CMU-ITC-87-091
Intematvional Character Code Standard for the BE2

June 18, 1987
Tomas Centerlind

Information Technology Center (ITC)
Carnegie Mcllon University

1. Major problems with foreign languages

All European languages have a set of unique characters, even Great Britain with their Pound sign.
Most of these characters are static and do not change if they are in the end or in the middle of the
word. The Greek sigma sign however is an example of a character that changes look depending
on the position. If we move on to the non-Roman alphabets like Arabic, they have a more
complex structure. A basic rule is that certain of the characters are written together if they follow
each other but not otherwise. This complicates representation and requires look ahead. In
addition to this many of the languages have leftwards or downwards writing. All together these
properties makes it very difficult to integrate them with Roman languages.

Lots of guidelines have to be established to solve these problems, and before any coding can be
done a set of standards must be sclected or defined. In this paper I intend to gather all that I can
think of that must be considered before sclecting standards. Only the basic level of the
implementation will be designed, so therefore routines that for example display complex languages
like Arabic must be written by the user. A basic method that dislpays Roman script correctly will
be supported.

1. Standards

1.1 Existing standards

Following is a list of currently existing and used standards.

1.1.1 ASCII, ISO 646

The ASCII standard, that is in usc almost anywhere, will probably have to remain as a basic part
of the system, and without any doubt it must bc possible to read and wrte ASCII coded
documents in the foreseeable futurc.

4

1.1.2 Extended ASCII

A standard that has been adopted by some micro computer companies is the Extended-ASCII,
which among others Apple use in the Macintosh. In contrast to ASCII they use the eighth
"parity” bit and therefore gain another 128 characters. This will handle all Luropean languages
but not non-Roman alphabets. All additional characters are placed in the upper 128 characters so
the lower segment is cquivalent with standard ASCII. None of the international standardization
institutes have defined such a standard, so the layout of the character codes is often company
specific.

1.1.3 ISO 2022

ISO 2022 is a standard that also can encode all European languages. It can either be a 7- or a 8-
bit code. It is a extension of ASCII, and provides the possibility to exchange information between
7-bit and 8-bit environments.

If 7-bit code is used, the SI and SO control characters arc used to invoke an additional set of 94
graphics. The control characters DEL and SPACE are not affected by SI and SO. More than two
graphic sets may be reached by using an escape sequence to select another set of graphics is then
invoked with SO. This leads to a virtually unlimited number of graphic sets that may be used.
With an escape sequence you may also change the control character representation.

The 8-bit representation uses the high-order 128 combinations as well as the low-order. This gives
the following advantages:

1) a set of 32 additional control characters
2) a sct of 94 additional graphic characters
3) no need to use SO and SI, both sects are available all the time

Escape sequences are used to change graphic sets in the same manner as for 7-bit codes. To be
able to know if 7- or 8-bit coded data is coming, there are special escape sequences that should
precede a character stream. This tell the software how to interpret the characters.

This seem to be quite easily installed into existing software, but it has some major effects. First of
all it will be difficult to sort text that is stored with this standard, sccondly it will be hard to
produce the output if you don’t have stored somewhere the look of cach character possible to
generate. ‘The advantage is that if it is displaycd on a computer that only can gencrate normal
ASCII, the output will still be readable. There also exist standardized routines to convert between
7- and 8-bit codes. ISO 2022 docs not deal with what characters should be placed in the ncw
areas.

1.1.4 Xerox XC1-2-2-0

Xerox has made further extensions to 1SO 2022 and is now using it throughout their line of work
stations. This standard is spanning the following other international standards:

- All ISO 646 IRV graphic characters

- All ISO 5426 graphic characters

- All ISO 5428 graphic characters

- All ISO 6937 graphic characters

- All ANSI 7-bit ASCII graphic characters

- All CCITT 8-bit Teletex "G0” & "G2" graphic characters

- All Xerox 860 graphic characters

- All EBCDIC 8-bit graphic characters

- ALLJIS C 6226 graphic characters (including 6,249 most-frequent Japanese kanyji)

- All characters required to write the following languages:
English, Russian, German, French, Spanish, [talian, Portuguese, Dutch,
Swedish, Norwegian, Danish, Japanese, Malay/Indonesian, Greek,
Ukrainan, Polish, and other languages.

- All standard office typewriter keyboard characters for the European languages

above
- The most commonly-used office, technical, and general symbols

Xerox uses 8-bit encoding for characters which eliminates the need to use a shift-code to reach the
high order 128 characters. Like ISO 2022 they store the diacritics beforc the character they should
affect. The problem of what an accented character should look like has been solved through a
Rendering Set where each legal combination of diacritics and letters is assigned a unique number.
The Rendering Set uses most of the 8-bit codes. This implies that two additional character sets are
needed, onc for the 128 unshifted characters and one for the shifted.

To allocate space for the font as well they have chosen to use 16-bit encoding for each character
when processing and a 8-bit coding when on mass storage. This will give a coding that is casy to
manipulate and display even though it is slightly more memory consuming when not on mass
storage. The high-order byte is the character-sct code and the low-order byte is the ISO character
code. For example character-set 0 g is the Latin alphabet, and 45 g is Japancse hiragana. The
rendcring character codes are stored in character scts 360 g and 361 g .

This standard does not define the lexigraphical order of the characters within a specific alphabet.
This has to be done within the user application.

1.1.5 Xerox 2

This is not a standard but merely a proposal of a way to store multilingual text. It assumes that it
is possible to entirely change the internal representation of characters. Basically you usc a 8-bit
codc where 1111 1111 is reserved to indicate that the next byte should be treated as a character set
code. This mean that when you cncounter this byte a new character set will be loaded and all

-4-

output will be interpreted for this character set in a appropriate way. If two 1111 1111 bytes
follow each other this indicate that 16-bit words will be used instead. This gives enough space for
languages like Chinese and Japanese.

This scheme makes it possible to have up to 255 different scripts at the same time in a text. Since
there is one character set for ecach alphabet, the lexigraphical order of the letters is easily

maintained. It will also be quite casy to generate the output. However a large disadvantage is that
a specific font table is needed for each font and script.

1.1.6 Apple Script Manager

Apple’s Script manager extends the standard character set to provide up to 64 different scripts at
the same time (all Roman scripts are alrcady gathered in Apple Extended ASCII so they represent
one script). Each language is given a number through which it is called. No further details about
the internal representation are given in the document I have reccived. However it seems that they
use 16-bit words to store cach character, and different scripts have rcceived different arcas of the

large space of 65,536 symbols. They support lcftwards writing and combinations of left and right
writing languages on the same line are allowed.

1.2 Requirements

Following is a wish list of features that should be available in BIF2.

1.2.1 Character Set requirements

There are basically six aspects that must be fulfilled to have a powerful character code standard:

- We nced an efficient and general way to store the characters. Ilere three characteristics have to
be balanced: space efficient storing, ease of processing the characters without a lot of overhead

due to decoding, and finally should the encoding cover as many characters as possiblc.

- Routincs that can display the cntire character set in an appropriate way should be possible to
write.

- The lexigraphical order for cach alphabet must be casily accessible.
- The font of cach character must be prestored somewhere to allow fast displaying.
- Compability with other Character Standards must exist for interactive reasons,

- An casy way to insert the characters through the kevboard.

1.2.2 Other requirements for a full fledged text insertion environment

It must be possible to detect every keypress to gain full control over the keyboard, including all
funetion keys, the shift keys, the alternate keys etc. This should be possible at the programmer’s
level.

2. A 7-bit coded extended character set in BE2 using ISO 2022
This proposal is based on the fact that the following conditions must be met:

- Only 7-bit codes can be used, mainly because of communication problems and the mail
interface.

- Within the BE2 text data object cach character displayed on the screen may only take up one
byte in memory. Other information must be stored elsewhere. Otherwisc large structural changges
have to be made to the text drawing routines.

2.1 ISO 2022 and Xerox Character Code Standard

The mapping of graphics from Xerox Character Code Standard scems to be a good standard to
use. It consists of 256 tables of 256 characters of which about half s used. This will at least cover
the following languages:

- All Latin languages.

