
Featherweight Typestate

Ronald Garcia� Roger Wolff� Éric Tanter:
Jonathan Aldrich�

July 2010
CMU-ISR-10-115

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

�School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
:PLEIAD Laboratory, Computer Science Department (DCC), University of Chile

This research is supported by grants from the National Science Foundation and from IBM.
This work was supported by the National Science Foundation under Grant #0937060 to the Computing Research

Association for the CIFellows Project.

Keywords: access permissions, state guarantees

Abstract

Typestate oriented programming integrates notions of typestate directly into the semantics of an
object-oriented programming language. This document presents the formalization of Feather-
weight Typestate, a typestate oriented language modeled after Featherweight Java. This language
supports a classes-as-states model of typestates, and utilizes a flow-sensitive type system for check-
ing access permissions and state guarantees, thereby enabling safe and modular typestate check-
ing. The syntax and both static and dynamic semantics of Featherweight Typestate are presented,
as well as a proof of type safety.

1 Introduction
What follows is a formalization of a system for typestate-oriented programming, with an emphasis
on permission checking. This system is a statically-typed language for typestate-oriented pro-
gramming. The formalization presented here is for a nominal class-oriented language modeled
after Featherweight Java [Igarashi et al., 2001]. This language provides a simple model for ex-
plaining what typestate-oriented programming is about, as well as a platform for extension. We’ll
call it Featherweight Typestate, or FT for short.

2 Syntax
We begin with the basic syntax of the language. Since FT is modeled after Featherweight Java, it
assumes a number of the same primitive notions, such as identifiers and method, field, and class
names.

x, this P IDENTIFIERNAMES

m P METHODNAMES

f P FIELDNAMES

C,D,E P CLASSNAMES

Object P CLASSNAMES

The this keyword is a particular identifier that is bound to the subject of a method call. The Object
keyword is a special class name, indicating the top of all subtype hierarchies. Throughout the
following, smallcaps (e.g. FIELDNAMES) indicates syntactic categories, italics (e.g. C) indicates
metavariables and sans serif (e.g. Object) indicates particular elements of a category.

An FT program is a list of class declarations followed by an expression (overline notation
indicates sequences):

PG ::= xCL, ey (programs)

The syntax of classes is as follows:

CL ::= class C extends D t F , M u (class declarations)
F ::= T f (field declarations)
M ::= T mpT " T xq [T " T s t return e; u (method declarations)

Each class declares a superclass and contains a list of field declarations F and a list of method
definitions M . In contrast to Featherweight Java, FT classes do not have an explicit constructor.
For simplicity, each FT class has an implicit constructor that assigns an initial value to each field.
A method declaration T mpT " T xq [T " T s t return e; u extends the same notion from
Featherweight Java. Each method parameter is annotated with two type annotations, T1 " T2 x,
which indicate the type of the argument at the beginning (T1) and end (T2) of the method call. The
method itself has a similar annotation in square brackets, which indicates the type of this at the
beginning and end of the method call. This idea is formalized below.

1

The body of each method (and the top-level program) is an expression e, which is defined as
follows:

e ::= x | let x = e in e | void | new Cpsq | s.f (expressions)
| s.mpsq | s.f :=: s | sÐ Cpsq | assertxCypsq

s ::= x (simple expressions)

Identifiers x are standard. The let expression let x = e1 in e2 binds the value of the expression e1
to the variable x for the scope of e2. FT expressions are restricted to A-normal form [Sabry and
Felleisen, 1993], so let expressions are used to sequence all operations, and every other expression
in the language allows only simple expressions s as subexpressions. For now, identifier references
are the only simple expressions in the language. When we discuss the runtime semantics of the
language below, we add runtime object references to the set of simple expressions. The restriction
to A-normal form simplifies the description of the type system, which relies on sequencing in order
to track typestate. We assume throughout that variables bound by let expressions can be renamed
as needed.

The void expression is a special value used to indicate operations that conceptually return no
value, where we are interested in the operation’s side-effects. It can be bound to a variable, but
is otherwise useless. The new expression creates a new heap object based on the class C and
populates its fields with the supplied values. The field reference expression s.f returns the current
value of the f field of s. The method call expression s.mpsq executes the body of the m method
with s bound to this and the arguments s to the method parameters. The field swap expression
s0.f :=: s1 is a swapping assignment: it replaces the current value of the field s0.f with the value
of s1 and returns the old value as its result. Swapping semantics allows for better control over
the permissions associated with object fields. The update operation s Ð Cpsq is one of the new
additions to the language specifically to support typestate. It replaces the value of s with the new
object of class C, which may not be the same as s’s current class. Updating an object is how
FT expresses typestate change. The assert expression assertxCypsq asserts that the value of s is an
object of classC. If this is true, then the expression returns a void object. If not, then the expression
is erroneous. In a language like FT, an assert is more primitive than a cast that simply returns a new
reference to an object with a different type. Because of typestate, the types of references already
change in the language. Asserts give the programmer finer control over the permissions and class
assumption individual references. The flexibility of assert is enabled by support for typestate, and
a vital feature.

Types in FT extend the Java notion of class names as types. The syntax of types follows:

T ::= P C | Void (type descriptions)
P ::= kpDq (permissions)
k ::= full | shared | pure (base permissions)

The language of types includes a Void type, which is the type of the void object. Otherwise, each
FT type has two components. As with Java, each type indicates the current class of an object, which
we call its class assumption. However, each type also indicates its access permissions [Bierhoff
and Aldrich, 2007], which pair a base permission with a state guarantee as kpDq. Access permis-
sions (or permissions for short) succinctly specify the read, write, and interference properties of

2

a particular reference to an object. In FT, having write access permission means that a reference
can swap the fields of an object, or perform an update operation within the constraints of the state
guarantee. Read permission is the ability to read fields.

The full permission denotes that the given object reference has exclusive write privileges on
its referred object and can also read from it and perform state change. Any other outstanding
references to that object must have the pure permission. The pure permission denotes that the
given object reference can read from an object. A reference with pure permissions can coexist with
other reference that have write permission to the same object. The shared permission denotes that
the object has non-exclusive write privileges on its referred object. Any other outstanding reference
to this object must have shared or pure permissions.

A state guarantee expresses the portion of the subtype hierarchy to which a particular object’s
class identity is limited. Applying the update operation to an object can only change its class among
the subtypes of its state guarantee class. All outstanding references to a particular object, including
identifier and field bindings, must have mutually consistent state guarantees and permissions (we
formalize this notion of consistency below).

Throughout the discussion of static semantics, we impose a well-formedness condition on
types. The type kpDq C is only well-formed if C <: D according to the class table CL asso-
ciated with the program. This ensures that the type ascribed to an object reference complies with
its associated state-guarantee. From here forward, all types T are assumed to be well-formed. As
a consequence, some judgments defined below are implicitly parameterized on the class table CL,
which determines subtyping relationships.

3 Static Semantics
As with Featherweight Java, the FT type system relies upon type contexts.

∆ ::= x : T (linear type contexts)

A type context ∆ is a list of identifier-type bindings. As is common, a well-formed type context
can have only one binding for any given variable. As such, a type context is a partial function from
variables to types.

Whereas Γ is the standard metavariable for type contexts, we use a different metavariable ∆
to emphasize that the typing contexts are not merely lexical: they are linear [Girard, 1987]. One
of the distinguished properties of a typestate-oriented type system is that the types of identifiers
may change over the course of a program’s execution. In part this reflects how the permissions to
a particular object may be partitioned and shared between references as computation proceeds, but
it also reflects how update operations may change the class of an object during execution.

3.1 Managing Permissions
Permissions to an object are a resource that can be consumed during execution. In particular, the
permissions to an object can be split among object references in ways that can limit the operations

3

that apply to those references. Some base permissions, like pure and shared can be infinitely split
The type system must track splitting of permissions in order to check that programs are safe.

