
Modeling Disk Traffic with Bias Methods

Chris Murray and Hao Cen

September 2006
CMU-ML-06-110

Modeling Disk Traffic with Bias Methods

Chris Murray and Hao Cen

September 2006
CMU-ML-06-110

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Disk traffic modeling is useful in designing effective storage systems. One
of the most difficult aspects of modeling disk trace data is understanding
the underlying process which generates the trace. This work shows a
novel method to model and learn the spatio-temporal locality in the trace
generating process by using a conditional distribution based on recent
disk accesses observed in the trace. Specifically, we present a class of
models where the conditional distribution over the next disk block to
access is biased towards recently-accessed disk blocks. Our method is
flexible enough to be used to model any temporally-ordered finite sequence
of events. We show several variants of this method and show how the
method can be used not only to understand the trace-generating process
but also to evaluate the performance of a storage system. Our experiments
show that our method does a good job of capturing the process generating
disk traces.

Keywords: Disk traces, disk traffic modeling, bias methods.

1 INTRODUCTION

Disk traffic data has been used to design effective storage system by feeding a
real disk trace into trace-driven simulation systems. Collecting real trace data
is labor intensive and time consuming. Using artificial trace data for trace-
driven simulation systems allows researchers to generate new data by varying
parameters, which would be expensive or impossible to do with real trace data.
Also, being able to generate artificial trace data on the fly can save a huge
amount of storage space.

Our goal is to design a model of the trace-generating process. Specifically,
this model seeks to explain the ordering of accesses to different disk blocks as
time evolves. This models seeks to capture not only the pure spatial or temporal
aspects of the disk trace, but also the interplay between these. It does this using
a small number of parameters and works in a way that allows for and captures
some aspects of spatio-temporal locality. That is, this model captures the fact
that real disk traces observe periods of high frequency accesses to a small number
of disk blocks and that the accesses are biased towards recently-accessed blocks.

2 RELATED WORK

A number of methods for modeling disk traces have been proposed recently.
Ganger [1] motivates the problem and shows the inadequacy of the Poisson
arrival model due to its failure to capture spatial-temporal locality or burstiness
in the trace. Fractional ARIMA is used to generate synthetic video traces.
It has also been found to be unable to capture spatial-temporal locality or
burstiness. [2]. Fractal Brownian motion [3], Fractal Wavelets [4], and On/Off
models [5] provide interesting temporal modeling but do not capture spatial
locality. Also these models require fitting a large number of parameters, so they
lose the benefits of conciseness. The B-model [6] requires only one parameter to
describe the entire trace, and the model fitting and trace generation algorithm
run in linear time. The major shortcoming is that it fails to capture spatial
locality properties of the trace. The I-model generates two-dimensional traces
by multiplying marginal traces on time and space. That is, if 10% of the total
requests arrive at time t and 5% of the total requests occur on address s, then
10%×5% = 0.5% of the total requests have arrival time t and address s. The I-
model preserves marginal distributions in the temporal domain and in the spatial
domain, but it throws out information about spatial-temporal correlation, which
is precisely what we want to capture.

The PQRS model [6] accurately captures spatio-temporal burstiness using
only a small number of parameters, but it imposes a fractal structure on the
disk trace and deals with absolute time, not system state, as the determinant
of burstiness. An important method for capturing pure temporal burstiness
models inter-arrival gaps in time series [7]. It uses a hierarchical Markov model
to determine the inter-arrival gaps between events, and is shown to be useful
in a variety of domains. Other models look at device performance relative to

1

other devices [8] or use a version of regression combined with a training set to
predict storage device performance. [9]

3 DISK TRACES

The simplified version of a disk trace that we look at is an ordered list of tuples
[si, ti] for i = 1 to L. si ∈ S = {1 . . . N} tells which block on the disk was
accessed, and ti ∈ {1 . . . T} tells the time stamp of the access (i.e. the number
of milliseconds between the beginning of trace collection and the access). We
aren’t concerned with whether the access was a read or a write, or how many
blocks the access read, and we assume the trace is given ordered in time so that
ti+1 ≥ ti.

