
_, .. CMU-ITC-84-033

A Network Window.Manager

James GoslinDavid S. Rosent-hal

Information Technology Center
Carnegie-Mellon University

Pittsburgh, PA 15213

CR Keywords: -. User interfaces, distributed/network graphics,
graphics packages, window managers, remote pro-
cedure call.

An experimental window-manager for bitmapped displays has been
developed that exploits 4.2 Berkeley Unix's interprocess communication
mechanism, and the DARPA TCP/1P protocols. One window--manager pro-
cess exists for each display; it tiles the screen with windows, and manages a
mouse, keyboard and pop-up menus. Client processes make remote pro-
cedure calls requesting the window manager to create or destroy windows,
and to draw text and graphics in them. The window manager asynchro-
nously requests clients to re-draw their images when windows change size.

Introduction
You will get a better Gorilla effect
if you use as big a piece of paper
as possible.

Kunihiko Kasahara,

Creative Origami.

The charter of the Information Technology Center is to introduce a network of several
thousand personal workstations to Carnegie-Mellon's campus. In preparation for this, an ex-

perimental window-manager for bitmapped displays has been developed that exploits 4.2
Berkeley Unix's interprocess communication mechanism@cite(4.2IPC), and the DARPA
TCP/IP protocols. One window-manager process exists for each display; it tiles the screen
with windows, and manages a mouse, keyboard and pop-up menus. Client processes make re-
mote procedure calls (RPC) requesting the window manager to create or destroy windows,
and to draw text and graphics in them. The window manager asynchronously requests clients

to re-draw their images when windows change size.

A general font mechanism supports high-quality text output; bitmap, _ctor, and other font
definitions may be used. Fonts are named by strings, for example TimesRomanl2, and the
window manager chooses the closest font available for its display. Clients may inquire the
full range of parameters describing each font in each window.

The graphics interface uses pixel coordinates, and primitives such as RasterOp, line, and text.
The RPC implementatitm chains and buffers these operations, so that most messages to the
window manager are large. Using TCP/IP to transport the messages enables the window
manager to operate gracelully in a distributed environment. For common operations, overall

system performance is not much slower than one giving user processes direct access to the
hardware.

All access to the display hardware is mediated by the window manager, insulating applica-
tions from its pecutiarities@cite(CahnYen). This is essential; the campus network will be an

open system, and applications must operate on incompatible workstations. The window

-2-

manager currently runs on a network of 20+ SUN workstations, using their 1000-by-g00 pix-
el display, keyboard, and mouse. Porting it to future workstations will involve re-writing

some loxa_level hardware interface routines in the window--manager process; applications will
survive unchanged.

In the follow4ng a user is a person requesting services from a workstation. A client is a pro-
gram requesting services from the window manager.

The User's View "_

The user of a workstation running the window manager sees a screen tiled with windows.
The windows completely cover the screen, without overlapping one another. A user's initial
window layout is specified in a profile file, though it may be changed at any time. Each win-
dow has a headline, containing an indentification of the client program attached to it, and the
machine the client is running on. As the mouse is moved, a cursor tracks it on the screen,
changing as it moves from window to window, or as clients use it as a feedback mechanism.
Characters typed on the keyboard appear in the window containing the cursor, assuming the
window is one to which it is sensible to type. Characters typed at the clock, for example,
simply disappear.

When the mouse buttons are pressed various window-specific things happen; menus pop up,
items are selected, objects move, and so on. Menus normally pop up on the down stroke of a
mouse button. They appear near the cursor, ox_rlapping the windows under them. The
menu is removed, and a selection possibly made, on the up stroke of a mouse button. While
the mouse button is down the menu item under the cursor is highlighted. Menus may be
hierarchic: any menu item may have a submenu, which will pop up nearby when the cursor is
in the parent. If the cursor is moved into the submenu, the process repeats.

Using a menu that normally appears when the middle button is pressed, the user can change
the size of a window and reposition it. A window may be hidden; hidden windows appear as
items in a submenu. New windows may appear on the screen at any time, as client processes
request them. They cause exisiting windows to be re-sized or hidden at the whim of the win-
dow manager; creating a window does not involve interaction with the user. In fact, users
cannot create windows directly; they can only create processes that will create windows.

The norm among window managers permits windows to overlap@Cite(Canvas, NUnix,
BrownASH, SunWM, LisaWM, RobPike). Tiling window managers are
rare@Cite(StarUI). Our decision to experiment with tiling was based on two observations of
overlapping window managers in use:

- Experienced users typically lay out their screens so that the windows do not in fact
overlap.

- Creating a new window is traumatic. The user has to point out opposing comers of
the screen space to be allocated to the new window, and often adjusts several other
windows.

It seems that only transient windows o_rlap others; the reason they do so is the dispropor-
tionate number of interactions needed to adjust the layout. In contrast, the constraint that

windows must tile the screen allows the window manager, using heuristics, to allocate space
for new windows and adjust the screen layout autonomously. The heuristics need not be
complex, the user can override the window manager's decisions if the investment in interac-
tion would pay off.

The Client Program's View

-3-

The client program interacts with the window manager by means of function calls, file
descriptors, and signals. The design of this interface had three objectives.

- It should be as simple as possible. The role of the window manager is to arbitrate
among competing requests for real resources, such as the screen, the colour map,
and the mouse. Within the limits needed to protect others, clients should be free to
use the resources they arc allocated as they see fit. If clients want a complex inter-
face, for example GKS_i_ite(GKSReport), this can be built on top.

- Clients sh_xld regard their requests for resources as hints. The window manager will
use its best efforts, but cannot guarantee to pro_4de the requested amounts. This has
two effects. The user, who after all has to look at the result, has the final word on
resource allocation. Clients are more robust; at times when resources are short re-

quests typically succeed, at least partially, instead of failing. The client can use the
resources allocated to ask the user for more, for example by displaying a plea to
'haake me bigger". Clients prepared to deal with partially satisfied requests are also
more likely to survive changes in the underlying hardware.

- Existing programs needing only simple terminal I/O (i.e. those without ioctlO calls)
should need no changes to run under the window manager. Terminal-oriented pro-
grams should either be able to use an intermediary process emulating a specific ter-
minal type, or make appropriate changes to use the window manager directly.

Clients see windows as rectangular spaces of integer coordinates in which they can draw.
The window manager ensures that the origin of the space is at the top left of the allocated
screen space, and that output outside the rectangle from the origin to (Xsize, Ysize) is
clipped away. The client may inquire the values of)(size and Ysize if it wishes to adjust its
image to fit the allocated space.

The client draws using a functional interface. Examples of the operations available are:

w -- DefineWindow(h) Creates a window w on host /_

SelectWindow(w) Makes w be the current window.

SetFunction(op) Sets the combination function for subsequent
operations.

DraWro(x,y)
and Mo_-fo(x,y) Moves the current position to (x,y), with and

without drawing a line on the way.