Several auxiliary judgments specify how permissions may be safely split. First, permission
splitting k1 V k2{k3 describes how given a k1 permission, permission k2 can be acquired, leaving
behind k3 as the maximum residual.

k V k{k Base Permission Splitting

(pure)
k V pure{k

(full)
full V full{pure

(shared)
k P t full, shared u
k V shared{shared

When we are only concerned that a permission k2 can be gotten from a permission k1 (i.e. the
residual permission is irrelevant), we write k1 V k2. For instance, given any permission k, full V k
and k V k.

As is expected, the residual of a split operation is related to the part split off.

Proposition 1. If k1 V k2{k3 then for some k4, k1 V k3{k4 and k4 V k2.

Proof. By exhaustively checking each case. The only interesting case is where k1 = k3 = k4 =
shared and k2 = pure.

Permissions play a part in determining what operations are possible, as well as when an object
can be safely bound to an argument. The restrictions on permissions are formalized as a partial
order on permissions, analogous to subtyping. The notation P1 : P2 says that P1 is a subper-
mission of P2, which means that a reference with P1 permissions may be used wherever an object
reference with P2 permissions is needed.

P : P Subpermission

(pure-guarantee) E <: D
purepEq : purepDq

(full-guarantee) D <: E
fullpEq : fullpDq

(split)
k1 V k2

k1pDq : k2pDq
(trans)

P1 : P2 P2 : P3

P1 : P3

The (split) rule expresses that splitting a base permission produces a lesser (or equivalent) permis-
sion. The state-guarantee rules for pure and full capture how state guarantees affect the strength
of permissions. In particular, pure permissions are covariant with their state guarantees, whereas
full permissions are contravariant with their state guarantees; shared permissions are only com-
parable at the same state guarantee. The (trans) rule ensures that permission ordering is transitive;
the (split) rule implies reflexivity since k V k. In theory, we could define a more symmetric and
nondeterministic splitting relation, but this deterministic relation suffices for the static language.

The pure permission covaries with its state guarantee because a subclass state guarantee is a
stronger invariant on a type: the object that is pointed to is guaranteed to be a more specific type
than the supertype. On the other hand, the full permission contravaries with its state guarantee

4

because a state guarantee higher in the subtype hierarchy allows an object’s state to be changed
among a broader number of classes. The existence of full and pure references to an object restrict
each others’ state guarantees: A full reference cannot change an object’s state to a class outside
of the pure references’ state guarantee, and the pure reference cannot assume that the state of the
object it points to is guaranteed to be lower in the class hierarchy.

Permission splitting extends base permission splitting to also take into account the state guar-
antees involved.

P V P {P Permission Splitting

(PSplit)
k1 V k2{k3 k1pD1q : k2pD2q D3 = D1

<
: D2

k1pD1qV k2pD2q{k3pD3q

This relation ensures that in addition to the compatibility of state guarantees: that the state guar-
antee of k1pD1q is compatible with k2pD2q and that the residual permission k3pD3q has the least-
restrictive state guarantee possible. The expression D1

<
: D2 yields the lower of D1 and D2 in the

subclass hierarchy, whichever of the two is a subclass of the other. For example, if D1 <: D2, then
D1

<
: D2 = D1 (

<
: is the greatest lower bound according to subclass ordering). It’s undefined if

neither is a subclass of the other, but k1pD1q : k2pD2q guarantees that the two classes are related.
Intuitively, a lower state guarantee in the subclass hierarchy implies a stronger invariant about the
class identity of the object being referenced. This ensures that the two permissions that result from
the split respect each other’s state guarantees.

Permission splitting in turn extends to type splitting.

T V T {T Type Splitting

(tsplit-obj)
P1 V P2{P3 C1 <: C2

P1 C1 V P2 C2{P3 C1

(tsplit-void)
Void V Void{Void

The (tsplit-obj) rule builds on permission splitting, but takes subclassing into account. The residual
type can retain the most specific class assumption.

The (tsplit-void) rule implies that the Void type can be arbitrarily split without diminishing it
in any way. In this sense, a void object is an unlimited resource.

Subtyping is defined directly in terms of type splitting.

T <: T Subtyping

T1 V T2
T1 <: T2

Two enlightening propositions can relate subtyping to subpermissions and subclassing:

Proposition 2.

1. P1 : P1 iff P1 V P2;

5

2. P1 C1 <: P2 C2 iff P1 : P1 and C1 <: C2.

The first part shows that the subpermissions and permission splitting have the same relation-
ship as subtyping and type splitting, though it’s not immediately obvious from their definitions.
The second part shows that subtyping for object types decomposes into subpermissioning and sub-
classing.

Update operations can alter the state of any number of variable references. To retain soundness
in the face of these operations, it is sometimes necessary to discard previously known information
in case it has been invalidated. In particular, the class assumptions for some variables must revert to
the state-guarantee, which is a reliable object type after a state change. The type demotion function
expresses this restricting of assumptions.

Ó : T Ñ T Type Demotion
psharedpDq CqÓ = sharedpDq D
ppurepDq CqÓ = purepDq D

TÓ = T otherwise

We write ∆Ó for the compatible extension of demotion to typing contexts. Since the type of objects
pointed to by a pure or shared reference can be changed by another full or shared reference, the
class assumption associated with one of these references must revert to the state guarantee if its
class assumption might have been invalidated. If an object reference has a full permission to an
object, only that reference can update the underlying object. As such, full references do not need
to be demoted.

3.2 Well-typed Expressions
The type judgements for Java involve only one context that acts as an input to the typing process.
In FT, however, operations like state change can alter the static type information, including both
the permissions a reference has to an object as well as the object’s type. For this reason, the
type system threads the context through the program, updating the typing context as an abstract
representation of each expression’s meaning.

To capture the linearity of type associations in the FT language, the typing judgment has the
form ∆1 $ e : T % ∆2. This judgment means that given the typing assumptions ∆1, the expression
e can be assigned the type T and produces typing assumptions ∆2. The assumptions in question
are the permissions and class information for each object reference.

The typing judgment for void is quite simple.

(void)
∆ $ void : Void % ∆

With respect to linearity of typing contexts, this judgment does not affect the types of any other
references, so it returns the input context unchanged.

In contrast, the typing rule for variable references affects the output context. If the type context
binds a variable x to a type T1 , and that variable is referenced at type T2, then the output type

6

context sets the type of x according to the type splitting rules defined above.

(ctx)
T1 V T2{T3

∆, x : T1 $ x : T2 % ∆, x : T3

If the variable had the Void type, then the reference and output type are also Void. However,
if the type context binds the variable to an object reference type, the typing rule splits off some
permissions to the referenced variable. Subsequent references to the variable can only use the
remaining permissions since the output context associates the variable with the permissions left
over after splitting.

Observe that the (ctx) rule implies what is typically presented as a subsumption rule:

Lemma 3. If ∆ $ x : T1 % ∆1 and T1 <: T2 Then ∆ $ x : T2 % ∆2 for some ∆2.

However, changing the type from T1 to T2 also changes the output context. For this reason we
still explicitly support subsumption.

(sub)
∆0 $ x : T1 % ∆1 T1 <: T2

∆0 $ x : T2 % ∆1

The typing judgment for let expressions is straightforward. Since the language is in A-normal
form, this rule expresses how permissions flow from one expression to the next.

(let)

∆0 $ e1 : T1 % ∆1

∆1, px : T1q $ e2 : T2 % ∆2, x : T

∆0 $ let x = e1 in e2 : T2 % ∆2

To type a let expression, first the input context ∆0 is used to type the bound expression e1, yielding
the context ∆1. Then e2 is typed in a context that augments ∆1 by giving x the same type as e1.
The output context of the entire let expression matches the output context of typing e2, minus any
residual type assumption for x. Removing x from the context preserves lexical scoping.

The rule for creating a new object is analogous to the equivalent Java rule.

