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Abstract

Active learning techniques have previously been shown to be extremely
effective for learning a target function over an entire parameter space based on
a limited set of observations. However, in many cases, only a specific property
of the target function needs to be learned. For instance, when discovering the
boundary of a region — such as the locations in which the wireless network
strength is above some operable level, — we are interested in learning only the
level-set of the target function. While techniques that learn the entire target
function over the parameter space can be used to detection specific properties
of the target function (e.g. level-sets), methods that learn only the required
properties can be significantly more efficient, especially as the dimensionality
of the parameter space increases.

These active learning algorithms have a natural application in many sta-
tistical inference techniques. For example, given a set of data and a physical
model of the data, which is a function of several variables, a scientist is of-
ten interested in determining the ranges of the variables which are statistically
supported by the data. We show that many frequentist statistical inference
techniques can be reduced to a level-set detection problem or similar search of
a property of the target function , and hence benefit from active learning algo-
rithms which target specific properties. Using these active learning algorithms
significantly decreases the number of experiments required to accurately de-
tect the boundaries of the desired 1 − α confidence regions. Moreover, since
computing the model of the data given the input parameters may be expensive
(either computationally, or monetarily), such algorithms can facilitate analy-
ses that were previously infeasible.

We demonstrate the use of several statistical inference techniques com-
bined with active learning algorithms on several cosmological data sets. The
data sets vary in the dimensionality of the input parameters from two to eight.
We show that naive algorithms, such as random sampling or grid based meth-
ods, are computationally infeasible for the higher dimensional data sets. How-
ever, our active learning techniques can efficiently detect the desired 1−α con-
fidence regions. Moreover, the use of frequentist inference techniques allows
us to easily perform additional inquiries, such as hypothetical restrictions on
the parameters and joint analyses of all the cosmological data sets, with only
a small number of additional experiments.
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Chapter 1

Introduction

In many scientific and engineering problems where one is modeling some function over
an experimental space, one is not necessarily interested in the precise value of the function
over an entire region or even the point which maximizes the function. Rather, one is curi-
ous about determining the set of all points for which the function exceeds some particular
value. For instance, for the task of determining the functional range of wireless networks,
it is important to be able to predict where the signal strength of the network drops below
a given threshold [Ramakrishnan et al., 2005]. However, it is not necessarily important
to be able to predict signal strength over the entire region. While being able to make a
prediction over the entire space would enable us to determine the extent of the network, it
will indubitably require extensive sampling. Instead we wish to focus on predicting only
a specified subsets of a target function. This problem naturally arises in a number of tasks
including factory optimization analysis, gauging the extent of environmental regions in
geostatistics [Stein et al., 1999], and statistical inference. In this thesis, we will focus on
latter problem.

Scientific inquest often requires the ability to compare hypothetical models with ob-
served data to assess the models’ validity. When the model is a function of several un-
known parameters, we are interested in finding combinations of parameter values which
fit the observed data with some statistical precision. While techniques for finding point
estimates (e.g. maximum likelihood) for the parameters are available, here we consider
computing confidence intervals (or regions, when we take the parameters as an ensemble),
as they provide a critical view into the range of parameter values that are reasonable fits to
the data. 1 − α confidence regions are especially useful for statistical inference in many
scientific disciplines as complex multi-parameter models are common. In astronomy, con-
fidence regions can be used to determine ranges for the age, composition and eventual fate
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of the universe [Tegmark et al., 2001, Spergel et al., 2007, Bryan et al., 2007b]. Simi-
larly, biologists could use this method to compute properties such as the ranges for stroke
kinematics parameters, wing muscle force, and Ca2+ presence in fruit fly flights [Dickin-
son et al., 1998, Lehmann and Dickinson, 1998, Gordon and Dickinson, 2006]. Finally,
physicists are interested in determining the ranges of parameters which negatively affect
explosions which cannot reasonably be tested (due to treaties or possible human health
side-effects) [Higdon et al., 2005].

In this thesis, we describe active learning algorithms which efficiently sample the given
parameter space in search of the 1− α confidence regions. There are many ways that ma-
chine learning techniques can be used to improve sampling efficiency in this domain. The
ideas that we propose, revolve around one central theme: learning only that portion of the
underlying function that is needed for the task at hand. As we shall see in the subsequent
chapters, it is often enough to learn a target function when it is below a specified value, or
even just learn a specific level-set of the target function. In either case, learning on a small
portion is dramatically faster than trying to learn the entire target function.

1.1 Motivation

The motivation of this work is the computation of a set of core parameter values for cos-
mological models for our Universe. These parameters are unknown values that come
from theoretical models of the Universe and correspond to physical properties, such as the
amount of Baryonic (e.g. dirt-, plant-, human-like) matter in the Universe, as well as more
exotic quantities, like dark energy (a large-scale repulsive force). In order to test these
cosmological models and determine the values of the associated parameters, astronomers
have compiled several independent data sets of different astronomical phenomena. One
specific aim of this thesis is to use these data sets to accurately and efficiently determine
the allowed ranges of each cosmological parameter.

To compute meaningful values of these cosmological parameters, we will use statistical
inference techniques. There are many different statistical methods that can be employed.
However, in general, the techniques which give us the most information are also those
that require the most computational effort. Thus, we will need to develop algorithms
and approximations which will allow us to efficiently compute the necessary statistical
inferences that yield the tightest estimates of the cosmological parameters in which we are
interested.

Therefore, the contributions of this thesis are four-fold. First, we develop general
purpose active learning algorithms. These algorithms utilize well-motivated heuristics to
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Figure 1.1: Outline of the Chapters 2 - 4 of the thesis, along with their inter-connections.
Chapter 2 develops an active learning framework and several techniques to efficiently sam-
ple specific portions of a target function. Chapter 3 uses this learning algorithm to design
statistical inference techniques to efficiently compute confidence regions for model pa-
rameters. Finally, in Chapter 4, we apply the statistical techniques of Chapter 3 to several
data sets independently and as an ensemble to accurately compute the values of the core
cosmological parameters.

efficiently learn specific properties of a target function. Second, we show how these gen-
eral active learning algorithms can be used to efficiently compute inferences for several
different statistical techniques. We also offer strategies for approximating and computing
these statistical methods. Third, we use the combination of machine learning and statistical
techniques to efficiently compute the allowed values of the core cosmological parameters
in which we are interested. We will see that the combination of efficient approximate algo-
rithms for both the statistical method and the sampling approach result in extremely tight
regions much faster than traditional approaches. Finally, we develop an active learning
technique to prove that we have not underestimated the ranges of the parameter values due
to the finite sampling of the parameter space.

Figure 1.1 depicts the connection between the active learning algorithms, statistical
techniques and astronomical data sets which we will examine in this thesis.
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1.2 Overview of Thesis

The remainder of this thesis is organized as follows.

We begin, in Chapter 2, by discussing our active learning framework, and several
heuristics which can be employed to efficiently learn specific portions of an underlying
target function. We shall see that such a targeted approach can be orders of magnitude
more efficient that learning the entire function.

In Chapter 3, we will discuss several ways to compute confidence regions and show
how the active learning heuristics discussed in Chapter 2 can be used to increase their data
and computational efficiency.

In Chapter 4, we briefly describe several astronomical data sets which we then use to
demonstrate both the active learning framework and the statistical methods from Chap-
ters 2 and 3. In particular, we compute 1 − α confidence regions for several data sets
both independently and jointly, and discuss the impact of these statistical inferences on
cosmology.

In Chapter 5, we present another active learning technique, this time to prove that the
results gathered in Chapter 4 are complete. We show that the use of high dimensional
Voronoi diagrams composed of sites with nonzero radii can result in sampling techniques
which not only find regions of interest, but also prove that no other regions above a certain
size exist.

Finally, in Chapter, 6 we summarize our contributions and conclusions, and describe
future work in the area of active learning techniques for specific function properties and
their applications to statistics and astronomy.

4



Chapter 2

Active Learning Strategies

In this chapter, we discuss techniques for selecting experiments. We will assume that we
are given a set of possible experiments, Θ, from which we can select some small, specified
number of experiments. We will assume that Θ, which we call a “parameter space”, is
composed of W independent parameters. Each point in Θ corresponds to a vector, θ,
which contains the value of the W parameters for that point. In general, each of the W
parameters lies within some interval on the real line, and hence Θ can be viewed as the
cross-product of these one dimensional ranges.

Let g : Θ 7→ R be the function that we are interested in learning — for instance the
variance weighted sum of squares between a model and a set of data used in a χ2 test (We
shall use this mapping explicitly in Section 3.2.1). We will assume that g is not invertible,
which is often the case. While we do not know the form of g, we can sample g at any point
θ ∈ Θ and compute g(θ). However, we assume that computation of g(θ) is costly. Hence,
evaluations of g should be used sparingly, as picking optimal, or near-optimal, experiments
(θ ∈ Θ) may reduce the run time of the algorithm by orders of magnitude (as we shall see
in Section 4.2.1). Thus, it is preferable to analyze the current knowledge about the target
function, g, and select experiments which quickly refine the estimate of g around our
region(s) of interest. Our task, then, is to select experiments from the (most likely infinite)
set of possible experiments Θ, which will best aid in the learning of a specific feature or
property of the target function g.

There are many approaches that one could use to select experiments. One approach
is to select all of our experiments up front. For instance, we could select experiments
randomly from Θ. Another possibilities include selecting experiments which form a grid,
or lattice in high dimension. Unfortunately, both of these techniques either implicitly or
explicitly, require an exponential number of experiments in the number of dimensions

5
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Figure 2.1: Outline of one iteration of our sampling algorithm. Given an initial set of
points (possibly empty), we randomly select a set of candidates and score them according
to a kriging model. The function g is evaluated at the highest scoring candidate point and
the result is added to our data set.

to cover the parameter space. Alternatively, one could disambiguate the effects of each
parameter using a Latin squares configuration [Denes and Keedwell, 1974, Tang, 1993].
Latin squares divide the parameter space into a grid and then selectO (W ) samples (where
W is the dimensionality of Θ), such that each row for each dimension is ensured to contain
at least one sample. However, an intuitively better approach is to interactively select the
next experiment based upon the results of the previously sampled experiments.

In general, the problem of determining which fixed number of samples should be cho-
sen from a finite set of possibilities in order to best model a target function g is NP-hard.
However, actively choosing samples to learn a concept based on a model of the true func-
tion is known to significantly reduce the required number of samples, in some cases by
exponential factors (e.g. Angluin [1988], Baum [1991]).

Often the input parameters θi are real-valued. Thus, the size of Θ is infinite and the
optimal selection of samples becomes impossible. Despite the fact that we cannot compute
the optimal set of samples, we can compute the approximately best set of samples using a
greedy learning algorithm to learn a non-parametric model of the currently observed data.

In this chapter, we describe an active learning framework which can be used to effi-
ciently learn specific properties of a target function. We then look at four of these target
function properties. For each property, we show how heuristics which are tailored to learn
only the property of interest can be constructed. Finally, we present experiments which
indicate that using these heuristics can be several times faster than techniques which try to
learn the target function over the entire parameter space.
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2.1 Active Learning Framework

Using a non-parametric model of those θ ∈ Θ that we have already observed, we can
select the single sample in Θ which best aids in refining our model estimate of g. Clearly,
this regression model will be a rough estimate of g, but it will allow us to determine the
relative merits of potential sample candidates. Since the size of Θ is assumed to be large
or infinite, it is intractable to estimate the value of g for all θ ∈ Θ. Instead we select a
set of points uniformly at random from Θ and use these points as a sample candidate set,
denoted Q. g can be estimated for each θ ∈ Q, and we select the θ which best refines our
estimate of g: θ̃. Finally we compute g(θ̃) and add the result, {θ̃, g(θ̃)}, to our data set and
repeat the process until we have obtained the desired approximation accuracy of g. An
outline of the active learning algorithm is illustrated in Figure 2.1.

There are several methods one could use to approximate g. However, we chose to ap-
proximate g using Gaussian process regression, a non-parametric generalization of linear
regression. Unlike other forms of regression, Gaussian processes can be formulated such
that they do not necessarily smooth the data, allowing them to represent subtle features
of the function that may become more pronounced with additional data. When model-
ing functions related to statistical inference for physical models, this property is desir-
able as these hypothetical models generally return a deterministic response when given
a parameter vector θ ∈ Θ. Predictions for unobserved points are computed by using a
weighted combination of the function values for those points which have already been ob-
served where a distance-based kernel function is used to determine the relative weights.
These distance-based kernels generally weight nearby points significantly more than dis-
tant points. Thus, assuming the underlying function is continuous, Gaussian processes
will perfectly describe the function given an infinite set of unique data points.

Here, we use ordinary kriging, a form of Gaussian processes that assumes the semi-
variance, K(·, ·), between two points is a linear function of their distance [Cressie, 1991];
for any two points θi, θj ∈ Θ,

K(θi, θj) =
1

2

[
g(θi)− g(θj)

]2
Therefore, the expected semi-variance between two points, γ(θi, θj), is given by

γ(θi, θj) = E(K(θi, θj)) = ηD(θi, θj) + ζ

where D(·, ·) is a distance function defined on the parameter space Θ, η the maximum
magnitude of the semivariance g, and ζ is the observed variance (e.g. experimental noise)
when repeatedly sampling the function g at the same location. We have found that using a
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simple weighted Euclidean distance function where each dimension is linearly scaled such
that the semi-variance along the axis is unity reasonably ensures that parameters are given
equal consideration considering their disparate values and derivatives.

Sampled data are assumed to be Normally distributed with means equal to their ob-
served values g(θ) and variance given by the sampling noise. Note that any subset of
the observed points results in a Normal distribution over the value of unobserved points.
Thus, we can use the observed set of data, B ⊂ Θ, to predict the value of g for any θq ∈ Θ.
This predicted value of g(θq) will be Normally distributed, (N(φθq , σθq)), with mean and
variance given by

φ(θq) = ḡB + ΣT
BqΣ

−1
BB(gB − ḡB) (2.1)

σ2(θq) = ΣT
BqΣ

−1
BBΣBq (2.2)

where the elements of the matrix ΣBB and arrays ΣBq and gB − ḡB are given by

ΣBB[i, j] = γ(θi, θj)
ΣBq[i] = γ(θi, θq)

(gB − ḡB)[i] = g(θi)− ḡB

ḡB =
1

|B|

|B|∑
i=1

g(θi)

and the θi’s and θj’s are the observed data used to make an inference: θi, θj ∈ B, 0 ≤
i, j ≤ |B|.

As given, for a set of b observed points (|B| = b), prediction with a Gaussian process
requires O (b3) time, as a b × b linear system of equations must be solved. However, for
many Gaussian processes — and ordinary kriging in particular — the correlation between
two points decreases as a function of distance. Thus, the full Gaussian process model can
be approximated well by a local Gaussian process, where only the s nearest neighbors of
the query point are used to compute the prediction value. This reduces the computation
time to O (s3 + log(b)) per prediction, since O (log(b)) time is required to find the s-
nearest neighbors using spatial indexing structures (e.g. kd-trees).

A simplistic Gaussian process model, using kriging with its isotropic and homoskedas-
tic kernel allows for much quicker function estimates than do approaches using adaptive
kernels. As we are only interested in an estimate of g and compute this estimate for the
reasonably small number of elements contained in our candidate set, Q, the predictions
provided by kriging are sufficient to choose the next sample from Q. However, if the cost
of computing g(θ) is sufficiently large, the benefits of increasing the size of Q and using
a heteroskedastic kernel (e.g. Kersting et al. [2007]) may out-weight the computational
cost.

Given this active learning framework, we must still decide which element ofQ should
be chosen for the next experiment. Strategies for selecting experiments in active learn-
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ing frameworks include choosing samples where the model contains no data [Whitehead,
1991], samples where the model predicts poorly [Linden and Weber, 1993], samples where
the model has low confidence in its prediction [Thrun and Möller, 1992], samples where
we expect the model to have the greatest change [Atlas et al., 1990, Cohn et al., 1994],
samples which provided large changes to the model in the past [Schmidhuber and Storck,
1993], samples which reduce the variance of the model (e.g. MacKay [1992], Cohn et al.
[1996], McKay et al. [2000], Tong and Koller [2000]), and samples with the maximal en-
tropy [Kulkarni et al., 1993, Sollich, 1994, Sung and Niyogi, 1995]. Recently, Guestrin
et al. [2005] showed that choosing samples which maximally decrease the uncertainty
about the target function, g, over the entire sample space is (1− 1

e
) optimal when trying to

predict g over the entire domain.

However, in this chapter, we shall see that if we are only interested in a portion of
the target function, g, we can hope to do much better. Intuitively, if we design heuristics
which are biased toward the region of interest, they will generally out-perform the global
heuristics mentioned above by large margins. In the following, we look at three different
cases where using specialized heuristics greatly decreases the computational complexity
of the search task.

2.2 Learning Function Level Sets

The first task we will examine is that of learning the level-sets of a function.1 That is,
we are interested in where the target function, g, is equal to some specified value, t. This
problem naturally arises in situations in which we are interested in partitioning the input
space into one class in which the target function is above the threshold, and the other
class where it is not. Applications include determining the functional range of wireless
networks [Ramakrishnan et al., 2005], factory optimization analysis, gaging the extent of
environmental regions in geostatistics [Stein et al., 1999], and computing the extent of
statistical confidence regions [Bryan et al., 2005, 2007b].

In one dimension, the level-set discovery problem can be formulated as a root-finding
problem where no hints as to the location or number of solutions are given. Several meth-
ods exist which can be used to solve this problem (e.g. bisection, Newton-Raphson).
However, one dimensional algorithms cannot be easily extended to the multivariate case.
In particular, the ideas of root bracketing and function transversal are not well defined

1This work was originally published in Bryan et al. [2005] with co-authors Jeff Schneider, Christopher J.
Miller, Robert C. Nichol, Christopher R. Genovese and Larry Wasserman. Additional results were taken
from Bryan et al. [2007d] with co-authors Jeff Schneider, Chad M. Schafer and H. Brendan McMahan.
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[Press et al., 1992]; given a particular bracket of a continuous surface, there will be an
infinite number of solutions to the equation g(θ) − t = 0, since the solution in multiple
dimensions is a set of surfaces, rather than a set of points.

Numerous active learning papers deal with similar problems in multiple dimensions.
For instance, Ramakrishnan et al. [2005] presents a method for picking experiments to
determine the localities of local extrema when the input space is discrete. Alternatively,
others have used a variety of techniques to reduce the uncertainty over the problem’s entire
domain to map out the function (as mentioned in Section 2.1) or locate the optimal value
(e.g. Moore and Schneider [1996]).

We are interested in locating the subset of the input space wherein the function is above
a given threshold. Algorithms that merely find a local optimum and search around it will
not work in general, as there may be multiple disjoint regions above the threshold. While
techniques that map out the entire surface of the underlying function will correctly identify
those regions which are above a given threshold, we assert that methods can be developed
that are more efficient at localizing a particular contour of the function. Intuitively, points
on the function that are located far from the boundary are less interesting, regardless of
their variance. Let us see how we can use this intuition to develop a heuristic which is
significantly more efficient than global variance minimization when one is solely interested
in localizing a function level-set.

2.2.1 Active Learning Algorithm

Suppose we are given a sample space, Θ ⊆ RW , and a black box which allows us to
evaluate g. Given a threshold t, we want to find the set of points from the input space
such that g(θ) = t: V = {θ ∈ Θ|g(θ) = t}. Note that for some of the applications
we mentioned in Section 2.2, we are actually interested in the points in the input space
where g is greater than t. However, these points can easily be found as they are either
the interior, or exterior of the level-set V . We propose to learn the set V using the active
learning framework discussed in Section 2.1. In order to do so, we must determine how to
select the next experiment given the observations we have made so far.

2.2.2 Choosing Experiments

As discussed in Section 2.1, there are many strategies that we could employ to select
experiment in order to learn V . In this section, we look at a mix heuristics, some of
which try to optimize the global solution, while others focus solely on the task of level set
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detection. Here we present heuristics taken from throughout the performance range of the
heuristics we tried. The heuristics we discuss here are:

Random This heuristic selects one of the candidate points uniformly at random. This
method serves as a baseline for comparison of the other heuristics.

Variance This heuristic selects the candidate point which has the largest predicted vari-
ance, σ2(θ). Using model variance to pick the next experiment is common for active
learning methods whose goal is to map out the target function over a parameter space
[MacKay, 1992, Guestrin et al., 2005]. Since variance is closely related to distance when
using kriging, this heuristic samples points which are distant from their nearest neigh-
bors. However, when searching for level-sets, we are less interested in the function away
from the level-set boundary, and instead want to focus our sampling resources near this
predicted boundary. Intuitively, this algorithm should perform substantially worse than
heuristics that concentrate on the function level-set.

Probability of Incorrect Classification: Since we are trying to map the boundary be-
tween points above and below a threshold, we consider choosing the point from our ran-
dom sample which has the largest probability of being misclassified by our model. Using
the distribution defined by Equations 2.1 and 2.2, the probability, p, that the point is above
the given threshold can be computed. The point is predicted to be above the threshold if
p > 0.5 and thus the expected misclassification probability is min(p, 1− p).

Entropy: Related to misclassification probability, is the class entropy: −p log2(p)−(1−
p) log2(1 − p). Note that entropy is a monotonic function of the misclassification rate, so
both heuristics will choose the same points, given the same candidate set. However, the
relationship is non-linear. The probability of misclassification heuristic places higher
relative weight on those points closer to the boundary than does the entropy heuristic.
Hence, we expect these two heuristics to have different effects when combined with other
heuristics.

Information Gain Information gain is a common myopic metric used in active learn-
ing. Information gain at the query point is the same as entropy in our case because all
run experiments are assumed to have the same variance, ζ . Computing a full measure of
information gain over the whole state space would provide an optimal 1-step experiment

11



choice. In particular, Guestrin et al. [2005] showed that greedily picking experiments with
the maximal mutual information gain results in a (1− 1/e) optimal approximate solution
when learning the target over the entire parameter space. In some discrete or linear prob-
lems this can be done, but it is intractable for continuous non-linear spaces. Specifically,
calculating the information gain of a proposed sample requires integrating the difference
between the current model and expected result of the proposed sample over all space.
Since our function approximator has only local support for predictions, we can reduce this
integral down to the local region. However, even on this local region, computing the ex-
pected value of the model requires multiple matrix inversions to account for differences in
the one hundred nearest neighbors over the local region. Even approximating this integral
with a (small) finite sum, was found to be prohibitively expensive. As such we do not con-
sider a traditional information gain heuristic, but rely on efficient point estimates which
act as proxies for global information gain.

Products of metrics: One way to rectify the problems of point policies that focus solely
on points near the boundary or points with large variance regardless of their relevance
to refining the predictive model is to combine the two measures. Intuitively, doing this
can mimic the idea of information gain; the entropy of a query point measures the clas-
sification uncertainty, while the variance is a good estimator of how much impact a new
observation would have in this region and thus what fraction the uncertainty would be
reduced. Ramakrishnan et al. [2005] proposed scoring points based upon the product of
their entropy and variance to identify the presence of local maxima and minima, a problem
closely related to boundary detection. We shall also consider scoring points based upon
the product of their probability of incorrect classification and variance. Note that while
entropy and probability of incorrect classification are monotonically related, the product
of entropy and variance and the product of the probability of incorrect classification and
variance are not.

Straddle Another strategy for combining entropy and variance estimators is the strad-
dle heuristic:

straddle(θq) = 1.96σ(θq)−
∣∣φ(θq)− t

∣∣.
This heuristic combines the desire to search the entire input space with that of refining our
estimate around known interesting regions, by picking points that the model predicts are
both close to the boundary and have large variances.

Note that the straddle heuristic chooses those points with large variances which strad-
dle the boundary. In particular, if a point is near the boundary, then φ(θq) ' t and this
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metric is equivalent to a variance-only metric, choosing points that are removed from one
another. However, if the point is not on the boundary, then its score drops off proportion-
ally to the distance from the boundary. The straddle score for a point may be negative,
which indicates that we predict that the probability that the point is on a boundary is less
that five percent. The straddle algorithm scores points highest that are both unknown and
near the boundary, and thus gives scores that intuitively are similar to that of information
gain. However, note that the straddle heuristic relies on the variance estimate, so is also
subject to oversampling edge positions.

2.2.3 Experiments

Let us now evaluate how these heuristics perform on the task of level-set identification.
We are interested in heuristics which not only sample points on the boundary often, but
also sample around the entirety of the boundary. That is, we are not particularly interested
in knowing if the specified level-set exists (as we assume it does), but rather want to
know where in the parameter space the level-set is located. As noted in Section 2.2.1,
discovering the level-sets of g and the regions of g which are above t are duals of each
other. Thus, we use classification accuracy of points from Θ as a metric for assessing
our ability to learn those regions of g which are above t, and hence our ability to learn
V . For the five following functions, we recorded the number of experiments sampled by
each heuristics until they reached the desired classification accuracy (95 or 99% depending
on the problem). The sampling and testing process was repeated 20 times to account for
variations due to the random nature of the candidate generation process. The considered
functions are:

2D Peak This task involves finding the level-set of the sinusoidal function

g(x, y) = sin(x) ∗ sin(y)

where g(x, y) = −0.8, where x, y ∈ [−3.4 : 3.4]. The level-set, V , consists of two
separated rings, shown as the red lines in Figure 2.2. This function was fairly easy for
most of the heuristics to learn, but the discontinuous surface (composed of the separate
rings), revealed those heuristics which correctly explored the space, from those that merely
exploited the level-set boundary once it became apparent.

2D Deboor The second target function we looked at was the 2D DeBoor function:

g(x, y) = cos

(
6 +

2x

|x|
+

4y

|y|

)[
1− 3δ2 + 2δ3

]
+ 1
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where

δ =

(
|x| − 1

2

)2

+

(
|y| − 1

2

)2

.

For this task, we were interested in where the function was equal to −1.3 when x and y
were both restricted to the interval [−1 : 1]. Like the 2D Peak function, this function
has two clearly defined level-sets which again form rings. However, unlike the 2D Peak
function, this function has regions where the semi-variance is extremely high. Moreover,
when x or y equals zero, the function is undefined. While these properties violate the
assumptions of our Gaussian process (namely that the surface is smooth and continuous),
we will see that even in these adverse conditions, our framework seems to hold up. We
chose to use this function, as it was the function used by Ramakrishnan et al. [2005] to test
their ent-var heuristic.

2D Sine The third problem we look at is the 2D Sine function:

g(x, y) = cos(3 ∗ x ∗ y)− sin(10 ∗ x)− cos(4 ∗ y).

Here we restrict x and y to the ranges x ∈ [0, 1] and y ∈ [0, 2], and set the threshold, t, to
zero. The level-set of the target function is denoted by the solid red lines in Figure 2.3. This
target function has several interesting properties. First, the target level-set winds through
the parameter space giving ample length to test the accuracy of the learned approximating
model. Second, the boundary is discontinuous with several small pieces. Third, there is an
ambiguous region around (0.9, 1.0) where the target function is both close to the boundary
t = 0, and has a small derivative. Finally, there are areas in the parameter space where
the function is far from the threshold and hence should be quickly pruned by the search
heuristics. Thus we hope to see regions which are far from the target level-set, such as
(0.4, 0.8), sparsely sampled.

4D Sine The previous three target function have all been two dimension, in order to pro-
vide visual evidence that the heuristics are performing as we desire. However, our methods
are not limited to small dimensional tasks; indeed in Section 4.2.1 we will apply this algo-
rithm to a seven dimensional target function. However, here we will restrict ourselves to
the four dimensional problem:

g(~x) = sin(10x1) + cos(4x2)− cos(3x1x2) + cos(2x3) + cos(3x4)− sin(5x3x4).

Again, we let the threshold be t = 0, and we restrict the parameter space to x1 ∈ [0, 1],
x2, x4 ∈ [0, 2] and x3 ∈ [1, 2]. This function was chosen due to its similarity to the 2D
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2D Peak 2D DeBoor 2D Sine 4D Sine SNLS
random 153±42 7727±987 617±158 6254±364 1012±188
entropy DNF DNF DNF 6121±1740 DNF

variance 108±8 4306±573 207±7 2320±57 664±227
ent-var 48±2 1621±201 117±5 1210±43 390±74

misclass-std 102±33 740±117 113±11 1362±89 415±63
straddle 41±12 963±136 106±5 1265±94 410±57

Table 2.1: Number of experiments required to obtain 99% classification accuracy for the
2D models and 95% classification accuracy for the 4D and SNLS models for various
heuristics. Heuristics requiring more than 10,000 experiments to converge are labeled
“DNF”.

Sine and 2D Peak problems. Moreover, the fairly low dimension of the problem allowed
us to densely sample the parameter space when estimating the classification accuracies of
each of the heuristics.

SNLS The final target function we look at is the SNLS function. Unlike the previous
four functions which were synthetic, this function arises from the statistical analysis of
real data. Specifically, this function is the χ2 statistic of a set of supernova data, and the
cut off, t, is set such that the region interior to the level-set comprises the 95% confidence
region of the χ2 test. We will explain how the χ2 test can be used with our active learning
framework in Section 3.2. In 4.1.2, we will discuss the SNLS data in more detail, and the
results of the 95% confidence intervals computed with this data will be described in 4.2.2.

Now let us look at how the heuristics described in Section 2.2.2 perform on the test target
functions we just described. As mentioned above, we ran 20 trials, in each computing the
number of samples to receive the desired classification accuracy. For the two dimension
target functions, the desired classification accuracy was set at 99%, while the 4D Sine and
SNLS results are for a 95% classification accuracy. Classification accuracy was computed
by testing the learned GP at the points on a 141× 141 grid for the 2D problem and a grid
with 100 points per dimension for the other two models. For each point on the grid, θq, the
model was judged to be classify correctly if the sign of φ(θq)− t was equal to the sign of
g(x) − t; that is, the GP and the target function agreed as to which side the threshold the
point θq was.

In Table 2.1 we list the average number of samples needed by each heuristic to achieve

15



the desired classification accuracy along with the standard deviations among the 20 trials.
Entries to the left of the vertical line indicate the number of samples required to obtain a
99% classification accuracy, while those on the right correspond to a 95% classification
accuracy. Results are presented for the Random, Entropy, Variance, the product of Entropy
and Variance, the product of Probability of Misclassification and the square-root of Vari-
ance and the Straddle heuristics. For simplicity, we will name these heuristics random,
entropy, variance, ent-var, misclass-std, and straddle, respectively.

Note that picking points solely on entropy does not converge in many cases. This is
because points near the boundary have high entropy, even when the boundary is well sam-
pled (as the heuristics does not depend on the variance of the estimate). Thus, once they
find a single boundary in the space, both the entropy and misclass-std would rather con-
tinue sampling this boundary than explore new regions of space, as can be seen in Figures
2.2(b) and 2.3(b). Meanwhile, both the straddle algorithm and misclass-std heuristic re-
sult in approximations that are significantly better than random and variance heuristics.
Table 2.1 shows that the ent-var heuristics often performs as well as the straddle heuris-
tic. However, the ent-var heuristic is much worse that either the straddle or misclass-std
heuristics on the 2D DeBoor function. This may be due the discontinuities or the large
semivariances inherent in this function. In general, the straddle heuristic seems to per-
form as well or better than all of the other heuristics considered over a wide range of target
functions.

In Figures 2.2 and 2.3 we depict the the experiments selected by the various heuristics
during a single trial for both the 2D Peak and 2D Sine level-set tasks. For the 2D Peak
task we show results after selecting 30 experiments, while for the 2D Sine problem the
results correspond to selecting 100 experiments. In each of these figures, we denote the
samples that were chosen with black dots. The true level-set, V , is marked with a red line,
while the derived level-set — that given by sampling our Gaussian Process — is marked
in blue. For these experiments we would like the blue curve to completely overlap the red
curve.

However, as seen in Figures 2.2 and 2.3, there the red and blue curves deviate dra-
matically for some heuristics. This is especially apparent for the entropy heuristic. As
previously noted, this heuristic favors exploitation of a known boundary over exploration
of the parameter space. In fact, the entropy heuristic almost randomly samples points
until it locates a boundary. Once a point on the boundary is discovered, it continues to
sample points from the candidate set, Q, that are as close as possible to the point that was
previously found to be on the boundary. Note that in both cases, the heuristic has managed
to sample along a single edge of the level set. This is a direct result of the limited number
of candidates from which each heuristic get to choose; given an unlimited number of sam-
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Figure 2.2: Predicted function boundary (blue), true function boundary (red) and experi-
ments (dots) for the 2D Peak function after 30 experiments using various heuristics. The
straddle heuristic outperforms the other heuristics by eliminating those regions of the
input space that are unlikely to be near the boundary.

ples, the heuristic would converge to a single solution, and not even explore the piece of
the level set it had discovered.

In contrast, the variance metric has effectively over sampled the parameter space.
Note that the resulting sample pattern is almost grid-like, and irrespective of the boundary
it is supposed to find. While the derived level set is much better than the entropy heuristic,
the variance heuristic does not get the details of the true level set correct.

However, Figures 2.2 and 2.3 show that the heuristics which combine Variance and
Entropy perform well. These heuristics — (straddle, ent-var and misclass-std — tend to
emphasis the boundary, while still ensuring that the remaining parameter space is explored.
While heuristics that are both the product and sum of Entropy and Variance appear to have
sampled points allowing the underlying Gaussian Process to converge to the true function
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Figure 2.3: Predicted function boundary (blue), true function boundary (red) and exper-
iments (dots) for the 2D Sine function after 100 experiments using various heuristics.
Again the straddle heuristic is able to eliminate unlike regions of parameter space and
outperform the other heuristics.

(at least around the boundary of interest), the straddle heuristic (the sum of Entropy and
Variance) outperforms the other combinations. The straddle heuristic places many more
points directly on the boundary as opposed to ent-var and misclass-std, which tends to
place points slightly to either side of the boundary.

2.3 Subsampling Functions Below a Specified Level-Set

The second task we will look at is closely related to the first. Here we are interested in
predicting a target function g in the regions where g is less than some specified threshold.2

2This work originally appeared in Bryan et al. [2007c] with co-authors Jeff Schneider and Chad M.
Schafer. Additional results were taken from Bryan et al. [2007d] with co-authors Jeff Schneider Chad M.
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Given a specified threshold t, we wish to learn g on the set Θ′ = {θ ∈ Θ|g(θ) ≤ t}. That
is, we are interested in selecting q samples from Θ which minimize the estimated variance
of g over all θ ∈ Θ′.

There are several applications where learning g on the restricted subset Θ′ is beneficial.
For instance, a geologist may be interested only in spatially modeling the concentration of
some mineral or oil deposit where the deposit’s concentration is above some financially
viable threshold. Another case that we will see in Section 3.4.5 is that of computing
confidence regions for model parameters. In this case, we desire to sample points from the
parameter space where a specific test statistic is less than a certain value.

One straightforward strategy is to learn the level-set where g(θ) = t using the straddle
heuristic from Section 2.2.2 and then use these boundaries to derive Θ′. However, this pro-
cess requires additional information to determine how many samples should be chosen by
the boundary finding heuristic before switching to an exploitation mode. It is not clear how
many samples should be chosen based on the boundary finding heuristic before a sampling
is done within the boundary. If we fail to sample enough points we may underestimate the
size of Θ′, while sampling too many points will result in wasted computation. Intuitively,
we desire a heuristic which trades off exploitation for exploration throughout the selection
process.

2.3.1 Active Learning Algorithm

As with the algorithm in Section 2.2.1, the active learning framework we use to learn g
over Θ′ is the one described in Section 2.1. The only difference between the algorithm
describe here and the one described in Section 2.2.1, is that here we are interested in
learning g over the entire space Θ′, not just the level-set {θ ∈ Θ|g(t) = t}. Thus, the main
difference between the algorithms will be the heuristic we employ to search the parameter
space Θ.

2.3.2 Choosing Experiments

As mentioned in Section 2.3, we desire a heuristic which actively trades off exploitation
for exploration. Here we compare the random and variance heuristics of 2.2.2 with the
following heuristics:

Schafer and H. Brendan McMahan.
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Straddle & Variance: Instead of mapping g throughout Θ, a more practical solution is
to concentrate on g where g(θ) ≤ t. One strategy is to first spend a fixed number of sam-
ples to locate the boundary of Θ′ using the straddle heuristic mentioned in Section 2.2.2.
For the remainder of the samples, the heuristic then selects points which have have the
largest expected variance within the predicted boundary. If none of the points in the candi-
date set are predicted to be within the boundary region, we pick the point that most helps
refine our boundary estimate: the point with the largest straddle value.

Entropy×Variance & Variance: Similar to the last sampling heuristic, this heuristic
first tries to estimate the location of the function’s level-set and then sample within this
level-set. However, instead of using the straddle heuristic, we use the ent-var heuristic
of Ramakrishnan et al. [2005] mentioned in Section 2.2.2 to find the boundary. After
spending a fixed number of samples locating the boundary, the heuristic switches to an
exploitation mode and samples within the boundaries that have been located.

Variance Above Threshold The previous two heuristics require a parameter to deter-
mine how many samples should be chosen from the boundary finding heuristic before
switching to an exploitation mode. However, as mentioned in Section 2.3, we are inter-
ested in a heuristic which trades off exploitation for exploration throughout the selection
process. To this end, we propose a modified version of the straddle heuristic, Variance
Above Threshold (threshvar) which performs this trade off:

threshvar(θq) = 1.96σθq −max
{
0, φθq − t

}
.

When g < t, the threshvar heuristic is solely a function of variance. When g > t, then
the Variance Above Threshold heuristic reverts to the straddle heuristic of Bryan et al.
[2005], selecting samples which are expected to be near the boundary and far from other
samples.

2.3.3 Experiments

Let us now assess how these heuristics perform on several real and synthetic data sets
by estimating the mean variance for points within Θ′. As the exact value of the mean
variance is computationally prohibitive — it requires computing the variance at all θ ∈ Θ′

— we estimate the mean variance using a randomly selected subset of points from Θ′.
Clearly, we desire the heuristics to have low variance within Θ′, as this indicates that the
kriging model has well approximated g within Θ′. Moreover, heuristics which have low
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2D Peak 2D DeBoor 2D Sin. 4D Sin. SNLS
random 0.283±0.011 0.312±0.016 0.606±0.007 2.403±0.020 7923±200

variance 0.263±0.003 0.285±0.005 0.551±0.002 2.478±0.007 7670±55
entvar-thresh(0) 0.168±0.000 0.160±0.001 0.512±0.001 2.208±0.007 6937±34

straddlevar(0) 0.510±0.180 0.130±0.001 0.810±0.786 2.336±0.091 11791±2555
straddlevar(200) 0.139±0.000 0.136±0.001 0.493±0.001 2.275±0.046 7051±221

threshvar 0.146±0.000 0.139±0.002 0.493±0.001 2.093±0.053 6439±31

Table 2.2: Mean residual variance for points within Θ′ of various heuristics after picking
500 samples. The threshvar heuristic has the minimal mean variance of those heuristics
which do not require hand-tuning, and often performs nearly as well, or better, than those
heuristics for which optimal parameters were selected.

variances within Θ′ must have also sampled Θ′ extensively in order to obtain that low
variance. Thus, heuristics which minimize the mean variance are likely to produce dense
quasi-random sets of points within Θ′.

Heuristics were tested on the same five data sets that we used in Section 2.2.3: 2D
Peak, 2D Deboor, 2D Sine, 4D Sine, and SNLS. The 2D Peak function was particu-
larly troublesome for the heuristics which only had a limited number of samples to detect
the boundary before switching to an exploitation mode because of the two separated re-
gions which were below the boundary.

Results for the mean variance among points within Θ′ on these data sets after perform-
ing 500 samples each in 20 trials are shown in Table 2.2. We have denoted the Straddle
& Variance, Entropy×Variance & Variance, and Variance Above Threshold heuristics as
straddlevar, entvar-thresh, and threshvar, respectively. The number in parentheses af-
ter straddlevar and entvar-thresh indicates how many samples were chosen to define the
boundary before switching to an exploitation mode.

