
Configurable Security Protocols for Multi-party Data
Analysis with Malicious Participants

Bradley Malin, Edoardo Airoldi, Samuel Edoho-Eket, and Yiheng Li

September 2004
CMU-ISRI-04-132

Data Privacy Laboratory
Institute for Software Research International

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Standard multi-party computation models assume semi-honest behavior, where the majority of participants
implement protocols according to specification, an assumption not always plausible. In this paper we intro-
duce a multi-party protocol for collaborative data analysis when participants are malicious and fail to follow
specification. The protocol incorporates a semi-trusted third party, which analyzes encrypted data and pro-
vides honest responses that only intended recipients can successfully decrypt. The protocol incorporates
data confidentiality by enabling participants to receive encrypted responses tailored to their own encrypted
data submissions without revealing plaintext to other participants, including the third party. As opposed to
previous models, trust need only be placed on a single participant with no data at stake. Additionally, the
proposed protocol is configurable in a way that security features are controlled by independent subproto-
cols. Various combinations of subprotocols allow for a flexible security system, appropriate for a number of
distributed data applications, such as secure list comparison.

Keywords: multiparty computation, confidentiality, configurable security, secure list comparison, mali-
cious behavior, quasi-commutative cryptography, communication protocols

Contents

1 Introduction 2

2 Quasi-commutative Encryption 3

3 Basic Communication Protocol 4

4 Security and Integrity 6
4.1 Extensions to Basic SCAMD. 6

4.1.1 Checks Performed by the Central Authority. 7
4.1.2 Checks Performed by the Single Locations. 8
4.1.3 Locking Out Malicious Locations. 10

4.2 Computational Overhead. .11
4.2.1 Encryptions/Decryptions. .11
4.2.2 Bandwidth .12
4.2.3 Integrity Check vs. Bandwidth. .13

5 Protocol Application 13
5.1 Configurability of the SCAMD Protocol. .14
5.2 Example: Distributed Data Union. .14
5.3 Security Concerns and Future Research. .15

5.3.1 Traitors Lost in the Crowd. .15
5.3.2 The Semi-Trusted Assumption. .16

6 Conclusions 16

1

1 Introduction

As technologies for collecting information infiltrate society, the ability to record and store personal infor-
mation about specific individuals continues toward ubiquity. Knowingly and unknowingly, individuals shed
data to a number of data collectors both within, as well as beyond, the confines of one’s home. The infor-
mation collection can be overt and apparent to the individual, such as when a consumer visits a retail store
and completes a purchase with a personal credit card. Or data gathering can be less discernable, as when
an individual’s image is captured by an unforeseen video surveillance system. Regardless, the collection,
storage, and sharing of personal information is becoming more widespread. [1]

In many instances, it is the interest of disparate data collecting locations to combine their data to learn
more robust knowledge. Though locations wish to collaborate, it is preferable not to reveal information
which may compromise proprietary or strategic knowledge, overstep the boundaries set forth by legal
statutes, or negatively affect individuals from whom the data was derived. Researchers in theoretical [2, 3, 4]
and application-based multi-party computation [5, 6] have proposed methods to allow locations to collabo-
rate by communicating only encrypted data. While the current techniques are useful for enabling encrypted
data comparisons, they are hindered in their general applicability due to certain assumptions regarding the
honesty of participating parties.

Most secure multi-party computation schemes are designed under an expectation that the majority of
participating parties aresemi-honest. In the semi-honest model, participants are expected to follow proto-
col specifications, but record intermediate values observed during the protocol which can be employed to
compromise security. This is a widely used assumption in multi-party system analysis, however, it does
not cover the space of adversarial models. When locations aremaliciousor corrupt, they can attempt any
number of techniques to gain an advantage over other locations, influence results, or simply wreak havoc.
For example, consider multi-party protocols which require all locations to perform some action over every
location’s dataset [5]. When participating locations receive different data analysis results, a malicious par-
ticipant can drop out of the protocol once it learns the contents of its results, thus preventing other location’s
from learning their own results. In previous multi-party models such problems were attended to by limiting
the data analysis to a single global result which was broadcast to all participants. Yet, as will be shown, such
limitations are unnecessary.

Over the past several years, various multi-party computation schemas have been applied to demonstrate
how certain data mining endeavors, such as association rule learning, decision-tree construction, and ba-
sic machine learning methods can be achieved in an encrypted setting. [6, 7, 9, 8] The specific type of
multi-party computation this research generalizes is based on quasi-commutative cryptography, shown to be
applicable for distributed association rule mining. [5, 7] Though encrypted data analysis is achieved, it has
been depicted in a proof of concept manner, rather than from a security perspective. Thus, in this paper we
develop a protocol to perform distributed data analysis in a manner which adheres to more stringent security
requirements. In addition to making the previous multi-party computation more secure, we provide intuition
into how such a protocol can be configured for a number of different distributed data analyses. Most impor-
tantly, the protocol herein permits for each participating location to receive a differential response, which
can be tailored to their data submissions.

In this paper, we extend current methods and introduce a protocol named secure centralized analysis of
multi-party data, or SCAMD, to cope with malicious participants. We provide proofs of additional security
and integrity features which are not guaranteed in prior multi-party computation methods once semi-honest
assumptions are relaxed. From a general perspective, the SCAMD protocol allows for several new security
features which garner special attention. First, the protocol is guaranteed to be collusion resistant. No
location can collude with another location to bound or learn exactly the plaintext values in another location’s
dataset. Second, our model protects the integrity of every participating location’s dataset. No location

2

can maliciously target another location’s dataset and tamper with values without being detected. This is
a concern in previous models as will be discussed later. Third, we incorporate a component for a locking
mechanism to prevent any location from observing plaintext data until all locations can correctly decrypt
their own results. The level of protection afforded in the latter two features are probabilistic, but are specific
to each location, such that each participant determines the appropriate amount of security necessary for their
own data.

The SCAMD protocol itself is not completely devoid of trust requirements. In order to achieve the
aforementioned properties, a semi-trusted third party1 is incorporated to perform honest data analysis. Yet,
the use of a third party requires no more trust than in previous models, and actually permits the protocol
to be more trustworthy. In comparison to previous models, where each participant must be viewed with a
certain amount of skepticism, the third party model allows for participants to place their trust in a single
party. This is especially useful, since the lone trustworthy party has no data of its own at stake.