(new)
∆0 $ Cpsq % ∆1

∆0 $ new Cpsq : fullpObjectq C % ∆1

The difference is that a new object also has permissions associated with it. The resulting reference
to the newly created object has fullpObjectq permissions because the new object can safely be
updated to any other class without worry since there are no other references to it. This rule relies
on an auxiliary judgment that captures the idea of a well-typed constructor call (technically Cpsq
is not an FT expression, so this is a separate judgement).

∆ $ Cpsq % ∆ Well-typed Constructor

fieldspCq = T f ∆0 $ s : T % ∆1

∆0 $ Cpsq % ∆1

7

Throughout, we use the notation ∆ $ s : T % ∆1 as shorthand for iteratively typing a sequence of
simple expressions, i.e.

∆ = ∆0 $ s0 : T0 % ∆1; ∆1 $ s1 : T1 % ∆2; � � � ∆n $ sn : Tn % ∆n+1 = ∆1

One novel and salient feature of FT is the update operation, which can change the class of an
object. Its typing rule follows.

(update)

k P t full, shared u C <: E
∆0 $ Cpsq % ∆1

∆1 $ st : kpEq D % ∆2, st : T

∆0 $ st Ð Cpsq : Void % ∆2Ó, st : kpEq C

This expression replaces the object that st refers to with Cpsq. State-change is restricted to sub-
classes of the object’s current state-guarantee, and that guarantee is preserved after the operation.
Furthermore, the classes of variables in ∆2 are demoted to their state guarantees since state change
may have invalidated those stronger assumptions. Only one object is updated by this object, but it
may affect any number of outstanding references. This operation is only possible if the reference
to the receiving object has shared or full permissions to the underlying object.

The type rule for method invocation extends the analogous Java rule in that method calls can
change the types of their arguments, including the receiver object.

(invoke)

∆0 $ st : Pt Ct, sx : Tx % ∆1, st : T 2
t , sx : T 2

x

mdeclpm,Ctq = T mpTx " T 1
xq [Pt Ct " T 1

t s

∆0 $ st.mpsxq : T % ∆1Ó, st : T 1
t , sx : T 1

x

The static class of the receiver object st determines the signature of the method m. Then, if
each argument to the method call has the type required by the method signature, the type of the
expression is equal to the return type of the method call, and the types of the arguments and receiver
object change as specified to the types T 1 and T 1

t respectively. All other permissions are demoted
since the method call may perform update operations. Because of the structure of the invoke rule,
the variable reference for the receiving object and the references to all the arguments must each be
distinct. While this is inconvenient for practical programming, it can easily be arranged by aliasing
arguments to new variables.

The field reference expression yields a pure reference to the underlying object. The permission
is downgraded because the field does not give up any of its permissions to the object.

(ref)

∆ $ s : P1 C1 % � � �
pk2pD2q C2 fq P fieldspC1q

∆ $ s.f : purepD2q C2 % ∆

The variable s must refer to an object reference, so its type must not be Void. Since field reference
does not consume any of s’s permissions, the output context from ascertaining its type is ignored.
Throughout, ellipses indicate irrelevant subterms. The resulting pure reference inherits its state
guarantee and class type from the source field. If the field object is later updated, then context

8

demotion will will properly revert the reference’s class assumption to the state guarantee. Field
reference expressions return the input context unchanged because field reference consumes none
of the permissions to s.

To acquire the declared permissions to an object field, one must replace the field entry with
another using the swap operation.

(swap)

k1 P t full, shared u ∆0 $ s1 : k1pD1q C1 % � � �
pT2 fq P fieldspC1q ∆0 $ s2 : T2 % ∆1

∆0 $ s1.f :=: s2 : T2 % ∆1

The type context output by swap accounts for the consumed permissions to s2. The reference to
s1 in this expression consumes no permissions. FT replaces Java’s value-oriented class cast with
a class assert operation. The assert operation assertxCypsq changes class type information of the
reference s.

(assert)
∆, s : P C $ assertxDypsq : Void % ∆, s : P D

Though FT types consist of more than the object’s class, this operation only affects the class part
of an object’s type. A traditional class cast xDy s can be defined as syntactic sugar over class
assertions.

let x = xDy y in e �
let x = y
in let x1 = assertxDypxq in e

The type rules defined above depend on a few auxiliary judgments. The fieldspCq function
yields the types of all the fields of any object of class C.

fields : CLASSNAMES Ñ T f Class Field Declarations

(fields-object)
fieldspObjectq = �

(fields-subclass)

class C extends D t T f, M u
fieldspDq = T 1 f 1

f 1 X f = H

fieldspCq = T 1 f 1, T f

FT does not allow field overloading, so each field declared in a subclass must have a different name
than any in its superclasses. The methodpm,Cq yields the definition of class C’s method m, and

9

the mdeclpm,Cq function yields just its type signature.

mdeclpm,Cq Method Declaration

methodpm,Cq Method Definition

(method-override)

class C extends D t F , M u
Tr mpT " T 1 xq [Tt " T 1

t s t return e; u PM

methodpm,Cq = Tr mpT " T 1 xq [Tt " T 1
t s t return e; u

(method-super)

class C extends D t F , M u m RM
methodpm,Dq = Tr mpT " T 1 xq [Tt " T 1

t s t return e; u

methodpm,Cq = Tr mpT " T 1 xq [Tt " T 1
t s t return e; u

(mdecl)
methodpm,Cq = Tr mpT " T 1 xq [Tt " T 1

t s t return e; u

mdeclpm,Cq = Tr mpT " T 1q [Tt " T 1
t s

FT methods refer to the type of the receiver object Tt, and it is guaranteed to always match the
class at which it is queried.

3.3 Typing Programs
Recall that an FT program is a pair of a class table and an expression. To formalize the notion of a
well-typed program, we introduce a few more judgments.

First, the method typing judgment M ok in C denotes that a method M is well-typed if it is
defined as part of class C.

M ok in C Well-typed Method

Tr mpTx " T 1
x xq[Pt Ct " T 1

t s ok in Ct
x : Tx, this : Pt Ct $ e : Tr % ∆0

∆0 $ this : T 1
t , x : T 1

x % ∆1

Tr mpTx " T 1
x xq [Pt Ct " T 1

t s t return e; u ok in Ct

This typing rule allows this and the arguments x to be subtypes of the output types given in the
spec. The check for the output type of these variables can use subsumption to match the out-
put specifications. Method typing relies on an analogous judgment that confirms that a method

10

signature would be either a new method or a consistent method override.

M ok in C Well-typed Method Declaration

(new)

class C extends D t � � � u
mdeclpD,mq undefined

Tr mpTx " T 1
xq[Pt C " T 1

t s ok in C

(override)

class C extends D t � � � u
mdeclpD,mq = Tr mpTx " T 1

xq[Pt E " T 1
t s

Tr mpTx " T 1
xq[Pt C " T 1

t s ok in C

For a class definition to be well-typed, all of its fields must have object reference types, all of its
methods must be well-typed, and its superclass hierarchy must lead to Object. This implies that
all intermediate superclasses are defined and that every chain of superclasses ends at Object, i.e.
there are no inheritance cycles.

CL ok Well-typed Class

C0 <: Object kpDq EÓ= kpDq E M ok in C0

class C0 extends C1 t kpDq E f ; M u ok

Furthermore we require that the permissions associated with field types be invariant under demo-
tion (we express this by adapting context demotion to apply to type declarations). Since object
field reference types do not change as a program runs, they must not be invalidated by update
operations. This restriction ensures that field types remain consistent.

Finally, a program is well-typed if its class table and main expression are well-typed in turn.