From Table 2.2, it is clear that some of the heuristics perform substantially worse than
either random or variance sampling. These include entvar-thresh(0) and straddlevar(0).
Both of these heuristics are based upon the idea of using some fixed number of samples to
determine the location of the boundary and then use the remaining set of experiments to
sample the interior region (Θ′). However, if the cutoff between exploration and exploita-
tion is too small (in this case it is set to zero), then the heuristics will not completely map
out the parameter space and are likely to miss large sections of Θ′, especially if Θ′ is dis-
joint. Given the similarity between entvar-thresh and straddlevar, in the following, we
will refer only to straddlevar.

Figure 2.4 illustrates the fact that the straddlevar(0) heuristics searches only enough

21



-2

 0

 2

-2  0  2
(a) random

-2

 0

 2

-2  0  2
(b) variance

-2

 0

 2

-2  0  2
(c) entvar-thresh(0)

-2

 0

 2

-2  0  2
(d) straddlevar(0)

-2

 0

 2

-2  0  2
(e) straddlevar(200)

-2

 0

 2

-2  0  2
(f) threshvar

Figure 2.4: 500 samples chosen by various heuristics in a single trial, along with the target
minima (open red circles). The variance heuristic focuses only on exploration, while
the straddlevar(0) heuristic focuses only on exploitation, ignoring one of minima. The
threshvar heuristic balances exploration with exploitation, both finding and frequently
sampling both minima.
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2D Peak 2D DeBoor 2D Sin. 4D Sin. SNLS WMAP YR1
random 0.06±0.01 0.04±0.01 0.55±0.02 0.13±0.01 0.06±0.01 0.001

variance 0.05±0.00 0.04±0.00 0.53±0.01 0.11±0.01 0.06±0.01 —
entvar-thresh(0) 0.89±0.02 0.88±0.04 0.90±0.01 0.62±0.01 0.71±0.03 —

straddlevar(0) 0.89±0.03 0.89±0.03 0.90±0.02 0.62±0.01 0.71±0.04 —
straddlevar(200) 0.74±0.01 0.75±0.02 0.83±0.01 0.52±0.02 0.52±0.02 —

threshvar 0.57±0.01 0.67±0.03 0.83±0.01 0.39±0.01 0.16±0.01 0.32

Table 2.3: Efficiency of various heuristics after picking 500 samples. The threshvar
heuristic has greater efficiency than all heuristics that remain in an exploration mode
throughout the trial (random, variance), and is competitive with heuristics that switch
to an exploitation mode (straddlevar(·), entvar-thresh(0)).

to find a single peak in the target function and spends the remainder of its samples within
the peak. On the other extreme, the variance heuristic evenly spreads its samples over the
entire space. The threshvar heuristic takes the middle route, both examining the entire
space, but focusing a majority of the points in both local minima.

While we are primarily interested in achieving low variance within Θ′, we are also
interested in heuristics which heavily sample Θ′, as these are the points that we will use
for statistical inference techniques in Chapter 3. For each of the heuristics above, we
measure their accuracy, which we define to be the fraction of samples selected from Θ,
that were also in Θ′. In Table 2.3, we present efficiency results from the various heuristics
on the 5 data sets. Additionally, we present some results from the Wilkinson Microwave
Anisotropy Probe (WMAP) data set which depicts fluctuations in the temperature of the
cosmic microwave background (CMB) (This data set will be described in more detail
in Section 4.1.1.) However, due to the computational costs associated with running the
WMAP experiments, we present results only for the random and threshvar heuristics.

As Tables 2.2 and 2.3 show, there is a strong correlation between efficiency and mean
variance among the points in Θ′. Heuristics which favor exploitation over exploration
have high efficiencies, but also high mean variances, while those that favor exploration
have both lower efficiencies and mean variances. The most efficient heuristic on all of the
experiments was straddlevar(0). However, this efficiency came at the cost of failing to
locate all of the desired minima as seen in Figure 2.4(d). Random sampling and variance-
weighted sampling performed equally well in terms of efficiency. However, variance-
weighted sampling resulted in lower mean variance,.

As it generally takes only a few dozen to a hundred points to locate the minima in
two dimensions, the straddlevar(200) heuristic appears to be superior for these low di-
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Figure 2.5: Efficiency of the straddlevar(0) (triangle), straddlevar(200) (open circle),
threshvar (diamond) and variance (square) heuristics as a function of the number of sam-
ples chosen. Note the sharp increase in efficiency in the straddlevar(200) heuristic after
200 samples, when the heuristic switches from a exploration to an exploitation mode. The
threshvar heuristic out-performs all other heuristics while they remain in their exploration
mode.

mensional tasks. This is unsurprising, as the constant 200 was chosen to maximize the
performance of the straddlevar heuristic on the 2D problems. After quickly finding the
minima, the straddlevar(200) heuristic was able to switch to an exploitation mode (seen
in Figure 2.5), allowing it to obtain both high efficiency and low mean variance. However,
a major drawback of this heuristic is that one must specify the number of samples after
which the heuristic should switch to an exploitation mode. Using too few samples results
in failure to locate the desired minima (shown in Figure 2.4(d)), while using too many
samples results in worse efficiency than the threshvar heuristic (as seen in Figure 2.5).
While using 200 samples for boundary prediction for straddlevar results in a good trade
off between discovery and exploitation for the 2D problems, it does not fare as well on the
Sin4D or SNLS problems. In practice it is very difficult to choose this exploration constant
without knowing the underlying function.

The threshvar heuristic performs well both in terms of efficiency and expected vari-
ance in Θ′. While it’s efficiency was less than heuristics that focused on exploitation, its
mean variance was near the minimal value for all the heuristics, and was significantly less
than those heuristics which do not have tuning parameters. This indicates that the heuristic
is correctly identifying and sampling the appropriate regions of the function. Moreover,
its performance is similar to those heuristics which were optimized for the task using ad-
ditional samples of the function. Thus, the threshvar heuristic performs nearly as well as
the best heuristics for each problem without the need of hand-tuning, or switching to an
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exclusively exploitation mode.

As a result, the threshvar heuristic can be directly applied to any problem, without first
determining the approximate location and number of local minima that compose Θ′. This
information is required by the heuristics that switch from an exploration to an exploitation
mode (such as straddlevar) to ensure that all of the local minima are found before switch-
ing to an exploitation mode. Failure to ensure that all minima have been found results in
an underestimation of Θ′, as the one shown in Figure 2.5.

These experiments indicate that the Variance Above Threshold heuristic, threshvar,
outperforms the other heuristics and significantly outperforms random sampling. We find
that using the threshvar heuristic is up to two orders of magnitude more efficient than
random sampling while the resulting mean variance is equal to or less than choosing points
based upon the variance heuristic.

2.4 Learning Level Sets of Composite Functions

The third task that we will discuss is the problem of learning the level sets of a function
which is a composition of several observable functions.3 As with the level set detection
algorithms discussed in Section 2.2, if the problem is only one dimensional, a variety of
methods can be used to efficiently find a solution. However, there is no way to scale
these solutions to problems with multiple input dimensions. Multi-dimensional problems
often arise in scientific applications where several types of experiments or data sets may
be available to test the validity of some hypothesis. In such cases, scientists, are interested
in regions of the space which are statistically plausible for all of the experiments types or
data sets.

One example is determining the spatial location of a disease outbreak using infor-
mation derived from medical records (e.g. hospital admits), as well as sales of over the
counter and prescription medications. In this case, public health officials are interested in
regions which have over densities of both specific hospital admits and their corresponding
medication sales. The presence of one or the other is not necessarily disturbing. Moreover,
returning all cases where only one stream was unusual would overwhelm the health offi-
cials, due to their relative frequency. Another example is cost/benefit analysis of resource
extraction where one must estimate the value of all resources to be obtained along with the
extraction costs in terms of infrastructure and human resources required. In this section,
we focus on a third application: simultaneous statistical analysis of multiple related data

3This work was original published in Bryan and Schneider [2007] with co-author Jeff Schneider.
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sets for finding valid parameter ranges in scientific models.

When given several models, each associated with a different data set, computing con-
fidence regions for the data sets as an ensemble often reduces to finding a level set of a
function which is a composite of the evaluations of each data set for a particular parameter
setting. A sampling algorithm for this problem must at each iteration select a parameter
setting to be tested and decide which experiment type to use for the test. Often tests have
different associated costs and accuracies. Moreover, a test on a single data set may be
sufficient to reject a particular model or parameter setting without testing other data sets.
Thus, an efficient algorithm must consider both the cost of each sample and the benefit of
selecting that sample (on a particular data set) for learning the entire composite function.

Traditionally, experiment selection has been achieved in the sciences in a somewhat
ad-hoc fashion where one scientist publishes plausible parameters derived from one type
of experiment and another uses that information to guide the selection of parameters in
future experiments. In Bayesian analysis, results from one experiment might form the
priors for the next. A more rigorous and efficient approach is to consider the multiple
experimental sources for evaluation simultaneously and choose evaluation samples in light
of their contribution to the combined evaluation function. We now look at two methods to
perform joint analyses in ways that form composite functions.

Joint Statistical Analysis

Joint analyses tend to take one of two forms. In the first, we create statistical model which
simultaneously considers all data sets. For instance, when performing an analysis on two
data sets using χ2 tests, we will have one χ2 test for data set A and a second for data set B.
However, since the χ2 test assumes that each of the data points have dependencies given
by the covariance matrix, we can combine the two tests into a single χ2 test. Let x∗, µ∗,
and Σ∗ be the associated test model, observed data and observed covariance for the model
∗ given some vector θ from the parameter space Θ. For instance yA is the test model for
data set A, while µB is the observed data for model B. If data set A and B have a and b
degrees of freedom respectively, then the combined χ2 test will be[

(xA − µA)T , (xB − µB)T
] [ ΣA ΣAB

ΣAB ΣB

]−1 [
xA − µA

xB − µB

]
∼ χ2

(a+b)

where ΣAB is the covariance of the data points between data sets A and B. If data sets A
and B are independent, then all elements of ΣAB are zero, and we can compactly write the
above expression as:

(xA − µA)T Σ−1
A (xA − µA) + (xB − µB)T Σ−1

B (xB − µB) ∼ χ2
(a+b).
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That is, the target function is merely the sum of the two observable functions: the variance
weighted sum of squares for both data sets. This approach can be extended to any number
of independent data sets, yielding a composite target function which is the sum over the
χ2 statistic for the k individual data sets.

Another approach to performing simultaneous joint analyses is to combine the mod-
els’ p-values. There are many ways to combine test procedures, including using Bonfer-
roni corrections [Bonferroni, 1936], the inverse normal method, and inverse logit methods
[Hedges, 1985]. However, the most common method to combine p-values is Fisher’s
method [Fisher, 1932]. Fisher noted that since a p-value, pi, has a Uniform distribution,
then −2 log(pi) will have a χ2

(2) distribution. Using the fact that the sum of independent
χ2 random variables has a χ2 distribution, the test becomes: reject H0 if and only if:

−2
k∑

i=1

log(pi) ≥ C

where C is the critical value of a χ2
(2k) distribution for some particular level α. Again, we

see that the target function is the sum of two observable functions.

Active Learning Composite Functions

As we have seen, the target function that we are often interested in learning when com-
bining statistical evidence is a composite of readily available observable functions. In par-
ticular, the previous two techniques rely on the sum of observable functions. It is clearly
possible to sample all observable functions at each query point and then directly compute
the value of the target function, effectively reducing the problem into a standard active
learning problem. However, such an approach disregards any strong evidence provided
by a single statistical test, and hence may result in extraneous sampling of the remaining
statistical models.

Instead, we are interested in active learning algorithms which use information about
each observable function to learn some composite target function. We propose a heuristic
for actively learning level sets of composite functions of sums for continuous valued input
spaces, without arbitrarily restricting the input space (e.g. imposing a grid).

2.4.1 Active Learning Algorithm

Suppose we are given a sample space (or parameter space) Θ ⊆ RW and a set of observable
functions gi : Θ 7→ R (i = 1, 2, . . . , k), such that

∑k
i=1 gi(θ) = g(θ), where g is the target
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Figure 2.6: Outline of our sampling algorithm. Given an initial set of points (possibly
empty), we randomly select a set of candidates,Q, and score them using a set of Gaussian
Processes. The best scoring point and observable function pair is chosen, and we evaluate
the selected observable function at the given point. This data is added to the corresponding
data set. The algorithm is nearly identical to the one given in Section 2.1 and shown in
Figure 2.1, except that here we must choose both an experiment point from Q and an
observable function, gi, on which to perform that experiment.

function we are interested in learning and θ is an arbitrary element of Θ. Here we assume
that we do not know the exact form of the observable functions. However, we assume
that we can sample from these functions at any point in Θ, just as we did in Section 2.1.
Given a threshold t, we want to find the set of points, Θ′, where g is equal to or less than
the threshold: V = {θ ∈ Θ′|θ ∈ Θ, g(θ) ≤ t}. In general, computing the value of each
gi(θ)’s may not incur the same cost. However, here we will assume that the costs are
similar, and hence try to minimize the total number of samples of all observable functions,
gi, required to accurately estimate Θ′. Moreover, we assume that g cannot be directly
sampled, and that neither g nor any of the gi’s is invertible. That is, the only way to
estimate the level-sets of g is to sample points from the gi’s and infer g. This formulation
accurately mimics combining p-values using Fisher’s method, as the method for finding
the individual p-values may be entirely unknown.

The approach we propose for the task of computing level sets of composite functions
again leverages the active learning framework discussed in Section 2.1. The main dif-
ference between the approach used here and that detailed in Section 2.1, is that here we
must not only choose the point θ̃ ∈ Q, for the next experiment, but we must also choose
the observable function, gi, for which we will compute gi(θ). Ideally, we want to sample
the observable function gi at the point which best increases our prediction accuracy (e.g.
whether a point is above or below the threshold) over the combined target function, g. As
we have seen before, the parameter space is typically continuous and multi-dimensional,
and so we cannot afford to test all possible combination of points and observable functions
to find the best pair. Instead, we model each of the observable functions using the current
samples taken from that function as a Gaussian Process. Then, for each experiment, we
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generate a candidate set Q, as before. Each point in Q is scored using one of several
heuristics, and the best point and observable function pair, {θ̃, g̃}, is selected. We compute
the value of the observable function at the selected point, g̃(θ̃), and add it to the data set
used to model that function, and the process is repeated. The active learning algorithm is
illustrated in Figure 2.6.

2.4.2 Choosing Experiments

Using this greedy selection algorithm, we must now decide how to choose the sample /
observable function pairs. We consider the following heuristics:

Random This heuristic selects one of the candidate points and the associated observable
function, gi, uniformly at random. This method serves as a baseline for comparison of the
other heuristics.

Variance This heuristic selects the point which has the largest variance on any of the
observable functions; our choice then, is the point with the maximum variance, and the
observable function on which that variance was found. That is, the variance heuristic
select s the candidate point, θ ∈ Q and the observable function gi, for which σ2

i (θ) is
maximal. Similar to the variance heuristic described in Section 2.2.2, this heuristic will
map out the observable functions over the entire parameter space, and hence will learn the
target function over the entire space.

Sequential-Straddle As noted in Section 2.4, the problem can be simplified to a stan-
dard active learning problem if one sequentially samples each of the observable functions
in order to directly compute g. In Section 2.2 we showed that in a setting where experi-
ments yield the (approximately) true values of the target function, the straddle heuristic
efficiently identifies function level sets. The Sequential-Straddle heuristic, seq-straddle,
leverages the searching ability of the straddle heuristic by choosing the candidate point
from Q with the highest combined straddle score,

combined-straddle(θq) = 1.96
k∑

i=1

σ2
i (θq)−

∣∣∣∣∣
k∑

i=1

φi(θq)− t

∣∣∣∣∣ , (2.3)

and then sequentially sampling all k observable functions at the that point.
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Variance-Straddle While Bryan et al. [2005] showed that the straddle heuristic works
well when directly sampling the target function, we can hope to do better by considering
the output from each observable function individually. For instance, if a sample point
results in a very large value for one of the observable functions, it may be unlikely or
impossible that the results of the other gi’s will be such that the resulting value of g is near
the level-set. In particular, when dealing with the χ2 models mentioned in the introduction,
we know that gi(θ) ≥ 0 for all i. Thus, if a single gi is greater than the level-set boundary,
the target function will also be greater than the level-set boundary, and hence it is likely that
sampling elsewhere will be advantageous. The Variance-Straddle heuristic, var-straddle
chooses the point, θ̃ fromQ with the largest combined-straddle score (given in Equation
2.3) and then selects the observable function, g̃, which has the largest variance at θ̃.

Variance-MaxVarStraddle Finally, we consider a variant of the straddle heuristic.
This heuristic tries to mimic the information gain of choosing a particular point and observ-
able function pair. Specifically, note after observing a point, the variance of the Gaussian
Process is effectively zero at that point (since we have set ζ to be a very small positive
value). Thus, in the single data set case, the straddle heuristic can be seen as balancing
the expected gain in the model fit (σ(θq)) with the expected distance of the point to the
level-set boundary. However, with the multiple model formulation, we do not expect the
model variance to decrease by σ(θq) =

∑k
i=1 σ2

i (θq), but rather by σi(θq) where g̃ = gi is
the observable function selected. Thus, a more accurate estimate of the information gain of
a candidate point and observable function pair is the Variance-MaxVarStraddle heuristic,
var-maxvarstraddle

var-maxvarstraddle(θq) = max
i

{
1.96σ2

i (θq)
}
−

∣∣∣∣∣
k∑

i=1

φi(θq)− t

∣∣∣∣∣ .
The candidate point, θ ∈ Q, and corresponding observable function gi which maximize
this heuristic are chosen as the next experiment.

2.4.3 Experiments

Now, let us assess how well each of the previously mentioned heuristics performs on the
task of learning level sets of composite functions, again using classification accuracy as
the test metric. Specifically, we compute the fraction of the test points in the predicted
model , φ =

∑k
i=1 φi and the target function g predict values which are on the same side

of the threshold, t, after a fixed number of experiments. For the four following functions,
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classification accuracies were assessed after 200 experiments. The sampling and testing
process was repeated 20 times to account for variations due to the random nature of the
candidate generation process. The first three target functions considered were sums of
two observable functions, while the fourth was a sum of four observable functions. The
considered functions are:

Gaussian This problem consisted of determining the 95% acceptance region of two axis
aligned perpendicular two dimensional Gaussian distributions centered at the origin. Both
Gaussians had diagonal covariance matrices with on diagonal elements of 1 and 16. Since
working in probability space results in many near-zero values, the problem was consid-
ered in log-space. As such, the target function was a 2 dimensional symmetric quadratic
function, and the level-set was a circle centered at the origin. The range of the parameter
space (x, y ∈ [−3.4, 3.4])

2D Sine The second problem consists of finding where the two 2D sinusoidal observable
functions

g1(x, y) = sin(10x) + cos(4y)− cos(3xy)

g2(x, y) = sin(10y) + cos(4x)− cos(3xy)

sum to zero where x, y ∈ [0, 2]. The first of these observable functions is identical to
the 2D Sine test function used in Section 2.2.3, while the other is simply a rotation of
the 2D Sine function. We chose this set of functions for the same reasons outlined in
Section 2.2.3. In particular, these functions are interesting due to the discontinuities and
extended regions in which they are very close to the boundary (making accurate classifi-
cation difficult).

2D SimpleSine This problem is a simplified version of the previous problem, where the
sinusoidal observable functions

g1(x, y) = sin(4x) + cos(4y)− cos(3xy)

g2(x, y) = sin(4y) + cos(4x)− cos(3xy)

were chosen to reduce the problem’s semi-variances (again x, y ∈ [0, 2]). Since problems
with large semi-variances result in large model variance estimates in the kriging models,
such problems require extensive sampling to correctly identify function level-sets. The
smaller semi-variances of this task allow us to quickly distinguish which heuristics are
utilizing the information in the Gaussian process to exclude portions of the sample space
from further sampling.
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Gaussian 2D SimpleSine 2D Sine 2D Sine-4
random > 1000 > 1000 > 1000 > 1000

variance 95.0±11.0 > 500 105.0±11.5 188.6±32.2
seq-straddle 76.2±3.5 150.3±6.5 87.0±7.3 98.1±14.0
var-straddle 89.5±5.0 157.9±12.3 90.4±9.0 72.5±12.0

var-maxvarstraddle 71.7±3.3 127.3±6.8 82.9±10.2 54.9±16.9

Table 2.4: Number of samples required to achieve a 99% classification accuracy on the
Gaussian and 2D SimpleSine tests, and a 90% accuracy on the 2D Sine and 2D Sine-
4 tests based on 20 trials. The Variance-MaxVarStraddle heuristic consistently performs
better than competitors.

2D Sine-4 This task consisted of finding where four 2D sinusoids sum to −2. The sinu-
soids chosen for this problem are

g1(x, y) = sin(4x) + cos(2y)− cos(3x)

g2(x, y) = sin(2y − 2) + cos(2x)− cos(3x)

g3(x, y) = sin(3xy) + cos(2x) + 1

g4(x, y) = cos(xy)− sin(xy)

where again x, y ∈ [0, 2]. The resulting target function contains both regions of high slope,
as well as regions with low derivatives near the specified threshold. Moreover, there are
regions of the input space in which a call to a single observable function would strongly
suggest that further samples were unnecessary.

Classification accuracy results for the four tests are given in Table 2.4. Variance-
MaxVarStraddle (var-maxvarstraddle) outperforms all of the other heuristics on each
of the target functions. Not surprisingly, the straddle-based heuristics beat the random
and variance heuristics, as both the random and variance heuristics sample the observ-
able functions over the entire parameter space, while the straddle-based heuristics focus
on the level-set of interest. Moreover, Variance-MaxVarStraddle beats out the Sequential-
Straddle heuristic (seq-straddle); this validates our supposition that treating each of the
observable functions individually allows for additional learning opportunities.

One surprising result of our experimentation is that the Sequential-Straddle performs as
well as than the Variance-Straddle heuristic (var-straddle) on all test functions the Gaus-
sian, 2D SimpleSine and 2D Sine tasks. We believe that this result illustrates the fact
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Figure 2.7: Predicted level-set (red), true level-set (blue) and experiments (squares, circle,
triangles and×’s) for the 2D Sine-4 function after sampling 100 points using the specified
heuristics. The Variance-MaxVarStraddle heuristic outperforms the other heuristics by
using information from a single observable function to quickly prune off portions of the
parameter space that are extremely unlikely.

that the Variance-Straddle heuristic is over estimating the importance of the variance com-
ponent of the candidate points to the information gain of a point. The Variance-Straddle
heuristic will be as likely to choose a candidate point where one of the two Gaussian pro-
cess models for the observable functions is large, and the other is zero as it is to choose
a point where both estimated variances are equal. This is because the sum of the vari-
ances and estimated values for gi are similar. However, the first candidate has much more
information gain than the second, as selecting the first candidate will give us the (approx-
imately) exact value of the target function, while selecting the second will only reduce
the overall variance by a moderate amount. On the 2DSine-4 task the Variance-Straddle
heuristic is able to make use of the individual observable functions, but still does not do as
well as the Variance-MaxVarStraddle heuristic.
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To illustrate the differences in sampling patterns between these heuristics, we plot the
first 100 samples chosen for the observable functions (with squares, circles, triangles and
×’s, respectively) with the true (blue) and predicted (red) function level-sets for the 2D
Sine-4 task in Figure 2.7. As seen in Table 2.4, the Variance-MaxVarStraddle heuristic is
much better at picking points to aid in the location of the level-set of interest than the other
heuristics. In particular, the Variance-MaxVarStraddle heuristic is able to learn that some
regions of the space are poor without having to sample all observable functions in those
regions. As such, the samples for the Variance-MaxVarStraddle heuristic lie much closer
to the target level-set and the prediction accuracy after 100 samples is significantly better.
This reinforces our hypothesis that modeling the observable functions separately results in
additional learning opportunities.

Thus, our experimental results indicate that Variance-MaxVarStraddle outperforms
both the random and variance heuristics typically applied to similar active learning tasks.
Moreover, the Variance-MaxVarStraddle heuristic is better than both the Sequential- and
Variance-Straddle heuristics, as it appears to better approximate the information gain of a
candidate point.

2.5 Learning a Global Optimum

Finally, let us look at the task of learning the global optimum of a target function. As
we have seen in Sections 2.2, 2.3 and 2.4, using heuristics which mimic information gain,
but do not require the computation cost to compute the entire mutual information over
the entire parameter space can be extremely powerful. One may well ask what would
happen if we tried to modify the straddle heuristic to compute the global optimum. Now,
instead of sampling points that are above a pre-specified boundary value t, we want the
heuristic to sample points about the largest value of g currently observed; call this point
t̃.4 Moreover, we are only interested in points which are greater than t̃, so we replace
|φ(θq) − t̃| with t̃ − φ(θq), which effectively eliminates those points with large variances
that are smaller than the threshold t̃, while emphasizing those points that are predicted to
have values greater than t̃. The result is the global optimum heuristic:

global-optimum(θq) = 1.96σ + φ(θ + q)

where the t̃ term was dropped as it is independent of θq and hence will not impact the selec-
tion process. This heuristic is identical to the IE-MAX heuristic of Moore and Schneider

4To eliminate ambiguities, we can select the first point randomly from the parameter space.
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[1996], which was shown to work well for tasks such as factory optimization analysis.5

2.6 Summary

In this chapter we have described an active learning framework which can be used to learn
features of a target function. We have used this framework to show how four different
function features can be learned efficiently. Function level-sets can be learned with a
fraction of the samples by using the straddle heuristic instead of heuristics which try
to learn the target function over the entire parameter space. Moreover, the threshvar
can be used to sample a function below a specified threshold t in a manner that both
maximizes the number of samples in the subspace of Θ where g < t, Θ′, and ensures that
no regions of Θ′ are neglected. Functions which are sums of other observable functions
can be learned much more efficiently using the var-maxvarstraddle heuristic than either
using the variance heuristic or the straddle over the target function. These results support
our intuition: heuristics which focus on learning a specific feature of the target function,
g, significantly outperform heuristics which try to learn g over the entire parameter space.
In the next chapter we will see how we can harness these algorithms to solve statistical
inference problems.

5The final heuristic used by Moore and Schneider [1996] added boundaries to ensure that sample ex-
periments did not cause the factory machine to fail; these “soft boundaries” are similar to the constraints
imposed by our parameter space, Θ.
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Chapter 3

Confidence Region Procedures

In this chapter we discuss several techniques which can be used to compute 1 − α confi-
dence regions. 1−α confidence regions are possibly disjoint sub-regions of our parameter
space, Θ, which contain the truth with probability 1 − α. Most of the methods presented
here are frequentist in nature, rather than Bayesian. While the selection of a frequentist
or Bayesian procedure is often viewed as a matter of taste, it should be noted that the two
statistical ideologies answer slightly different questions; we will discuss this issue in Sec-
tion 3.6.1. As we shall see, frequentist methods are much better suited to active learning
search algorithms, as there is no need to normalize the results (to form the posterior) either
during or after sampling.

We begin this chapter by formalizing the definition of confidence regions. We then
discuss several frequentist techniques to derive confidence regions: χ2 tests, confidence
balls, and the minimax expected size confidence procedure. Additionally, we discuss two
ways to compute Bayesian credible intervals. We end this chapter with a comparison of
the various confidence region techniques, pointing out their strengths and weaknesses.

3.1 Confidence Regions

We begin by assuming that we are given some data x, which can be modeled as the re-
alization of a stochastic process, µ. The nature of this process is assumed to be known
fully except for the values of W input parameters. We label the full vector of parameters
θ. Thus, we assume that the observed data — consisting of N pairs (zn, Yn) — is given
by Yn = µ(zn, θ) + εn, where εn is assumed to be Normal with known variance σ2

n (for
n = 1, 2, . . . , N . Further, we assume that it is known that the true value of the parameters,
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Figure 3.1: Pictorial overview of the statistical procedure to test hypothetical models
against the observed data. Note that during this process, we assume that we are given
a simulator which faithfully represents the physical world when given the true parameter
vector θ?.

which we label θ?, falls in the space Θ ⊆ RW ; θ? is an unknown, unobserved random
variable. Our goal then, is to take the observations x and reverse engineer the output of
the model to determine θ?. In general, it is impossible to decisively determine the single
θ ∈ Θ which is θ?. Instead, we can compute confidence regions — a set of θ ∈ Θ —
which contains θ? with high probability.

A 1−α confidence region, C, for θ? is a subset of Θ that is produced using an approach
known to correctly include the true value of the parameter with probability at least 1 −
α. Confidence regions are computed by applying a confidence procedure. A confidence
procedure maps the observed data into C ⊆ Θ, forming one or more contiguous areas in
the parameter space. We say that a confidence procedure has coverage probability 1−α if,
regardless of the true value θ?, the probability that the resulting confidence region includes
θ? is at least 1 − α; that is Pθ?(θ? ∈ C) ≥ 1 − α. A confidence procedure is optimal if
it is guaranteed to return the smallest possible confidence region which maintains 1 − α
coverage. Optimal confidence procedures are generally known only for simple parametric
models. General procedures for forming confidence regions are desirable for use with the
complex models used in most scientific applications.

The general strategy for computing confidence regions is depicted in Figure 3.1. Pa-
rameter vector samples, θ, are chosen from Θ and then used to compute hypothetical
observations given some model of the physical world. These hypothetical observations
are compared to the true observations using a statistical test, resulting in a score that the
hypothesis and true observations were drawn from the same source. Note that throughout
this process, we assume that the simulator faithfully represents the underlying physical
processes; all of the statistical inferences made are predicated on this fact. Thus, in the
following, we will often refer to the hypothetical observations of our model simulator
simply as our “model” given some value θ ∈ Θ.

While there are many methods for computing 1−α confidence regions given the scores,
it is natural to prefer approaches that produce small confidence regions, as small regions
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correspond to tighter inferences. However, meaningful optimality results from considering
procedures that are constructed without consideration of the observed data at hand. If
a confidence procedure is tailored to the observed data x, then optimality is trivial, but
meaningless, as a procedure can be designed such that the resulting 1 − α confidence
region is small (or even empty) when x is observed and large otherwise.

For example, consider the decision rule which given the observed data x creates the
confidence region, C(x), such that:

C(x) =

{
∅ when the data is x
Θ otherwise.

(3.1)

Since the probability of actually observing x is zero (as the observations could have been
anything), the expected size of C(x) is Θ, even though the size of C(x) is zero given the
observed data.

Instead, we look at confidence procedures which are constructed before the data is
observed. These procedures can then be applied to the data to produce non-empty regions
which contain the truth with high probability. The regions which are most valuable are
those with the smallest size, but do not rely on a specific value of the data, as they are
likely to yield tighter inferences on the input parameters of the physical model µ. We will
now look at several techniques to compute 1− α confidence regions.

3.2 χ2 Tests

Often, χ2 tests are used to produce 1−α confidence regions due to the ease in which they
can be both implemented and interpreted. In their simplest form, one fixes a candidate pa-
rameter value θ ∈ Θ and assesses the fit of the data to the assumed model under parameter
value θ using a sum of squares criterion. Typically one computes a variance weighted sum
of squares between the test model and the data (where the variance at each point is given
by error estimates from the data). However, this formulation assumes that the data points
are independent, which is often incorrect. Instead, we can treat the data as coming from
a multivariate Normal, and compute the sum of squares as (x− µ)Σ−1(x− µ)T , where x
is our observed data, µ is our computed model, and Σ is a known covariance matrix for
the data. In either case, we can the compare this sum of squares to the appropriate χ2 dis-
tribution to assess if the deviation from expected is large enough to rule out that model at
significance level α. If this is repeated for all θ ∈ Θ the set of accepted parameter vectors
will be a 1− α confidence region for θ?.
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However, it is well known that such an approach is conservative [Wasserman, 2004] be-
cause it does not incorporate the available information regarding the full parameter space:
In particular, some deviations from “expected” are due to noise, while others due to the
fact that θ 6= θ?. By ignoring this distinction, χ2 confidence regions are usually larger than
necessary, resulting in sub-optimal inference.

3.2.1 Efficiently Computing χ2 Confidence Regions

As mentioned in the previous section, exact computation of 1−α confidence regions using
χ2 tests requires testing all θ ∈ Θ to determine if the variance-weighted sum of squares is
less than the χ2

(N) statistic when the coverage is equal to 1− α. Since Θ is typically large
or infinite, this is impossible. Instead we use the active learning framework of Section 2.1
to compute the 1− α confidence regions.

Specifically, note that the task we are interested in is that of discovering Θ′ = {θ ∈
Θ|g(θ) ≤ t}, where here g is the function mapping parameter vectors through the model µ
to the variance-weighted sum of squares, and t is the χ2

(N) statistic which ensures that the
coverage is 1− α. Thus, we could use the threshvar heuristic discussed in Section 2.3 to
sample V . However, a more efficient approach is to use the straddle heuristic described
in Section 2.2, as we do not need samples from the confidence regions’ interiors to deter-
mine their extent. If we can accurately discover the (possibly disjoint) boundaries of Θ′,
then we can determine the range of any of the input parameters either individually, or in
combination with a subset of the other parameters.

3.3 Confidence Balls

Alternatively, Genovese et al. [2004] proposed the idea of confidence balls, constructed
by first fitting the observed data non-parametrically and then comparing a proposed model
to this nonparametric fit. This approach can be viewed as a generalization of the classic
approach of reducing the full data down to maximum likelihood estimates of the param-
eters, and then using the approximate distribution of the maximum likelihood estimate
to form a confidence region. Confidence balls correct for the power loss of χ2 tests by
mimicking the underlying function with the nonparametric fit, thereby reducing the noise
inherent in the data. However as we shall see, computing the radius of the confidence ball
is non-trivial, as it relies on both the fit to the data as well as the observational error.
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3.3.1 The Non-Parametric Fit

Suppose we were given data in the form {z`, Y`}, for ` = Lmin, . . . , Lmax. That is, we
suppose that the data is equally spaced along the z axis.1 Let N = Lmax − Lmin + 1 be
the total number of observed data points. We take Y` = Ĉ` to be the observations where
z` = (`− Lmin)/(Lmax − Lmin) and let µ(z`, θ

?) ≡ C` denote the true value of the model
at z`.

We then solve the nonparametric regression problem:

Y` = µ(z`) + ε`, ` = Lmin, . . . , Lmax, (3.2)

where ε = (εLmin
, . . . , εLmax) are assumed Gaussian with known covariance matrix Σ.

Henceforth, we will use i = ` − Lmin + 1 as an index. Nonparametric analysis is based
on the notion of estimating a function without forcing it to fit some finite-dimensional
parameteric form, by smoothing the data in such a way to balance the bias and variance.
In this work, we use orthogonal series regression to estimate µ, expanding µ as a cosine
basis:

µ(z) =
∞∑

j=0

ρjφj(z)

where

φj(z) =

{
1 for j = 0√

2 cos(πjz) for j = 1, 2, 3, . . .

and the ρj’s are the coefficients for each basis component. If µ is smooth, which is
common for many physical models, then ρj will decay rapidly as j increases. That is,
if µ is smooth, then there are little or no high frequency fluctuations in µ and hence
ρj ' 0. Thus,

∑∞
j=N+1 ρ2

j will be negligible, and we can approximate the infinite sum
as µ(z) ≈

∑N
j=0 ρjφj(z). Let

Zj =
1

n

N∑
i=1

Yiφj(zi)

for j = 0, 1, . . . N . Then Z is approximately Normally distributed with mean ρ and
covariance B/

√
N = UΣUT /

√
N , where U is the cosine basis transformation matrix.

In order to obtain an even smoother estimate of µ, we damp out the higher frequencies
using shrinkage estimators. We let ρ̂j = λjZj where 1 ≥ λ0 ≥ λ1 ≥ · · · ≥ λN ≥ 0 are

1This assumption can be removed by performing a QR-factorization of the matrix φ.
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shrinkage coefficients. The estimate of µ is now

µ̂(z) =
N∑

j=0

ρ̂jφj(z) =
N∑

j=0

λjZjφj(z).

Following Genovese et al. [2004], we use a special case of monotone shrinkage in which

λj =

{
1 for j ≤ J
0 for j > J

for some integer J ∈ [0, N ]. We will show how to find J shortly. Using the monotone
shrinkage scheme described above, the estimate of µ becomes

µ̂(z) =
J∑

j=0

Zjφj(z).

The squared error loss as a function of λ̂ = (λ̂0, λ̂1, . . . , λ̂N) is

Ln(λ̂) =

∫ 1

0

(
µ̂(z)− µ(z)

σ(z)

)2

dx ≈
N∑

j=1

(
ρj − ρ̂j

σj

)2

,

where σ2(z) is the variance of µ, and σ2
j are the observed variances of the power spectrum

(the elements on the diagonal of Σ). Meanwhile, the risk is given by

R(λ) = E

[∫ 1

0

(
µ̂(z)− µ(x)

σ(z)

)2

dx

]
≈ J

N
+

N∑
j=J

ρ2
j

σ2
j

We choose J to minimize the Stein’s unbiased risk estimate

R̂ = ZT D̄WD̄Z + trace(DWDB)− trace(D̄WD̄B) (3.3)

where D and D̄ = 1−D are diagonal matrices with 1’s in the first J and last N−J entries
respectively, B is the covariance of Z , and Wjk =

∑
` ∆jk`/σ` and

∆jk` =

∫ 1

0

φjφkφ`

=


1 if #{j, k, l = 0} = 3
0 if #{j, k, l = 0} = 2

δjkδ0` + δj`δ0k + δk`δ0j if #{j, k, l = 0} = 1
1√
2
(δ`,j+k + δ`,|j−k|) if #{j, k, l = 0} = 0

.

Beran and Dümbgen [1998] showed that R̂(λ) is asymptotically, uniformly close to R(λ)
when using monotone shrinkage coefficients and σ(z) = 1. Genovese et al. [2004] ex-
tended this result to the heteroskedastic case used here.
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3.3.2 The Confidence Ball

After we perform the non-parametric fit, we need to quantify the uncertainty to make
statistical inferences. We use the Beran-Dümbgen pivot method [Beran and Dümbgen,
1998, Beran, 2000] to derive valid confidence intervals. This method relies on the weak
convergence of the “pivot process” — BN(λ̂) =

√
N(LN(λ̂) − R̂(λ̂)) — to a Normal

(0, τ 2) distribution for some τ 2 > 0; a derivation of τ̂N can be found in Appendix A, taken
from Appendix 3 of Genovese et al. [2004]. Using the convergence of the pivot process,
we can compute a confidence ellipse for the basis coefficients with a “radius” given by:

DN =

{
ρ
∣∣∣ N∑

i=1

(
ρ̂i − ρi

σi

)2

≤ τ̂N zα√
N

+ R̂(λ̂N)

}
(3.4)

where the best fit to the data is represented by ρ̂i, the function being tested (whether it is
within some confidence ball) is ρi, and the level of the confidence ball is determined by
zα, the upper α quantile of a standard Normal distribution.

Therefore, using the central limit theorem, we have

BN =

{
µ(z) =

N∑
j=0

ρjφj(z)
∣∣∣ ρ ∈ DN

}
(3.5)

is an asymptotic 1− α confidence region for µ.

By comparing the model to a fit of the data as opposed to the data themselves, the
confidence ball technique is centered (approximately) on the true underlying function, µ,
as opposed to the noisy realization, µ̂. The implication is that it is less affected by noise
in the data. In particular, we have observed that χ2 tests will reject all possible models
in cases where there is a single outlier 4σ from the maximum likelihood estimate fit. By
initially smoothing the data, and then fitting this smoothed estimate, we are much less
susceptible to errors caused by noisy outliers.

