
A Language–based Approach to Specification
and Enforcement of Architectural Protocols

Kevin Bierhoff ∗ Jonathan Aldrich ∗

Sangjin Han†

April 2006
CMU-ISRI-07-121

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗ Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA.
{kevin.bierhoff,jonathan.aldrich} @ cs.cmu.edu
† Formerly: Carnegie Mellon University, Pittsburgh, PA, USA.

This technical report was drafted under the number CMU-CS-06-119 and has been available on
the first author’s website since April 2006. It was officially published without content changes
in December 2007 as CMU-ISRI-07-121.

This work was supported in part by NASA cooperative agreement NNA05CS30A, NSF grant CCF-0546550, and
the Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Secure Information
Systems”.

Keywords: Protocol, typestate, software architecture, ArchJava

Abstract

Software architecture research has proposed using protocols for specifying the interactions be-
tween components through ports. Enforcing these protocols in an implementation is difficult. This
paper proposes an approach to statically reason about protocol conformance of an implementation.
It leverages the architectural guarantees of the ArchJava programming language. The approach
allows modular reasoning about implementations with callbacks, recursive calls, and multiple in-
stances of component types. It uses a dataflow analysis to check method implementations and uses
model checking techniques to reason modularly about component composition. The approach is
limited to static architectures but can handle multiple instances for component types and arbitrary
nesting of components.

1 Introduction

Our models and our understanding of software architecture [30] have come a long way in the
last decade. Numerous architecture description languages (ADLs) have been proposed to capture
the runtime structure of a software system. What used to be drawn with informal “box–and–line
diagrams” can now be described in more formal terms of components and connectors.

Component diagrams as they are part of UML 2.0 [28] capture runtime components, their ports
(interfaces), and the connections between ports of different components. Intuitively, a component
can (directly) communicate with another component ifand only if they are explicitly connected
through ports. This structural property ofcommunication integrity[25] is very helpful in reasoning
about systems.

But what if we want to constrain the communication patterns across ports? Some ADLs include
features to describe architectural protocols. Darwin [26] for example can specify possible event
sequences of components and Wright [3] uses CSP [22] to define protocols. The benefit of such an
approach is that usage rules for components are made explicit. When composing components we
can check if their protocols are compatible.

Model checking techniques have been applied to modular reasoning about temporal properties
of implementations [9, 18]. Unfortunately, these approaches do not handle architectures with
multiple component instances and cannot reason about callbacks. The ADL Rapide included a
runtime technique for detecting protocol violations but could not prevent them statically [25].

This paper proposes a modular approach to enforcing architectural protocols at compile time
in implementations with multiple component instances that can be arbitrarily nested. It supports
idioms such as callbacks and recursive calls that are difficult to reason about. Thus even though it
is restricted to static architectures (with a fixed number of components) the approach supports an
important class of systems. Our behavioral specifications are based on typestates [31], a program-
ming language concept to track the possibly changing state of objects in addition to their fixed
type. Typestates let us specify port behavior directly with abstract state machines.

To our knowledge this is the first approach that uses communication integrity to reason about
implementation behavior. Communication integrity lets us devise a sound modular dataflow anal-
ysis that can verify protocol conformance of method implementations. We rely on the ArchJava
programming language to capture and enforce architectural structure [1, 2]. We build on model
checking techniques developed for assume–guarantee reasoning [17] to verify protocol compli-
ance in component compositions. We leverage the hierarchical structure of software architectures
to reason about composition for each component type separately. In summary, the contributions of
this paper include the following.

• We propose the first system (we know of) that can statically enforce architectural protocols
in software systems with multiple instances per component type. Even though the number
of instances is fixed, components can be nested arbitrarily deep. Unlike existing work, we
can reason about notoriously tricky programming idioms such as a callbacks and recursive
calls. The approach is modular, hierarchical and compositional because it considers only one
component type with its immediate subcomponents at a time.

1

• In contrast to most approaches to defining architectural protocols we use typestates to specify
protocols. This gives the programmer the ability to think of the protocol in terms of states
rather than event sequences. We support non–determinism and enrich protocols to include
dependencies between ports.

• We introduce the novel concept of “boundary transitions” from one state to another at the
entrance and exit of methods. This lets us treat typestates as purely static tokens with no
runtime representation. In contrast to existing work in this area [12, 16], we can reason not
only about methods that call state–changing methods, but also about methods that change
states themselves.

• We separate the verification into two independent steps, one that looks at method implemen-
tations and one that reasons about component composition. We employ different techniques,
dataflow analysis and model checking, in the two steps, and show how they work together.
The dataflow analysis extends existing techniques [12] to handle our more complex specifi-
cations including non–determinism. Component composition isflexiblein that we just check
that none of the protocols of connected components can ever be violated; the protocols need
not be identical.

• We define the first programming language that captures and enforces protocols between
architectural components. Our method implementation check is similar to typechecking and
therefore does not suffer from state explosion problems typical for software model checking
techniques [9].

• This is the first system (that we know of) that can reason about typestates in the presence of
limited aliasing of components.

The remainder of this paper is organized as follows. We introduce our approach to the spec-
ification of port protocols in section 2. Section 3 lays out a core language that includes these
protocols. Static protocol checking of method implementations is formalized in section 4. Sec-
tion 5 investigates modular component composition checking. Extensions to support protocols in
a realistic language are discussed in section 6. Section 7 summarizes related work and section 8
concludes.

2 Port Protocol Specification

This section gives a high-level introduction to the specification of port protocols. We first motivate
our approach with an example ArchJava program. We then discuss expressiveness goals and show
how we achieve these in our approach.

2.1 Motivation and Example

Figure 1 shows a legal ArchJava component class that implements the front-end of a simple Web
server. It has three ports,Http , Control , andHandle . TheHttp port encapsulates the client

2

interface of the Web server while the other two ports can be hooked up to other components that
help servicing incoming requests. The methodHttp.get implements the actual service. It takes
an HTTP request, prepares theControl port, forwards the request to theHandle port and finally
tears downControl after the request is serviced.

Compared to a standard Web server implementation in C or Java, our implementation in Arch-
Java has the advantage that it makes itsports explicit. This Web server component has three
points of interaction with other components, and it lists (exhaustively) all methods that it can call
(requires) and that can be called (provides). Software architecture models were designed
to capture this kind of information [30]. ArchJava includes these concepts in a programming lan-
guage [2].

A number of protocols are implicit in our Web server implementation. Firstly, the Web server is
not reentrant. It assumes that only one request is serviced at a time. Secondly, theControl port
has its own small protocol that requiresprepare andteardown to be called in alternating order.
Thirdly, it is required thatHandle.request is only called afterControl was prepared (and
before tear down). All these makeassumptionsabout components connected to the one shown in
figure 1. For instance, the component assumes that clients wait with a new request until the last one
was answered. Moreover, the implementationguaranteesthat it will indeed follow these protocols
and for example only ask theHandle port to service the request after some preparation.