PG ok Well-typed Program

CL ok � $ e : T % �

xCL, ey ok

4 Dynamic Semantics
The runtime semantics of the language add some new syntactic notions to the language. In par-
ticular, FT is a stateful language, so most values in the language are references to heap-allocated

11

objects.
o P OBJECTREFS

l P INDIRECTREFS

Cpoq P OBJECTS

e ::= . . . | o | l (expressions)
s ::= x | l (simple expressions)
v ::= void | o (values)
µ P OBJECTREFS á OBJECTS (stores)
ρ P INDIRECTREFS á VALUES (environments)

Ultimately, expressions in the language evaluate to values, i.e. void or an object reference o. Since
the language is imperative, the value void is used as the result of operations that are only interesting
for their side-effects. In other OO languages, a void object is unnecessary: imperative operations
can return some arbitrary object reference. However, this language pays particular attention to
how permissions to an object are allocated, so including a void object clarifies the management of
permissions.

To connect object references to objects, we use stores µ, which abstract the runtime heap of a
program. Stores are represented as partial functions from object references o to objects Cpoq. A
well-formedness condition is imposed on stores: only object references o in the domain of a store
can occur in its range.

In addition to the traditional heap, the dynamic semantics uses a second heap, which we call
the environment, that mediates between variable references and the object store. The environment
serves a purely formal purpose: it supports the proof of type safety by keeping precise track of the
outstanding permissions associated with different references to objects at runtime. In the source
language, two variables could refer to the same object in the store, but each can have different
permissions to that object. The environment’s role is to track these differences at runtime. It
maps indirect references l to object references o. Two indirect references can point to the same
object, but the permissions associated with the two indirect references are kept separate. Indirect
references are added to the set of simple expressions, so they will appear in subexpression position.
They play the role traditionally played by object references. The environment is not needed in a
practical implementation of the language. As we show later, well-typed programs can be safely
run on a traditional single-heap machine where object references are simple expressions.

The dynamic semantics of FT is formalized as a structural operational semantics defined over

12

store/environment/expression triples. Its rules follow.

µ, ρ, eÑ µ1, ρ1, e1 Dynamic Semantics

(lookup)
µ, ρ, l Ñ µ, ρ, ρplq

(new)
o R dompµq

µ, ρ,new Cplq Ñ µ[o ÞÑ Cpρplqqs, ρ, o

(let)
l R dompρq

µ, ρ, let x = v in eÑ µ, ρ[l ÞÑ vs, [l{xse

(update)
µ, ρ, plt Ð Cplqq Ñ µ[ρpltq ÞÑ Cpρplqqs, ρ, void

(ref)
µpρplqq = Cpoq fieldspCq = T f

µ, ρ, l.fi Ñ µ, ρ, oi

(swap)
µpρpl1qq = Cpoq fieldspCq = T f

µ, ρ, l1.fi :=: l2 Ñ µ[ρpl1q ÞÑ [ρpl2q{oisCpoqs, ρ, oi

(assert)
µpρplqq = Cp� � � q C <: D

µ, ρ, assertxDyplq Ñ µ, ρ, void

(invoke)

µpρplqq = Cp� � � q
methodpm,Cq = Tr mpT " T 1 xq [Tt " T 1

t s t return e; u

µ, ρ, l.mpl1q Ñ µ, ρ, [l1{xs[l{thisse

(congr)
µ, ρ, e1 Ñ µ1, ρ1, e11

µ, ρ, let x = e1 in e2 Ñ µ1, ρ1, let x = e11 in e2

The (lookup) rule dereferences an indirect reference to get the underlying value. The (new) rule
creates a new object based on the constructor expression given. The arguments to the constructor
are dereferenced so that the objects in the heap contain object references. The (let) rule handles a
variable binding by allocating a new indirect reference, associating the object reference in question
to it in the environment and substituting the fresh reference into the body of the let expression. The
(update) rule replaces a binding in the store with a newly-constructed object. The (ref) rule looks
up the field of an object in the heap and returns the corresponding object reference. The (swap) rule
swaps the field of an object with a new object reference and returns the old one. The (assert) rule
checks that a reference points to an object with a type compatible with the assertion. If the assertion
succeeds, the program returns a void value; if not, the program gets stuck. The (invoke) rule
substitutes the arguments to the method invocation into the method body and continues executing.
The (congr) rule ensures that the bound expression in a let is computed before the body of the let.

13

5 Type Safety
To type runtime programs, type contexts must be extended.

b P x | l | o (context bindings)
∆ ::= b : T (linear type contexts)

Since runtime expressions may now contain indirect references l and object references o, a typing
context may have entries of the form l : T and o : T . As such, the (ctx) type rule must account for
references in a runtime program, e.g.:

(ctx)
T1 V T2{T3

∆, b : T1 $ b : T2 % ∆, b : T3

Furthermore, context demotion ∆Ó must be extended to the reference entries in a context.
To prove type safety, we must account for the outstanding permissions associated with refer-

ences to each object o and make sure that they are mutually consistent. To achieve this, we appeal
to some helper functions.

typespµ,∆, ρ, oq = fieldTypespµ, oq++ envTypesp∆, ρ, oq++ ctxTypesp∆, oq

fieldTypespµ, oq =
��

o1Pdompµq

�
Ti | µpo

1q = Cpo2q, fieldspCq = T f, and o2i = o
�

envTypesp∆, ρ, oq =
��

lPdompρq

rT | ρplq = o and pl : T q P ∆s

ctxTypesp∆, oq = rT | o : T P ∆s

The fieldTypes function takes a heap and an object reference in the domain of the heap and pro-
duces a list of the type declarations for every field reference to that object. This function disre-
gards object references that are not bound to some field of some object. The envTypes function
performs the analogous operation for the indirect references in an environment that have bindings
in the context. This function disregards indirect references in the environment that have no typing
in the context. The ctxTypes function does the same for object references that occur in a type
context. The types function takes a heap, context, and environment, and object and yields the list
of type declarations for outstanding heap, environment, and context references. These definitions
use square brackets to express list comprehensions, and ++ to express list concatenation.

The consistent permissions relation P1 Ø P2 says that two distinct references to the same
object, one with permissions P1 and the other with P2 can soundly coexist at runtime.

(pure) E <: D
kpEq Ø purepDq

(shared)
sharedpDq Ø sharedpDq

(sym)
P1 Ø P2

P2 Ø P1

First, a reference with pure permissions can coexist with any other permission that is bound to
respect its state guarantee, meaning it could only change state among its subclasses. As a conse-
quence, all pure permissions that are related by subclassing are consistent with each other. Also,

14

shared permissions are consistent with each other so long as they have the same state guarantee.
Observe that full permissions are not consistent with each other (or with shared permissions).
Since full permissions are allowed to move their state guarantees down the subclass hierarchy, one
full permission could end up out of sync with another full (or shared) permission, which might
then update the referenced object in a manner that violates the state guarantees of the first full
permission.

To give some more intuition, the following graph depicts consistency relations between per-
missions for a class C and it’s immediate superclass D.

pure(Object) full(Object)

pure(D) full(D)

pure(C)

shared(Object)

full(C)

shared(D)

shared(C)

Solid lines indicate a pair of consistent permissions; the dotted line indicates that the trend
continues down the inheritance hierarchy, and the dotted circles indicate that full permissions are
not consistent with themselves . Observe that purepEq for some class E is connected to every
permission whose state guarantee is a subclass of E, including itself. On the other hand, full is
only connected to pure at the same state guarantee and superclasses, and shared is only connected
with itself at the same state guarantee and pure at the same state guarantee and superclasses.

Using the types function and permission consistency, we can define a notion of reference con-
sistency that verifies the mutual consistency of the types of all outstanding references to some
object in the heap.

µpoq = Cpo1q
∣∣o1∣∣ = |fieldspCq|

typespµ,∆, ρ, oq = kpEq D

C <: D xkpEq,Øy is connected
µ,∆, ρ $ o ok

An initial consistency check for an object reference is that the object to which it refers has the
proper number of fields according to the class table. Then it remains to check the consistency of
references to the object. Given the list of reference types to an object o, we can ensure consistency
by checking two properties. First, o’s actual type must be a subtype of every reference type.

