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Abstract

It is more expensive and time consuming to build modern software without
extensive supply chains. Supply chains decrease these development risks, but
typically at the cost of increased security risk. In particular, it is often difficult
to understand or verify what a software component delivered by a third party
does or could do. Such a component could contain unwanted behaviors, vulner-
abilities, or malicious code, many of which become incorporated in applications
utilizing the component.

Sandboxes provide relief by encapsulating a component and imposing a se-
curity policy on it. This limits the operations the component can perform
without as much need to trust or verify the component. Instead, a component
user must trust or verify the relatively simple sandbox. Given this appealing
prospect, researchers have spent the last few decades developing new sandbox-
ing techniques and sandboxes. However, while sandboxes have been adopted
in practice, they are not as pervasive as they could be. Why are sandboxes not
achieving ubiquity at the same rate as extensive supply chains? This thesis ad-
vances our understanding of and overcomes some barriers to sandbox adoption.

We systematically analyze ten years (2004 – 2014) of sandboxing research
from top-tier security and systems conferences. We uncover two barriers: (1)
sandboxes are often validated using relatively subjective techniques and (2)
usability for sandbox deployers is often ignored by the studied community.

We then focus on the Java sandbox to empirically study its use within
the open source community. We find features in the sandbox that benign
applications do not use, which have promoted a thriving exploit landscape. We
develop run time monitors for the Java Virtual Machine (JVM) to turn off these
features, stopping all known sandbox escaping JVM exploits without breaking
benign applications. Furthermore, we find that the sandbox contains a high
degree of complexity benign applications need that hampers sandbox use.

When studying the sandbox’s use, we did not find a single application that
successfully deployed the sandbox for security purposes, which motivated us
to overcome benignly-used complexity via tooling. We develop and evaluate
a series of tools to automate the most complex tasks, which currently require
error-prone manual effort. Our tools help users derive, express, and refine a se-
curity policy and impose it on targeted Java application JARs and classes. This
tooling is evaluated through case studies with industrial collaborators where we
sandbox components that were previously difficult to sandbox securely.

Finally, we observe that design and implementation complexity causes sand-
box developers to accidentally create vulnerable sandboxes. Thus, we develop
and evaluate a sandboxing technique that leverages existing cloud computing
environments to execute untrusted computations. Malicious outcomes pro-
duced by the computations are contained by ephemeral virtual machines. We
describe a field trial using this technique with Adobe Reader and compare the
new sandbox to existing sandboxes using a qualitative framework we developed.
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Chapter 1

Introduction

Software engineers have long worked to realize a world where software production is
primarily a matter of component assembly (Krueger, 1992). While there is still work to be
done in this space, the software engineering community has made notable progress in this
effort. Building software through component assembly measurably reduces development
risk (Gabel and Su, 2010; Lim, 1994). Indeed, many modern application developers quite
reasonably refuse to incur the costs of writing a component from scratch, making it robust,
and maintaining it, instead opting to acquire a component that fulfills some or all of their
requirements. This outsources the development risk to the component author, allowing
the developers to fill in gaps and focus on their core competencies. For example, web
application developers do not typically write the code to send, receive, and process HTTP
requests. Instead, they use a framework that performs these operations for them. Similarly,
developers do not worry about writing the code to protect their site’s communication
channels because there are already popular libraries that do this. However, as the common
saying goes, “There is no such thing as a free lunch.” We pay for decreased development
risk by increasing our security risk.

1.1 The State of Practice: Loose Supply Chains

Large manufacturing companies, such as Boeing, Lockheed Martin, and Airbus, maintain
strong ties to their physical parts suppliers through contracts, on-site inspections, and
other practices aimed at ensuring first-time and continued quality. The architectures of
these relationships aim to ensure suppliers will solve problems quickly and at little expense
to the buyer. In spite of these arrangements, manufacturers still have problems with
defective (Knauth, 2011) and counterfeit parts (Capaccio, 2011; Lim, 2011; McCormack,
2012). While the software community also has extensive supply chains, in general, most
software agreements firmly favor the supplier over the buyer.

Oracle, a supplier of enterprise software, recently censored a blog post by one of their
executives (Davidson, 2015). This post decried even the automated inspection of their
software by customers as a violation of Oracle’s intellectual property rights. The ability

1



to ensure quality marginally improves when we reuse open source components because we
avoid these types of legal and political barriers. However, we are still stuck with a seemingly
intractable problem: It is extremely difficult to understand what these components do or
could do. They may contain unwanted behavior, vulnerabilities, or even malicious attacks.
When problematic external code is incorporated into an application, its vulnerabilities or
malice become the application’s.

Consider the Spring Framework,1 which is commonly used to construct web applica-
tions in Java. This framework contains hundreds of features implemented in more than a
million lines of code (OpenHUB, 2015b). How do we trust or verify this quantity of code
from the standpoint of even common security attributes, much less all of its possible be-
haviors? This is not an isolated case. OpenSSL,2 a library commonly used to authenticate
communicating parties and secure their communication channel, constitutes 450,000 lines
of code (OpenHUB, 2015a). Most of this code is written in C, which provides essentially
no guarantees about the security attributes of software it is used to produce. OpenSSL
has recently suffered from a number of serious vulnerabilities (OpenSSL, 2015), some of
which could not be detected using existing analysis tools without a priori knowledge of the
problem (Chou, 2014). These are not isolated problems: An entire thesis-length document
could be written documenting similar cases (Neumann, 1995).

To complicate matters, many of the components we use contain their own supply chains.
Firefox, for example, depends on a third party GUI toolkit called GTK+. GTK+ in turn
depends on a third party 2D drawing library known as Cairo, which itself depends on yet
another third party component for picture parsing known as libpng. This is a small subset
of Firefox’s full supply chain. If trusting and verifying one component from one supplier
is often intractable, how do we deal with the even greater degree of complexity often seen
in practice?

1.2 Sandboxes: A Path Forward

The complexity present in software supply chains currently creates an uncomfortable sit-
uation: Developers must use components (1) that they cannot verify and (2) that they
cannot and do not fully trust. Both of these gaps create security risk. When we must use
a component we cannot trust or verify we are generally left with one remaining option to
defend against unwanted behaviors: encapsulate it. Sandboxes emerged as a promising
software protection approach with the publication of Wahbe et al. (1993)’s Software-based
Fault Isolation.3 Sandboxes are encapsulation mechanisms that impose a security policy
on software components. Instead of trusting or verifying the component, we trust or verify
the relatively simple sandbox. Sandboxes intermediate between an encapsulated compo-
nent and a surrounding system, but in ways that are distinct from a gateway, diode, or
other regulatory device between peer components or systems as seen in system-of-systems
environments. Applying a sandbox often leads to an outcome where the behaviors of the

1http://projects.spring.io/spring-framework/
2https://www.openssl.org/
3This lineage is more thoroughly traced in Chapter 3.
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encapsulated component are restricted to a limited set of well understood operations, the
component is protected against certain classes of attacks, or both. More abstractly, these
cases cover both common reasons to encapsulate a component: It may be malicious or it
may be vulnerable to attack.

Given the promise presented by sandboxing technologies, it is little surprise that the
last few decades have seen both wide research into new sandboxing techniques and the
adoption of sandboxes in practice. In a limited number of cases, sandboxes have been
applied to widely used software systems where attacks have been prominent. Google’s web
browser, Chrome, is sandboxed and also provides a sandbox for running high performance
native code as part of a web page. Microsoft sandboxes Internet Explorer and Word, and
Adobe Systems sandboxes the Adobe Acrobat family of PDF readers. Modern versions of
Linux provide a number of sandboxing mechanisms, including compsec, AppArmor, and
SELinux. Some Linux distributions, such as Debian, supply security policies to use with
these sandboxes to encapsulate risky applications such web servers, browsers, and email
clients.

These sandboxed applications generally have several points in common: they are ex-
tremely complicated, with code bases well into the hundreds of thousands if not millions
of lines of code4, and, aside from perhaps Microsoft, all of their vendors make use of third-
party code, thus introducing supply chain security risks. Furthermore, aside from Chrome,
all of these applications were subject to hundreds of attacks targeting their parsers and
renders (the components sandboxed in each of these cases to protect the rest of the system
from their vulnerabilities). Google decided to sandbox Chrome citing the many attacks
against popular browsers of the time (2008), none of which were sandboxed. In short, all
of these applications have been sandboxed because their security states were so poor that
applying a sandbox became a necessity. This raises the question: Why are sandboxes not
ubiquitous given the pervasiveness of complex software systems and components?

Firefox provides one potential clue. As of late 2015, Firefox remains one of the last
unsandboxed mainstream web browsers. One obvious way to sandbox Firefox is to focus
on separating out and sandboxing the components in which we have the least confidence.
In Firefox, user built addons are an obvious target for sandboxing because anyone can
write them in JavaScript, existing review processes to ensure addons are correct and not
malicious are relatively weak, and addons can currently alter the execution of the browser
in almost any way they like. Unfortunately, the addons are highly coupled with the rest of
the browser. Mozilla cannot sandbox Firefox without placing a well-defined API between
the browser and addons to decouple the two enough that one sandbox can be imposed on
the addons and another (or no) sandbox can be applied to the rest of the browser. Without
this decoupling, the browser and addons must have the same sandbox, which does little
to prevent an addon from compromising the browser. Furthermore, coupling ensures the
security policy imposed is either under-constrained for the addons or over-constrained for
the entire browser. This coupling concern is often cited by Mozilla when they explain
why Firefox is behind all other popular browsers in terms of isolation, although they are

4Chromium, the open source subset of Google Chrome, currently contains 7.5 million lines of code.
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making progress in catching up (Mozilla Security Team, 2013).5 As shown by Firefox and
other cases discussed below, coupling can be a serious impediment to sandbox adoption in
practice. What other hurdles exist?

1.3 Sandboxes and Unfulfilled Promises

Given the compelling promises sandboxes exhibit, we would like to remove hurdles where
possible to encourage adoption. Sandboxes have long been a promising avenue to decrease
security risk6 by redirecting the verification and trust problem from components to trust-
worthy encapsulation mechanisms. This redirection promises to decrease complexity for
engineers making software development trade-offs.

The software security community has long pursued trustworthy security measures through
a strategy of using small, easily analyzed components to act as Trusted Computing Bases
(TCB) (Rushby, 1981). Instead of having to trust full computing systems, we only need to
trust a much smaller set of code (the TCB) where the scope leaves us better prepared to
establish trust. Sandboxes are often TCBs7 (although not all TCBs are sandboxes): They
perform a relatively small set of specialized operations that should be easy to establish
trust in through inspection, testing, program analysis, and even proof. This reduces risk
by allowing us to mitigate vulnerabilities and approach the ideal of least privilege (Saltzer
and Schroeder, 1975) through the use of small, trustworthy mechanisms.

Small, trustworthy mechanisms should decrease complexity for engineers develop-
ing secure systems under two conditions: (1) the mechanisms are easily applied locally to
specific problem areas (e.g. Firefox addons), and (2) are simple enough to understand that
they can be applied effectively (e.g. policies are neither over- or under-constrained and are
applied to the right set of code). It is often stated that “complexity is the enemy of secu-
rity”8 because complexity leads to component misuse and bugs. Encapsulation mechanisms
that cannot be easily narrowly targeted lead to cases like Firefox’s where applications must
be re-architected to encapsulate just untrusted components. (However, the architectures
of encapsulated components and their host applications can equally contribute to this fail-
ure.) Mechanisms that are hard to understand get accidentally applied incorrectly and
thus do not lead to reduced risk.

Given the hurdles discussed to this point, to what degree are the promises of decreased
security risk and decreased complexity fulfilled? This thesis takes a big picture ap-
proach to answer this question. We analyze the sandboxing landscape, where the majority
of existing work has focused on creating or enhancing encapsulation techniques and eval-
uating each in isolation. In particular, we analyze the literature and study practical,

5Mozilla’s encapsulation exercise is still not complete two years after the interview cited above. Current
status is available at: https://wiki.mozilla.org/Security/Sandbox.

6Bold phrases in this chapter are intended to help the reader follow the consistent motivation behind
this work as we introduce the topic of this thesis.

7A sandbox is not a TCB if it is being used for purposes other than security or if it is not being utilized
as a primary security mechanism.

8While the origins of this phrase are not clear, it seems to have been popularized by Bruce Schneier
e.g. https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html.
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mainstream mechanisms to explore the current baseline for sandboxing’s ability to reduce
risk without falling prey to excessive complexity. After exploring the baseline, which
helps us establish barriers to sandbox adoption, we work to reduce barriers in an existing
sandbox.

1.3.1 Sandbox Complexity Causes Failures in Practice

Our years of industrial experience with the use of SELinux, AppArmor, and the Java
sandbox strongly suggested that sandboxes are often difficult, tedious, and error prone
to apply. These challenges represent a few of the technical, social, and human-factors
complexity points presented by sandboxes. We empirically confirm sandboxes are difficult
and error prone to apply, and evaluate a number of cases where sandbox complexity led
to both vulnerabilities and sandbox-deployer misery due to poor usability. Some of these
cases were widely reported. For example, the complexity of Google Chrome’s sandbox
requires intricate re-architecting of existing systems re-using the Chrome sandbox to en-
capsulate components. Adobe Systems’ developers were bitten by this complexity when
they failed to understand intricacies that lead to the misapplication of Chrome’s sandbox
to Reader’s renderer. This misapplication lead to severe security vulnerabilities (Delugre,
2012). The deployment of Chrome’s sandbox in Google’s browser has also been bypassed
to compromise the host machine at hacking competitions (Goodin, 2012). Furthermore,
Chrome’s Native Client sandbox project has paid out several vulnerability bounties and
requires intricate porting work to apply to applications in the first place.

While some complexity is necessary, it is up the developers of sandboxing mechanisms
to ensure their implementations are verifiable and broadly usable by their intended users
(i.e. that any complexity is in fact necessary). In a later chapter we find, empirically
validate, and remove unnecessary complexity in the Java sandbox whereby the sandbox
can be reconfigured and even disabled at runtime by untrusted code. This complexity led
to a number of widely reported exploit campaigns. Turning these “features” off maintains
necessary complexity that creates usability issues hampering manual applications of the
sandbox, which we overcome through the creation and evaluation of tools, as discussed
further below.

1.3.2 Practical Challenges are Mirrored in Sandbox Literature

Given the practical challenges apparent in the sandboxing landscape, does the literature
fulfill the promises? We find that the complexity challenges discussed above with respect
to mainstream sandboxes are repeated in research sandboxes, where usability is rarely a
consideration in any form. This observation is explainable given that usable privacy and
security only emerged as a field big enough to have its own venue in 2005.9 We use a number
of statistical techniques to show that the validation strategies used to support claims about
sandboxes have not improved since 2004. Sandbox validation is often multifaceted but with

9The “Symposium On Usable Privacy and Security” was founded to fill what was perceived as a gap
in research pertaining to human-factors in the privacy and security fields: https://cups.cs.cmu.edu/

soups/.
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an emphasis on more subjective evaluation strategies. This is a key point because we lose
the benefit of having a small TCB if the TCB is not objectively evaluated against strong
security claims. These findings, combined with our complexity findings, demonstrate that
there is room to increase sandbox security while decreasing technical complexity
for people applying sandboxes to encapsulate components. We believe that the approaches
discussed in this thesis could make engineers more confident about the decisions they make
while building secure systems with complex supply chains.

More specifically, our approaches constitute and contribute the following:

• A systematic analysis of sandbox research literature to find general barriers to sand-
box adoption.

• An empirical study of how developers use the Java sandbox to find additional barriers
to sandbox adoption and to observe how barriers evidenced by the research literature
manifest in practice (if at all).

• Tools to mitigate adoption barriers in the Java sandbox that we can not simply
remove.

• An architecture for mitigating the consequences of sandbox failures.

1.4 Thesis Approach: Systematic Sandbox Literature

Analysis

Chapter 2 systematically analyzes ten years of sandboxing literature from top tier secu-
rity and systems conferences. This study uses a rigorous qualitative content analysis to
interpret relevant papers. We statistically analyze these interpretations to draw conclu-
sions about the science of sandboxing. We use this data to define a general and concise
definition of the term sandbox that we believe is the first to cover most mechanisms that
are uncontroversially called “sandboxes.” We find a trade-off between the requirements of
the application being sandboxed and the requirements of the user applying the sandbox
with interesting implications for user-facing complexity in sandboxes. We also substantiate
our claim that sandbox validation has not improved in the ten years since 2004 and that
sandbox-deployer usability is almost entirely ignored in this space. We provide concrete
recommendations for improving sandbox validation. Our recommendations include (1) the
use of structure to reduce subjectivity in arguments and (2) the analysis of usability re-
quirements to improve the odds that sandbox deployers will avoid mistakes. Chapter 2
provides broad, detailed evidence of reasons sandboxing promises are unfulfilled. In later
chapters we look at specific instances of sandboxes to further explore ways to enhance
encapsulation mechanisms.
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1.5 Thesis Approach: Tool Assistance for Applying

Sandboxes

In Chapter 3 we narrow our focus from sandboxes in general to the Java sandbox. We
chose the Java sandbox because it has existed for two decades, it is used in practice to
encapsulate potentially malicious or vulnerable components that could damage the rest
of the system, and it has suffered a number of problems both in generally containing
malice and in being effectively deployed by security conscious users. It is thus a convenient
case study to further explore where sandboxes can better decrease security risk and
complexity.

First, we carefully deconstruct existing Java sandbox exploits and analyze benign Java
applications that use the sandbox to compare and contrast malicious versus benign sandbox
interactions. We find sharp differences between the operations performed by exploits and
benign applications. These differences represent unnecessary complexity in the Java sand-
box that we effectively remove through the use of runtime monitors, and without breaking
backwards compatibility with benign applications. Our monitors were built solely to evalu-
ate the approach and therefore incur overhead that is not suitable for adoption in practice.
This overhead can be reduced to levels acceptable for adoption if the monitors are built
into the Java Virtual Machine. In addition to unnecessary complexity, while studying the
benign applications we observe a number of sandbox concepts that consistently throw off
developers, ranging from severe misunderstandings of the Java security model to simple
configuration mistakes applying the sandbox. Furthermore, we observe that the sandbox
is rarely deployed, likely due this complexity, and that it is even more rarely used for
fine-grained access control. The latter is a stated goal of the sandbox’s design (Gong,
2009).

Having fortified the sandbox, we turn to solving developer-facing complexity in Chap-
ter 4. We explain precisely how the sandbox is applied in practice to illustrate the pain
suffered by developers that must sandbox entire Java applications or their components.
This pain is felt throughout the entire process from defining a security policy, to refining
the policy, and finally applying it. Our tools automate most of these steps and double
check the user where automation is not possible. Collectively, we believe these various
findings and contributions bring Java’s sandbox substantially closer to a state acceptable
for day-to-day use by regular developers.

1.6 Thesis Approach: Ephemeral Environments

Chapters 3 and 4 show how to reduce unnecessary complexity in the Java sandbox and use
tooling to overcome necessary complexity. However, many sandboxes contain necessary
complexity that can lead to vulnerabilities in the sandbox itself. In Chapter 5 we define
a possibly ideal architecture for mitigating sandbox failures by managing attack surface
complexity. Our architecture leverages ephemeral environments to (1) execute potentially
vulnerable or malicious computations, (2) carefully persist required outputs, and (3) throw
away all remaining side-effects after the computation completes. We realize an approxima-
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tion of this ideal using virtual machines running in cloud computing environments. We use
this approximation to build a new sandbox for an application that has been successfully
attacked in spite of encapsulation (Adobe Reader). We evaluate our sandbox through a
field trial and use of a qualitative framework for comparing sandboxes. This framework
walks analysts through the process of ranking sandboxes (without quantification) along
several dimensions to come to a risk determination in a structured way. The structure
ensures rationale is documented and important dimensions of a risk assessment are consid-
ered. The qualitative nature of the framework is an acknowledgement that we need some
way to measure our progress in reducing security risk, but quantitative measurements
remain elusive.

1.7 Contributions

The contributions of this thesis focus on sandbox epistemology, architecture, and analysis.
The contributions in each category are elaborated below:
Epistemology:

• Systematization of a decade’s worth of sandbox research. (Chapter 2)

• A statistical analysis of research sandbox validation techniques and their evolution
over a decade. (Chapter 2)

• Derivation of the first concise definition for “sandbox” that consistently describes
research sandboxes. (Chapter 2)

• Identification and proposed solutions to (1) an over-reliance on ad hoc arguments for
security validation and (2) the neglect of sandbox and policy usability. (Chapter 2)

Architecture:

• Systematization of how sandboxes built for research fit into existing architectures
and their outcomes when correctly applied. (Chapter 2)

• The design and evaluation of runtime monitors to fortify the Java sandbox against
sandbox escaping exploits. (Chapter 3)

• A small Integrated Development Environment to help developers refine a security
policy for subsets of Java applications while accounting for their operational environ-
ments. (Chapter 4)

• A proposed sandbox architecture to increase attack surface design flexibility and
decrease attack surface extent and consequences of attack success, and an evaluation
of the architecture in an industrial case study. (Chapter 5)

Analysis:

• An empirical analysis of use and abuse of the Java sandbox. (Chapter 3)

• A detailed exposition of the complexity involved in manually applying the Java sand-
box. (Chapter 4)

• A context sensitive control- and dataflow analysis for recovering required Java per-
missions from Java bytecode. (Chapter 4)
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Figure 1.1: A mind map summarizing key features of this thesis.

• A dynamic analysis for recovering required Java permissions from Java applications.
(Chapter 4)

• A formalism for merging Java policies. (Chapter 4)

• An algorithm to re-write Java bytecode to apply the sandbox to subsets of Java
applications. (Chapter 4)

• Evaluation of the above four contributions through a series of industrial case studies.
(Chapter 4)

• A qualitative framework for comparing sandboxes. (Chapter 5)

1.8 Thesis

This thesis exposes problems preventing sandboxes from reaching their potential as software
protection mechanisms. Figure 1.1 shows a mind map summarizing important features of
this thesis. We take a big a picture look at the sandboxing landscape, only narrowing
the field of view when necessary to develop and evaluate solutions to identified problems.
We find that while sandboxes have room for improvement, these improvements are both
tractable and worth performing as one approach to secure our software future.
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Chapter 2

A Systematic Analysis of the Science
of Sandboxing1

Researchers have spent the last several decades building sandboxes capable of containing
computations ranging from fully featured desktop applications to subsets of nearly every
kind of application in existence, from third party libraries in Java programs to ads on
web sites. Sandboxes have been built to stop memory corruption exploits, ensure control-
and data-flow integrity, enforce information flow constraints, introduce diversity where
monocultures previously existed, and much more. What more can the research community
do to bring value?

In this chapter, we use multidisciplinary techniques from software engineering, statis-
tics, the social sciences, and graph analysis to systematically analyze the sandboxing land-
scape as it is reflected by five top-tier security and systems conferences. We aim to answer
questions about what sandboxes can already do, how they do it, what it takes to use them,
what claims sandbox inventors make about their creations, and how those claims are val-
idated. We identify and resolve ambiguity in definitions for “sandbox”, systematize ten
years of sandbox research, and point out gaps in our current practices and propose ways
forward in resolving them.

This systematic analysis was motivated by the lack of a clear common understanding
of what the baseline is for the encapsulation option we could rely on when we must use a
component we cannot trust or verify. As we will support later, there is a lack of coherence
in the sandboxing landscape, which makes it difficult to establish this baseline. Without a
baseline, we would not have a basis for identifying the general and pervasive technical and
usability barriers to sandbox adoption this thesis aims to mitigate. This chapter’s analysis
was carried out to overcome the challenges presented by a lack of coherence to ultimately
establish a baseline we can rely on for the rest of this thesis.

This chapter contributes the following:

• A multi-disciplinary methodology for systematically analyzing the state of practice
in a research domain (Section 2.2).

1This chapter was adapted from a paper written with help from Adam Sales, Benjamin Chung, and
Joshua Sunshine. It is published in “PeerJ”: https://peerj.com/articles/cs-43/.
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• An improved concise definition for “sandbox” that consistently describes research
sandboxes (Section 2.1).

• Systemization of the research sandboxing landscape (Section 2.3).

• Identification of and proposed solutions to (1) an over-reliance on ad hoc arguments
for security validation and (2) the neglect of sandbox and policy usability (Sec-
tion 2.4).

We find a general reliance on subjective validation strategies that is concerning. If
sandboxes are to be adopted as an effective measure for reducing security risk in the
presence of the components that can neither be verified or trusted, we must have strong
claims about sandboxes that are backed up by objective science.

2.1 What is a sandbox?

In order to systematically analyze the “sandboxing” landscape we need to clarify the
meaning of the term. We reviewed definitions used by practitioners and in papers within
the field, both in the substance of the definitions and in their quality as definitions. This
section reviews those definitions and establishes a definition for our use here, which we
advance as an improved definition for the field.

A definition should be a concise statement of the exact meaning of a word and may
be accompanied by narration of some properties implied by the definition. In this case,
it should clearly distinguish between mechanisms that are and are not sandboxes. To
gain widespread use, a new definition must include all mechanisms that are already widely
considered to be sandboxes.

In software security contexts, the term “sandboxing” has grown ambiguous. In an early
published use, it described an approach for achieving fault isolation (Wahbe et al., 1993).
Discussions where practicing programmers are trying to understand what sandboxing is
often fail to achieve a precise resolution and instead describe the term by listing products
that are typically considered to be sandboxes or cases where sandboxes are often used.2

However, we did find cases where attempts were made at a concise and general definition.
A representative and accepted StackOverflow answer3 started with, “In the context of IT
security, ‘sandboxing’ means isolating some piece of software in such a way that whatever
it does, it will not spread havoc elsewhere”—a definition that is not sufficiently precise to
separate sandboxes from other defensive measures.

Even recently published surveys of sandbox literature have either acknowledged the
ambiguity, then used overly-broad definitions that include mechanisms not traditionally
considered to be sandboxes (Schreuders et al., 2013a), or have relied entirely on the use of
examples instead of a precise definition (Al Ameiri and Salah, 2011). Schreuders writes,
“Although the terminology in use varies, in general a sandbox is separate from the access

2http://stackoverflow.com/questions/2126174/what-is-sandboxing

http://security.stackexchange.com/questions/16291/are-sandboxes-overrated

http://en.wikipedia.org/w/index.php?title=Sandbox_(computer_security)&oldid=596038515
3http://security.stackexchange.com/questions/5334/what-is-sandboxing
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controls applied to all running programs. Typically sandboxes only apply to programs
explicitly launched into or from within a sandbox. In most cases no security context
changes take place when a new process is started, and all programs in a particular sandbox
run with the same set of rights. Sandboxes can either be permanent where resource changes
persist after the programs finish running, or ephemeral where changes are discarded after
the sandbox is no longer in use. ...” This definition suffers from three problems. First, it is
still overly reliant on examples and thus is unlikely to capture all security mechanisms that
are uncontroversially called sandboxes. Along the same lines, characterizations prefaced
with, “In most cases...”, are not precise enough to reliably separate sandboxes from non-
sandboxes. Finally, the comparison to access controls is not conclusive because it does not
clarify which, if any, access control mechanisms applied to a subset of running programs
are not sandboxes.

In this section we aim to resolve this ambiguity to lay the groundwork for our analysis’s
inclusion criteria. While this definition serves our purposes, we believe it can strengthen
future attempts to communicate scientifically about sandboxes by adding additional pre-
cision. We derive a clear, concise definition for what a “sandbox” is using papers that
appear in five top-tier security and operating system conferences, selected because their
topics of interest are broad enough to include sandboxing papers most years. While we
do not attempt to thoroughly validate our definition using commercial and open source
sandboxes, it does encompass the tools with which we are most familiar.

We found 101 potential sandboxing papers. Out of these papers, 49 use the term
“sandbox” at least once, and 14 provide either an explicit or implicit definition of the term
that is clear enough to characterize. The remaining papers that use the term make no
attempt at a definition or provide an ambiguous explanation, intertwined with other ideas,
and spread over multiple sentences. Within the set of definitions we identify two themes:
sandboxing as encapsulation and sandboxing as policy enforcement.

Sandboxing as encapsulation has a natural analogy: sandboxes on playgrounds provide
a place for children to play with indisputably-defined bounds, making the children easier to
watch, and where they are less likely to get hurt or hurt someone else. They also contain
the sand, thus preventing it from getting strewn across neighboring surfaces. A similar
analogy is used in an answer on the Security StackExchange to the question, “What is
a sandbox?” Indeed, Wahbe was working to solve the problem of encapsulating software
modules (to keep a fault in a distrusted module from affecting other modules) when he
popularized the term in this domain.4

Table 2.1 lists the definitions we found that we characterize as falling within the theme
of sandboxing as isolation. Many of these definitions use the term “isolation,” but we prefer
the use of encapsulation. In Object Oriented Programming, an object encapsulates related
components and selectively restricts access to some of those components. Isolation, on the

4While it is clear from at least one publication that the term sandbox was used in computer security
earlier than Wahbe’s paper (Neumann, 1990), many early software protection papers cite Wahbe as the
origin of the “sandbox” method (Schneider, 1997; Wallach et al., 1997; Zhong et al., 1997). At least one
early commentator felt that this use of the term “sandbox” was merely renaming “trusted computing
bases” (TCB) (McLean, 1997). We believe this section makes it clear that sandboxes meet common TCB
definitions, but that not all TCBs are sandboxes.
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other hand, sometimes refers to a stronger property in which modules use entirely different
resources and therefore cannot interfere with each other at all. Sandboxed components
often need to cooperate to be useful. Cooperation and the idea of disjoint resources are
present in Wahbe’s original use of the term “sandbox”: Wahbe was trying to reduce the
communication overhead present in hardware fault isolation by instead creating software
domains that run in the same hardware resources, but that do not interfere when faulty.
One potential counterpoint to our use of “encapsulation” is that the term typically is used
to refer to cases where the inside (e.g. of an object) is protected from the outside, but
sandboxes often protect the external system from the contents of the sandbox. While this
is a fair point, this chapter does discuss sandboxes that protect their contents from the
outside and sandboxes exist that simultaneously defend the inside from the outside and vice
versa (Li et al., 2014a). Given these points, we maintain that encapsulation’s recognition
of cooperation is important enough to use the term over isolation. Nevertheless, we retain
the use of isolation when discussing existing definitions.

Table 2.2 presents seven quotes that discuss sandboxing in terms of restrictions or policy
enforcement. These definitions reflect different dimensions of the same idea: A security
policy can state what is allowed, verboten, or both. The “sandbox” is the subject that
enforces the policy or “sandboxing” is the act of enforcing a policy. In short, these quotes
cast sandboxing as policy enforcement.

Careful inspection of our definition tables shows that the same technique, Software-
based Fault Isolation (SFI), appears in both tables. Zhang explicitly states that hardening
is not used in SFI, but McCamant very clearly refers to operations being “allowed” and the
existence of a policy. While it could seem that the sandboxing as isolation and sandboxing as
policy enforcement camps are disjoint, we claim they are talking about different dimensions
of the same idea. Isolation refers to the what : An isolated environment where a module
cannot do harm or be harmed. Policy enforcement typically refers to the how 5: By clearly
defining what is or is not allowed. To use an analogy, we often sandbox prisoners when
we place them in a cell. We isolate them by moving them away from everyone else and
placing them in a specific, bounded location, then we impose a security policy on them
by imposing curfews, monitoring their communications with the outside world, etc. We
resolve ambiguity in the use of the term “sandbox” by combining these themes:

Sandbox An encapsulation mechanism that is used to impose a security policy on software
components.

This definition concisely and consistently describes the research sandboxes we identify
in the remainder of this chapter. It intentionally leaves ambiguity about whether the
inside or outside of the sandbox is protected to remain consistent with the discussion of
the various approaches above.
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Table 2.1: Definitions that speak about “sandboxing” in terms of isolation.

Reference Quote

(Zhang et al.,
2013)

“SFI (Software(-based) Fault Isolation) uses instruction
rewriting but provides isolation (sandboxing) rather than
hardening, typically allowing jumps anywhere within a sand-
boxed code region.”

(Zeng et al.,
2013)

“It is a code-sandboxing technique that isolates untrusted
modules from trusted environments. ... In SFI, checks are
inserted before memory-access and control-flow instructions
to ensure memory access and control flow stay in a sandbox.
A carefully designed interface is the only pathway through
which sandboxed modules interact with the rest of the sys-
tem.”

(Geneiatakis
et al., 2012)

“Others works have also focused on shrinking the attack sur-
face of applications by reducing the parts that are exposed to
attack, and isolating the most vulnerable parts, using tech-
niques like sandboxing and privilege separation.”

(De Groef
et al., 2012)

“Isolation or sandboxing based approaches develop techniques
where scripts can be included in web pages without giving
them (full) access to the surrounding page and the browser
API.”

(Cappos
et al., 2010a)

“Such sandboxes have gained widespread adoption with web
browsers, within which they are used for untrusted code exe-
cution, to safely host plug-ins, and to control application be-
havior on closed platforms such as mobile phones. Despite the
fact that program containment is their primary goal, flaws in
these sandboxes represent a major risk to computer security.”

(Reis et al.,
2006)

“Wagner et al. use system call interposition in Janus to con-
fine untrusted applications to a secure sandbox environment.”

(Cox et al.,
2006)

“Our work uses VMs to provide strong sandboxes for Web
browser instances, but our contribution is much broader than
the containment this provides.”
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Table 2.2: Definitions that speak about “sandboxing” in terms of policy enforcement.

Reference Quote

(Xu et al.,
2012)

“We automatically repackage arbitrary applications to attach
user-level sandboxing and policy enforcement code, which
closely watches the applications behavior for security and pri-
vacy violations such as attempts to retrieve a users sensitive
information, send SMS covertly to premium numbers, or ac-
cess malicious IP addresses.”

(Chandra
et al., 2011)

“The re-executed browser runs in a sandbox, and only has
access to the clients HTTP cookie, ensuring that it gets no
additional privileges despite running on the server.”

