
Data Mining Meets HCI:
Making Sense of Large Graphs

Duen Horng (Polo) Chau

July 2012
CMU-ML-12-103

Data Mining Meets HCI:
Making Sense of Large Graphs

Duen Horng (Polo) Chau

July 2012
CMU-ML-12-103

Machine Learning Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Chair
Jason I. Hong, Co-Chair
Aniket Kittur, Co-Chair

Jiawei Han, UIUC

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Duen Horng (Polo) Chau

This research is supported by: National Science Foundation grants IIS-0705359, IIS-0968484,
IIS-0970179, IIS-1017415, OCI-0943148, NSC 99-2218-E-011-019, NSC 98-2221-E-011-105;
Symantec Research Labs Graduate Fellowship (2009, 2010); IBM Faculty Award, Google Focused
Research Award; Army Research Laboratory W911NF-09-2-0053.

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entities.

Keywords: Graph Mining, Data Mining, Machine Learning, Human-Computer
Interaction, HCI, Graphical Models, Inference, Big Data, Sensemaking, Visu-
alization, eBay Auction Fraud Detection, Symantec Malware Detection, Belief
Propagation, Random Walk, Guilt by Association, Polonium, NetProbe, Apolo,
Feldspar, Graphite

For my parents and brother.

iv

Abstract
We have entered the age of big data. Massive datasets are now

common in science, government and enterprises. Yet, making sense
of these data remains a fundamental challenge. Where do we start our
analysis? Where to go next? How to visualize our findings?

We answers these questions by bridging Data Mining and Human-
Computer Interaction (HCI) to create tools for making sense of graphs
with billions of nodes and edges, focusing on:

(1) Attention Routing: we introduce this idea, based on anomaly
detection, that automatically draws people’s attention to interesting
areas of the graph to start their analyses. We present three exam-
ples: Polonium unearths malware from 37 billion machine-file rela-
tionships; NetProbe fingers bad guys who commit auction fraud.

(2) Mixed-Initiative Sensemaking: we present two examples
that combine machine inference and visualization to help users lo-
cate next areas of interest: Apolo guides users to explore large graphs
by learning from few examples of user interest; Graphite finds inter-
esting subgraphs, based on only fuzzy descriptions drawn graphically.

(3) Scaling Up: we show how to enable interactive analytics of
large graphs by leveraging Hadoop, staging of operations, and ap-
proximate computation.

This thesis contributes to data mining, HCI, and importantly their
intersection, including: interactive systems and algorithms that scale;
theories that unify graph mining approaches; and paradigms that over-
come fundamental challenges in visual analytics.

Our work is making impact to academia and society: Polonium
protects 120 million people worldwide from malware; NetProbe made
headlines on CNN, WSJ and USA Today; Pegasus won an open-
source software award; Apolo helps DARPA detect insider threats
and prevent exfiltration.

We hope our Big Data Mantra “Machine for Attention Routing,
Human for Interaction” will inspire more innovations at the crossroad
of data mining and HCI.

vi

Acknowledgments
To everyone in my Ph.D. journey, and in life—this is for you.
Christos, only with your advice, support and friendship can I pursue this ambi-

tious thesis. Your generosity and cheerful personality has changed my world. Jason
and Niki, thanks for your advice and ideas (esp. HCI-related). Having 3 advisors is
an amazing experience! Jiawei, thank you for your terrific insights and advice.

Jeff Wong, thanks for your brotherly support, research idea, and insider jokes.
Isabella, Bill, Robin and Horace: you make me feel at home when I escape from
work. Queenie Kravitz, thanks for our precious friendship; your are the best HCII
program coordinator I’ve ever known. Carey Nachenberg, thank you for supporting
my research (esp. Polonium), and our friendship with ShiPu; it’s a treasure.

I thank Brad Myers, Jake Wobbrock, Andy Ko, Jeff Nichols, and Andrew
Faulring for nurturing my enthusiasm in research; you confirmed my passion. Men-
tors and friends at Symantec and Google, thank you for your guidance and friend-
ship that go well beyond my internships: Darren Shou, Arun Swami, Jeff Wilhelm
and Adam Wright.

Christina Cowan, you and Christos are the two most cheerful people in the
whole world! Your every presence brightens my days. Michalis Faloutsos, thanks
for seeing the entrepreneur in me.

My academic siblings in the DB group, I treasure our joyous moments (esp.
trips) and collaboration: Leman Akoglu, U Kang, Aditya Prakash, Hanghang Tong,
Danai Koutra, Vagelis Papalexakis, Rishi Chandy, Alex Beutel, Jimeng Sun, Spiros
Papadimitriou, Tim Pan, Lei Li, Fan Guo, Mary McGlohon, Jure Leskovec, and
Babis Tsourakakis.

I am blessed to work with Marilyn Walgora, Diane Stidle, Charlotte Yano,
Indra Szegedy, David Casillas, and Todd Seth, who are meticulous with every ad-
ministrative detail.

I thank Daniel Neill, Bilge Mutlu, Jake Wobbrock, and Andy Ko for being my
champions during job search, Justine Cassell and Robert Kraut for their advice.

I’m grateful to have celebrated this chapter of my life with many dear friends:
Robert Fisher, Katherine Schott, Mladen Kolar and Gorana Smailagic, Alona Fyshe
and Mark Holzer, Brian Ziebart and Emily Stiehl, Edith Law, Matt Lee, Tawanna
Dillahunt, Prashant and Heather Reddy, James Sharpnack and Vicky Werderitch (I
won’t forget the night I got my job!), Felipe Trevizan, Sue Ann Hong, Dan Morris,
Andy Carlson, Austin McDonald, and Yi Zhang. I thank my sports buddies, who
keep me sane from work: Lucia Castellanos, Michal Valko, Byron Boots, Neil
Blumen, and Sangwoo Park.

I thank my friends, collaborators, and colleagues for their advice, friendship,
and help with research: Jilles Vreeken, Tina Eliass-Rad, Partha Talukdar, Shashank
Pandit, Sam Wang, Scott Hudson, Anind Dey, Steven Dow, Scott Davidoff, Ian Li,
Burr Settles, Saket Navlakha, Hai-son Lee, Khalid El-Arini, Min Xu, Min Kyung
Lee, Jeff Rzeszotarski, Patrick Gage Kelly, Rasmus Pagh, and Frank Lin.

Mom, dad, brother: I love you and miss you, though I never say it.

viii

Contents

1 Introduction 1
1.1 Why Combining Data Mining & HCI? 2
1.2 Thesis Overview & Main Ideas 4

1.2.1 Attention Routing (Part I) 4
1.2.2 Mixed-Initiative Graph Sensemaking (Part II) 5
1.2.3 Scaling Up for Big Data (Part III) 7

1.3 Thesis Statement . 9
1.4 Big Data Mantra . 9
1.5 Research Contributions . 10
1.6 Impact . 11

2 Literature Survey 13
2.1 Graph Mining Algorithms and Tools 13
2.2 Graph Visualization and Exploration 16
2.3 Sensemaking . 17

I Attention Routing 19

3 NetProbe: Fraud Detection in Online Auction 21
3.1 Introduction . 22
3.2 Related Work . 24

3.2.1 Grass-Roots Efforts . 24
3.2.2 Auction Fraud and Reputation Systems 24

3.3 NetProbe: Proposed Algorithms 25
3.3.1 The Markov Random Field Model 25
3.3.2 The Belief Propagation Algorithm 26
3.3.3 NetProbe for Online Auctions 28

ix

3.3.4 NetProbe: A Running Example 29
3.3.5 Incremental NetProbe 30

3.4 Evaluation . 32
3.4.1 Performance on Synthetic Datasets 33
3.4.2 Accuracy of NetProbe 34
3.4.3 Scalability of NetProbe 34
3.4.4 Performance on the EBay Dataset 35
3.4.5 Data Collection . 35
3.4.6 Efficiency . 35
3.4.7 Effectiveness . 35
3.4.8 Performance of Incremental NetProbe 36

3.5 The NetProbe System Design . 37
3.5.1 Current (Third Party) Implementation 37
3.5.2 Crawler Implementation 38
3.5.3 Data Structures for NetProbe 39
3.5.4 User Interface . 41

3.6 Conclusions . 42
3.6.1 Data Modeling and Algorithms 43
3.6.2 Evaluation . 43
3.6.3 System Design . 43

4 Polonium: Web-Scale Malware Detection 45
4.1 Introduction . 45
4.2 Previous Work & Our Differences 48

4.2.1 Research in Malware Detection 49
4.2.2 Research in Graph Mining 50

4.3 Data Description . 50
4.4 Proposed Method: the Polonium Algorithm 52

4.4.1 Problem Description . 53
4.4.2 Domain Knowledge & Intuition 53
4.4.3 Formal Problem Definition 54
4.4.4 The Polonium Adaptation of Belief Propagation (BP) . . . 55
4.4.5 Modifying the File-to-Machine Propagation 56

4.5 Empirical Evaluation . 57
4.5.1 Single-Iteration Results 57
4.5.2 Multi-Iteration Results 58
4.5.3 Scalability . 61
4.5.4 Design and Optimizations 61

x

4.6 Significance and Impact . 62
4.7 Discussion . 63
4.8 Conclusions . 65

II Mixed-Initiative Graph Sensemaking 67

5 Apolo: Machine Learning + Visualization for Graph Exploration 69
5.1 Introduction . 70

5.1.1 Contributions . 71
5.2 Introducing Apolo . 72

5.2.1 The user interface . 72
5.2.2 Apolo in action . 72

5.3 Core Design Rationale . 76
5.3.1 Guided, personalized sensemaking and exploration 76
5.3.2 Multi-group Sensemaking of Network Data 77
5.3.3 Evaluating exploration and sensemaking progress 77
5.3.4 Rank-in-place: adding meaning to node placement 79

5.4 Implementation & Development 79
5.4.1 Informed design through iterations 79
5.4.2 System Implementation 81

5.5 Evaluation . 81
5.5.1 Participants . 81
5.5.2 Apparatus . 82
5.5.3 Experiment Design & Procedure 82
5.5.4 Results . 83
5.5.5 Subjective Results . 84
5.5.6 Limitations . 86

5.6 Discussion . 86
5.7 Conclusions . 87

6 Graphite: Finding User-Specified Subgraphs 89
6.1 Introduction . 90
6.2 Problem Definition . 91
6.3 Introducing Graphite . 92
6.4 Example Scenarios . 94
6.5 Related Work . 95
6.6 Conclusions . 95

xi

III Scaling Up for Big Data 96

7 Belief Propagation on Hadoop 98
7.1 Introduction . 99
7.2 Proposed Method . 99

7.2.1 Overview of Belief Propagation 100
7.2.2 Recursive Equation . 101
7.2.3 Main Idea: Line graph Fixed Point(LFP) 102

7.3 Fast Algorithm for Hadoop . 105
7.3.1 Naive Algorithm . 105
7.3.2 Lazy Multiplication . 106
7.3.3 Analysis . 107

7.4 Experiments . 108
7.4.1 Results . 110
7.4.2 Discussion . 111

7.5 Analysis of Real Graphs . 111
7.5.1 HA-LFP on YahooWeb 112
7.5.2 HA-LFP on Twitter and VoiceCall 113
7.5.3 Finding Roles And Anomalies 114

7.6 Conclusion . 119

8 Unifying Guilt-by-Association Methods: Theories & Correspondence123
8.1 Introduction . 124
8.2 Related Work . 125
8.3 Theorems and Correspondences 126

8.3.1 Arithmetic Examples . 128
8.4 Analysis of Convergence . 129
8.5 Proposed Algorithm: FABP . 131
8.6 Experiments . 131

8.6.1 Q1: Accuracy . 133
8.6.2 Q2: Convergence . 133
8.6.3 Q3: Sensitivity to parameters 134
8.6.4 Q4: Scalability . 135

8.7 Conclusions . 135

9 OPAvion: Large Graph Mining System for Patterns, Anomalies &
Visualization 137
9.1 Introduction . 138

xii

9.2 System Overview . 140
9.2.1 Summarization . 140
9.2.2 Anomaly Detection . 141
9.2.3 Interactive Visualization 142

9.3 Example Scenario . 143

IV Conclusions 145

10 Conclusions & Future Directions 147
10.1 Contributions . 147
10.2 Impact . 149
10.3 Future Research Directions . 149

A Analysis of FABP in Chapter 8 151
A.1 Preliminaries . 151
A.2 Proofs of Theorems . 154
A.3 Proofs for Convergence . 155

Bibliography 157

xiii

xiv

Chapter 1

Introduction

We have entered the era of big data. Large
and complex collections of digital data, in
terabytes and petabytes, are now common-
place. They are transforming our society and
how we conduct research and development
in science, government, and enterprises.

This thesis focuses on large graphs that
have millions or billions of nodes and edges.
They provide us with new opportunities to
better study many phenomena, such as to understand people’s interaction (e.g., so-
cial networks of Facebook & Twitter), spot business trends (e.g., customer-product
graphs of Amazon & Netflix), and prevent diseases (e.g., protein-protein interac-
tion networks). Table 1.1 shows some such graph data that we have analyzed, the
largest being Symantec’s machine-file graph, with over 37 billion edges.

But, besides all these opportunities, are there challenges too?

Yes, a fundamental one is due to the number seven.

Seven, is the number of items that an average human can roughly hold in
his or her working memory, an observation made by psychologist George Miller
[102]. In other words, even though we may have access to vast volume of data,
our brains can only process few things at a time. To help prevent people from
being overwhelmed, we need to turn these data into insights.

This thesis presents new paradigms, methods and systems that do exactly that.

1

Graph Nodes Edges

YahooWeb 1.4 billion (webpages) 6 billion (links)
Symantec machine-file graph 1 billion (machines/files) 37 billion (file reports)
Twitter 104 million (users) 3.7 billion (follows)
Phone call network 30 million (phone #s) 260 million (calls)

Table 1.1: Large graphs analyzed. Largest is Symantec’s 37-billion edge graph. See more
details about the data in Chapter 4.

1.1 Why Combining Data Mining & HCI?
Through my research in Data Mining and HCI (human-computer interaction)
over the past 7 years, I have realized that big data analytics can benefit from both
disciplines joining forces, and that the solution lies at their intersection. Both dis-
ciplines have long been developing methods to extract useful information from
data, yet they have had little cross-pollination historically. Data mining focuses
on scalable, automatic methods; HCI focuses on interaction techniques and visu-
alization that leverage the human mind (Table 1.2).

Why do data mining and HCI need each other?
Here is an example (Fig 1.1). Imagine Jane, our analyst working at a telecom-

munication company, is studying a large phone-call graph with million of cus-
tomers (nodes: customers; edges: calls). Jane starts by visualizing the whole
graph, hoping to find something that sticks out. She immediately runs into a big
problem. The graph shows up as a “hairball”, with extreme overlap among nodes
and edges (Fig 1.1a). She does not even know where to start her investigation.

Data Mining for HCI Then, she recalls that data mining methods may be able
to help here. She applies several anomaly detection methods on this graph, which
flag a few anomalous customers whose calling behaviors are significantly different

Data Mining HCI

Automatic User-driven; iterative
Summarization, clustering, classification Interaction, visualization
Millions of nodes Thousands of nodes

Table 1.2: Comparison of Data Mining and HCI methods

2

(a) (b) (c) (d)

Figure 1.1: Scenario of making sense of a large fictitious phone-call network, using data
mining and HCI methods. (a) Network shows up as “hairball”. (b) Data mining meth-
ods (e.g., anomaly detection) help analyst locate starting points to investigate. (c) Can
also ranks them, but often without explanation. (d) Visualization helps explain, by re-
vealing that the first four nodes form a clique; interaction techniques (e.g., neighborhood
expansion) also help, revealing the last node is the center of a “star”.

from the rest of other customers (Fig 1.1b). The anomaly detection methods also
rank the flagged customers, but without explaining to Jane why (Fig 1.1c). She
feels those algorithms are like black boxes; they only tell her “what”, but not
“why”. Why are those customers anomalous?

HCI for Data mining Then she realizes some HCI methods can help here. Jane
uses a visualization tool to visualize the connections among the first few cus-
tomers, and she sees that they form a complete graph (they have been talking to
each other a lot, indicated by thick edges in Fig 1.1d). She has rarely seen this.

Jane also uses the tool’s interaction techniques to expand the neighborhood of
the last customer, revealing that it is the center of a “star”; this customer seems to
be a telemarketer who has been busy making a lot of calls.

The above example shows that data mining and HCI can benefit from each
other. Data mining helps in scalability, automation and recommendation (e.g.,
suggest starting points of analysis). HCI helps in explanation, visualization, and
interaction. This thesis shows how we can leverage both—combining the best
from both worlds—to synthesize novel methods and systems that help people un-
derstand and interact with large graphs.

3

1.2 Thesis Overview & Main Ideas
Bridging research from data mining and HCI requires new ways of thinking, new
computational methods, and new systems. At the high level, this involves three
research questions. Each part of this thesis answers one question, and provides
example tools and methods to illustrate our solutions. Table 1.3 provides an
overview. Next, we describe the main ideas behind our solutions.

Research Question Answer (Thesis Part) Example

Where to start our analysis? I: Attention Routing Chapter 3, 4
Where to go next? II: Mixed-Initiative Sensemaking Chapter 5, 6
How to scale up? III: Scaling Up for Big Data Chapter 7, 8, 9

Table 1.3: Thesis Overview

1.2.1 Attention Routing (Part I)
The sheer number of nodes and edges in a large graph poses the fundamental
problem that there are simply not enough pixels on the screen to show the entire
graph. Even if there were, large graphs appear as incomprehensible blobs (as in
Fig 1.1). Finding a good starting point to investigate becomes a difficult task, as
users can no longer visually distill points of interest.

Attention Routing is a new idea we introduced to overcome this critical prob-
lem in visual analytics, to help users locate good starting points for analysis.
Based on anomaly detection in data mining, attention routing methods channel
users attention through massive networks to interesting nodes or subgraphs that do
not conform to normal behavior. Such abnormality often represents new knowl-
edge that directly leads to insights.

Anomalies exist at different levels of abstraction. It can be an entity, such as a
telemarketer who calls numerous people but answers few; in the network showing
the history of phone calls, that telemarketer will have extremely high out-degree,
but tiny in-degree. An anomaly can also be a subgraph (as in Fig 1.1), such as a
complete subgraph formed among many customers. In Part I, we describe several
attention routing tools.
• NetProbe (Chapter 3), an eBay auction fraud detection system, that fingers

bad guys by identifying their suspicious transactions. Fraudsters and their

4

Figure 1.2: Neprobe (Chapter 3) detects near-bipartite cores formed by the transactions
among fraudsters (in red) and their accomplices (yellow) who artificially boost the fraud-
sters’ reputation. Accomplices act like and trade with honest people (green).

accomplices boost their reputation by conducting bogus transactions, estab-
lishing themselves as trustworthy sellers. Then they defraud their victims by
“selling”’ expensive items (e.g., big-screen TV) that they will never deliver.
Such transactions form near-bipartite cores that easily evade the naked eye
when embedded among legitimate transactions (Fig 1.2). NetProbe was the
first work that formulated the auction fraud detection problem as a graph
mining task of detecting such near-bipartite cores.

• Polonium (Chapter 4), a patent-pending malware detection technology,
that analyzes a massive graph that describes 37 billion relationships among
1 billion machines and the files, and flags malware lurking in the graph (Fig-
ure 1.3). Polonium was the first work that casts classic malware detection as
a graph mining problem. Its 37 billion edge graph surpasses 60 terabytes,
the largest of its kind ever published.

1.2.2 Mixed-Initiative Graph Sensemaking (Part II)
Merely locating good starting points is not enough. Much work in analytics is to
understand why certain phenomena happen (e.g., why those starting points are rec-
ommended?). As the neighborhood of an entity may capture relational evidence
that attributes to the causes, neighborhood expansion is a key operation in graph
sensemaking. However, it presents serious problems for massive graphs: a node
in such graphs can easily have thousands of neighbors. For example, in a citation
network, a paper can be cited hundreds of times. Where should the user go next?
Which neighbors to show? In Part II, we describe several examples of how we
can achieve human-in-the-loop graph mining, which combines human intuition
and computation techniques to explore large graphs.

5

Figure 1.3: Polonium (Chapter 4) unearths malware in a 37 billion edge machine-file
network.

.

• Apolo (Chapter 5), a mixed-initiative system that combines machine infer-
ence and visualization to guide the user to interactively explore large graphs.
The user gives examples of relevant nodes, and Apolo recommends which
areas the user may want to see next (Fig 1.4). In a user study, Apolo helped
participants find significantly more relevant articles than Google Scholar.

• Graphite (Chapter 6), a system that finds both exact and approximate
matches for user-specified subgraphs. Sometimes, the user has some idea
about the kind of subgraphs to look for, but is not able to describe it precisely
in words or in a computer language (e.g., SQL). Can we help the user eas-
ily find patterns simply based on approximate descriptions? The Graphite
system meets this challenge. It provides a direct-manipulation user inter-
face for constructing the query pattern by placing nodes on the screen and
connecting them with edges (Fig 1.5).

6

Figure 1.4: Apolo showing citation network data around the article The Cost Structure of
Sensemaking. The user partners with Apolo to create this subgraph; the user marks and
groups interested articles as examplars (with colored dots underneath), and Apolo finds
other relevant articles.

Figure 1.5: Given a query pattern, such as a money laundering ring (left), Graphite finds
both exact and near matches that tolerates a few extra nodes (right).

1.2.3 Scaling Up for Big Data (Part III)

Massive graphs, having billions of nodes and edges, do not fit in the memory
of a single machine, and not even on a single hard disk. For example, in our
Polonium work (Chapter 4), the graph contains 37 billion edges; its structure and
meta data exceeds 60 terabytes. How do we store such massive datasets? How to
run algorithms on them? In Part III, we describe methods and tools that scale up
computation for speed and with data size.

7

• Parallelism with Hadoop1 (Chapter 7): we scale up the Belief Propaga-
tion algorithm to billion-node graphs, by leveraging Hadoop. Belief Propa-
gation (BP) is a powerful inference algorithm successfully applied on many
different problems; we have adapted it for fraud detection (Chapter 3), mal-
ware detection (Chapter 4), and graph exploration (Chapter 5).

• Approximate Computation (Chapter 8): we improve on Belief Propaga-
tion, to develop a fast algorithm that yields two times speedup, and equal or
higher accuracy than the standard version; we also contribute theoretically
by showing that guilt-by-association methods, such as Belief Propagation
and Random Walk with Restarts, result in similar matrix inversion prob-
lems, a core finding that leads to the improvement.

• Staging of Operations (Chapter 9): our OPAvion system adopts a hybrid
approach that maximizes scalability for algorithms while preserving inter-
activity for visualization (Fig 1.6). It includes two modules:

Distributed computation module. The Pegasus2 platform that we de-
veloped harnesses Hadoop’s parallelism over hundreds of machines to
compute statistics and mine patterns with distributed data mining al-
gorithms. Pegasus’ scalable algorithms include: Belief Propagation,
PageRank, connected components, and more.

Local interactive module. Based on Apolo’s architecture, the users
local computer serves as a cache for the entire graph, storing a million-
node sample of the graph in a disk-based embedded database (SQLite)
to allow real-time graph visualization and machine inference.

Figure 1.6: OPAvion’s hybrid architecture: uses Pegasus’ scalable algorithms to compute
statistics and mine patterns, then extract subgraphs for Apolo to visualize and run real-
time machine inference algorithms on

1Hadoop inspired by Googles MapReduce framework. http://hadoop.apache.org
2http://www.cs.cmu.edu/˜pegasus/

8

http://www.cs.cmu.edu/~pegasus/

1.3 Thesis Statement

We bridge Data Mining and Human-Computer Interaction (HCI) to synthesize
new methods and systems that help people understand and interact with massive
graphs with billions of nodes and edges, in three inter-related thrusts:

1. Attention Routing to funnel the users attention to the most interesting parts

2. Mixed-Initiative Sensemaking to guide the user’s exploration of the graph

3. Scaling Up by leveraging Hadoop’s parallelism, staging of operations, and
approximate computation

1.4 Big Data Mantra

This thesis advocates bridging Data Mining and HCI research to help researchers
and practitioners to make sense of large graphs. We summarize our advocacy as
the CARDINAL mantra for big data3:

CARDINAL Mantra for Big Data
Machine for Attention Routing, Human for Interaction

To elaborate, we suggest using machine (e.g., data mining, machine learn-
ing) to help summarize big data and suggest potentially interesting starting points
for analysis; while the human interacts with these findings, visualizes them, and
makes sense of them using interactive tools that incorporate user feedback (e.g.,
using machine learning) to help guide further exploration the data, form hypothe-
ses, and develop a mental model about the data.

Designed to apply to analytics of large-scale data, we believe our mantra will
nicely complement the conventional Visual Information-Seeking Mantra: “Overview
first, zoom and filter, then details-on-demand” which was originally proposed for
data orders of magnitude smaller [132].

We make explicit the needs to provide computation support throughout the
analytics process, such as using data mining techniques to help find interesting
starting points and route their attention there. We also highlight the importance

3CARDINAL is the acroynm for “Computerized Attention Routing in Data and Interactive
Navigation with Automated Learning”

9

that machine and human should work together—as partners—to make sense of
the data and analysis results.

1.5 Research Contributions
This thesis bridges data mining and HCI research. We contribute by answering
three important, fundamental research questions in large graph analytics:
• Where to start our analysis? Part I: Attention Routing
• Where to go next? Part II: Mixed-Initiative Sensemaking
• How to scale up? Part III: Scaling Up for Big Data
We concurrently contribute to multiple facets of data mining, HCI, and impor-

tantly, their intersection.

For Data Mining:
• Algorithms: We design and develop a cohesive collection of algorithms

that scale to massive networks with billions of nodes and edges, such as Be-
lief Propagation on Hadoop (Chapter 7), its faster version (Chapter 8), and
graph mining algorithms in Pegasus (http://www.cs.cmu.edu/˜pegasus).

• Systems: We contribute our scalable algorithms to the research commu-
nity as the open-source Pegasus project, and interactive systems such as
the OPAvion system for scalable mining and visualization (Chapter 9), the
Apolo system for exploring large graph (Chapter 5), and the Graphite sys-
tem for matching user-specified subgraph patterns (Chapter 6).

• Theories: We present theories that unify graph mining approaches (e.g.,
random walk with restart, belief propagation, semi-supervised learning),
which enable us to make algorithms even more scalable (Chapter 8).

• Applications: Inspired by graph mining research, we formulate and solve
important real-world problems with ideas, solutions, and implementations
that are first of their kinds. We tackled problems such as detecting auction
fraudsters (Chapter 3) and unearthing malware (Chapter 4).

For HCI:
• New Class of InfoVis Methods: Our Attention Routing idea (Part I) adds

a new class of nontrivial methods to information visualization, as a viable
resource for the critical first step of locating starting points for analysis.

10

http://www.cs.cmu.edu/~pegasus

• New Analytics Paradigm: Apolo (Chapter 5) represents a paradigm shift
in interactive graph analytics. It enables users to evolve their mental models
of the graph in a bottom-up manner (analogous to the constructivist view in
learning), by starting small, rather starting big and drilling down, offering a
solution to the common phenomena that there are simply no good ways to
partition most massive graphs to create visual overviews.

• Scalable Interactive Tools: Our interactive tools (e.g., Apolo, Graphite)
advances the state of the art, by enabling people to interact with graphs
orders of magnitudes larger in real time (tens of millions of edges).

This thesis research opens up opportunities for a new breed of systems and
methods that combine HCI and data mining methods to enable scalable, interac-
tive analysis of big data. We hope that our thesis, and our big data mantra “Ma-
chine for Attention Routing, Human for Interaction” will serve as the catalyst that
accelerates innovation across these disciplines, and the bridge that connects them.
inspiring more researchers and practitioners to work together at the crossroad of
Data Dining and HCI.

1.6 Impact
This thesis work has made remarkable impact to society:
• Our Polonium technology (Chapter 4), fully integrated into Symantec’s

flagship Norton Antivirus products, protects 120 million people worldwide
from malware, and has answered over trillions of queries for file reputation
queries. Polonium is patent-pending.

• Our NetProbe system (Chapter 3), which fingers fraudsters on eBay, made
headlines in major media outlets, like Wall Street Journal, CNN, and USA
Today. Interested by our work, eBay invited us for a site visit and presenta-
tion.

• Our Pegasus project (Chapter 7 & 9), which creates scalable graph algo-
rithms, won the Open Source Software World Challenge, Silver Award. We
have released Pegasus as free, open-source software, downloaded by people
from over 83 countries. It is also part of Windows Azure, Microsoft’s cloud
computing platform.

• Apolo (Chapter 5), as a major visualization component, contributes to DARPA’s
Anomaly Detection at Multiple Scales project (ADAMS) to detect insider
threats and exfiltration in government and the military.

11

12

Chapter 2

Literature Survey

Our survey focuses on three inter-related areas from which our thesis contributes
to: (1) graph mining algorithms and tools; (2) graph visualization and exploration;
and (3) sensemaking.

2.1 Graph Mining Algorithms and Tools

Inferring Node Relevance A lot of research in graph mining studies how to
compute relevance between two nodes in a network; many of them belong to
the class of spreading-activation [13] or propagation-based algorithms, e.g., HITS
[81], PageRank [22], and random walk with restart [144].

Belief Propagation (BP) [155] is an efficient inference algorithm for prob-
abilistic graphical models. Originally proposed for computing exact marginal
distributions for trees [117], it was later applied on general graphs [118] as an
approximate algorithm. When the graph contains loops, it’s called loopy BP.

Since its proposal, BP has been widely and successfully used in a myriad
of domains to solve many important problems, such as in error-correcting codes
(e.g., Turbo code that approaches channel capacity), computer vision (for stereo
shape estimation and image restoration [47]), and pinpointing misstated accounts
in general ledger data for the financial domain [98].

We have adapted it for fraud detection (Chapters 3), malware detection (Chap-
ters 4) and sensemaking (Chapters 5), and provides theories (Chapters 8) and im-
plementations (Chapters 7) that make it scale to massive graphs. We describe
BP’s details in Section 3.3, in the context of NetProbe’s auction fraud detection
problem. Later, in other works where we adapt or improve BP, we will briefly

13

highlight our contributions and differences, then refer our readers to the details
mentioned above.

BP is computationally-efficient; its running time scales linearly with the num-
ber of edges in the graph. However, for graphs with billions of nodes and edges—
a focus of our work (Chapter 7)—this cost becomes significant. There are sev-
eral recent works that investigated parallel Belief Propagation on multicore shared
memory [52] and MPI [53, 101]. However, all of them assume the graphs would
fit in the main memory (of a single computer, or a computer cluster). Our work
specifically tackles the important, and increasingly prevalent, situation where the
graphs would not fit in main memory (Chapter 7 & 8).

Authority & Trust Propagation This research area is closely related to fraud
detection (Chapter 3) and malware detection (Chapter 4), though it has only been
primarily studied in the context of web search, and far less in fraud and malware
detection. Finding authoritative nodes is the focus of the well-known PageRank
[22] and HITS [81] algorithms; at the high level, they both consider a webpage
as “important” if other “important” pages point to it. In effect, the importance of
webpages are propagated over hyperlinks connecting the pages. TrustRank [56]
propagates trust over a network of webpages to identify useful webpages from
spam (e.g., phishing sites, adult sites, etc.). Tong et al. [143] uses Random Walk
with Restart to find arbitrary user-defined subgraphs in an attributed graph. For the
case of propagation of two or more competing labels on a graph, semi-supervised
learning methods [158] have been used. Also related is the work on relational
learning by Neville et al. [106, 107], which aggregates features across nodes to
classify movies and stocks.

Graph Partitioning and Community Detection Much work has also been done
on developing methods to automatically discover clusters (or groupings) in graphs,
such as Graphcut [88], METIS [77], spectral clustering [108], and the parameter-
free “Cross-associations” (CA) [26]. Belief Propagation can also be used for clus-
tering, as in image segmentation [47].

Outlier and Anomaly Detection Our new idea of Attention Routing (Part I) is
closely related to work on outlier and anomaly detection, which has attracted wide
interest, with definitions from Hawkins [59], Barnett and Lewis [17], and Johnson
[68]. Outlier detection methods are distinguished into parametric ones (see, e.g.,
[59, 17]) and non-parametric ones. The latter class includes data mining related

14

methods such as distance-based and density-based methods. These methods typ-
ically define as an outlier the (n-D) point that is too far away from the rest, and
thus lives in a low-density area [83]. Typical methods include LOF [21] and LOCI
[115], with numerous variations: [32, 9, 14, 55, 109, 157, 78].

