

Automatically Generating High-Quality
User Interfaces for Appliances

Jeffrey Nichols

December 2006
CMU-HCII-06-109

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:

Brad A. Myers, Chair
Scott E. Hudson

John Zimmerman
Dan R. Olsen, Jr., Brigham Young University

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Copyright © 2006 Jeffrey Nichols. All rights reserved.

This research was supported in part by the National Science Foundation (through the author’s Graduate Re-
search Fellowship and grants IIS-0117658 and IIS-0534349), Microsoft, General Motors, the Pittsburgh
Digital Greenhouse, and Intel. Equipment supporting this research was generously donated by Mitsubishi Elec-
tric Research Laboratories, VividLogic, Lantronix, Lutron, IBM Canada, Symbol Technologies, Hewlett-
Packard, and Lucent. The views and conclusions contained herein are those of the author and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of any
sponsoring party or the U.S. Government.

Keywords: Automatic interface generation, aggregate user interfaces, handheld computers,
personal digital assistants, mobile phones, home theater, appliances, personal universal con-
troller (PUC), user interface description languages (UIDLs), remote controls, multi-modal
interfaces, speech recognition, Smart Templates, user interface consistency, personal consis-
tency, familiarity

 ii

Automatically Generating High-Quality
User Interfaces for Appliances

Jeffrey Nichols

 iii

 iv

Abstract
In this dissertation, I show that many appliance usability problems can be addressed by mov-

ing the user interface from the appliance to a handheld device that the user is already

carrying, such as a Personal Digital Assistant (PDA) or mobile phone. This approach, called
the Personal Universal Controller (PUC), takes advantage of the increasing pervasiveness of

wireless communication technologies that will allow handheld devices to communicate di-

rectly with appliances. Automatic generation of the appliance user interface allows the PUC

to create interfaces that are customized to the platform of the controller device, the user’s
previous experience, and all the appliances that are present in the user’s current environment.

This dissertation makes several contributions to the state of the art in automatic interface

generation:

• Automatic generation that makes use of dependency information to determine a better
structure for the generated user interfaces

• The general Smart Templates technique for incorporating domain-specific design con-
ventions into an appliance specification and automatically rendering the conventions

appropriately on different platforms and in different interface modalities

• Algorithms that apply knowledge of similarity between specifications and interfaces the
user has previously seen to generate new interfaces that are personally consistent

• Algorithms that use a model of the content flow between appliances to generate task-
based interfaces that combine functionality from multiple appliances

An evaluation of the PUC system compared the automatically generated interfaces for two

all-in-one printers with the manufacturer’s interfaces for the same two appliances and found

that users of the automatically generated interfaces were twice as fast and four times as suc-
cessful for both common and complex tasks. The evaluation also shows that the PUC’s

consistency features allow users to be twice as fast when using a new appliance that is similar

to an appliance they have previously encountered. This evaluation is the first known user

study of automatically generated interfaces compared to human designs, and it shows that
automatic generation of user interfaces for end users is now viable for interactive systems.

 v

 vi

For my parents

 vii

 viii

Table of Contents

Abstract...v

List of Figures ...xvii

List of Tables... xxv

Acknowledgements ... xxvii

1 Introduction 1

1.1 The Personal Universal Controller ... 7

1.2 Outside the Scope .. 13

1.3 Contributions .. 14

1.4 Dissertation Overview.. 15

2 Related Work 17

2.1 Control of Appliances .. 18

2.1.1 Commercial Products ... 18

2.1.2 Commercial Standards... 20

2.1.2.1 INCITS/V2 Standard ... 20

2.1.2.2 Universal Plug and Play .. 21

2.1.2.3 Digital Living Network Alliance .. 22

2.1.2.4 Home Audio-Video Interoperability ... 22

2.1.2.5 JINI ... 23

2.1.2.6 OSGi ... 23

2.1.3 Research Systems .. 23

2.1.3.1 Universal Interactor .. 23

2.1.3.2 IBM Universal Information Appliance 24

2.1.3.3 ICrafter .. 24

2.1.3.4 Xweb .. 25

2.1.3.5 Ubiquitous Interactor .. 25

 ix

2.1.3.6 Analyses of Actual Remote Control Usage 26

2.1.3.7 DiamondHelp... 26

2.1.3.8 Roadie .. 26

2.2 Automatic & Guided User Interface Design... 27

2.2.1 Early Model-Based Systems... 28

2.2.1.1 Mickey.. 28

2.2.1.2 Jade.. 29

2.2.1.3 UIDE... 29

2.2.1.4 Humanoid.. 30

2.2.1.5 Mastermind .. 30

2.2.1.6 ITS .. 30

2.2.1.7 TRIDENT ... 31

2.2.2 Model-Based Systems for Very Large Interfaces and Platform Independence31

2.2.2.1 Mobi-D.. 32

2.2.2.2 ConcurTaskTrees .. 32

2.2.2.3 XIML... 33

2.2.2.4 IBM PIMA and MDAT ... 33

2.2.2.5 UIML and TIDE ... 33

2.2.2.6 TERESA .. 34

2.2.2.7 USIXML.. 34

2.2.2.8 XAML and XUL... 34

2.2.2.9 SUPPLE .. 35

2.3 Aggregate User Interfaces ... 36

3 Preliminary User Studies 39

3.1 Hand-Designed User Interfaces.. 39

3.2 User Studies ... 42

3.2.1 Procedure .. 42

3.2.2 Evaluation .. 42

3.3 Study #1 .. 43

 x

3.3.1 Participants... 44

3.3.2 Results... 44

3.3.3 Discussion ... 45

3.4 Study #2 .. 45

3.4.1 Participants... 45

3.4.2 Results... 46

3.4.3 Discussion ... 47

3.5 Analysis of Interfaces .. 48

3.6 Requirements ... 50

3.6.1 Two-Way Communication... 50

3.6.2 Simultaneous Multiple Controllers.. 50

3.6.3 No Specific Layout Information.. 51

3.6.4 Hierarchical Grouping... 51

3.6.5 Actions as State Variables and Commands .. 52

3.6.6 Dependency Information .. 52

3.6.7 Sufficient Labels .. 53

3.6.8 Shared High-Level Semantic Knowledge ... 53

4 System Implementation 55

4.1 Architecture ... 55

4.2 Controlling Appliances... 57

4.3 Generating Interfaces on Controller Devices .. 59

4.3.1 PocketPC and Desktop Implementation .. 59

4.3.2 Smartphone Implementation .. 61

4.4 Communication... 62

5 Specification Language 65

5.1 Design Principles ... 66

5.2 Language Design.. 67

5.2.1 Functional Language Elements ... 68

 xi

5.2.1.1 Appliance Objects.. 69

5.2.1.2 Type Information .. 71

5.2.1.3 Label Information ... 72

5.2.1.4 Group Tree... 72

5.2.1.5 Complex Data Structures ... 74

5.2.1.6 Dependency Information.. 72

5.2.1.7 Smart Templates ... 76

5.2.2 Content Flow Language Elements ... 76

5.2.2.1 Ports... 76

5.2.2.2 Internal Flows: Sources, Sinks, and Passthroughs 77

5.3 Evaluation of Specification Language ... 78

5.3.1 Completeness ... 79

5.3.2 Learnability and Ease of Use .. 81

6 Consistency 83

6.1 Understanding Consistency.. 83

6.1.1 Evaluating Consistency .. 86

6.1.2 Applying Consistency.. 87

6.2 Specification Authoring Study.. 88

6.2.1 Study #1 ... 88

6.2.2 Study #2 ... 90

6.2.3 Discussion ... 91

6.3 Requirements for Consistency.. 91

6.4 Understanding and Finding Similarities between Specifications 93

6.4.1 Knowledge Base ... 93

6.4.1.1 Mapping Graphs ... 95

6.4.2 Automatically Finding Mappings.. 97

7 Handling Domain-Specific and Conventional Knowledge 99

7.1 Roles .. 100

 xii

7.2 Design and Use .. 101

7.2.1 Implementing a Smart Template for an Interface Generator................... 106

7.3 Smart Template Library ... 108

7.4 Discussion.. 109

8 Interface Generation 113

8.1 Generation Platforms ... 114

8.1.1 PocketPC and Desktop... 114

8.1.2 Smartphone... 115

8.1.3 Speech... 117

8.2 General Concepts... 119

8.3 Generating the Abstract Interface ... 121

8.3.1 Mutual Exclusive Dependency Information ... 121

8.3.2 Choosing Abstract Interaction Objects ... 123

8.4 Modifying the Abstract Interface for Consistency... 123

8.4.1 Heuristics for Unique Functions ... 124

8.4.2 Functional Modifications ... 125

8.4.3 Structural Modifications .. 126

8.4.3.1 Moving... 126

8.4.3.2 Re-ordering... 132

8.5 Generating the Concrete Interface.. 133

8.5.1 PocketPC and Desktop... 133

8.5.1.1 Creating the Initial Interface.. 133

8.5.1.2 Fixing Layout Problems ... 138

8.5.2 Smartphone... 138

8.6 Modifying the Concrete Interface for Consistency ... 143

8.7 Results and Discussion ... 145

9 Aggregating User Interfaces 147

9.1 Scenarios .. 148

 xiii

9.2 Content Flow for Understanding Systems of Appliances 149

9.3 Aggregation Architecture.. 150

9.4 Flow-Based Interface .. 152

9.5 Aggregate User Interfaces ... 155

9.5.1 Active Flow Controls.. 156

9.5.2 Active Flow Setup.. 157

9.5.3 General Setup.. 158

9.5.4 Merging Controls... 159

9.6 Discussion.. 160

10 Usability Evaluation 161

10.1 Interfaces.. 163

10.2 Protocol ... 165

10.2.1 Tasks .. 167

10.3 Participants .. 168

10.4 Evaluation of Usability ... 168

10.4.1 Results... 168

10.4.2 Discussion of Usability ... 170

10.5 Evaluation of Consistency .. 171

10.5.1 Results... 171

10.5.2 Discussion of Consistency.. 173

10.6 Discussion.. 174

11 Conclusion 177

11.1 Discussion.. 177

11.2 Impact.. 182

11.3 Contributions .. 184

11.4 Future Work .. 185

11.5 Final Remarks .. 195

 xiv

A Sample VCR Specification 197

B Specification Language Reference 205

B.1 XML Schema ... 205

B.2 Element Index.. 216

B.3 Element Descriptions ... 221

C Other PUC XML Language Schemas 253

C.1 Communication Protocol Schema.. 253

C.2 Knowledge Base Schema .. 256

C.3 Multi-Appliance Wiring Diagram Schema ... 261

D Specification Authoring Study Instructions 263

E Usability Study Instructions 303

F Gallery of PUC Interfaces 309

Bibliography 321

 xv

 xvi

List of Figures
Figure 1.1. Physical interfaces for three different appliances with copier

functionality: a) a Canon NP6035 office copy machine, b) a Canon
PIXMA MP780 All-In-One Photo Printer, and c) a Hewlett-Packard
Photosmart 2610 All-In-One printer. The latter two appliances also
have fax and special photo printing capabilities. ...6

Figure 1.2. Interfaces generated by the PUC on the PocketPC for several
different appliances: a) Windows Media Player 9, b) the navigation
system from a 2003 GMC Yukon Denali, c) the Canon PIXMA
MP780 All-In-One printer, and d) the HP 2610 All-In-One printer.8

Figure 1.3. Interfaces generated by the PUC on the Smartphone for several
different appliances: a) Windows Media Player, b) a simulated
elevator, c-d) a shelf stereo with CD, radio, and tape functionality...................9

Figure 1.4. The full PocketPC interface generated for the navigation system from
a 2003 GMC Yukon Denali. The arrows show buttons that cause a
dialog box to open..9

Figure 1.5. Copier interfaces generated with and without consistency on the
PocketPC platform...10

Figure 1.6. Copier interfaces generated with and without consistency on the
Smartphone platform. ..10

Figure 1.7. Several examples of the Flow-Based Interface being used for various
tasks: a) playing a DVD movie with the video shown on the
television and audio coming through the stereo’s speakers, b)
watching a sporting event on television but listening to the play-by-
play over the radio, c) selecting different sources of content during a
presentation, with a PowerPoint slideshow as the current source, and
d) resolving a problem with the DVD player through the
question/answer interface. ..12

Figure 1.8. Several examples of aggregate user interfaces generated based on the
user's current task: a) playing a DVD movie with the video shown on
the television and audio coming through the stereo’s speakers, b)
presenting Powerpoint slides through a projector, c) watching
broadcast television with audio playing through the television’s
speakers, and d) recording a tape in one VCR from a tape playing in
another VCR..12

Figure 2.1. The Philips Pronto TSU9600 remote control device......................................19

 xvii

Figure 2.2. Two Harmony remote control devices (the 890 and 1000 models
from left to right). ..19

Figure 2.3. An interface generated for WinAmp on a PocketPC using the
INCITS/V2 framework [IMTC 2006]. Reproduced with permission.20

Figure 2.4. Examples interfaces for a classroom controller generated by Supple
for different devices: a) a standard desktop computer with a mouse,
and b) a touchscreen. The classroom has three sets of lights (with
variable brightness), an A/C system, and an LCD projector with a
corresponding motorized screen [Gajos 2004]. Reproduced with
permission..35

Figure 3.1. a) The Aiwa CX-NMT70 shelf stereo with its remote control and b)
the AT&T 1825 office telephone/digital answering machine used in
our studies..40

Figure 3.2. Paper prototypes of the phone (a-b) and stereo (c-d) interfaces for the
Palm. 40

Figure 3.3. Screenshots of the implemented phone (a-b) and stereo (c-d)
interfaces for the PocketPC. ...40

Figure 3.4. Box-plots showing the range of missteps and help requests (uses of
external help) for each appliance and interface type.44

Figure 3.5. Box-plots of results from the second user study. ...46

Figure 4.1. Diagram of the PUC system architecture, showing the
communication between each of the different components.56

Figure 4.2. The interface for the PUC Debug Server. a) The main window
showing the appliances currently being simulated by this server. b)
The interface for simulating a Philips DVD player that was
automatically generated by the Debug Server. ..58

Figure 4.3. Screenshots of the menu interface for the PocketPC PUC interface
generator. The desktop interface generator has a similar menu
structure. The backgrounds of all these screenshots show the logging
panel where messages from the interface generator are displayed.60

Figure 4.4. Screenshots of interfaces for the Smartphone interface generator
showing the menu-based interface (a-c) and custom controls built for
the Smartphone (d-e). ..61

Figure 4.5. Message format for the PUC communication protocol.63

Figure 5.1. Examples of a) a state variable representing the current channel tuned
by the VCR and b) a command for ejecting the tape currently in the
VCR. ...70

 xviii

Figure 5.2. The label dictionary for the playback controls group of the VCR.
This dictionary contains two textual labels and some text-to-speech
information. ...72

Figure 5.3. The group tree for the sample VCR specification. ..74

Figure 5.4. An example of a list group used in the VCR specification to describe
the list of timed recordings that may be specified by the user..........................75

Figure 5.5. An example of a common type of dependency equation specifying
that a variable or command is not available if the appliance's power is
turned off. ..73

Figure 5.6. The ports section of the example VCR specification.......................................77

Figure 5.7. The description of the video tape source content flow from the
example VCR specification. Note that dependencies from the content
groups that contain the source flow are ANDed with the source’s
own dependencies. ...78

Figure 6.1. VCRs used in the first study. The Panasonic VCR in (c) was also
used in the second study...89

Figure 6.2. An example mapping graph for the media control functions, e.g. play,
stop, and pause, on four appliances. The node counts indicate that
the Panasonic VCR has been the basis for consistency three times (for
itself, the answering machine, and the DVD player) and the Cheap
VCR has been the basis for consistency once (just for itself). The
answering machine and DVD player were generated to be consistent
with the Panasonic VCR, and thus both have counts of zero.96

Figure 7.1. A diagram showing the four different roles in the creation,
implementation, and use of a Smart Template in the context of the
interface generation process. ...101

Figure 7.2. Three specification snippets showing instantiations different Smart
Templates. a) The instantiation of the media-controls
template for the play controls on Windows Media Player. b) The
instantiation of the time-duration template for the counter
function on the Sony DV Camcorder. c) The instantiation of the
time-duration template for the song length function on
Windows Media Player. ...102

Figure 7.3. Renders of the media-controls Smart Template on different
platforms and for different appliances. a) Media controls rendered
with Smart Templates disabled for a Windows Media Player interface
on the PocketPC platform. b) Media controls rendered for the same
interface with Smart Templates enabled on each of our three

 xix

platforms. At the top is the desktop, the middle is PocketPC, and the
bottom shows Smartphone. The Smartphone control maintains
consistency for the user by copying the layout for the Smartphone
version of Windows Media Player, the only media player application
we could find on that platform. This interface overloads pause and
stop onto the play button. c) Different configurations of media
playback controls automatically generated for several different
appliances...104

Figure 7.4. Screenshots of Smart Templates rendered as part of the GMC Denali
navigation system on the PocketPC platform. a) Demonstrates the
time-absolute Smart Template used for a clock function. The 12- and
24-hour option of the template changes the way time is rendered
throughout the interface, as can be seen in the clock at the top of
these screenshots. b) Demonstrates the list-commands templates
integrated with one of the PUC’s list controls. Several commands for
adding and deleting items are located underneath the list control,
along with the edit button that is part of the list control. Two move
commands have also been integrated with the list control as the arrow
buttons located on top of the selected list item. c) Demonstrates the
address template’s capability of integrating with the PocketPC’s built-
in Outlook contact database. The leftmost screen shows the interface
before the user has pressed the Select Contact… button. Pressing this
button shows the middle screen, which allows the user to select a
contact from their database. Pressing OK from this dialog causes the
selected information to be filled appropriately into the fields of the
template (rightmost screen). ...105

Figure 7.5. Icons currently supported by the PUC status icons Smart Template.112

Figure 8.1. a) An interface for Windows Media Player generated on a PocketPC.
b) The full interface generated for the GMC Yukon Denali driver
information console. ..115

Figure 8.2. A Smartphone displaying a PUC interface for Windows Media Player
and the automatically generated interface for the Driver Information
Center in a 2003 GMC Yukon Denali SUV. The user navigates
through list panes (a,b) to get to summary (c,e) and editing panes
(d,f,g). ..116

Figure 8.3. An example interaction using the speech interface to control a shelf
stereo and X10 lighting. ...118

Figure 8.4. PUC interface generation process diagram ...120

 xx

Figure 8.5. A demonstration of changes made to the tree structure when mutual
exclusion is found. The circles represent nodes within the interface
structure, which could represent groups, state variables or commands.
a) In the before tree, the node marked A represents a state variable
that can have values from 1-3. The node marked P is the parent
group. The A= formulas shown below the remaining groups show the
dependencies of each group on the variable A. The A=* node is not
dependent at all on A. b) In the after tree, a new mutual exclusion
group has been added that contains the A state variable and child
groups for each set of mutually exclusive groups. The nodes not
dependent on A are moved into their own group under the same
parent but outside of the mutex group. ..122

Figure 8.6. Containment stacks for the previous specification (Mitsubishi
DVCR), the new specification (Samsung DVD-VCR), and the
results of two consecutive movements. a) Shows the movement of the
clock group, and b) shows how the rule chains with the movement of
the clock channel state..129

Figure 8.7. User interfaces generated by the desktop PUC for a Mitsubishi
DVCR and a Samsung DVD-VCR without consistency and the
Samsugn DVD-VCR generated to be consistent with the Mitsubishi
DVCR. Note that the clock functions are located under the Status
tab for the Mitsubishi DVCR, under Setup for the Samsung DVD-
VCR, and in a new Status tab in the consistent interface. Also note
that Controls and Timed Recordings from the DVCR are located
under the VCR tab on the Samsung DVD-VCR. ..129

Figure 8.8. A demonstration of the “Bring Together Split Dependents” rule. The
top image shows the location of the resize mode function and the
bottom shows the location of the repeat image function and its
parameters. In column c, the dialog box shown on the bottom is
opened by pressing the “Repeat Image…” button shown in the top
image. ..131

Figure 8.9. Block lists created for the timed recordings groups of the Mitsubishi
DVCR and Samsung DVD-VCR. “VCR+” and “Type” are
unmapped blocks in the block lists. ..132

Figure 8.10. Screenshots of the HP all-in-one printer interface demonstrating the
three mutual exclusion rules. a) The special power off screen
generated by the second rule. The remaining shots are of the power
on view. b) The fax mode of the all-in-one printer. This mode is
accessed through tabs at the bottom of the screen created by the first
rule. Another tab can be seen in screen shots c and d. c) The copy

 xxi

mode of the all-in-one printer with the resize options set to zoom 25-
400%. The resize options state is a mode with several different
options created by the third rule. d) Another view of the copy mode
with the resize options set to poster size..135

Figure 8.11. The interface generated for the GMC Yukon Denali driver
information console without the use of any layout fixing rules
(rotated to fit better on the page). The high-level structure from the
abstract user interface underlying this panel is shown above the
interface. ..137

Figure 8.12. Example screens from automatically generated Smartphone interfaces.
a) The opening screen for controlling a shelf stereo. Our dependency
information rule created the separate lists for CD, Radio, etc. b-c)
Two screens from a simulated elevator interface. The particular screen
shown to the user depends on whether the user is (b) outside or (c)
inside the elevator car. d) A Smartphone rendering of the media-
controls Smart Template from an interface for controlling the
Windows Media Player application on a desktop computer. The
template’s design is based on the Smartphone Windows Media Player
application, and is operated using the right, left, and select buttons of
the phone’s thumb stick. ..140

Figure 8.13. Diagrams showing how the first (a) and second (b) rules for
optimizing the list structure behave. Black solid arrows indicate how
the screens are connected and red dashed lines indicate changes made
by the rules. Note that in (a) some items were list-only and thus were
promoted to the top-level list while the others were placed on a panel.
The items all happen to be labels, so this panel is a summary pane.141

Figure 8.14. Interfaces generated for the HP and Canon all-in-one printers
demonstrating the effects of the concrete interface re-ordering rule.
Note the difference in the order of the Black, Color, and Cancel
buttons...144

Figure 9.1. Configuration of appliances in two multi-appliance system scenarios:
a) a home theater, and b) a presentation room..148

Figure 9.2. Architecture of the aggregate interface generation features............................151

Figure 9.3. An example of using the Flow-Based Interface to configure a DVD
player to play video through a television with the audio routed
through the stereo's speakers. ...153

Figure 9.4. Active flow control interfaces: a) playing a DVD movie with the
video shown on the television and audio coming through the stereo’s
speakers, b) presenting Powerpoint slides through a projector, c)

 xxii

watching broadcast television with audio playing through the
television’s speakers, and d) watching broadcast television with audio
playing through the receiver’s speakers. Note that the volume control
in (c) and (d) appear the same, even though they are actually
controlling different appliances. ...156

Figure 9.5. Two shots of the Active Flow Setup AUI for the DVD player to
receiver and television flow. Note that the interface is organized by
appliance, as shown by the tabs at the bottom of the screen..........................157

Figure 9.6. Two shots of the General Setup AUI for our home theater setup.
Note that in both shots, the tabs at the bottom of the screen represent
high-level concepts within which the functions are organized by
appliance (combo boxes at top). ...158

Figure 9.7. The merged function AUI featuring the clock, language, and sleep
timer functions on a single panel. ...159

Figure 10.1. PocketPC interfaces generated by the Personal Universal Controller
(PUC) for the two all-in-one printers discussed in this paper........................163

Figure 10.2. The all-in-one printers used in our studies, with a larger view of the
built-in user interface. ..164

Figure 10.3. Results of the first block of tasks, showing the Built-In condition
compared with the other two for each appliance...169

Figure 10.4. Results of the second block of tasks, showing the AutoGen condition
compared to the Consistent AutoGen condition for each appliance.172

Figure 11.1. The PUC being used to control a character in an augmented reality
application as part of work performed with the PUC at the Technical
University of Vienna. “Tracked PocketPC as a multi-purpose
interaction device: (left) Tangible interface in a screenshot of the AR
LEGO application (right) PDA screen capture of the LEGO robot’s
control GUI” [Barakonyi 2004]. Reproduced with permission.....................183

Figure 11.2. The cards that specify the reminder frequency setting. All of these
cards would be attached together with a paper clip.278

Figure 11.3. The XML code for the reminder frequency state variable.279

Figure 11.4. The group and list parameters card that describe the to-do list. This
list has four state variable members (not shown)...280

Figure 11.5. The XML code for describing the to-do list. The four state variable
are defined where the "..." appears in the above code....................................280

 xxiii

Figure 11.6. The object and state variable type cards for the Category state variable
that is contained in the to-do list group. Note the use of the list-
selection type on the state variable type card...281

Figure 11.7. The XML code for the Category state variable that is contained in the
to-do list group. Note the use of the list-selection type in this
variable...281

Figure 11.8. The object cards that describe the add and remove commands for the
to-do list. These objects are contained within a group that is tagged
with the “list-commands” Smart Template...282

Figure 11.9. The XML code for describing the add and remove commands for the
to-do list. Note the group that contains these items. Also note that
dependencies have been provided for the Delete command. This will
be discussed in the “Dependency Information” section below.282

Figure 11.10. The dependency card for the Delete command. Note that extended
names are used here for the state variables. You may find it necessary
to go back and make names more explicit on dependency cards after
you have organized the variables in your specification.284

 xxiv

List of Tables
Table 4.1. Appliance adaptors built by the PUC research team58

Table 4.2. Appliance simulators built by the PUC research team58

Table 4.3. Messages that may be sent by the controller device...63

Table 4.4. Messages that may be sent by the appliance to a controller device.63

Table 5.1. Complete list of appliance specifications authored by the PUC
research team..79

Table 5.2. Maximum and average counts of various aspects of the PUC
specifications written to date. ...79

Table 6.1. Mapping types for consistency in the PUC system. ..96

Table 7.1. Description of all implemented Smart Templates in the PUC system.111

Table 8.1. The PUC's functional consistency rules. ..125

Table 8.2. Consistency moving rules implemented in the PUC.127

Table 8.3. The row layouts supported by the PocketPC interface generator.134

Table 8.4. The layout fixing rules used by the PocketPC interface generator.137

Table 10.1. Average completion time and total failure data for the first block of
tasks. The PUC condition is the combination of the AutoGen and
Consistent AutoGen conditions. N = 8 for the Built-In condition and
N = 16 for the PUC condition. * indicates a significant difference
between the Built-In and PUC conditions for that appliance (p <
0.05), and † indicates a marginally significant difference (p < 0.1).
Completion times and total failures were compared with a one-way
analysis variance and failures per task were compared with a one-
tailed Fisher’s Exact Test. ...169

Table 10.2. Average completion time and total failure data for the second block
of tasks. N = 8 for all conditions. * indicates a significant difference
between that row’s condition and the Consistent AutoGen condition
for that appliance (p < 0.05), and † indicates a marginally significant
difference (p < 0.1). Completion times and total failures were
compared with a one-way analysis variance and failures per task were
compared with a one-tailed Fisher’s Exact Test. ...172

 xxv

 xxvi

Acknowledgements
Many people have touched my life, helped me find direction, and kept me on the path to

finishing this thesis. I have tried to acknowledge as many of these people below as I could,

and my sincerest apologies to anyone I have accidentally forgotten.

I would first like to thank Brad Myers for his guidance and advice throughout my time at

Carnegie Mellon. Brad taught me what research is, how to do it, and how to present the re-

sults in a clear and understandable fashion. I am still amazed that, even at his busiest, Brad

was always able to find time to read one of my papers and give me an enormous amount of
feedback on its content. I only hope that I can be half as successful as a researcher and a men-

tor in my career as Brad has been in his.

I would like to thank the other members of my thesis committee, Scott Hudson, John Zim-

merman, and Dan Olsen, for providing invaluable comments along the way that shaped the
direction of this work.

I would also like to thank Scott Hudson for all of his efforts in organizing the HCII’s Ph.D.

program, and for putting up with all of the student feedback that I brought to him during

my time as the student ombudsperson. Scott was always willing to help address our prob-
lems, and I do not think the program would be half as strong without his presence.

I was lucky to have the assistance of many great individuals over the course of PUC project.

In particular, I would like to thank Brandon Rothrock for assisting with several aspects of the

system implementation, Duen Horng “Polo” Chau for helping with the design of the flow-
based interface and the evaluation of the PUC interfaces discussed in Chapter 10, Kevin Lit-

wack for building adaptors for many real world appliances and helping find problems with

an early version of the specification language, and Michael Higgins and Joseph Hughes from

Maya Design for helping with the initial design of the specification language and the initial
implemenation of the PUC server-side infrastructure. I would also like to thank Thomas K.

Harris, Stefanie Tomko, and Roni Rosenfeld for adopting the PUC technologies as the basis

for their speech interface generator. Many thanks also to Htet Htet Aung, Mathilde Pignol,

Rajesh Seenichamy, and Pegeen Shen for their contributions to developing the language
documentation, writing specifications, and building appliance adaptors.

 xxvii

I am equally indebted to the corporate and government sponsors who generously funded my

research or provided equipment: the National Science Foundation, the Pittsburgh Digital
Greenhouse, Microsoft, General Motors, Intel, Mitsubishi Electric Research Labs, Lantronix,

Lutron, and VividLogic.

Many others have influenced this work, including other students of Brad’s, other students in

the HCII Ph.D. program, and students and faculty doing related work at other universities.
They are: Daniel Avrahami, Laura Dabbish, James Fogarty, Darren Gergle, Andy Ko, Des-

ney Tan, Luis von Ahn, Jake Wobbrock, Gregory Abowd, Sonya Allin, Anupriya Ankolekar,

Ryan Baker, Gaetano Borriello, Anind Dey, Jodi Forlizzi, Krzysztof Gajos, Gary Hsieh,

Pedram Keyani, Queenie Kravitz, Johnny Lee, Joonhwan Lee, Ian Li, Sue O’Connor, Jerry
Packard, Trevor Pering, Kai Richter, Fleming Seay, Irina Shklovski, Rachel Steigerwalt, Joe

Tullio, and Roy Want.

I would like to thank my parents, Mick and Sally, and my sister, Amy, for all their support,

love, and guidance. I have dedicated this thesis to my parents for kindling my interest in
computers at a young age, first buying a Commodore 64 on which I learned BASIC, signing

me up to take classes on programming, and later paying for Internet service in the early 90’s

when very few people knew what that was. Without their encouragement of my interests,

and my education in general, I would not be where I am today.

Finally, I must thank my wonderful girlfriend Naomi. I am very happy that we have been

able to remain close, even though our degree programs have forced us to live apart on oppo-

site coasts for many years, and I am thankful that our time apart is almost over! There is no

one who has supported me more and I could not have finished this without her.

 xxviii

 xxix

 xxx

CHAPTER 1

1Introduction

Every day users interact with many computerized devices at both their home and office. On
an average day I use my microwave oven, television, DVD player, alarm clock, and stereo at

home, a computer for tracking speed and mileage on my bike, and a copier, fax machine,

telephone/answering machine, vending machine, and CD player at school. That does not

count the mobile phone and wristwatch that I usually carry around with me, nor does it
count the three "normal" computers that I use daily or many of the computerized compo-

nents that my car would have if it had been built in the last ten years. All of these devices

have different interfaces, even for functions that are common across most of them such as

setting the internal clock. Even devices that are functionally similar, like my car stereo, home
stereo, and the media player on my computer at school, have vastly different interfaces. Prob-

lems like these are encountered by most users of today’s computerized devices. Users must

spend time learning how to use every device in their environment, even when they are simi-

lar to other devices that they already know how to use.

Part of the usability problem with today’s computerized appliances is created by the many

trade-offs that manufacturers must balance. They would like to produce highly usable appli-

ances, but those appliances must also reach market in a timely fashion, be cheap to

manufacture, and have the new features that users want. The declining cost of microproces-

1

sors allows manufacturers to cheaply and quickly add more computation and new features to

their appliances, but unfortunately building high-quality user interfaces for these new fea-
tures is still very expensive and time-consuming. The trend has been that as appliances get

more computerized with more features, their user interfaces get harder to use [Brouwer-Janse

1992]. The Wall Street Journal reports that “appliances – TVs, telephones, cameras, washing

machines, microwave ovens – are getting harder [to use]… The result is a new epidemic of
man-machine alienation” [Gomes 2003].

One solution to these problems is to move the user interfaces from the appliances to some

other intermediary “UI device” that is independent of the appliance manufacturer and fo-

cuses solely on the user interface. A UI device could be a handheld computer, like
Microsoft’s PocketPC, a mobile phone or even a speech system built into the walls of a

building. One advantage of this approach is that people are increasingly carrying a mobile

device that could be used as such a UI device. Many of these devices already have the ability

to communicate with other devices in the environment using wireless networking protocols
like 802.11 (Wi-Fi) or Bluetooth. Furthermore, these mobile devices are built with special-

ized interface hardware, like color and/or touch-sensitive LCD screens, which make the

creation of high-quality user interfaces easier. A UI device could leverage its specialized

hardware to provide a superior user interface as compared to what can be cost-effectively
built into an appliance.

There are several potential approaches for moving the user interface onto the UI device:

• The controller device is pre-programmed with interfaces at the factory or by users in
their homes. The advantage to this approach is that all of the interfaces are hand-

designed specifically for the controller device and the appliances that it can control.

Most of today’s universal remote controls are pre-programmed with the codes for

controlling a variety of home entertainment appliances, though some can be “taught”
additional codes for other appliances and others have programming environments

that allow users to create their own interfaces. If the manufacturer of the controller

device does not provide an interface however, it is often tedious and time-consuming

for users to program their own interfaces.

• The controller device downloads complete user interfaces from appliances or the inter-

net. This approach, which is used by JINI [Sun 2003] and Speakeasy [Newman

2002], has the advantage that the controller device does not need to know in advance

Chapter 1: Introduction 2

about every appliance it might control. The appliance must be able to provide inter-

faces for each of the different controller devices it might encounter however, such as
a standard graphical interface for use with touch screens and normal desktops, a list-

based interface for use with phones, and a speech interface for devices that have a

built-in speech recognizer. Controller devices with unique designs, such as a future

watch with a circular screen and dials for interaction, would be very difficult to sup-
port with this approach as it would not be practical for appliance manufacturers to

produce new interfaces for all of their appliances every time a new handheld device is

released. Most of today’s web technologies can be seen as using this approach, as

many pages are carefully designed to support high-resolution screens and do not ren-
der appropriately on small devices such as mobile phones.

• The controller device downloads abstract specifications from appliances and uses those

specifications to automatically generate an interface that is customized to the control-
ler’s particular design, properties of the user, and the user’s environment. It is

important that the specification be abstract enough to support the creation of inter-

faces on different platforms and in different modalities, but also contain enough

information about the appliance in order to create a high-quality user interface. One
advantage of this approach is that neither the controller devices nor the appliances

need to know anything about the other in advance to ensure that the interfaces are

usable. Another advantage is that external factors can be taken into account in the

design of the interface, such as the user’s previous experience or the functionality of
other connected appliances. Although the automatic generation of user interfaces is

difficult, I believe this approach is the most promising because it separates the crea-

tion of the user interface from the manufacturers of the appliances and the controller

devices. This gives UI devices a greater opportunity to improve upon the usability of
current appliance interfaces than the other approaches.

The technical focus of this dissertation is on the automatic generation of user interfaces for

end users. Researchers have been exploring the automatic generation of user interfaces for

nearly two decades, but most work relies on an interaction designer to guide the generation
process and/or to edit the resulting user interfaces to fix any design flaws [Szekely 1996]. I do

not believe that end-users of any UI device will be willing to spend the time and effort to

modify their automatically generated interfaces in this way, and thus a UI device will need to

generate high quality user interfaces on the first attempt.

Chapter 1: Introduction 3

Previous work in automatic interface generation has also focused in large part on building

user interfaces for desktop applications, a task at which trained human designers can produce
higher quality artifacts than any current automated system. While I would like interfaces

generated by my system to approach the quality of human designers, my focus is instead on

applying automatic generation techniques to create interfaces that would not be practical for

a human designer to produce. For example, an automated system can produce a custom in-
terface for every individual user whereas human designers are limited to designing interfaces

for large user groups. Although previous work has examined how interfaces might be gener-

ated for multiple platforms from the same model [Szekely 1995, Eisenstein 2001], until now

there had been no exploration of how automatic generation might be used to customize in-
terfaces to each individual user and their particular environment and situation.

An important question to ask then is in what specific ways can UI devices with automatic

interface generation be used to improve the usability of appliances? To answer this question,

I will discuss several usability problems and how my approach can address them.

One of the biggest problems for appliance user interfaces is the large number of functions

present in most appliances coupled with the limited number of interactive physical elements,

such as buttons and screens, which can be built into a computerized appliance. To address

this problem, most appliances overlap two or more functions on each button. For example,
on the AT&T 1825 telephone/answering machine, pressing and releasing the play button

will play all messages but pressing the play button and holding it down will play only the

new messages. The limited size of the display screens also means that most appliances rely on

cryptic messages or audio cues to give feedback to the user. For example, the same AT&T
answering machine beeps once to notify the user that a speed-dial number has been success-

fully programmed and beeps twice if programming failed.

UI devices are able to address these problems for several reasons. UI devices can afford to

have screens that are larger and higher resolution than the screens on most appliances. These
screens can render at least a few lines of text at a time, which allows for better explanations of

error conditions and feedback on the appliance’s state. A UI device also has built-in infra-

structure for supporting the development and rendering of complex user interfaces. This

typically includes a toolkit that supports the creation of on-screen virtual controls, such as
buttons and sliders, and a set of UI guidelines that govern how the interface should look and

feel. Through use of the built-in infrastructure, a UI device can ensure that every appliance

function is represented by a separate control and prevent the functional overlap that makes

Chapter 1: Introduction 4

so many appliances hard to use. An automatic interface generator can also make its interfaces

easier to use by following the UI guidelines of the device and allowing users to leverage their
knowledge of conventions used by the UI device’s other applications.

Another usability problem for appliances arises when multiple appliances are used together in

a system, such as in a home theater or presentation room. In order to accomplish their tasks,

users must understand both how to use each appliance individually and how to manipulate
the appliances so that they work properly with each other. Troubleshooting problems when

they occur can be difficult because the user must determine which appliances are configured

correctly and which are not. It is common for users to mistakenly believe that the problem

lies in an appliance that is working correctly, which lengthens troubleshooting time and frus-
trates users. These interface problems occur for two reasons: 1) the user interfaces for each

appliance are designed separately with few, if any, cues about how one appliance’s interface

will affect the operation of other appliances, and 2) for each task that might be performed

with a system, each appliance has many functions that are not relevant for performing that
task. These functions, though important for other tasks, may interfere with users’ progress on

their current task.

A UI device that automatically generates interfaces can address this problem by taking into

account how appliances are connected. A UI device can also combine the user interfaces of
multiple appliances into a single interface that is customized to the user’s task, given that the

UI device knows what task the user is trying to perform and how the appliances work to-

gether to perform that task. To obtain this information, I have a developed a novel solution

based on the observation that most tasks in a system of appliances involve the flow of content
from a “source” appliance to a “sink” appliance, possibly passing through other appliances

along the way. For example, the task of playing a DVD movie in a home theater can be

viewed as configuring the appliances to allow content from the DVD player to flow to the

television and speakers. I have also developed a scaleable modeling technique to make con-
tent flow information available to the UI device, and the flow-based interface concept to

allow users to directly specify the high-level task(s) they would like to perform. An AI plan-

ner is used to automatically configure the system to perform the tasks that users specify, and

task-based interfaces are generated based on the currently-active content flows. This work
also advances interface generation, as it is the first work to automatically generate interfaces

that combine functionality from different sources.

Chapter 1: Introduction 5

Another problem for users is inconsistency between similar appliances from different manu-

facturers. For example, Figure 1.1 shows interfaces for three appliances that share similar
photocopier capabilities. Notice that while the appliances share a few of the same physical

elements, such as a number pad and screen, the user interfaces for these appliances are quite

different. The methods of interaction are different, as the office copier (see Figure 1.1a) uses

a large touch screen (one of the few appliances expensive enough to offer such a luxury)
while the other two use physical buttons for navigating menus displayed on smaller screens.

Labels also differ, such as for the brightness function which is labeled “darkness” on the HP

all-in-one printer, “exposure” on the Canon all-in-one printer, and “light/dark” on the ge-

neric office copier. The organization of functions is also different through the appliances. As
one example, the date and time are set on the HP printer through the fax configuration

screen, whereas they are accessed through the general setup screen on both of the other ap-

pliances. The lack of consistency between interfaces prevents a user who is familiar with one

of these appliances from leveraging that knowledge to use either of the other appliances.

a.

b.

c.

Figure 1.1. Physical interfaces for three different appliances with copier functionality: a) a Canon NP6035
office copy machine, b) a Canon PIXMA MP780 All-In-One Photo Printer, and c) a Hewlett-Packard
Photosmart 2610 All-In-One printer. The latter two appliances also have fax and special photo printing
capabilities.

Chapter 1: Introduction 6

UI devices are in unique position to ensure a consistent experience for their users, because

the devices will be used for controlling most appliances and can track all of interfaces that
users see. This knowledge, combined with information showing how the new interface is

similar to previous interfaces, can be used to automatically generate new interfaces that use

controls, labels, and organization that are already familiar to the user. These new interfaces

are personally consistent, because they are based on their users’ previous experiences. Different
users may receive different generated interfaces for the same new appliance because their pre-

vious experiences are different. My work is the first work to demonstrate that an automatic

generation system can ensure consistency for its generated interfaces and that this consistency

is valuable in practice.

1.1 The Personal Universal Controller

I have explored all of these ideas in a system that I call the Personal Universal Controller

(PUC), which enables UI devices to be constructed and supports the automatic generation of

user interfaces.

The generation of user interfaces is enabled by the PUC’s specification language, which al-

lows each appliance to describe all of its functions in an abstract way. My goal is designing

this language was to include enough information to generate a high-quality user interface,

but not include any specific information about look or feel. Decisions about look and feel are
left up to each interface generator. More than 30 specifications have been written for real

appliances using the PUC language (see the full list in Table 5.1). These specifications de-

scribe the complete functionality of their appliances, unlike today’s “universal” remote

controls that typically support only the most common subset of an appliance’s functionality.
An authoring study of the specification language had subjects with no previous knowledge

learn the language and then produce a specification of moderate size for a low-cost VCR.

Subjects were able to learn the language in an average of 1.5 hours and produce the VCR

specification in around 6 hours.

Four interface generators have been implemented that produce user interfaces from specifica-

tions written in the PUC’s language, including graphical interface generators on PocketPC,

Microsoft’s Smartphone, and desktop computers, and a speech interface generator that uses

the Universal Speech Interfaces (USI) framework [Rosenfeld 2001]. The graphical interface
generators for the PocketPC and Smartphone cover two very different interface styles. The

Chapter 1: Introduction 7

a. b. c. d.

Figure 1.2. Interfaces generated by the PUC on the PocketPC for several different appliances: a) Windows Me-
dia Player 9, b) the navigation system from a 2003 GMC Yukon Denali, c) the Canon PIXMA MP780 all-in-
one printer, and d) the HP 2610 all-in-one printer.

PocketPC has a medium-sized touchscreen that allows interactions similar to a desktop com-

puter, though with a smaller screen area (see Figure 1.2). The Smartphone has a small screen

with no touch sensitivity and a four-way joystick for navigating around the interface. As a
result, Smartphone interfaces are list-based and typically have a much deeper hierarchy than

PocketPC interfaces (see Figure 1.3).

The interface generators have been tested with a variety of complex appliance specifications,

including those for several VCRs, the HP and Canon all-in-one printers mentioned above,
and even the navigation system for a GMC Yukon Denali SUV. This latter specification for

the navigation system is especially complex, but is easily handled by the PocketPC interface

generator (see Figure 1.4). I have also evaluated the usability of the generated interfaces by

comparing the PUC-produced interfaces for the HP and Canon all-in-one printers (see
Figure 1.2c-d) with the manufacturers’ interfaces on the actual appliances (see Figure 1.1b-

c). The comparison showed that subjects on average were twice as fast and four times as suc-

cessful when using the PUC interfaces to complete a set of representative tasks.

The interface generators can also produce interfaces that are personally consistent based on a
user’s previous experiences. When a new interface is generated for an appliance with func-

tionality that is similar to a previous appliance that the user has seen, the interface generator

uses special algorithms to ensure that the similar functions are represented the same way and

placed in the same location. The difficulty with generating consistent interfaces is that while

Chapter 1: Introduction 8

a.

b.

c.

d.

Figure 1.3. Interfaces generated by the PUC on the Smartphone for several different appliances: a) Windows
Media Player, b) a simulated elevator, c-d) a shelf stereo with CD, radio, and tape functionality.

Figure 1.4. The full PocketPC interface generated for the navigation system from a 2003 GMC Yukon Denali.
The arrows show buttons that cause a dialog box to open.

Chapter 1: Introduction 9

a. Complex Copier Without
Consistency

b. Simple Copier Without
Consistency

 c. Complex Copier
Consistent with
Simple Copier

d. Simple Copier
Consistent with
Complex Copier

Figure 1.5. Copier interfaces generated with and without consistency on the PocketPC platform.

a. Complex Copier Without Consistency

b. Simple Copier Without Consistency

c. Complex Copier Consistent
with Simple Copier

d. Simple Copier Consistent
with Complex Copier

Figure 1.6. Copier interfaces generated with and without consistency on the Smartphone platform.

Chapter 1: Introduction 10

appliances may share some similar functions, there are also many unique functions which

must be included in the user interfaces. I have developed techniques for preserving the us-
ability of unique functions as changes are made for consistency.

Examples of interfaces generated with consistency are shown in Figure 1.5 for the PocketPC

and in Figure 1.6 for the Smartphone. Notice that there are several differences between the

original interfaces for the complex and simple copiers. The visual organization of the two
interfaces is different on the PocketPC and the structural organization differs on the Smart-

phone. Labels are quite different, such as “Start” and “Stop” being used on the complex

copier and “Copy” and “Cancel” used on simple copier. Some functions are located differ-

ently between the interfaces, such as the two-sided copying function which is located with
the quantity function on the complex copier but with the sorting functions on the simple

copier. There are also unique functions, such as the “Halftone” function on the complex

copier and the “Book Copy” function on the simple copier. Note that the consistent inter-

faces for these copiers address the differences without disrupting the usability of the unique
functions.

I have also conducted an evaluation of the rules for generating consistent interfaces, again

using the HP and Canon all-in-one printer appliances. In this study, users with no knowl-

edge of either appliance were asked to perform a set of tasks on a PUC interface for one of
the appliances. Following the tasks, users were instructed on the correct method for perform-

ing each task on the first interface and then asked to complete the same tasks on a PUC

interface for the other printer. This second interface was either generated normally (without

consistency) or generated to be consistent with the first interface. I found that users were
twice as fast on average at performing tasks on the second interface when that interface was

generated to be consistent as compared to the users of the normally generated interface.

The interface generator can also produce user interfaces for systems of multiple connected

appliances, such as home theaters or presentation rooms. These interfaces are generated
based on a full content flow model of the appliance system that is assembled from each ap-

pliance’s specification and a wiring diagram for the system supplied by a third party, such as

a future wiring technology or the user. The PUC provides two types of interfaces for inter-

acting with a system of appliances: the flow-based interface that allows users to specify their
high-level tasks (see Figure 1.7) and aggregate interfaces that combine functions from multi-

ple appliances to allow users to perform low-level actions during a task (see Figure 1.8).

Chapter 1: Introduction 11

The PUC system produces four different kinds of aggregate user interfaces. Active Flow

Control interfaces provide access to the most common control functions of the currently ac-
tive flows, such as volume and playbacks controls. Figure 1.8 shows four example of this type

of aggregate user interface. Active Flow Setup interface provide access to less common con-

figuration features for the currently active flows, such as brightness and contrast for a

television or speaker balance for a receiver. The General Setup aggregate interface contains
setup and configuration options that do not relate to any flow, such as the parental control

settings present on some appliances. Finally, similar functionality from multiple appliances

a. b. c. d.

Figure 1.7. Several examples of the Flow-Based Interface being used for various tasks: a) playing a DVD movie
with the video shown on the television and audio coming through the stereo’s speakers, b) watching a sporting
event on television but listening to the play-by-play over the radio, c) selecting different sources of content dur-
ing a presentation, with a PowerPoint slideshow as the current source, and d) resolving a problem with the
DVD player through the question/answer interface.

a. b. c. d.

Figure 1.8. Several examples of aggregate user interfaces generated based on the user's current task: a) playing a
DVD movie with the video shown on the television and audio coming through the stereo’s speakers, b) pre-
senting Powerpoint slides through a projector, c) watching broadcast television with audio playing through the
television’s speakers, and d) recording a tape in one VCR from a tape playing in another VCR.

Chapter 1: Introduction 12

are merged into a single interface control for certain functions, such as the clock or language

settings. The merged aggregate interface allows the user to set the current time, for example,
and have this value migrated automatically to every appliance in the system.

In order to demonstrate the feasibility of the PUC system and to ensure that the PUC sup-

ports all of the complexities of today’s computerized appliances, it is important for the PUC

to control real appliances. To accomplish this, the PUC system has a communication proto-
col to allow handheld devices to interact with appliances and a set of appliances adaptors that

translate between the PUC protocol and the proprietary protocols of existing appliances. The

PUC is currently able to control nine existing appliances (see Table 4.1 for a complete list)

and it would be easy to increase this number as more appliances are built with support for
external control.

1.2 Topics Outside the Scope of this Work

My work on the PUC system could have been taken in many directions. This section de-

scribes issues related to the PUC system that I do not explore in this dissertation:

Help systems: When users encounter problems with an automatically generated inter-

face, they should be able to access help information that is generated based upon the

properties of the interface. Such automated help systems have been created in the past,

such as the Cartoonist system for the UIDE environment [Sukaviriya 1990].

Automated trouble-shooting for complex systems: The functionality of a complex sys-

tem, like the home theater system described in the previous section, often depends on

how its component pieces are connected together. For example, video performance will

be bad if a DVD player is connected through a VCR, or it will not be possible to record
video from one VCR onto another if the two are not connected properly. The PUC sys-

tem has sufficient information to reason about such problems and conceivably could help

users find solutions for their particular systems, but this is not something that I have

looked at as part of my thesis work.

Service Discovery: A PUC controller device must be able to “discover” appliances in the

environment that the user may wish to control. Efficiently performing this task without

centralized servers has been a focus of several research projects, and those techniques have

become common enough to be included in commercial systems such as UPnP [UPnP

Chapter 1: Introduction 13

2005] and JINI [Sun 2003]. The PUC system relies on existing techniques and does not

further this research.

End-User Programming and Macros: Facilitating end-user programming tasks, such as

the creation of user-specified macros, would be an interesting direction for the PUC re-

search. This area is not unique to the PUC system however, and many other researchers

are exploring end-user programming in other contexts. I am confident that their ad-
vances could be applicable to the PUC system in the future.

Security: Security is an important issue for systems like the PUC. How do users keep

people who are driving by on the street from maliciously controlling their stereos or

kitchen appliances? Again, a lot of interesting work could be done in this area, but I have
chosen not to address this in my thesis.

1.3 Contributions

My thesis is:

A system can automatically generate user interfaces on multiple platforms for
remotely controlling appliances where the user’s performance is better than with
the manufacturer’s interfaces for the appliances.

I have conducted evaluations of my interface generators that demonstrate that this thesis

holds, as discussed in detail in Chapter 10. This dissertation also makes a number of other

contributions:

• An abstract appliance specification language for describing the complete functionality
of a wide-range of appliances,

• The use of dependency formulas in appliance specifications to help determine the
structure of generated user interfaces,

• The general Smart Templates technique for incorporating domain-specific design
conventions into an appliance specification and rendering the conventions appropri-

ately on different platforms and in different interface modalities,

• A language for describing semantic similarities between appliance specifications,

• Algorithms that apply knowledge of appliance similarities and user history to gener-

ate new interfaces that are consistent with previous interfaces the user has seen,

Chapter 1: Introduction 14

• The Flow-Based Interface concept, which allows users to quickly and easily specify
high-level goals for a multi-appliance system,

• Algorithms use a model of content flow in a multi-appliance system to generate task-

based interfaces that combine functionality from multiple appliances,

• Interface generation software on multiple platforms: PocketPC, Microsoft’s Smart-

phone, and desktop computers, which make use of the above contributions to

produce appliance interfaces that have been demonstrated via user testing to be more
usable than manufacturers’ interfaces for the same appliances.

1.4 Dissertation Overview

The next chapter, Chapter 2, surveys related work. The remainder of the dissertation de-
scribes the different components of the PUC system building towards the description of the

interface generation process in Chapters 8 and 9 and the usability evaluation of the generated

interfaces in Chapter 10.

Chapter 3 describes preliminary studies of appliance user interfaces that set the groundwork
for the design of the specification language and the interface generator. Of particular impor-

tance in this chapter is the list of requirements for any system that intends to control

appliances.

Chapter 4 discusses the general architecture of the PUC system and the infrastructure needed
for communicating with and controlling real appliances.

Chapter 5 describes the specification language and discusses its completeness and usability.

Chapter 6 discusses consistency, including previous work in the area and what consistency

means for the PUC system. This chapter also covers the infrastructure needed for generating
consistent interfaces, including the knowledge base that stores similarity mappings between

specifications and maintains a history of interfaces that the user has seen.

Chapter 7 describes the Smart Templates technique that allows domain-specific design con-

ventions to be included in automatically generated interfaces.

The PUC interface generation process is split into two chapters. Chapter 8 describes the

process for single appliance user interfaces on the PocketPC, desktop, and Smartphone plat-

Chapter 1: Introduction 15

forms. Chapter 9 covers the generation of aggregate interfaces for multi-appliance systems

and the PUC’s novel use of content flow information.

Chapter 10 describes a usability evaluation of the generated interfaces compared to the

manufacturers’ interfaces for two all-in-one printers and an evaluation of the consistency al-

gorithms compared to generation without consistency.

Finally, Chapter 11 discusses the overall PUC system, reviews the contributions of the disser-
tation, and outlines directions for future work.

Chapter 1: Introduction 16

CHAPTER 2

2Related Work

This chapter surveys previous work in three areas of research: control of appliances, user in-
terface generation, and aggregate user interfaces.

Work in the control of appliances includes both commercial products, such as universal re-

mote controls, and appliance communication infrastructures being developed in both

industry and academic research. A few projects have examined how the user interfaces for
consumer electronics might be improved.

User interface generation has been the subject of research for many years, sometimes under

the name of model-based user interfaces because the interfaces are generated from models of

the application domain, tasks the user might perform, and the target platform. The original
goal of this work was to allow programmers, who were not typically trained to design inter-

faces, to produce good user interfaces for their applications. More recent work falls into two

categories: fully automatic generation for producing interfaces customized for each user and

designer-guided generation for producing and maintaining very large scale user interfaces.