RasterOp(sy,sy,dx, dy,w,h) Performs "d = d op s" for every
corresponding pixel in the rectangles whase upper
left comers are (sx,sy) and (dx,dy), both (w,h)
wide and high. Op is an arbitrary boolean function
specified with SetFunction. The source and desti-

nation rectangles may reside in bitmaps on the
screen or inuser memory. See

@Cite(NewmmN proull).

RasterSmash(d.x, dy,w,h) Is a special _rsion of RasterOp for situations
where only the destinatitm rectangle is needed.

f = DefineFont(n) Defines a font v_ahosename is the string rL

-4-

SelectFont(f) Selects the defined font ffor subsequent text draw-
ing.

c = DefineColor(n) Defines a color whose name is the string n.

SelectColor(c) Selects the defined color c for subsequent drawing.
These functions support coloured primitives; anoth-
er mechanism gives access to colour indices and the
corresponding colour map entries to support
coloured images.

CretlNmensions(& x,& y) Sets x and y to the dimensions in pixels of the
current window.

SetDimensions(minX,maxX,minY,maxY)Hints to the window manager
about the desired size of the current window.

DefineWindow takes only one parameter, the host on which the window is to be created. It
returns a handle giving access to the window's resources. If the window is on the same host,
the client may choose to do graphics output via memory-mapped access to the device regis-
ters or via the communication channel to the window manager. The choice is made by load-
ing a different (and bigger) library; it is not visible at the interface.

Many other parameters affect the initial allocation of resources to a newly created window.
Conceptually, they are all defaulted, and the client must use the normal window manager
calls to request changes. In practice, the window manager uses lazy evaluation of window
creation, so that change requests made early in a window's history are likely to affect its ini-
tial allocation. Clients need not know the complete parameter set, an important considera-
tion in an evolving system.

Clients are expected to deal with windows of any size. The size specification given in SetDi-
mensions is only a hint. At any time, either the user or the window manager may decide to
change the size of the window, disregarding the hint. Clients allocated windows they cannot
readily use are free to ask the user to change their size.

A client may have many windows, but the window manager calls affect only the selected
window. Newly created windows are selected automatically, but other windows may be
selected at any time. This technique is common in graphics
systems@cite(GKSReport, COREReport); it allows complex lookups without severe perfor-
rnance costs and shortens parameter lists (and thus messages).

DefineFont takes as its only parameter the name of the font to be defined. For example
"TimesRomanl2b" defines 12 point Times Roman bold. If the font library doesn't contain

exactly the required font, something "close" will be substituted. For example, "TimesRo-
manl2" may be substituted for "TimesRomanl2b" if no boldface Times Roman exists. It
returns a handle that can be used to select the font.

'The value returned by D_neFont is actually a pointer to a structure that describes in great
detail the properties of the font. It is important to note that fonts are window sF,_cific.
"DcfineFont("TimesRoman12b')" in two different windows might return two different _zllues
if, for example, the window's v0ere on two displays with different properties. Clients must
use information from the font structures in order to position strings Constants are likely to
bring disaster.

Text is output using the normal write system calls on a window's file descriptor. It appears

-5-

at the current (x.y) position using the selected font. There are several different routines for
drawing strings relative to a positioning parameter. These apply only to the selected window.
For example:

DravCString(WindowWidth/2, WindowHeight/2,
BetweenLef tAndRight Bet'_eenTopAndBascline, "Center');

draws the string "Center" centered vertically and horizontally in the current window.

The window manager notifies the client whenever the size of its window has changed, and
the client is expected to restraw its contents. Notification could be either synchronous, via
synthetic input events, or asynchronous, via a Unix signal. Only asynchronous notification is
currently implemented. The window manager makes no attempt to preserve the contents of
the window being resized. There are two reasons for this apparent lack of courtesy:

- Different clients need to respond to re-sizing in different ways. For example, an edi-
tor may reformat a document to suit the new space, a clock may center its face in
the window and scale it to be as large as possible, or a chart may rescale its borders
and show more detail.

- Window managers that save window images often develop clients that don't cope
adequately with re-sizing. Insisting on re-drawing forces clients to deal with re-
sizing too.

It can be claimed that insisting on re-drawing makes client programs more difficult to write,
but experience with this and other systems@citc(RosenthalSeattle) does not support the
claim. Programs need to be re-structured, moving the code that initially calculates scales and
draws borders to a procedure that can be re-ex_xzuted. It's more a matter of discipline than
of extra work.

The Implementation
The client interface was designed with the idea of implementing it by mapping the bitmap
and the display device registers into each client process. Unfortunately, the SUN 1.5
hardware we had could not save and restore the display registers on context switches, so the

display could be mapped into at most one process. Thus, the window manager is currently
implemented as a tingle user process that communicates with the screen, mouse, keyboard
and all the clients. We use the SUN-supplied device driver to map the bitmap and the
display device registers into the window manager's address space. All other I/O uses stan-
dard Berkeley 4.2 BSD system calls. No kernel changes were needed.

The window manager process maintains the state of all windows, performs all the primitive
graphic operations, receives all mouse inputs, and routes keystrokes, menu selections, and re-
draw requests to the clients. It communicates with the clients via a remote procedure call
mechanism implemented using 4.2 BSD sockets.

CwBegin(Figure)
@blankspace(3in)
@Caption(Window manager structure)
Cct_nd(Figure)

A socket, as defined in 4.2 BSD Unix, is one end of a communication path. It has an associ-

ated type, naming domain, and protocol. The type defines the I/O semantics of operations on
the socket; we use stream sockets, which provide byte streams much like pipes. Every sock-

et has a name and a protocol in some dt_rnain; we use the Internct naming domain and the
TCP//P protocol for compatibility with other machines. A socket may be connected to anoth-
er socket having the same domain/protceol pair. A connection bet,a_een sockets within one
machine is much like a named pipe in other versions of Unl:_ In fact, 4.2 implements pipes

as connected pairs of sockets. All window manager calls in the client turn into messages sent
via these pipe-like connections. The socket mechanism is especially elegant in that it makes
intermachine boundaries transparent. Neither the client nor the window manager really

-6-

know whether there is a machine boundary between them.

When the client requests the creation of a window a communication path is set up between
the client and the window manager. The window manager creates a structure in its address
space which describes the properties of the window. It doesn't actually create the window
until a request is recie_xt that requires its exi_ance. This allows the window creation heuris-
tics to use any information sent to the window manager in the intervening time.

The window creation heuristics are primarily based on four parameters: the minimum height
and width, and the '_referred" height and width. We have tried several sets of window crea-
tion heuristics. The most complex, and one of the shortest lived, involved considering each
window to be a rectangular frame with springs holding the sides apart, then performing a re-
laxation of a system of equations to minimize the energy in the compression of the springs.
This was very uncomIortable to use since it almost always completely rearranged all windows
each time a new window was created. The present heuristics will pick one window and split
it to give some of its area to the new window. The window to split and the position and
orientation of the split is based on minimising an error function that attempts to balance
areas and preserve aspect ratios.