Noble and Cook [110] detect anomalous sub-graphs. Eberle and Holder [44]
try to spot several types of anomalies (like unexpected or missing edges or nodes).
Chakrabarti [25] uses MDL (Minimum Description Language) to spot anomalous
edges, while Sun et al. [136] use proximity and random walks to spot anomalies
in bipartite graphs.

Graph Pattern Matching Some of our work concerns matching patterns (sub-
graphs) in large graphs, such as our NetProbe system (Chapter 3) which detects
suspicious near-bipartite cores formed among fraudsters’ transcations in online
auction, and our Graphite system (Chapter 6) which finds user-specified subgraphs
in large attributed graphs using best effort, and returns exact and near matches.

Graph matching algorithms vary widely due to differences in the specific prob-
lems they address. The survey by Gallagher [50] provides an excellent overview.
Yan, Yu, and Han proposed efficient methods for indexing [153] and mining graph
databases for frequent subgraphs (e.g., gSpan [152]). Jin et al. used the concept of
topological minor to discover frequent large patterns [67]. These methods were
designed for graph-transactional databases, such as collections of biological or
chemical structures; while our work (Graphite) detects user-specified pattern in
a single-graph setting by extending the ideas of connection subgraphs [46] and
centerpiece graphs [142]. Other related systems include the GraphMiner system
[148] and works such as [119, 154].

Large Graph Mining with MapReduce and Hadoop Large scale graph min-
ing poses challenges in dealing with massive amount of data. One might consider
using a sampling approach to decrease the amount of data. However, sampling
from a large graph can lead to multiple nontrivial problems that do not have sat-
isfactory solutions [92]. For example, which sampling methods should we use?
Should we get a random sample of the edges, or the nodes? Both options have
their own share of problems: the former gives poor estimation of the graph diam-
eter, while the latter may miss high-degree nodes.

A promising alternative for large graph mining is MAPREDUCE, a parallel
programming framework [39] for processing web-scale data. MAPREDUCE has
two advantages: (a) The data distribution, replication, fault-tolerance, load bal-

15

ancing is handled automatically; and furthermore (b) it uses the familiar concept
of functional programming. The programmer defines only two functions, a map
and a reduce. The general framework is as follows [89]: (a) the map stage reads
the input file and emits (key, value) pairs; (b) the shuffling stage sorts the output
and distributes them to reducers; (c) the reduce stage processes the values with
the same key and emits another (key, value) pairs which become the final result.

HADOOP [2] is the open source version of MAPREDUCE. Our work (Chapter
7, 8, 9) leverages it to scale up graph mining tasks. HADOOP uses its own dis-
tributed file system HDFS, and provides a high-level language called PIG [111].
Due to its excellent scalability and ease of use, HADOOP is widely used for large
scale data mining, as in [116], [74], [72], and in our Pegasus open-source graph
library [75]. Other variants which provide advanced MAPREDUCE-like systems
include SCOPE [24], Sphere [54], and Sawzall [121].

2.2 Graph Visualization and Exploration
There is a large body of research aimed at understanding and supporting how
people can gain insights through visualization [87]. Herman et al [62] present a
survey of techniques for visualizing and navigating graphs, discussing issues re-
lated to layout, 2D versus 3D representations, zooming, focus plus context views,
and clustering. It is important to note, however, that the graphs that this survey
examines are on the order of hundreds or thousands of nodes, whereas we are
interested in graphs of several orders of magnitude larger in size.

Systems and Libraries There are well-known visualization systems and soft-
ware libraries, such as Graphviz [1], Walrus [6], Otter [4], Prefuse [61, 5], JUNG
[3], but they only perform graph layout, without any functionality for outlier de-
tection and sensemaking. Similarly, interactive visualization systems, such as Cy-
toscape [131], GUESS [8], ASK-GraphView [7], and CGV [141] only support
graphs with orders of magnitude smaller than our target scale, and assume ana-
lysts would perform their analysis manually, which can present great challenge for
huge graphs. Our work differs by offering algorithmic support to guide analysts
to spot patterns, and form hypotheses and verify them, all at a much larger scale.

Supporting “Top-down” Exploration A number of tools have been developed
to support “landscape” views of information. These include WebBook and Web-
Forager [23], which use a book metaphor to find, collect, and manage web pages;

16

Butterfly [94] aimed at accessing articles in citation networks; and Webcutter,
which collects and presents URL collections in tree, star, and fisheye views [93].
For a more focused review on research visualizing bibliographic data, see [99].

Supporting “Bottom-up” Exploration In contrast to many of these systems
which focus on providing overviews of information landscapes, less work has
been done on supporting the bottom-up sensemaking approach [128] aimed at
helping users construct their own landscapes of information. Our Apolo system
(Chapter 5) was designed to help fill in this gap. Some research has started to
study how to support local exploration of graphs, including Treeplus [90], Vizster
[60], and the degree-of-interest approach proposed in [146]. These approaches
generally support the idea of starting with a small subgraph and expanding nodes
to show their neighborhoods (and in the case of [146], help identify useful neigh-
borhoods to expand). One key difference with these works is that Apolo changes
the very structure of the expanded neighborhoods based on users’ interactions,
rather than assuming the same neighborhoods for all users.

2.3 Sensemaking
Sensemaking refers to the iterative process of building up a representation of an
information space that is useful for achieving the user’s goal [128]. Some of our
work is specifically designed to help people make sense of large graph data, such
as our Apolo system (Chapter 5) which combines machine learning, visualization
and interaction to guide the user to explore large graphs.

Models and Tools Numerous sensemaking models have been proposed, includ-
ing Russell et al.’s cost structure view [128], Dervin’s sensemaking methodology
[40], and the notional model by Pirolli and Card [122]. Consistent with this dy-
namic task structure, studies of how people mentally learn and represent concepts
highlight that they are often flexible, ad-hoc, and theory-driven rather than deter-
mined by static features of the data [18]. Furthermore, categories that emerge in
users’ minds are often shifting and ad-hoc, evolving to match the changing goals
in their environment [79].

These results highlight the importance of a “human in the loop” approach (the
focus of Part II) for organizing and making sense of information, rather than fully
unsupervised approaches that result in a common structure for all users. Sev-
eral systems aim to support interactive sensemaking, like SenseMaker [16], Scat-

17

ter/Gather [38], Russell’s sensemaking systems for large document collections
[127], Jigsaw [135], and Analyst’s Notebook [82]. Other relevant approaches in-
clude [139] and [12] which investigated how to construct, organize and visualize
topically related web resources.

Integrating Graph Mining In our Apolo work (Chapter 5), we adapts Belief
Propagation to support sensemaking, because of its unique capability to simulta-
neous support: multiple user-specified exemplars (unlike [146]); any number of
groups (unlike [13, 69, 146]); linear scalability with the number of edges (best
possible for most graph algorithms); and soft clustering, supporting membership
in multiple groups.

There has been few tools like ours that have integrated graph algorithms to
interactively help people make sense of network information [69, 120, 146], and
they often only support some of the desired sensemaking features, e.g., [146]
supports one group and a single exemplar.

18

Part I

Attention Routing

19

Overview

A fundamental problem in analyzing large graphs is that there are simply not
enough pixels on the screen to show the entire graph. Even if there were, large
graphs appear as incomprehensible blobs (as in Fig 1.1).

Attention Routing is a new idea we introduced to overcome this critical prob-
lem in visual analytics, to help users locate good starting points for analysis.
Based on anomaly detection in data mining, attention routing methods channel
users’ attention through massive networks to interesting nodes or subgraphs that
do not conform to normal behavior.

Conventionally, the mantra “overview first, zoom & filter, details-on-demand”
in information visualization relies solely on people’s perceptual ability to manu-
ally find starting points for analysis. Attention routing adds a new class of non-
trivial methods provide computation support to this critical first step. In this part,
we will describe several attention routing tools.
• NetProbe (Chapter 3) fingers bad guys in online auction by identifying

their suspicious transactions that form near-bipartite cores.
• Polonium (Chapter 4) unearths malware among 37 billion machine-file

relationships.

20

Chapter 3

NetProbe: Fraud Detection in
Online Auction

This chapter describes our first example of Attention Routing, which finds fraud-
ulent users and their suspicious transaction in online auctions. These users and
transactions formed some special signature subgraphs called near-bipartite cores
(as we will explain), which can serve as excellent starting points for fraud analysts.

We describe the design and implementation of NetProbe, a system that models
auction users and transactions as a Markov Random Field tuned to detect the suspi-
cious patterns that fraudsters create, and employs a Belief Propagation mechanism
to detect likely fraudsters. Our experiments show that NetProbe is both efficient
and effective for fraud detection. We report experiments on synthetic graphs with
as many as 7,000 nodes and 30,000 edges, where NetProbe was able to spot fraud-
ulent nodes with over 90% precision and recall, within a matter of seconds. We
also report experiments on a real dataset crawled from eBay, with nearly 700,000
transactions between more than 66,000 users, where NetProbe was highly effec-
tive at unearthing hidden networks of fraudsters, within a realistic response time
of about 6 minutes. For scenarios where the underlying data is dynamic in na-
ture, we propose Incremental NetProbe, which is an approximate, but fast, variant
of NetProbe. Our experiments prove that Incremental NetProbe executes nearly
doubly fast as compared to NetProbe, while retaining over 99% of its accuracy.

Chapter adapted from work appeared at WWW 2007 [114]

21

3.1 Introduction

Online auctions have been thriving as a business over the past decade. People
from all over the world trade goods worth millions of dollars every day using
these virtual marketplaces. EBay (www.ebay.com), the world’s largest auction
site, reported a third quarter revenue of $1,449 billion, with over 212 million reg-
istered users [42]. These figures represent a 31% growth in revenue and 26%
growth in the number of registered users over the previous year. Unfortunately,
rapid commercial success has made auction sites a lucrative medium for commit-
ting fraud. For more than half a decade, auction fraud has been the most prevalent
Internet crime. Auction fraud represented 63% of the complaints received by the
Federal Internet Crime Complaint Center last year. Among all the monetary losses
reported, auction fraud accounted for 41%, with an average loss of $385 [65].

Despite the prevalence of auction frauds, auctions sites have not come up with
systematic approaches to expose fraudsters. Typically, auction sites use a reputa-
tion based framework for aiding users to assess the trustworthiness of each other.
However, it is not difficult for a fraudster to manipulate such reputation systems.
As a result, the problem of auction fraud has continued to worsen over the past

.

Application Server
Runs algorithms to spot suspicious

patterns in auction graph.

Crawler Agents
2-tier parallelizable. Multiple
agents with multiple threads

to download auction data.

Data Master
Maintain centralized queue to

avoid redundant crawlling.

User Queries Trustworthiness of "Alisher"
User enters the user ID "Alisher" into a Java applet that talks
to the server, which sends assessment results in an XML file.

The applet interprets and visualizes suspicious networks.

Online Auction Site
Auction data modelled as graph
Nodes: users
Edges: transactions

. . .

XML

NetProbe

Figure 3.1: Overview of the NetProbe system

22

few years, causing serious concern to auction site users and owners alike.
We therefore ask ourselves the following research questions - given a large

online auction network of auction users and their histories of transactions, how
do we spot fraudsters? How should we design a system that will carry out fraud
detection on auction sites in a fast and accurate manner?

We propose NetProbe a system for fraud detection in online auction sites (Fig-
ure 3.1). NetProbe is a system that systematically analyzes transactions within
users of auction sites to identify suspicious networks of fraudsters. NetProbe al-
lows users of an online auction site to query the trustworthiness of any other user,
and offers an interface to visually explains the query results. In particular, we
make the following contributions through NetProbe:

• First, we propose data models and algorithms based on Markov Random
Fields and belief propagation to uncover suspicious networks hidden within
an auction site. We also propose an incremental version of NetProbe which
performs almost twice as fast in dynamic environments, with negligible loss
in accuracy.

• Second, we demonstrate that NetProbe is fast, accurate, and scalable, with
experiments on large synthetic and real datasets. Our synthetic datasets con-
tained as many as 7,000 users with over 30,000 transactions, while the real
dataset (crawled from eBay) contains over 66,000 users and nearly 800,000
transactions.

• Lastly, we share the non-trivial design and implementation decisions that
we made while developing NetProbe. In particular, we discuss the follow-
ing contributions: (a) a parallelizable crawler that can efficiently crawl data
from auction sites, (b) a centralized queuing mechanism that avoids redun-
dant crawling, (c) fast, efficient data structures to speed up our fraud de-
tection algorithm, and (d) a user interface that visually demonstrates the
suspicious behavior of potential fraudsters to the end user.

The rest of this work is organized as follows. We begin by reviewing related
work in Section 3.2. Then, we describe the algorithm underlying NetProbe in
Section 3.3 and explain how it uncovers dubious associations among fraudsters.
We also discuss the incremental variant of NetProbe in this section. Next, in Sec-
tion 3.4, we report experiments that evaluate NetProbe (as well as its incremental
variant) on large real and synthetic datasets, demonstrating NetProbe’s effective-
ness and scalability. In Section 3.5, we describe NetProbe’s full system design and
implementation details. Finally, we summarize our contributions in Section 3.6
and outline directions for future work.

23

3.2 Related Work
In this section, we survey related approaches for fraud detection in auction sites,
as well as the literature on reputation systems that auction sites typically use to
prevent fraud. We also look at related work on trust and authority propagation, and
graph mining, which could be applied to the context of auction fraud detection.

3.2.1 Grass-Roots Efforts
In the past, attempts have been made to help people identify potential fraudsters.
However, most of them are “common sense” approaches, recommended by a
variety of authorities such as newspapers articles [145], law enforcement agen-
cies [49], or even from auction sites themselves [43]. These approaches usually
suggest that people be cautious at their end and perform background checks of
sellers that they wish to transact with. Such suggestions however, require users to
maintain constant vigilance and spend a considerable amount of time and effort in
investigating potential dealers before carrying out a transaction.

To overcome this difficulty, self-organized vigilante organizations are formed,
usually by auction fraud victims themselves, to expose fraudsters and report them
to law enforcement agencies [15]. Unfortunately, such grassroot efforts are in-
sufficient for regulating large-scale auction fraud, motivating the need for a more
systematic approach to solve the auction fraud problem.

3.2.2 Auction Fraud and Reputation Systems
Reputation systems are used extensively by auction sites to prevent fraud. But
they are usually very simple and can be easily foiled. In an overview, Resnick et
al. [124] summarized that modern reputation systems face many challenges which
include the difficulty to elicit honest feedback and to show faithful representations
of users’ reputation. Despite their limitations, reputation systems have had a sig-
nificant effect on how people buy and sell. Melnik et al. [100] and Resnick et
al. [125] conducted empirical studies which showed that selling prices of goods
are positively affected by the seller’s reputation, implying people feel more con-
fident to buy from trustworthy sources. In summary, reputation systems might
not be an effective mechanism to prevent fraud because fraudsters can easily trick
these systems to manipulating their own reputation.

Chua et al. [37] have categorized auction fraud into different types, but they
did not formulate methods to combat them. They suggest that an effective ap-

24

proach to fight auction fraud is to allow law enforcement and auction sites to join
forces, which can be costly from both monetary and managerial perspectives.

In our previous work, we explored a classification-based fraud detection
scheme [29]. We extracted features from auction data to capture fluctuations in
sellers’ behaviors (e.g., selling numerous expensive items after selling very few
cheap items). This method, though promising, warranted further enhancement be-
cause it did not take into account the patterns of interaction employed by fraudsters
while dealing with other auction users. To this end, we suggested a fraud detec-
tion algorithm by identifying suspicious networks amongst auction site users [31].
However, the experiments were reported over a tiny dataset, while here we report
an in-depth evaluation over large synthetic and real datasets, along with fast, in-
cremental computation techniques.

3.3 NetProbe: Proposed Algorithms
In this section, we present NetProbe’s algorithm for detecting networks of fraud-
sters in online auctions. The key idea is to infer properties for a user based on
properties of other related users. In particular, given a graph representing interac-
tions between auction users, the likelihood of a user being a fraudster is inferred
by looking at the behavior of its immediate neighbors . This mechanism is ef-
fective at capturing fraudulent behavioral patterns, and affords a fast, scalable
implementation (see Section 3.4).

We begin by describing the Markov Random Field (MRF) model, which is a
powerful way to model the auction data in graphical form. We then describe the
Belief Propagation algorithm, and present how NetProbe uses it for fraud detec-
tion. Finally, we present an incremental version of NetProbe which is a quick and
accurate way to update beliefs when the graph topology changes.

3.3.1 The Markov Random Field Model
MRFs are a class of graphical models particularly suited for solving inference
problems with uncertainty in observed data. MRFs are widely used in image
restoration problems wherein the observed variables are the intensities of each
pixel in the image, while the inference problem is to identify high-level details
such as objects or shapes.

A MRF consists of an undirected graph, each node of which can be in any of a
finite number of states. The state of a node is assumed to statistically depend only

25

Symbol Definition
S set of possible states
bi(xj) belief of node i in state xj
ψ(i, j) (i, j)th entry of the propagation matrix (also called edge potential)
mij message sent by node i to node j

Table 3.1: Symbols and definitions

upon each of its neighbors, and independent of any other node in the graph. The
general MRF model is much more expressive than discussed here. For a more
comprehensive discussion, see [155]. The dependency between a node and its
neighbors is represented by a Propagation Matrix (also called Edge Potential) ψ,
where ψ(i, j) equals the probability of a node being in state j given that it has a
neighbor in state i.

Given a particular assignment of states to the nodes in a MRF, a likelihood of
observing this assignment can be computed using the propagation matrix. Typi-
cally, the problem is to infer the marginal distribution of the nodes’ states, where
the correct states for some of the nodes are possibly known before hand. Naive
computation through enumeration of all possible state assignments is exponential
in time. Further, there is no method known which can be theoretically proved
to solve this problem for a general MRF. Therefore, in practice, the above prob-
lem is solved through heuristic techniques. One particularly powerful method
is the iterative message passing scheme of belief propagation. This method, al-
though provably correct only for a restricted class of MRFs, has been shown to
perform extremely well for general MRFs occurring in a wide variety of disci-
plines (e.g., error correcting codes, image restoration, factor graphs, and particle
physics. Next, we describe how belief propagation solves the above inference
problem for general MRFs.

3.3.2 The Belief Propagation Algorithm

As mentioned before, Belief Propagation is an algorithm used to infer the marginal
state probabilities of nodes in a MRF, given a propagation matrix (also called Edge
Potential) and possibly a prior state assignment for some of the nodes. In this
section, we describe how the algorithm operates over general MRFs.

For a node i, the probability of i being in state xi is called the belief of i in
state xi, and is denoted by bi(xi). The set of possible states a node can be in is

26

Figure 3.2: A sample execution of NetProbe. Red triangles: fraudulent, yellow diamonds:
accomplice, white ellipses: honest, gray rounded rectangles: unbiased.

represented by S. Table 3.1 lists the symbols and their definitions used in this
section.

At the high level, the algorithm infers a node’s label from some prior knowl-
edge about the node, and from the node’s neighbors through iterative message
passing between all pairs of node i and j.

Node i’s prior is specified using the node potential function φ(xi)
1. And a

message mij(xj) sent from node i to j intuitively represents i’s opinion about j’s
belief (i.e., its distribution). An outgoing message from node i is generated based
on the messages going into the node; in other words, a node aggregates and trans-
forms its neighbors’ opinions about itself into an outgoing opinion that the node
will exert on its neighbors. The transformation is specified by the propagation
matrix (also called edge potential function) ψij (xi, xj), which formally describes
the probability of a node i being in class xi given that its neighbor j is in class xj .
Mathematically, a message is computed as:

1In case there is no prior knowledge available, each node is initialized to an unbiased state (i.e.,
it is equally likely to be in any of the possible states), and the initial messages are computed by
multiplying the propagation matrix with these initial, unbiased beliefs.

27

mij (xj) =
∑
xi∈X

φ (xi)ψij (xi, xj)
∏

k∈N(i)\j

mki (xi) (3.1)

where mij : the message vector sent by node i to j
N(i) \ j : node i’s neighbors, excluding node j

c : normalization constant
At any time, a node’s belief can be computed by multiplying its prior with all

the incoming messages (c is a normalizing constant):

bi (xi) = cφ (xi)
∏

j∈N(i)

mji (xi) (3.2)

The algorithm is typically stopped when the beliefs converge (within some
threshold; 10−5 is commonly used), or after some number of iterations. Although
convergence is not guaranteed theoretically for general graphs (except for trees),
the algorithm often converges quickly in practice.

3.3.3 NetProbe for Online Auctions
We now describe how NetProbe utilizes the MRF modeling to solve the fraud
detection problem.

Transactions between users are modeled as a graph, with a node for each user
and an edge for one (or more) transactions between two users. As is the case with
hyper-links on the Web (where PageRank [22] posits that a hyper-link confers
authority from the source page to the target page), an edge between two nodes
in an auction network can be assigned a definite semantics, and can be used to
propagate properties from one node to its neighbors. For instance, an edge can be
interpreted as an indication of similarity in behavior — honest users will interact
more often with other honest users, while fraudsters will interact in small cliques
of their own (to mutually boost their credibility). This semantics is very similar in
spirit to that used by TrustRank [56], a variant of PageRank used to combat Web
spam. Under this semantics, honesty/fraudulence can be propagated across edges
and consequently, fraudsters can be detected by identifying relatively small and
densely connected subgraphs (near cliques).

However, our previous work [31] suggests that fraudsters do not form such
cliques. There are several reasons why this might be so:
• Auction sites probably use techniques similar to the one outlined above to

detect probable fraudsters and void their accounts.

28

• Once a fraud is committed, an auction site can easily identify and void the
accounts of other fraudsters involved in the clique, destroying the “infras-
tructure” that the fraudster had invested in for carrying out the fraud. To
carry out another fraud, the fraudster will have to re-invest efforts in build-
ing a new clique.

Instead, we uncovered a different modus operandi for fraudsters in auction
networks, which leads to the formation of near bipartite cores. Fraudsters create
two types of identities and arbitrarily split them into two categories – fraud and
accomplice. The fraud identities are the ones used eventually to carry out the
actual fraud, while the accomplices exist only to help the fraudsters carry out
their job by boosting their feedback rating. Accomplices themselves behave like
perfectly legitimate users and interact with other honest users to achieve high
feedback ratings. On the other hand, they also interact with the fraud identities
to form near bipartite cores, which helps the fraud identities gain a high feedback
rating. Once the fraud is carried out, the fraud identities get voided by the auction
site, but the accomplice identities linger around and can be reused to facilitate the
next fraud.

We model the auction users and their mutual transactions as a MRF. A node
in the MRF represents a user, while an edge between two nodes denotes that the
corresponding users have transacted at least once. Each node can be in any of 3
states — fraud, accomplice, and honest.

To completely define the MRF, we need to instantiate the propagation matrix.
Recall that an entry in the propagation matrix ψ(xj, xi) gives the likelihood of a
node being in state xi given that it has a neighbor in state xj . A sample instantia-
tion of the propagation matrix is shown in Table 3.2. This instantiation is based on
the following intuition: a fraudster tends to heavily link to accomplices but avoids
linking to other bad nodes; an accomplice tends to link to both fraudsters and
honest nodes, with a higher affinity for fraudsters; a honest node links with other
honest nodes as well as accomplices (since an accomplice effectively appears to
be honest to the innocent user.) In our experiments, we set εp to 0.05. Automati-
cally learning the correct value of εp as well as the form of the propagation matrix
itself would be valuable future work.

3.3.4 NetProbe: A Running Example

In this section, we present a running example of how NetProbe detects bipartite
cores using the propagation matrix in Table 3.2. Consider the graph shown in

29

Node state
Neighbor state Fraud Accomplice Honest
Fraud εp 1− 2εp εp
Accomplice 0.5 2εp 0.5− 2εp
Honest εp (1− εp)/2 (1− εp)/2

Table 3.2: Instantiation of the propagation matrix for fraud detection. Entry (i, j) denotes
the probability of a node being in state j given that it has a neighbor in state i.

Figure 3.2. The graph consists of a bipartite core (nodes 7, 8, . . . , 14) mingled
within a larger network. Each node is encoded to depict its state — red triangles
indicate fraudsters, yellow diamonds indicate accomplices, white ellipses indicate
honest nodes, while gray rounded rectangles indicate unbiased nodes (i.e., nodes
equally likely to be in any state.)

Each node is initialized to be unbiased, i.e., it is equally likely to be fraud,
accomplice or honest. The nodes then iteratively pass messages and affect each
other’s beliefs. Notice that the particular form of the propagation matrix we use
assigns a higher chance of being an accomplice to every node in the graph at
the end of the first iteration. These accomplices then force their neighbors to be
fraudsters or honest depending on the structure of the graph. In case of bipartite
cores, one half of the core is pushed towards the fraud state, leading to a stable
equilibrium. In the remaining graph, a more favorable equilibrium is achieved by
labeling some of the nodes as honest.

At the end of execution, the nodes in the bipartite core are neatly labeled as
fraudsters and accomplices. The key idea is the manner in which accomplices
force their partners to be fraudsters in bipartite cores, thus providing a good mech-
anism for their detection.

3.3.5 Incremental NetProbe
In a real deployment of NetProbe, the underlying graph corresponding to transac-
tions between auction site users, would be extremely dynamic in nature, with new
nodes (i.e., users) and edges (i.e., transactions) being added to it frequently. In
such a setting, if one expects an exact answer from the system, NetProbe would
have to propagate beliefs over the entire graph for every new node/edge that gets
added to the graph. This would be infeasible in systems with large graphs, and
especially for online auction sites where users expect interactive response times.

Intuitively, the addition of a few edges to a graph should not perturb the re-

30

Figure 3.3: An example of Incremental NetProbe. Red triangles: fraudulent, yellow di-
amonds: accomplice, white ellipses: honest. An edge is added between nodes 9 and 10
of the graph on the left. Normal propagation of beliefs in the 3-vicinity of node 10 (on
the right) leads to incorrect inference, and so nodes on the boundary of the 3-vicinity (i.e.
node 6) should retain their beliefs.

31

maining graph by a lot (especially disconnected components.) To avoid wasteful
recomputation of node beliefs from scratch, we developed a mechanism to incre-
mentally update beliefs of nodes upon small changes in the graph structure. We
refer to this variation of our system as Incremental NetProbe.

The motivation behind Incremental NetProbe is that addition of a new edge
will at worst result in minor changes in the immediate neighborhood of the edge,
while the effect will not be strong enough to propagate to the rest of the graph.
Whenever a new edge gets added to the graph, the algorithm proceeds by per-
forming a breadth-first search of the graph from one of the end points (call it n)
of the new edge, up to a fixed number of hops h, so as to retrieve a small sub-
graph, which we refer to as the h-vicinity of n. It is assumed that only the beliefs
of nodes within the h-vicinity are affected by addition of the new edge. Then,
“normal” belief propagation is performed only over the h-vicinity, with one key
difference. While passing messages between nodes, beliefs of the nodes on the
boundary of the h-vicinity are kept fixed to their original values. This ensures
that the belief propagation takes into account the global properties of the graph,
in addition to the local properties of the h-vicinity.

The motivation underlying Incremental NetProbe’s algorithm is exemplified
in Figure 3.3. The initial graph is shown on the left hand side, to which an edge
is added between nodes 9 and 10. The 3-vicinity of node 10 is shown on the right
hand side. The nodes on the right hand side are colored according to their inferred
states based on propagating beliefs only in the subgraph without fixing the belief
of node 6 to its original value. Note that the 3-vicinity does not capture the fact that
node 6 is a part of a bipartite core. Hence the beliefs inferred are influenced only
by the local structure of the 3-vicinity and are “out of sync” with the remaining
graph. In order to make sure that Incremental NetProbe retains global properties
of the graph, it is essential to fix the beliefs of nodes at the boundary of the 3-
vicinity to their original values.

3.4 Evaluation
We evaluated the performance of NetProbe over synthetic as well as real datasets.
Overall, NetProbe was effective – it detected bipartite cores with very high ac-
curacy – as well as efficient – it had fast execution times. We also conducted
preliminary experiments with Incremental NetProbe, which indicate that Incre-
mental NetProbe results in significant speed-up of execution time with negligible
loss of accuracy.

32

0

0.2

0.4

0.6

0.8

1

1.2

100 600 1100 1600 2100 2600

#nodes

Recall
Precision

Figure 3.4: Accuracy of NetProbe over synthetic graphs with injected bipartite cores

Figure 3.5: Cores detected by NetProbe in the eBay dataset. Nodes shaded in red denote
confirmed fraudsters.

3.4.1 Performance on Synthetic Datasets

In this section, we describe the performance of NetProbe over synthetic graphs
generated to be representative of real-world networks. Typical (non-fraudulent)
interactions between people lead to graphs with certain expected properties, which
can be captured via synthetic graph generation procedures. In our experiments,
we used the Barabasi-Albert graph generation algorithm to model real-world net-
works of people. Additionally, we injected random sized bipartite cores into these
graphs. These cores represent the manner in which fraudsters form their sub-
networks within typical online networks. Thus, the overall graph is representative
of fraudsters interspersed within networks of normal, honest people.

33

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000 30000

#edges

ti
m

e
(m

s)

Figure 3.6: Scalability of NetProbe over synthetic graphs

3.4.2 Accuracy of NetProbe

We ran NetProbe over synthetic graphs of varying sizes. and measured the ac-
curacy of NetProbe in detecting bipartite cores via precision and recall. In our
context, precision is the fraction of nodes labeled by NetProbe as fraudsters who
belonged to a bipartite core, while recall is the fraction of nodes belonging to a
bipartite core that were labeled by NetProbe as fraudsters. The results are are
plotted in Figure 3.4.

In all cases, recall is very close to 1, which implies that NetProbe detects
almost all bipartite cores. Precision is almost always above 0.9, which indicates
that NetProbe generates very few false alarms. NetProbe thus robustly detects
bipartite cores with high accuracy independent of the size of the graph.

3.4.3 Scalability of NetProbe

There are two aspects to testing the scalability of NetProbe, (a) the time required
for execution, and (b) the amount of memory consumed.

The running time of a single iteration of belief propagation grows linearly
with the number of edges in the graph. Consequently, if the number of iterations
required for convergence is reasonably small, the running time of the entire algo-
rithm will be linear in the number of edges in the graph, and hence, the algorithm
will be scalable to extremely large graphs.

To observe the trend in the growth of NetProbe’s execution time, we generated
synthetic graphs of varying sizes, and recorded the execution times of NetProbe
for each graph. The results are shown in Figure 3.6. It can be observed that
NetProbe’s execution time grows almost linearly with the number of edges in the

34

graph, which implies that NetProbe typically converges in a reasonable number of
iterations.

The memory consumed by NetProbe also grows linearly with the number of
edges in the graph. In Section 3.5.1, we explain in detail the efficient data struc-
tures that NetProbe uses to achieve this purpose. In short, a special adjacency list
representation of the graph is sufficient for an efficient implementation (i.e., to
perform each iteration of belief propagation in linear time.)

Both the time and space requirements of NetProbe are proportional to the num-
ber of edges in the graph, and therefore, NetProbe can be expected to scale to
graphs of massive sizes.

3.4.4 Performance on the EBay Dataset
To evaluate the performance of NetProbe in a real-world setting, we conducted
an experiment over real auction data collected from eBay. As mentioned before,
eBay is the world’s most popular auction site with over 200 million registered
users, and is representative of other sites offering similar services. Our experiment
indicates that NetProbe is highly efficient and effective at unearthing suspicious
bipartite cores in massive real-world auction graphs.

3.4.5 Data Collection
We crawled the Web site of eBay to collect information about users and their
transactions. Details of the crawler implementation are provided in Section 3.5.1.
The data crawled lead to a graph with 66,130 nodes and 795,320 edges.

3.4.6 Efficiency
We ran NetProbe on a modest workstation, with a 3.00GHz Pentium 4 processor,
1 GB memory and 25 GB disk space. NetProbe converged in 17 iterations and
took a total of 380 seconds (∼ 6 minutes) to execute.

3.4.7 Effectiveness
Since our problem involves predicting which users are likely fraudsters, it is not
easy to design a quantitative metric to measure effectiveness. A user who looks
honest presently might in reality be a fraudster, and it is impossible to judge the

35

Fraud Accomplice Honest
0.0256 0.0084 0.016

Table 3.3: Fraction of negative feedback received by different categories of users

ground truth correctly. Therefore, we relied on a subjective evaluation of Net-
Probe’s effectiveness.

Through manual investigation (Web site browsing, newspaper reports, etc.)
we located 10 users who were guaranteed fraudsters. NetProbe correctly labeled
each of these users as fraudsters. Moreover, it also labeled the neighbors of these
fraudsters appropriately so as to reveal hidden bipartite cores. Some of the de-
tected cores are shown in Figure 3.5. Each core contains a confirmed fraudster
represented by a node shaded with red color. This evidence heavily supports our
hypothesis that fraudsters hide behind bipartite cores to carry out their fraudulent
activities.

