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Abstract

Entity resolution, the process of determining if two or more references correspond to the same
entity, is an emerging area of study in computer science. While entity resolution models leverage
artificial intelligence, machine learning, and data mining techniques, relationships between various
models remain ill-specified. Despite growth in both research and literature, investigations are
scattered across communities with minimal communication. This paper introduces a conceptual
framework, called ENRES, for explicit and formal entity resolution model definition. Through
ENRES, we illustrate how several models solve related, though distinctly different, variants of
entity resolution. In addition, we prove the existence of entity resolution challenges yet to be
addressed by past or current research.
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1 Introduction

For over a decade, computer science has been evolving from a set of theoretical and basic engi-
neering challenges towards the incorporation of intrinsically complex social, organizational, and
political environments in which computers are situated. An indication of this shift is observable in
the swell of research literature covering investigations into complex social and relational systems,
such as collaborative filtering, link analysis, and social networks. While techniques and theories
from prior computer science research in more traditional topics with mature foundations, such as
graphical models and computer networks, can be effective for modelling and accounting for social
systems, but such theory can not be blindly relied upon. The similarities may be no more than
superficial; it is unclear if accepted theories from standard areas translate into the social setting.
It is clear that the construction of a formal computational basis for modelling and incorporating
social theory into traditional structures is a necessary direction in computer science research.

Of particular interest is the degree to which social and relational information can be data mined
for interesting patterns. The relationships which are learnable from complex relational data cover
a vast range of concepts, such as the discovery of clusters of similar entities in their personal
likes/dislikes, the prediction of purchasing habits, and the collection and modelling of social struc-
tures for intelligence agencies. One of the more fundamental relationships is the linkage, or merg-
ing, of information corresponding to the same entity. The ability to determine when multiple
pieces of data correspond to the same entity is crucial to a wide range of critical data mining and
management processes, including data fusion, cleaning, and profiling. A number of computer
science communities have investigated this notion under various names, such as “record linkage”
[40], “deduplicaton” [37], “object identification” [30], and “word sensing” [29]; but each tends
to design methods tailored to their own perceived challenges. Yet, as the number of communi-
ties studying this topic grows, in the literature there is an emerging notion of a common concept,
recently dubbed “entity resolution” [2, 12].

The entity resolution problem can be informally defined as follows. Imagine there exists a
set of entities, such as locations, people, or definitions. A recipient is provided with a set of
references to the entities, but not the mapping of reference to entity. The goal of entity resolution
is to correctly reconstruct this mapping. To facilitate this process, research and systems developed
for data warehousing and relational database management have produced sound architectures for
storage, relational modelling, retrieval, and the aggregation of mass amounts of entity-specific
data. Yet, traditional data management models tend to concentrate on databases where schemas
are fully specified, or fuzzy relational schemas are supplied by a user or learned from the databases
attributes [2, 13, 24, 25]. Given the complexity and distribution of the environments in which
data now resides, it is difficult to apply or adapt traditional data integration techniques for entity
resolution applications. More specifically, current methods for database schema matching are time
consuming, error prone, and subject to semantic constraints which need to be supplied on a case-
by-base basis, and as such do not scale well in large distributed environments.

Furthermore, the communities in which entity resolution is addressed cover a vast spectrum
of ideologies and methodologies. As a result, the success of an entity resolution method is often
dependent on assumptions well-known in one community, but not clearly understood or specified in
another. The same method can be applied to different communities’ problems in a mathematical or
algorithmic sense, however, assumptions incorporated into the design process can limit a method’s
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capability. Thus, when methods designed in one community are applied to problems studied in
other communities, they can provide subpar results in comparison to methods designed by the
importing community. Subsequently, this can lead to conflicting claims of method superiority
which are difficult to validate and generalize to a broader context beyond the confines of a specific
community.

