
" Communicating with VICE

08 November 83 03:38

M. SaWanarayanan

Information Technology Center
Carnegie-Me}Ion University

Schenley Park
Pittsburgh, PA 15213

Draft: Do not Circulate, Reproduce, or Cite

Table of Contents

1 Introduction 1

2 The Socket Mechanism in Unix 2
2.1 Sockets 2

2.2 Creating and Naming Sockets 3
2.3 Stream Socket Conections 3

2.4 Datagram Socket Connections 3
2.5 I/0 on Sockets 4
2.6 Auxiliary Support 4
2.7 Non-Unix Workstations 4

3 The VICE Communication Model 5
3.1 Channels 6
3.2 Data Formats 7

3.3 Bulk-Unit Descriptors 8
3.4 Creating and Using an RPC Connection 10
3.5 Action at a Distance 11

3.6 Security on RPC Connections 13

I. VICE Data Types 15

II. The RPC Message Format 16

III. Common VICE Subsystem RPC Opcodes 17
v. The VICE RPC Database 18

_ere nces 19

') ii

List of Figures

Figu re 1: A Request/Bulk-Transfer Channel Pair 7

Figure 2, A File Fetch Remote Procedure Call 9
Figure 3. File Transfer to a Remote Virtual Disk 13

S S S S S S S • Satya,M

Printer Ruby

Spruce version 1 2.0 -- spooler version 12.0

File: vproto2.press on the CS-ZOG

Creation date:Tue Nov 8 03:41:31 1983

Printing date: 8-Nov-83 3:38:18 EST

For: Satya,M

Problems enco28ttededsheets = 22 pages, 1 copy.
Not impl.: brightness, hue, saturation, show-object, show-d _:- •)ac
Not impl." brightness, hue, saturation, show-object, show-d _,_')ac
Not impl.: brightness, hue, saturation, show-object, show-d _', :)ac
Notimpl :brightness, hue saturation, show-object, show-d _ac
Not impl.: brightness, hue, saturation, show-object, show-d)ac

Not impl.: brightness, hue, saturation, show-object, show-d _._,)ac
Not impl • brightness, hue, saturation, show-object, show-d _i,)ac
Not impl.: brightness, hue, saturation, show-object, show-d i_)ac

" 1

1 Introduction

The fundamental question addressed in this document is "How does one enable a process running

on a network node to reliably and securely obtain services from a process at a remote site?"

Any co_nmunication scheme that attempts to meet this requirement must incorporate the following

capabilities:

• a mechanism to physically transport data from a process on one machine to a process
on another.

• a network-wide naming scheme, allowing a requestor to uniquely identify a process or
class of processes providing a service.

• a mechanism to allow a requestor and a server processes on remote machines to
rendezvous prior to data transmission.

• an application protocol that allows a requestor and server to meaningfully interpret
what each is saying to the other.

A variety of transport protocols are available today to meet the first of these requirements. The

DARPA Internet family [3, 4, 5] and the SNA [2] family are examples of such protocols. Since these

protocols are well-defined and the problems addressed by them well-understood, we shall not discuss

them further in this paper.

The second and third requirements (naming and rendezvous) are addressed in Unix 4.2BSD via an

abstraction called a Socket. This abstraction is adopted as the basis for the communication scheme

described in this paper. An abbreviated description of the socket mechanism, as pertinent to this

discussion, is presented in Section 2. The issue of communicating with non-Unix network nodes is

also discussed in that section.

When mature, VICE will consist of a number of independent subsystems providing a variety of

services. In designing an application protocol for VICE, one has to strike a balance between

generality and efficiency. The model described in Section 3 attempts to tread this thin line carefully,

using the socket mechanism as its basis.

In reading this document please bear in mind that this is a skeleton: many details are omitted and a

number of fine points glossed over. It is hoped, however, that the presentation here is in sufficient

depth to convey the feasibility and adequacy of the proposed communication scheme.