Since we could not manually verify the correctness of every fraudster detected
by NetProbe, we performed the following heuristic evaluation. For each user,
we calculated the fraction of his last 20 feedbacks on eBay which were negative.
A fraudster who has already committed fraudulent activities should have a large
number of recent negative feedbacks. The average bad feedback ratios for nodes
labeled by NetProbe are shown in Table 3.3. Nodes labeled by NetProbe as fraud
have a higher bad feedback ratio on average, indicating that NetProbe is reason-
ably accurate at detecting prevalent fraudsters. Note that this evaluation metric
does not capture NetProbe’s ability to detect users likely to commit frauds in the
future via unearthing their bipartite core structured networks with other fraudsters.

Overall, NetProbe promises to be a very effective mechanism for unearthing
hidden bipartite networks of fraudsters. A more exhaustive and objective evalu-
ation of its effectiveness is required, with the accuracy of its labeling measured
against a manual labeling of eBay users (e.g., by viewing their feedbacks and pro-
files, collaboration with eBay, etc.) Such an evaluation would be valuable future
work.

3.4.8 Performance of Incremental NetProbe

To evaluate the performance of Incremental NetProbe, we designed the following
experiment. We generated synthetic graphs of varying sizes, and added edges
incrementally to them. The value of h (see Sec 3.3.5) was chosen to be 2. At each

36

0

20

40

60

80

100

120

4000 4500 5000 5500 6000 6500 7000

#nodes

% Accuracy
% Time

Figure 3.7: Performance of NetProbe over synthetic graphs with incremental edge addi-
tions

step, we also carried out belief propagation over the entire graph and compared
the ratio of the execution times and the accuracies with the incremental version.

The results are shown in Figure 3.7. Incremental NetProbe can be seen to
be not only extremely accurate but also nearly twice as fast compared to stand-
alone NetProbe. Observe that for larger graphs, the ratio of execution times favors
Incremental NetProbe, since it touches an almost constant number of nodes, in-
dependent of the size of the graph. Therefore, in real-world auction sites, with
graphs containing over a million nodes and edges, Incremental NetProbe can be
expected to result in huge savings of computation, with negligible loss of accu-
racy.

3.5 The NetProbe System Design
In this section, we describe the challenges faced while designing and implement-
ing NetProbe. We also propose a user interface for visualizing the fraudulent
networks detected by NetProbe.

3.5.1 Current (Third Party) Implementation
Currently, we have implemented NetProbe as a third party service, which need
not be regulated by the auction site itself (since we do not have collaborations
with any online auction site.) A critical challenge in such a setting is to crawl data
about users and transactions from the auction site. In this section, we describe the
implementation details of our crawler, as well as some non-trivial data structures

37

Figure 3.8: A sample eBay page listing the recent feedbacks for a user

used by NetProbe for space and time efficiency.

3.5.2 Crawler Implementation

eBay provides a listing of feedbacks received by a user, including details of the
person who left the feedback, the date when feedback was left, and the item id
involved in the corresponding transaction. A snapshot of such a page is shown in
Figure 3.8. The user-name of each person leaving a feedback is hyperlinked to
his own feedback listing, thus enabling us to construct the graph of transactions
between these users by crawling these hyperlinks.

We crawled user data in a breadth-first fashion. A queue data structure was
used to store the list of pending users which have been seen but not crawled.
Initially, a seed set of ten users was inserted into the queue. Then at each step, the
first entry of the queue was popped, all feedbacks for that user were crawled, and
every user who had left a feedback (and was not yet seen) was enqueued. Once all
his feedbacks were crawled, a user was marked as visited, and stored in a separate
queue.

In order to crawl the data as quickly as possible, we enhanced the naive
breadth-first strategy to make it parallelizable. The queue is stored at a central

38

User (uid, username, date joined, location,
feedback score, is registered user, is crawled)

Feedback (feedback id, user from, user to, item,
buyer, score, time)

Queue (uid, time added to queue)

Table 3.4: Database schema used by NetProbe’s cralwer

machine, called the master, while the crawling of Web pages is distributed across
several machines, called the agents. Each agent requests the master for the next
available user to crawl, and returns the crawled feedback data for this user to the
master. The master maintains global consistency of the queue, and ensures that a
user is crawled only once.

To ensure consistency and scalability of the queue data structure, we decided
to use a MySQL database as the platform for the master. This architecture allows
us to add new agents without suffering any downtime or configuration issues,
while maintaining a proportional increase in performance. Further, each agent
itself can open arbitrary number of HTTP connections, and run several different
crawler threads. Thus, the crawler architecture allows for two tiers of parallelism
— the master can control several agents in parallel, while each agent itself can
utilize multiple threads for crawling.

The crawler was written in Java, and amounted to about 1000 lines of code.
The master stored all of the data in a MySQL 5.0.24 database with the schema in
Table 3.4. We started the crawl on October 10, and stopped it on November 2. In
this duration, we managed to collect 54,282,664 feedback entries, visiting a total
of 11,716,588 users, 66,130 of which were completely crawled.

3.5.3 Data Structures for NetProbe

We implemented elaborate data structures and optimizations to ensure that Net-
Probe runs in time proportional to the number of edges in the graph.

NetProbe starts with graphical representation of users and transactions within
them, and then at each iteration, passes messages as per the rules given in Equa-
tion 3.1. While edges are undirected, messages are always directed from a source
node to a target node. Therefore, we treat an undirected edge as a pair of two
directed edges pointing in opposite directions. We use a simple adjacency list
representation to store the graph in memory. Each (directed) edge is assigned a

39

3 5 8
1

2

3

7

1 7 22

3 9 15

1,3

3,1

3,7

7,3

Messages Array
Adjacency Lists

Figure 3.9: Data structures used by NetProbe’s. The graph is stored as a set of adjacency
lists, while messages are stored in a flat array indexed by edge identifiers. Note that the
message sent from node i to j is always adjacent to the message sent from j to i.

numeric identifier and the corresponding message is stored in an array indexed by
this identifier (as shown in Figure 3.9).

The second rule in Equation 3.2 computes the belief of a node i in the graph
by multiplying the messages that i receives from each of its neighbors. Executing
this rule thus requires a simple enumeration of the neighbors of node i. The first
rule however, is more complicated. It computes the message to be sent from
node i to node j, by multiplying the messages that node i receives from all its
neighbors except j. Naive implementation of this rule would enumerate over all
the neighbors of i while computing the message from i to any of its neighbors,
hence making the computation non-linear in the number of edges. However, if
for each node i, the messages from all its neighbors are multiplied and stored
beforehand (let us call this message as i’s token), then for each neighbor j, the
message to be sent from i to j can be obtained by dividing i’s token by the last
message sent from j to i. Thus, if the last message sent from j to i is easily
accessible while sending a new message from i to j, the whole computation would
end up being efficient.

In order to make this possible, we assign edge identifiers in a way such that

40

each pair of directed edges corresponding to a single undirected edge in the origi-
nal graph get consecutive edge identifiers. For example (as shown in Figure 3.9),
if the graph contains an edge between nodes 1 and 3, and the edge directed from
1 to 3 is assigned the identifier 0 (i.e., the messages sent from 1 to 3 are stored
at offset 0 in the messages array), then the edge directed from 3 to 1 will be as-
signed the identifier 1, and the messages sent from 3 to 1 will be stored at offset
1. As a result, when the message to be sent from node 1 to its neighbor 3 is to be
computed, the last message sent from 3 to 1 can be quickly looked up.

NetProbe’s fraud detection algorithm was implemented using these data struc-
tures in C++, with nearly 5000 lines of code.

3.5.4 User Interface

Figure 3.10: NetProbe user interface showing a near-bipartite core of transactions between
fraudsters (e.g., Alisher, in red) and their accomplices (in yellow) who artificially boost
the fraudsters’ reputation.

A critical component of a deployed fraud detection system would be its user
interface, i.e., the “window” through which the user interacts with the underlying

41

algorithms. For our scheme of detecting fraudsters via unearthing the suspicious
network patterns they create, we propose a user interface based on visualization of
the graph neighborhood for a user whose reputation is being queried. A screens-
hot of the same is shown in Figure 3.10.

A simple and intuitive visualization tool could help users understand the re-
sults that the system produces. The detected bipartite cores, when shown visually,
readily explain to the user why a certain person is being labeled as a fraudster, and
also increase general awareness about the manner in which fraudsters operate.
Users could finally combine the system’s suggestions with their own judgment to
assess the trustworthiness of an auction site user.

We have implemented the above interface to run as a Java applet in the user’s
browser. The user can simply input an username/email (whatever the auction site
uses for authentication) into the applet and hit “Go”. The tool then queries the
system’s backend and fetches a representation of the user’s neighborhood (possi-
bly containing bipartite core) in XML format. Such bipartite information could
be pre-built so that a query from the user will most of the time lead to a simple
download of an XML file, minimizing chances of real-time computation of the
bipartite core information.

In summary, the user interface that we propose above provides a rich set of
operations and visualizations at an interactive speed to the end users, helping them
understand the detected threats.

3.6 Conclusions
We have described the design and implementation of NetProbe, the first system (to
the best of our knowledge) to systematically tackle the problem of fraud detection
in large scale online auction networks. We have unveiled an ingenious scheme
used by fraudsters to hide themselves within online auction networks. Fraudsters
make use of accomplices, who behave like honest users, except that they interact
heavily with a small set of fraudsters in order to boost their reputation. Such
interactions lead to the formation of near bipartite cores, one half of which consists
of fraudsters, and the other is made up of accomplices. NetProbe detects fraudsters
by using a belief propagation mechanism to discover these suspicious networks
that fraudsters form. The key advantage of NetProbe is its ability to not only spot
prevalent fraudsters, but also predict which users are likely to commit frauds in
the future. Our main contributions are summarized in this section, along with
directions for future work.

42

3.6.1 Data Modeling and Algorithms
We have proposed a novel way to model users and transactions on an auction site
as a Markov Random Field. We have also shown how to tune the well-known
belief propagation algorithm so as to identify suspicious patterns such as bipar-
tite cores. We have designed data structures and algorithms to make NetProbe
scalable to large datasets. Lastly, we have also proposed a valuable incremen-
tal propagation algorithm to improve the performance of NetProbe in real-world
settings.

3.6.2 Evaluation
We have performed extensive experiments on real and synthetic datasets to evalu-
ate the efficiency and effectiveness of NetProbe. Our synthetic graphs contain as
many as 7000 nodes and 30000 edges, while the real dataset is a graph of eBay
users with approximately 66,000 nodes and 800,000 edges. Our experiments al-
low us to conclude the following:
• NetProbe detects fraudsters with very high accuracy
• NetProbe is scalable to extremely large datasets
• In real-world deployments, NetProbe can be run in an incremental fashion,

with significant speed up in execution time and negligible loss of accuracy.

3.6.3 System Design
We have developed a prototype implementation of NetProbe, which is highly ef-
ficient and scalable in nature. In particular, the prototype includes a crawler de-
signed to be highly parallelizable, while avoiding redundant crawling, and an im-
plementation of the belief propagation algorithm with efficient graph data struc-
tures. We have also proposed a user-friendly interface for looking up the trustwor-
thiness of a auction site user, based on visualization of the graph neighborhood of
the user. The interface is designed to be simple to use, intuitive to understand and
operate with interactive response times. The entire system was coded using nearly
6000 lines of Java/C++ code.

43

44

Chapter 4

Polonium: Web-Scale Malware
Detection

This chapter describes our second example of Attention Routing that finds bad
software (malware) on user’s computers. This is a novel technology, called Polo-
nium, developed with Symantec that detects malware through large-scale graph
inference. Based on the scalable Belief Propagation algorithm, Polonium infers
every file’s reputation, flagging files with low reputation as malware. We evalu-
ated Polonium with a billion-node graph constructed from the largest file submis-
sions dataset ever published (60 terabytes). Polonium attained a high true positive
rate of 87% in detecting malware; in the field, Polonium lifted the detection rate of
existing methods by 10 absolute percentage points. We detail Polonium’s design
and implementation features instrumental to its success.

Polonium is now serving over 120 million people worldwide and has helped
answer more than one trillion queries for file reputation.

4.1 Introduction
Thanks to ready availability of computers and ubiquitous access to high-speed
Internet connections, malware has been rapidly gaining prevalence over the past
decade, spreading and infecting computers around the world at an unprecedented
rate. In 2008, Symantec, a global security software provider, reported that the
release rate of malicious code and other unwanted programs may be exceeding

Chapter adapted from work appeared at SDM 2011 [28]

45

Figure 4.1: Overview of the Polonium technology

that of legitimate software applications [138]. This suggests traditional signature-
based malware detection solutions will face great challenges in the years to come,
as they will likely be outpaced by the threats created by malware authors. To put
this into perspective, Symantec reported that they released nearly 1.8 million virus
signatures in 2008, resulting in 200 million detections per month in the field [138].
While this is a large number of blocked malware, a great deal more malware (so-
called “zero day” malware [150]) is being generated or mutated for each victim
or small number of victims, which tends to evade traditional signature-based an-
tivirus scanners. This has prompted the software security industry to rethink their
approaches in detecting malware, which have heavily relied on refining existing
signature-based protection models pioneered by the industry decades ago. A new,
radical approach to the problem is needed.

The New Polonium Technology Symantec introduced a protection model that
computes a reputation score for every application that users may encounter, and
protects them from those with poor reputation. Good applications typically are
used by many users, from known publishers, and have other attributes that charac-
terize their legitimacy and good reputation. Bad applications, on the other hand,

46

Technical term Synonyms Meaning

Malware Bad software, malicious
software, infected file

Malicious software; includes
computer viruses, Trojan, etc.

Reputation Goodness, belief Goodness measure; for machines
and files (e.g., file reputation)

File Executable, software,
application, program

Software instance, typically an
executable file (e.g., .exe)

Machine Computer User’s computer; a user can have
multiple computers

File ground truth – File label, good or bad , assigned by
security experts

Known-good file – File with good ground truth

Known-bad file – File with bad ground truth

Unknown file – File with unknown ground truth

Positive – Malware instance

True Positive TP Malware instance correctly identified
as bad

False Positive FP A good file incorrectly identified as
bad

Table 4.1: Malware detection terminology

typically come from unknown publishers, have appeared on few computers, and
have other attributes that indicate poor reputation. The application reputation is
computed by leveraging tens of terabytes of data anonymously contributed by
millions of volunteers using Symantec’s security software. These data contain
important characteristics of the applications running on their systems.

We describe Polonium, a new malware detection technology developed at
Symantec that computes application reputation (Figure 4.1). We designed Polo-
nium to complement (not to replace) existing malware detection technologies
to better protect computer users from security threats. Polonium stands for
“Propagation Of Leverage Of Network Influence Unearths Malware”. Our main
contributions are:
• Formulating the classic malware detection problem as a large-scale graph

mining and inference problem, where the goals are to infer the reputation

47

of any files that computer users may encounter, and identify the ones with
poor reputation (i.e., malware). [Section 4.4]

• Providing an algorithm that efficiently computes application reputation. In
addition, we show how domain knowledge is readily incorporated into the
algorithm to identify malware. [Section 4.4]

• Investigating patterns and characteristics observed in a large anonymized
file submissions dataset (60 terabytes), and the machine-file bipartite graph
constructed from it (37 billion edges). [Section 4.3]

• Performing a large-scale evaluation of Polonium over a real, billion-node
machine-file graph, demonstrating that our method is fast, effective, and
scalable. [Section 4.5]

• Evaluating Polonium in the field, while it is serving 120 million users world-
wide. Security experts investigated Polonium’s effectiveness and found that
it helped significantly lift the detection rate of a collection of existing propri-
etary methods by more than 10 absolute percentage points. To date, Polo-
nium has helped answer more than one trillion queries for file reputation.
[Section 4.6]

To enhance readability, we list the malware detection terminology in Table
4.1. The reader may want to return to this table for technical terms’ meanings and
synonyms used in various contexts of discussion. One important note is that we
will use the words “file”, “application”, and “executable” interchangeably to refer
to any piece of software running on a user’s computer, whose legitimacy (good or
bad) we would like to determine.

4.2 Previous Work & Our Differences
To the best of our knowledge, formulating the malware detection problem as
a file reputation inference problem over a machine-file bipartite graph is novel.
Our work intersects the domains of malware detection and graph mining, and we
briefly review related work below.

A malware instance is a program that has malicious intent [36]. Malware is a
general term, often used to describe a wide variety of malicious code, including
viruses, worms, Trojan horses, rootkits, spyware, adware, and more [137]. While
some types of malware, such as viruses, are certainly malicious, some are on the
borderline. For example, some “less harmful” spyware programs collect the user’s
browsing history, while the “more harmful” ones steal sensitive information such

48

as credit card numbers and passwords; depending on what it collects, a spyware
can be considered malicious, or only undesirable.

The focus of our work is not on classifying software into these, sometimes
subtle, malware subcategories. Rather, our goal is to come up with a new, high-
level method that can automatically identify more malware instances similar to
the ones that have already been flagged by Symantec as harmful and that the user
should remove immediately, or would be removed automatically for them by our
security products. This distinction differentiates our work from existing ones that
target specific malware subcategories.

4.2.1 Research in Malware Detection

There has been significant research in most malware categories. Idika and Mathur
[64] comprehensively surveyed 45 state-of-the-art malware detection techniques
and broadly divide them into two categories: (1) anomaly-based detection, which
detects malware’s deviation from some presumed “normal” behavior, and (2)
signature-based detection, which detects malware that fits certain profiles (or sig-
natures).

There have been an increasing number of researchers who use data mining and
machine learning techniques to detect malware [133]. Kephart and Arnold [80]
were the pioneers in using data mining techniques to automatically extract virus
signatures. Schultz et al. [130] were among the first who used machine learning
algorithms (Naive Bayes and Multi-Naive Bayes) to classify malware. Tesauro et
al. [140] used Neural Network to detect “boot sector viruses”, with over 90% true
positive rate in identifying those viruses, at 15-20% false positive rate; they had
access to fewer than 200 malware samples. One of the most recent work by Kolter
and Maloof [84] used TFIDF, SVM and decision trees on n-grams.

Most existing research only considers the intrinsic characteristics of the mal-
ware in question, but has not taken into account those of the machines that have
the malware. Our work makes explicit our strong leverage in propagating and
aggregating machine reputation information for a file to infer its goodness.

Another important distinction is the size of our real dataset. Most earlier works
trained and tested their algorithms on file samples in the thousands; we have ac-
cess to over 900M files, which allows us to perform testing in a much larger scale.

49

4.2.2 Research in Graph Mining

There has been extensive work done in graph mining, from authority propagation
to fraud detection, which we will briefly review below. For more discussion and a
survey, please refer to Chapter 2.

Graph mining methods have been successfully applied in many domains.
However, less graph mining research is done in the malware detection domain.
Recent works, such as [36, 35], focus on detecting malware variants through the
analysis of control-flow graphs of applications.

Fraud detection is a closely related domain. Our NetProbe system [114] mod-
els eBay users as a tripartite graph of honest users, fraudsters, and their accom-
plices; NetProbe uses the Belief Propagation algorithm to identify the subgraphs
of fraudsters and accomplices lurking in the full graph. McGlohon et al. [98]
proposed the general SNARE framework based on standard Belief Propagation
[155] for general labeling tasks; they demonstrated the framework’s success in
pinpointing misstated accounts in some general ledger data.

More generally, [19, 95] use knowledge about the social network structure to
make inference about the key agents in networks.

4.3 Data Description

Now, we describe the large dataset that the Polonium technology leverages for
inferring file reputation.
Source of Data: Since 2007, tens of millions of worldwide users of Symantec’s
security products volunteered to submit their application usage information to us,
contributing anonymously to help with our effort in computing file reputation. At
the end of September 2010, the total amount of raw submission data has reached
110 terabytes. We use a 3-year subset of these data, from 2007 to early 2010, to
describe our method (Section 4.4) and to evaluate it (Section 4.5).

These raw data are anonymized; we have no access to personally identifiable
information. They span over 60 terabytes of disk space. We collect statistics on
both legitimate and malicious applications running on each participant’s machine
— this application usage data serves as input to the Polonium system. The total
number of unique files described in the raw data exceeds 900M. These files are
executables (e.g., exe, dll), and throughout this work, we will simply call them
“files”.

After our teams of engineers collected and processed these raw data, we con-

50

Figure 4.2: Machine submission distribution (log-log)

structed a huge bipartite graph from them, with almost one billion nodes and 37
billion edges. To the best of our knowledge, both the raw file submission dataset
and this graph are the largest of their kind ever published. We note, however, these
data are only from a subset of Symantec’s complete user base.

Each contributing machine is identified by an anonymized machine ID, and
each file by a file ID which is generated based on a cryptographically-secure hash-
ing function.
Machine & File Statistics: A total of 47,840,574 machines have submitted data
about files on them. Figure 4.2 shows the distributions of the machines’ numbers
of submissions. The two modes approximately correspond to data submitted by
two major versions of our security products, whose data collection mechanisms
differ. Data points on the left generally represent new machines that have not sub-
mitted many file reports yet; with time, these points (machines) gradually move
towards the right to join the dominant distribution.

903,389,196 files have been reported in the dataset. Figure 4.3 shows the
distribution of the file prevalence, which follows the Power Law. As shown in the
plot, there are about 850M files that have only been reported once. We call these
files “singletons”. They generally fall into two different categories:

• Malware which has been mutated prior to distribution to a victim, generat-
ing a unique variant;

• Legitimate software applications which have their internal contents fixed
up or JITted during installation or at the time of first launch. For example,

51

Figure 4.3: File prevalence distribution, in log-log scale. Prevalence cuts off at 200,000
which is the maximum number of machine associations stored for each file. Singletons
are files reported by only one machine.

Microsoft’s .NET programs are JITted by the .NET runtime to optimize per-
formance; this JITting process can result in different versions of a baseline
executable being generated on different machines.

For the files that are highly prevalent, we store only the first 200,000 machine
IDs associated with those files.
Bipartite Graph of Machines & Files: We generated an undirected, unweighted
bipartite machine-file graph from the raw data, with almost 1 billion nodes and
37 billion edges (37,378,365,220). 48 million of the nodes are machine nodes,
and 903 million are file nodes. An (undirected) edge connects a file to a machine
that has the file. All edges are unweighted; at most one edge connects a file and
a machine. The graph is stored on disk as a binary file using the adjacency list
format, which spans over 200GB.

4.4 Proposed Method: the Polonium Algorithm

In this section, we present the Polonium algorithm for detecting malware. We
begin by describing the malware detection problem and enumerating the pieces of
helpful domain knowledge and intuition for solving the problem.

52

Figure 4.4: Inferring file goodness through incorporating (a) domain knowledge and intu-
ition, and (b) other files’ goodness through their influence on associated machines.

4.4.1 Problem Description
Our Data: We have a billion-node graph of machines and files, and we want to
label the files node as good or bad, along with a measure of confidence in those
dispositions. We may treat each file as a random variable X ∈ {xg, xb}, where xg
is the good label (or class) and xb is the bad label. The file’s goodness and bad-
ness can then be expressed by the two probabilities P (xg) and P (xb) respectively,
which sum to 1.

Goal: We want to find the marginal probability P (Xi = xg), or goodness, for
each file i. Note that as P (xg) and P (xb) sum up to one, knowing the value of one
automatically tells us the other.

4.4.2 Domain Knowledge & Intuition
For each file, we have the following pieces of domain knowledge and intuition,
which we use to infer the file’s goodness, as depicted in Figure 4.4a.

Machine Reputation: A reputation score has been computed for each machine
based on a proprietary formula that takes into account multiple anonymous
aspects of the machine’s usage and behavior. The score is a value between
0 and 1. Intuitively, we expect files associated with a good machine to be
more likely to be good.

File Goodness Intuition: Good files typically appear on many machines and
bad files appear on few machines.

Homophilic Machine-File Relationships. We expect that good files are more
likely to appear on machines with good reputation and bad files more likely
to appear on machines with low reputation. In other words, the machine-file
relationships can be assumed to follow homophily.

53

File Ground Truth: We maintain a ground truth database that contains large
number of known-good and known-bad files, some of which exist in our
graph. We can leverage the labels of these files to infer those of the un-
knowns. The ground truth files influence their associated machines which
indirectly transfer that influence to the unknown files (Figure 4.4b).

The attributes mentioned above are just a small subset of the vast number of
machine- and file-based attributes we have analyzed and leveraged to protect users
from security threats.

4.4.3 Formal Problem Definition

After explaining our goal and information we are equipped with to detect malware,
now we formally state the problem as follows.
Given:
• An undirected graph G = (V,E) where the nodes V correspond to the

collection of files and machines in the graph, and the edges E correspond
to the associations among the nodes.

• Binary class labels X ∈ {xg, xb} defined over V
• Domain knowledge that helps infer class labels

Output: Marginal probability P (Xi = xg), or goodness, for each file.
Our goal task of computing the goodness for each file over the billion-node

machine-file graph is an NP-hard inference task [155]. Fortunately, the Belief
Propagation algorithm (BP) has been proven very successful in solving inference
problems over graphs in various domains (e.g., image restoration, error-correcting
code). We adapted the algorithm for our problem, which was a non-trivial pro-
cess, as various components used in the algorithm had to be fine tuned; more im-
portantly, as we shall explain, modification to the algorithm was needed to induce
iterative improvement in file classification.

We mentioned Belief Propagation and its details earlier (Chapter 2 and Sec-
tion 3.3). We briefly repeat its essences here for our readers’ convenience. At
the high level, the algorithm infers node i’s belief (i.e., file goodness) based on
its prior (given by node potential φ(xi)) and its neighbors’ opinions (as messages
mji). Messages are iteratively updated; an outgoing message from node i is gen-
erated by aggregating and transforming (using edge potential ψij(xi, xj)) over its
incoming messages. Mathematically, node beliefs and messages are computed as:

54

ψij (xi, xj) xi = good xi = bad
xj = good 0.5 + ε 0.5− ε
xj = bad 0.5− ε 0.5 + ε

Figure 4.5: Edge potentials indicating homophilic machine-file relationship. We choose
ε = 0.001 to preserve minute probability differences

mij (xj) =
∑
xi∈X

φ (xi)ψij (xi, xj)
∏

k∈N(i)\j

mki (xi) (4.1)

bi (xi) = cφ (xi)
∏

xj∈N(i)

mji (xi) (4.2)

In our malware detection setting, a file i’s goodness is estimated by its belief
bi(xi) (≈ P (xi)), which we threshold into one of the binary classes. For example,
using a threshold of 0.5, if the file belief falls below 0.5, the file is considered bad.

4.4.4 The Polonium Adaptation of Belief Propagation (BP)
Now, we explain how we solve the challenges of incorporating domain knowledge
and intuition to achieve our goal of detecting malware. Succinctly, we can map
our domain knowledge and intuition to BP’s components (or functions) as follows.

Machine-File Relationships→ Edge Potential
We convert our intuition about the machine-file homophilic relationship into
the edge potential shown in Figure 4.5, which indicates that a good file is
slightly more likely to associate with a machine with good reputation than
one with low reputation. (Similarly for bad file.) ε is a small value (we chose
0.001), so that the fine differences between probabilities can be preserved.

Machine Reputation→Machine Prior
The node potential function for machine nodes maps each machine’s rep-
utation score into the machine’s prior, using an exponential mapping (see
Figure 4.6a) of the form

machine prior = e−k×reputation

where k is a constant internally determined based on domain knowledge.

55

File Goodness Intuition→ Unknown-File Prior
We use another node potential function to set the file prior by mapping the
intuition that files that have appeared on many machines (i.e., files with high
prevalence) are typically good. Figure 4.6b shows such a mapping.

File Ground Truth→ Known-File Prior
We set known-good files’ priors to 0.99, known-bad files’ to 0.01.

4.4.5 Modifying the File-to-Machine Propagation
In standard Belief Propagation, messages are passed along both directions of
an edge. That is, an edge is associated with a machine→file message, and a
file→machine message.

We explained in Section 4.4 that we use the homophilic edge potential (see
Figure 4.5) to propagate machine reputations to a file from its associated ma-
chines. Theoretically, we could also use the same edge potential function for
propagating file reputation to machines. However, as we tried through numerous
experiments — varying the ε parameter, or even “breaking” the homophily as-
sumption — we found that machines’ intermediate beliefs were often forced to
changed too significantly, which led to an undesirable chain reaction that changes
the file beliefs dramatically as well, when these machine beliefs were propagated
back to the files. We hypothesized that this is because a machine’s reputation
(used in computing the machine node’s prior) is a reliable indicator of machine’s
beliefs, while the reputations of the files that the machine is associated with are
weaker indicators. Following this hypothesis, instead of propagating file reputa-
tion directly to a machine, we pass it to the formula used to generate machine

Figure 4.6: (a) Machine Node Potential (b) File Node Potential

56

reputation, which re-compute a new reputation score for the machine. Through
experiments discussed in Section 4.5, we show that this modification leads to iter-
ative improvement of file classification accuracy.

In summary, the key idea of the Polonium algorithm is that it infers a file’s
goodness by looking at its associated machines’ reputations iteratively. It uses all
files’ current goodness to adjust the reputation of machines associated with those
files; this new machine reputation, in turn, is to re-infer the files’ goodness.

4.5 Empirical Evaluation
In this section, we show that the Polonium algorithm is scalable and effective at
iteratively improving accuracy in detecting malware. We evaluated the algorithm
with the bipartite machine-file graph constructed from the raw file submissions
data collected during a three year period, from 2007 to early 2010 (as described
in Section 4.3). The graph consists of about 48 million machine nodes and 903
million file nodes. There are 37 billion edges among them, creating the largest
network of its type ever constructed or analyzed to date.

All experiments that we report here were run on a 64Bit Linux machine (Red
Hat Enterprise Linux Server 5.3) with 4 Opteron 8378 Quad Core Processors (16
cores at 2.4 GHz), 256GB of RAM, 1 TB of local storage, and 60+ TB of net-
worked storage.

One-tenth of the ground truth files were used for evaluation, and the rest were
used for setting file priors (as “training” data). All TPRs (true positive rates)
reported here were measured at 1% FPR (false positive rate), a level deemed ac-
ceptable for our evaluation. Symantec uses myriads of malware detection tech-
nologies; false positives from Polonium can be rectified by those technologies,
eliminating most, if not all, of them. Thus, the 1% FPR used here only refers to
that of Polonium, and is independent of other technologies.

4.5.1 Single-Iteration Results
With one iteration, the algorithm attains 84.9% TPR, for all files with prevalence
4 or above1, as shown in Figure 4.7. To create the smooth ROC curve in the
figure, we generated 10,000 threshold points equidistant in the range [0, 1] and
applied them on the beliefs of the files in the evaluation set, such that for each

1As discussed in Section 4.3, a file’s prevalence is the number of machines that have reported
it. (e.g., a file of prevalence five means it was reported by five machines.)

57

Figure 4.7: True positive rate and false positive rate for files with prevalence 4 and above.

threshold value, all files with beliefs above that value are classified as good, or
bad otherwise. This process generates 10,000 pairs of TPR-FPR values; plotting
and connecting these points gives us the smooth ROC curve as shown in Fig 4.7.

We evaluated on files whose prevalence is 4 or above. For files with prevalence
2 or 3, the TPR was only 48% (at 1% FPR), too low to be usable in practice. For
completeness, the overall TPR for all files with prevalence 2 and higher is 77.1%.
It is not unexpected, however, that the algorithm does not perform as effectively
for low-prevalence files, because a low-prevalence file is associated with few ma-
chines. Mildly inaccurate information from these machines can affect the low-
prevalence file’s reputation significantly more so than that of a high-prevalence
one. We intend to combine this technology with other complementary ones to
tackle files in the full spectrum of prevalence.

4.5.2 Multi-Iteration Results

The Polonium algorithm is iterative. After the first iteration, which attained a
TPR of 84.9%, we saw a further improvement of about 2.2% over the next six
iterations (see Figure 4.8), averaging at 0.37% improvement per iteration, where
initial iterations’ improvements are generally more than the later ones, indicating
a diminishing return phenomenon. Since the baseline TPR at the first iteration is
already high, these subsequent improvements represent some encouraging results.

Iterative Improvements. In Table 4.9, the first row shows the TPRs from
iteration 1 to 7, for files with prevalence 4 or higher. The corresponding (zoomed-
in) changes in the ROC curves over iterations is shown in Figure 4.8.

58

Figure 4.8: ROC curves of 7 iterations; true positive rate incrementally improves.