3.1 MARGINAL DISTRIBUTIONS

Given a disk trace, we observe some marginal distribution over the disk blocks
s ∈ {1 . . . N}. We will call this the marginal spatial distribution. The observed
marginal spatial distribution simply records, for each disk block s ∈ S, the
fraction of accesses that went to block s. That is,

pmarg(s) = N(si = s)
L

where N(si = s) counts, over i, the number of occurrences of the argument.
To model the marginal spatial distribution, we will simply store the observed

marginal spatial distribution explicitly. We could approximate the marginal
spatial distribution in some manner, but since our true goal is to look at spatio-
temporal locality we won’t worry too much about the pure spatial marginal
distribution

The other marginal distribution we can observe from the disk trace is the
temporal marginal distribution. We don’t want to model the temporal distribu-
tion as a function of absolute time t: rather we want to model the distribution
of time gaps. We do this by differencing the disk trace time stamps

tgap
i = ti+1 − ti

and then transforming and discretizing the observed series of gaps into a new
series of log-gaps as

levi = blog2(1 + tgapi)c (1)

We call the levis burstiness levels, where a low value of levi indicates a period
of rapid disk accesses, and a high value of levi indicates a period of slow disk
accesses. The observed marginal distribution of burstiness levels is

ptemp(lev = k) =
N(levi = k)

L− 1

We define these marginal distributions because any good model of the disk trace
generating process should approximately preserve these marginal distributions.

2

3.2 SPATIO-TEMPORAL LOCALITY

The most important aspect of this work is looking at the spatio-temporal locality
of a disk trace. We want to capture the fact that there is some “inertia” in a disk
trace. That is, fixing the marginal temporal and spatial distributions defined
above, we can define some conditional distribution over the next disk block to
be accessed at time t, having observed the trace up to time t− ε, as pcond(s; t).
The unrealistic assumption that disk blocks are drawn I.I.D. from the marginal
distribution would posit that pcond(s; t) = pmarg(s). We want to capture, with
as few parameters as possible, the fact that a disk block that is accessed at time
t will likely be accessed again soon after time t, so we will bias this conditional
distribution towards recently-accessed blocks.

To be more precise, we’ll define event R(s, t) to be: R(s, t) = 1 if disk block
s was accessed “recently” before time t and R(s, t) = 0 otherwise. Then we
model the conditional distribution over the next block to be accessed so that
it’s biased in favor of recently-accessed blocks.1 We define β as a factor to model
the extent of bias towards recently-accessed blocks, with β = 1 indicating no
bias and β À 1 indicating that the trace is much more likely than under I.I.D.
to access a recently-accessed block next. We will present several methods of
biasing the conditional distribution in favor of recently-accessed blocks, and we
will collectively call these recent event bias methods, where β is the recent bias
coefficient.2 We will show how to interpret β and how to learn it from a real
disk trace.

Two of our methods model the the conditional distribution as

pcond(s; t) =
{

ct × β × pmarg(s), if R(s,t)=1
ct × pmarg, if R(s,t)=0 (2)

ct =
(
ct |

∑

s∈S

pcond(s; t) = 1
)

(3)

That is, the fact that block s was accessed recently makes it β times as
likely as under I.I.D. that it will be accessed next. ct is just a normalizing
constant. Using this conditional distribution, we can create two different recent
event bias models based on two precise definitions of R(s, t). The first is that
R(s, t) = R(s, t; k), where R(s, t; k) = 1 if block s is one of the k most-recently-
accessed blocks, where k is a parameter called the memory size. This is the size-
limited model since in this case the trace-generating process only remembers the
last k unique blocks that were accessed and it biases the next accesses towards
these blocks.

The second model has that R(s, t) = R(s, t; τ), where R(s, t; τ) = 1 if block
s was accessed within the last τ seconds. In this case τ is the trace’s memory

1From here on whenever we refer to the conditional distribution, we’re referring to the
conditional distribution over the next block to be accessed, given the history of the trace thus
far.

2An event, in this case, is an access to a disk block, but our family of methods could be
applied to any ordered sequence of events.

