
°,

, CMU-ITC-87-091

International Character Code Standard for the BE2

June 18, 1987

Tomas Centerlind

Information Technology Center (ITC)

Camegie Mellon University

1. Major problems with foreign languages

All European languages have a set of unique characters, even Great Britain with their Pound sign.
Most of these characters are static and do not change if they are in the end or in the middle of the

word. The Greek sigma sign however is an example of a character that changes look depending

on the position. If we move on to the non-Roman alphabets like Arabic, they have a more

complex structure. A basic rule is that certain of the characters are written together if they follow

each other but not otherwise. This complicates representation and requires look ahead. In

addition to this many of the languages have leftwards or downwards writing. All together these

properties makes it very difficult to integrate them with Roman languages.

Lots of guidelines have to be established to solve these problems, and before any coding can be

done a set of standards must be selected or defined. In this paper I intend to gather all that I can

think of that must be considered before selecting standards. Only the basic level of the

implementation will be designed, so therefore routines that for example display complex languages

like Arabic must be written by the user. A basic method that dislpays Roman script correctly will

be supported.

1. Standards

1.1 Existing standards

Following is a list of currently existing and used standards.

1.1.1 ASCII, ISO646

The ASCII standard, that is in use ahnost anywhere, will probably have to rcmain as a basic part
of the system, and without any doubt it must be possible to read and write ASCII coded
documents in the foreseeable future.

-2-

174 '

I.I.2 Extended ASCII

A standard that has been adopted by some micro computer companies is the Extended-ASCII,

which among others Apple use in the Macintosh. In contrast to ASCII they use the eighth

"parity" bit and therefore gain another 128 characters. This will handle all European languages

but not non-Roman alphabets. All additional characters are placed in the upper 128 characters so
the lower segment is equivalent with standard ASCII. None of the international standardization

institutes have defined such a standard, so the layout of the character codes is often company
specific.

1.1.3 ISO 2022

ISO 2022 is a standard that also can encode all European languages. It can either be a 7- or a 8-

bit code. It is a extension of ASCII, and provides the possibility to exchange information between
7-bit and 8-bit environments.

If 7-bit code is used, the SI and SO control characters are used to invoke an additional set of 94

graphics. The control characters DEL and SPACE are not affectcd by SI and SO. More than two

graphic sets may be reached by using an escape sequence to select another set of graphics is then

invoked with SO. This leads to a virtually unlimited number of graphic sets that may be used.

With an escape sequence you may also change the control character represcntation.

The 8-bit representation uses the high-order 128 combinations as well as the low-order. This gives
the following advantages:

1) a set of 32 additional control characters

2) a set of 94 additional graphic characters

3) no need to use SO and SI, both sets are available all the time

Escape sequences are used to change graphic sets in the same manner as for 7-bit codes. To be

able to know if 7- or 8-bit coded data is coming, there are special escape sequences that should

precede a character stream. This tell the software how to interpret the characters.

This seem to be quite easily installed into existing software, but it has some major effects, l:irst of

all it will be difficult to sort text that is stored with this standard, secondly it wilt be hard to

produce the output if you don't have stored somewhere the look of each character possible to

generate. The advantage is that if it is displayed on a computer that only can generate normal

ASCII, the output will still be readable. There also exist standardized routincs to convert between

7- and ,_-bit codes. ISO 2022 does not deal with what characters should be placed in the new
areas.

- 3 -

1.1.4 Xerox XC1-2-2-0

Xerox has made further extensions to ISO 2022 and is now using it throughout their line of work

stations. This standard is spanning the following other international standards:

- All ISO 646 IRV graphic characters

- All ISO 5426 graphic characters

- All ISO 5428 graphic characters

- All ISO 6937 graphic characters

- All ANSI 7-bit ASCII graphic characters

All CCITT 8-bit Teletex "GO" & "G2" graphic characters

All Xerox 860 graphic characters

All EBCDIC 8-bit graphic characters

All JIS C 6226 graphic characters (including 6,249 most-frequent Japanese kanjt 3
All characters required to write the following languages:

English, Russian, German, French, Spanish, Italian, Portuguese, Dutch,

Swedish, Norwegian, Danish, Japanese, Malay/Indonesian, Greek,

Ukrainan, Polish, and other languages.

All standard office typewriter keyboard characters for the European languages
above

The most commonly-used office, technic,d, and general symbols

Xerox uses 8-bit encoding for characters which eliminates the need to use a shift-code to reach the

high order 128 characters. Like IS() 2022 they store the diacritics before the character they should

affect. The problem of what an accented character should look like has been solved through a

Rendering Set where each legal combination of diacritics and letters is assigned a unique number.

The Rendering Set uses most of the 8-bit codes. This implies that two additional character sets are
needed, one for the 128 unshifted characters and one for the shifted.

To allocate space for the font as well they have chosen to use 16-bit cncoding for each character

when processing and a 8-bit coding when on mass storage. This will give a coding that is easy to
manipulate and display even though it is slightly more memory consuming whcn not on mass

storage. The high-order byte is the character-set code and the low-order byte is the ISO character

code. For example character-set 0 8 is the Latin alphabet, and 45 s is .lapancse hiragana. The

rendering character codes are stored in character sets 360 s and 361 s .

This standard does not define thc lcxigraphical order of the characters within a spccific alphabct.
This has to be done within the user application.

I.I.5 Xerox 2

This is not a standard but merely a proposal of a way to store multilingual text. It assumes that it

is possible to entirely change lhe internal representation of characters. Basically you use a g-bit
code where I 111 11l I is reserved to indicale that the next byte should be treated as a character set

code. This mean that when you encounter this bvle a new character set will be loaded and all

-4-

output will be interpreted for this character set in a appropriate way. If two 1111 I111 bytes
follow each other this indicate that 16-bit words will be used instead. This gives enough space for

languages like Chinese and Japanese.

This scheme makes it possible to have up to 255 different scripts at the same time in a text. Since

there is one character set for each alphabet, the lexigraphical order of the letters is easily

maintained. It will also be quite easy to generate the output, ttowever a large disadvantage is that

a specific font table is needed for each font and script.

1.1.6 Apple Script Manager

Apple's Script manager extends the standard character set to provide up to 64 different scripts at

the same time (all Roman scripts are already gathered in Apple Extended ASCH so they represent

one script). Each language is given a number through which it is called. No further details about

the internal representation are given in the document I have received. Ilowever it seems that they

use 16-bit words to store each character, and different scripts have received different areas of the

large space of 65,536 symbols. They support leftwards writing and combinations of left and right

writing languages on the same line are allowed.

1.2 Requirements

Following is a wish list of features that should be available in BE2.

1.2. I Character Set requirements

There are basically six aspects that must be fulfilled to have a powerful character code standard:

- We need an efficient and general way to store the characters, l lere three characteristics have to

be balanced: space efficient storing, ease of proccssing the charactcrs without a lot of ovcrhcad

due to decoding, and finally should the encoding cover as many characters as possible.

- Routines that can display the cntire character set in an appropriate way should be possible to
write.

- The lcxigraphical order for cach alphabct must be easily accessible.

- "Fhc font of cach characlcr must be prcslorcd somewhere Io allow fast displaying.

- Compability with other Character Standards must exist for interactive reasons.

- An easy way to inscrt the characters through lhe keyboard.

1.2.2 Other requirements for a full fledged text insertion environment

It must be possible to detect every keypress to gain full control over the keyboard, including all

function keys, the shift keys, the alternate keys etc. "Itlis should be possible at the programmer's
level.

2. A 7-bit coded extended character set in BE2 using ISO 2022

This proposal is based on the fact that the following conditions must be met:

Only 7-bit codes can be used, mainly because of communication problems and the mail
interface.

- Within the BE2 text data object each character displayed on the screen may only take up one

byte in memory. Other information must be stored elsewhere. Otherwise large structural changes

have to be made to the text drawing routines.

2.1 ISO 2022 and Xerox Character Code Standard

The mapping of graphics from Xerox Character Code Standard seems to be a good standard to
use. It consists of 256 tables of 256 characters of which about half is uscd. This will at least cover

the following languages:

- All Latin languages.

- Arabic, I lebrean, Greek, Korean, Russian.

