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ABSTRACT 
 

Information hiding is a cornerstone principle of modern software engineering. Interfaces are central to 
realizing the benefits of information hiding, but despite their widespread use, designing good interfaces 
is not a trivial activity. Particular design choices can have a significant detrimental effect on quality or 
development productivity.  In this paper, we examine the relative impact of interface complexity on the 
failure proneness of source code files using data from two large-scale systems from two distinct soft-
ware companies. Our analyses showed that increases in the complexity of interfaces are associated with 
increases the failure proneness of source code files. Building on our empirical results, we develop a set 
of implications for designing tools aimed at assisting developers to cope with the detrimental impact of 
interface complexity.   
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1. INTRODUCTION 
Modularization is the predominant design approach for complex engineering systems [1, 13, 45, 48]. 
Modular systems, the theory argues, are superior to other designs because they minimize the costs of 
change, evolution, testing and experimentation [1, 52]. In the context of software engineering, the con-
cept of information hiding proposed by Parnas [45] is a fundamental principle that allows software arc-
hitects and designers develop modular software systems. This concept has been instantiated as data en-
capsulation, interfaces, polymorphism and other ways in modern programming languages [37]. Interfac-
es, in particular, are widely regarded as “the only scalable way to build systems from semi-independent 
components” [27]. They allow software developers to work in parallel and minimize the impact of their 
colleagues’ work [18, 45]. Despite their widespread use and acceptance in the industry [19, 20], design-
ing good interfaces is not a trivial activity [22, 30]. There are different guidelines for an API implemen-
tation [8, 20], which are solely based on each author’s experience. In addition, past work has examined 
how design choices in terms of interface design impact quality attributes such as maintainability [4] and 
usability [22], as well as tool development to assist on the usage of interfaces [15, 17, 51, 57].   

However, limited attention has been given to systematically evaluating the impact of design attributes of 
interfaces such as their complexity and ease of use on traditional outcomes such as software quality and 
development productivity. Recent work has examined the role of interface usability [e.g. 22] on software 
development projects. However, the impact of interface complexity has been, mostly, neglected. This 
lack of research on the relationship between “good” API design and its impact on software projects is a 
gap that needs to be addressed because it represents a potential barrier for development organizations 
towards fully realizing the benefits of modular systems.   

In this paper, we examine the relative impact of interface complexity on the failure proneness of source 
code files using data from two large-scale systems from two distinct software companies. We utilize in-
terface complexity measures proposed by Bandi and colleagues [4]. Our empirical analyses showed that 
increases in the complexity of interfaces are associated with increases in the likelihood of source code 
files being part of a post-release defect. We, then, use these results to guide the development of a set of 
design implications for tools that can assist software developers cope with the impact of interface com-
plexity.  

The rest of the document is organized as follows. First, we discuss the research background that moti-
vates the research questions examined in this paper. Second, we present our empirical analysis followed 
by a description of an example of how visualization tools can assist developers. Finally, we discuss limi-
tations and implications for future research. 

2. THE ROLE OF INTERFACE COMPLEXITY ON SOFTWARE QUALITY 
Design decisions have an important impact on the ability of software systems to achieve their functional 
and non-functional requirements [7, 10, 53]. Principal decisions articulated at the architectural level 
serve as a general framework that guide and constrain lower level and more detailed design decisions 
[53]. Two critical and interrelated attributes of a software system are impacted by design decisions: the 
allocation of functional responsibilities within specific constituent parts of a system (e.g. modules or 
components) and relationships among those parts. Those relationships are typically realized in the form 
of interfaces which play a very important role in the development process of software system from a 
technical point of view as well as from an organizational perspective.  
In the technical dimension, interfaces determine a host of attributes of a system such as the efficiency of 
the communication between modules or components [e.g. 10], the easiness and efficiency of accessing 
the functionality of a module or a component [e.g. 34], the usability and understanding of the interfaces 



