
Safely Composable Type-Specific Languages
(Technical Report)

Cyrus Omar Darya Kurilova Ligia Nistor
Benjamin Chung Alex Potanin†

Jonathan Aldrich
July 25, 2014

CMU-ISR-14-106

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†Victoria University of Wellington

Abstract

We present additional details on our static semantics and our corpus analysis that were omitted
from the main body of the paper Safely Composable Type-Specific Languages for concision [1].

We acknowledge the support of the United States Air Force Research Laboratory and the National Security
Agency lablet contract #H98230-14-C-0140, as well as the Royal Society of New Zealand Marsden Fund. Cyrus
Omar was supported by an NSF Graduate Research Fellowship.



Keywords: extensible languages; parsing; bidirectional typechecking; hygiene



A Static Semantics

A.1 Mutually Recursive Type Declarations

`Θ θ ∼ Θ

`Θ0 θ ∼names Θnames `Θ0Θnames θ ∼defs Θdefs `Θ0Θdefs θ ∼metadata Θ

`Θ0 θ ∼ Θ
rec-decls

`Θ θ ∼names Θ

`Θ ∅ ∼names ∅
empty-names

`Θ θ′ ∼names Θ′ T /∈ dom(Θ) T /∈ dom(Θ′)

`Θ objtype[T, ω, em]; θ′ ∼names T [?, ?]; Θ′ OT-names

`Θ θ′ ∼names Θ′ T /∈ dom(Θ) T /∈ dom(Θ′)

`Θ casetype[T, χ, em]; θ′ ∼names T [?, ?]; Θ′ CT-names

`Θ θ ∼defs Θ

`Θ ∅ ∼defs ∅
empty-def

`Θ ω `Θ θ′ ∼defs Θ′

`Θ objtype[T, ω, em]; θ′ ∼defs T [ot[ω], ?]; Θ′ OT-def

`Θ χ `Θ θ′ ∼defs Θ′

`Θ casetype[T, χ, em]; θ′ ∼defs T [ct[χ], ?]; Θ′ CT-def

`Θ θ ∼metadata Θ

`Θ ∅ ∼metadata ∅
empty-metadata

∅ `Θ0,T [ot[ω],?],Θ em ; im ⇒ τm `Θ0,T [ot[ω],im:τm],Θ θ′ ∼metadata Θ′

`Θ0,T [ot[ω],?],Θ objtype[T, ω, em]; θ′ ∼metadata T [ot[ω], im : τm]; Θ′ OT-metadata

∅ `Θ0,T [ct[χ],?],Θ em ; im ⇒ τm `Θ0,T [ct[χ],im:τm],Θ θ′ ∼metadata Θ′

`Θ0,T [ct[χ],?],Θ casetype[T, χ, em]; θ′ ∼metadata T [ct[ω], im : τm]; Θ′ CT-metadata

Figure 1: Mutually Recursive Type Declaration Checking

The type declaration judgement in the paper only supports recursive types. Here, we include
support for mutually recursive types by splitting the three key premises of the paper rule into three
distinct judgements, which each process the entire list of type declarations all the way through
before going on to the next one. The three additional judgements in Fig. 1 operate as follows:

1



1. The judgement `Θ0 θ ∼names Θnames creates a named type context Θnames containing only
type names from θ, checking only that they are unique. Each binding in Θnames is of the form
T [?, ?].

2. The judgement `Θ0 Θnames θ ∼defs Θdefs creates a named type context Θdefs containing only
type names and their definitions, checking only that any named types mentioned in the type
definitions are available. Each binding in Θnames is of the form T [δ, ?].

3. The judgement `Θ0 Θdefs θ ∼metadata Θ finally checks that the metadata is well-typed. Meta-
data can explicitly refer to metadata of a type listed earlier in the list of type declarations, θ,
but any other reference is a type error.

