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Abstract
Chronic diseases such as diabetes, heart failure, and obesity are widespread glob-

ally. These diet-related diseases are mainly caused due to limited physical activity
and poor eating patterns. Journaling and self-monitoring have been very effective
tools in combating diet-related diseases as they help to discover undesired patterns
at an early stage and motivate users to lead a healthy lifestyle.

Smartwatches are commonly used for fitness tracking. They can recognize dif-
ferent types of physical exercises and provide rudimentary measurements for health
metrics such as heart rate variability, energy expenditure, and sleeping hours. While
useful, these features do not provide users with a holistic view of how their daily
activities influence their health and how their body reacts. For example, knowing
how many calories we burn is insufficient unless we compare it to our calorie intake.

Current food journaling methods rely heavily on self-report, which suffers from
self-bias, recall errors, and low adherence. In the last two decades, researchers have
developed several automatic diet monitoring (ADM) systems to address the chal-
lenges of traditional journaling techniques. The focus of the diet monitoring research
has been on detecting when people eat, and identifying what and how much they
ate. Ecological validity has been a major issue in ADM research. While many ADM
systems obtain high accuracy in lab settings their performance drops significantly
when tested in the real world. The most cited reasons for this challenge are the
difficulty to build generalizable models using data collected in the lab, the lack of
reliable ground truth in free-living environments, privacy concerns, and the social
acceptability of the device.

In my research, I tackle these challenges by developing and deploying a number
of ADM systems (EarBit and FitByte). These trackers are hosted in commonplace
form factors (i.e. headphones and eyeglasses) to ensure their social acceptability. I
also worked on designing data collection techniques to build models that work reli-
ably in the real world. The high performance obtained by these models has brought
us closer to assessing the utility and usability of ADM systems in the field.

The final piece of my dissertation is a long-term field deployment for an ADM
system (FitNibble) based on my previous ADM designs. In this study, I compared
traditional self-report journaling and journaling with ADM. Through this evalua-
tion, I assessed the factors influencing adherence to journaling like reducing missed
events, social acceptability, usability, utility, and privacy concerns. Results have
shown that FitByte2.0 improved adherence by significantly reducing the number of
missed events (19.6%improvement, p = .0132). Results have shown that partici-
pants were highly dependent on the wearable in maintaining their journals. Partici-
pants also reported an increase in their awareness of their dietary patterns especially
with snacking. All these results highlight the potential of ADM in improving the
food journaling experience.
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Chapter 1

Introduction

1.1 Overview

What we eat has an immediate and long lasting affects on our health. Medical research litera-
ture has shown direct links between diet and chronic illnesses. On the flip side, a good healthy
diet has always been helpful in fighting and preventing diseases [15]. A report published by
the US Burden of Disease Collaborators showed that in 2016 dietary factors were associated
with more than half a million deaths in the United States, putting it as a leading risk factor for
mortality[47]. In the United States, almost half of the adult population suffer from at least one
diet-related disease, such as heart failure, diabetes, high blood pressure, cancer, kidney failure,
and obesity[23]. However, these diseases are no longer confined to resource-rich environments,
diabetes and obesity are now considered global epidemics [33]. Diet-related diseases are mainly
caused by limited physical activity and poor eating habits. To alleviate some of these issues,
numerous research efforts have shown that journaling is one of the most effective ways to main-
tain a healthy eating regime [15]. Self-monitoring allows us to keep track of our physical and
eating activities, understand how our bodies are reacting to these events, and open the door for
us to reflect on our behavior and lead a healthy lifestyle. In the midst of our busy lifestyle, ad-
herence to self-monitoring becomes very challenging. Many studies have shown low adherence
rates to journaling due to the the tedious nature of the process[31]. As part of the quantified-
self movement, academic and industrial communities have been actively trying to provide solu-
tions to automate the journaling process, to raise adherence and improve usability. Currently, all
smartwatches and smartphones come equipped with fitness tracker apps, while tracking physical
activity is becoming increasingly popular, diet tracking is often overlooked. Diet monitoring is
a hard problem. It involves recording when you eat, what you ate, and how much you’re eating.
This makes diet monitoring more challenging to automate than other activities. It is well known
that diet has a higher influence on our well-being than physical exercise [73]. Therefore, there is
a real need for solutions that can address the food journaling challenges.

1



1.2 Problem Statement
Food journaling requirements vary depending on what users and dietitians are interested to track.
It involves tracking the eating event’s time, location, food type, food amount, social context,
mood, and calorie content. Current Food journaling solutions rely heavily on self-report either
by using pen-and-paper forms like food frequency questionnaires and 24-hour recalls or through
journaling applications. A recent study has shown that the majority (98%) of journalers use
smartphone applications or web applications to log their dietary activities[20]. While the use of
journaling applications has enhanced the user experience, it didn’t address the major challenges
with self-monitoring. Helander et al. analyzed logs from a food journaling mobile app and found
only 3% of 190,000 downloads resulted in a person using the app for more than a week [31].

Cordeiro et.al.[21] Investigated the reasons behind the low adherence to food journaling. In
their study, participants have cited the following reasons to explain why they stopped journaling
before they reach their goals.

1. Requires too much effort.

2. Time-consuming.

3. Loss of motivation.
Generally, missing to log eating events results in incomplete journals making it difficult for

users to understand their dietary patterns, and as a consequence, they lose their motivation and
quit journaling. In the same evaluation, Cordeiro et.al found that participants missed logging
because they simply forgot. Other reasons included lack of food nutrients information, stigma
from journaling in front of others, or because they feel ashamed of the unhealthy meal choices
they made. Lately, photo-based food journaling has become a popular journaling technique. It
reduces the logging effort to just snapping a picture. The user can review the photos and add
more information at their convenience. While effective studies showed that it doesn’t signifi-
cantly reduce the number of missed events because the majority of users still forget to log or/and
reported experiencing stigma when they try to take food pictures in front of friends [20].

1.2.1 Automatic Diet Monitoring

In the last two decades, activity recognition researchers have worked on developing automatic
dietary monitoring systems (ADM) to help mitigate some diet monitoring challenges. ADMs
have the potential to reduce missed events by reminding users to log when they forget, and
cutting off the manual journaling effort. Research in the field of automatic dietary monitoring
(ADM) is focused on answering the following three questions: (1) When do you eat, (2) What
type of food do you eat, and (3) How much of it did you consume.

Identifying food intake moments serves as an initial step towards identifying food type and
amount. Therefore, detecting When eating and drinking events occur has been the focus of most
ADM research [56, 63]. Most explored ADM systems are based on wearable form factors, and
they use different sensing modalities to detect actions like chewing to identify food intake events.
Many of these systems have obtained high accuracy when tested in controlled settings, but their
performance significantly dropped when tested in the real-world. Building models in the lab
to accurately capture how eating and drinking occur in-the-wild has become a major challenge.
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Figure 1.1: This figure summarizes my thesis contributions starting with EarBit (a) an ADM
system based on a sports headphone, which detects chewing. To detect drinking and identify food
type and the amount, I designed FitByte (b), which is an ADM system based on an eyeglasses
form factor. FitByte detects chewing, swallowing, hand-to-mouth gestures, and take images of
the food. Finally, based on the lessons learned from EarBit and FitByte, I developed FitNibble (c)
to evaluate ADM utility and usability in food journaling. This end-to-end ADM system provides
just-in-time notifications to prompt users to do their logs.

Building these models with in-the-wild data is also difficult due to the lack of reliable ground
truth for user activity in unconstrained environments.

Schiboni and Amft [63] discussed several challenges in building ADM systems, most promi-
nent are the ability of these systems to perform well in unconstrained environments and to
have a socially acceptable form factor for everyday use. Therefore, removing these technical
and non-technical barriers has become a necessary step to evaluate the ADM impact on food
journaling.

In my research, I address these two challenges by developing wearable ADMs that have
commonplace form factors like headphones, wristbands, and eyeglasses. To improve in-the-
wild accuracy I employed sensors that are less prone to environmental noise and I designed
special data-collection techniques to effectively build models that work reliably in free-living
environments. Addressing these challenges placed me in a good position to assess the utility and
usability of ADM.

In my work I try to address the following research questions (RQs):

• RQ1: How can we develop practical ADM systems that replicate in-the-lab performance
outside the lab?

• RQ2: Can ADM systems improve food journaling compliance and reduce journaling
difficulty?
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1.3 My Approach
In the effort to address RQ1 and RQ2 I started by developing EarBit (figure 1.1.a [11]), an ADM
system based on a commonplace form factor, a sport’s headphone. This ADM detects chewing
with an IMU and use it as a proxy to detect eating. To build a naturalistic eating detection
model we collected data in a home setting during a dinner party. When testing these models
we found that they replicate their high lab performance outside the lab, but there were major
challenges with this approach. First, Earbit fundamentally detects chewing, therefore we are
missing on drinking events and eating semi-solids like ice cream and yogurt. Second, the way
we collected the models’ data was also difficult to replicate and participants found that using
off-the-shelf wearable cameras is very restricting in free-living environments. Finally, EarBit
takes on average 65 seconds from the beginning of an eating event to detect it. This delay means
EarBit might not be suitable for just-in-time interventions.

In my next steps, I tried to address the challenges with EarBit by designing a new ADM
system that can detect chewing, swallowing, hand-to-mouth gestures, and capture images of the
food. I call this ADM system FitByte (figure 1.1.b [12]). The main challenge with this design
was being able to capture all these actions from a single commonplace wearable. To achieve
that I used a suite of sensing modalities including gyroscopes, proximity sensors, and a high-
speed accelerometer. We used the onboard camera to also collect the ground truth of the user’s
activity in a free-living environment. We built our models using data collected while the user is
completing a high-level task in free-living environments. These tasks require the user to engage
in a variety of activities condensed in a short duration. With FitByte we were able to replicate
high lab performance and accuracy outside the lab. We found that using the footage captured
by the onboard camera can help us identify food types. FitByte was also able to recall 96% of
the eating event duration, which helped us in estimating the food amount (Chapter 5). Finally,
FitByte took only 7 seconds on average to detect the beginning of eating events, which makes
it suitable for designing just-in-time interventions. This improvement in the average delay is
attributed to the use of a proximity sensor to detect hand-to-mouth gestures

The findings of my research addresses RQ1 and enables users to precisely track when eating
moments occur. My approach also uncovers other aspects of food journaling like drinking events,
food type, and food amount. All was done by collecting data in semi-controlled settings to
build activity models, and by employing sensors commonly found in commercial wearables and
smartphones. In the final part of my thesis work, I focused on addressing the second research
question RQ2 and make an initial assessment on the impact of ADM on the food journaling
process.

In this investigation, I relied on Earbit and FitByte to inform the design of a new end-to-
end ADM system (FitNibble) suitable for a field deployment (Figure 1.1.c). The setup used
lightweight sensors attached to the user’s glasses. The wearable has a BLE module that sends
computed features to the user’s phone which passes them to a server to generate eating predic-
tions and pass it back to the phone. Using an iOS App FitNibble sends to the user just-in-time
notifications to prompt the user. After deploying the system we found that FitNibble significantly
improved compliance (p = .013) and reduced journaling difficulty (p = .021). These results di-
rectly address RQ2 and demonstrate how ADM can improve the food journaling experience.
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Through my research, I provided support for my thesis statement: Automatic diet monitor-
ing enabled by wearable sensors can improve compliance to food journaling, by lowering the
cognitive load required by users, and dropping the number of missed eating episodes.

1.4 Document structure
In this document I use the terms free-living environments, in-the-wild,in the real world, and un-
constrained environments interchangeably to describe uncontrolled, outside the lab studies. The
next chapter provides some background on food journaling and reviews prior work in automatic
diet monitoring. Chapter 3 discusses approaches I followed to address the first research question.
Chapter 4 documents EarBit, my first attempt to address the free-living challenge. Chapter 5 de-
scribes my work on FitByte, an eyeglasses ADM capable of detecting eating and drinking events
in-the-wild, captures images of food, and estimating food amounts. Chapter 5 discusses FitNib-
ble, an ADM system based on FitByte design recommendations. In chapter 5, I also discuss
how I used FitNibble to evaluate the utility and usability of ADM systems in food journaling.
Finally, Chapter 6 is a general discussion about the findings of this research and possible future
directions.
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Chapter 2

Background

2.1 Food Journaling
Food journaling has been an effective method to combat diet-related diseases and help individuals
lead a healthy lifestyle. Research has shown its positive effect in managing chronic illnesses
such as diabetes [41, 42], kidney failure [17, 66], and obesity [32]. In addition, journaling plays
an instrumental role in identifying and managing food allergies[30, 65]. In previous studies,
researchers witnessed that journalers are more mindful of their diet and they are more encouraged
to avoid unhealthy foods [34, 71].

2.1.1 Food Journaling Methods
Self-report is the most common diet monitoring method. Food frequency questionnaires and
24-hour recalls represent the most typical journalling methods employed by health experts. Self-
report methods require users to keep track of many aspects related to their dietary activities
such as when they eat, what they ate, the amount of food/drinks consumed, where did they eat,
the social context, mood, and Calorie content [3, 25, 72]. In recent years, the smartphone has
become a popular tool for food journaling; applications like MyFitnessPal and Weight Watchers
have more than one million downloads. Most journaling apps help users populate their journal
with the aid of a large food database that has calories and nutritional contents for meals.

2.1.2 Food Journaling Challenges
Despite the clear benefits of journaling it is not widely adopted. Food journaling requires a high
level of engagement from the user to maintain their logs. The taxing nature of the journaling
process causes fatigue and lead to reduced compliance [5, 22]. In [31] Helander et al.. found
that of the 190,000 downloads of a food journaling app, only 3% used the app for more than a
week. Cordeiro et al. [20, 21] have investigated the barriers and challenges for different food
journaling methods and found that loss of motivation, time commitment, and the large effort
required to maintain a journal are the most common reasons people cite to explain why they
stopped journaling before they reach their goals. These reasons usually lead people to miss
reporting eating events and overtime the journal loses its value because it is incomplete. When

7



investigating further why journalers miss eating events, Cordeiro et al. found the following
reasons to be the most common:

1. The most reported reason for missed events is forgetting to log.

2. The lack of dietary content information for a meal makes it difficult to report.

3. In some social contexts it’s difficult to journal (e.g. in a party )and these events often get
missed or partially logged.

4. People would intentionally miss logging some events because they feel ashamed or guilty
of their unhealthy choices.

5. Stigma from journaling in front of friends is another reasoner why individuals deliberately
miss to log.

2.1.3 Photo-Based Journaling

In [20] Cordeiro et al. propose the use of photo-based food journaling, which require the user
to only collect images of the food they ate throughout the day and label these photos at a later
time. Participants reported that photos were very helpful to recall food contents and the social
context even if they just took a photo of their empty plates. This method reduced the number of
missed events due to lack of food information by 38%. This is mainly because users were able
to use the saved photos to lookup contents at their convenience. This method doesn’t require
users to count calories, which made participants less anxious and reduced missed events because
of shame. While effective, photo-based journaling similarly suffers from some of the original
challenges faced by traditional techniques like users forgetting to log and stigma.

Among all the reasons users reported for missed events forgetting to log is the most common.
There is a clear need for methods that would help users recall to log eating events as soon as they
happen. In the following sections, I introduce automatic diet monitoring as a potential solution
to this problem and discuss its challenges.

2.2 Automatic Diet Monitoring
In the last two decades, researchers in the wearable community have developed many automatic
diet monitoring systems (ADM) to help mitigate some of the challenges facing traditional jour-
naling methods. Most of the ADM research has focused on detecting when eating events occur,
while little have been done to automatically identify food contents [56, 63]. To identify eating
moments, ADM systems use sensors to detect one or more actions that usually take place while
eating like chewing, swallowing, and repetitive hand-to-mouth gestures. This section reviews
ADM systems based on the actions they are designed to recognize.

2.2.1 Hand-to-mouth Gestures

Observing hand movements as a proxy to detect eating has been a well-studied approach. Amft et al. [1]
instrumented two participants with four XSens-MT-9B motion sensors placed on the upper and
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lower arm of each hand, and asked them to perform several activities including eating in a con-
trolled setting. Dong et al. [24] also instrumented participants with inertial sensors on the wrist
for long periods (between 8.5 and 12 hours) to detect eating events. Sen et al. [64] used the
accelerometer and gyroscope embedded in an off-the-shelf smartwatch to detect eating events
and The smartwatch also has a camera that captures images whenever the classifier detects an
eating event. All the images pass through a filtering pipeline to detect if the food was captured
by the camera or not. Lin and Hoover [39] also used a smartwatch inertial sensor to monitor the
number of bites taken during a meal. Thomaz et al. [67, 68] also had participants wear an inertial
sensor on their wrist and asked them to engage in several eating and non-eating activities in a
controller setting.

The ubiquity of wrist-worn motion sensor underscores the potential of using this method
to detect eating. However, many food intake events may not require repetitive hand-to-mouth
gestures like drinking from a bottle or eating a sandwich or a fruit while holding it close to the
mouth. Besides the missed events, using hand-to-mouth motion can lead to many falsely detected
events as it can easily confuse eating with other daily living activities like smoking and lifting
weights. These reasons make diet monitoring more challenging with this approach, especially in
free-living environments.

2.2.2 Chewing
Several sensing approaches have been employed to detect chewing. GlassSense [19] monitors
jaw activity from the temple using two load cells embedded in the hinge of custom eyeglasses
to detect eating episodes. Similarly, Farooq and Sazonov [26] used a piezoelectric strain sensor
placed on the temporalis muscle to detecting chewing bouts. Bedri et al. [9, 10] used three
infrared proximity sensors embedded in an off-the-shelf earpiece. The sensors detect the ear
canal deformation due to movement of the lower jaw bone tip. Chun et al. [18] used an infrared
proximity sensor placed on a necklace and positioned it pointing upward to detect jaw motion.
Rahman et al. used the inertial sensor placed in Google Glass to collect a data set of human
activities in a controlled setting from 38 participants [58]. Bi et al. [14] put EMG gel electrodes
and a contact microphone behind participants’ ear. Zhang and Amft built custom 3D printed
eyeglasses with EMG sensors [75, 76]. The EMG dry electrode is placed on the eyeglass’s
temples to capture the Temporalis muscle movement. The system achieved a 95% accuracy in
for detecting eating episodes in unconstrained environments.

All these approaches to detect jaw motion work and many of the recent work modeled the data
from semi-constrained environments. However, because these approaches focus on detecting
only jaw motion, it is hard to detect liquids and soft solids such as yogurts and ice-creams. For
that, there is a need to add other sensing modalities.

2.2.3 Swallowing
To detect liquids and solids, one of the most promising approaches is to listen to throat sounds
using to detect swallowing. Rahman et al. [59] have used a piezoelectric microphone on the
neck to detect sounds of drinking, eating, and other activities. In [51] Olubanjo and Ghovanloo
have also used a throat microphone to detect swallowing and developed an algorithm to classify
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it from other tracheal events. Yatani and Truong have also used a similar approach to distinguish
between a set of 12 activities including different ways of eating and drinking. Commercial
products like breastfeeding monitors1 have also used microphones to detect swallowing.

One of the primary challenges with swallowing sound detection is achieving usable perfor-
mance in free-living environments as microphones (even surface-coupled) are extremely suscep-
tible to environmental noise and motion artifacts.

2.3 ADM Performance in Free-Living Environments
In the previous section, I briefly discussed some of the challenges faced by different diet monitor-
ing methods in free-living environments. In many studies, researchers cite reasons for why their
ADM systems are underperforming in-the-wild. In [67] Thomaz et al. recruited 7 participants
for a longitudinal unconstrained data collection using motion sensing on the wrist. Before this
study, they collected data in-the-lab and used it to train the machine learning models, and then
tested with the data collected in-the-wild study. Their results showed F1-scores between 71%
and 76% in detecting eating episodes every hour. Thomaz et al. explain while it’s easy to collect
data in a controlled setting and annotate the data, it’s very difficult to obtain reliable ground truth
for in-the-wild activities. They also mention that activities collected in a controlled setting do
not represent how these activities occur in-the-wild. In [10] Bedri et al. cited similar reasons
for why their chewing-based ADM had low precision when tested in free-living environments.
In [40, 51] researchers reported a significant drop in accuracy when testing their audio-based
ADMs in-the-wild. This drop was explained by the low signal-to-noise ratio for chewing and
swallowing signals as they got overwhelmed with environmental noise.