Notice that these protocols cannot be extracted from the source code. They are followed by the
Web server implementation, but this could be mere coincidence. Maybe it is really no problem to
forget to callteardown , or no preparation is necessary for servicing a request. In general, pro-
tocols have to be documented informally [7] and it is by no means guaranteed that these protocols
are observed or even correct [24]. Moreover, the users of a component usually will not explicitly
document the assumptions they make about that component. This makes it hard or impossible to
decide whether the system will still work if the component is replaced by a different one.

2.2 Typestate Protocols

Our goal is to document and enforce these protocol assumptions and guarantees in a way that
does not overburden developers. In contrast to existing work on reasoning about architectural
protocols [3, 26] we tie protocols to the implementation in a programming language. Our approach
can thereforestatically guaranteethe protocol conformance of that implementation. This section
describes our specification approach and its expressiveness. The following sections deal with
enforcing these protocols in an implementation.

We build on earlier work on protocol definition for programming languages [12, 13, 7]. We
leverage the concept of typestate [31] to specify a state machine that defines a protocol for each
port (figure 1). By contrast, research on architectural protocols [3, 26] usually defined protocols in
a form of process calculus such as CSP [22]. These are then translated into finite state models to
apply model checking techniques. We avoid this extra translation step by using typestates.

Typestates give the developer the opportunity to explicitly name states. In our experience
states often have a semantic meaning such as, “the Web server is ready to service a request”,
that can be conveyed with the state name [7]. Moreover, typestates are an abstraction that lets
the developer think about pre- and post-conditions for each operation separately. With a process

3

public component class WebServer {

/ * :states idle, busy * /
public port Http {

/ * :spec idle -> busy
& Control.raw & Handle.waiting

=> busy -> idle
& Control.raw & Handle.waiting * /

provides String get(String get) {
String result;
Control.prepare(get);
try {

result = Handle.request(get);
}
catch(IOException e) { ... }
finally {

Control.teardown();
}
return result;

}
}

/ * :states raw, initialized * /
public port Control {

/ * :spec raw & Handle.waiting
=> initialized & Handle.waiting * /
requires void prepare(Object context);

/ * :spec initialized & Handle.waiting
=> raw & Handle.waiting * /
requires void teardown();

}

/ * :states waiting, working * /
public port Handle {

/ * :spec waiting->working & Control.initialized
=> waiting & Control.initialized * /
requires String request(String doc)

throws IOException;
}
}

Figure 1: Simple web server example

4

Method spec S ::= T single case
| T , S multiple cases

Method case T ::= B => U state transition

Method boundary B ::= t no side condition
| t ∧ c with side condition

Postcondition U ::= B single case
| B ∨ U disjunction

Transition t ::= s1 -> s2 boundry transition

Conditions c ::= z.s state on port
| z.s ∧ c condition conjunct

states s
ports z

Figure 2: Core method specifications

model, operations are interdependent in that protocols are defined as possible event sequences. In
our approach, possible event sequences are implied by states shared between post-conditions and
pre-conditions of operations.

Figure 1 includes a typestate-based specification of the protocols that we described in the pre-
ceding section. Notice that protocols are enclosed with/ * : ... * / and are therefore techni-
cally comments that can be ignored by the compiler. As can be seen from the example, we use
two kinds of protocol annotations./ * :states * / annotations define a list of states for a port.
/ * :spec * / annotations can be added to a provided or required method to define its protocol
with state transitions. A state transition defines the behavior of a method with a pre-condition
and a post-condition expressed as states [7]. The following paragraphs describe our specification
approach in detail. The exact language for method specifications is shown in figure 2.1

States for each port. We associate with each port a set of mutually exclusive states. They are
defined as a simple list. For example, the three Web server ports define two states each.

States as abstract tokens. We track the current state of each port as an abstract token (as in Vault
[12]). The state does not have a representation in form of a predicate over component fields (as in
Fugue [13]). In fact, our states do not have a runtime representation at all.

1We write& for ∧ and| for ∨ in example code.

5

State transition during method execution. During method execution the port can potentially
change state. We denote the expected state transition during method execution with abig arrow
(=>). We do not specify how this transition is accomplished. The port can go through an ar-
bitrary number of states during the method execution. For example, theControl port defines
that prepare will ultimately transition fromraw to initialized (the full meaning of this
specification will become clear soon).

Boundary transitions. Most previous typestate specification mechanisms describe only how a
method changes the state of a component with respect to clients [12]. However, if the implemen-
tation of a method called back to a client method, then the client could make another call into the
component, raising the question: what state is the component in as its method executes?

In our model, state transitions occur atomically at method call and return points. Thesebound-
ary transitionsare declared with asmall arrow(->) on each side of the big arrow (=>). For
example,Http.get declares boundary transitions fromidle to busy and back, expressing
thatget is not re-entrant. Not only does this allow us to soundly handle callbacks, it allows us to
reason about them more abstractly than solutions such as packing and unpacking objects [13].

Method cases and non–determinism. Methods commonly behave differently in different con-
texts [7]. We allow specifying multiplemethod casesthat describe the method’s behavior under
different pre-conditions. Formally a specification is then an intersection [14] of cases. To accom-
modate non–determinism during method execution, the post-condition of a method case is a union
(disjunction) [14] of final states. Our Web server example does not exhibit non–determinism, but
other examples of architectural protocols do so [4].

Port dependencies. Methods of one port will frequently depend on particular states of other ports
so that they can call methods on those. This is not always supported by architectural protocols. For
instance, a Wright connector specifies its roles completely separately [3]. Our protocols include
the definition of dependencies. The specification for the current port is combined (intersected
[14]) with state assumptions (in pre-conditions) and guarantees (in post-conditions) on other ports.
This has happened in every single method specification for our Web server. For example, the
specification forHandle.request makes explicit the expectation that theControl port is
prepared first. Notice that only the port the method belongs to can perform boundary transitions.

Syntactic sugar. To alleviate the developer from some of the protocol specification burden we
introduce several shorthand notations. Sometimes we do not care about the state (or states) that are
visited during method execution, as in theControl port. As far as we are concerned, we cannot
do anything with that port while one of its methods is running (and its methods cannot call back).

We therefore support syntactic sugar to omit small arrows. If there is no explicit small arrow in
the pre-condition then a boundary transition to a freshinternal statewill be inserted. In this case the
post-condition should not contain a small arrow, either, so that a switch back from the internal state
can be added. For example, theraw => initialized specification inControl.prepare
is translated intoraw -> t => t -> initialized , wheret is a fresh state. Notice how

6

the specifications in theControl port formalize that the two methodsprepare andteardown
have to be called in alternating order.

If only the small arrow in the post-condition is omitted then the state after executing the
method is assumed to be the same as before. A state switch from the right-hand side of the pre-
condition to the state given in the post-condition is added in this case. Thus the specification for
Handle.request expresses that a call to that method switches the state toworking and the
method return switches it back towaiting .

Method cases without any arrows are assumed to preserve the given state with a transition to an
internal state during method execution. Ports that are not mentioned in a method case are assumed
to preserve state. The latter is exemplified by theControl andHandle ports that do not mention
the Http port. The exact rules for desugaring surface protocol specifications into the syntax of
figure 2 are given in appendix A.

