , and it is unclear how depending on φti can prevent ŝi to estimates
the sign of φti − µti . However, formally showing that one can get rid of those possibility is tricky.

The redeeming property is that we know what ŝi is (a likelihood ratio test) and can analytically
write down the expression of maxŝi E[ŝi(φi − µi)] as a double integral for any choice of Zi. In
addition, we used a “smoothing” technique with a wide uniform prior on µi with width 2M . By
exchanging the order of the integral, we are able to construct a Z̃i that does not depend on φi and
differs to the expectation using Zi only by a factor of σ2/M . This suggests that as M →∞, we
can safely restrict our attention to independent noise adding.

Lastly, removing the mean from an independent noise Zi does not change the objective and
E(φi + Zi − µi)2 only decreases, so it suffices to consider zero-mean independent noise adding.
In other word, we have

R(k, σ2) ≥ τ ∧
(√

k − 1 inf
Z∼q s.t. E[Z]=0,Var[Z]≤τ−σ2

1

2
Ex∼N (0,σ2) [|x|‖q(·+ |x|)− q(· − |x|)‖1]

)2

.

(10.3)
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Near optimal noise to obfuscate the sign of a Gaussian signal. It turns out that the above
problem can be formulated as a variational convex optimization problem. While it is not possible
to solve it analytically, we were able to construct a nearly optimal feasible dual functions, and the
corresponding dual objective value is a lower bound of the optimal value by duality. The result,
summarized in Lemma 10.16, implies that if τ ≥ σ2,

inf
Z∼q s.t. E[Z]=0,Var[Z]≤τ−σ2

1

2
Ex∼N (0,σ2) [|x|‖q(·+ |x|)− q(· − |x|)‖1] ≥ σ2

2
√

3τ 1/2
.

Finally, we balance the error in by choosing τ =
√
k − 1σ2, which ultimately gives a lower bound

of the minimax risk as claimed.

With a slight modification of the argument, we can also obtain a stronger and more explicit bound
for the setting in Example 10.1.
Corollary 10.11. ConsiderX ∼ N (θ, σ2I) andX ′ = v(X−θ)+θ′. Note that (X,X ′) are jointly

normal with a covariance matrix
[
σ2I vσ2I
vσ2I σ2v2I

]
. Let T = S2d−1. Then for all k = 1, ...., d+ 1,

we have
inf
A1:k

sup
θ1,θ2,v∈{−1,1}

sup
W1:k

max
i∈[k]

E[(Ai − 〈(X,X ′), Ti〉)2] = Ω(
√
k − 1σ2).

This corollary suggests that the lower bound holds even if the covariance matrix is known to the
player for up to one unknown bit, there are no methods that can perform better than simple noise
adding.

The proof follows closely the arguments of the proof of Theorem 10.10, but differs in some of the
details. Most importantly, φIc are now projections of X ′, so their means are now coupled, so we
cannot define a separate prior for each t that is not the first independent statistics. For this reason,
we needed to use a Gaussian prior instead of the uniform prior for θ′. We defer detailed proofs to
the appendix.

10.3.3 Per-instance lower bound

The lower bound can also be stated in a per-distribution fashion, if we restrict our attention to a
class of natural adaptive estimators that depend only on φTi and the entire history, namely,

Ai = f(φTi , φT1 , ..., φTi−1
, A1, ..., Ai−1, T1, ..., Ti−1).

for some measurable function f . This includes noise-adding, shrinkage and so on.

We consider this is natural because φT1:i
is a sufficient statistic of µT1:i

. Also, it is not clear whether
estimators that infers µT1:i

through choices of T1:i assuming that the adversary actually knows
µT1:i

are of any practical interest. Moreover, some form of restriction on the estimator class is
required because in the setting with a fixed data distribution, knowledge Ti “gives away” µTi and
allows the trivial solution of Ai := µTi .
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An alternative way of viewing this is that, while it is allowed for the estimator to make use the
fixed distribution, it is required for it to use it “discreetly” and “pretend” that it only got the
estimator from the data alone. In other word, this estimator cannot “cheat” too blatantly, such that
it would appear unnatural.

The result requires the distribution to obey the following “richness” assumption.

(C) Within T , we can define random choices of T1, ..., Tk−1 such that the induced distributions
µT1 , ..., µTk−1

∼ Uniform(−M,M) for some M = Ω(k1/4σ), and for every t1, ..., tk−1 in
the range, φt1 ⊥⊥ ... ⊥⊥ φtk−1

. Also, there always exists Tk such that for every tk in its
range, the correlation between φtk and φt1,...,tk−1

is σ2s for any sign vector s of length k− 1,
and in addition, the induced distribution µTk is uniformly distributed on [−M ′,M ′] for
M ′ = Ω(kσ).

In the following, we explicitly construct a distribution satisfying the above condition.
Example 10.12 (Projections of multivariate Gaussian distribution). Define a 2k dimensional
multivariate Gaussian distribution as follows:

X1, X3, ..., X2k−1 ∼ N (−M,σ2/2)

X2, X4, ..., X2k ∼ N (M,σ2/2)

Cov(X1, X2) = Cov(X3, ..., X4) = ... = Cov(X2k−1, X2k) = σ2/2;

Recall that
T =

{
t ∈ R2k

∣∣‖t‖2 = 1
}

and
φt = tTx

We can work out that
max
t

Var(tTx) = ‖Σ‖2 = σ2

We can define T1 that interpolates between X1 and X2 such that µT1 has arbitrary distribution
supported on [−M,M ]. Now, for each sign vector s, we can choose the range of Tk to be

{√
[tk]22i−1 + [tk]22i = si/

√
k − 1 for i = 1, ..., k − 1 and 0 otherwise.

}

The degree of freedom that we leave in the construction allows us to set µTk to be anywhere
between [−M,M ].
Theorem 10.13. For each fixed distribution PφT satisfying (A), (B) and (C), the minimax risk for
natural estimators obeys

inf
A1:k∈A1:k

sup
W1:k

max
i∈[k]

E(Ai − µTi)2 = Ω(
√
k − 1σ2).

The proof follows the same proof techniques that we used to establish Theorem 10.10, except
that the randomization and smoothing operations are now simulated by the adversary choosing

269



randomized T1, ..., Tk. The results suggest that if we allow sequential selection of what to estimate,
natural estimators has an error growing in

√
k − 1 not only in the worst case, but essentially for

every distribution that has enough independent randomness and correlations in it, even if we
restrict the statistics of interest to be among linear projections of a Gaussian vector.

10.4 Discussion and open problems

Richness, dimension and uniform convergence. As we point out in Assumption (C), the
lower bound applies for each given k when there is a sufficiently rich class of functions T that
satisfy Assumption (A) and (B). So what happens to the minimax risk when T is not sufficiently
rich?

For instance, if T contains only a finite number of functions, or is a class of smooth functions that
has slowly growing metric entropy, then standard uniform convergence argument implies that for
sufficiently large k, the minimax risk will no longer be proportional to

√
k, but rather become

some quantity independent of k. In addition, these rates can be achieved without randomization,
which essentially deems the whole discussion of adaptive data analysis meaningless.

This picture is more intricate than just the two extremes. For any finite k, there is often a
large space between small function classes that has uniform convergence (Uniform Glivenko-
Cantelli), and big function classes with minimax risk growing in the order of O(

√
k). For instance,

adaptive data analysis can be meaningful even for a finite class of functions, if
√
k � log |T | but

k ' log |T |, then we gain orders of magnitude improvements through this upper bound in the
adaptive data analysis. Moreover, for any fixed k, the lower bound also holds if T sufficiently
rich. This richness can often be measured in terms of dimension or log-cardinality.

To be more concrete on the above discussion, we revisit the example of sequential estimation of
the projections of multivariate Gaussian vector as described in Example 10.1.

First off, if k is very large, namely, when k � d2, we know for sure that the upper bound is no
longer tight since by standard uniform convergence, we can get

E sup
t∈T
|φt(X)|2 = O

(
dσ2
)
. (10.4)

This suggests that the adaptive data analysis model is only meaningful when k = o(d2), in which
case the Gaussian noise adding algorithm achieves a square error of O(

√
kσ2) = o(dσ2).

On the other hand, our lower bounds imply that this is the optimal risk when k = O(d), because
our construction requires at least k−1 independent statistics, which is not possible for the problem
with d = O(

√
k). This brings up the following open problem:

• Can we improve over Gaussian noise adding algorithm in the sequential estimation of
Gaussian projections when d < k < d2?

It is unclear what answers to this question might be. A negative answer would also reveal that the
uniform convergence based bound is optimal for k = Ω(d2). A positive answer would suggest
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that there might be a way to systematically obtain smaller estimation error than the uniform
convergence bound even if k � d2.

Our conjecture is that Gaussian noise adding is actually optimal up to k = d2 and beyond
d2, uniform convergence bound is tight. We are able to prove this for a restricted setting of
independent noise-adding estimators but a lower bound for arbitrary estimators remains extremely
challenging and we will leave the concrete treatment of the problem to future work.

Gaussian sequence model, iid data and comparison to Steinke and Ullman [211]. So far
we have been focusing on Gaussian sequence model with one observation.

A major open problem is therefore:

• Can we do better when we have iid data?

In the standard statistical estimation problem, extension to multiple observations are easy, since
the KL-divergence of P n and Qn is simply nDKL(P‖Q) and the standard proof techniques like
Le Cam’s method and Fano’s method follow straightforwardly. However, the problem becomes
much trickier when we allow sequential selection, where the main workhorse we used relies on
delicate construction of a strong adversary.

The iid setting makes it harder to prove the lower bound because it effectively allows more
flexibility in designing estimators. In our framework, this can be modeled as additional equivalence
and independence structures in T that are known and can be exploited by the player. These
structures allow the player to find t′ and use φt′ (instead of φt) to estimate µt, and trade-off
between bias (which could be large due to sequential selection) and variance (which could be
large if data splitting is used excessively).

In a related setting studied in [211], where the adversary sequentially chooses statistical queries
on an iid data set of sample size n over {0, 1}d with a sufficiently large d ≥ k2, it was shown that
there exists a special iid distribution that comes out of the fingerprinting codes in traitor-tracing
schemes, under which it is possible to reconstruct a large percentage of the entire data set after
using sufficiently accurate answers to most of k statistical queries, thus allowing the subsequent
statistic to have a bias of magnitude k1/2/n. This is still far from the upper bound, which is on the
order of k1/4/

√
n. It remains open whether the gap can be closed.

Also, we note that their technique is very specific to the distribution constructed using fingerprint-
ing codes in which identifying the data sets correspond to identifying subsets of a known finite
population in which each element is highly unique (a high dimensional data set). It is unclear
how or whether their arguments could be modified to prove a lower bound in the jointly Gaussian
setting.

Our conjecture is that Steinke and Ullman [211]’s lower bound is not tight, and a square error of
order

√
k − 1σ2/n should be the minimax rate for the iid setting too.
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Data splitting based estimators. To illustrate why we believe in such a pessimistic conjecture,
when there had been algorithms proposed that make clever use of a “holdout” data set to prevent
the type of adversary that “explore” first and “exploit” only once.