3

duration, and this method of modeling the conditional distribution is the time-
limited model since in this case the trace generating process only remembers
recently accessed blocks for a certain amount of time.3

We also use a third method to bias accesses towards recently-accessed blocks
which we call the hit rate matching model. Using this method the conditional
distribution depends on a parameter h which gives the probability that the
next block accessed will be a recent block. Mathematically, under the hit rate
matching method the conditional distribution is

pcond(s; t) =
{

Access a recent block, with probability h
Access a non-recent block, with probability (1-h) (4)

and once a decision is made to draw a recent or a non-recent block, that draw
is made according to the marginal distribution pmarg(s). Here the definition of
recently accessed is the same as in the size-limited method: the last k blocks that
were accessed are marked as recently accessed, and the rest are marked as not
recently accessed. Though it’s not used explicitly in the conditional distribution,
we show in the next section how to get a numerical estimate the extent of recent
event bias in the hit rate matching model, and since this parameter has the same
interpretation as β in the other models, we will also refer to it as β for the hit
rate matching model.

Intuitively, the hit-rate-matching model implies a constant probability to
draw a recent block, while the size-limited and time-limited models imply that
the probability to draw a recent block depends on the distribution pmarg(s). We
will refer to a model, with its memory parameter, as a model specification. That
is, a model specification might be “A size-limited model with a memory size of
32.” A model specification with a short memory (small k or τ) will have bias
towards very recently-accessed blocks, while a model specification with a longer
memory (larger k or τ) will also bias accesses towards less recently accessed
blocks. Under all of the above variants the interpretation of β is roughly the
same. It measures the factor by which the conditional distribution is more likely
than I.I.D. to access a recent block. In our experiments we observe very high
β factors in the disk traces, indicating very high bias towards recently-accessed
blocks and the inadequacy of the I.I.D assumption. Our method of analyzing
traces works in other domains (network traces for example) and observing dif-
ferent β factors in different domains or on different traces could tell us that
qualitatively different behavior is generating the traces.

4 LEARNING THE SPATIO-TEMPORAL LO-
CALITY IN A TRACE

Given a model specification and a real disk trace, we want to be able to estimate
the β coefficient (or h value for the hit-rate matching method) to understand
the trace-generating process.

3We will show in a later section how k or τ can be chosen by likelihood maximization

4

4.1 LIKELIHOOD MAXIMIZATION METHOD

The way we estimate β for the size-limited and time-limited models is by like-
lihood maximization. That is, given a trace, a value of β, and a model spec-
ification we can compute L, the total likelihood of the ordering of disk block
accesses in the trace. We do this by computing

L =
N∏

i=1

p(si | si−1 . . . s1) (5)

When we run through the trace to compute this likelihood L, at any point
in time we know which blocks s have been recently accessed since we know the
model specification. We can define

Γ = (s ∈ S | R(s) = 1), γ =
∑

s∈Γ

pmarg(s)

Φ = (s ∈ S | R(s) = 0), φ =
∑

s∈Φ

pmarg(s)

That is, all recently-accessed disk blocks are in Γ and the rest are in Φ.
The marginal probability to access a block in Γ or Φ, respectively, is γ and φ.
Since recently-accessed disk blocks are β times more likely to be accessed next
than they would be under the marginal distribution, the conditional probability
for the next access to be to some recently-accessed block is β × γ4 under the
size-limited and time-limited models.

Since we can compute the conditional likelihood of an access given β using
equations 2,3, and 4, we can compute the total likelihood of the trace with equa-
tion 5. Thus we can compute the β value that maximizes this total likelihood:
this is the MLE (maximum likelihood estimate) β. The simple algorithm we use
to do this computes the likelihood of the trace for several β models and hones in
on the β which best explains the trace, though any other optimization method
could be used.

4.2 SIMULATION METHOD

When we use the hit-rate-matching model of trace generation, β doesn’t appear
explicitly in the conditional distribution but h does. We can learn the value for
h from a trace as

hobs =
∑L

i=1 R(si, ti)
L

4Of course this only works for β × γ ¿ 1, which means that memory (size/duration)
shouldn’t ever be too big compared to the total number of blocks. e.g. On a disk with
1,000,000 blocks, this method would encounter a problem if we defined the last 600,000 blocks
accesses to be “recently-accessed” and estimated that β = 20

5

The numerator is just the total number of accesses that went to a recently-
accessed block, so hobs is the fraction of accesses in the trace which went to a
recently-accessed block.5