Additionally, since the confidence ball method uses a smooth realization of the data,
the size of the radius computed using the pivot process is smaller than the χ2 radius, as
shown in Figure 3.2. This is a result of the fact that the Gaussian errors of all points are
considered as an ensemble, not individually as with χ2 tests. This allows us to reject more
points in the parameter space, and subsequently return tighter bounds on the confidence
ball; that is, the confidence ball test has more statistical power than does the χ2 test. A
comparison of the relative widths of the confidence and χ2 balls is shown in Figure 3.2.
Note that as the confidence ball radius increases, so does the size of the confidence region
(and α decreases). Thus, a 95% (or α = 0.05) confidence region has a larger “radius” than
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does a 67% (or α = 0.33) confidence region. Moreover, a 1 − α confidence ball strictly
contains all confidence balls with smaller values of 1− α.

3.3.3 Efficiently Computing Confidence Ball Confidence Regions

As with χ2 tests, the confidence ball techniques provides a method to test whether a partic-
ular θ ∈ Θ can be rejected given the observed data. This can be done by computing µ(θ)
for any θ ∈ Θ, and then checking whether µ(θ) is in BN . From Equation 3.4, checking
whether µ(θ) ∈ BN is equivalent to determining if the variance-weighted sum of squares
of ρ̂ and ρ is less than a constant given on the right-hand side of Equation 3.4. Thus,
determining 1 − α confidence regions using the confidence ball procedure results in a
computational process that is very much like that used for the χ2 tests; we must compute
a variance-weighted sum of squares between the model and the non-parametric fit to the
data, and then compare this sum of squares to a cutoff value, which given in Equation 3.4.

Compared with χ2 tests, the confidence ball approach is only marginally more compu-
tationally expensive. The additional costs incurred by the confidence ball procedure are the
computation of the non-parametric fit to the data and the derivation of the threshold based
upon τN . These calculations need only be computed once for each data set and take only a
couple of seconds. Thus, in general, the majority of computation used by both the χ2 tests
and the confidence ball procedure is in computing test models µ(θ). This expense can be
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minimized by efficiently choosing samples to locate the confidence region boundary.

Therefore, we use essentially the same algorithm described in Section 3.2.1, to com-
pute the confidence ball 1−α confidence regions. The only required changes are replacing
g(θ) and t with their confidence ball counterparts. With these minor changes, we can then
use the straddle heuristic in the active learning framework of Section 2.1 to compute the
extent of the 1− α confidence regions.

3.4 Minimax Expected Size Confidence Procedure

The third method for computing 1 − α confidence regions that we will look at is the
Minimax Expected Size (MES) confidence procedure [Evans et al., 2005, Schafer and
Stark, 2006].2 This procedure actively tries to minimize the maximum expected size of
the derived confidence region. Recall from Section 3.1, that small confidence regions,
constructed by procedures which do not rely on the observed data, are the most useful as
they impose tighter constraints on the model input parameters. While the MES procedure
guarantees to minimize the maximum expected size, in general, the observed size is also
approximately minimized, resulting in near optimal confidence regions.

Conceptually, the expected size of a confidence region equals∑
x

actual size of region when data is x× P (observed data is x) . (3.6)

The expected size of the confidence region turns out to be a natural optimality criterion. If a
confidence procedure simultaneously minimizes the actual size for all possible data values
x, then that procedure will also minimize the expected size. However, such procedures
will not exist in most situations. Looking more carefully at Equation 3.6, we note that the
probability the observed data is x is, in fact, a function of the unknown true distribution.
We seek the 1 − α confidence procedure that minimizes the maximum (over θ ∈ Θ)
expected size of the confidence region.

The discussion of confidence regions in Section 3.1 alluded to a trade-off that must be
made when constructing confidence procedures: region size versus coverage probability.
In particular, a procedure which sets C = Θ for all x is a trivial 1−α confidence procedure
for all values of α (as we assume that θ? ∈ Θ); however this confidence region is clearly
of little use. Conversely, the set {θ} for some θ ∈ Θ is a minimally sized confidence

2This work was originally published in Bryan et al. [2007a] and Bryan et al. [2007d] with co-authors
H. Brendan McMahan, Chad M. Schafer, and Jeff Schneider.
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region with probability zero of covering the true value. Intuitively this trade off can be
thought of as an adversarial two person game. Indeed, in Section 3.4.3 we will show how
the MES confidence procedure can be formulated as such a game. We now present the
background and notation describing these games: matrix games and their generalization,
convex games.

3.4.1 Game Theory Background

In this section we describe first matrix and then convex games. While there has been much
research in this area, we present only the core concepts and ideas necessary to understand
their relationship with and use within the MES confidence procedure. Interested readers
are referred to Dresher and Karlin [1953], Osborne [2003], McMahan [2006].

Matrix Games

A zero-sum matrix (normal-form) game is played by two players, player row with strate-
gies R = {1, . . . , I} and player column with strategies C = {1, . . . , J}. An I × J matrix
A specifies the payoffs. If row plays strategy i ∈ R and column plays j ∈ C, the pay-
ment from column to row is the (i, j)th entry of A, denoted aij . The players select their
strategies simultaneously, without knowledge of the other player’s choice.

We use ∆(·) to denote the probability simplex over a finite set. For example, the
probability simplex over the row player’s strategy set is

∆(R) =

{
y ∈ RI

∣∣∣ I∑
i=1

yi = 1 and yi ≥ 0

}
.

A mixed strategy is an element y ∈ ∆(R) for the row player or z ∈ ∆(C) for the col-
umn player, corresponding to a distribution over the rows or columns, respectively. If the
players select mixed strategies y and z, the expected payoff V (y, z) from column to row
is given by the bilinear form yTAz. A solution to the game is a minimax equilibrium
(y∗, z∗), a pair of strategies such that neither player has an incentive to play differently
given that the other player selects their strategy from the pair. The minimax theorem [von
Neumann and Morgenstern, 1944] states that if the players are allowed to select mixed
strategies, there is no advantage to playing second:

max
y∈∆(R)

min
z∈∆(C)

yTAz = min
z∈∆(C)

max
y∈∆(R)

yTAz. (3.7)
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Thus, solving either the min max or max min optimization problem from (3.7) results in
a minimax equilibrium for the matrix game. This problem can easily be converted to a
linear program and solved via standard techniques.

An ε-approximate minimax equilibrium for a matrix game is a pair of strategies (y′, z′)
where neither player can gain more than ε value by switching to some other strategy. That
is,

max
y∈∆(R)

V (y, z′)− ε ≤ V (y′, z′) ≤ min
z∈∆(C)

V (y′, z) + ε.

If ε = 0, then (y′, z′) is an exact minimax equilibrium.

Convex Games

Two-player zero-sum bilinear-payoff convex games (simply “convex games” for the se-
quel) are a natural generalization of matrix games.3 This formulation was first introduced
by Dresher and Karlin [1953], but despite the generality of the framework, convex games
have received remarkably little treatment in the literature. Convex games allow arbitrary
convex sets Y and Z in place of the probability simplexes ∆(R) and ∆(C) for matrix
games. A convex game is specified by a tuple (A, Y, Z) where Y ⊆ RI and Z ⊆ RJ

are the strategy sets for the two players, and A is a I × J payoff matrix. The first player
(who we will call y) selects an action y ∈ Y , the second player (called z) simultaneously
chooses z ∈ Z and the payoff from player z to player y is given by V (y, z) = yTAz. The
concepts of equilibria and ε-approximate equilibria naturally generalize to convex games
and it can be shown that the minimax theorem still holds (cf. McMahan [2006]).4

If the convex set Y is defined by a finite number of linear equality and inequality
constraints, then the convex set Y is a polyhedron. If both Y and Z are polyhedra, then
we say that the convex game G = (A, Y, Z) is polyhedral. Polyhedral convex games can
be solved in polynomial time via linear programming, as shown by Koller et al. [1994] in
the context of extensive-form games. If Y is a bounded polyhedron and E(Y ) is the set
of extreme points (corners) of Y , then there is a natural mapping between E(Y ) and R.
When G is polyhedral, the sets Y and Z correspond exactly to the sets of possible mixed
strategies in a certain matrix game. Whereas in the matrix game the mixed strategies are
only implicitly considered, in the convex game formulation their representation is explicit.

As an illustration, consider the matrix and convex game representations of “Rock-
Paper-Scissors”. Both representations use the same payoff matrix shown in Figure 3.3(a).

3Our convex games are non-cooperative and are unrelated to the super-modular coalitional games often
called convex games in the cooperative game theory literature.

4Some mild technical assumptions are required.
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R P S
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

(a) Payoff matrix of “Rock-
Paper-Scissors”.

Rock

Paper Scissors
(b) Pure strategies in the ma-
trix game representation (dots),
along with implicit mixed strate-
gies (shaded triangle).

Rock

Paper Scissors
(c) The convex game represen-
tation (solid triangle) explicitly
includes both pure and mixed
strategies.

Figure 3.3: The payoff matrix for “Rock-Paper-Scissors” (a), along with the matrix (b)
and convex (c) representations of the players’ strategy sets.

However, while the matrix game explicitly considers only the pure player strategies (e.g.,
always play “rock”) shown as the dots in Figure 3.3(b), the convex game represents all
possible strategies from which a player can choose, as illustrated in Figure 3.3(c).

While convex games are a simple generalization of matrix games, the ability to rep-
resent arbitrary convex strategy sets lets us take advantage of structure in many types of
games, often yielding exponentially smaller representations. Notable examples include
cost-paired Markov decision process games, extensive-form games (including poker), and
the problem of computing an optimal oblivious routing [McMahan, 2006]. In the follow-
ing two sections, we shall see that the MES confidence procedure can also be formulated
as a convex game.

3.4.2 Formulating the MES Confidence Procedure

As in Section 3.1, we denote the set of possible model parameter settings as Θ (Θ ⊆ RW ),
and let θ and θ̃ be arbitrary members of Θ. For each θ ∈ Θ, there is a distribution Pθ on the
space of possible observations X ⊆ RN . Let X be a random variable and x be a generic
observation of X . The distribution of X will be made clear by the context; for instance
Pθ(X ∈ U) denotes the probability that X falls in the set U when it has distribution
Pθ. Assume each distribution Pθ has a density f(x|θ) with respect to Lebesgue measure.
We are interested in constructing a confidence region for the true value of the parameter,
denoted θ?, based on the observation that X = x and the a priori constraint that θ? ∈ Θ.

Consider testing the hypothesis that θ? = θ̃ at level α for some arbitrary θ̃ ∈ Θ. The
associated acceptance region for the test,A(θ̃) ⊂ X , is the set of data values for which the
test will not reject the hypothesis θ? = θ̃. Since we are interested in tests with significance
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level α, we require Pθ̃(X ∈ A(θ̃)) ≥ 1− α.

The power of the test is the probability that the test correctly rejects the hypothesis that
θ? = θ̃. Thus, power is a function of the true value of the parameter. Define the power
function as

β(θ, θ̃) ≡ 1− Pθ(X ∈ A(θ̃)).

The test has significance level α, so β(θ̃, θ̃) ≤ α. We are interested in small (i.e., precise)
confidence regions and we see below that this is equivalent to choosing A(θ̃) to maximize
β(θ, θ̃) over all θ subject to β(θ̃, θ̃) ≤ α.

The above can be repeated for all θ̃ ∈ Θ and the result is a family of acceptance
regions A(θ̃). Inverting the hypothesis test θ? = θ̃ using acceptance region A(θ̃), gives
us a confidence procedure, d : Θ × X 7→ {0, 1}, allowing us to compute the confidence
region CA. The confidence procedure d is defined as

d(θ̃, x) =

{
1, if x ∈ A(θ̃)

0, if x 6∈ A(θ̃)
.

Thus, we can either discuss the choice of A(θ̃) for all θ̃, or the choice of d; in what
follows it will be more natural to think of selecting d. Using the rule d,

Cd(x) ≡ {θ̃ ∈ Θ|d(θ̃, x) = 1}.

is a 1− α confidence region for θ? based on the observed data x.

We wish to minimize the expected size of Cd(X) by choosing the confidence procedure
d judiciously, since a small confidence set implies high precision in the estimate. However,
since we do not know θ?, we cannot choose our confidence procedure d to guarantee
that Cd(x) includes the true value of the parameter. Instead we choose d to ensure that
Pθ(θ ∈ Cd(X)) ≥ 1− α for all θ ∈ Θ.

Define ν(Cd(x)) to be the size of Cd(x) using a measure ν:

ν(Cd(x)) =

∫
Θ

d(θ̃, x)ν(dθ̃)

Any measure that is defined on a broad enough class of subsets of Θ that Cd(x) is ν-
measurable for any value of x is permissible. In this paper we will assume ν is a Euclidean
measure over the parameter space, although other choices could be justified. Choosing d
to minimize ν(Cd(x)) for fixed data x′ is trivial: simply define d(θ̃, x) as

d(θ̃, x) =

{
0 if x = x′

1 otherwise.

49



This decision rule results in the confidence region given in Equation 3.1. Using the
data to define the decision rule is equivalent to “data snooping” and is not statistically
valid. Instead, we seek to choose d to make the expected size of the confidence region
(Eθ[ν(Cd(X))]) small for all possible truths θ ∈ Θ.

Unfortunately, it is not usually true that a single d simultaneously minimizes Eθ[ν(Cd(X))]
over all θ. Instead, consider minimizing the weighted average

S(π, d) ≡
∫

Θ

Eθ[ν(Cd(X))]π(dθ), (3.8)

with the weighting provided by a probability measure π defined on Θ. Pratt’s theorem
[Pratt, 1961] states

Eθ[ν(Cd(X))] =

∫
Θ

(1− β(θ, θ̃)) ν(dθ̃).

This link between expected size and power allows us to apply the classic Neyman-Pearson
lemma [Neyman and Pearson, 1933] to find the d that minimizes Equation 3.8: set d(θ̃, x) =
1 if and only if Tπ(θ̃, x) ≤ cθ̃ where

Tπ(θ̃, x) ≡
∫

Θ
f(x|θ)π(dθ)

f(x|θ̃)
(3.9)

and cθ̃ is a cutoff chosen large enough to ensure d has 1−α coverage. Call this confidence
procedure dπ.

The selection of the measure π is subjective, but there is a particular choice which can
be justified using statistical decision theory. Let π0 be a π that maximizes S(π, dπ). This
π0 is not necessarily unique, but Evans et al. [2005] show that, for any choice of decision
procedure d,

Eθ[ν(Cd(X))] ≥ S(π0, dπ0) for some θ ∈ Θ.

In other words, S(π0, dπ0) is the smallest that the worst-case expected size could be. In
what follows, we will see that we can use game theory and Monte Carlo simulations to
construct π such that

Êθ[ν(Cdπ0
(X))] ≤M

for all θ ∈ Θ′, where
Êθ[ν(Cdπ0

(X))] ≈ Eθ[ν(Cdπ0
(X))],

M≈ S(π0, dπ0),

and Θ′ is a finite approximation to Θ. The quality of these approximations improves
as the size of the Monte Carlo simulations grow. In essence, Monte Carlo simulations
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will be utilized to construct a finite-dimensional problem which well-approximates the
full problem. This finite approximation can then be solved by utilizing techniques from
game theory to find the desired MES confidence procedure which otherwise would be
intractable. The following section provides detail.

3.4.3 Monte Carlo Approximations

Note that

S(π, d) =

∫
Θ

Eθ[ν(Cd(X))]π(dθ)

=

∫
Θ

∫
X

ν(Cd(x))f(x|θ) dx π(dθ)

=

∫
Θ

∫
X

∫
Θ

d(θ̃, x)f(x|θ) ν(dθ̃) dx π(dθ)

=

∫
X

∫
Θ

dπ(θ̃, x)

∫
Θ

fθ(x)π(dθ)

fθ̃(x)
fθ̃(x)ν(dθ̃)dx (3.10)

We will approximate the integrals in the previous equation with finite samples. For
instance, ∫

Θ

Eθ[ν(Cd(X))]π(dθ) ≈
I∑

i=1

Eθi
[ν(Cd(X))]π(dθi)

where θ1, θ2, . . . , θI are chosen uniformly from Θ. Next, we approximate the integral
ν(dθ̃) as the sum over values θ̃1, θ̃2, . . . , θ̃J sampled uniformly from Θ. Finally, for each θ̃j ,
a sample of K data values is simulated from distribution Pθ̃j

and labeled xj1, xj2, . . . , xjK .
These are used in a Monte Carlo approximation to the integral against f(x|θ̃j). We will
replace the first integral with a discrete approximation of the expected value over X using
K points. Thus,

S(π, d) =

∫
Θ

Eθ[ν(Cd(X))]π(dθ)

≈
∫

X

J∑
j=1

dπ(θ̃j, x)

∑I
i=1 fθi

(x)π(θi)

fθ̃j
(x)

fθ̃j
(x)

≈ 1

JK

K∑
k=1

J∑
j=1

I∑
i=1

d(θ̃j, xjk)

(
f(xjk|θi)

f(xjk|θ̃j)

)
π(θi), (3.11)
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(a) The payoff matrix A is a concatenation of J sub-matrices,
where each sub-matrix corresponds to a single sample point. Rows
of the sub-matrices correspond to the same I prior points, while the
columns correspond to K different simulations of the sub-matrix
sample j.

(b) Pictorial strategies sets (Y and
Z) for players y (light triangle) and z
(dark triangle), respectively. Player
y chooses strategies from an or-
dinary probability simplex, while
player z must choose a decision
rule, a subset of the probability sim-
plex (when normalized by 1/K.)
Here K = 3, α = 0.33.

Figure 3.4: Payoff matrix and player strategies for the convex game formulation of the
MES confidence procedure.

where xj1, xj2, . . . , xjK ∼ Pθ̃j
. Equation 3.11 can be written compactly as

S(π, d) ≈ 1

JK
πTAd,

where

dT = [dT
1 ,dT

2 , . . . ,dT
J ]

dT
j = [d(θ̃j, xj1), d(θ̃j, xj2), . . . , d(θ̃j, xjK)]

πT = [π(θ1), π(θ2), . . . , π(θI)]

and the matrix A has elements given by

ai` =
f(xjk|θi)

f(xjk|θ̃j)
(3.12)

where ` = (j − 1)K + k. Note that A can be viewed as the concatenation of J I×K sub-
matrices, one for each sample point θ̃, as shown in Figure 3.4(a). The sub-matrices share
the same set of rows, corresponding to points used to derive the weighting function π. The
columns of each sub-matrix correspond to different variance weighted perturbations of the
sample point associated with that matrix. Thus, each element of the matrix is the ratio of
the likelihood of the prior to that of the simulated sample.

Using the results of Evans et al. [2005], we find that the decision rule which minimizes
the maximum expected size over θ ∈ Θ can be found by solving the convex game

S(π0, dπ0) ≈M = min
d

max
π

1

JK
πTAd. (3.13)
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The first player, y, has strategy set

Y = ∆({θi | 1 ≤ i ≤ I}),

that is, a vector π = y ∈ Y is simply a probability distribution over the finite set of
samples θi. The second player, z, has more complex constraints. Each sub-vector of d,
dj , must define a decision rule which gives probability 1 − α to accepting θ̃j into the
confidence region when θ? = θ̃j . This is guaranteed by requiring that the entries of dj

sum to K(1 − α), with all of the entries bounded between zero and one. We can fully
represent the set of allowed dj as the polyhedron Dj using the linear constraints

1T
Kdj = K(1− α)

(∀k) 0 ≤ djk ≤ 1

where 1K is the vector of length K with each entry equal to one. Accounting for the
normalization factor 1/JK, we define the convex strategy set

Z =

{
1

JK
〈d1, . . . ,dJ〉 ∈ RJK | dj ∈ Dj

}
. (3.14)

Thus, we have the convex game G = (A, Y, Z), illustrated in Figure 3.4. The “nature”
player, y, chooses a vector y corresponding to π and the “statistician” player, z, chooses
z corresponding to d. A comparison of Y and Z are shown in Figure 3.4(b), where, for
simplicity of illustration, we let I = K = 3 and α = 0.33. While y is free to choose any
point from the probability simplex composed of the three row samples, y is restricted from
playing any of the pure strategies. Indeed, as α is decreased, creating a more inclusive
confidence region, the restriction on Z grows, until the point where α = 0 and z is forced
to play the uniform strategy over the K columns of each sub-matrix. In this case the
statistician is forced to choose all K simulations, resulting in the confidence region C = Θ.
While z is highly restricted when choosing decision rules from Z when α = 0.05, there
are still enough alternatives to typically yield confidence regions significantly smaller than
Θ.

For fixed π, the statistician knows the ideal strategy formed by finding dπ and using it
to find the entries of d (and hence z). Moreover, the statistician assumes that nature acts
in a way that maximizes her payoff (the size of the region, S(π, d), given by Equation
3.13). This is equivalent to assuming nature chooses π0. Hence, the statistician’s minimax
strategy is dπ0 .
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Figure 3.5: Random data generated from the linear model s(x) = mx + b where each
point was subject to independent random Gaussian noise with σ = 0.5. The shaded area
corresponds to all possible models, s(x), that can be generated by some θ ∈ Θ for Θ with
m ∈ [−1 : 3] and b ∈ [−3 : 3].

3.4.4 Simple Example

Before discussing the technical details on how to sample and solve the convex game de-
noted in Equation 3.13, let us construct MES confidence regions for a simple problem to
gain some intuition about the procedure. A two player game is established between “na-
ture” (y) and the “statistician” (z). Nature chooses the true value of the parameter, θ?, but is
allowed to use mixed strategies and hence nature’s strategy space consists of distributions
over Θ. The statistician chooses the decision procedure, but knows that the best strategy
takes the form dπ for some choice of π ∈ Θ. Conceptually, one can imagine that both play-
ers are choosing strategies from the same space — they each choose a distribution over Θ
— with z transforming his choice, θ̃ into the decision rule dθ̃. Unfortunately, from a com-
putational standpoint, it is difficult to formulate a convex game in this manner. Instead,
we use the game formulation of the previous section to model the interaction between y’s
choices of θ ∈ Θ and z choice of d ∈ Z.

As an illustration, consider a system governed by a simple linear model s(x) = mx +
b + ε, where ε is some independent Gaussian noise with zero mean and known variance
(ε ∼ N(0, 0.25)), say due to measurement error. For instance, we can consider the system
to be predicted observations of force exerted by a spring due to extension (Hooke’s law).
We will assume that m ∈ [−1 : 3] and b ∈ [−3 : 3], based on prior expert knowledge.
Hence Θ = [−1, 3] × [−3, 3] and θ = {m, b} is an element of Θ. Let the true values
of the parameters underlying the model be θ? = {1, 0}. In Figure 3.5, we plot 11 points
drawn from the linear model with parameter vector θ?, with some observational noise as
described earlier. Clearly, Θ includes θ? = {1, 0} as well as many models which are
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(a) θ̃ = θ? = {1, 0}
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(b) θ̃ = {3, 0}, θ? = {1, 0}.

Figure 3.6: Comparison of the likelihood ratio (solid) versus the Neyman-Pearson cutoff
value (dashed) when α = 0.05, y chooses θ? = {1, 0} and z chooses θ̃. θ̃ = {m, b} is
included in the 1 − α confidence region if the likelihood ratio is greater than the cutoff
value. Note that when θ̃ = θ? the resulting confidence region is much smaller than when
θ̃ = {3, 0}. (See also Figure 3.7).

extremely poor fits to the observed data (for instance θ = {−1, 3}). The set of all possible
models is shown as the shaded region in Figure 3.5. Thus, in this setup, y (nature) is
choosing the pure strategy that places all of the weight on θ = θ? = {1, 0}.

Now, let us observe what happens as z (the statistician) varies his choice of θ̃ over
Θ. Suppose that z is allowed to choose only a single θ̃ ∈ Θ. The expected value of the
payoff from z to y, the likelihood ratio given in Equation 3.12, is distributed as a Gaussian
centered at θ̃. However, the cutoff value used to determine d is an exponential function
centered at θ?, but dependent on θ̃. The resulting confidence region, C, will be the region
of Θ where the Gaussian centered at θ̃ is greater than the quadratic cutoff centered at θ?.

In Figure 3.6, we show the interplay between the likelihood ratio and the cutoff values
for two choices of θ̃, θ̃ = θ? and θ̃ = {3, 0}, where b was fixed at zero. Since θ̃ is included
in the 1 − α confidence region if the likelihood ratio is greater than the cutoff value, the
derived confidence region will be much smaller when θ̃ = θ? than it when θ̃ = {3, 0}.
This is confirmed by looking at the derived confidence regions, shown in Figures 3.7(a)
and 3.7(b). In fact, the expected size of the confidence region is minimized when the z
correctly “guesses” θ̃ = θ? and constructs the procedure as the best response to the true
value of the parameter: dθ? . In Figure 3.8(a), we plot the expected sizes of the confidence
regions (over many realizations of the data) produced by z choosing a single value of θ
over Θ. Darker regions correspond to larger confidence regions.
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(a) θ̃ = θ? = {1, 0}.
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(b) θ̃ = {3, 0}, θ? = {1, 0}.

Figure 3.7: 95% confidence regions produced by the MES confidence procedure when
α = 0.05, y chooses θ? = {1, 0}, and z chooses θ̃ (shaded), as compared with the 95%
confidence region derived using χ2 tests (solid oval) for the linear model s(x) = mx + b.
The× symbol denotes the location of θ̃ in the space. When θ̃ = θ? the resulting confidence
region is much smaller than when θ̃ = {3, 0}.

Thus, it is in z’s best interest to always choose θ? and construct the corresponding
decision rule. However, of course, z does not know θ?. Moreover, z cannot use the data to
try to estimate θ?, because z must choose his strategy before observing any data (otherwise,
z could select a confidence procedure which had zero size, such as the one described by
Equation 3.1). Therefore, one reasonable strategy is to use the procedure dπ where π is a
uniform distribution over Θ. The approach advocated here, though, involves finding the π
that leads to the MES procedure. In Figure 3.8(b), we plot an approximation (using our
Monte Carlo procedure) to the distribution over Θ that leads to the MES procedure. Dark
regions correspond to areas of higher probability. Figure 3.8(b) shows that while π has
positive probability over a wide range of Θ, the minimax solution for π0 tends to place
higher probability around the center. This is because if θ? is near the center of Θ, then
the expected size of the confidence region will be larger than if θ? is near the boundary.
Conceptually, a ball around θ? will intersect with more of Θ if θ? is near the center. Thus,
the statistician (z) chooses the procedure to protect against this possibility.

One way to reduce risk to z of unjustifiably putting too much weight on θ̃ far from θ?

(possibly due to finite sampling effects) is to eliminate those strategies which greatly differ
from θ? from Θ. Given that the θ̃ ∈ Θ which are distant from θ? result in large confidence
regions (seen in Figure 3.7(a)), it is natural to want to restrict Θ to some smaller set. This
can be done by first performing a χ2 cut on all points in Θ, retaining only those with a
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(a) Relative expected sizes of the 95% con-
fidence regions computed with the proce-
dure when z chooses a fixed (single point)
strategy. In all cases, y chooses θ? =
{1, 0}. Dark areas correspond to larger re-
gions.
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(b) Distribution of π over Θ, when y
chooses θ? = {1, 0} and α = 0.05. Dark
regions correspond to higher probability.
Pixelization is due to the binning of sam-
ples used to compute π.

Figure 3.8: Relative expected sizes of the resulting 95% confidence regions when z
chooses a single strategy and the optimal mixed strategy z chooses when allowed to play a
mixed strategy over Θ. In both cases, α = 0.05 and y selects θ? = {1, 0}. While the single
optimal solution for z is to select θ? with probability 1, z does not know θ? and hence must
also guard against other possible plays by y.

variance weighted sum of squares distance less than a specified cutoff. While conservative,
the χ2 test will exclude from Θ those models that are very poor fits to the data. In particular,
we set the value of our χ2 cut such that the probability of rejecting θ? is α/10. We can
then use a Bonferroni correction [Bonferroni, 1936] to ensure that the combination of the
χ2 cut and the MES procedure have the correct coverage. This is done by computing the
1−0.9α level MES confidence regions on the restricted space. In practice, we have found
that this two step procedure increases the chances of rejecting incorrect models, resulting
in smaller confidence regions with the same 1− α coverage.

While we could perform the MES procedure without the χ2 restriction, the MES pro-
cedure would be forced to compute the minimax expected size over even those parameter
values which are extremely unlikely given the data, resulting in both a conservative esti-
mate and a payoff matrix that would be orders of magnitude larger to obtain the desired
accuracy. In Figure 3.9, we present 95% confidence regions for our linear model problem
using differing number of samples for both players y and z (θ and θ̃, respectively). As
shown in Figure 3.9(a), using too few samples results in significantly irregular and larger
confidence regions than when Θ is heavily sampled (Figure 3.9(c)).

57



b

m

-3

-2

-1

 0

 1

 2

 3

-1  0  1  2  3

(a) 50 samples for θ̃ and θ
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(b) 400 samples for θ and θ̃
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(c) 1000 samples for θ and θ̃

Figure 3.9: Derived MES 95% confidence regions (gray shaded regions) for the linear
model s(x) = mx + b, using differing numbers of samples for both θ̃ and θ, compared
with the 95% confidence region derived by χ2 tests (circles). Using too few samples results
in extremely irregular and conservative regions.

Applying the two-stage procedure described above, where Θ is reduced to Θ′ by using
a χ2 cut, the approximation to z’s best procedure is shown in Figure 3.10(a). In this fig-
ure the shaded area denotes those models rejected by the χ2 cut. The confidence region
derived using this procedure is shown in Figure 3.10(b). Here, 500 candidate parameter
combinations are tested and the accepted values are plotted. The slight irregularity in the
boundary is due to the sampling. In practice this can be smoothed. The circle outside of
this point cloud is the confidence region derived by a 95% χ2 test applied to the original
data. The gain in precision is clear. Finally, in Figure 3.10(c), we illustrate those mod-
els which cannot be rejected by both the MES confidence procedure as well as χ2 tests.
The greater statistical power of the MES test directly translates into better discriminative
power in model space, allowing the MES procedure to reject more alternative models and
potentially yield better scientific inferences.

Thus, the restriction on Θ can be seen as performing two roles. First, it eliminates those
θ̃ ∈ Θ that are clearly not good fits. Second, the χ2 cut reduces the size of considered
models in Θ, allowing us to compute accurate confidence regions with fewer samples.
Using fewer samples not only results in greater data efficiency, but it reduces the size of
the payoff matrix, which also reduces the time necessary to compute the minimax solution
to the convex game. Indeed, the confidence region in Figure 3.10(b) was constructed
with less than half of the samples and computation time than that used to construct the
confidence region shown in Figure 3.9(c).
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(a) Distribution of π over Θ′,
when θ and θ̃ are restricted to
Θ′ = {θ ∈ Θ|Pχ2(θ = θ?) ≥
0.995} (denoted by white disk).
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(b) MES confidence region
derived for the linear model
s(x) = mx + b (dark shading),
using Θ′ (white disk), compared
with the confidence regions
derived via χ2 tests (circle).
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(c) 95% confidence regions for
both MES (light shading) and
χ2 tests (dark shading) pro-
jected into model space. Points
represent random data generated
from the linear model s(x) =
mx + b subject to independent
Gaussian noise (see Figure 3.5).

Figure 3.10: Distribution of π0 and 95% confidence regions produced when θ̃ is restricted
to Θ′. In all cases, α = 0.05 and y selects θ? = {1, 0}. Note that the MES confidence
procedure produces confidence regions with more power (and hence smaller sizes) than a
χ2 test alternative.

3.4.5 Efficiently Computing MES Confidence Regions

Now that we have described the procedure in detail and looked at a simple example, let us
determine how the MES procedure can be used in practice to compute confidence regions.
Specifically, we address the questions of how to choose Monte Carlo samples, build the
payoff matrix, solve the convex game, and derive 1−α confidence regions. In this section
we will walk through the algorithm, describing each step and detailing how it can be
computed efficiently.

Selection of Monte Carlo Samples

The first issue we need to address is that of selecting the Monte Carlo samples to approxi-
mate the MES confidence procedure. In Section 3.4.3 we saw that both θ and θ̃ are sampled
uniformly from Θ (while xjk ∼ Pθ̃j

). However, as mentioned in Section 3.4.4, it is often
desirable to limit Θ to just those parameter vectors which result in models accepted by a
χ2 test at some level much smaller than α. This restriction limits the MES procedure to
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considering parameter vectors that are at least minimally supported by the data, reducing
the number of samples required.

Let Θ ⊆ RW be the a priori parameter set and let Θ′ be those parameter vectors from
Θ that satisfy the χ2 test. While we could choose models randomly from Θ and perform
the χ2 test to create Θ′, for many problems, only a fraction of the parameter vectors in
Θ result in models that lie within the χ2 cutoff and therefore parameter vectors in Θ′.
For computationally expensive models, this data inefficiency makes the MES procedure
intractable.

Instead, we construct an active learning algorithm using the framework of Section 2.1
to efficiently sample vectors from Θ′. For the χ2 and confidence ball search tasks men-
tioned in Sections 3.2.1 and 3.3.3, finding the boundaries of Θ′ was sufficient to determin-
ing the constraints the data placed upon each parameter. However, here we are interested
in actually obtaining samples from within Θ′. Thus, the threshvar sampling strategy dis-
cussed in Section 2.3 is a natural algorithmic choice.

Using the active learning framework of Section 2.1 with the threshvar heuristic, we
can sample points from Θ and retain those which fall within Θ′, in the set T . A uniform
sample of Θ′ can then be obtained by randomly sampling points from T . Since both θ and
θ̃ are sampled from Θ′, we use points randomly sampled from T for both. In practice we
generally use most, if not all, of the points in T for the MES procedure.

Note that a sample chosen in this manner will be slightly biased away from a truly
uniform sample, as it is unlikely to include two points that are very close to each other
(as such points would not be chosen by a variance-based algorithm). Our technique is
similar to quasi-random sampling [Press et al., 1992, Sec 7.7]. Quasi-random sampling
techniques trade the independence of consecutive samples for the ability to quickly cover
the entire search space. They have been shown to be more efficient than uniform random
sampling for many problems including numerical integration [Niederreiter, 1992]. For our
application, we assume that parameter vectors which are close (in L2 measure) result in
models which are similar, a common property. Under this assumption, a quasi-random
sample allows us to efficiently represent the space Θ′ with a limited number of samples.

Unlike the samples of θ and θ̃, samples for xjk can easily be computed, as they depend
only on the assumed noise model. For instance, in Section 3.1 we assumed the data were
given by µ(θ) plus some Gaussian noise with known covariance. Thus, sampling Pθ̃j

can
be done efficiently as it is a multivariate Gaussian and no models (µ’s) must be computed.
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Constructing the Payoff Matrix

Given a set of Monte Carlo samples, we must now build the associated payoff matrix for
the convex game. Note that all entries of the payoff matrix (defined by Equation 3.12) will
be greater than zero, as f(x|θ) > 0 for all x and θ. However, many values will be very
close to zero as the parameter space Θ results in the majority of the model pairs being
largely dis-similar. As we shall see in Section 3.4.5, a sparse representation of the payoff
matrix will allow us to solve the convex game significantly faster. To obtain a sparse payoff
matrix, Ã, we take all entries ai` ≤ εt and set them to zero in Ã. Often, setting even a
small value for εt will result in a fairly sparse matrix representation.

As an example, we consider the sparsity of the game matrix when constructing the
MES procedure for the SNLS data mentioned in Section 2.2.3, and which will be discussed
in detail in Section 4.1.2. For this data set, when εt = 1 × 10−4, the payoff matrix Ã is
96% sparse; even when εt = 1 × 10−32 (on the order of machine precision) the matrix is
85% sparse.5 A plot of the sparsity of the SNLS payoff matrix as a function of εt is shown
in Figure 3.11.

However, we could also construct Ã without first constructing A. Assuming a Gaus-
sian error model (as we did in Section 3.1), X has a multivariate Normal distribution with
mean µ(θ) and known variance, where µ(θ) is the predicted model. Thus, the likelihood
of an observation, x, given some θi ∈ Θ is given by:

f(x|θi) =
1

(2π)H/2|Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
.

f(x|θ̃j) has a similar form. If we further assume that the supernovae are independent,
then for each element of xjk, xjkn ∼ N(µn(θ̃j), σn). Thus, xjkn = µn(θ̃j) + σnεkn where
εkn ∼ N(0, 1). Hence the elements of A are given by

ai` =
f(x|θi)

f(x|θ̃j)

= exp

{
N∑

n=1

[
ε2

kn

2
− (µn(θ̃j) + εknσn − µn(θi))

2

2σ2
n

]}

= exp

{
N∑

n=1

vεkn −
N∑

n=1

v2

2

}
,

5Some convex games have much greater sparsity. For example, a payoff matrix for the poker game Rhode
Island Hold’em is 99.994% sparse.
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Figure 3.11: Sparsity of the game matrix for
the SNLS data set as a function of the cutoff
value εt. The cutoff value is the threshold
below which non-zero entries are mapped
to zero.
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Figure 3.12: Speedup of the convex game
matrix building on the SNLS data set for
an algorithm that bounds matrix entries and
prunes those shown to be smaller than the
cutoff value over the naive algorithm as a
function of the cutoff values. By pruning
entries proven to be less than the cutoff
value, the bound and prune algorithm can
obtain a speedup of roughly 5 times over the
naive algorithm.

where ` = (j−1)K +k and v is a vector with elements (µn(θi)−µn(θ̃j))/σn). The vector
v dependents only on i and j, the index of the row and the sub-matrix, and is independent
of k. Thus, we only need to compute this term once for each row of each sub-matrix.
Moreover, εkn is the same for all entries of a particular column. Hence, by computing the
maximum elements of εkn and v, we can bound the maximum magnitude of ai` for all
i. Comparing this bound with log(εt), we can determine whether we can set ai` to zero
without further computation. We find that by pruning those entries with maximal values
less than the log of the zero cutoff value speeds up the matrix build process in proportion
to the sparsity. When computing the payoff matrix for the SNLS data set, we observe a
factor of 5 speedup when using the bound and prune approach over simply using Equation
3.12 to compute the matrix entries, as shown in Figure 3.12. A similar bound and prune
technique can be used if Σ is not a diagonal matrix.
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Solving the Convex Game

Given a payoff matrix A (or similarly Ã) and the strategy sets Y and Z, defined in Sec-
tion 3.4.3, we must now solve the resulting convex game: G = (A, Y, Z). In this section
we look at algorithms to solve convex games, along with a strategy pruning technique
and the effect of sparse representations of A and approximate solutions on the resulting
minimax equilibria.

Algorithms There are many approaches one could use to solve a convex game. Here
we look at two standard approaches, fictitious play and linear programming, as well as the
single and double oracle algorithms of McMahan and Gordon [2007].

Fictitious Play Fictitious play (FP), a classic algorithm for solving zero-sum matrix
games, can also solve convex games. The FP algorithm, shown in Figure 3.13, simulates
play of the game. On each iteration, both players select the action which is a best response
to the average of the opponent’s past actions. Standard, or synchronous, fictitious play
(SFP) executes the updates independently in parallel for each player, as if the game was
actually being played. Asynchronous fictitious play (AFP) does updates first for one player
and then for the other, using the new average strategy computed for the first. As we shall
soon see, AFP can be significantly faster.

Fictitious play relies on oracles BRy and BRz that calculate a best response to a fixed
strategy of the opponent. As Y is a probability simplex, player y’s best response to a fixed
z, BRy(z), is to compute the cost associated with choosing each row (by computing Az)
and then choose the row with the maximum payoff. If more than one row has the same
maximal payoff, y can choose arbitrarily.

However, the best response for player z is not as straight forward. Note that the con-
straints on Z force player z to select a strategy that places positive probability on K(1−α)
of the K columns per sub-matrix Aj . In fact, given y’s strategy y(= π), the choice of
decision rules dj are completely independent. Thus z’s best response is to sequentially
compute the cost vector cj = πAj and then select the K(1 − α) smallest elements from
cj and set their corresponding values in dj to 1/K (one may have to evenly distribute the
remaining probability mass if there are multiple entries of cj which are minimal). Finally
we normalize the entire vector d by 1/J to ensure that it is an element of Z.

