
Programmable, Energy-minimal
Computer Architectures

Graham Gobieski

CMU-CS-22-145

August 2022

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Nathan Beckmann, Co-Chair

Brandon Lucia, Co-Chair
Todd Mowry
Kenneth Mai

Tony Nowatzki, External

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Graham Gobieski

This research was sponsored by an Apple PhD Fellowship, the National Science Foundation under award numbers
CNS-1526342 and CCF-1815882, and the U.S. Army under award number W911NF1820218. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

iii

Abstract
Ultra-low-power (ULP) sensor devices are increasingly being deployed for a variety
of use-cases that require sophisticated processing of sensed data. Regardless of the
deployment, energy-efficiency is critical; for battery-powered devices, energy-efficiency
determines device lifetime, while for energy-harvesting devices, energy-efficiency de-
termines performance by dictating the frequency of recharging. Unfortunately, ex-
isting devices pay a severe energy tax for their programmability, wasting energy in
instruction-fetch/decode, pipeline-control and data supply. Further, offloading com-
putation from an edge-device to the cloud is not practical as communication costs
an order-of-magnitude more energy than local compute. The solution is to redesign
the ULP sensor system stack to increase the energy-efficiency of on-board compute
and enable sophisticated processing of sensed data. This thesis proposes such a stack
— from software to silicon — that leverages new execution models to reduce the tax
of programmability and achieve extreme energy-efficiency. Specifically it contributes
1) Sonic, a software framework that enables machine inference on intermittently-
operating, energy-harvesting devices, 2) Manic, a vector-dataflow co-processor (and
corresponding silicon prototype), 3) Snafu, an ULP coarse-grain-reconfigurable-array
(CGRA) generation framework and architecture, and 4) RipTide, a co-designed
dataflow compiler and energy-minimal CGRA. Sonic was the first demonstration
of machine inference on a commercial, intermittently-operating device, but also ex-
posed the flaws of such devices. Manic fixed these problems by combining vector
execution to amortize instruction fetch with dataflow execution to minimize data sup-
ply energy by forwarding intermediate values directly from producers to consumers.
Snafu extended Manic’s vector-dataflow to further reduce energy by minimizing the
toggling of shared pipeline resources. Its generated CGRAs implement spatial-vector-
dataflow execution that lays out computation across a fabric of PEs, keeping each PE
configured in the same way throughout kernel execution. Finally, RipTide improves
overall system efficiency by compiling and offloading to its CGRA, programs writ-
ten in C with complex control-flow and irregular memory accesses. Together these
contributions form the basis of a new ULP sensor system stack that is > 2 orders-of-
magnitude more efficient than existing systems, enabling new emerging applications
that require intelligence “beyond-the-edge.”

v

Acknowledgements
There are many people to thank for helping me throughout my PhD. First my research
advisors, Professors Brandon Lucia and Nathan Beckmann. Brandon and Nathan have
taught me how to be a good researcher. They helped me find interesting problems and
guided me in my pursuit of solutions. They have complementary advising styles that
has a made us a formidable team. Brandon always has a deep understanding of the
big picture, which has kept my research grounded. Nathan’s detail-oriented approach
has made my research stronger and more polished. The success I have enjoyed during
my PhD would not have been possible without them.

I am grateful to my close collaborators, including Oguz Aatli, Souradip Ghosh,
Professor Kenneth Mai, Danny Bankman, Professor Todd Mowry, and Professor Tony
Nowatzki. Oguz, Ken, and Danny were pivotal in our successful tape-out of Manic,
guiding me throughout the tape-out process and helping me verify, debug, and op-
timize our design. Tony, Todd, and Souradip were central to the development of
RipTide. Bouncing ideas off of Tony and Todd during weekly research meetings,
helped me refine ideas and improved the design of RipTide. Souradip’s contributions
to RipTide’s compiler were critical to the project’s success and I thoroughly enjoyed
our work together.

I have been fortunate to receive an Apple PhD Fellowship in AI/ML and spend a
summer at Apple working on machine learning architecture. Jaewon Shin, my man-
ager, helped me navigate research in industry and encouraged me to be independent
and pursue difficult but relevant problems.

I want to thank additional CMU colleagues and administrative staff. I thank Harsh
Desai, Alexei Colin, and Emily Ruppel for answering my questions on microelectrics
and for their support of my work on intermittent computing. I also want to thank the
other PhD students in Brandon’s and Nathan’s groups for providing extremely useful
feedback on my research during practice talks and weekly lunch meetings. Finally, I
am grateful to Deborah Cavlovich for helping me navigate the logistics of the PhD.

There are several friends I want to highlight that provided advice and support
throughout my graduate studies. Michael Rudow, Jack Kosaian, Matt Butrovich,
Han Zhang, and Guilio Zhou are fellow CS PhD students and friends. They not only
provided an outlet for discussing my PhD, but also helped me experience Pittsburgh.
I am also grateful to George Yu. He provided me valuable advice and a different
perspective during our biweekly discussions. He has also been the very best travel
companion, willing to meet in whatever corner of the world.

Last but not least, I want to thank my parents and my brother. My parents, Beth
and John, encouraged me to pursue a PhD and helped me through the lows and the
highs of the process. My brother, Reid, is my best friend and has always been there
in whatever situation. I am the man that I am today because of them.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Challenges . 1
1.2 Objective of this work . 3
1.3 Outline . 5

2 Background 7
2.1 Low-power embedded devices . 7

2.1.1 Device operation . 7
2.1.2 Intermittent execution model 8
2.1.3 COTS ULP Devices . 9

2.2 Edge inference . 10
2.2.1 Algorithmic improvements to NN inference 10
2.2.2 Inference accelerators . 10

2.3 Efficient programmable architectures 11
2.3.1 Vector architectures . 11
2.3.2 Dataflow architectures . 12

2.4 Coarse-grain reconfigurable arrays . 12
2.4.1 Types of CGRAs . 13
2.4.2 Low-power CGRAs . 13
2.4.3 Compilation . 14
2.4.4 Compare & contrast different CGRA designs 15

3 SONIC: Deploying DNNs on intermittent embedded devices 17
3.1 Motivation for intermittent inference 18

3.1.1 The need for inference beyond the edge 19
3.1.2 Why accuracy matters . 19

3.2 System overview . 22
3.3 Optimal DNN compression with Genesis 22

3.3.1 Neural networks under consideration 23
3.3.2 Fitting networks on energy-harvesting systems 23
3.3.3 Choosing a neural network configuration 24

3.4 Efficient intermittent inference with Sonic 25
3.4.1 The Sonic API . 25
3.4.2 The Sonic runtime implementation 25

3.5 Hardware acceleration with Tails . 28
3.5.1 Automatic one-time calibration 29
3.5.2 Accelerating inference with LEA 29

3.6 Methodology . 29
3.7 Evaluation . 30

viii

3.7.1 Sonic&Tails accelerates intermittent inference 30
3.7.2 Loop continuation nearly eliminate intermittence overheads . . 32
3.7.3 Sonic&Tails use much less energy than tiling 33
3.7.4 Where does Sonic’s energy go? 33

3.8 Discussion . 33

4 MANIC: An energy-efficient, vector-dataflow co-processor 35
4.1 Vector-Dataflow Execution . 37

4.1.1 Vector execution . 37
4.1.2 Dataflow instruction fusion . 38
4.1.3 Vector register kill points . 38
4.1.4 Applications benefit from vector-dataflow 38
4.1.5 Synchronization and memory consistency 39

4.2 MANIC Architecture . 39
4.2.1 Vector ISA . 40
4.2.2 Microarchitecture . 40
4.2.3 Memory system . 43
4.2.4 Putting it together with an example 43
4.2.5 Microarchitecture-agnostic dataflow scheduling 45

4.3 Manic-Silicon . 46
4.3.1 Chip design . 46
4.3.2 Verification and bring-up of Manic-Silicon 47

4.4 Methodology . 48
4.5 Evaluation . 49
4.6 Discussion . 51

5 SNAFU generates ULP CGRAs 53
5.1 Overview . 54
5.2 Designing Snafu to maximize flexibility 56

5.2.1 Bring your own functional unit (BYOFU) 57
5.2.2 Snafu’s PE standard library 58
5.2.3 Generating a CGRA fabric . 58
5.2.4 Compilation . 59

5.3 Designing Snafu to minimize energy 60
5.3.1 Spatial vector-dataflow execution 60
5.3.2 Asynchronous dataflow firing without tag-token matching . . . 60
5.3.3 Statically routed, bufferless on-chip network 61
5.3.4 Minimizing buffers in the fabric 61

5.4 Snafu-Arch: A Complete ULP System w/ CGRA 61
5.4.1 Architectural overview . 61
5.4.2 Example of Snafu-Arch in action 62

5.5 Experimental Methodology . 63
5.6 Evaluation . 64

5.6.1 Main results . 64
5.6.2 Sensitivity studies . 66
5.6.3 Case studies . 67

5.7 The Cost of Programmability . 68
5.8 Discussion . 70

ix

6 RipTide: a programmable, energy-minimal dataflow compiler and
architecture 71
6.1 RipTide Instruction Set Architecture 73

6.1.1 Control-flow operators . 73
6.1.2 Synchronization operators . 74
6.1.3 Stream operators . 74

6.2 RipTide Compiler . 75
6.2.1 Memory-ordering analysis . 75
6.2.2 Control-flow operator insertion 77
6.2.3 Stream fusion . 78
6.2.4 Mapping DFGs to hardware . 78

6.3 RipTide Microarchitecture . 79
6.3.1 Tagless dataflow scheduling . 79
6.3.2 Processing elements . 79
6.3.3 Bufferless NoC . 80
6.3.4 Control flow in the NoC . 80

6.4 Experimental Methodology . 82
6.5 Evaluation . 82

6.5.1 Main results . 83
6.5.2 RipTide v. prior low-power CGRAs 84
6.5.3 Compiler characterization . 86
6.5.4 Control flow in the NoC saves energy & area 89

6.6 Conclusion & Architectural Implications 89

7 Future work 91
7.1 Quantifying the progress made . 91

7.1.1 Is compute energy efficiency still a bottleneck? 92
7.2 Future research directions . 93

7.2.1 Area . 93
7.2.2 Performance . 94
7.2.3 Compilation . 95

8 Conclusion 97

A Constraint-based scheduling 99
A.1 Snafu’s mapper . 99
A.2 RipTide’s mapper . 100

A.2.1 ILP formulation . 100
A.2.2 SAT formulation . 101

1

Chapter 1

Introduction

Ultra-low-power (ULP) sensor devices are increasingly being deployed for a variety of
use-cases from in-body health sensing to civil infrastructure monitoring to tiny chip-
scale satellites [255]. These devices are composed of low-power sensors attached to an
ULP microcontroller, which communicates to other edge devices or to the cloud via
a low-power radio, all powered by a small battery or from energy harvested from the
environment. The sensors on these devices are increasingly capable — ranging from
high-definition image sensors [169] to multi-sensor arrays [131] — producing a growing
volume of data. To make sense of the data, sophisticated processing, like machine
learning (ML) inference using a deep neural network (DNN) or digital signal processing
(DSP), is required. But sophisticated processing requires resources that existing ULP
devices lack. In particular, ULP sensor systems are extremely energy-constrained —
batteries limit device lifetimes and energy harvested from the environment is extremely
scarce. One solution is to offload processing, but communication uses much more
energy than local compute. Thus, the energy-efficiency of onboard compute is the key
determinant of application success. However, existing, general-purposes systems suffer
fundamental inefficiencies. And highly-specialized systems (i.e. ASICs) compromise
on programmability, a requirement as applications emerge in the domain. So how can
we achieve extreme energy-efficiency to enable sophisticated computations on ultra-
low-power systems without sacrificing programmability? The answer — a new system
stack — is the objective of this work.

1.1. CHALLENGES
There are a multitude of challenges, detailed below, to supporting sophisticated

processing on ULP sensor devices. These devices are severely resource- and energy-
constrained, complicating application development and limiting the lifetimes of de-
ployed devices. There is a need for extreme energy-efficiency without sacrificing pro-
grammability. This is the central theme to the this thesis.

Offloading computation does not scale
Offloading computation from a ULP device to a more powerful nearby computer

(e.g., at the “edge” or cloud) is one approach to the increased processing sophistica-
tion and sensed data volume of applications in the ULP domain. The more data a
sensor produces, though, the more data the device must communicate. Unfortunately,
transmitting data compromises security, clogs networks, and takes much more energy
per byte than sensing, storing, or locally computing on those data [84, 145]. While a
high-powered device like a smartphone, with a high-bandwidth, long-range radio, can
afford to offload data to the edge or cloud, this is not practical for power-, energy-,
and bandwidth-limited sensor devices [74,84].

2 Chapter 1. Introduction

Local compute reduces cost of communication
Since offloading is infeasible, the alternative is to process data locally on the sensor

node itself. Our work, Sonic, demonstrates how systems can use commodity off-
the-shelf microcontrollers (COTS MCU) to filter sensed data locally so that only
meaningful data (as defined by the application) are transmitted. Processing data
locally minimizes the high energy cost of communication, reducing energy by ≈ 20×
compared to a design that always offloads, but makes the application highly sensitive
to the energy-efficiency of computation.

Energy-efficiency is critical to end-to-end system performance
Energy efficiency is the primary determinant of end-to-end system performance

in ULP embedded systems. For battery-powered devices [56, 203], energy efficiency
determines device lifetime: once a single-charge battery has been depleted the device
is dead and it is impractical to replace the battery on millions (or more [219]) deployed
devices. Even rechargeable batteries are limited in the number of recharge cycles, and
a simple data-logging application can wear out the battery in just a few years [113,
172]. For energy-harvesting devices [48,101,103,249,256], energy efficiency determines
device performance. These devices store energy in a capacitor and spend most of their
time powered off, waiting for the capacitor to recharge. Greater energy efficiency leads
to less time waiting and more time doing useful work [71].

Existing devices are energy-inefficient
However, ULP COTS MCUs used in many deeply embedded sensor nodes (e.g.,

TI MSP430, ARM M0+ & M4+) are energy-inefficient. These MCUs are general-
purpose, programmable devices that support a variety of applications. But this gen-
erality comes at at a high power, energy, and performance cost.

Programmability is expensive in three main ways [24, 92, 107]. First, instruction
supply consumes significant energy: in the best case, the energy of an instruction cache
hit, and in the worst case, the energy of a main memory read and instruction cache fill.
Lacking sophisticated microarchitectural features such as superscalar and out-of-order
execution pipelines [110,233], the energy overhead of instruction supply constitutes a
significant fraction of total operating energy. Second, data supply through register file
(RF) access also consumes significant energy. And third, pipeline-control can burn
significant energy as resources are reconfigured from cycle-to-cycle to run different
operations. Together, instruction fetch/decode, data supply, and pipeline-control can
consume at least 54.4% of the average execution energy across a variety of represen-
tative workloads for ULP devices.

Specialization can limit programmability
To combat the energy costs of generality, some recent work has turned to mi-

croarchitectural specialization, making a system energy-efficient at the expense of
generality and programmability [39–41, 75, 143, 237]. Specialization customizes a sys-
tem’s control and datapath to accommodate a particular workload (e.g., deep neural
networks [39,40]), eliminating inessential inefficiencies like instruction supply, RF ac-
cess, and pipeline-control. The downsides of specialization are its high non-recurring
engineering cost and its inability to support a wide range of applications. Given the
emerging nature of applications (e.g., due to new machine learning algorithms [116])
in the ULP domain, specialization is premature. New architecture must be highly
programmable, while at the same time being extremely energy-efficient.

Existing execution models are flawed
Programmability and energy efficiency might seem to be wholly incompatible,

considering the gap between fixed-function ASIC designs and COTS scalar designs.

1.2. Objective of this work 3

Application Compiler OS Computer architecture Silicon

(F
ut

ur
e w

or
k)

MANIC SNAFUSONIC MANIC-Silicon

System stack

RipTide

R

RR RRR

R
for i in b:

a += i & 1

Figure 1.1: This thesis contributes a new energy-efficient system stack: Sonic is
a software framework that enables intermittent inference, RipTide compiles
C-code to ULP CGRAs, Manic is an ULP vector-dataflow co-processor, Snafu
generates ULP CGRAs, and Manic-Silicon is a silicon prototype of Manic.

However, the trade-off is not as pronounced as these designs would lead one to be-
lieve. Their execution models are at the extremes; the fixed-function execution model
of ASIC designs limits programmability, while the scalar execution model of COTS
MCUs wastes significant energy. There is room in the middle for alternative execution
models that balance programmability and energy-efficiency. For example, one start-
ing point is vector execution, which slightly reduces programmability, but amortizes
instruction supply energy improving overall energy-efficiency. Developing new execu-
tion models, therefore, is critical to resolving the tension between programmability
and energy-efficiency.

Choosing the right programming interface
Programmability needs to come in the correct form. It is more than just configura-

bility. A design that’s highly configurable, but difficult to program from a high-level
language will have limited adoption. Legacy software needs to be supported out-of-
the-box with minimal changes so that developers can quickly adopt new hardware.
However, there are downsides (e.g., incomplete information on memory-ordering and
parallelism) to sticking with established programming interfaces. Choosing the right
programming interface and building a compiler to target new hardware is as important
as the hardware itself.

1.2. OBJECTIVE OF THIS WORK
This work proposes a complete system stack that leverages new execution models

to maximize energy-efficiency without significantly sacrificing programmability. This
approach enables new applications in the ULP domain as improved energy efficiency
makes sophisticated workloads practical, while maintaining support for programma-
bility allows for iteration, development of new algorithms, and quick deployment. Our
work fills out the stack – from software to compilation to computer architecture and
to silicon implementation. Together these works support the following thesis:

High energy-efficiency can be achieved across the system stack from soft-
ware to silicon without significantly compromising on programmability
by leveraging new execution models to reduce instruction fetch/decode,
pipeline-control, and data supply energies.

The following contributions form the basis for the thesis and the new system stack.

[Software] Sonic is the first demonstration of DNN inference on an energy-
harvesting device (Ch. 3):

Sonic is the software-component of the new ULP sensor system stack. It is
an intermittence-aware software system with specialized support for DNN in-
ference. Sonic runs optimized networks found using GENESIS, a tool that

4 Chapter 1. Introduction

automatically compresses networks to balance inference accuracy and energy.
Sonic introduces loop continuation, a new technique that dramatically reduces
the cost of guaranteeing correct intermittent execution for loop-heavy code like
DNN inference. Across three neural networks on a commercially available MCU,
Sonic reduces inference energy by 6.9× over the prior state-of-the-art.

[Architecture] Manic is an energy-efficient vector-dataflow co-processor
(Ch. 4): Manic contributes new computer architecture to the ULP system
stack. It is an efficient vector-dataflow architecture for ultra-low-power embed-
ded systems, achieving high energy-efficiency without sacrificing programmabil-
ity and generality. Manic introduces vector-dataflow execution, allowing it to
exploit the dataflows in a sequence of vector instructions and amortize instruc-
tion fetch and decode over a whole vector of operations. By forwarding values
from producers to consumers, Manic avoids costly vector register file reads.
By carefully scheduling code and avoiding dead register writes, Manic avoids
costly vector register writes. On average, Manic is 3.4× more energy efficient
than a scalar baseline and 12% more energy-efficient than a vector baseline.

[Silicon] Manic-Silicon proves the energy-efficiency of Manic (Sec. 4.3):

Manic-Silicon represents the silicon component of the new ULP sensor sys-
tem stack. It is a prototype of the Manic architecture that demonstrates the
energy-efficiency of the design. Manic-Silicon is a complete, standalone sys-
tem possessing a RISC-V scalar core, the Manic co-processor, a data cache, an
instruction cache, and main memory composed of 64KB of SRAM and 256KB
of non-volatile embedded MRAM. The design is implemented in Intel 22FFL
high-threshold-voltage process and achieves a max efficiency of 256 MOPS/mW
drawing just 19µW at 4MHz.

[Architecture] Snafu generates ULP CGRAs (Ch. 5):

Snafu is another new computer architecture in the ULP system stack. Snafu
generates ULP coarse-grain reconfigurable arrays (CGRAs) that implement spatial-
vector-dataflow execution, building on Manic’s vector-dataflow execution model.
In spatial-vector-dataflow execution, a dataflow graph (DFG) is mapped spa-
tially across the fabric of processing elements, applying the same DFG to many
input data values, and routing intermediate values directly from producers to
consumers. This minimizes instruction and data-movement energy, just like
Manic, and reduces pipeline-control energy by eliminating unnecessary switch-
ing activity as operations do not share execution hardware. Snafu uses 41%
less energy and runs 4.4× faster than Manic.

[Architecture & Compilation] RipTide is an energy-minimal dataflow com-
piler & CGRA architecture (Ch. 6):

RipTide rounds out the system stack, providing an ULP CGRA architecture
and co-designed compiler that compiles high-level C-code to the new hardware.
It proposes a new set of program primitives that support arbitrary control-
flow, irregular memory accesses, common program idioms, and memory ordering
without needing to tag values to save energy; this requires careful analysis by
the compiler to guarantee correctness, particularly to enforce control-flow and
memory ordering. To save even more energy, RipTide offloads control-flow
operations into the on-chip network. RipTide observes that these operations

1.3. Outline 5

are simple but prevalent, so it is wasteful to assign them to processing elements.
Instead, RipTide reuses existing hardware in the on-chip network to directly
implement control-flows operations. Compared to Snafu, RipTide uses 25%
less energy and is also 17% faster without requiring hand-coded assembly.

Together Sonic, Manic, Manic-Silicon, Snafu, and RipTide form the new
energy-efficient system stack. This stack is capable of running C programs within 2.3×
of the energy of ASICs, enabling sophisticated applications involving DNN inference
to last 5 to 10 years on a single AA battery. This combination of programmbility and
state-of-the-art energy efficiency represents a paradigm-shift for ULP sensor systems.
Deployed devices do not need to be frequently replaced or recharged, reducing mainte-
nance costs and carbon footprints. At the same time, applications can be updated in
the field, allowing the device to adapt to environmental changes and improve onboard
processing. In short, this new system stack will facilitate development of emerging
applications in the ULP sensor domain.

1.3. OUTLINE
This thesis is divided into eight chapters, including this introduction. The second

chapter provides useful background on embedded systems, intermittent computing,
vector architectures, dataflow architectures, and coarse-grain reconfigurable arrays.
The next four chapters describe Sonic, Manic & Manic-Silicon, Snafu, and Rip-
Tide in detail. The order of these chapters follows the timeline of development. This
structure will make clear the connection between each work: Sonic, despite being
the first to demonstrate DNN inference on an energy-harvesting device, exposed the
drawbacks of existing ULP devices’ scalar execution model; Manic solved these draw-
backs with vector-dataflow execution; Snafu improved on Manic with spatial-vector-
dataflow execution; and RipTide built on Snafu to further improve general-purpose
programmability and overall system energy-efficiency. Finally, the last two chapters
discuss exciting future research directions in ULP computer architecture and CGRAs
and then conclude.

7

Chapter 2

Background

This chapter discusses relevant prior work that this thesis builds on. The chapter is
split into discussions on 1) low-powered embedded devices, 2) edge inference, 3) re-
lated efficient programmable architectures, and 4) coarse-grain reconfigurable arrays.
The first includes a general overview of ULP sensor devices and an introduction to in-
termittent computing. The second discusses algorithmic improvements and hardware
accelerators for efficient neural network inference. The third describes relevant vector
machine and dataflow architectures. And the fourth expands on a specific class of
spatial-dataflow architectures, called coarse-grain reconfigurable arrays.

Low-power
Microcontroller

Location

VisualAudio

Motion

Sensors

+

Power source
Optional

Energy harvesterRadio

+ + +

Focus of thesis

Figure 2.1: Typical ULP device is composed of 1) series of sensors (e.g., camera,
microphone, GPS, accelerometer, etc.), 2) low-power radio (e.g., LoRaWAN or
BLE), 3) low-power microcontroller, the focus of this thesis, 4) power source like a
battery or capacitor and 5) an optional energy harvester like a solar cell.

2.1. LOW-POWER EMBEDDED DEVICES
Low-power embedded sensor devices as shown in Fig. 2.1 are composed of: 1)

low-powered sensors (e.g. HiMax HM01B0 camera [3]), 2) a low-powered radio (e.g.
LoRaWAN [11] or BLE [229]), 3) an ULP microcontroller (e.g. ARM M0 [1] or
TI-MSP430 [110], 4) a power source like a coin-cell battery or capacitor, and 5) an
optional energy harvester (e.g. solar cell or RF harvester [197]). Energy dictates the
viability of these devices. For battery-powered devices energy dictates lifetime, and for
energy-harvesting devices that operate intermittently, energy dictates performance by
controlling the time spent waiting for energy to be collected. On top of this, the MCUs
of these are devices are simple, severely resource-constrained and energy-inefficient.

2.1.1 Device operation
ULP sensor devices operate on a duty cycle: periodically sensors collect data from

the environment, the microcontroller processes the data, and then data is transmitted
via the low-power radio. This interval of data collection is dictated by application
requirements (i.e. how often a particular event will take place), the required lifetime
for the device (particularly for battery-powered devices), and energy-consumption of

8 Chapter 2. Background

the different components of the device. Application requirements have to be carefully
balanced with the energy consumption of the MCU, sensors, and radio.

Battery-backed systems: Some devices rely on batteries [56,113,203]. These devices
can quickly deplete their battery even if the application is simply logging data. Battery
lifetimes can be improved by adding a energy harvester, like a solar cell or radio-
frequency harvester, that can recharge the battery. However, rechargeable batteries
have limited recharge cycles and may not be able to cope with extreme environmental
conditions (e.g. too hot/cold temperatures).

Capacitor-backed systems: Instead a capacitor can be used to buffer energy from
an energy harvester and power the device. Capacitors have an effective lifetime (>
10 years) that often exceeds the lengths of application deployments. But they do
not offer the same energy density as batteries. In a capacitor-backed system, the
application often must wait for energy to be collected in the capacitor by the energy-
harvester. This makes application performance dependent on the availability of energy
in the environment. Energy availability is not constant — input power can vary with
environmental conditions. For example, weather and time-of-day significantly (by
several orders of magnitude) impact the amount of energy a solar cell can harvest.
These operating conditions complicate execution and affect the device’s ability to
quickly react to changing environmental conditions.

2.1.2 Intermittent execution model
Systems that harvest energy and store that energy in a hardware buffer (e.g.

capacitor) usually operate intermittently. This is because device operating power
usually exceeds power harvested from the environment. To operate despite this weak
input power, a device slowly accumulates energy in a hardware buffer and operates
when the buffer is full. The device drains the buffer as it operates, then it turns off
and waits for the buffer to fill again.

Software executes in the intermittent execution model on these energy-harvesting
devices [36, 114, 148, 158, 159, 200]. In intermittent execution, software progresses in
bursts, resetting at frequent power failures. Existing devices [110, 230] mix volatile
state (e.g. registers and SRAM) and non-volatile memory (e.g. FRAM). A power
failure clears volatile state while non-volatile memory persists. Repeated power fail-
ures impede progress [200], and may leave memory inconsistent due to partially or
repeatedly applied non-volatile memory updates [148]. These progress and consis-
tency issues lead to incorrect behavior that deviates from any continuously-powered
execution [46]. Specifically, write-after-read (WAR) dependences lead to inconsistent
memory and differing control-flow as re-execution can expose the value from the latter
write to the read, which is not possible in continuously-powered execution.

Prior work addressed progress and memory consistency using software check-
points [105, 148, 235], non-volatile processors (NVPs) [149, 150], and programming
models based around atomic tasks [47, 104, 151, 151]. Non-volatile processors require
technology process changes and constantly pay a tax for their non-volatility (i.e., non-
volatile elements cost more energy than volatile elements). Software-checkpointing
and task-based runtime systems, on the other hand, can be deployed on existing
devices with limited impact on energy since the amount of volatile state is small.

Checkpointing systems
Checkpoint-based systems insert checkpoints into programs using compiler, run-

time, and hardware support. Just-in-time (JIT) checkpointing is the most popular
strategy. In JIT checkpointing, hardware monitors the voltage of the capacitor and
when the voltage dips below a predetermined threshold indicating a power failure is

2.1. Low-power embedded devices 9

imminent, triggers an interrupt that checkpoints program state. The interrupt writes
back the volatile state of the program, including program counter and stack, to non-
volatile memory. Then when power resumes, the runtime system restores the volatile
state and jumps back to the place in execution where power failed. This system is
often transparent to the programmer, but may complicate (or even lead to incorrect)
use of peripherals [220] and interrupts.

Task-based runtime systems
An alternative to checkpointing are task-based runtime systems. These systems

avoid frequent checkpoints by restarting from a task’s start after power failure, at
which point all register and stack state must be re-initialized. To ensure memory
consistency, tasks ensure that the effect of a partial task execution is not visible to
a subsequent re-execution. Specifically, data that are read then written (i.e., a WAR
dependence) may expose the result of an interrupted task. Task-based systems avoid
“the WAR problem” with redo-logging [151] and static data duplication [47].

Task-based systems guarantee correct execution, but at a significant run-time cost.
Redo-logging and static duplication both increase memory and compute in proportion
to the amount of data written. Transitioning from one task to the next takes time,
so short tasks that transition frequently suffer poor performance. Long tasks better
amortize transition costs, but re-execute more work after a power failure. Worse, a
task that is too long faces non-termination if the energy it requires exceeds the energy
that the device can buffer. The programmer, therefore, needs to be careful in splitting
a program into atomic tasks.

2.1.3 COTS ULP Devices
In addition to being energy-constrained, ULP sensor devices are also severely

resource constrained. ARM’s Cortex M0 [1] or TI’s MSP430 [110] are the most com-
monly used processors in existing ULP sensor systems [49,100,102,103,206,230]. Such
MCUs’ frequency is typically 1–16MHz, leaving a substantial performance gap com-
pared to, e.g. a full-fledged, 2GHz Xeon-based system. The MCU usually also houses
all the memory available to the system, including embedded SRAM, which is volatile,
and embedded non-volatile memory (e.g. FRAM). Embedded memories are small and
capacity varies by device. A typical MSP430 low-power MCU includes just 1–4KB
of SRAM and 32–256KB of FRAM. While continuously powered (i.e., wired) embed-
ded systems may interface with larger memories via a serial bus (I2C or SPI), most
ULP sensor devices do not due to their high access energy and latency. The typical
operating power of an COTS ULP device is around 3–5mW.

Architecture
COTS ULP devices achieve ULP operation by being simple. They have an 3 to

5 stage, in-order scalar core, which may lack instruction and/or data caches. Some
MCUs also come with a vector co-processor such as TI’s Low Energy Accelerator
(LEA) [111] or support for vector extensions like Arm’s Neon [17] vector ISA. Addi-
tionally, some MCUs also include DMA engines and accelerators for tasks like AES
encryption [110]. Despite these additional features, the energy consumption of the
scalar core (and it’s memory accesses) dominates total MCU energy. This is because
the scalar execution model pays a high price for general-purpose programmability,
constantly refetching and redecoding the same instructions and communicating inter-
mediates via a centralized register file. The purpose of this thesis is to reduce this
tax for general-purpose programmability. Chapters Ch. 4, Ch. 5, and Ch. 6 propose
new computer architectures that maximize efficiency while maintaining a high-degree
of programmability.

10 Chapter 2. Background

2.2. EDGE INFERENCE
As ULP sensor devices become pervasive they will increasingly need to make intel-

ligent decisions. Deep neural network (DNN) inference is the state-of-the-art approach
for such intelligence. They are the standard for applications ranging from understand-
ing speech to image recognition [129, 215, 223]. With their accuracy, however, comes
a high computational cost. Neural networks require millions or billions of parame-
ters and operations. This makes deploying neural networks onto resource-constrained,
energy-harvesting devices difficult. Fortunately there has been much work on reducing
network footprint and improving the performance and energy-efficiency of inference.

2.2.1 Algorithmic improvements to NN inference
Since DNNs are robust to noise, algorithmic optimizations can be made that re-

duce NN memory footprint and increase inference performance without significantly
impacting accuracy. Inference does not need full-precision floating point [66, 95] and
near-zero weights can often be “pruned” [29, 96, 168, 171] without losing much accu-
racy. Layers can also be factored or split into several smaller, less-computationally
intense layers [45, 222, 224]. Finally, networks can be redesigned [108, 207, 227] from
the ground up to minimize storage and computation. These networks leverage smaller
convolutional filters, but make up for accuracy degradation by being wider or deeper.
This is worthwhile because there is a quadratic relationship between convolutional
filter size (i.e., side length) and computational cost.

These algorithmic improvements sometimes come with modifications to the train-
ing regime to further increase accuracy. Networks can be fine-tuned during the final
stages (final 20-30% of epochs) of training to adapt to algorithmic changes. During
fine-tuning, the forward direction (i.e., inference) adopts the algorithmic change (e.g.
reduced precision or pruning), while the backward direction remains the same. This
allows the network to adjust its weights to the algorithmic change.

More exotic training regimes have also been explored to enforce additional prop-
erties to help inference performance. Binary networks [142] learn binary (-1, +1)
weights that simplify multiplication to a single and operation. Structured sparsity
can also be enforced [67, 171]. Pruning can lead to extremely sparse layers without
much structure which can lead to irregular memory accesses. By enforcing structure
on this sparsity during training, irregular memory accesses can be reduced.

Ch. 3 discusses the application of several algorithmic changes to compress neural
networks to fit into device memory. It describes a tool, called GENESIS, that prunes,
factors, and reduces the precision of neural networks, fine-tuning network weights to
improve accuracy.

2.2.2 Inference accelerators
The computer architecture community has also responded to the need for ef-

ficient DNN inference. Some architectures focus on dense computations [39–41],
others on sparse computations [75, 95, 130, 257], and still others on CNN accelera-
tion [14, 15, 73, 190, 201, 218]. Industry has followed this trend, embracing custom
silicon for DNNs [117]. The key to the efficiency of these architectures is to maxi-
mize data reuse and optimize data movement. For example, Eyeriss [40] introduces
row-stationary dataflow to maximize reuse on a spatial fabric, while MAERI [130]
designs a new on-chip network specialized for several DNN dataflows (including hard-
to-accelerate LSTMs).

The circuits community has also responded, taping out extremely specialized accel-
erators with orders of magnitude higher energy-efficiency. These designs use low-level
VLSI techniques (e.g. sub-threshold computing [78]), custom analog or mixed-signal
circuits [27], or exploit emerging technologies (e.g. ReRAM crossbars [252, 253]) to

2.3. Efficient programmable architectures 11

achieve TOPS/W. Unfortunately this extreme energy efficiency comes at the expense
of programmability (and perhaps reliability, in the case of analog circuits). In fact,
some accelerators specialize to the particular NN architecture [27].

The work described in Ch. 4, Ch. 5, and Ch. 6 take a different approach and focus
on entirely different power domain (mW v. µW). Energy-efficiency is achieved without
sacrificing programmability. This makes these designs applicable to many different
applications, future-proof to algorithmic developments, and reduces the upfront non-
recurring engineering cost.

2.3. EFFICIENT PROGRAMMABLE ARCHITECTURES
There is a long history of computer architectures that increase performance and/or

improve energy-efficiency while maintaining programmability. Specifically, prior work
on vector and dataflow architectures inform the work of this thesis and specifically
Manic, Snafu, and RipTide. These architectures exploit structure in the pro-
gram (among data and control-flow) to change the execution model to reduce or even
eliminate instruction and data supply energies without sacrificing general-purpose
programmability.

2.3.1 Vector architectures
Vector machines exploit data parallelism to amortize instruction supply energy

(i.e., fetch, decode, and issue) across many operations. Early vector machines targeted
super computing [55], but most commercially available architectures (e.g. AVX [79]
and GPUs [53]) today support vectors. These vector designs target performance
and operate at a power budget orders-of-magnitude higher than that contributed by
this thesis. Nonetheless, all vector designs require large vector register files (VRF)
exacerbating register file access cost, especially in designs that require a VRF with
many ports. Thus, reducing VRF cost and complexity has been a primary focus of
prior vector designs [18, 128].

T0 [18,246] is a vector architecture with reconfigurable pipelines. Software controls
datapaths to chain operations, eliminating VRF access within a chain. However,
microarchitectural details of the datapath are exposed to software, requiring major
software changes and recompilation.

CODE [128] reduces VRF cost by distributing the VRF among heterogeneous func-
tional units. This design is transparent to software because CODE renames operands
at instruction issue to use registers near an appropriate functional unit. Distribution
lets CODE reduce VRF ports, but requires a routing network to send values between
functional units.

AVA [133] is a high-performance out-of-order vector processor that adapts the
vector length and the number of vector registers stored in the VRF to the application.
Some applications require long vectors, while others want moderate sizes. AVA trades
additional vector length for fewer vector registers, spilling registers to memory as
needed and then smartly pre-fetching them. Although AVA reduces energy and area,
its primary goal is performance (by supporting variable-sized vector lengths).

Finally, there has been much work on reducing the cost and improving the scal-
ability of GPU register files. This includes virtualizing the RF [115, 238] so that
physical registers can be shared, compressing registers [139] to maximize utilization
of the physical RF, and coalescing RF reads and writes [19] to minimize RF accesses.
Relative to the large (100s of KB), many-ported (32+ ports) register files of GPUs,
these optimizations require minimal additional hardware, but do not scale to ULP
domain where energy efficiency is higher priority than performance.

12 Chapter 2. Background

2.3.2 Dataflow architectures
Dataflow architectures, like vector machines, also have a long history [68–70,177]

that includes changes to the programming and execution model to eliminate control
and data movement overheads. In particular, dataflow is prevalent today as part out-
of-order (OoO) execution engines, where restricted dataflow improves performance
and reduces RF pressure [20, 33, 124, 210, 212]. However, pure dataflow architectures
have not found the same commercial success, but spatial-dataflow architectures still
show great promise for improving energy efficiency and performance.

Dennis proposed the first dataflow architecture in 1975, introducing a small set
of primitives to implement arbitrary control-flow by conditionally routing values to
consumers [70]. In 1990, the MIT tagged-token dataflow machine showed how to
practically implement dataflow in hardware [178]. The design relies on the use of
a domain-specific language, called Id [176], to describe program dataflow and cap
resource use to avoid resource-based deadlocks from unbounded parallelism [188].

Later, Wavescalar [221] and Trips [208] identified dataflow locality as the key de-
terminant of sequential code performance. Wavescalar compiles C/C++ programs to
WaveCache, a grid of simple compute units and memory that co-locates computation
with data. Wavescalar handles arbitrary control-flow by tagging data (to distinguish
instances of a value across loop iterations) and enforcing memory ordering by convert-
ing memory dependences to data dependences during compilation. Despite preserving
dataflow locality, Wavescalar was not designed to minimize energy — the architec-
ture relies on expensive tag-token matching and still fetches instructions, constantly
reconfiguring compute pipelines.

Trips extracts hyperblocks (multiple basic blocks without backedges) from pro-
grams and executes these hyperblocks in dataflow-fashion across a mesh of processing
elements. Trips heavily relies on speculation to increase performance; in-flight op-
erations number in the hundreds or even thousands. This amount of speculation
inevitably wastes energy by discarding mispeculated work. Further, Trips constantly
reconfigures PE pipelines for each hyperblock, toggling control and data signals.

In contrast, ELM [23] is a dataflow architecture specifically designed for low-power,
embedded operation. ELM uses restricted SIMD execution and operand forwarding to
provide dataflow-like execution. ELM’s complex register file hierarchy and forwarding
mechanism are software-controlled, exposing microarchitectural details to the pro-
grammer and requiring significant changes to the compiler toolchain.

2.4. COARSE-GRAIN RECONFIGURABLE ARRAYS
Since Wavescalar, Trips, and ELM there has been a resurgence of spatial-dataflow

architectures, called coarse-grain reconfigurable arrays (CGRAs), because they offer
better energy efficiency and performance with lower hardware complexity. A CGRA
architecture [26, 44, 52, 60, 76, 86, 88, 119, 154, 161, 162, 164, 174, 175, 182, 189, 192, 198,
204,209,216,225,226,240,241,247,248] is a spatial array of processing elements (PEs)
connected by an on-chip interconnect (NoC). A PE in a CGRA consumes inputs
and produces outputs consumed by another PE, forming a pipeline corresponding to
program dataflow. CGRA efficiency derives from avoiding control and data-movement
overheads. A CGRA reduces instruction overheads by mapping operations to a PE,
avoiding the need for instruction fetch and decode and simplifying control. A CGRA
mitigates data movement overheads by avoiding large register files, instead moving
operands through a NoC directly from producer PE to consumer PEs.

A wide variety of CGRA architectures target different domains. CGRAs exist
as standalone cores [162, 208, 221, 242], co-processors [50, 51, 86, 90, 97, 154, 183, 225],

2.4. Coarse-grain reconfigurable arrays 13

components of a processor pipeline [88,137,144] or memory hierarchy [146], or as co-
processors [52,58–60,174,175,182,192,198,204,216,239,240,248,251]. These contexts
expose a wide range of hardware design choices, including PE operation set, PE
complexity, and NoC topology. Further, PEs may be homogeneous or heterogeneous;
the latter is more area- and energy-efficient, but creates a combinatorally large design
space [26]. PEs typically include functional units for arithmetic, logic, and memory
access, but can also include specialized functionality [58–60, 81, 204, 239, 247, 251].
Later chapters (Ch. 5 and Ch. 6) of this thesis will address CGRA design decisions in
detail to maximize energy-efficiency.

2.4.1 Types of CGRAs
CGRA designs can be categorized in four ways, as identified by [248]. They dis-

tiguished by how they schedule operations and whether PE resources are shared.
Specifically the four types of CGRAs are: systolic (statically scheduled & dedicated
PEs), shared-systolic (statically scheduled & PEs shared), tagged-dataflow (dynami-
cally scheduled & PEs shared), and ordered-dataflow (dynamically scheduled & ded-
icated PEs).

