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Abstract 
There is a problem faced by experimenters in many technical fields, where, in general, the 

response variable of interest is y and there is a set of predictor variables kxxx ,...,, 21 . For 
example, in Dynamic Network Analysis (DNA) Response Surface Methodology (RSM) might be 
useful for sensitivity analysis of various DNA measures for different kinds of random graphs and 
errors.  

In Social Network Problems usually the underlying mechanism is not fully understood, and 
the experimenter must approximate the unknown function g with appropriate empirical model   

y = f( kxxx ,...,, 21 ) + ε, where the term  ε represents the error in the system. 

Usually the function f is a first-order or second-order polynomial. This empirical model is 
called a response surface model.  

Identifying and fitting from experimental data an appropriate response surface model 
requires some use of statistical experimental design fundamentals, regression modeling 
techniques, and optimization methods. All three of these topics are usually combined into 
Response Surface Methodology (RSM).  

Also the experimenter may encounter situations where the full model may not be appropriate. 
Then variable selection or model-building techniques may be used to identify the best subset of 
regressors to include in a regression model. In our approach we use the simulated annealing 
method of optimization for searching the best subset of regressors. In some response surface 
experiments, there can be one or more near-linear dependences among regressor variables in the 
model. Regression model builders refer to this as multicollinearity among the regressors. 
Multicollinearity can have serious effects on the estimates of the model parameters and on the 
general applicability of the final model. 

The RSM is also extremely useful as an automated tool for model calibration and validation 
especially for modern computational multi-agent large-scale social-networks systems that are 
becoming heavily used in modeling and simulation of complex social networks.  

The RSM can be integrated in many large-scale simulation systems such as BioWar, ORA 
and is currently integrating in Vista, Construct, and DyNet. 

This report describes the theoretical approach for solving of these problems and the 
implementation of chosen methods.   
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1. Introduction  

1.1 Response Surface Methodology 
Response Surface Methodology (RSM) is a collection of statistical and mathematical 

techniques useful for developing, improving, and optimizing processes [1].  

The most extensive applications of RSM are in the particular situations where several input 
variables potentially influence some performance measure or quality characteristic of the 
process. Thus performance measure or quality characteristic is called the response. The input 
variables are sometimes called independent variables, and they are subject to the control of the 
scientist or engineer. The field of response surface methodology consists of the experimental 
strategy for exploring the space of the process or independent variables, empirical statistical 
modeling to develop an appropriate approximating relationship between the yield and the process 
variables, and optimization methods for finding the values of the process variables that produce 
desirable values of the response. In this report we will concentrate on the second strategy: 
statistical modeling to develop an appropriate approximating model between the response y and 
independent variables kξξξ ,...,, 21  . 

In general, the relationship is 

   y = f( kξξξ ,...,, 21 ) + ε ;                                                                  (1.1) 

 

where the form of the true response function f  is unknown and perhaps very complicated, 
and ε is a term that represents other sources of variability not accounted for in f. Usually ε 
includes effects such as measurement error on the response, background noise, the effect of other 
variables, and so on. Usually ε is treated as a statistical error, often assuming it to have a normal 
distribution with mean zero and variance 2σ . Then  

E(y) = η = E [f ( kξξξ ,...,, 21 )] + E (ε) = f ( kξξξ ,...,, 21 );                (1.2) 

 

The variables kξξξ ,...,, 21  in Equation (1.2) are usually called the natural variables, because 
they are expressed in the natural units of measurement, such as degrees Celsius, pounds per 
square inch, etc. In much RSM work it is convenient to transform the natural variables to coded 
variables kxxx ,...,, 21 , which are usually defined to be dimensionless with mean zero and the 
same standard deviation. In terms of the coded variables, the response function (1.2) will be 
written as 

η = f ( kxxx ,...,, 21 );                    (1.3) 

 
Because the form of the true response function f is unknown, we must approximate it. In fact, 

successful use of RSM is critically dependent upon the experimenter’s ability to develop a 
suitable approximation for f. Usually, a low-order polynomial in some relatively small region of 
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the independent variable space is appropriate. In many cases, either a first-order or a second-
order model is used.  

The first-order model is likely to be appropriate when the experimenter is interested in 
approximating the true response surface over a relatively small region of the independent 
variable space in a location where there is little curvature in f.  

For the case of two independent variables, the first-order model in terms of the coded 
variables is 

     η = 2211 xxo βββ ++ ;                      (1.4) 

 

The form of the first-order model in Equation (1.4) is sometimes called a main effects 
model, because it includes only the main effects of the two variables 1x  and 2x . If there is an 
interaction between these variables, it can be added to the model easily as follows: 

          η = 21122211 xxxxo ββββ +++ ;                                                                                (1.5)   

 

This is the first-order model with interaction. Adding the interaction term introduces 
curvature into the response function.  

Often the curvature in the true response surface is strong enough that the first-order model 
(even with the interaction term included) is inadequate. A second-order model will likely be 
required in these situations. For the case of two variables, the second-order model is 

         η = 2112
2
222

2
1112211 xxxxxxo ββββββ +++++ ;                                                       (1.6)   

  

This model would likely be useful as an approximation to the true response surface in a 
relatively small region. 

The second-order model is widely used in response surface methodology for several reasons: 

 1. The second-order model is very flexible. It can take on a wide variety of functional  
 forms,  so it will often work well as an approximation to the true response surface. 

      2. It is easy to estimate the parameters (the β’s) in the second-order model. The method of 
 least squares can be used for this purpose. 

 3. There is considerable practical experience indicating that second-order models work 
 well in solving real response surface problems.  

In general, the first-order model is 

   η = kko xxx ββββ ++++ ...2211                                (1.7) 

 

and the second-order model is 
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 In some infrequent situations, approximating polynomials of order greater than two are used. 
The general motivation for a polynomial approximation for the true response function f is based 
on the Taylor series expansion around the point 02010 ,...,, kxxx .            

Finally, let’s note that there is a close connection between RSM and linear regression 
analysis. For example, consider the model 

 y =  εββββ +++++ kk xxx ...22110       

      
The β’s are a set of unknown parameters. To estimate the values of these parameters, we 

must collect data on the system we are studying. Because, in general, polynomial models are 
linear functions of the unknown β’s, we refer to the technique as linear regression analysis.  

   

1.2 Response Surface Methodology and Robust Design  
RSM is an important branch of experimental design. RSM is a critical technology in 

developing new processes and optimizing their performance. The objectives of quality 
improvement, including reduction of variability and improved process and product performance, 
can often be accomplished directly using RSM.  