Character drawing is the most frequent request to the window manager. The performance of
this operation is crucial. Just as the remote procedure call mechanism batches together win-
dow manager requests, character drawing requests are hatched together. The lowest level
routines that draw characters then recieve long strings. This allows the precomputation costs

to be spread over many characters: clipping is done based on strings, not characters; and
some RasterOp setup is removed from the inner loop.

A font as used by Define.Font and the character drawing routines is broken into two parts:

some general information about the font and an array of icons. The general information in-
cludes the name of the font and a maximal bounding box for all of the icons in the font. An
icon is a drawing, in some representation, that may be placed on the screen. Usually these
icons correspond to the shapes of characters from the ASCII character set, but they need not.
There are many representations possible for an icon. For e_mple, they may be described by
a bitmap specially aligned for the SUN hardware or they may be described by a set of vec-
tors. Icons are split into two parts: the type-specific part, and the generic part. The tyl_-
specific part contains all the information that depends on the type of representation used for
the icon, while the genetic part contains the information that is independant of the represen-
tation. When a client program defines a font, the information returned to it contains only
the generic information for each icon in the font: all of the type-specific information is elim-
inated. This allows the window manager to implement a font in a way that is tuned to each
type of device while insulating clients from the differences and still allowing them sophisticat-
ed access to the properties of the font.

@comment{**The shim concept, and why it is a performance win.}

There is a limit on the number of clients that the window manager may ha_e that is imposed
by the limit on the number of open file descriptors. Each socket accessible by a Unix process

uses one file descriptor. Typically, Unix processes are limited to 20 file descriptors. The
implementation of 4.2 BSD Unix allows this limit to be increased by recompiling the kernel,

but the limit cannot be extended beyond 31. Nornaally this limit isn't a problem since having
more than a half dozen windows visible on the screen looks cluttered and confusing. Unfor-
tunatly, hidden windows also take up file descriptors and having too many of them can cause
problems. We don't know of a satisfactory solution to the problem. One possibility that v0e
considered was to use connectionless datagram sockets which would have meant that the win-
dew manager would only need one socket on which to recieve from all of its clients. The

problem with these is that at present only unreliable datagrams are implemented: datagrams

-7-

get through with some probability between 0 and 1, exclusive.

Assessment

Because the interface is at a wry low level, the window manager provides clients with very

few services. Fortunately, this has not deterred people from writing client programs. The re-
quirement to respond to try-draw requests has not caused problems. For many clients, the use
of clipped and shifted pixgl coordinates is natural and efficient. We exIxx:t also to provide a
higher-level interface, supporting floating-point coordinate spaces, by means of a library.

When roe discovered that we would have to implement the window manager using interpro-
cess communication (IPC) rather than direct access to the hardware, w_ expected the perfor-
nuance to be unacceptable. Traditionally, the use of IPC in Unix has had severe performance

penalties. But, to our surprise, the performance of the window manager is respectable. Com-
mon operations, such as drawing text, scrolling and clearing windows are almost indistin-
guishable from the same operation performed directly on the hardware. Line drawing, and
small RasterOps between the screen and process address space also work well. Drawing grids
of individual points, and large RasterOps betv0een the screen and a process run much too
slowly.

Window manager calls which return values and therefore require a full handshake between
the two processes typically take about 19ms each if both the client and the window manager
are on the same machine. This only slows to 22ms if they are on different machines. Very
few operations require a full handshake and the rest are generally much faster. For example,
the Emacs text editor takes 360ms to completely redraw the screen when it is run on a SUN
with direct access to the display. The same test under the window manager but displaying
the same text with the same font and using the same amount of screen area takes 530ms.
This is 47%slower, which is hardly perceptible. Performing this test again with Emacs and
the window manager on different machines yields an interesting result: the full redraw takes
390rns. Only 8%slower --the two machines are being effectivly used to divide the computa-
tional load.

One of our applications is an editor, similar in spirit to Bravo@cite(Bravo) or
LisaWrite@cite(LisaWrite), that continuously reformats the document being edited. It deals
with kerned, proportionally spaced fonts, left and right justification and filling, reformatting
the current paragraph at every keystroke. One might expect that this would be feasible only
if the editor had full knowledge of, and an intimate association with the hardware. Hovaever,
working via IPC channels and our window manager involves only a small performance degra-
dation.

The reasons for the acceptable pe_ormance are simple:
- For the common operations, the number of pixels affected per byte transferred is

large. This is true for character drawing.
- The underlying IPC mechanism -4.2 sockets and TCP/IP -performs very well.
- Remote procedure calls that don't return values get chained to following calls. The

RPC mechanism builds large buffers of requests and avoids sending unnecessary
messages.

- Few procedures in the window manager interface return values, and those that do

are called infrequently. The corrunon operations RasterOp, line drawing, character
drawing and positioning do not return _ues. Typical interactions bet_en the win-

dow manager and the client consist of a single message from the client containing
many operations.

E_ntually we would like to move to a hybrid implementation: one that uses direct device ac-

-8-

cess if possible, otherwise falling back on remote procedure calls. Even if direct device access
is possible, most clients are unlikely to use it. Few need the extra performance, and loading

the extra graphics library will make them much bigger. Abo',v all, most will prefer to
remain device-independent.

The use of remote windows has become very important to us. Among other uses, v,_ have:
- A program similar to write that allows two users to communicate. It opens windows

on each screen and passes messages back and [orth between the two.
- A program for arbitrating a game of go. The players each have a window showing

the board and game status summaries.
- A performance monitor that draws "EEG4ike" traces of important system statistics.

Most people run it on their own machine, but in our environment where workstations

are diskless, the performance of the disk server is equally important. It is easy to
run the performance monitor on the disk server, displaying its results in a window
alongside the local performance monitor. Correlating the displays in this way has re-
vealed several interesting performance-related problems.

Acknowledgements
Bob Sproull has been an invaluable source of advice. The other members of the ITC's User
Interface group, Fred Hansen, Tom Peters, and James Peterson, rushed in where others
feared to tread, and suffered the consequences.

Paper to be givenat uhct'rote_- I cc_erence
22--26October,1984

GreshamHotel,Dublin
Usrat..shmo,c_ao

An Editor-Based User Interface Toolkit

Abstract

A toolkit been constructed at the Information Technology Centre for build-
ing interfaces between users and programs. The host system is a high--power
personal workstation running 4.2BSD Unix and having a large bitmap
display. The toolkit defines a set of data types which programs can manipu-
late and a mechanism for automatically mapping these objects onto a
display. Programs can manipulate these data objects and the toolkit takes
care d updating the screen image appropriatly. Similarly, users can edit the
objects and the program will be informed. The most powerful primitive data
type is the documena building a text editor in the same class as Bravo or
LisaWrite on top of it is almost trivial. The flexibility of this approach al-
lows other tools, such as a help system, a mail system, or even just a com-
mand language typescript, to use these facilities.