2.3 Implementation

We implemented a prototype that can read and check specifications for consistency with the im-
plementation. Our implementation can handle the Web server example discussed above. It is an
add–on to the regular ArchJava compiler. This extension isoptional: protocols have no run time
impact, the protocol checks can be switched off (or ignored), and protocols do not interfere with
ArchJava’s structural type system [1]. However, a successful protocol check gives a positive assur-
ance of consistency between implementation and behavioral specification. The following sections
build up the technical facilities for statically checking specifications and in particular the example
given in figure 1.

3 A Core Language

In order to facilitate our reasoning about the correctness of ArchJava programs with respect to pro-
tocols we formalize a core fragment of static ArchJava with protocols. The following subsections
discuss syntax, dynamic semantics, and typechecking of this core language. The design follows
ArchFJ [1], a core language for ArchJava.

3.1 Syntax

The syntax is summarized in figure 3. We distinguish component classes from normal classes
with the keywordcomponent . C ranges over normal classes,D over component classes, and
E over both kinds of classes. Normal classes are defined just as in ArchJava (and Featherweight
Java [23]). Component classes are defined with a list of fields (which can be subcomponents or
normal objects), a constructor, a list of ports, and a list of (static) connections. Connections hook
up matching ports of two components. The ports that are connected have to be part of the current
component (this) or a direct subcomponent referenced by a field. Notice that we use overbars to
denote lists; for instance,E f = E1 f1; E2 f2; . . . ; En fn defines the list of fields in a component.

7

CP ::= component class D1 extends D2 { E f; K P X }
CL ::= class C1 extends C2 { C f; K M }

constructor K ::= E(E f) { super(f); this.f = f; }
method M ::= C m(C x) { return e; }

P ::= port z { [states s; Q] R}
Q ::= requires S C m(C x);
R ::= provides S M

X ::= connect(w1.z1, w2.z2);
expressions e ::= x

| new E(e)
| e.f
| z.m(e)
| e1.f = e2
| e.m(e)

paths w ::= this

| this.f
types E ::= C

| D
variables x

fields f
classes C

components D

Figure 3: Core language syntax

8

Ports are ranged over withz and define a list of states, a list of required methods and a list of
provided methods. Both required and provided methods are annotated with a specificationS (figure
2) of how they change the port’s state. Notice that all component methods reside in a port. Method
bodies consist of a single return statement with a recursive expressione. Legal expressions are
variable access (this is a special variable for the receiver),new expressions to create new objects
or components, field access, assignment, and method invocation. Method invocation is allowed on
the component’s own ports (z.m) and on objects (e.m).2 Explicit casting of objects is omitted to
simplify the system; it could be added without complications.

3.2 Dynamic Semantics

The dynamic semantics is largely standard and similar to ArchFJ [1]. We use a store that maps
locations to objects. Objects are tagged with their runtime type and contain a list of locations for
their fields.

Stores µ ::= • | µ, l 7→ E(l)

We writeµ[l 7→ E(l)] for a store that is identical toµ except for locationl which now points to
the given object.

A small–step evaluation semantics is given in figure 4. It uses the judgmentθ ` 〈µ, e〉 7−→
〈µ′, e′〉. This means that in the context of receiver objectθ (identified by its location) and a store
µ, an expressione evaluates toe′ and changes the store toµ′ in one step. Auxiliary judgments for
evaluation are presented in figures 5 and 7.

We track the receiver during evaluation in order to determine the callee of a port method call
in rule E-PORTCALL with the judgmentconnected (figure 5). In order to track all receivers in a
call stack we introduce the following additional syntactic form that only occurs during evaluation
and represents a kind of stack frame. Locations are also expressions and represent the only values
in our system.

Expressions e ::= . . . | l B e | l

The rules E-OBJCALL and E-PORTCALL generate a frame for every method call. Rule E-
CFRAME then evaluates expressione in the context of the new receiverl defined in the frame.
Finally, rule E-FRAME removes the frame once its expression evaluated to a value. This corre-
sponds to a return from a method call.

Congruence rules are summarized with E-CONGRUENCE. We define evaluation contexts in the
obvious way.

Eval. contexts Ξ[•] ::= • | new E(l, Ξ[•], e) | Ξ[•].f
| Ξ[•].m(e) | l.m(l, Ξ[•], e) | z.m(l, Ξ[•], e)

9

l∗ 6∈ dom µ µ′ = µ[l 7→ E(l)]

θ ` 〈µ, new E(l)〉 7−→ 〈µ′, l∗〉
E-NEW

µ(l0) = E0(l) fields(E0) = E f

θ ` 〈µ, l0.fi〉 7−→ 〈µ, li〉
E-FIELD

µ(l0) = E0(l) fields(E0) = E f µ′ = µ[l0 7→ E0(l1, . . . , li−1, l
′, li+1, . . . , ln)]

θ ` 〈µ, l0.fi = l′〉 7−→ 〈µ′, l′〉 E-ASSIGN

µ(l) = C(l) mbody(m, C) = x.e

θ ` 〈µ, l.m(l)〉 7−→ 〈µ, l B [l/x, l/this]e〉
E-OBJCALL

connected(µ, θ, z) = l µ(l) = D(l) mbody(m,D) = x.e

θ ` 〈µ, z.m(v)〉 7−→ 〈µ, l B [l/x, l/this]e〉
E-PORTCALL

θ ` 〈µ, l′ B l〉 7−→ 〈µ, l〉 E-FRAME
l ` 〈µ, e〉 7−→ 〈µ′, e′〉

θ ` 〈µ, l B e〉 7−→ 〈µ′, l B e′〉 E-CFRAME

θ ` 〈µ, e〉 7−→ 〈µ′, e′〉
θ ` 〈µ, Ξ[e]〉 7−→ 〈µ′, Ξ[e′]〉 E-CONGRUENCE

Figure 4: Small–step evaluation semantics

3.3 Typechecking

This section discusses the static typechecking rules for our core language. A program consists of
the class tableCT , i.e. the list of all normal and component classes declared, and a main expression.
Figure 6 contains rules for typechecking expressions and declarations. We discuss component
subclassing separately in section 6.3. The judgmentconforms in is the starting point for protocol
conformance checking as presented in the following section. Our expression typing judgment
Γ `E e : C includes the typeE of the receiver and is otherwise similar to Featherweight Java [23].
Variable contexts are defined in the standard way as follows.

Contexts Γ ::= • | Γ, x : E

We explain the expression typing rules in turn.

• T-VAR is the standard rule for variable access that looks up the variable’s type in the context.

• T-FIELD types field accesses. The type of the field is looked up in the class’s declaration.

• T-NEW creates a new object or component. To simplify our system we assume that any
subcomponents that are passed in as parameters to a new component are freshly created with
a new expression of their own. This is equivalent to field initializers in full ArchJava and

2In full ArchJava, components may invoke methods of subcomponents directly. We simulate this idiom with an
explicit port connected to the subcomponent. We similarly simulate internal methods of the component by calling
methods provided by own ports.