Systolic: Systolic designs [52,86,162,182,193] rely on the compiler to schedule opera-
tions in space and time. These designs achieve high performance and energy-efficiency
by eliminating dynamic control, but make compilation challenging. To maximize uti-
lization, the compiler must reason about operation latencies, but these latencies might
not be available at compilation time and might not be fixed (e.g. memory access la-
tency depends on where data exists in the hierarchy). This limits the applications
that can be mapped to these designs.

Shared-systolic: Shared-systolic designs [119,154,161,164,216] ([248] refers to these
as “CGRAs”) add additional layer of complexity to systolic designs. To maximize
utilization of available hardware, the compiler generates schedules where operations
can time-multiplex on the same PE resources. This makes scheduling even more
challenging v. systolic designs.

Tagged-dataflow:Tagged-dataflow designs [177,189,208,221,240] dynamically sched-
ule operations in time (and potentially in space) and time-multiplex PE resources.
These designs tag data tokens and then match tags to distinguish between multiple
instances of a single value, dynamically firing/enabling an operation when tags of
inputs match. This tagging mechanism maximizes performance, allowing speculation
and the re-ordering of operations and even entire loop iterations. However, this sort
of dynamic tracking of values requires a high power budget (100s of mW v. ≈1mW of
ULP domain) and comes at a significant energy cost.

Ordered-dataflow:Ordered-dataflow designs [81, 88, 198] are the final category of
CGRAs. They do not share PE resources and dynamically schedule operations in time,
but disallow the re-ordering of tokens. This makes compilation easier (v. systolic and
shared-systolic) since the compiler need not reason about operation latencies and is
cheaper to implement in hardware (v. tagged-dataflow) since there is no need for tag
matching (because tokens arrive in order). These benefits make ordered-dataflow a
good choice for the ULP domain and are the reasons why Snafu (Ch. 5) and RipTide
(Ch. 6) implement it.

2.4.2 Low-power CGRAs
The CAD and circuit communities [62, 119, 123, 187] have also contributed low-

power CGRA designs. These designs are usually systolic or shared-systolic and operate
at 10s of mW (still order of magnitude more than ULP domain). They use VLSI
techniques to reduce power (e.g. low-voltage design, fine-grain clock/power gating)

14 Chapter 2. Background

that are complementary to the CGRA designs (Snafu and RipTide) in this thesis.
This thesis focuses on architecture that minimizes energy and maintains flexibility.
In fact, Ch. 5 describes Snafu, which has a goal of letting designers generate ULP
CGRAs at reduced VLSI effort.

2.4.3 Compilation
Compiling for CGRAs is challenging. Some architectures require domain-specific

languages [126,176], while others place constraints on the types of programs that can
be compiled (i.e., no outer loops, or memory ordering is not enforced). This makes
compilation tractable, but also limits the applications supported.

Compilation for CGRAs is similar to hardware synthesis. The compiler must find
a layout of operations that fits within fabric resources with valid routes between all
producers and consumers. In performance-focused CGRAs, the compiler must also
reason about timing to maximize utilization and minimize initiation interval (min-
imum interval between subsequent loop iterations). With this vast search space,
optimization-based methods often do not converge in a reasonable time [180, 185].
Most CGRA compilers use heuristics [26, 153,180,185,191,226,245,247] that can fail
or produce poor mappings. Recent work proposed graph convolutional networks as
a solution [160]. This thesis will (Ch. 5 and Ch. 6) describe integer-linear program-
ming and SAT-based approaches to mapping a program to PE resources. Mapping is
tractable because the compiler does not need to reason about timing or utilization for
the proposed architectures (Snafu and RipTide).

Dataflow control-flow models
Compilation is also affected by the underlying control-flow model. There are three

competing control-flow models for dataflow execution: predication, selection (φ), and
steering (φ−1). Each has benefits and drawbacks. Steering is the best choice for an
energy-constrained context because it avoids routing values to the not-taken branch
paths, but it can require extra routing by the compiler.

Predication routes values unnecessarily:Predication is popular, especially in
GPU and vector architectures [79,99], converting conditional code to straightline code
to simplify execution. In predication, only one side of a branch fully executes while
the other side partially executes, passing through results from the enabled side to
downstream consumers. Predication simplifies control flow in CGRAs because tokens
arrive on every path, simplifying operand ordering. But predication has a perfor-
mance and energy cost because values flow unnecessarily through the not-taken path.
Snafu (Ch. 5) uses predication for control flow, supporting simple, affine loops.

Selection (φ) burns energy on paths not taken: Selection executes both sides of
a branch fully, sending results to a mux that chooses between results using the branch
decider. Selection maximizes performance because the branch condition and each side
of the branch execute speculatively in parallel. However, selection wastes energy by
throwing away work.

Steering (φ−1) is most energy efficient: Steering was proposed in the original
dataflow paper [70] and has been used notably in a few dataflow architectures [34,
90, 162, 183, 221]. Steering routes values to only the taken path of a branch based on
the branch’s decider. Steering serializes execution of the taken path on the branch
decider, but avoids executing any operations on the not-taken path. RipTide (Ch. 6)
implements steering to minimize energy, as steering never fires unneeded operations.

2.4. Coarse-grain reconfigurable arrays 15

R
ip

T
id

e

S
N

A
F
U

IP
A

C
M

A

U
L
P
-S

R
P

S
of

tb
ra

in

H
yC

ub
e

S
ti
tc

h

R
ev

el

P
la

st
ic

in
e

S
G
M

F

100

101

102

103

104

L
o
g

p
ow

er
(m

W
)

<1mW

2-3 orders of
magnitude

Figure 2.2: This thesis presents work (Snafu and RipTide) that targets the
ULP domain, 2–3 orders of magnitude less than prior work.

Ultra-low-power CGRAs High-performance CGRAs
SRP [123] CMA [187] IPA [62] HyCube [243] Revel [248] SGMF [240] Snafu [81] RipTide [83]

Fabric size 3×3 8×10 4×4 4×4 5×5 8×8&
32 mem

N×N(6×6
evaluated)

N×N(6×6
evaluated)

NoC Neighbors
only

Neighbors
only

Neighbors
only

Static,
bufferless,
multi-hop

Static&
dynamic
NoCs (2×)

Dynamic
routing

Static,
bufferless,
multi-hop

Static,
bufferless,
multi-hop

PE assignment Static Static Static Static Static or
dynamic

Dynamic Static Static

Time-share PEs? Yes Yes Yes Yes Yes Yes No No
Scheduling/PE firing Static Static Static Static Static or

dynamic
Dynamic Dynamic Dynamic

Heterogeneous PEs? No No No No Yes Yes Yes Yes
Program support VLIW/Simple

loops1
VLIW/Simple
loops1

Simple loops1 Simple loops1 Loops that fit
patterns

Arbitrary Vectorizeable
loops

Arbitrary

Power 22mW 11mW 3–5mW 140mW 1.66W 20W <1mW <1mW
MOPS/mW (approx.) 30–100

MIPS/mW
100–200
MIPS/mW

140
MIPS/mW

26 (system) 12/16
(fabric/system)

— 134/97
(fabric/system)

254/117
(fabric/system)

1 Simple loops are singly-nested and have few loop-carried dependence.

Table 2.1: Architectural comparison of prior work to Snafu and RipTide.

2.4.4 Compare & contrast different CGRA designs
Fig. 2.2 and Table 2.1 summarize the CGRA design space, comparing different

CGRA designs to work of this thesis, Snafu and RipTide. In particular, the fig-
ures highlight what makes the ULP sensor domain different. Specifically, most prior
CGRAs target much higher power domains (0.1-1W [119, 182, 225, 247, 248] or even
up to 100W [198, 240]), and their design decisions do not translate well to the ULP
domain. The few CGRAs targeting ULP operation (≈1mW) [62, 123, 187] are not
flexible and leave energy savings on the table. They places restrictions on programs,
e.g., supporting only simple, single-nested loops.

In contrast, this thesis presents Snafu and RipTide, which are designed from
the ground-up to minimize energy (even at the expense of area and performance)
while maximizing flexibility. Snafu and RipTide, like DSAGEN [247], generate
CGRAs, but instead of targeting performance, they target ULP operation. They
minimize PE energy by statically assigning operations to specific PEs and, unlike
prior low-power CGRAs [62,119,123,187,225], minimize switching by not sharing PEs
between operations. Likewise, to minimize NoC energy, Snafu & RipTide implement
a statically configured, bufferless, multi-hop NoC, similar to HyCube [119]. This NoC
is a contrast with prior ULP CGRAs [62, 123, 187] that restrict communication to a
PE’s immediate neighbors. Unlike many prior CGRAs that are statically scheduled,
Snafu & RipTide implement dynamic dataflow firing to support variable latency
FUs. Dynamic dataflow firing is essential to Snafu & RipTide’s flexibility and ability
to support arbitrary, heterogeneous PEs in a single fabric. Snafu & RipTide avoid
expensive tag-token matching [88, 198] by disallowing out-of-order execution, unlike
high-performance designs [177, 189, 221, 240]. Lastly, RipTide targets more than
simple, vectorizable loops [62, 119, 123, 187], compiling programs directly from C and

16 Chapter 2. Background

supporting deeply-nested loops and irregular memory accesses. The end result is that
Snafu & RipTide are flexible and general-purpose, while still achieving extremely
low operating power and high energy-efficiency.

17

Chapter 3

Sonic: Deploying DNNs on
intermittent embedded devices12

The maturation of energy-harvesting technology and the recent emergence of viable
intermittent computing models creates the opportunity to build sophisticated battery-
less systems with most of the computing, sensing, and communicating capabilities
of existing battery-powered systems. Many future IoT applications require frequent
decision making, e.g., when to trigger a battery-draining camera, and these decisions
must be taken locally, as it is often impractically expensive to communicate with other
devices. Future IoT applications will require local inference on raw sensor data, and
their performance will be determined by inference accuracy. Using energy numbers
from recent state-of-the-art systems, we show that such local inference can improve
end-to-end application performance by 480× or more.

Recently, deep neural networks (DNNs) [129, 215, 223] have made large strides in
inference accuracy. DNNs enable sophisticated inference using limited, noisy inputs,
relying on rich models learned from many examples. Unfortunately, while DNNs
are much more accurate than traditional alternatives [89, 163], they are also more
computationally demanding.

Typical neural networks use tens of millions of weights and require billions of
compute operations [129,215,223]. These networks target high-powered, throughput-
optimized processors like GPUs or Google’s TPU, which executes up to 9 trillion
operations per second while drawing around 40 watts of power [117]. Even a small
DNN (e.g., LeNet [134]) has over a million weights and millions of operations. The
most efficient DNN accelerators optimize for performance as well as energy efficiency
and consume hundreds of mW [39,40,75,95].

Challenges: In stark contrast to these high-performance systems, energy-harvesting
devices use simple microcontrollers (MCUs) built for extreme low-power operation.
DNN inference on these devices is unexplored, and several challenges must be over-
come to enable emerging IoT applications on energy-harvesting systems built from
commodity components. Most importantly, energy-harvesting systems operate in-
termittently as power becomes available, complicating the development of efficient,
correct software. The operating period depends on the properties of the power sys-
tem, but is short—typically around 100,000 instructions. As a result, existing DNN
inference implementations do not tolerate intermittent operation.

Recent work proposed software systems that guarantee correct execution on inter-
mittent power for arbitrary programs [47, 104, 105, 148, 151, 235]. These systems add
significant runtime overheads to ensure correctness, slowing down DNN inference by

1[82] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural network inference,” in
SysML, 2018.

2[84] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Inference on inter-
mittent embedded systems,” in ASPLOS, 2019.

18 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

on average 10× in our experiments. What these systems have missed is the oppor-
tunity to exploit the structure of the computation to lower the cost of guaranteeing
correctness. This missed opportunity is especially costly for highly structured and
loop-heavy computations like DNN inference.

Our approach and contributions:We present the first demonstration of inter-
mittent DNN inference on real-world neural networks running on a widely available
energy-harvesting system. We make the following contributions:

• We first analyze where energy is spent in an energy-harvesting system and
show that inference accuracy largely determines IoT application performance
(Sec. 3.1). This motivates using DNNs despite their added cost over simpler but
less accurate inference techniques.

• Building on this analysis, we present Genesis, a tool that automatically com-
presses networks to maximize IoT application performance (Sec. 3.3). Genesis
uses known compression techniques [29, 45, 96, 168]; our contribution is that
Genesis optimally balances inference energy v. accuracy.

• We design and implement Sonic, a software system for DNN inference with
specialized support for intermittent execution (Sec. 3.4). To ensure correctness
at low overhead, Sonic introduces loop continuation, which exploits the regular
structure of DNN inference to selectively violate task-based abstractions from
prior work [151], allowing direct modification of non-volatile memory. Loop con-
tinuation is safe because Sonic ensures loop iterations are idempotent through
loop-ordered buffering (for convolutional layers) and sparse undo-logging (for
sparse fully-connected layers). These techniques let Sonic resume from where
it left off after a power failure, eliminating task transitions and wasted work
that plague prior task-based systems.

• Finally, we build Tails to show how to incorporate hardware acceleration into
Sonic (Sec. 3.5). Tails uses hardware available in some microcontrollers to ac-
celerate matrix multiplication and convolution. Tails automatically calibrates
its parallelism to ensure correctness with intermittent power.

We evaluate Sonic&Tails on a TI MSP430 microcontroller [110] using an RF-energy
harvester [7, 8] (Secs. Sec. 3.6 & Sec. 3.7). On three real-world DNNs [109, 134, 205],
Sonic improves inference efficiency by 6.9× on average over Alpaca [151], a state-
of-the-art intermittent system. Tails exploits DMA and SIMD to further improve
efficiency by 12.2× on average.

We conclude with a discussion of the limitations of current energy-harvesting
MCUs and the need for new ULP architectures (Sec. 3.8).

3.1. MOTIVATION FOR INTERMITTENT INFERENCE
Many attractive IoT applications will be impractical without intelligence “beyond

the edge.” Communication is too expensive on these devices for solutions like cloud
offloading to be practical. Instead, energy-harvesting devices must decide locally how
to spend their energy, e.g., when to communicate sensor readings or when to activate
an expensive sensor, such as a high-resolution camera.

This section makes the case for inference on energy-harvesting, intermittently op-
erating devices. We show how communication dominates energy, even with state-of-
the-art low-power networking, making cloud offloading impractical. We analyze where
energy is spent and show that, to a first order, inference accuracy determines system
performance, motivating the use of DNNs in these applications. Using this analy-
sis we will later compare different DNN configurations and find one that maximizes
application performance (Sec. 3.3).

3.1. Motivation for intermittent inference 19

3.1.1 The need for inference beyond the edge
Many applications today offload most computation to the cloud by sending input

data to the cloud and waiting for a response. Unfortunately, communication is not
free. In fact, on energy-harvesting devices, communication costs orders-of-magnitude
more energy than local computation and sensing. These high costs mean that it is
inefficient and impractical for energy-harvesting devices to offload inference to the
edge or cloud, even on today’s most efficient network architectures. For example, the
recent OpenChirp network architecture lets sensors send data over long distances with
extremely low power consumption. To send an eight-byte packet, a terrestrial sensor
draws 120mA for around 800ms [74]. Using the recent Capybara energy-harvesting
power system [49], such a sensor would require a 900mF capacitor bank to send a
single eight-byte packet. This large capacitor array imposes an effective duty cycle
on the device, because the device must idle while charging before it can transmit. A
Capybara sensor node with its 2cm × 2cm solar array in direct sunlight (an optimistic
setup) would take around 120 seconds to charge a 900mF capacitor bank [49]. Hence,
sending a single 28 × 28 image with 1B per pixel (e.g., one MNIST image [135]) to
the cloud for inference would take over an hour.

In contrast, our full-system Sonic prototype performs inference locally in just
10 seconds operating on weak, harvested RF energy—an improvement of more than
360×. Sonic&Tails thus open the door to entirely new classes of inference-driven
applications on energy-harvesting devices.

3.1.2 Why accuracy matters
We now consider an example application to show how inference accuracy deter-

mines end-to-end application performance. This analysis motivates the use of state-of-
the-art inference techniques, namely DNNs, over less accurate but cheaper techniques
like support-vector machines.

To reach these conclusions, we employ a high-level analytical model, where energy
in the system is divided between sensing, communication, and inference. (Sensing
includes all associated local processing, e.g., to set up the sensor and post-process
readings.) We use local inference to filter sensor readings so that only the “interesting”
sensor readings are communicated. Our figure of merit is the number of interesting
sensor readings that can be sent in a fixed amount of harvested energy (which is also
a good proxy for execution time). We denote this as IMpJ, or interesting messages
per Joule. Though this metric does not capture the interesting readings that are not
communicated due to inference error (i.e., false negatives), our analysis demonstrates
the need for high accuracy, and hence false negatives are uncommon.

This simple model captures many interesting applications of inference beyond
the edge: e.g., wildlife monitoring, disaster recovery, wearables, military, etc. For
concreteness, we consider a wildlife-monitoring application where sensors with small
cameras are deployed across a wide area with OpenChirp connectivity. These sensors
monitor a local population of, say, hedgehogs and send pictures over radio when they
are detected. The goal is to capture as many images of hedgehogs as possible, and
images without have no value.

Baseline without inference:Our baseline system does not support local inference,
so it must communicate every image. Communication is expensive, so this baseline
system does not perform well. Suppose sensing costs Esense energy, communicating
one sensor reading costs Ecomm energy, and interesting events occur at a base rate of
p (see Table 3.1). Then the baseline system spends Esense +Ecomm energy per event,

20 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

Parameter Description

IMpJ Our figure of merit, the number of “interesting” messages sent per Joule of
harvested energy.

p Base rate (probability) of “interesting” events.
tp True positive rate in inference.
tn True negative rate in inference.

Esense Energy cost of sensing (e.g., taking a photo).
Ecomm Energy cost of communicating one sensor reading.
Einfer Energy cost of a inference on one sensor reading.

Table 3.1: Description of each parameter in our energy model.

only p of which are worth communicating, and its IMpJ is:

Baseline =
p

Esense + Ecomm
(3.1)

Ideal:Although impossible to build, an ideal system would communicate only the
interesting sensor readings, i.e., a fraction p of all events. Hence, its IMpJ is:

Ideal =
p

Esense + p Ecomm
(3.2)

Local inference:Finally, we consider a realistic system with local, imperfect infer-
ence. In addition to sensing energy Esense, each sensor reading requires Einfer energy
to decide whether it is worth communicating. Suppose inference has a true positive
rate of tp and a true negative rate of tn. Since communication is very expensive,
performance suffers from incorrectly communicated, uninteresting sensor readings at
a rate of: (1− p) (1− tn). Its IMpJ is:

(3.3)
Inference =

p tp
(Esense + Einfer) + (p tp + (1− p) (1− tn)) Ecomm

Case study: Wildlife monitoring:We now apply this model to the earlier wildlife
monitoring example. Hedgehogs are reclusive creatures, so “interesting” photos are
rare, say p = 0.05. Low-power cameras allow images to be taken at low energy, e.g.,
Esense ≈ 10mJ [170]. As we saw above, communicating an image is expensive, taking
Ecomm ≈ 23,000mJ over OpenChirp [74]. Finally, we consider two systems with local
inference: a naïve baseline implemented using prior task-based intermittence support
(specifically Tile-8 in Sec. 3.4.2) and Sonic&Tails, our proposed technique. Their
inference energies are gathered from our prototype (Sec. 3.6), taking Einfer,naïve ≈
198mJ and Einfer,Tails ≈ 26mJ, respectively.

Fig. 3.1 shows each system’s IMpJ after plugging these numbers into the model.
For simplicity, the figure assumes that true positive and negative rates are equal,
termed “accuracy”. Since communication dominates the energy budget, local inference
enables large end-to-end benefits on the order of 1/p = 20×. However, for these
gains to be realized in practice, inference must be accurate, and the benefits quickly
deteriorate as inference accuracy declines. Qualitatively similar results are obtained
when p varies, though the magnitude of benefit changes (increasing with smaller p).

This system is dominated by the energy of sending results. Inference is relatively
inexpensive, so naïve local inference and Sonic&Tails perform similarly (though
Sonic&Tails outperforms Naïve by up to 14%). To see the benefits of efficient
inference, we must first address the system’s communication bottleneck.

3.1. Motivation for intermittent inference 21

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

0

10

20

30

40

In
te

re
st

in
g

im
ag

es
se

nt
p

er
ha

rv
es

te
d

ki
lo

-J
ou

le

20×

1.1×

Always send image

Ideal

Naive local inference

SONIC&TAILS (this work)

Figure 3.1: Inference accuracy determines end-to-end system performance in an
example wildlife monitoring application. Interesting events are rare and
communication is expensive; local inference ensures that energy is only spent on
interesting events.

Sending only inference results:Depending on the application, even larger end-
to-end improvements are possible by sending only the result of inference rather than
the full sensor reading. For instance, in this wildlife monitoring example, the energy-
harvesting device could send a single packet when hedgehogs were detected, rather
than the full image. The effect is to significantly decrease Ecomm for the systems
with local inference, mitigating the system’s bottleneck. In our wildlife monitoring
example, Ecomm decreases by 98×.

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

0

500

1000

1500

2000

In
te

re
st

in
g

re
su

lt
s

se
nt

p
er

ha
rv

es
te

d
ki

lo
-J

ou
le

2.2×

110×

4.5×
480×

Always send image

Ideal (send result only)

Naive local inference

SONIC&TAILS (this work)

Figure 3.2: Local inference (i.e., Naive and Sonic&Tails) lets
energy-harvesting devices communicate only results of inference, enabling
dramatic increases in end-to-end system performance.

Fig. 3.2 shows end-to-end performance when only sending inference results. Local
inference allows dramatic reductions in communication energy: Sonic&Tails can
detect and communicate 480× more events than the baseline system without local
inference. These reductions also mean that inference is a non-negligible energy cost,

22 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

CompileSONIC APIGENESIS

Link w/ TAILS
HW Accel. Lib.

Deploy w/out LEA

Deploy
w/ LEA

In Conv

ReLUFC

Figure 3.3: Overview of implementing a DNN application using Sonic&Tails.
Genesis first compresses the network to optimize interesting messages sent per
Joule (IMpJ). Sonic&Tails then ensure correct intermittent execution at high
performance.

and SONIC&TAILS outperform naïve local inference by 4.6×. Finally, the gap between
Ideal and Sonic&Tails is 2.2×. This gap is difficult to close further on current
hardware, but will be addressed in later chapters (Ch. 4, Ch. 5, and Ch. 6).

3.2. SYSTEM OVERVIEW
This thesis describes the first system for performing DNN inference efficiently on

intermittently-operating, energy-harvesting devices. Fig. 3.3 shows the new system
components in this work and how they produce an efficient, intermittence-safe ex-
ecutable starting from a high-level DNN model description. There are three main
components to the system: Genesis, Sonic, and Tails.

Genesis (generating energy-aware networks for efficiensy on intermittent systems)
is a tool that automatically optimizes a DNN, starting from a programmer’s high-level
description of the network. Genesis attempts to compress each layer of the network
using well-known separation and pruning techniques. Genesis’s goal is to find a
network that optimizes IMpJ while meeting resource constraints. As Fig. 3.3 shows,
Genesis’s input is a network description and its output is an optimally compressed
network. Sec. 3.3 describes Genesis.

Sonic (software-only neural intermittent computing) is an intermittence-safe,
task-based API and runtime system that includes specialized support for DNN in-
ference that safely “breaks the rules” of existing task-based systems to improve perfor-
mance. Sonic is compatible with existing task-based frameworks [47, 151], allowing
seamless integration into larger applications. Sec. 3.4 describes Sonic in detail.

Tails (tile-accelerated intermittent LEA support) is an alternative to the Sonic
runtime library that leverages hardware vector acceleration, specifically targeting the
TI Low Energy Accelerator (LEA) [111]. To use Tails, the programmer need only link
their compiled binary to the Tails-enabled runtime system. This runtime includes all
of Sonic’s optimizations and a suite of hardware-accelerated vector operations, such
as convolutions. Sec. 3.5 describes Tails in detail.

Starting with a high-level network description, a programmer can use Genesis,
Sonic, and Tails to build an efficient, intermittent DNN-enabled application that
meets resource constraints, is robust to intermittent operation, and leverages widely
available hardware acceleration.

3.3. OPTIMAL DNN COMPRESSION WITH GENESIS
The first challenge to overcome in Sonic&Tails is fitting neural networks into the

resource constraints of energy-harvesting systems. In particular, the limited memory

3.3. Optimal DNN compression with Genesis 23

Network Layer Uncompressed Compression Compressed Compression Accuracy
Size Technique Size

Image classifica-
tion (MNIST)

Conv 20× 1× 5× 5 HOOI 3×1D Conv 11.4×

99.00%
Conv 100× 20× 5× 5 Pruning 1253 39.9×
FC 200× 1600 Pruning, SVD 5456 109×
FC 500× 200 Pruning, SVD 1892 —
FC 10× 500 — — —

Human activ-
ity recognition
(HAR)

Conv 98× 3× 1× 12 HOOI 3×1D Conv 2.25×

88.0%
FC 192× 2450 Pruning, SVD 10804

58.1×FC 256× 192 Pruning, SVD — —
FC 6× 256 — — —

Google keyword
spotting (OkG)

Conv 186× 1× 98× 8 HOOI, Pruning 3×1D Conv 7.3x

84.0%
FC 96× 1674 Pruning, SVD 16362 11.8×
FC 128× 96 Pruning, SVD 2070 —
FC 32× 128 SVD 4096 2×
FC 128× 32 SVD 4096 —
FC 128× 12 — — —

Table 3.2: Neural networks used in this paper.

capacity of current microcontrollers imposes a hard constraint on networks. We have
developed a tool called Genesis that automatically explores different configurations
of a baseline neural network, applying separation and pruning techniques (Sec. 2.2.1)
to reduce the network’s resource requirements. Genesis improves upon these known
techniques by optimally balancing inference energy and true positive/negative rates
to maximize IMpJ, building on the the model in Sec. 3.1.

3.3.1 Neural networks under consideration
We consider three networks, summarized in Table 3.2. To represent image-based

applications (e.g., wildlife monitoring and disaster recovery), we consider MNIST [135].
We consider MNIST instead of ImageNet because ImageNet’s large images do not fit in
a resource-constrained device’s memory. To represent wearable applications, we con-
sider human activity recognition (HAR). HAR classifies activities using accelerometer
data [109]. To represent audio applications, we consider Google keyword spotting
(OkG) [205], which classifies words in audio snippets.

We also evaluated binary neural networks and several SVM models and found
that they perform poorly on current energy-harvesting MCUs. A 99%-accurate bi-
nary network for MNIST required 4.4MB of weights [54], exceeding the device’s scant
memory, and compressing this to 360KB lost nearly 10% accuracy [16]. Likewise, no
SVM model that fit on the device was competitive with the DNN models [136]: mea-
sured by IMpJ, SVM under-performed by 2× on MNIST and by 8× on HAR, and we
could not find an SVM model for OkG that performed anywhere close to the DNN.

3.3.2 Fitting networks on energy-harvesting systems
Genesis evaluates many compressed configurations of a network and builds a

Pareto frontier. Compression has trade-offs in four dimensions, difficult to capture
with a pareto curve; these include true negative rate, true positive rate, memory size
(i.e., parameters), and compute/energy (i.e., operations). Fully-connected layers typ-
ically dominate memory, whereas convolutional layers dominate compute. Genesis
compresses both.

Genesis compresses each layer using two known techniques: separation and prun-
ing. Separation (or rank decomposition) splits an m × n fully-connected layer into
two m× k and k× n matrix multiplications, or an m× n× k convolutional filter into
three m × 1 × 1, 1 × n × 1, and 1 × 1 × k, filters [29, 45]. Genesis separates layers

24 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

Pareto optimal, Separate + Prune
Pareto optimal, Separate only

Pareto optimal, Prune only
Non-pareto (feasible)

Non-pareto (infeasible)
Original, uncompressed

Configuration Used

0.0 0.2 0.4 0.6 0.8 1.0
Multiply-accumulate (MAC) ops 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) MNIST image recognition.

0.0 0.5 1.0 1.5
Multiply-accumulate (MAC) ops 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Activity recognition (HAR).

0.0 0.5 1.0 1.5
Multiply-accumulate (MAC) ops 1e6

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(c) Google keyword spotting (OkG).

Figure 3.4: Genesis explores the inference accuracy-cost tradeoff for different
neural network configurations.

0 1 2 3 4 5
Energy per inference (J) 1e−1

0

10

20

30

40

In
te

re
st

in
g

m
es

sa
ge

s s
en

t
pe

r J
ou

le
 h

ar
ve

st
ed

 (I
M

pJ
)

(a) MNIST image recognition.

0 2 4 6
Energy per inference (J) 1e−2

0

10

20

30

40

50

60

In
te

re
st

in
g

m
es

sa
ge

s s
en

t
pe

r J
ou

le
 h

ar
ve

st
ed

 (I
M

pJ
)

(b) Activity recognition (HAR).

0 2 4 6
Energy per inference (J) 1e−2

0.0

0.5

1.0

1.5

2.0

In
te

re
st

in
g

m
es

sa
ge

s s
en

t
pe

r J
ou

le
 h

ar
ve

st
ed

 (I
M

pJ
)

(c) Google keyword spotting (OkG).

Figure 3.5: Genesis uses our end-to-end application performance model
(Eq. 3.3) to select the best feasible network configuration.

using the Tucker tensor decomposition, using the high-order orthogonal iteration al-
gorithm [64,65,234]. Pruning involves removing parameters below a given threshold,
since they have small impact on results [96, 168].

Genesis sweeps parameters for both separation and pruning across each layer of
the network, re-training the network after compression to improve accuracy. Gen-
esis relies on the Ray Tune black box optimizer with the Median Stopping Rule to
explore the configuration space [87,166]. Fig. 3.4 shows the results for the networks in
Table 3.2. Each marker on the figure represents one compressed configuration, shown
by inference accuracy on the y-axis and inference energy on the x-axis. Feasible con-
figurations (i.e., ones that fit in our device’s small memory; see Sec. 3.6) are shown
as green circles and infeasible configurations are grey ×s. Note that the original con-
figuration (large ×) is infeasible for all three networks, meaning that they cannot be
naïvely ported to the device because their parameters would not fit in memory.

Fig. 3.4 also shows the Pareto frontier for each compression technique. Generally,
pruning is more effective than separation, but the techniques are complementary.

3.3.3 Choosing a neural network configuration
Genesis estimates a configuration’s IMpJ using the model from Sec. 3.1, specif-

ically Eq. 3.3. The user specifies Esense and Ecomm for their application as well as
per-compute-operation energy cost. From these parameters, Genesis estimates Einfer
for each configuration, and uses the inference accuracy from the prior training step
to estimate application performance. The user can specify which class in the training
set is “interesting,” letting Genesis compute true positive tp and negative tn rates for
the specific application.

Fig. 3.5 shows the results by mapping each point in Fig. 3.4 through the model. For
these results, we use Esense from Sec. 3.1, per-operation energy from our Sonic&Tails
prototype in Sec. 3.6, and estimate Ecomm from input size assuming OpenChirp net-
working [74].

Genesis chooses the feasible configuration that maximizes estimated end-to-end
performance (i.e., IMpJ). Fig. 3.5 shows that this choice is non-trivial. True positive,

3.4. Efficient intermittent inference with Sonic 25

true negative, and inference energy affect end-to-end application performance in ways
that are difficult to predict. Simply choosing the most accurate configuration, as the
twisty blue curve suggests in Fig. 3.5, is insufficient since it may waste too much
energy or underperform other configurations on true positive or true negative rates.

3.4. EFFICIENT INTERMITTENT INFERENCE WITH SONIC
Sonic is the first software system optimized for inference on resource-constrained,

intermittently operating devices. Sonic supports operations common to most DNN
computations, exposing them to the programmer through a simple API. Sonic’s func-
tionality is implemented as a group of tasks supported by the Sonic runtime system,
which is a modified version of the Alpaca runtime system [151]. These tasks implement
DNN functionality, and the Sonic runtime system guarantees correct intermittent op-
eration.

Specializing intermittence support for DNN inference yields large benefits. Prior
task-based intermittent execution models [47,151] can degrade performance by up to
19× and by 10× on average (Sec. 3.7). Sonic dramatically reduces these overheads
to just 25%–75% over a standard baseline of DNN inference that does not tolerate
intermittent operation.

Sonic achieves these gains by eliminating the three major sources of overhead in
prior task-based systems: redo-logging, task transitions, and wasted work (Sec. 2.1.2).
Our key technique is loop continuation, which selectively violates the task abstraction
for loop index variables. Loop continuation lets Sonic directly modify loop indices
without frequent and expensive saving and restoring. By writing loop indices directly
to non-volatile memory, Sonic checkpoints its progress after each loop iteration, elim-
inating expensive task transitions and wasting work upon power failure.

Loop continuation is safe because Sonic ensures that each loop iteration is idempo-
tent. Sonic ensures idempotence in convolutional and fully-connected layers through
loop-ordered buffering and sparse undo-logging. These two techniques ensure idempo-
tence without statically privatizing or dynamically checkpointing data, avoiding the
overheads imposed by prior task-based systems.

3.4.1 The Sonic API
The Sonic API lets the programmer describe a DNN’s structure through common

linear algebra primitives. Just as a programmer chains tasks together in a task-based
intermittent programming model [47,104,151], the programmer chains Sonic’s tasks
together to represent the control and data flow of a DNN inference pipeline. Sonic’s
API exposes functionality that the programmer invokes like any other task in their
program (specifically, a modular task group [47, 151]). Though Sonic “breaks the
rules” of a typical task-based intermittent system, the programmer does not need
to reason about these differences when they are writing a program using the Sonic
API. The program-level behavioral guarantee that Sonic provides is the same as the
one underlying other task-based intermittent execution models: a Sonic task will
execute atomically despite power interruptions by ensuring that repeated, interrupted
attempts to execute are idempotent.

3.4.2 The Sonic runtime implementation
DNN inference is dominated by loops within each layer of the neural network.

Sonic optimizes DNN inference by ensuring that these loops execute correctly on
intermittent power while adding much less overhead than prior task-based systems.

Loops in task-based systems:A typical task-based intermittent system sees two
kinds of loops: short loops and long loops. All iterations of a short loop fit in a
single task and will complete without consuming more energy than the device can

26 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

TAILSSONIC

a[7] += b[7] × c

a[4] += b[4] × c

Tile-12Tile-5
a[0] += b[0] × c

a[9] += b[9] × c

a[0] += b[0] × c

…

…

a[5] += b[5] × c

…

Energy
a[0] += b[0] × c

a[9] += b[9] × c

…

… 1s

Ti
m

e

a[0] += b[0] × c

…

a[9] += b[9] × c

……

a[5] += b[5] × c

a[4] += b[4] × c

…

a[4] += b[4] × c

…

Recharging

Vectorized

a[0]

…

a[15]

b[0]

…

b[15]
+= × c

b[16]

… × c
a[16]

… +=

b[16]

… × c
a[16]

… +=

Loop ContinuationWasted Work

Figure 3.6: Executing a loop using two fixed task-tilings and with Sonic’s loop
continuation mechanism. Loop continuation avoids the re-execution and
non-termination costs of task-tiling. Tails uses SIMD to perform more work in a
fixed energy budget (Sec. 3.5).

buffer. A short loop maintains control state in volatile memory and these variables
clear on power failure. When power resumes, the task restarts and completes. Data
manipulated by a short loop are usually non-volatile (i.e., “task-shared” [151]) and if
read and updated, they must be backed up (either statically or dynamically) to ensure
they remain consistent. The problem with short loops is that they always restart from
the beginning, wastefully repeating loop work that was already done. In contrast, a
long loop with many iterations does not fit in a single task; a long loop demands more
energy than the device can buffer and may never terminate. A programmer must split
loop iterations across tasks, requiring a task transition on each iteration and requiring
control state and data to be non-volatile and backed up. The problem with long loops
is that may not terminate and, when split across tasks, impose hefty privatization and
task transition overheads.

Task-tiling is a simple way to split a loop’s iterations into tasks. A task-tiled loop
executes a fixed number of iterations per task. Task-tiling amortizes task transition-
ing overhead, but risks executing more iterations in a single task than the device’s
energy buffer can support, causing non-termination. Figure 3.6 shows the intermittent
execution (energy trace on left) of a loop computing a dot product using two fixed
tile sizes of five (Tile-5) and twelve (Tile-12). Tile-5 wastes work when four iterations
complete before a failure. Tile-12 prevents forward progress because the device buffers
insufficient energy to complete twelve iterations.

Loop continuation
Sonic’s loop continuation is an intermittence-safe optimization that avoids wasted

work, unnecessary data privatization, and task transition overheads in tasks containing
long-running loop nests. Loop continuation works by directly modifying loop control
variables and memory manipulated in a loop nest, rather than splitting a long-running
loop across tasks. Loop continuation permits loops of arbitrary iteration count within
a single task, with neither non-termination nor excessive state management overhead.
Loop continuation stores a loop’s control variables and data manipulated directly
in non-volatile memory without backing either up. When a loop continuation task
restarts, its (volatile) local variables are reinitialized at the task’s start. The loop
control variables, however, retain their state and the loop continues from the last
attempted iteration.

3.4. Efficient intermittent inference with Sonic 27

…

1. Task_Convolve

FRAM

2. Task_Next_Filter

Swap Double Buffer

Next Filter Value
Loop-Ordered

Buffering:
Idempotent

SONIC

= ×
Loop index i = 1

+
i

Write
Only

Loop
Continuation:
“unsafe” write

after read

= ×
Loop index i = 2

+

= ×
Loop index i = 3

+

Read
Only

Figure 3.7: Sonic uses loop continuation and loop-ordered buffering to reduce
overheads of correct intermittent execution. Loop continuation maximizes the
amount of computation done per task by allowing computation to pick up where
it left off before power failure.

Fig. 3.7 shows how loop continuation works by storing the loop control state for
Task_Convolve in non-volatile memory. Sonic ensures that the loop’s control variable
i is correct by updating it at the end of the iteration and not resetting it upon re-
execution. A power failure during or after the update to the control variable may
require the body of the loop nest to repeat a single iteration, but it never skips an
iteration.

Figure 3.6 shows Sonic executing using loop continuation. Despite the power
interruption, execution resumes on the ninth loop iteration, rather than restarting the
entire loop nest or every fifth iteration like Tile-5 does.

Idempotence tricks
Normally, restarting from the middle of a loop nest could leave manipulated data

partially updated and possibly inconsistent. However, loop continuation is safe be-
cause Sonic’s runtime system ensures each loop iteration is idempotent using either
loop-ordered buffering or sparse undo-logging. Sonic never requires an operation in
an iteration to read a value produced by another operation in the same iteration.
Thus, an iteration that repeatedly re-executes due to power interruption will always
see correct values.

Loop-ordered buffering:Loop-ordered buffering is a double-buffering mechanism
used in convolutional layers (and dense fully-connected layers) that ensures each loop
iteration is idempotent without expensive redo-logging (cf., [151]). Since the MSP430
devices do not possess sophisticated caching mechanisms, rather than optimizing for
reuse and data locality, SONIC optimizes the number of items needed to commit. By
re-ordering the loops in DNN inference and double-buffering partial activations as
needed, Sonic is able to completely eliminate commits within a loop iteration.

Evaluating a sparse or dense convolution requires Sonic to apply a filter to a
layer’s entire input activation matrix. Sonic orders loop iterations to apply each
element of the filter to each element of the input activation (i.e., multiplying them)
before moving on to the next element of the filter. For idempotence, Sonic writes the
partially accumulated value to an intermediate output buffer, rather than applying

28 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

updates to the input matrix in-place. After applying a single filter element to each
entry in the input and storing the partial result in the intermediate buffer, Sonic
swaps the input buffer with the intermediate buffer and moves on to the next filter
value.

Since Sonic never reads and then writes to the same memory locations within
an iteration, it avoids the WAR problem described in Sec. 2.1.2 and loop itera-
tions are thus idempotent. Fig. 3.7 shows how under loop-ordered buffering, Sonic
never reads and writes to the same matrix buffer while computing a partial result
in Task_Convolve. After finishing this task, Sonic transitions to Task_Next_Filter,
which swaps the buffer pointers and gets the next value to apply from the filter.

Sparse undo-logging:While loop-ordered buffering is sufficient to ensure each loop
iteration is idempotent, it is sometimes unnecessarily wasteful. The problem arises
because loop-ordered buffering swaps between buffers after every task, so it must copy
data between buffers in case it is read in the future—even if the data has not been
modified. This copying is wasteful on sparse fully-connected layers, where most filter
weights are pruned and thus few activations are modified in a single iteration. With
loop-ordered buffering, Sonic ends up spending most of its time and energy copying
unmodified activations between buffers.

To eliminate this inefficiency, Sonic introduces sparse undo-logging which ensures
idempotence through undo-logging instead of double buffering. To ensure atomicity,
sparse undo-logging tracks its progress through the loop via two index variables, the
read and write indices. When applying a filter, Sonic first copies the original, un-
modified activation into a canonical memory location, and then increments the read
index. Sonic then computes the modified activation and writes it back to the original
activation buffer (there is no separate output buffer). Then it increments the write
index and proceeds to the next iteration. This two-phase approach guarantees correct
execution, since sparse undo-logging resumes computing the output value from the
buffered original value if power fails in the middle of an update.

Sparse undo-logging ensures that the work per task grows with the number of
modifications made, not the size of the output buffer (unlike loop-ordered buffering).
However, sparse undo-logging doubles the number of memory writes per modified
element, so it is inefficient on dense layers where most data are modified. In those
cases, loop-ordered buffering is significantly more efficient. We therefore only use
sparse undo-logging in sparse fully-connected layers. Finally, unlike prior task-based
systems such as Alpaca, sparse undo-logging ensures idempotence with constant space
overhead and no task transition between iterations.

Related work:Prior work in persistent memory [77] uses techniques similar to our
sparse undo-logging. This work is in the high-performance domain, and therefore
focuses on cache locality and scheduling cache flushes and barriers. In contrast, our
prototype has no caches, and we exploit this fact in loop-ordered buffering to re-
arrange loops in a way that would destroy cache performance on conventional systems.
Moreover, Sonic is more selective than [77], only using undo-logging in sparse fully-
connected layers where it outperforms double buffering.