A principle confounder is the failure to model the type of data utilized in the resolution process.
Automated methods and algorithms for matching entity-specific data have existed since the 1950’s
[32], but the proliferation of low cost collection and storage technologies have facilitated the con-
struction of datasets corresponding to a wide range of semantic features. For instance, the original
methods for record linkage were based on string comparison of names [20] for tracking an individ-
ual’s records over multiple collections, but personal information relating to one’s self (Who is the
entity?) is only one type of knowledge. Yet, other types of information is now utilized for entity
resolution such as location-based information (Where is the entity?), or social-based information
(Who does the entity know?), each of which carry different semantics and can influence the way
resolution is achieved.

This paper introduces a simple framework, ENRES, for specifying entity resolution models.
The framework makes explicit the assumptions and semantics utilized by various communities.
As a logical system with defined parameters, it facilitates formal reasoning and proofs regarding
components of the entity resolution problem. We demonstrate how ENRES can represent prior
and current research models, as well as how such models relate and differ. Furthermore, ENRES
proves the existence of both current entity resolution models, as well as a substantial number of
which are open problems yet to be studied by any community.

2 ENRES Framework

The ENRES framework makes assumptions and necessary conditions regarding entities, and ref-
erences to entities, explicit. As a result, the framework can be used a formal reasoning tool.

2.1 Framework Basics

The basic concepts are drawn from set theory. First, in Definition 1, we introduce entities and
entity sets which are underlying phenomena.

Definition 1 (Entity / Entity Set) An entity is a unique and discrete element of a populationP .
An entity setE is a set of entities drawn fromP , such that∀x, y ∈ E, x 6= y. �

Entities are not necessarily observable, but we do observe references to entities. In ENRES, refer-
ences, as specified in Definition 2, are observed as tuples over a set of attributes. Each attribute is
a semantic category of information.

Definition 2 (Tuples / Tuple Set) Let A = {A1, . . . , An} be a set of attributes. Ann-tuple (or
tuple)t[a1, . . . , an] is a reference to an entity, such thata1 ∈ A1, . . . , an ∈ An. A tuple setTA is
a set of tuples defined overA. �
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In the current ENRES framework, attributes are partitioned into three types of semantics, de-
pendent on the information they communicate. In general, dependencies take the form of 1) per-
sonal (N), 2) locational (L), and 3) social (S) and are more specifically defined in Definition 3.
Several examples follow from Figure 1.

Definition 3 (Semantic Attribute) An attributeA is of semantic dependency type:

• personal, if A refers to the entity itself,

• locational, if A refers to locations where data is collected, and

• social, if A refers to relationships between entities.�

In Figure 1, the attribute “Hair Color”, is personal dependent. It does not specify where the entity
was and who the entity knows. In contrast, “Collecting Site” is location dependent since it denotes
where data was gathered. An attribute can simultaneously satisfy more than one semantic. This is
exemplified by “Married To”, in which there exists a social relationship between “Alice Doe” and
“Bob Doe”, while the name “Bob Doe” itself is personal dependent.

Figure 1: Sample attributes and tuples. Semantic attribute types are depicted in the top row.

Moreover, the ENRES framework permits specification of three types of relations: 1) tuple-
only, 2) entity-only, and 3) tuple-entity. Definition 4 provides formal definitions of these relations.
A relation which maps tuples to tuples is called a tuple-only relation, entities to entities an entity-
only relation, and tuples to entities is a tuple-entity relation.

Definition 4 (Relation Type) Let E be an entity set. LetT = {TA, TB, . . . , TZ} be a set of tuple
sets referencingE. Let T ∗ =

⋃
T∈T T . A relationr is:

• entity − only, if ∀(x, y) ∈ R, x ∈ E andy ∈ E,

• tuple− only, if ∀(x, y) ∈ R, x ∈ T ∗ andy ∈ T ∗,

• tuple− entity, if ∀(x, y) ∈ R, x ∈ T ∗ andy ∈ E. �

Certain relations may be dependent on attribute semantics. In this sense, specifications on the re-
lation are tantamount to necessary conditions. When dependency exists, the relation is represented
with the superscript of the semantic types. For example, relationrN acts on personal dependent
attributes.