10

Method body lookup

[component] class E extends E′ {. . .} ∈ CT m not defined inE mbody(m, E ′) = x.e

mbody(m, E) = x.e

[component] class E . . . {. . . C m(C x) { return e; } . . .} ∈ CT

mbody(m, E) = x.e

Find connected component

µ(l) = D(l) connects(D) = X connect this.z, this.fi.z
′ ∈ X

connected(µ, l, z) = li

µ(l) = D(l) connects(D) = X connect this.z, this.z′ ∈ X

connected(µ, l, z) = l

µ(l0) = D0(l) (l = li) connects(D0) = X connect this.fi.z, this.z
′ ∈ X

connected(µ, l, z) = l0

µ(l0) = D0(l) (l = li) connects(D0) = X connect this.fi.z, fj.z
′ ∈ X

connected(µ, l, z) = lj

Connection lookup

connects(Object) = •

component class D extends D′ { E f; K P X } ∈ CT connects(D′) = X ′

connects(D) = X ′, X

Figure 5: Auxiliary judgments for evaluation

11

(x ∈ dom Γ)

Γ `E x : Γ(x)
T-VAR

Γ `E e0 : E0 (fields(E0) = E f)

Γ `E e0.fi : Ei
T-FIELD

Γ `E e : E ′ Γ `E e : D ⇒ e = new D(. . .) or e = l fields(E0) = E f (E ′ <: E)

Γ `E new E0(e) : E0
T-NEW

Γ `E e0 : E0 Γ `E e : C ′ fields(E0) = E f (C = Ei) (C ′ <: C)

Γ `E e0.fi = e : C
T-ASSIGN

Γ `D e : C ′ (mtype(m,D) = C → C) (C ′ <: C)

Γ `D z.m(e) : C
T-PORTCALL

Γ `E e0 : C0 Γ `E e : C ′ (mtype(m, C0) = C → C) (C ′ <: C)

Γ `E e0.m(e) : C
T-OBJCALL

P ok in D1 ext D2 X ok in D1 fields(D2) = E ′ g
K = D1(E′ g; E f) { super(g); this.f = f; }

component class D1 extends D2 { E f ; K P X } ok
T-COMP

S M typechecks in D S M conforms in D.z

port z { states s; Q provides S M } ok in D ext Object
T-PORT

M typechecks in C1 fields(C2) = C ′ g
K = C1(C′ g; C f) { super(g); this.f = f; }
class C1 extends C2 { C f ; K M } ok

T-CLASS

x : C, this : E `E e : C ′ (C ′ <: C) override(m,E, [S] C → C)

[S] C m(C x) { return e; } typechecks in E
T-METH

Figure 6: Expression and declaration typechecking

12

ensures that components are not shared by multiple parents in the architecture. Notice that
normal classes cannot have fields of component type (rule T-CLASS).

• T-ASSIGN types assignment expressions in the way Java does. Notice that only fields with
normal objects can be assigned new values. This ensures that a component composition is
not modified after its creation.

• T-PORTCALL typechecks method invocations on ports. This rule therefore only applies to
components. After checking the method arguments, we look up the declared type of the
method to be invoked, whereC are the formal method argument types andC is the declared
result type.

• T-OBJCALL typechecks method invocations on regular objects. Notice that we require the
receiver to be an object rather than a component. This ensures that components cannot call
methods on other components directly but have to go through a port. Otherwise, typecheck-
ing proceeds analogously to T-PORTCALL .

Theoverride judgment for T-METH is shown in figure 10. The helper judgmentsfields and
mtype are similar to ArchFJ [1], as is checking of connections withX ok in D (figure 7).

Figure 7 contains additional rules to typecheck programs. We check a complete program by
checking all normal and component classes as well as the main expression (T-PROGRAM). We
allow a call to a provided port method right after construction of a component (T-INITCALL). This
is necessary to enter the first component in the main expression. We include a rule to typecheck
frames (see preceding section) for completeness (T-FRAME).

Technically we need a standard store typing environment for typing locations that we omit
here. Subtyping is defined as the reflexive transitive closure of theextends relation with root
type Objectand also omitted. For details on these issues see the formalization of ArchJava into
ArchFJ [1]. The core language defined here preserves communication integrity as proved for
ArchJava [1].

4 Implementation Checking

This section shows how method implementations can be statically checked for protocol confor-
mance. What we would like to ensure beyond normal typechecking concerns is that all commu-
nication across a port observes the protocol specified for that port. In other words, the port has to
be in an appropriate state when a method is called, and we can then assume that the port is left in
the specified state when the method terminates. This allows us to check the validity of the next
method call.

Communication integrity makes it possible to reason about protocol conformance locally. Com-
munication integrity guarantees that control flow in a component always starts at a provided port
method. When normal object methods are invoked, calls back into the component are impossible.
Conversely, if control flow leaves the component through a required port method, callbacks into

13

Program and additional expression typing

Γ `E e0 : D e0 = new D(. . .) or e0 = l Γ `E e : C ′

mtype(m, D) = C → C (C ′ <: C)
m defined in portz D.z ` spec(m,D) · start(D) ↪→ p

Γ `E e0.m(e) : C
T-INITCALL

Γ `E l : E ′ Γ `E e : E ′′

Γ `E l B e : E ′′ T-FRAME
CP ok CL ok • ` e : E

(CP CL, e) ok
T-PROGRAM

Connection typechecking

resolve(D, w1, D1) resolve(D, w2, D2)
D1 does not otherwise connectz1 all methods required inD1.z1 are provided inD2.z2

Dj does not otherwise connectz2 all methods required inD2.z2 are provided inD1.z1

connect w1.z1, w1.z2 ok in D
T-CONNECT

Auxiliary judgments

fields(Object) = •

[component] class E1 extends E2 { E f; K P X } ∈ CT fields(E2) = E ′ g

fields(E1) = E ′ g, E f

[component] class E extends E′ {. . .} ∈ CT m not defined inE mtype(m, E ′) = C → C

mtype(m,E) = C → C

[component] class E . . . {. . . C m(C x) . . .} ∈ CT

mtype(m,E) = C → C

resolve(D, this, D)

fields(D) = E f Ei is component class
resolve(D, this.fi, Ei)

component class D extends D′ {. . . P . . .} ∈ CT

P = port z {[states s∗, s] . . .} c =
∧

i zi.s
∗
i [start(D′) = c′]

start(D) = c[∧c′]

Figure 7: Additional typechecking rules

14

p `D x a p
P-VAR

p `D e a p′

p `D e.f a p′
P-FIELD

p ` e a p′

p `D new E(e) a p′
P-NEW

p `D e1 a p′ `D e2 a p′′

p `D e1.f = e2 a p′′
P-ASSIGN

p `D e0 a p′ p′ `D e a p′′ (e0 6= this)

p `D e0.m(e) a p′′
P-OBJCALL

p `D e a p′ D.z ` S · p′ ↪→ p′′ (spec(m, D) = S)

p `D z.m(e) a p′′
P-PCALL

T M conforms in D.z S M conforms in D.z
T , S M conforms in D.z

P-CASES

right(B, D.z) `D e a p′ p′ ⇒ left(U,D.z)

B => U C m(C x) { return e; } conforms in D.z
P-METH

Figure 8: Core protocol checking rules

the component are possible before the call returns, but only through ports. Intuitively, this is why
we can check each provided port method separately in a manner very much like typechecking.