It is well known that variation in key performance characteristics can result in poor process 
and product quality. During the 1980s [2, 3] considerable attention was given to process quality, 
and methodology was developed for using experimental design, specifically for the following: 

1. For designing or developing products and processes so that they are robust to component 
variation. 

2. For minimizing variability in the output response of a product or a process around a target 
value. 

3. For designing products and processes so that they are robust to environment conditions. 

By robust means that the product or process performs consistently on target and is relatively 
insensitive to factors that are difficult to control.  

Professor Genichi Taguchi [2, 3] used the term robust parameter design (RPD) to describe 
his approach to this important problem. Essentially, robust parameter design methodology 
prefers to reduce process or product variation by choosing levels of controllable factors (or 
parameters) that make the system insensitive (or robust) to changes in a set of uncontrollable 
factors that represent most of the sources of variability. Taguchi referred to these uncontrollable 
factors as noise factors. RSM assumes that these noise factors are uncontrollable in the field, but 
can be controlled during process development for purposes of a designed experiment.  

Considerable attention has been focused on the methodology advocated by Taguchi, and a 
number of flaws in his approach have been discovered. However, the framework of response 



CMU SCS ISRI                                                                                          CASOS Report 

- 4 - 

surface methodology allows easily incorporate many useful concepts in his philosophy [1].  
There are also two other full-length books on the subject of RSM [4, 5]. 

In our technical report we are concentrated mostly on building and optimizing the empirical 
models and practically do not consider the problems of experimental design.  

 

1.3 The Sequential Nature of the Response Surface Methodology 

Most applications of RSM are sequential in nature. 

Phase 0: At first some ideas are generated concerning which factors or variables are likely to 
be important in response surface study. It is usually called a screening experiment. The 
objective of factor screening is to reduce the list of candidate variables to a relatively few so 
that subsequent experiments will be more efficient and require fewer runs or tests. The 
purpose of this phase is the identification of the important independent variables.  

Phase 1: The experimenter’s objective is to determine if the current settings of the 
independent variables result in a value of the response that is near the optimum. If the current 
settings or levels of the independent variables are not consistent with optimum performance, 
then the experimenter must determine a set of adjustments to the process variables that will 
move the process toward the optimum. This phase of RSM makes considerable use of the 
first-order model and an optimization technique called the method of steepest ascent 
(descent). 

Phase 2: Phase 2 begins when the process is near the optimum. At this point the 
experimenter usually wants a model that will accurately approximate the true response 
function within a relatively small region around the optimum. Because the true response 
surface usually exhibits curvature near the optimum, a second-order model (or perhaps some 
higher-order polynomial) should be used. Once an appropriate approximating model has been 
obtained, this model may be analyzed to determine the optimum conditions for the process.  

 This sequential experimental process is usually performed within some region of the 
independent variable space called the operability region or experimentation region or 
region of interest.  
 

2. Building Empirical Models  

2.1 Linear Regression Model 
 In the practical application of RSM it is necessary to develop an approximating model for 
the true response surface. The underlying true response surface is typically driven by some 
unknown physical mechanism. The approximating model is based on observed data from the 
process or system and is an empirical model. Multiple regression is a collection of statistical 
techniques useful for building the types of empirical models required in RSM.  

 The first-order multiple linear regression model with two independent variables is  

     y = 2211 xxo βββ ++  +  ε            (2.1) 
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The independent variables are often called predictor variables or regressors. The term 
“linear” is used because Equation (2.1) is a linear function of the unknown parameters 

21 ,, βββ ando .  

 In general, the response variable y may be related to k  regressor variables. The model  

   y = kko xxx ββββ ++++ ...2211  + ε                             (2.2) 

 

is called a multiple linear regression model with k regressor variables. The parameters ,jβ  
j=0,1,…k, are called the regression coefficients.  

 Models that are more complex in appearance than Equation (2.2) may often still be 
analyzed by multiple linear regression techniques. For example, considering adding an 
interaction term to the first-order model in two variables 

       y = 21122211 xxxxo ββββ +++  + ε                             (2.3) 

  

 As another example, consider the second-order response surface model in two variables 

      y = 2112
2
222

2
1112211 xxxxxxo ββββββ +++++  + ε                                                      (2.4) 

 

 In general, any regression model that is linear in the parameters (the β-values) is a linear 
regression model, regardless of the shape of the response surface that it generates. 

              

2.2 Estimation of the Parameters in Linear Regression Models 
The method of least squares is typically used to estimate the regression coefficients in a 

multiple linear regression model. Suppose that n > k observations on the response variable are 
available, say nyyy ,...,, 21 . Along with each observed response iy , we will have an observation 
on each regressor variable, let ijx  denote the ith observation or level of variable jx  (see Table 
2.1).  

  The model in terms of the observations may be written in matrix notation as 

  y = Xβ + ε                                                                                                         (2.5) 

where 

  y  is an n x 1 vector of the observations, 

  X is an  n x p matrix of the levels of the independent variables, 

  β is a p x 1 vector of the regression coefficients, and 

  ε  is an n x 1 vector of random errors. 
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Table 1: Data for Multiple Linear Regression 

y 1x  2x  … kx  

1y  11x  12x             . . . kx1  

2y  21x  22x             . . . kx2  

           . . .            . . .  . 

           . . .            . . . . 
           . . .            . . . . 

ny  1nx  2nx  . . . nkx  

We wish to find the vector of least squares estimators, b, that minimizes  

 L = =∑
=

n

i
i

1

2ε ε'ε =(y - Xβ)'(y - Xβ)                                                                                 (2.6)  

 

After some simplifications, the least squares estimator of β is 

 b = (X’X) 1− X’y                            (2.7) 

 

It is easy to see that X’X is a p x p symmetric matrix and X’y is a p x 1 column vector. The 
matrix X’X has the special structure. The diagonal elements of X’X are the sums of squares of 
the elements in the columns of X, and the off-diagonal elements are the sums of cross-products 
of the elements in the columns of  X. Furthermore, the elements of  X’y  are the sums of cross-
products of the columns of X and the observations {y i }. 

 The fitted regression model is 

 ŷ = Xb                          (2.8) 

 

In scalar notation, the fitted model is  

 ŷ ij

k

j
ji xbb ∑

=

+=
1

0 ,            i = 1,2,…,n 

 

The difference between the observation  iy  and the fitted value ŷ i  is a residual, −= ii ye  ŷ i . 

The n x 1 vector of residuals is denoted by 

 e = y – ŷ                     (2.9) 
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 2.3 Model Adequacy Checking 

It is always necessary to  

1. Examine the fitted model to ensure that it provides an adequate approximation to the true 
system; 

2. Verify that none of the least squares regression assumptions are violated. Now we consider 
several techniques for checking model adequacy.  