One particular tuple-entity relation represents the ground truth regarding tuples and the entities
to which they correspond. This relation is called thetruth resolution functionand consists of the
properties as laid out in Definition 5.
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Definition 5 (Truth Resolution Function) Let E andTA be a set of entities, such thatTA is rep-
resentative ofE. A functionfA : TA → E is said to be truth resolution function, if it satisfies the
following properties:

1. ∀t ∈ TA: ∃e ∈ E, fA(t) = e, and

2. ∀e ∈ E: |fA
−1(e)| > 0. �

In combination, the first and second properties guarantee the truth resolution function is onto and
many-to-one from tuples to entities. Yet, truth resolution functions may be unknown. Therefore,
we introduce the concept of anapproximate resolution relation. This relation maps tuples to en-
tities, but permits non-unique resolution. The approximate resolution relation is dependent on
known tuple-only and entity-only relations.

2.2 ENRES in Concept Graphs

ENRES can be specified in a graphical form. In the graph setting, as depicted in the left of Figure
??, circular nodes correspond to sets of entities or tuples and edges correspond to relations between
nodes. More detailed, we model individual elements of a set, in which square nodes are used, as
shown in the right of Figure??.

(a) General Map (b) Specific Map

Figure 2: Basic truth function mapping. 2(b) For tuple set to entity set. 2(b) For specific tuples to
specific entities.

For approximate resolution, we use tuple-only, entity-only, and tuple-entity relations. An ex-
ample of approximate resolution is depicted in Figure 3, which represents a resolution model for
the truthful graph in Figure??. The truth resolution functionf is searched for via the approximate
resolution relationg, which itself is dependent on the tuple-only relationhN,S. In Figure??, the
latter relates one tuple set to itself via entity and social dependent attributes.

3 Entity Resolution Variants

In the following sections, we illustrate the viability of ENRES by surveying and modelling certain
sections of the entity resolution research landscape.
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Figure 3: Approximate resolution example for with personal and social dependency.

3.1 Record Linkage and Deduplication

Some of the earliest research on the automation of entity resolution dates back to the middle of
the twentieth century. At this time, Newcombe et al. [32] introduced methods for linking files
from one database to another for ”record linkage”. The goal was to merge two listsX andY of
vital (i.e. health) information based on personal and demographic attributes, such as name, date of
birth, gender, and residential address. One of the main assumptions of their model was files have
common variables and there exists typographical error (e.g. “John Smith” vs. “Jon Smith”) or
alternate representation of entities (e.g. “Rob” vs. “Bob”). They proposed an automated method
for linking records which were similar in values. Names were stemmed and normalized using the
Soundex coding scheme and a simple heuristic was used to score the probability that two records
should be matched or not.

A statistical basis for record linkage was developed by Fellegi and Sunter [11] who introduced
more formal decision criteria. Their interest in the problem was motivated by how to link census
and governmental databases. Their method consisted of building a statistical model to classify
pairs from the product spaceX × Y → {M, U,C}, whereM is the set of definite matches,U
is the set of definite non-matches, andC is a set of pairs that need clerical review. The Fellegi-
Sunter methods were ushered into the modern statistical age by Winkler [40, 41] who demonstrated
how iterative expectation-maximization methods could be used to improve upon the original static
methods. More recently, Pasula et. al. [34] investigated record linkage as the “identity uncertainty”
problem. In this latter work, probabilistic relational models are adapted for resolving uncertainties
in the author names and titles of paper citations.

To assist modern models, Soundex-based methods have been improved upon for string com-
parison and distance metrics for record linkage based on personal dependent strings [5, 7]. Further-
more, researchers in the medical informatics community have evaluated the degree to which entity
dependent attributes collected at hospitals, such as and names, dates, and Social Security Numbers,
are stable and unique for linkage purposes [16, 39]. For instance, research by Sweeney demon-
strated that demographic features, such as the combinations of values from Birthdate, Gender,
5-Digit Zip Code could be used to link medical and voter registration records for approximately
87% of the United States Population. [39]

In order to map record linkage to the ENRES framework, we representX andY as tuple sets
TX andTY . ENRES models truth resolution functionsfX andfY which map the tuple sets to their
respective entity sets asEX andEY . Note, in the underlying system the mapping between entities
in EX andEY is known. Figure 4 depicts this system.