Aggregate user interfaces are those that combine functionality from multiple sources to pro-

duce one user interface. Also known as “mash-ups,” this idea has recently become a popular

piece of the new “Web 2.0” technologies, where developers are combining data from multi-

17

ple web sites on a single site to produce compelling visualizations and applications. Web

mash-ups are one type of aggregate interface, though most examples to date were built by
hand. Some work has been done in the human-computer interaction and ubiquitous com-

puting communities on automatically generating aggregate interfaces. The Web Services and

Semantic Web communities have also been investigating web service composition, though

most of this work focuses on infrastructure issues and does not address the user interface.

2.1 Control of Appliances

A number of systems have been created for controlling appliances. Commercial products

have been available for years that allow limited control for certain electronic appliances, and

recently companies have begun forming standards groups to agree on new solutions for con-
trolling appliances, such as HAVi [HAVi 2003], JINI [Sun 2003], and UPnP [UPnP 2005].

Another standards group, INCITS/V2 [INCITS/V2 2003], was formed to examine stan-

dardizing appliance control in order to benefit people with handicaps. There have also been

several research projects that have explored this area such as Xweb [Olsen Jr. 2000], ICrafter
[Ponnekanti 2001], and Roadie [Lieberman 2006].

2.1.1 Commercial Products
For years many companies have been selling so-called “universal remote controls,” which re-

place the standard remote controls for televisions, VCRs, and stereos with a single remote
control unit. A one-way infrared protocol is used to issue commands to the appliances. Typi-

cal universal remote control products have physical buttons that correspond to the most

common subset of features found on the appliances that the universal remote can control.

For televisions this is usually limited to channel up and down, volume up and down, a num-
ber pad for manually entering channels, and a power button. For example, my mother has a

universal remote for her television and VCR, but must use the original remote for the TV in

order to access the television’s configuration menus. Some universal remotes avoid this prob-

lem with a teaching feature, which allows the user to assign buttons on the universal remote
to a particular code that is recorded from the original remote control.

The Philips Pronto (see Figure 2.1) was one of the first LCD-based universal remote control

products. In addition to being able to program new infrared codes for new appliances, users

can also design the panels of the controls that they use. Using the Pronto, it is easy, for ex-
ample, to create a specialized screen for watching movies that has the DVD player and stereo

Chapter 2: Related Work 18

volume controls, and another for watching television that only has controls for the cable box

channels. Users can even associate multiple codes with a single button, allowing them, for
example, to create a macro for playing a DVD that turns on the DVD player and television,

switches to the appropriate channel, and plays the DVD. The problem with the Pronto, as

with the other universal remotes, is that all of the programming must be done manually,

which can be a tedious and time-consuming task, especially for a large number of appliances.

The Logitech Harmony remote (see Figure 2.2) is unique among universal remotes because

it internally tries to maintain a record of the current state for all of the appliances that it can

control. This has the limitation that the remote must know the state of the system when it is

first used and that all control must be done via the Harmony remote afterwards, but it has
the advantage that the remote can hide functionality that is not available in the current state.

The user interface is further simplified using a task-based interface shown on the small LCD

screen which displays a list of tasks, such as “play movie in VCR” or “play DVD.” The list is

based upon the appliances the user has and the current state of the system. When one of
these options is selected, the remote sends the appropriate codes to all appliances and may

also instruct the user to do certain tasks, such as insert a DVD into the player.

Both of these remote control devices also synchronize with a desktop computer to make the

task of programming easier. This also allows users to download their remote control layouts
from the device and share them with other users on the Internet. Several communities have

been created to share panels for the Pronto, such as http://www.remotecentral.com and

http://www.prontoedit.com. Synchronization is also the basis for programming the

Harmony remote, which is done via a web site that gives the user access to Harmony’s exten-
sive proprietary database of appliance state information. Synchronization helps decrease the

Figure 2.1. The Philips Pronto
TSU-9600 remote control device.

Figure 2.2. Two Harmony remote control de-
vices (the 890 and 1000 models).

Chapter 2: Related Work 19

tediousness and time-consuming nature of programming the remote controls, but only for

appliances where some user has already uploaded the codes. For other appliances, the pro-
gramming process is just as time-consuming when using these advanced universal remotes.

2.1.2 Commercial Standards
A number of industry groups have formed to create standards for remotely controlling de-

vices. Four of the most prominent are the Microsoft-led Universal Plug and Play (UPnP)

[UPnP 2005] initiative, the UPnP-affiliated Digital Living Network Alliance (DLNA)
[DLNA 2006], the Home Audio Video Interoperability (HAVi) initiative which is led by

“eight of the world’s leading manufacturers of audio-visual electronics” [HAVi 2003] and the

INCITS/V2 effort [INCITS/V2 2003] which is a collaboration between the National Insti-

tute for Standards and Technology (NIST) and a consortium of researchers from industry
and academia. The goal of all of these standards initiatives is to create a flexible communica-

tion infrastructure that makes it easier for people to control the appliances in their

environment and for appliances to interoperate with each other.

Industry standards are also being developed to enable the construction of distributed net-
work services. Unlike the above standards, this work is focused on generic “services” rather

than specifically on electronic appliances. The proposed technologies in these standards, in-

cluding service discovery and description, could be used to find and control appliances.

These standards include Sun Microsystem’s JINI system [Sun 2003] and the OSGi Alliance
[OSGi 2006].

Figure 2.3. An interface generated for WinAmp
on a PocketPC using the INCITS/V2 frame-
work [IMTC 2006]. Reproduced with
permission.

2.1.2.1 INCITS/V2 Standard

Recent government legislation requires that

appliances purchased by the government or

government entities be usable by people
with a wide variety of disabilities. Unfortu-

nately, most appliances built today have no

accessibility features. The InterNational

Committee for Information Technology
Standards (INCITS) has begun the V2

standardization effort [INCITS/V2 2003],

which is currently developing standards for

Chapter 2: Related Work 20

a Universal Remote Console (URC) that would enable many appliances to be accessible

through the Alternative Interface Access Protocol (AIAP). A URC controls an appliance by
using AIAP to download a specification written in three parts: a user interface “socket” that

describes only the primitive elements of the appliance, a “presentation template” that de-

scribes either an abstract or concrete user interface, and a set of resource descriptions that

give human-readable labels and help information for the user interface. The URC will either
then automatically generate an interface from an abstract presentation template, or display

one of the interfaces specified in a concrete presentation template. An example WinAmp in-

terface generated from by a URC using the V2 framework is shown in Figure 2.3. I have

provided feedback to the V2 group in the past that led to the current design of their specifi-
cation. A detailed report is available analyzing the similarities and differences between the V2

and PUC systems [Nichols 2004a].

2.1.2.2 Universal Plug and Play

Universal Plug and Play (UPnP) is designed both to allow user control and appliance inter-

operation. The two important units within UPnP are the “service” and the “control point,”
which are similar to the appliance and controller respectively in the PUC system. Each UPnP

service has a downloadable description formatted in XML that lists the functions and state

variables of that service. Control points connect to services, download their descriptions, and

then call functions and receive event notifications from the services. One important differ-
ence between the PUC and UPnP is the automatic generation of user interfaces. UPnP chose

to avoid automatic generation, and instead relies on standardized appliance descriptions. A

standardized description allows a control point to know in advance what functions and state

variables a service will have, which allows a hand-designed user interface to be created in ad-
vance on a control point. Similar to HAVi, UPnP does allow services to specify additional

functions and state variables beyond those in the standardized set, but it is not clear how a

control point would accommodate these additional functions or variables in its user inter-

face. UPnP provides a way around this, by allowing a control point to also download a web
page and control the specialized functions of the service using standard web protocols, but

the solution results in two different user interfaces being displayed on the same controller

device.

Several UPnP products are available today, including gateway/router products, streaming AV
products, and a Pan/Tilt video camera from Axis Communications. UPnP currently has

Chapter 2: Related Work 21

standardized twelve different service descriptions, and more devices are likely to appear on

the market as the number of standardized service specifications grows.

2.1.2.3 Digital Living Network Alliance

The Digital Living Network Alliance (DLNA) is developing a series of standards, based on

the UPnP standards, to improve the usability of network-connected appliances throughout

the home. A typical DLNA usage scenario would be viewing some content from a networked

PC, such as music, video, or pictures, on a stereo or television located elsewhere in the house.
Unlike for UPnP, where the focus is on technology, DLNA’s focus is strictly on improving

the user experience. DLNA guidelines cover not only the technical layer, to allow easy inte-

gration between appliances, but also the design of the user interfaces. Products can only

receive DLNA certification if they comply with the technical and UI guidelines. The PUC
philosophy differs from DLNA in that the PUC allows users to decide how to integrate func-

tionality between their appliances and supports the inclusion of new appliances that cannot

be envisioned today. DLNA is based around a set of general use cases for appliances that can

be envisioned today, which may require revision in the future if new classes of appliances be-
come commonplace.

2.1.2.4 Home Audio-Video Interoperability

Home Audio-Video Interoperability (HAVi) is the only platform designed specifically for

consumer electronics devices like televisions and VCRs, and only works over an IEEE 1394

(Firewire) network. Televisions that feature HAVi are available today from RCA and Mitsu-
bishi Electric, and Mitsubishi at one time produced a VCR that supported HAVi. HAVi’s

user interface concept is that the television, because it is only appliance with a large screen,

should control all the other appliances in a home network. There are three ways that a HAVi

controller might control another appliance: (1) every type of appliance that might be con-
trolled has a standardized interface specified by the HAVi working committee and a HAVi

controller could have a hand-designed interface built-in for each standardized type, (2) every

appliance can export a “level 1” or data-driven interface, which is basically a description of a

hand-designed interface that includes buttons, labels, and even multiple panels, and (3) every
appliance can export a “level 2” user interface, which is a piece of mobile code written in the

Java language which displays a remote control user interface when executed on a HAVi con-

troller. None of the interface descriptions are abstract, as the PUC appliance specification

language is, and only the second and third interface description options may allow the HAVi

Chapter 2: Related Work 22

controller to access special features of the appliance. The main advantage of HAVi over other

proposed industry standards is its ability to control older “legacy” appliances using older pro-
tocols such as AV/C [Association 1996]. The main disadvantage of HAVi is the size of its

API, which includes three levels of interface specification, standardized templates for many

types of appliances which must be built into any controller implementation, a Java virtual

machine, and support for a number of legacy protocols.

2.1.2.5 JINI

Sun’s JINI system was designed as a network infrastructure to make it easier for program-

mers to create distributed systems. Like the PUC, INCITS/V2, HAVi, and UPnP, it could

allow a controller device to manipulate an appliance, but the infrastructure is much more

general. The system is a set of APIs for discovering services, downloading an object that
represents the service, making calls on the object using a remote procedure call protocol, and

finally releasing the object when it is no longer needed. Like HAVi, JINI also relies on the

Java platform to send mobile code from the service to the computer that wishes to use the

service. This mechanism could be used, for example, to display a user interface that allows a
human to control a service. It would be possible to implement a system like the PUC on top

of the JINI protocol, but JINI by itself does not provide the user interface description fea-

tures that the PUC does.

2.1.2.6 OSGi

OSGi [OSGi 2006] is a dynamic module system for the Java programming language, which
provides several standard primitives that allow developers to produce applications from a set

of small, reusable components. The OSGi Service Platform allows modules to be composed

across devices and networks and for the composition to be changed dynamically to support

new tasks. This platform also allows for modules to be automatically discovered and inte-
grated into a currently running system. These features allow OSGi to be used as the

infrastructure in a variety of smart home projects, as listed on the web:

http://www.osgi.org/markets/smarthome.asp

2.1.3 Research Systems

2.1.3.1 Universal Interactor

Hodes, et al. [Hodes 1997] propose a similar idea to our PUC, which they call a “universal

interactor” that can adapt itself to control many devices. Their approach uses two user inter-

Chapter 2: Related Work 23

face solutions: hand-designed interfaces implemented in Tcl/Tk, and interfaces generated

from a language they developed called the “Interface Definition Language” (IDL). IDL fea-
tures a hierarchy of interface elements, each with basic data types, and supports a layer of

indirection that might allow, for example, a light control panel to remap its switch to differ-

ent physical lights as the user moves between different rooms. Unlike the PUC work, this

work seems to focus more on the system and infrastructure issues than the user interface. It is
not clear whether IDL could be used to describe a complex appliance, and it seems that

manually designed interfaces were typically used rather than those generated from an IDL

description.

2.1.3.2 IBM Universal Information Appliance

An IBM project [Eustice 1999] describes a “Universal Information Appliance” (UIA) that
might be implemented on a PDA. The UIA uses an XML-based Mobile Document Appli-

ance Langauge (MoDAL) from which it creates a user interface panel for accessing

information. A MoDAL description is not abstract however, as it specifies the type of widget,

the location, and the size for each user interface element.

2.1.3.3 ICrafter

The Stanford ICrafter [Ponnekanti 2001] is a framework for distributing and composing

appliance interfaces for many different controlling devices. It relies upon a centralized inter-

face manager to distribute interfaces to handheld devices, sometimes automatically

generating the interface and other times distributing a hand-designed interface that is already
available. ICrafter can even distribute speech interfaces described by the VoiceXML language

to those controllers that support speech. Support for the automatic generation of user inter-

faces is limited however, and they also mention the difficulty of generating speech interfaces.

Perhaps the most interesting feature of ICrafter is its ability to aggregate appliances together
and provide a user interface. To support composition, ICrafter relies on a set of “service in-

terfaces” (that abstract the functionality of services) and a set of interface aggregators that are

each hand-coded to build an interface for a particular pattern of service interfaces. When a

user requests an interface for multiple services, ICrafter looks for an aggregator that matches
the pattern and, if an aggregator is found, returns a single interface generated by that aggre-

gator. For example, a camera might implement the DataProducer interface and a printer

might implement the DataConsumer interface. The generic aggregator for the DataPro-

Chapter 2: Related Work 24

ducer/DataConsumer combination could then generate a combined interface for the camera

and printer.

ICrafter’s approach has several limitations however, which the PUC overcomes. First, a ge-

neric aggregator in ICrafter is only able to generate an interface for the common properties

and functions shared by its service interfaces and none of the unique functions that may be

implemented by a specific service. Second, ICrafter’s generic aggregators are not able to in-
clude any design conventions that might be specific to the services. For example, a play

button would be appropriate if a DataProducer was a DVD player but not if the producer

was a camera. For ICrafter to produce interfaces with unique functions and appropriate de-

sign conventions, a special purpose interface aggregator would need to be built for the
specific appliances involved. In contrast, The PUC’s interface aggregation is faithful to the

specific appliance interfaces that are being aggregated and includes all functionality of the

connected appliances.

2.1.3.4 Xweb

The Xweb [Olsen Jr. 2000] project is working to separate the functionality of the appliance
from the device upon which it is displayed. Xweb defines an XML language from which user

interfaces can be created. Unlike the PUC specification language, Xweb’s language uses only

a tree for specifying structural information about an appliance. Their approach seems to

work well for interfaces that have no modes, but it is unclear how well it would work for re-
mote control interfaces, where modes are commonplace. Xweb also supports the

construction of speech interfaces. Their approach to speech interface design, including em-

phasis on a fixed language and cross-application skill transference, is quite similar to the

Universal Speech Interface approach, as it is derived from a joint philosophy [Rosenfeld
2001]. Xweb’s language design allows users to directly traverse and manipulate tree structures

by speech, however they report that this is a hard concept for users to grasp [Olsen Jr. 2000].

The interfaces designed for the PUC using the Universal Speech Interface design differ by

trying to stay closer to the way people might talk about the task itself, and is somewhat closer
to naturally generated speech.

2.1.3.5 Ubiquitous Interactor

The Ubiquitous Interactor (UBI) system [Nylander 2004] is also working to separate presen-

tation from functionality for services. Services in UBI are described using interaction acts,

somewhat like the abstract interaction objects used by the PUC interface generator, which

Chapter 2: Related Work 25

describe the interaction the user should have without providing any information about how

the interaction should be presented. The general description of the service can be augmented
with service- and device-specific hints that are provided in a customization form. The UBI

interface generator combines the information from the interaction act and the customization

forms to produce a final user interface.

The unique feature of UBI comes from its customization forms that allow the service pro-
vider to supply hints about how the generated interface should appear. This gives the service

providers control over the generated interfaces and allows them to include brand marks and

interactions.

2.1.3.6 Analyses of Actual Remote Control Usage

Omojokun et al. [Omojokun 2005] have collected usage data for consumer electronics in
real home settings and applied a machine learning approach to discover the core set of func-

tionality that is used by a particular user and to cluster these functions into task groups. They

compared their automatic results to their users’ intuition and discovered that neither ap-

proach was sufficient for building a complete user interface. In the future they propose to
explore a mixed approach that combines automatic and user-oriented approaches to design

user interfaces. My approach differs because the PUC interfaces include the full functionality

for each appliance rather than a subset containing the most commonly used functions. In the

future, I am interested in applying Omojokun’s work to optimize the organization of the
PUC’s user interfaces to favor commonly used functions while still including the remaining

functions.

2.1.3.7 DiamondHelp

DiamondHelp [Rich 2005] combines a task-based dialog interface with a direct manipula-

tion interface to bring usability and consistency to consumer electronics interfaces. The
interface is designed for display on a large screen in the home, such as a television or personal

computer, and uses two-part design that would be difficult to adapt to today’s mobile

phones. The task-based portions of the user interface are automatically generated from task

models, but the direct manipulation portions are currently hand-designed. The unique as-
pect of DiamondHelp is its combination of two different interface styles, which allows users

to choose how to interact with the appliance while benefiting from structured support.

2.1.3.8 Roadie

Chapter 2: Related Work 26

The Roadie system [Lieberman 2006] provides a goal-oriented user interface for consumer

electronics that may combine features of multiple appliances. Like the PUC’s flow-based in-
terface (see Chapter 9), Roadie uses a planning algorithm to automatically configure

appliances to match user goals. Unlike the PUC, Roadie uses a database of commonsense

knowledge to find and understand possible user goals within the system. The user can specify

the action they wish to perform using natural language, and then Roadie will attempt to in-
terpret this action using its database and create a plan. Because the possible actions are

restricted to the contents of the commonsense database, Roadie may not be able to support

uncommon actions, such as those related to an uncommon configuration of appliances or to

a new class of appliance that has just been added to the system. The PUC, in contrast, is able
to acquire a model of the system from the appliances themselves, and thus is not subject to

these limitations.

2.2 Automatic & Guided User Interface Design

Research in interface generation has a long history dating back to some of the earliest User
Interface Management Systems (UIMSs) developed in the mid-80’s, such as COUSIN

[Hayes 1985]. The original goal of these systems was to automate the design of the user in-

terface so that programmers, who were typically not trained in interface design, could

produce applications with high quality user interfaces. This work led to creation of systems
in the late 80’s and early 90’s, such as UIDE [Sukaviriya 1993], ITS [Wiecha 1990], Jade

[Vander Zanden 1990], and Humanoid [Szekely 1992], which required designers to specify

models of their applications that could then be used to automatically generate a user inter-

face. The generated interfaces could generally be modified by a trained interface designer to
produce a final user interface. These interfaces were sometimes called model-based user inter-

faces because of the models underlying their creation.

These early model-based systems had several drawbacks. Most notably, creating the models

needed for generating an interface was a very abstract and time-consuming process. The
modeling languages had a steep learning curve and often the time needed to create the mod-

els exceeded the time needed to manually program a user interface by hand. Finally,

automatic generation of the user interface was a very difficult task and often resulted in low

quality interfaces [Myers 2000]. Most systems moved to designer-guided processes rather
than use a fully automatic approach.

Chapter 2: Related Work 27

Two motivations suggested that continued research into model-based approaches might be

beneficial:

• Very large scale user interfaces assembled with existing techniques are difficult to im-

plement and later modify, and detailed models of the user interface can help organize

and partially automate the implementation process. The models can then be used to
help designers re-visit the interface and make modifications for future versions.

• A recent need for device-independent interfaces has also motivated new research in

model-based user interfaces and specifically on fully automated generation. Work in
this area has also begun to explore applications of automatic generation to create in-

terfaces that would not be practical through other approaches. For example, the

PUC’s consistency feature (see Chapters 6 & 9) generates interfaces that are person-

ally consistent with each user’s previous experience.

While all of these systems discussed in this section generate interfaces, to our knowledge no

user studies have been conducted to evaluate the resulting interfaces. The closest reported

study is of SUPPLE [Gajos 2004], discussed below, which asked subjects without any interface

design training to produce interfaces for a presentation room control panel. The developers
then showed that SUPPLE could generate similar versions of each of these interfaces by varying

the task information provided to the interface generator. The interface used in this study had

only a few simple functions however, and users’ performance on the SUPPLE interfaces was

not measured or compared with any other interfaces.

The following sections highlight many of the model-based systems that have been produced

over the years. The discussion is broken down into a discussion of the early systems (ending

in the early-to-mid 90’s) and more recent systems.

2.2.1 Early Model-Based Systems
The initial research in model-based systems was conducted from approximately the mid-80’s

to the early 90’s. An excellent review of early model-based user interface research can be

found in [Szekely 1996].

2.2.1.1 Mickey

One of these early systems was Mickey [Olsen Jr. 1989], which automatically generated
menus and dialog boxes from function signatures and strategically placed comments in the

Chapter 2: Related Work 28

code implementing the application logic. This simplified the construction of user interfaces

for programmers, who could now implement the logic, add a few special comments, and
immediately have a limited user interface for their application. While the generated user in-

terface was rarely sufficient for the entire application, the techniques demonstrated by

Mickey showed promise for simplifying the user interface implementation process.

2.2.1.2 Jade

Jade [Vander Zanden 1990] is another example of an early model-based system for auto-
matically generating dialog box layouts based on a textual specification of the content. Like

the PUC’s specification language, Jade’s textual specification contains no graphical informa-

tion, which keeps each specification small and allows the look-and-feel of the generated

interfaces to be independent of their content. Unlike the PUC system, Jade allows interface
designers to manually edit its results to fix any problems in the automatically generated inter-

faces. Most of the model-based systems discussed in this section have similar features for

allowing the interface designer to guide the generation process and/or edit the final user in-

terfaces. While the PUC system could allow manually editing, it is important to remember
that users of the PUC system are not trained designers and will rarely have the time or desire

to modify a generated interface.

2.2.1.3 UIDE

Systems of the late 80’s and early 90’s, such as UIDE [Sukaviriya 1993], HUMANOID

[Szekely 1992] and ITS [Wiecha 1990] expanded on these ideas with more complicated
models that could generate more sophisticated user interfaces. UIDE, which stands for User

Interface Design Environment, is the earliest of these systems. The knowledge base contains

information about objects, the actions that users can use to manipulate those objects, and

pre-conditions and post-conditions for each action that describe what must be true for the
action to be executed and conditions that are true once the action has been executed. Pre-

conditions and post-conditions are similar to the dependency information used in the PUC

specification language. The development of UIDE led to several advances in the automatic

design and layout of dialog boxes. It was shown that a decision tree could be constructed that
performed well for choosing the interface element to use for a particular variable or action

[de Baar 1992], and the DON system [Kim 1993] used metrics and heuristics to create

pleasing layouts of interface elements. The PUC interface generators use and extend these

techniques. Another interesting tool developed as a part of UIDE is Cartoonist [Sukaviriya

Chapter 2: Related Work 29

1990], a system for automatically generating animated help from pre- and post-condition

information. It may be possible to create a similar system using the PUC specification’s de-
pendency information, but that is a subject for future work.

2.2.1.4 Humanoid

HUMANOID [Szekely 1992] is a tool for supporting the creation of the entire application,

going beyond the creation of menus and dialog boxes and focusing on the construction of

interfaces with visualizations for complex data. An important feature of HUMANOID is the
designer’s interface, which integrates all design aspects of the system into a single environ-

ment and focuses the designer on a tight design/evaluate/redesign cycle. To support this

cycle, the system is explicitly designed such that the application can be run even if it is not

fully specified. The benefit of this is that designers can get immediate feedback and explore
many alternatives in a short amount of time.

2.2.1.5 Mastermind

The MASTERMIND project [Szekely 1995] started as collaboration to combine the best

features of UIDE and HUMANOID. In addition to modeling capabilities of those systems,

MASTERMIND also uses task models to inform its automatic interface designs. Task mod-
els have since been used in nearly every new model-based system. MASTERMIND was also

one of the first systems to explore the idea of generating different interfaces for desktop com-

puters, handheld computers, and pagers [Szekely 1996] by using the model to decide which

information or interface elements could be removed from the interface as the size decreased.
The interfaces generated for each different device used the same interaction techniques,

which is not true of the dramatically different PUC interfaces generated for the PocketPC as

compared to the Smartphone.

2.2.1.6 ITS

ITS [Wiecha 1990] is another model-based interface system, and was developed by research-
ers at IBM. The ITS system differs from other model-based systems in its explicit separation

of concerns within its four-layer specification. ITS’s layers consist of actions for modifying

data stores, dialog for specifying control flow, style rules for defining the interface elements,

layout, and language of the user interfaces, and style programs that instantiate the style rules
at run-time. The layers are designed to make it easier for experts in different areas to collabo-

rate on the interface design. For example, programmers would implement the actions and

Chapter 2: Related Work 30

style programs, while interface designers would write the style rules and application experts

would specify the dialog. An important focus of ITS is making the dialog and style rules lay-
ers highly usable so that non-technical experts could be “first-class participants” [Wiecha

1990] in the design process. The design process was also very iterative; rules were expected to

be continually refined until an acceptable user interface was created. Unlike many of the

other model-based interface systems, ITS was used to create several commercial applications,
including all of the kiosks at the EXPO ‘92 worlds fair in Seville, Spain.

2.2.1.7 TRIDENT

TRIDENT [Vanderdonckt 1995], a model-based system built around the same time as

MASTERMIND, combines the ideas of an automatic interface generator with an automated

design assistant. Like other systems, TRIDENT uses a task model, an application model, and
a presentation model as the basis for creating interfaces. The TRIDENT system established a

set of steps for its interface generation process: determine the organization of application

windows, determine navigation between windows, determine abstractly the behavior of each

presentation unit, map abstract presentation unit behaviors into the target toolkit, and de-
termine the window layout. At each step, the interface designer could ask the system to

perform the step using one of several techniques or do the work themselves. For example,

TRIDENT determined layout using a bottom-right method that for each element would

ask, “should this element be placed to the right or below the previous element?” A set of heu-
ristics were used to automate the decision, or the interface designer could explicitly decide,

often resulting in interfaces with a pleasing appearance. TRIDENT also used its task models,

specified in a format called an Activity Chaining Graph (ACG), to automatically determine

the number of windows needed for an application.

2.2.2 Model-Based Systems for Very Large Interfaces and Platform Independence
Later model-based systems concentrated on two features of earlier systems that were particu-

larly successful: the use of task models to describe users’ goals with an interface and the

combination of multiple interface models to produce a final interface. With the advent of

XML, another recent trend has been the development of user interface description languages
(UIDLs) in an attempt to standardize the model formats used by different model-based sys-

tems.

Chapter 2: Related Work 31

2.2.2.1 Mobi-D

Mobi-D [Puerta 1997] is model-based user interface development environment capable of

producing very large-scale user interfaces. The Mobi-D development process differs from
previous systems in that a series of declarative models are created iteratively, starting with

models of the users and their tasks and ending with a presentation model that represents the

final interface. All of these models are stored together and many relations are described be-

tween the different models to assist the system and designer with their interface building and
maintainenance tasks. Mobi-D also has many component tools for helping designers at vari-

ous phases of the interface design process, from describing the users’ tasks to the final guided

assembly of the user interface. Assembly of interfaces in Mobi-D is a highly structured proc-

ess, where the system steps the user through each of the sub-tasks associated with the
interface and provides suggestions of appropriate controls for a particular task. Mobi-D, and

the rest of the model-based systems for building large-scale interfaces, serve a different pur-

pose than the PUC system and can be seen as complementary. It is conceivable that features

from the PUC system, such as automatic modifications for consistency or aggregation of user
interfaces, could be beneficial in larger scale interfaces. Models of the interface will be neces-

sary to implement these features however, and these models might already be available for

interfaces built with a model-based development environment, such as Mobi-D.

2.2.2.2 ConcurTaskTrees

Early options for specifying task models were the formal specification language LOTOS
[ISO 1988] or GOMS [Card 1983], and many of the first model-based systems to use task

models created their own languages for specifying the models. Recently, ConcurTaskTrees

[Paterno 1997] has become popular as a language for representing tasks in several model-

based systems (including TIDE [Ali 2002] and TERESA [Mori 2004]). ConcurTaskTrees is
a graphical language for modeling tasks that was designed based on an analysis of LOTOS

and GOMS for task modeling. ConcurTaskTrees extends the operators used by LOTOS,

and allows the specification of concurrent tasks which is not possible in GOMS. Concur-

TaskTrees also allows the specification of who or what is performing the task, whether it be
the user, the system, or an interaction between the two. A special development environment

was built for creating task models using ConcurTaskTrees called the ConcurTaskTrees Envi-

ronment (CTTE) [Mori 2002].

Chapter 2: Related Work 32

2.2.2.3 XIML

The eXtensible Interface Markup Language (XIML) [Puerta 2002] is a general purpose lan-

guage for storing and manipulating interaction data based on Mobi-D. XIML is XML-based
and capable of storing most kinds of interaction data, including the types of data stored in

the application, task, and presentation models of other model-based systems. XIML was de-

veloped by RedWhale Software and is being used to support that company’s user interface

consulting work. They have shown that the language is useful for porting applications across
different platforms and storing information from all aspects of a user interface design project.

It may be possible to express the information in the PUC specification language within an

XIML document, but the language also supports many other types of information that will

not be needed, such as concrete descriptions of user interfaces.

2.2.2.4 IBM PIMA and MDAT

The IBM PIMA project creates specialized interfaces for different platforms, including PDAs

and phones, from a generic model of the application [Banavar 2004b]. This work incorpo-

rates automatic generation techniques, but differs from my work in two ways: 1) layout

information can be included in PIMA’s generic application model to help specialize the in-
terface to different platforms, and 2) designers typically must “tweak” the specialized

interfaces after generation. The PUC system uses Smart Templates and more sophisticated

interface generation rules to address these issues. The work on PIMA has been integrated

into the Multi-Device Authoring Technology (MDAT) project [Banavar 2004a], which fo-
cuses on the particular issues of authoring web pages that may be rendered on multiple

platforms.

2.2.2.5 UIML and TIDE

The User Interface Markup Langauge (UIML) [Abrams 1999] claims to provide a highly-

device independent method for user interface design, but it differs from the PUC in its tight
coupling with the interface. UIML specifications can define the types of components to use

in an interface and the code to execute when events occur. The TIDE interface design pro-

gram [Ali 2002] has been implemented to address some of these issues with UIML. TIDE

requires the designer to specify the interface more generically first, using a task model. Then
the task model is mapped, with the designer’s assistance, into a generic UIML model, which

Chapter 2: Related Work 33

is then further refined into a specific user interface. This process is very similar to that of

PIMA, mentioned above.

2.2.2.6 TERESA

Transformation Environment for interactive Systems representations (TERESA) [Mori

2004] is a semi-automatic system for transforming user interfaces between different plat-

forms. It allows designers to build their systems at an abstract level using the

ConcurTaskTrees modeling language [Paterno 1997] and then transform that model into
other models at different abstraction levels, including a concrete user interface for several dif-

ferent platforms. TERESA’s current focus is on web applications, though in principle it

could be extended to other environments. The current system is able to automatically gener-

ate interfaces, but in practice it seems to require designer involvement at each level of
abstraction to create a usable interface.

2.2.2.7 USIXML

The USer Interface eXtensible Markup Language (USIXML) [Limbourg 2004] allows the

specification of many different types of user interface models, including task, domain, pres-

entation, and context-of-use models, with a substantial support for describing relationships
between all of the supported models. The explicit goal of this language is to support all fea-

tures and goals of previously developed UIDL’s and as such it has many many features.

USIXML appears to be complete enough to specify all of the features in the PUC specifica-

tion language, but it is not clear how easy the language is to author or whether it is concise
enough to produce specifications that can be easily handled by a resource-constrained device.

2.2.2.8 XAML and XUL

The eXtensible Application Markup Language (XAML) [Microsoft 2006] and the XML

User interface Language (XUL) [Bojanic 2006] are two different languages for specifying a

user interface developed by Microsoft and Mozilla respectively. XAML will be used in the
next major revision of the .NET Framework, and eventually in the Vista operating system, to

describe most graphics content that is rendered to the screen. XUL is currently used to define

the user interfaces of all Mozilla browsers. Documents written in either language are similar

to the presentation models used by many model-based systems, which abstract some plat-
form-specific elements but are typically fixed to one interface modality with constraints on

the form factor and input techniques. In this case, both languages are designed for large-

Chapter 2: Related Work 34

screen graphical interfaces. XUL has been shown to be beneficial for porting applications

across various platforms of this type, including Windows, Linux, and Macintosh. The PUC
specificiation language differs from these languages in that it describes appliance functional-

ity without any specific details of the user interface, allowing the specification to apply for

interfaces in different modalities and substantially different format factors with different in-

put techniques.

2.2.2.9 SUPPLE

Most automatic interface generation systems, including the PUC, use a rule-based approach

to create user interfaces. SUPPLE [Gajos 2004] instead uses a numeric optimization algorithm

to find the optimal choice and arrangement of controls based on a cost function. The devel-

opers of SUPPLE have experimented with including a number of different factors in this cost
function. Common factors to all of their functions are the cost of navigation between any

two controls and the cost of using a particular control for a function. Additional costs have

been included based on the common tasks that a user performs [Gajos 2004], consistency

between interfaces for the same application generated on different platforms [Gajos 2005b],
and the physical abilities of the user (for assistive technology) [Gajos 2006]. Figure 2.4 shows

some example interfaces generated by SUPPLE.

SUPPLE’s approach allows it to manage the trade-offs in an interface design by exploring the

entire design space. This is somewhat more flexible than the PUC’s rule-based approach, but
also requires exponentially more processing as more variables and interface elements are con-

sidered. This means that SUPPLE’s performance will degrade as the complexity of the user

Figure 2.4. Examples interfaces for a classroom controller generated by Supple for different devices: a) a
standard desktop computer with a mouse, and b) a touchscreen. The classroom has three sets of lights (with
variable brightness), an A/C system, and an LCD projector with a corresponding motorized screen [Gajos
2004]. Reproduced with permission.

Chapter 2: Related Work 35

interface increases. Another difference is SUPPLE’s interface description, which contains some

of the same information as the PUC specification language but does not currently have a
written syntax. Instead the description is defined by run-time objects created by a program-

mer, much like the second-generation UIDE system.

2.3 Aggregate User Interfaces

While there has been a great deal of research on automatically combining services, especially
in the Web Services and Semantic Web communities, there has been very little work on

combining the user interfaces. Work in Web Services typically takes the infrastructure as a

given, and focuses on how existing standards such as WSDL, UDDI, and DAML-S [Sycara

2003] can be used to automatically discover and compose services. Unlike in my work, Web
Service composition research seems to rarely consider creating user interfaces for combined

services [Srivastava 2003]. One exception is an article [Staab 2003] which briefly mentions

control issues. There has been work on user interfaces for specifying how services should be

connected (e.g. [Kim 2004]) that could be leveraged in the future to build an editor that
specifies how appliances are connected.

Several systems have explored the infrastructure issues that are involved in connecting and

configuring systems of multiple appliances. One such system is Speakeasy [Newman 2002],

which uses mobile code to allow arbitrary devices and services to interact, and also to distrib-
ute user interfaces to the handheld devices from which users interact. While Speakeasy might

be able to automatically provide a wiring diagram for the PUC’s interface aggregation fea-

ture, it does not provide support for automatically generating user interfaces or for

combining user interfaces for multiple appliances into a single aggregate user interface.

I am aware of only two systems that have provided automatic combination of user interfaces.

One is the ICrafter system [Ponnekanti 2001], discussed earlier, which can aggregate user

interfaces for services that implement specific programmatic “service interfaces.” Interface

aggregators were implemented for specific combinations of service interfaces, which prevent
ICrafter users from aggregating services in ways that the developers did not anticipate in ad-

vance.

The second system is the Gravity project [Hall 2003], which provides a mechanism for auto-

matically constructing an application user interface based on a dynamic set of building
blocks. These blocks might change based on the user’s context, such as the location, envi-

Chapter 2: Related Work 36

ronment, task, etc. It seems that the focus with Gravity is on the framework issues, such as

discovering available components and repairing the interface when a currently visible build-
ing block is no longer accessible. Currently, there seems to be no user interface integration

between the building blocks, as each block is displayed as a separate panel within the Gravity

application. An important focus of the PUC work is integrating functions from each appli-

ance into a single interface.

Recently, aggregate user interfaces, known better as “mashups,” have become popular among

the Web 2.0 community [Merrill 2006]. The PUC’s combination of functionality from mul-

tiple appliances can be seen as a type of mashup. The PUC’s functionality differs from most

mashups however. In part, this is because the PUC’s mashups are produced automatically
whereas current web mashups are produced manually by skilled web programmers. Another

difference is that the PUC’s aggregate interfaces are generated to perform a particular task

and combine operations rather than data. Most web mashups combine one or more data col-

lections with a set of interaction techniques for visualizing that data, often a map. While
these visualizations can be useful, their value is in exploring the data in new ways rather than

allowing the user to manipulating multiple web applications simultaneously to accomplish a

specific task.

Chapter 2: Related Work 37

Chapter 2: Related Work 38

CHAPTER 3

3Preliminary User Studies1

The previous chapter showed that automatically generating high quality user interfaces is a
difficult problem. As a first step toward automatically generating remote control interfaces,

we hand-designed control panels for two appliances, evaluated them for quality, conducted

two user studies, and then attempted to extract the features of these control panels that con-

tributed most to their usability. This approach helped us understand the features that a high
quality remote control interface will have [Nichols 2002a, Nichols 2003], and then apply

them in the interface generator software [Nichols 2002b].

3.1 Hand-Designed User Interfaces

Two common appliances were chosen as the focus of our hand-designed interfaces: the Aiwa
CX-NMT70 shelf stereo with its remote control (see Figure 3.1a) and the AT&T 1825 tele-

1 The work in this chapter was originally described in Jeffrey Nichols and Brad A. Myers. “Studying the Use of Handhelds
to Control Smart Appliances,” in Proceedings of the International Workshop on Smart Appliances and Wearable Computing
(IWSAWC). Providence, RI. May 19-22, 2003. pp. 274-279. and Jeffrey Nichols, Brad A. Myers, Thomas K. Harris, Roni
Rosenfeld, Michael Higgins, and Joseph Hughes. “Requirements for Automatically Generating Multi-Modal Interfaces for
Complex Appliances,” in Proceedings of the IEEE Fourth International Conference on Multimodal Interfaces (ICMI). Pitts-
burgh, PA. October 14-16, 2002. pp. 377-382

39

a.

b.

Figure 3.1. a) The Aiwa CX-NMT70 shelf stereo with its remote control and b) the AT&T 1825 office
telephone/digital answering machine used in our studies.

a.

b.

c.

d.

Figure 3.2. Paper prototypes of the phone (a-b) and stereo (c-d) interfaces for the Palm.

a. b. c. d.

Figure 3.3. Screenshots of the implemented phone (a-b) and stereo (c-d) interfaces for the PocketPC.

Chapter 3: Preliminary User Studies 40

phone/digital answering machine (see Figure 3.1b). These two appliances were chosen be-

cause both are common, readily available, and combine several functions into a single unit. I
owned the Aiwa shelf stereo that was used, and the AT&T telephone was the standard unit

installed in many offices at Carnegie Mellon. Aiwa-brand stereos seemed to be particularly

common, at least among the subject population, because ten of the twenty-five subjects in

the user studies owned Aiwa systems.

Two sets of interfaces were designed for these appliances: low-fidelity paper-prototype de-

signs for the PalmOS platform (see Figure 3.2) and functionally equivalent high-fidelity

designs that were implemented in Visual Basic for Microsoft’s PocketPC platform (see Figure

3.3). A different platform was used for the high-fidelity designs because of the availability of
Microsoft’s eMbedded Visual Basic tool, which made the implementation relatively painless.

Because of the complexity of both appliances, the Palm prototypes required approximately

20 hours to create and were improved with heuristic analysis prior to the user study. The

PocketPC interfaces required more than fifty hours of design and implementation effort to
create. The PocketPC interfaces were improved through a combination of heuristic analysis

techniques and think-aloud studies with pilot users.

There were two goals with the design of these interfaces:

Functional completeness with the appliances: A goal of the automatically generated in-
terfaces is to deal with the full complexity of the appliances, and it was important that

the hand-designed interfaces would help in understanding how to address this goal.

Consistency with the conventions of the platform: An anticipated advantage of a UI

device is that interfaces would be easier to use because the user would already have some
familiarity with the platform and could leverage this knowledge to better use the appli-

ance interfaces. Although there was no screening to ensure that our user study subjects

were experts with the Palm or PocketPC platforms, an effort was made to ensure plat-

form consistency in order to understand how difficult this goal would be for the
automatic interface generators.

The study of the low-fidelity interfaces showed that it was important for subjects to feel in

control of the appliances. Unfortunately, it was not possible to use the PocketPC to actually

control either appliance, so instead software was created to simulate the appearance of con-
trolling the appliances. A laptop with external speakers was connected to the PocketPC via a

wireless network, allowing the user’s actions to be transmitted to the laptop. The laptop then

Chapter 3: Preliminary User Studies 41

simulated control by generating auditory feedback that was consistent with what would be

expected if the PocketPC were actually controlling either of the appliances.

3.2 User Studies

Both studies were between-subjects comparisons of the hand-designed PDA interfaces and

the interfaces on the actual appliances. The performance of the subjects was measured using

several metrics, including the time to complete a task, the number of errors made while at-
tempting to complete a task, and how often external help was required to complete a task.

The purpose of these studies was to discover how users performed using the hand-designed

interfaces versus the interfaces of the actual appliances and discover what aspects of the hand-

designed interfaces were difficult to use. The studies of the low- and high-fidelity interfaces
were very similar, so I will discuss the common procedure and evaluation methods before

discussing the studies in detail.

3.2.1 Procedure
When each subject arrived, they were asked to fill out a consent form and a two-page ques-
tionnaire about their computer background and remote control use. Then each subject

worked with two interfaces in one of four possible combinations to control for order effects.

Each subject saw one actual interface and one handheld interface, and one stereo interface

and one phone interface, neither necessarily in that order. For each interface, the user was
asked to work through a set of tasks. When finished, a final questionnaire was given that

asked whether the actual appliance or PDA interface was preferred and for any general com-

ments about the study and the interfaces.

3.2.2 Evaluation
In order to compare the interfaces for both appliances, task lists were created for the stereo
and phone. Each list was designed to take about twenty minutes to complete on the actual

appliance, and the same tasks were used for both the handheld and actual interfaces. About

two-thirds of the tasks on both lists were chosen to be easy, usually requiring one or two but-

ton presses on the actual appliance. Some examples of easy tasks are playing a tape on the
stereo, or listening to a particular message on the phone. The remaining tasks required five or

more button presses, but were chosen to be tasks that a user was likely to perform in real life.

Chapter 3: Preliminary User Studies 42

These included programming a list of tracks for the CD player on the stereo, or setting the

time on the phone.

It was anticipated that some subjects would not be able to complete some of the more diffi-

cult tasks. If a subject gave up while working with the actual phone or stereo, they were given

the user manual and asked to complete the task. Subjects working on the prototype inter-

faces were allowed to press the “Help” button, available in some form on every screen. On
the paper interfaces for the first study, a verbal hint was given, whereas the Visual Basic inter-

faces for the second study presented a scrollable screen of text, indexed by topic.

The performance of each subject on both lists of tasks was recorded using three metrics: time

to complete the tasks, number of missteps made while completing the tasks, and the number
of times external help was needed to complete a task. The time to complete the tasks was

measured from the press of the first button to the press of the button that completed the last

task. External help is any use of the manual for an actual appliance or the help screen on the

PDA, or any verbal hint from the experimenter.

For the purposes of this study, a misstep is defined as the pressing of a button that does not

advance progress on the current task. Repeated pressings of the same button were not

counted as additional missteps. Sometimes a subject would try something that did not work,

try something else, and then repeat the first thing again. If the interface had given no feed-
back, either visibly or audibly, the repeated incorrect steps are not counted as additional

missteps. No missteps are counted for a task after the user has requested external help.

3.3 Study #1

The first study compared the actual appliance interfaces to our hand-designed paper proto-
types (see Figure 3.2).

For the handheld portion of our experimental procedure, subjects were given a stylus and a

piece of paper that showed a picture of a Palm V handheld device displaying the remote con-

trol interface. Subjects were instructed to imagine that the picture was an actual handheld,
and to interact with it accordingly. Whenever the subject tapped on an interface element on

the screen, a new picture was placed over the old one to show the result of the action. If

auditory feedback was required, such as when the subject pressed play on the CD panel of

the stereo (see Figure 3.2c), the test administrator would verbally tell the subject what hap-
pened.

Chapter 3: Preliminary User Studies 43

3.3.1 Participants
Thirteen Carnegie Mellon graduate students volunteered to participate in this study, five fe-

male and eight male. All subjects were enrolled in the School of Computer Science, and all
had significant computer experience. Seven owned Palm devices at the time of the study.

Only one subject had no Palm experience and the remaining five had exposure to Palm de-

vices in class or through friends. Everyone in the group had some experience with stereo

systems. Only two did not have a stereo. Four subjects happened to own a stereo of the same
brand used in this study.

3.3.2 Results
The results of the study indicate (all p < 0.001) that subjects made fewer missteps and asked

for help less using the prototype handheld interfaces than using the actual appliances (see
Figure 3.4). This indicates that the prototype handheld interfaces were more intuitive to use

than the actual interfaces.

Time was not recorded for this study because we believed that delays created by the paper

prototypes would dominate the time required to complete all the tasks. Even so, informal
measurements suggested that subjects needed about one-half the time to complete all of the

tasks using the prototypes as compared to the actual appliances.

Figure 3.4. Box-plots showing the range of missteps and help requests (uses of external help) for each appli-
ance and interface type.

Chapter 3: Preliminary User Studies 44

3.3.3 Discussion
Users had great difficulty using the actual appliances, but were able to understand and oper-

ate the paper prototype interfaces with reasonable ease. One exception was found in the
prototype stereo interface, which made use of the Palm’s built-in menu system. None of our

subjects navigated to screens that were only accessible through the menus without help, be-

cause they did not think to press the button that makes the menus visible. This was in spite

of the fact that more than half used Palm devices regularly and were aware of the menu sys-
tem. Although the study was successful, there was concern that the prototype interfaces

benefited from the close interaction of the subject and the experimenter. In the paper proto-

type portion of the study, the experimenter provided all feedback to the user, including

verbal hints when the user requested them. Because of these issues, a new study was con-
ducted with full implementations of the interfaces so that the experimenter would be a

passive observer instead of an active participant.

3.4 Study #2

The second study improved upon on the first study by replacing the paper prototypes with

the full-fidelity PocketPC prototypes.

One very important issue with these interfaces was their use of several conventions that are

specific to the PocketPC operating system. In particular, there is a standard OK button for
exiting dialog boxes that is displayed in the top right corner of the screen. Users in pilot tests

did not discover this feature, and thus were unable to exit from certain screens in the inter-

face. The interfaces were not changed because of our goal to use the conventions of the

controlling device. Instead, a tutorial program was created and presented to subjects before
they began the study. The tutorial covers the OK button, text-entry, and the location of the

menu bar, which is at the bottom of the screen instead of the top as on desktop computers.

3.4.1 Participants
Twelve students from Carnegie Mellon volunteered to participate in the study, in response

to an advertisement posted on a high-traffic campus newsgroup. The advertisement specifi-
cally requested people with little or no knowledge of handheld computers. Subjects were

paid US$7 for their participation in the study, which took between thirty and forty-five

minutes to complete. Eight men and four women participated, with a median age of 22 and

Chapter 3: Preliminary User Studies 45

an average of five years experience using computers. Subjects self-rated their skill at using

computers for everyday tasks and their knowledge of handheld computers on a seven-point
Likart scale. On average, subjects rated their knowledge of handhelds three points less than

their skill with everyday computers (an average of 5.5 for everyday skill and 2.5 for handheld

knowledge). Half the group owned Aiwa-brand stereos and two had AT&T digital answer-

ing machines.

3.4.2 Results
The results of the study indicate that subjects performed significantly better (p < 0.05 for all)

using the PDA interfaces in all three metrics: time to complete the tasks, number of help re-

quests, and number of missteps. Note that time could be measured in this study because

there was no longer overhead from shuffling papers. Figure 3.5 shows box-plots comparing
the handheld and actual interfaces for each metric on the stereo and phone respectively.

For both appliances, users of the actual interfaces took about twice as long, needed external

help five times more often, and made at least twice as many mistakes as users of the PDA

interfaces (note that this improvement is similar to that found when using the automatically
generated interfaces compared with the actual interfaces, as described in Chapter 10).

Figure 3.5. Box-plots of results from the second user study.

Chapter 3: Preliminary User Studies 46

3.4.3 Discussion
The results of the second study are very similar to those of the first. Most of our subjects did

not need to use external help to complete tasks using the handheld, and those that did use
help only used it once. This compares to each subject’s average of 3.6 uses of help for the

actual stereo and 4.3 uses for the actual phone. Poor labeling, insufficient feedback, and the

overloading of some buttons with multiple functions can account for this large difference on

the actual appliances.

The worst examples of poorly labeled buttons and overloaded functions were found on the

AT&T phone. This phone has several buttons that can be tapped quickly to activate one

function and be pressed and held to activate another function. There is no text on the tele-

phone to indicate this.

A similar problem is also encountered on the stereo. Setting the timer requires the user to

press a combination of buttons, each button press within four seconds of the last. The stereo

does not display an indicator to warn of this restriction, and often users were confused when

a prompt would disappear when they had not acted quickly enough.

The phone also suffered from an underlying technical separation between the telephone and

the answering machine functions. None of the buttons on the phone can be used with the

answering machine. Even the numeric codes must be set using arrow buttons rather than the

phone keypad. All but one subject tried to use the keypad buttons to set the code. The ex-
ception had used a similar AT&T phone in the past.

All of these problems were avoided in the PDA interfaces, because there was room for labels

that were more descriptive and certain multi-step functions could be put on a separate screen

or in a wizard. Using different screens to separate infrequently used or complex functions can
also be problematic, however. Other buttons or menu items must be provided so that the

user can navigate between screens, and the labels for these navigation elements must describe

the general contents of the screen that they lead to. This was particularly a problem for the

handheld stereo interface, which has more than ten screens. Many of the screens are accessi-
ble through the menu bar at the bottom of the screen. Subjects in the study and think-aloud

participants before the study were very tentative about navigating the menus to find a par-

ticular function. In tasks that required the subject to navigate to a screen from the menu bar,

the subject commonly opened the correct menu, closed the menu, did something wrong on
the current screen, and then opened the menu again before finally picking the correct item.

Chapter 3: Preliminary User Studies 47

The PDA stereo interface had other problems as well. In particular, the record function was

difficult to represent in the interface because it was associated with tapes but needed to be
available in all of the stereo’s five playback modes: tape, radio, CD, etc. Although a record

button was available on every screen (see Figure 3.3c-d), many subjects would get confused

and incorrectly switch to the tape mode instead of pressing the record button. The red circle

next to the text label on the “Rec” button was added after pilot testing to make the button
more visible, because we thought that people tried the tape mode because they did not see

the record button. This change seemed to have little effect, however.

3.5 Analysis of Interfaces

Once we were confident that our interfaces were usable, the interfaces were analyzed to un-
derstand what functional information about the appliance was needed for designing the

interfaces. This included questions such as “why are these elements grouped together?” or

“why are these widgets never shown at the same time?” These are questions that might sug-

gest what information should be contained in the specification language.

The prototype interfaces showed that finding groups of similar functions is important for

constructing a good interface. These groups define how elements are placed relative to each

other, and which elements can be separated across multiple screens. The different screens of

the tab components are the best examples of grouping in our prototype interfaces (see Figure
3.2 and Figure 3.3). Grouping is also used to separate the mode, random, and repeat ele-

ments from the rest of the elements of the stereo CD player interface (see Figure 3.3c). These

elements are used in all of the CD player’s modes, while the other components are only used

in half the modes.

Unfortunately, the visual groups cannot be specified explicitly because their members may

vary between target platforms. For example, on a device with a small screen it might be nec-

essary to separate the display of the current disc and track from the controls for playing a

CD. It would not be appropriate if the PUC separated the play and stop buttons however.
We noted that grouping information could generally be specified as a tree, and that the same

tree could be used for interfaces of many different physical sizes provided the tree had suffi-

cient depth. User interfaces designed for small screens would need every branch in the tree,

whereas large screen interfaces might ignore some deeper branches.

Chapter 3: Preliminary User Studies 48

It was also found that grouping is influenced by modes. For example, the Aiwa shelf stereo

has a mode that determines which of its components is playing audio. Only one component
can play at a time. In the stereo interfaces shown in Figure 3.3c-d you will note that a tabbed

interface is used to overlap the controls for the CD player, tape player, etc. Other controls

that are independent of mode, such as volume, are available in the sidebar. Unlike regular

grouping information, information about modes gives explicit ideas about how the user in-
terface should be structured. If two sets of controls cannot be available at the same time

because of a mode, they should probably be placed on overlapping panels. We designed de-

pendency equations to describe appliance mode information in our language.

The prototype interfaces also showed that feedback is important. One important way the
interfaces provided feedback was by disabling, or graying out, a control so the user could tell

when that function was not available. Many of the errors that users made with the actual ap-

pliance interfaces occurred when they pressed buttons for functions that were not currently

available. This is another area where dependency information is helpful, because it defines
exactly when the control(s) for a function should be disabled.

It was also noticed that most of the functions of an appliance were manipulating some data

in a definable way, but some were not. For example, the tuning function of a radio is ma-

nipulating the current value of the radio station by a pre-defined increment. The seek
function also manipulates the radio station value, by changing it to the value of the next ra-

dio station with clear reception. This manipulation is not something that can be defined

based on the value of a variable, and thus it would need to be represented differently in the

specification language.

Each of the interfaces used different labels for some functions. For example, the Palm stereo

interface (see Figure 3.2c-d) used the label “Vol” to refer to volume, whereas the PocketPC

stereo interface (see Figure 3.3c-d) used “Volume.” This problem seems likely to be even

worse for much smaller devices, such as mobile phones or wrist-watches. Thus it seems im-
portant for the specification language to include multiple labels that an interface generator

could choose between when designing its layouts.

Finally, it was found that all of the interfaces used some “conventional” designs that would

be difficult to specify in any language. At least one example of a conventional design can be
found in each of the panes in Figure 1: (a) shows a telephone keypad layout, (b) uses stan-

dard icons for previous track and next track, (c) shows the standard layouts and icons for

Chapter 3: Preliminary User Studies 49

play buttons on a CD player, and (d) uses the standard red circle icon for record. These con-

ventions should not be specified as a part of the functional description of the appliance
however, because they are not always applicable. The dialing pad convention does not make

any sense for a speech interface, for example. I have developed a solution for addressing this

problem called Smart Templates [Nichols 2004b], which is discussed in Chapter 7.