3.5. HARDWARE ACCELERATION WITH TAILS
Tails improves on Sonic by incorporating widely available hardware accelera-

tion to perform inference even more efficiently. A programmer may optionally link
their Sonic application to the Tails runtime system, enabling the application to
use direct-memory access (DMA) hardware to optimize block data movement and
to execute operation in parallel using a simple vector accelerator like the TI Low-
Energy Accelerator (LEA) [111]. LEA supports finite-impulse-response discrete-time

3.6. Methodology 29

convolution (FIR DTC), which directly implements the convolutions needed in DNN
inference.

Tails’s runtime system enables the effective use of LEA in an intermittent sys-
tem by adaptively binding hardware parameters at run time to maximize operational
throughput without exceeding the device’s energy buffer. Our Tails prototype adap-
tively determines the DMA block size and LEA vector width based on the number
of operations that successfully complete using the device’s fixed energy buffer. After
calibrating these parameters, Tails uses them to configure available hardware units
and execute inference thereafter.

3.5.1 Automatic one-time calibration
Before its first execution, a Tails application runs a short, recursive calibration

routine to determine DMA block size and LEA vector size. The routine determines
the maximum vector size that it is possible to DMA into LEA’s operating buffer,
process using FIR DTC, and DMA back to non-volatile memory without exceeding
the device’s energy buffer and impeding progress. If a tile size does not complete before
power fails, the calibration task re-executes, halving the tile size. Calibration ends
when a FIR DTC completes and Tails uses that tile size for subsequent computations.

3.5.2 Accelerating inference with LEA
Once Tails determines its tile size, the application runs, using DMA and LEA

to compute dense and sparse convolutions and dense matrix multiplications. LEA
has limitations: it only supports dense operations and can only read from the de-
vice’s small 4KB SRAM (not the 256KB FRAM). Tails uses DMA to move inputs
into SRAM, invokes LEA, and DMAs the results back to FRAM. Dense layers are
natively supported: fully-connected layers use LEA’s vector MAC operation, and con-
volutions use LEA’s one-dimensional FIR DTC operation. To support two- and three-
dimensional convolutions, Tails iteratively applies one-dimensional convolutions and
accumulates those convolutions’ results. Tails uses loop-ordered buffering to ensure
that updates to the partially accumulated values are idempotent (Fig. 3.4.2).

Sparse operations require more effort. Tails uses LEA for sparse convolutions by
first making filters dense (padding with zeros). Making the filters dense is inexpensive
because each filter is reused many times, amortizing its creation cost. However, this
does mean that LEA performs unnecessary work, which sometimes hurts performance.
For this reason, we use LEA’s dot-product operation instead of FIR-DTC for 1×p×1
factored convolutional layers.

Finally, sparse fully-connected layers are inefficient on LEA because filters do not
get reuse. We found that Tails spent most of its time on padding filters, and, despite
significant effort, we were unable to accelerate sparse fully-connected layers with LEA.
For this reason, Tails performs sparse fully-connected layers in software exactly like
Sonic.

3.6. METHODOLOGY
We implement Sonic and Tails on the TI-MSP430FR5994 [110] at 16MHz in the

setup in Fig. 3.8. The board is connected to a Powercast P2210B [7] harvester 1m
away from a 3W Powercaster transmitter [8]. We ran all configurations on continuous
power and on intermittent power with three different capacitor sizes: 1mF, 50mF,
and 100µF.

Running code on the device:We compile with MSPGCC 6.4 and use TI’s MSP-
Driverlib for DMA and TI’s DSPLib for LEA. We use GCC instead of Alpaca’s LLVM
backend because LLVM lacks support for 20-bit addressing and produces slower code
for MSP430 than GCC.

30 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

Antenna

Energy storage
capacitors

Powercast
Harvester

MSP430
Application MCU

MSP430
Measurement MCU

Level Shifter

Relay &
Regulator

Programming FET

TAILSSON
IC

Figure 3.8: Diagram of the measurement setup.

Measurement:We use a second MSP430FR5994 to measure intermittent executions.
GPIO pins on the measurement MCU connect through a level-shifter to the intermit-
tent device, allowing it to count reboots and signal when to start and stop timing. We
automate measurement with a combination of software and hardware that compiles
a configuration binary, flashes the binary to the device, and communicates with the
measurement MCU to collect results. The system actuates a relay to switch between
continuous power for reprogramming and intermittent power for testing.

Measuring energy:By counting the number of charge cycles between GPIO pulses,
we can determine the amount of energy consumed in different code regions. For a
more fine-grained approach, we built a suite of microbenchmarks to count how many
times a particular operation (e.g., a load from FRAM) can run in single charge cycle.
We then profile how many times each operation is invoked during inference and scale
by per-operation energy to get a detailed energy breakdown.

Baselines for comparison:We compare Sonic&Tails to four DNN inference im-
plementations. The first implementation is a standard, baseline implementation that
does not tolerate intermittent operation (it does not terminate). The other three im-
plementations are based on Alpaca [151] and split up loops by tiling iterations, as in
Fig. 3.6.

3.7. EVALUATION
We now evaluate our prototype to demonstrate that: (i) Sonic&Tails

guarantee correct intermittent execution; (ii) Sonic&Tails greatly reduce inference
energy and time over the state-of-the-art; and (iii) Sonic&Tails perform well across
a variety of networks without any hand-tuning.

3.7.1 Sonic & Tails accelerates intermittent inference
Fig. 3.9 show the inference time for the three networks we consider (Table 3.2).

For each network, we evaluated six implementations running on four different power
systems. We break inference time into: dead time spent recharging; live time spent
on each convolution layer (which dominates); live time spent on the fully-connected
layers; and everything else.

First, notice that Sonic&Tails guarantees correct execution for every network on
every power system. This is not true of the naïve baseline, which does not run correctly
on intermittent power, or of most tilings for prior task-based intermittent systems.
The only other implementation that reliably executes correctly is Tile-8, since its tiling
is small enough to always complete within a single charge cycle. The other tilings fail

3.7. Evaluation 31

Live - Convolution 1
Live - Convolution 2

Live - Fully-Connected
Live - Other

Dead (Recharging)
Does not Complete

T
im

e
(s

)

MNIST HAR OkG
Ti
le
-3
2

Ti
le
-1
28

SO
NI
C

Ba
se

SO
NI
C

TA
IL
S

Ti
le
-3
2

Ti
le
-8

Ti
le
-3
2

Ti
le
-1
28

Ti
le
-8

Ba
se

TA
IL
S

Ba
se

Ti
le
-1
28

TA
IL
S

Ti
le
-8

SO
NI
C0

5

10

15

20

25

30

35

40

(a) Continuous power.
MNIST HAR OkG

Ti
le
-3
2

Ti
le
-1
28

SO
NI
C

Ba
se

SO
NI
C

TA
IL
S

Ti
le
-3
2

Ti
le
-8

Ti
le
-3
2

Ti
le
-1
28

Ti
le
-8

Ba
se

TA
IL
S

Ba
se

Ti
le
-1
28

TA
IL
S

Ti
le
-8

SO
NI
C0

20

40

60

80

100

(b) Intermittent power w/ 100µF cap.

T
im

e
(s

)

0

20

40

60

Cont 50mF 1mF 100uF

Ba
se

Ti
le
-3
2

Ti
le
-8

TA
IL
S

Ti
le
-1
28

SO
NI
C

Ba
se

Ti
le
-3
2

Ti
le
-8

TA
IL
S

Ti
le
-1
28

SO
NI
C

Ba
se

Ti
le
-3
2

Ti
le
-8

TA
IL
S

Ti
le
-1
28

SO
NI
C

Ba
se

Ti
le
-3
2

Ti
le
-8

TA
IL
S

Ti
le
-1
28

SO
NI
C0

5

10

15

20

(c) MNIST image recognition.

Figure 3.9: Fig. 3.9a: Three networks on continuous power, where
Sonic&Tails add dramatically lower overheads than prior task-based systems.
Fig. 3.9b: Three networks on intermittent power (100µF capacitor), where the
baseline and most tiled implementations do not complete. Fig. 3.9c: The MNIST
network across all four power systems. Sonic&Tails always completes and has
consistently good performance; HAR and OkG show similar results.

on some configurations: Tile-32 fails on MNIST with a 100µF capacitor, and Tile-128
fails on all networks at 100µF.

Sonic&Tails guarantee correct execution at much lower overheads than Tile-8.
Averaging across networks, Tile-8 is gmean 13.4× slower than the naïve baseline on
continuous power, whereas Sonic is 1.45× slower and Tails is actually 1.2× faster
than the baseline. That is to say, Sonic improves performance on average by 6.9×
over tiled Alpaca [151], and Tails improves it by 12.2×. Moreover, execution time is
consistent across capacitor sizes for Sonic&Tails.

Larger tile sizes amortize overheads somewhat, but since they do not complete
on all networks or capacitor sizes, they are an unattractive implementation choice.
Sonic&Tails guarantee correct intermittent execution across all capacitor sizes,
while also being faster than the largest tilings: even compared to Tile-128, Sonic
is on average 5.2× faster on continuous power and Tails is 9.2× faster.

Both DMA and LEA improve Tails’s efficiency. We tested configurations where
DMA and LEA are emulated by software and found that LEA consistently improved
performance by 1.4×, while DMA improved it by 14% on average.

Ultimately, these results indicate that inference is viable on commodity energy-
harvesting devices, and Sonic&Tails significantly reduce overheads over the state-
of-the-art.

32 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

Kernel - Convolution 1
Control - Convolution 1
Kernel - Convolution 2
Control - Convolution 2
Kernel - Fully-Connected
Control - Fully-Connected
Remaining

T
im

e
(s

)

0

10

20

30

MNIST HAR OkG

Ti
le
-3
2

SO
NI
C

Ba
se

SO
NI
C

TA
IL
S

Ti
le
-3
2

Ti
le
-3
2

Ba
se

TA
IL
S

Ba
se

TA
IL
S

SO
NI
C0

2

4

6

Figure 3.10: Proportions of time spent computing the kernel of a layer.
Sonic&Tails add small overheads over a naïve baseline, unlike prior task-based
systems (Tile-32).

3.7.2 Loop continuation nearly eliminate intermittence overheads
Fig. 3.10 shows that the overheads of Sonic&Tails come mainly from control

required to support intermittence. The darker-hatched regions of the bars represent
the proportion of time spent computing a layer’s kernel (i.e., the main loop), while the
lighter regions represent control overheads (i.e., task transitions and setup/teardown).
Most of the difference in performance between the baseline and Sonic is attributable
to the lighter, control regions. This suggests that Sonic imposes small overhead over
the naïve baseline, which accumulates values in registers and avoids memory writes
(but does not tolerate intermittence).

Tails’s overhead also comes from control; Tails significantly accelerates kernels.
Tails’s control overhead is large due to LEA’s fixed-point representation, which forces
Tails to bit-shift activations before invoking FIR-DTC. Moreover, LEA does not
have a left-shift operation (it does have a right-shift), so these shifts must be done in
software. These shifts account for most of the control time in Fig. 3.10.

Fig. 3.10 also shows the time breakdown for Tile-32. Unlike Sonic&Tails, Tile-32
spends significantly more time in both control and the kernel. This is because Alpaca
uses redo-logging on all written values to ensure idempotence, so every write requires
dynamic buffering (kernel time) and committing when the task completes (control
time). Sonic&Tails effectively eliminate redo-logging, avoiding these overheads.

Convolution 1
Convolution 2
Fully-Connected
Other
Does not Complete

En
er

gy
(m

J)

0

200

400

MNIST HAR Okg

Ti
le
-3
2

Ti
le
-1
28

SO
NI
C

Ba
se

SO
NI
C

TA
IL
S

Ti
le
-3
2

Ti
le
-8

Ti
le
-3
2

Ti
le
-1
28

Ti
le
-8

Ba
se

TA
IL
S

Ba
se

Ti
le
-1
28

TA
IL
S

Ti
le
-8

SO
NI
C0

20

40

60

Figure 3.11: Energy of three neural networks with a 1mF capacitor.
Sonic&Tails require substantially less energy than the state-of-the-art.

3.8. Discussion 33

3.7.3 Sonic & Tails use much less energy than tiling
Energy-harvesting systems spend a majority of their time powered off recharging,

so execution time is largely determined by energy efficiency. Fig. 3.11 shows that
Sonic&Tails achieve high performance because they require less energy than other
schemes. Inference energy is in direct proportion to the dead time spent recharging
in Fig. 3.9. Since dead time dominates inference time, Sonic&Tails get similar
improvements in inference energy as they do in terms of inference time.

Remaining
Task-Transition
Fixed-Point Multiply
Fixed-Point Add
Increment
Multiply
Add
Store
Load

En
er

gy
(m

J)

HAR OkGMNIST
Ov

er
al

l
Co

nv
 1 FC

Ov
er

al
l

Co
nv

 1 FC

Ov
er

al
l

Co
nv

 1
Co

nv
 2 FC

0

10

20

30

40

50

Figure 3.12: Energy profile of Sonic broken down by operation and layer.
Multiplication, control, and memory accesses represent significant overheads.

3.7.4 Where does Sonic’s energy go?
Fig. 3.12 further characterizes Sonic by showing the proportion of energy spent

on different operations. The blue regions represent memory operations, the orange
regions are control instructions, the green regions are arithmetic instructions within
the kernels, the purple regions are the task-transition overhead, and the grey regions
are the remaining, unaccounted-for energy. The control instructions account for 26%
of Sonic’s energy, and a further 14% of system energy comes from FRAM writes
to loop indices. Ideally, these overheads would be amortized across many kernel
operations, but doing this requires a more efficient architecture.

3.8. DISCUSSION
This chapter argued that intelligence “beyond the edge” will enable new classes

of IoT applications and presented Sonic, the software component to the new ULP
sensor system stack. Sonic specializes intermittence support for DNN inference to
guarantee correct execution, regardless of power system, while reducing overheads by
up to 6.9× and 12.2×, respectively, over the prior state-of-the-art.

However, our experience in building Sonic&Tails also showed that there is a
large opportunity to accelerate inference on ULP sensor devices. But, current mi-
crocontrollers for energy-harvesting systems are poorly suited to efficient inference.
They are sequential, single-cycle processors, and so spend very little of their energy
on “useful work” [107]. For example, by deducting the energy of nop instructions from
Fig. 3.12, we estimate that Sonic spends at least 40% of its energy on instruction
fetch and decode. This cost is a waste in highly structured computations like DNN
inference, where overheads easily amortize over many operations.

LEA should bridge this efficiency gap, but unfortunately LEA has many limi-
tations. Invoking LEA is expensive. Each LEA invocation should therefore do as
much work as possible, but LEA’s parallelism is limited by its small (4KB) SRAM
buffer. This small buffer also forces frequent DMA between SRAM and FRAM, which

34 Chapter 3. SONIC: Deploying DNNs on intermittent embedded devices

cannot be overlapped with LEA execution and does not support strided accesses or
scatter-gather. LEA also has surprising gaps in its support: it does not support vector
left-shift or scalar multiply, forcing Tails to fall back to software. In software, integer
multiplication is a memory-mapped peripheral that takes four instructions and nine
cycles. All told, these limitations cause Sonic&Tails to spend much more energy
than necessary. There is ample room to improve inference efficiency via a better ar-
chitecture – the subject of the next three chapters. Ch. 4 discusses Manic a ULP
vector-dataflow co-processor, Ch. 5 describes Snafu, a ULP CGRA generation frame-
work and architecture, and Ch. 6 presents RipTide, a dataflow compiler and ULP
CGRA. These architectures achieve much higher energy-efficiency v. existing scalar
MCUs (like the MSP430) by leveraging vector and dataflow execution that minimize
instruction and data supply energies.

35

Chapter 4

Manic: An energy-efficient,
vector-dataflow co-processor1

Tiny, pervasively deployed, ultra-low-power sensor systems enable important new ap-
plications in environmental sensing, in- and on-body medical implants, civil infras-
tructure monitors, and even tiny chip-scale satellites. These applications require a
new ULP sensor system stack. Ch. 3 contributed a software component to this new
stack, describing how these devices can be made “intelligent” with on-device machine
inference using Sonic. However, Sonic also demonstrated that existing systems suf-
fer fundamental inefficiencies that demand new, extremely energy-efficient computer
architectures.

Sensing workloads are increasingly sophisticated: Sensor devices are collecting
increasingly more data as sensor capability has matured. This increase in sensed data
volume requires more sophisticated processing. But as Ch. 3 argued, offloading work
to a more powerful edge device or to the cloud is impractical as transmitting data
takes much more energy per byte than computing locally. Under these constraints,
application performance becomes dependent on the energy-efficiency of computation.

Energy-efficiency is only half the story, though. A computation-heavy sensor sys-
tem also needs to be highly programmable to support a wide variety of applications.
But, programmability and energy-efficiency are in tension, since programmability of-
ten carries a significant energy penalty. Our goal is to design a highly programmable
architecture that hides microarchitectural complexity while eliminating the energy costs
of programmability.

Existing low-power architectures fall short:While Ch. 3 showed that it is pos-
sible to run sophisticated processing on existing devices, ULP COTS MCUs (e.g.,
TI MSP430, ARM M0+ & M4+) nonetheless fail to meet the criteria for effective
sensor nodes. Their scalar execution models pay a high price for general purpose
programmability (see the COTS MCU dot in Fig. 4.1), wasting energy fetching &
decoding instructions, controlling execution pipeline resources, and supplying data.

Programming pitfalls of architectural specialization: Specialization of a sys-
tem’s control or datapath is one way to reduce the tax of general-purpose programma-
bility, eliminating inessential hardware structures and functions for a particular ap-
plication. But this comes at the expense of flexibility and generality (see the ASIC
dot in Fig. 4.1), making a highly specialized design susceptible to quick obsolescence.

Existing programmable, efficient designs are insufficient: In contrast to spe-
cialization, another approach to programmable energy-efficiency is to target a con-
ventional vector architecture (such as NVidia’s Jetson TX2 [186], ARM NEON [17],

1[85] G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, N. Beckmann, and B. Lucia, “Manic: A
vector-dataflow architecture for ultra-low-power embedded systems,” in MICRO, 2019.

36 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

COTS MCU

Ease of Programming

Energy-
Efficiency

MANIC
ELM

ASIC

Classic Vector

Ideal

Better

Figure 4.1: Manic seeks to improve energy efficiency without compromising
programmability.

or TI LEA [111]), amortizing the cost of instruction supply across a large number of
compute operations. Unfortunately, vector architectures exacerbate the energy costs
of RF access, especially in high-throughput designs with multi-ported vector regis-
ter files (VRFs) [18, 128, 194], and so remain far from the energy-efficiency of fully
specialized designs [92] (see the classic vector dot in Fig. 4.1).

The ELM architecture stands out among prior efforts as an architecture that tar-
gets ultra-low-power operation, operates with extremely high energy-efficiency, and
retains general-purpose programmability [23, 24]. The key to ELM’s efficiency is an
operand forwarding network that avoids latching intermediate results and a distributed
RF that provides sufficient register storage, while avoiding unfavorable RF energy scal-
ing. Unfortunately, despite these successes, ELM faces fundamental limitations that
prevent its widespread adoption. ELM makes significant changes to the architecture
and microarchitecture of the system, requiring a full re-write of software to target
its exotic, software-managed RF hierarchy and instruction-register design. This pro-
gramming task requires expert-level assembly hand-coding, as compilers for ELM are
unlikely to be simple or efficient; e.g., ELM itself cites a nearly 2× drop in performance
when moving from hand-coded assembly to compiler-generated assembly [23]. While
ELM supports general-purpose programs, it does so with a high programmability cost
and substantial changes to software development tools (as shown in Fig. 4.1).

Our design and contributions:This chapter presents Manic: an efficient vector-
dataflow architecture for ultra-low-power embedded systems. As depicted in Fig. 4.1,
Manic is closest to the Ideal design, achieving high energy-efficiency while remaining
general-purpose and simple to program. Manic is simple to program because it
exposes a standard vector ISA interface based on the RISC-V vector extension [202].

Manic achieves high energy-efficiency by eliminating the two main costs of pro-
grammability through its vector-dataflow design. First, vector execution amortizes
instruction supply energy over a large number of operations. Second, Manic ad-
dresses the high cost of VRF accesses through its dataflow component by forwarding
operands directly between vector operations. Manic transparently buffers vector out-
puts in a small forwarding buffer and, at instruction issue, renames vector operands to
directly access the forwarding buffer, eliminating read accesses to the VRF. Addition-
ally, Manic extends the vector ISA with kill annotations that denote the last use of
a vector register, eliminating write accesses to the VRF. The vector-dataflow architec-
ture is efficient because Manic amortizes the energy of tracking dataflow across many
vector operations. Manic thus eliminates a large fraction of VRF accesses (90.1%
on average in our experiments) with simple microarchitectural changes that leave the
basic vector architecture intact.

Finally, we have designed and implemented a code scheduling algorithm that ex-
ploits Manic’s operand forwarding to minimize VRF energy, while being microarchi-
tecturally agnostic. In other words, it is not necessary to expose the details of the

4.1. Vector-Dataflow Execution 37

pipeline architecture or size of forwarding buffers to minimize VRF energy—a single
code schedule is near-optimal across a range of microarchitectural design points.

To evaluate Manic, we taped-out a test-chip in Intel’s 22nm high-threshold voltage
process that included Manic, a scalar design, and a vector design. We measured
the energy of the various designs in the test-chip across a collection of programs
appropriate to the deeply embedded domain. Manic reduces energy by 3.4× v. the
scalar design and by 12% v. the vector design.

4.1. VECTOR-DATAFLOW EXECUTION
Manic implements the vector-dataflow execution model. There are two main

goals of vector-dataflow execution (Fig. 4.1). The first goal is to provide general-
purpose programmability. The second goal is to do this while operating efficiently
by minimizing instruction and data supply overheads. Vector-dataflow achieves this
through three features: (i) vector execution, (ii) dataflow instruction fusion, and
(iii) register kill points.

I1

I2

I0

register

register

register

register

(a) Scalar

Vector Register

Vector Register

v[1] v[2]

v[1] v[2] v[3]

v[3]v[0]

v[0]

I0:

I1:

I2:

Vector Register

Vector Register

v[0] v[1] v[2] v[3]

(b) Vector

Vector Register

Vector Register

…

v[0]

v[0]

v[0]

…

v[1]

v[1]

v[1]

…

v[2]

v[2]

v[2]

…

v[3]

v[3]

v[3]I2:

I1:

I0:

(c) Vector-dataflow

Figure 4.2: Different execution models. Orange arrows represent control flow,
blue arrows represent dataflow. Manic relies on vector-dataflow execution,
avoiding register accesses by forwarding and renaming.

4.1.1 Vector execution
The first main feature of Manic’s execution model is vector execution. Vector

instructions specify an operation that applies to an entire vector of input operands (as
in ample prior work discussed in Sec. 2.3.1). The key advantage of vector operation
for an ultra-low-power design is that control overheads imposed by each instruction —
instruction cache access, fetch, decode, and issue — amortize over the many operands
in the vector of inputs. Vector operation dramatically reduces the cost of instruction
supply and control, which is a primary energy cost of general-purpose programmabil-
ity. Vector operation is thus a key ingredient in Manic’s energy-efficiency.

Fig. 4.2 illustrates the difference between scalar execution and vector execution.
Fig. 4.2a executes a sequence of instructions in a scalar fashion. Blue arrows show
dataflow and orange arrows show control flow. Instructions proceed in sequence and
write to and read from the register file to produce and consume outputs and operands.
Fig. 4.2b executes the same sequence of instructions in a vector execution. The ex-
ecution performs the vector instruction’s operation on each element of the vector in
sequence, consuming operands from and producing outputs to the register for each
operation over the entire vector. Control proceeds horizontally across each of the
vector’s elements for a single vector instruction before control transfers vertically to
the next vector instruction. Vector execution amortizes the control overhead of a
scalar execution because a single instruction corresponds to an entire vector worth of
operations.

38 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

4.1.2 Dataflow instruction fusion
The second main feature of Manic’s execution model is dataflow instruction fu-

sion. Dataflow instruction fusion identifies windows of contiguous, dependent vector
instructions. Dataflow instruction fusion eliminates register file reads by directly
forwarding values between instructions within the window. Comparing to a typi-
cal vector machine illustrates the benefit of dataflow instruction fusion. In a typical
vector machine, instructions execute independently and each operation performs two
vector register file reads and one vector register file write. Accessing the vector reg-
ister file has an extremely high energy cost that scales poorly with the number of
access ports [24,128]. With dataflow instruction fusion, each instruction that receives
a forwarded input avoids accessing the expensive vector register file to fetch its input
operands. Avoiding these reads reduces the total energy cost of executing a window
of vector instructions.

Fig. 4.2c illustrates the difference between vector execution and vector-dataflow
execution in Manic. Vector-dataflow first identifies data dependencies among a se-
quence of vector instructions in a fixed-size instruction window. After identifying
dependences between instructions in the window, Manic creates an efficient dataflow
forwarding path between dependent instructions (using the forwarding mechanism
described in Sec. 4.2). Fig. 4.2c shows a window of dependent operations made up
of instructions I0, I1, and I2. Execution begins with the first vector instruction in
the window (I0) and the first element of the vector (v[0]). However, unlike a typi-
cal vector execution, control transfers vertically first, next applying the second vector
instruction to the first vector element. The orange arcs illustrate vertical execution
of I0, then I1, then I2 to the vector inputs represented by v[0]. After vertically
executing an operation for each instruction in the window for v[0], the orange arcs
show that control steps horizontally, executing the same window of operations on the
next element of the vector, v[1]. The blue arrows illustrate the dataflow forwarding
captured by vertical execution in a window of vector-dataflow execution. The blue
arrow from I0 to I2 shows that the value produced by I0 is forwarded directly to I2
without storing the intermediate result in the vector register file.

4.1.3 Vector register kill points
The third main feature of Manic’s execution model is its use of vector register

kill points. A vector register is dead at a particular instruction if no subsequent
instruction uses the value in that register. Hence, a dead value need not be written
to the vector register file. The instruction at which a vector register becomes dead
is the kill point for that register. Though Manic forwards values between dependent
instructions without going through the vector register file, Manic normally must
write each operand back to the vector register file because the operand may be used
in a later window.

However, if a program explicitly informs Manic of each register’s kill points, then
Manic can eliminate register file writes associated with those registers. We propose
to tag each of an instruction’s operands with an optional kill bit that indicates that
the register is dead at that instruction, and its value need not be written back to the
vector register file. Kill bits do not affect programmability because they are optional,
a compiler analysis to identify dead registers is simple, and kill bits do not expose
microarchitectural details, such as the size of Manic’s instruction window.

4.1.4 Applications benefit from vector-dataflow
We studied the core compute kernels in a wide variety of sensor node applica-

tions and found abundant opportunities for vector-dataflow execution. Regardless
of Manic’s window size, an application has more exploitable vector dataflows if its

4.2. MANIC Architecture 39

1 2 3 4 5 6
Kill distance

0

2

4

Fr
eq

ue
nc

y

(a) SpMV

1 2 3 4 5 6
Kill distance

0

2

4

Fr
eq

ue
nc

y

(b) Sparse conv

1 3 5 7 9 11
Kill distance

0

2

4

6

Fr
eq

ue
nc

y

(c) FFT

Figure 4.3: Histograms of kill distances for three different applications.
Distances skew left, suggesting values are consumed for the last time shortly after
being produced.

sequences of dependent instructions tend to be shorter. The length of a dependent
instruction sequence is characterized by the distance (or number of instructions) be-
tween a when register’s value is produced and when that register is killed (the kill
point). We deem this the kill distance. Shorter kill distances require fewer resources
for forwarding in a window and make a window of any size more effective.

We statically measured the distribution of kill distances for all registers in the inner
loops of three kernels. The histograms shown in Fig. 4.3 suggest that kill distances
tend to be short and that a reasonably small (and thus implementable) window size
would capture dependencies for these kernels.

4.1.5 Synchronization and memory consistency
In Manic, the vector unit runs as a loosely-coupled co-processor with the scalar

core. As a result, Manic must synchronize vector and scalar execution to ensure a
consistent memory state. A typical sequentially consistent model would require fre-
quent stalls in the scalar core to disambiguate memory and, worse, would limit the
opportunity for forwarding in the vector unit. These issues could be avoided with mi-
croarchitectural speculation, including load-store disambiguation and mis-speculation
recovery mechanisms, but we judge such mechanisms too expensive for ultra-low-
power applications. Moreover, in practice, the scalar core and the vector unit rarely
touch the same memory during compute-intensive program phases, so the mechanisms
would be largely unused.

Instead, we add a new vfence instruction that handles both synchronization and
memory consistency. vfence stalls the scalar core until the vector unit completes
execution with its current window of vector-dataflow operations. Manic’s use of
vfence operations is very similar to memory fences for concurrency in x86, ARM, and
other widely commercially available processors [80]. Properly used, vfence operations
cause the scalar and vector cores’ executions to be sequentially consistent. In practice,
this often means inserting a vfence at the end of the kernel.

As with any system relying on fences, the programmer is responsible for their cor-
rect use (i.e., avoiding data races). Relying on the programmer to avoid data races is
practical since compilers struggle with alias analysis, reasonable because vfences are
rare, and consistent with common practice in architectures and high-level program-
ming languages [28,112].

4.2. MANIC ARCHITECTURE
Manic is a processor microarchitecture that implements the vector-dataflow ex-

ecution model to improve energy efficiency while maintaining programmability and
generality. Manic’s hardware/software interface is a recent revision of the RISC-V
ISA vector extension [202]. Manic adds a vector unit with a single lane to a sim-
ple, in-order scalar processor core. The vector unit has a few simple additions to
support vector-dataflow execution: instruction windowing hardware and a renaming

40 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

mechanism together implement forwarding between dependent instructions. With
no modifications to the ISA, Manic runs programs efficiently. With a minor ISA
change, Manic further improves efficiency by conveying register kill annotations; the
microarchitecture uses these annotations to kill registers instead of incurring the cost
of writing them to the vector register file.

4.2.1 Vector ISA
The software interface to Manic’s vector execution engine is the RISC-V ISA

vector extension [202] and RISC-V code1 will run efficiently on a Manic system with
only minor modifications to add vfence instructions for synchronization and memory
consistency.

A programmer may further optionally recompile their code using our custom
Manic compiler to use minor ISA changes that support code scheduling and vec-
tor register kill annotations. We emphasize that these compiler-based features do
not require programming changes, do not expose microarchitectural details, and are
optional to the effective use of Manic.

Manic implements the RISC-V V vector extension. RISC-V V does not specify
a fixed number of vector registers, but its register name encoding includes five bits
for vector register names. We implement 16 vector registers, requiring four bits to
name, and leaving a single bit in the register name unused. We use the extra bit in a
register’s name to convey kill annotations from the compiler to the microarchitecture.
If either of an instruction’s input registers has its high-order bit set, the encoded
instruction indicates to Manic that the register dies at the instruction. To support
code scheduling, Manic’s optional compiler support runs the dataflow code scheduling
algorithm (described in Sec. 4.2.5). After scheduling, the compiler analyzes definitions
and uses of each register and adds a kill annotation to a killed register’s name in the
instruction at which it dies.

4.2.2 Microarchitecture
Manic’s microarchitecture is split along the two phases of execution: Decode

& Rename and Execute. During the Decode & Rename phase, Manic buffers a
window of decoded instructions (“Insn Buffer”) and identifies dataflow between them,
renaming operands to point to the “Forwarding Buffer” as dataflow allows. Then
during the Execute phase, Manic cycles through the instruction buffer (“VIssue”),
determines the source of each instruction operand (“VGate”), executes the operation
(“VExecute” and “VMemory”), and performs a write back if necessary (“VWriteback”).
Fig. 4.4 shows the two phases of execution as well as the different microarchitectural
components of each.

Decode & Rename
Decode & Rename is responsible for creating a window of instructions to execute

according to vector-dataflow. The Decode & Rename logic activates once per window
of instructions, identifying, preparing, and issuing for execution a window of dependent
instructions over an entire vector of inputs. The logic analyzes a short sequence
of instructions that has the same number of instructions as the instruction buffer
can hold. Decode & Rename identifies dataflow between instructions by comparing
the names of their input and output operands. If two instructions are dependent
— the output of one of the instructions is the input of another — Manic should
forward the output value directly from its producer to the input of the consumer,
avoiding the register file. Manic’s rename logic implements forwarding by renaming
the instructions’ register operands to refer to a free location in Manic’s forwarding

1Specifically, RISC-V E extension, which uses 16 architectural registers.

4.2. MANIC Architecture 41

Insn Buffer

op dst src1 src2

vload F1 F0 -

vmul v2 v0 F1

Scalar
CoreRename

v0 f0
v1 f1
v2 f2
v5 f5

VDecoder

4KB
4KB

VRF

Vector
index

M
U

X+1

0

Insn
index

M
U

X+1
0

Vissue VExecute

Data
Address

× M
U

XALU

M
ul

Decode & Rename Execute

VM
em

or
y

4KB D$

M
U

X

VW
rit

eb
ac

k

M
U

X
M

U
X

Forwarding
Buffer

16B

VGate

Xdata
buffer

D&R

xdata

Figure 4.4: A block diagram of Manic’s microarchitectural components.
Manic operates in two phases, Decode & Rename and execute. Decode & rename
fills in the instruction buffer, identifying opportunities for dataflow forwarding.
Execute cycles through the instruction buffer to compute across instructions
(vertical) and then across vectors (horizontal).

buffer, instead of to the register file. The Decode & Rename logic records the renaming
in Manic’s renaming table, which is a fixed-size, directly-indexed table, with one entry
for each register that can be renamed in a window of instructions. After Decode &
Rename identifies dependent operations and performs renaming for the window, it
dispatches the window of operations for execution.

Instruction buffer:Manic uses its instruction buffer to store a decoded window of
instructions that have had their register operands renamed by the Decode & Rename
logic. Each entry of the buffer tells the Execute phase where to read and write an
operand. For input operands, the instruction buffer controls whether to fetch an
operand from the vector register file, from the Xdata buffer (data buffered from the
scalar core like base address or stride), or from Manic’s forwarding buffer (in the case
of an operand being forwarded between instructions in the window). Likewise, for
output operands, the instruction buffer controls whether to write an output operand
to the vector register file, to the forwarding buffer, or to both.

Limits to window size:There are several classes of instructions that limit win-
dow size. These include stores, permutations, and reductions. Permutations and
reductions require interactions between elements in a vector, which creates a hori-
zontal dependence between operations on different vector elements. Manic does not
support forwarding for such operations because of the complexity of the dependence
tracking that they introduce. Instead, these operations execute one element at a time,
ultimately writing to the vector register file.

A store also ends the decoding and renaming of a window. A store may write
to a memory location that a later operation loads from. Such a through-memory
dependence is unknown until execution time. Consequently, Manic conservatively
assumes that the address of any store may alias with the address of any load or store
in the window (i.e., in a later vector element). A store ends the construction of a
window to avoid the need for dynamic memory disambiguation to detect and avoid
the effect of such aliasing. We evaluated adding a non-aliasing store instruction that
would allow Manic to forward past stores, but this instruction improved energy-
efficiency by less than 0.5% in our applications. This is because store instructions
often naturally close windows (e.g. a vfence follows the store to ensure correctness).
Thus, given the added programming complexity for minimum benefit, we conclude
that such an instruction is unnecessary.

42 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

Xdata buffer: Some instructions like vector loads and stores require extra informa-
tion (e.g. base address and stride) available from the scalar register file when the
instruction is decoded. Due to the loosely coupled nature of Manic, this extra in-
formation must be buffered alongside the vector instruction. Since not all vector
instructions require values from the scalar register file, Manic includes a separate
buffer, called the xdata buffer, to hold this extra information. Entries in the instruc-
tion buffer contain indices into the xdata buffer as needed. During execution, Manic
uses these indices to read information from the xdata buffer and execute accordingly.

Structural hazards:There are two structural hazards that cause Manic to stop
buffering additional instructions, stall the scalar core, and start vector execution. The
first hazard occurs when the instruction buffer is full and another vector instruction is
waiting to be buffered. The second hazard occurs when the xdata buffer is full and a
decoded vector instruction requires a slot. The prevalence of each hazard depends on
the size of the buffers associated with each. The first hazard is most common, while
the second is rare.

Execute
The Execute phase begins once a vfence instruction is reached or there is a struc-

tural hazard. Manic has a five-stage execution pipeline consisting of: VIssue, VGate,
VExecute, VMemory, and VWriteback. VIssue tracks execution progress, maintains
a pointer into the instruction buffer, reads decoded instructions, and (only if neces-
sary) initiates VRF reads; VGate determines the source for each operand (the VRF,
Xdata buffer, Forwarding buffer, or bypass paths) and steers operands to the multi-
plier or ALU; VExecute computes the ALU and multiplier results; VMemory issues
loads and stores; and VWriteback writes results to the Forwarding Buffer or VRF, as
appropriate.

VIssue:VIssue determines what the execution pipeline should execute next and ini-
tiates VRF reads if they are necessary (no dataflow identified during Decode & Re-
name). It maintains an instruction pointer into the instruction buffer for the current
instruction as well as counter representing the completed vector length. Together
these track the progress of execution. Execution proceeds first vertically through the
entire window. VIssue bumps the instruction pointer for each entry in the instruction
buffer, reconfiguring the pipeline according to each instruction. Then execution pro-
ceeds horizontally; VIssue resets the instruction pointer to the top of the instruction
buffer and increments the completed vector length counter. When the completed vec-
tor length counter matches the vector length of the computation and the instruction
pointer is at the end of the instruction buffer, execution is finished.

VGate:VGate chooses the source for each operand. Possible sources include the VRF,
the Xdata buffer, bypass paths or the Forwarding buffer. VGate reduces switching
activity in VExecute by steering operands to dedicated input registers for the ALU or
multiplier to, e.g., prevent a VADD from toggling the multiplier. This is important
because, unlike conventional vector execution, the active instruction changes every
cycle in Manic, increasing activity on control and data signals.

Forwarding buffer:The forwarding buffer stores intermediate values as Manic’s
execution unit forwards them to dependent instructions in the instruction window.
The buffer has a single read port, single write port, and an single entry (32b×16) for
each vector register. It is simple (1r1w) and small (64B in total), which corresponds to
a very low static power and access energy compared to the very high static power and
access energy of the vector register file. By accessing the forwarding buffer instead of

4.2. MANIC Architecture 43

accessing the vector register file, an instruction with one or more forwarded operands
consumes less energy than one that executes without Manic.

Efficient reductions:RISC-V V contains reduction instructions like vredsum v1
v2, which adds up all elements of v2 and writes the sum into the first element of
v1. Manic supports these operations efficiently without accessing the VRF by accu-
mulating partial results in a single 32b reduction register. This is possible because
windows close on reductions so there will only ever be a single reduction per window.
The Decode & Rename logic recognizes a reduction, and remaps the second source
operand and the destination to point to the reduction register. During the Execute
phase, Manic will then use the partial result in the reduction register as one source
for the reduction (e.g., sum) and overwrite it with the new value as it is produced.
This optimization re-purposes Manic’s existing dataflow mechanisms to save an entire
vector-length of VRF reads and writes for reductions.

4.2.3 Memory system
Manic’s memory subsystem includes an instruction cache (icache) and a data

cache (dcache). This departs from the designs of many commercial microcontrollers in
the ultra-low-power computing domain, which do not have dcaches and have extremely
small icaches on the order of 64 bytes [110]. However, we find that even small or
moderately sized dcaches (512B) are effective in minimizing the number of accesses to
main memory. We measured miss curves for the different application we consider; for
each application there is an extreme drop-off in the number of misses for even small
cache sizes, and with a 512B cache the curves are basically flat. Since the energy of an
access to main memory dwarfs an access to the dcache, the dcache offers a significant
reduction in energy.

Caching and intermittence: In the intermittent computing domain, improperly
managed caches may lead to memory corruption because dirty data may be lost when
power fails. As such, Manic assumes a hardware-software JIT-checkpointing mecha-
nism (like [25, 114, 152]) for protecting the caches and any dirty data. Checkpointing
energy for cached data is virtually negligible because caches are very small relative to
the operating period.

4.2.4 Putting it together with an example
We illustrate the operation of the Decode & Rename logic, renaming table, instruc-

tion buffer, and forwarding buffer with an example of Manic’s operation, shown in
Fig. 4.5. The figure starts with vector-aware assembly code that Manic transforms
into vector-dataflow operations by populating the renaming table and instruction
buffer with information about the dataflow. Vector assembly instructions pass into
Manic’s microarchitectural mechanisms as they decode and later execute.

Decoding instructions and renaming operands:The figure shows a three-instruction
program and illustrates how the Decode & Rename logic populates the instruction
buffer and remaps registers for each instruction.

• vload: The rename logic records the load in the instruction window and, since
the instruction is a vector load and requires a base address, also inserts the base
address (&a forwarded from the scalar register file) into the xdata buffer. In
addition, the logic writes an empty renaming entry to v0 in the renaming table
along with the index of the instruction in the instruction buffer. An empty
renaming entry at execution time signifies a vector register write. However,
during Decode & Rename, an empty entry may be filled by an instruction added
to the instruction window later during the same Decode & Rename phase.

44 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

I0: v0 = vload &a
I1: v1 = v2 × v3.k
I2: v2 = v1 + v0.k

Code

ld
×

+

v2 v3
aData-Flow

Xdata Buffer: idx 0

Reg Name Insn
Idx F K

v0 0 1 1

v1 1 1 -

v2 2 - -

v3 - - - 1

Rename Table

Opcode VD FD VS1 FS1 VS2 FS2 Xdata
idx

load - F0 - - - - 0

mul v1 F1 v2 - v3 - -

add v2 - - F1 - F0 -

Insn Buffer

v2

v0 F0

v1 F1

…

Figure 4.5: Manic’s Decode & Rename logic constructs windows of instructions
with dataflow. The rename table keeps track of registers and names, updating the
instruction buffer when new opportunities for forwarding are identified.

