Shared-Memory Parallelism Can Be Simple,
Fast, and Scalable

Julian Shun
CMU-CS-15-108
May 2015

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Guy Blelloch, Chair
Christos Faloutsos
Phillip Gibbons
Gary Miller
Jeremy Fineman, Georgetown University
Charles Leiserson, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2015 Julian Shun

This work is supported by the National Science Foundation under grant numbers CCF-1018188 and CCF-
1314590, the Intel Labs Academic Research Office for the Parallel Algorithms for Non-Numeric Computing

Program, the Intel Science and Technology Center for Cloud Computing (ISTC-CC), and a Facebook Graduate
Fellowship.

Keywords: Parallel Computing, Shared-Memory, Multicore, Programming Techniques,
Programming Frameworks, Large-Scale, Deterministic Parallelism, Graph Algorithms,
String Algorithms

To my family.

Abstract

Parallelism is the key to achieving high performance in computing. How-
ever, writing efficient and scalable parallel programs is notoriously difficult,
and often requires significant expertise. To address this challenge, it is crucial to
provide programmers with high-level tools to enable them to develop solutions
efficiently, and at the same time emphasize the theoretical and practical aspects
of algorithm design to allow the solutions developed to run efficiently under all
possible settings. This thesis addresses this challenge using a three-pronged
approach consisting of the design of shared-memory programming techniques,
frameworks, and algorithms for important problems in computing. The thesis
provides evidence that with appropriate programming techniques, frameworks,
and algorithms, shared-memory programs can be simple, fast, and scalable,
both in theory and in practice. The results developed in this thesis serve to ease
the transition into the multicore era.

The first part of this thesis introduces tools and techniques for deterministic
parallel programming, including means for encapsulating nondeterminism
via powerful commutative building blocks, as well as a novel framework for
executing sequential iterative loops in parallel, which lead to deterministic
parallel algorithms that are efficient both in theory and in practice.

The second part of this thesis introduces Ligra, the first high-level shared-
memory framework for parallel graph traversal algorithms. The framework
allows programmers to express graph traversal algorithms using very short and
concise code, delivers performance competitive with that of highly-optimized
code, and is up to orders of magnitude faster than existing systems designed
for distributed memory. This part of the thesis also introduces Ligra+, which
extends Ligra with graph compression techniques to reduce space usage and
improve parallel performance at the same time, and is also the first graph
processing system to support in-memory graph compression.

The third and fourth parts of this thesis bridge the gap between theory and
practice in parallel algorithm design by introducing the first algorithms for a
variety of important problems on graphs and strings that are efficient both in
theory and in practice. For example, the thesis develops the first linear-work
and polylogarithmic-depth algorithms for suffix tree construction and graph
connectivity that are also practical, as well as a work-efficient, polylogarithmic-
depth, and cache-efficient shared-memory algorithm for triangle computations
that achieves a 2—-5x speedup over the best existing algorithms on 40 cores.

Acknowledgments

There are many people without whom this thesis would not have been possible, and I would
like to thank all of them.

First and foremost, I thank my advisor Guy Blelloch for the guidance and inspiration
that he gave me during my graduate studies. He introduced me to parallel computing,
taught me the knowledge necessary for writing this thesis, and gave me a lot of useful
career advice. I am very grateful to Guy for spending hours with me every week answering
all of my questions, going through problems on the board, and even helping me improve
my code.

I am also thankful to the rest of my thesis committee members for helping me throughout
my graduate studies and providing me with useful feedback to improve this thesis. I thank
Phil Gibbons for being a great collaborator, always sparking interesting discussions during
our regular research meetings. His broad knowledge has given me a better perspective on
the “big picture”. I also thank Phil for listening to many of my practice talks and giving me
advice on job applications. I thank Jeremy Fineman for being an excellent collaborator, and
his expertise in algorithms helped me in developing many of the results in this thesis. I am
grateful to Christos Faloutsos for many interesting discussions on graphs, which inspired me
to do research on large-scale graph processing. I thank Gary Miller for our many interesting
conversations on algorithm design, and for teaching me about parallel algorithms, spectral
graph theory, and computational geometry. Finally, I thank Charles Leiserson for hosting
my visit to MIT and encouraging me to think more about the importance of my thesis
statement.

During my graduate studies, I also had the opportunity to interact with many other
faculty members at CMU. I had the opportunity to work as a teaching assistant for Umut
Acar, Todd Mowry, Margaret Reid-Miller, Anthony Rowe, and Danny Sleator, and from
them I learned how to become more effective at teaching. I am grateful to Umut for trusting
me to give a lecture in class and helping me prepare for it, as well as helping me with job
applications. I thank Kayvon Fatahalian, Alan Frieze, Anupam Gupta, and Frank Pfenning
for helping me with my speaking and writing skills requirements.

I thank my fellow CMU students Laxman Dhulipala, Yan Gu, Aapo Kyrola, Richard

Vil

Peng, Harsha Simhadri, Yihan Sun, Kanat Tangwongsan, and Fuyao Zhao for valuable
discussions and research collaborations. I am thankful to all of the friends I met at CMU
for making my Ph.D. journey more enjoyable. Thanks to Jason Chen, Zhuo Chen, Dalong
Cheng, Vincent Chu, Ina Fiterau, Yu Gong, Favonia Hou, Tzu-Kuo Huang, Antonio Juarez,
Gunhee Kim, Haison Le, Seunghak Lee, Nan Li, Rui Liu, Qian Mao, Xi Tan, Yu-Ting
Weng, Gus Xia, Lianghong Xu, Min Xu, Yang Xu, Shoou-I Yu, Huanchen Zhang, Yin
Zhang, Yingjie Zhang, Yuan Zhou, and many others.

I am especially thankful to my wonderful girlfriend, Wenlu Hu. She stood by my side
during all of my ups and downs, and her constant support and encouragement enabled
me to finish writing this thesis. Finally, I am grateful to my parents and sister for always
motivating me to pursue my dreams and being there whenever I needed them. Without
them, I would not have come this far.

viil

Contents

1 Introduction

1.1 Shared-Memory Programming
1.2 Shared-Memory Algorithm Design
1.3 Shared-Memory Performance,
1.4 The Problem Based Benchmark Suite
1.5 Thesis Statement Lo
1.6 Thesis Contributions

2 Preliminaries and Notation

2.1 Parallel Programming Model
2.2 Algorithmic Complexity Model
2.3 Parallel Primitives oL
24 Graphs
25 SIINGS . . . L e e e e
2.6 Problem Definitions
2.6.1 Sequences e e e
2.6.2 Lists, Trees,and Graphs
2.63 Strings
2.64 GeOmetry i e e e e
2.7 Experimental Environment oL

I Programming Techniques for Deterministic Parallelism

3 Internally Deterministic Parallelism: Techniques and Algorithms

3.1 Introduction
3.2 Programming Model oL
3.2.1 Nested parallelism

1X

20
20
21
22
23
24
24
24
24
25
26
26

3.2.2 Internal determinismo
323 Commutativity
3.3 Commutative Building Blocks
3.4 Internally Deterministic Parallel Algorithms
34.1 Benchmark Problems
3.4.2 Nested Data Parallelism and Collection Operations
3.4.3 Deterministic Reservations,
344 Algorithms
3.5 Experimental Results,

Deterministic Parallelism in Sequential Iterative Algorithms
4.1 Introduction
42 AnalysisTools.
4.3 Algorithmic Design Techniques
4.4 Maximal Independent Set
4.4.1 Linear-work MIS Algorithms
4.5 Maximal Matching Lo
4.6 Random Permutationo
4.6.1 TIteration Dependence Depth and Aggregate Delay
4.6.2 Algorithms
47 ListContraction L e e
4.7.1 Tteration Dependence Depth and Aggregate Delay
4772 Algorithms L
4.8 Tree Contraction ittt
4.8.1 TIteration Dependence Depth and Aggregate Delay
482 Algorithms
4.9 Limited Randomness
410 Experiments e e e e e e
4.10.1 MIS and Maximal Matching
4.10.2 Random Permutation, List Contraction, and Tree Contraction

A Deterministic Phase-Concurrent Parallel Hash Table

5.1 Introduction

52 RelatedWork

5.3 Preliminaries e

5.4 Deterministic Phase-Concurrent Hash Table

5.5 Applications e
5.5.1 RemoveDuplicates

IT

5.5.2 Delaunay Refinement 118

553 SuffixTree L 118

5.54 EdgeContraction 119

5.5.5 Breadth-FirstSearch 119

5.5.6 Spanning Forest 120

5.6 Experiments e e e e 121
Priority Updates: A Contention-Reducing Primitive for Deterministic Pro-

gramming 131

6.1 Introduction 131

6.2 Priority Updates 135

6.3 Contention in Shared Memory Operations 136

6.3.1 Experimental Measurements of Contention 137

6.3.2 Priority Update Performance Guarantees 140

6.4 Applications of Priority Update 145

6.4.1 Breadth-First Search (BFS). 146

6.4.2 Maximal Matching 147

6.4.3 Connected Components 147

6.4.4 Minimum Spanning Forest 147

6.4.5 Hash-based Dictionary 147

6.4.6 Other Applications 148

6.5 Experiment Study: Applications 148

Large-Scale Shared-Memory Graph Analytics 154

Ligra: A Lightweight Graph Processing Framework for Shared Memory 156

7.1 Introduction 156

7.2 RelatedWork 159

7.2.1 Hybrd Breadth-first Search o000 L. 159

7.2.2 Graph Processing Systems 0L 160

7.3 Framework 162

7.3.1 Interface 162

7.3.2 Implementation 163

7.3.3 Graph Representation. 165

7.3.4 Optimizations ot e e 165

7.4 Applications e e e e e 166

7.4.1 Breadth-First Search 167

7.4.2 Betweenness Centrality 167

X1

7.4.3 Graph Eccentricity Estimation and Multiple BFS

7.4.4 Connected Components
745 PageRank o
7.4.6 Bellman-Ford Shortest Paths
7.5 Experiments

8 Ligra+: Adding Compression to Ligra

8.1 Introduction
82 PreviousWorko
8.3 Ligra+ Implementation
8.3.1 Preliminaries
832 Encoding
833 Decoding
8.3.4 Parallel Decoding,
83.5 GraphStorage
83.6 Weighted Graphs
83.7 ComparisontoLigra
84 Experiments e e e e
8.4.1 Experimental Analysis of Graph Reordering Algorithms

III Parallel Graph Algorithms

9 Linear-Work Parallel Graph Connectivity

9.1 Introduction e
9.2 Linear-Work Low-Diameter Decomposition
9.3 Linear-Work Connectivity
9.4 Implementation Details oL
0.5 Experiments e e e

10 Parallel and Cache-Oblivious Triangle Computations

10.1 Introduction L
10.2 Preliminaries Lo e e
10.3 Triangle Counting i
10.4 Exact Triangle Counting

10.4.1 Ranking e

1042 Counting e
10.5 Approximate Triangle Counting
10.6 EXtensions oot e e e e e e e

Xii

10.6.1 Triangle Enumeration
10.6.2 Directed Triangle Counting and Enumeration
10.6.3 Local Triangle Counting
10.6.4 Clustering Coefficients and Transitivity Ratio
10.7 Evaluation
10.7.1 Implementation
10.7.2 Exact Triangle Counting
10.7.3 Approximate Triangle Counting
10.7.4 Local Triangle Counting
10.8 Parallelization of the Pagh-Silvestri Algorithm
10.9 Prior and Related Work L L Lo

IV Parallel String Algorithms

11 Parallel Cartesian Tree and Suffix Tree Construction
11.1 Introduction e e
11.2 Preliminaries e e e
11.3 Parallel Cartesian Trees
11.4 Cartesian Trees and the ANSV Problem
11.4.1 Cartesian Treeto ANSV
11.5 Experiments 0 o0 e e e e

12 Parallel Computation of Longest Common Prefixes
12.1 Introduction L
12.2 Preliminaries
12.3 Algorithms and Analysis
124 Experiments e e e e e
12.4.1 Performance of suffix array and LCP construction

13 Parallel Lempel-Ziv Factorization
13.1 Introduction L
13.2 Preliminarieso e
13.3 Parallel Lempel-Ziv Factorization Algorithm
13.4 Implementations e
13.5 Experiments e e e

249

251
251
254
255
259
260
261

272
272
275
280
286
293

14 Parallel Wavelet Tree Construction

14.1 Introduction
14.2 Preliminaries
14.3 Related Work
14.4 Parallel Wave

let Tree Construction v v v v v v ..

14.4.1 LevelWT Algorithm
14.42 SortWT Algorithm
1443 Spaceusageo e

14.5 Experiments

14.6 Parallel Construction of Rank/Select Structures

14.7 Extensions .

15 Conclusion and Future Work

15.1 Summary .
15.2 Future Work

Bibliography

X1V

307
307
308
309
309
310
312
313
313
317
318

320
320
321

324

List of Figures

1.1

1.2

1.3
1.4

1.5

2.1

3.1

32

C++ code for spanning forest using deterministic reservations (with its
operations reserve, check, and speculative_for), where m is the
number of edges and n is the number of vertices in the graph. 6
Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap
function CAS(loc,0ldV,newV) atomically checks if the value at location
loc is equal to 0ldV and if so it updates loc with newV and returns true.
Otherwise it leaves loc unmodified and returns false. 8
Experimental evaluation of triangle counting and suffix tree construction. 12
(a) Experiments measuring contention of various parallel operations and (b)
average performance of Ligra+ relative to Ligra on 40 cores with two-way
hyper-threading.o 13
A pictorial organization of this thesis. The topics touch upon programming
techniques, algorithm design, and performance analysis, and are placed in
the closer two among the three areas in the figure. 16

Example: SA and LCP arrays for S = banana$. 25

An example nested-parallel program. The in parallel keyword means that
the following two {. ..} blocks of code may execute in parallel. At omicAdd(z,v)
atomically updates = to x := = + v and returns the new value of z. 35
Two possible traces for the program in Figure 3.1. The diamonds, squares,
and circles denote forks, joins, and data operations, respectively. Vertices
are numbered by line number, as a short hand for operations such as
AtomicAdd(z,1). The left trace corresponds to the interleaving/schedule
1,2,3,4,5,6,7,8, whereas the right trace corresponds to 1,2,4,5,7,6, 3, 8.
Because the intermediate return values differ, the program is not internally
deterministic. It is, however, externally deterministic as the output is always
the same. If At omicAdd did not return a value, however, then the program
would be internally deterministic. L. 36

XV

3.3

34

3.5

4.1
4.2

4.3

4.4
4.5

4.6

4.7

4.8

4.9

A generic example of deterministic reservations. The top and the bottom
depict the array of iterates during consecutive rounds. In each round, a
prefix of some specified size is selected. All of these prefix iterates perform
the reserve component. Then they all perform the commit component. The
dark regions in the top array represent iterates that successfully commit.
All uncommitted iterates (shown in white) are packed towards the right, as
shown in the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array.

C++ code for spanning forest using deterministic reservations (with its
operations reserve, check, and speculative for).

Log-log plots of running times on a 32-core machine (with hyper-threading).
The deterministic algorithms are showninred.

Sequential algorithm for random permutation.

Dominance and dependence forests for H = [0,0, 1,3, 1,2, 3, 1] are shown
in (a) and (b), respectively. (c) shows the linked dependence tree for H and
(d) shows the possible locations for inserting the 9’th node; dashed circles
correspond to the value of H[8].

RESERVE and COMMIT functions and associated data for random permuta-
tion using deterministic reservations.

Sequential algorithm for list contraction.

(a) An example list, where the numbers represent the position in the input
array L, and (b) its dependence forest.

RESERVE and COMMIT functions and associated data for list contraction
using deterministic reservations.

Sequential algorithm for tree contraction, where sibling (T, i) returns the
sibling of 7 in 7', and switchParentsChild(T)i,v) resets the appropriate
child pointer of the parent of ¢ to point to v instead of 2.

P-state and Q-state trees used in the proof of Theorem 12. The red node is
vs, the interior node corresponding to the leaf with the second largest label.
The yellow node is leaf [, the leaf with the largest label.

RESERVE and COMMIT functions and associated data for tree contraction
using deterministic reservations. sibling(T, i) returns the sibling of 7 in 7',
and switchParentsChild(T), i,v) resets the appropriate child pointer of the
parent of ¢ to point to v insteadof 2. L.

4.10 C++ code for maximal independent set using deterministic reservations. .

xvi

88
93

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

5.1

5.2

An example graph and an execution of deterministic reservations for finding
a maximal independent set. Here, the subscript of a vertex corresponds to
its priority in the deterministic reservations. The prefix size is chosen to be
4. (1) shows the initial graph in priority order, and (2)—(4) show subsequent
rounds of the algorithm. The vertical line indicates the end of the current
prefix. Dark-gray vertices are those that become IN or OUT during that
round: vertices with a thick border are IN and accepted into the MIS, and
vertices with an “X” are OUT as they have a neighbor already in the MIS.
For example, u; is the only vertex accepted into the MIS during the first
round. Similarly, u, becomes OUT in the second round as it has a neighbor
already in the MIS (namely, u,). White vertices are those belonging to the
current prefix that remain LIVE. For example, in the first round w5, u3, and
uy4 all have a higher priority neighbor in the same prefix and remain live.
Only vertices that survive the previous round (LIVE vertices) are displayed
in the array and part of the current prefix, so us is skipped in (3). Vertices
in the MIS are also shown with thick border in the graph.
Plots showing the trade-off between various properties and the prefix size
in maximal independentset.
Plots showing the trade-off between various properties and the prefix size
in maximal matching. L L L
Plots showing the running time vs. number of threads for the different
MIS algorithms on a 32-core machine (with hyper-threading). For the
prefix-based algorithm, a prefix size of n/50 wasused.
Plots showing the running time vs. number of threads for the different
MM algorithms on a 32-core machine (with hyper-threading). For the
prefix-based algorithm, a prefix size of m/50 wasused.
Running time vs. number of threads for n = 10° on 40 cores with hyper-
threading (log-log scale). “40h” indicates 80 hyper-threads.
Total work vs. prefix size for n = 10® for random permutation, list contrac-
tion, and tree contraction. e e e e
Number of rounds vs. prefix size for n = 108 (log-log scale) for random
permutation, list contraction, and tree contraction.
Running time vs. prefix size for n = 10® on 40 cores with hyper-threading

(log-log scale) for random permutation, list contraction, and tree contraction. 104

Pseudocode for the phase-concurrent deterministic hashing with linear
probing. e
Hash table-based implementation of breadth-first search.

Xvil

5.3

54

55

6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1

Times (seconds) for 10® operations for the hash tables on 40 cores (with
hyper-threading). (PC) indicates a phase-concurrent implementation and
(C) indicates a concurrent implementation.
Speedup relative to serialHash-HI for linearHash-D versus number of
threads. “40h” indicates 80 hyper-threads.
Times (nanoseconds) per operation with varying loads for linearHash-D
on 40 cores (with hyper-threading). Values on the x-axis indicate the load
factor (fraction of the table thatisfull).

Impact of sharing on a variety of operations. Times are for 5 runs of 100
million operations to varying number of memory locations on a 40-core
Intel Nehalem with hyper-threading (log-log scale). Since the number of
operations is fixed, fewer locations implies more operations sharing those
locations.
Priority update implementation.
Impact of sharing. Times are for 5 runs of 100 million operations to varying
number of memory locations on Intel and AMD machines under high and
low degrees of false sharing (log-log scale). Since the number of operations
is fixed, fewer locations implies more operations sharing those locations. .
Comparing priority update (write-with-min) on random values vs. decreas-
ing values. Times are for 5 runs of 100 million operations to varying
number of memory locations with low false sharing on the 40-core Intel
machine with hyper-threading (log-log scale).
Priority update on character strings based on trigram distribution of the
English language. Times are for 5 runs of 100 million operations to varying
number of memory locations with low false sharing on the 40-core Intel
machine with hyper-threading (log-log scale).
k-comb graph (used for BFS experiments to measure varying degrees of
sharing). e e
BES times vs. number of cores on the 4-comb graph (log-log scale). (nd)
indicates a nondeterministic implementation.
BFS times on different k-comb graphs with n = 2.5 x 107 on 40 cores
with hyper-threading (log-log scale). Lower k£ means higher sharing. (nd)
indicates a nondeterministic implementation.
Remove duplicates times on the allEqual sequence on 40 cores with hyper-
threading (log-log scale). “40h” corresponds to 80 hyper-threads. (nd)
indicates a nondeterministic implementation.

Pseudocode for breadth-first search in Ligra.

XViil

138

139

140

7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9.1

Ligra EDGEMAP implementation.
Ligra EDGEMAPSPARSE implementation.
Ligra EDGEMAPDENSE implementation.
Ligra VERTEXMAP implementation.
Ligra EDGEMAPDENSE-WRITE implementation.
Log-log plots of running times on rMat24 on a 40-core machine with
two-way hyper-threading. “40h” corresponds to 80 hyper-threads.

Plots of running times versus edge counts in random graphs on a 40-core
machine (with hyper-threading).

Plots of frontier size plus number of outgoing edges (y-axis in log scale)
versus iteration number forrMat24. oL Lo

Encoding the value “90” with a byte (8-bit) code and a nibble (4-bit) code.
The continue bits are shaded in gray. In this case, the nibble code uses more
SPACE. « vt e e e e e e e e e e e e e e e
Ligra+ DECODESPARSE implementation
Ligra+ DECODEDENSE implementation
BFS running time of Ligra+ using run-length encoded byte codes on Twitter
on 40 cores with hyper-threading versus 7' (left), and space of Twitter
versus 1" (right).
Average number of bits per edge required for the different coding schemes
inLigra+.
Average performance of Ligra+ relative to Ligra for each application on a
single-thread (left) and on 40 cores with hyper-threading (right).
Average self-relative speedup over all inputs for each application on 40
cores with hyper-threading of Ligra and Ligra+.

Peak memory usage of graph algorithms on com-LJ, com-Orkut and nlp-
kkt240 in Ligraand Ligra+.

[llustration of the decomposition-based connectivity algorithm. (a) At
t = 0, vertex O starts a BFS (red ball), and at ¢ = 1, vertices 3 (green
ball) and 4 (blue ball) start BFS’s. In this illustration, when there are ties
(multiple BFS’s visiting the same unvisited neighbor), the BFS center with
the lowest ID wins. The balls represent the resulting partitions and the rings
around the balls represent each level of the corresponding BFS. (b) Each
ball is contracted into a single vertex, and the decomposition is applied
recursively. L L

Xix

164

192

9.2

9.3

9.4

9.5
9.6
9.7
9.8
9.9

9.10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

11.1

Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on random and rMat. “40h”
indicates 80 hyper-threads. 218
Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on rMat2 and 3D-grid. “40h”
indicates 80 hyper-threads. 218
Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on the line graph and com-Orkut.

“40h” indicates 80 hyper-threads. 219
Running time versus [on various input graphs on a 40-core machine using
80 hyper-threads. 220

Number of remaining edges per iteration versus 3 of decomp-arb-hybrid-CC.221
Breakdown of timings on 40 cores with hyper-threading for decomp-min-CC.221
Breakdown of timings on 40 cores with hyper-threading for decomp-arb-CC.222
Breakdown of timings on 40 cores with hyper-threading for decomp-arb-

hybrid-CC. 222
Running time of decomp-arb-hybrid-CC vs. problem size for random
graphs on 40 cores with hyper-threading. 223

Example of a graph (left) and its directed edges after ranking by de-
gree (right). The contents of A" are AT[0] = {1,3}, AT[1] = {},
AT[2] = {1}, AT[3] = {1}, and AT[4] = {1,3}. The triangles found
are (0,3,1) and (4,3, 1), discovered by intersect(A*[0], AT[3]) and
intersect(AT[4],AT[3]). 229
Example of how the parallel triangle counting algorithm performs in action. 229
Times (seconds) for exact triangle counting (TC-Merge and TC-Hash)
as the number of threads varies on a log-log scale. “40h” indicates 80

hyper-threads. L 238
Breakdown of times on 40 cores with hyper-threading on various graphs

for TC-Merge and TC-Hash. 239
Breakdown of time for TC-approx on 40 cores with hyper-threading. . . . 242

The fraction of time taken by TC-Approx relative to TC-Merge without
sampling (vertical axis) as the sampling rate p (horizontal axis) varies, on
the input graphs soc-LJ, com-LJ, and Orkut. 243
Distribution of local triangle counts (log-log scale), showing local triangle
count (horizontal axis) vs. the number of vertices with that count (vertical

C++ code for Algorithm 1a for constructing a Cartesian tree. 255

XX

11.2 Merging two spines of Cartesian trees. Thick lines represent the spines
of the resulting tree; dashed lines represent edges that existed before the
merge but not after the merge; dotted edges represent an arbitrary number
of nodes; all non-dashed lines represent edges in the resulting tree. 256
11.3 Speedup of the parallel Cartesian tree algorithm relative to the stack-based
sequential algorithm on a 40 core machine. “40h” indicates 80 hyper-threads.264
11.4 Speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on a 40

core machine. “40h” indicates 80 hyper-threads. 266
11.5 Breakdown of running times for converting a suffix array to suffix tree

using Algorithm 1a on 40 cores with hyper-threading. 268
11.6 Breakdown of running times for the suffix tree portion of Algorithm 2 on

40 cores with hyper-threading. 268
11.7 Breakdown of running times for the suffix array portion of Algorithm la

and Algorithm 2 on 40 cores with hyper-threading. 269
11.8 Performance (characters per second) of Algorithm la on random character

strings of varying sizes on 40 cores with hyper-threading. 269

11.9 Parallel running times of suffix tree construction on the human genome.
*Reported time from the literature [320, 108]. **Code from [320] run on

our 40 core machine with a memory budgetof 160GB. 270
12.1 Example: SA, LCP, and PLCP arrays for S = banana$. 275
12.2 naive-LCP: naive parallel LCP algorithm. 276
12.3 klaap-LCP: sequential LCP algorithm of Kasaietal.. 276
12.4 kmp-LCP: sequential LCP algorithm of Kérkkdinenetal. 277
12.5 dk-LCP: parallel LCP algorithm of Deo and Keely. 278
12.6 par-LCP: parallelization of klaap-LCP. 280
12.7 par-PLCP: parallelization of kmp-LCP. 281
12.8 parallel-iLCP: parallel irreducible LCP algorithm. 285
12.9 Comparison of running times of parallel LCP algorithms using 40 cores

(80 hyper-threads). 290
12.10Parallel running times versus K for different algorithms on etext99 (left)

and wikisamp8 (right). The y-axis isin log-scale. 2901
12.11Speedup of par-PLCP with respect to kmp-LCP. “40h” indicates 80 hyper-

threads. L 292

12.12Running times versus number of threads of LCP algorithms on etext99 (left)

and wikisamp8 (right) in log-log scale. “40h” indicates 80 hyper-threads. 292
12.13Running time versus input size of random text for par-PLCP using 40 cores

(80 hyper-threads). 293

xxi

13.1
13.2

13.3

13.4

14.1
14.2
14.3

14.4

Example: SA, LCP, LPF, prevOcc and LZ for S = abbaabbbaaabab$. . . . 299

LPFtoLZ: Algorithm for generating the Lempel-Ziv factorization from the
longest previous factors. 300
Log-log plots of running times on a 40-core machine (with two-way hyper-
threading). “40h” corresponds to 80 hyper-threads. 305
Left: Running time versus input size of PLZ3 on 40 cores. Right: Break-
down of running time of PLZ3 on40cores. 306

level WT: Level-by-level parallel algorithm for wavelet tree construction. . 310

sortWT: Sorting-based parallel algorithm for wavelet tree construction. . . 312
Speedup of implementations relative to serial WT for HG18 (left) and rand-
216 (right). “40h” corresponds to 80 hyper-threads. 316
40-core (with hyper-threading) running times vs. o (left, z-axis in log-
scale) and vs. n (right) on random sequences (0 = 2%). 316

XXxii

List of Tables

1.1

1.2

3.1

3.2

33

Work and depth bounds for the (randomized) algorithms developed in this
thesis. For the graph problems, n = number of vertices and m = number of
edges. For the other problems, n is the input size. TBounds are for constant-
sized alphabets. o = alphabet size. The depth of some of these algorithms
can be improved with approximate compaction [174], as described in their
respective chapters. L e

Benchmarks in the Problem Based Benchmark Suite.

Techniques used in the algorithms for each of the benchmarks. D&C indi-
cates divide-and-conquer; Reduce, Scan and Filter are standard collection
operations; DR indicates deterministic reservations; and CL indicates the
use of a non-trivial commutative and linearizable operation other than reser-
vations: dynamic map (DM), disjoint sets (DS), or priority write (PW). sub

indicates that it is not used directly, but inside a subroutine, e.g., inside a sort.

Weighted average of running times (seconds) over various inputs on a
32-core machine with hyper-threading (32h). A “*” indicates an internally
nondeterministic implementation and a “**” indicates an externally (and
hence internally) nondeterministic implementation. All other implemen-
tations are internally deterministic. 'LS-PDFS does not generate the BFS
tree, while the programs in this chapter do. *Galois-ST generates only a
spanning tree, while the code in this chapter generates the spanning forest.
tGalois-Refine does not include the time for computing the triangle neigh-
bors and initial bad triangles at the beginning while the code in this chapter
does (takes 10-15% of the overall time).
Running times (seconds) of algorithms over various inputs on a 32-core ma-
chine (with hyper-threading). A “*” indicates an internally nondeterministic
implementation and a “**” indicates an externally (and hence internally)
nondeterministic implementation. Galois-Boruvka did not terminate in a
reasonable amount of time for the first twoinputs.

XXiil

42

49

4.1
4.2

4.3

4.4

5.1

5.2
53
54
55
5.6
5.7
5.8

6.1
6.2

6.3

7.1

7.2

8.1
8.2

Input Graphs for maximal independent set and maximal matching.
Running times (in seconds) of the various MIS algorithms on different
input graphs on a 32-core machine with hyper-threading using one thread
(1) and all threads (32h).
Running times (in seconds) of the various MM algorithms on different
input graphs on a 32-core machine with hyper-threading using one thread
(1) and all threads (32h).
Times (seconds) for n = 10° on 40 cores with hyper-threading. (1) indicates
1 thread, (40h) indicates 80 hyper-threads, and (seq) is the sequential
iterative implementation.

Times (seconds) for hash table operations with n = 108. (40h) indicates 40
cores with hyper-threading, and (1) indicates one thread.
Times (seconds) for 10® random writes (scatter)
Times (seconds) for remove duplicates
Times (seconds) for Delaunay refinement
Times (seconds) for suffix tree operations
Times (seconds) for edge contraction
Times (seconds) for breadth-firstsearch
Times (seconds) for spanning forest

Inputs for graph applications.,
Running times (seconds) of algorithms over various inputs. (40h) indicates
the running time on 40 cores with hyper-threading and (1) indicates the
running time on 1 thread. “40h” corresponds to 80 hyper-threads. (nd)
indicates a nondeterministic implementation.
Inputs for remove duplicates.

Graph inputs for Ligra experiments. *The original asymmetric graph has
6.6 x 10%edges.
Running times (in seconds) of algorithms over various inputs on a 40-
core machine (with hyper-threading). (SU) indicates the speedup of the
application (single-thread time divided by 40-core time).

Graph input sizes and storage sizes, including both vertices and edges. . .
Sequential (7) and parallel (7)) times (seconds) on a 40-core machine
with hyper-threading on different applications for the original Ligra (orig.),
Ligra+ using byte coding (byte), byte coding with run-length encoding
(byte-RLE), and nibble coding (nibble).

XX1V

93

99

8.3 Average log cost and average log gap cost of graphs using various reorder-
ing algorithms. The lowest average log gap cost per graph is shown in

9.1 Input graphs for connected components. 216

9.2 Times (seconds) for connected components labeling. (40h) indicates 40
cores with hyper-threading. *The timing for the sequential spanning forest
code from Patwary et al. [372] is used as it was faster than the PBBS
implementation. The sequential time is reported due to overheads of
parallel execution. L. 216

10.1 (Randomized) complexity bounds for triangle counting algorithms, where

n = number of vertices, m = number of edges, « is arboricity of the graph,

M = cache size, B = cache line size, and sort(N) = O((N/B)log,, 5(N/B)).225
10.2 Graph inputs for triangle computations. *Number of unique undirected edges.236

10.3 Triangle counting times (seconds) on the Intel machine: 7} is single-thread
time; Ty, the time on 40 cores with hyper-threading; and 7} /T, the
parallel speedup. 237

10.4 Triangle counting times (seconds) on the AMD machine: 7} is single-thread
time; Tg4 the time on 64 cores; and T} / T}, is the speedup. 238

10.5 L2 and L3 cache misses and work for intersection (ops) in TC-Merge and
TC-Hash. 239

10.6 Times (seconds) and accuracy for approximate triangle counting on the
Intel machine for p = 1/25 (top) and p = 1/10 (bottom). 7} indicates
single-thread time, and 7}, indicates the time on 40 cores with hyper-
threading. e 242

11.1 Times (seconds) for computing number of leaves per subtree on a 40 core
machine with hyper-threading. 7}, is the time for our parallel algorithm
on 40 cores (80 hyper-threads), 7} is the single-thread time, and SU is the
speedup computed as 77 /Tyon- « « = v« v v v e e 265

11.2 Comparison of running times (seconds) of Kurtz’s sequential algorithm
and our algorithms for suffix tree construction on different inputs on a
40 core machine with hyper-threading. T}, is the time using 40 cores
(80 hyper-threads) and 7 is the time using a single thread. SU is the
speedup computed as T} /Tygp,. 'Times for Algorithm 2 on HG18.fasta are
not reported since for this file, the algorithm uses more memory than the
machine has available. 0 0oL 267

XXV

11.3

11.4

12.1

12.2

12.3

13.1

14.1

Comparison of times (seconds) for searching (existential queries) 1,000,000
strings of lengths 1 to 50 on a 40 core machine with hyper-threading. 7)o,
is the time using 40 cores (80 hyper-threads) and 77 is the time using a
single thread. SU is the speedup computed as 77 /Tyop- - - « « o o« . . .
Space requirements for the different components of Algorithm 1a for suffix
tree CONStruCtion. v v v i e e e e e e e e e e e

Work and depth bounds for LCP algorithms. n = input size, [, =
maximum lcp value, l,,, = average lcp value, and K is an algorithm
parameter, which trades off between work and depth. The new algorithms
are showninboldfont. L.
Running times (seconds) of the LCP algorithms on different inputs on a
40-core machine with hyper-threading. The new algorithms are shown in
bold font. 77 is the time using a single thread, T}y, 1s the time using 40
cores (80 hyper-threads), and 7} /T4y, is the parallel speedup . The numbers
in bold indicate the fastest parallel LCP running time for an input among
all implementations. The entries labeled “— indicate that the experiment
did not finish running in a reasonable amount of time.
Top: Running times (seconds) of SA algorithms on a single thread (7})
and on 40 cores with hyper-threading (7)45). The numbers in bold indicate
the fastest parallel SA running time for an input. Bottom: Running times
(seconds) of the various SA+LCP combinations. The numbers in bold
indicate the fastest parallel SA+LCP running time for an input. Note: The
entries labeled 1 indicate that the implementation failed to run. (Refer to
Table 12.2 for input statistics.)

Comparison of running times (seconds) of parallel and sequential LZ-
factorization algorithms on different inputs on a 40-core machine with
two-way hyper-threading. oL

Comparison of running times (seconds) of wavelet tree construction algo-
rithms on a 40-core machine with hyper-threading. 7}, is the time using
40 cores (80 hyper-threads) and 77 is the time using a single thread.

XXV1

315

Chapter 1

Introduction

In today’s data-driven world with rapidly increasing data sizes, performance has become
more important than ever before. Reducing the running time of programs lowers overall
costs—for example, the rental costs of machines on Amazon EC2! is proportional to
the usage time. In addition, reducing the time-to-completion of tasks has been shown to
increase worker productivity as well as end-user experience. Alternatively, one can view
improving performance as enabling more computation to be performed in a given amount
of time, effectively increasing one’s computing budget.

Traditionally, high-performance computing solutions have been developed and used by
only a small community, as these solutions rely on expensive and specialized computing
environments. In recent years, in an effort to bring performance computing closer to the rest
of the community, large-scale computing solutions using distributed clusters of commodity
machines have emerged. However, within the past decade, commodity multicore machines
have become prevalent, and today these machines support up to terabytes of memory,> more
than enough for a majority of applications. This thesis contends that a single shared-memory
machine is sufficient for solving many problems in large-scale computing. The thesis shows
that large-scale shared-memory solutions can be simple, scalable to the largest data sets
considered by distributed-memory solutions for many problems, and significantly more
efficient on a per-core, per-dollar, and per-joule basis than existing distributed-memory
solutions. The goal of this thesis is to bring high-performance computing to the masses
via parallel programming frameworks, techniques, and algorithms for shared-memory
multicore machines.

Why have multicore machines become so widespread in just the past decade? Moore’s

'http://aws.amazon.com/ec2/pricing/
2For example, the Intel Sandy Bridge-based Dell PowerEdge R920 can be configured with up to 60 cores
and 6 Terabytes of memory.

http://aws.amazon.com/ec2/pricing/

law states that the transistor density doubles approximately every 18 months [337], and
along with Dennard scaling, which states that transistor power density is constant [132],
this has historically corresponded to increases in clock speeds of single core machines of
roughly 30% per year since the mid-1970’s [295]. However, since around the mid-2000’s,
Dennard scaling no longer continued to hold due to physical limitations of hardware, and
as a result hardware vendors have turned to developing processors with multiple cores
to deliver improved performance. These machines are referred to as shared-memory
multicore machines,’® as the different cores have access to a shared global memory. This
shift in processor technology has often been referred to as the “multicore revolution” [295].
Multicore technology has become ubiquitous today, with most personal computers, and even
most cellular phones containing multiple cores. Therefore, writing parallel programs to take
advantage of the multiple cores on a machine is crucial to obtaining scalable performance
and enabling large-scale data to be processed.

In addition to multicore technology, parallel computing can come in the form of
distributed systems as mentioned above, graphics processing units (GPUs), and field
programmable gate arrays (FPGAs). Unlike multicores, distributed systems can solve
problems that do not fit in the memory of a single machine. However, compared to
multicore shared-memory systems, communication and data replication in distributed
systems often leads to high additional overheads. Therefore, for problems that can fit in
memory, shared-memory multicores are generally significantly more efficient on a per-core,
per-dollar, and per-joule basis than distributed-memory systems. For example, this thesis
shows that the exact triangle count of the Yahoo! Web graph with over 6 billion edges can be
computed in under 1.5 minutes and a suffix tree can be constructed on the 3 gigabyte human
genome in under three minutes on a modern 40-core machine, much faster than previous
distributed-memory solutions (both in absolute performance and on a per-core basis) for
the same problem. The data sets in these examples are among the largest considered
in the literature for the corresponding problems, and easily fit on a multicore machine.
While GPUs and FPGAs may be more efficient for certain problems, multicore machines
are much more general-purpose, support larger memory sizes (useful for scaling to large
data), and are considerably easier to program.* This thesis argues that shared-memory
multicores offer a sweet spot between programmability and efficiency. There has been a
large body of work on developing efficient algorithms and frameworks for regular problems,
where the parallelism is relatively well-structured (e.g., problems in dense numerical linear
algebra and scientific simulations), while less work has been done for irregular problems,

3These are sometimes also referred to as manycore machines when the number of cores is large enough.

