
' CMU-ITC-84-022

Conventions for ITC System Source Code

Editor: WJH ansen

Property of IBM Corporation

Information Technology Center
Carnegie-Mellon University
Pittsburgh PA 15213

Introduction

"footprints in the sands of tirne'
Longfellow

Software will be the ITC's major footprints. This note describes a few con-
ventions for identifying that software and storing it centrally, so future ex-
plorers can hope to find the right beach. The note incorporates the following
documents:

Using RCS Remotely, David S. H. Rosenthal, ITC, April, 1984

Makefiles for lsh and wmlib, WJHansen, ITC, April, 1984

Sample program and itc.h, John Howard, ITC, April, 1984

For complete information on the rcs commands, see the manual entries for

the rcs system, Walter Tichy, Purdue University; they are generally distri-
buted with this document.

Contents

Program Contents
what should be in an ITC source program

Central Source Storage System
where source as stored

Remote RCS Commands
how to retrieve and store source

Makefiles and Installation

preparing for installation

Examples



-, t

2

Program Contents

A standard ITC source file begins like this:

/* module-name- brief description on one line
,/

/* Author: WJHansen

* more commentary,
* including usage instructions
* and other facts

./

#include "ltc .h "
private char rcsid[] = '_$Header$"
private char IBMid[] =

'Property of IBM Corporation"

/.
SLogS

./

'More commentary' should serve as the first source of docu-
mentation of the program, module, or library entry.

The file included by #include 'he.h" is in the Examples section
below. It defines a few items of general utility, especially
'private', which is used by the next two lines. Private indicates
that this identifier will not be exported so there will be no
name conflicts when several modules are linked together.

Each time the file is checked in, RCS emends the $Header$ to
describe the latest revision:

The contents of IBMid will appear in both source and object.

SLogS will also be replaced appropriately by RCS.

For a makefile the initial commentary includes name, author, 'Property of
IBM Corporation", and$Header$. A shell script has the same commentary,
but at the end, following a 'hxit 0"line.

Library header files (*.h) must not include itc.h nor define rcsid and IBMicL
Their inital commentary includes name, author, 'Property of IBM Corpora-
tion", and $Header$. In documentation and help files the attribution and
ownership lines go at the beginning while SHeader$ and SLogS go at the end.
See, for example, the end of this file.

Tailoring code to specific environments



To prepare code that can be executed on more than one machine or operating
system, a number of compile time variables are defined by the rinse mechan-
ism for running Makefiles. As described below, rinse should be used in place
of make for all compilations.

Surround VAX-specific code with
#ifdef VAX

# endif V_X

Enclose SUN-specific code with
#ifdef SUN

#endif SUN

The Makefile rule for making this program then needs --D$(MACHINE) in
CFLAGS; see the discussion of Makefiles below.

'_include" lines should be written with quotes instead of angles for all but
files that are part of the system distribution. For example:

# include 'hsergraphics.h"
This prevents precedence problems when installing pieces of the system. See
the Makefile for v_mlib in the appendix.

Note: Makefiles should not refer to usergraphics.a but should use
${DESTDIR}$ {LIBDIR}Aibite.a

instead.

Central Source Storage System

ITC system source files are stored on a cental source host, currently the
'linus' Vax. From here they are retrieved for review and modification or to
be recompiled for installation on servers.

Each piece of source in the ITC system is part of some 'component' of the
system. Each component is managed as a collection of files stored together
in a directory on the central source host. (A component's directory may have
subdirectories.) The directory for some particular source file can be found by
use of the resfind command.

Source files are stored in subdirectories of /user/source on linus, but ordinary
mortals can only write these files through the agency of remote RCS. This is
done by using rcslink to link a local subdirectory to one of the central source
subdirectories and then copying files back and forth with reo and rei. When
a newly released facility is to be installed, rinse is done for it on server moth-
er from whence it is copied to other servers.

For ITC source, the principal central source subdirectories of interest are
linus :/user/source/usr/local/kxx/R CS

where values for xxx are the names of component facilities of the system:
wm, xyzzy, itclogo, wmlib, aledit, or whatever. For example, this document



-4-

is part of the itcrcs comlxment and its RCS source file is
linus.'/user/source/usr/local/b in/itcsrcs/R CSAt csource.d, v

(The final ',v' denotes a file managed by the RCS system. It contains both
the source itself and information about all former versions of the file.)