2 The Socket Mechanism in Unix

A detailed discussion of the Unix socket mechanism is presented in [8]. The material presented

here is essentially a simplified summary of that document, with minimal attention being paid to

implementationissues. A discussionof the issuesarising in an actual implementationmay be found

in [9].

2.1 Sockets

A Socket is an abstraction representing one end of a bidirectional communication between two

Unix processes. These processes may be located on the same machine, or on different machines

connected bya networkand capable of exchanging data via a commontransport protocol. A socket

has a global name called its Socket Address which is unique across the entire network. A socket

mayalso haveone or more process-specificlocal namescalled Socket Descriptors. The scheme is

an exact analogue of the Unix file system, where file names are global but file descriptors are

process-specific.

With a view to supporting a multiplicity of transport protocols, naming schemes, and service

guarantees, a socket is associatedwith the following attributes:

• a Domain, defining the format of socket addresses.

• a Type, characterizingthe service guarantees providedbya socket.

• a Protocol, specifying the lower-level transport protocol associated with transmissions
viaa socket.

For the purpose of this discussionwe shall assumethat all sockets in the network are in the same

domain. The specific format of the socketaddresses is immaterialhere. We alsoassumethat a single

low-leveltransport protocol is Joeingused. This is a weaker assumption than the previousone, and

maybe relaxedwithout loss of generality.

Currently Unix supports two types of sockets: Stream Sockets and Datagram Sockets. At any

instantof time, a streamsocket maybe bound to at mostone other streamsocket in the domain. The

two connected sockets adhere to client and server roles, as described in Section 2.3. Data

transmissionson such a connection are error-free, flow-controlled, sequenced, and devoid of packet

boundaries-- the abstraction provided is that of a stream of bytes. In contrast, transmissionsvia a

datagram socket are liable to be lost or garbled, or may arrive out of sequence at their destinations.

Packet boundaries in such transmissionsare preserved,since each input or output operation on a

datagramsocket deals with anentire packet.

3

2.2 Creating and NamingSockets

A process first creates a socket descriptor and then binds this descriptor to a socket address. After

all operations on the socket are complete, a process may rid itself of the socket descriptor. The

socket itself will not vanish until all socket descriptors referring to it vanish.

The Unix operations corresponding to these actions are:

• socket descriptor = socket (domain, type, protocol)

• bind (socket descriptor, socket address, address length)

• close (socket descriptor)

• shutdown (socket descriptor, how) 1

2.3 Stream Socket Conections

The stream socket connection model assumes that one of the interested parties is a Client and the

other is a Server. A server process is always listening on its socket for clients. The rendezvous

between a client and a server results in the automatic creation of a new socket, and in the client being

connected to it without any explicit actions on its part. At this point the server typically forks a copy of

itself. The child server process services the client via the new socket, while the parent continues to

listen for other clients on the original socket. On completion of service, the child server process

self-destructs.

For the client process the only relevant operation is:

• connect (socket descriptor, server socket address, address size)

For the server process the corresponding operations are:

• listen (socket descriptor, maximum number of waiting clients)

• new socket descriptor = accept (socket descriptor, client socket address, address len)

2.4 Datagram Socket Connections

Whereas stream sockets must be connected prior to data transmission, datagram sockets may used

in connected or connectionless modes. When connected, the connection information merely serves

as routing information. There is no implied client/server relationship, nor is there any automatic

creation of new sockets. When used connectionless, destination and source addresses have to be

explicitly specified when transmitting data, and explicitly requested when receiving it.

1Thisis analternativeto close

4

2.5 I/0 on Sockets

The actual transmissionof data is done with Unix calls which closely resemble operations on file

descriptors. In the case of datagram sockets,each such operation results in the sending or receiving

of a packet. With streamsockets, such packet boundaries are invisible. The operations pertinent to

streamsocketsand connecteddatagram sockets are:

+ write (socket descriptor, buffer, buffer size)

• read (socket descriptor, buffer, buffer size)

• send (socket descriptor, buffer, buffer size, special flags)
+

• recv (socket descriptor, buffer, buffer size, special flags)

The send and receive calls are identical to write and read except for the special flags. The

functionserved bythese flags isdescribed in [8].