- Japanese: JIS, Kanji, Gaiji.
- Chinese.

- A set of general and technical symbols.

In addition to this there is a lot of space left for new languages and additional graphics. So far

Xerox is the only Standard that 1 have seen which at least uses parts of ISO 2022 to encode this

many different languages. The ASCII/ISO/CCIT'T Roman alphabet with extension fi_r punctuation

only defines one of the 126 possible character sets.

"['he following scheme should according 1o ISf) 21)22 bc used to change charactcr set. Since 7-bit

coding will bc used, only half of the 256 graphics each character set consists of may be accessed at
the same time. Therefore the SO and SI control characters will be used to switch between the G0

and G I character sets (where GO is the lower 128 characters and C-I is the 12g higher) in the

following way:

- 6 -

e_

SO Change to G1 character set

SI Change to GO character set

To change to another character set, escape sequences have to be used. The ISO 2022 ones only

address 126 (2*63) different sets which are invoked by the following sequences:

ESC 2/8 4/I to ESC 2/8 7/14 Change character set GO

ESC 2/12 4/i to ESC 2/12 7/14 Change character set GO

ESC 2/9 4/1 to ESC 2/9 7/14 Change character set G1

ESC 2]13 4/1 to ESC 2/13 7]14 Change character set Gl

This will not do if you want to encode 256 different character sets as Xerox has done. Instead I

propose that the following sequence be used:

ESC2/63/14/1 to ESC2/63/154/15

This will give 16'16 different character sets. I assume that both the GO and GI character sets are

loaded at the same time. The ESC 2,.'6code is not used by IS() 2022. The two last characters will

point out one of the 256 character sets.

So for example to print the clubs sign which is in character sct 357 8 , first an escape followed by

character 2/8 should appear. This will imply that the next two characters.indicate what character
set should be selected. These characters should 1,e 3/14 and 3/15. "Fhcn a SO must follow so the

GI character set is selected. Finallv in the line comes 116 _ , which is the code of the chubs sign

within character set 357 8 .

For most of the character sets only a few of different faces are needed such as different sizes and

bold. Stylistic aspects such as italics and various looks do not apply lo character sets like the

general and lechnical .tvmbols. What the situation is for Chinese and .lapancsc is not clear, but 1

guess you can be pretty glad if you manage to design a fairlv small font that k)oks good.

2.2 Text input

There arc basically two diffcrcnt ways to inscrt the characters, l iithcr you use some sort of escape

or control scqucnces, or you totally rcmap the keyboard. For smallcr amounts of input a small

-7-

keyboard chart on the screen may be used.

What is to be preferred is basically a question of the kind of usage. If Andrew is going to be used

successful in a non-English country a possibility to remap the keyboard is absolutely a

requirement. Usually a different set of key tops are present on the keyboard, and these must be

scanned correctly. In the case of adapting ASCII to foreign characters simply a few of them like [,

{ and [are replaced with the national ones. This makes it easy to do this kind of modification.

With ISO 2022 the entire character set has to be changed in order to reach non-ASCII characters.

This must be done at a higher level in the software. It is therefore desirable to make it possible to

change the entire mapping of the keyboard easily.
\

This could lead to some nice side effects. A library of different keyboard mappings could be built,

where the standardized mapping for each country can be found and displayed on the screen. A

mapping should be easy to edit, and it should be possible to store personal ones. Ways to change

the keyboard via control sequences also have to considered. Each window on the screen should be

allowed to have its own mapping of the keyboard.

2.3 Design

Following is a proposal of a design that would make it possible to use a wide variety of languages

without losing the support for all existing ASCII dependent software:

Use ISO 2022 7-bit coding.

Exploit Xerox Character Set encoding standard.

Make it possible to rcconfigure the keyboard so that different languages can be typed

easily.

BE2 routines:

Display routines. (modifiy)

Extended font support. (modi{iy)

Facility in the software to turn input of the extended character set on and off. (re'w)

Facility to restrict the ouiput to ASCII characters. (tww)

Routine to remove all non ASCII characters form a string. (new)

Routines to convert a AS('II string written in a certain language into a ISC) 2022 string.

(new)

Routines to convert between 7- and 8-bit coded ISO 2022 strings. (new)

Sorting routines for each language. (new)

Routines to load and alter keyboard mappings. (new)

Posibility to display the current keyboard mapping, and do input from it by pointing with

the mouse. (new)

2.3.1 Modifications to text routines

There will be two tables maintained within BE2. One will hold all character set tables and is

going to be used to make up the keyboard mapping tables. The other one will specify what each
character should be converted to in order to transfer it into ISO 2022. There will be three new

features added into the text machinery:

I) A keyboard remapping utility that will take the actual characters generated from the keyboard

and turn them into any other character. Eg. if the user presses the character ";" on a keyboard

with Swedish mapping, this character will be transfcred to an "a" with a circle above, since this is

the standardized location for that character in Sweden. If however other hardware is used, the

character on the right side of the 'T' key may be something other than semicolon. In this case it is

easy to modify the tables to fit tt_is new hardware. This gives total freedom to place any character

anywhere on the keyboard. Even the function keys may be used for infrequent characters.

I suggest that one keyboard mapping be present for each language, and starting from this each

user may design any personal mapping he desires. If no mapping is spccified the default ASCII

mapping is used. The mapping should be possible to change from the pop-up menu, where either

the system-supported mapping or the user-defined one can be selected. It should also be possible

to bring up the mapping on the screen, and enter characters by pointing on the keyboard with the
mouse.

These tables are stored in separate files with the extension ".keys" and are designed in a special

editor. Since most mappings will bc dedicated for a special language the name of the language will

also be stored in the file. The format of lhis file can be found in Appendix B, and the character

set tables in Appendix C.

2) Secondly, the routine that inserts the character into the text data object has to be modified. It

must lake care of the following two new issues:

When you swilch to a non AS('II kt,yboard all lcxt lhat is to be written will be surrounded with a

style holding the name of that language. This will in no way affect the drawing of lhc character, it

is rather a way to provide this information to software that would nccd it.

-9-

The converted character will have three properties: first, the value of the character within the

character set table, secondly the number of the character set table where it is to be found, and

finally whether the lower or the upper 128 characters are to be addressed. If the character is not a

member of the ASCII character table, a style is added to specify this information and the

corresponding ASCII character is inserted into the text data.

3) Third, the routine that displays this information must load the appropriate font table before

displaying a non ASCII character. This information is easily retrieved from tile style information.

To describe the usage of these tables, one character will be followed from the keyboard to the

data stream. Below is a sketch to display the flow of the character from the keyboard into the text
data structure:

Fig I." ()haracter flow from kcvboard to text ohjccl

- I0-

2.3.2 Modifications to the font manager

I don't see any reasons to modify the font manager. New font tables have to be added since tile

number of characters will increase significantly. To support all l.,atin languages it will be enough

to add another four font tables with 128 characters in each, for every font, size and shape. These

tables are 000 8 u (upper), 043 8 u, 361 8 1 (lower) and 361 8 u. Then languages like Greek 046

and Cyrillic 047 8 have their own character set tables, and they probably just have one font with

different sizes and shapes.

To know what font to get, an extended font naming convention must be used. An example would
be:

< font name > < table # > < l/u > < font size > < shape > .fwm

2.4 Interface between style format and ISO 2022

Since the foreign characters are stored as styles within BE2 text objects, a conversion routine must

be called before the text is sent to a computer not running Andrew. To do this conversion tables

are used. This implies that it will be fairly easy to convert into any existing standard. If there is a

country style wrapped around a chunk of text, more intelligent rendering could take place

according to the character coding standard in that country.

2.5 Disadvantages with this scheme

Output routines other then the BE2 ones, like the ones in X-window, that do not now about

styles will not be able to use the extended character set. To people in other countries it seems

foolish to rely on 7-bit codes. All new programming environments are at least using the eighth bit

to extend the character set. It would be strange to build a modern advanced object oriented

environment, and only use 7-bit ASCII as the basic character code level. Also it must be preferred

to support the character codes on a lower level that is suggested here. When searching in this kind

of text there will be quite a lot of overhead to check what style each character has since the

character in the text object doesn't tell what style it has, so this has to be looked up every, time

the style change. No general Icxigraphical order is maintained wilhin the standard.