• vmul: The multiply instruction consumes two register operands that are not
in the renaming table and, at execution time, will issue two vector register file
reads. As with the load, the rename logic records the multiply’s output register
with an empty entry in the renaming table as well as the index of the multiply
in the instruction buffer.

• vadd: The add’s inputs are v0 and v1 with the kill annotation indicating that the
instruction kills register v0. The rename logic looks up each input operand in the
renaming table and, finding both have valid entries, identifies this instruction as
the target for forwarding. The rename logic remaps v0 to refer to the first entry
of the forwarding buffer and v1 to the second position. The load instruction
in the instruction buffer (found by the saved index in the renaming table) is
updated and will store its result in F0 instead of v0. Similarly, the multiply
instruction is also updated and will store its result in F1, but since v1 is not
killed, it will still be written-back to the register file. The add instruction then
will fetch its input operands from F0 and F1 instead of the vector register file.
The kill annotations associated with v3 and v0 follow the re-written instructions
into the instruction window, enabling their use during execution to avoid register
file writes.

Vector Register File

ld[0]

×[0]F0

F1

a[0]

Forwarding Buffer

v2

Forwarding Buffer

v0

Forwarding Buffer

v0 v1

I0:

I1:

I2:

ld[1]

×[1]

F1

Forwarding Buffer

+[1]

F1

v2

Forwarding Buffer

v0

Forwarding Buffer

v0 v1

a[1]

F1

+[0]

F0

F0F0

Dead values
eliminate RF writes

Cache

Forwarding
eliminates
RF reads

Figure 4.6: Manic’s microarchitecture components execute a window of
instructions using forwarding according to dataflow across an entire vector of
input.

4.2. MANIC Architecture 45

Executing a window of instructions:After Decode & Rename, the window of
instructions is ready to execute. Fig. 4.6 shows (via the orange control-flow arcs)
how Manic executes the entire window vertically for a single vector element before
moving on to execute the entire window for the second vector element. The blue
dataflow arcs show how Manic forwards values between dependent instructions using
its forwarding buffer. The green squares marked with “F” names are forwarded values.
The figure also shows how Manic uses a kill annotation at runtime. The registers with
kill annotations (v0 and v3) need not be written to the vector register file when the
window completes executing, sparing the execution two vector register writes required
by a typical vector execution.

4.2.5 Microarchitecture-agnostic dataflow scheduling
Manic’s final feature is microarchitecture-agnostic dataflow scheduling. This fea-

ture is optional compiler support that re-orders vector instructions to make dependent
operations as close as possible to one another. If dependent operations are closer to-
gether in an instruction sequence, then it is more likely that they will appear together
in one of Manic’s vector-dataflow windows. By re-ordering operations to appear
close together in a window, Manic creates more opportunities to forward values from
a producer instruction to its consumer, eliminating more vector register file accesses.

Manic’s dataflow scheduler does not compromise programmability or generality.
The programmer need not understand the microarchitecture to reap the benefits of
the dataflow scheduler. The dataflow scheduler minimizes the forwarding distance be-
tween dependent instructions, rather than targeting a particular window size. While
not always optimal for a given window size, this microarchitec-ture-agnostic optimiza-
tion prevents the compiler from being brittle or dependent on the microarchitectural
parameters of a particular system.

To minimize forwarding distance between dependent instructions, Manic’s dataflow
code scheduler uses sum kill distance. A vector register’s kill distance is the number
of instructions between when an instruction defines the register and when the value in
the register is used for the last time (i.e., the register dies). The sum kill distance is the
sum of all registers’ kill distances across the entire program. To remain agnostic to the
window size of particular Manic implementation, the code scheduler minimizes the
sum kill distance (which is equivalent to minimizing average kill distance). Sum kill
distance is a proxy for the number of register writes in a program because if a register
does not die during a window’s execution, the system must write its value back to
the register file. When sequences of dependent instructions are closer together, their
intermediate values die more quickly, because registers need not remain live waiting
for unrelated instructions to execute. A larger window accommodates dependence
chains that include longer kill distances.

We implement dataflow code scheduling using brute force (exhaustive) search for
small kernels containing fewer than 12 vector operations. For larger kernels (e.g.,
FFT), we implement dataflow code scheduling via simulated annealing that randomly
mutates instruction schedules, while preserving dependences, to produce a new valid
schedule, accepting this new schedule with some probability.

Fig. 4.7 shows that the microarchitecture-agnostic minimization of the sum kill
distance closely approximates a microarchitecture-specific approach that optimizes
for a particular window size. The plot shows the number of register writes made by
one iteration of the kernel’s inner loop for a given window size using code optimized
by the two different optimization criteria. The blue line shows the number of register
writes of a microarchitecture-specific schedule, where window size is exposed to the
compiler. The red line shows the number of writes for our microarchitecture-agnostic

46 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

Optimizing for Window Size (µarch-specific) Optimizing for Kill Distance (µarch-agnostic)

2 4 6 8
Window Size

0

1

2

3

4

5

R
eg

is
te

r
w

ri
te

s

(a) Sparse matrix multiply

2 4 6
Window Size

0

1

2

3

R
eg

is
te

r
w

ri
te

s

(b) Sparse convolution

5 10 15
Window Size

0
4
8

12
16
20
24
26

R
eg

is
te

r
w

ri
te

s

(c) Fast-fourier transform

Figure 4.7: Code scheduling is microarchitecturally agnostic – minimizing the
sum of kill distances is good proxy for minimizing register writes for specific
window size.

schedule based on sum kill distance. The two curves generally agree, suggesting that
minimizing sum kill distance eliminates register writes with similar efficacy as when
window size is exposed explicitly to the compiler. For the FFT kernel, the instruction
window is broken by stores and permutations (Sec. 4.2.2), causing additional vector
register file writes. This is a limitation of optimizing only for sum kill distance and
could be fixed by taking into account these operations during optimization.

4.3. MANIC-SILICON
To evaluate Manic, we taped-out a silicon prototype. The chip, Manic-Silicon,

has two objectives: 1) be a viable replacement for existing MCUs in ULP sensor
deployments and 2) validate vector-dataflow execution against competing execution
models. Towards the first objective, Manic-Silicon meets the criteria for remote
ULP sensor deployments; specifically, the testchip operates at extreme low-power,
supports general-purpose programs, can run standalone (without an external FPGA or
MCU driving control), has I2C and GPIO to communicate with sensors and integrates
a non-volatile main memory, a requirement for devices that may suffer (frequent)
power failures. Towards the second objective, the Manic-Silicon testchip includes
several independent designs that implement different execution models for comparison,
including scalar, vector, and vector-dataflow.

Main
memory

$

Core

IO

Scalar

Main
memory

$

Core

IO

Vector

Vector

Main
memory

$

Core

IO

MANIC

MANIC

Top-level control

RISC-V
Scalar
Core

2KB
I$ 4KB D$

I2C

Boot
ROM 64KB

SRAM
256KB
MRAMMain

Memory

Vector/
MANIC

Arbiter

Arbiter

GPIO

IO
 B

us 4KB

VRF

Test-chip

Individual design

Figure 4.8: Block diagrams of test-chip and a single design. The chip includes
scalar, vector, and Manic designs. Each design is isolated (dedicated power rails)
and can run standalone.

4.3.1 Chip design
Manic-Silicon includes three different designs, shown in Fig. 4.8. They include

a scalar design, an optimized vector design, and Manic. Logic at the top-level con-
trols which design is active and arbitrates chip IO among the designs. The designs
share a common core consisting of: a RISC-V (RV32emi) microcontroller, a 2-KB
instruction cache, a 4-KB data cache, a module that handles I2C communication and
programming, a module that handles GPIO communication, a module that tracks

4.3. Manic-Silicon 47

statistics about device operation, and main memory composed of 64KB of SRAM,
1KB of ROM, and 256KB of embedded MRAM (eMRAM). The scalar design adds
no additional components to this common core. The vector design adds a simple,
single-lane vector co-processor. The co-processor has a three-stage pipeline (VIssue,
VExecute, VWriteback) that computes a vector operation by iterating over vector
elements. The Manic design adds the Manic co-processor. Each design serves as
comparison point of execution model: the scalar design is similar to existing commod-
ity devices, while the vector design implement vector execution, providing the closest
competition to MANIC’s vector-dataflow execution.

Why eMRAM?:Each of the designs on Manic-Silicon include 256KB of embedded
MRAM. This is a requirement for remote deployments where energy is sparse and a
device may suffer frequent power failures. Manic-Silicon is also one of the first
demonstrations of eMRAM integrated into a complete system. eMRAM provides
non-volatility at lower costs than competing NVM technologies. Compared to flash,
eMRAM has word-level addressibility, higher write endurance, lower read and write
latencies, and lower read and write energies. Also since it can be fabricated in the
same process as logic the use of eMRAM avoids expensive off-chip IO.

Power isolation:Manic-Silicon was designed so that power and energy could be
measured of each individual design separately. Manic-Silicon has separate power
domains for IO, SRAM, eMRAM, and logic. Further, there is a separate SRAM and
logic power domains for each design and the eMRAM modules can be power-gated on
disabled designs, isolating the module of the active design. This separation allows for
near-complete isolation of an active design, which is critical to accurately determining
the energy consumption of that design.

4.3.2 Verification and bring-up of Manic-Silicon
Verification of chip design is the most important step in the tape-out process.

For Manic-Silicon, it involved three items: 1) integration of design-for-test (DFT)
structures to allow for easy debugging, 2) safeguards in the event certain features did
not work and 3) comprehensive unit and integration testing at each level of hardware
abstraction (e.g pre- and post- synthesis and post-place-and-route). The following
paragraphs describe the design-for-test strategy and chip bring-up in more detail.

Design-for-test:DFT is a design methodology that makes a design robust to feature
failure. For Manic-Silicon, we developed a series of standard DFT modules with
scan-chain interfaces that wrap selectively-chosen registers, SRAM macros, and the
eMRAM macro. This allows each of these structures to be read and written to directly
while interacting minimally with on-chip logic. There are two important examples of
note in Manic-Silicon. First, entire features can be disabled and signals routed
around them; e.g. the instruction and data caches can both be disabled. Second,
there are five mechanisms for programming the chip. The first two mechanisms rely
on the ROM-based bootloader. If eMRAM is enabled program code and state is stored
in the eMRAM otherwise its stored in the SRAM. The second two mechanisms use
the scan-chain interfaces to the SRAM and eMRAM macros. Program code and state
can be written directly to these macros and the bootloader directed to start execution
immediately (without flashing) from either the SRAM or eMRAM. Finally, in the
worst case scenario there is also a mechanism for feeding the RISC-V core directly
with instructions and data for loads. These built-in safeguards are not only important
for debugging, but also protect chip operation from a number of problematic scenarios
when features might have failed.

48 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

Programming and communication with the chip:To program and communicate
with the Manic-Silicon prototype, we co-developed an Arduino-based program-
mer with Manic-Silicon’s bootloader using an FPGA implementation of Manic-
Silicon. The Arduino-based programmer converts serial commands to I2C com-
mands, passing data to and from the computer to the testchip. Programming is
initiated by the testchip which asks the programmer for the application size. The
programmer then communicates with the computer to get the application’s binary
size and responds to the testchip over I2C. Then the testchip repeatedly asks the
programmer for bytes of the application binary. The programmer receives this data
from the computer and responds to the testchip. There is a handshaking protocol
between both the programmer and the computer as well as the programmer and the
testchip. This ensures data is not lost during flashing/programming. Once all data
has been transferred, the testchip jumps to the starting address in main memory. The
programmer continues to be connected, handling further communication (primarily
printing to console) between the testchip and the computer.

Tuning the eMRAM:Besides programming, the other important item for chip
bring-up is the tuning of the embedded MRAM macro. Due to manufacturing vari-
ability, configuration of the eMRAM is different chip-to-chip. As such there are a
number of different settings and parameters to get the eMRAM macro reading and
writing correct data as well as minimizing write latency. We built a tool to quickly
sweep the configuration space (using the scan-chain interface with the eMRAM) to
determine the optimal settings for a particular instance of the macro.

4.4. METHODOLOGY

(a) Package.

MRAM

SRAM

MANIC
Scalar

Caches

(b) Electron micrograph.

Figure 4.9: Fig. 4.9a shows the Manic test-chip. Fig. 4.9b shows an electron
micrograph of delidded chip and highlights components of Manic design.

Manic-Silicon was fabricated in a 22nm bulk finFET process using high-threshold
voltages standard cells. Fig. 4.9 shows the die photo of the 4mm × 8mm testchip;
the Manic design has an area of 0.57mm2. Manic-Silicon is optimized to run with
a 4MHz to 50MHz clock from an on-die clock generator at 0.4V to 1.0V logic, 0.4V
to 1.0V SRAM, and 1.10V MRAM. All results are reported at the minimum energy
point with the clock at 4MHz and logic and SRAM at 0.4V.

Benchmarks:We evaluate each design (scalar, vector, and Manic) of Manic-Silicon
across ten benchmarks with random 32b inputs. For the vector design and Manic,
we vectorize a plain-C implementation of each benchmark. We further optimize the
benchmarks for Manic by inserting kill annotations and optimizing the code schedule
for sum of kill distance.

Measuring energy:Energy consumption is the primary metric of interest. We mea-
sure energy by measuring current and the time it takes complete each benchmark. To

4.5. Evaluation 49

2017 [122] 2018 [118] 2019 [32] 2020 [199] This work

Architecture Scalar &
Vector Scalar Scalar Scalar w/

SIMD ext.
Scalar &

Vector-dataflow

ISA RISC-V Thumb-2 Thumb-2 Thumb-2 RISC-V

Process (nm) 28 FD-SOI 14 Tri-gate 28 FD-SOI 65 LP 22 bulk FF

Core Area (mm2) 1.07 6.25 0.675 6 0.57

Voltage (V) 0.48-1.0 0.4-1.0 0.4 0.4-0.75 0.4-1.05 Core
1.1 MRAM

Frequency (MHz) 20-797 0.2-950 40-80 0.8-38 4-48.9

Memory (KB) 56 SRAM 64+64+384 SRAM 32+32 SRAM 128 ROM,
16+4 SRAM

64 SRAM,
256 MRAM

Power Budget (mW) 1-200 1-20 1 1-4 0.019-2 w/o MRAM
1-2 w/ MRAM

Average Power (µW) 50000 80 144 47
19.1 w/o MRAM

@ 4MHz1

1.7mW w/ MRAM @ 49MHz1

Peak Efficiency
(MOPS/mW)2

41.8
MFlops/mW Not reported 97 Not reported 256 w/o MRAM

33.2 w/ MRAM

Best Active
Energy (pJ/Cycle) | Not reported 6.2 3 10.9 3.7 w/o MRAM

29 w/ MRAM

1 Over all benchmarks 2 32b operations

Table 4.1: Manic v. prior work. Manic is 2.6× more efficient than prior work,
achieving 256 MOPS/mW (@19µW & 4MHz).

measure current for logic and SRAM, a digital multimeter (Agilent 34405a, Agilent
34410a) is wired in series with the DC power supply (Agilent E4638A). For MRAM,
a source meter unit (Keithley 2401) is used. Timing information (i.e. program start
and program end) are transmitted from the chip via I2C to an Arduino and then to
a computer.

4.5. EVALUATION
We now evaluate Manic-Silicon and specifically the Manic design to 1) demon-

strate it’s viability as an ULP MCU, 2) to show that it is more energy-efficient than
prior state-of-the-art designs, and 3) to validate the vector-dataflow execution model
against scalar and vector models. Manic draws just 19.1µW (@ 4MHz), uses 2.6×
less energy than the prior state-of-the-art MCU, and improves efficiency by 3.4× v.
scalar and by 12% v. vector.

MANIC is energy-efficient:Table 4.1 compares Manic with prior work [32, 118,
122, 199]. Manic was designed for energy-minimal, low-power operation: Manic
consumes 19µW at 4MHz, significantly lower than prior work. Manic is more energy-
efficient than prior work (by 2.6×), with a peak efficiency of 256 MOPS/mW (vector
increment, 32b ops) and 3.7pJ/cycle at 0.4V, 4MHz, room temperature, and MRAM
disabled. With random inputs, which cause unrealistic, near worst-case toggling of
data lines, Manic gets 45 MOPs/mW on dense matrix-matrix multiplication (DMM).

Vector-dataflow uses less energy than scalar & vector:Fig. 4.10 shows the
energy (normalized to scalar) and energy efficiency of the scalar, vector, and Manic
designs. On average, Manic’s vector-dataflow execution reduces energy (and like-
wise increases energy-efficiency) by 3.4× v. scalar and by 12% v. vector design.
FFT and Sort are particularly good benchmarks for Manic v. the scalar baseline.
Manic achieves 92MOPS/mW and 75MOPS/mW on FFT and Sort respectively v.
just 32MOPS/mW and 5MOPS/mW for the scalar design. This shows the benefits of
vector execution; in particular, the vectorized implementations of FFT and Sort use
different algorithms (for FFT, vectorized FFT v. Cooley-Tukey and for Sort, radix
sort v. merge sort) than the scalar baseline such that they can take advantage of
longer vectors.

50 Chapter 4. MANIC: An energy-efficient, vector-dataflow co-processor

SRAM Logic

FFT DWT Viterbi DConv DMM DMV SConv SMM SMV Sort Avg
S

ca
la

r
V

ec
to

r
M

A
N

IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

en
er

gy

(a) Energy (normalized to scalar).

FFT DWT Viterbi DConv DMM DMV SConv SMM SMV Sort Avg

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
ca

la
r

V
ec

to
r

M
A

N
IC

0

20

40

60

80

100

M
O

P
S

/m
W

(b) Energy efficiency.

Figure 4.10: Energy (normalized to scalar) and energy-efficiency of scalar,
vector, and Manic designs across ten benchmarks.

Why is MANIC not even more efficient?:Although Manic does reduce energy
on average v. the vector baseline, the reduction is only 12%. This is because, while
Manic effectively reduces VRF accesses (purple decreases in Fig. 4.10b), it reconfig-
ures the execution pipeline every cycle as it iterates through entries in the instruction
buffer, executing a single vector element across the instruction window. This toggles
control and data signals, which burns energy (green increases in Fig. 4.10b) and can-
cels out some of the gains from reducing VRF accesses. Sec. 4.6 will go into more detail
and later chapters (Ch. 5 and Ch. 6) will present work that specifically addresses this
problem.

Size (KB) 256
Area (mm2) 0.31
Voltage (V) 1.1

Leakage (µW) 663
32b Read Latency @

50 MHz (ns) 170

32b Write Latency @
50 MHz (µs) 8.4

32b Read Energy (pJ) 437
32b Write Energy (nJ) 29.7
Read Energy (pJ/bit) 13.7
Write Energy (pJ/bit) 929

(a) MRAM characterization.

Configurations
1 2 3 4

0.0

2.5

5.0

7.5

10.0

M
O

P
S

/m
W

(b) MOPS/mW for DMM.

1: Running from MRAM, DCache enabled, 48.9 MHz, 0.64V Core
2: Running from MRAM, DCache disabled, 231 MHz, 1.0V Core
3: Running from SRAM, MRAM enabled, DCache enabled, 48.9 MHz, 0.64V Core
4: Running from SRAM, MRAM enabled, DCache disabled, 166 MHz, 1.0V Core

Figure 4.11: MRAM characterization & case study on DMM.

MRAM characterization:Fig. 4.11 characterizes the embedded MRAM and presents
a case study of designs with MRAM enabled. MRAM leakage is 663µW, reads take

4.6. Discussion 51

170ns and 13.7pJ/bit, while writes take 8.4µs and 929pJ/bit. Write latency is inde-
pendent of clock frequency. A case study of DMM puts these numbers into context.
The figure includes several system configurations: 1) Manic running out of MRAM
with the DCache enabled @49MHz, 2) Manic running out of MRAM as fast as pos-
sible @231MHz (this necessitates the DCache being disabled), 3) Manic running
from SRAM, DCache enabled, and MRAM enabled @49MHz, and 4) Manic run-
ning as fast as possible @166MHz (w/o DCache) and MRAM enabled. Configuration
4 achieves max efficiency with 11MOPS/mW and configuration 2 achieves max ef-
ficiency for running from MRAM with 2.3MOPS/mW. As found in prior low-power
systems, MRAM’s high static power is a significant challenge for energy efficiency.
There are possible architectural (e.g. caching) and VLSI techniques (e.g. fine-grain
power gating) that could address this challenge as part of future work.

4.6. DISCUSSION
Towards the new ULP sensor system stack, Manic contributes new ULP computer

architecture and Manic-Silicon contributes a silicon prototype. There are four key
takeaways from our experience building these systems. First, Manic-Silicon em-
phasizes even more the inefficiency of existing commodity MCUs. Manic draws two
orders of magnitude less power than an MSP430 (19µW v. 3-5mW) and achieves
much better performance (2.5×) v. a similar scalar design. Second, Manic-Silicon
validates the vector-dataflow execution model by demonstrating real energy improve-
ments v. scalar and vector baselines.

Third, taping-out Manic-Silicon demonstrated the importance of building real
systems. Initially we built Manic in RTL, but without compiled memories. Instead we
counted memory accesses and used Destiny [196] to estimate read and write energies
of SRAMs of various sizes. This overestimated the improvement that eliminating VRF
accesses would yield (38% of simulated system v. 12% for real system).

Finally fourth, Manic-Silicon exposed low-level effects of vector-dataflow exe-
cution that would have be missed by high-level models. Specifically, Manic only
narrowly outperforms the vector baseline because Manic’s implementation of vector-
dataflow execution leads to higher switching activity of shared pipeline resources. In
the vector baseline, pipeline resources remain configured in the same way throughout
execution of a vector instruction. Further data operands tend to be similar across vec-
tor elements of the same instruction. Now compare this to Manic’s implementation
of vector-dataflow execution. Manic iterates over the entries in the instruction buffer
reconfiguring its execution pipeline every cycle as it computes a single element across
the window of instructions. Not only does this toggle control signals, but it can also
lead to additional toggling of data signals as operands of different instructions might
not be similar. For example, one instruction could be operating on benchmark data,
while another operates on addresses; addresses are not similar (bits set) to benchmark
data so executing these operations back-to-back may toggle many data signals.

Manic’s high switching activity is solved by Snafu (Ch. 5) and RipTide (Ch. 6).
RipTide and Snafu are ULP CGRAs that leverage spatial dataflow to minimize
switching activity by dedicating resources to each operation for the duration of a
kernel’s execution.

53

Chapter 5

SNAFU generates ULP CGRAs1

The opportunity for tiny, ULP devices is enormous [147], but enabling sophisti-
cated processing on these devices remains challenging. Prior chapters have presented
progress on this challenge, contributing to a new ULP sensor system stack. Ch. 3
described software to enable machine inference on commodity MCUs and Ch. 4 pro-
posed Manic and Manic-Silicon, a new computer architecture and silicon pro-
totype, respectively. Manic is an energy-efficient vector-dataflow co-processor that
is a big improvement over COTS devices. However, it stills fall short due to high
switching activity in the shared execution pipeline, a significant inefficiency at ULP-
scale. Eliminating these overheads can reduce energy by nearly half, proving that,
despite their low operating power, Manic and other existing programmable ULP de-
signs [61, 98, 173, 244] are not energy-minimal. Alternatively, custom ASICs would
achieve energy-minimality, but come at high upfront cost [211] and with severely lim-
ited application scope, risking quick obsolesce. Thus, there is still a need for new
architectures that achieve ULP (<1mW), energy-minimal operation while maintain-
ing a high degree of design flexibility and ease of programmability.

Ultra-low-power CGRAs are the answer:This chapter presents Snafu,2 a frame-
work to generate ULP, energy-minimal coarse-grain reconfigurable arrays (CGRAs).
Snafu CGRAs execute in a spatial vector-dataflow fashion, mapping a dataflow graph
(DFG) spatially across a fabric of processing elements (PEs), applying the same DFG
to many input data values, and routing intermediate values directly from producers
to consumers. The insight is that spatial vector-dataflow minimizes instruction and
data-movement energy, just like Manic, but also eliminates unnecessary switching
activity because operations do not share execution hardware.

The major difference from most prior CGRAs [76, 86, 88, 119, 162, 182, 198, 208,
225, 240, 241, 247, 248] is the extreme design point — Snafu operates at orders-of-
magnitude lower energy and power budget, demanding an exclusive focus on energy-
minimal design. Snafu is designed from the ground up to minimize energy, even at
the cost of area or performance. For example, Snafu schedules only one operation
per PE, which minimizes switching activity (energy) but increases the number of PEs
needed (area). As a result of such design choices, Snafu comes within 2.6× of ASIC
energy efficiency while remaining fully programmable.

Snafu generates ULP CGRAs from a high-level description of available PEs and
the fabric topology. Snafu defines a standard PE interface that lets designers “bring
your own function unit” and easily integrate it into a ULP CGRA, along with a
library of common PEs. The Snafu framework schedules operation execution and
routes intermediate values to dependent operations while consuming minimal energy.

1[81] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “SNAFU: an ultra-low-power,
energy-minimal CGRA-generation framework and architecture,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2021, pp. 1027–1040.

2Simple Network of Arbitrary Functional Units.

54 Chapter 5. SNAFU generates ULP CGRAs

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

E
ne

rg
y

vs
.

S
ca

la
r

(a) Energy savings.

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0

5

10

S
p

ee
du

p
vs

.
S

ca
la

r

(b) Performance.

Figure 5.1: Snafu-Arch’s energy and performance normalized to a scalar
baseline. On average, Snafu uses 81% less energy and is 9.9× faster, or 41% less
energy and 4.4× faster than Manic.

Snafu is easy to use: it includes a compiler that maps vectorized C-code to efficient
CGRA bitstreams, and it reduces design effort of tape-out via top-down synthesis of
CGRAs.

Contributions:This chapter contributes the following:
• We present Snafu, the first flexible CGRA-generator for ULP, energy-minimal

systems. Snafu makes it easy to integrate new functional units, compile pro-
grams to energy-efficient bitstreams, and produce tape-out-ready hardware.

• We discuss the key design choices in Snafu that minimize energy: scheduling
at most one operation per PE; asynchronous dataflow without tag-token match-
ing; statically routed, bufferless, multi-hop NoC; and producer-side buffering of
intermediate values.

• We describe Snafu-Arch, a complete ULP system-on-chip with a CGRA fab-
ric, RISC-V scalar core, and memory. We implement Snafu-Arch in an in-
dustrial sub-28 nm FinFET process with compiled memories. Snafu-Arch
operates at <1mW at 50MHz. Snafu-Arch reduces energy by 81% v. a scalar
core and 41% v. Manic; and improves performance by 9.9× v. a scalar core and
4.4× v. Manic.

• Finally, we quantify the cost of programmability through three comprehensive
case studies that compare Snafu-Arch against fixed-function ASIC designs.
We find that programmability comes at relatively low cost: on average, Snafu-
Arch takes 2.6× more energy and 2.1× more time than an ASIC for the same
workload. We break down Snafu-Arch’s energy in detail, showing that it
is possible to close the gap further while retaining significant general-purpose
programmability. These results call into question the need for extreme special-
ization in most ULP deployments.

5.1. OVERVIEW
Snafu is a framework for generating energy-minimal, ULP CGRAs and compiling

applications to run efficiently on them. Snafu-Arch is a complete ULP system
featuring a CGRA generated by Snafu, a scalar core, and memory.

SNAFU is a flexible ULP CGRA generator: Snafu is a general and flexible
framework for converting a high-level description of a CGRA to valid RTL and ulti-
mately to ULP hardware. Fig. 5.2 shows Snafu’s workflow. Snafu takes two inputs:
a library of processing elements (PEs) and a high-level description of the CGRA topol-
ogy. Snafu lets designers customize the ULP CGRA via a “bring your own functional
unit” approach, defining a generic PE interface that makes it easy to add custom logic
to a generated CGRA.

5.1. Overview 55

Abstract CGRA
topology

Synthesis
and P&Rx

Standard PE
Library

+/-

SNAFU-Arch

module PE
(input clk,
input data);

SystemVerilog
Description

Standard

interface
Bring your own
functional
unit

Your logic

RTL
Generation

Figure 5.2: Overview of Snafu. Snafu is a flexible framework for generating
ULP CGRAs. It takes a bring-your-own functional unit approach, allowing the
designer to easily integrate custom logic tailored for specific domains.

With these inputs, Snafu generates complete RTL for the CGRA. This RTL in-
cludes a statically routed, bufferless, multi-hop on-chip network parameterized by the
topology description. It also includes hardware to handle variable-latency timing and
asynchronous dataflow firing. Finally, Snafu simplifies hardware generation by sup-
porting top-down synthesis, making it easy to go from a high-level CGRA description
to a placed-and-routed ULP design ready for tape out.

SNAFU-ARCH is a complete ULP, CGRA-based system: Snafu-Arch is a spe-
cific, complete system implementation that includes a CGRA generated by Snafu.
The CGRA is a 6×6 mesh topology composed of PEs from Snafu’s standard PE
library. Snafu-Arch integrates the CGRA fabric with a scalar core and 256KB
of on-chip SRAM main memory. The resulting system executes vectorized, RISC-V
programs [202] with the generality of software and extremely low power consump-
tion (≈300µW). Compared to the RISC-V scalar core, Snafu-Arch uses 81% less
energy for equal work and is 9.9× faster. Compared to Manic (a state-of-the-art
general-purpose ULP design), Snafu-Arch uses 41% less energy and is 4.4× faster.
Compared to hand-coded ASICs, Snafu-Arch uses 2.6× more energy and is 2.1×
slower.

1. vload v1, &a
2. vload v0, &m
3. vmuli v1.m, v1, 5
4. vredsum v3, v1
5. vstore &c, v3

Vector Assembly

masked_prodsum():

Extract

1
3
4
5

2

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

5

Execute

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

5

Time: 1 3 4 5

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

5

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

5

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

5

…

Active PEs
0 0

0 0

0

0 = token/element #

2 1

1 1

3 2 4 3

2

Compile
ILP
Scheduler

2

S
r

rr

r
B

r

rr

r

S
r

rr

r

S
r

rr

r
C

r

rr

r
B

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r
M

r

rr

r

…

1 2
3 4

51 0

Memory stall

Fires as soon
inputs ready

Memory layout

a[0]
m[0]

a[1]
m[1] …

Bank conflictm[0]=0, m[1]=1

m[0]=0 à
op disabled à

v1[0] unchanged

m[1]=1 à
op enabled à

v1[1] *= 5

Figure 5.3: An example execution on a Snafu CGRA fabric. The DFG is
extracted from vectorized C-code, compiled to a bitstream, and then executed
according to asynchronous dataflow firing.

Example of SNAFU in action:Fig. 5.3 shows the workflow to take a simple vec-
torized kernel and execute it on an ULP CGRA generated by Snafu. This kernel

56 Chapter 5. SNAFU generates ULP CGRAs

multiplies values at address &a by 5 for the elements where the mask m is set, sums
the result, and stores it to address &c. Snafu’s compiler extracts the dataflow from
the kernel source code and generates a bitstream to configure the CGRA fabric. The
scalar core configures the CGRA fabric and kicks off fabric execution using three new
instructions (vcfg, vtfr, vfence), after which the CGRA runs autonomously in SIMD
fashion over arbitrarily many input data values. The fabric executes the kernel using
asynchronous dataflow firing:

1 In the first timestep, the two memory PEs (that load a[0] and m[0]) are enabled
and issue loads. The rest of the fabric is idle because it has no valid input values.

2 The load for a[0] completes, but m[0] cannot due to a bank conflict. This
causes a stall, which is handled transparently by Snafu’s scheduling logic and
bufferless NoC. Meanwhile, the load of a[1] begins.

3 As soon as the load for m[0] completes, the multiply operation can fire because
both of its inputs have arrived. But m[0] == 0, meaning the multiply is dis-
abled, so a[0] passes through transparently. The load of a[1] completes, and
loads for a[2] and m[1] begin.

4 When the predicated multiply completes, its result is consumed by the fourth
PE, which keeps a partial sum of the products. The preceding PEs continue
executing in pipelined fashion, multiplying a[1] × 5 (since m[1] == 1) and
loading a[3] and m[2].

5 Finally, a value arrives at the fifth PE, and is stored back to memory in c[0].
Execution continues in this fashion until all elements of a and m have been
processed and a final result has been stored back to memory...

The next three sections describe Snafu. Sec. 5.2 describes the Snafu ULP CGRA-
generator. Sec. 5.3 describes how Snafu minimizes energy. And Sec. 5.4 describes
Snafu-Arch.

5.2. DESIGNING SNAFU TO MAXIMIZE FLEXIBILITY
Snafu is designed to generate CGRAs that minimize energy, maximize extensi-

bility, and simplify programming. For the architect, Snafu automates synthesis from
the top down and provides a “bring your own functional unit” interface, allowing easy
integration of custom FUs into a CGRA. For the application programmer, Snafu is
designed to efficiently support SIMD execution of vectorized RISC-V C-code, using a
custom compiler that targets the generated CGRA.

Processing Element

ce
nro
w
ce
nc
ol
cd
ata in ien ipr op

r
oe
n
ou
t

Configuration
signals

On-chip
network signals

fen
fclearfdone

Control
signals

µcfg

µcore

ucore config

Your config
Bufferless

input Router
Intermediate buffer(s)

Data buffer

Data buffer

a b op rea
dy
va
lid
do
ne z

FU-specific logic

Standardized
Interface

Configurable
number of inputs

Handles
variable timing

m d

Figure 5.4: Snafu provides a standardized interface that makes integrating new
types of PEs trivial. Snafu handles variable-latency logic, PE-specific
configuration, and the sending and receiving of values from the on-chip network.

5.2. Designing Snafu to maximize flexibility 57

5.2.1 Bring your own functional unit (BYOFU)
Snafu has a generic PE microarchitecture that exposes a standard interface, en-

abling easy integration of custom functional units (FUs) into the CGRA. If a custom
FU implements Snafu’s interface, then Snafu generates hardware to automatically
handle configuring the FU, tracking FU and overall CGRA progress, and moderating
its communication with other PEs. There are few limitations on the sort of the logic
that Snafu can integrate. Snafu’s interface is designed to support variable latency
and currently supports up to four inputs, but could be easily extended for more. The
PE can have any number of additional ports and contain any amount of internal state.

Fig. 5.4 shows the microarchitecture of a generic Snafu processing element, com-
prising two components: µcore and µcfg. The µcore handles progress tracking, predi-
cated execution, and communication. The standard FU interface (highlighted orange)
connects the µcore to the custom FU logic. The µcfg handles (re-)configuration of both
the µcore and FUs.

Communication:The µcore handles communication between the processing element
and the NoC, decoupling the NoC from the FU. The µcore is made up of an input
router, logic that tracks when operands are ready, and a few buffers for intermediate
values. The input router handles incoming connections, notifying the internal µcore
logic of the availability of valid data and predicates. The intermediate buffers hold
output data produced by the FU. Before an FU (that produces output) fires, the
µcore first allocates space in the intermediate buffers. Then, when the FU completes,
its output data is written to the allotted space, unless the predicate value is not set,
in which case a fallback value is passed through (see below). Finally, the buffer is
freed when all consumers have finished using the value. These intermediate buffers
are the only data buffering in the fabric, outside of internal FU state. The NoC, which
forwards data to dependent PEs, is entirely bufferless.

The FU interface: Snafu uses a standard FU interface for interaction between a
PE’s µcore and FU. The interface has four control signals and several data signals.
The four controls signals are op, ready, valid, and done; the µcore drives op and the
FU is responsible for driving the latter three. op tells the FU that input operands
are ready to be consumed. ready indicates that the FU can consume new operands.
valid and done are related: valid says that the FU has data ready to send over the
network, and done says the FU has completed execution. The remaining signals are
data: incoming operands (a, b), predicate operands (m, d), and the FU’s output (z).
The FU-µcore interface allows the µcore to handle variable-latency logic, making the
FU’s outputs available only when the FU completes an operation. The µcore raises
back-pressure in the network when output from an FU is not ready and stalls the FU
(by keeping op low) when input operands are not ready or there are no unallocated
intermediate buffers. When the FU asserts both valid and done, the µcore forwards
the value produced by the FU to dependent PEs via its NoC router.

Progress tracking and fabric control:The fabric has a top-level controller that
interfaces with each µcore via three 1-bit signals. The first enables the µcore to begin
execution, the second resets the µcore, and the third tells the controller when the PE
has finished processing all input. The µcore keeps track of the progress of the FU
by monitoring the done signal, counting how many elements the FU has processed.
When the number of completed elements matches the length of the computation, the
µcore signals the controller that it is done.

Predication: Snafu supports conditional execution through built-in support for vec-
tor predication. The µcore delivers not only the predicate m, but also a fallback value

58 Chapter 5. SNAFU generates ULP CGRAs

d — for when the predicate is false — to the FU. When the predicate is true, the
FU executes normally; when it is false, the FU is still triggered so that it can update
internal state (e.g., memory index for a strided load), but the fallback value is passed
through.

Configuration services:The µcfg handles processing element configuration, setting
up a PE’s dataflow routes and providing custom FU configuration state. Router
configuration maps inputs (a, b, m, d) to a router port. The µcfg forwards custom
FU configuration directly to the FU, which Snafu assumes handles its own internal
configuration. The µcfg module contains a configuration cache that can hold up to
six different configurations. The cached configurations reduce memory accesses and
allow for fast switching between configurations. This improves both energy-efficiency
and performance. It also benefits applications with dataflow graphs too large to
fit onto the fabric. These applications split their dataflow graph into multiple sub-
graphs. The CGRA executes them one at a time, efficiently switching between them
via the configuration cache. Note, however, that even with the configuration cache,
each fabric configuration is intended to be re-used across many input values before
switching, unlike prior CGRAs that multiplex configurations cycle-by-cycle (Sec. 2.4).

5.2.2 Snafu’s PE standard library
Snafu includes a library of PEs that we developed using the BYOFU custom FU

interface. The library includes four types of PEs: a basic ALU, multiplier, memory
(load/store) unit, and scratchpad unit.

Arithmetic PEs:There are two arithmetic PEs: the basic ALU and the multiplier.
The basic ALU performs bitwise operations, comparisons, additions, subtractions,
and fixed-point clip operations. The multiplier performs 32-bit signed multiplication.
Both units are equipped with the ability to accumulate partial results, like PE #4
(vredsum) in Fig. 5.3.

Memory PEs:The memory PEs generate addresses and issue loads and stores to
global memory. The PE operates in two different modes, supporting strided access
and indirect access. The memory PE also includes a “row buffer,” which eliminates
many subword accesses on accesses to a recently-loaded word.

Scratchpad PEs:A scratchpad holds intermediate values produced by the CGRA.
The scratchpad is especially useful for holding data communicated between consecu-
tive configurations of a CGRA, e.g., when the entire dataflow graph is too large for
the CGRA. The PE connects to a 1KB SRAM memory that supports stride-one and
indirect accesses. Indirect access is used to implement permutation, allowing data to
be written or read in a specified, permuted order.

5.2.3 Generating a CGRA fabric
Generating RTL:Given a collection of processing elements, Snafu automatically
generates a complete energy-minimal CGRA fabric. Snafu ingests a high-level de-
scription of the CGRA topology and generates valid RTL. This high-level description
includes a list of the processing elements, their types, and an adjacency matrix that
encodes the NoC topology. With this high-level description, Snafu generates an RTL
header file. The file is used to parameterize a general RTL description of a generic,
energy-minimal CGRA fabric, which can then be fed through standard CAD tools.

NoC and router topology: Snafu generates a NoC using a parameterized bufferless
router model. The router can have any input and output radix and gracefully han-
dles network back-pressure. Connections between inputs and outputs are configured

5.2. Designing Snafu to maximize flexibility 59

statically for each configuration. Routers are mux-based because modern CAD tools
optimize muxes well.

Top-down synthesis streamlines CAD flow:Following RTL generation, Snafu
fabrics can be synthesized through standard CAD tools from the top down without
manual intervention. Top-down synthesis is important because Snafu’s bufferless,
multi-hop NoC introduces combinational loops that normally require a labor-intensive,
bottom-up approach to generate correct hardware. Industry CAD tools have difficulty
analyzing and breaking combinational loops (i.e., by adding buffers to disable the
loops). Snafu leverages prior work on synthesizing FPGAs (which face the problem
with combinational loops in their bufferless NoCs) from the top down to automate
this process [140, 165]. Snafu partitions connections between routers and PEs and
uses timing case analysis to eliminate inconsequential timing arcs. Snafu is the
first framework for top-down synthesis of a CGRA, eliminating the manual effort of
bottom-up synthesis.

5.2.4 Compilation
The final component is a compiler that targets the generated CGRA fabric. Fig. 5.3

shows the compilation flow from vectorized code to valid CGRA configuration bit-
stream. The compiler first extracts the dataflow graph from the vectorized C code.
Snafu asks the system designer (not the application programmer) to provide a map-
ping from RISC-V vector ISA instruction to a PE type, including the mapping of an
operation’s inputs and output onto an FU’s inputs and output. This mapping lets
Snafu’s compiler seamlessly support new types of PEs.

Integer linear program (ILP) scheduler:The compiler uses an integer linear
program (ILP) (see Sec. A.1) formulation to schedule operations onto the PEs of
a CGRA. The scheduler takes as input the extracted dataflow graph, the abstract
instruction→PE map, and a description of the CGRA’s network topology. The sched-
uler’s ILP constraint formulation builds on prior work on scheduling code onto a
CGRA [185]. The scheduler searches for subgraph isomorphisms between the ex-
tracted dataflow graph and the CGRA topology, minimizing the distance between
spatially scheduled operations. At the same time, the ILP adheres to the mappings
in the abstract instruction→PE map and does not map multiple dataflow nodes or
edges to a single PE or route. To handle PEs that are shared across multiple fabric
configurations (e.g., scratchpads holding intermediate data), programmers can anno-
tate code with instruction affinity, which maps a particular instruction to a particular
PE.