3.6 Requirements

The hand-designed interface work led to the development of a list of requirements that the

PUC system must fulfill in order to generate high-quality interfaces. This section describes

those requirements and briefly discusses how they are fulfilled (or not) by the PUC and other

systems.

3.6.1 Two-Way Communication
One of the most important requirements for any PUC-type system is two-way communica-

tion between the controller and the appliance. This is an obvious requirement for any system

where the controller downloads an appliance specification before constructing an interface
that issues commands back to the appliance. It is important that this two-way communica-

tion be maintained through-out the entire session however, so that the controller and

appliance can keep their state synchronized.

State synchronization allows graphical interfaces to display information about the current
state of the interface that might not be visible on the actual appliance. Graphical interfaces

can also use the current state coupled with dependency information to disable components

that are not currently active. Knowledge of the current state is also very important for speech

interfaces, which must be able to respond to user queries about the current state even if the
information is available visually on the appliance. This is especially helpful for blind users or

when the user is not near the appliance.

3.6.2 Simultaneous Multiple Controllers
It is also important that multiple controllers can communicate with the same appliance si-

multaneously. Users will expect this feature, and it has the added benefit of allowing
different interface modalities to be freely mixed together by using several different controller

devices in tandem. For example, a user might combine a handheld controller with a headset

Chapter 3: Preliminary User Studies 50

to create a multi-modal graphical and speech interface. Most current systems seem to fulfill

this requirement.

3.6.3 No Specific Layout Information
The appliance specification should include information about the functions of that appli-

ance, but it should not include specific information about how controls should be positioned

on the screen. We share this philosophy with the V2 [INCITS/V2 2003] and Xweb

[Olsen Jr. 2000] projects but not with UIML [Abrams 1999], which can include concrete
information in its description about layout. This requirement enforces modality independ-

ence by limiting how detailed a designer can specify the functions of an appliance. If it were

possible to describe concrete interfaces within an appliance specification language, designers

would be tempted to include too many details about how each interface should be imple-
mented. This has several disadvantages:

• Appliance specifications will get much longer because each one may turn into a complete

description for several different types of concrete interfaces.

• Appliance specifications might lose their forward compatibility to PUC devices of the fu-
ture. It seems likely that variety will increase in the devices of the future as non-

rectangular screens and different interaction styles become more common. For example,

specific information for a dialog box-style interface would probably not be useful for a

new watch with a circular screen and several nested dials for interaction.

• Some of the other advantages of automatic generation might be lost. For example, a

PUC can ensure interface consistency by making certain interactions the same across

multiple appliances. This is not possible if the PUC does not have the freedom to choose

the interaction style and positioning for representing given functions.

3.6.4 Hierarchical Grouping
A fundamental requirement of any user interface is good organization, because users must be

able to intuitively find a particular function. An appliance specification can easily define or-

ganization using a tree to group similar functions. This makes the interface generation
process easier, because most concrete interfaces can also be represented as a tree. The utility

of trees for grouping seems to be universally accepted; most current systems use some kind of

tree for grouping functions, although USIXML [Limbourg 2004] uses a graph.

Chapter 3: Preliminary User Studies 51

3.6.5 Actions as State Variables and Commands
Each action that the user can take must be represented in the appliance specification. We

found, as have many others, that state variables and commands are a succinct way to repre-
sent the manipulable elements of an appliance. Some systems, such as V2 and Microsoft’s

UPnP [UPnP 2005], separate the state variables from the commands that act upon them.

This means that a specification for a radio might include a station variable, and also tune up,

tune down, seek up, and seek down commands associated with the variable. The PUC sys-
tem infers as many functions from the state variable as possible, but still uses commands for

those functions that cannot be inferred, such as seek up and seek down.

Not every command can be associated with a state variable however, and specification lan-

guages must support unassociated commands. Unassociated commands are required for
representing functions where there is no notion of state, such as pressing the “flash” button

on a telephone. Commands are also useful for situations in which state is not available, per-

haps by manufacturer choice or an inherent limitation of the appliance hardware.

3.6.6 Dependency Information
In most graphical interfaces there is a visual indicator when a control is disabled, such as the

typical “grayed out” appearance. We have found that information about when a function is

active can be specified concisely in terms of the values of state variables. Not only does this

allow graphical interfaces to display an indicator of whether the function is available, but it
can also be useful for inferring information about the panel structure and layout of the inter-

face. Appliances with modes especially benefit from this approach, because each mode is

typically associated with several functions that are active only in that mode. If the depend-

ency information is in a representation that can be analyzed, the interface generator can
search for sets of controls that are never enabled at the same time, and then create a graphical

interface that saves space and prevents user confusion by displaying only the controls for the

active mode. This knowledge can also be used by Universal Speech Interface applications to

solve the problem of disambiguation.

Dependency information may also be useful for generating help information, as in the UIDE

system [Sukaviriya 1990]. UIDE used built-in pre- and post-condition information to de-

termine why a particular function is not available and to generate instructions for making the

function available. In our comparison study with the graphical interfaces we observed that
users most often sought help when they wanted to use a function that was currently inactive.

Chapter 3: Preliminary User Studies 52

Dependency information is similar to pre- and post-condition information and could be

used to generate the same kind of help as UIDE.

As mentioned above, it is important that dependency information be in a form that can be

analyzed by the interface generators. The original version of the V2 standard included de-

pendency information, but the dependencies were defined as arbitrary ECMAScript

expressions which were difficult, if not impossible, to analyze. This precluded the depend-
ency information from being used for graphical layout, speech generation or command help.

The PUC avoids this problem by specifying dependency information as a concise set of rela-

tions joined by logical operations. The PUC is the first system we are aware of that uses

dependency information as an input to its automatic interface generator, and the current ver-
sion of the V2 standard has adopted a similar approach.

3.6.7 Sufficient Labels
Our comparison study of the hand-designed interfaces with the actual appliance interfaces

showed that good labels are an important part of creating a high quality user interface. Labels

are an even more important part of speech interfaces, because there are no graphical hints to
assist the user’s understanding of the interface. To give flexibility to the interface generator, a

label in an appliance specification should not be a single text string but instead a collection of

text strings, pronunciation keys, and text-to-speech recordings. Pronunciation keys and text-

to-speech recordings help improve the quality of the speech interface. Multiple text strings
give a graphical interface generator the flexibility to select the label with the most informa-

tion that can be fit in the allotted space. The PUC was the first system to provide more than

just single string text labels, and this approach has since been adopted by the V2 standard.

3.6.8 Shared High-Level Semantic Knowledge
Despite all of the previous requirements, we must recognize that it is impossible to encode all

the information into an appliance specification that a human would use to design an inter-

face. In addition to functional information about the appliance, a human designer will also

use his knowledge of conventions when creating an interface. There are many such conven-
tions, such as the arrangement of buttons on a telephone number pad or the country-specific

format for specifying dates. Conventions tend to be used across different types of appliances,

but their usage will differ depending on the functionality of each appliance. For example,

media controls like play, stop, and pause can be found on many appliances, but while most

Chapter 3: Preliminary User Studies 53

devices will have play and stop, not all will fast-forward, rewind, next track, or previous

track. Some appliances will add their own less common functionality, such as the play new
button on some answering machines.

Describing every convention and how it should be applied for an appliance would require a

lot of detailed specification and might violate our third requirement of not including any

layout information in our specifications. Instead, I have developed an innovative flexible
standardization technique call Smart Templates, which allows conventions to be standard-

ized in advance, for appliance specifications to easily describe how conventions might be

applied in the appliance user interface, and interface generators to appropriately render a

convention based on the appliance, the controller device, and various properties of the user
(such as locale). Smart Templates are discussed in more detail in Chapter 7.

Chapter 3: Preliminary User Studies 54

CHAPTER 4

4System Implementation

I have fully implemented the PUC system, allowing users to control real appliances through
automatically generated interfaces on real handheld devices. The chapter overviews the PUC

architecture, and discusses aspects of the implementation that are not discussed elsewhere.

4.1 Architecture

The overall architecture of the PUC system is shown in Figure 4.1. The PUC system has two
main entities: the appliances that provide some service to the user, and controller devices that

automatically generate and present remote control interfaces for the appliances. Appliances

and controller devices communicate using a peer-to-peer approach, which allows any con-

troller device to control multiple appliances simultaneously and any appliance to be
controlled by multiple controller devices simultaneously. Two-way communication is re-

quired, because controllers must be able to send commands and receive both specifications

and appliance state information from the appliances.

Appliances and controller devices communicate via a custom communication protocol that
was designed to be operable across many different network layers, such as Wi-Fi, Bluetooth,

or Zigbee, although our current implementations only support TCP/IP. Our protocol is

55

based on XML and its messages are designed around the functional elements that are sup-

ported by the PUC specification language. Unlike many other appliance control systems,
such as UPnP, the PUC does not support automatic discovery of appliances. Currently, the

user of a controller device must specify a server to connect to, either via an IP address or a

name, and then the protocol can relay the name of any appliances that are controllable

through that server. I considered including discovery features in the protocol, but decided
this feature was outside the scope of my research. In the future, some discovery mechanism

could be integrated with the PUC. In particular, it would seem best to use a location-based

discovery system to ensure that users are controlling the appliances they intend to control

and not, for example, their neighbors appliances.

Appliances are increasingly being built with communication protocols that allow two-way

communication, but unfortunately these protocols are often proprietary and not compatible

with the PUC protocol. To enable control of real appliances, we build adaptors: hardware

and/or software that translate the appliance’s proprietary protocol to the PUC protocol. In
some cases, it is not possible to control the actual appliance. In these cases, we are forced to

write adaptors that simulate the behavior of appliances.

Figure 4.1. Diagram of the PUC system architecture, showing the communication between each of the differ-
ent components.

Chapter 4: System Implementation 56

4.2 Controlling Appliances

We have built adaptors for nine different existing appliances (see Table 4.1) and simulators
for seven others (see Table 4.2). There is also a generic “Debug Server” that can read any

PUC specification, create a simulator based that specification, and provide a user interface

that allows the developer to adjust the state of the appliance as though that appliance was

actually functioning. The user interface generated by the Debug Server uses a subset of the
same algorithms as our other graphical interface generators, though it allows read-only state

variables to be modified and does not show commands (see Figure 4.2).

Most of the adaptors we have built were created entirely in software and require the appli-

ance to be attached to a PC in order to function. For example, the Sony Camcorder is
controlled through the AV/C protocol running over an IEEE 1394 (Firewire) cable. Our

adaptors for desktop applications typically use the Add-In capability provided by the devel-

oper, while our other adaptors communicate through the serial port or with general protocols

such as UPnP. The one adaptor not written entirely in software is for the Audiophase Shelf
Stereo, which did not originally have any mechanism for communicating its internal state to

a third party. This appliance was modified by our collaborators at MAYA Design, a local

Pittsburgh design firm, with custom hardware that electronically “watched” the LCD screen

of the stereo and determined its state from the set of lights that were currently displayed.
Control of the shelf stereo was enabled through the standard IR protocol used by the stereo’s

own remote control.

We also investigated building general adaptors for existing appliance control protocols, such

as UPnP and HAVi. UPnP and HAVi both have their own appliance description languages,
and the idea was to build a gateway for each that would translate that protocol’s appliance

description into a PUC specification. With the translated specification and mapping from

one description language to another, the gateway could translate between the protocols on

the fly. Unfortunately, we were not able to build these general adaptors for two reasons, one
practical and one more fundamental. The practical reason we chose not to build a general

purpose adaptor is that few appliances are designed to use these protocols, and those that are

export only a few functions through the protocol. This makes the value in creating a general

adaptor fairly low. Fundamentally, the problems with building a general adaptor were even
worse. The description languages for UPnP and especially for HAVi were not nearly detailed

enough to produce a reasonable PUC specification. For HAVi, the problem is that descrip-

Chapter 4: System Implementation 57

tions are limited to a low-level description of the desired user interface including pixel loca-

tions and sizes for every control. Without links between the labels and their associated
controls, it is very difficult to create a reasonable PUC specification. For UPnP, the descrip-

tions provided functional information at the right level of abstraction, but there was no

grouping information and few human-readable labels. PUC specifications could be created

from this information, but the resulting interfaces would be poor at best.

Table 4.1. Appliance adaptors built by the PUC research team

Home Entertainment Appliances
 Audiophase Shelf Stereo
 Sony Camcorder

Lighting Controls
 Intel UPnP Light
 Lutron RadioRA Lighting
 X10 Lighting

Desktop Applications
 Microsoft PowerPoint
 Microsoft Windows Media Player 9
 PUC Photo Browser

Other
 Axis UPnP Pan-Tilt-Zoom Surveilance Camera

Table 4.2. Appliance simulators built by the PUC research team

Home Entertainment Appliances
 Panasonic PV-V4525S VCR

GMC 2003 Yukon Denali Systems
 Driver Information Console
 Climate Control System
 Navigation System

Office Appliances
 Canon PIXMA 750 All-In-One Printer
 HP Photosmart 2610 All-In-One Printer

Other
 Simulated Elevator

Figure 4.2. The interface for the PUC Debug Server. a) The main window showing the appliances currently
being simulated by this server. b) The interface for simulating a Philips DVD player that was automatically
generated by the Debug Server.

Chapter 4: System Implementation 58

4.3 Generating Interfaces on Controller Devices

I have built graphical interface generators for three different platforms, Microsoft’s Pock-
etPC, Smartphone, and TabletPC, and collaborated on the creation of a speech interface

generator with researchers from Carnegie Mellon’s Language Technologies Institute (LTI).

All interface generators speak the PUC communication protocol and generate interfaces from

the specifications written in the PUC’s specification language.

The speech interface generator creates interfaces using Universal Speech Interface techniques

[Rosenfeld 2001] developed by my collaborators in LTI. This generator was implemented

using a variety of speech technologies developed at Carnegie Mellon, including the Phoenix

parser [Ward 1990] and the Sphinx recognizer [CMU 2006]. Unlike the other interface gen-
erators, the speech generator attempts to determine up-front which appliances the user will

want to control and then it automatically generates a grammar that supports control for all of

those appliances. A language model and a pronunciation dictionary are also automatically

generated to assist the speech recognizer.

The graphical interface generators are all implemented in C# using the .NET Compact

Framework 2.0. Even though the generators run on different platforms, using .NET has al-

lowed me to share a substantial amount of code between each of the interface generators.

This includes the code the implements the communication protocol, parses the specification
language and performs other common tasks. Some interface generation rules can be shared

among the platforms as well, but each platform also has its own unique generation rules.

These rules will be discussed in detail in Chapter 8. Each of the graphical generators has its

own custom interface for allowing the user to connect to appliances. Some custom controls
were also implemented for the various generators to support the generation of list interfaces

and add common controls that were not supported in the Compact Framework.

4.3.1 PocketPC and Desktop Implementation
The PocketPC and desktop generators have a similar menu-based interface that allows users
to connect to appliances and generate user interfaces. The interface generator menus are used

exclusively for generator functions and no appliance functionality is ever added to them.

This decision was based in part of the preliminary user studies (see Chapter 3) that showed

that subjects rarely looked in menus for appliance functions. There are four menus. The
PUC menu (shown in Figure 4.3a) allows users to connect to a new appliance server or

Chapter 4: System Implementation 59

a. b. c. d.

Figure 4.3. Screenshots of the menu interface for the PocketPC PUC interface generator. The desktop inter-
face generator has a similar menu structure. The backgrounds of all these screenshots show the logging panel
where messages from the interface generator are displayed (primarily for debugging purposes).

choose a recently-used server. Appliance servers are machines through which multiple appli-

ances may be attached. These servers maintain a list of all the appliances that are connected
to them and send this list to controller devices when they connect. The Servers menu (shown

in Figure 4.3b) shows the servers that the controller device is connected to, with a hierarchi-

cal menu for each server showing the appliances that are connected to that server. If the user

selects an appliance from this hierarchical menu, then the controller device connects to the
appliance (most likely through an appliance adaptor), downloads the appliance specification,

and generates the user interface. Appliances connected to the controller device are displayed

in the Devices menu (shown in Figure 4.3c). The Generation menu (shown in Figure 4.3d)

gives access to various options that control the generation of user interfaces, including reset-
ting the consistency system and opening the various screens of the multi-appliance system

(see Chapter 9).

To support the generation of interfaces, it was also necessary to implement a number of cus-

tom controls to cover functionality that was not present in the .NET Compact Framework.
For example, the Compact Framework does not have a panel that automatically adds scroll

bars when controls are placed off the panel’s viewable area. It was also necessary to imple-

ment a date-time picker, a slider, the combo box organizing panel (used for navigation

between the three panels on the left half of Figure 8.1b), and a few different list widgets (see
Figure 1.2b for a shot of a list widget displaying multiple steps in a route).

Chapter 4: System Implementation 60

a. b. c. d. e.

Figure 4.4. Screenshots of interfaces for the Smartphone interface generator showing the menu-based interface
(a-c) and custom controls built for the Smartphone (d-e).

The generator interface also has a logging panel that is primarily used for debugging, as

shown in Figure 4.3. This view allows a user to track the progress of the PUC when generat-

ing a new interface and also reports when messages are received from appliance servers.

4.3.2 Smartphone Implementation

The Smartphone interface generation also has a menu-based interface, however the structure

of the menus are slightly different because of differences in the Smartphone’s menu design.

Smartphone devices have two soft buttons underneath the screen, with the leftmost button
invoking a common command and the rightmost button opening a single menu. This menu

has hierarchical items that include the same functionalaity as the PocketPC and desktop gen-

erators. The initial view of the Smartphone interface (see Figure 4.4a) shows a logging panel

with the two initial soft button labels at the bottom. From this screen the user can press the
left soft button to open a connection to an appliance server or the right soft button to open

the menu (see Figure 4.4b). The menu has hierarchical items corresponding to the server,

device, and generation menus of the PocketPC and desktop generators. Recently connected

servers are also placed in separate sub-menu to limit the number of items in the menu. The
multi-appliance interfaces have not yet been implemented for the Smartphone, so only con-

sistency options are available in the generation menu (see Figure 4.4c).

It was also necessary to implement custom controls for the Smartphone interface. Although

the interface guidelines for the Smartphone called for three types of interface views (see sec-
tion 8.1.2 for a more detailed description), no controls were provided in the Compact

Framework for implementing these views. Thus, it was necessary to implement a list widget

for the typical list-based interaction (see Figure 1.3a-c for several examples) and a widget for

panel-based interactions that automatically scrolls as the user’s input focus changes (see

Chapter 4: System Implementation 61

Figure 4.4d). It was also necessary to implement a custom slider widget because the Smart-

phone version of the Compact Framework (v1.1) did not provide an interactive scrollbar. An
example use of the custom slider control is shown in Figure 4.4e for controlling the bright-

ness of a copier).

4.4 Communication

The communication protocol defines 11 different messages that may be sent between an ap-
pliance and a controller device. 6 of these messages may only originate from the controller

devices (see Table 4.3), whereas the other 5 may only originate from an appliance (see Table

4.4). The protocol defines two additional messages that allow appliances to identify them-

selves to other appliances. In our current design we assume a lossless underlying networking
technology, such as TCP/IP, and so our protocol does not include any messages whose sole

purpose is to acknowledge the receipt of another message. The protocol also does not define

a strict ordering among any of the messages; both controller devices and appliances must be

prepared to receive any message at any time.

All messages in the PUC protocol are composed of two chunks of a data: an XML chunk

followed by an optional binary chunk. The binary chunk is used to transmit data, typically

images, which cannot be easily converted to text and transferred within the XML chunk.

Both chunks of data are preceded in the message by two 4 byte fields: the first containing the
length of both data chunks and the second containing the length of only the XML chunk

(see Figure 4.5).

The data in the XML chunk must conform to our communication protocol schema, which

defines each message type and each type’s parameters. This schema can be found in Appen-
dix C.1 and detailed documentation on the language is available online at:

http://www.pebbles.hcii.cmu.edu/puc/protocol_spec.html

Messages are designed around state variables and commands, which are the basic functional

elements of the PUC specification (for more detail see section 5.2.1.1). Controller devices

may send messages requesting changes to a state variable or the invocation of a command. In
response, appliances will often send one or more state change notifications. These three mes-

sages are most common sent in the PUC protocol. State change notifications may also be

sent when the controller device requests an update of an appliance’s entire state. There is also

Chapter 4: System Implementation 62

Table 4.3. Messages that may be sent by the controller device.
Name Description

state-change-
request

This message requests the appliance to change the designated state to the
value contained in the message.

command-invocation-
request

This message requests the appliance to invoke a command. This may cause
state changes as side effects.

spec-request This message requests the appliance to send a copy of its specification. It
will send this via the device-spec message.

full-state-request This message requests the appliance to send state-change-notification
messages for every state that it has.

state-value-request This message requests the appliance to send a binary-state-change-
notification message containing binary data for a particular state.

server-information-
request

This message is sent by controllers to get the list of appliances connected to
a particular server.

Table 4.4. Messages that may be sent by the appliance to a controller device.
Name Description

state-change-
notification

This message is sent whenever the appliance changes state. The state name
and its value are sent.

binary-state-
change-notification

This message may be sent in two different contexts. It is sent when binary
data has changed on the appliance and in response to a state-value-
request message from the controller.

device-spec This message contains the appliance specification. It is sent after receiving a
spec-request message.

alert-information This message contains a string message that must be delivered to the user.

server-information This message is sent by the service discovery manager to let a controller
know which appliances are connected to this server and whether the set of
appliances has changed.

Figure 4.5. Message format for the PUC communication protocol.

Chapter 4: System Implementation 63

a message for a controller device to request an appliance’s specification and another message

used by the appliance to send the specification document.

The PUC’s support for binary data and for complex data formats, such as lists, also intro-

duces the possibility that large amounts of data will need to be sent to the controller device

whenever the appliance needs to update its state. To address this problem for lists, we have

included four list operations that allow the appliance to only update the portion of a list that
has changed rather than resending the entire list. We also considered adding a versioning sys-

tem for lists to address problems that might arise if the user decided to interact with a list

while the list’s data was being updated. In practice list data synchronization has not been a

problem for PUC interfaces however, so we have not yet implemented this feature.

The PUC protocol also handles binary data differently, both to limit the number of large

data transfers and to allow the controller device to specify a binary format that is compatible

with its capabilities. When a state variable with a binary type is changed on the appliance, a

state notification is sent to the appliance with the name of the state variable but without the
new binary data. The controller device must then explicitly request the binary data if it can

handle the data appropriately. The PUC specification of a binary typed state variable may

indicate that the appliance is able to manipulate the binary data that it sends to the controller

(e.g. scaling an image). If the specification indicates that such as appliance feature is avail-
able, then the the controller may specify additional parameters in its request for the binary

data (such as the size of an image). The appliance will send the binary data once the request

is received from the controller device. This process prevents extra transfers of potentially

large binary data in two ways: 1) controller devices that cannot process the binary data will
not request it all and 2) if a binary state is updated rapidly then the controller device can

condense these updates and request new data at the speed with which the controller device

can receive it.

Chapter 4: System Implementation 64

CHAPTER 5

5Specification Language2

The PUC specification language was carefully designed to include just the right amount of
information to generate high-quality user interfaces while also being easy-to-use and concise.

An important goal of the language was to allow experienced specification authors to create a

specification in the same amount or less time as an experienced user interface designer would

need to create a user interface for one platform. Accomplishing this goal would address a
problem with many previous automatic and guided generation systems, whose specifications

required much more time to create than simply building the user interface by hand. Infor-

mally, our experience with the specification language suggests that we have come close to

accomplishing this goal while providing enough detail for interface generators to produce
high-quality interfaces.

This chapter starts with a brief discussion of the design principles that we used in the crea-

tion of the specification language, building on the requirements and analysis of the hand-

designed interfaces discussed in Chapter 3. It then describes the design of the language in

2 The work in this chapter was originally described in Jeffrey Nichols, Brad A. Myers, Kevin Litwack, Michael Higgins,
Joseph Hughes, and Thomas K. Harris. “Describing Appliance User Interfaces Abstractly with XML,” in Proceedings of the
Workshop on Developing User Interfaces with XML: Advances on User Interface Description Languages. Gallipoli, Italy. May 25,
2004. pp. 9-16

65

detail, highlighting the language’s unique aspects. Finally, I will conclude with some infor-

mal evaluation and observations about the specification language and its effectiveness.

This design of the language is shown through an example specification for a basic VCR ap-

pliance specification. This VCR has five functions that users can manipulate: power, the

common media controls including record and eject, channel, TV/VCR, and a list of timed

recordings that will take place in the future. There are also two status indicators for deter-
mining whether a tape is in the VCR and whether that tape is recordable. The VCR has

only one physical input, a standard television antenna, and two physical outputs, an antenna

passthrough and the standard three wire yellow/red/white plugs for composite video and ste-

reo audio. All of these features can be described in the specification language, as will be
shown below. The full specification for the simple VCR can be found in Appendix A; snip-

pets of the simple VCR’s specification will be shown as each of the language’s features is

described.

This chapter focuses on the conceptual aspects of the language with limited discussion of
syntax. Readers interested in authoring specifications should see the complete language refer-

ence, which is included in Appendix B or can be downloaded from the PUC web site at:

http://www.pebbles.hcii.cmu.edu/puc/specification.html

5.1 Design Principles

Before and during the design of the specification language, we developed a set of principles
on which to base our design. The principles are:

Descriptive enough for any appliance, but not necessarily able to describe a full desk-

top application. We found that we were able to specify the functions of an appliance

without including some types of information that earlier model-based systems included,
such as task models and presentation models. This is possible because appliance inter-

faces almost always have fewer functions than a typical application, and rarely use direct

manipulation techniques in their interfaces.

Sufficient detail to generate a high-quality interface, as based on the hand-designed
user interfaces discussed in Chapter 3. Note that this principle is different than the first.

It would have been possible to completely describe the appliance without the readable la-

bels or adequate grouping information that are needed for generating a good user

interface. For example, the Universal Plug and Play (UPnP) standard [UPnP 2005] in-

Chapter 5: Specification Language 66

cludes an appliance description language that does not include sufficient detail for gener-

ating good interfaces.

No specific layout information should be included in the specification language, fol-

lowing the system requirement described in section 3.6.3.

Support generation for different devices and modalities, especially for small devices

and both the graphical and speech modalities. It is important to note that although the
previous principle helps to address this one, this principle also suggests that specifications

may need to contain extra information to enhance support for particular devices or mo-

dalities. For example, specifications may need to include labels with pronunciation or

text-to-speech information to support the generation of speech interfaces.

Short and concise are very important principles for the design of our language. Appli-

ance specifications must be sent over wireless networks and processed by computing

devices that lack the power of today’s desktop machines. To ensure performance is ade-

quate, the specification language must be concise. Why then choose a verbose format like
XML as the basis for our language? We chose XML because it was easy to parse and there

were several available parsers. XML is also a very compressible format, which can reduce

the cost of sending specifications over the network, though the PUC system does not use

any compression.

Only one way to specify any feature of the appliance is allowed in our specification lan-

guage. This principle makes our language easy to author and easy to process by the

interface generator. It also makes it impossible for an author to influence the look and

feel of user interfaces by writing their specification in a particular way. Some examples of
design choices influenced by this principle are shown later.

5.2 Language Design

The design of the specification language has been developed over more than six years. Al-

though new features, such as complex data structure support and content flow information,
have been added since the initial version, the basic elements of the language have remained

the same. There are two main categories of information that can be described with the lan-

guage, functional and content flow, which are discussed in the following two sections.

Chapter 5: Specification Language 67

5.2.1 Functional Language Elements
The focus of the language is on the functional aspects of appliances, which directly influence

the design of interfaces for them. The functional elements of the language allow a specifica-
tion author to describe the features that an appliance has and how those features relate to

each other. The main features of the specification language are:

• The functions of an appliance can be represented by either state variables or state-less
commands. State variables have specific type information that describes how they can

be manipulated by the interface. Commands and states are collectively called appli-

ance objects.

• Each state variable has type information, which describes the values that state variable

may have and helps the interface generator decide how a variable should be repre-

sented in the final user interface.

• Label information is also needed in the specification so that users can understand the

functions of the appliance. The specification language allows multiple values to be

specified for each label, so that, for example, strings of multiple lengths can be pro-
vided for use in interfaces for screens of different sizes and pronunciation

information can be provided for a speech interface.

• The structures of the hand-designed interfaces (see Chapter 3) were often based upon
dependency information. For example, suppose that an interface was being created

for a shelf stereo system with a tape and CD player. When the power is off, a screen

with only a power button widget would be shown, because none of the other objects

would be enabled. When the power is on, a screen is shown with many widgets, be-
cause most of the objects are active when the power is on. We might also expect this

interface to have a panel whose widgets change based upon whether the tape or CD

player is active.

• The final representation of any interface can be described using a tree format. It is
not reasonable to include the tree representation of one interface in the specification

of an appliance however, because the tree may differ for different form factors. For
example, the tree will be very deeply branched on a small screen WAP cellular phone

interface, whereas the tree will be broader for a desktop PC interface. The specifica-

tion language defines a group tree that is deeply branched. It is expected that this

Chapter 5: Specification Language 68

information could be used for small screen and large screen interfaces alike, because

presumably some of the branches could be collapsed in a large interface.

• Complex data types can also be specified, such as lists and unions. The specification

of complex data is based on the tree structure used for other portions of the appli-

ance.

• It was important to use domain-specific conventions as much as possible in the hand-

designed interfaces, so that users could leverage their knowledge of previous systems

to use the interfaces. There is a need for some way to include this information in the
appliance specifications and the Smart Templates technique was developed to address

this problem.

Each of these items is described in detail below.

5.2.1.1 Appliance Objects

Three types of appliance objects are supported in the specification language:

• States - Variables that represent data that is stored within the appliance. Examples

might be the radio station on a stereo, the number of rings until an answering ma-

chine picks up, the time that an alarm clock is set for, and the channel on a VCR.
Each variable has a type, and the UI generator assumes that the value of a state may

be changed to any value within that type, at any time that the state is enabled. It is

possible for state variables to be undefined, i.e. without any value. This commonly

happens just after an interface is generated before any values have been assigned, but
could occur for other reasons.

• Commands – Commands represent any function of an appliance that cannot be de-
scribed by variables. They may be used in situations where invoking the command

causes an unknown change to a known state variable (such as the "seek" function on

a radio), or in situations where the state variable is not known (due to manufacturer

choice or other reason, e.g. the dialing buttons on a standard phone would all be
commands). In the VCR specification, the Eject function is represented by a com-

mand (see Figure 5.1b). Commands in the PUC specification language cannot have

explicit parameters, as they may in other languages such as UPnP. Where parameters

are needed, the author can use state variables and specify dependencies that require
the user to specify those variables before the command can be invoked. We could

Chapter 5: Specification Language 69

have allowed explicit parameters, but this feature would have overlapped with state

variables, increased the complexity of the language, and broken our “only one way to
specify” principle.

• Explanations – Explanations are static labels that are important enough to be explic-

itly mentioned in the user interface, but are not related to any existing state variable
or command. For example, an explanation is used in one specification of a shelf ste-

reo to explain the Auxiliary audio mode to the user. The mode has no user controls

and the explanation explains this. Explanations also represent an initial attempt at in-

cluding help information within PUC specifications, though they are rarely used.

Although there are differences between states, commands and explanations, they also share a

common property of being enabled or disabled. When an object is enabled (or active), the

user interface widgets that correspond to that object can be manipulated by the user. Know-

ing the circumstances in which an object will be enabled or disabled can provide a helpful
hint for structuring the interface, because items that are active in similar situations can be

grouped, and items can be placed on panels such that the widgets are not visible when the

object would not be active. This property is specifyied using dependency information, which

is discussed in section 5.2.1.4.

Appliance objects also have an optional priority property, described as an integer value from

0-10, which specifies the relative importance of an object compared to the other elements in

the same group. If the priority of an object is not specified, that object is assumed to be less

<state name="Channel" is-a="channel">

 <type type-name="ChannelType">

 <integer>

 <min>

 <constant value="2"/>

 </min>

 <max>

 <constant value="128"/>

 </max>

 </integer>

 </type>

 <labels>

 <label>Channel</label>

 <label>Chan</label>

 </labels>

</state>

<command name="Eject">

 <labels>

 <label>Eject</label>

 </labels>

</command>

a. b.

Figure 5.1. Examples of a) a state variable representing the current channel tuned by the VCR and b) a com-
mand for ejecting the tape currently in the VCR.

Chapter 5: Specification Language 70

important than other objects in the group for which a priority value has been given. The pri-

ority property was an early addition to the language and has not been as widely used as
expected. In part, this is because the order that objects appear within the specification often

describes the same information as priority and is easier to understand and manipulate than

priority numbers. The PocketPC and desktop interface generators do not make any use of

priority information, although the Smartphone does use this information in some of its gen-
eration rules.

5.2.1.2 Type Information

Each state variable must be specified with a type so that the interface generator can under-

stand how it may be manipulated. For example, the Channel state in Figure 5.1a has an

integer type. We define seven primitive types that may be associated with a state variable:

• binary

• floating point

• boolean

• integer

• enumerated

• string

• fixed point

Many of these types have parameters that can be used to restrict the values of the state vari-

able further. For example, the integer type can be specified with minimum, maximum, and

increment parameters (see Figure 5.1a).

The enumerated type is for small collections of values, each of which has a label. Internally,
these values are represented by numbers starting with 1. For example, an enumerated type

with 4 items can have a value of 1 through 4. Enumerated types must have labels defined for

each of their values.

The types of fixed point, floating point, and integer all contain numeric values. Integers do
not have a decimal component, while fixed point and floating point both do. Fixed point

values have a fixed number of digits to the right of the decimal point, as defined by the re-

quired “Decimal Places” field. Floating point values have an arbitrary number of digits on

either side of the decimal point. The fixed point and integer types also have an optional in-
crement field that can be used to further restrict the values that the state variable may con-

tain. If an increment is specified, then a minimum value must also be specified. When these

parameters are specified, the value of the state variable must be equal to the minimum + n *

increment, where n is some integer.

The string type contains a string value. Specification authors can specify a minimum, maxi-

mum, and average length for the string contained in this variable. These parameters can

affect the size of the text box that the generated interfaces will display for a state of this type.

Chapter 5: Specification Language 71

It is important to note that complex types often seen in programming languages, such as re-

cords, lists, and unions, are not allowed to be specified as the type of a state variable.
Complex type structures are created using the group tree, as discussed below.

5.2.1.3 Label Information

The interface generator must also have information about how to label appliance objects.

Providing this information is difficult because different form factors and interface modalities

require different kinds of label information. An interface for a mobile web-enabled phone
will probably require smaller labels than an interface for a PocketPC with a larger screen. A

speech interface may also need phonetic mappings and audio recordings of each label for

text-to-speech output. We have chosen to provide this information with a generic structure

called a label dictionary.

Each dictionary contains a set of labels, most of which are plain text. The dictionary may also

contain phonetic representations using the ARPAbet (the phoneme set used by CMUDICT

[CMU 1998]) and text-to-speech labels that may contain text using SABLE mark-up tags

[Sproat 1998] and a URL to an audio recording of the text. The assumption underlying the
label dictionary is that every label contained within, whether it is phonetic information or

plain text, will have approximately the same meaning to the user. Thus the interface genera-

tor can use any label within a label dictionary interchangeably. For example, this allows a

graphical interface generator to use a longer, more precise label if there is sufficient screen
space, but still have a reasonable label to use if space is tight. Figure 5.2 shows the label dic-

tionary for the Play Controls group of the VCR, which has two textual labels and a text-to-

speech label.

<labels>

 <label>Play Controls</label>

 <label>Play Mode</label>

 <text-to-speech text="Play Mode" recording="playmode.au"/>

</labels>

Figure 5.2. The label dictionary for the playback controls group of the VCR. This diction-

ary contains two textual labels and some text-to-speech information.

5.2.1.4 Dependency Information

The two-way communication feature of the PUC allows it to know when a particular state

variable or command is active. This can make interfaces easier to use, because the controls

Chapter 5: Specification Language 72

representing elements that are inactive can be disabled. The specification contains formulas

that specify when a state or command will be disabled depending on the values of other state
variables. These formulas can be processed by the PUC to determine whether a control

should be enabled when the appliance state changes. Five kinds of dependencies can be speci-

fied, each of which specifies a state that is depended upon and a value or another state

variable to compare with:

• Equals - True when the specified state has the specified value.

• GreaterThan - True when the specified state has a value greater than the specified
value.

• LessThan - True when the specified state has a value less than the specified value.

• Defined - True when the specified state has any value.

• Undefined - True when the specified state does not have any value.

These dependencies can be composed into Boolean formulas using AND and OR. NOT

may also be used.

I have discovered that dependency information can also be useful for structuring graphical

interfaces and for interpreting ambiguous or abbreviated phrases uttered to a speech inter-
face. For example, dependency information can help the speech interfaces interpret phrases

by eliminating all possibilities that are not currently available. The use of these formulas for

interface generation is discussed later in Chapter 8.

<active-if>

 <equals state="Base.Power">

 <constant value="true"/>

 </equals>

</active-if>

Figure 5.3. An example of a common type of dependency equation specifying that a variable or command is
not available if the appliance's power is turned off.

5.2.1.5 Group Tree

Interfaces are always more intuitive when similar elements are grouped close together and
different elements are kept far apart. Without grouping information, the start time for a

timed recording might be placed next to real-time control for the current channel, creating

Chapter 5: Specification Language 73

Figure 5.4. The group tree for the sample VCR specification.

an unusable interface. This is avoided by explicitly specifying grouping information using a

hierarchical group tree.

The group tree is an n-ary tree that has a state variable or command at every leaf node (see

Figure 5.4). State variables and commands may be present at any level in the tree. Each
branching node is a “group,” and each group may contain any number of state variables,

commands, and other groups. Designers are encouraged to make the group tree as deep as

possible, in order to help space-constrained interface generators. These generators can use the

extra detail in the group tree to decide how to split a small number of controls across two
screens. Interface generators for larger screens can ignore the deeper branches in the group

tree and put all of the controls on one panel.

5.2.1.6 Complex Data Structures

The PUC specification language uses the group tree to specify complex type structures often

seen in programming languages, such as records, lists, and unions. This approach simplifies
the language and follows the principle of “one way to specify anything.” If complex types

were specified within state variables, then authors could have specified related data either as a

single variable with a record data type or as multiple variables within a group. To support

complex types, two special group elements were added.

Figure 5.5 shows an example of the list-group element added for specifying lists. Specify-

ing a list group is similar to specifying an array of records in a programming language, and

multiple list groups can be nested to create multi-dimensional lists. Each list group has an

Chapter 5: Specification Language 74

implicit length state variable (named "Length") that always contains the current length of the

list. If this variable is undefined, then the list currently has no members. The specification
may define bounds on the length of the list in order to help the interface generator create a

better rendering. An exact size may be specified, or a minimum and/or maximum size may

be specified.

List groups also maintain an implicit structure to keep track of one or more list selections.
The number of selections allowed may be defined in the specification ("one" and "many" are

the only options currently), and the default is one if nothing is specified. If a list allows only

one selection, then an implicit "Selection" variable is created which contains the index of the

current selection (undefined means no selection). If multiple selections are allowed, then an
implicit list group named "Selections" is created. This group contains a "Length" state (as all

list groups do) and a "Selection" state which contains all of the selected indices.

We also developed a special dependency operator for lists, named apply-over. This element

applies the dependencies it contains over some items in a list and returns a value depending
on the value of its true-if property. The dependencies are applied over the set of items

based on the items property, which may be set to all or selected. The true-if property may

be set to all or any. If true-if is all, then the dependency formula contained in the apply-

over element must be true for all elements in order for true to be returned. If true-if is
any, then true is returned as long as the dependency formula contained in the apply-over is

true for at least one of the elements.

The second special group is the union-group, which is similar to specifying a union in a

programming language like C. Of the children within a union (either groups or appliance
objects), only one may be active at a time. An implicit state variable named "ChildUsed" is

<list-group name="List">

 <labels>

 <label>Timed Recording</label>

 </labels>

 <min><constant value="0"/></min>

 <max><constant value="8"/></max>

 <selections access="read-write" number="one"/>

 <state name="Channel"> ... </state>

 <state name="StartTime" is-a="date-time"> ... </state>

 <state name="Duration" is-a="time-duration"> ... </state>

</list-group>

Figure 5.5. An example of a list group used in the VCR specification to describe the list of timed recordings
that may be specified by the user.

Chapter 5: Specification Language 75

automatically created within a union group that contains the name of the currently active

child.

5.2.1.7 Smart Templates

Another important aspect of the specification language is Smart Templates. These templates

allow the specification author to indicate that portions of a specification will have a high-

level semantic meaning for the user. When an interface generator encounters these portions

of the specification, it will attempt to generate an interface that matches the user’s expecta-
tions. An author can specify that a Smart Template for a group, state variable, or command

with the is-a parameter. For example, in Figure 5.1a the Channel state variable has been

marked with the “channel” Smart Template.

Smart Templates are described in detail in Chapter 7.

5.2.2 Content Flow Language Elements
Information about content flow can be useful to describe the relationships between appli-

ances that have been connected together in multi-appliance systems. The specification

language allows authors to describe the input and output ports that an appliance possesses

and the internal content flows that use those ports. Wiring information for a system of appli-
ances can be combined with the port and content flow information from each appliance to

build a model of content flow through the entire system. This content flow model is very

useful for generating interfaces that aggregate functions from multiple appliances. The gen-

eration of aggregate user interfaces is described in detail in Chapter 9.

5.2.2.1 Ports

The input and output ports of an appliance define that appliance’s relationship with the out-

side world. In order to match the user’s intuitive understanding of ports, specification

authors are encouraged to create a port for each of the physical plugs that exist on the outside

of an appliance. Future tools could then use this information to help users correctly wire
their systems. The specification language also supports port groups, which allow the author

to give a single name to collection of related ports, typically ports that carry a piece of a larger

content stream. For example, in Figure 5.6 the “Output” port group is a combination of the

physical “Video” port with the physical “Left” and “Right” audio ports. The port group con-
venience makes it easy for specification authors to define that a video stream uses the

“Output” port without needing to specify each of its consistuent ports.

Chapter 5: Specification Language 76

<ports>

 <inputs>

 <port name="VHF/UHF Antenna" content-type="multi-channel-av" physical-type="coax" />

 </inputs>

 <outputs>

 <port name="VHF/UHF Antenna" content-type="multi-channel-av" physical-type="coax" />

 <port-group name="Output" content-type="av">

 <port name="Video" content-type="video" physical-type="RCA" />

 <port-group name="Audio" content-type="component-audio">

 <port name="Right" content-type="component-audio-right" physical-type="RCA" />

 <port name="Left" content-type="component-audio-left" physical-type="RCA" />

 </port-group>

 </port-group>

 </outputs>

</ports>

Figure 5.6. The ports section of the example VCR specification.

5.2.2.2 Internal Flows: Sources, Sinks, and Passthroughs

Each of the internal flow types is specified with three basic pieces: a dependency formula de-

fining when the flow is active, a description of the ports associated with the flow, and a list of
state variables, commands, and groups that can be used to modify the behavior of the flow.

In the specification language, sinks are divided into two sub-types, recorder and renderer,

that describe what the sink does with the content it receives. Figure 5.7 shows an example of

a source content flow from the example VCR specification.

The ports that may be associated with a flow depend on the type of flow. Only output ports

may be associated with a source, only input ports with a sink, and both are allowed for a

pass-through. For each port, another dependency formula may be specified that defines

when that port is active for that flow. Thus, to activate a particular port with a particular
flow, both dependency formulas must be satisfied.

Channels are an important concept in content flow specifications. When a pass-through or

sink receives a multi-channel input, a channel variable may be specified from the appliance

that specifies the particular channel being tuned. The language can also specify that one
channel of a multi-channel stream is being replaced by the appliance, which is used by ex-

ample VCR specification to describe that the output of the tape source can appear on

channel 3 (see Figure 5.7).

The set of variables, commands, and groups that modify the behavior of the flow is impor-
tant for the generation of aggregate user interfaces. For example, the set allows the tint,

brightness, and contrast functions of a television to be associated with the screen sink.

Chapter 5: Specification Language 77

<content-group>

 <active-if>

 <equals state="Base.Power">

 <constant value="true" />

 </equals>

 </active-if>

 <content-group>

 <active-if>

 <equals state="Base.PoweredItems.Controls.TV/VCR">

 <constant value="true" />

 </equals>

 </active-if>

 <source name="Tape" content-type="av">

 <active-if>

 <equals state="Base.PoweredItems.Status.TapeIn">

 <constant value="true" />

 </equals>

 <not>

 <or>

 <equals state="Base.PoweredItems.Controls.PlayControls.Mode">

 <constant value="1" /> <!-- Stop -->

 </equals>

 <equals state="Base.PoweredItems.Controls.PlayControls.Mode">

 <constant value="6" /> <!-- Record -->

 </equals>

 </or>

 </not>

 </active-if>

 <output-ports>

 <port-group name="Output" />

 <port name="VHF/UHF Antenna" channel="3"/>

 </output-ports>

 <objects>

 <group name="Base.PoweredItems.Controls"/>

 </objects>

 </source>

Figure 5.7. The description of the video tape source content flow from the example VCR specification. Note
that dependencies from the content groups that contain the source flow are ANDed with the source’s own de-
pendencies.

5.3 Evaluation of the Specification Language

Before discussing interface generation, there are several important questions to ask about the

specification language:

• Is the language complete enough to specify the functionality of every appliance?

• Is the language easy to learn and use?

Chapter 5: Specification Language 78

5.3.1 Completeness

Members of the PUC research group, including myself, several undergrads, a masters student

and two staff members, have used the specification language to author specifications for 33
different appliances (see Table 5.1). We have tried to cover a large range of appliance types

and to write specifications for several highly complex appliances, including a high-end Mit-

subishi DVCR, a Samsung DVD-VCR combo player, two all-in-one printers from HP and

Canon, and the navigation system from a GMC vehicle. Table 5.2 shows some statistics for
the specifications that have been written so far. The table shows that PUC specifications on

average are quite complex, particularly the GM navigation system specification which is

Table 5.1. Complete list of appliance specifications authored by the PUC research team

Home Entertainment Appliances
 Audiophase Shelf Stereo
 DirecTV D10-300 Receiver
 Gefen 2:1 HDMI Switchbox
 InFocus 61MD10 Television
 JVC 3-Disc DVD Player
 Mitsubishi HD-H2000U DVCR
 Panasonic PV-V4525S VCR
 Philips DVD Player DVDP642
 Samsung DVD-V1000 DVD-VCR Combo Player
 Sony A/V Receiver
 Sony Camcorder

Lighting Controls
 Intel UPnP Light
 Lutron RadioRA Lighting
 X10 Lighting

GMC 2003 Yukon Denali Systems
 Driver Information Console
 Climate Control System
 Navigation System

Office Appliances
 AT&T 1825 Telephone/Answering Machine
 Canon PIXMA 750 All-In-One Printer
 Epson PowerLite 770 Projector
 HP Photosmart 2610 All-In-One Printer
 Complex Copier
 Simple Copier

Desktop Applications
 Laptop Video Controls
 Microsoft PowerPoint
 Microsoft Windows Media Player 9
 PUC Photo Browser
 PUC To-Do List
 Task Manager

Alarm Clocks
 Equity Industries 31006 Alarm Clock
 Timex T150G Weather Alarm Clock

Other
 Axis UPnP Pan-Tilt-Zoom Surveilance Camera
 Simulated Elevator

Table 5.2. Maximum and average counts of various aspects of the PUC specifications written to date.

 Functional
Elements Groups

Labeled
Groups

Smart Tem-
plates

Max Tree
Depth

Ave. Tree
Depth

Max* 136 64 46 30 11 6.20

Average* 36.25 16.93 11.6 6.21 4.79 3.59

GM Nav 388 171 136 79 11 7.00
* Not including GM navigation system specification

Chapter 5: Specification Language 79

nearly twice as complex as any other specification. All of these specifications cover all of the

functions of their appliance, giving us confidence that the language is capable of representing
both the most common and most obscure functions of any appliance.

Although I cannot conclusively prove the language’s completeness without writing a specifi-

cation for every possible appliance, I believe there is sufficient evidence from the existing

specifications to suggest that the language may be complete.

At the lowest level of description, we have seen in all of the specifications that state variables

and commands are adequate for describing the functional elements of an appliance. At

higher levels, the hierarchical group tree has been sufficient for representing organization and

the dependency formulas have been descriptive enough to specify behavior while being re-
strictive enough to facilitate analysis that can be applied in the generated interfaces.

The main difficulty in the language design came from supporting complex data structures,

particularly the lists that are found on many appliances. The design of these elements of the

language was driven primarily by the GM navigation system specification, which contains
many lists of complex data, such as destinations. Several iterations on this specification led to

our current design, which combined grouping with list and union features and is capable of

representing all forms of structured data. The design has since been used without modifica-

tion on many other specifications, including those for many of the home entertainment and
office appliances.

Another question in our design was support for interactive list operations, such as adding,

deleting, and moving items. Such operations are quite common on appliances, such as ma-

nipulating a play list on an MP3, adding a timed recording on a VCR, or changing the route
list on a navigation system. Standardizing these operations within the language did not seem

appropriate, because there are many such operations, with many variations within a particu-

lar operation (e.g. add before, add after, add at end, etc.). Through experimentation with

several specifications, including the navigation system spec, I decided to limit the language’s
expressiveness to list operations that can be specified using normal commands and state vari-

ables. This decision eliminates most direct manipulation operations, but has been sufficient

for all of the specifications we have written. It may even be possible to support certain unre-

stricted direct manipulation operations, such as arbitrary moves, through the use of a Smart
Template, though this has not been implemented in the current PUC system.

Chapter 5: Specification Language 80

5.3.2 Learnability and Ease of Use
We have evaluated the learnability and ease-of-use of the specification language in one for-

mal authoring study and many informal experiences with users both inside and outside of
the PUC research group.

The formal study was conducted with three subjects who learned the language from reading

a tutorial document (see Appendix D) and doing exercises on their own for approximately

1.5 hours. Subjects were then asked to write a specification for a low-end Panasonic VCR,
which took on average 6 hours to complete. The focus of this study was on the consistency

of the resulting specifications and not learnability per se, so the details of the study prepara-

tion and its specific results are not discussed here (see Chapter 6 for those details). The

subjects were able to learn the language sufficiently in the short 1.5 hour period to write
valid specifications for the VCR. This suggests that the language is very easy to learn.

Informally, we can draw some conclusions from the people who have learned and used the

specification while working in the PUC research group. Over the course of six years, nine

different people have used the language to write specifications for a number of different ap-
pliances. Each picked up the basics of the language in a day and was proficient within about

two weeks.

Several people from the Technical University of Vienna and ISTI Pisa have used the PUC

system and also learned the specification language (see Chapter 11 for more details). Al-
though their specifications have not been as complex on average as those written by members

of the PUC research team, they seemed able to learn the language from the online documen-

tation easily and without needing to ask many questions via e-mail.

In all cases the most difficult aspects of specification writing seem to be identifying the vari-
ables and commands of an appliance, and organizing the variables and commands into the

group hierarchy. I believe these tasks are inherently difficult however, and do not represent a

weakness in the specification language. Experienced authors seem to develop a strategy where

they start by identifying all of the variables and commands with little focus on organization,
and then specify the group hierarchy after all variable and commands have been identified.

Of course, identifying the variables and commands of an appliance may not be as difficult

for the engineers that originally built the appliance. Thus, the specification language may be

even easier for the makers of an appliance to use, once learned, than shown by the authoring
study.

Chapter 5: Specification Language 81

Chapter 5: Specification Language 82

CHAPTER 6

6Consistency3

The PUC system is the first to automatically generate interfaces that are consistent with in-
terfaces the user has seen previously. This chapter discusses the meaning of consistency, both

in general and for the PUC system, and describes the infrastructure needed for the PUC to

generate consistent user interfaces. The rules for generating consistent interfaces are discussed

along with the other interface generation rules in Chapter 8.

6.1 Understanding Consistency

Consistency has been a subject of research for the user interface community for many years,

and there has been much debate about what consistency is and how to apply it effectively.

According to Grudin, “a two-day workshop of 15 experts was unable to produce a definition
of consistency” [Grudin 1989]. Reisner said that consistency is loosely defined as “doing

similar things in similar ways” and that inconsistency occurs when “the designer and the

competent user employ different assignment rules” [Reisner 1990]. Kellogg [Kellogg 1987]

3 The work in this chapter was previously described in Jeffrey Nichols, Brandon Rothrock, and Brad A. Myers. “UNI-
FORM: Automatically Generating Consistent Remote Control Interfaces,” in Proceedings of the Conference on Human
Factors in Computing Systems (CHI). Montreal, Quebec, Canada. April 22-27, 2006. pp. 611-620

83

proposed that consistency does not have one single definition, but suggests that it can be de-

fined within a framework with two types of consistency at three different levels. The two
types of consistency are: internal consistency within an application, and external consistency

between multiple applications. The three different levels are: conceptual, communication,

and physical. Grudin [Grudin 1989] adds another type of consistency called analogical,

which is meant to describe consistency with the world outside of the computer system.

Each of these definitions gets close to the concept of consistency, but none helps us opera-

tionalize consistency within an automatic system. Fortunately, there is a fair amount of work

examining the factors that lead to consistency (or lack thereof). Most of this work breaks the

user interface down into a formal model, usually a set of production rules, which describes
the actions that users must take in order to accomplish their tasks.

Barnard [Barnard 1981] found that “positional” consistency is important within a command

language, meaning that common parameters between functions should always be placed in

the same position. This work was conducted on command line interfaces however, and may
not apply to today’s graphical user interfaces (GUIs).

Reisner [Reisner 1981] explored consistency through two drawing applications and found

that users made fewer mistakes with the interface that was “structurally” consistent. In Reis-

ner’s case, structural consistency is defined in terms of the production rules describing the
interface. An interface where all of the rules for a similar action have the same form would be

structurally consistent, whereas an interface that uses rules of several different forms would

be inconsistent. For example, shape selection in the first application was inconsistent because

most shapes were selected by pressing the select button, flipping the switch for the desired
shape type, and pressing the GO button, whereas no action was required to select a text

shape because the keyboard was always available. The second application used the same rule,

moving the cursor to the box specifying the desired shape type, and was thus structurally

consistent. The consistency that Reisner explores is within an application however, and she
did not examine how users who learned the first drawing application subsequently performed

on the second. It is this latter form of consistency that the PUC system aims to provide.

Polson and his collaborators showed that the “common elements” theory of knowledge

transfer from experimental psychology could account for the positive transfer effects observed
from the usage of consistent user interfaces [Polson 1986]. In this case, the common ele-

ments were the shared steps needed to accomplish the same task in two different

Chapter 6: Consistency 84

applications. Through several experiments with word processing applications, Polson showed

that the effects of transfer due to a consistent interface were substantial in several cases:
within an application, between different versions of the same application, and between dif-

ferent applications [Polson 1988]. In all cases where transfer occurred, there were a large

number of external cues to indicate to users that previous knowledge might apply. This sug-

gests that the PUC must not only create new interfaces with steps that are similar to previous
interfaces, but it must also make the new interfaces appear visually similar to the old inter-

faces so that users will realize that their previous knowledge can be reused.