By convention, names of central source directories are shortened by omitting
the initial 'linus:/user/source/' and the final '/RCS/'. Thus the central
sources for itcrcs are said to be in usr/local/bin/itcrcs

The source for a component includes any appropriate library and help files.
Thus the source of usergraphies.h is in usr/local/bin/wm/ In a few cases in
the past, there has been no appropriate component directory so files have
been stored directly in usr/local/bin or whatever. Such cases should be elim-
inated.

In some cases ITC'ers correct files that are properly part of the 4.2BSD
sources and not ours. These can go under source directories that are not in
usr/local. Consider login, which differs considerably between 4.1c and 4.2

and has new ITC versions for both. The original 4.1c version is not stored;
the 4.2 version is in bin/, the revised 4. lc version can go in old/Iogit_ the la-
test version in usr/local/bin/login/.



I,

-5-

Remote RCS Commands

This section details each of the ITC command files for remote access to RCS
sources. Note the following:

-Most of these commands must be executed when the working directory con-
tains a file 'RemoteRcsDir'. Create this file with the reslink command.
-They are shell command files and parse switches primitively. Therefore
write only one switch letter per dash. For instance, use '_R --L" and not "-
RL".
-The commands exit with value 0 if successful and a small positive integer
for failure.
-Rco, rci, and rrcs adjust the mode of each file to accord with whether it is
locked to you. If you do not have a lock, the file is read-only. Setting a lock
changes to read-write.

rcsfind name
searches a list of all files stored in the system sources on linus.
Returns a table of filename and directory for entries whose
filename contains the string name. For example, resfind wm
produces a hst that includes:

newmat.c usr/lib/lib2648
windowman.c usrAocal/bin/emacs
wm.c usrAocal/bin/wm
wmdev.c usr/local/bin/pressdvi

(in each case the filename contains the string 'wm')

name may be a sequence of patterns for egrep. Any file meet-
ing any of the patterns will be printed. The patterns may not
include dollar-sign, apostrophe, double-quote, or exclamation-
point.

File names of entries in usr/local all have an initial blank so
they will be at the beginning of the file and will match first.

rcsfind exits with value zero.

rcslink [-c] remotename
creates the file RemoteRcsDir in the current dir_tory. This
file serves as a link between this directory and the correspond-
ing directory in the central system source files.

rcslink without an argument reports the name of the 'linked"
directory.

In general for the ITC, remotename is of the form
usr/local/...

note that there is no leading slash.

-c
This switch should be given only the first time a
system directory is referenced. It creates the sys-



?,

-6-

tern directory.

Error exit values

1 -syntax error (Message also printed)
2 -this directory already linked (file Re-
moteRcsDir exists)
3 -there is no central source directory with the
given name

rcsls [--{Is switches}]
performs an ls on the remote RCS directory linked to the
current directory. Normal ls switches may be specified on the
command fine, but file names may not (directories would be
inappropriate, wildcards would be expanded on the wrong
machine).

Error exit values
1 -tried to give a non-switch argument
3 -rcslink needs to be done

reo [--1]filename ...
copies files from linus to the current directory. The remote
equivalent of eo, and operates in exactly the same way except
that it must be invoked in a local directory which has a Re-
moteRcsDir.

-1
This switch specifies that the file is to be locked
for modification by the requestor.

To check out all the files from the directory on finus, you can
write

reo 'resls'

the backquotes around resls cause it to be executed and re-
placed by the fist of filenames it returns.

When reo prints the message 'dong, it means that the file has
been copied from an internal rcs form to source form. But the
file is still on linus. Reo is really done only when you get the
prompt for the next command.

Error exit values

1 -could not create temporary directory on
source host
3 -reslink needs to be done

rei [-1] [-tdescrlptionfile] filename ...
copies files from the local directory to linus central sources.
The remote equivalent of ei, and operates in exactly the same
way except that it must be invoked in a local directory which
has a RemoteRcsDir. The number of characters in the list of
filenames is limited; at least fifteen to twenty files can usually
be handled.



-7-

-4
This switch specifies that the file is to remain
locked for mcxtification by the requestor.

-4description file
Uses descriptionfile as the description for
filename. Descriptions are stored in the RCS file
and can be retrieved with the rres command. (In
an early version of this document I claimed this
parameter was required and ignored. It is now
not required and never was ignored. It would be
good to replace the bogus descriptions stored
when I thought it was ignored.)