(Politz et al.,
2011)

“ADsafe, like all Web sandboxes, consists of two inter-
dependent components: (1) a static verifier, called JSLint,
which filters out widgets not in a safe subset of JavaScript,
and (2) a runtime library, adsafe.js, which implements DOM
wrappers and other runtime checks.”

(Tang et al.,
2010)

“Fundamentally, rule-based OS sandboxing is about restrict-
ing unused or overly permissive interfaces exposed by todays
operating systems.”

(Sun et al.,
2008)

“Sandboxing is a commonly deployed proactive defense
against untrusted (and hence potentially malicious) software.
It restricts the set of resources (such as files) that can be writ-
ten by an untrusted process, and also limits communication
with other processes on the system.”

(McCamant
and Mor-
risett, 2006)

“Executing untrusted code while preserving security requires
that the code be prevented from modifying memory or execut-
ing instructions except as explicitly allowed. Software-based
fault isolation (SFI) or sandboxing enforces such a policy by
rewriting the untrusted code at the instruction level.”

(Provos,
2003)

“For an application executing in the sandbox, the system call
gateway requests a policy decision from Systrace for every
system call.”
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Figure 2.1: The iterative process used to define research questions, build a dataset, and
interpret the set to answer the questions. This process is inspired by QCA (Schreier, 2012)

2.2 Methodology

In this section, we discuss the steps we took in order to select and analyze sandboxing
papers and the sandboxes they describe. Our methodology is primarily based on the
book “Qualitative Content Analysis in Practice” (QCA) (Schreier, 2012). Barnes (2013)
provides a succinct summary of the methodology in Section 5.3 of his dissertation. This
methodology originates in the social sciences (Berelson, 1952; Denzin and Lincoln, 2011;
Krippendorff, 2013) and is intended to repeatably interpret qualitative data to answer a
set of research questions. Figure 2.1 summarizes the iterative process we used to define
our questions, pick and interpret papers (Sections 2.2.1 and 2.2.2), and develop our results
(Section 2.2.3).

We decided to use explicit methods (e.g. QCA) in this analysis to reduce ambiguity in
our results. We attempt to clearly define both the steps we carried out and the intermediate
terms and data used to get to the results. A typical review would skip these steps, leaving a
reasonable belief that important data may have been accidentally missed or inconsistently
utilized. Such limitations would have made it difficult for us to achieve the higher levels
of confidence we need to point out general barriers to sandbox adoption, a primary goal
of this thesis. While the reduction in ambiguity is a benefit for the types of questions we
want to answer, the strict methods we use limit our ability to make the types of low-level
connections between research threads that are often useful in traditional literature reviews.

QCA goes well beyond a systematic literature review (Budgen and Brereton, 2006;

5Exceptions potentially exist where sandboxes also verify that a computation does not violate a given
security policy before execution.
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Kitchenham et al., 2009). While both QCA and systematic reviews require the definition
of research questions and repeatable processes for collecting source material, reviews stop
short of detailed analysis. QCA carries on where reviews end. When performing QCA,
researchers define coding frames to clearly and repeatably establish how the source mate-
rial will be interpreted to answer the research questions. The frames contain codes that
summarize blocks of data and definitions for each code. Furthermore, QCA methodologies
dictate how the coding frames are to be applied, by segmenting the entirety of the data
such that each segment can labeled with at most one code. This ensures that the data is
coded without missing relevant data and while reducing the researcher’s bias towards some
bits of data. Finally, QCA requires researchers to test their full process before carrying out
the analysis.6 Together, these steps allow researchers to reliably and effectively interpret
text to answer research questions that are not possible to answer using a purely quantita-
tive analysis. For example, Schreier points out that a quantitative analysis can determine
how many women appear in magazine advertisements relative to men, but a qualitative
analysis (e.g. QCA) is required to determine whether or not women are more likely to be
placed within trivial contexts than men in those ads (Schreier, 2012, p. 2).

The sandboxes we describe in this chapter were selected from the proceedings of five
conferences: IEEE Symposium on Security and Privacy (Oakland), Usenix Security, ACM
Conference on Computer and Communications Security (CCS), ACM Symposium on Oper-
ating System Principles (SOSP), and Usenix Symposium on Operating System Design and
Implementation (OSDI). We restricted our selection to particular conferences to improve
reproducibility—because of this choice, the set of papers evaluated against our inclusion
criteria is very well defined. To select these conferences, we collected all of the sandboxing
papers we were aware of and the selected five venues contained far more sandboxing papers
than any other venue.7

The selected conferences are widely regarded as the top-tier conferences in software
security and operating systems.8 Therefore, our data reflects the consensus of large com-
munities.

Table 2.3 presents our twelve research questions, the areas each question attempts to
illuminate, and a comprehensive list of their answers as manifested by our paper corpus.
We derived an initial set of questions by considering which broad aspects of sandboxes

6We followed the QCA methodology specified by Schreier with one major deviation. We did not segment
the text because the vast majority of the content in the papers is irrelevant to our needs. Most uses of
QCA attempt to capture content of a text in its entirety. This was not our goal so we analyzed text more
selectively.

7Based on earlier criticism of the paper version of this chapter, we reevaluated our data set by looking at
the past four years of proceedings at unselected venues such as the USENIX Annual Technical Conference
(ATC), Programming Language Design and Implementation (PLDI), and Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). These venues contained fewer sandboxing papers than
our selected venues, and those that appeared were not significantly different in form or content from those
in selected venues. In fact, with rare exceptions, the sandboxing papers at the unselected venues were
written by the same authors as one or more paper in our data set.

8 http://www.core.edu.au/index.php/conference-rankings

https://personal.cis.strath.ac.uk/changyu.dong/ranking.html

http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm

http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
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are poorly understood and where better understanding may change how the community
performs research in this space. As a result, the questions are necessarily biased by our
own backgrounds and personal experiences. In particular, this led to an emphasis on ques-
tions about how mechanisms and policies are derived, applied, and evaluated. We added
questions while we performed the analysis when we found that we had the data to answer
new and interesting questions. Overall, these questions aim to capture a comprehensive
snapshot of the current state of sandboxing research, with an emphasis on where sandboxes
fit into the process of securing software systems, what policies are enforced and how they
are defined and constructed, and what claims are made about sandboxes and how those
claims are validated.

2.2.1 Picking Papers

We selected papers from 10 years worth of proceedings at the five conferences mentioned
above. We decided whether a paper was included in our sample based on rigorous inclusion
criteria so the process of including/excluding papers is repeatable. The most important
criterion is that the paper describes a sandbox that meets the definition given in Section 2.1.
The remaining criteria were added as we carried out the study to exclude papers that
are incapable of answering the research questions and to clarify relevant nuances in our
definition.

Papers were included if they met the following criteria:

• The paper documents the design of a novel tool or technique that falls under the
sandbox definition

• The paper is a full conference paper

• The paper is about an instance of a sandbox (e.g. not a component for building new
sandbox tools, theoretical constructs for sandboxes, etc.)

• Techniques are applied using some form of automation (e.g. not through entirely
manual re-architecting)

• A policy is imposed on an identifiable category of applications or application subsets

The policy is imposed locally on an application (e.g. not on the principal the
application executes as, not on network packets in-transit, etc.)

The category encompasses a reasonable number of real-world applications (e.g.
doesn’t require the use of (1) a research programming language, (2) extensive
annotations, or (3) non-standard hardware)

We gathered papers by reading each title in the conference proceedings for a given year.
We included a paper in our initial dataset if the title gave any indication that the paper
could meet the criteria. We refined the criteria by reviewing papers in the initial dataset
from Oakland before inspecting the proceedings from other venues. We read the remaining
papers’ abstracts, introductions, and conclusions and excluded papers as they were being
interpreted if they did not meet the criteria. We maintained notes about why individual
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Table 2.3: Our research questions, the areas each question attempts to illuminate, and
potential answers. The answers are codes in the content analysis process we apply. Answers
are not necessarily mutually exclusive. Definitions for the terms in this table appear in our
coding frames with examples: http://goo.gl/cVHdzZ.

Question area Question Possible answers

Sandbox Lifecycle

What architectural
components enforce the
policies?

System (e.g. OS), Application, Application Host

How and when are
policies imposed?

Statically, Dynamically, Hybrid

Security outcomes

What resources do the
sandboxes protect?

Memory, Code/Instructions, Files,
User Data, Communications

Which components do
the sandboxes protect?

Component, Application, Application
Class

At what point will
sandboxes catch exploits?

Pre-exploit, Post-exploit

Effort and
applicability

What must be done to
apply the sandboxes?

Nothing, Select Pre-made Policy,
Write Policy, Run Tool, Install Tool

What are the
requirements on
sandboxed components?

None, Source Code, Annotated Source Code,
Special Compiler, Compiler-introduced
Metadata, Sandbox Framework/Library
Components

Policy provenance
and manifestation

Who defines policies?
Sandbox Developer (Fixed), Sandbox
User (User-defined), Application
Developer (Application-defined)

How are policies man-
aged?

Central Policy Repository, No Manage-
ment

How are policies
constructed?

Encoded in Sandbox Logic, Encoded
in Application Logic, User Written

Research claims
and validation

What claims are made
about sandboxes?

Performance, Security, Applicability

How are claims validated?
Proof, Analytical Analysis, Benchmark
Suite, Case Studies, Argumentation,
Using Public Data

How are sandboxes
released for review?

Source Code, Binaries, Not Available

20

http://goo.gl/cVHdzZ


papers were excluded from the final set.9

2.2.2 Categorizing the Dataset

To interpret papers we developed coding frames10 where a category is a research question
and a code is a possible answer to the question. To ensure consistency in coding, our frames
include detailed definitions and examples for each category and code. Our codes are not
mutually exclusive: A question may have multiple answers. We developed the majority
of our frames before performing a detailed analysis of the data, but with consideration
for what we learned about sandboxing papers while testing the inclusion criteria above on
our data from Oakland. We learned that evaluative questions were quite interesting while
coding papers, thus frames concerning what claims were made about a sandbox and how
those claims were validated became more fine-grained as the process progressed. Whenever
we modified a frame, we updated the interpretations of all previously coded papers.

We tested the frames by having two coders interpret different subsets of the Oakland
segment of the initial dataset. To interpret a paper, each category was assigned the appro-
priate code(s) and a quote justifying each code selection was highlighted and tagged in the
paper’s PDF.11 While testing, the coders swapped quotes sans codes and independently re-
assigned codes to ensure consistency, but we did not measure inter-rater reliability. Code
definitions were revised where they were ambiguous. While there is still some risk that
different coders would select different quotes or assign codes to the same quote, we be-
lieve our methodology sufficiently mitigated the risk without substantially burdening the
process given the large scope of this effort.

After coding every paper, we organized the codes for each paper by category in a unified
machine-readable file12 (hereafter referred to as the summary of coded papers) for further
processing.

2.2.3 Analyzing the Dataset

To summarize the differences and similarities between sandboxing papers, we attempted
to identify clusters of similar sandboxing techniques. To do so, we first calculated a dis-
similarity matrix for the sandboxes. For category k, let pijk be the number of codes that
sandboxes i and j share, divided by the total number of codes in that category they could
share. For categories in which each sandbox is interpreted with one and only one code,
pijk is either 1 or 0; for other categories, it falls in the interval [0, 1]. Then the dissimilarity
between i and j is dij =

∑
k(1 − pijk). We fed the resulting dissimilarity matrix into a

hierarchical agglomerative clustering algorithm (Kaufman and Rousseeuw, 2009) (imple-
mented in R with the cluster package (Maechler et al., 2014; R Core Team, 2014)). This
algorithm begins by treating each sandbox as its own cluster, and then iteratively merges

9Our full list of papers with exclusion notes is available at: https://goo.gl/SfcN0K.
10Our full coding frames are available at: http://goo.gl/cVHdzZ.
11A full list of quotes with code assignments is available at: http://goo.gl/d3Sf5J.
12The summarized version of our dataset is available at: http://goo.gl/q0cGV8. This spreadsheet was

converted to a CSV to perform statistical and graph-based analyses.
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the clusters that are nearest to each other, where distance between two clusters is defined
as the average dissimilarity between the clusters’ members. The agglomerative clustering
process is displayed in dendrograms. We stopped the agglomerative process at the point
at which there were two clusters remaining, producing two lists of sandboxes, one list for
each cluster. To interpret the resulting clusters, we produced bar charts displaying the
code membership by cluster. We conducted this analysis three times: once using all of the
categories to define dissimilarity, once using using all categories except those for claims,
validation, and availability, and once using the validation categories. We do not present
the plots from the analysis that ignored claims, validation, and availability because it did
not produce results different from those generated using all categories.

We conducted correlational analyses to learn whether sandbox validation techniques
have improved or worsened over time, or whether sandbox publications with better (or
worse) validation received more citations. The validation codes were ordered in the fol-
lowing way: proof > analytical analysis > benchmarks > case study > argumentation
> none. This ordering favors validation techniques that are less subjective. While it is
possible for a highly ranked technique to be applied less effectively than a lower ranked
technique (e.g. a proof that relies on unrealistic assumptions relative to a thorough case
study) this ranking was devised after coding the papers and is motivated by the real world
applications of each technique in our dataset. Each claim type (security, performance, and
applicability), then, was an ordinal random variable, so rank-based methods were appro-
priate. When a sandbox paper belonged to two codes in a particular validation category,
we used its highest-ordered code to define its rank, and lower-ordered codes to break ties.
So, for instance, if paper A and paper B both included proofs, and paper A also included
benchmarks, paper A would be ranked higher than paper B. To test if a claim type was
improving over time, we estimated the Spearman correlation (Spearman, 1904) between
its codes and the year of publication, and hence tested for a monotonic trend. Testing if
papers with better validation, in a particular category, received more citations necessitated
accounting for year of publication, since earlier papers typically have higher citation counts.
To do so, we regressed paper citation rank against both publication year and category rank.
(We used the rank of papers’ citation counts as the dependent variable, as opposed to the
citation counts themselves, due to the presence of an influential outlier—Terra (Garfinkel
et al., 2003). Scatterplots show the relationship between citation ranks and publication
year to be approximately linear, so a linear adjustment should suffice.) There was a “val-
idation effect” if the coefficient on the validation measure was significantly different from
zero. We conducted four separate regression analyses: one in which citation ranks were
regressed on publication year and category ranks of all three validation criteria, and one
in which citation ranks were regressed on publication year and security validation only,
one in which citation ranks were regressed on publication year and performance validation
only, and one in which citation ranks were regressed on publication year and applicability
validation only.

We constructed a citation graph using the papers in our set as nodes and citations as
edges as a final means of better understanding the sandboxing landscape. We clustered the
nodes in this graph using the same clusters found statistically, using the process describe
above, and using common topics of interest we observed. The topics of interest are typically
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based on the techniques the sandboxes apply (e.g. Control Flow Integrity (CFI), artificial
diversity, etc.). We evaluate these clusters using the modularity metric, which enables
us to compare the quality of the different categorizations. Modularity is the fraction of
edges that lie within a partition, above the number that would be expected if edges were
distributed randomly.

2.3 Results

We derived our results from the various statistical clusters of our summary of coded papers,
trends explicit in this dataset, and observations made while reading the papers or analyzing
our summarized data. As our dataset is public, we encourage readers to explore the data
themselves. Note while interpreting the statistical clusters that they are not representative
of how papers are related in terms of broad topics of interest. When we applied the
statistical clusters to the citation graph of the papers in our set the modularity scores were
-0.04 and 0.02 when papers were clustered based on all of the attributes we coded and
just validation attributes respectively. These modularity scores mean that the statistical
clusters are no better than randomly clustering papers when considering how they cite
each other.

These poor modularity scores make sense because authors are much more likely to cite
papers that use similar techniques or tackle similar problems than use similar validation
strategies. Indeed, the lack of coherence in the sandboxing landscape, caused by authors
primarily citing papers that use related techniques, is a prominent reason for carrying out
this study in the first place. We confirmed papers are not related through citations due
to applied validation strategies by using a modularity measure that ranks the partitions
of papers based on validation techniques and topics into overlapping groups (Lázár et al.,
2009). This measure allows us to quantify how clusters built based on validation strategies
relate to those built based on topics. We measured an overlapping modularity of -0.198,
which confirms that partitions built from the validation techniques do not direct citation
graph structure. Indeed, when we clustered papers in the citation graph based on topics of
interest we observed while interpreting the set, the modularity score, 0.33, is significantly
better than a random cluster. The citation graph with topic clusters is shown in Figure 2.2.
While these clusters are potentially of sociotechnical interest to the community, we must
look at lower-level attributes to understand how sandboxes are to be applied in practice
and how they improve the security posture of real systems. The statistical clusters fill that
role.

Figures 2.3 and 2.4 show the codes that are members of the fixed policy and user-
defined policy clusters respectively when all categories are considered. The dendrogram
for these clusters appears in Figure 2.5. Many of our results are interpretations of these
charts. Table 2.4 succinctly describes our results per research question and references later
sections where more details are found. The remainder of this section presents those details.
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Table 2.4: Summary of our research questions and results.

Research Question Results Section

Where in a system’s architec-
ture are policies enforced?

There is an emphasis on enforcing policies in the operat-
ing system or transforming applications to enforce a pol-
icy over using application hosts (e.g. language-hosting
virtual machines, browsers, etc.).

2.3.1

When are policies imposed? Static, dynamic, and hybrid strategies are roughly
equally favored in all domains but with a slight preference
for strictly static or dynamic approaches.

2.3.1

What application resources
are protected by sandboxes?

Sandboxes with fixed policies tend to prevent memory
corruption or protect properties of application code (e.g.
control flow). User-defined policies are correlated with
policies that are more diverse and cover the gamut of
application-managed resources.

2.3.1

What types of components are
protected by sandboxes?

Sandboxes that use fixed policies tend to require the
user to target specific components, while those with user-
defined policies tend to allow for broader targeting.

2.3.1

At what point in the process
of an attack will an exploit vi-
olate sandbox policies?

Sandboxes are primarily pro-active by disrupting exploits
before a payload can be executed. Where users must de-
fine a policy, sandboxes tend to be pro-active in attempt-
ing to stop exploits, but also limit the range of possible
behaviors a payload can exhibit.

2.3.1

What are the requirements of
people applying sandboxes?

Sandboxes that have fewer requirements for people tend
to have more requirements for the application. Similarly,
having a fixed policy is correlated with more requirements
of the application, while user-defined policies are corre-
lated with more requirements of the user.

2.3.2

What are the requirements
of components being sand-
boxed?

Sandboxes with fixed policies most-often require that ap-
plications be compiled using a special compiler.

2.3.2

Who defines sandbox policies? Policies are most often defined by the sandbox developer
at design time.

2.3.2

How are policies managed? Policy management is largely ignored, even where users
must write their own policies.

2.3.2

How are policies constructed? Most policies are hardcoded in the sandbox. 2.3.2
What claims are made about
sandboxes?

Applicability to new cases is often the impetus for im-
proving existing techniques, but strong security and bet-
ter performance are more often claimed.

2.3.3

How are claims validated? Benchmarks and case studies are the most favored vali-
dation techniques for all types of claims. Where security
claims are not validated using both benchmarks and case
studies, ad-hoc arguments are heavily favored.

2.3.3

In what forms are sandboxes
made available for review?

There is a recent slight increase in the release of sandbox
source code, but generally no implementation artifacts
are made available for review.

2.3.3
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Figure 2.2: The citation graph for the papers in our set. The intention of this chart is to
show where citation relationships exist, not to show explicitly which papers cited other pa-
pers. The colors represent clusters based on topics of interest (modularity = 0.33). Papers
cluster based on topics of interest, not necessarily their technical attributes or validation
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Figure 2.3: Breakdown of the representation of all codes for papers that emphasize fixed
policies. Cases where a claim was made but not validated are labeled with an “x”.
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Figure 2.4: Breakdown of the representation of all codes for papers that emphasize user-
defined policies. Some sandboxes support a fixed-policy with an optional user-defined
policy (e.g. (Siefers et al., 2010a)). Cases where a claim was made but not validated are
labeled with an “x”.
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Figure 2.5: A dendrogram displaying the clusters for sandboxing papers taking into account
all categories. At the top most level, where two clusters exist, the clusters respectively
represent sandboxes that use fixed policies and those that use user-defined policies.

2.3.1 Sandboxes: Building Materials for Secure Systems

Sandboxes are flexible security layers ready to improve the security posture of nearly any
type of application. While the deployment requirements and details vary from sandbox to
sandbox, collectively they can be applied at many different points in a system’s architecture
and may be introduced at any phase in an application’s development lifecycle, starting with
the initial implementation. In fact, sandboxes can even be applied well after an application
has been abandoned by its maintainer to secure legacy systems.

In our dataset, the policy enforcement mechanism for a sandbox is always deployed as
a system component, as a component of an application host, or by insertion directly into
the component that is being encapsulated. While application hosts are becoming more
popular as many applications are moved into web browsers and mobile environments,
they are currently the least popular place to deploy policy enforcement mechanisms for
research sandboxes. Our set includes ten sandboxes where policies are enforced in the
application host, twenty-six in the component being encapsulated,13 and thirty-two in a
system component.

We believe that application hosts are less represented because many existing hosts come
with a sandbox (e.g. the Java sandbox, Android’s application sandbox, NaCl in Google
Chrome, etc.). Indeed, all but one of the sandboxes deployed in application hosts are for

13(Sehr et al., 2010) is counted twice because the enforcement mechanism is spread across the application
and its host.
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the web, where applications can gain substantial benefits from further encapsulation and
there is currently no de facto sandbox. The one exception is Robusta (Siefers et al., 2010a),
which enhances the Java sandbox to encapsulate additional non-web computations.

System components are heavily represented because any sandbox that is to encapsulate
a kernel, driver, or other system component must necessarily enforce the policy in a system
component. Fifteen of the sandboxes fall into this category because they are encapsulating
either a kernel or hypervisor. The remainder could potentially enforce their policies from
a less privileged position, but take advantage of the full access to data and transparency
to user-mode applications available to system components. This power is useful when
enforcing information flow across applications, when preventing memory corruption, or
when otherwise enforcing the same policy on every user-mode application.

Research sandboxes almost universally embed their enforcement mechanism in the ap-
plication that is being encapsulated when the application runs in user-mode. Application
deployment is correlated with fixed policies where modifying the application itself can lead
to higher performance and where it makes sense to ensure the enforcement mechanisms
exist anywhere the application is, even if the application moves to a different environ-
ment. Fixed-policies with embedded enforcement mechanisms are correlated with another
important deployment concern: statically imposed policies.

Imposing a policy statically, most often using a special compiler or program re-writer,
is advantageous because the policy and its enforcement mechanism can travel with the
application and overhead can be lower as enforcement is tailored to the targeted code.
There are some cons to this approach. For example, the process of imposing the policy
cannot be dependent on information that is only available at run-time and the policy is
relatively unadaptable after it is set. Furthermore, because the policies are less adaptable,
sandboxes that statically impose security policies typically only encapsulate components
that are targeted by the person applying the sandbox. These are cases where dynamic
mechanisms shine. Given these trade-offs, it makes sense that papers in our set fall into
one of two clusters when all codes are considered: Those that are protecting memory
and software code, which are relatively easy to encapsulate with a fixed policy, and those
managing behaviors manifested in external application communications or interactions
with user-data and files that are more easily encapsulated with an adaptable (typically
user-defined) policy.

Generally hybrid deployments are used when the approach is necessarily dynamic but
static pre-processing lowers overhead. Sometimes, techniques begin as hybrid approaches
and evolve to fully dynamic approaches as they gain traction. For example, early papers
that introduce diversity in binaries to make reliable exploits harder to write (e.g. code
randomization), tend to rely on compiler-introduced metadata, while later papers did not
need the extra help. This evolution broadens the applicability of the sandboxing technique.
We observed other techniques such as SFI and CFI evolve by reducing the number of
requirements on the application, the person applying the sandbox, or both.
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2.3.2 Policy Flexibility as a Usability Bellwether

Requiring more work out of the user or more specific attributes of an application lowers the
odds that a sandbox will be applied, thus it is natural that research on specific techniques
reduce these burdens over time. We find that the nature of the policy has an influence
on how burdensome a sandbox is. About half of sandboxes with fixed policies require the
application be compiled using a special compiler or uses a sandbox-specific framework or
library. Many fixed-policy sandboxes also require the user to run a tool, often a program
re-writer, or to install some sandbox component. In comparison, nearly all sandboxes
with flexible policies require the user to write a policy manually, but few have additional
requirements for the application. Given the burdens involved in manually writing a security
policy, the message is clear—easy to use sandboxes reduce the user-facing flexibility of the
policies they impose.

Forty-eight sandboxes, more than two-thirds of our sample, use a fixed policy. In all of
these cases the policy itself exists within the logic of the sandbox. In the remaining cases,
the policy is encoded in the logic of the application twice (e.g. through the use of the
sandbox as a framework), and the remaining seventeen cases require the user to manually
write a policy.

In cases where the user must manually write the policy, it would help the user if the
sandbox supported a mechanism for managing policies—to ensure policies do not have to
be duplicated repeatedly for the same application, to generate starter policies for specific
cases, to ensure policies can apply to multiple applications, etc. This type of management
reduces the burden of having to manually write policies in potentially complex custom
policy languages. Support for the policy writer is also important because the policies
themselves can be a source of vulnerabilities (Rosenberg, 2012). Eight out of twenty-six
cases where policy management is appropriate offered some central mechanism for storing
existing policies, where they could potentially be shared among users. However, none of
the papers in our sample list policy management as a contribution, nor do any of the
papers attempt to validate any management constructs that are present. However, it is
possible that there are papers outside of our target conferences that explicitly discuss
management. For example, programming languages and software engineering conferences
are more focused on policy authoring concerns and management may therefore be the focus
of a paper that appears in one of those conferences. However, we are not aware of any such
paper.

2.3.3 The State of Practice in Sandbox Validation

There is little variation in the claims that are made about sandboxes. Most claim to either
encapsulate a set of threats or to increase the difficulty of writing successful exploits for
code-level vulnerabilities. All but four measure the performance overhead introduced by the
sandbox. Thirty-seven papers, more than half, make claims about the types of components
the sandbox applies to, typically because the paper applies an existing technique to a
different domain or extends it to additional components.

While there is wide variety in how these claims are validated, we observe measurable
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patterns. In our data set, proof and analytical analysis were, by far, the least used tech-
niques. The lack of analytical analysis is due to the fact that the technique is primarily
useful when the security of the mechanism depends on randomness, which is true of few
sandboxes in our set. However, proof appears in two cases: (1) to prove properties of data
flows and (2) six papers prove the correctness of a mechanism enforcing a fixed policy. The
rarity of proof in the sandboxing domain is not surprising given the difficulty involved.
Proof is particularly difficult in cases where one would ideally prove that a policy enforce-
ment mechanism is capable of enforcing all possible policies a user can define, which we
did not see attempted. Instead, claims are often validated empirically or in ways that are
ad hoc and qualitative.

In empirical evaluations, case studies are the most common technique for all claims,
often because proof was not attempted and there is no existing benchmark suite that
highlights the novel aspects of the sandbox. For example, papers for sandboxes with
fixed policies often want to show a particular class of vulnerabilities can no longer be
exploited in sandboxed code, thus examples of vulnerable applications and exploits for their
vulnerabilities must be gathered or, very rarely, synthesized. When claims were empirically
validated, the results were not comparable in fifteen out of sixty-two cases for performance,
twenty-two out of forty-two cases for security, and twenty-four out of thirty-one cases for
applicability because non-public data was used in the discussed experiments. Non-public
data takes the form of unlabeled exploits, undisclosed changes to public applications, and
unreleased custom example cases (e.g. applications built using a sandbox’s framework
where the examples were not released).

Security claims are notoriously difficult to formalize – and even harder to prove, hence
the pervasive lack of proof. Many papers instead vet their security claims using multi-
faceted strategies, often including both common empirical approaches: case studies and
experiments using benchmark suites. However, Figures 2.6 and 2.7 illustrate an interest-
ing finding: When we look at the bottom two clusters in Figure 2.7, where multi-faceted
strategies are not used, and cross-reference the papers named in the correspending clusters
in Figure 2.6 with the underlying summary of coded papers, we find that in twenty-nine
papers authors simply pick one empirical tactic and argue that their claims are true. Ar-
gumentation in this space is problematic because all of the arguments are ad hoc, which
makes evaluations that should be comparable difficult to compare at best but more often
incomparable. Furthermore, we observed many cases where arguments essentially summa-
rize as, “Our sandbox is secure because the design is secure,” with details of the design
occupying most of the paper in entirely qualitative form. Not only are these types of
arguments difficult to compare in cases where sandboxes are otherwise quite similar, it is
even harder to see if they are complete in the sense that every sub-claim is adequately
addressed.

Our correlational analyses show no significant trends in security or applicability anal-
yses, however performance validation has improved over time. Table 2.5 summarizes the
Spearman correlations and their p-values per validation category. Spearman correlations
fall in the range [-1,1], where a value of 0 is interpreted as no correlation, positive values
show a positive correlation, and negative values a negative correlation. The magnitude of
the coefficient grows towards 1 as time and the validation rank become closer to perfect
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Figure 2.6: A dendrogram displaying the clusters for sandboxing papers taking into ac-
count validation categories. At the top most level, where two clusters exist, the clusters
respectively represent sandboxes that emphasize multi-faceted empirical security validation
and those that do not.
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Figure 2.7: Breakdown of the representation of validation codes per claim type for the three
validation clusters found in our dataset. Each row contains the data for one cluster. The
bottom two clusters include papers that do not emphasize multi-faceted security validation
strategies, instead relying on case studies and arguments that security claims are true. The
characteristics of the two clusters are similar overall. However, while the papers in both
clusters make applicability claims, the papers in the middle cluster, unlike the bottom
cluster, did not validate those claims. Cases where a claim was made but not validated are
labeled with an “x”.
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Table 2.5: The Spearman correlations and their statistical significances per validation
category. Data with correlation coefficients closer to 1 have stronger correlations.

Correlation (ρ) p-value

Security Validation -0.02 0.894
Performance Validation 0.30 0.014
Applicability Validation 0.20 0.105

monotonic functions (i.e. when a positive and perfect monotonic relationship exists, the
Spearman correlation is 1).

Performance validation, when quantified as described in Section 2.2.3, is positively and
statistically significantly correlated with the passage of time. We observe that performance
validation has advanced from a heavy reliance on benchmark suites to the use multi-faceted
strategies that include the use of benchmark suites and case studies (typically to perform
micro-benchmarks) that make use of public data—which ensures the results are comparable
with future sandboxes. While the applicability validation correlation is not statistically
significant, we observe that argumentation was abandoned early on in favor of case studies,
with some emphasis on including benchmark suites in later years. There is no apparent
change in security validation over time.

We fit linear models to each validation category separately and together relative to
ranked citation counts to see if validation practices are predictive of future citations. All
of the models achieved an R-squared value of 0.54 which suggests that passage of time
and validation practices jointly explain about half of the variance in citation count ranks.
Validation practices on their own are not predictive of how highly cited a paper will become.
Table 2.6 summarizes the types of claims and the validation strategies employed per type
for each paper in our set.

While time plays a factor in how often a paper is cited, it is also not sufficient to predict
citation counts. Consider Efstathopoulos et al. (2005) and Ringenburg and Grossman
(2005), which are published in the same year and towards the beginning of the period
under study. Using our criteria the Ringenburg paper is more strongly validated than the
Efstathopoulos paper, yet they received 41 and 261 citations respectively at the time of
this work. Zeldovich et al. (2006) is a year younger than both and was cited 418 times.
This lack of a clear trend between citations and time, aside from the general trend that
older papers tend to be cited more often, is repeated throughout the dataset.

2.4 Strengthening Sandboxing Results

The existing body of knowledge within the sandboxing community provides a strong basis
for securing current and future software systems. However, the results in Section 2.3
highlight several gaps. In this section we discuss how structured arguments can solve the
problems presented by incomparable and incomplete ad hoc arguments (Section 2.4.1) and
possible ways to enhance sandbox and policy usability (Section 2.4.2).
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Table 2.6: Claims made about sandboxes ( : Security, : Performance, and : Applica-
bility) and their validation strategies ( : Proof, : Analytical Analysis, : Benchmarks, :
Case Studies, and : Argumentation). Grayed out icons mean a claim was not made or a
strategy was not used. Icons made by Freepik from www.flaticon.com.

Category Citation Conference Claims Val. Val. Val.