The remainder of this paper is organized as follows. In the next section, relevant concepts from multi-
party computation and encryption are reviewed. In section 3, we present the basic communications and data
transfers which comprise the core of the protocol. In section 4, we develop protocol extensions particular
to security and integrity, as well as prove their protective properties. Computational and bandwidth require-
ments of the protocol and its extensions are also addressed. In section 5, we demonstrate how the modular
design of the protocol addresses computational concerns and permits different types of data analysis, such as
differential encrypted response and centralized broadcasting. As an example, we map previous distributed
analyses into the architecture of our protocol. Finally, limitations and possible extensions to this work are
discussed.

2 Quasi-commutative Encryption

The protection protocol described below makes use of an interesting concept from secure multi-party com-
putation known as the one way accumulator, or OWA. [10] In related research, OWAs were applied to a
variety of distributed secure computations. For example, Zachary [11] demonstrates OWAs provide the
necessary features for securely testing membership of nodes in distributed sensor networks. From another
perspective, Faldella and Prandini [12] make use of OWAs for certificate authentication in a distributed
public-key infrastructure. Most recently, and the work this research is closest to, Kantarcioglu and Clifton
[5, 7] apply OWAs for data mining distributed association rules.

The protocol herein also employs OWAs for computation in a distributed environment. With respect to
this research, the reader should view an OWA as a function to empower disparate locations, using different
encryption keys, with the ability to reveal encrypted information from their local datasets, such that an
encrypted piece of data is an equivalent primitive across locations. The OWA applied in this manner permits
analysis and protection strategies to be executed over encrypted data. Plaintext information need not be
revealed, unless it is desired by the owner of the data.

First, we review the general concepts of OWAs, then their transformation into keyed cryptosystems.
Basically, an OWA is a hash functionh : X × Y → X that satisfies thequasi-commutativeproperty. In
equation (1), the following property holds for an arbitrary number and ordering ofyi.

h(h(x, y1), y2) = h(h(x, y2), y1) (1)

Benaloh and de Mare note that the modular exponentiation functionen(x, yi) = xyimod(n), as defined
in RSA encryption, is an OWA. [10, 13] For appropriately chosenn, wheren is the product of two large
prime integersp, q, computingx from en(x, yi) andy can not be accomplished in polynomial time. Since

1The third party is trusted to receive and analyze encrypted data only.

3

repeated use ofen may reveal hash collisions, values ofn are further restricted to be chosen from the set
of rigid integers, defined as products of twosafeprimesp, q. A prime numberp is safe ifp = 2p′ + 1,
wherep′ is an odd prime. Additional information about the features ofp andq, such as congruency and
collision-resistance requirements, can be found in [10] and [14]. To provide some intuition, a safe prime is
a large prime number which makes collisions of hashed values very unlikely to occur.

While other types of accumulators exist [15], with an RSA basis, the quasi-commutative accumulator
allows for trapdoor recovery of plaintext values. As a result, OWAs can be converted into asymmetric
keyed cryptosystems. In order to do so, each encryption keyyi is paired with a decryption keyzi, where
yi ∗ zi = 1mod(ϕ(n))2, for some functionϕ(·). Whenyi andzi are defined in this manner, decryption of
an encrypted valuev can proceed overm independent locations as

x = (h . . . h(h(v, z1), z2), . . . zm) (2)

Again, the ordering of the decryption keysz1, z2, . . . , zm is of no consequence. Thus, the encrypted valuev
can be decrypted in a sequential manner using the same hash function ash(x, zi) = xzimod(n).

3 Basic Communication Protocol

In this section, we introduce a protocol for the secure transfer and analysis of distributed data. The protocol
is called SCAMD for secure centralized analysis of multi-party data. As the name implies, the current
implementation requires a central authority, which we assume is semi-trusted. More specifically, it is trusted
to receive and analyze encrypted data, but not plaintext. The central party will collect encrypted data from
each of the data releasing locations and is expected to return honest responses, to known questions and/or
analyses, to each location. In previous research, others have proven that the responsibilities of a trusted
third party can be distributed among the participants of the protocol. [2, 3, 4] However, when such a feat
is achieved, it usually occurs via the sacrifice of computational complexity, such that the protocol may
be infeasible to compute given temporal constraints. Moreover, most protocols deficient of a third party
assume participants to act semi-honestly, which requires they follow the specifications of the protocol. With
the incorporation of a semi-trusted third party, the central authority, the SCAMD protocol can account for
any number of malicious locations. Though a certain amount of trust is still necessary with respect the
central authority, the protocol shifts trust from each of the participating locations, to a single location with
no data of its own at stake in the process.

We begin with a general overview of the protocol. A more in-depth description and formal treatment
follows. First, each location encrypts every other location’s datasets. Then, the central authority is provided
with the encrypted datasets. The central authority performs some function over the submitted datasets and
returns a list of encrypted values to each location. The encrypted values are decrypted by the set of locations,
such that the final decrypter is the location the list was destined for.

More formally, the SCAMD protocol is defined as follows. Let there exist two types of participants,
data locationsL = {l1, l2, . . . , l|L|} and a single central authorityC. Each locationl ∈ L maintains three
pairs of encryption-decryption keys,〈yb

l , z
b
l 〉, 〈yr

l , z
r
l 〉, 〈ym

l , zm
l 〉, for an agreed upon quasi-commutative

hash functionh as defined above. The functionh is made public, however, all keys are kept private to each
location. The first two key pairs are used for blinding purposes only by locationl with its own dataset, akin
to the blind signature process defined in Chaum’s original description of untraceable payment systems. [16].
The first key pair blinds (superscriptb) the data so that it can be digitally signed by every location with their
multi-party encryption key (superscriptm). The second key pair blinds the data after the central authority

2The termϕ(n), Euler’s totient function, specifies the number of relatively prime positive integers less thann.

4

Figure 1: Basic SCAMD protocol as executed by location 1, for scenario with two locations and central
authority.

has returned its computation. Thus, this key pair serves for recollection (superscriptr) of the plaintext data
via decryption with every party’s multi-party decryption key.