Introduction

The complexity of the implementation of computer user interfaces has been increasing
dramatically as the power of computer systems has increased. The teletype view of the world
didn't allow for much flexibility and hence forced simplifications. CRT terminals with their
24x80 matrix of characters led to simple graphical interaction techniques and such packages
as termcap which captured many the common operations. High powered workstations with
large Iast bitrnapped displays and graphical input devices (mice) are becoming very common.
This gives programs the opportunity to have _ery sophisticated interfaces with dials, meters,
buttons, menus, typeset documents, and many other types of objects. Such interfaces are
typically very complicated since they have to support all of these types of objects and
somehow weld them into a cohesive whole.

The toolkit described in this paper is an attempt to provide a general framework for building
such interfaces and to provide an open-ended set of objects that can be placed into the frame-
work. It has se_eral goals:

- To lead to simple and uniform interfaces: all programs which use this toolkit should
have interfaces whose various components act alike. For example, cutting and pasting
should work similarly everywhere.

- To be simple to program: the system must be understandable to the programmers that
are to use it.

- To be flexible: to allow new kinds of behaviours to be defined easily.
- To effeetivty exploit the capabilities of the hardware.
- To perform well: There is a myth in computer science that performance is almost ir-

relevant when compared to functionality. In constructing user interfaces, a slow
powerful system is almost always less useful than a fast simple one.

The system was built on a high power personal workstation running 4.2BSD Unix (SUN
workstations). We built our own window manager through which the user interface toolkit

perforrns all of its interactions. The components fit together roughly like this:

-2-

The window manager is a

ates access to the display

amongst the various client
processes. Client processes
may talk to the display
directly with no assist, but /
usually the user interface r--"'--'-"
toolkit is there to help. It sits bet,,ueen the client program and the window manager keeping
screen images up--to-date, "handling editing requests from the user and client, and informing
each about the others changes.

The fundamental datatype is a view. A view corresponds to a rectangular patch of screen
space in which a data object will be displayed. The data object may be a composition of oth-
er views or may be a primitive data object. Some primitives are defined in the toolkit and
others may be defined by client programs.

Within a view is presented an image of a object. Objects may be integers, ranges (used for
scroll bars), booleans, enumerations or documents. Other object types will eventually be sup-
ported as well. There are hooks in the system which allow one to define new types of objects
and methods of representing them on the screen. The view manager takes care of all I/O,
displatching mouse hits and characters, performing full redraws and incremental updates of
the image.

An Example
For ezcample, say that one wanted to write a card game wh_e interface contained a
typescript of an ongoing computer-generated commentary, a few buttons having to do with
actions in the game, and two hands of cards. The predefined document datatype could be
used for the typescript, and the buttons would also use a predefined type. There isn't a
predefined hand-of-cards datatype, so the client would have to define one. The definition of
the interface could then look something like this:

typescript = DoeumentView0

dealbutton = ButtonView(DealHitProcedure)

foldbutton ==ButtonView(FoldHitProcedure)

programhand = Primiti,'eView (HandHitProcedure, HandRedrawProcedure, HandUpdateProcedure, HandSizePro-

cedure, data-object)

userhand = PrimitiveView (HandHitProcedure, HandRedrawProcedure, HandUl:xJateProcedure, HandSizePro-

cedure, data-Ooject)

interlace = AboveOrBeside (Beside (userhand, Above (dealDutton, foldbuttord, programhand),typescript)

Document View creates a view object and a document. If the program inserts text into the
document the effect of that insertion will eventually be reflected automatically onto the
screen. Button View creates a view and a button and arranges to call the associated procedure
when the button is hit. Buttons are actually slightly more complicated, they correspond to
boolean _riables. The ButtonllitProcedure is activated as part of a general mechanism for
informing the program of user editing operations.

Object Implementation

Programhand and userhand are defined as views on user specified data objects. The
behaviour of these data objects (and ultimatly, all others) is defined by five proc_ures:

lilt the action to be performed when the user clicks a mouse button o_r the object.

-3-

Redraw the action to be performed when the image of the object should be completely
redrawn. The redraw procedure will be passed the data object to be drawn and
the rectangle in whichit is to be drawn.

Update the action to be performed when a change has been made to the object and an
incremental update is to be performed. Information about the extent of the in-

cremental update is derived from the data object. In simple cases, this degen-
erates to clearing the region and redrawing the object.

Size ansv,_ers the question 'if you were to be placed inside a rectangle with this width
and height, what size would you really like to be?'. For objects of constant size
(like labels) the answer is fixed and doesn't depend on the size of the region the
object is being squeezed into. For very flexible objects, like views on documents,
the disired size usually matches the size of the target. Some objects, like arrays
of buttons, have more complicated size behaviours since their actual size may
depend on the number of rows and columns they decide to break themselves into.
The size procedure is called by the algorithm that juggles view sizes and place-
ment.

InputFocus handles characters typed to this view. This procedure is not a part of a view,
rather it is generally used by the hit procedure for the view to set the global in-
put focus.

Screen Update
An important design gcal was the decoupling of screen update from object update. When an
object is updated, its screen image is not immediatly updated. Rather, an invocation of the
objects update procedure is scheduled. It is the responsibility of the implementation of the
object to maintain the information necessary to do incremental updates. For e_mple, the
'boolean' datatype maintains two fields value and DisplayedValue. When the client program
sets the boolean, the value field is changed and an update is scheduled. When the actual up-
date happens, value and DisplayedValue are compared and the screen image will be updated
appropriatly if they differ.

All screen updates will be performed just before the program next blocks for input from the
keyboard. Updates from a sequence of operations are thus batched and done together. This
was done partly to make the design cleaner and partly to avoid the phenomenon one sees in
some systems where complicated operations that depend on smaller operations result in many
screen updates.

Screen Space Allocation
One of the most complicated algorithms in this system is the one that lays views out on the
screen. A complicating factor is that the system runs under a window manager which allows
the user to easily change the shape of windows. Tools must therefore be able to dynamically
adapt to _nrying window sizes and shapes. The task of the layout algorithm is to take a set
of views on primitive objects which has been composed into a hierarchy and allocate space to
each, such that each gets enough space. Primitive objects are allowed to have _able sizes.

As an example of an object type which complicates'the algorithm consider a set-of-strings
where the object should be arranged as a grid of rows and columns. The width of a column

and the height of a row is fixed, but the number of roves and columns can vary, so long as
their product exceeds the number of strings. Acceptable shapes range from tall and stdrmy to
short and wide, where the range of shapes is not continuous. It was considered undesirable to
have the layout algorithm incorporate detailed knowledge about all different size behaviours.