Other (Syscall) Provos (2003) Usenix
Virtualization Garfinkel et al. (2003a) SOSP
Diversity Bhatkar et al. (2005) Usenix
Other (Syscall) Linn et al. (2005) Usenix
CFI Abadi et al. (2005) CCS
Other (Memory) Ringenburg and Grossman (2005) CCS
MAC Efstathopoulos et al. (2005) SOSP
Web Cox et al. (2006) Oakland
SFI McCamant and Morrisett (2006) Usenix
CFI, SFI Erlingsson et al. (2006) OSDI
Other (DFI) Castro et al. (2006) OSDI
Web Reis et al. (2006) OSDI
Other (InfoFlow) Zeldovich et al. (2006) OSDI
MI/AC Li et al. (2007) Oakland
Web Bandhakavi et al. (2007) CCS
Web Chen et al. (2007) CCS
Virtualization Petroni and Hicks (2007) CCS
Virtualization Seshadri et al. (2007) SOSP
Virtualization Criswell et al. (2007) SOSP
Web Wang et al. (2007) SOSP
Other (InfoFlow) Krohn et al. (2007) SOSP
CFI Akritidis et al. (2008) Oakland
Virtualization Payne et al. (2008) Oakland
MI/AC Sun et al. (2008) Oakland
Other (TaintTrack) Chang et al. (2008) CCS
Web Oda et al. (2008) CCS
Other (OS) Williams et al. (2008) OSDI
SFI Yee et al. (2009) Oakland
Web Louw and Venkatakrishnan (2009) Oakland
Web Parno et al. (2009) Oakland
Other (Memory) Akritidis et al. (2009) Usenix
Virtualization Wang et al. (2009) CCS
SFI Castro et al. (2009) SOSP
Virtualization McCune et al. (2010a) Oakland
Web Meyerovich and Livshits (2010) Oakland
Other (Memory) Akritidis (2010) Usenix
SFI Sehr et al. (2010) Usenix
Web Louw et al. (2010) Usenix
Other (OS) Wurster and van Oorschot (2010) CCS
SFI, Other (UserPolicy) Siefers et al. (2010a) CCS
Web Feldman et al. (2010) OSDI
MI/AC Owen et al. (2011) Oakland
Other (Transactions) Jana et al. (2011) Oakland
CFI Zeng et al. (2011) CCS
Web Saxena et al. (2011) CCS
Web Chen et al. (2011) CCS
Virtualization Zhang et al. (2011) SOSP
SFI Mao et al. (2011) SOSP
Virtualization Andrus et al. (2011) SOSP
Diversity Pappas et al. (2012) Oakland
Diversity Hiser et al. (2012) Oakland
SFI Payer et al. (2012) Oakland
CFI Kemerlis et al. (2012) Usenix
Diversity Giuffrida et al. (2012) Usenix
MI/AC Xu et al. (2012) Usenix
Diversity Wartell et al. (2012) CCS
Web, Other (InfoFlow) De Groef et al. (2012) CCS
Virtualization Dunn et al. (2012) OSDI
Web (MI/AC) Giffin et al. (2012) OSDI
CFI Zhang et al. (2013) Oakland
CFI Zhang and Sekar (2013) Usenix
CFI, SFI Niu and Tan (2013) CCS
Diversity Homescu et al. (2013) CCS
Other (OS) Moshchuk et al. (2013) CCS
Virtualization Nikolaev and Back (2013) SOSP
CFI Criswell et al. (2014) Oakland
Web Mickens (2014) Oakland
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2.4.1 Structured Arguments

Sandboxes are often evaluated against coarse criteria such as the ability to stop exploits
against certain classes of vulnerabilities, to encapsulate certain categories of operations,
or to function in new environments. However, these coarse criteria typically require the
sandbox to address a number of sub-criteria. For example, Zhang and Sekar (2013) provide
CFI without requiring compiler support or a priori metadata, unlike earlier implementa-
tions. To ensure the technique is secure, they must be sure that independently transformed
program modules maintain CFI when composed. Details that clarify how an individual
criterion is fulfilled can easily be lost when ad hoc arguments are used in an effort to per-
suade readers that the criterion has been met; particularly in sandboxes with non-trivial
design and implementation details. This can leave the reader unable to compare similar
sandboxes or confused about whether or not contributions were validated.

Since many of the security criteria are repeated across most papers, the cost of develop-
ing substructure can be amortized across lots of communal use. There are many possible
ways to structure arguments in support to security claims:

• Assurance cases (Kelly, 1999; Weinstock et al., 2007) provide graphical structures
that explicitly tie claims together in trees that show how claims are narrowed. Knight
(2015) provides a concise introduction to the topic. These structures also explicitly
link leaf claims to the evidence that supports the claim. Assurance cases were created
in response to several fatal accidents resulting from failures to systematically and
thoroughly understand safety concerns in physical systems. Their use has spread to
security and safety critical systems of nearly every variety in recent decades with
case studies from aerospace (Graydon et al., 2007) and a sandbox called S3 (Rodes
et al., 2015) that was not analyzed as part of this study (Nguyen-Tuong et al., 2014).
Sandboxing papers can use assurance cases to decompose claims to their most simple
components, then link those components to relevant evidence in the paper (e.g. a
summary of specific results, a specific section reference, etc.).

• Maass et al. (2014) use a qualitative framework to compare sandboxes based on
what happens when a sandbox fails, is bypassed, or holds. Authors could structure
their arguments by using the framework to describe their specific sandbox without
performing explicit comparisons.

• Structured abstracts (Hartley, 2004; R. Brian Haynes et al., 1990) are used in many
medical journals to summarize key results and how those results were produced.
These abstracts have the benefit of being quick to read while increasing the retention
of information, largely thanks to the use of structure to guide authors in precisely
summarizing their work.

• Papers could provide a table summarizing their contributions and the important
design or implementation details that reflect the contribution.

All of these approaches provide the reader with data missing in ad hoc arguments: A
specific map from the claims made about a sandbox to evidence that justifies the claim
has been met. They are also necessarily qualitative, but as we saw earlier, arguments
are often used where more rigorous approaches are currently intractable. We believe that
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adding structure to these arguments is a reasonable advancement of the state of practice
in sandbox validation.

2.4.2 Sandbox and Policy Usability

Sandbox and policy usability are concerns of interest to the following stakeholders: Practi-
tioners that must correctly use sandboxes to improve the security postures of their systems
and users that must work with sandboxed applications. Some security researchers do at-
tempt to make their sandboxes more usable by providing policy management or reducing
requirements on the user, but usability is not a focus of any of the papers in our sample.

Our data shows that, with very few exceptions, sandbox researchers thoroughly evaluate
the performance of their sandboxes. Why is there focus on this practical concern but not
on usability? We observe that a focus on performance evaluation is partially motivated
by the fact that overhead is relatively easy to quantify, but we also saw many cases where
researchers were explicitly concerned with whether or not a sandbox was too resource
intensive for adoption. The latter is a reasonable concern; Szekeres et al. (2013) pointed
out that many mitigations for memory corruption vulnerabilities are not adopted because
performance concerns outweigh protection merits.

While the idea that performance is an important adoption concern is compelling and
likely reflects reality, we cannot correlate performance with the adoption of the sandboxes
in our set. We cannot find a correlation because the sandboxes and their techniques in
our set remain almost entirely unadopted. We only found four cases where sandboxes
in our set were either directly adopted or where the techniques they evaluate are clearly
implemented in a different but adopted sandbox. A lack of adoption is present even for
techniques where performance and applicability have been improved over multiple decades
(e.g. SFI). Three of the adopted sandboxes were created by the industry itself or by
entities very closely tied to it: Google NaCl was designed with the intention of adopting it
in Google Chrome in the short term (Sehr et al., 2010; Yee et al., 2009) and the paper on
systrace was published with functioning open source implementations for most Unix-like
operating systems (Provos, 2003). While the case for adoption is weaker, Cells (Andrus
et al., 2011) is a more advanced design than one VMware developed in parallel (Berlind,
2012), although the sandboxes both aim to partition phones into isolated compartments
using virtualization (e.g. one for work and one for personal use). More recently, Microsoft
has stated that Visual Studio 2015 will ship with an exploit mitigation that we believe
is equivalent to what the research community calls CFI (Hogg, 2015). A third party
analysis supports this belief, however the uncovered implementation details differ from the
techniques implemented in published research (Tang, 2015).

We argue that the need to evaluate the usability of our sandboxes is evidenced by the
observation that performance and security evaluation are not sufficient to drive adoption.
Usability is of particular concern in cases where the sandbox requires developers without
security expertise (1) to re-architect applications to apply the sandbox and/or (2) to de-
velop a security policy. In practice, it is quite common for developers without a security
focus to apply sandboxes, particularly Java’s. In fact, usability issues have factored into
widely publicized vulnerabilities in how sandboxes were applied to Google Chrome and
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Adobe Reader as well as the many vulnerable applications of the Java sandbox (Coker
et al., 2015). In all of these cases applying the sandbox is a relatively manual process
where it is difficult for the applier to be sure he is fully imposing the desired policy and
without missing relevant attack surfaces. These usability issues have caused vulnerabilities
that have been widely exploited to bypass the sandboxes. Given common patterns in us-
ability deficiencies observed in practice, we suggest authors evaluate the following usability
aspects of their sandboxes where appropriate:

• The intended users are capable of writing policies for the component(s) to be sand-
boxed that are neither over- or under-privileged.

• Policy enforcement mechanisms can be applied without missing attack surfaces that
compromise the sandbox in the targeted component(s).

• Source code transformations (e.g. code re-writing or annotations) do not substan-
tially burden future development or maintenance.

• The sandbox, when applied to a component, does not substantially alter a typical
user’s interactions with the sandboxed component.

Ideally in the research community many of these points would be evaluated during user
studies with actual stakeholders. However, we believe that we can make progress on all of
these points without the overhead of a full user study, particularly because we are starting
from a state where no usability evaluations are performed. For example, authors can
describe correct ways to determine what privileges in their policy language a component
needs or even provide tools to generate policies to mitigate the risks presented by under-
and over-privileged policies. Similarly, tooling can be provided to help users install policy
enforcement mechanisms or check that manual applications of a mechanism are correct.
Sandbox developers can transform or annotate representative open source applications
and use repository mining14 to determine how sandbox alternations are affected by code
evolution present in the repository (Kagdi et al., 2007; Mauczka et al., 2010; Stuckman
and Purtilo, 2014; Yan et al., 2014). Finally, a summary of how the sandbox qualitatively
changes a user’s experience with a sandboxed component would provide a gauge for how
much the sandbox burdens end-users.

2.5 Enabling Meta-Analysis

We believe a key contribution of this work is the use of multi-disciplinary and systematic
methodologies for drawing conclusions about a large body of security techniques. In this
section, we discuss the generalizability of our methodology and suggest other areas to which
it can be applied. Then, we discuss some challenges that we faced when doing this research
and suggest changes that would address these challenges.

14http://msrconf.org
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2.5.1 Generalizability of Methodology

The methodology employed in this chapter is based on two research approaches: Qualita-
tive Content Analysis and Systematic Literature Reviews. Qualitative Content Analysis is
primarily used in the humanities and social sciences. Systematic Literature Reviews were
first applied to medical studies and are used primarily in empirical fields. The differences
between sandboxing papers are bigger than the differences between studies of a particular
cancer treatment. In addition, sandboxing papers do not fit into the “native” domains
of either approach—their primary contributions are designs, techniques, and implementa-
tions.

The result of these differences is that most literature reviews and systemizations in
computing are done in an ad hoc manner. Our computing research is worthy of a more
rigorous approach and we think the methodology applied in this chapter can and should be
applied to other topics. In fact, any topic of active research where the primary contributions
is an engineered artifact, but without a clear and precise definition, would be amenable to
our approach. These topics span computing research from software engineering (e.g. service
oriented architecture, concurrent computation models) to systems (e.g. green computing,
no instruction set computing) to human-computer interaction (e.g. GUI toolkits, warning
science).

2.5.2 Meta-analysis Challenges and Suggested Solutions

In our experience, the biggest roadblock standing in the way of applying the same tech-
niques to other segments of the research community lies in the difficulty involved in col-
lecting analyzable metadata about papers. We experienced several fixable issues:

• The major publishers in computer science—IEEE, ACM, and Usenix—do not provide
publicly available mechanisms to collect metadata and either rate limit or outright
ban scraping.15 In our case, the painstaking process of collecting and curating an-
alyzable metadata across several sources limited our ability to explore hypotheses
about our dataset’s papers and their relationships to publications not in the set.

• The metadata is limited and contains little semantic content—typically the metadata
includes the authors, title, data, and DOI, but little else. If abstracts and keywords
were easier to harvest we could have more systematically derived topics of interest
within the sandboxing community.

• Links to papers on publisher websites use internal identifiers (e.g. http://dl.acm.

org/citation.cfm?id=2498101) instead of DOI. This makes it difficult to reference
papers across publisher repositories.

• Conference websites have inconsistent layouts, which increases the difficulty of data
collection.

We believe easier access to this data would have allowed us to draw more conclusions
about how sandboxing papers are related and how the sandboxing landscape has evolved

15In at least one case ACM provided a copy of their digital library for scraping (Bergmark et al., 2001)
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over time. For example, we explored the idea of using a more developed citation graph
than Figure 2.2 to trace the lineage of sandboxing techniques, but found the required
resource expenditures were outside of our means. This data may provide support for
explanations regarding the lack of advancement in security validation practices (e.g. by
showing an emphasis on a different but important dimension of advancement). These points
are important to understand how we got to the current state of practice, thus improving
our ability to recognize and advance means for enhancing our results.

On another data collection point, we averaged about 45 minutes per paper to code
the data necessary to answer our research questions. While we do not claim that our
research questions are of universal interest to the sandboxing community, we did observe
that papers that answer all or most of the questions in the abstract are often clearly
written throughout and easy to interpret. A small minority of sandboxing papers have far
less specific abstracts. In these cases, the papers often took double the average time to
comprehend and interpret. It may be useful to strive to clearly answer questions like ours
in future papers to show practitioners the value sandbox researchers bring to the table.
Structured abstracts, as discussed in Section 2.4.1, may be a good way to ensure these
types of questions are succinctly answered.

2.6 Threats to Validity

Due to the complexity of the text and concepts we are interpreting, there is some risk
that other coders would assign quotes to different codes. Different codes will change the
results, but we believe this risk is mitigated through our tests of the coding frame and by
our efforts to select clear quotes. Furthermore, the correlative nature of our results ensures
that a few code divergences will not dramatically change the analysis’s outcomes.

The primary risk is that we are missing relevant quotes that add codes to our dataset.
This is typically mitigated in QCA by fully segmenting the text, but we decided against that
strategy because of the very large data set we studied and irrelevance of most of the text to
our goals. We did search PDFs for relevant keywords we observed were commonly linked to
specific codes throughout the process (e.g. “proof”, “available” to find the availability of
sandbox artifacts for evaluation, “experiment” to signal a case study or benchmark, etc.)
to decrease the odds of missing a code. While this does mitigate the risk, it is still likely
that our results under-approximate the state of the sandboxing landscape.

2.7 Conclusion

We systematically analyzed the sandboxing landscape as it is represented by five top-
tier security and systems conferences. Our analysis followed a multidisciplinary strategy
that allowed us to draw conclusions backed by rigorous interpretations of qualitative data,
statistics, and graph analysis. We drew several conclusions that would not have been
possible to draw with a reasonable level of confidence if it were not for the use of these
explicit methods:
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• Sandbox security claims are often evaluated using more subjective validation strate-
gies.

• The selected validation strategies have not grown less subjective over the period
under study.

• The studied subset of the sandboxing community does not consider the usability of
their mechanisms from any standpoint.

• There is an important usability trade-off presented by the flexibility of the policy or
policies imposed by a sandbox.

Based on our results, we conclude that the sandbox research community will benefit
from the use of structured arguments in support of security claims and the validation of
sandbox and policy usability. We suggested lightweight ways to move forward in achieving
these goals. Our data also shows that there is a dearth of science regarding the management
of security policies for sandboxes, although we did not discuss this gap in depth.

Having drawn broad conclusions about the sandboxing landscape, we now narrow our
focus to the Java sandbox. This narrowing allows us to study how issues we observed in
this chapter manifest in a practical sandbox that has existed and been used for multiple
decades. Additionally, Java’s sandbox is known to have deployment issues as evidenced by
a number of successful attacks that break out of the sandbox.
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Chapter 3

Evaluating the Flexibility of the Java
Sandbox1

It has become common for people to assume that Java is insecure after dozens of successful
exploit campaigns targeted Java users in recent years, peaking in 2013. Since 2013, there
has been one serious exploit campaign targeting Java, which took place in the summer
of 2015. These exploit campaigns targeted vulnerabilities that exist within Java code,
particularly code found in the Java Class Library. There are three broad reasons why
Java has been such a popular target for attackers. First, the Java Runtime Environment
(JRE) is widely installed on user endpoints. Second, the JRE can and often does execute
external code, in the form of applets and Java Web Start (JWS) applications (Gong and
Ellison, 2003; Gong et al., 1997). Finally, there are hundreds of known and zero-day
vulnerabilities (IBM Security Systems, 2014) in Java. In the common scenario, often
referred to as a “drive-by download,” attackers lure users to a website that contains a
hidden applet to exploit JRE vulnerabilities.

In theory, such attacks should not be so common: Java provides a sandbox to enable
the safe execution of untrusted code and to isolate components from one another. In
particular, the sandbox was constructed to enable the use of code from remote origins that
may be malicious. The sandbox regulates the behaviors encapsulated code can exhibit
by ensuring that operations that can effect the external environment (e.g. writing to a
file, opening a network connection, etc.) are only executed if the imposed security policy
grants the necessary permission(s). This should protect both the host application and
machine from malicious behavior. In practice, these security mechanisms are buggy and
leave room for Java malware to alter the sandbox’s settings (Garber, 2012) to override
security mechanisms. Such exploits take advantage of defects in either the JRE itself or
the application’s sandbox configuration to disable the security manager, the component of
the sandbox responsible for enforcing the security policy (Gowdiak, 2012; Oh, 2012; Singh
and Kapoor, 2013; Svoboda, 2013).

This chapter investigates this disconnect between theory and practice. We hypothesize

1This chapter was adapted from a paper written with help from Zach Coker, Tianyuan Ding, Claire
Le Goues, and Joshua Sunshine. It is published in “Annual Computer Security Applications Conference”
2015
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that the disconnect results primarily from unnecessary complexity and flexibility in the
design and engineering of Java’s security mechanisms. For example, applications are al-
lowed to change the security manager at runtime, whereas static-only configuration of the
manager would be more secure. The JRE also provides a number of security permissions
that are so powerful that a sandbox that enforces any of them cannot be secure. We have
not been able to determine why this complexity and flexibility exists but hypothesize that
benign applications do not need all of this power, and that they interact with the security
manager in ways that are measurably different from exploits. If true, these differences
can be leveraged to improve the overall security of Java applications, and prevent future
attacks.

To test these hypotheses, we conducted an empirical study to answer the question: How
do benign applications interact with the Java security manager? We studied and charac-
terized those interactions in 36 open-source Java projects that use the security manager,
taken from the Qualitas Corpus (Tempero et al., 2010) and GitHub.

We discovered two types of security managers in practice. Defenseless managers enforce
a policy that allows sandboxed code to modify sandbox settings. Such applications are
inherently insecure, because externally-loaded malicious code can modify or disable the
security manager. We found defenseless managers in use by applications that modified
sandbox settings at runtime, typically as workarounds to using more complicated (but more
correct) security mechanisms or to enforce policies or implement functionality unrelated
to security. We believe that such applications use the sandbox to implement certain non-
security requirements because Java does not provide better mechanisms for doing so. The
sandbox is not intended to be used this way, and these use cases both reduce security in
practice and limit the potential exploit mitigations that are backwards compatible with
benign applications. On the other hand, applications with self-protecting managers do not
allow sandboxed code to modify security settings. It might still be possible to exploit such
applications due to defects in the JRE code that enforces security policies, but not due to
poorly-deployed local security settings.

We found that it is rare for software to use the sandbox as intended—for protection from
malicious external code—and cases where it is used do not use its vast flexibility and often
contain configuration mistakes. For these applications, the sandbox’s flexibility decreases
their security without obviously benefiting the developers or application functionality. In
fact, we found and reported a security vulnerability related to the sandbox in one of the
applications under study. Our findings that the sandbox is rarely used and used in ways
that are vulnerable suggest that the sandbox contains complexity that should either be
simplified away or overcome through the use of tooling. However, there is little use in
applying the sandbox further until known means of exploiting it are solved. This chapter
provides a solution to stop these exploits, thus staging the groundwork for overcoming
remaining complexity hampering legitimate uses of the sandbox.

We propose two runtime rules that restrict the flexibility of the sandbox and fortify
Java against the two most common modern attack types without breaking backwards
compatibility in practice. We evaluate our rules with respect to their ability to guard
against ten applets in a popular exploit development and delivery framework, Metasploit
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4.10.02, that successfully attack unpatched versions of Java 7. Taken together, the rules
stopped all ten exploits and did not break backwards-compatibility when tested against a
corpus of benign applications.

This chapter contributes the following:

1. A study of open-source applications’ interactions with the security manager (Sec-
tion 3.3). We identify open-source applications that enforce constraints on sub-
components via the Java sandbox, as well as unconventional behaviors that indicate
usability and security problems that the Java security model can be improved to
mitigate.

2. An enumeration of Java permissions that make security policies difficult to enforce
(Section 3.1.2), a discussion of real-world cases where these permissions are used
(Sections 3.3.3 and 3.3.4), and a sandbox-bypassing exploit for a popular open-source
application made vulnerable due to their use (Section 3.3.4).

3. Two novel rules for distinguishing between benign and malicious Java programs,
validated empirically (Section 3.4). These rules define explicit differences between
benign and malicious programs, they are not heuristics.

4. A discussion of tactics for practically implementing the rules, with a case for direct
JVM adoption (Section 3.4.1).

We begin by discussing necessary background on the Java sandbox and exploits (Sec-
tion 3.1). We present the methodology and dataset for our empirical study in Section 3.2.
The results of the study are discussed in Section 3.3, leading to our rules which are de-
fined and evaluated in Section 3.4. Finally, we discuss limitations, cover related work, and
conclude in Sections 3.5, 3.6, and 3.7 respectively.

3.1 Background

In this section, we describe the Java sandbox (Section 3.1.1), distinguish between de-
fenseless and self-protecting security managers (Section 3.1.2) and provide a high-level
description of how Java exploits commonly work (Section 3.1.3).

3.1.1 The Java sandbox

The Java sandbox is designed to safely execute code from untrusted sources using compo-
nents summarized in Figure 3.1. When a class loader loads a class (e.g., from the network,
filesystem, etc.), it assigns the class a code source that indicates the code origin, and asso-
ciates it with a protection domain. Protection domains segment the classes into groups by
permission set. These sets contain permissions that explicitly allow actions with security
implications, such as writing to the filesystem, accessing the network, etc (Oracle, 2014c).
Unlisted actions are disallowed. Policies written in the Java policy language (Oracle,
2014a) define permission sets and their associated code sources. By default, all classes not

2http://www.metasploit.com/
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1

Class Loader

Code Source

Protection Domain

Permissions

Policy

Defines a class's...

Associates a class with a...

Contains a set of...

Loads classes

Defined in a...

Indicates where code originates

Partitions program components by security level

Enables specific operations (e.g., write to file, connect to 
server, etc.)

Defines what a codebase is allowed to do

Security Manager

Enforced by...

Acts as the gateway to policy enforcement

Figure 3.1: High-level summary of the Java sandbox.

loaded from the local file system are run within a restrictive sandbox that restricts their
ability to interact with the host application or machine.

The sandbox is activated by setting a security manager, which acts as the gateway
between the sandbox and the rest of the application. Whenever a sandboxed class attempts
to execute a method with security implications, that method queries the security manager
to determine if the operation should be permitted. To perform a permission check, the
security manager walks the call stack to ensure each class in the current stack frame has
the specific permission needed to perform the action.3

Missing and poorly scoped checks in code that should be protected are a common source
of Java vulnerabilities, because the security-critical code must initiate the check (Cifuentes
et al., 2015). Note that such vulnerabilities lie in the JRE itself (i.e., the code written by
the Java developers), not in code using the sandbox to execute untrusted code.

3.1.2 Defenseless vs. self-protecting managers

Java is flexible about when the sandbox is enabled, configured, and reconfigured. The
default case for web applets and applications that use Java Web Start is to set what
we call a self-protecting security manager before loading the network application. The

3Stack-based access control is discussed in more detail in (Banerjee and Naumann, 2005; Besson et al.,
2004; Fournet and Gordon, 2002; Wallach and Felten, 1998a)
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Table 3.1: List of sandbox-defeating permissions. A security manager that enforces a
policy containing any of these permission results in a defenseless sandbox. A subset of
these permissions were first identified in (Gowdiak, 2012).

Permission Risk

RuntimePermission(“createClassLoader”) Load classes into any protec-
tion domain

RuntimePermission(“accessClassInPackage.sun”) Access powerful restricted-
access internal classes

RuntimePermission(“setSecurityManager”) Change the application’s cur-
rent security manager

ReflectPermission(“suppressAccessChecks”) Allow access to all class fields
and methods as if they are
public

FilePermission(“<<ALL FILES>>”, “write, execute”) Write to or execute any file
SecurityPermission(“setPolicy”) Modify the application’s per-

missions at will
SecurityPermission(“setProperty.package.access”) Make privileged internal

classes accessible

security manager, and thus the sandbox, is self-protecting in the sense that it does not
allow the application to change sandbox settings. Self-protecting managers might still be
exploited due to defects in the JRE code that enforces security policies, but not due to
poorly-deployed local security settings. We contrast self-protecting managers with those we
call defenseless, meaning that sandboxed applications are permitted to modify or disable
the security manager. A defenseless manager is virtually useless in terms of improving the
security of either a constrained application or its host. However, we find in Section 3.3 that
developers have found interesting non-security uses for defenseless managers in otherwise
benign software.

We evaluated whether each of the available Java permissions can lead to sandbox by-
passes. Table 3.1 summarizes the set of permissions that distinguish between self-protecting
and defenseless security managers.

3.1.3 Exploiting Java code

While the Java sandbox should prevent malicious applets from executing their payloads,
certain defects in the JRE implementation of these security mechanisms can permit mali-
cious code to set a security manager to null.4 This disables the sandbox and enables all op-
erations. This approach was common in drive-by downloads between 2011 and 2013 (Singh
and Kapoor, 2013). Figure 3.2 shows a typical payload class whose privileges have been

4Many of the recent vulnerabilities would not have been introduced if the JRE were developed strictly
following “The CERT Oracle Secure Coding Standard for Java.” (Long et al., 2011; Svoboda, 2013;
Svoboda and Toda, 2014)
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import java.lang.reflect.Method;

import java.security.AccessController;

import java.security.PrivilegedExceptionAction;

public class Payload

implements PrivilegedExceptionAction {

public Payload () {

try {

AccessController.doPrivileged(this);

} catch(Exception exception) { }

}

public void run() {

// Disable sandbox

System.setSecurityManager(null);

}

public static void outSandbox () {

// Do malicious operations

}

}

Figure 3.2: A typical sandbox-disabling Java exploit payload from http://pastebin.com/

QWU1rqjf.

48

http://pastebin.com/QWU1rqjf
http://pastebin.com/QWU1rqjf


elevated by an exploit to allow it to disable the sandbox. This example payload uses
doPrivileged to allow the unprivileged exploit class to execute the operations in the
payload without causing a SecurityException.

There are a couple of ways to maliciously disable a security manager. Type confusion
attacks break type safety to craft objects that can perform operations as if they have
a different type. Commonly, attackers craft objects that (1) point to the System class
to directly disable the sandbox or (2) act as if they had the same type as a privileged
class loader to elevate a payload class’s privileges (see CVE-2012-0507 (NIST, 2012)).
In confused deputy attacks, exploitative code “convinces” another class to return a
reference to a privileged class (Hardy, 1988) known to contain a vulnerability that can be
attacked to disable the sandbox (see CVE-2012-4681 (NIST, 2013a)). The “convincing” is
necessary because it is rare that a vulnerable privileged class is directly accessible to all
Java applications; doing so violates the access control principle that is part of the Java
development culture.5

Typically, there are less-privileged code paths to access operations that ultimately exist
in privileged classes. The danger of vulnerabilities in privileged classes is therefore mit-
igated, because they cannot be directly exploited unless malicious code first modifies its
own privileges. This redundancy is implicit in the Java security model. If any class could
load more privileged classes and directly execute privileged operations, the sandbox in its
current form would serve little purpose.

In practice, however, Java’s security mechanisms as implemented in the JRE contain
defects and vulnerabilities that reduce the benefits of this redundancy.

Modern exploits that manipulate the security manager simply disable it. This is pos-
sible largely because the Java security model grants enormous flexibility to set, weaken,
strengthen, or otherwise change a security manager after its creation. Do applications need
this power? Do they regularly take advantage of the ability to disable or weaken the sand-
box? If not, we can stop exploits for even currently unknown vulnerabilities by eliminating
these operations without breaking backwards-compatibility with benign applications. Our
core thesis is that the overall security of Java applications could be improved by simplifying
these security mechanisms, without loss to benign functionality.

3.2 Security manager study

In this section, we describe the dataset and methodology for our empirical study of the
open-source Java application landscape. Our basic research question is: How do benign
open-source Java applications interact with the security manager? The answer to this
question informs which JVM-level modifications can be used to improve security while
maintaining backwards compatibility. We consider only benign application code that is
intended to run in production, not unit testing code, code that manages the build, etc.
There are four possible answers to our question:

• Benign applications never disable the security manager. If true, only exploitative

5https://blogs.oracle.com/jrose/entry/the_isthmus_in_the_vm
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code attempts to disable the security manager, and the ability to do so could be
removed from the JVM. This would be easy to implement but would not guard
against exploits that weaken the sandbox without disabling it.

• Benign applications do not weaken a set security manager. If true, the JVM could be
modified to prevent any weakening or disabling of the sandbox. This is more powerful
than simply removing the ability to disable the security manager but is significantly
more difficult to implement. For example, if a permission to write to a file is replaced
by a permission to write to a different file, is the sandbox weakened, strengthened,
or equally secure?

• Benign applications never modify the sandbox if a self-protecting security manager
has been set. If true, the JVM could disallow any change to a self-protecting security
manager. A runtime monitor in the JVM can determine if a security manager is self-
protecting (based on the permission set) when an application attempts to change the
sandbox. This is much easier to implement soundly than the previously-described
approach, and guards against the same number and types of exploits.

• Benign applications do not change a set security manager. If true, any attempted
change to an already established security manager can be considered malicious. This
would be the ideal result: restricting this operation is easy to implement in the JVM.

This section describes our study dataset (Section 3.2.1) and methodology (Section 3.2.2);
we describe results in Section 3.3.

3.2.1 Dataset

In the absence of an existing corpus of benign applications that interact with the manager,
we combined relevant subjects from the QualitasCorpus (QC) version 20130901 (Tempero
et al., 2010), a collection of popular open source Java applications created for empirical
studies, and GitHub. While QC contains 112 applications, we found only 24 applications
interacted with the security manager. To increase the size and diversity of the dataset
(beyond those that meet the QC inclusion requirements), we added 12 applications from
Github that also interact with the security manager.6 Table 3.2 lists the 36 applications
that comprise the dataset. Version numbers and Git commit hashes are available in an
online supplement. 7

We identified relevant applications in the QC set by searching for the keyword
SecurityManager in the applications’ source code. We performed a similar pro-
cess on the GitHub set, adding the keywords System.setSecurityManager( and
System.setSecurityManager(null) to remove false positives and find applications that
disable the manager, respectively. We picked the top 6 applications from the results for
each keyword, removing manually-identified false positives and duplicates. We studied

6Applets, commonly run in a sandboxed environment, would be natural study subjects. However, we
were unable to find any benign applets that interacted with the security manager, likely because of Java’s
strict restrictions on their behavior.

7https://github.com/SecurityManagerCodeBase/ProjectsProfiles/blob/master/

projectslist.xlsx
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each GitHub program at its most recent commit and each QC program at its most recent
stable release as of June 2014.

3.2.2 Methodology

We performed a tool-supported manual inspection of the applications in our dataset to
group them into qualitative, non-overlapping categories based on their interactions with
the security manager. The first category includes applications that can or do change a set
security manager at run time. If an application did not change the security manager, we
looked to see if it set a single security manager during execution. If so, it was categorized
as sets an immutable manager. Applications that interact with a security manager that
they did not set do so to adjust to different security settings. We categorized any such
application as supports being sandboxed. For the final category, if a program did not contain
any interaction with the security manager in the main application, but did interact with it
in test cases, we categorized the application as only interacts in unit tests ; such applications
use unit test interactions to test against multiple security settings.

We created static and dynamic analysis tools to assist in a manual inspection of each
application’s security manager interactions. We created a FindBugs (Hovemeyer and Pugh,
2004) plugin that uses a sound dataflow analysis to determine which manager definitions
reach calls to System.setSecurityManager(). The dynamic analysis tool uses the Java
Virtual Machine Tool Interface (JVMTI) (Oracle, 2014b) to set a modification watch on
the security field of Java’s System class, which stores the security manager object for the
application.

We split the dataset between two investigators, who each analyzed applications using
the following steps:

• Run grep on all Java source files in the application to find lines containing the
keyword SecurityManager. Manually inspect the results in their original source
code files to understand how the application interacts with the sandbox.

• Run the static analysis on retained applications. Manually inspect the returned code,
focusing on initialization.

• Use the dynamic analysis, using parameters informed by the previous steps, to vali-
date conclusions.

• Summarize operations performed on the security manager, categorize accordingly,
and determine if the security manager is self-protecting or defenseless.

We undertook a pilot study where each investigator independently inspected the same
six applications and compared their results. This ensured the two investigators understood
the analysis steps and produced consistent results.

3.3 Study results

In this section, we describe the results of our empirical study of open-source Java programs
and how they interact with the security manager.
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Table 3.2: Security manager interactions dataset.

App name Description KLOC Repo

Apache Ant Java Project Builder 265 QC
Apache Batik SVG Image Toolkit 366 QC
Apache Derby Relational Database 1202 QC
Eclipse IDE 7460 QC
FreeMind Mind-Mapping Tool 86 QC
Galleon Media Server 83 QC
Apache Hadoop Distrib. Comp. Frwk. 1144 QC
Hibernate Obj.-Rel. Mapper 376 QC
JBoss App. Middleware 968 QC
JRuby Ruby Interpreter 372 QC
Apache Lucene Search Software 726 QC
Apache MyFaces Server Software 328 QC
NekoHTML HTML Parser 13 QC
Netbeans IDE 8490 QC
OpenJMS Messaging Service 112 QC
Quartz Job Scheduler 66 QC
QuickServer TCP Server Frwk. 64 QC
Spring Web Dev. Library 828 QC
Apache Struts Web Dev. Library 277 QC
Apache Tomcat Web Server 493 QC
Vuze File Sharing App. 895 QC
Weka Machine Learning Algs. 531 QC
Apache Xalan XML Trans. Library 204 QC
Apache Xerces XML Parsing Library 238 QC
AspectJ Java Extension 701 GH
driveddoc Application Connector 7 GH
Gjman Development Toolkit ¡1 GH
IntelliJ IDEA IDE 4094 GH
oxygen-libcore Android Dev. Lib. 1134 GH
refact4j Meta-model Frwk. 21 GH
Security-Manager Alt. Security Manager 4 GH
Spring-Modules Spring Extension 212 GH
System Rules JUnit Extension 2 GH
TimeLag Sound Application 1 GH
TracEE JavaEE Support Tool 18 GH
Visor Closure Library 1 GH
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3.3.1 Summary of benign behaviors

Recall that in Section 3.2, we refined the high-level research question—how do benign ap-
plications interact with the security manager?—into four possibilities, and that the possible
mitigations required in each case varied. Revisiting those possibilities with respect to our
dataset, as summarized in Table 3.3, we found:
• Benign applications do sometimes disable the security manager. We found that such

applications typically use a defenseless sandbox for non-security purposes. We discuss
some of these applications in more detail in Section 3.3.3.