The time complexity of fictitious play is simply a product of the iteration cost and the
number of iterations. As both best response oracles are approximately linear in the number
of non-zeros of the resulting vectors, the per iteration computation cost of fictitious play is
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ȳ ← any strategy in Y

z̄ ← any strategy in Z

lb← −∞ ub←∞
t← 0

while ( (ub− lb) > ε)

t← t + 1

y ← BRy(Az̄) z ← BRz(ȳ
TA)

vy = V (ȳ, z) vz = V (y, z̄)

lb← max(lb, vz) ub← min(ub, vy)

ȳ ← t
t+1

ȳ + 1
t+1

y z̄ ← t
t+1

z̄ + 1
t+1

z

end
return (ȳ, z̄) corresponding to ub and lb, respectively

Figure 3.13: Fictitious Play Algorithm

dominated by computing the products yTA and Az. At each step of the FP algorithm, we
can compute a bound on the value of the convex game: S(π0, dπ0). Thus, one generally
chooses some error threshold, εa, and runs FP until this error tolerance has been met. Using
the best response oracles BRy and BRz, the true value of the game, (y?)TAz?, falls within
the bounds

yTABRz(y) ≤ (y?)TAz? ≤ BRy(z)
TAz

for y ∈ Y and z ∈ Z, where y? and z? are a minimax solution to the convex game. Thus,
we can run fictitious play until εa = BRy(z)

TAz − yTABRz(y) is less than a specified
threshold.

Interestingly, the initial choice for y and z can greatly affect the number of iterations
required to reach a specified error tolerance, εa. In particular, it is desirable to initialize
y and z to values close to the minimax solution. In practice, this is impossible, since the
minimax solution is unknown.

Instead we tried several different easily computable initial distributions for the row (y)
and column (z) players for both the synchronous and asynchronous fictitious play algo-
rithms. For the row player, these distributions included: uniform distribution over Y , y’s
best response to a uniform distribution over Z, y selecting a random element of Y and y
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selecting the single row that is the best response to z’s best response to a uniform distribu-
tion over Y . The corresponding distributions were also tested for the column player. Most
of these initial distributions can be either computed trivially, or with time approximately
equal to a single FP interaction. In fact, much of the information that needs to be collected
can be computed when the game matrix is being built with very little overhead. We find
that different initial distributions for the row player do not significantly affect the overall
convergence properties of the algorithms conditioned on the distribution chosen by the
column player. While we find that using a uniform distribution for the row player’s initial
strategy is best, other strategies are very comparable.

The initial distribution selected for the column player significantly affects the observed
convergence. In particular, selecting a uniform distribution for the column player results
in extremely poor initial bounds for the game; these bounds are quickly and steadily im-
proved upon. On the other hand, selecting a best response to the row player playing a
uniform distribution results in significantly better initial bound on the game. However,
unlike choosing the uniform distribution, the bounds on the game do not change much for
the first hundred iterations. When the bounds do begin to change, they do not converge
as rapidly as those computed using an initial uniform distribution for the column player.
After several hundred iterations — roughly one minute of computation time — algorithms
using the initial uniform distribution for the column player beat algorithms that initial-
ize with a best response to a uniform distribution by the row player. We attribute these
differences to the fact that uniform distributions allow the player to “observe” all of the
opponents strategies — even though it is as an ensemble, — while best response to uni-
form distributions limit our knowledge of the other player’s possibilities. This distinction
seems to be particularly important for the column player, due to the restriction that he must
place positive probability on K(1 − α) of the elements for each sub matrix j. Thus, we
initialize both the row and column players to the uniform strategy.

Linear Programming Another standard technique for solving matrix and polyhedral
convex games is to write the game as a linear program (LP) and then employ standard LP
software.

Recall, that the convex game in Section 3.4.3 can be written as:

max
y∈Y

min
z∈Z

yTAz (3.15)

where Y is a probability simplex, and Z is the strategy set composed of J concatenated
decision rules normalized by 1

JK
given by Equation 3.14. These constraints can be written
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in matrix form as:

Y : y ≥ 0 Z : z ≥ 0

1Iy = 1 Uz = K(1− α)1J

z ≤ 1J

JK

where U is the matrix of ones in entries ui,J(i−1)+k for 1 ≤ k ≤ K:

U =


1T

K 0T
K . . . 0T

K

0T
K 1T

K . . . 0T
K

...
... . . . ...

0T
K 0T

K . . . 1T
K


and 0K is a vector of length K with all entries equal to zero. The U matrix ensures that the
response to each sub-matrix is a decision rule. The diagonal structure of U corresponds
to the fact that the optimal decision rule for each sub-matrix of A is independent given y.
Furthermore, the Lagrangian of Equation 3.15 problem can be written as:

L(λ, δ, ρ, z) = yTAz + λT (Uz−K(1− α)1J)− δTz + ρT

(
z− 1

JK
1J

)
where λ, δ, ρ ∈ R and both δ and ρ are greater than or equal to zero.

Now suppose player y announces that she will be playing a fixed strategy y ∈ Y . We
can find a best response for player z by solving either miny∈Y yTAz, or equivalently the
miny∈Y of the Lagrangian:

min
z∈Z

yTAz = min
z∈Z

max
λ,δ≥0,ρ≥0

L(λ, δ, ρ, z)

= min
z∈Z

max
λ,δ≥0,ρ≥0

yTAz + λT (Uz−K(1− α)1J)− δTz + ρT

(
z− 1

JK
1J

)
Using the fact that strong duality holds for bounded polyhedral convex sets (cf. McMahan
[2006]), the dual of the linear program above is given by

max
λ,ρ≥0

−K(1− α)λT1J −
1

JK
ρT1J

subject to yTA + λTU + ρT ≥ 0
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Therefore, we can write our original convex game as

max
y∈Y

min
z∈Z

yTAz = max
y∈Y


min

z
yTAz

subject to z ≥ 0

Uz = K(1− α)1J

z ≤ 1

JK



= max
y∈Y

 max
λ,ρ≥0

−K(1− α)λT1J −
1

JK
ρT1J

subject to yTA + λTU + ρT ≥ 0



=

min
z,λ,ρ

K(1− α)λT1J +
1

JK
ρT1J

subject to yTA + λTU + ρT ≥ 0

1T
I y = 1

y ≥ 0

ρ ≥ 0

(3.16)

In this work, we use the CPLEX 10.0 commercial optimization package to solve the
linear program, which proves to be very effective.

Single and Double Oracle Algorithms For very high dimensional and extremely sparse
convex games like poker, the single or double oracle algorithms of McMahan and Gordon
[2007] can be orders of magnitude faster than standard linear programming approaches.
Here we briefly describe the double oracle algorithm; details on both algorithms can be
found in McMahan [2006].

Like fictitious play, the double oracle algorithm is an iterative algorithm. The basic
idea of the algorithm is to consider only the subset of the full strategy sets Y and Z that
have positive support in the minimax solution. Let Y ′ ⊆ Y and Z ′ ⊆ Z. The double oracle
algorithm is initialized by picking Y ′ and Z ′ to be a fixed size random subset of Y and
Z, respectively. At each iteration, the algorithm solves the convex game G ′ = (A, Y ′, Z ′)
and then adds a fixed number of the best response strategies to Y ′ and Z ′ based on the
current game, using the oracles BRy and BRz. The algorithm terminates when there are
no strategies in the sets Y \ Y ′ and Z \ Z ′ which improve the value of the game for either
player.
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Figure 3.14: Convex game solution speedups obtained by the respective algorithms over
synchronous fictitious play (SFP) using a dense matrix representation. The game matrix
was composed of I = 500 rows and JK = 1000 × 200 columns. Fictitious play (FP) is
an iterative algorithm and can be terminated as soon as a certain relative error threshold
has been met, while CPLEX solves the convex game exactly, up to the additive error
εt induced by the sparse representation. Thus, the relative speedup of CPLEX over FP
algorithms increases as the relative error decreases, since CPLEX’s solve time is fixed
while FP requires additional time to achieve lower relative errors. All of the bars for
CPLEX correspond to a fixed run time of 61 seconds; SFP took 8.8 hours to solve the
same game to a relative error of 1%.

Algorithm Comparison The experiments reported in Schafer and Stark [2006] used
SFP on the dense game matrix A; we use this approach as a baseline against which to
compare our methods. Since FP is an iterative algorithm, we can imagine stopping the
algorithm as soon as a specified error ratio has been met. For this work we consider relative
error, εa, which we define to be the error of the MES confidence region (the difference
between the upper and lower bounds on the value of the convex game) relative to the
lower bound on the optimal size of the MES region. Figure 3.14 displays the average
speedups, derived over 10 trials, obtained for 3 algorithms over SFP when solving for
MES confidence regions for the SNLS data set, discussed in Section 4.1.2. The exact
speedup depends on the random samples drawn. We used a fixed εt = 1 × 10−4 for
all experiments (except for the baseline, which used the dense matrix). CPLEX took 61
seconds to solve this game. For CPLEX, εa = 0 and so the total error introduced was
due to εt. This absolute additive error resulted in a solution with a relative error of 0.4%.
For the FP implementations, we ran four experiments with relative total error stopping
criteria of 20%, 10%, 5%, and 1%. Since the error due to εt was fixed for all of these runs,
smaller total relative errors are achieved by running more iterations of FP. Thus, for all
of the sets of columns in the figure, CPLEX is producing a higher-quality solution than
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FP. For example, the right hand set of results shows CPLEX generating a solution with
relative error 0.4% over 500 times faster than FP generates a solution with relative error
1%. Using CPLEX to solve the linear program becomes advantageous if we desire to find
solutions with relative error rates less than ∼ 10%.

We ran preliminary experiments with both the single and double oracle algorithms. For
generating approximate solutions, we were sometimes able to significantly outperform FP.
However, the run times for a reasonable approximation using these algorithms were such
that directly solving the linear program was preferable. For this reason, we do not report
further on these results.

Thus, formulating the MES confidence procedure as a convex game and then solving
it as a linear program results in two orders of magnitude speedup over SFP. In particular,
the SNLS MES convex game with I = 500 rows and JK = 1000 × 200 columns can be
solved by CPLEX in roughly one minute, as opposed to almost ten hours with SFP.

Pruning Strategies from Y and Z Player z’s strategy set is highly constrained and this
makes it possible to prove that many of player y’s pure strategies (rows of A) cannot
appear in a minimax solution. Let y(i) ∈ Y be the pure strategy that always plays row
i ∈ {1, . . . , I}. If there exists a row j 6= i such that

(∀z ∈ Z) y(j)TAz ≥ y(i)TAz, (3.17)

then there exists a minimax solution that never plays row i. We say j dominates i if
Equation 3.17 holds. If j dominates i, for any strategy y that sometimes plays i, the
strategy yi←j that plays j every time y plays i must do at least as well against all opponent
strategies.

Checking Equation 3.17 over all pairs of strategies would be prohibitive. Instead, we
define

lb = max
1≤i≤I

min
z∈Z

y(i)TAz,

which can be computed by performing I best-response calculations. Then, for each i we
check whether

max
z∈Z

y(i)TAz < lb (3.18)

We can evaluate this expression by performing I “worst-response” calculations, which
takes time approximately linear in the number of non-zeros in A. If Equation 3.18 holds
for some row i, then that row is dominated and can be removed from Y .

Running on different instances (caused by different random seeds) for the SNLS payoff
matrix, we were able to eliminate from 20% to 60% of the rows in A in this manner. How-
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ever, the overhead of computing this dominance approximately canceled out the speedup
in the solution to the linear program. Nevertheless, this technique can be used as a pre-
processing step for any convex game algorithm and we expect that on some domains im-
provements could be substantial. Further, more thorough direct checking of Equation 3.17
with respect to a small, diverse set of “good” strategies—perhaps the bundle maintained
by the single oracle algorithm of McMahan et al. [2003]—could have substantial benefit.

Effects of Sparsity and Algorithm Induced Errors In the previous sections, we have
seen that both a sparse representation of A and an approximate solution to G have the
potential to significantly reduce computation times. However, it is possible that these
errors may fundamentally alter the problem in such a way that the resulting solution is
meaningless. Fortunately, approximately solving the approximated game G̃ = (Ã, Y, Z)
gives an approximate minimax equilibrium for the original game G. The theorem below,
taken from Bryan et al. [2007a], quantifies these approximations.

Theorem 1 Let G = (A, Y, Z) be a confidence region game. Let Ã be a matrix such
that 0 ≤ ai` − ãi` ≤ εt for all entries (i, l), and let (ỹ, z̃) be an εa-approximate minimax
equilibria to the convex game (Ã, Y, Z). Then, (ỹ, z̃) is an (εt+εa)-approximate equilibria
for the original game (A, Y, Z).

Proof Let V (y) = V (y, BRz(y)) be the value of the game assuming player y chose
strategy y and similarly for V (z). For G̃, define B̃Ry and B̃Rz by analogy to BRy and BRz,
so for example B̃Ry(z) = maxy∈Y yT Ãz. Then, define Ṽ by analogy to V . It is sufficient
to verify the inequalities that define an approximate minimax equilibrium. For all y ∈ Y ,
‖y‖1 = 1. Each z ∈ Z is made up of J vectors (1/JK)dj with ‖dj‖1 = K(1 − α) (see
Equation 3.14) and so we also have ‖z‖1 = 1− α. Using these facts, it is straightforward
to verify that

0 ≤ V (y, z)− Ṽ (y, z) ≤ εt. (3.19)

Fix some y and let z̃br = B̃Rz(y), so

V (y) ≥ V (y, z̃br) ≥ Ṽ (y, z̃br) = Ṽ (y),

and letting zbr = BRz(y),

V (y) = V (y, zbr) ≤ Ṽ (y, zbr) + εt ≤ Ṽ (y) + εt,

and so we conclude
0 ≤ V (y)− Ṽ (y) ≤ εt. (3.20)
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Now, let (ỹ, z̃) be an εa-approximate solution to G̃. Then, using the fact that Ṽ (ỹ, z̃) ≤
Ṽ (z̃)+εa from the definition of approximate minimax equilibria together with the inequal-
ities 3.19 and 3.20, we have

V (ỹ, z̃)− εt ≤ Ṽ (ỹ, z̃) ≤ Ṽ (z̃) + εa ≤ V (z̃) + εa,

from which we conclude
V (ỹ, z̃) ≤ V (z̃) + εa + εt.

A similar argument shows

V (ỹ, z̃) ≥ V (ỹ)− (εa + εt),

and so we conclude (ỹ, z̃) is a (εa + εt)-approximate minimax equilibria for G.

When we approximately solve G̃ we introduce approximation error in two ways: both
by finding an εa-approximate solution and by solving an εt-approximate game. Depending
on the problem and the algorithm at hand, we can trade off these two sources of error for
a fixed total error ε = εt + εa. For example, if memory is tight, then we may prefer a
larger εt, as this will result in a smaller memory footprint. This is principally a decision
that must be made for anytime algorithms, such as fictitious play (FP) and the single and
double oracle algorithms that can be stopped whenever a desired accuracy εa is reached.
Other algorithms, such as linear programming, do not produce valid solutions until an
exact solution is reached; hence εa = 0 for these algorithms.

Locating Confidence Region Boundaries

The result of solving the convex game G (or similarly G̃), is a strategy for nature π′ which
is nearly minimax optimal. Although π′ may not equal π0, it will still greatly reduce the
maximum expected size of the confidence region relative to standard statistical approaches.
This value of π′ is then used in the underlying hypothesis tests (Equation 3.9). As each test
has level α, the derived confidence regions will have 1−α coverage probability, regardless
of the discrete sampling approximations and approximate minimax solutions.

Given a solution to G, we wish to approximate the confidence region Cdπ0
(x) utilizing

our observed data x. To determine if the point θ̃ should be included within the 1 − α
confidence region, we must compute the cutoff values cθ̃ used in the hypothesis test given
in Equation 3.9. Note that the cutoff values, cθ̃, have the property that Tπ′(θ̃, x) ≤ cθ̃ with
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probability 1− α. As in Section 3.4.3, we approximate Tπ(θ̃, x) with a finite sample:

Tπ(θ̃j, x) ≡
∫

Θ
f(x|θ)π(dθ)

f(x|θ̃j)
≈

I∑
i=1

f(x|θi)

f(x|θ̃j)
π(θi) = πTAj,

where Aj is the sub matrix of A associated with θ̃j (see Figure 3.4(a)).

Since the xjks were chosen under the null distribution that θ? = θ̃j for all j, (π′)TAj

gives us the (approximate) distribution of Tπ′(θ̃j, x). Thus, the cutoff value cθ̃j
is equal to

the (1 − α)Kth smallest element of the vector (π′)TAj for all j. cθ̃j
is the cutoff value

of BRz(π) given in Section 3.4.5, the minimal sized decision procedure associated with
the hypothesis test θ? = θ̃j . Specifically, we reject the hypothesis that θ? = θ̃j given the
observed data x if and only if

I∑
i=1

f(x|θi)

f(x|θ̃j)
π(θi) > cθ̃j

.

If the parameter space is small and the number of samples θ̃j is large enough, the J
samples used in the convex game may be enough to determine the 1−α confidence region.
However, it is often the case that classifying the J θ̃j samples only gives a vague idea of
the shape(s) of the 1 − α confidence region(s). In such cases, more samples are required
to determine its exact boundary.

In particular, for a sample point θ, we can compute whether it is within our confidence
region in a manner similar to that which we used to classify the θ̃j’s. Specifically, we
compute the cost vector cθ = πAθ, where Aθ is the I×J sub-payoff matrix with entries
given by Equation 3.12, where θ̃j = θ, and θi are the same θi’s used in the convex game G.
Let cθ be the K(1− α)th smallest element of cθ. θ is an element of our 1− α confidence
region if and only if

I∑
i=1

f(x|θi)

f(x|θ)
π(θi) ≤ cθ.

While we could choose additional points randomly from Θ, a more efficient solution
is to employ the active learning framework of Section 2.1 again. We define the function
g : Θ 7→ R by

g(θ) = cθ −
I∑

i=1

f(x|θi)

f(x|θ)
π(θi). (3.21)

Note that those θ that result in g(θ) ≥ 0 will be elements of our confidence region.
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This is similar to the situations that we encountered for both the χ2 tests and confi-
dence ball procedures (Sections 3.2.1 and 3.3.3). Again, we can use the straddle heuristic
described in Section 2.2 to efficiently compute the boundaries of the confidence region,
C = {θ|g(θ) ≥ 0)}.

Summary

As we have seen, the combination of active learning algorithms and linear programming
can efficiently compute solutions which approximate the MES confidence procedure. The
combination of the threshvar heuristic to choose samples to populate the payoff matrix
and the straddle heuristic to locate the boundaries of the confidence region after the con-
vex game is solved greatly reduces the sample complexity of the procedure. Moreover, the
formulation of the MES procedure as a convex game, and the subsequent solution using
linear programming reduce the computational complexity of the technique by orders of
magnitude compared to either synchronous or asynchronous fictitious play.

However, even with these efficient computational and sampling techniques, the MES
confidence procedure is still significantly more expensive than either χ2 tests or the confi-
dence ball procedure. The selection of samples to form the payoff matrix and the solution
to the convex game, G, are large, but one time costs. However, the value of g(θ), given
by Equation 3.21, is itself not trivial and must be computed at all samples selected by the
straddle heuristic. In particular, the computation of g(θ) involves creating a I ×K sub-
matrix, Aθ and then finding z’s best response to the vector (π′)TAθ. Thus, while the MES
procedure yields confidence regions which are generally substantially smaller than either
χ2 tests or the confidence ball procedure, (and hence results in tighter statistical inferences
for the parameters), it does so at the expense of computational effort. However, in many
cases, the cost associated with actually gathering the data far outweighs the complexity of
statistical inference, making the MES approach an ideal candidate.

3.5 Bayesian Credible Regions

While the previous three sections have described frequentist confidence procedures, Bayesian
approaches are also possible. Indeed, in many fields, Bayesian approaches far outnumber
frequentist approaches, due to their (perceived) efficiency. Examples from the astronomi-
cal literature include Knox et al. [2001], Gupta and Heavens [2002], Spergel et al. [2003],
Jimenez et al. [2004], Dunkley et al. [2005].

Bayesian techniques are concerned with computing the probability that the truth, θ?,
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equals some arbitrary θ ∈ Θ, given the observed data x: P (θ = θ?|X = x). Since,
we have a physical model that yields an observational hypothesis given θ ∈ Θ, we can
compute P (θ = θ?|X = x) using Bayes rule:

P (θ = θ?|X = x) =
P (X = x|θ = θ?)P (θ = θ?)

P (X = x)
. (3.22)

Writing this statement in terms of density functions (using the same notation as Sec-
tion 3.4) yields

f(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ̃)π(θ̃) dθ̃

.

Again, assuming a Gaussian error model of Section 3.1, likelihood of observing x given
an arbitrary θ ∈ Θ is a multivariate normal given by

L(θ) = f(x|θ) =
1

(2π)W |Σ|1/2
exp

{
−1

2
(x− µ(θ))T Σ−1(x− µ(θ))

}
, (3.23)

where π(θ) is a prior probability distribution over θ ∈ Θ arrived at before we observe
any data. Up to a constant factor (given by the first term of Equation 3.23), this is the
exponential of negative twice the χ2 statistic: the variance-weighted sum of squares. Thus,
we find that the Bayesian posterior is given by

f(θ|x) =
L(θ)π(θ)∫

Θ
L(θ̃)π(θ̃) dθ̃

∝ L(θ)π(θ). (3.24)

The latter part of the previous equation shows a striking similarity to the expression
describing the expected size of the 1 − α MES confidence region (Equation 3.10). While
the approach given here is Bayesian, and the approach given in Section 3.4 is a frequentist
technique, they share many similarities. In particular, both methods assume a form of the
likelihood function, f(x|θ) and a parameter space, Θ, which restricts the set of possible
models. Changes to either of these assumptions will invalidate current inferences for both
methods.6 However, there are significant differences between the techniques. While the
MES procedure assumes a range on the parameters to be searched, it does not assume a
prior distribution over this space. Also, the MES procedure is constructed to have cor-
rect coverage probability in a frequency sense; the Bayesian approach has no coverage
guarantees when it is used in repeated trials.

6Analyses performed by both the χ2 and confidence ball procedures are independent of both the likeli-
hood function and Θ.
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Despite the lack of guaranteed coverage, Bayesian techniques have the benefit that
they yield a probability distribution over θ ∈ Θ, not just point estimates or confidence re-
gions. This posterior distribution can then be used to obtain point estimates corresponding
to their frequentist counterparts. Specifically, the point θ ∈ Θ which maximizes f(θ|x) is
the maximum a posteriori (MAP) estimate, and corresponds to the maximum likelihood
estimate (the most likely point given the data) in frequentist statistics. The Bayesian equiv-
alent of 1− α confidence regions are 1− α credible regions; a subset of parameter space
which contains 1− α fraction of the probability mass of f(θ|x). While 1− α confidence
regions are theoretically guaranteed to contain the truth in 1 − α fraction of the instances
in which they applied, 1− α credible regions denote a region that a Bayesian believes has
a 1− α probability of containing the truth.

Generally, Bayesians report the 1−α highest posterior density (HPD) credible regions,
which are computed by returning the smallest set of Θ which covers 1−α of the probability
mass. While these HPD regions can be computed for f(θ|x) in its multi-dimensional
setting, they are typically computed after marginalizing f . That is the HPD for a specific
parameter θi is computed from the marginal distribution formed by integrating f(θ|x) over
all parameters, except parameter i. This yields a 1 dimensional probability distribution
over the parameter i, from which the HPD can be easily found.

The difficulty in Bayesian methods comes from trying to estimate f(θ|x) over the
entire parameter space. If the distribution of π is chosen to be conjugate on the likelihood,
then the integral in Equation 3.24 can be computed in closed form. However, since the
prior distribution is often not conjugate on the likelihood, computing the posterior involves
estimating an integral over the entire space spanned by the prior. Even if π is conjugate
on f , we will still need to compute the posterior throughout Θ, in order to ascertain the
1 − α HPD credible regions. Unlike the frequentist techniques described in Sections 3.2
through 3.4, we cannot apply a search algorithm, such as the straddle algorithm directly
to the posterior, as the threshold, t, which divides the 1 − α HPD from the remainder of
Θ depends on the distribution f(θ|x) in the Bayesian case. The threshold, t, will only be
known before sampling, if f(θ|x) is a known parametric distribution. However, if f(θ|x)
is a known parametric distribution, the 1− α HPD credible regions can be found directly
without any sampling.

We now look at two methods to compute the posterior when it is not a known paramet-
ric form: direct integration based on samples chosen from a uniform grid, and the popular
technique of Markov Chain Monte Carlo (MCMC). Both methods use a finite number of
samples to approximate the posterior. However the selection of these samples is signifi-
cantly different.
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3.5.1 Direct Integration using a Grid

Perhaps the most straight-forward way to compute the integral in Equation 3.24 and com-
pute the posterior, is to compute the value of f(x|θ)π(θ) at each point on an evenly-spaced
grid with s points per parameter. For this approach, one pre-specifies an W -dimensional
grid (where W is the number of parameters of interest) and computes the posterior at the
center of each grid cell. The integral is then (approximately) the sum of the unnormalized
posterior at each grid cell, and the normalized posterior is given by the sampled value
divided by the computed integral. While straight forward, this approach scales exponen-
tially with dimension, and hence is infeasible for even moderate dimensions. Attempts
have been made to formulate adaptive grids which shrink cell sizes in regions where the
prior is high and, enlarge those cells where the prior is small [Tegmark et al., 2001]. How-
ever, even with adaptive grids, it is hard to cover the subset of the parameter space where
the prior is large finely enough to provide strong inference results.

3.5.2 Markov Chain Monte Carlo

As a result of the dimensionality problem with grid-based sampling techniques, Markov
Chain Monte Carlo has become an increasingly popular approach for estimating posteriors
due to its (perceived) computational efficiency. MCMC is based on the idea of creating
a Markov Chain, X1, X2, . . . , XN with the stationary distribution equal to the posterior,
f(θ|x). Let g(θ) = f(x|θ)π(θ), be the unnormalized posterior distribution. The basic
intuition of the MCMC technique is if one were to use importance sampling to estimate
the integral c =

∫
Θ

h(θ)g(θ) dθ, the points chosen by the sampling method weighted by
h(θ) would produce f(θ|x).

Specifically, under certain conditions, the law of large numbers for Markov Chains
yields

1

N

N∑
i=1

h(Xi)
P−→ Eg(h(X)) = c

Therefore, if we were able to sample points from the distribution of f , we could ap-
proximate c and hence compute f . While, this may seem like a circular argument, note
that both f(θ|x) and g(θ) = L(θ)π(θ) have the same distributional form. In fact they
are equivalent up to the normalizing constant c. Thus we can sample points from g(θ) to
estimate c and thereby obtain f(θ|x). Hence, the trick is to develop a Markov Chain which
has the stationary distribution of f(θ|x) using g(θ). There are many ways that one could
go about creating such a Markov Chain, including using the random-walk-Metropolis-
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Hastings, independence-Metropolis-Hastings and Gibbs sampling algorithms. Here we
consider the standard Metropolis-Hastings algorithm.

Let q(θ|θ̃) be an arbitrary proposal distribution, with the property that it is easy to
generate samples from q(θ|θ̃). Now define r(θ, θ̃), the acceptance probability as:

r(θ, θ̃) = min

(
g(θ̃)

g(θ)

q(θ|θ̃)
q(θ̃|θ)

, 1

)
.

Now consider two arbitrary points θ, θ̃ ∈ Θ. Without loss of generality, let us assume
that g(θ)q(θ̃|θ) > g(θ̃)q(θ|θ̃). Thus,

r(θ, θ̃) =
g(θ̃)

g(θ)

q(θ|θ̃)
q(θ̃|θ)

,

while r(θ̃, θ) = 1. Let p(θ, θ̃) be the probability that the chain transitions directly from
θ to θ̃. This probability depends on two factors. First, the proposal distribution, q, must
generate θ̃ and secondly, r must accept θ̃. Thus,

p(θ, θ̃) = q(θ̃|θ)r(θ, θ̃) = q(θ̃|θ)g(θ̃)

g(θ)

q(θ|θ̃)
q(θ̃|θ)

=
g(θ̃)

g(θ)
q(θ|θ̃).

Therefore, we find that
p(θ, θ̃)g(θ) = q(θ|θ̃)g(θ̃).

Similarly, the probability of transitioning from θ̃ to θ in one step is

p(θ̃, θ) = q(θ|θ̃)r(θ̃, θ) = q(θ|θ̃),

since r(θ̃, θ) = 1. Thus, we have that

p(θ̃, θ)g(θ̃) = q(θ|θ̃)g(θ̃) = p(θ, θ̃)g(θ). (3.25)

Therefore, we see that the ratio of the probabilities of transitioning from θ to θ̃ and from
θ̃ to θ is equivalent to the ratio of the densities of the posterior at θ̃ and θ, respectively.
Intuitively, the chain will transition to a point in parameter space in proportion to the
posterior probability of that point, just as we desire.

More formally, the property of our derived chain given in Equation 3.25, is called de-
tailed balance. Detailed balance indicates that g is proportional to a stationary distribution,
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i← 0

θ0 ← arbitrary element from Θ

until converged
generate θ̃ from q(θ̃, θi)

compute r = r(θi, θ̃) = min
(

g(θ̃)
g(θi)

q(θi|θ̃)
q(θ̃|θi)

, 1
)

set θi+1 =

{
θ̃ with probability r

θi with probability 1− r

i← i + 1

end
return θ0, θ1, . . . , θi−1.

Figure 3.15: Metropolis-Hastings Algorithm

because, if detailed balance hold, then,

g(θ) = g(θ)

∫
Θ

p(θ, θ̃) dθ̃

=

∫
Θ

g(θ)p(θ, θ̃) dθ̃

=

∫
Θ

g(θ̃)p(θ̃, θ) dθ̃,

which is the definition of a stationary distribution. Therefore, choosing candidate points
based upon the proposal distribution q(θ|θ̃) and then transitioning to these candidate points
with probabilities given by r(θ, θ̃) yields a stationary distribution for g, that we can use to
compute c, and hence derive f(θ|x). This algorithm is the oft used Metropolis-Hastings
algorithm [Metropolis et al., 1953, Hastings, 1970]. An outline of the algorithm is given
in Figure 3.15.

A common choice for q(θ̃|θ) is the Normal distribution: N(θ, b2), for some fixed b > 0.
When q is chosen to be the normal distribution, then q(θ̃|θ) = q(θ|θ̃) and so r(θ, θ̃ =
min(g(θ̃)/g(θ), 1). However, selecting b is nontrivial. Choosing b too small will result
in the chain taking small steps. When this happens, it will fail to explore much of the
parameter space in a fixed number of samples. As a result, it may appear that the chain
has converged, when in fact it has yet to even explore some regions of parameter space.
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Choosing b too large results in samples which are often in the tails of the distribution,
making r small. As a result, the chain will remain in the same location for a long period,
before jumping to the next location. Again, the convergence rate is poor. An optimal value
of b allows for large steps, but also ensures that the chain does not get artificially stuck.

Thus, while theoretically MCMC using Metropolis-Hastings algorithm converges al-
most surely to the stationary distribution (the posterior) in the limit of infinite sampling,
no definite statements can be made about general functions for cases where samples are
limited to some finite number. In practice, the MCMC chain is run until convergence has
approximately been met; that is, the distribution does not appear to be changing much with
additional samples. Moreover, the first few tens or hundreds of samples are often removed
from the chain to ensure that an initial choice of θ0 does not bias the chain into regions of
low probability.

However, even with these heuristics, it is quite difficult to determine if convergence has
been met with a finite number of samples. In particular, if a posterior is comprised by two
narrow, spatially separated Gaussians, then the probability of transition from one Gaussian
to the other will be vanishingly small. Thus, after the chain has rattled around in one of the
peaks for a while, it will appear that the chain has converged; however, after some finite
amount of time, the chain will suddenly jump to the other peak, revealing that the initial
indications of convergence were incorrect. As this example illustrates, if the Markov chain
is run with too few examples, the resulting credible intervals will be too narrow, and thus
will not truly contain 1 − α of the probability mass. Thus, the consequence of lack of
true convergence is artificially small credible intervals. This problem is usually skirted by
assuming that there are no small isolated peaks, computing multiple independent chains
and comparing the results to illustrate convergence. Additionally, Dunkley et al. [2005]
and others have proposed alternative methods to detect convergence. However, none of
these methods are able to prove convergence with a limited number of samples.

3.6 Comparison of Statistical Inference Techniques

Often, non-statisticians are confused by differences between Bayesian and frequentist
techniques, and the advantages and limitations that each maintains. Particularly appealing
with the Bayesian approach is the fact that one is computing a posterior distribution over
the parameter space. Thus, not only does one obtain 1−α credible intervals, but one gets a
sense of where within the interval, the true value is expected to be. Frequentist approaches
do not allow for one to compute the probability that the true value is equal to some partic-
ular parameter value. While choosing one technique over the other is a matter of personal
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statistical philosophy, we believe that frequentist approaches hold important advantages
over their Bayesian counterparts.

In this section we describe the differences between frequentist and Bayesian infer-
ences, and to a lesser degree, the differences between the frequentist techniques described
in Sections 3.2, 3.3, and 3.4. For illustration, we will be considering the task of computing
confidence/credible regions for a simple linear model, similar to the one in Section 3.4.4.
Here, we assume that s(x) = mx, as this will allow us to easily plot posterior distribu-
tions (since they will be one-dimensional). Here we will assume that m ∈ [−3, 5], unless
otherwise specified.

3.6.1 Philosophical Differences

One of the main differences between frequentist and Bayesian inference methods is how
the two ideologies view the concept of probability. Frequentist statistics posits that prob-
abilities are observed properties of the real world, that can be computed by looking at
the relative frequencies of events occurring. In this framework, parameters are fixed, un-
known constraints, and as such no useful probability statements can be made about them
(their relative frequencies are either 0 or 1 depending on the question at hand). Frequen-
tist statistical procedures are designed to have provable long-run behaviors. For instance,
frequentist 1− α confidence procedures construct regions which, when applied to a large
series of data sets, trap the truth in at least 1− α fraction of the cases.

Bayesian statistics, on the other hand, view probability as degrees of belief, indepen-
dent of the underlying events’ relative frequencies. Thus, even though parameters are fixed
constants, probability statements can be made about them. As a result, we can compute a
probability distribution over the parameter space, and then compute either point estimates
or credible regions directly from this distribution, as discussed in Section 3.5.

Due to this differing opinion about the meaning of probability, it is not surprising that
frequentist and Bayesian techniques answer different questions. In particular, frequentist
inference methods are interested in computing confidence procedures which create regions
that trap the true parameter 1 − α fraction of the time, while Bayesian techniques are
interested in determining those parameter vectors which most likely.

For parametric models with large sample sizes, Bayesian and frequentist approaches
are known to result in similar inferences. However, for high dimensional and non-parametric
problems, Bayesian credible intervals may trap the true value of the parameters close to
zero percent of the time [Wasserman, 2004], resulting in inaccurate statistical inferences.
That is, if Bayesian techniques are applied to a series of data sets, the fraction of the re-
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sulting 1− α credible intervals that contain the true values of the parameter will likely be
less than 1 − α and may be significantly less than 1 − α. This potential lack of coverage
for Bayesian models makes their application to scientific inference disconcerting. Thus, as
Wasserman [2004] notes, “to construct procedures with guaranteed long run performance,
such as confidence intervals, use frequentist methods.”

3.6.2 Effects of Priors

Another major difference between frequentist and Bayesian techniques is the use of pri-
ors. Given a model simulator, it is generally straightforward to compute the likelihood
of some observed data as a function of input parameters. Computation of this likelihood
value is sufficient for frequentist analyses. However, for Bayesian analyses, we are inter-
ested in the probability of the parameters given the data. This posterior probability can
be obtained from the likelihood using Bayes rule (Equation 3.22), after first assuming a
prior distribution over the parameters values. While in some cases a prior distribution can
be justified, the formulation of a prior is often troublesome. Moreover, examples can be
constructed in which the selection of a prior results in the posterior becoming independent
of the observed data; that is the posterior, f(θ|x), depends solely on the prior [Wasserman,
2004].

Even in cases where the selection of the prior cannot result in a posterior which is
independent of the data, selection of the prior can be difficult. In particular, in many cases
the knowledge does not exist to form a reasonable prior. In these cases, an “uninformative
prior,” equivalent to a uniform distribution on some bounded range, is often assumed.
However, such a prior is not uninformative; a uniform prior indicates that the practitioner
believes that the true distribution of the parameter has equal probability throughout points
in Θ, not that it is unknown. For instance, consider our simple linear model, s(x) = mx
for the data shown in Figure 3.16(a). A uniform prior for m on the range [−3 : 5] would
mean that the practitioner believed that observations from the model s(x) = 5x were just
as likely as s(x) = x. Given the observed data, and their small measurement error, this
seems to be an unreasonable estimate. Additionally, if the practitioner truly believed that
m = 1 and m = 5 were equally-likely, then s/he would certainly want to increase the
range of the parameter space to ensure that the results were not biased by the prior to be
artificially small.

“Uninformative” priors are also parametrization dependent. Suppose, we reformulate
our linear model as s(x) = x/m′, where m′ = 1/m. Then, a uniform prior over m is
not equivalent to a uniform prior over m′, as m and m′ are inversely related to each other.
Choosing uniform prior distributions for m and m′ results in markedly different posterior
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(a) Data points (red) and accepted models
(green) for Bayesian 95% credible intervals
for m when π is a uniform prior on m over
the range (−3, 5).
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(b) Data points (red) and accepted models
(green) for Bayesian 95% credible intervals
for m when π is a uniform prior on m′ =
1/m over the range (−3, 5).

Po
st

er
io

r 
D

en
si

ty

 0

 1

 2

m

 0  0.5  1  1.5  2

(c) Posterior distribution (black) and ac-
cepted values of m (green) for Bayesian
95% credible intervals for m when π is a
uniform prior on m over the range (−3, 5).
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(d) Posterior distribution (black) and ac-
cepted values of m (green) for Bayesian
95% credible intervals for m when π is a
uniform prior on m′ = 1/m over the range
(−3, 5).

Figure 3.16: Resulting posteriors after choosing “uninformative” or uniform priors over
m and 1/m. Choosing a uniform distribution over a parameter has a large impact on
the resulting posterior distribution, and hence the derived credible regions. Thus uniform
priors cannot be viewed as “uninformative.”
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distributions, and hence different 95% credible regions, as shown in Figure 3.16(d).

While parametrization problems may seem trivial for the linear model example, it
has significant effects in many scientific applications. For instance, the WMAP data set
we shall describe in Section 4.1.1, has two parameters (H0 and ΩM ) which are inversely
related. The simulator which models the WMAP data takes ΩM as an input parameter, but
not H0. Now suppose an astronomer is interested in computing the 1−α credible interval
for H0. It is not clear whether the astronomer should put a uniform distribution over H0 or
ΩM . What is clear is that the choice over which parameter to place a uniform distribution
will affect the derived credible regions. Moreover, if the astronomer later decides s/he
wants to compute credible regions for ΩM , should s/he redo the analysis with the uniform
prior on the other variable? Often, astronomers are interested in both H0 and ΩM ; which
parameter should have the uniform distribution in this case? The root problem in all of
these cases is that there is no way to specify a distribution that is truly “uninformative”.
Any distribution that is chosen will place some constraints on the parameter and will affect
the derived posterior distribution.