- Arabic, Iebrean, Greek, Korean, Russian.
- Japanese: JIS, Kanji, Gaiji.

- Chinese.

- A set of general and technical symbols.

In addition to this there is a lot of space left for new languages and additional graphics. So far
Xerox is the only Standard that I have scen which at least uscs parts of ISO 2022 to encode this
many dilferent languages. The ASCII/ISO/CCITT Roman alphabet with extension for punctuation
only defines one of the 126 possible character scts.

The following scheme should according to IS0 2022 be used to change character set. Since 7-bit
coding will be used, only half of the 256 graphics cach character set consists of may be accessed at
the same time. Therefore the SO and S1 control characters will be used to switch between the GO
and Gl character scts (where GO is the lower 128 characters and Gl is the 128 higher) in the
following way:

-6 -

SO Change to G1 character set

SI Change to G0 character set

To change to another character set, cscape sequences have to be used. The ISO 2022 ones only
address 126 (2*63) different sets which are invoked by the following sequences:

ESC 2/8 4/1 to ESC 2/8 7/14 Change character set GO
ESC 2/12 4/1 to ESC 2/12 7/14 Change character sct GO
ESC 2/9 4/1 to ESC 2/97/14 Change character set G1
ESC 2/13 4/1 to ESC 2/13 7/14 Change character set G1

This will not do if you want to encode 256 diffcrent character scts as Xecrox has done. Instead I
propose that the following sequence be used:

ESC 2/6 3/1 4/1 to ESC 2/6 3/154/15

This will give 16*16 different character scts. I assume that both the GO and G1 character sets are
loaded at the same time. The ESC 2/6 code is not used by I1SO 2022. The two last characters will
point out one of the 256 character sets.

So for example to print the clubs sign which is in character set 357 g , first an escape followed by
character 2/8 should appear. This will imply that the next two characters.indicate what character
set should be selected. These characters should be 3/14 and 3/15. Then a SO must follow so the
G1 character sct is selected. Finally in the line comes 116 5 , which is the code of the clubs sign
within character set 357 5 .

For most of the character sets only a few of different faces arc needed such as different sizes and
bold. Stylistic aspects such as italics and various looks do not apply to character sets like the
general and technical symbols. What the situation is for Chinese and Japanese is not clear, but |
guess you can be pretty glad if you manage to design a fairly small font that looks good.

2.2 Text input

There arc basically two different ways to insert the characters. Fither you use some sort of escape
or control scquences, or you totally remap the kevboard. Tor smaller amounts of input a small

keyboard chart on the screen may be used.

What is to be preferred is basically a question of the kind of usage. If Andrew is going to be used
successful in a non-English country a possibility to remap the keyboard is absolutcly a
requirement. Usually a different set of key tops are present on the keyboard, and these must be
scanned correctly. In the case of adapting ASCII to foreign characters stmply a few of them like |,
{ and | are replaced with the national ones. This makes it easy to do this kind of modification.
With ISO 2022 the entire character set has to be changed in order to reach non-ASCII characters.
This must be done at a higher level in the software. It is therefore desirable to make it possible to
change the entire mapping of the keyboard casily.

This could lead to some nice side effects. A library of different keyboard mappings could be built,
where the standardized mapping for each country can be found and displayed on the screen. A
mapping should be easy to edit, and it should be possible to store personal ones. Ways to change

the keyboard via control sequences also have to considered. Each window on the screen should be
allowed to have its own mapping of the keyboard.

2.3 Design

Following is a proposal of a design that would make it possible to use a wide variety of languages
without losing the support for all existing ASCII dependent software:

Use ISO 2022 7-bit coding.
Exploit Xerox Character Set encoding standard.

Make it possible to rcconfigure the keyboard so that different languages can be typed
easily.

BE2 routines:
Display routines. (modifiy)
Extended font support. (modifiv)
Facility in the software to turn input of the cxtended character set on and oll. (new)
Facility to restrict the output to ASCH characters. (new)
Routine to remove all non ASCI characters form a string. (new)

Routines to convert a ASCII string written in a certain language into a ISO 2022 string.
(rew)

Routines to convert between 7- and 8-bit coded 1SO 2022 strings. (new)
Sorting routines for each language. (new)
Routines to load and alter keyboard mappings. (new)

Posibility to display the current keyboard mapping, and do input from it by pointing with
the mouse. (new)

2.3.1 Modifications to text routines

There will be two tables maintained within BE2. One will hold all character set tables and is
going to be used to make up the keyboard mapping tables. The other one will specify what each
character should be converted to in order to transfer it into ISO 2022. There will be three new
features added into the text machinery:

1) A keyboard remapping utility that will take the actual characters generated from the keyboard
and turn them into any other character. Fg. if the user presses the character 7" on a keyboard
with Swedish mapping, this character will be transfered to an "a” with a circle above, since this is
the standardized location for that character in Sweden. If however other hardware is used, the
character on the right side of the "I” key may be somcthing other than semicolon. In this case it is
easy to modify the tables to fit this new hardware. This gives total freedom to place any character

anywhere on the keyboard. Even the function keys may be used for infrequent characters.

I suggest that one keyboard mapping be present for each language, and starting from this each
user may design any personal mapping he desires. If no mapping is specified the default ASCII
mapping is uscd. The mapping should be possible to change from the pop-up menu, where either
the system-supported mapping or the user-defined one can be selected. It should also be possible
to bring up the mapping on the screen, and enter characters by pointing on the keyboard with the
mouse,

These tables are stored in separate files with the extension "keys” and are designed in a special
cditor. Since most mappings will be dedicated for a special language the name of the language will
also be stored in the file. The format of this file can be found in Appendix B, and the character
sct tables in Appendix C.

2) Sccondly, the routine that inscris the character into the text data object has to be modified. It
must take carc of the following two ncw issucs:

When you switch to a non ASCIT keyboard all text that is to be written will be surrounded with a

style holding the name of that language. This will in no way affect the drawing of the character, it
is rather a way to provide this information to software that would need it.

The converted character will have three properties: first, the value of the character within the
character set table, secondly the number of the character set table where it is to be found, and
finally whether the lower or the upper 128 characters are to be addressed. If the character is not a

member of the ASCII character table, a style is added to specify this information and the
corresponding ASCII character is inserted into the text data.

3) Third, the routine that displays this information must load the approprate font table before
displaying a non ASCII character. This information is casily retrieved from the style information.

To describe the usage of these tables, one character will be followed from the keyboard to the

data strcam. Below is a sketch to display the flow of the character from the keyboard into the text
data structure:

Fig [: Character flow from keyvboard to text object

- 10 -

2.3.2 Modifications to the font manager

I don’t sce any reasons to modify the font manager. New font tables have to be added since the
number of characters will increase significantly. To support all Latin languages it will be enough
to add another four font tables with 128 characters in each, for every font, size and shape. These
tables are 000 g u (upper), 043 g u, 361 g | (lower) and 361 g u. Then languages like Greek 046 8
and Cyrillic 047 g have their own character set tables, and they probably just have one font with
different sizes and shapes.

To know what font to get, an extended font naming convention must be used. An example would

be:

 <table #> <l/u> < shape > fwm

2.4 Interface between style format and ISO 2022

Since the foreign characters are stored as styles within BE2 text objects, a conversion routine must
be called before the text is sent to a computer not running Andrew. To do this conversion tables
arc used. This implies that it will be fairly easy to convert into any existing standard. If there is a
country style wrapped around a chunk of text, more intelligent rendering could take place
according to the character coding standard in that country.,

2.5 Disadvantages with this scheme

Output routines other then the BE2 ones, like the ones in X-window, that do not now about
styles will not be able to use the cxtended character set. To people in other countries it seems
foolish to rcly on 7-bit codes. All new programming cnvironments arc at least using the cighth bit
to extend the character set. It would be strange to build a modern advanced object oriented
cnvironment, and only use 7-bit ASCII as the basic character code level. Also it must be preferred
to support the character codes on a lower level that is suggested here. When scarching in this kind
of text there will be quite a lot of overhead to check what style cach character has since the
character in the text object doesn't tell what style it has, so this has to be looked up cvery time
the style change. No gencral lexigraphical order is maintained within the standard.