The algorithm that is currently being used is a brute force search through an enumeration of
the entire set of possible layouts. While this sounds as though it could take a lot of time, the

-4-

application of clever heuristics makes it possible to dramatically prune the search tree.

Documents

The g(xtls for document objects ,_ere slightly unusual in this project. On the one hand, we
wanted to be able to do fairly sophisticated typesctting with them. On the other, we wanted
to be able to use them as components of user interfaces. The phrase What you see is what
you get is often used to describe text editors that emulate the quality of typesetters on the
screen, providing an exact one-to-one correspondance between the screen images and the
printed page. Often this leads to screen images which are large and poorly spaced since they
are emulating the size of a piece of paper and the higher resolution of a printer. We placed
a heavy emphasis on the readability of documents on the screen and dispensed with an exact
correspondance between the document on the screen and on the printed page. For exztrnple,
when one asks for help a manual entry will be presented in a window correctly formatted for
the size of the window. If one asks to ha_e the entry printed, then it will be reformatted and
printed using the line and page lengths appropriate for the printer. When a document is sent
to a printer, the user has the option of seeing a preview of the printed document, laid out ex-
actly as it will be on the printer.

Mutler on, McDuff...

The,. ITC Window. anager
rrogrammers 1vlanuar

James Gosling

This document is a guide for programmers to the facilities of
the 1TC window manager. It describes all that one needs to
know to be able to write programs that produce graphical im-
ages in windows.

A wimtow used by a client of the graphics package is a rectangular patch of
pixels. The upper left pixel is at coordinate (0,0) and coordinates increase
down and to the right. The width and height of the window may be interro-
gated by calling wm_GetDimensions. Performing operations at coordinates
outside of the window area causes the operation to be properly clipped. One
unit in the horizontal or vertical direction corresponds to one pixel. There is
a current position which moves around as operations are performed.

This extremely simple coordinate system was explicitly chosen in preference
to a more general one with full hom_enous transformations. Many client
programs are insensitive to which coordinate system is chosen: any one is
good as any other; others have such specialized requirements that they need
to do their own coordinate transformations themselves, anyway.

When the dimensions or real position of a window are changed by the user
the window manager will request the client pregram to redraw. This appears
to the client as an asyncronous call on a procedure called FlagRedraw. This
procedure should only set a flag indicating that a redraw needs to be done, it
should not actually do the redraw. This is because it is called asynchronously
via the signal mechanism. Any system calls that were in progress at the time
of the flagging will be aborted by the system and will return an error with
errno= =EINTR.

The window manager provides no other support for handling window resizing
other than the notification described. This is because only the client program
can know the right way for its image to respond.

To compile a C program, the invocation of cc that compiles a client of the
window manager should have the switch '_/usr/local/include" and the pro-
gram should contain the line '_include <usergraphics.h> ". When linking
the program, include '21itc" in the fist of libraries.

struct wm_vindow *wm_NewWindow (host)
Creates a window on the desired host. If host is zero and the environment

variable 'WMHOST' is set then the window will be created on hc_t
WMHOST. Otherwise the window will be created on the current host. A
pointer to the window is returned and that window is selected as the current
one. If a window cannot be created, a null pointer will be returned. The
window will be automatically be assigned space on the screen using magic:
the user will not be queried.

wm_SdeetWindow (s/ruet wm window *w)
Makes w be the current user window. All subsequent operations are per-

formed on the current window. Normally, in a client program that creates

-2-

only one window no window selection need be done since wrn_NewWindow
does it automatically.

wm_MoveTo (x, y)
Move the current position to the point (x,y).

wm__DrawTo (x, y)
Drav,"s a line from the current position to the point (x,y) and leaves the

current position there.

wm_SetFunction (f)
Sets the rasterop combination function to f. This function is used whenever

a graphics operation is performed. For example,

wm_.SetFunction(f_black);
wm_MoveTo(O, 0);
wm__DrawTo(lO0, 100);

will draw a black line. The following permit functions to be expressed as
Boolean combinations of the three primitive functions 'source', 'mask', and
'dest'.

f_black
f_white
f_invert
f_copy Only makes sense with wm_RasterOp (and it's probably the

only opcode that does make sense with wm_.RasterOp)
f_BlackOnWhite
fJVhiteOrtBlack

wm_SetTitle (char *s)
Sets the title line for the current window to s. Each window has a title line

at its top which describes the entity being viewed through the window. For
example, if the client program is an editor, then it should be the name of the
file being edited.

wm_SetProgramName (char *s)
Sets the program name field in the current window's title line to s. Normal-

ly, programs don't set this, instead they use the program macro to declare the
name of the program. Program(name) is placed in the main program, some-
where where global variables may be declared. It sets up a data structure
which gets used by wm_NewWindow when a window is created and by get-
profile when a preference option is being looked up.

wm_GetDimensions (int *Mdth, int *height)
Sets *width and *height to the width and height of the current window.

wm_SctDimensions (MinWidth, MaxWidth, MinIleight, MaxIleight)
Sets the preferred minimum and maximum height and width for the current

window. This does not change the actual dimensions of the window, it only
provides hints to the window manager to guide its automatic selection of win-
dow sizes.

wm_SetRawlnput ()

-3-

Sets the current window into raw input mode: each time that the user types
a character it will immediatly be shipped down to the client, rather than sav-
ing up a line and waiting for newline to be typed.

m_Disablelnput ()
Disables input from the current window. If the user types in this window, it

will be ignored.

wm__EnableInput ()
Enables input from the current window. Characters that the user types will

be passed to the client program. This is the default state.

wm_RasterOp (sx,sy,dx,dy,w,h)
Performs a RasterOp operation using the current function. (sx,sy) is the

origin of the source rectangle and (dx,dy) is the origin of the destination rec-
tangle. (w,h) is the width and height of both rectangles.

wm_RasterSmash (dx,dy,w,h)
Performs a RasterOp without a source rectangle. The meaningful operations

are f_black, f_white and v_.invert.

wm_FillTrapezoid (xl, yl, wl, x2, y2, w2, f, c)
Fills the trapezoid with xl,yI as its upper left corner, wI as the width of the

top, x2,y2 as its lower left corner, and w2 as its width. The trapezoid will be
filled with character c from font f If f is -1 then the default shape font
(shapelO) will be used. Bogosity: fis a font index, not a font pointer.

wm_ClearWindow ()
Clears (to white) the current window.

wm_SawMouse (int *action, int *x, int *y)
If you've see a wm_MouselnputToken on the window input stream then

wrn_SawMouse will return in action, x and y the event that occurred on the
mouse and its coordinates at the time. wm_MouselnputToken is a simple
character. When a client program is reading characters from its window in-
put it should be checking for occurenees of wm_Mouselnput Token. If one is
seen, then wm_SawMouse should be called to decode the action and coordi-
nate information. The action parameter telJs the client what sort of event has
occurred. For an explanation of the interpretation of action, read the section
on wm_SetMouselnterest.

wm__SetMouselnterest (mask)
Defines a mask which describes the mouse events in which the client is in-

terested. The mask is constructed by or ing together several values from
MouseMask .