2.6 Advantages with this scheme

It will fit into the existing system wifll a minimum of changes. It will tell what language a text is

written in, which is neccesery to do intelligent spelling checking. The text may easily be converted

to any standard. It can be expanded into a large number of characters which will be needed to

type Chinese and .lapanese.

11-

2.7 Software that will be affected

Use of ISO 2022 will require all modifying software that is sensitive to control characters or

foreign escape sequences. Further software that ignores them may also cause problems. This is

because the syntactical order may be lost. An example of this may be a C-program where the user
in a comment types left quote, vertical arrow, in sequence. If SO and SI are not interpreted these

characters will be rendered as */, end of comment, against the the users intent. As a consequence

the rest of the characters will be treated as a part of the program which probably wiU lead to a

compilation error.

Mail programs and other software that communicates with an ASCII environment must prevent

the user from inserting undesirable characters until it is known if the remote host can understand

them. Further all software that generates output to the printers must be enhanced so a proper

output is generated.

The compiler problem may easily be fixed by creating an alias that preprocesses the input and

removes all non-ASCII characters in a comment and causes a compilation error if there are non-

ASCII characters elsewhere, and then pipes the output to the compiler. Of course tiffs will mean

that there will be one preprocessor for each type of programming language.

If sorting has to be performed on the exteded character set new routines must be added.

- For example, an RT keyboard in not(USA) countrics will generate 8-bit codes, llow will these
be handled with 7-bit character codes?

3. A 8-bit extended character set in BE2

Most computer manufacturers tend to use 8-bit extended ASCII in their new generation of

computers, with or without penalty for more elaborate character coding schemes. It looks like

there is much to be gained by using 8-bit codes.

A reasonable way to go is to use 8-bit coding within 13I--2 and 7-bit format outside this

environment. This would speed up lhc proccssing and slill support compability towards thc

existing environmcnt.

On disc the in-line style representation will be used, internalv the environment st),&s will be
utilizcd. The transformation will be done thru cross rcfcrencc tablcs. The incrcascd number of

characters will bc acccsscd via mulliplc keyboard mappings kcpt in hardwarc dcpcndcnt tablcs. A

32-bit /ongC/lar variable have to be uscd in orctcr to store thc ncv character format outside a

TcxtVicw.

12-

3.1 Character set

The A SCII/ISO/CCITT Roman Alphabet and Punctuation will character mapping scheme will be

used. This almost the only standard that exists in this field and is widely accepted among

computer manufacturers. Minor differences between the mapping exist, but all the important

characters is usually the same. Then there is space left for another 255 tables of up to 182
character each.

3.2 Text input

The characters will be inserted by using the keyboard or by using the mouse. A sketch of the

current keyboard will be possible to bring up on tile screen. Thru a mouse orientated editor the

mapping of the keys can be redesigned according to personal taste.

3.2.1 Keyboard input

The overall basic keyboard will have the Standard ASCII mapping. This keyboard will have no

penalty for foreign characters and the user will not notice any difference compared to the current

keyboard. To be able to use foreign characters the user must change to a keyboard that include
tile ones needed.

The system supported keymappings will be based on each countries standard. Separate kcyboards

for symbols and other utility characters will also be included. Pcrsonal mappings will be easily

designed and stored in the users home directory. It must be noticed that a mapping on a IBM

keyboard may not be valid for a SUN, so the user have to design a separate mapping for every
different terminal type he uses.

The function keys can be used since each mapping is for a scparatc machine, evcnthough they not
will be utilized on the system supported ones.

The default keyboard can be changed by a switch in thc uscrs preferences file..

3.2.2 Mouse input

If the user desires, the pointing device can be used to insert characters lw requesting a map of the

keyboard to be drawn on the screen. This will wobably be prefered if just a few characters is

going to be typed from a seldom used keyboard. This map will be attached to the bottom of the
current window.

-13-

3.3 Internal representation

Within the memory, all characters will be stored as 8-bit characters (se Appendix D for a table).

For non ASCII characters, four bytes are required to represent each. Out from the Key-Map

package will a four byte longword be received. This one will contain sufficient information to

identify any l,atin character (for techincal details, see Appendix F). For these a control code will

be insertcd into the text stream instead. To this control code a style will point in which the multi

byte character is stored. There will with other words be one style for each multi byte character. If

the user desires so, another style telling which language a pice of text is written in will surround

this area. This language infomaation will be transparant and not affect the text. I lowever if it is

important to know what language a piece of text is written in, it can easily be retrieved.

Fig: The internal representation

3.3 Mass media representation

On mass storage another way to represent the data will be adopted, lisscntially tile extended

characters is stored as a style is stored at the prcccnt. This is, braces prcccedcd bv an identifying

string are used to quote all cxtcnded characters. The identifying string is thc actual name of the

charactcr. Some examples follow below (a full list is found in Appendix I:,):

String Comment

_..C/_pyright{ } A copyright sign

'_,.l)iacresis{al The Swcdish a whilh two dols above.

\.Ugtrokcl I{ } [rppcrcasc Maltesian character II with a
stroke.

-14-

\.Acute{e} An e whith a acute accent above.
\.Grave(a} An a whith a grave accent above.

\.Cedilla(C} A cedilla under a C.

A piece of text might look like this:

.le suis \.Acute(e}tudiante \.Grave(a) l'universit\.Acute(e}.

\.Cedilla{C)a me far plaisir.

3.4 Text insertion routines

All keyboard input will be passed thru a filter. This filter consist of a table in which every key,

and what output this key should produces, is listed. This makes it possible to remap the keyboard

in any way. An editor will be provided to do this remapping so it will be possible for each user to

customize his own keyboard layout and store it locally. The standardized keyboard layout for

each language possible to write will be supported and a sketch of each will be possible to bring up

on the screen.The user can select the different keyboard in two ways, either all text written with

the keyboard will be surrounded by a language style. This is good if you want different programs

to know what language the context has. The other vay is to insert the foreign characters you want

but not care add any language to it. This is important if you .just want to add a few symbols from

another script without changing the language in the middle of a text.

3.4 Dispaly routines

The display

Appendix E

Table of character names

The character codes within Character Set 0 8 :

40 8 Space

41 8 ExclamationPoint

42 8 Neutral DoubleQuote

43 8 NumberSign

44 8 CurrencySymbol

45 8 Percent

46 8 Ampersand

47 a Apostrophe

50 8 OpeningParenthesis

51 8 Closing l)arenthesis

52 8 Asterisk

53 8 Plus

54 s Comma

55 8 NeutralDash

56 8 Period

57 8 Slash

60 a 0

6Is 1

62 s 2

63 a 3

64 8 4

65 8 5

66 8 6

67 a 7

70 8 8

71a 9

72 8 Colon

73 8 SemiColon

74 8 I,essThan

75 a Equals

76 8 Greater'l'han

77 8 QuestionMark

100 _ CommercialAt

101 8 A

102, B

103 8 C

104 _ !)

105_ I;

106 a I;

107 a (;

