
Cost Complexity of Proactive Learning via a
Reduction to Realizable Active Learning

 Liu Yang Jaime Carbonell

November 2009
CMU-ML-09-113

Cost Complexity of Proactive Learning via a
Reduction to Realizable Active Learning

Liu Yang Jaime Carbonell
November 2009

CMU-ML-09-113

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Proactive Learning is a generalized form of active learning with multiple oracles exhibiting differ-
ent reliabilities (label noise) and costs. We propose a general approach for Proactive Learning that
explicitly addresses the cost vs. reliability tradeoff for oracle and instance selection. We formulate
the problem in the PAC learning framework with bounded noise, and transform it into realizable
active learning via a reduction technique, while keeping the overall query cost small. We propose
two types of sequential hypothesis tests (denoted as SeqHT) that estimate the label of a given
query from the noisy replies of different oracles with varying reliabilities and costs. We prove
correctness and derive cost complexity of the proposed algorithms.

This research is supported by grants from the National Science Foundation.

Keywords: Proactive Learning, Learning Theory, Complexity Analysis

1 Introduction

1.1 Proactive Learning Means Options
Active learning concentrates its labeling efforts on instances that are maximally informative, due
to the expense of labeling. However, it assumes a single oracle that charges uniform cost in label
elicitation. In many applications, there are multiple labeling sources (a.k.a. “oracles”) with differ-
ent lableling accuracies and non-uniform costs; different oracles may charge differently. Hence, in
order to achieve certain level of accuracy, it is not the sample complexity but the cost complexity
that we ultimately care about.

Active learning does not consider the cost vs. reliability tradeoff. Cost 1 is usually regulated
by the amount of work required in order to formulate an answer of certain level of accuracy.
The more reliable labelers tend to charge more. The cheaper labelers however are often more
noisy. Cost vs. reliability tradeoffs exist in many application domains where multiple oracles have
different but unknown reliabilities. It is desirable to have cost v.s. reliability options. Consider
document annotation as an example. Mechanical Turk is a cheap option; however, other than some
distributional information, there is no a priori information on reliability of individual labelers. We
may want to pay a higher price to hire linguists for reliable annotation if these really matter, or
perhaps pay a medium price to hire linguistic students. In zero-sum game theory (e.g. chess)
the proability of accurate determination of an optimal move (the ”label” given the game state) is
often a function of look-ahead depth, which itself is an exponential function of computational cost
incurred. It is also a function of the accuracy of the state-evaluation method, hence different game
players will have different accuracies, related to but not determined by cost.

In astrophysics, if we want to learn a model for galactic formation and evolution, complex
simulations to predict outcomes given initial conditions accurately can take weeks or months of
supercomputer time, whereas coarser models can yield less relibale answers much faster (in min-
utes or hours). Simulation-model complexity causes a cost-accuracy tradeoff in many scientific
computing application, and a proactive learning needs to select the best model as well as most
informative instance to obtain prediction (labels) to train the learner.

First described in [Donmez & Carbonell, 2008, Donmez et al., 2009], Proactive Learning also
considers the case of reluctant oracles, which may fail to answer. In this paper does not consider
reluctance but note it can be reduced to accuracy loss by simply predicting the majority class upon
oracle failure, or reduced to increased cost by trying other oracles until one yields an answer.
[Donmez & Carbonell, 2008] formulate Proactive Learning as a utility optimization problem given
a budget. [Donmez et al., 2009] estimates a confidence interval for expert reliability.

Proactive Learning introduces oracle selection contitioned on a cost vs. estimated reliability
(or noise rate) tradeoff. Active learning assumes that if the oracle is noisy or expensive, it is has no
other choice. Moreover, Proactive Learning can query multiple oracles under the bounded-noise
assumption to increase reliability of the ensemble answer by incurring extra cost. In essence, it
decides where to get the labling information as well as what instances to query, and is therefore
more flexible. The approach we propose in this paper captures the tradeoff and extra degree of

1The cost of labeling is different from the cost of misclassification in cost-sensitive learning.

1

freedom by clearly formulating them into the learning model.
The central task of Proactive Learning is to reduce cost with a certain reliability guarantee.

The cost can be time, computation, human effort, or real money. Proactive learning procedures
minimize the total cost instead of the number of queries, accounting for oracle cost differentials.
Hence, we are interested in cost complexity instead of sample complexity.