In particular, the algorithm Thresholdout proposed by Dwork et al. [85] reveals half of the data
set (the training set) to the data analyst (the “adversary”) and makes use of the other half of the
data set (the holdout set) to estimates a statistic only when the estimates on the two halves differ
significantly. Of course, in this case the adversary does not need to “explore” the training set and
can easily force the Thresholdout estimator to makes use of the holdout set in every iterations,
so with k rounds, our constructed “adversary” implies that it could lead to an estimation error of√
k − 1σ2/n in the last round.

Another contender is the EffectiveRounds algorithm proposed in Dwork et al. [87], which
effectively split the training set in to q equal parts and each with n/(2q) data points. Basically, the
algorithm uses only one of the splits to do estimations until the answer differs significantly from
the holdout set, in which case the answer from the holdout set is used and that split is thrown
away. Subsequent questions are answered by the next split in the remaining q − 1 and we start
from scratch. The thing is that, since no randomization is used, this algorithms rely completely on
data splitting and therefore for sequentially chosen queries, in other word, it only takes O(q) steps
to break all q training data sets. In other word, the square error risk achieved by this algorithm is
only kσ2/n.

There are many other ways to use data splitting when designing estimators to handle the easy
cases when the adversary only sporadically “exploit”s, but it is unclear whether they can achieve
the same worst-case risk that is achievable by directly adding noise to the statistics evaluated using
the full data set. For instance, if we split the data set into q equal parts and each time we only use
one of them to estimate statistics, then when k < q such estimators necessarily will suffer from an
error of qσ2/n even for non-adaptively chosen queries, while the naive noise adding approach
that does not split the data could achieve

√
k − 1σ2/n.

An intriguing open question is that:

• Does data splitting actually help to improve the estimation error for k > q2?

While we do not know the answer in general, as decision rules on, let us first consider a simplified
problem where we do know the answer. Let us restrict the player’s strategy to the following model
Asplit

1:k :

1. The player is informed of the adversary’s strategyW1, ...,Wk which in each round, chooses
Ti using T1:i−1, A1:i−1.

2. The player randomly splits the data into q equal parts with disjoint sets of indices I1, ..., Iq
satisfying |I1| = ... = |Iq| = n/q (for simplicity, assume q and n/q are integers). Let the
averages of each partition be X̄1, ..., X̄q.

3. In Round i, upon receiving Ti, the player will answer by choosing (a possibly random)
Ji ∈ [q] and answer 〈X̄Ji , Ti〉+Z where Z is an arbitrary “fresh” random variable generated
independently to all states of the game, and Ji is determined using J1:i−1, T1:i, A1:i−1, and
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the oracle loss E[〈X̄j − θ, Ti〉2|T1:i, J1:i−1] for any j ∈ [q].

Note that this model implies that Ji cannot depend on the data set X1, X2, ..., Xn. Yet, we think
this is a reasonable model because the player now have access ot the oracle loss associated with
each choice, the data distribution, the adversary’s strategy and not having to reveal J1, ..., Jk to
the adversary.

We note that the key idea in both Thresholdout and EffectiveRounds is to detect whether the
query is “adaptive” through inconsistency in the estimates from different data split. Under this
simplified model, the algorithm can know perfectly whether a query is (harmfully) “adaptive” and
in fact can calculate the exact bias and variance associated with each choice j ∈ [q].
Proposition 10.14. In the problem of sequential selective estimation of Gaussian projections with
iid data set of size n. Assume d > k − 1 and X1, ..., Xn ∼ N (θ, σ2I). There is a fixed sequence
of adversary strategyW1:k that, such that for any θ ∈ Rd

inf
A1:k∈Asplit1:k

Emax
i∈[k]

[(Ai − 〈Ti, θ〉)2] = Ω(

√
k − 1σ2

n
).

The proof, which we present in details later in Appendix 10.8, constructs an explicit adversary
that “explore”s and “exploit” at the same time using different dimensions of the projection Ti,
which forces each data partition to answer not more than (k − 1)/q statistical queries with added
noise having a variance at least Ω(

√
k − 1σ2/n). The key observation in the proof is that since

each partition now has an intrinsic variance of order qσ2/n, we only need a 1/q fraction of
the dimensions in the specified projections to blow up the bias if that partition happens to be
used.

This lower bound implies that even if the minimax risk can be improved in the iid setting, it
probably cannot be achieved by variants of Thresholdout and EffectiveRounds.

10.5 Conclusion

In this chapter, we presented a minimax framework for adaptive data analysis and derived the first
minimax lower bound for the joint-Gaussian setting that matches the upper bound in Russo and
Zou [183] up to constant. We also presented an elementary proof for the same upper bound for the
Gaussian noise-adding procedure and obtained an improved constant for the squared error metric.
Our results reveal that an approximate least favorable adversary that “explores” for k−1 steps and
then maximizes the bias in the last step by choosing a statistical quantity that is simultaneously
correlated with all previous chosen statistical quantities with the signs of the covariance vector
decided by an optimal classifier.

In the discussion, we pointed out the implicit dependency of the lower bound on the richness
of the problem class. Through an illustrative example, we discussed the intriguing regime that
interpolates the risk bounds via adaptive data analysis and uniform convergence. Lastly, we
discussed challenges in extending the minimax analysis to the iid setting and illustrated why
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data-splitting based methods probably will not improve the minimax risk., do not work better
relative to those that do not split the data set.

Future work includes finding the upper bound for the jointly-subgaussian case, strengthening
the lower bound to the cases with an iid data set, bridging the dimensionality gap from between
uniform convergence and adaptive data analysis, as well as extending the minimax framework for
more practical regimes.

10.6 Upper bound proofs

10.6.1 Proof of Theorem 10.6

Proof. In this proof, we denote short hand φ := φt1:k−1
, µ := µt1:k−1

and Z := Z1:k−1. We first
bound the bias term using law of total expectations

ETk,φTk (φTk−µTk) = Eφ,ZETk∼W(φ+Z)EφTk (φTk−µTk
∣∣Tk, φ+Z) ≤ Eφ,Z sup

tk∈T
Eφtk (φtk−µtk

∣∣φ+Z)

By Gaussianity, the conditional expectation is

Eφtk (φtk − µtk
∣∣φ+ Z) = ΣT

k,1:k−1(Σ1:k−1 + w2I)−1(φ+ Z − µ)

What is the worst Σ1:k−1,k to use? If unconstrained the above bias can go to infinity. The choice
of Σ1:k−1,k must obey that after we augment Σ1:k−1 with it Σ remains positive semidefinite. In

general, suppose we have block matrix M =

[
λ vT

v Σ

]
where Σ is positive definite, then

M � 0⇔ det(M) = det(A) det(A− vλ−1vT ) > 0.

which tells us that the optimal solution to
{

max
v,λ
〈v, x〉

∣∣∣M � 0, λ ≤ σ2

}

is to take λ = σ2 and the problem translates into
{

max
v
〈v, x〉

∣∣∣vvT ≺ σ2Σ
}

=
{

max
v
〈v, x〉

∣∣∣
√
vTΣ−1v < σ

}
= ‖v∗‖Σ−1‖x‖Σ = σ‖x‖Σ

where ‖ · ‖Σ is the dual norm of ‖ · ‖Σ−1 .

Take Σ = Σ1:k−1 and we use the above argument can work out Σk,1:k−1 that attains the supremum
and the corresponding conditional bias is

σ‖(Σ1:k−1 + w2I)−1(φ+ Z − µ)‖Σ1:k−1
.
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Since (·)2 is monotonically increasing on R+, the supremum of the square conditional bias is
attained by the same choice of tk and

Eφ,Zσ2(φ+ Z − µ)T (Σ1:k−1 + w2I)−1Σ1:k−1(Σ1:k−1 + w2I)−1(φ+ Z − µ)

=σ2tr
{
Eφ,Z

[
(φ+ Z − µ)(φ+ Z − µ)T

]
(Σ1:k−1 + w2I)−1Σ1:k−1(Σ1:k−1 + w2I)−1

}

=σ2tr
{

Σ1:k−1(Σ1:k−1 + w2I)−1
}

=σ2

k−1∑

i=1

λi
λi + w2

≤ σ2

w2

k−1∑

i=1

λi =
(k − 1)σ4

w2
. (10.5)

where λi are the eigenvalues of Σ1:k−1. The last line diagonalizes Σ1:k−1 and uses the fact that
trace operator is unitary invariant. Note that the inequality is sharp up to a small constant as for
the case when λi = σ2 for all i, the quantity is equal to (k−1)σ2

σ2+w2 . By Jensen’s inequality, the upper
bound for the expected conditional bias in (10.5) is also upper bounds the bias.

The proof of the second claim is simply decomposing the square error of Ak = φTk + Zk into
square bias and variance, and upper bound each term by choosing w =

√
k − 1σ2.

The bias of Ak is the same as that of φTk in (10.5). The variance obeys

Σk + w2 − Eφ,Z sup
φk

ΣT
k,1:k−1(Σ1:k−1 + w2I1:k−1)−1Σk,1:k−1

≤Σk + w2 ≤ σ2 + w2 ≤ (
√
k − 1 + 1)σ2

Adding the two upper bounds give us the right form.

10.6.2 Proof of Theorem 10.8

Proof. We first control the bias. As we worked out in the proof of Theorem 10.6,

E (φTk − µTk) =ET1:k−1,A1:k−1
ETk∼Wk|T1:k−1,A1:k−1

(
EφTk |T1:k,A1:k−1

φTk − µTk
)

≤ET1:k−1,A1:k−1
sup
tk∈T

(
Eφtk |T1:k−1,tk,A1:k−1

φtk − µTk
)

=ET1:k−1,A1:k−1

√
σ2fk−1 ≤

√
σ2ET1:k−1,A1:k−1

fk−1, (10.6)

where for simplicity, we denote

fk−1 := (A1:k−1 − µT1:k−1
)T (Σ1:k−1 +W1:k−1)−1Σ1:k−1(Σ1:k−1 +W1:k−1)−1(A1:k−1 − µT1:k−1

),

and the last step follows from the Jensen’s inequality on the concave function
√·. Note that every

variable in fk−1 is a random variable.

We will further expand the above expectation into a sequence of expectations and recursively
evaluate the conditional expectation and then taking supremum of fk−1.

Efk−1 = ET1:k−2,A1:k−2
ETk−1|T1:k−2,A1:k−2

EAk−1|T1:k−1,A1:k−2
fk−1

≤ ET1:k−2,A1:k−2
sup

φtk−1
∈T

EAk−1|T1:k−2,tk−1,A1:k−2
fk−1
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It turns out that we can neatly express the conditional expectation in a closed form as a function
of Σ1:k−1 and the diagonal covariance of the added noise W1:k−1.

Lemma 10.15. Denote w2 = Wk−1,W = W1:k−2 and Σ = Σ1:k−2, v = Σk−1,1:k−2, λ = Σk−1

such that

W1:k−1 =

[
W 0
0 w2

]
, Σ1:k−1 =

[
Σ v
vT λ

]
.