1I0 _ II

J - 2 -

llls I

1128 J

l13r K

1148 L

1158 M

1168 N

1178 O

120 8 P

121 _ Q

122_ R

123 8 S

124 _ T

125 _ U

126 8 V

127 8 W

130 8 X

131 8 Y

132 8 Z

133 8 OpeningBracket
134 8 BackSlash

135 8 ClosingBracket

136 8 CircumflexSpacing
137 8 l.owBar

140, Grave

141 8 a

142 8 b

143 8 c

144 8 d

t458 e

146 8 f

147 8 g

150 8 h

151_ i

1528 j
153 8 k

1548 1

155 8 in

156_ n

157 s o

160 8 p

161 8 q

162 8 r

163 8 s

164 8 t

165 8 u

166 8 v

167 s w

-3-

170 8 x

171 8 y

1728 z

173 8 OpeningBrace

174 8 Vertical Bar

175 8 ClosingBrace

176 8 TildeSpacing

241 8 lnvertcdExclamationPoint

242 _ Cent

243 8 Pound

244 _ Dollar

245 8 Yen

247 8 Section

251 8 LeftSingleQuote

252 _ LetfDoublcQuote

253 8 Left DoubleGuillemet

254 _ LeftArrow

255 8 UpArrow

256 8 RightArrow

257 _ DownArrow

260 8 Degree

261 _ Plus/Minus

262 _ SuperTwo

263 s SuperThrce

264 s Multiply

265 s Micro

266 _ Paragraph

267 _ Cenleredl)ot

270 8 Divide

271 ,_ RightSinglcQuote

272 8 RightDoubleQuote

273 8 Right l)oubleGuillemct

274 s OncQuartcr

275 s Oncl lalf

276 8 ThreeQuartcrs

277, lnvcrtcdQucstion Mark

l,f)I _ (]rave

302 _ Acute

303 s Circumflex

304 a Tilde

3(/5 ,_ Macron

306 8 Brcvc

307 8 Overl)ot

3 lf_ s Diaeresis

312 s ()vcrRing

313 8 C,cdilla

314 8 Underline

315 8 DoubleAcute

316 _ Ogonek
317 8 t Iachek

320 _ I lorizontalBar

321 8 SuperOne

322 8 Registered

323 s Copyright
324 8 Trademark

325 8 MusicNote

334 8 OneEighth

335 8 ThreeEighths

336 8 FiveEighths

337 8 SevenEighths
340 _ Ohm

341 8 UDigraphAE
342 8 UStrokeD

343 _ OrdinalA

344 8 UStrokel I

345 8 LDotlessJ

346 8 UDigraphLI
347 8 UMiddlel)otl_

350 8 UStrokel,

351 8 USlashO

352 8 IJDigraph()E
353 8 Ordinal()

354 _ UThom

355 _ UStrokeT

356 8 UEngma

357 8 LApostropheN
360 8 LGreenlandicK

361 8 LDigraphAE
362 8 l,Strokel)

363 _ LEth

364 _ I.Strokel I

365 a LDotlessl

366 g Ll)igraph 1.1
367, l,l)otl,

370 _ l,Strokel,

371 s l,SlashO

372 8 l,DigraphOE
373 8 l)oublcS

374 _ l,Thom

375 8 I ,StrokcT

376 a I ,l!ngma

¢/

Appendix F

Definitions for the 8-bit solution

Character Long_vord, 4-byte: #define longchar longint

< Character "Fable 1> < Character Table 0 > < C.haracter Code 1> < Character Code 0 >

Character Table 1 (byte 3), is the table where an eventual diacritic will be found.

Character Code 1 (byte i), is the character code of an eventual diacritic.

Character Table 0 (byte 2), is the table where the character will be found.

Character Code 0 (byte 0), is the character code.

This longword will hold any character. The character codes and the number of the table where

they belong may be found in Appendix C. This representation implies that if the value is below
12g, the character belong to the ASCII character set. If it is between 128 and 255 it is a extended

ASCII character. Between 256 and 65535 it is a character with a diacritic, and above 65535 tile

character belongs in another character lane.

Keyboard Table

The Keyboard Table is machine dependent and contains information about the keytop layout and

what output each key produces. This table is used to draw the keyboard sketch on the screen.

The table is stored as a formatted text file. Each key can have any rectangular shape with an

arbirtary text inside. The format is as follow:

< number of keys >, < font --, Comment

< x > , < y >, ": xl >, < yl >, "'- a/o :, < [.in >, < Uin >, -: I .text _, < Utext >, -: I ,x >, < I .y _, < IJx >, -: Uy >, ": l.size >, < IJsize "---,< config >,

< x > l Jpper left comer of key rectangle.

< y > Upper left corner of key rectangle.

< xl > l,en_h of key rectangle.

< yl > 1_ength of key rectangle.

< a/o > a if lin, Vim I,text and IJtcxt should be entered in alpha format, o if in

octal format. If octal they shoukl be null terminaled, and no comma between them, see example.

< l,in > I ,owercase input string or charl

< l Tin> [!ppcrcase input string or char.

< l,text > l,owercase text on keytop.

< lJtext > lJppcrcase text on keylop.
< I ,x > l,ocalion of lowercase tcxl.

< l,y > l,ocation of lowercase text.

< [Jx > l ,ocaliou of uppercase text.

< Ih' > l,ocation of uppercase text.
< l,size > Size of lowercase text.

< I _size > Size of uppercase texl.

°

u -2-

< config > Reconfigurable key (y/n).

Example:

101,times, IBM-RT keyboard mapping (87/06/23) V01

20,20,20,20,0,033 000 000 105 163 143 000 000,3,12,0,0,8,8,n, Esc

64,20,20,20,a,,, F 1,,3,12,0,0,8,8,y,

86,20,20,20,a,,,F2,,3,12,0,0,8,8,y,

108,20,20,20,a,,,F3,,3,12,0,0,8,8,y,

20,76,31,20,o,011 000 011000 124 141 142 000 000,3,12,0,0,8,8,n, Tab

502,120,20,42,o,015 000 000 105 156 164 000 000,2,23,0,0,8,8,n, Ent = Cr

436,142,42,20,a,,,0,,3,9,0,0,g,8,n, 0 on the numerical part

480,142,20,20,a 3,9,0,0,8,8,n, . on the numerical part

This is the configuration file for IBM-RT. l_eading spaces are not allowed between the

parameters. No blank lines should exist. After the last comma in a definition can a comment

appear.

Environment Style Transfer Table

Tiffs table contain enough information to be able to transfer the information between internal

format and external format. Externally each non ASCII character is stored by it's name. Internally
it is stored as 377 8 in the text object togcthcr with a Environment Style pointing to this

character. The Environment Style will hold information about thc character togcthcr with

pointers to rendering procedurcs.

There is actually two tables with the same contents but sorted on different arguments to speed up
the translation. The format of the tables arc as follow:

<name> <keycode> <laNe>

< name > Character name.

< key code > (2ode of character.

< table > Number of table characler belongs to.

Example, Character Set 000 8 :

Space 4_)8 000

-3-

ExclamationPoint 41 s 000

NeutralDoubleQuote 42 8 000 8

IJStrokeT 375 g 000 ,_

LEngma 376 8 000

This table is sorted on character codes for fast conversion to external format. The other one is

sorted on character names and is used when an external file is read. Theese tables are stored

within the procedures that uses them.

Keyboard Remapping Table

When a character is typed on the keyboard a code is generated and sent to the UNIX-kernel. The

kernel parses this code and sends it further to 13E2 as a ASC.II character. The first thing that BE2

does is to check this character towards the Keyboard Remapping Table table. Tim table contain

information about all modifications to the keyboard layout. This mean that you could place any

character on any key by defining the rclocation in this table. If the character is found there it will

be converted into another character accordingly to the table. For instance, if you want to place
the German l)oubteS on the BackSlash key this should be inserted to the table.

This table is stored as a binary file either in a system directory for system supported ones, or in an

user directory for an user defined one. The format is as follow:

< name >

< from char > < to char >

<name> The first string in the file is the name of the keyboard. This is

probably a language.

<from char> Character to convert from. This is actually a null terminated ASCII

string.

< to char > ('haracter to convert to. This is a lonxchar.

Example:

From Char To Char Commcnt

swedish',O

",0 000 s 000 8 310 _ 141 8 Swedish
Diaeresis a.

'",,0 00(I s 000 ,_ 31(I s 101 ,_ Swedish
Diaeresis A.

['x0 00(I _ ()0(1 8 310 s 157 8 Swedish
Diaeresis o.

_t

i! - 4 -

(\0 000 a 000 8 310 8 117 s Swedish
Diaeresis O.

Only the keys that are about to be remapped has to be listed, for all others the default wiU be

used. Default will be the US ASCII keyboard mapping.

.)

,' Appendix G

Required changes to BE2 for the 8-bit solution

Changes has to be done in many diffcrcnt places within BE2. Below is a compilation of the

required ones:

Global Defines

Defines that have to be supported to the user.