4The techniques developed in this thesis are also applicable to Intel’s new Xeon Phi coprocessors, which
support higher memory bandwidth than traditional multicore machines. However, currently their memory
sizes are not sufficient for some of the larger data sets studied in this thesis.

2

where the parallelism is much less well-structured and highly dependent on input data
(e.g., problems on graphs and strings). This thesis studies shared-memory programming
techniques, frameworks, and algorithms for a wide class of irregular problems and shows
that shared-memory parallelism can be simple, fast, and scalable.

The thesis adopts a three-pronged approach of studying shared-memory parallelism
from the perspective of programming techniques, algorithm design, and performance
analysis. Furthermore, significant attention will be paid to both the theoretical aspects as
well as the practical implications of the solutions developed. The work in this thesis builds
on ideas from previous research on shared-memory parallelism, but the comprehensive
approach used in the thesis enables simplicity, efficiency, and scalability, both in theory
and in practice, to be achieved for a variety of important problems for the first time. The
remainder of this chapter is organized as follows:

e Section 1.1 introduces nested fork-join parallelism, which is the type of parallelism
this thesis studies. This section then describes challenges in shared-memory program-
ming, including obtaining determinism, controlling shared access, and developing
high-level programming abstractions. The reader will obtain an overview of the
contributions of this thesis to addressing these challenges.

e Section 1.2 describes the Parallel Random Access Machine (PRAM) and work-depth
models for analyzing parallel algorithms. This is followed by some highlights of
the thesis’s contribution in bridging the gap between theory and practice in parallel
algorithms via designing theoretically-efficient algorithms that perform well on
modern multicore machines.

e Section 1.3 describes performance factors of multicore programs, including caching,
memory contention, scalability, and memory bandwidth. This section introduces
techniques developed in this thesis that take into account these factors to improve
performance.

e Section 1.4 introduces a benchmark suite developed in this thesis to comprehensively
evaluate solutions to given problems in terms of simplicity as well as theoretical and
practical efficiency.

e The thesis statement is presented in Section 1.5.

e The contributions of this thesis are summarized in Section 1.6.

1.1 Shared-Memory Programming

Languages. While shared-memory parallelism has many advantages, writing correct, effi-
cient, and scalable shared-memory multicore programs is notoriously difficult. Traditionally,
shared-memory parallel programs are written with explicit assignment of tasks to threads
(e.g., using pthreads). This low-level approach requires the programmer to carefully
consider the many possible interleavings of threads, and it is generally difficult to write a
correct program let alone an efficient and scalable one. For programs in which there is no
clear way to evenly split the work among threads, scheduling for good performance is a big
challenge. Such programs generally require extensive tuning to obtain good performance.

Another method for writing shared-memory multicore programs is to use simple con-
structs that indicate which parts of the program are safe to run in parallel, and allow
a run-time scheduler to assign work to threads and perform load balancing on-the-fly.
This approach is known as dynamic multithreading. Using languages such as Cilk [158],
OpenMP [360], Intel Threading Building Blocks [237], Habanero [76], and X10 [88] that
support dynamic multithreading, one can write clean programs while letting the run-time
scheduler perform the work allocation and load balancing. This approach frees the pro-
grammer from the low-level details of explicit thread management, leading to simpler code,
while delivering comparable or improved performance. With advances in scheduling, it is
now possible to write a wide class of parallel programs in this framework that are efficient,
both in theory and in practice [65], without having to tune the program to achieve balanced
workloads.

Nested Fork-Join Parallelism. All of the algorithms and techniques studied in this thesis
are designed for nested fork-join parallelism, in which procedures can be called recursively
in parallel via a fork construct, and synchronized via a join construct [49]. Nested parallel
computations can be defined inductively in terms of the composition of sequential and
parallel components, and modeled as a directed acyclic graph (computation DAG). Dynamic
multithreading languages such as Cilk support low-overhead primitives to implement fork-
join parallelism [294]. A broad class of parallel programs can be expressed with fork-join
parallelism, and the programming techniques and frameworks developed in this thesis aim
to enable programs written within this paradigm to be simpler and more efficient.

Determinism. While dynamic multithreading languages free the programmer from schedul-
ing and load balancing, there are still many challenges in writing correct and fast parallel
programs. One of the key challenges in parallel programming is dealing with nondeter-
minism arising from the parallel program and/or the parallel machine and its runtime
environment. Nondeterminism arises from race conditions in the program (concurrent ac-
cesses to the same data with at least one being a write), and makes it hard for programmers
to debug and reason about the correctness/performance of their code. One way to obtain

4

determinism in nested parallel programs is to not have any races. While this approach is
reasonable for certain problems, in general it can be overly restrictive as it is often useful
and efficient to have shared data. The goal in this thesis is to develop less restrictive and
more efficient ways to obtain determinism.

There has been significant previous work on obtaining determinism using various ap-
proaches, including using special-purpose hardware, modifying compilers, runtime systems
and/or operating systems, and designing new programming languages (see Chapter 3 for
references). In contrast to most previous work, this thesis designs building blocks and
programming techniques for simplifying deterministic parallel programming that can be
used with the existing computing stack, making determinism more accessible. In other
words, programmers do not have to install special programming languages, compilers,
runtime systems or operating systems, nor do they need access to special-purpose hardware.
This thesis advocates a form of determinism called internal determinism. Informally, given
an abstraction level, a program is internally deterministic if key intermediate steps of
the program are deterministic with respect to the abstraction level. Internal determinism
has many benefits, including leading to external determinism and implying a sequential
semantics, which in turn leads to many advantages such as ease of reasoning about code,
verifying correctness and debugging.

One of the main approaches to developing efficient deterministic parallel solutions in
this thesis is the deterministic reservations framework for parallelizing greedy sequential
algorithms (Chapter 3). The approach consists of two phases—in the reserve phase, the
iterates concurrently mark all of the data that they affect, and in the commit phase, iterates
whose mark is still written on all of its affected data proceed with the computation on the
data. Determining successful reservations is done in a deterministic manner, so that for a
given round the same iterates succeed/fail on every execution. Parallel algorithms written
in this framework return the same answer as their sequential counterparts, which gives
determinism, and allows the parallel and sequential algorithms to be interchanged when
necessary. The algorithms developed are also very simple, as the user only needs to specify
the reserve and commit functions called by each iterate in the two corresponding
phases, as well as corresponding data structures. For example, Figure 1.1 shows the C++
code for a spanning forest algorithm using deterministic reservations. disjointSet isa
deterministic union-find data structure developed in this thesis, and speculative_for
executes the deterministic reservations framework using the user-defined reserve and
commit functions (more details will be discussed in Chapter 3).

Part I of this thesis describes tools for writing internally deterministic parallel code [53,
423, 421], drawing heavily on using commutative operations. This part also describes
internally deterministic solutions to a broad set of benchmark problems using these tools,
and shows that these solutions are efficient (competitive with existing nondeterministic

5

struct STStep {
int u; int v;
edge *E; res xR; disjointSet F;
STStep (edgex _E, disjointSet _F, res* _R)
: E(_E), R(_R), F(_F) {}

bool reserve (int 1)

{
u = F.find(E[i].u); //find component
v = F.find(E[i].V); //find component
if (u == v) return O; //skip edge if endpoints belong to the same component
if (u > v) swap(u,v);
R[v] .reserve (1) ; //reserve larger component

return 1;}

bool commit (int 1) {
if (R[v].check(i)) { F.link(v, u); return 1;} //link if reservation was successful
else return 0; }
}i

void ST (res* R, edgex E, int m, int n, int psize) {
disjointSet F(n); //deterministic union-find data structure
speculative_for (STStep(E, F, R), 0, m, psize); //deterministic reservations driver

}

Figure 1.1: C++ code for spanning forest using deterministic reservations (with its operations reserve,
check, and speculative_for), where m is the number of edges and n is the number of vertices in the
graph.

solutions and achieve good parallel speedup), scalable to large inputs, natural to reason
about, not complicated to code [53], and also have good theoretical guarantees [55, 427].

Controlling Shared Access. Many parallel programs use locks to control access to shared
resources. The granularity of locking (e.g., locking an entire data structure versus locking a
small part of the data structure) affects the performance, scalability, and programmability
of a solution, with coarser-grained locking leading to simpler solutions and finer-grained
locking leading to higher efficiency and scalability. Programming with locks, however, has
disadvantages such as leading to deadlock or livelock, and writing efficient fine-grained
lock-based programs is often very tedious. There has been significant work on writing
parallel programs without locks by making use of atomic operations (e.g., compare-and-
swap and fetch-and-increment) supported in hardware [225]. Proper use of atomics can
lead to more efficient programs than fine-grained locking and has the advantage of having
progress guarantees. All of the programming techniques, algorithms, and data structures
developed in this thesis are lock-free, making use of atomic operations when necessary,
while also being simple. An extremely useful atomic primitive called priority update for
controlling shared access in deterministic programs [423] is introduced in Chapter 6, and is
used throughout the algorithms in this thesis.

Transactional memory (TM) is a technique to simplify shared-memory programming by
allowing users to specify regions of code that will execute atomically (see, e.g., [216] for an
overview). This frees the programmer from having to lock critical sections in code, leading

6

to simpler programs. There has been significant research in implementing transactional
memory both in software and in hardware. However, the techniques developed in this thesis
are unlikely to benefit from TM for two reasons: (1) the order in which transactions succeed
in TM is not deterministic, and (2) the algorithms in this thesis have no lock-based critical
sections—shared accesses are protected using only a single atomic instruction.

Programming Frameworks. Another effort in simplifying shared-memory programming
has been in developing higher-level frameworks and interfaces for writing parallel solutions.
These range from general parallel programming libraries such as the Parallel Boost Graph
Library [197], Multi-Core Standard Template Library (MCSTL) [432], SWARM [22],
Galois [379], and algorithms/containers provided as part of the Intel Thread Building
Blocks, to domain-specific frameworks/languages such as GraphLab [306, 186] and Green-
Marl [229]. The solutions all vary in programmability, efficiency, and coverage.

Graph processing frameworks have received significant recent interest due to their
importance in large-scale data analytics. Part II of this thesis introduces Ligra, the first high-
level shared-memory graph processing framework that targets graph traversal algorithms
(i.e., algorithms that visit a small subset of the graph in each iteration). The framework is
very simple and lightweight. In addition to a graph data structure, it requires only one data
structure, used for representing a subset of vertices (vertexSubset), and two functions, one
for mapping user-defined functions over vertices (VERTEXMAP) and the other for mapping
over edges (EDGEMAP). For example, Figure 1.2 shows a concise implementation of a
parallel breadth-first search (BFS) algorithm in Ligra. Each iteration of the BFS algorithm
applies an EDGEMAP to the current frontier of vertices (Line 10), in which the user-defined
UPDATE function is applied to all outgoing edges of the frontier vertices such that the
applying the COND function on the target of the edge returns true. Here, the COND function
simply checks if a vertex is unexplored, and if so, the UPDATE function atomically marks
the neighbor as visited with a compare-and-swap.

This thesis shows that Ligra can process the largest publicly-available real-world graphs
in shared-memory, is much faster than existing graph processing systems, and competitive
with highly-optimized code for the same applications. This work advocates performing
large-scale graph analytics on a single shared-memory server instead of using distributed
memory, and since the development of Ligra, there have been several other large-scale graph
processing frameworks [351, 399, 247, 471] developed for shared-memory multicores, as
well as a graph processing framework for GPUs sharing ideas with Ligra [457].

Concurrency. There has been a large body of research on concurrency in parallel pro-
gramming, which studies how different threads interact with each other. Dealing with
concurrency often requires considerable effort from the programmer because the behavior
of concurrent programs is almost always nondeterministic due to the nondeterministic
order in which the threads execute. The goal of this thesis is to hide the concurrency in

7

I: Parents={—1,...,—1} > initialized to all -1’s, indicating unexplored
2: procedure UPDATE(s, d)

3: return (CAS(&Parents[d], —1, s)) > atomically explore vertex
4: procedure COND(7)

5: return (Parents[i] == —1) > check if unexplored
6: procedure BFS(G, r) > G is the graph and r is the source vertex
7: Parents[r] = r

8: Frontier = {r} > vertexSubset initialized to contain only r
9: while (SI1ZE(Frontier) # 0) do
10: Frontier = EDGEMAP(G, Frontier, UPDATE, COND) > visit next frontier

Figure 1.2: Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap function
CAS(loc,0ldV,newV) atomically checks if the value at location loc is equal to oldV and if so it updates loc
with newV and returns frue. Otherwise it leaves loc unmodified and returns false.

parallel programs from the programmer by raising the level of abstraction and develop-
ing deterministic tools at this higher level of abstraction (e.g., deterministic reservations
described in Chapter 3 and priority updates described in Chapter 6) and data structures
(e.g., a deterministic phase-concurrent hash table described in Chapter 5) that the user can
simply call in their programs. By raising the level of abstraction, the implementations of
the tools can be nondeterministic (but hidden to the programmer), giving more flexibility
and efficiency. This approach leads to deterministic parallel solutions that are simple to
reason about, and that are also efficient at the same time.

Memory consistency issues often arise in concurrent programs as instructions can be
reordered on multicore processors. However, in all of the solutions developed in this thesis,
reads and writes to the same memory location are either separated by a synchronization
point or use a compare-and-swap, which implicitly issues a memory barrier to prevent
consistency issues. All of the solutions are sequentially consistent, which means that their
results are consistent with some valid sequential execution of the program [291].

Thesis Scope. In summary, the algorithms, frameworks, and techniques developed in this
thesis are for nested fork-join parallelism, and use only the fork and join primitives, parallel
for-loops (which can be implemented with fork and join), and atomic instructions supported
in hardware. This set of primitives was sufficient for all of the problems considered in this
thesis. Furthermore, designing algorithms within this paradigm allows for clean theoretical
analysis in the work-depth model, described in Section 1.2, and good performance in
practice using a work-stealing runtime scheduler. Solutions in this thesis do not use
techniques such as locks, transactional memory, pipelining, futures, or message passing,
as they were not necessary in developing simple and efficient solutions for the problems
considered.

1.2 Shared-Memory Algorithm Design

Parallel Random Access Machine. Algorithm designers have traditionally used the
Parallel Random Access Model (PRAM) to analyze parallel algorithms for shared memory.
In this model, every core has unit-time access to the shared global memory. An algorithm’s
complexity is characterized by its asymptotic time 7" and number of cores P, with the total
number of operations being the product of the two terms. They can also be analyzed in the
Work-Time Framework [243], in which the total number of operations W and number of
parallel time steps 7' is specified. PRAM algorithms are written using flat parallelism, in
which parallel operations over a single array is done synchronously at every time step. The
algorithm must specify how work can be efficiently allocated among the cores on each step
(known as the processor allocation problem). Using Brent’s scheduling principle [73, 243],
an algorithm with W work and 7" time can be run in W/ P + T time with P cores. Nested
fork-join parallel algorithms cannot be directly expressed in the PRAM, and the parallelism
in such algorithms must be flattened to work for the PRAM. Different classes of PRAM
models differ in whether concurrent reads or writes are allowed, how to resolve write
conflicts, and how to deal with contention (see, e.g., [243, 171]). There have also been
variants proposed that allow for asynchrony among the cores [168, 107, 356, 170], as well
as a related model that provides parallel primitives on vectors [48].

Work-Depth Model. The work-depth model is a model supporting nested fork-join par-
allelism.> As discussed in Section 1.1, a nested parallel computation can be modeled as
a computation DAG. An algorithm’s complexity is analyzed by computing its work W,
which is the sum of the costs of all the tasks in the computation DAG, and its depth D,
which is the maximum sum of costs of tasks on a directed path in the DAG (the longest
sequential dependence). The maximum possible amount of parallelism (i.e., the maximum
number of cores the computation can take advantage of) is W/D. The complexity of
PRAM algorithms translate to results in the work-depth model, however they can often be
simplified, as the processor allocation step is not necessary and divide-and-conquer can
be used. The work-depth model underlies the design of programming languages such as
NESL [49] and Cilk [158], and algorithms designed for the model can take advantage of
dynamic multithreading languages. For example, a computation with work 1" and depth
D using Cilk’s randomized work-stealing scheduler gives an expected running time of
W/P + O(D) when running on P cores [65]. The algorithms developed in this thesis are
analyzed in the work-depth model, but they can easily be translated into PRAM algorithms.

Traditional Design Goals. The main goal in developing efficient parallel algorithms is to
have an algorithm with low (polylogarithmic) depth and work matching that of the best

3>This contrasts with the Work-Time Framework, which is a framework for analyzing PRAM algorithms
and does not allow for nested parallelism.

sequential algorithm for the same problem (work-efficient). Being work-efficient is desirable
in that the parallel algorithm does not perform asymptotically more operations than the best
sequential algorithm for the same problem, and so is efficient even when there is not much
parallelism available. Having depth that is polylogarithmic (O(log® n) for an input size of n
and any constant c) is desirable in that it allows for ample parallelism.® Work-efficient and
polylogarithmic-depth algorithms have been developed for many fundamental problems
in computing. Many of these algorithms, however, are not practical as they involve many
sophisticated machinery and have large hidden constant factors in their complexity.

Bridging Theory and Practice. Because the goal of this thesis is to develop parallel
algorithms that are efficient and scalable on real shared-memory machines, the simplicity
and practicality of the algorithms are also important. Therefore, in addition to designing
work-efficient algorithms with low depth, this thesis also strives for simple solutions
that perform well in practice. Having algorithms that are efficient both in theory and in
practice allows for good performance across all possible inputs, scalability across a wide
range of core counts, and graceful scalability to larger data sets. There has traditionally
been a gap between theory and practice in parallel algorithms, with many theoretically-
efficient algorithms not being practical and many algorithms used in practice lacking strong
theoretical guarantees. This thesis seeks to bridge this gap by developing large-scale shared-
memory algorithms for various well-studied problems on that are simple, and efficient both
in theory and in practice.

Chapter 4 presents the theoretical guarantees and empirical performance of several
simple parallel algorithms developed using the technique of deterministic reservations. The
chapter shows that, perhaps surprisingly, several natural sequential iterative algorithms
inherently have high parallelism, both in theory and in practice, leading to very simple and
practical deterministic parallel implementations. Parts III and IV of this thesis introduce
the first parallel algorithms for a variety of problems on graphs and strings that are both
theoretically-efficient and practical. The theoretical bounds of the algorithms developed are
shown in Table 1.1, and an experimental analysis on modern multicore machines of each of
the algorithms is presented in their respective chapters of the thesis.

We will now briefly look at the performance of two of the algorithms developed in this
thesis—triangle counting and suffix tree construction. For triangle counting, this thesis
develops the first work-efficient, polylogarithmic-depth, and cache-friendly shared-memory
algorithm (Chapter 10), which outperforms existing shared-memory algorithms by a factor
of 2-5x on 40 cores with two-way hyper-threading and achieves a parallel speedup ranging
from 22x to 49x [428]. The speedup of the algorithm with respect to the fastest existing

®Polylogarithmic-depth algorithms are also desirable for computational complexity reasons, as they fall in

the class NC (Nick’s Class) containing problems that can be solved on circuits with polylogarithmic depth
and polynomial size [15].

10

Problem \ Work \ Depth
Maximal Independent Set (Chapter 4) O(m) O(log® n)
Maximal Matching (Chapter 4) O(m) O(log® m)
Random Permutation (Chapter 4) O(n) O(log® n)
List Contraction (Chapter 4) O(n) O(log? n)
Tree Contraction (Chapter 4) O(n) O(log® n)
Connected Components (Chapter 9) O(m) O(log® m
Triangle Counting (Chapter 10) O(m3/2) | O(log®?m)
Cartesian Tree/Suffix Tree (Chapter 11) O(n) O(log? n)
Longest Common Prefixes (Chapter 12) O(n) O(log® n)
Lempel-Ziv Factorization! (Chapter 13) O(n) O(log® n)
Wavelet Tree Construction® (Chapter 14) | O(nlogo) | O(lognlogo)

Table 1.1: Work and depth bounds for the (randomized) algorithms developed in this thesis. For the graph
problems, n = number of vertices and m = number of edges. For the other problems, n is the input size.
TBounds are for constant-sized alphabets. o = alphabet size. The depth of some of these algorithms can be
improved with approximate compaction [174], as described in their respective chapters.

shared-memory implementation on various graphs is shown in Figure 1.3(a). Additionally,
this algorithm has stronger theoretical bounds than previous shared-memory algorithms.
Compared to existing distributed-memory solutions, the algorithm is faster by at least
an order of magnitude on a per-core basis on the largest graphs studied in the literature.
For suffix tree construction, this thesis develops the first parallel algorithm with linear
work and polylogarithmic depth that is also practical (Chapter 11) [422]. On 40 cores
with two-way hyper-threading, the algorithm achieves a 5.4-50.4x speedup over the best
sequential algorithm [285] on a variety of inputs. The algorithm can construct in under
3 minutes the suffix tree for the 3 gigabyte human genome, one of the largest data sets
reported in the literature for suffix tree construction. Compared to the fastest numbers
reported in the literature for suffix tree construction on the human genome, the algorithm
is at least two times faster in practice, as shown in Figure 1.3(b), in addition to being
theoretically more efficient.

1.3 Shared-Memory Performance

Cache Performance. Due to the high latency to access main memory, modern multicore
machines have caches, which are smaller memories that support faster access times. Mul-
ticore machines can have multiple levels of caches, each with different sizes and access
times, and furthermore caches may either be shared among cores or private to a single core.
The caches thus form a hierarchy, and designing algorithms that make efficient use of the
cache hierarchy is crucial for performance. The algorithms studied in this thesis involve
many memory accesses, and thus their performance is largely determined by the number
of cache misses. While this thesis does not explicitly analyze the cache performance of

11

M Qur algorithm (shared-memory, 40 cores)

Speedup of our t"ia.ngke counting algorithm rel.ative Comin and Farreras (MPI, disk-based, 172 cores)*
to the fastest previous shared-memory algorithm B Mansour et al. (shared-memory, disk-based, 32 cores)*
B Mansour et al. (shared-memory, 40 cores)**
.§ > 800
o 4
a 3
2 3 S 600
] 2 g
a o
& 1 £ 400
; AN NN BN
/- 7 Ky [a) [a) —
%, %, O, 0, %, % 4 £ 200
%, 9y, O N, 70, K E
i v v e v /;F(/ 7 o«
2

0

(a) Speedup of our triangle counting algorithm rela- (b) Parallel running times of suffix tree construction
tive to the fastest shared-memory algorithm (varies on the 3 GB human genome. *Reported time from
between the implementation in GraphLab [186] and the literature [320, 108]. **Code from [320] run on
the one by Green et al. [192]) on various synthetic ~ our 40-core machine with a memory budget of 160
graphs from [424] and real-world graphs from [298, GB.

288] on 40 cores with two-way hyper-threading.

Figure 1.3: Experimental evaluation of triangle counting and suffix tree construction.

algorithms (with the exception of Chapter 10, which analyzes cache performance of triangle
computations), they are all implemented to be cache-friendly, maximizing spatial and
temporal locality when possible. Cache misses can also be factored into an algorithm’s
theoretical complexity (see, e.g., [157, 431]), although this is not the focus of this thesis.

Contention. On multicore machines, different private caches may reference the same
objects in memory, and so there is the challenge of making sure that the cores’ views of the
data are consistent. A cache coherence protocol dictates how this consistency is maintained
among the caches (see, e.g., [121] for more details). Cache coherence protocols have a
significant effect on the performance of shared memory accesses (see, e.g., the recent
study by David et al. [123]). In general, when updates are performed to a shared location
concurrently by many different cores, the memory contention causes performance to worsen
as the cache coherence protocol must perform significant work to ensure consistency among
different caches. To reduce contention in shared-memory programs, Chapter 6 of this thesis
develops and advocates the usage of the priority update operation, which performs an actual
update only when the value written has “higher priority” than the existing value, for a
large class of applications. The thesis studies its performance both experimentally and
theoretically under varying degrees of sharing, showing that it is much more efficient than
many commonly-used operations, and comparable in performance to other, less powerful
operations. Figure 1.4(a) shows an experiment measuring the performance of commonly

12

1000 ¢ : : : .
[fetch add (CAS) ——— 1

Ligra =220 Ligra+ s

Q
g
= [load CAS o =
|- - on <
§ 100: xadd - £ 5 08 L
3 L write ———- | £3 :
8 10 priority update g 22 o6l
g [read] 85’ 3
= 1 b AN test-and-set - - - - -] o8 04+
2 [- T =3}
£ F— =i F g
g o =2 02
S 01k @0 e on ©
g o1fp -] v:
o
L > 8, & & Q
0.01 L L L L L L L < (i}» (& 0000 O% 6004) 0//0)
1 10 100 1000 404 105 108 107 108 ’w,é/ O,)% U,
> %

Number of total locations

(a) Impact of sharing on a variety of operations.
Times are for 5 runs of 100 million operations to
varying number of memory locations on a 40-core

(b) Speedup of Ligra+ relative to Ligra on a variety
of graph applications on 40 cores with two-way
hyper-threading.

Intel Nehalem machine (log-log scale). Since the
number of operations is fixed, fewer locations im-
plies more operations sharing those locations.

Figure 1.4: (a) Experiments measuring contention of various parallel operations and (b) average performance
of Ligra+ relative to Ligra on 40 cores with two-way hyper-threading.

used operations on varying numbers of shared locations (fewer locations implies more
sharing). Observe that when there is a high degree of sharing (e.g., only 8 locations) the
priority update is competitive with reads and test-and-sets (less powerful operations), and
over two orders of magnitude faster than standard writes and other atomic operations. The
priority update operation also has the added benefit of giving determinism and guaranteeing
progress when used appropriately.

Scalability. The goal in parallel computing is to design solutions that scale well both with
an increasing number of cores and also with increasing input size. The shared-memory
solutions developed in this thesis are able to achieve both of these goals. They achieve
good parallel scalability on the multicore machines used in this thesis (limited by memory
bandwidth, as discussed next), and due to their low depth complexities are likely to scale
well on future multicore machines with many more cores. The solutions are also scalable to
large data sets—for example, the Ligra framework and the graph algorithms introduced in
Part I1I are able to process the largest publicly-available real-world graphs (with billions of
vertices and edges) in the order of seconds to minutes, and the string algorithms developed
in Part I'V scale to texts with billions of symbols, such as the human genome. This thesis
proposes the use of graph compression in Chapter 8 to reduce space usage and allow even
larger graphs to be processed in shared-memory.

Memory Bandwidth. Due to the irregular nature of the problems that studied in this thesis,
random access is often unavoidable, and the parallel scalability of solutions is often limited
by the bandwidth of the memory interconnect (using more cores increases the load on the

13

Basic Building Blocks Prefix Sum, Integer Sort, Comparison Sort, Remove Duplicates, Dictio-
nary, Sparse Matrix-Vector Multiply, Random Permutation, List Con-
traction, Tree Contraction

Graphs Breadth-First Search, Connected Components, Spanning Forest, Mini-
mum Spanning Forest, Maximal Independent Set, Maximal Matching,
Triangle Counting, Graph Separators

String/Text Processing Suffix Array, Burrows-Wheeler Transform, Longest Common Prefixes,
Sequence Alignment

Computational Geometry Quad/Oct Tree, Delaunay Triangulation, Delaunay Refinement, Convex

and Graphics Hull, k-Nearest Neighbors, N-Body, Ray Casting

Table 1.2: Benchmarks in the Problem Based Benchmark Suite.

memory interconnect, which often becomes saturated before all cores are fully utilized).
To alleviate this problem, this thesis uses graph compression techniques in Chapter 8 to
reduce memory usage, thus reducing the impact of the memory bandwidth bottleneck, and
as a result improving parallel performance and scalability. The thesis develops Ligra+ by
integrating the graph compression techniques into Ligra, and shows that reduced space
usage and improved parallel performance can be achieved at the same time [426]. The
graph sizes are reduced to about half of the original size on average, and performance
increases by about 14% on average on 40 cores. Figure 1.4(b) shows the average relative
performance of Ligra+ compared to Ligra on various graph applications using 40 cores.
Ligra+ is the first high-level graph processing system to support in-memory compression.

1.4 The Problem Based Benchmark Suite

To measure the programming simplicity, theoretical efficiency, and empirical performance
among different solutions for given problems, my co-authors and I have developed a
benchmark suite, called the Problem Based Benchmark Suite (PBBS) [424], containing
a set of well-known fundamental problems that is representative of a broad class of non-
numeric applications arising in computing. Table 1.2 shows the problems currently in the
benchmark suite (the definitions of these problems can be found in Section 2.6).” Unlike
most existing benchmarks, which are based on specific code, the PBBS benchmarks are
defined in terms of the problem specifications—a concrete description of valid inputs and
corresponding valid outputs, along with some specific inputs. Any algorithms, programming
methodologies, specific programming languages, or machines can be used to solve the
problems. The benchmark suite is designed to compare the benefits and shortcomings
of different algorithmic and programming approaches, and to serve as a dynamically
improving set of educational examples of how to parallelize applications. The PBBS has

"The table has been modified from [424] to reflect the problems currently in the benchmark suite.

14

enabled comparisons in terms of simplicity, and theoretical/practical performance among
various algorithms and programming techniques for the problems studied in this thesis.®
Many of the implementations developed in this thesis are part of the PBBS.

1.5 Thesis Statement

This thesis seeks to address the three types of challenges arising in multicore programs,
as outlined in Sections 1.1, 1.2, and 1.3, to make large-scale shared-memory parallelism
more accessible. Programming techniques, algorithm design, and performance analysis
are closely interrelated, and therefore effective solutions require attention to all three areas.
Throughout the development of this thesis, I have used my knowledge in each of these
areas to improve my understanding of issues arising in the other areas, and thus the thesis
contains contributions cutting across all three areas.
This thesis provides evidence to support the following statement:

Thesis statement: With appropriate programming techniques, frameworks, and algorithms,
shared-memory programs can be simple, fast, and scalable, both in theory and in practice.

I believe that the frameworks, tools, algorithms and ideas developed in this thesis
will enable more people to write efficient shared-memory parallel programs and take
advantage of the power of multicore machines to perform large-scale computations. The
code developed as part of this thesis is publicly available, and has already been used by
various researchers for benchmarking and developing their own shared-memory solutions.

1.6 Thesis Contributions

This thesis uses a three-pronged approach studying programming techniques, algorithm
design, and performance analysis for shared-memory multicores. These three areas are
highly interrelated, and so each of the chapters of this thesis will inevitably cut across the
different areas. An illustration placing each of the topics of this thesis into the closer two
among the three categories is shown in Figure 1.5. I have developed the results of this
thesis in collaboration with various co-authors: Guy Blelloch, Laxman Dhulipala, Jeremy
Fineman, Phillip Gibbons, Yan Gu, Aapo Kyrola, Harsha Simhadri, Kanat Tangwongsan,
and Fuyao Zhao. The following paragraphs describe the organization and contributions of
this thesis.

Chapter 2 introduces the necessary definitions and notation used throughout the thesis.
Then, Part I of the thesis describes frameworks and techniques for simplifying deterministic
parallel programming. The contributions of this part include:

8While the thesis focuses on multicore solutions, this is not a constraint of the PBBS.

15

Programming
Techniques

Framework for large-
scale graph processing
[Chapters 7—8]

Deterministic parallelism
[Chapters 3—6]

Algorithm
Design
Theory and practice of parallel algorithms
[Chapters 4, 9—14]

Figure 1.5: A pictorial organization of this thesis. The topics touch upon programming techniques, algorithm
design, and performance analysis, and are placed in the closer two among the three areas in the figure.
e A new approach for writing efficient deterministic parallel programs using building
blocks based on commutativity, and the design of several building blocks including
priority updates, dictionaries, and disjoint sets (Chapters 3, 5, and 6).

e A novel technique called deterministic reservations for taking sequential loops with
dependencies among iterations and parallelizing them deterministically (Chapters 3
and 4).

e A suite of deterministic parallel algorithms and data structures, including comparison
sorting, a hash-based dictionary, remove duplicates, random permutation, list contrac-
tion, tree contraction, breadth-first search, spanning forest, minimum spanning forest,
maximal independent set, maximal matching, suffix arrays, Delaunay triangulation,
Delaunay refinement, quad/oct trees, k-nearest neighbors, N-body, and triangle ray
intersect, along with experiments showing they are fast, scalable, and competitive
with the best nondeterministic code for the same problem (Chapters 3—-6).

e The first proofs that the lexicographically first maximal independent set and maximal
matching problems on random inputs have polylogarithmic depth, as well as efficient
linear-work parallel algorithms for the problems (Chapter 4).

e The first proofs that the standard sequential random permutation algorithm and natural
sequential iterative algorithms for list contraction and tree contraction on random in-

16

puts have logarithmic depth, as well as efficient linear-work parallel implementations
of the algorithms (Chapter 4).

e The first application of Nisan’s pseudorandom generator for space-bounded computa-
tions [354] to reducing the amount of randomness in low-depth parallel algorithms,
in particular reducing the amount of randomness in the random permutation and list
contraction algorithms from O(n logn) to a polylogarithmic number of random bits
(Chapter 4).

e The formalization of the concept of phase-concurrency in deterministic parallel
programs to simplify the design of data structures and improve their performance
(Chapter 5).

e A deterministic phase-concurrent hash table that is faster than all existing concurrent
hash tables, and has many applications in deterministic parallel programs, such as in
removing duplicates, Delaunay refinement, suffix trees, edge contraction, breadth-first
search, and spanning forest (Chapter 5).

e The generalization of special cases of the priority update operation in the literature,
an efficient contention-reducing implementation of the operation, as well as the first
theoretical analysis of its performance (Chapter 6).

e The first comprehensive experimental study of the priority update operation versus
other widely-used operations under varying degrees of sharing, demonstrating that it
is up to orders of magnitude faster on modern Intel and AMD multicore machines
(Chapter 6).

e Many applications of the priority update operation in deterministic parallel programs,
enabling good performance even under a high degree of write sharing (Chapter 6).

Part II of the thesis describes the Ligra/Ligra+ graph processing framework and includes
the following contributions:

e The Ligra shared-memory graph processing framework containing just two simple
functions—one for mapping computation over a subset of vertices and one for
mapping computation over a subset of edges—sufficient to concisely express a broad
class of graph traversal algorithms in shared-memory (Chapter 7).

e The generalization of the direction-optimizing idea used in breadth-first search [32]
to a large class of graph traversal algorithms to improve performance (Chapter 7).

17

e An experimental evaluation showing that the Ligra implementations are efficient
and scalable to the largest publicly-available real-world graphs in the literature, and
outperform existing systems by up to orders of magnitude (Chapter 7).

e The first high-level shared-memory graph processing system (Ligra) to process (in
under a minute) the largest publicly-available real-world graph, the Yahoo! Web
graph with over 6 billion edges, showing the benefits of shared-memory for large-
scale graph processing, and subsequently leading to several other shared-memory
graph processing systems [351, 399, 247, 471, 457] (Chapter 7).

e Ligra+, the first high-level shared-memory graph processing system to use graph
compression to reduce in-memory space usage, improving the scalability of shared-
memory graph processing (Chapter 8).

e An efficient implementation and experimental evaluation of Ligra+ showing that
graph compression both reduces the space usage and also improves the parallel
performance of graph traversal algorithms (Chapter 8).

Part III of the thesis describes practical large-scale parallel algorithms with strong
theoretical guarantees for solving problems on graphs. The contributions of this part
include:

e The first practical linear-work and polylogarithmic-depth parallel algorithm for graph
connectivity, a problem that has been open for over a decade (Chapter 9).

e Extensive empirical evaluation of the parallel connectivity algorithm, showing that it
is competitive with existing parallel implementations, none of which are linear-work
and polylogarithmic-depth (Chapter 9).

e The first work-efficient, polylogarithmic-depth, and cache-efficient shared-memory
algorithms for exact and approximate triangle computations that are both simple and
practical (Chapter 10).

e Comprehensive empirical evaluation of the running time and cache performance
of the triangle computation algorithms showing that they are faster than distributed
implementations by up to orders of magnitude and shared-memory implementations
by up to a factor of 5, and scale to the largest publicly-available real-world graphs
(Chapter 10).

Part IV of the thesis describes large-scale parallel string algorithms that have strong
theoretical guarantees and also perform well in practice, scaling to the largest data sets
considered in the literature for the problems. This part includes the following contributions:

18

e A new and simple linear-work, polylogarithmic-depth parallel algorithm for building
multiway Cartesian trees using divide-and-conquer, and various applications of
Cartesian trees (Chapter 11).

e The first practical linear-work and polylogarithmic-depth parallel algorithm for
suffix tree construction, developed using suffix arrays and multiway Cartesian trees
(Chapter 11).

o The state-of-the-art parallel suffix tree implementation for shared-memory, achieving
good parallel speedup (up to 24x on 40 cores) and outperforming existing parallel
implementations by at least a factor of 2 (Chapter 11).

e New theoretically-efficient and practical parallel algorithms for computing longest
common prefixes, a useful primitive in suffix array (and suffix tree) construction
(Chapter 12).

e The first comprehensive experimental evaluation of parallel longest common prefix
algorithms, showing that the new algorithms achieve good parallel speedup, are up
to 2.3x faster than the best existing algorithm on 40 cores, and lead to improved
performance for suffix array construction (Chapter 12).

e The first practical linear-work and polylogarithmic-depth parallel algorithm for
Lempel-Ziv factorization (based on suffix arrays), an essential operation in many
data compression methods (Chapter 13).

e An extensive experimental study of the Lempel-Ziv factorization algorithm showing
that it achieves good parallel speedups (up to 23x on 40 cores) and outperforms the
sequential algorithm with just 2 or more threads (Chapter 13).

e The first polylogarithmic-depth parallel algorithms for constructing wavelet trees, an
essential component to many compressed data structures (Chapter 14).

e A comprehensive empirical evaluation of the wavelet tree algorithms showing that
they achieve good speedup over the sequential algorithm (up to 27x on 40 cores) and
are up to 5.6 times faster than existing parallel implementations (Chapter 14).

Finally, Chapter 15 concludes the thesis and describes directions for future work.

19

Chapter 2

Preliminaries and Notation

This chapter presents the definitions, models, and notation that will be used throughout the
thesis. Individual chapters have additional definitions and notation that are specific to the
chapter.

2.1 Parallel Programming Model

All of the algorithms, frameworks, and tools in this thesis can be implemented using nested
Jork-join parallelism, in which a fork specifies procedures that can be called in parallel,
and ajoin specifies a synchronization point among procedures. The fork and join constructs
can be nested, making this type of parallelism particularly useful for divide-and-conquer
algorithms.