Though β doesn’t appear in the conditional distribution for the hit rate
matching method, we can define β in such a way that it has the same inter-
pretation and thus provides some comparability with the β factors from other
methods. Under the hit rate matching method, to get an estimate of β we’ll first
calculate the “hit rate” hobs observed in the trace, and then estimate what hIID

would be under the hypothesis that blocks are drawn I.I.D. from the marginal
distribution pmarg(s). We can estimate this by drawing some large number L′ of
blocks I.I.D. from the marginal distribution to generate an artificial trace, and
then computing for this artificial trace

hIID ≈
∑L

i=1 R(si)
L′

Finally, our estimate of β is

β =
hobs

hIID

which is the factor by which the observed “hit rate” hobs is higher in the real
trace versus an I.I.D. trace on the same marginal distribution. Note that, as
before, β = 1 implies no spatio-temporal locality, and β = x means that the
real trace is, in some sense, x times more likely than under I.I.D. to access a
recently-accessed block.

4.3 MULTIPLE BETA FACTORS

We expect a single factor β associated with only a single k or τ that defines the
spatio-temporal locality to do a reasonably good job of modeling the behavior of
a trace. However, we expect that the true trace generating process may have by
several levels of spatio-temporal locality. For example, it may be the case that
accesses are strongly biased towards the most recently accessed 2 disk blocks,
and weakly biased towards the most-recently-accessed 10 disk blocks.

To clarify with an example, imagine a system using a disk with 100 blocks,
where marginally each block is accessed about 1% of the time. Further, imagine
that usually 5 processes run at any given time, and each process has its own 2
disk blocks to which it writes. This trace is best modeled with two β coefficients
associated with two different k values: one coefficient β2 strongly biases the
trace such that the next access is very likely to be to one of the two most-
recently-accessed blocks,6 but another smaller coefficient β10 slightly biases the
trace such that the next access is more likely to go to one of the 10 most
recently accessed blocks. To address this we propose defining some number w

5This hobs can be interpreted as a hit rate on a cache of size k which always kicks out the
least-recently-used block, hence we named this method the hit rate matching method.

6Since one process will likely get to write to its two blocks several times before another
process can run

6

of different βi coefficients, each associated with a different memory size ki or
memory duration τi. Some optimization techniques (like gradient descent with
random restart) could be used to learn the MLE β factors from the real trace.

4.4 MODELING TEMPORAL BURSTINESS

We model temporal burstiness by using a Markov model [7] [10]. Specifically, in
our experiments we used first-, second-, and third-order Markov models to de-
scribe the distribution of inter-arrival gaps given by levi (equation 1). In a first
order Markov model, the distribution over the next burstiness level (levi+1)
depends only on the current burstiness level (levi). In a third-order Markov
model, the distribution over the next burstiness level (levi+1) depends on the
three most recent burstiness levels (levi, levi−1, levi−2). We learn these transi-
tion distributions in either case by counting. For example, in the second-order
Markov model,

p(levi+1 = a | levi = b ∧ levi−1 = c) =
N(levj = a ∧ levj−1 = b ∧ levj−2 = c)

N(levj−1 = b ∧ levj−2 = c)

Algorithm 1 Synthetic Trace Generating Algorithm
1: for s ∈ S do
2: non-recent.Add(s)
3: end for
4: time=0
5: for i = 1 . . . L′ do
6: time ← time + MarkovGapDist.DrawGap()
7: if Rand(0,1) < β×recent.TotalWeight() then
8: block = recent.Draw()
9: recent.MoveToFront(block,time)

10: else
11: block = non-recent.Draw()
12: non-recent.Remove(block)
13: recent.Push(block,time)
14: end if
15: WriteAccess(block, time)
16: if recent.ContainsStaleBlocks(time) then
17: Move all stale blocks from recent to non-recent
18: end if
19: end for

4.5 GENERATING ARTIFICIAL TRACES

Given a model specification, and having learned the associated parameter β or
h, the marginal distribution pobs(s), and the parameters of the Markov model

7

to represent temporal burstiness, we can quickly create synthetic traces that
could be used to stress test a storage system. We’ll use several data structures.