2.6 Advantages with this scheme

It will fit into the cxisting system with a minimum of changes. Tt will tell what language a text is
written in, which is neccesery to do intelligent spelling checking. The text may casily be converted
to any standard. It can be cxpanded into a large number of characters which will be needed to
type Chinese and Japanese.

<11 -

2.7 Software that will be affected

Use of ISO 2022 will require all modifying software that is sensitive to control characters or
foreign cscape sequences. Further software that ignores them may also cause problems. This is
because the syntactical order may be lost. An example of this may be a C-program where the user
in a comment types left quote, vertical arrow, in sequence. If SO and SI are not interpreted these
characters will be rendered as */, end of comment, against the the users intent. As a consequence
the rest of the characters will be treated as a part of the program which probably will Icad to a
compilation error.

Mail programs and other softwarc that communicates with an ASCI environment must prevent
the user from inserting undesirable characters until it is known if the remote host can understand

them. Further all software that generates output to the printers must be enhanced so a proper
output is generated.

The compiler problem may easily be fixed by creating an alias that preprocesses the input and
removes all non-ASCII characters in a comment and causes a compilation error if there arc non-
ASCII characters elsewhere, and then pipes the output to the compiler. Of course this will mean
that there will be one preprocessor for each type of programming language.

If sorting has to be performed on the exteded character set new routines must be added.

- For cxample, an RT keyboard in not(USA) countrics will gencrate 8-bit codes. How will these
be handled with 7-bit character codes?

3. A 8-bit extended character set in BE2

Most computer manufacturers tend to use &-bit extended ASCII in their new gencration of
computers, with or without penalty for more elaborate character coding schemes. It looks like
there is much to be gained by using 8-bit codcs.

A reasonable way to go is to use 8-bit coding within BE-2 and 7-bit format outside this
environment. This would speed up the processing and still. support compability towards the
existing environment.

On disc the in-line style representation will be used, internaly the environment styles will be
utilized. The transformation will be done thru cross reference tables. The increased number of
characters will be accessed via multiple keyboard mappings kept in hardware dependent tables. A
32-bit longChar variable have to be used in order to store the nev character format outside a
TextView.

12 -

3.1 Character set

The ASCI/ISO|CCITT Roman Alphabet and Punctuation will character mapping scheme will be
used. This almost the only standard that exists in this field and is widely accepted among
computer manufacturers. Minor differences between the mapping exist, but all the important
characters is usually the same. Then there is space left for another 255 tables of up to 182
character each.

3.2 Text input

The characters will be inserted by using the keyboard or by using the mouse. A sketch of the
current keyboard will be possible to bring up on the screen. Thru a mouse orientated cditor the
mapping of the keys can be redesigned according to personal tastc.

3.2.1 Keyboard input

The overall basic keyboard will have the Standard ASCIT mapping. This keyboard will have no
penalty for foreign characters and the user will not notice any difference compared to the current

keyboard. To be able to use foreign characters the user must change to a keyboard that include
the ones nceded.

The system supported keymappings will be based on each countries standard. Separate kcyboards
for symbols and other utility characters will also be included. Personal mappings will be casily
designed and stored in the users home directory. It must be noticed that a mapping on a IBM
keyboard may not be valid for a SUN, so the user have to design a scparate mapping for every
different terminal type he uses.

The function keys can be used since cach mapping is for a scparatc machine, eventhough they not
will be utilized on the system supported ones.

The default keyboard can be changed by a switch in the users preferences file.

3.2.2 Mouse input

If the user desires, the pointing device can be used to insert characters by requesting a map of the
keyboard to be drawn on the screen. This will probably be prefered if just a few characters is
going to be typed from a scldom used keyboard. This map will be attached to the bottom of the
current window.

- 13 -

3.3 Internal representation

Within the memory, all characters will be stored as 8-bit characters (se Appendix D for a table).
For non ASCII characters, four bytes are required to represent each. Out from the Key-Map
package will a four byte longword be received. This one will contain sufficient information to
identify any Latin character (for techincal details, sec Appendix IF). For these a control code will
be insertcd into the text strcam instead. To this control code a style will point in which the multi
byte character is stored. There will with other words be one style for cach multi byte character. If
the user desires so, another style telling which language a pice of text is written in will surround
this arca. This language information will be transparant and not affect the text. Ilowever if it is
important to know what language a piece of text is written in, it can easily be retrieved.

Fig: The internal representation

3.3 Mass media representation

On mass storage another way to represent the data will be adopted. Essentially the cextended
characters is stored as a style is stored at the precent. This is, braces preceeded by an identifying
string are used to quote all extended characters. The identifying string is the actual name of the
character. Some examples follow below (a full list is found in Appendix I):

String Comment

v.Copyright{} A copyright sign

v.Diacresis{a) The Swedish a whith two dots above.,

L. UStrokel I{} Uppercase Maltesian character 11 with a

stroke.

- 14 -

\.Acute{e} An ¢ whith a acute accent above.
\.Grave{a} An a whith a grave accent above.
\.Cedilla{C} A cedilla under a C.

A picce of text might look like this:

Je suis \.Acute{e}tudiante \.Grave{a} l'universit\. Acute{e}.
\.Ccedilla{C}a me fait plaisir.

3.4 Text insertion routines

All keyboard input will be passed thru a filter. This filter consist of a table in which every key,
and what output this key should produces, is listed. This makes it possible to remap the keyboard
in any way. An editor will be provided to do this remapping so it will be possible for each user to
customize his own keyboard layout and store it locally. The standardized keyboard layout for
each language possible to write will be supported and a sketch of each will be possible to bring up
on the screen.The user can selcct the different keyboard in two ways, cither all text written with
the keyboard will be surrounded by a language style. This is good if you want different programs
to know what language the context has. The other vay is to insert the foreign characters you want

but not care add any language to it. This is important if you just want to add a few symbols from
another script without changing the language in the middle of a text.

3.4 Dispaly routines

The display

Appendix E

Table of character names

The character codes within Character Set 0 8:

40 4 Space

41 4 ExclamationPoint
424 NeutraiDoubleQuote
43 5 NumberSign

44 4 CurrencySymbol
45 ¢ Percent

46 g Ampersand

47 ¢ Apostrophe

S50 OpeningParenthesis
5lg ClosingParcnthesis
52 Asterisk

533 Plus

544 Comma

55¢ NeutralDash

56 g Period

57 ¢ Slash

60 g 0

61 1

625 2

63 g 3

64 ¢ 4

6534 5

66 g 6

67 g 7

70 ¢ 8

713 9

728 Colon

73 8 SemiColon

74 4 LessThan

753 Equals

76 g Greater'Than

77 g QuestionMark
100 ¢ Commercial At
101 g A

102 5 B

103 g C

104 ¢ D

1054 I

106 5 I

107 4 G

1104 I

111
11254
1134
1144
1154
116 5
1174
120
121 4
1224
123 5
124 4
1254
126 4
127
130 4
1314
1324
133 4
134
1354
136 4
1374
140 4
141
142 4
143 4
144 4
145
146 4
147 4
150 4
151 g
152
153 4
154 ¢
155 ¢
156 &
157 4
160 ¢
161 g
162 4
163
164 4
165 o
166 ¢
167 ¢

N<XREg<LO 32RO TOZZ O R = —

OpeningBracket
BackSlash
ClosingBracket
CircumflexSpacing
LowBar

Grave

— R =0 RO A0 oW

m

170 4
1714
1724
173 4
174 4
175 4
176 4

241 g
2424
243 ¢
244 4
2454
247 ¢
251 g
2524
2534
254 4
2554
256 ¢
257 g
260 ¢
261 g
262 ¢
263 ¢
264 ¢
265 g
266 g
267 ¢
270 ¢
271 ¢
2724
273 g
274 ¢
275¢
2763
277 g
Nt g
302 ¢
303 ¢
304 ¢
305 ¢
306 g
307 ¢
310
3125
3134