#define longchar longint

#define NUMOFFOREIGN(_IIARS 179

Local Defines to BE2

Internally BE2 have to maintain a number of variables that holds information about current

keyboard name etc.

char *currentKeyboardPath Path to currcnt keyboard remapping file.
0 if default.

char *currentKcyboardName Name of the current keyboard.

struct keyboardRemapStruct ("Fhis is the Keyboard Remapping Table
char *fromChar;

longchar toChar;

)kcyboard RcmapTable[I;

struct code'FoName This structure holds the names of

{ the characters and tim
code of

char *charName: them. It ix sorted on names.

char charCode;

char tableNumber:

} code'Fo Namel'ablel [:

struct nameToCode This structure holds the names of

{" lhe characters and the
code of

char *charName; them. It is sorted on codes.

char charCode;

char tableNumber;

} nameTo(7odeTablel] ;

?

__r " 2 -

t, a

IM

New routies

Within IM the keyboard remapping has to be done. The function RemapKey will use the current

table to remap the character sent to it. It returns a Iongchar holding the character (see Appendix

F for the format of the table). This function will be used internally only. If no table is loaded it

will use the default. This function will be supplied to the users.

longchar im RemapKey(c)
char *c;

To load an alternate Keyboard RemapphTg Table the function LoadAlternateKeyboard is provided.

This function takes a full path to a Keyboard Remapping Table or looks in the system directory

for the file holding the information. If found it will load it and set it as the current one. It will

return I if ok, 0 if there is a problem with the file. A null string will load the default one. The

default one will also be loaded if an error occur. This function will be supplied to the users.

In the preferences file the user may define the path to the directory where it first should look for

Keyboard Remapping Tables.

boolean im l.oadAIternateKeyhoard(path)

char *path;

The associated function StoreAlternateKeyboard will store it on a file. Returns 1 if ok, 0 if it

couldn't store. The flail path has to be supported. This function will be supplied to the users.

boolean iln StoreAIternateKeyhoard(path)

char *path;

To get information about the current keyboard the GetKeyboardlnfo procedure is supported. This

one will return information about lhc path to the keyboard and the name of it. This function will

be supplied to the users.

void im GetKeyhoardlnfi_(path, name)

char *path:
char *name:

To alter the keyboard mappitlg thrcc routines arc u_cd, (;ctKcrRemaM,in_, ,,ld<lKcrRemappin_

and I)cleteh'erRemapping. The (;clKel_Rema/_pin_. timction will return the rcmapping for the

passed strin_z. This funclion will be supplied to the users.

]ongchar im (;el Keyi:_emapping(c)

:_ -3-
I

char *c;

The AddKeyRemapping procedure will let the applications program to alter the remapping of a

key. If there already is a entry for this one, the old one will be replaced. "llae arguments are: char
from keyboard, char to remap into. This function will be supplied to the users.

void immAddKeyRemapping(c , newc)
char *c;

longchar newc

The DeleteKeyRemapping procedure will let the applications program to remove the current

remapping for that key and revert to default. If there isn't a remapping for this key, nothing will
happen. This function will be supplied to the users.

void im DeleteKeyRemappinl_(c)

char *c;

The sketch of the keyboard is brougiat up on the screen by the DisplayKeyboardl,ayout procedure.
This will be clone in a window hooked onto the bottom of the current one. From this window it

is possible to redesign the keyboard or load prestored keyboard mappings. This function will be

supplied to the users.

void im DisplayKey boardl,ayout()

TEXT

New routies

Two routines will handle conversion bclween character code and character name.

FindCharacterCode will convert form character coctc to character name. It will return a pcfintcr to

a record containing the name. If the character numbcr not is fcmnd a Nt 71,I. pointer is returncd.

Tiffs fimction will be supplied to the users.

struct codeTo.Nanle +tcxt Find(?lnar:wtcr(',,de(code)

Ion_char code;

The other one, l"ind('haracterName will take a poivltcr to a string and try to find a character with

that name. It will return a pointer to a record ccmtaiwing lhc character. If the character name not

is tk_und a NI Jl,l, poit_tcr is rchlmcd. This functic)n will be supplied t(_ the users.

- . .
?

-4-

71

struct nameToCode *text FindCInaracterName(c)
char *c;

Routines to change

The GetChar function have to change in order to pull out character information from the

Environment Style.

longchar text GetChar(txt, pos)

struct text *txt;

long pos;

The ReadSubString function have to change so it calls FindCharacterName and adds

Environment Styles for non ASCII characters. There will be no change in calling syntax.

The IVriteSubString procedure have to change so it calls I-:indCharactcrCode and quotes non

ASCII characters. There will be no change in calling syntax.

TEXT VIEW

Routines to change

The procedure FullUpdate must rccognize non ASCII charactrcrs. There will be no change in

calling syntax.

The procedure Update must recognize non ASCII charactrcrs. There will be no change in calling

syntax.

The procedure Keyln must recognize non ASCII charactrcrs. It should return a longchar.

longchar textview Kcyln(ip, ch)

struct view *ip;

int oh;

KE I" 3 IA I'

"t -5-
I 4

Routines to change

The BindToKey function should store the keys as Iongchars. "lqlc char *keys argument must be

changed to an array of Iongchars.

boolean keymap BindToKcy(self, functionName, module, keys)

stmct keymap *self;

char *functionName;

char *module;

longchar keys[];

The I,ookup function should lookup a Iongchar instead.

enum keymap l.ookup(self, key, object)

struct kcymap *self;

longchar key;

char **obicct:

KE Y S TA TE

Routines to change

The ApplyKeyValues function should store the keys as Iongchars. The char *keys argumcnt must

be changed to an array of longchars.

chum keystate ApplyKeyValues(self, key, ppe, pobiect)

struct keystate *self;

longchar key;

struct proctable_Entry **ppe;

struct basicobject **pobject;

FONT

Routines to change

d'

FLIP

a Foreign Language Interface Package for BE2

Current Components

87-07-28
Tomas Centerlind

Information Technology Center
Carnegie-Mellon Univeristy

Pittsburgh, PA 152 13

At the present Andrew and related software lack the possibility to easily handle foreign characters. A few new
routines within BE2 will add this capability. This paper will describe the current components of the Foreign
Language Interface Package, FLIP. The package consist of a set of additional files and modifications to BE2.
This set of new software will make up the basic layer to support foreign languages as well as additional
symbols used in various areas.

The fdes needed are found in seven directories under user "tc8y", namely:

d_ Where all the documentation and f'des containing modification code are located.

mods Files containing modifications to BE2 source code.

fonts Where complete font files for character set 000 and 361 are located. Fonts available are andy8,
andyl0 and andyl2 (andyl2 is not complete at this time).

keyboard Directory holding keyboard layout files and system supported keyboard remapping files.

ct/keyboard All files for the keyboard table editor.

ct/basics Here kbremap.c and kbremap.H are located.

ct/t A test application.

A full explanation of how to install this in your own BE2 tree is found in Appendix H of the major report. It
is currently installed properly in the -tcSy/ct BE2 subtree even though it certainly will not work in a few
weeks from the current date.

Below will be a list of fries in each directory and a short explanation of its contents:

doc/ p.d General paper.
aa.d Appendix A, references.
ab.d Appendix B, old stuff, not of interest.
ac.d Appendix C, First suggestion for solution.
add Appendix D, character sets this is only a page header.
ae.d Appendix E, table of character names.
af.d Appendix F, definitions and tables.
ag.d Appendix G, new classes.
ah.d Appendix H, installation of FLIP in BE2.
ai.d Appendix I, Source code listing.

roods/ basics.Makefile.mods

graphic.mods.c Modifications to basics/graphics.c
graphic.mods.H Modifications to basics/graphics.H
fontdesc.mods.c Modifications to basics/fontdesc.c
fontdesc.mods.H Modifications to basics/fontdesc.H
im.mods.c Modifications to basics/im.c
im.mods.H Modifications to basics/im.H
wmgraphic.mods.c Modifications to basics/wmgraphic.c
wmgraphic.mods.H Modifications to basics/wmgraphic.H
sizes.mods.h Modifications to basics/sizes.h

fonts/ andy8.fwm ASCII Andy8 font f'de.
andyaaal8.fwm ASCII Andy8 font f'de.
andyaaau8.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbl8.fwm Rendering characters for AndyS.
andydgbu8.fwm Rendering characters for Andy8.

andyl0.fwm ASCII Andyl0 font file.
andyaaall0.fwm ASCII Andyl0 font file.
andyaaaul0.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbll0.fwm Rendering characters for Andyl0.
andydgbul0.fwm Rendering characters for Andyl0.