 
2.3.1 Properties of the Least Squares Estimators 

The method of least squares produces an unbiased estimator of the parameter β in the 
multiple linear regression model. The important parameter is the sum of squares of the 
residuals 

 SS E  = −∑
=

n

i
iy

1
( ŷ i ) 2 = ∑

=

n

i
ie

1

2 = e’e                  (2.10) 

 

Because  X’Xb = X’y, we can derive a computational formula for SS E : 

 SS E  = y’y – b’X’y          (2.11) 

 

Equation (2.11) is called the error  or residual sum of squares. 

It can be shown that an unbiased estimator of  2σ  is  

 σ
pn

SSE

−
=2                                                                                                                    (2.12) 

 
where  

n  is a number of observations and 

p  is a number of regression coefficients. 

The total sum of squares is  

 
n

y
yySS

n

i
i

T

2

1
)(

'
∑
=−=  = 

n

y
y

n

i
in

i
i

2

1

1

2
)(∑

∑ =

=

−                   (2.13) 

 

Then the coefficient of multiple determination 2R  is defined as 

 
T

E

SS
SSR −= 12                                                                                                                (2.14) 
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2R  is a measure of the amount of reduction in the variability of y obtained by using the regressor 
variables kxxx ,...,, 21  in the model. From inspection of the analysis of variance identity equation 
(Equation (2.14)) we can see that  10 2 ≤≤ R . However, a large value of 2R  does not necessarily 
imply that the regression model is good one. Adding a variable to the model will always increase 

2R , regardless of whether the additional variable is statistically significant or not. Thus it is 
possible for models that have large values of 2R  to yield poor predictions of new observations or 
estimates of the mean response.  
 Because 2R  always increases as we add terms to the model, some regression model 
builders prefer to use an adjusted 2R  statistic defined as  

 )1(11
)1/(
)/(1 22 R

pn
n

nSS
pnSSR

T

E
adj −

−
−

−=
−
−

−=                                                                  (2.15) 

 
 
In general, the adjusted 2R  statistic will not always increase as variables are added to the model. 
In fact, if unnecessary terms are added, the value of  2

adjR  will often decrease. When 2R  and  
2
adjR  differ dramatically, there is a good chance that nonsignificant terms have been included in 

the model.  
We are frequently interested in testing hypotheses on the individual regression coefficients. 

Such tests would be useful in determining the value of each of the regressor variables in the 
regression model. For example, the model might be more effective with the inclusion of 
additional variables, or perhaps with the deletion of one or more of the variables already in the 
model.  

Adding a variable to the regression model always causes the sum of squares for regression to 
increase and the error sum of squares to decrease. We must decide whether the increase in the 
regression sum of squares is sufficient to warrant using the additional variable in the model. 
Furthermore, adding an unimportant variable to the model can actually increase the mean square 
error, thereby decreasing the usefulness of the model.   
 
 

2.3.2 Residual Analysis 

The residuals from the least squares fit, defined by −= ii ye  ŷ i , i = 1, 2,…, n, play an 
important role in judging model adequacy. Many response surface analysts prefer to work with 
scaled residuals, in contrast to the ordinary least squares residuals. These scaled residuals 
often convey more information than do the ordinary residuals. 

 The standardizing process scales the residuals by dividing them by their average standard 
deviation. In some data sets, residuals may have standard deviations that differ greatly. There is 
some other way of scaling that takes this into account. Let’s consider this. 

 The vector of fitted values ŷ i  corresponding to the observed values iy  is  
 ŷ = Xb = X(X’X) 1− X’y = Hy         (2.16) 
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The n x n matrix H=X(X’X) 1− X’ is usually called the hat matrix because it maps the vector of 
observed values into a vector of  fitted values. The hat matrix and its properties play a central 
role in regression analysis.  
Since e = y – ŷ  there are several other useful ways to express the vector of residuals 
 
 e = y – Xb = y – Hy = (I – H)y         (2.17) 

 
The prediction error sum of squares (PRESS) proposed in [6, 7], provides a useful residual 

scaling  

PRESS = 2

1

)
1

(∑
= −

n

i ii

i

h
e

          (2.18) 

 
From Equation (2.18) it is easy to see that the PRESS residual is just the ordinary residual 

weighted according to the diagonal elements of the hat matrix iih . Generally, a large difference 
between the ordinary residual and the PRESS residual will indicate a point where the model fits 
the data well, but a model built without that point predicts poorly.  

 

3. Variable Selection and Model Building in Regression  

In response surface analysis it is customary to fit the full model corresponding to the situation 
at hand. It means that in steepest ascent we usually fit the full first-order model, and in the 
analysis of the second-order model we usually fit the full quadratic.  

 Nevertheless, an experimenter may encounter situations where the full model may not be 
appropriate; that is, a model based on a subset of the regressors in the full model may be 
superior. Variable selection or model-building techniques usually is used to identify the best 
subset of regressors to include in a regression model [8,9]. Now we give a brief presentation of 
regression model-building and variable selection methods, introduce our method of variable 
selection and illustrate their application to a response surface problem. We assume that there 
are K candidate regressors denoted kxxx ,...,, 21  and a single response variable y. All models 
will have an intercept term 0β , so that the full model has K + 1 parameters.  

It is shown in [8,9] that there is a strong motivation for correctly specifying the regression 
model: Leaving out important regressors introduces bias into the parameter estimates, while 
including unimportant variables weakens the prediction or estimation capability of the model.  

 

3.1 Procedures for Variable Selection 

Now we will consider several of the more widely used methods for selecting the appropriate 
subset of variables for a regression model. We will also introduce our approach based on the 
optimization procedure used for selecting the best model from the whole set of models and 
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finally we will discuss and illustrate several of the criteria that are typically used to decide which 
subset of the candidate regressors leads to the best model.  

 

3.1.1 All Possible Regression 

This procedure requires that the analyst fit all the regression equations involving one-
candidate regressors, two-candidate regressors, and so on. These equations are evaluated 
according to some suitable criterion, and the best regression model selected. If we assume that 
the intercept term 0β  is included in all equations, then there are K candidate regressors and there 
are K2  total equations to be estimated and examined. For example, if K = 4, then there are 

1624 =  possible equations, whereas if K = 10, then there are 1024210 = . Clearly the number of 
equations to be examined increases rapidly as the number of candidate regressors increases.  

Usually the analysts restrict the candidate variables for the model to those in the full 
quadratic polynomial  and require that all models obey the principal of hierarchy. A model is 
said to be hierarchical if the presence of higher-order terms (such as interaction and second-order 
terms) requires the inclusion of all lower-order terms contained within those of higher order. For 
example, this would require the inclusion of both main effects if a two-factor interaction term 
was in the model. Many regression model builders believe that hierarchy is a reasonable model-
building practice when fitting polynomials.  