• Two AVL trees recent and non-recent. The first tree represents disk blocks
that were recently accessed and is initially empty and the other represents
disk blocks that were not recently accessed and it initially contains all disk
blocks. In both AVL trees, each node represents a single disk block s and
each node has an associated probability weight pmarg(s). The AVL trees
are also modified so that each node knows the total probability weight in
its subtree, allowing us to draw precisely from the marginal distribution
pmarg(s) within an AVL tree in O(log(N)) time.

• One priority queue q : this is either size limited (with max size k) or time
limited (with maximum staleness τ). The recently accessed nodes are in
this priority queue, and when a node becomes non-recent it is removed
from the priority queue and moved from the AVL tree recent to the AVL
tree non-recent

A description is shown in algorithm 1.7 Initially all blocks are not recently
accessed. For each simulated accesses, we choose the next block to access using
β to bias our draw towards recently-accessed blocks. Then we randomly draw
a time gap from the learned Markov distribution. The new block we drew is
marked as recent, and then any blocks stored in recent that just became non-
recent are moved into the non-recent priority queue.8 The algorithm runs
in O(log(N) × L′), with the log(N) coming from the fact that recent and
non-recent both store the marginal distribution pmarg(s) in an AVL tree, so
inserting and removing blocks costs O(log(N)). To implement trace-generation
for the hit rate matching model, we would change line 7 in algorithm 1 to
“if(Rand(0, 1) < h)then”.

5 DISK TRACE EXPERIMENTS

The ultimate goal, of course, is to model the process that generates disk traces
for the performance evaluation of storage systems. We use HP Cello traces to
learn our model parameters, and use these for benchmarks. In the traces we
aggregate disk blocks using an aggregation factor of 32 such that

s′ ← b s

32
c

7Readers may worry that line 8 will try to draw from an empty AVL tree. However, line 8
is only executed if the condition on line 7 is true, and if recent is empty it will have 0 total
weight and thus assure that the condition on line 7 is false.

8Specifically, if we’re using the size-limited model, only the k recently-accessed blocks can
be marked as recent at any given time, so an access to a non-recent block will kick out at
most one block from recent. Using the time-limited model, the update of the time may cause
some recent blocks to not have been accessed for τ seconds and they will be removed from
recent.

8

 1 2 4 8 16 32 64 128
0

100

200

300

400

500

M
LE

 B
et

a

Size

Cello Disk 5
Cello disk 2
Cello all reads

 1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

H
it

R
at

e

Size

Cello Disk 5
Cello disk 2
Cello all reads

Figure 1: The left plot shows MLE β values for three disk traces. Values of β
are shown for different memory sizes k under the size-limited model. The right
plot shows “hit rates” hobs for three traces under the hit-rate-matching model.

 1 2 4 8 16 32 64 128 IID
1.34

1.35

1.36

1.37

1.38

1.39

1.4
x 10

5

A
IC

Size

Size−limited model
Hit−rate−matching model

 1 2 4 8 16 32 64 128 IID

1.5

1.6

1.7

1.8

1.9

2

2.1

x 10
6

A
IC

Size

Size−limited model
Hit−rate−matching model

 1 2 4 8 16 32 64 128 IID

3

3.2

3.4

3.6

x 10
6

A
IC

Size

Size−limited model
Hit−rate−matching model

Figure 2: Shows AIC values for various memory sizes k under the size-limited
and hit rate matching models. The left-most plot is the cello disk 5 trace, the
middle is the cello disk 2 trace, and the right most plot is the aggregate reads
trace. AIC values are computed using the MLE beta estimate. The right-most
AIC value is computed under the I.I.D. assumption where β = 1. Lower AIC
values indicate a model that better explains the data. In all cases, the bias
models explain the data better than the marginal distribution, and the best
model over the three traces uses a relatively small memory size . . . between 2
and 8.

9

and use s′, rather than s, in all our experiments. This keeps the representation
of the spatial marginal distribution smaller and models the fact that disk reads
will read in an entire cache line, not just a single block. We model temporal
burstiness with first-, second-, and third-order Markov models. To evaluate
our model we use two methods. First, to evaluate how well the β bias coeffi-
cients explain the disk block access ordering in the trace, we use the the Akaike
Information Criterion

AIC = 2k − 2LL

where LL is the log-likelihood of the disk block access ordering of the trace and
k is the number of parameters we estimated (two if we use a single β and k
or τ).9 The AIC statistic penalizes models with a large number of parameters,
and a lower value of the AIC statistic indicates a model that better explains
the disk block access ordering in the trace. We also created a very simple
disk simulator to test the effectiveness of our Markov model at capturing the
temporal burstiness of the trace, and we use measures of request wait time and
queue length in real versus synthetic trace to do the comparison.