andyl2.fwm ASCII Andyl2 font file.
andyaaall2.fwm ASCII Andyl2 font file.
andyaaaul2.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbll2.fwm Rendering characters for Andyl2.
andydgbu 12.fwm Rendering characters for Andy 12.

keyboard/ ibm032 Directory holding keyboard remapping files
ibm032.klayout File containing keyboard layout information for IBM-RT
sun2 Directory holding keyboard remapping files
sun2.klayout File containing keyboard layout information for SUN-2, currently

empty.
sun3 Directory holding keyboard remapping files
sun3.klayout File containing keyboard layout information for VAX.
vax Directory holding keyboard remapping files
vax.klayout File containing keyboard layout information for VAX, currently

empty.

ct/keyboard/ Makefile Plain Makefile
kbmgr.c Main file for the keyboard manager.
kbmgr.H Ditto.
kbpanel.c Panel view for kbmgr.c.
kbpanel.H Ditto.
kbtable.c Key code table for kbmgr.c.
kbtable.H Ditto.

ctfoasics/ kbremap.c File containing procedures used by ira.
kbremap.H Ditto.

ct/t/ Makefile Makefile for the test application
baseclass.c Test program.
baseclass.H Ditto.

t.c File containing main unit.

Appendix A

References

[1] International Organization for Standardization, 7-bit Coded Character Set for Information
Processing Exchange. ISO 646-1973.

[2] International Organization for Standardization, Code Extension Techniques for use with the ISO 7-
bit Coded Character Set. ISO 2022-1972

[3] Xerox System Integration Standard, Character Code Standard, XNSS 058405 May 1986.

[4] Apple Corporation, The Script Manager, Engeneering Draft 9/24/86.

[5] International Telecommunication Union, CCITr, Recommendation T.61, October 1984.

[6] International Organization for Standardization, Coded character sets for text communication - Part 1
and 2. ISO 6937/1, ISO 6937/2, 1983.

Appendix E

Table of character names

The character codes within Character Set 08:

408 Space
418 ExclamationPoint
428 NeutralDoubleQuote
438 NumberSign
448 CurrencySymbol
458 Percent

468 Ampersand
478 Apostrophe
508 OpeningParenthesis
518 ClosingParenthesis
528 Asterisk
538 Plus

548 Comma
558 NeutralDash
568 Period
578 Slash
608 0
618 1
628 2
638 3
648 4
658 5
668 6
678 7
708 8
718 9
728 Colon
738 SemiColon
748 LessThan

758 Equals
768 GreaterTh,-m
778 QuestionMark
1008 CommercialAt
1018 A
1028 B
1038 C
1048 D
1058 E
1068 F
1078 G
1108 H

1118 I
l12s J
1138 K
1148 L

1158 M
1168 N

1178 O
1208 P

1218 Q
122_ R
1238 S
1248 T
1258 U

1268 V
1278 W
1308 X
1318 Y
1328 Z
1338 OpeningBracket
1348 BackSlash
1358 ClosingBracket
1368 CircumflexSpacing
1378 LowBar
1408 GraveSpacing
1418 a
1428 b
1438 c
1448 d
1458 e
1468 f
1478 g

1508 h
1518 i
1528 j
1538 k
1548 1
1558 m
1568 n
1578 o
1608 p
1618 q
1628 r
1638 s
1648 t
1658 u
1668 v
1678 w
1708 x
1718 y
1728 z
1738 OpcningBrace
1748 VcrticalBar
1758 ClosingBmce
1768 TildeSpacing

2418 InvertedExclamationPoint
2428 Cent
2438 Pound

2448 Dollar
2458 Yen

2478 Section
2518 LeftSingleQuote
2528 LetfDoubleQuote

2538 LeftDoubleGuillemet
2548 LeftArrow
2558 UpArrow
2568 RightArrow
2578 DownArrow
2608 Degree
2618 Plus/Minus
2628 SuperTwo
2638 SuperThree
2648 Multiply
2658 Micro
2668 Paragraph
2678 CenteredDot
2708 Divide
2718 RightSingleQuote

2728 RightDoubleQuote
2738 RightDoubleGuillemet
2748 OneQuarter
2758 OneHalf
2768 ThreeQuarters
2778 InvertedQuestionMark
3018 Grave
3028 Acute
3038 Circumflex
3048 Tilde
3058 Macron
3068 Breve
3078 OvcrDot
3108 Diaeresis
3128 OverRing
3138 Cedilla
3148 Underline
3158 DoubleAcute
3168 Ogonek
3178 Hachck
3208 HorizontalB_

3218 SupcrOne
3228 Registered
3238 Copyright
3248 Tmdem:u-k
3258 .",IusicNote
3348 OneEighth
3358 ThrceEighth.,;
3368 Five.Eighths

3378 SevenEighths
3408 Ohm

3418 UDigmphAE
3428 UStrokeD

3438 OrdinalA

3448 US trokeH
3458 LDotlessJ

3468 UDigraphIJ
3478 UMiddleDotL
3508 UStrokeL
3518 USlashO
3528 UDigraphOE
3538 OrdinalO
3548 UThom
3558 UStrokeT
3568 UEngma
3578 LApostropheN
3608 LGreenlandicK
3618 LDigraphAE
3628 LSu'okeD
3638 LEth
3648 LStrokeH
3658 LDotlessI
3668 LDigraphlJ "
3678 LDotL
3708 LStrokeL
3718 LSlashO

3728 LDigraphOE
3738 DoubleS
3748 LThom

3758 LStrokeT
3768 LEngma

Appendix F

Definitions for the 8-bit solution

Character Longword, 4-byte: typedeflong longchar

<Character Table l><Character Table 0><Character Code l><Character Code 0>

Character Table 1 (byte 3), is the table where an eventual diacritic will be found.
Character Code 1 (byte 1), is the character code of an eventual diacritic.
Character Table 0 (byte 2), is the table where the character will be found.
Character Code 0 (byte 0), is the character code.

This longword will hold any character. Each symbol is 16-bits, but a 32-bit word is used to accommodate a
diacritic associated with a character. This can be used in a more general way, so that any two symbols can
be used to form a new one. The character codes and the number of the table where they belong may be found
in Appendix C. This representation implies that if the value is below 128, the character belong to the
ASCII character set. If it is between 128 and 255 it is an extended ASCII character. Between 256 and 65535
it is a character with a diacritic, and above 65535 the character belongs in another character table.

Keyboard Table

The Keyboard Table is machine dependent and contains information about the keytop layout and what
output each key produces. This table is used to draw the keyboard sketch on the screen. The table is stored
as a formatted text file. Each key can have any rectangular shape with an arbitrary text inside. The lormat is
as follow:

<number of keys>,, Comment
<x>,<y>,<xl>,<yi>,<a/o>,<Lin>,<Uin>,<Ltext>,<Utex t>,<Lx>,<Ly>,<Ux>,<Uy>,<Lsize>,<Usize>,<config>,

<x> Upper left corner of key rectangle.
<y> Upper left corner of key rectangle.
<xl> Length of key rectangle.
<yl> Length of key rectangle.
<a/o> a if Lin, Uin, Ltext and Utcxt should be entered in alpha lormat, o if in octal

format. If octal they should be null terminated, and no comma between them,
see example.

<Lin> Lowercase input string or char.
<Uin> Uppercase input string or char.
<Ltext> Lowercase text on keytop.
<Utext> Uppercase text on keytop.
<Lx> Location of lowercase text.

<Ly> Location of lowercase text.
<Ux> Location of uppercase text.
<Uy> Location of uppercase text.
<Lsize> Size of lowercase text.