2.3.1 Challenges with field deployments

In automatic diet monitoring research, most efforts were exploratory. Researchers have inves-
tigated a wide range of sensing modalities and assessed how they can be used to detect eating
and drinking events. When it comes to assessing the values these systems can provide to the
end-user the research work is limited. The main reason behind that is the poor performance of
ADM systems in free-living environments. The lack of systems that can reliably work in-the-
wild has prevented the research community from exploring the utility and usability of ADM.
In their review paper, Schiboni and Amft [63] discuss ADM challenges in free-living environ-
ments and attribute the lack of reliable performance to the difficulty of acquiring ground truth
in unconstrained environments, lack of validation procedures, social acceptability of the device,
and energy efficiency. In recent years, some researchers have worked on addressing these prob-
lems and provide solutions, which can mitigate these challenges. For example, Zhang and Amft
built custom 3D printed eyeglasses with EMG sensors [75, 76] these glasses were specifically
designed to fit the user to ensure the EMG dry electrode has good conductivity. The electrodes
are placed on the user’s temples to capture mastication from the Temporalis muscle movement.
The system captures eating events based on the detected chewing rate. When tested, the system

1https://mymomsense.com
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achieved 95% accuracy in detecting eating episodes in unconstrained environments. Another
example is FitByte [12], on which we are basing our wearable setup. FitByte is an automatic
diet monitoring system also based on an eyeglass form factor, but it doesn’t require a custom fit
frame for every user (one size fits all) and it utilizes a set of inertial sensors to detect chewing
and swallowing and a proximity sensor to detect hand-to-mouth gestures. Detecting all these
activities helped FitByte achieve 92.7% F1-score in detecting both eating and drinking episodes
in free-living environments. We chose FitByte as a reference for our design because it detects all
eating actions (chewing, swallowing, and hand-to-mouth) from a single device. It also doesn’t
require the glasses to be custom fitted for every user, which makes it easier to deploy. FitByte
is also not hard to build because all the sensors it requires are commonly found in commercial
wearables.

Up to my knowledge, only a few ADM systems were evaluated in long-term field deploy-
ments (a week or more). All these deployments have used an off-the-shelf smartwatch to detect
eating from hand-to-mouth gestures. Thomaz et.al. [67] have conducted a field study with one
participant for 31 days. The study was focused on evaluating the performance of the setup in
free-living environments using an offline machine learning pipeline. The system achieved 71.3%
F-score in detecting eating episodes. Turner-McGrievy et.al. [69] have deployed another watch-
based ADM for 4 weeks with 12 participants. The goal of the study was to see the influence of
ADM on users engaged in a weight loss program. The wearable tries to estimate the calorie count
from the number of bytes detected. Participants had to remember to turn on the byte counting
App every time they eat and see the estimated KCalorie count at the end of the meal. Participants
lost 1.2 Kg on average after the study, but it wasn’t clear how much influence the wearable had
on the results.

Morshed et.al. [49] have also deployed a smartwatch based system with 28 college students
for 3 weeks. This setup had a real-time recognition system that prompts participants every time
it detects eating and asks them to answer a few questions about their meal. The evaluation
was limited to assessing the system’s accuracy in detecting main meals (not snacks), but the
authors didn’t thoroughly investigate the usability of the system nor the impact it had on the user
experience with food journaling.

In this research, I present an in-depth analysis of the user experience with ADM and the
impact it had on adherence to the food journaling process. My FitNibble system was capable of
detecting meals as well as small snacking events in real-time, This feature had a great impact on
the overall experience and significantly improved adherence to the food journaling process.
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Chapter 3

My Approach

In general, understanding the value of automatic diet monitoring and its impact on users’ health is
difficult if the devices we use are inaccurate or socially unacceptable [63]. Faulty trackers either
underreport events or annoy users with many false positives leading to a trust deficit and nega-
tively impacts adoption rates. For these reasons, I shaped my thesis research around addressing
the technical ADM challenges to be well situated to assess ADM’s utility and usability. In this
chapter I describe the general methodology I followed in addressing the first research question
(RQ1: How can we develop practical ADM systems that replicate in-the-lab performance out-
side the lab?). I then show how answering this question situated me in a good position to address
the second research question (RQ2: Can ADM systems improve food journaling compliance
and reduce journaling difficulty)

Tackling RQ1 requires understanding the nature of the roadblocks affecting ADM perfor-
mance in free-living environments. The following sections will discuss these barriers and the
approaches I followed to address each one of them.

3.1 ADM Challenges In-the-Wild
Through extensive evaluation of previous work for in-the-wild ADM’s assessment, I identified
the following reasons for poor free-living performance:

• Social acceptability: The form factor of wearable ADMs plays a big role in how people
would embrace the technology. If the wearable is intrusive or its appearance doesn’t adhere
to the social norms, users will find it challenging to always wear it especially when they
have company.

• Environmental noise: Many ADMs have relied on microphone data to detect chewing
and swallowing sounds; these sensors were placed in-ear, on-throat, or in the environment.
Researchers have reported a significant drop in accuracy when these devices are used in a
noisy environment like restaurants. Further analysis showed that chewing and swallowing
sounds are overwhelmed with other environmental sounds making the signal indistinguish-
able from noise [40, 51].

• Easily confused actions: All food intake monitoring techniques identify events by detect-
ing one of the actions that occur during eating or drinking, such as chewing, swallowing,

13



and hand-to-mouth gestures. Depending on the employed sensing modality and its place-
ment, these actions can be easily confused with other everyday actions. For example,
when using an inertial sensor on the wrist to track hand-to-mouth gestures they can con-
fuse eating events with smoking or lifting weights [50, 67]. A proximity sensor tracking
jaw motion can confuse chewing with talking or walking instances [9, 10].

• In-the-wild ground truth: One of the main challenges to assess the performance of ac-
tivity recognition systems in-the-wild is the difficulty to obtain reliable ground truth for
the user activities. Many free-living ADM evaluations have relied on self-report [10, 29],
which suffers from recall errors and user bias. Others have dedicated researchers to follow
participants and note down their activities [18], and others have instrumented the user with
bulky wearable cameras [67]. The latter two approaches introduce new variables that can
affect the participants’ behavior and the behavior of others around them, compromising
the nature of the free-living environment.

• Generalizable models: Due to the challenges in obtaining reliable ground truth in-the-
wild, most ADM models are built with annotated datasets recorded in controlled lab envi-
ronments. Many studies have shown these models do perform poorly when tested in-the-
wild [10, 27, 67] demonstrating that eating activities recorded in controlled settings don’t
represent the true nature of these activities when they occur in unconstrained environments.
For example, when eating naturally the user tends to mix this activity with others like talk-
ing, using the phone, or watching TV. These natural interactions are difficult to simulate in
controlled studies.

Figure 3.1: ADM systems I developed (a) EarBit: a diet monitoring system that detects chew-
ing using an IMU behind the ear (b) FitByte: an eyeglasses-based ADM that detects chewing,
swallowing, and hand-to-mouth gestures and has a camera on board that captures food images
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3.2 My Approach to Improving ADM Performance

Understanding the factors that influence the ADM in-the-wild performance has informed the
strategies I used to address each one of the above challenges.

• Social acceptability: My strategy to tackle social acceptability challenges is to build wear-
able ADM systems hosted in commonplace form factors like earpieces, headphones, wrist-
bands, or eyeglasses. Given these form factors have well-established social acceptability,
it makes it easier to adopt by users especially if they are used to wearing them regularly.
While effective this approach comes with a set of design challenges, which include find-
ing the appropriate sensing modalities that can be integrated into these form factors and
ensuring the sensor(s) placement and fitting deliver repeatable clear food intake signals.

• Environmental noise: In my approach, I focused on employing sensors that are less prone
to environmental noise and explored placements and fitting techniques to ensure clarity of
the signal. The following chapters (4,5) describe in detail the design of three ADM systems
and the sensing techniques they used to track eating and drinking instances.

• Easily confused actions: To reduce confusion with other activities, I’ve employed several
techniques like introducing new sensing techniques to reliably detect eating actions, adding
reference sensors to help reduce false positives by measuring the same signal from different
locations, and utilized feature engineering techniques that specifically target confusing
activities.

• In-the-wild ground truth: To obtain reliable ground truth I developed an eyeglasses ADM
with an integrated miniaturized camera that points down towards the user’s mouth. Due
to the nature of the activities that we would like to track (i.e. eating and drinking) this
placement allowed us to monitor the user behavior without invading their privacy or the
privacy of who is around them. The microphone was removed from the camera module
to prevent it from recording audio, and the user had the freedom to switch the camera off
whenever they wanted. The camera’s placement and size made it easy for users to forget
its presence during the day and act normally. The footage recorded by the camera was also
used for other purposes like identifying food types.

• Generalizable models: Finally to address the models’ generalizability, I designed several
methods to record and label activities in semi-controlled environments which proved to
perform well in free-living environments. An example of this method is the recording of
activities during a dinner party in a two-story house instrumented with cameras. In this
scenario, the only instructions given for the users was not to leave the house during the
party (75 minutes). Other than that the participants had no instruction on what to do and
were acting normally (Figure 3.2.a). This method allowed us to obtain a dataset annotated
with 1-second precision. Another method I developed to obtain annotated datasets was
done with eyeglasses cameras. This method focused on recording short events where the
user is engaged in eating, drinking, or other activities (e.g. grabbing a snack, watching TV,
exercising, lunch meeting ). Targeting these events allowed us to obtain short and easy to
annotated datasets of condensed natural activities (Figure 3.2.b).
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Figure 3.2: Semi-controlled approaches followed to build reliable in-the-wild food-intake models
(a) Collect data in a house environment (b) Collect data for short events in-the-wild

3.3 My Approach to Evaluating ADM Utility and Usability

My work on improving ADM performance in real-world settings through Earbit and FitByte has
paved the way for me to address RQ2. Informed by the design of my previous ADM platforms,
I developed FitNibble an ADM that can be attached to the user’s eyeglasses. The device is a part
of an end-to-end system that includes an iOS app and a backend server. This system allows users
to receive just-in-time notifications prompt them to do the logs as soon it detects they are eating
(Figure 3.3). This feature was enabled by the proximity sensor that help detects hand-to-mouth
gestures. The proximity sensor helped reduce the average detection delay to 7 seconds.

I deployed this setup in a long-term field study. The study required participants to try tradi-
tional self-report food journaling for a week. We then introduced them to FitNibble and asked
them to use it for another week. Throughout the study, we tracked the user experience with
daily surveys (experience sampling) and interviewed the participants at the end of each phase.
The interviews focused on assessing the adherence to the food journaling process, the social
acceptability and privacy concerns, and general feedback on the usability and utility of the two
journaling methods and how they compare to each other.

Our data analysis showed that participants depended on the wearable to do their logs and
journaling difficulty dropped significantly in the second phase. But The major outcome of this
study was in compliance, as we saw a 19% (p = 0.13) increase in the number of days with no-
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missed events after using FitNibble. All these results highlight the potential of ADM in reducing
the missed events and improving compliance to food journaling (RQ2).

1 2 3 4

Figure 3.3: With FitNibble users can receive just-in-time notifications prompting them to log
their meals and snack. This setup helped in addressing the food journaling challenges with
compliance and missed events

The following chapters document the three ADM systems I developed: EarBit, FitByte and
FitNibble. These chapters also discuss the different approaches I took to address ADM chal-
lenges in-the-wild and how they all formulated the answer to my research questions.
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Chapter 4

EarBit

4.1 Introduction

EarBit is an experimental, head-mounted wearable system that monitors a user’s eating activities
while remaining resilient to the unpredictability noise in real-world settings (Figure 4.1). This
system is based on a wearable developed to monitor jaw and tong motion for silent speech recog-
nition [7, 8, 61]. The setup design is also driven from my previous work in diet monitoring using
in-ear proximity sensors to detect chewing instances [9, 10].

EarBit uses chewing behavior as a proxy for eating, resulting in instrumentation of the head.
As an experimental platform, EarBit’s design allows for the collection of data from a number
of sensing modalities (optical, inertial, and acoustic). We use these sensors to determine the
combination of sensing modalities that is most effective for detecting the moment of eating.
To reduce the gap between results from a controlled laboratory setting and the real world, the
algorithms for these sensors (shown in Figure 4.1) were developed and evaluated in a semi-
controlled home environment that acts as a living lab space. The results of this study indicated
that an inertial sensor behind the ear (measuring jaw motion) in tandem with an inertial sensor
behind the neck (monitoring body movement) produced good results in detecting eating activity,
and was also the form factor considered most comfortable by the participants; particularly since
the function of the inertial sensor behind the neck is used to detect activities like walking and
could be replaced by a user’s smartphone or wrist-mounted activity tracker.

Eating detection models trained on data from the semi-controlled study were then tested on
a new dataset collected in a relatively relaxed ”outside the lab” environment. We recruited a new
set of 10 participants, and instead of asking them to come to our study location, we gave them
the EarBit prototype and asked them to use in their own environments. We collected data for a
total of 45 hours. EarBit’s IMU is essentially a chewing sensor, and at a 1-second resolution,
EarBit correctly recognized chewing activity with an accuracy of 93% and an F1 score of 80.1%.
When these Outside-the-Lab chewing inferences are aggregated into separate eating episodes,
EarBit accurately recognized all but one recorded eating episodes (delay = 1 minute). These
events ranged from 2 minutes snacks to 30 minutes meals.

The main contribution of this research is a demonstration of the experimental EarBit system
that successfully recognizes eating episodes in a real world setting. This contribution comes in
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Figure 4.1: EarBit’s data collection prototype with multiple sensors. Our semi-controlled and
Outside-the-Lab evaluations show that the Behind-the-Ear IMU is enough to achieve usable per-
formance. We envision such a sensor to be part of future eyeglasses or augmented reality head-
mounted displays.

three parts:

1. An evaluation of a wearable setup for eating detection based on off-the-shelve form factors.

2. A novel, semi-controlled laboratory protocol used to judge the effectiveness of combina-
tions of three sensing modalities for eating detection.

3. A machine learning model that uses inertial data collected in the semi-controlled environ-
ment to reliably recognize eating episodes in a real world setting.

4.2 Data Collection

McGrath identified three key factors when conducting a study: precision, generalizability, and
realism [44]. However, it is difficult to collect data that has all three elements. At one extreme,
laboratory experiments allow researchers to accurately measure behavior because the researcher
can control when and where behaviors of interest occur [16], but this data often lacks realism. At
the other extreme, in situ observations allow researchers to capture real life behavior. However,
this data often lacks precision due to the lack of proper instrumentation or control, resulting in
poor ground truth data. Consequently, the leap from a controlled study to the in-situ study often
becomes intractable for machine learning models.
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4.2.1 Semi-controlled Lab Study

In order to bridge the gap between controlled and real life studies, we collected our training
data in a simulated natural environment. We observed participants interacting in a sensor-
instrumented home (the Aware Home at the Georgia Institute of Technology) especially designed
to support ubiquitous computing research [37]. This 3-storied building spans over 5,000 sq. ft.,
and is embedded with various sensors to support data collection.

Scenario

The participants were invited to the Aware Home for dinner. Once at the house, a researcher
facilitated the group’s activities over a 75-minute session. There were 3 to 4 different partici-
pants in each session. In an attempt to catalyze conversation, participants were chosen such that
each participant was familiar with at least one other participant at the dinner. In total, sixteen
participants (19-25 years, 9 female & 7 male) participated in a total of 5 sessions.

After completing a brief demographic survey, the participants were asked to wear the multi-
sensor setup shown in Figure 4.1. Once the participants felt comfortable with the hardware,
they either ate dinner, took a tour of the home, or engaged in free-flowing conversation while
watching TV. Although the group had the freedom to chose the order of activities, all participants
performed all activities in each session. Also, there was no restriction on the duration of each
activity.

The tour required walking through the home, including walking up and down a flight of stairs.
The group decided whether to eat their dinner either in the dining area or the living room. The
participants chose their dinner entree from local restaurants with different cuisines. While watch-
ing TV, participants were also offered snacks, such as potato chips, chocolate candy, peanuts,
apples, and bananas. Additionally, participants were provided bottled water and assorted sodas
to drink. Since participants already knew each other, they were comfortable with spontaneous,
free-flowing, natural conversations that rarely required any host facilitation. Additionally, famil-
iarity allowed the participants to eat in a natural manner without being self-conscious about their
manners. For example, participants often talked and ate simultaneously.

Of the sixteen participants involved in the study, only ten participants provided usable data.
Four participants had to leave prematurely due to a personal emergency, and two participants had
corrupted or missing sensor data. Nevertheless, our semi-controlled dataset had 12.5 hours of
annotated data with almost 26% labeled as chewing.

Ground-truth

We used four video cameras to record participants’ activity. Three stationary video cameras were
located in the dining area and living room, and a handheld camera was handled by a researcher.
This camera followed participants when they went to areas outside the range of the stationary
cameras (e.g., the stairs, kitchen). In order to sync the devices’ data with the cameras, each
participant was asked to perform a gesture of tilting their heads from side to side. To sync the
video cameras, we switched the house lights on and off three times at the beginning of each
session.
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Figure 4.2: Outside-the-lab study configuration: a) A user wearing the EarBit system and GoPro
camera. b) A picture from the GoPro camera of the user working at a desk. c) A picture from the
GoPro camera of the user eating with a pair of chopsticks.

Over the course of the scenario, user behaviors included walking, standing, sitting, talking,
eating, laughing, watching TV, etc. At the conclusion of the scenario, participants completed a
post-study survey. The survey covered: (1) comfort ratings for different hardware components of
the experimental device; (2) comfort ratings for different combinations of components; and (3)
an open question about their experience with the experimental device. Following the post-study
survey, we engaged the participants in an informal focus group and discussed usability, comfort,
and practicality.

4.2.2 Outside-the-lab Study
The semi-controlled Aware Home study put the participants in a social group and aimed to collect
the data in a realistic setting. While we largely succeeded in collecting realistic behavior, the
participants were still aware of multiple cameras and the data recording focused on capturing
eating events. For example, it would be uncommon for a user to spend 26% of their day eating.
While a high percentage of eating episodes are an optimal approach to collect training data, it is
not an ideal evaluation scenario. Hence, we decided to evaluate our algorithms in a slightly more
relaxed and naturalistic environment. We outfitted 10 new participants (3 female and 7 male, aged
18 to 51) with EarBit and asked them to take it out of the lab and use in their natural environments.
In this study, participants recorded data in diverse environments including houses, offices, cars,
restaurants, prototyping workshops, streets and public transport. None of these participants were
part of the previous study and the participants were advised to engage in at least one eating
activity. We recorded up to two 3 hours sessions with each participant. The session length was
limited by our groundtruth collection device: GoPro Hero 3.

Considering participants were going to use EarBit outside a controlled environment, groundtruth
collection becomes hard. Traditionally, self-reporting any eating activity is a standard practice for
determining ground truth for eating studies in unconstrained environments. However, a number
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of previous studies (e.g., [6]) and our own pilot study showed that self-reporting is not reliable.
In an initial version of our study, several participants indicated that they forgot to write down
eating times while they were eating. Instead, they wrote best guesses of time and duration. In
other instances, participants did not remember to write down eating times until after the study
was over. Hence, we revised the study to obtain ground truth via a chest-mounted GoPro Hero 3
camera. The camera faced upward towards the participant’s face and continuously recorded ac-
tivities around the participant’s head (Figure 4.2a). Apart from asking participants to try and not
occlude their mouth while eating (Figure 4.2c), there was no change to the instructions given to
participants. They were told to conduct their normal, daily activities, and to self-report eating
via manual logging. The GoPro sessions lasted for 3 hours, due to the battery constraints of the
camera. In order to collect sufficient per-person data, participants were asked to complete two
sessions. However, 5 of the participants were unavailable for a second session, and we had a
total of 15 outside-the-lab sessions (3 hours each). 11% of the recorded data was identified as
chewing and is representative of an average user’s daily life [13]

4.2.3 Video Annotation
To acquire ground truth for each user’s activities in both studies, we hand-annotated the video
recordings from both studies. We used Chronoviz [28] to synchronize video and sensor data.
Four coders annotated the data by manually inspecting the recorded audio and video. The anno-
tations included six labels divided into two categories: body movement (moving or stationary)
and jaw activity (chewing, drinking, talking, or other). Any labeling window can have one anno-
tation from each of the two categories, but not two from the same. For example, a user could be
walking (body movement) and eating (jaw activity), but cannot chew and talk (both jaw activi-
ties) simultaneously.

Moving included a wide variety of actions, like walking, body rocking, etc. Stationary, chew-
ing, talking, and drinking are self explanatory actions. We used the other label for relatively
infrequent but significant jaw actions such as laughing, coughing, and yawning. We did not an-
notate portions of the video when the participant could not be seen; though that was rare. We
performed the annotation by considering non-overlapping 1 second window of video and label-
ing it as the activity that lasted the longest within the window. High granularity annotations allow
us to learn from small, quick transitions. For example, Figure 4.3 shows a user having a meal
over a 10 minute period. The user transitions through a number of activities while having his
or her meal, and we are able to annotate small and sporadic periods of silence in addition to the
main activity of chewing.

Additionally, a section of video can have more than one label, one from each of the two cate-
gories. For example, a person that is walking while eating simultaneously can have both of these
labels for the same segment of data. A similar example is depicted at the end of the expanded
subplot in Figure 4.3, in which the subject was labeled to be both moving (from the body move-
ment category) and talking (from the jaw activity category). However, when selecting frames for
training and testing we resolve the confusion in mixed activities labels by giving different prior-
ity level for each class. The moving label has the highest priority, followed by other, drinking,
chewing, talking, and finally stationary, respectively. The activity with the highest priority be-
comes the dominant label for the frame. Mixed activities that had eating overlapped with labels
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Figure 4.3: An example of annotations for eating activity. We annotated our video data at a
1-second resolution. In this 600-second example of a user having a meal, we capture all minute
transitions and capture various 2-second intervals where the user stopped chewing. Mixed activ-
ities would have overlapping annotations as indicated in the example of walking and talking. For
all the instances when the user is not moving a stationary label is also added.

with higher priority represented only 2.2% in the semi-controlled lab (Aware Home) data set.
To annotate the video for the outside-the-lab study, we chose to provide only two labels

(chewing and not-chewing). Therefore, it is important that the multi-class machine learning
models trained using the semi-controlled study be ultimately converted into binary classification
models for the outside-the-lab study. We will discuss this in detail in Section 4.3.2.