X

y

Z
OpeningBrace
VerticalBar
ClosingBrace
TildeSpacing

InvertedExclamationPoint
Cent
Pound
Doliar
Yen
Section
LeftSingleQuote
LetfDoubleQuote
LeftDoubleGuillemet
LeftArrow
UpArrow
RightArrow
DownArrow
Degree
Plus/Minus
SuperTwo
SuperThree
Multiply
Micro
Paragraph
Centered Dot
Divide
RightSingleQuote
RightDoubleQuote
RightDoubleGuillemet
OncQuarter
Onellalf
ThreeQuarters
InvertedQuestionMark
Grave
Acute
Circumflex
Tilde
Macron
Breve
OverDot
Diacresis
OverRing
Cedilla

3dg
3155
3l6g
3174
3205
3214
3224
3234
3244
3254
3344
3354
3364
3374
340 ¢
3415
342 ¢
343 4
344 ¢
345 4
346 ¢
347 4
350 g
351 g
3524
353
354 4
355%
3564
3574
360 ¢
3614
3623
363 g
364 ¢
365 g
366 g
367 g
370 ¢
371 g
3724
373 g
374 4
375%
376 4

Underline
DoublcAcute
Ogonek
Hachek
HorizontalBar
SuperOne
Registered
Copyright
Trademark
MusicNote
Oneliighth
ThreeFighths
FiveEighths
SevenLighths
Ohm
UDigraphAL
UStrokeD
OrdinalA
UStrokell
LDotlessl
UDigraphlJ
UMiddieDotl,
UStrokel,
USlash()
UDigraphOr;
OrdinalQ
UThorn
UStrokeT
UEngma
LApostropheN
LGreenlandicK
LDigraphAL
I.StrokeD
LIith
LStrokell
LDotlessl
LDigraphll]
[.Dotl,
I.Strokel.
[.SlashO
[.DigraphOI;
DoubicS

['Thorn

I Stroke'I’
I.Iingma

d

Appendix F

Definitions for the 8-bit solution
Character Longword, 4-byte: #define longchar longint
< Character Table 1 > < Character Table (0> < Character Code 1> < Character Code 0 >

Character Table 1 (byte 3), is the table where an eventual diacritic will be found.
Character Code 1 (byte 1), is the character code of an eventual diacritic.
Character Table 0 (bytc 2), is the table where the character will be found.
Character Code 0 (byte 0), is the character code.

This longword will hold any character. The character codes and the number of the table where
they belong may be found in Appendix C. This representation implics that if the value is below
128, the character belong to the ASCII character set. If it is between 128 and 255 it is a cxtended
ASCII character. Between 256 and 65535 it is a character with a diacritic, and above 65535 the
character belongs in another character table.

Keyboard Table

The Keyboard Table is machine dependent and contains information about the keytop layout and
what output cach key produces. This table is used to draw the keyboard sketch on the screen.

The table is storcd as a formatted text file. Fach key can have any rectangular shapc with an
arbirtary text inside. The format is as follow:

< number of keys >, < font >, Comment

<X-\,<y>,'1X|T-‘,<yl>,'ia,/0>,<Lin-\.'-’Uin>,<l,toxt\,’iUlexl>,'il,x-‘,<l,y\,<Ux>,'iUy>,‘fLsize>,<Usize>,<conﬁg>,

<x> Upper left corner of key rectangle.

<y> Upper left corner of key rectangle.

<xl~ Length of key rectangle.

<yl> ength of key rectangle.

<ajo> aif Tin, Ulin, Ltext and Utext should be entered 1n alpha format, o if in
octal format. If octal they should be null terminated, and no comma between them, sce example.

<Lin> [.owercase input string or char.

< Uin> Uppercase input string or char.

< [text > [owercase text on keytop.

< Utext > Uppercase text on keytop.

<lx> Location of lowercase text.

“<Ly> Location of lowercase text.

<~ Ux> Location of uppercase text.

< Uy > lLocation of uppercase text.

< Lsize > Size of lowercase text.

< Usize » Stze of uppercase text.

<config > Reconfigurable key (y/n).

Example:
101,times, IBM-RT keyboard mapping (87/06/23) V01
20,20,20,20,0,033 000 000 105 163 143 000 000,3,12,0,0,8.8,n, Tisc

64,20,20,20,a,,,F1,,3,12,0,0,8,8,y,
86,20,20,20,a,,,F2,,3,12,0,0,8,8,y,
108,20,20,20,a,,,I°3,,3,12,0,0,8,8,y,

20,76,31,20,0,011 000 011 000 124 141 142 000 000,3,12,0,0,8,8,n, Tab

502,120,20,42,0,015 000 000 105 156 164 000 000,2,23,0,0,8 8,n, Ent = Cr
436,142,42,20,a,,,0,,3,9,0,0,8,8 n, 0 on the numcrical part
480,142,20,20,a,,,.,,3,9,0,0,8,8 n, . on the numerical part

This is the configuration file for IBM-RT. [ecading spaces are not allowed between the
parameters. No blank lines should exist. After the last comma in a definition can a comment
appear.

Environment Style Transfer Table

This table contain enough information to be able to transfer the information between intcrnal
format and cxternal format. Externally cach non ASCII character is stored by it’s name. Internally
it is stored as 377 g in the text object together with a Environment Style pointing to this
character. The Finvironment Style will hold information about the character together with
pointers to rendering procedures.

There is actually two tables with the same contents but sorted on different arguments to speed up
the translation. The format of the tables arc as follow:

<name> “<key code> <table>

<name > Character name.
< key code > Code of character.
< table > Number of table character belongs to.

FExample, Character Set 000 g :

Space 40 ¢ 000 g

IixclamationPoint 414 000 g
NeutralDoubleQuote 424 000 g

[.StrokeT 375¢ 000 ¢
LEngma 376 ¢ 000 g

This table is sorted on character codes for fast conversion to external format. The other one is
sorted on character names and is used when an cxternal file is rcad. Theese tables are stored
within the procedures that uscs them.

Keyhoard Remapping Table

When a character is typed on the keyboard a code is generated and sent to the UNIX-kernel. The
kernel parses this code and sends it further to B2 as a ASCII character. The first thing that BE2
does is to check this character towards the Keyboard Remapping Table table. The table contain
information about all modifications to the keyboard layout. This mean that you could place any
character on any key by defining the relocation in this table. If the character is found there it will
be converted into another character accordingly to the table. For instance, if you want to place
the German DoubleS on the BackSlash key this should be inserted to the table.

This table is stored as a binary file cither in a system dircctory for system supported ones, or in an
user dircctory for an user defined onc. The format is as follow:

< name >
<from char > <to char>

<name > The first string in the file is the name of the keyboard. This is
probably a language.

<from char> Character to convert from. This is actually a null terminated ASCII

string.

<to char > Character to convert to. This is a longchar.
Example:

FFrom Char To Char Comment

swedish'0

"0 000 g 000 g 310 g 141 Swedish
Diacresis a.

") 000 g 000 ¢ 310 g 101 4 Swedish
Diacresis A.

[40 000 g 000 g 310 ¢ 157 4 Swedish

Diacresis o.

{\0 000 ¢ 000 g 310 g 117 ¢ Swedish
Diaeresis O.

Only the keys that are about to be remapped has to be listed, for all others the default will be
used. Default wili be the US ASCII keyboard mapping.