In cases where the prior is justified, say by another independent data set, it is often dif-
ficult to write the prior in a compact manner which allows it to be used when computing
the posterior. Unless the prior can be formulated in a parametric form, calculating values
of the prior over the parameter space will require computing the posterior from the inde-
pendent data set. Often practitioners approximate the prior as a set of independent Normal
distributions based upon the one dimensional marginalization of the independent data set.
However, the one-dimensional marginals are hardly ever truly Gaussian. Additionally, this
strategy completely ignores the correlations in the prior between the various parameters.

Another issue with priors, is that the choice of a prior can significantly affect the result-
ing posterior. In Figure 3.17, we illustrate the 95% credible regions derived for the simple
linear model s(x) = mx for three different prior distributions. In this case, the priors
are formed by selecting a uniform distribution over the ranges [−3 : 5], [0.64, 1.36], and
[0.82, 1.18], respectively. The figure shows that restricting the prior restricts the derived
credible regions. In particular, Bayesian techniques will never include points where the
prior has zero probability in the 1 − α credible regions, as these points have zero poste-
rior probability. Thus, a prior with regions which have zero probability will remove those
regions from the posterior, even if those regions are supported by the data.

As a result, if we choose a prior which is too restrictive, we will underestimate the
size of the 1 − α credible regions. However, it is difficult to determine if the prior is
too restrictive directly from the returned credible regions. Because the Bayesian methods
return the HPD which covers 1− α fraction of the probability mass, they will return only
a portion of the parameter space, even if all of the models corresponding to points that
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(a) Data points (red) and
accepted models (green) for
Bayesian 95% credible intervals
for m when π is a uniform prior
on m over the range (−3, 5).
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(b) Data points (red), accepted
models (green) and models with
zero posterior probability (blue)
for Bayesian 95% credible in-
tervals for m when π is a uni-
form prior on m over the range
(0.64, 1.36).
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(c) Data points (red), accepted
models (green) and models with
zero posterior probability (blue)
for Bayesian 95% credible in-
tervals for m when π is a uni-
form prior on m over the range
(0.82, 1.18).
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(d) Posterior distribution
(black) and accepted values of
m (green) for Bayesian 95%
credible intervals for m when π
is a uniform prior on m over the
range (−3, 5).
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(e) Posterior distribution
(black), accepted values of m
(green), and values of m with
zero prior probability (blue)
for Bayesian 95% credible
intervals for m when π is a
uniform prior on m over the
range (0.64, 1.36).
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(f) Posterior distribution
(black), accepted values of m
(green), and values of m with
zero prior probability (blue)
for Bayesian 95% credible
intervals for m when π is a
uniform prior on m over the
range (0.82, 1.18).

Figure 3.17: 95% credible intervals for the grid-based Bayesian method with a uniform
prior over various ranges. Blue regions correspond to regions where the prior, and hence
the posterior, is zero. The choice of the prior greatly affects the posterior distribution.
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parameter space are supported by the data (as is the case in Figures 3.17(c) and 3.17(f)).
Thus, the resulting regions are likely to not include the entire parameter space, as shown
in Figures 3.17(e) and 3.17(f). Thus, it may be tempting to believe that the prior correctly
covered the nonzero probability regions of the likelihood function, when in fact it did not,
resulting in artificially small credible regions (Figures 3.17(e) and 3.17(f)).

Finally, any change to the prior invalidates all of the current inferences. In particu-
lar, when one is using a uniform prior, merely changing parameter ranges will result in
a different posterior with possibly different 1 − α credible intervals. Thus analyses in
which we change the range on one or more parameters to see the effects on the derived
credible regions would have required us to recompute the entire chain (or set of chains)
— an extremely expensive proposition — or somehow approximate the difference. These
analyses are informative as they provide insights into how the various parameters are in-
terconnected. However, for Bayesian techniques, the prior should be independent of the
data, and hence it should not be changed after observing the data. By recomputing the
posterior using a new prior (based upon a previous posterior), we open ourselves to errors
incurred due to multiple hypothesis testing. Moreover, it is a small step from such repeated
Bayesian inferences to data-dependent priors, which are incoherent, not Bayesian. Hence,
data-dependent priors do not benefit from theoretical guarantees derived for Bayesian anal-
yses, which assume priors are chosen before any data is observed.

Some Bayesians tend to believe, incorrectly, that assumptions on the parameter space
used in frequentist techniques are essentially priors. However, note that most, if not all,
physical models do not depend on the range of the input parameters; they are merely a
function of the specific choice of a parameter vector θ ∈ Θ. Hence, assuming a param-
eter space does not affect either the likelihood calculations or the parameterization of the
model, while a Bayesian prior does. Secondly, many frequentist inference techniques are
completely independent of the parameter space, while the remaining methods can be made
independent by first imposing a simple cut (such as the χ2 cut used as a first pass in the
MES method in Section 3.4.4).

3.6.3 Model and Parameter Space Assumptions

As mentioned in Section 3.5, both the MES and Bayesian techniques are dependent on
assumptions about the form of the likelihood function and the parameter ranges to be
searched, while the χ2 and confidence ball methods do not.

Because they assume the form of the likelihood function as part of the procedure,
the MES and Bayesian techniques need only consider those parameter vectors which are
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(a) Data points (red) and
accepted models (green) for
Bayesian 95% credible intervals
for m when π is a uniform prior
on m over the range (−3, 5).
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(b) Data points (red) and
accepted models (green) for
Bayesian 95% credible intervals
for m when π is a uniform prior
on m over the range (−3, 5).
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(c) Data points (red) and
accepted models (green) for
Bayesian 95% credible intervals
for m when π is a uniform prior
on m over the range (−3, 5).
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(d) Posterior distribution
(black) and accepted values of
m (green) for Bayesian 95%
credible intervals for m when
π is a uniform prior on m over
the range (−3, 5) using the data
shown in (a).
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(e) Posterior distribution
(black) and accepted values of
m (green) for Bayesian 95%
credible intervals for m when
π is a uniform prior on m over
the range (−3, 5) using the data
shown in (b).
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(f) Posterior distribution (black)
and accepted values of m
(green) for Bayesian 95%
credible intervals for m when
π is a uniform prior on m over
the range (−3, 5) using the data
shown in (c).

Figure 3.18: 95% credible intervals computed by a grid-based Bayesian technique with a
uniform prior on m over the range [−3 : 5]. Note that as the data departs from a linear
model intersecting the origin, the derived posterior, and hence the 95% credible region,
does not change much. Because Bayesian techniques assume a form of the likelihood
function and return the highest posterior region which covers 95% of the probability mass,
they are susceptible to returning credible regions which correspond to models that are not
supported by the data, as seen in panels (c) & (f).
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possible given the model, and the assumed parameter range. As a result, they are able to
efficiently reduce the size of the resulting confidence/credible regions. However, because
the MES and Bayesian techniques assume that the model is correct, they have a tendency
to return regions, even if the corresponding models are not well supported by the data.

For example, in Figure 3.18, we plot three different data sets and for each compute
the 95% credible regions (using a grid-based approach). As the data departs from the
linear model through the origin (from Figures 3.18(a) to 3.18(c)), the likelihood of the data
given the parameters decreases. However, the resulting credible region remains essentially
the same, due to the fact that the entire likelihood function is decreasing. The Bayesian
technique selects the highest posterior density region with 1 − α fraction of the mass,
regardless of how likely this region really is. Similarly, the MES procedure depends on
the likelihood ratios of various points, not the absolute value of the likelihood. Thus, it
also will always return a non-empty confidence region, even if the data wildly contradict
the assumed model.

As with priors, inferences derived with techniques that make assumptions about the
form of the likelihood function or the ranges of the parameter space will need to be recom-
puted if these assumptions change. This can be a computationally costly proposition.

On the other hand, both the χ2 and confidence ball procedures create W -dimensional
ellipses centered on either the data (for the χ2 tests) or a non-parametric fit of the data (for
the confidence ball method) which contain all possible models which would be included
within the 1 − α confidence region. Both of these ellipses are completely independent of
the likelihood function as well the the parameter space. Hence, if the combination of the
physical model and the parameter space Θ result in models which do not sufficiently fit the
data, it is possible that the 1−α confidence regions will be empty. Moreover, augmenting
the parameter space by increasing the range of one or more parameters will not affect the
inferences currently made. Consider again, the three data sets of Figure 3.18. In Figure
3.19, we plot the 95% confidence regions produced by the χ2 test procedure. As the data
conforms less and less to the linear model s(x) = mx (intersecting the origin), the derived
confidence region decreases, until it is empty in Figure 3.19(c). Importantly, note that the
lack of fit illistrated in Figures 3.19(b) and 3.19(c) is not due to observational noise. In
particular, the noise, depicted by the error bars in Figures 3.19(a) through 3.19(c), is the
same for all three sets of data. The empty confidence intervals for m based on chi2 tests is
due to the fact that the assumption that the data was generated from a linear model (passing
through the origin) is incorrect. Thus, while the χ2 and confidence ball procedures produce
confidence regions which are typically larger than either the MES or Bayesian approaches,
they are not susceptible to returning spurious results when the physical model does not fit
the data.
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(a) Data points (red) and ac-
cepted models (green) for 95%
confidence regions computed
with χ2 tests.
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(b) Data points (red) and ac-
cepted models (green) for 95%
confidence regions computed
with χ2 tests.
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(c) Data points (red) and ac-
cepted models (green) for 95%
confidence regions computed
with χ2 tests.
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(d) Range of the 95% confi-
dence interval for m computed
by χ2 tests on the data shown in
(a).
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(e) Range of the 95% confi-
dence interval for m computed
by χ2 tests on the data shown in
(b).
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(f) Range of the 95% confi-
dence interval for m computed
by χ2 tests on the data shown in
(c).

Figure 3.19: 95% confidence intervals computed using χ2 tests. Since χ2 tests depend
only on the observed data and measurement errors, as the data departs from a linear model
intersecting the origin, the derived confidence intervals decrease. When none of the models
fit the data well, the χ2 procedure returns empty intervals, (as seen in panels (c) and (f)),
unlike either the Bayesian or MES procedures (e.g. Figure 3.18(f)).
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This argument further supports the idea of first performing a χ2 cut on the parameter
space before performing the MES procedure, as suggested in Section 3.4.4. By performing
the χ2 cut, we can ensure that the model has at least minimal support over the parameter
range. We can then use assumptions about the form of the likelihood in the MES procedure
to ensure that the size of the final confidence regions is (nearly) optimal.

3.6.4 Efficiency & Convergence

The last significant difference between the various statistical inference techniques is their
sample efficiency and convergence properties. All of the methods we have described will
converge in the limit of infinite sampling. χ2 test, confidence ball, and MES procedures
require infinite sampling in order to exactly determine the boundary of the confidence
region. Additionally, the MES procedure will return the optimal minimal expected size
regions when the payoff matrix in the convex game includes all of the possible truths, that
is all θ ∈ Θ.7 For the Bayesian techniques, infinite sampling allows us to either create
a grid with infinitely small cells, or create infinite Monte Carlo chains which yield the
stationary distribution of the posterior.

In practice, however, we never have infinite data. Moreover, data collection tends to be
expensive, and hence it is sparse. None of the methods above have theoretical guarantees
as to the optimality of the solutions obtained after a fixed number of samples. Nonethe-
less, we can make general observations about the efficiency and approximate convergence
properties of the various methods.

For instance, one fundamental difference between Bayesian and frequentist methods
is the need for Bayesian methods to compute the posterior over the parameter space in
order to compute the normalization factor, c, and hence determine the boundary of the
1−α highest posterior density (HPD) regions. This calculation is not needed for frequen-
tist technique. Instead, for frequentist techniques the level-set which defines the 1 − α
confidence region can be directly calculated by the procedure before any sampling takes
place. Moreover, this boundary is not a function of either the number or particular samples
chosen, as it is for the Bayesian techniques.

In particular, consider the example of the two separated Gaussians mentioned in Sec-
tion 3.5.2, except now, let one of the Gaussians have twice the probability mass of the
other (so that the two peaks are not exactly equivalent). If a Markov Chain were to rattle
around in one of the peaks for some time, say the larger of the two peaks, then it would

7Note that our approximate model still returns 1− α coverage, but may return confidence regions which
are slightly larger than the true minimax optimal regions.
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appear that 1−α HPD region should be at a particular value t. Once the chain was able to
jump to the other peak, it would learn that the true threshold of the 1− α HPD was t′ > t.
If the chain were able to jump between the peaks easily, then the chain would determine
the true value of 1 − α HPD level-set quickly. However, in this case, we assume that the
probability of transition from one peak to the other was vanishingly small, and hence the
expected number of samples required to determine the true value of the 1− α HPD level-
set would be large. Thus, in Bayesian analyses, the selection of samples not only affects
the derived credible regions, but also heavily influences the convergence rate.

As a result, frequentist methods can perform a targeted search in parameter space for
the desired function level-set, while Bayesian methods are required to sample and/or in-
tegrate the posterior distribution over the entire parameter space. As mapping a region of
high likelihood points in parameter space can be thought of as a search problem, Bayesian
methods do not necessarily translate into good search algorithms in practice. In particu-
lar, MCMC methods “represent” a high-likelihood region by heavily sampling that region.
However, when we are computing 1 − α credible regions, it is the low-likelihood regions
(those around the 1− α HPD boundary) that we are interested in. Thus the regions which
define the 1 − α credible region will receive roughly 1/α fraction of the samples. For
95% credible regions, this corresponds to one twentieth of the samples apportioned to the
highest likelihood regions of the parameter space. In contrast, a search algorithm that
can directly observe the (normalized) likelihood of a sample will have no reason to spend
samples in well sampled regions which are not on the 1− α confidence region boundary.

This difference in sampling patterns is shown in Figures 3.20 and 3.21, where we com-
pare the samples chosen by the MCMC algorithm (described in Section 3.5.2) with those
chosen by the straddle heuristic when used in conjunction with χ2 tests (see Section 3.2.1)
on the task of computing 95% credible/confidence intervals for m. In both cases, the task
was essentially that of computing 95% credible/confidence intervals for a normal distri-
bution, due to the assumed Gaussian error model. For the Bayesian case, we assume that
the observed data is a single point at the origin. As a result, the true posterior derived via
sampling will be exactly the same as the true Normal distribution. This is done to ensure
that both algorithms are sampling the same function, allowing us to accurately compare
the sampling patterns of the algorithms.

Both algorithms were constrained to samples of m chosen in [−3 : 5]. The MCMC
algorithm was started at a randomly selected point, with a uniform prior over the range. In
this figure we use a normal proposal distribution (with σ2 = 0.5), although the sampling
pattern is similar for other values of σ2 that we tried. Examining the figures, several inter-
esting differences become apparent. First MCMC has failed to converge in 100 samples,
while our algorithm has converged nicely. The credible intervals given by MCMC are not
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(a) Data points (red) and the
100 models sampled (green) by
MCMC when computing 95%
credible regions for m.
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(b) Data points (red) and 100
randomly selected models
(green) from 10,000 samples
chosen by MCMC when com-
puting 95% credible regions for
m.
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(c) Data points (red) and 100
randomly selected models
(green) from 100,000 samples
chosen by MCMC when com-
puting 95% credible regions for
m.
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(d) Posterior (black) and sample
(blue) densities after sampling
100 points using MCMC. Green
regions denote 95% credible in-
tervals for m.
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(e) Posterior (black) and sample
(blue) densities after sampling
10,000 points using MCMC.
Green regions denote 95% cred-
ible intervals for m.
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(f) Posterior (black) and sample
(blue) densities after sampling
100,000 points using MCMC.
The Green region denotes the
95% credible interval for m.

Figure 3.20: Sampling distribution of MCMC when trying to compute 95% credible in-
tervals for m with various numbers of experiments. All chains were given an initial 100
extra samples to ensure that the random initial location did not adversely affect the overall
results. MCMC samples points in proportion to the posterior distribution. Hence it favors
high-likelihood regions of the parameter space to those regions which are on the 1 − α
credible region boundary. As a result, the convergence rate is slower than χ2 tests using
the straddle heuristic (see Figure 3.21).
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(a) Data points (red) and the 100
models sampled (green) by the
straddle heuristic.
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(b) Data points (red) and 100
randomly selected models
(green) from the 10,000 sam-
ples chosen by the straddle
heuristic.
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(c) Data points (red) and 100
randomly selected models
(green) from the 100,000
samples chosen by the straddle
heuristic.
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(d) Sample density (blue) of the
straddle heuristic after select-
ing 100 points to compute the
95% confidence intervals of m
using χ2 tests. Green regions
denote the derived 95% confi-
dence regions.
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(e) Sample density (blue) of the
straddle heuristic after select-
ing 10,000 points to compute the
95% confidence interval of m
using χ2 tests. Green regions
denote the derived 95% confi-
dence region.
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(f) Sample density (blue) of the
straddle heuristic after select-
ing 100,000 points to compute
the 95% confidence interval of
m using χ2 tests. Green regions
denote the derived 95% confi-
dence region.

Figure 3.21: Sampling distribution of the straddle heuristic when trying to compute 95%
confidence intervals for m using χ2 tests with various numbers of experiments. Since the
95% confidence region level-set can be determined before any samples are chosen, the
straddle heuristic can be used efficiently learn these confidence regions. The straddle
heuristic quickly learns the approximate location of these boundaries panel (d), and then
uses its remaining samples to determine the exact location of the boundary. As a result,
the observed sampling density is composed of two delta function centered on the 95%
confidence interval boundaries (panels (e) and (f)). The convergence rate is much faster
than MCMC (see Figure 3.20).
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only underestimated, but are also not centered on the true distribution’s center, revealing a
potential liability for interpreting MCMC chains which have not converged.

Second, notice that MCMC heavily samples the peak of the distribution, while our
algorithm focus on those regions associated with the confidence interval boundaries. Even
after 10,000 samples, the MCMC chain results in a ragged collection of disjoint credible
intervals, while our algorithm returns a single interval in which the endpoints have been
well determined.

Third, note that within the first 100 samples, our algorithm samples extreme points
to ensure that it has not failed to observe additional peaks in the distribution which may
contribute to the 95% confidence interval, while MCMC has not. As noted before, since
MCMC is not a search algorithm, it may spend a large number of samples in a single distri-
bution peak before jumping to another peak in the distribution. This sampling pattern may
cause MCMC to appear to have converged, when in reality it has just failed to transition
to the second peak, as in the case of the two distant Gaussians described previously.

Finally, we note that the MCMC algorithm is not data efficient. While Figures 3.20(c)-
3.20(f) depict those experiments run by MCMC, the final MCMC chain consists of only
those points that were accepted (in this case by the Metropolis-Hastings algorithm). As
such, some of the points that MCMC samples are discarded immediately; these samples
are never used to guide the chain in future steps, or to determine the 1−α credible intervals.
In addition, many MCMC practitioners remove all but every jth sample point (for some
integer j > 0) to ensure that the points in the chain are truly independent. This significantly
reduces data efficiency.

As these figures indicate, the combination of the straddle heuristic with χ2 tests can
be much more data efficient than the MCMC algorithm. Since the confidence ball and
MES procedure use a search algorithm essentially identical to the one used for χ2 tests
(see Sections 3.3.3 and 3.4.5), they will also enjoy this increased data efficiency over their
Bayesian counterparts.

3.7 Summary

In this chapter we have discussed the ideas of 1 − α confidence and credible intervals.
These intervals allow scientists to make meaningful inferences about the ranges of param-
eters which are fed into physical models of some observed phenomena. We have described
several techniques which can be used to compute either 1 − α confidence or credible re-
gions.
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For frequentist methods, we have seen that, in general, there is a trade off between
computational effort to compute the threshold t of the 1−α confidence region and resulting
region size. The threshold for χ2 tests can be quickly read from the 1 − α quantile of a
χ2

(N) distribution, while the threshold used by the MES procedure can only be computed
after first solving a convex game. However, MES confidence regions can be shown to be
approximately optimal, and are generally much tighter than regions derived using χ2 tests.

Bayesian techniques can also be used to compute 1 − α credible regions. One par-
ticularly popular Bayesian method is Markov Chain Monte Carlo (MCMC), due to its
perceived efficiency. However, we have seen that Bayesian techniques require sampling
points throughout the parameter space in order to estimate the normalization constant of
the posterior. As such, we cannot directly apply the search techniques developed in Chap-
ter 2. While we could apply these algorithms after the normalization constant had been
determined, by this time the entire posterior is already known and hence the 1 − α HPD
regions can be found without further sampling. Moreover, we believe that Bayesian tech-
niques suffer a number of shortcomings. These include the fact that the prior must be
known (as there are no “uninformative priors”). Additionally, any changes to the param-
eter range to be searched, the prior, or the model being used invalidates all the inferences
made to that point and the Markov chains must be restarted. Finally, we find the fact that
Bayesian 1−α credible regions may contain the true value of the parameter in substantially
less than 1− α fraction of the cases where the technique is used disconcerting.

Thus, we believe the combination of frequentist statistics with the active learning ap-
proaches discussed in Chapter 2 provides a much statically justified and efficient set of
tools for computing scientific inferences. In the next chapter we apply these tools to a
number of astronomical data sets.
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Chapter 4

Astronomical Applications

In the previous two chapters we have discussed how active learning algorithms can be
designed in order to efficiently compute statistical inferences. In this chapter, we demon-
strate our algorithms and illustrate the advantages that our joint confidence regions have
over standard techniques. While, we will restrict our analysis to astronomical sources, we
note that the ideas and techniques developed here are useful in a wide range of scientific
applications, including biology, geology, and physics.

In this chapter, we will be computing statistical inferences for a number of cosmologi-
cal parameters in an attempt to determine physical properties of our Universe, such as age,
composition and eventual fate. We begin by discussing the parameters for which we are
interested in computing confidence regions, as well as three different types of data that can
be used to constrain these cosmological parameters. We then demonstrate the active learn-
ing and statistical methods we have developed to compute jointly valid 1 − α confidence
regions for these parameters. We primarily consider frequentist inference techniques, but
show some results for Bayesian alternatives. However, as discussed in Section 3.6, fre-
quentist procedures are more easily integrated into our active learning framework.

4.1 Cosmological Data

Cosmology is the field of studying the Universe as a whole. In particular, cosmologists
are interested in learning how it began, how it evolves, and what its eventually fate will
be. The standard cosmological model begins with the “big bang”: All of the matter and
energy in the Universe is thought to have been compressed into a single small region, from
which it then rapidly expanded.

95



What the Universe was like in the the initial 10−43 seconds after the big bang is
unknown, as our understanding of general relatively is incomplete at the high densities
present during this period. Between 10−43 seconds and 10−2 seconds, the Universe cooled
to 1010 Kelvin. During this period, collisions resulted in subatomic particles to transi-
tioning to and from photons. After 10−2 seconds, the Universe was filled with protons
and neutrons, left from the high energy phase before, along with cooler photons. These
photons were not energetic enough to form protons or neutrons through collisions, but did
have enough energy to form electrons and positrons.

After the first few minutes, the Universe had cooled to 9×108K, at which point protons
and neutrons were able to combine to form deuterium1 nuclei. Deuterium nuclei then col-
lided with protons or other deuterium nuclei to form helium, and lithium nuclei. However,
during this period the Universe was still opaque to photons, as the energy in the photons
was high enough to strip electrons from atoms. As a result, photons were constantly being
scattered by free electrons.

It was not until roughly 300,000 years after the big bang before the Universe had
cooled to 3000K that it became transparent. During this period, known as recombination,
electrons combined with atomic nuclei to form stable atoms. As the energy contained in
the photons was not enough to ionize electrons, the number of free electrons decreased
rapidly. As a result, photons were able to stream through the Universe without interacting
with the matter around them. Due to this separation, both matter and radiation subse-
quently evolved independently. Photons have flowed unencumbered through the Universe,
slowly cooling due to the expansion of the Universe to about 3K today. Small over densi-
ties in the matter gravitationally collapsed, forming stars and galaxies 109 years after the
big bang.

While the basic outline of how the Universe changed after the big bang is known,
the exact details of when and how the specific events occurred is less well understood.
For instance, it is unknown exactly how galaxies and clusters of galaxies formed in the
Universe. If the density fluctuations in the matter after recombination were large, then
galaxies could have formed in a top-down manner, in which large clouds of gas contracted,
fragmented, and formed galaxies. However, if the fluctuations were smaller, then each
of these over-densities could have collapsed into a star clusters, which then merged to
form the galaxy clusters observed today. Moreover, n-body and observations experiments
suggest that more than 95% of the Universe is in the form of dark matter (matter that
does not strongly interact with photons), with a substantial proportion in the form of non-
baryonic matter [Zwicky, 1937, Tegmark et al., 2001, Spergel et al., 2007].2 Additional

1Deuterium is an atom with one proton and one neutron.
2Baryonic matter consists of matter formed by protons and neutrons — what we typically think of as
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Parameter Description Ranges Relations
τ reionization optical depth 0.0 – 1.2

ΩΛ dark energy / critical density fraction 0.0 – 1.0 ΩΛ = ΩDE

ΩM matter / critical density fraction 0.1 – 1.0
ωDM dark matter density 0.01 – 1.2
ωB baryon density 0.001 – 0.25
fν dark matter neutrino fraction 0.0 – 1.0
ns scalar spectral index 0.5 – 1.7
As scalar fluctuation amplitude 0.6845
α running of spectral index 0.0 α = dns/d ln(k)
b galaxy bias 0.0 – 3.0

Qnl non-linear correction 30.81
Ωk spatial curvature -1.0 – 0.9 Ωk = 1− ΩΛ − ΩM

ΩT total density to critical density fraction 0.1 – 2.0 ΩT = ΩM + ΩΛ = 1− Ωk

ωc cold dark matter density 0.0 – 1.2 ωc = ωDM(1− fν)
ωN neutrino matter density 0.0 – 1.2 ωN = ωDMfν

H0 Hubble’s Constant 10.5 – 380 H0 = 100
√

ωDM + ωB/
√

ΩM

Table 4.1: Meaning, ranges, and relationships among the cosmological parameters con-
sidered in this thesis. Parameters above the horizontal line are parameters for which con-
fidence regions were explicitly computed as part of the analysis, while confidence regions
for those parameters below the horizontal line can be ascertained based upon their depen-
dencies to those parameters above the line. Ranges denote those values of each parameter
that were considered as inputs to the physical models; the parameter space Θ is the cross
product of the ranges of the those parameters above the horizontal line. All of the cos-
mological models rely upon, and hence yield inferences upon, on only a subset of these
variables.

experiments, such as the supernovae data discussed in Section 4.1.2, predict that there is
a negative gravitational force — a dark energy — which is splitting the Universe apart
[Overbye, 2003, Scranton et al., 2003].3

Models which explain the evolution of the Universe are functions of many parameters.
Here we look at a subset of these parameters, shown in Table 4.1. The effects of many
of these parameters can be inferred from the previous discussion. For instance, the reion-

matter.
3Dark energy is a repulsive force that acts on a large scale, pushing two objects apart. While the objects

may get farther away, the Universe will not actually be “split” into multiple fragments. Moreover, dark
energy is quite weak at local scales, and cannot over power two objects which are bound by a strong force.
For instance, dark energy will not cause gravitationally bound objects, such as the Earth or the Sun to
explode.
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ization depth, τ determines how far a photon will travel before it is scattered just before
reionization.

The terms ΩM and ΩΛ determine the relative fraction of the matter and dark energy
in the Universe, as compared to the critical density, ρ0 = 3H2

0/(8πG), where G is the
gravitational constant. ΩT determines the geometry of the universe. If ΩT = ΩM+ΩΛ = 1,
then the density of the Universe is equal to the critical density, and the universe is flat. If
ΩT > 1, then the Universe is closed, with a geometry similar to the surface of a sphere.
If ΩT < 1, the the universe is open, with a geometry similar to a saddle. The term ΩT,
in combination with the form of the dark energy component, also determines whether the
universe will expand forever or collapse upon itself in a big crunch.

The density term ωB determines the contribution of baryons to the total matter density
(where ωM = h2ΩM). As mentioned before, baryonic matter includes all of the mat-
ter that we frequently observe, including stars, planets, and ourselves. Larger baryonic
densities lead to higher pressures during recombination, and hence a more compressible
matter/energy fluid. The terms ωDM and fν describe the density of dark matter, and deter-
mine if that dark matter is formed from massive neutrinos, or from other exotic particles,
called cold dark matter. Cold dark matter, is needed to create large enough over densities
in the baryons at the time of recombination to allow for the eventual collapse of these
baryons into stars and galaxies. Without any cold dark matter, the over-densities in the
baryonic matter during recombination are damped by diffusion effects.

Finally, the ns and As describe the nature of primordial density perturbations, while
α approximates the change of ns with respect to the scale size on which it is measured.
Qnl and b describe the resulting large scale structure power spectrum, discussed in Sec-
tion 4.1.3.

The parameter ranges considered in Table 4.1 are similar to those given in Tegmark
et al. [2001] and Tegmark et al. [2006]. However, we have slightly increased the parameter
space to include a secondary peak in the parameter space. Given this parameter space, Θ,
let us now describe three data sets with which we can constrain the estimated ranges of
each parameter.

4.1.1 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) angular temperature power spectrum is the
most widely utilized data set for constraining the cosmological parameters [Tegmark et al.,
2001, Christensen et al., 2001, Verde et al., 2003, Spergel et al., 2003, Tegmark et al., 2004,
Spergel et al., 2007]. This power spectrum, which statistically measures the distribution of

98



temperature fluctuations as a function of scale, is comprised of at least two peaks thought
to have been formed by sound wave modes inherent in the primordial gas during recom-
bination. The locations, heights, and height-ratios of the peaks and valleys in the power
spectrum can provide direct information about fundamental parameters of the Universe,
such as the space-time geometry, the fraction of energy density contained in the baryonic
matter, and the cosmological constant [Miller et al., 2001]. However, it is more common
for cosmologists to compare the observed CMB power spectrum to a suite of cosmological
models (e.g. CMBFast [Seljak and Zaldarriaga, 1996] and CAMB [Lewis et al., 2000]).
These models require as input some minimal number of cosmological parameters, d, —
typically d = 6 or d = 7.

Here, we examine the CMB power-spectrum (Ĉ`) as measured by the Wilkinson Mi-
crowave Anisotropy Probe’s first year data release [Bennett et al., 2003, Hinshaw et al.,
2003, Verde et al., 2003]4, shown in Figure 4.1, as the third year data was uunavailable
when we performed our analysis. While the third year data has significantly less noise
than the first year data, the only parameters for which inferences which become substan-
tially tighter are ns and H0 [Spergel et al., 2007]. However, in Section 4.2.3 we will see
that the combination of other data sets with the WMAP first year data produces the same
effect. Our approach is similar to that of other authors (e.g. Tegmark [1999], Tegmark
et al. [2001], Spergel et al. [2003]), who fit the observed CMB power spectrum to a suite
of cosmological models. These models, while sophisticated and detailed, have numerous
free parameters, some of which are difficult to ascertain (e.g. ionization depth, contribu-
tion of gravity waves). However, there are many codes available to compute the CMB
power spectrum, which trade off speed for accuracy and robustness.

Both CMBFast [Seljak and Zaldarriaga, 1996] and the related CAMB [Lewis et al.,
2000] compute the CMB power spectrum by evolving the Boltzmann equation using a
line of sight integration technique. While an order of magnitude faster than computing the
full Boltzmann solution, this approach is still rather slow. Each individual model temperate
spectrum takes between 30 seconds and 10 minutes to compute using CMBFast.

One approach for reducing the computation time of CMBFast is to split the Boltzmann
computation into low and high multipole moment portions, as the low and high multi-
poles are mostly independent [Tegmark et al., 2001]. Using this method, ksplit, Tegmark
et al. [2001] was able to reduce computation time by a factor of 10. Additionally, several
approximate programs have been developed which are orders of magnitudes faster than
CMBFast, including DASh [Kaplinghat et al., 2002], CMBWarp [Jimenez et al., 2004],
and Pico [Fendt and Wandelt, 2006]. In general, these programs gain great speedups by
approximating the power spectrum with a regression function fit to predetermined sample

4Available at http://lambda.gsfc.nasa.gov
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points generated from simulators such as CMBFast. As a result, generating a hypothe-
sis spectrum for a new set of parameters is a simple function evaluation, foregoing the
computation of the Boltzmann equation entirely.

While using any one of these approximate methods or ksplit may seem appealing due
to their computational efficiency, they do not have the desired accuracy and robustness
[Seljak et al., 2003]. These codes are only approximations. While fairly accurate around
the concordance peak, their accuracy drops off drastically when computing models for pa-
rameter vectors slightly removed from the “accepted” cosmological models. Additionally,
these codes are prone to failures when presented with parameter vectors that are not within
a narrowly defined region around the concordance model [Fendt and Wandelt, 2006]. Ac-
cording to the Pico website: “Since Pico’s purpose is to be part of parameter estimation
codes, we are mainly concerned with having the regression coefficients defined around
the region of parameter space allowed by the data (mainly the WMAP3 data). Pico will
not be able to compute accurate spectra and likelihoods away from this region, but it will
warn you about this.” Similarly, in many instances ksplit will hang on parameter vectors
that are a short distance from the concordance peak. Since we are interested in finding the
tightest possible confidence intervals for all regions of parameter space that can possibly
fit the data, we do not want to be artificially restricted by our CMB simulator. Thus, we
choose to compute the model CMB power spectra using CMBFast; while not the fastest
code available CMBFast is accurate and reliable.

Finally, the multipole covariance matrix can be estimated by using the covariance de-
rived for the concordance model using code from Verde et al. [2003]. We find that the
computed variances of the first year WMAP data match well with those found in the first
year data release, with only a slight (roughly 1.15) multiplicative offset. This constant
factor offset was hinted at by the sub unity slope of the quantile-quantile plot of the vari-
ance weighted deviations between the data and the concordance model prediction, using
the variances given in the WMAP data.

Spergel et al. [2007] show that the WMAP third year data are well described by a
simple 6 parameter model: τ,H0, ΩM, ΩB, σ8, ns. For the WMAP first year data set, we
consider effectively the same model space as the simplified model in Spergel et al. [2007],
except that we include the neutrino fraction and exclude σ8. We made this change as
we are not utilizing large-scale structure data, which is sensitive to σ8. The resulting
parameter vector p = (τ, ΩΛ, ΩM, ωDM, ωB, fν , ns) is similar to the model space searched
by Tegmark et al. [2001].
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Figure 4.1: First-year (red), and third-year (blue) cosmic microwave background (CMB)
temperature-temperature power spectrum data from the Wilkinson Microwave Anisotropy
Probe (WMAP) data set shown with (a) and without (b) errorbars.

4.1.2 Supernovae

The second source of data that we will consider is type Ia supernovae. Type Ia supernovae
result from the tightly regulated explosion of white dwarf stars. White dwarfs are stars that
have reached the end of their lives, having burned all the nuclear fuel in their cores and
blown off their atmospheres. Without the nuclear processing in their cores to counteract
the pressure of gravity, these stars contract until they become electron degenerate, and
then slowly cool off. However, in binary systems, white dwarfs can gravitationally “steal”
matter from companion stars if the atmosphere of these neighboring stars gets too close
during expansion phases of the neighboring star’s life. If the accumulated mass on a white
dwarf surpasses the 1.4 solar mass Chandrashakar limit, the electron degeneracy of the
star is no longer enough to balance the gravitational force and the star collapses until the
core becomes neutron degenerate. The reverberations of the white dwarf’s atmosphere
reflecting off the core tear the star apart.

Since the inputs and processes leading to type Ia supernovae are so highly constrained,
their explosions follow predictable patterns, which allow astronomers to accurate estimate
their maximum apparent magnitude (or brightness), m. Comparing this observed magni-
tude with the predicted magnitude for such explosions, M , yields the distance modulus,
µ: µ = m−M .

Because magnitudes are the negative logarithm of brightness, smaller values of m and
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M correspond to brighter objects. Since all type Ia supernovae are (much) more distance
than 10 parsecs5, µ > 0, allowing for a natural distance interpretation. Using the fact
that energy flux falls off as the inverse of the squared distance, the supernova’s luminosity
distance, dL, is given by

µ = 5 log10(dL) + 25. (4.1)

where dL is in the units of megaparsecs. Thus, the observation of the type Ia supernova
explosion yields an estimate on the distance to the supernova, assuming that the Universe
was static. However, we know that this assumption is false.

If instead, we assume a homogeneous, isotropic and flat Universe6, the Robertson-
Walker metric [Robertson, 1936], predicts that the distance to the observed supernova
with redshift z is given by

dL =
c(1 + z)

H0

∫ z

0

dt√
ΩM(1 + t)3 + ΩΛ

. (4.2)

The redshift z for a supernova is given by the change in the wavelength of emission and
absorption lines, ∆λ relative to their values in the rest frame, λ: z = ∆λ/λ. Moreover, an
object’s redshift is dependent on the expansion of the Universe between the time that the
light was emitted and when it was observed. Thus, since the distance computed based on
the observed magnitude of the supernova does not depend on expansion of the Universe,
while the distance computed from the redshift does, we can isolate the effects due to
expansion as a function of redshift, or equivalently as a function of time.

Specifically, we combine Equations 4.1 and 4.2 to produce a model of µ as a function
of H0, ΩM, and ΩΛ:

µi = 5 log10

(
c(1 + zi)

H0

∫ zi

0

du√
ΩM(1 + u)3 + ΩΛ

)
+ 25, (4.3)

The error in the estimates of the distance moduli is assumed to have the Gaussian distribu-
tion with mean zero and specified variance σ2

i . Figure 4.2 displays the data; the error bars
illustrate the magnitude of σi in each case.

Comparing the distance moduli models predicted by Equation 4.3 with the observa-
tions in Figure 4.2, we can make inferences about the true values of the unknown param-
eters H0, ΩM, ΩΛ. Note that while we cannot compute the integral given in Equation 4.3,

5A supernova within 10 parsecs would be a very bad thing for life here on Earth.
6The assumptions of homogeneity and isotropy are common in astrophysics. The flat assumption, seems

to be supported by the CMB data.
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(b) Supernova data from Davis et al. [2007].

Figure 4.2: Observed distance moduli as a function of redshift for the SNLS data (a), and
the Davis et al. [2007] data (b). Since distance modulus is the negative log of brightness,
the distance modulus increases with distance and hence redshift.

we can quickly approximate it using Romberg’s method, a generalization of Simpson’s
method [Press et al., 1992, Section 4.3]. Thus, unlike the CMBFast experiments of Sec-
tion 4.1.1, the supernova experiments can be computed in a fraction of a second. As a
result, the supernovae data sets provide an excellent real-world testbed for our algorithms.

While there are many supernovae data sets to choose from, we consider two: the Su-
pernova Legacy Survey (SNLS) data set [Astier et al., 2006] comprised of 73 supernova
and the larger Davis et al. [2007] survey composed of 192 supernova taken from Riess
et al. [2007] and Wood-Vasey et al. [2007]. The two data sets are shown in Figure 4.2.
Figure 4.2 shows that the Davis et al. [2007] data covers a much wider range of redshift
and contains much less noise. Intuitively, the Davis et al. [2007] data is preferable, as
it results in tighter constraints on the cosmological parameter, and hence more powerful
scientific inferences. However, in some of the analyzes in the subsequent chapters we use
the SNLS data, due to its earlier availability.

4.1.3 Large Scale Structure

The final data set we consider is based on observations of the large scale structures. After
recombination, the baryonic matter in the Universe collapsed to form galaxies and stars.
However, galaxies are not distributed uniformly throughout the Universe [Shectman et al.,
1996, Falco et al., 1999, Saunders et al., 2000, Tegmark et al., 2006]. Instead, galaxies
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Figure 4.3: Observed galaxy power spectrum. The data shown here is from Tegmark et al.
[2006].

preferentially lie in clusters, filaments, bubbles and wall like structures. To ascertain the
degree of clustering, astronomers compute the two-point correlation function which mea-
sures the probability that a galaxy is a specific distance from a random neighbor, in excess
of a uniform distribution. As with the CMB data, we look at the Fourier transform of the
data to obtain the galaxy power spectrum. This spectrum, plotted in Figure 4.3, presents
the probability of two galaxies within a specified size scale as a function of size scale.
At large scales the WMAP data suggests that the spectral index, ns, is slightly above 1.0.
However, at small scales, the correlations function has a negative slope, as can be seen in
Figure 4.3. Theoretical models suggest that cold dark matter is required to produce this
power spectra with this “turn over” point.