For annotating the recorded videos, we employed 4 coders and then used Cohen’s Kappa to
compute inter-rater reliability [38]. Kappa (K) was computed using a 15-minute video sample
from the Aware Home dataset. This video was chosen so as to encompass a wide range of
activities. Because any subset of activities could take place simultaneously or individually, the
annotations are not conditionally-independent. Hence, we computed the inter-rater reliability
for each activity separately, where 0.60 < K ≤ 0.80 represents satisfactory agreement and
K > 0.80 represents near-perfect agreement. Our worst inter-rater reliability was K = 0.69 (for
stationary) and our best was K = 0.99 (for other); average agreement across all activity labels
was 0.84.

4.3 System Description

In this section, we first describe the initial set of sensors identified to be suitable for detecting
chewing/eating through instrumentation on/near the head. We then discuss the process of choos-
ing an optimal subset of sensors leading to a revised design of EarBit and its machine learning
algorithms.
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4.3.1 Choosing the Right Sensor(s)

Our goal is to design a system that accurately detects the chewing activity as a proxy for food
intake. We aim to achieve this using an optimal number of sensors, while considering the social
acceptability and comfort of the form factor. To this end, we investigated a number of sensors
and compared their performance and usability.

Sensor Selection

Previous research in food intake monitoring has focused on tracking various actions that occur
during an eating activity, so-called proxies for eating. These include hand-to-mouth gestures,
chewing, and swallowing. Although hand motion is involved in most eating activities, and has the
advantage of leveraging common commercial sensing platforms that people already have (e.g.,
smartwatches or activity trackers), it has limitations (i.e., usually only one hand is instrumented)
and we felt that detecting chewing and swallowing is more directly associated with eating and,
therefore, sufficient to infer eating episodes. Fontana et al. support our claim, indicating that
in a naturalistic environment, jaw motion can be more indicative of eating activities than hand
gestures [27].

To detect chewing, we exploit two sensing modalities: optical and inertial. The optical sensor
is the VCNL4020 fully-integrated proximity sensor with an infrared emitter. Bedri et al. have
used this sensor to track jaw motion for detecting chewing in a controlled environment [9, 10].
The sensor is placed at the entrance of the ear canal and measures the degree of deformation at
the canal caused by the movement of the mandibular bone. The sensor is fixed inside a Bose IE2
ear-bud, and it features a wing to tuck under the outer-ear flap. The system does not require any
calibration for different users and we evaluated its adaptability to different users in the prototype
testing phase.

Apart from the in-ear proximity sensor, we augmented the outer-ear flap of the ear-bud with
a 9 Degree-of-Freedom IMU (LSM9DS0). Rahman et al. used a similar sensor to detect eating
events in a controlled setting [58]. The flap helps in coupling the IMU to the temporalis muscle.
This is one of the four mastication muscles and links the lower jaw to the side of the skull
covering a wide area around the ear. During chewing, the muscle continuously contracts and
relaxes, and this movement can be picked up by the IMU. Figure 5.4 shows an example of sensor
stream of the behind-the-ear IMU while the user was talking, eating, and then walking.

The system also includes a microphone around the neck; a HBS-760 Rymemo Bluetooth
headset (Figure 4.1). A similar microphone-based approach has been used to detect swallowing
[74]. These works recommended placing a microphone coupled to the throat with some level of
acoustic shielding. With the aim to increase comfort, we modified the type and placement of the
sensor to be slightly more socially-acceptable. It leads to slightly degraded signal-to-noise ratio,
but we accept it as a reasonable compromise. In addition to these sensors, we also placed a 9-
DOF IMU behind the user’s neck (Back IMU in Figure 4.1). This IMU is used to measure large
body motions, such as walking. In the future, such information could alternatively be extracted
from a wrist-worn fitness device or a smartphone.

Data from the two IMUs and proximity sensor is sampled at 50 Hz using a Teensy 3.2 mi-
crocontroller, which stores the received data on an SD card. The microcontroller, back IMU, and
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battery are housed in a casing and attached to the back of the Bluetooth headset, as shown in
Figure 4.1. Audio from the wireless Bluetooth microphone is recorded at 22.05 KHz and sent to
an Android phone. We developed four copies of the prototype for instrumenting multiple users
simultaneously for the semi-controlled lab study.

Sensors Comparison

Using only the dataset from the Aware Home semi-controlled study, we compared different sens-
ing modalities on the basis of their recognition performance and usability.

The activity recognition processing pipeline was based on prior literature and compared
the performance of different sensors and all combinations of sensors using leave-one-user-out
(LOUO) user-independent testing. We used the approach suggested by Bedri et al. to develop
the processing pipeline for the IMU and proximity sensor ([10], see Figure 4.5). Bedri et al.
also recommended using Hidden Markov Models (HMMs) with 10 minute segments for the fi-
nal classification. For the neck microphone, past work suggested using Mel-Frequency Cepstral
Coefficients (MFCCs) to differentiate between speech and non-speech activities [43, 52]. Such
a capability can be valuable to differentiate between talking and other activities. Therefore, we
calculated 26 MFCCs from the microphone data (100 ms using 20-filter bank channels) before
calculating further features from the audio.

Figure 4.6 shows a preliminary comparison across the sensing modalities. The IMU placed
behind the neck (back-IMU) was used in all sensor conditions because it helped to filter out
movement based on more gross body activities (e.g., walking). The behind-the-ear IMU (E)
performs better than other combinations. The combination of behind-the-ear gyroscope and
proximity sensor (E+P) has comparable results to E, but there are no clear benefits of using the
additional sensor. Beyond this preliminary performance evaluation, we decided to focus our

Figure 4.4: Example data from the y-axis of the behind-the-ear gyroscope. The dots indicate
local maxima with high energy in the signal. As compared to talking, the peaks for eating are
more periodic and ”spiky”.
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Figure 4.5: Flowchart for initial evaluation of the multi-sensor setup

Figure 4.6: Comparison between sensing modalities. E = behind-the-ear IMU, P = outer-ear
proximity sensor, M = neck microphone. The back IMU is used in all condition to detect if the
user was walking. The performance of behind-the-ear IMU (E) was most consistent for all three
metrics. It was also considered most comfortable to wear by the users.
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Figure 4.7: Flowchart for EarBit algorithm

attention only on the behind-the-ear gyroscope. While it had marginally better performance than
other sensors, more importantly it was the most preferred sensor by the users.

Our post-session survey highlighted that the participants did not prefer using the in-ear prox-
imity sensor. Respondents rated comfort and usability on a five point Likert scale. Wilcoxon
Signed Rank Test showed that the users found back-of-the-ear IMU more comfortable than the
in-ear proximity sensor (Md = 4 vs. Md = 3.5, p ¡ 0.05). In the informal focus group session as
well, multiple users complained about the in-ear earbud.

”The [in] ear piece was uncomfortable. It felt piercing and itchy.”
”The Bose headphones felt uncomfortable after extended periods of use.”

”I’m not used to having something in my ear when I’m eating ”

Thus, we decided to limit the evaluation of the Outside-the-lab study to the behind-the-ear IMU
and used the back-IMU to cancel large body motions.

4.3.2 Redesign of recognition pipeline

The processing pipeline described in Section 4.3.1 was based on prior literature and we used
it to do a preliminary comparison of performance of various sensing modalities. Instead of
opting to continue to optimize our Hidden Markov Models, we decided to switch to a different
machine learning approach. In general, HMMs are more suited for discovering patterns and
transitions in temporal data sequences. They are ideal when the model needs to develop an
understanding of the shape of the signal. However, Figure 5.4 shows that the behind-the-ear
IMU acts as a very direct sensor that captures the oscillation patterns of the temporalis muscle
when a user is chewing. The behind-the-ear IMU simplifies the machine learning problem to
primarily differentiate between magnitude and periodicity of motion from different activities.
For this problem, we believe summary statistical features and an algorithm like Random Forests
should suffice.

In the rest of this section, we provide full details of our machine learning pipeline, and provide
explanations for various design decisions. Figure 4.7 shows the whole processing pipeline.
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Signal Conditioning

The new pipeline starts with a preprocessing step to condition the raw signals. This step includes
smoothing the 50 Hz gyroscope data using a Butterworth filter of order 5 (cut-off frequency =
20 Hz). Data is then segmented using 30 second windows sliding at 1 second.

Feature Extraction

Our feature set aims to encode the relevant information about the motion of the temporalis muscle
when the user’s jaw moves. For each 30 second window, we compute 78 features to characterize
jaw movement while chewing. These features are essentially 13 features computed for each axes
of the gyroscopes placed on the ear and back (i.e., 13 features × 3 axes × 2 sensors = 78 total
features).

When a user chews, the jaw moves, and the back-of-the-ear IMU picks up the motion. In
an ideal case, energy or magnitude alone will be very high for such motions and low when the
user is doing some other activity. However, a user performs many activities that can generate
significant motion that gets recorded on the behind-the-ear gyroscope; walking and talking are
common examples. Figure 5.4 shows example data from the y-axis of the gyroscope when the
user was talking, then transitioned to eating, and then walking. One valuable insight captured
by Figure 5.4 is that chewing motion is more periodic than many other activities, such as
talking. On the other hand, walking and some other large motions (e.g., exercises) are also
periodic. Though in some cases the overall magnitude of motion while walking is significantly
larger, it won’t always be true. For such cases, a separate IMU on the body (in our experiments
behind-the-neck IMU, but in practice a wrist-worn or pocket-held device) can be used to detect
these large motions, as shown in other research related to activity recognition [4, 35, 36]. Next,
we list our 13 features that capture information about the magnitude and periodicity of motion for
different axes and sensor locations. These features include time and frequency domain features
that are commonly used in recognizing human activities from inertial data. Size of the FFT is
same as the size of the feature calculation window (i.e, 30 seconds = 1500 samples). In [48].
Morris et. al. introduced a set of 5 features based on signal auto-correlation to reliably recognize
repetitive strength-training exercises using inertial sensor. In general, the auto-correlation of any
periodic signal with frequency f will produce another periodic signal with peaks at lag 1/f, while
a signal that has no periodic component will produce no peaks when it’s auto-correlated. Just like
strength-training exercises, chewing produces repetitive motion that can be captured using same
features. Hence, our features set also includes auto-correlation features, and were computed
using the same methods as applied in [48].

1. Magnitude of motion.
(a) Root Mean Square encodes the amount of energy in the signal.

(b) Variance is square of RMS and encodes similar information. Having both RMS and
variance can provide flexibility if there is non-linearity in some axes.

(c) Entropy reflects the amount of information (or conversely noise) in the signal. En-
tropy tends to be a strong feature in detecting silent and noisy activities, such as
silence and speech. The normal formula for Shannon’s entropy was used to compute
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the entropy feature, but the bins are predefined in increments of 10, ranging from -50
to 50. The outliers were assigned to a separate bin.

(d) Peak Power is the magnitude of the dominant frequency of the signal. If a signal is
fairly repetitive (e.g., eating and walking in Figure 5.4), the magnitude of the main
frequency can indicate the intensity of motion, and can help in differentiating between
facial and whole-body motions.

(e) Power Spectral Density is magnitude of power spectrum in logarithmic scale.

2. Periodicity of motion.
(a) Zero Crossing captures the rough estimate of the frequency of the signal.

(b) Variance of Zero Crossing. Zero crossing is going to be high for any high-frequency
data, and can be severely affected by noise. We calculate the variance in the times at
which signal crosses zero, to record the periodicity of zero crossings.

(c) Peak Frequency is the dominant frequency of the signal, calculated through a fre-
quency transformation.

(d) Number of Auto-correlation Peaks. Abnormally high or low number of peaks here
indicate noisy signal.

(e) Prominent Peaks are the number of peaks that are larger than their neighboring
peaks by a threshold (0.25). Higher number of prominent peaks suggest a repetitive
signal.

(f) Weak Peaks are the number of peaks that are smaller than their neighboring peaks
by the same threshold (0.25) as Prominent Peaks.

(g) Maximum Auto-correlation Value is the value of the highest auto-correlation peak.
A higher value suggests very repetitive motion.

(h) First Peak is the height of the first auto-correlation peak after a zero crossing.

Feature Selection

Given the large number of computed features, we introduced a feature selection step in our
pipeline. This step helps in avoiding the curse of dimensionality and enhances the generalizabil-
ity of our eating detection models by reducing overfitting.

We implemented the feature selection process using the sequential forward floating selec-
tion algorithm (SFFS), which is proven to be very effective in searching for optimal feature
set [57]. For feature evaluation, we used random forest classifiers to build models using out
semi-controlled lab dataset. A leave-one-user-out cross validation was performed at each step,
and the exclusion and inclusion criteria for features was based on the F1 score of chewing detec-
tion.

The SFFS algorithm selected 34 out of 78 features as most effective for eating detection.
These 34 features came from all 13 feature types across different axes. The most common se-
lected feature types are entropy, peak frequency, the number of auto-correlation peaks, and first
peak after a zero crossing.
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Recognition

We use Random Forests (implemented with the Scikit-learn toolkit in Python) and leave-one-
user-out validation to avoid overfitting. Furthermore, we keep all Random Forest-specific pa-
rameters at their default values to avoid any manual overfitting. This is where Random Forests
are especially useful because they do not need much manual tuning and the only major parameter
is the size of the trees. However, with separate feature selection phase, we do not need to control
the size of the trees as well in most cases. Therefore, we only optimize some of our windowing
parameters and we will discuss those in detail later in this section.

Detecting Chewing
The labels in the Aware Home dataset included: chewing, walking, talking, stationary, drinking,
and other. Due to the very low number of occurrences in the dataset, the latter two labels, which
represented 5.3% and 1.2% of the dataset respectively, were removed from training and classi-
fication tasks. Completely removing these instances from the dataset would skew the timeline.
Therefore, the algorithm simply skips these instances during training and classification tasks, but
still uses the sensor information to calculate features for other instances (remember that the fea-
tures are calculated over 30 second windows). In our dataset with 26% of data points labelled as
chewing. This happens because our training data was collected in a social setting when the group
of participants were socializing and a significant amount of time was spent eating. While this is
not representative of an average day in a user’s life, it provides us with some robust training data.

In contrast to the Aware Home dataset, the Outside-the-lab dataset only had two labels: chew-
ing and not-chewing. However our machine learning models made a four-class classification:
chewing, walking, talking, and stationary. Instead of changing the classifier’s output classes to
match the labels used in the Outside-the-lab dataset, we simply treat all non-chewing predictions
as ”not-chewing”. Therefore, when we report results in Section 4.4, we convert our performance
metrics to reflect the performance of a binary classifier. In the interest of uniformity, we do this
conversion to binary classification for both the semi-controlled lab (Aware Home) data set and
the Outside-the-lab datasets.

The machine learning model produces recognition results every 1 second (recall that we
used 30 second windows sliding by 1 second). Since, there is seldom any need for 1 second
resolution for chewing inference, we apply a moving average on the confidence value returned by
the Random Forests. Consecutive values were averaged together to produce the new confidence
value for each second. The moving average window was centered on the value to be predicted.
The size of moving average window (optimal value = 35 samples) is tuned using the Aware Home
dataset.

The output of the filter is converted into a binary decision by using a simple threshold of 0.5.
An example of this post-processing is shown in Figure 4.8. The result of this tuning procedure
will be discussion in Section 4.4.

Detecting Eating: Aggregating Chewing Inferences
Although EarBit acts as a chewing sensor, most users will be interested in identifying eating
events. We aggregate individual chewing inferences into eating event inferences through a two-
step process (shown as the last step in Figure 4.8): merging of events and filtering short events.

Merging of events helps in removing sporadic discontinuities in eating recognition. This
is based on an assumption that a user won’t have two meals within 10 minutes of each other.
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Figure 4.8: An example of conversion of confidence values from Random Forests to frame-level
results (chewing) and then to event-level predictions (eating episodes).

Therefore, we merge all labeled and recognized eating events that occur within 10 minutes of
each other. Here, we understand that time cannot be the only factor in segmenting meals. For
example, a user might start eating an apple, leave for an urgent meeting, and then come back to
continue eating the fruit. Perhaps a richer understanding of the user’s activities and intent would
be necessary, but that is not the focus of this evaluation.

In addition to the merging step, we added a second layer of filtering to remove small isolated
events that are less than 2 minutes in duration. This filtering step comes at the cost of skipping
very short snacks, which is a compromise we made to improve precision in detecting full meals
and snacks that are longer than 2 minutes.

Overall, we minimize the number of tunable parameters in our approach; Random Forests
also implicitly minimize the need of tuning parameters (as discussed earlier). Therefore, the
only tuning parameter for EarBit is the size of the moving average filter. All other parameters
were based on domain knowledge and assumptions about the user’s behavior. For example, for
merging events, we assume that a user won’t have two separate meals within 10 minutes of each
other. This assumption was also confirmed when we analyzed the video recordings. None of
the tunable and human-set parameters were optimized using the outside-the-lab dataset. That
dataset was collected to evaluate EarBit’s performance and we made sure that none of EarBit’s
parameters were optimized on it.

4.4 Results
In this section we will discuss EarBit’s performance in detecting eating in our two studies. We
started by developing and validating our algorithm on the Semi-Controlled Lab dataset and then
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we used those models to evaluate performance of the Outside-the-lab dataset. We completely
sequestered the data from the Outside-the-lab dataset and analyzed it only after the algorithm
was ”frozen”, that is, after satisfactory validation on the Aware Home dataset. This was done to
avoid any unintentional and manual overfitting on the test data.

For evaluation, we test the algorithm’s performance on both frame-level (chewing detection)
and event-level (eating episode detection). The main performance measures are F1 score, preci-
sion, recall and accuracy. For the event level analysis, we also reported delay, which measures
the time from the beginning of an eating event till EarBit starts recognizing it. Additionally,
we also measure coverage, i.e., what percentage of actual event was recognized. For example,
if a user spends 15 minutes having dinner, but EarBit predicts a 12 minute eating event, then
Coverage is 80%. In cases where the predicted event starts before or ends after the actual event,
Coverage can give artificially high results. However, we did not have any case where the pre-
dicted event exceeded the time-bounds of the actual eating episode.

The main difference between coverage and recall as metrics in our evaluation is, recall is
computed directly on prediction values produced by Random Forest. While coverage is com-
puted after applying the filtering steps on the prediction results as shown in figure 4.8

4.4.1 Validation on Semi-controlled lab dataset
To validate the performance of EarBit’s algorithm, we used leave-one-user-out cross validation.
We used these validations to tune our only tunable parameter: size of the moving average win-
dow.

Figure 4.9 shows chewing recognition results for semi-controlled lab study as a function
of the moving average window size. The results stabilize at 35 seconds mark. EarBit’s cross-
validation accuracy is 90.1%, F1 score is 90.9%, precision is 86.2%, and recall is 96.1%.

Figure 4.9: Chewing recognition results for semi-controlled lab

For the event-level performance, with a 35 seconds moving average window, EarBit captured
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all 15 eating events in the dataset, and falsely recognized one non-eating episode as eating. It
achieved 89.6% coverage and the average delay in event recognition is 21.3 second. Once the
moving average size and the machine learning models were final, we evaluated its performance
on the Outside-the-lab dataset.

4.4.2 Outside-the-lab Study
For the Outside-the-lab data, with a 35 seconds moving average window, EarBit detects chewing
with an accuracy of 93% (F1 score = 80.1%, Precision = 81.2%, Recall = 79%). When converted
into eating episodes, EarBit successfully recognized 15 out of 16 eating episodes, and it only
falsely recognized 2 additional eating episodes. The average delay is 65.4 seconds and the mean
coverage is 72.2%. After reviewing the dataset we found that during the 2 falsely recognized
events the participants were talking, and for the single miss-classified eating event the participant
was eating a frozen yogurt. Since our models was trained on chewing instances, this explains
why events that don’t contain regular chewing such as eating ice cream or soup cannot be fully
recognized.

As we discussed earlier, the filtering step was added to help reduce the number of false
recognized eating events. To evaluate the effect of this filtering step, we also ran our analysis
after excluding it from the pipeline. As expected, the number of false positives increased to 10
for the semi-controlled lab dataset and 20 for outside-the-lab dataset.

4.5 Discussion
The overall results from the semi-controlled lab study and outside-the-lab study show that EarBit
was successful in detecting eating with high accuracy outside the lab. EarBit was able to recog-
nize accurately almost all eating events in both environments we tested it on. The sole falsely
recognized eating event was eating frozen yogurt, which doesn’t contain the regular chewing ac-
tivity that our model is trained on. The high event coverage values (89.6% in-the-lab and 72.2%
outside-the-lab) indicate EarBit capability in automating the food journaling process with a pre-
cise logging of meals and snack duration’s. EarBit also requires about a minute to recognize
an eating episode. This low delay values allows EarBit to be used in applications that require
just-in-time interventions.

4.5.1 What it means for the end user?
The outside-the-lab study has 45 hours of recorded data. In this duration, EarBit had only 2
falsely recognized eating events. If we assumed that a typical user sleeps for 8 hours a day, our
dataset has approximately 3 days worth of daily activities. That means that EarBit generates
0.7 false positives per day. For a typical user who eats 3 to 6 means and snacks daily, the false
positives do not pose a significant usability challenge. Although this extrapolation would not
always be accurate, it provides a reasonable trend of the results.