Appendix G

Required changes to BE2 for the 8-bit solution

Changes has to be done in many diffcrent places within BE2. Below is a compilation of the
requircd ones:

Global Defines

Defines that have to be supported to the user.
#define longchar longint
#define NUMOFTFOREIGNCITARS 179

Local Defines to BE2

Internally BE2 have to maintain a number of variables that holds information about current
keyboard name etc.

char *currentKeyboardPath Path to current keyboard remapping file.
0 if default.

char *currentKeyboardName Name of the current keyboard.

struct keyboardRemapStruct { This is the Kepboard Remapping Table
char *fromChar;
longchar toChar;

} keyboardRemapTable]];

struct codeToName This structurc holds the names of
{ the characters and the
codc of
char *charNamc: them. Tt 1s sorted on names.

char charCode;
char tableNumber:
} codeToNameTable|} :

struct nameToCode This structure holds the names of
{ the characters and the
code of
char *charNamc; them. It is sorted on codes.

char charCodec;
char tableNumber;
} nameToCodeTablef] ;

7t

M

New routies

Within IM the keyboard remapping has to be done. The function RemapKey will use the current
table to remap the character sent to it. It returns a longchar holding the character (see Appendix
F for the format of the table). This function will be used internally only. If no table is loaded it
will use the default. This function will be supplicd to the users.

longchar im__RemapKcy(c)
char *c;

To load an alternate Kepboard Remapping Table the function LoadAlternateKeyboard is provided.
This function takes a full path to a Keyboard Remapping Table or looks in the system directory
for the file holding the information. If found it will load it and sct it as the current one. It will
return | if ok, 0 if there is a problem with the filc. A null string will load the default one. The
default one will also be loaded if an error occur. This function will be supplicd to the users.

In the preferences file the user may define the path to the dircctory where it first should look for
Keyboard Remapping Tables.

boolean im__LoadAlternateKeyboard(path)
char *path;

The associated function StoreAlternateKeyboard will store it on a file. Returns 1 if ok, 0 if it
couldn’t storc. The full path has to be supported. This function will be supplied to the users.

boolean im__StoreAlternateKeyboard(path)
char *path;

To get information about the current keyboard the GetKepboardInfo procedure is supported. This
one will return information about the path to the keyboard and the name of it. This function will
be supplied to the users.

void im__GetKeyboardInfo(path, namc)
char *path;
char *namc;

To alter the keyboard mapping three routines are used, GetKeyRemapping, AddKeyRemapping
and DeleteKepRemapping. The GetKevRemapping fanction will retuen the remapping for the
passed string. This function will be supplicd to the users.

longchar im__GetKeyRemapping(c)

char *c;

The AddKeyRemapping procedure will let the applications program to alter the rcmapping of a

key. If there already is a entry for this one, the old one will be replaced. The arguments are: char
from keyboard, char to remap into. This function will be supplied to the users.

void im__AddKeyRemapping(c, newc)
char *c;
longchar newc

The DeleteKeyRemapping procedure will let the applications program to remove the current
remapping for that key and revert to default. If there isn't a remapping for this key, nothing will
happen. This function will be supplicd to the users.

void im__DeleteKeyRemapping(c)
char *c;

The sketch of the keyboard is brought up on the screen by the DisplayKeyboardl.ayout procedure.
This will be done in a window hooked onto the bottom of the current one. From this window it

is possible to redesign the keyboard or load prestored keyboard mappings. This function will be
supplied to the users.

void im__DisplayKeyboardLayout()

TEXT
New routies

Two routines will handle conversion between character code and character name.
FindCharacterCode will convert form character code to character name. It will return a pointer to
a record containing the name. If the character number not is found a NULL pointer is returned.
This function will be supplied to the users.

struct codeToName *text__FindCharacterCode(code)
longchar code;

The other one, FindCharacterName will take a pointer to a string and try to find a character with
that name. It will return a pointer to a record containing the character. If the character name not
is found a NULL pointer is returned. This function will be supplied to the users.

struct nameToCode *text__FindCharacterName(c)
char *c;
Routines to change

The GetChar function have to change in order to pull out character information from the
Environment Style.

longchar text__GetChar(txt, pos)

struct text *txt;
long pos;

The ReadSubString function have to change so it calls FindCharacterName and adds
Environment Styles for non ASCII characters. There will be no change in calling syntax.

The WriteSubString procedure have to change so it calls [lindCharacterCode and quotes non
ASCII characters. There will be no change in calling syntax.

TEXT VIEW
Routines to change
The procedure [ullUpdate must recognize non ASCII charactrers. There will be no change in

calling syntax.

The procedure Update must recognize non ASCI charactrers. There will be no change in calling

syntax.

The procedure Kepfn must recognize non ASCII charactrers. Tt should return a longchar.
longchar textview__KeyIn(ip, ch)

struct view *ip;
int ch;

KEY A1AP

Routines to change

The BindToKey function should store the keys as longchars. The char *keys argument must be
changed to an array of longchars.

boolcan keymap__BindToKey(sclf, functionName, module, keys)
struct keymap *sclf;

char *functionName;
char *module;
longchar keys|;

The Lookup function should lookup a longchar instead.
enum keymap__Lookup(sclf, key, object)
struct keymap *self;

longchar key;
char **objcct:

KEY STATE

Routines to change

The ApplyKeyValues function should store the keys as longchars. The char *keys argument must
be changed to an array of longchars.

cnumn keystate__ApplyKey Values(self, key, ppe, pobject)
struct keystate *self;

longchar key;

struct proctable_Entry **ppc;

struct basicobject **pobject;

IONT

Routines to change

FLIP
a Foreign Language Interface Package for BE2

Current Components

87-07-28
Tomas Centerlind

Information Technology Center
Carnegie-Mellon Univeristy
Pittsburgh, PA 152 13

At the present Andrew and related software lack the possibility to easily handle foreign characters. A few new
routines within BE2 will add this capability. This paper will describe the current components of the Foreign
Language Interface Package, FLIP. The package consist of a set of additional files and modifications to BE2.
This set of new software will make up the basic layer to support foreign languages as well as additional
symbols used in various areas.

The files needed are found in seven directories under user "tc8y", namely:

doc Where all the documentation and files containing modification code are located.
mods Files containing modifications to BE2 source code.
fonts Where complete font files for character set 000 and 361 are located. Fonts available are andy8,

andy10 and andy12 (andy12 is not complete at this time).
keyboard Directory holding keyboard layout files and system supported keyboard remapping files.
ctkeyboard All files for the keyboard table editor.
ct/basics Here kbremap.c and kbremap.H are located.

ct/t A test application.

A full explanation of how to install this in your own BE2 tree is found in Appendix H of the major report. It

is currently installed properly in the ~tc8y/ct BE2 subtree even though it certainly will not work in a few
weeks from the current date.

Below will be a list of files in each directory and a short explanation of its contents:

doc/ p.d General paper.
aad Appendix A, references.
ab.d Appendix B, old stuff, not of interest.
acd Appendix C, first suggestion for solution.
add Appendix D, character sets this is only a page header.
a.d Appendix E, table of character names.
af.d Appendix F, definitions and tables.
ag.d Appendix G, new classes.
ah.d Appendix H, installation of FLIP in BE2.
ai.d Appendix I, Source code listing.

mods/ basics.Makefile.mods

graphic.mods.c Modifications to basics/graphics.c
graphic.mods.H Modifications to basics/graphics.H
fontdesc.mods.c Modifications to basics/fontdesc.c
fontdesc.mods.H Modifications to basics/fontdesc.H
im.mods.c Modifications to basics/im.c
im.mods.H Modifications to basics/im.H
wmgraphic.mods.c Modifications to basics/wmgraphic.c
wmgraphic.mods.H Modifications to basics/wmgraphic.H
sizes.mods.h Modifications to basics/sizes.h
fonts/ andy8.fwm ASCII AndyS8 font file.
andyaaal8.fwm ASCII Andy8 font file.
andyaaau8.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbl8.fwm Rendering characters for Andy8.
andydgbu8.fwm Rendering characters for Andy8.
andy10.fwm ASCII Andy10 font file.
andyaaal10.fwm ASCII Andy10 font file.
andyaaaul0.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbl10.fwm Rendering characters for Andy10.
andydgbulQ.fwm Rendering characters for Andy10.
andy12.fwm ASCII Andy12 font file.
andyaaal12.fwm ASCII Andy12 font file.
andyaaaul2.fwm Upper 128 characters in ASCII table for Andy8 font.
andydgbl12.fwm Rendering characters for Andy12.
andydgbul2.fwm Rendering characters for Andy12.
keyboard/ ibm(32 Directory holding keyboard remapping files
ibm032 klayout File containing keyboard layout information for IBM-RT
sun2 Directory holding keyboard remapping files
sun2.klayout File containing keyboard layout information for SUN-2, currently
empty.
sun3 Directory holding keyboard remapping files
sun3.klayout File containing keyboard layout information for VAX.
vax Directory holding keyboard remapping files
vax.klayout File containing keyboard layout information for VAX, currently
empty.
ct/keyboard/ Makefile Plain Makefile
kbmgr.c Main file for the keyboard manager.
kbmgr.H Ditto.
kbpancl.c Panel view for kbmgr.c.
kbpanel. H Ditto.
kbtable.c Key code table for kbmgr.c.
kbtable.H Ditto.
ct/basics/ kbremap.c File containing procedures uscd by im.

kbremap.H Ditto.

o8]

ct/t/

Makefile
baseclass.c
baseclass.H

t.c

Makefile for the test application
Test program.