• Several benign applications do provide methods for the user to dynamically change
the security policy or the manager in ways that can reduce sandbox security.

• Benign applications do not change the security manager if a self-protecting security
manager has been set.

• Benign applications do sometimes change a set security manager. We observed mul-
tiple applications that changed a set security manager.

In terms of the four possible mitigation strategies, only the third—a runtime moni-
tor that blocks modifications to a self-protecting security manager—can improve security
without breaking benign behavior. Fortunately, this technique does not require complex,
context-sensitive information about whether a change to a policy weakens the sandbox or
not.

3.3.2 Applications by category

Table 3.3 summarizes our dataset into the categories described in Section 3.2. The appli-
cations in categories 1, 3, and 4 are consistent with any of the potential JVM modifications
because they do not interact with the security manager in complex ways (i.e., if all applica-
tions fell into these categories, the Java security model could be dramatically simplified by
eliminating most of its flexibility without breaking existing applications). We will not dis-
cuss applications in categories 3 or 4 further, because they did not result in useful insights
about common benign behaviors. Most applications in the Sets an immutable manager
category use the sandbox correctly. We discuss a few particularly interesting examples be-
low. There are eight applications in the Changes set manager category, which is the most
interesting in terms of possible modifications to the Java security model. They make the
most use of Java’s flexible security mechanisms. We therefore focus on these applications
in our discussion.

We discuss applications that use the sandbox for non-security purposes in Section 3.3.3
and applications that use the sandbox for its intended security purposes in Section 3.3.4.

3.3.3 Non-security uses of the sandbox

Most of the applications that interact with the sandbox in non-security ways did so to
enforce architectural constraints when interacting with other applications; the rest forcibly
disabled the sandbox to reduce development complexity. This misappropriation of Java’s
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Table 3.3: Classification of application interactions with the security manager.

Type of Interaction QC GitHub Total

1. Sets an immutable manager 6 1 7
2. Changes set manager 5 3 8
3. Supports being sandboxed 10 3 13
4. Interacts only in unit tests 3 5 8

System.setSecurityManager(new AntSecurityManager(originalSM ,

Thread.currentThread ()));

// ... execute Ant ...

finally {

// ...

if (System.getSecurityManager () instanceof AntSecurityManager) {

System.setSecurityManager(originalSM );

}

Figure 3.3: Snippet of Eclipse code that uses a security manager to prevent Ant from
terminating the JVM.

security features increases the difficulty of mitigating attacks against them by increasing
the odds of backwards compatibility issues. These applications included applications in
both categories 1 and 2, and all require defenseless security managers.

Enforcing architectural constraints

Java applications often call System.exit() when an unrecoverable error occurs. When
such an application is used as a library, System.exit() closes the calling application as
well, because both are running in the same JVM. To prevent this without modifying the
library application, a calling application needs to enforce the architectural constraint that
called library code cannot terminate the JVM.

We found three applications in our dataset that enforce this constraint by setting a
security manager that prevents System.exit() calls: Eclipse, GJMan, and AspectJ.8 For
example, Eclipse uses Ant as a library, and Ant calls System.exit() to terminate a build
script in the event of an unrecoverable error. However, when Eclipse uses Ant as a library,
it reports an error to the user and continues to execute. Figure 3.3 shows how Eclipse uses
a security manager to enforce this constraint; Eclipse restores the original manager after
Ant closes.

This technique does enforce the desired constraint, and appears to be the best solution
available in Java at the moment. However, it is problematic for applications using the
sandbox for security purposes. The technique requires the application to dynamically

8GJMan contains a code comment referencing a blog post that we believe is the origin of this solution:
http://www.jroller.com/ethdsy/entry/disabling_system_exit
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change the security manager, which in turn requires a defenseless manager. As a result,
the calling applications themselves cannot be effectively sandboxed, as might be desirable
e.g., when run from Java Web Start. The host machine thus cannot be protected from the
application itself, or the library code that the application calls.

Web applications outside the sandbox

We found web applications that insist on being run unsandboxed. By default, Java ex-
ecutes such applications inside a self-protecting sandbox with a restrictive policy that
excludes operations like accessing local files, retrieving resources from third party servers,
or changing the security manager.

Applications in our set that require these permissions opted to run outside of the
sandbox. We found two applications that do this: Eclipse and Timelag. Both applications
attempted to set the security manager to null at the beginning of execution. A restrictive
sandbox catches this as a security violation and terminates the application; to run it, the
user must ensure that such a sandbox is not set. The rationale for disabling the manager
in Eclipse is explained in a code comment that reads, “The launcher to start eclipse using
webstart. To use this launcher, the client must accept to give all security permissions.”
Timelag performs the same operation, but without associated explanatory comments that
we could find, thus we can only infer the developer’s motivation.

The developers of Eclipse and Timelag could have either: 1) painstakingly constructed
versions of the application that run reasonably using only the permissions available within
the sandbox (e.g. by detecting the sandbox and avoiding or disabling privileged operations)
or 2) gotten the applications digitally signed by a recognized certificate authority and
configured to run with all permissions. These developers likely found these alternatives
overly burdensome. The examples from our study suggest that developers are sometimes
willing to exchange security guarantees in the interest of avoiding such labor-intensive
options.

3.3.4 Using the security manager for security

Other applications interact with the manager in security-oriented ways. Batik, Eclipse,
and Spring-modules allow the user to set and change an existing manager; Ant, Freemind,
and Netbeans explicitly set then change the manager.

Batik SVG Toolkit allows users to constrain applications by providing a method to turn
the sandbox on or off. This trivially requires a defenseless sandbox. The Batik download
page provides several examples of library use, one of which (the “rasterizer” demo) enables
and disables the sandbox. However, there seems to be no reason to do so in this case other
than to demonstrate the functionality; we were unable to discern the rationale from the
examples or documentation.

Ant, Freemind, and Netbeans explicitly set then change the manager, requiring the
ability to reconfigure, disable, or weaken the sandbox at runtime. Ant allows users to
create scripts that execute Java classes during a build under a user-specified permissions
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<permissions >

<grant class="java.security.AllPermission"/>

<revoke class="java.util.PropertyPermission"/>

</permissions >

Figure 3.4: An Apache example of an Ant build script element to grant all but one per-
mission. This results in a defenseless security manager; thus revoking one permission does
not lead to application security.

set. Figure 3.4 shows an example permission set from the Ant Permissions website.9 The
grant element provides the application all permissions, while the revoke element restricts
the application from using property permissions. This example policy leads to a defenseless
security manager, thus malicious code can easily disable the sandbox and perform all
actions, including those requiring PropertyPermissions. Although this policy is only an
example, its existence suggests possible confusion on the part of either its author or its
consumers about appropriate security policies for untrusted code.

Ant saves the current manager and replaces it with a custom manager before executing
constrained external code. The custom manager is not initially defenseless when configured
with a strict security policy, but contains a private switch to make it so for the purposes
of restoring the original manager. Ant therefore catches applications that perform actions
restricted by the user while typically protecting sandbox settings. However, it is not clear
this implementation is free of vulnerabilities. Netbeans similarly sets a security manager
around separate applications.

Both of these cases require a defenseless security manager, otherwise the application
would not be able to change the current security manager. Similar to the case in Sec-
tion 3.3.3, Java provides an “orthodox” mechanism to achieve this goal while aligning
with intended sandbox usage: a custom class loader that loads untrusted classes into a
constrained protection domain. This approach is more clearly correct and enables a self-
protecting sandbox.

An attempt to solve a similar problem in Freemind 0.9.0 illustrates the dangers of a
defenseless manager. Freemind is a mind mapping tool that allows users to execute Groovy
scripts on such maps (Groovy is a scripting language that is built on top of the JRE). A
Java application that executes such a script typically allows it to execute in the same
JVM as the application itself. As a result, a specially-crafted mind map, if not properly
sandboxed, could exploit users that run its scripts.

Freemind implements an architecture that is intended to allow the sandbox to enforce
a stricter policy on the Groovy scripts than on the rest of Freemind. The design centers
around a custom security manager that is set as the system manager in the usual manner.
This custom manager contains a private field holding a proxy manager for script execution.
In this design, all checks to the security manager are ultimately deferred to the proxy
manager in this field. When this field is set to null, the sandbox is effectively disabled

9https://ant.apache.org/manual/Types/permissions.html
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/** By default , everything is allowed. But you

* can install a different security controller

* once , until you install it again. Thus , the

* code executed in between is securely

* controlled by that different security manager.

* Moreover , only by double registering the

* manager is removed. So , no malicious code

* can remove the active security manager.

* @author foltin */

public void setFinalSecurityManager(

SecurityManager pFinalSecurityManager) {

if(pFinalSecurityManager == mFinalSecurityManager ){

mFinalSecurityManager = null;

return;

}

if(mFinalSecurityManager != null) {

throw new SecurityException("There is a SecurityManager

installed already.");

}

mFinalSecurityManager = pFinalSecurityManager;

}

Figure 3.5: Initialization of Freemind’s security manager, including a custom proxy. In the
code comment, “double registering” refers to repeating the sequence of setting the security
manager. The implementation is similar to using a secret knock on a door as a form of
authentication. This demonstrates two problems with the sandbox as used by developers:
(1) using Java policies as a blacklist is dangerous and (2) modifying the manager at run
time requires a work-around (ineffective or incomplete, in this case) to defend against
malicious users.
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def sm = System.getSecurityManager ()

def final_sm = sm.getClass ().getDeclaredField("

mFinalSecurityManager")

final_sm.setAccessible(true)

final_sm.set(sm, null)

new File("hacked.txt").withWriter { out -> out.writeLine("HACKED!"

) }

Figure 3.6: Exploit that breaks out of the scripting sandbox in Freemind to execute ar-
bitrary code. The sandbox grants the ReflectPermission("suppressAccessChecks")

permission, thus the exploit can make a security critical private field accessible to disable
the security manager. Had this permission not been granted, the exploit would have to
use a different tactic.

even though the system’s manager is still set to the custom manager. Given a properly
configured sandbox, scripts cannot access this field.

Figure 3.5 shows how Freemind sets the proxy security manager field. Once a manager
is set, if setFinalSecurityManager is called again with a different security manager, a
SecurityException is thrown, but calling the method with a reference to the set man-
ager disables the sandbox. The comment implies that this sequence of operations was
implemented to prevent malicious applications from changing the settings of the sandbox.

Freemind sets a proxy security manager to stop unsigned scripts from creating network
sockets, accessing the file-system, or executing programs before initiating execution of a
Groovy script. The manager grants all other permissions by overriding permission checks
with implementations that do nothing, thus any script can turn off the sandbox.

We demonstrated that the custom security manager is easily removed using reflection
to show that the problem is more complex than simply fixing permission checks related to
setting the security manager. Figure 3.6 shows a Groovy exploit to turn off the manager.
The script gets a reference to the system’s manager and its class. The class has the
same type as the custom security manager, thus the exploit gets a reference to the proxy
manager field. The exploit makes the field public using a privileged operation the sandbox
policy should not have granted, thus enabling the exploit to reflectively null it, disabling
the sandbox to allow “forbidden” operations. We notified Freemind developers of this
vulnerability in August of 2014 and offered our advice in achieving their desired outcome.
They acknowledged the report, but have not fixed the issue.

All of these applications ran afoul of the Java sandbox’s flexibility even though they
attempted to use it for its intended purpose. Given their current designs, they must all be
run with defenseless managers (most can be redesigned to remove this requirement), and
those that manipulate the set security policy dynamically do so problematically. While
Java does provide the building blocks for constraining a subset of an application with a
policy that is stricter than what is imposed on the rest of the application, it is clear that it
is too easy to get this wrong: We’ve seen no case where this goal was achieved in a way that
is known to be free of vulnerabilities. These case studies support our general claims that
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the Java security mechanisms are overly complex, and that this complexity contributes to
security vulnerabilities in practice.

3.4 Fortifying the sandbox

Based on our study of how open-source Java programs interact with the security manager,
we propose two changes to the current Java security model to stop exploits from disabling
self-protecting managers. These rules can be applied to all Java applications. The rules
reduce the flexibility and thus complexity of the Java security model without breaking
backwards compatibility in practice:
Privilege escalation rule. If a self-protecting security manager is set for the application,
a class may not directly load a more privileged class. This rule is violated when the
protection domain of a loaded class implies a permission that is not implied in the protection
domain that loaded it.
Security manager rule. The manager cannot be changed if a self-protecting security
manager has been set by the application. This is violated when code causes a change in
the sandbox’s configuration, the goal of many exploits.

In this section, we evaluate the protection merits and backwards compatibility of these
rules through an implementation of runtime monitors that enforce them. This evaluation
was done in collaboration with a large aerospace company. Section 3.4.1 discusses how
we implemented our runtime monitors, Sections 3.4.2 and 3.4.3 explain the methodology
behind and results of experiments that evaluate the rules’ ability to stop exploits while
maintaining backwards compatibility.

3.4.1 Implementation using JVMTI

JVMTI is a native interface that enables the creation of dynamic analysis tools, called
agents, such as profilers, debuggers, or thread analyzers. JVMTI agents can intercept and
respond to events such as class or thread creation, field access or modification, breakpoints,
etc. We utilize the ability to monitor class creation and field accesses to implement and
evaluate the efficacy of our rules.

Enforcing the privilege escalation rule

To enforce the Privilege Escalation rule, our agent stops a program when a class is loaded to
check for privilege escalation. The existence of restricted-access packages complicates this
implementation slightly. Restricted-access packages are technically public but are intended
only for internal JRE use. Benign applications can (and often do) use JDK classes to access
these restricted implementations (e.g., much of the functionality in java.lang.reflect

is backed by the restricted-access sun package). We therefore allow the JRE itself to
load restricted-access packages at runtime, but prevent such loading from the application
classes. Because exploit payloads are not implemented in restricted-access JRE packages,
the Privilege Escalation rule can permit this standard behavior while preventing attacks.
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Note that there are two ways that application code might directly access such packages
in the current security model: (1) exploit a vulnerability in a class that can access them or
(2) receive permission from the security manager via an accessClassInPackage("sun")

permission in the policy. The first behavior is undesirable, and is thus rightfully prevented
by the enforcement of this rule. The second behavior would require a defenseless manager.

Enforcing the security manager rule

We enforce the Security Manager rule by monitoring every read from and write to the field
in the System class that stores the security manager (the security field). The agent stores
a shadow copy of the most recently-set security manager. Whenever the field is written,
the agent checks its shadow copy of the manager. If the shadow copy is null, the manager
is being set for the first time. If the new manager is self-protecting, the agent updates the
shadow copy. If not, the agent stops performing stringent checks because the rule does not
apply in the presence of a defenseless manager.

The agent checks modifications to the security manager and validates it when it is
referenced. The latter is necessary to catch type confusion attacks, which change the
manager without triggering a JVMTI modification event. The tool detects unauthorized
changes every time the manager is used by comparing the current manager with the shadow
copy for changes. Type confusion attacks that masquerade as a privileged class loader will
not be detected by our agent, and may still be dangerous when exploited in collaboration
with other JRE vulnerabilities.

Performance Challenges and JVM Integration

JVMTI requires turning off the just-in-time compiler (JIT) to instrument class field writes,
which is required to enforce the security manager rule. This slows down program execution
enough that our monitors are not suitable for adoption with current JVMTI implementa-
tions. We speculate that it is possible to work around these performance issues, but likely
at the cost of substantially increased implementation complexity. Watches are currently
implemented using a simple but slow hook in the bytecode interpreter. Instead, the JIT
could insert additional instructions in generated code to raise an event when the field is
accessed by JITed code. However, this may interfere with code optimization passes that
would otherwise be performed. Furthermore, it is not possible to simply instrument an
application’s bytecode to implement our rules because our instrumentation would run at
the same privilege level as the application, but the rules require privileged access to Java
security settings (e.g. the policies assigned to specific protection domains). Given these
barriers, a more correct and general approach is to embed our rules directly in the JRE.
We have reached out to OpenJDK’s security-dev mailing list about doing so, but it is
not clear the approach has been seriously considered.
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Table 3.4: Effectiveness test results. The exploits are taken from the subset of Metasploit
4.10.0 that apply in modern environments and follow a drive-by-download paradigm. Taken
together, the proposed security model restrictions stop all tested exploits.

Monitor
CVE-ID Privilege Escalation Both

2011-3544 Attack Succeeded Attack Blocked
2012-0507 Attack Blocked Attack Blocked
2012-4681 Attack Succeeded Attack Blocked
2012-5076 Attack Succeeded Attack Blocked
2013-0422 Attack Blocked Attack Blocked
2013-0431 Attack Blocked Attack Blocked
2013-1488 Attack Succeeded Attack Blocked
2013-2423 Attack Succeeded Attack Blocked
2013-2460 Attack Blocked Attack Blocked
2013-2465 Attack Succeeded Attack Blocked

3.4.2 Effectiveness at fortifying the sandbox

We evaluated our rules’ ability to block sandbox-disabling exploits on ten Java 7 exploits
for the browser from Metasploit 4.10.0, an exploit development and delivery framework.
We ran the exploits on 64-bit Windows 7 against the initial release of version 7 of the JRE.
The ten exploits in question include both type confusion and confused deputy attacks.
Metasploit contains many Java exploits outside of the subset we used, but the excluded
exploits either only work against long obsolete versions of the JRE or are not well positioned
to be used in drive-by downloads. Our results thus show whether our rules can stop the
vast majority of current exploits.

We ran the exploits (1) without the agent, (2) with the agent but only enforcing the
Privilege Escalation rule, and (3) while enforcing both rules. We tested the Privilege
Escalation rule separately because while the Security Manager rule stops all the exploits on
its own, the Privilege Escalation rule stops exploits earlier, has significantly less overhead,
and can detect attacks that are not explicitly targeting the manager. Table 3.4 summarizes
our results. All ten of the exploits succeeded without the agent. The Privilege Escalation
rule stops four of them. All ten were stopped when both rules were enforced.

Together, the rules are capable of stopping current exploit tactics while narrowing
available future tactics by blocking privilege escalation exploit routes.

3.4.3 Validating Backwards-Compatibility

By construction, the rules do not restrict benign behavior in the applications we studied in
Sections 3.2 and 3.3. To mitigate the threat of overfitting and increase the generalizability
of our results, we also executed the monitors on the applications in Table 3.5. This set
is composed of benign JWS applications that, like applets, are automatically sandboxed.
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Table 3.5: Backwards compatibility dataset. The commit column shows the date of commit
we investigated, which was also the most recent commit at the time of the experiment.

Name Description KLOC Workload Commit

ArgoUML UML Tool 389 1244 test cases 1/11/15
Costello GUI Tester closed source 9 provided examples 5/09/12
CrossFTP FTP Client closed source GUI fuzzing, sample

workload
1/18/15

OpenStreetMap Map Editor 343 406 test cases 1/18/15
JabRef Reference Manager 148 3 provided examples 3/11/14
mucommander File Manager 106 27 test cases 1/23/14

This expands the scope of our results beyond the desktop applications studied above and
evaluates our proposed modifications in context (JWS programs are typically run with
restrictive security policies). The set also includes closed-source applications, providing
evidence that our results generalize beyond open source.

For each program, we confirmed that the agent does not negatively affect benign work-
loads. ArgoUML, JavaOpenStreetMap, and mucommand contained unit tests that we ran
in the presence of our monitors. Costello, and JabRef did not provide tests, but do provide
example workloads that we used in their place. CrossFTP contained neither tests nor sam-
ple workloads, thus we fuzzed the GUI for 30 minutes using a custom fuzzer and uploaded
a file to a remote FTP server as a sample workload.10

In each case, we confirmed that the tests, sample workloads, or fuzzed executions
worked without a security manager. To sandbox the applications, we developed security
policies using a custom security manager that does not throw exceptions and that prints
out checked permissions as each program executes. Finally, we ran each case a third time
using our policy and the standard Java security manager with our monitors attached and
enforcing the rules. The rules did not break any unit tests, sample workloads, or fuzzed
executions.

Finally, to validate our rules on representative desktop applications, we confirmed the
agent does not break programs in the DaCapo Benchmarks v9.12-bach set (Blackburn
et al., 2006). DaCapo systematically exercises each application using a range of inputs to
achieve adequate coverage. For all but one case, we set a security manager that granted all
permissions and attached our monitors to application execution; we let Batik set its own
security manager because it exits if it cannot do so. Our rules did not break any DaCapo
applications.

3.5 Limitations and validity

Limitations. Neither of the rules we propose in Section 3.4 will stop all Java exploits.
While the rules catch all of the exploits in our set, some Java vulnerabilities can be exploited

10GUI fuzzing source code can be found at https://goo.gl/ccTLVR.
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to cause significant damage without disabling the security manager. For example, our
rules will not detect type confusion exploits that mimic privileged classes to perform their
operations directly. However, our rules substantially improve Java sandbox security, and
future work will be able to build upon these results to create mitigation techniques for
additional types of exploits.
Internal validity. Our study results are dependent on accurately studying the source
code of applications and their comments. In most cases, security manager interactions
are easily understood, but there are a few particularly complex interactions that may be
misdiagnosed. Furthermore, we did not review all application code, thus we may have
taken a comment or some source code out of context in larger applications. Finally, using
two different reviewers may lead to variations in the interpretations of some of the data.

We mitigated these threats by using a checklist, FindBugs plugin, and JVMTI agent to
provide reviewers with consistent processes for reviewing code and validating their results.
Furthermore, we inspected entire source files that contained security manager operations.
We tested our tools and processes in a pilot study to find and mitigate sources of incon-
sistencies.
External validity. The study only includes open-source applications. It is possible that
closed-source applications interact with the security manager in ways that we did not see in
the open-source community. However, we inspected a few small closed-source applications
with our aerospace collaborators. We did not find any code that suggested this is the case.
This result is further supported by the closed-source programs included in the dataset in
Section 3.4.3.
Reliability. While the majority of the study is easily replicable, GitHub search results
are constantly changing. Using GitHub to generate a new dataset would likely result in a
different dataset. Furthermore, over the course of the study, one application either became
a private repository or was removed from GitHub (Visor).

3.6 Related work

As far as we are aware, no study has examined Java applications’ use of the sandbox. How-
ever, several recent studies have examined the use of security libraries that can be overly
complex or misused, discovering rampant misuse and serious vulnerabilities. Georgiev et al.
uncovered vulnerabilities in dozens of security critical applications caused by SSL library
protocol violations (Georgiev et al., 2012). These applications misconfigured high-level li-
braries such that the high-level libraries misused low-level SSL libraries, which in turn failed
silently. Somorovsky et al. demonstrate vulnerabilities in 11 security frameworks such that
Security Assertion Markup Language (SAML) assertions are not checked properly in the
face of certain API mis-orderings (Somorovsky et al., 2012). Li et al. examined browser-
based password managers and found that many of their features relied on an incorrect
version of the same-origin policy, which could allow attackers to steal user credentials (Li
et al., 2014b).

Our rules increase the security of the sandbox by effectively removing unnecessary fea-
tures. Prior work has taken a different approach, proposing to re-implement the Java
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sandbox or add to it to increase security. Cappos et al. created a new sandbox structure
involving a security-isolated kernel separating sandboxed applications from the main sys-
tem (Cappos et al., 2010b). They validated this structure by translating past Java CVEs
into exploits for the new kernel. Provos et al. describe a method of separating privileges to
reduce privilege escalation (Provos et al., 2003). Their approach is partially implemented
in the Java security model. Li and Srisa-an extended the Java sandbox by providing extra
protection for JNI calls (Li and Srisa-an, 2011). Their implementation, Quarantine, sep-
arates JNI accessible objects to a heap which contains extra protection mechanisms. The
performance of their mechanism is also measured using DaCapo. Siefers et al. created a
tool, Robusta, which separates JNI code into another sandbox (Siefers et al., 2010b). Sun
and Tan extend the Robusta technique to be JVM independent (Sun and Tan, 2012).

Java applets are the most common ways to transmit Java exploits. Detectors have
been created to identify drive-by downloads in JavaScript (Cova et al., 2010), and in
Adobe Flash (Ford et al., 2009). Helmer et al. used machine learning to identify malicious
applets (Helmer et al., 2001). Their approach monitored system call traces to identify ma-
licious behavior after execution. However, this approach is entirely reactive. Our approach
terminates exploits when they attempt to break out of the sandbox, before they perform
their payloads. Schlumberger et al. used machine learning and static analysis to identify
common exploit features in malicious applets (Schlumberger et al., 2012). Blasing et al.
detect malicious Android applications using static and dynamic analyses of sandboxed ex-
ecutions (Blasing et al., 2010). Unlike these automated approaches, our rules show that a
better understanding of benign sandbox interactions can inform unique mitigation strate-
gies.

3.7 Conclusion

Li Gong, the primary designer of the Java security architecture, admitted in a ten year
retrospective on Java Security that he did not know how or how extensively the “fine
grained access control mechanism” (i.e. the Java sandbox) is used (Gong, 2009). Our
study shows how and how extensively the sandbox is used in open source software, identifies
unnecessary functionality that enables sandbox-escaping exploits, and discovers developer-
facing complexity hampering use of the sandbox.

Our empirical study of open-source applications supports the hypothesis that the Java
security model provides more flexibility than developers use (or likely need) in practice.
The study also strongly suggests that the model’s complexity leads to unnecessary vul-
nerabilities and bad security practices. We further validated the findings of our study
by defining two rules, which together successfully defeated Metasploit’s applet exploits
without breaking backwards compatibility.

We take several general lessons from these findings. First, Java should provide simpler
alternative mechanisms for various common goals, such as constraining access to global
resources or adapting to multiple security contexts. We found that developers sometimes
use the sandbox to prevent third party components from calling System.exit(), a spe-
cific instance of a more general development problem: frameworks often need to enforce
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constraints on plugins (e.g., to ensure non-interference). We also observed that develop-
ers who attempted to make non-trivial use of the sandbox often do so incorrectly, even
though the functionality in question could theoretically be implemented correctly within
the current model (albeit with increased complexity). One promising approach is to allow
programmers to temporarily strengthen security policies (e.g. by adding a permission).

We observed that many developers struggle to understand and use the security manager
for any purpose. The complexity involved in applying the sandbox is perhaps why there
were only 36 applications in our sample. Some developers seemed to misunderstand the
interaction between policy files and the security manager that enforces them. Others appear
confused about how permissions work, not realizing that restricting just one permission
but allowing all others results in a defenseless sandbox. Our concerns here are shared
by the IntelliJ developers, who include static analysis checks to warn developers that a
security expert should check all security manager interactions (IntelliJ, 2014). In general,
sandbox-defeating permissions should be packaged and segregated to prevent accidentally
defenseless sandboxes. Finally, some developers appear to believe the sandbox functions as
a blacklist when, in reality, it is a whitelist. When considered as a whole, our results and
observations suggest that the model itself should be simplified, and that more resources—
tool support, improved documentation, or better error messages—should be dedicated to
helping developers correctly use the sandbox.

In the next chapter we overcome many of these developer-facing challenges through the
use of tools. The tools help developers recover a security policy from Java bytecode, refine
the policy, ensure the policy contains no dangerous permissions, and automatically apply
it. This tooling was heavily motivated by the lessons learned in this chapter. Indeed, it
is unlikely the tooling would even be considered if we had not fortified the Java sandbox
first. At first glance, many people assume the tooling is useless due to prior security issues
with the sandbox, but these issues are solved by the project discussed above.
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Chapter 4

MAJIC: Machine-Assisted Java
Isolation and Containment1

In the previous chapter we empirically analyzed how the Java sandbox is used in open
source applications. The results enabled us to fortify the sandbox to stop many classes
of sandbox-escaping exploits. We observed a number of cases where developers struggled
to create sufficient security policies and failed to sandbox subsets of their applications.
In every case where developers were attempting to sandbox application subsets they were
acting to encapsulate third party components.

As discussed in Chapter 1, it is rare to build a modern application without making
use of externally developed components. Given the risks discussed, it is desirable to limit
the behaviors of these components to just those operations we understand and need. To
achieve this ideal, we must define a security policy that fully captures the operations a set
of code is allowed to perform. How do we define such a policy and ensure it completely
describes the guarded computations without granting unnecessary privileges? This is a
challenge we address in this chapter.

The Java sandbox infrastructure provides no tooling or easily consumed data for de-
riving a security policy from a set of code. The building blocks are present to express
and enforce a policy, but it is left to developers to use these blocks effectively. Ideally
we would redesign all or parts of the sandbox API to solve these issues. However, the
required changes are invasive and would have to overcome political and technical inertia
at great cost. These changes would impact developers years later if at all. Instead, we
provide tooling to cope with the existing means. We design, implement, and evaluate a tool
to achieve machine-assisted Java isolation and containment (MAJIC).2 Our tool, MAJIC,
helps developers perform every step involved in applying the sandbox to Java applications
without requiring alterations to the JRE (some of the related work in Section 4.7 requires
JVM modifications).

MAJIC uses program analysis and fine-grained policy merging to create security poli-

1This chapter was written in collaboration with Jonathan Aldrich, William Scherlis, and Joshua Sun-
shine.

2MAJIC’s “J” is pronounced the same as the “J” in Java, thus MAJIC is pronounced the same way as
“magic”.
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cies for subsets of Java applications. Subsets are defined by users as sets of Java archives
(JARs), classes, or a mix of both. While we cannot always fully recover policies by ana-
lyzing program code, our tool provides code completion, syntax highlighting, correctness
checking, subset refactoring, and traceability between permissions and code to help devel-
opers refine their policy. Once the policy is finished, MAJIC transforms the application’s
bytecode to enforce the policy using the standard Java sandbox.

Chapter 3 identified several points of friction in applying the sandbox and identified
unnecessary design and implementation complexity that enables current sandbox-bypass
techniques (Cifuentes et al., 2015). The sandbox as applied by MAJIC is properly config-
ured without the need for developers to grapple with these complex features. In addition,
MAJIC warns developers when common mistakes are detected, such as using one of the
potentially dangerous permissions discussed in the previous chapter.

We worked with two large companies to identify real applications using libraries and
frameworks practioners wanted to sandbox, and we sandboxed them using MAJIC. These
engagements allowed us to vet the efficacy of MAJIC’s operations and its applicability to
problems the industry currently faces. We measured the overhead of our transformations
by sandboxing an existing benchmark framework. This case study used a nearly worst-
case scenario for our tools: the majority of the method calls cross the boundary between
unsandboxed and sandboxed code. In this case, the transformations add 6.6% overhead
for code that straddles this boundary on top of the 6.9% the Java sandbox introduces. It is
not possible to assess an average or best case due to the fact that our transformations add
overhead when unsandboxed code calls sandboxed code. The number of calls that cross
this boundary are dependent on the application and the subset that is sandboxed within
it.

This chapter contributes the following:

• An exposition of the complexity involved in manually sandboxing entire Java appli-
cations or their subsets (Section 4.1).

• Algorithms for statically and dynamically recovering required security permissions
from Java bytecode and merging them into usable policies (Section 4.2).

• Tooling to help developers refine recovered policies and impose them on Java appli-
cations (Sections 4.3 and 4.4)

• An evaluation of MAJIC’s efficacy, applicability, and the overhead it introduces
through a series of case studies using real applications from industrial collaborators
in Section 4.5

We discuss our tool’s limitations in Section 4.6, related work in Section 4.7, and conclude
in Section 4.8.

4.1 Background

In the previous chapter, Section 3.1 provided a high level summary of the Java sandbox lim-
ited, to content necessary to understand sandbox-escaping exploits. This section describes
the Java sandbox in more detail (Section 4.1.1) including how it is typically used and the
challenges involved in applying it manually to applications or their subsets (Section 4.1.2).
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Figure 4.1: Summary of developer-facing Java sandbox components.

4.1.1 The Java Sandbox

The Java sandbox imposes security policies on sets of classes, thus allowing developers to
limit the behaviors that entire applications or their subsets can manifest at run time. The
operations of application-accessible sandbox components are summarized in Figure 4.1.

Classes are placed in a sandbox when they are loaded by a class loader. When the
class loader is preparing a class for execution, it assigns the class a code source to identify
where the class originates. The code source is a URL that refers to either a directory or
a JAR file. Code sources perform the important function of identifying what protection
domain a class belongs to (i.e. all classes with the same source are in the same domain). A
protection domain contains a set of permissions. Permissions grant classes in a protection
domain the ability to perform sensitive operations such as writing to a file or connecting to
a remote server. Typically, permission sets are specified and assigned to one or more code
sources (and thus protection domains) in a file written in the Java policy language (Oracle,
2015c). These sandbox pieces provide all of the data required to enforce a security policy.

To enforce a policy, a method that performs a sensitive operation queries the security
manager to ensure that every class in the current call stack has the permission required
for the operation (Wallach and Felten, 1998b). Methods in the Java class library (JCL)
perform most of these queries, but an application designed to use the sandbox may query
the manager as well. Ultimately, a policy object that was instantiated when the JVM
was initialized is queried to get the permissions for each protection domain represented
by classes in the call stack. If the permission check fails a SecurityException is thrown,
otherwise the security manager returns with no side-effects.

This design is flexible and extensible. A wide variety of sandbox components can be
extended to enforce nearly any security policy in many scenarios. For example, it is easy to
create new permissions to enforce tailor-made security policies, and the security manager
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can be extended to alter when and how policies are enforced.
Java’s sandbox is typically applied to an application automatically. For example, a

security manager is set before any external code is loaded by a JVM initializing applet or
Java Web Start (JWS) environments. Applications that run in these environments may
be developed with no knowledge of how the sandbox is configured or instantiated beyond
understanding the default limitations imposed on them (e.g. no filesystem access). In
fact, benign applets have no control over the sandbox’s configuration or instantiation, and
JWS applications may only alter the configuration if they are digitally signed and the user
allows elevated access.