By reviewing our outside-the-lab dataset, we found that the falsely recognized events are
mostly due to talking activities. After visualizing the entire dataset, we found a total of 26
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talking events. EarBit has only classified 7.6% of them as eating. We believe the features set we
used helped in correctly recognizing most of these events as non-eating, but using EarBit with a
modified user interface can improve its precision by incorporating more data from the user. For
example, as soon as EarBit detects an eating event it can prompt the user with a question ”Are
you eating?”, if the user’s response was positive the system carries on with the food journaling
process, but if it was negative the system can ask the user for a label ”So what are you doing?”
and then utilize this instance to generate a better user adaptive model.

4.5.2 Study design
Eating detection in most laboratory settings lacks ecological validity. At the same time it is often
hard to collect accurate data in unconstrained environments. Our study design aimed to solve
both problems. Researchers equipped the Aware Home for recording and monitoring various
eating scenarios. At the same time, the nature of a house facilitates normal interactions and
eating behaviors. Thus, the researcher is able to control the environment while the participant
behaves in a more natural manner. However, it was obvious to the participants that they were
video recorded and the researchers were present as well. These factors meant that the setting
wasn’t entirely natural. Moreover, the proportion of eating events was higher than an average
day in a user’s life. We addressed some of these issues in the outside-the-lab study. As the
participants used the system in their own environments, the proportion of eating events was
more natural in this study, but they had a chest-mounted camera for groundtruth. Hence, the
data collection was not entirely naturalistic here as well. We believe our fine-grained labeling
of activities, and the protocol of training and evaluating the model on data from significantly
different settings produced repeatable and generalizable results. However, the quest for a true
evaluation of eating activity in unconstrained environments remains unfinished.

We believe our study can serve as a good starting point for future studies on eating detection,
and we hope other researchers use and improve our pipeline to detect activities - like eating - in
unconstrained environments.

4.5.3 Self Reporting
Self-reported eating is the predominant method used to record eating in unconstrained environ-
ments. However, this method of reporting is known to be inaccurate. For example, in a laboratory
setting [6] found that both people with and without eating disorders under-reported eating.

During our study, we found multiple issues with self reporting. When comparing ground
truth between video footage and self report obtained from collecting data in unconstrained envi-
ronments , we found that some participants forgot to report eating episodes, reported best guess
eating times, and/or reported best guess eating duration. One participant reported the following:
”1:00 A.M.: Snacking some during movie
19:32 snacking some more
(There was probably more but I don’t remember how long it went)”
Another participant said, ”I forgot I was wearing the device and got caught up in a conversation
we were having over lunch, so I totally forgot to write down what time I started eating. I think I
ate for about 30 minutes”. Participants in the study were provided monetarily incentives to report

35



eating activity, yet on occasion they still forgot to report. From this discussion, it is probable that
many studies involving self-reported eating suffer from inaccurate and incomplete data. Since
our evaluation tests the system’s performance on how accurately it recognizes chewing instances
and eating events, we had to obtain more reliable ground truth. To overcome this issue, we de-
cided to equip participants with a wearable camera to record their activities outside the lab. This
condition imposed some limitation on the session duration due to the short battery life of the
camera. The camera also can impose some restriction on the user behavior, but we believe this is
a reasonable compromise for obtaining a reliable ground truth in unconstrained environments.

4.5.4 Form Factors
During our pilot study, we realized that in some cases the behind-the-ear IMU was not placed
properly and was floating. Almost half of the earpiece was above the pinna, instead of being
behind it. This issue meant that the sensor was not coupled to the temporalis muscle. We solved
this issue by demonstrating the correct way to put the device to our participants and giving clear
instructions to make sure that the sensor is placed properly. We largely succeeded in making
sure there were no placement issues and a review of the video footage showed that there were no
visible placement issues with the sensors. However, when a device like EarBit is used in the real
world, it would be important for the system to be resilient and adaptive to placement issues. In
our future prototypes, we are experimenting with embedding the sensor in eye-glasses and using
firmer silicone mounts in case of earbuds.
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Chapter 5

FitByte

5.1 Introduction

Based on the findings of the EarBit evaluation [11], we defined several challenges that are im-
portant to tackle. Addressing these challenges ensures better performance for ADM systems in
real-world scenarios. First, it’s difficult to collect naturalistic data without having access to a fa-
cility like the Aware Home. Second, EarBit doesn’t detect drinking and eating events that don’t
require chewing, such as eating ice cream, yogurt, and soup. Last, EarBit doesn’t provide users
with additional information about food type or amount. All these uncovered challenges informed
the design of my second ADM systems FitByte [12].

FitByte, is a pair of eyeglasses that tracks the wearer’s food consumption using multi-modal
sensing to capture all food consumption actions. FitByte (Figure 5.1) detects: (1) chewing by
monitoring jaw motion using four gyroscopes around the wearer’s ears; (2) swallowing by lis-
tening to vibrations in the throat using a high-speed accelerometer; (3) hand-to-mouth gestures
using a proximity sensor; and (4) visuals of the consumed food using a downward-pointing cam-
era. The camera points downwards to capture only the area around the user’s mouth (Figure 5.3);
thus maintaining the privacy of the wearer and people around them. The built-in camera also pro-
vided the groundtruth information about the user’s activities for one of the two studies performed
to model and evaluate FitByte. To develop FitByte’s machine learning and sensor selection al-
gorithm, we put 18 participants in noisy conditions (such as hiking, exercising, lunch meetings)
as they consumed foods and drinks of their choice.

These situations allowed us to collect training and validation data while the user was walking,
talking, eating, drinking sporadically, and naturally performing other activities in noisy environ-
ments. Modeling using such noisy data allows the algorithm to generalize across conditions
and perform well in free-living conditions. Our experiments show that FitByte identifies eating
episodes with 94.1% recall and 91.4% precision in all five situations.

To test the system further, we developed a real-time implementation of our learned model
to turn sensors on or off depending on the model’s inferences. The most power-hungry sensor
on FitByte is the camera. The camera is also privacy-invasive. Thus, we turned the camera on
only when the model detected that the user was eating or drinking. We evaluated this real-time
implementation with five participants over 91 hours. Each participant wore FitByte for 12 hours
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Figure 5.1: FitByte hardware. The device has one camera, one proximity sensor, and six IMUs.
One IMU each at A, B, D, and E. At C, there are two IMUs: one gyroscope and one 4 kHz
accelerometer to measure body vibrations behind the ear. The left temple houses the battery
and the right one has the microcontroller. The IMUs are attached to a flexible fulcrum (right)
to ensure snug fit and good connection with heads of different sizes. The temple tips are also
flexible so the user can twist them to ensure good fit.

each day for up to two days. Overall, across the two studies, FitByte was able to detect 61 out
of 69 meals or snacks, and falsely detected only 7 eating episodes. In future, we plan to show
FitByte’s inferences and captured visuals on the user’s phone. At the end of the day, the users
will be able to browse through the inferences and recall what they ate. Our results show that
the users, on average, will get less than one false positive per day. Given FitByte will include
a visual for the inferred meal, the users will be able to filter out false inferences quickly. To
evaluate the clarity of the visuals captured, we recruited two volunteers who correctly identified
the food type in 57 out of 62 meals/snacks. Finally, we conducted a preliminary assessment of
FitByte’s perceived privacy and social acceptability aspects through semi-structured interviews
with study participants.

The main contributions of this work are:
1. The design and implementation of sensor-equipped eyeglasses that monitor all actions of

food intake from a single wearable.

2. A data processing pipeline to identify food consumption moments and automatically record
food visuals to aid in identifying the food type.

3. A real-time implementation of the algorithm that allows an untethered wearable to monitor
diet and capture food visuals using the built-in battery.

4. A preliminary investigation of FitByte’s social acceptability and privacy concerns.

5. An annotated dataset of multi-sensor data collected in the user studies to aid in repro-
ducibility and enable expansion of current work.

Prior work in automatic diet monitoring (ADM) has focused on detecting atomic actions
that a user makes to eat or drink, such as detecting hand to mouth movement, chewing, and
swallowing. Researchers have tried to identify these actions by monitoring activities of the wrist,
jaw, and throat, as well as detecting chewing and swallowing sounds using different sensing
modalities [55, 63].

As Figure 5.2 shows, most approaches summarized so far focus on sensing one particular
physical phenomenon that captures some aspect of food intake. However, to counter the noise of
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Figure 5.2: An overview of physical phenomena sensed by past research efforts. FitByte builds
on past work and aims to sense all of these physical phenomena. This table highlights represen-
tative examples from the literature and it does not provide a complete survey.

real-world, it is attractive to utilize the redundancy of different sensing modalities. By capturing
multiple physical phenomena during food intake, diet monitoring systems can better detect eat-
ing and drinking instance in unconstrained environments. For example, Mirtchouk et al. [45, 46]
used Google Glass, two smartwatches, and a headset to capture jaw motion and hand gestures us-
ing inertial sensors, and recorded chewing sounds using an in-ear microphone. However, wearing
multiple devices was uncomfortable and socially-unacceptable.

Figure 5.3: Samples from FitByte’s on-board camera for food intake moments.

39



5.2 Hardware
FitByte attempts to address the challenges listed at the end of last section by finding sensing
proxies for each sensing approach such that it can be placed on a pair of eyeglasses. For example,
instead of detecting hand motions via a wrist-worn motion sensor, FitByte uses a proximity
sensor to sense when the hand comes close to the mouth. Overall, FitByte detects jaw motion,
hand gestures, swallowing and chewing sounds, and opportunistically records food visuals to aid
the user in recalling their foods and drinks (last row of Figure 5.2). In this section, we describe
the utility of different hardware components of FitByte.

5.2.1 Form Factor
To ensure good compliance, it is important to use a commonplace and comfortable form factor.
76% of the adult population in the U.S. wears some form of vision correction; with more than
50% using eyeglasses1. This number is poised to increase further as smart eyeglasses become
more popular and useful. Moreover, eyeglasses provide a perfect platform to sense multiple
phenomenon simultaneously.

5.2.2 Sensors
Existing diet monitoring approaches have mostly focused on detecting one food intake action
[54]. We believe, given noisy situations encountered by most sensors, it is important to maximize
the number of sensed phenomena and add some redundancy to sensing.

Proximity Sensor

Hand-to-mouth gestures are quite indicative of food consumption. Past work has investigated
the use of wristworn IMUs to model the shape of motion of the user’s hand as they consume
different foods [67]. Unlike past works that use wristworn motion sensors, FitByte uses an
infrared proximity sensor (VCLN-4040) with a range of 20 cm (sampled at 50 Hz) at the left
edge of the frame facing the mouth region. From this location, the sensor only detect when the
hand comes close to the mouth region (Figure 5.4). Given this sensor is very power-efficient, we
also use it as a switch to turn more power-hungry sensors in FitByte’s real-time implementation.

Gyroscopes

A number of past research efforts have shown that mastication can be detected by observ-
ing movement of facial muscles [10, 11, 18]. To track chewing, we placed four gyroscopes
(MPU9250; sampling at 50 Hz) on the arms of the eyeglasses to monitor the movement of the
temporalis muscle and the jaw bone from both sides (Figure 5.1: A-D). Although one gyroscope
might be enough to measure this movement, we placed four sensors to evaluate the best location
for the sensor and utility of combining information from multiple sensors. In addition, we added

1https://www.thevisioncouncil.org/sites/default/files/Q415-Topline-Overview-Presentation-Stats-with-Notes-
FINAL.PDF
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a fifth gyroscope in the nose bridge (Figure 5.1: E) to help in canceling any large body motions
(such as head turning or walking) captured by other gyroscopes.

High-Speed Accelerometer

To monitor swallowing and chewing sounds, we use an accelerometer (MPU9250, sampling at
4 kHz). Instead of placing the sensor directly on the throat, we placed the sensor as close to the
throat while still being on the eyeglasses. We attached the sensor to the tip of the right temple (C
in Figure 5.1); which positions it underneath the ear and close to the lower jaw and throat. At this
location, it can capture vibrations propagated due to swallowing (vertical arrows in Figure 5.4).
As evident in the figure, the sensor also captures vibrations due to chewing and talking. We will
model the accelerometer data to filter out the noise from talking in the next section.

Camera

To help capture visuals of the consumed food, we use a miniaturized camera (Adafruit Mini Spy
camera (480p video and 1280×720 photo)2. We placed the camera at the top-right corner of the
frame to capture activities around the mouth region (Figure 5.3). This position stops the camera
from capturing the user’s entire face or scene in front of them. In addition, we removed the
microphone from the cameras.

5.2.3 Microcontroller and Power

FitByte uses a Teensy 3.6 board. The Teensy and the camera module are placed in the right arm
of the eyeglasses (Figure 5.1). To power the setup, we used two 150 mAh LiPo batteries and the
SparkFun LiPo Charger Basic (Micro-USB) placed in the eyeglasses’ left arm.

2https://www.adafruit.com/product/3202

Figure 5.4: Signals from FitByte’s sensors as the user performs different activities. The point in
times marked by the vertical arrows at the bottom indicate swallows.
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Figure 5.5: FitByte’s machine learning pipeline

5.2.4 Fitting

To ensure a universal fit, we iterated over different designs and evaluated them with five new
participants at each iteration. For the final design, instead of 3D printing the whole chassis, the
temple tips are made out of 10 gauge solid copper wire covered with heat shrink. This ensures
that the users can twist and turn the temple tips to their size and ensure good contact. The
wire is also flexible enough that it flexes as the user’s jaw moves. To measure throat vibrations,
it is important to have the high-speed accelerometer in contact of skin. Thus, we added 3D
printed flexible fulcrums to hold the sensors snug (Figure 5.1 - (Right)). None of the participants
in various pilot studies or the formal data collection found FitByte uncomfortable. However,
participants who were not used to wearing eyeglasses felt minor fatigue at the end of some of the
sessions.

5.3 Algorithm

In this section, we explain our signal processing and machine learning approach to detect when
food is consumed (Figure 5.5). We also assess what sensors are most useful for an accurate
detection and develop a real-time implementation that relies on a subset of sensors. Once it is
inferred that the user is eating/drinking, FitByte opportunistically records food visuals.

Initially, FitByte records data from all 5 gyroscopes (50 Hz), high-speed accelerometer (4 kHz),
and the proximity sensor (50 Hz). We then condition and filter the sensor data, and extract
relevant features. A machine learning model then recognizes eating and drinking events and
distinguishes them from other everyday activities such as movement, talking, and no-activity.

5.3.1 Signal Conditioning and Feature Extraction

First, all data is smoothed with a 5-second moving average window to remove any high-frequency
noise. Second, we compute the first derivative of the gyroscope signals to remove any drift. Then,
we segment the conditioned signals for each sensor into 5-seconds windows sliding by 1 second.
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Features for the Gyroscopes

FitByte uses gyroscopes near the ear to monitor jaw motion, the gyroscope data is repetitive for
FitByte too (Figure 5.4 ”Eats Chips”). Bedri et al. [11] used a similar gyroscope mounted near
the ear for diet monitoring. They developed features to estimate the periodicity and shape of the
repetitive motion of a masticating jaw. Thus, we use the same features as Bedri et al. for all four
gyroscopes (i.e., 13 features × 3 axes × 4 gyroscopes = 156 features).

Features for the Proximity Sensor

For the proximity sensor, we calculate mean, variance, entropy, absolute median, number of
peaks above an empirically-defined threshold, and variance of duration between peaks.

Features for the High-Speed Accelerometer

For the accelerometer, FitByte extracts features from the spectrogram (—FFT— = 40 bins) after
quantizing it into 18 bins. Figure 5.4 shows the spectrograms for the accelerometer only up to
250 Hz. Most of the information related to dietary activities were concentrated in this lower
frequency band. Thus, we dedicated four equal size bins for the region under 100 Hz. The
region between 100 Hz and 600 Hz was divided into 10 50 Hz bins, and 600 Hz to 2 kHz was
divided into 4 bins. We used the same 5 second window to compute feature from all 18 bins.
We specifically calculate mean, variance, entropy, 95% and 5% percentile, number of peaks, and
variance between the peaks. These features mainly focus on measuring the energy and the degree
of variation in each bin.

5.3.2 Detecting Food Consumption
FitByte’s 5 second long feature extraction window moves with a step size of 1 second. Thus, we
classify every second into 5 activities: eating, drinking, walking, talking, and silence (or no ac-
tivity). We trained a Random Forest classifier (Scikit-learn implementation, default parameters,
100 trees). To ensure user independence, we validated our models using leave-one-user-out-cross
validation and did not use any data from the same participant.

FitByte’s primary task is to detect food consumption episodes. This recognition is performed
in three stages:

Frame-level Recognition:

Here we detect whether the user is consuming food at a 1 second resolution. Achieving reason-
able precision and recall at such high resolution is not directly useful for the wearer, but it lays
the foundation for other more usable results.

Intake-level Recognition

At this stage, we convert the high-resolution inferences into an intake-level decision, i.e., whether
the user took a bite (informed either by the hand-to-mouth gesture sensed by the proximity sensor
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or biting sensed by gyroscopes) and then continued to chew (for at least 3 seconds) or swallowed
or gulped. Although FitByte does not estimate the amount of food consumed, researchers have
found that estimating food amount would depend on accurately detecting each intake gesture [2,
45]

FitByte makes intake-level recognition by averaging the confidence values of frame-level
inferences with a 5-second window and setting a threshold at 0.5 overall confidence. We then
drop detected intakes that were less than 3 seconds long. In our evaluation we use the coverage
and the delay metrics. The coverage can be defined as the percentage of the event’s duration that
was correctly recognized. The delay is the time between the beginning of the event and the time
the system starts to recognize it.

Episode-level Recognition

From the user’s perspective, to maintain their food journal, they mainly need to note each meal or
snack or drink. We call these events ”episodes.” We assume that two consecutive food episodes
will be separated by at least 5 minutes. We compute the duration of the episode by merging any
detected intakes that are within 5 minutes from each other.

5.3.3 Identifying Food Type
FitByte does not directly detect food types. It aids the users in recalling their foods and drinks
by showing them opportunistically recorded visuals of foods. We use the information from other
sensors to detect an opportune moment to capture the visuals from the camera. This reduces
the user’s information load. For each food consumption episode, we identify the moment when
FitByte is most confident of its inference. We initially experimented with simply taking a still
photograph at the right moment. However, it is often hard to ensure that the image is not blurry
or occluded. Thus, starting at the moment of high confidence in inference, we extract a 30 second
video clip from the camera. These videos can be shown to the user after the food consumption
episode or at the end of the day to recall the actual food. The same footage can also be labeled by
crowd workers or a machine learning model to further automate the overall process. In our cur-
rent evaluation, we simulated the crowd workers scenario by employing 2 independent research
volunteers to label food types from the extracted video clips. The crowd workers had the option
of looking at a thumbnail of the extracted clip to label it or watch the video in case they were not
sure.

5.4 Data Collection and System Evaluation
We conducted the data collection and evaluation of FitByte in two separate studies. In the first
study, we collected a dataset from a set of short common everyday activities to build models
for eating and drinking detection and evaluated the performance of sensor combinations. In the
second study, we assessed the ecological validity of FitByte by testing the developed models on
a new 91 hours dataset collected in the unconstrained free-living environment. We also did a
preliminary investigation on the perceived privacy and social acceptability aspect of the system.
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5.4.1 Scripted Semi-Constrained Study
Evaluating a diet monitoring system in unconstrained situations is often done by running long
sessions that extend from a few hours to a whole day. This is done to ensure that the participant
encounters enough noisy situations and eats at will, at their pace. Building robust eating detection
models require fine-grain annotations of all activities during these long sessions (mostly done by
recording video footage of the session). This approach requires laborious labeling effort and is
usually limited by the battery life of the recording device [11, 18]. Thus, instead of asking the
user to wear FitByte for extended periods, we put them in noisy situations and got concentrated
usage of the device.

Study Design

In this study, the participants performed five different activities (one in each session): a lunch
meeting, grabbing and consuming snacks from a nearby cafe, exercising, hiking, and watch-
ing TV (Figure 5.6). These situations were chosen to ensure the participants get to talk, walk,
encounter noisy situations, and eat food of their choice, at their pace, in a real-world setting.

When participants came in, they wore FitByte, and the researcher helped them adjust the
temple tips for fitting, comfort, and snugness. Each session lasted for 15 to 30 minutes. After
setting up the device, participants had the freedom to perform the session alone (except for the
lunch meeting) or in the company of one of their friends or colleagues.

We did not restrict any of the activities to a specific place. The snack break consisted of walk-
ing to a cafe or a nearby store, buying and consuming a drink and/or a snack. The participants
watched TV in a home environment, where they had the choice of snacks and beverages during
the session. They exercised in an on-campus gym, or at their house. Lastly, only hiking required
the participant to walk throughout the entire session, and it was conducted in either a park or the
CMU campus lawns.

For each activity, we collected ten sessions from 5 males and 5 females participants (18 to
36 years old). Not all participants were able to perform all five activities due to time constraints.
No external cameras were used to record participants’ actions in this study. The only camera
used is FitByte’s built-in camera, and it was set to run on video mode throughout the session. We
assessed the footage from this camera during annotation to identify the participant’s activities.