MouseMask (event)
Constructs a constant which represents the event occuring on the button.

-4-

Values for
button event

LeftButton UpMovement
MiddleButton DownTransition
RightButton UpTransition

DownM ovement

wm_SetMouseGrid (n)
Causes the window manager to report mouse movements only when the

mouse moves at least n gixels from its last reported position.

wm_SetMousePrefix(char *string)
Causes the window manager to prefix all mouse position reports with string

instead of wm_MouseInputToken.

wm_AddMenu (char *string)
Adds the given string to the menu for the current window. Each window

has associated with it one hierarchic menu: menu entries may have submenus,
which in turn may have yet more submenus. String consists of a series of
comma separated entry names, followed by a colon, followed by the response
string. The response string is the string which will be transmitted back to the
client program when that menu entry is selected. For example:

wm_AddMenu(' I)irectory,List:ls -t,/n');
wm .AddMenu('lNrectory,Name:pwd_ ');

The first call to wmAddMenu will add an entry in the root menu named
'Directory". This entry will have a submenu, and in that submenu will be de-
fined an entry named 'List". This entry will be a leaf of the menu hierarchy
and will have associated with it the string 'ls -in". If the user selects 'List"in
the '_Directory" submenu then this string ('ls -In') will be transmitted back to
the client program through its window input channel (winin).

The second call to wm_AddMenu simply adds a 'Name" entry to the '_irec-
tory" menu and associates the string '_wdn" with it.

The colon and rresponse string may be omitted, in which case the menu entry
will be removed.

wm_SetMenuPrefix (char *string)
Causes all foilowing menu selections to be prefixed by string. The string de-

faults to the empty string.

wm_DisableNewiines ()
Normally when a newline character is written to a window it will cause

scrolling if occurs at the bottom of the window, wm_DisableNewlines dis-
ables this behaviour m newlines will simply move the text pointer off the bot-
tom of the window and subsequent text will be clipped and not displayed.

struct wm_vindow *Current UserWindow
A pointer to the currently selected window.

FILE *winout

An output file corresponding to the current window. Writing text here
causes the text to appear in the window just as though it were a glass tele-

-5-

type. The text will be drawn with the upper left hand corner of the first
character being placed at the current position. The current position will be
left just past the upper right hand corner of the last character.

FILE *_inin
An input file corresponding to the current window. Reading from here re-

turns characters typed by the user while pointing at this window.

Text

struct font *wm_DeflneFont (fontname) Defines a font, given a forename, and
returns a pointer to be used by subsequent wm_SetectFont's. Fontname
is a string which names a font. For example, 'TimesRomanl0i" speci-
ties Times Roman 10 point italic; '_CMR10b" specifies Computer
Modern Roman 10 point boldface. If the font specified doesn't exist,
one which is '_lose" will be used instead.

wm SelectFont (struct font *fontpointer) Causes the font specified by the
fontpointer to be used for subsequent character printing. Fompointer
is created by calling wm__Definel:ont.

wm_SelectFont(wm_DefineFont('TimesRoman10i'))

causes all further printing to use Times Roman 10 point italic. The
reason for separating the wm_DefineFont and wrn_SelectFont is to
avoid having to do many repeated font lookups --the client program is
expected to save the value returned from wm_.DefineFont and reuse it.

wm__StringWidth (string_, int *x, int *y) Finds the width of the given string in
the current font in the current window. The x--width is returned in x,
and the y--width in y. For normal left-to-right fonts, y will be zero
and x will be the width of the string. The width is measured starting
at the origin of the leftmost character up to the origin of the character
which would immediatly follow the rightmost character.

wm__DrawString (x, y, flags, string) Draws the given string relative to the
given coordinates, according to the flags. The flags control alignment
of the string relative to the height and width of the string.

Height alignment orations
wm_AtTop wm .AtRight

wm_AtBottom wm _AtLeft
wm_AtBaseline wm_BetweenLeftAndRight

wm BetweenTonAndRottom wm BetweenTonAndBaseline

The flags argument is constructed by oring together one height align-
ment option and one width alignment option. Either may be omitted
and wm_AtBaseline and wm_.AtLeft will be taken as defaults.

A slight confusion is possible in understanding the differences between
wm_BetweenTopAndBottom and wm_BetweenTopAndBaseline. The
former properly centers, taking into account descenders (Like the tail
on a lowercase 'y'), where the latter ignores descenders. The latter is

6

likely to be more aesthetically pleasing.

For example:

win_DrawString (WindowWidth/2,
WindowHeight/2,

wna_.BetweenT opAndBaseline _ma_.Betv,eenLef tAndRi ght,
'Don't Panic');

will print the string 'Don't Panic" correctly centered in the current
window using the current font.

wm__printf (x, y, flags, format, args) This procedure is simi.lar to
wm__DrawString except that instead of taking a single string as an ar-
gument, it takes a full '_rintf" format and arguments.

wm_SetCursor (struet font *f; char e) Sets the cursor that is used in follow-
ing the mouse to character 'c' from font 'f'. The cursor will only have
this shape when it is inside the current window.

wm_SetStandardCursor (e) Sets the cursor from the standard icon font
(iconl2). The following cursor names and shapes are defined in
usergraphics.h:

wm__GunsightCursor
wm__CrossCursor

wm_.HourglassCursor
wm_.Ri ght Finger Cursor
wrn_.Hofizontal BarsCursor

wm_LowerRightCornerCursor
wm_PaintbrushCursor

wm._UpperLeft Corner Cursor
wm_VerticalBars Cursor

wm_.DangerousBendCursor
wm__CaretCursor

You can look at the available standard cursors by typing:
samplefont iconl2

wm__SetSpaceShim (n) Sets the space shim value to n. A shim is some pad-
ding that is added on to the right of a character. The space shim ap-
plies ortly to space characters. After calling _n_SetSpaeeShim all fol-
lowing space characters will have n added to their width.

wm_SetCharShim (n) is similar to wm__SetSpaeeShim except that it applies to
all characters, including spaces.

Color
This section needs to be written. But first, we should figure out what we're
doing...