Rei will prompt you for a log message to be recorded as the ef-
fect of this revision; type in a description of your changes. Ter-
minate the description with a final line that contains only a
period. The log message can also be supplied as the standard
input to rei, but the --m switch does not work..

Do not put shell delimiters (double quote, apc_trophe, semi-
colon, exclamation, or dollar sign) in the log message. Howev-
er, if you get to where rei wants the log entry and suddenly de-
cide not to release the files yet, you can abort by writing a log
entry containing an ap_trophe. (Yes, this is crude.)

If the file has not been changed an attempt to unlock it by
checking it in will fail. The best way to unlock it is with the --u
option of rrcs.

Error exit ,_tlues:
1 -cannot create temporary directory on source
host
2 -the checkin operation failed on the source
host for at least one file (as per message); others
may have been checked in
3 -reslink is needed
4 -a file to be checked in is non-existent; no
checkins have been attempted
5 -a file to be checked in is non-existent; no
checkins have been attempted

rrcs [--1][--u] filenames
Set options for filenames. The remote equivalent of res, and
operates in exactly the same way except that it must be invoked
in a local directory which has a RemoteRcsDir.

(The -4 option is not implemented, but can be done by logging
in to linus and using res itself.)

-1 locks the listed files.



-8-

-u unlocks the listed files.

Error exit values:
3 -reslink is needed
5 -the -4 switch is not implemented

rrlog [-L] [-R] [-h] [-I] [-t] filemzmes
Give information about filenames. The remote equivalent of
rlog, but must be invoked in a local directory which has a Re-
moteRcsDir.

-L

only list info for files that are locked (to any-
txxty)

-R

only list the name of the file. Use 'LR -L" to get
a list of files locked (to a,nybod_,). ('LRL" and ,kLR" are not the same as :-R -L.

--h
limit the amount of information for each file.
(This amount is usually enough.)

--I
gives a table of filenames, people who have locked
revisions, and which revisions are locked.

--1
gives a long listing, though it does omit informa-
tion about revisions that are not locked. Ignored
if --R is set.

Error exit values:
3 -reslink is needed

rinse [-hhostname] [-Ttempdir] [options] [directory]
performs 'make optiot_¢ for the system sources from the direc-
tory. Rinse sets environment variables that are used in compi-
lations. For example, the MACHINE variable which specifies
what machine this conapilation is for. See the complete list in
the section on Makefiles and Installation.

options
Can be any options that could be passed to make.
Usual default is to make the first entry in
Makeflle; if -hhostname is given, 'install' is al-
ways done.

directory
Specifies a subdirectory on linus containing sys-



-9-

tem sources; no leading slash, but must contain a
slash to distinguish it from an option. Example:
usr/local/bin/wm/ If no directory is given, the
current directory is used and files are not copied
from the central system sources. If -hhostlu2rne
is given without director),, rinse uses the directory
established in RemoteRcsDir by rcslink.

-hhostname
Performs the compilation and installation on host
hostname. If no directory is given, the one set by
rcslink is used. The 'install' option is always ap-
pended as the last of options. As a special case,
installation on mother also does a postnews to
itc.rinsed to make a record of the system change.

-T tempdir
specifies a name for the temporary directory.
The default is/usr,/tmp.

Two cases are most common:

1) On a non-server machine you have used rco to get some
sources and now want to do a 'make'. Use 'rinse' because this
sets environment variables needed for the compilations. Since
no directory is given, the current one will be used.

2) You wish to install on server HIM the system component
whose sources are in usr,/local,/bin/foo. Say

rinse -hHIM usr/local/bin/foo
(the option defaults to 'install'). If the current working direc-
tory has been linked to usr/local/bin/foo, you can just say

time -4fl-llM

delete or move a file

Sometimes files are created in the wrong place. The only
current way to delete files is to send mail to the source code
administrator containing the name of the file to delete or move.

'|s in use"
If you get the message that an RCS file is in use, it means ei-
ther that it is actively now being checked in or out or someone
has hung during a checkin or checkout process. The in-use flag
is a file of zero length whose name begins and ends with a
conlma. To free up a file locked due to a hang, ask the source
code administrator to delete its comma-comma file.