In Chapter 3 we found that, at least in the open-source community, it is rare for
applications to use the sandbox directly and common for those that do to use the sandbox
incorrectly. Why are so few developers leveraging these powerful and flexible sandbox
components to improve their application’s security posture, and why do they often fail
when they try? The next section explains how the complexity of the sandbox foils its use
even in seemingly simple cases.

4.1.2 Manually Sandboxing Components

Generally speaking, the sandbox should be used to encapsulate components that may be
vulnerable or malicious. It is likely that both risks are present where third-party compo-
nents are in use. Therefore, given the popularity of component repositories such as Maven
Central, almost any modern Java application would likely benefit from use of the sandbox.
A developer sandboxing an entire application at once faces adversity from the first step.
This developer must successfully create a policy that allows the application to run while
avoiding a policy that is over-privileged. The latter is of particular concern because the
JRE ships with several powerful permissions, any one of which (when granted) can enable
sandboxed code to disable the sandbox (see Section 3.1.2 in the previous chapter).

While tooling could solve most related challenges, there are few mechanisms to help
developers create a security policy given an application to sandbox, and there are even
fewer mechanisms for helping them understand the risks presented by the permissions they
are granting. While there is documentation that discusses the risk of using various JDK
permissions (Oracle, 2014d), this documentation assumes understanding of JRE internals
and does not highlight the most dangerous permissions that should essentially never be
granted. Thus, developers are left to sort through security policy issues almost entirely by
hand.

A busy developer that must create a security policy has two options: (1) infer permis-
sions through manual inspection or (2) infer permissions through dynamic analysis (Inoue
and Forrest, 2005).

In the first case, she must read the documentation for existing permissions, then inspect
the application’s source code to infer which permissions may be required. These permissions
are added to the policy. When the policy seems reasonably complete she can check her
work by running various executions of the application to see if a SecurityException

occurs. This exception indicates the policy was violated and is therefore missing a necessary
permission. This approach is fraught with problems: She may infer permissions that are
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not actually required (potentially allowing unwanted operations), she may miss permissions
which will result in execution failures, sandbox exceptions may be silently caught, and the
approach does not scale to large applications she cannot cost-effectively inspect.

In the second case, she must inspect permissions used at run time – this can be done
by creating a security manager that prints out each permission that is checked without
throwing exceptions, configuring the JRE to use it, and running many executions of the
application to collect required permissions. This strategy will not lead to over-privileged
policies, but even with a comprehensive testing strategy there is no guarantee the policy
contains the permissions required for all desired executions of the program.

A developer sandboxing an entire application is essentially finished at this point. How-
ever, a developer sandboxing a subset of an application must still filter discovered permis-
sions for the subset and assemble sandbox components to impose the policy on just the
subset. For the latter developer, creating the policy is likely the easy step. Even when
given a security policy, a developer is unlikely to successfully impose the policy on a subset
of a large, complex application.

There are two possible cases for imposing a policy on an application subset. Either
all of the classes to sandbox are in identifiable JARs that are free of classes that should
be unconstrained, or not. In the former case the developer can use the policy language
to assign the policy to just the code sources that refer to targeted JARs. However, this
condition is unlikely to be true unless the application was intentionally designed for it to be
true. Must an unsandboxed class extend a sandboxed class? Is there a custom class loader
in the sandbox that must load code into an even stricter sandbox? Do custom exceptions
need to cross sandbox boundaries? If the answer is yes to these or similar questions,
sandboxing the selected components is difficult, if not impossible, to resolve using the
standard sandbox components. While not every application will have these concerns, it is
our experience that they are common in large, complex applications. Complex applications
are also more likely to use several third party components and would thus benefit even more
from sandboxing than a simple, relatively easy to sandbox application.

Solving these challenges typically requires developers to create custom class loaders
per sandbox, unless they are willing to alter the JVM or directly change the JCL. Either
change would make their application substantially more difficult to deploy and maintain,
particularly as few knowledgeable users are willing to have their entire environment changed
for one application. To avoid JRE changes, the loaders must define protection domains
based on the type of the class loader instead of using coarse grained code sources. This
ensures that inclusion in a protection domain is at the granularity of a class instead of a
JAR or directory. However, the standard component to manage policies does not use this
construct, thus it must be extended to recognize finer grained policy assignment.

To sandbox a library under these conditions, the library’s classes must be loaded by
a custom class loader into the intended protection domain. These classes must be moved
outside of the class path or they will be loaded outside of the sandbox by the application’s
class loader. However, this move will cause type checking issues for application classes
that use library classes because the latter are no longer available statically. This problem
is solved by refactoring the application classes to reflectively use the library code.

Given all of these challenges, of course developers fail to use the sandbox correctly!
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Fortunately, many of these steps can be performed by tools. The remainder of this chapter
discusses how to mechanically recover policies, manually refine them, and use tooling to
impose them securely.

4.2 Recovering a Security Policy

To use the Java sandbox, we first need a security policy to define the behaviors that code
is allowed to exhibit. Security policies are not explicit in Java code in a format that can
be easily consumed, hence the previously discussed processes for inferring permissions.
However, instead of constructing a policy by hand we can use program analysis to recover
required permissions from Java bytecode. Java permissions are classes that extend the
JCL’s Permission class. They are typically constructed with parameters to define the
entity the permission grants access to and the specific actions that will be allowed on
the entity. For example, a FilePermission takes in a parameter to define what file the
permission grants access to, and which actions such as reading, writing, and deleting can
be performed on it. Sometimes, however, the entity or actions are fixed by the permission
type. For example, the entity for a SecurityPermission is always the JVM’s security
subsystem, thus we must only specify actions such as the ability to set a security policy.

Permission types can be recovered using static analysis because any method that must
guard a sensitive operation must also query the security manager to ensure permission
is granted before performing the operation. However, some initialization parameters are
unknown until run time in cases where the entity or action is dependent on events generated
by the user or external configuration. Thus, static analysis can recover every type of
permission a body of Java code needs unless permissions are reflectively loaded (we have
never seen this case) or code is obfuscated, but we can not always recover every initialization
parameter. While not a complete policy, this is still a useful start. Knowing the required
permission types gives the user a basis for discovering unknown parameters and for knowing
how many parameters need to be recovered. Furthermore, static analysis can be combined
with dynamic analysis to recover many, if not all, of the missing parameters.

Our static analysis is closely related to the analysis presented by Centonze et al. (2007),
but we reduce precision to achieve acceptable performance at scale. Centonze combines
the static analysis algorithm with a dynamic analysis that automatically runs each method
that could cause a permission check. This collects permissions that are definitely required
at runtime while rejecting false positives, which are more common than in MAJIC’s case
due to the greater precision. Unlike Centonze’s solution, MAJIC does not automatically
exercise the application’s code and instead requires the user to exercise the application
manually or, preferably, using a testing suite. This grants MAJIC’s user greater control
over the executions that will be analyzed, which we have found to be useful in case studies
that make extensive use of configurable plugin systems.

In this section, we discuss how to statically and dynamically recover permissions from
Java code in Sections 4.2.1 and 4.2.2 respectively. In Section 4.2.3 we discuss how permis-
sions recovered using the different techniques are merged using permission types, initial-
ization parameters, and stack traces to form a policy.
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4.2.1 Static Permission Recovery

Every permission check starts with a call to one of the security manager’s many methods,
but ends at one of two versions of a method called checkPermission. These methods
are in the security manager, accept the generic Permission type as a parameter, and are
ultimately responsible for using internal sandbox components to determine whether or not a
permission is granted. Thus, to statically recover permissions we use a control flow analysis
to find calls to any method in the security manager whose name is checkPermission

originating from a class that is to be sandboxed. Permission checks are often directly
initiated by classes in the JCL. Thus, classes in the class library must be analyzed if they
are used by a sandboxed class or its dependencies.

Furthermore, the permission check must appear in the analyzed execution trace between
the sandboxed method and any later call to doPrivileged. The sandbox ignores any
method calls in a stack trace that happened before a call to doPrivileged (i.e. the method
signals to the sandbox code that walks the stack that methods called before the signal
are not relevant). Thus, a permission is not relevant if doPrivileged is called after the
sandboxed method but before the permission check. Hardcoded permission parameters can
be recovered using a dataflow analysis after relevant permission checks have been identified.

An interprocedural dataflow analysis inspects the full path between a sandboxed
method and its relevant permission check to identify objects constructed from subclasses of
Permission. The permission types and their constant constructor parameters are stored
in a simulated stack. At the program point where checkPermission is called, the analysis
determines which of the stored permissions is being checked by inspecting the permission
argument on the simulated stack. Used permissions and the stack trace formed by the
methods the analysis followed are stored to form the security policy later. The traces are
used to help the user understand where recovered permissions originate in the code and,
as discussed later, to merge permissions.

In practice, MAJIC performs the control- and dataflow analyses and context sensitive
constant propagation at the same time, on bytecode, and using the ASM library (Bruneton
et al., 2002). Performing the analysis on bytecode is convenient because the user may not
have the source code available locally for their default JRE or even for the component
they want to sandbox. Combining the steps also reduces overhead because work would
otherwise be duplicated.

All classes in the sandbox and their non-JCL dependencies are analyzed independently,
thus permissions used by sandboxed code that is called reflectively will be found. Reflection
in the JCL is generally not a problem because permission checks tend to happen before
these types of complications arise. However, if a permission is missed by this analysis it
can be picked up by the dynamic analysis later.

In general, reflection is not a challenging technical issue when using the sandbox or
MAJIC. The challenge is that users of the sandbox and MAJIC must be aware of classes
that (1) should be sandboxed and (2) are available for unsandboxed classes to dynamically
load and use. We do not help the user ensure they have accounted for all potentially
loaded classes that are also candidates for sandboxing. The architecture of the sandbox
ensures that classes dynamically loaded by a sandboxed class will also be sandboxed (this
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is discussed further in Section 4.4.2).

4.2.2 Dynamic Permission Recovery

To recover permissions at run time we extend the standard library’s security manager to
override checkPermission. MAJIC’s implementation of this method records the type of
the permission that is being checked, its parameters, and the current stack trace. This
data is sent to MAJIC where stack traces for new permissions are checked to determine
whether they contain a call to a method in a sandboxed class. Irrelevant permissions are
discarded. As depicted in Figure 4.2, MAJIC helps users launch their application under
the monitoring of the extended security manager. This strategy assumes that applications
will not replace our security manager with their own. Our experience and the analysis in
Chapter 3 suggest this is a reasonable assumption because most applications do not replace
an already configured manager.

4.2.3 Merging Permissions

Static and dynamic analysis recover a large number of possibly duplicated permissions.
Duplicate permissions have the same type, appear in the same execution traces, and either
have identical initialization parameters or share one initialization parameter with one or
both missing the other.

MAJIC compares the stack traces for permissions to determine if they appear in the
same execution. Stack traces are sets of traces that include a class name, source file name,
method name, and line number for each call between a permission check and either the
first method in the application (dynamic analysis) or a sandboxed method (static analysis).
MAJIC compares stack traces to ensure they contain identical traces in the same order
starting from the permission check and ending at the last method call in the shorter trace.

Duplicate permissions satisfy conditions that are formalized below, where A and B may
be duplicate permissions. These conditions formalize the conditions that duplicates have
the same type, come from the same execution trace, and either share both parameters or
have one parameter in common with one permission missing the mismatched parameter.
These conditions are sufficient because they only label permissions duplicates if either the
permissions are identical in every way or they are different only because they are the same
permission recovered starting from different points in the same execution trace.

For example, if A and B are duplicates aside from (1) A missing a parameter B has
and (2) A missing a few methods B has early in the stack trace, the missed parameter
is the result of A being recovered later in the execution trace and therefore missing the
initialization of the parameter. In this case, A will have a stack trace that is a proper
subset of the B ’s stack trace with identical ordering between elements in the traces. This
happens, for example, when the dynamic analysis recovers a permission starting from the
main method but the static analysis recovers it starting from a sandboxed method.
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Figure 4.2: The sandbox assistant helps users create, refine, and impose a security policy.
Dynamic analysis controls are in the top third of the window and policy refinement controls
cover the rest.
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A = B ⇐⇒ typeA = typeB∧
(stackTraceA ⊂ stackTraceB ∨ stackTraceB ⊂ stackTraceA)∧
paramsMatch

stackTraceA ⊂ stackTraceB ⇐⇒
trace1A = trace1B∧
trace1methodA = checkPermission∧
trace2A = trace2B...∧
traceNA = traceNB∧
N = length(stackTraceA)

paramsMatch ⇐⇒
(entitiesExistAndMatch ∧ actionsExistAndMatch)∨
(entityA = entityB ∧ actionA = ∅ ∨ actionB = ∅)∨
(entityA = ∅ ∨ entityB = ∅ ∧ actionA = actionB)

entitiesExistAndMatch ⇐⇒
(entityA = entityB) ∧ (entityA 6= ∅)

actionsExistAndMatch ⇐⇒
(actionA = actionB) ∧ (actionA 6= ∅)

When the condition holds, duplicate permissions are merged, favoring the more specific
permission if they are not strictly duplicates (i.e. they do not have identical types, stack
traces, and identified parameters). For example, if two permissions are equal aside from the
fact that one is missing an entity, the permission missing the entity is discarded because it
is a duplicate of a permission that is more specific. The more specific permission has both
parameters and can be used by the sandbox without additional effort.

The merging process produces a policy in the standard Java policy language that the
user may refine before imposing it on the application. This policy can be imposed on an
entire Java application or it can be applied to an application subset by MAJIC. To use
the policy for subsets in the ideal case discussed in Section 4.1 the user must define code
sources in the policy.

4.3 Refining the Security Policy

Section 4.2 described how to recover security policies given a Java application or its subset.
This policy may be sufficient for the desired executions already, but typically the policy
needs manual refinement.
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Relatively simple applications can potentially execute code paths that require unde-
sirable permissions. For example, some operations require the String class to encode a
string using the StringCode class. The latter calls the exit method in the System class
if a required encoding is unavailable, which requires a RuntimePermission to grant the
code the right to shut down the virtual machine. Not only is the particular error condition
rare, it introduces a relatively powerful permission the developer may reasonably decide to
not grant. As a result, the developer must review the generated policy to see if there are
any permissions worth removing. However, it is more common that there are permissions
present that have missing parameters. This often results from permissions recovered using
static analysis from code paths, such as the StringCode example, that are so rare that
even a comprehensive testing suite run with the dynamic analysis won’t help recover the
parameters.

MAJIC provides an editor, depicted in Figure 4.2, to help the developer refine the
policy. The user may exclude classes from the subset of code to be sandboxed, in which
case all of the permissions present solely because of the excluded item disappear from the
policy (items can be re-included to bring permissions back). The user may edit the current
policy in a text editor that provides auto-completion with pop-up documentation for all
JDK permissions and syntax highlighting for the standard policy language. The editor
allows the developer to check the policy, which will mark each permission that is missing a
parameter or has invalid syntax with a warning icon. Permissions that grant the sandboxed
code the ability to disable the sandbox are marked with an error icon.

This editor collapses some permissions that are not merged as duplicates (see Sec-
tion 4.2.3). Permissions that look identical may appear in the policy even dozens of times
if they are not collapsed. These permissions are not merged because their stack traces are
different and each set of traces may provide useful insights, but merging the permissions
would lose all but one of the stack traces. Instead, the editor shows this case as one per-
mission but the developer can right click a permission to view all of the stack traces where
the permission appears. This traceability provides vital clues in cases where parameters
are missing. The traces tell the developer exactly which code causes a permission to be re-
quired, which may be all of the information a knowledgeable person needs to infer missing
parameters. Otherwise, the developer can use the trace to learn exactly where to look in
the applications source- or bytecode to discover the parameter(s).

A developer who has finished refining the policy may then use MAJIC to impose it. At
this stage, MAJIC ignores any permission that is missing parameters or whose syntax is
invalid within the standard Java policy language.

4.4 Imposing the Security Policy

In Sections 4.2 and 4.3 we describe how to develop a security policy for Java code. A
policy does nothing unless it is imposed on code to stop unwanted operations. Imposing
an existing security policy on an entire Java application requires no special effort. This can
be done by specifying standard virtual machine switches on the command line. However,
the process to impose a policy on a subset of a Java application is currently difficult, error
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Figure 4.3: MAJIC’s sandboxer carries out all of the operations required to sandbox a
subset of a Java application, aside from those that would also be required to sandbox an
entire application. Labeled arrows show how inputs are mapped from the sandboxer, which
orchestates the process, to subcomponents that perform specific sandboxing operations.
For example, the dependency graphs of all classes in the application (D) and the set of
classes to sandbox (E) are fed into the class rewriter. These inputs cause the rewriter to
transform all sandboxed classes and the classes that depend on them.

prone, and entirely manual.
In this section, we overview a process for sandboxing fine-grained subsets of applica-

tions. Our design does not require changes to the JRE and automates nearly all of the
steps that are unique to sandboxing subsets of applications. We go on to describe how the
various steps of the sandboxing process are implemented in MAJIC.

4.4.1 Design Overview

As summarized in Figure 4.3, we break the sandboxing process into five reusable byte-
code transformations managed by an orchestrator called the sandboxer. The sandboxer
automatically carries out the manual process described in Section 4.1.2 for sandboxing an
application subcomponent.

The sandboxer requires three inputs from the user: (1) the recovered and refined policy
(Sections 4.2 and 4.3 respectively), (2) the application’s class path,3 and (3) the subcom-
ponent to sandbox. The process proceeds as follows:

1. A domain creator writes a custom policy class (Section 4.4.2) to initialize each pro-
tection domain with its permission set and creates a class loader (Section 4.4.3) for
each protection domain.

2. The main methods are updated to set the JVM-wide policy object to the one gener-
ated in step 1.

3. An interface generator produces an interface containing all non-static externally ac-
cessible fields and methods for each sandboxed class. These are used in place of

3MAJIC generates dependency graphs for classes in the class path.
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sandboxed types outside of the sandbox to satisfy the type checker.

4. A class renamer changes the package name for each sandboxed class to ensure package
names are unique to each sandbox and will therefore not interfere with class loading.4

The class renaming is not strictly necessary if we are careful to remove the original
copies of the classes after copying them to the sandboxed JAR. Still, renaming the
sandboxed classes eases debugging (e.g. by making it easier to spot sandboxed class
references in bytecode).

5. A class rewriter transforms sandboxed classes to implement the interfaces gener-
ated in step 3. Additionally, externally accessible methods are transformed to use
the interfaces as types for parameters and return values whose types are sandboxed
(Section 4.4.4).

6. Unsandboxed classes that use sandboxed classes are re-written to load sandboxed
classes using the correct class loader generated in step 1. Virtual and interface
calls to sandboxed methods are re-written to use the generated interfaces and static
method calls are rewritten to use reflection (Section 4.4.4).

7. Sandboxed classes are packaged into their own JAR file and any unsandboxed classes
are updated in their respective containers. Digital signatures are stripped from JAR
files that are updated with transformed classes.

A report is generated during the process that summarizes each executed transforma-
tion. A sample report appears in Appendix A. The report includes a task list that details
remaining steps. These steps are either already well supported by existing tools (e.g. sign-
ing JARs) or would require complicated tooling to perform tasks the user can quickly
and easily perform manually (e.g. modifying scripts that can be written in one of many
different scripting languages). These steps typically include:

• Move generated sandbox components into the application’s class path and update
class path definitions in launcher scripts or manifest files

• Move JAR files that contain sandboxed classes to a user-specified location outside of
the class path

• Add virtual machine command line switches to launcher scripts to set: a policy, a
security manager,5 and the majic.sandboxed.loc property to the location of sand-
boxed class JARs

• Re-sign JAR files that were signed before contained classes were updated

Finally, because a security manager is set, the JVM will attempt to enforce a security
policy on classes the user did not specify as sandboxed. MAJIC generates a standard Java
policy file with AllPermission for these classes. This policy may be customized by the

4The URLClassLoader expects to find classes with the same package name in the same JAR file, which
would not be the case if one of those classes is sandboxed without renaming. To avoid this challenge we
would have to create our own fully featured class loader, which is more complicated and risky than simply
renaming classes.

5The required switches are identical to those used to sandbox an entire application. MAJIC generates
these switches and places them into the report, thus the user must simply copy and paste them.
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user to constrain the entire application. Figure 4.4 shows the structure of an example
application before and after sandboxing.

It is important to note that much of the complexity described in this section cannot be
avoided without alterations to the JVM. Unless an application is carefully designed to be
sandboxed, the standard sandboxing interface is too course grained to sandbox a typical
Java application without the complexity and bookkeeping MAJIC automates.

4.4.2 Policy Class Generation

At any given time there can only be one Policy object managing the policies for an
application. This object loads permissions from an implementation-specific policy store
(policy files by default), returns permission sets for a given code source or protection
domain, and allows other sandbox components to check if a permission is implied by a
particular domain. Typically a domain is defined by a course-grained code source. To
achieve the required granularity without JRE changes, we must extend the policy class.

MAJIC contains an extended version of the policy class that accepts the current policy
object as a parameter at construction to save the default behavior. The methods to get
permission sets and check if permissions are granted are overridden to check the identity
of the class loader for the class whose policy is in question. Assuming the class loader is
a known sandbox loader, the permission sets for that loader are used instead of using the
default behavior. Our extended version must initialize permission sets that belong to our
protection domains and use the new sandbox loaders to identify those domains.

Additionally, MAJIC’s policy class is updated to ensure sandboxed class loaders are
also used to identify the domain in which they are loaded. This secures the use of reflection
because any loaded and reflected external code will be sandboxed if we sandbox the loader.
Furthermore, our policy object does not simply check the current loader that loaded a class,
it checks every class loader in the loader chain starting from the current loader and ending
at the bootstrap loader. A class is assigned to the domain for the first sandbox loader that
is found. Due to the search order, the assigning loader is the closest in the loader chain to
the one that loaded the class. Thus, if there are nested sandboxes the class is guaranteed
to appear in the innermost sandbox represented in the loader chain. If no sandbox loader
is found, the policy defers the request to the original policy object. Both updates ensure
class loaders cannot be used to bypass the sandbox.

Finally, the main methods of sandboxed applications are updated to instantiate a MA-
JIC policy object, pass the current policy object to the constructor, and set the new policy
object as the sole policy for the application.

4.4.3 Class Repackaging and Loading

Sandboxed classes are moved out of the class path, otherwise the application class loader
can load them outside of the sandbox at any time (Oracle, 2015b). After the move,
the application must load the classes using a class loader whose identity will be used
to identify each class’s protection domain. The standard sandbox supports the use of
multiple sandboxes enforcing different security polices, where each sandbox has its own
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protection domain. MAJIC creates one class loader per domain. These loaders subclass
URLClassLoader and have names that uniquely identify their domains, but they otherwise
do not extend the superclass.6

Some class loaders delegate the loading of classes in a specific package to the first loader
that loaded a class in that package, thus the sandboxed classes must be renamed. MAJIC
appends the name of the class loader that will load a sandboxed class to the end of the
class’s package name.

4.4.4 Re-writing Method Calls

Previous sections laid out the infrastructure required to place classes into sandboxes. We
now discuss how unsandboxed classes interact with sandboxed code. For these interactions
we must modify the bytecode of unsandboxed classes. Our modifications ensure that calls
to sandboxed methods use the sandboxed version of the method-owning class instead of
the original version. We make these changes on bytecode for two reasons: (1) we want
MAJIC to fulfill its role even in cases where source code is not available and (2) the required
transformations introduce extensive use of reflection that would make modified source code
difficult and risky to maintain.

Sandboxed classes need to be transformed in a few simple ways. References to sand-
boxed types need to be remapped from their original names to their sandboxed names, the
classes need to implement interfaces generated based on their externally accessible methods
and fields, and any externally accessible method must be transformed to use the generated
interfaces as return and parameter types where sandboxed types appear. The externally
accessible methods are not further transformed beyond casting parameters of sandboxed
types to their class version from the interface version at the beginning of the method and
casting the return type from the class type to the interface type before returning. These
transformations reduce the overall number of transformations required for sandboxed code
while ensuring it can be used reflectively from unsandboxed code. An alternative approach
would require MAJIC to transform all sandboxed classes the same way unsandboxed classes
are transformed (described below). This would grossly and unnecessarily complicate the
tools.

Outside of the sandbox there are broadly two types of method calls that must be
transformed: static calls and non-static calls. To handle all of these cases, two helper
methods are added to every unsandboxed class using sandboxed code. The first method
accepts a JAR and class file name and uses the appropriate class loader to load the named
class from the JAR. MAJIC knows which loader is appropriate because it knows which
classes are being sandboxed and to which domain(s) they belong. The second method is
used to reflectively lookup and return a reference to a constructor with a given signature
for a class.

In cases where a sandboxed class is instantiated from unsandboxed code the bytecode
that creates the new object and calls the constructor is replaced with calls to our helper

6We use a well established class loader with no modifications because class loading is complicated and
may introduce vulnerabilities. Furthermore, existing class loaders contain optimizations we do not want
to lose.
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Figure 4.4: In (a) the application is not sandboxed and every class exists in the same
protection domain. This is the typical case for a Java application that runs on the desktop.
In (b) the FileReader class has been sandboxed by using a custom classer loader with our
custom policy to achieve least privilege.
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methods. The helper methods load the class into the sandbox and fetch the constructor
that was originally called. Additional code is inserted to reflectively call the constructor,
cast the new object to an interface type generated for the now sandboxed class, and store
it on the stack as before. Calls made to this object are changed to interface calls.

There are two potential complications when instantiating the sandboxed version of
the class. First, the constructor’s parameters may be placed on the stack before or after
creating the new object or a mix of both. This can make it difficult to ensure the stack
is not corrupted while transforming class instantiation. Second, primitive types cannot be
passed as parameters to reflective method calls. These problems are solved using the same
process. All constructor parameters on the stack before or after a new object is created are
saved using local variables and restored on the stack immediately before the constructor
is called. Primitive types are boxed as they are restored.

Static calls are relatively easy to replace using the existing helper methods. All static
method calls are replaced with code to load the sandboxed version of the method-owning
class, reflectively fetch and call the method, and place any return value on the stack.

Having fixed the method calls, sandboxed methods may still throw an exception that
is itself sandboxed. An unsandboxed method may attempt to either catch a sandboxed
exception or specify that it throws the exception, which will cause a type checking error.
The interface solution used in other similar cases cannot work because interfaces must
subclass only Object but exceptions must be of type Throwable. Thus, MAJIC converts
a sandboxed exception’s type to a MajicException that provides generic messages for
unsandboxed methods that specify they throw a sandboxed exception and catch clauses
outside of the exception’s sandbox. This preserves the semantics of catch clauses, but loses
the semantics of the exception itself. We did not see cases where sandboxed exceptions
have semantics beyond specific error messages, but a future implementation could account
for cases with richer semantics by calling the sandboxed exception’s methods from the
MajicException.

4.5 Evaluation

We evaluate MAJIC’s ability to assist in complex cases where real developers want to use
the Java sandbox. In particular, we used the findings in Chapter 3 to select use cases
(e.g. sandboxing plugins) where open source applications attempted to use the sandbox
for security purposes but failed. We then worked with industrial collaborators to find
applications that could benefit from sandboxing in similar ways. We chose this strategy
to: 1. Validate that the challenging use cases exist outside of the individual cases in the
open source community, 2. Create opportunities to test our tools with interested and
consistently available users from our target audience, and 3. Avoid architectural issues
caused by failed sandboxing attempts in existing applications.

To effectively assist, MAJIC must recover most of an applied security policy statically
and dynamically and leave transformed code runnable, secure, and performant. If it does
not meet these requirements it is potentially better to instead pursue invasive JVM and
JCL changes that avoid critical technical limitations. We evaluate these aspects of MAJIC
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Table 4.1: The number of permissions in the final policy and counts for parameters re-
covered statically, dynamically, and manually for case studies unrelated to performance.
The union of the three sets of recovered parameters covers all parameters required for the
policy. Manually recovered parameters were added by the user in cases where the program
analyses could not recover the data.

Case # Perms # Stat # Dyn # Man

TinyRadius 6 6 1 1
Jetty 28 26 22 0
IoT 15 12 2 7
FreeMind 8 8 0 1

through a series of case studies. We sandboxed an authentication library in an application
developed by a large aerospace collaborator (Section 4.5.1). At their request, we equipped
and lightly trained one of their developers who went on to sandbox a different library
using MAJIC (Section 4.5.2). Finally, we worked with a large engineering and electronics
company to sandbox all plugins in an Internet of Things framework (Section 4.5.3).

We measured the degree to which policies are recovered statically, dynamically, and
manually in these three studies to evaluate MAJIC’s ability to recover policies. First,
we ran the static analysis to recover all permission types and counted the number of
permissions that had at least one parameter recovered. Afterwards, we ran the dynamic
analysis and counted how many of the permissions had previously missing parameters
recovered. Finally, we counted all permissions that were still missing a parameter as
cases that need to be completed manually. The counts for these cases are summarized in
Table 4.1. It was rare to remove any recovered permissions, but in cases where they were
removed it was because the static analysis recovered permissions for operations the code
could perform that are not actually required by the particular application under study
(e.g. due to library functions that are not used). The dynamic analysis did not recover
new permissions, but was often useful for filling in missing permission parameters.

To ensure transformed programs remain runnable, MAJIC uses the bytecode verifier in
ASM after transformations are complete to statically ensure that classes in the sandboxed
application will pass the JVM’s bytecode verifier. We also ran each case to ensure desired
executions still function correctly. To evaluate the security of MAJIC’s transformations, we
built a Java agent to dump the names of classes and their loaders as a program executes. We
used this agent with each sandboxed application to ensure classes appear in the expected
protection domains. Finally, we sandboxed a benchmark plugin in DaCapo to measure the
overhead of MAJIC’s transformations (Section 4.5.5).

4.5.1 Sandboxing a Third-Party Library

Our aerospace collaborator has carried out a series of projects to replace the use of pass-
words with two-factor authentication mechanisms such as smart cards and one-time pass-
word tokens. One of these projects targeted thick client applications that communicate
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with non-web servers. We’ll refer to this project as Auth+. The Auth+ team did the
difficult and security critical work of creating a facade library to interface with the en-
terprise’s various two-factor authentication systems. Targeted applications use Auth+ to
authenticate client users to the application’s server before the server fulfills requests. One
of the supported authentication mechanisms requires the RADIUS protocol, which Auth+
supports via a third-party library called Tiny Radius.7

While Tiny Radius is open source, it makes an excellent sandboxing target because it
contains enough code (just under 5000 LOC) that it could reasonably hide a backdoor,
it was developed entirely by a third party, and it has access to authentication credentials
that, if stolen, could cause grave damage to the enterprise.

Tiny Radius manifests several properties that make it relatively easy to sandbox with
MAJIC. The library is mostly self-contained with few entry points and little need for
application code to extend library classes. Furthermore, the entry points to the library are
always used in the same way, thus variances in user inputs are not consequential to the
resulting security policy. However, the library does contain a custom exception that must
be caught outside of the sandbox. We were able to recover and impose a security policy
containing six permissions in less than 5 minutes. Due to the ease and speed with which
MAJIC can sandbox this case, we used Auth+ to evaluate the efficacy of policy recovery
and MAJIC’s transformations from the standpoint of security.

We replaced the version of Tiny Radius in Auth+ with a malicious version. Our version
exfiltrates any credentials it receives to a malicious actor via the network. We tried two
cases: A. where the trojan was crafted to hide from policy recovery and B. where the trojan
was not crafted to hide. In case A, permissions required for the trojan did not appear in
the policy, thus when the trojan executed in our experiment a SecurityException was
thrown and the trojan was not allowed to execute. In case B, the permissions required
by the trojan appear in the policy. We provided this policy to an Auth+ developer and
asked them if the policy met their expectations. The developer spotted a permission they
did not expect while reviewing the policy, which turned out to be a permission for the
trojan. However, had the rouge permissions gone unnoticed the trojan would not have
been impeded by the sandbox.

Auth+ supports applications with high availability requirements but an exception when
malicious code executes crashes the program. Thus, a trojan could cause grave damage
simply by trying to execute without success. We provided an option to wrap unsandboxed
code that calls sandboxed code in try/catch blocks to catch exceptions that result from
policy violations and output a warning. With this option, the compromised version of
Auth+ continues to work securely for authentication mechanisms that do not rely on Tiny
Radius, but those that do will fail at the point that the malicious code executes without
harming non-malicious executions and without compromising the credentials.

7http://tinyradius.sourceforge.net/

85

http://tinyradius.sourceforge.net/


4.5.2 Users Sandboxing a Third Party Library

The previous exercise inspired a developer named Allen at the aerospace company to try
using MAJIC on his own. We include details of Allen’s experience as anecdotal evidence
in support of MAJIC’s efficacy. Allen had five years of development experience in Java
and worked as an Application Security Engineer. We gave him a copy of MAJIC, spent
30 minutes walking him through an 18 slide presentation summarizing the intent behind
MAJIC, how it works at a high level, and its basic operation. We concluded this session
with a quick demo of the previous exercise. This introduction was enough to enable him
to be successful.

Without further support from us, Allen sandboxed five Jetty 78 embedded web server
components constituting 76 KLOC in a legacy application that uses the library to embed
a web service. This exercise took him 45 minutes, most of which was spent investigating
the application to determine the proper subset to sandbox. The latter was complicated by
the fact that the application extends some of the classes in Jetty, and the subclasses had
to be placed in the Jetty sandbox to ensure the proper function of the application. We
obtained a copy of the sandboxed application to evaluate using our Java agent.