Window Manipulation

-7-

wm_tlideMe() Hide the current window. Has no effect if the current
window is currently hidden.

wm_ExposeFvie () Expose the current window. Has no effect if the current
window is currently extx_ed.

wm_DeleteWindow () Deletes the current window from the screen. Further
operations on that window will fail.

wm_AcquireInputFocus () Acquires the input focus for the current window.
When the input focus is 'acquired' by a window, all subsequent char-
acters typed by the user are send to that window. This will continue
until the input focus is acquired by some other window. The acquisi-
tion of the input focus only affects characters typed by the user, it
does not affect mouse hits or menu selections.

wm GiveUpInputFocus () Gives the input focus back to the last window
that had the input focus.

wm_IHandle_4,cquisition () Declares to the window manager that the client is
willing and able to hadle input focus acquisition for himself. Normal-
ly, if no client is handling input focus acquisition, if the user wants to
change the input focus he points the mouse at it and clicks a button.
This mouse event will be thrown away and the input focus will shift.
The user can then type at that window and use the mouse. If the
client has executed _m_lHandle.Acquisition, then all mouse clicks get
sent to the client and the window manager will not automatically shift
the input focus. That client can then (for example) acquire the input
focus whenever it sees that first mouse event. The posession of the in-
put focus will be encoded in recieved mouse events.

Fonts

This section describes the font mechanism used by the window manager.
Most writers of client programs don't need to know much of what is
described here.

A font is a collection of icons . An icon is a thing which can be drawn to
make a mark. The mark can have any shape. A font has two parts: a header
which contains the name of the font and some summary information, and an
array of icons. An icon also has two parts: One of generic information and
one of specific information. The generic information describes the properties
of the icon that are independant of its represenation: information about the
bounding box and spacing. The specific information describes the properties
that are dependant on the representation of the icon --those that are interest-
ing only to a routine that is actually drawing the icon. At the moment, the
specific information will either be a bitmap or a list of vectors.

-8-

An icon represents some shape en-
closed within a bounding box. _---/
Typically the icons are characters . _ / ',
like those in this illustration. TheB°unding_ -'- ', / ,
bounding box for each character Boxes \ ', / ',
is at least large enough to corn- \ ' [',
pletely enclose the character, and _ __t ; / ,
• o r- -1 ! tusuaUyat ghtf,t. Within ,
that bounding box is a dis- i // \' / /'
tinguished point called the Origin. , [_ : / /',
The origin is a point which is on ', A):/ /',
the character's baseline and which ' / \ /' ,/ / ,
is at the optical left edge of the , _, -, 1"........... Base me
character. The optical left edge "-]-;
of a character is often at the left [_ ,

• " ' • / Ch° O gin:edge of its bounding box For .r_t _-
atahc characters wath descenders, /
like the 'p' here it is inset from [',
the left edge. The bounding boxes f j
of successivly drawn characters may or may not overlap. The bounding box
of an italic 'y' or 'p' will typically overlap the bounding box of the preceeding
character so that their decender can sweep under it. Similarly, the ascender
of an italic 'f' usually extends over the following character.

Associated with each character are five vectors: WtoE 2_

NWtoOrigin is a vector which goes from the north -_--- -]west corner of the bounding box to the origin. '

WtoE goes from the west edge to the east edge. i_.." "

NtoS goes from the north edge to the south edge. WtoOrigin ',
Wbasegoes from the origin due west to the west edge ',

of the character.
Spacing goes from the origin of the character to -_-_-O_igin- -',-NtoS

the place where the origin of the next charac-
ter should be placed when this character is
drawn with one following it.

These five paramaters could have been scalars, but
were done as vectors instead in order to make mani-
pulating rotated fonts easier. L

W_°se bpacing
A font file is laid out according to the following declarations. The file will
start with a single instance of struet font . This contains the vector of icons.
Each icon contains two offset pointers: one to the generic part and one to the
specific part for the icon. All of the generic parts occur in the file before the
specific parts. Charracters with matching generic or specific parts will share
the corresponding space.

struct SVector { /* Short Vector */

short _ y;
t;

i/" Given a pointer to an icon, GenericPart returns a pointer to its IconGenericPart
./

-9-

#define GenericPart(icon) ((struct IconGenericPa_rt *) (((int) (icm)) + (icon)->
OffsetToGeneric))

/* Given a character and a font, GenericPartOfChar returns the corresponding
IconGenericPart "/

define GenericPartOfChar(f,c) GenericPart(& ((f)-> chars[c]))

struct IconGenericPart {/* information relating to this icon that is of general in-
terest * /

struct SV_ctor Spacing; /* The vector which when added to the origin of

this character will give the origin of the next char-

acter to follow it */

struct SVector NWtoOrigin; /" Vector from the origin to the North

West corner of the characters bounding box */
struet SVector NtoS; i/* North to south vector*_

struct SVector WtoE; /* West to East vector*_

struct SVector Wbase; i/* Vector from the origin to the West edge paral-
lel to the baseline */

};
struct BitmaplconSpecificPart { /* information relating to an icon that is necessary

only if you intend to draw it */

char type; /* The type of representation used for this
icon. (= BitmapIcon)*/

unsigned char rows, /* rows and columns in this bitmap */
unsigned char cols;

char orow, /* row and column of the origin */
char ocol; /* Note that these are signed */

unsigned short bits[l]; /* The bitmap associated with this icon */
};

struct icon { /* An icon is made up of a generic and a

specific part. The address of each is "Offset" bytes from
the "icovi' structure "/

short OffsetToGeneric;

short OffsetToSpecific;

};

i]* A font name description block. These are used in font definitions and in font
directories */

struct FontName {

char FarnilyNarne[16]; /* eg. "TimesRoman" */
short rotation; /* The rotation of this font (degrees;

+ ve= > clockwise) */

char height; /* font height in points */
char FaceCode; /* eg. "Italic" or "Bold' or "Bold ItaliC'

./
J;

/* Possible icon types: */
define Assortedlcon 0 /* Not used in icons, only in fonts: the icons have an as-

sortment of types */

define Bitmaplcon 1 /* The icon is represented by a bitmap */
define Vcctorlcon 2 /* The icon is represented as vectors */

-10-

i/* A font. This structure is at the front of every font file. The icon generic and
specific parts follow. They are pointed to by offsets in the
icon structures */

struet font {

short magic; /* used to detect invalid font files */
short NonSpecificLength; /* number of bytes in the font and generic

parts */
struct Fc_atNarne fn; /* The name of this font */
struct SVector NWtoOrigin; /* These are "maximat' versions of the

variables by the same names in each constituent
icon */

struct SVector NtoS; I/* North to South */
struet SVector WtoE; /* West to East */

struct SVector Wbase; /* From the origin along the baseline to the West
edge */

struct SVector newtine; /* The appropriate "newlinJ' vector, its just NtoS
with an appropriate fudge factor added */

char type; /* The type of representation used for the
icons within this font. 1fall icons within the font
share the same type, then tkTe is that type, other-
wise it is "Assortedlcon" */

short NIcons; /* The number of icons actually in this
font. The constant "CharsPerFont" doesn't actually
restrict the size of the following array; it's just
used to specify the local common case */

struet icon chars[CharsPerFont];
/* at the end of the font structure come the bits for each character */

},

/* The value of font-> magic is set to FONTMA GIC. This is used to check that a
file does indeed contain a font */

define FONTMAGIC 0xlfd

/* FaceCode flags */
define BoldFace 1
define ItalicFace 2
define ShadowFace 4
define FixedWidthFace 010

struct font *getpfont0; i/* get font given name to parse */
slruct font *getfont(); /* get font gzven parsed name */
slruct icon *geticon(); /* get an icon given a font ana a slot */

int LastX, LastY; /* coordinates following the end of the last string
drawn */

Program Template
The following is a template for simple programs that use the window
manager:

include < usergraphics.h>

-ll -

program(f eo)

main(){
wm_NewWindow 0;
.,,.