More formally, nested parallel computations can be defined inductively in terms of
the composition of sequential and parallel components. At the base case, a strand is a
sequential computation. A task is then a sequential composition of strands and parallel
blocks, where a parallel block is a parallel composition of tasks starting with a fork and
ending with a join.

A nested parallel computation can be modeled (a posteriori) as a series-parallel com-
putation DAG over the operations of the computation: the tasks in a parallel block are
composed in parallel, and the operations within a strand as well as the strands and parallel
blocks of a task are composed in series in the order they are executed. All operations are
assumed to take a state and return a value and a new state (any arguments are part of the
operation). Vertices in the computation DAG are labeled by their associated operation
(including arguments, but not return values or states). An operation (vertex) u precedes
v if there is a directed path from u to v in the DAG. If there is no directed path in either
direction between u and v, then v and v are logically parallel, meaning that they may be
executed in parallel.

20

The support of nested parallelism dates back at least to Dijkstra’s parbegin-parend
construct. Many parallel languages support nested parallelism including NESL [49],
Cilk [158], the Java fork-join framework [244], OpenMP [360], X10 [88], Habanero [76],
Intel Threading Building Blocks [237], and the Task Parallel Library [441]. Although not
appropriate for certain types of parallelism, e.g., pipeline parallelism, nested parallelism has
many theoretical and practical advantages over more unstructured forms of parallelism, in-
cluding simple schedulers for dynamically allocating tasks to cores, compositional analysis
of work and depth, and good space and cache behavior (e.g., [2, 64, 50, 59]).

Programs in this thesis are written with the Cilk programming language, which is
a dynamic multithreading language for shared memory that supports nested fork-join
parallelism [64]. Simple constructs are used to indicate which parts of the program are
safe to run in parallel, and a run-time scheduler assigns work to threads and performs
load-balancing. The Cilk constructs used are cilk_for, used to indicate that iterates of a
for-loop may execute in parallel, ci1lk_spawn, used to indicate a procedure may be called
in parallel (fork), and cilk_sync, used to indicate that the current procedure must wait
for all procedures that it spawned to complete before proceeding (join). A cilk_for loop
is implemented using cilk_spawn and cilk_sync. There is an implicit cilk_sync
at the end of each procedure.

2.2 Algorithmic Complexity Model

This thesis uses the work-depth model to analyze the complexity of algorithms. As dis-
cussed in Section 2.1, a computation can be modeled using a computation DAG. The thesis
assumes unbounded in-degree and out-degree of the vertices in the DAG, although other
variants of the model assume bounded degree.! The work TV of an algorithm is equal to the
sum of the costs of all tasks in the computation DAG, which is equivalent to the number of
operations the algorithm performs. The depth D of an algorithm is equal to the maximum
sum of costs of tasks over all directed paths in the computation DAG, which is equivalent
to the number of time steps the algorithm requires if an infinite number of cores were avail-
able. This model makes it particularly convenient for analyzing nested parallel algorithms.
Using the randomized work-stealing scheduler of Cilk gives an expected running time of
W/P 4 O(D) when using P cores [65]. Note that for sequential algorithms, the work
and the depth terms are equivalent. A parallel algorithm is defined to be work-efficient
if its work is asymptotically equal to the work of the fastest sequential algorithm for the
same problem. The goal of this thesis is to design work-efficient parallel algorithms with
polylogarithmic depth.

The traditional parallel random access machine (PRAM) model [243] for analyzing par-

IThis increases the overall depth by at most a logarithmic factor.

21

allel algorithms differs from the work-depth model in that nested parallelism is not allowed
(parallelism must be flattened), and on each time step the algorithm must specify how work
is allocated to the cores (known as the processor allocation problem). Algorithms are ana-
lyzed using the Work-Time Framework [243], where work is the same as in the work-depth
model and time is equivalent to depth in the work-depth model. For an algorithm with work
W and time 7, Brent’s scheduling theorem [73, 243] bounds the running time by W/T + P
using a greedy scheduler with P cores. Most of the algorithms in this thesis can be easily
translated into PRAM algorithms with the same work and depth (time) complexities as
they use parallel primitives that have equivalent complexities (see Section 2.3) in both the
work-depth and PRAM models, parallelism can be flattened when necessary, and there
is enough parallel slackness in each iteration to perform processor allocation efficiently.
There are four versions of the PRAM that are used in the thesis: (1) the exclusive-read
exclusive-write (EREW) model, which does not allow for concurrent reads or writes; (2)
the concurrent-read exclusive-write (CREW) model, which allows for concurrent reads
but not concurrent writes; (3) the concurrent-read concurrent-write (CRCW) model, which
allows for both concurrent reads and writes; and (4) the scan PRAM [47], a version of the
EREW PRAM in which scan (prefix sum) operations take unit depth. For the CRCW model,
concurrent writes to a shared location results in either an arbitrary write being recorded
(arbitrary CRCW), or the minimum (or maximum) value being recorded (priority CRCW).

Randomization. Many of the algorithms make use of randomization. For randomized
algorithms, the thesis states that a result holds in expectation if it holds on average over all
possible random choices made by the algorithm (the input can be adversarially chosen).
Similarly, a result holds with high probability (w.h.p.) for an input of size n if it holds with
probability at least 1 — 1/n¢, for any constant ¢ > 0, over all possible random choices made
by the algorithm.

2.3 Parallel Primitives

The thesis makes use of the basic parallel primitives, prefix sum (scan), reduce, filter,
and merge [62]. Prefix sum (scan) takes a sequence A of length n, an associative binary
operator @, and an identity element L such that L & a = a for any a, and returns the
sequence (L, L & A[0], L® A[0]® A[1],..., LB A0]B A[l]®...® A[n—2]) as well as
the resulting “sum” L @& A[0] & A[1] & ... ® A[n — 1]. Reduce takes the same arguments
as prefix sum, but only returns the resulting sum L & A[0] & A[1] & ... ® A[n — 1]. Filter
takes a sequence A of length n, and a predicate function f, and returns a sequence A’ of
length n’ containing the elements in a € A such that f(a) returns true, in the same order
that they appear in A. Filter can be implemented using prefix sum, and both require O(n)

22

work and O(log n) depth [62].2 Merge takes sorted sequences A and B of lengths n and m,
respectively, and returns a sorted sequence containing the union of the elements in A and
B. Tt can be implemented in O(n + m) work and O(log(n + m)) depth [62]. Merge can
be modified to return the intersection of the elements of two sorted sequences in the same
complexity bounds. The above primitives all run on the EREW PRAM in the stated bounds.
Cilk implementations of the primitives are available in the Problem Based Benchmark
Suite.

A compare-and-swap (CAS) is an atomic instruction that takes three arguments—a
memory location (loc), an old value (0ldV) and a new value (newV); if the value stored
at loc is equal to oldV it atomically stores newV at loc and returns true, and otherwise it
does not modify loc and returns false. CAS is supported in hardware by modern multicore
machines. The implementations in this thesis use CAS’s both directly and as a subroutine
to other atomic functions. The notation &z is used to refer to the memory location of
variable x.

2.4 Graphs

A directed unweighted graph is denoted by G = (V, E'), where V' is the set of vertices and
E 1s the set of (directed) edges in the graph. The thesis uses the convention of denoting
the number of vertices in a graph by n = |V'| and number of edges in a graph by m = |E)|.
The vertices are assumed to be indexed from O to n — 1. A weighted graph is denoted
by G = (V, E,w), where w is a function which maps an edge to a real value, and each
edge e € E is associated with the weight w(e). N (v) denotes the set of out-neighbors
of vertex v in G and d* (v) denotes the out-degree of v in G. Similarly, N~ (v) and d~ (v)
denote the in-neighbors and in-degree of v in GG. For an undirected graph, d(v) is used to
denote the degree of vertex v. The thesis uses /N (V') to denote the set of all neighbors of
vertices in V, and N (E) to denote the neighboring edges of E (ones that share a vertex).
N(v) is used as a shorthand for N ({v}) when v is a single vertex. G[U] is used to denote
the vertex-induced subgraph of G by vertex set U, i.e., G[U] contains all vertices in U
along with edges of GG with both endpoints in U. G[E'] is used to denote the edge-induced
subgraph of G, i.e., G[E'] contains all edges £’ along with the incident vertices of G.

The adjacency list format for graph representation stores for each vertex an array of
indices of other vertices that it has an edge to as well as the vertex’s degree. The arrays
are assumed to be stored consecutively in memory. This representation requires O(n + m)
space.

2This thesis uses log z to be the base 2 logarithm of x, unless stated otherwise.

23

2.5 Strings

A string is denoted by S, its length by n, the ’th character (using zero-based indexing) of
a string S by S[i], and the sub-string starting at the i’th character and ending at the j’th
character of S by S[i, ..., j]. The alphabet of S is denoted by ¥ = [0, ..., 0 — 1], where
o = |X] is the alphabet size. The thesis assumes that a string ends with a special character
$, lexicographically smaller than all characters in 3. suf; of a string S is defined to be the
suffix of S starting at position ¢ (i.e., S[i, ..., n — 1]).

2.6 Problem Definitions

This section defines the various problems studied in the thesis.
2.6.1 Sequences

Comparison Sort. For a sequence S and comparison function < defining a total order on
elements of S, return the values of S sorted by <.

Remove Duplicates. For a sequence of elements, a comparison function f, and a hash
function / that maps elements to integers, return a sequence in which any duplicates
(equal-valued elements) are removed.

Random permutation. For a sequence S, return a random ordering of the elements of S
such that each of the |S|! possible orderings is equally likely.

2.6.2 Lists, Trees, and Graphs

List Contraction. For an input of a collection of linked lists represented by an array L
(L[7] stores the predecessor and successor of node 7), contract each list into a single node,
possibly combining values on the nodes during contraction.

List Ranking. For an input of a collection of linked lists represented by an array L (L]
stores the predecessor and successor of node 7), compute the distance from each node to
the end of its linked list.

Tree Contraction. For a tree represented by an array T (T'[i] stores pointers to the parent
and the two children of node 7), contract the tree down to the root node, possibly combining
values on the nodes during contraction.

Breadth First Search. For an undirected graph G and a source vertex r, return a breadth-
first-search (BFS) tree, rooted at r, containing all of the vertices reachable from 7 in

G.

Connected Components. For an undirected graph G, return a labeling L such that for two
vertices v and v, L(u) = L(v) if u and v belong in the same connected component (i.e.,
there exists a path between u and v), and L(u) # L(v) otherwise.

24

i | S[i] | SA[{] | LCP[i] | suf;

0 b 6 0 $

1| a 5 0 a$

2| n 3 1 ana$

3| a 1 3 anana$
4| n 0 0 banana$
51 a 4 0 na$

6| $ 2 2 nana$

Figure 2.1: Example: SA and LCP arrays for S = banana$.

Spanning Forest. For an undirected graph G = (V, E), return edges F' C F, such that for
each connected component C; = (V;, E;) in G, a spanning tree T; (|T;| = |V;| — 1) of C; is
contained in F'. Furthermore, |F| = Y. o(|Vi] = 1).

Minimum Spanning Forest. For an undirected graph G = (V, E') with weights w : £ —
R, return a spanning forest of minimum total weight.

Maximal Independent Set. For an undirected graph G = (V, E'), return U C V such that
no vertices in U are neighbors and all vertices in V' \ U have at least one neighbor in U.

Maximal Matching. For an undirected graph G = (V, E), return £’ C FE such that no
edges in E’ share a vertex and each edge in £\ E’ shares at least a vertex with an edge in
E'.

Single-source Shortest Paths. For a weighted graph G = (V, E, w) and a source vertex
r, compute either the shortest path distance from r to each vertex in V' (if a vertex is
unreachable from r, then the distance returned is o0), or report the existence of a negative
cycle.

2.6.3 Strings

Suffix Array and Longest Common Prefixes. The suffix array [319] SA of S is a permu-
tation of the integers [0, ..., n — 1] such that sufsajg < sufsap) < ... < sufsap,—1], where
“<” means lexicographically smaller. The longest common prefix array is an array LCP
of length n such that LCP[0] = 0 and for i > 0, LCP[i] contains the length of the longest
common prefix (Icp) between sufsa;—) and sufsap;. As an example, Figure 2.1 shows the
SA and LCP arrays for the string S = banana$.

Trie. For a set of strings S, return a tree where (1) each edge stores a character, (2) the
concatenation of the characters on any path from the root to a node in the tree is a prefix of
at least one string in S, and (3) every string in S corresponds to concatenation of labels for
a path from the root to a leaf.

Patricia Tree. For a set of strings S, return a modified (compacted) trie in which (1) edges
can be labeled with a sequence of characters instead of a single character, (2) no node has

25

a single child, and (3) every string in S corresponds to concatenation of labels for a path
from the root to a leaf [340].

Suffix Tree. For a string S, return the patricia tree storing the n suffixes of S [460].
2.6.4 Geometry

Triangle Ray Intersect. For a set of triangles 7" and rays I? in three dimensions, return the
first triangle each ray intersects, if any.

Delaunay Triangulation. For a set of n points in two dimensions, return a triangulation
such that no point is contained in the circumcircle of any triangle in the triangulation [127].

Delaunay Refinement. For a Delaunay Triangulation on a set of n points, and an angle «,
add new points such that in the resulting Delaunay Triangulation, no triangle has an angle
less than a.

N-body. For a set of n point sources in three dimensions, each point p with coordinate
vector p'and a mass m,, return the force induced on each one by the others based on the

Coulomb force F, = D aePazy Mamp(d — D)/17 — PIP°.

K-Nearest Neighbors. For n points in two or three dimensions, and a parameter k, return
for each point its k£ nearest neighbors (Euclidean distance) among all the other points.

2.7 Experimental Environment

This section summarizes the shared-memory multicore machines and compilers used for
experimental evaluation throughout this thesis. The experimental setup varies among differ-
ent chapters as the development of this thesis took several years, and different machines
and compilers were available at different points in time. The specifications of the three
machines and the compilers that were used are given below.

32-core Intel machine. A 32-core (with two-way hyper-threading) Dell PowerEdge 910
with 4 x 2.26GHz Intel 8-core X7560 Nehalem Processors. Each processor has a 1066MHz
bus and a 24MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache,
and a 32KB L1 instruction cache. The processors are connected via an Intel QuickPath
Interconnect (QPI) with a theoretical peak bandwidth of 25.6GB/second. The machine has
a total of 64GB of main memory.

40-core Intel machine. A 40-core (with two-way hyper-threading) machine with 4 x
2.4GHz Intel 10-core E7-8870 Xeon processors. Each processor has a 1066MHz bus and
30MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache, and a 32KB L1
instruction cache. This machine also uses the Intel QPI and has a total of 256GB of main
memory.

26

64-core AMD machine. A 64-core AMD machine with 4 x 2.4GHz 16-core 6278 Opteron
processors. Each processor has a 1600MHz bus and 16MB L3 cache, 8 x2MB shared 1.2
caches, 8 x64KB shared L1 instruction caches, and 16 x 16KB private L1 data caches. The
interconnect uses HyperTransport with a theoretical peak bandwidth of 25.6GB/second.
There is a total of 188GB of main memory on the machine.

Compilers. The three compilers used to compile parallel code are the ci1lk++ compiler
(build 8503) with the —02 flag, icpc compiler (version 12.1.0) with the —03 flag, and
the g++ (version 4.8.0, which supports Cilk) compiler with the —~02 flag. The sequential
programs were compiled using g++ with the —02 flag. The optimization flags were chosen
to give the best performance overall.

27

Part 1

Programming Techniques for
Deterministic Parallelism

28

Introduction

This part of the thesis introduces techniques and primitives for deterministic parallel pro-
gramming, as well as deterministic algorithms and data structures. Chapter 3 studies a form
of determinism, known as internal determinism, which requires the result of the computa-
tion as well as certain intermediate states to be deterministic. The chapter demonstrates
that for a wide body of problems, there exist efficient internally deterministic algorithms,
and moreover that these algorithms are natural to reason about and not complicated to
code. Programming at a higher level of abstraction using commutative building blocks,
and the technique of deterministic reservations for parallelizing sequential loops with
dependencies among iterations are introduced as useful tools for deterministic parallel
programming. Chapter 4 studies the theoretical properties of natural sequential algorithms
for maximal independent set, maximal matching, random permutation, list contraction,
and tree contraction, and shows that they actually exhibit high parallelism. The chapter
designs simple parallel algorithms for these problems that obey the same dependencies as
the corresponding sequential algorithms, and hence are deterministic. Experiments show
that the implementations perform well in practice, outperforming the corresponding sequen-
tial algorithms with just a modest number of cores. Chapter 5 describes a deterministic
phase-concurrent hash table in which operations of the same type are allowed to proceed
concurrently, but operations of different types are not. Phase-concurrency guarantees that
all concurrent operations commute, guaranteeing that the state of the table at any quiescent
point is independent of the ordering of operations (and is hence deterministic). Furthermore,
restricting the hash table to be phase-concurrent enables it to support operations more
efficiently than previous concurrent hash tables. Chapter 6 presents a detailed study of
the priority update operation, a useful primitive for deterministic parallel programming.
The chapter shows both experimentally and theoretically that if implemented appropriately,
priority updates greatly reduce memory contention over standard writes or other atomic
operations when locations have a high degree of sharing. Various applications of the priority
update in deterministic parallel programs are presented.

The results in this part of the thesis have appeared in the following publications:

29

Guy Blelloch, Jeremy Fineman, Phillip Gibbons and Julian Shun. Internally Deter-
ministic Parallel Algorithms Can Be Fast, Proceedings of the ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 181-192, 2012.

Guy Blelloch, Jeremy Fineman and Julian Shun. Greedy Sequential Maximal In-
dependent Set and Matching are Parallel on Average, Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 308-317,
2012.

Julian Shun, Yan Gu, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Sequential
Random Permutation, List Contraction and Tree Contraction are Highly Parallel.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
431-448, 2015.

Julian Shun and Guy Blelloch. Phase-concurrent Hash Tables for Determinism.

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 96-107, 2014.

Julian Shun, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Reducing Con-
tention Through Priority Updates. Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 152-163, 2013.

30

Chapter 3

Internally Deterministic Parallelism:
Techniques and Algorithms

3.1 Introduction

One of the key challenges of parallel programming is dealing with nondeterminism. For
many computational problems, there is no inherent nondeterminism in the problem state-
ment, and indeed a serial program would be deterministic—the nondeterminism arises
solely due to the parallel program and/or due to the parallel machine and its runtime
environment. The challenges of nondeterminism have been recognized and studied for
decades [371, 210, 168, 436]. Steele’s 1990 paper, for example, seeks “to prevent the
behavior of the program from depending on any accidents of execution order that can
arise from the indeterminacy” of asynchronous programs [436]. More recently, there has
been a surge of advocacy for and research in determinism, seeking to remove sources of
nondeterminism via specially-designed hardware mechanisms [134, 135, 230], runtime
systems and compilers [35, 37, 359, 469, 120, 119, 303, 118, 352, 247, 308], operating
systems [36, 235], and programming languages [66, 322, 284, 283].

While there seems to be a growing consensus that determinism is important, there is
disagreement as to what degree of determinism is desired (worth paying for). Popular
options include:

e Data-race free [4, 165], which eliminate a particularly problematic type of non-
determinism: the data race. Synchronization constructs such as locks or atomic
transactions protect ordinary accesses to shared data, but nondeterminism among
such constructs (e.g., the order of lock acquires) can lead to considerable nondeter-
minism in the execution.

31

e Determinate (or external determinism), which requires that the program always
produces the same output when run on the same input. Program executions for a
given input may vary widely, as long as the program “converges” to the same output
each time.

e [nternal determinism, in which key aspects of intermediate steps of the program are
also deterministic, as discussed in this chapter.

e Functional determinism, where the absence of side-effects in purely functional
languages make all components independent and safe to run in parallel.

e Synchronous parallelism, where parallelism proceeds in lock step (e.g., SIMD-style)
and each step has a deterministic outcome.

There are trade-offs among these options, with stronger forms of determinism often viewed
as better for reasoning and debugging but worse for performance and perhaps programmabil-
ity. Making the proper choice for an application requires understanding what the trade-offs
are. In particular, is there a “sweet spot” for determinism, which provides a particularly
useful combination of debuggability, performance, and programmability ?

This chapter advocates a particular form of internal determinism as providing such a
sweet spot for nested-parallel computations in which there is no inherent nondeterminism
in the problem statement. As discussed in Chapter 2, an execution of a nested-parallel
program defines a computation DAG with vertices representing computations and edges
representing control dependencies among them. This DAG when annotated with the
operations performed at each vertex (including arguments and return values, if any) is
referred to as the trace. Informally, a program/algorithm is internally deterministic if for
any input there is a unique trace. This definition depends on the level of abstraction of
the operations in the trace. At the most primitive level the operations could represent
individual machine instructions, but more generally, and as used in this chapter, it is any
abstraction level at which the implementation is hidden from the programmer. Note that
internal determinism does not imply a fixed schedule since any schedule that is consistent
with the DAG is valid.

Internal determinism has many benefits. In addition to leading to external determin-
ism [371] it implies a sequential semantics—i.e., considering any sequential traversal of
the dependence DAG is sufficient for analyzing the correctness of the code. This in turn
leads to many advantages including ease of reasoning about the code, ease of verifying
correctness, ease of debugging, ease of defining invariants, ease of defining good cov-
erage for testing, and ease of formally, informally and experimentally reasoning about
performance [134, 135, 230, 37, 359, 469, 36, 66, 35]. Two primary concerns for internal
determinism, however, are that it may restrict programmers to a style that (i) is complicated

32

to program, unnatural, or too special-purpose and (ii) leads to slower, less scalable programs
than less restrictive forms of determinism. Indeed, prior work advocating less restrictive
forms of determinism has cited these concerns, particularly the latter concern [219].

This chapter seeks to address these two concerns via a study of a set of the benchmark
problems in the Problem Based Benchmark Suite (refer to Section 1.4 and Figure 1.2),
which cover a reasonably broad set of applications including problems involving sorting,
graphs, geometry, graphics, and string processing. The main contribution of this chapter is
demonstrating that for this wide body of problems, there exist fast and scalable internally
deterministic algorithms, and moreover that these algorithms are natural to reason about
and not complicated to code.

This thesis’s approach for implementing internal determinism for these benchmarks is to
use nested parallel programs in which concurrent operations on shared state are required to
commute [459, 436] in their semantics and to be linearizable [227] in their implementation.
Many of the algorithms implemented use standard algorithmic techniques based on nested
data parallelism where the only shared state across concurrent operations is read-only (e.g.,
divide-and-conquer, map, reduce, and scan) [50]. However, a key aspect to several of the
algorithms is the use of non-trivial commutative operations on shared state. The notion of
commutativity has a long history, dating back at least to its use in analyzing when database
transactions can safely overlap in time [459]. A seminal paper by Steele [436] discusses
commutativity in the context of deterministic nested-parallel programs, showing that when
applied to reads and writes on memory locations, commutativity of concurrent operations
is sufficient to guarantee determinism.

Although there has been significant work on commutativity, there has been little work
on the efficacy or efficiency of using non-trivial commutativity in the design of determin-
istic parallel algorithms. Much of the prior work on commutativity focuses on enforcing
commutativity assuming the program was already written within the paradigm (e.g., using
type systems [67]), automatically parallelizing sequential programs based on the commu-
tativity of operations [396, 437, 383], or using commutativity to relax the constraints in
transactional systems [224, 280], an approach that does not guarantee determinism. In
contrast, this chapter identifies useful applications of non-trivial commutativity that can be
used in the design of internally deterministic algorithms.

This chapter describes, for example, an approach called deterministic reservations for
parallelizing certain greedy algorithms. In this approach, the user implements a loop with
potential loop carried dependencies by splitting each iteration into reserve and commit
phases. The loop is then processed in rounds in which each round takes a prefix of the
unprocessed iterates applying the reserve phase in parallel and then the commit phase in
parallel. Some iterates can fail during the commit due to conflicts with earlier iterates and
need to be retried in the next round, but as long as the operations commute within the

33

reserve and commit phases and the prefix size is selected deterministically, the computation
is internally deterministic (for a given round, the same iterates always succeed/fail on every
execution).

This chapter describes algorithms for the benchmark problems using these approaches
and presents performance results for Cilk implementations of these algorithms on a 32-core
machine. Perhaps surprisingly, for all problems, the internally deterministic implementa-
tions achieve good speedup and good performance even relative to prior nondeterministic
and externally deterministic solutions, implying that the performance penalty of internal
determinism is quite low. The experiments show parallel speedups of up to 31.6 on 32 cores
with two-way hyper-threading (for sorting), and almost all of the speedups are above 16.
Compared to good sequential implementations of the problems, the internally deterministic
parallel implementations range from being slightly faster on one core (sorting) to about
a factor of 2 slower (spanning forest). All of the internally deterministic algorithms are
quite concise (20-500 lines of code), and are “natural” to reason about (understandable, not
complicated, not special purpose). This combination of performance and understandability
provides significant evidence that internal determinism is a sweet spot for a broad range of
computational problems.

3.2 Programming Model

This chapter focuses on achieving internally deterministic behavior in nested-parallel
programs through “commutative” and “linearizable” operations. Each of these terms limits
the programs permitted by the programming model, but as Section 3.4 exhibits, the model
remains expressive. This section defines each of these terms.

3.2.1 Nested parallelism

As discussed in Chapter 2, nested-parallel computations achieve parallelism through the
nested instantiation of fork-join constructs, such as parallel loops, parallel map, parbegin/-
parend, parallel regions, and spawn/sync. Figure 3.1 shows an example of a nested-parallel
program using a syntax similar to Dijkstra’s parbegin [137]. Languages with nested
parallelism rely on runtime schedulers to assign sub-computations to cores. Whereas these
runtime schedulers are inherently nondeterministic to handle load balancing and changes in
available resources, the goal of this chapter is to guarantee that the program nevertheless
behaves deterministically.

3.2.2 Internal determinism

This chapter adopts a strong notion of determinism here, often called internal determin-
ism [144, 348]. Not only must the output of the program be deterministic, but all interme-
diate values returned from operations must also be deterministic. Note that this does not

34

z:=0
in parallel do
{ 7r3:=AtomicAdd(z,1) }
{ 74:=AtomicAdd(z,10)
in parallel do
{ rg:=AtomicAdd(x,100) }
{ r7:=AtomicAdd(z,1000) }

NoUnsE B =

}

8. returnzx

Figure 3.1: An example nested-parallel program. The in parallel keyword means that the following two
{...} blocks of code may execute in parallel. AtomicAdd(x,v) atomically updates x to z := z + v and
returns the new value of x.

preclude the use of pseudorandom numbers, where one can use, for example, the approach
of Leiserson et al. [297] to generate deterministic pseudorandom numbers in parallel from
a single seed, which can be part of the input.

This chapter defines determinism with respect to abstract operations and abstract state,
not with respect to machine instructions and memory state. Nevertheless, the definition
supplied here is general and applies to both cases. The difference hinges on the notion of
“equivalence.” Various levels of abstraction have been considered in the literature (see [309]
for a discussion). Given a definition of equivalent operations, states, and values, internal
determinism is defined as follows.

For a (completed) computation, its frace is the final state along with the computation
DAG on which operation vertices are (further) annotated with the values returned (if
any). Figure 3.2 shows two traces corresponding to executions of the program shown in
Figure 3.1. Two computation DAGs are equivalent if they have the same graph structure and
corresponding vertices are labeled with equivalent operations. Two traces are equivalent
traces if they have equivalent final states, equivalent computation DAGs, and corresponding
DAG vertices are annotated with equivalent return values.

Definition 1. A program is internally deterministic if for any fixed input I, all possible
executions with input I result in equivalent traces.

Note that since the parallelism is dynamic, a nondeterministic program may result in
dramatically different DAGs. Because all decisions in a computation are based only on
the result of operations performed, however, if operations return equivalent results despite
different schedulings, then the structure of the DAG is guaranteed to remain the same.

For primitive types like integers, it is clear what equivalence means. When working with
objects and dynamic memory allocation, however, a formal definition of equivalent objects
and states becomes more complicated, and not within the scope of this thesis. Informally,

35

returns “1111” returns “1111”

Figure 3.2: Two possible traces for the program in Figure 3.1. The diamonds, squares, and circles denote forks,
joins, and data operations, respectively. Vertices are numbered by line number, as a short hand for operations
such as AtomicAdd(z, 1). The left trace corresponds to the interleaving/schedule 1, 2,3, 4,5, 6, 7, 8, whereas
the right trace corresponds to 1,2,4,5,7,6, 3, 8. Because the intermediate return values differ, the program
is not internally deterministic. It is, however, externally deterministic as the output is always the same. If
AtomicAdd did not return a value, however, then the program would be internally deterministic.

when we say that states or values are equivalent, we mean semantically equivalent, i.e., that
no sequence of valid operations can distinguish between them (see, e.g., [224]).

3.2.3 Commutativity

Internally deterministic programs are a subset of parallel programs, and thus programming
methodologies that yield internal determinism restrict a program’s behaviors. The method-
ology adopted in this chapter is to require all logically parallel accesses of shared objects to
use operations that commute. The fact that this restriction yields internally deterministic
programs is observed in many works, see, for example, [436, 396, 90] among others.

This chapter adopts Steele’s notation and definition of commutativity [436]. We use
f(S) — S" = v to denote that when the operation f is executed (without any concurrent
operations) starting from system (object) state .S, the system transitions to state S’ and f
returns the value v. To simplify notation, operations not returning values are viewed as
returning v = ().

Definition 2. Two operations f and g commute with respect to state S if the order in
which they are performed does not matter. That is, if

f(S) = Sy = vy
g(Sf) = Sty = vy

36

and

9(8) = S, = v,
f(Sy) = Spp = v}

then [and g commute with respect to S if and only if Sy, = S}, vy = U}, and vy = vy,
where “="" here denotes equivalence. (Note that there is no requirement that Sy = Sj.)

Moreover, that two operations are said to commute if they commute with respect to all
valid states .S. It is possible to relax this definition (e.g., [459, 224]), but this definition is
sufficient for the purposes in this chapter.

Linearizability. Commutativity is not a sufficient condition for deterministic behavior, as
commutativity alone does not guarantee that the implementation of the operations work
correctly when their instructions are interleaved in time. To guarantee safety of concurrent
execution of operations this chapter uses the standard definition of linearizability [227],
which enforces atomicity of the operations. In this setting, operations are concurrent if
and only if they are logically parallel. Thus, linearizability guarantees that there is a
total order (or history), H, of the annotated operations in a trace 7" such that H is a legal
sequential execution of those operations, starting from the initial state. That is, (i) H is a
valid scheduling of 7”’s computation DAG, and (ii) each annotated operation in 7’ remains
legal (including its return value) when executed atomically in the order of /. Note that
linearizability is a property of the implementation and not the semantics of the operation
(e.g., two insertions into a dictionary might semantically commute, but an implementation
might fail when interleaved). One way to guarantee linearizability is to use a lock around
all commuting operations, but this is inefficient. This chapter uses only non-blocking
techniques to achieve linearizability among commuting operations. We however do not
guarantee that all commuting operations are linearizable, just that the logically parallel
ones are.

Summary. The model this chapter uses for internally deterministic behavior is summarized
by the following theorem.

Theorem 1. Let P be a nested-parallel program. If for all inputs, all logically parallel
operations commute and are linearizable, then P is internally deterministic.

Proof. (Sketch) Consider any fixed input / and any fixed (completed) execution of P with
input /. Let G (7)) be the resulting computation DAG (trace, respectively), and let H be
its linearizability history. The proof will show that 7" is equivalent to a canonical trace
T obtained by executing P with input / using only a single core. Let G* and H* be the
computation DAG and linearizability history, respectively, for 7. The proof shows by

37

induction on the length of H* that (i) G and G* are equivalent and (ii) H permuted to
match the order in /7* of equivalent vertices is also a linearizability history for 7", implying
equivalent return values. Construct such a permutation, H’, inductively, with H' = H
initially. Assume inductively that (i) the subgraph of G* corresponding to the vertices in
H*[1...i] has an equivalent subgraph in GG, and (ii) H' is a linearizability history for T’
such that H'[1...4] and H*[1...1] are equivalent ([5 . .. k] denotes subsequence). Consider
© 4+ 1, and let o* be the ¢ 4 1’st annotated vertex in *. It follows inductively that there is
a vertex o in 1" with equivalent parent(s) and an equivalent operation, say the j’th vertex
in H'. If j = i + 1, the proof is done, so assume j > ¢ + 1. None of the vertices in
H'[i +1...j — 1] can precede or be preceded by o, so o must commute with each such
vertex. Thus, o can be pairwise swapped up to position i + 1 in H’ while preserving
a linearizability history, establishing both inductive invariants. The argument is readily
extended to show the equivalence of the final states by augmenting each execution with
operations that read the final state. The theorem follows.]

The approach of this chapter is similar to previous models for enforcing deterministic
behavior [436, 90], except that in Steele [436] commutativity is defined in terms of memory
operations and memory state, and in Cheng et al. [90] commutativity is defined with respect
to critical sections and memory state. In this work, commutativity is defined in terms of
linearizable abstract operations and abstract state.

3.3 Commutative Building Blocks

Achieving deterministic programs through commutativity requires some level of (object or
operation) abstraction. Relying solely on memory operations is doomed to fail for general-
purpose programming. For example, requiring a fixed memory location for objects allocated
in the heap would severely complicate programs and/or inhibit parallelism, possibly re-
quiring all data to be pre-allocated. Instead, this section defines some useful higher-level
operations that are used as commutative operations in many of the algorithms presented
later. They are all defined over abstract data types supporting a fixed set of operations. This
section also describes non-blocking linearizable implementations of each operation. These
implementations do not commute at the level of single memory instructions and hence the
abstraction is important.

Priority write. The most basic data type is a memory cell that holds a value, and supports
a priority write and a read. The priority write on a cell z, denoted by x.pwrite(v) updates
x to be the maximum of the old value of = and a new value v. It does not return any value.
x.read() is just a standard read of the cell = returning its value. Priority write is often used
to select a deterministic winner among parallel choices, e.g., claiming a next-step neighbor
in breadth first search (Section 3.4.4).

38

Any two priority writes z.pwrite(v;) and x.pwrite(vy) commute, in accordance with
Definition 2, because (i) there are no return values, and (ii) the final value of x is the
maximum among its original value, v, and v, regardless of which order these operations
execute. A priority write and a read do not commute since the priority write can change the
value at the location. We implement non-blocking and linearizable priority writes using a
compare-and-swap. With this implementation, the machine primitives themselves do not
commute. The implementation, further applications, and a detailed experimental study of
priority writes will be presented in Chapter 6.

Priority reserve. In the “deterministic reservations” approach described later in Section 3.4,
multiple program loop iterates attempt to reserve the same object in parallel, and later the
winner operates on the reserved object. Deterministic reservations uses a data type that
supports three operations, a priority reserve (x.reserve(p)), a check (z.check(p)), and a
check-and-release (x.checkR(p)), where p is a priority. As with a priority write, a higher
priority value overwrites a lower priority and hence the highest priority will “reserve” the
location. The one difference is that a unique priority tag | is required to denote when the
location is currently unreserved. The priority | has the lowest priority, and it is invalid to
make a pwrite call with p = L. As with pwrite, any number of reserves commute, and
we implement a linearizable non-blocking version using compare-and-swap.

The x.checkR(p) call requires p # L. If the current value at location x has priority
p, then the reservation is released (i.e., the value _L is written to x), and TRUE is returned
to indicate that p was the highest priority reservation on x. If the current priority is not
p, then the state does not change and FALSE is returned. Operations x.checkR(p;) and
x.checkR(py) commute if and only if p; # p,. A check is the same as a checkR without
the release and commutes in the same way. A priority reserve and either form of check do
not commute.

The deterministic algorithms in this thesis ensure that for any given location, (i) priority
reserves are not called logically in parallel with either form of check, and (ii) all logically
parallel operations use distinct priorities. Thus, the commutativity and resulting internal
determinism extend to those algorithms.

Dynamic map. The purpose of a dynamic map is to incrementally insert keyed ele-
ments and, once finished inserting, to return an array containing a pseudorandom permu-
tation of these elements, omitting duplicates. A dynamic map supports two operations:
M .insert(z), which inserts keyed element x into the map M without returning any value,
and M .elements(), which returns an arbitrary, but deterministic, permutation of all the
elements in the map M. The map removes duplicate keys on insert: if elements y and x
have the same key and y is already in the map when M.insert(z) is called, one of the
elements (chosen deterministically based on a user specified priority) is discarded.

This thesis implements a dynamic map using a parallel version of a history-independent

39

hash table by Blelloch and Golovin [58]. The implementation, proofs of correctness, along
with an experimental study of the hash table will be presented in Chapter 5. Chapter 5
shows that two inserts commute, however, the M.insert(z) operation does not commute
with the M .elements() operation since for some states of S, x is not in M and will affect
the result of elements.

Disjoint sets. The spanning forest algorithms in this section rely on a structure for main-
taining a collection of disjoint sets corresponding to connected components. Each set is
associated with a unique element acting as the identifier for the set. A disjoint set data type
supports two operations: a find and a link. For an instance F', the F.find(z) operation
returns the set identifier for the set containing x. The F.1ink(S, z) operation requires that
S be a set identifier and the set containing x be disjoint from the set .S. It logically unions
the set S with the set containing x such that the identifier for the resulting unioned set is the
identifier of the set containing x. Here, x and S denote references or pointers to elements
in the sets.

This section implements an instance F' of the disjoint set data type as a collection of
trees with parent pointers, where the root of each tree acts as a unique identifier for the
set [112]. A F.find(x) operation simply follows parent pointers up the tree and returns
the root. It may also perform path compression [112], which points vertices along the
query-to-root path directly to the root, thereby accelerating future queries. A 1ink(S,x)
operation is implemented by pointing S to the root vertex of the set containing x.

Two find operations commute with each other as they cause no semantic modifications—
i.e., any changes to the pointer structure caused by path compression cannot be discerned
by future operations on F'. Two 1ink operations commute with each other as long as they
do not share the same first argument. That is to say, F.1ink(S7,z1) and F.1ink(Ss, z3)
commute as long as S; # S; having x; and x5 be equal or from the same set is allowed,
as is having z; in set Sy or x5 in set S;. The 1ink(.S1, 1) and find(x2) only commute if
r1 = T3.

Let us now consider linearizability. Even with path compression, find operations are
linearizable (and non-blocking) since there is only one possible update to each pointer (the
a priori root of the tree). This requires no compare-and-swap or any other special memory
operations. Logically parallel 1ink operations with distinct first arguments, and no cycles
among the linked sets, are also linearizable and non-blocking with no special memory
operations since they only require updating a pointer which is not shared by any other
logically parallel operation. In the implementation, find’s and 1ink’s are not guaranteed
to be linearizable. Hence, in the algorithms that use disjoint sets, find’s are never logically
parallel with 1ink’s: they alternate phases of only find’s and only 1ink’s.