This paper is the first theoretical work on Proactive Learning. We give a mathematical defini-
tion of Proactive Learning and model it in the PAC learning framework under bounded noise. We
choose to focus on oracle selection – the aspect that is different from active learning. We generate
a noisy answer ensemble from which we estimate the best label when multiple oracles are queried.
We propose two types of SeqHT 2 that make the cost vs. reliability tradeoff explicit. We derive cost
complexity bounds for each of the proposed proactive learning algorithms. For the task of deciding
which points to query, we simply reduce to the instance selection teqchniques from standard active
learning.

We choose to study bounded noise for proactive learning for the following reasons: Uniform
noise is too simplistic and unrealistic since not all instances are equally simple to label. Bounded
noise [Angluin & Larid, 1987] assumes stochastic labeling from a given oracle for a sequence
of examples: noise rates for different examples can be different but are always bounded away
from 1/2. The agnostic setting is a more severe situation in which label noise can exceed 1/2
and possibly the optimal classifier f ∗ /∈ F . Although progress has been made in agnostic active
learning [Balcan et al., 2006], given the additional complexities of proactive learning, it becomes
more difficult to formulate an objective with an arbitrary noise distribution.

In order to have the concept of “optimal” oracle selection, we need to address how oracles are
related to ground truth, and specifically to the target function. In the bounded noise situation, there
exists f ∗ ∈ F with which all oracles agree. Given the property that label noise is bounded away
from 1/2, all oracles more often than not agree with f ∗. And the more oracles queried the higher
the probability of estimating ground truth. This is the advantage of formulating proactive learning
under bounded noise. Finally, we leave out malicious noise [Laird, 1988] out of this study, as it
as a rare type of noise in practice under which the oracle may corrupt not only the labels but the
underlying distribution of examples: it makes the decision on whether or not to flip the label of a
given example, dependent on its features.

The reminder of the paper has the following structure: In Section 2, we give a formal definition
of Proactive Learning, and propose a learning framework ProAL via a reduction to realizable active
learning. We then introduce n-Threaded SeqHTs in Section 3 and central pool based SeqHT in
Section 4, as two instantiations of SeqHTRoutine in ProAL, with analyses of their cost complexity.
In Section 5, we propose a procedure that aggregates n-Threaded SeqHTs and the central pool
based SeqHT. In Section 6, we discuss the online nature of oracle reliability estimation and future
work stemming therefrom.

2In this work, we assume the oracles are non-persistent : they may give different answers for the same example at
different time.

2

2 Formal Definition of Proactive Learning
Consider the binary classification task. Let F be the hypothesis class. Let X represent the data
space, and Y ∈ ±1 represent the label space. There are n oracles available for querying. Instead
of a single oracle, we consider the active learning problem with n noisy oracles. For the jth oracle,
its cost is cj and its unknown noise rate bound is αj ≥ 0, and j = 1, · · · , n.

There is a special f ∗ ∈ F , called the target function. The goal of Proactive learner is, given
the noisy answers from n oracles, to output a classifier f whose generalization error P(f(x) 6=
f ∗(x)) ≤ ε where x ∈ X , with high probability 1 − δ, while keeping the total query cost small
(Note f and f ∗ are same for all oracles). To this end, we assume oracle noise to be the bounded rate
class noise [Angluin & Larid, 1987], meaning P(y 6= f ∗(x)|x) ≤ αj where the probability is over
y from oracle j. The noise rate is bounded away from 1/2; thus 0 ≤ αj < 1/2, for j = 1, · · · , n.

We propose a meta-procedure ProAL that takes a realizable active learning algorithm A. The
realizable algorithm A has some stopping criterion built into it: it halts either because it has made
enough queries, or because it meets a budge on the total cost. A has the following property : it
halts and outputs a classifier after making N(ε, δ) label requests; and with probability 1 − δ/2,
the output classifier has error rate at most ε. The realizable sample complexity of active learning
N(ε, δ) has been bounded in a variety of scenarios in [Dasgupta, 2005, Hanneke, 2007, Hanneke,
2009]. ProAL lets A choose examples to query, and hands back to A the “true” label after calling
SeqHTRoutine : it runs variants of SeqHT on the noisy answers returned by n oracles.