In addition, Ω := (Σ +W )−1Σ(Σ +W )−1. We have

EAk−1|T1:k−2,tk−1,A1:k−2
fk−1 = fk−2 +

(λ+ vTΩv − vT (Σ +W )−1v)(λ+ w2)

(λ+ w2 − vT (Σ +W )−1v)2
. (10.7)

In order to not interrupt the flow of the arguments, we defer the proof of Lemma 10.15 to the
appendix.

With this parametric form, the supremum can be rewritten as

sup
Tk−1∈T

EAk−1|T1:k−2,tk−1,A1:k−2
fk−1

=fk−2 + max
λ≤σ2,Σ1:k−1�0

(λ+ vTΩv − vT (Σ +W )−1v)(λ+ w2)

(λ+ w2 − vT (Σ +W )−1v)2 .
(10.8)

As in the previous calculations, the semidefinite constraint requires that vTΣ−1v ≤ λ, also
(Σ +W )−1 � Σ−1, therefore for any v,

vTΩv = vT (Σ +W )−1Σ(Σ +W )−1v ≤ vT (Σ +W )−1v ≤ vTΣ−1v ≤ λ.

Substitute into (10.8), we get an upper bound of the supremum

sup
Tk−1∈T

EAk−1|T1:k−2,tk−1,A1:k−2
fk−1 ≤ fk−2 + max

λ≤σ2

λ(λ+ w2)

w4
≤ fk−2 +

σ2

w2
+
σ4

w4
.

Recursively evaluating and upper bounding the supremum until the base case

sup
t1∈T

EA1|t1f 1 = max
σ2

1≤σ2

E(A1 − µt1)2σ2
1

(σ2
1 + w2

1)
= max

σ2
1≤σ2

σ2
1

σ2
1 + w2

1

≤ σ2

w2
1

+
σ4

w4
1

,

we end up with

Efk−1 = σ2

k−1∑

i=1

(
1

w2
i

+
σ2

w4
i

)
,

and substitute into (10.6), we obtain an upper bound for the bias

E (φTk − µTk) ≤

√√√√σ4

k−1∑

i=1

1

w2
i

+
σ2

w4
i

.
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This gives the desired bound for the first claim.

The variance can be easily evaluated using the conditional variance.

Var(φk) = ET1:k−1,A1:k−1
ETk|T1:k−1,A1:k−1

EφTk |T1:k,A1:k−1

(
φTk − EφTk

)2

= ET1:k−1,A1:k−1
ETk|T1:k−1,A1:k−1

(σ2
i − Σk,1:k−1Σ1:k−1Σ1:k−1,k) ≤ σ2.

Combining the bounds for bias and variance, we upper bound the mean square error by

σ4

k−1∑

i=1

(
1

w2
i

+
σ2

w4
i

)
+ σ2.

The second claim follows directly by taking w2
i =
√
k − 1σ2 for each i = 1, .., k− 1, and add the

variance of the additional noise Zk.

10.6.3 Proof of Lemma 10.15

Proof. We prove by a direct calculation. First of all, we invert (Σ1:k−1 +W1:k−1) in block form
and use Sherman-Morrison formula on the first principle minor:

(Σ1:k−1 +W1:k−1)−1 =

[
Σ +W v
vT λ+ w2

]−1

=




(
Σ +W − vvT

λ+w

)−1

−(Σ +W )−1v
(
λ+ w2 − vT (Σ +W )−1v

)−1

−
(
λ+ w2 − vT (Σ +W )−1v

)−1
vT (Σ +W )−1

(
λ+ w2 − vT (Σ +W )−1v

)−1




=

[
(Σ +W )−1 + α(Σ +W )−1vvT (Σ +W )−1 −α(Σ +W )−1v

−αvT (Σ +W )−1 α

]

where we denote α :=
(
λ+ w2 − vT (Σ +W )−1v

)−1.

For any symmetric block matrices
[
X Y
Y T Z

] [
A B
BT C

] [
X Y
Y T Z

]

=

[
XAX +XBY T + Y TBX + Y CY T XAY +XBZ + Y BTY + Y CZ
Y TAX + Y TBY T + ZBTX + ZCY T Y TAY + Y TBZ + ZBTY + ZCZ

]

For the special case here let A1:k−2 − µT1:k−2
=: x and Ak−1 − µTk−1

=: y,

fk−1 =
[
xT yT

] [F11 F12

F21 F22

] [
x
y

]
= xTF11x+ 2xTF12y + yTF22y

for some blocks F·,·.
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Further denote b := vT (Σ +W )−1x, Ω := (Σ +W )−1Σ(Σ +W )−1,





xTF11x = xTΩx+ 2αb(xTΩv) + α2b2(vTΩv)− 2αb2 − 2α2b2[vT (Σ +W )−1v] + λα2b2.

2xTF12y = −2αb(xTΩv)− 2α2b2(vTΩv) + 2αb2 + 4α2b2[vT (Σ +W )−1v]− 2λα2b2

yTF22y = λα2b2 + α2b2(vTΩv)− 2α2b2[vT (Σ +W )−1v]

+α2
[
λ+ vTΩv − vT (Σ +W )−1v

]
(λ+ w2)

It’s easy to check that xTΩx = fk−2 and almost everything cancels out when we sum the three
terms up. All that remains gives exactly what we claim to be true.

10.7 Lower bound proofs

We use Hi = [Z1:i−1, T1:i−1, A1:i−1] to denote the shared knowledge up to step i by both the player
and adversary, and we use H̄i = [Hi, Z1:i−1] to denote the entire history and the data, which
further includes information known to the player but not known to the adversary.

The proof constructs one specific sequence ofW1:k and show that, no estimators A1:k can achieve
a better risk than Ω(

√
kσ2).

We discuss the two different settings that we considered, where the constructions are related but
slightly different:

(a) when we considers the standard minimax risk, where we maximize over the class of all
distributions, as well as the selection procedure. Note that here the only assumption we
need is |T | > 2k−1 + k − 1.

(b) when we consider a fixed distribution satisfying richness assumptions and maximize over
only the selection procedure (restricting the estimators to only natural ones).

10.7.1 Part (a) minimax lower bound

Constructing a specific adversary strategy.

In the first scenario, the adversary simply chooses T1 = 1, ..., Tk−1 = k − 1, and Tk will be
a deterministic map of Hk to range k, ..., k + 2k−1 − 1. The remainder of T hence becomes
unimportant and we can specify it in an arbitrary way that does not depend on the first k+2k−1−1
elements of the set. Without loss of generality, we assume |T | = k+ 2k−1− 1 from here onwards
until we discuss Scenario (b).

For ease of presentation, define operator dec2bin : {0, 1, ..., 2k−1} → {−1, 1}k−1, which convert
any nonnegative integer smaller than 2k−1 to its binary number representation in the form of a sign
vector. For example, dec2bin(1) = [−1,−1, ...,−1, 1] and dec2bin(5) = [−1,−1, ...,−1, 1,−1, 1].
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Similarly, the inverse operator bin2dec : {−1, 1}k−1 → {0, 1, ..., 2k−1} maps a binary number’s
sign vector representation to the corresponding integer.

Specifically, the adversary takesWk to be the following algorithm:

1. Observing A1, A2, ..., Ak−1 and µ1, ..., µk−1,Wk uses an optimal classifier to infer the signs
of φTi − µi. Specifically. likelihood ratio test that output ŝi = 1 if

log
P(A1, ..., Ak−1|φTi − µTi > 0)

P(A1, ..., Ak−1|φTi − µTi < 0)
≥ 0

and ŝi = −1 otherwise. Let the estimated sign vector be ŝ.

2. Choose Tk = k + bin2dec(ŝ).

Let the above strategy be W̃1:k. Moreover, define the subset of estimators such that supµ,Σ maxW1:k
maxi∈[k−1] E(Ai−

µTi)
2 ≤ τ . Denote this set by Aτ

1:k−1. The minimax riskR(k, σ2) satisfies:

R(k, σ2) ≥ τ ∧ min
A1:k−1∈Aτ1:k−1,Ak

max
µ,Σ

max
W1:k

EA1:k,W1:k
(Ak − µTk)2

≥ τ ∧ min
A1:k−1∈Aτ1:k−1,Ak

Eµ,ΣEA1:k,W̃1:k
(Ak − µTk)2, (10.9)

The first inequality is true for all τ because if τ ≤ R(k, σ2) the bound holds trivially and if
τ > R(k, σ2) then the minimax estimator is in Aτ

1:k−1. We will choose τ later to maximize the
bound. In the second line we used a Bayes risk to lower bound the minimax risk. Note that
the above inequality holds for the Bayes risk evaluated under any prior distribution of µT and
ΣT ,T .

Constructing a nearly least favorable prior.

To approximately maximize the lower bound, we will consider the following prior distribu-
tion.

µt ∼ Unif(−Mt,Mt)

for each t ∈ T independently. For t = 1, ..., k − 1, Mt = M and for t = k, ..., k + 2k−1 − 1,
Mt = M ′. Parameter M and M ′ will be specified later.

Let Σ1:k−1,1:k−1 = σ2Ik−1. Each of the remaining 2k−1 statistics has marginal variance also fixed
at σ2, but they are all correlated with the first k − 1 statistics. Specifically,

Cov(φk+j, φ1:k−1) =
σ2νk+j√
k − 1

· dec2bin(j).

where independently for every j = 0, ..., 2k−1 − 1,

P(νk+j = −1) = P(νk+j = 1) = 0.5.

Note that here the prior distribution of ΣT ,T is induced by the distribution of the random sign
vector ν = {νk, ..., νk+2k−1−1}.
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Figure 10.3: A directed acyclic graphical representation of the joint distribution. The nodes
shaded in gray are random variables observed by the estimators. µI (shaded in yellow) is not
known to the “player”, but we deliberately give it away to the “player”1 to break the dependence
between AI and µTk so that the calculations become tractable.

Optimal player strategy in the last step.

We will now work out the optimal estimator in the kth step under the above fixed adversary
strategy and the prior distribution.

The conditional independence structure of the variables are summarized in Figure 10.3. Note that
we can factorize the joint distribution in a different way. For clarity in notation, denote index set
I = {1, ..., k − 1} and Ic = {k, ..., k + 2k−1 − 1}.

E(Ak − µTk)2 = EµIEφI |µIEφIc |µI ,φIEAIEAI |µI ,φT ETk|AI ,µIE[(Ak − µTk)2|Tk, µI , φT , AI ].

The final expectation is taken over P (µIc , ν|Tk, µ1:k−1, φT , AI). By the conditional independences,
we can drop the dependence on AI and Tk:

P (µIc , ν|Tk, µI , φT , AI) = P (µIc , ν|µI , φT )

Also, for any i, j ∈ Ic,
(µi, νi) ⊥⊥ (µi, νj) | µI , φT

So for each Tk = i ∈ Ic, so we can consider a separate univariate estimation problem indepen-
dently for each Tk chosen.

1This makes the “player” stronger, the minimax risk smaller, therefore a lower bound of the easier setting for the
“player” is a lower bound of the original setting.
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Moreover, by Bayes rule,

P (µIc , ν|µI , φT ) ∝ P (φT |µIc , ν, µI)π(µIc , ν|µ1:k−1) = P (φT |µIc , ν, µI)π(µIc , ν)

= P (φI |µI)P (φIc |µIc , ν, φI , µI)π(µIc)π(ν).