There has also been work exploring how user interfaces for the same application can be made

consistent across different platforms. Denis & Karsenty [Denis 2003] describe some of the
common problems that arise when creating multi-platform applications, such as differing sets

of functions, different partitioning of functions and data, and the ability to recover context

when changing platforms. They identify that these are all problems of continuity, which they

break down into knowledge continuity and task continuity. Knowledge continuity refers to
properties of the interface, such as the labels and layout, and task continuity refers to the

ability of users to change devices in the middle of their workflow. They suggest a set of de-

sign principles for dealing with these problems, such as using similar labels and organization

across all interfaces. Florins [Florins 2004] expands on these ideas by relating them to exist-
ing theory and breaking the idea of knowledge continuity into three parts: perceptual,

cognitive, and functional. Perceptual continuity is found when interfaces have a similar ap-

pearance. Cognitive continuity occurs when users understand the underlying concepts

behind the interface. Functional continuity occurs when the same set of functions are avail-
able on both platforms. Although both Denis & Karsenty and Florins suggest some design

guidelines to address continuity, none of these guidelines are sufficiently concrete to apply in

the PUC’s automatic interface generation.

The work thus far identifies benefits of consistency, but other researchers have found that
there may be downsides if consistency is carried too far. In particular, Grudin [Grudin 1989]

shows five examples where the consistent design decision is not beneficial for ease of learn-

ing, ease of expert use, or both. Grudin’s conclusion is that the most important factor in an

interface design should be matching the user interface to the user’s tasks, not on consistency.
Consistency should only be explicitly considered if it is beneficial to the user’s tasks. I agree

with Grudin’s position and the PUC’s consistency generation rules always favor usability of

the interface over consistency.

Chapter 6: Consistency 85

My generation techniques are also able to avoid at least two of Grudin’s issues with consis-

tency. First, consider Grudin’s illustrative example of the placement of knives throughout a
house. Placing all knives in one drawer would be the consistent design, Grudin argues, be-

cause all knives would be in one central, easy-to-find location. The usable design, however, is

to place knives in the location where they will be used (e.g. table knives in the kitchen, putty

knives in the garage, swiss army knives with the camping equipment, etc.). In this example,
there are many different placements for knives and, although Grudin has declared one par-

ticular design consistent, the best particular design for any given user is the configuration

that user expects. I call this configuration the personally consistent design, because it is consis-

tent with the user’s personal view of where knives should be located around the home. The
PUC interface generators attempt to achieve personal consistency, meaning that functions

should have the appearance and location that the user expects. In this way, the PUC at-

tempts to avoid the inconsistency that occurs when “the designer and the competent user

employ different assignment rules” [Reisner 1990].

Grudin also notes that ease of learning and ease of use may require conflicting designs, which

prevents a consistent design from being used between interfaces optimized for different pur-

poses. Personal consistency helps here, because the PUC can generate interfaces that suit

each user’s particular situation: either a novice just learning to use an appliance’s functions or
an expert that is familiar with many appliances of the same type. What happens when the

novice user has learned the interface and wishes to become an expert though? In this case, the

flexibility of automatically generating interfaces allows the PUC to regenerate the interface

with the design for experts in place of the design for novices.

6.1.1 Evaluating Consistency
The process of evaluating the consistency of an interface can be time-consuming and diffi-

cult. A number of systems have been created to help automate the collection of usage data

that can help in the evaluation of consistency [Ivory 2001]. Sherlock and GLEAN have spe-

cific features for automatically evaluating the consistency of an interface. Sherlock [Mahajan
1997] uses a heuristic approach to evaluate task-independent qualities of user interfaces for

consistency. This includes looking at visual properties, such as widget sizes and font choices,

and terminology issues, such as inconsistent abbreviations and spelling errors. The system is

capable of evaluating dialog boxes from Visual Basic and Visual C++ 4.0, but in principle the
tool could be run on any user interface that is translated into Sherlock’s textual interface de-

Chapter 6: Consistency 86

scription language. The output of Sherlock is a collection of tables that display each of the

metrics. Designers look for consistency problems by searching the tables for outlier values.

GLEAN [Kieras 1995] makes predictions about human performance on a user interface

based on a GOMSL (GOMS—Goals, Operators, Methods, and Selection Rules—Language)

model. The use of GOMSL is important because of its unique ability to accurately predict

transfer times between tasks [John 1996], which is useful for finding consistency problems
between similar tasks. Unfortunately, a GOMSL model must be created for the user interface

before any analysis can be conducted. There is no way to automatically generate such a

model, though recent work has shown that it is possible for other types of GOMS models

[John 2004].

6.1.2 Applying Consistency
A number of methods have been developed to help ensure interface consistency. Platform

interface guidelines and toolkits, like those developed by Apple for the Macintosh, help de-

signers make their applications consistent with others on the same platform. Usually these

guidelines work best for common functions, such as by defining a standard menu structure
that makes it easy to open and save files and access clipboard functions. More specific consis-

tency guidelines have been proposed, such as those described by Nielsen [Nielsen 1993].

These include maxims such as “the same information should be presented in the same loca-

tion on all screens.” Another mechanism for maintaining consistency is called “design
languages” [Rheinfrank 1996], which are used by designers to ensure that common features

and branding are shared across a family of products.

ITS, SUPPLE, and DiamondHelp are all systems that address the consistency of user inter-

faces with automatic design. The ITS system [Wiecha 1990] was successful in producing
consistent interfaces across a family of applications (such as all the displays for a World’s

Fair) and for multiple versions of the same application. Interfaces were generated using a

rule-based approach, and consistency resulted because the rules applied the same interaction

technique in every place where the same condition was found. Note that although the PUC
does achieve some consistency by using the same generation rules for each interface, it cannot

rely on the underlying appliance models being the same. Appliances of the same type may

have substantially different underlying models, and one of my contributions is finding simi-

larities between underlying models and creating consistency based upon these similarities.

Chapter 6: Consistency 87

SUPPLE [Gajos 2004] automatically generates layouts for user interfaces using an optimiza-

tion approach to choose controls and their arrangement. Some initial research has been
conducted on adapting SUPPLE to support the creation of consistent user interfaces for the

same application across different platforms [Gajos 2005b]. Like ITS, SUPPLE cannot create

consistent interfaces if the underlying appliance models differ.

DiamondHelp [Rich 2005] attempts to address the consistency problem for consumer elec-
tronics devices by combining a task-model based approach with a direct-manipulation

interface. While one of DiamondHelp’s goals is to provide consistency, the current system

relies on designers to create the direct-manipulation portions of the interface and for each

appliance to supply its own task model. DiamondHelp does not provide a way to search for
possible inconsistencies across devices or to automatically adjust the interfaces to help the

user transfer knowledge between interfaces.

6.2 Specification Authoring Study

I started work on consistent interface generation by studying how inconsistencies can arise in
the user interfaces created by the PUC. The PUC interface generator uses a rule-based proc-

ess (see Chapter 8) that is guaranteed to produce the same interface given the same appliance

specification, so any inconsistencies arising in the interface will be due to differences in the

specifications of two similar appliances. In order to understand how specifications can differ,
I conducted two studies to investigate the following questions:

• How can specifications vary for different appliances that share similar functions?

• How can specifications vary for different authors?

These studies focus on specifications for VCRs, which require the use of many specification

language features that are usually needed to specify complex appliances (e.g. lists, smart tem-
plates, etc.).

6.2.1 Study #1
The first study addressed the question of how specifications can vary for different appliances

with similar functions by examining specifications that I wrote for three different VCRs.

Two of the VCRs were complicated with many features, a Mitsubishi HD-HS2000U Digital
VCR and a Samsung DVD-V1000 DVD-VCR combo-player, and the final VCR was the

cheapest model that we could find at our local Best Buy store: a Panasonic PV-V4525S. I

Chapter 6: Consistency 88

wrote these specifications to ensure that the quality was high. I did not recruit other authors

for this study because I wanted to control for differences that might arise between authors. I
also tried to follow the manufacturers’ designs for their appliances as much as possible, to be

sure that any differences in specifications are due to differences in the appliances. All three

specifications took me a total of about one week to complete.

In order to analyze the VCR specifications, I identified the state variables and commands,
hereafter referred to as objects, which seemed to be shared across the appliances. Some ob-

jects were identical, such as the counter and status variables that tracked whether a tape was

in the VCR. Many objects were similar but not completely identical. For example, the only

differences between some objects were the labels, such as for the “TV/VCR” or “VCR/TV”
Boolean states that are present on each VCR. Other objects contained some of the same val-

ues, but also supported other features that were not present across all of the VCRs. For

example, all of the VCRs have a state variable that specifies whether the coax input is coming

from the antenna or cable. The Panasonic VCR supports only these two options, and the
Samsung adds an extra option called “Auto” in which it will automatically select the appro-

priate value. The Mitsubishi VCR does not have the auto value, but it supports two

additional input types not found on the other VCRs (“cable box” and “digital cable”).

Other functions shared across all of the VCRs were specified quite differently. For example,
each of our VCRs supports a timed recording feature to specify TV programs that the user

wishes to record in the future. The way to specify the time that the program would be re-

corded differed across devices. The Mitsubishi and Panasonic VCRs both have variables for

the start time and stop time of the recording, while the Samsung has a matching variable for
start time but a different variable that specifies the duration of the recording. In this case, the

underlying data is quite different even though the function is identical.

We also analyzed the organization of the VCR specifications and found a few differences. In

general, it seems that most of the same high-level groups were shared between the specifica-

a) Mitsubishi HD-HS2000U

b) Samsung DVD-V1000

c) Panasonic PV-V4525S

Figure 6.1. VCRs used in the first study. The Panasonic VCR in (c) was also used in the second study.

Chapter 6: Consistency 89

tions, though the exact placement of those groups varied somewhat. For example, all of the

VCRs have the Power state at the top-level with groups for Status and Setup. The Mitsubishi
and Panasonic VCRs also have groups for Controls and Timed Recordings at the top-level.

The Samsung DVD-VCR has these same groups, but they are located in a top-level VCR

group because this appliance also must support its DVD and MP3 players.

6.2.2 Study #2
The second study examined the variations in specifications written for the same VCR by sev-
eral different authors. For this study, I was particularly interested in seeing how organization

varied between specifications. I used the Panasonic VCR from the first study and recruited 3

students in our university’s electrical and computer engineering department to be subjects. I

chose these subjects because I expect that specification authors in industry would have this
background.

Unlike in the first study, these subjects had no knowledge of the PUC specification language

when they started. Before writing the VCR specification, subjects were trained on the lan-

guage through a written document with several exercises and examples from a to-do list
application. I chose to use written training to ensure that the learning experience was the

same for each subject. The to-do list application was used as an example because it incorpo-

rated every feature of the language, but was different enough from the VCR that it was

unlikely to affect the subjects’ specifications. Training and authoring took a substantial
amount of time, about 1.5 hours and 5 hours respectively, so we allowed subjects to take the

materials and VCR home with them and complete the study over the course of two weeks.

Subjects were paid for their participation: $15 for completing the training and $50 upon re-

turning the VCR and turning in a valid specification.

All three of the subjects’ specifications contained two top-level groups for setup functions

and basic controls. All also had a group for timed recordings, but not all placed the group in

the same location. Two of the three made timed recordings a top-level group, while the other

chose to place it in the basic controls group. Two of the three had an advanced controls
group, with one placing this group at the top-level and the other putting it inside the basic

controls group. Within the common groups, the subjects used different strategies to further

organize the functions. For example, one subject organized functions based on whether they

belonged to the TV and VCR, using this method to organize within both the basic controls
and setup groups.

Chapter 6: Consistency 90

The subjects also placed objects at different locations in their hierarchy. For example, the

repeat-play command was put in the advanced playback controls group of one specification
and in the setup group in another one. The functions were also defined differently in some

cases, as one subject used commands for the play, stop, and pause buttons while the other

two used state variables.

6.2.3 Discussion
In these studies I found that specifications will have differences, even if written by the same
author or for the same appliance. These differences may be found in the specification of

similar functions and the organization of these functions. The number and variety of differ-

ences was particularly surprising and demonstrates the challenges the PUC faces when

creating consistent interfaces. Next, I will combine these results with prior work on interface
consistency to synthesize a set of requirements for consistency in the PUC system.

6.3 Requirements for Consistency

For the PUC, we define a consistent user interface as one that is easier to learn because it in-
corporates elements and organization that are familiar to the user from previous interfaces. In

the context of appliance interfaces, this might mean that a new copier interface is easier to

learn because it uses the same labels as a previously learned copier interface (see Figure 1.5)

or that the clock is easier to set on a new VCR interface because the clock controls are lo-
cated at the same place in the interface hierarchy. In order to facilitate this knowledge

transfer between interfaces, Polson suggests that tasks must have similar steps and there must

be sufficient external cues in both applications [Polson 1988]. To facilitate this, the PUC has

the following requirements for its consistent user interfaces:

R.1 Interfaces should manipulate similar functions in the same way

R.2 Interfaces should locate similar functions in the same place

These two requirements help to ensure that user tasks will have similar steps, which can fa-

cilitate knowledge transfer. They also illustrate a fundamental separation in the PUC

between functional consistency and structural consistency. Two interfaces are functionally con-

sistent if the same set of controls is used for similar functions. Two interfaces are structurally
consistent if similar functions can be found in similar organizational groups. These two types

of consistency are independent and are addressed separately by the PUC.

Chapter 6: Consistency 91

In order for knowledge transfer to occur, there also must be sufficient external cues to indi-

cate that the applications are the same. In many cases, the PUC gets an important external
cue for free, because users are often aware of the type of appliance they are using and will

have some memory of using similar appliances in the past. To reinforce that cue, we have the

following requirements to help increase users’ perceptions of consistency between interfaces:

R.3 Interfaces should use familiar labels for similar functions

R.4 Interfaces should maintain a similar visual appearance

The studies show that situations may arise where these requirements cannot be followed. For

example, similar functions may have different representations that cannot use the same con-

trol. Unique functions may also affect the order in which controls appear on the screen or
affect the layout if they require larger controls or have wider labels. In these situations there is

a fundamental trade-off between maintaining consistency to a previous interface and appro-

priately rendering all of the new appliances’ functions. To address this problem, the PUC

could go against Grudin [Grudin 1989] and favor consistency. In this case, the PUC would
move the unique functions to a separate panel so that they could not affect the layout. This

solution has many negative consequences for usability however: important functions could

be moved to a non-intuitive location, and the extra features of a similar function might ap-

pear to not exist. It seems better to favor usability in these situations, and therefore the PUC
has the following requirement:

R.5 Usability of unique functions is more important than consistency for similar
functions

I have found that a common result of this requirement is that our consistent user interfaces
do not always have a similar visual appearance. However there may be some benefit to hav-

ing a different visual appearance: work by Satzinger [Satzinger 1998] found that users were

able to learn the user interface for a conceptually similar application more easily when the

interface used the same labels but had a different visual appearance.

The first five requirements apply to the user interfaces that the PUC generates, and illustrate

the actions that the PUC will take to ensure consistent interfaces. A pre-requisite for all of

these requirements however, is:

R.6 Interface generators must provide a method to find similar functions across multi-
ple appliances

Chapter 6: Consistency 92

Although this is a general requirement for any system that wants to create consistent inter-

faces, the implementation of this method is likely to be specific to the particular type of
input that the system receives. In the case of the PUC, the input is written in the specifica-

tion language, which provides a functional model of each appliance. The PUC’s method for

finding similarities may be applicable to other systems that use functional models, but may

not apply to systems that use other types of input, such as task models.

The final requirement applies to the PUC’s design. The PUC makes consistency decisions

based on the previous interfaces that users have experienced, so it is possible for the PUC to

generate consistently poor interfaces if users start with poor interfaces. In order to address

this, the PUC must handle the following requirement:

R.7 Users must be able to choose to which appliance consistency is ensured

This requirement affects the PUC’s consistent interface generation at a fundamental level,
because its data structures must include information about each of the possible consistency

choices and it must have some means to keep track of the current choice. To support this, I

developed the mapping graph structure, which is used by all of the PUC’s consistency algo-

rithms and discussed in the next section. Although the architecture supports the ability for
users to choose consistency, an interactive interface to support user choice is still the subject

of future work.

6.4 Understanding and Finding Similarities between Specifications

In order to support consistency within the PUC, the interface generator must understand
how a new specification is similar to previous specifications for which interfaces have already

been generated.

6.4.1 Knowledge Base
The knowledge base is an important piece of the PUC’s architecture for supporting consis-
tency. It stores previously generated specifications, mappings between specifications, and

information about the interface designs built from those specifications. The most important

elements of the knowledge base are the mappings between functions on different appliances.

These mappings can be automatically generated by rules or manually specified by the user,
and in the future could made available for download over the Internet.

Chapter 6: Consistency 93

A mapping defines a one-to-one relationship between similar functions in two specifications.

This approach simplifies the authoring of mappings, because the author of a mapping needs
to only examine differences between two specifications without considering how these differ-

ences relate to other specifications. The processing of mappings is also simplified, because the

consistency algorithms currently only need to understand the differences between two speci-

fications: the specification being generated and the specification that is serving as the basis
for consistency. The drawback of this approach is that mappings are required between all

pairs of appliances with similar functions, which could be limiting if this technology be-

comes widespread and the similarities between many appliances must be included in the

knowledge base.

The PUC supports six different types of mappings, each of which was identified from the

specifications written for the authoring studies. Each mapping type is described in Table 6.1.

Most of these types are generally applicable for creating mappings with any type of func-

tional specification language, though one type is based on the PUC’s unique Smart
Templates construct (see Chapter 7).

In order to specify and store the mappings, an XML-based language was developed for speci-

fying mappings, the schema for which can be found in Appendix C.2. The basic elements of

the mapping language correspond to the six mapping types described in Table 6.1, and each
mapping type has child elements that allow its parameters to be specified.

I chose not to use an ontological approach for the knowledge base for two reasons. First, cur-

rent ontology languages, such as RDF [W3C 2006] and OWL [Herman 2006], seem to be

most useful for understanding the relationships between concepts that can be described with
nouns and adjectives. For example, an ontology might help a computer understand that a

“bear” is an “animal” with “fur,” and animals with fur are “mammals.” The concepts neces-

sary to achieve consistency are not nouns however but actions (verbs), and actions are much

more complex because they are made up of multiple steps which may be constrained in a
particular order. Differences between similar actions may occur in one or more steps or in

the ordering constraints between steps. The more general ontology languages, such as OWL,

may be able to represent actions, but there are two drawbacks: specialized processing is re-

quired to analyze the ordering constraints between steps and the description of an action
requires substantially more overhead than a language designed to described actions, such as

ConcurTaskTrees [Paterno 1997].

Chapter 6: Consistency 94

Second, ontologies often rely on hierarchy to understand how concepts generalize. The

“bears are animals” example from above shows a small aspect of how hierarchy allows for
generalization. To create a useful action ontology for appliances, each appliance operation

would need to be placed into a hierarchy of one or more generalized operations. Determin-

ing each of these generalized operations and appropriately labeling them would be a

significant and time-consuming challenge, and furthermore would probably not be useful
unless it was complete for all appliances. My solution, with its one-to-one mappings, does

not require the entire appliance space to be mapped before being useful and can be incre-

mentally added to as more appliances are specified.

6.4.1.1 Mapping Graphs

Mappings between similar functions in multiple specifications are grouped together in a
mapping graph. The central purpose of a mapping graph is to help determine which appli-

ance should be used as the basis for consistency for a function. Every mapping belongs to a

mapping graph, and there is a mapping graph for each set of similar functions in the knowl-

edge base. For example, the power, media controls, and VCR/TV functions all have separate
mapping graphs containing mappings specific to those functions. An example mapping

graph for the media controls function is shown in Figure 6.2.

To find the specification to ensure consistency to, the PUC’s consistency algorithms start at

the node that represents the appliance being generated and traverse the mapping graph to
find the node that the user has seen most often. Each node maintains a count of the times it

has been used as the basis for consistency. As discussed earlier, it may be impossible to ensure

consistency between similar functions if their specifications are too different and this is repre-

sented by the edges of the mapping graph. For example, in Figure 6.2 the Panasonic VCR
represents play, stop and pause as a state variable while the Cheap VCR uses only com-

mands. It is not possible to convert between these representations, so the mapping between

them will have infinite cost. Costs allow mapping graph traversals to ensure that consistency

can be maintained between the endpoints of the traversal result. You may wonder why I
bother to include infinite cost edges in the mapping graph. When no zero cost edges are

available, infinite cost edges may be traversed to ensure at least some consistency by using the

labels of a similar function.

Chapter 6: Consistency 95

Table 6.1. Mapping types for consistency in the PUC system.
Name Description

general Allows a series of operations on one appliance to be matched with series of operations on
another appliance, with support for repetition. The possible operations are invoking a
command or changing the value of a state variable.

state Maps two state variables. Particular values of the state may be mapped together, and a
shortcut is available to define that the two states have entirely equivalent values.

node Specifies that a node in the group tree from one specification is similar to a node in an-
other specification. A node could represent a group, command, or state variable.

list Specifies that two lists contain the same data.

group Groups multiple mappings together. Groups cannot be nested.

template Maps two Smart Templates (Smart Templates are described in detail in Chapter 7).

Figure 6.2. An example mapping graph for the media control functions, e.g. play, stop, and pause, on four
appliances. The node counts indicate that the Panasonic VCR has been the basis for consistency three times
(for itself, the answering machine, and the DVD player) and the Cheap VCR has been the basis for consistency
once (just for itself). The answering machine and DVD player were generated to be consistent with the Pana-
sonic VCR, and thus both have counts of zero.

Chapter 6: Consistency 96

6.4.2 Automatically Finding Mappings
In collaboration with Brandon Rothrock, I have explored automatically extracting mappings

from a new specification and previous specifications that the user’s controller device has al-
ready stored. The challenge of automatic mapping is the lack of substantial semantic

information about each function within the specification.

Our work in finding mappings between specifications is similar to previous work in schema

and ontology matching from the database community [Shvaiko 2005]. Work in matching
has tried numerous approaches, including matching with the help of a thesauras [Madhaven

2001] or the use of machine learning [Doan 2001]. Several matching techniques take advan-

tage of the availability of a database containing many instances of the data specified by the

schema. In contrast, instance information is not available for PUC specifications during gen-
eration and is not likely to be of much use anyway as most PUC state variables have very few

possible values.

We built two separate matching systems. The first is based on our intuition about the PUC

data structures, and makes use of names, label dictionaries, and variable types. The second is
based on the similarity flooding technique [Melnik 2002] developed for schema matching,

which also incorporates organization. The first system performs the best, finding about 60%

of the mappings in our VCR test cases with about 20% of the total mappings found being

false positives. Currently, neither system is successful enough to integrate into the PUC,
however we have found the results of these systems to be useful as a starting place for a hu-

man to create mappings between two specifications.

Future work in this area will require investigating other means to improve the matching al-

gorithms, such as incorporating a thesaurus of appliance terminology or leveraging the
existing mappings among other specifications. We did not explore the latter approach be-

cause the size of our knowledge base is still quite small.

Chapter 6: Consistency 97

Chapter 6: Consistency 98

CHAPTER 7

7Handling Domain-Specific and
Conventional Knowledge4

A common problem for automatic interface generators has been that their interface designs
do not conform to domain-specific design patterns that users are accustomed to. For exam-

ple, an automated tool is unlikely to produce a standard telephone keypad layout. This

problem is challenging for two reasons: the user interface conventions used by designers must

be described, and the interface generators must be able to recognize where to apply the con-
ventions through analysis of the interface specification. Some systems [Wiecha 1990] have

dealt with this problem by defining specific rules for each application that apply the appro-

priate design conventions. Other systems [Kim 1993] rely on human designers to add design

conventions to the interfaces after they are automatically generated. Neither of these solu-
tions is acceptable for the PUC system. Defining specific rules for each appliance will not

scale, and a PUC device cannot rely on user modifications because its user is not likely to be

a trained interface designer. Even if the user was trained, he or she is unlikely to have the

4 The work in this chapter was originally described in Jeffrey Nichols, Brad A. Myers, and Kevin Litwack. “Improving
Automatic Interface Generation with Smart Templates,” in Proceedings of Intelligent User Interfaces (IUI). Funchal, Port-
gual. 2004. pp. 286-288

99

time or desire to modify each interface after it is generated, especially if the interface was

generated when needed to perform a specific task.

I have developed one solution to this problem called Smart Templates, which augment the

PUC specification language’s primitive type information with high-level semantic informa-

tion. Interface generators are free to interpret the semantics of a Smart Template and, if

appropriate, augment the automatically generated interface with the conventions expected by
the user. Smart Templates are specially designed to integrate hand-designed user interface

fragments that implement the conventions with an otherwise automatically generated inter-

face. Templates are also designed to scale across different appliances without requiring help

from the user after generation. Interface generators are not required to understand every
template, and templates are designed such that the full functionality of every template is

available to the user even if the interface generator does not understand that template.

7.1 Roles

The design, implementation, and use of a Smart Template involve people in four different
roles (shown visually in Figure 7.1):

• Users own controller devices and make use of the interfaces containing Smart Tem-

plates produced by automatic interface generators.

• Specification Authors write specifications for appliances. I expect that most authors

would work for the appliance manufacturers, though some specifications might be

written by third parties. Specification authors learn about available Smart Templates
from the Template Registrar, which they may then instantiate in their specifications.

Specification authors are not required to use any templates in their specifications, but

of course there is a strong benefit to doing so because of the potential increase in
generated interface quality.

• Interface Generator Programmers build the software that automatically generates user

interfaces. These programmers might be employed by the controller device manufac-
turer or a third party. Programmers learn about available Smart Templates from the

Template Registrar and will choose which templates to implement based on the

properties and requirements of their target controller device. There is no requirement

for an interface generator to support any Smart Template, though some would be
highly recommended (such as the date and time templates).

Chapter 7: Handling Domain-Specific and Conventional Knowledge 100

Figure 7.1. A diagram showing the four different roles in the creation, implementation, and use of a Smart
Template in the context of the interface generation process.

• The Template Registrar is a global entity that manages the list of all Smart Templates

and defines the required and optional parameters of those templates. New templates
may be developed by the registrar or proposed by other entities.

7.2 Design and Use

There are three steps in the development and use of a Smart Template:

1. The template registrar defines the new template.

2. A specification author instantiates the template one or more times in an appliance

specification.

3. An interface generator, which is already aware of the template, uses special hand-

designed interface code to appropriately render the template as used in the specifica-
tion.

Smart Templates must be defined in advance by the template registrar to ensure there is

some agreement between the specifications authors, who instantiate templates in specifica-

tions, and the interface generator programmers, who write the code that renders the
templates. Agreement does not need to absolute however, and flexibility is built-in to the

design to allow some benefits to the user even when both the specification authors and gen-

erator programmers to not adhere fully to the Smart Template standards. The user will

Chapter 7: Handling Domain-Specific and Conventional Knowledge 101

always be able to access all appliance functionality, and in the worst case the user will be pre-

sented with an interface rendered without any special Smart Template rules.

The registrar defines a new Smart Template by giving the template a name and defining a set

of specification restrictions for the template. A specification author instantiates a template by

adding an is-a attribute to a group, variable, or command with the name of the template

and the conforming to the template’s restrictions within that section of the specification (see
Figure 7.2). When the interface generator encounters a section of a specification referencing

a template that it knows about, it can invoke special code written by the generator program-

mer to appropriately render the template. If the generator encounters a template that it does

not know about, it will use its normal generation rules to render the template contents. This
is possible because every Smart Template is defined using the primitive elements of the speci-

fication language. For example, Figure 7.3a shows an instance of a media-controls Smart

Template rendered by a generator with no knowledge of that template and Figure 7.3b

<group name=”Counter” is-a=”time-duration”>
 <labels> <label>Counter</label> </labels>

 <state name=”Hours”>
 <type>
 <integer/>
 </type>
 </state>

 <state name=”Minutes”>
 <type>
 <integer>
 <min>0</min> <max>59</max>
 </integer>
 </type>
 </state>
</group>

b.

<group name=”Controls” is-a=”media-controls”>
 <labels><label>Play Controls</label></labels>

 <state name=”Mode”>
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <value-labels>
 <map index=”1”>
 <labels><label>Stop</label></labels>
 </map>

 <map index=”2”>
 <labels><label>Play</label></labels>
 </map>

 <map index=”3”>
 <labels><label>Pause</label></labels>
 </map>
 </value-labels>
 </type>
 </state>

 <command name=”PreviousTrack”>
 <labels> <label>Prev</label> </labels>
 </state>

 <command name=”NextTrack”>
 <labels> <label>Next</label> </labels>
 </state>

</group>

a.

<state name=”SongLength” is-a=”time-duration”>
 <type>
 <string/>
 </type>

 <labels> <label>Length</label> </labels>
</state>

c.

Figure 7.2. Three specification snippets showing instantiations different Smart Templates. a) The
instantiation of the media-controls template for the play controls on Windows Media Player. b) The
instantiation of the time-duration template for the counter function on the Sony DV Camcorder. c) The
instantiation of the time-duration template for the song length function on Windows Media Player.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 102

shows the same instance rendered by generators on several different platforms that did know

about the template.

The restrictions on the specification allow Smart Templates to be parameterized, which al-

lows them to cover both the common and unique functions of an appliance. Parameters are

specified in terms of the primitive elements of the specification language and consist of a list

of the state variables and commands that the template may contain along with definitions of
the names, types, values, and other properties that these elements must have. Some of the

elements may be optional to support functions that would not be used in all instantiations of

a template. For example, two representations of play controls are allowed by the media-

controls template: a single state with an enumerated type or a set of commands. If a single
state is used, then each item of the enumeration must be labeled. Some labels must be used,

such as Play and Stop, and others are optional, such as Record. If multiple commands are

used, then each command must represent a function such as Play and Stop. Some functions

must be represented by a command and others are optional. This template also allows three
commands for functions that are commonly included in the same group as the play controls,

including the previous and next track functions for CD and MP3 players, and the play new

function for answering machines. Allowing many combinations of states and commands in a

template definition allows a single Smart Template to be applied across multiple kinds of
appliances (see Figure 7.3c).

The challenge for the template registrar is to find the different combinations of states and

commands that an appliance implementer is likely to use. This makes it easier for appliance

specification writers to use the templates, because there is no need to modify the appliance’s
internal data representation in order to interface with the controller infrastructure. For ex-

ample, some appliances may not be able to export their playback state, and thus would want

to use the option of specify each playback function with a command. Another example is for

the time-duration template. Windows Media Player makes the duration of a song avail-
able as a single integer while our Sony DV Camcorder makes the playback counter available

as a string (see Figure 7.2b and c for specifications). Both of these representations can be ac-

commodated by the time-duration Smart Template, which allows the PUC to be

implemented more cleanly with these appliances because no translation is needed to suit the
requirements of the PUC. Note that the regular specification language is used to specify how

the smart template is represented. No new techniques need to be learned by specification

authors to use and customize smart templates.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 103

Each interface generator implements special generation rules for each template. This allows

each template to be rendered appropriately for its controller device using bits of hand-
designed interfaces specifically created the template and the controller device. Sometimes

these hand-designed interfaces include platform-specific controls that are consistent with

other user interfaces on the same device. In the case of our time-duration Smart Template

implementation, each platform has a different standard control for manipulating time that
our interface generators use. Unfortunately, none of our platforms have built-in controls for

media playback, so our media-controls Smart Template use renderings that I hand-

designed to be appropriate for each of the different platforms. The Smartphone media-

controls implementation does mimic the interface used by the Smartphone version of
Windows Media Player however, and thus is consistent with another application on that de-

vice (see Figure 7.3b).

Smart Templates are also able to intelligently choose a rendering based upon the contents of

the template. For example, each implementation of the time-duration template only ren-
ders the time units that are meaningful, and each implementation of our media-controls

Smart Template renders buttons for only the functions that are available. The media-

controls implementations on the PocketPC and desktop extend this by intelligently laying

a. b. c.

Figure 7.3. Renders of the media-controls Smart Template on different platforms and for different appli-
ances. a) Media controls rendered with Smart Templates disabled for a Windows Media Player interface on the
PocketPC platform. b) Media controls rendered for the same interface with Smart Templates enabled on each
of our three platforms. At the top is the desktop, the middle is PocketPC, and the bottom shows Smartphone.
The Smartphone control maintains consistency for the user by copying the layout for the Smartphone version
of Windows Media Player, the only media player application we could find on that platform. This interface
overloads pause and stop onto the play button. c) Different configurations of media playback controls auto-
matically generated for several different appliances.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 104

out the buttons on one or more lines depending on space, enlarging buttons of greater im-

portance such as Play, and using a grid to create aesthetically pleasing arrangements (see
Figure 7.3c).

The PUC interface generators can also robustly deal with content within a Smart Template

that does not conform to the restrictions specified by the template registrar. When content is

encountered that the interface generator does not understand, this content is passed back for
rendering by the normal interface generation process. This approach is also used in other

cases when the Smart Template rules understand the content but are not able to produce a

a. b.

c.

Figure 7.4. Screenshots of Smart Templates rendered as part of the GMC Denali navigation system on the
PocketPC platform. a) Demonstrates the time-absolute Smart Template used for a clock function. The 12- and
24-hour option of the template changes the way time is rendered throughout the interface, as can be seen in the
clock at the top of these screenshots. b) Demonstrates the list-commands templates integrated with one of the
PUC’s list controls. Several commands for adding and deleting items are located underneath the list control,
along with the edit button that is part of the list control. Two move commands have also been integrated with
the list control as the arrow buttons located on top of the selected list item. c) Demonstrates the address
template’s capability of integrating with the PocketPC’s built-in Outlook contact database. The leftmost screen
shows the interface before the user has pressed the Select Contact… button. Pressing this button shows the
middle screen, which allows the user to select a contact from their database. Pressing OK from this dialog
causes the selected information to be filled appropriately into the fields of the template (rightmost screen).

Chapter 7: Handling Domain-Specific and Conventional Knowledge 105

rendering better than the normal generator. For example, the time-absolute template has

support for optional variables that define how time should be rendered, such an enumeration
specifying whether to use a 12-hour or 24-hour time format (see Figure 7.4a). When these

variables are encountered, the PUC PocketPC generator saves references to them but passes

them back to interface generator for normal rendering. The references allow the template to

know when the user the changes the variables, so that it can take these changes into account
when rendering absolute time values elsewhere in the interface.

In other situations, an interface generator may explicitly decide not to implement an entire

Smart Template because the interface generated by the normal interface generator is already

sufficient. For example, a speech interface generator might not implement the media-
controls template because the best interaction is speaking words like “Play” and “Stop” and

this is the interface that would already be produced.

The code for a Smart Template on a controller device can also access special features or data

that are specific to that controller device. For example, the address and phone-number Smart
Templates in the PUC PocketPC interface generator were implemented to take advantage of

the built-in Outlook contacts database that is present on every PocketPC. Whenever an ap-

pliance requires the entry of an address or phone number, the template provides a special

button that opens a dialog box that allows users to pick one of their contacts. When they re-
turn to the PUC interface, the appropriate information from the database is automatically

filled into the appliance’s fields. This integration is particularly useful in the navigation sys-

tem interface, where it allows users to quickly specify a destination to navigate to from their

contacts (see Figure 7.4c). Another potential controller-specific implementation would be to
take advantage of any special physical buttons that a controller device possesses. For example,

if a controller had two special buttons for volume up and down, then the volume Smart

Template could automatically allow those buttons to control the volume of the current ap-

pliance, if appropriate. The current PocketPC implementations of the media-controls
template allow the left and right directional buttons to be used for next track and previous

track, if those functions are available.

7.2.1 Implementing a Smart Template for an Interface Generator
Each implementation of a Smart Template must accommodate all of the required and op-

tional parameters of that template. For many templates, this puts a significant burden on the
implementer to handle many different possible inputs and reflect all of these differences in

Chapter 7: Handling Domain-Specific and Conventional Knowledge 106

the user interface. The implementation challenge becomes even greater for merged templates,

which are Smart Templates that contain one or more other Smart Templates. For example,
the date-time template is a merged template because it must contain one instance of both

the date and time-absolute templates. Merged templates are more complex to implement

because the implementer must be able to handle the different input combinations for all of

the constituent templates.

The implementation complexity of a Smart Template can be reduced by separating the im-

plementation task into two layers:

• The data-translation layer converts data back and forth between the appliance format
defined by the specification and the template data structure. The template data struc-

ture contains all the possible data for a given template in one format along with flags

that define the optional parameters used in an instance of the template. If the data in

the template data structure changes, this layer converts the data back into the appli-
ance’s format and sends the changes to the appliance.

• The interaction layer creates a user interface based on the common data structure and

allows the user to manipulate the template’s data. When changes are made by the
user, the template data structure is updated and the data translation layer is notified.

These layers separate the instantiation of a template in a specification from the generation of

its interface. The template data structure is the sole point of communication between the

layers. Using this approach is particularly beneficial in several situations:

• Templates that represent a single data type, such as date or time, may have many dif-

ferent formats in the specification. In this situation, implementing the data

conversion is complex but the interface generation is basically the same no matter
what the underlying data format is. Separating the data conversion simplifies the in-

terface generation because the generation only needs deal with a single data format.

• Merged templates are easier to implement, because the data conversion layers from
the constituent templates can be re-used to create a merged template data structure.

This reduces the cost of implementing a merged template to the sub-task of creating

interface generation algorithms.

• If code can be shared across platforms, as it can in my implementations for the Pock-

etPC and Smartphone, then the data conversion layers can also be shared. New

Chapter 7: Handling Domain-Specific and Conventional Knowledge 107

interface generation layers will be needed to address differences in the platforms, but

again the cost of implementing a template may be reduced substantially.

The layering approach does not remove all of the complexity from the implementation of a

Smart Template however. Some differences in the specification of a template must be re-

flected in the generation for that template, which requires the complexity of the template to

be addressed in both layers.

7.3 Smart Template Library

The PUC research team and I have implemented 15 different Smart Templates, as shown in

Table 7.1. These templates collectively illustrate all of the features discussed in previous sec-

tions. A full description of all Smart Templates is available on the web at:

http://www.pebbles.hcii.cmu.edu/puc/highlevel-types.html

As we have built Smart Templates, we have found two uses for templates that improve the

PUC interfaces but differ somewhat from our initial intentions:

• The PUC supports state variables with a binary type. These variables could contain
images, sounds, or other data that cannot be easily communicated through the

PUC’s text-based communication protocol. Smart Templates were chosen to handle

this binary information for several reasons. First, it did not seem appropriate for all

interface generators to handle all kinds of binary data. Smart Templates were attrac-
tive then because they are optional by design, although in this case the lack of a

Smart Template for handling a particular binary data type means that data cannot be

presented in the interface. Second, the controls needed for displaying any binary data

would need to be custom built for the particular platform, which Smart Templates
are already capable of adding to the generated interface. Finally, binary-typed data

requires extra communication to negotiate the particular sub-types of data (such as

image formats) that a particular platform supports. This extra communication is

likely to differ based on the type of binary data being managed, requiring different
implementations for each type. The data translation layer of the Smart Templates for

different binary data types is an ideal place for this code.

• List operations can also be handled by Smart Templates, allowing for special integra-
tion with the controls for handling list data that would not otherwise be possible. A

challenge the PUC faced for handling lists was how to represent list operations.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 108

There are several different kinds of list operations, such as add, delete, move, insert,

etc., with so many different variations that did not seem practical to include as first-
class elements in the specification language, e.g. add-first, add-last, add-after, add-

before, and so on. Ultimately, I decided that most list operations could be specified

as separate commands outside of the list they operated on. However, when building

the generation rules for list interfaces, I found that list interfaces were easier to gener-
ate well when the interface generator could identify the commands that operated

upon it. Furthermore, commands that added items to a list could not automatically

display a dialog box to enable editing of the newly added item. The solution I chose

was to create the list-commands Smart Template, which is a merged template that
may contain multiple other templates. These constituent templates include list-

add, list-remove, list-clear, list-move-before and several others. The list tem-

plates allow all operations to be grouped appropriately next to the list control, add

operations to perform the correct dialog box opening behavior, and for move com-
mands to be handled directly inside the list control rather than being displayed as

separate commands away from the list. It is important to note that while the list

templates allow for better list interfaces, it is possible for PUC interface generators to

produce an adequate list interface with no knowledge of these templates.

7.4 Discussion

The unique feature of Smart Templates is their ability to integrate small snippets of hand-

designed user interfaces into interfaces that are otherwise automatically designed. This allows

the design conventions that users expect to be included in the appliance user interfaces, while
still allowing flexibility for those interfaces to be generated on multiple platforms with fea-

tures like consistency and aggregation. Smart Templates also provide some consistency across

interfaces for different appliances, because they ensure that the same controls are used for

similar kinds of functions (see Figure 7.3c).

Smart Templates do have some limitations however. The complexity and size of a template is

limited by the cost of implementing that template on an interface generator. While the tem-

plate registrar could standardize a template for a very large set of functionality, such as entire

appliance like a VCR, the cost of hand-designing an interface flexible enough to accommo-
date the wide variety of functionality that a VCR may have is prohibitive. As the

functionality of a template becomes a large percentage of an entire appliance, the benefits

Chapter 7: Handling Domain-Specific and Conventional Knowledge 109

possible from other automatic generation techniques, like consistency, will also be lost be-

cause the majority of the user interface is no longer being generated automatically.

It is important to note that the standardization needed for Smart Templates is quite different

from that being pursued by current industry projects like UPnP [UPnP 2005]. UPnP stan-

dardizes the specification for each appliance. This means that all the manufacturers for

printers, for example, must sit down in a room and agree on the set of functionality that all
printers will have. User interfaces for printers are based on this standard. After a standard has

been agreed upon, manufacturers may still add custom functions, but these functions will

not appear in most UPnP printer user interfaces. Smart Templates, however, standardize

functionality at a much finer-grain level. It should be much easier for manufacturers to agree
on the features of media controls for example, as compared to a printer or VCR. Smart Tem-

plates also do not affect manufacturers’ ability to innovate. New functions, even if they

extend the functionality of an existing Smart Template, can always be added to an appliance

and rendered by the normal interface generator.

It is not unusual for consumer electronics manufacturers to produce both appliances and

high-end remote controls that can be used with those appliances. In this situation, specifica-

tion authors and interface generator programmers might work for the same company and it

is reasonable to believe that manufacturers might develop their own in-house Smart Tem-
plates that improve their appliances interfaces when used with their remote controls.

However, since these proprietary templates would not be understood by other interface gen-

erators, the interfaces generated for that appliance could be sub-par as compared to

competing appliances. This could be particularly bad if the proprietary template replaced a
common template, such a media-controls, preventing even basic conventions from being

applied in the appliance interface.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 110

Table 7.1. Description of all implemented Smart Templates in the PUC system.

Template Name Description

address Represents all aspects of a street address, including street name, number, city, state
and zip code. Primarily used by the navigation system, but also supports entry of
zip codes on appliances that need location information to configure program
guides, etc. On the PocketPC platform this template also integrates with the built-
in Outlook database to allow users to automatically insert contact information into
the fields of a PUC interface.

channel Represents the channel on a television, station on a radio, or the tuning parameter
of some other appliance. This template is needed to support the automatic ma-
nipulation of channels by the multi-appliance interfaces discussed in Chapter 9,
but also offers better support for channel manipulation than is currently afforded
by the automatic interface generation. For example, up and down buttons can be
provided for manipulating channels along with the arbitrary numeric entry that the
PUC normally supports.

Date Represents calendar dates. Many date formats are supported to match the internal
implementation of a particular appliance: including integers, strings, and multi-
variable formats. This template also allows for use of the special date manipulation
control from each controller device’s platform.

date-time Merged template of date and time-absolute. The individual templates are used to
transform the specification format into a common format that can then be used
with a special control, if available, that allows the simultaneous manipulation of
date and time.

dimmer A specialized template that represents a dimmer control for a lighting source. This
template supports an arbitrary scale with optional support for direct on and off
functions. This template is primarily used by the Lutron RadioRA lighting control.

four-way-dpad Represents a four-way directional control pad, as might be found on a DVD player
or navigation system. This template also includes optional support for an “enter”
button that appears in the middle of the four directional buttons. In general, I
hope that specification authors can avoid use of this control for navigation on-
screen menus that could be replicated on the PUC. There are situations however,
such as for navigation of map content that cannot be displayed on the PUC, where
this control may be needed.

image Represents an image of any type. Currently, this template is used in the interfaces
for the PowerPoint and photo browser app. Images are transmitted to the PUC
through state variables with binary types. This template negotiates with the appli-
ance to get an image with a size and type compatible with the controller device.

image-list Handles a list of objects which must include one object that handles the image
template. The typical representation of this template in a user interface is two over-
lapping views: a list of thumbnails of all the images and a single record view that
shows a larger image along with any other fields in the list. This template is used
primarily in the interface for the photo browser appliance.

list-commands Represents the common operations that might be supported by a list, such as add,
remove, clear, and move. The use of a template allows these operations to be better
integrated with the list controls, particularly for moving items.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 111

media-controls Represents the functions for controlling the playback of a variety of media, includ-
ing common functions such as play, stop, and pause and less common functions
such as play new for answering machines, reverse play for audio tapes, and multiple
playback speeds for VCRs and DVD players.

phone-number Represents a phone number and/or the controls for entering a phone number, such
as the standard phone keypad. Like the address template, on the PocketPC this
template can integrate with the built-in Outlook database to allow users to auto-
matically insert numbers into the fields of the PUC interface.

status-icons The status-icons template is a grouping template in which one or more special
templates representing a variety of status indicators, typically represented as icons,
are contained. Currently ten different indicators are supported by the PUC, in-
cluding ones for specifying whether a tape is in the appliance, whether the device is
busy, etc (see Figure 7.5 for a complete list).

time-absolute Represents an absolute time of day (as opposed to a duration of time). This tem-
plate is commonly used for the clock function of an appliance but also has many
other uses. The date template can also handle other related preference variables,
such as whether the user prefers a 12- or 24-hour time and whether daylight sav-
ings time is currently in effect. Some of these preferences will affect the
representation of other time-absolute templates on the same appliance. Many dif-
ferent representations for time are supported, including integer, string, and multi-
variable representations.

time-duration Represents a duration of time, such as would be required for a stopwatch appli-
ance. As for the time-absolute template, many different representations of a time
duration are supported, including interface, string, and multi-variable representa-
tions.

zoom-controls Represents controls for zooming in an appliance interface, typically with the stan-
dard looking glass icons. This template is intended primarily for appliances with
content that cannot be displayed on the PUC.

Busy Camera

Connected
Computer
Connected

Copy Protected Black Ink

Memory Card

Inserted
Network

Connected
Paper Loaded Tape In Player Color Ink

Figure 7.5. Icons currently supported by the PUC status icons Smart Template.

Chapter 7: Handling Domain-Specific and Conventional Knowledge 112

CHAPTER 8

8Interface Generation5

This chapter discusses the interface generation algorithms used by the PUC system. All the
interface generators use a rule-based approach that operates in two stages. In the first stage,

an appliance specification is converted to an abstract user interface with no platform specific

details. The second stage converts the abstract user interface into a platform-specific concrete

user interface. The most important contributions of the interface generators are the use of
mutual exclusions to determine the structure for the abstract interface and algorithms that

manipulate new interfaces to that they are consistent with previous interfaces that the user

has seen.

5 This work in this chapter was originally in described in three different papers: Jeffrey Nichols, Brad A. Myers, Michael
Higgins, Joseph Hughes, Thomas K. Harris, Roni Rosenfeld, Mathilde Pignol. “Generating Remote Control Interfaces for
Complex Appliances,” in Proceedings of the 15th annual ACM symposium on User Interface Software and Technology (UIST).
Paris, France. October 27-30, 2002. pp. 161-170, Jeffrey Nichols, Brandon Rothrock, and Brad A. Myers. “UNIFORM:
Automatically Generating Consistent Remote Control Interfaces,” in Proceedings of the Conference on Human Factors in
Computing Systems (CHI). Montreal, Quebec, Canada. April 22-27, 2006. pp. 611-620, and Jeffrey Nichols and Brad A.
Myers. “Controlling Home and Office Appliances Using Smartphones,” in IEEE Pervasive Computing. July-September
2006. pp. 60-67.

113

8.1 Generation Platforms

Interface generators have been implemented for graphical interfaces on three different plat-
forms, PocketPC, Smartphone, and desktop, and another generator was built for speech

using Universal Speech Interface (USI) [Rosenfeld 2001] techniques. All of the graphical

generators were built using the .NET Compact Framework, which allows code to be shared

across platforms for common functions such as parsing specifications and communicating
with appliances. Interface generation rules are also shared: many between the PocketPC and

desktop and only a few between the PocketPC and Smartphone.

The speech interface generator was produced as a Masters project for a student in Carnegie

Mellon University’s Language Technologies Institute [Harris 2004]. This chapter will briefly
summarize how this interface generator works and describe the interfaces it produces, but

this generator is not discussed in detail because I was only peripherally involved in its con-

struction.

8.1.1 PocketPC and Desktop
The PocketPC interface generator is the PUC’s primary development platform and most fea-

tures were implemented first on PocketPC before being migrated to the other platforms. The

platform is a set of hardware requirements for OEMs and a Windows CE-based operating

system that runs on top of compliant hardware. The hardware platform requires a 240x320
or 480x640 screen with touch-sensitivity. A 4-way directional pad is also available along with

four physical application buttons (see Figure 8.1a). Our current interface generator focuses

on the touchscreen and only the media-controls Smart Template makes use of the physical

buttons (see Chapter 7).

The PocketPC interface generator produces interfaces that appear much like other PocketPC

applications, so that PocketPC owners can leverage their existing knowledge to use the inter-

faces. The generator attempts to avoid scrollbars whenever possible, which causes many

interfaces to include overlapping panels, manipulated using tabs or another organizing con-
trol. Dialog boxes are also created in certain situations. These techniques allow all of the

complex functionality of an appliance to be accessible through one user interface. The Pock-

etPC has menus at the bottom of its screen, but these are reserved for controlling the

interface generator itself rather than for controlling appliances. This decision was influended
by the preliminary user studies, which showed that users did not typically look for appliance

Chapter 8: Interface Generation 114

a. b.

Figure 8.1. a) An interface for Windows Media Player generated on a PocketPC. b) The full interface gener-
ated for the GMC Yukon Denali driver information console.

functionality in the menus (see Chapter 3). Figure 8.1 shows two example interfaces gener-

ated for Windows Media Player and the driver information console (DIC) of a GMC Yukon
Denali.

The input and output technologies used on the PocketPC, a touch-sensitive medium-sized

screen, are similar to those of the desktop, and a result the generation rules used for the

PocketPC are also used for the desktop. The main difference between the desktop and Pock-
etPC generators is the choice of controls, which is slightly better on the desktop because

more controls are available than on the PocketPC. For the remainder of this chapter, when-

ever I discuss rules for generating PocketPC interfaces it can be assumed that these same rules

are also used for generating desktop interfaces unless otherwise noted.

8.1.2 Smartphone
The Smartphone interface generator uses Microsoft’s Windows CE-based Smartphone plat-

form. This platform is also a set of hardware requirements and a Windows CE operating

system. Unlike the PocketPC, the required screen is smaller (220x176) and it does not have
any touch-sensitivity. Instead, interaction takes place through a 4-way directional pad, a nor-

Chapter 8: Interface Generation 115

mal phone keypad, home and back buttons, and two soft buttons with labels that are shown

on the Smartphone’s screen (see the left side of Figure 8.2).

The Smartphone interface generator creates interfaces that follow Microsoft’s Smartphone

user interface guidelines. As for the PocketPC, I chose this approach so that our interfaces

would be consistent with other Smartphone applications, allowing users to leverage their

knowledge of their Smartphone to control appliances. The guidelines stipulate that most in-
terfaces should use a list-based hierarchy that leads to summary panes for viewing data or

editing panes for modifying data. The generator follows these guidelines and focuses on op-

timizing the structure of the lists so the hierarchy is shallow and each list requires only one

screen. Figure 8.2 shows a Smartphone and the full generated interface for the GMC Yukon
Denali DIC. The interface generator tries to keep as much of the interface in the list format

as possible, but sometimes a variable cannot be manipulated within the constraints of the list.

In this case, an editing pane is created that contains the appropriate controls. The interface

generator may also create summary panes when a number of read-only state variables are
grouped together. Note that the list hierarchy created by the interface generator is static, so

that users can learn the hierarchy over time and remember the locations of commonly used

functions.

The user interface guidelines also state that the left soft button should always be used for in-
voking the most commonly used function for a given interface. This button is currently

Figure 8.2. A Smartphone displaying a PUC interface for Windows Media Player and the automatically gen-
erated interface for the Driver Information Center in a 2003 GMC Yukon Denali SUV. The user navigates
through list panes (a,b) to get to summary (c,e) and editing panes (d,f,g).

Chapter 8: Interface Generation 116

assigned to always perform the back function, though I have experimented with other ap-

proaches.

8.1.3 Speech
The speech interface generator creates an interface from a PUC specification, using USI in-

teraction techniques [Shriver 2001]. The goal of these universal speech techniques is to

balance the flexibility of natural language interfaces, which are difficult to implement and

typically do not convey their limitations to users, with the structure of specialized hierarchi-
cal menu-based speech interfaces. The structure is given by a set of common interaction

primitives that are designed to be learnable in five minutes but applicable to all of the inter-

faces that a user encounters. These interaction primitives allow users to navigate, manipulate,

and understand any interface built with the USI techniques. Studies have been conducted to
evaluate users’ acceptance of these interfaces and the transference of USI skills from one in-

terface to another. These studies show users prefer USI-based interfaces to natural language

interfaces though work is still needed to help users learn and remember the interaction

primitives [Tomko 2004].

The speech interface generator differs from the graphical interface generators in that it con-

nects to multiple appliances (if multiple appliances can be found on the network), requests

their specifications, and then automatically generates an interface that allows control of all of

the appliances collectively. This includes building a grammar for the parser and a language
model and pronunciation dictionary for the recognizer. The generated grammar is compati-

ble with the Phoenix parser [Ward 1990], which is used by the USI library to parse user

utterances. A grammar is generated for each appliance that contains phrases for query and

control. Query phrases include determining what groups are available, what states and com-
mands are available, what values the states can take, as well as what values they currently

hold. Control phrases allow the user to navigate between groups, issue commands and

change states. All of the appliance-specific grammars, together with an appliance-

independent USI grammar, are compiled into a single combined grammar representing eve-
rything that the speech interface will understand. Note that this is different from the

interface aggregation for multiple connected appliances discussed in Chapter 9, because the

combined speech interface is organized by appliance with no re-organization for functions

from different appliances that would be used together. The speech interface generator has

Chapter 8: Interface Generation 117

been implemented and tested with the Audiophase shelf stereo, the Sony camcorder and

multiple X10 devices. Figure 8.3 shows an example of a user interacting with this system.