Proactive Learner (Input a realizable algorithm A) (denoted as ProAL)
Initialize i = 0
1. do
2. i = i+ 1
3. Let A choose a query point x from unlabeled data
4. Let y =SeqHTRoutine(x, δ/(4i2))
5. Return y into A
6. until A halts

We split δ into two equal parts, covering the two ways in which ProAL may fail. First,
ProAL may fail because A fails in the realizable case with probability δ/2. A succeeds if it outputs
a classifier whose error rate at most ε. The corresponding sample complexity of A isN(ε, δ/2). We
cover this by setting the accuracy parameter and confidence parameter of A to (ε, δ/2). Second,
ProAL may fail because one or more of its calls of SeqHTRoutine fail. In case it does not fail,
the number of calls of SeqHTRoutine is upper bounded by N(ε, δ/2). Putting together the two
parts, the total probability of either of the two failures occurring is at most δ by union bound. For
the second half, we further split the remaining δ/2 to the calls of SeqHTRoutine and choose the
condence parameter adaptively:

δ′i = δ/(4i2) (1)

for ith call SeqHTRoutine, with i = 1, · · · , N(ε, δ/2). The adaptive condence parameters satisfy

3

∑N(ε,δ/2)
i=1 δ/(4i2) <

∑∞
i=1 δ/(4i

2) = δ/2 followed from the property that

∞∑
i=1

1/(2i2) = π2/12 < 1 (2)

By union bound, the calls of SeqHTRoutine give the correct answer with high probability 1− δ/2.
In Section 3 and Section 4, we propose two types of SeqHTRoutine for Proactive Learner and
analyze their cost complexities.

3 n-Threaded Proactive Learner
SequentialTest1(x, δ′) (denoted as ST1)
Initialize the set of labels zj = ∅ for j = 1, · · · , n
1. do
2. Select Oracle j that minimizes (|zj|+ 1)cj
3. Query Oracle j and get label l
4. zj ← zj ∪ {l} (zj is a multi-set of ±1s)
5. pj ← average of elements in zj
6.

Ij ←

[
pj −

√
2 ln (4n|zj|2/δ′)

|zj|
, pj +

√
2 ln (4n|zj|2/δ′)

|zj|

]
7. while 0 ∈ Ij
8. if Ij ⊂ (−∞, 0), output −1
9. else output +1
For a given example x, we apply an adaptive sampler (ST1) to find out its “true” label based on
oracles’ noisy answers, while keeping the overall cost small. The sample size is a random variable
dependent on samples already seen.

To keep expense on each oracle equal, we dynamically choose oracles so that we do not waste
too much on the wrong ones. ST1 chooses the oracle that increases the maximum spent by the
smallest amount. Sometimes if an oracle has very large cost, we do not pick it even it has spent
the least so far. If n oracles all have equal costs, ST1 uniformly spreads around on which oracle to
query.

Each oracle runs a separate SeqHT based on the sample it gets. Whoever among the n-threaded
SeqHTs halts first will return the correct label for x. Using ST1 as SeqHTRoutine in ProAL, we
have our first algorithm (denoted as tProAL). The correctness of the returned label, is guaran-
teed by the correctness of SeqHT [Wald, 1945]. Although SeqHT has been used for active learn-
ing [Kääriäinen, 2006, Bar-Yossef, 2003, Hanneke, 2007], no explicit results on cost complexity
have been derived for Proactive learning.

Note for each oracle, SeqHT is the optimal test on a given a dataset. Our task is essentially
related to Likelihood Ratio Test that achieves the optimal rate [Wald, 1945]. 1/

√
n is proved to

4

be the optimal rate for SeqHT on a Bernoulli parameter p up to a constant factor, i.e. one can
not improve over SeqHT by running a different test. The Hoeffding inequality offers the best
test. No significant improvement can be obtained by replacing Hoeffding inequality with any other
inequality to change the way of calculating confidence interval. If the only change made to the test
is the way of calculating confidence interval, one can at most save a log

(
1

1−2α

)
factor, where α is

the noise rate for a given oracle.

Theorem 1. ∃k ∈ (0,∞) such that the cost complexity of tProAL is upper bounded by

min
j=1,··· ,n

kncj
(1/2− αj)2

ln

(
nN(ε, δ/2)

δ(1/2− αj)

)
N(ε, δ/2) (3)

where N(ε, δ/2) is the sample complexity for the realizable active learning algorithm.

Proof. We split the failure probability δ′ in calling of ST1, equally into n parts : each part corre-
sponds to a SqeHT for one individual oracle. For arbitrary oracle j, we further split δ′/n into |zj|
parts. Note we do not know how many queries SeqHT j exactly processes till ST1. Denote Mj as
|zj| when ST1 halts and pj as SeqHT sample mean on oracle j.