One of the benefits of our approach is that we can reason about state dependencies between
components even if they are shared with other components. We are limited to static architectures
but in exchange we can handle arbitrary callbacks and recursion between shared components. This
is in contrast to invariant verification systems like Fugue [13] or Boogie [6] where an object can
only depend on objects it owns, making it difficult to handle callbacks.

Because the states of ports are treated as explicit tokens our checking algorithm has to track
these tokens through the method implementation. We emphasize that this doesnot happen at run
time but rather at compile time. In other words, the compiler maintains symbolic information
about the states of ports that it uses for checking method invocations. Because of communication
integrity this information is sound, i.e. a conservative approximation of the runtime behavior. In
our approach, the ArchJava typechecker guarantees communication integrity [1].

Figure 6 illustrates our approach for checking components (rule T-COMP). We check each
port definition and separately reason about component composition with port connections. When
checking a port definition (rule T-PORT) we distinguish normal typechecking of provided method
bodies from checking protocol conformance. This lets us treat protocol conformance checking as
an orthogonal add-on to ArchJava typechecking.

In this section, we are only concerned with checking protocol conformance of expressions.
Our approach is shown in figure 8. Protocol conformance checking proceeds for each specification
case separately (rule P-CASES). Notice that a method implementation has to conform toall cases

15

c ⇒ left(B, D.z) (p = right(U,D.z))

D.z ` B => U · c ↪→ p

D.z ` T · c ↪→ p D.z ` S · c ↪→ p′

D.z ` T , S · c ↪→ p ∨ p′

D.z ` T · c ↪→ p D.z ` S · c 6↪→
D.z ` T , S · c ↪→ p

D.z ` S · c ↪→ p D.z ` T · c 6↪→
D.z ` T , S · c ↪→ p

D.z ` S · c ↪→ p′ D.z ` S · p ↪→ p′′

D.z ` S · c ∨ p ↪→ p′ ∨ p′′

Figure 9: Deterministic method call algorithm

defined within a method specificationS. Conformance checking for a method caseB => U then
proceeds by assuming the port states immediately following method entry as indicated byB, track-
ing effects of port method calls within the method bodye (as discussed below) and verifying that
the states reached immediately prior to method exit imply what is specified inU (rule P-METH).

For reasoning about protocol conformance of (well-typed) expressions we use the judgment
p `D e a p′. In this judgment,p is a predicate that describes the states of ports defined for
componentD beforeconsidering expressione. The predicatep′ indicates the states ofD’s ports
after evaluatinge. Predicates are disjunctions of port state conjunctions defined as follows.

Predicates p ::= c | c ∨ p
Conjuncts c ::= z.s | z.s ∧ c

The protocol conformance rules track state changes in the order of evaluation. We discuss each
rule in turn.

• P-VAR defines that variable access has no effect on states.

• P-FIELD determines the state changes during evaluation of the object expression whose field
is accessed. The field access itself does not change states.

• P-NEW tracks state changes during object and component construction. Thenew expression
itself does not change any states. The notationp `D e a p′ is a shorthand forp `D e1 a
p1 `D e2 a p2 `D . . . a pn−1 `D en a p′. This tracks state changes during the evaluation of
argumentse1, . . . , en with initial statep in order and yields the final statep′.

• P-ASSIGN threads state changes through the left-hand side and the right-hand side of an
assignment.

• P-OBJCALL tracks state changes through the evaluation of receiver and arguments of a
method call on a normal object.

• P-PCALL is the core rule of our checking system. We are checking the state changes that
result from a call to a port method withz.m(e). In the spirit of P-NEW, we first consider

16

component class D extends D′ {. . .} spec(m, D′) = S D does not definem
spec(m, D) = S

component class D . . . {. . . port z {. . . S C m(C x) . . .} . . .} ∈ CT

spec(m, D) = S

left(s1 -> s2, D.z) = z.s1 right(s1 -> s2, D.z) = z.s2

left(t,D.z) = p

left(t ∧ c, D.z) = p ∧ c

right(t,D.z) = p

right(t ∧ c, D.z) = p ∧ c

left(B, D.z) = p1 left(U,D.z) = p2

left(B ∨ U,D.z) = p1 ∨ p2

right(B, D.z) = p1 right(U,D.z) = p2

right(B ∨ U,D.z) = p1 ∨ p2

[component] class E extends Object {. . .} ∈ CT

override(m, E, [S] C → C0)

[component] class E extends E′ {. . .} ∈ CT
mtype(m, E ′) = C ′ → C ′

0 impliesC = C ′, C0 = C ′
0 [, spec(m, E ′) = S]

override(m, E, [S] C → C0)

Figure 10: Auxiliary functions

the method arguments one by one. We then determine the effect of executingz.m given
the state predicatep′. The helper functionspec looks up the method specificationS. S · p′
implements a deterministic algorithm to determine the states of the component’s ports after
the execution ofz.m assuming its specificationS (see below). IfS · p′ does not yield a
predicatep′′, the method call is invalid, and the compiler will issue an error. Otherwise,p′′

is the final result of our reasoning about a port method call.

Our judgment to determine the effect of a method call for a given state predicate isD.z `
S ·p ↪→ p′. D.z is the port on which the method call occurs.S is the specification we consider (see
figure 2).p is the state predicate we assume. Thenp′ is the resulting state predicate after executing
a method with specificationS.

The rules for determining method call effects are given in figure 9. They apply each conjunctc
within p to S and require a valid result forall conjuncts. For eachc we have to find a method case
B => U that has a matching pre-condition and can then yield the corresponding post-condition. We
developed this algorithm in earlier work [7] to type function application for union and intersection
types [14].

The rules in figures 8 and 9 rely on auxiliary judgments that are presented in figure 10.

17

5 Component Composition

So far, we can check that a component implementation respects the protocol defined for that com-
ponent. We now turn to reasoning about component assemblies. Our goal is to verify that the
protocols of connected components are compatible. Our approach proceeds in three steps. First
we derive finite-state models for ports and components from the given port specifications. Then
we define parallel composition of state machines. Finally, we devise a modular composition check.
This section builds on work by Giannakopoulou et al. [17, 10] on assume–guarantee reasoning.

5.1 Modeling Ports and Components

A componentC〈P 1, . . . , P n〉 is built from portsP 1, . . . , P n. EachP i is an orthogonal frag-
ment of C and is defined as a structureP i = (Si, αP i, Oi, F i, si

0). With S = S1 × . . . ×
Sn we define a port as follows.Si is the finite, non-empty set of states of that port.αP i

is the set of actions, i.e. the alphabet ofP i. Oi ⊆ αP i is the subset of actions that are un-
der outside (external) control. The portP i has no control when these actions occur.F i ⊆
{((s1, . . . , si, . . . , sn), a, (s1, . . . , ti, . . . , sn))} ⊆ S × αP i × S defines the transition relation for
port P i that can depend on other ports of the component. Notice that a port can only change its
own state. Finally,si

0 ∈ Si is the distinguished start state.
Deriving theP i from a given component specification is straightforward. The states are taken

from the provided list. The set of actions contains two actions for each methodm defined in
a port: an actionm.c for a call to m and an actionm.r for a return from m. The subset of
actions under external control consists of calls to provided and returns from required methods.
The transition relation follows from the method specifications. There is one tuple in the relation
for each boundary transitionB. Method entry and exit are handled with separate transitions. The
start state is the first state in the state list.