Scalability:Prior work has found scheduling onto a CGRA fabric to be extremely
challenging and even intractable [63, 127, 181, 247], limiting compiler scalability to
small kernels. However, this is not the case for Snafu’s compiler because Snafu’s
hardware makes compilation much easier: Snafu supports asynchronous dataflow
firing and does not time-multiplex PEs or routes. Together, these properties mean
that the compiler need not reason about operation timing, making the search space
much smaller and simplying its constraints. As a result, Snafu’s compiler can find an
optimal solution in seconds even for the most complex kernels that we have evaluated.

Current limitations: If a kernel is too large to fit onto the CGRA or there is resource
mismatch between the kernel and the fabric, the tool relies on the programmer to
manually split the vectorized code into several smaller kernels that can be individually
scheduled. This is a limitation of the current implementation, but not fundamental;
a future version of the compiler could automate this process.

60 Chapter 5. SNAFU generates ULP CGRAs

5.3. DESIGNING SNAFU TO MINIMIZE ENERGY
Snafu’s design departs from prior CGRAs because it is designed from the ground-

up to minimize energy. This difference is essential for emerging ULP applications, and
it motivates several key features of Snafu’s CGRA architecture. This section explores
these differences and explains how they allow Snafu to minimize energy.

5.3.1 Spatial vector-dataflow execution
MANIC’s vector-dataflow execution:Vector-dataflow execution, introduced in Ch. 4,
amortizes instruction fetch, decode, and control (vector) and forwards intermedi-
ate values between instructions (dataflow). Manic’s vector-dataflow implementation
parks intermediate values in a small “forwarding buffer,” instead of the large vector
register file (VRF).

Manic reduces energy and adds negligible area, but its savings are limited by
two low-level effects that only become apparent in a complete implementation. First,
compiled SRAMs are cheaper and scale better than suggested by high-level architec-
tural models [196,214]; i.e., Manic’s savings from reducing VRF accesses are smaller
than estimated. Second, Manic multiplexes all instructions onto a shared execution
pipeline, causing high switching activity in the pipeline logic and registers as control
and data signals toggle cycle-to-cycle. Both effects limit Manic’s energy savings.

How SNAFU reduces energy: Snafu reduces energy by implementing spatial vector-
dataflow execution. Like vector-dataflow, Snafu’s CGRA amortizes a single fab-
ric configuration across many computations (vector), and routes intermediate val-
ues directly between operations (dataflow). But Snafu spatially implements vector-
dataflow: Snafu buffers intermediate values locally in each PE (v. Manic’s shared
forwarding buffer) and each PE performs a single operation (v. Manic’s shared
pipeline). Note that this design is also a contrast with some prior CGRAs, which
share PEs among multiple operations to increase performance and utilization.

As a result, Snafu reduces both effects that limit Manic’s energy savings. We
estimate that the reduction in switching activity accounts for the majority of the 41%
of energy savings that Snafu achieves v. Manic. The downside is that Snafu takes
significantly more area than Manic. This tradeoff is worthwhile because ULP systems
are tiny and most area is memory and I/O (see Sec. 5.6). Snafu’s leakage power is
negligible despite its larger area because we use a high-threshold-voltage process.

5.3.2 Asynchronous dataflow firing without tag-token matching
The rest of this section discusses how Snafu differs from prior CGRAs, starting

with its dynamic dataflow firing.

Execution in prior CGRAs:Prior CGRAs have explored both static and dynamic
strategies to assign operations to PEs and to schedule operations [248]. Static assign-
ment and scheduling is most energy-efficient, whereas fully dynamic designs require
expensive tag-matching hardware to associate operands with their operation. A static
design is feasible when all operation latencies are known and a compiler can find an ef-
ficient global schedule. Static designs are thus common in CGRAs that do not directly
interact with a memory hierarchy [88,119,182].

How SNAFU reduces energy: Snafu is designed to easily integrate new FUs with
unknown or variable latency. E.g., a memory PE may introduce variable latency due
to bank conflicts. A fully static design is thus not well-suited to Snafu, but Snafu
cannot afford full tag-token matching either.

Snafu’s solution is a hybrid CGRA with static PE assignment and dynamic
scheduling. (“Ordered dataflow” in the taxonomy of prior work [248].) Each PE
uses local, asynchronous dataflow firing to tolerate variable latency. Snafu avoids

5.4. Snafu-Arch: A Complete ULP System w/ CGRA 61

tag-matching by enforcing that values arrive in-order. This design lets Snafu inte-
grate arbitrary FUs with little energy or area overhead, adding just ≈ 2% system
energy to Snafu-Arch. The cost of this design is some loss in performance v. a fully
dynamic CGRA. Moreover, asynchronous firing simplifies the compiler, as discussed
above, because it is not responsible for operation timing.

5.3.3 Statically routed, bufferless on-chip network
NoCs in prior CGRAs:The on-chip network (NoC) can consume a large fraction
of energy in high-performance CGRAs, e.g., more than 25% of fabric energy [119,182].
Buffers in NoC routers are a major energy sink, and dynamic, packet-switched routers
cause high switching activity. Prior ULP CGRAs avoid this cost with highly restrictive
NoCs that limit flexibility [62,123,187].

How SNAFU reduces energy: Snafu includes a statically-configured, bufferless,
multi-hop on-chip network designed for high routability at minimal energy. Static
circuit-switching eliminates expensive lookup tables and flow-control mechanisms, and
prior work showed that such static routing does not degrade performance [119]. The
network is bufferless (a PE buffers values it produces; see below), eliminating the
NoC’s primary energy sink (half of NoC energy or more [167]). As a result, Snafu’s
NoC takes just ≈ 6% of system energy.

5.3.4 Minimizing buffers in the fabric
Buffering of intermediate values in prior CGRAs:Prior CGRAs maximize per-
formance by forwarding values to dependent PEs and buffering them in large FIFOs,
freeing a producer PE to start its next operation as early as possible. If a depen-
dent PE is not ready, the NoC or dependent PE may buffer values. This approach
maximizes parallelism, but duplicates intermediate values unnecessarily.

How SNAFU reduces energy: Snafu includes minimal in-fabric buffering at the
producer PE, with none in the NoC. Buffering at the producer PE means each value
is buffered exactly once, and overwritten only when all dependent PEs are finished
using it. In Snafu-Arch, producer-side buffering saves ≈ 7% of system energy v.
consumer-side buffering. The cost is that a producer PE may stall if a dependent
PE is not ready. Snafu minimizes the number of buffers at each PE; using just four
buffers per PE by default (Sec. 5.6 evaluates Snafu’s sensitivity to the number of
buffers per PE).

5.4. SNAFU-ARCH: A COMPLETE ULP SYSTEM W/ CGRA
Snafu-Arch is a complete ULP system that includes a CGRA fabric generated

by Snafu integrated with a scalar RISC-V core and memory.

5.4.1 Architectural overview
Fig. 5.5 shows an overview of the architecture of Snafu-Arch. There are three

primary components: a RISC-V scalar core, a banked memory, and the Snafu fabric.
The Snafu fabric is tightly coupled to the scalar core. It is a 6×6 mesh possessing 12
memory PEs, 12 basic-ALU PEs, 8 scratchpad PEs, and 4 multiplier PEs. The RTL
for the fabric is generated using Snafu and the mesh topology shown. The memory
PEs connect to the banked memory, while the scratchpad PEs each connect to 1KB
outside the fabric.

The RISC-V scalar core implements the E, M, I, and C extensions and issues
control signals to the Snafu fabric. The banked memory has eight 32KB memory
banks (256KB total). In total there are 15 ports to the banked memory: thirteen
from the Snafu fabric and two from the scalar core. The twelve memory PEs account
for the majority of the ports from the fabric. The final port from the fabric allows

62 Chapter 5. SNAFU generates ULP CGRAs

RV32
Scalar
Core

Bank Ctrl

32KB
SRAM
BANK

Bank Ctrl

32KB
SRAM
BANK

…

8 banks = 256KB total memory

Main memory Configurator

Control

stream

insn data

1K
B

CGRA memory interface

SNAFU-A

M = Load/store PE S = Scratchpad PE B = Basic ALU PE C = Multiplier PE

Multi-hop,
bufferless NoC

S
r

rr

r

B
r

rr

r

B
r

rr

r

B
r

rr

r

S
r

rr

r

B
r

rr

r

B
r

rr

r

B
r

rr

r

S
r

rr

r

C
r

rr

r

B
r

rr

r

B
r

rr

r

M
r

rr

r

M
r

rr

r

M
r

rr

r

M
r

rr

r

B
r

rr

r

B
r

rr

r

C
r

rr

r

M
r

rr

r

S
r

rr

r

S
r

rr

r

S
r

rr

r

M
r

rr

r

S
r

rr

r

C
r

rr

r

B
r

rr

r

B
r

rr

r

C
r

rr

r

S
r

rr

r
M

r

rr

r

M
r

rr

r

M
r

rr

r

M
r

rr

r

M
r

rr

r

M
r

rr

r

1K
B

1K
B

1K
B

1KB
1KB

1KB
1KB

Figure 5.5: Architectural diagram of Snafu-Arch. Snafu-Arch possesses a
RISC-V scalar core tightly coupled with the Snafu fabric. Both are attached to a
unified 256KB banked memory.

the Snafu configurator to load configuration bitstreams from memory. Each bank of
the main memory can execute a single memory request at a time; its bank controller
arbitrates requests using a round-robin policy to maintain fairness.

5.4.2 Example of Snafu-Arch in action
Snafu-Arch adds three instructions to the scalar core to interface with the CGRA

fabric, summarized in Table 5.1. We explain how they work through the following
example.

The Snafu fabric operates in three states: idle, configuration, and execution.
During the idle phase the scalar core is running and the fabric is not. When the scalar
core reaches a vcfg instruction, the fabric transitions to the configuration state. The
scalar core passes a vector length and a bitstream address (from the register file) to the
fabric configurator (see Fig. 5.5). The configurator checks to see if this configuration is
still in the fabric’s configuration cache (Sec. 5.2.1). If it is, the configurator broadcasts
a control signal to all PEs and routers to load the cached configuration; otherwise, it
loads the configuration header from memory. The header tells the configurator which
routers and which PEs are active in the configuration. Then the configurator issues a
series of loads to read in configuration bits for the enabled PEs and routers.

Once this has completed, the configurator stalls until the scalar core either reaches
a vtfr instruction or a vfence instruction. vtfr lets the scalar core pass a register
value to the fabric configurator, which then passes that value to a specific PE (encoded
in the instruction). This allows PEs to be further parameterized at runtime from the
scalar core. vfence indicates that configuration is done, so the scalar core stalls and

Instruction Purpose

vcfg <len> <addr> Load a new fabric configuration
and set vector length.

vtfr <val> <pe> Communicate scalar value to fab-
ric.

vfence Start fabric execution and wait.

Table 5.1: New instructions to interface with CGRA.

5.5. Experimental Methodology 63

Main memory

Memory control logic
Scalar core

NoC incl. routers

Scratchpad units

Memory units

Basic-ALU units

Multiplier units

Figure 5.6: Layout of Snafu-Arch. Memory PEs are blue, scratchpad PEs are
green, basic-ALU PEs are red, multiplier PEs are purple, the scalar core is yellow,
and main-memory control logic is orange. The remaining grey regions contain
routers and wires.

the fabric transitions to execution. Execution proceeds until all PEs signal that they
have completed their work (Sec. 5.2.1). Finally, the scalar core resumes execution
from the vfence, and the fabric transitions back into the idle state.

5.5. EXPERIMENTAL METHODOLOGY
We implemented Snafu-Arch as well as three baselines entirely in RTL and

synthesized each system using an industrial sub-28 nm FinFET process with compiled
memories. We evaluated the systems using post-synthesis timing, power, and energy
models. Additionally, we placed and routed Snafu-Arch (see Fig. 5.6) to validate
top-down synthesis.

Software-hardware stack:We developed a complete software and hardware stack
for Snafu. We implemented Snafu-Arch, its 256KB banked memory, and its five-
stage pipelined RISC-V scalar core in RTL and verified correctness by running full
applications in simulation using both Verilator [217] and Cadence Xcelium RTL sim-
ulator [10]. We synthesized the design using Cadence Genus [2] and an industrial
sub-28 nm, high-threshold voltage FinFET PDK with compiled memories. Next, we
placed and routed the design using Cadence Innovus [4]; Fig. 5.6 shows the layout.
We also developed Snafu’s compiler that converts vectorized C-code to an optimal
fabric configuration and injects the bitstream into the application binary. Finally,
we simulated full applications post-synthesis, annotated switching, and used Cadence
Joules [5] to estimate power.

Parameter Values

Frequency 50 MHz
Main memory 256KB
Scalar register # 16

V
ec
to
r Vector register # 16

Vector length 16/32/64
Window size (for Manic) 8

S
n
a
fu

-A
rc

h Fabric dimensions 6×6
Memory PE # 12
Basic-ALU PE # 12
Multiplier PE # 4
Scratchpad PE # 8

Table 5.2: Microarchitectural
parameters.

Name Description Small Medium Large

FFT 2D Fast-fourier transform 16×16 32×32 64×64
DWT 2D Discrete wavelet trans-

form
16×16 32×32 64×64

Viterbi Viterbi decoder 256 1024 4096
Sort Radix sort 256 512 1024
SMM Sparse matrix-matrix 16×16 32×32 64×64
DMM Dense matrix-matrix 16×16 32×32 64×64
SMV Sparse matrix-dense vector 32×32 64×64 128×128
DMV Dense matrix-dense vector 32×32 64×64 128×128
Sconv Sparse 2D convolution

filter:
16×16,
3×3

32×32,
5×5

64×64,
5×5

Dconv Dense 2D convolution
filter:

16×16,
3×3

32×32,
5×5

64×64,
5×5

Table 5.3: Benchmarks and their input sizes.

64 Chapter 5. SNAFU generates ULP CGRAs

Baselines:We compare Snafu-Arch against three baseline systems: (i) a RISC-V
scalar core with a standard five-stage pipeline1, (ii) a vector baseline that implements
the RISC-V V vector extension, and (iii) Manic [85], the prior state-of-the-art in
general-purpose ULP design. The scalar core is representative of typical ULP micro-
controllers like the TI MSP430 [110]. Each baseline is implemented entirely in RTL
using the same design flow. Table 5.2 shows their microarchitectural parameters. The
vector baseline and Manic both have a single vector lane, which minimizes energy at
the cost of performance.

Benchmarks:We evaluate Snafu-Arch, Manic, and the vector baseline across
ten benchmarks on three different input sizes, shown in Table 5.3. We use random
inputs, generated offline. For Manic and the vector baseline, each benchmark has
been vectorized from a corresponding plain-C implementation. For Snafu-Arch,
these vectorized benchmarks are fed into our compiler to produce CGRA-configuration
bitstreams. In cases where the benchmarks contain a permutation, the kernel is
manually split and pieces are individually fed into our compiler.

Metrics:We evaluate Snafu-Arch and the baselines primarily on their energy effi-
ciency and secondarily on their performance. We measure the full execution of each
benchmark after initializing the system, and we measure efficiency by the energy to
execute the complete benchmark normalized to either the scalar baseline or Snafu-
Arch. We measure performance by execution time (cycles) or speedup normalized to
either the scalar baseline or Snafu-Arch.

5.6. EVALUATION
We now evaluate Snafu-Arch to show: (1) Snafu-Arch is significantly more

energy-efficient than the state-of-the-art. (2) Secondarily, Snafu-Arch significantly
improves performance over the state-of-the-art. (3) Snafu-Arch is an optimal design
point across input, configuration cache, and intermediate-buffer sizes. (4) Snafu is
easily extended with new PEs to improve efficiency. (5) Significant opportunities
remain to improve efficiency in the compiler.

5.6.1 Main results
Fig. 5.7 shows that Snafu-Arch is much more energy-efficient and performant v.

all baselines. The figure shows average energy and speedup of Snafu-Arch normal-
ized to the scalar baseline. Snafu-Arch uses 81%, 57%, and 41% less energy than
the scalar, vector, and Manic baselines, respectively. Snafu-Arch is also highly
performant; it is 9.9×, 3.2×, and 4.4× faster than the respective baselines.

1) SNAFU-ARCH saves significant energy:Fig. 5.7 shows detailed results for
all ten benchmarks. Fig. 5.7a breaks down execution energy between memory, the
scalar core, vector/CGRA, and remaining (other). Snafu-Arch outperforms all
baselines on each benchmark. This is primarily because Snafu-Arch implements
spatial vector-dataflow execution. Vector, Manic, and Snafu-Arch all benefit from
vector execution (SIMD), significantly improving energy-efficiency and performance
compared to the scalar baseline by eliminating much of the overhead of instruction
fetch and decode. However, Snafu-Arch benefits even more from vector execution
because, once Snafu-Arch’s fabric is configured, it can be re-used across an unlimited
amount of data (unlike the limited vector length in the vector baseline and Manic).

Moreover, only Snafu-Arch takes advantage of spatial dataflow. The vector
baseline writes all intermediate results to the vector register file, which is quite costly.
Manic eliminates a majority of these VRF accesses (saving 27% energy compared to

1This is a different design than the scalar baseline in Ch. 6

5.6. Evaluation 65

Memory Scalar Vec/CGRA Remaining

FFT DWT Viterbi SMM DMM SCONV DCONV SMV DMV SORT AVG

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
S

ca
la

r
V

ec
to

r
M

A
N

IC
S

N
A

F
U

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
S

ca
la

r
V

ec
to

r
M

A
N

IC
S

N
A

F
U

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
S

ca
la

r
V

ec
to

r
M

A
N

IC
S

N
A

F
U

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
S

ca
la

r
V

ec
to

r
M

A
N

IC
S

N
A

F
U

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
S

ca
la

r
V

ec
to

r
M

A
N

IC
S

N
A

F
U

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.2

0.4

0.6

0.8

1.0

E
ne

rg
y

vs
.

S
ca

la
r

(a) Energy

FFT

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
yc

le
s

×106

DWT

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.2

0.4

0.6

0.8

1.0

×106

Viterbi

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

1.0

2.0

3.0

4.0

×105

SMM

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×106

DMM

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

1.0

2.0

3.0

4.0

×106

SCONV

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×106

DCONV

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U
0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

×106

SMV

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×105

DMV

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×105

SORT

S
ca

la
r

V
ec

to
r

M
A

N
IC

S
N

A
F

U

0.0

0.5

1.0

1.5

2.0

2.5

×106

(b) Execution time

Figure 5.7: Energy and execution time, normalized to the scalar baseline, across
ten applications on large inputs. On average, Snafu-Arch uses 81%, 57%, 41%
less energy and is 9.9×, 3.2×, and 4.4× faster than the scalar design, vector
baseline, and Manic, respectively.

the vector baseline) by buffering intermediate values in a less expensive “forwarding
buffer.” However, Manic shares a single execution pipeline across all instructions,
which significantly increases switching activity. Snafu-Arch, on the other hand,
executes a dataflow graph spatially. Each PE only handles a single operation and
routes are configured statically. This leads to significantly less dynamic energy because
intermediate values are directly communicated between dependent operations and
there is minimal switching in PEs.

2) SNAFU-ARCH also greatly improves performance:Fig. 5.7b shows the execu-
tion time (in cycles) of all benchmarks and systems. Across the board, Snafu-Arch
is faster — from 3.2× to 9.9× on average, depending on the baseline. Snafu-Arch
achieves this high-performance by exploiting instruction-level parallelism in each ker-
nel, which is naturally achieved by Snafu’s asynchronous dataflow-firing at each PE.

3) SNAFU-ARCH is ultra-low-power and has a small footprint:The Snafu-
Arch fabric operates between 120µW and 324 µW, depending on the workload. This
operating power domain is two to five orders-of-magnitude less than most prior CGRA
designs. Leakage power is also insignificant (<3%) because Snafu-Arch uses a high-
threshold-voltage process.

In addition, Snafu-Arch is tiny. The entire design in Fig. 5.6, including compiled
memories, is substantially less than 1mm2. Note, however, that Snafu-Arch saves
energy at the cost of area: Snafu-Arch occupies 1.8× more area than Manic and
1.7× more than the vector baseline. Given Snafu-Arch’s tiny size, we judge this to
be a good tradeoff.

66 Chapter 5. SNAFU generates ULP CGRAs

Memory Scalar Vec/CGRA Remaining

S M L
0.0

0.5

1.0

E
ne

rg
y

vs
S

ca
la

r

(a) Energy.
S M L

0

5

10

S
p

ee
du

p
vs

S
ca

la
r

(b) Speedup.

Figure 5.8: Snafu-Arch v. the scalar design across three input sizes – small
(S), medium (M) and large (L).

Benchmark analysis: Snafu-Arch is especially energy-efficient on dense linear al-
gebra kernels and sort. Snafu-Arch uses on average 49% less energy on average for
DMM, DMV, and DConv v. 35% less on average for SMM, SMV, and SConv. This
is because the dense linear algebra kernels take full advantage of coalescing in the
memory PEs and generally have fewer bank conflicts, reducing energy and increasing
performance (5.8× v. 3.8×).

Sort is another interesting benchmark because Manic barely outperforms the
vector baseline, while Snafu-Arch reduces energy by 72%. (The scalar baseline
performs terribly due to a lack of a good branch predictor.) This gap in energy can
be attributed to the unlimited vector length of Snafu-Arch: the vector length of
both vector and Manic baselines is 64, but the input size to Sort is 1024. Snafu-
Arch is able to sort the entire vector with minimal re-configuration and buffering of
intermediate values.

5.6.2 Sensitivity studies
We characterize Snafu-Arch by running applications on three different input

sizes. Further, we find the optimal configuration of Snafu-Arch by sweeping the
size of the configuration cache and the number of intermediate buffers.

Energy-efficiency and performance improve on larger workloads:Fig. 5.8a
shows Snafu-Arch’s energy across three different input sizes: small (S), medium
(M), and large (L). For most applications, Snafu-Arch’s benefits increase with input
size. (But Snafu-Arch is faster and more efficient at all input sizes.) As input size
increases, Snafu-Arch generally widens the gap in energy-efficiency with the scalar
baseline, from 67% to 81%. Snafu-Arch also improves v. the vector baseline from
39% to 57% and v. Manic from 37% to 41% (not shown). The primary reason for
this improvement is that, with larger input sizes, Snafu-Arch can more effectively
amortize the overhead of (re)configuration.

This trend is even more pronounced in the performance data. Fig. 5.8b shows the
speedup of Snafu-Arch normalized to the scalar baseline. Snafu-Arch is 9.9×,
3.2×, 4.4× faster than the scalar baseline, vector baseline, and Manic on the large
input size and 5.4×, 2.4×, and 3.4× faster on the small input.

SNAFU’s optimal parameterization:We considered designs with different config-
uration cache sizes (1, 2, 4, 6, and 8) and different numbers of intermediate buffers
(1, 2, 4, and 8). For all applications except FFT, DWT, and Viterbi, configuration-
cache size makes little difference. FFT, DWT, and Viterbi realize an average 10%
energy savings with a size of six entries. This is because these applications have up
to six phases of computation, and each phase requires a different fabric configuration.
Similarly, most applications are insensitive to the number of intermediate buffers.
With too few buffers, PEs stall due to lack of buffer space. Two buffers is enough to
eliminate most of these stalls, and four buffers is optimal.

5.6. Evaluation 67

Memory Scalar Vec/CGRA Remaining

DMM SCONV DCONV DMV

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

0

1

2

E
ne

rg
y

vs
.

S
N

A
F

U

(a) Energy.
DMM SCONV DCONV DMV

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

M
A

N
IC

un
M

A
N

IC

S
N

A
F

U

un
S

N
A

F
U

0

1

2

S
p

ee
du

p
vs

.
S

N
A

F
U

(b) Speedup.

Figure 5.9: Energy and speedup of Manic, unManic (w/ loop unrolling),
Snafu-Arch, and unSnafu-Arch (w/ loop unrolling), normalized to
Snafu-Arch. unSnafu-Arch uses 31% less energy and is 2.2× faster
Snafu-Arch; Manic benefits much less.

Memory Scalar Vec/CGRA Remaining

FFT DWT

M
A

N
IC

S
N

A
F

U

S
N

A
F

U
(n

o
sc

ra
tc

h)

M
A

N
IC

S
N

A
F

U

S
N

A
F

U
(n

o
sc

ra
tc

h)

0.0

0.5

1.0

1.5

E
ne

rg
y

vs
.

S
N

A
F

U

(a) Energy.
FFT DWT

M
A

N
IC

S
N

A
F

U

S
N

A
F

U
(n

o
sc

ra
tc

h)

M
A

N
IC

S
N

A
F

U

S
N

A
F

U
(n

o
sc

ra
tc

h)

0.0

0.5

1.0

S
p

ee
du

p
vs

.
S

N
A

F
U

(b) Speedup.

Figure 5.10: Energy and speedup of Manic, Snafu-Arch w/ and w/out
scratchpads, normalized to Snafu-Arch. Scratchpads improve energy-efficiency
by 34% and performance by 13%.

5.6.3 Case studies
We conduct two case studies (i) to show that there are opportunities to further

improve performance and energy efficiency with only software changes; and (ii) to
demonstrate the flexibility of Snafu’s BYOFU approach.

Loop-unrolling leads to significantly improved energy and performance:We
show the potential of further compiler optimizations through a case study on loop
unrolling. Fig. 5.9 shows the normalized energy and speedup of Manic and Snafu-
Arch with and without loop unrolling on four different applications. With loop
unrolling, Snafu-Arch executes four iterations of an inner loop in parallel (v. one
iteration without loop unrolling). On average, with loop unrolling, Snafu-Arch’s
energy efficiency improves by 85%, 71%, 62%, and 33% v. scalar, vector, Manic, and
Snafu-Arch without unrolling. The performance results are even more significant:
with loop unrolling, Snafu-Arch’s speedup improves to 19×, 7.5×, 11×, and 2.2× v.
the same set of baselines. These results make it clear that Snafu-Arch can effectively
exploit instruction-level parallelism and that there is an opportunity for the compiler
to further improve efficiency.

SNAFU makes it easy to add new FUs: Initially, Snafu-Arch did not have
scratchpad PEs. However, FFT and DWT produce permuted results that must be
persisted between re-configurations of the fabric. Without scratchpad units, these
values were being communicated through memory.

Leveraging Snafu’s standard PE interface, we were able to quickly add scratchpad
PEs to Snafu-Arch with minimal effort — we just made Snafu aware of the new

68 Chapter 5. SNAFU generates ULP CGRAs

Memory Scalar CGRA/Accel Remaining

S
N

A
F
U

S
N

A
F
U

T
ai

lo
re

d

S
N

A
F
U

B
es

po
ke

D
ot

A
sy

nc

D
ot

A
cc

el

D
M

M
A
cc

el

0.00

0.25

0.50

0.75

1.00

E
ne

rg
y

vs
.

S
N

A
F
U

18%
3%15%

14%
12%

44%35%

(a) DMM energy.

S
N

A
F
U

S
N

A
F
U

T
ai

lo
re

d

S
N

A
F
U

B
es

po
ke

S
N

A
F
U

B
Y
O

F
U

S
or

t
A
sy

nc

S
or

t
A
cc

el

0.00

0.25

0.50

0.75

1.00

E
ne

rg
y

vs
.

S
N

A
F
U

3%
61%

23%

20%

14%

64%

(b) Sort energy.

S
N

A
F
U

S
N

A
F
U

T
ai

lo
re

d

S
N

A
F
U

B
es

po
ke

S
N

A
F
U

B
Y
O

F
U

F
F
T

1D
A
sy

nc

F
F
T

1D

F
F
T

2D

0.00

0.25

0.50

0.75

1.00

E
ne

rg
y

vs
.

S
N

A
F
U

70%55%

47%

30%
28%

17%
10%

5%

(c) FFT energy.

Figure 5.11: Quantifying the cost of Snafu’s programmability on three
benchmarks. Each subfigure shows, from left-to-right, the effect of gradually
removing Snafu-Arch’s programmability and increasing its specialization,
culminating in a hand-coded ASIC. Overall, Snafu-Arch’s energy is within 2.6×
on average of the ASICs’, and can be easily specialized to narrow the gap at low
upfront design cost.

PE, without any changes to Snafu’s framework. Fig. 5.10 shows the normalized
energy and speedup of Snafu-Arch with and without scratchpads for FFT and
DWT. Persisting intermediate values to main memory is quite expensive: without
scratchpads, Snafu-Arch consumes 54% more energy and is 16% slower on average.
The flexibility of Snafu allowed us to easily optimize the Snafu-Arch fabric for
FFT and DWT at low effort, without affecting other benchmarks. The next section
explores the implications for programmability and specialization.

5.7. THE COST OF PROGRAMMABILITY
With the mainstream acceptance of architectural specialization, the architecture

community faces an ongoing debate over the ideal form and degree of specialization.
Some results suggest a need for drastic specialization to compete with ASICs [92,213,
228]; whereas others argue that programmable designs can compete by adopting a
non-von Neumann execution model [179,184].

We contribute to this debate by performing an apples-to-apples comparison of a
programmable design (Snafu-Arch) against three hand-coded ASICs, demonstrating
that the cost of programmability is low in the ULP domain. We compare end-to-end
systems in the same technology and design flow using an industrial PDK with com-
piled memories. Our results thus avoid pitfalls of prior studies based on simulations,
analytical models, or extrapolations from different technologies.

We find that, on average, Snafu-Arch uses 2.6×more energy and 2.1×more time
than an ASIC implementation. Breaking down the sources of inefficiency in Snafu-
Arch, we find that Snafu lets designers trade off programmability and efficiency via
simple, incremental design changes. Snafu makes selective specialization easy, letting
the architect focus their design effort where it yields the most efficiency gains.

SNAFU is within 2.6× of ASIC energy:Fig. 5.11 shows the energy of DMM,
Sort, and FFT on large inputs. The leftmost bars in Fig. 5.11 represent Snafu-
Arch and the rightmost bars represent a fixed-function, statically scheduled ASIC
implementation of the same algorithm. Snafu-Arch uses as little as 1.8× and on
average 2.6× more energy than the ASICs. To explain the gap, we now consider
intermediate designs that build up from the ASIC back to Snafu-Arch.

SNAFU-ARCH, inner loops, & Amdahl’s Law: Snafu maps only inner loops to
its fabric and runs outer loops on the scalar core, limiting its benefits to the fraction of
dynamic execution spent in inner loops. To make a fair comparison, we built ASICs
for DMM and FFT that accelerate only the inner-loop of the kernel (Dot-Accel

5.7. The Cost of Programmability 69

and FFT1D-Accel), just like Snafu-Arch. These designs add 33% energy to run
outer loops on the scalar core, reducing the energy gap to 2.2× (v. 2.5× for these
benchmarks previously). A future version of Snafu could eliminate this extra scalar
energy by mapping outer loops to its fabric [248].

Asynchronous dataflow firing adds minimal overhead:Next, we add asyn-
chronous dataflow firing to the ASIC designs (∗-Async bars). Comparing Async
designs to the ASICs shows that asynchronous dataflow firing adds little energy over-
head, just 3% in DMM and Sort. The 30% overhead in FFT-Async is inessential and
could be optimized away: Snafu’s current implementation of asynchronous dataflow
firing adds an unnecessary pipeline stage when reading scratchpad memories in the
ASIC designs.

Closing the gap with negligible design effort:Next, we consider variants of
Snafu-Arch to break down the cost of software programmability. Snafu-Bespoke
hardwires the fabric configuration, eliminating unused logic during synthesis (like prior
work [42]), removing Snafu-Arch’s software programmability. Snafu-Bespoke
uses 54% more energy than the Async designs. The gap in energy with Async
can be attributed to Snafu’s logic for predicated execution and the operation set
that Snafu implements, which is not well suited to every application. For instance,
Sort-Accel can select bits directly, whereas Snafu must do a vshift and vand.

BYOFU makes it easy to specialize where it matters: Snafu’s flexible, “bring
your own functional unit” design (Sec. 5.2.1) makes it easy to add missing operations to
improve efficiency. To illustrate this, Sort-Byofu and FFT-Byofu improve Snafu-
Bespoke’s efficiency by adding specialized PEs to the fabric. For Sort, we add a PE
that fuses vshift and vand operations. For FFT, we size scratchpads properly for
their data. In both cases, the energy savings are significant. Snafu-Bespoke uses
20% more energy than the Byofu designs, and the Byofu designs come within 44%
of the Async ASIC designs. These savings come with much lower design effort than
a full ASIC, and we expect the gap would narrow further if more Byofu PEs were
added to the fabric.

The cost of software programmability is low:Next, Snafu-Tailored special-
izes the CGRA to eliminate extraneous PEs, routers, and NoC links, but is not hard-
wired like Snafu-Bespoke or Snafu-Byofu — i.e., Snafu-Tailored is where the
design becomes programmable in software. Snafu-Tailored uses only 15% more
energy than Snafu-Bespoke, illustrating that the cost of software programmability
is low.

The original Snafu-Arch design uses just 10%more energy than Snafu-Tailored.
This gap includes the cost of PEs, routers, and links that are not needed by every
application, but may be used by some. This gap is also small, suggesting that general-
purpose programmability also has a low cost.

The above comparisons yield three major takeaways. The big picture is that the
total cost of SNAFU’s programmability is 2–3× in energy and time v. a fully
specialized ASIC. While significant, this gap is much smaller than the 25× (or larger)
gap found in some prior studies [92].2 Whether further specialization is worthwhile will
depend on the application; for many applications, a 2–3× gap is good enough [211].

Moreover, for applications that benefit from more specialization, SNAFU allows
for selective specialization with incremental design effort to trade off efficiency

2The smaller gap comes from comparing to a programmable design that exploits both vector and
dataflow techniques to improve efficiency [179,184].

70 Chapter 5. SNAFU generates ULP CGRAs

and programmability. Fig. 5.11 shows that by tailoring the fabric topology, hardwiring
configuration state, or partially specializing PEs, designers can get within 2× of ASIC
efficiency at a small fraction of ASIC design effort. Designers can incrementally scale
their design effort to the degree of specialization appropriate for their application.

Finally, digging deeper, we can better understand the cost of programmability
as separate costs incurred at design time (i.e., hardware implementation quality) and
run time (i.e., overhead for running software). With current synthesis tools, software
programmability itself is surprisingly cheap, but carries a hidden design-
time cost: the gap between Snafu and Snafu-Bespoke is just 27%, whereas the
gap between Snafu-Bespoke and ASICs is 2.1×. Even when runtime reconfig-
urability is removed from a design, synthesis tools cannot produce circuits similar
to a hand-coded ASIC because they do not understand the intent of RTL. Barring a
breakthrough in synthesis, this challenge will remain. Snafu provides a path forward:
BYOFU lets a designer specialize for critical operations, enabling programmable de-
signs to compete with ASICs at a fraction of the design effort and without forfeiting
programmability.

5.8. DISCUSSION
This chapter added to the computer architecture component of the new ULP

sensor system stack. It presented Snafu, a framework for generating ultra-low-power
CGRAs that maximizes flexibility while minimizing energy. Snafu takes a bring
your own functional unit approach, allowing easy integration of custom logic, and it
minimizes energy by aggressively favoring efficiency over performance throughout the
design. We used Snafu to generate Snafu-Arch, a complete ULP CGRA that uses
41% less energy and is 4.4× faster than Manic, the prior state-of-the-art general-
purpose ULP system. Moreover, Snafu-Arch is competitive with ASICs and can be
incrementally specialized to trade off efficiency and programmability.

This success of Snafu makes it clear that the more a program is offloaded to
Snafu, the more efficient it will be. However, while Snafu is highly programmable,
offloading an entire program may be impractical or impossible. This is because Snafu
requires hand-coded vector assembly and only targets vectorizable inner-loops. It has
no support for outer-loops or more irregular control-flow patterns. What is required
is RipTide (Ch. 6), the final component of the new ULP system stack. RipTide,
dicussed next, is a dataflow compiler co-designed with a new CGRA fabric that com-
piles programs written in higher-level languages (like C) and supports general-purpose
control-flow.

71

Chapter 6

RipTide: a programmable,
energy-minimal dataflow compiler
and architecture1

Computing at the extreme edge calls for ultra-low-power (<1mW), extremely energy-
efficient, and general-purpose processing. Prior chapters have built out a new ULP
sensor system stack that fits these requirements. Ch. 3 contributed Sonic, a soft-
ware system, to enable inference on intermittent, energy-harvesting devices. Ch. 4
contributed Manic and Manic-Silicon, a new vector-dataflow computer architec-
ture and corresponding silicon prototype. Ch. 5 contributed Snafu, a ULP CGRA
architecture that implemented spatial-vector-dataflow execution, achieving energy ef-
ficiency competitive with ASICs while remaining programmable by software.

So what is missing from the stack? Well, Amdahl’s Law tells us that to achieve
significant end-to-end benefits, CGRAs must benefit the vast majority of program
execution. CGRAs must support a wide variety of program patterns at minimal pro-
grammer effort, and they must provide a complete compiler and hardware stack that
makes it easy to convert arbitrary application code to an efficient CGRA configura-
tion. Unfortunately, prior CGRAs, including Snafu, struggle to support common
programming idioms efficiently, leaving significant energy savings on the table.

On the hardware side, many prior CGRAs support only simple, regular con-
trol flow, e.g., inner loops with streaming memory accesses and no data-dependent
control [81, 182, 198]. To support complex control flow and maximize performance,
other CGRAs employ expensive hardware mechanisms, e.g., associative tags to dis-
tinguish loop iterations, large buffers to avoid deadlock, and dynamic NoC rout-
ing [177,188,221,240]. In either case, energy is wasted: from extra instructions needed
to implement control flow unsupported by the CGRA fabric, or from inefficiency in
the CGRA microarchitecture itself.

On the compiler side, mapping large computations onto a CGRA fabric is a
perennial challenge. Heuristic compilation methods often fail to find a valid map-
ping [181,195], and optimization-based methods lead to prohibitively long compilation
times [43, 181]. Moreover, computations with irregular control flow are significantly
more challenging to compile due to their large number of control operations, which
significantly increase the size of the dataflow graph. To avoid these issues, some
CGRAs (including Snafu) require hand-coded vector assembly, restricting programs
to primitives that map well onto a CGRA. Vector assembly sidesteps irregular control,
but makes programming cumbersome [81,182,254].

1[83]G. Gobieski, S. Ghosh, M. Heule, T. Mowry, N. Beckmann, and B. Lucia, “RipTide: A
programmable, energy-minimal dataflow compiler and architecture,” in MICRO, 2022.

72 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

RIPTIDE’S APPROACH AND CONTRIBUTIONS
RipTide is a co-designed CGRA compiler and architecture that supports arbitrary

control flow and memory access patterns without expensive hardware mechanisms.
Unlike prior low-power CGRAs, RIPTIDE can execute arbitrary code, limited
only by fabric size and routing. RIPTIDE saves energy by offloading more code
onto the CGRA, where it executes with an order-of-magnitude less energy than a
von Neumann core. In particular, RipTide supports deeply nested loops with data-
dependent control flow and aliasing memory accesses, as commonly found in, e.g.,
sparse linear algebra. These benefits are realized via the following contributions:

RIPTIDE’s instruction set architecture supports complex control while min-
imizing energy:RipTide adopts a steering control paradigm [35, 70, 221], in which
values are only routed to where they are actually needed. To support arbitrary nested
control without tags, RipTide introduces new control-flow primitives, such as the
carry gate, which selects between tokens from inner and outer loops. RipTide also
optimizes the common case by introducing operators for common programming id-
ioms, such as its stream generator that generates an affine sequence for, e.g., streaming
memory accesses.

RIPTIDE’s (almost) free lunch: offloading control flow into the on-chip
network:RipTide implements its new control flow primitives without wasting en-
ergy or PEs by leveraging existing NoC switches. The insight is that a NoC switch
already contains essentially all of the logic needed for steering control flow, and, with
a few trivial additions, it can implement a wide range of control primitives. Mapping
control-flow into the NoC frees PEs for arithmetic and memory operations, so that
RipTide can support deeply nested loops with complex control flow on a small CGRA
fabric.

RIPTIDE compiles C programs to an efficient CGRA configuration:RipTide
is easy to program: it compiles functions written in a high-level language (currently,
C) and employs novel analyses to safely parallelize operations. We observe that,
with steering control flow and no program counter, conventional transitive reduction
analysis fails to enforce all memory orderings, so we introduce path-sensitive transitive
reduction to infer orderings correctly. RipTide implements arbitrary control flow
without associative tags by enforcing strict ordering among values, leveraging its new
control operators. RipTide maps programs onto the CGRA by formulating place-
and-route as a SAT instance or integer linear program. The SAT formulation finds
configurations quickly (< 3min), while the ILP formulation yields configurations that
use 4.3% less energy.

Summary of results:We implement a complete RipTide system in RTL and synthe-
size it in an industrial sub-28nm FinFET process with compiled memories. Including
core and memory, RipTide’s area is just ≈ 0.5mm2. Across ten benchmarks, ranging
from linear algebra to graph search, RipTide reduces energy by 25% v. Snafu, the
state-of-the-art energy-minimal design, and improves performance by 17% (Fig. 6.1).
At nominal voltage with random inputs, RipTide achieves 180MOPS/mW (includ-
ing main memory) on dmm. RipTide consumes just 2.4× more energy than equivalent
ASICs for dmm, sort, and fft, and RipTide achieves these benefits on software writ-
ten in C.

We identify several methodological challenges in measuring CGRA efficiency. The
choice of metric can skew reported efficiency by more than 10× — e.g., RipTide
achieves 1970 fabric MIPS/mW on dmm, which is often reported as MOPS/mW in

6.1. RipTide Instruction Set Architecture 73

C-code Assembly

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

20

40

L
in

es
of

co
de

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

2

4

6

E
ne

rg
y

sa
vi

ng
s

(v
.

sc
al

ar
)

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

2

4

6

S
p

ee
du

p
(v

.
sc

al
ar

)

Figure 6.1: RipTide improves energy efficiency and performance on average
across ten benchmarks over the state of the art, while compiling programs from
high-level C (v. vector assembly in SNAFU).

prior work. Surveying prior work, we find that RipTide is 2.4× more energy-efficient
than prior, performance-oriented CGRAs with comparable data [232,243].