Iteration
Prev. 1 2 3 4 5 6 7 %↑
≥ 4 84.9 85.5 86.0 86.3 86.7 86.9 87.1 2.2
≥ 8 88.3 88.8 89.1 89.5 89.8 90.0 90.1 1.8
≥ 16 91.3 91.7 92.1 92.3 92.4 92.6 92.8 1.5
≥ 32 92.1 92.9 93.3 93.5 93.7 93.9 93.9 1.8
≥ 64 90.1 90.9 91.3 91.6 91.9 92.1 92.3 2.2
≥ 128 90.4 90.7 91.4 91.6 91.7 91.8 91.9 1.5
≥ 256 89.8 90.7 91.1 91.6 92.0 92.5 92.5 2.7

Figure 4.9: True positive rate (TPR, in %) in detecting malware incrementally improves
over 7 iterations, across the file prevalence spectrum. Each row in the table corresponds
to a range of file prevalence shown in the leftmost column (e.g., ≥ 4, ≥ 8). The rightmost
column shows the absolute TPR improvement after 7 iterations.

We hypothesized that this improvement is limited to very-low-prevalence files
(e.g., 20 or below), as their reputations would be more easily influenced by incom-
ing propagation than high-prevalence files. To verify this hypothesis, we gradu-
ally excluded the low-prevalence files, starting with the lowest ones, and observed
changes in TPR. As shown in Table 4.9, even after excluding all files below 32
prevalence, 64, 128 and 256, we still saw improvements of more than 1.5% over
6 iterations, disproving our hypothesis. This indicate, to our surprise, that the
improvements happen across the prevalence spectrum.

59

To further verify this, we computed the eigenvector centrality of the files, a
well-known centrality measure defined as the principal eigenvector of a graph’s
adjacency matrix. It describes the “importance” of a node; a node with high eigen-
vector centrality is considered important, and it would be connected to other nodes
that are also important. Many other popular measures, e.g., PageRank [22], are its
variants. Figure 4.10 plots the file reputation scores (computed by Polonium) and
the eigenvector centrality scores of the files in the evaluation set. Each point in
the figure represents a file. We have zoomed in to the lower end of the centrality
axis (vertical axis); the upper end (not shown) only consists of good files with
reputations close to 1.

Figure 4.10: File reputation scores versus eigenvector centrality scores for files in the
evaluation set.

At the plot’s upper portion, high centrality scores have been assigned to many
good files, and at the lower portion, low scores are simultaneously assigned to
many good and bad files. This tells us two things: (1) Polonium can classify most
good files and bad files, whether they are “important” (high centrality), or less
so (low centrality); (2) eigenvector centrality alone is unsuitable for spotting bad
files (which have similar scores as many good files), as it only considers nodal
“importance” but does not use the notion of good and bad like Polonium does.

Goal-Oriented Termination. An important improvement of the Polonium
algorithm over Belief Propagation is that it uses a goal-oriented termination
criterion—the algorithm stops when the TPR no longer increases (at the preset
1% FPR). This is in contrast to Belief Propagation’s conventional convergence-
oriented termination criterion. In our premise of detecting malware, the goal-

60

oriented approach is more desirable, because our goal is to classify software into
good or bad, at as high of a TPR as possible while maintaining low FPR — the
convergence-oriented approach does not promise this; in fact, node beliefs can
converge, but to undesirable values that incur poor classification accuracy. We
note that in each iteration, we are trading FPR for TPR. That is, boosting TPR
comes with a cost of slightly increasing FPR. When the FPR is higher than desir-
able, the algorithm stops.

4.5.3 Scalability
We ran the Polonium algorithm on the complete bipartite graph with 37 billion
edges. Each iteration took about 3 hours to complete on average (∼185min). The
algorithm scales linearly with the number of edges in the graph (O(|E|)), thanks
to its adaptation of the Belief Propagation algorithm. We empirically evaluated
this by running the algorithm on the full graph of over 37 billion edges, and on its
smaller billion-edge subgraphs with around 20B, 11.5B, 4.4B and 0.7B edges. We
plotted the per-iteration running times for these subgraphs in Figure 4.11, which
shows that the running time empirically achieved linear scale-up.

Figure 4.11: Scalability of Polonium. Running time per iteration is linear in the number
of edges.

4.5.4 Design and Optimizations
We implemented two optimizations that dramatically reduce both running time
and storage requirement.

61

The first optimization eliminates the need to store the edge file in memory,
which describes the graph structure, by externalizing it to disk. The edge file
alone is over 200GB. We were able to do this only because the Polonium algo-
rithm did not require random access to the edges and their associated messages;
sequential access was sufficient. This same strategy may not apply readily to other
algorithms.

The second optimization exploits the fact that the graph is bipartite (of ma-
chines and files) to reduce both the storage and computation for messages by
half [47]. We briefly explains this optimization here. LetBM [i, j](t) be the matrix
of beliefs (for machine i and state j), at time t, and similarly BF [i, j](t) for the
matrix of beliefs for the files. Because the graph is bipartite, we have

BM [i, j](t) = BF [i′, j′](t− 1) (4.3)
BF [i′, j′](t) = BM [i, j](t− 1) (4.4)

In short, the two equations are completely decoupled, as indicated by the orange
and blue edges in Figure 4.12. Either stream of computations will arrive at the
same results, so we can choose to use either one (say following the orange arrows),
eventually saving half of the effort.

Figure 4.12: Illustration of our optimization for the Polonium algorithm: since we have
a bipartite graph (of files and machines), the naive version leads to two independent but
equivalent paths of propagation of messages (orange, and blue arrows). Eliminating one
path saves us half of the computation and storage for messages, with no loss of accuracy.

4.6 Significance and Impact
In August 2010, the Polonium technology was deployed, joining Symantec’s other
malware detection technologies to protect computer users from malware. Polo-
nium now serves 120 million people around the globe (at the end of September
2010). It has helped answer more than one trillion queries for file reputation.

62

Polonium’s effectiveness in the field has been empirically measured by se-
curity experts at Symantec. They sampled live streams of files encountered by
computer users, manually analyzed and labeled the files, then compared their ex-
pert verdicts with those given by Polonium. They concluded that Polonium sig-
nificantly lifted the detection rate of a collection of existing proprietary methods
by 10 absolute percentage points (while maintaining a false positive rate of 1%).
This in-the-field evaluation is different from that performed over ground-truth data
(described in Section 4.5), in that the files sampled (in the field) better exemplify
the types of malware that computer users around the globe are currently exposed
to.

Our work provided concrete evidence that Polonium works well in practice,
and it has the following significance for the software security domain:

1. It radically transforms the important problem of malware detection, typi-
cally tackled with conventional signature-based methods, into a large-scale
inference problem.

2. It exemplifies that graph mining and inference algorithms, such as our adap-
tation of Belief Propagation, can effectively unearth malware.

3. It demonstrates that our method’s detection effectiveness can be carried over
from large-scale “lab study” to real tests “in the wild”.

4.7 Discussion

Handling the Influx of Data. The amount of raw data that Polonium works with
has almost doubled over the course of about 8 months, now exceeding 110 ter-
abytes. Fortunately, Polonium’s time- and space-complexity both scale linearly
in the number of edges. However, we may be able to further reduce these re-
quirements by applying existing research. Gonzalez et. al [52] have developed
a parallelized version of Belief Propagation that runs on a multi-core, shared-
memory framework, which unfortunately precludes us from readily applying it on
our problem, as our current graph does not fit in memory.

Another possibility is to concurrently run multiple instances of our algorithm,
one on each component of our graph. To test this method, we implemented a
single-machine version of the connected component algorithm [75] to find the
components in our graph, whose distribution (size versus count) is shown in Fig-
ure 4.13; it follows the Power Law, echoing findings from previous research that
studied million- and billion-node graphs [75, 97]. We see one giant component of

63

Figure 4.13: Component distribution of our file-machine bipartite graph, in log-log scale.

almost 950 million nodes (highlighted in red), which accounts for 99.77% of the
nodes in our graph. This means our prospective strategy of running the algorithm
on separate components will only save us very little time, if any at all! It is, how-
ever, not too surprising that such a giant component exists, because most Windows
computers uses similar subset of system files, and there are many popular appli-
cations that many of our users may use (e.g., web browsers). These high-degree
files connect machines to form the dominant component.

Recent research in using multi-machine architectures (e.g., Apache Hadoop)
as a scalable data mining and machine learning platform [75, 70] could be a viable
solution to our rapidly increasing data size; the very recent work by Kang et.
al [70] that introduced the Hadoop version of Belief Propagation is especially
applicable.

Perhaps, the simplest way to obtain the most substantial saving in computa-
tion time would be to simply run the algorithm for one iteration, as hinted by the
diminishing return phenomenon observed in out multi-iteration results (in Sec-
tion 4.5). This deliberate departure from running the algorithm until convergence
inspires the optimization method that we discuss below.
Incremental Update of File & Machine Reputation. Ideally, Polonium will
need to efficiently handle the arrival of new files and new machines, and it should
be able to determine any file’s reputation, whenever it is queried. The main idea
is to approximate the file reputation, for fast query-time response, and replace the
approximation with a more accurate value after a full run of the algorithm. Ma-
chine reputations can be updated in a similar fashion. The approximation depends
on the maturity of a file. Here is one possibility:

Germinating. For a new file never seen before, or one that has only been re-

64

ported by very few machines (e.g., fewer than 5), the Polonium algorithm
would flag its reputation as “unknown” since there is too little information.

Maturing. As more machines report the file, Polonium starts to approximate
the file’s reputation through aggregating the reporting machines’ reputa-
tions with one iteration of machine-to-file propagation; the approximation
becomes increasingly accurate over time, and eventually stabilizes.

Ripening. When a file’s reputation is close to stabilization, which can be deter-
mined statistically or heuristically, Polonium can “freeze” this reputation,
and avoid recomputing it, even if new reports arrive. Future queries about
that file will simply require looking up its reputation.

The NetProbe system [114], which uses Belief Propagation to spot fraudsters
and accomplices on auction websites, used a similar method to perform incre-
mental updates — the major difference is that we use a smaller induced subgraph
consisting of a file and its direct neighbors (machines), instead of the 3-hop neigh-
borhood used by NetProbe, which will include most of the nodes in our highly
connected graph.

4.8 Conclusions
We motivated the need for alternative approaches to the classic problem of mal-
ware detection. We transformed it into a large-scale graph mining and inference
problem, and we proposed the fast and scalable Polonium algorithm to solve it.
Our goals were to infer the reputations of any files that computer users may en-
counter, and identify the ones with poor reputation (i.e., malware).

We performed a large-scale evaluation of our method over a real machine-file
graph with one billion nodes and 37 billion edges constructed from the largest
anonymized file submissions dataset ever published, spanning over 60 terabytes
of disk space. The results showed that Polonium attained a high true positive rate
of 87.1% TPR, at 1% FPR. We also verified Polonium’s effectiveness in the field;
it has substantially lifted the detection rate of a collection of existing proprietary
methods by 10 absolute percentage points.

We detailed important design and implementation features of our method, and
we also discussed methods that could further speed up the algorithm and enable it
to incrementally compute reputation for new files.

Our work makes significant contributions to the software security domain as
it demonstrates that the classic malware detection problem may be approached

65

vastly differently, and could potentially be solved more effectively and efficiently;
we offer Polonium as a promising solution. We are brining great impact to com-
puter users around the world, better protecting them from the harm of malware.
Polonium is now serving 120 million people, at the time of writing. It has helped
answer more than one trillion queries for file reputation.

66

Part II

Mixed-Initiative Graph
Sensemaking

67

Overview

Even if Attention Routing (Part I) can provide good starting points for analysis, it is
still not enough. Much work in analytics is to understand why certain phenomena
happen (e.g., why those starting points are recommended?).

This task inherently involves a lot of exploration and hypothesis formulation,
which we argue should best be carried out by integrating human’s intuition and
exceptional perception skills with machine’s computation power. In this part, we
describe mixed-initiative tools that achieve such human-in-the-loop graph mining,
to help people explore and make sense of large graphs.
• Apolo (Chapter 5), a mixed-initiative system that combines machine infer-

ence and visualization to guide the user to interactively explore large graphs.
• Graphite (Chapter 6), a system that finds both exact and approximate

matches for graph patterns drawn by the user.

68

Chapter 5

Apolo: Machine Learning +
Visualization for Graph Exploration

In Part I of this thesis, we described Attention Routing and its examples for finding
good starting points for analysis. But where should we go next, given those start-
ing points? Which other nodes and edges of the graph should we explore next?
This chapter describes Apolo, a system that uses a mixed-initiative approach—
combining visualization, rich user interaction and machine learning—to guide the
user to incrementally and interactively explore large network data and make sense
of it. In other words, Apolo could work with Attention Routing techniques to help
the user expand from those recommended starting points.

Apolo engages the user in bottom-up sensemaking to gradually build up an un-
derstanding over time by starting small, rather than starting big and drilling down.
Apolo also helps users find relevant information by specifying exemplars, and
then using the Belief Propagation machine learning method to infer which other
nodes may be of interest. We evaluated Apolo with 12 participants in a between-
subjects study, with the task being to find relevant new papers to update an existing
survey paper. Using expert judges, participants using Apolo found significantly
more relevant papers. Subjective feedback of Apolo was very positive.

Chapter adapted from work appeared at CHI 2011 [27]

69

Figure 5.1: Apolo displaying citation data around The Cost Structure of Sensemaking.
The user has created three groups: Info Vis (blue) , Collaborative Search (orange), and
Personal Info Management (green). Colors are automatically assigned; saturation denotes
relevance. Dots appears under exampler nodes. 1: Config Panel for setting visibility of
edges, nodes and titles. 2: Filter Panel controls which types of nodes to show. 3: Group
Panel for creating groups. 4: Visualization Panel for exploring and visualizing network.
Yellow halos surround articles whose titles contain “visual”.

5.1 Introduction

Making sense of large networks is an increasingly important problem in domains
ranging from citation networks of scientific literature; social networks of friends
and colleagues; links between web pages in the World Wide Web; and personal
information networks of emails, contacts, and appointments. Theories of sense-
making provide a way to characterize and address the challenges faced by people
trying to organize and understand large amounts of network-based data. Sense-
making refers to the iterative process of building up a representation or schema of
an information space that is useful for achieving the user’s goal [128]. For exam-
ple, a scientist interested in connecting her work to a new domain must build up
a mental representation of the existing literature in the new domain to understand
and contribute to it.

For the above scientist, she may forage to find papers that she thinks are rel-
evant, and build up a representation of how those papers relate to each other. As

70

she continues to read more papers and realizes her mental model may not well
fit the data she may engage in representational shifts to alter her mental model to
better match the data [128]. Such representational shifts is a hallmark of insight
and problem solving, in which re-representing a problem in a different form can
lead to previously unseen connections and solutions [63]. The practical impor-
tance of organizing and re-representing information in the sensemaking process
of knowledge workers has significant empirical and theoretical support [122].

We focus on helping people develop and evolve externalized representations
of their internal mental models to support sensemaking in large network data.
Finding, filtering, and extracting information have already been the subjects of
significant research, involving both specific applications [38] and a rich variety
of general-purpose tools, including search engines, recommendation systems, and
summarization and extraction algorithms. However, just finding and filtering or
even reading items is not sufficient. Much of the heavy lifting in sensemaking is
done as people create, modify, and evaluate schemas of relations between items.
Few tools aimed at helping users evolve representations and schemas. We build on
initial work such as Sensemaker [16] and studies by Russell et al. [127] aimed at
supporting the representation process. We view this as an opportunity to support
flexible, ad-hoc sensemaking through intelligent interfaces and algorithms.

These challenges in making sense of large network data motivated us to create
Apolo, a system that uses a mixed-initiative approach—combining rich user inter-
action and machine learning—to guide the user to incrementally and interactively
explore large network data and make sense of it.

5.1.1 Contributions

Apolo intersects multiple research areas, naming graph mining, machine infer-
ence, visualization and sensemaking. We refer our readers to the large amount of
relevant work we surveyed in (Chapter 2).

However, less work explores how to better support graph sensemaking, like
the way Apolo does, by combining powerful methods from machine learning,
visualization, and interaction.

Our main contributions are
• We aptly select, adapt, and integrate work in machine learning and graph

visualization in a novel way to help users make sense of large graphs using
a mixed-initiative approach. Apolo goes beyond just graph exploration, and
enables users to externalize, construct, and evolve their mental models of

71

the graph in a bottom-up manner.
• Apolo offers a novel way of leveraging a complex machine learning al-

gorithm, called Belief Propagation (BP) [155], to intuitively support sense-
making tailored to an individual’s goals and experiences; Belief Propagation
was never applied to sensemaking or interactive graph visualization.

• We explain the rationale behind the design of apolo’s novel techniques and
how they advance over the state of the art. Through a usability evaluation
using real citation network data obtained from Google Scholar, we demon-
strate apolo’s ease of use and its ability to help researchers find significantly
more relevant papers.

5.2 Introducing Apolo

5.2.1 The user interface
The Apolo user interface is composed of three main areas (Figure 5.1). The Con-
figuration Panel at the top (1) provides several means for the user to reduce visual
clutter and enhance readability of the visualization. Citation edges and article ti-
tles (i.e., node names) can be made invisible, and the font size and the visible
length of the titles can be varied via sliders. On the left is the Filter Panel (2)
and Group Panel (3). The Filter Panel provides filters to control the types of
nodes to show; the default filter is “Everything”, showing all types of nodes, ex-
cept hidden ones. Other filters show nodes that are starred, annotated, pinned,
selected, or hidden. The Group Panel lets the user create, rename, and delete
groups. Group names are displayed with the automatically assigned color (to the
left of the name) and the exemplar count (right side). Each group label also dou-
bles as a filter, which causes only the exemplars of that group to be visible. The
Visualization Panel (4) is the primary space where the user interacts with Apolo to
incrementally and interactively build up a personalized visualization of the data.

5.2.2 Apolo in action
We show how Apolo works in action through a sensemaking scenario of exploring
and understanding the landscape of the related research areas around the seminal
article The Cost Structure of Sensemaking by Russell et al. (Figure 5.1 shows
final results). This example uses real citation network data mined from Google
Scholar using a breadth-first strategy to crawl all articles within three degrees from

72

the above paper. The dataset contains about 83,000 articles (nodes) and 150,000
citations relationships (edges, each represents either a “citing” or “cited-by” re-
lationships). This scenario will touch upon the interactions and major features
of Apolo, and highlight how they work together to support sensemaking of large
network data. We will describe the features in greater depth in the next section.

We begin with a single source article highlighted in black in the center of the
interface (Figure 5.2a) and the ten most relevant articles as determined by the
built-in BP algorithm. Articles are shown as circles with sizes proportional to
their citation count. Citation relationships are represented by directed edges.

Figure 5.2: a) The Apolo user interface at start up, showing our starting article The Cost
Structure of Sensemaking highlighted in black. Its top 10 most relevant articles, having
the highest proximity relative to our article, are also shown (in gray). We have selected our
paper; its incident edges representing either “citing” (pointing away from it) or “cited-by”
(pointing at it) relationships are in dark gray. All other edges are in light gray, to maximize
contrast and reduce visual clutter. Node size is proportional to an article’s citation count.
Our user has created two groups: Collab Search and InfoVis (magnified). b-d) Our user
first spatially separates the two groups of articles, Collab Search on the left and InfoVis on
the right (which also pins the nodes, indicated by white dots at center), then assigns them
to the groups, making them exemplars and causing Apolo to compute the relevance of all
other nodes, which is indicated by color saturation; the more saturated the color, the more
likely it belongs to the group. The image sequence shows how the node color changes as
more exemplars are added.

After viewing details of an article by mousing over it (Figure 5.3), the user
moves it to a place on the landscape he thinks appropriate, where it remains pinned

73

Figure 5.3: The Details Panel, shown when mousing over an article, displays article de-
tails obtained from Google Scholar. The user has made the article an exemplar the InfoVis
group by clicking the group’s label.

(as shown by the white dot at the center). The user can also star, annotate, unpin,
or hide the node if so desired. After spatially arranging a few articles the user
begins to visually infer the presence of two clusters: articles about information
visualization (InfoVis) and collaborative search (Collab Search). After creating
the labels for these two groups (Figure 5.2a), the user selects a good example
article about InfoVis and clicks the InfoVis label, as shown in Figure 5.3, which
puts the article into that group. A small blue dot (the group’s color) appears below
the article to indicate it is now an exemplar of that group. Changing an article’s
group membership causes BP to execute and infer the relevance of all other nodes
in the network relative to the exemplar(s). A node’s relevance is indicated by its
color saturation; the more saturated the color, the more likely BP considers the
node to belong to the group. Figure 5.2b-d show how the node color changes as
more exemplars are added.

Our user now would like to find more articles for each group to further his un-
derstanding of the two research areas. The user right-clicks on the starting paper
and selects “Add next 10 most cited neighbors” from the pop-up menu (Figure
5.4a). By default, new nodes added this way are ranked by citation count (propor-
tional to node size, as shown in Figure 5.4b) and initially organized in a vertical
list to make them easy to identify and process. To see how relevant these new
nodes are, he uses Apolo’s rank-in-place feature to rank articles by their computed
relevance to the InfoVis group. To quickly locate the papers about visualization,
our user types “visual” in the search box at the top-right corner (Figure 5.4c) to
highlight all articles with “visual” in their titles.

Going further down the list of ranked articles, our users found more InfoVis

74

Figure 5.4: a) Pop-up menu shown upon right click; the user can choose to show more
articles, add suggested articles for each group, rank sets of nodes in-place within the
visualization, hide or unpin nodes. b) Newly added neighboring nodes ranked by citation
count; they are selected by default to allow the user to easily relocate them all to a desired
location. c) The same nodes, ranked by their “belongness” to the (blue) InfoVis group;
articles whose titles contain“visual” are highlighted with yellow halos.

Figure 5.5: Two spatial subgroups

articles and put them all into that group. Within it, our user further creates two sub-
groups spatially, as shown in Figure 5.5, the one on top containing articles about
visualization applications (e.g., Data mountain: using spatial memory for docu-
ment management), and the lower subgroup contains articles that seem to provide
analytical type of information (e.g., The structure of the information visualization
design space). Following this work flow, our user can iteratively refine the groups,
create new ones, move articles between them, and spatially rearrange nodes in the

75

visualization. The user’s landscape of the areas related to Sensemaking following
further iterations is shown in Figure 5.1.

5.3 Core Design Rationale

Figure 5.6: Illustrating how the user can learn more about a set of nodes using the rank-in-
place feature, which imparts meaning to the nodes’ locations, by vertically aligning and
ordering them by a specified node attribute. (Node names have been hidden in figures c
and d to reduce clutter.) a) Without using rank-in-place, nodes’ positions are determined
by a force-directed layout algorithm, which strives for aesthetic pleasantness, but offers
little to help with sensemaking. b) Using rank-in-place, our user ranks the articles by their
“belongingness” to the Collaborative Search group. c) Ranking articles by year reveals a
different structure to the data. d) Ranking by citation count shows the “WebBook” article
appears at the top as most cited.

Below we discuss core factors that demonstrate Apolo’s contributions in sup-
porting sensemaking.

5.3.1 Guided, personalized sensemaking and exploration
A key factor in the design of Apolo was having exploration and sensemaking
be user-driven rather than data-driven—using structure in the data to support the
user’s evolving mental model rather than forcing the user to organize their men-
tal model according to the structure of the data. This led to several interrelated
features and design decisions. First, it drove our decision to support exploration
through construction, where users create a mental map of an information space.
By allowing users to define the map by pinning nodes to the layout, the system
provides stability: familiar landmarks do not shift, unless the user decides to shift

76

them. Contrast this to a pure force-directed layout algorithm, which may place
items in a different location every time or shift all items when one is moved.
apolo’s support for hybrid layout, mixing user-driven and automatic layout, is also
different from work on semi-automatic layout (e.g., [129]) that uses constraints to
improve a final layout, whereas Apolo supports constraints (fixing node positions)
to help users evolve and externalize their mental models.

Second, instead of using an unsupervised graph clustering algorithm that
uses the same similarity space for every user (as in [120]), we adapted a semi-
supervised algorithm (Belief Propagation) that would fundamentally change the
structure of the similarity space based on user-labeled exemplars. Apolo uses this
algorithm to find relevant nodes when starting up or when the user asks for group-
or paper-relevant nodes, and to quantify relevance for use in ranking-in-place or
indicating relevance through color. This means that even if two users’ landscapes
included the same nodes, those landscapes could be very different based on their
goals and prior experience.

5.3.2 Multi-group Sensemaking of Network Data
Another important factor was the ability to support multiple dynamic, example-
based groups. Theories of categorization suggest that people represent categories
and schemas through examples or prototypes [126], as opposed to what are typical
way of interacting with collections of information online such as search queries
or tags. Furthermore, items may and often do belong to multiple groups, leading
to a need for “soft” clustering.

Apolo was designed to support multiple groups both in the interface and al-
gorithmically. In the interface, users can easily create multiple groups and move
nodes into and out of one or more groups (via the Details Panel, Figure 5.3).
Users can also see the degree to which the algorithm predicts items to be in a
group through color. The use of the BP algorithm is instrumental as it can sup-
port fast, soft clustering on an arbitrary number of groups; many graph-based
spreading activation-style algorithms are limited to one or two groups (such as
PageRank [22], and random walk with restart [144]).

5.3.3 Evaluating exploration and sensemaking progress
Sensemaking involves evolution and re-representation of the user’s mental model.
Users typically continue evolving their models until they stop encountering new
information; when the new information they encounter confirms rather than

77

changes their existing mental representations; and when their representations are
sufficiently developed to meet their goals. To assist in this evaluation process,
Apolo surfaces change-relevant information in a number of ways. It helps the
user keep track of which items have been seen or hidden. New nodes are added
in a systematic way (Figure 5.4), to avoid disorienting the user. Pinned nodes
serve as fixed landmarks in the users’ mental map of the information space and
can only be moved through direct action by the user. When saving and loading the
information space, all pinned nodes remain where the user put them. Apolo uses
all these features together to preserve the mental map that the user has developed
about the graph structure over time [104].

As a node’s group membership can be “toggled” easily, the user can experi-
ment with moving a node in and out of a group to see how the relevance of the
other nodes change, as visualized through the nodes’ color changes; thus the ef-
fect of adding more exemplars (or removing them) is easily apparent. Also, color
changes diminishing over time can help indicate the user’s representations stabi-
lizing.

Figure 5.7: Our user applies two rank-in-place arrangements to the exemplars of Collabo-
rative Search group (left, ranked by their “belongness” to the group) and the InfoVis group
(right, ranked by year). These two side-by-side arrangements reveal several insights: 1)
the Collaborative Search articles are less cited (smaller node sizes), as the research is
more recent; 2) only the article Exploratory Search in the Collaborative Search group
cited the source paper, while three papers in the InfoVis has either cited or been cited by
the source paper.

78

5.3.4 Rank-in-place: adding meaning to node placement
Typically, layout algorithms for graphs (e.g., force-based layouts) try to layout
nodes to minimize occlusion of nodes and edges, or to attain certain aesthetic
requirements [41]. These layouts usually offer little help with the sensemaking
process. Approaches to address this problem include “linked views”, which use a
separate view of the data (e.g., scatter plot) to aid node comparison; and imparting
meaning to the node locations (e.g., in NodeXL [134] and PivotGraph [149]).
However, the above approaches are often global in nature: all nodes in the network
are repositioned, or a new, dedicated visualization created.

Apolo’s main difference is that it offers a rank-in-place feature that can rank
local subsets of nodes in meaningful ways. Figure 5.6 shows one such example.
Furthermore, the user can create multiple, simultaneous arrangements (through
ranking) for different sets of nodes, which can have independent arrangement
criteria (e.g., one ranks by year, the other ranks by citation count). We designed
for this flexibility to allow other characteristics of the nodes (e.g., their edges,
node sizes) to still be readily available, which may then be used in tandem with the
node arrangement across multiple rankings (see Figure 5.7). Recently, researchers
are exploring techniques similar to rank-in-place, to create scatterplots within a
network visualization [147].

5.4 Implementation & Development

5.4.1 Informed design through iterations
Sensemaking for large network data is an important problem which will undoubt-
edly take years of research to address. As such, our Apolo system only solves part
of it; however, the system’s current design is the result of over two years’ investi-
gation and development effort through many iterations and two major revisions.

The first version of Apolo presented suggestions in ranked lists without a vi-
sualization component (Figure 5.8), one list for each group in a floating window.
Users’ exemplars showed up at the top of the lists with the most relevant items
in ranked order below them . We initially thought that the high data density and
ease of comprehension of the list format might lead to better performance than a
spatial layout. However, our users quickly pointed out the lack of a spatial layout,
both as a workspace to externalize their mental representations as well as to under-
stand the relations between items and between groups. This finding prompted us
to add a network visualization component to the second revision. While working

79

towards the second revision, we conducted contextual inquiries with six graduate
students to better understand how they make sense of unfamiliar research topics
through literature searches. We learned that they often started with some familiar
articles, then tried to find works relevant to them, typically first considering the
articles that cited or were cited by their familiar articles. Next, they considered
those new articles’ citation lists. And they would repeat this process until they
had found enough relevant articles. This finding prompted us to add support for
incremental, link-based exploration of the graph data.

Figure 5.8: The first version of Apolo

We studied the usability of the second revision through a pilot study, where we
let a few researchers use Apolo to make sense of the literature around new topics
that they recently came across. We learned that (1) they had a strong preference in
using spatial arrangement to manage their exploration context, and to temporarily
organize articles into approximate (spatial) groups; (2) they used the visualiza-
tion directly most of the time, to see relations between articles and groups, and
they only used the list for ranking articles. These findings prompted us to rethink
apolo’s interaction design, and inspired us to come up with the rank-in-place tech-
nique that offers benefits of both a list-based approach and a spatial layout. Rank-
in-place lays out nodes at a greater density, while keeping them quick to read and
their relations easy to trace. With this new technique, we no longer needed the
suggestion lists, and the visualization became the primary workspace in apolo.

80

5.4.2 System Implementation

The Apolo system is written in Java 1.6. It uses the JUNG library [112] for visu-
alizing the network. The network data is stored in an SQLite embedded database
(www.sqlite.org), for its cross-platform portability and scalability up to tens of
gigabytes. One of our goals is to offer Apolo as a sensemaking tool that work on
a wide range of network data, so we designed the network database schema inde-
pendently from the Apolo system, so that Apolo can readily be used on different
network datasets that follow the schema.

We implemented Belief Propagation as described in [98]. The key settings of
the algorithm include: (1) a node potential function that represents how likely a
node belongs to each group (a value closer to 1 means more likely), e.g., if we
have two groups, then we assign (0.99, 0.01) to exemplars of group 1, and (0.5,
0.5) to all other nodes; (2) an edge potential function that governs to what extent
an exemplar would convert its neighbors into the same group as the exemplar (a
value of 1 means immediate conversion; we used 0.58).

5.5 Evaluation
To evaluate Apolo, we conducted a laboratory study to assess how well people
could use Apolo on a sensemaking task on citation data of scientific literature. At
a high-level, we asked participants to find papers that could be used to update the
related work section of a highly cited survey paper describing software tools for
HCI [105]. We considered using other datasets such as movie data, but we felt
that evaluation could be too subjective (genres are hard to define). In contrast, sci-
entific literature provides a good balance between objectivity (some well-known
research areas) and subjectivity (subject’s different research experience). Another
reason we chose scientific literature was because it was easier to assess “ground-
truth” for evaluating the study results. More specifically, we used literature from
computer science research areas of HCI (i.e., UIST), and had experts at our insti-
tution help establish “ground truth.”

5.5.1 Participants

We recruited twelve participants from our university through a recruitment web
site managed by our institution and through advertisements posted to a university
message board. All participants were either research staff or students, and all had

81

backgrounds in computer science or related fields, so they would be comfortable
with the technical computer-related terms mentioned in the study materials. Our
participants’ average age was 24, and 9 were male and 3 were female. All partic-
ipants were screened to make sure they had (1) participated in research activities,
(2) were not familiar with user interface (UI) research, and (3) had conducted liter-
ature search before using Google Scholar. Seven of them have used other citation
managers/websites, such as PubMed or JSTOR. Each study lasted for about 90
minutes, and the participants were paid $15 for their time.

We also had two judges who were experts with HCI research help evaluate the
results of the participants. These judges have taught classes related to the UIST
topics that the participants were exploring.

5.5.2 Apparatus
All participants used the same laptop computer that we provided. It was connected
to an external 24” LCD monitor, with a mouse and keyboard. The computer
was running Windows 7 and had Internet Explorer installed, which was used for
all web-browsing-related activities. For the Apolo condition, we created a web
crawler that downloaded citation data from Google Scholar using a breadth-first-
search within three degrees of separation using the survey paper as the starting
point. There was a total of about 61,000 articles and 110,000 citations among
them.