[e.g. 22], as well as the evolution and maintainability of the system [10, 30]. Then, poorly designed in-
terfaces could represent an important technical liability for software systems, particularly, for those 
large-scale complex systems that are pervasive in today’s world.  
On the organizational side, the design of a module or a component interface defines a key set of coordi-
nation needs for a development organization [12, 32, 49]. Unsatisfied coordination needs tend to results 
in misunderstandings and mistake which, typically, manifest themselves as higher levels of defects [12, 
14, 16, 33]. Moreover, uncertainty around an interface creates a number of coordination requirements 
that tend to be difficult to identify [16, 27].  
Unfortunately, designing good interfaces in technical and organizational terms is not a trivial task [30]. 
Different guidelines have been proposed for that [8, 20, 57]. However, those guidelines are based on the 
experiences of a subset of practitioners and the work lacks a systematic empirical evaluation of the pro-
posed guidelines. More importantly, only a limited set of studies have investigated how the design of 
interfaces relates to quality attributes of a system like usability and maintainability [e.g. 22]. In particu-
lar, an aspect of interface design that has been mostly neglected by researchers is design complexity. 
One traditional view of complexity focuses on properties of the implementation of a particular function 
or methods and an extensive literature has developed since Halstead and McCabe seminal work on code 
complexity [28, 39]. Another influential view of design complexity relates to structural properties of a 
software system and the interconnections among constituent parts. The concepts of coupling and cohe-
sion [50] are central in this line of work. The dimension of design complexity of interest in the context 
of interfaces represent a third line of work that has received limited attention, particularly, in the context 
of empirical analysis of measures and their impact on traditional software engineering outcome variables 
such as quality and development productivity. One such example is the work of Bandi and colleagues 
[4] who examined the impact of design complexity of interface specifications to maintenance tasks of 
software systems. The authors used a set of metrics (e.g. interface size and operation argument complex-
ity) to assess the complexity of interfaces. These metrics are based on the types and the number of pa-
rameters a method or a function has. They are somewhat intuitive: they rely on the assumption that a 
method or function with a large number of parameters and whose parameters are objects is said to be 
more complex than another method or function with fewer parameters based on primitive types (e.g. in-
tegers). Bandi and colleagues [4] found that maintenance tasks with higher levels of interface complexi-
ty took longer to resolve than those that involved less complex interfaces. Their work provides empirical 
evidence that interface complexity is detrimental to development productivity. On the other hand, the 
relationship of interface complexity with software quality has been neglected. This paper addresses this 
gap in the literature by examining the following research question: 
RQ1: What is the relative impact of interface complexity on failure proneness? 

Despite the lack of systematic empirical examination of the impact of design attributes of interfaces such 
as complexity on software quality, recent work has focused on the development of tools to aid in the 
usage of interfaces and APIs1. Examples of such tools are mashups editors, examples-based interface 
learning support, as well as directives for providing context-based information for interface users [15, 
51, 57]. Researchers have also built on qualitative analyses of developers’ usage of APIs to suggest de-
sign implications for development tools [16, 28]. Robillard [47] identified several problems Microsoft 
software developers faced when learning new APIs. His results can be used to suggest design implica-
                                                                 
1 Loosely speaking, an interface is the set of public functionalities exported by a software component, e.g. public methods of a class. An API, on the other 

hand, is the combination of several interfaces. For instance, a Java API consists of several public classes and their methods. Our analysis described in sec-
tion 3 focuses on interfaces, while our discussion on section 4 addresses both interfaces and APIs, since research tools have focused more on APIs than on 
interfaces. 



tions for API support tools. Despite those important advances – with significant value for researchers 
and practitioners – an important next step is to be able to provide recommendations for tools to support 
the design of APIs. Building on our empirical examination of the relationship between interface com-
plexity and software quality, we suggest a collection of design recommendations for tools. Then, our 
paper has two main contributions to the software engineering literature. Addressing research question 1 
is our first contribution, while the set of recommendations for tool design represents our second contri-
bution.    

3. EMPIRICAL STUDY 
In this section, we described our empirical analysis of the impact of interface complexity on software 
failures. We collected data from two large software development projects from two distinct companies. 
The first project was a complex distributed system produced by a company operating in the computer 
storage industry, while the second was an embedded system from a company that operates in the auto-
motive industry. In the remaining of this paper, we refer to the first project as “System A” and the 
second project as “System B”. 
3.1 Research Settings 
The company developing System A had one hundred and fourteen developers grouped into eight devel-
opment teams distributed across three development locations. All the developers worked full time on the 
project during the time period covered by our data. The data covered a period of 11 months of develop-
ment activities corresponding to the latest release of the company’s product. Those development activi-
ties were captured by 1125 modification requests. The modification requests represented different types 
of development activities from implementation of new features to fixing defects. The system was com-
posed of approximately 5 million lines of code with most of the code written in C and a relatively small 
fraction in C++. The APIs exported and used by the various source code files were primarily of two 
types: traditional function call that interfaces layers of the system that run in the same runtime entity and 
remote procedure calls that were used exclusively for interfacing among runtime entities operating in the 
same or different computational node. 

System B and the development organization that produced it had very different characteristics compared 
to the context of System A. The development organization used a product line approach. Our data cov-
ered 4 years of development activities in the latest version of the base platform software grouped in 
3,840 modification requests. Three hundred and eighty developers distributed in eight locations across 
Europe and Asia participated in the development. The system was composed of approximately 7 million 
lines of code organized in 530 architectural components. All source code files were written in C lan-
guage. A collection of XML files were used to define data elements and interfaces. The compilation 
process used such XML files to auto-generate the data structure and interface declarations that the C 
source code files defined and used. In System B, the interfaces were a combination of function calls and 
global variables used for passing data among interdependent files or architectural components.   