}

Sample Client Program

This is a simple clock which was written to test out user level graphics. It
draws a face which consists of 12 tick marks arranged in a circle and the
hour, minute and second hands. The clock face is updated every second.

include < stdio.h>

include "usergraphics.h"This library comains all of the definitions for the client in-
terface to the window manager

include 'blocktable.h" This library contains a table of sines and cosines
include < time.h>

struet tm LastTimeDisplayed;

int MidpointX,
lnt MidpointY;
int FaceRadius;
int RedrawRequested -- O;

FlagRedraw 0 {
RedrawRequested+ +;

}

program (clock)

main () {
int FaceInnerRingRadius;
int n;
int HourRadius, HourInner,

MinRadius, Minlnner,
SecRadius, Sechmer;

register struct trn *CurrentTime;
it'(fork ())

exit (0) ;

FlagRedraw ();
wlfile (I) {

long now = time (0);
CurrentTime = (struct tm *) localtime (&now);

if (RedrawRequested) {
while (1) {

wm_GetDim& MidpointX0 & MidpointY);

-12 -

if (MidpointY)
break;

pause();
}
wm._ClearWindow 0;
MidpointX/= 2;
MidpointY/= 2;

FaccRadius = MidpointX:
if (MidpointY < FaceRadius)

FaceRadius = MidpdntY;
FaceIrmerRingRadius = FaoeRadius * 19 /20;
HourRadius = FaceRadius * 12 / 20;
Hcxn-Inner = FaceRadius * 9 /20;
MinRadius = FaceRadius * 16 /20;
MinInner = FaceRadius * 9 / 20;
SecRadius = FaceRadius * 18 / 20;

SecInner = FaceRadius *(-6)/20;
for(n =0;n < 60;n+=5) {

wm_MoveTo (FaceIrmerRingRadius * angtbl[n].xf
/SCALEANG + Mid-

pointX, FaceInner-
RingRadius * angtbl[n].yf
/SCALEANG + Mid-

pointY);
wm_DrawTo (FaceRadius * angtbl[n].xf /

SCALEANG + Mid-

pointX, FaceRadius *
angtbl[n].yf /
SCALEANG + Midpoin-
tY);

}
t
UpdateHand (CurrentTime-> tm sec,

& LastTimeDisplayed.trn_sec, SecRadius,
SecI rmer);

UpdateHand (CurrentTime -> tin_rain,
& LastTimeDisplayed.tm_min, MinRadius,
Mini nner);

UpdateHand (((CurrentTime -> tin_hour * 5) %60) + Current-
Time-> tm..min / 12,

& LastYimeDisplayed.tm.jaour, HourRa-
dius, HourIrmer) ;

wm_.Mox_To(MidpointX< < 1, MidpointY< < 1);
fflush (winout) ;
if (RedrawRequested= =0)

sleep (1);
else

RedrawRequest ed-_,

UpdateH:md (NeWTime, OldTime, OuterRadius, InnerRadius)
int *OldTime; {

-13 -

if (*OldTime != NewTime [RedrawRequested) {
if (RedrawRequested==0 && *OldTime != NewTime) {

wm_SetFunction (fwhite);
DisptayHand(*OldTime, OuterRadius, InnerRadius) ;

}
wm_SetFuncfion (fblack) ;

DisplayHand(NewTime, OuterRadius, InnerRadius);
*OldTime = NewTime;

}
}

DisplayHand(Time, OuterRadius, IrmerRadius) {
int OuterX = OuterRadius * angtbl[Time].xf /SCALEANG + MidpointX;
int OuterY = OuterRadius * angtbl[Time].yf / SCALEANG + MidpointY;
if (IrmerRadius> 0) {

int LastTime -- (Time== 0 ? 59 : Time--l):
int NextTime = (Time==59 ? 0 : Time+ 1);
wm_Mo_vTo (MidpointX, MidpointY);
wm__DrawTo (InnerRadius * angtbl[NextTime].xf / SCALEANG

+ Midpoint_X. InnerRadius *
angtbl[NextYime].yf /SCeM..EANG +
MidpointY);

wm._DmwTo (OuterX, OuterY);
wrn__Mo_To (MidpointX, MidpointY);
wm_.DrawTo (InnerRadius * angtbl[LastTime].xf /SCALEANG +

MidpointX, InnerRadius *
angtbl[LastTime].yf /SCALEANG +
MidpointY);

}
else if (IrmerRadius< 0)

wm..Mo_eTo (InnerRadius * angtbl[Time].xf /SCALEANG +
MidpointX,

IrmerRadius * angtbl[Time].yf /SCALEANG + MidpointY);
else

wm._.MoveTo (MidpointX, MidpointY);
wm._DmWTo (OuterX, OuterY);

!

Implementation notes

- 14 -

Window L- __

_& rocess___
A <........... -_ Manager) /

WindoWc x--" __/_-. ".

Mouse and Keyboard<

The Window manager is a process that is connected to o_FTt_I_l_/rr_ntkI_zti°nsall
socket-to--socket IPC channels. All graphics operations cause messages to be
sent between the client and the window manager. The remote procedure call
protocol has beed especially crafted for this application. Each procedure call
turns into a sequence of bytes. The first is the opcede and the rest (the
count is determined by looking up the opcode in a table) are the arguments.
Opcedes 0-127 are reserved for the ASCII characters, the rest are in the
range 128-255. Many procedure call may be packed into a packet and a pro-
cedure call may be split across packet boundaries. If the call doesn't return a
value, then it isn't issued immediatly, rather it is just queued up until either
the buffer is filled or an explicit fflush(winout) is executed.

Process '

ax B '

....... J

/

/ Ethernet

J __S
I Process _

I

-15 -

Processes on any machine, whether or not they are workstations, can create
windows on any display.

Still to be documented:
wm_StdioWindowO
wm_S howBits (x,y,w,h,b)
wm_DefineRegion(id.x,y,w,h)
wm_S electRegion(id)
wm_ZapRegions()
wm_SetClipRectangle(x,y,w,h)
wmWriteToCutBuffer()
wm_ReadFromCutBuffer(n)
wm_RotateCutRing(n)
wm__SaveRegion(id,x,y,w,h)
wm_RestoreRegion(id,x,y)
wm_ForgetRegion(id)
wm_HereI sRegion(id,w,h)
wm_ZoomFrom(x,y,w,h)
wm_LinkRegion(newid,oldid)
wm__NameRegion (id,name)