5.5.3 Experiment Design & Procedure
We used a between-subjects design with two conditions: the Apolo condition and
the Scholar condition, where participants used Google Scholar to search for pa-
pers. We considered using a within-subjects design, where the participants would
be asked to find related work for two different survey papers from different do-
mains using the two tools; however that would require the participants to simulta-
neously have a background in both domains while not being knowledgeable about
both. These constraints would make the scenarios used in the study overly artifi-
cial, and that qualified participants would be much harder to come across. How-
ever, we still wanted to elicit subjective feedback from the participants, especially
for their thoughts on how the two tools compare to each other for the given task.
To do this, we augmented each study with a second half where the participants
used the other tool that they did not use in the first half. None of the data collected
during these second tasks were used in the quantitative analysis of the results.

82

We asked participants to imagine themselves as researchers new to research
in user interfaces (UI) who were tasked with updating an existing survey paper
published in 2000. The participants were asked to find potentially relevant papers
published since then, where relevant was defined as papers that they would want to
include in an updated version. We felt that defining “relevant” was necessary and
would be understandable by researchers. Given that finding relevant papers for the
entire survey paper would be a very extensive task, both for participants and for
the judges, we asked participants to focus on only two of the themes presented in
the survey paper: automatically generating user interfaces based on models and
rapid prototyping tools for physical devices, not just software (both paraphrased),
which were in fact section titles in the paper.

In each condition, the participants spent 25 minutes on the literature search
task. They were to spend the first 20 minutes to collect relevant articles, then
the remaining five to select, for each category, 10 that they thought were most
relevant. They did not have to rank them. We limited the time to 25 minutes to
simulate a quick first pass filter on papers. In the Google Scholar condition, we
set the “year filter” to the year 2000 so it would only return articles that were
published on or after that year. In the Apolo condition, we started people with the
survey paper. Participants in the Apolo condition were given an overview of the
different parts of Apolo’s user interface and interaction techniques, and a sheet of
paper describing its main features.

5.5.4 Results
We examined our results using both a quantitative approach as well as subject
measures. We pooled together all the articles that the participants found in the
study and divided them into two stacks, “model-based” and “prototyping”, ac-
cording to how they were specified by the participants. For each article, we lo-
cated a soft copy (usually a PDF) and printed out the paper title, abstract and
author information. We collected these printouts and sorted them alphabetically.
These printouts were used by the expert judges. We had the two judges select
papers relevant to the topic. We represented each expert’s judgment as a vector
of 0s and 1s. An article was marked with “1” if the expert considered it relevant,
and “0” otherwise. We used cosine similarity to evaluate the similarity between
the two experts. A score of 1 means complete agreement, and 0 means complete
disagreement. For the “Model-based” articles, the cosine similarity between the
experts’ judgement was 0.97. For the “Prototyping” articles, despite few papers
being considered relevant by the judges, the cosine similarity was 0.86.

83

Figure 5.9: a) Average combined judges’ scores; an article from a participant receives a
score of 1 when it is considered relevant by an expert (min is 0, max is 2). The average
score across both categories was significantly higher in the Apolo condition. Error bars
represent -1 stdev, * indicates statistically significant. b) The number of articles consid-
ered relevant by the two expert judges (blue and orange). The total number of articles
found by participants are in gray. The two experts strongly agree with each other in their
judgment.

In our evaluation, the independent factor is “participant”, and the dependent
factor is the relevance scores assigned by the expert judges. Using a two-tailed
t-test, we found the average score across both categories was significantly higher
in the Apolo condition (t(9.7) = 2.32, p < 0.022), as shown in Figure 5.9a. We
also note that participants in both conditions did well for finding papers related to
model-based interfaces. One reason for this is that papers in this category tended
to have the word “automatic” or “model” in the title. However, the same was not
true for papers in the prototyping category.

5.5.5 Subjective Results
Overall, participants felt that Apolo improved their sensemaking experience.
Based on a post-test survey, Apolo seemed to be easy to use, as shown in Figure
5.10 and 5.11. These results are encouraging given that Apolo was not designed
as a walk-up-and-use system.

We organized qualitative feedback from participants into three categories. The
first relates to general sensemaking and organization. One participant said that
Apolo “helped much more in organizing search[...] Google was a bit random.”
The graph visualization was also helpful. One person said that it “helped me see
the citation network in which articles cited which ones”. Another said that the “in-

84

Figure 5.10: Subjective ratings of Apolo. Participants rated Apolo favorably. Features for
grouping, suggesting and ranking nodes, were highly rated. Apolo’s usage was very clear
to most participants (green bar).

dication of degree relevance by color was extremely helpful and easy to use and it
also helped to make sense of the articles.” Being able to spatially organize papers
was also a useful feature and participants were happy about using it. One person
said that “arrangement of articles in my order of preference & my preferred loca-
tion was easy.” We do note that the task that we had participants do was somewhat
limited in scale, but for the current task the screen real estate available was suffi-
cient. Seeing connections between papers was also helpful. Participants said that
“it helped me see the citation network in which articles cited which ones”, and
that it was an “easy way to list & relate citations graphically.” Participants also
had constructive feedback for improving Apolo. One comment was to have ab-
stracts be more readily available in Apolo (a constraint of the crawling software,
since Google Scholar does not have full abstracts in an accessible format). An-
other comment was that there would often be too many edges, a problem common
to graph visualizations.

85

Figure 5.11: Participants liked and enjoyed using Apolo, and would like to use it again in
the future. They generally found Apolo more useful than Google Scholar in helping them
find relevant articles and make sense of them.

5.5.6 Limitations

While the results of our evaluation was positive, there are also several limitations.
For example, we only had participants examine two themes. Having more themes
would stress the screen real estate. Apolo currently has minimal features for man-
aging screen real estate.

We also did not evaluate category creation and removal; participants were
given two categories that correspond to two sections in the given overview paper,
which may not be the most natural categories that they would like to create. How-
ever, if we were to allow the participants to create any group they wanted, the great
variety of possible groups created would make our evaluation extremely difficult.
Moreover, a pilot study found that more categories required more prior knowledge
than participants would have. Two categories were in fact already challenging, as
indicated by the few relevant articles found for the “Prototyping” group.

The need for the participants to categorize articles was created by the tasks;
however, in real-world scenarios, such needs would be ad hoc. We plan to study
such needs, as well as how Apolo can handle those kinds of tasks, in less con-
trolled situations. For example, how many groups do people create? Do the
groupings evolve over time, such as through merging or subdivision. How well
do the findings of sensemaking literature apply to large graph data?

5.6 Discussion

Mixed-initiative approaches for network exploration are becoming increasingly
important as more datasets with millions or even billions of nodes and edges are

86

becoming available. These numbers vastly exceed people’s limited cognitive ca-
pacities. By combining a person’s reasoning skills with computer algorithms for
processing large amounts of data, we hope to reduce the disparity in gaining access
to and comprehending the vast amount of graph data that have become increas-
ingly available. Automated analysis methods and algorithms for extracting useful
information, such as patterns and anomalies, are active research topics. However,
these methods can rarely give the perfect solutions, or even if they can, it is nec-
essary to convey such information to the user. Our work seeks to reach the goal
of supporting sensemaking through a mix of rich user interaction and machine
learning.

Visually managing many nodes is also an open problem in graph sensemaking;
Apolo currently focuses on filtering, e.g. enabling users to remove nodes from
the visualization, re-add them, or focus only on selected ones. By integrating
Belief Propagation, we hope to help users find relevant nodes quickly and remove
unnecessary nodes from the visualization more easily than a manual approach.
We have been experimenting with methods that will help further, such as semantic
zooming, and reversibly collapsing nodes into meta nodes.

Apolo currently relies exclusively on the link-structure of a graph to make
relevance judgments. In the future, we would like to integrate other types of infor-
mation as well, such as the textual content of the nodes and edges (e.g., the content
of an article), edge weights, and temporal information (particularly important for
analyzing dynamic networks).

5.7 Conclusions
Apolo is a mixed-initiative system for helping users make sense of large network
data. It tightly couples large scale machine learning with rich interaction and visu-
alization features to help people explore graphs through constructing personalized
information landscapes. We demonstrate the utility of Apolo through a scenario
and evaluation of sensemaking in scientific literature. The results of the evaluation
suggest the system provides significant benefits to sensemaking and was viewed
positively by users. This work focuses on the scientific literature domain; a recent
work [69] showed that approaches similar to ours (based on spreading activation)
could also work well for graph data of websites and tags, supporting that the ideas
in Apolo can be helpful for many other kinds of data intensive domains, by aid-
ing analysts in sifting through large amounts of data and directing users’ focus to
interesting items.

87

88

Chapter 6

Graphite: Finding User-Specified
Subgraphs

The previous chapter describes the Apolo system that helps the user explore large
graphs by starting with some nodes of interest. Apolo assumes the user knows
which specific nodes to start with. But what about when the user only has some
rough idea about what they are looking for?

This chapter presents GRAPHITE, a system that enables the user to find both
exact and approximate matching subgraphs in large attributed graphs, based on
only fuzzy descriptions that the user draws graphically.

For example, in a social network where a person’s occupation is an attribute,
the user can draw a ‘star’ query for “finding a CEO who has interacted with a
Secretary, a Manager, and an Accountant, or a structure very similar to this”.
GRAPHITE uses the G-Ray algorithm to run the query against a user-chosen data
graph, gaining all of its benefits, namely its high speed, scalability, and its ability
to find both exact and near matches. Therefore, for the example above, GRAPHITE

tolerates indirect paths between, say, the CEO and the Accountant, when no direct
path exists. GRAPHITE uses fast algorithms to estimate node proximities when
finding matches, enabling it to scale well with the graph database size.

We demonstrate GRAPHITE’s usage and benefits using the DBLP author-
publication graph, which consists of 356K nodes and 1.9M edges. A demo video
of GRAPHITE can be downloaded at http://youtu.be/nZYHazugVNA.

Chapter adapted from work appeared at ICDM 2008 [30]

89

http://youtu.be/nZYHazugVNA

6.1 Introduction

Figure 6.1: The GRAPHITE user interface showing the query pattern (left) for a chain
of authors from four different conferences. Nodes are authors; attributes are conferences;
edges indicate co-authorship. One best-effort match (right) is Indyk (STOC), Muthu (SIG-
MOD), Garofalakis bridging Muthu and Jordan (ICML), and Hinton bridging Jordan and
Fels (ISBMS).

People often want to find patterns in graphs, such as social networks, to bet-
ter understand their dynamics. One such use is to spot anomalies. For example,
in social networks where a person’s occupation is an attribute, we might want to
find money laundering rings that consist of alternating businessmen and bankers.
But, then, we face several challenges: (1) we need a conveninent way to specify
this ring pattern as a query, with appropriate attributes (e.g., businessman, banker)
assigned to each node; (2) we need to find all potential matches for this pattern;
we want near matches as well, such as allowing another person between a busi-
nessman and a banker, because we may not know the exact structure of a money
laundering ring; (3) the graph matching process should be fast, avoiding expen-
sive operations, such as joins; (4) we want to visualize all the matches to better

90

interpret them.
We present GRAPHITE, a system designed to solve the above challenges.

GRAPHITE stands for Graph Investigation by Topological Example. It provides
a usable integrated environment for handling the complete workflow of querying
a large graph for subgraph patterns. Users can (1) naturally draw the structure of
the pattern they want to find and assign attribute values to nodes; (2) run the query
against a user-chosen data graph, using the G-Ray method, to quickly locate exact
and near matches; (3) obtain matches in a matter of seconds; and (4) visualize the
matches.

Figure 6.1 is a screenshot of GRAPHITE when we ask for a chain of four coau-
thors in DBLP: a STOC’05 author, a SIGMOD’06 author, an ICML’93 author, and
an ISBM’05 author. Such a chain does not exist, but GRAPHITE returns a best-
effort match, with two intermediate nodes (in white): Minos Garofalakis, who
bridges Muthu (SIGMOD) with Jordan (ICML, a premier machine learning con-
ference) and Geoffrey Hinton, who bridges Michael Jordan (ICML) and Sidney
Fels (ISBMS, a conference on biomedical simulation).

This work is organized as follows. Section 6.2 gives the formal definition of
our subgraph matching problem. Section 6.3 describes the system details. Section
6.4 describes what we will be demonstrating for GRAPHITE. Section 6.5 discusses
related work. We conclude our contributions in Section 6.6.

6.2 Problem Definition

We describe the subgraph matching problem that GRAPHITE is designed to solve.
Consider the fictitious social network in Figure 6.2, where nodes are people,
whose attributes (job titles) are represented by shapes and colors. We define the
problem as:

Given

• a data graph (e.g., Figure 6.2), where the nodes have one categorical
attribute, such as job titles,

• a query subgraph describing the configuration of nodes that the user
wants to find (e.g., Figure 6.3(a)), and

• the number of desired matching subgraphs k,

find k matching subgraphs, that match the query as well as possible.

91

Figure 6.2: A ficticious network of people, whose job titles (attributes) are represented by
shapes and colors.

(a) Loop query (b) A matching subgraph

Figure 6.3: A loop query and a match

For inexact matches, they should be ranked accordingly to their quality, such
as how “similar” they look to the query. Incidentally, since we are using the G-
Ray algorithm, the matching subgraphs will be automatically ranked according to
its goodness function, giving convincing and intuitive rankings [143].

6.3 Introducing Graphite
GRAPHITE is a system for visually querying large social networks through direct
manipulation, finding exact and near matches, and visualizing them.

The User Interface and Interactions. Figure 6.4 shows GRAPHITE’s user
interface. The left half is the query area (a), where users draw their query sub-
graphs. They can assign an attribute to a node by double-clicking on it and picking

92

Figure 6.4: The GRAPHITE user interface. (a) User-specified ‘star’ query pattern. (b) Near
match for the ‘star’ pattern. Nodes are authors; attributes are conferences; edges link co-
authors. The query asks for an author who has published in PODS, with connections to
authors of IAT, PODS, and ISBMS. (c) Users can select, create, move and delete nodes
and edges; they can also zoom and pan. (d) Users specify number of matches. (e) Matches
shown as tabs. (f) Users double-click a node to bring up a dialog for filtering attributes
down to the ones that contain the filtering text.

a value from a pop-up dialog (f). Users can create nodes and edges with the edit-
ing control (middle icon at (c)), reposition or delete them with the picking control
(arrow icon at (c)), pan around the view port with the panning control (hand icon
at (c)), and zoom in or out with the mouse scroll wheel. The right half of the user
interface is the results area (b), which shows the exact and near matches as tabs
(e) that the user can inspect conveniently by flipping through them. Users can
specify the number of matches they want to find with the text box at the bottom of
the interface (d). They can then click the Find Matches button to start the pattern
matching process.

Algorithm for Finding Matches. There are many different subgraph match-
ing algorithms that could be used for GRAPHITE; if we only wanted exact
matches, we could write SQL queries to specify the query patterns. However,
we chose the G-Ray algorithm for the following two advantages. First, when no
exact matches exist, it automatically searches for best-effort matches (tolerating

93

longer, indirect paths). Second, thanks to its proposed goodness function [143], it
ranks the resulting matches, returning results that are empirically more important
to the users, thus avoids flooding the user with a potentially huge number of less
important matches.

Implementation. GRAPHITE is a Java SE 6 application. It uses the JUNG1

Java library for editing and visualizing graphs. G-Ray, the backend algorithm that
GRAPHITE uses for subgraph matching is written in the MATLAB programming
language. GRAPHITE uses the RemoteMatLab software library2 to remotely call
into an instance of MATLAB that has been started as a server, passing query
patterns to the algorithm and obtaining matches from it.

6.4 Example Scenarios
We illustrate GRAPHITE’s usage through several example scenarios.

Datasets. We use the DBLP dataset,3 from which we construct an attributed
graph where each node is an author and the node’s attribute is the combination
of a conference name and a year (e.g., “ICDM 2008”). We describe this at-
tributed graph by two matrices: (1) a node-to-node matrix, which represents the
co-authorship among authors where entry (i, j) is the number of coauthored papers
between author i and j; and (2) a node-to-attribute matrix, which represents the
author-conference relationship where entry (i, j) equals 1 if author i has published
in conference j, and 0 otherwise. In total, there are 356,364 nodes, 1,905,970
edges, and 12,920 possible attribute values.

Scenarios. In Figure 6.4, the ‘star’ query asks for an author who has pub-
lished in PODS (in red), who has co-authored papers with three other authors
from the conferences IAT (orange), PODS (red), and ISBMS (yellow). In one
of the highest-ranking matches (on the right), the PODS author in the center is
Philip Yu, a prolific author in databases and data mining. The other PODS author
is Hector Garcia-Molina, also extremely prolific, with an indirect connection to
Philip through Chawathe, his ex-advisee. Zhongfei (Mark) Zhang is the matching
author for IAT, Intelligent Agent Technology, who is a computer vision researcher
with a recent interest in data mining, hence the connection to Philip Yu. Similarly,
Figure 6.1 shows a ‘line’ pattern.

1http://jung.sourceforge.net/
2http://plasmapowered.com/wiki/index.php/Calling_MatLab_from_

Java
3http://www.informatik.uni-trier.de/˜ley/db/

94

http://jung.sourceforge.net/
http://plasmapowered.com/wiki/index.php/Calling_MatLab_from_Java
http://plasmapowered.com/wiki/index.php/Calling_MatLab_from_Java
http://www.informatik.uni-trier.de/~ley/db/

6.5 Related Work
Graph matching algorithms vary widely due to differences in the specific problems
they address. G-Ray is a fast approximate algorithm for inexact pattern match-
ing in large, attributed graphs. It extends the ideas of connection subgraphs [46]
and centerpiece graphs [142] and applies them to pattern matching in attributed
graphs. This work is also related to the idea of network proximity, which builds
on connection subgraphs [85].

Our work focuses on finding instances of user-specified patterns in graphs.
Graph mining work in the database literature focuses on related problems, like the
discovery of frequent or interesting patterns [153], near-cliques [119], and inexact
querying of databases [20]. However, none of these methods can do ‘best-effort’
matching for arbitrary shapes, like loops, that GRAPHITE can handle. For more
discussion and a survey of graph matching algorithms, please refer to Section 2.1.

6.6 Conclusions
We present GRAPHITE, a system for visually querying large graphs. GRAPHITE’s
contributions include (1) providing an integrated environment for handling the
complete workflow of querying a large graph for subgraph patterns; (2) providing
an intuitive means for users to specify query patterns by simply drawing them;
(3) finding and ranking both exact and near matches, using the best-effort G-Ray
algorithm; (4) visualizing matches to assist users in understanding and interpret-
ing the results; and (5) delivering results in high speed for large graphs (such as
the DBLP graph, consisting of 356K nodes), returning results in seconds, on a
commodity PC.

GRAPHITE can become a useful tool for scientists and analysts working on
graph problems to quickly find patterns of their choosing, to experiment with and
to confirm their speculations.

95

Part III

Scaling Up for Big Data

96

Overview

Massive graphs, having billions of nodes and edges, do not fit in the memory of a
single machine, and not even on a single hard disk. In this part, we describe tools
and methods to scale up computation for speed and with data size.
• Parallelism with Hadoop (Chapter 7): we scale up the Belief Propagation

(BP) algorithm to billion-node graphs, by leveraging Hadoop. BP is a pow-
erful inference algorithm successfully applied on many important problems,
e.g., computer vision, error-correcting codes, fraud detection (Chapter 3).

• Approximate Computation (Chapter 8): we contribute theories and algo-
rithms to further speed up Belief Propagation by two folds, and to improve
its accuracy.

• Staging of Operations (Chapter 9): our OPAvion system adopts a hybrid
approach that maximizes scalability for algorithms using Hadoop, while
enabling interactivity for visualization by using the user’s local computer as
a cache.

97

Chapter 7

Belief Propagation on Hadoop

Belief Propagation (BP) is a powerful inference algorithm successfully applied
on many different problems; we have adapted it for our work in fraud detection
(Chapter 3), malware detection (Chapter 4), and graph exploration (Chapter 5). In
those works, we implemented the algorithm to run on a single machine, because
those graphs fit on a single disk (even for Polonium’s 37 billion edge graph). But
graphs are now bigger, and do not fit on one disk anymore. What to do then?

This chapter describes how to leverage the HADOOP platform to scale up in-
ference through our proposed HADOOP LINE GRAPH FIXED POINT (HA-LFP),
an efficient parallel algorithm for sparse billion-scale graphs.

Our contributions include (a) the design of HA-LFP, observing that it cor-
responds to a fixed point on a line graph induced from the original graph; (b)
scalability analysis, showing that our algorithm scales up well with the number
of edges, as well as with the number of machines; and (c) experimental results
on two private, as well as two of the largest publicly available graphs — the Web
Graphs from Yahoo! (6.6 billion edges and 0.24 Tera bytes), and the Twitter graph
(3.7 billion edges and 0.13 Tera bytes). We evaluated our algorithm using M45,
one of the top 50 fastest supercomputers in the world, and we report patterns and
anomalies discovered by our algorithm, which would be invisible otherwise.

Chapter adapted from work appeared at ICDE 2011 [71]

98

7.1 Introduction

Given a large graph, with millions or billions of nodes, how can we find patterns
and anomalies? One method to do that is through “guilt by association”: if we
know that nodes of type “A” (say, males) tend to interact/date nodes of type “B”
(females), we can infer the unknown gender of a node, by checking the gender
of the majority of its contacts. Similarly, if a node is a telemarketer, most of its
contacts will be normal phone users (and not telemarketers, or 800 numbers).

We show that the “guilt by association” approach can find useful patterns and
anomalies, in large, real graphs. The typical way to handle this is through the
so-called Belief Propagation (BP) [117, 156]. BP has been successfully used
for social network analysis, fraud detection, computer vision, error-correcting
codes [47, 31, 98], and many other domains. In this work, we address the re-
search challenge of scalability — we show how to run BP on a very large graph
with billions of nodes and edges. Our contributions are the following:

1. We observe that the Belief Propagation algorithm is essentially a recursive
equation on the line graph induced from the original graph. Based on this
observation, we formulate the BP problem as finding a fixed point on the
line graph. We propose the LINE GRAPH FIXED POINT (LFP) algorithm
and show that it is a generalized form of a linear algebra equation.

2. We formulate and devise an efficient algorithm for LFP that runs on the
HADOOP platform, called HADOOP LINE GRAPH FIXED POINT (HA-
LFP).

3. We run experiments on a HADOOP cluster and analyze the running time.
We analyze the large real-world graphs including YahooWeb and Twitter
with HA-LFP, and show patterns and anomalies.

To enhance readability, we list the frequently symbols in Table 7.1. The reader
may want to return to this table for a quick reference of their meanings.

7.2 Proposed Method

In this section, we describe LINE GRAPH FIXED POINT (LFP), our proposed par-
allel formulation of the Belief Propagation on HADOOP. We first describe the
standard Belief Propagation algorithm, and then explains our method in detail.

99

Symbol Definition
V Node set
E Edge set
n Number of nodes
l Number of edges
S State set
φi(s) Node i’s prior, for state s
ψij(s

′, s) Edge potential, for node i (in state s′) and j (in state s)
mij(s) Message from node i to j, of i’s belief about j’s state s
bi(s) Node i’s belief, for state s

Table 7.1: Table of symbols

7.2.1 Overview of Belief Propagation
We mentioned Belief Propagation and its details earlier (Chapter 2 and Section
3.3). We provide a quick overview here for our readers’ convenience; this infor-
mation will help our readers better understand how our implementation nontriv-
ially captures and optimizes the algorithm in latter sections. This work focuses on
standard Belief Propagation over pairwise Markov random fields (MRF).

When we view an undirected simple graph G = (V,E) as a pairwise MRF,
each node i in the graph becomes a random variableXi, which can be in a discrete
number of states S. The goal of the inference is to find the marginal distribution
P (xi) for a node i, which is an NP-complete problem.

At the high level, Belief Propagation infers node i’s belief based on its prior
(given by node potential φ(xi)) and its neighbors’ opinions (as messages mji).
Messages are iteratively updated; an outgoing message from node i is generated
by aggregating and transforming (using edge potential ψij(xi, xj)) over its incom-
ing messages. Mathematically, messages are computed as:

mij(xj) =
∑
xi

φi(xi)ψij(xi, xj)

∏
k∈N(i)mki(xi)

mji(xi)
(7.1)

where N (i) node i’s neighbors. Node beliefs are determined as:

bi(xi) = cφi(xi)
∏

k∈N(i)

mki(xi) (7.2)

where c is a normalizing constant.

100

7.2.2 Recursive Equation

As seen in the last section, BP is computed by iteratively running equations (7.1)
and (7.2), as described in Algorithm 1.

Algorithm 1: Belief Propagation
Input : Edge E,

node prior φn×1, and
propagation matrix ψS×S

Output: Belief matrix bn×S

1 begin
2 while m does not converge do
3 for (i, j) ∈ E do
4 for s ∈ S do
5 mij(s)←

∑
s′ φi(s

′)ψij(s
′, s)

∏
k∈N(i)\jmki(s

′);

6 for i ∈ V do
7 for s ∈ S do
8 bi(s)← cφi(s)

∏
k∈N(i)mki(s);

In a shared-memory system in which random access to memory is allowed, the
implementation of Algorithm 1 might be straightforward. However, large scale al-
gorithm for MAPREDUCE requires careful thinking since the random access is not
allowed and the data are read sequentially within mappers and reducers. A good
news is that the two equations (7.1) and (7.2) involve only local communications
between neighboring nodes, and thus it seems hopeful to develop a parallel algo-
rithm for HADOOP. Naturally, one might think of an iterative algorithm in which
nodes exchange messages to update its beliefs using an extended form of matrix-
vector multiplication [75]. In such formulation, a current belief vector and the
message matrix is combined to compute the next belief vector. Thus, we want a
recursive equation to update the belief vector. However, such an equation cannot
be derived due to the denominator mji(xi) in Equation (7.1). If it were not for the
denominator, we could get the following modified equation where the superscript
t and t− 1 mean the iteration number:

101

mij(xj)
(t) =

∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)

mki(xi)
(t−1)

=
∑
xi

ψij(xi, xj)
bi(xi)

(t−1)

c

and thus

bi(xi)
(t) = cφi(xi)

∏
k∈N(i)

mki(xi)
(t−1)

= φi(xi)
∏

k∈N(i)

∑
xk

ψki(xk, xi)bk(xk)
(t−2) (7.3)

Notice that the recursive equation (7.3) is a fake, imaginary equation derived
from the assumption that equation (7.1) has no denominator. Although the recur-
sive equation for the belief vector cannot be acquired by this way, there is a more
direct and intuitive way to get a recursive equation. We will describe how to get it
in the next section.

7.2.3 Main Idea: Line graph Fixed Point(LFP)
How can we get the recursive equation for the BP? What we need is a tractable
recursive equation well-suited for large scale MAPREDUCE framework. In this
section, we describe LINE GRAPH FIXED POINT (LFP), our formulation of BP in
terms of finding the fixed point of an induced graph from the original graph. As
seen in the last section, a recursive equation to update the beliefs cannot be ac-
quired due to the denominator in the message update equation. Our main idea to
solve the problem is to flip the notion of the nodes and edges in the original graph
and thus use the equation (7.1), without modification, as the recursive equation
for updating the ‘nodes’ in the new formulation. The ‘flipping’ means we con-
sider an induced graph, called the line graph, whose nodes correspond to edges
in the original graph, and the two nodes in the induced graph are connected if the
corresponding edges in the original graph are incident. Notice that for each edge
(i, j) in the original graph, two messages need to be defined since mij and mji are
different. Thus, the line graph should be directed, although the original graph is
undirected. Formally, we define the ‘directed line graph’ as follows.

102

Definition 1 (Directed Line Graph) Given a directed graph G, its directed line
graph L(G) is a graph such that each node of L(G) represents an edge of G, and
there is an edge from vi to vj of L(G) if the corresponding edges ei and ej form a
length-two directed path from ei to ej in G.

(a) Original graph (b) Directed graph (c) Directed line graph

Figure 7.1: Converting a undirected graph to a directed line graph. (a to b): replace a
undirected edge with two directed edges. (b to c): for an edge (i, j) in (b), make a node
(i, j) in (c). Make a directed edge from (i, j) to (k, l) in (c) if j = k and i 6= l. The
rectangular nodes in (c) corresponds to edges in (b).

For example, see Figure 7.1 for a graph and its directed line graph. To convert
a undirected line graph G to a directed line graph L(G), we first convert G to a
directed graph by converting each undirected edge to two directed edges. Then, a
directed edge from vi to vj in L(G) is created if their corresponding edges ei and
ej form a directed path ei to ej in G.

Now, we derive the exact recursive equation on the line graph. Let G be the
original undirected graph with n nodes and l edges, and L(G) be the directed line
graph of G with 2l nodes as defined by Definition 1. The (i, j)th element L(G)i,j
is defined to be 1 if the edge exist, or 0 otherwise. Let m be a 2l-vector whose
element corresponding to the edge (i, j) inG contains the reverse directional mes-
sage mji. The reason of this reverse directional message will be described soon.
Let φ be a n-vector containing priors of each node. We build a 2l-vector ϕ as
follows: if the kth element ϕk of ϕ corresponds to an edge (i, j) in G, then set ϕk
to φ(i). A standard matrix-vector multiplication with vector addition operation on
L(G), m, ϕ is

m′ = L(G)×m+ ϕ

where
m′i =

∑n
j=1 L(G)i,j ×mj + ϕi.

In the above equation, four operations are used to get the result vector:

1. combine2(L(G)i,j,mj): multiply L(G)i,j and mj .

103

2. combineAlli(y1, ..., yn): sum n multiplication results for node i.
3. sumVector(ϕi, vaggr): add ϕi to the result vaggr of combineAll.
4. assign(mi, oldvali, newvali): overwrite the previous value oldvali of mi

with the new value newvali to make m′i.

Now, we generalize the operators× and + to×G and +G, respectively, so that
the four operations can be any functions of their arguments. In this generalized
setting, the matrix-vector multiplication with vector addition operation becomes

m′ = L(G)×G m+G ϕ

where
m′i = assign(mi, oldvali,
sumVector(ϕi,combineAlli({yj | j = 1..n, and
yj =combine2(L(G)i,j,mj)}))).

An important observation is that the BP equation (7.1) can be represented
by this generalized form of the matrix-vector multiplication with vector addition.
For simplifying the explanation, we omit the edge potential ψij since it is a tiny
information(e.g. 2 by 2 or 3 by 3 table), and the summation over xi, both of which
can be accommodated easily. Then, the BP equation (7.1) is expressed by

m′ = L(G)T ×G m+G ϕ (7.4)
m′′ = ChangeMessageDirection(m′) (7.5)

where

m′i = sumVector(ϕi,combineAlli({yj | j = 1..n, and
yj =combine2(L(G)Ti,j,mj)}))

, the four operations are defined by

1. combine2(L(G)i,j,mj) = L(G)i,j ×mj

2. combineAlli(y1, ..., yn) =
∏n

j=1 yj

3. sumVector(ϕi, vaggr) = ϕi × vaggr
4. assign(mi, oldvali, newvali) = newvali/vali
, and the ChangeMessageDirection function is defined by Algorithm 2. The

computed m′′ of equation (7.5) is the updated message which can be used as m
in the next iteration. Thus, our LINE GRAPH FIXED POINT (LFP) comprises run-
ning the equation (7.4) and (7.5) iteratively until a fixed point, where the message
vector converges, is found.

104

Two details should be addressed for the complete description of our method.
First, notice that L(G)T , instead of L(G), is used in the equation (7.4). The rea-
son is that a message should aggregate other messages pointing to itself, which
is the reverse direction of the line graph construction. Second, what is the use
of ChangeMessageDirection function? We mentioned earlier that the bp equa-
tion (7.1) contained a denominator mji which is the reverse directional message.
Thus, the input message vectorm of equation (7.4) contains the reverse directional
message. However, the result message vectorm′ of equation (7.4) contains the for-
ward directional message. For the m′ to be used in the next iteration, it needs to
change the direction of the messages, and that is what ChangeMessageDirection
does.

Algorithm 2: ChangeMessageDirection
Input: message vector m of length 2l
Output: new message vector m′ of length 2l

1: for k ∈ 1..2l do
2: (i, j)← edge in G corresponding to mk;
3: k′ ← element index of m corresponding to the edge (j, i) in G
4: m′k′ ← mk

5: end for

In sum, a generalized matrix-vector multiplication with addition is the recur-
sive message update equation which is run until convergence. The resulting algo-
rithm LFP is summarized in Algorithm 3.

7.3 Fast Algorithm for Hadoop
In this section, we first describe the naive algorithm for LFP and propose an effi-
cient algorithm.