 

3.1.2 Stepwise Regression Methods 

Because evaluating all possible regressions can be burdensome computationally, various 
methods have been developed for evaluating only a small number of subset regression models by 
either adding or deleting regressors one at a time. These methods are generally referred to as 
stepwise-type procedures. They can be classified into three broad  categories: (1) forward 
selection, (2) backward elimination, and (3) stepwise regression, which is a popular combination 
of procedures (1) and (2).  

 

Forward Selection 
This procedure begins with the assumption that there are no regressors in the model other 

than the intercept. An effort is made to find an optimal subset by inserting regressors into the 
model one at a time. The first regressor selected for entry into the equation is the one that has the 
largest simple correlation with the response variable y. Suppose that this regressor is 1x . This 
also the regressor that will produce the largest value of the F-statistic for testing significance of 
regression. This regressor is entered if the F-statistic exceeds a preselected F-value, say inF (or 
F-to-enter). The second regressor chosen for entry is the one that now has the largest correlation 
with y after adjusting for the effect of the first regressor entered ( 1x ) on y. We refer to these 
correlations as partial correlations. They are the simple correlations between the residuals from 
the regression ŷ  = 110

ˆˆ xββ +  and the residuals from the regressions of the other candidate 
regressors on 1x , say   jx̂ = â j0  + â j1 x 1 , j = 2, 3, …, K. 
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In general, at each step the regressor having the highest partial correlation with y (or 
equivalently the largest partial F-statistic given the other regressors already in the model) is 
added to the model if its partial F-statistic exceeds the preselected entry level inF . The procedure 
terminates either when the partial  F-statistic at a particular step does not exceed inF  or when the 
last candidate regressor is added to the model.  

 

Backward Elimination 

Forward selection begins with no regressors in the model and attempts to insert variables 
until a suitable model is obtained. Backward elimination attempts to find a good model by 
working in the opposite direction. That is, we begin with a model that includes all K candidate 
regressors. Then the partial F-statistic (or a t-statistic, which is equivalent) is computed for each 
regressor as if it were the last variable to enter the model. The smallest of these partial F-
statistics is compared with a preselected value, F out  (or F-to-remove); and if the smallest partial 
F-value is less than F out , that regressor is removed from the model. Now a regression model with 
K – 1 regressors is fitted, the partial  F-statistic for this new model calculated, and the procedure 
repeated. The backward elimination algorithm terminates when the smallest partial F-value is not 
less than the preselected  cutoff value F out .  

Backward elimination is often a very good variable selection procedure. It is particularly 
favored by analysts who like to see the effect of including all the candidate regressors, just so 
that nothing obvious will be missed.  

 

Stepwise Regression 
The two procedures described above suggest a number of possible combinations. One of the 

most popular is the stepwise regression algorithm. This is a modification of forward selection in 
which at each step all regressors entered into the model previously are reassessed via their partial 
F-or t-statistics. A regressor added at an earlier step may now be redundant because of the 
relationship between it and regressors now in the equation. If the partial F-statistic for a variable 
is less than F out , that variable is dropped from the model.  

Stepwise regression requires two cutoff values, inF  and  F out .  Some analysts prefer to 
choose inF  =  F out , although this is not necessary. Sometimes we choose inF  >  F out , making it 
more difficult to add a regressor than to delete one.  

 

3. 2 General Comments on Stepwise-Type Procedures 

The stepwise regression algorithms described above have been criticized on various grounds, 
the most common being that none of the procedures generally guarantees that the best subset 
regression model of any size will be identified. Furthermore, because all the stepwise-type 
procedures terminate with one final equation, inexperienced analysts may conclude that they 
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have found a model that is in some sense optimal. Part of the problem is that it is likely that there 
is not one best subset model, but several equally good ones. 

The analyst should also keep in mind that  the order in which the regressors enter or leave the 
model does not necessarily imply an order of importance to the variables. It is not unusual to find 
that a regressor inserted into the model early in the procedure becomes negligible at a subsequent 
step. For example, suppose that forward selection chooses 4x (say) as the first regressor to enter. 
However, when 2x  (say) is added at a subsequent step, 4x  is no longer required because of high 
positive correlation between 2x  and 4x . This is a general problem with the forward selection 
procedure. Once a regressor has been added, it cannot be removes at a later step.  

Note that forward selection, backward elimination, and stepwise regression do not 
necessarily lead to the same choice of final model. The correlation between the regressors affects 
the order of entry and removal. Some users have recommended that all the procedures be applied 
in the hopes of either seeing some agreement or learning something about the structure of the 
data that might be overlooked by using only one selection procedure. Furthermore, there is not 
necessarily any agreement between any of the stepwise-type procedures and all possible 
regressions.  

For these reasons, stepwise-type variable selection procedures should  be used with caution. 
Some analysts prefer the stepwise regression algorithm followed by backward elimination. The 
backward elimination algorithm is often less adversely affected by the correlative structure of the 
regressors than is forward selection. They also found it helpful to run the problem several times 
with different choices of  inF  and  F out . This will often allow the analyst to generate several 
different models for evaluation.  

 

3.3 Our Approach: Using Optimization Procedure for Variable Selection 

All previous approaches are burdensome computationally and none of the procedures 
generally guarantees that the best subset regression model of any size will be identified. This fact 
determined our decision to use the optimization procedure for variable selection in a model. We 
use simulated annealing (SA) method to search for the optimal model.  

The rough idea of simulated annealing is that it first picks a random move. If the move 
improves the objective function, then the algorithm accepts the move. Otherwise, the algorithm 
makes the move with some probability less than one: 

 p = exp [−(E2−E1) / kT]                                                                                            (3.1)  

 

The probability decreases exponentially with the “badness” of the move - the amount  

(E2 – E1) by which the evaluation is worsened. 

A second parameter T is also used to determine the probability. At higher values of T, “bad” 
moves are more likely to be allowed. As T gets closer to zero, they become more and more 
unlikely, until the algorithm behaves more or less like a local search. The schedule input 
determines the value of T as a function of how many cycles already have been completed [10]. 
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Simulated Annealing was first used extensively to solve VLSI layout problems in the early 
1980s [11]. Since that, it has been used in Operations Research to successfully solve a large 
number of optimization problems such as the Traveling Salesman problem and various 
scheduling problems [12]. We also successfully used simulated annealing method in our work 
for improving organizational design [13]. In fact, simulated annealing can be used as a global 
optimizer for difficult functions. Due to the similar approach with random steps in the search 
process, we came up with the idea to use SA for the selection of variables for search of the 
optimal model in realistically complex modeling situations.  