We derive a model of the component,C〈P 1, . . . , P n〉 = (S, αC,O, F, s0), as follows. The
distinguishedinternal transitionτ 6∈ αC will be useful later.

• S = S1 × . . .× Sn is thestate spaceof the component.

• αC = αP 1 ∪ . . . ∪ αP n (assuming theαP i are pairwise disjoint) is thealphabetof the
component.

• O = O1 ∪ . . . ∪On ⊆ αC is the subset of actions underoutside control.

• F = F 1 ∪ . . . ∪ F n ⊆ S × αC ∪ {τ} × S is thetransition relationfor C.

• s0 = (s1
0, . . . , s

n
0) is the component’sstart state.

Thus we model a component as a state machine whose transitions are labeled with the actions
that trigger them.3

3We do not consider calls from one provided method to another one of the same component in this paper. They
can be modeled with internal transitions, preferably only where they actually occur in the implementation.

18

Our composition check needs the ability to mask parts of a component model. Following
existing work we introduce aninterface operatorC ↑ A that limits C to the actions inA and
replaces other actions with internal transitions [17]. Formally, ifC = (S, αC,O, F, s0) thenC ↑
A = (S, αC ∩ A, O ∩ A, F ↑ A, s0), whereF ↑ A = {(s, a, s′) | a ∈ A, (s, a, s′) ∈ F} ∪
{(s, τ, s′) | a ∈ αC \ A, (s, a, s′) ∈ F}. We use the interface operator to limit a component model
to actions from a subset of ports. We will in particular distinguish thepublicports of a component,
i.e. the ports that are not connected to subcomponents.

5.2 Composition

In this section we define parallel composition of labeled transition systems (LTS) following exist-
ing work [17, 10]. An LTS is a structureT = (S, αT, F, s0) whereS (states),αT (alphabet), and
s0 (start state) are defined as above. We distinguish anerror stateπ 6∈ S in addition to the internal
transitionτ . Then the transition relation is defined asF ⊆ S × αT ∪ {τ} × S ∪ {π}.

We write T
a−→ T ′ to mean that an LTST = (S, αT, F, s0) can step toT ′ in one step

(s0, a, s′0) ∈ F . T ′ is either identical toT except for the start state orT ′ = Π = ({π}, ∅, ∅, π) in
the error case wheres′0 = π.

When composing two LTST 1 and T 2 defined asT i = (Si, αT i, F i, si
0) we abstract from

shared actions. These correspond to methods on connected ports between the two components.
We compute an LTST = T 1 || T 2 = (S, αT, F, s0) that represents the composition ofT 1 andT 2

as follows.

• S = S1 × S2.

• αT = (αT 1 ∪ αT 2) \ (αT 1 ∩ αT 2).

• The transition relationF is the symmetric closure of the following rules.

T 1 a−→ L1 (a 6∈ αT 2)

T 1 || T 2 a−→ L1 || T 2

T 1 a−→ L1 T 2 a−→ L2 (a 6= τ)

T 1 || T 2 τ−→ L1 || L2

We treat the error state specially and letΠ || T = T || Π = Π.

• s0 = (s1
0, s

2
0).

The transition relationF lets both components step for shared actions (second rule) and only
one component step for other actions (includingτ transitions; first rule). This definition is similar
to CSP [22]. Testing an LTS for protocol violations now amounts to finding a path from the start
state toπ. This path serves as a counterexample, i.e. a sequence of actions that leads to the protocol
violation.

19

P Q

?>=<89:;/.-,()*+a foo //

bar
 A

AA
AA

AA
AA

A
?>=<89:;b

baz

}}||
||

||
||

||

foo bar

��

?>=<89:;/.-,()*+x
foo

,,

bar

22

baz

��

?>=<89:;y

bazxx?>=<89:;c
foo

bar
// π π ?>=<89:;zbazoo

GFED@ABC?>=<89:;ax

 B
BB

BB
BB

BB

((PPPPPPPPPPPPPPPPP bx

##

cx

��
ay GFED@ABCby

 A
AA

AA
AA

AA
GFED@ABCcy π

az bz

NN

GFED@ABCcz

Figure 11: Component composition example

5.3 Modular Composition Checking

Ultimately we are interested in verifying that shared actions will succeed. This means that if one
component wants to issue a shared action the other component can perform that action. In other
words, when a component calls a required method on one of its ports, the component connected to
that port must be ready to run the called method according to its own protocol.

We adapt assume–guarantee reasoning [17] to perform this test and trap unexpected calls in the
error state. The usual approach is to check that if one component can perform an action then the
other one can do so as well. By contrast, our approach only considers actions that a component can
actually initiate in order to avoid false positives from calls that the component cannot make. We
can also reason about callbacks, which are not covered by standard assume–guarantee reasoning.

To illustrate the differences, consider the example components in figure 11 (ignoring the dashed
lines for now). Start states are marked with a double circle. Following process algebra conven-
tions, we distinguish actions that can be initiated by a component with an overbar. A standard
composition analysis of these two components would flag a possible protocol violation for the
event sequence(bar, baz). However, becauseP alone decides whenbazoccurs, this sequence is
impossible. Implementation checking (section 4) guarantees that components initiate actions only
where they are enabled by the protocol. Therefore it suffices to trap unexpectedfooandbar actions
in the error state ofP (dashed lines). This lets us verify thatP andQ can be composed without
protocol violations (bottom of figure 11).

Following this idea we construct for a given component modelC = (S, αC, O, F, s0) an “error
LTS” Ce = (S, αC, Fe, s0). Fe is derived fromF by adding transitions to the error state for

20

unexpected calls from outside as follows.

Fe = F ∪ {(s, a, π) | s ∈ S, a ∈ O,¬∃s′ ∈ S : (s, a, s′) ∈ F}

Based on these techniques we developed a modular composition check that can be applied to
architectures with arbitrary nesting. Suppose we want to check a componentC with subcompo-
nentsC1, . . . , Ck. The intuition of our approach is that we can perform this check by composing
C with its subcomponents and an environment model that exercises the possible action sequences
onC ’s public ports.

Let A be the set of actions on the public ports ofC andA1, . . . , Ak be the actions on public
ports of theCk. Then we can checkC by building the following composition.

P = Ce || (C1 ↑ A1)e || · · · || (Ck ↑ Ak)e || (C ↑ A)e

With C we mean theinversecomponent of a given componentC. If C = (S, αC,O, F, s0)
thenC = (S, αC, αC \ O, F, s0). It models the least restrictive environment that observes the
protocol assumptions made by the component. In the composition we restrict this environment to
actions on public ports. Likewise we restrict the subcomponents to their public ports. Notice that
order matters: We restrict interfaces and build inverses before we construct error LTS.