On unconnecteddatagram sockets,the relevant operationsare:

• sendto (socket descriptor, buffer, buffer size, flags, to address, address/en)

• recvfrom (socket descriptor, buffer, buffer size, flags, from address, address len)

2.6 Auxiliary Support

Besides these basic operations, Unixalso providesa number of system calls intended for network

support. These functionsmay be brieflysummarized as functions for:

• locating a host,given itsstringname.

• locating a server'ssocketaddress,given itsstringname.

• identifyinga protocol, in an environmentsupporting multipletransportprotocols.

• identifyinga network, inan internetenvironment.

There is also a multiple-wait function, to allow a process to wait for events on a number of selected

sockets.

2.7 Non-Unix Workstations

The design presented in this paper assumesthat all network nodes are capable of participating in

socket operations. In order to attach a non-Unix workstation to VICE, it is at least necessary to

implement software to respond to socket requests from other sites. It is also necessary to provide

some means for programs on such a workstation to generate socket requests to other sites.

5

I

Should the socket interface available to programs on the workstation be identical to that in Unix?.

The answer to this question depends on how closely the operating system on the workstation

resembles Unix. If the implementation would be simple and efficient, a full-fledged Unix socket

abstraction would clearly be the right choice. Otherwise one will have to be satisfied with a socket

interface to the outside world, while providing a different abstraction internally. There is probably no

general solution to this problem -- only a case-by-case examination will reveal the favoured approach

for a particular kind of workstation.

A relevant issue here is the incorporation of new transport protocols, such as the LU6.2 SNA

protocol, into this design. The view taken here, as detailed in [10], is that all such protocols should be

made available to Unix programs via the socket abstraction.

Assuming network-wide socket support a la Unix, the next section describes the application

protocol. The problem is first examined in the abstract, and its relationship to sockets is introduced in

Section 3.4.

3 The VICE Communication Model

The VICE communication model describes a process-to-process application protocol that enables a

workstation to communicate with, and obtain services from, a VICE subsystem on a cluster server.

The model is essentially a Remote Procedure Call model, with the workstation process playing the

role of caller, and the VICE subsystem the role of callee. There is no sharing of address spaces

between caller and callee: input parameters are passed by value, and output parameters are passed

by result. An area" of particular concern in this model is the efficient transmittal of large-sized

parameters, such as entire files.

A Connection defines a caller-callee pair, and comes into being when a workstation initiates a

Connect sequence with a VICE subsystem. It terminates either with a Disconnect initiated by the

workstation or on network partition between the two connected parties. Some of the important

characteristics of a connection are:

• Many remote procedure calls may be made during the lifetime of a connection.

• There is no requirement that one procedure call complete before another is issued:
responses from the callee are tagged in a manner that permits the caller to match its
outstanding calls with incoming responses.

• All actions and side effects associated with a remote procedure call are completed before
the corresponding response is returned.

• 6

• From the point of view of the caller and the callee, a connection appears to have the
characteristics of a reliable communication medium. The underlying mechanismsmay,
however,be built on top of unreliable transportprotocols.

3.1 Channels

A conr_ection is associated with two bidirectional Communication Channels: a Request

Channel and aBulk-Transfer Channel.

The bulk-transfer channel is used for the sole purpose of transmitting large-sized parameters,

generically referred to as Bulk-Units. All other data associatedwith a connection is transmittedover

the request channel. The presence of two channels isintendedto accomplishthe following:

• Specialized protocols maybe used to efficiently transfer large-sized parametersover the
bulk-transferchannel.

• The endpoints of the two channels can be distinct. For example, two high-level
processes may agree to transfer a file between the two machines they are running on.
The actual transfer of the file may occur between two low-level processes running on
these machines.

• As discussed in Section 3.5, the separation of the two channels allows action to be
initiatedat one point in the network, but cause bulk data to be transferred between two
other points.