An initial K variable subset of a full set of P ( P  might be as large as 300 – 500) variables is 
randomly selected and passed on to a Simulated Annealing  algorithm. The algorithm then 
selects a random subset in the neighborhood of the current state (neighborhood of a subset S 
being defined as the family of all K-variable subsets which differ from S by a single regressor), 
and decides whether to replace the current subset according to the Simulated Annealing rule, i.e., 
either (i) always, if the alternative subset's value of the criterion is higher; or (ii) with probability 
defined by Equation (2.19) if the alternative subset's value of the optimization criterion  is lower 
than that of the current solution, where the parameter T (temperature) decreases throughout the 
iterations of the algorithm. We suggest that for each cardinality K, the stopping criterion for the 
algorithm is the number of iterations which is controlled by the user. Also controlled by the user 
are the initial temperature and the rate of geometric cooling of the temperature.  

The user has also  the option to specify his initial model to compute regression analysis and  
to compare the resulting statistics with the optimized results. 

 

3.4 Variable Selection: Results 
We used the Example A.1.1 from [1] to compare our results of variable selection procedure 

with results presented in [1]. Table 2.1 presents the results of running a rotatable central 
composite design on a process used to make a polymer additive for motor oil. The response 
variable of interest is the average molecular weight ( nM ), and the two process variables are 
reaction time in minutes and catalyst addition rate. The table shows the design in terms of both 
the natural variables and the usual coded variables. In this case full quadratic model was selected 
because the F-statistic for the quadratic terms (over the contribution of the linear terms ) was 
large and because the linear model displayed strong lack of fit. There is also some indication 
here that a subset model might be more appropriate than the full quadratic.  

The authors of [1] used the all-possible-regressions procedure to identify a model. They 
restricted the candidate variables for the model to those in the full quadratic polynomial and 
required that all models obey the principal of hierarchy. As we already said, a model is 
hierarchical if the presence of higher-order terms (such as interaction and second-order terms) 
requires the inclusion of all lower-order terms contained with those of higher order.  
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Table 2:   Factors and Response for Example A.1.1 

      Time 1ξ      Catalyst 2ξ       Time x 1     Catalyst  x 2        nMy =  

30 4 -5 -1 2320 

40 4 5 -1 2925 

30 6 -5 1 2340 

40 6 5 1 2000 

27.93 5 -7.07 0 3180 

42.07 5 7.07 0 2925 

35 3.586 0 -1.414 1930 

35 6.414 0 1.414 1860 

35 5 0 0 2980 

35 5 0 0 3075 

35 5 0 0 2790 

35 5 0 0 2850 

35 5 0 0 2910 

 

Table 2.3 presents the all-possible regressions results. The values of the residual sum of 
squares, the residual mean square, 22 , adjRR , and PRESS are given for each model. Table 2.3 also 
shows the value of the pC  statistic for each subset model. The pC  statistic is a measure of the 
total mean squared error for the p-term regression model 

 pnpSSC E
p 2

ˆ
)(

2 +−=
σ

                                                                                                 (3.2) 

 

      where )( pSSE    is the error sum of squares for the p-term model and 

 EMS=2σ̂ (full model) 

 

If the p-term model has negligible bias, then it can be shown that     

 |( pCE  zero bias) = p 

  

Therefore, the values of  pC  for each regression model under consideration should be 
evaluated relative to p. The regression equations that have substantial bias will have values of 
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pC  that are greater than p. Then we can choose as the “best” regression equation either a model 
with minimum  pC  or a model with a slightly larger  pC  that does not contain as much bias (i.e., 

pC )~ p= as the minimum.  

 
Table 3:  All Possible Regressions Results for Example A.1.1 

Terms in Model SS Residual MS 
Residual 

2R  2
adjR  PRESS Cp 

1x  2,607,485.0 237,044.1 0.0004 -0.0904 3,728,849.2 86.26 

2x  2,482,610.9 225,691.9 0.0483 -0.0382 4,240,155.7 81.70 

21 , xx  2,481,469.0 248,146.9 0.0487 -0.1415 4,963,701.9 83.66 

2121 ,, xxxx  2,258,212.8 250,912.5 0.1343 -0.1542 5,379,306.7 77.50 

2
121 ,, xxx  2,386,620.7 265,180.1 0.0851 -0.2199 5,736,756.9 82.19 

2
12121 ,,, xxxxx  2,163,364.5 270,420.6 0.1707 -0.2440 6,580,579.4 76.04 

2
221 ,, xxx  429,842.7   47,760.3 0.8352 0.7803 1,123,679.6 10.70 

2
22121 ,,, xxxxx  206,586.5   25,823.3 0.9208 0.8812    853,249.0   4.55 

2
2

2
12121 ,,,, xxxxxx

 
191,604.2   27,372.0 0.9265 0.8741 1,087,751.3   6.00 

2
11 , xx  2,512,636.7 251,263.7 0.0368 -0.1558 4,399,694.1 84.80 

2
22 , xx  430,984.6   43,098.5 0.8343 0.8017   864,737.5   8.75 

2
2

2
1212 ,,, xxxxx  192,750.0   24,093.3 0.9261 0.8892   734,700.0   4.04 

2
2212 ,,, xxxx  184,650.0   23,080.9 0.9292 0.8938   210,987.0   2.59 

      

The Table 2.3 contains 13 models. The first 11 models were considered in [1]. All of them 
follow the hierarchical rule. The two last models were obtained as a result of the optimization 
process that we applied to variable selection. The selection of the appropriate subset model is 
usually based on the summary statistics given in Table 2.3. Note that among the  first 12 models 
considered in [1], the subset model containing the terms 2

22121 ,,, xxxxx  has the smallest residual 
mean square, the largest adjusted  2R , the smallest value of  PRESS, and 55.45 == CC p , which 
is just less than  p = 5, so this equation contains little bias. Nevertheless, the two last models that 
we found have definitely much better statistics. If regression model builder had followed 
hierarchical principal, he/she never would have found them. As you can see the full model is not 
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the best model in this particular case and the simulated annealing method allows us to find better 
models that were not originally considered by model builders. Since all considered statistics 
usually change accordingly we had chosen residual sum of squares (2.11) as an optimization 
criterion. The user can also choose any other statistic as a criterion and the output of all statistics 
is shown in Table 2.3. All statistics for all models were also double checked by MATLAB and 
completely coincide with results given by the optimization process.  