Annotations

To annotate the dataset, we used Elan 5.23. Two researchers labeled the dataset and a third
researcher reviewed the annotations. Using the videos and audio obtained from the on-board
camera, we labeled all activities in a session at a 1 second resolution. The activities were anno-
tated as either eating, drinking, talking, motion/walking, or silence. We segment bites and chews
into separate intakes by assuming that any chewing, or swallowing separated by more than 5 sec-
onds belongs to different intakes. For eating, the intake ends when the participants stop chewing.
For drinking, the intake ends after 1 second of the user bringing their hand down or as soon as
the participant starts talking.

3Elan. https://tla.mpi.nl/tools/tla-tools/elan/download/
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Figure 5.6: FitByte was trained and validated using data collected in five unconstrained situa-
tions: (from left to right) in a lunch meeting, watching TV, grabbing and consuming a quick
snack from a cafe, exercising in a gym, and hiking outdoors.

5.4.2 Free-living Environment Unconstrained Study

In this study, we aim to evaluate the performance of FitByte for an extended period of time in
the real world without any constrains on the participant’s behavior.

Study Design

We asked participants to wear FitByte continuously for 12 hours a day for as many days they
can. Due to the small battery, the onboard camera can only record videos for a limited duration.
Thus, for ground truth, we used an external camera similar to the onboard one and attached it to
the participant’s shirt. The camera faced upward to capture the participant’s face. We powered
this external camera with an external battery kept in the participant’s pocket (4000 mAh).

At the end of the study, we asked the participants about their perception of social acceptability
and privacy implications of the device in a semi-structured interview. To ensure FitByte can run
for more than 12 hours using an onboard battery, we implemented the real-time version of the
machine learning algorithm. We developed this algorithm based on data collected in the first
study.

To evaluate the real-time version, we recruited 5 participants (1 female), age between 21-30
years, all university students. Three participants wore the device for two days and two for one
day. All session recordings lasted for 12 hours except P5. With P5, the prototype malfunctioned
and we had to end the study after 7 hours. In total, we collected 91 hours of free-living data.

Participants started the study at different times in the morning (between 8 am and 11 am) and
took it off 8 or 12 hours later. The dataset contains a very diverse set of activities across different
participants, which included cooking, driving, working in a chemical lab, working in an office,
laying down, taking public transports, grocery shopping, exercising in a gym and many more.

Annotations

The annotation process was similar to the short term study. Since collected data is used as a test
dataset, annotations were only made for eating and drinking instances and every other activities
were considered part of the null class. The external mini camera footage was used as ground
truth for participants’ activities. All annotations were done by one member of the research team
and reviewed by a second member.
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Figure 5.7: Eating Detection Results for the semi-constrained study. Frame-level results will not
have coverage because those inferences are already made at a 1 second resolution.

5.5 Results

In this section we present FitByte’s performance with regards to detecting eating and drinking
at the frame, intake, and episode level. We will also discuss the results for an evaluation we ran
with 2 volunteers to recognize the food type from video segments automatically generated by
FitByte.

5.5.1 Eating Detection

We conducted a user-independent evaluation for detecting eating instances with all sensors on
FitByte. At a frame-by-frame level (i.e., every 1 second) the system achieved 83.1% accuracy.
When aggregating and filtering the results to intake level, the system obtained 93.8% recall,
82.8% precision (considering intake detection is a binary task, recall and accuracy are same).
The average coverage for these intake events (i.e., the intake duration detected by the model) is
73.1% and the mean delay in detecting the beginning of the event is 2.5 seconds(the mean intake
duration in the annotated videos was 56.3 seconds). The intake-level inferences are useful to
quantify the amount of food consumed. At the episode level, the system was able to detect 32
out of the 34 eating events in the data set and only 3 falsely recognized episodes. The overall
mean coverage for detected activities was 96.3% and the average delay was 6.5 seconds (the
average duration for eating events was 304.3 seconds). Figure 5.7 provides a summary of the
results.

47



Figure 5.8: Shows timeline of two scenarios from the user study. (Top) FitByte fails to detect
drinking activity when the user occasionally sips liquid while walking. (Bottom) However, Fit-
Byte succeeds in detecting drinking episodes when the user drinks for longer and drinking is not
completely occluded by other activities.

5.5.2 Drinking Detection
For identifying drinking episodes, the system obtained 64.5% recall and 56.7% precision at the
intake level. On investigating the reason for significantly low performance as compared to eat-
ing, we found that drinking in unconstrained situation happened in three different ways – either
sporadic, short sips of liquid, mixed with other noisy activities (especially while hiking), or more
continuous drinking events where the user took more than small sips with some sporadic noisy
activity (i.e. series of short sips,or along sustained series of gulps) For example, having a coffee
while reading a book at a cafe. Figure 5.8 shows an actual scenario from our data collection for
the two cases. While FitByte fails at detecting situations like Scenario 1 in Figure 5.8, it very
accurately identifies events similar to Scenario 2 (7 episodes in the dataset) where the duration
between sips does not exceed 30 seconds.

Considering our goal here is to assist the users in maintaining their food journal, we also
considered combining the eating and drinking results to assess the ability of detecting food con-
sumption events. Even here, FitByte would still capture a mixed eating and sporadic drinking
event as food consumption and would provide a footage of the episode that would contain both
activities. In this case, our food consumption episode classifier obtains 97.5% recall and 92.8%
precision.

5.5.3 Identifying Food Type
We triggered the camera using FitByte’s IMUs and proximity sensors to capture food visuals
(Figure 5.3). To assess the efficacy of our automatic trigger for the camera, we recruited two
volunteers to identify food type from video snippets generated by FitByte. From each episode
that was classified as eating or drinking, we generated 2 video snippets and showed them to the
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volunteers. The volunteers viewed the first 10 seconds of the video and identified food type. If
they were not sure about the food type, they were presented with 2 options; either to continue
watching the video for up to 30 seconds, or move on to the next video. Each volunteer assessed
20 randomly-sampled sessions. For all 40 trials, the volunteers were able to correctly identify
the food type for 37 trials. We found that all misclassified videos had extremely low lighting
or significant occlusions by the hand. In general, the results indicated that FitByte can be used
to effectively recall meals and snacks at the end of the day by quickly scrubbing through the
captured videos. Sample videos can be seen here: Video 1; Video 2; and Video 34.

5.5.4 Sensor Selection

FitByte uses multiple sensors for diet monitoring. While these sensors help in accurately identi-
fying eating moments and food types, they are probably also an overkill. We decided to have all
the sensors on the initial prototype to provide the necessary redundancy for analysis. Thus, we
investigated how different sensors contribute in the end. Instead of investigating the contribution
of individual features in the machine learning model, we developed different models with a sub-
set of sensors. We did not change any hyper-parameters or tried to tune them as the goal was
not to formally benchmark each sensor. Figures 5.9 shows the comparison of the performance
of different sensing modality and the combination of all sensors. It is evident that the 4 kHz ac-
celerometer was the best performing sensor, and the proximity sensor was the worst. However,
none of the three sensors can beat the performance of combining all their data together. When re-
viewing cases where individual modalities fail, our findings corroborated with past research (i.e.,
the modality that detects chewing (gyroscopes) fails in detecting drinks and the proximity senor
produces false positives from undesired hand-to-mouth gestures). Although the proximity sensor
performs worst in comparison to other sensors in isolation, when used with other sensors (Fig-
ures 5.10), this sensor is important and an important first line of defense. It acts as a low-power
trigger for other costlier sensors. We can see evidence of this claim in the improved performance
for sensor combinations that include the proximity sensor. The combination of accelerometer,
gyrocope behind the ear, and proximity sensor gives the highest accuracy among all other com-
binations (Figure 5.10). This shows that by using one IMU (accelerometer+gyroscope) and a
proximity sensor we can capture food consumption moment with an accuracy close to combina-
tions of all sensors.

5.5.5 Real-time Implementation

Informed by the outcomes of the first study, we made modifications to FitByte to improve its
battery life and make it practical for real-world applications. The modifications include changes
to the hardware design and introducing a policy for sensor activation. These changes enabled the
system to run for a day on the onboard battery without a recharge. To reduce FitByte’s power
consumption, we made the system so that it only uses a single temple gyroscope (bottom-right),
nose-bridge gyroscope, accelerometer, proximity sensor, and camera.

4If a video link does not work, please contact the first author at: bedri@cmu.edu
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Figure 5.9: Performance of different sensing modalities compared to the performance of all
sensors in the semi-constrained Study

Moreover, we noticed that most of the activities contained signal in the 0-1 kHz band. There-
fore, we decided to sample the accelerometer at 2 kHz, and we also reduced the sampling rate
for other sensors to half because the sensed activities (i.e., chewing, walking, hand to mouth
gestures) occur at less than 10 Hz frequency. We verified the validity of this approach by training
and testing our food intake models on the downsampled version of the data set and the perfor-
mance was largely unaffected. We also optimized the processor power consumption by enabling
the deep sleep functionality and setting the processor clock to 16 MHz. All these steps helped in
significantly reducing the overall power consumption.

With all these modifications, the overall measured current of the system, excluding the cam-
era is 28.4 mA at 3.7 V during regular operation. When triggering the camera, the camera
consumes 110 mA and the drawn current by the rest of the system jumps to 100 mA because
the processor uses two I/O pins to control activation and recording of the camera. To make sure
that the users can quickly browse through the videos, we restrict the captured video duration to a
maximum of 2 minutes. If we assume the maximum number of triggers per hour (30 times) the
camera will be active for 390 seconds per hour, which means the camera will draw 11.9 mA/h
and rest of the system will draw approximately 36.1 mA/h. Thus, in the worst-case scenario,
the system requires an 864 mAh battery to last for 18 hours. The FitByte prototype used in the
first study had 300 mAh battery. To increase the charge capacity of the device, we removed the
internal battery charging board and added 600 mAh in battery capacity. The final prototype had
900 mAh charge capacity without significantly changing the physical dimensions (3 mm increase
in the arm width).
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Figure 5.10: Performance of different subsets of sensors in the semi-constrained Study

5.5.6 Unconstrained Evaluation in a Free-living Environment

To assess the performance of FitByte we evaluated the accuracy using the trained model from
the scripted semi-constrained evaluation.

Using the same filtering parameters for in the short term evaluation, the system was able
to detect 22 out of 28 episodes with 89% average coverage. The missed episodes were short
(less than 10 seconds), and two of them are drinking episodes. The system had 4 false positives
corresponding to silence and talking activities. On the intake level the system achieved 84.7%
precision, 75.4% recall and 68.2% coverage and on the frame level it achieved 65.3% precision
and 60.7% recall.

From the detected events, we extracted the associated short video footage captured by the
Fitbyte camera and showed them to a crowd worker to identify the food type. On average the
system triggered 122 times per session. We marked videos that were recorded during the event or
close to it (5 seconds before or after an event) as videos of interest. We asked one crowd worker
to visualize and identify all food types seen in the video. The selected videos ranged between
20 to 5 per session. From the 22 recognized food intake episodes, the crowd worker was able
to identify the food type in 20 events correctly. Two events were not easily recognized because
bad lighting conditions. Here are samples of the captured videos Video 1, Video 2 and this is a
sample of a video with low lighting condition Video 3.
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5.5.7 Privacy and Social Acceptability
As part of our evaluation, we did a preliminary assessment of FitByte’s perceived privacy and
social acceptability. We conducted semi-structured interviews with the five participants in the
long-term study after they wore the device for a day or two in public. In general, participants
thought the use of the eyeglasses form factor helped in making the device socially acceptable.
People around them were either curious to know what does this special looking glasses do, or
they were indifferent about it, but none of the participants reported any perceived feelings of
discomfort from wearing the device in public. One participant mentioned wearing the device in
a cafe and he said ”I was surprised no one was looking at me. I ordered my coffee and the cashier
did not ask me about it” Another participant mentioned ”When I was walking around on campus
people stopped and asked me what are the special glasses for? I think they probably noticed
it’s 3D printed and has no lenses on it”. All participants said that they would wear a device
like FitByte if they get to customize its look to fit their style. When asked about future changes
they would like to see in FitByte, most participants mentioned they would prefer if the device has
thinner temples (or arms) and lighter weight. Regarding privacy concerns, participants mentioned
that the placement of the on-board camera made wearing it in public less concerning, mainly
because the lens is looking down to the side of the user’s face and not to the front. Participants
mentioned that people did not notice there is a camera unless the participant mentions it. One
participant said ”My wife asked me where is the camera looking at? After I showed her it was
looking to the side of my face, she was fine with it”. Another participant said, ”If someone sits
very close to my left side, I would mention that I’m wearing a camera, otherwise I see no need
to bring it up”. In addition, all participants expressed that they would prefer to have a way to
manually turn the camera off in case they do not want to record clips during a specific activity.
Also, two participants said they would prefer that the system would detect eating or drinking first
before turning the camera on to ensure that it’s only recording when they need it to.

5.6 Estimating the amount
To evaluate FitByte’s ability to estimate the food amount we ran a separate study.

Food Amount Study Design

Given capturing ground truth information about food amount is hard, this study was significantly
more controlled than the main study (described earlier). We limited the food items in this study
to four types each has a different texture. We recruited 10 participants (7 males, 3 females) and
provided them with 1 slice of cheese pizza (soft), half an apple (crunchy), one Activia yogurt
(saggy) and one cup of water (fluid). The participants were free to eat any or all of the food items
in any order they preferred. Most participants switched between food items in a random order.
Other than positioning the food on the scales there were no other restrictions to the participant’s
behavior. In the study, participants talked to friends, worked on their laptop or used their phone.
To obtain ground truth for the consumed food volume at every intake, we used two food scales
with 0.01 gram sensitivity. One scale was dedicated to water cup, and the rest of the food items
were on one plate placed on the second scale (Figure 5.11). A camera was used to record the food
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Figure 5.11: The setup for estimating the food amount study

weight from the scale, and the onboard camera captured the participant’s intake. Also, there were
no restrictions on the order in which the participants should eat the food items. The study began
by asking the participant to wear the FitByte system and ended once the participant finished their
meal. The duration of the study ranged from 10 to 20 minutes.

5.6.1 Food Amount Annotations
Using the video footage recorded of the user and the scales all session were annotated using the
Elan 5.2 software. Annotations were made for the duration of the intake instances defined by
the moment the participant brings the food to their mouth and the moment they stop chewing (or
swallowing in case of water). Each labeled intake were then annotated with the food type and
the amount consumed. Other non eating activities were not annotated.

5.6.2 Food Amount Analysis
Estimating the food amount undergoes three steps

1. Identifying food consumption moments and food type using the pipeline described in Sec-
tion 5.3.1–5.3.3.

2. Estimating the amount from the recognized intakes.
In the first step, we passed the data we collected in this study through the validated final model to
detect eating and drinking instances at the intake level without any hyper-parameter tuning. The
outcome of this phase provided us with the predicted intake instance and the coverage of each
instance. Since the meal we prepared contained 4 different food items we had to identify the
food type at every intake instance. For that we extract footage captured every time the proximity
sensor detects a beginning of an intake gesture and had a research volunteer label the food item
they saw in each footage.

In the second step we used our predicted intake duration to train regression models to es-
timate the amount of consumed food for each food type (i.e., pizza, apple, yogurt and water).
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The features we used to train the regression models are similar to the features we used in de-
tecting food consumption moments but we added two new features: the duration of the intake
and the estimated speed of chewing – computed by dividing the number of peaks per intake by
the duration of the intake. We trained a Gradient Boosting Regressor with 100 estimators and
the least squares loss function using the ground truth volume corresponding to every predicted
intake. The models were validated using leave-one-user-out-cross-validation. We computed the
average percentage absolute error at the intake level, the item level, and the meal level as shown
in equation 5.1.

PAEα =
1

n

n∑
i=1

abs(AWi,α − PWi,α)

AWi,α

(5.1)

Where :
PAE: is the percentage absolute error.
AW : is the actual weight.
PW : is the predicted weight.
n: is number of participants.
α: can be intake, item or meal.

5.6.3 Food Amount Results
Using the trained and validated FitByte models for detecting food intake moments, we were able
to detect 262 intakes from a total of 275 intakes in the dataset and had only 8 falsely recognized
intakes (95.3% recall and 97.0% precision). The average coverage for every intake is 96.1%. A
crowd worker annotated the food type at every intake using only a thumbnail image of the video
recorded at the intake. The crowd worker had the option of visualizing a short video of the intake
if not sure about the type but they did not use this feature and recognized the types from only one
image captured at the beginning of the intake. The overall accuracy in identifying food type at
every intake was 93.9%.

To estimate the amount (in terms of weight) of food consumed, Fitbyte had an average per-
centage absolute error (PAE) of 20.8% (±16.3%). The average weight of the meal in the study
is 531.8 g. The average PAE for estimating the volume of each food item is shown in table 5.1
along with the average PAE for every intake.

Compared to other approaches for estimating the amount [2, 45] FitByte doesn’t relay on
manually identified chewing count or use the ground truth of intake duration because it infers
this information from the data automatically.

5.7 Discussion
FitByte was able to detect almost all eating events, irrespective of the amount of noise. The
eyeglasses were able to recognize that the user was eating, on average, in 6.4 seconds. Thus,
FitByte can enable fast notifications or interventions (e.g., remind a person with diabetes to not
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Type Item MAE % Intake MAE %
Pizza 26.6 37.0
Apple 25.1 42.5
Yogurt 28.1 46.5
Water 24.1 39.8
Meal 20.8 41.1

Table 5.1: The average percentage absolute error at the item level and the intake level

eat a donut). Moreover, FitByte also accurately (96.3%) detected the duration of the eating
episode and the number of intakes (93.8%). Using the performance of each individual sensor
as a proxy for performance for the corresponding phenomenon (e.g., proximity sensor for hand-
to-mouth gesture), it is evident that combining multiple modalities outperforms individual ones
(Figure 5.9 and 5.10). Besides, FitByte can capture visuals of the food in a privacy-preserving
way. These visuals allow users to recall more important details about the event like food type,
food amount, location, and the social context. We also showed that the captured footage was
sufficient for crowd workers to identify food types in almost all cases despite a few challenges
with lighting conditions.

5.7.1 Drinking Detection

Drinking can be a single sip, a series of short sips, or a long sustained series of gulps (e.g.,
chugging). FitByte can reliably detect the latter two, but detecting a single sip is hard as it is a
very short event. FitByte fails to detect sporadic drinking while moving or talking, but it reliably
detects repeated sips, as long as the sips are within 30 seconds. If the user drinks and moves
or talks at the same time, the high-speed accelerometer gets inundated by noise (surface noise
due to motion artifact or bone conduction due to speech) making it difficult to detect swallowing
instances.

5.7.2 Estimating the Food Amount

Moreover, FitByte also accurately (96.3%) detected the duration of the eating episode and the
number of intakes (93.8%). This result is very encouraging as it can be a stepping stone to
detect how much a person ate. We believe that for each person, once we know the food type,
the number of intakes and duration of their eating episode will have a strong correlation with
quantity. Therefore, FitByte can enable very accurate estimates of quantity of food consumed.
Using the same pipeline to detect food consumption moments and identifying the food type
we ran a semi-controlled study to evaluate the ability of FitByte in estimating the amount of a
predefined meal. With only 10 samples the Percentage Absolute Error for estimating the meal
amount was 20.8% which indicates how the high accuracy of detecting food intake instance and
estimating their duration can provide a reasonable estimate to the amount food consumed. This
shows that by collecting a larger and richer dataset, FitByte has the potential of estimating the
amount consumed for a wide range of food items with higher accuracy. By providing an easy
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way to identify food type and estimate meal amount, FitByte can enable users to estimate calorie
intake using nutrition databases such as the USDA Nutrient Database.

5.7.3 Ranging Sensor
For the realtime implementation, we introduce a set of modifications to the hardware to help
improve battery life. This approach enabled the system to run for 16.5 hours on a single charge,
which highlights the potential of using FitByte for everyday use. During an initial pilot, we
found that the camera triggered with a rate of 20 times every hour. Upon investigation, we found
that the proximity sensor (VCNL4040) was susceptible to ambient light changes, mainly when a
user used their phone or computer. To address this issue, we added another moving-average filter
(size=10 samples) to the proximity signal. The filter reduced the number of false triggers, but in
the future, a time-of-flight ranging sensor will be better.

5.7.4 Privacy and Social Acceptability
Systems with a wearable camera usually raise privacy concerns for users and bystanders. Google
Glass is a popular example of that. Although several precautions were taken in its design to
ensure that the camera is not recording without a clear indicator to the user and bystanders, the
ability to hack the device and record video and audio without consent has been a major concern
for customers and governments [60, 70]. In our design, we tried to approach this challenge
by eliminating some of the sources of concern. We removed the microphone from the camera
module to ensure no audio is recorded and we pointed the camera downwards to only capture the
user’s mouth. We did a preliminary investigation of the perceived social acceptability and privacy
implications of the device with participants. The outcome of this short investigation indicated
that users and bystanders are generally tolerable to the on-board camera once they know it points
at the wearer’s mouth region and is not recording audio. In the future, we plan to more deeply
investigate the privacy and social aspects of FitByte with a large and diverse group of users and
bystanders.