We first prove the correctness of tProAL. Define

εj,|zj | =

√
2 ln

(
4n|zj|2
δ′

)
/|zj| (4)

By Hoeffding inequality and the union bound

P(No SeqHT of any of the n oracles ever halt)

≤
n∑
j=1

∑
|zj |

P(|pj − Epj| > εj,|zj |)

≤
n∑
j=1

∑
|zj |

2 exp(−|zj|ε2j,|zj |/2) ≤ δ′

Equivalently, with probability ≥ 1− δ′, we have the following invariant based on definition (4) of
εj,|zj |:
At all time in ST1, ∃j, s.t.

|pj − Epj| ≤ εj,|zj |

We now show under the definition (4) of εj,|zj |, the following inequality holds :

n∑
j=1

∑
|zj |

2 exp(−|zj|ε2j,|zj |/2) ≤ δ′ (5)

Sufficient if ∀j,∀|zj|,

exp(−|zj|ε2j,|zj |/2) ≤ δ′

4n|zj|2
(6)

5

From Property (2), it follows that
∞∑
|zj |=1

δ′/n

4|zj|2
≤ δ′/n

2
(7)

If Inequality (6) holds, combined with Inequality (7), we get
n∑
j=1

∑
|zj |

2 exp(−|zj|ε2j,|zj |/2) ≤
n∑
i=1

δ′/n ≤ δ′

Thus Inequality (5) holds. Inequality (6) is true under Definition (4) and Inequality (6) is proved
a sufficient condition for Inequality (5). Therefore Inequality (5) holds with Definition (4). The
confidence interval in Step 6 of ST1 is defined using exactly the εj,|zj | defined in (4), thus tProAL is
correct.

We then compute the cost complexity of ST1. By the stopping criterion of ST1, at any moment
in running ST1, |pj| ≤ εj,|zj | has to be true (otherwise it halts). |pj − Epj| ≤ εj,|zj | is always true
for ST1 . By triangle inequality, the invariant is

|Epj| ≤ |pj|+ |Epj − pj| ≤ 2εj,|zj | (8)

The absolute value of expectation of pj is bounded as

|Epj| ≥ | − αj + (1− αj)| = 1− 2αj (9)

as 0 ≤ α < 1/2. Thus

1− 2αj ≤ 2εj,|zj | (10)

Plug Definition (4) of εj,|zj | into Inequality (10), we get

1− 2αj ≤ 2

√
2 ln

(
4nM2

j

δ′

)
/Mj

Therefore, we get an upper bound on Mj when ST1 halts

Mj ≤
16

(1− 2αj)2
ln

(√
4n

δ′
Mj

)
(11)

Inequality (11) can be simplified by using the following property [Vidyasagar, 2003]: for u > 0,
v > 0, w > 0 and uvew/u > 4 log2 e,

m ≤ w + u ln(vm) ⇒ m ≤ 2w + 2u ln(uv) (12)

from which we get

Mj ≤
32

(1/2− αj)2
ln

(√
4n

δ′
16

(1/2− αj)

)
(13)

6

Equation (1) combined with i ≤ N(ε, δ/2) implies

1/δ′ ≤ 4N2(ε, δ/2)

δ
(14)

Combining the upper bound (14) on 1/δ′ with Inequality (13), we get

Mj ≤
32

(1/2− αj)2
ln

(√
n

δ

64N(ε, δ/2)

(1/2− αj)

)
≤ 32

(1/2− αj)2
ln

(
64nN(ε, δ/2)

δ(1/2− αj)

)
(15)

Notice that
√
n/δ ≤ n/δ, as

√
n/δ ≥ 1. Denote

MinCost = min
j=1,··· ,n

Mjcj (16)

≤ min
j=1,··· ,n

32cj
(1/2− αj)2

ln

(
64nN(ε, δ/2)

δ(1/2− αj)

)
from inequality (15). Let oracle j∗ be the minimizer in MinCost. It immediately follows that

Mj∗cj∗ ≤ MinCost

Our oracle selection strategy maintains the following invariant (17) at any moment of ST1. We
prove this by contradiction. Consider the round at which Inequality (17) is violated: suppose
oracle j is selected; |zj| increases by 1 and violates Inequality (17). Then there must exists another
oracle j′ with cj′(|zj′|+1) ≤ cj(|zj|+1). This contradicts to our oracle selection strategy: choose
the oracle that increases the maximum spent by the smallest amount. Thus Inequality (17) has to
be true at any moment of ST1 .

max
j′=1,··· ,n

cj′|zj′ | ≤ min
j′=1,··· ,n

cj′(|zj′|+ 1) (17)

≤ cj∗ + MinCost
≤ 2MinCost

From Invariant (17), we conclude that the cost complexity of ST1 is upper bounded by 2nMinCost.
The realizable algorithm A hands to ST1 at most N(ε, δ/2) examples to query their labels. Thus
the cost complexity of tProAL

≤ 2nMinCostN(ε, δ/2)

≤ min
j=1,··· ,n

64ncj
(1/2− αj)2

ln

(
64nN(ε, δ/2)

δ(1/2− αj)

)
N(ε, δ/2)

by combining Inequality (16).