3.2 Description of the Measures 
The basis of our data collection was the development activity represented by a modification request. In 
both development organizations, every change to the source code was controlled by modification re-
quests. A modification request (MR) is a development task that represents a conceptual change to the 
software that involves modifications to one or more source code files by one or more developers [40]. 
The changes could represent the development of new functionality or the resolution of a defect encoun-
tered by a developer, the quality assurance organization, or reported by a customer. Then, the version 
control system and the MR-tracking systems of the development organizations constituted the main 
sources of data. In addition, we utilized the source code itself as a third important source of data. Com-



bining all three data sources, we constructed our measures.  

The selection of outcome and independent measures was based on the work by Cataldo and colleagues 
[12] that examined the failure proneness of source code files. Such analysis combined traditional metrics 
(e.g. code size and churn metrics) with structural properties of the dependencies of the source code files 
(e.g. syntactic and logical dependencies). The examination of the role of API complexity represents a 
natural extension to such work because it combines the structural properties of dependencies with an 
additional dimension, the complexity of those linkages among source code files. The measures are de-
scribed in the subsequent paragraphs. 

3.2.1 Measuring Failure 
Our outcome variable of interest is failure proneness at the source code file level. Our dependent varia-
ble, File Buggyness, was measured as a dichotomous variable indicating whether a file has been mod-
ified in the course of resolving a “field” defect.  In the case of System A, field defects represent in-
stances of problems reported by customers after the product has been released. In the case of System B, 
we consider “field” defects as those encountered in the integration and system testing phase of the de-
velopment process. A field defect in the industry setting of System B would result in product recall and 
significant financial impact. Then, an important amount of effort is spent in the system testing phase to 
make sure that defects are found before the product is released to customers. Therefore, field defects 
seldom occur. Given the binary nature of our outcome variable, a logistic regression model was used to 
examine the role of API complexity on software failure proneness.  

3.2.2 Measuring API Complexity 
We constructed several measures of API complexity using metrics proposed by Bandi and colleagues 
[4]. For each source code file, we first identified the set of interfaces those files made accessible for oth-
er source code files (e.g. public methods and variables for C++ code and extern-ed functions and va-
riables for the C portion of the code).  Then for each interface, we computed the interface size and oper-
ation argument complexity proposed as described by Bandi and colleagues [4]. Interface size is defined 
as the number of parameter plus the sum of the parameters’ type sizes and both terms are multiplied by 
constants. In our computations, we set those constants to 1 (see [4] for a discussion of selecting the con-
stant values). The operation argument complexity measure is the sum of the parameters’ type sizes. 
Bandi and colleagues [4] did not consider the case where interfaces are data elements such as global va-
riables. In those cases, we can define the interface size and operation argument complexity measures in 
different ways. One possibility is to assume that they are equivalent to a “parameterless” interface and 
assign a 0 to both measures. Alternatively, we could assign to both measures the value corresponding to 
the data element type as if it were a regular interface with a single parameter.  We evaluated both ap-
proaches and the results were similar. In section 3.4, we report the results based on the second approach. 
Finally, the interface-level measures were aggregated at the level of the source code file. For each file, 
we calculated a total sum measure of interface size and operation argument complexity as well as aver-
age, maximum, minimum and standard deviation variants of the measures. 
3.2.3 Additional Factors Impacting Software Quality 
Past research work has examined the role of numerous types of metrics on software failures [21, 23, 26, 
41, 42, 48]. Process-oriented measures such as number of changes, number of deltas, and age of the code 
have been shown to be very good predictors of failures [26, 41]. Therefore, we collected Number of 
MRs, which is the number of times the file was changed as part of a past defect or feature development 
and the Average Number of Lines Changed in a file as part of past modification requests. Although, 
product-related measures such as code size and code complexity measures have produced somewhat in-
consistent results as predictors of software failures [6, 9, 26], senior engineers from the development or-