Our first goal is to look at the extent of spatio-temporal locality in the
traces. We can see in figure 1 that all traces have very strong bias towards
recently-accessed blocks. Indeed we see from the MLE β estimates that, for the
trace taken on disk two and the aggregate trace of disk reads, the next access
under the conditional distribution can be over 100 times more likely than I.I.D.
to be to the most-recently-accessed block. Clearly the traces studied are not
I.I.D. Unsurprisingly, the MLE β values decrease as the memory size increases.
This makes sense because, under I.I.D. the chance of drawing the single most
recently-accessed block is tiny since the traces typically access thousands of
different blocks, so even a small hit rate on the most-recently-accessed block
corresponds to a very high β. However, under I.I.D. the chance to draw one of
the most recent 1024 blocks, for example, is already reasonably high, so even
with a very high bias towards the most recently accessed 1024 blocks, the β
value cannot be very high because probabilities can’t be more than 1. The hit
rates in figure 1 are surprisingly high for small memory sizes: the trace on disk
2 re-accessed the most-recently-accessed block almost 30% of the time, leading
to this trace’s high β.

Figure 2 shows the AIC values under the size-limited and the hit-rate-
matching models. Recalling that a lower AIC value implies a model that explains
the data better, we see that neither model clearly prevails, since the trace on disk
5 has lower AIC values for the hit-rate-matching model and the trace on disk
2 has lower AIC values for the size-limited model. But it is clear that shorter
memory sizes/durations do a better job of explaining the trace and in all cases
the bias models are far better than the I.I.D. model. Thus the traces are better
modeled as having a stronger bias towards a few most-recently-accessed blocks

9Our experiments are looking at different ways to model the spatio-temporal locality, not
the pure marginal pmarg(s), so in computing the AIC we won’t penalize for the N − 1 para-
meters we learned to describe the marginal pmarg(s). Even if we did, this term would appear
in all models we consider so it wouldn’t affect the choice of which is best.

10

0 1 2 3
0

5

10

15x 10
4

Log(Gap+1)

N
um

be
r

of
 r

eq
ue

st
s

Real Trace
Learned Synthetic trace

1 2 3 4 5 6
0

0.5

1

1.5

N
or

m
al

iz
ed

 V
al

ue
Performance Measure

Real
O1 Markov
O2 Markov
O3 Markov

1 2 3 4 5 6
0

0.5

1

1.5

N
or

m
al

iz
ed

 V
al

ue

Performance Measure

Real
O1 Markov
O2 Markov
O3 Markov

Figure 3: The left figure shows a log histogram of time gaps between requests in
a real cello trace and a synthetic trace. The right two figures show disk simulator
performance measures for a real trace and synthetic traces. The measures are
(1) Maximum Queue Length (2) Average Queue Length (3) Std. Dev. of Queue
Lengths (4) Maximum request wait time (5) Average Request Wait Time (6)
Std. Dev. of request wait times. These measures capture the effectiveness of
the Markov models at capturing pure temporal burstiness.

rather than as having a weaker bias towards a larger number of recently-accessed
blocks.

Next we examine how well the pure Markov models capture the temporal
burstiness of real disk traces. The left graph in figure 3 shows that the Markov
models we use do a very good job of reproducing in a synthetic trace the distrib-
ution of inter-arrival gaps from a real trace. But the disk simulator results shown
in the center and right of figure 3 show that some aspects of temporal burstiness
aren’t captured by the Markov models, since even the synthetic traces created
by third-order Markov models have different simulated disk performance from
the real traces.10