Ditto.

File containing main unit.

Appendix A

References

[1] International Organization for Standardization, 7-bit Coded Character Set for Information
Processing Exchange. ISO 646-1973.

2] International Organization for Standardization, Code Extension Techniques for use with the 1SO 7-
bit Coded Character Set. ISO 2022-1972

3] Xerox System Integration Standard, Character Code Standard, XNSS 058405 May 1986.

{4] Apple Corporation, The Script Manager, Engeneering Draft 9/24/86.

[5] International Telecommunication Union, CCITT, Recommendation T.61, October 1984.

(6]

International Organization for Standardization, Coded character sets for text communication - Part 1
and 2. ISO 6937/1, ISO 6937/2, 1983.

Appendix E

Table of character names

The character codes within Character Set 0g:

408 Space

41g ExclamationPoint
42g NeutralDoubleQuote
43g NumberSign

44g CurrencySymbol
453 Percent

463 Ampersand

473 Apostrophe

503 OpeningParenthesis
51g ClosingParenthesis
523 Asterisk

533 Plus

S4g Comma

558 NeutralDash

568 Period

573 Slash

603 0

613 1

623 2

633 3

643 4

653 5

668 6

673 7

703 8

713 9

723 Colon

738 SemiColon

748 LessThan

758 Equals

768 GreaterThan

773 QuestonMark
1003 CommercialAt
101g A

1023 B

1033 C

104g D

1053 E

106g F

1073 G

110y H

111g I

1123 J

1133 K

1143 L

115g
116g
117
120g
121g
1224
1233
124¢
1258
1263
127
130g
131g
1323
133g
134¢
1353
1363
1373
140g
141g
142¢
143g
144¢
1453
1463
147g
1503
1513
152g
153¢
154g
1558
1563
157g
160g
161g
1623
163g
1643
165g
1663
167g
170g
171g
172g
173g
1743
1758
1768

2413
2423
2433

NRXE<CHOROTYOZE

OpeningBracket
BackSlash
ClosingBracket
CircumflexSpacing
LowBar
GraveSpacing

N X g<geE"T®vwHowoIg TRTITETR O Ao

OpeningBrace
VerticalBar
ClosingBrace
TildeSpacing

InvertcdExclamationPoint
Cent
Pound

2444 Dollar

2453 Yen

2473 Section

251g LeftSingleQuote
2524 LetfDoubleQuote
253¢ LeftDoubleGuillemet
2544 LeftArrow

2553 UpArrow

2563 RightArrow

257g DownArrow
260g Degree

261g Plus/Minus

262g SuperTwo

2633 SuperThree

2643 Multiply

2653 Micro

2663 Paragraph

2673 CenteredDot
2703 Divide

2713 RightSingleQuote
272 RightDoubleQuote
273g RightDoubleGuillemet
2743 OneQuarter

2758 OneHalf

2763 ThreeQuarters
2773 InvertedQuestionMark
301g Grave

302g Acute

303g Circumllex

304g Tilde

3058 Macron

306g Breve

3073 OverDot

3108 Diacresis

3123 OverRing

3133 Cedilla

314g Underline

3158 DoublcAcute
3163 Ogonck

317g Hachek

3208 HorizontalBar
321y SuperOne

322g Registered

323g Copyright

3243 Trademark

3253 MusicNote

3343 OncEighth

335g ThreeEighths
33063 FiveEighths
3373 Sevenkighths
3403 Ohm

341g UDigraphAE
3423 USwrokeD

3438 OrdinalA

3444
3454
3463
347g
350g
351g
352g
3533
3544
3558
3568
3573
360g
3613
362g
3633
364g
3658
3663
3678
370g
3713
372
3733
374g
3758
3763

UStrokeH
LDotless)
UDigraphlJ
UMiddleDotL
UStrokel.
USlashO
UDigraphOE
OrdinalO
UThom
UStrokeT
UEngma
LApostropheN
LGreenlandicK
LDigraphAE
LStrokeD
LEth
LStrokeH
LDotlessl
LDigraphlJ
LDotL
LStrokeL
LSlashO
LDigraphOE
DoubleS
LThorn
LStrokeT
LEngma

Appendix F

Definitions for the 8-bit solution

Character Longword, 4-byte: typedef long longchar
<Character Table 1><Character Table 0><Character Code 1><Character Code 0>

Character Table 1 (byte 3), is the table where an eventual diacritic will be found.
Character Code 1 (byte 1), is the character code of an eventual diacritic.
Character Table 0 (byte 2), is the table where the character will be found.
Character Code 0 (byte 0), is the character code.

This longword will hold any character. Each symbol is 16-bits, but a 32-bit word is uscd to accommodate a
diacritic associated with a character. This can be used in a more general way, so that any two symbols can
be used to form a new one. The character codes and the number of the table where they belong may be found
in Appendix C. This representation implies that if the value is below 128, the character belong to the
ASCII character set. If it is between 128 and 255 it is an extended ASCII character. Between 256 and 65335
it is a character with a diacritic, and above 65535 the character belongs in another character table.

Keyboard Table

The Keyboard Table is machine dependent and contains information about the keytop layout and what
output cach key produces. This table is used to draw the keyboard sketch on the screen. The table is stored
as a formatted text file. Each key can have any rectangular shape with an arbitrary text inside. The format is
as follow:

<number of keys>,, Comment
<x>,<y>,<xl>,<yl>,<a/0> <Lin><Uin><Liext>,<Utext>,<Lx>,<Ly>,<Ux>,<Uy>,<Lsize>,<Usize>,<conlig>,

<x> Upper left corner of key rectangle.

<y> Upper left corner of key rectangle.

<xI> Length of key rectangle.

<yl> Length of key rectangle.

<a/o> a if Lin, Uin, Ltext and Utext should be entered in alpha tormat, o if in octal

format. If octal they should be null terminated, and no comma between them,
see example.

<Lin> Lowercase input string or char.
<Uin> Uppercase input string or char.
<Liexe> Lowercase text on keytop.
<Utext> Uppercase text on keytop.
<Lx> Location of lowercase text.
<Ly> Location of lowercase text.
<Ux> Location of uppercase text.
<Uy> Location of uppercase 1ext.
<Lsize> Size of lowercase Lext.
<Usize> Size of uppercase ext.
<config> Recontigurable key (y/n).
<special> Special key, O=normal key, 1=control, 2=shift, 3=caps

Example:

101,times, IBM-RT keyboard mapping (87/06/23) V01
20,20,20,20,0,033 000 000 105 163 143 000 000,3,12,0,0,8.8,n,0, Esc
64,20,20,20,4,,,F1,,3,12,0,0,8,8,y,0,

86,20,20,20,a,,,F2,,3,12,0,0,8.8,y,0,

108,20,20,20,a,,,F3,,3,12,0,0,8,8,y,0,

ﬁO,76,31,20,o,011 000 011 000 124 141 142 000 000,3,12,0,0,8,8,n,0, Tab
502,120,20,42,0,015 000 000 105 156 164 000 000,2,23,0,0,8,8,n,0, Ent=Cr
436,142,42,20,3,,,0,,3,9,0,0,8,8,1,0, 0 on the numerical part
480,142,20,20,a,,,.,,3,9,0,0,8,8.n,0, . on the numerical part

This is the configuration file for IBM-RT. Leading spaces are not allowed between the parameters. No blank
lines should exist. After the last comma in a definition a comment can appear.