 

4. A Simulation Framework for Response Surface Methodology 

4.1 Response Surface Methodology as an Automated Tool for Model Validation 

Modern computational large-scale social-networks simulation systems are becoming heavily 
used due to their efficiency and flexibility in modeling and simulation of complex social 
networks. Since these models are increasing in complexity and size they require more significant 
time and efforts for their validation, optimization, improvement and understanding of their 
behavior.  

One example of such multi-agent social-network model named BioWar is presented in [14]. 
BioWar is a spatial city-scale multi-agent social-network model capable of simulating the effects 
of biological weapon attacks against the background of naturally-occurring diseases on a 
demographically realistic population. Response Surface Methodology (RSM) might be extremely 
useful as an automated tool that can be used to calibrate such multi-agent models as BioWar, and 
facilitate validation and understanding, thereby increasing model fidelity and reliability and 
giving the user some feedback for analysis and insight. 

Every simulation model has its own specific that should be taken into consideration when we 
try to specify independent and dependent variables. For example, within ORA the RSM tool can 
use one group of measures like a person's height, age, weight as independent variables and 
another like the amount of money earned as the dependent variable. We can also consider some 
of DNA measures like Resource Congruence or Task Exclusivity as independent variables while 
some other DNA measure like Network Closeness or Betweenness Centralization can serve as  
dependent variable. If the RSM is operating on the node level measures then independent 
variables can be any node level measure. There is a particular interest also in consideration of 
some means or standard deviations of the graph level measures as dependent or independent 
variables.  

The RSM is also useful for searching the input combination that maximizes the output of a 
real system or its simulation such as BioWar or ORA. When validating or optimizing a stochastic 
simulation model, one tries to estimate the model parameters that optimize specific stochastic 
output of the simulation model. A simulation framework is especially intended for simulation 
models where the calculation of the corresponding stochastic objective function is very 
expensive or time-consuming. RSM is frequently used for the optimization of stochastic 
simulation models [15]. This methodology is based on approximation of the stochastic objective 
function by a low order polynomial on  a small sub region of the domain. The coefficients of the 
polynomial are estimated by ordinary least squares method applied to a number of observations 
of the stochastic objective function. To this end, the objective function is evaluated in an 
arrangement of points referred to as an experimental design [1, 15]. Based on the fitted 
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polynomial, the local best point is derived, which is used  as a current estimator of the optimum 
and as a center point of a new region of experimentation, where again the stochastic objective 
function is approximated by a low order polynomial. In non-automated optimization, RSM is an 
interactive process in which the user gradually gains understanding of the nature of the stochastic 
objective function. In an automated RSM algorithm, however, human intervention during the 
optimization process is excluded. A good automated RSM algorithm should therefore include 
some degree of self-correction mechanisms [16].  

 

4.2 Steps of Response Surface Methodology in Automated Validation Process 

Usually automated RSM validation process includes the following steps: 

1. Approximate the simulation response function in the current region of interest by a 
first-order model. The first-order model is described by Equation (1.7). Estimators of 
the regression coefficients (the β’s) are determined by using ordinary least squares. To 
this end, the objective function is evaluated in the points of an experimental design, 
which is a specific arrangement of points in the current region of interest. Although 
there are many designs to choose from, usually a fractional two-level factorial design 
[14] is used, often augmented by the center point of the current region of 
experimentation [1]. The advantages of this design are that it is orthogonal, what 
means that the variance of the predicted response is minimal, gives unbiased 
estimators of the regression coefficients and can quite easily be augmented to derive a 
second-order design. 

2. Test the first-order model for adequacy. Before using the first-order model to move 
into a direction of improved response, it should be tested if the estimated first-order 
model adequately describes the behavior of response in the current region of 
experimentation. It is necessary to remember that the total number of observations 
should be always larger than the number of regression coefficients. Moreover, multiple 
observations are needed in the center point of the region of experimentation. 
Estimation of adequacy is usually performed using the analysis of variance (ANOVA) 
table. It allows decide when to accept the first-order model. The decisions include 
choosing the significance levels for the test involved.  

3. Perform a line search in the steepest descent direction. If the first-order model is 
accepted, then this model is used for determining the direction where improvement of 
the simulation response is expected. The steepest descent direction is given by 

),...,( 1 kbb −− . A line search is performed from the center point of the current region of 
experimentation in this direction to find a point of improved response. This point is 
taken as the estimator of the optimum of the simulation response function in the nth 
iteration, and is used as the center point of the region of the experimentation in the (n 
+ 1)th iteration. The line search is stopped when no further improvement is observed.  

4. Solve the inadequacy of the first-order model. If the first-order model is not accepted, 
then either there is some evidence of pure curvature or interaction between the factors 
in the current region of experimentation. Usually, this is solved by approximating the 
simulation response by a second-order polynomial. However, the optimization 
algorithm becomes less efficient especially if it occurs very early during the 
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optimization process. There is alternative solution that recommends reduce the size of 
the region of experimentation by decreasing the step sizes. In this way this region can 
possibly become small enough to ensure that a first-order approximation is an adequate 
local representation of the simulation response function. Another solution is to increase 
the simulation size used to evaluate a design point or to increase the number of 
replicated observations done in the design points. This may ensure that a significant 
direction of steepest descent is indeed found. At the start of the algorithm it should be 
decided which actions will be taken when the first-order model is rejected. For 
example, depending on the p-value found for the lack-of-fit test, one could decide to 
apply a second-order approximation or to decrease the size of the region of 
experimentation.  

5. Approximate the objective function in the current region of experimentation by a 
second-order model. The coded second-order model is given by the Equation (1.8). 
The regression coefficients of the second-order model are again determined by using 
ordinary least squares method applied to observations performed in an experimental 
design. The most popular class of second-order designs is the central composite design 
(CCD) [1]. This design can be easily constructed by augmenting the fractional factorial 
design that is used for estimating the first-order model.  

6. Testing the second-order model for adequacy. Similar to the first-order model, it 
should be tested if the estimated second-order model adequately describes the behavior 
of  the response in the current region of experimentation before using the model. 

7. Solve the inadequacy of the second-order model. If the second-order model is found 
not to be adequate, then one should reduce the size of the region of experimentation or 
increase the simulation size used in evaluating a design point. In RSM it is not 
customary to fit a higher than second-order polynomial. 

8. Perform canonical analysis. If  the second-order model is found to be adequate, then 
canonical analysis is performed to determine the location and the nature of the 
stationary point of the second-order model. The estimated second-order approximation 
can be written as follows:                

                        Ŷ = 0b  + x’b + x’Bx                                                                                   (4.1) 

 

  where      ,0b  b, and B are the estimates of the intercept, linear, and second- 
       order coefficients, respectively.  