-10 -

Examples

Reading Existing Code

Suppose you wish to read the code for the itclogo program. By running
rcsfind itclogo

you find that the source is in usr/local/bin/itclogo

You make a working directory somewhere on your file space:
mkdir /tmp/itelogo
ed/tmp/itelogo

Now you link to the central source directory for itelogo
reslink usr/1 oeal/bin/itclogo

and check out a file via
reo itelogo.e

To check out all the files you can use resls as a parameter. Delimit it with
back-quotes:

reo 'resls'

The result will be some read--only fries in the current directory. When you
have finished reading the code, the entire directory and all its contents may
be removed. No remote RCS commands are needed to do this (if you have
removed all locks by checking in any files you checked out with locks.)

Changing Existing Code

Suppose that your reading reveals some recondite bug in the itciogo com-
mand. You wish to check out a writable version of some file, change it, test
the modified command, and have your fixes installed permanently. You are
starting from the state of having read-oniy versions of all the files, obtained
as described above.

-Obtain a writable version of (say) itclogo.c by executing
rm itclogo.e
rco -1 itclogo.e

(If someone else already has itclogo.c checked out, this will fail
with a message.)
-Edit the file, compile the program, test it. Use

rinse
to compile it.
-When you are confident of your fix, check itclogo.c back in
by executing

rci itclogo.c
You will be asked for a log message describing the fix you have
made.

After checking the code in, you must install it on the file servers. It is suffi-
cient to install it on mother because/usr/local is copied nightly from there to
father. You need to have the server execute a rinse of the directory contain-
ing the revised facility. This can be done for usr/local/bin/itclogo by

rinse -hmother
when executed in the directory reslink'ed to itclogo.



-11 -

Storing New Code

Suppose you have created a new command called panacea, the answer to
everyone's problems at the ITC. The source consists of a set of fries in a
directory somewhere in your file system. It must include a Makefile with op-
tions for install and system, as described below. You should also create a
description file dr. for each file f, describing how this file contributes to the
entire package. The description for the Makefile should describe the overall
function of the package.

To check in and install panacea do the following:

-Create a remote RCS directory:
rcslink -c usr/local/bin/panacea

-Checkin each file by executing for each:

-Install the facility on the server:
rinse -hmother

Deleting source files

Later you decide that panacea is in fact not a solution but an infinite source
of new problems. You decide to delete it. The only way to delete source files
at present is to send mail to the system source administrator.



-12 -

Makefiles and Installation

The Makefiles of ITC source serve two functions: installation and system
construction. You execute make on the Makefile to install a change on our
servers, mother, father, and linus. The system-build .staff emNoys the same
Makefile with the 'system' option to build an entirely new instance of the sys-tem.

When you take extra care to check
the Makefile, you are being of
tremendous service to the people
who have to build the system.

Every directory of source on linus must contain a file called 'Makefile' (capi-
tal 'M') which describes how to make the facility from the source pieces.
Among the rules of Makefile must be ones which (a) install the facility on
servers and (b) build the system from a virgin 4.2 system. To describe these
rules, let me first describe the installation process.

A component is installed when it has been placed in the public files provided
on the servers. Thus wm is installed by placing its object module
/usr/local/bin/wm and a few libraries on father, mother, and any other servers.
Note that this is a step beyond placing the source for wm into
usr/local/bin/tvm/on linus. Using the rinse command, the installation is per-
formed on the server: rinse copies the sources, and invokes make to recompile
the sources and move them to the appropriate directory on the server.

There is a standard command install which performs the copy for installation.
See the example Makefile's below and the documentation of install(8) in the
Sun System Manager's Manual. This command should be used instead of
ep because it handles some conditions better.

Among the rules of each Makefile must be ones for 'install' and 'system'.
The install rule should depend on compilation of the component and should
copy the object module to the appropriate directory using the install com-
mand. Saying 'make install' is expected to install all the files generated by
this source directory. For lowest level directories, 'make system' is exactly
the same.

There are also non--terminal directories: usr/local, usr/local/bin ..... The
'make install' operation in one of these directories installs only the facilities
whose source is in the directory itself. The 'make system' option installs both
these local facilities and any components in subordinate directories. For ex-
ample, 'make system' in usr/local is expected to invoke 'make syslem' for
each of usr/local/doc, usr/local/help, usr/local/qnclude, and so on. The latter
will in turn invoke 'make system' for all their subordinate directories.