A.2 Context Formation

` Θ

` ∅ Th-empty
` Θ T /∈ dom(Θ) `Θ,T [?,?] δ `Θ,T [δ,?] µ

` Θ, T [δ, µ]
Th-extend

`Θ δ

`Θ ?
def-unknown

`Θ ω

`Θ ot[ω]
def-ot

`Θ χ

`Θ ct[χ]
def-ct

`Θ µ

`Θ ?
metadata-unknown

∅ `Θ i⇐ τ
`Θ i : τ

metadata

`Θ Γ

`Θ ∅
G-empty `Θ τ

`Θ Γ, x : τ
G-extend

Figure 2: Context Formation

In our metatheory, we need judgements expressing well-formed contexts, shown in Fig. 2. A
lemma corresponding to Lemma 3 in the paper applies to our definition here as well:

Lemma 1 (Type Declaration (Mutually Recursive)). If ` Θ0 and `Θ0 θ ∼ Θ then ` Θ0Θ.

Proof. We prove the following more explicit lemma after inverting the type declaration derivation.

Lemma 2 (Type Declaration (Explicit)). If ` Θ0 and `Θ0 θ ∼names Θnames then ` Θ0Θnames and if
`Θ0Θnames θ ∼defs Θdefs then ` Θ0Θdefs and if `Θ0Θdefs θ ∼metadata Θ then ` Θ0Θ.

Proof. The proof is by induction on the structure of θ. We give the case θ = objtype[T, ω, em]; θ′

(the case θ = ∅ is trivial and the case θ = casetype[T, χ, em] follows a directly corresponding
argument). We have:

2



• By rule OT-names (which is the only rule that syntactically applies) we have that Θnames =
T [?, ?]; Θ′

names and T /∈ dom(Θ0) and T /∈ dom(Θ′
names) and by the IH, ` Θ0Θ′

names. There-
fore, ` Θ0Θ′

names, T [?, ?] by rules Th-extend, def-unknown and metadata-unknown. Thus,
` Θ0Θnames by suitable application of an exchange lemma, which we have assumed by
metatheoretically defining Θ as a finite map over type names.

• By rule OT-defs (which is the only rule that syntactically applies) we have that Θdefs =
T [ot[ω], ?]; Θ′

defs and `Θ0Θnames ω and by the IH, ` Θ0Θ′
defs. Therefore, ` Θ0Θ′

defs, T [ot[ω], ?]
by rules Th-extend, def-ot and metadata-unknown. By exchange, we have that ` Θ0Θdefs.

• By rule OT-metadata (which is the only rule that syntactically applies), we have that Θ =
T [ot[ω], im : τm]; Θ′ and ∅ `Θ0Θdefs em ; im ⇐ τm and by the external type preservation
lemma, ∅ `Θ0Θdefs im ⇐ τm. By rules Th-extend, def-ot and metadata we have that `
Θ0, T [ot[ω], im : τm]. By the IH, we then have that ` Θ0Θ.

A.3 Metatheoretic Functions
We use several metatheoretic functions. Their properties are defined below.

Definition 1. If parsestream(body) = ips then ∅ `Θ0 ips ⇐ named[ParseStream].

Definition 2. If `Θ0 ips ⇐ named[ParseStream] then there exists a body such that body(ips) =
body and parsestream(body) = ips.

Definition 3. If eparse(body) = e then e is the abstract syntax corresponding to the concrete
syntax in body , as described in the paper.

A.4 Notes on Reification and Dereification
Lemma 1 in the paper (Reification) requires additional clauses for completeness:

Lemma 3 (Reification (Full)). If Θ0 ⊂ Θ then

1. If `Θ τ then τ ↓ i and ∅ `Θ i⇐ named[Type].

2. x ↓ i and ∅ `Θ i← named[ID].1

3. ` ↓ i and ∅ `Θ i← named[ID]

4. C ↓ i and ∅ `Θ i← named[ID]

5. T ↓ i and ∅ `Θ i← named[ID]

1Note that this judgement is, perhaps confusingly, about the metavariable x, not the internal term form for variables.
Our syntax in the paper does not distinguish these directly, as is conventional, so rule R-var looks self-referential.