The LTSP consists only ofτ transitions. If the error stateπ is reachable from the initial state
then there exists a protocol violation in the composition ofC with its immediate subcomponents
and its environment. The path from the initial to the error state witnesses the violation, serving as
a counterexample. We point out that it suffices to perform this test once for each componenttype
to verify that protocol violations cannot occur in the system.

6 Extensions

This section discusses how the approach developed so far can be generalized to a more realis-
tic language like ArchJava. We begin by extending implementation checking to support typical
statement–based methods. Then we discuss how helper methods within a component can be han-
dled. Finally, we consider support for subclassing of components.

6.1 Intraprocedural Analysis

In order to support typical statement sequences in methods we can extend our protocol checking
rules to statement sequences, arithmetic, and boolean operations in the obvious way (figure 12).
Notice how we take short–circuiting evaluation of boolean predicates into account (rule P-BOOL).

We can devise a dataflow analysis [27] to track state information through control structures
like loops and conditional branches. We use a standard forward may–analysis with our checking
rules from figures 8 and 12 as the transfer function for individual statements. That analysis will
automatically reason about control structures correctly: for instance, state information from the
end of a loop will be fed back into the first loop statement.

21

p `D e1 a p′ `D e2 a p′′

p `D e1; e2 a p′′
P-SEQ

p `D e1 a p′ `D e2 a p′′ (◦ = +, - , . . .)

p `D e1 ◦ e2 a p′′
P-ARITH

p `D e1 a p′ `D e2 a p′′ (⊗ = &&, || , . . .)

p `D e1 ⊗ e2 a p′ ∨ p′′
P-BOOL

p `D e a p′ D.m · p′ ↪→ p′′

p `D this.m(e) a p′′
P-INTERNALCALL

Figure 12: Additional protocol checking rules

The lattice we use is essentially a set of tuples that represents the disjunctions of conjuncts in
the predicatesp defined in section 4. Each conjunctc can mention a portz at most once (otherwise
the predicate would be unsatisfiable). Thus a conjunct can be represented with a tuple containing
the state of each port. A predicate can then be represented as a set containing the possible tuples.

6.2 Interprocedural Analysis

ArchJava component types can include methods that are not associated with a port. These “helper”
methods can be called from port methods, and they can call port methods themselves. There are
two basic options for handling these methods. They can be (a) explicitly annotated just like port
methods or (b) analyzed together with the methods that call them.

In order to reduce the burden for the programmer we propose to do the latter and employ a
summary–based interprocedural analysis [29]. This means, roughly speaking, that at every call
site to an internal method we take the current state information and use it to analyze the called
method. We remember the analysis result in case the method is called again in the same context.
We can then continue analyzing the caller. There are standard procedures for handling recursive
calls and the like that are similar to handling loops in an intraprocedural analysis.

We can be smarter and remember the analysis result for each conjunct in a state predicate
separately. At the next call site we can just look up their state transitions and compute results for
new conjuncts (rule P-INTERNALCALL in figure 12). Determining the state predicate after a call
based on thissummaryinformation is analogous to figure 9.

6.3 Component Subclassing

Component subclasses in full ArchJava can define additional ports and provided methods [1]. They
can also override existing methods. A viable approach is to check overriding methods against the
inherited protocol [13]. Theoverride judgment (figure 10, used by T-METH in figure 6) enforces

22

this by requiring the specification of an overriding method to beidentical to the inherited one.
Earlier work shows how subclasses canrefinemethod specifications instead [7].

Additional provided methods in existing ports can be specified with the states already defined
for that port. Additional ports can define their own states and specify provided methods with these
states. Component subclasses cannot define additional required methods [1]. These restrictions
are captured by the following rule that complements T-PORT (figure 6) for component subclasses.

S M typechecks in D S M conforms in D.z
z known inD′ iff no states defined forz in D

port z { [states s;] provides S M } ok in D ext D′ T-EXT

7 Related Work

Architectural protocols were proposed in the Rapide [25], Wright [3], and Darwin [26] ADLs.
Rapide includes pattern–based behavior specifications for interfaces. In Wright, protocols are
defined with a process notation based on CSP [22]. Darwin proposes its own specification language
FSP that is very similar to a process calculus. The latter two approaches use variants of model
checking to reason about protocols and composition. We define protocols as explicit state machines
using typestates [31] and enforce them in a programming language. Many other architectural
description languages have been proposed over the years, including structured classifiers for the
UML 2.0 [28]. Most ADLs focus on structure and do not include behavior specifications.

ArchJava is a programming language that includes architectural primitives as first-class lan-
guage constructs [1, 2]. ArchJava components can define ports, subcomponents, and connections
between them. Modular typechecking guarantees communication integrity [25]: a component
communicates with other components only through explicitly declared ports. We leverage this
guarantee for our static protocol reasoning. ArchJava includes features for dynamic architectures
that we plan to support with protocol enforcement capabilities in the future.

There has been a variety of research on augmenting general-purpose programming languages,
in particular C and object-oriented languages, with protocols based on typestates [31, 12, 16, 13, 7].
We adopt ideas for method cases and non–determinism from our earlier work on more expressive
protocols [7]. The usage of a separate set of states for each port is a special case of state dimensions
as proposed in that work.

Existing typestate systems can statically enforce protocols only for linear objects [12, 16, 13],
i.e. objects with only one (active) reference. We can reason about components with an arbitrary
number of ports. Ports are technically aliases of the component that can be accessed independently.
We can reason about callbacks even in the presence of aliasing.

There are alternative approaches for defining protocols including labeled transition systems
[8] and “interface automata” [11]. They are ultimately translated into variants of state machines.
None of these approaches includes static checking of implementations. The notion of composition
defined for interface automata is roughly similar to ours.

Several lines of research use model checking techniques for modular reasoning about models
of software [19, 17, 15]. Assume–guarantee reasoning is one way to apply model checking to

23

components separately [19] but it usually cannot handle callbacks and recursion. Giannakopoulou
et al. proposed a framework that learns environment assumptions of a component [17, 10]. We
build on their formalisms and support callbacks and recursive calls. Learning assumptions is not
the goal of this work but could be added to our approach to reduce the protocol specification burden.
Fisler and Krishnamurthi can reason compositionally about state machines that collaboratively
extend a base system [15].

Model checking has also been used for checking temporal properties of implementations [20,
21]. Usually these are designed as whole–program analyses that scale poorly to large code bases.
Blast [21] for example inlines function calls. The developer has to provide code stubs for library
functions that serve as a form of abstraction. SLAM can verify correct usage of library protocols
in, e.g., device drivers [5].

The Magic tool provides a way to modularly apply model checking to C programs [9] based on
user–provided state machines for library functions. However, Magic also has problems with scal-
ability because it inlines these state machines for function calls. The assume–guarantee approach
taken by Giannakopoulouet al. includes modular verification of Java code with Java PathFinder
[20], a model checker for Java. It uses assumptions and properties derived in the design phase
to check implementations [18] in a scalable way. None of these approaches can handle callbacks
or recursive calls which are supported by our approach. Our implementation checking proceeds
similarly to a typechecker and therefore does not exhibit the state explosion problems typical for
software model checkers.