Let x andy be tuples inTX andTY , respectively. In terms of entity resolution, a correct match
can be represented ase = fX(x) = fY (y), wheree ∈ E. The specific problem that record linkage
addresses is as follows. Imagine thatfX , fY , andE exist, but are unknown. It is known there
exists some set of relations betweenTX andTY over the set of personal dependent attributesN ,
which we will refer to asiN . The goal is to discover approximate resolution relationsgX , hY and
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an entity setE ′, such thate′ = g(x) = h(y) only if e = fX(x) = fY (y).

(a) Truth resolution func-
tion

(b) Approximate resolu-
tion

Figure 4: Record Linkage. 4(b) Truth resolution function. 4(b) Approximate resolution relations.

In addition to linking two separate files, the underlying ideas of record linkage have also been
referred to as record deduplication. The term deduplication corresponds to linking a single data-
base to itself to remove records on the same individual which appear different. Some researchers
contend that deduplication is equivalent to record linkage, whereTX = TY andg = h. However, the
ENRES framework suggests otherwise. In ENRES, the record linkage and deduplication problems
are modelled in Figures 4 and 5, respectively. It is interesting to note that while the same statistical
procedures can be applied to record linkage and deduplication, there is a fundamental difference
in the problems. Specifically, when performing deduplication it is known that the set of entities
which are referenced from the set of tuples is equivalent. Thus, there clearly exists two onto map-
ping functions. In contrast, when performing record linkage, the set of entities of two different
tuple sets are not necessarily onto functions. This is because neither set of tuples is guaranteed to
be onto the set of entitiesE.

Figure 5: Record deduplication and approximate resolution relation.

3.2 Location Based Linkage

While record linkage and deduplication models are designed to account for personal dependent at-
tributes over disparate databases, location-based linkage [28, 35, 38] resolves tuple-entity relations
when such relations are missing. In contrast, for resolution, location-dependent attributes can be
exploited to discover patterns in the locations where an entity’s data was collected or originated.

An example of location dependent linkage is the trail linkage model [28], which is based upon
the observation that people visit different sets of locations where they leave behind data of typeX.
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Each visited location collects and, subsequently, shares data typeX as two types of dataY andZ
that can not be related via their personal dependent attributes. However, data of typeY andZ are
traceable can be self related via personal dependencies (i.e.Y consists of personal demographics).
When multiple locations share data, this allows for trails or characterizations of the locations that
entities visited to be constructed. As a result, similar location visit patterns in the trails of typeX
andY can be used for linkage purposes.

The problem of trail linkage can be expressed in terms of the ENRES framework as follows.
LetE be a set of entities. LetTX be a set of tuples representative ofE, such thatX = {X1, ..., Xn}.
Let fX be a truth resolution function fromTX to E. Let Y andZ be sets of attributes such that:

1. Y ⊂ X, Z ⊂ X,

2. |Y ∩ Z| > 0, and

3. (Y ∩ Z) is of typeL.

Now, consider two new sets of tuplesTY andTZ . Let fY be a function in which∀y ∈ TY ,∃x ∈
TX , fY (y) = x. Similarly, let fZ be a function in which∀z ∈ TZ ,∃x ∈ TX , fZ(z) = x. Let
e = fX(fY (y)) = fX(fZ(z)). If E, TX , fX , fY , andfZ are unknown, find relationsg andh, such
that |g−1(y)| = |fY

−1(y)| and |h−1(z)| = |fX
−1(z)|. By discovering such relations, we correctly

link all pieces of information corresponding to the same entity.

(a) Truth resolution function (b) Approximate resolution

Figure 6: Location-based Linkage. 6(a) The underlying truth resolution function. 6(b) The ob-
served relationships for approximate resolution via trail linkage.