For i ∈ Ic, denote bi := 1√
k−1

sTi (φI −µI), where si = dec2bin(i− k). The posterior distribution
obeys that





P (µi = φi + bi, νi = 1|µI , φT ) = 1 if φi − bi < −M ′

P (µi = φi − bi, νi = −1|µI , φT ) = 1 if φi + bi > M ′
[
P (µi = φi − bi, νi = −1|µI , φT ) = 0.5

P (µi = φi + bi, νi = 1|µI , φT ) = 0.5.

]
otherwise.

This defines a prior distribution for the problem of estimating µTk , when we condition on
Tk, µI , φT , AI . The corresponding optimal estimator Ak (even if we give µI as an auxiliary
input to make it more powerful), is simply the Bayes estimator, which for squared error loss func-
tion, is simply the posterior mean E(µTk |Tk, µ1:k−1, φT , A1:k−1) = φTk [see e.g. 143, Corollary
4.1.2], namely,

Ak =





φTk + bTk if φTk − bTk < −M ′

φTk − bTk if φTk + bTk > M ′

φTk if −M ′ + bTk < φTk < M ′ − bTk ,
and the corresponding mean square error is 0 if the first two events happen and is b2

Tk
other-

wise.

Of course as M gets large, the probability that we run into the first two events are smaller and
at the limit of M ′ → ∞, the first two events occur with probability 0. We now formalize this
idea.

P(φTk − bTk < −M ′) = P(νTk = −1, µTk < −M ′ + bTk)

≤P(µTk < −M ′ + bTk) = P(µTk < −M ′ + bTk , bTk > h) + P(µTk < −M ′ + bTk , bTk < h)

≤P(bTk > h) + P(µTk < −M ′ + h, bTk < t) ≤ P(bTk > h) + P(µTk < −M ′ + h)

where the inequality holds for every fixed h > 0. Similarly,

P(φTk + bTk > M ′) ≤ P(bTk > h) + P(µTk > M ′ − h).

Note that
P(µTk > M ′ − h) = P(µTk < −M ′ + h) = h/(2M ′).

Also by Markov’s inequality

P(bTk > h) ≤ E[bTk ]

h
≤ E[maxi∈Ic bi]

h
=

1

h

√
2(k − 1)

π
σ.
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Therefore

P(φTk − bTk < −M ′ or φTk + bTk > M ′) ≤ h

M ′ +
1

h

√
2(k − 1)

π
σ.

As M ′ → ∞, take h =
√
M ′, then P(φTk − bTk < −M ′ or φTk + bTk > M ′) → 0. Also, it can

be shown that for each A1:k−1 ∈ Aτ
1:k−1, by dominated convergence theorem

lim
M ′→∞

E(b2
Tk
| −M ′ + bTk ≤ φTk ≤M ′ − bTk) = E(b2

Tk
).

In summary, as M ′ →∞, we get

R(k, σ2) ≥τ ∧ min
A1:k−1∈Aτ1:k−1

Eµ1:k−1
EA1:k−1

b2
Tk

=τ ∧ min
A1:k−1∈Aτ1:k−1

Eµ1:k−1
EH̄k

[
k−1∑

i=1

ŝi(φTi − µTi)√
k − 1

]2

≥τ ∧ min
A1:k−1∈Aτ1:k−1

[
k−1∑

i=1

Eµ1:k−1
EH̄k ŝi(φTi − µTi)√

k − 1

]2

(10.10)

where the last inequality follows from Jensen’s inequality.

Let ŝ be a function R2(k−1) → {−1, 1}k−1, that takes A1:k−1, µ1:k−1 as input. Denote

Q(A1:k−1, ŝ) :=

[
k−1∑

i=1

Eµ1:k−1
EH̄k ŝi(φTi − µTi)√

k − 1

]2

.

By the optimality of the previously defined adversary that chooses ŝi to be the likelihood ratio
test, we can rewrite the expression in (10.10) as a variational form

R(k, σ2) ≥ τ ∧ min
A1:k−1∈Aτ1:k−1

max
ŝ
Q(A1:k−1, ŝ). (10.11)

What we have achieved so far is a reduction of the problem into a simper minimax problem, where
we know the optimal ŝ analytically.

It remains to work out the optimal player strategy for the first k − 1 steps. This is still very
challenging as A1:k−1 could have complex dependency structures. We now show that under the
specific prior, it suffices for us to consider an even simpler class of player strategies.

Reduction to independent noise adding.

To begin with, define Zi = Ai− φTi . Since Zi is allowed to depend on everything that Ai depends
on including Ti and φTi , A1:k−1 is equivalent to φT1:k−1

+ Z1:k−1. Without loss of generality, this
converts the problem of finding the optimal estimators to the equivalent problem of finding the
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optimal dependent noise adding procedures. We overload the score function Q that takes Z1:k−1

as an input to mean Q(φT1:k−1
+ Z1:k−1, ŝ).

Now we will show that it suffices to consider only independent noise adding. The argument
is broken into two steps. In Step 1, we show that it suffices to consider Zi that depends only
on φTi but not everything else. Then in Step 2, we will further show that it suffices to consider
independent noise adding that does not even depend on φTi .

Step 1: We will show that for every feasible Z1:k−1 obeying E(φTi + Zi − µTi)2 ≤ τ , there is
another feasible randomization strategy Z̃1:k−1 that adds Zi such that Zi ⊥⊥ Everything | φTi and
maxŝQ(Z̃1:k−1, ŝ) ≤ maxŝQ(Z1:k−1, ŝ).

Take Z̃1:k−1 such that Zi|φTi is identically distributed to that of Z1:k−1 and Zi ⊥⊥ Everything | φTi .
This can be obtained by simply marginalizing over all other variables thatZ1:k−1 depends on.

Clearly, Z̃1:k−1 is feasible. It is easy to see that the bias remains unchanged. And the following
expansion shows that the variance also remains unchanged.

Var(φTi + Zi − µTi) = EVar(φTi + Zi − µTi|φTi , Ti) + VarE(φTi + Zi − µTi |φTi , Ti)
= EVar(Zi|φTi) + Var(φTi − µi + E(Zi|φTi)).

Now define ŝ′ ∈ {f : R× R→ {−1, 1}} that takes in only Ai and µTi instead of all A1, ..., Ak−1,
µT1,...,Tk−1

.

max
ŝ
Q(Z̃1:k−1, ŝ) = max

ŝ′
Q(Z̃1:k−1, ŝ

′) = max
ŝ′

Q(Z1:k−1, ŝ
′) ≤ max

ŝ
Q(Z1:k−1, ŝ)

The first equal sign is true because A1 ⊥⊥ A2 ⊥⊥ ... ⊥⊥ Ak−1 regardless of any form of conditioning.
The second equal sign is true because ŝ′ uses only Ai to estimate the sign of φTi − µTi and the
distribution of Ai|φTi , Ti remains unchanged by definition of Z̃1:k−1. Then the last inequality
holds because ŝ is more powerful than ŝ′.

Step 2: Intuitively, if we are given a perturbation Z that depends on φTi , it reveals information
about φTi that can be used to the adversary’s advantage. We will now formalize the intuition.
Thanks to Step 1, we can now consider each summand of Q(Z1:k−1, ŝ) separately, that is:

min
A1:k−1∈Aτ1:k−1

max
ŝ
Q(A1:k−1, ŝ) =

{
1√
k − 1

k−1∑

i=1

min
Zi∈Zτi

max
ŝ′i

EµiEφi,Zi ŝ′i(φi − µi)
}2

=:

{∑k−1
i=1 F̃i√
k − 1

}2

(10.12)
and we denote

F̃i = min
Zi∈Zτi

max
ŝ′i

EµiEφi ŝ′i(φi − µi)

where the expectation over µti is defined as Unif(−M,M). We will further drop the subscript
i, ti and the prime in ŝ′ for notational simplicity. Now let pa(·) be the probability density of Z
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when φ = a. Denote x := |φ− µ|. We know that x follows the half-normal distribution. By the
decision rules of ŝ as defined earlier, for each Z , we can write we get:

max
ŝ

EµEφŝ(φ− µ)

≥
∫ M

−M

{∫ ∞

0

x
1

2

[∫
|pµ−x(t+ x)− pµ+x(t− x)|dt

] √
2√
πσ

e−
x2

2σ2 dx

}
1

2M
dµ

=
1

2

∫ ∞

0

x

{∫ M

−M

[∫
|pµ−x(t+ x)− pµ+x(t− x)|dt

] √
2√
πσ

1

2M
dµ

}
e−

x2

2σ2 dx

≥1

2

∫ ∞

0

x

[∫ ∣∣∣∣
∫ M

−M
(pµ−x(t+ x)− pµ+x(t− x))

1

2M
dµ

∣∣∣∣ dt
] √

2√
πσ

e−
x2

2σ2 dx.

where the last line follows from Jensen’s inequality. Denote
∫
|f(t)|dt by L1-norm ‖f‖1, the

above expression can be rewritten compactly as
1

2
Ex [x‖Eµ(pµ−x(·+ x)− pµ+x(· − x))‖1]

=
1

2
Ex [x‖Eµ(pµ−x(·+ x)− pµ(·+ x) + pµ(·+ x)− pµ(· − x) + pµ(· − x)− pµ+x(· − x))‖1]

≥1

2
Ex [x‖Eµpµ(·+ x)− Eµpµ(· − x)‖1]

− 1

2
Ex [x‖Eµpµ−x(·+ x)− Eµpµ(·+ x)‖1]− 1

2
Ex [x‖Eµpµ(· − x)− Eµpµ+x(· − x))‖1]

Recall that µ is a uniform distribution from [−M,M ]. By Holder’s inequality,

‖Eµ(pµ−x(·))− Eµ(pµ(·))‖1 ≤
x

M
.

It follows that

Ex
[
x ‖Eµpµ−x(·+ x)− Eµpµ(·+ x)‖1

]
≤ 1

M
Ex
[
x2
]
≤ σ2

M
.

This ensures that the two negative terms can both be arbitrarily small as we take M →∞.

Now, let Z ′ be the “smoothed” distribution such that Z has distribution q(t) = Eµpµ(t). Clearly,
Z ′ is feasible, it does not depend on φ and

Ex [x‖Eµpµ(·+ x)− Eµpµ(· − x)‖1] = Ex [x‖q(·+ x)− q(· − x)‖1] .

Since for each Z we can construct this Z ′ that does not depend on φ and has the same objective
value, therefore it suffices to consider only independent noise adding. Lastly, we can also offset
Z ′ such that the noise it adds is zero-mean without affecting the feasibility and the objective
value.

To put things together, we get

F̃ ≥ min
q s.t. EZ=0,Var(Z)≤τ

1

2
Ex [x ‖q(·+ x)− q(· − x)‖1]
︸ ︷︷ ︸

(†)

−σ
2

M
(10.13)

where the minimization is over the distribution q of the zero-mean independent noise.
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Near optimal obfuscation of a Bayes classifier.