Note that even if we know which oracle to use ahead of time (without going through the
threaded SeqHT), it only saves a factor of 2n and nothing more than that, compared to which,
the cost complexity bound achieved by tProAL is not too much worse.

7

4 Central Pool based Proactive Learner
SequentialTest2(x, δ′) (denoted as ST2)
Initialize the set of labels zj = ∅ for j = 1, · · · , n
1. do
2. Select Oracle j that minimizes (|zj|+ 1)cj
3. Query Oracle j and get label l
4. zj ← zj ∪ {l}
5. p← average of elements in Z = ∪nj=1zj
6.

I ←

[
p−

√
2 ln

(
4|Z|2
δ′

)
/|Z|, p+

√
2 ln

(
4|Z|2
δ′

)
/|Z|

]

7. while 0 ∈ I
8. if I ⊂ (−∞, 0), output −1
9. else output +1

ST2 has the same oracle-sampling strategy with ST1. But it maintains a central pool to include
samples from oracles and run a single SeqHT. It returns the correct label when the single SeqHT
halts. The hope is a single SeqHT can save cost complexity than n-threaded in some scenario.
Using ST2 as SeqHTRoutine in ProAL, we obtain our second algorithm (denoted as cProAL).

Theorem 2. ∃k1, k2 ∈ (0,∞) such that the cost complexity of cProAL is upper bounded by k1

∑n
j=1 1/cj(∑n

j=1 βj/cj

)2 ln

(
N(ε, δ/2)

δ

∑n
j=1 1/cj∑n
j=1 βj/cj

)

+
k2

∑n
j=1 βj∑n

j=1 βj/cj
+

n∑n
i=1 1/cj

)
nN(ε, δ/2) (18)

where βj = 1 − 2αj . N(ε, δ/2) is the sample complexity for the realizable active learning algo-
rithm.

Proof. We split the failure probability δ′ in calling of ST2 into |Z| parts. We do not know how
many queries ST2 exactly processes till it halts. Denote M as |Z| when ST2 halts and p as the
sample mean.

We first prove the correctness of tProAL. Define

ε|Z| =

√
2 ln

(
4|Z|2
δ′

)
/|Z| (19)

8

By Hoeffding inequality and the union bound

P(ST2 not halting) ≤
∑

|Z|=1,2,···

P(|p− Ep| > ε|Z|)

≤
∑

|Z|=1,2,···

2 exp(−|Z|ε2|Z|/2)

≤ δ′

Equivalently, with probability ≥ 1 − δ′, we have the following invariant based on definition (19)
of ε|Z|:
At all time in ST2, ∃j, s.t.

|pj − Epj| ≤ ε|Z|

We now show under the definition (19) of ε|Z|, the following inequality holds :∑
|Z|=1,2,···

2 exp(−|Z|ε2|Z|/2) ≤ δ′ (20)

sufficient if ∀|Z|,

exp(−|Z|ε2|Z|/2) ≤ δ′

4|Z|2
(21)

From Property (2), it follows that∑
|Z|=1,2,···

δ′

4|Z|2
≤

∞∑
|Z|=1

δ′

4|Z|2
≤ δ′

2
(22)

If Inequality (21) holds, combined with Inequality (22), we get∑
|Z|=1,2,···

2 exp(−|Z|ε2Z/2) ≤ δ′

Thus Inequality (20) holds. Inequality (21) is true under Definition (19), and Inequality (21) is
proved a sufficient condition for Inequality (20). Therefore Inequality (20) holds with Defini-
tion (19). The confidence interval in Step 6 of ST2 is defined using exactly the ε|Z| defined in (19);
thus cProAL is correct.