Thus, the galaxy power spectrum provides useful insight into a number of cosmo-
logical parameters. Importantly, Tegmark et al. [2006] shows that the LSS data can be
used to break degeneracies in the accepted parameter ranges in the WMAP data (see Sec-
tion 4.2.1). For instance, while the WMAP data is able to determine ΩT with some accu-
racy, the relative contributions of ΩM and ΩΛ are not well constrained. The galaxy power
spectrum data provides constraints on ΩM allowing us to break this degeneracy. Moreover,
the LSS data produces strong constraints on ns and H0, as we will see in Section 4.2.3.
Here, we use the theoretical models of Tegmark et al. [2006] to compute likelihood esti-
mates of the data given the parameter vector p = (Ωk, ΩΛ, ωc, ωB, ns, As, α, b, Qnl). These
models take a fraction of a second to compute, on par with the supernovae calculations,
and significantly faster than CMBFast computations. However, in order to reduce the pa-
rameter space of our entire collection of cosmological parameters to a more manageable
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size, we fix As, α, and Qnl to their maximum likelihood estimate values given in Table 4.1.
These variables are either weakly constrained by the data, or are “nuisance” parameters,
introduced to describe the non-linearity at small scales [Tegmark et al., 2006]. As a result,
we are left with an eight dimensional parameter space which can be used to describe the
three different data sources.

4.2 Statistical Inference Results

In the previous section, we described three independent data sets which can be used to
constrain the values of the cosmological parameters listed in Table 4.1. Let us now use
the inference methods described in Chapter 3 to compute statistically valid joint 1 − α
confidence regions for the parameters. In this section we look at the tasks of computing
1− α confidence regions for the WMAP first year data and the supernovae data sets inde-
pendently, and then demonstrate how our techniques can be used to compute 1−α regions
using combination of all three data sources. We conclude by comparing our results with
those from the literature.

4.2.1 Cosmic Microwave Background Result

The first analysis we will examine uses the WMAP first year CMB temperature-temperature
power spectrum data described in Section 4.1.1.7 Most CMB power spectrum parameter
estimations to date have been done via Bayesian techniques (e.g., Knox et al. [2001],
Gupta and Heavens [2002], Spergel et al. [2003], Jimenez et al. [2004], Dunkley et al.
[2005]). However, there have also been undertakings to estimate cosmological parame-
ters using frequentist techniques, such as χ2 tests [Gorski et al., 1993, White and Bunn,
1995, Padmanabhan and Sethi, 2001, Griffiths et al., 2001, Abroe et al., 2002] and Bayes
risk analyses [Schafer and Stark, 2003]. Here, we show how statistical inferences can
be computed using the confidence ball procedure in combination with our active learning
algorithms (as described in Section 3.3.3).

The first step of the confidence ball procedure is to compute the non-parameter fit, and
then determine the radius of the resulting confidence ball. Here we use the results from
Genovese et al. [2004]. In Figure 4.4, we compare the non-parametric fit of Genovese
et al. [2004] to a model-based fit from Spergel et al. [2003]. Points in the figure depict the

7This work was originally published in Bryan et al. [2005] and Bryan et al. [2007b] with co-authors Jeff
Schneider, Christopher J. Miller, Robert C. Nichol, Christopher R. Genovese, and Larry Wasserman.
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Figure 4.4: Comparison of our nonpara-
metric fit of the CMB power-spectrum
(solid) with Spergel et al. [2003] paramet-
ric fit (dashed). First-year WMAP data
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Figure 4.5: A “ribbon” plot depicting the
effect of varying ωB while all other pa-
rameters remain fixed (at concordance val-
ues). Green lines indicate those models
which are contained within a 95% con-
fidence ball, while the red lines indicate
those models rejected by the hypothesis
that the model and the regressed fit are the
same.

first year WMAP data. Error bars are omitted for clarity. The full estimated covariance,
Σ, is used in both the Spergel et al. [2003] model fit and the Genovese et al. [2004] non-
parametric fit. In Table 4.2, we compare our maximum likelihood estimate based on the
Genovese et al. [2004] nonparametric fit, with the mean estimate computed by Spergel
et al. [2003] using χ2 tests. Empirically, we find that similitude between the studies is
remarkably close, given that the studies used different statistical tests and parameters of
interest.

The combination of the non-parametric fit and the 1− α confidence ball radius forms
a high-dimensional ellipse; parameter vectors which result in models that are contained
within this ball will be accepted, while those outside will be rejected at a confidence level
of α. As mentioned in Section 4.1.1, we consider the parameters space spanned by the pa-
rameters τ, ΩΛ, ΩM, ωDM, ωB, fν , and ns. Since the dimensionality of our space is large, it
is difficult to visualize the confidence region that surrounds the non-parametric fit. How-
ever, we can show examples of functions which live inside (or outside) our confidence
region by calculating their distance from the nonparametric fit to the data. In Figure 4.5,
we show a “ribbon” plot for ωB around the concordance model. This figure is generated
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Parameter Our MLE Model Spergel et al. [2003] Mean Model
τ 0.177 0.166

ΩΛ 0.73 0.71
ΩM 0.27 0.29
ωDM 0.1161 0.116
ωB 0.0238 0.024
fν 0.0 0.0
ns 1.0 0.99

Table 4.2: Our maximum likelihood estimate parameter estimate compared with the mean
parameter estimate from Spergel et al. [2003]. The models generally agree quite well,
considering that different assumptions and parameters were used in the analysis.

by setting all of the cosmological parameters to their maximum likelihood estimate values
and then slowly evolving ωB from 0.012250 to 0.036750 to depict the range of temperature
spectra allowed due to uncertainty of ωB. The green curves correspond to cosmological
models which live within the 95% confidence ball, while the red curves are models that
do not. As can be seen in this figure, the shape of the confidence region is not simply a
band of constant width surrounding the best fit. It is, in fact, a very complicated, possibly
disconnected surface in our high-dimensional parameter space.

Using our active learning algorithm with the straddle heuristic as described in §3.3.3,
we have sampled just over 1.2 million CMBFast models to learn the surface of this 1 −
α confidence region, while α = 0.61, 0.32, 0.13, and 0.05. These various levels of α
correspond roughly to 0.5, 1.0, 1.5 and 2.0 − σ confidence regions. The result of our 1.2
million models was a “primary” data set used to compute the 1− α confidence regions.

Additionally, we sampled another 100 thousand models uniformly at random through-
out the parameter space. From the randomly sampled data, we find that less than 0.1%
of the parameter space searched is within the 2σ confidence ball; that is, our set of ac-
ceptable models (those within 2σ) exclude 99.97% of all possible models defined in Table
4.1. However, the method we use to generate parameter vectors results in only 54% of the
points being rejected by the hypothesis that the model and the regressed fit are the same.
Note that a sampling efficiency around 50% is optimal, as points need to be selected on
both the interior and the exterior of the function level-set in order to accurately determine
the level-set’s location. Thus, by actively searching through the space, we are able to iden-
tify and efficiently map regions of interest, while ignoring large areas of parameter space
that result in models below the 2σ level.
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Figure 4.6: Jointly valid confidence intervals for our cosmological parameters for four
values of 1−α, corresponding to 1

2
σ, σ, 11

2
σ and 2σ confidence levels, respectively. Areas

of solid color indicate values for the given parameter that contain the true value of cos-
mological parameter with probability 1 − α, regardless of the values of the remaining 6
parameters.

The result of running the 1.2 million models contained in the primary data set is a set
of disjoint, seven dimensional “confidence regions” in parameter space which contain all
models that fall within our 1− α confidence ball. In each of these regions, the confidence
interval for a particular parameter is given by the range of values that parameter takes in
that region. Thus, the confidence interval for a particular parameter will be a function of
which sets of regions we consider.
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Figure 4.7: Jointly valid confidence regions for pairs of cosmological parameters, where
the colors cyan, magenta, blue and red correspond to 1

2
σ, σ, 11

2
σ and 2σ, confidence lev-

els respectively. Areas of solid color indicate values for the given pair of fixed (plotted)
parameters that contain the true value of cosmological parameter with probability 1 − α,
regardless of the values of the remaining 5 parameters. Note there are two disjoint regions
in parameter space which are above the 2σ confidence interval.
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Figure 4.8: Jointly valid confidence intervals for our cosmological parameters, where we
assume that that the value of H0 is between 60 and 75km/s

Mpc
. Areas of solid color indicate

values for the given parameter that contain the true value of cosmological parameter with
probability 1− α, regardless of the values of the remaining 6 parameters.

If we put no restrictions on the values of the other 6 parameters, then the confidence
interval of a parameter will be the union of the confidence intervals for that parameter for
all confidence regions. We plot these unrestricted confidence intervals in Figure 4.6 for
the four values of 1 − α corresponding to 0.5, 1.0, 1.5 and 2.0 − σ confidence regions.
Intuitively, Figure 4.6 can be interpreted as stating that for any value of a parameter that
lies within the depicted 1− α confidence interval, there exists at least one combination of
the remaining six parameters such that the resulting parameter vector lies within one of
the 1− α confidence regions.
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Figure 4.9: Jointly valid confidence regions for pairs of cosmological parameters, where
we assume that that the value of H0 is between 60 and 75km/s

Mpc
. The colors cyan, magenta,

blue and red correspond to 1
2
σ, σ, 11

2
σ and 2σ, confidence levels, respectively. Areas of

solid color indicate values for the given pair of fixed (plotted) parameters that contain the
true value of cosmological parameter with probability 1 − α. Note that the constraint on
H0 eliminates the secondary confidence region found in Figure 4.7.
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In Figure 4.7 we depict results of interactions between pairs of parameters on the com-
puted confidence regions. As with the one dimensional projections in Figure 4.6, points
in Figure 4.7 which are denoted to be within the 1 − α confidence ball, are points where
given the particular values of the two fixed cosmological parameters — those being ex-
plicitly plotted on the x and y axes, — there exists some values for the other 5 parameters
such that the resulting parameter vector is within the 1−α confidence region. While some
plots show that most combinations of the fixed parameters are within the 95% confidence
ball providing minimal constraints on parameters describing the Universe, others, such as
ωDM versus ωB (4th row, 4th column), show strong constraints.

Areas in Figure 4.7 which are blank (white), are areas that are rejected at the 95%
confidence level; for these combinations of fixed parameters, there exists no combination
of the other five parameters, such that the resulting vector is within any of our confidence
regions. In particular, the plot of ΩΛ versus ΩM (2nd row, 3rd column) illustrates that
ΩTotal & 0.9, while the plot of ωDM versus ωB shows that there are at least two disjoint
confidence regions in our seven dimensional space. These disjoint regions in Figure 4.7
correspond directly to the split confidence intervals observed in Figure 4.6. We defer
further discussion of the disjoint confidence regions to Section 4.2.1. Smaller splits in the
confidence intervals observed in nearly every plot in Figure 4.6 are a result of the fact that
CMBFast does not return models which are perfectly continuous in the parameter space.
While one may expect the derived confidence level to be smooth in parameter space, this is
not the case. We observe small discretizations and inconsistencies in the power spectrum
model, which result in the confidence ball having a jagged, nebulous surface (as observed
in Figure 4.7), rather than a perfectly smooth one. We will elaborate on this observation
in Section 4.2.1.

As illustrated in Figure 4.6, the confidence intervals for most parameters are not well
constrained by the WMAP data alone. In particular, the constraint on the Hubble constant,
H0, is so weak as to allow values between 15 and 300 at the two sigma level; even at the
one sigma level, H0 ranges between 15 and 150 with additional fits at H0 ∼ 250. The
confidence intervals derived here cover the Bayesian credible intervals found in the litera-
ture using a variety of techniques (e.g. Tegmark et al. [2001], Spergel et al. [2003, 2007]),
as shown in Table 4.3. The results in Table 4.3 show that the parameter ranges derived
by both the frequentist and Bayesian analyses are approximately centered on the same
values. However, we are not in any way attempting to argue that the allowed parameter
ranges are better, or worse, than those derived from alternative methods, as the comparison
of credible (Bayesian) and confidence (frequentist) parameter regions is non-trivial.

While this assessment may appear bleak, there is underlying structure to the confidence
regions, hinted at by the disjoint regions in Figure 4.7. Suppose we restrict the range of
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No ns < 1 Spergel Spergel
Parameter Constraints 60 ≤ H0 ≤ 75 60 ≤ H0 ≤ 75 et al. (2003) et al. (2006)

τ 0 – 1.2 0-0.94, 1.17-1.2 0 – 0.4 0.095 – 0.242 0.058 – 0.117
ΩΛ 0 – 0.94 0 – 0.94 0.39 – 0.9
ΩM 0 – 1.0 0.13 – 0.95 0.13 – 0.59 0.22 – 0.36 0.199 – 0.273
ωDM 0 - 0.36, 0.62 - 0.70 0.0 – 0.36 0.03 – 0.2

100ωB 0.5 - 6.2, 11.5 - 12.7 1.3 – 5.5 1.3 – 3.2 2.26 – 2.51 2.15 – 2.31
fν 0 – 1 0 – 1 0 – 1
ns 0.73 – 1.7 0.8 – 1.7 0.84 – 1.0 0.95 – 1.03 0.944 – 0.978
σ8 0.82 – 1.02 0.71 – 0.81
H0 17 - 135, 243 - 272 60 – 75 60 – 75 67 – 77 70.3 – 76.7

Table 4.3: Derived 68% confidence intervals. Those to the left of the solid line are de-
rived from Figures 4.6, 4.8 and 4.10 respectively, while those to the right are quoted from
referenced literature.

a subset of our parameters and then compute the confidence intervals for the remaining
parameters. Since our statistical model is independent of the ranges searched, we can
compute these conditional confidence intervals without re-running any models. For any
restriction of our parameter space, the confidence interval for a parameter of interest will
be the union of the confidence intervals for that parameter over those confidence regions
which obey our restriction. For example, in Figures 4.8 and 4.9 we show the effect on
the confidence intervals and regions, respectively, of imposing the restriction that H0 is
between 60 and 75km/s

Mpc
. Note that with this restriction on H0, the confidence intervals

agree much better with the current estimate of the cosmological matter/energy budget and
strongly suggest that ΩTotal = 1.

This analysis exhibits the power of our statistical inference technique: we can test
constraints on one parameter, and see their effects on the remaining parameters without
additional CMBFast computation or invalidation of our previous statistical inferences. To
this end, we have created a graphical interface that can be used to apply constraints and
view the resulting effects in real time. This tool, along with the necessary data files, can
be downloaded from http://gs3636.sp.cs.cmu.edu/visualizer/.

In the Bayesian view, the tightening of the allowable regions between Figures 4.6 and
4.8, and Figures 4.7 and 4.9 is analogous to what would occur when priors (either in-
formative or non-informative) are applied. Such priors are universally applied in CMB
cosmological analyses. As an example of how we can use this technique to better un-
derstand the cosmological confidence surface, we focus in on one or two parameters and
utilize the graphical interface described above.
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WMAP Three Year data show that a scale invariant spectra (ns = 1) is not a good fit
to the WMAP Three Year data alone. If we place both the constraint that ns < 1 and that
60km/s

Mpc
≤ H0 ≤ 75km/s

Mpc
on the WMAP One Year data, we see in Figure 4.10 that τ, ωB, and

ωDM are much better constrained. More importantly, we see that the allowable ranges on
ωDM are forced into a single confidence range, in agreement with previous studies [Spergel
et al., 2003].

Exploring the high ωDM space shown in Figure 4.6, we find that models consistent with
high ωDM have large values of ωB (> 0.05), as well as large Hubble constants (> 100km/s

Mpc
).

Both of these parameters are much better constrained in the WMAP Three Year data. This
leads us to predict that the second confidence surface peak in the WMAP Three Year Data
is less significant than in the WMAP One Year data (although this has yet to be shown).

Convergence

Ideally, one would like to prove that our mapping from confidence ball radius to parameter
space has converged. This could be done, for instance, by proving that our approximating
model of spectrum distance as a function of cosmological parameters – that is our Gaussian
process – has converged to the true values in those areas where the true values are near the
radius of the 1 − α confidence ball. However, this effort has been confounded by a lack
of continuity in the results returned by CMBFast. The method presented here is not more
susceptible to discontinuities than other techniques. Indeed, the convergence of most, if
not all, inference methods will be adversely effected by the discontinuities of CMBFast
models we observe in parameter space.

One standard assumption of function approximators is that of smoothness; that is that
the underlying function to be modeled is continuous and differentiable. For Gaussian
processes, this assumption motivates the usage of a covariance matrix in determining the
relative weights of known samples when estimating values for unknown points. In this
paper, we have also assumed that the covariance function is fixed over the entire space –
that is that the underlying covariance is isotropic and homogeneous. These assumptions
allow us to compute error bounds for each point in space, and enable us to determine when
the model has converged to the underlying function.

However, experimentation shows that the underlying CMBFast function does not fulfill
the continuous and differentiable assumptions, as shown in Figures 4.11 and 4.12. Both
figures were produced by plotting the resulting model distance as we varied one parameter
and kept the other six parameters fixed. Figure 4.11 shows a discretization effect that we
believe is a result of integral approximations done by CMBFast. Discretization effects are
common in simulated environments and it is reasonable to assume that the true function
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Figure 4.10: Jointly valid confidence intervals for our cosmological parameters, where we
assume that 60km/s

Mpc
≤ H0 ≤ 75km/s

Mpc
and ns < 1. Areas of solid color indicate values for

the given parameter that contain the true value of cosmological parameter with probability
1− α, regardless of the values of the remaining 6 parameters.

varies smoothly. More startling are the discontinuities revealed in Figure 4.12. Figure
4.12 shows that while on a broad scale the CMBFast function appears smooth, when one
looks closer and closer, the function begins to act quite erratically. Of particular interest
are the large discontinuity at ΩΛ = 0.446516 and the seemingly random deviations from
a smooth function throughout the entire range. These fluctuations in distance are not
caused by random noise from CMBFast; CMBFast’s output is deterministic given an input
parameter vector.

There are two important implications of the results in Figures 4.11 and 4.12. First, we
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Figure 4.11: A plot of spectra distance as a function of τ , with all other param-
eters fixed, showing the discretization of CMBFast. For these experiments ~x =
{τ, ΩΛ, ΩM, ωDM, ωB, fν , ns} = {τ, 0.0, 0.2, 0.8, 0.003, 0.0, 1.2}.

note that when parameter values result in spectra that are very close to the confidence ball
radius, it is impossible to predict which side of the boundary a given point will be on, due
to the inherent noise in CMBFast. For regions where many points are near the confidence
ball radius, we will obtain spotty, jagged boundaries between those areas in the ball and
those not. Second, the effects plotted in Figures 4.11 and 4.12 do not appear on the same
range scales. This makes it more difficult to determine the correct level of smoothing,
and hence discover the true underlying function. Thus, while it is still possible to deduce
approximate covariances among the variables, it becomes impossible to ensure the model
has correctly converged to the true model.

In Section 2.2, we noted that our active learning framework was able to learn the level-
sets of the 2D Deboor model, a discontinuous target function. However, the primary
difference between the CMBFast output and the 2D Deboor function is that the 2D De-
boor function is discontinuous in specific regions away from the level-set of interest, while
the CMBFast models are discontinuous over the entire parameter space. Thus, while we
can use our active learning framework to learn an approximate level-set corresponding to
the 1− α confidence regions, we cannot learn the exact level-set.

We note that this lack of continuity will adversely effect the convergence of any model
that relies on the smoothness of the underlying function, be it MCMC or Gaussian pro-
cesses. In the case of MCMC, the discontinuities in the variance weighted sum of squares
between the models computed by CMBFast and the data require that comprehensive sam-
pling of the posterior be performed to ensure that the peaks and valleys in any local region
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Figure 4.12: A plot of spectra distance as a function of ΩΛ, with all other parameters fixed.
The square boxes in each of the left two plots denotes the area enlarged in the neighboring
plot to the right. Note that while on the global scales, (a), the mapping appears to be
smooth, closer inspection (b), (c) reveal numerical errors resulting from approximations
used in CMBFast.

are correctly averaged out, allowing the integral over the posterior to be correctly com-
puted. While we can run both methods in a mode that smooths over these discontinuities
(by effectively ignoring them), we must realize that the resulting algorithms will converge
to a solution that is incorrect. Additionally, increasing the sampling of either algorithm
would eventually turn up the existence of these discontinuities, and the system would
jump from an apparent convergence in the smoothed case, to a new convergence where
discontinuities are considered.
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Connectivity

As Figure 4.7 show, there are two main peaks that lie above the 1σ confidence ball ra-
dius. As a test of the function approximate convergence, we conducted focused tests to
see if these peaks were truly connected. In particular, we used the semi-variance matrix
of the Gaussian process to compute the maximal influence distance from a given point
one could travel before possibly encountering the 1 − α confidence ball radius. We then
created clusters of points above the 68% confidence ball radius using a friends-of-friends
algorithm; that is, a point is added to an existing group if it is within the maximal influence
distance of any point currently in the group. Starting with all points in their own groups,
we first passed through the data, merging groups where possible. Then, additional points
were sampled between existing groups, using an A∗ like algorithm [Hart et al., 1968]. For
two groups A and B, we found the point, x, in A that was closest to any point in B. We
then created a set of candidate points within the influence distance of x, and add them to a
queue, P , sorted according to their distances to B. We then take the point p from P that
is closest to B run it through CMBFast and compare to our confidence ball. If p is within
our confidence radius, then we create candidate points for p (just as we did for x) and add
them to P . Otherwise, we remove p from P . This procedure is repeated until either B is
within the influence distance of p or we exhaust P .

The primary data set contained roughly 2000 distinct groups, which were quickly
merged using the friends-of-friends algorithm. This left us with 2 major clusters shown in
Figure 4.7. Using the algorithm noted above, we were unable to find connections between
the main peak and the secondary peak, even after multiple attempts starting from different
locations. We believe that there exists no smooth transition of variable parameters that
leads from the concordance to the secondary peak. The second peak is not just an exten-
sion of the concordance peak that appears disjoint due to under sampling or projection
effects.

Comparison to Grid Based Approaches

Finally, let us compare the efficiency of our active learning algorithm with grid-based
approaches. While it would be interesting to compare our algorithm with MCMC as well,
the efficiency of MCMC is hard to calculate in high-dimensions, as the truth depends on
the samples chosen (see Section 3.6.4); we will discuss this issue more in Section 4.2.2.
Therefore, let us restrict our comparison to the efficiencies of our algorithm and grid-based
approaches.

Given the high dimensionality of the parameter space, and the thirty second to ten
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Peak Center # Points in Effective Radius
ωDM ωB Grid Straddle

MLE Peak 0.116 0.024 4943 25689
Secondary Peak 0.665 0.122 0 5488

Total Points 5613300 603384

Table 4.4: Number of points found in the two peaks for the grid based approach of
[Tegmark et al., 2001] and our straddle algorithm.

minute cost of computing a single CMBFast model, a simplistic grid based approach with
only 10 samples per dimension would require between 10 and 200 CPU years to com-
pute.8 However, a 10 point per dimension grid is far to sparse to be scientifically useful. A
more informative grid with 50 points per dimension would take over a million CPU years
to compute. Even utilizing parallel computing infrastructures, this computational require-
ment is clearly unfeasible. For comparison, the 1.2 million CMBFast models used here
took roughly 4 years of CPU time to compute.

Instead, Tegmark et al. [2001] suggests the use of an adaptive grid. This grid contains
between 7 and 11 points per dimension, and samples for each dimension are placed ac-
cording to an assumed Bayesian prior. Grid points are more densely concentrated where
the the marginalized prior is large, and are sparely distributed where the prior is near zero.
While this adaptive grid creates a dense mesh in the region of the maximum likelihood
estimate model (see Table 4.2), — hence should produce scientifically useful constraints
— the fact that it ignores large regions of space limits its value. In particular, we note
that the adaptive grid used by Tegmark et al. [2001] fails to sample a single point with the
secondary peak shown in Figure 4.7. As a result, a posterior derived using this adaptive
grid would underestimate the normalization constant c. Hence, Bayesian analyses would
underestimate the size of the credible regions about the concordance peak, as well as miss
the contributions of the secondary peak to the 1− α credible regions.

On the other hand, our algorithm samples this secondary peak frequently, while our
statistical procedure is independent of the actual experiments chosen. A comparison of the
number of samples within both the maximum likelihood estimate and secondary peak for
our active learning algorithm and the grid based approach used by Tegmark et al. [2001] is
shown in Table 4.4. Even with only 10% of the experiments used in the grid approach, we
sampled the concordance peak five times more frequently than the grid based approach.
Moreover, Table 4.4 shows that the the grid completely ignored the secondary peak, while

8This calculation is based on benchmarks made on 1.6Ghz Opteron machines.
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our method sampled it over 5000 times. These results dramatically illustrate the power of
our active learning algorithm, and show how it is significantly more efficient that adaptive
grid-based approaches.

4.2.2 Supernovae Results

We now turn to the second statistical analysis, this time using supernovae data. In the
previous section, we computed 1 − α confidence regions for the WMAP first year data
using the confidence ball procedure. For variety, here we use the minimax expected size
(MES) confidence procedure described in Section 3.4.

While the MES technique yields near optimal 1 − α confidence regions in practice, it
requires much more upfront computation. Besides performing a search of the confidence
region boundary, as we did for the confidence ball approach, we must also construct and
solve a convex game. Moreover, as seen in Section 3.4.4, it is generally preferable to
perform a χ2 cut, to further restrict the size of the parameter space, Θ. This restriction
allows us to solve a smaller convex game and eliminate from consideration those parameter
vectors which are very unlikely.

In this section, we will compute 95% confidence regions for both the SNLS data set
[Astier et al., 2006] and the data set compiled by Davis et al. [2007], using the MES
algorithm given in Section 3.4.5. For both analyses, we will use a χ2 cut at level α = 0.005
to create the restricted parameter space Θ′. Active learning is used to learn both Θ′, and
the resulting confidence region boundary. The experiments shown here use a sparse matrix
representation, with a cutoff value, εt, of 1× 10−32. As we saw in Section 3.4.5, even with
this small cutoff value, the payoff matrix of the convex game is 85% sparse, leading to a
large computational speed-up.

We begin by discussing the analysis using the SNLS data, and then present the results
from the Davis et al. [2007] data.

Results Based on the SLNS Data Set

In Figure 4.13 we plot the 95% confidence regions derived from the SNLS data set using
the MES approach described in Section 3.4.5 (blue), along with 95% confidence/credible
regions derived using χ2 tests (red), and the grid-based Bayesian technique (green) de-
scribed in 3.5.1. Bayesian intervals were estimated by numerically integrating the likeli-
hood function over the entire space (using a finely spaced grid) and then computing the
maximum a posterior 95% credible region, as discussed in Section 3.5. As with the re-
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Figure 4.13: 2D projections of the confidence regions of the parameters H0, ΩM, and ΩΛ

based on the Supernova Legacy Survey data set, using χ2 tests (red), a Bayesian technique
(with a uniform prior) (green), and MES (blue). MES has roughly the same power as the
Bayesian technique and significantly more power than χ2 tests.

gions presented in Section 4.2.1, a region of color indicates that for some value of the
third (non-plotted) parameter, the resulting model is accepted by the specified inference
technique.

Figure 4.13 illustrates that the confidence region derived by MES is much smaller
than the associated χ2 confidence region and similar in size to the 95% Bayesian credible
interval. While the MES and Bayesian intervals seem comparable, recall that the MES
interval guarantees 95% coverage, while the Bayesian interval does not. In general, the
confidence regions produced by the MES procedure are similar to the credible regions of
a Bayesian analysis when the Bayesian approach uses a prior distribution which is similar
to the likelihood of the parameter space given the observed data.

Taken together, the panels of Figure 4.13 suggest that the parameters may be corre-
lated. In fact, looking at Equation 4.3, we can clearly see this dependence. Note that if we
increase ΩM and ΩΛ by a constant factor, then decreasing H0 by the square of that factor
results in the exact same model. Thus, there are not really three independent parameters,
but two. This dependence results in the clear correlation between ΩM and ΩΛ and the in-
verse correlation between H0 and ΩM (and ΩΛ). These correlations can easily be broken
by including data from other astronomical observations, such as the CMB data described
earlier.

MCMC versus Grid Based Numerical Integration In Figure 4.13, we compared the
results of the MES 95% confidence region with that of the Bayesian 95% credible region.
Bayesian credible regions are most commonly produced by using MCMC to sample the
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using numerical integration with
8 million experiments

Ω
M

ΩΛ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.25 0.5 0.75  1  1.25

(b) 95% credible region found
using MCMC (Metropolis-
Hastings) with 8 million
experiments.
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(c) 95% credible region found
using MCMC (Metropolis-
Hastings)with 125 million
experiments.

Figure 4.14: Derived 95% credible regions for the SNLS data set using numerical integra-
tion (a) and MCMC (b & c). Note that MCMC is not necessarily data efficient for finding
credible region boundaries.

parameter space and then choosing the highest probability density (HPD) regions which
enclose 95% of the probability mass. However, for the reasons discussed in Sections 3.5.2
and 3.6.4, MCMC is actually a fairly inefficient algorithm for computing credible regions.
Specifically, MCMC is prone to selecting samples in regions of high probability, virtually
ignoring parts of parameter space which are on the boundary of the credible region.

In Figure 4.14 we compare the 95% credible regions derived using MCMC sampling
(with the Metropolis-Hastings algorithm) with those found using numerical integration
where the samples were taken from a uniform grid in parameter space. For both ap-
proaches, we used 8 million samples. This corresponds to a grid with 200 points per
dimension for the numerical integration technique, a fairly fine sampling. Figure 4.14
shows that the numerical integration has “converged” to a reasonable 95% credible region,
while MCMC has not. This indicates that at least on the SNLS data, MCMC is less effi-
cient than grid-based sampling. Indeed, if we were to allow MCMC to sample an order
of magnitude more points, the resulting credible regions are still not as well defined as the
grid based approach, as shown in Figure 4.14(c).

Figure 4.15 depicts the distribution of experiments used by the MCMC algorithm for
both 8 and 125 million experiments. These are the points that are either accepted or re-
jected by the Metropolis-Hastings algorithm (not the points that become part of the Markov
chain). The figure shows the MCMC algorithm heavily over-sampling regions of high-
probability, leading to the unrefined credible region boundaries seen in Figure 4.14(b),
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(a) Distribution of samples selected by
MCMC (Metropolis-Hastings) with 8 mil-
lion experiments
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(b) Distribution of samples selected by
MCMC (Metropolis-Hastings) with 125
million experiments

Figure 4.15: Distribution of experiments computed by MCMC (not samples chosen for
inclusion in the Markov chain). Note that MCMC heavily samples the high-likelihood
areas of the parameter space, leaving relatively few samples for the regions defining the
95% HPD credible region. Thus, the HPD regions computed by MCMC are less refined
that those computed using a grid based approach (See Figure 4.14).

again illustrating the fact that MCMC is not an efficient search algorithm; it is an algo-
rithm for computing an entire posterior distribution.

Thus, the MES 1 − α confidence procedure described in Section 3.4 has two major
advantages over the MCMC approach. First it produces 1− α confidence regions that are
guaranteed to have correct coverage (in a frequency sense). Second, it does so in a data
efficient, dimension independent manner.

Results based on the Davis et al. [2007] Data Set

Now, let us preform an analysis of the Davis et al. [2007] data, again using the MES
confidence procedure. However, as noted in Section 4.2.2, there are really only two free
parameters in the supernova model. As such, we fix H0 = 65km/s

Mpc
, and compute the 95%

confidence regions for ΩM and ΩΛ. For comparison, we plot the 95% confidence/credible
regions derived using MES (blue), the grid-based Bayesian technique (green) and χ2 test
methods (red) for both the SNLS data and the Davis et al. [2007] data. Since the ranges
of the two figures are different, we depict the range of Figure 4.16(b) as a white box in
Figure 4.16(a).
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(a) 95% confidence/credible regions derived from
the SNLS data Astier et al. [2006].
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(b) 95% confidence/credible regions dervied from
the Davis et al. [2007] data.

Figure 4.16: 95% confidence/credible regions computed using χ2 tests (red), Bayesian
techniques (green), and the MES procedure (blue) for the SNLS (a) and Davis et al. [2007]
(b) data sets. The Davis et al. [2007] data allows for much tighter inferences for all tech-
niques; note that the range of panel (b) corresponds to the white box in panel (a).

Unsurprisingly, the relative sizes of the derived confidence/credible regions remain
constant between the data sets. The MES 95% confidence region is again significantly
smaller than the corresponding χ2 region, and similar in size to the 95% Bayesian credible
region.

However, the sizes of all the 95% confidence/credible regions decrease significantly
when the Davis et al. [2007] data is used. This is a direct consequence of the fact that
the Davis et al. [2007] data set has both better redshift coverage and smaller measurement
errors, as seen in Figure 4.2. In particular, note that the expected brightness of a supernova
due to ΩM is highly dependent on the redshift, while Ωλ is not. Thus, the sharp increase
in brightness at low redshifts observed in the Davis et al. [2007] data, but not in the SNLS
data, allows us to disambiguate the relative effects of ΩM and ΩΛ. Hence, the statistical
inferences are much tighter for the Davis et al. [2007] data.

Let us now use this data set to compare some of the properties of our active algorithms
with MCMC. This comparison is possible for the supernova data, as the size of the pa-
rameter space, Θ, is only two dimensional when we fix H0 as above, and the computation
of the expected model given a parameter vector, θ ∈ Θ, is extremely quick. Thus, we
can easily compute many instance of all of the inference techniques to obtain insights into
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Figure 4.18: Confidence/credible region
size as a function of α for χ2 tests (red), the
MES confidence procedure (cyan), and the
grid-based Bayesian method using credi-
ble regions derived from the 2D posterior
(purple) and from the 1D marginals (blue).

their coverage probabilities and convergence properties which we discussed on simulated
data in Section 3.6.

Coverage First, let us look at the coverage properties of the χ2, MES, and Bayesian
inference techniques. Note that in order to compute the coverage probability of the truth,
θ?, we need to know θ?. Since θ? is not known for the Davis et al. [2007] data set, we pick
a plausible value for θ?: θ? = {ΩM, ΩΛ} = {0.27, 0.73}. (Recall that we have already
fixed H0 = 65km/s

Mpc
.) Using Equation 4.3, we can compute the expected observation given

θ? for the Davis et al. [2007] data, µ?. We then derive simulated data by adding the
observed measurement errors of the Davis et al. [2007] data to µ? to obtain µ̃. Repeating
this procedure thousands of times results in a series of hypothetical observations, given
θ?, to which we apply the three inference techniques. The coverage fraction is then the
fraction of the confidence/credible regions produced by each method for the simulated
values of µ̃.

In Figure 4.17, we plot the ratio of the coverage fraction of each to the expected cov-
erage fraction: 1− α. Thus, if the statistical method truly have 1− α coverage, we expect
the coverage ratio to be one for all values of 1−α in the plot (denoted by a green line). As
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expected, statistical inference based on χ2 tests (red) results in correct coverage (consider-
ing the error). Regions derived by the MES procedure (not shown) also guaranteed 1− α
coverage. In purple, we plot the results of Bayesian inference using a grid with 300 points
per dimension, where the credible regions are computed directly from the two dimensional
posterior. While the coverage from the Bayesian technique using the posterior is correct
when α = 0.05, it is slightly overestimating the coverage (underestimating the size of the
credible regions to obtain the correct coverage) at smaller values of 1− α.

However, that bias is small compared with the 1 − α credible regions derived using
the marginal distributions for the two parameters (using the same posterior derived from
a 300 × 300 grid.), shown in blue. When 1 − α = 0.5, the credible regions derived from
the marginal distributions claims to cover the truth 50% of the time, when in reality they
cover the truth less than 43% of the time. Thus, credible regions derived from marginal
distributions can be have coverage significantly less than expected.

Based on this example, it may seem that the obvious solution to the coverage problem
for Bayesian methods would be to compute the credible regions using the entire posterior.
Note that in order to compute the credible regions in such an manner, we must compute
the HPD regions of the posterior. In general, this can be done by binning the data into a
fine mesh. However, the size of this mesh will be exponential in the number of parameters
used to define the parameter space. For even moderate sized problems, such as the WMAP
data discussed in Section 4.2.1, creation of this mesh is impossible. While sparse represen-
tations can be used, these representations will generally also increase exponentially with
the dimension. Thus, for many real-world problems, computing 1 − α credible regions
directly from the posterior is impossible. Moreover, as noted in Section 3.6.1, credible
regions derived from the entire posterior may also result in credible regions with less than
expected coverage.

In addition to coverage probability, we can also compute the average size of the derived
confidence/credible regions, as a function of α for the simulated observations, µ̃i. These
confidence/credible region sizes are shown in Figure 4.18. As expected, based on the
plots in Figure 4.16, χ2 confidence regions are significantly larger than those produced
by any of the other methods. Meanwhile, the sizes of the confidence regions produced
by MES are similar to those produced by the grid-based Bayesian method using the full
posterior, which was also seen in Figure 4.18, where the Bayesian regions (computed from
the entire posterior) almost completely covered the MES confidence regions. Indeed, the
MES confidence regions are typically similar to the credible regions derived from the
posterior of a Bayesian analysis when the Bayesian approach uses a prior distribution
which is similar to the likelihood of the parameter space given the observed data. Finally,
note that credible regions based on the marginal distributions are typically larger than
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Figure 4.19: Convergence comparison between our active learning algorithm using on χ2

tests (red) and MCMC where b = 0.005 (blue) and b = 0.1 (black). For each test, we
compare the points included by the method in the 95% confidence/credible region to a
baseline computed using a grid with 300 points per dimension. We plot the fraction of the
points each method incorrectly classifies. The size of the grid used to compute the baseline
is shown by the green line. MCMC is orders of magnitude more sample inefficient than
both our straddle based method and the naive grid-based method.

those computed from the full posterior. Thus, computing credible regions directly from
the posterior should be preferred over using marginal distributions, as the region size will
be smaller and the coverage fraction will be closer to 1− α.

Convergence Now, let us consider the convergence properties of MCMC and χ2 tests
using the active learning method described in Section 3.2.1; the convergence of the MES
method described in Section 3.4.5 will be similar as both use the straddle heuristic to
located the boundaries of the confidence regions.

For χ2 tests, we can calculate convergence by first computing whether or not each point
on an evenly spaced 300× 300 baseline grid is included in the 95% confidence region; the
ranges of the grid are equal to those of Figure 4.16(b). We then employ the our active
learning algorithm to sample points. At specified intervals, we compare the 90,000 grid
samples with the values predicted using our Gaussian Processes, and return the fraction of
points incorrectly classified. That is, we return the fraction of points in which the true grid
and the GP model disagree as to whether they should be included in the 95% confidence
region.
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(a) Distribution of 10 thousand experiments selected
by our active learning algorithm using χ2 tests.
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(b) Distribution of 10 million experiments selected
by MCMC.

Figure 4.20: Distribution of samples selected by our active learning algorithm using χ2

tests (a) and MCMC (b). While our algorithm focuses on the 95% confidence region
boundary, MCMC samples points in proportion to the posterior density. MCMC favors
points that are likely over those which define the 95% credible region boundary. Hence,
MCMC is significantly less data efficient than our algorithm (see Figure 4.19).

Convergence for MCMC is calculated in a similar way. First, we use the 300 × 300
evenly spaced grid to compute the baseline 95% credible regions (using numerical inte-
gration). We then run MCMC with different values of b, the variance of the proposal
distribution. As with the active sampling method based on χ2 tests, at specified intervals,
we calculate the fraction of grid samples on which the baseline and MCMC 95% credible
regions disagree.