The discovery of relationsg andh are aided, and to a certain extend defined, by imposing con-
straints or assumptions on the attributes which relateTY andTZ . For trail linkage, The necessary
conditions, or constraints, are required on the relationships between the observed sets of tuples:

1. ∃ tuple-only relationiN ⊆ TY × TY ,

2. ∃ tuple-only relationjN ⊆ TZ × TZ , and

3. ∃ tuple-only relationkL ⊆ TY × TZ .
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Several variants of the trail re-identification problem which specify the relationships permitted
betweenTX , TY , andTZ have been introduced [26]. In prior research, we posed several determin-
istic solutions tailored to specified assumptions collectively termed the REIDIT (RE-identification
of Data In Trails) algorithms [26, 28]. Where statistical record linkage methods attempt to maxi-
mize the probability of a linkage, the REIDIT algorithms guarantee correct linkages when certain
assumptions over the data hold true. One of the drawbacks to the methodology employed by REI-
DIT is that it simplifies the relationsiN andjN to equivalence relations where data of the same
type are considered to belong to have been generated by the same entity if they are equivalent in
their entity-dependent values. Regardless, some the modelling and investigative techniques em-
ployed by the REIDIT algorithms may assist in the proposed work below. Yet, this model provides
a foundation for exploiting simple relationships and understanding the basis regarding how the
distribution of data affects for resolution goals.

3.3 Social Linkage and Deduplication

More recently, interaction and associations between entities in the form of social networks have
been explored to solve variations of the entity resolution problem. Social interaction is observable
when entities from the entity set are involved in some type organizational relationship, such as
researcher co-authorships or communication networks of terrorists.

3.3.1 Deduplication in Labelled Networks

A network is considered labelled if its nodes provide personally identifying attributes. With respect
to labelled networks, one area of entity resolution research has studied the interactions among co-
citations and author collaborations. Imagine there exists a set of papers, the authors of which
are drawn from a set of entities. How can we determine which papers were written by the same
authors? Again, an author’s name can vary (e.g. “Robert” versus “Rob”) and the same name may
correspond to multiple authors. We could study the writing styles used in the research papers, or
possibly the topics of interest expressed, but the goal of social based entity resolution is to use the
groups of names occurring together in such documents. [3, 4, 21, 19, 27]

To consider one specific case, in the models in [3, 4], assumptions are imposed on the entity-
to-entity relationships. The main assumption is that subsets of an entity setE exist, though are
unknown, in the form of cliques. A clique is defined as a set of entitiesQ ⊆ E, such that every
pair of entitiese, f ∈ Q have a positive, or non-null, social relationship.

These relationships are observed in the set of names which appear as co-authors for a particular
paper, the set of such papers make upTX . These cliques do not manifest in perfect representation
in the author list of a paper, since there is variation in the name of entities, and sometimes entities
from outside of a clique are included in the local network for a collaboration. However, the authors
impose an assumption that cliques are recoverable by partitioning papers, or sets of names, into
groups which maximize clique-like phenomena. Paper grouping allows for the prediction of when
authors names on disparate papers correspond to the same underlying entity.

In ENRES, the necessary conditions for this model is exemplified in Figure 7. Note, in this
representation, the necessary condition for the relationship betweenTX to TX , is a social relation-
ship. In other words, only groups of tuples are necessary. In [4, 3], string matching algorithms,
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(a) Approximate resolution (b) Imposed Model

Figure 7: Labelled social deduplication.?? Approximate resolution for labelled social deduplica-
tion. 7(b) Assumed social relationship model among entities.

which process personal-dependent attributes, are suggested for the resolution of noise in the name
representations of the underlying entities. In this sense, the social network analysis functions as an
additional feature by which deduplication occurs.

The specification of clique detection allows for a robust statistical learning model to be imposed
on labelled datasets. Yet, there exists a tradeoff in specification of the underlying entity-entity re-
lationships and the generalizability of learning. For instance, clique detection requires what we
informally term exact similarity, such that relationships between entities must be directly observed
(e.g. Alice and Bob are related if they collocate in the same source). This model is not necessarily
representative of the space of social networks and it is unclear if this model generalizes to other
types of social networks [1, 33], such as smallworld [22], hierarchical [36], or cellular [8]. Re-
cently, it has been shown that such assumptions biases the learning realm and can have serious dif-
ficulty in lesser connected, or decentralized, environments such as the actor-to-actor relationships
in the Internet Movie Database. [27]. Alternative learning models, which relax the underlying
relationships to lesser structured systems, such as those based on network walks [21, 27], cover-
ing [10], cuts [14, 31], and spectral clustering [19] may provide intuition into additional social
environments.