15

Second, the outstanding permissions to o must be pairwise consistent. This ensures that there
can be at most one full reference outstanding and that shared and full permissions to o do not
coexist. It also ensures that all shared permissions to o have the same state guarantee and that
the state guarantee on a fullpDq or sharedpDq permission is compatible with all outstanding pure
permissions with D or higher state guarantee.

Finally, given a store, environment, and context, we can define a notion of type consistency
among them.

ranpρq � dompµq Y t void u
domp∆q � dompρq Y dompµq

t l | pl : Voidq P ∆ u � t l | ρplq = void u
t l | pl : kpDq Cq P ∆ u � t l | ρplq = o u

µ,∆, ρ $ dompµq ok
µ,∆, ρ ok

The domains and ranges of the triple’s components must all be in sync. First, the environment
must map labels to objects that appear in the store. Next, the context must ascribe types only to
indirect and direct references that appear in the environment and store respectively. Furthermore,
the environment should map Void-typed and reference-typed labels respectively to void values
and object references. Finally, all relevant references to each object in the store must be mutually
consistent.

The definition of type consistency dictates that a type context ∆ participating in the type consis-
tency relation contains no variable bindings x : T , only object references and indirect references.
This initial type context plays the same role that a heap signature Σ plays in formalizations type
systems for mutable state [Pierce, 2002]. In those formalizations, a heap location retains the same
type throughout a program’s execution. Here, heap types change linearly, just as the types of vari-
able bindings do, in response to update operations. For this reason, heap typing and bound variable
typing are unified in one mechanism.

The type consistency relation allows the store to contain object references that do not appear
in the environment or type context, and it allows the environment to have indirect references that
do not appear in the type context. These “orphaned” references are essentially unreachable and
correspond to elements that would be garbage collected in an implementation. A type context ∆
serves as an upper bound on the references that are relevant to a program e that is typeable as
∆ $ e : T % ∆1.

To state progress, we need a notion of evaluation contexts

E ::= � | let x = E in e

Evaluation contexts are programs with holes, notation �, in them. An expression can be plugged
into the hole to produce a program. Following the presentation of Featherweight Java by Pierce
[2002], we use evaluation contexts to capture the possibility of a program getting stuck at a bad
assertion. They are also used to express an invariant on object reference instances in running
programs.

Theorem 4 (Progress). If e is a closed expression and ∆ $ e % ∆1, then either e is a value or
for any store µ and environment ρ such that µ,∆, ρ ok, either µ, ρ, eÑ µ1, ρ1, e1 for some store µ1,

16

environment ρ1, and expression e1, or e is stuck at a bad assert, i.e., e = E[assertxDyplqs where
µpρplqq = Cp� � � q, and C �<: D.

Our semantics has many rules that evaluate to an object reference, but they will always leave
the reference about to be bound to an identifier (as in let x = o in e) or being the final result of the
program.

The concern is that in the proof of preservation, bindings for o are added to the context ∆1,
but that is only a well-formed operation if that particular o is known to not already be in ∆1 (Type
contexts are essentially partial functions). We need to be sure that we’re not in conflict with the
permissions needed to type some other instance of the same object reference o in the program.

Definition 5. An expression e is in head reference form, notation hdref peq iff either

1. e contains no object references o; or

2. e = E[os for some E, o and E contains no object references.

Head reference form ensures that there’s at most one object reference in a runtime program and
dictates where such a reference would be. With that knowledge, we can be assured that ∆1, o : T is
well-formed. This is significant also for ensuring that the (congr) rule preserves typing, since the
body of the let binding does not depend on any object reference typings.

Definition 6. A context ∆ is l-stronger than a context ∆1, notation ∆ <l ∆1 if and only if for all
l : T 1 P ∆1, there is some T <: T 1 such that l : T P ∆.

Theorem 7 (Preservation). If e is a closed expression, ∆ $ e : T % ∆2, µ,∆, ρ ok, hdref peq, and
µ, ρ, eÑ µ1, ρ1, e1 then for some ∆1, ∆1 $ e1 : T % ∆3, µ1,∆1, ρ1 ok, and ∆3 <l ∆2.

6 Single-Heap Implementation Model
As we’ve previously mentioned, the second heap in the FT dynamic semantics is specifically a tool
for proving type safety. Here we formally show that a practical implementation of the language can
use a traditional heap. The implementation semantics almost exactly matches the dynamic seman-
tics, but leaves out the extra layer of indirection imposed by indirect references l and environments
ρ.

17

µ, eÑ µ1, e1 Implementation Semantics

(new)
o R dompµq

µ,new Cpo1q Ñ µ[o ÞÑ Cpo1qs, o
(let)

µ, let x = v in eÑ µ, [v{xse

(update)
µ, pot Ð Cpoqq Ñ µ[ot ÞÑ Cpoqs, void

(ref)
µpoq = Cpo1q fieldspCq = T f

µ, o.fi Ñ µ, o1i

(swap)
µpo1q = Cpo1q fieldspCq = T f

µ, o1.fi :=: o2 Ñ µ[o1 ÞÑ [o2{o
1
isCpo

1qs, o1i
(assert)

µpoq = Cp� � � q C <: D

µ, assertxDypoq Ñ µ, void

(invoke)

µpoq = Cp� � � q
methodpm,Cq = Tr mpT " T 1 xq [Tt " T 1

t s t return e; u

µ, o.mpo1q Ñ µ, [o1{xs[o{thisse

(congr)
µ, e1 Ñ µ1, e11

µ, let x = e1 in e2 Ñ µ1, let x = e11 in e2

We define a simulation relation � between Dynamic Semantics configurations and Implemen-
tation Semantics configurations.

µ, ρ, e � µ, ρpeq

Where ρpeq is the natural extension of ρplq to arbitrary expressions.

Proposition 8.

1. If e is a source program, then H,H, e � H, e.

2. If µ1, ρ, e1 � µ2, e2 and µ1, ρ, e1 Ñ µ1
1, ρ

1, e11 then µ2, e2 Ñ
∗ µ1

2, e
1
2 and µ1

1, ρ
1, e11 � µ1

2, e
1
2,

for some store µ1
2, and some environment, e12.

Proof. Part (1) is immediate. Part (2) is proven by induction on the rules of µ, ρ, eÑ µ1, ρ1, e1.

Appendix: Proofs of Type Safety
Lemma 9 (Context). If ∆ $ b : T % ∆1 then ∆ = p∆0, b : T 1q for some T 1.

Proof. By induction on derivations of ∆ $ b : T % ∆1.

Theorem 10 (Progress). If e is a closed expression and ∆ $ e % ∆1, then either e is a value or
for any store µ and environment ρ such that µ,∆, ρ ok, either µ, ρ, eÑ µ1, ρ1, e1 for some store µ1,
environment ρ1, and expression e1, or e is stuck at a bad assert, i.e., e = E[assertxDyplqs where
µpρplqq = Cp� � � q, and C �<: D.

18

Proof. By induction on the derivation of ∆ $ e % ∆1.
Case (void). Then e = void which is a value.
Case (ctx-void). Then e = b for some b. This breaks down into three cases.

1. (e = x): Then e is not closed. Contradiction.

2. (e = o): Suppose ∆, µ, ρ ok for some µ, ρ. The (ctx-void) rule dictates that ∆ = p∆1, o :
Voidq, but type consistency, particularly ∆, µ, ρ $ o ok, requires that o : T P ∆ implies that
T = kpDq C. Contradiction.

3. (e = l): Suppose ∆, µ, ρ ok for some µ, ρ. The (ctx-void) rule dictates that ∆ = p∆1, l :
Voidq, which combined with type consistency implies that l P dompρq. The (lookup) reduc-
tion rule µ, ρ, l Ñ µ, ρ, ρplq then applies.