7.3.1 Naive Algorithm
The formulation of BP in terms of the fixed point in the line graph provides an
intuitive way to understand the computation. However, a naive algorithm without
careful design is not efficient for the following reason. In a naive algorithm, we
first build the matrix for the line graph L(G) and the message vector, and apply
the recursive equation on them. The problem is that a node inGwith degree dwill

105

Algorithm 3: LINE GRAPH FIXED POINT (LFP)
Input : Edge E of a undirected graph G = (V,E),

node prior φn×1, and
propagation matrix ψS×S

Output: Belief matrix bn×S

1 begin
2 L(G)← directed line graph from E;
3 ϕ← line prior vector from φ;
4 while m does not converge do
5 for s ∈ S do
6 m(s)next = L(G)×G mcur +G ϕ;

7 for i ∈ V do
8 for s ∈ S do
9 bi(s)← cφi(s)

∏
j∈N(i)mji(s);

generate d(d− 1) edges in L(G). Since there exists many nodes with a very large
degree in real-world graphs due to the well-known power-law degree distribution,
the number of nonzero elements will grow too large. For example, the YahooWeb
graph in Section 7.4 has several nodes with the several-million degree. As a result,
the number of nonzero elements in the corresponding line graph is more than 1
trillion. Thus, we need an efficient algorithm for dealing with the problem.

7.3.2 Lazy Multiplication

The main idea to solve the problem in the previous section is not to build the line
graph explicitly: instead, we do the same computation on the original graph, or
perform a ‘lazy’ multiplication. The crucial observation is that the edges in the
original graph G contain all the edge information in L(G): each edge e ∈ E of G
is a node in L(G), and e1, e2 ∈ G are adjacent in L(G) if and only if they share the
node in G. For each edge (i, j) in G, we associate the reverse message mji. Then,
grouping edges by source node id i enables us to get all the messages pointing
to the source node. Thus, for each node j of i’s neighbors, the updated message
mij is computed by calculating

∏
k∈N(i)mki(xi)

mji(xi)
from the messages in the grouped

edges (incorporating priors and the propagation matrix is described soon). Since

106

we associate the reverse message for each edge, the output triple (src, dst, reverse
message) is (j, i,mij).

An issue in computing
∏
k∈N(i)mki(xi)

mji(xi)
is that a straightforward implementa-

tion requires N(i)(N(i) − 1) multiplication which is prohibitively large. How-
ever, we decrease the number of multiplication to 2N(i) by first computing
t =

∏
k∈N(i)mki(s

′), and for each j ∈ N(i) computing t/mji(s
′).

The only remaining pieces of the computation is to incorporate the prior φ and
the propagation matrix ψ. The propagation matrix ψ is a tiny bit of information,
so it can be sent to every reducer by a variable passing functionality of HADOOP.
The prior vector φ can be large, since the length of the vector can be the num-
ber of nodes in the graph. In the HADOOP algorithm, we also group the φ by
the node id: each node prior is grouped together with the edges(messages) whose
source id is the node id. Algorithm 4 shows the high-level algorithm of HADOOP

LINE GRAPH FIXED POINT (HA-LFP). Algorithm 5 shows the BP message ini-
tialization algorithm which requires only a Map function. Algorithm 6 shows
the HADOOP algorithm for the message update which implements the algorithm
described above. After the messages converge, the final belief is computed by
Algorithm 7.

Algorithm 4: HADOOP LINE GRAPH FIXED POINT (HA-LFP)
Input : Edge E of a undirected graph G = (V,E),

node prior φn×1, and
propagation matrix ψS×S

Output: Belief matrix bn×S

1 begin
2 Initialization(); // Algorithm 5
3 while m does not converge do
4 MessageUpdate(); // Algorithm 6

5 BeliefComputation(); // Algorithm 7

7.3.3 Analysis

We analyze the time and the space complexity of HA-LFP. The main result is that
one iteration of the message update on the line graph has the same complexity as

107

Algorithm 5: HA-LFP Initialization
Input : Edge E = {(idsrc, iddst)},

Set of states S = {s1, ..., sp}
Output: Message Matrix M = {(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}

1 Initialization-Map(Key k, Value v);
2 begin
3 Output((k, v), (1

|S| , ..., 1
|S|)); // (k: idsrc, v: iddst)

one matrix-vector multiplication on the original graph. In the lemmas below, M
is the number of machines.

Lemma 1 (Time Complexity of HA-LFP) One iteration of HA-LFP takes
O(V+E

M
log V+E

M
) time. It could take O(V+E

M
) time if HADOOP uses only hash-

ing, not sorting, on its shuffling stage.

Proof 1 Notice that the number of states is usually very small(2 or 3), thus can
be considered as a constant. Assuming uniform distribution of data to machines,
the time complexity is dominated by the MessageUpdate job. Thanks to the ‘lazy
multiplication’ described in the previous section, both Map and Reduce takes lin-
ear time to the input. Thus, the time complexity is O(V+E

M
log V+E

M
), which is the

sorting time for V+E
M

records. It could be O(V+E
M

), if HADOOP performs only
hashing without sorting on its shuffling stage.

A similar results holds for space complexity.
Lemma 2 (Space Complexity of HA-LFP) HA-LFP requires O(V +E) space.

Proof 2 The prior vector requires O(V) space, and the message matrix requires
O(2E) space. Since the number of edges is greater than the number of nodes,
HA-LFP requires O(V + E) space, in total.

7.4 Experiments
In this section, we present experimental results to answer the following questions:

Q1 How fast is HA-LFP, compared to a single-machine version?

Q2 How does HA-LFP scale up with the number of machines?

Q3 How does HA-LFP scale up with the number of edges?

108

Graph Nodes Edges File Desc.

YahooWeb 1,413 M 6,636 M 0.24 TB page-page
Twitter’10 104 M 3,730 M 0.13 TB person-person
Twitter’09 63 M 1,838 M 56 GB person-person
Kronecker 177 K 1,977 M 25 GB synthetic

120 K 1,145 M 13.9 GB
59 K 282 M 3.3 GB

VoiceCall 30 M 260 M 8.4 GB who calls whom
SMS 7 M 38 M 629 MB who sends to whom

Table 7.2: Order and size of networks.

We performed experiments in the M45 HADOOP cluster by Yahoo!. The clus-
ter has total 480 machines with 1.5 Petabyte total storage and 3.5 Terabyte mem-
ory. The single-machine experiment was done in a machine with 3 Terabyte of
disk and 48 GB memory. The single-machine BP algorithm is a scaled-up version
of a memory-based BP which reads all the nodes, not the edges, into a memory.
That is, the single-machine BP loads only the node information into a memory,
but it reads the edges sequentially from the disk for every message update, instead
of loading all the edges into a memory once for all.

The graphs we used in our experiments at Section 7.4 and 7.5 are summarized
in Table 7.2 1:

• YahooWeb: web pages and their links, crawled by Yahoo! at year 2002.
• Twitter: social network(who follows whom) extracted from Twitter, at June

2010 and Nov 2009.
• Kronecker[91]: synthetic graph with similar properties as real-world

graphs.
• VoiceCall: phone call records(who calls whom) during Dec. 2007 to Jan.

2008 from an anonymous phone service provider.
• SMS: short message service records(who sends to whom) during Dec. 2007

to Jan. 2008 from an anonymous phone service provider.

1 YahooWeb: released under NDA.
Twitter: http://www.twitter.com
Kronecker: [91]
VoiceCall, SMS: not public data.

109

(a) Running Time (b) Scale-Up with Machines

Figure 7.2: Running time of HA-LFP with 10 iterations on the YahooWeb graph with 1.4
billion nodes and 6.7 billion edges. (a) Comparison of the running times of HA-LFP and
the single-machine BP. Notice that HA-LFP outperforms the single-machine BP when
the number of machines exceed ≈40. (b) “Scale-up” (throughput 1/TM) versus number
of machines M , for the YahooWeb graph. Notice the near-linear scale-up close to the
ideal(dotted line).

7.4.1 Results

Between HA-LFP and the single-machine BP, which one runs faster? At which
point does the HA-LFP outperform the single-machine BP? Figure 7.2 (a) shows
the comparison of running time of the HA-LFP and the single-machine BP. Notice
that HA-LFP outperforms the single-machine BP when the number of machines
exceeds 40. The HA-LFP requires more machines to beat the single-machine BP
due to the fixed costs for writing and reading the intermediate results to and from
the disk. However, for larger graphs whose nodes do not fit into a memory, HA-
LFP is the only solution to the best of our knowledge.

The next question is, how does our HA-LFP scale up on the number of ma-
chines and edges? Figure 7.2 (b) shows the scalability of HA-LFP on the number
of machines. We see that our HA-LFP scales up linearly close to the ideal scale-
up. Figure 7.3 shows the linear scalability of HA-LFP on the number of edges.

110

Figure 7.3: Running time of 1 iterations of message update in HA-LFP on Kronecker
graphs. Notice that the running time scales-up linear to the number of edges.

7.4.2 Discussion

Based on the experimental results, what are the advantages of HA-LFP? In what
situations should it be used? For a small graph whose nodes and edges fit in
the memory, the single-machine BP is recommended since it runs faster. For a
medium-to-large graph whose nodes fit in the memory but the edges do not fit in
the memory, HA-LFP gives the reasonable solution since it runs faster than the
single-machine BP. For a very large graph whose nodes do not fit in the memory,
HA-LFP is the only solution. We summarize the advantages of the HA-LFP here:

• Scalability: HA-LFP is the only solution when the nodes information can
not fit in memory. Moreover, HA-LFP scales up near-linearly.

• Running Time: Even for a graph whose node information fits into a mem-
ory, HA-LFP ran 2.4 times faster.

• Fault Tolerance: HA-LFP enjoys the fault tolerance that HADOOP pro-
vides: data are replicated, and the failed programs due to machine errors
are restarted in working machines.

7.5 Analysis of Real Graphs

In this section, we analyze real-world graphs using HA-LFP and report findings.

111

7.5.1 HA-LFP on YahooWeb

Given a web graph, how can we separate the educational(‘good’) web pages from
the adult(‘bad’) web pages? Manually investigating billions of web pages would
take so much time and efforts. In this section, we show how to do it using HA-
LFP. We use a simple heuristic to set priors: the web pages which contain ‘edu’
have high goodness prior(0.95), and the web pages which contain either ‘sex’,
‘adult’, or ‘porno’ have low goodness prior(0.05). Among 11.8 million web pages
containing sexually explicit keywords, we keep 10% of the pages as a validation
set (goodness prior 0.5), and use the rest 90% as a training set by setting the
goodness prior 0.05. Also, among 41.7 million web pages containing ‘edu’, we
randomly sample 11.8 million web pages, so that the number equals with that
of adult pages given prior, and use 10% as a validation set(goodness prior 0.5),
and use the rest 90% as a training set(goodness prior 0.95). The edge potential
function is given by Table 7.3. It is given by our observation that good pages tend
to point to other good pages, while bad pages might point to good pages, as well
as bad pages, to boost their ranking in web search engines.

Good Bad
Good 1-ε ε

Bad 0.5 0.5

Table 7.3: Edge potential for the YahooWeb. ε is set to 0.05 in the experiments. Good
pages point to other good pages with high probability. Bad pages point to bad pages, but
also good pages with equal chances, to boost their rank in web search engines.

Figure 7.4 shows the HA-LFP scores and the number of pages in the test set
having such scores. Notice that almost all the pages with LFP score less than 0.9
in our test data contain adult web sites. Thus, the LFP score 0.9 can be used as a
decision boundary for adult web pages.

112

Figure 7.4: HA-LFP scores and the number of pages in the test set having such scores.
Note that pages whose goodness scores are less than 0.9(the left side of the vertical bar)
are likely to be adult pages with very high chances.

Figure 7.5 shows the HA-LFP scores vs. PageRank scores of pages in our
test set. We see that the PageRank cannot be used for differentiating between
educational and adult web pages. However, HA-LFP can be used to spotting adult
web pages, by using the threshold 0.9.

Figure 7.5: HA-LFP scores vs. PageRank scores of pages in our test set. The vertical
dashed line is the same decision boundary as in Figure 7.4. Note that in contrast to HA-
LFP, PageRank scores cannot be used to differentiating the good from the bad pages.

7.5.2 HA-LFP on Twitter and VoiceCall
We run HA-LFP on Twitter and VoiceCall data which are both social networks
representing who follows whom or who calls whom. We define the three roles:
’celebrity’, ’spammer’, and normal people. We define a celebrity as a person
with high in-degree (>=1000), and not-too-large out-degree(< 10 × indegree).
We define a spammer as a person with high out-degree (>=1000), but low in-
degree (< 0.1 × outdegree). For celebrities, we set (0.8, 0.1, 0.1) for (celebrity,

113

spammer, normal) prior probabilities. For spammers, we set (0.1, 0.8, 0.1) for
(celebrity, spammer, normal) prior probabilities. The edge potential function is
given by Table 7.4. It encodes our observation that celebrities tend to follow
normal persons the most, spammers follow other spammers or normal persons,
and normal persons follow other normal persons or celebrities.

Celebrity Spammer Normal
Celebrity 0.1 0.05 0.85
Spammer 0.1 0.45 0.45
Normal 0.35 0.05 0.6

Table 7.4: Edge potential for the Twitter and VoiceCall graph

Figure 7.6 shows the HA-LFP scores of people in the Twitter and VoiceCall
data. There are two clusters in both of the data. The large cluster starting from the
‘Normal’ vertex contains high degree nodes, and the small cluster below the large
cluster contains low degree nodes.

(a) Twitter (b) VoiceCall

Figure 7.6: HA-LFP scores of people in the Twitter and VoiceCall data. The points repre-
sent the scores of the final beliefs in each state, forming simplex in 3-dimensional space
whose axes are the red lines that meet at the center(origin). Notice that people seem to
form two groups, in both datasets, despite the fact that the two datasets are completely of
different nature.

7.5.3 Finding Roles And Anomalies
In the experiments of previous sections, we used several classes(‘bad’ web sites,
‘spammers’, ‘celebrities’, etc.) of nodes. The question is, how can we find classes
of a given graph? Finding out such classes is important for BP since it helps to

114

set reasonable priors which could lead to quick convergence. Here, we analyze
real world graphs using the PEGASUS package [75] and give observations on
the patterns and anomalies, which could potentially help determine the classes.
We focus on the structural properties of graphs, such as degree and connected
component distributions.

115

(a) YahooWeb: In Degree (b) Yahoo Web: Out Degree

(c) Twitter: In Degree (d) Twitter: Out Degree

(e) VoiceCall: In Degree (f) VoiceCall: Out Degree

(g) SMS: In Degree (h) SMS: Out Degree

Figure 7.7: Degree distributions of real world graphs. Notice many high in-degree or out-
degree nodes which can be used to determine the classes for HA-LFP. Most distributions
follow power-law or lognormal, except (e) which seems to be a mixture of two lognormal
distributions. Spikes may suggest anomalous nodes, suspicious activities, or software
limits on the number of connections.

116

Using Degree Distributions

We first show the degree distributions of real world graphs in Figure 7.7. No-
tice that there are nodes with very high in or out degrees, which gives valuable
information for setting priors.

Observation 1 (High In or Out Degree Nodes) The nodes with high in-degree
can have a high prior for ‘celebrity’, and the nodes with high out-degree but low
in-degree can have a high prior for ‘spammer’.

Most of the degree distributions in Figure 7.7 follow power law or log-normal.
The VoiceCall in degree distribution(Figure 7.7 (e)) is different from other distri-
butions since it contains mixture of distributions:

Observation 2 (Mixture of Lognormals in Degree Distribution) VoiceCall in
degree distributions in Figure 7.7 seems to comprise two lognormal distributions
shown in D1(red color) and D2(green color).

Another observation is that there are several anomalous spikes in the degree
distributions in Figure 7.7 (b) and (d).

Observation 3 (Spikes in Degree Distribution) There is a huge spike at the out
degree 1200 of YahooWeb data in Figure 7.7 (b). They came from online market
pages from Germany, where the pages are linked to each other and forming link
farms. Two outstanding spikes are also observed at the out degree 20 and 2001 of
Twitter data in Figure 7.7 (d). The reason seems to be a hard limit in the maximum
number of people to follow.

Finally, we study the highest degrees that are beyond the power-law or lognor-
mal cutoff points using rank plot. Figure 7.8 shows the top 1000 highest in and
out degrees and its rank(from 1 to 1000) which we summarize in the following
observation.

Observation 4 (Tilt in Rank Plot) The out degree rank plot of Twitter data in
Figure 7.8 (b) follows a power law with a single exponent. The in degree rank
plot, however, comprises two fitting lines with a tilting point around rank 240. The
tilting point divides the celebrities in two groups: super-celebrities (e.g., possibly,
of international caliber) and plain celebrities (possibly, of national caliber).

117

(a) In degree vs. Rank (b) Out degree vs. Rank

Figure 7.8: Degree vs. Rank. in Twitter Jun. 2010 data. Notice the change of slope
around the tilting point in (a). The point can be used to distinguishing super-celebrities
(e.g., of international caliber) versus plain celebrities (of national or regional caliber).

Using Connected Component Distributions.

The distributions of the sizes of connected components in a graph informs us of
the connectivity of the nodes (component size vs. number of components having
that size). When these distributions are plotted over time, we may observe when
certain nodes participate in various activities — patterns such as periodicity or
anomalous deviations from such patterns can generate important insights.

Figure 7.9 shows the temporal connected component distribution of the Voice-
Call (who-calls-whom) data, where each data point was computed using one day’s
worth of data (i.e., a one-day snapshot).

Observation 5 (Periodic Dips and Surges) Every Sunday, we see a dip in the
size of the giant connected component (largest component), and an accompanying
surge in the number of connected components for the day. We may infer that
“business” phone numbers (nodes) are those that are regularly active during work
days but not weekends, and characterize these them as under the “business” class
in our algorithm.

118

Figure 7.9: Connected component distributions of VoiceCall data (Dec 1, 2007 to Jan 31,
2008). GCC, 2CC, and 3CC are the first, second, and third largest components respec-
tively. The temporal trend may be used to set priors for HA-LFP. See text for details.

7.6 Conclusion
We proposed HADOOP LINE GRAPH FIXED POINT (HA-LFP), a HADOOP al-
gorithm for the inferences of graphical models in billion-scale graphs. The main
contributions are the followings:
• Efficiency: We show that the solution of inference problem in graphical

models is a fixed point in line graph. We propose LINE GRAPH FIXED

POINT (LFP), a formulation of BP on a line graph induced from the original
graph, and show that it is a generalized version of a linear algebra operation.
We propose HADOOP LINE GRAPH FIXED POINT (HA-LFP), an efficient
algorithm carefully designed for LFP in HADOOP.

• Scalability: We do the experiments to compare the running time of the HA-
LFP and a single-machine BP. We also gives the scalability results and show
that HA-LFP has a near-linear scale up.

• Effectiveness: We show that our method can find interesting patterns and
anomalies, on some of the largest publicly available graphs (Yahoo Web
graph of 0.24 Tb, and twitter, of 0.13 Tb).

119

Algorithm 6: HA-LFP Message Update
Input : Set of states S = {s1, ..., sp},

Current Message Matrix M cur =
{(sid, did,mdid,sid(s1), ...,mdid,sid(sp))},
Prior Matrix Φ = {(id, φid(s1), ..., φid(sp))},
Propagation Matrix ψ

Output: Updated Message Matrix
Mnext = {(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}

1 MessageUpdate-Map(Key k, Value v);
2 begin
3 if (k, v) is of type M then
4 Output(k, v); // (k: sid, v: did,mdid,sid(s1), ...,mdid,sid(sp))
5 else if (k, v) is of type Φ then
6 Output(k, v); // (k: id, v: φid(s1), ..., φid(sp))
7

8 MessageUpdate-Reduce(Key k, Value v[1..r]);
9 begin

10 temps[1..p]← [1..1];
11 saved prior ←[];
12 HashTable<int, double[1..p]> h;
13 foreach v ∈ v[1..r] do
14 if (k, v) is of type Φ then
15 saved prior[1..p]← v;
16 else if (k, v) is of type M then
17 (did,mdid,sid(s1), ...,mdid,sid(sp))← v;
18 h.add(did, (mdid,sid(s1), ...,mdid,sid(sp)));
19 foreach i ∈ 1..p do
20 temps[i] = temps[i]×mdid,sid(si);

21

22 foreach (did, (mdid,sid(s1), ...,mdid,sid(sp))) ∈ h do
23 outm[1..p]← 0;
24 foreach u ∈ 1..p do
25 foreach v ∈ 1..p do
26 outm[u] =

outm[u] + saved prior[v]ψ(v, u)temps[v]/mdid,sid(sv);

27 Output(did, (sid, outm[1], ..., outm[p]));

120

Algorithm 7: HA-LFP Belief Computation
Input : Set of states S = {s1, ..., sp},

Current Message Matrix M cur =
{(sid, did,mdid,sid(s1), ...,mdid,sid(sp))},
Prior Matrix Φ = {(id, φid(s1), ..., φid(sp))}

Output: Belief Vector b = {(id, bid(s1), ..., bid(sp))}
1 BeliefComputation-Map(Key k, Value v);
2 begin
3 if (k, v) is of type M then
4 Output(k, v); // (k: sid, v: did,mdid,sid(s1), ...,mdid,sid(sp))
5 else if (k, v) is of type Φ then
6 Output(k, v); // (k: id, v: φid(s1), ..., φid(sp))
7

8 BeliefComputation-Reduce(Key k, Value v[1..r]);
9 begin

10 b[1..p]← [1..1];
11 foreach v ∈ v[1..r] do
12 if (k, v) is of type Φ then
13 prior[1..p]← v;
14 foreach i ∈ 1..p do
15 b[i] = b[i]× prior[i];
16 else if (k, v) is of type M then
17 (did,mdid,sid(s1), ...,mdid,sid(sp))← v;
18 foreach i ∈ 1..p do
19 b[i] = b[i]×mdid,sid(si);

20

21 Output(k, (b[1], ..., b[p]));

121

122

Chapter 8

Unifying Guilt-by-Association
Methods: Theories &
Correspondence

If several friends of Smith have committed petty thefts, what would you say about
Smith? Most people would not be surprised if Smith is a hardened criminal, with
more than petty thefts on his record. Guilt-by-association methods can help us
combine weak signals to derive stronger ones. We leveraged this core idea in our
Polonium work to detect malware (Chapter 4), and in our Apolo system to find
relevant nodes to explore (Chapter 5).

The focus of this work is to compare and contrast several very successful,
guilt-by-association methods: RWR (Random Walk with Restarts) ; SSL (Semi-
Supervised Learning); and Belief Propagation (Belief Propagation). RWR is the
method behind Google’s multi-billion dollar PageRank algorithm. SSL is appli-
cable when we have labeled and unlabeled nodes in a graph. BP is a method
firmly based on Bayesian reasoning, with numerous successful applications (eg.
image restoration and error-correcting algorithms). Which of the three methods
should one use? Does the choice make a difference? Which method converges,
and when?

Our main contributions are two-fold: (a) theoretically, we prove that all the
methods result in a similar matrix inversion problem; (b) for practical applica-
tions, we developed FABP, a fast algorithm that yields 2× speedup compared to

Chapter adapted from work appeared at PKDD 2011 [86]

123

Belief Propagation, while achieving equal or higher accuracy, and is guaranteed to
converge. We demonstrate these benefits using synthetic and real datasets, includ-
ing YahooWeb, one of the largest graphs ever studied with Belief Propagation.

8.1 Introduction

Network effects are very powerful, resulting even in popular proverbs (“birds of
a feather flock together”). In social networks, obese people tend to have obese
friends [34], happy people tend to make their friends happy too [48], and in gen-
eral, people tend to associate with like-minded friends, with respect to politics,
hobbies, religion, etc. Thus, knowing the types of a few nodes in a network, we
would have good chances to guess the types of the rest of the nodes.

Informally, the problem definition is as follows:
Given: a graph withN nodes andM edges; n+ and n− nodes labeled as members

of the positive and negative class respectively

Find: the class memberships of the rest of the nodes, assuming that neighbors
influence each other

The influence can be “homophily”, meaning that nearby nodes have similar labels;
or “heterophily”, meaning the reverse (e.g., talkative people tend to prefer silent
friends, and vice-versa). Most methods we cover next support only homophily,
but our proposed FABP method, improved on Belief Propagation, can trivially
handle both cases.

Homophily appears in numerous settings, for example (a) Personalized
PageRank: if a user likes some pages, she would probably like other pages that
are heavily connected to her favorites. (b) Recommendation systems: in a user
× product matrix, if a user likes some products (i.e., members of positive class),
which other products should get positive scores? (c) Accounting and calling-card
fraud: if a user is dishonest, his/her contacts are probably dishonest too.

There are several, closely related methods that address the homophily prob-
lem, and some that address both homophily and heterophily. We focus on three of
them: Personalized PageRank (a.k.a. “Personalized Random Walk with Restarts”,
or just RWR); Semi-Supervised Learning (SSL); and Belief Propagation (Belief
Propagation). How are these methods related? Are they identical? If not, which
method gives the best accuracy? Which method has the best scalability?

These questions are exactly the focus of this work. We contribute by answer-
ing the above questions, plus a fast algorithm inspired by our theoretical analysis:

124

• Theory & Correspondences: the methods are closely related, but not iden-
tical.

• Algorithm & Convergence: we propose FABP, a fast, accurate and scalable
algorithm, and provide the conditions under which it converges.

• Implementation & Experiments: finally, we propose a HADOOP-based algo-
rithm, that scales to billion-node graphs, and we report experiments on one
of the largest graphs ever studied in the open literature. Our FABP method
achieves about 2× better runtime.

8.2 Related Work
All three alternatives are very popular, with numerous papers using or improving
them. Here, we survey the related work for each method.

Random Walk with Restarts (RWR) RWR is the method underlying
Google’s classic PageRank algorithm [22]. RWR’s many variations include Per-
sonalized PageRank [57], lazy random walks [103], and more[144, 113]. Related
methods for node-to-node distance (but not necessarily guilt-by-association) in-
clude [85], parameterized by escape probability and round-trip probability.

Semi-supervised learning (SSL) According to conventional categorization,
SSL approaches are divided into four categories [159]: low-density separation
methods, graph-based methods, methods for changing the representation, and
co-training methods. The principle behind SSL is that unlabeled data can help
us decide the “metric” between data points and improve models’ performance. A
very recent use of SSL for multi-class settings has been proposed in [66].

Belief Propagation (BP) Here, we focus on standard Belief Propagation and
we study how its parameter choices help accelerate the algorithm, and how to im-
plement the method on top of HADOOP [2] (open-source MapReduce implemen-
tation). This focus differentiates our work from existing research which speeds
up Belief Propagation by exploiting the graph structure [33, 114] or the order of
message propagation [52].

Summary None of the above papers show the relationships between the three
methods, or discuss the parameter choices (e.g., homophily scores). Table 8.1

125

qualitatively compares the methods. All methods are scalable. Belief Propaga-
tion supports heterophily, but there is no guarantee on convergence. Our FABP
algorithm improves on it to provide convergence.

Table 8.1: Qualitative comparison of ‘guilt-by-association’ (GBA) methods.

GBA Method Heterophily Scalability Convergence
RWR No Yes Yes
SSL No Yes Yes
BP Yes Yes ?
FABP Yes Yes Yes

8.3 Theorems and Correspondences
In this section we present the three main formulas that show the similarity of
the following methods: (binary) Belief Propagation and specifically our proposed
approximation, the linearized BP (FABP), the Gaussian BP (GAUSSIANBP), the
Personalized RWR (RWR), and semi-supervised learning (SSL).

For the homophily case, all the above methods are similar in spirit, and closely
related to diffusion processes: the n+ nodes that belong to class “+” (say, “green”),
act as if they taint their neighbors (diffusion) with green color, and similarly do
the negative nodes with, say, red color. Depending on the strength of homophily,
or equivalently the speed of diffusion of the color, eventually we have green-ish
neighborhoods, red-ish neighborhoods, and bridge-nodes (half-red, half-green).

As we show next, the solution vectors for each method obey very similar equa-
tions: they all involve a matrix inversion, where the matrix consists of a diagonal
matrix plus a weighted or normalized version of the adjacency matrix. Table 8.2
shows the resulting equations, carefully aligned to highlight the correspondences.

Next we give the equivalence results for all 3 methods, and the convergence
analysis for FABP. At this point we should mention that work on the convergence
of a variant of Belief Propagation, Gaussian Belief Propagation, is done in [96]
and [151]. The reasons that we focus on Belief Propagation are that (a) it has a
solid, Bayesian foundation, and (b) it is more general than the rest, being able to
handle heterophily (as well as multiple-classes, that we don’t elaborate here).

In the following discussion, we use the symbols that are defined in Table 8.3.
The detailed proofs of the Theorems and Lemmas can be found in Appendix B,
while the preliminary analysis is given in Appendix A. Notice that in FABP, the

126

Method matrix unknown known
RWR [I − cAD−1]× x = (1− c) y
SSL [I + α(D−A)]× x = y
Gaussian BP = SSL [I + α(D−A)]× x = y
FABP [I + aD− c′A]× bh = φh

Table 8.2: Main results, to illustrate correspondence. Matrices (in capital and bold) are
n×n; vectors (lower-case bold) are n×1 column vectors, and scalars (in lower-case plain
font) typically correspond to strength of influence. Detailed definitions: in the text.

Definition Explanation
n #nodes
A n× n sym. adj. matrix
D n× n diag. matrix of degrees Dii =

∑
j Aij and Dij = 0 for i 6= j

I n× n identity matrix
“about-half” beliefs b = n× 1 BP’s belief vector

b− 0.5 b(i){> 0.5, < 0.5} means i ∈ {“+”, “-”} classbh

b(i) = 0 means i is unclassified (neutral)
φh “about-half” prior, φ− 0.5 φ = n× 1 BP’s prior belief vector

“about-half” homophily vector h = ψ(“+”,“+”): entry of BP propagation matrix
h− 0.5 h→ 0 : strong heterophilyhh

h→ 1 : strong homophily

Table 8.3: Symbols and definitions. Matrices in bold capital font; vectors in bold lower-
case; scalars in plain font)

notion of the propagation matrix is represented by the “about-half” homophily
factor.

Theorem 1 (FABP) The solution to belief propagation can be approximated by
the linear system

[I + aD− c′A]bh = φh (8.1)

where a = 4h2h/(1− 4h2h), and c′ = 2hh/(1− 4h2h). The quantities hh, φh and bh

are defined in Table 8.3, and depend on the strength of homophily. Specifically,
φh corresponds to the prior beliefs of the nodes and φh(i) = 0 for the nodes that
we have no information about; bh corresponds to the vector of our final beliefs
for each node.
Proof 3 See Appendix B. QED

Lemma 1 (Personalized RWR) The linear system for RWR given an observation

127

y, is described by the following formula:

[I− cAD−1]x = (1− c)y . (8.2)

where 1− c is the restart probability, c ∈ [0, 1].

Proof 4 See [58], [144]. QED
Similarly to the BP case above, y corresponds to the prior beliefs for each node,
with the small difference that yi = 0 means that we know nothing about node i,
while a positive score yi > 0 means that the node belongs to the positive class
(with the corresponding strength).
Lemma 2 (SSL and Gaussian BP) Suppose we are given l labeled nodes
(xi, yi), i = 1, . . . , l, yi ∈ {0, 1}, and u unlabeled nodes (xl+1, ..., xl+u). The
solution to a Gaussian BP and SSL problem is given by the linear system:

[α(D−A) + I]x = y (8.3)

where α is related to the coupling strength (homophily) of neighboring nodes.

Proof 5 See [151][159] and Appendix B. QED
As before, y represents the labels of the labeled nodes and, thus, it is related to
the prior beliefs in BP; x corresponds to the labels of all the nodes or equivalently
the final beliefs in BP.

Lemma 3 (R-S correspondence) On a regular graph (i.e., all nodes have the
same degree d), RWR and SSL can produce identical results if

α =
c

(1− c)d
(8.4)

That is, we need to align carefully the homophily strengths α and c.

Proof 6 See Appendix B. QED
In an arbitrary graph the degrees are different, but we can still make the two meth-
ods give the same results if we make α be different for each node i, that is αi.
Specifically, the elements αi should be c

(1−c)di for node i, with degree di.

8.3.1 Arithmetic Examples
Here we illustrate that SSL and RWR give closely related solutions. We set α to
be α = c/((1− c) ∗ d̄)) (where d̄ is the average degree).

128

Figure 8.1 shows the scatter-plot: each red star (xi, yi) corresponds to a node,
say, node i; the coordinates are the RWR and SSL scores, respectively. The
blue circles correspond to the perfect identity, and thus are on the 45-degree line.
Figure 8.1(a) has three major groups, corresponding to the ’+’-labeled, the un-
labeled, and the ’-’-labeled nodes (from top-right to bottom-left, respectively).
Figure 8.1(b) shows a magnification of the central part (the unlabeled nodes). No-
tice that the red stars are close to the 45-degree line. The conclusion is that (a) the
SSL and RWR scores are similar, and (b) the rankings are the same: whichever
node is labeled as “positive” by SSL, gets a high score by RWR, and conversely.