ganizations we studied indicated that in their experience product measures had a positive relationship 
with software defects. We measured size of the file as the number of non-blank non-comment lines of 
code. 
We also collected the syntactic and logical dependencies metrics examined by Cataldo and colleagues 
[12]. Each one of these metrics is discussed below. Syntactic dependency information was collected in 
System A using a modified version of the C-REX tool [29] to identify programming language tokens 
and references in each entity of each source code file. In the case of System B, the data was collected 
using an existing tool that the organization had deployed for performing various types of code level ana-
lytics. Snapshots of the source code corresponding to the last release of both systems were used to col-
lect the syntactic dependency information associated with data, function and method references crossing 
the boundary of each source code file. In this paper, we refer to data references as data dependencies and 
function/method references as functional dependencies. We consider that differentiating the dependen-
cies across types is important because the nature of their impact differs as argued by Cataldo and col-
leagues [12]. We computed the number of inflow and outflow for both data and functional syntactic de-
pendencies. 
Logical dependencies, based on the idea of logical coupling proposed by Gall and colleagues [25], relate 
source code files that are modified together as part of an MR. If the modification request is implemented 
by making changes to only one file, such instance of a development activity does not provide evidence 
of any dependency between the modified file and the rest of the system. On the other hand, when the 
modification request requires changes to more than one file, decisions about the change to one file sug-
gest the existence of some time of dependency with decisions made about changes to the other files in-
volved in the MR. As discussed earlier in this section, both organizations required that any change to the 
system be associated with a modification request. Using such data, we constructed a logical dependency 
matrix among the source code files. Unlike the syntactic dependency information which has a clearly 
defined directionality (a callee and a caller), the logical dependency matrix is a symmetric matrix, it is 
undirected. Each cell Cij in the matrix represents the sum of the number of times files i and j were 
changed together as part of an MR that were resolved over the time period covered by our data.  

The quality of the logical dependency data relies on the adherence of developers’ actions to the defined 
change submission processes. For instance, a developer could submit a commit containing changes to 
two different files but those changes are associated with different modification requests and they do not 
related to an actual dependency among the files. A collection of analyses were performed to assess the 
quality of our MR-related data and minimize measurement error. We compared the revisions of the 
changes associated with the modification requests and we did not find evidence of such type of beha-
vior. One of the authors together with a senior engineer of each organization examined a random sample 
of modification requests to determine if developers have work patterns that could impact the quality of 
our data such as the example described above. We did not find commits in the version control systems 
that contained modifications to the systems’ code that was unrelated to the development task represented 
by the modification requests. Two file-level measures were extracted from the logical dependency ma-
trix, the number of logical dependencies and the clustering of logical dependencies. Unlike the number 
of logical dependencies, the clustering of logical dependencies measure captures the degree to which the 
files that have logical dependencies to the focal file have logical interdependencies among themselves. 
In graph-theoretic terms, the measure for file i is computed as the density of connections among the di-
rect neighbors of file i, a definition equivalent to Watts’s [55] local clustering measure. We refer the 
reader to Cataldo et al [12] for the formal details of the measures. 



3.3 Preliminary Analyses 
As has been discussed in past research [e.g. 12, 41, 42], many of the churn metrics and source code 
measures tend to be correlated. Therefore, we started our analyses with a collinearity diagnostics.  We 
used a variance inflation factors analysis to identify those independent variables that were highly corre-
lated and, consequently, impact the quality of the estimates of our regression models. The results of the 
collinearity diagnostics indicated that several measures were highly correlated. The number of modifica-
tion requests measure was correlated with several other variables. The syntactic dependency measures 
were also highly correlated among themselves. The interface size measure was highly correlated with 
the operational argument complexity measures. The final set of independent variables included in our 
analyses is indicated in table 1 and consists of the following measures: size in LOCs, average change in 
LOCs, number of inflow syntactic data dependencies, number of inflow syntactic functional dependen-
cies, number of logical dependencies, clustering of logical dependencies, sum of interface sizes and 
standard deviation (dispersion) of interface sizes. We calculated the pair-wise correlations among those 
measures and the highest one were between size of the file in LOC and the number of logical dependen-
cies and the sum of interface sizes, 0.348 and 0.312, respectively. Descriptive statistics showed that sev-
eral variables included in the models were highly skewed, therefore, we log-transformed them. 
 We followed a standard hierarchical modeling approach. We constructed a baseline model for both sys-
tems consisting of the factors impacting failure proneness identified by Cataldo and colleagues (see 
models I and III in table 1). We, then, introduce the API complexity measures in models II and IV in 
table 1. We report the Chi2 of each model, the percentage of deviance explained by each model as well 
as the statistical significance of the difference between a model that adds new factors and the previous 
model without the new measures.  The percentage of the deviance explained (where deviance is defined 
as -2 times the log-likelihood of the model) is a ratio of the deviance of the null model (containing only 
the intercept), and the deviance of the final model. For each model, we report the odds ratios associated 
with each measure instead of regression coefficients. Odds rations provide a simpler way of interpreting 
the impact of a particular factor on the outcome variable. For instance, an odds ratio of 1.5 for a dicho-
tomous independent variable indicates that a change from 0 to 1 increases the likelihood of positive 
changes in the outcome variable by 50%. Odds ratios larger than 1 indicate a positive relationship be-
tween the independent and dependent variables whereas an odds ratio less than 1 indicates a negative 
relationship. 
 