What exactly is bulk data? The answer to this question depends on the specific VICE subsystem in

question. In the case of the File System, the unit of bulk-transfer is an entire file. Whenever a remote

procedure call incorporates a file as one of its parameters, the actual transfer of bytes in this file is

done over the bulk-transfer channel. For a Remote Disk Subsystem, on the other hand, the unit of

bulk-transfer is a page. Transfers on the bulk-transfer channel are therefore page transfers between
caller and callee.2

Figure 1 shows a typical connection. Each channel has a Stub at its end, performing the necessary

housekeeping activities for communication on that channel. The basic operations on the request

channel are the sending of an RPC request and the receiving of an RPC response. On the bulk-

transfer channel the basic operations are the sending or receiving of a bulk unit.

It is important to note the following asymmetry in the behaviour of the stubs:

2Can more than one type of bulk unit be associated with a connection? In theory there is no reason why this shouldn't be
possible, since the bulk-transfer protocols may disambiguate between the different kinds of bulk units. For simplicity, however,
I believe that we should restrict ourselves to only one kind of bulk unit per connection. Cases where there is a perceived need
to relax this constraint are probably those where there is a muddling of abstractions in the VICE Subsystem in question.

......... _ |
|

Request Channel
|

RequestStub ._ = RequestStub |
I
!
i

Bulk-transfer Bulk-transfer

Stub Bulk-Transfer Channel Stub

Figu re 1: A Request/Bulk-Transfer Channel Pair

• On the request channel, the workstation stub is always the initiator of an RPC sequence.

In other words, the workstation end plays the role of a client while the VICE end plays the
role of a server.

• These roles are reversed on the bulk-transfer channel. The VICE stub, behaving like a
client, initiates the sending or receiving of a bulk unit. The workstation stub acts as a
server, responding to the requests presented to it by the VICE stub.

Within this general communication framework a number of specific questions remain to be

answered:

• What is the format of data on the request channel?

• How is activity on the request and bulk-transfer channels coordinated?

• How is a connection created? How does a request/bulk-transfer channel pair come into
being?

• What is the protocol on the bulk-transfer channel?

• How much interdependency is there between the request channel stubs and the the
bulk-transfer channel stubs?

• How is security handled?

We explore the answers to these and related questions in the following sections of this paper.

3.2 Data Formats

The VICE Communication Protocol will be used by a variety of workstations to obtain services from

VICE. To allow interchange of information between such systems, it is necessary to specify a

common data format for use in remote procedure calls.

• 8

The set of VICE data types isdescribed in a table of entries, one entry per data type. Each entry has

the following fields:

Name of the data type, such as INTEGER,STRING,etc.

Size of the data type: FIXEDor VARIABLE.For fixed length data types, the actual size is
specified in this field. For variable length data types, the first part of the data is an
INTEGERspecifying the remaining length in bytes.

Prose description giving further information about the data type. This is intended only for human
understanding, in contrast to the two previous fields which may be easily
interpreted by programs. Initially, all the interesting semantic and
representational details about a data type will specified in this description. Later,
we may be able to better categorize the data types and factor out further
characteristics in a machine-understandable fashion.

In describing these data types it is important to note that "left-to-right" corresponds to the logical

transmission order. In other words, a sequence of bytes composing a data type is transmitted left to

right, without any padding. The bits within each byte are also logically transmitted left to right. If any

deviations from this convention are necessary for actual transmission, it is the responsibility of the

transport layer software to revert the data stream to the canonical order.

In some cases, conversions may be necessary between VICE data types and the data types use by

an application program. For example, strings in C are represented as a null-terminated sequence of

bytes without any length field. Another example is the byte-swapped representation of integers on

machines such as the PDP-11. In all such cases it is the responsibility of the application program to

perform the necessary conversions. It is probable that a set of library routines performing these

conversions will be created for each programming language on each type of workstation.

Appendix I specifies the set of VICE data types.