At present, an ITC system consists of Unix 4.2 BSD augmented with files in
/usr/local/... In particular, all facilities go in one of the directories

/usr/local/bin
/us r/l ocal/l ib
/usr/l ocal/qnclude
/usr/local/help



- 13 -

/usr/local/doc
/usr/local/fonts

In the future, these directory names may change, so macro names have been
defined to refer to these directories. Makefiles should use only the macro
names to refer to directories. The names corresponding to the above direc-
tories are BINDIR, LIBDIR, INCLDIR, HELPDIR, DOCDIR, and
FONTDIR.

The only sure check on the Makefiles is to begin with a bare 4.2 BSD and
execute the Makefiles to build the system. Keep this in mind when writing a
Makefile so you are sure that all target files are described by the Makefile.
(Sometimes the system build will be done into a mounted file structure or
some other subordinate directory. For this reason, all references to direc-
tories should begin with ${DESTDIR}, a macro which ordinarily is mapped
into the null string.)

When you take extra care to check
the Makefile, you are being of
tremendous service to the people
who have to buiM the system.

When you create a new component and put it in a sutxtirectory, you are
responsible for also putting the name of the sutxtirectory in the SUBDIR list
in the Makefile for the parent. For example, when source directory
usr/local/bin/wm/ was created, an entry was made in the Makefile in
usr/local/bin/

Mention every file in the subdirectory in its Makefile. If the file is included
for archival purposes only, mention it in a macro definition of IGNORE and
give a subsequent comment explaining it's importance.

A typical Makefile that installs one command, say Ish, will have this pair of
rules:

install : lsh
${INSTALL} lsh $tDESTDIR]${BINDIR}

system: install

Note: ${INSTALL} is used in case some special treatment is needed or we
need to use another version of install. The Makefile itself should not define
INSTALL. Similarly the Makefile should use and not define CC and
RINSE.

$IDESTDIR} is left undefined. When new systems are being constructed in
may be valuable to define DESTDIR so the old system is not overwritten.
The Makefile should not define DESTDIR.

Note: $1BINDIR} is used instead of /usr/local/bin because we may someday
wish to change the name of the directory for our binaries. Six such variables
are defined; all installs should be into one of these directories or a subdirec-
tory:

BINDIR /usr/local/bin
LIBDIR /usrAocal/lib



- 14 -

IN CLDIR /usr Aocal Preclude
HELPDIR /usr/local/help
DOCDIR /usr Aocal /doc
FONTDIR /usr /local /fonts

If a Makefile installs multiple modules it can have a rule of this form:

install: ${CO/vIMANDS }
for i in ${COMMANDS }; do ,/

($[INSTALL} $$i $[DESTDIR ]${BIN DIR }); ,/
done

In a number of cases, subdirectories of one of the source directories are need-
ed. These are created by the Makefile that puts something in them. In fact,
even at the top levels, the Makefiles create the subdirectories they need.
Thus the Makefile in usr/local/bin creates the directory /usr/local/bin. The
'make system' for usr/local performs make system in its subdirectories in the
order

doe help include lib bin
Each of these can insert material only in subdirectories created by ones that
are made earlier.

Even if overwriting the current directory tree, the Makefile in usr/local re-
moves the file ${DESTDIR]$tLIBDIR}/Iibitc.a so it will be completely re-
freshed. Thus the order of making subdirectories of usr/local/bin is impor-
tant; a facility can only depend on library entries that it makes itself or that
have been made by preceding subdirectories.

When adding facilities to libitc.a, note that file names to ar are limited (eight
letters work, and possibly fourteen). The best strategy I found was to put a
number of entry points in one file and give that file a short name. The entry
point names can be as long as desired.

If your source is adapted for multiple environments via #ifdef's, you need to
cause those variables to be appropriately defined by proper CFLAGS in the
Makefile. To enable tests for machine type (VAX or SUN), include

-D${MACtHNE}
in the definition of CFLAGS. Similarly, if testing for operating system, in-
clude

-o$1os}

The following variables are added to the definitions in your Makefile by
rinse:

MACHINE - 'VAX" 'SUN = 1" 'SUN =2"
HOSTTYPE - SUNUSER SUNHOST VAXHOST VI-
CEHOST
OS - BSD42 BSD41c
LJOBS -'"' or '21jobs"

(To get the 4.2 jobs compatibility
package for 4.1c)

BINDIR, LIBDIR, IN CLDIR, HELPDIR, DOCDIR,
FONTDIR
CC -cc
RINSE -/usr/local/bin/rinse



° . , _"

-15 -

IN STALL - install

Our version of make uses only the Bourne shell, sh, so make rules must use sh
syntax. In particular, the higher level Makefiles in usr/qocal/.., use '_'or ... do
... done" rather than 't'oreach ... end".