For simplicity, we represent locationl’s dataset asDl and the set of encrypted values ash(Dl, y). In
addition, the number of records in a dataset is represented as the cardinality, or|Dl|. We now step through
the basic protocol. A version of the protocol with two locations is shown in Figure1.
Step 1. (Blinding for Encryption) Each locationl creates a dataset of “dummy” values and adds them
to datasetDl.3 Then,l encrypts each value inDl usingyb

l . After this initial encryption, a blinded dataset
h(Dl, y

b
l) exists for, and is in the sole possession of, each location.

Step 2. (Full Encryption) Each locationl ∈ L shuffles and encrypts withym
l its own blinded dataset and

sends it to other locationsx ∈ L in a sequential fashion. Each locationx encrypts the received dataset with
ym

x and sends the dataset back tol. Once every location has encrypted the dataset, locationl removes the
blinding by decrypting withzb

l . As a result, each locationl is in the possession ofh(h(. . .h(h(Dl, y
m
1), ym

2)
. . . ,ym

|L|−1), y
m
|L|).

Step 3. (Encrypted Analysis)Each location sends the resulting dataset to the central authorityC, who
performs data analysis over the set of datasets. The central authority returnsreturnl datasets to eachl,
which specifies values of interest to locationl.

Step 4. (Blinding for Decryption) Upon reception,l blindsreturnl with the recollection encryption keyyr
l .

Step 5. (Full Decryption: Return) As in Step 2, for each locationl, the encryptedreturnl datasets are
shuffled and sent to each locationx ∈ L (including l). Now, locationx decrypts the dataset withzm

x and
sends the dataset back tol. Once every location has decrypted the dataset, locationl removes the blinding
by decrypting withzr

l .

3The specifics of the dummy values will be made more clear below. However, for the curious reader, it should be noted that its
purpose is for the control of a particular probability.

5

4 Security and Integrity

In this section we present configurable subprotocols which can be added onto SCAMD for particular guar-
antees of security and integrity. We present the protocols, as well as several crucial proofs about the afforded
protections. The first aspect of SCAMD proven is its ability to prevent any set of independent locations from
learning the plaintext information of encrypted data held by honest locations through collusion. This aspect
is derived directly from the basic SCAMD protocol presented in the previous section.

Theorem 1 (Collusion Resistant). Given any locationl ∈ L, there exists no set of locationsU ⊆ L− {l},
which can collude to determine the plaintext values ofDl.

Proof. In general, there are three ways by which plaintext values ofDl can be revealed. The first case is
whenDl is sent to a colluding location. Since plaintext values are only directly revealed whenl chooses so,
this case never occurs. The second case is when both a hashed version ofDl and the appropriate decryption
key is sent to a colluding location. Again, this never arises.

The third case is more subtle. It occurs by exploiting the definition of quasi-commutative encryption.
When a colluding locationu ∈ U is in the possession of a hashed version ofDl which has been hashed by
the same set of keys asDu, then it can learn certain features of the data inDl. The collection of hashed
versions ofDl occurs during two points of the protocol: encryption and decryption. The first opportunity
is via the encryption process before the dataset is submitted to the central authority. During this process,
every version ofDl provided to colluding locations has been hashed with the blinding keyyb

l . Thus, for any
colluderu ∈ U to compare his dataset, it is necessary thatl hashesDu with yb

l . However this never occurs,
sincel only usesyb

l for his own dataset and no one else’s. The second opportunity is via the decryption
process, whenDl is sent as thereturnl list. Yet, as during encryption, the colluding locations only receive
versions ofreturnl which have been hashed with the recollection key,yr

l , which is only used forl’s datasets.
�

Now that simple security with respect to semi-honest behavior has been established, we concentrate on
problems with respect to malicious adversaries.

4.1 Extensions to Basic SCAMD

The basic protocol prevents locations from making direct inferences about any particular location’s dataset.
However, the protocol is leaky in security, since colluding, or independently malicious, locations can influ-
ence the central authority’s analysis and subsequent response, in the form of thereturnl datasets. Moreover,
a location can perform certain functions that will go undetected. In order to control data representation, the
malicious location must be able to make changes to another location’s data in a manner that is undetected.
Specifically, a malicious location can influence the central authority through several means. First, a location
can lie about which values exist in their data collection. While blatant dishonesty regarding one’s own data
is a concern, the SCAMD protocol does not address how to prevent such malicious acts.4

Second, a malicious location can attempt to control how data is represented during the execution of the
protocol. In order to do so, the malicious location can employ a different multi-party key pair for another
location’s dataset. When a malicious location is using more than one multi-party key pair we term this
action akey switch. We subclassify the key switch attack into two distinct, though related, types. The first
type, called afull key switch, occurs when the malicious location applies a particular multi-party key pair

4Lying about one’s dataset exists in the analysis of plaintext data as well. One manner by which dishonesty can be discovered
is to validate data with external knowledge regarding the underlying truth. Yet, when dealing with proprietary knowledge, the
construction of such a litmus test will be dependent on the data in question and may be impossible. Thus, we consider this problem
beyond the scope of the current research.

6

to every value of a particular location’s dataset. The second type, called apartial key switch, occurs when
the malicious location partitions a location dataset intox parts and each part is encrypted/decrypted with a
different multi-party key.

Now we turn to extensions of the basic protocol for integrity checks which detect key switch behavior.
As will be proven, several extensions to the basic protocol guarantee that no set of malicious locations (even
one location) can tamper with the encrypted data they receive at any stage without being detected. We
analyze malicious data corruption in the form of both full and partial key switching. Theorem 2 covers the
case of full key switching, which will be detected by the central authority, whereas theorem 3 covers the
case of partial key switching, which is more easily detected by the data providing locations. Intuitively, the
probability that partial key switching is detected by a single location has a naturally low bound under general
conditions, whereas the probability that partial key switching is detected by the central authority requires
non-negligible effort (in terms of bandwidth, for example) to be controlled below the same bound.

4.1.1 Checks Performed by the Central Authority

The first type detection for key switching is performed by the central authority. It accounts for the situation
of “full” key switching, which occurs when Sally encrypts all of Alice’s dataset with the “bad” keys. The
extension works as follows. The central authority sends the same “dummy” valuevC to every participating
location. Prior to Step 1 of the SCAMD protocol, every location adds the value to their dataset. The
subprotocol for dummy data transfers and encryptions is shown in figure2.