           The stationary point  x s  of the second-order polynomial is determined by 

                        x s  = -
2
1 B 1− b                                                                                              (4.2) 

 
          If  all eigenvalues of B are positive(negative), then the quadratic surface has a  
      minimum(maximum) at the stationary point  x s . If the eigenvalues have mixed       
      signs, then the stationary point   x s  is a saddle point. 
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9. Perform ridge analysis. It is not advisable to extrapolate the second-order polynomial 
beyond the current region of experimentation, because the fitted model is not reliable 
outside the experimental region [1]. Therefore, if the stationary point  is a minimum 
that lies outside the current region of experimentation, it is not accepted as the center 
of the next region of experimentation. In the case if the stationary point is a maximum 
or a saddle point, then the stationary point is rejected as well. In these cases, ridge 
analysis is performed,  which means a search for a new stationary point x s  on a given 
radius R such that the second order model has a minimum at this stationary point [1]. 
Using Lagrange analysis, the stationary point is given by  

  (B - µΙ)x = ( - ½ ) b                                                                                          (4.3)  

          

     As a result, for a fixed µ, a solution x of Equation (4.3) is a stationary point on  

     R = (x’x) 2/1 . In the working regions of µ, namely µ > λ k  or µ < λ 1  , where λ 1  is the  
     smallest eigenvalue of  B and λ k  is the smallest eigenvalue of B, R  is a monotonic  
     function of µ. As a result, a computer algorithm for ridge analysis involves the     
     substitution of µ > λ k (for a design maximum response) and increases µ until radii near  
     the design perimeter are encountered. Future increases in µ results in coordinates that  
     are closer to the design center. The same applies for µ < λ 1  (for desired minimum  
     response), with decreasing values of µ being required. 

10. Accept the stationary point. The stationary point will be used as the center point of the 
next experimental region. The analyst should decide whether the first-order or a 
second-order model is used to approximate the simulation response surface in this 
region. This decision can be based on the results of the canonical analysis. For 
example, if a minimum was found, it could be useful to explore a region  around this 
minimum with a new second-order approximation. Opposite, if a maximum or a saddle 
point was found, the optimum could still be located far away from the current 
experimental region. In this case, approximating this region with a first-order model 
and consequently performing a line search would be preferable. Allowing this we 
return to the first phase of our algorithm. It is considered to be a powerful self-
correction mechanism. 

11. An enhanced algorithm is introduced in [17]. In this algorithm the authors use the 
gradient of the second-order model in the center point of the current region and the 
results of the canonical analysis to determine the direction of steepest descent. Next, 
the perform a line search using this direction, resulting in a new center of an 
experimental region. In this region they already approximate the simulation response 
surface by a first-order model. 

12. Stopping criterion. Usually it is recommended ending the optimization process if the 
estimated optimal simulation response value does not improve sufficiently anymore or 
if the experimental region becomes too small. In the case of restricted budget we can 
stop if  a fixed number of evaluations has been performed. Next, a confidence interval 
on the response at the estimator for the optimum can be determined.      
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Very often the natural sequential deployment of RSM allows the user to make intelligent 
choices of variable ranges. What is often even more important is for the response surface 
analysis to reveal important information about the nature of the simulation model and the roles of 
the variables. The computation of a stationary point, a canonical analysis, or a ridge analysis may 
lead to important information about the simulated process, and in the long run it might be very 
valuable. Using of RSM as an automated validation tool also helps to make the validation 
process of the simulation model less time and resource consuming and less prone to bias. Using 
the RSM equivalent rather then the multi-agent simulation model on some stages of simulation 
process also eliminates the wait time for generating results under a variety of conditions and to 
address a number of policy issues.  This approach is fairly common in electrical engineering 
when the detailed simulation model is originally used for design and then the RSM analog used 
for its validation and then on a daily basis as a fast approximation of the simulation model. All 
these considerations forced us to decide that the RSM validation mechanism will be a valuable 
tool that needs be integrated with our existing simulation tools such as the DyNet, BioWar, 
Construct, Vista, and ORA.  

                                       

5. Multicollinearity and Biased Estimation in Regression 

5.1  Definition of Multicollinearity 

In some response surface experiments, there can be one or more near-linear dependences 
among the regressor variables in the model. Regression model builders refer to this as 
multicollinearity among the regressors. Multicollinearity can have serious effects on the 
estimates of the model parameters and on the general applicability of the final model. In this 
chapter, we give a brief introduction to the multicollinearity problem along with biased 
estimation, one of the parameter estimation techniques useful in dealing with multicollinearity.  

The effects of multicollinearity may be easily demonstrated. Consider a regression model 
with two regressor variables 1x  and 2x , and suppose that 1x  and 2x  have been standardized by 
subtracting the average of that variable from each observation and dividing by the square root of 
the corrected sum of squares. This unit length scaling, as it is called, results in the matrix X’X 
having the form of a correlation matrix; that is, the main diagonals are 1 and the off-diagonals 
are the simple correlation between regressor ix and regressor jx . The model is 

,22110 iiii xxy εβββ +++=                ni ,...,2,1=                                                               (4.1) 

 

Now if the response is also centered, then the estimate of  0β  is zero. The 1)( −′XX  matrix for 
this model is 

                          [ )1/(1 2
12r−  ])1/( 2

1212 rr −−  

=′= −1)( XXC
  [ )1/( 2

1212 rr −−  ⎥
⎦

⎤
− )1/(1 2

12r          (4.2) 
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where 12r  is the simple correlation between  1x  and 2x . 

Now, if multicollinearity is present, 1x  and 2x  are highly correlated, and 112 →r . In such a 
situation, the variances and covariances of the regression coefficients become very large. The 
large variances for jb  imply that the regression coefficients are very poorly estimated. Note the 
effect of multicollinearity is to introduce a near-linear dependence in the columns of X. As 

112 →r  or -1, this linearity becomes exact.  

Similar problems occur when multicollinearity is present and there are more than two 
regressor variables. In general, the diagonal elements of the matrix  C = 1)( −′XX  can be written 
as 

 ,
)1(

1
2
j

jj R
C

−
=                j= 1, 2,…,k                                                                            (4.3) 

 

where 2
jR  is the coefficient of multiple determination resulting from regressing jx  on the 

other k – 1 regressor variables. Clearly, the stronger the linear dependence of  jx  on the 
remaining regressor variables (and hence the stronger the multicollinearity), the larger the value 
of  2

jR  will be.  It is usually said that the variance of  jb  is inflated by the quantity 12 )1( −− jR . 
Consequently, (4.3) is usually called the variance inflation factor for jb . Note that these factors 
are the main diagonal elements of the inverse of the correlation matrix. They are an important 
measure of the extent to which multicollinearity is present.  