-16 -

Examples

Example program- hello.c from usr/local/doc/

/* hello-minimum C te_st

* Author: John H. Howard

* Illustrates the standard structure of ITC code
,/

#include " "atc.h
private char rcsid[] = '$Header: hello.c,v 1.2 84/03/16 11:25:12 jhh Exp S"
private char IBMid[] _- 'Property of IBM Corporation"

/* SLog: hello.c,v $
* Revision 1.2 84/03/16 11:25:12 jhh
* Add '_there" to message, remove trash quote from log.

* Revision 1.1 84/03/16 09:55:28 jhh
* Initial revision */

#include < stdio.h>

main(argo, argv)
in int arge; //* number of args including name */
in char *argv[]; //* argument array */
{

printf (' t-Iello there, world !¢n');
}



-17 -

Standard ITC header file -itc.h in usr/local/include/

/* itc.h -ITC standard header file
to

* Author: John H. Howard
* Property of IBM Corporation
to

* defines a few constants used throughout ITC code
tO

* $Header$
,/

/* SLogS
*/

#ifndef _ITC
#define _ITC

/* C language patches */
typedef int boolean; /* to declare switches */
#define private static /* for variables local to a module */

/* parameter usage description tags */
# define in /* argument not modified */
#define out /* initial value not used; arg modified */
#define inout /* initial value used and arg modified */

/* very commonly used values */
#define TRUE 1 /* for boolean variables */
#define FALSE 0 /* ditto
#define NULL 0 /* to point nowhere */

# endif _.ITC



-18 -

Makefile for a command -Makefile in usr/local/binAsh/

# lsh - window manager file organizer
#
# Author: WJHansen, ITC
# Property of IBM Corporation
#
# Installs/usrAocal/binAsh
# and /usrAocal/helpAsh.n
#
# This file cannot be released until after 'wmlib.*'
# $Header: itcsource.d,v 1.4 84/09/12 22:56:24 wjh Exp $

PARTS =lsh.o lsbody.o makemenu.o
CFLAGS = -c -I${DESTDIR}$IlNCLDIR} -D$(MACHINE)

lsh: $(PARTS)
${CC} $(PARTS) $IDESTDIRJ$ILIBDIRJ/llbitc.a $(LJOBS) -o lsh

lsh.o: lsh.c lsh.h
${CC} $(CFLAGS) lsh.c

lsbody.o: lsbody.e lsh.h
${CC} $(CFLAGS) lsbc_ly.c

makemenu.o: makemenu.c
${CC1 $(CFLAGS) makemenu.e

install: lsh
${INSTALL} lsh $(DESTDIR)$(BINDIR)
$gNSTALL} lsh.n $(DESTDIR)$(HELPDIR)

system: install



-19 -

Makefile for a library -wndib in usr/local/lib/wmlib

# wmlib -library of routines for using raw windows.
# See wmpgm.c for examples of use.
#
# Author: WJHansen, ITC
# Property of IBM Corporation
#
# Installs wmllb.o into itclib.a
# Also installs wmlib.h in /usr/local/include/
#
# $Header$

CFLAGS = -c --I$[DESTDIR}$[INCLDIR} --D$(MACHINE)

wmlib.o: wrnlib.c
${CC} $(CFLAGS) wmlib.c

wrnpgm: wrnpgm.o
${CC] wmpgm.o ${DESTDIR}${LIBDIR]/libitc.a $(LJOBS) -o

wmpgm

wmpgm.o: wmpgm.c
${CC] $(CFLAGS) wmpgm.c

install: wrnlib.o
${INSTALL] wmlib.h $(DESTDIR)$(INCLDIR)
ar r $(DESTDIR)$(LIBDIR)/libitc.a wmlib.o
ranlib $(DESTDIR) $(LIBDIR)/libitc.a

system: install

In a prior version of this file, I did a recursive make of _mpgm in order that
wmlib.h could already have been installed in /usr/local/qnclude. This is no
longer necessary because I use