Note that we are using an asymmetric 1ink operation instead of the standard symmetric
union. This is because union does not commute according to Definition 2, which requires

40

two operations to commute for all start states. In a more relaxed definition of commutativity,
union can be made to commute [280].

3.4 Internally Deterministic Parallel Algorithms
3.4.1 Benchmark Problems

For testing the utility of nested parallel internally deterministic algorithms, this chapter uses
a set of benchmarks from the Problem Based Benchmark Suite (described in Section 1.4).
It is important that the benchmarks are problem-based since it might be that very different
algorithmic approaches are suited for a deterministic algorithm versus a nondeterministic
algorithm. The problems studied in this chapter are shown in Figure 3.1, and their definitions
can be found in Section 2.6. The benchmarks are selected to cover a reasonable collection
of fundamental problems. The focus, however, is on problems involving unstructured
data since there is already very good coverage for such benchmarks for linear algebra and
typically deterministic algorithms are much simpler for these problems.

The rest of this section describes the approaches we use when designing internally
deterministic parallel algorithms for the benchmark problems and outlines the resulting
algorithms for each of the benchmarks. Many of the approaches used are standard, but this
section introduces a new approach for greedy algorithms, called deterministic reservations.
The approach plays a key role in the implementation of several of the problems. The
algorithms also make use of our commuting and linearizable implementations of various
operations. Table 3.1 summarizes what approaches/techniques are used in which of the
algorithms.

3.4.2 Nested Data Parallelism and Collection Operations

The most common technique throughout the benchmark implementations is the use of
nested data parallelism. This technique is applied in a reasonably standard way, particularly
in the use of fork-join and parallel loops (with arbitrary nesting) in conjunction with parallel
operations on collections. For the operations on collections, the implementations use a
library of operations on sequences, developed as part of the Problem Based Benchmark
Suite. The operations make heavy use of divide-and-conquer. In the divide-and-conquer
algorithms, the implementations almost always use parallelism within the divide step (to
partition the input data), and/or the merge step (to join the results), typically using the
collection operations in the sequence library. The three primitives, reduce, scan and
filter are used throughout the algorithms, and are defined in Section 2.3. The PBBS
implementations of reduce and scan are deterministic even if f is not associative—e.g.,
with floating point addition.

Reduce is used to calculate various “sums”: e.g., to calculate the bounding box (max-

41

Problem D&C | Reduce | Scan | Filter | DR | CL
Comparison Sort yes yes
Remove Duplicates yes DM
Breadth First Search yes yes PW
Spanning Forest yes | yes | DS
Min Spanning Forest sub yes | yes | DS
Triangle Ray Intersect yes yes yes
Suffix Array sub yes yes yes
Delaunay Triangulation | sub yes sub yes | yes
Delaunay Refine yes yes | yes | DM
N-body yes yes yes
K-Nearest Neighbors sub yes

Table 3.1: Techniques used in the algorithms for each of the benchmarks. D&C indicates divide-and-conquer;
Reduce, Scan and Filter are standard collection operations; DR indicates deterministic reservations; and CL
indicates the use of a non-trivial commutative and linearizable operation other than reservations: dynamic
map (DM), disjoint sets (DS), or priority write (PW). sub indicates that it is not used directly, but inside a
subroutine, e.g., inside a sort.

imum and minimum in each coordinate) of a set of points. Filter is used in most of the
algorithms. In the divide-and-conquer algorithms, it is typically used to divide the input
into parts based on some condition. In the other algorithms, it is used to filter out elements
that have completed or do not need to be considered. It plays a key role in deterministic
reservations. Scan is used in a variety of ways. In the sorting algorithm it is used to
determine offsets for the sample sort buckets, in the suffix array algorithm it is used to
give distinct elements unique labels, and in the breadth-first search algorithm it is used to
determine the positions in the output array to place distinct neighbor arrays.

3.4.3 Deterministic Reservations

Several of the deterministic algorithms in this thesis (spanning forest, minimum spanning
forest, Delaunay triangulation, Delaunay refinement, maximal independent set, maximal
matching, random permutation, list contraction, and tree contraction) are based on a greedy
sequential algorithm that processes elements (e.g., vertices) in linear order. These can be
implemented using speculative execution on a sequential loop that iterates over the elements
in the greedy order.

Various studies have suggested both compiler [396, 383] and runtime techniques [437,
219] to automate the process of simulating in parallel the sequential execution of such a loop.
These approaches rely on recognizing at compile and/or run time when operations in the
loop iterates commute and allowing parallel execution when they do. Often the programmer
can specify what operations commute. We are reasonably sure that the compiler-only

42

prefix

I
I

(] |

W—/

prefix

Figure 3.3: A generic example of deterministic reservations. The top and the bottom depict the array of
iterates during consecutive rounds. In each round, a prefix of some specified size is selected. All of these
prefix iterates perform the reserve component. Then they all perform the commit component. The dark
regions in the top array represent iterates that successfully commit. All uncommitted iterates (shown in white)
are packed towards the right, as shown in the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array.

techniques would not work for the benchmark problems in this chapter because the conflicts
are highly data-dependent and any conservative estimates allowing for all possible conflicts
would serialize the loop. The runtime techniques typically rely on approaches similar to
software transactional memory: the implementation executes the iterations in parallel or
out-of-order but only commits any updates after determining that there are no conflicts
with earlier iterations. As with software transactions, the software approach is expensive,
especially if required to maintain strict sequential order. In fact, in practice the suggested
approaches typically relax the total order constraint by requiring only a partial order [383],
potentially leading to nondeterminism. A second problem with the software approach is
that it makes it very hard for the algorithm designer to analyze efficiency—it is possible that
subtle differences in the under-the-hood conflict resolution could radically change which
iterates can run in parallel.

This section presents an approach, called deterministic reservations, that gives more
control to the algorithm designer and fits strictly within the nested parallel framework
(needing neither special compiler nor runtime support). In this approach, the algorithm
designer controls exactly on what data the conflicts occur and these conflicts are deter-
ministic for a given input. The generic greedy algorithm for deterministic reservations
works as follows, illustrated in Figure 3.3. It is given a sequence of iterates (e.g., the
integers from 0 to n — 1) and proceeds in rounds until no iterates remain. Each round takes
any prefix of the remaining unprocessed iterates, and consists of two phases that are each
parallel loops over the prefix, followed by some bookkeeping to update the sequence of
remaining iterates. The first phase executes a reserve component on each iterate, using a
priority reserve (reserve) with the iterate priority, in order to reserve access to data that
might interfere (involve non-commuting or non-linearizable operations) with other iterates.
The second phase executes a commit component on each iterate, using a check to see
if the reservations succeeded, and if the required reservations succeed then the iterate is

43

processed, otherwise it is not. Typically updates to shared state (at the abstraction level
available to the programmer) are only made if successful. After running the commit phase,
the processed iterates are removed. In the implementation of deterministic reservations, the
unprocessed iterates are kept in a contiguous array ordered by their priority. Selecting a
prefix can therefore just use a prefix of the array, and removing processed iterates can be
implemented with a £i1ter over the boolean results of the second phase.

The specifics of the reserve and commit components depend on the application. The
work done by the iterate can be split across the two components. We have found that in
the unstructured problems in the benchmarks, just determining what data might interfere
involves most of the work. Therefore, the majority of the work ends up in the reserve
component. In most cases, all of the reservations are required to succeed, but we have
encountered cases in which only a subset need to succeed (e.g., the minimum spanning-
forest code reserves both endpoints of an edge but only requires that one succeeds).

It is worth noting that the generic approach can select any prefix size including a single
iterate or all of the iterates. There is a trade-off, however between the two extremes. If
too many iterates are selected for the prefix, then many iterates can fail. This not only
requires repeated effort for processing those iterates, but can also potentially cause high
contention on the reservation slots. On the other hand, if too few iterates are selected then
there might be insufficient parallelism. Clearly the amount of contention depends on the
specific algorithms and also on the input data. The effect of contention in deterministic
reservations is studied in more detail in Chapter 6.

As long as the prefix size is selected deterministically, and all operations commute
and are linearizable within the reserve phase and separately within the commit phase, a
program will be internally deterministic. This means the algorithm designer only needs to
analyze commutativity/linearizability within each phase. In our code, we have implemented
a function speculative_for that takes four arguments: a structure that implements the
reserve and commit components (both taking an index as an argument), a start index,
an end index, and a prefix size.

The next section includes several algorithms (spanning forest, minimum spanning forest,
Delaunay triangulation, and Delaunay refinement) that use the deterministic reservations
approach. Chapter 4 introduces several additional algorithms (maximal independent set,
maximal matching, random permutation, list contraction, and tree contraction) implemented
using deterministic reservations that have provably strong work and depth bounds.

3.4.4 Algorithms

This section describes each of the algorithms used to implement the benchmarks discussed
in Section 3.4.1. In all cases, my co-authors and I considered a variety of algorithms and
selected the one we felt would perform the best. In many cases, we arrived at the algorithm

44

discussed after trying different algorithms. In all cases, the algorithms are either motivated
by or directly use results of many years of research on parallel algorithm design by many
researchers.

Comparison Sort. We use a low-depth cache-efficient sample sort [57]. The algorithm (1)
partitions the input into y/n blocks, (2) recursively sorts each block, (3) selects a global
sample of size \/nlogn by sampling across the blocks, (4) sorts the sample, (5) buckets
each of the blocks based on the sample, (6) transposes the keys so keys from different
blocks going to the same bucket are adjacent, and (7) recursively sorts within the buckets.
The transpose uses a cache-efficient block-transpose routine. When the input is small
enough, quicksort is used. The algorithm is purely nested parallel. There is nesting of the
parallelism (divide-and-conquer) in the overall structure, in the merge used for bucketing
blocks, in the transpose, and in the quicksort.

Remove Duplicates. We use a parallel loop to concurrently insert the elements into the
dynamic map described in Section 3.3. This data structure already removes all duplicates
internally and returns the distinct elements with a call to element s (which internally uses
a filter). The ordering returned by the routine is deterministic, but does not correspond
to the input ordering in any natural way and different hash functions will give different
orderings. The hash table size is set to be twice the size of the input rounded up to the
nearest power of 2.

Breadth First Search (BFS). We use a level-ordered traversal of the graph. In level-order
traversal, each vertex u adds each of its unvisited neighbors v to the next frontier and makes
u the parent of v in the BFS tree. In standard parallel implementations of BFS [296, 383],
each level is processed in parallel and nondeterminism arises because vertices at one level
might share a vertex v at the next level. These vertices will attempt to add v to the next
frontier concurrently. By using a compare-and-swap or similar operation, it is easy to ensure
that a vertex is only added once. However, which vertex adds v depends on the schedule,
resulting in internal nondeterminism in the BFS code and external nondeterminism in the
resulting BFS tree.

We avoid this problem by using a priority write. The vertices in the frontier are
prioritized by their ID and each level involves two rounds. In the first round, each vertex
in the frontier writes its priority to all neighbors that have not been visited in previous
rounds. In the second round, each vertex v in the frontier reads from each neighbor u the
priority. If the priority of w is v (v is the highest priority neighbor in the frontier), then the
implementation makes v the parent of u and adds u to the next frontier. The neighbors are
added to the next frontier in the priority order of the current frontier. This uses a scan to
open enough space for each neighbor list.

Spanning Forest. Sequentially, a spanning forest can be generated by greedily processing

45

struct STStep {
int u; int v;
edge *E; res xR; disjointSet F;
STStep (edgex _E, disjointSet _F, res* _R)
: E(_E), R(_R), F(_F) {}

bool reserve (int 1)

{
u = F.find(E[i].u); //find component
v = F.find(E[i].V); //find component
if (u == v) return O; //skip edge if endpoints belong to the same component
if (u > v) swap(u,v);
R[v] .reserve (1) ; //reserve larger component

return 1;}

bool commit (int 1) {
if (R[v].check(i)) { F.link(v, u); return 1;} //link if reservation was successful
else return 0; }
}i

void ST (res* R, edgex E, int m, int n, int psize) {
disjointSet F(n); //deterministic union-find data structure
speculative_for (STStep(E, F, R), 0, m, psize); //deterministic reservations driver

}

Figure 3.4: C++ code for spanning forest using deterministic reservations (with its operations reserve,
check, and speculative_for).

the edges in an arbitrary order using a disjoint set data structure. When an edge is processed,
if the two endpoints are in the same component (which can be checked with £ind) then
it is removed, otherwise the edge is added to the spanning forest and the components are
joined (with union). This algorithm can be run in parallel using deterministic reservations
prioritized by the edge ordering and will return the exact same spanning forest as the
sequential algorithm. The idea is simply to reserve both endpoints of an edge and check
that both reservations succeed in the commit component. Indeed this is how we implement
minimum spanning forest, after sorting the edges. However there is an optimization that
can be made with spanning forests that involves only requiring one of the reservations to
succeed. This increases the probability a commit will succeed and reduces the cost. This
approach returns a different forest than the sequential version but is internally deterministic
for a fixed schedule of prefix sizes.

The C++ code is given in Figure 3.4. For an iterate ¢ corresponding to the edge E[i|, the
reserve component does a £ind on each endpoint (as in the sequential algorithm) returning
u and v (without loss of generality, assume v < v). If u = v, the edge is within a component
and can be dropped returning 0 (false),' otherwise the algorithm reserves v with the index 4
(R[v].reserve(i)). The commit component for index 7 performs a R[v].check(i) to see if
its reservation succeeded. If it has, it links v to v and otherwise the commit fails. At the

'If false is returned by reserve(), then the iterate is dropped without proceeding to the commit.

46

end of the algorithm the edges E|[i] in the spanning tree can be identified as those where
RJi] # L. The only difference from the sequential algorithm is that after determining that
an edge goes between components, instead of doing the union immediately it reserves one
of the two sides. It later comes back to check that the reservation succeeded and if so does
the union (link).

Note that in a round the reservation guarantees that only one edge (the highest priority)
will link a vertex v to another vertex. This is the condition required in Section 3.3 for
commutativity of 1ink. Also because the 1ink and find are in different phases they are
never logically parallel, as required. Finally, note that because the algorithm links higher to
lower vertex numbers, it will never create a cycle. In this algorithm our code sets psize,
the size of the prefix, to be .02m and we have observed that on our test graphs less than
10% of the reservations fail.

Minimum Spanning Forest (MSF). We use a parallel variant of Kruskal’s algorithm [112].
The idea of Kruskal’s algorithm is to sort the edges and then add them one-by-one using
disjoint sets as in the spanning forest code. Therefore, deterministic reservations prioritized
by the sorted order to insert the edges can be used. Unlike the spanning forest described
above, however, both endpoints of an edge need to be reserved to guarantee the edges are
inserted in “sequential” order. However, during the commit component, only one of the
two endpoint needs to succeed because to commute 1ink only requires that one of the
two arguments is unique. If v succeeds, for example, then the code uses 1ink(v, u). Note
this is still internally deterministic because which endpoints succeed is deterministic. The
code uses a further optimization: It sorts only the smallest k£ edges (k = min(m, 4n/3) in
the experiments) and runs MSF on those, so that the remaining edges can be filtered out
avoiding the need to sort them all. The baseline sequential MSF algorithm also uses the
same optimization.

Triangle Ray Intersect. We use a k-d tree with the surface area heuristic (SAH) [312] to
store the triangles. The algorithm is similar to the parallel algorithm discussed in [96] and
makes use of divide-and-conquer and heavy use of scan and filter.

Suffix Array. We use a parallel variant of the algorithm of Karkkainen and Sanders [256].
It uses sorting and merging as subroutines, which involves nesting, but otherwise only
makes use of reduce, scan,and filter.

Delaunay Triangulation. We use a Bowyer-Watson style incremental Delaunay triangula-
tion algorithm [127] with deterministic reservations. The points are used as the elements.
To reduce contention, the prefix is always selected to be smaller than the current size of
the mesh. The algorithm therefore starts out sequentially until enough points have been
added. The reserve component of the code, for a point p, identifies all triangles that contain
p in their circumcircle, often referred to as the hole for p. Adding p requires removing the

47

hole and replacing it with other triangles. The reserve component therefore reserves all
vertices around the exterior of the hole. The majority of the work required by a point p is in
locating p in the mesh and then identifying the triangles in the hole. The commit component
checks if all the reserved vertices of the mesh have succeeded, and if so, removes the hole
and replaces it with triangles surrounding p and filling the hole. The reservations ensure
that all modifications to the mesh commute since the triangles in the mesh only interact if
they share a vertex. In fact, reserving the edges of the hole would be sufficient and reduce
contention, but our mesh implementation has no data structures corresponding to edges
on which to reserve. For efficiently locating a point p in the mesh, the nearest neighbor
structure described below is used.

Delaunay Refinement. This algorithm uses the same routines for inserting points as the
Delaunay triangulation. However, it does not need a point location structure but instead
needs a structure to store the bad triangles. A dynamic map is used for this purpose.

N-body. We use a parallel variant of the Callahan-Kosaraju algorithm [85]. This is a
variant of Greengard and Rokhlin’s well-known FMM algorithm [194] but allows more
flexibility in the tree structure. The algorithm makes use of traditional nested parallelism
with divide-and-conquer, as well as reduce and scan.

K-Nearest Neighbors. We use a quad- and oct-tree built over all input points for 2d and
3d inputs, respectively. As with the k-d tree used in triangle-ray intersection, the tree is
built using only divide-and-conquer and nested parallelism. Once built, the tree is static
and used only for queries of the points.

3.5 Experimental Results

This section reports experimental results for the internally deterministic algorithms on the
32-core Intel machine described in Section 2.7. The parallel programs were compiled using
the ci1k++ compiler, and sequential programs were compiled using g++. Experiments are
presented for all of the benchmarks described in Section 3.4, except for remove duplicates,
which will be discussed in detail in Chapter 5. The results are summarized in Table 3.2,
which reports the average timings over all inputs for each implementation.

Four of the benchmarks will be discussed in detail, and their performance is compared to
other published results at that time of the publication of this work [53]. For each benchmark,
given core count, and input, Table 3.3 reports the median time over three trials.

For comparison sort, the experiments use a variety of inputs all of length 107. This
includes sequences of doubles in three distributions and two sequences of character strings.
Both sequences of character strings are the same but in one the strings are allocated in
order (i.e., adjacent strings are likely to be on the same cache line) and in the other they are
randomly permuted. The internally deterministic sample sort is compared to three other

48

Application 1 thread | 64 threads | Speedup
Algorithm (32h)
Comparison Sort
serialSort 3.581 - -
*stlParallelSort 3.606 0.151 23.88
sampleSort 2.812 0.089 31.6
quickSort 3.043 0.68 4.475
Breadth First Search
serial BFS 3.966 - -
**ndBFS 54 0.28 19.29
deterministicBFS 7.136 0.314 22.73
#+LS-PBFST 4.357 0.332 13.12
Spanning Forest
serialSF 2.653 - -
deterministicSF 6.016 0.326 18.45
#*Galois-ST® 12.39 1.136 10.91
Minimum Spanning Forest
serial MSF 8.41 - -
parallelKruskal 14.666 0.785 18.68
Triangle Ray Intersect
kdTree 8.7 0.45 19.33
Suffix Array
parallelKS 13.4 0.785 17.07
Delaunay Triangulation
serialDelaunay 56.95 - -
deterministicDelaunay 80.35 3.87 20.76
*QGalois-Delaunay 114.116 39.36 29
Delaunay Refine
deterministicRefine 103.5 6.314 16.39
**Galois-Refinet 81.577 5.201 15.68
N-body
parallelCK 122.733 5.633 21.79
K-Nearest Neighbors
octTreeNeighbors 37.183 3.036 12.25

Table 3.2: Weighted average of running times (seconds) over various inputs on a 32-core machine with
hyper-threading (32h). A “*” indicates an internally nondeterministic implementation and a “**” indicates an
externally (and hence internally) nondeterministic implementation. All other implementations are internally
deterministic. TLS-PDFS does not generate the BFS tree, while the programs in this chapter do. $Galois-ST
generates only a spanning tree, while the code in this chapter generates the spanning forest. *Galois-Refine
does not include the time for computing the triangle neighbors and initial bad triangles at the beginning while
the code in this chapter does (takes 10-15% of the overall time).

sorting routines: the standard template library (STL) sort, the parallel STL sort [432], and a
simple divide-and-conquer quicksort that makes parallel recursive calls but partitions the
keys sequentially. The results are summarized in Tables 3.2 and 3.3(a), and Figure 3.5(a).
Due to the cache-friendly nature of the sample sort algorithm, on average it is more efficient
than any of the algorithms even on one core, and it gets an average parallel speedup of

49

107 random
(1) | (32h)

(a) Comparison Sort
Algorithm

107 exponential
() | (32h)

107 almost sorted

M |

(32h)

107 trigram

(D) [3G2h) | (D) |

107 trigram (permuted)

(32h)

142 -

1.43|0.063
2.08|0.053
1.58]0.187

serialSort
*stlParallelSort
sampleSort

quickSort

(b) BFS

Algorithm

1.1
1.11
1.51
1.06

0.057
0.042
0.172

random local
graph
n = 107
m="5x 107
() | (32h)

0.283
0.276
0.632
0.357

0.066
0.028
0.066

rMat graph
n = 2%
m=5x 107

(1) | (32h)

5.5
5.57
3.82
4.78

431 -

4.31(0.145
3.210.095
3.35]0.527

3d grid
n=10"

(1) |(32h)

serial BFS
**ndBFS
deterministicBFS
** S-PBFS

©) MSF

Algorithm

414 -
6.07 | 0.226
7.13 | 0.255
4.644 | 0.345

random local
graph
n = 107
m="5x 107
(1) | (32h)

4.86 -
6.78 | 0.294
9.25 | 0.345

5.404 | 0.426

rMat graph
n = 2%
m =5 x 107

(1) | (32h)

29 -
3.3510.322
5.03 10.343

3.023|0.225

2d grid
n=10"

(1) [(32h)

serial MSF
parallelKruskal
*Galois-Boruvkaf

(d) Delaunay Triangulation
Algorithm

8.47 -
143 0.78

2d in cube
n =107
(D

11.2 -
19.7| 1.08

| (32h)

@

5.56 -
10.0 | 0.49
35.128 | 7.159

2d kuzmin
n =107
| 32h)

serialDelaunay
deterministicDelaunay

55.1
76.7

- 58.8 -

3.5

84.0

4.24

*QGalois-Delaunay

110.705 | 39.333

117.527]36.302

0.236
0.131
1.31

Table 3.3: Running times (seconds) of algorithms over various inputs on a 32-core machine (with hyper-
threading). A “*” indicates an internally nondeterministic implementation and a “**” indicates an externally
(and hence internally) nondeterministic implementation. fGalois-Boruvka did not terminate in a reasonable
amount of time for the first two inputs.

31.6x on 32 cores with hyper-threading. It is not quite as fast on the double-precision values
since there the cache effects are less significant. As expected, the quicksort with serial
partitioning does not scale.

For breadth-first search (BFS), and all of the graph algorithms, three types of graphs
were used: random graphs, grid graphs, and rMat graphs [87]. The rMat graphs have a
power-law distribution of degrees. All edge counts are the number of undirected edges—the

50

- - -serialSort - - -serialBFS
¢ stlParallelSort 1 ¢ ndBFS
— —+—sampleSort — 100 ¢ —+—deterministicBFS |}
€10 | quickSort g N LS-PBFS
o = S -
L [&]
(] ! O
£ L
(O] Q 0
E10°} £10 |
c c
S] X
x ""’"o,,o x 0N
4 2 T
10 ¢
: ‘ : : ‘ 10" : , : : ‘
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads

(a) comparison sorting algorithms with a trigram (b) BFS algorithms with a random local graph

string of length 107 (n=10",m =5 x 107)
10° w w : : w w w
- - -serialMST - - -serialDelaunay
—+— parallelKruskal —+— deterministicDelaunay
& F10% ¢ Galois—Delaunay
2 10t 2 ¢
o o
(8} (8]
O Q
))
(] Q
£ £ ol
€ 10° 21
]]
x x
10" : : : : : 10° : : : : :
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads

(c) MST algorithms with a weighted random local (d) Delaunay Triangulation algorithms with a 2d in
graph (n = 107, m = 5 x 107) cube graph (n = 107)

Figure 3.5: Log-log plots of running times on a 32-core machine (with hyper-threading). The deterministic
algorithms are shown in red.

implementations actually store twice as many since they store the edge in each direction.
The experiments compare the internally deterministic BFS (deterministicBFS) to a serial
version (serialBFS) and a nondeterministic version (ndBFS). The results are summarized in
Tables 3.2 and 3.3(b), and Figure 3.5(b). The nondeterministic version is slightly faster than
the deterministic version due to the fact that it avoids the second phase when processing each
round. The average parallel speedups on 32 cores of the deterministic and nondeterministic
versions are 22.7x and 19.3x, respectively. The experiments also compare to published
results at the time of this work. We ran the parallel breadth-first search algorithm from [296]
and our performance is very close to theirs (their algorithm is labeled LS-PBFS in the

51

tables and figures). Our performance is 5 to 6 times faster than the times reported in [219]
(both for 1 thread and 32 cores), but their code is written in Java instead of C++ and is
on a Sun Niagara T2 processor which has a clock speed of 1.6GHz instead of 2.26GHz
so it is hard to compare directly. Since the publication of this work [53], there have been
faster (nondeterministic) implementations of BFS developed [420, 32, 467, 468]. One such
implementation is discussed in Chapter 7.

For minimum spanning forest (MSF), the experiments compare the internally deter-
ministic parallel algorithm to an optimized version of Kruskal’s serial algorithm (see
Section 3.4). The results are shown in Tables 3.2 and 3.3(c), and Figure 3.5(c). Our parallel
code is about 1.7x slower on a single thread, and achieves 18-20x speedup on 32 cores.
The experiments also compare to the parallel version of Boruvka’s algorithm from the
C++ release (2.1.0) of the Galois benchmark suite [379] (labeled as Galois-Boruvka in the
table). Their code did not terminate in a reasonable amount of time on the random and rMat
graphs; for the 2D-grid graph, our code is much faster and achieves much better speedup
than their algorithm.

For Delaunay triangulation, the experiments use two point distributions: points dis-
tributed at random and points distributed with the Kuzmin distribution. The latter has a very
large scale difference between the largest and smallest resulting triangles. The experiments
compare the internally deterministic algorithm to a quite optimized serial version. The
results are shown in Tables 3.2 and 3.3(d), and Figure 3.5(d). On one thread, the parallel
code is a factor of about 1.4 slower, but it gets a speedup of 20-22x on 32 cores. The exper-
iments also compare to the implementations in the Galois benchmark suite [379] (labeled
as Galois-Delaunay and Galois-Refine in the tables and figures), and our triangulation code
is faster and achieves better speedup on the same machine.> Note, however, that on the
Delaunay refinement problem our code achieves almost the same running time as the Galois
benchmarks (after subtracting the time for computing the initial processing of triangles
from our times, which is about 10—-15% of the overall time, since this is not part of the
timing in the Galois code). Since the time for the refinement code is dominated by triangle
insertion and the code for triangulation is dominated by point location, it would appear that
the reason for our improved performance is due to our point location data structure, and
that triangle insertion performs about equally well in both cases.

2The Galois code has been improved since the publication of this work.

52

Chapter 4

Deterministic Parallelism in Sequential
Iterative Algorithms

4.1 Introduction

Over the past several decades there has been significant research on deriving new parallel
algorithms for a variety of problems, with the goal of designing highly parallel (polyloga-
rithmic depth), work-efficient algorithms. For some problems, however, one might ask if
perhaps a standard sequential algorithm is already highly parallel if sub-computations are
simply executed opportunistically when they no longer depend on any other uncompleted
sub-computations. This approach is particularly applicable in iterative or greedy algorithms
that iterate (loop) once through a sequence of steps (or elements), each step depending
on the results or effects of only a subset of previous steps. In such algorithms, instead
of waiting for its turn in the sequential order, a given step can run immediately once all
previous steps it depends on have been completed. The approach allows for steps to run in
parallel while performing the same computations on each step as the sequential algorithm,
and consequently returning the same result. Surprisingly, this question has rarely been
studied.

Beyond the intellectual curiosity of whether sequential algorithms are inherently parallel,
the approach has several important benefits for the design of parallel algorithms. Firstly,
it can lead to very simple parallel algorithms. In particular, if there is an easy way to
check for dependencies, then the parallel algorithm will be very similar to the sequential
one. Iterative/greedy parallel algorithms can be naturally implemented in the deterministic
reservations framework described in the previous chapter (Section 3.4.3). Secondly, the
approach can lead to very efficient parallel algorithms. Using deterministic reservations, this
chapter shows that if a sufficiently small prefix of the uncompleted iterations are processed

33

at a time, then most steps do not depend on each other and can run immediately. This
reduces the overhead for repeated checks and leads to work which is hardly any greater than
that of the sequential algorithm. Finally, the parallelization of the sequential algorithm will
be deterministic, returning the same result on each execution (assuming the same source of
random numbers). The result of the algorithm will therefore be independent of how many
threads are used, how the scheduler works, or any other nondeterminism in the underlying
hardware and software, which can make debugging and reasoning about parallel programs
much easier, as discussed in Chapter 3.

This chapter studies the theoretical properties of several of these algorithms—maximal
independent set, maximal matching, random permutation, list contraction, and tree con-
traction. The chapter also presents a detailed experimental study of these algorithms
implemented using the deterministic reservations framework introduced in Section 3.4.3.
Background and previous work for each of the problems, and our new results for the
problem are described below.

Maximal Independent Set. The maximal independent set (MIS) is a fundamental problem
in parallel algorithms with many applications [310] (recall the definition from Section 2.6).
For example, if the vertices represent tasks and each edge represents the constraint that two
tasks cannot run in parallel, then the MIS finds a maximal set of tasks to run in parallel.
Parallel algorithms for the problem have been well-studied [260, 310, 8, 185, 182, 184,
183, 111, 84]. Luby’s randomized algorithm [310], for example, runs in O(logn) depth on
O(m) cores of a CRCW PRAM and can be converted to run in linear work. The problem,
however, is that on a modest number of cores it is very hard for these parallel algorithms
to outperform the very simple and fast sequential greedy algorithm. Furthermore, the
parallel algorithms give different results than that of the sequential algorithm. This can
be undesirable in a context where one wants to choose between the algorithms based on
platform but wants deterministic answers.

This chapter shows that, perhaps surprisingly, a trivial parallelization of the sequential
greedy algorithm is in fact highly parallel (polylogarithmic depth) when the order of vertices
is randomized. In particular, removing a vertex as soon as an earlier neighbor is added to
the MIS, or adding it to the MIS as soon as no earlier neighbors remain gives a parallel
linear-work algorithm. The MIS returned by the sequential greedy algorithm, and hence
also its parallelization, is referred to as the lexicographically first MIS [110]. In a general
undirected graph and an arbitrary ordering, the problem of finding a lexicographically
first MIS is P-complete [110, 195], meaning that it is unlikely that any efficient low-depth
parallel algorithm exists for this problem.! Moreover, it is even P-complete to approximate
the size of the lexicographically first MIS [195]. The results in this chapter show that for any

!Cook [110] shows this for the problem of finding the lexicographically first maximal clique, which is
equivalent to finding the MIS on the complement graph.

54

graph and for the vast majority of orderings, the algorithm for finding the lexicographically
first MIS has polylogarithmic depth.

Our results generalize the work of Coppersmith et al. [111] (CRT) and Calkin and
Frieze [84] (CF). CRT provide a greedy parallel algorithm for finding a lexicographically
first MIS for a random graph G, ,,, 0 < p < 1, where there are n vertices and the probability
that an edge exists between any two vertices is p. It runs in O(log® n/ log log n) expected
depth on a linear number of cores. CF give a tighter analysis showing that this algorithm
runs in O(log n) expected depth. They rely heavily on the fact that edges in a random graph
are uncorrelated, which is not the case for general graphs, and hence their results do not
extend to our context. This chapter, however, uses a similar approach of analyzing prefixes
of the sequential ordering.

Maximal Matching. The maximal matching (MM) of G can be solved by finding an MIS
of its line graph (the graph representing adjacencies of edges in (), but the line graph
can be asymptotically larger than G. Instead, the efficient (linear-work) sequential greedy
algorithm goes through the edges in an arbitrary order, adding an edge if no adjacent edge
has already been added. As with MIS, this algorithm is naturally parallelized by adding
in parallel all edges that have no earlier neighboring edges. The results for MIS directly
imply that this algorithm has polylogarithmic depth for random edge orderings with high
probability. This chapter also shows that with appropriate prefix sizes the algorithm runs in
linear work. Previous work has shown polylogarithmic-depth and linear-work algorithms
for the MM problem [239, 238] but as with MIS, the MM algorithm in this chapter returns
the same result as the sequential algorithm and leads to very efficient code. Subsequent to
this work, Birn et al. [43] have developed a simple parallel maximal matching algorithm,
although again it does not return the same result as the sequential algorithm.

Random Permutation. This chapter considers Durstenfeld’s well-known algorithm for
randomly permuting a sequence of n values [139, 270]. The algorithm iterates through the
sequence from the end to the beginning (or the other way) and for each location i, it swaps
the value at 7 with the value at a random target location j at or before 7. In the algorithm,
each step can depend on previous steps since on step ¢ the value at ¢ and/or its target j
might have already been swapped by a previous step. The question is: What does this
dependence structure look like? Also, can the above approach be used to derive a highly
parallel, work-efficient parallelization of the sequential algorithm?

Generating random permutations in parallel has been well-studied, both theoreti-
cally [10, 11, 122, 169, 173, 174, 203, 205, 335, 388] and experimentally [109, 204].
Many of these algorithms do linear work and have polylogarithmic depth. As far as we
know, however, none of this previous work has considered the parallelism available in
Durstenfeld’s sequential algorithm, and none of them return the same permutation as it
does, given the same source of randomness.

55

This chapter shows that Durstenfeld’s random permutation algorithm as described above
has a dependence structure that follows the same distribution over the random choices
as random binary search trees. This implies an algorithm with ©(log n) depth with high
probability. A straightforward linear-work polylogarithmic-depth implementation of the
algorithm is also presented. Therefore the “sequential” algorithm is effectively parallel.

List Contraction. The list contraction problem is to contract a set of linked lists each into
a single node (possibly combining values), and has many applications including list ranking
and Euler tours [259, 243, 395]. The sequential algorithm considered in this chapter simply
iterates over the nodes in random order splicing each one out.> This chapter shows that for
this algorithm, each linked list has a dependence structure that follows the same distribution
as random binary search trees, giving a O(log n) depth parallel algorithm w.h.p. Again, a
straightforward linear-work parallel implementation of the algorithm is presented.

Tree Contraction. The tree contraction problem is to contract a tree into a single node
(possibly combining node values), and again has many applications [335, 336, 243]. This
chapter assumes that the tree is a rooted binary tree. The sequential algorithm that is
considered iterates over the leaves of the tree in random order and, for each leaf, it splices
the leaf and its parent out. This chapter shows that the dependence structure of this problem
is shallow (logarithmic dependence length). Unfortunately, there seems to be no easy
on-line way to determine when a step no longer depends on any other uncompleted steps.
However, with some pre-processing, the dependencies can be identified. This leads to a
linear-work parallelization of the algorithm.

Reducing Randomness for Random Permutation and List Contraction. Reducing the
randomness required by algorithms is important, as randomness can be expensive. Straight-
forward implementations of the algorithms from this chapter require O(n logn) random
bits. By making use of a pseudorandom generator for space-bounded computations by
Nisan [354], we show that the algorithms for random permutation and list contraction
require only a polylogarithmic number of random bits w.h.p. This result is based on lever-
aging the low depth of the algorithms to show that they can be simulated in polylogarithmic
space.

Experiments. We have implemented all of our algorithms in the deterministic reservations
framework (described in Section 3.4.3), and run experiments on shared-memory multicore
machines. The implementations contain under a dozen to a few dozen lines of C++ code.
Experiments in this chapter show that achieving work-efficiency is indeed important for
good performance, and more specifically show how the choice of prefix size affects total
work performed, parallelism, and overall running time. With a careful choice of prefix

2The random order can be implemented by first randomly permuting the nodes, and then processing them
in linear order.

56

size, the algorithms achieve good speedup and require only a modest number of cores to
outperform optimized sequential implementations.

4.2 Analysis Tools

This chapter is concerned with the parallelism available in sequential iterative algorithms.
Assume that an iterative algorithm takes n steps, where each step performs some computa-
tion, depending on the results or effects of a subset of previous steps. The goal is to run
some of these steps in parallel. What can run safely in parallel will depend on both the
algorithm and the input, which together will be referred to as a computation. This chapter
models the dependencies in the computation as a graph, where the steps I = {0,...,n—1}
are vertices and dependencies between steps are directed edges, denoted by E.

Definition 3 (Iteration Dependence Graph). An iteration dependence graph for an iterative
computation is a (directed acyclic) graph G(1, E) such that if every step i € I runs after
all predecessor steps in the graph complete, then every step will do the same computation
as in the sequential order.

The depth of an iteration dependence graph is referred to as the iteration depth, D(G).
It should be clear that one can correctly simulate a computation with iteration dependence
graph G in D(G) rounds, each running a set of steps in parallel. However, it may not be
clear how to efficiently determine for each step if all of its predecessors have completed. As
we will see, and not surprisingly, the method for doing this check is algorithm-specific. We
will say that a step can be efficiently checked if it can determine that all of its predecessors
have completed in constant work/depth, and efficiently updated if the step itself takes
constant work/depth.

The aggregate delay, A(G), of an iteration dependence graph G is defined to be the
sum of the heights (one plus the longest directed path to a vertex) of the vertices in G. To
understand why this is a useful measure, consider a process in which on every round all
steps that have not yet completed check to see if their predecessors are complete, and if so
they run and complete, otherwise they try again in the next round. Each round can be run in
parallel, and each step is delayed by a number of rounds corresponding to its height in G.
Assuming each non-completed step does constant work on each round, then the total work
across all steps and all rounds will be bounded by O(A(G)).

4.3 Algorithmic Design Techniques

For MIS and maximal matching, this chapter will analyze the iteration depth of subsets
of the elements to prove that the overall iteration depth of the algorithm is O(log®n)
w.h.p. Linear-work algorithms for the two problems will also be presented. For random

57

permutation, list contraction, and tree contraction, this chapter will show that the iteration
depth of the entire iteration dependence graph is O(logn) depth w.h.p., and aggregate
delay is O(n) in expectation. These three problems have steps that can be checked and
updated in constant time, although tree contraction requires a pre-processing step to allow
for efficient checking.

For these all of these problems, one can easily obtain implementations from the iteration
dependence graph. If steps in a computation can be efficiently checked and updated, then
an algorithm for a problem with iteration depth D(G) can be implemented with O(nD(G))
work and O(D(G)) depth simply by proceeding in rounds, where in each round all steps
check if their predecessors in the iteration dependence graph have been processed, and
proceed if so. As the goal is to obtain work-efficient (linear-work) algorithms, we prove
the following lemma, which will be used to obtain linear-work algorithms for random
permutation, list contraction, and tree contraction. The linear-work algorithms for MIS and
maximal matching will require analysis specific to the problem and do not use this lemma.