5.7.5 FitByte Design
The design process involved building several iterations of the device and testing them with a
diverse group of participants. One of the major trade-offs was in the placement of the 4 kHz
accelerometer. Placing the sensor closer to the center of the throat provides the best swallowing
signal, but having a sensor extend outside the glasses frame to the throat was socially unaccept-
able. Thus, we experimented with several locations around the ear and nose and found locations
below the ear (B and C in Figure 5.1) to give a reasonable swallowing signal as seen in Fig-
ure 5.4. We chose to place the sensor at B to have the sensor closer to the processor and avoid
inducing noise into the circuit by carrying high-frequency signals across the frame.

Fitting was another challenge. Making sure we always get a good signal from all sensors
required several iterations on the design. For the IMU sensors, we tried adjustable 3D printed
arms and adhesive silicone attachments, but they either broke or were not durable after long use.
We finally chose the combination of the adjustable copper wire arms and the flexible 3D printed
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fulcrums to hold the sensors in place. In future designs, we plan to provide users with an app
that allows them to visualize sensor data in real-time to verify proper sensor placement. We also
plan on putting the proximity sensor and the camera on a simple gimbal that the user can adjust
if needed.
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Chapter 6

FitNibble

6.1 Introduction

In this chapter, I discuss my attempt to address RQ2 and assess the utility and usability of ADM
and its impact on food journaling compliance. In this effort, I developed an end-to-end system
(FitNibble) that allows users to receive just-in-time notifications to prompt them with logging
every time it detects they are eating. This system and its evaluation are based on the outcomes of
the FitByte and EarBit studies [11, 12].

In academic research, several efforts have been made towards developing automatic diet mon-
itoring systems (ADM), but these proposed solutions were harder to implement in a real-world
product. Researchers have cited several technical and non-technical challenges, which represent
clear barriers for this technology to reach the end-users [63]. The major technical challenge
stems from the complex nature of the diet monitoring task, as fundamentally the user needs to
keep track of when they eat, what they eat, and how much they eat. Such detailed tracking makes
automating the food journaling process exponentially difficult when compared to step counting
or sleep tracking. While detecting food type (What?) and amount (How much?) remain as open
questions, many advancements have been made in detecting When people eat and for how long,
using wearable ADM systems with different sensing approaches to track chewing, swallowing,
and/or hand-to-mouth gestures using modalities like inertial sensors, microphones, EMG, and
proximity sensors [56, 63]. These systems have been developed and tested in lab environments
to validate their functionality, but ecological validity remains a great challenge for most of these
ADM setups. Non-technical challenges have also manifested when evaluating these ADM sys-
tems in public, which include social acceptability of the form factor and privacy concerns. All
these challenges have formed a barrier for researchers to evaluate the utility and usability of
ADM systems because these metrics are difficult to assess without a reliable end-to-end system.
To allow for just-in-time interventions the ADM system should also be accurate at detecting
the onset of an eating event even if it’s short. For instance, snacking is usually underreported
with other journaling methods despite the high implications it may have on people’s health. Fi-
nally, the ADM system should also have a practical and socially acceptable form factor, to help
researchers capture the real impact ADM can have on the user experience.
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1 2 3 4

Figure 6.1: With FitNibble users can receive just-in-time notifications reminding them to log
their meals and snack. This figure show the flow of the user experience with our system

6.1.1 Food Journaling Challenges

Research exploring the food journaling challenges found that the low adherence rates are caused
by the perceived tediousness of the journaling task and loss of motivation due to the high rate
of missed events. Missing to log several eating events results in an incomplete journal, which
invalidates its use in understanding dietary patterns. When investigating why people miss logging
events, the majority of participants said they simply forget, as remembering to log your meals
requires constant attention to your daily activities, which to many individuals introduces an un-
bearable cognitive load [20, 21]. We believe that using a reliable ADM system to detect when
people are eating, would allow for just-in-time intervention to prompt users to log. This feature
should ease the food journaling process by offloading the user’s attention from tracking their
activity to other tasks. This system should have a positive impact on adherence allowing users to
have more complete journals by reducing the number of missed events.

6.1.2 FitNibble Design

In this evaluation, we designed a field study to assess the utility and usability of FitNibble, an
end-to-end wearable ADM system designed to recognize eating events and send just-in-time
notifications to prompt users to record meals and snacks at the right time. FitNibble design is
based on the FitByte [12] and EarBit platforms [11]

As explained in chapter 5, the FitByte platform has seven sensors to track chewing, swallow-
ing, and hand-to-mouth gestures and use it as a proxy to detect eating and drinking events. The
setup also has an onboard camera to capture images of the food.

To build a deployable setup, we made a few adjustments to the design and the system ar-
chitecture. These decisions are based on the feedback received from FitByte and EarBit study
participants. These design changes were required to ensure reliable performance in a free-living
environment and to improve social acceptability.

First, we decided to use the user’s glasses as the platform and attach to them our lightweight
sensors. This change was recommended by the FitByte users, who preferred to wear their own
glasses over adjusting to a new frame. We iterated on the design and ran pilots to ensures comfort
and social acceptability and found the setup shown in figure 6.3 to be the most suitable.

Second, we decided to drop the high-speed accelerometer due to its high power requirements.
This sensor played a major role in detecting drinking events. In this evaluation, we found it
suitable to focus on eating events detection. After testing the setup in a short pilot, we also
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decided to drop the onboard camera. Participants found the setup bulky and heavy to carry, and
some participants didn’t want to have a camera on the setup for privacy reasons.

Finally, It was clear from our analysis that the proximity sensor played a major role in re-
ducing the average prediction delay to 7 seconds. This feature is valuable to design just-in-time
interventions therefore we decided to keep the proximity sensor. We also kept one of the 3D
gyroscope sensors (bottom right) to detect chewing from jaw motion. For motion reference, we
used another 3D gyroscope sensor attached to the back of the user. All these sensors are sam-
pled at 10 Hz, which we found to be the best data rate to reduce power consumption and ensure
reliable performance. For more details on the final design, please check section 6.3.2.

6.1.3 Approach

In this evaluation, we focus on the role ADM can play in mitigating some of the challenges of
food journaling and in improving adherence to the process. Our evaluation was done on a long-
term field study that has two phases. In the first phase, we introduce participants to traditional
self-report food journaling methods using a custom iOS application. The application allows
users to set reminders to log, take photos of the food, and review daily activities in a calendar
format. We gave participants two days to get acquainted with the app and the journaling process.
We then collected data for seven more days for the actual evaluation (9 days total). During
the study, we asked participants to fill in a daily survey to reflect on their experience with the
app(i.e. Experience sampling). After finishing this phase we interviewed participants to assess
their overall experience. In the second phase, we introduce participants to the ADM wearable
setup, which can be linked to the journaling app, and send notifications to the user to prompt them
to log in whenever it detects they are eating. In a similar fashion to the first phase, participants
have also used the new setup for 9 days and were asked to fill in a daily survey to assess their
experience with this new method. At the end of the study, we conducted a second round of
interviews with the participants to assess their overall experience in phase 2 (with FitNibble) and
how it compared to phase one (without FitNibble).

For analysis, we followed a mixed-methods approach on the qualitative and quantitative data
we collected. We evaluated the user experience with different measures including utility, us-
ability, effect on adherence to food journaling, social acceptability, and privacy concerns. Our
analysis has shown that in this short period FitNibble has improved adherence by significantly
reducing the number of missed events (19.6% improvement, p = .013), and participants have
exhibited clear dependency on the wearable as soon as they started using it. Journaling difficulty
have also dropped significantly after using FitNibble (p = .005). The device also helped the ma-
jority of our participants discover new dietary patterns especially with the amount of snacking,
and we started to see signs of behavioral change due to increased awareness of eating habits. All
these outcomes underscore the importance of ADM in improving the food journaling experience.

The main research contributions of this effort can be summarized in the following points:

1. Improved machine learning models for real-time eating detection using the publicly avail-
able FitByte dataset.

2. An end-to-end open-sourced system (including wearable schematics and firmware, smart-
phone app, and backend).
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3. A field study to assess the utility and usability of a diet monitoring wearable, and provide
a list of recommendations for future ADM system’s design.

6.2 Method
As many technical ADM challenges have been addressed in previous work [11, 12, 75, 76], a
long-term field study can help ADM researchers explore the nontechnical challenges that can
influence the adoption of this technology.

The main goal of this evaluation is to assess the value ADM can provide to the food journaling
experience, and understand the influence of the system performance on usability and utility.

In this evaluation, we aim to use an adapted version of FitByte to send just-in-time notifica-
tions to prompt the users to do the logs when it detects they are eating. We hypothesize that by
using this approach we can reduce the cognitive load required by self-report journaling methods,
and reduce the number of logging errors especially when it comes to missed events. Having this
tool should significantly improve the user experience and help them adhere to the food journaling
process.

In our analysis, we used several metrics to assess the experience with food journaling using
ADM. These metrics include utility, usability, social acceptability, and any privacy concerns
raised from using this system. We will use a combination of quantitative and qualitative methods
to assess these metrics and use the results to inform new design recommendations for ADM.

6.2.1 Study description
To evaluate the utility and usability of our ADM setup we designed a field study that allows
participants to experience food journaling with and without ADM. In this study we targeted
individuals who are interested in understanding their dietary behavior in general and not focused
on specific goals like weight loss. The second criteria we had was to only recruit individuals who
wear eyeglasses regularly because our ADM setup is based on that form factor and we didn’t want
the experience of the participants to be influenced by their unfamiliarity with wearing eyeglasses
all day.

The study has two phases, each phase should last for 9 days (18 days total). In this study,
participants will be introduced to a traditional photo-based food journaling method. This method
requires the user to just take photos of their meals and snacks throughout the day and review
them before they go to sleep. This approach is found to deliver sufficient information to help
them understand their dietary patterns without focusing on minute details like calorie count. We
chose this approach because it requires minimum effort and for users who are not focused on
specific goals like weight loss, asking them to keep track of many details can be overwhelming
and in some cases anxiety producing [20].

Phase1: Photo-based journaling without ADM

In the first phase, participants will be asked to use the FitNibble app (check description in section
6.3.3) to log their meals and snacks. In this phase the app won’t be linked to the wearable, which
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will require the user to remember by themselves to log every time they eat. In the app there
is a feature that would allow users to set reminders at specific times. We added this feature to
help users to remember to log if they know at what times they are most likely to eat. To help
participants distinguish between snacks and meals we defined snacks as any eating event outside
the main meals breakfast, lunch, and dinner. Participants can also log drinking events but it is
not required.

We require participants to use this journaling method for 9 days. In this period, they will have
two days to get familiar with the journaling method and 7 days for the actual data collection. At
the end of each day participants are asked to fill a short daily survey for experience sampling.
The survey is designed to encourage participants to review and reflect on their logs for the day.
For the survey questions, check appendix A & B. At the end of this phase we conducted a semi-
structured interview with each participant to understand their experience with this journaling
method with a specific focus on utility, usability, social acceptability, and impact on adherence.
For the interview questions, check Appendix D.

Phase2: Photo-based journaling with ADM

In the second phase, participants are introduced to our wearable ADM setup. At the beginning
of this phase we install the hardware setup on the user’s glasses as described in section 6.3.2.
We then explain to the participant how to put on the wearable setup and explain to them how to
connect the wearable to the phone app via Bluetooth. This new setup should allow the app to
send reminder notifications to the user every time it thinks they are eating and ask them to log.

Before we start the study we ensure the system is working properly by performing a func-
tionality test. In the test, we ask the user to simulate an eating event by chewing and performing
several hand-to-mouth gestures at the same time. We run this test multiple times to ensure that
the system is detecting eating events reliably.

Similar to the first phase, participants will use this journaling method for 9 days (2 days to
get familiar with the method and 7 days for actual data collection). Participants are also asked
to perform the same tasks of phase by logging their eating events and filling in the daily survey.
In this phase, we still asked participants to remember to log by themselves and not rely on the
wearable notifications. Participants were still able to set reminders on the app at a specific time.

At the end of this phase participants are invited again for a semi structured interview to reflect
on their experience with the new journaling method and how it compares to the first one. For
the interview questions, check Appendix D. To analyze the interview data we used an emergent
thematic coding method.

6.2.2 Measures and study facts
In addition to the data we collected from the interviews and the daily surveys, we also collected
app usage data in both phases. This helped us understand how frequently participants were using
the app and how often they used specific features, such as the time reminder. We also recorded
their responses to the wearable notifications to help us track the number of true positives and false
positives per day. In order to preserve participants’ privacy, none of the logs data and photos were
recorded .
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In addition to the app usage data, we asked participants to fill in a standard self efficacy scale
survey at the beginning and end of the study [62]. We collected this data to gauge the influence
of self efficacy on the user experience and see if their self efficacy rating changed by the end of
the study.

We recruited 13 participants ( 5 female and 8 male) with an average age of 34 years, ranging
between 21 years and 54 years. The majority of the participants (6) were university students but
the remaining participants (7) were from diverse backgrounds including school teachers, artists,
and stay at home parents. Since we conducted this study during the COVID 19 pandemic and
as lock down restrictions were lifted in the city, we asked participants to report their expected
level of activity for the 18 days of the study including if they will work from home or office, how
many times they will leave their homes and how many times they will eat outside (Appendix C).
In our recruitment we didn’t require participants to have a certain level of activity.

6.3 System Description

6.3.1 System architecture

This section discusses the overall system architecture of the FitNibble Deployment. The system
has three fundamental components: the wearable, journaling App and the backend server (Figure
6.2). The wearable handels sensor data, preprocesses them, computes the model features, and
sends it to the smartphone via Bluetooth. On the phone the custom iOS App we developed
handels the features and sends it to a server which will run predictions on it and send the results
back to the smartphone App. The following subsections will explain each component and its
functionality in detail.

On Device Feature
Extraction 

Featurized Data
sent over
Bluetooth

Data logging
over REST API

Gateway

Worker
Node 1

Worker
Node 2

Worker
Node N

IPC

IPC

IPC

Prediction

Machine Learning
Prediction

Machine Learning
Prediction

Machine Learning
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Figure 6.2: System architecture: FitNibble wearable sends the extracted features over Bluetooth
to our IOS mobile App. Our FitNibble backend obtains this data over REST API through an iOS
app and then forwards it for data logging and model prediction of eating.
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6.3.2 Wearable

The FitNibble wearable we developed is informed by the original FitByte design. We also
adopted the design recommendations published in the FitByte paper [12], which are based on
the user feedback they received after using their wearable in a short deployment. In this feed-
back participants recommended that the wearable should be lightweight and less bulky similar
to the regular eyeglasses they wear.

The original FitByte wearable served as a research platform to explore the use of several
sensing modalities to detect eating and drinking. The FitByte platform has 5 gyroscopes to help
detect chewing from different locations around the ear, a high speed accelerometer sampled at
4kHz to detect swallowing, a proximity sensor pointing at the mouth region to detect hand-to-
mouth gestures, and an on-board camera to capture food images This platform allowed us to
understand how different sensor combinations can influence the overall accuracy and at what
expenses.

For the FitNibble design we were considering a light weight design that delivers high accu-
racy in detecting eating without consuming a lot of energy. These guidelines were set to ensure
we have reliable hardware that can be deployed for several days without close supervision. For
these reasons we decided to drop the high speed accelerometer and camera because of their high
power consumption. The high speed accelerometer was originally added to improve drinking
detection, but in this study, we are only focused on detecting eating events which can be done
reliably with other sensors in the platform (check FitByte sensors combination results in chapter
5). Since the 5 gyroscopes were used to explore the best placement for the chewing sensor, we
only kept two sensors, one at the bottom right side to detect chewing from the lower jaw bone
and we used the second gyroscope as a reference sensor to filter out body motion. We also kept
the proximity sensor due to the value it provides in detecting the eating onset, which will help in
introducing just-in-time interventions.

We experimented with different placements for the gyroscope sensor including on-the-temple
or above-the-ear, but we found they cause headaches after wearing them for a few hours, so we
decided to keep the chewing sensor at bottom of the ear and the reference sensor was placed with
the microcontroller board and battery in small pack attached to the back of the users shirt.

In the first design iterations we considered adding the camera to the FitNibble platform and
dedicate a separate battery pack for it, but we ran a pilot with this version, and participants found
the device to be heavy and bulky. Also a few participants requested the camera to be removed at
the beginning of the study for privacy reasons. For all these reasons we decided not to include
the camera on the final deployed version.

The final FitNibble setup has a proximity sensor (VCNL 4040) hosted in a small 3d printed
holder. The holder is attached to the right hinge of the user’s glasses as shown in figure 6.3.left.
On the same side a 3-dimensional gyroscope (MPU9250) is attached to a flexible adjustable arm
linked to the glass’s temple tip (Figure 6.3.right). Similar to the original FitByte setup we used
a 12 gauge solid copper cable, which provided a wide range of fitting possibilities. These two
sensors are connected to the same I2C cable, which extend to a cloth pocket attached to the back
of the user collar (Figure 6.3.right). The pocket hosts the Bluetooth Low Energy module board
(Rigado BMD 350, nRF52832,Arm Cortex-M4), the reference IMU (MPU9250), a 2000 mAh
battery, and a battery charging board. We chose this configuration to ensure that the eyeglasses
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weight is as light as possible, and place all the heavy components on the back which was inspired
by the Earbit design [11]. The FitNibble setup is designed to be attached to any pair of eyeglasses.

Proximity sensor

IMU

BLE Module, 
Charging unit, IMU

Figure 6.3: FitNibble wearable setup. The system has a proximity sensor to detect hand-to-
mouth gestuers (left), an IMU in contact with the lower jaw bone to detect chewing (right), and
small cloth pocket clipped to the back of the user’s shirt containing the BLE module, battery, and
the reference IMU (bottom right)

In the study we chose to use the participants’ personal glasses to avoid any discomfort they may
have from wearing a different frame.

The BLE module firmware collects data from all three sensors at 10 Hz, preprocesses it,
computes the features, and sends it to the phone via bluetooth. Similar to the original FitByte
pipeline, the features are computed from a 5 second window sliding by 1 second. The BLE
module will send the feature vector to the phone every second. We chose to implement a feature
extraction step in the module to reduce the data sending rate and conserve power. Similar to
the original FitByte pipeline we preprocessed the data and computed the following features:
Entropy,variance, absolute median, zero crossing count, zero crossing variance, and the RMS of
each channel (7 channels x 6 features = 42 feature).

The only major change we made to the pipeline was to reduce the sampling rate for these
sensors from 50Hz to 10 Hz to extend the battery life. We compared the accuracy for the two
sampling rates using the original FitByte dataset and found that it doesn’t significantly reduce
the frame level accuracy (80% at 50 Hz 77% at 10Hz). Figure 6.4 illustrates all the steps done in
each component of the system. The overall power consumption of the system is 25 mAh.

6.3.3 iOS App
On the mobile side, we developed the FitNibbleApp . This iOS app communicates between the
FitNibble wearable, the backend server, and the user. The App allows users to set time reminders
for different meals and snacks. To preserve participant privacy we linked the FitNibbleApp to a
secure off-the-shelf journaling App, Foodility . The App allows users to do their logs and save the
information away from the FitNibbleApp so the research team doesn’t get access to participants’
private data. Foodility is a simple food journaling app on the App Store that allows users to
securely track their food consumption. With Foodility , users can select meal types, take short
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Figure 6.4: Pipeline of FitNibble

notes, and manually log their estimated calorie intake. Moreover, Foodility possesses the feature
of taking a photo of the food, which is not offered by most other journaling apps. In this way,
the participants can reflect upon their diet at the end of the day by looking at the photos they
have taken during that day in the daily view, where all the pictures of their meals and snacks
are in one place. On the FitNibbleApp participants can directly launch the Foodility app to do
the journaling by clicking a button. The app also directly links participants to the required daily
survey, and they can also set a reminder that would prompt them to do the survey at a specific
time of the day (usually in the evening). The app also possesses the feature of setting daily
journaling reminders at specific times, although the participants are not required to use them.
After participants have the wearable installed on their glasses in the second phase, the app also
handles Bluetooth connections to the wearable. Participants can find a list of Bluetooth devices
that fit the characteristics of the wearable after turning on bluetooth pairing in the app, and they
can connect to the wearable by tapping their device in the list. If the wearable gets disconnected
at any point, the app will try to reconnect with the wearable once it rediscovers the wearable.
Behind the scenes, the app receives preprocessed features from the wearable, and sends an API
request to the server to get prediction results of whether a participant is eating. If there are
5 consecutive responses that predict the participant is eating, the app would send an instant
journaling notification to prompt the user to do the journaling. A device detection notification
would stop detecting eating status for 5 minutes, and would resume detection if the user did
not interact with the notification within this timeframe. Clicking on the journaling notification
(either manually set or through detection) will bring the users to a confirmation page, which has
three buttons, “starting journaling”, “no, I’m not eating”, and “just a test.” The users would click
“start journaling” if they are eating, and they will be redirected to the Foodility app to do the
journaling. The user would click “no” if they are not eating when they receive the notification.
In the scenario of device detection notifications, clicking no means that the user is receiving a
false positive. The “just a test” button is there for the user to do the device checking test every
time they put their glasses on. During the second phase, when participants receive a device
detection notification, if they click “start journaling” or “no, I’m not eating,” the device would
stop detection for 30 minutes so that they would not be bothered with more notifications during
the rest of their meals (or snacks). For the purpose of the study, FitNibbleApp tracks users’ high
level activities, such as launching the food journaling app, launching the daily survey, bluetooth
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connectivity, and users’ selection on the confirmation page after getting a notification. These
activity logs are then sent to the server.