# include '_vnflib.h"
in wmpgm.c so the local version is taken rather than the one from
/usr/l oca lAnclud_



-20-

A system Makefile -in usr/local/bin

# Makefile for usr/local/bin -source storage for ITC programs
#
# Author: WJHansen, ITC
# Property of IBM Corporation
#

# SHeader: itcsource.d,v 1.4 84/09/12 22:56:24 wjh Exp $

CFLAGS= -O-D$(MACHINE) -I$(DESTDIR)$(INCLDIR)

# Shell scripts that need only be installed and are never removed.
#
SCRIPT = print

# C programs that live in the current directory and do not need
# explicit make lines.
#
STD= dd pr prmail kermit

# Subdirectories that have source for commands that must be made
# when we 'make system'. Note that there is order dependency:
# wm must be made before others because it creates library entries
# used by others.
#
SUBDIR =wm xyzzy Mail advise dvisherpa emacs filesys grok ¢

head indent itcrcs logo lsh make pic pressdvi preview ,/
rcs style telnet tftp troff itclogo

# 6670 header library files (used for print)
#
LIB6670=listings portrait

#
# Man files
MANS=dd.1 pr.1 kermit.1

all: ${STD} $(NSTD)

${STD}:
${CC} ${CFLAGS} -o $@ $@.c

install: all
for i in ${STD} ${NSTD}; do ,/

(${INSTALL} $$i ${DESTDIR}${BINDIR}); done
for i in ${SCRIPT}; do ,/

($1INSTALL3 -_ $$i.sh $tDESTDIR }$tBINDIR}); done
--mkdir $ {DESTDIR }${LIBDIR }/667
-chmod 777 $ {DESTDIR 35{LIBDIR 3/6670
for i in ${LIB6670}; do ¢



-21 -

($[[NSTALL} -¢ $$i.header v'
$ {DESTDIR 35{LIBDIR 36670); done

for i in ${MANS}; do ¢
($[INSTALL] -¢ $$i ${DESTDIR]$[HELPDIR]); donc

for i in $[MANS}; do ¢
($[INSTALL} -e $$i $[DESTDlR}/usr/man/manl); done

# Note that 'hsrAocal/binf'in the next rule
# refers to the central source directories
system: makedir install

for i in ${SUBDIR}; do V
($(RINSE) system usr/lccal/bin/$$i); done

makedir:
--mkdir $ [DESTDIR }${BINDIR }
-chmod 777 $ [DESTDIR 35{BINDIR ]



- 22 -

Checklist for Makefiles

Makefiles need special attention because some features will have no impact
until we try to make an entire system. Please aid the system-build staff by
checking each Makefile against these items.

-Name is 'Makefile".
-Is a member of SUBDIR list in parent.

-Initial comment contains name of directory, Author, 'Property of IBM
Corporation", description of the component, and $Header$.

-CFLAGS includes -D${MACHINE] if needed.
-CFLAGS has --I${DESTDIR]${INCLDIR}.

-Uses $[DESTDIR]${LIBDIR}Aibitc.a (rather than usergraphics.a).

-Does not define CC, INSTALL, RINSE.
-Uses CC, RINSE, INSTALL rather than program names.
- Calls programs from $[DESTDIR}$[BINDIR] and not from

/usr/local/bin.

-Has rules for 'install' and 'system' something like these for panacea
install: $ {ALL}

${INSTALL] panacea $[DESTDIR]$tBINDIR}
system: install

-Omits -s on the INSTALL.

-Prefixes mkdir and chrncfl with dash.
-Targets mkdir to ${DESTDIR}${xxxxDIR}/...
-After a mkdir, does chrnc_l 777 on same directory.

-Mentions all files in the subdirectory (even if some are listed in the IG-
NORE list).
-In high level directories uses fists named STD, NSTD, SCRIPT, SUBDIR,

MANS, MKSDIR (see Makefile for usr/local/bin).



' _23 m

SLog: itcsource.d,v $
Revision 1.4 84/09/12 22:56:24 wjh
• changed rinse -t to -T. pass all unrecognized rinse args to make. -h implies
install, but other rinses do not. sourcedir is taken from RemoteRcsDir where
this makes sense

Revision 1.3 84/09/03 21:55:27 wjh
• Minor revisions throughout.

Revision 1.2 84/05/30 15:54:05 wjh
• complete revision

Revision 1.1 84/05/15 15:12:27 wjh
Preliminary version.

$Header: itcsource.d,v 1.4 84/09/12 22:56:24 wjh Exp $