Lemma 1. If steps can be efficiently checked and updated, then an algorithm for a problem
with iteration depth D(G) can be implemented with O(A(G)) work and O(D(G) logn)
depth without concurrent reads/writes or O(D(G) log" n) depth with high probability with
concurrent reads/writes.

Proof. A step is defined to be ready if all of its predecessors in the iteration dependence
graph have been processed. The algorithm proceeds in rounds, where in each round all
remaining steps check if they are ready. If a step is ready, it proceeds in executing its
computation. After processing the ready steps, consider them as having been removed from
the iteration dependence graph, and hence the iteration depth of the remaining iteration
dependence graph is 1 less than before. The initial iteration depth is D(G), so D(G) rounds
suffice. In each round, the successful steps are packed out so that no additional work is
done for them in later rounds. The pack requires linear work in the number of remaining
steps. Since each round removes the leaves of the iteration dependence graph, and the
steps can be efficiently checked and updated, the work done on each step is proportional
to its height in the iteration dependence graph. The total work is proportional to the
sum of the heights of all steps in the iteration dependence graph, which is the aggregate
delay A(G). The depth of the algorithm is O(D(G)P(n)), where P(n) is the depth of the
pack. A standard implementation of pack requires O(log n) depth. However, approximate
compaction suffices for this purpose, and can be implemented work-efficiently in O(log™ n)
depth w.h.p. using concurrent reads/writes [174]. This proves the lemma.]

Algorithms developed using Lemma 1 can be mapped work-efficiently to the EREW
PRAM with O(D(G) log n) depth (if they do not require concurrent reads/writes), to the

58

CRCW PRAM with O(D(G) log™ n) depth w.h.p., and to the scan PRAM with O(D(G))
depth (again, if they do not require concurrent reads/writes). The multiplicative factor in
the depth only depends on how the pack is implemented, and processor allocation on each
iteration can be done using the same packing algorithm.

Two techniques that are used to obtain algorithms for the problems are described
below. The deterministic reservations method that checks all remaining steps in each round,
executing the ones whose dependencies have all been satisfied, gives algorithms satisfying
the bounds of Lemma 1. The activation-based approach directly activates a step when it is
ready.

Deterministic Reservations. The deterministic reservations approach is discussed in
Section 3.4.3. A fully parallel version of deterministic reservations which processes all
remaining iterates in every round gives algorithms satisfying the bounds in Lemma 1, and
this is the version used for analyzing linear-work implementations of random permuta-
tion, list contraction, and tree contraction. The linear-work MIS and maximal matching
implementations require a careful choice of prefix size, and so Lemma 1 is not used.

Activation-based Approach. The activation-based approach directly “wakes-up” (acti-
vates) each step exactly when it is ready [55, 218, 427]. In particular, the predecessors in
the iteration dependence graph are responsible for activating the step. At the beginning, the
algorithm identifies all the steps that do not depend on any others (for the problems studied
in this chapter, these can be determined easily). Then on each round, each active step
executes its computation, and then detects whether it is the last predecessor of a successor;
if so, it wakes up the successor. The approach is work-efficient since it only runs steps
exactly when they are needed. As we will see, the implementations are problem-specific.

4.4 Maximal Independent Set

The sequential algorithm for computing the MIS of a graph is a simple greedy algorithm,
shown in Algorithm 1 (refer to Section 2.4 for graph notation). In addition to a graph G, the
algorithm takes an arbitrary total ordering on the vertices 7. 7 is used to define priorities
on the vertices. The algorithm adds the first remaining vertex v according to 7 to the MIS
and then removes v and all of v’s neighbors from the graph, repeating until the graph is
empty. The MIS returned by this sequential algorithm is defined as the lexicographically
first MIS for GG according to 7.

By allowing vertices to be added to the MIS as soon as they have no higher-priority
neighbor, a parallel greedy algorithm is obtained (Algorithm 2). It is not difficult to see that
this algorithm returns the same MIS as the sequential algorithm. A simple proof proceeds
by induction on vertices in order. (A vertex v may only be resolved when all of its earlier
neighbors have been classified. If its earlier neighbors match the sequential algorithm, then

59

Algorithm 1 Sequential greedy algorithm for MIS

1: procedure SEQUENTIALGREEDYMIS(G = (V, E), m)
2 if |V| =0 then return ()

3 else

4: let v be the first vertex in V' by the ordering 7

5 V=V \ (vUN())

6 return v U SEQUENTIALGREEDYMIS(G[V], 7)

Algorithm 2 Parallel greedy algorithm for MIS

1: procedure PARALLELGREEDYMIS(G = (V, E), 7)

2 if |V| =0 then return ()

3 else

4: let W be the set of vertices in V' with no earlier neighbors (based on)
5 V' =V\(WUN(W))

6 return W U PARALLELGREEDYMIS(G[V'], 7)

it does too.) Naturally, the parallel algorithm may (and should, if there is to be any parallel
speedup) accept some vertices into the MIS at an earlier time than the sequential algorithm,
but the final set produced is the same.

Note that if Algorithm 2 regenerates the ordering m randomly on each recursive call
then the algorithm is effectively the same as Luby’s Algorithm A [310]. It is the fact that a
single permutation is used throughout that makes Algorithm 2 more difficult to analyze.

The iteration dependence graph. An iteration dependence graph for MIS can be con-
structed by taking the original graph and directing the edges from higher priority to lower
priority endpoints based on 7. Each iteration of Algorithm 2 can be viewed as adding all of
the roots of the dependence graph to the MIS, and removing them and their children from
the dependence graph. However, note that the iteration depth of the dependence graph is
only an upper bound on the number of rounds the MIS algorithm takes to finish. Indeed
for a complete graph, the longest directed path in the dependence graph is {2(n), but the
number of rounds is O(1).

Therefore, instead of arguing that the number of rounds is polylogarithmic directly from
the iteration depth of the entire graph, this section considers iteration dependence graphs
induced by subsets of vertices and shows that these have small longest paths and hence
small iteration depth. Aggregating across all subsets of vertices gives an upper bound on
the total iteration depth.

Analysis via a modified parallel algorithm. Analyzing the depth of Algorithm 2 directly
seems difficult as once some vertices are removed, the ordering among the set of remaining
vertices may not be uniformly random. Rather than analyzing the algorithm directly, we
preserve sufficient independence over priorities by adopting an analysis framework similar

60

Algorithm 3 Modified parallel greedy algorithm for MIS

1: procedure MODIFIEDPARALLELMIS(G = (V, E),)

2 if |V| =0 then return ()

3 else

4: choose prefix-size parameter §

5: let P = P(V, 7, ¢) be the vertices in the prefix

6: W = PARALLELGREEDYMIS(G|[P],)

7 V=V \(PUNW))

8 return W U MODIFIEDPARALLELMIS(G[V'], m)

to that of [111, 84]. Specifically, for the purpose of analysis, we consider a more restricted,
less parallel algorithm given by Algorithm 3.

Algorithm 3 differs from Algorithm 2 in that it considers only a prefix of the remaining
vertices rather than considering all vertices in parallel. This modification may cause some
vertices to be processed later than they would in Algorithm 2, which can only increase the
total number of iterations of the algorithm when the iterations are summed across all calls
to Algorithm 2. We will show that Algorithm 3 has a polylogarithmic number of iterations,
and hence Algorithm 2 does as well.

Each iteration (recursive call) of Algorithm 3 is referred to as a round. For an ordered
set V of vertices and fraction 0 < ¢ < 1, define the d-prefix of V, denoted by P(V,x,0),
to be the subset of vertices corresponding to the ¢ |V/| earliest in the ordering 7. During
each round, the algorithm selects the o-prefix of remaining vertices for some value of ¢ to
be discussed later. An MIS is then computed on the vertices in the prefix using Algorithm 2,
ignoring the rest of the graph. When the call to Algorithm 2 finishes, all vertices in the
prefix have been processed and either belong to the MIS or have a neighbor in the MIS. All
neighbors of these newly discovered MIS vertices and their incident edges are removed
from the graph to complete the round.

The advantage of analyzing Algorithm 3 instead of Algorithm 2 is that at the beginning
of each round, the ordering among remaining vertices is still uniform, as the removal of a
vertex outside of the prefix is independent of its position (priority) among vertices outside
of the prefix. The goal of the analysis is then to argue that (a) the number of iterations
in each parallel round is small, and (b) the number of rounds is small. The latter can be
accomplished directly by selecting prefixes that are “large enough,” and constructively
using a small number of rounds. Larger prefixes increase the number of iterations within
each round, however, so some care must be taken in tuning the prefix sizes.

The analysis assumes that the graph is arbitrary (i.e., adversarial), but that the ordering
on vertices is random. In contrast, the previous analyses in this style [111, 84] assume that
the underlying graph is random, a fact that is exploited to show that the number of iterations
within each round is small. The analysis in this section, on the other hand, must cope with

61

nonuniformity on the permutations of prefixes as the prefix is processed with Algorithm 2.

Reducing vertex degrees. A significant difficulty in analyzing the number of iterations of
a single round of Algorithm 3 (i.e., the execution of Algorithm 2 on a prefix) is that the
iterations of Algorithm 2 are not independent given a single random permutation that is not
regenerated after each iteration. The dependence, however, arises partly due to vertices of
drastically different degree, and can be bounded by considering only vertices of nearly the
same degree during each round.

Let A be the a priori maximum degree in the graph. The algorithm will select prefix
sizes so that after the ¢’th round, all remaining vertices have degree at most A /2" with
high probability. After log A < logn rounds, all vertices have degree 0, and thus can be
removed in a single iteration. Bounding the number of iterations in each round by O(logn)
then implies that Algorithm 3 has O(log® n) total iterations, and hence so does Algorithm 2.

The following lemma and corollary state that after processing the first Q(n log(n)/d)
vertices, all remaining vertices have degree at most d.

Lemma 2. Suppose that the ordering on vertices is uniformly random, and consider the
(¢/d)-prefix for any positive { and d < n. If a lexicographically first MIS of the prefix and
all of its neighbors are removed from G, then all remaining vertices have degree at most d
with probability at least 1 — n/é".

Proof. Consider the following sequential process, equivalent to the sequential Algorithm 1
(this proof refers to a recursive call of Algorithm 1 as a phase). The process consists of
nl/d phases. Initially, all vertices are live. Vertices become dead either when they are
added to the MIS or when a neighbor is added to the MIS. During each phase, randomly
select a vertex v, without replacement. The selected vertex may be live or dead. If v is
live, it has no earlier neighbors in the MIS. Add v to the MIS, after which v and all of its
neighbors become dead. If v is already dead, do nothing. Since vertices are selected in a
random order, this process is equivalent to choosing a permutation first, and then processing
the prefix.

Consider any vertex v not in the prefix. This proof will show that by the end of this
sequential process, u is unlikely to have more than d live neighbors. (Specifically, during
each phase that it has d neighbors, it is likely to become dead; thus, if it remains live, it
is unlikely to have many neighbors.) Consider the :’th phase of the sequential process.
If either u is dead or u has fewer than d live neighbors, then u alone cannot violate the
property stated in the lemma. Suppose instead that « has at least d live neighbors. Then the
probability that the i’th phase selects one of these neighbors is at least d/(n — i) > d/n. If
the live neighbor is selected, that neighbor is added to the MIS and u becomes dead. The
probability that u remains live during this phase is thus at most 1 — d/n. Since each phase
selects the next vertex uniformly at random, the probability that no phase selects any of the

62

d neighbors of u is at most (1 — d/n)°", where § = ¢/d. This failure probability is at most
((1 —d/n)"4)* < (1/e)’. Taking a union bound over all vertices completes the proof. [

Corollary 1. By setting 6 = (2" log(n)/A) for the i’th round of Algorithm 3, all remaining
vertices after the i’th round have degree at most A /2", with high probability.

Proof. This follows from Lemma 2 with £ > cInn and d = A/2¢ for any constant ¢ > 1.
The probability of success is at least 1 — 1/n", [

Bounding the number of iterations in each round. To bound the depth for each prefix
in Algorithm 3, an upper bound on the iteration depth of the iteration dependence graph
induced by the prefix is computed, as this path length provides an upper bound on the
iteration depth.

The following lemma implies that as long as the prefix is not too large with respect to
the maximum degree in the graph, then the longest path in the iteration dependence graph
of the prefix has length O(logn).

Lemma 3. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered d-prefix. For any { and r with { > r > 1, if § < r/d, then the longest
path in the iteration dependence graph has length O({) with probability at least 1 —n(r /()".

Proof. Consider an arbitrary set of & positions in the prefix—there are (5]?) of these, where

n is the number of vertices in the graph.® Label these positions from lowest to highest
(x1,...,x%). To have a directed path in these positions, there must be an edge between
x; and x;,1 for 1 < i < k. Having the prefix be randomly ordered is equivalent to first
selecting a random vertex for position x1, then x5, then x3, and so on. The probability of an
edge existing between x; and x5 is at most d/(n — 1), as x; has at most d neighbors and
there are n — 1 other vertices remaining to sample from. The probability of an edge between
x9 and 3 then becomes at most d/(n — 2). (In fact, the numerator should be d — 1 as x
already has an edge to x1, but rounding up here only weakens the bound.) In general, the
probability of an edge existing between x; and z;, is at most d/(n — i), as x; may have d
other neighbors and n — ¢ vertices remain in the graph. The probability increases with each
edge in the path since once x4, . . ., x; have been fixed, we may know, for example, that z;
has no edges to z1, . .., x;_o. Multiplying the k probabilities together gives the probability
of a directed path from z; to x, which is rounded up to (d/(n — k))*~1.

3The number of vertices n here refers to those that have not been processed yet. The bound holds whether
or not this number accounts for the fact that some vertices may be “removed” from the graph out of order, as
the n will cancel with another term that also has the same dependence.

63

Taking a union bound over all (5:) sets of k positions (i.e., over all length-k paths

through the prefix) gives a probability of at most
on d \"! eon* [d \"
k) \n—k "k) \n—k
. ednd *
- \k(n—k)
< 2e¢6d\ "
- k
where the last step holds for £ < n/2. Setting k = 4ef and § < r/d gives a probability of

at most n(r/£)* of having a path of length 4e/ or longer. Note that if 4e/ > n /2, violating
the assumption that £ < n/2, then n = O({), and hence the claim holds trivially. [

IN

Corollary 2. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered prefix. For an O(log(n)/d)-prefix or smaller, the longest path in the
iteration dependence graph has length O(logn) w.h.p. For a (1/d)-prefix or smaller, the
longest path has length O(logn/ loglogn) w.h.p.

Proof. For the first claim, applying Lemma 3 with r = clogn and ¢ = 4clogn for a
constant ¢ > 1/8 gives a success probability of at least 1 — 1/n®~!. For the second claim,
using 7 = 1 and ¢ = cIlnn/Inlnn for a constant ¢ > 2 gives a success probability of at
least 1 — 1/n°"2 for large enough n.]

The log n in this corollary should be treated as a constant across the execution of the
algorithm, so that the bounds hold with high probability with respect to the original graph.

Parallel greedy MIS has low depth. The number log n of rounds is now combined with
the O(log n) iterations per round to prove the following theorem on the number of iterations
in Algorithm 2.

Theorem 2. For a random ordering on vertices, where A is the maximum vertex degree,
Algorithm 2 requires O(log Alogn) = O(log® n) iterations w.h.p.

Proof. Let us first bound the number of rounds of Algorithm 3, choosing § = ¢2"In(n)/A
in the 2’th round, for some constant ¢ and constant Inn (i.e., n here means the original
number of vertices). Corollary 1 states that with probability at least 1 — 1/n°"!, vertex
degrees decrease in each round. Assuming this event occurs (i.e., vertex degree is d <
A /2%, Corollary 2 states that with probability at least 1 — 1/n°"!, the number of iterations
per round is at most O(clogn). Taking a union bound across any of these events failing

64

says that every round decreases the degree sufficiently, and thus the number of rounds
required is log A with probability at least 1 — 1/n~2. Multiplying the number of iterations
in each round by the number of rounds gives the theorem bound with a success probability
of at least 1 — 1/n°"3. Since Algorithm 3 only delays processing vertices as compared
to Algorithm 2, it follows that this bound on iterations also applies to Algorithm 2. The
constant in the big-O notation in the theorem statement is linear in c. L

4.4.1 Linear-work MIS Algorithms

While Algorithm 2 has low depth, a naive implementation will require O(m) work on each
iteration to process all edges and vertices and therefore a total O(m log®n) work. This
section describes two linear-work versions. The first follows the form of Algorithm 3, only
processing prefixes of appropriate size. It has the advantage that it is particularly easy to
implement, and is for the experiments. The second is an activation-based implementation
of Algorithm 2 that directly traverses the iteration dependence graph of the entire graph
only doing work on the roots and their neighbors on each iteration—and therefore every
edge is only processed once. The algorithm therefore does linear work and has depth that is
proportional to the number of iterations of the algorithm.

Prefix-based Implementation. The naive algorithm has high work because it processes
every vertex and edge in every iteration. Intuitively, if small enough prefixes are processed
(as in Algorithm 3) instead of the entire graph, there should be less wasted work. Indeed, a
prefix of size 1 yields the sequential algorithm with O(m) work but Q2(n) depth. There is
some trade-off here—increasing the prefix size increases the work but also increases the
parallelism. This section formalizes this intuition and describes a highly parallel algorithm
that has linear work.

To bound the work, the number of edges operated on while considering a prefix is
bounded. For any prefix P C V with respect to permutation 7, define the internal edges of
P to be the edges in the sub-DAG induced by P, i.e., those edges that connect vertices in
P. All other edges incident on P are referred to as external edges. The internal edges may
be processed multiple times, but external edges are processed only once.

The following lemma states that small prefixes have few internal edges. This lemma
will be used to bound the work incurred by processing edges. The important feature to note
is that for very small prefixes, i.e., 0 < k/d with k = o(1) and d denoting the maximum
degree in the graph, the number of internal edges in the prefix is sub-linear in the size of
the prefix, so the algorithm can afford to process those edges multiple times.

Lemma 4. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered §-prefix P. If 6 < k/d, then the expected number of internal edges in the
prefix is at most O(k | P)).

65

Proof. Consider a vertex in P. Each of its neighbors joins the prefix with probability
< k/d, so the expected number of neighbors is at most k. Summing over all vertices in P
gives the bound. O

The following related lemma states that for small prefixes, most vertices have no
incoming edges and can be removed immediately. This lemma will be used to bound the
work incurred by processing vertices, even those that may have already been added to the
MIS or implicitly removed from the graph.

Lemma 5. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered §-prefix P. If 6 < k/d, then the expected number of vertices in P with at
least 1 internal edge is at most O(k | P|).

Proof. Let X be the random variable denoting the number of internal edges in the prefix,
and let Xy, be the random variable denoting the number of vertices in the prefix with at
least 1 internal edge. Since an edge touches (only) two vertices, this gives Xy < 2Xp. It
follows that E[X | < 2E[Xg|, and hence E[Xy] = O(k|P|) from Lemma 4. O

The preceding lemmas indicate that small-enough prefixes are very sparse. Choosing
k = 1/logn, for example, the expected size of the subgraph induced by a prefix P is
O(|P] /logn), and hence it can be processed O(logn) times without exceeding linear
work. This fact suggests the following theorem. The implementation given in the theorem
is relatively simple. The prefix sizes can be determined a priori, and the status of vertices
can be updated lazily (i.e., when the vertex is processed). Moreover, each vertex and edge
is only densely packed into a new array once, with other operations being done in place on
the original vertex list.

Theorem 3. Algorithm 3 can be implemented to run in expected O(n + m) work and
O(log* n) depth with high probability.

Proof. This implementation updates a vertex’s status (entering the MIS or removed due to
a neighbor) only when that vertex is part of a prefix.

Let A be the a priori maximum vertex degree of the graph. As before, consider
the rounds of Algorithm 3, with round ¢ corresponding to an O(log(n)/d)-prefix where
d = A/2'. Corollary 1 states that each round reduces the maximum degree sufficiently,
w.h.p. This prefix, however, may be too dense, so each round is divided into log2 n
sub-rounds, each operating on an O(1/(dlogn))-prefix P. To implement a sub-round,
first process all external edges of P to remove those vertices with higher priority MIS
neighbors. Then accept any remaining vertices with no internal edges into the MIS. These
preceding steps are performed on the original vertex/edge lists, processing edges incident
on the prefix a constant number of times. Let P’ C P be the set of prefix vertices that

66

remain at this point. Use prefix sums to count the number of internal edges for each
vertex (which can be determined by comparing priorities), and densely pack G[P’] into
new arrays. This packing has O(logn) depth and linear work. Finally, process the induced
subgraph G[P’] using a naive implementation of Algorithm 2, which has depth O(D) and
work equal to O(|G[P’]| - D), where D is the iteration depth of P’. From Corollary 2,
D = O(logn) with high probability. Combining this with an expected prefix size of
E[|G[P']]] = O(|P|/logn) from Lemmas 4 and 5 yields expected O(|P|) work for
processing the prefix. Summing across all prefixes implies a total of O(n) expected work
for Algorithm 2 calls plus O(m) work in the worst case for processing external edges.
Multiplying the O(log n) prefix depth across all O(log® n) iterations (O(logn) iterations
per of Algorithm 2 per sub-round) completes the proof for depth. Similar to the proof of
Theorem 2, the success probability can be shown to be at least 1 — 1/n® for some large
enough constant «, with the constant in the big-O notation linear in «.]

This result can be translated to a PRAM algorithm with the same bounds, as each round
has O(log n) parallel slackness so processor allocation can be done with prefix sums.

Activation-based implementation. The idea of the linear-work implementation of Al-
gorithm 2 is to explicitly keep on each iteration of the algorithm the set of roots of the
remaining iteration dependence graph, e.g., as an array. With this set it is easy to identify
the neighbors in parallel and remove them, but it is trickier to identify the new root set for
the next iteration. One way to identify them would be to keep a count for each vertex of
the number of neighbors with higher priorities (parents in the iteration dependence graph),
decrement the counts whenever a parent is removed, and add a vertex to the root set when
its count goes to zero. The decrement, however, needs to be done in parallel since many
parents might be removed simultaneously. Such decrementing is hard to do work-efficiently
when only some vertices are being decremented. Instead, note that the algorithm only
needs to identify which vertices have at least one edge removed on the iteration and then
check each of these to see if all their edges have been removed. Define a misCheck on
a vertex as the operation of checking if it has any higher priority neighbors remaining.
The implementation assumes that the neighbors of a vertex have been pre-partitioned into
their parents (higher priorities) and children (lower priorities), and that edges are deleted
lazily—i.e., deleting a vertex just marks it as deleted without removing it from the adjacency
lists of its neighbors.

Lemma 6. For a graph with m edges and n vertices where vertices are marked as deleted
over time, any set of | misCheck operations can be done in O(l + m) total work, and any
set of misCheck operations in O(logn) depth.

Proof. The pointers to parents are kept as an array (with a pointer to the start of the array).
A vertex can be checked by examining the parents in order. If a parent is marked as deleted,

67

the edge is removed by incrementing the pointer to the array start and the cost is charged
to that edge. If it is not, the misCheck completes and the cost is charged to the check.
Therefore the total charged across all operations is [+ m, each of which does constant
work. Processing the parents in order would require linear depth, so instead a doubling
scheme is used: first examine one parent, then the next two, then the next four, etc. This
completes once a parent that is not deleted is found and all work is charged to the previous
ones that were deleted. The work can be at most twice the number of deleted edges thus
guaranteeing linear work. The doubling scheme requires O(logn) steps each step requires
O(1) depth, hence the overall depth is O(logn). O

Lemma 7. Algorithm 2 can be implemented in O(m) total work and O(log® n) depth with
high probability.

Proof. The implementation works by keeping the roots in an array, and on each iteration
marking the roots and its neighbors as deleted, and then using misCheck on the neighbors’
neighbors to determine which ones belong in the root array for the next iteration. The
total number of checks is at most m, so the total work spent on checks is O(m). After
the misCheck’s all vertices with no previous vertex remaining are added to the root set for
the next iteration. Some care needs to be taken to avoid duplicates in the root array since
multiple neighbors might check the same vertex. Duplicates can be avoided, however, by
having the neighbor write its identifier into the checked vertex using an arbitrary concurrent
write, and whichever write succeeds is responsible for adding the vertex to the new root
array. Each iteration can be implemented in O(logn) depth, required for the checks and for
packing the successful checks into a new root set. Multiplying by the O(log® n) iterations
gives an overall depth of O(log® n) w.h.p. Every vertex and its edges are visited once when
removing them, and the total work on checks is O(m), so the overall work is O(m). [

Again, this result can be translated to a CRCW PRAM algorithm with the same work
and depth bounds.

4.5 Maximal Matching

One way to implement maximal matching (MM) is to reduce it to MIS by replacing each
edge with a vertex, and creating an edge between all adjacent edges in the original graph.
An iteration dependence graph for MM is defined using this reduction. This reduction,
however, can significantly increase the number of edges in the graph and therefore may
not take work that is linear in the size of the original graph. Instead a standard greedy
sequential algorithm is used to process the edges in an arbitrary order and include the edge
in the MM if and only if no neighboring edge on either endpoint has already been added.
As with the vertices in the greedy MIS algorithms, edges can be processed out of order

68

Algorithm 4 Parallel greedy algorithm for MM

1: procedure PARALLELGREEDYMM(G = (V, E), 7)

2 if |[E| =0 then return ()

3: else

4 let W be the set of edges in £ with no adjacent edges with higher priority by 7
5 E'=E\ (WUNW))

6: return W U PARALLELGREEDYMM(G|E'], m)

Algorithm 5 Modified parallel greedy algorithm for MM

1: procedure MODIFIEDPARALLELMM(G = (V, E), 7)

2 if |V| =0 then return ()

3 else

4: choose prefix-size parameter §

5: let P = P(E, m,0) be the edges in the prefix

6: W = PARALLELGREEDYMM(G|[P], m)

7 E' =E\ (PUNW))

8 return 1 U MODIFIEDPARALLELMM(GI[E'], 7)

when they do not have any earlier neighboring edges. This idea leads to Algorithm 4 where
7 is now an ordering of the edges.

Lemma 8. For a random ordering on edges, the number of iterations of Algorithm 4 is
O(log® m) with high probability.

Proof. This follows directly from the reduction to MIS described above. In particular an
edge is added or deleted in Algorithm 4 exactly on the same iteration it would be for the
corresponding MIS graph in Algorithm 2. Therefore Lemma 2 applies.]

As done for MIS in the previous section, this section describes two linear-work algo-
rithms for maximal matching, the first of which processes prefixes of the vertices in priority
order and the second of which maintains the set of roots in the iteration dependence graph.
The first algorithm is easier to implement and is the version used in the experiments.

Prefix-based implementation. Algorithm 5 is the prefix-based algorithm for maximal
matching (the analogue of Algorithm 3). To obtain a linear-work maximal matching
algorithm, Algorithm 5 is used with a prefix-size parameter 6 = 1/d., where d, is the
maximum number of neighboring edges any edge in GG has. Each call to Algorithm 4 in
Line 6 of Algorithm 5 proceeds in iterations. The algorithm assumes that the edges are
pre-sorted by priority (for random priorities they can be sorted in linear work and within
the depth bounds with bucket sorting [112]).

In each iteration, first every edge in the prefix does a priority write to its two endpoints
(attempting to record its rank in the permutation), and after all writes are performed, every

69

edge checks whether it won on (its value was written to) both endpoints. Since edges are
sorted by priority, the highest priority edge incident on each vertex wins. If an edge wins
on both sides, then it adds itself to the maximal matching and deletes all of its neighboring
edges (by packing). Each edge does constant work per iteration for writing and checking.
The packing takes work proportional to the remaining size of the prefix. It remains to show
that the expected number of times an edge in the prefix is processed is constant.

Consider the iteration dependence graph on the J-prefix of £, where a vertex in the
iteration dependence graph corresponds to an edge in the original graph G, and a directed
edge exists in the iteration dependence graph from FE; to E; if and only if F; is adjacent
to F; in G and E; has a higher priority than F;. Note that this iteration dependence graph
is not explicitly constructed. Define the height of a vertex v, in the iteration dependence
graph to be the length of the longest incoming path to v.. The height of v, is an upper
bound on the number of iterations of processing the iteration dependence graph required
until v, is either added to the MM or deleted.

Theorem 4. For a (1/d,)-prefix, the expected height of any vertex in the iteration depen-
dence graph (corresponding to an edge in the original graph G) is O(1).

Proof. For a given vertex v, the expected length of a directed path ending at v, is computed.
For there to be a length £ path to v, there must be £ positions py, . . ., px (listed in priority
order) before v.’s position, p., in the prefix such that there exists a directed edge from py, to
pe and for all 1 < ¢ < k, a directed edge from p; to p; ;. Using an argument similar to the
one used in the proof of Lemma 3, the probability of this particular path existing is at most
(de/(m — k))*. The number of positions appearing before p, in the prefix is at most the
size of the prefix itself. So summing over all possible choices of k positions implies that
the probability of a directed path from the root to some vertex being length £ is

() (5 = ())
“ (o)

Now the expected length of a path from the root vertex is computed by summing over all
possible lengths. This expectation is upper bounded by

ik(%)kf :ﬁk(m)k +mPr(k > m/2)

IN
T~
VR
=K
~_

ol

—0(1)

To obtain the last inequality Lemma 3 is applied, giving Pr(k > m/2) = O(1/m¢) for
¢ > 1. The desired bound is obtained by using the formula >, ; k(z*)/k! = ze®. O

Lemma 9. Given a graph with m edges, n vertices, and a random permutation on
the edges , Algorithm 5 can be implemented in O(m) total work in expectation and
O(log* m/ loglog m) depth with high probability.

Proof. Consider the rounds (recursive calls) of Algorithm 5. Each round operates on an
O(1/d.)-prefix, so after O(logm) rounds an O(log(m)/d.)-prefix is processed, and d.
decreases by a constant factor w.h.p. by Lemma 2. Therefore, a total of O(log® m) rounds
are required until completion.

In each round, each iteration of Algorithm 4 processes the top level (root vertices) of
the iteration dependence graph. Once an edge gets processed as a root of the iteration
dependence graph or gets deleted by another edge, it will not be processed again in the
algorithm. Since the expected height of an edge in the iteration dependence graph is O(1),
it will be processed a constant number of times in expectation (each time doing a constant
amount of work), and contributes a constant amount of work to the packing cost. Hence the
total work is linear in expectation.

For a given round, the packing per iteration requires O(log | P|) depth where | P| is the
remaining size of the prefix. By Corollary 2, there are at most O(logm/ loglogm) itera-
tions w.h.p. Therefore, each round requires O(log® m/ loglog m) depth and the algorithm
has an overall depth of O(log*m/loglogm) w.h.p. As in the proof of Theorem 2, the
success probability can be shown to be at least 1 — 1/n® for some large enough constant «,
with the constant in the big-O notation linear in a. Ol

The algorithm can be implemented on a PRAM with the same complexity.

Activation-based Implementation. As with the algorithm used in Lemma 7, on each
round an array of roots (edges that have no neighboring edges with higher priority) can
be maintained and used to both delete edges and generate the root set for the next round.
However, the algorithm cannot afford to look at all the neighbors’ neighbors. Instead
for each vertex an array of its incident edges sorted by priority is maintained. This list
is maintained lazily such that deleting an edge only marks it as deleted and does not
immediately remove it from its two incident vertices. Refer to an edge as ready if it has
no remaining neighboring edges with higher priority. The algorithm uses an mmCheck
procedure on a vertex to determine if any incident edge is ready and identifies the edge if
so—a vertex can have at most one ready incident edge. The mmChecks do not happen in
parallel with edge deletions.

71

Lemma 10. For a graph with m edges and n vertices where edges are marked as deleted
over time, any set of | mmCheck operations can be done in O(l + m) total work, and any
set of mmCheck operations in O(log m) depth.

Proof. The mmCheck is partitioned into two phases. The first phase identifies the highest
priority incident edge that remains, and the second phase checks if that edge is also the
highest priority on its other endpoint and returns it if so. The first phase can be done by
scanning the edges in priority order, removing those that have been deleted and stopping
when the first non-deleted edge is found. As in Lemma 6 this can be done in parallel using
doubling in O(log m) depth, and the work can be charged either to a deleted edge, which is
removed, or the check itself. The total work is therefore O(l + m). The second phase can
similarly use doubling to see if the highest priority edge is also the highest priority on the
other side. O]

Lemma 11. For a random ordering on the edges, Algorithm 4 can be implemented in O(m)
total work and O(log® m) depth with high probability.

Proof. Since the edge priorities are selected at random, the initial sort to order the edges
incident on each vertex can be done in O(m) work and within the depth bounds w.h.p. using
bucket sorting [112]. Initially the set of ready edges are selected by using an mmCheck
on all edges. On each iteration of Algorithm 4, the set of ready edges and their neighbors
are deleted (by marking them), and then all vertices incident on the far end of each of the
deleted neighboring edges are checked. This returns the new set of ready edges in O(log m)
depth. Redundant edges can easily be removed. Thus the depth per iteration is O(logm)
and by Lemma 8 the total depth is O(log® m). Every edge is deleted once and the total
number of checks is O(m), so the total work is O(m). O

This algorithm can be implemented on a CRCW PRAM with the same work and depth
bounds.

4.6 Random Permutation

Durstenfeld [139] and Knuth [270] discuss a simple sequential algorithm for generating
a random permutation which goes through the elements of an array from the end to the
beginning (or the other way), and for each element swaps with a random position in the array
earlier than or at the current position. This chapter assumes that the random integers used in
the algorithm are generated beforehand, and stored in an array H—i.e., for 0 < i < n, H|[i]
is a (uniformly) random integer from 0 to 7, inclusive. The pseudocode for Durstenfeld’s
sequential algorithm is given in Figure 4.1.

72

1: procedure SEQUENTIALRANDPERM(A, H)
2: fori=n—1to0do
3: swap(A[Hi]], A[i])

Figure 4.1: Sequential algorithm for random permutation.

4.6.1 Iteration Dependence Depth and Aggregate Delay

To analyze the iteration dependence depth of Durstenfeld’s algorithm, the following defini-
tions will be used. When performing a swap(x, y), « is the source of the swap and y is the
target of the swap. For a given H, define i to dominate j if H[i] = j and i # j. Define the
dominance forest of H to be the directed graph formed on 7 nodes where node 7 points to
node j if 7 dominates j. Since each node can dominate at most one other node, the graph is
a forest. Note that the roots of the dominance forest are exactly the nodes where H[i] = i.

Define the dependence forest of H to be a modification of the dominance forest where
the children of each node (from incoming edges) are chained together in decreasing order.
In particular, for a node ¢ with incoming edges from nodes j; < ... < ji, add an edge from
Jip1 to gy for 1 <[< k (creating a chain) and delete the edges from j; to ¢ for [> 1. Note
that the dependence forest is binary, since each node can have at most one incoming edge
from the set of nodes pointing to it in the dominance forest, and since it can be part of at
most one chain. See Figures 4.2(a) and 4.2(b) for an example of the dominance forest and
dependence forest for a given H.

Lemma 12. The dependence forest of H is an iteration dependence graph for SEQUEN-
TIALRANDPERM.

Proof. Define a step to be ready if all of its descendants in the dependence forest have been
processed. The proof will show that when a step is ready, its corresponding location in
A will contain the same value as it would have when the sequential algorithm processes
it. The proof uses induction on the iteration in which a step is processed in the sequential
algorithm (i.e., step n — 1 is the first and step O is the last).

The base case is trivial as step n — 1 is ready at the start of any ordering (no node can
point to n — 1 in the dependence forest) and has the correct value (location n — 1 cannot
be the target of any swap with another element). Consider some step . Suppose there
are multiple steps ji,. .., jr, Where j; < j» < ... < ji, with location ¢ as the target of
a swap operation. Since 7 < j; < ... < jg, by the inductive hypothesis we may assume
that steps 1, . . ., jr had the correct value in their corresponding locations in A when they
were ready. The sequential algorithm will perform the swaps in decreasing order of the
steps (jr down to j;), and since ¢ < ji, in the sequential algorithm location ¢ will not
be the source of a swap until all of steps ji, ..., jr have been processed. Any ordering
respecting the dependence forest will also process steps ji, . . ., ji in decreasing order, since

73

©
)
©
)

(>)

) @ O O—0—0O

(a) Dominance forest (b) Dependence forest (c) Linked dependence tree

(d) Possible locations for H[8]

Figure 4.2: Dominance and dependence forests for H = [0,0,1,3,1,2,3,1] are shown in (a) and (b),
respectively. (c) shows the linked dependence tree for H and (d) shows the possible locations for inserting
the 9’th node; dashed circles correspond to the value of H|[8].

by definition the dependence forest contains a directed path from j; to j;. The fact that
Ji,- - -, Ji have the same value as in the sequential algorithm when they are ready, and that
they are processed in the same order as the sequential algorithm implies that the location
corresponding to step ¢ will also have the same value as in the sequential algorithm when it
is ready (i.e., after all of its incoming steps have been processed).]

The goal is to show that the dependence forest is shallow. To do this, we will actually
add some additional edges to make a tree and then show that this tree has an identical
distribution as random binary search trees, which are known to have O(log n) depth with
high probability. The standard definition of a random binary search tree will be used, i.e.,
the tree generated by inserting a random permutation of the integers {0,...,n — 1} into
a binary search tree. Define the linked dependence tree as the tree created by linking the

74

roots of the dependence forest along the right spine of a tree with indices appearing in
ascending order from the top of the spine to the bottom (see Figure 4.2(c) for an example
of the linked dependence tree). The linked dependence tree is clearly also an iteration
dependence graph since it only adds constraints.

Theorem 5. Given a random H, the distribution of (unlabeled) linked dependence trees
for H is identical to the distribution of (unlabeled) random binary search trees.

Proof. This is proved by induction on the input size n. For the base case, n = 1, there is
a single vertex and the claim is trivially true. For the inductive case, note that the linked
dependence tree for the first n — 1 locations is not affected by the last location since numbers
at H|[i] point at or before i—i.e., the last location will end up as a leaf. By the inductive
hypothesis, the distribution of trees on the first n — 1 locations has the same distribution
as random binary search trees of size n — 1. Now we claim that, justified below, the n’th
element can go into any leaf position. Since the n’th location is a uniformly random integer
from 0 to n — 1 and there are n possible leaf positions in a binary tree of size n — 1, all
leafs must be equally likely. Hence this is the same process as inserting randomly into a
binary search tree.

To see that the n’th location can go into any leaf, first note that if it picks itself (index
n — 1), then it is at the bottom of the right spine of the tree, by definition. Otherwise if it
picks 7 < n — 1, and it will be placed at the bottom of the right spine of the left child of j.
This allows for all possible tree positions—to be a left child of a node just pick the parent,
and to be a right child follow the right spine up to the top, then pick its parent (e.g., see
Figure 4.2(d)).]