We then compute the cost complexity of cProAL. By the stopping criterion of ST2, at any
moment in running ST2, |p| ≤ ε|Z| has to be true (otherwise it halts).
|p− Ep| ≤ ε|Z| is always true for ST2 . By triangle inequality, the invariant is

|Ep| ≤ |p|+ |Ep− p| ≤ 2ε|Z| (23)

We know

|Epj| ≥ | − αj + (1− αj)| = 1− 2αj (24)

9

as 0 ≤ α < 1/2. Denote βj = 1− 2αj . From Inequality (24), we have

|Ep| ≥
n∑
j=1

|Epj||zj|
|Z|

≥
∑n

j=1 βj|zj|
|Z|

(25)

Combining Inequality (25) and Inequality (23), we get∑n
j=1 βj|zj|
|Z|

≤ 2ε|Z| (26)

Plug Definition (19) of ε|Z| into Inequality (26), we get∑n
j=1 βj|zj|
|Z|

≤

√
8 ln

(
4|Z|2
δ′

)
/|Z| (27)

In order to compute the cost complexity from Inequality (27), our strategy is to first derive
upper and lower bounds on |zj| from the invariant of ST2. Combining with the upper bound of
|zj|, we get an upper bound on the cost complexity

∑
j=1 cj|zj|, which only involves |Z|. Then we

only need to bound |Z| from above. This can be done by combining the lower bound on |zj| with
Inequality (27), and solving for |Z|. Below gives the details of proof.

cProAL shares the same oracle selection strategy with cProAL ; thus maintains the same in-
variant (17)

cj|zj| ≤ max
j′=1,··· ,n

cj′|zj′ | (28)

≤ min
j′=1,··· ,n

cj′(|zj′|+ 1) ≤ cj (|zj|+ 1)

By Invariant (28), the following holds

cj (|zj|+ 1) =

(
n∑
j=1

1/cj∑n
j′=1 1/cj′

)
cj (|zj|+ 1)

≥
n∑
j=1

1/cj∑n
j′=1 1/cj′

(
max

j′=1,··· ,n
cj′|zj′ |

)

≥
∑n

j=1 |zj|∑n
j=1 1/cj

=
|Z|∑n
j=1 1/cj

which implies a lower bound on |zj|

|zj| ≥
1/cj∑n
j′=1 1/cj′

|Z| − 1 (29)

10

Again by Invariant (28), the following holds

cj|zj| ≤ min
j=1,··· ,n

cj(|zj|+ 1)

=
∑
j

1/cj∑n
j′=1 1/cj′

(
min

j′=1,··· ,n
cj′ (|zj′|+ 1)

)

≤
∑n

j=1 (|zj|+ 1)∑n
j=1 1/cj

≤ |Z|+ n∑n
j=1 1/cj

which implies an upper bound on |zj|

|zj| ≤
1/cj∑n
j′=1 1/cj′

(|Z|+ n) (30)

Combining the lower bound (29) on |zj| with Inequality (27), we get(Pn
j=1 βj/cjPn
j=1 1/cj

|Z| −
∑n

j=1 βj

)2

|Z|
≤ 16 ln

(√
4

δ′
|Z|

)

We expand the above inequality and get(∑n
j=1 βj/cj∑n
j=1 1/cj

)2

|Z| − 2

∑n
j=1 βj/cj

∑n
j=1 βj∑n

j=1 1/cj

≤ 16 ln

(√
4

δ′
|Z|

)
−

(∑n
j=1 βj

)2

|Z|

Since
(∑n

j=1 βj

)2

/|Z| ≥ 0, we have

|Z|

(∑n
j=1

βj

cj∑n
j=1

1
cj

)2

−
2
∑n

j=1
βj

cj

∑n
j=1 βj∑n

j=1 1/cj
≤ 16 ln

(√
4

δ′
|Z|

)

Simplifying the above inequality, we get

|Z| ≤
2
∑n

j=1 βj
∑n

j=1 1/cj∑n
j=1 βj/cj

+ 16

(∑n
j=1 1/cj∑n
j=1 βj/cj

)2

ln

(√
4

δ′
|Z|

)

11

Using Property (12), we get an upper bound on |Z|

|Z| ≤
4
∑n

j=1 βj
∑n

j=1 1/cj∑n
j=1 βj/cj

(31)

+ 32

(∑n
j=1 1/cj∑n
j=1 βj/cj

)2

ln

 32√
δ′

(∑n
j=1 1/cj∑n
j=1 βj/cj

)2

Equation (1) combined with i ≤ N(ε, δ/2) implies

1/δ′ ≤ 4N2(ε, δ/2)

δ
(32)

Combining the upper bound (32) on 1/δ′ with Inequality (31), we get an upper bound on |Z|

|Z| ≤
32
(∑n

j=1 1/cj

)2

(∑n
j=1 βj/cj

)2 ln

64N(ε, δ/2)√
δ

(∑n
j=1 1/cj

)2

(∑n
j=1 βj/cj

)2

+

4
∑n

j=1 βj
∑n

j=1 1/cj∑n
j=1 βj/cj

(33)

From Inequality (30), we obtain an upper bound of the cost complexity of cProAL:

(
n∑
j=1

|zj|cj)N(ε, δ/2) ≤ (|Z|+ n)nN(ε, δ/2)∑n
j=1 1/cj

which is further upper bounded by the following (34), combined with the upper bound on |Z|
in (33) 32

∑n
j=1 1/cj(∑n
j=1 βj/cj

)2 ln

(
64N(ε, δ/2)

δ

∑n
j=1 1/cj∑n
j=1 βj/cj

)

+
4
∑n

j=1 βj∑n
j=1 βj/cj

+
n∑n

i=1 1/cj

)
nN(ε, δ/2) (34)

by simple algebra.