Figure 8.1: Scatter plot showing the similarities between SSL and RWR. SSL vs RWR
scores, for the nodes of a random graph; blue circles (ideal, perfect equality) and red stars
(real). Right: a zoom-in of the left. Most red stars are on or close to the diagonal: the two
methods give similar scores, and identical assignments to positive/negative classes.

8.4 Analysis of Convergence
Here we study the sufficient, but not necessary conditions for which our method
FABP converges. The implementation details of FABP are described in the up-
coming Section 8.5. Lemmas 4, 5, and 8.8 give the convergence conditions.

All our results are based on the power expansion that results from the inversion
of a matrix of the form I−W; all the methods undergo this process, as we show in
Table 8.2. Specifically, we need the inverse of the matrix I+ aD− c′A = I−W,
which is given the expansion:

(I−W)−1 = I + W + W2 + W3 + ... (8.5)

and the solution of the linear system is given by the formula

(I−W)−1φh = φh + W · φh + W · (W · φh) + ... (8.6)

129

This method is fast since the computation can be done in iterations, each one of
which consists of a sparse-matrix/vector multiplication. This is referred to as the
Power Method. However, the Power Method does not always converge. In this
section we examine its convergence conditions.

Lemma 4 (Largest eigenvalue) The series
∞∑
k=0

|W|k =
∞∑
k=0

|c′A− aD|k con-

verges iff λ(W) < 1, where λ(W) is the magnitude of the largest eigenvalue
of W.
Given that the computation of the largest eigenvalue is non-trivial, we suggest
using one of the following lemmas, which give a closed form for computing the
“about-half” homophily factor, hh.

Lemma 5 (1-norm) The series
∞∑
k=0

|W|k =
∞∑
k=0

|c′A− aD|k converges if

hh <
1

2(1 + maxj (djj))
(8.7)

where djj are the elements of the diagonal matrix D.

Proof 7 The proof is based on the fact that the power series converges if the 1-
norm, or equivalently the∞-norm, of the symmetric matrix W is smaller than 1.
The detailed proof can be found in Appendix C. QED

Lemma 6 (Frobenius norm) The series
∞∑
k=0

|W|k =
∞∑
k=0

|c′A− aD|k con-

verges if

hh <

√
−c1 +

√
c21 + 4c2

8c2
(8.8)

where c1 = 2 +
∑
i

dii and c2 =
∑
i

d2ii − 1.

Proof 8 This upper bound for hh is obtained when we consider the Frobenius

norm of matrix W and we solve the inequality ‖W ‖F=

√√√√ n∑
i=1

n∑
j=1

|Wij|2 < 1

with respect to hh. We omit the detailed proof. QED
Formula 8.8 is preferable over 8.7 when the degrees of the graph’s nodes demon-
strate considerable standard deviation. The 1-norm yields small hh for very big

130

Dataset #nodes #edges
YahooWeb 1,413,511,390 6,636,600,779
Kronecker 1 177,147 1,977,149,596
Kronecker 2 120,552 1,145,744,786
Kronecker 3 59,049 282,416,200
Kronecker 4 19,683 40,333,924
DBLP 37,791 170,794

Table 8.4: Order and size of graphs.

highest degree, while the Frobenius norm gives a higher upper bound for hh. Nev-
ertheless, we should bear in mind that hh should be a sufficiently small number in
order for the “about-half” approximations to hold.

8.5 Proposed Algorithm: FABP
Based on the analysis in Sections 8.3 and 8.4, we propose the FABP algorithm:
• Step 1: Pick hh to achieve convergence: hh = max {Eq.(8.7), Eq.(8.8)}

and compute the parameters a and c′ as described in Theorem 1.

• Step 2: Solve the linear system of Equation (8.1). Notice that all the quan-
tities involved in this equation are close to zero.

• Step 3 (optional): If the achieved accuracy is not sufficient, run a few it-
erations of Belief Propagation using the values computed in Step 2 as the
starting node beliefs.

In the datasets we studied, the optional step (last step) was not required, as FABP
achieves equal or higher accuracy than Belief Propagation, while using less time.

8.6 Experiments
We present experimental results to answer the following questions:

Q1: How accurate is FABP?
Q2: Under what conditions does FABP converge?
Q3: How sensitive is FABP to the values of h and φ?
Q4: How does FABP scale on very large graphs with billions of nodes and edges?

The graphs we used in our experiments are summarized in Table 8.4.

131

Figure 8.2: The quality of scores of FABP is near-identical to Belief Propagation, i.e.
all on the 45-degree linein the scatter plot of beliefs (FABP vs Belief Propagation) for
each node of the DBLP sub-network; red/green points correspond to nodes classified as
“AI/not-AI” respectively.

To answer Q1 (accuracy), Q2 (convergence), and Q3 (sensitivity), we use the
DBLP dataset [51], which consists of 14,376 papers, 14,475 authors, 20 con-
ferences, and 8,920 terms; only a small portion of these nodes are labeled: 4057
authors, 100 papers, and all the conferences. We adapted the labels of the nodes to
two classes: AI (Artificial Intelligence) and not AI (= Databases, Data Mining and
Information Retrieval). In each trial, we run FABP on the DBLP network where
(1 − p)% = (1 − a)% of the labels of the papers and the authors have been dis-
carded. Then, we test the classification accuracy on the nodes whose labels were
discarded. The values of a and p are 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 5%. To
avoid combinatorial explosion, we consider {hh, priors} = {±0.002,±0.001} as
the anchor values, and then, we vary one parameter at a time. When the results
are the same for different values of a% = p%, due to lack of space, we randomly
pick the plots to present.

To answer Q4 (scalability), we use the YahooWeb and Kronecker graphs
datasets. YahooWeb is a Web graph containing 1.4 billion web pages and 6.6 bil-
lion edges; we label 11 million educational and 11 million adult web pages. We
use 90% of these labeled data to set node priors, and use the remaining 10% to
evaluate the accuracy. For parameters, we set hh to 0.001 using Lemma 6 (Frobe-
nius norm), and the magnitude of the prior beliefs to 0.5± 0.001. The Kronecker
graphs are synthetic graphs generated by the Kronecker generator [91].

132

Figure 8.3: FABP achieves maximum accuracy within the convergence bounds. The an-
notated, red numbers correspond to the classified nodes when not all nodes were classified
by FABP.

8.6.1 Q1: Accuracy
Figure 8.2 shows the scatter plots of beliefs (FABP vs Belief Propagation) for each
node of the DBLP data. We observe that FABP and Belief Propagation result in
practically the same beliefs for all the nodes in the graph, when ran with the same
parameters, and thus, they yield the same accuracy. Conclusions are identical for
any labeled-set-size we tried (0.1% and 0.3% shown in Figure 8.2).
Observation 6 FABP and Belief Propagation agree on the classification of the
nodes when run with the same parameters.

8.6.2 Q2: Convergence
We examine how the value of the “about-half” homophily factor affects the con-
vergence of FABP. In Figure 8.3 the red line annotated with “max |eval| = 1”
splits the plots into two regions; (a) on the left, the Power Method converges and
FABP is accurate, (b) on the right, the Power Method diverges resulting in sig-
nificant drop in the classification accuracy. We annotate the number of classified

133

Figure 8.4: Insensitivity of FABP to the
magnitude of the prior beliefs.

Figure 8.5: Running Time of FABP vs #
edges for 10 and 30 machines on HADOOP.
Kronecker graphs are used.

nodes for the values of hh that leave some nodes unclassified because of numer-
ical representation issues. The low accuracy scores for the smallest values of hh
are due to the unclassified nodes, which are counted as misclassifications. The
Frobenius norm-based method yields greater upper bound for hh than the 1-norm
based method, preventing any numerical representation problems.

Observation 7 Our convergence bounds consistently coincide with high-
accuracy regions. Thus, we recommend choosing the homophily factor based on
the Frobenius norm using Equation (8.8).

8.6.3 Q3: Sensitivity to parameters

Figure 8.3 shows that FABP is insensitive to the “about-half” homophily factor,
hh, as long as the latter is within the convergence bounds. Moreover, in Figure
8.4 we observe that the accuracy score is insensitive to the magnitude of the prior
beliefs. For brevity, we show only the cases a, p ∈ {0.1%, 0.3%, 0.5%}, as for all
values except for a, p = 5.0%, the accuracy is practical identical. Similar results
were found for different “about-half” homophily factors, but the plots are omitted
due to lack of space.

Observation 8 The accuracy results are insensitive to the magnitude of the prior
beliefs and homophily factor - as far as the latter is within the convergence bounds
we gave in Section 8.4.

134

(a) Runtime vs # of iterations (b) Accuracy vs # iterations (c) Accuracy vs runtime

Figure 8.6: Performance on the YahooWeb graph (best viewed in color): FABP wins
on speed and wins/ties on accuracy. In (c), each of the method contains 4 points which
correspond to the number of steps from 1 to 4. Notice that FABP achieves the maximum
accuracy after 84 minutes, while BP achieves the same accuracy after 151 minutes.

8.6.4 Q4: Scalability

To show the scalability of FABP, we implemented FABP on HADOOP, an open
source MAPREDUCE framework which has been successfully used for large scale
graph analysis [75]. We first show the scalability of FABP on the number of edges
of Kronecker graphs. As seen in Figure 8.5, FABP scales linear on the number
of edges. Next, we compare HADOOP implementation of FABP and BP [71] in
terms of running time and accuracy on YahooWeb graph. Figures 8.6(a-c) show
that FABP achieves the maximum accuracy level after two iterations of the Power
Method and is ∼ 2× faster than BP.
Observation 9 FABP is linear on the number of edges, with∼ 2× faster running
time than Belief Propagation on HADOOP.

8.7 Conclusions

Which of the many guilt-by-association methods one should use? We answered
this question, and we developed FABP, a new, fast algorithm to do such compu-
tations. The contributions of our work are the following:
• Theory & Correspondences: We showed that successful, major guilt-by-

association approaches (RWR, SSL, and BP variants) are closely related,
and we proved that some are even equivalent under certain conditions (The-
orem 1, Lemmas 1, 2, 3).

• Algorithms & Convergence: Thanks to our analysis, we designed FABP, a
fast and accurate approximation to the standard belief propagation (Belief

135

Propagation), which has convergence guarantee (Lemmas 5 and 6).

• Implementation & Experiments: We showed that FABP is significantly
faster, about 2×, and it has the same or better accuracy (AUC) than Belief
Propagation. Moreover, we show how to parallelize it with MAPREDUCE

(HADOOP), operating on billion-node graphs.
Thanks to our analysis, our guide to practitioners is the following: among all 3
guilt-by-association methods, we recommend belief propagation, for two reasons:
(1) it has solid, Bayesian underpinnings and (2) it can naturally handle heterophily,
as well as multiple class-labels. With respect to parameter setting, we recommend
to choose homophily score, hh, according to the Frobenius bound (Equation 8.8).

Future work could focus on time-evolving graphs, and label-tracking over
time. For example, in a call-graph, we would like to spot nodes that change be-
havior, e.g., from “telemarketer” type to “normal user” type.

136

Chapter 9

OPAvion: Large Graph Mining
System for Patterns, Anomalies &
Visualization

Given a large graph billions of nodes and edges, like a who-follows-whom Twitter
graph, how do we scalably compute its statistics, summarize its patterns, spot
anomalies, visualize and make sense of it?

A core requirement in accomplishing these tasks is that we need to enable the
user to interact with the data. This chapter presents the OPAVION system that
adopts a hybrid approach that maximizes scalability for algorithms using Hadoop,
while enabling interactivity for visualization by using the users local computer as
a cache.

OPAVION consists of three modules: (1) The Summarization module
(PEGASUS) operates off-line on massive, disk-resident graphs and computes
graph statistics, like PageRank scores, connected components, degree distribu-
tion, triangles, etc.; (2) The Anomaly Detection module (ODDBALL) uses graph
statistics to mine patterns and spot anomalies, such as nodes with many contacts
but few interactions with them (possibly telemarketers); (3) The Interactive Visu-
alization module (Apolo) lets users incrementally explore the graph, starting with
their chosen nodes or the flagged anomalous nodes; then users can expand to the
nodes’ vicinities, label them into categories, and interactively navigate interesting
parts of the graph.

Chapter adapted from work appeared at SIGMOD 2012 [10]

137

9.1 Introduction
We have entered the era of big data. Massive graphs measured in terabytes or
even petabytes, having billions of nodes and edges, are now common in numerous
domains, such as the link graph of the Web, the friendship graph of Facebook, the
customer-product graph of Netflix, eBay, etc. How to gain insights into these data
is the fundamental challenge. How do we find patterns and anomalies in graphs at
such massive scale, and how do we visualize them?

Figure 9.1: System overview. OPAVION consists of three modules: the Summarization
module (PEGASUS) provides scalable storage and algorithms to compute graph statistics;
the Anomaly Detection module (ODDBALL) flags anomalous nodes whose egonet fea-
tures deviate from expected distributions; the Visualization module (Apolo) allows the
user to visualize connections among anomalies, expand to their vicinities, label them into
categories, and interactively explore the graph.

We present OPAVION, a system that provides a scalable, interactive workflow
to help people accomplish these analysis tasks (see Figure 9.1). Its core capabil-
ities and their corresponding modules are:
• The Summarization module (PEGASUS) provides massively scalable

graph mining algorithms to compute statistics for the whole graph, such as
PageRank, connected components, degree distribution, etc. It also generates
plots that summarize these statistics, to reveal deviations from the expected
graph’s properties (see Figure 9.3). PEGASUS has been tested to work effi-
ciently on a huge graph with 1 billion nodes and 6 billion edges [75].

• The Anomaly Detection module (ODDBALL) automatically detects
anomalous nodes in the graph—for each node, ODDBALL extracts features
from its egonet (induced subgraph formed by the node and its neighbors)
and flags nodes whose feature distributions deviate from those of other

138

nodes’. Example features include: number of nodes, total edge weight,
principal eigenvalue, etc. These flagged nodes are great points for analysis,
as they are potentially new and significant information (see Figure 9.2a for
example anomalies).

• The Visualization module (Apolo) provides an interactive visualization
canvas for analysts to further their investigation. For example, flagged
anomalous nodes can be transferred to the visualization to show their con-
nections (see Figure 9.2b). Different from most graph visualization pack-
ages that visualize the full graph, Apolo uses a built-in machine learning
method called Belief Propagation to guide the user to expand to other rele-
vant areas of the graph; the user specifies nodes of interest as exemplars and
Apolo suggests nodes that are in their close proximity, and their induced
subgraphs, for further inspection.

Figure 9.2: (a) Illustration of Egonet Density Power Law on the ‘Stack Overflow’ Q&A
graph. Edge count Ei versus node count Ni (log-log scales); red line is the least squares
fit on the median values (dark blue circles) of each bin; dashed black and blue lines have
slopes 1 and 2 respectively, corresponding to stars and cliques. The top anomalies devi-
ating from the fit are marked with triangles. (b): Screenshot of the visualization module
working with the anomaly detection module, showing a “star” (Sameer, at its center, is a
red triangle flagged on the left plot), and a “near-clique” (blue triangles). Nodes are Stack
Overflow users and a directed edge points from a user who asks a question, to another
user who answers it. Node size is proportional to node’s in-degree. Here, user Sameer
(the star’s center) is a maven who has answered a lot of questions (high in-degree) from
other users, but he has never interacted with the other mavens in the near-clique who have
both asked and answered numerous questions.

139

9.2 System Overview
OPAVION consists of three modules: Summarization, Anomaly Detection, and
Visualization. The block-diagram in Figure 9.1 shows how they work together in
OPAVION. The following subsections briefly describe how each module works.

9.2.1 Summarization
How do we handle graphs with billions of nodes and edges, which do not fit in
memory? How to use parallelism for such Tera- or Peta-scale graphs? PEGASUS

provides massively scalable graph mining algorithms to compute a carefully se-
lected set of statistics for the whole graph, such as diameter, PageRank, connected
components, degree distribution, triangles, etc. PEGASUS is based on the obser-
vation that many graph mining operations are essentially repeated matrix-vector
multiplications. Based on the observation, PEGASUS implements a very impor-
tant primitive called GIM-V (Generalized Iterated Matrix-Vector multiplication)
which is a generalization of the plain matrix-vector multiplication. Moreover, PE-
GASUS provides fast algorithms for GIM-V in MAPREDUCE, a distributed com-
puting platform for large data, achieving (a) good scale-up on the number of avail-
able machines and edges, and (b) more than 9 times faster performance over the
non-optimized GIM-V. Here is the list of the algorithms supported by PEGASUS.

Structure Analysis. PEGASUS extracts various features in graphs, including
degree, PageRank scores, personalized PageRank scores, radius [76], diameter,
and connected components [75]. The extracted features can be analyzed for find-
ing patterns and anomalies. For example, degree or connected component distri-
butions of real world graphs often follow a power law as shown in Figure 9.3, and
the deviations from the power law line indicate an anomaly (e.g. spammers in
social networks, and a set of web pages replicated from a template).

Eigensolver. Given a graph, how can we compute near-cliques, the count of
triangles, and related graph properties? All of them can be found quickly if we
have the first few eigenvalues and eigenvectors of the adjacency matrix of the
graph [123, 73]. Despite their importance, existing eigensolvers do not scale well.
PEGASUS provides a scalable eigensolver [73] which can handle billion-scale,
sparse matrices. An application of the eigensolver is the triangle counting which
can be used to find interesting patterns. For example, the analysis of the number of
participating triangles vs. the degree ratio in real world social networks reveals a
surprising pattern: few nodes have the extremely high ratio, indicating spamming
or tightly connected suspicious accounts.

140

Figure 9.3: Degree distribution in ‘Stack Overflow’ Q&A graph. Real world graphs often
have power-law degree distribution, as marked with the red line, and the deviations from
the power law line indicate anomalies (e.g. replicated ‘robots’ in social networks).

9.2.2 Anomaly Detection

The anomaly detection module ODDBALL [11] consists of three main compo-
nents: (1) feature extraction, (2) pattern mining, and (3) anomaly detection. In the
following we explain each component in detail.

I. Feature extraction. The first step is to extract features from a given graph
that would characterize the nodes. We choose to study the local neighborhood,
that is the ‘egonet’, features of each node. More formally, an egonet is defined
as the induced subgraph that contains the node itself (ego), its neighbors, as well
as all the connections between them. Next, we extract several features from the
egonets, for example, number of nodes, number of triangles, total weight, eigen-
value, etc. As we extract a dozen of features from all the egonets in the graph,
feature extraction becomes computationally the most expensive step, especially
for peta-scale graphs. Thanks to the PEGASUS module introduced in §9.2.1, the
heavy-lifting of this component is efficiently handled through HADOOP.

II. Pattern mining. In order to understand how the majority of the ‘normal’
neighborhoods look like (and spot the major deviations, if any), we search for
patterns and laws that capture normal behavior. Several of the features we extract
from the egonets are inherently correlated. One example is the number of nodes
Ni and edges Ei in egonet i: Ei is equal to the number of neighbors (=Ni− 1) for
a perfect star-neighborhood, and is about N2

i for a clique-like neighborhood, and
thus capture the density of the egonets.

141

We find that for real graphs the following Egonet Density Power Law holds:
Ei ∝ Nα

i , 1 ≤ α ≤ 2. In other words, in log-log scales Ei and Ni follow a linear
correlation with slope α. Fig. 9.2 illustrates this observation, for the example
dataset ‘Stack Overflow’ Q&A graph, in which nodes represent the users and
edges to their question answering interactions. Plots show Ei versus Ni for every
egonet (green points); the larger dark blue circles are the median values for each
bucket of points after applying logarithmic binning on the x-axis [11]; the red
line is the least squares(LS) fit on the median points (regression on median points
together with high influence point elimination ensures a more robust LS fit to
our data). The plots also show a dashed blue line of slope 2, that corresponds to
cliques, and a black dashed line of slope 1, that corresponds to stars. We notice
that the majority of egonets look like neither cliques nor stars, but somewhere
inbetween (e.g. exponent α=1.4 for the example graph in Figure 9.2). The axes
are in log-log scales.

ODDBALL looks for patterns across many feature pairs and their distributions
and yields a ‘collection’ of patterns. Therefore, ODDBALL generates a different
ranking of the nodes by anomalousness score for each of these patterns. As a
result, it can help anomaly characterization; the particular set of patterns a node
violates explains what ‘type’ of anomaly that node belongs to.

III. Anomaly detection. Finally, we exploit the observed patterns in anomaly
detection since anomalous nodes would behave away from the normal pattern.
Let us define the y-value of a node i as yi and similarly, let xi denote the x-
value of node i for a particular feature pair f(x, y). Given the power law equation
y = Cxα for f(x, y), we define the anomaly score of node i to be score(i) =
max(yi,Cx

α
i)

min(yi,Cxαi)
∗ log(|yi−Cxαi |+1), which intuitively captures the “distance to fitting

line”. The score for a point whose yi is equal to its fit Cxαi is 0 and increases for
points with larger deviance.

9.2.3 Interactive Visualization

The Apolo [27] module (see Figure 9.2b) provides an interactive environment
to visualize anomalous nodes flagged by ODDBALL, and those nodes’ neighbor-
hoods, revealing connections that help the user understand why the flagged nodes
are indeed anomalous. Should the user want to see more than the flagged nodes’
direct neighbors, he can instruct Apolo to incrementally expand to a larger neigh-
borhood. Typically, as for many other visualization software, such expansions
could pose a huge problem because thousands of new nodes and edges could be

142

brought up, clouding the screen and overwhelming the user. Instead, Apolo uses
its built-in machine learning algorithm called Belief Propagation (BP) to help the
user find the most relevant areas to visualize. The user specifies nodes of interest,
such as several flagged nodes as exemplars, and Belief Propagation automatically
infers which other nodes may also be of interest to the user. This way, all other
nodes can be ranked by their relevance relative to the exemplar nodes, allowing
the user to add only a few of the top-ranking nodes into the visualization.

Belief Propagation is a message passing algorithm over link structure similar
to spreading activation, but is uniquely suitable for our visualization purpose, be-
cause it simultaneously supports: (1) multiple user-specified exemplars; (2) divid-
ing exemplars into any number of groups, which means each node has a relevance
score for each group; and (3) linear scalability with the number of edges, allowing
Apolo to generate real-time suggestions.

9.3 Example Scenario
Here, we use an example scenario to highlight how OPAVION works. We use
the STACK OVERFLOW Q&A graph (http://stackoverflow.com), which
describes over 6 million questions and answers among 650K users. In the graph,
nodes are STACK OVERFLOW users, and a directed edge points from the user who
asks a question, to the user who answers it.

In preparation, the Summarization module (PEGASUS) pre-computes the
statistics of the graph (e.g., degree distribution, PageRank scores, radius, con-
nected components) and creates plots that show their distributions. Then, the
Anomaly Detection module (ODDBALL), using the pre-computed graph statistics,
detects anomalous nodes in real time, and shows them in interactive plots (e.g.,
Figure 9.2a). The user can mouse-over the flagged nodes, and instruct OPAVION

to show them in the Visualization module (Apolo).
In the visualization, users can interact with and navigate the graph, either from

a node they like, or from the flagged anomalies. The user can spatially arrange
nodes, and expand their vicinities to reveal surprising connections among the
flagged anomalous nodes. For example, Figure 9.2b shows two subgraphs that
include nodes flagged in Figure 9.2a (as blue and red triangles): a “star” subgraph
with the user Sameer at its center, and a “near-clique” subgraph (users include
Massimo, Chopper3, etc.). Node size is proportional to the node’s in-degree. The
visualization reveals that Sameer is a maven who has answered a lot of questions,
having a high in-degree, but never asked any questions; on the other hand, the

143

http://stackoverflow.com

other mavens in the near-clique have a lot of discussion among themselves and
never involve Sameer. It is an great example that shows that two vastly differ-
ent anomalous subgraphs—star and near-clique—can actually be very close in the
full graph (in this case, Sameer is only two hops away from the near-clique). The
visualization helps with this type of discovery.

144

Part IV

Conclusions

145

Chapter 10

Conclusions & Future Directions

We have entered the era of big data. Datasets surpassing terabytes now arise in
science, government and enterprises. Yet, making sense of these data remains
a fundamental challenge. This thesis advocates bridging Data Mining and HCI
research to help researchers and practitioners to make sense of large graphs with
billions of nodes and edges.

10.1 Contributions

We contributes by answering important, fundamental research questions in big
data analytics, such as:

• Where to start our analysis? Part I presents the attention routing idea
based on anomaly detection and machine inference that automatically draws
people’s attention to interesting parts of the graph, instead of doing that
manually. We describe several examples. Polonium unearths malware from
37 billion machine-file relationships (Chapter 4). NetProbe fingers bad guys
who commit auction fraud (Chapter 3).

• Where to go next? Part II presents examples that combine techniques from
data mining, machine learning and interactive visualization to help users
locate the next areas of interest. Apolo (Chapter 5) guides the user to inter-
actively explore large graphs by learning from few examples given by the
user. Graphite (Chapter 6) finds potentially interesting regions of the entire
graph, based on only fuzzy descriptions from the user drawn graphically.

• How to scale up? Part III presents examples of scaling up our methods to

147

web-scale, billion-node graphs, by leveraging Hadoop (Chapter 7), approx-
imate computation (Chapter 8), and staging of operations (Chapter 9).

We contribute to data mining, HCI, and importantly at their intersection:
• Algorithms & Systems: we contribute a cohesive collection of algorithms

that scale to massive networks such as Belief Propagation on Hadoop
(Chapter 7, 8), and we are making them publicly available to the research
community as the Pegasus project (http://www.cs.cmu.edu/˜pegasus).
Our other scalable systems include: OPAvion for scalable mining and vi-
sualization (Chapter 9); Apolo for exploring large graph (Chapter 5); and
Graphite for matching user-specified subgraph patterns (Chapter 6).

• Theories: We present theories that unify graph mining approaches (e.g.,
Chapter 8), which enable us to make algorithms even more scalable.

• Applications: Inspired by graph mining research, we formulate and solve
important real-world problems with ideas, solutions, and implementations
that are first of their kinds. We tackled problems such as detecting auction
fraudsters (Chapter 3) and unearthing malware (Chapter 4).

• New Class of InfoVis Methods: Our Attention Routing idea (Part I) adds
a new class of nontrivial methods to information visualization, as a viable
resource for the critical first step of locating starting points for analysis.

• New Analytics Paradigm: Apolo (Chapter 5) represents a paradigm shift
in interactive graph analytics. The conventional paradigm in visual analytics
relies on first generating a visual overview for the entire graph which is not
possible for most massive, real-world graphs. Here, Apolo enables users to
evolve their mental models of the graph in a bottom-up manner, by starting
small, rather starting big and drilling down.

• Scalable Interactive Tools: Our interactive tools (e.g., Apolo, Graphite)
advances the state of the art, by enabling people to interact with graphs
orders of magnitudes larger in real time (tens of millions of edges).

This thesis research opens up opportunities for a new breed of systems and
methods that combine HCI and data mining methods to enable scalable, interac-
tive analysis of big data. We hope that our thesis, and our big data mantra “Ma-
chine for Attention Routing, Human for Interaction” will serve as the catalyst that
accelerates innovation across these disciplines, and the bridge that connects them.
inspiring more researchers and practitioners to work together at the crossroad of
Data Dining and HCI.

148

http://www.cs.cmu.edu/~pegasus

10.2 Impact
This thesis work has made remarkable impact to the research community and
society at large:
• Polonium (Chapter 4), part of Symantec’s flagship Norton Antivirus prod-

ucts, protects 120 million people worldwide from malware (also patent-
pending), and has answered over trillions of queries for file reputation
queries. Polonium is patent-pending.

• NetProbe (Chapter 3) fingers fraudsters on eBay, made headlines in major
media outlets, like Wall Street Journal, CNN, and USA Today. Interested
by our work, eBay invited us for a site visit and presentation.

• Pegasus (Chapter 7 & 9), which creates scalable graph algorithms, won the
Open Source Software World Challenge, Silver Award. We have released
Pegasus as free, open-source software, downloaded by people from over 83
countries. It is also part of Windows Azure, Microsoft’s cloud computing
platform.

• Apolo (Chapter 5) contributes to DARPA’s Anomaly Detection at Multiple
Scales project (ADAMS) to detect insider threats and prevent exfiltration in
government and the military.

10.3 Future Research Directions
This thesis takes a major step in bridging the fields of data mining and HCI, to
tap into their complementing connections, to develop tools that combine the best
of both worlds–enabling humans to best use their perceptual abilities and intuition
to drill down in data, and leveraging computers to sift through huge data to sport
patterns and anomalies.

For the road ahead, I hope to broaden and deepen this investigation, extending
my work to more domains and applications, such as bioinfomatics, law enforce-
ment, national security, and intelligence analysis. Initially, I will focus on the
following three interrelated research directions.

Generalizing to More Data Types My hybrid approach of combining data min-
ing and HCI methods applies to not only graph data, but also to other important
data types, such as time series and unstructured data, like text documents. Along
this direction, I have started developing the TopicViz system [45] for making sense

149

of large document collections, by using topic modeling (Latent Dirichlet alloca-
tion) to identify document themes, and providing a direct-manipulation interface
for the user to explore them.

Collaborative Analysis of Big Data Most analytics systems today are designed
for a single user. As datasets become more complex, they will require multiple an-
alysts to work together, possibly remotely, to combine their efforts and expertise.
I plan to study how to support such collaborative analysis on massive datasets, de-
sign visualizations that intuitively communicate analysts’ progress and findings to
each other, and develop machine learning methods that aggregate analysts’ feed-
back for collective inference.

Interactive Analytics Platform of the Future My research harnesses the par-
allelism of the Hadoop platform [71, 10] to scale up computation power and stor-
age. However, interactive analytics requires real-time access to the computation
results. I plan to enable this in two research directions: (1) explore technologies
such as HBase (modeled after Google’s Bigtable) to provide real-time access to
the big data; (2) decouple algorithms into complimentary online and offline parts,
such that a large part of the computation can be pre-computed, then queried and
combined with fast, online computation whenever the user issues a command. I
am interested in developing new platforms that balance scalability with timeliness,
for computation, interaction and visualization.

150

Appendix A

Analysis of FABP in Chapter 8

A.1 Preliminaries
We give the lemmas needed to prove Theorem 1 (FABP) in Section 8.3. We start
with the original BP equations, and we derive the proof by:
• using the odds ratio pr = p/(1−p), instead of probabilities. The advantage

is that we have only one value for each node (pr(i), instead of two: p+(i),
p−(i)) and, also, the normalization factor is not needed. Moreover, working
with the odds ratios results in the substitution of the propagation matrix
entries by a scalar homophily factor.

• assuming that all the parameters are close to 1/2, using MacLaurin expan-
sions to linearize the equations, and keeping only the first order terms. By
doing so we avoid the sigmoid/non-linear equations of BP.

Traditional BP equations In [155], Yedidia derives the following update for-
mulas for the messages sent from node i to node j and the belief of each node that
it is in state xi

mij(xj) =
∑
xi

φi(xi) · ψij(xi, xj) ·
∏

n∈N(i)\j

mni(xi) (A.1)

bi(xi) = η · φi(xi) ·
∏

j∈N(i)

mij(xi) (A.2)

where the message from node i to node j is computed based on all the messages
sent by all its neighbors in the previous step except for the previous message sent

151

Table A.1: Additional Symbols and Definitions

Symbols Definitions
p P(node in positive class) = P(“+”)
m message

< var >r odds ratio = <var>
1−<var> , where < var >= b, φ, m, h

B(a, b) blending function = a·b+1
a+b

.

from node j to node i. N(i) denotes the neighbors of i and η is a normalization
constant that guarantees that the beliefs sum to 1.
Lemma 3 Expressed as ratios, the BP equations become:

mr(i, j)← B[hr, br,adjusted(i, j)] (A.3)

br(i)← φr(i) ·
∏

j∈N(i)

mr(j, i) (A.4)

where br,adjusted(i, j) is defined as br,adjusted(i, j) = br(i)/mr(j, i). The division
by mr(j, i) subtracts the influence of node j when preparing the message m(i, j).
Proof 9 The proof is straightforward; we omit it due to lack of space. QED
Lemma 4 (Approximations) Fundamental approximations for all the variables
v, a, b of interest, {m, b, φ, h}, that we use for the rest of our lemmas:

vr =
v

1− v
=

1/2 + vh
1/2− vh

≈ 1 + 4vh (A.5)

B(ar, br) ≈ 1 + 8ahbh (A.6)

where B(ar, br) is the blending function for any variables ar, br.
Proof 10 (Sketch of proof) Use the definition of “about-half” approximations,
apply the appropriate MacLaurin series expansions and keep only the first order
terms. QED
The following 3 lemmas are useful in order to derive the linear equation of FABP.
Note that in all the lemmas we apply several approximations in order to linearize
the equations; we omit the “≈” symbol so that the proofs are more readable.
Lemma 7 The about-half version of the belief equation becomes, for small devi-
ations from the half-point:

bh(i) ≈ φh(i) +
∑
j∈N(i)

mh(j, i). (A.7)

152

Proof 11 We use the Equations (A.4) and (A.5) and apply the appropriate
MacLaurin series expansions:

br(i) = φr(i)
∏

j∈N(i)

mr(j, i)⇒

log (1 + 4bh(i)) = log (1 + 4φh(i)) +
∑
jεN(i)

log (1 + 4mh(j, i))⇒

bh(i) = φh(i) +
∑
jεN(i)

mh(j, i).