Environment Style Transfer Table

This table contain enough information to be able to transfer the information between internal format and
extecrnal format. Externaily each non ASCII character is stored by its name. Internally it is stored as 377g in
the text object together with an Environment Style pointing to this character. The Environment Style will
hold information about the character together with pointers to rendering procedures.

There are actually two tables with the same contents but sorted on different arguments to speed up the
translation. The format of the tables is as follow:

<name> <longchar>
<name> Character name.

<longchar> longchar corresponding to the character name.

Example, Character Set 000g:

Space 40g 000g
ExclamationPoint 4138 000g
NeutralDoubleQuote 42g 000g
LStrokeT 3753 000g
LEngma . 3763 000g

This table is sorted on character codes for fast conversion to external format. The other one is sorted on
character names and is uscd when an external file is read. Theese tables are stored within the procedures that
uscs them.

Keyboard Remapping Table

When a character is typed on the keyboard a code is gencrated and sent to the UNIX-kernel. The kernel
parses this code and sends it further to BE2 as an ASCII character. The programmer receives this key thru
the key binding mechanism. The first thing that then should be done if FLIP is used is to check this

character against the Keyboard Remapping Table. This is done thru the im_RemapKey IM method. The
table contains information about all modifications to the keyboard layout. This means that you could place
any character on any key by defining the relocation in this table. If the character is found there it will be
converted into another character according to the table. For instance, if you want to place the German
DoubleS on the BackSlash key this should be inserted to the table.

This table is stored as a binary file either in a system directory for system supported ongs, or in a user
directory for a user defined one. The format is as follows:

<from char><to char>

<from char> Character to convert from. This is actually a null terminated ASCII string.
<to longchar> Character to convert into. This is a longchar.

Example:
From Char To Char Comment
\O 000g 000g 310g 141g Swedish Diacresis a.
0 000g 000g 3108 1013 Swedish Diacresis A.
N0 000g 000g 3108 1573 Swedish Diaeresis o.
\O 000g 000g 3108 1173 Swedish Diacresis O.

Orly the keys that are about to be remapped has to be listed, for all others the default will be used. Default
wiil be the US ASCII keyboard mapping.

Font Name [Extension
The font names must be extended since there can be up to 256 font files associated with each font within a

family. A restriction within WM limits the symbols that are allowed to appear in a font name to letters.

This has reduced the possibility to construct an easy to read format. The extension to the font name should
look like this:

<table><l/u><size><face>.fwm

 Name of the family this font belongs to.

<table> Number of the tble character belongs to. The number is a three-letter octl
string where the letter "a” is 0, "b" is 1 and so on up to "h". All lower case.
<l/u> “1" if char belongs to the lower 128 character, "u” if the upper 128.
<size> Sizc of the tfont.
<face> Bold. Ialics etc.
Example:
timesaaal10b.fwmn [s a tont from family andy, table 000 and the lower 128 characters.

Rendering Table

The rendering table is used to enhance the appearance for characters with diacritics. It consists of a list of
characters, and what character in a Rendering Table they correspond to. The table is stored within the routine

that uses it. There is currently one Rendering Table for Latin characters with diacriatics. This one is located
in Character Set 3618 (sce Appendix E). The format is as follow:
<from char> <to char>

<from char> longchar containing character with diacritic.
<to char> longchar containing character with rendering character.

Appendix G

Description of new BE2 classes and variables.

Changes have to be made in a few places within the basic classes of BE2. For an exact description on how
to install the software, see appendix H. Below is a summary of the required changes:

Global Defines

The new variable type longchar must be included in the file <sizes.h>. This filc usually docsn't have to be
included, but sometimes in conjuction with the class command it might be necessary.

typedef long longchar;

Local Defines to BE2

Internally BE2 has to maintain a number of variables which hold information about current keyboard name
cte.

char *kbremap_Path; Path to current keyboard remapping file. 0 if default.
char *currentKeyboardName Name of the current keyboard.
struct keyboardRemapStruct { This is the Keyboard Remapping Table

char *fromChar;
longchar toChar;
} keyboardRemapTable(];

struct codeToName This structure holds the names of
the characters and their codes. It
char *charName; is sorted by names.
char charCode;
char tableNumber;

} codeToNameTablef] ;

struct nameToCode This structure holds the names of
{ the characters and their code. It
char *charNamg; is sorted by codes.
char charCode;
char tableNumber;

} nameToCodeTable(] ;

IM
New routines
Within IM the keybourd remapping has to be done. The function RemapKey will use the current table to

remap the character sent 1o it. It returns a longchar holding the character (see Appendix F for the format of
the table). This function must be called 1f FLIP is used to extend the character set. If no table is loaded it

will use the default. Default is precently an empty table. If no remapping for the passed character is found,
NULL will be returned. This function will be supplied to the users.

longchar im___RemapKey(c)
char *c;

To load an aliernate Keyboard Remapping Table the function LoadAlternateKeyboard is provided. This
function takes a full path to a Keyboard Remapping Table, or a file name and looks in the dircctories
specified in the users preferences for the file holding the information. If found it will load it and sct it as the
current one. It will return TRUE if ok, FALSE if a problem occurs while loading the Keyboard Remapping
Table. A null string will load the default one. Nothing will happen if an error occurs while trying to get the
keyboard remapping. The default table is currently an empty table. This function will be supplied to the
users.

In the preferences file the user may define the path to the directory where it should look for Keyboard
Remapping Tables.

boolean im__LoadAlternateKeyboard(path)
char *path;

The associated function StoreAlternateKeyboard will store it into a file. Returns TRUE if ok, FALSE if it

couldn't store. The full path has to be sent as an argument to the function. This function will be supplicd 1o
the users.

boolean im__StoreAlternateKeyboard(path)
char *path;

To get information about the current keyboard the GetKeyboardinfo procedure is supported. This procedure

will return information about the path to the keyboard and its name. This function will be supplicd to the
uscrs.

void im__GetKeyboardInfo(path, name)
char *path;
char *name;

The AddKeyRemapping procedure will lct the applications program alter the remapping of a key. If there
alrcady is a entry for this one, the old one will be replaced. The arguments are: a null terminated string of
characters from the keyboard, longchar to remap into. This function will be supplicd to the users.

void im__AddKeyRemapping(c, newc)
char *c;
longchar newc;

The DeleteKeyRemapping procedure will let the applications program remove the current remapping for
that key and revert to default. If there isn't a remapping for this key, nothing will happen. This function
will be supplied to the users.

void im__DeleteKeyRemapping(c)

char *c;

The information needed for these routines isstored in the IM object. Here are the variables which have been
addedd:

struct kbremap_Struct Structure for remapping entities on the heap.

char *fromChar; Pointer to string to remap from.

long toChar; longchar to remap to.
I
char *kbremap_Path; Path to current Keyboard Remapping File.
struct kbremap_Struct *kbremap_Table; Array of remapping entries.
int kbremap_TableLength; Length of remapping table in number of entrics.
mt kbremap_SpaceAlloc; Space allocated for remapping table.

GRAPHIC

New routines

A new DrawStringLongChar routine must be added to print strings composed of longchars. This procedure

take the same arguments as the DrawString procedure, except that the String argument must be an array or
longchars. '

void graphic__DrawStringLongChar(sclf, string, operation)
struct graphic *self;

longchar string(];

long operation;

A new DrawTextLongChar routine must be added to print strings composed of longchars. This procedure
take the same arguments as the DrawText procedure, except that the String argument must be an array or
longchars.

void graphic__DrawTextLongChar(self, string, stringLength, operation)
struct graphic *self;

longchar string(];

long stringLength;

long operation;

TEXT
New routines

Two routines will handle conversion between character code and character name. FindCharacterCode will
convert from character code to character name. It will return a pointer to a record containing the name. 1f the
character number is not found a NULL pointer is returned. This function will be supplicd to the users.

struct codeToName *text__FindCharacterCode(code)
longchar code;

The other one, FindCharacterName will take a pointer 10 a string and try to find a character with that name.