In Figure 4.19, we show the the classification error as a function of number of experi-
ments for our active learning algorithm (based on χ2 tests) (red), along with MCMC where
b = 0.005 (blue) and b = 0.1 (black). Choices of b were selected to present the ranges in
convergence rates for MCMC. The number of points used to create the baseline grids is
depicted as the green vertical line.

As the Figure shows, using our active learning algorithm is significantly more efficient
that using either MCMC or the naive grid-based approach. In fact, our approach is roughly
two order of magnitude more data efficient that the naive grid and more than four orders of
magnitude more efficient than MCMC. Note that we tried many values of b for MCMC; the
blue line in Figure 4.19 represents the optimal choice. As we discussed in Section 3.5.2,
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the choice of b can have large impact on the convergence rate of the algorithm. However,
it is difficult to choose b a priori. If a poor choice of b were selected, say b = 0.1, then the
convergence rate of MCMC could be another order of magnitude worse than if the optimal
value of b were selected.

Thus in practice, MCMC is not an efficient algorithm for computing 1 − α credible
regions. As discussed in Section 3.6.4 and seen in the SNLS data in Section 4.2.2, MCMC
selects points in proportion to their posterior density. As a result, the points defining the
95% credible region boundary are sampled an order of magnitude less than those which
define the peak of the posterior. In Figure 4.20, we illustrate the sampling patterns for
our algorithm and MCMC. As expected, MCMC samples points through the space which
have likelihood, while our algorithm focuses on the boundary, agreeing with the example
of Section 3.6.4. Since MCMC is an algorithm to sample a posterior, not to find confidence
regions, it can be orders of magnitude less efficient than both our active learning algorithm
and the naive grid-based sampling. Moreover, the result of lack of convergence, is that the
resulting 1 − α credible intervals are underestimated. The majority of the classification
error shown in Figure 4.19 is a result of the MCMC chain returning 1−α credible regions
which are too small.

4.2.3 Combined CMB + SN + LSS Results

In the previous two statistical analyses, we examined only a single data source. For the
third study, we examine three data sets together: the WMAP first year data [Verde et al.,
2003], the supernova data from Davis et al. [2007], and LSS data based on luminous red
galaxies [Tegmark et al., 2006]. By simultaneously computing the confidence region of the
combined result, we are able to ensure that the resulting regions are statistically accurate.

While there are many approaches that could be used to compute these joint confidence
regions, we use a frequentist approach based on p-values. Specifically, for each parameter
vector in our parameter space, we compute the associated p-values for each of the three
data sets and then combine the resultant p-values using Fisher’s method [Fisher, 1948].
Fisher’s method trades discrimination power in cases where the p-values are drastically
different (e.g. one is 0 and another is 1), for those cases when the p-values are nearly
equivalent. As the latter case is generally more common, Fisher’s method for combining
p-values typically results in tighter confidence regions than other methods (e.g. Bonferroni
corrections [Bonferroni, 1936]).

Combining p-values using Fisher’s method has two major advantages. First, since
the data sets are assumed to be independent, the p-values for the three data sets can be
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computed independently, possibly using different statistical tests for each data set as ap-
propriate. Second, as we saw in Section 2.4, Fisher’s method can be easily decomposed
into a sum of observable functions (one for each data set). Moreover, each data set can be
individually modeled allowing for increased efficiency.

Recall from Section 2.4, that Fisher’s method rejects the hypothesis θ if

−2 [ln(pcmb) + ln(psn) + ln(plss)] ≥ C,

where C is set to the value at which a χ2
(6) cumulative distribution function equals 1 − α,

ensuring the test has correct 1− α coverage.

Now let us look at how we can compute the p-values. For the WMAP data, we use
the same confidence ball procedure we developed in Section 4.2.1. After computing the
hypothetical model for qθ, we can solve Equation 3.4 for zα and hence compute p-value of
the hypothesis θ. For both the supernova and the LSS data sets, we use χ2 test to compute
the p-values. This is done by computing the variance-weighted sum of squares between
the hypothetical model for θ and the observed data, and then comparing this statistic with
the appropriate χ2 distribution to compute α. For the LSS data, we will use the code
of Tegmark et al. [2006] to compute the variance weighted sum of squares. While in
Section 4.2.2 we showed that the MES procedure provides an tighter 1 − α confidence
region, it is hard to compute a p-value from the MES procedure. In practice, if you want
to compute two confidence regions of different levels for the same data set, the MES
procedure will require that two convex games be solved. Thus, we restrict ourselves here
to the confidence ball and χ2 procedures.

We have now defined the three observable functions gcmb, gsn, and glss. Thus, we can
use the var-maxvarstraddle heuristic of Section 2.4 to learn the threshold t = −2C of g,
where g = gcmb + gsn + glss. However, note that the running times of the model simulators
for the different data sets are vastly asymmetric. In particular, CMBFast takes several
minutes to run, while computing models for both the supernova and LSS data sets takes
only a fraction of a second. Thus, we use a modified version of our algorithm with the
var-maxvarstraddle heuristic.

In this modified algorithm, we determine the candidate point and observation function
pair, {θ̃, g̃}, which maximizes the var-maxvarstraddle heuristic. If g̃ is either gsn or glss,
we compute it, just as we did in Section 2.4. However, if g̃ = gcmb, we first compute the
p-values for the supernova and LSS data sets, to see if the p-values from these two data
sets alone can reject θ̃. That is, we determine if gsn(θ̃) + glss(θ̃) ≥ C; if this is the case,
we can reject θ̃ without having to compute gcmb(θ̃), which is an enormous computational
savings. If we determine that θ̃ is rejected, then we place an approximate value for gcmb(θ̃)
in the data set used to model the WMAP samples.
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Since we compute gsn and glss whenever we compute gcmb, but not visa versa, the
data sets used to model the supernova and LSS functions generally will have more points,
and hence lower var-maxvarstraddle scores. Thus, in practice, the var-maxvarstraddle
heuristic always selects g̃ = gcmb, and the algorithm is much like the seq-straddle heuris-
tic with the ability to skip computations of gcmb when warranted. While in Section 2.4.3
we showed that the var-maxvarstraddle heuristic is much more efficient than the seq-
straddle heuristic when the models (gi) have similar costs, some preliminary results indi-
cate that when the models have divergent costs, the seq-straddle heuristic performs better
than a cost-weighted var-maxvarstraddle heuristic. We leave this idea for future work.

As the computational cost of CMBFast is so high, we initialized the active algorithm
with the CMBFast models computed in Section 4.2.1. These results included the cosmo-
logical parameters τ, ΩΛ, ΩM, ωDM, ωB, fν and ns, which allowed us to also compute gsn

for each of the experiments. However, the experiments did not include galaxy bias, b.
Thus, for each experiment from Section 4.2.1, we compute several values of glss for dif-
ferent values of b and retained the best and worst fits. While in principle, we could have
retained all fits, doing so would have increased the size of our data set by two orders of
magnitude and have prevented it from being sorted in RAM.

Thus, we seed the algorithm with 2.2 million p-values from the 1.2 million CMBFast
models in Section 4.2.1, and their corresponding supernova and LSS p-values. Using the
algorithm described above, we selected another ∼ 600, 000 models, including 300,000
CMBFast models. Results are shown in Figures 4.21 and 4.22. As with the figures from
Section 4.2.1, regions of solid color indicate values for the parameter(s) on the axes for
which some combination of the remaining parameters result in a model that is within the
1− α confidence region.

Comparing Figures 4.21 and 4.22, with Figures 4.6, and 4.7, it is apparent that com-
bining the WMAP data with the supernova and LSS data provides strong constraints on
all of the parameters. Note that the inclusion of additional data sets has completely elim-
inated the secondary peak that we observed in Figures 4.7. This peak corresponded to
parts of parameter space that indicated values of the Hubble’s constant far in excess of the
commonly accepted values. As we saw in Figures 4.8 and, 4.9, restricting the values of
Hubble’s constant can dramatically reduce the size of the resulting confidence regions.

In Figure 4.23, we plot confidence regions in ΩM versus ΩΛ space for all three data
sets individually, along with a combined analysis for all three data sets. While the 95%
confidence regions (represented as those regions of any color) for all three models individ-
ually are large, the resulting 95% confidence region of the combined model is quite small.
In particular, the 95% confidence region of the combined model is smaller than what one
would obtain by intersecting the two dimensional projections of the 95% confidence re-

133



95

86

68

38

 0  0.5  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

τ

95

86

68

38

 0  0.2  0.4  0.6  0.8  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ΩΛ

95

86

68

38

 0.2  0.4  0.6  0.8  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ΩM

95

86

68

38

 0  0.5  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ωDM

95

86

68

38

 0  0.1  0.2

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ωB

95

86

68

38

 0  0.5  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

Neutrino Fraction

95

86

68

38

 0.5  1  1.5

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

Spectral Index

95

86

68

38

 0  100  200  300

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

Hubble Constant

95

86

68

38

 1  1.5

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ΩT

95

86

68

38

 0.5  1.5  2.5

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

Galaxy Bias

95

86

68

38

 0  0.5  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ωc

95

86

68

38

-1  0  1

C
on

fi
de

nc
e 

L
ev

el
 (

1-
α)

ΩK

Figure 4.21: Jointly valid confidence intervals based on an combined analysis of WMAP,
supernova, and LSS data for our cosmological parameters for four values of 1− α, corre-
sponding to 1

2
σ, σ, 11

2
σ and 2σ confidence levels, respectively. Areas of solid color indicate

values for the given parameter that contain the true value of cosmological parameter with
probability 1− α, regardless of the values of the remaining 7 parameters.
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Figure 4.22: Jointly valid confidence regions for pairs of cosmological parameters, where
the colors cyan, magenta, blue and red correspond to 1

2
σ, σ, 11

2
σ and 2σ, confidence lev-

els respectively. Areas of solid color indicate values for the given pair of fixed (plotted)
parameters that contain the true value of cosmological parameter with probability 1 − α,
regardless of the values of the remaining 6 parameters.
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Continuation of Figure 4.22.
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Continuation of Figure 4.22.

gions for the three models individually. This indicates that the confidence surfaces are
complex surfaces embedded in their associated parameter spaces. By maintaining these
surfaces, we are able to gain better insights as to the interdependencies of the parameters.
Moreover, we can exploit this structure to obtain tighter confidence regions than could be
obtained from marginalizations of the data.

Finally, in Table 4.5, we present the 95% confidence intervals derived for each of the
cosmological parameters from Table 4.1 for the WMAP first year data, the Davis et al.
[2007] supernova data set, and the Tegmark et al. [2006] LSS data set both individually
and combined together. The combination of the three data sets results in constraints that
are much tighter than those provided by any of the data sets individually. In particular,
note that the constraint on ΩΛ for all three data sets is quite weak; for all three data sets,
ΩΛ is nearly unconstrained. However, in the joint analysis, ΩΛ is constrained between
0.64 and 0.83. Moreover, the parameters with the weakest constraints in Table 4.5 (see
also Figure 4.21) such as τ and ns are typically those which are model inputs for only one
of the three data sets. Thus, a joint analysis of many independent data sets which share the
same model parameters can result in tighter constraints on the 1 − α confidence region,
and provide results which are much much more enlightening scientifically.
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(b) Supernova data (Davis et al. [2007])
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(d) WMAP + SN + LSS joint analysis.

Figure 4.23: Comparison of the confidence regions derived for WMAP (a), supernova (b),
and LSS (c) data sets with those derived using all three data sets together (d). Regions of
solid color indicate values for ΩM and ΩΛ for which some combination of the remaining
parameters results in a model with probability greater than 1 − α. The WMAP and LSS
models are 7 parameter models, while the supernova is a 3 parameter model, and the
combination model is an 8 parameter model.

Comparison to Previous Work

Unfortunately, as far as we know, there have been no cosmological joint analyses involving
the same three data we used in Section 4.2.3. However, most cosmological works include
joint analyses with some subset of the available data sets (c.f. Tegmark et al. [2001], Verde
et al. [2003], Spergel et al. [2007]). Here we compare our results with Spergel et al. [2007].

Spergel et al. [2007] computes joint (Bayesian) analyses for the WMAP third year data
with the SNLS data set [Astier et al., 2006], as well as a joint analysis of the WMAP third
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Parameter WMAP Supernova LSS Combined
τ 0.0 – 1.2 —— —— 0.0 - 0.5, 0.52 - 0.53, 0.56-0.57

ΩΛ 0.0 – 0.94 0.12 – 1.0 0.0 – 1.0 0.64 – 0.83
ΩM 0.0 – 1.0 0.1 – 1.0 0.1 – 0.42 0.217 – 0.352
ωDM 0.0 - 0.36, 0.62 - 0.70 —— 0.07 – 1.2 0.069 – 0.129

100ωB 0.5 - 6.2, 11.5 - 12.7 —— 0.1 – 25 1.34 – 2.84
fν 0.0 – 1.0 —— 0.0 – 0.95 0.0-0.28, 0.30-0.31
ns 0.73 – 1.7 —— 0.5 – 1.22 0.81 – 1.17
b —— —— 0.75 – 3.0 1.77 – 2.49

Ωk -0.7 – 0.2 -1.0 – 0.78 -0.8 – 0.93 -0.06 – 0.035
ΩT -0.8 – 1.7 0.22 – 2.0 0.07 – 1.8 0.965 – 1.06
ωc 0.0 – 0.70 —— 0.0 – 1.2 0.066 – 0.12
ωN 0.0 – 0.70 —— 0.0 – 1.14 0.0 – 0.063
H0 17 - 135,243 - 272 10.5 – 380 41.1 – 380 60 – 70

Table 4.5: 95% confidence intervals for the cosmological parameters using the WMAP
first year, the Davis et al. [2007] supernova, and the Tegmark et al. [2006] LSS data indi-
vidually, and then combined. Intervals in italics were estimated from the ranges computed
for the other parameters. The combination of the three data sets results in constraints that
are much tighter than those provided by any of the data sets individually.

year data with the LSS data from Eisenstein et al. [2005]. For comparison, we combine the
confidence ball results on the WMAP first year data from Section 4.2.1 with results from
the SNLS and (subsequently) the LSS data of Tegmark et al. [2006] using χ2 tests. While
the data sets are not exactly identical, they are fairly similar. For instance, the mean values
of the WMAP data do not drastically change between the first and third year compilations.
While the third year data has significantly less noise (as observed in Figure 4.1), only ns

and H0 become significantly more constrained [Spergel et al., 2007].

In Table 4.6, we present results between our analysis (using frequentist methods) and
the analysis of Spergel et al. [2007] (using Bayesian techniques). When combining the
WMAP and LSS data sets, we observe that our results are quite comparable with those
of Spergel et al. [2007]. For several of the parameter, the derived confidence intervals are
nearly identical. The remaining parameters are slightly better constrained by the Spergel
et al. [2007] analysis.

Analyses using the combination of the WMAP and SNLS data, however, show larger
discrepancies. For most of the parameters, our analyses returns confidence intervals which
are significantly larger than those reported by Spergel et al. [2007]. This difference may
be attributed to our use of the WMAP first year data, (as opposed to the WMAP third year
data), as well as the use of (surprisingly narrow) Gaussian priors on many of the parame-
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WMAP + SNLS WMAP + LSS
Parameter this work Spergel et al. [2007] this work Spergel et al. [2007]

τ 0.000 – 1.056 0.055 – 0.115 0.096 - 0.144, 0.288-0.3 0.050 – 0.109
ΩΛ 0.200 – 0.930 —— 0.72 – 0.78 ——
ΩM 0.100 – 0.964 0.223 – 0.272 0.235 – 0.271 0.235 – 0.295
ωdm 0.034 – 0.296 0.100 – 0.114 0.093 – 0.117 0.103 – 0.117

100ωb 1.096 – 6.076 2.160 – 2.309 1.843 – 2.341 2.160 – 2.301
fν 0.000 – 1.000 —— 0.05 – 0.140 ——
ns 0.788 – 1.7 0.933 – 0.966 0.920 – 1.016 0.933 – 0.964
b —— —— 1.920 – 2.100 ——

H0 54.8 – 77.0 70.1 – 74.7 69.6 – 73.3 68.4 – 73.6
σ8 —— 0.717 – 0.799 —— 0.731 – 0.812

Table 4.6: Comparison of 68% confidence/credible intervals between this work and
Spergel et al. [2007] for nine cosmological parameters. The first two columns give a joint
analysis using WMAP and SNLS data, while the second two columns use a joint analysis
of WMAP and LSS data to compute confidence/credible intervals. Intervals in italics were
estimated from the ranges computed for the other parameters.

ters. Spergel et al. [2007] notes that the effect of the prior in some cases is large, especially
using lensing data. For this reason, Spergel et al. [2007] cautions against interpreting these
joint credible regions as being the true parameter ranges. Conversely, our results make no
use of a prior distribution over each parameter and are independent of the parameter ranges
searched. Moreover, our frequentist techniques guarantee 1− α coverage for the intervals
given in Table 4.6.

4.3 Summary

In this chapter, we have discussed several data sets which can be used to determine the
values of fundamental constants from cosmology. These parameters have physical mean-
ings and their values describe the age, composition, and eventual fate of our Universe.
Moreover, by determining the values of these parameters, we can better model how matter
in Universe collapsed to form stars, galaxies and large scale structures.

Using the active learning methods from Chapter 2 combined with the statistical infer-
ence techniques from Chapter 3 we have computed confidence regions for these data sets,
individually and together as an ensemble. We find that our frequentist-based techniques
allow us to easily perform both joint analyses and investigate the interactions of the cos-
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mological parameters by placing constraints upon any number of the parameters. As we
saw in Section 4.2.1, we can restrict the ranges of any number of parameters and then
recompute the associated 1 − α confidence regions without performing additional model
experiments (e.g. CMBFast models). Thus, we can efficiently determine the interactions
among the parameters.

Moreover, we have seen that because we maintain a representation of the entire 1− α
confidence surface in the embedding parameter space, analyses using multiple data sets
may lead to 1− α confidence regions which are substantially smaller than those obtained
for any of the data sets individually. In particular, we note that combining the confidence
intervals derived from a one or two dimensional marginalization of the data will result in
confidence regions which can be much larger than those obtained by a joint analysis.

Comparing our methods with Bayesian methods in Section 4.2.2, we saw that observa-
tionally our methods have correct coverage (in a frequency sense) while Bayesian methods
do not. In fact frequentist methods are guaranteed theoretically to have correct coverage.
Bayesian methods do not have theoretically coverage guarantees. In particular, the results
from Section 4.2.2 indicated that the coverage of Bayesian methods can be substantially
lower than 1 − α. We note that the supernova inference task in Section 4.2.2 was only a
two dimensional problem. In higher dimensions, Bayesian methods can result in credible
intervals which trap the true value of the parameters close to zero percent of the time.

However, the coverage guarantee does not need to come at a cost to region size. In
Section 4.2.2, we saw that 95% confidence regions produced by the MES confidence pro-
cedure were similar in size to those derived by Bayesian inference. In general, the con-
fidence regions produced by the MES procedure are similar to the credible regions of a
Bayesian analysis when the Bayesian approach uses a prior distribution which is similar
to the likelihood of the parameter space given the observed data.

Finally, we have seen that our active learning method is much more data efficient that
either grid based approaches or MCMC. While adaptive grids can be formed over the pa-
rameter space, there is always the risk of creating the grid cells such that an unknown
interesting peak is missed (such as the secondary peak of the WMAP data — see Sec-
tion 4.2.1). MCMC, on the other hand, can be orders of magnitude more data inefficient
than even simplistic grid based approaches. As we saw in Section 4.2.2, even on the Davis
et al. [2007] supernova data set with a smooth likelihood and only one peak, MCMC was
over four orders of magnitude less efficient than our active learning algorithms. We expect
this discrepancy only to increase as we consider higher dimensional tasks and those with
multiple peaks in the likelihood surface (such as the WMAP first year data). However,
testing converge of high-dimensional problems is problematic, as the base line is difficult
to obtain.

141



Thus, we believe that our active learning algorithms coupled with frequentist statisti-
cal techniques provides a framework for learning 1− α confidence regions which is more
computationally and data efficient that MCMC. Our techniques are able to derive infer-
ences which are just as tight, while still ensuring correct coverage. Nevertheless, while
the algorithms we used in this chapter have many desirable properties, they are first and
foremost search algorithms. In particular, they are very good at locating parameter vectors
which are on the boundary of the 1−α confidence regions. However, they cannot guaran-
tee that there are no additional regions in the parameter space which have yet to be found.
Hence they cannot guarantee that they have converged to the correct solution. In the next
chapter we discuss an algorithm to prove convergence.
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Chapter 5

Convergence Algorithms

In Chapters 2 through 4, we have developed and demonstrated active learning algorithms
for efficiently learning 1 − α confidence regions using a variety of frequentist statistical
inference techniques. However, all of the algorithms that we have discussed have been
search algorithms. That is, these algorithms are concerned with finding 1 − α confidence
region boundaries, not proving that no other confidence regions exist within the given
parameter space.

For instance, using the results of our search algorithm, we can create figures such as
Figure 4.23. The data supporting these figures indicate that there exists at least one 95%
confidence region centered at ΩΛ = 0.75 and ΩM = 0.25. However, the data does not
necessarily rule out another peak or peaks at different values of ΩΛ or ΩM. While the
presence of additional peaks is unlikely, due to the exploitative nature of our algorithms,
it cannot be ruled out.

In this chapter we consider the problem of convergence. We will see that proving point-
wise convergence is computationally infeasible. Instead, we define convergence in terms
of the largest region our algorithms could have missed, and then seek to minimize this
quantity. We present two algorithms which can be used either after the fact to compute,
or with our learning framework to actively minimize, the maximum size of the largest
unsampled region in parameter space.
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5.1 Proving Convergence

To prove that a point in Figure 4.23(d) is within the 1 − α confidence region, we need to
find one setting of the remaining six parameters (τ, ωDM, ωB, fν , ns, and b) for which the
corresponding model is accepted by the level α statistical test (e.g. χ2 tests, confidence
ball procedure, or MES). However, to prove that a point in Figure 4.23(d) is not within
the 1 − α confidence region, we must show that no matter what values are selected for
the remaining six cosmological parameters, no model is accepted by our level α statistical
test.

Proving this for every point in a plot such as Figure 4.23(d) is infeasible, as there are
an infinite number of combinations of ΩΛ and ΩM. Even binning the parameter space and
then trying to prove that the center of each bin is either accepted or rejected is computa-
tionally infeasible for a reasonable number of bins per dimension. In fact, the problem of
proving convergence in this manner is nearly equivalent to computing the 1− α Bayesian
credible regions directly from the d dimensional posterior. In both cases, the grids require
20 to 100 points per dimension to be scientifically useful. However, the size of the gridded
region increases exponentially with dimension, making griding infeasible for even mod-
erate dimensional problems like computing confidence regions for the WMAP data (see
Section 4.1.1).

We have looked at using tree based structures, such as red-black trees and variable
spatial trees [Kubica et al., 2005]. However, data distributions can be formed which force
the trees to require exponential (in dimension) storage size. More importantly, even with
our moderate dimension confidence region tasks, we were not able to either store the trees,
or use the trees to compute the covered pixels in an efficient manner. Attempts to use either
tree or grid based methods required days to prove that a single combination of ΩΛ and ΩM

was not covered.

Instead of trying to prove that no other peaks in the confidence surface exist on a
pixel by pixel basis, we consider minimizing the maximum size of an unobserved peak.
Naively, the maximum size of an unobserved peak could be minimized by selecting points
uniformly throughout the space, either using a grid or the variance heuristic (from Sec-
tion 2.2), as this would assure that the samples were nearly equidistant from each other.
However, as we saw in Section 2.2, sampling based on the variance heuristic is much
less efficient than the straddle heuristic. This is because the straddle heuristic uses infor-
mation about the values of the experiments, as well as their locations to pick subsequent
samples, while variance and grid based techniques completely ignore the results of the
experiments after they are performed.
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Figure 5.1: A pictorial example of using the derivative information to compute influence
regions (gray) for a one dimensional target function (solid line). Currently sampled point
are denoted by the black dots, while the dashed line indicates the threshold defining the
level-set we seek. Using the maximum derivative of the target function and the values of
the sampled experiments we can provable exclude regions of the parameter space, reducing
the space that needs to be search for level-set members.

However, the value of the target function at specific locations alone does not give
us enough additional information to select samples which minimize the maximum un-
observed confidence region size better than variance or grid based techniques. Instead,
suppose that we knew the maximum derivatives of the target function for each dimen-
sion. Then, we could compute regions in which the sampled point could prove that target
function was either above or below the level-set boundary of interest.

For example, consider the one dimensional target function shown as a solid line in
Figure 5.1. The dashed line indicates the level-set of the target function in which we are
interested, while the five points indicate samples that have already been chosen, along with
their values. We typically assume that the target function is almost deterministic, so the
observed values appear nearly on the target function. The largest interval without samples
is between samples 4 and 5. This distance corresponds to the maximal size of any missed
confidence region in the parameter space when no assumptions are made about the target
function’s derivatives. However, if we do have information about the target function’s
derivatives, then we can construct “influence” regions around each point which specify
locations where the target function cannot intersect our level-set boundary. Using these
influence regions, the largest unknown region is now between the left-hand boundary and

145



sample point 1, and is roughly half the size of the maximal confidence region size when
no derivative information is used.

Thus, the combination of both experimental values along with derivative information
about the target function can significantly reduce the maximal size of any unobserved peak
of the target function in our parameter space. Intuitively, to minimize the maximum size
of a hypothetical unobserved peak, we want to sample points such that no point in the
parameter space is far from the influence region resulting experimental points. Hence,
we desire sample points that result in large influence regions which do not overlap the
influence regions of other experiments, as these sample points with will have influence
regions which “fill” the parameter space.

More formally, let H be a set of h experiments from parameter space Θ. Then we are
interested in selecting the h experiments which minimize

max
θ∈Θ

min
θ̃∈H
D(θ, θ̃) (5.1)

where D(·, ·) computes the minimal distance between θ and the influence region of θ̃.
Since the parameters composing the parameter space may not be independent, the shape
of the influence regions around an experiment are hyperdiamonds with their vertices on
the dimensional axes. Without loss of generality, we will assume that the space is scaled
so that the derivatives of the target function are unity for all dimensions. Thus, the hyper-
diamond becomes a hypercube.

Moreover, we assume that the influence region of θ̃ can be modeled as a hypersphere,
where the radius of the hypersphere is selected to maximally inscribe the original hyper-
diamond; the radius of such a hypersphere is

√
2/2. This assumption leads us to under-

estimate the size of the influence region for a point, resulting in a conservative estimate
of the largest possible missed peak. Specifically, the ratio of the volume of the inscribed
hypersphere to the volume of the enclosing hyperdiamond as a function of dimension is
given by

r =
Volumehypersphere

Volumehyperdiamond

=
(2π)d/2

Γ(d/2 + 1)

where Γ(·) is the gamma function. As d goes to infinity, the ratio of r goes to zero.
However, for small d, r ∼ 1. Moreover, we can practically remove this assumption later.
Thus, assuming a Euclidean distance measure, Equation 5.1, can be written as

θ′ = max
θ∈Θ

min
θ̃∈H
‖θ − θ̃‖2 −R(θ̃) (5.2)

where ‖ · ‖2 denotes the L2 norm, andR(θ̃) is the radius of the influence region for θ̃. In-
tuitively, this computation is similar to the minimax process used in the MES confidence
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Figure 5.2: Coffee shops located in downtown Pittsburgh. Starbucks locations are denoted
with red pins (with dots), while all other shops are denoted with cyan pins. Each shop is
located at the bottom end of the pin — where it “touches” the map.

procedure. However, here the parameter space is not convex. To see this note that there can
be multiple local maxima in the space, corresponding to the locations which are equidis-
tant from a set of d + 1 experimental points. Thus, we cannot solve the above minimax
problem with either linear or quadratic programming. Instead we consider an approach
using Voronoi diagrams.

5.2 Voronoi Diagrams

In two dimensions, Voronoi diagrams are sets of d−1 dimensional faces which decompose
a d dimensional metric space into disjoint regions. In order to more easily describe the
terminology and gain some intuition, let us look a simple two dimensional example. In
Figure 5.2, we plot all of the coffee shops in downtown Pittsburgh as of October 2007
(as listed by Google and Yahoo!). As with most metropolitan cities, there are a plethora
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Figure 5.3: Equidistant boundaries between coffee shops located in downtown Pittsburgh
based on Euclidean measure (ignoring buildings, etc). Blue lines indicate the lines which
bisect the nearest two coffee shops. Region bounded by blue lines indicate the customer
base for the coffee shop in that region, assuming customers go to the nearest shop. Each
coffee shop has its own influence region.

of Starbucks coffee houses (red pins with dots), as well as some non-Starbucks coffee
locations (cyan pins).

Suppose we are in downtown Pittsburgh with the Figure 5.2 map, and — coffee being
coffee — we decide to head for the nearest coffee house, regardless of the store’s corporate
affiliation. Here we define distance to be Euclidean distance, and do not worry with such
trivialities as rivers or buildings. Depending on where we were, we would head for a
different store location. Suppose we were to divide the downtown area into a set of regions
which describe the coffee house we would head to given our starting location.

The resulting Voronoi diagram is given in Figure 5.3. The dark blue lines indicate parts
of the downtown that are equidistant to two adjacent coffee houses. In two dimensions, we
will refer to the blue lines as “edges”, the regions which they enclose as “faces”, and the
point where edges meet as “vertices”. In higher dimensions, we will refer to all objects as
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d-faces. Hence, a vertex will be a 0-face, and an edge will be a 1-face.

In two dimensions, faces correspond to the area from which a coffee house draws its
customers (assuming that everyone goes to the nearest coffee shop). Thus, each face has
one coffee house, which will generally be call a “site”. Faces are composed of all those
points which are nearer to the site of that face than the site of another face. Hence, the
Voronoi diagram can be thought of as the classification boundary of an algorithm which
uses only the single nearest neighbor to classify test points.

Meanwhile, vertices denote points which are equal distance to three (or more) coffee
shops. Vertices are locations which are maximal distant from any of the surrounding coffee
houses. Thus, if you were to open a new coffee shop, choosing a vertex would maximize
your customer base (assuming a uniform distribution of people over the city). However,
not all vertices are the same distance from their corresponding coffee houses, thus you
would want to check all possible vertices and select the one which was the farthest from
its associated sites; by construction, all of the associated sites will have the same distance
to the vertex.

Now suppose that you are a Starbucks aficionado. As such, you are willing to walk an
extra block to get your Eggnog Latte1, over taking the plain coffee from the local stand. As
a result of your preference of Starbucks over other coffee locales, the decision boundary
as to which coffee house to visit will have changed to that shown in Figure 5.4. As in
Figure 5.3, blue lines indicate the demarcations between coffee houses. The red circles are
centered on the locations of the Starbucks, and their radii indicate the extra distance you
are willing to travel to visit them. Thus, you will never visit any of the four coffee houses
that are within one of these red circles, as the nearest Starbucks is less than a block away.

The preference for the Starbucks sites results in a drastic change to the Voronoi dia-
gram. In addition to the four coffee houses that will never get your business, the fraction of
the city from which you would visit Starbucks has increased dramatically. Moreover, the
edges between sites are no longer necessarily straight. When you have equal preference
to visit two sites, θ1 and θ2, the edge between them will simply be their a straight line:
{θ ∈ Θ : ‖θ − θ1‖2 = ‖θ − θ2‖2}. However when one of the sites has a larger preference,
the edge between the two sites becomes curved to reflect the fact that the site with a larger
radius is closer to more points in R2. This curved edge is given by

{θ ∈ Θ : ‖θ − θ1‖2 −R(θ1) = ‖θ − θ2‖2 −R(θ2)},

where R(θi) gives the radius of site θi. Since sites with larger radii have more influence,
the edges between them and other sites bend away from them. These resulting generalized

1Eggnog lattes are apparently one of the hardest Starbucks drinks to make.
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Figure 5.4: Equidistant boundaries between coffee shops located in downtown Pittsburgh
based on Euclidean measure (ignoring buildings, etc), where Starbucks locations (red) are
preferred over other locations. Red circles indicate the extra influence that Starbucks has
over other vendors; vendors within these circles will receive no business, as customers are
willing to walk the extra block to the nearest Starbucks. Thus, there are fewer “coffee shop
regions” here than in Figure 5.3. When coffee shops have different attractive influences,
the equidistant boundaries are no longer straight lines.

Voronoi diagrams with spherical sites are known as “Apollonius diagrams” (c.f. Okabe
et al. [2000], Jeyakumar and Rubinov [2005], Boissonnat and Teillaud [2006]). In Figure
5.4, the sites have only one of two distinct radii. However in general, each site can have
its own unique radius.

Now, reconsider the task of computing the size of the maximum unobserved peak dis-
cussed in Section 5.1. Each sampled experiment corresponds to a site in an Apollonius
diagram. The radius of the site θi will be given by |g(θi) − t|, where g(θi) is the evalu-
ation target function at θi and t is the level-set boundary of interest. Here we retain the
assumption that the parameter space is scaled so that the maximum derivative of g is unity
in all dimensions. As with the coffee house example, the points in parameter space which
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are furthest from their adjacent sites are the vertices of the corresponding Apollonius di-
agram. Thus, to find the maximum possible size of an unobserved peak, we need only
iterate through the vertices of the Apollonius diagram and select the vertex which is the
farthest from any site. Let us now look at this idea in more detail.

5.2.1 Related Work

Several algorithms exist to efficiently construct (standard) Voronoi diagrams and their du-
als, Delaunay triangulations [Delaunay, 1934]. As we saw earlier, the edges of Voronoi
diagrams are the classification boundaries of a single nearest neighbor algorithm. More-
over, Voronoi diagrams can be used in physics and biology to model situations such as
particle interactions in gasses and foams [Zanin et al., 2002, Li et al., 2006], and under-
standing the living arrangements of communities of organisms [Grant, 1968, Wiens, 1969,
Barlow, 1974, Byers, 1992].

A Delaunay triangulation is a triangulation of a set of points in which no circumcircle
of any of the triangles contains one of the points. That is, all of the points used to con-
struct the triangulation lie on the circumference of the circumcircles of the triangulation.
Additionally, they maximize the minimum angle over all angles of all triangles in the tri-
angulation, virtually eliminating long, thin triangles. Delaunay triangulations are used in
fields such as graphics and physics to construct meshes [Rebay, 1993, Beyer et al., 2005,
Zhao et al., 2005].

Given their importance to the research community, there are many efficient algorithms
to compute both Voronoi diagrams and Delaunay triangulations Shamos and Hoey [1975],
Fortune [1986], Inagaki et al. [1992], Sugihara and Iri [1994]. For instance, Fortune [1986]
gives an algorithm which, given a set of sites, “sweep”s over these sites from left to right,
to construct a Voronoi diagram in O (n lg(n)) time.

Similarly generalized Voronoi diagrams, including Apollonius diagrams, are found in
many places in the literature, such as robot planning [Mahkovic, 1999, Kalra et al., 2006],
representing sounds and music [McLean et al., 2007], and crystal growth [Kobayashi
and Sugihara, 2002] 2 Algorithms for computing generalized Voronoi diagrams include
those proposed by Hoffmann [1990], J. M. Vleugels [1995], Karavelas and Yvinec [2002],
Emiris and Karavelas [2006] Here, we modify the online algorithm of Shamos and Hoey
[1975], as described by Mulmuley [1994] to construct Apollonius diagrams, as this algo-
rithm will allow us to dynamically add and remove new sites. This algorithm is essentially

2http://www.voronoi.com/applications.htm gives a list of hundreds of applications of
Voronoi diagrams in real world systems.
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Figure 5.5: Example facial lattice (left) and the associated Voronoi diagram (right). The
facial lattice stores relationships between vertices, edges, and faces allowing for efficient
insertions, accesses and deletions.

identical to the one given in Karavelas and Yvinec [2002] and requires O (n lg(n)) com-
putational complexity.

5.3 Facial Lattice

Before discussing the algorithm, let us first discuss a data structure to maintain the rela-
tionships between vertices, edges and faces in two dimensions, and arbitrary d-faces in
multiple dimensions. This structure, called a facial lattice, contains a node for each d-face.
Each node contains auxiliary information, such as pointers to adjacent d − 1 and d + 1-
faces. For example, consider a portion of the facial lattice for the two dimensional case
shown in Figure 5.5. Each edge is terminated by two vertices, on at either end. Moreover,
each edge is adjacent to two faces, unless it is on the boundary of the region to be searched.
Vertices, are adjacent to two edges if they are on the boundary, or three edges if they are
not. Finally, faces are bounded by a set of at least three edges.

In order to facilitate the retrieval of relationships between vertices, edges, and faces,
in O (1), this relationship information is stored in structures which allow constant time
lookup. The set of edges adjacent to a vertex is stored in a hashset, while the edges
adjacent to a face are stored in a circular doubly linked-list structure with a hashmap to
allow us to jump to any specific edge entry in constant time. Thus, by carefully designing
the nodes of the the facial lattice, we can add, find, or remove elements of the facial
lattice in constant time. This property is important, as it allows us to construct a dynamic
algorithm for computing Apollonius diagrams in O (n lg(n)) time.
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Figure 5.6: Pictorial insertion of S (red dot, right two figures) into the Voronoi diagram
(left). In the middle figure, we illustrate S, along with a conflicting point p. Green lines
indicate that the edge is partially conflicting, while blue lines indicate that the edge is
completely conflicting. Note that e1 and e2 for F1 are both partially conflicting edges.
In the right figure, we show the resulting Voronoi diagram after S has been added. All
totally conflicting edges (blue) are removed. Purple lines denote the new edges created in
the insertion process; these edges are bisectors between S and the sites corresponding to
the adjacent faces. Partially conflicting edges (green) are updated to meet with the new
(purple) edges.

5.4 Algorithm in Two Dimensions

Suppose we are given a set of sites, N , in a two dimensional plane. The algorithm of
Shamos and Hoey [1975] sequentially inserts a random ordering of these points. Specif-
ically, let N i be the first i sites from this random ordering, and V (N i) be the resulting
Apollonius diagram. We are now interested in inserting site S = Si+1 into V (N i). Figure
5.6 gives a pictorial representation of the insertion process.

Insertion of S into V (N i) is performed by first locating a vertex, p, in V (N i) which
conflicts with S; that is we are interested in finding a vertex which is closer to S than it
is the sites corresponding the adjacent faces. With (standard) Voronoi diagrams, such a
vertex always exists. In fact, there may be many vertices which conflict with S. These
vertices can be found in O (lg(n)) time by performing a nearest neighbor search over the
vertices using a spatial tree structure, such as R-trees [Guttman, 1984]. However, with
Apollonius diagrams, such a vertex many not exist; we return to this possibility later.

Once we have located p, we do a depth first search through the graph formed by the
edges and vertices of V (N i) to find an edge which has one conflicting vertex, and one
non-conflicting vertex; we call such edges “partially conflicting”, while edges with two
conflicting vertices are considering “conflicting”. When a partially conflicting edge, e1, is
located, we find one of the two associated faces. Call this face F1. Using the facial lattice
described in Section 5.3, we obtain the edges of F1, eF1 , and jump in the list to e1. We set
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(a) Before inserting S (red dot) into the Apollonius
diagram (black).

(b) After inserting S (red dot) into the Apollonius
diagram. Purple indicates new edges.

Figure 5.7: Insertion of a site S into an Apollonius diagram when no conflicting vertices
are present. In this case, the new face is sandwiched between two adjacent faces, which
share edges on either side of the new face.

the iteration direction of the edges eF1 (which are stored in a doubly linked list) such that
the next edge is either totally or partially conflicting. We now iterate through eF1 starting
at e1 and remove all conflicting edges until we arrive at a non-conflicting edge, e2. We
construct the bisector between S and the site corresponding to F1: eS . The endpoints of
eS are determined by the intersection of eS with e1 and e2, respectively. eS is then added
to eF1 between e1 and e2. Finally, we update the conflicting endpoints of e1 and e2 with
the corresponding endpoints from eS . We then move to the face adjacent to e2 (which is
not F1) and repeat the update step on that face. This process continues until we return to
F1.