Figure 2:Full key switch detection performed by central authority.

Let us call the switching location Sally and the owner of the switched dataset Alice. We consider the
case when Sally uses two multi-key pairs. Instead of〈ym

Sally, z
m
Sally〉, Sally will usebad = 〈ybad

Sally, z
bad
Sally〉

andgood = 〈ygood
Sally, z

good
Sally〉, respectively. The latter key pair is used with every location’s dataset, except for

Alice for whom Sally uses the previous.

Theorem 2 (Full Key Switch Integrity) . The central authority is guaranteed to detect Sally’s full key
switch.

Proof. Assume Sally usesybad
Sally for all values in Alice’s dataset. The only way that the full encrypted

version ofvC , or any other value common to all datasets, will appear the same in all datasets is if Sally
usesybad

Sally for every location’s dataset including her own. Furthermore, if Sally only usedybad
Sally during

encryption, she must usezbad
Sally with every location’s dataset for decryption. However, if the latter is true,

then Sally has only used one multi-party key pair and no key switching has occurred.�
If the central authority does not detect a value that is the same at all locations this does not necessarily

imply key switching. Rather, it may imply that a location failed to addvC to its dataset. Regardless, when

7

the latter is true then the central authority still detects that something has gone wrong during the execution
of the protocol.

4.1.2 Checks Performed by the Single Locations

In addition to full key switching, Sally can perform “partial” key switching. In a partial key switch, Sally
uses thebad multi-party key pair with a fraction of Alice’s dataset and thegood multi-party key pair with
the remainder. In order to prevent the partial key switch Alice introduces her own dummy data and uses an
additional blinding key〈ycheck

Alice , zcheck
Alice 〉.

Prior to Step 1 of the protocol, Alice addsβ dummy values to her dataset. After the final location
has encrypted her data and prior to submitting the data to the central authority, Alice performs the following
integrity check. After decrypting the data with the initial blinding keyzb

Alice, she re-encrypts her dataset with
the new “check” keyycheck

Alice , and then sends the dataset back to the other locations for decryption. If Sally
is not performing a partial key switch, then she can correctly decrypt Alice’s dataset without any problems.
However, if Sally did perform a partial key switch then the probability she can correctly decrypt Alice’s
dataset is extremely small. In fact, Theorem 3 proves this happens with a naturally low probability, which
can be further reduced by increasingβ. Moreover, even if Alice believes that Sally randomly guessed the
correct values to change, she can repeat the integrity check an arbitrary number, which we callα, times. For
each repetition, Alice uses a new check key pair, again reducing at will the probability that Sally’s cheating
goes undetected. This process is depicted in figure3.

Figure 3:Partial key switch detection as performed by location 1.

Theorem 3 (Partial Key Switch Integrity) . The probability Alice does not detect Sally’s partial key switch
is at mostPα,β := 1− (|DAlice|+ β)−α.

Proof. Assume Sally choosesf values in Alice’s data to encrypt withybad
Sally. Now that Sally has

performed her key switch, she must find those values in Alice’s dataset during the decryption process. Yet,
when Sally encrypted Alice’s dataset, it was blinded byyb

Alice, but now the data is blinded withycheck
Alice . As a

result, unless Sally knows the new blinding key pair, Sally must select thef records which need be decrypted
with zbad

Sally at random. The probability off successful guesses in our setting follows a hyper-geometric

distribution with parametersn − f (records encrypted by Sally withygood
Sally) andf (records encrypted by

8

Sally withybad
Sally) and can be written as:

Pr

(
undetected
key switch

)
=

(
f
f

) (
n− f
n− f

)
(

n
f

) =
f !(n− f)!

n!

This probability is maximized atf = 1 or f = n − 1. In Figure4 this is demonstrated forn = 25. As a
result, Sally’s best probability of remaining undetected is equal to1/n.

0 5 10 15 20 25
−16

−14

−12

−10

−8

−6

−4

−2

f − Number of Records Encrypted with y
Sally
bad

lo
g−

P
ro

ba
bi

lit
y

of
 f

S
uc

ce
ss

fu
l G

ue
ss

es

Figure 4: Sample probabilities of exactlyf successful guesses for the case of 25 records (log(1/25) ≈
−3.219).

While f is chosen by Sally to maximize the probability of a partial key-switch being undetected, Alice
can controln = |DAlice| + β, the size of the dataset, to maximize the probability of detecting partial
key switches. In particular, increasing the number of dummy recordsβ, directly increases the probability
of Sally’s misbehavior being detected. However, Alice may wishes to decreaseβ to save bandwidth during
communication or total time necessary to complete decryption of the dataset. In this case she can still control
the probability of detecting Sally’s misbehavior by simply increasing the number of times that the decryption
check is performed. Each decryption check is performed independently, since Alice uses a different blinding
key for each check. Thus, the probability that Sally’s partial key switch is detected by Alice isPα,β = 1 -
(DAlice + β)−α or less.5 �

In combination, the integrity checks performed by both Alice and the central party guarantee that the
probability Sally performs a key switch is arbitrarily small. Both Alice and the central party are required
to perform key switch detection. Appendix A provides proof that a) Alice can not perform full key switch
detection as efficiently as the central authority and b) the central party can not perform partial key switch
detection as Alice.

5There are two possible scenarios. First, Alice choosesα (the number of checks to be performed) beforehand. In this scenario,
the fact that the probability of detection is less thanPα,β is due to the fact that Sally’s misbehavior can be detected before allα
checks are performed. Second, Alice keeps on performing checks until the probability that a partial key switch was performed by
Sally and was not detected falls below a certain threshold. In this latter scenario, the probability of detection is always equal to
Pα,β ; in fact, Alice computesPα,β after every check is performed and decides to stop when this probability is low enough.