Allen offered the following remarks highlighting the value of policy recovery, “MAJIC’s
ability to read through the code and automatically populate which permissions you need to
allow and put that in policy file I feel is something I couldn’t live without even if it didn’t
do other tasks.” Regarding the entire process, “With a little bit of navigation around the
GUI tools and some understanding of the Java project structure I was able to create a Java
Security policy to sandbox a piece of our Java project that is out of date and therefore has
some dangerous security vulnerabilities in it. I would recommend MAJIC and use it again
as it takes a very complex problem and greatly simplifies it.”

4.5.3 Sandboxing All Framework Plugins

We collaborated with a large engineering and electronics firm that is building an Internet-of-
Things framework (called IoT after this point). We selected this case to evaluate MAJIC’s
ability to sandbox dynamically discovered and reflectively loaded framework plugins, where
the plugins are developed by third parties. IoT allows users to plugin in services that use
data from various sensors and context from the user to produce a useful output. For
example, one service uses food2fork.com to look up popular recipes by ingredient or
meal for a user that states she is hungry. Yet another service learns the user’s preferred
ambient temperatures at different times of the day to ensure the room the user is in is at
an appropriate temperature. These services are developed by third parties and potentially
gain access to sensitive data about the user, thus they are attractive to sandbox.

IoT uses the Spring Framework9 to load service beans for a Spring context. Spring
contexts are essentially modules constructed by instantiating and configuring classes based
on a developer-defined configuration. Thus, to sandbox the plugins we sandboxed the
JARs containing Spring’s bean and context classes, which constitute 63 KLOC. However,

8http://www.eclipse.org/jetty/
9https://spring.io/
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this is not entirely sufficient because Spring loads beans for a context using the thread’s
context class loader by default instead of using the caller’s loader (in this case, the sandbox
loader). The thread’s loader is often the application’s default class loader, thus classes are
loaded outside of the sandbox by default. To ensure Spring loads classes into the sandbox,
we modified MAJIC to set a sandbox loader for Spring contexts to use if the application
did not set a specific loader. In the latter case, the developer must sandbox the specified
loader.

In this case tools cannot define a definitive policy. The framework has a plugin API,
but plugins also use external APIs. Thus, recovering a policy solely from the framework’s
API code is not sufficient to define the range of acceptable behaviors, nor is it sufficient
to simply analyze a set of plugins. We used both options to develop half of the policy in
this cause, but we still needed to define a standard policy to use the same way a standard
policy is used for all Java applets. We used the policy refinement mechanisms discussed in
Section 4.3 to develop the other half of the policy.

In particular, we communicated with the collaborator to determine what plugins must
be allowed to do at a high level to meet the framework’s functional requirements. For
example, we learned plugins must not send data over unencrypted channels, thus the
sandbox’s policy grants the ability to send data over the network only on the port used
for HTTPS. IoT also contains a specific data directory for plugins to use, and the sandbox
does not allow them to access the filesystem outside of that directory. In this case, MAJIC
left the framework runnable, sandboxed, and performant.

4.5.4 Sandboxing a Vulnerable Component

In Section 3.3.4, the previous chapter discussed vulnerable uses of the Java sandbox that
were supposed to secure the use of application subcomponents. In one particular case, an
open source mind mapping tool called FreeMind attempted to use the sandbox to encap-
sulate user-created Groovy scripts embedded in mind maps. We disclosed a vulnerability
in their use of the sandbox and provided a sandbox-bypassing exploit. In this section we
discuss how we sandboxed Groovy in FreeMind using MAJIC.

FreeMind’s feature set is augmented using a custom plugin system, and the Groovy
script feature is implemented as a plugin. Unlike in the previous section, we cannot simply
sandbox a specific class loader to sandbox the execution of Groovy scripts both because
we don’t want to sandbox all plugins and because the plugin system uses a class loader
from the JCL that cannot be targeted without affecting other programs. Instead, we
must sandbox Groovy and the subset of the scripting plugin that initiates the execution
of scripts.

The scripting plugin contains the core of its implentation in a class called ScriptEngine.
This class contains an internal class that extends GroovyShell to execute scripts. Static
analysis recovered all of the permissions required to fulfill FreeMind’s requirements by ana-
lyzing this internal class and Groovy, with the need to manually recover only one parameter.
After manually altering FreeMind to remove the vulnerable sandbox implementation, we
used MAJIC to successfully fulfill FreeMind’s encapsulation requirements. This stopped a
variation of our exploit as depicted in Figure 4.5. We had to modify the exploit because
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Figure 4.5: FreeMind incorrectly used the sandbox to encapsulate user-created Groovy
scripts. We removed the vulnerable implementation and used MAJIC to securely sandbox
FreeMind’s script plugin. Unlike the original implementation, our sandbox cannot be
directly disabled.

our original exploit was tailored to a custom and vulnerable security manager we removed.

4.5.5 Targeting Plugins and Performance

MAJIC’s transformations add overhead by (1) converting virtual method invocations into
slower interface invocations (StackOverflow, 2015), (2) requiring additional type casts to
convert between interface and class types for sandboxed classes used across sandbox bound-
aries, and (3) complicating the instantiation of sandboxed classes in unsandboxed code.
As a result, overhead will primarily appear at the border between unsandboxed and sand-
boxed code. To measure this overhead, we sandboxed a library in a benchmark in DaCapo
9.12-bach (Blackburn et al., 2006) where the benchmarked application’s code makes many
calls into the library.

We used HPROF (Oracle, 2015a) to measure the number of calls that could potentially
cross from sandboxed to unsandboxed code under different sandboxing scenarios for each
DaCapo benchmark separately and for DaCapo as a whole. We chose to target Xalan,
which transforms XML to HTML, because the majority of the methods called during
Xalan’s execution appear in classes from a separately packaged serialization library. Thus,
by sandboxing this library we achieve nearly worst-case overhead, which would not be the
case for any other scenario we explored.
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Table 4.2: The running times and overhead for the Xalan benchmark run in DaCapo
unaltered, uniformly sandboxed, and with just a serialization library in Xalan sandboxed.
The Xalan figures include the overhead from the Java sandbox in addition to MAJIC’s
transformations.

Case Time (ms) Overhead

Not Sandboxed 4623 -
All Sandboxed 4943 6.9%
Library Sandboxed 5245 13.5%

The three cases in Table 4.2 allowed us to measure how much overhead the Java sandbox
in general adds to isolate the overhead added by our transformations. We found that
simply setting a security manager that enforces a policy with the AllPermisssion adds
6.9% overhead and our transformations bring Xalan’s overall overhead to 13.5%.

Our measurements took place on a ThinkPad T440s Ultrabook with 12 GB of RAM and
a quad core 64-bit Intel Core i7-4600 processor at 3.3 GHz with a 4 MB cache. OpenJDK
7u79 was used to run Java applications.

4.6 Limitations

MAJIC automates much of the sandboxing process to the point that cases essentially im-
possible to correctly sandbox by hand can now be handled correctly and quickly. However,
there are several difficult cases that still remain. Due to the complex architectures imple-
mented in many modern Java applications, it is possible for developers to specify subsets
to sandbox that cause class linking and loading issues at run time. For example, many
large applications make use of custom class loaders that interfere with MAJIC’s sandbox
class loader placement for some subset definitions. This is manually fixed quickly once the
nature of the conflict is understood, but it would be better to handle them automatically.
Additionally, many applications couple classes spread across several containers through
complicated inheritance relationships, making it less obvious which classes must be in the
sandbox.

Many instances of these issues can be solved using a class loader monitor, such as
the one we used during our evaluation, that shows precisely which loaders are loading
which classes and from where. However, applications themselves sometimes get in the way
of debugging. The JVM’s class loading and linking exceptions have messages that are
difficult to understand. Applications rightfully mask or wrap these exceptions to provide
more friendly error messages, but this often hides what actually went wrong along with
the information required to begin debugging the problem.

Finally, while our design supports the creation of protection domains for distinct appli-
cation subsets, we did not write all of the code required to achieve this because the feature
is not necessary to evaluate the approach. Our prototype allows the user to pick and
sandbox only one subset. Managing multiple protection domains would require MAJIC
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to provide the user with a fine-grained way to manage domain assignment for sandboxed
classes. Furthermore, dependencies would need to be carefully managed to ensure type
checking issues do not result from the user’s desired subsets, which is a more complicated
problem when dealing with a potentially arbitrary number of domains. It is also potentially
possible to extend this design to support nested sandboxes (e.g. by allowing a loader in
one sandbox to loaded classes into an internal sandbox), which is not a case supported by
the standard Java sandbox interface.

4.7 Related Work

While little tool-supported sandboxing research has been done, others have worked in this
domain. Inoue and Forrest (2005) developed a tool for dynamically discovering the permis-
sions that a Java application needs, but it does not target subsets of applications or support
policy merging as MAJIC does. Schreuders et al. (2013b) developed the functionality-
based access control model for applying hierarchical parametrized policies to applications
built in any programming language based on their functional features. Application fea-
tures are determined for policy assignment using statically discoverable data, such as im-
ported libraries. Well adopted system-level Sandboxes such as Systrace (Provos, 2003),
SELinux (Loscocco and Smalley, 2001), and AppArmor (Cowan et al., 2000) ship with
dynamic analysis tools to help develop starter policies.

Much of the work targeting the Java sandbox has increased the scope of the sandbox
without making it easier to use. Bartoletti et al. (2009) extended the Java security model to
support history-based access control with security policies enforced by an execution monitor
woven into bytecode. Like MAJIC, this allows user to sandbox subsets of applications
without JVM changes, but it reflects a large departure from the standard Java security
model. Autrel et al. (2013) extended Java policies to support organization-based access
controls. Quarantine was created to isolate and protect Java objects accessible via the
JNI (Li and Srisa-an, 2011). Siefers et al. (2010b) extended the Java sandbox to isolate
native code via software-based fault isolation and to ensure policies enforced by a security
manager also apply to native code. Sun and Tan (2012) extended Siefer’s mechanism to
make it compatible with additional JVMs. Cappos et al. (2010b) developed a mechanism
to sandbox the standard library in Python and analyzed the effect the technique would
have on Java’s sandbox. Unlike MAJIC, these extensions require significant JVM changes
or replace much of the Java security model.

While Android sandboxes applications and does use Java, it does not include the stan-
dard Java sandbox. Android combines various mechanisms in its application framework
and the operating system to create a sandbox that is ultimately less flexible and extensi-
ble than standard Java’s. FireDroid improved flexibility by adding a policy-enforcement
mechanism for system calls (Russello et al., 2013). Aurasium (Xu et al., 2012) and App-
Guard (Backes et al., 2014) transform Android applications to include a sandbox rem-
iniscent of standard Java’s, and share our goal of requiring no system changes. These
solutions are at the granularity of an application, but Compac sandboxes third-party ap-
plication components (Wang et al., 2014). XiOS brings a similar style of fine-grained access
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control to Apple’s iOS, again without requiring invasive system changes (Bucicoiu et al.,
2015).

4.8 Conclusion

We discussed the design and implementation of MAJIC, a tool that assists developers in
applying the Java sandbox to applications in whole or in part. Our tool contributes the
ability to quickly and accurately perform two operations that were previously tedious,
manual, and error prone: recovering policies from arbitrary Java code and sandboxing
subsets of Java applications with different policies. Where MAJIC cannot automate the
sandboxing process it helps developers make correct decisions or checks their work. Appli-
cations sandboxed with MAJIC run 6.9% slower overall due to use of the sandbox. In one
nearly worst-case experiment we measured 6.6% overhead at borders between sandboxed
and unsandboxed code on unmodified JVMs.

We suggest the following guidelines to reduce the burdens involved in sandboxing ap-
plication subsets:

• Consider desired sandbox boundaries from the beginning of an application’s design.
• Limit the use of reflection to cases that do not cross sandbox boundaries.
• Group classes in packages and JARs based on the protection domains they should

appear in.
• Limit coupling between classes that should appear in different domains, particularly

the use of inheritance.

However, compliance will be difficult due to the large number of existing frameworks
and libraries developed without knowledge of these guidelines. Furthermore, while these
guidelines make tooling easier to use, they do not necessarily simplify manual sandboxing.
Even if the guidelines are followed ideally and manual sandboxing is possible, MAJIC is
still required to help recover and refine a policy.

Changing the JDK, particularly the policy language, to allow code sources to specify
individual classes could reduce or eliminate the burdens of partitioning classes, minimiz-
ing coupling, and dealing with class loader conflicts. However, these changes are onerous
enough politically and technologically that we chose to face complexity in our transforma-
tions rather than incur the costs of overcoming existing inertia.

In this and the previous chapter we eliminated some unnecessary complexity in the Java
sandbox and overcame necessary complexity through the use of tooling. Many sandboxes
contain complexity points that lead to vulnerabilities. In the next chapter we once again
broaden our scope to explore sandbox failures (a side-effect of complexity) and contain
those failures using an architecture that leverages cloud computing environments.
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Chapter 5

In-Nimbo Sandboxing12

The sandboxes discussed to this point have all been in-situ, existing within the system
being defended. We saw in the case of Java that when the sandbox fails the host machine
is compromised. In this chapter we explore similar failures in other sandboxes and devise
an architecture for containing unwanted outcomes resulting from the failures. While the
architecture generalizes, we use sandboxes for rich file formats to focus our efforts and
evaluation.

Rich file formats such as Adobe’s PDF and Microsoft’s DOCX and PPT illustrate the
need for sandboxes. PDF is essentially the Internet’s paper. PDFs are used to present
scientific literature, engineering and software datasheets, operating manuals for most prod-
ucts, legal and tax documents, and essentially anything else where layout and presentation
preservation are important. Similar cases can be made for Microsoft’s Word and Power-
Point formats. However, none of the listed formats represent static passive content. PDF
in particular allows the embedding of fully capable programming languages, movies, audio,
3D models, and interactive forms. The viewers for these formats have been written in
weakly typed languages (primarily C/C++) for decades to accommodate such rich behav-
ior without compromising performance. This results in applications that are intractable to
verify for security attributes. Combining rich feature sets with unverifiable code has led to
viewers rife with vulnerabilities.

Given how precarious this situation is, it is little surprise that malicious actors have and
continue to leverage these formats to compromise unsuspecting users. The most common
attack sequence, known as spear phishing, involves an actor sending a carefully crafted
email to a targeted recipient with a subtly corrupted file attached. For example, a govern-
ment official may be emailed a reminder about an upcoming and relevant conference with
a flyer attached with more information. When opened, the flyer exploits the viewer and
compromises the recipient’s machine. Vendors have responded by leveraging the power of
sandboxes. Adobe sandboxed the parser and renderer for PDF using a version of Google
Chrome’s sandbox and Microsoft introduced Protected Mode to achieve a similar effect for
the Microsoft Office suite. However, these sandboxes have been successfully attacked.

1Nimbo is Latin for “cloud.”
2This chapter was adapted from a paper written with help from William Scherlis and Jonathan Aldrich.

It is published in “Symposium and Bootcamp on the Science of Security” 2014
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In the case of PDF, one common suggestion from the security community is to deal with
this issue by using alternative PDF viewers (Landesman, 2010; Patrik, 2009; Scherschel,
2012), which may not suffer from the same vulnerabilities. But in fact many of these share
code, because Adobe licenses its PDF parser and renderer (Systems, 2012). The advice
nonetheless has some merit because even if an alternative viewer contains the exact same
vulnerability as Reader, an exploit PDF that targets Reader won’t necessarily work “out
of the box” on an alternative. Many organizations, however, have grown dependent on
PDF’s more exotic features, such as fly-through 3D models, forms that can be filled out
and then digitally signed by a user using hardware tokens, or embedded multimedia in a
wide range of formats. Alternative readers have historically not supported the full range
of PDF features, and often still do not, because exotic features are often expensive to
implement and may be used in small niches.

Let us consider, therefore, an example organization with needs that require use of
Adobe Reader, which has a significant, complex attack surface to defend. To gauge the
attack surface, we examined the vulnerability streams (essentially RSS feeds of vulnerability
reports) provided by NIST’s National Vulnerability Database. We only used streams that
contained a full years worth of data as of 2013. We found relevant vulnerabilities by
searching entries that contain a cpe-lang:fact-ref field with a name attribute containing the
text adobe:reader, adobe:acrobat, or adobe:acrobat reader. We found great diversity in
where the vulnerabilities reside in the code, as shown in Figure 5.1. This distribution was
determined by coding all entries by hand that were identified as belonging to Reader and
where the coded Common Weakness Enumeration (CWE) explicitly or implicitly identified
a component. Thus, the results likely understate the diversity of vulnerabilities in Reader.
How can the organization that must use Adobe Reader deal with this extensive attack
surface?

Others have attempted to detect malicious PDFs (Cert-IST, 2010; Dixon, 2012; Es-
parza, 2012; Fratantonio et al., 2011; Laskov and Srndic, 2011; Maiorca et al., 2012; Nedim
Srndic and Pavel Laskov, 2013; Smutz and Stavrou, 2012; Tzermias et al., 2011) with mod-
est success even in the best cases. A systematic analysis (Maiorca et al., 2013) substantiates
the inadequacy of many techniques for detecting malicious PDFs. We believe that even if
detection methods advance, they will never be adequate against advanced attackers. The
sheer complexity involved in detecting every possible attack in a format as massive as
PDF is prohibitive. Thus, even given the successful attacks against deployed sandboxes we
maintain that using sandboxes to encapsulate risky components is a reasonable engineering
decision in these circumstances.

Contribution. This chapter acts as an additional case study in the value of sand-
boxing and acknowledges that sandboxes are imperfect and sometimes fail. We present
and evaluate an application-focused sandboxing technique that is intended to address both
sides of the risk calculation – mitigating the consequences of traditional sandbox failures
while also increasing the effort required by an attacker attempting to compromise the target
system. Our technique is reminiscent of software as a service, thus allowing us to evaluate
the security benefits of those and similar architectures. We present the technique, describe
a prototype we developed to support a field trial deployment, and assess the technique
according to a set of defined criteria. These steps act to validate the following hypotheses
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Figure 5.1: The distribution of vulnerabilities in Reader amongst identifiable components.
This distribution is intended to show that problems in Reader are so diverse there is no
clear place to concentrate defensive efforts other than sandboxing.
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about the technique:

• Attack Surface Design Flexibility: In-nimbo sandboxing provides flexibility in attack
surface design. We focus on tailoring the sandbox to the application, which doesn’t
allow for a “one size fits all” implementation. Our technique allows architects to
more easily design and implement an attack surface they can confidently defend when
compared to other techniques. This is because the technique is less constrained by
structures within an existing client system.

• Attack Surface Extent: Our technique results in encapsulated components with
smaller, more defensible attack surfaces compared to the cases where the compo-
nent is encapsulated using other techniques. Along with the previous criterion, this
should have the effect of diminishing the “likelihood” part of the risk product.

• Consequence of Attack Success: Remote encapsulation reduces the consequences of
attack success. Our technique reduces the magnitude of the damage resulting from
an attack on the encapsulated component when compared to the same attack on the
component when it is encapsulated using other techniques. That is, we suggest the
approach diminishes the extent of consequence in the risk product.

We also apply the following criteria:

• Performance: We focus on latency and ignore resource consumption. The technique
slightly increases the user-perceived latency of an encapsulated component compared
to the original version of the component. This is based on data from our field-trial
deployment, and in this regard we do benefit from the fact that the encapsulated
component is a large, complex, and relatively slow vendor application.

• Usability: We focus on changes to the user experience as well as ease of deployment.
The technique does not substantially alter the user’s qualitative experience with the
encapsulated component after sandbox initialization. Deployment is straightforward,
as described below.

As alluded to above, we evaluate these points based on data from a field trial with
disinterested users at a large aerospace company. Performance measurements were taken
from this deployment. We should note that we were not able to control all features of the
deployment, and there was some architectural mismatch with respect to communications
channels and cloud architecture. Additionally, our system is an operationalized prototype
with some inconvenient design choices. The data we obtained nonetheless suggests that
the approach offers real benefits – even in the presence of these limitations.

The next section briefly discusses the state of sandboxes in practice to illustrate the
need for a new technique. Our technique is further motivated in Section 5.2. We discuss an
in-nimbo sandbox prototype we built and deployed for Adobe Reader and its performance
in section 5.3. Section 5.4 compares the in-nimbo sandbox with applying a local sandbox to
Reader. We look at thought experiments for applying in-nimbo sandboxing in Section 5.5
before discussing possible extensions in Section 5.6.
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5.1 Sandboxes in Practice

In practice, sandboxes tend to combine a number of distinct encapsulation techniques to
achieve their goal. For example:

• chroot sandboxes (commonly referred to as chroot jails) redirect the root of the
filesystem for a specific application (Friedl, 2012). This redirection has the effect of
preventing the application from accessing files that are not below what it sees as the
filesystem root.

• Google NaCl applies SFI and runtime isolation to prevent memory corruption ex-
ploits in native code and to constrain what the native code can do at runtime respec-
tively (Yee et al., 2009).

• Microsoft Internet Explorer’s Protected Mode works by constraining the execution
of risky components, such as the HTML renderer, using rules encoded as integrity
levels (MSDN, 2011).

• TxBox intercepts all of the system calls made by an application and ensures the calls
do not violate a security policy (Jana et al., 2011).

• TRuE intercepts systems calls, employs SFI, and redirects system resources (Payer
et al., 2012).

The combination of techniques applied by each sandbox varies both the types of policies
that can be enforced by the sandbox (Clarkson and Schneider, 2010; Hamlen et al., 2006)
and how usable the sandbox is for the architect applying it. A chroot jail cannot prevent
the execution of arbitrary code via a buffer overflow, but chroot jails can make sensitive
files unavailable to the arbitrary code and are quick and easy to deploy when compared to
applying Google NaCl to a component. Of course, these two sandboxes are not intended
to encapsulate the same types of applications (locally installed desktop applications versus
remote web application components), but the comparison does illustrate that the tech-
niques applied by a sandbox have an impact on both how widely a particular sandbox can
be applied and how it can fail to protect the underlying system.

Software complexity adds an additional wrinkle. Consider Adobe Reader, which has a
robust PDF parser, a PDF renderer, a JavaScript engine, a Digital Rights Management
engine, and other complex components critical to the application’s function. It may be
extremely difficult to find a sandbox with the right combination of techniques to effectively
encapsulate Reader without introducing significant complexity in applying the sandbox
itself. Even when breaking up these components for sandboxing purposes, the architect
must apply a sandbox where the combination of sandboxing techniques is powerful enough
to mitigate the threats faced by the component while also applying the techniques in
a manner that is acceptable given the unique characteristics and requirements of each
sandboxed computation. Additionally, the sandboxed components must be composed in a
way where the composition is still secure (Mantel, 2002; Sewell and Vitek, 1999). If the
combination is not secure, it may be possible for an attacker to bypass the sandbox, e.g.
by hopping to an unsandboxed component. The complexity may make the sandbox itself
a target, creating an avenue for the attacker to compromise the sandbox directly.
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5.2 In-Nimbo Sandboxing

This section motivates the need for in-nimbo sandboxing by looking closer at general weak-
nesses in traditional sandboxes and discusses characteristics of a more suitable environment
for executing potentially vulnerable or malicious computations. We then discuss a general
model for in-nimbo sandboxing that approximates our ideal environment.

5.2.1 Why In-Nimbo Sandboxing?

Most mainstream sandboxing techniques are in-situ, meaning they impose security policies
using only Trusted Computing Bases (TCBs) within the system being defended. In-situ
sandboxes are typically retrofitted onto existing software architectures (McQuarrie et al.,
2010a,b,c; Office Support, 2012; Schuh, 2012; Stender, 2010; Uhley and Gwalani, 2012)
and may be scoped to protect only certain components: those that are believed to be both
high-risk and easily isolatable (Project, 2012; Sabanal and Yason, 2011). Existing in-situ
sandboxing approaches decrease the risk that a vulnerability will be successfully exploited,
because they force the attacker to chain multiple vulnerabilities together (Buchanan et al.,
2012; Obes and Schuh, 2012) or bypass the sandbox. Unfortunately, in practice these tech-
niques still leave a significant attack surface, leading to a number of attacks that succeed
in defeating the sandbox. For example, a weakness in Adobe Reader X’s sandbox has been
leveraged to bypass Data Execution Prevention and Address Space Layout Randomization
(ASLR) due to an oversight in the design of the sandbox (Delugre, 2012). Experience
suggests that, while in-situ sandboxing techniques can increase the cost of a successful
attack, this cost is likely to be accepted by attackers when economic incentives align in
favor of perpetrating the attack.3 The inherent limitation of in-situ techniques is that
once the sandbox has been defeated, the attacker is also “in-situ” in the high-value target
environment, where he can immediately proceed to achieve his goals.

In order to avoid the inherent limitations of in-situ sandboxing approaches, we propose
that improved security may be obtained by isolating vulnerable or malicious computations
to ephemeral computing environments away from the defended system. Our key insight
is that if a vulnerable computation is compromised, the attacker is left in a low-value
environment. To achieve his goals, he must still escape the environment, and must do so
before the ephemeral environment disappears. The defender controls the means by which
the attacker may escape, shaping the overall attack surface to make it more defensible,
thereby significantly increasing the cost of attacks compared to in-situ approaches while
simultaneously reducing the consequences of successful attacks.

We use the term ephemeral computing environment to refer to an ideal environment
whose existence is short, isolated (i.e. low coupling with the defended environment), and
non-persistent, thus making it fitting for executing even malicious computations. A number
of environments may approach the ideal of an ephemeral computing environment, for
example, Polaris starts Windows XP applications using an application-specific user account

3Google Chrome went unexploited at CanSecWest’s Pwn2Own contest for three years. Then in 2012,
Google put up bounties of $60,000, $40,000, and $20,000 in cash for successful exploits against Chrome.
Chrome was successfully exploited three times (Goodin, 2012).
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that cannot access most of the system’s resources (Stiegler et al., 2006). Occasionally
deleting the application’s account would further limit the scope of a breach. Terra comes
even closer by running application specific virtual machines on separate, tamper resistant
hardware (Garfinkel et al., 2003b). Terra requires custom hardware, complicated virtual
machine and attestation architectures, and doesn’t outsource risk to third parties. In this
chapter we focus on cloud environments. Cloud computing closely approximates ephemeral
environments, as a virtual computing resource in the cloud is isolated from other resources
through the combination of virtualization and the use of separate infrastructure for storage,
processing, and communication. It may exist just long enough to perform a computation
before all results are discarded at the cloud. We call this approach in-nimbo sandboxing.

Executing computations in the cloud gives defenders the ability to customize the com-
puting environment in which the computation takes place, making it more difficult to
attack. Since cloud environments are ephemeral, it also becomes more difficult for at-
tackers to achieve persistence in their attacks. Even if persistence is achieved, the cloud
computing environment will be minimized with only the data and programs necessary to
carry out the required computation, and so will likely be of low value to the attacker.
There may still be some value to the attacker in the compromised cloud machines, but this
is now the cloud provider’s problem, which he is paid to manage. This ability to outsource
risk to the provider is a significant benefit of in-nimbo sandboxing from the point of view
of the client. In order to escape to the high-value client environment, the attacker must
compromise the channel between the client and the cloud. However, the defender has the
flexibility to shape the channel’s attack surface to make it more defensible.

To make the idea of in-nimbo sandboxing clear, consider Adobe Reader X. Delegating
untrusted computations to the cloud is quite attractive for this application, as Reader in
general has been a target for attackers over several years. As described more in Section 5.3,
we have built and experimentally deployed in an industrial field trial an in-nimbo sandbox
for Reader that sends PDFs opened by the user to a virtual machine running in a cloud. An
agent on the virtual machine opens the PDF in Reader. Users interact with the instance of
Reader that is displaying their PDF in the cloud via the Remote Desktop Protocol (RDP).
When the user is done with the document, it is saved back to the user’s machine and the
virtual machine running in the cloud is torn down. This example illustrates how a defender
can significantly reshape and minimize the attack surface.

5.2.2 General Model

There are good reasons to reduce the Trusted Computing Base (TCB) required to execute
applications and entire operating systems (McCune et al., 2008a,b; McCune et al., 2010b;
Singaravelu et al., 2006). The idea is to completely isolate unrelated computations from
each other, and to use a TCB that is small enough to be verified, thus reducing and
localizing the attack surface to a small, thoroughly vetted subset of the system’s code.

In-nimbo sandboxing addresses this challenge by providing designers, even when work-
ing in legacy environments, with the flexibility to design TCB(s) to suit their specific
context, thus channeling the attacker to a designer-chosen attack surface. This is signif-
icantly more flexible as it allows designers to achieve the benefits of a minimal TCB in
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current commodity hardware/software systems, largely unconstrained by the particular
engineering decisions of those systems. When applying in-situ sandboxes, an architect is
limited to applying the sandboxing techniques that are supported by the instruction set,
operating system, application type, etc., of the system she is trying to defend. These chal-
lenges can be particularly difficult to address when vendor software must be sandboxed.
However, in-nimbo sandboxes can limit the majority of the attack surface to the communi-
cation channel between the client and the cloud. The designer can design a communication
channel they are adequately prepared to defend.

In general, in-nimbo sandboxes contain the following:

• A specialized transduction mechanism in the computing environment we are
trying to protect (the principal computing environment) that intercepts invocations
of untrusted computations and transfers them to the high value TCB Architecture
(see below) on the same system. The transduction mechanism also receives results
from the high value TCB architecture and manages their integration into the rest of
the system.

• A high value TCB architecture that sends the untrusted computation and any
necessary state to an ephemeral computing asset, separate from the principal comput-
ing asset. The high value TCB architecture receives the results of the computation
and state from the cloud, verifies both, and transfers them back to the transduction
mechanism. We use the term TCB architecture to reflect the fact that our TCB(s)
may be nested in or otherwise cooperate with another TCB (e.g., another sandbox).
The nested TCBs can thus compensate for each other’s faults and oversights and add
redundancy. An attacker must counter each TCB in the architecture to compromise
the overall system. In the case of the high value TCB architecture, this could allow
an attacker to compromise the system we are trying to defend.

• The cloud executes untrusted computations in a low value TCB architecture
and sends results and state back to the high value TCB architecture.

The components and their data flows are depicted in Figure 5.2. By picking these com-
ponents and the contents of the data flows, the defenders effectively channel an antagonist
to an attack surface the defenders are confident they can protect. An attacker must bypass
or break every TCB in both TCB architectures or bypass the transduction mechanism to
successfully compromise the high value environment.

5.2.3 Complementary Prior Work

Malkhi et al. developed a technique in 1998 for executing Java applets that is remarkably
similar to in-nimbo sandboxing in both intent and high level architecture (Malkhi et al.,
1998) (we were not aware of this work until well after publishing our original paper on
in-nimbo sandboxing). When a user’s browser requests an applet, the applet is instead
transferred to a remote dedicated machine for execution. The downloaded code is trans-
formed before execution to use the initiating browser as a graphical terminal for interacting
with the applet as if it is running locally. A web proxy is used as the transduction mech-
anism and an applet that acts as the viewer in the user’s browser is the high value TCB.
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Figure 5.2: A general model of an in-nimbo sandboxing showing the transduction mech-
anism and the TCB architecture model. The circles with dashed borders represent one
or more TCBs that contain the primary TCBs in each environment. The primary TCB
in the high value environment (TCBHV1) is responsible for sending requests and state to
the low value environment’s primary TCB (TCBLV1). TCBLV1 performs any necessary
computations and returns state and results to the TCBHV1, which must verify the results.
The transduction mechanism moves computations and results into and out of the high
value TCB architecture respectively.

This viewer uses a novel combination of Remote Method Invocation (RMI) and Java Ab-
stract Window Toolkit (AWT) stubs to allow for remote interaction. As a result, Malkhi’s
sandbox is tied to the Java Virtual Machine, and cannot be used to sandbox non-Java
technologies. In-nimbo sandboxing generalizes these basic principles to other technologies
and modernizes their implementation. While Malkhi makes many of the same arguments
for remotely sandboxing untrusted code that we do, we use a structured evaluation that
goes well beyond the ad hoc arguments Malkhi presents.

Martignoni et al. have applied cloud computing to sandbox computations within the
cloud in an approach that is complementary to ours (Martignoni et al., 2012). Their
trust model reverses ours: whereas our model uses a public, low-trust cloud to carry
out risky computations on behalf of a trusted client, they use a private, trusted cloud
to carry out sensitive computations that the client is is not trusted to perform. They
utilize Trusted Platform Modules to attest to the cloud that their client-end terminal is
unmodified. They must also isolate the terminal from any malicious computations on
the client. Our technique assumes security precautions on the side of the public cloud
provider—an assumption we feel is realistic, as cloud providers already have a need to
assume this risk.

The scenarios supported by the two techniques are complementary, allowing the appli-
cation of the two techniques to different components of the same system. For example,
Martignoni’s sandbox may be used for performing particularly sensitive operations such as
online banking, while our technique is useful in the same system for executing untrusted
computations from the Internet. These choices reflect the varying trust relationships that
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are often present in software systems.
Nakamoto et al. published a technique they call Desktop Demilitarized Zones (Nakamoto

et al., 2011) that was developed in parallel with the project discussed in this chapter. They
use virtual machines running in network demilitarized zones (DMZ) to sandbox applica-
tions that interact with non-enterprise assets. For example, if a user clicks a link to an
external web page, they are silently redirected to a browser running in a virtual machine
in the DMZ instead of using their local browser. The machines in the DMZ are refreshed
hourly to ensure compromised machines do not stay compromised for long. Due to their
presence in the DMZ, these machines have access to the Internet but not directly to the
internal network. Users interact with the sandboxed application via the RDP. There is
little security analysis provided for their specific approach. The technical details suggest
the approach is superficially similar to in-nimbo sandboxing, but in-nimbo sandboxing fur-
ther specializes machines to enable more confident security analysis. In our correspondence
with the authors of this paper, they pointed out that their technique can be observed in a
commercial product now sold by Invincea,4 although this and other similar products were
not developed by the authors.

5.3 Case Study

In-nimbo sandboxing can be applied to sandboxing entire applications or just selected
components/computations. In this section we discuss the design of an in-nimbo sandbox
for Adobe Reader that we prototyped and experimentally deployed at a large aerospace
company. We then discuss the basis for comparing the sandbox with an in-situ sandbox
for Adobe Reader. In the last section, we discuss other uses for in-nimbo sandboxes.