It remains to lower bound (†) using Lemma 10.16 following lemma (which we defer the proof to
later)
Lemma 10.16. Let signal random variable X and noise random variable Z be such that X ∼
N (0, σ2), EZ = 0, Var(Z) ≤ w2. Let Y be the half-normal distribution with parameter σ2. Let
ŝ be the optimal Bayes classifier of sign(X) by observing X + Z, then

EX,Z(ŝX) =
1

2
EY [Y ‖q(·+ Y )− q(· − Y )‖1]

and

EX,Z(ŝX) ≥
{

σ2
√

3w
− σ4

2
√

3w3 when w2 ≥ σ2,
σ

2
√

3
when w2 < σ2.

(10.14)

Moreover,

lim
σ2

w
→0

w

σ2
EX,Z(ŝX) ≥ 1√

3

with equal sign attained by uniform distribution U([−
√

3w,
√

3w]).

Recall that we can take τ to be any value. For τ ≥ σ2, (10.14) implies that

(†) ≥ σ2

2
√

3τ
. (10.15)

Putting everything together

When k = 1, there is no dependence in T and φT . The minimax risk of estimating a normal mean
suggests that Fk ≥ σ2.

When k > 1, τ =
√
k − 1σ2 ≥ σ2, combine (10.11), (10.12), (10.13), (10.15), we get

R(k, σ2) ≥
[

1√
k − 1

k−1∑

i=1

(
σ2

2
√

3τ
+
σ2

M

)]2

≥
[√

(k − 1)σ2

12
+

(k − 1)σ4

M2
+

2(k − 1)3/4σ3

√
3M

]
.

Note that this bound holds for all M > 0. Take M →∞, we get

R(k, σ2) ≥
√
k − 1σ2

12
.

In addition, as k →∞ This completes the proof.
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Lower bound for the sequential projections of Gaussian vectors

Proof of Corollary 10.11. We will mostly reuse arguments in the sections before, but also make
important changes to address issues specific to this problem.

For i = 1, ..., k − 1, the adversary will choose ti = ei the standard basis for “exploration”. Then
in the kth step, the adversary will “exploit” by estimating the signs of X − θ1 using the likelihood
ratio test to obtain ŝ and then choose Tk = [0d; ŝ/

√
k − 1; 0d−k+1].

We will also consider the following prior distribution:

θ1 ∼ Unif(−M,M), θ2 ∼ N (0,M2I), P(v = 1) = P(v = −1) = 0.5.

Constraining A1:k−1 to outputting an A1:k−1 such that maxi∈[k−1] E[(Ai − 〈Ti, θ〉)2 ≤ w2], if w2

is greater than the minimax risk, then this restriction is without loss of generality; otherwise we
can lower bound the minimax risk using

inf
A1:k

sup
θ1,θ2,v∈{−1,1}

sup
W1:k

max
i∈[k]

E[(Ai − 〈(X,X ′), Ti〉)2]

≥min{w2, inf
A1:k−1∈Aw1:k−1,Ak

sup
θ1,θ2,v∈{−1,1}

sup
W1:k

E[(Ak − 〈(X,X ′), Tk〉)2]

︸ ︷︷ ︸
(∗)

}

We will choose w2 later and focus on lower bounding the second term by choosing the specific
adversary and a specific prior, which gives us

(∗) ≥ inf
A1:k−1∈Aw1:k−1,Ak

Eθ1,θ2,v∈{−1,1}E[(Ak − 〈(X,X ′), Tk〉)2]

Also, we reveal θ1 to Ak (to make it an even stronger estimator) to break the dependence of
µk = 〈Tk, (X,X ′)〉 to Ak, so we can more easily calculate the posterior distribution.

First check that

µk =
〈ŝ1:k−1, θ

′〉√
k − 1

=
〈ŝ1:k−1, X

′〉√
k − 1

− v 〈ŝ1:k−1, X − θ1〉√
k − 1

= φTk − vb

where we denote b := 〈ŝ1:k−1,X−θ1〉√
k−1

. From the equation, it is clear that is not known to the player
is v.

It follows that the posterior distribution

P(µk|X,X ′, A1:k−1, T1:k−1, Tk, θ1) = P(µk|b, φTk) =
∑

v∈{−1,1}

P(µk, v|b, φTk)

where

P(µk, v|b, φTk) ∝ p(b)p(φTk |v, µk)π(v)π(µk) =

{
0.5π(µk = φTk − b|φTk) if v = 1 and µk = φTk − b
0.5π(µk = φTk + b|φTk) if v = −1 and µk = φTk + b
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Using conjugacy of the prior, we have µk|φTk ∼ N
(
M2φTk
σ2+M2 , (1/M

2 + 1/σ2)−1
)
.

π(µk = φTk − b|φTk)
π(µk = φTk + b|φTk)

= e
−(

σ2φTk
σ2+M2 +b)2/(2σ2)+(

σ2φTk
σ2+M2−b)2/(2σ2)

= e
−

2bσ2φTk
(σ2+M2)σ2

Note that φTk = OP(M) and b = OP(
√
k − 1σ), so as M →∞

E(µk|X,X ′, A1:k−1, T1:k, θ1)→ 〈ŝ, X
′〉

k − 1
.

More formally, the optimal Ak = E(µk|X,X ′, A1:k−1, T1:k) obeys that

E[(Ak − µk)2] ≥E
[
(E(µk|X,X ′, A1:k−1, T1:k, θ1)− µk)2

]

≥
(

1− P(|φTk | > M log(M))− P(|b| >
√
k − 1σ log(M))

)

E
[
b2
∣∣∣|b| <

√
k − 1σ log(M), |φTk | < M log(M)

]

Take limM→∞ on both sides, we get

lim
M→∞

E[(Ak − µk)2] = E[b2] =
E[(〈ŝ, X ′ − θ2〉)2]

k − 1
=

E[(〈ŝ, X − θ1〉)2]

k − 1

The problem thus reduces to:

(∗) ≥ inf
A1:k−1∈Aw1:k−1

E[(〈ŝ, X − θ1〉)2]

k − 1
≥ inf
A1:k−1∈Aw1:k−1

(E[〈ŝ, X − θ1〉])2

k − 1

This gets us to (10.11). The remainder of the proof is exactly the same as that of Theorem 10.10
as in Section 10.7.1, which involves reduction to zero-mean independent noise adding using a
“smoothing trick” via the uniform prior distribution of θ1, and then invoking Lemma 10.16. Then
the proof is complete by choosing w =

√
k − 1σ.

10.7.2 Part (b) fixed distribution

In this section, we present a stronger lower bound construction that works for a class of fixed
distribution. The difficulty is that now the estimator also knows the underlying distribution, so we
need to somehow prevent the triviality that A1:k = µT1:k

for any chosen T1:k. For this matter, we
restrict our estimator Ai to be “natural”, which at step i uses only φT1:i

, A1:i−1, T1:k−1 as well as
the distributional parameters µT1:i−1

,ΣT1:i−1
of previously answered statistics.

The idea is construct adversary that chooses randomized T1, ..., Tk, to simulate the same random-
ization as in the previous section, which is possible under the richness assumption.

Specifically, letW1:k−1 pick randomized T1:k−1 such that φT1:k−1
(X) ∼ N (µT1:k−1

, σ2I), namely,
φT1:k−1

are independent and their mean distributed uniformly between [−M,M ].

And we takeWk to be the following algorithm:
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1. Observing A1, A2, ..., Ak−1 and µ1, ..., µk−1,Wk uses an optimal classifier to infer the signs
of φTi − µi. Specifically. likelihood ratio test that output ŝi = 1 if

log
P(A1, ..., Ak−1|φTi − µTi > 0)

P(A1, ..., Ak−1|φTi − µTi < 0)
≥ 0

and ŝi = −1 otherwise. Let the estimated sign vector be ŝ.

2. Then Wk chooses Tk such that Var(φtk) = σ2 and the covariance vector with known
realized T1:k−1 being v = σ2

√
k−1

ŝ with probability 0.5 and −v with probability the other 0.5.
At the same time the distribution of µTk induced by the distribution of Tk is uniform on
[−M ′,M ′].

Hence from the player’s perspective, it is impossible to offset the bias in ways that depend
only on φTk , and we will show that the optimal strategy for the player is to just output φTk .

The argument to show that Ak = φTk is somewhat simpler than previously, because now Tk is
chosen conditioned the first k − 1 rounds, so we do not have to calculate the posterior distribution
of the model parameters, but rather can specify the posterior prior distributions through Tk
directly.

E(Ak − µTk)2 = EH̄kE((Ak − µTk)2|H̄k)

Now the second part becomes an estimation problem with a known prior and Bayes-estimator
(the posterior mean) is optimal. In other word, the Bayes estimator

A∗k = E(µTk |φTk , H̄k).

p(µTk |φTk , H̄k) ∝ p(φTk |µTk , H̄k)p(µTk |H̄k)

Let b := |E(φTk − µTk |H̄k)|. If µTk ∈ [−M + b,M − b]

P(φTk = µTk − b|µTk , H̄k) = P(φTk = µTk + b|µTk , H̄k) = 0.5

and
p(µTk |H̄k) = p(µTk |H̄k) = 1/(2M).

and the corresponding posterior mean is φTk . When µTk /∈ [−M ′ + b,M ′ − b], which happens
with probability b/M ′ conditioned on H̄k, we can simply lower bound the risk by 0. This gives
us

E(Ak − µTk)2 = EH̄kE((Ak − µTk)2|H̄k)

≥ EH̄k(1− b/M ′)E((φTk − µTk)2|H̄k) = EH̄k(1− b/M ′)b2

= EH̄kb
2 − EH̄kb

3/M ′.

Note that

b =

∣∣∣∣
1√
k − 1

ŝT (φT1:k−1
− µT1:k−1

)

∣∣∣∣ =
1√
k − 1

k−1∑

i=1

ŝi(φTi − µTi).
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This is the mean of k − 1 i.i.d. half-normal distribution. Since half-normal is sub-gaussian,
therefore by the moment bound of subgaussian, we get Eb3 ≤ O[(k − 1)3/2σ3], therefore it
suffices to take M ′ = Ω(kσ) to match the conjectured minimax risk of O(

√
kσ2).

Since we can simulate a uniform distribution of µTi in [−M,M ] by choosing Ti, using exactly
the same argument as previously, we can show that it suffices to consider only independent noise
adding to φT1:k−1

in the case with fixed distributions.

10.7.3 Proof of Lemma 10.16

Proof. EŝX , the absolute margin risk of a classifier ŝ, is a function of the noise distribution p. For
example, if p = 0, ŝ ≡ sign(X) therefore EŝX = E|X|, if p is normal with variance w2 →∞,
ŝ is independent to the signs of X , therefore this quantity converges to 0. The specific shape of
p also matters, e.g., adding Bernoulli noise with w2 →∞ yields EŝX = E|X|. The idea of the
proof is to formulate an optimization problem that minimizes EŝX over the class of all p and then
try to solve it analytically.

To begin with, we first express EŝX as the L1 norm of a linear transformation of p. Decompose
X into sign s and magnitude t, where P(s = 1) = P(s = −1) = 0.5 and t is drawn from a
half-normal distribution which we denote by q.