3.3 Bulk-Unit Descriptors

A Bulk-Unit Descriptor is a VICE data type that functions as a placeholder for a bulk-unit in a

remote procedurecall parameterlist. The contents of such a descriptorare passed, uninterpreted,by

the callee VICE subsystemto the appropriate bulk-transfer stub. To a first approximation,a bulk.unit

descriptor contains information that must be uttered to the bulk-transfer stub at the workstation in

order to effect the transfer of a bulk-unit. Alternatively,a bulk-unit descriptor may be viewed as the

information needed define a complete execution instance of the corresponding bulk-transfer

protocol. The latter view is probably more appropriate when the descriptor contains information

pertinent to issues such as flow control and encryption.

• 9

The use of bulk.unit descriptors permits a decoupling of request and bulk-transfer channels.

Typically,the dependency betweenthese two channels will be as follows:

• The bulk-transferchannel has no dependency on the requestchannel.

• The callee has to know how large a bulk-unitdescriptor is, and to pass descriptorsto its
bulk.transferstub.

• The callee has to be able to communicate the identity of bulk units to its bulk-transfer
stub.

• The caller has to be able construct a bulk-unit descriptor and to communicate
information such as encryption keys with its bulk-transfer stub. There is thus a greater
degree of interdependency at the caller end than the callee.

f _

, RPC Requests I
i W -I ;. V iI I
I I

I........... - "1

a Ethernet Ethernet FTP Connection Ethernet '

' FTP Server FTP C!ient '

i

Workstation VICECluster Server

Figure 2:- A File Fetch Remote Procedure Call

The hypothetical example in Figure 2 will probably clarify matters. In this figure, the local file

system, W, on a workstation wishes to communicate with a VICE File Server, V. Both W and V are

implemented on top of Unix, with a regular Unix file system underneath them. The bulk transfer

mechanism is a simple, unencrypted, Ethernet FTP: an FTP server runs on the workstation, and the

VICE node can initiate FTP requests. W wishes to fetch the VICE file

"/user/bovik/thesis/FlatEarth.mss" and store it under the name "/cache/file019"in its local Unix file

system. The FTP server on the workstation recognizes a userid "guest" with password "anonymous"

for transfers into the directory "/cache".

The sequence of events in such an RPC are as follows:

10

6

1. W will first construct a BULKUNITDESCRIPTORof variant type TCP-FTP-OESCRIPTOR 3

containing its own FTP server's network address, and the information "/cache/file019",
"guest", and "anonymous" inthe appropriate descriptorfields.

2. It willthen construct an RPC message inwhich the opcode is Fetch, the first argument is
of type STRINGand value "/user/bovik/thesis/FlatEarth.mss", and the second argument
is of type BULKUNITDESCRIPTORand itsvalue isthe recently-constructeddescriptor.

3. On receivingthis RPC message, Vexamines it and discoversthat it is a Fetch request. It
knowsthe numberandtypes of arguments for thiscall, bya table lookup.

4. V nowexecutes the RPC, performing access rightschecks and other related activities. It
discoversthat the requestedfile is present under the Unixname "/vicecache/xxx023".

5. It therefore requests its FTP stub to perform a SendFile operation, passing it the
descriptorandthe string "vicecache/xxx023".

6. The FTP stub initiatesthe file transfer, identifyingitself to the remote workstation's FTP
server as "guest", and copying the local file "/vicecache/xxx023" to the remote file
"/cache/file019". On completion,the stub returnsa successfulcompletion code to V.

7. Vnowconstructsa success response,and sendsit back to W onthe request channel.
.

3.4 Creating and Using an RPC Connection

The RPC mechanism is built directly on top of the socket mechanism, and makes extensive use of

socket primitives. The request channel is nothing more than a stream socket connection between

caller and callee. The request channelstubsare fictitious,and the RPC mechanismis implementedas

a set of conventionsimposedondata transfers on thisstream socketconnection. Bulktransfer stubs,

on the other hand, are nontrivialpieces of code, having well-defined interfaces to software on the

machines they run on. Bulk transfer channels are also socket-based, but may use datagram or

streamsockets.