Although the estimates of the regression coefficients are very imprecise when 
multicollinearity is present, the fitted model may still be useful. For example, suppose we wish to 
predict new observations. If these predictions are required in the region of the x-space where the 
multicollinearity is in effect, then often satisfactory results will be obtained, because while 

individual jb  may be poorly estimated, the function ij

k

j
j x∑

=1

β  may be estimated quite well. On 

the other hand, if the prediction of new observations requires extrapolation, then generally we 
would expect to obtain poor results. Successful extrapolation usually requires good estimates of 
the individual model parameters.  

Multicollinearity arises for several reasons. It will occur when the analyst collects the data 

such that a constraint of the form 0
1

=∑
=

j

k

j
j xa  holds among the columns of X (the ja  are 

constants, not all zero). For example, if four regressor variables are the components of a mixture, 
then such a constraint will always exist because the sum of the component proportions is always 
constant. Usually, however, these constraints do not hold exactly, and the analyst does not know 
that they exist. 
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5.2 Detection of Multicollinearity 

There are several ways to detect the presence of multicollinearity. We will briefly discuss 
some of the more important of these. 

1. The variance inflation factors, defined in (4.3), are very useful measures of 
multicollinearity. The larger the variance inflation factor, the more severe the 
multicollinearity. Some authors have suggested that if any variance inflation factors 
exceed 10, then multicollinearity is a problem. Other authors consider this value too 
liberal and suggest that the variance inflation factors should not exceed 4 or 5. 

2. The determinant of X’X in correlation form may also be used as a measure of 
multicollinearity. The value of this determinant can range between 0 and 1. When the 
value of the determinant is 1, the columns of X are orthogonal (i.e., there is no 
intercorrelation between the regressor variables), and when the value is 0, there is an 
exact linear dependence among the columns of X. The smaller the value of the 
determinant, the greater the degree of multicollinearity. 

3. The eigenvalues, or characteristic roots, of  X’X in correlation form provide a 
measure of multicollinearity. The eigenvalues of X’X are the roots of the equation 

   |X’X – λΙ| = 0                                                                                        (4.4) 

 

       One or more eigenvalues near zero implies that multicollinearity is present. If   
       maxλ and minλ denote the largest and smallest eigenvalues of  X’X, then the condition 

            number  minmax /λλ=k is less than 100, there is little problem with multicollinearity. 

4. Sometimes inspection of the individual elements of the correlation matrix can be 
helpful in detecting multicollinearity. If an element | ijr |  is close to one, then ix  and 

jx  may be strongly multicollinear. However, when more than two regressor variables 
are involved in a multicollinear fashion, the individual ijr  are not necessarily large. 
Thus, this method will not always enable us to detect the presence of 
multicollinearity. 

5. If the F-test for significance of regression is significant, but test on the individual 
regression coefficients are not significant, then multicollinearity may be present. 

 

Since method 4 does not always allow us to detect multicollinearity and method 5 is more 
complicated in implementation, we implemented 3 first methods in our code. Methods 1 and 3 
require the user specified parameters that might be subjective. Our experience shows that 
combination of  first 3 methods works very well in detection of multicollinearity.  

 

5.3 Multicollinearity Remedial Measures  

Several  remedial measures have been proposed for resolving the problem of 
multicollinearity. Augmenting the data with new observations specifically designed to break up 
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the approximate linear dependences  that currently exist is often suggested. However, sometimes 
this is impossible for economic reasons, or because of the physical constraints that relate the jx .  

Another possibility is to delete certain terms from the model. This suffers from the 
disadvantage of discarding the information contained in the deleted terms.  

Because multicollinearity primarily affects the stability of the regression coefficients, it 
would seem that estimating these parameters by some method that is less sensitive to 
multicollinearity than ordinary least squares would be helpful. Ridge regression is one of 
several methods that have been suggested for this. In ridge regression, the regression coefficients 
estimates are obtained by solving 

  b =)(* θ  (X’X + θ I) 1− X’y                                                                             (4.5)  

 

where θ ≥ 0 is a constant. Generally, values of  θ  in the interval  0 ≤ θ ≤ 1 are appropriate. The 
ridge estimator b )(* θ  is not an unbiased estimator of β, as is the ordinary least squares 
estimator b, but the mean square error of b )(* θ  will be smaller than that of b. Thus ridge 
regression seeks to find a set of regression coefficients that is more stable in the sense of having 
a small mean square error. Because multicollinearity usually results in ordinary least squares 
estimators that may have extremely large variances, ridge regression is suitable for situations 
where the multicollinearity problem exists. 

To obtain the ridge regression estimator from Equation (4.5), the user must specify a value 
for the constant θ. Generally, there is an optimum θ for any problem. In general, the variance of 

b )(* θ  is a decreasing function of θ, while the squared bias [b - b )(* θ ] 2  is an increasing 
function of  θ. Choosing the value of θ involves trading off these two properties of b )(* θ . A 
good discussion of the practical aspects of ridge regression may be found in [18].  

Multicollinearity is usually not a big problem in well-designed and well-executed response 
surface experiment. However, a poorly designed or poorly executed response surface experiment 
can have substantial problems with multicollinearity. For example, mixture experiments may 
often have substantial multicollinearity. A mixture problem is a special type  of response surface 
problem when  the response variables of interest in the problem are a function of the proportions 
of the different ingredients used in its formulation. While we traditionally think of mixture 
problems in the product design or formulation environment, they also occur in many other 
settings. In addition to use of ridge regression as a model-building method for mixture problems, 
they also require special experimental design techniques [1]. 

 

6. Limitations and Future Extensions 
The main limitation of this work is that we operated with fairly small models. We plan to test 

our approach on large models with 100 and more variables.  We also plan to include models with 
different terms besides polynomial like logarithmical, exponential, etc. 
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The RSM can be easily integrated in many large-scale simulation systems such as BioWar, 
ORA and is currently integrating with Vista, Construct, and DyNet. Some research has been 
done to provide the integration of the RSM with BioWar. 

We also started the implementation of the interface for the response surface analyzer that will 
allow the user to input his/her own parameters and see the results of analyzer in more convenient 
format. The current version of the analyzer already allows the user to work in two different 
modes: to run the response surface analyzer or run the linear regression on his/her own model. In 
the future the interface will allow the user make a comparison of the two models: user specified 
model and built by the response surface analyzer.  

  

7. System Requirements 

The response surface analyzer is written in C++ and currently runs on Windows XP using an 
Intel processor. The interface of the response surface analyzer will be implemented in Java.  
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