QED

Lemma 8 The about-half version of the message equation becomes:

mh(i, j) ≈ 2hh[bh(i)−mh(j, i)]. (A.8)

Proof 12 We combine the Equations (A.3), (A.5) and (A.6)

mr(i, j) = B[hr, br,adjusted(i, j)]⇒ mh(i, j) = 2hhbh,adjusted(i, j). (A.9)

In order to derive bh,adjusted(i, j) we use Equation (A.5) and the approximation of
the MacLaurin expansion 1

1+ε
= 1− ε for a small quantity ε:

br,adjusted(i, j) = br(i)/mr(j, i)⇒
1 + bh,adjusted(i, j) = (1 + 4bh(i))(1− 4mh(j, i))⇒

bh,adjusted(i, j) = bh(i)−mh(j, i)− 4bh(i)mh(j, i) . (A.10)

Substituting Equation (A.10) to Equation (A.9) and ignoring the terms of second
order leads to the about-half version of the message equation. QED

Lemma 9 At steady state, the messages can be expressed in terms of the beliefs:

mh(i, j) ≈
2hh

(1− 4h2h)
[bh(i)− 2hhbh(j)] (A.11)

Proof 13 We apply Lemma 8 both for mh(i, j) and mh(j, i) and we solve for
mh(i, j). QED

153

A.2 Proofs of Theorems
Here we give the proofs of the theorems and lemmas presented in Section 8.3.
Proof of Theorem 1. We substitute Equation (A.8) to Equation (A.7) and we ob-
tain:

bh(i)−
∑
j∈N(i)

mh(j, i) = φh(i)⇒

bh(i) +
∑
j∈N(i)

4h2hbh(j)

1− 4h2h
−
∑
j∈N(i)

2hh
1− 4h2h

bh(i) = φh(i)⇒

bh(i) + α
∑
j∈N(i)

bh(i)− c′
∑
j∈N(i)

bh(j) = φh(i)⇒

(I + aD− c′A)bh = φh .

QED
open

Proof of Lemma 2. Given l labeled points (xi, yi), i = 1, . . . , l, and u unlabeled
points xl+1, . . . , xl+u for a semi-supervised learning problem, based on an energy
minimization formulation, we solve the labels xi by minimizing the following
functional E

E(x) = α
∑
j∈N(i)

aij(xi − xj)2 +
∑
1≤i≤l

(yi − xi)2 , (A.12)

where α is related to the coupling strength (homophily), of neighboring nodes.
N(i) denotes the neighbors of i. If all points are labeled, in matrix form, the
functional can be re-written as

E(x) = xT [I + α(D−A)]x− 2x · y +K(y)

= (x− x∗)T [I + α(D−A)](x− x∗) +K ′(y) ,

where x∗ = [I+α(D−A)]−1y, andK,K ′ are some constant terms which depend
only on y. Clearly, E achieves the minimum when

x = x∗ = [I + α(D−A)]−1y

The equivalence of SSL and Gaussian BP can be found in [151]. QED

154

Proof of Lemma 3. Based on Equations (8.2) and (8.3), the two methods will
give identical results if

(1− c)[I− cD−1A]−1 = [I + α(D−A)]−1 ⇔

(
1

(1− c)
I− c

(1− c)
D−1A)−1 = (α(D−A) + I)−1 ⇔(

1

1− c

)
I−

(
c

1− c

)
D−1A = I + α(D−A)⇔(

c

1− c

)
I−

(
c

1− c

)
D−1A = α(D−A)⇔(

c

1− c

)
[I−D−1A] = α(D−A)⇔(

c

1− c

)
D−1[D−A] = α(D−A)⇔(
c

1− c

)
D−1 = αI .

This cannot hold in general, unless the graph is “regular”: di = d (i = 1, . . .), or
D = d · I, in which case the condition becomes

α =
c

(1− c)d
⇒ c =

αd

1 + αd
(A.13)

where d is the common degree of all the nodes. QED

A.3 Proofs for Convergence
Proof of Lemma 5. In order for the power series to converge, a sub-
multiplicative norm of matrix W = cA − aD should be smaller than 1. In this
analysis we use the 1-norm (or equivalently the∞-norm). The elements of matrix
W are either c = 2hh

1−4h2h
or −adii =

−4h2hdii
1−4h2h

. Thus, we require

max
j

(
n∑
i=1

|Aij|) < 1⇒ (c+ a) ·max
j
djj < 1

2h

1− 2h
max
j
djj < 1⇒ hh <

1

2(1 + maxj djj)
.

QED

155

156

Bibliography

[1] Graphviz. http://www.graphviz.org/.

[2] Hadoop information. http://hadoop.apache.org/.

[3] Jung. http://jung.sourceforge.net/.

[4] Otter. http://warriors.eecs.umich.edu/viz tools/otter.html.

[5] Prefuse. http://prefuse.org/.

[6] Walrus. http://www.caida.org/tools/visualization/walrus/.

[7] J. Abello, F. Van Ham, and N. Krishnan. Ask-graphview: A large scale
graph visualization system. IEEE Transactions on Visualization and Com-
puter Graphics, pages 669–676, 2006.

[8] E. Adar. Guess: a language and interface for graph exploration. In Proc.
CHI, page 800. ACM, 2006.

[9] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data.
In SIGMOD, pages 37–46, 2001.

[10] L. Akoglu, D. Chau, U. Kang, D. Koutra, and C. Faloutsos. Opavion:
Mining and visualization in large graphs. SIGMOD, 2012.

[11] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies
in weighted graphs. In PAKDD, 2010.

[12] B. Amento, W. Hill, L. Terveen, D. Hix, and P. Ju. An empirical evaluation
of user interfaces for topic management of web sites. In Proc. CHI, page
559. ACM, 1999.

[13] J. Anderson. A spreading activation theory of memory. Journal of verbal
learning and verbal behavior, 22(3):261–95, 1983.

[14] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation
detection in large databases. In KDD, pages 164–169, 1996.

157

[15] Auctionbytes: ebay auction fraud spawns vigilantism trend. http://
www.auctionbytes.com/cab/abn/y02/m10/i12/s01, 2002.

[16] M. Q. W. Baldonado and T. Winograd. Sensemaker: an information-
exploration interface supporting the contextual evolution of a user’s inter-
ests. In Proc. CHI, pages 11–18. ACM Press New York, NY, USA, 1997.

[17] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and Sons,
Chichester, New York, 1994.

[18] L. Barsalou. Ad hoc categories. Memory & Cognition, 11(3):211–227,
May 1983.

[19] R. Behrman and K. Carley. Modeling the structure and effectiveness of
intelligence organizations: Dynamic information flow simulation. In Pro-
ceedings of the 8th International Command and Control Research and
Technology Symposium., 2003.

[20] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Key-
word searching and browsing in databases using banks. In ICDE ’02: Pro-
ceedings of the 18th International Conference on Data Engineering, pages
431–440, 2002.

[21] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. In SIGMOD, pages 93–104, 2000.

[22] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[23] S. Card, G. Robertson, and W. York. The WebBook and the Web Forager:
an information workspace for the World-Wide Web. In Proc. CHI. ACM,
1996.

[24] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive data
sets. VLDB, 2008.

[25] D. Chakrabarti. Autopart: Parameter-free graph partitioning and outlier
detection. In PKDD, pages 112–124, 2004.

[26] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully
automatic cross-associations. In KDD Conference, pages 79–88, Seattle,
WA, 2004.

[27] D. Chau, A. Kittur, J. I. Hong, and F. C. Apolo: Making Sense of Large
Network Data by Combining Rich User Interaction and Machine Learning.

158

http://www.auctionbytes.com/cab/abn/y02/m10/i12/s01
http://www.auctionbytes.com/cab/abn/y02/m10/i12/s01

In Proceeding of the twenty-ninth annual SIGCHI conference on Human
factors in computing systems. ACM, 2011.

[28] D. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos. Polo-
nium: Tera-scale graph mining and inference for malware detection. SIAM
International Conference on Data Mining, 2011.

[29] D. H. Chau and C. Faloutsos. Fraud detection in electronic auction. In
European Web Mining Forum at ECML/PKDD, 2005.

[30] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-
Rad. Graphite: A visual query system for large graphs. In ICDM Work-
shops, pages 963–966, 2008.

[31] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting fraudulent personalities
in networks of online auctioneers. In Proc. ECML/PKDD, 2006.

[32] A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast outlier detection
in large multidimensional data sets. In DMKD, 2002.

[33] A. Chechetka and C. Guestrin. Focused belief propagation for query-
specific inference. In International Conference on Artificial Intelligence
and Statistics (AISTATS), May 2010.

[34] N. A. Christakis and J. H. Fowler. The spread of obesity in a large social
network over 32 years. New England Journal of Medicine, 357(4):370–379,
2007.

[35] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of mali-
cious behavior. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 5–14. ACM, 2007.

[36] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. Semantics-
Aware Malware Detection. In Proceedings of the 2005 IEEE Symposium
on Security and Privacy, page 46. IEEE Computer Society, 2005.

[37] C. Chua and J. Wareham. Fighting internet auction fraud: An assessment
and proposal. In Computer, volume 37 no. 10, pages 31–37, 2004.

[38] D. Cutting, D. Karger, J. Pedersen, and J. Tukey. Scatter/gather: A cluster-
based approach to browsing large document collections. In Proc. SIGIR,
pages 318–329. ACM Press, 1992.

[39] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. OSDI, 2004.

159

[40] B. Dervin. An overview of sense-making research: concepts, methods and
results to date. In International Communications Association Annual Meet-
ing, 1983.

[41] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph drawing: al-
gorithms for the visualization of graphs. Prentice Hall PTR Upper Saddle
River, NJ, USA, 1998.

[42] ebay inc. announces third quarter 2006 financial results. http://biz.
yahoo.com/bw/061018/20061018005916.html?.v=1, Octo-
ber 2006.

[43] ebay: Avoiding fraud. http://pages.ebay.com/
securitycenter/avoiding_fraud.html, 2006.

[44] W. Eberle and L. B. Holder. Discovering structural anomalies in graph-
based data. In ICDM Workshops, pages 393–398, 2007.

[45] J. Eisenstein, D. Chau, A. Kittur, and E. Xing. Topicviz: interactive topic
exploration in document collections. In Proceedings of the 2012 ACM an-
nual conference extended abstracts on Human Factors in Computing Sys-
tems Extended Abstracts, pages 2177–2182. ACM, 2012.

[46] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of con-
nection subgraphs. In KDD ’04: Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, page
118127, 2004.

[47] P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early
vision. International journal of computer vision, 70(1):41–54, 2006.

[48] J. H. Fowler and N. A. Christakis. Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the Framingham
Heart Study. BMJ, 2008.

[49] Federal trade commission: Internet auctions: A guide for buyers and
sellers. http://www.ftc.gov/bcp/conline/pubs/online/
auctions.htm, 2004.

[50] B. Gallagher. Matching structure and semantics: A survey on graph-based
pattern matching. In AAAI FS ’06: Papers from the 2006 AAAI Fall Sym-
posium on Capturing and Using Patterns for Evidence Detection, pages
45–53, 2006.

[51] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. Graph-based Consensus

160

http://biz.yahoo.com/bw/061018/20061018005916.html?.v=1
http://biz.yahoo.com/bw/061018/20061018005916.html?.v=1
http://pages.ebay.com/securitycenter/avoiding_fraud.html
http://pages.ebay.com/securitycenter/avoiding_fraud.html
http://www.ftc.gov/bcp/conline/pubs/online/auctions.htm
http://www.ftc.gov/bcp/conline/pubs/online/auctions.htm

Maximization among Multiple Supervised and Unsupervised Models. In
NIPS, 2009.

[52] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally paral-
lelizing belief propagation. AISTATS, 2009.

[53] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron. Distributed parallel
inference on large factor graphs. In Conference on Uncertainty in Artificial
Intelligence (UAI), Montreal, Canada, July 2009.

[54] R. L. Grossman and Y. Gu. Data mining using high performance data
clouds: experimental studies using sector and sphere. KDD, 2008.

[55] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm
for large databases. Inf. Syst., 26(1):35–58, 2001.

[56] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with
trustrank. In VLDB ‘04, page 587. VLDB Endowment, 2004.

[57] T. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algo-
rithm for web search. IEEE transactions on knowledge and data engineer-
ing, pages 784–796, 2003.

[58] T. Haveliwala, S. Kamvar, and G. Jeh. An analytical comparison of ap-
proaches to personalizing pagerank. Technical report, Stanford University,
2003.

[59] D. Hawkins. Identification of outliers. Chapman and Hall, 1980.

[60] J. Heer and D. Boyd. Vizster: Visualizing online social networks. Proc.
InfoVis, pages 33–40, 2005.

[61] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive
information visualization. In Proc. CHI, pages 421–430, New York, NY,
USA, 2005. ACM.

[62] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24–43, 2000.

[63] K. Holyoak and P. Thagard. Mental leaps: Analogy in creative thought.
The MIT Press, 1996.

[64] N. Idika and A. P. Mathur. A Survey of Malware Detection Techniques.
Technical report, Department of Computer Science, Purdue University,
2007.

[65] Internet fraud complaint center: Ic3 2004 internet fraud - crime

161

report. http://www.ifccfbi.gov/strategy/statistics.
asp, 2005.

[66] M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao. Graph regularized
transductive classification on heterogeneous information networks. ECML
PKDD’10, 2010.

[67] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G. Agrawal. Discover-
ing frequent topological structures from graph datasets. In KDD ’05: Pro-
ceedings of the 11th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 606–611, 2005.

[68] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analy-
sis. Prentice Hall, 1998.

[69] Y. Kammerer, R. Nairn, P. Pirolli, and E. H. Chi. Signpost from the masses:
learning effects in an exploratory social tag search browser. In Proc. CHI,
2009.

[70] U. Kang, D. Chau, and C. Faloutsos. Inference of beliefs on billion-scale
graphs. The 2nd Workshop on Large-scale Data Mining: Theory and Ap-
plications, 2010.

[71] U. Kang, D. H. Chau, and C. Faloutsos. Mining large graphs: Algorithms,
inference, and discoveries. In ICDE, pages 243–254, 2011.

[72] U. Kang, M. McGlohon, L. Akoglu, and C. Faloutsos. Patterns on the
connected components of terabyte-scale graphs. IEEE International Con-
ference on Data Mining, 2010.

[73] U. Kang, B. Meeder, and C. Faloutsos. Spectral analysis for billion-scale
graphs: Discoveries and implementation. In PAKDD (2), pages 13–25,
2011.

[74] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Ra-
dius plots for mining tera-byte scale graphs: Algorithms, patterns, and ob-
servations. SIAM International Conference on Data Mining, 2010.

[75] U. Kang, C. Tsourakakis, and C. Faloutsos. PEGASUS: A peta-scale graph
mining system implementation and observations. In Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on, pages 229–238. IEEE,
2009.

[76] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec.
Hadi: Mining radii of large graphs. ACM Trans. Knowl. Discov. Data,

162

http://www.ifccfbi.gov/strategy/statistics.asp
http://www.ifccfbi.gov/strategy/statistics.asp

5:8:1–8:24, February 2011.

[77] G. Karypis and V. Kumar. METIS: Unstructured graph partitioning and
sparse matrix ordering system. The University of Minnesota, 2.

[78] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley, 1990.

[79] F. Keil. Concepts, kinds, and cognitive development. The MIT Press, 1989.

[80] J. Kephart and W. Arnold. Automatic extraction of computer virus sig-
natures. In 4th Virus Bulletin International Conference, pages 178–184,
1994.

[81] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc.
9th ACM-SIAM Symposium on Discrete Algorithms, 1998.

[82] P. Klerks. The network paradigm applied to criminal organisations. Con-
nections, 24(3):53–65, 2001.

[83] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers
in large datasets. In VLDB, pages 392–403, 1998.

[84] J. Kolter and M. Maloof. Learning to detect and classify malicious exe-
cutables in the wild. The Journal of Machine Learning Research, 7:2744,
2006.

[85] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting proximity
in networks. In KDD, pages 245–255. ACM, 2006.

[86] D. Koutra, T. Ke, U. Kang, D. Chau, H. Pao, and C. Faloutsos. Unifying
guilt-by-association approaches: Theorems and fast algorithms. Machine
Learning and Knowledge Discovery in Databases, pages 245–260, 2011.

[87] B. Kules, M. Wilson, M. Schraefel, and B. Shneiderman. From keyword
search to exploration: How result visualization aids discovery on the web.
Human-Computer Interaction Lab Technical Report HCIL-2008-06, Uni-
versity of Maryland, pages 2008–06, 2008.

[88] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures:
Image and video synthesis using graph cuts. ACM Transactions on Graph-
ics, 22(3):277–286, 2003.

[89] R. Lämmel. Google’s mapreduce programming model – revisited. Science
of Computer Programming, 70:1–30, 2008.

[90] B. Lee, C. Parr, C. Plaisant, B. Bederson, V. Veksler, W. Gray, and C. Kot-
fila. Treeplus: Interactive exploration of networks with enhanced tree lay-

163

outs. TVCG, pages 1414–1426, 2006.

[91] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication. PKDD, pages 133–145, 2005.

[92] J. Leskovec and C. Faloutsos. Sampling from large graphs. KDD, pages
631–636, 2006.

[93] Y. Maarek, M. Jacovi, M. Shtalhaim, S. Ur, D. Zernik, and I. Ben-Shaul.
WebCutter: a system for dynamic and tailorable site mapping. Computer
Networks and ISDN Systems, 29(8-13):1269–1279, 1997.

[94] J. Mackinlay, R. Rao, and S. Card. An organic user interface for searching
citation links. In Proc. CHI, page 73. ACM, 1995.

[95] S. A. Macskassy and F. Provost. Suspicion scoring based on guilt-by-
association, collective inference, and focused data access. In Proceedings
of the NAACSOS Conference, June 2005.

[96] D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief
propagation in gaussian graphical models. Journal of Machine Learning
Research, 7:2031–2064, 2006.

[97] M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted graphs and dis-
connected components: Patterns and a generator. In ACM Special Inter-
est Group on Knowledge Discovery and Data Mining (SIG-KDD), August
2008.

[98] M. McGlohon, S. Bay, M. Anderle, D. Steier, and C. Faloutsos. SNARE: a
link analytic system for graph labeling and risk detection. In SIGKDD ‘09,
pages 1265–1274. ACM New York, NY, USA, 2009.

[99] G. McKiernan. New Age Navigation. The Serials Librarian, 45(2):87–123,
2003.

[100] M. Melnik and J. Alm. Does a seller’s ecommerce reputation matter? ev-
idence from ebay auctions. Journal of Industrial Economics, 50:337–49,
2002.

[101] A. Mendiburu, R. Santana, J. Lozano, and E. Bengoetxea. A parallel frame-
work for loopy belief propagation. GECCO, 2007.

[102] G. Miller. The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychological review, 63(2):81,
1956.

164

[103] E. Minkov and W. Cohen. Learning to rank typed graph walks: Local and
global approaches. In Proceedings of the 9th WebKDD and 1st SNA-KDD
2007 workshop on Web mining and social network analysis, pages 1–8.
ACM, 2007.

[104] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210,
1995.

[105] B. Myers, S. Hudson, and R. Pausch. Past, present, and future of user
interface software tools. TOCHI, 7(1):3–28, 2000.

[106] J. Neville and D. Jensen. Collective Classification with Relational Depen-
dency Networks. In Workshop on Multi-Relational Data Mining (MRDM-
2003), page 77.

[107] O. Neville, J. and şimşek, D. Jensen, J. Komoroske, K. Palmer, and
H. Goldberg. Using relational knowledge discovery to prevent securities
fraud. In SIGKDD ‘05, page 458. ACM, 2005.

[108] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems 14:
Proceeding of the 2001 Conference, pages 849–856, 2001.

[109] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In VLDB, pages 144–155, 1994.

[110] C. C. Noble and D. J. Cook. Graph-based anomaly detection. In KDD,
pages 631–636, 2003.

[111] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a
not-so-foreign language for data processing. In SIGMOD ’08, pages 1099–
1110, 2008.

[112] J. OMadadhain, D. Fisher, P. Smyth, S. White, and Y. Boey. Analysis and
visualization of network data using JUNG. Journal of Statistical Software,
10:1–35, 2005.

[113] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Gcap: Graph-based auto-
matic image captioning. 2004.

[114] S. Pandit, D. Chau, S. Wang, and C. Faloutsos. Netprobe: a fast and scal-
able system for fraud detection in online auction networks. In Proceedings
of the 16th international conference on World Wide Web, pages 201–210.
ACM, 2007.

165

[115] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast
outlier detection using the local correlation integral. In ICDE, pages 315–,
2003.

[116] S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-
reduce. ICDM, 2008.

[117] J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical
approach. In Proceedings of the AAAI National Conference on AI, pages
133–136, 1982.

[118] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Morgan Kaufmann, 1988.

[119] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In
SIGKDD ‘05, page 238. ACM, 2005.

[120] A. Perer and B. Shneiderman. Integrating statistics and visualization: case
studies of gaining clarity during exploratory data analysis. In Proc. CHI,
pages 265–274, New York, NY, USA, 2008. ACM.

[121] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with sawzall. Scientific Programming Journal, 2005.

[122] P. Pirolli and S. Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proc.
IA, 2005.

[123] B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and C. Faloutsos.
Eigenspokes: Surprising patterns and community structure in large graphs.
PAKDD, 2010.

[124] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation
systems. Communications of the ACM, 43, 2000.

[125] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood. The value of
reputation on ebay: A controlled experiment, 2003.

[126] E. Rosch and C. Mervis. Family resemblances: Studies in the internal
structure of categories. Cognitive psychology, 7(4):573–605, 1975.

[127] D. M. Russell, M. Slaney, Y. Qu, and M. Houston. Being literate with large
document collections: Observational studies and cost structure tradeoffs.
In HICSS, page 55. IEEE, 2006.

[128] D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card. The cost structure of
sensemaking. In Proc. CHI, pages 269–276. ACM Press, 1993.

166

[129] K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proc. UIST, pages 97–104. ACM, 1997.

[130] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data mining methods for
detection of new malicious executables. In IEEE Symposium on Security
and Privacy, pages 38–49. IEEE COMPUTER SOCIETY, 2001.

[131] P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome research,
13(11):2498, 2003.

[132] B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336–343. IEEE, 1996.

[133] M. Siddiqui, M. C. Wang, and J. Lee. A survey of data mining techniques
for malware detection using file features. In ACMSE ‘08, pages 509–510,
New York, NY, USA, 2008. ACM.

[134] M. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Rodrigues,
V. Barash, C. Dunne, T. Capone, A. Perer, and E. Gleave. Analyzing (so-
cial media) networks with NodeXL. In Proc. C&T, pages 255–264. ACM,
2009.

[135] J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: supporting investigative
analysis through interactive visualization. InfoVis, 7(2):118, 2008.

[136] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Relevance search and
anomaly detection in bipartite graphs. SIGKDD Explorations, 7(2):48–55,
2005.

[137] Symantec. Malware definition.

[138] Symantec. Symantec internet security threat report, April 2008.

[139] L. Terveen, W. Hill, and B. Amento. Constructing, organizing, and visual-
izing collections of topically related web resources. TOCHI, 6(1):94, 1999.

[140] G. Tesauro, J. Kephart, and G. Sorkin. Neural networks for computer virus
recognition. IEEE expert, 11(4):5–6, 1996.

[141] C. Tominski, J. Abello, and H. Schumann. CGV–An interactive graph vi-
sualization system. Computers & Graphics, 33(6):660–678, 2009.

[142] H. Tong and C. Faloutsos. Center-piece subgraphs: Problem definition
and fast solutions. In KDD ’06: Proceedings of the 12th ACM SIGKDD

167

international conference on Knowledge discovery and data mining, pages
404–413, 2006.

[143] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort
pattern matching in large attributed graphs. In SIGKDD ‘07, page 746.
ACM, 2007.

[144] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and its
applications. In ICDM, pages 613–622, 2006.

[145] Usa today: How to avoid online auction fraud. http://www.
usatoday.com/tech/columnist/2002/05/07/yaukey.htm,
2002.

[146] F. van Ham and A. Perer. Search, Show Context, Expand on Demand:
Supporting Large Graph Exploration with Degree-of-Interest. Visualization
and Computer Graphics, IEEE Transactions on, 15(6):953–960, 2009.

[147] C. Viau, M. J. McGuffin, Y. Chiricota, and I. Jurisica. The flowvizmenu
and parallel scatterplot matrix: Hybrid multidimensional visualizations for
network exploration. IEEE Transactions on Visualization and Computer
Graphics, 16:1100–1108, 2010.

[148] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and J. Han. Graphminer:
a structural pattern-mining system for large disk-based graph databases and
its applications. In SIGMOD ‘05, page 881. ACM, 2005.

[149] M. Wattenberg. Visual exploration of multivariate graphs. In Proc. CHI,
page 819. ACM, 2006.

[150] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of
computer worms. In Proceedings of the 2003 ACM workshop on Rapid
Malcode, pages 11–18. ACM New York, NY, USA, 2003.

[151] Y. Weiss. Correctness of local probability propagation in graphical models
with loops. Neural computation, 12(1):1–41, 2000.

[152] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
ICDM ‘02, page 721, Washington, DC, USA, 2002. IEEE Computer Soci-
ety.

[153] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent structure-based
approach. In ICDM ’04: Proceedings of the 4th International Conference
on Data Mining, pages 335–346, 2004.

[154] X. Yan, X. Zhou, and J. Han. Mining closed relational graphs with connec-

168

http://www.usatoday.com/tech/columnist/2002/05/07/yaukey.htm
http://www.usatoday.com/tech/columnist/2002/05/07/yaukey.htm

tivity constraints. In SIGKDD ‘05, page 333. ACM, 2005.

[155] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations. Exploring artificial intelligence in the new millen-
nium, 8:236–239, 2003.

[156] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propa-
gation and its generalizations. Exploring Artificial Intelligence in the New
Millenium, 2003.

[157] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clus-
tering method for very large databases. In SIGMOD, pages 103–114, 1996.

[158] X. Zhu. Semi-supervised learning with graphs. 2005.

[159] X. Zhu. Semi-supervised learning literature survey, 2006.

169

Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs
or activities on the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation,
gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Futhermore,
Carnegie Mellon University does not discriminate and if required not to discriminate in violation of
federal, state, or local laws or executive orders.

Inquiries concerning the application of and compliance with this statement
should be directed to the vice president for campus affairs,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone, 412-268-2056

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	1.1 Why Combining Data Mining & HCI?
	1.2 Thesis Overview & Main Ideas
	1.2.1 Attention Routing (Part I)
	1.2.2 Mixed-Initiative Graph Sensemaking (Part II)
	1.2.3 Scaling Up for Big Data (Part III)

	1.3 Thesis Statement
	1.4 Big Data Mantra
	1.5 Research Contributions
	1.6 Impact

	2 Literature Survey
	2.1 Graph Mining Algorithms and Tools
	2.2 Graph Visualization and Exploration
	2.3 Sensemaking

	I Attention Routing
	3 NetProbe: Fraud Detection in Online Auction
	3.1 Introduction
	3.2 Related Work
	3.2.1 Grass-Roots Efforts
	3.2.2 Auction Fraud and Reputation Systems

	3.3 NetProbe: Proposed Algorithms
	3.3.1 The Markov Random Field Model
	3.3.2 The Belief Propagation Algorithm
	3.3.3 NetProbe for Online Auctions
	3.3.4 NetProbe: A Running Example
	3.3.5 Incremental NetProbe

	3.4 Evaluation
	3.4.1 Performance on Synthetic Datasets
	3.4.2 Accuracy of NetProbe
	3.4.3 Scalability of NetProbe
	3.4.4 Performance on the EBay Dataset
	3.4.5 Data Collection
	3.4.6 Efficiency
	3.4.7 Effectiveness
	3.4.8 Performance of Incremental NetProbe

	3.5 The NetProbe System Design
	3.5.1 Current (Third Party) Implementation
	3.5.2 Crawler Implementation
	3.5.3 Data Structures for NetProbe
	3.5.4 User Interface

	3.6 Conclusions
	3.6.1 Data Modeling and Algorithms
	3.6.2 Evaluation
	3.6.3 System Design

	4 Polonium: Web-Scale Malware Detection
	4.1 Introduction
	4.2 Previous Work & Our Differences
	4.2.1 Research in Malware Detection
	4.2.2 Research in Graph Mining

	4.3 Data Description
	4.4 Proposed Method: the Polonium Algorithm
	4.4.1 Problem Description
	4.4.2 Domain Knowledge & Intuition
	4.4.3 Formal Problem Definition
	4.4.4 The Polonium Adaptation of Belief Propagation (BP)
	4.4.5 Modifying the File-to-Machine Propagation

	4.5 Empirical Evaluation
	4.5.1 Single-Iteration Results
	4.5.2 Multi-Iteration Results
	4.5.3 Scalability
	4.5.4 Design and Optimizations

	4.6 Significance and Impact
	4.7 Discussion
	4.8 Conclusions

	II Mixed-Initiative Graph Sensemaking
	5 Apolo: Machine Learning + Visualization for Graph Exploration
	5.1 Introduction
	5.1.1 Contributions

	5.2 Introducing Apolo
	5.2.1 The user interface
	5.2.2 Apolo in action

	5.3 Core Design Rationale
	5.3.1 Guided, personalized sensemaking and exploration
	5.3.2 Multi-group Sensemaking of Network Data
	5.3.3 Evaluating exploration and sensemaking progress
	5.3.4 Rank-in-place: adding meaning to node placement

	5.4 Implementation & Development
	5.4.1 Informed design through iterations
	5.4.2 System Implementation

	5.5 Evaluation
	5.5.1 Participants
	5.5.2 Apparatus
	5.5.3 Experiment Design & Procedure
	5.5.4 Results
	5.5.5 Subjective Results
	5.5.6 Limitations

	5.6 Discussion
	5.7 Conclusions

	6 Graphite: Finding User-Specified Subgraphs
	6.1 Introduction
	6.2 Problem Definition
	6.3 Introducing Graphite
	6.4 Example Scenarios
	6.5 Related Work
	6.6 Conclusions

	III Scaling Up for Big Data
	7 Belief Propagation on Hadoop
	7.1 Introduction
	7.2 Proposed Method
	7.2.1 Overview of Belief Propagation
	7.2.2 Recursive Equation
	7.2.3 Main Idea: Line graph Fixed Point(LFP)

	7.3 Fast Algorithm for Hadoop
	7.3.1 Naive Algorithm
	7.3.2 Lazy Multiplication
	7.3.3 Analysis

	7.4 Experiments
	7.4.1 Results
	7.4.2 Discussion

	7.5 Analysis of Real Graphs
	7.5.1 Ha-Lfp on YahooWeb
	7.5.2 Ha-Lfp on Twitter and VoiceCall
	7.5.3 Finding Roles And Anomalies

	7.6 Conclusion

	8 Unifying Guilt-by-Association Methods: Theories & Correspondence
	8.1 Introduction
	8.2 Related Work
	8.3 Theorems and Correspondences
	8.3.1 Arithmetic Examples

	8.4 Analysis of Convergence
	8.5 Proposed Algorithm: FaBP
	8.6 Experiments
	8.6.1 Q1: Accuracy
	8.6.2 Q2: Convergence
	8.6.3 Q3: Sensitivity to parameters
	8.6.4 Q4: Scalability

	8.7 Conclusions

	9 OPAvion: Large Graph Mining System for Patterns, Anomalies & Visualization
	9.1 Introduction
	9.2 System Overview
	9.2.1 Summarization
	9.2.2 Anomaly Detection
	9.2.3 Interactive Visualization

	9.3 Example Scenario

	IV Conclusions
	10 Conclusions & Future Directions
	10.1 Contributions
	10.2 Impact
	10.3 Future Research Directions

	A Analysis of FaBP in Chapter 8
	A.1 Preliminaries
	A.2 Proofs of Theorems
	A.3 Proofs for Convergence

	Bibliography