An RPC connection between a workstation process, W, and a VICE subsystem process, V, is

created in the following manner:

• W first looks up the string name of V and obtains its socket address. There are already
existingsocketprimitivesto perform this function.

• W creates a stream socket and connects it to V. The socket mechanism handles all the
necessary housekeepingsuch as setting up of routingtables.

• W sendsa Connect RPC messageon this socket. Vexamines the parameterspassed to
it and accepts or rejects thisRPC connection.

3This will make sense in conjunction with Appendix I.

11

• Assuming V accepts the connection, W sends an InitBulk RPC message, identifying the
bulk-transfer protocol to be used and passing along an initialization descriptor. V hands
this descriptor to the appropriate bulk-transfer stub at its end, and responds to W.

• The RPC connection is now set up.

A typical use of an RPC connection is as follows:

• W first constructs an RPC message in an internal buffer and performs a Write or Send
on the socket corresponding to the request channel. In the meantime, V is blocked
waiting for data on the socket at its end of the request channel. On being awakened, it
examines the first four bytes of data from the socket to determine the length of the RPC
message and reads in that many bytes into an internal buffer.

• V examines the opcode, performs a table lookup, and determines the number and types
of each of the parameters in the RPC message.

• V now performs the requested operation, using the bulk-transfer channel as necessary.

• To respond, V constructs an RPC message with an opcode indicating a response, marks
it with the tag field of the requesting message, and performs a Write or Send on the
socket corresponding to its end of the request channel.

• At some point in time, W does a Read or Receive from its request channel socket point
and reads in the response.

This sequence of requests and response repeats many times during the life of an RPC connection.

The following steps are taken to terminate a connection:

• W constructs and sends V a Te rminateBulk RPC message, with a termination descriptor
for the bulk-transfer channel.

• V passes the descriptor to its bulk-transfer stub, indicating termination. It then responds
to W.

• W then sends V a Disconnect request. V responds, indicating a successful termination
and then closes its socket corresponding to the request channel.

• W closes its socket corresponding to the request channel. It may also have to indicate
termination to its end of the bulk-transfer channel.

3.5 Action at a Distance

One consequence of the separation of an RPC connection into a request and a bulk transfer

channel is that the endpoints of these two channels need not be on the same pair of network nodes. 4

4It is interestingto notethat a bulk-transferchannel isanalogousto aDMAchannelin hardware.

" 12

Such a capability is likely to be useful in supporting diskless workstations operating with Remote

Virtual Disks (RVDs) provided by a separate VICE RVD subsystem.

A description of an existing RVD subsystem may be found in [1]. The design of such a subsystem in

VICE is an open question at this point in time. All plausible RVD designs will support the standard

operations provided by actual disks -- Read, Write, Seek, and so on. However, these designs will

also have to address issues such as responsibility for the management of free storage on the virtual

disk, synchronization of accesses from multiple readers and writers, and the mapping of bytes in a file

to virtual disk addresses.

For the purposes of this section we assume a stripped-down RVD design, that provides only the

bare minimum of functionality. Synchronization and storage management are the responsibility of the

user. The RVD primitives of interest to us are Read (disk block addresses) and Write (disk block

addresses).

Based on these assumptions,Figure 3 shows how a diskless workstation may use an RVD for file

transfers. The sequence of events corresponding to the situation depicted in this figure are as

follows:

• A workstation process, W, with a page-level bulk transfer stub B1 Connects to an RVD
subsystem, R, with a page-level bulk transfer stub B2. It obtains the necessary
information from R to initialize its storage allocation tables.

• w now Connects to a File subsystem, F, indicating that it wishes to use a bulk-transfer

mechanism that can transfer files to an RVD. The stub B3 corresponds to this bulk-
transfer mechanism.