Table 1: Odd Ratios from Logistic Regressions 

 System A System B 
 Model I Model II Model III Model IV 
Size in LOCs (log)  1.206**  1.313**  1.258**  1.242** 
Avg. Change in LOCs (log)  1.146**  1.019*  1.315**  1.321** 
No. Inflow Syntactic Data Dependencies (log)  1.047  1.042  0.993  0.997 
No. Inflow Syntactic Functional Dependencies (log)  0.976  0.912  1.034  1.029 
No. Logical Dependencies (log)  2.304**  2.109**  3.827**  1.892** 
Clustering of Logical Dependencies (log)  0.007**  0.016**  0.002**  0.005** 
Sum of Interface Sizes (log)   1.812**   1.427** 
Dispersion of Interface Sizes (log)   1.002   1.041* 
N 2802 2802 9074 9074 
Model  Chi2 (p-value) 1195.59 

(p < 0.01) 
1372.94 

(p < 0.01) 
3098.27 

(p < 0.01) 
3116.81 

 (p < 0.01) 
Deviance Explained 30.87% 35.43% 36.67% 37.02% 
Model  Comparison (p-value) -- 176.35 

(p < 0.01) 
-- 18.54 

(p < 0.01) 
(* p < 0.05, ** p < 0.01)     



3.4 Results 
Table 1 reports the results of examination of the relative impact of interface complexity on failure 
proneness. The results associated with System A are reported in models I and II while models III and IV 
present those results associated with System B. The baselines models (I and III) included the set of fac-
tors reported in Cataldo et al [12]. We see that in both models, the measures size, average change and 
number of logical dependencies have odds ratios higher than 1 and are statistically significant, which 
indicates that higher values of the measures increase the likelihood of failure on the source code files. 
The analyses also show that files logically dependent on files which are also highly interdependent have 
lower likelihood of being associated with defects, as indicated by the odds ratio lower than 1 associated 
with the clustering of logical dependencies measure. All these results are consistent with those reported 
by Cataldo et al [12].  

Models II and IV introduce our measures of interface complexity. We observe that the sum of interface 
sizes has an important and statistically significant impact on source code files failure proneness. In the 
case of system A (model II), the odds ratio associated with the measure has a value of 1.812 indicating 
that a unit increase in the log-transformed variable increases the likelihood of source code files of being 
associated with defect by 81.2%. The results are similar for the case of System B (model IV), although 
the magnitude of the impact of interface size is about half than the case of System A. One possible ex-
planation for this difference is the nature of the interfaces use in both systems. System B made extensive 
use of global variables in System B. The interface size measure, as discussed earlier, might not necessar-
ily fully capture the potential detrimental impact of the complexity associated with global variable. 
Then, the impact of the factor could be under estimated. 

While the sum of interface sizes gives a general indication of the complexity associated with interacting 
with a particular file, the dispersion of interface sizes measure provides an indication of how such com-
plexity is distributed across the interfaces exported by a particular file. Model II and IV show that the 
dispersion of interface sizes is only statistically significant in the case of system B. Increases in the dis-
persion of complexity are associated with higher levels of failures although the magnitude of the impact 
of this factor is relatively small compared of the other factors. 

3.5 Further Exploration of the Results 
We also performed additional exploratory analysis with visualizations. We extended the tool Metrix 
[17], which provides automatic evaluation of complexity of Java-based interfaces and APIs, to manage 
our data and relate interface complexity to number of defects and number of users of the interfaces. Fig-
ure 1 contains four quadrants which depict association patterns between interface complexity and de-
fects (left quadrants) and number of users of the interfaces (right quadrants) for both of our systems. In 
each quadrant, the squares represent a file containing several interfaces. The size of the square in the left 
quadrants indicates the number of defects associated with the file, the larger the square, the more defects 
associated with that file. The color of the square represents the sum of the level of complexity of each 
interface in that file with red color shades indicating higher levels of interface complexity and green 
shades indicating lower complexity. The same definitions apply to the left quadrants but the focus is on 
number of callers instead of number of defects. 