<Usize> Size of uppercase text.
<config> Reconfigurable key (y/n).
<special> Special key, 0=normal key, l=control, 2=shift, 3=caps

Example:

I

101,times, IBM-RT keyboard mapping (87/06,,'23) V01
20,20,20,20,o.033 000 000 105 163 143 000 000,3,12,0,0,8,8,n,0, Esc
64,20,20,20,a,,,F 1,,3,12,0,0,8,8,y,0,
86,20,20,20 ,a,, ,F2 ,,3,12,0,0,8,8 ,y ,0,
108,20,20,20,a,,,F3,,3,12,0,0,8,8,y,0,

20,76,31,20,o,011 000 011 000 124 141 142 000 000,3,12,0,0,8,8,n,0, Tab

502,120,20,42,o,015 000 000 105 156 164 000 000,2,23,0,0,8,8,n,0, Ent = Cr
436,142,42,20,a,,,0,,3,9,0,0,8,8,n,0, 0 on the numerical part
480,142,20,20,a 3,9,0,0,8,8,n,0, . on the numerical part

This is the configuration file for IBM-RT. Leading spaces are not allowed between the parameters. No blank
lines should exist. After the last comma in a definition a comment can appear.

Environment Style Transfer Table

This table contain enough information to be able to transfer the information between internal format and
external format. Externally each non ASCII character is stored by its name. Internally it is stored as 3778 in

the text object together with an Environment Style pointing to this character. The Environment Style will
hold information about the character together with pointers to rendering procedures.

There are actually two tables with the same contents but sorted on different arguments to speed up the
translation. The format of the tables is as follow:

<name> <longchar>

<name> Character name.

<longchar> longchar corresponding to the character name.

Example, Character Set 0008:

Space 408 0008
ExclamationPoint 418 0008
NeutralDoubleQuote 428 0008

LStrokeT 3758 0008
LEngma 3768 0008

This table is sorted on character codes for fast conversion to external format. The other one is sorted on
character names and is used when an external file is read. Theese tables are stored within the procedures that
uses them.

Keyboard Remapping Table

When a character is typed on the keyboard a code is generated and sent to the UNIX-kernel. The kernel
parses this code and sends it further to BE2 as an ASCII character. The programmer receives this key thru
the key binding mechanism. The first thing that then should be done if FLIP is used is to check this

character against the Keyboard Remapping Table. This is done thru the im_RemapKey IM method. The
table contains information about all modifications to the keyboard layout. This means that you could place
any character on any key by defining the relocation in this table. If the character is found there it will be
converted into another character according to the table. For instance, if you want to place the German
DoubleS on the BackSlash key this should be inserted to the table.

This table is stored as a binary file either in a system directory for system supported ones, or in a user
directory for a user defined one. The format is as follows:

<from char><to char>

<from char> Character to convert from. This is actually a null terminated ASCII string.
<to longchar> Character to convert into. This is a longchar.

Example:

From Char To Char Comment

\0 0008 0008 3108 1418 Swedish Diaeresis a.
'\0 0008 0008 3108 1018 Swedish Diaeresis A.
[q) 0008 0008 3108 1578 Swedish Diaeresis o.
\0 0008 0008 3108 1178 Swedish Diaeresis O.

Only the keys that are about to be remapped has to be listed, for all others the default will be used. Default
wiil be the US ASCII keyboard mapping.

Font Name Extension

The font names must be extended since there can be up to 256 font files associated with each font within a
family. A restriction within WM limits the symbols that are allowed to appear in a font name to letters.
This has reduced the possibility to construct an easy to read format. The extension to the font name should
look like this:

<table><l/u><size><face>.fwm

 Name of the family this font belongs to.
<table> Number of the table character belongs to. The number is a three-letter ectal

string where the letter "a" is 0, "b" is 1 and so on up to "h". All lower case.
<flu> 'T' if char belongs to the lower 128 character, "u" if the upper 128.
<size> Size of the font.
<face> Bold, Italics etc.

Example:

timesaaal 10b.fwm Is a font from family andy, table 000 and the lower 128 characters.

Rendering Table

q

The rendering table is used to enhance the appearance for characters with diacritics. It consists of a list of
characters, and what character in a Rendering Table they correspond to. The table is stored within the routine
that uses it. There is currently one Rendering Table for Latin characters with diacriatics. This one is located
in Character Set 3618 (see Appendix E). The format is as follow:

<from char> <to char>

<from char> longchar containing character with diacritic.
<to chax-> longchar containing character with rendering character.

I

Appendix G

Description of new BE2 classes and variables.

Changes have to be made in a few places within the basic classes of BE2. For an exact description on how
to install the software, see appendix H. Below is a summary of the required changes:

Global Defines

The new variable type longchar must be included in the file <sizes.h>. This file usually doesn't have to be
included, but sometimes in conjuction with the class command it might be necessary.

typedef long longchar;

Local Defines to BE2

Internally BE2 has to maintain a number of variables which hold information about current keyboard name
etc.

char *kbremap_Path; Path to current keyboard rcmapping file. 0 if default.

char *currentKeyboarchName Name of the current keyboard.

struct keyboardRemapStruct { This is the Keyboard Remapping Table
char *fromChar;
longchar toChar;

} keyboardRcmapTablc[];

struct codeToNanae This structure holds the names of
{ the characters and their codes. It
char *charName; is sorted by names.

char charCode;
char tableNumber;

} codeToNanaeTable[] ;

struct nameToCode This structure holds the names of
{ the characters and their code. It

char *charName; is sorted by codes.
char charCode;
char tableNumber;

} nameToCodeTable[] ;

IM

New routines

Within IM the keyboard remapping has to be done. The function RemapKey will use the current table to
remap the character sent to it. It returns a longchar holding the character (see Appendix F for the formztt of
the table). This function must be called if FLIP is used to extend the character set. If no table is loaded it

t
- R

will use the default. Default is precently an empty table. If no remapping for the passed character is found,
NULL will be returned. This function will be supplied to the users.

longchar imMRemapKey(c)
char *c;

To load an alternate Keyboard Remapping Table the function LoadAlternateKeyboard is provided. This
function takes a full path to a Keyboard Remapping Table, or a file name and looks in the directories
specified in the users preferences for the file holding the information. If found it will load it and set it as the
current one. It will return TRUE if ok, FALSE if a problem occurs while loading the Keyboard Remapping
Table. A null string will load the default one. Nothing will happen if an error occurs while trying to get the
keyboard remapping. The default table is currently an empty table. This function will be supplied to the
users.

In the preferences file the user may define the path to the directory where it should look for Keyboard
Remapping Tables.

boolean im LoadAlternateKeyboard(path)
char *path;

The associated function StoreAlternateKeyboard will store it into a file. Returns TRUE if ok, FALSE if it
couldn't store. The full path has to be sent as an argument to the function. This function will be supplied to
the users.

boolean imIStoreAlternateKeyboard(path)
char *path;

To get information about the current keyboard the GetKeyboardlnfo procedure is supported. This procedure
will return information about the path to the keyboard and its name. This function will be supplied to the
users.

void im GetKeyboardInfo(path, name)
char *path;
char *name;

The AddKeyRemapping procedure will let the applications program alter the remapping of a key. If there
already is a entry for this one, the old one will be replaced. The arguments are: a null terminated string of
characters from the keyboard, longchar to remap into. This function will be supplied to the users.

voidim AddKeyRemapping(c, newc)
char *c;
longchar newc;

The DeleteKeyRemapping procedure will let the applications program remove the current remapping for
that key and revert to default. If there isn't a remapping for this key, nothing will happen. This function
will be supplied to the users.

void im__DeleteKeyRemap pin g(c)
char *c;

The information needed for these routines isstorcd in the IM object. Here are tile variables which have been
',xl&xk

I

struct kbremap_Struct { Structure for remapping entities on the heap.
char *fromChar; Pointer to string to remap from.
long toChar; longchar to remap to.

};

char *kbremap_Path; Path to current Keyboard Remapping File.
struct kbremap_Struct *kbremap_Table; Array of remapping entries.
int kbremap_TableLength; Length of remapping table in number of entries.
int kbremap_SpaceAlloc; Space allocated for remapping table.