3



Proof. The proof for types is immediate by inspection. The remaining clauses are assumed def-
initionally, as we do not wish to prescribe particular grammars for variables, labels, constructor
labels and type labels.

For completeness, we can also state that every reified elaboration can be dereified:

Lemma 4 (Completeness of Dereification). If Θ0 ⊂ Θ and ∅ `Θ i⇐ named[Exp] and i val then
i ↑ ê.

Proof. The proof is a simple induction that simply checks for coverage.

A.5 Notes on Internal Type Safety and Type Preservation
Theorem 1, Theorem 2 and Lemma 2 in the paper require a slightly stronger inductive hypothesis.
We can prove the following stronger theorems instead.

Theorem 1 (Internal Type Safety (Strong)). If ` Θ then

1. If ∅ `Θ i⇐ τ then either i val or i 7→ i′ such that ∅ `Θ i′ ⇐ τ .

2. If ∅ `Θ i⇒ τ , then either i val or i 7→ i′ such that ∅ `Θ i′ ⇒ τ .

Theorem 2 (External Type Preservation (Strong)). If ` Θ and `Θ Γ then

1. If Γ `Θ e; i⇐ τ then Γ `Θ i⇐ τ .

2. If Γ `Θ e; i⇒ τ then Γ `Θ i⇒ τ .

Lemma 5 (Translational Type Preservation (Strong)). If ` Θ and `Θ Γout and `Θ Γ and dom(Γout)∩
dom(Γ) = ∅ (which we can assume implicitly due to alpha renaming at binders) then

1. If Γout; Γ `Θ ê; i⇐ τ then ΓoutΓ `Θ i⇐ τ .

2. If Γout; Γ `Θ ê; i⇒ τ then ΓoutΓ `Θ i⇒ τ .

4



B Corpus Analysis Methodology
Due to space limitations for our ECOOP’14 paper, some of the details of the methodology used
to perform the corpus analysis were omitted. Here we restore the omission and provide a more
detailed description of the used methodology.

For our analysis we used a recent version (20130901r) of the Qualitas Corpus [2], consisting of
107 Java projects. As the projects in the corpus contained various types of files that are necessary
for a correct project setup in a programming environment but we were interested solely in the .java

files, we ran the following commands in a terminal to remove all the non-Java files:
1 find . -type f -not -name "*.java" -exec rm {} \;

2 find . -type d -empty -delete

Having obtained a set of exclusively Java files, we ran the following commands to find all
constructors in the code:
1 grep -r -n ’[[:space:]]*public[[:space:]]*[A-Z][a-zA-Z0-9_-]*[[:space:]]*(’ . >~/tmp/public-constructors.

txt 2>/dev/null;

2 grep -r -n ’[[:space:]]*protected[[:space:]]*[A-Z][a-zA-Z0-9_-]*[[:space:]]*(’ . >~/tmp/protected-

constructors.txt 2>/dev/null;

3 grep -r -n ’[[:space:]]*private[[:space:]]*[A-Z][a-zA-Z0-9_-]*[[:space:]]*(’ . >~/tmp/private-

constructors.txt 2>/dev/null;

4 grep -r -n ’^[[:space:]]*[A-Z][a-zA-Z0-9_-]*[[:space:]]*(’ . >~/tmp/package-private-constructors.txt 2>/

dev/null;

These commands use several observations pertaining to Java constructors:

1. Constructor names start with a capital letter.

2. Constructor names are usually followed by an opening parenthesis.

3. Constructor names may be prepended by scope-related keywords, such as public, protected,
and private, or may not have any keywords in front of them (which means they are package
private).

4. Constructor names or their scope-related keywords may have zero or more whitespace char-
acters before them and no other characters.