5.3.1 Design

To demonstrate the ability of an in-nimbo sandbox to support rich features, we set out with
the goal of designing and building a sandbox for Reader that can support a user clicking
links in a PDF, filling out and saving forms, interacting with multiple PDFs in the same
session, printing PDFs, copying and pasting data to and from a PDF, and interacting with
an embedded 3D model. We neglect features such as signing PDF documents with a smart
card and several other non-trivial features Adobe advertises (though these features are
likely supported via the RDP implementation we used). As an additional convenience, we
decided that any Reader settings changed by the user should persist across their sandbox
sessions. These design choices ensure the user’s interactions with in-nimbo Reader are
substantially similar to their typical interactions with in-situ Reader. In fact, aside from
a few missing but less commonly used features, the user’s interaction only differs in the
appearance of the window chroming.

Figure 5.3 shows a high-level structural model of our prototype in-nimbo sandbox for
Adobe Reader. The transduction mechanism consists of a file association between the PDF
file extension and nimbo client.py. This small script and its infrastructure is the primary

4https://www.invincea.com/
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Figure 5.3: An in-nimbo sandbox for Adobe Reader.

TCB in the high value environment (24 lines of Python + Java RDP). When a PDF file
is opened nimbo client.py transfers the file to nimbo server.py running in a cloud virtual
machine instance. If a sandboxed session does not yet exist, a new session is created.
Otherwise, the new PDF is opened as a new tab in the already open instance of Reader.

The user interacts with PDFs opened in the sandboxed version of Reader over an
encrypted RDP connection. When Reader, the RDP session, or the RDP client is closed,
all of the PDFs in the sandbox are sent back to nimbo client.py. The PDFs must be
returned to the high value client environment because the user may have performed an
operation in the sandbox that changed the PDF, such as filling out and saving a form.
After the PDFs are returned, nimbo server.py restores the home directory of the in-nimbo
user account that runs Reader to its original state. The cloud environment can always start
virtual machines from a clean template, but alternatively resetting the home directory can
enable a virtual machine to be re-used, e.g., due to high congestion. The account that runs
Reader has limited access to the rest of the system.

When a user clicks a web link in a PDF, that link is sent to the nimbo client.py and
opened on the workstation. If the user does not want links to be opened on their worksta-
tion due to the risk of loading a potentially malicious site, they could instead have links
opened in an in-nimbo version of their favorite browser. In this way, in-nimbo sandboxes
can be composed. Sandbox composition is useful in this case because it prevents any one
sandbox from becoming too complicated, and, in particular, having an overly rich attack
surface.
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5.3.2 Performance

Our prototype sandbox’s performance evaluation is limited by two factors: transfer rates
and inefficiencies in the cloud virtual machine set-up for the field trial. But even with
inefficiencies in the virtual machine set-up, user perception of performance is comparable
with Reader’s performance locally. Transfer rates dominate the time between when a user
opens a PDF and when the user can interact with the PDF, but this rate is typically
limited by the connection’s upload rate at the workstation. As a result, the upload time
statistics presented in this section are not intrinsic to in-nimbo sandboxing and may vary
with different connections. The statistics were gathered in our field trial using an in-nimbo
sandbox that was deployed as the company would typically deploy cloud applications.
The measurements as a whole provide evidence that the approach performs acceptably for
typical users.

The Python scripts use the same efficient file transfer schemes used by FTP clients. The
server prototype in the cloud implements several optimizations, including queuing virtual
machines with Reader already running and waiting for a user to connect. However, the
infrastructure software running on the cloud virtual machines is not optimized for this use
case. For example, establishing a connection with RDP would be faster if the connection
was initialized ahead of time (i.e. subsequent connections via RDP to the virtual machine
are much faster than the first connection). This is a side-effect of our choice to use Linux,
X server, and xrdp. The issue does not exist on Windows with the RDP server Microsoft
provides. It is also possible that xrdp can be modified to remove the issue. Table 5.1
summarizes results from our industrial collaborator who used an internal cloud and a
Microsoft Windows client.

We measured performance with our collaborator by opening a 1 megabyte (MB) PDF
ten times. We decided to use a 1 MB PDF after inspecting a corpus of about 200 PDFs
characteristic of the use cases of the users and averaging the sizes of its contents. The
corpus was collected by an engineer over three years and included the types of PDFs an
average engineer encounters throughout their day: brochures, technical reports, manuals,
etc. Most PDFs in the corpus were on the order of a few hundred kilobytes, but a small
number of the PDFs were tens of MB in size.

For our measurements the high-value environment was 1,800 miles away from the dat-
acenter hosting our cloud. While we parallelize many of the operations required to get to
the point where the user can interact with the PDF, the largest unit of work that cannot be
comfortably parallelized is transferring the PDF itself. In our tests, the user could interact
with our 1 MB PDF within 2.1 seconds, which is comparable to the 1.5 seconds it takes
to interact with a PDF run in Reader locally instead of in-nimbo. The Reader start-up
difference is due to the fact that the virtual machine is much lighter than the workstation.
The virtual machine doesn’t need to run anti-virus, firewalls, intrusion prevention systems,
productivity software, and other applications that slow down the workstation.

Though our sandbox increases the startup time, sometimes by several seconds in the
case of large PDFs due to the transfer time, we observed no performance issues on standard
broadband connections in the United States when interacting with the PDF. The sandbox
also performed well when running malicious PDFs that were collected when they were used
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PDF Size 1 MB
Average upload time 2.1 +/- 0.3 seconds*
Average Adobe Reader start time in-nimbo 0.5 seconds
Average time to establish RDP channel 1.5 seconds
Average time until user can interact 2.1 seconds
Distance from client to cloud 1,800 miles
Average Adobe Reader start time in-situ 1.5 seconds

Table 5.1: Performance metrics for an in-nimbo sandbox using a cloud internal to an
enterprise and a Microsoft Windows client. Figures based on 10 runs. The upload time is
the primary bottleneck.
*Confidence level: 95%

in attempted attacks targeted at our collaborator’s employees. The malware did not escape
the sandbox, nor did it persist across sessions. These results suggest that this technique is
currently best applied to longer running, interactive computations unless the running time
for the entire initialization process is negligible. The aerospace company initially rejected a
proposal to transition the sandbox into production for day-to-day use by high-value targets
within the company (e.g. senior executives). However, this decision was made due to a
lack of resources and now, three years later, they are once again considering a production
deployment.

5.3.3 Limitations

The sandbox prototype does not support the most recent features of PDF because we
used the Linux version of Reader, which is stuck at version 9. This limitation is an
accidental consequence of expedient implementation choices and is not intrinsic to in-
nimbo sandboxing. It is possible, for example, to instead run Windows with the latest
version of Reader in the cloud virtual machine, but this set-up would not substantially
influence the performance results given the dominance of the transfer rate. (Furthermore,
it is possible to run newer Windows versions of Reader in Linux. Adobe Reader X currently
has a Gold rating in the WINE AppDB for the latest version of WINE (HQ, 2014). The
AppDB claims that a Gold rating means the application works flawlessly after applying
special, application specific configuration to WINE.)

Our malware test of the sandbox is limited by the fact that we didn’t have access to
malicious PDFs directly targeting Linux or malware that would attempt to break out of
our sandbox.
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5.4 In-Nimbo Adobe Reader vs. In-Situ Adobe Reader

X

In this section we make a structured comparison between our in-nimbo sandbox for Reader
with an in-situ Adobe Reader. First, we summarize the framework used for the comparison,
and then we apply the framework. The purpose of the framework is to support a systematic
exploration of our hypothesis that in-nimbo sandboxing leads to attack surfaces that (1) are
smaller and more defensible and (2) offer reduced consequences when successful attacks do
occur. The framework is necessarily multi-factorial and qualitative because quantification
of attack surfaces and the potential extent of consequences remains elusive.

5.4.1 Structuring the Comparison

To compare sandboxes we consider what happens when the sandbox holds, is bypassed,
or fails. A sandbox is bypassed when an attacker can accomplish his goals by jumping
from a sandboxed component to an unsandboxed component. A sandbox fails when an
attacker can accomplish his goals from the encapsulated component by directly attacking
the sandbox. The key distinction between a sandbox bypass and a failure is that any
malicious actions in the case of a bypass occur in a component that may have never been
constrained to prevent any resulting damage. In a failure scenario, the malicious actions
appear to originate from the sandbox itself or the encapsulated component, which creates
more detectable noise than the case of a bypass. A bypass can occur when an insufficient
security policy is imposed, but a failure requires a software vulnerability. These dimensions
help us reason about the consequences of a sandbox break, thus allowing us to argue where
in the consequences spectrum a particular sandbox falls within a standard risk matrix. To
place the sandbox in a risk matrix’s likelihood spectrum (i.e. the probability of a successful
attack given the sandbox), we consider how “verifiable” the sandbox is. Our risk matrix
only contains categories (e.g. low, medium, or high) that are meaningful to the comparison
at hand. Finally, we rank the outcomes that were enumerated within the argument by their
potential hazards, which helps highlight the difference between risk categories.

5.4.2 Comparing In-Nimbo Adobe Reader to In-Situ Adobe Reader

Adobe Reader X’s sandbox applies features of Microsoft Windows to limit the damage that
an exploit can do. The Reader application is separated into a low privilege (sandboxed)
principal responsible for parsing and rendering PDFs and a user principal responsible for
implementing higher privilege services such as writing to the file system. The sandboxed
principal is constrained using limited security identifiers, restricted job objects, and a
low integrity level. The higher privilege principal is a more stringently vetted proxy to
privileged operations. The sandboxed principal can interact with the user principal over
a shared-memory channel. The user principal enforces a whitelist-based security policy on
any interactions from the sandboxed principal that the system administrator can enhance.
Under ideal circumstances the sandboxed principal is still capable of reading secured objects
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In-Situ Reader X

Install malware on the defended workstation
Perform any computation the user principal can perform
Exfiltrate workstation data on the network
Read files on the workstation filesystem

In-Nimbo Reader

Spy on opened PDFs in the cloud
Abuse cloud resources for other computations

Figure 5.4: Likely sandbox “consequence outcomes” ranked from most damaging at the
top to least damaging at the bottom. Each sandbox’s outcomes are independent of the
other sandbox’s.

(e.g., files and registry entries),5 accessing the network, and reading and writing to the
clipboard without help from the user principle.

The consequences of an attack on Reader, even when the sandbox holds, are high. In
its default state, a PDF-based exploit could still exfiltrate targeted files over the network
without any resistance from the sandbox. If the sandbox is successfully bypassed, the
attacker can leverage information leakages to also bypass mitigations such as ASLR as
mentioned in Section 5.2.1. Such bypasses, which are publicly documented, are likely to be
serious enough to allow a successful attack to install malware on the targeted machine. If
other bypass techniques exist, they could allow an attacker to perform any computations
the user principal can perform. These outcomes are ranked from most to least damaging
in Figure 5.4. Overall, the consequences generally fall into one of the following categories:

• The integrity of the PDF and viewer are compromised

• The confidentiality of the PDF is compromised

• The availability of reader is compromised

• The security (confidentiality, integrity, availability) of the cloud infrastructure is
compromised

• The security of the high value environment is compromised

The Reader sandbox is moderately verifiable. It is written in tens of thousands of
lines of C that are heavily based on the open-source sandbox created for Google Chrome.
The design and source code were manually evaluated by experts from several independent
organizations who also implemented a testing regime. According to Adobe, source code
analysis increased their confidence in the sandbox as its code was written. The operating
system features on which it depends are complex; however, they were implemented by
a large software vendor that is known to make use of an extensive Secure Development
Lifecycle for developing software (Michael Howard and Steve Lipner, 2006).

5Windows Integrity Levels can prevent read up, which stops a process from reading objects with a
higher integrity level than the process. Adobe did not exercise this capability when sandboxing Adobe
Reader X.
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We split the analysis as it pertains to the in-nimbo case based on the attacker’s goal. In
the first case, the attacker is either not aware of the in-nimbo sandbox or for other reasons
does not change their goal from the in-situ case (i.e. they still aim to successfully attacker
just Reader). In the second case, we consider an attacker that is aware of the in-nimbo
sandbox and wants to compromise the workstation. When the attacker’s goal does not
change the consequences of a successful attack are lower in the in-nimbo case. When the
attacker wants to compromise the workstation, the consequences of a successful attack are
the same as in the in-situ case, but the odds of success (likelihood component) are lower.

Attacker Goal: Compromise Reader

Figure 5.5 summarizes our qualitatively defined risk for Reader X’s sandbox against Reader
running in our in-nimbo sandbox when the attacker’s goals have not changed. The in-nimbo
sandbox has a lower consequence (from the standpoint of the user) because exploits that are
successful against Reader may only abuse the cloud instance Reader runs in. The operator
of the cloud instance may re-image the instance and take action to prevent further abuse.
However, to abuse the cloud instance the attacker would have to both successfully exploit
Reader and bypass or break additional sandboxing techniques we apply in the cloud. The
exploit must either not crash Reader, or its payload must survive the filesystem restoration
and account log-off that would occur if Reader crashed due to the exploit (see 5.3 for
details). We consider this analysis to be reasonable evidence to support our hypothesis
that the in-nimbo sandbox can lead to reduced consequences in the event of successful
attacks.

Attacker Goal: Compromise the Workstation

Assuming the attacker is aware of the in-nimbo sandbox and wants to compromise the
workstation, the consequences of attack success remain the same as the in-situ case. The
in-nimbo case is still better off, however, because the likelihood of success is diminished
due to the smaller and flexible attack surface presented by the in-nimbo sandbox.

The attacker could potentially bypass the sandbox by tricking our mechanism into
opening the PDF in a different locally installed application capable of rendering PDFs.
For example, the attacker may disguise the PDF file as an HTML file, causing it to be
opened in the browser if the transduction mechanism is only based on file associations.
The browser might have an add-on installed that inspects the document, determines it is a
PDF regardless of extension, and then renders the PDF. While this attack would eliminate
the benefit of the sandbox, it is not likely to be successful if the user verifies there is not a
local PDF viewer installed/enabled (an important part of configuration). The transduction
mechanism can also simply use a richer means of determining whether or not a file is a
PDF.

The sandbox could fail in a way that compromises the user by either an exploitable
vulnerability in our 273 line Python-based TCB (and its infrastructure), the Java RDP
client we use, or a kernel mode vulnerability exploitable from either. Such a failure would
require first successfully compromising the cloud instance as discussed earlier and then
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finding an interesting vulnerability in our small, typesafe components. In other words, a
failure of the sandbox requires that the TCBs in both the client and the cloud fail.

In short, the in-nimbo sandbox is easier to verify and requires more work for an attacker
to achieve enough access to compromise the client. Adobe Reader X’s sandbox is harder to
verify and allows the workstation it is running on to be compromised even if the sandbox
holds. Due to the well known characteristics of each sandbox, we consider this evaluation to
be reasonable evidence of the validity of our hypotheses that in-nimbo sandboxing leads to
smaller, more defensible attack surfaces. While we only evaluated one sandbox in addition
to the in-nimbo sandbox and for only one application, the results of the evaluation are
largely influenced by issues that are fundamental to in-situ sandboxing when compared to
in-nimbo sandboxing.
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Figure 5.5: A grid summarizing our evaluation of Reader X and our In-Nimbo sandbox for
Reader.

Concluding the Comparison

A final potential point of concern is that the cloud instance’s hypervisor could be compro-
mised, thus compromising other virtual machines managed by that hypervisor or even the
entire cloud. We do not consider this issue in our analysis because the sandbox is a use of
the cloud, not an implementation of a cloud. One of the key selling points behind using a
cloud environment is that the provider manages the infrastructure; they take on the risk
and management expenses. The ability to outsource risk that cannot be eliminated to a
party that is willing to assume the risk is a key advantage of this approach. Additionally,
the technique does not add a new threat to clouds in the sense that anyone can rent access
to any public cloud for a small sum of money and attempt to compromise the hypervi-
sor. Finally, we are primarily sandboxing computations because we don’t trust them. In
the case of the Reader sandbox, a compromise could cause sensitive PDFs to be stolen,
which would still be better than the compromise of an entire workstation full of sensitive
information.

In this section, we have used a structured approach to compare in-nimbo Reader to
the standard version. Overall, the comparison is in the in-nimbo sandbox’s favor, but for
different reasons depending on the attacker’s goals. If the attacker treats in-nimbo Reader
the same way as the traditional install of Reader, the consequences of a successful attack are
lower because the attacker has only compromised a customized, temporary, and low-value
environment. If the attacker is aware of the in-nimbo sandbox and wants to compromise
the workstation, the consequences are the same as in the in-situ case but the likelihood of
success if lower because the full in-nimbo sandbox must be successfully attacked as well as
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Reader. The in-nimbo sandbox has a smaller attack surface that was intentionally designed
to increase our confidence in our ability to repel attacks.

5.5 In-Nimbo Thought Experiments

In this section we consider the potential of applying the in-nimbo sandboxing technique
for a subset of HTML5 and for protecting proprietary data. There are other examples (not
elaborated here) that would be similar to our sandbox for Reader, such as an in-nimbo
sandbox for Microsoft Word or Outlook.

5.5.1 Selective Sandboxing

HTML5 specifies a canvas element (W3C, 2012) that provides scripts with a raster-based
surface for dynamically generating graphics. By default, browsers must serialize the im-
age to a PNG for presentation to the user (other raster formats may be specified). For
an animated surface, the serialized image represents the currently visible frame. Unfor-
tunately, early implementations of such rich browser features have continually been prone
to vulnerabilities. CVE-2010-3019 documents a heap-based buffer overflow in Opera 10’s
implementation of HTML5 canvas transformations (NIST, 2010b). In 2013 a stack-based
overflow was discovered in Mozilla Firefox’s HTML5 canvas implementation(NIST, 2013b).
As a result, a risk-focused user may desire that HTML5 canvas computations be sandboxed.

Figure 5.6 shows the model of an HTML5 canvas in-nimbo sandbox. In this case, the
transduction mechanism is a proxy running between a browser and the Internet. The trans-
duction mechanism intercepts and inspects HTML pages for canvas declarations. When a
canvas declaration is detected, the proxy collects all referenced JavaScript code and sends
the page and scripts to the high value TCB architecture (the client). The client sends
the collected HTML and JavaScript to the cloud instance, which utilizes an instrumented
browser to render any drawing on the canvas. The canvas is replaced with the image
file the browser generates (per the HTML5 standard) when the rendering script finishes.
When a loop in the rendering script is detected (i.e. an animation is present), the canvas
declaration is replaced with an image tag pointing to a 3 second animated GIF composed
of all of the frames the script rendered in that time period. All JavaScript that drew on
the canvas is removed, and the cloud returns the re-written JavaScript, HTML, and PNG
to the client. The client verifies the image file and checks that no unexpected code/markup
changes have been made before sending the results back to the proxy. The proxy passes
the modified results to the browser.

This sandbox would effectively confine exploits on HTML5 canvas implementations to a
low value computing environment. Furthermore, it would reduce the verification problem
from verifying the full HTML5 canvas implementation and its dependencies to that of
verifying raster image formats supported by the canvas tag and ensuring that no code
has been added to the intercepted files (i.e., code has only been removed and/or canvas
tags have been replaced with image tags). While the sandbox does not support animated
canvases longer than 3 seconds or whose visual representation is dependent on real-time
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Figure 5.6: The model for an in-nimbo sandbox for HTML5 canvases.

user input, a user who cannot accept such limitations can use a browser that is fully
sandboxed in-nimbo such as Reader was in the previous section. It is also possible that
an alternative implementation of this sandbox could support longer animations and user
input.

5.5.2 Protecting Proprietary Algorithms

Modern audio players allow users to manage libraries of tens of thousands of songs and
automatically perform experience-enhancing operations such as fetching album covers from
the Internet. More advanced players also attempt to identify songs and automatically add
or fix any missing or corrupt metadata, a process known as auto-tagging. However, the act
of robustly parsing tags to identify an album and artist to fetch a cover is potentially error
prone and complicated. CVE-2011-2949 and CVE-2010-2937 document samples of ID3
parsing vulnerabilities in two popular media players (NIST, 2010a, 2011). Furthermore,
an audio player vendor may consider all steps of the waveform analysis they use to identify
untagged audio files to be proprietary. To address these concerns, the vendor may wish to
design their application to make use of an in-nimbo sandbox to perform these operations.

Figure 5.7 shows the model of a possible in-nimbo sandbox for fetching album covers and
performing auto-tagging. The transduction mechanism is the audio player itself. When the
player detects an audio file that is new it sends the file to the high value TCB architecture
(the client). The client sends the audio file to the cloud instance, which performs the task
of automatically adding any missing tags to the audio file and fetching the correct album
cover. The cloud sends the tagged audio file and album cover to the client, where it will
be verified that only the audio files tags have changed, that they comply with the correct
tagging standard, and that the album cover is of the expected format and well formed.
The client will then send the verified audio file and album cover to the audio player, which
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Figure 5.7: The model for an in-nimbo sandbox for an auto-tagging audio player.

will place both into their correct places in the library.

Assuming that all managed audio files make their way through the in-nimbo sandbox at
least once, this sandbox effectively mitigates the risk of robustly parsing tags while also not
exposing the inner-workings of the proprietary waveform algorithm. Potential limitations
are curtailed by intentionally designing the application to utilize an in-nimbo sandbox.

5.6 Discussion

This chapter argued that we can improve system security (confidentiality, integrity, avail-
ability) by moving untrusted computations away from environments we want to defend.
We first introduced one approach for achieving that idea, a category of sandboxing tech-
niques we refer to as in-nimbo sandboxing. In-nimbo sandboxes leverage cloud computing
environments to perform potentially vulnerable or malicious computations away from the
environment that is being defended. Cloud computing environments have the benefit of
being approximately ephemeral, thus malicious outcomes do not persist across sandboxing
sessions. We believe this class of sandboxing techniques is valuable in a number of cases
where classic, in-situ sandboxes do not yet adequately isolate a computation.

We argued that in-situ sandboxing does not adequately reduce risk for Adobe Reader,
thus motivating us to build an in-nimbo sandbox for Reader. We then discussed the
design of an in-nimbo sandbox for Reader and presented a structural argument based
on five evaluation criteria that suggests that it is more secure and that, with respect to
performance, has a user experience latency subjectively similar to that of Reader when run
locally. After arguing that our sandbox is more secure than an in-situ sandbox for Reader,
we illustrated how in-nimbo sandboxes might be built for other applications that represent
different in-nimbo use cases.

Our argument for why this sandbox is better is structured but necessarily qualitative.
We believe that many security dimensions cannot now be feasibly quantified. We nonethe-
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less suggest that structured criteria-based reasoning building on familiar security-focused
risk calculus can lead to solid conclusions. Indeed, we feel the approach is an important
intermediate step towards the ideal of quantified and proof-based approaches.
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Chapter 6

Future Work

Many of the previous chapters discuss relevant future work in context. This chapter dis-
cusses broader future work ideas that are not as closely connected to previously discussed
topics. In particular, this chapter discusses policy usability in non-Java sandboxes, ar-
chitectural constraints for sandboxing, and decision and engineering support for policy
derivement and enforcement.

6.1 Enhancing Policy Usability

With few notable exceptions, the sandboxes easily observed in practice support either
security policies the user cannot change or trivial policy languages for user-defined policies.
Perhaps unsurprisingly, policy usability is a point of comparison between those sandboxes
that do support rich user-defined policies. For example, AppArmor and SELinux are
often compared in terms of the usability of their policy languages.1 2 Rich user-defined
policies enable users to bound the behaviors an encapsulated component can exhibit at a
fine granularity, while customizing the bound for the operational environment. However,
these benefits are predicated on the user’s ability to successfully write reasonable policies
in the provided language. Given the problems resulting from complex security policy
languages discussed in previous chapters, this space seems rife for additional improvement.
Indeed, AppArmor is often cited as being easier to write policies for than SELinux, but
even AppArmor users do not escape insecure policies.3 We see two avenues for improving
policy usability, which we will discuss in turn: (1) Demonstrate that the policy languages
themselves are usable and (2) automate most, if not all, of the policy derivation process
with quality guarantees for the produced policy.

The programming language community has made some progress on the first avenue.
Programming language usability has recently been cited as a major concern and is emerging
as a primary area of study (Ko et al., 2011; Mayer et al., 2012; Stylos and Myers, 2008). This

1http://security.stackexchange.com/questions/29378/comparsion-between-apparmor-and-

selinux
2https://www.suse.com/support/security/apparmor/features/selinux_comparison.html
3http://blog.azimuthsecurity.com/2012/09/poking-holes-in-apparmor-profiles.html
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is important because we often provide developers with tools that are confusing, incomplete,
or buggy and expect the developers to use them to create software that is usable, complete,
and free of bugs. The evidence in previous chapters suggests this same concern translates
to sandboxes. The techniques being developed to evaluate the usability of fully-featured
programming languages may also translate to policy languages, which are often relatively
small domain specific languages (Albuquerque et al., 2015). However, in the case of policy
languages we have one primary concern: Are the targeted users capable of writing secure
policies for real-world components? However, we may also ask a different question: Is it
reasonable to ask users to write security policies from scratch, or should we instead ask
them to refine policies generated by tools?

This thesis has made progress on the automation question, which addresses the sec-
ond avenue listed above. Chapter 4 discussed an approach for automatically deriving a
starter policy for Java applications. This approach took advantage of choices made by
the designers of the Java sandbox to create scalable program analyses. However, the gen-
eral idea translates to essentially any sandbox that requires a user-defined security policy:
Determine which of the program’s operations have an effect on the external environment.
In native programs, it is often the case that these operations are represented by system
calls and that by statically and dynamically analyzing these calls, we can generate policies
in a number of different policy languages. In fact, both AppArmor and SELinux ship
with dynamic analysis tools to perform this type of operation, but they do not include
static analysis tools capable of providing guarantees about the extent of the policy (i.e.
the policy’s coverage of the operations the program could perform). Static analysis will
grow more appropriate for this type of application as binary analysis techniques continue
to improve in terms of scalability and precision, thereby eliminating the need for source
code (Brumley et al., 2011; Kinder and Veith, 2008; Song et al., 2008).

6.2 Architectural Constraints to Support Sandboxing

Chapter 1 discussed Firefox as a case study in how sandboxing can be hampered by high
coupling. Chapter 4 concluded with advice for organizing Java applications to make them
easier to sandbox. Program structure is also of concern in mainstream sandboxes like
Microsoft Office’s, Internet Explorer’s, and Adobe Reader’s (see Chapters 1 and 5) where
the applications had to be re-architected to enable the sandboxing of parsers and renderers.
Other sandboxes avoid this problem by simply sandboxing the entire application, which
does not provide the level of granularity required to protect those applications from their
own components.

Some research has been done to automatically partition applications based on privilege
requirements (Akhawe et al., 2012; Bapat et al., 2007; Brumley and Song, 2004; Wu et al.,
2013). However, of these approaches, only Akhawe et al.’s approach can be applied before
the implementation phase of a development project. The National Research Council’s
report on software producibility for defense (NRC, 2010) notes, “Architecture represents
the earliest and often most important design decisions–those that are the hardest to change
and the most critical to get right.” The examples above, Firefox in particular, provide
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powerful support for this insight.
We need tools to help us treat sandboxes as an architectural primitive, thereby allowing

us to carefully design the interconnections between our components to enable sandboxing.
Furthermore, we need programming languages that allow us to enforce these architectural
constraints by, perhaps, annotating a module’s intended sandbox or intended security
policy while implementing the module. This would enable program analysis to identify
harmful coupling and potential policy violations that could compromise the developer’s
ability to securely encapsulate the various system components. It would also ensure the
design intent is explicit from the standpoint of internal attack surfaces, discussed more
below.

6.3 Decision and Engineering Support: Preparing the

Battlefield with Sandboxes

The previous sections discussed fairly low-level open challenges that deal with the details
of applying particular sandboxes. This section envisions sandboxes as tools for “preparing
the battlefield.” Historically, military leaders prepared battlefields by ordering the: digging
of trenches, construction of fortifications, removal of cover the enemy can use, strategic
positioning of troops, and other actions aimed at increasing the odds of success in a hostile
engagement with an enemy force. In software security, we too can prepare the battlefield
to our advantage, but we need help making the complex decisions required to adequately
reduce risk with limited resources.

What components in a software system should be sandboxed? To begin to optimally
answer this question, we need a reasonable understanding of the most likely points of
attack and their likely weaknesses. Some work has been done in this space, for example, in
measuring attack surfaces (Manadhata and Wing, 2011; Theisen, 2015; Younis et al., 2014),
in synthesizing security device placement (Rahman and Al-Shaer, 2013), and in mapping
out potential attack paths through networks (Lippmann and Ingols, 2005; Shandilya et al.,
2014). However, these approaches are less useful in this particular context if they cannot
measure large systems that have grown organically over decades, which leads to questions
about their ability to scale in practice. Furthermore, they only consider the external attack
surface and not internal attack surfaces.

Imagine we have architected an ideal network where the only possible paths of attack
are known to us and carefully picked by us to limit attackers to just those surfaces we are
ready to defend. These surfaces are inevitably software and, as we have seen throughout
this thesis, software artifacts are rarely uniformly trusted. What is missing are tools and
metrics to help us identify trust gradients within these applications and a means to cleanly
separate them for sandboxing with targeted security policies. This would allow us to spend
our resources on the least trusted subsets of software systems. However, the status quo
often leaves developers with little option but to guess which subsets of their programs are
the least trustworthy4 and perhaps with few options to separate these subsets from the

4A more disciplined developer might ask questions similar to the following: Which components are
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rest.
When we have defined a subset to target, how should we target it? What is the nature

of the risk? What sandboxes are capable of encapsulating the subset in question? Do any
of these sandboxes support a security policy capable of mitigating the threat? If we could
confidently answer these questions, we may be able to apply sandboxes both effectively
and with greater precision.

supplied by vendors with a poor security reputation? Which components are the most poorly analyzed or
least analyzable?
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Chapter 7

Conclusion

Researchers have spent the last few decades building and evaluating new sandboxing tech-
niques and sandboxes. We view sandboxes as a security primitive for building secure and
trustworthy software systems. Thus, while we believe it is important to continue to con-
struct sandboxes, it is equally important to understand the sandboxing landscape in the
bigger picture. This thesis steps back and presents the bigger picture, finding several areas
for improvement and contributing some of the most critically needed advances.

In Chapter 2 we systematically analyzed ten years (2004-2014) of sandboxing literature
from five top tier venues. We drew a number of conclusions:

• Sandbox design often requires trade-offs between: A. the amount of effort required
from the user or B. the number of requirements imposed on the component(s) to be
sandboxed. When the first option is favored, users are often required to re-architect
systems or develop security policies that achieve least privilege almost entirely by
hand. This decreases the usability of the sandbox and increases the odds of failure,
but these sandboxes are often more broadly applicable while stopping a wider range
of attacks. When the second option is favored, sandboxes become limited in the range
of components they can encapsulate because they can only target those components
that meet certain requirements (e.g. built in certain programming languages, built
against certain libraries, containing specific metadata, etc.). However, sandboxes
that favor component requirements often require little if any effort from the person
applying the sandbox.

• Sandbox usability is often ignored entirely. While we found some literature that
discusses sandbox usability in venues outside of our scope, the research at the venues
where sandboxing papers are primarily published did not discuss the topic during the
time span we studied. Sandbox usability is a serious consideration where developers
or system administrators lacking security expertise play a role in applying a sandbox.
Sandboxes that are too complex to understand or use correctly add an additional
security layer an attacker must defeat, but can result in failures when the sandbox is
used incorrectly.

• Sandbox validation has not improved in the time span studied. Researchers often
make strong security claims about their sandboxes, but these claims are often eval-
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uated using relatively subjective validation strategies that favor ad hoc arguments.
This is concerning given our view of sandboxing as a security primitive because com-
ponents we rely on heavily would almost certainly benefit from having claims backed
up by objective science.

Given these findings, we narrowed our scope to the Java sandbox to determine whether
or not usability and validation issues manifest in failures in practice. More specifically,
we investigated design and implementation complexity that leads to vulnerabilities. These
vulnerabilities are caused by the sandbox creators. We also investigated complexity leading
to usability issues, which can lead to vulnerabilities caused by sandbox users. We differ-
entiated between complexity that is unnecessary because it does not benefit users, which
is complexity that should be eliminated, and necessary complexity that we cannot get rid
of and should instead ameliorate.

In Chapter 3, we used a spate of exploits targeting Java from the first half of this decade
to focus our efforts in search of unnecessary complexity in Java’s sandbox. We started with
the observation that Java exploits in this time period share a key operation: They turn
the sandbox off at run time. Is it necessary to allow applications to turn the sandbox off
at run time?

More broadly, what operations do exploits require that benign applications do not?
We found through an empirical study of open source applications that there are distinct
differences between how exploits and benign applications interact with the sandbox. We
used these differences to define backwards compatible rules that, when enforced by run
time monitors in the JVM, stop all known sandbox-escaping Java exploits. Essentially,
these rules turn off unnecessary complexity in the JVM that allowed exploits to thrive.

While we were able to remove some unnecessary complexity (e.g. complexity caused
by features that are not used by benign applications) in the JVM, we observed significant
but likely necessary complexity that hampers benign use of the sandbox. Developers often
misunderstand the security model and therefore make mistakes in their manual application
of the sandbox that lead to vulnerabilities. In fact, out of 36 cases, we did not observe a
single instance where the sandbox was used as intended (i.e. many real-world uses of the
sandbox are not security related, and those that are security related use the sandbox in
odd ways). We believe the low number of cases is due to the difficulty of using the sandbox
caused by complexity we cannot remove. This motivated the development of tools to
automate much of the sandboxing process, which we discussed in Chapter 4. These tools
automatically derive a starter security policy from bytecode, help the user refine and double
check the policy, and perform almost all of the work required to apply the sandbox to even
subsets of Java applications. We used these tools to sandbox components in a number of
real world applications that were previously difficult to sandbox securely by hand.