• When W wishes to Fetch or Store a file from F, it first tells R to expect page fetches or
stores on B2. W then makes its file request to F, passing along a bulk-unit descriptor for
B3•

• At F's behest, B3 transfers the requested file as a series of disk pages to or from B2. B2
recognizes these pages as being part of W's earlier request. On completion, R informs W
that the disk read or write is over. F informs W that the file transfer has been completed.

• At any time, W can communicate with R and cause pages to be transferred between B1
and B2.

This discussion is inevitably sketchy at this point, since the design of the RVD subsystem is currently

unspecified. The important message of this section is that the proposed communication scheme

permits remote data transfers to take place, without the participants in the transfer being aware that

this is a remote transfer.

,. 1,3

--'1
F

I

--1

Vice File Server

i-'--

_ W 4
L--__

I" - -

L... _ _

Workstation

; R]

----I

---* 82;

VICE RVD Server

Figu re 3: File Transfer to a Remote Virtual Disk

3.6 Security on RPC Connections

An extensive discussion of security in high-level protocols can be found in [6]. The design being

discussed here is based on the socket mechanism, but the latter provides very little inherent security.

Consequently, all security measures have to be applied end-to-end. Fortuitously, there seems to be

strong evidence that end-to-end measures provide a greater degree of security than lower-level

measures [6].

In the context of this design, the security concerns can be summarized as follows:

• How can a subsystem confirm the identity of the originator of an RPC Connect request?

• Once the identity of a requester is confirmed, how can RPC messages on the request

channel be protected against threats?

14

• How can a bulk-transferserver validate requests from a bulk-transfer client?

• How can data transmissions on the bulk-transfer channel be protected against threats?

The threats of most concern to us are:

• Masquerading the identity of a user's process.

• Revealing information on the request and bulk-transfer channels.

• Undetected modification of data transmissions on request and bulk-transfer channels.

Since VICE subsystems are implemented on trusted and physically secure network nodes by

trustworthy(!!) programmers, we ignore Trojan horse threats. We also choose to ignore traffic

analysis threats on data transmissions. Encryption is the basis for countermeasures to all the other

threats.

The authenticityof a Connect request is establishedby a handshakingprocedure described in[7].

One of the outcomes of this authentication procedure is the establishment of encryption keys for

transmissions on the request channel. All such encrypted transmissions are protected against

exposure and undetected modification.

Security on a bulk-transfer channel is derived from the already-established security on the

corresponding request channel. A suspicious bulk-transfer protocol would use encrypted

transmissions,with the requestchannel acting as a key-distributionchannel. A requesting process

on a workstationwould passencryption keys directly to itsbulk-transfer stub; the remote bulk-transfer

stubwould receive its key fromthe bulk-unitdescriptorpassed to it via the request channel.

A number of details still remain tObe worked in thisscheme. To some extent they cannot be fully

specified untilthe bulk transfer protocolsare defined.

,, 15

6

I. VICE Data Types

INTEGER 4 bytes

32-bit integer in 2's complement form. Representation is IBM-370 style, with bit 0
to the left and bit 31 to the right. Bit 0 is the sign bit.

TIMESTAMP 8 bytes

We need to define a VICE-wide time representation. 64-bit resolution ought to be
plenty. Something along the lines of "microseconds since 00:00 Jan 1 1900
GMT" should be reasonable.

STRING Variable

Sequence of bytes in ASCII. Maximum length is limited to 231-1 bytes in theory,
but is likely to be far less in practice.

BULKUNITDESCRIPTOR
Variable

A variant type, the specific variant being determined by the bulk-transfer protocol
specified when the connection is established. Contents are passed along
uninterpreted by the VICE Subsystems to the appropriate bulk transfer
mechanism.

Hypothetical examples of BULKUNITDESCRIPTORvariants are:

• TCP-FTP- DESCRIPTOR

Descriptor for a file transfer using an IP/TCP bulk transfer protocol.

• LU6-FTP - DESCRIPTOR

Descriptor for a file transfer on a bulk transfer server using LU6.2.