5. There may be zero or more whitespace characters between the constructor name and an
opening parenthesis and no other characters.

According to these observations, the first command is to find all public constructors, second all
protected constructors, third all private constructors, and fourth all package-private constructors.
After the four corresponding files were created, we did a quick visual scan through to verify that
only constructors were found, merged the four files into one, and concluded that there were 124,873
Java constructors.

Having obtained a collection of constructors, we used the following vi text editor’s command
to find constructors that take in at least one String argument:
1 :g/String /

5



Running this command, we found that there were 30,161 constructors, i.e., 24% of the total,
that had at least one String argument. Then, we searched for constructors that used Strings that
could be substituted with TSLs. We did a visual scan of the constructors’ signatures and inferred
the functionality of the constructor and the arguments it was taking in. To give an intuition for how
the inference process went, below we give a positive example, i.e., an example of a constructor
in which we concluded that a TSL could be used instead of the String argument, and a negative
example, i.e., an example of a constructor in which we concluded that, although the constructor
had a String argument, using a TSL instead might not have benefited the implementation.

Positive Example Consider the following example, which was positively classified in our code
analysis:

Constructor: public IPAddressConversion(String IPaddr)
File: jtopen-7.1/com/ibm/as400/util/commtrace/IPAddressConversion.java
Line: 51

This constructor was found in the JROpen project, on line 51 in a file called IPAddressConversion.java.
The constructor is called IPAddressConversion and the name of the String argument is IPaddr. From these
pieces of information, we inferred that the String argument representing an IPv4 address, which is
usually of the following form where D is a number between 0 and 255:

D.D.D.D

This format could be represented by a Wyvern TSL where we support variable splicing using
the format %x:
1 objtype IPAddress

2 ...

3 metadata = new : HasTSL

4 val parser = ~

5 start <- D ’.’ D ’.’ D ’.’ D

6 fn (e1, e2, e3, e4) => ~

7 new

8 val d1 = %e1%

9 val d2 = %e2%

10 val d3 = %e3%

11 val d4 = %e4%

12 D <- numlit

13 fn (e1) => e1

14 D <- ’%’ ID

15 fn (e1) => e1

Hence, the constructor could use a TSL instead of the String argument and thus benefit from a
guarantee that at the runtime the passed-in argument adheres to the necessary format.

Negative Example A negative example in our inference process, i.e., a constructor that has at
least one String argument but may not benefit from substituting it with a TSL, is presented below:

Constructor: public InternalEntity(String name, String text, boolean inExternalSubset)
File: xerces-2.10.0/src/org/apache/xerces/impl/XMLEntityManager.java

6



1. Constructor: public CatalogEntry(String publicID, CatalogReader catalog)

File: netbeans-6.9.1/xml.catalog/src/org/netbeans/modules/xml/
catalog/CatalogEntry.java

Line: 64

2. Constructor: public ConfigurableAwtMenu(String menuID, VariableBundle vars)

File: pooka-3.0-080505/net/suberic/util/gui/ConfigurableAwtMenu.java
Line: 35

3. Constructor: public ExternalRuleID(String id)

File: pmd-4.2.5/src/net/sourceforge/pmd/ExternalRuleID.java
Line: 11

Figure 3: Examples of constructors in the “Identifier” category (process ID, user ID, column or
row IDs, etc.)

Line: 2,486

This constructor was found in the Xerces project, on line 2,486 of a file called XMLEntityManager.java.
The name of the constructor is InternalEntity, and it has two String arguments: one called name and
the other called text. The name of the constructor and the names of the passed-in String arguments
are generic and thus we cannot infer the exact functionality of the constructor. In turn, we cannot
suggest a TSL to be used to capture the functionality. Therefore, it is not obvious that the con-
structor would benefit from using a TSL instead of any of its String arguments, and we classify this
example as negative.