The speech interface translates the group tree from each appliance specification into a USI-

interaction tree. This tree is a more concrete representation of what interactions can take

place between the system and the user, which consists of nodes with phrasal representations.

Each node is either actionable or incomplete. An actionable node contains a phrase that, when
uttered, will cause some device state change. An incomplete node contains a phrase that re-

quires more information before it can be acted upon; uttering the phrase causes the system to

prompt the user with completion options, derived from that node’s children. Grouping in-

formation is represented in the structure of the tree, and influences exploration,
disambiguation, and scope.

User control system

System control system (system voice)

User Options

System control x10, control audiophase

User control x10

System control x10 (x10 voice)

User options

System global off, all lights on, all lights off “...”

User control audiophase

System control audiophase (stereo voice)

User Options

System stereo power, x-bass, volume “…”

User stereo power

System <stereo is turned on>

User Options

System stereo power, x-bass, volume “…”

User More

System mode, tuner, CD

User stereo power is, options

System on, off

User tuner is, options

System tuner radio band, tuner seek forward, tuner seek re-
verse

User Tuner

System Tuner

User what is radio station?

System radio station is 106.7

User radio station is 98.5

System <changes station to 98.5>

Figure 8.3. An example interaction using the speech interface to control a shelf stereo and X10 lighting.

Chapter 8: Interface Generation 118

There were a few unique challenges in generating an interface using USI techniques from the

PUC specification language. The language makes a distinction between state variables and
commands, but what is best described as a variable in a visual interface (e.g. speaker volume)

might be better thought of as a command in a spoken interface (e.g. “louder”). This might

be addressed by adding support for “verb” labels in the specification language that specify

command words that could be used to manipulate a state variable from a speech interface.
Secondly, in a visual environment, groupings of functionalities or widgets need not have a

name; such grouping can be implied by adjacency or by a visual cue such as a frame. In

speech interfaces, grouping must be assigned a word or phrase if they are to be directly ac-

cessed. The specification language does not require groups to have labels, making appropriate
names hard or impossible to find. It may be necessary to require labels on each group for

speech interfaces, but more work is needed to determine if this is necessary. Using a speech

interface also has benefits. For example, choosing from a long list of names is easy with

speech, yet can be challenging for visual interfaces.

8.2 General Concepts

An overview of the PUC generation process for graphical interfaces is shown in Figure 8.4.

The process is made up of six consecutive phases that fall into two categories. Each of the

generation phases creates a new interface data structure based on the previous structure, tak-
ing the attributes of the appliance and the controller device into account. Each of the

consistency phases modify the current interface data structure to match elements of previous

interfaces that the user has previously seen. These consistency phases make use of the knowl-

edge base to find matching elements and choose the appropriate modification.

There are three types of interface data structures used in the generation process. The first is

the specification structure, created by parsing a specification document written in XML. The

second is the abstract user interface, which contains more complete knowledge about how

the interface should be organized and an abstract choice of controls for each of the appli-
ance’s functions. The third is the concrete user interface, which varies depending on the

target platform for interface generation. Because the first two structures are common across

all generation platforms, all of the rules for creating the abstract user interface and the consis-

tency rules that operate on the abstract user interface can be shared among the different
platforms.

Chapter 8: Interface Generation 119

Four of the six phases are designed to produce consistent user interfaces. The mapping phase

analyses the new appliance specification to automatically find similarties to previous specifi-
cations the users have seen. This is the only phase that adds new information to the

knowledge base. The functional and abstract structural phases modify the abstract user inter-

face to ensure that functions appearing in previous interfaces are manipulated the same way

and appear in the same location in the new interface. The concrete phase is used to clean up
visual consistency problems created by the interface generator’s transformation of the ab-

stract user interface to the concrete interface, such as changing the orientation of panels or

adding additional organization. I discovered in the creation of the consistency algorithms

that most of the work needed to ensure consistency can take place in the third and fourth
phases, which operate on the abstract user interface. This means that most of the consistency

rules can be shared across platforms without modification.

Figure 8.4. PUC interface generation process diagram

Chapter 8: Interface Generation 120

8.3 Generating the Abstract Interface

The abstract interface is created from the appliance specification. The structure of the inter-
face is taken from the specification’s group tree and modified by an analysis of dependency

information. Abstract interaction objects (AIOs) are assigned for all state variables and com-

mands and placed within the structure of the abstract interface. The result is a set of abstract

controls within a hierarchical tree that can be transformed into concrete interfaces for the
various platforms. The two most importants parts of this process, the analysis of dependency

information for structure and the assignment of AIOs, are discussed below.

8.3.1 Mutual Exclusions in Dependency Information
The interface generator uses the specification’s group tree as the basis for the structure of the
abstract interface, but this tree is just one specification author’s interpretation of the structure

that the appliance should have. Some structure may be missing and the relative importance

of different pieces of the existing structure may not be clear. For example, an appliance speci-

fication for a shelf stereo might have a group node whose branches represent the main modes
of that stereo (CD, Tape, Radio, etc.). The generator needs to discover that this group is of

particular importantance for this appliance and create an interface structure that will always

make these important branches clear. For most appliance modes, it is best for each mode to

have its control placed on a separate overlapping panel to save space and improve usability by
hiding controls that are not active. In some cases, the specification author may not have in-

cluded structure for a mode and the interface generator also needs a means of detecting this

and, if possible, inserting the appropriate structure.

Dependency information can be used to address both of these issues with the concept of mu-

tual exclusion. If two sets of components are shown to never be active at the same time, then

the interface generator can decide that these sets of components should be placed in different

groups and that those groups should be marked with as important to carry through in the

concrete interface. Another way to solve this problem might be to have the specification au-
thors place a marker on all groups that have mutually exclusive branches. Relying on

dependency information instead of a marker makes specification design easier. Instead of

finding all cases of mutual exclusion and making the tree fit, the author can give the tree any

hierarchy that seems appropriate and the dependency information can help the generator
infer structure from it. Structure can even be inferred from a flat tree with only one group.

Chapter 8: Interface Generation 121

Unfortunately, the task of determining mutual exclusiveness for an arbitrary set of state vari-

ables and commands can be shown to be NP-hard. The difficulty of the problem is reduced
by considering mutual exclusion with respect to a single given variable and its location

within the specification group tree. The algorithm starts by obtaining a list of all state vari-

ables that other commands and states depend upon. In practice, this is a small number of

variables for most specifications. The algorithm iterates through this list, starting with the
state that is depended upon by the most other variables and commands. Usually the states

that are most depended upon represent higher-level modes and the algorithm prefers to cre-

ate high-level structure earlier in the process. Note that we might also have tried to solve the

mutual exclusion problem using a brute force algorithm, but I chose not to use this approach
because the generation algorithms needs to run on processing- and memory-constrained de-

vices and N (the number of appliance objects in the specification) could easily be one

hundred or greater,

For each state, the algorithm finds its location in the group tree and gets a pointer to the
state’s parent group. Dependencies on the state are collected from each of the parent group’s

children and are analyzed to find mutual exclusion. If mutual exclusion is found, the group

a. Before b. After

Figure 8.5. A demonstration of changes made to the tree structure when mutual exclusion is found. The cir-
cles represent nodes within the interface structure, which could represent groups, state variables or commands.
a) In the before tree, the node marked A represents a state variable that can have values from 1-3. The node
marked P is the parent group. The A= formulas shown below the remaining groups show the dependencies of
each group on the variable A. The A=* node is not dependent at all on A. b) In the after tree, a new mutual
exclusion group has been added that contains the A state variable and child groups for each set of mutually ex-
clusive groups. The nodes not dependent on A are moved into their own group under the same parent but
outside of the mutex group.

Chapter 8: Interface Generation 122

tree is re-arranged so that all children in each mutually exclusive set and any children not

dependent on the state are each placed in their own group. The parent group is then marked
as containing mutual exclusion, which will be taken into account when transforming the ab-

stract user interface into a concrete interface. Figure 8.5 shows an example of how the tree is

transformed to take mutual exclusive situations into account.

8.3.2 Choosing Abstract Interaction Objects
Abstract Interaction Objects (AIOs) are abstract representations of the controls, like buttons
and sliders, used in the concrete user interface. The idea was developed by Vanderdonckt et

al. [Vanderdonckt 1999] to build models of user interfaces that could be ported across differ-

ent platforms, and I use them for the same reason in the PUC’s abstract user interface. The

PUC also uses AIOs to delay selection of the concrete control until more properties of the
concrete interface are known, such as the available layout space or context of use (within a

list, on a panel, etc.).

The interface generator chooses an AIO for each state variable and command using a deci-

sion tree [de Baar 1992]. A different tree is designed for each interface generator, because
each platform supports a different set of controls that must be accounted for in the tree. Pa-

rameters used in the tree include whether the object is a state or a command, the type of the

state variable, constraints on the type of the variables, whether the variable is read-only, etc.

For example, commands are always represented with a button AIO, and read-only state vari-
ables are usually represented by a label AIO.

8.4 Modifying the Abstract Interface for Consistency

After the abstract user interface is created, two phases modify the interface to ensure consis-
tency with previous interfaces. These phases are:

1. Functional Phase: each mapping is examined and the abstract user interface may be

modified to ensure functional consistency.

2. Abstract Structural Phase: the organization of the abstract user interface is modified
for consistency. This phase helps to ensure structural consistency. Following this

phase, the PUC transforms the abstract interface into a concrete user interface.

Although the functional phase precedes the abstract structural phase, these two phases could

be executed in the opposite order. I chose this order for implementation reasons, because it is

Chapter 8: Interface Generation 123

easier to find functions in the abstract user interface before the structural phase moves them

around.

All of the rules is these phases must simultaneously balance consistency with previous inter-

faces and the usability of the new interface. This is particularly important when dealing with

functions that are unique to the new interface. Changes for functional consistency can be

applied without disrupting the usability on unique functions, but structural changes have
broader impact with potentially unintended consequences. The rules for ensuring structural

consistency must be carefully applied to ensure that the usability of unique functions is not

substantially diminished.

8.4.1 Heuristics for Unique Functions
In order to address the issue of usability for unique functions, three heuristics for the struc-
tural consistency rules are followed when making changes that involve unique functions.

Heuristics were necessary for two reasons. First, the best approach for dealing with a unique

function is to analyze how that function is related to the other functions of the appliance for

which we have mappings. If these relationships can be understood, then the unique function
can be moved or changed with the functions that are most strongly related to it. Unfortu-

nately, understanding how a unique function relates to other elements of a specification is

difficult because the specification language contains very few cues to discover this kind of

information. The second reason for using heuristics is the lack of any formal studies that
suggest specific methods for balancing the usability of unique functions with consistency. In

particular, my central premise is that unique functions should be kept with the consistent

interface rather than, for example, be moved to a special panel where all unique functions are

collected. Testing this premise and conducting detailed studies of the unique function issue
are subjects for future work.

The heuristics are:

• Move unique functions only with their siblings.

• Unique functions in the middle of a group follow their preceding sibling.

• Unique functions at the beginning or end of a group are not reordered.

The central assumption behind these heuristics is that unique functions should be kept near

their surrounding elements from the initial specification. This is particularly important for

Chapter 8: Interface Generation 124

moving, when functions may end up far away from their initial location in the specification.

The re-ordering heuristics only violate this assumption for functions that are located at the
beginning of end of a group. This was added because functions at the top are usually impor-

tant and should be left in place. Functions at the bottom are usually the least important and

any reorganization upward makes these items too prominent.

8.4.2 Functional Modifications
The functional phase ensures functional consistency by inspecting each function in the new
specification, determining whether there is a previous function with which the new function

should be consistent, and then making changes to the abstract interface to ensure consis-

tency.

The previous function to be consistent with is found by traversing the mapping graph (see
Chapter 6). If a previous function is found, then a set of functional consistency rules are used

to transform the new specification into a form that is consistent with the previous specifica-

tion. In order to determine the particular rule to apply, the PUC iterates through the rules

until it finds a rule that matches the mapping. The PUC will use the first rule that is found,
so the rules must be carefully ordered to ensure that those with more specific matching con-

ditions will be tested before those with more generic matching conditions. The PUC

currently implements seven functional consistency rules, as shown in Table 8.1. Each rule

modifies a portion of the new specification to match the previous specification. For example,
the change-invoke-to-change rule will convert between a state variable and a state variable

with a command that must be invoked before a variable change will take effect. As part of

Table 8.1. The PUC's functional consistency rules.
Name Description
State Ensures that similar variables use the same label and, if possible, the same control

invoke-to-
invoke

Ensures that similar commands use the same label

change-to-
repeated-invoke

Converts between the situation where changing a variable on appliance is the same as repeatedly
invoking a command on another

change-invoke-
to-change

Converts between the situation where one appliance has a state variable and the other has a state
variable with a command that must be invoked before a variable change will take affect

time-end-to-
duration

Converts between the situations where one appliance uses a start time and an end time and an-
other appliance uses a start time and a duration

Template Ensures that smart templates use the same label and control style

Node Ensures that nodes mapped with a node mapping use the same label

Chapter 8: Interface Generation 125

this conversion, a command in the new specification must be hidden or a new command

must be added. If the command is hidden, the converted state variable will automatically
invoke the command when its value is set by the user. If a command is added, then the ap-

pliance will not be informed of a variable change until the user invokes the new command in

the interface.

8.4.3 Structural Modifications
The goal of the abstract structural phase is to ensure that functions are located in the same
place in new interfaces. This phase is divided into two sub-phases: moving and then re-

ordering. Moving rules only need to ensure that functions are placed in similar groups, and

then the re-ordering rules can ensure that the functions have a consistent ordering within

their groups. Both of these sub-phases rely on mappings, such as node, template, and list
mappings, that identify similar groups across specifications. Uniform uses this information to

rearrange groups so that they have the same structure as a previous specification.

8.4.3.1 Moving

The moving sub-phase traverses the abstract user interface’s group tree and searches for map-

pings.

There are two difficulties that may arise when processing mappings to determine whether a

move is necessary. First, the new specification may have mutual exclusive groups and the

planned move may cross the boundaries of these groups. The easiest case is when an item

that is not dependent on the mutually exclusive state is moved into one of the mutually ex-
clusive groups. No extra work is needed because the moved item will always be available in

its new location in the interface. The opposite case, when a dependent item is moved out of

the mutually exclusive groups is trickier, because the item may be disabled and it may not be

clear why from the item’s new location. The most difficult case occurs when an item needs to
move from one group to another that is mutually exclusive of the first. In this case, without

any extra work, the moved item would never be available because its dependencies would

conflict with the organization that is automatically generated by the interface generator.

Rules that address this problem are discussed below.

The second difficulty arises when a mapping references more than one variable or command

in a specification and these items are not adjacent. I refer to this situation as a split mapping,

because the items are split across multiple locations in the specification. Split mappings arise

Chapter 8: Interface Generation 126

most often in two situations: when the options of a single function in one specification are

represented as two separate functions in another specification or when a single function in
one specification is duplicated in a second specification because it is available in more than

one context. An example of the first situation can be found in the Mitsubishi DVCR and

Samsung DVD-VCR specs, where the front display setting is controlled by one state variable

on the Samsung but by two variables on the Mitsubishi that separately control the brightness
and content of the front display. An example of the second situation can be found on the HP

and Canon all-in-one printers. The HP specification has global buttons for starting the copy,

Table 8.2. Consistency moving rules implemented in the PUC.

Name Split? Mutex? Description

Move Single Item No No Moves adjacent items to a location in the new specifica-
tion that is similar to the location of similar items in the
previous specification.

Move Single Moded Item No Yes Performs the same move as the “Move Single Item” rule,
but handles situations when this move will cause items to
move across a mutually exclusive group boundary. For
example, the Canon all-in-one printer fax setup functions
are used in the Setup mode but in fax mode on the HP
all-in-one printer and generating a consistent interface
between these printers requires moving items into a
group with conflicting dependencies. In such cases, this
rule removes dependencies on the moved items and
automatically handles any needed mode switches in the
background when the user uses a moved item.

Move Split Moded Items Yes Yes Handles moves for a mapping in which a single item in
one specification is mapped to multiple items in another
specification and each of the multiple items is mutually
exclusive of the others. For example, this rule handles the
situation for the buttons that start copying, faxing, and
scanning on the HP and Canon all-in-one printers.

Move One to Many Split
Items

Yes No Similar to the move split moded items rule, this rule also
handles moves for a single item in one specification that
is mapped to multiple items in another specification.
None of the multiple items may be mutually exclusive of
each other for this rule, however.

Bring Together Split
Dependents

Yes Yes Works for group mappings that contain a state mapping
and one or more task mappings. This typically means
that one appliance has a set of functionality that is
moded whereas at least some of that functionality is
available simultaneously in the other specification. If that
functionality is split in either spec, this rule handles mov-
ing the dependent pieces to the appropriate locations.

Chapter 8: Interface Generation 127

fax, or scan functions, depending on the current mode. The Canon has separate buttons for

starting copies, starting faxes, and starting scans. Each set of buttons on the Canon is mutu-
ally exclusive of the others however because the printer can only be in one of these modes at

any given time.

There are five different rules for moving items. One of these rules handles the simplest case

of moving items that are adjacent in both specifications and do not cross any mutually exclu-
sive group boundaries. The remaining rules address particular combinations of split and

mutually exclusive situations. Table 8.2 shows the different moving rules.

An important feature of the moving sub-phase is its data structure, called the “containment

stack.” The purpose of the containment stack is to keep track of similar parent groups as the
sub-phase traverses through the tree. Two stacks are created, one for the new appliance and

another for the previous appliance. Only mappings between these two specifications are in-

cluded in the containment stack, so any entry in the stack is known to refer to an existing

location in both specifications. For example, the containment stack for the clock group in
the Mitsubishi DVCR and Samsung DVD-VCR is shown in Figure 8.6a. The clock is lo-

cated in a different group in these specifications, which is reflected in the containment stack.

All of the moving rules check the containment stacks to see if the top-most group mappings

are different. If the mappings are different and other requirements of the moving rule are
met, then the mapping’s objects are moved to the group that corresponds to the previous

specification’s top-most group mapping. For example, suppose that we are generating the

Samsung DVD-VCR interface to be consistent with the Mitsubishi DVCR. The top-most

group mappings are Base.Setup for the DVD-VCR and Base.Status for the DVCR, which
are different. These items in each specification are also adjacent and the move will not cause

an item to cross a mutual exclusive group boundary, which means that the “Move Single

Item” rule will be applied. The moving rule will take the clock group and move it to the

DVD-VCR’s Base.Status group, which is similar to the group with the same name on the
DVCR (see Figure 8.6a). Note that the moving algorithm also chains appropriately. For ex-

ample, the clock group on the DVD-VCR contains a variable that specifies the channel from

which clock information can be extracted. The DVCR has a similar state variable, but is lo-

cated in the setup group instead of the clock group. Before the PUC moved the clock group,
the clock channel variable had the same containment in both specifications, but afterward

this is no longer true. When the algorithm is applied to this channel variable, the difference

in containment is found because the containment stacks are calculated from the variable’s

Chapter 8: Interface Generation 128

current location. The algorithm will then move the channel variable back to its consistent

location in the setup group (see Figure 8.6b). Note that this movement is visible in the gen-
erated interfaces: Figure 8.7b shows the clock group under the Setup tab with the clock set

variable, and Figure 8.7c shows the clock group in the Status tab without the clock set vari-

able.

All of the moving rules will also copy any appropriate missing structure from the previous
specification into the new specification. For example, suppose that there had been an addi-

tional group named “DateTime” between the clock group and the Base.Status group in the

Mitsubishi DVCR specification. If this had been the case when generating the Samsung in-

terface to be consistent with the Mitsubishi, the moving rule that moved the Clock group to
the Base.Status group would have created a new group named “DateTime” in the Base.Status

Figure 8.6. Containment stacks for the previous specification (Mitsubishi DVCR), the new specification
(Samsung DVD-VCR), and the results of two consecutive movements. a) Shows the movement of the clock
group, and b) shows how the rule chains with the movement of the clock channel state.

a. Mitsubishi DVCR
Without Consistency

b. Samsung DVD-VCR
Without Consistency

c. Samsung DVD-VCR
Consistent with Mitsubishi DVCR

Figure 8.7. User interfaces generated by the desktop PUC for a Mitsubishi DVCR and a Samsung DVD-
VCR without consistency and the Samsugn DVD-VCR generated to be consistent with the Mitsubishi
DVCR. Note that the clock functions are located under the Status tab for the Mitsubishi DVCR, under Setup
for the Samsung DVD-VCR, and in a new Status tab in the consistent interface. Also note that Controls and
Timed Recordings from the DVCR are located under the VCR tab on the Samsung DVD-VCR.

Chapter 8: Interface Generation 129

group and placed the Clock group into the new DateTime group. Any labels from the

DateTime group in the Mitsubishi specification would have been replicated in the newly
created group. Recreating the missing structure gives the interface generator more options for

adding organization when creating the concrete interface.

The “Move Single Moded Item” rule handles moves that cross the boundaries of mutually

exclusive groups. As mentioned above, there are two situations where such a move may cre-
ate an unusable situation when the moved items are disabled, either because the interface

generator may accidentally make it impossible to enable the items or the action required to

enable the items is located far away from the moved items. In both cases, this rule causes any

the moved item’s dependencies to not be used in the generated user interface. Thus the item
is always enabled, even if its actual dependencies indicate that it should not be. If the user

manipulates the item when it should be disabled, the interface generator makes the appropri-

ate mode changes in the background, confirms the users change, and then returns any modes

back to their original settings without displaying any of these changes in the user interface.
For example, the HP all-in-one printer has its fax setup functions located in its fax mode

whereas the Canon all-in-one printer has the same functionality in its setup mode. When the

HP interface is made consistent with the Canon, the fax setup functions are moved to the

setup tab where, without the appropriate modifications, they could never be enabled. This
rule allows these users to change the fax setup settings. When the user modifies a fax setup

function, the rule causes the interface generator to automatically change to the fax mode,

apply the user’s change, and then switch back to setup mode. All of this can be done quickly

in the background without causing any noticeable confusing changes in the user interface.

The “Move One To Many Split Items” rule handles the situation where one item in a speci-

fication is mapped to multiple split items in another specification, such as for the front

display functions in the Mitsubishi and Samsung VCRs discussed above. The behavior of

this rule differs, depending on direction in which consistency must be ensured. If the new
specification contains the split items and the previous specification contains a single item,

then all of the split items are moved to a location similar to that of the single item. If the

situation is reversed, then the single item is duplicated in all of the locations where the split

items were found in the previous specification. A future version of this rule might try to
modify the single item to match each of the split situations, but I could not find a generaliz-

able way to do this from the information currently available in the mappings. For example,

when making the Samsung interface consistent with the Mitsubishi rules with more informa-

Chapter 8: Interface Generation 130

tion might be able to split the Samsung’s overlapping brightness and content control for the

front display into two independent controls to match the function split on the Mitsubishi.
The control for brightness could be placed in a matching location for the brightness control

on Mitsubishi, and the same could be done with the control for content.

The “Bring Together Split Dependents” rule handles a very particular situation that we have

found in several specifications. A specific example appears in the HP and Canon all-in-one
printers. The HP all-in-printer has several options for resizing a copied image, including

zooming, creating a poster across multiple pages, and repeating the same image multiple

times on a single page. Only one of these options can be chosen at a time on the HP. The

Canon all-in-one printer also has these options, but several of these features are independent
of each other. In particular, the image repeat function can be used with any of the other re-

sizing options. Speaking more generally, this rule addresses the situation where two

appliances share the same functionality but some of that functionality is moded on one ap-

pliance but not on the other. This situation is described in the knowledge base with a group

a. HP printer

without consistency
b. Canon printer

without consistency
c. Canon printer

consistent with HP

Figure 8.8. A demonstration of the “Bring Together Split Dependents” rule. The top image shows the loca-
tion of the resize mode function and the bottom shows the location of the repeat image function and its
parameters. In column c, the dialog box shown on the bottom is opened by pressing the “Repeat Image…”
button shown in the top image.

Chapter 8: Interface Generation 131

mapping that contains a state mapping and multiple task mappings involving the states from

the state mapping.

A moving rule is needed in this situation because the unmoded functionality may not be lo-

cated in the same place within the specification as the mode state variable. If the new

specification contains the unmoded functionality, then this functionality must be moved

near the state variable. If the previous specification contained unmoded functionality, then
the moving rule creates a new button that makes appropriate mode change and places this

button in a similar location to where the unmoded functionality was in the previous specifi-

cation. If there were any functions dependent on this mode, they are also moved to the

location of the new button (see Figure 8.8).

8.4.3.2 Re-ordering

The reordering sub-phase moves functions within groups to ensure a consistent ordering. For

example, Figure 8.9 shows that the parameters for a timed recording have a different order-

ing between the Mitsubishi DVCR and the Samsung DVD-VCR. This sub-phase, like the

moving sub-phase, traverses the abstract user interface until it encounters a mapping. Re-
ordering rules operate on the children of a node however, so, unlike the moving sub-phase,

there is no need to apply these rules to leaf nodes in the group tree.

Before the reordering rules are executed on a group, the sub-phase determines the previous

specification with which the group will be made consistent. The sub-phase then creates a
“block list” data structure for the group in the new specification and its equivalent group in

the previous specification. The block list is important because it allows rules to analyze and

manipulate functions as if the functions are in a list, when the underlying representation of

structure in the abstract user interface is a tree. The tree structure can become problematic
when a function’s objects span multiple levels of tree hierarchy, as in the case of the “When”

mapping on the Samsung DVD-VCR (shown in Figure 8.9). Each set of adjacent objects

Figure 8.9. Block lists created for the timed recordings groups of the Mitsubishi DVCR and Samsung DVD-
VCR. “VCR+” and “Type” are unmapped blocks in the block lists.

Chapter 8: Interface Generation 132

with the same mapping becomes a block, which is stored in the list in the order they would

appear in a generated interface (see Figure 8.9). Consecutive unmapped objects are also
stored as blocks in the list. The block lists are processed by the reordering rules, resulting in a

new block list that specifies the final ordering for the group.

The current reordering phase has a rule that starts by searching the block lists from the new

and previous specifications to find blocks with the same mapping. These blocks are re-
ordered to match the previous specification. Unmapped blocks are moved with the block

that precedes them, in accordance with the second unique function heuristic. For example,

notice in Figure 8.9 that the Type block followed the When block to its new location. Un-

mapped blocks at the beginning or end of a block list are not re-ordered, in accordance with
the third unique function heuristic (see section 8.4.1).

8.5 Generating the Concrete Interface

Once the abstract user interface has been created and modified to ensure consistency, it is

time to generate the concrete user interface. In the next two sections I describe how the con-
crete interface is generated for the PocketPC, desktop, and Smartphone platforms.

8.5.1 PocketPC and Desktop
The PocketPC and desktop interface generators use the same process for generating their

concrete interfaces, which is split into two steps. The first step generates an initial version of
the user interface with only the most important structural elements. The second step looks

for layout problems in the initial version of the generated interface, such as panels that re-

quire scroll bars to display all of their content and controls that are not wide enough to

display their labels. Where problems are found, rules attempt to fix the problems by adding
organization or changing the layout. Using this approach, the user interface is built with the

minimum amount of organization needed for the size of the screen and the number of appli-

ance functions. Minimal organization is beneficial, because it allows users to see all of the

functionality of the interface in fewer screens and reduces the number of clicks necessary to
navigate between functions.

8.5.1.1 Creating the Initial Interface

The concrete interface is represented by an “interface tree” that describes the panel structure

of the user interface. The children of the root of this tree represent the different windows

Chapter 8: Interface Generation 133

used in the interface and the leaf nodes represent panels in the interface. Branch nodes spec-

ify how their child panels are placed relative to each other, either as a set of panels separated
with vertical or horizontal edges or a set of overlapping panels. Each panel described in a leaf

node contains a list of rows, which describe how controls should be placed relative to each

other. Rows have five different possible layouts, as shown in Table 8.3. Of these layouts, the

two labeled formats are preferred because they create a simple grid with labels on the left and
controls on the right. Some controls, because of their content, must be displayed across the

entire panel and thus use the full width row. The full width row and the multiple items row

are also used if the available screen space is limited.

The interface tree is assembled by traversing the structure of the abstract user interface and
applying a set of concrete interface construction rules. There are two types of these rules: one

set creates new panel structure based on mutually exclusive groups found in the specification,

and another set find the appropriate concrete interaction object (CIO) for each AIO and

place that CIO into a row.

There are three rules that add structure to the concrete interface based on mutual exclusion.

Two of these rules look for particular properties of the mutually exclusive situation and cre-

ate structure if those properties are found. If none of these rules create structure, then the

Table 8.3. The row layouts supported by the PocketPC interface generator.

Row Name Example Description

Labeled One
Column

A single control is shown on the right and an optional
label is shown on the left. The space allowed for the
label is fixed for a panel, typically at 40% of the avail-
able width.

Labeled Two
Column

Two controls are shown on the right and an optional
label is shown on the left. The label space is again
fixed per panel at the same value as the labeled one
column row.

Full Width

One control occupies the entire width of the panel.

Multiple Items

Multiple controls occupy the entire width of the
panel. Controls are sized to fit their needs and, if nec-
essary, will be proportionally enlarged to fill the full
panel width.

Overlapping
Panels

See Figure 8.10c-d This row allows an overlapping panel to be added
inline with the rest of the controls. This is used for
the fourth mutual exclusion structure rule, discussed
below.

Chapter 8: Interface Generation 134

final rule creates a default structure that fits any situation. The most commonly used mutual

exclusion rule creates overlapping panels that are controlled either by a tab control and a
sidebar for any non-dependent items (see Figure 8.10b-d). This rule has two requirements:

there must be a set of controls that are mutually exclusive for every value of the mutually ex-

clusive state, and the state must have labels for all of its values. The first requirement is

necessary because the overlapping panel control will also control the possible values of the
state variable. If there was a not a set of controls for one value of the variable, then no panel

would be created and the user could not change the state variable to that value (blank panels

are also not allowed). The second requirement ensures that proper labels are available for

each of the panels. The third requirement is that tabs have not been used yet in the interface,
because multiple sets of tabs can be quite confusing. When tabs do exist, structure is added

by the third rule discussed below.

The second organizing rule is a special case rule for handling the power button. The power

button is a unique situation because typically it is the first item in the specification and all of
the other functions in the specification are only active when the power variable is set to one

of its particular values (usually Boolean true). If this situation is found, the second rule will

create two overlapping panels at the very top of the interface. Both panels will have a power

button on them, which allows the user to turn the appliance on or off. In the off state, a spe-
cial appliance screen is shown with a label showing the appliance name and a large power

button. The on state shows all of the controls for the appliance, appropriately organized (see

a. b. c. d.

Figure 8.10. Screenshots of the HP all-in-one printer interface demonstrating the three mutual exclusion rules.
a) The special power off screen generated by the second rule. The remaining shots are of the power on view.
b) The fax mode of the all-in-one printer. This mode is accessed through tabs at the bottom of the screen cre-
ated by the first rule. Another tab can be seen in screen shots c and d. c) The copy mode of the all-in-one
printer with the resize options set to zoom 25-400%. The resize options state is a mode with several different
options created by the third rule. d) Another view of the copy mode with the resize options set to poster size.

Chapter 8: Interface Generation 135

Figure 8.10a-b).

The third rule places the non-dependent items and the mutual exclusion state in a panel as
they normally would be. Immediately after the mutual exclusion state, an overlapping panels

row is added containing a panel for each of the mutually exclusive sets of controls. When the

user manipulates the control for the mutual exclusion state, the top-most overlapping panel

is changed to display the panel with the currently active controls (see Figure 8.10c-d).

As the interface tree creation process traverses the abstract user interface tree, it maintains a

reference to the concrete panel that represents the current portion of the abstract interface. A

set of rules add rows to this panel whenever an AIO is encountered in the abstract interface.

The process of adding a new row requires two steps: first an appropriate CIO must be cho-
sen for the AIO and then an appropriate row must be chosen for the CIO. The CIO is

chosen by querying the AIO with a set of criteria, from which a platform-specific method of

the AIO will return the most appropriate CIO for that platform and criteria. There are two

criteria currently supported: whether or not a read-only CIO is needed and whether the CIO
should work within a list. Other criteria, such as maximum size, could be supported in the

future.

Based on the CIO, a set of three rules choose the appropriate row. Any remaining rules are

not applied once a rule has created a row. The first rule checks to see if the current CIO is
located in a labeled group with just one other CIO and that both of the CIOs are either but-

tons or checkboxes. In this case, a Labeled Two Column row is created for the two CIOs

using the group label. The second rule checks the CIO to see if requires a full width layout

and, if so, creates a full width row for the CIO. The third rule creates a Labeled One Col-
umn row for the CIO using a label, if any, from the AIO. As mentioned above, these rules

prefer the Labeled row formats because they create a simple, regular grid of labels and con-

trols. If a Labeled row format does not provide sufficient space for one of its controls, then

the format may be changed by one of the layout fixing rules discussed in the next section.

After the abstract user interface has been completely traversed, all panel structure has been

added, and all CIOs have been created and placed into rows, then the concrete sizing of all

panels, rows, and CIOs is determined. Size is determined by a two-pass depth-first traversal

of the concrete interface tree. The first pass calculates the minimum and preferred size for all
panels based on the CIOs they contain. The second pass determines the actual size of each

Chapter 8: Interface Generation 136

Figure 8.11. The interface generated for the GMC Yukon Denali driver information console without the use of
any layout fixing rules (rotated to fit better on the page). The high-level structure from the abstract user inter-
face underlying this panel is shown above the interface.

Table 8.4. The layout fixing rules used by the PocketPC interface generator.

Problem Name Description

Insufficient
Height

Fix with Tabs Breaks a long panel into multiple overlapping panels that are con-
trolled by tabs. This requires that the panel only contains labeled
groups, so that all controls can be placed in a tab and each tab has a
name.

 Fix with Combo Box
Panel

Breaks a long panel into multiple overlapping panels that are con-
trolled by a combo box at the top of the panel group. Like the Fix
with Tabs rule, this requires that the panel only contains labeled
groups, so that all controls can be placed on a panel and each panel
has a name in the combo box.

 Fix with Vertical Split Breaks a long panel into two separate panels that are oriented verti-
cally. Any items not in groups are moved into one panel and the
remainding items are placed in the other panel. This allows one of
the other fixing rules to add more organization in the second panel.

 Fix with Horizontal
Split

Similar to the Fix with Vertical Split rule, but creates panels that are
oriented horizontally instead of vertically.

 Fix with Row of
Buttons

Looks for multiple consecutive buttons on a panel and compresses
them into the fewest number of rows possible given the width of the
panel and the buttons’ labels.

 Fix with Dialog Box Looks for a labeled group of controls on the panel, moves the group
of controls to a dialog box and replaces them on the original panel
with a button that opens the dialog box.

Insufficient
Width

Fix One Column
with No Label

If the problem occurs on a one column row with no label, the one
column row is replaced with a full-width row that only displays the
control (no space is left for a label).

 Fix Two Column
with No Label

If the problem occurs on a labeled two column row with no label,
the controls are moved to a row that does not save any space for dis-
playing a label.

 Fix Too Wide One
Column

If the problem occurs on a one column row with a label, then the
label and control are placed into separate rows with the label above
the control.

Chapter 8: Interface Generation 137

panel based on available screen space and the minimum and preferred sizings. During the

second pass, if an actual panel size must be smaller than the panel’s minimum size or if a row
cannot be as wide as its minimum width, then a “layout problem” is noted by the interface

generator. These layout problems are addressed by the layout fixing rules discussed in the

next section.

8.5.1.2 Fixing Layout Problems

There are nine rules for fixing layout problems of insufficient height or width (see Table
8.4). For each layout problem, the rules are tested in order until a rule is found that can pro-

vide a fix to the problem. After a rule fixes a problem, the new interface is searched for any

layout sub-problems that became apparent after the fix was applied. This process is repeated

until either no layout problems remain or the remaining problems cannot be fixed by any of
the rules. For example, the interface for the GMC Yukon Denali driver information console

before the layout fixing rules would appear as one long column of controls, as shown in

Figure 8.11. This column is much longer than the screen height, so layout fixing rules are

applied to fix this problem. The first rule is the Fix with Tabs rule, which finds that the long
panel can be broken up into three labeled groups. Because no tabs have been used to organ-

ize this interface yet, the rule will break the long panel into three overlapping panels based on

the labeled groups. Tabs are used to allow the user to navigate between these panels. The

longer trip section can then be broken down further using the Fix with Combo Box Panel
rule to create three overlapping panels for the Trip Information, Personal Trip, and Business

Trip groups (see the final interface in Figure 8.1b).

8.5.2 Smartphone
The Smartphone interface generator produces list-based interfaces, rather than the panel-

based interfaces of the PocketPC and desktop interface generators. This different style of in-
terfaces leads to several unique design challenges for our Smartphone interface generator.

The most important challenge is to make the hierarchical list structure intuitive to the user

so that functions can be found quickly, while at the same time minimizing the number of

different screens that make up each generated interface. The number of editing panes also
must be minimized, especially to prevent situations in which only one control is on an edit-

ing pane. A part of minimizing editing panes is deciding whether a particular variable should

be manipulated through a list item or a control on an editing pane. A challenge to all of this

is to make navigation quicker without significantly violating the structure described in the

Chapter 8: Interface Generation 138

appliance specification. A final challenge is deciding which function to assign to the left soft

button, which is supposed to invoke the most commonly used function on the current
screen.

Creating an intuitive list hierarchy is one of the most important challenges for our Smart-

phone interface generator, because users will be unable to interact with an appliance if they

cannot find the functions they want to use. The list hierarchy is built starting with the top-
most group in the abstract user interface. A list is constructed by making each child group

that is labeled into a child list. Every AIO that is encountered is added to the list as an item.

Groups are not required to have labels, so not all groups in the abstract interface will have

corresponding child lists in the concrete interface. This may mean that lists are created that
are larger than can be shown on the screen at once, but we have rules that will attempt to

address this problem later in the generation process. If a mutually-exclusive set of functions is

encountered, then usually no additional action is required because of the changes already

made to the abstract interface structure. The result of the list building process is each set of
functions being available from a separate list that is accessed from the same parent list (see

Figure 8.12a). In the case where the user cannot choose which set of functions is enabled

through the interface, such as when the appliance has a read-only mode, the interface genera-

tor may create overlapping lists that are switched based on the state of the appliance (see
Figure 8.12b-c).

Optimizing the list structure for navigation ensures that users spend less time finding features

in the interface and more time using those features. The challenge of optimizing is balancing

the structure that has already been built with the constraints of Smartphone user interfaces.

There are two constraints of the Smartphone interface that need to be addressed:

• Navigation is particularly important in Smartphone interfaces because only nine

items can be shown on each list screen and users constantly navigate up and down
the list hierarchy. This means that the Smartphone interface generator should try to

make the depth of the list hierarchy as shallow as possible and place the maximum

number of functions onto each screen. The list structure must still reflect the proper-

ties of the appliance however, and should not deviate significantly from the initial
structure.

• Editing panes are necessary in the Smartphone interface because many functions

cannot be manipulated in the list. For example, a state variable with an enumerated

Chapter 8: Interface Generation 139

type might be edited with a combo box or slider, neither of which is supported in a

Smartphone list interface. Other functions can only be instantiated as list items be-
cause there is not a corresponding control that can be used on an editing pane.

Commands, such as “Seek,” are good example of this, because the Smartphone does

not allow on-screen buttons such as those used to invoke commands in our Pock-

etPC interfaces.

The Smartphone interface generator optimizes navigation using a rule-based approach. The

rules are applied iteratively during a depth-first traversal of the list hierarchy. Rules are also

applied bottom-up, so the rules are applied to all of the children of a list before being applied

to that list. The children of each list are traversed in “priority”-order, which is a measure of
importance that the specification author defines for each function and group in the appliance

specification. Traversing in this way ensures that the rules have more flexibility for optimiz-

ing the most important functions of an interface.

There are currently five rules for optimizing navigation, which are applied in the order dis-
cussed here. Each looks for a particular set of features in the list hierarchy and makes some

change to the list if that set of features is found. Some of these rules make decisions about

whether a particular function will be displayed as a list item or as a control on an editing

pane. During this discussion, functions that can only be displayed in a list will be called “list-
only items.” Functions that must be displayed on an editing pane will be called “panel-only

items,” and all other functions will be called “list-or-panel items.” Restrictions on how a

a. b. c. d.

Figure 8.12. Example screens from automatically generated Smartphone interfaces. a) The opening screen for
controlling a shelf stereo. Our dependency information rule created the separate lists for CD, Radio, etc. b-c)
Two screens from a simulated elevator interface. The particular screen shown to the user depends on whether
the user is (b) outside or (c) inside the elevator car. d) A Smartphone rendering of the media-controls Smart
Template from an interface for controlling the Windows Media Player application on a desktop computer. The
template’s design is based on the Smartphone Windows Media Player application, and is operated using the
right, left, and select buttons of the phone’s thumb stick.

Chapter 8: Interface Generation 140

function may be displayed are based on the AIO that was selected for that function in the

abstract user interface.

The first two rules minimize the number of editing panes that may be accessed from the cur-

rent list. Neither of these rules is applied if the current list contains only one panel-only item.

The first of these rules searches for situations where the number of empty slots in the parent

list is greater than the number of list-only items. If this is found, then all of the list-only
items are promoted into the parent list. The current list is then replaced with an editing pane

and the remaining items are placed on that pane (see Figure 8.13a). Note that this causes any

panel-or-list items to be displayed on the editing pane. This has the side-effect of occasion-

ally creating summary panes when all of the list-or-panel items are labels (see Figure 8.2c,e
and Figure 8.13a).

The second rule searches for situations where there is more than one panel-only item. If this

is found, then the generator looks for sets of panel-only items that have labels with a com-

mon prefix or suffix. For each set that is found, an editing pane is created and the items in
the set are placed on it. The list item that opens the editing pane is labeled with the common

portion of the label associated with that set (see Figure 8.13b). We originally considered hav-

ing an additional rule that moved all panel-only items onto a single editing pane if no sets

were found and labeling the item that opened the pane with the label of the parent group
concatenated with the term “Controls.” We decided against this rule however because we

a. b.

Figure 8.13. Diagrams showing how the first (a) and second (b) rules for optimizing the list structure behave.
Black solid arrows indicate how the screens are connected and red dashed lines indicate changes made by the
rules. Note that in (a) some items were list-only and thus were promoted to the top-level list while the others
were placed on a panel. The items all happen to be labels, so this panel is a summary pane.

Chapter 8: Interface Generation 141

believed the user would have a hard time guessing what functions were on the panel given

this label, and because the navigation cost in terms of the number of key presses for giving
each panel-only item its own editing pane is not much different than having a panel of unre-

lated controls.

The third rule looks for any remaining panel-only and list-or-panel items that have not been

assigned to an editing pane. Every list-or-panel item is assigned to a list, and each remaining
panel-only item is given its own editing pane, as discussed above.

Now that all of the editing panes have been created and every item has been assigned to an

editing pane or a list, we can now optimize the number of items in a list. The fourth and

fifth rules are very similar to the first and second rules, except that they manipulate only list
items. The fourth rule eliminates unneeded child lists by moving all of their items into the

parent list if there is enough room. This rule always promotes the most important items first

because the list hierarchy is being traversed in priority order. The fifth rule tries to break up

lists that have more than the nine items that can be shown at once on the screen. The
method for doing this uses common label prefixes and suffixes, just like the second rule.

Child lists are built in reverse priority order until the current list contains nine items or less.

I have experimented with several different methods for assigning a function to the “most

common” soft button on the Smartphone. Initially the PUC used this button to move up in
the list hierarchy, which duplicated the functionality of the physical “back” button. This

helped novice phone users navigate our interface, but I felt that it might be more useful to

assign common functions from the appliance to the button instead. I investigated two ap-

proaches: a static approach using priority information from the appliance specification and
an adaptive approach based on recorded usage information.

The first method chooses a function for each screen by ranking each of the functions on that

screen according to the priority information in the specification language. If there is a tie, the

PUC chooses the function that occurs first in the appliance specification. One function is
chosen for each screen, and these functions do not change once the interface is built.

The second method is adaptive, which means that the function assigned to the soft button

changes as the user interacts with the interface. The PUC selects the function by searching

the recorded usage information for the most likely next function from the last function that
was used. If there is no usage information, the PUC uses the algorithm from the first method

to select the function. The soft button is currently changed every time the screen changes or

Chapter 8: Interface Generation 142

the user invokes a function and experimenting with other times is the subject of future work.

Unlike with the first approach, “back” may be assigned to the soft button if the usage infor-
mation suggests that the next thing the user is likely to do is move up in the hierarchy.

No formal evaluation has been conducted of either of these methods. The non-adaptive ap-

proach has the advantage that users can memorize the function that is assigned to it as they

use the interface, but the priority information in our specification is not always reliable and
does not always pick the right function. For example, the power button is picked on the

main screen of our shelf stereo though in fact this is not a function that seems to be used very

often. The adaptive approach would seem to fix this problem because it relies on actual usage

data, but the cognitive load of keeping track of which function is currently assigned to the
button seems too high. It seems to usually be faster to remember the keypad shortcut for

each function rather than to read the label on the soft button. It may be that the adaptive

approach becomes beneficial after using the interface for a significant period of time, but

there are no regular users of the Smartphone interface generator who can verify this.

Both methods also suffer from the small area available for the label on the soft button. In

many cases it is not possible to display a sufficient label in the space provided on the inter-

face, particularly when both the name and value of a function need to be shown. One

solution might be to use icons, but the PUC system currently does have any way for a speci-
fication author to include icons as a label for functions.

8.6 Modifying the Concrete Interface for Consistency

The preceding sections have discussed the first five phases of the PUC’s interface generation

process. At this point, the process has transformed an appliance specification into a abstract
user interface, modified the abstract interface to ensure consistency, and transformed the ab-

stract interface into a concrete user interface that is specific to a particular platform. Before

the final user interface is displayed to the user, several rules check the concrete interface for

inconsistencies with previous interfaces and provide fixes for any that are found.

Inconsistencies may occur for at least two reasons. First, for the PocketPC and desktop there

is often a mismatch between the deep hierarchy of the abstract interface and the flat hierar-

chy of the concrete interface. This mis-match sometimes introduces inconsistencies in the

ordering of controls within a panel, which could not be discovered because of the extra depth
in the abstract user interface. Second, the concrete interface generation may have used differ-

Chapter 8: Interface Generation 143

ent controls for organization or placed panels in different orientations than in the previous

user interface. Three concrete consistency rules for the PocketPC and desktop have been im-
plemented to address these issues. There are currently no concrete consistency rules for the

Smartphone interface generator because, at least so far, there has not been a need for them.

The difficulty for implementing these rules is to determine which panels correspond between

the new interface and the previous interface. The current approach for determining corre-
spondence is to link each panel to the highest-level group it contains within the abstract user

interface. A panel in the new interface corresponds to a panel in the previous interface if the

groups of both panels have a mapping between them. This is not a perfect algorithm, be-

cause sidebars, for example, often mix controls from several groups at different levels within
the specification, however it seems to be effective for the cases that have been tried to date.

The first concrete consistency rule addresses the re-ordering of rows within panels. When

two panels are found to correspond between the previous and new interface, the rows from

both panels are converted into block lists, the new block list is re-ordered based on the previ-
ous list, and then the list is converted back to rows. The process used is similar to the one

used for re-ordering the abstract user interface. Figure 8.14 shows an example of how this re-

ordering rule affects the Canon all-in-one printer interface when it is generated to be consis-

tent with the HP all-in-one printer.

The second and third rules address inconsistencies that may have arisen during the genera-

a. HP without consistency b. Canon consistent with HP

without concrete rules
c. Canon consistent with HP

with concrete rules

Figure 8.14. Interfaces generated for the HP and Canon all-in-one printers demonstrating the effects of the
concrete interface re-ordering rule. Note the difference in the order of the Black, Color, and Cancel buttons.

Chapter 8: Interface Generation 144

tion of the concrete interface. The second rule adds overlapping panel organization to a user

interface if it was used in the previous interface and more than one control can be placed on
each of the overlapping panels. The exact type of overlapping panel widget is chosen based

on the previous interface. The third rule modifies the sidebar panels that the PUC interface

generator sometimes creates around overlapping panels. This rule checks the orientation of

the side panel, which may be either horizontal or vertical, and ensures that the orientation is
the same as in the previous interface.

8.7 Results and Discussion

After the concrete interface is generated and modified by the concrete consistency rules, then

the interface can be presented to the user. The generation process is fast enough to run on
actual PocketPC and Smartphone devices, which differs from most other interface generation

systems for handhelds which have offloaded generation to a remote server [Ponnekanti 2001,

Gajos 2005a]. The most complex appliance interface that the PUC has generated, the GMC

Yukon Denali navigation system, takes approximately two minutes to generate on a Hewlett-
Packard iPAQ h4150 PocketPC device with a 400 MHz Intel XScale processor running the

.NET Compact Framework 2.0. Most appliances take less than one minute to generate. All

interfaces, including the navigation system, generate in less than 5 seconds on a current desk-

top computer. The consistency rules do not noticeably affect generation time on either the
PocketPC or Smartphone. The biggest impact on performance time for the PocketPC is the

layout fixing phase, which must re-layout the interface after every layout fix in order to

evaluate whether new layout sub-problems have been created.

The interface generator has been used to successfully generate interfaces for all of the 33
specifications that the PUC team and I have authored. As discussed in Chapter 5, this collec-

tion of specifications covers a wide range of appliance types and includes many complex

specifications. Chapter 10 shows that the generated interfaces can be more usable than the

human-designed interfaces for two complex all-in-one printers, which I believe are represen-
tative of the many complex appliances with which the PUC system could be used. That

chapter also shows that the consistency algorithms shown here have usability benefits.

The interface generator does have some trade-offs. The rule-based approach that I chose has

several benefits, including allowing for timely generation of interfaces on low-resource hand-
held devices and the ability to always produce the same output given the same input, but it

Chapter 8: Interface Generation 145

also has several drawbacks common to all rule-based systems. In particular, new rules must

be designed carefully to avoid unintended interactions with existing rules. Interface genera-
tion also involves balancing many trade-offs and rules are poorly suited to making decisions

that optimally balance these trade-offs. I have used two different rule-based approaches to

iteratively improve interfaces during generation (the PocketPC and desktop interface genera-

tors start simple and add complexity while the Smartphone generator starts complex and
simplifies), but neither can guarantee an optimal result. Both are also sensitive to the struc-

ture of the abstract interface and the order in which rules are applied. Optimization

algorithms are less predictable however and require far more computational resources to

process. A hybrid approach may be most successful, but this is a subject for future research.

Chapter 8: Interface Generation 146

CHAPTER 9

9Aggregating User Interfaces6

The last chapter discussed how the PUC automatically generates user interfaces for a single
appliance. This chapter describes how the PUC is able to generate a user interface that com-

bines functionality from multiple appliances that are connected in a system. A key input to

this generation process is a content-flow model, which describes the different routes that

content take within the system from a source appliance, possibly through one or more
passthrough appliances, to a sink appliance where that content is either displayed for the user

or recorded for later use. From the content flow model, the PUC creates two types of inter-

faces: a flow-based interface that allows users to quickly specify their high-level goals for the

system of appliances, and aggregate interfaces that provide low-level control while a flow is
active. The interface aggregation features of the PUC are collectively known as Huddle.

6 The work in this chapter was originally described in Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, and Brad A.
Myers. “Huddle: Automatically Generating Interfaces for Systems of Multiple Appliances,” in Proceedings of the 19th annual
ACM symposium on User Interface Software and Technology (UIST). Montreux, Switzerland. Oct. 15-18, 2006. pp. 279-288

147

a) Home Theater

b) Presentation Room

Figure 9.1. Configuration of appliances in two multi-appliance system scenarios: a) a home theater, and b) a
presentation room.

9.1 Scenarios

Throughout this chapter I will use two scenarios to demonstrate the PUC’s interface aggrega-

tion features: a home theater and a presentation room.

The home theater setup (see Figure 9.1a) includes five appliances: an InFocus television
(61md10), a Sony audio receiver (STR-DE935) with attached speakers, a Philips DVD

player (DVDP642), and two identical Panasonic VCRs (PV-V4525S). This setup supports

many common tasks, such as watching television, watching a movie from either a DVD or

videotape, and listening to the radio. It also supports a number of more complicated tasks,
such as copying from a tape in VCR #1 to a tape in VCR #2, or watching television on one

channel while recording up to two other channels. Sometimes tasks can be mixed, such as

watching a sporting event on television while listening to a radio broadcast of the play-by-

play. Certain tasks are impossible with this setup, such as recording a DVD to videotape,
recording the radio, or recording from a tape in VCR #2 to a tape in VCR#1. As we will

show below, the PUC’s flow-based interface makes it clear to the user which flows are not

possible.

The presentation room configuration has three physical devices (see Figure 9.1b): a projec-
tor, a VCR, and a laptop. The laptop’s functions however, have been separated into several

independent “logical appliances” which include the PowerPoint and Windows Media Player

applications, the task manager, and control of the external video port. This configuration

supports common presentation tasks such as showing slides, showing video from the laptop,
and showing video from a VCR tape.

Chapter 9: Aggregating User Interfaces 148

9.2 Content Flow for Understanding Systems of Appliances

In order to generate aggregate user interfaces, the PUC needs some knowledge of how each
appliance in a system relates to the others. Current integrated user interfaces, such as those

that can be built with technology from Crestron or AMX, require new configuration infor-

mation for each system of appliances. This approach requires too much work for end users

however, who will typically pay professional system integrators to create their integrated in-
terfaces. For the PUC, my goal is to support the generation of aggregate interfaces with

minimal effort on the part of the end user. Ideally, any work required by the end user should

also scale well with the number of appliances connected in a multi-appliance system.

I found that the content flows between appliances in a multi-appliance system were useful
for understanding the system and generating aggregate interfaces. In particular, content flows

have two important properties:

1. Content flows seem to be closely related to user goals with multi-appliance systems.

For example, in a home theater, the user may want to watch a DVD movie, which
involves seeing the video on the television and hearing the audio through the stereo’s

speakers. To accomplish this, each of the appliances in the home theater must be

configured to allow content from the DVD player to flow to the appropriate places.

2. The content flows of a system can be described as the separate flows within each ap-
pliance combined with a wiring diagram showing how all of the appliances are

connected. This is an important property, because it divides the modeling work

among the manufacturers of the appliances. The only system-specific input needed

by the PUC’s aggregation algorithms is a diagram showing how the appliances are
connected, which can be supplied by another application, a future wiring technology

or the user. Furthermore, this separation also pushes most of the work to the manu-

facturers because most of the the complexity in any content flow model is found in

the internal flows within each appliance.

In order to support content flows, two sections were added to the PUC specification lan-

guage to specify the physical ports of the appliance and the internal content flows that use

those ports (see section 5.2.2). The content flows within an appliance are represented using

three different structures:

Chapter 9: Aggregating User Interfaces 149

• Sources represent content that originates within the appliance, such as from a DVD
player playing a DVD or a VCR playing a videotape. Display devices that have inter-

nal tuners, such as televisions receiving broadcast signals through antennas, are not

defined as sources however, because the content does not originate inside of the tun-

ing device. Instead, broadcast signals are described as a special “external source” that
must be routed through a tuner to be viewable by the user.