EZEX ŝX = EZEsEttsŝ

=EZ
∑

s∈{−1,1}

0.5Etts sign[Et′P(A|s′ > 0, t′)− Et′P(A|s′ < 0, t′) > 0]

=0.5EZEtt1{t+Z∈E1} − 0.5EZEtt1{t+Z∈E2} − 0.5EZEtt1{−t+Z∈E1} + 0.5EZEtt1{−t+Z∈E2}

=0.5EtEA|t,s=1t1{A∈E1} − 0.5EtEA|t,s=1t1{A1∈E2} − 0.5EtEA|t,s=−1t1{A∈E1} + 0.5EtEA|t,s=−1t1{A∈E2}

=0.5

∫

z

[∫

t

t(p(z − t)− p(z + t))q(t)dt

]

+

dz + 0.5

∫

z

[∫

t

t(−p(z − t) + p(z + t))q(t)dt

]

+

dz

=0.5

∫

z

∣∣∣∣
∫

t

t(p(z − t)− p(z + t))q(t)dt

∣∣∣∣ dz = 0.5

∫

z

|Ett(p(z − t)− p(z + t))| dz (10.16)

where in Line 3 and 4, we use E1 to denote the event of A such that sign[Et′P(A|s′ > 0, t′) −
Et′P(A|s′ < 0, t′) > 0] = 1 and E2 = Ec

1. Note that E1 and E2 are events in the σ-field of
observation A induced only by the σ-field of Z (since X is integrated out).

Consider the following variational optimization problem over distribution p that is 0-mean and
has variance bounded by w2.

min
p

∫
|Ettp(x+ t)− Ettp(x− t)|dx

s.t. p is a probability distribution defined on R,
Var(Z) ≤ w2,E(Z) = 0 for Z ∼ p.

(10.17)

where t distributes as half-normal distribution with parameter σ.
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Define operator A such that Ap =
∫
t
t[p(x + t) − p(x − t)]

√
2

σ
√
π
e−

t
2σ2 dt. The objective can be

rewritten as ‖Ap‖1. A is a linear operator, all constraints are affine in p, therefore this is a convex
optimization problem, which we rewrite in standard form below:

min
p
‖Ap‖1

s.t. 〈x2,p〉 ≤ w2, −p ≤ 0

〈1,p〉 = 1, 〈x,p〉 = 0.

(10.18)

The Lagrangian and the corresponding dual problem are

L(p, u1,u2, v1, v2) = ‖Ap‖1 + u1(〈x2,p〉 − w2)− 〈u2,p〉+ v1(1− 〈1,p〉) + v2〈x,p〉,

max
u1,u2,v1,v2,C

− u1w
2 + v1

s.t. ‖A−1(−u1x
2 + u2 + v11− v2x) + C‖∞ ≤ 1

u2 ≥ 0, u1 ≥ 0.

(10.19)

and by the definition of the Lagrange dual, the corresponding dual objective value for any feasible
dual variables will be a lower bound of the primal optimal solution, and our proof involves
constructing one “nearly optimal” feasible dual solution. In the derivations below, please refer to
Figure 10.4 for illustrations.

From Figure 10.4(a), we can see that the linear operator A is closely related to the differentiation
operator. Correspondingly, A−1 is closely related to indefinite integral operator. Using the moment
properties of the half-normal distribution and simple calculus, we derive a few properties about A
and A−1 when applied to polynomials (see the derivation in the next section).

A1 = 0,

Ax = 2σ21, A−11 =
1

2σ2
x+ C,

Ax2 = 4σ2x, A−1x =
1

4σ2
x2 + C,

Ax3 = 6σ2x2 + 6σ41, A−1x2 =
1

6σ2
x3 − 1

2
x+ C.

where C is an arbitrary constant. It follows that

A−1(−u1x
2 + u2 + v11− v2x)

=− 1

6σ2
u1x

3 +
−1

4σ2
v2x

2 +

(
1

2
u1 +

1

2σ2
v1

)
x+ A−1u2 + C. (10.20)

=

∫
(−ν0x

2 + ν1x+ ν2)dx+ A−1u2 + C.

where ν0 = 1
2σ2u1, ν1 = − 1

2σ2v2, ν2 = 1
2
u1 + 1

2σ2v1. The only restriction of ν0 is non-negativity,
and ν1 and ν2 can be arbitrary due to the flexibility of of v1 and v2.
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Figure 10.4: Illustrations of our construction of the dual functions. (a) illustrates the operator A,
which is essentially a convolution with the shown kernel. (b) shows our constructions of quadratic
function fν0,ν1,ν2 and its indefinite integral. (c) shows our construction of g = A−1u2 and the
corresponding nonnegative dual function u2. (d) illustrates the that the the `∞-norm constraint is
satisfied.
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Let fν0,ν1,ν2(x) = −ν0x
2 + ν1x + ν2. Take ν0, ν1, ν2 such that fν0,ν1,ν2(x) ≥ 0 between

[−
√

3w,
√

3w], and ∫ √3w

−
√

3w

(−ν0x
2 + ν1x+ ν2)dx = 2.

The coefficients that satisfy these constraints are

ν0 =
1

2
√

3w3
, ν1 = 0, ν2 =

√
3

2w
,

which correspond to

u1 =
σ2

√
3w3

, v2 = 0, v1 =

√
3σ3

w
− σ4

√
3w3

. (10.21)

Check that these are feasible in (10.19).

Moreover,

Fν0,ν1,ν2(x) :=

∫
fν0,ν1,ν2(x)dx = − x3

6
√

3w3
+

√
3x

2w
.

Define function g, where

g(x) =





Fν0,ν1,ν2(x) + 1 when x ≤ −
√

3w

Fν0,ν1,ν2(x)− 1 when x ≥
√

3w

0 otherwise.

g is a monotonically increasing function, therefore taking u2 = Ag obeys u2 ≥ 0. Check that

∫
fν0,ν1,ν2(x)dx+A−1u2 = − x3

6
√

3
+

√
3x

2w
+g(x) =





−1 when x ≤ −
√

3w

− x3

6
√

3w3 +
√

3x
2w

when−
√

3w ≤ x ≤
√

3w

1 when x ≥
√

3w

,

therefore obeys the first constraint in (10.19). Together with (10.21), we form (u1,u2, v1, v2)
which is a feasible dual solution and the primal optimal solution p∗ obeys

‖Dp∗‖1 ≥
2σ2

√
3w
− σ4

√
3w3

.

This bound is sharp when w � σ, but becomes meaningless when w2 < σ2. We note that ‖Dp∗‖1

is a monotonically decreasing function in w2, therefore the case when w2 = σ2 gives a lower
bound for the case when w2 ≤ σ2, therefore for any w, we can write

‖Ap∗‖1 ≥
{

2σ2
√

3w
− σ4
√

3w3 when w2 ≥ σ2,
σ√
3

when w2 < σ2.

Combine with (10.16), we get our first claim.
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Now we move on to work on the second claim where σ2/w → 0. This is equivalent to solving the
problem when w is fixed and σ → 0, since we can rescale the real line accordingly. As σ → 0,
A

2σ2 converges to ∂(·)
∂x

. We divide the objective of (10.19) by 2σ2. At the limit, the KKT condition
of (10.19) becomes





∫
(−u1x

2 + u2 + v11− v2x)dx+ C ∈ ∂‖ · ‖1(∂xp),

u1 ≥ 0,u2 ≥ 0,

p is a zero-mean distribution,
u1(〈x2,p〉 − w2) = 0,

p(x)u2(x) = 0 for every x ∈ R,





where the subgradient of the `1-norm is

∂‖ · ‖1(∂xp) =





−1 when (∂xp)(x) < 0

1 when (∂xp)(x) > 0

[−1, 1] Otherwise.

Now we will construct a set of dual variables (u1,u2, v1, v2) so that they satisfy the KKT condition
with

p(x) =

{
1

2
√

3w
when x ∈ [−

√
3w,
√

3w]

0 otherwise.

First of all, p(x) is a valid zero-mean distribution and 〈x2, p〉 = w2.

∂xp(x) =





−∞ when x = −
√

3w

+∞ when x =
√

3w

0 otherwise.

Now consider the range x ∈ [−
√

3w,
√

3w], where u2(x) = 0. fu1,v1,v2(x) = −u1x
2 +v11−v2x

is the standard form of a quadratic function, and by u1 ≥ 0, this is a concave quadratic function.
As we did earlier, we choose the parameter of this quadratic function such that





fu1,v1,v2(−
√

3w) = 0,

fu1,v1,v2(
√

3w) = 0,
∫ √3w

−
√

3w

(−u1x
2 + v11− v2x)dx = 2.

This is always feasible because as u1 goes from 0 to ∞, the area under the curve also con-
tinuously and monotonically increases to ∞. Now, choosing C = 1 ensures that we have
−1 ≤ (

∫
fu1,v1,v2(x)dx+ C) ≤ 1, fu1,v1,v2(−

√
3w) = −1 and fu1,v1,v2(

√
3w) = 1.

When we have anything outside [−
√

3w,
√

3w], fu1,v1,v2(x) ≤ 0 and taking u2(x) = −fu1,v1,v2(x)
allows function u2 + fu1,v1,v2 to stay at 0, which checks he stationarity condition. Therefore,
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the given dual variables certify that the proposed uniform p is optimal. The objective value
limσ2

w
→0

w
σ2

∫
|Ett(p(x + t) − p(x − t))|dx = 2√

3
. The proof is complete by substituting the

quantity into (10.16) (divide by 2).

10.8 Proof of the bound for data splitting-based estimators

Proof of Proposition 10.14. The proof is organized as follows. We will first describe the adversary
W1:k we construct then lower bound the risk by searching the optimal player strategy under the
above model.

ConstructingW1:k Now we are ready construct a specific adversary. Let ei be the standard
basis of Rd. The adversary chooses T1 = e1 and for i > 1

Ti =
T explore
i√

2
+ v

T exploit
i√

2
,

where T explore
i = ei is the “exploration” term and T exploit

i = ŝ1:i−1√
i−1

is the “exploitation” term and
P(v = −1) = P(v = 1) = 0.5.

Just like before, ŝi is the output of an optimal classifier of the sign of
〈
X̄Ji , ei

〉
− θi := X̄Ji

i − θi (10.22)

using the observation

Ai =
1√
2
X̄Ji
i +

1√
2
〈X̄Ji , T exploit

i 〉+ Zi.

In other word, the adversary chooses

ŝi =

{
1 if P

(
Ai
∣∣X̄Ji

i − θi ≥ 0
)
≥ P

(
Ai
∣∣X̄Ji

i − θi < 0
)

−1 otherwise

Lastly, in round k, the adversary chooses Tk = T exploit
k = ŝ1:k−1/

√
k − 1.