Case (ctx-obj). Then e = b for some b. This breaks down into three cases.

1. (e = x): Then e is not closed. Contradiction.

2. (e = o): Then e is a value.

3. (e = l): Suppose ∆, µ, ρ ok for some µ, ρ. The (ctx-obj) rule dictates that ∆ = p∆, l : T 1q
for some T 1, which combined with type consistency implies that l P dompρq. The (lookup)
reduction rule µ, ρ, l Ñ µ, ρ, ρplq then applies.

Case (subclass). Follows immediately from the induction hypothesis on the premises.
Case (subperm). Follows immediately from the induction hypothesis on the premises.
Case (let). Then e = let x = e1 in e2. Since e is closed, so is e1, and the (let) rule dictates that
∆ $ e1 : T1 % ∆1. The induction hypothesis applied to e1 induces three cases:

1. If e1 is a value, then the (let) reduction rule applies.

2. If e1 takes a step, then the (congr) reduction rule applies.

3. If e1 = E[assertxDyplqs is stuck at a bad cast, then

e = let x = E[assertxDyplqs in e2
= E1[assertxDyplqs.

Case (new). Since e is closed, e = new Cplq. Suppose µ,∆, ρ ok. The (new) rule dictates that
∆ $ l : T % ∆1, from which the Context lemma implies l � domp∆q. Type consistency and the
typing of l imply that ρplq � dompµq, so the pnewq reduction rule applies.
Case (update). Since e is closed, e = l Ð Cpl1q. Suppose µ,∆, ρ ok and let l2 = l, l1 The (update)
rule dictates that, ∆ $ l2 : T % ∆1, from which the Context lemma implies l2 � domp∆q. Type
consistency then implies that ρpl2q � dompµq, so the pupdateq reduction rule applies.

19

Case (invoke). Since e is closed, e = l.mpl1q. Suppose µ,∆, ρ ok and let l2 = l, l1. The (invoke)
rule dictates that ∆ $ l2 : T % ∆1, from which the Context lemma implies l2 � domp∆q. Type
consistency then implies that ρpl2q � dompµq, so µpρplqq = Cp� � � q for some C. Furthermore,
the (invoke) rule dictates that mdeclpm,Cq is defined, from which it follows that methodpm,Cq
is defined, yielding a method body e. These properties suffice for the (invoke) reduction rule to
apply.
Case (ref). Then since e is closed, e = l.f . Suppose µ,∆, ρ ok. The (ref) rule dictates that
∆ $ l : T1 % ∆2 for some ∆2, from which the Context lemma implies that l P domp∆q.
Furthermore, pT2 fq P fieldspCq, so for some index i, f = fi P fieldspCq. Finally, type consistency
means implies that the object to which l refers, µpρplqq = Cpoq has an ith element. These properties
ensure that the (ref) reduction rule applies.
Case (swap). Since e is closed, e = l0.f :=: l1.
Case (assert). Since e is closed, e = assertxDyplq. Suppose µ,∆, ρ ok. The (assert) rule dictates
that l : P C P ∆, so by type consistency
µpρplqq = Cp� � � q for some C. If C <: D then the (assert) rule applies. If not, then e is stuck and
e = �[assertxDyplqs.

Lemma 11 (Inversion).

1. If ∆ $ void : T % ∆1 then T = Void and ∆1 = ∆.

2. If ∆ $ b : T % ∆1 then

(a) ∆ = ∆0, b : T0;

(b) T0 V T1{T2;

(c) ∆1 = ∆0, b : T2; and

(d) T1 <: T .

3. If ∆ $ let x = e1 in e2 : T % ∆1 then ∆ $ e1 : T1 % ∆0 and
∆, x : T1 $ e2 : T % ∆1, x : T 1

1.

4. If ∆ $ new Cpsq : T % ∆1 then ∆ $ s : T 1 % ∆1 for T 1 f = fieldspCq, and T = fullpCq C.

5. If ∆ $ s Ð Cpsq : T % ∆1 then ∆ $ s : T 1 % ∆1 for T 1 f = fieldspCq, ∆1 $ st :
kpEq D % ∆2, st : Tt where C <: E, k P t full, shared u,
∆1 = p∆2qÓ, st : kpEq C, and T = Void.

6. If ∆ $ st.mpsxq : T % ∆1 then
∆ $ st : Pt Ct, sx : Tx % ∆0, st : T 2

t , sx : T 2
x ,

mdeclpm,Ctq = Tr mpTx " T 1
x xq [Pt Ct " T 1

t s,
∆1 = ∆0Ó, st : T 1

t , sx : T 1
x, and T = Tr.

20

7. If ∆ $ s.f : T % ∆1 then ∆ $ s : P C % ∆0, k1pD1q C 1 f P fieldspCq, T = purepD1q C 1,
and ∆1 = ∆.

8. If ∆ $ s0.f :=: s1 : T % ∆1 then ∆ $ s0 : kpDq C % ∆0

for k P t full, shared u, T 1 f P fieldspCq, ∆ $ s1 : T 1 % ∆1, and T = T 1.

9. If ∆ $ assertxDypsq : T % ∆1 then ∆ = ∆0, s : P0 C, ∆1 = ∆0, s : P0 D, and T = Void.

Proof. Immediate from the specification of ∆ $ e : T % ∆.

Lemma 12 (Weakening).

1. If ∆ $ e : T % ∆1 then ∆, b : T0 $ e : T % ∆1, b : T1 where T1 <: T0Ó.

2. If ∆, b : T0 $ e : T % ∆1, b : T2 and T1 <: T0 then
∆, b : T1 $ e : T % ∆1, b : T3 for T3 <: T2

Proof. By induction on derivations of ∆ $ e : T % ∆1

Lemma 13 (Strengthening).
If ∆, b : T0 $ e : T % ∆1, b : T1 and b does not occur in e, then ∆ $ e : T % ∆1

Proof. By induction on derivations of ∆ $ e : T % ∆1

Lemma 14 (Substitution). If ∆, x : T1 $ e : T2 % ∆1 then
∆, l : T1 $ [l{xse : T2 % [l{xs∆1 for l fresh.

Proof. Substitute l for x throughout the proof of ∆, x : T1 $ e : T2 % ∆1.

Lemma 15 (Split Consistency). If k0 V k1{k2 then k1pCq Ø k2pCq.
Furthermore, if k0pC0q Ø k1pC1q then

1. if k0 V k10 then k10pC0q Ø k1pC1q; and

2. if k1 V k11 then k11pC1q Ø k0pC0q.

Proof. The first part is easily shown by cases analysis of k0 V k1{k2 derivations. The second part
is proven by induction on derivations of k0pC0q Ø k1pC1q.
Case (pure). Then k0pC0q Ø purepC1q and C0 <: C1.

1. if k0 V k10 then k10pC0q Ø purepC1q by (pure).

2. then pure V pure, and (pure) applies.

Case (shared). Then sharedpC0q Ø sharedpC0q.

1. Suppose shared V k. Then proceed by cases.

(a) If shared V shared then (shared) applies.

21

(b) If shared V pure then purepC0q Ø sharedpC0q by (pure) then (sym).

2. Symmetric to the preceding case.

Case (sym). Follows immediately from the inductive case.

Corollary 16. If kpDq C Ø P 1 C 1 and k V k1{k2 then xpk1pDq, k2pDq, P 1q,Øy is connected.

Lemma 17 (Subpermission Consistency). If P0 Ø P1 then

1. if P0 : P 1 then P 1 Ø P1; and

2. if P1 : P 2 then P 2 Ø P0.

Proof. By induction on derivations of P0 Ø P1

Case (pure). Then P0 = kpCq Ø purepDq = P1 for C <: D.