• Sinks represent locations where content may either be displayed to the user or stored

for later retrieval. For example, the television screen, receiver speakers, and VCR tape
(for recording) may all be sinks for content in our home theater scenario.

• Passthroughs represent an appliance’s ability to take in some content as an input and

redirect it through one or more of its outputs. For example, the InFocus televi-sion
in our scenario has the capability of taking the audio it receives as an input and mak-

ing it available as an output for other appliances. Tuning appliances, such as cable

television set-top boxes, are also represented as passthroughs, which usually take a

multi-channel input from an antenna and output single channel data.

The passthrough structure is particularly important, because it allows Huddle to track the

flow of content from its origination point, through multiple appliances, to its final destina-

tion. Previous systems, such as Speakeasy [Newman 2002] and Ligature [Foltz 2001], have

used only sources and sinks to model the path of data within a system. Using their approach,
it is difficult to know whether the content a device is receiving as input is being redirected

through an output, which makes determining the full content flow impossible. Without

knowledge of the full content flow from start to finish, the task the user is trying to perform

could not be determined and a useful interface could not be generated for it.

9.3 Aggregation Architecture

The PUC controller device performs all of the aggregation of content flow information from

the appliance specifications and generates aggregate user interfaces based on this information.
Even when an aggregate interface is available, the PUC still allows users to use the interfaces

generated for the individual appliances. An overall view of the aggregation architecture is

shown in Figure 9.2.

The PUC’s interface aggregation requires three types of input in order to function. First, it
requires a wiring diagram that describes how the multi-appliance system is wired together,

Chapter 9: Aggregating User Interfaces 150

which is currently is specified by hand in XML (see the schema in Appendix C.3). The wir-

ing diagram contains a number of wire <begin, end> pairs corresponding to the physical
wires that connect the appliances. The second input required is the set of all PUC appliance

specifications from each of the appliances in the multi-appliance system. By combining this

information together, the PUC creates a complete model of the possible content flows

through the entire system (see the center portion of Figure 9.2), which is then used to gener-
ate user interfaces.

The aggregate interface generation also makes use of the knowledge base that is primarily

used to generate consistent interfaces (see section 6.4.1). In the context of aggregation, this

information allows the PUC to create interfaces that organize functions from multiple appli-
ances in a meaningful way.

The PUC produces two kinds of interfaces to help users interact with their multi-appliance

systems. The Flow-Based Interface (FBI) allows the user to quickly create and activate con-

tent flows between appliances by tapping or dragging the icons for desired sources and sinks

Figure 9.2. Architecture of the aggregate interface generation features.

Chapter 9: Aggregating User Interfaces 151

onto the screen. The goal of this interface is to make high-level tasks easy to execute with the

multi-appliance system. To date, the flow-based interface has only been implemented on the
PocketPC platform. Modifications would be needed for phone- or speech-based interfaces to

replace the direct manipulation interactions used in the current version of this interface.

The PUC also generates Aggregate User Interfaces that combine functions from multiple

appliances into a single user interface. Various types of aggregate user interfaces support dif-
ferent tasks within the multi-appliance system. The Active Flow Control aggregate combines

the most common control functions associated with the active content flows into a single

interface, with the goal of making common content manipulations (such as volume control)

easy to access. The Setup aggregates make infrequently used configuration parameters easy for
the user to access, with the goal of supporting expert usage of the appliance system. Finally,

aggregates can merge some functions that occur on multiple appliances into a single point of

control on one interface. This allows the user to do such things as set the current time in an

aggregate and have this change be automatically broadcasted to each appliance in the system.

9.4 Flow-Based Interface

The FBI is designed to allow users to quickly specify a flow from one source of content to

one or more content sinks. For example, the user might specify a flow from the DVD

Player’s disc to the television’s screen and the receiver’s speakers. When the user activates this
flow, the PUC inspects the dependencies of each of the flow’s elements, generates a plan to

satisfy these dependencies, and executes that plan to enable the flow. If the flow cannot be

enabled, perhaps because of other active flows that the user has already specified, the system

will prompt the user with a dialog box and attempt to help the user resolve the problem.
Several examples of the FBI are shown in Figure 1.7 and Figure 9.3.

To make the idea behind the FBI clear, the interaction that a user would have with the inter-

face in order to start watching a DVD movie will be described. Figure 9.3a shows the FBI in

its initial blank state. Near the top of the screen is a blank flow with empty spaces for a
source and sink, with an arrow between them. At the bottom of the screen is the appliance

bar, which contains an icon corresponding to each appliance that has a source or sink in the

system. The appliance bar may grow upward to allow space for all of the available appliances

in a system to be shown. Currently there is no limitation on how much the appliance bar can
grow, but this seems unlikely to become an issue because in my experience it is rare for a

Chapter 9: Aggregating User Interfaces 152

multi-appliance system to have more source and sink appliances than can fit in two rows of

icons. Appliance icons are currently assigned by a hard-coded matching function in the inter-
face generator, but a future version could download icons from the appliances or the

Internet. Additional flows may be added to the screen, by pressing the “Add Flow” button at

the top of the screen, and the scrollbar on the right allows for scrolling when more flows have

been added to the list than can be shown. I envision two usage scenarios for this interface:
the user creates flows for each of the common tasks and switches among them, or the user

uses just one flow and modifies it as necessary to suit the current task.

When a user wishes to begin a flow, an icon is dragged from the appliance bar to one of the

empty spaces in the blank flow. The empty space highlights when the icon is dragged over it,
indicating that the appliance icon may be placed there. Once the DVD icon has been placed

in the source location (see Figure 9.3b), content type icons appear on left side of the arrow,

and the icons in the appliance bar corresponding to appliances that cannot be sinks for the

DVD player source are grayed out. This includes icons that correspond only to sources, such
as the broadcast television and radio icons, and the VCR icons that cannot be sinks for DVD

content because of our home theater’s particular wiring configuration. The user can now see

that the receiver and the television are the only available appliances that will work with the

DVD player. In this scenario, the user first drags the television to the empty sink space on
the flow. At this point, the green play button will become enabled because this configuration

corresponds to a valid flow (Note that the television speakers can be a sink for audio con-

tent). The asterisk above the arrow on the right side indicates that the flow-based interface

will infer the type of content to route to the television based on the specified sinks.

The user now wishes to add the receiver as an additional sink. To do so, the “Split” button is

a.

b.

c.

d.

Figure 9.3. An example of using the Flow-Based Interface to configure a DVD player to play video through a
television with the audio routed through the stereo's speakers.

Chapter 9: Aggregating User Interfaces 153

pressed underneath the arrow on the left. This causes the flow to be split into two arrows and

a new empty sink space to be created (see Figure 9.3c). To add the receiver’s speakers as a
sink, the user can then drag the receiver to the empty space. In this scenario, the PUC is able

to automatically infer that the TV speakers should not be used, because an audio sink was

added to the flow. If the user wanted audio to come from both sets of speakers, this wouldbe

indicated by tapping the content type icon next to the television and selecting the au-
dio/video content type.

The user can now click the play icon in the flow’s title bar, which invokes the planner to

automatically activate this flow. If a successful plan is found, the appliances will be automati-

cally configured, the play icon will turn green, the stop icon will turn white, and a bubble
will appear (similar in appearance to the bubble shown in Figure 1.7d) to inform the user

that the flow has been activated. Figure 9.3d shows the interface once the user has dismissed

the bubble. If a plan cannot be found, a bubble will appear to help the user resolve the prob-

lem (see Figure 1.7d). One difficulty with planning algorithms, such as the GraphPlan
algorithm that the PUC uses, is that they cannot produce useful error messages when plan-

ning fails. Therefore, the PUC first uses two approximation checks to search for conflicting

appliance variables and active flows, allowing a more useful error message to be produced.

The first conflict check searches the dependencies of the newly specified flow to see if any
read-only variables have values that make activating the new flow impossible. Such variables

usually reflect the physical status of the appliance, which the user can address once informed.

For example, the DiscIn variable of the DVD player might be set to false when the user

pressed the play icon in our previous example. If this happened, the system would then ask
the user if they can rectify this problem. Although the current language for this error message

can be somewhat stilted, we do provide predefined strings for common problems, such as

there being no disc in the DVD player (see Figure 1.7d).

After the PUC checks for variable conflicts, it checks to see if any currently active flows con-
flict with the new flow. To perform this check, it examines the dependency information

associated with the newly specified flow and the dependencies for any active flows, looking

for variables that must have more than one value for the flows to be active simultaneously. If

this situation is found, then the PUC immediately goes back to the user to ask which of the
conflicting flows the user wants to use.

Chapter 9: Aggregating User Interfaces 154

Once the PUC has found that no obvious conflicts exist, it executes the planning algorithm

to find a valid plan for activating the new flow. If a plan is found, then the system will carry
out that plan to create the right configuration of variables that will activate the new flow and

maintain the state of any existing flows. The planning algorithm may still fail however, such

as when second-order dependencies conflict. In our experience, these conflicts are rare, but

when they occur the PUC asks the user to choose between finding a plan that activates the
specified flow and disables the currently active flows or finding a plan that activates the speci-

fied flow without considering the effects on other flows. If a plan is found in either case, the

user is prompted again before carrying out the plan to make it clear which flows will be deac-

tivated by the new plan.

The FBI also provides a way to navigate to the other aggregate user interfaces and the PUC

interfaces for the individual appliances. In the upper right corner of the FBI is a “Navigate”

pull-down menu, which allows the user to navigate to the different aggregate user interfaces

that can be generated (discussed next). Double-clicking on any appliance icon, either in the
appliance bar or in any flow, allows the user to navigate to the full interface for that individ-

ual appliance.

9.5 Aggregate User Interfaces

The FBI provides an interface for users to accomplish high-level goals within the multi-
appliance system, such “watching a DVD movie” with a home theater. There is still a need

however to provide the user with finer-grain control of the individual appliance functions.

For example, the user may wish to pause the DVD while it is playing to take a phone call, or

go to the next slide in a PowerPoint presentation. A user might also discover that the movie
is too dark requiring adjustment of the brightness of the television, or that the keystone set-

ting needs to be adjusted on the projector.

To address these problems, the PUC provides the user with several Aggregate User Interfaces

(AUIs) that combine functions from each of the appliances in the system to create useful
task-specific interfaces. The PUC currently can generate four different AUIs: Active Flow

Control, Active Flow Setup, General Setup, and Merged Functions.

It is important to note that the user also has access at any time to the full interfaces for each

appliance. Thus it is not our goal to provide access to the full set of appliance functionality

Chapter 9: Aggregating User Interfaces 155

a.

b.

c.

d.

Figure 9.4. Active flow control interfaces: a) playing a DVD movie with the video shown on the television
and audio coming through the stereo’s speakers, b) presenting Powerpoint slides through a projector, c) watch-
ing broadcast television with audio playing through the television’s speakers, and d) watching broadcast
television with audio playing through the receiver’s speakers. Note that the volume control in (c) and (d) appear
the same, even though they are actually controlling different appliances.

through any particular aggregate interface, but instead to provide interfaces to meaningful

sets of functionality from the appliances in the system for the user’s current task.

9.5.1 Active Flow Controls
The Active Flow Controls AUI combines commonly used functions that are related to the

currently active flows. Figure 1.8 and Figure 9.4 show examples of active flow control aggre-

gates generated when the active flow is playing a DVD to the receiver and television,

controlling a slideshow in a presentation room, copying a tape from one VCR to another,
and watching television with the audio coming from the television or receiver speakers.

The PUC identifies functions to be used in the Active Flow Controls AUI in two stages. In

the first stage, functions are extracted from the appliance’s specifications that are either men-

tioned in the flow dependencies for the currently active flows, or are noted as being related in
the appliance’s content flow model. In the second stage, these functions are filtered to select

only the most common functions that users will likely want to manipulate. The PUC uses

two heuristics in the filtering stage because no information is available in the specification to

directly identify the commonly used functions of an appliance.

The first heuristic is to eliminate any functions associated with “Setup.” Nearly all specifica-

tions contain a high-level group with the name “Setup” or something similar. This group

will often be identified in the knowledge base used for achieving consistency. The PUC uses

Chapter 9: Aggregating User Interfaces 156

the knowledge base’s mapping information to identify the Setup group in each appliance and

then filters out any functions that are contained in these Setup groups.

The second heuristic eliminates any functions that, if used or modified, would always cause

the flow to stop being active. This eliminates all power functions (which can be easily ac-

cessed elsewhere), the input-select variables from the stereo and television, the VCR/TV

functions of the VCRs in some situations, and a number of other variables that may be
common but would overlap with the functioning of the FBI. The exceptions to this rule are

media control functions, such as play, stop, and pause, which are always included. Although

the user may deactivate a flow by pressing stop or eject, we feel that users would be annoyed

if these functions were not easily available and that users can easily recover if they use these
functions in a way that deactivates a flow.

9.5.2 Active Flow Setup

The Active Flow Setup AUI combines setup functions that are related to the currently active

flows. The PUC identifies the functions for this aggregate using the first stage of the process

used for the Active Flow Controls AUI. Unlike for that earlier aggregate however, the second
stage filtering process for this aggregate takes only functions that are found within the

“Setup” group. This process typically finds functions that affect the output of the currently

active flows but will be used infrequently, such as the brightness and contrast controls for the

television and the speaker level controls for the receiver. This AUI still does not include any
controls that could inactivate the flow however, since those are best controlled using the FBI.

a.

b.

Figure 9.5. Two shots of the Active Flow Setup AUI for the DVD player to receiver and television flow. Note
that the interface is organized by appliance, as shown by the tabs at the bottom of the screen.

Chapter 9: Aggregating User Interfaces 157

The Active Flow Setup AUI is organized by appliance, because a desired setup function is

typically easier to find with this organization. See Figure 9.5 for two shots of the Active Flow
Setup interface generated for the flow for the DVD to receiver and television. We originally

tried to organize this aggregate by content type, which in the case of a home theater would

give top-level groups for audio and video, but this created lower quality interfaces. The ap-

proach worked reasonably for appliances whose functions could be classified by their place in
the content flow, such as the receiver and television which in some flows receive only audio

and video content respectively. However we found that for appliances which handled both

audio and video content that this approach relied too much on the knowledge base’s ability

to identify sub-groups that corresponded to Audio and Video. It is possible that this ap-
proach might be viable with improvement to the consistency sub-system.

9.5.3 General Setup

The General Setup AUI (see Figure 9.6) combines setup functions across all of the appliances

that are not related to any content flow. These functions typically include things such as pa-

rental content restrictions, time functions, software upgrade controls, and the configuration
of defaults. The functions for the AUI are extracted by iterating over specifications for each

of the appliances and eliminating all of the functions that were used in the previous two

AUIs. An additional filtering step removes any functions that are not in the “Setup” group.

The General Setup AUI is organized first by any high-level collections of functions that we

a.

b.

Figure 9.6. Two shots of the General Setup AUI for our home theater setup. Note that in both shots, the tabs
at the bottom of the screen represent high-level concepts within which the functions are organized by appliance
(combo boxes at top).

Chapter 9: Aggregating User Interfaces 158

can identify as existing on more than one appliance, and then by appliance. We first attempt

to identify these high-level collections with the knowledge base but also search for any top-
level groups within the Setup groups that may have the same name. Groups with the same

name may not be identified by Uniform because their contents are not identified as being

similar enough. These groups are often catch-all groups such as “Preferences,” which have a

large variance in the types of functions that they contain.

9.5.4 Merging Controls

There are a few settings across a system of appliances where a single value should be set once

and then migrated to all appliances rather than requiring the user to laboriously set the value

on each appliance. Examples include the time on the clock, the language (e.g., English), and

the sleep timer (that turns off the appliance after a selected number of minutes). Other set-
tings that occur across appliances, however, should not be merged. For example, it is usually

wrong to set the channel of the VCRs and television to the same value simultaneously or to

set all the devices to be powered on at the same time. Even setup functions cannot always be

combined depending on the particular function and how similar the functions are across ap-
pliance types. For example, the DVD player and the television both have a contrast setting,

but it would be inappropriate to set both of them simultaneously. The Merged Functions

AUI handles the small number of functions that are appropriate to combine (see Figure 9.7).

As with previous aggregates, the knowledge base is used to identify similar functions across
appliances that should be merged.

Figure 9.7. The merged function AUI featuring the clock, language, and sleep timer functions on a single
panel.

Chapter 9: Aggregating User Interfaces 159

As future work, it could be interesting to explore how the volume function might be merged

across appliances using the flat volume technique developed by Baudisch, et al [Baudisch
2004]. While this work has been shown to apply quite well to volume, it is unclear whether

it would be applicable for other kinds of settings, such as brightness or contrast.

9.6 Discussion

The most important concept behind the design of the PUC’s interface aggregation is its use
of a content flow model to help users accomplish their high-level goals. This approach seems

to work well for the constrained domains of home theaters and presentation rooms, and I

believe that it can be extended to support many more features than we have discussed here.

For example, with more detailed modeling of content types, Huddle should not only be able
to find content flows for users’ goals, but also to find the optimal path for the particular con-

tent that the user is viewing. This is a particularly important problem as the types of content

within the home theater grow to encompass numerous high-definition video and audio stan-

dards which may be supported at varying levels by different appliances and different types of
wires.

A problem I have been considering is how content flows can help the PUC understand that

the lights should be dimmed in order to view a projected PowerPoint presentation. An ex-

treme solution would be to extend the content flows all the way to the final content sink at
the user’s eyes and ears, although this would require extensive modeling of each room, its

lighting, and the user’s perceptual capabilities in order to be successful. A more practical ap-

proach may be to provide basic models of which lights and projectors interact, perhaps with

a few “environment content sinks” for the most important locations in a room that can allow
the PUC to reason about the interactions of appliances within the environment.

The content flow concept should prove extensible to other appliance domains, such as video-

conferencing systems and even manufacturing processes. The aggregation approach seems to

be limited by the correspondence between the content flows and the tasks that the user wants
to perform. Where there is correspondence, such as in the scenarios considered here, this ap-

proach works well. One scenario where the PUC may not be effective is in the kitchen,

where tasks often center on recipes. It seems that many recipes use the same content flow

through appliances, which suggests that the content flow may not be descriptive enough to
generate useful task-based interfaces for kitchen appliances.

Chapter 9: Aggregating User Interfaces 160

CHAPTER 10

10Usability Evaluation7

Two studies of the generated interfaces were conducted to examine the usability of interfaces
generated by the PUC. The first study compared the generated interfaces to existing human-

designed interfaces for the same functionality, with the hypothesis that interface quality is no

longer a limiting factor for automatically generated interfaces. The results were that users of

the automatically generated interfaces were twice as fast and four times more successful than
users of the existing interfaces for a set of eight independent tasks with varying difficulty.

The second study examined the PUC’s algorithms for automatically generating interfaces

that are consistent with the user’s previous experience (see Chapters 6 and 8). The hypothesis

was that automatically generated interfaces can provide benefits beyond those shown in the
first study through user customizations that would be impractical for human designers to

provide. In this study, users were first trained on the same eight tasks from the first study

using one interface. After users could successfully perform these tasks, they were asked to per-

form the same tasks on a second, different, interface with similar functionality. The results
showed that users were twice as fast when the second interface is generated by the PUC to be

7 The work in this chapter was recently submitted for publication as Jeffrey Nichols, Duen Horng Chau, and Brad A.
Myers. “Demonstrating the Viability of Automatically Generated User Interfaces,” Submitted for Publication.

161

consistent with the first interface, as compared to when the second interface is generated

with the consistency algorithms disabled.

Both user studies compare interfaces for two different all-in-one printer appliances: a Hew-

lett-Packard (HP) Photosmart 2610 with a high-quality interface including a color LCD and

a Canon PIXMA MP780 with a few more features and an interface that turned out to be

harder to learn than the HP. These two represented the top-of-the-line consumer models
from these manufacturers and the most complex all-in-printers available for home use at the

time of their purchase. All-in-one printers were chose as the appliances in these studies for

two reasons:

• Complex appliances are typically more difficult to use than trivial ones and I wanted
to test the PUC with appliances that would be challenging for its generation algo-

rithms. All-in-printers seem to be at least as complicated, if not more so, than many

of the other appliance types that have been explored (containing 85 variables and
commands for the HP and 134 for the Canon). The two chosen for these studies

have several different main functions, including copying, faxing, scanning, and photo

manipulation, that all must be represented in the user interface. They also have many

special configuration options for each of the main functions, which make the initial
setup process difficult and time-consuming.

• It was not possible for the PUC to actually control the all-in-one printers, but simu-

lating this control was easy to achieve by configuring a computer to print documents
on the printers with the correct appearance based on the task the user was currently

performing. This resulted in a realistic setting for users of the PUC interfaces, which

allows for better comparisons of the PUC interfaces with the existing manufacturers’

interfaces.

The existing manufacturers’ interfaces from both printers were used for the comparisons con-

ducted in the studies. The PUC-generated interfaces were presented on a Microsoft

PocketPC device (see Figure 10.1).

The discussion of the two user studies starts with a description of the interfaces that were
compared and the common protocol used for both studies. This is followed by sections pre-

senting and discussing the results for each of the studies.

Chapter 10: Usability Evaluation 162

a. HP printer
without consistency

b. Canon printer
without consistency

 c. HP printer
consistent with
Canon printer

d. Canon printer
consistent with

HP printer

Figure 10.1. PocketPC interfaces generated by the Personal Universal Controller (PUC) for the two all-in-one
printers discussed in this paper.

10.1 Interfaces

The studies compare PUC-generated interfaces with the manufacturers’ human-designed

interfaces for the same appliances, and compare PUC-generated interfaces with and without

consistency for the two different printers. The manufacturers’ interfaces for the two all-one-

printers are shown in Figure 10.2.

PUC specifications of both all-in-one printers were needed in order for the PUC to generate

interfaces. I wrote the initial specification for the Canon printer and a staff member wrote

the initial specification for the HP printer. Different writers were used for the two specifica-

tions because these specifications are used for the consistency user study and I wanted the
specifications to contain similarities and differences that might be found in a realistic sce-

nario where the specifications were written separately by different manufacturers.

The specifications were also written using an approach that actual specification writers are

expected to take. Writers were generally faithful to the design of the actual appliances, but
also took advantage of the features of the PUC specification language. For example, the lan-

guage allows for multiple labels for each function and we added extra labels with further

detail where necessary. The PUC language also calls for writers to include as much organiza-

tional detail as possible in order to support generation on devices with small screens, and we

Chapter 10: Usability Evaluation 163

b. Canon PIXMA MP780

a. HP Photosmart 2610

Figure 10.2. The all-in-one printers used in our studies, with a larger view of the built-in user interface.

Chapter 10: Usability Evaluation 164

also followed this guideline. The initial specifications were tested with the interface genera-

tors to ensure correctness and went through several iterations before they were deemed of
high enough quality to be used for the studies. Note that this testing is similar to debugging

a program or iteratively testing a user interface and is necessary to ensure that no functions

are forgotten, understandable labels are used, etc. The advantage of the PUC system is that

these improvements are only needed once and will migrate properly to interfaces generated
on any platform.

Note also that both specifications included all of the features of their appliances, even the

features not tested. Therefore, the resulting generated user interfaces are complete in that they

represent all of the features that could be accessed from the appliance’s own user interfaces.
The specification for the HP consists of 1924 lines of XML containing 85 variables and

commands, and the specification for the Canon is 2949 lines of XML containing 134 vari-

ables and commands.

The PUC’s consistency algorithms also need information about the similarities between
specifications (see Chapter 6). An automatic system was used to generate an initial set of

mappings between the two all-in-one printer specifications. I then revised the resulting map-

pings to produce the complete set used in the consistency study.

The two specifications and the mappings between them were then used by the PUC to pro-
duce the four different interfaces used in the studies: PUC HP without consistency, PUC

Canon without consistency, PUC HP generated to be consistent with the PUC Canon inter-

face, and PUC Canon generated to be consistent with the HP (see Figure 10.1). Combined

with the built-in interfaces for the two printers, this results in the six total interfaces used in
the studies. Complete screenshots of these interfaces can be viewed in Appendix F.

10.2 Protocol

The subjects who used the PUC interfaces first had a short tutorial on the interface of the

PocketPC handheld device. This was necessary because the PUC’s design assumes that users
will be familiar with the device they are using, and the PocketPC has several interface quirks

that can frustrate users who are not aware of them (e.g. the Ok button in dialog boxes is lo-

cated in the title bar at the top of the screen). Since the intention of the PUC is to work on

people’s own personal devices, it is reasonable to expect that they will be familiar with the
user interface of the device itself.

Chapter 10: Usability Evaluation 165

All subjects performed a block of eight tasks on one of the six interfaces just described. After

completing all of the tasks, the subjects received instruction on the quickest method of per-
forming each of the tasks they had just performed. After receiving instruction on a task,

subjects were required to perform the task again until they did not make errors. Additional

instruction was available for the tasks as needed by the subject. Once the instruction period

was completed successfully, the subject performed a second block of the same eight tasks on
a different interface for the other all-in-one printer. The goal of this instruction was to make

subjects as capable as possible with the first appliance before testing them on a second appli-

ance. This simulated the scenario of a user who is experienced with one appliance

encountering a new appliance with similar functionality, which is where we would expect the
most impact from the PUC’s consistency algorithms.

During both task blocks, users were required to figure out how to perform each task on their

own and were not provided with a user manual or any other instruction on how to use the

printer interfaces. Users were allotted a maximum of 5 minutes to perform each task and
were not allowed to move on to the next task until they succeeded or the maximum period

was complete. We chose 5 minutes based on several pilot studies that suggested that most

subjects would finish within that window or else would never succeed. We recorded the time

that it took subjects to complete each task. If a subject did not finish within the allotted pe-
riod, we recorded his or her completion time as 5 minutes and marked the task as not being

completed.

Our protocol has two independent variables: the type of interfaces that a subject used and

the order in which the subject used the two all-in-one appliances. Three different configura-
tions of interface type were used in our studies:

• Built-in: One built-in interface followed by the other built-in interface (e.g. HP fol-

lowed by Canon).

• AutoGen: PUC interface without consistency for one appliance (e.g., HP) followed

by the PUC interface without consistency for the other (e.g., Canon).

• Consistent AutoGen: PUC interface without consistency for one appliance (e.g.,
HP) followed by the PUC interface for the other appliance (e.g., Canon) generated

to be consistent with the first interface (e.g., HP).

Chapter 10: Usability Evaluation 166

The Consistent AutoGen configuration is designed to fulfill the assumption of the PUC’s

consistency algorithms, which assume that users will receive a benefit from consistency when
they encounter a new device because they are familiar with a previous interface.

These three configurations allow testing of both usability and consistency. Usability is tested

by comparing the Built-in configuration with either of the others. Consistency is tested by

comparing the AutoGen and Consistent AutoGen configurations. To test each of these con-
figurations with both of the possible orderings (HP followed by Canon and vice versa) a 3x2

between-subjects study design was used. A within-subjects design is not possible because

learning must be carefully controlled to compare performance for both the usability and con-

sistency studies.

10.2.1 Tasks
Eight tasks were designed for subjects to perform during each block of the study. The tasks

were chosen to be realistic for an all-in-one printer, cover a wide range of difficulties, and be

as independent from each other as possible (so success or failure on one task would not affect

subsequent tasks). The last point was especially important to minimize the possibility that a
subject might notice an element used in a future task while working on an earlier task. This

effect was also minimized somewhat by presenting the next task description only after sub-

jects had completed their previous task; however, this does not prevent subjects working on

their second block from remembering the tasks from the first block.

The tasks used, in the order they were always presented to subjects, are listed below. The or-

der of tasks was not varied for each subject so that whatever learning effects might exist

between the tasks, despite best efforts to eliminate such effects, would be the same for each

subject. The task wording is paraphrased for brevity (exact wording for the tasks can be
found in Appendix E):

1. Send a fax to the number stored in the third speed dial.

2. Configure the fax function so that it will always redial a number that is busy.

3. Configure the fax function so that any document received that is larger than the de-
fault paper size will be resized to fit the default.

4. Configure the fax function so that it will only print out an error report when it has a

problem receiving a fax.

Chapter 10: Usability Evaluation 167

5. Make two black-and-white copies of the document that has already been placed on

the scanner of the all-in-one printer.

6. Imagine you find the copies too dark. Improve this by changing one setting of the

device.

7. Given a page with a picture, determine how to produce one page with several in-

stances of the same picture repeated.

8. The device remembers the current date and time. Determine where in the interface

these values can be changed (but changing them is not required).

The tasks were carefully written to not use language that favored any of the user interfaces

being tested. In some cases this was easy because all interfaces used the same terminology. In
other cases words were used that did not appear in any of the interfaces. We also used exam-

ple documents, rather than language, to demonstrate the goal of task 7.

10.3 Participants

Forty-eight subjects, twenty-eight male and twenty female, volunteered for the study through
a centralized sign-up web page managed by Carnegie Mellon University. Most subjects were

students at either CMU or the University of Pittsburgh and had an average age of 25 and a

median age of 23. We also had 3 subjects older than 40 years. Subjects were paid $15 for

their time, which varied from about forty minutes to an hour and a half depending on the
configuration of interfaces being used. Subjects were randomly assigned to conditions.

10.4 Evaluation of Usability

To evaluate the usability of the PUC interfaces, the task completion times and failures for

the Built-in condition were compared with the other two conditions. For this analysis, the
data from the first block in each condition is of the most interest because the second block is

influenced differently by the subjects’ experiences in the first block.

10.4.1 Results
Figure 10.3 shows the average completion time for each of the tasks on each appliance, com-
paring the Built-In condition with the other two conditions combined (which I will refer to

as the PUC condition). Note that data from the AutoGen and Consistent AutoGen condi-

Chapter 10: Usability Evaluation 168

tions can be combined here because the same interfaces are used in the first block of both

conditions. To compare completion times and failures in the first block, we conducted sev-
eral one-way analyses of variance (ANOVAs). For all of these analyses, n=8 in the Built-In

condition and n=16 in the PUC condition. Table 10.1 shows the data in more detail with

analyses comparing user performance for each task.

On the HP appliance, subjects were significantly faster for total task completion time using
the PUC interface (F1,22 = 12.11, p < 0.002), completing all of the tasks in less than half the

time (M=5:54 for the PUC interface vs. M=13:12 for the built-in interface). Subjects also

failed significantly less often using the PUC interface (F1,22 = 5.69, p < 0.03), with a fifth as

many failures using the PUC interface as compared to the built-in interface (2 total failures
for all users vs. 9).

Figure 10.3. Results of the first block of tasks, showing the Built-In condition compared with the other two for
each appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total
Time HP Built-In 02:16 02:12* 02:02* 00:51 00:23 00:53 02:31* 02:04* 13:12*

 PUC 01:49 00:18* 00:40* 00:39 00:22 00:35 01:18* 00:13* 05:54*

 Canon Built-In 04:08* 03:23 03:38† 03:48* 00:30* 00:56* 02:28* 01:42† 20:33*

 PUC 01:12* 02:34 02:15† 01:17* 00:12* 00:16* 01:13* 00:34† 09:32*

Failures HP Built-In 2 2 2 0 0 1 1 1 9*

 PUC 2 0 0 0 0 0 0 0 2*

 Canon Built-In 3* 3 5* 3† 0 0 1 1 16*

 PUC 0* 5 2* 1† 0 0 1 1 10*

Table 10.1. Average completion time and total failure data for the first block of tasks. The PUC condition is
the combination of the AutoGen and Consistent AutoGen conditions. N = 8 for the Built-In condition and N
= 16 for the PUC condition. * indicates a significant difference between the Built-In and PUC conditions for
that appliance (p < 0.05), and † indicates a marginally significant difference (p < 0.1). Completion times and
total failures were compared with a one-way analysis variance and failures per task were compared with a one-
tailed Fisher’s Exact Test.

Chapter 10: Usability Evaluation 169

Subjects overall had more difficulty using the Canon interfaces as compared to the HP inter-

faces across all conditions (F1,46 = 6.25, p < 0.02), but we still see the same significant benefits
for the PUC interface over the built-in interface. Again, subjects were significantly faster us-

ing the PUC (F1,22 = 21.88, p < 0.001), with average total completion times of 9:32 for the

PUC interface and 20:33 for the built-in interface (again about half the time). Subjects also

failed significantly less often using the PUC (F1,22 = 6.57, p < 0.02), with 10 total failures for
all users over all tasks using the PUC interface and 16 total failures using the built-in inter-

face (about 1/3 fewer failures on average).

We also performed the same analyses comparing the Built-In condition and the combined

PUC condition for the data from the second block of tasks. All of these analyses were signifi-
cant and matched the results for the first block, except for the number of failures over all

tasks for the HP printer. In this case there were too few failures to make this analysis possi-

ble: zero failures for all 16 subjects using a PUC HP interface and only one failure for the 8

subjects using the built-in HP interface.

10.4.2 Discussion of Usability
The results show that users perform faster over all eight tasks using the PUC interfaces as

compared to the printers’ built-in interfaces.

For the Canon printer, the PUC interfaces are significantly faster for nearly all of individual

tasks: tasks 3 and 8 are marginally significant and only task 2, automatically re-dialing a busy
number, was not found to be different at all.

Task 2 was also the task most failed by users of the PUC interfaces for the Canon by a wide

margin. I believe task 2 was particularly hard for users because the Canon printer has many

configuration features for sending and receiving faxes, which are complex, seemingly overlap
with unrelated functions, and use language that is difficult to understand. These functions

were difficult to represent cleanly in the PUC specification language and this may have car-

ried their complexity through to the generated interfaces.

There are fewer individual tasks on the HP printer for which the PUC interface was signifi-
cantly faster than the built-in interface: only tasks 2, 4, 7, and 8. I believe this is because the

HP printer already has a well-designed interface and seemed to perform well, especially for

the easier tasks. The tasks where the PUC interfaces excel are generally the more difficult

tasks, like tasks 2 and 3, which require the users to find obscure settings deep in the interface.

Chapter 10: Usability Evaluation 170

The five minute maximum completion time was chosen with a goal of limiting failures to

between 5-10% of the total tasks. In this data there were 48 subjects performing 8 tasks each
for 384 total tasks, and 37 failures were recorded. This gives a 9.6% failure rate, which is

high but still within our goal range. Since the time measurements were cut off at 5 minutes,

one might worry that this biased the results. However, more than 70% of the failures are

found in the Built-In condition. This suggests that our results, which already show the Built-
In condition to be slower overall, are likely to be correct since allowing more time would

only have made that condition slower.

This study of usability, at least for the first block of tasks, compares the performance of nov-

ice users. There is then a question of whether the PUC would be equally successful for expert
users. As users become experts, they are less likely to make mistakes, which would probably

benefit the harder-to-use Built-In appliance interfaces more than the PUC interfaces. How-

ever, fewer steps are required to navigate to and use most functions in the PUC interfaces.

Furthermore, the PUC interfaces provide more visual context for the user’s current location
in the interface. We believe that these features would allow users to become experts with the

PUC interface faster than the Built-In interfaces and perform faster once experts. The results

of the second study suggest this may be true, as discussed in the next section.

10.5 Evaluation of Consistency

To evaluate consistency, the completion times of interfaces in the AutoGen and Consistent

AutoGen conditions are compared for the second block of tasks. We also compare the Built-

In condition to the Consistent AutoGen condition, to see how consistency might further

improve today’s appliance interfaces.

10.5.1 Results
Figure 10.4 shows the average completion times for each task in the second block for the

AutoGen and Consistent Auto-Gen conditions. Table 10.2 shows the same data in more de-

tail and includes the Built-In condition and failure data for all the conditions. Again, one-
way ANOVAs are used to compare the completion times of the various conditions. Failures

are not discussed here because nearly all subjects were able to complete all their tasks in the

AutoGen and Consistent AutoGen conditions (results of the analyses of failures are shown in

Table 10.2).

Chapter 10: Usability Evaluation 171

Subjects who used the Canon printer and then the HP were significantly faster for total task

completion time using the consistent PUC interface compared to the normal PUC interface
(F1,14 = 10.01, p < 0.007) and the built-in interface (F1,14 = 64.48, p < 0.001). The total

completion time for the consistent PUC interface was on average more than twice as fast as

the normal PUC interface (M=2:10 vs. M=4:54) and more than four times faster than the

built-in interface (M=2:10 vs. M=8:55).

After first using the HP printer, subjects were also significantly faster using the consistent

PUC interface for the Canon printer, both compared with the normal PUC interface (F1,14 =

7.60, p < 0.02) and the built-in interface (F1,14 = 16.89, p < 0.002). The average total com-

Figure 10.4. Results of the second block of tasks, showing the AutoGen condition compared to the Consistent
AutoGen condition for each appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total

Usability Evaluation 172

Time HP AutoGen 00:29 00:43* 00:50 00:29 00:08 00:22* 01:45† 04:54* 00:08
 Consistent 00:20 00:17 00:20 00:25 00:07 00:04 00:30 00:07 02:10

 Built-In 01:38* 01:23* 00:37† 00:39† 00:18* 00:16* 03:19* 00:45* 08:55*

 Canon AutoGen 00:28 02:54* 01:33† 00:44 00:09 00:23* 01:25 00:09 07:45*

 Consistent 00:38 00:12 00:22 01:03 00:05 00:08 01:05 00:06 03:39
 Built-In 03:15* 02:24* 02:42* 02:14 00:11† 01:42* 02:42† 00:35* 15:44*

Failures HP AutoGen 0 0 0 0 0 0 0 0 0
 Consistent 0 0 0 0 0 0 0 0 0

 Built-In 0 0 0 0 0 0 1 0 1

 Canon AutoGen 0 2 1 0 0 0 0 0 3

 Consistent 0 0 0 0 0 0 1 0 1
 Built-In 4* 2 3 2 0 2 2 0 15*

Table 10.2. Average completion time and total failure data for the second block of tasks. N = 8 for all condi-
tions. * indicates a significant difference between that row’s condition and the Consistent AutoGen condition
for that appliance (p < 0.05), and † indicates a marginally significant difference (p < 0.1). Completion times
and total failures were compared with a one-way analysis variance and failures per task were compared with a
one-tailed Fisher’s Exact Test.

Chapter 10:

pletion time for the consistent PUC interface was again more than twice as fast as the normal

PUC interface (M=3:39 vs. M=7:45) and more than four times faster on average than the
built-in interface (M=3:39 vs. M=15:44).

If the appliance used by subjects is not considered, it is possible to compare the total comple-

tion times of the two blocks of tasks for each of the three conditions. The Consistent

AutoGen condition is significantly different from the first block to the second (F1,30 = 10.45,
p < 0.004). The difference is marginally significant for the Built-In (F1,30 = 3.24, p < 0.09)

condition and not significant for the AutoGen (F1,30 = 2.46, p < 0.14) condition.

10.5.2 Discussion of Consistency
The results show that users perform faster over all eight tasks using the consistent interfaces

as compared to either of the other interfaces. Much of this effect for both appliances is due to
four tasks: 2, 3, 6, and 7. This was expected, because the normal PUC interfaces for these

appliances were already consistent for tasks 1 and 8, and thus did not benefit from any

change in the consistent interfaces. We had hoped to see consistency effects for the remain-

ing tasks, but other factors seem to have affected tasks 4 and 5.

The change made to ensure consistency for task 5 (copying) involved changing the place-

ment of the copy and cancel buttons on one screen (see Figure 10.1). Apparently the visual

search for the new button placement did not affect subjects’ speed compared to the normal

PUC interfaces.

One change was made to ensure consistency for task 4 (changing the fax error printing). The

function needed for this task is located with other fax configuration functions, which are lo-

cated in different places on the two appliances: in the fax mode on the HP and in the setup

section of the Canon interface. The change for consistency performed by the PUC is to
move all the configuration functions to the location where the user originally saw them.

From observations of subjects’ actions, it appeared that this manipulation worked in the

studies. Unfortunately, the error reporting function was also different between the two appli-

ances in a way that the PUC’s consistency system could not manipulate. When using the HP
interface made to be consistent with the Canon interface, users needed time to understand

how the functions were different before they could make the correct change. When using the

Canon interface consistent with the HP interface, the interface generator made the unfortu-

nate choice of placing the needed functions in a dialog box accessible by pressing a button.

Chapter 10: Usability Evaluation 173

The button to open the dialog was placed next to several other buttons, which distracted

subjects from the button they needed to find.

For tasks 2 and 6 we see a significant benefit for consistency for both appliances. Tasks 3 and

7 both have a marginally significant benefit for consistency on just one appliance (task 3 on

the HP and task 7 on the Canon). Similar to task 4, both tasks 3 and 7 are slightly different

on the two appliances in ways that the PUC’s consistency system cannot change. We believe
this means that subjects were not able to leverage all of their previous knowledge and had to

spend some of their time thinking about how the appliances worked, thus slowing them

down.

It is important to note that there are no situations where the PUC’s consistency algorithms
make the interface significantly worse for users, even for task 4 on the Canon interface gen-

erated to be consistent with the HP. The consistency system is able to provide benefits when

there are similarities between the appliances and it does not hurt the user when there are dif-

ferences.

A question to ask is whether the benefits that appear to be from consistency could be due to

some other factor in the generation process. I do not believe this is likely, because the rules

added for consistent interface generation only make changes to the new interface based on

differences with a previous interface that the user has seen. These rules do not perform other
modifications that might improve the user interface independent of consistency.

10.6 Discussion

The studies presented here do have some limitations. I used only one type of appliance, all-

in-one printers, and only tested two instances of this type. As discussed earlier, I believe that
the all-in-one printers we chose are representative of complex appliances as a whole. They

also require the use of many of the PUC specification language’s most advanced features,

such as lists and Smart Templates (see Chapter 7). Although only two all-in-one printers

were used, they were carefully chosen to both be complex and representative of different
common interface styles. We also chose the HP in part because it had, in my estimation, the

best interface of any all-in-one printer available.

These two studies together have shown that the PUC can generate interfaces that exceed the

usability of the manufacturers’ own interfaces. Using automatic generation to create appli-
ance interfaces allows flexibility in the design of the interface, which allows interfaces to be

Chapter 10: Usability Evaluation 174

modified for each particular user. The consistency feature studied here is one example, and

our second study showed that consistency can be beneficial to users. Manufacturers may ob-
ject to consistency however, because branding may be removed from interfaces and, worse

still, branding from a competitor may be added in its place. Our position is that branding

which affects the usability of an appliance, such as custom labels for certain functions or par-

ticular sets of steps needed to complete particular tasks, is not good for the user and the
consistency system should be allowed to modify them. However, branding marks, such as

company names, logos, etc., should be preserved appropriately. Support for branding marks

and consistency of those marks is a feature that may be added to the PUC system in the fu-

ture.

An important question is: what allows the PUC to generate interfaces that are better than the

built-in interfaces on the appliances? And what would be needed to improve the built-in in-

terfaces? I believe PUC interfaces are better than the appliance interfaces for many reasons.

First, the PUC does not use the same instance of a control for multiple functions. All but-
tons, sliders, etc. presented in a PUC interface are used for only one function. In contrast,

most appliances overload multiple functions on their buttons. For example, both printer in-

terfaces provide a number of multi-purpose buttons on their control panel, including

directional pads, ok buttons, and number pads (see Figure 10.2), whose behavior changes
depending upon the function selected through the printer’s menu. This was a particular

problem for the manufacturer’s interface on the Canon, which has many modes in which

certain buttons cannot be used and for which there is no feedback. Users must experiment to

determine which buttons can be pressed in which situations. The PUC addresses the feed-
back problem by graying-out controls that are not currently available.

The PUC’s screen allows for longer and better labels to be shown for each function. The

screen also allows for a two-dimensional layout that can give clues to the organization of the

interface. For example, the tab control allows users to see immediately that there are multiple
groups of controls and what those groups are. Also, the functions displayed in the main por-

tion of any given screen are grouped by functionality, which decreases the number of

functions on any one screen and may make the interface easier to parse.

In order to improve the built-in interfaces to the same usability as the PUC, manufacturers
would probably need to invest in larger screens for their appliances. These screens would al-

low the organization of the interface to be clearer, and hopefully eliminate some of the need

for multi-purpose buttons. Any physical buttons that are not always functional should have

Chapter 10: Usability Evaluation 175

indicator lights that show when the button can be pressed. Many problems, such as poor la-

bels, could be addressed with basic user-centered iterative design.

The question remains whether it is economical for manufacturers to make these improve-

ments. Screens and indicator lights for buttons could add substantial manufacturing cost to

an appliance that already has a low profit margin. Although usability is becoming more of a

marketing point, it is still not clear that consumers value it over price except in a few in-
stances (e.g. the iPod). We believe that the PUC could be an excellent solution for appliance

manufacturers that currently find themselves in this situation.

Chapter 10: Usability Evaluation 176

CHAPTER 11

11Conclusion

The preceding chapters have shown how the PUC system is able to generate user interfaces
that are more usable than the interfaces built into today’s appliances. The PUC system has

also extended interface generation technology to support the design of interfaces that are per-

sonally consistent for each individual user, and to use information about content flow to

produce aggregate interfaces for systems of multiple appliances. This chapter discusses high-
level issues surrounding the PUC system, describes the PUC systems impact to date, reviews

the contributions of this dissertation, and describes some possible directions for future work.

11.1 Discussion

The PUC system was designed specifically to produce interfaces for appliances. It could be
used to generate other kinds of interfaces but is limited in the scope of the applications that

could be supported. Any application that only needs dialog box-style controls in its interfaces

could be generated. The PUC may also be able to produce interfaces for applications that

need to display large amounts of data using its support for complex data structures, although
this capability has not been rigorously tested by the appliances tested so far. Applications that

manipulate long text strings, such as e-mail editors, could theoretically be handled by the

177

PUC framework, though the current interface generators have limited support for rendering

large text boxes in an interface.

Some application interfaces cannot be generated by the PUC. In particular, the PUC cannot

support generation for applications that must use direct manipulation, such as painting or

circuit design applications. Support for direct manipulation was a limitation of many previ-

ous model-based systems as well, and those that were able to support direct manipulation
required substantial extra modeling effort to provide enough information to allow the inter-

face generator to produce a reasonable interface. These systems required designer

involvement in the process as well, to guide the generation or fix any mistakes.

The limitations of the PUC system illustrate the fundamental trade-off between modeling
effort and ability of the generator to produce complex interfaces. A highly detailed model

may allow an interface generator to produce highly complex interfaces and perhaps even

support direct manipulation, but building a model with the necessary amount of detail may

require substantial effort. In the design of the PUC system, I have explicitly tried to optimize
this trade-off for appliance interfaces. The preliminary user studies allowed me to design a

specification language that contains sufficient information to generate a usable interface, but

is still concise and easy to use. I could accomplish this because appliance interfaces are a sub-

set of all possible interfaces.

Optimizing the specification language for conciseness and ease of use resulted in not includ-

ing some features that have become commonplace in other model-based systems. Most

significantly, the PUC specification language does not include a task model. For many appli-

ances, task information is not necessary because most of the tasks have only one step. For
example, “play the tape” or “increase the volume” involve pressing only one button or sliding

one slider. Even more complex tasks, such as programming a timed recording on a VCR, can

be rendered understandably by the PUC because there are few steps and few dependencies

between the steps. Although some of today’s appliances have interfaces which may require
many complicated inter-dependent steps to complete tasks, most of the complication is not

inherent to the appliance’s functionality but instead due to the limited interface capabilities

of the appliance. The PUC is much less limited in its ability to provide an interface, and as

such tasks can be accomplished in the interface without as many complicated steps.

One of the biggest challenges throughout the PUC’s consistency algorithms is appropriately

dealing with the unique functions and organization found in similar appliances. Chapter 8

Chapter 11: Conclusion 178

describes three heuristics to address this problem, but the solutions are often limited because

of a lack of useful semantic information about the unique functions. In part, this is due to
the PUC’s use of “relative semantics” to understand similarity; the PUC only knows that two

functions are similar, not why they are similar, what they do, or how they relate to other

functions in the appliance. With better information, the PUC could make more informed

decisions about where to place functions and when to create new organization. Of course,
better information would come at the cost of additional modeling for each appliance because

it seems unlikely that detailed information could be automatically extracted from the appli-

ance specifications.

A large part of the multi-appliance interface problem discussed in Chapter 9 arises from mul-
tiple appliances being connected together, which requires the user to interact with multiple

interfaces to accomplish a single task. An obvious solution here is to integrate the appliances

into a single monolithic appliance for which an interaction designer can carefully construct a

good user interface. In fact, this solution can be seen for some consumer electronics, such as
for shelf stereos which integrate an amplifier with a CD player, radio tuner, and other audio

devices. The problem with this approach is that it does not allow for expandability and inno-

vation. If all audio appliances had been integrated ten years ago, then today there would be

no place for devices like the iPod. The PUC allows users to easily interact with systems of
appliances, which enables appliance manufacturers to pursue the design of new appliances

that may be added to these systems. There is also no guarantee that the interface produced by

the manufacturer for the integrated appliance will be usable, even if the functionality of mul-

tiple appliances is integrated into a single monolithic appliance. In fact, the combined
appliance interface would probably be harder to design because of the many complicated

functions that the integrated appliance would support beyond that of a single appliance. The

examples from current systems suggest that manufacturers might not succeed at this difficult

design challenge [Brouwer-Janse 1992, Gomes 2003].

For a system like the PUC to succeed as a product in the real world, it is important to ask the

following questions:

• Would consumers find value in such a system?

• Would manufacturers support such a system?

For many years, usability has not been an important criterion for consumers when purchas-

ing a new appliance [Brouwer-Janse 1992]. Price and features have been the most important

Chapter 11: Conclusion 179

factors, as well as appearance and brand. For consumers to purchase and use products with

PUC technology, usability will need to become a more important factor in buying decisions.
I think there is reason to believe that consumers’ buying habits may be changing however.

The iPod, for example, dominates its market in large part because it is highly usable. Many

reviews of technology products, particularly on web sites such a CNET and Engadget.com,

routinely evaluate usability along with the usual factors, like price and performance.

Of course, before customers can decide whether or not they would like to buy products that

include the PUC, manufacturers will need to include the technology in their products. There

are several issues that manufacturers might have with this technology, most importantly the

loss of control over their products’ interfaces. Manufacturers will at least want to include
branding marks in their interfaces and are likely to want some assurance that customers will

not attribute fault to the manufacturer if a poor interface generator produces a bad interface

for their product. The current PUC system does not have support for including brand

marks, though this feature could be added. Unfortunately, there is no obvious solution to the
second problem besides educating consumers. My hope is that manufacturers may find this

issue less of a concern if consumers begin to demand more usable interfaces and the PUC

can offer these interfaces at less cost than hand-designing such interfaces in-house. After all,

most PUC devices can provide far better interaction hardware than is cost-effective to put
into each appliance.

I also hope that manufacturers will be more willing to adopt PUC technologies if it can be

shown that interface generation can offer benefits not possible in the hand-designed inter-

faces on the actual appliances. In particular, the ability of the PUC to provide improved
interfaces automatically for systems of multiple appliances cannot be implemented with non-

automatic generation approaches. There also seems to be considerable value in generating

interfaces with personal consistency, as shown by the evaluation.

Generation of consistent interfaces is another issue that likely to concern manufacturers how-
ever, particularly where branding is concerned. The current version of the PUC’s consistency

system is quite likely to make changes that would be inappropriate, such as copying a

branded label from one appliance interface into an interface for an appliance from a compet-

ing brand. For example, the Mitsubishi DVCR appliance has an automatic rewind function
that is labeled as “RentalExpressTM.” Some appliances also have branded interactions, such as

Sony CD players which have different behavior for the next track button than most other

manufacturers (pressing the next track button on a Sony immediately after starting the player

Chapter 11: Conclusion 180

advances to track 1 instead of track 2 as most others do). If the difference in these interac-

tions can be described in the specification language, then these differences are also likely to
be copied inappropriately to a new interface by the consistency algorithms.

My philosophy with branding is that manufacturers should not use branded interactions

where they may be detrimental to the usability of the appliance. These situations are exactly

those described in the previous section. It is very appropriate for the manufacturers’ logos
and brand marks to be maintained in a consistent user interface, but using different names or

behaviors for functions that also appear on other appliances just confuses users. Of course,

manufacturers are unlikely to agree with me and the PUC system should probably be altered

to allow certain branded interactions to be preserved by the consistency algorithms. This may
be possible simply by allowing markers to be added in the specification that define labels and

configurations of state variables and commands that should not be changed by the consis-

tency algorithms.

Cost is another important factor that will affect whether manufacturers adopt a system like
the PUC. The PUC requires features like two-way communication, access to all of the func-

tions of the appliance, and support for a more reliable physical communication layer than

IR, such as Bluetooth, Wi-Fi, or Zigbee. Some of these features add development cost to a

new appliance, such as changing the appliance’s software or writing a functional specifica-
tion. Other features add to the manufacturing cost for each unit, such as adding new

hardware to support a new wireless communication protocol. An increase is manufacturing

cost is thus substantially worse than an increase in development cost, because any manufac-

turing cost increases are multiplied by the number of units produced.

Some increases in development cost to support the PUC may not be as substantial as they

might seem. For example, most manufacturers already develop some form of functional

specification as part of the product development process. While these specifications may not

include all of the same kinds of information as a PUC specification, they should provide a
good starting point. My intuition is that writing a PUC specification for an appliance would

not add substantially to the development cost of an appliance over current industry practices.

Many manufacturers are also working to add support for general communication infrastruc-

tures, such as UPnP, to their appliances. These technologies have similar server-side
requirements as needed for the PUC, such as supporting access to the state of an appliance

and an event mechanism to notify external entities when a state has changed. It is possible

Chapter 11: Conclusion 181

that manufacturers’ existing implementations for these infrastructures may be easily adapt-

able to support technologies such as the PUC.

Some of the extra development and manufacturing costs to support the PUC may also be

offset by a reduction in other costs. In particular, manufacturers may choose to reduce the

complexity of their on-appliance interfaces in favor of making some functions only available

through the PUC interface. Such a choice would reduce both the development cost of the
physical interface, since developing a simpler interface should cost less than a complex one,

and the manufacturing cost of each unit, as fewer buttons and smaller screens are needed for

a simpler interface on the physical appliance. However, this cost trade-off may not occur in

appliances that are initially deployed with PUC technology, because manufacturers may be
unwilling to make certain functionality available only through an interface technology that

has not yet achieved broad acceptance.

Unfortunately, it still seems that development and manufaucturing costs must increase in

order to build PUC technologies into appliances. Thus, there will need to be other motivat-
ing factors for manufacturers justify the extra cost incurred in adding this functionality. A

few possible motivations could be increasing the usability of an appliance, adding accessibil-

ity of the appliance interface to users with disabilities (the goal of INCITS/V2), or

integrating the appliance interface with other appliances that may be connected to it. It re-
mains to be seen whether these issues will motivate manufacturers to adopt standards, such as

INCITS/V2, and add these technologies to their appliances.

11.2 Impact

Although the PUC system has not been adopted by any manufacturers of computerized ap-
pliances, it has affected the development of the INCITS/V2 standard, been used by two

different research groups, and its specification language was used as a component of a project

in an undergraduate class at the University of Alabama.