Debiasing and estimating ŝi using Ai. The adversary sees Ai and converts it to

Ãi :=
√

2

{
Ai − 〈Ti, θ〉 − EZi − E

[
1√
2
〈T exploit

i , X̄Ji − θ〉
]}

=X̄Ji
i − θi +

√
2(Zi − EZi) + 〈T exploit

i , X̄Ji − θ〉 − E
[
〈T exploit

i , X̄Ji − θ〉
]

By the independence of Zi to everything,

E[Ãi|X̄Ji
i − θi] = X̄Ji

i − θi + E
[
〈T exploit

i , X̄Ji − θ〉
∣∣∣X̄Ji

i − θi
]
− E

[
〈T exploit

i , X̄Ji − θ〉
]
.
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In addition, since J1, ..., Jk does not depends on X , and that for every j,

E
[
〈T exploit

i , X̄Ji − θ〉
∣∣∣X̄Ji

i − θi
]

= E
[
E
[
〈T exploit

i , X̄Ji − θ〉
∣∣∣X̄Ji

i − θi, Ji
]∣∣∣X̄Ji

i − θi
]

= E
[
E
[
〈T exploit

i , X̄Ji − θ〉
∣∣∣Ji
]∣∣∣X̄Ji

i − θi
]

= E
[
E
[
〈T exploit

i , X̄Ji − θ〉
∣∣∣Ji
]]

= E
[
〈T exploit

i , X̄Ji − θ〉
]

the second line holds because X̄j
i ⊥⊥ 〈·, X̄j

1:i−1〉 for every j and the third line holds because Ji is
independent to X̄i − θ. This suggests that the adversary can use Ãi as an unbiased estimate of
X̄Ji
i − θi, despite not knowing J1:i. The conditional distribution Ãi|X̄Ji

i − θi could be complex
due to the choice of Ji, but is known to the adversary, and it satisfies that

Var[Ãi|X̄Ji
i − θi] = Var(〈T exploit

i , X̄Ji − θ〉|X̄Ji
i − θi) + 2Var(Zi)

where we can use the same arguments above to get

Var(〈T exploit
i , X̄Ji − θ〉|X̄Ji

i − θi)
=E

[
Var(〈T exploit

i , X̄Ji − θ〉|X̄Ji
i − θi, Ji)

∣∣∣X̄Ji
i − θi

]
+ Var

[
E[〈T exploit

i , X̄Ji − θ〉|X̄Ji
i − θi, Ji]|X̄Ji

i − θi
]

=E
[
Var(〈T exploit

i , X̄Ji − θ〉|Ji)
∣∣∣
]

+ Var
[
E[〈T exploit

i , X̄Ji − θ〉|Ji]
]

=Var(〈T exploit
i , X̄Ji − θ〉).

Lower bounding the bias from each i We will now consider a few restriction of the player’s
class of strategies that apply without loss of generality. First of all, it suffices to consider the case
when q <

√
k − 1, because otherwise the MSE at round 1 is bigger than

√
k − 1σ2/n, and the

proof is complete. Secondly, by the definition of Ai, If Var(Zi) + 1
2
Var(〈T exploit

i , X̄Ji − θ〉) >√
k − 1σ2/n, then the MSE at round i is necessarily greater than

√
k − 1σ2/n and the proof is

complete. So we only have to consider the case when Ji and Z obeys that

Var[Ãi|X̄Ji
i − θi] ≤ 2

√
k − 1σ2/n.

Therefore, we can apply our main Lemma 10.16 to get for all i = 1, ..., k − 1

lim
M→∞

E[ŝi(X̄
Ji
i − θi)] ≥

qσ2

n

1

2
√

3

√
n√

2(k − 1)1/4σ
=

qσ√
24(k − 1)1/4

√
n
.

Overall bound. By law of total expectation and repeated application of Jensen’s inequality, we
have

E[max
i
〈Ai − θ, Ti〉2] =E

[
E[max

i
〈Ai − θ, Ti〉2|J1, ..., Jk−1]

]

≥E
[
max
i

E[〈Ai − θ, Ti〉2|J1, ..., Jk−1]
]
≥ E

[
max
i

E[〈Ai − θ, Ti〉|J1, ..., Jk−1]2
]

(10.23)
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Since J is independent to the data, conditioning on these events do not change the distribution of
X ,

Define mj
i := |{` ∈ [i− 1]|J` = j}|, that is, the number of times data split j was used at iteration

i.

E[Ai−〈θ, Ti〉|J1, ..., Jk−1] ≥ min
j

E[〈X̄j−θ, Tk〉|J1, ..., Jk−1] ≥
[
min
j
mj
k

]2
1

k − 1

q2σ2

24(k − 1)1/2n
.

It follows that if we apply law of total expectation on the event E such that that minjm
j
k] ≥ k−1

q

(10.23) =P(E)E
[
max
i

E[Ai − 〈θ, Ti〉|J1, ..., Jk−1, E]2
∣∣∣E
]

+ P(Ec)E
[
max
i

E[Ai − 〈θ, Ti〉|J1, ..., Jk−1, E
c]2
∣∣∣Ec
]
. (10.24)

When minjm
j
k ≥ k−1

q
, then the loss from the kth round is clearly

√
k − 1Cσ2/(24n). On the

other hand, if it is the complement event where minjm
j
k <

k−1
q

, then we know

q∑

j=1

mj
k −min

j
mj
k ≥ k − 1− k − 1

q
,

which implies by the pigeon hole principle that

max
j
mj
k ≥

k − 1

q − 1
− k − 1

q(q − 1)
≥ k − 1

q
.

As a result, under event Ec, there exists j ∈ [q], i ∈ [k − 1], such that Ji = j and mj
i = k−1

q
− 1

and thus

E[Ai − 〈θ, Ti〉|J1, ..., Jk−1, E
c]2 ≥ (

k − 1

q
− 1)2 1

2(k − 1)

q2σ2

24(k − 1)1/2n
= Ω(

√
k − 1σ2/n),

where we need k ≥ 2q+ 1. The proof is complete by substituting lower bounds under both events
into (10.24).

10.9 Derivation of the simple properties of A and A−1

The raw moments of the half-normal distributions are:

µ1 =

√
2σ√
π
, µ2 = σ2, µ3 =

2
√

2σ3

√
π

, µ4 = 3σ4.
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Let q be the half normal density. We start with the forward operator A on polynomials.

A1 =

∫ ∞

0

|t|q(t)dt−
∫ 0

−∞
|t|q(t)dt = 0.

Ax =

∫ ∞

0

(x+ t)|t|q(t)dt−
∫ 0

−∞
(x− t)|t|q(t)dt = 2

∫ ∞

0

t2q(t)dt = 2µ2.

Ax2 =

∫ ∞

0

(x+ t)2|t|q(t)dt−
∫ 0

−∞
(x− t)2|t|q(t)dt

=

∫ ∞

0

(x2 + 2xt+ t2)|t|q(t)dt−
∫ ∞

0

(x2 − 2xt+ t2)|t|q(t)dt

=4x

∫ ∞

0

t2q(t) = 4xµ2.

Ax3 =

∫ ∞

0

(x+ t)3|t|q(t)dt−
∫ 0

−∞
(x− t)3|t|q(t)dt

=

∫ ∞

0

(x3 + 3x2t+ 3xt2 + t3)|t|q(t)dt−
∫ ∞

0

(x3 − 3x2t+ 3xt2 − t3)|t|q(t)dt

=6x2

∫ ∞

0

t2q(t)dt+ 2

∫ ∞

0

t3q(t)dt = 6xµ2 + 2µ4.

The inverse operator A−1 on 1,x and x2 are obtained by simply applying A−1 on both sides and
rearrange the terms.

297



298



Subsequent work and applications

In Part III of the thesis, we described two sequential interactive learning problems that are well-
motivated by the fundamental challenges of the big data era. We formulate both problems in
a minimax framework and studied their optimal max-risk. The first, the off-policy evaluation
problem in contextual bandits, is in fact a pure statistical estimation problem closely related to
the causal inference literature. The second, the sequential selective estimation problem, which
is inspired by the related problem of adaptive data analysis, is in fact a very delicate partial
information game, which we analyzed directly.

In this section, we discuss a novel connection between bandits and sequential selective estimation
in their special cases. In particular, this is between linear bandits[2] and sequential selective
estimations of Gaussian projection in Example 10.1.

We will first describe the stochastic linear bandits problem in a notation that will be easy for us
to draw the connection to our model in Chapter 10. In all stochastic bandits problems, there is
an agent interacting with the world by choosing an action given a context, and then the agent
receives a reward for the action taken. The job of the agent is to minimize a notion of “regret”
after repeatedly taking actions and learn from the outcome.

Specifically, for linear bandits, the agent receives a class of actions Ti ⊂ Rd in round i and chooses
an action (or a treatment) given by a vector Ti ∈ Ti. When an action Ti is chosen at time i, it
incurs a reward

Ri = 〈Ti, θ∗〉+ Zi

where Zi is assumed to be σ2-subgaussian. Note that the data set is in forms of triplets

(Ti, Ti, Ri) for i = 1, ..., k.

At the end of the day, the agent wants to come up with a strategy which minimizes the regret

R(k) = E

[
k∑

i=1

max
t∈Ti
〈t, θ∗〉 −

k∑

i=1

Ri

]
.

At a glance it is unclear why this is related to either contextual bandits or sequential adaptive
estimation. We will now clarify.

When Ti is fixed and include only e1, ..., ed, then this reduces to d-arm bandits. Ti can also be
used to encode a subset of contextual bandit model where the expected reward is linear in the
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context feature vector xi and a coefficient vector that is pre-defined for every action. Specifically,
in this case for m-actions, Ti contains m possible actions and they are xi ⊗ {e1, ..., em} (where ⊗
denotes is Kronecker product). The corresponding θ∗ is partitioned into chunks that correspond to
each action.

The connection to sequential adaptive estimation is more interesting. We claim that linear bandits
with Ti ≡ T = {t ∈ Rd|‖t‖2 ≤ 1} and θ∗ = X − θ, is equivalent to a version of the sequential
selective estimation problem with a cumulative (rather than maximum) loss function, where the
player is required to use to

Ai = 〈X,Ti〉+ Zi

where Zi is subgaussian.

To see this, let us put ourselves in the shoes of the adversary in sequential selective estimation.
Think about the linear bandits agent who chooses actions as the adversary in sequential selective
estimations. In every iteration, the agent (the adversary) chooses ti and receives Ai = 〈XTi〉+Zi
from the player. The agent then modify it into a “reward”:

Ri := Ai − 〈θTi〉 = 〈X − θ, Ti〉+ Z.

At the end of the day, the job of the adversary in sequential selective estimation is to maximize
maxi E[|Ri|2]. We could of course choose a different loss function that compute the summation
over rounds rather than maximization. Also, since the player only allowed to add noise, without
loss of generality, we can assume that Ri is maximized. In other word, the goal of the adversary is
to maximize ∑

i

ERi.

This is equivalent to minimize the regret

max
t∈T

E[〈X − θ, t〉]−
∑

i

E [Ri]

A subtle difference here is that in sequential selective estimations, we are measuring the average
reward over a “prior” distribution of X , which happens to be N (θ, σ2I).

It is interesting to see how upper bounds and lower bounds of our problem imply for linear bandits
and how results in linear bandits can apply to our setting. In particular, since this is a specific case
of linear bandits, our upper bound (e.g.,Theorem 10.8) implies a lower bound for linear bandit
problems in general. Our lower bound (e.g., Theorem 10.10 and 10.13) on the other hand, can be
used as a performance guarantee for a specific subset of linear bandits problems where the player
who comes up with answers in stateful and adversarial nature.