1. Suppose P0 = kpCq : P 1. Then P 1 Ø purepDq = P1. Proof is by induction on derivations
of kpCq : P 1.

Case (pure-guarantee). Then P0 = purepCq : purepEq = P 1 for C <: E. Since C <: E
and C <: D, then D and E are related by subclassing. Therefore, P 1 = purepEq Ø
purepDq = P1, either by (pure) or by (pure) followed by (sym).

Case (full-guarantee). Then P0 = fullpCq : fullpEq = P 1 for E <: C. Since E <: C <: D
then P 1 = fullpEq Ø purepDq = P1 by (pure).

Case (split). Follows from the Split Consistency Lemma.

Case (trans). Follows directly from the inductive cases: P1 = kpCq : P2 and P2 : P 1

for some P2. By the induction hypothesis, P2 Ø P1, and again by the induction hypothesis,
P 1 Ø P1.

2. Suppose P1 = purepDq : P 2. Then P 2 Ø kpCq = P0. Proof is by induction on deriva-
tions of purepDq : P 2.

Case (pure-guarantee). Then P1 = purepDq : purepF q = P 2 for D <: F . Since C <:
D <: F , P0 = purepCq Ø purepF q = P 2 by (pure), so P 2 Ø P0 by (sym).

Case (full-guarantee). Does not apply.

Case (split). Follows from the Split Consistency Lemma.

Case (trans). Follows directly from the inductive cases.

Case (shared). Then P0 = sharedpCq Ø sharedpCq = P1.

1. Suppose P0 = sharedpCq : P 1. then P 1 Ø sharedpCq = P1. Proof is by induction on
derivations of sharedpCq : P 1.

Case (pure-guarantee). Does not apply

22

Case (full-guarantee). Does not apply

Case (split). Follows from the Split Consistency Lemma.

Case (trans). Follows directly from the inductive cases.

2. Identical.

Case (sym). Follows immediately from the induction hypothesis.

Lemma 18 (Reference Consistency). If ∆ $ b : P C % ∆1 then

• ∆ = ∆0, b : P0 C0,

• ∆1 = ∆0, b : P1 C1, and

• if P0 Ø P 1 for any P 1 then xpP, P1, P
1q,Øy is connected.

Proof. By inversion, we can show that P0 C0 <: P C and P0 C0 <: P1 C1 from which it follows
that P 1 Ø P and P 1 Ø P1. It remains to show that P Ø P1, which is straightforward.

Corollary 19. Let b be a sequence on t bi u.
If ∆ $ b : T % ∆1.
then ∆ = ∆0, bi : Ti, ∆1 = ∆0, bi : T 1

i , and for each bi P t bi u either:

1. Ti = T 1
i = T = Void; or

2. T = P C, Ti = Pi Ci, T 1
i = P 1

i C
1
i and collecting all typings

bi : P 2 C2 in b : P C, If Pi Ø P for any P , then xpP 1
i , P

2q,Øy is connected.

Proof. By induction on the length of l.

Lemma 20 (Demoted Class Consistency). If kpDq Ø k1pD1q and k P t full, shared u then If
C <: D then C <: D1.

Proof. By induction on derivations of kpDq Ø k1pD1q (with induction strengthening to account
for symmetry).

Theorem 21 (HDRef). If e is a closed expression, hdref peq, and
µ, ρ, eÑ µ1, ρ1, e1, then hdref pe1q,

Proof. By induction on µ, ρ, eÑ µ1, ρ1, e1

Case (lookup). Then µ, ρ, l Ñ µ, ρ, ρplq. Then ρplq is either void or o, both of which are head
references.
Case (new). Then µ, ρ,new Cplq Ñ µ[o ÞÑ Cpρplqqs, ρ, o, and o is a head reference.
Case (update). Then µ, ρ, pl Ð Cpl1qq Ñ µ[ρplq ÞÑ Cpρpl1qqs, ρ, void, and void is a head reference.
Case (ref). Then µ, ρ, l.f Ñ µ, ρ, o, and o is a head reference.

23

Case (assert). Then µ, ρ, assertxCyplq Ñ µ, ρ, void and void is a head reference.
Case (swap). Then µ, ρ, l0.f :=: l1 Ñ µ[ρpl0q ÞÑ [ρpl1q{o

1
isCpo

1qs, ρ, o1i and o1i is a head reference.
Case (let). Then µ, ρ, let x = v in e1 Ñ µ, ρ[l ÞÑ vs, [l{xse1 for fresh l. From hdref peq we have
that there are no object references o in e1, so the same follows for [l{xse1.
Case (invoke). Then µpρplqq = Cop� � � q,
methodpm,Coq = Tr mpT 1 " T 2 xq [Pt Cs " T 1

t st return e1 u,
and µ, ρ, eÑ µ, ρ, [l{thiss[l1{xse1. The method body e1 by definition contains no object references
o, so the same is true for [l{thiss[l1{xse1

Case (congr). Then µ, ρ, e Ñ µ1, ρ1, let x = e11 in e2 where µ, ρ, e1 Ñ µ1, ρ1, e11. By assumption,
the initial let expression is in head reference form, so e2 contains no object references. Further-
more, by the induction hypothesis, e11 is in head reference form. It follows then that e1 is also in
head reference form.

Theorem 22 (Preservation). If e is a closed expression, ∆ $ e : T % ∆2, µ,∆, ρ ok, hdref peq,
and µ, ρ, eÑ µ1, ρ1, e1 then for some ∆1, ∆1 $ e1 : T % ∆3, µ1,∆1, ρ1 ok, and ∆3 <l ∆2.

Proof. By induction on µ, ρ, eÑ µ1, ρ1, e1.
Case (lookup). Since e is closed, e = l. Suppose µ,∆, ρ ok. Then there are two cases to consider:

1. If T = Void then by inversion, l : Void P ∆ and ∆ = ∆2. Type consistency then dictates
that ρplq = void. Thus µ, ρ, l Ñ µ, ρ, void and
∆ $ void : Void % ∆.

2. If T = kpDq C then by inversion,

∆ = ∆0, l : T0, T0 V T1{T2, ∆2 = ∆0, l : T2; and T1 <: T .

The (lookup) rule dictates that µ, ρ, l Ñ µ, ρ, v where v = ρplq.

If T = Void, then so do T0, T1, and T2, and by type consistency, v = Void so ∆ $ void :
Void % ∆.

If T = kpDq C, then Ti = kipDiq Ci and by type consistency v = o.

Since l contains no os, we can assume without loss of generality that ∆0 does not bind o. Let
∆1 = ∆2, o : T . Then

∆2, o : T $ o : T % ∆2, o : T 1

for some T 1, by the (ctx-obj) rule.

Furthermore, type consistency dictates that k0pD0q be a consistent permission to o, and by
the Reference Consistency Lemma, kpDq, k1pD0q can replace it. Thus, µ,∆1, ρ ok.

24

Case (new). Since e is closed e = new Cplq. Suppose µ,∆, ρ ok. By inversion, T = fullpObjectq C
and ∆ = ∆0, li : Ti and ∆2 = ∆1, li : T 1

i for li P l; and ∆ $ l : Tf % ∆2 where fieldspCq = Tf f .
The (new) rule dictates that µ, ρ, eÑ µ[o ÞÑ Cpρplqqs, ρ, o for o R dompµq.
Let ∆1 = ∆2, o : fullpObjectq C. Then

∆2, o : fullpObjectq C $ o : fullpObjectq C % ∆2, o : purepObjectq C.

By the Reference Consistency lemma, the permissions to li are consistently split between the fields
Tf f of object Cpρplqq and the indirect references li : T 1

i . Furthermore, o R dompµq combined with
type consistency means that neither ∆0 nor ρ refer to o, so its reference consistency is immediate.
Finally, o P dompµ1q; so µ1,∆1, ρ ok.
Case (update). Since e is closed, e = lt Ð Cpl1q. Suppose µ,∆, ρ ok.