9

4.1.3 Locking Out Malicious Locations

The implementation of the integrity checks performed in the previous section guarantee that no location
can achieve a malicious action in the form of a key switch without being detected. In effect, the integrity
of the cryptographic features are guaranteed, such that it is known that every location has both proper
encryption and decryption multi-party key pair. However, the existence of such key pairs, does not imply
that such key pairs will always be used. Neither the basic SCAMD protocol, nor the extensions for integrity
discussed above, prevent Sally from achieving what we term agrab-and-go. Basically, Sally can recover the
plaintext values ofreturnSally while simultaneously stopping Alice from recovering the plaintext values in
returnAlice. This occurs when Alice decrypts Sally’s dataset (the grab), but Sally refuses to decrypt Alice’s
dataset (the go).

In this section, we introduce a security feature that functions as a locking mechanism to prevent the
grab-and-go. Basically, the central authority will guarantee that no location can recover their own values
without acting honestly on behalf of all other locations datasets. Furthermore, the central authority will
perform this validation without inspecting the plaintext values of any location’s dataset.

The protection manifests in the form of a locking mechanism as follows. The central authorityC creates
a dummy datasetDC at the very beginning. He then acts like an extra location performing Steps 1 and 2 of
the SCAMD protocol, in other words,C sendsDC around through every location in L for full encryption,
while all actual locations still perform the original Steps 1 and 2 with their own datasets. The lockout
subprotocol is depicted in figure5.

Figure 5:Locking protocol.

For each locationl ∈ L, C chooses a blinding key pair〈yl
C , zl

C〉, blinds the mixture withyl
C , and sends

h(. . . h(h([DC , returnl], yb
C)ym

1) . . . , ym
|L|) back to locationl. In addition,C sends the blinded plain-

text dummy dataset values,h(DC , yl
C), to l. Next, each location performs full decryption as specified in

SCAMD, and each location now possesses the central authority’s blinded dataseth([DC , returnl], yl
C). If

the blinded dataset includesh(DC , yl
C), thenl tellsC that decryption was performed honestly. Once all lo-

cation report honest decryptions, the central authority sends eachl ∈ L the appropriate blinding decryption
keyzl

C . With the decryption key in hand,l decrypts the returned mixture and removesDC .

Theorem 4 (Honest Decryption)The probability Sally achieves agrab-and-goagainst Alice (A) is at most
|returnA| / (|returnA|+ |DC |).

10

Proof. We assume that both Alice (A) and the central authority (C) have verified that no key switching
behavior exists. Since Alice does not return the full decrypted dataset toC, the detection of an attempted
grab-and-go is the sole responsibility of Alice. When Sally performs a grab-and-go, she needs to correctly
decryptDC , while leavingreturnA in an encrypted state. Letf be the number of values Sally selects
for a false decryption. Assuming Sally chooses to correctly decrypt a minimum of|DC | values (otherwise
it is guaranteed her malicious behavior is detected with probability 1), the probability of an undetected
grab-and-go is the equal to the probability allf values are selected fromreturnA:

Pr

(
undetected
grab-and-go

)
=

0
@ |DC |

0

1
A
0
@ |returnA|

f

1
A

0
@ |DC |+ |returnA|

f

1
A

=
|returnA|!(|DC |+ |returnA| − f)!

(|returnA| − f)!(|DC |+ |returnA|)!
The probability is monotonic and is maximized whenf = 1. An example of this is shown in Figure6
for |returnA| = 10. When maximized, the probability Sally’s action is undetected becomes|returnA| /
(|returnA|+ |DC |). �

Figure 6:Probability Sally’s grab-and-go attack against Alice is successful;|returnAlice| = 10. DC is the
size of dummy dataset used by the central authority.f is the number of values Sally targeted.

In this locking mechanism, the central authority could initiate an extra integrity check forDC in or-
der to detect partial key switch attack by a malicious location. However, this type of attack (even a full
key switch against the wholeDC) can be detected in later comparisons between what is supposed to be
h([DC , returnl], yC

l), andh(DC , yC
l), by each locationl ∈ L. As a result, a standalone integrity check for

DC is not necessary.

4.2 Computational Overhead

4.2.1 Encryptions/Decryptions

For the following analyses, we assume each encryption or decryption operation on a dataset costs constant
time (or can be bounded by it).

11

As described in section 3, in the basic protocol, each locationl ∈ L maintains three pairs of encryption
and decryption keys. The first two pairs are only applied tol’s own dataset, while the third pair is applied to
every location’s dataset.

The number of encryptions/decryptions that a specific locationl needs to perform is:

O(encryption - basic) = 2(1 + 1 + |L|) = O(|L|)

The total number of encryptions/decryptions performed by the whole system is O(|L|2). However, the
encryption/de-cryption process for all locations is done in parallel, such that the total time necessary to
complete this process remains O(|L|).

In the protocol with integrity check, each locationl ∈ L is asked to performα decryptions for integrity
check initiated by eachl′ ∈ L respectively, i.e., totallyα|L| decryptions.l would also haveα pair of keys
applying to its own dataset for encryption and decryption. Now, the number of encryptions/decryptions that
l needs to perform becomes:

O(encryption - with integrity) = 2(1 + 1 + |L|) + αl|L|+ 2αl = O(αl|L|)

As a result, the total number of encryptions and decryptions for the whole system becomes O(max
l∈L αl|L|2).

Yet, akin to the basic protocol, the integrity checks are performed in parallel, so the total time necessary for
completion is O(max

l∈L αl|L|).
When taking into account the locking mechanism to prevent the grab-and-go, the following additional

encryptions and decryptions are needed due to dummy datasetDC :

1. Each location needs to perform related encryption one time to create the fully encrypted version of
DC ;

2. The central authority needs to perform blinding encryptions for each location, totally|L| times;

3. Each location needs to apply a decryption key provided by the central authority, to restore its returning
dataset.

However, the encryptions/decryptions associated with recollection keys are spared at each location.
Thus, the total time necessary is still O(max

l∈L αl|L|) because of parallelism of the protocol.

4.2.2 Bandwidth

Each locationl provides a dataset of sizesl. To be encrypted by another location, the dataset needs to be sent
from the originating locationl to the destination locationl′, and sent back tol after encryption. A similar
process is performed during the decryption phase. In addition, all datasets must be sent to central authority
for analysis; then a corresponding returning dataset of sizerl is sent back to the appropriatel.