8 Conclusions

This paper presents a novel approach for specifying architectural protocols based on typestates
and modular techniques for checking component types for protocol conformance. Checking pro-
ceeds in two separate steps. A static dataflow analysis checks component method implementations
for compliance with the protocols specified for that component. A test based on model check-
ing of labeled transition systems verifies that a component and its immediate subcomponents can
be composed without the possibility of protocol violations. These checks can hierarchically and
modularly check the whole system for protocol conformance.

This is the first approach (that we are aware of) that can statically reason about typestates in
the presence of true aliasing. It can handle notoriously complicated programming idioms such as
callbacks and recursive dependencies both in specifications and their verification. Our approach is
based on ArchJava, a programming language that includes architectural primitives like components
and ports as first-class constructs. ArchJava’s type system gives structural guarantees that make our
protocol checks feasible. Our approach is not limited to ArchJava, though. It can work with any
language that guarantees communication integrity, i.e. that components communicate with other
portsonly through their explicitly declared ports.

Our approach currently does not support dynamic architectures, i.e. architectures that change
over time. ArchJava supports dynamic architectures with port references that can be passed around
and port types that can have an arbitrary number of instances. We believe that a port aliasing control
regime together with restrictions on the protocol dependencies between port types can enable sound

24

protocol checking of dynamic architectures.

9 Acknowledgments

We thank Ciera Christopher and Nels Beckman for their helpful feedback on this paper.

References

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural reasoning in ArchJava.
In European Conference on Object–Oriented Programming. Springer, June 2002.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software ar-
chitecture to implementation. InInternational Conference on Software Engineering, pages
187–197, May 2002.

[3] Robert Allen and David Garlan. A formal basis for architectural connection.ACM Transac-
tions on Software Engineering and Methodology, 6(3):213–249, July 1997.

[4] Robert J. Allen, David Garlan, and James Ivers. Formal modeling and analysis of the HLA
component integration standard. InACM Symposium on the Foundations of Software Engi-
neering, pages 70–79, November 1998.

[5] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety properties
of interfaces. InProceedings of the Eighth SPIN Workshop, pages 101–122, May 2001.

[6] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants.Journal of Object Technology,
3(6):27–56, June 2004.

[7] Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
ACM Symposium on the Foundations of Software Engineering, pages 217–226, September
2005.

[8] Sergey Butkevich, Marco Renedo, Gerald Baumgartner, and Michal Young. Compiler and
tool support for debugging object protocols. InACM Symposium on the Foundations of
Software Engineering, pages 50–59, 2000.

[9] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular verifi-
cation of software components in C. InInternational Conference on Software Engineering,
pages 385–395, May 2003.

[10] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păs̆areanu. Learning assump-
tions for compositional verification. InInternational Conference on Tools and Algorithms for
the Construction and Analysis of Systems, April 2003.

25

[11] Luca de Alfaro and Thomas A. Henzinger. Interface automata. InACM Symposium on the
Foundations of Software Engineering, pages 109–120, September 2001.

[12] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
In ACM Conference on Programming Language Design and Implementation, pages 59–69,
2001.

[13] Robert DeLine and Manuel Fähndrich. Typestates for objects. InEuropean Conference on
Object-Oriented Programming. Springer, 2004.

[14] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. InACM Symposium on
Principles of Programming Languages, pages 281–292, 2004.

[15] Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-based soft-
ware designs. InACM Symposium on the Foundations of Software Engineering, pages 152–
163, September 2001.

[16] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. InACM Conference on
Programming Language Design and Implementation, pages 1–12, 2002.

[17] Dimitra Giannakopoulou, Corina S. Păs̆areanu, and Howard Barringer. Assumption genera-
tion for software component verification. InInternational Conference on Automated Software
Engineering, September 2002.

[18] Dimitra Giannakopoulou, Corina S. Păs̆areanu, and Jamieson M. Cobleigh. Assume-
guarantee verification of source code with design-level assumptions. InInternational Con-
ference on Software Engineering, pages 211–220, May 2004.

[19] Orna Grumberg and David E. Long. Model checking and modular verification.ACM Trans-
actions on Programming Languages and Systems, 16(3):843–871, May 1994.

[20] Klaus Havelund and Thomas Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer, 2(4), April
2000.

[21] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy abstraction.
In ACM Symposium on Principles of Programming Languages, pages 58–70, 2002.

[22] Tony Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[23] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. InACM Conference on Object-Oriented Programming, Systems,
Languages & Applications, pages 132–146, 1999.

[24] Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding common error patterns
by mining software revision histories. InACM Symposium on the Foundations of Software
Engineering, pages 296–305, 2005.

26

[25] David C. Luckham and James Vera. An event-based architecture definition language.IEEE
Transactions on Software Engineering, 21(9):717–734, September 1995.

[26] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis of software ar-
chitectures. InWorking IFIP Conference on Software Architecture, pages 35–50, February
1999.

[27] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program Analysis.
Springer, 2nd edition, 2005.

[28] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 2nd edition, 2004.

[29] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
Steven S. Muchnick and Neil D. Jones, editors,Program Flow Analysis. Theory and Appli-
cations, pages 189–233. Prentice Hall, 1981.

[30] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, 1996.

[31] Robert E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability.IEEE Transactions on Software Engineering, 12:157–171, 1986.

A Method Specification Desugaring

Surface specifications are defined as follows and translated according to figure 13.

Method spec S ::= T base case
| T , S intersection
| Unchanged preserve any state

Method case T ::= B => U state transition
| s preserve specific state

Method boundary B ::= t no side condition
| t & c with side condition

Postcondition U ::= B base case
| B | U union

Transition t ::= s hidden execution
| s1 -> s2 boundry transition

Conditions c ::= z.s state on port
| z.s & c condition conjunct

27

surface spec internal spec

T T ′ S S ′

T , S T ′, S ′
s => s T ′

s T ′

s1, . . . , sn S ′ (s1, . . . , sn is the set of port states)
Unchanged S ′

B s1 -> s2[∧c] s2 B U U ′

B => U s1 -> s2[∧c] => U ′

Domain Expansion surface domain internal domain

s1 -> s2 s1 -> s2

(sf fresh)
s s -> sf

c c′

s.z & c s.z ∧ c′
t t′ c c′

t & c t′ ∧ c′

Range Expansion se B surface range internal range

se B s1 -> s2 s1 -> s2 se B s se -> s

se B t t′ c c′

se B t & c t′ & c′
se BB B′ se B U U ′

se BB | U B′ ∨ U ′

Figure 13: Expansion Rules

28

	1 Introduction
	2 Port Protocol Specification
	2.1 Motivation and Example
	2.2 Typestate Protocols
	2.3 Implementation

	3 A Core Language
	3.1 Syntax
	3.2 Dynamic Semantics
	3.3 Typechecking

	4 Implementation Checking
	5 Component Composition
	5.1 Modeling Ports and Components
	5.2 Composition
	5.3 Modular Composition Checking

	6 Extensions
	6.1 Intraprocedural Analysis
	6.2 Interprocedural Analysis
	6.3 Component Subclassing

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	A Method Specification Desugaring