The figure depicts some interesting patterns. First, we observe that in System A (top two quadrants) 
complex interfaces tend to be associated with buggy files (red color of the squares in the top left) and 
tend to be used extensibly (red color of the squares in the top right). On the other hand, in System B, we 
see the opposite pattern. Highly complex interfaces that tend to be associated with buggy files (red color 
of the squares in the bottom left) tend to have low number of callers (green color of the squares in the 



bottom right). These patterns could suggest that there is a difference in the set of design decisions made 
by architects and designers of each system. Those decisions (e.g. highly complex interfaces that are 
heavily used) can have serious consequences on the quality of a software system. Certainly, the detri-
mental impact would be moderated by organizational factors such as experience and processes. Howev-
er, we think this type of analysis which combines statistical evaluation of historical data with visualiza-
tion of key data relationships has significant value for researchers as well as practitioners because they 
could uncover interesting patterns in the data based on solid statistical ground. We discuss these implica-
tions further in the discussion section. 

Figure 1 also highlights some particular sets of files. For instance, buggy files with low levels of inter-
face complexity (large size squares with color green) as well as files with high levels of interface com-
plexity that tend to be associated with fairly small number of defects. We examined in more detail the 
attributes of these sets of particular files which happened to be relatively small in size (System A: 
447.88 average LOCs, 378.5 standard deviation – System B: 339.56 average LOCs, 433.06 standard 
deviation). In the case of buggy files with low levels of interface complexity, we found that the only dif-
ferences were related to the logical coupling of the files. This set of particular files had significantly 
higher levels of logical coupling (System A:  t = -4.85, p < 0.001 – System B:  t = -10.06, p < 0.001) 
than other files with similar size. In addition, those files have significantly lower levels of clustering in 
the logical dependencies compared to similarly sized files (System A:  t = 2.84, p < 0.001 – System B:  t 
= 10.65, p < 0.001). These results enforce the important impact of logical coupling on failure proneness 
as demonstrated by Cataldo and colleagues [12]. In the case of files with high interface complexity and 
low number of defects, we did not find any statistically significant differences with other files.  
4. DISCUSSION 
In this paper, we have examined the relative impact of interface complexity on the failure proneness of 
source code files. Our results showed that higher levels of interface complexity of source code files 
(measured as sum of the size of the file’s exported interfaces) are associated with increases in the “bug-
gyness” of files or likelihood of source code files being associated with a defect. Our work has several 
important contributions to the software engineering literature. First, we extended our knowledge about 
the role of interface complexity by examining Bandi and colleagues measures in the context of software 
failures. Our results are complementary to those of Bandi et al [4] since their results suggested that high-
er interface complexity was positively associated with maintenance time. Second, our analyses com-
bined multiple factors that impact failure proneness. In particular, we extended traditional empirical ana-
lyses which focused on churn and product-related metrics with complexity and relational (in the form of 
syntactic and logical dependencies) characteristics of the interfaces. Finally, we replicated our results 
across two systems from two different companies strengthening the external validity of our results. The 
remainder of this section explores the implications of our results for tool support as well as further em-
pirical. 

4.1 Interface Complexity and Quality 
Software complexity has been an important research topic for several decades [5] and the increasing 
pervasiveness of software systems suggests that the topic will remain relevant in the future. This line of 
work has traditionally focused on assessing the complexity of a particular unit of software such as func-
tions, modules or components [e.g. 24, 38, 39, 56] and examining its impact in the context of software 
maintenance activities and software quality [5, 35, 24]. Numerous code complexity measures have been 
proposed (see [59] for a comprehensive list), however, empirical examinations of the relationship be-
tween complexity and quality have produced disappointing results [24]. Fenton and Ohlsson [24, page 
808] argued that “…being a good predictor of fault density … is not an especially appropriate validation 



criteria … Since complexity infers the notion of difficulty in understanding … such metrics should be 
that they are good predictor of maintainability …”. In fact, such observation has been confirmed empiri-
cally by work such as Banker et al [5]. 
Our study, on the other hand, examined a dimension of complexity – interface complexity - that has 
been relatively neglected. We are addressing an important gap in the literature because interfaces are a 
central element in modular systems. The modularity literature [e.g. 1, 52] argues that interfaces are the 
link between modules or components that allows for separation of concerns and development activities, 
therefore facilitating the coordination among developers. Such argument rests on the assumption that 
complexity is embedded in the software entity (e.g. module or component) and not in the interfaces 
themselves. Our work and other recent research [e.g. 4, 16, 18] suggest a departure from that line of 
work where complexity is in fact embedded in the interfaces themselves. Consequently, the separation 
of technical and work responsibilities is not as simple and pristine as suggested by the modular systems 
theoretical perspective. Then, interfaces have the potential to become barriers to effectively decoupling 
technical responsibilities and work responsibilities as well as hinder coordination among development 
teams. The work presented in this paper represents a first step towards characterizing the complexity of 
interfaces and empirically assessing its impact on software quality. The following paragraphs discuss 
several future research directions we consider will further our understanding of the relationship between 
interface complexity and software quality. 