We leave details to formalize these implications as future work.
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Chapter 11

Conclusion and discussion

In this thesis, I presented theoretical contributions to a number of new models in the broad area of
statistical machine learning. These include differentially private machine learning (Part I), locally
adaptive nonparametric regression (Part II), off-policy evaluation as well as adaptive data analysis
(Part III).

While these problems seem unrelated to each other, having studied all of them, it comes to our
realization that on the technical level they all share very similar behaviors and the interplay of
these areas could lead to fruitful new theoretical understanding and algorithmic development. In
the following, we conclude the thesis with some meta-level observations in statistical learning
research and three potential ways the problems in the three parts can meet each other.

11.1 Meta-level take-home messages

Sharing ideas across a diverse research community. Statistical machine learning is a very
diverse field in the intersection of statistics, optimization, information theory as well as theoretical
computer science. Each field represents a long history of research work with a rich associated
literature. The author of this thesis benefits greatly from attending conferences such as ICML and
NIPS where a variety of ideas from different branches of mathematics are brought together.

Many of the results in the thesis come from a cross-fertilization of concepts and techniques in
different research communities. For instance, the initial idea of Chapter 2 and 4 comes from a
realization that differential privacy is closely related to the algorithmic stability in learning theory
[38]. Similarly, the connection between the Bayesian posterior distribution and exponential mech-
anism [156] allows us to connect a vast statistical literature on posterior consistency and Bernstein
Von Mises theorems that can be used to analyze the utility of exponential mechanisms.

It is also possible that some of the connections and implications only emerge in a much later phase
of a research project. Our results on trend filtering on graphs in Chapter 6 is developed under
the primary motivation of extending univariate trend filtering. It comes as a pleasant surprise
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that the signal processing communities have been independently developing a suite of tools for
Fourier and wavelet transforms on graphs (see, e.g.,[198]). Also, spectral graph theory and the
corresponding electrical network interpretation of graphs gave us a big “wow” and helped us to
identify the key graph-theoretical quantities that can help us obtain strong error bounds.

In addition, the connections between off-policy evaluation in contextual bandits and asymptotic
optimality theory in causal inference reveal several new understanding in both fields (see the
discussion in the end of Chapter 9); and the sequential selective estimation problem we presented
in Chapter 10 aims at explaining the implication of randomization used for adaptive data analysis
to the statistics community.

We need more of such fusions and more communications with people who are familiar with the
literature in the past 100 years. It is possible that many of the technical challenges that we are
facing now are challenges that researchers in a completely different field have already put a lot
of thoughts on for decades. As, Isaac Newton put it, only when we “stand on the shoulder of a
giant”, can we see further and address bigger problems.

On the theory and practice split. Another underlying thread of this thesis is to bridge the
theory and practice. This is the underlying motivation for our work in Chapter 3, 4 and 5, and it
also motivates our optimality theory presented in Chapter 7 to justify the use of the popular total
variation denoising method in image and video denoising.

Nevertheless, bridging the theory and practice is rather challenging to do in general. Theoretical
machine learning research has long been regarded as providing general guidelines rather than
meaningful bounds that one can use in practice. This is not surprising as many common techniques
being used such as concentration inequalities, union bounds and the empirical process theory-style
of uniform convergence arguments are at best tight up to a constant.

Theoretical research, however, do not have to be disconnected to practice. This is at least not the
case in the old days. Classic statistical theory is filled with tight analysis and exact (asymptotic)
optimality results. Classical coding theory ensures that we make use of just enough number of bits
to send a message over a noisy channel. The optimal control theory allows us to design controllers
that are optimally robust to model-misspecification. From this regard, it is hard to argue that tight
theoretical analysis cannot be done. It just takes more time and more careful calculations.

That said, there probably always will be a gap that we cannot hope to close. Theoretical research
is limited by the available proof techniques and complexity of the model that we are able to reason
formally. Often, this means that we have to decide on whether we want to design a provably
optimal algorithm on a wrong model or adopt a completely empirical approach on a somewhat
“less wrong” model. The deep learning community took the latter approach and seems to be doing
fine so far. Differential privacy, on the other hand, is a special case because the privacy guarantee
can only be proven in theory. More fine-grained privacy analysis such as those with per-instance
differential privacy as we described in Chapter 5 is much needed.

Lastly, I find it important to choose a practical algorithm to work on in the first place. The practical
performance of algorithms can differ significantly, even if they admit the same theoretical rate (see
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e.g., the experimental comparison of trend filtering and wavelet smoothing in Chapter 6). In the
hindsight, trend filtering is unique because it directly penalizes the L1-norm of an approximation
of the total variation operator, while wavelet smoothing needs to explicitly construct a set of
basis functions that could have small artifacts in themselves due to discretization. In addition,
somewhat circularly, I know that trend filtering will work well in practice, because it has already
been shown to work in practical examples [129, 182] at least in restricted settings.

A positive view of minimax lower bounds. The last take-home-message is my two cents
on lower bounds. Lower bounds, also known as no-free-lunch theorems, are often regarded as
negative results, as they certify that no algorithms can solve a problem better beyond a fundamental
limit. However, there is also a positive way of looking at them.

First, it is perhaps more important to realize what a minimax lower bound does not say. Lower
bounds, in most cases are only true in a minimax sense. This means that it does not prevent
a specific problem that we see to be easily solvable. Also, an algorithm being minimax, does
not necessarily mean that it cannot be significantly improved. There could even be another
algorithm that strictly improves a minimax optimal algorithm in every instance, e.g., MLE and
Stein’s shrinkage in the problem of estimating a Gaussian mean when dimension is larger than 3
[210].

Second, when a lower bound appears large, it often suggests that we should revise the class
of problems under consideration. The constructions that lead to the lower bound could offer
interesting insight on why the problem class is hard and how to redefine the class so that one
can avoid those issues. In our study of private learnability in Chapter 2, it is clear from Beimel
et al. [19], Chaudhuri and Hsu [54]’s threshold-function construction that the impossibility can
be sidestepped by restricting our attention to only Lipschitz loss functions or smooth class of
distributions. In our study of off-policy evaluation in Chapter 9, it will be a much less interesting
set of results if we stop at a minimax analysis that shows that IPS is minimax optimal, as then
we will not be able to come up with the “SWITCH” estimator that behaves adaptively and
orders-of-magnitude better than IPS in practice.

In my opinion, finding a minimax lower bound and an algorithm that matches the minimax rate is
not the end. It is also the beginning of the new pursuit of an adaptive and practical algorithm.

11.2 Future directions

Statistical estimation for denoising differential privacy. We start by inspecting the connec-
tions of statistical estimation and differential privacy. First of all, both statistics and differential
privacy deal with probabilities, but in opposite ways. Statistical estimation address the problem of
making probabilistic inferences on the some fixed underlying parameter, while differential privacy
is about simulating the randomness that prevents the a classifier from distinguishing between
two point hypothesis for sure, which implies a lower bound on the estimation error as well. An
interesting idea is to investigate how much can statistical estimation theory help in improving
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the utility of differentially privately released statistics through a “denoising” post-processing
algorithm.

A key drawback of statistic estimation is that it often needs to make assumptions on the distribution
that generates the data, which may or may not be true in practice. However, when the noise is
simulated by ourselves (to achieve differential privacy), we have full control over its distribution
of the noise, and we could have additional information about the parameter to estimate released
differentially privately. This is especially helpful for high-dimensional problems, where knowing
the sparsity level or the `1-norm bound could allow us to exploit many of the machinery developed
in the past two decades in high-dimensional statistics.

Another interesting direction is to consider the Bayesian estimation setting. More concretely, if
the data follows the following generative process

X ∼ P (X|θ), θ ∼ π

for some prior π that is public knowledge and φ(X) is the sufficient statistics . Then we know
that the optimal Bayes estimator of θ in square error is the posterior mean estimator

θ̂ = E(θ|X) = E(θ|φ(X)).

Suppose we all we see is differentially private release of the data, or the differentially private
release Y of the sufficient statistics φ(X), then effectively the generative process becomes

Y ∼ P ′(Y |θ), θ ∼ π

where P ′(Y |θ) =
∫
Q(Y |X)P (X|θ)dX , and the optimal postprocessing estimator is

E(θ|Y ).

Lastly, when we consider the statistical estimation problem and differential privacy jointly, the
effective amount of noise we see is the combination of that noise from DP and that intrinsic
randomness in data generation. In such cases, it makes sense to “denoise” more aggressively and
it will be interesting to investigate how much data efficiency we lose. In Chapter 5, we provided
an example of this in estimating linear regression coefficients.

Privacy and sequential learning. One interesting property of differential privacy is that it
allows graceful composition over a sequence of differentially private algorithms each chosen as a
function of the entire history. This enables the application of differential privacy to control false
discoveries in science [87] and effectively motivated our work on sequential selective estimation
in Chapter 10.

The implication of such adaptive composition in other sequential learning models are not clear.
This is of particular interest because in reinforcement learning (RL), bandits and online learning,
randomization is used for a variety of other reasons. Specifically, randomization is used for
exploration in RL and bandits and is used hedging in adversarial online learning.
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Each round of Follow-The-Perturbed-Leader (FTPL), is essentially objective perturbation as
studied in [128]. Also, Exp3 algorithm for adversarial bandits, the Hedge algorithm for adversarial
online learning as well as the Thompson sampling algorithm for RL and bandits can in fact be
treated as a sequence of OPS algorithm that we presented in Chapter 3.

In many of these algorithms, especially those in the adversarial setting, randomization is used to
ensure certain notion of stability. As we know, differential privacy implies almost all kinds of
stability and it will be interesting to check whether we can obtain a regret bound directly using
the composition approach of differential privacy.

Online trend filtering? So far, we have talked about the marriage of privacy and statistical
estimation, and that of privacy and sequential learning. How about combining trend filtering with
sequential learning?

There could be many ways of setting up the problem, but one reasonable model to consider is the
following.

Suppose we observe a sequence of noisy observations y1, y2, ..., yn one by one, and we know that
yi ∼ N (f(i/n), σ2) for i = 1, ..., n for f such that the (k+ 1)th derivative of f has total variation
bounded by Cn. For each i = 1, ..., n, can we come up with θ̂i using Cn, σ2 and y1, ..., yi−1 such
that at the end of the day,

sup
f∈TVk(Cn)

1

n

n∑

i=1

(θ̂i − f(i/n))2 = o(1).

Clearly, this is a problem that is strictly harder than univariate trend filtering, as we are only
required to provide an answer after observing (y1, ..., yn) all together. A natural question is that is
there a price to pay in the sequential setting.

The case for k = 0 is a special case of the non-stationary stochastic optimization result in [31]
with loss function being (θ̂i− θi)2 and noisy gradient oracle. A noisy gradient oracle is equivalent
to observing yi because the gradient of the above loss function is 2(θ̂i − θi) and 2(θ̂i − yi) is
an unbiased estimate of the gradient. Moreover, for bounded function values, the bounded
nonstationary variation is also equivalent to a total variation bound.

For Cn = 1, [31]’s result translates into an upper bound of O(n−1/2), achieved via a online
gradient descent algorithm with scheduled restarts. This is the same as the minimax linear rate
in the batch setting, and much slower than the O(n−2/3) rate that can be obtained in the batch
setting.

It remains open to see whether the O(n−2/3) rate can be achieved in the online setting.
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