In the basic protocol, each dataset proceeds through (|L| - 1) encryptions and decryptions by locations
other than the originating one, and communicates with the central authority once, so the total bandwidth
required for a specific locationl is:

O(bandwidth - basic) = 2sl(|L| − 1) + 2rl(|L| − 1) + sl + rl = O((sl + rl)|L|),

wheresl = |Dl| andrl = |returnl|. Because of parallelism, the total bandwidth required to finish the protocol
is O(max

l∈L (sl + rl)|L|).

12

In the protocol with integrity check,sl equals (|Dl| + βl + 1), whereβl is the number of dummy value
added byl and “1” accounts for the dummy value provided by the central authority. Each location needs
extraαl rounds of decryption from other locations, so the total bandwidth becomes:

O(bandwidth - with integrity) = 2sl(|L| − 1) + 2rl(|L| − 1) + sl + rl + 2αlsl(|L| − 1), (3)

wheresl = |Dl| + βl + 1 andrl = |returnl|. Thus, an upper bound on the bandwidth is O(max
l∈L αl(sl +rl)|L|).

When we consider the additional locking mechanism,rl equals (|DC | + |returnl|) and the central
authority sends an extra version of blindedDC to l. Assuming the full encryption ofDC is performed in
parallel, the total bandwidth required for a specific locationl is:

O(bandwidth - with integrity & locking)= 2sl(|L|−1)+2rl(|L|−1)+sl+rl+|DC |+2αlsl(|L|−1), (4)

wheresl = |Dl| + βl + 1 andrl = |DC | + |returnl|. Similarly, an upper bound is O(max
l∈L αl(sl + rl)|L|).

4.2.3 Integrity Check vs. Bandwidth

According to Theorem 3, the lower bound of the probability of locationl detecting a partial key switch
attack is1− (|Dl|+βl +1)−α (1 dummy value provided by the central authority considered). Assume each
locationl requires the protocol to satisfy a certain confidence requirementλl on this lower bound. In order
to achieve the lowest bandwidth cost, we are actually solving a special non-linear optimization problem.
Specifically, we need to solve forαl’s andβl’s as integers, when minimizing equation (3) and satisfying
constraints on confidence in honesty for eachl ∈ L:

1− (|Dl|+ βl + 1)−αl > λl,

as well as bandwidth and computational constraints.
Similarly, if the locking mechanism is also required, we need to simultaneously solve forαl’s andβl’s,

as well as|DC | as integers, while minimizing equation (4) and satisfying additional constraints according
to Theorem 4.

5 Protocol Application

The distributed operations the SCAMD protocol enable us to carry out in a secure manner are very different
in nature. This has an impact on the format of the data needed for centralized data analysis, for example, a
certain application may require plaintext data to be broadcasted by thesemi-trustedthird-party to the par-
ticipating locations, whereas another application may require an analysis on the union of the encrypted data
sets and only few sensitive records, still encrypted, may need be returned to the single locations. Thus, dif-
ferent scenarios require slightly different definitions ofsemi-trusted, which we now discuss. In the original
definition, semi-trusted requires the central authority is never permitted to know the plaintext values it was
analyzes. However, if plaintext values need to be broadcast, the definition of semi-trusted can be relaxed. In
the relaxed definition, the third-party is not allowed to know which participating location submitted which
specific values, though it is permitted to see the plaintext values of the records it is going to broadcast.

In addition, other aspects must change to fit the SCAMD protocol to different scenarios. For example, in
order to allow the central authority to have broadcasting powers, we would modify thefull decryptionsection
of the protocol. Instead of sending areturnl dataset to each locationl, the central authority only needs to
send a single dataset, which we refer to asreturnC , around for decryption. Briefly, the central authority
performs Steps 4 and 5 of SCAMD with it’s own recollection key pair〈yr

C , zr
C〉. The central authority blinds

and sendsh(returnC , yr
C) to each of the locations, for full decryption. Once fully decrypted, the central

authority removes its blinding and broadcasts the plaintext data to all participating locations.

13

5.1 Configurability of the SCAMD Protocol

The SCAMD protocol provides security with provable probabilistic guarantees in carrying out distributed
data mining tasks. The main ideas that enable functionality in a diversity of applications include: (a) the
incorporation of dummy data, which allows for control over the detection of integrity tampering, (b) data
shuffling, along with (c) forcing a malicious location to compete against its own behavior by decrypting its
own encryption, and (d) a locking mechanism, which prevents malicious locations from learning informa-
tion the protocol does not prescribe. Given a variety of practical tasks, we believe it was always possible
to combine these basic security enabling addenda to fit the SCAMD protocol to the specific scenario at
hand. This is achieved without any assumptions about semi-honest behavior on the part of the participating
locations. Hence, we say that SCAMD protocol isconfigurableto fit an ample spectrum of distributed data
mining computations.

In this light, removing certain parts of the protocol harms neither the functionality, nor the security of our
protocol. For example, when the definition of semi-trusted is relaxed to provide the central authority with
plaintext broadcasting capabilities the locking mechanism is not needed. It can be validated that removal of
the locking mechanism security component does not affect the overall security of the protocol. Rather, it is
not necessary to carry out the specific distributed computation task.

The SCAMD protocol is the first step towards a formal modular architecture for secure, distributed data
mining, with provable guarantees in environments where semi-honest behavior on the part of participating
locations can not safely be made. The next step in the development of a modular protocol is to feature
a description of distributed data mining tasks along relevant dimensions, and map them into a sequence
of primitive sub-tasks, which the various modules of our protocol can address in a secure way. A major
portion of the single modules will address primitive sub-tasks, whereas others will provide provable security
guarantees that the modules will produce the expected results, even in the presence of malicious participating
locations.

5.2 Example: Distributed Data Union

To illustrate SCAMD’s flexibility and security, we map a distributed association rule learning algorithm
[5, 7] into the SCAMD architecture. The previously defined algorithm is based on semi-honest assumptions,
which we refer to asSemiSecureUnion, or SSU, is presented to find the secure union of distributed data
without revealing which itemsets belong to a given location. The underlying mechanismSSUis as follows.
Each locationl sendsDl to all locations inL for encryption, such that another locationx 6= l, receives the
full encryptedDl. Once completed, each location holds another location’s full encrypted dataset. Next, two
locations collect and union half the full encrypted datasets. Then, one location sends its union to the second
location, who again performs a unions. Finally, the locations, send the dataset around for full decryption,
such that a third location, not one of the previous two, broadcasts the plaintext union.