To give an insight into all types of Strings that we identified, we provide examples for each type:
Figure 3 presents examples for the “Identifier” category; Figure 4 presents examples for the “Di-
rectory path” category; Figure 5 presents examples for the “Pattern” category; Figure 6 presents
examples for the “URL/URI” category; Figure 7 presents examples for the “Other” category (con-
taining several subtypes of Strings).

7



1. Constructor: public VersionRelease(String homeDir)

File: jboss-5.1.0/build/VersionRelease.java
Line: 72

2. Constructor: public DataQueueDocument (AS400 system, String path)

File: jtopen-7.1/com/ibm/as400/vaccess/DataQueueDocument.java
Line: 140

3. Constructor: public ClassPathContextResource(String path, ClassLoader classLoader)

File: springframework-3.0.5/projects/org.springframework.core/src/
main/java/org/springframework/core/io/DefaultResourceLoader.java

Line: 127

Figure 4: Examples of constructors in the “Directory path” category

1. Constructor: public RegexFilter(String regex)

File: drjava-stable-20100913-r5387/src/edu/rice/cs/drjava/config/
RecursiveFileListProperty.java

Line: 61

2. Constructor: public NameEndsWith(String suffix)

File: struts-2.2.1/src/xwork-core/src/main/java/com/opensymphony/
xwork2/util/ResolverUtil.java

Line: 141

3. Constructor: public NumberEditor(JSpinner jSpinner, String decimalFormat)

File: netbeans-6.9.1/html/src/org/netbeans/modules/html/palette/
items/OLCustomizer.java

Line: 303

Figure 5: Examples of constructors in the “Pattern” category (regular expressions, prefixes and
suffixes, delimiters, format templates, etc.)

8



1. Constructor: public XConnection(ExpressionContext exprContext, String driver, String
dbURL, String user, String password)

File: xalan-2.7.1/src/org/apache/xalan/lib/sql/XConnection.java
Line: 239

2. Constructor: public DOMLocatorImpl(int lineNumber, int columnNumber, String uri)

File: xerces-2.10.0/src/org/apache/xerces/dom/DOMLocatorImpl.java
Line: 82

3. Constructor: public MockHttpServletRequest(ServletContext servletContext, String
method, String requestURI)

File: springframework-3.0.5/projects/org.springframework.web/src/
test/java/org/springframework/mock/web/MockHttpServletRequest.java

Line: 223

Figure 6: Examples of constructors in the “URL/URI” category

9



1. ZIP code

Constructor: public Customer(Integer customerId, String zip)

File: netbeans-6.9.1/websvc.rest/test/unit/data/testsrc/com/acme/
Customer.java

Line: 69

2. Password

Constructor: public WrappedConnectionRequestInfo(final String user, final String pass-
word)

File: jboss-5.1.0/connector/src/main/org/jboss/resource/adapter/jdbc/
WrappedConnectionRequestInfo.java

Line: 39

3. Query

Constructor: public JDBCXYDataset(Connection con, String query)

File: jfreechart-1.0.13/source/org/jfree/data/jdbc/JDBCXYDataset.java
Line: 175

4. HTML/XML

Constructor: public HtmlContentPopUp(java.awt.Frame parent, String title, boolean
modal, String html)

File: jag-6.1/src/com/finalist/jaggenerator/HtmlContentPopUp.java
Line: 88

5. IP address

Constructor: public HostRecord(String ip, String name, boolean ssh)

File: netbeans-6.9.1/cnd.remote/src/org/netbeans/modules/cnd/remote/
ui/wizard/HostsListTableModel.java

Line: 173

6. Version

Constructor: public EncryptHeader(short type, String version)

File: jgroups-2.10.0/src/org/jgroups/protocols/ENCRYPT.java
Line: 1,147

Figure 7: Examples of constructors in the “Other” category

10



References
[1] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich. Safely composable

type-specific languages. In ECOOP, 2014.

[2] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble. Qualitas
corpus: A curated collection of Java code for empirical studies. In Asia Pacific Software
Engineering Conference, 2010.

11