Finally we looked at how the synthetic traces generated using the various bias
models combined with the Markov temporal model compare to the real trace.
The recent event bias models only affect which disk block is drawn (not the
time stamp). So the primary difference in disk performance between using the
bias models with the Markov temporal model versus using the Markov temporal
model and drawing blocks I.I.D. is that the bias model should generate more
realistic disk cache hit ratios. So in figure 4 we compare the disk cache hit rates
on a simple 40-block LRU cache across various bias models for several traces.
In each trace shown in the figure, the left bar corresponds to the real trace,
the next bar is an I.I.D. synthetic trace, and the other 6 bars are synthetic
traces using various bias models. Clearly the I.I.D model does a terrible job
of matching the real disk cache hit rate, while the size-limited and hit-rate-
matching models generally do a very good job of matching it. The time-limited
model’s performance is more variable, but clearly much better that I.I.D. It

10These experiments purely looked at the ability of the Markov models to capture temporal
burstiness, and did not utilize the bias aspects of the model.

11

Disk 5 Disk 2 Reads Disk 7
0

0.2

0.4

0.6

0.8

1

H
it

R
at

e
Trace

Figure 4: Cache hit rates on a cache of size 40 for various traces. Within a
group, the leftmost bar (1) is the hit rate on the real trace. The next bar (2)
is on a synthetic trace using the same marginal distribution but drawing I.I.D.
The next six bars are hit rates for the following models: (3,4) Size-limited with
with k = 2 and k = 64 (5-6) Hit rate matching with k = 2 and k = 64 (7-9)
time-limited with τ = 8, 64, 1024.

seems that the time-limited model of medium duration (τ = 64 milliseconds)
performs closest to the real traces. While at first it may seem odd that the hit
rate matching model doesn’t reproduce the exact same disk hit rate as the real
trace, remember that the hit rate matching model matches the real traces hit
rate for some memory size k, which is not necessarily equal to the size of the
disk’s cache. In the experiments of figure 4 we tried hit rate matching models
with k = 2 and k = 64 and came reasonably close to the real hit rate on a disk
cache with memory size 40.

6 CONCLUSION

We presented a method with a family of variants that models the process that
generates disk traces, specifically the extent of bias towards recently-accessed
blocks in the condition distribution. We showed how β factors model the extent
of this bias and how to efficiently estimate the β factor from a trace and generate
a synthetic trace with a given β factor. Lastly we looked at real disk traces and
found that the bias models do a good job of explaining the access ordering in
the trace and that the β factors in real traces can be quite large, indicating
strong bias towards recently accessed blocks.

The β factors can tell storage system engineers some important information
about the load placed on disks, and the trace generating procedure can be used
to stress-test storage systems over a wide array of scenarios with high and low
β factors.

Some further research would be to look more closely at using optimization
techniques to simultaneously calculate multiple MLE β factors on a given trace,
rather than being restricted to one. Also, it would be interesting to more tightly
couple the extent of recent event bias with the level temporal burstiness.

12

7 ACKNOWLEDGEMENTS

The authors wish to thank Christos Faloutsos for many helpful discussions and
data, Michael Mesnier for discussions and insights, and Geoff Gordon for sup-
port, ideas, and paper comments.

References

[1] G. R. Ganger. Generating representative synthetic workloads: An unsolved prob-
lem. In Proceedings of the Computer Management Group (CMG) Conference,
pages 1263–1269, 1995.

[2] Mark W. Garrett and Walter Willinger. Analysis, modeling and generation of
self-similar VBR video traffic. In SIGCOMM, pages 269–280, 1994.

[3] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On
the self-similar nature of Ethernet traffic. In Deepinder P. Sidhu, editor, ACM
SIGCOMM, pages 183–193, San Francisco, California, 1993.

[4] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk. A multifractal
wavelet model with application to network traffic. IEEE Transactions on Infor-
mation Theory, 45(4):992–1018, 1999.

[5] R. Riedi and J. Vehel. Multifractal Properties of TCP Traffic: a Numerical Study.
In IEEE Transactions on Networking, October 1997.

[6] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the spatiotemporal behavior
of real traffic data, 2002.

[7] J. Kleinberg. Bursty and hierarchical structure in streams, 2002.

[8] Michael Mesnier Intel. Modeling the relative fitness of storage devices.

[9] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. Ganger. Stor-
age device performance prediction with cart models, 2004.

[10] Rabiner Lawrence R. A tutorial on hidden markov mmodels and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

13

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