GRAPHIC

New routines

A new DrcavStringLongChar routine must be added to print strings composed of 1ongchars. This procedure

take the same arguments as the DrawString procedure, except that the String argument must be an array or
longchars.

void graphic DrawStringLongChar(self, string, operation)
struct graphic *self;
longchar string[];
long operation;

A new DrawTextLongChar routine must be added to print strings composed of longchars. This procedure
take the same arguments as the DrawText procedure, except that the String argument must be an m-ray or
longchars.

void graphic DrawTextLongChar(self, string, stringLength, operation)
struct graphic *self;
longchar string[];
long stringLength;
long operation;

TEXT

New routines

Two routines will handle conversion between character code and character name. Fi_zdCtzaracterCode will

convert from character code to character name. It will return a pointer to a record containing the name. If the
character number is not found a Nq0-LLpointer is returned. This function will be supplied to the users.

struct codeToName *text FindCharacterCode(code)
longchar c.ode;

The other one, FindCharacterName will take a pointer to a string and try to find a character with that name.
It will return a pointer to a record containing the character. If the character name is not found a NULL
pointer is returned. This function will be supplied to the users.

struct nameToCode *text FindCharacterNamefc)

char *c;

The GetLongChar function has to be added in order to pull out character information from the Environment
Style. It is equivalent to the GetChar function except that it returns a longchar instead.

longchar textmGetLongChar(txt , pos)
struct text *txt;
long pos;

Routines to change

The ReadSubString function has to change so it calls FindCharacterName and adds Environment Styles for
non-ASCII characters. There will be no change in calling syntax.

The WriteSubString procedure has to change so it calls FindCharacterCode and quotes non-ASCII
characters. There will be no change in calling syntax.

TEXT VIEW

Routines to change

The procedure FullUpdate must recognize non-ASCII characters. There will be no change in calling syntax.

The procedure Update must recognize non-ASCII characters. There will be no change in calling syntax.

The procedure Keyln must recognize non-ASCII characters. It should return a longchar.

longchar textview Keyln(ip, ch)
struct view *ip;
int ch;

FONT DESC

New Routines

If longchars are used, the TextSize function has to be replaced with another function that recognizes
longchars. The TextSizeLongChar serves this purpose. To this function an array of longchars is passed. The
new format should look like this:

long fontdesc TextSizeLongChar(fontdesc, self, text, TextLcngth, XWidth, YWidth)
struct fontdesc _'fontdesc;
struct graphic *self;
longchar text[];
long TextLength;
long *XWidth;
long *YWidth;

If longchars are used, the StringSize function has to be replaced with another function that recognizes
longchars. The StringSizeLongChar serves this purpose. To this function an array of longchars is passed.
The new format should look like this:

long fontdesc StringSizeLongChar(fontdesc, self, text, XWidth, YWidth)
struct fontdesc *fontdesc;
struct graphic *self;
longchar text[];
long *XWidth;
long *YWidth;

Lookup for characters with diacritics in the Rendering Set will be done by the FindRenderingCharacter
function. The argument is a longchar with the character and diacritic. The function will return a longchar
containing the number of the Character Set where the rendering character will be found and the character
within the set. If no rendering character is found NULL is returned. The function finds out the rendering
character by looking it up in a table (see Appendix F) kept in the function. This function will be supplied
to the users.

longchar fontdesc FindRenderingCharacter(c)
longchar c;

KBMGR

New Routines

An editor for the Keyboard Rcmapping Tables is placed in an object named kbmgr. This dynamically loaded
object will export two class procedures, one to open the keyboard window and one to close it. To use the
keyboard remap editor, the user must add an option to the pop-up menu that will display the mock-up
keyboard on the screen. The two procedures that should be used for this are OpenKeyboardWindow and
CloseKeyboaraWindow.

The sketch of the keyboard is brought up on the screen by the OpenKeyboardWindow procedure. This will
be done in a window hooked onto the bottom of the current one. From this window it is possible to
redesign the keyboard or load a prestored keyboard mapping. The pointer to the view where the keyboard
should be inserted must be supported. The first boolean argument (edit) specifies whether the user may edit
a Keyboard Remapping Table. The second one determines if another keyboard remapping may be selected.
This function will be supplied to the users.

void kbmgr OpenKeyboardWindow(self, edit, select)
struct view _'self;
boolean edit;
boolean select;

The sketch of the keyboard is hidden by using the CloseKeyboardWindow procedure. All space used on the
heap is deallocate& The pointer to the view where the keyboard window is located must be supported. This
function will be supplied to the users.

voidkbmgr CloseKevboardWindow(self)
struct view *self;

KBREMAP

New Routines

This new object should be totally transparent to the user. All access to it is done thru IM. The reason for
this is to avoid loading the program code when not needed. For a full description of arguments and usage,
see under IM. The names of the functions within kbremap are:

longchar kbremap RemapKey(c)

boolean kbremap LoadAlternateKeyboard(path)

boolean kbremap StoreAiternateKeyboard(path)

void kbremap GetKeyboardlnfo(path, name)

void kbremap AddKeyRemapping(c, newc)

void kbremap DeleteKeyRemapping(c)

Miscellaneous Changes

The Window Initiallization routine must look in the preferences file for the search paths to the keyboard
remapping tables. The entry should look like this:

*.KcyboardRemappingPath:/cm u/itc/tc8 y/keyremap:/usr/andy/keyremap

The Window Initialization routine must look in the preferences file for the default keyboard rcmapping, and
load that one. It will look for a file with the extension ".kremap. The entry should look like this:

wm.KeyboardRemapping:swedish will load the swedish keyboard rcmapping.

Appendix H

Installation of FLIP set in BE2

Changes have to be made in many different source files within BE2. The actual code that should be inserted
may be found in Appendix I. Below is a summary of the required changes:

basics/sizes.h Add a typedef to the list of types, see sizes.mods.h.

basics/im.c In IM indirect calls to kbremap have to be added, the procedures are:

im___RemapKey
im___LoadAltemateKeyboard
im StoreAltemateKeyboard
im__GetKeyboardlnfo
im AddKeyRemapping
im DeleteKeyRemapping

Place these last in the file. In addition to these procedures a few other
modifications should be added, see im.mods.c.

basics/im.H Defines, structs and methods in file im.mods.tI should be added.

basics/graphic.c Procedures in file graphic.mods.c should be added. The procedures are:

_aphic_DrawCharsLongChar
graphic DrawStringLongChar
graphic DrawTextLongChar

They must come in this order and be located at the end of the file.

basics/graphic.H Defines and methods in file graphic.mods.lt should be added.

basics/wmgraphic.c Procedures in file wmgraphic.nmds.c should be added. The procedures are:

wmgraphic_DrawCharsLongChar
wmgraphic DrawStringLongChar
wm_n'aphic DrawTextLongChar

They must come in this order and be located at the end of the file.

basics/wmgraphic.ll Defines and methods in file wmgraphic.mods.ll should be added.

basics/fontdesc.c Functions in file fontdesc.mods.c should be added. The functions are:

fontdesc FindRenteringCharacter
fontdesc TextSizeLongChar
fontdescmStringSizeLongChar

They must come in this order and be located at the end of the file.

basies/fontdese.H Methods and classprocedures in file fontdese.mods.H should be added.

basics/kbremap.c This file should be installed in the directory.

basics/kbremap.H This file should be installed in the directory.

basics/Makefile The makefile must be updated to reflect the changes to the files. See:
basics.Make file.mods.

A new directory named keyboard must be added to the base of the tree. To this directory the following
files should be added:

keyboard/kbmgr.c This file should be installed in the directory.

keyboard/kbmgr.H This file should be installed in the directory.

keyboard/kbtable.c This file should be installed in the directory.

keyboard/kbtable.H This file should be installed in the directory.

keyboard/kbpanel.c This file should be installed in the directory.

keyboard/kbpanei.H This file should be installed in the directory.

keyboard/Makefile The makefile must be added to reflect these additional files. See:
keyboard.Makefile.mods.

The global Makcfile must be altered so Omtfiles in directory keyboard will be compiled. See:
Makefile.mods.

Appendix I

Source code listing

This appendix contains source code for all new files and all that are modified.

New files:

- basics/kbremap.c

- basics/kbremap.H

- keyboard/kbmgr.c

- keyboard/kbmgr.H

_ keyboard/kbpancl.c

- keyboard/kbpanel.H

- kcyboard/kbtable.c

- keyboard/kbtable.H

- kcyboard/Makcfile

Files modified:

- basics/fontdesc.c

- basics/fontdesc.H

- basics/_aphic.c

- basics/gmphic.H

- basics/im.c

- basics/im.H

- basics/Makcfilc

- basics/sizcs.h

- basics/wmgmphic.c

- basics/wmgraphic.H

- M'akctlle