5 Aggregation of tProAL and cProAL
Neither tProAL nor cProAL is optimal. One dominates the other in different settings. Assume
oracles have the same cost (spreading around the queries uniformly to all oracles). When only one

12

oracle j∗ has zero noise rate but all others have noise rate 1/2−γ (0 < γ � 1√
n

), under same cost,
the cost complexity of tProAL is

O(ncj∗ ln (nN(ε, δ/2)/δ)N(ε, δ/2))

while that of cProAL is

O

(
1

γ2
ln

(
N(ε, δ/2)

δγ

)
N(ε, δ/2)

)
for large n. In this case tProAL is better. With a skewed noise distribution, ST1 allows the good or-
acles to halt in a very few queries and stops the bad oracle wasting queries; while the single SeqHT
integrating all oracles’ quries with uniform weights run byST2 buries the advantage of the excep-
tionally good ones. However, when all oracles have same cost and same noise rate, cProAL saves
a factor of n compared with tProAL. With a flat noise distribution, all oracle potentially take sim-
ilar amount of queries to halt. The number queries it need in order to halt is n times that by the
central-pool based SeqHT in ST2. Having no a priori knowledge of the the noise distribution, an
aggregation of ST1 and ST2 may have advantage of both to some extent. The following proposed
aggregation strategy can achieve the minimum of the cost complexities of the two (discussions on
learning the noise distribution can be found in 6).
SequentialTest3(x, δ′) (denoted as ST3)
Initialize the set of labels zj = ∅ for j = 1, · · · , n
1. do
2. Select Oracle j that minimizes (|zj|+ 1)cj
3. Query Oracle j and get label l
4. zj ← zj ∪ {l}
5. pj ← average of elements in zj
6. p← average of elements in Z = ∪nj=1zj
7.

Ij ←

[
pj −

√
2 ln (4n|zj|2/δ′)

|zj|
, pj +

√
2 ln (4n|zj|2/δ′)

|zj|

]

8.

I ←

[
p−

√
2 ln

(
4|Z|2
δ′

)
/|Z|, p+

√
2 ln

(
4|Z|2
δ′

)
/|Z|

]

9. while 0 ∈ I and 0 ∈ Ij
8. if I ⊂ (−∞, 0) or Ij ⊂ (−∞, 0), output −1
9. else output +1
ST3 is an aggregation of ST1and ST2. It has the same oracle-sampling strategy with ST1 and
ST2. Each oracle runs a separate SeqHT based on the sample it gets. MeanwhileST3 maintains
a central pool incorporating samples from all oracles and run a central SeqHT. Whoever either

13

among the n-threaded SeqHTs or the central SeqH halts first, will return the correct label for x.
We thus split the failure probability δ′ into two halves : one half corresponds to the event that none
of the n individual SeqHTs halts, the other half corresponds to the event that the central-pool based
single SeqHT does not halt. Using ST3 as SeqHTRoutine in ProAL, we obtain our thirds algorithm
(denoted as tcProAL).

Theorem 3. ∃k1, k2, k3 ∈ (0,∞) such that the cost complexity of tcProAL is upper bounded by

min

{
min

j=1,··· ,n

k1cj
β2
j

ln

(
nN(ε, δ/2)

βjδ/2

)
, k2

∑n
j=1 1/cj(∑n

j=1 βj/cj

)2 ln

(
N(ε, δ/2)

δ/2

∑n
j=1 1/cj∑n
j=1 βj/cj

)

+
k3

∑n
j=1 βj∑n

j=1 βj/cj
+

n∑n
i=1 1/cj

)}
nN(ε, δ/2)

where βj = 1 − 2αj . N(ε, δ/2) is the sample complexity for the realizable active learning algo-
rithm.