By inversion, ∆ $ l1 : Tf , lt : ktpDtq Ct % ∆2 where kt P t full, shared u, ∆ = ∆0, lt :
Tt, l1 : T 1 for some Tt, T 1, ∆2 = ∆0, lt : T 1, l1 : T 2 for some T 1, T 2, fieldspCq = Tf f , and C <:
Dt. Furthermore, ∆2 = ∆2Ó, lt : ktpDtq C.

The (update) rule dictates that µ, ρ, pl Ð Cpl1qq Ñ µ[ρplq ÞÑ Cpρpl1qqs, ρ, void.
Let ∆1 = ∆2. Then ∆1 $ void : Void % ∆1 is well-typed. By the Reference Consistency

lemma, the permissions to l1 are consistently split between the fields Tf f of object Cpl1q and the
indirect references l1 : T 1

i . The reference to lt also retains consistent permissions.
The update operation changes µpρpltqq’s runtime class identity to C, but the Demoted Class

Consistency lemma ensures that all context references to µpρpltqq have class designations that are
consistent with the new class, and since field references are invariant under demotion, they too are
consistent with the new class identity.
Case (ref). Since e is closed, e = l.f . Suppose µ,∆, ρ ok. By inversion, ∆ = ∆2, ∆ $ l :
kpDq C % ∆0, and k1pD1q C 1 f P fieldspCq. The (ref) rule dictates that µ, ρ, e Ñ µ, ρ, oi for
µpρplqq = Cpoq.

Since l.f contains no object refs o, we can assume without loss of generality that oi R domp∆q.
Let ∆1 = ∆, oi : purepDiq Ci. Then
∆1 $ oi : purepDiq Ci % ∆1.

Since k1pD1q C 1 is a consistent reference to o, so is purepD1q C 1 by the Split Consistency
lemma. So µ,∆1, ρ ok
Case (assert). Since e is closed, e = assertxCyplq Suppose µ,∆, ρ ok. By inversion, ∆ = ∆0, l :
P C0, ∆2 = ∆0, l : P C, and T = Void.

The (assert) reduction rule dictates that µ, ρ, e Ñ µ, ρ, void and that µpρplqq is an object of a
subclass of C.

Let ∆1 = ∆2. Then ∆1 $ void : Void % ∆1. The subclass requirement for reducing assert
ensures that µ,∆1, ρ ok.
Case (swap). Since e is closed, e = l0.f :=: l1. Suppose µ,∆, ρ ok. By inversion, ∆ $ l0 :
kpDq C % ∆0 for k P t full, shared u, T 1 f P fieldspCq, ∆ $ l1 : T 1 % ∆2, and T = T 1. By
inversion again, ∆ = ∆1, l1 : T0, ∆2 = ∆1, l1 : T 2 for some T 2.

The (swap) reduction rule says that µ, ρ, e Ñ µ[ρpl0q ÞÑ [ρpl1q{o
1
isCpo

1qs, ρ, o1i for µpρpl0qq =
Cpo1q.

25

Let ∆1 = ∆2, o1i : T 1 and then ∆1 $ o1i : T % ∆1, l1 : T 2, o1i : To for some To. So ∆3 = ∆1, l1 :
T 2, o1i : To. The reference to o1i in ∆1 replaces the field reference that was in µpρpl0qq. Furthermore,
the reference to l1 in ∆1 is compatible with the new field reference to the same object by the Split
Consistency Lemma. Thus µ1,∆1, ρ ok.
Case (let). Since e is closed, e = let x = v in e1. Suppose µ,∆, ρ ok. By inversion, ∆ $ v : T1 %
∆1 and ∆1, x : T1 $ e1 : T % ∆2, x : T 1

1.
By the (let) reduction rule, µ, ρ, eÑ µ, ρ[l ÞÑ vs, [l{xse1 for fresh l.
There are two cases for v.

1. If v = void then ∆1 = ∆ and T1 = Void.

Let ∆1 = ∆, l : Void, Then by Substitution, ∆1 $ [l{xse1 : T % ∆2, l : T 1
1. Then the

extensions to both ∆ and ρ are consistent and do not affect permissions, so µ,∆1, ρ1 ok.

Furthermore, since hdref peq, and e = E[voids it follows that there are no object refs in
[l{xse1, so hdref p[l{xse1q.

2. If v = o then by inversion on the typing of o and reference consistency, ∆ = ∆0, o : T0 and
T1’s permissions are a consistent replacement for T0.

Let ∆1 = ∆0, l : T1. Then by Substitution, ∆1 $ [l{xse1 : T % ∆2, l : T 1
1. Since T1 is a

consistent replacement for T0, µ,∆1, ρ1 ok.

Case (invoke). Since e is closed, e = l.mpl1q. Suppose µ,∆, ρ ok. By inversion, ∆ $ l :
Pt Ct, l1 : T 1 % ∆0, l : T 2

t , l
1 : T 2,

mdeclpm,Ctq = Tr mpT 1 " T 2 xq [Pt Ct " T 1
t s,

∆2 = ∆0Ó, l : T 1
t , l

1 : T 2,
and T = Tr.

By the (invoke) reduction rule, µpρplqq = Cop� � � q,
methodpm,Coq = Tr mpT 1 " T 2 xq [Pt Cs " T 1

t st return e1 u,
and µ, ρ, eÑ µ, ρ, [l{thiss[l1{xse1.

By the definition of method that the method to be called was defined in some superclass Cs
of Co (easy proof by induction). Also, we know by the well-formedness of the class table that the
method definition is ok in Cs.

Since the method is ok in Cs, it follows that
x : T 1, this : Pt Cs $ e1 : Tr % ∆m, and ∆m $ this : T 1

t , x : T 2 % ∆1
m.

Since Co <: Cs, x : T 1, this : Pt Co $ e1 : Tr % ∆m (another easy induction). By sub-
stitution we can type [l{thiss[l1{xse1 at these types: l1 : T 1, l : Pt Co $ [l{thiss[l1{xse1 : Tr %
[l{thiss[l1{xs∆m.

Since µpρplqq = Cop� � � q l : Pt Co is a consistent replacement for l : Pt Ct.
Then we can weaken the input context to ∆1 = ∆2. It follows that µ,∆1, ρ ok.
Furthermore, the output context ∆3 will preserve the types of the bindings ∆0Ó since they do

not occur in e1

Case (congr). Since e is closed, e = let x = e1 in e2 where e1 is closed. Suppose µ,∆, ρ ok. By
inversion, ∆ $ e1 : T1 % ∆1 and ∆1, x : T1 $ e2 : T % ∆2, x : T 1

1.

26

By the (congr) reduction rule, µ, ρ, eÑ µ1, ρ1, let x = e11 in e2 where µ, ρ, e1 Ñ µ1, ρ1, e11.
By the induction hypothesis, ∆1 $ e11 : T1 % ∆1

1 and µ1,∆1, ρ1 ok, That ∆1
1 <l ∆1, and

hdref pe11q. It follows by Weakening that ∆1
1, x : T1 $ e2 : T % ∆3, x : T 1

1 for some ∆3 <l ∆2.
The induction hypothesis says nothing about o bindings in ∆1 or ∆1

1. Nonetheless, by hdref peq
there are no object references o in e2, so by the Strengthening Lemma, any o bindings in ∆1 and
∆1

1 can be ignored.

References
Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In OOP-

SLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications, pages 301–320, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-786-5. doi: http://doi.acm.org/10.1145/1297027.1297050.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/0304-3975(87)90045-4.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/503502.503505.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.
ISBN 0-262-16209-1.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp Symb. Comput., 6(3-4):289–360, 1993. ISSN 0892-4635. doi: http://dx.doi.org/10.1007/
BF01019462.

27

	1 Introduction
	2 Syntax
	3 Static Semantics
	3.1 Managing Permissions
	3.2 Well-typed Expressions
	3.3 Typing Programs

	4 Dynamic Semantics
	5 Type Safety
	6 Single-Heap Implementation Model