Broader implications on architecture:We perform an in-depth case study of dmm,
comparing RipTide to an ASIC implemented in the same design flow. RipTide is
competitive on energy and performance, but consumes significantly more area than the
ASIC. ASICs thus offer an area advantage over CGRAs, but this advantage disappears
in SoC designs with a large number of ASIC blocks. Given the large advantages gained
by software programmability, we argue that energy-minimal CGRAs like RipTide
have a compelling edge over ASICs for the majority of computations.

Road map: Secs. 6.1, 6.2, and 6.3 present RipTide’s architecture, compiler, and
microarchitecture, respectively. Secs. 6.4 and 6.5 evaluate RipTide, and Sec. 6.6
concludes by discussing RipTide’s broader implications.

6.1. RIPTIDE INSTRUCTION SET ARCHITECTURE
RipTide provides a rich set of control-flow operators to support complex pro-

grams. Its ISA, shown in Table 6.1, has six categories of operators: arithmetic, mul-
tiplier, memory, control flow, synchronization, and streams. (Multiplication is split
from other arithmetic because, to save area, only some PEs can perform multiplica-
tion.) We now highlight the control-flow, synchronization, and stream operators.

6.1.1 Control-flow operators
RipTide’s operators are illustrated in Fig. 6.2. Whenever a value is read, it is

implied that the operator waits until a valid token arrives for that value over the NoC.
Tokens are buffered at the inputs if they are not consumed or discarded.

Operator(s) Category Symbol(s) Semantics

Basic binary ops Arithmetic +, −, <<, ! =, etc. a op b
Multiply, clip Multiplier ∗, clip a op b
Load Memory ld ld base, idx(, dep)
Store Memory st st base, idx, val(, dep)
Select Control Flow sel cond ? val0 : val1
Steer, carry, invariant Control Flow (T | F), C, I See Fig. 6.2
Merge, order Synchronization M, O See Fig. 6.2
Stream Stream STR See Fig. 6.2

Table 6.1: RipTide’s instruction set architecture (ISA).

74 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

CD

if(state == I) out = A
else if(D) out = B

I

B D, B;
Pop D, B

!D;
Pop D

A
Po

p
A

State machine

ID

A

if(state == I) out = A
else if(D) out = A

I

B D;
Pop D

!D;
Pop A, D

A

State machine

T

A

D

if(D) out = A

F

A

D

if(!D) out = A

Carry Invariant True steer False steer(carry w/ carry = out)

M

A B

D

if(D) out = A
else if(!D) out = B

Merge

O

A B

valid(A) && valid(B)
out = B

Order

A B

Stream

Str

start
bound

step

idx last

for(idx = start;
idx [<,>,==,...] bound;
idx = idx [+,>>,<<] step)

last = !(idx [<,>,==,...] bound)

Figure 6.2: Semantics of control-flow operators in RipTide.

Steer: Steers (φ−1) come in two flavors — True and False — and take two inputs: a
decider, D and a data input, A. If D matches the flavor, then the gate passes A through;
otherwise, A is discarded. Steers are necessary to implement conditional execution, as
they gate the inputs to disabled branches.

Carry:Carry represents a loop-carried dependency and takes a decider, D, and two
data values, A and B. Carry has the internal state machine shown in Fig. 6.2. In the
Initial state, it waits for A, and then passes it through and transitions to the Block
state. While in Block, if D is True, the operator passes through B. It transitions back
to Initial when D is False, and begins waiting for the next A value (if not already
buffered at the input).

Carry operators keep tokens ordered in loops, eliminating the need to tag tokens.
All backedges are routed through a carry operator in RipTide. By not consuming A
while in Block, carry operators prevent outer loops from spawning a new inner-loop
instance before the previous one has finished. (Iterations from one inner-loop may
be pipelined if they are independent, but entire instances of the inner loop will be
serialized.)

Invariant:The invariant operator is a slight variation of carry. It represents a loop
invariant and can be implemented as a carry with a self-edge back to B. Invariants are
used to generate a new loop-invariant token for each loop iteration.

6.1.2 Synchronization operators
Merge:The merge operator enforces cross-iteration ordering by making sure that
tokens from different loop iterations appear in the same order, regardless of the control
path taken within by each loop iteration. The operator takes three inputs: a decider,
D, and two data inputs, A and B. Merge is essentially a mux that passes through either
A or B, depending on D. But note that only the value passed through is consumed.

Order:The order operator is used to enforce memory ordering by guaranteeing that
multiple preceding operations have executed. It takes two inputs, A and B, and fires
as soon as both arrive, passing B through.

6.1.3 Stream operators
Streams generate a sequence of data values, which are produced by evaluating an

affine function across a range of inputs. These operators are used in loops governed by
affine induction variables. A stream takes three inputs: start, step, and bound. It
initially sets its internal idx to start, and then begins iterating a specified arithmetic
operator f as idx’ = f(idx, step).

A stream operator produces two output tokens per iteration: idx itself, and a
control signal last. last is False until idx reaches bound, whereupon it is True and

6.2. RipTide Compiler 75

Clang

void example(int *A, int n, int m) {
A[m] = 1;
for (int i = 0; i < n; i++) {

int foo = A[i];
if (foo > 42) {

A[i] = 0;
}
A[i] += foo + i;

}
}

Source Code

%foo = load %A, %i
%cond = cmp gt, %foo, 42

store %A, %i, 0

%sum = add %foo, %i
%val = load %A, %i
%sum1 = add %sum, %val
store %A, %i, %sum1
%inc = add %i, 1

a

body1:

then:

body2:

L0

S1

L1

store %A, %m, 1

%i = Φ(0, %inc)
%cond = cmp lt, %i, %n

entry:

loop:

exit

S0

S2

CFG w/ simplified LLVM-IR

%foo = lso.load(%A, %i, %lso1)
%cond = cmp gt, %foo, 42

%st2 = lso.store(%A, %i, 0)

%lso2 = Φ(%lso1, %st2)
%sum = add %foo, %i
%val = lso.load(%A, %i, %lso2)
%sum1 = add %sum, %val
%st3 = lso.store(%A, %i, %sum1)
%inc = add %i, 1

body1:

then:

body2:

L0

S1

L1

%st1 = lso.store(%A, %m, 1)

%i = Φ(0, %inc)
%lso1 = Φ(%st1, %st3)
%cond = cmp lt, %i, %n

entry:

loop:

exit

S0

S2

LLVM-IR
(memory ordering enforced)

Ordering

Carry & Steer

Dataflow graph

Streamification

C

C
<

ldst

T T
+

M

n

0

T >

Ld

1

42

A 0

i

st2

st2

A i

foo

+

+

st
Ai

ifoo

st

A 1m

Str
C

ldst

T

M

1n

T >

Ld

42

A 0

iA

st2

st2

A i

foo

+

+

st
Ai

ifoo

st

0

Optimized
Dataflow graph

A 1m

A

Figure 6.3: RipTide’s frontend and middle-end components. The frontend
compiles C code to LLVM-IR using clang. The middle-end produces an
optimized dataflow graph (DFG) that enforces memory ordering and RipTide’s
control paradigm.

the stream stops iterating. last is used by downstream control logic to, e.g., control
a carry operator for outer loops.

6.2. RIPTIDE COMPILER
RipTide compiles, optimizes, and maps high-level C code to RipTide’s CGRA

fabric. Its compiler has a frontend, middle-end, and backend. The frontend uses clang
to compile C to LLVM’s intermediate representation (IR). The middle-end manipu-
lates the LLVM IR to insert control-flow operators from Sec. 6.1 and enforce memory
ordering; then it translates the IR to a dataflow graph (DFG) representation and op-
timizes the DFG by transforming and fusing subgraphs, reducing operator count by
27% (Fig. 6.3). The backend takes the DFG as input and maps operators onto the
CGRA, producing a configuration bitstream in minutes.

6.2.1 Memory-ordering analysis
RipTide maps sequential code onto a CGRA fabric in which many operations,

including memory, may execute in parallel. For correctness, some memory operations
must execute in a particular order. RipTide’s middle-end computes required order-
ings between memory operations present in the IR and adds control-flow operations
to enforce those orderings.

Constructing a memory-operation ordering graph:The first step to enforcing
memory ordering is to construct an ordering graph (OG) that encodes dependences

76 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

Baseline OG Pruned OGDirect and transitive
control/data dependences

S0 L0

S1
L1

S2

S0 L0

S1
L1

S2

S0 L0

S1
L1

S2

S1
L1

SCC 2

S0 L0

S2

SCC 0 SCC 1

SCC 3

S1
L1

S1
L1

src

sink

However, transitive OG
edge cannot be pruned
b/c of path-sensitivity

SCCDAG of OG w/
transitive ordering arcs

Ordering of SCCs

S0 L0

S1
L1

S2

src

sink

Final OG

example

Figure 6.4: RipTide’s middle-end enforces memory ordering. For example, an
ordering graph (OG) that is iteratively pruned and reduced.

between memory operations. RipTide uses alias analysis to identify memory opera-
tions that may or must access the same memory location (i.e., alias), adding an arc
between the operations in the OG accordingly. RipTide makes no assumptions on
the alias analysis and need not consider self-dependences because repeated instances
of the same memory operation are always ordered on its CGRA fabric. Fig. 6.4 shows
a basic, unoptimized OG in the top left for an example function.

Pruning the ordering graph:The OG as computed can be greatly simplified. Prior
work has simplified the OG with improved alias analysis [106] and by leveraging new
control-flow primitives [38, 156]. These efforts are orthogonal to RipTide. RipTide
simplifies the OG by eliminating redundant ordering arcs that are already enforced by
data and control dependences. RipTide finds data dependences by walking LLVM’s
definition-use (def-use) chain from source to destination and removes ordering arcs
for dependent operations [236]. For instance, in example’s CFG from Fig. 6.3, S2
is data-dependent on L1, so there need not be an ordering arc in the OG. This is
reflected in the blue-outlined arc from L1 to S2 that is pruned in the OG in Fig. 6.4.
Similarly, control dependences order some memory operations if the execution of the
destination is control-dependent on the source. RipTide analyzes the CFG to identify
control dependences between memory operations and removes those orderings from
the OG. In example’s CFG from Fig. 6.3, the arc from L0 to S1 in Fig. 6.4 is pruned
using this analysis.

Transitive memory-ordering analysis:Two dependent memory operations are
transitively ordered if there is a path (of ordering arcs) in the OG from source to
destination. RipTide finds and eliminates redundant arcs that are transitively or-
dered by other control- and data-dependence orderings. This reduces the number of
operations required to enforce ordering by 18% v. unoptimized ordering.

To simplify its OG, RipTide uses transitive reduction (TR) [13], which prior work
deployed to simplify ordering relation graphs for parallel execution of loops [156,157].
We apply TR to the OG, which converts a (potentially cyclic) ordering graph into
an acyclic graph of strongly connected components (the SCCDAG). Traditional TR
eliminates arcs between SCCs, removes all arcs within each SCC, and adds arcs to
each SCC to form a simple cycle through all vertices.

6.2. RipTide Compiler 77

We modify the algorithm in two ways to make it work for RipTide’s OG. First,
arcs in the inserted cycle must be compatible with program order instead of being
arbitrary. Second, the inserted arcs must respect proper loop nesting, avoiding arcs
directly from the inner to outer loop. To handle these arcs, we add synthetic loop
entry and exit nodes to each loop (shown as src and sink nodes at the bottom of
Fig. 6.4). Any arc inserted that links an inner loop node to an outer loop node instead
uses the inner loop’s exit as its destination. Symmetrically, an arc inserted that links
an outer loop node to an inner loop node has the inner loop’s entry as its destination.
With these two changes, the SCCDAG is usable for TR.

However, we observe that applying existing TR analysis to the OG in RipTide fails
to preserve required ordering operations. The problem is that a source and destination
may be ordered along one (transitive) path, and ordering along another (direct) path
may be removed as redundant. Execution along the transitive path enforces ordering,
but along the direct path does not, which is incorrect. Fig. 6.4 shows a scenario where
path-sensitivity is critical. The path, SCC3(S2)→SCC1(L0), should not be elim-
inated in TR because the alternative path, SCC3(S2)→SCC2(L1)→SCC1(L0),
does not capture the direct control-flow path from S2 to L0 via the backedge of the
loop. This problem arises due to RipTide’s steering control and lack of a program
counter to order memory operations.

To correctly apply TR to remove redundant ordering arcs, RipTide introduces
path-sensitive TR, which confirms that a transitive ordering path subsumes all possible
control-flow paths before removing any ordering arc from the OG. With this constraint
in place, RipTide can safely use transitive reduction.

Enforcing ordering constraints:Memory operators in RipTide produce a control
token on completion and can optionally consume a control token (dep in Table 6.1)
to enforce memory ordering. The middle-end encodes ordering arcs as defs and uses
of data values in the IR (as seen in the IR transform of loads and stores in Fig. 6.3)
before lowering them as dependences in the DFG. For a memory operator that must
receive multiple control signals, the middle-end inserts order operations (Sec. 6.1) to
consolidate those signals.

6.2.2 Control-flow operator insertion
The compiler lowers its IR to use RipTide’s control paradigm by inserting Rip-

Tide control-flow operators into the DFG.

Steer:The compiler uses the control dependence graph (CDG) [57] to insert steers.
For each consumer of a value, the compiler walks the CDG from the producer to the
consumer and inserts a steer operator at each node along the CDG traversal if it has
not already been inserted by a different traversal. The steer’s control input is the
decider of the basic block that the steer depends on, and its data input is the value
or the output of an earlier inserted steer.

Carry and invariant:For loops, the compiler inserts a carry operator for loop-
carried dependences and an invariant operator for loop-invariant values into the loop
header. A carry’s data input comes from the loop backedge that produces the value.
An invariant’s data input comes from values defined outside the loop. These operators
should produce a token only if the next iteration of the loop is certain to execute; to
ensure this behavior, the compiler sets their control signal to the decider of the block
at the loop exit.

Merge: If two iterations of a loop may take different control-flow paths that converge
at a single join point in the loop body, either may produce a token to the join point
first. But for correctness, the one from the earlier iteration must produce the first

78 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

token. The compiler inserts a merge operator at a join point in the CFG to ensure
that tokens flow to the join point in iteration order. The control signal D for the merge
operator is the decider of nearest common dominator of the join point’s predecessor
basic blocks. Since the earlier iteration sends its control signal first and RipTide does
not reorder tokens, the merge operator effectively blocks the later iteration until the
earlier iteration resolves.

6.2.3 Stream fusion
RipTide performs target-specific operator fusion on the DFG to reduce required

operations and routes by combining value stream generators with loop control logic
and address computation logic. RipTide supports streams and applies them for
the common case of a loop with an affine loop governing induction variable (LGIV).
A stream makes loop logic efficient by fusing the LGIV update and the loop exit
condition into a single operator. In the DFG, loop iteration logic is represented by
the exit condition, an update operator, the carry for the LGIV’s value, and the steer
that gates the LGIV in a loop iteration. The middle-end fuses these operators into a
single stream operator and sets the stream’s initial, step, and bound values. Fig. 6.3
shows stream compilation, where the operators for loop iteration logic (outlined in blue
in the DFG) are fused into a stream operator. RipTide applies induction-variable
analysis [12, 21] to find affine LGIVs. RipTide also identifies address computations,
maps these to an affine stream if possible, and fuses the stream into the memory
operator.

6.2.4 Mapping DFGs to hardware
RipTide’s backend takes a DFG and a CGRA topology description and generates

scalar code to invoke RipTide and a bitstream to configure the RipTide fabric. This
involves finding a mapping of DFG nodes and edges to PEs, control-flow modules
(Sec. 6.3.4), and links. Mapping can be difficult, and there is much prior work on
heuristic methods that trade mapping quality for compilation speed [22, 93, 94, 120,
121, 138, 141, 250, 258]. RipTide has two advantages v. this prior work. First, Rip-
Tide does not time-multiplex operations, so it only needs to schedule operations in
space, not time. Prior compilers unroll loops to reason about operation timing and
identify the initiation interval, increasing program size. Second, RipTide targets en-
ergy efficiency, not performance. Rather than optimize for initiation interval, it need
only focus on finding a valid solution, since leakage is insignificant.

RipTide provides two complementary mappers: one based on boolean satisfia-
bility (SAT) and another based on integer linear programming (ILP) that minimizes
the average routing distance. The SAT-based mapper runs quickly, taking <3min for
our most complex benchmark, whereas the ILP-based mapper yields 4.3% avg. energy
savings v. SAT (Sec. 6.5.3).

Problem description:The constraints of the ILP and SAT formulations are similar
(see Appendix A for a complete, formal description). The formulations ensure that
every DFG vertex is mapped to a hardware node, that every edge is mapped to
a continuous route of hardware links, and that the inputs and outputs of a vertex
match the incoming and outgoing links of a hardware node. They further disallow the
mapping of multiple DFG vertices to a single hardware node, the sharing of hardware
links by multiple edges with different source vertices, and the mapping of a DFG
edge through a control-flow module when a DFG vertex is mapped to that module.
Together these are the necessary constraints to produce not only a valid mapping, but
also a good mapping (SAT is close to ILP in terms of energy).

6.3. RipTide Microarchitecture 79

RISC-V
Scalar Core

CGRA
Control

CGRA
Configurator

Memory

Memory

Memory

Memory

2D Torus:

M

×
St

CF

A

Memory

Multiplier

Stream

Arithmetic

Control-flow

R Router

CF
R R

RR

M
R

RR

M
R R

R

M
R

R

M
R

R

M
R

R

CF
R R

RR

St
R

RR

A
R R

R

A
R

R

St
R

R

×
R

R

×
R R

RR

A
R

RR

A
R R

R

A
R

R

A
R

R

CF
R

R

CF
R R

RR

A
R

RR

A
R R

R

A
R

R

A
R

R

×
R

R

×
R R

RR

St
R

RR

A
R R

R

A
R

R

St
R

R

CF
R

R

M
R R

RR

M
R

RR

M
R R

R

M
R

R

M
R

R

CF
R

R

Figure 6.5: RipTide’s ULP CGRA fabric.

6.3. RIPTIDE MICROARCHITECTURE
RipTide is an energy-minimal coarse-grained reconfigurable array (Fig. 6.5). The

6×6 fabric contains heterogeneous PEs connected via a bufferless, 2D-torus NoC. A
complete RipTide system contains a CGRA fabric, a RISC-V scalar core, and a
256KB (8×32KB banks) SRAM main memory.

6.3.1 Tagless dataflow scheduling
RipTide implements asynchronous dataflow firing via ordered dataflow (Sec. 2.4).

By adding ordering operators where control may diverge, RipTide ensures that tokens
always match on arrival at a PE, obviating the need for tags. Tagless, asynchronous
firing has a low hardware cost (one bit per input plus control logic), and it lets Rip-
Tide tolerate variable operation latency (e.g., due to bank conflicts) while eliminating
the need for the compiler to reason about operation timing.

6.3.2 Processing elements
RipTide’s PEs perform all arithmetic and memory operations in the fabric. Fig. 6.6

shows the microarchitecture of a PE. The PE includes a functional unit (FU) and the
µcore. The µcore interfaces with the NoC, buffers output values, and interfaces with
top-level fabric control for PE configuration.

Functional units:The µcore exposes a generic interface using a latency-insensitive
ready/valid protocol to make it easy to add new operators. Inputs arrive on in_data
when in_valid is high, and are consumed when fu_ready is high. The FU reserves
space in the output channel by raising fu_alloc (e.g., for pipelined, multi-cycle op-
erations), and output arrives on fu_data when fu_valid is high. out_ready supplies
back pressure from downstream PEs. The remaining signals deal with top-level con-
figuration and control.

Communication:The µcore decouples NoC communication from FU computation.
The µcore tracks which inputs are valid, raises backpressure on input ports when its
FU is not ready, buffers intermediate results in output channels, and sends results
over the NoC. Decoupling simplifies the FU.

Configuration:The µcore handles PE and FU configuration, storing configuration
state in a two-entry configuration cache that enables single-cycle reconfiguration. Ad-
ditionally, the µcore enables the fabric to overlap reconfiguration of some PEs while
others finish computation on an old configuration.

80 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

μcore

…n

Input channels

…k

Output channels

CFGXData

Functional unit
Processing Element

(+constants)

noc_
va

lid

noc_
out

noc_
iva

lid

noc_
in

noc_
read

y

noc_
oread

y

cfg_en
cfg_in
cfg_out

Control

out_ready

fu_alloc
fu_valid

fu_done

in
fu_ready

in_valid

fu_out

cfg

clear

cfgd

ct
rl_

en
ct

rl_
cl

ea
r

ct
rl_

do
ne

FU
logic

Figure 6.6: PE microarchitecture

SwitchV
(1b)CFG

A_valid
B_valid
D_valid

cxn

Switch (32b)

noc_ivalid

noc_out

noc_in

noc_ready

CF

noc_oready

noc_in

FIFO

cf
g_

en

cf
g_

in

cf
g_

ou
t

A_cxn
B_cxn

noc_valid

D

A_ready
B_ready
D_readycfg

CF module reuses existing switch hardware

Switch

CF

CF

Router

Figure 6.7: Router microarchitecture

PE types:RipTide includes a heterogeneous set of PEs:
• Memory PEs issue loads and stores to memory and have a “row buffer” that

coalesces non-aliasing subword loads.
• Arithmetic PEs implement basic ALU operations, e.g., compare, bitwise logic,

add, subtract, shift, etc.
• Multiplier PEs implement multiply, multiply + shift, multiply + fixed-point

clip, and multiply + accumulate.
• Control-flow PEs implement steer, invariant, carry, merge, and order (Sec. 6.1)

— but most of these are actually implemented in RipTide’s NoC (see below).
• Stream PEs implement common affine iterators (Sec. 6.1).

6.3.3 Bufferless NoC
RipTide connects PEs via a statically configured, multi-hop, bufferless on-chip

network with routers. Instead of buffering values in the NoC, PEs buffer values in their
output channel. NoC buffers are a primary energy sink in prior CGRAs [81,119], and
RipTide completely eliminates them. Similarly, RipTide’s NoC is statically routed
to eliminate routing look-up tables and flow-control mechanisms.

6.3.4 Control flow in the NoC
Control-flow operators are simple to implement (often a single multiplexer), but

there are many of them. Mapping each to a PE wastes energy and area, and can make
mapping to the CGRA infeasible. Among our ten benchmarks, 46% of operations are
control flow, and eight benchmarks do not map if each control-flow operator requires
a dedicated PE.

We observe that much of the logic required to implement control flow is already
plentiful in the NoC. Each NoC switch is a crossbar that can be re-purposed to mux
values for control. Thus, to implement each control-flow operator, RipTide manipu-
lates a switch’s routing and ready/valid signals to provide the desired functionality.

RipTide’s router microarchitecture is shown in Fig. 6.7. The router shares routing
configuration and its data and valid crossbars with the baseline NoC. RipTide adds
a control-flow module (CFM) at a configurable number of output ports (in our case,
two output ports). The CFM determines when to send data to the output port and
manipulates inputs to the data switch to select which data is sent.

Control-flow module:The CFM takes eight inputs and produces five outputs that
control router configuration and dataflow through the network. The inputs are:

• cfg: configuration of the CFM (i.e., opcode);

6.3. RipTide Microarchitecture 81

1 cxn = A_cxn
2 forever:
3 A_ready = D_ready = 0
4 if A_valid && D_valid: # wait for A and D
5 # if D is true , pass through A;
6 # else discard A
7 noc_valid = D
8 A_ready = D_ready = noc_ready || !D
9 if D: wait for noc_ready

(a) Steer (True flavor).

1 forever:
2 # begin in Initial state
3 if A_valid:
4 cxn = A_cxn # pass through A
5 noc_valid = A_valid
6 D_ready = A_ready = noc_ready
7 B_ready = xxx # don’t care
8 wait for noc_ready
9 # transition to Block state

10 do until D_valid && !D:
11 cxn = B_cxn # pass through B
12 noc_valid = B_valid
13 D_ready = B_ready = noc_ready
14 A_ready = false # hold A at input
15 wait for noc_ready

(b) Carry.

Figure 6.8: Implementing control flow using NoC control signals.

• A_valid, B_valid, D_valid: whether inputs are valid;
• D: value of the decider;
• A_cxn and B_cxn: input ports for A and B; and
• noc_ready: backpressure signal from the output port.

From this, the CFM produces outputs:
• A_ready, B_ready, and D_ready: upstream backpressure signals that allow the

CFM to block upstream producers until all signals required are valid;
• noc_valid: the valid signal for the CF’s output; and
• cxn: which port (A_cxn or B_cxn) to route to the output port on the data switch.

Supported operations:The CFM can be configured for routing or for the control op-
erators in Sec. 6.1. Routing, e.g., out = A, is simple: just set cxn = A_cxn, noc_valid
= A_valid, and A_ready = noc_valid.

Other operators are more involved, but each requires only a small state machine.
Fig. 6.8 is pseudocode for steer and carry operators (Sec. 6.1). A steer forwards A if
D is true; otherwise, it discards A. To implement steer, the CFM waits for A and D to
be valid. If D is true, then noc_valid is raised, and the noc_ready signal propagates
upstream to A and D and the CFM waits for noc_ready, i.e., for the value to be
consumed. If D is false, then noc_valid is kept low, and A_ready and D_ready are
raised to discard these tokens.

Carry is more complicated. Carry begins in Initial state, waiting for a valid A
token. It forwards the token and transitions to Blocked state, where it forwards B
until it sees a false D token. See the pseudocode in Fig. 6.8b for details.

Control flow in the NoC adds small hardware overheads: Implementing control
flow in the NoC is far more energy- and area- efficient than in a PE, saving an estimated
40% energy and 22% area v. CGRA with all CF operations mapped to PEs (All PEs
in Fig. 6.15). The CFM deals only with narrow control signals and the 1b decider
value D. It does not need to touch full data signals at all; these are left to the pre-
existing data switch. Importantly, this means that the CFM adds no data buffers.
Instead, the CFM simply raises the *_ready signals to park values in the upstream
output channels until they are no longer needed.

82 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

By contrast, implementing control flow in a PE requires full data-width muxes
and, if an entire PE is dedicated to control, an output channel to hold the results.
Nevertheless, RipTide is sometimes forced to allocate a PE for control flow. Specifi-
cally, if a control-flow operator takes a constant or software-supplied value that is not
-1, 0, or 1, it currently requires µcore support.

Buffering of decider values:The CFM provides a small amount of buffering for
decider values. This is because loop deciders often have high fanout, which means that
the next iteration of a loop is likely blocked by one or more downstream consumers. To
remove this limitation, RipTide provides a small amount of downstream buffering for
1b decider signals, improving performance with minimal impact on area. The CFM
uses run-length encoding to buffer up to eight decider values with just 3b of additional
state, yielding up to 3.8× performance (on dmm) at an area of cost of < 1%.

6.4. EXPERIMENTAL METHODOLOGY
We evaluate a complete RipTide system: the compiler built using LLVM and

the microarchitecture fully implemented in RTL in an industrial, sub-28nm FinFET
process.

Compiler:RipTide’s compiler passes extend LLVM 12.0 [132] and we compile work-
loads with -Oz to optimize code size. RipTide’s compiler middle-end uses LLVM’s
flow-insensitive alias analyses for memory ordering. We evaluate both RipTide’s
SAT and ILP mappers (see Sec. 6.2.4), but unless otherwise specified we use the ILP
mapper. The ILP mapper uses CVXPY [72] and Gurobi 9.5 [91]. The SAT mapper
uses CaDiCal [31] to rewrite and simplify the problem’s clauses and then uses a new
parallel SAT solver, developed concurrently and based on YalSAT [30], to find a valid
mapping.

Hardware:RipTide is implemented completely in RTL, including the 6×6 CGRA,
RISC-V (RV32EMC) scalar core, and 256KB SRAM main memory. We use Cadence
Xcelium to verify correctness and measure performance. We synthesize RipTide using
Cadence Genus and a high-threshold-voltage, FinFET PDK with compiled memories.
To estimate power, we simulate full benchmarks post-synthesis and use Cadence Joules
to estimate power from annotated switching activities.

Baselines:The evaluation compares to several baselines—scalar, vector, Snafu, and
three ASICs—also implemented entirely in RTL, using the same design flow. All
baselines and RipTide use the same scalar core and main memory. The scalar baseline
is a simple, six-stage microcontroller1. The vector baseline adds a single-lane co-
processor [85]. Snafu is the state-of-the-art energy-minimal CGRA.

Benchmarks:We evaluate ten workloads important to the ULP domain on random
inputs. For the vector baseline, we vectorized all code by hand (except dfs, which
does not vectorize well). Snafu uses the vectorized code to generate its bitstreams.
For RipTide, we compile and run the plain C implementation of each benchmark.
The exceptions are sort, for which we use merge sort on the scalar core and radix
sort for RipTide (because it maps entirely onto the fabric), and dmm, for which, where
explicitly noted, we tune its C implementation to maximize efficiency.

6.5. EVALUATION
We evaluate RipTide to show that it is easy to program in a high-level language

and uses 25% less energy than the state-of-the-art energy-minimal design, while im-
proving performance by 17% on average and up to 2.5×. Moreover, control flow in
the NoC is essential for large workloads and reduces energy by up to 2.3×.

1This is a more energy-efficient and higher performance design than the scalar baseline in Ch. 5

6.5. Evaluation 83

Memory Scalar CGRA NoC Vector/CGRA/Accel Remaining

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS Avg

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

5

N
or

m
al

iz
ed

en
er

gy
(v

.
R

ip
T

id
e)

9.30 6.97 7.61 7.77 5.16 6.84 35.18 6.44 9.37

x x

Figure 6.9: Energy (v. RipTide) of scalar, vector, Snafu, RipTide across ten
benchmarks. RipTide uses 25% less energy than Snafu.

DMV

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

12

S
p

ee
du

p
(v

.
sc

al
ar

)

DMM

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC

0

2

4

6

8

10

12

DConv

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

SMV

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

SMM

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

SConv

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

Sort

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC

0

10

20

30

40

50

60

FFT

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC
0

5

10

15

20

BFS
S

ca
la

r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DFS

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x x

Avg

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

5

6

7

Figure 6.10: Speedup (v. scalar) of scalar, vector, Snafu, and RipTide across
ten benchmarks. RipTide is 17% faster than Snafu.

6.5.1 Main results
RIPTIDE compiles high-level code to its fabric:RipTide compiles, schedules,
and runs ten applications on its 6×6 fabric. For all but fft, RipTide offloads the
entire benchmark onto the fabric, including outer loops. For fft, a 6×6 fabric does not
have enough arithmetic or multiplier PEs, so we split fft into two separate functions.
Further, RipTide maps and runs dfs, which is not possible for the vector and Snafu
baselines (×s in the figures).

RIPTIDE saves energy:Fig. 6.9 presents energy of the scalar, vector, Snafu, and
ASICs normalized to RipTide. RipTide reduces energy by 6.6× v. scalar, 3.1× v.
vector, and 25% v. Snafu. RipTide uses less energy across the board. Fig. 6.9 breaks
energy into memory, scalar, vector/CGRA, and CGRA NoC. RipTide saves energy v.
scalar and vector because it does not fetch instructions, re-uses its configuration across
many inputs, and forwards operands directly from producers to consumers. RipTide
uses less energy than Snafu by reducing scalar computation: RipTide runs outer
loops on the fabric, but Snafu runs them on the scalar core. RipTide’s scalar core
fetches 86% fewer instructions than Snafu’s, eliminating pipeline control, register-file
access, and instruction fetch — as seen by RipTide’s lower memory energy in Fig. 6.9.

The only benchmark for which memory energy increases v. Snafu is fft. Snafu
uses scratchpads in the fabric for fft, which reduces main memory energy. Even
without scratchpads, RipTide shows an overall energy reduction. (RipTide cur-
rently lacks a programming interface for scratchpads, but can easily support them in
hardware.)

sconv shows how control-flow costs in RipTide move from scalar core to the
fabric (e.g., steer, carry). While RipTide reduces scalar energy, it adds fabric energy

84 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

(v. Snafu) to support outer loops. Scalar execution is a small fraction of overall
energy for sconv, so RipTide provides no benefit on this benchmark. Moreover,
comparing fabric energy for Snafu and RipTide on sconv shows that RipTide’s
microarchitectural additions cost little energy.

RIPTIDE runs C programs with near-ASIC efficiency:Fig. 6.9 also compares
RipTide to hand-coded, fixed-function ASICs for dmm, sort, and fft. RipTide uses
2.4× more energy on average than the ASICs while compiling programs directly from
C. RipTide compares especially favorably to dmm, using 46% more energy. The data
show that the cost of RipTide’s programmability is low.

RIPTIDE is faster than prior energy-minimal CGRAs:Fig. 6.10 shows per-
formance normalized to scalar. RipTide is 6.2×, 3.4×, and 17% faster than scalar,
vector, and Snafu. RipTide does especially well on bfs, with a 2.5× speedup v.
Snafu. The benefit comes from RipTide’s ability to run bfs’s irregular outer loop
on the fabric, whereas Snafu is bottlenecked on the scalar core because its fabric
runs only inner loops. The only benchmarks where RipTide underperforms Snafu
are dconv, sconv, and fft. The difference in performance comes down to implemen-
tation: we tailor applications to each architecture to minimize energy, not maximize
performance. On Snafu, we re-order loops to maximize vector length, minimizing
scalar work but adding some memory accesses; on RipTide, we can avoid these mem-
ory accesses by accumulating intermediate results in the fabric.

FU

4.8%
µCore

15.8%

NoC

27.1%

Other Scalar

2.5%

Memory47.9%

Figure 6.11: Area breakdown for a complete RipTide system. Area is
dominated by the CGRA fabric and main memory (SRAM + arbitration logic),
eaching taking about half of the system. The scalar core is just 2.5% of system
area. The NoC takes 54% of CGRA area, and PEs (µcore + FUs) take 42%.

RIPTIDE is tiny and has extremely low power consumption:The complete
RipTide system (CGRA, memory, and scalar core) is ≈ 0.5mm2. Fig. 6.11 breaks
down system area among its components. RipTide operates between 320µW and
910µW, with negligible leakage (< 3%) due to RipTide’s high-threshold-voltage pro-
cess. Overall, the complete system, including memory, achieves 180 MOPS/mW run-
ning a hand-tuned C implementation of dmm that unrolls twice along the output column
dimension. Without tuning, RipTide achieves 141 MOPS/mW on dmm.

6.5.2 RipTide v. prior low-power CGRAs
Table 6.2 compares RipTide against several recent CGRAs. We compare designs

across their general-purpose programmability, architectural parameters, and reported
performance, power, and efficiency. RipTide supports a broader range of programs
and is more energy-efficient than prior CGRAs.

Making a fair comparison:Table 6.2 gives absolute numbers for different designs
and does not re-scale them to normalize the node. These numbers are our best effort

6.5. Evaluation 85

HyCube
testchip? [243]

HM-HyCube
REVAMP � [26]

UE-CGRA†

[231,232]
Snafu�

[81]
RipTide�

(this work)

Irregular loops 7 7 3 7 3

Loop nesting 7 7 7 7 3

Memory ordering 7 7 7 7 3

Variable-latency ops 7 7 7 7 3

Node 40LP 22 TSMC 28 sub-28nm sub-28nm
Fabric dimensions 4×4 6×6 8×8 6×6 6×6
Fabric area (mm2) — 0.2 0.25 0.27 0.25
Frequency (MHz) 488 100 750 50 50
Memory size (KBs) 4 64 64 256 256

Benchmark fft Linear algebra fft fft fft dmm‡

Fabric power (mW) — 8.4 16.7 0.54 0.24 0.50
System power (mW) 140 — — 0.74 0.52 0.91
Performance (MOPS) 5380 — 625 71 62 164
Fabric efficiency (MOPS/mW) — 103 38 134 254 328
System efficiency (MOPS/mW) 26 — — 97 117 180
? Silicon implementation. † Post-P&R simulation. � Post-synthesis simulation. ‡Hand-tuned C software.

Table 6.2: Comparison of RipTide to other low-power CGRAs. RipTide
supports a broader set of programs while improving energy efficiency.

at accurately characterizing prior designs v. RipTide. Few prior CGRAs admit
meaningful comparison, however, because prior work reports performance, power,
and efficiency inconsistently.

Concrete numbers for energy efficiency are hard to come by. Many prior CGRAs
focus on performance [198, 240] or mapping [121, 138, 250] and report metrics (e.g.,
initiation interval) that are not the focus of RipTide. Others report relative re-
sults [174,232] or use high-level models [174,248] that make quantitative comparison
difficult.

Differences in measurement methodology also make it challenging to compare re-
ported results. Prior CGRAs often report total operation count, including, e.g., loads,
stores, and loop control, or are unclear about which operations are counted [62, 123,
187]. These numbers, though often reported as MOPS [62,123], are closer to MIPS as
defined for traditional CPUs. Table 6.2 counts only essential arithmetic operations,2

and we have verified with the authors of other designs in Table 6.2 that they count
MOPS the same way. Finally, many prior CGRAs report power for the fabric only,
excluding, e.g., the core and memory [26, 125, 187]. We report both fabric and full-
system power, and focus on the latter. Full-system MOPS/mW is the most important
metric for the applications targeted by RIPTIDE.

RIPTIDE is more programmable than prior CGRAs:Table 6.2 highlights a
number of programming features supported by RipTide that are unsupported by prior
CGRAs. In addition to making RipTide easier to program, these features improve
energy efficiency by allowing RipTide to offload a larger fraction of a program onto
the efficient CGRA fabric.

RIPTIDE is more energy-efficient than prior CGRAs:RipTide is the most
energy-efficient CGRA by a significant margin. Scaled to 22nm, both the HyCube
testchip [243] and UE-CGRA [231] achieve roughly 48 full-system MOPS/mW on fft.
RipTide achieves 117 full-system MOPS/mW, which is 2.4× better, even including
RipTide’s larger memory and despite fft being the only kernel to not fit entirely on
RipTide’s fabric. On dmm with loop unrolling, efficiency improves to 180 full-system
MOPS/mW.

2Specifically, 2n3 ops for dmm and 10n log2 n+O(n) ops for fft.

86 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

Using a different measurement methodology changes the absolute results dra-
matically, highlighting the challenge of making apples-to-apples comparisons between
CGRAs. If we count all operations, instead of only essential arithmetic (i.e., MIPS),
RipTide achieves 400 MIPS/mW on fft. If we measure only the fabric, RipTide
achieves 254 MOPS/mW and 859 MIPS/mW — increasing reported efficiency by 7.3×
v. full-system MOPS/mW.

Measuring only the fabric, a recent version of HyCube generated by REVAMP [26]
achieves 103 fabric-only MOPS/mW, averaging across several linear algebra bench-
marks. (A tuned, heterogeneous fabric achieves 172MOPS/mW.) RipTide achieves
328 fabric-only MOPS/mW on unrolled dmm. Meaningful comparisons thus require a
detailed understanding of what is being measured.

RIPTIDE’s area is similar to prior CGRAs:RipTide is somewhat larger than
prior CGRAs (7000 µm2/PE for RipTide, v. 5500 µm2/PE for HyCube [26]3 and
3900 µm2/PE for UE-CGRA). Differences in NoC design help explain these discrepan-
cies. UE-CGRA has no routers, instead routing values through PEs. HyCube’s NoC
accounts for 24% of fabric area, with each PE containing a 4×4 crossbar switch. Rip-
Tide’s NoC accounts for 54% (0.14µm2) of fabric area, but offers more connectivity
(more links and 8× 8 switches) and capability (dynamic flow control and control-flow
operators). Snafu’s 2D-mesh NoC is 0.11µm2 and uses the same switch design as
RipTide, showing that RipTide’s 2D-torus topology and CFMs add modest overhead
(< 0.03µm2).

RIPTIDE targets a different design point:As currently evaluated, RipTide is
much slower than prior CGRAs. We evaluate RipTide at 50 MHz, v. 100s of MHz
for prior designs. RipTide has significant slack at 50 MHz and could run much faster.
We have not yet pushed frequency further due to RipTide’s bufferless NoC and top-
down synthesis flow, which requires additional tooling to estimate worst-case critical
path. (A similar problem arises in FPGAs.) Frequency in the 10s of MHz is common
in ULP microcontrollers.

Nevertheless, lower frequency means that RipTide’s raw performance is well below
prior CGRAs: on fft, 62 MOPS for RipTide v. 5,380 MOPS for HyCube and 625
MOPS for UE-CGRA. Factoring out frequency, RipTide achieves 1.24 ops/cycle v. 11
ops/cycle for HyCube and 0.83 ops/cycle for UE-CGRA. RipTide’s lower ops/cycle
is partly by design: RipTide trades performance for efficiency by mapping a single
operation to each PE, whereas HyCube maps multiple operations per PE to maximize
utilization. This tradeoff makes sense for RipTide because it targets applications that
are limited by energy, not performance.

Combining RipTide’s low frequency and high energy efficiency yields extremely
low power consumption. RipTide draws 2–3 orders-of-magnitude less power than
HyCube and UE-CGRA. Only Snafu and RipTide draw less than 1mW — and this
is the entire system, including the 256KB main memory.

6.5.3 Compiler characterization
RipTide’s compiler effectively optimizes dataflow graphs, reducing operation count

by 27% while enforcing memory ordering v. an unoptimized DFG without ordering.
The compiler also reduces programmer effort: RipTide compiles from C with no
hand-coded assembly, requiring just 8.7 added LoC on average over the original C
(mostly for wrappers). Lastly the compiler is fast — the SAT mapper finds a solution
to each benchmark in <3min and uses only 4.7% more energy than the ILP mapper.

3HM-HyCube generated using REVAMP [26]. The HyCube testchip [243] area includes I/O pads,
etc., and is not directly comparable.

6.5. Evaluation 87

Memory Stream Arith CF

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS Avg

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

0

10

20

30

40

50

60

N
um

b
er

of
ge

ne
ra

te
d

P
E

s

114.00 65.00 70.00

Figure 6.12: Operator counts for ten different benchmarks. Starting with an
unoptimized, unordered baseline (Raw), compiler optimizations reduce operator
counts while enforcing memory ordering, making it feasible to map benchmarks to
hardware.