4.1.1 The Nature of Interface Complexity 
The complexity associated with an interface relates to multiple dimensions. In this paper and building on 
prior work, we considered complexity as a function of the number and type of parameters of a particular 
interface. However, there are additional dimensions that future research should explore. First, the set of 
pre- and post-invocation made by the interface designers and implementers represent also important 
source of complexity and, consequently, a potential factor leading to failures [43, 46]. For instance, a 
developer of a module’s interface has some system configurations for which he/she had developed and 
validated the particular piece of software. Documentation and communication of these configurations in 
such a way that it is able to capture all the relevant details is a challenge, leading to a variety of defects 
when those interfaces are utilized. Past research in static analysis [3] has proposed approaches to address 
problems related with misalignment of assumptions between the interface provider and user. However, 
such research focuses on basic issues such as verification of lock/unlock policies and conformance of 
particular code structures in device drives. Nambiar and Cataldo [43] presented a set of cases that related 
to a higher order of misalignment of assumptions that are associated with the information content ex-
changed through the interfaces as well as the environmental context in which the interface is expected to 
operate. Another, but related, dimension of complexity is related to the sequence of invocation of differ-
ent interfaces and the negative consequences that incorrect or unanticipated sequences can have on soft-
ware quality [34]. 
 



 
 

Figure 1: Pattern of Defects and Usage of Interfaces in Systems A and B. 

  

Another area that deserves further examination is the implications of particular usage patterns of para-
meter types for interface complexity. For instance, a function or method may take a single integer para-
meter. In the context of Bandi et al’s measures, such interface has an operational argument complexity 
of 1 (the size of the parameter type as defined by [4]). However, the function or method could use such 
parameter as a mechanism for controlling a complex sequence of statements (e.g. a mask). Arguably, 
this example implies more complexity in the use of the interface because it requires the function or me-
thod user to understand a lot more about the interface and potentially about the implementation and the 
implications of particular choices of bits in the mask. This is similar to what Kiczales has termed as 
“open implementation” [36]. Then, future research should explore ways to capture such differences in 
complexity into new metrics.  

4.1.2 Coordination of Geographically Distributed Development Work 
de Souza and Redmiles [18] found that dependencies associated with interfaces relating two or more de-
velopment teams might not be easily identified by those developers. Lack of awareness or disregard for 
particular dependencies can have important consequences on the quality of a software system. Past re-
search work has shown that unsatisfied coordination needs can result in coordination breakdowns, par-
ticularly in a geographically distributed setting [33, 44]. Those coordination breakdowns tend to mate-
rialize as higher number of defects [12, 33]. Our results showing the detrimental impact of interface 



complexity on software quality suggest an additional possible source of dependency among the users 
and the “supplier’ of the interfaces that might be difficult also to identify and manage. Then, we could 
consider the complexity of APIs as a factor to help the design of distributed teams that would be better 
equipped to handle the dependencies imposed by the technical properties of the system. For instance, 
teams dealing with more complex APIs could be located closer (physically or in terms of time zone dif-
ference) than those teams dealing with simpler APIs. In other words, future research should explore the 
use of metrics that characterize the nature of interfaces (e.g. complexity) as an additional mechanism for 
the identifying what constitutes relevant work dependencies among development teams and organize 
them accordingly. It is important to highlight that recent work has shown that logical dependencies 
among software modules are a major driver of work dependencies among developers [11]. Our work 
complements such research by also highlighting the role of the complexity associated with those logical 
dependencies. 

4.2 Implications for Tool Design2 

4.2.1 Improving Awareness of Interface and API Complexity  

Our results also have important implications for tool design which are relevant to both practitioners and 
researchers. Automatic evaluation of the complexity of interfaces and APIs3 is a particularly relevant 
area because since the information about interface complexities give developers the opportunity to focus 
on specific interfaces as well as to become aware of the implications of particular interfaces on their 
work. For instance, more complex interfaces could be the ones that should be more carefully docu-
mented. Another approach that we believe will benefit from considering interface complexity measures 
are tools that provide usage information. For instance, source code search engines like Sourcerer [2] and 
tools like Mica [51] and MAPO [57] that provide API examples and patterns, respectively, could be 
augmented with complexity information so that they could indicate to an user which examples or pat-
terns are less complex, and, as our results indicate, less likely to introduce bugs. This has the potential to 
improve code search effectiveness, but further research needs to validate that. 

Our results provide the empirical basis for tools to focus on performing automatic evaluation of interfac-
es in terms of their complexity. However, to the best of our knowledge, Metrix [17] is one of the few 
tools providing automatic evaluation .of Java-based interfaces and APIs regarding their complexity. 
Therefore, another potential research direction is on the automatic evaluation of interfaces and APIs re-
garding their complexity, and as discussed in the previous section, the associated metrics to do so. 