Theorem 6. For SEQUENTIALRANDPERM on a random H of length n, there is an iteration
dependence graph G with D(G) = O(logn) with high probability, and A(G) = ©O(n) in
expectation.

Proof. For the depth, it is a well-known fact that the height of a random binary search
tree on n nodes is ©(log n) w.h.p. [136]. For example, to be exact, the height is bounded
by 4elogn with probability at least 1 — 1/n%*! (see Lemma 3.1 in [136]). Therefore,
Theorem 5 implies that the longest path in the iteration dependence graph is O(logn) w.h.p.
To show that this is tight, note that node 0 has ©(log n) incoming edges in the dominance
forest w.h.p. This can be shown by applying Chernoff bounds [341] on the sum of indicator
variables X}, (indicating whether H[k] = 0) from k = 0,...,n — 1, where X} = 1 with
probability 1/(k + 1). With probability at least 1 — 1/n%"/2, the sum is at least (1 — §) H,,
where H,, ~ Inn is the n’th harmonic number and 0 < § < 1. Hence the longest path to it
in the iteration dependence graph is Q2(logn) w.h.p.

75

1: H = swap targets

22 R={-1,...,—-1}

3: procedure RESERVE(?)

4: writeMax (R[i],) > reserve own location
5: writeMax(R[H [i]],7) > reserve target location
6: return 1

7: procedure COMMIT(z)

8: if (R[i] = ¢ and R[H[i]] = i) then

9: swap(A[H[i]], A[i]) > swap if reserved
10: return 0
11: else return 1

Figure 4.3: RESERVE and COMMIT functions and associated data for random permutation using deterministic
reservations.

To analyze the aggregate delay, let us analyze the sum of heights of the nodes in a
random binary search tree. Let W (n) indicate the expected sum. The two children of
the root of a random binary search tree are also random binary search trees of size ¢ and
n —1i — 1, respectively, for a randomly chosen i in {0, ..., n — 1}. This gives the recurrence
W (n) = Height(n) + (1/n) 31— (W (i) + W (n — i — 1)), where Height(n) = ©(log n)
is the expected height of a random binary search tree with n nodes. This solves to ©(n)
and hence the theorem follows. L

4.6.2 Algorithms

This section describes parallel implementations of random permutation that return the same
result as Durstenfeld’s sequential algorithm.

Deterministic reservations-based implementation. To implement the random permuta-
tion algorithm using deterministic reservations, the RESERVE and COMMIT functions shown
in Figure 4.3 are used. The implementation uses an array R, initialized to contain all —1, to
store reservations. The implementation uses the function writeMax(l,7), a special case of
the priority update described in Chapter 6 which writes value 7 to location [such that the
maximum value written to [will end up in that location. The RESERVE function for index
i simply calls writeMax to the two locations R[i| and R[H [i]] with value i and returns 1.
The COMMIT function simply checks if both writeMax’s were successful (i.e., both R[]
and R[H [i]] store the value) and if so, swaps A[H[i]] and A[i] and returns O; otherwise it
returns 1. This process guarantees that a step will successfully commit (swap) if and only
if its children in the dependence forest have finished in a previous round of deterministic
reservations. This is because if any child were not finished, then it would have competed in
the writeMax and won since it has a higher index. In particular, the left child as shown in
Figure 4.2(b) will win on R[i] and the right child in that figure will win on R[H [i]].

76

Theorem 7. For a random H, deterministic reservations using the RESERVE and COMMIT
functions for random permutation runs in O(n) expected work and O(lognlog" n) depth
with high probability using concurrent reads/writes.

Proof. Apply Theorem 6 and Lemma 1. The RESERVE and COMMIT functions take constant
work/depth, so the steps of the computation can be efficiently checked and updated. The
writeMax requires concurrent reads/writes. U

This implementation can be mapped to the priority CRCW PRAM, as processor alloca-
tion on each round of deterministic reservations can be done in O(log™ n) depth w.h.p.

Activation-Based Implementation. A linear-work activation-based implementation of the
parallel random permutation algorithm is now presented. The implementation keeps track
of the nodes ready to be executed of the dependence graph, processes and deletes these
nodes from the graph in each round, and identifies the new nodes that are ready for the next
round. It relies on explicitly constructing the dependence forest, and the following lemma
states that this can be done efficiently.

Lemma 13. The dependence forest for a given H can be constructed in O(n) expected
work and O(logn) depth with high probability.

Proof. Building the dependence forest of random permutation for a given H requires
sorting all of the nodes which point to the same node in the forest. This can be done by (1)
using a non-stable integer sort in the range [0, ..., n — 1] [388] to group all the nodes, and
then (2) sorting the nodes within each group using a parallel comparison sort [243]. (1) can
be done in O(n) work and O(logn) depth (using concurrent reads/writes). The depth for
(2) is O(loglog n) w.h.p. since the largest group is of size O(logn) w.h.p. The total work
for (2) is 2?2—01 cs; log s; where s; is the number of nodes pointing to node ¢ and ¢ is a
constant. To show that Z;:Ol c18;1og s; = O(n), a similar argument used in the analysis of
perfect hash tables can be used [341]. Let X;; = 1 if H[i] = H|[j] and X;; = 0 otherwise.

n—1 n—1
Z c1s;log s; < Z o7 for some constant ¢,
=0 1=0
n—1 n—1
=) D X
i=0 j=0
n—1 n—1
=y (n + 2 Z Z Xij) consider X;; where i < j
i=0 j=i+1
n—1 n—1 1 1
<o <n+2;j;1i+1j+—1> *)

77

The line marked (*) follows because H [i] and H [j] are independent.
After sorting, creating the pointers in the dependence forest takes O(n) work and O(1)
depth.]

The algorithm in Lemma 13 works on the CRCW PRAM as the integer sort requires
concurrent reads and writes. The following theorem uses Lemma 13 to design an activation-
based random permutation algorithm.

Theorem 8. For a random H, an activation-based implementation of random permutation
runs in O(n) expected work and O(lognlog™ n) depth with high probability.

Proof. The algorithm forms the dependence forest for a given H, which by Lemma 13 can
be done in O(n) expected work and O(logn) depth w.h.p.

The leaves of the dependence forest are first identified, and at each step the set of leaves
is maintained (these are the steps that are ready to be processed). Then the algorithm repeat-
edly processes the leaf set, removes it and its edges from the graph, and identifies the new
leaf set until the dependence forest has been completely processed. Since all dependencies
in the dependence forest are satisfied, by Lemma 12, this guarantees correctness. The
algorithm assumes that the neighbors of a node are represented in an array, and partitioned
into incoming edges and outgoing edges. To identify the new leaf set at each step, nodes
that are removed perform a check on its parent to see if it has any incoming edges remaining.
The check can be done in O(1) work and time per neighbor since each node has at most
two incoming edges.

After all checks are completed, nodes with no incoming edges are added to the next leaf
set. Duplicates can be eliminated by filtering in work linear in the size of the new leaf set
since each node can be duplicated at most once (each node has at most 2 incoming edges).
The new leaf set is packed with approximate compaction, requiring work linear in the leaf
set size and O(log™ n) depth w.h.p. Each step is processed a constant number of times, so
the total work is O(n). Each round reduces the iteration depth of the iteration dependence
graph on the remaining steps by 1, and since the initial iteration depth is ©(log n) w.h.p. by
Theorem 6, the overall depth is O(log nlog™ n) w.h.p. O

78

The activation-based algorithm runs on the CRCW PRAM as processor allocation can
be done with approximate compaction.

Adapting to the CRQW PRAM. The random permutation algorithms can be adapted
to the concurrent-read queue-write (CRQW) PRAM [169, 171], which closely models
cache coherence protocols in multicore machines. In this model, concurrent reads to a
memory location are charged unit cost but concurrent writes to a memory location have a
contention cost equal to the total number of concurrent writes to the location. In each step,
the maximum contention over all locations is charged to the depth.

Lemma 13 also applies for the CRQW PRAM as integer sorting can be done in O(n)
work and O(logn) depth w.h.p. on the CRQW PRAM [169], and comparison sorting can
be implemented on an EREW PRAM (a weaker model than the CRQW PRAM). Packing
on the CRQW PRAM can be done in linear work and O(+/log n) depth w.h.p. [171], so an
activation-based implementation of the sequential algorithm can be made to run in O(n)
expected work and O(log®? n) depth w.h.p.

The deterministic reservation-based implementation of random permutation can also
be adapted to the CRQW PRAM, using prefix sums for packing. The only place in the
algorithm that requires concurrent writes is the call to writeMax. However since the
dominance forest has in-degree O(log n) w.h.p., there can be at most O(logn) concurrent
calls to writeMax to a given location, leading to O(log n) contention. This requires O(log n)
additional slackness (depth) per step. Using prefix sums for packing, each round already
requires O(logn) depth, so this slackness does not affect the overall bounds. Therefore,
the algorithm runs in linear work and O(log® n) depth w.h.p. on the CRQW PRAM.

Random Permutation via Rotations. The following describes another parallel implemen-
tation of the sequential algorithm, using the fact that the values at the locations of the
nodes pointing to the same node in the dominance forest just get rotated. In particular,
if 71,...,7; with 7; < 4;1 point to 7, then after all other dependencies to i1, ..., are
resolved, A[j] = Alix], Ali1] = A[j], and Ali;11] = A[i] for 1 < [< k. This algorithm
builds the dominance forest using an integer sort to group the nodes and then a comparison
sort within each group in O(n) work and O(log n) depth w.h.p. by the same analysis as
done in the proof of Lemma 13. Then it processes the forest level by level, starting with
the leaves, and rotating the values of each group of leaves and the target node. The level
numbers for the nodes can be computed using leaffix operations or Euler tours [243] in
linear work and O(logn) depth. Rotating the values can be done in work proportional to
the number of nodes processed, and O(1) depth. As the height of the dominance forest is
O(logn) w.h.p., this gives an algorithm with O(n) work and O(logn) depth w.h.p. The
algorithm can be mapped to the CRCW PRAM or CRQW PRAM in the same bounds.

79

1: procedure SEQUENTIALLISTCONTRACT(L)
2 fori =0ton —1do

3 if L[i].prev # null then

4: L[L[i].prev].next = L[i].next

5 if L[i].next # null then

6 L[L[i].next|.prev = L[i].prev

Figure 4.4: Sequential algorithm for list contraction.

4.7 List Contraction

List contraction, and the related list ranking, is one of the most canonical problems in
the study of parallel algorithms. The problem has received considerable attention both
because of its fundamental nature as a pointer-based algorithm, and also because it has
many applications as a subroutine in other algorithms. A summary of the work can be
found in a variety of books and surveys (see, e.g., [259, 243, 395]).

This section is concerned with analyzing a simple sequential algorithm for list contrac-
tion and showing that it has low iteration depth and aggregate delay. Assume the linked list
is represented as an array L of nodes, where L[i].prev stores the index of the predecessor
of node ¢ (null if none) and L[i].next stores the index of the successor of node i (null if
none). A natural sequential iterative algorithm works by splicing out the nodes in order
of increasing index, as shown in Figure 4.4. Each list in L is contracted down to a single
node. For simplicity the values stored on the nodes are not shown. If values are stored,
then when a node is spliced out its value is combined with its predecessor’s value using a
combining function, and stored on its predecessor. To perform list ranking, the process is
then reversed, adding the nodes back in with the appropriate values. Note that when the
combining function is non-associative, then the result depends on the order in which the
nodes are spliced out. In such a case, a parallel computation returns the same answer as
the sequential algorithm if it satisfies the dependence structure of the sequential algorithm,
which is defined next.

4.7.1 Iteration Dependence Depth and Aggregate Delay

The dependence forest for an input L is defined as follows. For a list, place the last position
k in which any of its links appear at the root r of a tree. Now recursively for the sublists on
each side of the node in position k, do the same and make the two roots the children of r. If
either sublist is empty, r will not have a child on that side. This defines a tree for each list
and a forest across multiple lists. As with the dependence forest for random permutation,
the dependencies go up the tree—i.e., each parent depends on its children. An example list
along with its dependence forest is shown in Figure 4.5.

80

(a) List (b) Dependence forest

Figure 4.5: (a) An example list, where the numbers represent the position in the input array L, and (b) its
dependence forest.

Lemma 14. The dependence forest of L is an iteration dependence graph for
SEQUENTIALLISTCONTRACT(L).

Proof. For each step i, let j and £ be the indices of prev and next nodes when i is spliced
out in the sequential order. Clearly j and £ must both be larger than ¢ (or null) since they
have not yet been spliced out. It suffices to show that for each ¢, once all of its descendants
in the dependence forest are completed (spliced out), possibly not in the sequential order, it
will point to j and k, and hence will do an identical splice as in the sequential order. By
induction, this is assumed to be true for all indices less than i.

Consider the sublist between j and £ (not inclusive). The index ¢ must be the largest
index on this list because if there were a larger index [, when 7 is contracted in the sequential
order it cannot be linked with both j and £—I must be in the way. By construction of the
dependence forest, and because : is the largest on the sublist, it is picked as the root of a tree
containing the sublist. Therefore, when all descendants are completed (and by induction,
they operated correctly) all other nodes on the sublist have been spliced out and ¢ will point
to 7 and k.

[

Lemma 15. Assuming that the ordering of L has been randomized, for each list in L the
distribution of (unlabeled) dependence trees is identical to the distribution of (unlabeled)
random binary search trees of the same size.

Proof. The root node of the dependence tree can appear in any position of the list with
equal probability, since L is randomly ordered. This property also holds for each sublist
of the list. Therefore in each subtree all nodes are equally likely to be the root, which is
equivalent to the distribution for random binary search trees.]

The following theorem now follows from the same argument as in Theorem 6 since
the iteration dependence graph (for each list) has the same distribution—a random binary
search tree. There are no dependencies among different lists.

81

1: R={0,...,0} > boolean array
2: procedure RESERVE(%)

3: if i < L[i].prev and ¢ < L[i].next then

4: Rli]=1 > reserve own location
5: return 1

6: procedure COMMIT(%)

7: if (R[i] = 1) then

8: if L[i].prev # null then

9: L[L[i].prev].next = L[i].next

10: if L[i].next # null then

11: L[L[i].next].prev = L[i].prev
12: return 0

13: else return 1

Figure 4.6: RESERVE and COMMIT functions and associated data for list contraction using deterministic
reservations.

Theorem 9. For SEQUENTIALLISTCONTRACT on a randomly ordered L of length n, there
is an iteration dependence graph G with D(G) = O(logn) with high probability, and
A(G) = O(n) in expectation.

4.7.2 Algorithms

This section describes parallel implementations of the list contraction that satisfy the
dependencies of the sequential iterative algorithm.

Deterministic reservation-based implementation. The deterministic reservations imple-
mentation of list contraction (pseudocode shown in Figure 4.6) maintains a boolean array
R initialized to all 0’s. The RESERVE function for index i checks if ¢ < L][i].prev and
i < L[i].next, and if so, writes a value of 1 to R[:]. The COMMIT function for index i
checks if R[i] is equal to 1 and if so, splices out the node L[i] and returns 0; otherwise
it returns 1. These functions preserve the ordering imposed by the iteration dependence
graph of L throughout its execution. To see this, note that if neither of its current neighbors
in the list is lower-indexed, then step ¢ will be a leaf in the iteration dependence graph
by definition (both neighbors will be selected as roots before 7 in the dependence graph
construction process, so ¢ will have no descendants). Only in this case will R[i] be set to
1 in the RESERVE phase, and the COMMIT phase of step 7 be executed. Otherwise, step ¢
will not proceed. Therefore, by Lemma 14, it generates the same result as the sequential
algorithm.

The RESERVE and COMMIT functions take constant work/depth, so the steps of the
computation can be efficiently checked and updated. Applying Theorem 9 and 1 gives

82

the following theorem for list contraction. List contraction can be implemented without
concurrency because reads and writes of the neighbors inside the RESERVE and COMMIT
steps can be separated into a constant number of phases such that there are no reads or
writes to the same location in a phase.

Theorem 10. For a random ordering of L, deterministic reservations using the RESERVE
and COMMIT functions for list contraction runs in O(n) expected work and O(log® n)) depth
w.h.p. without concurrent reads/writes or O(lognlog” n) depth w.h.p. with concurrent
reads/writes.

Activation-Based Implementation.

Theorem 11. For a random ordering of L, an activation-based implementation of list
contraction runs in O(n) work or O(log® n) depth w.h.p. without concurrent reads/writes,
and O(log nlog™ n) depth w.h.p. using concurrent reads/writes.

Proof. For each node, the algorithm stores a counter keeping track of the number of lower-
indexed neighbors it has in the list. These counters can be initialized in linear work and
constant depth. Then it identifies the “roots”, which are the nodes whose counters are 0
(they have no lower-indexed neighbors). In each round, all roots are processed, and the
counters of their neighbors are updated as follows. For a root v, let v,,.,; be the successor
node of v and v, be the predecessor node of v. Let us first analyze the case where
Uneat > Uprey. By definition of a root, vy, > v. After splicing out v, v,.,; becomes a
neighbor of v,,., so the algorithm decrements the counter of v,,,. If the counter of v,
reaches 0, then v, is added to the next set of roots. The counter of v, 18 left unchanged
as its new neighbor is still a lower-indexed neighbor. In the case where vy,re,, > Upeat, the
algorithm decrements the counter of v,,.,;, and checks whether it reaches 0. By splitting
the reads and updates of neighbors into a constant number of phases, no concurrent reads
or writes are required.

It can be seen that this algorithm satisfies the iteration dependence graph by noting that
a node will only be spliced out if both of its neighbors in the list have higher indices, and
appealing to the same argument made for the correctness of the deterministic reservations-
based implementation of list contraction. Each round processes all leaves in the dependence
graph, so by Theorem 9, O(log n) rounds are sufficient w.h.p. to process all of the nodes.
On each round, O(P(n)) depth is required for packing the new roots into an array, leading
to a total of O(P(n) logn) depth w.h.p. across all rounds. P(n) is O(logn) if using prefix
sums and O(log" n) w.h.p. if using approximate compaction. The work spent on each node
1S constant, since its counter is decremented a constant number of times. The work for
packing is linear in the number of nodes. Thus the total work is O(n). O

83

1: procedure SEQUENTIALTREECONTRACT(T)

2 fori =0ton —1do

3 p = T'[i].parent

4 if T'[p].parent # null then > p is not root
5: s = sibling(7T', 7)

6 T[s].parent = T'[p].parent

7 switchParentsChild(7’, p, s)

8 else switchParentsChild(7’, 7, null) > p is root

Figure 4.7: Sequential algorithm for tree contraction, where sibling(T', i) returns the sibling of 7 in T, and
switchParentsChild(T, i, v) resets the appropriate child pointer of the parent of ¢ to point to v instead of .

It is straightforward to map the algorithms to the EREW PRAM or the CRCW PRAM
in the same bounds as Theorem 11, and to the scan PRAM with linear work and O(log n)
depth w.h.p.

4.8 Tree Contraction

As with list contraction, parallel algorithms for tree contraction have received considerable
interest [335, 243, 395]. There are many variants of parallel tree contraction. This section
assumes the contraction of rooted binary trees in which every internal node has exactly two
children. To represent the tree, an array 7' of nodes is used, each node with a parent and
two child pointers, with the first n nodes being leaves, and the next n — 1 being the internal
nodes.

This section considers an iterative sequential algorithm for tree contraction that rakes the
leaves of the tree one at a time, shown in Figure 4.7. To rake a leaf v, the algorithm splices
it and its parent p out of the tree—i.e, sets v’s sibling’s parent pointer to be v’s grandparent,
and v’s grandparent’s child pointer to point to v’s sibling instead of p. At the end, only the
root node remains. As in list contraction, values can be stored on the nodes, and combined
during contraction (e.g., for evaluating arithmetic expressions). This is left out of the
pseudocode for simplicity. Again, if the combining function is non-associative, then the
result depends on the order in which the leaves are raked, and a parallel computation returns
the same result as the sequential algorithm if it satisfies the dependence structure of the
sequential algorithm.

4.8.1 Iteration Dependence Depth and Aggregate Delay

This section defines the following labeling of internal nodes, and then defines a dependence
structure based on it. Let M () for each node ¢ be the maximum index of any of the leaves
in its subtree, and the label of each internal node be L(i) = min{M (j), M (k)}, where j
and k£ are the two children of 7. The following fact about labels will be useful.

84

Lemma 16. /n SEQUENTIALTREECONTRACT on a tree T', the internal node with label 1
will be raked by the leaf with index 1.

Proof. The proof is by induction. The base case for a tree with a single leaf is trivial as
there are no internal nodes. Now assume by induction that this holds for the internal nodes
of two separate subtrees, joined together by a new root r. The highest-indexed leaf in each
subtree will not appear as a label in the subtrees since the root takes the minimum of the
two subtrees, and hence the highest-indexed leaf must be the leaf that remains when the
tree is contracted (by induction). Thus, one of the two highest-indexed leaves in the two
subtrees must be the node that rakes 7. The smaller of these two leaves will be processed
first, which is also the label on r by definition. This proves the lemma.]

The dependence tree for a tree T is the tree created by taking the maximum label ¢
and placing it at the root. The tree 1" is then partitioned by removing the internal node
labeled with ¢, and this process is recursively applied to each subtree. The three resulting
dependence trees become the children of <. This is repeated until a leaf is reached. Note that
this process creates a tree over the leaf indices, since each label corresponds to a leaf index.
Also note that this process is similar to how the dependence forest for the list contraction
problem is generated, and hence the proof of the lemma below has a similar structure.

Lemma 17. The dependence tree of T' is an iteration dependence graph for
SEQUENTIALTREECONTRACT(T).

Proof. For each step i, let 5 and £ be the labels of ¢’s sibling and grandparent when it is
raked in the sequential order. Assume leaves have null labels, so the sibling could be null.
The labels j and k£ must both be larger than ¢ (or null) since they have not yet been raked
out. It suffices to show that for each ¢, once all of its descendants in the dependence tree
are completed (raked out), it will have sibling j and grandparent %, and hence will do an
identical rake as in the sequential order. By induction, assume that this is true for all indices
less than .

Consider the tree between j and & (not inclusive). The label ¢ must be the largest label
in this tree since if there were a larger label /, when ¢ is contracted in the sequential order
it cannot have both j as a sibling and k as a grandparent—the node with label [is not yet
raked out and must be in the way. By construction of the dependence tree, and since ¢ is
the largest label in the subtree, it is picked as the root of a dependence tree containing the
subtree. Therefore when all descendants are completed (and by induction we assumed they
operated correctly), all other nodes on the subtree have been raked out and ¢ will have j as
a sibling and £ as a grandparent. [

Let us now analyze the iteration depth and work of a dependence tree.

85

/7

O

(a) Tree decomposition for P-state tree (b) Tree decomposition for Q-state tree

i

Figure 4.8: P-state and Q-state trees used in the proof of Theorem 12. The red node is v, the interior node
corresponding to the leaf with the second largest label. The yellow node is leaf [, the leaf with the largest
label.

Theorem 12. For SEQUENTIALTREECONTRACT on T with n randomly ordered leaves,
there is an iteration dependence graph G with D(G) = O(logn) with high probability, and
A(G) = O(n) in expectation.

Proof. The dependence tree for 1" is based on recursively partitioning 7' into subtrees.
To analyze the depth of the dependence tree, two types of subtrees, which have different
properties, need to be considered. Define a (sub)tree to be in the P-state if the distribution
of its leaves is uniformly random. Define a subtree to be in the Q-state if the location of its
highest-indexed leaf is fixed. Without loss of generality, assume that a Q-state tree has its
highest-indexed leaf on its left spine. Denote the leaf with the largest index in a subtree by
[, the leaf with the second largest index by s, and the internal node with label s by ;.

The initial tree is in the P-state since the ordering of the leaves is uniformly random.
For a P-state tree, it is partitioned by v, into three subtrees, where the two subtrees of the
children of v, are also in the P-state but the final tree is in the Q-state (see Figure 4.8(a)).
This is because as v,’s children’s subtrees are processed, there is no information about the
location of the highest-indexed leaf. However, after both of the children’s subtrees are
processed, then leaf [will become a leaf in v,’s original position in (note that leaf [must be
in v,’s subtree by definition), hence fixing the location of the highest-indexed leaf in the
remaining subtree.

For a tree in the Q-state, it is partitioned by v, into three subtrees (see Figure 4.8(b)),
where v,’s left child subtree is in the Q-state (as leaf [was fixed to be on the left spine),
vy’s right child subtree is in the P-state (there is no information about the location of the
highest-index leaf in this subtree), and the remaining subtree is in the Q-state as after v;’s
subtree is completely processed, leaf [will become a leaf in v,’s original position.

86

For a tree with n nodes in the P-state, the size of v,’s subtree is greater than 3n /4 with
probability at most 1/4. This is because the location of leaf [is random and for v,’s subtree
not to contain leaf /, it must appear in the rest of the tree, which has at most 1/4 probability
of occurring if v’s subtree size is greater than 3n/4. Hence, at least one of v,’s children’s
subtree has size greater than 3n /4 with probability at most 1/4. By a similar argument, the
other subtree (of the Q-state) also has size greater than 3n /4 with probability at most 1/4.

For a tree with n nodes in Q-state, the size of v;’s left child’s is greater than 3n /4 with
probability at most 1/4. This is because the location of leaf s must appear in v,’s right
subtree by definition, and the location of leaf s is uniformly random, so with at most 1/4
probability it causes v, to have a left child of size at least 3n/4. For the subtree remaining
after removing v;’s subtree, its size is greater than 3n/4 with probability at most 1/4 by a
similar argument. Note that we have no bound on the size of v,’s right child subtree in the
P-state. However, this is fine because once a tree transitions into P-state, it will be divided
into small subtrees according to the analysis for P-state trees in the previous paragraph.

Consider paths from the root to each leaf in the dependence tree. Every two steps on
such a path will shrink the size of the tree by a factor of 3/4 with probability at least 1/4
(by the arguments above). Therefore, using Markov’s inequality, each path will have at
most 2c¢log;g /3 n steps with probability at least 1 — 1/ n¢~1 for a constant ¢ > 2. By a union
bound (multiplying the failure probability by n), all path lengths and hence the tree depth
will be O(logn) with probability at least 1 — 1/n°2.

To show A(G), note that a node in the dependence tree with a subtree of size k will
have height O(log k) in expectation since it is true w.h.p. from the previous discussion. Let
W (n) indicate the expected sum of the heights of the nodes in the dependence tree. For a
tree of size n, after two levels, with constant probability the largest remaining component
will be 3/4n. Assuming the worst case split is 3/4n and 1/4n when this is true, this gives
the recurrence W (n) < O(logn)+p (W(3n) + W(in)) + (1—p)W (n) for some constant
0 < p < 1. By substitution, this gives W (n) = O(n). O

4.8.2 Algorithms

Enabling efficient checking of steps for tree contraction requires a pre-processing phase.
The pre-processing phase labels each internal node with the highest-indexed leaf in its
subtree. Then each internal node stores the smaller of the two computed labels of its
children. Since the maximum operator does not have an inverse, the pre-processing must
be done with tree contraction (using the maximum operator) in O(n) work and O(logn)
depth. Note that, however, maximum is associative, so the result of this pre-processing
phase would be consistent with any tree contraction algorithm. After pre-processing, the
parallel algorithms described in this section can be run with any operator (does not have
to be associative), and give the same answer as the sequential algorithm (Algorithm 4.7).

87

1: R={0,...,0} > boolean array
2: procedure RESERVE(?)

3: ifi < j, Vj € N(i) then

4: R[i]=1 > reserve own location
5: return 1

6: procedure COMMIT(%)

7 if (R[i] = 1) then

8: p = T'[i].parent

9: if T'[p].parent # null then > p is not root
10: s = sibling(T', 1)
11: T'[s].parent = T'[p].parent
12: switchParentsChild(7’, p, s)
13: else > p is root
14: switchParentsChild(7’, ¢, null)

15: return 0
16: else return 1

Figure 4.9: RESERVE and COMMIT functions and associated data for tree contraction using deterministic
reservations. sibling(T),) returns the sibling of ¢ in T, and switchParentsChild(T, i, v) resets the appropriate
child pointer of the parent of ¢ to point to v instead of 7.

With the internal nodes labeled, the neighborhood of a leaf is defined as the leaves labeled
on its parent and its grandparent nodes. Only when the labels on these two internal nodes
are greater than or equal to the leaf’s ID can the leaf proceed in raking.

Deterministic reservations-based implementation. Figure 4.9 defines the RESERVE
and COMMIT functions and associated data required for deterministic reservations. N (7)
corresponds to the neighborhood of step ¢, which includes the leaf labeled on its parent (if it
has one) and the leaf labeled on its grandparent (if it has one). These functions preserve the
ordering imposed by the iteration dependence graph of 7" defined in this section throughout
its execution because if the i’th leaf is spliced out, the RESERVE step guarantees that if R][i]
is set to 1, and guarantees that there are no lower-indexed leaves in the neighborhood of
step ¢ (i.e., step ¢ has no children in the dependence forest). Only in this case does step ¢
rake itself out in the COMMIT step (the procedure for raking is the same as in the sequential
algorithm shown in Algorithm 4.7).

Again, the steps can be efficiently checked and updated because the RESERVE and
COMMIT functions take constant work/depth. Applying Theorem 12 and Lemma 1 gives
the following theorem for tree contraction. Again, concurrency can be avoided because
reads and writes of the neighbors inside the RESERVE and COMMIT steps can be separated
into a constant number of phases such that there are no reads or writes to the same location
in a phase.

88

Theorem 13. For a random ordering of 'I', deterministic reservations using the RESERVE
and COMMIT functions for tree contraction runs in O(n) expected work and O (log® n) depth
w.h.p. without concurrent reads/writes or O(lognlog” n) depth w.h.p. with concurrent
reads/writes.

The tree contraction used for pre-processing can be done deterministically in linear
work and O(logn) depth (on the EREW PRAM), which is within the stated complexity
bounds of Theorem 13.

Activation-based implementation.

Theorem 14. An activation-based implementation of Algorithm 4.7 runs in O(n) work
and O(log® n) depth w.h.p. without concurrent reads/writes or O(log nlog* n) depth w.h.p.
with concurrent reads/writes.

Proof. The activation-based implementation of list contraction described in Theorem 11
can be adapted for tree contraction. The “roots” are the steps with no lower labels on its
parent and grandparent, which implies that it has no lower-indexed steps in its neighborhood.
A root that is successfully processed potentially updates the counters of the steps in its
neighborhood. The counter of each step is initialized to the number of lower-indexed
steps that are in its neighborhood. Overall this takes linear work and constant depth. This
algorithm satisfies the dependencies of the iteration dependence graph defined in this
section because the roots are the steps that have no more dependencies. Again, the reads
and updates can be split into a constant number of phases to avoid concurrency. Since the
iteration depth is O(logn) w.h.p. by Theorem 12, and each round of the algorithm reduces
the iteration depth of the remaining dependence graph by 1, O(log n) rounds are required
w.h.p. Therefore, the total depth is O(P(n)logn) w.h.p., where P(n) is O(logn) using
prefix sums and O(log™n) w.h.p. using approximate compaction (requiring concurrent
reads/writes). The work is linear because each step is processed a constant number of
times. [

Again, mapping the algorithms to the EREW PRAM, CRCW PRAM, or scan PRAM is
straightforward.

4.9 Limited Randomness

The parallel algorithms described in this chapter use O(log n) random bits per input element,
thus requiring O(n log n) bits of randomness in total.* This section describes how to reduce
the amount of randomness to a polylogarithmic number of random bits while preserving
the iteration dependence depth for random permutation and list contraction.

*O(mlogm) bits of randomness for maximal matching.

89

To show that limited randomness suffices, this section employs Nisan’s [354] pseudo-
random generator for space-bounded computation, which uses O(S logn) truly random
bits to generate pseudorandom bits that are capable of fooling an S-space machine. More
accurately, the probability of failure event given the generated stream of pseudorandom bits
differs by at most (an additive) € from the failure probability given truly random bits, where
the bias e can be driven down to O(1/n°) for any constant ¢ by increasing the number of
truly random bits by a constant factor. Thus, a result that holds with high probability using
truly random bits also holds with high probability using the pseudorandom bits, provided
that the failure event can be tested by an S-space machine.

For the purposes of this section, it suffices to show that a space-S computation can
verify the iteration depth of the dependence graph. As long as the low-space computation
uses the same mapping from random bits to steps, the actual computation will have the
same dependence graph. The challenge in designing these low-space verifiers and applying
Nisan’s theorem is that the verifier must consume the random bits as a one-pass stream
of bits. By exhibiting such O(log n)-space and O(log® n)-space verifiers for the iteration
depths of random permutation and list contraction, respectively, this section proves that
O(log® n) random bits suffice for random permutation and O(log® n) random bits suffice
for list contraction.

Theorem 15. Using Nisan’s generator with a seed of O(log2 n) random bits, the iteration
depth of the dependence graph for random permutation is O(logn) with high probability.

Proof. Consider a single step <. Theorem 6 states that if each step chooses uniformly
random numbers, then for any constant ¢ the probability of step 7 exceeding depth O(clogn)
is O(1/n°). Assuming that the depth bound for step i can be verified in O(logn) space,
Nisan’s theorem states that the probability of exceeding the depth bound using the generated
pseudorandom bits is at most O(1/n¢) + ¢ = O(1/n°). Taking a union bound over all steps,
the probability of choosing a seed that causes any step to have high depth is O(1/n°!).

The following is an O(log n)-space procedure for calculating the depth of step i, using
a single pass through the stream of random bits. Scan from step ¢ down to step H [¢] in the
input array, counting the number of intervening steps & such that H[k] = H[i]. These steps
form a chain in the dependence forest directed from i to H [i]. Repeat this process starting
from ¢’ = H[i] down to H[i], until reaching the root of this tree (i.e., the starting node ¢’
has H[i'] =i’). The sum of the lengths is equal to the depth of ¢ in the dependence forest.
This process requires O(logn) space to maintain a few pointers and the sum.

One additional detail is that the permutation algorithm expects random values in the
range [0, ...,], but what we have access to is a stream of (pseudo)random bits. Without
loss of generality, assume n is a power of 2. To generate a number in the range [0, . . . , i,
for any constant c first generate a number z in the range [0,...,n° — 1]. For values

90

r<(i+1)|n/(i+1)],use H[i]] = z/(|n°/(i+ 1)]). If any larger value is generated, the
algorithm fails. The probability of failure for a particular value is at most n/n® = 1/n°"!,
and using a union bound over all values, the failure probability becomes O(1/n"2). [

Note that the random permutation produced using limited randomness is not truly
random.

For list contraction, assume that each node is assigned a random number, called a
priority, from the random bits of Nisan’s generator. The random ordering of the list L can
be viewed as the ordering in which the priorities are sorted in increasing order. By choosing
random numbers from the range [0, . .., n® — 1] for constant ¢ > 1, the priorities are distinct
w.h.p. and Theorem 9 applies.

Theorem 16. Using Nisan’s generator with a seed of O(log”n) random bits to assign
each node a (pseudo)random priority, the iteration depth of the dependence graph for list
contraction is O(logn) with high probability.

Proof. As in the proof of Theorem 15, this proof will exhibit an algorithm that can verify
the depth of a node/step in the dependence tree using a single pass through the random
priorities. Since the probability of the depth bound being exceeded is polynomially small, a
union bound over all steps completes the proof.

To verify the depth of node x in the dependence forest, the verifier simulates the
incremental insertion of nodes, in input order, into the dependence forest. After each step,
the structure of the dependence tree containing x is identical to a treap using the same
priorities and node comparisons respecting list-order. The simulation begins by inserting
the node z, assuming pessimistically that it has minimum priority (which only increases
its depth). Throughout the process, the root-to-leaf path down to x is maintained. When
inserting a new node z, the idea is to simulate the treap insertion process with respect to
the path down to x. To insert z, step down the path until finding the first (highest) node
y such that either = and z are in different subtrees of y, or y = z. If z has lower priority
than y, then the path to x is unchanged. Otherwise, splice in z to be the parent of y, and
repeatedly rotate z and its parent until z has lower priority than its parent. This rotation
process may result in the path shortening and/or the ancestors being rearranged, depending
on the list-order comparisons among nodes.

List-order comparisons can be performed in O(logn) space using a constant number of
pointers and traversing the list. As long as the depth of a node never exceeds O(logn), then
the space used by the simulation is O(log® n). If the depth ever exceeds O(log n), then the
simulation stops and reports a high-depth node. By Theorem 9, this is a low probability
event. O]

91

The work and depth required to generate the random numbers from Nisan’s pseudo-
random generator will be analyzed next. The generator uses O(log n) independent hash
functions hy, . .., hg, each requiring O(S) random bits, and a seed = with O(.S) random
bits [354]. Define Go(z) = x and Gy(x) = (Gy—1(x), hy(Gi—1(x))) for t > 1. The output
of the generator is Gy (), where t' = O(log(nlog(n)/S)), which has O(n log n) bits.

Lemma 18. The output of Nisan’s pseudorandom generator can be computed in O(nS/logn)
work and O(lognlog(1 + S/logn)) depth.

Proof. Construct Gy () recursively using the definition above. Level ¢ of the recursion
requires O(2!(S/logn)?) work and O(log(1 + S/logn)) depth, as the hash functions
can be evaluated in O((S/logn)?) work and O(log(1 + S/logn)) depth using naive
multiplication (O (log n) bits can be evaluated with one unit of work). Generating O(n logn)
pseudorandom bits requires O(log(nlog(n)/S)) levels of recursion. The total work is
loa(nloa(n)/5) 0(21(S/ log n)2) = O(n.S/logn) and depth is O(log nlog(1 + S/ logn)).

O

Plugging in the space bounds for random permutation and list contraction into Lemma 18
gives the following corollary.

Corollary 3. The random bits of Nisan’s pseudorandom generator for the random permu-
tation and list contraction algorithms can be computed in O(n) work and O(logn) depth,
and O(nlogn) work and O(log n loglog n) depth, respectively.

4.10 Experiments

This section describes experimental results for the deterministic reservations-based imple-
mentations of the problems studied in this chapter. The experiments are done using varying
prefix sizes, to show how prefix size affects work, parallelism, and overall running time.
The parallel codes are compared to their corresponding sequential implementations.

4.10.1 MIS and Maximal Matching

Experimental Setup. The experiments are run on the 32-core Intel machine described
in Section 2.7. The parallel programs were compiled using the cilk++ compiler, and
sequential programs were compiled using g++. For each prefix size, thread count, and
input, the reported time is the median time over three trials.