TheSSUprotocol is susceptible to collusion, which suggests it may not be practical in real-world settings
- even in a semi-honest environment. Consider, for example, a situation where a regional association of
large-size retail stores wants to provide some aggregate statistics about the market, in the form of large
itemsets. Collusion is more likely to occur in such a network when several sites belong to the same umbrella
company or to the same chain (e.g.Wal-Mart comprises 70% of the participating sites).

We present theSCAMD-SemiSecureUnion(SCAMD-SSU), pseudocode provided in Algorithm 1, which
mapsSSUinto the SCAMD architecture.SCAMD-SSUachieves the same goal asSSUand provides and
in addition it 1) prevents each location from seeing other locations’ fully encrypted data, 2) prevents two
participating locations from performing the union of all fully encrypted data sets, and 3) prescribes for the
data to be broadcasted from a third party, not present inSSU, that has no data at stake. In the semi-honest

14

Algorithm 1 SCAMD-SemiSecureUnion: Secure union of itemsets with SCAMD

Phase 0: Local plaintext association rule learning
for eachl ∈ L do

Generate set of local association rulesrulel as defined in distributed association rule mining algorithm
(FDM) defined in [17]

end for

Phase 1: Encryption by all sites
Eachl ∈ L executes SCAMD encryption phase (Steps 1-2){Each location possesses full encryptedrulel,
denotedfrulel}

Phase 2: Central itemset merge (Step 3 of SCAMD)
All l ∈ L sendfrulel to C
C createsRuleSet =

⋃
l∈L frulel

Phase 3: Central Broadcast
C setsreturnC = RuleSet
C executes SCAMD decryption phase (Steps 4-5)
C broadcasts full decrypted datasetreturnC

environment, the main concern is collusion. SinceSCAMD-SSUis an implementation of the SCAMD pro-
tocol, collusion among participating locations is no longer a concern (as shown in Theorem 1). In addition,
SCAMD-SSUsolves problems whichSSUis susceptible to once implemented with malicious locations. It
is interesting to note that whileSSUis susceptible to collusion, it is partially protective against a key switch
attack. Again, consider the situation where Sally performs a key switch against Alice. When all of Alice’s
switched values are in any other location’s dataset, then the key switch has no real influence on the union.
In the alternative situation, if Alice’s switched values are not within another location’s submission, Alice
can claim the integrity of her data was tampered with. However, this is whySSUprovides only partial
protection. Once the plaintext union is broadcast, Alice can not add her dataset to the union without every
other location learning the unique values of her dataset. This problem is solved bySCAMD-SSUonce the
integrity checking is integrated.

5.3 Security Concerns and Future Research

In this section, we briefly discuss several concerns and challenges regarding the current design of the
SCAMD protocol. The first concern corresponds to the difficulty in detecting which location is malicious.
The second concern addresses assumptions regarding the central authority.

5.3.1 Traitors Lost in the Crowd

Theorems 2-4 prove it is possible to control the probability of malicious actions going undetected. Yet
despite these controls, we acknowledge it is not possible to detect the source of the irregularity. This is
mainly due to the usage of an accumulator based on quasi-commutative encryption. It is possible that more
complex schemas may be able to detect both mishaps, as well as their sources, however, this is beyond the
scope of the current research. We expect to look into such extensions in future research.

15

5.3.2 The Semi-Trusted Assumption

With respect to the central authority, many of the protections afforded by the SCAMD protocol are dependent
on the assumption that the central authority is honest; it neither collaborates with participating locations nor
answers locations dishonestly. First, consider a central authority which is merely semi-honest. In this case,
collusion resistance as proven in Theorem 1, no longer holds true. Specifically, locations which collude
with the central authority will be able to compare their full encrypted dataset against the full encrypted
datasets of every non-colluding location. When an encrypted valuev is found to be equivalent between the
colluding and non- colluding datasets, then the colluder can bound the set of plaintext values forv. When
multiple locations are colluding, the possibility exists that the colluder can learn the exact plaintext value
for v. This occurs when the number the values in common between a set of colluders datasets is equivalent
to the number of values in the non-colluders dataset.

Second, and of more grave concern, we consider a central authority which is actually malicious. When
such an event occurs, Theorem 4 can nullified in such a way that non-colluding locations fail to detect mali-
cious behavior. Basically, the central authority can supply corrupt locations with its blinding decryption key
regardless of if corrupt locations used the correct multiparty decryption keys with other locations. Moreover,
the central party can violate Theorem 1 in such a manner that a locationx ∈ L colluding with the central
authority can learn all plaintext values of a dataset for any arbitrary locationl ∈ L without being detected.
This would occur if the central authority was to provide a colluder withreturnx = Dl and Steps 4 and 5 of
SCAMD proceed as specified.

Recent research in theoretical multi- computation proves that third parties can be removed from the
protocol while maintaining the same level of security. [18] However, the design of these systems are most
often inefficient to the point of being intractable for practical application. Thus, in future research we expect
to continue investigating models which incorporate third parties, but reduce the requirement of the semi-
trusted model.

6 Conclusions

This work introduced a novel protocol, termed secure centralized analysis of multi-party data, or SCAMD.
The protocol allows for multiple locations to conduct analyses over distributed data in a secure manner in
the face of malicious behavior. The protocol supports location-specific responses, such that each location
can learn information, of which other locations can not ascertain the contents. Moreover, parallelism of the
protocol allows for execution in linear time and bandwidth. The protocol is amenable to different types of
encrypted data analysis, of which we demonstrated how secure unioning can be made more secure. In future
research, we expect to demonstrate how the protocol can be used for a range of distributed computations in
malicious environments.

Acknowledgements

The authors thank the members of the Data Privacy Laboratory at Carnegie Mellon University for support
and encouragement, and Alessandro Acquisti for helpful discussions. This work was supported by the Data
Privacy Laboratory.