Proof Sketch. There are two parts coming together to form the total failure probability δ. tcProAL keeps
same the part feeding into the realizable active learning algorithm A (N(ε, δ/2) in the bounds kept
same), and split in half the δ′ handed to SeqHTRoutine : one half goes to ST1 and the other half
goes to ST2. Theorem 1 and Theorem 2 proved correct for any δ′, thus the same proofs holds if
just replacing δ′ by δ′/2. By union bound, results of cost complexity for ST1 and ST2 will hold
simultaneously. Whichever test halts first will be the correct answer. Therefore, the minimum of
the two cost complexities gives the cost complexity for tcProAL.

6 Future Directions
The reader may notice that the oracle sampling strategy in ST1 and ST2 relies solely on costs,
independent of unknown noisy rates αs. It will be desirable to let knowledge of αs influence the
choice of oracle. However, the reliability of oracles is typically unknown a priori. If the noise rate
were known, it would be trivial to improve the selection criterion. Consider there are n oracles
available for querying, with known cost cj and known noise rate αj ≥ 0, and j = 1, · · · , n. We
simply choose the oracle has min

j

cj
(1/2−αj)

; or formulate it as an optimization problem with noise

rates and cost constraints.
With no prior knowledge about reliability, oracle reliability estimation can be very costly. In

a single SeqHT, the expense for estimation of αs is no less than that of deciding the label. The
hope is knowledge about the oracles can be acquired through the accumulation over a number of
trials: feedback statistics can yield increasingly accurate estimations of αs without spending extra
queries. In addtion we can record oracle statistics from the past SeqHTs and pass them to the future
calls as priors on oracle accuracy estimation to help oracle selection.

14

We can potentially modify ProAL and ST1 in the following way: First, let ST1 also output the
sample mean pij for j = 1, · · · , n, and the halting oracle index. Here i stands for the ith example in
querying. Second, ProAL will update the sample mean by pi+1

j =
∑

i p
i
j , and pass these statistics

to the future call of ST1. Third, ST1 incorporates α̂j = (1− pi+1
j)/2, for j = 1, · · · , n into oracle

selection criterion (Step 2 in ST1): always choose

j∗ = arg minj=1,··· ,n
(|zj|+ 1)cj
(1/2− α̂j)2

The more examples ProAL experiences, the better it estimates the noise rate of each oracle, and
which oracles halt first more frequently. It can thus generate accumulated wisdom in choosing
oracles, assuming the same or at least some common oracles are availble across learning epochs.

Due to the reduction technique, SeqHTRoutine has no control on the upcoming example: which
is decided by a black-box realizable active learning algorithm A. The modified ProAL can be for-
mulated as an online learning procedure about oracle reliability, involving exploration vs. exploita-
tion tradeoff. Also left for future exploration is a regret bound analysis for online learning about
oracles: the regret arises from not always choosing the presumably best oracle.

References
Angluin, D., & Larid, P. (1987). Learning from noisy examples. Machine Learning, 2, 343–370.

Balcan, M.-F., Beygelzimer, A., & Langford, J. (2006). Agnostic active learning. In Proc. of the
23rd International Conference on Machine Learning (ICML).

Bar-Yossef, Z. (2003). Sampling lower bounds via information theory. In Proc. of the 35th Annual
ACM Symposium on the Theory of Computing.

Dasgupta, S. (2005). Coarse sample complexity bounds for active learning. In Proc. of Neural
Information Processing Systems (NIPS).

Donmez, P., & Carbonell, J. (2008). Proactive learning: Cost-sensitive active learning with mul-
tiple imperfect oracles. In Proc. of the 17th ACM Conference on Information and Knowledge
Management.

Donmez, P., Carbonell, J. G., & Schneider, J. (2009). Efficiently learning the accuracy of labeling
sources for selective sampling. In Proc. of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Hanneke, S. (2007). Teaching dimension and the complexity of active learning. In Proc. of the
20th Annual Conference on Learning Theory (COLT).

Hanneke, S. (2009). Theoretical foundations of active learning. Doctoral dissertation, Carnegie
Mellon University.

15

Kääriäinen, M. (2006). Active learning in the non-realizable case. In Proc. of the 17th International
Conference on Algorithmic Learning Theory.

Laird, P. D. (1988). Learning from good and bad data. Norwell, MA, USA: Kluwer Academic
Publishers.

Vidyasagar, M. (2003). Learning and generalization: With applications to neural networks (second
edition). Networks: Springer-Verlag.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16, 117–186.

16

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	1.1 Proactive Learning Means Options

	2 Formal Definition of Proactive Learning
	3 n-Threaded Proactive Learner
	4 Central Pool based Proactive Learner
	5 Aggregation of tProAL and cProAL
	6 Future Directions