Inputs. The input graphs and their sizes are listed in Table 4.1. The random local graph (rg)
was generated such that probability of an edge existing between two vertices is inversely
proportional to their distance in the vertex array. The rMat graph has a power-law distri-
bution of degrees and was generated according to the procedure described in [87], with

92

Input Graph \ Size
Random local graph (rg) | n =107, m =5 x 107
rMat graph (rMat) n=2%%m=05x107
3D grid (3D) n=107",m=2x 107

Table 4.1: Input Graphs for maximal independent set and maximal matching.

enum FlType {IN, OUT, LIVE};

struct MISStep {

FlType flag; vertex *V;
MISStep (char* _F, vertexx _V) : flag(_F), V(_V) {}
bool reserve(int 1) {

int d = V[i].degree;

flag = IN;

for (int j = 0; j < d; j++) {

int ngh = V[i].Neighbors[j];

if (ngh < 1) { //earlier neighbor
if (Fl[ngh] == IN) { flag = OUT; return 1;} //drop out if neighbor is in MIS
else if (Fl[ngh] == LIVE) flag = LIVE; } } //undecided if neighbor is still live

return 1; }

bool commit (int i) { return (F1[i] = flag) != LIVE;} //write status
bi

void MIS(FlType* F1l, vertexx V, int n, int psize)
speculative_for (MISStep(Fl, V), 0, n, psize); //deterministic reservations driver

}

Figure 4.10: C++ code for maximal independent set using deterministic reservations.

parameters a = 0.5, b = 0.1, ¢ = 0.1 and d = 0.3. The 3D grid graph consists of vertices
on a grid in a 3-dimensional space, where each vertex has edges to its 6 nearest neighbors
(2 in each dimension).

Implementation. The implementation of the prefix-based MIS and MM algorithms differ
slightly from the ones with good theoretical guarantees described in the previous sections,
but we found that these implementations work better in practice. Firstly, the prefix size
is fixed throughout the algorithm. Secondly, the algorithm does not process each prefix
to completion but instead process each particular prefix only once, and moves the iterates
which still need to be processed into the next prefix (the number of new iterates in the next
prefix is equal to the difference between the prefix size and the number of iterates which
still need to be processed from the current prefix).

For MIS, each time a prefix is processed, there are 3 possible outcomes for each vertex
in the prefix: 1) the vertex joins the MIS and is deleted because it has the highest priority
among all of its neighbors; 2) the vertex is deleted because at least one of its neighbors
is already in the MIS; or 3) the vertex is undecided and is moved to the next prefix. The
C++ code based on the deterministic reservations interface from Chapter 3 is given in

93

/N
A

4)

Figure 4.11: An example graph and an execution of deterministic reservations for finding a maximal
independent set. Here, the subscript of a vertex corresponds to its priority in the deterministic reservations.
The prefix size is chosen to be 4. (1) shows the initial graph in priority order, and (2)—(4) show subsequent
rounds of the algorithm. The vertical line indicates the end of the current prefix. Dark-gray vertices are those
that become IN or OUT during that round: vertices with a thick border are IN and accepted into the MIS,
and vertices with an “X” are OUT as they have a neighbor already in the MIS. For example, u; is the only
vertex accepted into the MIS during the first round. Similarly, u, becomes OUT in the second round as it
has a neighbor already in the MIS (namely, u1). White vertices are those belonging to the current prefix that
remain LIVE. For example, in the first round us, u3, and u4 all have a higher priority neighbor in the same
prefix and remain live. Only vertices that survive the previous round (LIVE vertices) are displayed in the
array and part of the current prefix, so us is skipped in (3). Vertices in the MIS are also shown with thick
border in the graph.

Figure 4.10 and an example of how the algorithm proceeds is shown in Figure 4.11. The
struct MISStep defines the code for the reserve and commit components for each
loop iteration. The array V stores for each of the n vertices its degree and a pointer to an
array of neighbors. The array F1 keeps track of the status of each vertex—IN indicates
it is done and in the set (corresponding to the first outcome), OUT indicates it is done and
not in the set (a neighbor is in the set; this corresponds to the second outcome), and LIVE
indicates it is still live (corresponding to the third outcome). The reserve phase for each
iteration i loops over the neighbors of V[1] and sets a local variable £1ag as follows:

OUT any earlier neighbor is IN
flag= < LIVE any earlier neighboris LIVE
IN otherwise

The second case corresponds to a conflict since for an earlier neighbor it is not yet known if
it is IN or OUT. The commit phase for iteration i simply copies the local flagto F1[1i].
Since F'1 is only read in the reserve phase and only written (to location i) in the commit

94

3 10 10
10° _
8
—~25 @ 5 c
:\9 g 10 S 10°
x 2 10* 8
X 2 S (o)
S = 3 E
E g 10 s
3 E £ 107
3 3 10° €
=15 z S
1 o
10
10 0.2 0.4 0.6 0.8 1 10’ 0 1 2 3 4 5 6 7 107 0 1 2 3 4 5 6 7
- - 2. - 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Prefix size (x 10") Prefix size Prefix size

(a) Total work done vs. prefix size (b) Number of rounds vs. prefix (c) Running time (32 cores) vs. pre-

onrg size on rg in log-log scale fix size on rg in log-log scale
25 107 10’
10° _
8
':\ 1] 5 c
2 2 i g 10°
z 240 %
x o
s o £
g 310° £
S15 E 210"
81 S A2 =
k3 210 g
10w o
1 100 0 1 2 3 4 5 6 7 1072 0 1 2 3 4 5 6 7
0 0.2 0.4 06 08 1 10° 10" 10 10° 10* 10° 10° 10 10° 10" 10 10° 10* 10° 10° 10
Prefix size (x 10") Prefix size Prefix size

(d) Total work done vs. prefix size (¢) Number of rounds vs. prefix (f) Running time (32 cores) vs. pre-
on rMat size on rMat in log-log scale fix size on rMat in log-log scale

Figure 4.12: Plots showing the trade-off between various properties and the prefix size in maximal indepen-
dent set.

phase, all operations commute. Note that surprisingly, this implementation does not even
require any priority writes. Also, note that the reserve phase for each vertex is implemented
sequentially, which allows the loop to break early when possible (an earlier neighbor is in
the MIS). While this loop could be parallelized, we did not find a performance improvement
by doing so for the inputs considered, due to the extra overheads involved.

For MM, each time a prefix is processed, there are 2 phases: In the first phase, each
edge in the prefix checks whether or not either of its endpoints have been matched, and if
not, the edge does a priority write to each of its two endpoints; in the second phase, each
edge checks whether its priority writes were successful on both of its endpoints, and if so
joins the MM and marks its endpoints as matched. Successful edges from the second phase
and edges which discovered during the first phase that it had an endpoint already matched
are deleted.

Results. The first set of experiments analyze the work, parallelism, and running time of
the MIS and MM implementations as a function of the prefix size on the random local and
rMat graphs. The results are plotted in Figures 4.12 and 4.13.

95

12 10
107
11 X
~ ., 10
5 10
= € 10° 2 10
Z 9 e, £
< 5 10 o
S = =
=8 £10° S &
= E &€ 10
o 7 2
= Z 10
6 10'
5 10° 107
0 1 2 3.4 5 10° 10" 10° 10° 10* 10° 10° 107 10° 10" 10 10° 10" 10° 10° 10
Prefix size (x 10") Prefix size Prefix size

(a) Total work done vs. prefix size (b) Number of rounds vs. prefix (c) Running time (32 cores) vs. pre-

onrg size on rg in log-log scale fix size on rg in log-log scale
11 10°
107
10 s
- 2 10
'\O 5 1
‘; 9 é 10 E 10
s 5 10° o
S 5 c
; 7 é 10° é 10°
] £,
2 Z 10
6 10w
0 —1
5 10 0 1 2 3 4 5 6 7 10 0 1 2 3 4 5 6 7
0 1 2 s 4 5 10° 10" 10° 10° 10* 10° 10° 10 10° 10" 10° 10° 10* 10° 10° 10
Prefix size (x 10") Prefix size Prefix size

(d) Total work done vs. prefix size (¢) Number of rounds vs. prefix (f) Running time (32 cores) vs. pre-
on rMat size on rMat in log-log scale fix size on rMat in log-log scale

Figure 4.13: Plots showing the trade-off between various properties and the prefix size in maximal matching.

For both MIS and MM, the reader can observe that, as expected, increasing the prefix
size increases both the total work performed (Figures 4.12(a), 4.12(d), 4.13(a), and 4.13(d))
and the parallelism, which is estimated by the number of rounds of the outer loop (selecting
prefixes) the algorithm takes to complete (Figures 4.12(b), 4.12(e), 4.13(b), and 4.13(e)).
As expected, the total work performed and the number of rounds taken by a sequential
implementation are both equal to the input size. By examining the graphs of running time
versus prefix size (Figures 4.12(c), 4.12(f), 4.13(c), and 4.13(f)), we see that there is some
optimal prefix size between 1 (fully sequential) and the input size (fully parallel). In the
running time versus prefix size graphs, there is a small bump when the prefix-to-input
size ratio is between 107% and 10~ corresponding to the point when the for-loop in the
implementation transitions from sequential to parallel (the implementation uses a grain size
of 256).

The single-thread and 32-core parallel times on the input graphs for MIS and MM using
the optimal prefix size (refer to Figures 4.12(c), 4.12(f), 4.13(c), and 4.13(f)) are reported in
Tables 4.2 and 4.3, respectively. The experiments also compare the prefix-based algorithms
to optimized sequential implementations, and additionally for MIS compare with our

96

Input Graph | Serial MIS | Prefix-based MIS | Prefix-based MIS | Luby | Luby

@ @ (32h) (1) | (32h)

rg 0.455 0.57 0.059 6.49 | 0.245
rMat 0.677 0.939 0.073 8.33 | 0.313
3D 0.393 0.519 0.051 4.18 | 0.161

Table 4.2: Running times (in seconds) of the various MIS algorithms on different input graphs on a 32-core
machine with hyper-threading using one thread (1) and all threads (32h).

Input Graph | Serial MM | Prefix-based MM | Prefix-based MM
e9) (H (32h)
rg 1.04 2.24 0.135
rMat 1.41 3.51 0.155
3D 0.792 1.8 0.11

Table 4.3: Running times (in seconds) of the various MM algorithms on different input graphs on a 32-core
machine with hyper-threading using one thread (1) and all threads (32h).

optimized implementation of Luby’s algorithm. We implemented several versions of Luby’s
algorithm and report the times for the fastest one. The prefix-based MIS implementation is 3—
8 times faster than Luby’s algorithm (shown in Figures 4.14(a) and 4.14(b)) which processes
the entire remaining graph (and generates new priorities) in each round. This improvement
demonstrates that the prefix-based approach, although sacrificing some parallelism, leads
to less overall work and lower running time. When using more than 2 threads, the prefix-
based implementation of MIS outperforms the serial version, while the implementation
of Luby’s algorithm requires 16 or more threads to outperform the serial version. The
prefix-based algorithm achieves 9-13x speedup on 32 cores. For MM, the prefix-based
algorithm outperforms the corresponding serial implementation with 4 or more threads and
achieves 16-23x speedup on 32 cores (Figures 4.15(a) and 4.15(b)). Note that since the
serial MIS and MM algorithms are so simple, it is not easy for a parallel implementation to
outperform the corresponding serial implementation.

4.10.2 Random Permutation, List Contraction, and Tree Contraction

Experimental Setup. The implementations of random permutation, list contraction, and
tree contraction use Cilk Plus, and are compiled using g++. The experiments are performed
on the 40-core Intel machine with two-way hyper-threading, described in Section 2.7. The
times that are reported are based on a median of three trials.

Inputs. The number of elements for random permutation, number of nodes for list contrac-
tion, and number of leaves for tree contraction is 10°. For random permutation, the data
array A stores 32-bit integers and the swap targets (the H array) are randomly generated.
For list contraction, to generate the input, a random permutation was first generated, giving
a collection of cycles on the nodes, and then one edge on each cycle was deleted, giving

97

- - -prefix-based MIS - - -prefix-based MIS
¢ Luby ¢ Luby
Al ——gserial MIS Al —+—serial MIS
@ 10 | E % 10 ¢,
° .., he}
c . [
Q Y S L2
o T ey (8]
3. 0 e, 3.0 O,
ey, g e
£ St - £ el KX T,
= - %04, It = - 3
S, S.a S, Te.a
c10: TTeell - 10 ¢ Tt eeos
10’2 L L L L L 10’2 L L L L L
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads

(a) Running time vs. number of threads on rg in log- (b) Running time vs. number of threads on rMat in
log scale log-log scale

Figure 4.14: Plots showing the running time vs. number of threads for the different MIS algorithms on a
32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix size of /50 was used.

- - - prefix-based MM - - - prefix-based MM
—+—serial MM ——serial MM

—_
o
—_
o

-

Run time (seconds)
1
1
Run time (seconds)
1
1

N ‘ ‘ ‘ ‘ ‘ 107 ‘ ‘ ‘ ‘ ‘
1 2 4 8 16 32 64 1 2 4 8 16 32 64

Number of threads Number of threads

(a) Running time vs. number of threads on rg in log- (b) Running time vs. number of threads on rMat in
log scale log-log scale

Figure 4.15: Plots showing the running time vs. number of threads for the different MM algorithms on a
32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix size of m /50 was used.

a collection of linked lists. For tree contraction, the input was a random binary tree with
10° randomly-indexed leaves, giving a total of 2 x 10° — 1 nodes. Often, list and tree
contraction are used as a part of a larger algorithm, so the pre-processing step of randomly
permuting the elements only needs to be applied once. The experiments do not store values
on the nodes for list contraction and tree contraction.

98

Algorithm \ (€)) \ (40h) \ (seq)
Random permutation | 92.1 | 4.62 | 38.8

List contraction 160 | 3.97 46
Tree contraction 350 10.0 172

Table 4.4: Times (seconds) for n = 10° on 40 cores with hyper-threading. (1) indicates 1 thread, (40h)
indicates 80 hyper-threads, and (seq) is the sequential iterative implementation.

Implementation. We implement the deterministic parallel algorithms for random per-
mutation, list contraction, and tree contraction. The writeMax operation used in random
permutation is a case of priority update (discussed in Chapter 6). For tree contraction, we
use a version that does not do a pre-processing step, and each leaf simply checks its nearby
leaves to see if there are any conflicts. This version does not return the same answer as the
sequential algorithm (but is still deterministic), and it is more efficient as it does not require
a pre-processing step. All of the parallel implementations use the prefix-based version of
deterministic reservations, which performs better in practice than the version used in the
analysis that processes all remaining steps in each round. Proofs of the complexity bounds
of the prefix-based algorithms can be found in the Appendix of [427]. As in the imple-
mentations of maximal independent set and maximal matching, each prefix is processed
once, and the unsuccessful steps are moved to the next prefix. For random permutation,
the implementation uses a prefix size of n; /50 where n; is the number of remaining steps.
For list contraction, the implementation uses a fixed prefix size of n/100, and for tree
contraction the implementation uses a fixed prefix size of n/50. These were experimentally
determined to give the best performance. The implementations are all very simple—the
random permutation and list contraction implementations use under a dozen lines of C++
code and the tree contraction implementation uses a few dozen lines. For comparison, we
also implement the corresponding sequential iterative algorithms for the three problems.

Results. A summary of the timings for each of the three algorithms are shown in Table 4.4.
Plots of running time versus number of threads in log-log scale for each of the three
algorithms are shown in Figure 4.16. Observe that the parallel implementations all get
good speedup, and outperform the corresponding sequential implementation with a modest
number of threads.

For random permutation, the parallel implementation outperforms the standard simple
sequential implementation [270] with 4 or more threads. We also compared it to a sorting-
based random permutation algorithm that we implemented, which creates pairs (A[i], r;)
where each r; is a random number drawn from [1, . .., n?], and sorts on the second value
of the pair. Note that this does not give the same permutation as the sequential algorithm.
The implementation uses a parallel sample sort, which is part of the Problem Based
Benchmark Suite. On 80 hyper-threads the sorting-based algorithm took 5.38 seconds,
and on a single thread it took 204 seconds. Both of these timings are inferior to the times

99

Times for random permutation on 1 billion elements Times for list contraction on 1 billion nodes

_ 1000 g T T T T T 3 1000 g T
4 F 3 = F
= =
8 F 1 8 -]
S > S
2 100 e) E 2 100 ¢ 3
z E 3 by E E|
= r £ [
2 g e 3 g e T 3
'g f parallelRandPerm -~ T § parallelListContraction - e §
Z serialRandPerm 1 Z serialListContraction
1 I | I L 1 I | I L
1 2 4 8 16 3240 40h 1 2 4 8 16 3240 40h
Number of threads Number of threads
(a) random permutation (b) list contraction

Times for tree contraction on a binary tree with 1 billion leaves

1000 g T T T T T
) E
o E
=
15
Q
L
<
g 100} .
:0 F .
£ I
g parallelTreeContraction -
2 serial TreeContraction
10 1 ! ! I T e,

1 2 4 8 16 3240 40h

Number of threads

(c) tree contraction

Figure 4.16: Running time vs. number of threads for n = 10° on 40 cores with hyper-threading (log-log
scale). “40h” indicates 80 hyper-threads.

reported in Table 4.4 for the random permutation algorithm implemented with deterministic
reservations.

An experimental study of other parallel random permutation algorithms has recently
been conducted by Cong and Bader [109], which compares algorithms based on sort-
ing [388], dart-throwing [335, 169, 173], and an adaptation of Sander’s distributed algo-
rithm [406]. None of these algorithms generate the same permutation as the sequential
algorithm. It is difficult to directly compare with their reported numbers because their
numbers include the cost for generating random numbers, while the numbers reported
in this section do not, their input sizes are much smaller (the largest size was 20 million
elements), and the machine specifications are different.

For list contraction, the parallel implementation outperforms the serial implementation
with 8 or more threads. The experiments also compare to a parallel implementation of list
contraction where the random numbers are regenerated in each round. In this strawman
implementation, the prefix processing idea cannot be directly applied because the priorities
of the nodes are not fixed. Therefore all remaining nodes are processed in each iteration.

100

On 80 hyper-threads, the implementation took 6.46 seconds to finish. This is slower than
the prefix-based parallel implementation reported in Table 4.4, which took 3.97 seconds
on the same input. The reason is that there is more wasted work in processing all of the
nodes on each iteration, and also an added cost of regenerating random numbers on each
iteration. In addition, this implementation does not return the same answer as the sequential
implementation.

List ranking algorithms have been studied experimentally in the literature [392, 430,
370, 128, 221, 222, 20, 391]. None of these implementations return the same answer as a
sequential ordering of processing the nodes would. The most recent experimental work on
list ranking for multicores is by Bader et al. [20]. However since they used a much older
machine, and they are solving list ranking instead of list contraction, it is hard to compare.

Finally, for tree contraction the parallel implementation outperforms the sequential
implementation with 4 or more threads. Again, the experiments compare it with a parallel
strawman version that processes all remaining leaves and regenerates the random numbers
on each iteration. On 80 hyper-threads this implementation took 23.3 seconds, compared to
10 seconds for the prefix-based parallel implementation reported in Table 4.4. As in list
contraction, this is due to the wasted work of processing all leaves on each iteration and the
added cost of regenerating the random numbers.

The most recent experimental work on tree contraction on multicores is by Bader et
al. [25]. They present an implementation of tree contraction based on the standard algorithm
that only rakes leaves [243]. The algorithm is more complicated than the one described
in this chapter as it involves using Euler tours and list ranking to label the leaves to allow
non-conflicting leaves to be raked in parallel. Furthermore, it does not return the same
answer as a natural sequential algorithm. Again, because they use a much older machine
and they solve the more expensive arithmetic expression computation, it is hard to compare.

Figure 4.17 plots the total work performed by the three algorithms as a function of the
prefix size for n = 108. Since the prefix size is a constant fraction for random permutation,
in the plots, the x-axis shows the fraction used. For list contraction and tree contraction, the
prefix size is fixed across rounds, so the z-axis shows the actual size of the prefix. Similar to
the case of maximal independent set and maximal matching, the work goes up as the prefix
size is increased as there is more wasted work due to failed steps. Note that a prefix size
of 1 corresponds to the work performed by the sequential algorithm. Figure 4.18 plots the
number of rounds of deterministic reservations as a function of prefix size in log-log scale.
The opposite effect is observed here—a larger prefix size leads to fewer rounds because
there is more parallelism. These plots show the trade-off between work and parallelism.
Finally, Figure 4.19 plots the parallel running time as a function of the prefix size in log-log
scale, showing that the best running times use a prefix size somewhere in between 1 and n.

101

Prefix size vs. total work on 100 million elements Prefix size vs. total work on 100 million elements

3.5-108 T T T T T T T T L 3.5:108 T T T T T T T LR
3108 |- P 06 — s
£ 25108 * £ 25108 n
g 2108 F - g 2108 s
1.5:108 - N 1.5:10% 7
108 L=) I I I I I I I 108 A I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 107 2:107 3-107 4107 5:107 6:107 7-107 8-107 9-107 108
Prefix size (fraction) Prefix size
(a) random permutation (b) list contraction

Prefix size vs. total work on 100 million elements

3.5-108 T T T T T T T T T

3080 e

2.5:108 [

2108 [

Total Work

15108

108 T ! ! ! ! ! ! ! !
0 107 2:107 3:107 4-107 5-107 6-107 7-107 8107 9-107 108

Prefix size

(c) tree contraction

Figure 4.17: Total work vs. prefix size for n = 10® for random permutation, list contraction, and tree
contraction.

102

Prefix size vs. number of rounds on 100 million elements Prefix size vs. number of rounds on 100 million elements

108 T T T T T T T 108
g 107 B 2 107 5
=} 6 L _ =1 6 | _
g 10 £ 10
5 100 7 5 100 7
= 4 - = 4 |
é 10 é 10
3 103 - T E 103 - *

102 - S 102 - S |

10 | | | | | | | 10

108 107 100 10° 10* 10° 102 0l 1 1 10 102 108 100 100 106 107 108
Prefix size (fraction) Prefix size
(a) random permutation (b) list contraction

Prefix size vs. number of rounds on 100 million elements

108 o T T T T T T
o’
106 -
10° -
104 -
103 -
102 - -
10] 1 1 1 1 1 1
110 102 100 10* 105 105 107 10

Prefix size

Number of rounds

(c) tree contraction

Figure 4.18: Number of rounds vs. prefix size for n = 10® (log-log scale) for random permutation, list
contraction, and tree contraction.

103

Prefix size vs. time on 100 million elements Prefix size vs. time on 100 million elements

1000 g T T T T T T T 3 1000 ¢ 3
z E E) F E
= C 7 =} [1
g 100 pT e 1 g wf
g w0k i B wp
‘én F] 'éo F]
2 1E = 2 1E E
= E o T E =) E o e 3
S £ B 5 E T E|
& F] & F]
0.1 | | | | | | | 0.1 | | | | | | |
108 107 10° 105 10* 103 102 0.1 1 1 10 102 108 10* 105 10° 107 108
Prefix size (fraction) Prefix size
(a) random permutation (b) list contraction

Prefix size vs. time on 100 million elements

1000 E T T T T T T T
.@ £ B
S]
§ 100 ? E
FR
@ g]
= e T E
=] E 3
= E]
R~ F]
0.1 1 1 1 1 1 1 1
1 10 102 100 100 100 10° 107 108

Prefix size

(c) tree contraction

Figure 4.19: Running time vs. prefix size for n = 10% on 40 cores with hyper-threading (log-log scale) for
random permutation, list contraction, and tree contraction.

104

Chapter 5

A Deterministic Phase-Concurrent
Parallel Hash Table

5.1 Introduction

The importance of internal determinism in developing and debugging parallel programs has
been argued in Chapter 3. In the context of concurrent access, a data structure is internally
deterministic if even when operations are applied concurrently the final observable state
depends uniquely on the set of operations applied, but not on their order. This property
is equivalent to saying the operations commute with respect to the final observable state
of the structure [459, 436]. However, for certain data structures, the operations naturally
do not commute. For example, in a hash table, mixing insertions and deletions in time
would inherently depend on ordering since inserting and deleting the same element do
not commute, but insertions commute with each other and deletions commute with each
other, independently of value. The same is true for searching mixed with either insertion
or deletion. For a data structure in which certain operations commute but others do
not, it is useful to group the operations into phases such that the concurrent operations
within a phase commute. This chapter defines a data structure to be phase-concurrent if
subsets of operations can proceed (safely) concurrently. If the operations within a phase
also commute, then the data structure is deterministic. Note that phase-concurrency can
have other uses besides determinism, such as giving more efficient data structures. It
is the programmer’s responsibility to separate concurrent operations into phases, with
synchronization in between, which for most nested parallel programs is easy and natural to
do.

This chapter focuses on the hash table data structure. We develop a deterministic phase-
concurrent hash table and prove its correctness. This hash table is part of the Problem Based

105

Benchmark Suite, and is also what is used to implement the dynamic map in Section 3.3.
The data structure builds upon a sequential history-independent hash table [58] and allows
concurrent insertions, concurrent deletions, concurrent searches, and reporting the contents.
It does not allow different types of operations to be mixed in time, because commutativity
(and hence determinism) would be violated in general. This chapter shows that using
one type of operation at a time is still very useful for many applications. The hash table
uses open addressing with a prioritized variant of linear probing and guarantees that in
a quiescent state (when there are no operations ongoing) the exact content of the array
is independent of the ordering of previous updates. This allows, for example, quickly
returning the contents of the hash table in a deterministic order simply by packing out the
empty cells, which is useful in many applications. Returning the contents could be done
deterministically by sorting, but this is more expensive. The hash table can store key-value
pairs either directly or via a pointer.

The experimental section in this chapter (Section 5.6) presents timings for insertions,
deletions, finds, and returning the contents into an array on a 40-core machine. These
timings are compared with the timings of several other implementations of concurrent and
phase-concurrent hash tables, including the fastest concurrent open addressing [226] and
closed addressing [293] hash tables that we could find, and two of our nondeterministic
phase-concurrent implementations (based on linear probing and cuckoo hashing). The
experiments also compare the implementations to standard sequential linear probing, and to
the sequential history-independent hash table. The experiments show that the deterministic
hash table developed in this chapter significantly outperforms the existing concurrent
(nondeterministic) versions on updates by a factor of 1.3—4.1. Furthermore, it gets up to
a 52x speedup over the (standard) nondeterministic sequential version on 40 cores with
two-way hyper-threading. The experiments compare insertions to simply writing into an
array at random locations (a scatter). On 40 cores, and for a load factor of 1/3, insertions
into the deterministic hash table is only about 1.3x the cost of random writes. This is
because most insertions only involve a single cache miss, as does a random write, and that
is the dominant cost.

Such a deterministic hash table is useful in many applications. For example, Delaunay
refinement iteratively adds triangles to a triangulation until all triangles satisfy some criteria
(see Section 5.5). “Bad triangles” which do not satisfy the criteria are broken up into smaller
triangles, possibly creating new bad triangles. The result of Delaunay refinement depends
on the order in which bad triangles are added. Chapter 3 showed that using deterministic
reservations, triangles can be added in parallel in a deterministic order on each iteration.
However, for the algorithm to be deterministic, the list of new bad triangles returned in each
iteration must also be deterministic. Since each bad triangle does not know how many new
bad triangles will be created, the most natural and efficient way to accomplish this is to add

106

the bad triangles to a deterministic hash table and return the contents of the table at the end
of each iteration. Without a hash table, one would either have to first mark the bad triangles
and then look through all the triangles identifying the bad ones, which is inefficient, or use a
fetch-and-add to a vector storing bad triangles (nondeterministic), leading to high contention,
or possibly use a lock-free queue (nondeterministic), again leading to high contention. By
using a deterministic hash table in conjunction with deterministic reservations, the order
of the bad triangles is deterministic, giving a deterministic implementation of parallel
Delaunay refinement.

This chapter presents six applications which use hash tables in a phase-concurrent
manner, and shows that the deterministic phase-concurrent hash table can be used both
for efficiency and for determinism. For four of these applications—remove duplicates,
Delaunay refinement, suffix trees and edge contraction—we believe the most natural and/or
efficient way to write an implementation is to use a hash table. Experiments shows that for
these applications, using the deterministic hash table is only slightly slower than using a
nondeterministic one based on linear probing, and is faster than using cuckoo hashing or
chained hashing (which are also nondeterministic). For two other applications—breadth-
first search and spanning tree—this chapter presents simpler implementations using hash
tables, compared to array-based versions directly addressing memory. Experiments show
that the implementations using hash tables are not much slower than the array-based
implementations, and again using our deterministic hash table is only slightly slower than
using our nondeterministic linear probing hash table and faster than using the other hash
tables.

Contributions. The contributions of this chapter are as follows. First, the notion of phase-
concurrency is formalized. Second, this chapter shows that phase-concurrency can be
applied to hash tables to obtain both determinism and efficiency. Proofs of correctness
and termination of the deterministic phase-concurrent hash table are given. Third, a
comprehensive experimental evaluation of our hash tables with the fastest existing parallel
hash tables is presented. The experiments compare our deterministic and nondeterministic
phase-concurrent linear probing hash tables, our phase-concurrent implementation of
cuckoo hashing, hopscotch hashing, which is the fastest existing concurrent open addressing
hash table at the time of this work, and an optimized implementation of concurrent chained
hashing. Finally, the chapter describes several applications of the deterministic hash table,
and presents experimental results comparing the running times of using different hash tables
in these applications.

5.2 Related Work

A data structure is defined to be history-independent if its layout depends only on its
current contents, and not the ordering of the operations that created it [217, 344]. For

107

sequential data structures, history-independence is motivated by security concerns, and
in particular ensures that examining a structure after its creation does not reveal anything
about its history. This chapter extends a sequential history-independent hash table based
on open addressing [58] to work phase-concurrently. The motivation is to design a data
structure which is deterministic independent of the order of updates. Although this work
is not concerned with the exact memory layout, it is important to be able to return the
contents of the hash table very quickly and in an order that is independent of when the
updates arrived. For a history-independent open addressing table, this can be done easily
by packing the non-empty elements into a contiguous array, which just involves a parallel
prefix sum and cache-friendly writes.

Several concurrent hash tables have been developed over the years. There has been
significant work on concurrent closed addressing hash tables using separate chaining
[231, 143, 282, 333, 412, 196, 443, 293, 225, 304]. It would not be hard to make one
of these deterministic when reporting the contents of the buckets since each list could
be sorted by a priority at that time. However, such hash tables are expensive relative to
open address hashing because they involve more cache misses, and also because they
need memory management to allocate and de-allocate the cells for the links. The fastest
closed addressing hash that we know of is Lea’s ConcurrentHashMap from the Java
Concurrency Package [293], and the experiments in this chapter compare with a C++
implementation of it, obtained from Herlihy et al. [226].

Martin and Davis [323], Purcell and Harris [386], and Gao et al. [162] describe lock-free
hash tables with open addressing. For deletions, Gao et al.’s version marks the locations
with a special “deleted” value, commonly known as tombstones, and insertions and finds
simply skip over the tombstones (an insertion is not allowed to fill a tombstone). This
means that the only way to remove deleted elements is to copy the whole hash table. All of
these hash tables are nondeterministic and quite complex. The experiments in this chapter
use an implementation of nondeterministic linear probing similar to that of Gao et al. (see
Section 5.6).

Herlihy et al. [226] describe and implement an open addressing concurrent hash table
called hopscotch hashing, which is based on cuckoo hashing [363] and linear probing.
Their hash table guarantees that an element is within K locations of the location it hashed
to (where K could be set to the machine word size), so that finds will touch few cache lines.
To maintain this property, insertions which find an empty location more than K locations
away from the location A that it hashed to will repeatedly displace elements closer to h
until it finds an empty slot within K locations of A (or resizes if no empty slot is found).
A deletion will recursively bring in elements later in the probe sequence to the empty slot
created. Their hash table requires locks and its layout is nondeterministic even if only one
type of operation is performed concurrently. Hopscotch hashing is the fastest concurrent

108

hash table available at the time of this work, and is used for comparison in Section 5.6.

Kim and Kim [267] recently present several implementations of parallel hash tables,
though our experiments showed that the code developed in this chapter and the hopscotch
hashing code of [226] are much faster. Van der Vegt and Laarman describe a concurrent hash
table using a variant of linear probing called bidirectional linear probing [452, 453], however
it requires a monotonic hash function, which may be too restrictive for many applications.
Their hash table is nondeterministic and requires locks. Alcantara et al. describe a parallel
hashing algorithm using GPUs [7], which involves a synchronized form of cuckoo hashing,
and is nondeterministic because collisions are resolved nondeterministically. Concurrent
cuckoo hashing has also been discussed by Fan et al. [145], and very recently by Li et
al. [299]. The hash table of Fan et al. supports concurrent access by multiple readers
and a single writer, but do not support concurrent writers. Li et al. extends this work
by supporting concurrent writers as well. Subsequent to the publication of the results
in this chapter [421], Nguyen and Tsigas describe a lock-free implementation of cuckoo
hashing [353].

Phase-concurrency has been previously explored in the work on room synchronizations
by Blelloch et al. [51]. They describe phase-concurrent implementations of stacks and
queues. However, they were concerned only about efficiency, and their data structures are
not deterministic even within a single phase.

5.3 Preliminaries

Let us now review the sequential history-independent hash table of Blelloch and Golovin [58].
The algorithm is similar to that of standard linear probing. It assumes a total order on
the keys used as priorities. For insertion, the only difference is that if during the probe
sequence a key currently in the location has lower priority than the key being inserted, then
the two keys are swapped. An insertion probes the exact same number of elements as in
standard linear probing. For finds, the only difference is that since the keys are ordered
by priority, it means that a find for a key & can stop once it finds a location ¢ with a lower
priority key. This means that searching for keys not in the table can actually be faster than
in standard linear probing. One common method for handling deletions in linear probing is
to simply mark the location as “deleted” (a tombstone), and modify the insert and search
accordingly. However, this would not be history-independent. Instead, for deletions in the
history-independent hash table, the location where the key is deleted is filled with the next
lower priority element in the probe sequence that hashed to or after that location (or the
empty element if it is at the end of the probe sequence). This process is done recursively
until the element that gets swapped in is the empty element.
This chapter defines phase-concurrency as follows:

109

Definition 4 (Phase-Concurrency). A data structure with operations O and operation
subsets S is phase-concurrent if Vs € S, we have s C O and all operations in s can
proceed concurrently and are linearizable.

5.4 Deterministic Phase-Concurrent Hash Table

The deterministic phase-concurrent hash table developed in this chapter extends the sequen-
tial history-independent hash table to allow for concurrent inserts, concurrent deletes, and
concurrent finds. The contents can also be extracted (referred to as the elements operation)
easily by simply packing the non-empty cells. Using the notation of Definition 4, the hash
table is phase-concurrent with:

e O = {insert, delete, find, elements}, and
e S = {{insert}, {delete}, {find, elements} }

The code for insertion, deletion, and find is shown in Figure 5.1, and assumes that
the table is not full and that different keys have different priorities (total ordering). For
simplicity, the code assumes there is no data associated with the key, although it could
easily be modified for key-value pairs. Note that the code works for arbitrary key-value
sizes as for structure sizes larger that what a compare-and-swap can operate on, a pointer
(which fits in a word) to the structure can be stored in the hash table instead. The code
assumes a hash function % that maps keys into the range [0, . .., |M| — 1], and that the keys
have a total priority ordering that can be compared with the function <,. By convention,
assume that the empty element (_L) has lower priority than all other elements. The code
uses NEXTINDEX (i) and PREVINDEX (7) to increment and decrement the index modulo the
table size. Note that neither INSERT nor DELETE have return values, so the implementation
only needs to ensure that a set of inserts (or deletes) are commutative with respect to the
resulting configuration of the table.

For a given element v, INSERT loops until it finds a location with L (Line 3) or it finds
that v is already in the hash table (Line 5), at which point it terminates. If during the insert,
it finds a location that stores a lower priority value (Line 8), it attempts to replace the value
there with v using a CAS, and if successful the lower priority key is temporarily removed
from the table and INSERT is now responsible for inserting the replaced element later in the
probe sequence, i.e. the replaced element is set to v (Line 9).

For a given element v, DELETE first finds v or an element after v in the probe sequence
at location & (Lines 27-29) since v may either not be in the table or its position has been
shifted back due to concurrent deletions. If v is not at location &, then DELETE decrements
the location (Lines 30-32) until either v is found (Line 33) or the location becomes less
than h(v) (Line 30), in which case v is not in the table. After finding v, DELETE finds the

110

—
SO XN B WN =

BRI PBDPDLWLLLLLOLWLWOLWLWWNRNDNDDDN DN DN DN D = ————
QANPHEWND ROV ITNPERNDN—RFOOXIAAN WOV TINWUN W~

procedure INSERT(v)
1= h(v)
while (v # 1)
c= M|i]
if (¢ =v) return
elseif (¢ >, v) then
i = NEXTINDEX(1)
elseif (CAS(&M]i],c,v)) then
v==~¢C
i = NEXTINDEX(7)
procedure FINDREPLACEMENT ()
j=i
do
Jj = NEXTINDEX(j)
v=M][j]
while (v# L and h(v) > 1)
k = PREVINDEX ()
while (k > i)
v = MIk]
if (vV=1 or h(v') <i) then
v="0
i=k
k = PREVINDEX(k)
return (j,v)
procedure DELETE(v)
i = h(v)
k=1
while (M[k] # L and v <, MIk])
k = NEXTINDEX (k)
while (k > i)
if (v=1 or v#, M[k])
k = PREVINDEX(k)
else
(j,v") = FINDREPLACEMENT (k)
if (CAS(&M[k],v,v")) then
if (v'# 1) then
v="0

k=
i =h(v)

else return
else © = PREVINDEX(k)
procedure FIND(v)
i=h(v)
while (M[i] # L and v <, M[i])
1 = NEXTINDEX(%)
return (M[i] = v)

Figure 5.1: Pseudocode for the phase-concurrent deterministic hashing with linear probing.

replacement element for v by calling FINDREPLACEMENT (Line 34). FINDREPLACEMENT
first increments the location until finding a replacement element that is either L or a lower
priority element that hashes after v (Lines 13-16). The resulting location will be one past
the replacement element, so it is decremented on Line 17. Then because the replacement
element could have shifted, it decrements the location until finding the replacement element
(Lines 18-23). DELETE then attempts to swap in the replacement element v' on Line 35,
and if successful, and v # L (Line 36), there is now an additional copy of v’ in the
table so DELETE is responsible for deleting v" (Lines 37-39). Otherwise, if the CAS was
unsuccessful, either v has already been deleted or used as a replacement element so possibly
appears at some earlier location. DELETE decrements the location and continues looping
(Line 41).

To FIND an element v, the algorithm starts at /(v) and loops upward until finding either
an empty location or a location with a key with equal or lower priority (Lines 43—45). Then
it returns the result of the comparison of v with that key (Line 46). Since there is a total
priority ordering on the keys, M| will contain v if and only if v is in the table.