[t will return a pointer to a record containing the character. If the character name is not found a NULL
pointer is returned. This functon will be supplied to the users.

struct namcToCede *text_ FindCharacterName(c)

char *c;

The GetLongChar function has to be added in order to pull out character information from the Environment
Style. It is equivalent to the GetChar function except that it returns a longchar instead.

longchar text_GetLongChar(txt, pos)

struct text *txt;
long pos;

Routines to change

The ReadSubString function has to change so it calls FindCharacterName and adds Environment S tyles for
non-ASCII characters. There will be no change in calling syntax.

The WriteSubString procedure has to change so it calls FindCharacterCode and quotes non-ASCII
characters. There will be no change in calling syntax.)

TEXT VIEW
Routines to change

The procedure FullUpdate must recognize non-ASCII characters. There will be no change in calling SyntLax.
The procedure Update must recognize non-ASCII characters. There will be no change in calling syntax.

The procedure Keyln must recognize non-ASCII characters. It should return a longchar.

longchar textview__KeyIn(ip, ch)
struct view *ip;
int ch;

FONT DESC
New Routines

If longchars are used, the TextSize function has to be replaced with another function that recognizes
longchars. The TextSizeLongChar serves this purpose. To this function an array of longchars is passed. The
new format should look like this:

long fontdesc__TextSizeLongChar(fontdesc, self, text, TextLength, XWidth, YWidth)
struct fontdesc *fontdesc;

struct graphic *sclf;

longchar text([];

long TextLength;

long *XWidth;

long *Y Width;

If longchars are uscd, the StringSize function has to be replaced with another function that recognizes

longchars. The StringSizeLongChar serves this purpose. To this function an array of longchars is passed.
The new format should look like this:

long fontdesc__StringSizeLongChar(fontdesc, self, text, XWidth, Y Width)
struct fontdesc *fontdesc;

struct graphic *sclf;

longchar text(];

long *XWidth;

long *YWidth;

Lookup for characters with diacritics in the Rendering Set will be done by the FindRenderingCharacter
function. The argument is a longchar with the character and diacritic. The function will return a longchar
containing the number of the Character Set where the rendering character will be found and the character
within the set. If no rendering character is found NULL is returned. The function finds out the rendering
character by looking it up in a table (sce Appendix F) kept in the function. This function will be supplicd
to the users.

longchar fontdesc__FindRenderingCharacter(c)
longchar c;

KBMGR
New Routines

An editor for the Keyboard Remapping Tables is placed in an object named kbmgr. This dynamically loaded
object will export two class procedures, one to open the keyboard window and one to closc it. To use the
keyboard remap editor, the user must add an option to the pop-up menu that will display the mock-up
keyboard on the screen. The two procedures that should be used for this are OpenKeyboardWindow and
CloseKeyboard\WVindow.

The sketch of the keyboard is brought up on the screen by the OpenKeyboardWindow procedure. This will
be done in a window hooked onto the bottom of the current one. From this window it is possible to
redesign the keyboard or load a prestored keyboard mapping. The pointer to the view where the keyboard
should be inserted must be supported. The first boolean argument (edit) specifics whether the user may edit
a Keyboard Remapping Table. The second one determines if another keyboard remapping may be selected.
This function will be supplied to the users.

void kbmgr__OpenKeyboardWindow(sclt, cdit, sclect)
struct view *self;

boolean edit;

boolean select;

The sketch of the keyboard is hidden by using the CloseKeyboardWindow procedure. All space used on the
heap is deallocated. The pointer to the view where the keyboard window is located must be supported. This
function will be supplicd to the users.

void kbmgr__CloseKeyboardWindow(sclf)
struct view *self;

KBREMAP

New Routines
This new object should be totally transparent to the user. All access to it is done thru IM. The reason for
this is to avoid loading the program code when not needed. For a full description of arguments and usage,
see under IM. The names of the functions within kbremap are:

longchar kbremap__RemapKey(c)

boolean kbremap __LoadAlternateKeyboard(path)

boolean kbremap_StoreAlternateKeybdard(path)

void kbremap__GetKeyboardInfo(path, name)

void kbremap__ AddKeyRemapping(c, newc)

void kbremap__DeleteKeyRemapping(c)

Miscellaneous Changes

The Window Initiallization routine must look in the preferences file for the scarch paths to the keyboard
remapping tables. The entry should look like this:

* KeyboardRemappingPath:/cmu/itc/tc8y/keyremap:/usr/andy/keyremap
The Window Initialization routine must look in the preferences file for the default keyboard remapping, and
load that one. It will look for a file with the extension ".kremap. The entry should look like this:

wm.KeyboardRemapping:swedish will load the swedish keyboard remapping.

Appendix H

Installation of FLIP set in BE2

Changes have to be made in many different source files within BE2. The actual code that should be inscrted
may be found in Appendix I. Below is a summary of the required changes:

basics/sizes.h Add a typedef to the list of types, sce sizes.mods.h.

basics/im.c In IM indirect calls to kbremap have to be added, the procedures arc:
im__RemapKey
im__LoadAlternateKeyboard
im__StoreAlternateKeyboard
im__GetKeyboardInfo
im__AddKeyRemapping
im__DecleteKeyRemapping
Place these last in the file. In addition to these procedures a few other
modifications should be addced, sce im.mods.c.
basics/im.H Defines, structs and methods in file im.mods.H should be added.

basics/graphic.c Proccdures in file graphic.mods.c should be added. The procedures arc:
graphic_DrawCharsLongChar
graphic__DrawStringLongChar
graphic__DrawTextLongChar

They must come in this order and be located at the end of the file.

basics/graphic.H Defines and methods in file graphic.mods.H should be added.

basics/wmgraphic.c Procedures in file wmgraphic.mods.c should be added. The procedures are:
wmgraphic_DrawCharsLongChar
wmgraphic__DrawStringLongChar
wmgraphic__DrawTextLongChar

They must come in this order and be located at the end of the tile.

basics/wmgraphic.ll Defincs and methods in file wmgraphic.mods.H should be added.

basics/fontdesc.c Functions in file fontdesc.mods.c should be added. The functions are;

fontdesc__FindRenteringCharacter
fontdesc___TextSizeLongChar
fontdesc__StringSizeLongChar

They must come in this order and be located at the end of the file.
basics/fontdesc.H Methods and classprocedures in file fontdese.mods.H should be added.
basics/kbremap.c This file should be installed in the directory.
basics/kbremap.H This file should be installed in the directory.
basics/Makefile The makefile must be updated to reflect the changes to the files. Sce:

basics.Makefile.mods.

A new directory named keyboard must be added to the base of the tree. To l\his dircctory the following
files should be added:

keyboard/kbmgr.c This file should be installed in the directory.

keyboard/kbmgr.H This file should be installed in the directory.

keyboard/kbtable.c This file should be installed in the directory.

keyboard/kbtable.H This file should be installed in the directory.

keyboard/kbpanel.c This file should be installed in the directory.

keyboard/kbpanel.H This file should be installed in the directory.

keyboard/Makefile The maketile must be added to reflect these additional files. Sce:

keyboard.Makefile.mods.

The global Maketile must be altered so that files in directory keyboard will be compiled. Sce:
Makefile.mods.

Appendix I

Source code listing

This appendix contains source code for all new files and all that are modified.

New files:

- basics/kbremap.c

- basics/kbremap.H

- keyboard/kbmgr.c

- keyboard/kbmgr.H
- keyboard/kbpanel.c
- keyboard/kbpanel. H
- keyboard/kbtable.c
- keyboard/kbtable. H

- keyboard/Makefile

Files modified:

- basics/fontdesc.c

- basics/fontdesc.H

- basics/graphic.c

- basics/graphic.H

- basics/im.c

- basics/im.H

- basics/Makefile

- basics/sizes.h

- basics/wmgraphic.c
- basics/wmgraphic.H

- Maketile