3.3.2 Linkage in Partially Labelled Networks

A related, though distinct, problem regarding social networks for resolution is the topic of link
completion. [15, 23] This problem can be defined as follows. A social network is observed, where
edges in the network denote the affinity to which two different nodes are related. The network
can be constructed from a set of tuplesTX as described above. Then, the observer is presented
with a new network, where the label of one nodex is obscured. The set of such “partial” networks
can be thought of asTY . The population of entities is closed, so the truth resolution functions
for TX andTY map back to the same entity set. The goal is to link the unlabelled node to its
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corresponding labelled node in the other network. In ENRES terms, this is equivalent to linkingx
to its corresponding entity, which itself is labelled by one or more tuples fromTY . It is expected
that bothTX andTY correspond to the same entity set as shown in the right of Figure 8. It is for
this reason that in the resolution model depicted in the left of Figure 8 the entity set isE and not
E ′ as was the case in the record linkage models described earlier.

(a) Truth resolution (b) Approximate Resolution

Figure 8: Partially labelled social linkage model. 8(a) Underlying truth resolution functions. 8(b)
Approximate resolution as linkage in partially labelled networks using social dependent relations.

An alternative view, though equivalent representation within the framework, is offered by Hill
and Provost. [17, 18] In this scenario, the social network is a citation network where the authors
of a paper are hidden from view. Instead of studying the groups of co-authors, the social network
is constructed from the paper’s citation list. Resolution on a paper with an unknown author is
achieved via a classifier trained on observed citation networks for known author.

By comparing Figures 7 and 8, it is apparent that the clique detection research is represented
in the framework’s form of deduplication with different constraints on the resolving relationships.
In contrast, in the classification setting, the problem appears to be related to the linkage problems
of trail and record linkage. More specifically, as depicted in 8, the goal is to link a newly observed
network to one of a set of networks observed in the construction of the classifier.

4 Discussion

The presented models merely scratch the surface of the entity resolution landscape. One strength
of ENRES resides in its ability to formally model the structure of entity resolution problems. In
this section, we begin to characterize how many resolution models can exist. Then, we propose a
new entity resolution problem yet to be addressed by any research community was discovered via
ENRES modelling.
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4.1 Many Resolution Models

The graphical nature of ENRES supports an algebraic investigation of model topologies. We as-
sume the entity set population is known.

4.1.1 Deduplication

For deduplication there is one tuple set and one entity set. A tuple-only relation exists and is
dependent on at least on semantic. The number of such relations is2n−1, wheren is the number
of semantic types. In addition, entity-only relations are not required, so2n, or 8 are possible.
However, it is counterintuitive to make entity-only relations dependent upon semantics which are
unobservable. As a result, entity-only semantics are selected from the set used for tuple-only
relations. The number of models can be computed as

n∑
i=1

(
n

i

)
2i.

Consequentially, whenn = 3, the number of deduplication models is26.

4.1.2 Linkage

We consider the case of two tuple setsTX , TY and one entity setE. The only requirement is the
relation betweenTX andTY (i.e. r ⊆ TX × TY ) has at least one semantic dependency. There are
2n − 1 such relations. In addition, each tuple set can be self-related using2n possible semantic
combinations. This is depicted along the top row and first column of Figure 9. Next, the number of
entity-only relations is dependent on the semantics of the tuple-only relations. In Figure 9, when
r ⊆ TX × TY is locational dependent, this number is the sum of the diagonal plus the right upper
triangle. This matrix sums to the same value whenr ⊆ TX × TY is dependent on one semantic.
Similar matrices can be constructed for any number of semantic dependencies forr ⊆ TX × TY .