RIPTIDE’s compiler reduces operation count:Reducing operation count is im-
portant because operations consume PEs in RipTide’s fabric. Fig. 6.12 shows oper-
ation counts by type with different optimizations applied. The first bar is an unopti-
mized DFG mapped to RipTide. This DFG requires many PEs to map to hardware
and may yield incorrect results because it does not enforce memory ordering. The
second bar adds streams, operator fusion, and redundant control-flow elimination, re-
ducing operation count by 33%. The third bar adds unoptimized memory ordering,
which increases operation count by 82% to ensure correctness. Mapping this graph
to hardware is challenging due to its size. The fourth bar applies RipTide’s ordering
optimizations (Sec. 6.2), reducing operation count (v. the third bar) by 18%. The
fifth bar adds programmer-inserted annotations on pointers (C’s restrict keyword)
to better inform LLVM’s alias analysis, reducing operation count by 16%. The last bar
removes control-flow operations that map to RipTide’s NoC, reducing the number of
operations on PEs by 35%, demonstrating the benefit of RipTide’s control flow in
the NoC. Between RipTide’s compiler optimizations and implementation of control
flow in the the NoC, RipTide reduces operations mapped to PEs by 52% (first v.
last bar) while enforcing memory ordering.

C-code Assembly Annotations

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS
0

25

50

75

100

125

#
of

co
de

ad
di

ti
on

s

S
ca

la
r V

ec
to

r
S

N
A

F
U

R
ip

T
id

e

xx
Figure 6.13: The number of code additions for ten benchmarks running on
scalar, vector, Snafu, and RipTide. RipTide requires no hand-coded assembly
unlike vector and Snafu.

88 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

RIPTIDE reduces programmer effort:Fig. 6.13 counts code additions, including
lines of code (LoC) in C, assembly, and restrict annotations. RipTide has no
hand-written assembly, compiling directly from C, while 32% and 27% of the LoC
for the vector and Snafu baselines are hand-written assembly. On average, vector
adds 17 LoC v. scalar, Snafu adds 21 LoC v. scalar, and RipTide adds just 8.7 lines.
Annotations in RipTide represent a small fraction of the overall LoC, just 11.2% and,
on average, the programmer adds 4.5 annotations per benchmark.

D
M

V

D
M

M

D
C

on
v

S
M

V

S
M

M

S
C

on
v

S
or

t

F
F

T

B
F

S

D
F

S
101

102

103

T
im

e
(s

)

(a) Compilation time.

D
M

V

D
M

M

D
C

on
v

S
M

V

S
M

M

S
C

on
v

S
or

t

F
F

T

B
F

S

D
F

S

A
vg

0.0

0.5

1.0

N
or

m
al

iz
ed

en
er

gy
(v

.
IL

P
)

1.
06 1.

06 1.
06 1.

08

1.
02 1.

14

0.
98 1.

03
1.

02
1.

02 1.
05

(b) Normalized energy.

Figure 6.14: Compilation time (16 threads, Intel i9-9900K) and normalized
energy (v. ILP) of SAT and ILP mappers. SAT is 15.1× faster than ILP, but uses
4.7% more energy.

ILP v. SAT:Fig. 6.14a shows the end-to-end compilation times for RipTide using
its SAT and ILP mappers. Fig. 6.14b compares the energies of the resulting mappings.
SAT is 15.1× faster than ILP on average, finding solutions to most benchmarks in
under a minute. Rapid compilation makes SAT appropriate for iterative software
development. On the other hand, ILP produces mappings that use 4.3% less energy
on average, making it ideal for final optimization prior to deployment.

The consistently narrow energy gap between SAT and ILP suggests that good
solutions are dense in RipTide; i.e., any valid mapping found by SAT is close to the
optimal energy from ILP. RipTide does not time-multiplex PEs, so mapping affects
energy largely through routing distance. But the loss in routing distance is constrained
by routability (i.e., any valid mapping will tend to place dependent operations close
to one another), and the energy impact of routing distance in RipTide is reduced
by its bufferless NoC. These observations help to explain why SAT performs well in
RipTide.

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

R
ip

T
id

e
N

o
C

F
iN

A
ll

P
E

s
F

us
ed

x x x x x x x x
Figure 6.15: Control flow in the NoC saves energy. RipTide uses 45%, 40%,
and 27% less energy than RipTide w/ No CFiN, a fabric where all CF ops are
PEs (“All PEs”), and a fabric that fuses CF ops into PEs (“Fused”).

6.6. Conclusion & Architectural Implications 89

6.5.4 Control flow in the NoC saves energy & area
Fig. 6.15 quantifies the benefits of implementing control flow in the NoC. From

left to right, the plot shows energy on:
• RipTide: Control flow implemented in the NoC (CFiN).
• No CFiN: Control flow mapped to PEs on a 6×6 fabric.
• All PEs: Control flow mapped to PEs, and fabric size increased as necessary to

fit each benchmark.
• Fused: One control-flow operator fused into each PE, and fabric sized increased

as necessary to fit each benchmark.
We synthesize the first two configurations to estimate energy, while for the latter two
configurations we extrapolate energy using area and power estimates for control-flow
modules and PEs derived from the synthesized configurations.

RipTide uses the least energy: 45% less than No CFiN, 40% less than All PEs,
and 27% less than Fused. RipTide’s energy benefit stems from CFiN avoiding the
overhead of a full PE. Other configurations also have unique problems. No-CFiN is
possible only for dmv and smv, which are small enough to map to the same RipTide
fabric; other workloads have too many control-flow operators to map. The All PEs and
Fused configurations add many control-flow PEs, wasting energy and area: RipTide
is 22% and 17% smaller than All PEs and Fused, respectively.

6.6. CONCLUSION & ARCHITECTURAL IMPLICATIONS
This chapter presented RipTide, the final piece in the new ULP system stack.

RipTide’s dataflow compiler makes it easy for a programmer to access the energy-
efficiency of it’s co-designed CGRA. RipTide provides a rich set of control-flow op-
erators, letting it support arbitrary control flow and memory access on the CGRA
fabric. It implements these primitives without tagged tokens and offloads most con-
trol operations into its programmable on-chip network, saving energy and hardware
resources. RipTide compiles applications written in C while using 25% less energy
v. Snafu and 6.6× less v. a von Neumann core.

So where is the trade-off?Fig. 6.9 and Fig. 6.10 compare the energy and perfor-
mance for dmm on RipTide v. an equivalent ASIC. RipTide does not compromise
much on energy or performance — coming within 46% and 3%, respectively — but it
is not a free lunch. There is a high area cost for RipTide’s programmability: Rip-
Tide is 57× larger than the ASIC.4 The question is, is RipTide’s programmability
worth the extra area?

RipTide area is inflated partly because of low utilization on PEs that perform
outer loops. RipTide only supports one operation per PE, so entire PEs are consumed
even if an operation fires rarely. Ch. 7 will discuss future designs that address this
constraint by allowing limited time-multiplexing, either at a fine [248] or coarse [174]
granularity.

Regardless, the area difference shows potentially large cost savings from ASICs,
so long as a computation is performed frequently enough to overcome ASICs’ upfront
design and verification costs. Standardized, pervasive tasks like JPEG compression
and wireless communication protocols are good candidates for ASICs. But if the
computation is prone to change or used infrequently, then this cost advantage rapidly
disappears.

4This is without including main memory, which is half of chip area. Also, dmm is an extreme case;
e.g., RipTide is 9× larger than fft. On fft, the ASIC yields larger improvements in energy (saving
67%) and performance (by 62%) v. RipTide. This is because RipTide has too few resources to
offload the entire fft kernel and the ASIC uses scratchpads for twiddle factors.

90 Chapter 6. RipTide: a programmable, energy-minimal dataflow compiler
and architecture

“Garden of ASICs”: Some have proposed that, with increasing transistor budgets
and stagnating power budgets, processors should embrace extreme heterogeneity and
assemble a large number of distinct ASICs [228,237]. The “garden of ASICs” approach
lets architects do something with extra transistors, but it significantly increases sys-
tem design and verification cost. Moreover, it creates herculean challenges in system
integration, as there is no standard programming interface for ASICs, obsolescence is
monotonic and likely inevitable, and programs must be somehow partitioned between
ASICs and cores with accompanying data-coordination issues.

RIPTIDE suggests an alternative approach:Rather than spend area on ASICs
that will idle most of the time, instead build an energy-minimal, programmable
dataflow fabric. The two designs take similar area with a few dozen ASICs. And
the dataflow fabric is cheaper to design, more broadly applicable, and easier to use —
programs can be simply compiled for a different target. Finally, as a general-purpose
design, programmable dataflow fabrics can create a self-sustaining ecosystem that ag-
gregates optimizations and achieves sufficient scale to justify cutting-edge silicon. All
told, while dataflow fabrics like RipTide are not a replacement for ASICs, they will
play an important role in improving the efficiency of general-purpose processing as
designs are increasingly constrained by energy instead of area, and they will reduce
the demand for specialized hardware to accelerate the majority of applications.

91

Chapter 7

Future work

This thesis has contributed a new ULP system stack that opens up many future
research directions. In particular, the success of Snafu and RipTide makes it possible
to consider research questions besides those to do with energy efficiency. This chapter
will discuss future work on improving area efficiency, performance, and compilation
in the context of CGRAs.

7.1. QUANTIFYING THE PROGRESS MADE

M
S

P
43

0

C
or

te
x-

M
3

S
ca

la
r

R
ip

ti
de

101

103

E
ne

rg
y

sa
vi

ng
s

(v
.

M
S

P
43

0)

1.0

3.9

292.7

1913.3

(a) Energy savings.

M
S

P
43

0

C
or

te
x-

M
3

S
ca

la
r

R
ip

ti
de

10−1

100

101

E
ffi

ci
en

cy
(M

O
P

S
/m

W
)

0.03

0.13

9.5

64.0

(b) Efficiency.

M
S

P
43

0

C
or

te
x-

M
3

S
ca

la
r

R
ip

ti
de

100

101

102

S
p

ee
du

p
(v

.
M

S
P

43
0)

1.0

11.7
19.4

146.5

(c) Speedup.

Figure 7.1: Energy savings, efficiency, and speedup v. MSP430 for neural
network inference. RipTide saves 1676× energy and is 235× faster v. the
MSP430.

Fig. 7.1 quantifies the significant progress that this thesis has made towards a
new ULP, energy-minimal sensor system stack. We compare an MSP430, Cortex-
M3 (STM32L15RE [9]), and our scalar design to RipTide running neural network
inference (the network is a derivative of LeNet [134]). For the MSP430 and the Cortex-
M3, we run the network on-device to measure latency and estimate power using a
digital mulitimeter. For our scalar design and RipTide, we implement each using
a high-threshold voltage, industrial-grade process and use a post-synthesis annotated
switching model to estimate power (same methodology as in Sec. 6.4). Fig. 7.1a shows
energy savings: our scalar design is already an aggressive baseline, saving 292× energy
v. MSP430 and Cortex-M3; RipTide improves even further, saving a massive 1913×.
Even adjusting for process technology, RipTide saves ≈ 323× energy v. MSP430,
suggesting that a significant portion of energy savings comes from the architecture
and not from process technology scaling. Fig. 7.1b and Fig. 7.1c show similar trends
in efficiency and speedup. RipTide achieves 64MOPS/mW , 6.7× greater than our
scalar design, which is already 73× better than the Cortex-M3. It is also 146×, 12.5×,
and 7.6× faster than the MSP430, Cortex-M3, and our scalar design, respectively.
Together the energy savings, efficiency, and speedup of RipTide v. MSP430, Cortex-
M3, and our scalar design represent significant progress and make RipTide an ideal
platform for new applications in the ULP domain.

92 Chapter 7. Future work

Transmit always

Scalar

RipTide

RipTide (Summary)

Theoretical (10TOPS/W)

0 10000 20000 30000 40000 50000

Problem size (input bytes)

0

5

10

15

20

25

L
if

et
im

e
(y

ea
rs

)

Target
lifetime

QQVGA (160x120)

Figure 7.2: Device lifetime as a function of problem size. A RipTide-based
system smartly discarding uninteresting data achieves similar lifetime to a
hypothetical system with a 10TOPS/W processor. RipTide (Summary), which
only transmits a summary of captured data, increases lifetime even more.

7.1.1 Is compute energy efficiency still a bottleneck?
With the progress that has been made, the natural question is whether the energy

efficiency of compute is still the bottleneck in RipTide-based ULP sensor systems. To
answer this question, we modeled device lifetime of such systems as a function of prob-
lem size with goal of achieving a five year lifetime processing a QQVGA (160× 120)
frame once every five seconds. Device lifetime is directly related to energy efficiency
(in battery-powered systems), and problem size is a proxy for the amount of compute
required and the amount of data that needs to be transmitted. Fig. 7.2 shows two
RipTide-based systems (red) as well as a system that transmits all data collected
(blue), a system similar to Sonic that relies on a scalar MCU (green), and a hypo-
thetical system that achieves 10TOPS/W (black). Each system is composed of 1) a
single AA battery, 2) a sensor (similar to the HM01B0 ULP camera), 3) an ULP MCU
(e.g., scalar, RipTide, or hypothetical), and 4) a bluetooth (BLE) radio. Besides the
transmit-all configuration, each system is modeled to run a neural network similar to
those in Sonic to smartly discard uninteresting data. Assuming interesting events
are somewhat rare, this means these systems transmit infrequently, approximately
every 20 minutes (v. 5s interval of sensor readings). Finally, RipTide (Summary)
models an application that only sends a short summary of captured data; this could
be the result of classification (i.e., class label) or it could be a fragment of data deemed
interesting.

RipTide-based systems achieve the five-year lifetime target while processing QQVGA
frames, while the transmit-all system and the Sonic-like, scalar-MCU system fall well
short. In fact, the RipTide-based system (lighter red) actually gets quite close to the
hypothetical system that achieves a much higher efficiency of 10 TOPS/W. This sug-
gests that the energy efficiency of compute is no longer the bottleneck — rather, the
energy efficiency of the radio is now more important. RipTide (Summary) (dark red)
supports this conclusion; efficient onboard compute that summarizes and/or com-
presses sensor data, minimizes communication energy and extends lifetime even more.
Thus, RipTide has solved the problem of compute efficiency for a variety of applica-
tions, opening the door to exploring to new problems.

7.2. Future research directions 93

7.2. FUTURE RESEARCH DIRECTIONS
Many open problems remain in ULP sensor systems and specifically power-constrained

CGRAs. They can be classified into three categories: increasing area efficiency, scal-
ing performance, and expanding programmability. Progress on each of these fronts
will be important to drive adoption.

7.2.1 Area
RipTide’s programmability and energy efficiency come at the cost of area. Rip-

Tide is larger than several ASICs (e.g., dmm, fft, and sort) combined. Thus, im-
proving area efficiency is an important goal for future designs, especially to lower
fabrication costs and make even larger, more-capable fabrics competitive.

Time-multiplexing:Area efficiency can be improved by increasing resource utiliza-
tion through time-multiplexing. RipTide only supports a single operation per PE,
so resources are underutilized when operations fire rarely. This is especially true for
operations in outer loops. Mapping and time-multiplexing multiple operations on the
same PE, will significantly improve utilization. This increases area efficiency, makes
it possible to map larger programs onto smaller fabrics, and potentially decreases
compilation times by simplifying mapping constraints.

There are two possible approaches: fine-grain [248] and coarse-grain [174]. In the
fine-grain approach, multiple operations share a single PE and incoming operands
trigger reconfiguration of the PE. In the coarse-grain approach, a kernel is split into
multiple subkernels with the CGRA switching between them when progress is stalled
on the active subkernel. The key to amortizing the cost of coarse-grain reconfiguration
is for the CGRA to buffer several inputs so when reconfiguration occurs, multiple
instances of the subkernel can be initiated.

There is a role for the compiler in both the fine- and coarse- grained approaches.
For fine-grain multiplexing, the compiler needs to determine which operations should
multiplex. This may mean reasoning about the program’s critical path, only time-
multiplexing operations off this path. For coarse-grain multiplexing, the compiler
needs to determine where to split a kernel, while considering live-in and live-out values
and the cost of reconfiguration.

Alternative control-flow models:Area efficiency can also be improved by reducing
the resources needed by a program. In particular, supporting arbitrary control flow
requires allocating a significant amount of resources (especially routing) to control-flow
operations. Alternative control-flow models, therefore, may improve area efficiency if
they require fewer operations. RipTide’s steering-based (φ−1) control-flow model
requires steering gates for every incoming value in untaken branches. Instead, there
may be situations where selection (φ) or even predication use less resources and/or
achieve better performance. It is also possible to mix these control-flow models to
minimize area, maximize resource utilization, or even increase performance.

Optimizing the topology:Finally, an additional way to improve area efficiency is
to optimize the CGRA topology and resource mix so that they better match the
requirements of applications [26, 155]. For example, a CGRA fabric could be special-
ized [247] for a set of applications, like linear algebra kernels, to significantly reduce
area (> 2×). This entails merging the computation graphs of a set of applications to
form a minimally sized common graph that can be used to generate CGRA hardware.
The common graph, however, is only as representative as the set of applications are.
Thus, there is a trade-off between area and programmability that will require collab-
oration between hardware designers and application programmers to strike the right
balance.

94 Chapter 7. Future work

7.2.2 Performance
Performance is another dimension future designs could seek to improve. CGRAs

like RipTide already outperform (in-order) scalar and vector designs by unlocking a
large amount instruction-level parallelism. But there are other ways to improve per-
formance, including thread-level parallelism, speculation, caching (and other memory
hierarchy optimizations) and compiler optimizations (e.g., loop unrolling, etc.). Scal-
ing up the performance of RipTide-like designs could make them competitive in
different computing domains like wearables or mobile phones.

Parallelization
Exploiting thread-level parallelism is a natural next step to boost performance

for power-constrained CGRAs. Multiple threads could be mapped to the same fabric,
running in parallel on different PEs or time-multiplexing onto the same PEs. Multiple
threads could also be mapped to separate fabrics. RipTide is tiny (< 0.5mm2)
compared to even a wearable CPU and could be replicated hundreds of times to
support many threads in parallel. This design offers two significant benefits over vector
processors/GPUs. First, threads would not run in lockstep. This means threads would
better exploit instruction-level parallelism and would be able to diverge without under-
utilizing resources. Second, the design could scale better v. vector processors/GPUs,
since it does not rely on a monolithic register file. With that said, there are many
interesting challenges with this design. Questions remain regarding thread scheduling
and synchronization, memory-hierarchy design, and the programming interface, to
name a few.

Programming the memory
As performance is scaled with more threads, memory becomes a bottleneck. New

memory hierarchies and programming models need to be developed to improve data
placement, which will minimize data movement and maximize utilization of available
memory bandwidth.

Memory hierarchy:Future CGRA memory hierarchies will be composed of both
caches and scratchpads. Caches simplify the programmer’s job, but raise the question
of coherence. Coherence is especially challenging since CGRAs (potentially running
many different threads) may have tens or even hundreds of memory accessors. Scratch-
pads offer an alternative, but complicate the job of the programmer. The CGRA needs
to a provide a rich set of synchronization primitives so that code is correct and per-
formant.

Programming models:Memory management can be simplified with novel program-
ming models. Using higher-level abstractions (e.g., functional languages or DSLs)
might allow the compiler to generate code to manage a hierarchy of scratchpads.
These interfaces and/or programmer annotations might also allow the compiler to
co-locate data with computation by suggesting efficient ways of partitioning data.
This is especially important for future CGRA fabrics that might contains hundreds
of PEs. Partitioning memory to physically locate computation close to data improves
performance and energy-efficiency by minimizing data movement.

Speculation
Speculation is another lever future CGRA designs could pull to improve perfor-

mance. The key is to dynamically eliminate sequentializing dependencies without
costing significant resources or energy on misspeculations.

Loop speculation: Speculating on loop-carried dependencies would improve perfor-
mance by minimizing initiation interval. It would also increase resource utilization as

7.2. Future research directions 95

there would be more work in flight. Further, RipTide already maintains the order
of loop iterations so misspeculations could be handled by restoring fabric state from
a checkpoint of an earlier loop iteration. However, memory accesses become more
expensive: speculative stores would need to be buffered and subsequent loads checked
against these buffered stores.

Memory speculation:Another form of speculation that would boost performance is
memory speculation. It is difficult for the compiler to prove memory operations will
not alias, resulting in extra dependencies between operations. These dependencies,
like loop-carried dependencies in loop speculation, sequentialize execution and may
lengthen critical paths. However, many memory operations, at runtime, will not
access the same locations, so enforcing the dependencies between them wastes time
and resources. Instead, a transactional memory system that speculates on whether
memory operations will alias could make sense. Detecting true aliases and recovering
after an aborted transaction, though, are challenging especially in CGRAs where,
unlike e.g., OoO cores, there may be no centralized control to initiate a flush.

Code refactoring
The programmer and the compiler can also play a role in increasing performance,

by applying known code transformations in the new context of CGRAs, to refactor
code. These transformations include loop-unrolling to increase instruction-level par-
allelism (which has been explored for CGRAs [119]), automatic loop parallelization
and vectorization, and code-motion to flatten dependence chains and reduce loop
initiation intervals. RipTide provides evidence that these transformations can be
effective; RipTide with hand-coded loop-unrolling on dmm is 1.86× faster and is 29%
more efficient than without.

The CGRA context does change the way these transformations are applied v.
traditional compilers targeting von Neumann machines, as there is a strict limit to
the number of operations that can be mapped onto the fabric. There will be a need
for an accurate cost model with a feedback loop between the middle-end optimizer of
a compiler and its backend-mapper (that solves for the mapping to CGRA hardware)
to inform which of the transformations are undertaken.

7.2.3 Compilation
Improving compilation for CGRAs is another important topic for future work.

While RipTide made significant progress on this, it has a few limitations, including
no support for methods and single-entry-multi-exit loops, that could be addressed in
future iterations of its compiler. There are also some more fundamental questions
regarding how programs are represented, how to accelerate the mapping of a program
to hardware, and the correct programming interface.

Choosing the right IR
CGRA compilation, like VLIW compilation, is dependent on the available hard-

ware resources (i.e. composition of the CGRA fabric). This means that if there are
several devices with different CGRA fabrics, a program needs to be recompiled for
each. Further low-level hardware details need to be exposed to the compiler so that
it can correctly optimize and map a program. This complicates not only compiler de-
velopment, but also increases compilation complexity, reduces portability, and makes
virtualization (which is especially important in the modern datacenter computing
context) challenging since the programmer must compile for a specific fabric.

Instead, compilation could be split into two phases, one phase that is device-
agnostic and another that optimizes for a specific device. This is similar to the
approach taken for Nvidia GPUs; first CUDA programs are compiled to PTX [6]

96 Chapter 7. Future work

(device-agnostic byte-code) and then the PTX is optimized on the host machine for
the target device. For CGRAs, compilation would be split between dataflow com-
pilation and mapping. Dataflow compilation converts a program to an intermediate
representation (IR) that can be targeted to many different CGRAs with potentially
different ISAs. Then, mapping schedules and optimizes the IR to a specific fabric and
its ISA. The key is developing an IR for a program that captures the right amount
of information to facilitate this mapping. Too simple, and the mapper may not have
enough information to perform low-level, device-specific optimizations. Too complex,
and the mapper will be complicated, making mapping slow and development costly.
And at the same time, the IR should maintain backwards compatibility, while being
extensible as hardware matures and gains new capabilities.

Scalability
Mapping a program to a specific CGRA fabric is challenging, since it reduces to

finding a colored subgraph isomorphism between a program’s computation graph and
CGRA hardware resources. For relatively small programs (small number of opera-
tions), RipTide’s ILP- and SAT- based mappers do well to find valid mappings, but
as program size increases mapping times increase superlinearly. For example, while
DMV (12 operations) takes ≈ 10s to map onto a 6 × 6 fabric, DFS (50 operations)
takes just under three minutes (≈ 18× more time for 4.1× more operations) with SAT
and more than an hour using ILP. New encoding methods and ways of solving these
constraint-based problem are required.

Heuristic-based approaches have also showed promise for CGRAs [22, 121, 138,
141,250,258] and are widely used for place & route for ASIC design and FPGAs [37].
However, they may require an overprovisioning of resources — routes in particular —
and may be suboptimal v. constraint-based formulations. This might be a necessary
tradeoff, though, as a boost in compilation performance can enable future compilers
to use mapping in a feedback loop to choose which optimization (e.g., loop unrolling,
loop vectorization, etc.) passes to apply to maximize/minimize different application
objectives. Further, depending on the optimization, the suboptimality of heuristic-
based mapping may be moot.

Changing the programming interface
The programming interface also affects compilation by dictating the amount and

type of information supplied to the compiler. Program annotations or domain spe-
cific languages (DSLs) can better expose program structure, enabling the compiler to
reduce memory dependences (by simplifying alias analysis), increase parallelization,
or pipeline loops to name a few optimizations. Different programming interfaces may
also simplify the programmer’s job by providing higher-level primitives.

However, rather than redesigning the entire system for a specific interface or DSL,
future interfaces should be built on top of systems with general-purpose program
support like what RipTide provides. Compilers can use the general-purpose support
as a crutch when programs only partially fit a future DSL’s model. This increases the
applicability of DSLs and prevents one-off designs that require significant hardware
changes when application requirements change.

97

Chapter 8

Conclusion

This thesis has presented a new ULP sensor system stack that will enable future ap-
plications of “beyond-the-edge” intelligence. The overarching goal has been to reduce
energy at each level of the stack without sacrificing programmability. From software
to silicon, we have contributed the following systems to meeting this goal:

• Sonic is a machine inference software runtime system for intermittently operat-
ing, energy-harvesting devices. It leverages the regular structure of inference to
reduce the costs of guaranteeing correct execution under frequent power failures.
Sonic was the first to demonstrate inference on intermittent, energy-harvesting
devices and showed the importance of accurate, local inference. It also exposed
the inefficiencies of existing commercial devices and stressed the need for new
architectures.

• Manic was our first response to the need for new architectures. Manic devel-
oped vector-dataflow execution to amortize the cost of instruction fetch (vector
execution) and minimize data supply energy (VRF accesses) by forwarding in-
termediates directly from producers to consumers (dataflow execution). Manic-
Silicon showed the benefits of the vector-dataflow execution in a real testchip
prototype, but also exposed the limitations of the implementation, which wasted
energy reconfiguring shared pipeline resources from cycle-to-cycle.

• Snafu generates ULP CGRAs that address Manic’s limitations. Snafu im-
plements spatial-vector-dataflow execution, where each PE is assigned a single
operation for the duration of a kernel’s execution, to eliminate the cost of re-
configuring shared pipeline resources. It also implements a bufferless NoC to
reduce data supply energy and supports asynchronous dataflow without expen-
sive tag-token matching. At the same time, Snafu maximizes flexibility by
taking a “bring-your-own-functional” unit approach that allows designers to eas-
ily integrate custom operations. Snafu is competitive with ASIC designs while
maintaining a high-degree of programmability. Through iterative and selective
specialization, Snafu can further close the gap to ASIC designs.

• RipTide observes that, the more computation offloaded to an ULP CGRA
fabric, the more efficient the overall system. It develops a dataflow compiler
and ULP CGRA architecture that target programs written in C to reduce pro-
grammer effort (v. systems like Snafu that require hand-coded assembly) in
offloading computation. It introduces a general-purpose control-flow model to
support a wide variety of program idioms, including irregular memory accesses
and deeply-nested loops. Control-flow operations are conveniently and efficiently
implemented using existing resources in RipTide’s on-chip network. RipTide
achieves the best of both worlds — it narrows the gap to ASIC designs even more

98 Chapter 8. Conclusion

than Snafu, while improving on programmability. Compared to COTS MCUs,
RipTide demonstrates the significant progress made by this thesis, achieving
2–3 orders of magnitude better energy and performance.

These contributions form the basis of a new energy-minimal, ULP sensor system
stack. They show that extreme energy-efficiency can be achieved without significantly
compromising on programmability. This is the power of rethinking the entire stack;
optimizing at multiple levels at once, reduces energy, increases performance, and ul-
timately enables new applications.

99

Appendix A

Constraint-based scheduling

A.1. SNAFU’S MAPPER

Input Explanation

V Set of DFG vertices
E Set of DFG edges
N Set of hardware nodes (PEs)
R Set of hardware routers
L Set of hardware links
Cvn(V,N) = 1 if v can map to n Vertex-node compatibility matrix
Hln(L,N) = 1 if l originates from n Link-to-node matrix
Hnl(N,L) = 1 if l comes from n Node-to-link matrix
Hlr(L,R) = 1 if l originates from r Link-to-router matrix
Hrl(R,L) = 1 if l comes from r Router-to-link matrix

Variable Explanation

Mvn(V,N) = 1 if v is mapped to n Vertex-to-node matrix
Mel(E,L) = 1 if e is mapped to l Edge-to-link matrix

Table A.1: Inputs & variables of Snafu’s ILP formulation.

Table A.1 lists the inputs and variables of the Snafu’s ILP formulation for map-
ping. The goal of the mapper is to solve for Mvn and Mel, which map a DFG’s
vertices to hardware PEs (hardware nodes) and a DFG’s edges to hardware links,
respectively. Matrix Cvn captures the compatibility of a DFG’s vertex-to-hardware
node (i.e., a memory operation must be mapped to a memory PE). Matrices Hnl, Hln,
Hrl, Hlr, describe the topology of the CGRA fabric by specifying the connectedness
of links to hardware nodes and routers.

Objective: minimize
∑

e∈E,l∈LMel(e, l) subject to

Constraint Explanation

∀v ∈ V, n ∈ N,Mvn(v, n) ≤ Cvn(v, n) Vertices are mapped to compatible nodes

∀v ∈ V,
∑

n∈N Mvn(v, n) = 1 Every vertex must be mapped to a node

∀n ∈ N,
∑

v∈V Mvn(v, n) ≤ 1 No node can be used by more than one vertex

∀e ∈ E, r ∈ R,
∑

l∈LMel(e, l)Hlr(l, r) =
∑

l∈LMel(e, l)Hrl(r, l) Flow into a router must equal the flow out

∀e ∈ E,n ∈ N,
∑

l∈LMe,l(e)Hnl(n, l) =Mvn(src(e), n) If a vertex is mapped to a node, then the output edges
are mapped to outgoing links

∀e ∈ E,n ∈ N,
∑

l∈LMe,l(e)Hln(l, n) =Mvn(dst(e), n) If a vertex is mapped to a node, then the input edges
are mapped to incoming links

∀l ∈ L, e1 ∈ E,Mel(e1, l) +maxe2∈E|src(e1)6=src(e2)Mel(e2, l) ≤ 1 Edges that do not share the same source are not
mapped to the same links

src(e) := v ∈ V and v is the source of e dst(e) := v ∈ V and v is the destination of e

Table A.2: Snafu’s ILP formulation.

Table A.2 describes Snafu’s (binary) ILP formulation for mapping. The formu-
lation minimizes average routing distance given the constraints in the table.

100 Appendix A. Constraint-based scheduling

A.2. RIPTIDE’S MAPPER

Input Explanation

V Set of DFG vertices
E Set of DFG edges
N Set of hardware nodes (PEs & CF-modules)
F Set of CF-modules F ⊂ N
R Set of hardware routers
L Set of hardware links
Cel(E,L) = 1 if e can map to l Edge-link compatibility matrix
Cvn(V,N) = 1 if v can map to n Vertex-node compatibility matrix
Hln(L,N) = 1 if l originates from n Link-to-node matrix
Hnl(N,L) = 1 if l comes from n Node-to-link matrix
Hlr(L,R) = 1 if l originates from r Link-to-router matrix
Hrl(R,L) = 1 if l comes from r Router-to-link matrix

Variable Explanation

Mvn(V,N) = 1 if v is mapped to n Vertex-to-node matrix
Mel(E,L) = 1 if e is mapped to l Edge-to-link matrix

Table A.3: Inputs & variables of RipTide’s ILP & SAT formulations.

Table A.3 lists the inputs and variables of RipTide’s SAT and ILP formulations for
mapping. The inputs and variables are quite similar to those for Snafu’s formulation.
The goal of the mappers is to solve for Mvn and Mel, which map a DFG’s vertices to
hardware nodes and a DFG’s edges to hardware links, respectively. However, there
are two primary additions v. Snafu’s formulation. First, RipTide adds matrix
Cel, which captures the compatibility of a DFG’s edge-to-hardware link, and is used
to ensure that incoming and outgoing ports match. This is unnecessary in Snafu
because all operations in Snafu have a single outgoing value and the Snafu µcore
includes a router that makes an all-to-all connection between incoming network ports
and internal FU ports. Second, RipTide makes a distinction between PEs and CF-
modules (both hardware nodes) because CF-modules, when unused, can pass through
a signal.

A.2.1 ILP formulation

Objective: minimize
∑

e∈E,l∈LMel(e, l) subject to
Constraint Explanation

∀e ∈ E, l ∈ L,Mel(e, l) ≤ Cel(e, l) Edges are mapped to compatible links

∀v ∈ V, n ∈ N,Mvn(v, n) ≤ Cvn(v, n) Vertices are mapped to compatible nodes

∀v ∈ V,
∑

n∈N Mvn(v, n) = 1 Every vertex must be mapped to a node

∀n ∈ N,
∑

v∈V Mvn(v, n) ≤ 1 No node can be used by more than one vertex

∀e ∈ E, r ∈ R,
∑

l∈LMel(e, l)Hlr(l, r) =
∑

l∈LMel(e, l)Hrl(r, l) Flow into a router must equal the flow out

∀e ∈ E,n ∈ N |n /∈ F,
∑

l∈LMe,l(e)Hnl(n, l) =Mvn(src(e), n) If a vertex is mapped to a non-CF node, then the
output edges are mapped to outgoing links

∀e ∈ E,n ∈ N |n /∈ F,
∑

l∈LMe,l(e)Hln(l, n) =Mvn(dst(e), n) If a vertex is mapped to a non-CF node, then the
input edges are mapped to incoming links

∀l ∈ L, e1 ∈ E,Mel(e1, l) +maxe2∈E|src(e1)6=src(e2)Mel(e2, l) ≤ 1 Edges that do not share the same source are not
mapped to the same links

∀e ∈ E,n ∈ F,
∑

l∈LMel(e, l)Hln(l, n) +
∑

v∈V Mvn(v, n) ≥
∑

l∈LMel(e, l)Hnl(n, l) Unused CF-modules can pass through edges

∀e ∈ E,n ∈ F,
∑

l∈LMel(e, l)Hln(l, n) ≤
∑

v∈V Mvn(v, n) +
∑

l∈LMel(e, l)Hnl(n, l) Unused CF-modules can pass through edges

∀e ∈ E,n ∈ F,
∑

l∈LMel(e, l)Hnl(n, l) ≥Mvn(src(e), n) If a vertex is mapped to a CF node, then the output
edges are mapped to outgoing links

∀e ∈ E,n ∈ F,
∑

l∈LMel(e, l)Hln(l, n) ≥Mvn(dst(e), n) If a vertex is mapped to a CF node, then the input
edges are mapped to incoming links

src(e) := v ∈ V and v is the source of e dst(e) := v ∈ V and v is the destination of e

Table A.4: RipTide’s ILP formulation.

A.2. RipTide’s mapper 101

Table A.4 describes RipTide’s (binary) ILP formulation. It is similar to Snafu’s
formulation, sharing several constraints and the same objective of minimizing average
routing distance. However, RipTide’s formulation draws a distinction between CF-
modules and PEs that requires additional constraints to allow unused CF-modules
to pass through values and used CF-modules to effectively act in the formulation as
if they were PEs. It also ensures that ports match by constraining edges to certain
hardware links according to matrix, Cel.

A.2.2 SAT formulation

Clause Explanation

∀e ∈ E, l ∈ L|Cel(e, l) = 0,¬Mel(e, l) Edges are mapped to compatible links

∀v ∈ V, n ∈ N |Cvn(v, n) = 0,¬Mvn(v, n) Vertices are mapped to compatible nodes

∀v ∈ V,ExactlyOne({Mvn(v, n)|n ∈ N}) Every vertex must be mapped to a node

∀n ∈ N,AtMostOne({Mvn(v, n)|v ∈ V }) No node can be used by more than one vertex

∀r ∈ R, e ∈ E,∨l|Hrl(r,l)Mel(e, l) ⇐⇒ ∨Hlr(l,r)Mel(e, l) An edge mapped to incoming link to a router must
also be mapped to an outgoing link

∀r ∈ R, e ∈ E,AtMostOne({Mel(e, l)|l ∈ L and Hrl(r, l)}) An edge can only be mapped to a single outgoing link
of a router

∀e ∈ E,n ∈ N |n /∈ F,∨l|Hnl(n,l)Mel(e, l) ⇐⇒ Mvn(src(e), n) If a vertex is mapped to a non-CF node, then the
input edges are mapped to incoming links

∀e ∈ E,n ∈ N |n /∈ F,∨l|Hln(l,n)Mel(e, l) ⇐⇒ Mvn(dst(e), n) If a vertex is mapped to a non-CF node, then the
output edges are mapped to outgoing links

∀l ∈ L, e1 ∈ E, e2 ∈ E|src(e1) 6= src(e2),¬Mel(e1, l) ∨ ¬Mel(e2, l) Edges that do not share the same source are not
mapped to the same links

∀e ∈ E,n ∈ F,Knl(e, n) ∨ ¬Mvn(src(e), n) If a vertex is mapped to a CF node, then the output
edges are mapped to outgoing links

∀e ∈ E,n ∈ F,Kln(e, n) ∨ ¬Mvn(dst(e), n) If a vertex is mapped to a CF node, then the input
edges are mapped to incoming links

(∀e ∈ E,n ∈ F, (Kln(e, n) ∨Kn ∨ ¬Knl(e, n))∧ Unused CF-modules can pass through edges
(¬Kln(e, n) ∨Kn(n) ∨Knl(e, n))∧ (¬Kln(e, n) ∨ ¬Mvn(src(e), n))

∀e ∈ E,n ∈ F, l ∈ L|Hln(l, n),¬Mel(e, l) ∨Kln(e) An edge mapped to an output link of CF-module can-
not be mapped to an input of the CF-module

src(e) := v ∈ V and v is the source of e dst(e) := v ∈ V and v is the destination of e Knl(e, n) := ∨l|Hnl(n,l)Mel(e, l)

Kln(e, n) := ∨l|Hln(l,n)Mel(e, l) Kn(n) := ∨v∈VMvn(v, n)

Table A.5: RipTide’s SAT formulation.

Table A.5 describes RipTide’s SAT formulation. Since there is no objective, the
formulation may yield longer routes, duplicate routes or routes with cycles. We post-
process the routes to find the shortest between two nodes.

103

Bibliography

[1] “Cortex-m0.” [Online]. Available: https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m0

[2] “Genus synthesis solution.” [Online]. Available: https://www.cadence.
com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-
solution.html

[3] “Hm01b0 ultralow power cis.” [Online]. Available: https://www.himax.com.tw/
products/cmos-image-sensor/always-on-vision-sensors/hm01b0/

[4] “Innovus implementation system.” [Online]. Available: https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-
implementation-and-floorplanning/innovus-implementation-system.html

[5] “Joules rtl power simulation.” [Online]. Available: https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-
analysis/joules-rtl-power-solution.html

[6] “Parallel thread execution isa version 7.7.” [Online]. Available: https:
//docs.nvidia.com/cuda/parallel-thread-execution/index.html

[7] “Powercast p2110b.” [Online]. Available: http://www.powercastco.com/wp-
content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf

[8] “Powercaster transmitter.” [Online]. Available: http://www.powercastco.com/
wp-content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf

[9] “Stm32l152re.” [Online]. Available: https://www.st.com/en/microcontrollers-
microprocessors/stm32l152re.html

[10] “Xcelium logic simulation.” [Online]. Available: https://www.cadence.com/
en_US/home/tools/system-design-and-verification/simulation-and-testbench-
verification/xcelium-simulator.html

[11] “What is lorawan specification?” Oct 2021. [Online]. Available: https://lora-
alliance.org/about-lorawan/

[12] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[13] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction of a
directed graph,” SIAM Journal on Computing, vol. 1, no. 2, pp. 131–137, 1972.
[Online]. Available: https://doi.org/10.1137/0201008

[14] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network comput-
ing,” in ACM SIGARCH Computer Architecture News, vol. 44, no. 3, 2016.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
http://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
http://www.powercastco.com/wp-content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf
http://www.powercastco.com/wp-content/uploads/2016/11/User-Manual-TX-915-01-Rev-A-4.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://lora-alliance.org/about-lorawan/
https://lora-alliance.org/about-lorawan/
https://doi.org/10.1137/0201008

104 BIBLIOGRAPHY

[15] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accelera-
tors,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on, 2016.

[16] Angus Galloway, “Tensorflow XNOR-BNN,” https://github.com/AngusG/
tensorflow-xnor-bnn, 2018.

[17] ARM, “Arm neon,” 2019. [Online]. Available: https://developer.arm.com/
architectures/instruction-sets/simd-isas/neon

[18] K. Asanovic, J. Beck, B. Irissou, B. E. Kingsbury, and J. Wawrzynek, “T0: A
single-chip vector microprocessor with reconfigurable pipelines,” in ESSCIRC
22.

[19] H. Asghari Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-Ghazaleh,
“Corf: Coalescing operand register file for gpus,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2019, pp. 701–714.

[20] G. Aşılıoğlu, Z. Jin, M. Köksal, O. Javeri, and S. Önder, “Lazy superscalar,” in
ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015.

[21] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of recurrences—a method
to expedite the evaluation of closed-form functions,” in Proceedings of the
International Symposium on Symbolic and Algebraic Computation, ser. ISSAC
’94. New York, NY, USA: Association for Computing Machinery, 1994, p.
242–249. [Online]. Available: https://doi.org/10.1145/190347.190423

[22] M. Balasubramanian and A. Shrivastava, “Pathseeker: a fast mapping algo-
rithm for cgras,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2022, pp. 268–273.