Figure 6.5: FitNibble App features and functionality. This figure shows the main page of the App
and explains the main functionalities available on it, including setting reminders and receiving
notifications when eating is detected

Figure 6.6: Foodility App layout

6.3.4 FitNibble Backend Server
Our backend server is based on a Python-based Flask framework which was custom built to
have several functionalities store the device logs from the FitNibble App, obtain the prediction
requests from the wearable device, and predict based on the requests. Although some cloud
services provide several Rest API ecosystems ([? ]), they come with several limitations which
prevented us from using such platforms. First and foremost, the highest allowed frequency for
sending requests is limited within a minute, and the maximum allowed requests ( 10000) are
restricted for a month for the free tier. In addition, such services do not provide the functionality
to serve machine learning model prediction requests at scale. This is suboptimal given our high-
frequency ML prediction request and the number of participants that we would like to have in our
study. Second, our IRB has policies against sending potentially privacy-sensitive data to a server
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that is not controlled in-house. In fact, such existing frameworks are ambiguous on whether data
is visible to third parties. Further, such a system does not encrypt stored data and requires to
be connected to one or more of their services to function correctly. Finally, posting data at the
scale that we anticipated would have made using such services unnecessarily expensive. Given
these requirements, we built our own custom Python-based Rest API server with enhancements
optimized for scale and accepting model serving API requests at higher frequencies as shown in
(Figure 6.2)

Rest APIs for Data Logging and Eating Detection

We implemented server REST interfaces to our FitNibble backend that were focused on log-
ging the user interactions with the FitNibble App. This logging information includes interaction
events the participants made when they clicked the daily survey, set up the daily journaling re-
minders for notifications, and launched the Fidelity App to log their meal events. Each interaction
event is stored with participant ID, device ID, the type of interaction, and the timestamp when
the participants interacted with the App. This logged information is then used to correlate their
interactions with the app as mentioned in 6.3.3.

In addition to these data logs, in Phase 2 of the study, the processed features received from
the wearable to the App are then sent as a Rest API request to the server to get prediction results
of whether a participant is eating. These requests are sent to the machine learning model serving
to process the prediction requests and send the prediction back to the App, which is then shown
as a notification.

Scalable data processing and Load Balancing

The rate of prediction request received on the FitNibble Backend from each wearable device
through the App is at 1Hz. Such a high frequency of requests needs to have data processing
at scale so that the server is able to handle multiple devices simultaneously in the study. To
process such requests at low latency, we added a separate load balancer on our server (Figure
6.2) so that it would process all the incoming POST requests from the wearable devices. We
investigated several load balancing mechanisms and settled on using the Gunicorn module, as
it provides several key features. We configured our server to spin up multiple identical Flask-
Python processes when it first starts up, each running on its processor for parallelism. All the
API request events are load-balanced across these worker processes, thus allowing many requests
at low latency. In addition, to ensure the stability and reliability of our FitNibble server for the
duration of the study, we implemented mechanisms to restart any processes that may have failed
or aborted. Further, we add vital statistics and logs related to load on the server and resources
used that helped us gauge and improve system scalability.

Machine Learning

This machine learning model is trained on the dataset released from the earlier work [12]. The
dataset consists of several activities such as eating, drinking, walking, talking, and silence. The
previous work [12] achieved a Frame-level Recognition of 69.8% where we detect whether the
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user is consuming food at a 1 second resolution. This model was trained using a Random Forest
classifier with an Scikit-learn implementation (default parameters, 100 trees). However, this
model was trained with default parameters and limited configuration. To ensure that there is
higher accuracy for eating detection in real world settings we worked on exploring the best
model and parameters.
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Figure 6.7: DNN Model architecture

In addition to accuracy, we also explored other ML frameworks such that we can run the
predictions directly on the wearable or on the phone. We trained several classical models such
as SVM, GBT and other models to recognize eating and drinking events and distinguishes them
from other everyday activities such as movement, talking, and no-activity. Based on this evalua-
tion, we found that the accuracy of the optimized random forest achieved and accuracy of 72%
while the our customized DNN model we achieved an accuracy of 80% and hence, we decide to
go with the DNN model. Our custom built DNN model as shown Figure 6.7. The input layer is
a vector with 42 elements which is a flattened representation of the six dimensions of data. In
order to feed the data into our neural network we shape it in such a way that each person has
multiple two dimensional records which holds the data for each of the sensors from the FitNib-
ble wearable device. Each record is also associated with one label and this is fed to the neural
network during the training process.

6.4 Results
In this section, we will present our findings from the data we collected, which includes the daily
surveys, interviews, and App usage data. As we gave participants two days to get acquainted
with the journaling method, in our analysis we only included data from the last 7 days of each
phase. We also present results from 12 participants as one participant (P2) dropped out after a
few days because they didn’t feel the wearable prototype was comfortable.
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We categorized our results under three main topics: adherence; utility and usability; and
social acceptability and privacy concerns. In each topic, we present a summary of our findings
from the qualitative and quantitative data analysis.

6.4.1 Adherence
The main challenge with food journaling is the low adherence rate. ADM systems are designed
to improve the adherence rate by easing the journaling effort and reducing recall errors. Up to our
knowledge, there are no published evaluations for the impact of ADM on journaling adherence.
In this section, we present our results on how our ADM system FitNibble impacted the overall
adherence by comparing results from phase 1 (without FitNibble) and phase 2 (with FitNibble).
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Figure 6.8: Percentage of days with missed logs before and after participants starts wearing
FitNibble

Figure 6.8 presents the percentages of days with missed logs as reported by participants in
their daily survey. As shown in the pie charts, participants in Phase 2 were less likely to miss logs:
the percentage of No responses (i.e., No missed events today) increased by 19.6%. This is a clear
sign of improved adherence while using FitNibble. To statically assess this improvement we ran
a chi-square test of independence between the two phases and it showed that the improvement in
adherence was significant X2 (2, N =163)=6.1478 p = 0.013158.

To understand the reason behind this improved level of adherence, we asked participants in
the exit interview why they started to report more Nos in the second phase. One assumption
that can be made is this improvement was due to the familiarity with the journaling method, as
participants have been doing it for more than a week, but the response we got from the interviews
was completely different. Most participants attributed this improvement to the wearable. P10’s
response is representative in this regard: “I believe it was because the wearable was sending me
notifications every time I eat.”. Another metric we used to assess FitNibble contribution to the
improved adherence was the number of times the participants used the wearable notifications or
the time reminders to do the log vs. directly opening the App. Figure 6.9 illustrates that in the
second phase participants relied more on the wearable notification and time reminders than in
the first phase (48% increase). When investigating the contribution of wearable notification and
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time reminders to the total number we found that participants didn’t use the reminder feature that
much as explained in the Utility and Usability section. These results support the assumption that
the wearable notifications played a big role in explaining the improved adherence, as participants
were using them nearly fifty percent of the time when they logged eating events.

99%

1.02%

50.6%49.4%

Direct
Notification

Phase 1: without FitByte Phase 2: with FitByte

Figure 6.9: Logging methods used before and after participants starts wearing FitNibble. Direct,
indicate self initiated logs, and Notification, refer to logs initiated after receiving a notification
from the FitNibble App, including time reminders and wearable notifications.

After analyzing the interviews’ data we found the following emerging themes related to ad-
herence.

Forgetting to Log

Among all the reasons participants reported in phase 1 for missing to log Forgetting to log was
the most cited. This coincides with the findings of Cordeiro et al. [21] in manual food journaling
studies. P8 mentioned this quote “Most of the time I forget, and there’s some time. I’m just too
busy. I don’t have time to record snacks because I just grab a banana and go out.”, and P9 said
“Ah, I think it’s like unconsciousness. I just forgot that I need to journal while I am eating”.
Participants also cited other reasons like being busy or distracted. For example, P8 also said
“Most of the time I forget, and there’s some time. I’m just too busy. I don’t have time to record
snacks because I just grab a banana and go out.”. Others have cited changes in routine to be the
reason for them missing. “I visited my girl in college for a few days, so my routine has changed
and I missed a couple of events because of that ” (P1). In phase 2, participants’ adherence
improved and the reasons they cited for missing events were different. One common reason was
the The wearable didn’t notify me For example, P1 mentioned ““Uh, I missed. I didn’t do it
at lunch and I didn’t do it because for some reason it did not detect.”” and P13 “like one day
because I was wearing my contact lens and then I just have back to back meetings so I didn’t
have the chance to put my glasses on till like late afternoon and I missed to log my lunch”

72



Missing snacks

Another common theme from phase 1 interviews is that most participants realized that they are
missing to journal small meals such as snacks more than main meals. P3 mentioned “when I
have a little snack that’s like really easy for me to miss ’cause I won’t be thinking about it.” and
P12 said “Yeah, I think I’ve missed pretty much all the snacks.”. In phase 2 we saw the complete
opposite, Participants started to be aware of their snacking habits. For example P4 mentioned in
one of the daily surveys “Today the device recognized that I was eating a few almonds. This was
a snack that I didn’t plan or realize that I was eating, it was somewhat automatic behavior after
visiting the kitchen. I wouldn’t log that normally, but it was nice that it could catch it.” and also
in their daily survey P11 mentioned the following memorable experiences “The device reminded
me to log both snacks when I didn’t even think about it”, and “I think for snack I am relying on
the glass now.”.

Looking at the daily survey data, we notice an increase in the number of reported snacks in
phase 2, but the number of reported meals was almost the same between the two phases (6.1).
To evaluate the difference between journaling with and without FitNibble wearable, we ran a
repeated measure ANOVA test for both meals and snacks for both phases and the differences
were not significant (Fmeal(2, 83) = 0.39, pmeal = 0.844, Fsnacks(2, 83) = 0.39, psnacks =
0.99).

Depending on the wearable’s notifications

In the second phase, the participants depended on FitNibble in the journaling process. Keep
in mind, we explicitly instructed participants not to rely on the device and to continue to log
events when they remember, but most participants soon after they started using the wearable
didn’t follow our instructions. When asked how much they depended on the wearable in this
phase P13 answered “I think like 90% of the time. I do the logs after it notifies me”, and P8
said “Yeah, in general, I feel like it frees me from keeping paying attention to whether I’m eating
or not. For the journal, I can just rely on it. I fully rely on this device. So if the notification is
not on time, I just miss it.” These quotes support the hypothesis that the improved adherence in
the second phase was mainly due to the wearable and the notifications it sends and not any other
factors.

Finally, we referred to the self efficacy score of participants, which we evaluated at the be-
ginning and the end of the study. We noticed a slight increase on the average scores (beginning:
3.7, end: 3.85), but we didn’t find any correlation between these scores and the particpants level
of adherence.

6.4.2 Utility and Usability

In this section, we discuss the usability of all the features introduced in the FitNibble App/Foodility
App and the FitNibble wearable. We will also discuss the perceived utility of the setup and high-
light some of the emerging themes from the data.
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Time reminders has low value

One of the features we introduced in the FitNibble App is allowing users to set logging reminders
at a specific time if they know they are most likely to eat at a certain time. This feature was avail-
able in both phases of the study, but the general feedback we received was that participants didn’t
find it useful most of the time. This is evident in the daily survey responses when asked partici-
pants to state how often they used the reminder feature that day. From the data we found that this
feature utility rating is trending low in both phases 6.1. We noticed that more participants found
the feature to be useful in phase 2, but when investigating further the interview data showed that
the participants were confusing the use of the wearable notifications and the time set reminders.
We ran a repeated measures ANOVA to evaluate the difference between the two phases and the
results were significant(F (2, 83) = 8.324, p = 0.005).

When asked about the reasons behind the low utility of the feature, Some participants in the
first phase mentioned that they would like to set the reminder once and have it repeat every day.
We implemented this change to the feature but the utility didn’t improve by much. Participants
explained that usually, they don’t have a fixed schedule, which makes it difficult to plan when
they will have a meal or a snack. For example, P13 mentioned ““It might be useful, but not to
people who are students because students they have different schedules every day, so we don’t
have a fixed time for eating.”. P7 said “I didn’t use the reminders because my meal time is not
fixed”.

Positive experience with the wearable

When evaluating the user experience with the FitNibble wearable, most participants said it im-
proved their experience and attributed that to the smooth experience the wearable provides to
do the logs. P1 said “Much better than the first. I like that I didn’t have to remember to log.
The device prompted me with the notification and then it automatically opens that app so that I
could easily log, that was very, very special”, and P11 said “I do journal more now. it definitely
reminds me most times so I don’t miss”. We can also realize this from the daily surveys that the
journaling difficulty has dropped in the second phase 6.1. Figure 6.10 shows the trends between
the two phases. We ran a repeated measures ANOVA to evaluate the difference between the two
phases and the results showed that the change in using remainder functionality was significant
(F (2, 83) = 5.524, p = 0.021).
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Figure 6.10: Journaling difficulty before and after participants start wearing FitNibble

In the second phase, we asked participants to report in the daily survey how often the wear-
able notifications helped them today. The average rating for this feature was 3.3± 0.8 (above
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midpoint)6.1.
All these results point to the positive experience with the wearable, but a few of the partici-

pants didn’t view the experience as positive as others. We noticed that the common attribute for
participants in that group is they are very punctual at journaling even before using the wearable.
For these 4 participants, the wearable wasn’t helping them because it sends notifications after the
user starts eating, and they are used to doing the log before they eat, so the wearable notifications
bother them because it comes after they have already made the logs. P4 said “I wouldn’t like to
keep using it, because I do all the work and it’s not giving me back too much, because I have to
remember to log before the meal, and I’m good at it.”, and P6 said “I don’t think it ever reminded
me in a way that I would have forgotten. It was mostly just background noise.” . This feedback
highlights that ADM journaling provides value to users who are forgetful and less punctual, but
for users who don’t have these issues, journaling with ADM negatively affects their experience.

Variable perception of accuracy

When it came to how participants perceived the accuracy of the wearable notifications there was
a split between good and bad responses. To understand the reasons behind this split we looked
at the app usage data as we keep track of how many times participants responded to notification
with Yes (true positives) and how many times they responded with No (False positives). After
analyzing the data we found that half of the participants were receiving a few false positives
per day (Avr = 2.5 ± 2), and the remaining half of the participants were receiving many false
positives per day (Avr = 15 ± 5), Figure 6.11 shows an example of data logs from each group.
Our understanding this is probably caused by variation in sensor noise across devices. We built
11 FitNibble wearable prototypes for this study. By visualizing the sensor streams for some of
these prototypes we found significant variation in the noise level, especially in the MPU9250
gyroscope data.
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Figure 6.11: Number of true positives (TP) and false positives (FP) received across 7 days.
Figure on the left is from a participant with high accuracy whereas the figure on the right is from
a participant with low accuracy.

Despite the variation in accuracy across devices 61.9% of the daily response found the ac-
curacy to be average (34.5%) or above average (27.4%) , while 38% of the responses found it
to be below average. Figure 6.12 shows the distribution of the daily perceived accuracy for all

75



Metric Phase 1 Phase 2

Number of reported meals Avr = 2.2± 1.01meals/day Avr = 2.2± 0.74meals/day
Number of reported snacks Avr = 0.54± 0.83 snacks/day Avr = 0.77± 0.92 snacks/day
Journaling difficulty Avr = 3.1± 0.9 points Avr = 3.5± 0.7 points
Time reminder’s utility Avr = 1.5± 0.5 points Avr = 1.8± 0.3 points
Wearable notification utility — Avr = 3.3± 0.8 points
Perceived accuracy rating — Avr = 2.8± 0.6 points

Table 6.1: Summary of the daily survey results (all rating questions has a 1-to-5 likert scale)

participants. These results indicate that most participants found the wearable to be reasonably
accurate despite the high false positive rate.

Since it’s difficult to monitor false negatives in a long-term field study we relied on par-
ticipants’ reports in the daily survey and the interviews. Most participants didn’t report false
negatives and they think the system recall was high. For the few reported false negative inci-
dents, participants indicated that there was a connection or a fitting problem most of the time.
P13 said “one thing I notice for the false negatives it’s probably just because I’m not wearing
my glasses properly.”
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Figure 6.12: Percentage of user perceived accuracy of FitNibble

Increased awareness of dietary patterns

One major utility theme in the study was increased awareness. Participants have reported in both
phases of the study that they are becoming more aware of their diet after they started journaling.
For example, P3 said “I am more mindful and aware of what I was eating, and I guess a little
bit more so with this (the wearable) because I wouldn’t really think about snacks until this thing
would notify me.” and P5 said “I’m trying out a variety of food that I wouldn’t really think about
earlier. I think that’s also attributed to the food journaling activity and to the device.”. Many
participants also indicated that they learned something new about their diet. For example, P12
said “I realized that I eat irregularly at night which will range from 5:00 PM to 9:00 PM”, and
P3 said “I definitely don’t eat as much as I should. Uhm, at least during this point in the summer
”. We also saw some trends of behavioral change due to increased awareness. P5 said “ It makes
me more conscious about what I eat throughout the day, and when I want to snack, I think that
I’ll have to keep track of it in my food journal, and then I see myself not really following my diet
so I don’t snack.””.
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Desires for a finished product

During the exit interview, we asked participants “What would it take for you to use this device in
your daily life?” The aim behind this question was to understand what barriers can prevent ADM
to be widely adopted. Most participants said they would use FitNibble if the prototype was
improved to a finished product quality. Some suggested changes to the form factor to improve
comfort. For example, P1 said “If this device didn’t have this cable coming out of it. If I could
just slip it into my glasses, or there’s just a little clip here, so it’s easy if I wanted to take it off.”,
and P3 said “ it’s not waterproof. So I remember that it was raining one day and I came to
campus. So I had to wait for the resin to stop so I could go home”. Participants also suggested
changes to the “Foodility” journaling App, such as reducing the number of clicks required to
do the logs, and adding a weekly view to help users capture trends that happen across multiple
days. One other desired feature was the integration with other health-related journals like fitness
tracking, glucose level, calorie counting, and mood logs.

6.4.3 Social Acceptability and Privacy Concerns
In this topic, we mainly relied on the interview and the daily survey data. The main emerging
themes from the data are summarized below.

Social acceptance

The major theme under this topic was the wide acceptance of the FitNibble app and wearable.
Most participants didn’t perceive any discomfort in the social setting as people around them were
either indifferent about the setup or they thought it was cool. P1 mentioned “ Really cool, yeah.
They all think it’s really cool!”, and P9 said “ Yes, I did it in front of my friends and they feel
normal about it. I just told them I was in a research study”. Not all participants had the same
experience. P11 mentioned that doing the food journaling added some social pressure on his
girlfriend because she wasn’t paying attention to her diet “ When I did this food journaling with
my girlfriend, I became more careful not to create any social pressure”. P6 found it awkward to
pull their phone every time they eat in a social setting “ It was just a little bit too weird to have
someone says “hey you want some fries”, and for me to say “OK but I’m gonna take a photo of
them first””

In the second phase, most participants found the current FitNibble design makes it invisible
to others. For example, P7 said “ Most of the time I think people don’t even notice” and P5
said “ No one really looks at you and hiding the wire makes it even less noticeable. If it is more
noticeable or larger, it will make a total change”.

Social collaboration

This is one of the interesting themes we found in the data. Some participants mentioned that in
the first phase they depended on their friends and family to prompt them to log meals. P3 and
P1 talked about that “I told some of my friends about it, and some of them actually reminded me
a few times.”, “I would say this maybe twice a day to whomever I was with. “ I have to remember
to do this, I have to remember””. After using the wearable in the second phase there was no
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mention of social collaboration. P3 mentioned that he started to rely more on the wearable
“Usually, my friends prompt me because when I’m with them it’s when I’m mostly distracted,
but in this phase they didn’t, because this thing tells me to do it anyways”.

Have full control over the wearable camera

As we mentioned in section 6.3.2 we were considering including an on-board camera in the
FitNibble design to capture images of the food when eating is detected. In the exit interview,
we talked to participants about this feature and asked if they would consider using it or not. The
majority of participants found the feature to be useful as it minimizes the effort to do the log.
One good example is P7 who refused to wear the device because he thought it had an on-board
camera and demanded it to be removed from the wearable. After using FitNibble in phase 2 his
opinion was changed “It would be good to have if it can be used in a more controlled way, like
only when I’m eating”, “I see why it would be useful. I don’t want to take my phone from my
pocket when my hands have food on them”. Most participants agreed to use the camera if they
have full control over this feature. For example, P13 said “If the camera is there we need to be
very cautious about it. I would prefer not to use it unless I know where it saves the data and
when it’s on. I don’t want it to accidentally trigger in the bathroom”.

6.5 Discussion

In this evaluation, we tried to assess the value an ADM system can provide to the user. While
ADM research aims to automate different parts of the food journaling task like detecting eating
events, identifying the food type, and estimating the amount; in this evaluation, we focus on
detecting “When” a user starts to eat to allow for just-in-time interventions. In our use case,
we targeted sending notifications to the user as soon as they started eating to prompt them to do
their logs. The goal was to help reduce the number of missed events due to recall errors, which
has a great impact on adherence to food journaling[21]. To tackle this challenge, we developed
an end-to-end system, including a custom wearable (FitNibble ), an interface App, and a server
backend. We then conducted a field deployment to compare traditional self-report journaling
and journaling with ADM. The results of our evaluation highlighted the potential of ADM in
increasing adherence to food journaling and improving the user experience with the process.