Figure 9: Number of different entity-only relations given whenTX × TY is locational dependent.
The matrix is symmetric so gray cells are redundant.
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Whenn = 3 and the number of semantics forr ⊆ TX × TY is 2, there are 36 possible combi-
nations of self referential tuple-only relations, 27 of these do not contribute the missing semantic.
Furthermore, when the cross tuple relation contributes one semantic, 19 of the 36 combinations
communicate both missing semantics and 14 of the 36 communicate one of the missing semantics.
Thus, when n=3, the number of possible models can be calculated as 36*8 + 3*(27*8 + 9*4) +
3*(19*8 + 14*4 + 3*2) = 1686.

4.2 A New Model: Topological Linkage

In the previous entity resolution investigations with social networks, the question of interest was
“Given whox interacts with, can we determine whox is?” In this setting, we resolve who someone
is given their labelled interactions. Yet, a problem not addressed by such research is how to handle
situations when all nodes in the network are unlabelled. While it may be known that interactions
exist, it is not known who (or some entity-dependent reference of who) those entities are. In this
setting, the question “Given what someone’s social network looks like, but not the identities of
the network, can we determine who that someone is?” is more appropriate. The goal is to link
nodes from a social network with no explicit identities to corresponding nodes in labelled social
networks. We term this variant of the entity resolution problemtopological linkage.

The topological linkage problem occurs in many real world situations, including privacy and re-
identification analysis, fraud detection, and covert network analysis. The latter is quite interesting
to note. In prior covert network analysis research, the goal is not the resolution of individual
nodes, but instead resolution of the entire network. For example, it is not so important to know
exactly who a particular node is, but what faction or group the network, which the node resides in,
represents. In this respect, covert network analysis methods attempt to discover the organizational
structure of the network inTZ . [6, 8, 9]. This too is an entity resolution problem, but at a macro
scale, whereas in the problem of topological linkage the goal is to link each specific unlabelled
node to a specific labelled node.

Figure 10: ENRES topological linkage model.

The ENRES model of topological linkage is shown in Figure 10. The underlying truth is
the same as that depicted in Figure 8. In this problem, we are provided with, or construct, a social
network from the set of tuplesTZ . This is an unlabelled network and none of the nodes are required
to be labelled with personal-dependent attributes. The goal is to link, or label, the nodes through
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observable interactions, and the subsequently constructed network, of entities in a labelled setting.
The latter labelled network is derived from the set of tuplesTY and is organized through relation
hN,S.

4.3 Limitations and Extensions

The ENRES model is limited in certain respects, several of which we address here. First, the
semantic types ENRES utilizes are derived from surveys of research literature related to entity
resolution. As such, the specification of three types is arbitrary. Yet, the separation of data types
serves to provide a first approximation of model semantics. It is possible that additional semantics
exist and can be integrated to make ENRES more robust. One direction for our future research is
to derive data semantic types which are less dependent on survey and more dependent on formal
characteristics.

A second limitation of ENRES derives from its lack of decision support. A researcher can
model data semantics and the resolution problem, but ENRES does not explicitly provide feedback
to the researcher regarding which methods are best suited to solve the resolution problem. We
believe this is a logical extension to the ENRES framework. Since ENRES uses a logical structure
for resolution models, it is not difficult to converted into a case-based reasoning system. For
instance, ENRES could be trained with samples of ¡model, method¿ pairs, such that when a new
model is presented, ENRES predicts which method(s) is best suited, or most probable, to achieve
resolution.

5 Conclusions

This paper introduced a framework for entity resolution, ENRES, which provides a common ar-
chitecture for modelling seemingly disparate research on how to determine if two pieces of data
correspond to the same entity. Previous research into topics such as record linkage and link com-
pletion were mapped into the framework. Furthermore, we demonstrated that assumptions, such as
semantic types of attributes, can be made explicit. In addition, we derived, via ENRES modelling, a
new entity resolution problem called topological linkage, which is defined as linking specific nodes
from unlabelled to a labelled social networks. ENRES sets the basis for a case-based reasoning
tool for determining which methods are best suited to solve a given resolution problem.
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