[23] J. Balfour, W. Dally, D. Black-Schaffer, V. Parikh, and J. Park, “An energy-
efficient processor architecture for embedded systems,” IEEE Computer Archi-
tecture Letters, vol. 7, no. 1, 2008.

[24] J. D. Balfour, W. J. Dally, M. Horowitz, and C. Kozyrakis, “Efficient embedded
computing,” Ph.D. dissertation, 2010.

[25] D. Balsamo, A. Weddell, A. Das, A. Arreola, D. Brunelli, B. Al-Hashimi, G. Mer-
rett, and L. Benini, “Hibernus++: A self-calibrating and adaptive system for
transiently-powered embedded devices,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2016.

[26] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: A
systematic framework for heterogeneous cgra realization,” in Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 918–932. [Online]. Available:
https://doi.org/10.1145/3503222.3507772

[27] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An always-
on 3.8µ j / 86% cifar-10 mixed-signal binary cnn processor with all memory on
chip in 28-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp.
158–172, 2018.

https://github.com/AngusG/tensorflow-xnor-bnn
https://github.com/AngusG/tensorflow-xnor-bnn
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://doi.org/10.1145/190347.190423
https://doi.org/10.1145/3503222.3507772

BIBLIOGRAPHY 105

[28] L. Bettini, P. Crescenzi, G. Innocenti, and M. Loreti, “An environment for self-
assessing java programming skills in first programming courses,” in IEEE Inter-
national Conference on Advanced Learning Technologies, 2004. Proc.., 2004.

[29] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning
layers for constrained resource inference on wearables,” in Proc. of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM, 2016.

[30] A. Biere, “Yet another local search solver and Lingeling and friends entering
the SAT Competition 2014,” in Proc. of SAT Competition 2014 – Solver and
Benchmark Descriptions, ser. Department of Computer Science Series of Publi-
cations B, A. Balint, A. Belov, M. Heule, and M. Järvisalo, Eds., vol. B-2014-2.
University of Helsinki, 2014, pp. 39–40.

[31] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020,” in
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, ser. De-
partment of Computer Science Report Series B, T. Balyo, N. Froleyks, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2020-1. University of Helsinki,
2020, pp. 51–53.

[32] D. Bol, M. Schramme, L. Moreau, T. Haine, P. Xu, C. Frenkel, R. Dekimpe,
F. Stas, and D. Flandre, “19.6 a 40-to-80mhz sub-4µw/mhz ulv cortex-m0 mcu
soc in 28nm fdsoi with dual-loop adaptive back-bias generator for 20µs wake-up
from deep fully retentive sleep mode,” in ISSCC, 2019.

[33] A. Bracy, P. Prahlad, and A. Roth, “Dataflow mini-graphs: Amplifying super-
scalar capacity and bandwidth,” in 37th International Symposium on Microar-
chitecture (MICRO-37’04), 2004.

[34] M. Budiu, P. Artigas, and S. Goldstein, “Dataflow: A complement to super-
scalar,” in IEEE International Symposium on Performance Analysis of Systems
and Software, 2005. ISPASS 2005., 2005, pp. 177–186.

[35] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement to
superscalar,” in IEEE International Symposium on Performance Analysis of
Systems and Software, 2005. ISPASS 2005. IEEE, 2005, pp. 177–186.

[36] M. Buettner, B. Greenstein, and D. Wetherall, “Dewdrop: An energy-aware
task scheduler for computational RFID,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Mar. 2011.

[37] D. Chen, J. Cong, P. Pan et al., “Fpga design automation: A survey,” Founda-
tions and Trends® in Electronic Design Automation, vol. 1, no. 3, pp. 195–330,
2006.

[38] D.-K. Chen and P.-C. Yew, “Redundant synchronization elimination for doacross
loops,” IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 5,
pp. 459–470, 1999.

[39] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: a
small-footprint high-throughput accelerator for ubiquitous machine-learning,” in
Proc. of the 19th intl. conf. on Architectural Support for Programming Languages
and Operating Systems, 2014.

106 BIBLIOGRAPHY

[40] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proc. of the 43rd annual
Intl. Symp. on Computer Architecture (Proc. ISCA-43), 2016.

[41] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in Proc. of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[42] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Bespoke processors
for applications with ultra-low area and power constraints,” in ISCA 44, 2017.

[43] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear pro-
gramming approach to cgra mapping,” in Proceedings of the 55th Annual Design
Automation Conference, 2018, pp. 1–6.

[44] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and J. An-
derson, “Cgra-me: A unified framework for cgra modelling and exploration,” in
2017 IEEE 28th international conference on application-specific systems, archi-
tectures and processors (ASAP). IEEE, 2017, pp. 184–189.

[45] F. Chollet, “Xception: Deep learning with depthwise separable convolutions.”

[46] A. Colin, G. Harvey, B. Lucia, and A. P. Sample, “An energy-interference-
free hardware-software debugger for intermittent energy-harvesting systems,”
SIGOPS Oper. Syst. Rev., vol. 50, no. 2, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2954680.2872409

[47] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable intermittent
programs,” in Proc. of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), 2016.

[48] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage architecture
for energy-harvesting devices,” in ASPLOS 23, 2018.

[49] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage architecture
for energy-harvesting devices,” in ASPLOS, 2018.

[50] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Rein-
man, “Composable accelerator-rich microprocessor enhanced for adaptivity and
longevity,” in International Symposium on Low Power Electronics and Design
(ISLPED), 2013, pp. 305–310.

[51] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich microprocessor,” in
Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 379–384. [Online]. Available:
https://doi.org/10.1145/2333660.2333747

[52] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and dynami-
cally composable architecture of cgra,” in 2014 IEEE 22nd Annual International
Symposium on Field-Programmable Custom Computing Machines, 2014, pp. 9–
16.

[53] N. Corporation, “Nvidia’s next generation cuda compute architecture: Fermi,”
2009.

http://doi.acm.org/10.1145/2954680.2872409
https://doi.org/10.1145/2333660.2333747

BIBLIOGRAPHY 107

[54] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[55] Cray Computer, “U.S. Patent 6,665,774,” December 2003.

[56] D. Culler, J. Hill, M. Horton, K. Pister, R. Szewczyk, and A. Wood, “Mica: The
commercialization of microsensor motes,” Sensor Technology and Design, April,
2002.

[57] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, p. 451–490, oct 1991.
[Online]. Available: https://doi.org/10.1145/115372.115320

[58] V. Dadu, S. Liu, and T. Nowatzki, PolyGraph: Exposing the Value of Flexibility
for Graph Processing Accelerators. IEEE Press, 2021, p. 595–608. [Online].
Available: https://doi.org/10.1109/ISCA52012.2021.00053

[59] V. Dadu and T. Nowatzki, TaskStream: Accelerating Task-Parallel Workloads
by Recovering Program Structure. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–13. [Online]. Available: https:
//doi.org/10.1145/3503222.3507706

[60] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general purpose accelera-
tion by exploiting common data-dependence forms,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
924–939.

[61] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh,
J. Park, and D. Sheffield, “Efficient embedded computing,” Computer, vol. 41,
no. 7, 2008.

[62] S. Das, D. Rossi, K. J. Martin, P. Coussy, and L. Benini, “A 142mops/mw inte-
grated programmable array accelerator for smart visual processing,” in ISCAS,
2017.

[63] S. Dave, M. Balasubramanian, and A. Shrivastava, “Ramp: Resource-aware
mapping for cgras,” in DAC 55, 2018.

[64] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21,
no. 4, 2000.

[65] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and
rank-(r 1, r 2,..., rn) approximation of higher-order tensors,” SIAM journal on
Matrix Analysis and Applications, vol. 21, no. 4, 2000.

[66] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding and optimizing
asynchronous low-precision stochastic gradient descent,” in Proc. of the 44th
annual Intl. Symp. on Computer Architecture (Proc. ISCA-44), 2017.

[67] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan, “Permdnn: Efficient
compressed dnn architecture with permuted diagonal matrices,” in 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 189–202.

https://doi.org/10.1145/115372.115320
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/3503222.3507706

108 BIBLIOGRAPHY

[68] J. B. Dennis, “Data flow supercomputers,” Computer, no. 11, 1980.

[69] J. B. Dennis and G. R. Gao, “An efficient pipelined dataflow processor architec-
ture,” in Proc. of the 1988 ACM/IEEE conference on Supercomputing, 1988.

[70] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-
flow processor,” in ACM SIGARCH Computer Architecture News, vol. 3, no. 4,
1975.

[71] H. Desai and B. Lucia, “A power-aware heterogeneous architecture scaling model
for energy-harvesting computers,” IEEE Computer Architecture Letters, vol. 19,
no. 1, 2020.

[72] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for
convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83,
pp. 1–5, 2016.

[73] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai,
G. Yuan et al., “Circnn: accelerating and compressing deep neural networks
using block-circulant weight matrices,” in Proc. of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017.

[74] A. Dongare, C. Hesling, K. Bhatia, A. Balanuta, R. L. Pereira, B. Iannucci,
and A. Rowe, “Openchirp: A low-power wide-area networking architecture,” in
Pervasive Computing and Communications Workshops (PerCom Workshops),
2017 IEEE International Conference on, 2017.

[75] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the sensor,” in
Proc. of the 42nd annual Intl. Symp. on Computer Architecture (Proc. ISCA-
42), 2015.

[76] M. Duric, O. Palomar, A. Smith, O. Unsal, A. Cristal, M. Valero, and D. Burger,
“Evx: Vector execution on low power edge cores,” in DATE, 2014.

[77] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient checkpointing of
loop-based codes for non-volatile main memory,” in Parallel Architectures and
Compilation Techniques (PACT), 2017 26th International Conference on, 2017.

[78] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh, and D. Fick, “Ana-
log in-memory subthreshold deep neural network accelerator,” in IEEE Custom
Integrated Circuits Conference (CICC), April 2017, pp. 1–4.

[79] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel avx: New frontiers
in performance improvements and energy efficiency,” Intel white paper, vol. 19,
no. 20, 2008.

[80] H. Foundation, “Hsa platform system architecture specification,” 2018. [Online].
Available: http://www.hsafoundation.com/standards/

[81] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “Snafu: an
ultra-low-power, energy-minimal cgra-generation framework and architecture,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2021, pp. 1027–1040.

http://www.hsafoundation.com/standards/

BIBLIOGRAPHY 109

[82] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural network
inference,” in SysML, 2018.

[83] G. Gobieski, S. Ghosh, M. Heule, T. Mowry, N. Beckmann, and B. Lucia, “Rip-
tide: A programmable, energy-minimal dataflow compiler and architecture,” in
MICRO, 2022.

[84] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Infer-
ence on intermittent embedded systems,” in ASPLOS, 2019.

[85] G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, N. Beckmann, and B. Lucia,
“Manic: A vector-dataflow architecture for ultra-low-power embedded systems,”
in MICRO, 2019.

[86] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor,
“Piperench: A reconfigurable architecture and compiler,” Computer, vol. 33,
no. 4, 2000.

[87] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proc. of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2017.

[88] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-
alingam, and C. Kim, “Dyser: Unifying functionality and parallelism specializa-
tion for energy-efficient computing,” IEEE Micro, vol. 32, no. 5, 2012.

[89] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar,
S. Goyal, R. Udupa, M. Varma, and P. Jain, “Protonn: Compressed and accu-
rate knn for resource-scarce devices,” in International Conference on Machine
Learning, 2017.

[90] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of
recurring traces for energy-efficient general purpose processing,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
2011, pp. 12–23.

[91] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.
[Online]. Available: https://www.gurobi.com

[92] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of in-
efficiency in general-purpose chips,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, 2010.

[93] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimorphism to
map applications on cgras,” in Proceedings of the 49th Annual Design Automa-
tion Conference, 2012, pp. 1284–1291.

[94] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-aware loop mapping on
cgras,” in Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[95] S. Han, X. Liu, H. Mao, J. Pu, A. Pdream, M. A. Horowitz, and W. J. Dally,
“Eie: Efficient inference engine on compressed deep neural network,” in Proc. of
the 43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43), 2016.

https://www.gurobi.com

110 BIBLIOGRAPHY

[96] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization, and huffman coding,” in Proc. of
the 5th Intl. Conf. on Learning Representationas (Proc. ICLR’16), 2016.

[97] J. R. Hauser and J. Wawrzynek, “Garp: A mips processor with a reconfig-
urable coprocessor,” in Proceedings. The 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines Cat. No. 97TB100186). IEEE,
1997, pp. 12–21.

[98] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks, “An ultra low
power system architecture for sensor network applications,” in ISCA 32, 2005.

[99] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

[100] J. Hester, T. Peters, T. Yun, R. Peterson, J. Skinner, B. Golla, K. Storer,
S. Hearndon, K. Freeman, S. Lord, R. Halter, D. Kotz, and J. Sorber,
“Amulet: An energy-efficient, multi-application wearable platform,” in
Proc. of the 14th ACM Conference on Embedded Network Sensor Systems,
ser. SenSys ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2994551.2994554

[101] J. Hester, L. Sitanayah, and J. Sorber, “Tragedy of the coulombs: Federating
energy storage for tiny, intermittently-powered sensors,” in Proc. of the 13th
ACM Conference on Embedded Networked Sensor Systems, 2015.

[102] J. Hester, L. Sitanayah, and J. Sorber, “Tragedy of the coulombs:
Federating energy storage for tiny, intermittently-powered sensors,” in
SenSys 13. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2809695.2809707

[103] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless internet
of things,” in SenSys 15, 2017.

[104] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermi!ently powered
ba!eryless sensors,” in Proc. of the 15th ACM Conference on Embedded Network
Sensor Systems, ser. SenSys ’17.

[105] M. Hicks, “Clank: Architectural support for intermittent computation,” in
Proc. of the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080238

[106] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interprocedural pointer alias
analysis,” ACM Trans. Program. Lang. Syst., vol. 21, no. 4, p. 848–894, jul
1999. [Online]. Available: https://doi.org/10.1145/325478.325519

[107] M. Horowitz, “Computing’s energy problem (and what we can do about it),” in
ISSCC, 2014.

[108] F. N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size,” arXiv preprint arXiv:1602.07360, 2016.

[109] A. Ignatov, “Har.” [Online]. Available: https://github.com/aiff22/HAR

http://doi.acm.org/10.1145/2994551.2994554
http://doi.acm.org/10.1145/2809695.2809707
http://doi.acm.org/10.1145/3079856.3080238
https://doi.org/10.1145/325478.325519
https://github.com/aiff22/HAR

BIBLIOGRAPHY 111

[110] T. Instruments, “Msp430fr5994 sla,” 2017. [Online]. Available: http:
//www.ti.com/lit/ds/symlink/msp430fr5994.pdf

[111] T. Instruments, “Low energy accelerator faq,” 2018. [Online]. Available:
http://www.ti.com/lit/an/slaa720/slaa720.pdf

[112] ISOCPP, “Cpp spec,” 2019. [Online]. Available: https://isocpp.org/std/the-
standard

[113] N. Jackson, “lab11/permamote,” Apr 2019. [Online]. Available: https:
//github.com/lab11/permamote

[114] H. Jayakumar, A. Raha, and V. Raghunathan, “QuickRecall: A low overhead
HW/SW approach for enabling computations across power cycles in transiently
powered computers,” in Int’l Conf. on VLSI Design and Int’l Conf. on Embedded
Systems, Jan. 2014.

[115] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “Gpu register file virtu-
alization,” in Proc. of the 48th International Symposium on Microarchitecture,
2015.

[116] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,
J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons from three generations
shaped google’s tpuv4i: Industrial product,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2021, pp.
1–14.

[117] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of
a tensor processing unit,” arXiv preprint arXiv:1704.04760, 2017.

[118] T. Karnik, D. Kurian, P. Aseron, R. Dorrance, E. Alpman, A. Nicoara,
R. Popov, L. Azarenkov, M. Moiseev, L. Zhao et al., “A cm-scale self-powered
intelligent and secure iot edge mote featuring an ultra-low-power soc in 14nm
tri-gate cmos,” in ISSCC, 2018.

[119] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra with
reconfigurable single-cycle multi-hop interconnect,” in DAC, 2017.

[120] M. Karunaratne, C. Tan, A. Kulkarni, T. Mitra, and L.-S. Peh, “Dnestmap:
mapping deeply-nested loops on ultra-low power cgras,” in Proceedings of the
55th Annual Design Automation Conference, 2018, pp. 1–6.

[121] M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh, “4d-cgra: Intro-
ducing branch dimension to spatio-temporal application mapping on cgras,”
in 2019 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2019, pp. 1–8.

[122] B. Keller, M. Cochet, B. Zimmer, J. Kwak, A. Puggelli, Y. Lee, M. Blagojević,
S. Bailey, P.-F. Chiu, P. Dabbelt et al., “A risc-v processor soc with integrated
power management at submicrosecond timescales in 28 nm fd-soi,” JSSC, 2017.

[123] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-srp:
Ultra low power samsung reconfigurable processor for biomedical applications,”
in ICFPT, 2012.

http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
http://www.ti.com/lit/an/slaa720/slaa720.pdf
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://github.com/lab11/permamote
https://github.com/lab11/permamote

112 BIBLIOGRAPHY

[124] H.-S. Kim and J. E. Smith, “An instruction set and microarchitecture for instruc-
tion level distributed processing,” in Proc. 29th Annual International Symposium
on Computer Architecture, 2002.

[125] Y. Kim and R. N. Mahapatra, “Hierarchical reconfigurable computing arrays
for efficient cgra-based embedded systems,” in Proceedings of the 46th Annual
Design Automation Conference, 2009, pp. 826–831.

[126] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and
K. Olukotun, “Automatic generation of efficient accelerators for reconfigurable
hardware,” in 2016 ACM/IEEE 43rd Annual International Symposium on Com-
puter Architecture (ISCA), 2016, pp. 115–127.

[127] M. Kou, J. Gu, S. Wei, H. Yao, and S. Yin, “Taem: fast transfer-aware effective
loop mapping for heterogeneous resources on cgra,” in DAC 57, 2020.

[128] C. Kozyrakis and D. Patterson, “Overcoming the limitations of conventional
vector processors,” ACM SIGARCH Computer Architecture News, vol. 31, no. 2,
2003.

[129] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012.

[130] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable interconnects,”
in Proc. of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’18. New York, NY, USA: ACM, 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173176

[131] G. Laput, Y. Zhang, and C. Harrison, “Synthetic sensors: Towards general-
purpose sensing,” in Proc. of the 2017 CHI Conference on Human Factors in
Computing Systems, 2017.

[132] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in CGO, Mar. 2004.

[133] C. R. Lazo, E. Reggiani, C. R. Morales, R. F. Bagué, L. A. V. Vargas, M. A. R.
Salinas, M. V. Cortés, O. S. Unsal, and A. Cristal, “Adaptable register file
organization for vector processors,” arXiv preprint arXiv:2111.05301, 2021.

[134] Y. Le Cun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon, D. Henderson,
R. Howard, and W. Hubbard, “Handwritten digit recognition: Applications of
neural network chips and automatic learning,” IEEE Communications Magazine,
vol. 27, no. 11, 1989.

[135] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[136] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proc. of the IEEE, vol. 86, no. 11, 1998.

[137] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera: hybrid program
analysis for determinism,” 2012.

http://doi.acm.org/10.1145/3173162.3173176
http://doi.acm.org/10.1145/3173162.3173176

BIBLIOGRAPHY 113

[138] J. Lee and T. E. Carlson, “Ultra-fast cgra scheduling to enable run time, pro-
grammable cgras,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 1207–1212.

[139] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, “Warped-
compression: Enabling power efficient gpus through register compression,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 3S, pp. 502–514, 2015.

[140] A. Li, T.-J. Chang, and D. Wentzlaff, “Automated design of fpgas facilitated by
cycle-free routing,” in FPL 30, 2020.

[141] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra, “Chordmap: Au-
tomated mapping of streaming applications onto cgra,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 2, pp.
306–319, 2021.

[142] J. Lin, Y. Yang, R. K. Gupta, and Z. Tu, “Local binary pattern
networks,” CoRR, vol. abs/1803.07125, 2018. [Online]. Available: http:
//arxiv.org/abs/1803.07125

[143] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and
Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 1, 2015.

[144] F. Liu, H. Ahn, S. R. Beard, T. Oh, and D. I. August, “Dynaspam:
Dynamic spatial architecture mapping using out of order instruction
schedules,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, ser. ISCA ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 541–553. [Online]. Available:
https://doi.org/10.1145/2749469.2750414

[145] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi, “Implementing software on
resource-constrained mobile sensors: Experiences with impala and zebranet,” in
MobiSys 2. New York, NY, USA: ACM, 2004.

[146] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-centric computing throughout the
memory hierarchy,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
2020, pp. 417–433.

[147] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent comput-
ing: Challenges and opportunities,” in SNAPL 2, 2017.

[148] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in Proc. of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI 2015. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737978

[149] K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and
V. Narayanan, “Incidental computing on iot nonvolatile processors,” in Proc.
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017.

http://arxiv.org/abs/1803.07125
http://arxiv.org/abs/1803.07125
https://doi.org/10.1145/2749469.2750414
http://doi.acm.org/10.1145/2737924.2737978

114 BIBLIOGRAPHY

[150] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie,
and V. Narayanan, “Architecture exploration for ambient energy harvesting non-
volatile processors,” in High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, 2015.

[151] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution without
checkpoints,” in Proc. of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA). Vancouver,
BC, Canada: ACM, Oct. 22–27, 2017.

[152] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems with
just-in-time checkpoints,” in PLDI, 2019.

[153] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Dresc: A retar-
getable compiler for coarse-grained reconfigurable architectures,” in 2002 IEEE
International Conference on Field-Programmable Technology, 2002.(FPT). Pro-
ceedings. IEEE, 2002, pp. 166–173.

[154] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres: An
architecture with tightly coupled vliw processor and coarse-grained reconfig-
urable matrix,” in International Conference on Field Programmable Logic and
Applications. Springer, 2003, pp. 61–70.

[155] J. Melchert, K. Feng, C. Donovick, R. Daly, C. Barrett, M. Horowitz, P. Han-
rahan, and P. Raina, “Automated design space exploration of cgra process-
ing element architectures using frequent subgraph analysis,” arXiv preprint
arXiv:2104.14155, 2021.

[156] S. Midkiff and D. Padua, “A comparison of four synchronization optimization
techniques,” in Intl. Conf. on Parallel Processing, vol. 2, 1991, pp. 9–16.

[157] S. P. Midkiff and D. A. Padua, “Compiler algorithms for synchronization,” IEEE
Transactions on Computers, vol. C-36, no. 12, pp. 1485–1495, 1987.

[158] J. S. Miguel, K. Ganesan, M. Badr, and N. E. Jerger, “The eh model: Analytical
exploration of energy-harvesting architectures,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 76–79, Jan 2018.

[159] A. Mirhoseini, E. M. Songhori, and F. Koushanfar, “Idetic: A high-level
synthesis approach for enabling long computations on transiently-powered
ASICs,” in IEEE Pervasive Computing and Communication Conference
(PerCom), Mar. 2013. [Online]. Available: http://aceslab.org/sites/default/
files/Idetic.pdf

[160] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, S. Bae et al., “Chip placement with deep reinforcement
learning,” arXiv preprint arXiv:2004.10746, 2020.

[161] E. Mirsky, A. DeHon et al., “Matrix: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources.” in FCCM,
vol. 96, 1996, pp. 17–19.

[162] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and
M. Budiu, “Tartan: evaluating spatial computation for whole program execu-
tion,” ACM SIGARCH Computer Architecture News, vol. 34, no. 5, 2006.

http://aceslab.org/sites/default/files/Idetic.pdf
http://aceslab.org/sites/default/files/Idetic.pdf

BIBLIOGRAPHY 115

[163] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,
Inc., 1997.

[164] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia array co-
processor,” IEICE Transactions on information and systems, vol. 82, no. 2, pp.
389–397, 1999.

[165] P. Mohan, O. Atli, O. Kibar, M. Z. Vanaikar, L. Pileggi, and K. Mai, “Top-down
physical design of soft embedded fpga fabrics,” in FPGA. ACM, 2021.

[166] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul,
M. I. Jordan, and I. Stoica, “Ray: A distributed framework for emerging ai
applications,” arXiv preprint arXiv:1712.05889, 2017.

[167] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip networks,”
in ISCA 36, 2009.

[168] T. M. Nabhan and A. Y. Zomaya, “Toward generating neural network structures
for function approximation,” Neural Networks, vol. 7, no. 1, 1994.

[169] S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith, “Towards
battery-free {HD} video streaming,” in NSDI 15, 2018.

[170] S. Naderiparizi, Z. Kapetanovic, and J. R. Smith, “Wispcam: An rf-
powered smart camera for machine vision applications,” in Proc. of the 4th
International Workshop on Energy Harvesting and Energy-Neutral Sensing
Systems, ser. ENSsys’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2996884.2996888

[171] P. Nakkiran, R. Alvarez, R. Prabhavalkar, and C. Parada, “Compressing deep
neural networks using a rank-constrained topology.” in Sixteenth Annual Con-
ference of the International Speech Communication Association, 2015.

[172] M. Nardello, H. Desai, D. Brunelli, and B. Lucia, “Camaroptera: A batteryless
long-range remote visual sensing system,” in ENSSys 7, 2019.

[173] L. Nazhandali, B. Zhai, A. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
T. Austin, and D. Blaauw, “Energy optimization of subthreshold-voltage sensor
network processors,” in ISCA 32, 2005.

[174] Q. M. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular applica-
tions on reconfigurable architectures,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 1064–1077.

[175] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically scheduled
data flow computing,” WaveComputing WhitePaper, 2017.

[176] R. S. Nikhil, “The parallel programming language id and its compilation for par-
allel machines,” International Journal of High Speed Computing, vol. 5, no. 02,
pp. 171–223, 1993.

[177] R. S. Nikhil et al., “Executing a program on the mit tagged-token dataflow
architecture,” IEEE Transactions on computers, vol. 39, no. 3, 1990.

[178] R. S. Nikhil et al., “Executing a program on the mit tagged-token dataflow
architecture,” IEEE Transactions on computers, vol. 39, no. 3, 1990.

http://doi.acm.org/10.1145/2996884.2996888

116 BIBLIOGRAPHY

[179] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the
limits of accelerator efficiency while retaining programmability,” in HPCA,
March 2016, pp. 27–39.

[180] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid
optimization/heuristic instruction scheduling for programmable accelerator
codesign,” in Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’18. New York, NY,
USA: ACM, 2018, pp. 36:1–36:15. [Online]. Available: http://doi.acm.org/10.
1145/3243176.3243212

[181] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid optimiza-
tion/heuristic instruction scheduling for programmable accelerator codesign,” in
PACT 27, 2018.

[182] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in ISCA 44, 2017.

[183] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the potential
of heterogeneous von neumann/dataflow execution models,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture, 2015, pp.
298–310.

[184] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Domain spe-
cialization is generally unnecessary for accelerators,” IEEE Micro, vol. 37, no. 3,
2017.

[185] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and
B. Robatmili, “A general constraint-centric scheduling framework for spatial
architectures,” ACM SIGPLAN Notices, vol. 48, no. 6, 2013.

[186] Nvidia, “Nividia jetson tx2,” 2019. [Online]. Available: https://developer.
nvidia.com/embedded/develop/hardware

[187] N. Ozaki, Y. Yasuda, M. Izawa, Y. Saito, D. Ikebuchi, H. Amano, H. Nakamura,
K. Usami, M. Namiki, and M. Kondo, “Cool mega-arrays: Ultralow-power re-
configurable accelerator chips,” IEEE Micro, vol. 31, no. 6, 2011.

[188] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-store
architecture,” SIGARCH Comput. Archit. News, vol. 18, no. 2SI, p. 82–91, may
1990. [Online]. Available: https://doi.org/10.1145/325096.325117

[189] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov,
A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instructions: a control
paradigm for spatially-programmed architectures,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 3, 2013.

[190] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” in Proc. of the 44th annual Intl. Symp.
on Computer Architecture (Proc. ISCA-44), 2017.

[191] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures,” in Proceed-
ings of the 17th international conference on Parallel architectures and compila-
tion techniques, 2008, pp. 166–176.

http://doi.acm.org/10.1145/3243176.3243212
http://doi.acm.org/10.1145/3243176.3243212
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://doi.org/10.1145/325096.325117

BIBLIOGRAPHY 117

[192] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A
flexible multicore accelerator with virtualized execution for mobile multimedia
applications,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 370–380. [Online]. Available:
https://doi.org/10.1145/1669112.1669160

[193] A. Parks, A. Sample, Y. Zhao, and J. R. Smith, “A wireless sensing platform
utilizing ambient rf energy,” in Proc. of the IEEE Topical Meeting on Wireless
Sensors and Sensor Networks (WiSNET). IEEE, 2013.

[194] D. Patterson, T. Anderson, and K. Yelick, “A Case for Intelligent DRAM:
IRAM,” in Hot Chips VIII Symposium Record, August 1996.

[195] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and R. Bodik,
“Chlorophyll: Synthesis-aided compiler for low-power spatial architectures,”
SIGPLAN Not., vol. 49, no. 6, p. 396–407, jun 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594339

[196] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “Destiny: A tool for
modeling emerging 3d nvm and edram caches,” in DATE, 2015.

[197] Powercast Co., “Development Kits - Wireless Power Solutions,” http://www.
powercastco.com/products/development-kits/, visited July 30, 2014.

[198] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pe-
dram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable architecture
for parallel patterns,” in ISCA 44, 2017.

[199] P. Prabhat, B. Labbe, G. Knight, A. Savanth, J. Svedas, M. J. Walker,
S. Jeloka, P. M.-Y. Fan, F. Garcia-Redondo, T. Achuthan et al., “27.2 m0n0: A
performance-regulated 0.8-to-38mhz dvfs arm cortex-m33 simd mcu with 10nw
sleep power,” in ISSCC, 2020.

[200] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-running
computation on RFID-scale devices,” in ASPLOS, Mar. 2011.

[201] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan, “Sc-dcnn:
highly-scalable deep convolutional neural network using stochastic computing,”
in Proc. of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, 2017.

[202] Riscv, “riscv-v-spec,” Apr 2019. [Online]. Available: https://github.com/riscv/
riscv-v-spec

[203] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H. Garrett,
J. M. Moura, and L. Soibelman, “Sensor andrew: Large-scale campus-wide sens-
ing and actuation,” IBM Journal of Research and Development, vol. 55, no. 1.2,
2011.

[204] A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar, and K. Olukotun,
“Capstan: A vector rda for sparsity,” 2021.

[205] T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint
keyword spotting,” in 16th Annual Conference of the International Speech Com-
munication Association, 2015.

https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/2666356.2594339
http://www.powercastco.com/products/development-kits/
http://www.powercastco.com/products/development-kits/
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec

118 BIBLIOGRAPHY

[206] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith,
“Design of an RFID-based battery-free programmable sensing platform,” IEEE
Transactions on Instrumentation and Measurement, vol. 57, no. 11, pp. 2608–
2615, Nov. 2008.

[207] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 4510–4520.

[208] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.
Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with the polymorphous
trips architecture,” in ISCA 30, 2003.

[209] K. Sankaralingam, T. Nowatzki, G. Wright, P. Palamuttam, J. Khare,
V. Gangadhar, and P. Shah, “Mozart: Designing for software maturity and
the next paradigm for chip architectures,” in IEEE Hot Chips 33 Symposium,
HCS 2021, Palo Alto, CA, USA, August 22-24, 2021. IEEE, 2021, pp. 1–20.
[Online]. Available: https://doi.org/10.1109/HCS52781.2021.9567306

[210] P. G. Sassone and D. S. Wills, “Dynamic strands: Collapsing speculative de-
pendence chains for reducing pipeline communication,” in 37th International
Symposium on Microarchitecture (MICRO-37’04), 2004.

[211] M. Satyanarayanan, N. Beckmann, G. A. Lewis, and B. Lucia, “The role of edge
offload for hardware-accelerated mobile devices,” in HotMobile, 2021.

[212] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais, A. Seznec,
and P. Michaud, “Long term parking (ltp): criticality-aware resource allocation
in ooo processors,” in 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015.

[213] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space exploration of
customized architectures,” in ISCA 41, 2014.

[214] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache, Timing,
Power, and Area Model,” Compaq Western Research Laboratory, Tech. Rep.,
February 2001.

[215] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[216] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho,
“Morphosys: an integrated reconfigurable system for data-parallel and
computation-intensive applications,” IEEE Transactions on Computers, vol. 49,
no. 5, pp. 465–481, 2000.

[217] W. Snyder, “Verilator and systemperl,” in North American SystemC Users’
Group, DAC, 2004.

[218] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and T. Li,
“In-situ ai: Towards autonomous and incremental deep learning for iot systems,”
in IEEE International Symposium on High Performance Computer Architecture
(HPCA), Feb 2018, pp. 92–103.

[219] P. Sparks, “A route to a trillion devices,” Arm WhitePaper, 2017.

https://doi.org/10.1109/HCS52781.2021.9567306

BIBLIOGRAPHY 119

[220] M. Surbatovich, L. Jia, and B. Lucia, “Automatically enforcing fresh and consis-
tent inputs in intermittent systems,” in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementa-
tion, 2021, pp. 851–866.

[221] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in MICRO
36, 2003.

[222] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning.” in AAAI, vol. 4,
2017.

[223] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc.
of the IEEE conference on computer vision and pattern recognition, 2015.

[224] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[225] C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh, “Stitch: Fusible heterogeneous
accelerators enmeshed with many-core architecture for wearables,” in ISCA 45,
2018.

[226] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Opencgra: An open-source
unified framework for modeling, testing, and evaluating cgras,” in 2020 IEEE
38th International Conference on Computer Design (ICCD). IEEE, 2020, pp.
381–388.

[227] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. PMLR,
2019, pp. 6105–6114.

[228] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of the coming
dark silicon apocalypse,” in DAC, 2012.

[229] Texas Instruments, “CC2650MODA SimpleLink™ Bluetooth® low energy Wire-
less MCU Module,” http://www.ti.com/product/cc2650moda/datasheet, 2017.

[230] TI Inc., “Overview for MSP430FRxx FRAM,” http://ti.com/wolverine, 2014,
visited July 28, 2014.

[231] C. Torng and P. Pan, “Ue-cgra hpca 2021 artifact,” Mar 2021. [Online].
Available: https://github.com/cornell-brg/torng-uecgra-scripts-hpca2021

[232] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-elastic cgras for ir-
regular loop specialization,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 412–425.

[233] A. Traber, “Pulpino: A small single-core risc-v soc.”

[234] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-
chometrika, vol. 31, no. 3, 1966.

[235] J. Van Der Woude and M. Hicks, “Intermittent computation without hardware
support or programmer intervention,” in Proc. of OSDI’16: 12th USENIX Sym-
posium on Operating Systems Design and Implementation, 2016.

http://ti.com/wolverine
https://github.com/cornell-brg/torng-uecgra-scripts-hpca2021

120 BIBLIOGRAPHY

[236] N. Vedula, A. Shriraman, S. Kumar, and W. N. Sumner, “Nachos: Software-
driven hardware-assisted memory disambiguation for accelerators,” in 2018
IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 710–723.

[237] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing the
energy of mature computations,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 1, 2010.

[238] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose,
A. Jog, P. B. Gibbons, and O. Mutlu, “Zorua: A holistic approach to resource
virtualization in gpus,” in The 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2016.

[239] M. Vilim, A. Rucker, Y. Zhang, S. Liu, and K. Olukotun, “Gorgon: Accelerat-
ing machine learning from relational data,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 309–321.

[240] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy efficient
design alternative for gpgpus,” ACM SIGARCH computer architecture news,
vol. 42, no. 3, 2014.

[241] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in multi-
threaded, reconfigurable coarse-grain arrays,” in MICRO 51, 2018.

[242] E. Waingold et al., “Baring It All to Software: Raw Machines,” in IEEE Com-
puter, September 1997.

[243] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh, “Hycube: A
0.9 v 26.4 mops/mw, 290 pj/op, power efficient accelerator for iot applications,”
in 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2019,
pp. 133–136.

[244] B. A. Warneke and K. S. Pister, “17.4 an ultra-low energy microcontroller for
smart dust wireless sensor networks,” 2004.

[245] M. A. Watkins, T. Nowatzki, and A. Carno, “Software transparent dynamic
binary translation for coarse-grain reconfigurable architectures,” in 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2016, pp. 138–150.

[246] J. Wawrzynek, K. Asanovic, B. Kingsbury, D. Johnson, J. Beck, and N. Morgan,
“Spert-ii: A vector microprocessor system,” Computer, vol. 29, no. 3, 1996.

[247] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen: syn-
thesizing programmable spatial accelerators,” in ISCA 47, 2020.

[248] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid systolic-dataflow
architecture for inductive matrix algorithms,” in HPCA, 2020.

[249] A. Wickramasinghe, D. Ranasinghe, and A. Sample, “Windware: Supporting
ubiquitous computing with passive sensor enabled rfid,” in RFID, April 2014.

BIBLIOGRAPHY 121

[250] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “Himap: Fast
and scalable high-quality mapping on cgra via hierarchical abstraction,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2021.

[251] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The
architecture and design of a database processing unit,” in Proceedings of the 19th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014,
pp. 255–268. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541961

[252] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H. Wang,
W.-C. Wei, T.-W. Chang, T.-C. Chang et al., “24.1 a 1mb multibit reram
computing-in-memory macro with 14.6 ns parallel mac computing time for
cnn based ai edge processors,” in 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2019, pp. 388–390.

[253] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang, T.-W.
Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei et al., “15.4 a 22nm 2mb reram compute-
in-memory macro with 121-28tops/w for multibit mac computing for tiny ai edge
devices,” in 2020 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, 2020, pp. 244–246.

[254] Y. Yang, J. S. Emer, and D. Sanchez, “Spzip: architectural support for effective
data compression in irregular applications,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2021, pp.
1069–1082.

[255] Zac Manchester, “KickSat,” http://zacinaction.github.io/kicksat/, 2015.

[256] H. Zhang, J. Gummeson, B. Ransford, and K. Fu, “Moo: A batteryless computa-
tional rfid and sensing platform,” Department of Computer Science, University
of Massachusetts Amherst., Tech. Rep, 2011.

[257] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-x: An accelerator for sparse neural networks,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, 2016.

[258] Z. Zhao, W. Sheng, Q. Wang, W. Yin, P. Ye, J. Li, and Z. Mao, “Towards
higher performance and robust compilation for cgra modulo scheduling,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 9, pp. 2201–2219,
2020.

http://doi.acm.org/10.1145/2541940.2541961
http://zacinaction.github.io/kicksat/

	Abstract
	Acknowledgements
	Introduction
	Challenges
	Objective of this work
	Outline

	Background
	Low-power embedded devices
	Device operation
	Intermittent execution model
	COTS ULP Devices

	Edge inference
	Algorithmic improvements to NN inference
	Inference accelerators

	Efficient programmable architectures
	Vector architectures
	Dataflow architectures

	Coarse-grain reconfigurable arrays
	Types of CGRAs
	Low-power CGRAs
	Compilation
	Compare & contrast different CGRA designs

	SONIC: Deploying DNNs on intermittent embedded devices
	Motivation for intermittent inference
	The need for inference beyond the edge
	Why accuracy matters

	System overview
	Optimal DNN compression with Genesis
	Neural networks under consideration
	Fitting networks on energy-harvesting systems
	Choosing a neural network configuration

	Efficient intermittent inference with Sonic
	The Sonic API
	The Sonic runtime implementation

	Hardware acceleration with Tails
	Automatic one-time calibration
	Accelerating inference with LEA

	Methodology
	Evaluation
	Sonic&Tails accelerates intermittent inference
	Loop continuation nearly eliminate intermittence overheads
	Sonic&Tails use much less energy than tiling
	Where does Sonic's energy go?

	Discussion

	MANIC: An energy-efficient, vector-dataflow co-processor
	Vector-Dataflow Execution
	Vector execution
	Dataflow instruction fusion
	Vector register kill points
	Applications benefit from vector-dataflow
	Synchronization and memory consistency

	MANIC Architecture
	Vector ISA
	Microarchitecture
	Memory system
	Putting it together with an example
	Microarchitecture-agnostic dataflow scheduling

	Manic-Silicon
	Chip design
	Verification and bring-up of Manic-Silicon

	Methodology
	Evaluation
	Discussion

	SNAFU generates ULP CGRAs
	Overview
	Designing Snafu to maximize flexibility
	Bring your own functional unit (BYOFU)
	Snafu's PE standard library
	Generating a CGRA fabric
	Compilation

	Designing Snafu to minimize energy
	Spatial vector-dataflow execution
	Asynchronous dataflow firing without tag-token matching
	Statically routed, bufferless on-chip network
	Minimizing buffers in the fabric

	Snafu-Arch: A Complete ULP System w/ CGRA
	Architectural overview
	Example of Snafu-Arch in action

	Experimental Methodology
	Evaluation
	Main results
	Sensitivity studies
	Case studies

	The Cost of Programmability
	Discussion

	RipTide: a programmable, energy-minimal dataflow compiler and architecture
	RipTide Instruction Set Architecture
	Control-flow operators
	Synchronization operators
	Stream operators

	RipTide Compiler
	Memory-ordering analysis
	Control-flow operator insertion
	Stream fusion
	Mapping DFGs to hardware

	RipTide Microarchitecture
	Tagless dataflow scheduling
	Processing elements
	Bufferless NoC
	Control flow in the NoC

	Experimental Methodology
	Evaluation
	Main results
	RipTide v. prior low-power CGRAs
	Compiler characterization
	Control flow in the NoC saves energy & area

	Conclusion & Architectural Implications

	Future work
	Quantifying the progress made
	Is compute energy efficiency still a bottleneck?

	Future research directions
	Area
	Performance
	Compilation

	Conclusion
	Constraint-based scheduling
	Snafu's mapper
	RipTide's mapper
	ILP formulation
	SAT formulation