Another set of development tools that could be enhanced by considering interface complexity measures 
are those tools related to providing context-aware information. For instance, the work on directives [15] 
could be extended with a color-based notion of the complexity of the interface. Then, a developer would 
not only acquire information about particular requirements and assumptions on the interface, but also 
have an indication of the associated complexity. Such a mechanism would raise awareness of the com-
plexity of the APIs and its potential implications on the individual’s work. Certainly, it remains a re-
search question for the future the determination of whether such improvements on awareness are asso-
ciated with a reduction on the detrimental impact of such complexity. 

The stability of APIs is an issue of great importance in software development organizations because of 
the host of negative implications that changes (particularly those that go unidentified) have on quality 
and productivity. CatchUp [31] is a tool that supports API maintenance by recording API changes and 
                                                                 
2 As mentioned before, our discussion on this section addresses both interfaces and APIs, since research tools have focused more on APIs than on interfaces. 
3 In contrast to API usability inspection methods as presented by [22] and API design guidelines like [8, 20]. 



using this information to automatically update clients’ code. Again, our results could be used to extend 
CatchUp by providing information about the complexity of the interfaces being changed, or better yet, 
our results demonstrate that it would even be important to suggest developers what to change in a par-
ticular API. 

4.2.2 Interface and API Complexity and Usage   

Another research area regarding APIs that could benefit from our results is the identification of API 
“hots spots” [54]. In this case, in addition to identifying the most used parts of an API, a tool could also 
present information regarding the complexity of these parts. This would allow identifying whether the 
most complex, and error-prone, parts of an API are also the most used. In fact, we extended the Metrix 
tool to perform this type of analysis. We used Metrix’s integration to the Sourcerer code engine to sup-
port this feature. Figure 2 below presents an example of the antlr API. The size of the squares is mapped 
to calls from other projects that exist in the Sourcerer database. Color is mapped to complexity. There-
fore, large green squares suggest a well-designed API, one that most calls are made to classes that are 
not complex.  

 
Figure 2 - Analysis of complexity and usage of the antlr API. 

 

On the other hand, Figure 3 suggests that the svnkit API is not as well-designed: it is possible to observe 
that this API has classes called very often (somewhat large squares) that have some complexity (they are 
not so green in the complexity scale). In this case, what we are suggesting is that API design and main-
tenance can be improved by combining complexity (and, consequently “buggyness”) information with 
usage information. In this case, we are talking about external API clients, i.e. projects that are different 
from the API under analysis. In contrast, section 3.5 reports the usage of the interfaces in the same sys-
tems. We argue that both approaches are interesting research paths to be pursued. 

In general, our analyses demonstrate the viability of using interface complexity information for mechan-
isms that development tools could use for “tagging” or “highlighting” particular source code files or por-
tions of code. Once parts of the source code are marked, several tools could extract this information to 
support API design, maintenance, and usage. 

4.3 Limitations 
Our work has limitations worth noticing. First, both our systems were mostly developed using the C 
programming language (with some minor amount of code in C++). Systems developed using program-
ming languages with technical properties very different from C and C++ might exhibit a different impact 
of the measures of interface complexity on failure proneness, an issue that future research should ex-
amine. Second, the measures proposed by Bandi and colleagues [4] do not consider data elements as in-



terfaces. As discussed in section 3.2.2, we explore two alternative methods of extending the measure and 
the results were similar. However, we think that redefining the interface size measure requires further 
evaluation. Unfortunately, we did not have access to a third system that also made heavy use of global 
variables as interfaces. Third, recent research has examined the impact of organizational factors on fail-
ure proneness such as organizational structure [42] and different types of work dependencies [12]. Un-
fortunately, we did not have access to such data for both systems. 
 

 
Figure 3 - Analysis of complexity and usage of the svnkit API. 

 

5. CONCLUSIONS  
In this paper, we examine the relative impact of interface complexity on the failure proneness of source 
code files. We performed our analysis using data from two large-scale systems from two distinct soft-
ware companies. We used Bandi’s et al. interface complexity metrics and compared our results with 
several other predictors of bug failures.  

Our analyses showed that increases in the complexity of interfaces are associated with increases the fail-
ure proneness of source code files, i.e., files containing more complex interfaces are more likely to have 
bugs. We also extended a software tool, Metrix, to help our analysis and illustrated how such work can 
uncover design decisions. Building on our empirical results, we explore several paths for improving de-
velopment tools aimed at assisting developers to cope with the detrimental impact of interface complexi-
ty.   
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