• PAGEFTP- DESCRIPTOR

Descriptor for a file transfer using a bulk transfer server that knows
that it is talking to a remote disk server. In addition to file information,
this descriptor will contain information on disk block allocation.

• PAGE- DESCRIPTOR

Descriptor for a page transfer bulk server.

16

Ii. The RPC Message Format

The initial part of a message is symmetric in both directions, and always consists of fields of type

INTEGER,specifying the following:

Length . of message contents in bytes, excluding this field.

Protocol Version Number

Tag To uniquely identify this message on this connection. The caller always generates
odd-numbered tags, and the callee even-numbered ones.

OpCode I The opcode assignment is unique over all VICE subsystems, and consists of a pair
of integers. The first integer identifies the callee VICE subsystem.

OpCode2 This is the second part of the opcode, and identifies an operation meaningful to
the callee VICE subsystem. Appendix III identifies certain operations which are
meaningful to all VICE subsystems.

This is followed by a list of parameters of types appropriate to the opcode. On a response, these

parameters are the values being returned, s

5No parameters of BulkUnitDescriptor will be returned; remember that all bulk transfers are handled by the callee stub.

,, 17

II1. Common VICE Subsystem RPC Opcodes

Every VICE Subsystem recognizes the following RPC opcodes:

Connect (....)
The parameter list is specific to each subsystem.

InitBulk (BulkProtocol: INTEGER,InitialDesc: BULKUNITDESCRIPTOR)

Identifies the bulk-transfer protocol to be used, and specifies a descriptor
providing initialization information.

TerminateBulk (FinalDesc: BULKUNITDESCRIPTOR)

Specifies a descriptor that will cause termination operations to be performed on
the bulk-transfer channel.

Disconnect (....)
The list of parameters is subsystem-specific.

Response (RequestTag: INTEGER)

This opcode is used by VICE subsystems to indicate a response to an RPC
message. The first parameter to identifies the RPC message that this is a
response to. The other parameters are subsystem- and operation-specific.

A Connect followed by an InitBulk establishes a connection, while a TerminateBulk followed by

a Disconnect destroys it.

"' 18

IV. The VICE RPC Database

If you got this far, you got further than I did//

• °

19
f

References

[1] Greenwald, M.
Remote Virtual Disk(RVD) Protocol Specification (Version 4).

Technical Report, Laboratory for Computer Science, Massachusetts Insitute of Technology,
November, 1983.

[2] Systems Network Architecture: Transaction Programmer's Manual for LU Type 6.2
IBM Corp., Research Triangle Park, NC, 1982.

[3] Information Sciences Institute.

Internet Protocol: DARPA Internet Program Protocol Specification.
Technical Report RFC791, University of Southern California, Marina del Rey,CA, September,

1981.

[4] Information Sciences Institute.

Internet Control Message Protocol: DARPA Internet Program Protocol Specification.
Technical Report RFC792, University of Southern California, Marina del Rey,CA, September,

1981.

[5] Information Sciences Institute.

Transmission Control Protocol: DARPA Internet Program Protocol Specification.
Technical Report RFC793, University of Southern California, Marina del Rey,CA, September,

1981.

[6] Kent, ?. and Voydock, ?
Security in Higher-Level Protocols.
Ccmputing Surveys 15(?), ?, 1983.

[7] King, D.

Authorization and Accounting.
1983.

Information Technology Center, Carnegie-Mellon University.

[8] Leffler, S.J., Fabry, R.S., and Joy, W.N.
System Internals Manual for the Sun Unix System. : Interprocess Communication Primer.
Sun Microsystems Inc., Mountain View, CA, 1983,.

[9] Leffler, S.J., Joy, W.N., and Fabry, R.S.

System Internals Manual for the Sun Unix System. : Networking Implementation Notes.
Sun Microsystems Inc., Mountain View, CA, 1983,.

[10] Satyanarayanan, M.
LU6.2 on Unix 4.2BSD.
October 1983.

Internal memorandum, Information Technology Center, Carnegie-Mellon University.