The INCITS/V2 group (described in section 2.1.2.1) is developing a standard for moving
the interfaces from appliances to a remote control device, much like the PUC, for the pur-

pose of providing accessible user interfaces for users with physical and cognitive disabilities.

The initial draft of the V2 specification did not sufficiently abstract the functionality of the

appliance to allow for generation of interfaces on a wide-variety of platforms and did not
meet several of the requirements that I found were needed for a system that provides remote

Chapter 11: Conclusion 182

control of appliances (see section 3.6). I provided an initial analysis of the V2 technology

[Nichols 2002a] that, along with other interactions, led the V2 standard to adopt many of
the design decisions already included in the PUC system. The current version of the standard

is much improved though the PUC and V2 still share some differences. More information is

available about the similarities and differences between V2 and the PUC system elsewhere

[Nichols 2004a].

The PUC system has also been used by two research projects. A group at the Technical Uni-

versity of Vienna, led by Dieter Schmalstieg, has used the PUC in their research into

augmented reality applications. In one project, the PUC was used to provide handheld con-

trol of augmented reality characters, resulting in a publication at a leading augmented reality
conference [Barakonyi 2004]. Figure 11.1 shows an example of the PUC in action with this

project.

A group of Italian researchers have also integrated the PUC system into their middleware

system, called DomoNet [Miori 2006]. This system allows communication between several
of the common device communication protocols, including UPnP and X10. The PUC pro-

vides the user interface capability for this middleware, allowing users to control UPnP, X10,

and other devices.

Figure 11.1. The PUC being used to control a character in an augmented reality application as part of work
performed with the PUC at the Technical University of Vienna. “Tracked PocketPC as a multi-purpose inter-
action device: (left) Tangible interface in a screenshot of the AR LEGO application (right) PDA screen capture
of the LEGO robot’s control GUI” [Barakonyi 2004]. Reproduced with permission.

Chapter 11: Conclusion 183

The PUC specification language was also used as a component of a project conducted in the

Spring 2005 semester of CS 491: Generative Programming class at the University of Ala-
bama [Sandridge 2005]. The goal of the project was to provide a framework that would

allow a mobile application to run on any device, regardless of the device’s operating system

or interaction technologies. The students initially tried two languages, XUL and Laszlo, but

found that both were not abstract enough to describe a user interface in a form that could be
rendered differently across multiple platforms. They discovered the PUC language and found

that it fit their requirements for producing interfaces. The students produced a rudimentary

code generator for J2ME based on the PUC language and work was continued through a

summer REU undergraduate research project.

Collectively, these projects show that the PUC system has some value for researchers outside

of the PUC research team. Many of these projects show that there is a need for distributing a

user interface across different platforms and that the PUC technologies can be used to ac-

complish this goal. Furthermore, the existence of these projects also suggests that the PUC
technologies are also easy enough to learn and use so that people can adopt them successfully

with little support from me.

11.3 Contributions

This dissertation describes a complete system that can improve the usability of today’s com-
plex computerized appliances by moving the user interface to a handheld device that the user

is already carrying. The interfaces are automatically generated to be customized to the con-

troller device, the user, and the particular configuration of appliances that the user has.

The generation process is supported by a specification language that is capable of describing
the complete functionality of a wide-range of appliances. The language was tested in an au-

thoring study that showed that authors with no previous experience could learn the language

in about 1.5 hours and write a complete specification for a low-cost VCR in about 6 hours.

The dependency information in the specification language can be used by the interface gen-
erators to infer some of the structure of the user interface. When the dependencies for

multiple sets of functions are found to be mutual exclusive, the interface generator can take

special action by placing the sets of functions on separate overlapping panels.

The Smart Templates technique allows domain-specific design conventions to be referenced
in appliance specifications and rendered appropriately in the generated interfaces. Templates

Chapter 11: Conclusion 184

are parameterized, allowing the same templates to be used across specifications for different

appliances with different functionality. Templates are also described using the primitive ele-
ments of the specification language, which allows interface generators to render a template

even if the generator is not pre-programmed to understand that template.

To support consistency, a language was developed for describing semantic similarities be-

tween appliance specifications. This language describes the similarities in relative terms, e.g.
this is the same as that, which is sufficient for ensuring consistency and may be easier to spec-

ify and use than other ontology techniques.

The PUC has rules that achieve consistency between generated interfaces. These rules ensure

both functional and structural consistency, and make use of heuristics to ensure that the us-
ability of unique functions is not harmed by changes for consistency. Evaluations of these

rules showed that users can be twice as fast when using new interfaces that are generated to

be consistent as compared to interfaces generated without the consistency rules.

Content flow is a useful model for describing the tasks that users may wish to perform with a
system of multiple connected appliances, such as a home theater or presentation room. The

Flow-Based Interface allows users to specify and execute their high-level tasks with a multi-

appliance system. Four aggregate interface generators were also created that use content flow

and combine functionality from multiple appliances to produce useful task-based interfaces.

The PUC graphical interface generators have been implemented on several different plat-

forms, including the PocketPC, Microsoft’s Smartphone, and desktop computers. I

collaborated with another research group to produce a speech interface generator based on

the PUC framework, demonstrating the PUC specification language is sufficiently abstract to
create interfaces in multiple modalities.

Finally, the PUC interface generator was evaluated to show that subjects using interfaces

produced by the system can be twice as fast and four times as successful as compared to inter-

faces currently available on today’s computerized appliances, thus proving the thesis
underlying this work.

11.4 Future Work

There are many directions for future work that build off of this dissertation.

Chapter 11: Conclusion 185

So far I have built graphical interface generators for three different platforms, but there are

many more mobile platforms on which interface generation could be implemented. It would
be most interesting to build generators for platforms that are substantially different than

those I have already looked at. For example, smart phones from most other manufacturers

have similar interface styles to the Microsoft Smartphone platform that my interface genera-

tor supports. One interesting platform to explore might be wristwatches, which have even
more limited interaction capabilities than smart phones.

To support a platform like wristwatches, it might be necessary to build a user interface that

supports only the most common functionality of an appliance rather than creating interfaces

for the full functionality of an appliance like my current generators do. The challenge is to
reliably determine the functions that users will want to use from the full appliance specifica-

tion. The group tree and the priority information of the specification language already

contain information that should help with making this decision though determining the

proper threshold for functions to keep versus functions to omit may be difficult to find. In
particular, it would unfortunate if the appliance has a set of items that are used together,

such as a list and several commands that operate on the list, and not all of the set is included

in the generated interface.

It might also be interesting to create an interface generator for web interfaces. Such a genera-
tor might be able to integrate ideas from each of the existing generators to adapt the web

page layout for the particular device that the web pages will be rendered upon. New “Web

2.0” technologies could also be used to create appliance interfaces on a web page with similar

levels of interactivity as that of the interfaces currently generated by the PUC.

While interface generators can be built for many existing platforms, it would also be interest-

ing to build a new device that is specifically designed to support the PUC system. Most of

today’s high-end universal remote controls with touchscreens also have some number of

physical buttons for controlling common functions, such as volume and channel (see the lat-
est Philips Pronto in Figure 2.1), but the PUC is designed to control a broader range of

appliances than just home A/V equipment. What physical buttons would be appropriate for

a PUC to have? If soft buttons are used, what is the trade-off between assigning functionality

to them versus showing the functions in an organized hierarchy as is done by the PUC’s cur-
rent generated interfaces?

Chapter 11: Conclusion 186

More generation rules could be implemented for any of the PUC interface generators. The

current rules are sufficient for generating interfaces for the appliances that have been speci-
fied and are likely to work for many others, but there is still room for improvement. Rules to

improve the generation of interfaces for lists could be especially helpful, as the PUC cur-

rently has only a few rules for dealing with the most common types of list structures. A rule

that creates a grid for certain two-dimensional list structures is lacking. List data is not sup-
ported at all in the current Smartphone interface generator, so there is also a need to port

current rules from the PocketPC and develop appropriate controls to differentiate lists of

functions, which are the basis of the Smartphone interface, and lists of data stored on the

appliance.

Another interesting approach would be to explore mixing the optimization approach for

generating interfaces, such as that used by SUPPLE, with the rule-based approach that the

PUC currently uses. Numerical optimization algorithms would be useful for converting the

abstract user interface into a concrete layout, for example, but might benefit from informa-
tion from the PUC’s mutual exclusion rules for specifying particular organization that an

interface must have. Optimization might also be useful for achieving structural consistency

between interfaces, though rules may be needed to ensure that unique functions are handled

appropriately and predictably. The key for resource-constrained platforms, such as the hand-
held devices used by the PUC, is to limit the use of optimization to areas where it can

provide the most benefit while still providing reasonable performance.

There are several directions of future work to explore with the specification language. Firstly,

the authoring study discussed in Chapters 5 and 6 was designed primarily to explore incon-
sistencies in specifications and not to understand any usability issues that the language might

have. More in-depth authoring studies would be valuable to better understand the difficulties

that users have when writing specifications and improve the language. Secondly, the current

authoring study suggested that it would valuable to create a tool to assist users in creating
new specifications. Existing tools for writing XML are helpful for writing specifications, but

the language has some properties that are not conducive for direct XML editing. For exam-

ple, my typical process for writing a specification is to first enumerate all of the state variables

and commands and then organize all of the appliance objects into an appropriate group hier-
archy. Reorganizing hierarchies is very difficult in XML and might be better supported by a

direct manipulation interaction. Object names also change as the organization changes and a

tool should manage names automatically.

Chapter 11: Conclusion 187

A third direction to explore with the specification language would be to analyze whether

there is any additional information that should be added. The latest version of the IN-
CITS/V2 interface description language has two features that may be useful to add. The

INCITS/V2 design separates labeling information from the functional interface description

and places the labels in a separate “resource” file. The particular resource file used during in-

terface generation may be changed to support different locales, for example, or perhaps even
users with different cognitive abilities. The INCITS/V2 functional specification also includes

a “notification” construct, which represents a quick dialog box-style interaction that is dis-

played when an event occurs on the appliance. The PUC does support text-only alert dialog

boxes that are displayed at the request of the appliance, but these dialogs are not pre-
specificed in the specification language and appear in response to a special alert-

information messasge sent through the communication protocol. Specifying these mes-

sages explicitly would allow the language of the dialog box to be modified by the interface

generator. This might be appropriate, for example, if a part of the interface mentioned in the
dialog box has been modified by the consistency rules.

The PUC’s consistent interface designs are based on seven basic requirements, as discussed in

section 6.3. These requirements are based on current work in consistency, but are very high-

level and would likely benefit from some elaboration. In particular, it seems that there are
several different dimensions along which consistency might be achieved. Lexical consistency

requires interfaces to use the same labels for the same functions. Functional and structural

consistency, as defined earlier, mean respectively that the same functions use the same con-

trols and functions are located in the same location. A related, but different, dimension to
structural consistency is navigational consistency, which requires that users take the same

steps to navigate to a function. Navigational consistency implies structural consistency, but,

for example, two interfaces could be structurally consistent but not navigationally consistent

if they used different controls to navigate between different areas of the interface. There is
also visual consistency, which means that interfaces have roughly the same appearance, and

there are likely other dimensions as well. Because of differences between appliances, it is of-

ten not possible to achieve consistency along all of these dimensions simultaneously. Work is

needed to examine the trade-offs between different dimensions and to understand which di-
mensions are most important for users’ productivity. Lexical consistency, for example, would

seem to be a constant requirement, but perhaps structural consistency is less important than

Chapter 11: Conclusion 188

visual consistency and the PUC’s consistency rules should be adapted to put more emphasis

on the visual aspects of consistent interfaces.

It would also be valuable to explore the value of consistency versus the amount of similarity

between appliances. My work in this dissertation focuses on achieving consistency for appli-

ances that share many similar functions but not for appliances that share only a few

functions. For appliances with few similarities, it seems that the need for consistency rules
changes. Functional consistency rules are nearly always helpful, but it seems that structural

consistency rules are just as likely to be harmful as helpful. This is because similar functions

across mostly different appliances may have a different context of use, which could be dis-

rupted when the function is moved. Furthermore, in my experience with the home theater
appliances, I noticed that different appliances sometimes share the same high-level structure

(e.g. Control and Setup groups very high in the group hierarchy) but very little of the same

low-level hierarchy. In this situation, a moving rule may move a function from deep in the

hierarchy to be a child of a very high-level group. Often this will make the moved function
more prominent than is appropriate. More work is needed to understand the situations in

which structural consistency rules help and hurt, so that this knowledge can be integrated

into the consistency rules. One possibility may be to revisit the ideas of sparse, branch, and

significant consistency that I have discussed elsewhere [Nichols 2005], but there is still a
need for software to be able to reliably detect these types of consistency. In particular, a

threshold must be deteremined between the number of similar and unique functions in two

groups of different appliance specifications that is sufficient to specify whether the similaral-

ity of those groups is sparse or significant.

My consistency algorithms also rely entirely on the similarity information that is contained

within the PUC knowledge base. In this work, I have assumed that the knowledge base does

not contain any false mappings, which is unlikely if the similarity information is collected by

an automated schema mapping algorithm. Work is needed to understand what the impact of
errors in the knowledge base are on the current consistency rules and whether the rules can

be changed to mitigate any problems that arise. More work is also needed on the mapping

algorithms themselves. In particular, it would be interesting to explore whether mapping can

be improved by leveraging the existing content in the knowledge base. Use of the knowledge
base would provide more information from which to make a match. It is also possible that

the knowledge base could contain information about likely sources of false positives in the

mapping algorithm, which could be used to filter the generated mappings and reduce errors.

Chapter 11: Conclusion 189

The PUC’s consistency algorithms ensure personal consistency, which has an ordering effect:

new interfaces are generated based on previous interfaces. If some aspect of the previous in-
terfaces was “bad,” then that low quality element might be copied into the new interface.

One of the requirements of my consistency algorithms was to support user choice, so that

users could control how consistency is applied and choose the best possible interface. The

interface to allow users to make these choices has not been implemented yet, however. It is
also unclear how users will know that a better interface is available if they never see it because

of the consistency algorithms. Additional work is needed to understand how users can be

made aware of their options and to build an interface that allows them to make their choice.

Also because interfaces are generated based on previous interfaces, there is an opportunity to
seed the consistency system with high quality interfaces for a variety of different common

appliance types. Future interfaces for actual appliances would then be modified by the con-

sistency rules to be more like the high quality interfaces, hopefully producing a higher quality

result than otherwise. This concept could even be applied to individual functions, ensuring
that certain annoying situations, such as unneeded confirmation buttons, never occur in fu-

ture interfaces. I have not experimented with this idea, and it would be interesting to see how

far this technique can be taken to produce improved interfaces.

The PUC currently does not provide any mechanism for end-user customizations. Although
our target users are not trained interface designers, they still may wish to modify the inter-

faces produced by the system. This mechanism could take the form of an interface builder,

or might be designed more around the structure of the underlying specification language.

Any customizations should be noted by the consistency system, and used to influence the
design of future interfaces. It should also be possible for users to create their own macros that

automate certain functions of their appliances.

There are two important problems of multi-appliance systems that the PUC does not cur-

rently address: helping with the initial wiring of the system and trouble-shooting problems
when they occur. Both features could be added to the PUC using Roadie’s [Lieberman 2006]

approach, which relies on a planning system similar to the PUC’s. Some of the wiring prob-

lems could also be addressed in a tool that helps users specify the diagram needed to build

the PUC’s system-wide content flow model. This tool could also help users determine how
to best wire their system to support all the flows that they expect to use. It is worth noting

that Roadie takes a different approach to configuration, by including wiring instructions in

the plans that it generates for each user task as the user is using the system. This ensures that

Chapter 11: Conclusion 190

users are always able to perform a task if it is possible with some configuration of their sys-

tem, but it seems better to me to perform this kind of analysis at setup time since, at least in
my experience, it is unlikely that users will want to rewire their system on a regular basis.

The PUC currently generates four different kinds of aggregate user interfaces, and it would

be interesting to explore both improving the existing set and building new kinds of aggregate

interfaces. A promising direction is a usage-based aggregate interface, perhaps based on the
ideas of Omojokun et al [Omojokun 2006]. A context-sensitive aggregate interface would

also be interesting, especially if it could often provide the right function at the right time.

Aggregate interfaces based on usage or context are likely to adapt to the user over time how-

ever, which may create problems for users if the interface changes in an unexpected way and
previously available functions are either removed or hidden. An area that seems promising is

producing interface adaptation methods that are high-level and user-driven. This might

mean that users give broad or abstract descriptions about the functionality they desire to

have in an interface, the system produces the interface, and then the system and user engage
in an iterative design process to produce a product that is similar to what the user desires.

This process might be driven by a visualization that allows users to see their actual usage and

make design suggestions based on it. For example, the user might perform a task and realize

that they are likely to perform that task in the future. The user would then open a usage
visualization, make a selection corresponding to the task just performed, and then the system

would produce an interface specifically for that selection.

I would also like to conduct a formal evaluation of the interfaces generated for systems of

multiple appliances. Some informal evaluations with prototypes of the flow-based interface
were performed during its design and those results were incorporated into the final design.

However, there has been no evaluation of the aggregate interfaces and I cannot be sure that

users will perform well with either type of interface. My goal is to allow an inexperienced

user to walk into my home theater room and be able to use the system, rather than wait for
me to set things up. It may also be interesting to compare the flow-based/aggregate interface

designs with the interfaces produced by today’s integrated interface products, such as the

Philips Pronto or Logitech Harmony universal remotes.

In the final usability study of the PUC interface it was noticed that when users failed they
often failed because a control was not where they expected it. When asked to perform a task,

the typical process was for users to navigate to the panel where they believed the function

was. If the function was not there, then users would begin a heuristic search of the rest of the

Chapter 11: Conclusion 191

interface looking for the function. Because users were not performing an exhaustive search, it

was quite common for them to open the panel that contained the function but not find the
function because they did not believe that the function would be on that panel. When users

were asked why they missed functions in this case, a common response was, “if it’s not there,

it’s not there.” This suggests to me that users might benefit from a searchable user interface,

where users can provide one or more keywords and view a list of results from the current in-
terface with controls for using the functions embedded in the search result interface. Some

tasks might be performed dramatically faster using this approach, assuming the desired con-

trol appeared near the top of the search results.

There are a number of issues with this approach however. The biggest is: what if the search
rarely returns the result that the user is looking for? In this case, the user may believe the

function does not exist. This concern does not worry me however, because the number of

functions in an interface is much lower than, for example, the number of pages on the web.

The interface search can be liberal about what it returns in its results and there is a fairly
good chance that the desired function will appear. Another worry is whether users can easily

specify a search query using a handheld device, where text entry is difficult and may be more

time-consuming than just searching the interface. This is a definite concern and I hope that

it can be addressed by creating query interfaces that can rely in part on selection from a list of
appliance-specific words. Another approach would be to leverage the consistency system. For

example, the user might open a previous interface, indicate the function they are looking for,

and then have the search engine return results in the current interface that are similar. Fi-

nally, another worry is the situation in which the user searches for a function that the
appliance does not have. For the consistency-based search, this problem is easy to address

because the knowledge base can inform the user that the current interface does not contain

any similar functions. For other forms of search, this is an issue that will need to be ad-

dressed.

There are also many potential benefits to a searchable user interface. For example, instead of

searching for a function the user could instead search for a task. If the system could recognize

the task and its steps, then it could perform separate searches for each of the task steps and

attempt to assemble an aggregate interface for the task based on these searches. Heuristics
based on the location of items in the specification might even allow multi-function appli-

ances, such as a combination VCR/DVD recorder, to produce grouped results for each of

the appliance’s main functions. For example, a “timed record” task search on the multi-

Chapter 11: Conclusion 192

function recorder might produce two results: one for recording a future show onto a VCR

tape and another for recording onto a DVD-R.

My dissertation focuses on generating interfaces, but there may some potential to use some

of these ideas to evaluate hand-designed user interfaces. For example, a manufacturer might

like to compare the hand-designed interface for a new appliance with previous products.

Given an abstract representation for these interfaces and information about their similarities,
it might be possible to build an evaluation process that would determine where and how the

PUC’s existing consistency rules would make changes to the new interface based on the pre-

vious products. A report based on this information might help the designers understand how

the new interface is inconsistent with the previous products and help them make improve-
ments. Other evaluations might examine how a PUC specification for an appliance differs

from its hand-designed interface, or identify areas of the interface structure that are particu-

larly deep or difficult to access because of dependencies.

The hurdle to using these techniques to evaluate a hand-designed interface is providing the
evaluation system with an abstract model of the interface that it can understand. It seems less

than ideal to ask the interface designer to provide this model, as it would require extra work

to produce, much of the knowledge needed is already stored implicitly in the hand-designed

interface, and it would require the interface designer to learn an abstract modeling language.
The last point is particularly important, as most interface designers are not programmers and

may not have the training to produce an adequate abstract model of their hand-designed in-

terface. Thus, it seems an important area of future work is developing techniques to infer

useful abstract interface models. Ideally, this model could be inferred from an existing con-
crete interface, but this seems unlikely to succeed because many design decisions that

influenced the final design may not be apparent from the final artifact. For example, imagine

a panel containing several controls. During the design process, the designer may have chosen

to remove a bounding rectangle that grouped a subset of the controls on the panel. While
this grouping may not have been necessary in this particular concrete interface, it might be

useful for the abstract model to contain information about this extra grouping for use in

other analyses. This suggests that it may be interesting to explore automatically inferring ab-

stract interface models from the interface design process.

An abstract model of a hand-designed interface might also enable an automated system to

modify hand-designed interfaces to support features that the PUC explored for automatically

generated interfaces, like aggregation and consistency. There are a number of challenges to

Chapter 11: Conclusion 193

building a system that automatically modifies existing interfaces. First, it will be important to

understand what information is needed about a hand-designed interface in order to make
appropriate modifications and how this differs from the information needed to automatically

generate a user interface. It is possible that the information needed to modify an interface is

smaller than that needed to automatically generate an interface, because a concrete interface

is already available to work from. For example, label information would not be needed in the
model because it is already contained in the interface. However, the modification algorithms

may also need extra information about the concrete interface, such as links that specify which

labels go with which controls. A second challenge is to understand how to modify an inter-

face in a way that is consistent with the original hand-design. For example, the interface
layout may be based on a grid which should be taken into account when making changes.

Thirdly, such a system needs to work with real interfaces that are implemented using current

interface toolkits, such as Java Swing or the .NET Framework. This may present many is-

sues. For example, how should an automatic modification system deal with custom controls
that are common in many existing interfaces? It would also be useful to understand if there

are any features that toolkits might include to help with automatic modification.

The implications of supporting consistency in hand-designed interfaces could be quite inter-

esting, especially for web applications. Today there are many competing web sites, such as
MySpace, Orkut, and Friendster, that support basically the same functionality with slightly

different user populations. With automatic modification to aggregate similar functionality

and ensure consistency, it might be possible to automatically create a mash-up of several

similar web sites that provides access to all of the data from each of these web sites through a
unified web interface. Understanding the pros and cons of this approach and finding applica-

tions that it would benefit is the subject of future work.

In this dissertation, I have explored two ways that automatically generated interfaces may

support features that would be impractical to include in hand-designed interfaces: consis-
tency and aggregation. An important area of future work is to find more areas where

automatic generation may provide benefits beyond those of hand-designed interfaces. One

area in particular that may be of significant value is the automatic generation of interfaces for

users with physical or cognitive disabilities. With a model of the user, the automatic interface
generator may be able to produce interfaces that are specifically designed to accommodate

the user’s disabilities. The high variance in disabilities between different users makes this

problem particularly challenging, both because a model describing the users capabilities will

Chapter 11: Conclusion 194

need to be quite broad and the rules necessary to generate an interface will need to take into

account a wide range of possibilities. Several researchers have recently started examining this
direction, but so far there are few results demonstrating success for a wide range of disabled

users.

11.5 Final Remarks

This dissertation has attempted to demonstrate the following thesis:

A system can automatically generate user interfaces on a wide variety of platforms

for remotely controlling appliances where the user’s performance is better than

with the manufacturer’s interfaces for the appliances.

My evaluations of the PUC system suggest that my interface generators can produce inter-
faces which are indeed faster than the manufacturers’ interfaces for today’s computerized

appliances.

Going forward, I believe the research described in this dissertation has implications for the

future of user interface design and research. For design, it suggests that automatic design
should be considered in products where interfaces may be constrained by external factors or

individual user customization may have substantial benefits. For research, it suggests that an

important direction for future work is developing new techniques that use automatic genera-

tion to create interfaces that are customized to each individual.

Chapter 11: Conclusion 195

Chapter 11: Conclusion 196

APPENDIX A

ASample VCR Specification

This appendix contains the full specification for the sample VCR example discussed in
Chapter 5.

<?xml version="1.0" encoding="utf-8"?>

<spec xmlns="http://www.cs.cmu.edu/~pebbles/puc" name="SimpleVCR" version="PUC/2.3"
 guid="6924EAF4-67E3-431a-BDB9-9FDCE83AC679">

 <labels>

 <label>Simple VCR</label>

 </labels>

 <groupings>

 <group name="Base">

 <state name="Power">

 <apply-type type-name="OnOffType"/>

 <labels>

 <label>Power</label>

 </labels>

 </state>

 <group name="PoweredItems">

 <active-if>

 <equals state="Base.Power">

 <constant value="true"/>

 </equals>

 </active-if>

 <group name="Status" is-a="status-icon-group">

 <state name="TapeIn" access="read-only" is-a="tape-in-status-indicator">

197

 <apply-type type-name="YesNoType"/>

 <labels>

 <label>Tape In</label>

 </labels>

 </state>

 <state name="TapeRecordable" access="read-only" is-a="tape-recordable-status-indicator">

 <apply-type type-name="YesNoType"/>

 <labels>

 <label>Tape Recordable</label>

 </labels>

 <active-if>

 <equals state="TapeIn">

 <constant value="true"/>

 </equals>

 </active-if>

 </state>

 </group>

 <group name="Controls">

 <labels>

 <label>Controls</label>

 </labels>

 <group name="PlayControls" is-a="media-controls">

 <active-if>

 <equals state="TapeIn">

 <constant value="true"/>

 </equals>

 </active-if>

 <labels>

 <label>Play Controls</label>

 <label>Play Mode</label>

 <text-to-speech text="Play Mode" recording="playmode.au"/>

 </labels>

 <state name="Mode">

 <type>

 <enumerated>

 <item-count>6</item-count>

 </enumerated>

 <value-labels>

 <map index="1">

 <labels>

 <label>Stop</label>

 </labels>

 </map>

 <map index="2">

 <labels>

 <label>Play</label>

 </labels>

 </map>

 <map index="3">

 <labels>

 <label>Pause</label>

 </labels>

 </map>

 <map index="4">

 <labels>

 <label>Rewind</label>

Appendix A: Sample VCR Specification 198

 </labels>

 </map>

 <map index="5">

 <labels>

 <label>Fast-Forward</label>

 </labels>

 </map>

 <map index="6">

 <labels>

 <label>Record</label>

 </labels>

 <active-if>

 <equals state="TapeRecordable">

 <constant value="true"/>

 </equals>

 </active-if>

 </map>

 </value-labels>

 </type>

 <labels>

 <label>Mode</label>

 </labels>

 </state>

 <command name="Eject">

 <labels>

 <label>Eject</label>

 </labels>

 </command>

 </group>

 <state name="Channel" is-a="channel">

 <type type-name="ChannelType">

 <integer>

 <min>

 <constant value="2"/>

 </min>

 <max>

 <constant value="128"/>

 </max>

 </integer>

 </type>

 <labels>

 <label>Channel</label>

 </labels>

 </state>

 <state name="TV/VCR">

 <type>

 <boolean/>

 <value-labels>

 <map index="true">

 <labels>

 <label>VCR</label>

 </labels>

 </map>

 <map index="false">

 <labels>

Appendix A: Sample VCR Specification 199

 <label>TV</label>

 </labels>

 </map>

 </value-labels>

 </type>

 <labels>

 <label>TV/VCR</label>

 </labels>

 </state>

 </group>

 <group name="TimedRecordings">

 <labels>

 <label>Timed Recordings</label>

 </labels>

 <list-group name="List">

 <labels>

 <label>Timed Recording</label>

 </labels>

 <state name="Channel">

 <apply-type type-name="ChannelType"/>

 <labels>

 <label>Channel</label>

 </labels>

 </state>

 <group name="StartTime" is-a="date-time">

 <labels>

 <label>Start Time</label>

 </labels>

 <state name="Date" is-a="date">

 <type>

 <string/>

 </type>

 <labels>

 <label>Date</label>

 </labels>

 </state>

 <state name="Time" is-a="time">

 <type>

 <string/>

 </type>

 <labels>

 <label>Time</label>

 </labels>

 </state>

 </group>

 <state name="Duration" is-a="time-duration">

 <type>

 <integer/>

 </type>

 <labels>

 <label>Duration</label>

 </labels>

 </state>

 </list-group>

 <group name="Commands" is-a="list-commands">

Appendix A: Sample VCR Specification 200

 <command name="Add" is-a="list-add">

 <labels>

 <label>Add</label>

 </labels>

 </command>

 <command name="Delete" is-a="list-remove">

 <labels>

 <label>Delete</label>

 </labels>

 </command>

 <command name="Clear" is-a="list-clear">

 <labels>

 <label>Clear All</label>

 <label>Clear</label>

 </labels>

 </command>

 </group>

 </group>

 </group>

 </group>

 </groupings>

 <ports>

 <inputs>

 <port name="VHF/UHF Antenna" content-type="multi-channel-av" physical-type="coax" />

 </inputs>

 <outputs>

 <port name="VHF/UHF Antenna" content-type="multi-channel-av" physical-type="coax" />

 <port-group name="Output" content-type="av">

 <port name="Video" content-type="video" physical-type="RCA" />

 <port-group name="Audio" content-type="component-audio">

 <port name="Right" content-type="component-audio-right" physical-type="RCA" />

 <port name="Left" content-type="component-audio-left" physical-type="RCA" />

 </port-group>

 </port-group>

 </outputs>

 </ports>

 <content-flow>

 <pass-through content-type="av">

 <active-if>

 <equals state="Base.Power">

 <constant value="false" />

 </equals>

 </active-if>

 <input-ports>

 <port name="VHF/UHF Antenna" />

 </input-ports>

 <output-ports>

 <port name="VHF/UHF Antenna" />

 </output-ports>

 </pass-through>

 <content-group>

 <active-if>

 <equals state="Base.Power">

 <constant value="true" />

 </equals>

 </active-if>

 <content-group>

Appendix A: Sample VCR Specification 201

 <active-if>

 <equals state="Base.PoweredItems.Controls.TV/VCR">

 <constant value="true" />

 </equals>

 </active-if>

 <source name="Tape" content-type="av">

 <active-if>

 <equals state="Base.PoweredItems.Status.TapeIn">

 <constant value="true" />

 </equals>

 <not>

 <or>

 <equals state="Base.PoweredItems.Controls.PlayControls.Mode">

 <constant value="10" />

 </equals>

 <equals state="Base.PoweredItems.Controls.PlayControls.Mode">

 <constant value="11" />

 </equals>

 </or>

 </not>

 </active-if>

 <output-ports>

 <port-group name="Output" />

 <port name="VHF/UHF Antenna" channel="3"/>

 </output-ports>

 <objects>

 <group name="Base.PoweredItems.Controls"/>

 </objects>

 </source>

 <pass-through content-type="av">

 <input-ports>

 <port name="VHF/UHF Antenna" />

 </input-ports>

 <processing>

 <block>

 <channel value="3"/>

 </block>

 </processing>

 <output-ports>

 <port name="VHF/UHF Antenna" />

 </output-ports>

 </pass-through>

 </content-group>

 <pass-through content-type="av">

 <active-if>

 <equals state="Base.PoweredItems.Controls.TV/VCR">

 <constant value="false" />

 </equals>

 </active-if>

 <input-ports>

 <port name="VHF/UHF Antenna" />

 </input-ports>

 <output-ports>

 <port name="VHF/UHF Antenna" />

 </output-ports>

 </pass-through>

 <recorder name="Tape" content-type="av">

 <active-if>

 <equals state="Base.PoweredItems.Status.TapeIn">

Appendix A: Sample VCR Specification 202

 <constant value="true"/>

 </equals>

 <equals state="Base.PoweredItems.Status.TapeRecordable">

 <constant value="true"/>

 </equals>

 <equals state="Base.PoweredItems.Controls.PlayControls.Mode">

 <constant value="6"/>

 </equals>

 </active-if>

 <input-ports>

 <port name="VHF/UHF Antenna">

 <channel state="Base.PoweredItems.Controls.Channel"/>

 </port>

 </input-ports>

 <objects>

 <group name="Base.PoweredItems.Controls"/>

 </objects>

 </recorder>

 </content-group>

 </content-flow>

</spec>

Appendix A: Sample VCR Specification 203

Appendix A: Sample VCR Specification 204

APPENDIX B

BSpecification Language Reference

This reference appendix is based on the online documentation for the specification language,
which can be found here:

http://www.pebbles.hcii.cmu.edu/puc/specification.html

The reference is broken up into three sections. The first is the XML schema that formally

defines the language’s formatting. The second lists all of the elements with a brief description

of their use and the third section describes each element in detail.

B.1 XML Schema
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://www.cs.cmu.edu/~pebbles/puc" elementFormDefault="qualified"

 xmlns="http://www.cs.cmu.edu/~pebbles/puc" xmlns:mstns="http://www.cs.cmu.edu/~pebbles/puc"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Top-Level Element -->

 <xs:element name="spec">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="labels" type="LabelDictionary" />

 <xs:element name="aggregate-spec" type="AggregateSpecTag" minOccurs="0" maxOccurs="1"/>

 <xs:element name="types" type="TypesGroup" minOccurs="0" maxOccurs="1"/>

 <xs:element name="groupings" type="MultipleGroups" />

 <xs:element name="ports" type="PortsGroup" minOccurs="0" maxOccurs="1"/>

 <xs:element name="content-flow" type="ContentFlowGroup" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

205

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="version" type="SpecVersionType" use="required"/>

 <xs:attribute name="guid" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:element>

 <!-- Attribute Types -->

 <xs:simpleType name="SpecVersionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="PUC/2.3" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="IgnoreType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="none" />

 <xs:enumeration value="parent" />

 <xs:enumeration value="all" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="AccessType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="read-only" />

 <xs:enumeration value="read-write" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="TypeNameType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="one" />

 <xs:enumeration value="multiple" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="PriorityType">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0" />

 <xs:maxInclusive value="10" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="TrueIfType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="any" />

 <xs:enumeration value="all" />

 <xs:enumeration value="none" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ItemsType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="all" />

 <xs:enumeration value="selected" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ContentTypeAttrib">

 <xs:restriction base="xs:string">

 <xs:enumeration value="audio" />

 <xs:enumeration value="component-audio"/>

 <xs:enumeration value="video" />

 <xs:enumeration value="component-video"/>

 <xs:enumeration value="av" />

 <xs:enumeration value="multi-channel-audio" />

 <xs:enumeration value="multi-channel-video" />

 <xs:enumeration value="multi-channel-av" />

Appendix B: Specification Language Reference 206

 </xs:restriction>

 </xs:simpleType>

 <!-- Elements -->

 <xs:complexType name="LabelDictionary">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="label" type="xs:string" minOccurs="1" />

 <xs:element name="ref-value" type="stateAttribNoContent" />

 <xs:element name="phonetic" type="xs:string" />

 <xs:element name="text-to-speech" type="TextToSpeechType" />

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="stateAttribNoContent">

 <xs:attribute name="state" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="TextToSpeechType">

 <xs:attribute name="text" type="xs:string" use="required" />

 <xs:attribute name="recording" type="xs:string" />

 </xs:complexType>

 <!-- Aggregate Spec Types -->

 <xs:complexType name="AggregateSpecTag">

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ApplianceReference">

 <xs:attribute name="appliance" type="xs:string" use="required"/>

 <xs:attribute name="object" type="xs:string" use="required"/>

 </xs:complexType>

 <!-- Types Section -->

 <xs:complexType name="TypesGroup">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="TypesGroupType" />

 <xs:element name="list-group" type="TypesListGroupType" />

 <xs:element name="union-group" type="TypesUnionGroupType" />

 <xs:element name="state" type="TypesStateType" />

 <xs:element name="command" type="TypesCommandType" />

 <xs:element name="explanation" type="TypesCommandType" />

 <xs:element name="type" type="TypesPrimitiveType" />

 </xs:choice>

 </xs:complexType>

 <xs:attributeGroup name="TypesObjectAttribs">

 <xs:attribute name="type-name" type="xs:string" use="required" />

 <xs:attribute name="is-a" type="xs:string" use="optional" />

 <xs:attribute name="priority" type="PriorityType" use="optional" />

 </xs:attributeGroup>

 <xs:complexType name="TypesGroupType">

 <xs:sequence>

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="CommandType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

Appendix B: Specification Language Reference 207

 <xs:attributeGroup ref="TypesObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="TypesUnionGroupType">

 <xs:sequence>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="CommandType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

 <xs:attributeGroup ref="TypesObjectAttribs" />

 <xs:attribute name="access" type="AccessType" />

 </xs:complexType>

 <xs:complexType name="TypesListGroupType">

 <xs:sequence>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:sequence>

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:element name="item-count" type="xs:integer" />

 </xs:choice>

 <xs:element name="selections" type="SelectionTypeType" minOccurs="0" maxOccurs="1" />

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="CommandType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

 <xs:attributeGroup ref="TypesObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="TypesCommandType">

 <xs:sequence>

 <xs:element name="labels" type="LabelDictionary" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="TypesObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="TypesStateType">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="type" type="PrimitiveType" />

 <xs:element name="apply-type" type="ApplyPrimitiveType" />

 </xs:choice>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1" />

 <xs:element name="required-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

Appendix B: Specification Language Reference 208

 <xs:element name="default-value" type="StaticOrReference"/>

 </xs:sequence>

 <xs:attributeGroup ref="TypesObjectAttribs" />

 <xs:attribute name="access" type="AccessType" use="optional" />

 </xs:complexType>

 <xs:complexType name="TypesPrimitiveType">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="binary" type="BinaryType" />

 <xs:element name="boolean" />

 <xs:element name="enumerated" type="EnumeratedType" />

 <xs:element name="fixedpt" type="FixedPtType" />

 <xs:element name="floatingpt" type="FloatingPtType" />

 <xs:element name="integer" type="IntegerType" />

 <xs:element name="list-selection" type="ListSelectionType" />

 <xs:element name="string" type="StringType" />

 </xs:choice>

 <xs:element name="value-labels" type="ValueLabelsType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="type-name" type="xs:string" use="required" />

 </xs:complexType>

 <!-- Groupings Section -->

 <xs:complexType name="MultipleGroups">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="GroupType">

 <xs:sequence>

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="ExplanationType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 </xs:complexType>

 <xs:attributeGroup name="ApplianceObjectAttribs">

 <xs:attribute name="name" type="xs:string" use="required" />

 <xs:attribute name="type-name" type="xs:string" use="optional" />

 <xs:attribute name="is-a" type="xs:string" use="optional" />

 <xs:attribute name="priority" type="PriorityType" use="optional" />

 </xs:attributeGroup>

 <xs:complexType name="UnionGroupType">

 <xs:sequence>

 <xs:element name="appliance-reference" type="ApplianceReference" minOccurs="0" maxOccurs="1"/>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType" />

Appendix B: Specification Language Reference 209

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="ExplanationType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 <xs:attribute name="access" type="AccessType" />

 </xs:complexType>

 <xs:complexType name="ListGroupType">

 <xs:sequence>

 <xs:element name="appliance-reference" type="ApplianceReference" minOccurs="0" maxOccurs="1"/>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:sequence>

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:element name="item-count" type="xs:integer" />

 </xs:choice>

 <xs:element name="selections" type="SelectionTypeType" minOccurs="0" maxOccurs="1" />

 <xs:element name="sortable" minOccurs="0" maxOccurs="1" />

 <xs:element name="group" type="GroupType" />

 <xs:element name="list-group" type="ListGroupType" />

 <xs:element name="union-group" type="UnionGroupType" />

 <xs:element name="state" type="StateType" />

 <xs:element name="command" type="CommandType" />

 <xs:element name="explanation" type="ExplanationType" />

 <xs:element name="apply-type" type="ObjectApplyType" />

 </xs:choice>

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="StaticOrReference">

 <xs:choice>

 <xs:element name="constant" type="valueAttribNoContent" />

 <xs:element name="ref-value" type="stateAttribNoContent" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="valueAttribNoContent">

 <xs:attribute name="value" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="SelectionTypeType">

 <xs:attribute name="number" type="TypeNameType" use="required" />

 <xs:attribute name="access" type="AccessType" use="optional" default="read-write" />

 </xs:complexType>

 <xs:complexType name="ObjectApplyType">

 <xs:attribute name="type-name" type="xs:string" use="required"/>

 <xs:attribute name="name" type="xs:string" use="optional" />

 <xs:attribute name="priority" type="PriorityType" use="optional" />

 <xs:attribute name="access" type="AccessType" use="optional" />

 </xs:complexType>

 <xs:complexType name="ModifiesStateType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

Appendix B: Specification Language Reference 210

 <xs:complexType name="CommandType">

 <xs:sequence>

 <xs:element name="appliance-reference" type="ApplianceReference" minOccurs="0" maxOccurs="1"/>

 <xs:element name="modifies-state" type="ModifiesStateType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="labels" type="LabelDictionary" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="ExplanationType">

 <xs:sequence>

 <xs:element name="appliance-reference" type="ApplianceReference" minOccurs="0" maxOccurs="1"/>

 <xs:element name="labels" type="LabelDictionary" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 </xs:complexType>

 <xs:complexType name="StateType">

 <xs:sequence>

 <xs:element name="appliance-reference" type="ApplianceReference" minOccurs="0" maxOccurs="1"/>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="type" type="PrimitiveType" />

 <xs:element name="apply-type" type="ApplyPrimitiveType" />

 </xs:choice>

 <xs:element name="labels" type="LabelDictionary" minOccurs="0" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 <xs:element name="required-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="default-value" type="StaticOrReference" minOccurs="0" maxOccurs="1"/>

 <xs:element name="completions-available" minOccurs="0" maxOccurs="1" />

 <xs:element name="server-side-error-correction" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="ApplianceObjectAttribs" />

 <xs:attribute name="access" type="AccessType" use="optional" />

 </xs:complexType>

 <xs:complexType name="ApplyPrimitiveType">

 <xs:attribute name="type-name" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="PrimitiveType">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="binary" type="BinaryType" />

 <xs:element name="boolean" />

 <xs:element name="enumerated" type="EnumeratedType" />

 <xs:element name="fixedpt" type="FixedPtType" />

 <xs:element name="floatingpt" type="FloatingPtType" />

 <xs:element name="integer" type="IntegerType" />

 <xs:element name="list-selection" type="ListSelectionType" />

 <xs:element name="string" type="StringType" />

 </xs:choice>

 <xs:element name="value-labels" type="ValueLabelsType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="type-name" type="xs:string" use="optional" />

 </xs:complexType>

 <xs:complexType name="ValueLabelsType">

 <xs:sequence>

 <xs:element name="map" type="MapType" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MapType">

Appendix B: Specification Language Reference 211

 <xs:all>

 <xs:element name="labels" type="LabelDictionary" minOccurs="1" maxOccurs="1" />

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 </xs:all>

 <xs:attribute name="index" type="xs:string" />

 </xs:complexType>

 <xs:complexType name="StringType">

 <xs:all>

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="average" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 </xs:all>

 </xs:complexType>

 <xs:complexType name="ListSelectionType">

 <xs:sequence>

 <xs:element name="active-if" type="ActiveIfType" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="list" type="xs:string" />

 </xs:complexType>

 <xs:complexType name="FloatingPtType">

 <xs:sequence>

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="specific-values-important" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="IntegerType">

 <xs:sequence>

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="incr" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="specific-values-important" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="FixedPtType">

 <xs:sequence>

 <xs:element name="pointpos" type="xs:integer" minOccurs="1" maxOccurs="1" />

 <xs:element name="min" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="max" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="incr" type="StaticOrReference" minOccurs="0" maxOccurs="1" />

 <xs:element name="specific-values-important" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EnumeratedType">

 <xs:sequence>

 <xs:element name="item-count" type="xs:integer" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="BinaryType">

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ActiveIfType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="or" type="DependencyContent" />

 <xs:element name="and" type="DependencyContent" />

 <xs:element name="not" type="NotType" />

 <xs:element name="apply-over" type="ApplyOverType" />

Appendix B: Specification Language Reference 212

 <xs:element name="defined" type="stateAttribNoContent" />

 <xs:element name="undefined" type="stateAttribNoContent" />

 <xs:element name="equals" type="ValueDependencyType" />

 <xs:element name="greaterthan" type="ValueDependencyType" />

 <xs:element name="lessthan" type="ValueDependencyType" />

 <xs:element name="true" />

 <xs:element name="false" />

 </xs:choice>

 <xs:attribute name="ignore" type="IgnoreType" use="optional" />

 </xs:complexType>

 <xs:complexType name="DependencyContent">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="or" type="DependencyContent" />

 <xs:element name="and" type="DependencyContent" />

 <xs:element name="not" type="NotType" />

 <xs:element name="apply-over" type="ApplyOverType" />

 <xs:element name="defined" type="stateAttribNoContent" />

 <xs:element name="undefined" type="stateAttribNoContent" />

 <xs:element name="equals" type="ValueDependencyType" />

 <xs:element name="greaterthan" type="ValueDependencyType" />

 <xs:element name="lessthan" type="ValueDependencyType" />

 <xs:element name="true" />

 <xs:element name="false" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ValueDependencyType">

 <xs:choice>

 <xs:element name="constant" type="valueAttribNoContent" />

 <xs:element name="ref-value" type="stateAttribNoContent" />

 </xs:choice>

 <xs:attribute name="state" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="NotType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="or" type="DependencyContent" />

 <xs:element name="and" type="DependencyContent" />

 <xs:element name="apply-over" type="ApplyOverType" />

 <xs:element name="defined" type="stateAttribNoContent" />

 <xs:element name="undefined" type="stateAttribNoContent" />

 <xs:element name="equals" type="ValueDependencyType" />

 <xs:element name="greaterthan" type="ValueDependencyType" />

 <xs:element name="lessthan" type="ValueDependencyType" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ApplyOverType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="or" type="DependencyContent" />

 <xs:element name="and" type="DependencyContent" />

 <xs:element name="not" type="NotType" />

 <xs:element name="apply-over" type="ApplyOverType" />

 <xs:element name="defined" type="stateAttribNoContent" />

 <xs:element name="undefined" type="stateAttribNoContent" />

 <xs:element name="equals" type="ValueDependencyType" />

 <xs:element name="greaterthan" type="ValueDependencyType" />

 <xs:element name="lessthan" type="ValueDependencyType" />

 </xs:choice>

 <xs:attribute name="list" type="xs:string" use="required" />

 <xs:attribute name="items" type="ItemsType" use="optional" />

 <xs:attribute name="true-if" type="TrueIfType" use="optional" />

Appendix B: Specification Language Reference 213

 </xs:complexType>

 <xs:complexType name="PortsGroup">

 <xs:sequence>

 <xs:element name="inputs" type="PortsType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="outputs" type="PortsType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="input-output" type="PortsType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PortsType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="port" type="PortType"/>

 <xs:element name="port-group" type="PortGroupType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="PortType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="content-type" type="ContentTypeAttrib" use="required"/>

 <xs:attribute name="physical-type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="PortGroupType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="port" type="PortType"/>

 <xs:element name="port-group" type="PortGroupType"/>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="content-type" type="ContentTypeAttrib" use="required"/>

 </xs:complexType>

 <xs:complexType name="ContentFlowGroup">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="content-group" type="ContentGroupType"/>

 <xs:element name="source" type="SourceType"/>

 <xs:element name="renderer" type="SinkType"/>

 <xs:element name="recorder" type="SinkType"/>

 <xs:element name="pass-through" type="PassThroughType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ContentGroupType">

 <xs:sequence>

 <xs:element name="active-if" type="ActiveIfType" minOccurs="1" maxOccurs="1"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="content-group" type="ContentGroupType"/>

 <xs:element name="source" type="SourceType"/>

 <xs:element name="renderer" type="SinkType"/>

 <xs:element name="recorder" type="SinkType"/>

 <xs:element name="pass-through" type="PassThroughType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SourceType">

 <xs:sequence>

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="output-ports" type="ContentPortType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="objects" type="ContentStatesType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="content-type" type="ContentTypeAttrib" use="required"/>

 </xs:complexType>

 <xs:complexType name="SinkType">

 <xs:sequence>

Appendix B: Specification Language Reference 214

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="input-ports" type="ContentPortType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="objects" type="ContentStatesType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="content-type" type="ContentTypeAttrib" use="required"/>

 </xs:complexType>

 <xs:complexType name="PassThroughType">

 <xs:sequence>

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="input-ports" type="ContentPortType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="processing" type="ProcessingType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="output-ports" type="ContentPortType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="objects" type="ContentStatesType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="optional"/>

 <xs:attribute name="content-type" type="ContentTypeAttrib" use="required"/>

 </xs:complexType>

 <xs:complexType name="ContentStatesType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="object" type="ContentObjectType"/>

 <xs:element name="group" type="ContentObjectType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ContentObjectType">

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="ContentPortType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="port" type="ContentPortParamType"/>

 <xs:element name="port-group" type="ContentPortParamType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ContentPortParamType">

 <xs:sequence>

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="channel" type="ChannelType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="objects" type="ContentStatesType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="channel" type="xs:string" use="optional"/>

 </xs:complexType>

 <xs:complexType name="ChannelType">

 <xs:attribute name="state" type="xs:string" use="optional"/>

 <xs:attribute name="value" type="xs:string" use="optional"/>

 </xs:complexType>

 <xs:complexType name="ProcessingType">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="block" type="BlockProcessingType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="BlockProcessingType">

 <xs:sequence>

 <xs:element name="active-if" type="DependencyContent" minOccurs="0" maxOccurs="1"/>

 <xs:element name="channel" type="ChannelType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="port" type="BlockPortType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="channel" type="xs:string" use="optional"/>

 <xs:attribute name="port" type="xs:string" use="optional"/>

Appendix B: Specification Language Reference 215

 </xs:complexType>

 <xs:complexType name="BlockPortType">

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

</xs:schema>

B.2 Element Index

Element Name Description

<active-if> Contains dependency information for an appliance object or a group
of objects. Defines an AND relation with all dependencies that are

contained within, unless they are grouped within a logical operation

block, such as <or>.

<and> Defines an AND relation with the dependencies that are contained

within.

<apply-over> Applies dependency relations to a list of data.

<apply-type> Allows the re-use of an existing type block within a specification.

<binary> Binary type - encompasses any kind of binary data, including images

and sounds. A Smart Template must be used to appropriately inter-
pret and render the binary data.

<block> Specifies that a channel should be blocked by an appliance that is pass-

ing through a multi-channel content stream.

<boolean> Boolean type - takes on true or false values.

<channel> Used in the content flow descriptions to define a particular channel

that content may flow over.

<command> Defines a command appliance object.

<completions-
available>

Specifies that this state variable has completions available from the
server.

<constant> Defines a constant value in any place where a reference would also be

accepted.

<content-flow> Defines the section that describes the internal content flows of an ap-
pliance.

Appendix B: Specification Language Reference 216

Element Name Description

<content-group> Groups two or more content flows for the purpose of specifying de-

pendencies that apply to both.

<default-value> Specifies a default value for a state variable. In an interface generator,

these values would be used when the UI needs to prompt the user for

a new value and could also be used to demo an offline interface.

<defined> Used in conjunction with the <active-if> element to define a de-

pendency that a state variable must have some value.

<enumerated> Enumerated type - Define the number of items in the enumeration

using the <item-count> tag. Labels can be defined within the <value-
labels> tag.

<equals> Used in conjunction with the <active-if> tag to define equals de-

pendency information for this state variable.

<explanation> Defines an explanation appliance object.

<false> False - for use in dependency expressions.

<fixedpt> Fixed Point type - for variables that take the form of decimal values

with a fixed decimal point location. Minimum, maximum and incre-

ment values can be defined using the <min>, <max>, and <incr> tags.

<floatingpt> Floating Point type - for variables that take the form of decimal values.

Minimum and maximum values can be defined using the <min> and

<max> tags.

<greaterthan> Used in conjunction with the <active-if> tag to define greaterthan
dependency information for this state variable.

<group> Used to define the nodes of the group tree.

<groupings> Defines the section that includes the group tree.

<incr> Defines the increment that an integer or fixed point variable must use.
This restriction means that the variable must have a value equals to its

minimum + n * increment, where n is an integer.

<inputs> Defines the section that describes the input ports of an appliance.

Appendix B: Specification Language Reference 217

Element Name Description

<input-output> Defines the section that describes the input-output ports on an appli-

ance.

<input-ports> Defines the input ports that are used by a pass-through, recorder or

renderer content flow.

<item-count> Used to denote how many values there are in an <enumerated> type or
a <list-group>. Labels for the items can be defined within the

<value-labels> tag.

<integer> Integer type - for variables that take the form of integers. Minimum,

maximum and increment values can be defined using the <min>,
<max>, and <incr> tags.

<label> Defines a label to be included within a label dictionary.

<labels> Defines a label dictionary for an appliance object or group. The <map>

tag specifies a dictionary to be associated with the specific value of a
variable.

<lessthan> Used in conjunction with the <active-if> tag to define lessthan de-

pendency information for this state variable.

<list-group> Specifies a special group that represents a list of data. The variables
contained in this group have multiple values for every item in the list.

<list-selection> List selection type - for variables that specify a selection in a list in a

different location within the spec than where that list is defined.

<map> Specifies a label dictionary for the specific value of a variable.

<min> Defines the minimum value a numeric variable may take.

<max> Defines the maximum value a numeric variable may take.

<modifies-state> Allows a command to specify that its invocation will modify a state

elsewhere in the specification.

<not> Negates the value of a dependency equation.

Appendix B: Specification Language Reference 218

Element Name Description

<or> Defines an OR relation with the dependencies that are contained

within.

<object> Defines an object that is related to a content flow.

<objects> Defines the section in which groups and objects related to a content

flow may be specified.

<outputs> Defines the section that describes the output ports of an appliance.

<output-ports> Defines the output ports that are used by a pass-through or source

content flow.

<pass-through> Defines a pass-through content flow.

<phonetic> Provides pronunciation information for speech interfaces that are

based upon this specification language. Many pronunciations may be

included in a label dictionary.

<pointpos> Defines the position of the decimal point for a fixed point type.

<port> Defines a port of an appliance.

<port-group> Defines a group of ports of an appliance.

<ports> Defines the section in which all ports of an appliance are described.

<processing> Defines any processing that an appliance does to a content stream in a
pass-through content flow, such as if a channel is blocked.

<recorder> Defines a content flow sink that records the stream sent to it.