Note that for INSERT, DELETE, and FIND, it is crucial that the hash table is not
full, otherwise the operations may not terminate. Throughout the discussion, we assume
wraparound with modulo arithmetic. Since the table is not full, every cluster has a beginning,
and when comparing the positions of two elements within a cluster, the “higher” position is
the one further from the beginning of the cluster in the forward direction with wraparound.
The goal is to show that when starting with an empty hash table, the phase-concurrent hash
table maintains the following invariant:

Definition 5 (Ordering Invariant). If a key v hashes to location i and is stored in location j
in the hash table, then for all k,i < k < j it must be that M k] >, v.

As long as the keys are totally ordered by their priorities, the ordering invariant guaran-
tees a unique representation for a given set of keys [58]. This invariant was shown to hold
in the sequential history-independent hash table [58].

The concurrent versions of insert and delete work similarly to the sequential versions,
but need to be careful about concurrent modifications. What this section shows is that the
union of the keys being inserted and the current content always equals the union of all
initial keys and all insertions that started. A key property to make it work is that since only
insertions are occurring, the priority of the keys at a given location can only increase. It
should be clear from the implementation that is not safe to run inserts concurrently with
finds, since an unrelated key can be temporarily removed and invisible to a find.

The deletion routine is somewhat trickier. It allows for multiple copies of a key to
appear in the table during deletions. In fact, with p concurrent threads it is possible that
up to p + 1 copies of a single key appear in the table at a given time. This might seem

112

counterintuitive since the goal is to delete keys. Recall, however, that when a key v is
deleted, a replacement v’ needs to be found to fill its slot. When v’ is copied into the slot
occupied by v, there will temporarily be two copies of v, but the delete operation is now
responsible for deleting one of them. The sequential code deletes the second copy, but in
the concurrent version since there might be concurrent deletes aimed at the same key, the
delete might end up deleting the version it copied into, another thread’s copy, or it might
end up not finding a copy and quitting. The important invariant is that for a value v the
number of copies minus the number of outstanding deletes does not change (when a copy is
made, the number of copies is increased but so is the number of outstanding deletes). A key
property that makes deletions work is that since only deletions are occurring, the priority of
the keys at a given location can only decrease, and hence a key can only move to locations
with a lower index.

The rest of this section proves important properties of the hash table. M, is used to
indicate the set of (non-empty) values contained in the hash table, I, to indicate the set of
values in a collection of insertion operations 7, and | M| to indicate the size of the table.

Theorem 17. Starting with a table M that satisfies the ordering invariant and with no
operations in progress, after any collection of concurrent insertions I complete (and none
are in progress) with | M, U L,| < |M/|, M will satisfy the following properties:

e M contains the union of the keys initially in the table and all values in I, and

e M satisfies the ordering invariant.

Furthermore, all insertion operations are non-blocking and terminate in a finite number of
steps.

Proof. The proof assumes all instructions are linearizable and considers the linearized
sequential ordering of operations. A step is used to refer to a position in this sequential
ordering. At a given step, [, is used to indicate the set of values for which an INSERT has
started. Between when an INSERT starts and finishes, it is said to be active with some
value. At its start, an INSERT(v) is active with the value v, but whenever it performs a
successful CAS(&Mi], v, c) on Line 8, the INSERT becomes active with the value ¢ on
the next step (Line 9)—it is now responsible for inserting c instead of v. When it does a
successful CAS (&M i],v, L) an INSERT is no longer active—it will terminate as soon as
it gets to the next start of the while loop and do nothing to the shared state in the meantime.
An INSERT is also no longer active when it reads a value c on Line 4 that is equal to v—it
will terminate on Line 5.

A, is used to indicate the union of values of all INSERT’s that are active. M, is used to
indicate the values contained in M on a given step, and M to be the initial values contained
in M. We will prove that the following invariants are maintained on every step:

113

1. M,UA, =M,U I,, and
2. the table M satisfies the ordering invariant.

Since at the end A, = (), these invariants imply the two properties of the theorem.

Invariant 1 is true at the start since A, and [, are both empty and M, = M, by definition.
The invariant is maintained since (1) when an INSERT starts, its value is added to both A,
and [, and therefore the invariant is unchanged, (2) when an INSERT terminates it reads
a M[i] = v, so av is removed from A, but it exists in M, so the union is unaffected, (3)
every CAS with ¢ = | removes a v from A, but inserts it into M,,, maintaining the union,
and (4) every CAS with ¢ # 1 swaps an element in M, with an element in A,, again
maintaining the union. In the code, whenever a CAS succeeds, c is placed in the location
where v was (by the definition of CAS) and immediately afterward v is set to ¢ (Line 9).

Invariant 2 is true at the start by assumption. The invariant is maintained since whenever
a CAS(&M]|i], v, c) succeeds it must be the case after the CAS that (1) all locations from
h(v) up to ¢ have equal or higher priority than v, and (2) all keys that hash to or before
¢ but appear after ¢ have lower priority than v. These properties imply that the ordering
invariant is maintained. The first case is true since the only time ¢ is incremented for v is
when ¢ = M[i] has a equal or higher priority (Lines 6-7) and since the code only swaps
higher priority values with lower priority ones (v >, c for all CAS’s), once a cell has an
equal or larger priority than v, it always will. Also when the code has a successful CAS,
swaps v and ¢, and increments ¢, it must be the case that all locations in the probe sequence
for the new v and before the new 7 have priority higher than the new v. This is because it
was true before the swap and the only thing changed by the swap was putting the old v into
the table, which we know has a higher priority than the new v. The second case of invariant
2 is true since whenever a CAS is performed, the priority of the value at that location only
increases.

The termination condition is true since when the hash table of size | M| is not full, an
INSERT can call NEXTINDEX at most | M | times before finding an empty location. Therefore
for p parallel INSERT’s, there can be at most p| M| calls to NEXTINDEX. Furthermore, any
CAS failure of an INSERT is associated with a CAS success of another INSERT. A CAS
success corresponds to either a call to NEXTINDEX (Line 7) or termination of the insertion.
Therefore, for a set of p parallel INSERT’s, there can be at most p — 1 CAS failures for any
one CAS success and call to NEXTINDEX. So after p?| M| CAS attempts, all INSERT’s have
terminated. It is non-blocking because an INSERT can only fail on a CAS attempt if another
INSERT succeeds and thus makes progress.]

Theorem 18. Starting with a table M with | M, | < |M]| that satisfies the ordering invariant
and with no operations in progress, after any collection of concurrent deletes D complete
(and none are in progress), the table will satisfy the following properties:

114

e M contains the difference of the keys initially in the table and all values in D, and

o M satisfies the ordering invariant.

Furthermore, all delete operations are non-blocking and terminate in a finite number of
steps.

Proof. Similar to insertions, from when a DELETE starts until it ends, it is active with
some value: initially it is active with the v it was called with, and after a successful
CAS(&ME],v,v") for v' # L it becomes active with v' (Lines 35-37). A DELETE
finishes on CAS (&M k], v, L) or when the condition of the while loop on Line 30 no
longer holds (in this case, it finishes because v is not in the table).

During deletions, the table M can contain multiple copies of a key. The definition of
the ordering invariant is still valid with multiple copies of a key, and for a fixed multiplicity
the layout remains unique. Unlike insertions, analyzing deletions requires keeping track of
multiplicities.

The proof uses D, to indicate the set of values in D, and M the initial contents of M.
A(v) is used to indicate the number of active DELETE’s with value v, and M (v) to indicate
the number of copies of v in M. We will prove that the following invariants are maintained
at every step:

1. Yo € My, ifv € M\ D, then M (v) — A(v) = 1, and otherwise M (v) — A(v) < 1,
2. the table M satisfies the ordering invariant allowing for repeated keys, and

3. on Line 30, the index £ of a DELETE of v must point to or past the last copy of v (the
“rightmost” copy with respect to the cluster).

Since at the end A(v) = 0 for all v, these invariants prove the properties of the theorem.

Invariant 1 is true at the start since D, is empty and Vv € M, A(v) = 0. To show
that the invariant is maintained, consider all events that can change M (v), A(v), or D,,.
These are: (1) when a DELETE on v starts, then A(v) is incremented making M (v) — A(v)
less than 1 (since it can be at most 1 before the start) and v is added to D,, so v is not in
M;\ D,, (2) when a CAS(&M k], v, L) succeeds, A(v) and M (v) are both decremented,
therefore canceling out, (3) when a CAS(&M [k], v,v") for ' # L succeeds, then by
Lines 35-37, A(v) and M (v) are both decremented, canceling out, and A(v") and M (v')
are both incremented, again canceling out, and (4) when a DELETE finishes due to the
condition not holding on Line 30, the value v cannot be in the table because of invariant
3, so A(v) is decremented, but M (v) — A(v) is less than 1 both before and after since
M(v) =0.

115

Invariant 2 is true at the start by assumption. The only way it could become violated is
if as a result of a CAS(&M [k], v, v'), the value v’ falls out of order with respect to values
after location j (i.e., there is some key that hashes at or before j, is located after j, and has
a higher priority than v). This cannot happen since the replacement element found is the
closest key to j that hashes after j and has lower priority than v. The loop in Lines 13—-16
scans upward to find an element that hashes after v in the probe sequence, and the while
loop at Lines 18-23 scans downward in case the desired replacement element was shifted
down in the meantime by another thread. It is important that this loop runs backwards and
is the reason that there are two redundant looking loops, one going up and one going back
down.

Invariant 3 is true since the initial find (Lines 27-29) locates an index of an element
with priority lower that v, which must be past v, and FINDREPLACEMENT returns an index
at or past the replacement v'. k is only decremented on a failed CAS, which in this case
means that v can only be at an index lower than k.

To prove termination, let us bound the number of index increments and decrements a
single DELETE operation can perform while executing in parallel with other deletes. For a
hash table of size | M|, the while loop on Lines 3041 can execute at most | M | times before
1 changes, and ¢ will only increase since the replacement element must have a higher index
than the deleted element. 7 can increase at most | M | times before v/ = L, so the number of
calls to FINDREPLACEMENT is at most |M|2. The number of decrements and assignments
to k in the while loop on Lines 30—41 is at most | M| per iteration of the while loop (for
a total of |M|?). FINDREPLACEMENT contains a loop incrementing j, which eventually
finishes because the condition on Line 16 will be true for a location containing |, and a
loop decrementing j, which eventually finishes due to the condition on Line 18. So the total
number of increments and decrements is at most 2| M| per call to FINDREPLACEMENT.
The initial find on Lines 27-29 involves at most |M/| increments. Therefore, a DELETE
operation terminates after at most | M|+ | M |*+2|M |? increments/decrements, independent
of the result of the CAS on Line 35. A collection of p DELETE’s terminates in at most
p(|M|+|M|?+2|M|?) increments/decrements. Increments, decrements, and all instructions
in between are non-blocking and thus finish in a finite amount of time. Therefore, concurrent
deletions are non-blocking. L

Combining. For a deterministic hash table that stores key-value pairs, if there are duplicate
keys, the implementation must decide how to combine the values of these keys determinis-
tically. This can be done by passing a commutative combining function that is applied to
the values of pairs with equal keys and updating the location (using a double-word CAS)
with a pair containing the key with the combined values. The experiments in Section 5.6
use min or + as the combining function.

116

Resizing. Using well-known techniques it is relatively easy to extend the hash table with
resizing [225]. Here we outline an approach for growing a table based on incrementally
copying the old contents to a new table when the load factor in the table is too high. An
INSERT can detect that a table is overfull when a probe sequence is too long. In particular,
theoretically a probe sequence should not be longer than & log n with high probability for
some constant % that depends on the allowable load factor. Once a process detects that the
table is overfull, it allocates a new table of twice the size and (atomically) places a link
to the new table accessible to all users. A lock can be used to avoid multiple processes
allocating simultaneously. This would mean that an insertion will have to wait between
when the lock is taken and the new table is available, but this should be a short time, and
only on rare occasions.

Once the link is set, new INSERT’s are placed in the new table. Furthermore, as long as
the old table is not empty, every INSERT is responsible for copying at least two elements
from the old table to the new one. The thread responsible for creating the new table allocates
the elements to copy to other threads, and thereafter some form of work-stealing [65] is
used to guarantee that a thread has elements to copy when there are still uncopied elements.
As long as a constant number of keys are copied for every one that is inserted, the old table
will be emptied before the new one is filled. This way only two tables are active at any time.
There is an extra cost of indirection on every INSERT since the table has to be checked to
find if it has been relocated. However, most of the time this pointer will be in a local cache
in shared mode (loaded by any previous table access) and therefore the cost is very cheap.
When there are two active tables, FIND’s and DELETE’s would look in both tables.

5.5 Applications

This section describes applications which use the deterministic hash table. For these
applications, using a hash table is either the most natural and/or efficient way to implement
an algorithm, or it simplifies the implementation compared to directly addressing the
memory locations. The hash table implementation contains a function ELEMENTS() which
packs the contents of the table into an array and returns it. It is important that ELEMENTS()
is deterministic to guarantee determinism for the algorithms that use it.

Delaunay refinement and breadth-first search use the WRITEMIN function for deter-
minism, which is an instantiation of the priority update operation that will be described in
Section 6.2. It takes two arguments—a memory location /oc and a value val and stores val at
loc if and only if val is less than the value at loc. It returns true if it updates the value at loc
and false otherwise.

117

5.5.1 Remove Duplicates

This is a simple application which can be implemented using a hash table by simply inserting
all of the elements into the table and returning the result of ELEMENTS(), as described in
Section 3.4.4. For determinism, the sequence returned by ELEMENTS() should contain the
elements in the same order every time, which is guaranteed by a deterministic hash table.
This is an example of an application where the most natural and efficient implementation
uses hashing (one could remove duplicates by sorting and removing consecutive equal-
valued elements, but it would be less efficient).

5.5.2 Delaunay Refinement

Recall from Section 2.6.4 that the Delaunay refinement problem takes as input a Delaunay
triangulation and an angle o, and adds new points to the triangulation such that no triangle
has an angle less than «v. A triangle with an angle less than « is referred to as a bad triangle.
This section elaborates on the Delaunay refinement implementation used in Section 3.4.4.

Initially all of the bad triangles of the input triangulation are computed and stored into
a hash table. On each iteration of Delaunay refinement, the contents of the hash table
are obtained via a call to ELEMENTS(). The next step of an iteration follows that of the
deterministic reservations-based implementation of Delaunay triangulation described in
Section 3.4.4. Using deterministic reservations, the bad triangles mark (using a WRITEMIN
with their index in the sequence) all of the triangles that would be affected if they were
to be inserted. Bad triangles whose affected triangles all contain their mark are “active’
and can proceed to modify the triangulation by adding their center point. This method
guarantees there are no conflicts, as any triangle in the triangulation is affected by at most
one active bad triangle. During each iteration of the refinement, new triangles with angles
less than « are generated and they are inserted into the hash table as they are discovered.
This process is repeated until either a specified number of new points are added or the
triangulation contains no more bad triangles. For determinism, it is important that the call
to ELEMENTS() is deterministic, as this makes the indices/priorities of the bad triangles,
and hence the resulting triangulation deterministic.

This is an example of an application where using a hash table significantly simplifies
the implementation. Prior to inserting a point, it is hard to efficiently determine how many
new bad triangles it will create, and pre-allocate an array of the correct size to allow for
storing the new bad triangles in parallel.

5.5.3 Suffix Tree

Recall from Section 2.6.3 that a suffix tree stores all suffixes of a string S in a trie where
internal nodes with a single child are contracted. A suffix tree allows for efficient searches
for patterns in S, and also has many other applications in string analysis and computational

B

118

biology. To allow for expected constant time look-ups, a hash table is used to store the
children of each internal node. The phase-concurrent hash table allows for parallel insertions
of nodes into a suffix tree and parallel searches on the suffix tree. This is an example of an
application where hash tables are used for efficiency, and where the inserts and finds are
naturally split into two phases. The suffix tree implementation is discussed in more detail
in Chapter 11.

5.5.4 Edge Contraction

The edge contraction problem takes as input a sequence of edges (possibly with weights)
and a label array R, which specifies that vertex v should be relabeled with the value R|v].
It returns a sequence of unique edges relabeled according to R. Edge contraction is used in
recursive graph algorithms where certain vertices are merged into “supervertices” and the
endpoints of edges need to be relabeled to the IDs of these supervertices. Duplicate edges
are processed differently depending on the algorithm.

To implement edge contraction, the edges are inserted into a hash table using the two
new vertex IDs as the key, and any data on the edge as the value. A commutative combining
function can be supplied for combining data on duplicate edges. For example, the edge
with minimum weight might be kept for a minimum spanning tree algorithm, or the edge
weights added together for a graph partitioning algorithm [261]. To obtain the relabeled
edges for the next iteration, a call to ELEMENTS() is made. To guarantee determinism in
the algorithm, the hash table must be deterministic.

The edge contraction idea described here is used to combine duplicate edges in the paral-
lel graph reordering algorithm described in Chapter 8, and to remove duplicate edges in the
contraction-based parallel connected components implementation described in Chapter 9.

5.5.5 Breadth-First Search

Recall that the standard parallel breadth-first search (BFS) implementation proceeds by
visiting each frontier of the search in parallel, and generates a BFS tree. This can be
made deterministic using a priority write (WRITEMIN), as discussed in Section 3.4.4. The
approach discussed in Section 3.4.4, however, requires first creating an array large enough
to contain all unvisited neighbors of all vertices in the current frontier (since at this point
parents have not been assigned yet), assign segments of the array to each vertex in the
frontier, and have each frontier vertex copy unvisited neighbors that it is a parent of into the
array. This array is then packed down with a prefix sums and assigned to the next frontier.

An alternative solution is to use a concurrent hash table and insert unvisited neighbors
into the table. Obtaining the next frontier simply involves a call to ELEMENTS(). With
this method, duplicates are removed automatically, and the packing is hidden from the
user. This leads to a much cleaner solution. If one wants to look at or store the frontiers or

119

1: procedure BFS(G, r) > 7 is the root
2 Parents = {0, ..., 00} > initialized to all co (unvisited)
3 Parents[r] = r

4: Frontier = {r}

5: while (Frontier # {}) do
6.

7

8

Create hash table T’
parfor v € Frontier do > loop over frontier vertices
: parfor ngh € N(v) do > loop over neighbors
9: if (WRITEMIN(&Parents[ngh|, v)) then

10: T.INSERT(ngh)
11: Frontier = T.ELEMENTS() > get contents of T’
12: parfor v € Frontier do
13: Parents[v] = —Parents[v] > negative indicates visited
14: return Parents

Figure 5.2: Hash table-based implementation of breadth-first search.

simply generate a level ordering of the vertices, then it is important that ELEMENTS() is
deterministic. The pseudocode for this algorithm is shown in Figure 5.2. This method gives
a deterministic BFS tree. Section 5.6 shows that using the deterministic phase-concurrent
hash table does not slow down the BFS code by much compared to the best previous
deterministic BES code (from Chapter 3), which uses memory directly as described in the
first method above.

5.5.6 Spanning Forest

Recall that a spanning forest algorithm can be implemented using the deterministic reserva-
tions approach as described in Section 3.4.4. If the vertex IDs are integers from the range
[0,...,n — 1], then an array of size n can be used to store the reservations. However, if the
IDs are much larger integers or strings, it may be more convenient to use a hash table to
perform the reservations to avoid vertex relabeling. Determinism is maintained if the hash
table is deterministic. For the reservation phase, edges insert into a hash table each of its
vertices (as the key), with value equal to the edge priority. For a deterministic hash table,
if duplicate vertices are inserted, the one with the value with the highest priority remains
in the hash table. In the commit phase, each edge performs a hash table find on the vertex
it inserted and if it contain the edge’s priority value, then it proceeds with linking its two
components together. The experiments in Section 5.6 show that the implementation of
spanning forest using a hash table is only slightly slower than the array-based version from
Section 3.4.4.

120

5.6 Experiments

This section experimentally analyzes the performance of the concurrent deterministic
history-independent hash table (linearHash-D) on its own, and also when used in the
applications described in Section 5.5.

The experiments compare it with two nondeterministic phase-concurrent hash tables
that my co-author and I implement, and with the best existing concurrent hash tables that
we know of (hopscotchHash and chainedHash). linearHash-ND is a concurrent version
of linear probing that we implement, which places values in the first empty location and
hence depends on history (nondeterministic). It is based on the implementation of Gao et
al. [162], except that for deletions it shifts elements back instead of using tombstones, and
does not support resizing. In linearHash-ND, insertions and finds can proceed concurrently
(although they are still separated in the experiments), since inserted elements are not
displaced. cuckooHash is a concurrent version of cuckoo hashing that we implement,
which locks two locations for an element insertion, places the element in one of the
locations, and recursively inserts any evicted elements. To prevent deadlocks, it acquires
the locks in increasing order of location. It is nondeterministic because an element can be
placed in either of its two locations based on the order of insertions. For key-value pairs,
on encountering duplicate keys linearHash-D uses a priority function [423] on the values to
deterministically decide which pair to keep, while the nondeterministic hash tables do not
replace on duplicate keys.

hopscotchHash is a fully-concurrent open-addressing hash table by Herlihy et al. [226],
which is based on a combination of linear probing and cuckoo hashing. It uses locks
on segments of the hash table during insertions and deletions. We noticed that there
is a time-stamp field in the code which is not needed if operations of different types
are not performed concurrently. We modified the code accordingly and call this phase-
concurrent version hopscotchHash-PC. chainedHash is a widely-used fully-concurrent
closed-addressing hash table by Lea [293] which places elements in linked lists. It was
originally implemented in Java, but we were able to obtain a C++ version from the authors
of [226]. We also tried the chained hash map (concurrent_hash map) implemented
as part of Intel Threading Building Blocks, but found it to be slower than chainedHash.
We implement the ELEMENTS() routine for both hopscotch hashing and chained hashing,
as the original implementations did not come with this routine. For hopscotch hashing,
we simply pack out the empty locations. For chained hashing, we first count the number
of elements per bucket by traversing the linked lists, compute each bucket’s offset into
an array using a parallel prefix sum, and then traverse the linked lists per bucket copying
elements into the array (each bucket can proceed in parallel). The original implementation
of chainedHash acquires a lock at the beginning of an insertion and deletion. This leads to

121

high lock contention for distributions with many repeated keys. We optimized the chained
hash table such that insertion only acquires a lock after an initial find operation does not
find the key, and deletion only acquires a lock after an initial find operation successfully
finds the key. This contention-reducing version is referred to as chainedHash-CR.

The experiments also include timings for a serial implementation of the history-
independent hash table using linear probing (serialHash-HI) and a serial implementation
using standard linear probing (serialHash-HD).

For the applications, the experiments compare their performance using the phase-
concurrent hash tables that we implement and the chained hash table.! For breadth-first
search and spanning tree, the experiments also compare with implementations that directly
address memory and show that the additional cost of using hash tables is small.

All of the implementations developed in this chapter use Cilk Plus, and are compiled
using g++. The experiments were run on the 40-core Intel machine with two-way hyper-
threading, described in Section 2.7. The experiments use six input distributions from the
Problem Based Benchmark Suite. randomSeq-int is a sequence of n random integer keys in
the range [1, ..., n| drawn from a uniform distribution. randomSeq-pairInt is a sequence
of n key-value pairs of random integers in the range [1,...,n| drawn from a uniform
distribution. trigramsSeq is a sequence of n string keys generated from trigram probabilities
of English text (there are many duplicate keys in this input). trigramSeq-pairInt has the
same keys as trigramSeq, but each key maintains a corresponding random integer value.
For this input, the key-value pairs are stored as a pointer to a structure with a pointer to a
string, and therefore involves an extra level of indirection. exptSeq-int is a sequence of
n random integer keys drawn from an exponential distribution—this input is also used to
test high collision rates in the hash table. exptSeq-pairInt contains keys from the same
distribution, but with an additional integer value per key. For all distributions, the input size
was set to n = 108. For the open addressing hash tables, the experiments initialized a table
of size 228.

Figures 5.3(a) and 5.3(b) compare the hash tables for several operations on randomSeq-
int and trigramSeq-pairlnt, respectively. For Insert, a random set of keys from the distribu-
tion is inserted starting from an empty table. For Find Random and Delete Random, n
elements are first inserted (not included in the time) and then the operations are performed
for a random set of keys from the distribution. Elements is the time for returning the con-
tents of the hash table in a packed array. Table 5.1 lists the parallel and serial running times
(seconds) for insertions, finds, deletions, and returning the elements for the various hash
tables on different input sequences. For Find and Delete, n elements are first inserted (not

'The source code for hopscotch hashing that we obtained online sometimes does not work correctly on

our Intel machine (it was originally designed for a Sun UltraSPARC machine), so it is not used it in the
applications.

122

(a) Insert randomSeq-int | randomSeq-pairInt | trigramSeq | trigramSeq-pairInt | exptSeq-int | exptSeq-pairlnt
(1 | 40h) | (1) | (40h) (1) [@0h) | (1) | (40h (1) [@0h) | (1) | (40h)
serialHash-HI 394 - 4776 - 542 - 8.58 - 301 - 358 —
serialHash-HD 3.89 - 4.43 — 4.99 - 7.71 — 291 - 3.04 -
linearHash-D 453 | 0.171 | 545 0.216 5.53 1 0.115 | 8.66 0.204 3.08 | 0.119 | 3.71 | 0.141
linearHash-ND | 452 | 0.17 | 4.77 0.213 5.02 | 0.108 | 8.2 0.174 296 | 0.109 | 3.12 | 0.119
cuckooHash 791 | 0364 | 14.0 0.43 83 10.177 | 12.0 0.242 47 10.184 | 7.23 | 0.208
chainedHash 133 | 0.774 | 153 0.784 9.54 | 9.78 | 14.0 18.4 79 | 2.57 | 8.48 5.25
chainedHash-CR | 14.4 | 0.708 | 16.8 0.71 9.1 0.324 | 13.7 0.438 7.19 | 035 | 7.56 | 0.401
hopscotchHash | 9.19 | 0.349 | 9.21 0.363 7.04 | 1.54 |9.63 2.36 6.15 | 1.97 | 6.0 2.02
hopscotchHash-PC | 9.18 | 0.345 | 9.21 0.365 7.03 | 1.55 |9.59 2.45 6.16 | 1.94 | 5.99 2.09
(b) Find Random randomSeq-int | randomSeq-pairInt | trigramSe trigramSeq-pairlnt | exptSeq-int | exptSeq-pairlnt
(1) | 40h) | 1) | (40h) (1) [@0h) | (1) | (40h (1) [@0h) | (1) | (40h)
serial[Hash-HI 3.97 - 417 - 6.11 - 10.9 - 338 - 312 -
serialHash-HD 4.03 - 4.36 - 5.95 - 9.42 — 2.71 — 291 -
linearHash-D 423 | 0.114 | 4.19 0.149 6.17 | 0.12 | 10.6 0.219 3.16 | 0.069 | 3.11 0.07
linearHash-ND | 4.02 | 0.119 | 4.35 0.144 5.89 | 0.117 | 10.1 0.19 279 | 0.067 | 291 | 0.078
cuckooHash 6.64 | 0.21 8.13 0.255 7.7 | 0.174 | 124 0.24 5.1 |0.127 | 6.1 0.14
chainedHash 9.04 | 0.356 | 9.06 0.3 9.84 1 0.247 | 15.0 0.364 5.0 |0.189 | 6.01 0.17
chainedHash-CR | 9.06 | 0.359 | 9.05 0.301 9.74 1 0.245 | 15.0 0.365 59 |0.188 599 | 0.168
hopscotchHash 52 | 0173 |5.02 0.169 6.8 | 0.167 | 10.2 0.236 3.5110.094 | 349 | 0.091
hopscotchHash-PC | 4.76 | 0.151 | 4.72 0.15 6.84 | 0.167 | 9.7 0.241 3.42] 0.088 | 3.43 | 0.088
(¢) Find Inserted randomSeq-int | randomSeq-pairInt | trigramSe trigramSeq-pairlnt | exptSeq-int | exptSeq-pairlnt
() | (40h) | (1) | (40h) (1) | (40h) | (1) | (40h) (1) | (40h) | (1) | (40h)
serialHash-HI 336 - 359 - 578 - 10.3 - 2.8 - 278 -
serialHash-HD 3.22 - 3.45 - 5.6 - 8.66 — 2.48 - 2.62 —
linearHash-D 336 | 0.109 | 3.6 0.142 5.73 | 0.114 | 9.94 0.204 2.6 | 0.067 | 2.6 0.068
linearHash-ND | 3.22 | 0.106 | 3.44 0.125 5.5 | 0.11 |9.55 0.195 2.48 | 0.064 | 2.61 | 0.073
cuckooHash 6.03 | 0.205 | 7.34 0.228 7.88 1 0.165 | 11.6 0.222 4.66 | 0.12 | 5.59 0.13
chainedHash 7.83 | 0403 |791 0.327 9.47 1 0.253 | 14.5 0.367 5.68 | 0.214 | 5.73 | 0.191
chainedHash-CR | 7.87 | 0.406 | 7.89 0.327 9.36 | 0.249 | 14.5 0.366 5.69 | 0213 | 5.7 0.188
hopscotchHash | 4.67 | 0.168 | 4.67 0.166 6.44 | 0.157 | 9.31 0.22 3221 0.09 |3.22 0.09
hopscotchHash-PC | 4.45 | 0.154 | 4.46 0.15 6.48 | 0.157 | 9.25 0.24 3.14 1 0.083 | 3.16 | 0.084
(d) Delete Random | randomSeq-int | randomSeq-pairInt | trigramSeq | trigramSeq-pairlnt | exptSeg-int | exptSeq-pairlnt
(1) | (40h) () | (40h) (1) | 40h) | (1) | (40h) (1) | (40h) | (1) | (40h)
seria[Hash-HI 4.89 = 5.8 = 3.69 - 4.17 - 2.82 = 3.13 -
serialHash-HD 4.87 — 5.85 — 3.09 — 3.77 - 2.83 - 3.14 —
linearHash-D 5841 0211 |7.27 0.229 3.79 | 0.071 | 4.6 0.109 2.95 | 0.0968 | 3.7 0.099
linearHash-ND 59 | 0213 |743 0.235 3.85 | 0.071 | 4.64 0.109 3.02 | 0.0936 | 3.76 | 0.107
cuckooHash 6.16 | 021 |7.16 0.266 5.57 | 0.15 | 8.01 0.166 4251 0.109 | 4.69 | 0.142
chainedHash 16.2 | 0.63 16.4 0.597 479 | 2.38 | 6.02 2.7 7.16 | 279 | 7.28 7.01
chainedHash-CR | 15.0 | 0.571 | 14.9 0.512 433] 0.11 |5.19 0.137 6.04 | 0204 | 6.03 | 0.358
hopscotchHash | 7.19 | 0.302 | 7.1 0.316 416 | 1.32 | 4.89 1.29 436 | 132 | 431 1.25
hopscotchHash-PC | 7.07 | 0.301 | 7.06 0.32 415] 1.33 | 4.95 1.34 436 | 131 |4.28 1.24
(e) Delete Inserted | randomSeq-int | randomSeq-pairInt | trigramSeq | trigramSeq-pairlnt | exptSeq-int | exptSeq-pairlnt
(1) | 40h) | (D) | (40h) (1) | 40h) | (1) | (40h) (1) | 40h) | (1) | (40h)
serial[Hash-HI 5.05 - 6.1 - 3.51 = 436 — 3.1 - 35 -
serialHash-HD 5.15 - 6.37 — 3.48 - 4.01 - 3.13 - 3.5 -
linearHash-D 6.13 | 024 |7.98 0.264 3.73 1 0.068 | 4.59 0.102 333]0.115 [418 | 0.126
linearHash-ND | 6.36 | 0.242 | 8.38 0.269 3.8 | 0.07 | 4.34 0.102 335] 0.11 [423 | 0.119
cuckooHash 6.16 | 0217 | 741 0.272 5.74 1 0.143 | 7.72 0.16 44110.114 | 499 | 0.147
chainedHash 157 | 0.737 | 16.6 0.69 4221 22 |5.15 2.65 6.8 | 2.59 | 6.92 4.58
chainedHash-CR | 149 | 0.714 | 149 0.624 3.77 | 0.126 | 4.62 0.153 5.64 | 0.372 | 5.65 0.45
hopscotchHash 7.2 0.33 7.8 0.343 396 | 1.32 | 4.89 1.28 4.69 | 1.38 | 4.54 1.29
hopscotchHash-PC | 7.06 | 0.319 | 7.75 0.347 393 | 1.31 | 4.85 1.36 4.68 | 1.38 | 4.52 1.27
(f) Elements randomSeq-int | randomSeq-pairInt trigramSeq trigramSeq-pairInt | exptSeq-int exptSeq-pairlnt
(1) | (40h) | (1) | (40h) (1) | (40h) (1) (40h) (1) | (40h) (1) | (40h)
serial[Hash-HI 0.974 - I.1 - 0.758 - 0.753 - 0.603 - 0.821 -
serialHash-HD 0.986 - 1.08 - 0.759 - 0.761 — 0.554 - 0.814 -
linearHash-D 1.55 | 0.0511 | 2.25 0.0875 1.41 | 0.0575 | 1.43 0.056 1.05 | 0.0468 | 1.7 | 0.0514
linearHash-ND 1.55 | 0.0504 | 2.21 0.0857 1.42 | 0.0576 | 1.46 0.0554 1.06 | 0.0477 | 1.69 | 0.0794
cuckooHash 1.91 | 0.0791 | 2.54 0.115 245 1 0.0856 | 2.4 0.0866 1.64 | 0.0733 | 2.23 | 0.101
chainedHash 6.3 | 0.159 | 6.47 0.132 1.96 | 0.0782 | 1.97 0.0789 3.36 | 0.0934 | 3.38 | 0.0963
chainedHash-CR | 6.33 | 0.165 | 6.44 0.131 1.97 | 0.0784 | 1.96 0.0785 3.38 | 0.091 | 3.37 | 0.0938
hopscotchHash 225 | 0.114 | 2.7 0.15 2.1 0.228 | 2.16 0.275 2.14 | 0.103 | 2.6 0.127
hopscotchHash-PC | 2.26 | 0.112 | 2.73 0.147 2.09 | 0229 | 2.16 0.274 2.14 0.1 2.61 | 0.128

Table 5.1: Times (seconds) for hash table operations with n = 108. (40h) indicates 40 cores with hyper-
threading, and (1) indicates one thread.

123

Comparison of different hash tables on randomSeg-int Comparison of different hash tables on trigramSeq-pairlnt

linearHash-D (PC) mmmm— linearHash-D (PC)
— linearHash-ND (PC) —_ linearHash-ND (PC)
5 08 cuckooHash (PC) memm—m _ L 2t cuckooHash (PC) wemmm _|
= chainedHash-CR (C) memes = chainedHash-CR (C) memes
S hopscotchHash (C) S hopscotchHash (C)
2 0.6 - hopscotchHash-PC (PC) 2 150 hopscotchHash-PC (PC)
Z 0. Z 1
Q Q
E £
onp 0.4 o0 1+ 4
=} =)
k=] g
£ E sl i
g 02 Z o

0 W

0
Insert Find Random Delete Random Elements Insert Find Random Delete Random Elements

(a) Times (seconds) for 108 operations on randomSeg- (b) Times (seconds) for 10® operations on trigramSeq-
int pairlnt

Figure 5.3: Times (seconds) for 10® operations for the hash tables on 40 cores (with hyper-threading). (PC)
indicates a phase-concurrent implementation and (C) indicates a concurrent implementation.

included in the time) and then operations are performed either on the same keys (Inserted)
or for a random set of keys from the distribution (Random).

As Figure 5.3 and Table 5.1 indicate, insertion, finds, and deletions into the deterministic
(history-independent) hash table are slightly more expensive than into the history-dependent
linear probing version. This is due to the overhead of swapping and checking priorities.
Elements just involves packing the contents of the hash table into a contiguous array, and
since for a given input, the locations occupied in the hash table are the same in the linear
probing tables, the times are roughly the same (within noise) between the two serial versions
and the two parallel version. On a single thread, the serial versions are cheaper since they
do not use a prefix sum.

Overall, linearHash-D and linearHash-ND are faster than cuckooHash, since cuck-
ooHash involves more cache misses on average (it has to check two random locations).
Elements is also slower for cuckooHash because each hash table entry includes a lock,
which increases the memory footprint. For random integer keys, the linear probing hash
tables are 2.3—4.1 x faster than chainedHash and chainedHash-CR, as chained hashing
incurs more cache misses. As expected, in parallel chainedHash performs very poorly
under the sequences with many duplicates (trigramSeq, trigramSeq-pairlnt, exptSeq and
exptSeq-pairlnt) due to high lock contention, while chainedHash-CR performs better.

Compared to hopscotch hashing, which is the fastest concurrent open addressing hash
table that we are aware of, both of our phase-concurrent versions of linear probing are
faster. For random integer keys, the deterministic version is about 2 faster than hopscotch
hashing for inserts, and 1.3 x faster for finds and deletes. For elements, the deterministic
hash table is also faster because it stores less information per hash table entry. Hopscotch
hashing does not get good speedup for insertions and deletions for the sequences with many
repeats (i.e., the trigram and exponential sequences) due to lock contention. Compared to

124

Speedup (relative to serialHash-HI) for
linearHash-D on randomSeq-int

Speedup (relative to serialHash-HI) for
linearHash-D on trigramSeq-pairInt

40 T T T T 50 \
35 + — 45 - =
40 [|
30 - 1 35| d
g' 25 —= é" 30 - i b
g 200 T i g oL L 1
@ 151 o Insert 7 2 sk) T Insert i
10 |- T Find Random] 10 - e Find Random i
S Delete Random - - - - - B 5+ Delete Random - ---- B
0 L I I I 0 el I I I
148 16 24 32 40 40h 148 16 24 32 40 40h

Number of threads Number of threads

(a) Speedup on randomSeq-int (b) Speedup on trigramSeq-pairInt

Figure 5.4: Speedup relative to serialHash-HI for linearHash-D versus number of threads. “40h” indicates
80 hyper-threads.

z Times for hash table operations with varying loads on linearHash-D
=

S 30 \ \ \ \ \ \ ;

2 Insert ;

g 25 Find Inserted : [T
£ Delete Inserted - - - -- i

g 20+ K E
g ;

g 15 + , .
=] 7

8 10+ 0 P
"y IR

£ s5h I 4
& il

E 0 I i i i I I i i i

5 0 01 02 03 04 05 06 07 08 09 1

Load Factor

Figure 5.5: Times (nanoseconds) per operation with varying loads for linearHash-D on 40 cores (with
hyper-threading). Values on the x-axis indicate the load factor (fraction of the table that is full).

cuckooHash, on the lower-contention random integer sequence hopscotch hashing is faster
for finds and inserts but slower for deletes and elements (it stores more data).

Figures 5.4(a) and 5.4(b) show the speedup of linearHash-D relative to serialHash-HI
on varying number of threads on randomSeq-int and trigramSeq-pairInt, respectively. The
experiments use a hash table of size 2?® and apply 10® operations of each type. Observe
that all of the operations get good speedup as the number of threads increases.

Figure 5.5 shows the per operation running times on linearHash-D with varying loads.
For this experiment, a hash table of size 227 was used, and the table is first filled to the
specified load before timing t