Having dealt with complexity in the Java sandbox, we turned to general sandbox com-
plexity in Chapter 5. We used complex file formats and their sandboxed viewers as case
studies in sandbox complexity. Many of these sandboxes are in situ, existing within the
system to be defended. When these sandboxes fail, often due to implementation bugs or
oversights on the part of users manually applying the sandbox, the system we want to
defend is also compromised. We narrowed our scope to PDF and Adobe Reader to develop

120



and evaluate a sandbox that leverages cloud computing environments to run untrusted
computations in approximately ephemeral computing environments. Essentially, the com-
putations are run in a virtual machine away from the system we want to defend. State
is carefully persisted outside of the virtual machine when the computation ends and the
virtual machine is destroyed. While this approach provides a means to mitigate sandbox
failures, it also allows us to customize the computing environment for the computation that
is being executed. This customization allows us to design attack surfaces we are prepared
to defend.

We hope this work inspires future efforts to carefully consider the desired attack surface
instead of simply dealing with whatever attack surface results from the rest of the software
development process. More broadly, we hope this thesis inspires additional work to improve
sandboxes.
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Appendix A

Sample MAJIC Report

MAJIC generates a report when transforming an application to capture the following
points:

• Remaining tasks that must be manually carried out

• Interfaces that were generated for sandboxed classes

• High level transformations made to sandboxed classes

• Policy updates made for the new sandbox, including listings of new permissions and
sandboxed class loaders

• The main methods updated to set the custom policy object

• Bytecode transformations made to unsandboxed and sandboxed classes

• Updates to JAR files (- means a file was deleted, + a file was added, and -/+ a file
was updated)

A sample report begins on the next page.
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Remaining Tasks

The application is not fully sandboxed until the remaining tasks are completed:

Digital signatures were stripped from the following JARs because at least one class contained in
each was updated; resign them if their integrity and authentication is important:

/home/mmaass/Downloads/CompanyDemo/AuthPlus_sandboxed/AuthPlus.jar
Move majic.policy and MAJIC_sandboxed_classes.jar to your preferred location outside of the
sandboxed application's classpath
Update all execution scripts to add /home/mmaass/Downloads/CompanyDemo
/AuthPlus_sandboxed/MAJIC_sandbox.jar to the classpath
Set all execution scripts to run the application with: -Djava.security.manager
-Djava.security.policy=[preferredLocation]/majic.policy -Dmajic.sandboxed.loc=
[preferredLocation]
(OPTIONAL) Update majic.policy to sandbox the application as a whole with a stricter policy

Generated Interfaces

The following interfaces were generated to replace the types for objects created from sandboxed
classes:

Created interface org.tinyradius.packet.MAJIC.interfaces.AccessRequest from
org.tinyradius.packet.AccessRequest
Created interface org.tinyradius.util.MAJIC.interfaces.RadiusException from
org.tinyradius.util.RadiusException
Created interface org.tinyradius.packet.MAJIC.interfaces.AccountingRequest from
org.tinyradius.packet.AccountingRequest
Created interface org.tinyradius.packet.MAJIC.interfaces.RadiusPacket from
org.tinyradius.packet.RadiusPacket
Created interface org.tinyradius.util.MAJIC.interfaces.RadiusEndpoint from
org.tinyradius.util.RadiusEndpoint
Created interface org.tinyradius.attribute.MAJIC.interfaces.IntegerAttribute from
org.tinyradius.attribute.IntegerAttribute
Created interface org.tinyradius.dictionary.MAJIC.interfaces.Dictionary from
org.tinyradius.dictionary.Dictionary
Created interface org.tinyradius.dictionary.MAJIC.interfaces.DictionaryParser from
org.tinyradius.dictionary.DictionaryParser
Created interface org.tinyradius.attribute.MAJIC.interfaces.VendorSpecificAttribute from
org.tinyradius.attribute.VendorSpecificAttribute
Created interface org.tinyradius.dictionary.MAJIC.interfaces.MemoryDictionary from
org.tinyradius.dictionary.MemoryDictionary
Created interface org.tinyradius.dictionary.MAJIC.interfaces.WritableDictionary from
org.tinyradius.dictionary.WritableDictionary
Created interface org.tinyradius.util.MAJIC.interfaces.RadiusUtil from
org.tinyradius.util.RadiusUtil
Created interface org.tinyradius.util.MAJIC.interfaces.RadiusClient from
org.tinyradius.util.RadiusClient
Created interface org.tinyradius.dictionary.MAJIC.interfaces.AttributeType from
org.tinyradius.dictionary.AttributeType
Created interface org.tinyradius.attribute.MAJIC.interfaces.RadiusAttribute from
org.tinyradius.attribute.RadiusAttribute
Created interface org.tinyradius.attribute.MAJIC.interfaces.StringAttribute from
org.tinyradius.attribute.StringAttribute
Created interface org.tinyradius.dictionary.MAJIC.interfaces.DefaultDictionary from
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org.tinyradius.dictionary.DefaultDictionary

Sandboxed Classes

The following transformations were performed to generate classes that will run in the sandbox's
protection domain:

Renamed org.tinyradius.packet.AccessRequest to
org.tinyradius.packet.MAJIC.sandboxed.AccessRequest and added
org.tinyradius.packet.MAJIC.interfaces.AccessRequest as an interface
Renamed org.tinyradius.util.RadiusException to
org.tinyradius.util.MAJIC.sandboxed.RadiusException and added
org.tinyradius.util.MAJIC.interfaces.RadiusException as an interface
Renamed org.tinyradius.packet.AccountingRequest to
org.tinyradius.packet.MAJIC.sandboxed.AccountingRequest and added
org.tinyradius.packet.MAJIC.interfaces.AccountingRequest as an interface
Renamed org.tinyradius.packet.RadiusPacket to
org.tinyradius.packet.MAJIC.sandboxed.RadiusPacket and added
org.tinyradius.packet.MAJIC.interfaces.RadiusPacket as an interface
Renamed org.tinyradius.util.RadiusEndpoint to
org.tinyradius.util.MAJIC.sandboxed.RadiusEndpoint and added
org.tinyradius.util.MAJIC.interfaces.RadiusEndpoint as an interface
Renamed org.tinyradius.attribute.IntegerAttribute to
org.tinyradius.attribute.MAJIC.sandboxed.IntegerAttribute and added
org.tinyradius.attribute.MAJIC.interfaces.IntegerAttribute as an interface
Renamed org.tinyradius.dictionary.Dictionary to
org.tinyradius.dictionary.MAJIC.sandboxed.Dictionary and added
org.tinyradius.dictionary.MAJIC.interfaces.Dictionary as an interface
Renamed org.tinyradius.dictionary.DictionaryParser to
org.tinyradius.dictionary.MAJIC.sandboxed.DictionaryParser and added
org.tinyradius.dictionary.MAJIC.interfaces.DictionaryParser as an interface
Renamed org.tinyradius.attribute.VendorSpecificAttribute to
org.tinyradius.attribute.MAJIC.sandboxed.VendorSpecificAttribute and added
org.tinyradius.attribute.MAJIC.interfaces.VendorSpecificAttribute as an interface
Renamed org.tinyradius.dictionary.MemoryDictionary to
org.tinyradius.dictionary.MAJIC.sandboxed.MemoryDictionary and added
org.tinyradius.dictionary.MAJIC.interfaces.MemoryDictionary as an interface
Renamed org.tinyradius.dictionary.WritableDictionary to
org.tinyradius.dictionary.MAJIC.sandboxed.WritableDictionary and added
org.tinyradius.dictionary.MAJIC.interfaces.WritableDictionary as an interface
Renamed org.tinyradius.util.RadiusUtil to org.tinyradius.util.MAJIC.sandboxed.RadiusUtil and
added org.tinyradius.util.MAJIC.interfaces.RadiusUtil as an interface
Renamed org.tinyradius.util.RadiusClient to org.tinyradius.util.MAJIC.sandboxed.RadiusClient
and added org.tinyradius.util.MAJIC.interfaces.RadiusClient as an interface
Renamed org.tinyradius.dictionary.AttributeType to
org.tinyradius.dictionary.MAJIC.sandboxed.AttributeType and added
org.tinyradius.dictionary.MAJIC.interfaces.AttributeType as an interface
Renamed org.tinyradius.attribute.RadiusAttribute to
org.tinyradius.attribute.MAJIC.sandboxed.RadiusAttribute and added
org.tinyradius.attribute.MAJIC.interfaces.RadiusAttribute as an interface
Renamed org.tinyradius.attribute.StringAttribute to
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute and added
org.tinyradius.attribute.MAJIC.interfaces.StringAttribute as an interface
Renamed org.tinyradius.dictionary.DefaultDictionary to
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org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary and added
org.tinyradius.dictionary.MAJIC.interfaces.DefaultDictionary as an interface

Policy Updates

The following transformations were made to MAJICPolicy to create the protection domain for this
sandbox:

Updated the getPermissions(ProtectionDomain domain) and implies(ProtectionDomain domain, Permission
permission) to create a protection domain for MAJIC using isr.cmu.edu.sandbox.MAJICLoader to
identify the domain. The following class loaders also load classes into this sandbox's domain:

org.tinyradius.dictionary.DefaultDictionary
The following permissions are granted:

permission java.lang.RuntimePermission "exit.1";

permission java.net.SocketPermission "localhost", "connect,accept, listen, resolve";

permission java.lang.RuntimePermission "modifyThread";

permission java.lang.RuntimePermission "accessDeclaredMembers";

permission java.util.PropertyPermission "org.apache.commons.logging.LogFactory", "read";

Generated ClassLoaders

The following class loaders were generated to load classes into this sandbox's protection domain:

Created isr.cmu.edu.sandbox.MAJICLoader to load classes into the sandboxed protection
domain

Updated Main Methods

The following classes had their main methods updated to set the policy to
isr.cmu.edu.sandbox.MAJICPolicy:

org.company.appsec.ap.AuthPlus

Transformations in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute

The following transformations were made to
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute to ensure it uses classes in the sandbox's
protection domain where appropriate:

Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.<init>:()V in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.<init>:()V
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.<init>:()V in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.<init>:(ILjava/lang/String;)V
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.setAttributeType:(I)V in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.<init>:(ILjava/lang/String;)V
Sandboxed a call to
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.setAttributeValue:(Ljava/lang
/String;)V in org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.<init>:(ILjava/lang
/String;)V
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.getAttributeData:()[B in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.getAttributeValue:()Ljava/lang/String;
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.getAttributeData:()[B in
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org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.getAttributeValue:()Ljava/lang/String;
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.setAttributeData:([B)V in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.setAttributeValue:(Ljava/lang
/String;)V
Sandboxed a call to org.tinyradius.attribute.RadiusAttribute.setAttributeData:([B)V in
org.tinyradius.attribute.MAJIC.sandboxed.StringAttribute.setAttributeValue:(Ljava/lang
/String;)V

Transformations in
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary

The following transformations were made to
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary to ensure it uses classes in the
sandbox's protection domain where appropriate:

Sandboxed a call to org.tinyradius.dictionary.MemoryDictionary.<init>:()V in
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.<init>:()V
Sandboxed a call to org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.<init>:()V in
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.<clinit>:()V
Sandboxed a call to org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.class$:
(Ljava/lang/String;)Ljava/lang/Class; in
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.<clinit>:()V
Sandboxed a call to
org.tinyradius.dictionary.MAJIC.sandboxed.DictionaryParser.parseDictionary:(Ljava/io
/InputStream;Lorg/tinyradius/dictionary/MAJIC/interfaces/WritableDictionary;)V in
org.tinyradius.dictionary.MAJIC.sandboxed.DefaultDictionary.<clinit>:()V

SNIP ... 9 more ... (edited for brevity)

Transformations in
org.company.appsec.ap.OTPAuthenticator

The following transformations were made to org.company.appsec.ap.OTPAuthenticator to ensure it
uses classes in the sandbox's protection domain where appropriate:

Sandboxed a call to org.tinyradius.util.RadiusClient.<init>:(Ljava/lang/String;Ljava
/lang/String;)V in org.company.appsec.ap.OTPAuthenticator.authenticateCredentials:(Ljava/lang
/String;Ljava/lang/String;)Z
Sandboxed a call to org.tinyradius.util.RadiusClient.authenticate:(Ljava/lang/String;Ljava
/lang/String;)Z in org.company.appsec.ap.OTPGoldCardAuthenticator.authenticateCredentials:
(Ljava/lang/String;Ljava/lang/String;)Z
Sandboxed a call to org.tinyradius.util.RadiusException.getMessage:()Ljava/lang/String; in
org.company.appsec.ap.OTPAuthenticator.authenticateCredentials:(Ljava/lang/String;Ljava
/lang/String;)Z

Updates to /home/mmaass/Downloads/CompanyDemo
/AuthPlus_sandboxed/AuthPlus.jar

Action Target

-/+ org.company.appsec.ap.AuthPlus

-/+ org.company.appsec.ap.OTPAuthenticator
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Updates to MAJIC_sandboxed_classes.jar

Action Target

+ org/tinyradius/util/MAJIC/sandboxed/RadiusException.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/Dictionary.class

+ org/tinyradius/attribute/MAJIC/sandboxed/VendorSpecificAttribute.class

+ org/tinyradius/util/MAJIC/sandboxed/RadiusUtil.class

+ org/tinyradius/attribute/MAJIC/sandboxed/RadiusAttribute.class

+ org/tinyradius/util/MAJIC/sandboxed/RadiusEndpoint.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/DefaultDictionary.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/AttributeType.class

+ org/tinyradius/packet/MAJIC/sandboxed/AccessRequest.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/MemoryDictionary.class

+ org/tinyradius/attribute/MAJIC/sandboxed/IntegerAttribute.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/DictionaryParser.class

+ org/tinyradius/packet/MAJIC/sandboxed/AccountingRequest.class

+ org/tinyradius/dictionary/MAJIC/sandboxed/WritableDictionary.class

+ org/tinyradius/packet/MAJIC/sandboxed/RadiusPacket.class

+ org/tinyradius/attribute/MAJIC/sandboxed/StringAttribute.class

+ org/tinyradius/util/MAJIC/sandboxed/RadiusClient.class

Updates to /home/mmaass/Downloads/CompanyDemo
/AuthPlus_sandboxed/MAJIC_sandbox.jar

Action Target

+ org/tinyradius/dictionary/MAJIC/interfaces/DictionaryParser.class

+ org/tinyradius/dictionary/MAJIC/interfaces/AttributeType.class

+ isr/cmu/edu/sandbox/MAJICLoader.class

+ org/tinyradius/dictionary/MAJIC/interfaces/DefaultDictionary.class

+ org/tinyradius/attribute/MAJIC/interfaces/RadiusAttribute.class

+ org/tinyradius/dictionary/MAJIC/interfaces/Dictionary.class

+ org/tinyradius/dictionary/MAJIC/interfaces/WritableDictionary.class

+ org/tinyradius/util/MAJIC/interfaces/RadiusUtil.class

+ org/tinyradius/attribute/MAJIC/interfaces/IntegerAttribute.class

+ isr/cmu/edu/sandbox/MAJICPolicy.class

+ org/tinyradius/util/MAJIC/interfaces/RadiusException.class

+ org/tinyradius/packet/MAJIC/interfaces/RadiusPacket.class

+ org/tinyradius/attribute/MAJIC/interfaces/VendorSpecificAttribute.class

+ org/tinyradius/packet/MAJIC/interfaces/AccountingRequest.class

+ org/tinyradius/attribute/MAJIC/interfaces/StringAttribute.class

+ org/tinyradius/packet/MAJIC/interfaces/AccessRequest.class

128



+ org/tinyradius/dictionary/MAJIC/interfaces/MemoryDictionary.class

+ org/tinyradius/util/MAJIC/interfaces/RadiusClient.class

+ org/tinyradius/util/MAJIC/interfaces/RadiusEndpoint.class
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Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity
principles, implementations, and applications. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security, CCS ’05, pages 340–353, New York,
NY, USA, 2005. ACM. ISBN 1-59593-226-7. doi: 10.1145/1102120.1102165. URL
http://doi.acm.org/10.1145/1102120.1102165. 2.6

Devdatta Akhawe, Prateek Saxena, and Dawn Song. Privilege separation in HTML5
applications. In USENIX Security, Security’12, pages 23–23, Berkeley, CA, USA, 2012.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=2362793.2362816.
6.2

Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In USENIX
Security, USENIX Security’10, pages 12–12, Berkeley, CA, USA, 2010. USENIX Associa-
tion. ISBN 888-7-6666-5555-4. URL http://dl.acm.org/citation.cfm?id=1929820.

1929836. 2.6

Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro. Pre-
venting memory error exploits with WIT. In IEEE Symposium on Security and Privacy,
SP ’08, pages 263–277, Washington, DC, USA, 2008. IEEE Computer Society. ISBN
978-0-7695-3168-7. doi: 10.1109/SP.2008.30. URL http://dx.doi.org/10.1109/SP.

2008.30. 2.6

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy Bounds Check-
ing: An efficient and backwards-compatible defense against out-of-bounds errors. In
USENIX Security, SSYM’09, pages 51–66, Berkeley, CA, USA, 2009. USENIX Associa-
tion. URL http://dl.acm.org/citation.cfm?id=1855768.1855772. 2.6

F. Al Ameiri and K. Salah. Evaluation of Popular Application Sandboxing. In International
Conference for Internet Technology and Secured Transactions (ICITST), 2011, pages
358 –362, Washington, DC, USA, December 2011. IEEE. 2.1

Diego Albuquerque, Bruno Cafeo, Alessandro Garcia, Simone Barbosa, Silvia Abrahão,
and António Ribeiro. Quantifying usability of domain-specific languages. Journal of
Systems and Software, 101(C):245–259, March 2015. ISSN 0164-1212. doi: 10.1016/j.
jss.2014.11.051. URL http://dx.doi.org/10.1016/j.jss.2014.11.051. 6.1

Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh.
Cells: A virtual mobile smartphone architecture. In ACM Symposium on Operating
Systems Principles (SOSP), SOSP ’11, pages 173–187, New York, NY, USA, 2011. ACM.

131

http://doi.acm.org/10.1145/1102120.1102165
http://dl.acm.org/citation.cfm?id=2362793.2362816
http://dl.acm.org/citation.cfm?id=1929820.1929836
http://dl.acm.org/citation.cfm?id=1929820.1929836
http://dx.doi.org/10.1109/SP.2008.30
http://dx.doi.org/10.1109/SP.2008.30
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://dx.doi.org/10.1016/j.jss.2014.11.051


ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043574. URL http://doi.acm.org/

10.1145/2043556.2043574. 2.6, 2.4.2

Fabien Autrel, Nora Cuppens-Boulahia, and Frédéric Cuppens. Enabling dynamic security
policy in the Java security manager. In Conference on Foundations and Practice of
Security, FPS’12, pages 180–193, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-
642-37118-9. doi: 10.1007/978-3-642-37119-6 12. URL http://dx.doi.org/10.1007/

978-3-642-37119-6_12. 4.7

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp Styp-
Rekowsky. AppGuard – Fine-grained policy enforcement for untrusted Android ap-
plications. In Workshop on Data Privacy Management and Autonomous Spontaneous
Security - Volume 8247, pages 213–231, New York, NY, USA, 2014. Springer-Verlag
New York, Inc. ISBN 978-3-642-54567-2. doi: 10.1007/978-3-642-54568-9 14. URL
http://dx.doi.org/10.1007/978-3-642-54568-9_14. 4.7

Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. CANDID:
Preventing sql injection attacks using dynamic candidate evaluations. In ACM Confer-
ence on Computer and Communications Security (CCS), CCS ’07, pages 12–24, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-703-2. doi: 10.1145/1315245.1315249.
URL http://doi.acm.org/10.1145/1315245.1315249. 2.6

Anindya Banerjee and David A. Naumann. Stack-based access control and secure infor-
mation flow. Journal of Functional Programming, 15(02):131–177, March 2005. ISSN
1469-7653. doi: 10.1017/S0956796804005453. URL http://journals.cambridge.org/

article_S0956796804005453. 3

Dhananjay Bapat, Kevin Butler, and Patrick McDaniel. Towards automated privilege
separation. In Conference on Information Systems Security, ICISS’07, pages 272–276,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-77085-2, 978-3-540-77085-5. URL
http://dl.acm.org/citation.cfm?id=1779274.1779307. 6.2

Jeffrey M. Barnes. Software Architecture Evolution. PhD thesis, Carnegie Mellon Univer-
sity, 2013. 2.2

Massimo Bartoletti, Gabriele Costa, Pierpaolo Degano, Fabio Martinelli, and Roberto
Zunino. Securing Java with local policies. Journal of Object Technology, 8(4):5–32,
June 2009. ISSN 1660-1769. doi: 10.5381/jot.2009.8.4.a1. URL http://www.jot.fm/

contents/issue_2009_06/article1.html. 4.7

Bernard Berelson. Content Analysis in Communication Research. Free Press, Glencoe, IL,
USA, 1952. 2.2

Donna Bergmark, Paradee Phempoonpanich, and Shumin Zhao. Scraping the ACM Digital
Library. SIGIR Forum, 35:1–7, September 2001. ISSN 0163-5840. doi: 10.1145/511144.
511146. URL http://doi.acm.org/10.1145/511144.511146. 15

David Berlind. VMware shows Android based virtual machines. http:

//www.informationweek.com/mobile/mobile-devices/ces-2012-vmware-shows-

android-based-virtual-machines/d/d-id/1102135?, 2012. Accessed: 2015-04-30.
2.4.2

132

http://doi.acm.org/10.1145/2043556.2043574
http://doi.acm.org/10.1145/2043556.2043574
http://dx.doi.org/10.1007/978-3-642-37119-6_12
http://dx.doi.org/10.1007/978-3-642-37119-6_12
http://dx.doi.org/10.1007/978-3-642-54568-9_14
http://doi.acm.org/10.1145/1315245.1315249
http://journals.cambridge.org/article_S0956796804005453
http://journals.cambridge.org/article_S0956796804005453
http://dl.acm.org/citation.cfm?id=1779274.1779307
http://www.jot.fm/contents/issue_2009_06/article1.html
http://www.jot.fm/contents/issue_2009_06/article1.html
http://doi.acm.org/10.1145/511144.511146
http://www.informationweek.com/mobile/mobile-devices/ces-2012-vmware-shows-android-based-virtual-machines/d/d-id/1102135?
http://www.informationweek.com/mobile/mobile-devices/ces-2012-vmware-shows-android-based-virtual-machines/d/d-id/1102135?
http://www.informationweek.com/mobile/mobile-devices/ces-2012-vmware-shows-android-based-virtual-machines/d/d-id/1102135?


F. Besson, T. Blanc, C. Fournet, and A.D. Gordon. From stack inspection to access
control: A security analysis for libraries. In Computer Security Foundations Workshop,
pages 61–75, June 2004. doi: 10.1109/CSFW.2004.1310732. 3

Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for comprehen-
sive protection from memory error exploits. In USENIX Security, SSYM’05, pages 17–17,
Berkeley, CA, USA, 2005. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1251398.1251415. 2.6

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA),
pages 169–190, October 2006. doi: http://doi.acm.org/10.1145/1167473.1167488. 3.4.3,
4.5.5

Thomas Blasing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and
Sahin Albayrak. An android application sandbox system for suspicious software detec-
tion. In Conference on Malicious and Unwanted Software (MALWARE), pages 55–62,
2010. 3.6

David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for priv-
ilege separation. In USENIX Security, SSYM’04, pages 5–5, Berkeley, CA, USA, 2004.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1251375.1251380.
6.2

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. BAP: A binary
analysis platform. In Conference on Computer Aided Verification, CAV’11, pages 463–
469, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL http:

//dl.acm.org/citation.cfm?id=2032305.2032342. 6.1

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. In Adaptable and Extensible Component Systems, 2002.
4.2.1

Ken Buchanan, Chris Evans, Charlie Reis, and Tom Sepez. Chromium blog: A tale of two
pwnies (Part 2). http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-

2.html, June 2012. 5.2.1

Mihai Bucicoiu, Lucas Davi, Razvan Deaconescu, and Ahmad-Reza Sadeghi. XiOS: Ex-
tended application sandboxing on iOS. In ACM Symposium on Information, Com-
puter and Communications Security, ASIA CCS ’15, pages 43–54, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3245-3. doi: 10.1145/2714576.2714629. URL
http://doi.acm.org/10.1145/2714576.2714629. 4.7

David Budgen and Pearl Brereton. Performing systematic literature reviews in software
engineering. In International Conference on Software Engineering, ICSE ’06, pages 1051–
1052, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. doi: 10.1145/1134285.
1134500. URL http://doi.acm.org/10.1145/1134285.1134500. 2.2

133

http://dl.acm.org/citation.cfm?id=1251398.1251415
http://dl.acm.org/citation.cfm?id=1251398.1251415
http://dl.acm.org/citation.cfm?id=1251375.1251380
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://doi.acm.org/10.1145/2714576.2714629
http://doi.acm.org/10.1145/1134285.1134500


Tony Capaccio. China counterfeit parts in u.s. military boeing, l3 aircraft.
http://www.bloomberg.com/news/articles/2011-11-07/counterfeit-parts-

from-china-found-on-raytheon-boeing-systems, 2011. 1.1

Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh, Cosmin
Barsan, Arvind Krishnamurthy, and Thomas Anderson. Retaining sandbox containment
despite bugs in privileged memory-safe code. In ACM Conference on Computer and
Communications Security (CCS), CCS ’10, pages 212–223, New York, NY, USA, 2010a.
ACM. ISBN 978-1-4503-0245-6. doi: 10.1145/1866307.1866332. URL http://doi.acm.

org/10.1145/1866307.1866332. 2.1

Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh, Cosmin
Barsan, Arvind Krishnamurthy, and Thomas Anderson. Retaining sandbox containment
despite bugs in privileged memory-safe code. In ACM Conference on Computer and Com-
munications Security (CCS), pages 212–223. ACM, 2010b. ISBN 978-1-4503-0245-6. doi:
10.1145/1866307.1866332. URL http://doi.acm.org/10.1145/1866307.1866332. 3.6,
4.7

Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing data-flow
integrity. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), OSDI ’06, pages 147–160, Berkeley, CA, USA, 2006. USENIX Association.
ISBN 1-931971-47-1. URL http://dl.acm.org/citation.cfm?id=1298455.1298470.
2.6

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis,
Austin Donnelly, Paul Barham, and Richard Black. Fast byte-granularity software fault
isolation. In ACM Symposium on Operating Systems Principles (SOSP), SOSP ’09,
pages 45–58, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/
1629575.1629581. URL http://doi.acm.org/10.1145/1629575.1629581. 2.6

P. Centonze, R.J. Flynn, and M. Pistoia. Combining static and dynamic analysis for
automatic identification of precise access-control policies. In Annual Computer Security
Applications Conference (ACSAC), pages 292–303, Dec 2007. doi: 10.1109/ACSAC.
2007.39. 4.2

Cert-IST. Anatomy of a malicious PDF file. http://goo.gl/VlLmU, February 2010. URL
http://www.cert-ist.com/eng/ressources/Publications_ArticlesBulletins/

VersVirusetAntivirus/malicious_pdf/. 5

Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich. In-
trusion recovery for database-backed web applications. In ACM Symposium on Op-
erating Systems Principles (SOSP), SOSP ’11, pages 101–114, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043567. URL http:

//doi.acm.org/10.1145/2043556.2043567. 2.2

Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible security enforce-
ment using dynamic data flow analysis. In ACM Conference on Computer and Com-
munications Security (CCS), CCS ’08, pages 39–50, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-810-7. doi: 10.1145/1455770.1455778. URL http://doi.acm.org/

134

http://www.bloomberg.com/news/articles/2011-11-07/counterfeit-parts-from-china-found-on-raytheon-boeing-systems
http://www.bloomberg.com/news/articles/2011-11-07/counterfeit-parts-from-china-found-on-raytheon-boeing-systems
http://doi.acm.org/10.1145/1866307.1866332
http://doi.acm.org/10.1145/1866307.1866332
http://doi.acm.org/10.1145/1866307.1866332
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://doi.acm.org/10.1145/1629575.1629581
http://www.cert-ist.com/eng/ressources/Publications_ArticlesBulletins/VersVirusetAntivirus/malicious_pdf/
http://www.cert-ist.com/eng/ressources/Publications_ArticlesBulletins/VersVirusetAntivirus/malicious_pdf/
http://doi.acm.org/10.1145/2043556.2043567
http://doi.acm.org/10.1145/2043556.2043567
http://doi.acm.org/10.1145/1455770.1455778
http://doi.acm.org/10.1145/1455770.1455778
http://doi.acm.org/10.1145/1455770.1455778


10.1145/1455770.1455778. 2.6

Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jackson. App Isolation:
Get the security of multiple browsers with just one. In ACM Conference on Computer
and Communications Security (CCS), CCS ’11, pages 227–238, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0948-6. doi: 10.1145/2046707.2046734. URL http://

doi.acm.org/10.1145/2046707.2046734. 2.6

Shuo Chen, David Ross, and Yi-Min Wang. An analysis of browser domain-isolation bugs
and a light-weight transparent defense mechanism. In ACM Conference on Computer
and Communications Security (CCS), CCS ’07, pages 2–11, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-703-2. doi: 10.1145/1315245.1315248. URL http://doi.acm.

org/10.1145/1315245.1315248. 2.6

Andy Chou. On detecting heartbleed with static analysis. http://security.coverity.

com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html,
2014. 1.1

Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding Caller-sensitive
Method Vulnerabilities: A Class of Access Control Vulnerabilities in the Java Platform.
In International Workshop on State Of the Art in Program Analysis, SOAP 2015, pages
7–12, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3585-0. doi: 10.1145/2771284.
2771286. URL http://doi.acm.org/10.1145/2771284.2771286. 3.1.1, 4

Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. 5.1

Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sunshine. Eval-
uating the flexibility of the Java sandbox. In Annual Computer Security Applications
Conference, ACSAC 2015, pages 1–10, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3682-6. doi: 10.1145/2818000.2818003. URL http://doi.acm.org/10.1145/

2818000.2818003. 2.4.2

Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and Analysis of Drive-
by-download Attacks and Malicious JavaScript Code. In International World Wide Web
Conference (WWW), pages 281–290, 2010. ISBN 978-1-60558-799-8. doi: 10.1145/
1772690.1772720. URL http://doi.acm.org/10.1145/1772690.1772720. 3.6

Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and Virgil
Gligor. SubDomain: Parsimonious server security. In USENIX Conference on System
Administration, LISA ’00, pages 355–368, Berkeley, CA, USA, 2000. USENIX Associa-
tion. URL http://dl.acm.org/citation.cfm?id=1045502.1045548. 4.7

Richard S. Cox, Steven D. Gribble, Henry M. Levy, and Jacob Gorm Hansen. A safety-
oriented platform for web applications. In IEEE Symposium on Security and Privacy,
SP ’06, pages 350–364, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-
7695-2574-1. doi: 10.1109/SP.2006.4. URL http://dx.doi.org/10.1109/SP.2006.4.
2.1, 2.6

J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete control-flow integrity for
commodity operating system kernels. In IEEE Symposium on Security and Privacy,

135

http://doi.acm.org/10.1145/1455770.1455778
http://doi.acm.org/10.1145/1455770.1455778
http://doi.acm.org/10.1145/1455770.1455778
http://doi.acm.org/10.1145/2046707.2046734
http://doi.acm.org/10.1145/2046707.2046734
http://doi.acm.org/10.1145/1315245.1315248
http://doi.acm.org/10.1145/1315245.1315248
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://doi.acm.org/10.1145/2771284.2771286
http://doi.acm.org/10.1145/2818000.2818003
http://doi.acm.org/10.1145/2818000.2818003
http://doi.acm.org/10.1145/1772690.1772720
http://dl.acm.org/citation.cfm?id=1045502.1045548
http://dx.doi.org/10.1109/SP.2006.4


pages 292–307, Washington, DC, USA, May 2014. IEEE. doi: 10.1109/SP.2014.26. 2.6

John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure virtual
architecture: A safe execution environment for commodity operating systems. In ACM
Symposium on Operating Systems Principles (SOSP), SOSP ’07, pages 351–366, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-591-5. doi: 10.1145/1294261.1294295.
URL http://doi.acm.org/10.1145/1294261.1294295. 2.6

Mary Ann Davidson. No, you really cant. http://seclists.org/isn/2015/Aug/4, 2015.
1.1

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. FlowFox:
A web browser with flexible and precise information flow control. In ACM Conference
on Computer and Communications Security (CCS), CCS ’12, pages 748–759, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382275. URL
http://doi.acm.org/10.1145/2382196.2382275. 2.1, 2.6

Guillaume Delugre. Bypassing ASLR and DEP on Adobe Reader X - So-
geti ESEC Lab. http://esec-lab.sogeti.com/post/Bypassing-ASLR-and-DEP-on-

Adobe-Reader-X, June 2012. 1.3.1, 5.2.1

Norman K. Denzin and Yvonna S. Lincoln. Introduction: The Discipline and Practice of
qualitative research. In The Sage Handbook of Qualitative Research. Sage, Thousand
Oaks, CA, USA, 4th edition, 2011. ISBN 978-1-4129-7417-2. 2.2

Brandon Dixon. PDF X-RAY. https://github.com/9b/pdfxray_public, 2012. 5

Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark Silberstein, Yuanzhong
Xu, Vitaly Shmatikov, and Emmett Witchel. Eternal sunshine of the spotless ma-
chine: Protecting privacy with ephemeral channels. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), OSDI’12, pages 61–75, Berke-
ley, CA, USA, 2012. USENIX Association. ISBN 978-1-931971-96-6. URL http:

//dl.acm.org/citation.cfm?id=2387880.2387887. 2.6

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and event
processes in the asbestos operating system. In ACM Symposium on Operating Systems
Principles (SOSP), SOSP ’05, pages 17–30, New York, NY, USA, 2005. ACM. ISBN
1-59593-079-5. doi: 10.1145/1095810.1095813. URL http://doi.acm.org/10.1145/

1095810.1095813. 2.3.3, 2.6
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