6.5.1 Main outcomes

Our field deployment allowed us to assess the influence of ADM on food journaling adherence.
Our results showed around a 20% drop in days with missed events, and we saw a significant
improvement in adherence with p = .013158. The main reason participants cited for this im-
proved adherence was the reduced cognitive load on the user after using the wearable ADM. For
example, P5 mentioned “Compared to the first phase, I don’t have to think about it”. After using
FitNibble participants became more aware of their dietary behavior especially when it came to
snacking as most of them missed small eating events.
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While the rate for false positives was high for some participants and low for others, the overall
perception of accuracy was leaning towards the positive side (Figure 6.12). Most participants said
they would use FitNibble if it was redesigned to have a more compact form factor and finished
product features (e.g. waterproof, no cables, and lightweight ). This feedback indicates that there
are no major barriers to adopting wearable ADM products. Many participants felt that doing food
journaling in public is socially acceptable and even some participants relied on their friends and
family to prompt them to log. This is a sign that there is less stigma associated with photo-based
journaling. Our participants believe this can be attributed to the wide adoption of this type of
journaling in social media platforms like Instagram and Snapchat.

Finally, in our evaluation, we investigated the use of a wearable camera to help users take
photos of their food. While all participants felt this feature would raise many privacy concerns,
after using FitNibble , most of them saw the value of using it to reduce the journaling effort, P5
said “You still have to take the picture yourself with your phone, it’s not really cutting that part
cuz it’s not taking a picture for me”, but the participants demanded full control over its activation.
So when the device detects they are eating it should ask for permission to turn on the camera and
take the photo.

6.5.2 Design Recommendations
In this section, we discuss the lessons we learned from this study and how it can inform the
design of the next generation of wearable ADM systems.

Targeted users

In our evaluation, we found a clear difference in responses between participants who are punctual
with journaling and those who are not. Participants who regularly missed to log events have
benefited the most from the wearable ADM system. On the other hand, participants who didn’t
suffer from this issue found low value in using it. This group was also more sensitive to false
positives and found it to be annoying. Therefore, we recommend designers keep these differences
in mind when assessing the utility and usability of their ADM system, and understand the value
it will deliver to the targeted end-user.

Acceptable range of error

One other question we tried to answer in this evaluation was “What is the acceptable number
of false positives per day?”. The feedback we received from participants was very similar de-
spite the discrepancy in the false positives rates they received. Most participants recommend
a maximum of 5 false positives per day, and they believe if this number gets close to 10, they
would be annoyed. One other thing ADM designers should keep in mind is to clearly explain
to the user what counts as a false positive and what doesn’t. For instance, in our study, a few
participants indicated that they received false positives when they were chewing gum, biting their
nails, or drinking. In our model design, we considered all these actions to count as eating events.
These participants were not fully aware of that, which in turn influenced their experience with
the wearable.
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Improving interaction

Through the interviews, we conducted we received many recommendations on how we can im-
prove the interaction with the wearable. For example, some suggested that we use voice recog-
nition to communicate between the App and the user. In this scenario, the user can respond to
notifications with voice commands like “Yes, I’m eating” or “No I’m not” also they can do their
logs by recording a short audio message that can be converted to text on the journal. Another
proposed feature was on wearable notifications, which means the user prefers to get the notifi-
cations on a wearable and not on the phone. Participants mentioned when they eat at home, they
don’t usually have their phone with them so they would miss the notifications. One participant
liked that FitNibble sent notifications on her watch, and another suggested receiving the notifi-
cations on the glasses. Several participants also recommended we review the 30-minute snooze
notifications rule. One participant mentioned that sometimes she would get a notification 5 min-
utes before she starts eating and would mark it as a false positive, but when she actually eats she
doesn’t get a notification because the device was soonzed. Worth noting that this type of false
positive was useful to the participant, because it reminded her about journaling a few minutes
before she ate, so she still remembered to log. Another participant mentioned that she has long
eating events that can extend for more than an hour, and found the repeated notifications every
30 minutes to be annoying. One way to solve this issue is to give users the choice on how long
they would prefer to snooze the notifications.

Finally, the experience our participants had with time set reminders showed low value for this
feature. Many participants had flexible schedules and setting a recurring reminder didn’t help
them most of the time. This finding highlights the value of an ADM system such as FitNibble ,
in improving the user experience with food journaling.
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Chapter 7

General Discussion

This chapter summarizes the findings of my research and provides a design guideline for future
wearable ADM research. I finally conclude my Ph.D thesis with a list of future directions that I
and other researchers in the field can pursue.

7.1 Research Findings

In this dissertation, I worked on address two research questions:

• RQ1: How can we develop practical ADM systems that replicate in-the-lab performance
outside the lab?

• RQ2: Can ADM systems improve food journaling compliance and reduce journaling
difficulty?

My work on Earbit and FitByte was directed to address RQ1. The solutions I proposed
required fundamental changes to the wearable design and the data collection protocol. In the
ADM systems I developed, I focused on selecting sensors less prone to environmental noise
and fitting problems. These sensors were hosted in commonplace form factors to make them
easier to adopt and use in social settings. To address challenges with obtaining ground truth
in unconstrained environments, I proposed asking participants to perform a high-level task (e.g.
attend dinner party) in semi-controlled environments. In my research, I ran studies in simulated
home environments and collected short-term sessions in free-living environments. Both methods
provided rich naturalistic datasets annotated with high precession. All these factors collaborated
in improving performance in free-living environments. Both setups achieved ¿90% accuracy in
detecting eating episodes inside and outside the lab.

Building on these results I developed a new ADM system (FitNibble) and used it in a field
deployment to address the second research question RQ2. The goal of the study was to evaluate
the utility and usability of the ADM system. I considered evaluating factors such as adherence
to food journaling, social acceptability, and privacy concerns. Our findings showed that FitNib-
ble has helped participants adhere to food journaling protocol, it also significantly dropped the
number of missed events and reduced journaling difficulty. All these findings support my thesis
statement that:

81



Automatic diet monitoring enabled by wearable sensors can improve compliance to food
journaling, by lowering the cognitive load required by users, and dropping the number of
missed eating episodes.

7.2 Wearable ADM Design Guideline
In this section, I provide a guideline to inform the design of future ADM systems. This guideline
is based on my research findings and the latest ADM literature.

7.2.1 Test your sensor in realistic noisy conditions
Many research efforts have evaluated their sensing modalities in controlled lab environments.
This type of evaluation doesn’t allow researchers to understand the nature of the signals in real-
world settings. The signal-to-noise ratio varies between environments, so to pick the right set
of sensors you need to anticipate the potential noise sources and test your setup against them.
This test can be done in simulated or real-world scenarios. For example, researchers exploring
the use of microphones in detecting chewing and swallowing sounds should test their setups
in noisy environments like restaurants, train stations, or a football stadium. In [53] and [40],
researchers found that environmental noise has a great negative impact on prediction accuracy.
Audio pollution can also be simulated in controlled environments by playing sounds of noise
captured in different real-world environments.

7.2.2 Pay attention to sensor placement and fitting
When designing a wearable setup, one of the main tasks that have a great influence on perfor-
mance is selecting the best wearable form factor for the actions your system is trying to capture
(i.e. chewing, swallowing, and/or hand-to-mouth gestures). The selected form factor becomes a
platform to test different sensor placements to produce the best performance. Finding the best
sensor placement requires a deep understanding of the human anatomy and the physical phe-
nomena the ADM is trying to sense.

Fitting has also a great influence on ADM performance. Having a loose fit system can prevent
the sensor from capturing body signals and make it more prone to motion artifacts and environ-
mental noise [7]. If the selected form factor doesn’t provide the appropriate sensor placement or
fitting, then modification has to be made to the design or a new form factor should be selected.

7.2.3 Try capturing multiple eating actions to improve performance
Eating and drinking activities usually involve multiple actions including biting, chewing, swal-
lowing, and hand-to-mouth gestures. Capturing only one of these actions and using it for ADM
doesn’t provide good coverage for different food intake activities. For example, if your ADM
only detects chewing then your system will miss out on detecting drinking events and eating ac-
tivities that may not involve chewing like eating yogurt, ice cream, and soup. Detecting multiple
eating actions allows your ADM to cover a wider range of food intake events and improves its
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precision (low false positives) and recall (low false negatives). Capturing multiple actions also
improves the system onset detection and provides good coverage for the eating episode duration.
Capturing multiple actions from a single platform is a hard design problem. Researchers have
explored using multiple wearable devices to capture all eating actions but the proposed setup was
impractical, socially unacceptable, and difficult to maintain [45, 46]. The FitByte platform rep-
resents a good example of an ADM that captures multiple eating actions from a single platform,
the wearable also allows users to take photos of their food using an onboard camera. FitByte’s
eyeglasses form factor enabled the system to tap into different regions of the user’s head to cap-
ture a variety of eating actions without compromising on practicality and social acceptability
[12].

7.2.4 Select a practical and socially acceptable form factor
In this dissertation, I’ve thoroughly discussed the impact of social acceptability on compliance to
ADM. Researchers should aim to select commonplace form factors, which users wear throughout
the day to ensure better coverage for the user activities. Form factors can be socially acceptable
but not practical. For example, if your setup requires users to wear a backpack, users might find it
socially acceptable but impractical to wear all day. Platforms like eyeglasses, wrist bands, belts,
and shirts can be good candidates for practical and socially acceptable form factors

7.2.5 Collect data in semi-controlled environment
Building machine learning models that work reliably in real-world settings has been a long-
standing challenge for ADM. As has been demonstrated in EarBit [11] and FitByte [12] we
found one of the most effective methods to building realistic eating detection models comes
from loosening the restrictions on the participant’s behavior during data collection. The main
objective is to give the user a high-level task (e.g. attend a dinner party, go buy yourself a snack
and eat it ), and give them the freedom to do it as they please. Dietary activities normally get
mixed with other activities like talking and walking, to ensure the machine learning models don’t
get fed data with wrong labels a granular annotation scheme is required. This level of granularity
usually requires having video footage as ground truth for participants’ activities.

Requiring video recordings of the session introduces another challenge to the data collection
process as participants may behave unnaturally when they know they are being observed. An-
other challenge is where to place cameras to ensure getting a good view of the user’s activities
without invading the privacy of others around him. EarBit and FitByte provide good examples
for semi-controlled data collection protocols. They both focus on obtaining realistic data with
minimum restriction on the participants’ behavior or location. To record video footage of the
activities I proposed instrumenting the environment with cameras or instrumenting the user with
minimally invasive wearable cameras that can be integrated with the ADM platform.

7.2.6 Give users full control over privacy-invasive modalities
In some ADM systems, sensitive data is collected especially with the use of cameras and mi-
crophones. Incorporating these modalities in your setup raises privacy concerns to the user and
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people around them. You can try to limit your sensor use to specific occasions detected by other
low-power sensors, but users might not want to receive false positives at sensitive moments (e.g.
in the bathroom). The usability evaluation of FitNibble showed that users are willing to use
sensors that capture sensitive information in public if it delivers a great value to their user ex-
perience and if they have full control over it. One way to implement this protocol is to always
ask for permission from the user before turning on the camera or microphone, and ensure they
run for a very short duration (a few seconds) to prevent it from invading the privacy of people
around them. You can also reduce the risk by using a non-front-facing camera, like in FitByte, or
sample the audio information with low frequency and/or compute features on the device to avoid
concerns about speech and image reconstruction.

7.3 Future directions
In this dissertation, I’ve aimed to push the state of the art in the field of automatic diet monitor-
ing. While my work provided an example for how we can overcome challenges with ecological
validity, and how we can assess the utility and usability of wearable ADM systems, many ADM
challenges remain standing. In this section, I discuss these challenges and propose future re-
search directions.

7.3.1 Data annotation
Similar to any activity recognition system, ADM systems need rich and accurately annotated
datasets. This is an essential resource that is difficult to acquire. Collecting data in naturalistic
settings requires granular annotations as people tend to mix different activities in an unpredicted
way. Annotating data with that level of precision represents the foundation for building machine
learning models and evaluating their performance.

In general, this annotation task is very arduous. Researchers are required to spend hours and
hours going through the data, checking ground truth, and labeling. While this is a challenge
for all machine learning systems, the data collected for ADM is usually complex and sensitive
information making it difficult to annotate by crowd workers.

One solution I propose is that ADM researchers can use a well-vetted ADM system in their
data collection for ground truth. The ADM literature has good examples of systems that pro-
vide eating predictions with reasonably high accuracy. These predictions can be used as a first
pass on annotations, which reduces the researchers’ role to reviewing the predictor labels, rather
than annotating the data from scratch. This method can significantly reduce the time and effort
required to perform the labeling task.

7.3.2 Detecting food type and amount
Many food journalers use self-report Apps to help them track how many calories they are gaining
or burning, and assess what impact that has on their weight and overall health. An ideal ADM
system should help users answer these questions with minimal effort. While the ADM commu-
nity is making progress in tracking eating moments, detecting food type and the amount is still an
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open challenge. In my research, I’ve tried to provide users with enough information to identify
and track information about the food they consumed. This was mainly in the form of providing
the users with footage of their meals and snacks. This can be an effective method to estimating
calorie count given the limited technology we have in hand.

Advances in the computer vision field have the potential to provide a better solution to this
problem, but vision-based systems have their own set of challenges when it comes to estimating
food type and mount. For example, vision systems can not distinguish between foods that have
the same appearance but different nutritional continents like Greek yogurt and fat-free yogurt.
Vision systems might also have a difficult time identifying uncommon cuisines especially if they
didn’t get trained on them. One way to address these challenges is to supplement vision sys-
tems with modalities that are sensitive to material contents like spectroscopy systems or surface
acoustic waves (SAW) sensors.

7.3.3 Exploring ADM utility
Finally, I would like to encourage researchers in the ADM field to run more long-term field stud-
ies and assess the utility and usability of different systems on different populations. For example,
targeting senior citizens with ADM can provide their caregivers a better understanding of their
dietary behavior and how it influences their health without constantly monitoring them. Another
example can be to target athletes and help them measure the influence of dietary activities on their
performance. Generally, ADM can also provide better diet tracking tools for medical research
which still base their findings on self-reported data.
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Appendix A



1. Email *

2.

3.

4.

Mark only one oval.

Yes

No

Maybe

5.

Daily Survey Phase 1
Please review your journaling app and tell us about it. Please provide a numerical answer if 
the question ask you to do so.

* Required

How many meals have you logged today? *

How many snacks have you logged today? *

Did you miss logging any events today? *

If you think you've missed an event, what was the reason?



6.

Mark only one oval per row.

7.

Mark only one oval per row.

8.

9.

This content is neither created nor endorsed by Google.

Did the reminders you received on the App help you with logging events today? *

Never Rarely Sometimes Very Often All the time

AnswerAnswer

How difficult was it to maintain your food journal today? *

Very difficult Difficult Neutral Easy Very Easy

AnswerAnswer

Can you tell us one thing you noticed about your dietary habits today? *

Can you share with us one memorable experience you had with food journaling
today? *



Appendix B



1. Email *

2.

Check all that apply.

I confirm

3.

4.

5.

Mark only one oval.

Yes

No

Maybe

Daily Survey Phase 2
Please review your journaling app and tell us about it. Please provide a numerical answer if 
the question ask you to do so.

* Required

Please charge your device and confirm by checking the box below. *

How many meals have you logged today? *

How many snacks have you logged today? *

Did you miss logging any events today? *



6.

7.

Mark only one oval per row.

8.

Mark only one oval per row.

9.

Mark only one oval per row.

10.

Mark only one oval per row.

If you think you've missed an event, what was the reason?

Did the reminders you set on the App help you with logging events today? *

Never Rarely Sometimes Very Often All the time

AnswerAnswer

Did the notification you get from the wearable device help you with logging events
today? *

Never Rarely Sometimes Very Often All the time

AnswerAnswer

How do you rate the accuracy of the wearable in detecting your eating events
today? *

Very Poor Poor Average Good Excellent

AnswerAnswer

How difficult was it to maintain your food journal today? *

Very difficult Difficult Neutral Easy Very Easy

AnswerAnswer



11.

12.

This content is neither created nor endorsed by Google.

Can you tell us one thing you noticed about your dietary habits today? *

Can you share with us one memorable experience you had with food journaling
today? *

 Forms
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1. Email *

2.

Mark only one oval per row.

3.

Mark only one oval.

Yes

No

4.

Pre-Study Questionnaire
We will start with questions about goals and level of activities.

* Required

Do you agree with the following statement: I’m interested in monitoring my diet. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

Do you have previous experience with food journaling? *

If you answered Yes to last question, please tell us about it.



5.

6.

7.

8.

Mark only one oval.

Yes

No

9.

Mark only one oval.

Every day

A few days a week

Once a week

Never

What is your experience with self-tracking apps (fitness tracking, sleep tracking,
glucose monitoring, etc.)? *

What is your experience with wearables (smart watches, smart glasses, bluetooth
headphones, etc.)? *

What is your goal(s) from monitoring your diet? *

For the next two weeks, will you be mainly working from home? *

For the next two weeks, how often do you expect to leave the house? *



10.

Mark only one oval.

Every day

A few days a week

Once a week

Never

Pre-Study Questionnaire (General Self-efficacy)

11.

Mark only one oval per row.

12.

Mark only one oval per row.

13.

Mark only one oval per row.

For the next two weeks, how often do you expect to eat outside? *

I will be able to achieve most of the goals that I set for myself. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

When facing difficult tasks, I am certain that I will accomplish them. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

In general, I think that I can obtain outcomes that are important to me. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer



14.

Mark only one oval per row.

15.

Mark only one oval per row.

16.

Mark only one oval per row.

17.

Mark only one oval per row.

18.

Mark only one oval per row.

I believe I can succeed at most any endeavor to which I set my mind. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

I will be able to successfully overcome many challenges. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

I am confident that I can perform effectively on many different tasks. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

Compared to other people, I can do most tasks very well. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

Even when things are tough, I can perform quite well. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer



Pre-Study Questionnaire (Diet-monitoring Self-efficacy)

19.

Mark only one oval per row.

20.

Mark only one oval per row.

21.

Mark only one oval per row.

22.

Mark only one oval per row.

This content is neither created nor endorsed by Google.

I will be able to achieve most of the diet-monitoring goals that I set for myself. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

In general, I think that I can obtain dietary outcomes that are important to me. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

I believe I can succeed at monitoring my diet. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

I am confident that I can effectively monitor my diet. *

Strongly disagree Disagree Neutral Agree Strongly agree

AnswerAnswer

 Forms
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Interview Questions - Phase 1

Utility and adherence:

● How do you rate your overall experience with this journaling method?
●   Can you mention any benefits of this method?

○ Can you mention any disadvantages of this method?
○ Have you used the reminder feature and do find it helpful?
○ how often you are getting FPs and what do you think the reason was?

(fitting, user adaptive, high level of activity ...)
● How often did you miss logging eating events with this method?

○ Why did you miss these events?
○ Do you remember logging after you had the meal?

● Did you achieve your food journaling goal(s), and can you tell us more about
that?  (check pre-study survey)

● What things did you learn about your diet and daily activities during the
study?

● Have you used the app/device for something other than food journaling?

Usability and Features

● What are features you like the most about the app and why?
● What are features that you didn't like and why?
● What features do you suggest we add to make your experience better?

Social acceptability and Privacy:

● Describe an experience journaling in a social setting.
○ What was the context?
○ Who was present?
○ How did you feel?

● How do you feel about having a camera on the device to capture images for
you? Triggers automatically? manually?

Closing

● If applicable, ask them to explain or elaborate on some of their daily survey
responses.

● Anything else you would like to share with us?



Interview Questions - Phase 2

Utility and adherence:

● How do you rate your overall experience with this journaling method?
●   Can you mention any benefits of this method?

○ Can you mention any disadvantages of this method?
○ Have you used the reminder feature and do find it helpful?
○ how often you are getting FPs and what do you think the reason was?

(fitting, user adaptive, high level of activity ...)
● How often did you miss logging eating events with this method?

○ Why did you miss these events?
○ Do you remember logging after you had the meal?
○ Compared to manual logging, did you notice any change in the rate of

missed events?
○ How accurate do you think Fitbyte was in detecting eating?
○ How comfortable was FitByte to wear?
○ Generally, how would you compare the manual logging to using

Fitbyte?
○ How much did you depend on the FitByte device notifications to do

your logs?
● Did you achieve your food journaling goal(s), and can you tell us more about

that?  (check pre-study survey)
● What things did you learn about your diet and daily activities during the

study?
● Have you used the app/device for something other than food journaling?

Usability and Features

● What are features you like the most about the app and why?
● What are features that you didn't like and why?
● What features do you suggest we add to make your experience better?

Social acceptability and Privacy:

● Describe an experience journaling in a social setting.



○ What was the context?
○ Who was present?
○ How did you feel?

● How do you feel about having a camera on the device to capture images for
you? Triggers automatically? manually?

● Did the device raise any privacy concerns to you or others?
● What would it take for you to use this device?

Closing

● If applicable, ask them to explain or elaborate on some of their daily survey
responses.

● Why do you think your adherence was better in the second phase? (If
applicable)

● Anything else you would like to share with us?
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