Now suppose that there is no conflicting vertex p associated with the insertion of S.
Figure 5.7 shows an example in which there are no conflicting vertices. As indicated in
Figure 5.7, cases in which there are no vertices that are closer to S than any other site
already in the Apollonius diagram, lead to situations in which the new face, F , corre-
sponding to S is sandwiched in between two faces: F1 and F2. Note that F shares edges
only with F1 and F2. Moreover, the edges immediately preceding and succeeding the edge
between S and F1 in F1’s edge list are truncated copies of the edge that was originally
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between F1 and F2.

Thus, to insert S into V (N i) in the case where there are no conflicting vertices, we
first search through the set of sites N i to find the site which is closest to S. Let us call this
site S1 and its associated face F1. We know that S will result in a face F which will split
one of the edges of F1. To determine which edge will be split, we iterate through the edges
of F1 until we find the edge that intersects the ray starting at S1 and going through S: e12

This edge is adjacent to faces F1 and F2. Once we have found the correct edge, we create
the bisections between S1 and S as well as S2 and S (where S2 is the site corresponding
to F2): e1s and e2s respectively. The end points of e1s and e2s are determined by where
these curved segments intersect e12. Note that the endpoints of e1s and e2s will be the
same. Finally, we split e12 int two pieces with end points corresponding to those of e1s,
and insert both pieces of e12 into the edge sets of F1 and F2, along with e1s for face F1 and
e2s for face F2. Thus, the most expensive part of this operation is the location of the edge
e12 from among the edge set of F1.

Mulmuley [1994] proves that the online algorithm for constructing (standard) Voronoi
diagrams of Shamos and Hoey [1975], described above, has a computational complexity
of O (n lg(n)). Let us now show that the generalization to Apollonius diagrams also has a
computational complexity of O (n lg(n)).

We begin by citing two important lemmas from Mulmuley [1994], which do not change
when we consider Apollonius diagrams.

Lemma 1 The number of vertices in an Voronoi diagram with n sites is O (n).

Proof The proof follows directly from Euler’s relation. Specifically, if µ, ε, and φ are the
number of vertices, edges, and regions of a convex polytope, then µ− ε+φ = 2. Note that
the number of edges is less than 2µ. Moreover, 3(φ − 1) ≤ 2ε ≤ 4µ, since each edge is
adjacent to two vertices and each region is adjacent to at least three vertices. Thus, the size
of a three dimensional convex hull is O (n), where n is the number of points defining the
hull. Taking the dual of the convex hull, we obtain a three dimensional convex polytope
of size O (n), where n denotes the number of half-spaces defining the polytope. Finally,
there is a one-to-one relationship between half-spaces of a three dimensional polytope and
vertices of a two dimensional Voronoi diagram.3 Thus the number of vertices of a planar
Voronoi diagram is O (n).

3For details see Mulmuley [1994, Sec 2.5] .
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Lemma 2 The expected number of newly created vertices in the i + 1th random addition
is O (1).

Proof Following Mulmuley [1994], we estimate the the expected cost of adding S, given
N i. That is, we imagine deleting S from N i+1. Since each site, Sj , is equally likely, to
occur as S, it follows that the conditional expected number of vertices is

1

i + 1

∑
S∈N i+1

m(Si+1, N
i+1), (5.3)

where m(Si+1, N
i+1) denotes the number of vertices removed when S is removed from

N i+1. Note that, in two dimensions, each vertex is adjacent to at most three edges.4 There-
fore, each vertex of V (N i+1) is adjacent to a bounded number of edges. Thus, the terms
in the sum in Equation 5.3 are bounded by three times the number of vertices in V (N i+1).
From Lemma 1, the number of vertices in V (N i+1) is O (i) in two dimensions. Thus,
m(Si+1, N

i+1) = O (i), and hence the expected number of newly created vertices isO (1).
As N i+1 is arbitrary, the bound holds unconditionally as well.

In addition to the previous two lemmas, let us also show that the the intersection of
two edges (whether curved or not) can be located in constant time.

Lemma 3 The intersection of two edges can be computed in O (1) time.

Proof There are three cases which we must consider: both edges are straight, one edge is
straight, the other is curved, and both edges are curved. Note that edges between two sites
of equal radii will be straight, while all other edges will be curved.

First, let us consider the intersection of two straight lines. Here we assume that the
lines are not equal, or parallel as in the first case there are infinite solutions, while in the
latter there are no solutions. Let us write the lines as y = max+ca and y = mbx+cb, where
ma and mb are the slopes of the two lines, and ca and cb are their y-offsets, respectively.
Let {xa1, ya1} and {xa2, ya2} be the endpoints of edge a, and similarly for edge b. Then
ma = (ya2 − ya1)/(xa2 − xa1), while

ca = ya1 −maxa1 = ya1 −
ya1 − ya2

xa2 − xa1

xa1.

4In some cases multiple vertices may lie close to one another giving the impression that more than three
edges are adjacent to a single vertex.
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Figure 5.8: Pictorial representation of the bisector between two curved edges.

and similarly for line b.

Now suppose that either ma = 0 or mb = 0. Without loss of generality, assume
that ma = 0. As the lines are not parallel, ma 6= mb, and y = ca = ya1. Thus, x =
(y1a − cb)/mb. Similarly, if ma =∞ (x2a − x1a = 0), then x = x1a and y = mbx1a + cb.
Finally, when ma and mb are nonzero and finite, then max + ca = mbx + cb, so x =
(cb − ca)/(ma −mb), and y = ma(cb − ca)/(ma −mb) + ca. All of these expressions can
be computed in constant time.

Now consider the case where both edges are curved. Since the two edges are inter-
secting at a point in the Apollonius diagram, they must share a face. Let us label the
sites of the three faces as S1, S2, and S3. Without loss of generality, let us assume that
R(S1) ≥ R(S2) ≥ R(S3). Let us assume that S3 is at the origin, and S1 is along the y
axis. For simplicity, let ri, be the influence radii of Si: ri = R(Si), and let {xi, yi} be
the location of site Si. Then S1 is located at {0, y1}, while S3 is located at {0, 0}. Let
b = (y1 − r2 − r1)/2 and let d13 be the distance between R(S3) and the bisector of S1

and S3. Let {h, `} be a point on the bisector of S1 and S3, shown in Figure 5.8. Then
h = (r3 + d13) sin(θ) and ` = (r3 + d13) cos(θ), where the angle θ is measured from the
y-axis.
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Then

r2
1 − 2r1d13 + d2

13 = (r1 + d13)
2

= (r3 + d13)
2

= (`− y1)
2 + h2

= d2
13 + 2r3d13 + r2

3 − 2y1r3 cos(θ)− 2y1d13 cos(θ) + y2
1.

Solving for d13 yields,

d13(r1 − r3 + y1 cos(θ) =
1

2

[
r2
3 − r2

1 − 2y1r3 cos(θ) + y2
1

]
=

1

2

[
r2
3 − r2

1 − 2y1r3 cos(θ) + (r2
1 + r2

3 + 4b2 + 2r1r3 + 4r1b + 4r3b)
]

= r3(r3 + r1 + 2b)− y1r3 cos(θ) + 2r1b + 2b2

= r3y1(1− cos(θ)) + 2r1b + 2b2

Hence,

d13 =
r3y1(1− cos(θ)) + 2r1b + 2b2

r1 − r3 + y1 cos(θ)
(5.4)

Moreover,

d13 + r3 = r3 +
r3y1(1− cos(θ)) + 2r1b + 2b2

r1 − r3 + y1 cos(θ)

=
r1r3 − r2

3 + r3y1 cos(θ) + r3y1 − r3y1 cos(θ) + 2r1b + 2b2

r1 − r3 + y1 cos(θ)

=
r1r3 − r2

3 + r3(r1 + r3 + 2b) + 2r1b + 2b2

r1 − r3 + y1 cos(θ)

=
2(b + r1)(b + r3)

r1 − r3 + y1 cos(θ)

Similarly, the distance from the origin to the bisector of S2 and S3 is given by

d23 + r3 =
2(b + r1)(b + r3)

r1 − r3 +
√

x2
2 + y2

2 cos(θ)

where β is measured from the y-axis. Let γ be the angle between the y-axis and the line
between S2 and S3. Then β = θ − γ.
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Note that the intersection of the bisectors of S1 and S3 and S2 and S3 will result in
a vertex in the Apollonius diagram. This vertex will be equidistant from the influence
regions of S1, S2 and S3. Thus,

0 = d13 − d23

=
r1 − r3 + y1 cos(θ)

(b + r1)(b + r3)
− r2 − r3 +

√
x2

2 + y2
2 cos(θ − γ)

(b + r2)(b + r3)
(5.5)

Unfortunately, we cannot solve the above equation analytically. However, the derivative
can easily be computed. Thus, we can numerically solve the above equation using the
Newton-Raphson’s method [Press et al., 1992, Sec 9.4]. Once we have obtained θ, then
we can easily compute d13 using equation 5.4, and obtain the intersection {x, y} by noting
that x = (r3 + d13) sin(θ) while y = (r3 + d13) cos(θ).

Finally, when edge a is curved but edge b is straight, we can again solve Equation 5.5,
with either r1 = r2 or r2 = r3. When r2 = r3, Equation 5.5 becomes

0 =
r1 − r3 + y1 cos(θ)

(b + r1)(b + r3)
−
√

x2
2 + y2

2 cos(θ − γ)

(b + r3)2
,

which is no easier to solve than Equation 5.5. Again we resort to numerical solutions.
When r1 = r2, then Equation 5.5 becomes

0 =
r2 − r3 + y1 cos(θ)

(b + r2)(b + r3)
− r2 − r3 +

√
x2

2 + y2
2 cos(θ − γ)

(b + r2)(b + r3)

= y1 cos(θ)−
√

x2
2 + y2

2 cos(θ − γ).

Solving for θ yields

θ = arctan

(
y1 −

√
x2

2 + y2
2 cos(γ)√

x2
2 + y2

2 cos(γ)

)
.

Again, once we have found θ, we can obtain the intersection by computing first d13 and
using it to find {x, y}.

Note that throughout this discussion we have assumed a rotation and shift such that S3

is at the origin, and S1 is along the y-axis. However, this affine transform can be easily
computed in O (d2) = O (1) time, by using a transformation and a shift matrix. The re-
sulting intersection can be translated back into “real-world” coordinates by applying the
reverse transformation: subtracting off the shift matrix and multiplying by the inverse of
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the rotation matrix. Thus, we can obtain the intersection of any two edges in O(1) time.5

Using these lemmas, we can now prove that we can construct an Apollonius diagram
in O (n lg n) time.

Theorem 2 A Apollonius diagram can be constructed in O (n lg n) time.

Proof The proof follows the description of the algorithm that we gave earlier. Consider
adding the element S = Si+1 to the Apollonius diagram V (N i). The first step of the
algorithm is to find a conflicting vertex p, if one exists. Assuming the vertices are stored
in a tree structure, this search takes O (lg(i)) time.

Suppose that we find a conflicting vertex. Then we need to iterate through each face
that is adjacent to a conflicting or partially conflicting edge. Lemma 2 states that there are
only a constant number of vertices which conflict with S. Since each vertex is adjacent to at
most 3 edges, then there are at most a constant number of conflicting or partially conflicting
edges. Moreover, since each face that must be updated is adjacent to a conflicting or
partially conflicting edge, there are also only a constant number of faces which must be
updated.

Updating a face, requires that we iterate through the conflicting edges of that face.
However, using our facial lattice structure, we can jump to the first conflicting edge imme-
diate (since we know it from either the previous update or from the search for a partially
conflicting edge). We then iterate through the conflicting edges of the face until we reach
the first partially conflicting edge, removing conflicting edges as we go. Finally we up-
date the two partially conflicting edges, and add a new bisector between the S and the site
corresponding to the face. Note that because of the cyclic way that we move through the
edges, each conflicting edge gets visited at most three times (once on the depth-first search
for a partially conflicting edge, and once for each when updating the two adjacent faces.
Thus, we touch at most O (1) edges during the update. Since the number of faces that
we encounter is O (1), we add at most a constant number of new edges. As addition and
deletion from the facial lattice can be performed in constant time, then the cost of all the
additions and deletions is alsoO (1). Thus, if a conflicting vertex exists, then the expected
update cost is O (lg(i)) (from the initial search).

Now suppose that we do not find a conflicting vertex. Lemma 1 notes that the total
number of vertices in V (N i) is O(i). Thus, the expected number of edges per face is

5The intersection between two lines, curved or straight, can also be computed without first applying
the transform matrix. The derivations are similar, but more cumbersome because of the additional location
variables that result from the (typically) off-axis alignment of the sites.
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O (1). Thus we can find the correct edge in which to insert S in constant time. This edge
needs to be split, two new edges need to be created, and two faces need to be updated.
Using the facial lattice structure all of these operations can be done in constant expected
time. Thus, even if a conflicting vertex does not exist, then the expected update cost is
O (lg(i)).

Since the insertion of one element into V (N i) can be done in O (lg(i)) time, then
the insertion of all n elements into the Apollonius diagram has expected computational
complexity

O

(
n∑

i=1

lg(i)

)
= O (n lg(n)) .

Using a Apollonius diagrams, we can now show that we can efficiently solve the prob-
lem described in Section 5.1. Specifically, we can find the point θ′ from Equation 5.2
which is maximal far from the influence region of any experiment in O (n lg n) time.

Corallary 1 The point in a bounded (but possible infinite) parameter space which is the
furthest from all of the spheres of influence of the currently sampled experiments, θ′, can
be located in O (n lg(n)) time. That is, if B is the set of experiments which already have
be observed, andR(θ̃) is the influence radius of θ̃ ∈ B, then the solution to

θ′ = max
θ∈Θ

min
θ̃∈B
‖θ − θ̃‖2 −R(θ̃)

can be computed in O (n lg(n)) time.

Proof This result follows directly from Theorem 2 and Lemma 1. Specifically, Theorem
2 states that we can compute an Apollonius diagram of a set of n points in O (n lg(n))
time. We know the vertices of this diagram correspond to the set of points which are the
farthest from the sites contained by the adjoining faces. Thus, the vertex which is the fur-
thest from the sites of its associated faces is θ′. Therefore to compute θ′, we need to iterate
through the vertices of the Apollonius diagram and select the one with the largest value of
minθ̃∈B ‖θ − θ̃‖2 − R(θ̃). By Lemma 1, there are only O (n) vertices in the Apollonius
diagram, so this search takesO (n) time. Hence, we can find the point which is maximally
far from the influence region of any experiment in O (n lg(n)) time.
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Figure 5.9: Illustration of the edge between two square sites (black). Dashed lines indicate
the transitions between subedges. Edges between two square sites can consist of up to 9
subedges, which are either straight or curved.

In the proceeding, we have assume that the influence region is a circle. However,
as mentioned in Section 5.1, the influence regions of experiments are typically squares.
Unlike the circular case, when using squares, the edge between two sites is a compos-
ite of sub-edges, some which are straight and some which are curved, as seen in Figure
5.9. There are at most nine different subedges which compose a single edge between two
squares. Since the curved sections occur when the edge is closest to a corner on one square
and an edge on the second square, the shape of the curved subedges is parabolic. Thus,
the intersections of the curved subedges either with other curved subedges or with straight
subedges can be computed analytically. The followings result shows that the assumption
of circular influence regions is not necessary in two dimensions.

Lemma 4 Edges between two aligned square sites are composed of only a constant num-
ber of sub-edges.

Proof An edge between two faces is the region of the Apollonius diagram in which the
two faces are equidistant from each other. Moreover, the endpoints of the edge are the only
two points in which another site is as close or closer to the edge than the two sites defining
the edge. Thus, the edge between two vertices is influenced only by its two adjacent faces.

Now consider an arbitrary edge, E, between two square sites. The points where two
subedges of E meet are points where the nearest element of one of the squares transitions
from a corner to a side, or visa versa. In Figure 5.9, these locations are illustrated with
dotted lines. The number of subedges is bounded by the number of combinations of sides
and corners of one square with sides and corners and sides of the second square. Since
each square has four sides and four corners, the maximal number of combinations is 64.6

6Not all of these combinations are possible. Figure 5.9, shows that there are only 25 distinct regions
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Thus, the number of subedges is O (1).

Lemma 5 The intersection of two square edge (edges between square sites), can be com-
puted in constant time.

Proof First, let us consider the cost of intersecting two subedges. If both subedges are
straight, then Lemma 3 states that their intersection can be computed in constant time.

Now suppose subedge e1 is a curved subedge. Curved subedges occur when the closest
point on one square is a corner, c, and the closet point on the other square is on a side, s.
Let us orient the space, such that s is along the x-axis, and c falls on the y-axis; that is c is
located at {0, yc}. Then since e1 bisects c and s, then y2 = x2 + (y − yc)

2, or

y =
x2

2yc

+
yc

2

Since e1 has a closed form solution, we can compute the intersection of e1 with either
a straight or curved subedge analytically, just as we did in Lemma 3. Specifically, if e2 is
straight, then

m2x + b2 = y =
x2

2yc

+
yc

2

Solving the quadratic, we find that

x = ycm2 ± c

√
m2

2 − 1− 2b2

yc

and y can easily be found by substituting x into y = m2x + b.

If e1 and e2 are both curved then

x2 + y2
c1

2yc1

= y =
x2 + y2

c2

2yc2

Solving for x, we find that x =
√

yc1yc2. Hence y = 1/2(yc1 + yc2).

Thus we can compute the intersections of subedges in constant time. Since there are
at most a constant number of subedges per edge (Lemma 4, we can compute the intersec-
tions of all pairs of subedges and return the intersections that are within the corresponding

where the edge changes subedges. Moreover, a single edge cannot visit all 25 of these regions.
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subedges’ endpoints, in O (1) time.

Using these two lemmas, and our analysis from Theorem 2, let us now show that
generalized Voronoi diagrams with square sites can also be computed in polynomial time.

Theorem 3 A generalized Voronoi diagram where the sites are aligned squares can be
constructed in O (n lg n) time.

Proof Constructing generalized Voronoi diagrams where the sites are mutually aligned
squares uses the same algorithm that was described for circular sites. The only difference
comes in computing the intersection of two edges. However, from Lemma 5, we know
that we can intersect two edges that result from square sites in constant time.

However, since the intersection of two edges can be computed in constant time, then
the complexity of the algorithm using square sites is identical (within a constant) to that
of computing an Apollonius diagram. That is, the complexity of computing a generalized
Voronoi algorithm with n square sites is O (n lg(n)).

Thus, for two dimensions, we have an efficient algorithm for computing the point in
some bounded regions which is furthest from a set of circles. In practice, computing this
point is much quicker than computing an estimate of the Gaussian Process used in the
active learning framework in Section 2.1.

5.4.1 Experimental Results

Let us now assess the greedy algorithm which selects the point that is furthest from the
influence region of any of the previously sampled points and compare it with active learn-
ing algorithms in Chapter 2. In particular, we consider the random, entropy, variance,
ent-var, and straddle heuristics of Section 2.2, to the following heuristics:

Maximum Distance to Influence Region Suppose we are given a set of sampled points
B and a candidate set, Q, as in Section 2.1. This heuristic, selects the point from Q which
is the furthest from any of the influence regions of any of the points in B. That is, this
heuristic selects θ′, where

θ′ = max
θ∈Q

min
θ̃∈B
‖θ − ‖̃2 −R(θ̃).
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Note that this heuristic provides the approximate solution to Equation 5.2, finding the best
solution among the set Q. This heuristic does not require any estimates from Gaussian
Process. Thus, the complexity of this heuristic is O (|Q| lg(|B|)), where | · | yields the
sizes of the associated set. We refer to this heuristic as maxdist.

Maximum Voronoi Vertex The second heuristic, voronoi, computes an Apollonius di-
agram from the sampled points, and returns the vertex which is maximally distant from the
(circular) influence region of all of the sampled points. In theory, the result of voronoi and
maxdist should be equivalent if the candidate set is large enough, or happened to contain
the true solution to Equation 5.2.

For each of these heuristics, we compute three measures of performance. First we mea-
sure their classification accuracies after 100 samples, as we did in Section 2.2. Secondly,
we compute the fraction of the space that is covered by the influence regions of the 100
selected samples. This is computed by randomly selecting 10,000 points and determining
what fraction of the points lie within the influence regions of the sampled experiments.
Finally, we compute the size of the largest hole in parameter space, where largest hole is
defined to be the maximum distance from any point in the parameter space to the near-
est influence region. This metric is computed by building an Apollonius diagram out of
the 100 sampled points and then iterating among the vertices to find the point which is
maximally distant from the nearest influence region.

Each of these performance measures was tested on the 2D Peak, 2D DeBoor, 2D
Sine, and 4D Sine target functions from Section 2.2. Note that the voronoi algorithm
only works for two dimensional tasks, so results for the 4D Sine function are not included.
Moreover, since the largest hole metric relies on the Apollonius diagram code, we did not
compute this metric for any of the heuristics on the 4D Sine data set.

Results are shown in Table 5.1, 5.2, and 5.3. Unsurprisingly, the straddle out performs
all heuristics in terms of classification accuracy. However, it does not perform well in terms
of minimizing the largest hole (Table 5.3). Indeed, the size of the largest hole using the
straddle was typically larger than the one found after using the variance heuristic. In
one of the three cases, the largest hole derived from the samples chosen by the straddle
heuristic was larger than any other heuristic except the entropy heuristic; recall that the
entropy heuristic tends to sample points only from a specific region in parameter space.

On the other hand, the voronoi heuristic performs well on all tasks. While not always
the best heuristic to maximize classification accuracy and coverage fraction, the voronoi
algorithm tended to be near the top. Moreover, the voronoi algorithm was the clear winner
on the largest hole metric, beating the other heuristics by significant margins.
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2D Peak 2D DeBoor 2D Sine 4D Sine
random 0.978±0.007 0.991±0.005 0.958±0.007 0.940±0.003
entropy 0.971±0.000 0.994±0.015 0.808±0.189 0.914±0.044

variance 0.989±0.002 0.996±0.001 0.988±0.001 0.930±0.003
ent-var 0.998±0.000 1.000±0.000 0.992±0.001 0.950±0.002

straddle 0.999±0.000 1.000±0.000 0.996±0.000 0.971±0.001
maxdist 0.994±0.002 0.992±0.005 0.992±0.001 0.952±0.002
voronoi 0.999±0.000 0.998±0.000 0.992±0.001 ——

Table 5.1: Classification accuracy for various heuristics after selecting 100 samples from
the corresponding target function.

2D Peak 2D DeBoor 2D Sine 4D Sine
random 0.819±0.028 0.000±0.000 0.507±0.023 0.041±0.009
entropy 0.327±0.208 0.000±0.000 0.118±0.062 0.003±0.002

variance 0.867±0.015 0.061±0.010 0.578±0.015 0.012±0.005
ent-var 0.871±0.013 0.000±0.000 0.456±0.025 0.012±0.004

straddle 0.683±0.021 0.000±0.000 0.285±0.023 0.008±0.003
maxdist 0.522±0.046 0.000±0.000 0.516±0.025 0.022±0.007
voronoi 0.866±0.006 0.160±0.013 0.499±0.025 ——

Table 5.2: Influence region coverage fraction for various heuristics after selecting 100
samples from the corresponding target function.

2D Peak 2D DeBoor 2D Sine
random 0.633±0.120 6.309±0.913 2.075±0.400
entropy 1.718±1.046 17.138±4.932 6.422±2.512

variance 0.435±0.047 3.127±0.142 1.031±0.117
ent-var 0.239±0.011 6.792±1.058 0.869±0.056

straddle 0.258±0.043 11.296±1.162 1.325±0.191
maxdist 0.496±0.081 9.320±0.438 0.725±0.048
voronoi 0.183±0.010 2.578±0.075 0.703±0.024

Table 5.3: Maximal distance to the nearest influence region for various heuristics after
selecting 100 samples from the corresponding target function.
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Finally, note that while the maxdist heuristic and voronoi heuristic optimize nearly
the same function, the maxdist heuristic performs substantially worse than the voronoi
heuristic. This is a result of the fact that the maxdist heuristic is limited to the small
number of elements in Q. We suspect that if we were to increase the size of Q, then the
performance of maxdist would be more equivalent to voronoi.

5.5 Computing Derivatives

Throughout the previous discussion, we have assumed that the derivatives of the target
function were known. However, this is hardly ever the case. Nonetheless, we can compute
approximate values of the derivatives in one of many ways. Perhaps the simplest way is
to assume some (reasonable) value for the derivatives, and then sample a certain number
of points. Using these samples, we can then compute a better estimate for the derivatives,
which we can use to select another set of points.

Note that if we underestimate the derivatives, we will over smooth our estimate of the
target, and hence miss portions of the target function’s level-set. However, if we overes-
timate the derivatives, our sampling method will resort to variance weighted sampling, as
the variance term will overpower all other factors in all of the heuristics.

Thus, the best approach is probably to overestimate the derivatives by multiplying the
observed derivatives of the currently sampled points by a constant factor. Moreover, if after
every j experiments, we sample a point at random, we can be assured that the observed
derivative estimates are not being biased by our assumed derivatives.

5.6 Extending the Algorithm to Multiple Dimensions

Finally, let us consider extending the Voronoi algorithm to multiple dimensions. As noted
in Section 5.1 the problem cannot be formulated as either a linear or quadratic program.
However, there are other strategies that we can use to (at least approximately) compute
solutions to Equation 5.2 in multiple dimensions.

First, Bowyer [1981] and Watson [1981] give poly-time algorithms for computing d-
dimensional Delaunay tessellations. As Delaunay tessellations are the duals of Voronoi
diagrams, we can thus compute the portions of the Voronoi diagram which are interior to
the convex hull of the sites in O (n2) time.

Similarly, we can extend the techniques above for Apollonius diagrams to multiple
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dimensions. Computing intersections of curved edges in d dimensions can be calculated
in constant time using the same techniques as in Section 5.4. Thus, algorithms exist for
computing a multi-dimensional Apollonius diagram interior to the convex hull of its n
sites in O (n2) time [Emiris and Karavelas, 2006, Boissonnat et al., 2006]. Moreover,
multi-dimensional generalized Voronoi diagrams can be computed using tree-based grid
methods [J. M. Vleugels, 1995, Hoff III et al., 1999].

In order to ensure that all points in the parameter space are considered by the (stan-
dard or generalized) Voronoi diagram algorithm, we must first select the 2d corners of
the d-dimensional parameter space. This ensures that every point in the parameter space
is within the convex hull of the sampled points. As a result complexity for the Voronoi
heuristic using Apollonius diagrams becomesO

(
2d + n2

)
. While this selection of corners

results in a non-polynomial algorithm (assuming P 6= NP), for the moderate dimensional
problems the algorithm is computationally feasible. For instance, consider the task of
computing 1 − α confidence intervals for the WMAP data in Section 4.1.1. This seven
dimensional data set would require only 128 points to sample all of the corners of pa-
rameter space. Compared with the ∼ 1.3 million models that were run, this number is
inconsequential.

The second approach for computing the point which is maximally distant from the
influence regions of the currently sampled points is to use the maxdist heuristic. As we
saw in Section 5.4.1, this heuristic did not perform well when the size of the candidate set
was highly restricted. However, increasing the size of the candidate set may drastically
increase performance. Moreover, the cost of computing the maxdist heuristic only grows
linearly with the number of dimensions, instead of exponentially. On the other hand, ex-
ponentially more points are need to cover the space with random samples as the dimension
increases.

Finally, note that the true influence regions of the sampled points are hypercubes, not
hyperspheres. As seen in Section 5.1, the ratio of the size of a d-dimensional hypersphere
and the d-dimensional hypercube in which it is inscribed goes to zero as d increases. When
d = 7, the hypersphere encloses less than 4% of the volume of the hypercube. Thus, we
could modify the maxdist heuristic to compute the distance from the candidate point to the
influence region as a hypercube rather than a hypersphere. This change cannot be easily
made for the curved Voronoi diagrams, as the cost to compute the intersection of j − 1
faces when the sites are hypercubes is exponentially dependent on the dimension.
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5.7 Summary

In this chapter we have discussed algorithms for computing convergence. We noted that
computing point-wise convergence is computationally infeasible. Instead, we calculate the
largest uncovered hole in the parameter space, and seek to minimize its size.

In order to take advantage of the values of the experiments chosen (instead of just their
locations in the space), we need to make assumptions as to the derivatives of the target
function. With these derivative assumptions, we can compute “influence regions” for each
sample; any point within a sample’s influence region is provably not part of the target
function’s level set.

Using the influence regions of the sampled experiments, we can compute the size of the
largest hole in parameter space. Specifically, the size of this hole is equal to the maximum
distance from any point in the parameter space to the nearest influence region of the sam-
pled points. The size of this hole corresponds to the largest possible size of a unobserved
peak in the target function.

In order to compute and minimize the size of this unobserved peak, we have proposed
two heuristics. In the first, we have showed that using a generalized Voronoi diagram — in
this case an Apollonius diagram — the point which is maximally distance from the nearest
influence region in a bounded two dimensional region can be found in O (n lg(n)) time.
Current ideas of extending the Voronoi diagram based solution to multiple dimensions do
not yield polytime algorithms.

The other approach to computing the largest hole is to randomly sample points through-
out the parameter space and compute their distance to the nearest influence region based
on the currently available samples. While an approximate solution, this algorithm scales
linearly with dimension, rather than exponentially. Experiments show that the Voronoi
diagram based solution works better than the approximate solution for a number of prob-
lems. Moreover, the Voronoi diagram based algorithm is nearly as good at finding function
level-sets as the straddle heuristic. We believe that the random sampling algorithm would
perform nearly as well as the Apollonius diagram based solution if the number of random
candidates were increased.
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Chapter 6

Conclusions

We have developed an active learning framework which can be used to efficiently learn
specific properties of target functions. In particular, we show that the straddle heuristic
can be used to learn function level-sets much more efficiently than techniques which try
to learn the target function over the entire domain. In addition, we have developed the
threshvar heuristic to learn subsets of a target function (where it is below a specified
value), as well as the var-maxvarstraddle heuristic to learn the level-sets of functions
which are sums of sub-functions, which can be independently queried.

While these active learning techniques can be applied to many domains, we have
shown how they are useful for efficiently computing statistical inferences. We described
how our algorithms can be used to increase the efficiency of χ2 tests, the confidence ball
method, and minimax expected size (MES) confidence regions. For each of these proce-
dures, a function level-set search must be preformed to determine the extent of the 1 − α
confidence regions.

When using the MES confidence procedure, additional savings can be achieved by first
restricting the parameter space based on a χ2 test and then sub-sampling this restricted
region using the threshvar heuristic. Once we have obtained the necessary samples, we
have shown how the MES procedure can be formulated as a convex game with a sparse
payoff matrix. Solving this game using linear programming was found to be orders of
magnitude faster than standard fictitious play algorithms. The solution of the MES game
can then be translated into a target function where the boundaries of the 1− α confidence
regions corresponds to a specific level-set.

While Bayesian procedures can be used to compute credible intervals, our techniques
cannot be applied to Bayesian inference techniques, due to the fact that the boundary of
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the 1 − α credible region cannot be computed until after the parameter space has been
sampled. Additionally, Bayesian inferences have many troubling aspects, including the
fact that 1 − α credible regions may not contain the true parameter vector 1 − α fraction
of the time, in a frequency sense. Moreover, we showed that the size of 1− α confidence
regions derived by the MES procedure are similar in size to those computed by Bayesian
methods. Finally, we showed that Bayesian methods are extremely data inefficient. In
particular, our methods were more than four orders of magnitude more data efficient than
MCMC and two orders of magnitude more efficient than simple grid-based techniques.
Thus, we assert that scientific anaylses should consider using frequentist methods based
on our active learning techniques.

Using the combination of our active learning heuristics and frequentist inference tech-
niques, we computed 1− α confidence regions for several astronomical data sets. We ob-
served that our technique explicitly retains the d dimensional confidence surface, allowing
for extremely powerful analyses. For instance, we can compute the effects of adding re-
strictions to the parameter ranges after the fact without needing additional samples. More-
over, we can combined multiple data sets and produce confidence regions which are much
tighter than a simple intersection of the one or two dimensional views. Such analyses
are not possible with Bayesian methods, as changes to the priors invalidate the derived
inferences.

Finally, we looked at two techniques which can be used to determine the level of con-
vergence of our sampling heuristics. Since computing convergence point-wise is compu-
tationally infeasible, we suggest computing the size of the maximum object that could still
be observed. This size is equivalent to the size of the maximum distance from any point
in the parameter space to the influence regions of the currently sampled points, where the
influence region of a point is determined by the product of the experiment’s distance to
the boundary and the maximum derivatives of the target function. When the maximum
derivatives are unknown, they can be approximated using the samples selected as well as
additional random samples.

We give two algorithms to compute these “largest holes.” The first generalizes Voronoi
diagrams to include sites with non-zero radii. The second uses random sampling to ap-
proximately compute the maximum distance to the nearest influence region. Experimental
results suggest that the Voronoi diagram based method outperforms the random sampling
technique, but this may be due to using too few points in the random sampling technique.
We saw that both the Voronoi based diagram approach and the random sampling approach
can be extended to multiple dimensions. However, the Voronoi diagram algorithm is likely
exponential in dimension, while the random sampling method scales linearly with dimen-
sion.
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6.1 Future Work

There are several areas where this research could be furthered. First, it would be inter-
esting to determine if an exact solution of the point in a bounded parameter space which
is maximally distance from a set of spheres can be computed in polynomial time. As
mentioned in Section 5.1, the minimax formulation can not be written as either a linear or
quadratic program. However, there may be other formulations that will allow us to solve
this problem, or at least an approximation. On such solution is to use the Voronoi diagram
based algorithm. The multidimensional Voronoi diagram algorithms considered here only
examine those points which are within the convex hull of the samples; thus we must sam-
ple all of the corners to ensure the entire space is actively considered. However, there may
be ways to relax this constraint.

Secondly, it would be interesting to derive some theoretical guarantees for our algo-
rithms. One common approach is to prove the function is submodular and then invoke
the results of Nemhauser et al. [1978], which states that a submodular greedy algorithm
performs near optimally. However, this result only holds if the algorithm cannot observe
the values of the experiments until all experiments are sampled. Formulations of this
framework for active learning cases are more difficult, as the optimal solution can be sig-
nificantly better than the case where all experiments are unobserved until the end.

Moreover, note that many of our heuristics are not even submodular. For instance,
the Voronoi diagram algorithm is not submodular. Consider the case of one point in the
middle of a two dimensional parameter space. Since the distance to all four of the corners
is equivalent, selecting any of these corners will not reduce the maximum distance to the
nearest influence region. It is not until all four corners have been sampled that the size of
the largest hole decreases. Thus, choosing the fifth point fifth has significantly more value
than choosing that same point second. While it is possible to change the heuristic to be
more akin to mutual information (rather than variance), this change forces us to essentially
perform an integration over all space, which is infeasible.

Finally, it would be interesting to apply this technique to a host of other data sets. In
particular, we are interested in scaling up the active learning techniques here to a situation
where we have multiple data sets, all of which share the same model and parameter space.
In such a setting, it would interested to determine how best to choose samples. Should
samples be chosen which best help identify the worst performing data set (thereby ensuring
all data sets achieve some minimum standard — “no data set left behind”), or should we
save our efforts for computing models which are useful in determining the 1−α confidence
intervals for a large number of models. Since the data sets all represent the same objects —
here galaxies — we expect that using the data sets to guide which models are chosen will
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be significantly more efficient than first trying to learn about the entire parameter space,
and then applying this knowledge to all of the galaxies.
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Appendix A

Estimating τ , the radius of the
confidence ball

The following derivation is taken from Genovese et al. [2004]. Recall from §3.3.1 that the
cosine basis is defined on [0, 1] by

φj(z) =

{
1 for j = 0√

2 cos(πjz) for j = 1, 2, 3, . . .

If j and k are distinct, positive integers, then

φjφk = 2 cos(πjz) cos(πkz)

= cos(π(j + k)z) + cos(π(j − k)z)

=
1√
2
(φj+k + φ|j−k|).

Moreover, if j > 0, then φ2
j = 2 cos2(πjz) = cos(2πjz) + 1 = 1√

2
φ2j + φ0. Therefore, as

mentioned in §3.3.1,

∆jk` =


1 if #{j, k, l = 0} = 3
0 if #{j, k, l = 0} = 2

δjkδ0` + δj`δ0k + δk`δ0j if #{j, k, l = 0} = 1
1√
2
(δ`,j+k + δ`,|j−k|) if #{j, k, l = 0} = 0

.

Let w(z) = 1/σ2(z), such that w2(z) =
∑

j wjφj(z). As in §3.3.1, we let ρ̂j = λjZj ,
where

Zj =
1

n

n∑
i=1

Yiφj(zi)
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and 1 ≥ λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0 are shrinkage coefficients. In this work, we use a
special case of monotone shrinkage in which

λj =

{
1 for j ≤ J
0 for j > J

for J ∈ [0, 1, 2, . . . , n] such that J minimizes Stein’s unbiased risk estimate given in
Equation 3.3. With these definitions, the loss can be written as

L(µ, µ̂) =

∫ 1

0

(
µ̂(z)− µ(z)

σ(z)

)2

dz

=
∑
j,k,`

(ρj − ρ̂j)(ρk − ρ̂k)w`

∫ 1

0

φjφkφ`

=
∑
j,k

(ρj − ρ̂j)(ρk − ρ̂k)
∑

`

w`∆jk`

= (ρ− ρ̂)T W (ρ− ρ̂),

where Wjk =
∑

` w`∆jk`. As in §3.3.1, let D and D̄ = 1−D be diagonal matrices with 1’s
in the first J and last n−J entries respectively. Then ρ̂ = DZ , where Z is again assumed
to be Normal (ρ, B). Thus, E[µ̂] = Dρ, Cov(µ̂j, µ̂k) = λjλkBjk and Var(µ̂) = DBD.
The risk then becomes

R = E[L] = E
[
(ρ− µ̂)T W (ρ− µ̂)

]
= trace(DWDB) + ρT D̄WD̄ρ

= trace(DWDB) +
∑
j,k

ρjρkλ̄jλ̄kWjk

An unbiased estimate can be obtained by replacing ρjρk with ZjZk −Bjk. The result is

R̂ = ZT D̄WD̄Z + trace(DWDB)− trace(D̄WD̄B)

It follows that
L̂− R̂ = ρT Wρ−ZT C + ZT AZ + trace(AZ)

where A = DW + WD −W and C = 2DWρ. Moreover,

Var(L̂− R̂) = Var(ZT AZ − ZT C)

= Var(ZT AZ) + Var(ZT C)− 2 Cov(ZT AZ,ZT C)

= 2 trace(ABAB) + ρT Qρ
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where Q = ABA + WDBDW − 2ABDW . Plugging in unbiased estimates of the linear
and quadratic forms involving ρ, we get the following estimate for the variance of the pivot
process:

τ̂ 2 = 2 trace(ABAB) + ZT QZ − trace(QB).
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D. Johnston, S. Kent, D. Q. Lamb, B. C. Lee, H. Lin, J. Loveday, R. H. Lupton,
J. A. Munn, K. Pan, C. Park, J. Peoples, J. R. Pier, A. Pope, M. Richmond, C. Rock-
osi, R. Scranton, R. K. Sheth, A. Stebbins, C. Stoughton, I. Szapudi, D. L. Tucker,
D. E. V. Berk, B. Yanny, and D. G. York. Cosmological constraints from the SDSS
luminous red galaxies. Physical Review D, 74(12):123507–+, December 2006. doi:
10.1103/PhysRevD.74.123507. 4.1, 4.1.3, 4.3, 4.2.3, 4.2.3, 4.23(c), 4.5, 4.2.3
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