16

References

[1] L. Sweeney. Information explosion. In: L. Zayatz, P. Doyle, J. Theeuwes, and J. Lane (eds): Confi-
dentiality, disclosure, and data access: theory and practical applications for statistical agencies. Urban
Institute, Washington, DC, 2001.

[2] A. Yao. How to generate and exchange secrets. In27th IEEE Symposium on Foundations of Computer
Science. 1986, pp. 162-167.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - or - a completeness theorem
for protocols with honest majority. In19th Symposium on Theory of Computing. New York, NY, 1987,
pp. 218-229.

[4] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively secure multi-party computation. In28th

ACM Symposium on Theory of Computing. 1996, pp. 639-648.

[5] M. Kantarcioglu and C. Clifton. Privacy-preserving data mining of association rules on horizontally
partitioned data.IEEE Transactions on Knowledge and Data Engineering. Forthcoming.

[6] Y. Lindell and B. Pinkas. Privacy preserving data mining.Journal of Cryptology. 2002; 15(3): 177-206.

[7] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed data mining of association rules on
horizontally partitioned data. InACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery. Madison, WI, 2002.

[8] J. Canny. Collaborative filtering with privacy. InIEEE Conference on Security and Privacy.Oakland,
CA, 2002, pp. 238-245.

[9] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically partitioned data. In9th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC,
2003.

[10] J. Benaloh and M. deMare. One-way accumulators: a decentralized alternative to digital signatures
(Extended Abstract). In: Hellsuth, T. (ed.): Advances in Cryptology (EUROCRYPT ’93). LNCS 765.
Springer-Verlag New York 1994, pp. 274-285.

[11] J. Zachary. A decentralized approach to secure group membership testing in distributed sensor net-
works. InMilitary Communications Conference. Boston, MA, Oct 2003.

[12] E. Faldella and M. Prandini. A novel approach to on-line status authentication of public-key certificates. In
16thAnnual Computer Security Applications Conference. New Orleans, LA, Dec 2000.

[13] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 1978; 21(2): pp. 120-126.

[14] N. Baric. and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. InAd-
vances in Cryptology: Proc. EUROCRYPT. LNCS 1233. Springer-Verlag, New York 1997, pp. 480-494.

[15] T. Sander. Efficient accumulators without trapdoor. In: Varadharajan, V.and Mu, Y. (eds.)2nd International
Conference on Information and Communications Security - ICICS ’99. LNCS 1726. Springer-Verlag, New York,
1999, pp. 252-262.

[16] D. Chaum. Blind signatures for untraceable payments. Advances in Cryptography, Crypto 1982. Plenum Press.
1983, pp. 199-203.

17

[17] D. Cheung, J. Han, V. Ng, W. Fu, and Y. Fu. A fast distributed algorithm for mining association rules. In
International Conference on Parallel and Distributed Information Systems. Miami Beach, FL, 1996, pp. 31-42.

[18] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Adaptively secure multi-party computation. In34th Sympo-
sium on Theory of Computing. New York, NY, 2002, 494503.

Appendix A: Necessity of Multiple Key Switch Detectors

Here we prove two facts: a) Alice can not perform full key switch detection as efficiently as the central
authority and b) the central party can not perform partial key switch detection as efficiently as Alice.

Proof. For (a) we show that Alice, a honest location, cannot detect full key switch performed by Sally,
a malicious location. In fact, if Sally performs a full key switch on Alice’s data prior to submission to
the central authority. No matter how many times Alice performs her own integrity check, Sally correctly
decrypts all of Alice’s dataset with probability 1.

For (b) recall that in section4.1.1the central authority requires Alice (and all other locations) to add one
dummy record to its dataset to detect full key switching. The mechanism that allows the central authority
to detect partial key switching follows the same logic: the central authority requires Alice (and all other
locations) to add additional, say,γ dummy records, and then counts the number of identical records shared
by the fully encrypted datasets it receives in step 3 of the SCAMD protocol. Now, the general idea that
drives the proof is that the probability that partial key switching is detected by Alice has a naturally low
bound under general conditions, whereas the probability that partial key switching is detected by the central
authority requires non-negligible effort (in terms of bandwidth, for example) to be controlled below the
same low bound. This happens since Alice starts and ends with its own fully decrypted dataset, whereas
the central authority starts by imposinga minimumnumber of identical records (γ) and ends observing a
number of identical encrypted values which may include some real records that appear multiple times in all
datasets.

Recall from section4.1.2 that Alice (and similarly for other locations) addsβ dummy records to its
dataset so that the probability of successfully detecting partial key switching equals6 Pα,β = 1− (|DAlice|+
β)−1. Assume that there arer identical records which appear in the dataset of each location (not including
those contributed by the central authority), and that Sally decides to encryptf records with the multi-party
key ybad

Sally and|DAlice| + γ − f with the multi-party keyygood
Sally. The central authority is able to detect that

a partial key switching has occurred only when the number of encrypted identical records shared by the
datasets of all locations is less thanγ. In order for this to happen Sally must pickf > r records that it
encrypts withybad

Sally among ther + γ identical records. The probability of successfully detecting a partial
key switch can be computed, again, using a hypergeometric distribution with parametersγ + r (the total
number of identical records shared by the datasets of all locations) and|DAlice| − r (the number of different
records in Alice’s dataset), and is equal to:

0 if f ≤ r

1−
r∑

i=0

(
γ + r

i

) (
|DAlice| − r

f − i

)
(
|DAlice|+ γ

f

) o.w.

where the summation takes into account the fact that Sally must pick at mostr records (of thef she is going
to encrypt withybad

Sally) among theγ + r identical ones in order to fool the central authority.

6Assume for simplicityα = 1.

18

According to the SCAMD protocol the central authority fixesγ before step 1 is performed, then is Sally’s
turn to choose how may records to encrypt (f) with the bad multi-party key. Forr = 0 the summation
reduces to: (

|DAlice|
f

)
(
|DAlice|+ γ

f

)
which is maximized atf = 1 and entails that when Alice usesβ = γ dummy records, Sally is more likely
to fool the central authority than Alice since

|DAlice|
|DAlice|+ γ

>
1

|DAlice|+ γ
.

It is easy to verify that, asr increases, Sally is still more likely to fool the central authority than Alice, when
Alice usesβ = γ dummy records as the central authority.�

19