<ref-value> Used to define a dynamic value for any parameter element of a state

variable type, except the <pointpos> tag. E.g. a ref-value can be used
to set the maximum of a numeric state variable to be the value of an-

other state variable. ref-value elements may also be used with

dependencies and in several other locations.

<renderer> Defines a content flow sink that renders the stream sent to it.

Appendix B: Specification Language Reference 219

Element Name Description

<required-if> Specifies the circumstances when a state variable's value is required. If

this element is omitted from a state variable's definition, then a value

is not required whenever the state variable is active. Otherwise, a value
is required whenever the contents of this element are satisfied.

<selections> Defines the number of selections allowed in a list and whether the user
is allowed to modify the selection.

<server-side-
error-correction>

Specifies that this state variable will error corrected on the server-side.

<sortable> Specifies that this list group has not natural order and may be arbitrar-

ily sorted by the user interface.

<source> Defines a source of content.

<spec> Every specification begins with this tag.

<specific-values-
important>

Defines that the specific values of a numeric type will be interesting to

the user, as opposed to the position of the value in the range.

<state> Defines a state variable appliance object.

<string> String type - for variables that take the form of strings.

<text-to-speech> Defines a text-to-speech entry to be included within a label dictionary.

<true> True - for use in dependency expressions.

<type> Describes the value space of a state variable (ex: Boolean, Integer,

etc...) and the labels that its values take.

<types> The first section of the specification in which authors may define

types that the re-use throughout a specification.

<undefined> Used in conjunction with the <active-if> element to define a de-

pendency that a state variable must not have any value.

<union-group> Specifies a special group in which only one of the children may have a

valid value.

<value-labels> Contains one or more <map> tags that provide label dictionaries for

specific values that the variable might have.

Appendix B: Specification Language Reference 220

B.3 Element Descriptions

<spec>

<spec name="Sample Specification" version="PUC/2.1"></spec>

Every specification begins with this element. The name specified in the name attrib-

ute is a machine-readable name for the parser. The contained <labels> element
specifies human-readable names for the appliance.

Placement:

First element of the spec after the required XML header (E.g. <?xml version="1.0"

encoding="UTF-8"?>)

Parameters:

• name - required The name of the appliance defined in this specification

• version - required The version of the specification language being used. Cur-

rent valid values are "PUC/2.0", "PUC/2.1", "PUC/2.2", and "PUC/2.3".

(This document describes PUC/2.3)

• guid – required A global identifier for this specification.

Must Contain:

<groupings>, <labels>, <types>, <ports>, <content-flow>

<types>

<types></types>

Contains snippets of specification that the author will reuse in the groupings section.

Placement:

Inside the <spec> element

May Contain:

<group>, <list-group>, <union-group>, <state>, <command>,

<explanation>, <type>

Appendix B: Specification Language Reference 221

<groupings>

<groupings></groupings>

Contains the entire group tree.

Placement:

Inside the <spec> element

May Contain:

<group>, <list-group>, <union-group>

<group>

<group name="GroupA" priority="10"></group>

Defines the nodes of the group tree.

Group nodes may be assigned a label dictionary with the <labels> tag. Group nodes
may also specify dependencies for all their members using the <active-if> tag. These

dependencies are applied to the rest of the member's dependencies with an AND

logical operation.

Each group has a unique name that is its local name concatenated with the names of
all its parent groups.

Placement:

Inside the <groupings>, <group>, <list-group>, <types>, or <union-group>

elements

Parameters:

• name - required The local name of this group.

• type-name - required if within types section, optional otherwise, defines a type
with the given name

• is-a - The Smart Template that represents this group and its children.

• priority - The priority this group should be assigned relative to other objects

in its parent group.

Appendix B: Specification Language Reference 222

May Contain:

<labels>, <active-if>, <state>, <command>, <explanation>, <group>,

<list-group>, <union-group>

<list-group>

<list-group name="ListGroupA" priority="10"></list-group>

Defines a special node of the group tree that represents a list.

A list group has the all the same qualities of a regular group, but also may contain
some extra elements for describing the features of the list.

A list group automatically creates two states within itself. The "Length" state stores

the current length of the list. If this state has an undefined value, then there are no

items in the list. The "Selection" state stores the current selection(s). If multiple se-
lections are allowed, then "Selection" is treated like another list-group, allowing list

operators like <apply-over> to be applied to it.

Three elements are provided, <item-count>, <min>, and <max>, to allow the speci-

fication writer to pre-specify constraints on the size of the list.

Placement:

Inside the <groupings>, <group>, <list-group>, <types> or <union-group>
elements

Parameters:

• name - required The local name of this group.

• type-name - required if within types section, optional otherwise, defines a type
with the given name

• is-a - The Smart Template that represents this group and its children.

• priority - The priority this group should be assigned relative to other objects

in its parent group.

May Contain:

Appendix B: Specification Language Reference 223

<labels>, <active-if>, <state>, <command>, <explanation>, <group>,

<list-group>, <union-group>, <selections>, <sortable>, <item-count>,
<min>, <max>

<union-group>

<union-group name="UnionGroupA" access="read-only"></union-group>

Defines a special node of the group tree that represents a union.

A union group has the all the same qualities of a regular group. It does not contain

any extra elements for describing the union.

The union group automatically creates one state named "ChildUsed", which defines
the active child variable/group. The access parameter of this state is defined by the

access attribute of the union group element.

Placement:

Inside the <groupings>, <group>, <list-group>, <types> or <union-group>

elements

Parameters:

• name - required The local name of this group.

• type-name - required if within types section, optional otherwise, defines a type

with the given name

• access - Defines how users interact with the ChildUsed variable. Possible val-

ues are read-only and read-write.

• is-a - The Smart Template that represents this group and its children.

• priority - The priority this group should be assigned relative to other objects
in its parent group.

May Contain:

<labels>, <active-if>, <state>, <command>, <explanation>, <group>,

<list-group>, <union-group>

Appendix B: Specification Language Reference 224

<selections>

<selections number="one" access="read-only" />

Defines the number of selections available in a list and whether or not a user may

change the current selection(s).

Placement:

Inside the <list-group> element

Parameters:

• number - required The number of allowed selections. Possible values are one
and multiple.

• access - Defines how users interact with the ChildUsed variable. Possible val-
ues are read-only and read-write.

<sortable>

<sortable/>

Specifies that this list-group has not natural order and can be arbitrarily sorted by the

user interface.

Placement:

Inside the <list-group> element

<state>

<state name="StateName" access="read-write"
 priority="10"></state>

Defines a state variable appliance object.

Placement:

Inside <group>, <list-group>, <types> or <union-group>

Parameters:

• name - required The name of the state variable.

Appendix B: Specification Language Reference 225

• type-name - required if within types section, optional otherwise, defines a type
with the given name

• priority - The priority this state should be assigned relative to other objects in

the same group.

• is-a - The Smart Template that represents this group and its children.

• access - Defines how users interact with the ChildUsed variable. Possible val-
ues are read-only and read-write.

May Contain:

<active-if>, <apply-type>, <completions-available>, <default-value>,

<labels>, <required-if>, <server-side-error-correction>, <type>

<command>

<command name="CommandName" priority="10"></command>

Defines a command appliance object.

Placement:

Inside <group>, <list-group>, <types>, or <union-group>

Parameters:

• name - required The name of the command.

• type-name - required if within types section, optional otherwise, defines a type

with the given name

• priority - The priority this state should be assigned relative to other objects in

the same group.

May Contain:

<active-if>, <labels>, <modifies-state>

Appendix B: Specification Language Reference 226

<modifies-state>

<modifies-state state=”Base.Power”/>

Specifies that this command will modify a state in this specification. This may cause

the interface generator to appropriately display changes to the specified state variable

following an invocation of this command.

Placement:

Inside the the <command> element.

Parameters:

• state – required The name of the state that will be modified.

<explanation>

<explanation name="ExplanationName" priority="10"></explanation>

Defines an explanation appliance object. The labels block, which is required for an

explanation object, defines the text that will be used for the explanation.

Placement:

Inside <group>, <list-group>, <types>, or <union-group>

Parameters:

• name - required The name of the explanation.

• type-name - required if within types section, optional otherwise, defines a type

with the given name

• priority - The priority this state should be assigned relative to other objects in

the same group.

May Contain:

<active-if>, <labels>

Appendix B: Specification Language Reference 227

<type>

<type name="TypeName"></type>

Describes the value space of a state variable (ex: Boolean, Integer, etc...) and the la-

bels that its values take.

Placement:

Inside the <state> and <types> tag

Parameters:

• type-name - The name of the type object. Required if this element is con-
tained in a types block.

May Contain:

<binary>, <boolean>, <enumerated>, <fixedpt>, <floatingpt>, <integer>,

<list-selection>, <string>, <value-labels>

<apply-type>

<apply-type name="TypeName"/>

Allows the re-use of an existing type block within a specification. Using this element

is exactly the same as cutting and pasting the type block. No data will be shared with
other states or groups that apply the same type. The type must have been declared

earlier in the specification document.

Placement:

Inside a <state>, <group>, <list-group>, or <union-group> element

Parameters:

• type-name - required The name of the appliance object to reference.

• name - optional if this element is not inside a state element.

• priority - optional if this element is not inside a state element.

Appendix B: Specification Language Reference 228

• access - optional if this element is not inside a state element and the type be-
ing applied is a state variable or a union-group.

<default-value>

<default-value></default-value>

Specifies a default value for a state variable. In an interface generator, these values

would be used when the UI needs to prompt the user for a new value and could also

be used for demonstrational purposes.

Placement:

Inside the <state> element

May Contain:

<constant>, <ref-value>

<required-if>

<required-if></required-if>

Contains dependency information that defines when the value of a state variable is
required for successful operation of the appliance. The content of this element is the

same as the <active-if> element. If this element is not specified, then the object

will not be required. To ensure that an object is required, create this element con-

taining a <true> element.

Placement:

Inside the <state> element

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,
<lessthan>, <not>, <or>, <true>, <undefined>

<binary/>

<binary/>

Appendix B: Specification Language Reference 229

Binary type - contains any kind of a binary data, such as sounds or images. A Smart

Template must be used with this type to ensure proper interpretation and rendering.

This type may contain arbitrary tags that act are parameters that particular Smart

Templates will recognize.

Placement:

Inside the <type> element

May Contain:

Any arbitrary tag.

<boolean/>

<boolean/>

Boolean type - takes on true or false values.

Placement:

Inside the <type> element

<enumerated>

<enumerated></enumerated>

Enumerated type - Define the number of items this composite type contains using

the <item-count> element. Note: the <value-labels> element must contain
<map> elements that map each of the enumerated values with a label. So if there are

5 enumerated values in a particular enumerated type (denoted by <item-

count>5<item-count/>) the value-labels section must contain 5 different map-

pings of values to labels.

Enumerated type values are treated as integers that range between 1 and the number

of items in the type. Zero is not a valid value for an enumerated type. This is impor-

tant when you specify an index to the <map> tag;

Placement:

Inside the <type> element

Appendix B: Specification Language Reference 230

May Contain:

<item-count>

<item-count>

<item-count></item-count>

Used to denote how many enumerated values there are in an <enumerated> type or

a fixed number of items in a <list-group>. Labels for the items can be defined

within the <value-labels> tag.

Placement:

Inside the <enumerated> and <list-group> elements

<fixedpt>

<fixedpt></fixedpt>

Fixed Point type - for variables that take the form of decimal values with a fixed
decimal point. The location of the fixed decimal point is specified with the

<pointpos> element. Minimum, maximum, and increment values can be defined

using the <min>, <max>, and <incr> tags.

Placement:

Inside the <type> element

May Contain:

<pointpos>, <incr>, <max>, <min>

<pointpos>

<pointpos></pointpos>

Defines the position of the decimal point for a fixed point type.

Placement:

Inside the <fixedpt> tag

Appendix B: Specification Language Reference 231

<floatingpt>

<floatingpt></floatingpt>

Floating Point type - for variables that take the form of decimal values. Minimum

and maximum values can be defined using the <min> and <max> tags.

Placement:

Inside the <type> element

May Contain:

<max>, <min>

<integer>

<integer></integer>

Integer type - for variables that take the form of integers. Minimum, maximum, and
increment values can be defined using the <min>, <max>, and <incr> tags.

Placement:

Inside the <type> element

May Contain:

<incr>, <max>, <min>, <specific-values-important>

<specific-values-important/>

<specific-values-important/>

Defines that the user will want to modify this integer type to any of the specific val-

ues that is supports. Thus, a slider or other control that enables only imprecise

changes of the value should not be used.

Placement:

Inside the <integer> element.

Appendix B: Specification Language Reference 232

<list-selection>

<list-selection></list-selection>

List selection type - for variables that represent and independent selection within a

list elsewhere in the specification. This is particular useful in situations where the

some aspect of the appliance is configured as a list, and then an item from this list
must be selected often during normal operation (e.g. the channels on a VCR or TV).

Placement:

Inside the <type> element

May Contain:

<active-if>

<incr> ... <max> ... <min>

<incr></incr>
<max></max>
<min></min>

Describe minimum, maximum and increment values that the variable may take.

The increment may not be defined for the floating point type.

Placement:

Inside the <fixedpt>, <floatingpt> (except for incr), <integer>, <list-

group> (except for incr) and <string> elements.

May Contain:

<constant>, <ref-value>

<string>

<string></string>

String type - for variables that take the form of strings. You can specify parameters

about the length of the string to help out the interface generators.

Placement:

Appendix B: Specification Language Reference 233

Inside the <type> element

May Contain:

<min>, <max>, <average>

<average>

<average></average>

Describe the average length of a string.

Placement:

Inside the <string> element

May Contain:

<constant>, <ref-value>

<value-labels>

<value-labels></value-labels>

Contains one or more <map> tags that provide label dictionaries for specific values
that the variable might have.

Placement:

Inside the <type> element

May Contain:

<map>

<map>

<map index="value"></map>

Specifies a label dictionary for the specific value of a variable (specified by the index
parameter).

Certain values of a variable can also be enabled based on dependency information

which is specified in the enclosed <active-if> element.

Appendix B: Specification Language Reference 234

Placement:

Inside the <value-labels> element.

Parameters:

• index - required The value to associate this dictionary with

May Contain:

<labels>, <active-if>

<labels>

<labels></labels>

Defines a label dictionary for an appliance object or group.

Placement:

Inside the <command>, <explanation>, <group>, <list-group>, <union-

group>, <state>, <spec>, or <map> elements.

May Contain:

<label>, <ref-value>, <phonetic>, <text-to-speech>

<text-to-speech>

<text-to-speech text="<whisper>mute</whisper>"
 recording="mute.au"/>

Defines a text-to-speech entry to be included within a label dictionary. The text pa-
rameter may contain embedded SABLE markup tags.

Placement:

Inside the <labels> element

Parameters:

• text - required the text to be spoken. May contain embedded SABLE tags.

• recording - a recording of the text, if available

Appendix B: Specification Language Reference 235

http://www.bell-labs.com/project/tts/sable.html
http://www.bell-labs.com/project/tts/sable.html

<label>

<label></label>

Defines a label to be included within a label dictionary.

Placement:

Inside the <labels> element

May Contain:

string

<phonetic>

<phonetic></phonetic>

Defines a pronunciation to be included within a label dictionary.

Placement:

Inside the <labels> element

May Contain:

string of phonemes using the arpabet representation

<active-if>

<active-if ignore="all" | "parent"></active-if>

Contains dependency information for an appliance object or group of objects. De-

fines an and relation with all dependencies that are contained within, unless they are
grouped within a logical operation block, such as <and> or <or> tags.

Placement:

Inside the <command>, <explanation>, <group>, <list-group>, <union-

group>, <map>, <list-selection>, or <state> elements.

Parameters:

Appendix B: Specification Language Reference 236

http://www.billnet.org/phon/arpabet.html

• ignore - stop dependency inheritance through the group tree. The possible
options are to omit the option, parent, and all

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,

<lessthan>, <not>, <or>, <true>, <undefined>

<apply-over>

<apply-over list="SomeList" items="all" true-if="any">
</apply-over>

Used to apply dependency information to lists of information.

There are three different ways that dependencies can be applied. The apply-over
block can be true if the dependencies are true for any item in the list, if they are true

for all items in the list, or if they are true for no items in the list. The particular

choice is chosen with the true-if attribute.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• list - required The name of the list group that the dependencies are applied
to it.

• true-if - Sets when the apply-over returns true. The possible options are any,
all, or none.

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,

<lessthan>, <not>, <or>, <true>, <undefined>

<defined>

<defined state="SomeState"/>

Used in conjunction with the <active-if> tag to define that some appliance object
depends on a state variable having a defined value.

Appendix B: Specification Language Reference 237

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• state - required The name of the state that is depended upon

<undefined>

<undefined state="SomeState"/>

Used in conjunction with the <active-if> tag to define that some appliance object

depends on a state variable not having a defined value.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• state - required The name of the state that is depended upon

<equals>

<equals state="SomeState">value</equals>

Used in conjunction with the <active-if> tag to define equals dependency infor-

mation for this state variable.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• state - required The name of the state that is depended upon

May Contain:

<ref-value>, <constant>

Appendix B: Specification Language Reference 238

<greaterthan>

<greaterthan state="SomeState">value</greaterthan>

Used in conjunction with the <active-if> tag to define greater-than dependency in-

formation for this state variable.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• state - required The name of the state that is depended upon

May Contain:

<ref-value>, <constant>

<lessthan>

<lessthan state="SomeState">value</lessthan>

Used in conjunction with the <active-if> tag to define less-than dependency informa-

tion for this state variable.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

Parameters:

• state - required The name of the state that is depended upon

May Contain:

<ref-value>, <constant>

Appendix B: Specification Language Reference 239

<and>

<and></and>

Defines an and relation with the dependencies that are contained within.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,

<lessthan>, <not>, <or>, <true>, <undefined>

<or>

<or></or>

Defines an or relation with the dependencies that are contained within.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,
<lessthan>, <not>, <or>, <true>, <undefined>

<not>

<not></not>

Defines a not relation with the dependencies that are contained within.

Placement:

Inside the <active-if>, <and>, <apply-over>, or <or> elements.

May Contain:

<and>, <apply-over>, <defined>, <equals>, <false>, <greaterthan>,

<lessthan>, <not>, <or>, <true>, <undefined>

Appendix B: Specification Language Reference 240

<true>

<true/>

Specifies a true value for a dependency formula.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

<false>

<false/>

Specifies a false value for a dependency formula.

Placement:

Inside the <active-if>, <and>, <apply-over>, <not>, or <or> elements.

<ref-value>

<ref-value state="StateName"/>

Used to define a numeric value for any of the parameter elements, except the

<pointpos> tag, that depends on the value of a numeric state variable. E.g. a ref-
value can be used to set the maximum of a numeric state variable to be the value of

another state variable.

Placement:

Inside the <max>, <min>, <average>, and <incr> elements.

Parameters:

• state - required The name of a state variable with a numeric type

Appendix B: Specification Language Reference 241

<constant>

<constant value="12">

Used to define a constant value in any location where a reference would also be ac-

cepted (i.e. the <ref-value> element).

Placement:

Inside the <max>, <min>, <average>, and <incr> elements.

Parameters:

• value - required The constant value.

<completions-available>

<completions-available>

Used to specify that completions are available for this state variable.

Placement:

Inside <state>

<server-side-error-corrections>

<server-side-error-corrections>

Used to specify that this variable will be automatically error corrected on the server-

side.

Placement:

Inside <state>

Appendix B: Specification Language Reference 242

<ports>

<ports></ports>

Defines the section in which the physical ports of the appliance are described.

Placement:

Inside the <spec> element.

May Contain:

<inputs>, <input-output>, <outputs>

<inputs>

<inputs></inputs>

Defines the physical input ports of an appliance.

Placement:

Inside the <ports> element.

May Contain:

<port>, <port-group>

<outputs>

<outputs></outputs>

Defines the physical output ports of an appliance.

Placement:

Inside the <ports> element.

May Contain:

<port>, <port-group>

Appendix B: Specification Language Reference 243

<input-output>

<input-output></input-output>

Defines any physical ports of an appliance which can simultaneously be both inputs

and outputs.

Placement:

Inside the <ports> element.

May Contain:

<port>, <port-group>

<port-group>

<port-group name=”Output” content-type=”av”></port-group>

Defines a group of physical ports. This construct is useful for grouping ports that are
activated simultaneously. Referencing the name given to a port group in a content

flow is shorthand for referencing all of its contained ports.

Placement:

Inside the <inputs>, <input-output>, <outputs>, or <port-group> elements.

Parameters:

• name – required The name for this port group. Must be unique among other

names for ports and port groups at this level.

• content-type – required The content type that is carried over the ports con-

tained in this group.

May Contain:

<port>, <port-group>

Appendix B: Specification Language Reference 244

<port>

<port name=”Right” content-type=”component-audio-right”
 physical-type=”RCA”/>

<port name=”Input 1.Video” channel=”4”></port>

This element has two different uses. The first use, when within the <ports> block,
defines a physical port of the appliance. The full name of this port is similar to the

naming of appliance objects and has the form <groupname>.<groupname>.<name>

where the port group names are from port groups that contain this port. In this use,

the port element may not contain any other elements or content.

The second use, when within the <content-flow> block, defines a port or port

group across which content is being accepted as an input or produced as an output.

In this use, the port element may contain several elements. In this use, the name

must reference a complete, unique port name defined in the ports block.

Placement:

First use: inside the <inputs>, <input-output>, <outputs>, or <port-group>
elements.

Second use: inside the <input-ports> or <output-ports> elements.

Parameters:

• name – required The name for this port group. Must be unique among other

names for ports and port groups at this level.

• content-type – required The content type that is carried over the ports con-

tained in this group.

• physical-type – required The type of the physical port on the appliance. E.g.
RCA, HDMI, VGA, etc.

• channel – Only available in the second use of this element. Defines the chan-
nel to be used from a multi-channel stream.

May Contain:

Second use only: <active-if>, <channel>, <objects>

Appendix B: Specification Language Reference 245

<content-flow>

<content-flow></content-flow>

Defines the section in which the internal content flows of an appliance are described.

Placement:

Inside the <spec> element.

May Contain:

<content-group>, <source>, <pass-through>, <recorder>, <renderer>

<content-group>

<content-group></content-group>

Defines a group of content flows, for the purpose of defining some dependencies that

apply to all of the content flows in the group.

Placement:

Inside the <content-flow> or <content-group> elements.

May Contain:

<active-if>, <content-group>, <source>, <pass-through>, <recorder>,
<renderer>

<source>

<source name=”Tape” content-type=”av”></source>

Describes a source of content within an appliance.

Placement:

Inside the <content-flow> or <content-group> elements.

Parameters:

• name – required A name for the source.

• content-type – required The type of content produced by this source.

Appendix B: Specification Language Reference 246

May Contain:

<active-if>, <output-ports>, <objects>

<pass-through>

<pass-through content-type=”av”></pass-through>

Describes a pass through for content on this appliance.

Placement:

Inside the <content-flow> or <content-group> elements.

Parameters:

• content-type – required The type of content produced by this source.

May Contain:

<active-if>, <input-ports>, <processing>, <output-ports>, <objects>

<recorder>

<recorder name=”Tape” content-type=”av”></recorder>

Describes a content sink that records a content stream received as an input.

Placement:

Inside the <content-flow> or <content-group> elements.

Parameters:

• name – required A name for the source.

• content-type – required The type of content produced by this source.

May Contain:

<active-if>, <input-ports>, <objects>

Appendix B: Specification Language Reference 247

<renderer>

<renderer name=”Screen” content-type=”video”></renderer>

Describes a content sink that renders a content stream received as an input for the

user.

Placement:

Inside the <content-flow> or <content-group> elements.

Parameters:

• name – required A name for the source.

• content-type – required The type of content produced by this source.

May Contain:

<active-if>, <input-ports>, <objects>

<input-ports>

<input-ports></input-ports>

Describes the input ports that may be used by a content flow.

Placement:

Inside the <pass-through>, <recorder>, and <renderer> elements.

May Contain:

<port>

<output-ports>

<output-ports></output-ports>

Describes the output ports that may be used by a content flow.

Placement:

Inside the <pass-through> or <source> elements.

Appendix B: Specification Language Reference 248

May Contain:

<port>

<processing>

<processing></processing>

Defines processing that may be done to a content stream as it is being passed through

an appliance.

Placement:

Inside the <pass-through> element.

May Contain:

<block>

<channel>

<channel value=”4”/>

<channel state=”Base.Controls.Channel”/>

Defines the channel of a multi-channel content stream to be modified by the appli-

ance. Must have one of the two parameter options.

Placement:

Inside the <port> element.

Parameters:

• value – Defines a state value for the channel.

• state – Defines a state variable or group that will contain the value of the
channel to be operated on.

Appendix B: Specification Language Reference 249

<block>

<block channel=”4”></block>

Defines the block operation that may be applied by an appliance to one or more

channels of a multi-channel content stream. When this operation is active, the chan-

nel(s) received from the input are not passed through the output.

Placement:

In the <processing> element.

Parameters:

• channel – Defines the channel to block

May Contain:

<active-if>, <channel>

<objects>

<objects></objects>

Defines a set of groups and appliance objects that are related to the control of this

content flow.

Placement:

Inside the <pass-through>, <recorder>, <renderer>, and <port> elements.

May Contain:

<group>, <object>

Appendix B: Specification Language Reference 250

<object/>

<object name=”Base.Power”/>

Defines an object that is related to the control of a content flow. This name must re-

solve to an appliance object within the specification (and not a group).

Placement:

Inside the <objects> element.

Parameters:

• name – required The name of an appliance object within the specification.

Appendix B: Specification Language Reference 251

Appendix B: Specification Language Reference 252

APPENDIX C

COther PUC XML Language Schemas

The PUC also uses XML as its communication protocol, to store mappings in its knowledge
base, and to describe systems of multiple appliances. Each of these XML languages is de-

scribed in this appendix.

C.1 Communication Protocol Schema
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://www.cs.cmu.edu/~pebbles/puc/puc-protocol"
elementFormDefault="qualified"

 xmlns="http://www.cs.cmu.edu/~pebbles/puc/puc-protocol"
xmlns:mstns="http://www.cs.cmu.edu/~pebbles/puc/puc-protocol"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!--

 The PUC protocol consists of an eight-byte header, XML content, and

 optional format-independent binary content.

 The header is divided into two four-byte chunks. The first chunk is an

 integer giving the full length of the message (not including the header).

 The second chunk is an integer giving the length of the XML portion of

 the message. Both of these integers are sent using the network byte

 order.

 The XML content is described by this Schema.

 The binary content may be in any arbitrary format. The format is usually

 defined within an element of the accompanying XML message.

 -->

253

 <xs:element name="message">

 <xs:complexType>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="state-change-notification" type="PUCDataType" />

 <xs:element name="state-change-request" type="PUCDataType" />

 <xs:element name="binary-state-change-notification" type="BinaryStateChangeNotifyType" />

 <xs:element name="state-value-request" type="StateValueRequestType" />

 <xs:element name="command-invoke-request" type="CommandInvokeRequestType" />

 <xs:element name="spec-request" />

 <xs:element name="device-spec" type="DeviceSpecType" />

 <xs:element name="full-state-request" />

 <xs:element name="server-information-request" />

 <xs:element name="server-information" type="ServerInformationType" />

 <xs:element name="alert-information" type="xs:string" />

 <xs:element name="register-device" type="DeviceType" />

 <xs:element name="unregister-device" type="UnregisterDeviceType" />

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="BinaryStateChangeNotifyType">

 <xs:sequence>

 <xs:element name="state" type="StateWithContentAttribType" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="StateWithContentAttribType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="content-type" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="StateValueRequestType">

 <xs:sequence>

 <xs:element name="state" type="xs:string" minOccurs="1" maxOccurs="1" />

 <xs:any minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CommandInvokeRequestType">

 <xs:sequence>

 <xs:element name="command" type="xs:string" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DeviceSpecType">

 <xs:sequence>

 <xs:element name="spec" type="xs:string" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ServerInformationType">

 <xs:sequence>

 <xs:element name="server-name" type="xs:string" minOccurs="1" maxOccurs="1" />

 <xs:element name="device" type="DeviceType" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DeviceType">

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1" />

 <xs:element name="port" type="xs:integer" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

Appendix C: Other PUC XML Language Schemas 254

 <xs:complexType name="UnregisterDeviceType">

 <xs:sequence>

 <xs:element name="port" type="xs:integer" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PUCDataType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:sequence>

 <xs:element name="state" type="xs:string" />

 <xs:element name="value" type="OldValueType" />

 </xs:sequence>

 <xs:element name="data" type="ListDataType" />

 <xs:element name="change" type="ChangeDataType" />

 <xs:element name="insert" type="InsertType" />

 <xs:element name="delete" type="DeleteType" />

 <xs:element name="replace" type="ReplaceType" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="OldValueType" mixed="true">

 <xs:sequence>

 <xs:element name="undefined" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="NewValueType" mixed="true">

 <xs:sequence>

 <xs:element name="undefined" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="state" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="AnyListContentType">

 <xs:choice>

 <xs:element name="data" type="ListDataType" />

 <xs:element name="change" type="ChangeDataType" />

 <xs:element name="insert" type="InsertType" />

 <xs:element name="delete" type="DeleteType" />

 <xs:element name="replace" type="ReplaceType" />

 <xs:sequence>

 <xs:element name="value" type="NewValueType" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="AfterChangeOpListType">

 <xs:choice>

 <xs:element name="data" type="ListDataType" />

 <xs:sequence>

 <xs:element name="value" type="NewValueType" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ListDataType">

 <xs:sequence>

 <xs:element name="el" type="AfterChangeOpListType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="state" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="ChangeDataType">

 <xs:sequence>

 <xs:element name="el" type="AnyListContentType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

Appendix C: Other PUC XML Language Schemas 255

 <xs:attribute name="state" type="xs:string" use="required" />

 <xs:attribute name="index" type="xs:integer" use="required" />

 </xs:complexType>

 <xs:complexType name="DeleteType">

 <xs:attribute name="state" type="xs:string" use="required" />

 <xs:attribute name="begin" type="xs:integer" use="required" />

 <xs:attribute name="length" type="xs:integer" use="required" />

 </xs:complexType>

 <xs:complexType name="InsertType">

 <xs:sequence>

 <xs:element name="el" type="AfterChangeOpListType" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="state" type="xs:string" use="required" />

 <xs:attribute name="after" type="xs:integer" use="required" />

 </xs:complexType>

 <xs:complexType name="ReplaceType">

 <xs:sequence>

 <xs:element name="el" type="AfterChangeOpListType" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="state" type="xs:string" use="required" />

 <xs:attribute name="begin" type="xs:integer" use="required" />

 <xs:attribute name="length" type="xs:integer" use="required" />

 </xs:complexType>

</xs:schema>

C.2 Knowledge Base Schema
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://www.cs.cmu.edu/~pebbles/puc-kb" elementFormDefault="qualified"

 xmlns="http://www.cs.cmu.edu/~pebbles/puc-kb" xmlns:mstns="http://www.cs.cmu.edu/~pebbles/puc-kb"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Top-Level Element -->

 <xs:element name="puc-knowledgebase">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="spec-store-table" type="SpecStoreTableType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="spec-map" type="SpecMapType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- Attribute Types -->

 <xs:simpleType name="WrapAttributeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="allowed"/>

 <xs:enumeration value="not-allowed"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="IndexAttributeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="1-indexed"/>

 <xs:enumeration value="0-indexed"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="SourceAttributeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="manual"/>

 <xs:enumeration value="regular-automatch"/>

 <xs:enumeration value="transitive-automatch"/>

Appendix C: Other PUC XML Language Schemas 256

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ConfidenceType">

 <xs:restriction base="xs:float">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="SimilarityAttributeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="sparse"/>

 <xs:enumeration value="branch"/>

 <xs:enumeration value="significant"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="CostAttribType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="equivalent"/>

 <xs:enumeration value="fully-contained"/>

 <xs:enumeration value="overlapping"/>

 <xs:enumeration value="no-overlap"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="MapTypeAttributeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="function"/>

 <xs:enumeration value="organization"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- Spec Store Table Types -->

 <xs:complexType name="SpecStoreTableType">

 <xs:sequence>

 <xs:element name="spec" type="SpecType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SpecType">

 <xs:sequence>

 <xs:element name="location" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="generated-interface-location" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="object-count" type="xs:integer" minOccurs="1" maxOccurs="1"/>

 <xs:element name="similar-specs-table" type="SimilarSpecsTableType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="mappings-table" type="MappingsTableType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="optional"/>

 <xs:attribute name="guid" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="MappingsTableType">

 <xs:sequence>

 <xs:element name="mapped" type="MappedType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MappedType">

 <xs:attribute name="path" type="xs:string" use="required"/>

 <xs:attribute name="type" type="MapTypeAttributeType" use="optional"/>

 <xs:attribute name="spec-name" type="xs:string" use="optional"/>

 <xs:attribute name="spec-guid" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="SimilarSpecsTableType">

 <xs:sequence>

Appendix C: Other PUC XML Language Schemas 257

 <xs:element name="spec-entry" type="SpecEntryType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SpecEntryType">

 <xs:sequence>

 <xs:element name="similar-objects" type="xs:integer" minOccurs="1" maxOccurs="unbounded"/>

 <xs:element name="branch" type="BranchType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="optional"/>

 <xs:attribute name="guid" type="xs:string" use="required"/>

 <xs:attribute name="similarity" type="SimilarityAttributeType" use="required"/>

 </xs:complexType>

 <xs:complexType name="BranchType">

 <xs:attribute name="spec-group" type="xs:string" use="required"/>

 <xs:attribute name="spec-entry-group" type="xs:string" use="required"/>

 </xs:complexType>

 <!-- Spec Map Types -->

 <xs:complexType name="SpecMapType">

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="group" type="GroupType"/>

 <xs:element name="mapping" type="MappingType"/>

 <xs:element name="state-mapping" type="StateMappingType"/>

 <xs:element name="list-mapping" type="ListMappingType"/>

 <xs:element name="template-mapping" type="TemplateMappingType"/>

 <xs:element name="location-mapping" type="LocationMappingType"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="spec1-guid" type="xs:string" use="required"/>

 <xs:attribute name="spec1-name" type="xs:string" use="optional"/>

 <xs:attribute name="spec2-guid" type="xs:string" use="required"/>

 <xs:attribute name="spec2-name" type="xs:string" use="optional"/>

 </xs:complexType>

 <xs:complexType name="GroupType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="cost" type="MappingCostType" minOccurs="1" maxOccurs="1"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="mapping" type="MappingType"/>

 <xs:element name="state-mapping" type="StateMappingType"/>

 <xs:element name="template-mapping" type="TemplateMappingType"/>

 <xs:element name="location-mapping" type="LocationMappingType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MappingCostType">

 <xs:attribute name="one-to-two" type="CostAttribType" use="required"/>

 <xs:attribute name="two-to-one" type="CostAttribType" use="required"/>

 </xs:complexType>

 <xs:complexType name="SourceType">

 <xs:attribute name="type" type="SourceAttributeType" use="required"/>

 <xs:attribute name="confidence" type="ConfidenceType" use="optional"/>

 </xs:complexType>

 <xs:complexType name="LocationMappingType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

Appendix C: Other PUC XML Language Schemas 258

 <xs:attribute name="spec1" type="xs:string" use="required"/>

 <xs:attribute name="spec2" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="TemplateMappingType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="cost" type="MappingCostType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="spec1" type="xs:string" use="required"/>

 <xs:attribute name="spec2" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="StateMappingType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="cost" type="MappingCostType" minOccurs="1" maxOccurs="1"/>

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="all-values-equivalent"/>

 <xs:sequence>

 <xs:element name="value" type="ValueType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="spec1-state" type="xs:string" use="required"/>

 <xs:attribute name="spec2-state" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ValueType">

 <xs:sequence>

 <xs:element name="spec1" type="SpecValueType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="spec2" type="SpecValueType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="spec1" type="xs:string" use="optional"/>

 <xs:attribute name="spec2" type="xs:string" use="optional"/>

 </xs:complexType>

 <xs:complexType name="SpecValueType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="constant" type="ConstantValueType"/>

 <xs:element name="range" type="RangeValueType"/>

 <xs:element name="defined"/>

 <xs:element name="undefined"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="RangeValueType">

 <xs:attribute name="start" type="xs:string" use="required"/>

 <xs:attribute name="end" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ConstantValueType">

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="MappingType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="cost" type="MappingCostType" minOccurs="1" maxOccurs="1"/>

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:sequence>

 <xs:element name="initial" type="SpecStepsType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="step" type="SpecStepsType" minOccurs="1" maxOccurs="1"/>

Appendix C: Other PUC XML Language Schemas 259

 </xs:sequence>

 <xs:sequence>

 <xs:element name="spec1" type="OperationType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="spec2" type="OperationType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SpecStepsType">

 <xs:sequence>

 <xs:element name="spec1" type="OperationType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="spec2" type="OperationType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="OperationType">

 <xs:sequence>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="change" type="ChangeOperationType"/>

 <xs:element name="invoke" type="InvokeOperationType"/>

 <xs:element name="repeat" type="RepeatOperationType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="RepeatOperationType">

 <xs:sequence>

 <xs:element name="count" type="CountType" minOccurs="1" maxOccurs="1"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="change" type="ChangeOperationType"/>

 <xs:element name="invoke" type="InvokeOperationType"/>

 <xs:element name="repeat" type="RepeatOperationType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CountType">

 <xs:choice>

 <xs:element name="variable" type="VariableType"/>

 <xs:element name="constant" type="ConstantValueType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="InvokeOperationType">

 <xs:attribute name="command" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ChangeOperationType">

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="constant" type="ConstantValueType"/>

 <xs:element name="variable" type="VariableType"/>

 <xs:element name="increase" type="IncreaseValueType"/>

 <xs:element name="decrease" type="DecreaseValueType"/>

 </xs:choice>

 <xs:attribute name="state" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="VariableType">

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="IncreaseValueType">

 <xs:attribute name="value" type="xs:string" use="optional"/>

 <xs:attribute name="wrap" type="WrapAttributeType" use="optional"/>

 </xs:complexType>

 <xs:complexType name="DecreaseValueType">

Appendix C: Other PUC XML Language Schemas 260

 <xs:attribute name="value" type="xs:string" use="optional"/>

 <xs:attribute name="wrap" type="WrapAttributeType" use="optional"/>

 </xs:complexType>

 <xs:complexType name="ListMappingType">

 <xs:sequence>

 <xs:element name="label" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="source" type="SourceType" minOccurs="1" maxOccurs="1"/>

 <xs:sequence minOccurs="0" maxOccurs="1">

 <xs:element name="spec1" type="ListIndexStateMapType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="spec2" type="ListIndexStateMapType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:sequence>

 <xs:attribute name="spec1-list" type="xs:string" use="required"/>

 <xs:attribute name="spec2-list" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ListIndexStateMapType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="list-index" type="ListIndexMapType"/>

 <xs:element name="state" type="StateMapType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="ListIndexMapType">

 <xs:attribute name="type" type="IndexAttributeType" use="optional"/>

 </xs:complexType>

 <xs:complexType name="StateMapType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="IndexAttributeType" use="optional"/>

 </xs:complexType>

</xs:schema>

C.3 Multi-Appliance Wiring Diagram Schema
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="http://www.cs.cmu.edu/~pebbles/puc-wiring"

 elementFormDefault="qualified"

 xmlns="http://www.cs.cmu.edu/~pebbles/puc-wiring"

 xmlns:mstns="http://www.cs.cmu.edu/~pebbles/puc-wiring"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="puc-wiring-description">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="appliances" type="AppliancesType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="wires" type="WiresType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="preferred-flows" type="PreferredFlowsType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AppliancesType">

 <xs:sequence>

 <xs:element name="appliance" type="ApplianceType" minOccurs="1" maxOccurs="unbounded"/>

 <xs:element name="external-source" type="ExternalSourceType" minOccurs="1" maxOc-
curs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ApplianceType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="spec-guid" type="xs:string" use="required"/>

Appendix C: Other PUC XML Language Schemas 261

 <xs:attribute name="server" type="xs:string" use="required"/>

 <xs:attribute name="port" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="ExternalSourceType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="WiresType">

 <xs:sequence>

 <xs:element name="connect" type="ConnectType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ConnectType">

 <xs:sequence>

 <xs:element name="start" type="ApplianceConnectType" minOccurs="1" maxOccurs="1"/>

 <xs:element name="end" type="ApplianceConnectType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ApplianceConnectType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="port" type="xs:string" use="optional"/>

 </xs:complexType>

 <xs:complexType name="PreferredFlowsType">

 <xs:sequence>

 <xs:element name="flow" type="PreferredFlowType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PreferredFlowType">

 <xs:attribute name="appliance" type="xs:string" use="required"/>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

</xs:schema>

Appendix C: Other PUC XML Language Schemas 262

APPENDIX D

DSpecification Authoring Study
Instructions

This appendix contains the tutorial document created for teaching the PUC specification
language to the subjects of the specification authoring study. The document starts on the

next page to preserve formatting.

263

Specification Authoring Study

We are developing the Personal Universal Controller (PUC) system, which will improve the

user interfaces for common home and office appliances by moving the interface to a hand-

held computer. The system relies on a specification language that is capable of describing the
complete functionality of any appliance that the user may encounter. The handheld com-

puter uses the specification of an appliance to automatically generate a user interface that

remotely controls that appliance. One of the benefits of this system is that a user interface

generated for a new appliance can be made consistent with interfaces that the user has al-
ready used for similar appliances. For example, the interface generated by my handheld for

controlling a VCR in a conference center would be made consistent with the interface that I

use for controlling my VCR at home.

In this study you will create functional specifications that are suitable for interface generation

by our PUC system. You will start by learning how to specify an appliance through reading

and working a small specification for a to-do list application. Then you will write a specifi-

cation for an appliance that we have provided you with (Mitsubishi DVCR). Finally, you
may optionally write an additional specification for an appliance that you own and have an

owner’s manual for.

You will author these specifications in an XML-based language that we have developed.

1. General Concepts for Describing Appliance Functionality
This section describes the general concepts about our method for describing appliance func-

tionality. These concepts will be applicable regardless of which authoring method you

choose to use for this study. The four most important concepts in our language are:

• The functions of an appliance can be represented by either state variables or state-less
commands. State variables have specific type information that describes how they can

be manipulated by the interface. Commands and states are collectively called appli-

ance objects.

• The structure of the prototype interfaces were often based upon dependency informa-
tion. For example, suppose that an interface was being created for a shelf stereo

Appendix D: Specification Authoring Study Instructions 264

system with a tape and CD player. When the power is off, a screen with only a power

button widget would be shown, because none of the other objects would be enabled.
When the power is on, a screen is shown with many widgets, because most of the ob-

jects are active when the power is on. We might also expect this interface to have a

panel whose widgets change based upon whether the tape or CD player is active.

• The final representation of any interface can be described using a tree format. It is
not reasonable to include the tree representation of one interface in the specification

of an appliance however, because the tree may differ for different form factors. For

example, the tree will be very deeply branched on a small screen WAP cellular phone

interface, whereas the tree will be broader for a desktop PC interface. We prefer
specifications that define a group tree that is deeply branched. This information can

be used for small screen and large screen interfaces alike, because some of the

branches can be ignored in a large interface.

• Domain-specific conventions are often used in appliance interfaces, such as the stan-
dard number pad on a telephone or the standard play and stop icons used on media

players. Interfaces generated by our PUC system need to include these conventions in

their generated interfaces, and we have developed “Smart Templates” to help identify

pieces of a specification where conventions should be applied.

Each of these items is described in more detail below.

Appliance Objects
Three types of appliance objects are supported in the specification language.

• States - Variables that represent data that is stored within the appliance. Examples

might be the radio station on a stereo, the number of rings until an answering ma-

chine picks up, and the time that an alarm clock is set for. Each variable has a type,

and the UI generator assumes that the value of a state may be changed to any value
within that type, at any time that the state is enabled. It is possible for state variables

to be undefined, i.e. without any value. This commonly happens just after an inter-

face is generated before any values have been assigned, but could occur for other

reasons.

• Commands - Any function of an appliance that cannot be described by variables

alone. They may be used in situations where invoking the command caused an un-

Appendix D: Specification Authoring Study Instructions 265

known change to a known state variable (such as the "seek" function on a radio), or

in situations where the state variable is not known (manufacturer choice or other rea-
son, the dialing buttons on a standard phone would all be commands).

• Explanations - Descriptive information that is not appropriate to include as the label

of a state or command, and is more important than a simple group label. This repre-

sents an early attempt at including help information within our specifications.
Explanations are used rarely in specifications.

Although there are differences between states, commands and explanations, they also share a

common property of being enabled. When an object is enabled (or active), the user interface

widgets that correspond to that object can be manipulated by the user. Knowing the circum-
stances in which an object will be enabled or disabled can provide a helpful hint for

structuring the interface, because items that are active in similar situations can be grouped,

and items can be placed on panels such that the widgets are not visible when the object

would not be active. Specifying the prior knowledge of the enabled property is discussed in
more detail later in the Dependency Information sub-section.

Label Information
Another common property of appliance objects is the need to specify rich labeling informa-
tion for flexibility when generating interfaces in different form factors.

To support specifying labeling information, we use the concept of a label dictionary. At any

place in the specification where a label can be entered, more than one label may be provided.

It is expected that all these labels contain the same general information, but vary in terms of
length and detail. The interface generator would choose the longest label that fits within the

space allocated on the screen.

Labels can be specified for any appliance object, and also be linked with particular values of

an appliance state's type.

State Variable Types
Every appliance state has a type object associated with it. The type information is used to

determine what kinds of widgets can be used to manipulate the state, and is one of the pa-
rameters that are used to recognize Smart Templates.

Appendix D: Specification Authoring Study Instructions 266

There are seven different kinds of types that can be used in the specification:

• Boolean
• enumerated

• fixed point

• floating point

• integer
• list-selection

• string

Each of these types has a different set of parameters that can be specified for it.

The Boolean type is for variables that have a value of true or false.

The enumerated type is for small collections of values that all have some string label. Inter-
nally, these values are represented by numbers starting with 1. For example, an enumerated

type with 4 items can have a value of 1 through 4. Enumerated types must have labels de-

fined for each of their values.

The types of fixed point, floating point, and integer all contain numeric values. Integers do
not have a decimal component, while fixed point and floating point both do. Fixed point

values have a fixed number of digits to the right of the decimal point, as defined by the re-

quired “Decimal Places” field. Floating point values have an arbitrary number of digits on

either side of the decimal point. The fixed point and integer types also have an optional in-
crement field that can be used to further restrict the values that the state variable may

contain. If an increment is specified, then a minimum value must also be specified. When

these parameters are specified, the value of the state variable must be equal to the minimum

+ n * increment, where n is some integer.

The list selection type is a special type for linking the value of a state variable to a selection

within a list that is somewhere in the appliance description. Usually this will be used be

when the user has configured a set of common values in a setup portion of the interface, and

then wants to select one of those values elsewhere in the interface. You must specify the
name of the list that this variable will select from. Optionally, you may also specify some de-

pendencies on the values of that list in order to restrict the list items that may be selected.

The string type contains a string value. Currently there are no parameters for this type.

Appendix D: Specification Authoring Study Instructions 267

The Group Tree
Proper structure is a very important part of any user interface. In our language we use a hier-

archical "group tree" to specify structure. The leaf nodes in the tree are appliance objects,

and the branch nodes are groups. Each node in the tree has a name which must not be the

same as any other child of its parent. Thus each node has a locally unique name, and a glob-
ally unique name can be constructed by pre-pending the names of all a nodes parents. We

use a "." character to separate each name. For example, the locally unique name of a state

variable might be "PlayState" but the globally unique name would be "Stereo.CD.PlayState".

That same specification could also contain other states like "Stereo.Tape.PlayState". Note
that the root name "Stereo" cannot be re-used as a name anywhere in the specification.

It is often necessary to explicitly refer to state variables in a specification. This may be done

using any name that starts with a globally unique name. Since the root name is unique, the

full name will always work. For the above examples, "Tape.PlayState" and "CD.PlayState"
would also work, assuming that there are no other groups or states named "CD" or "Tape".

There are three types of groups: normal, list, and union. A normal group is used for putting

related data together, similar to a record in a programming language. List and union groups

have special behavior beyond that of normal groups, which are discussed in the next section.

Lists
Specifying a list group is similar to specifying an array of records in a programming language,

and multiple list groups can be nested to create multi-dimensional lists. Each list group has
an implicit length state variable (named "Length") that always contains the current length of

the list. If this variable is undefined, then the list currently has no members. The specifica-

tion may define bounds on the length of the list in order to help the interface generator

create a better rendering. An exact size may be specified, or a minimum and/or maximum
size may be specified.

List groups also maintain an implicit structure to keep track of one or more list selections.

The number of selections allowed may be defined in the specification ("one" and "many" are

the only options currently), and the default is one if nothing is specified. If a list allows only
one selection, then an implicit "Selection" variable is created which contains the index of the

current selection (undefined means no selection). If multiple selections are created, then an

Appendix D: Specification Authoring Study Instructions 268

implicit list group named "Selections" is created. This group contains a "Length" state (as all

list groups do) and a "Selection" state which contains all of the selected indices.

Unions
A union group is similar to specifying a union in a programming language; of the children

within a union (either groups or appliance objects), only one may be active at a time. An im-
plicit state variable named "ChildUsed" is automatically created within a union group that

contains the name of the currently active child.

Dependency Information
Dependency information is specified for each appliance object as a Boolean equation. This

information gives the interface generator some approximate a priori knowledge of when the

object will be enabled (see the Appliance Objects section above for more information).

Five kinds of dependencies can be specified. Each of these dependencies specifies a state that
is depended upon, and a value or another state variable to compare with.

• Equals - True when the specified state has the specified value.

• GreaterThan - True when the specified state has a value greater than the specified

value.
• LessThan - True when the specified state has a value less than the specified value.

• Defined - True when the specified state has any value.

• Undefined - True when the specified state does not have any value.

These dependencies can be composed into Boolean formulas using AND and OR. NOT

may also be used.

Specifying dependencies on list state variables must be done using the special apply-over op-
eration. This element applies the dependencies it contains over some items in a list and

returns a value depending on the value of its true-if property. The dependencies are applied

over the set of items based on the items property, which may be set to all or selected. The true-

if property may be set to all, any or none. If true-if is all, then all of the dependencies con-
tained in the apply-over element must be true for elements if true is returned. If true-if is

any, then all of the dependencies contained in the apply-over must be true for one of the

Appendix D: Specification Authoring Study Instructions 269

elements. If true-if is none, then the dependencies must not be satisfied by any element to

return true.

Smart Templates
Smart Templates are standardized in advance, so that specification authors can specify high-

level conventions that the interface generators will understand. A number of templates have
already been defined, as described in the Smart Templates Appendix at the end of this

document.

To use a Smart Template in a specification, the author must do two things:

Tag a group or appliance object with the name of the Smart Template.

Ensure that the group or appliance object conforms to the restrictions that have been speci-

fied for that Smart Template. The appendix at the end of this document describes the

restrictions for each Smart Template.

You may find that the Smart Templates that we have already defined are not expressive
enough to use with the appliance that you are specifying. If you encounter this situation,

please mark the group or object with the appropriate smart template name but specify con-

tents for the template that match the functionality of the appliance. This will help us

improve and extend our Smart Templates in the future.

2. Authoring an Appliance Specification with XML

Extensive documentation for the XML language is available on the web here:

http://www.pebbles.hcii.cmu.edu/puc/specification.html

Documentation on Smart Templates is available here:

http://www.pebbles.hcii.cmu.edu/puc/highlevel-types.html

XML Editors

Appendix D: Specification Authoring Study Instructions 270

http://www.pebbles.hcii.cmu.edu/puc/specification.html
http://www.pebbles.hcii.cmu.edu/puc/highlevel-types.html

Using a special XML editor will make authoring specifications a much easier process. We

support two editors in this study: XMLSpy Home Edition and Visual Studio .NET 2003.
You may use a different editor, but we will not necessarily be able to help you if you have

problems.

An important reason to use an XML editor is that you can ensure that your specification has
the proper format by validating it against a schema. To use this feature of your XML editor,

you will need to download the schema for the PUC specification language, which is available

here:

http://www.pebbles.hcii.cmu.edu/puc/puc.xsd

We strongly recommend using the schema with your editor, as it guarantees that your

document will be correctly formatted.

XMLSpy Home Edition

XMLSpy Home Edition can be freely downloaded from the following link:

http://origin.altova.com/download_components.html

Near the top of this page you will find links for downloading the installer and requesting a

free license.

Once you have the XMLSpy application installed and running, you should screen like this:

Appendix D: Specification Authoring Study Instructions 271

http://www.pebbles.hcii.cmu.edu/puc/puc.xsd
http://origin.altova.com/download_components.html

Before you create a new file, open the Tools menu at the top of the page and select the Op-
tions… item. A dialog box will open containing a set of seven tabbed panes. Click on the

tab for the “Editing” pane. Once you have done this, you should see the following screen

(except the red circle):

I recommend that you uncheck the “Autom. append mandatory children to new elements”
checkbox (circled in red). This feature of XMLSpy seems to cause some curious behavior

when used with the PUC language schema. Click OK to exit the dialog box.

Now you can create a new appliance specification by opening the “File” menu and selecting
“New…” The following dialog box will be displayed:

Appendix D: Specification Authoring Study Instructions 272

Be sure that “XML Document” is selected and then click “OK.” You will then see this dialog

box:

Be sure that you have selected “Schema” and then click “OK.” If you have not yet

downloaded the PUC schema (see the link above), you should do so now and note the loca-
tion in which you save the file. You will now see the following dialog box:

Click the “Browse…” button and find the PUC schema file on your local hard drive. Click
“OK” to create the new file. Your application screen should look something like this:

Appendix D: Specification Authoring Study Instructions 273

You may now start writing your specification.

If you see a screen that looks more like the image below, then you should repeat the instruc-

tions above for turning off the “automatic append mandatory children” feature.

Appendix D: Specification Authoring Study Instructions 274

Visual Studio .NET 2003

To create a new XML document in Visual Studio, open the “File” menu and the “New…”

sub-menu, and then select “File…” item. The following dialog box will be displayed:

Appendix D: Specification Authoring Study Instructions 275

Select “XML File” in the right pane and click “Open.” A new XML file will be created in

Visual Studio.

To validate your XML file with the PUC schema, you will need to copy the PUC schema file

to a particular location in the Visual Studio directory structure and then add a specific state-

ment to the top of your new file.

The schema file (see the link above) must be placed in:

<Visual Studio Directory>\Common7\Packages\schemas\xml

Where <Visual Studio Directory> is the location of your Visual Studio installation. Typi-

cally this is C:\Program Files\Microsoft Visual Studio .NET 2003, but it may vary

depending on your installation.

Once you have copied the schema file, you must start your specification with the following

line:

<spec xmlns=”http://www.cs.cmu.edu/~pebbles/puc” name=”SpecNameHere”
version=”PUC/2.3”>

The name attribute may be filled in with an appropriate name of your choice. The xmlns

attribute is the most important, as it defines to Visual Studio the schema that you want to

use for validation. To verify that Visual Studio has appropriately linked your file to the
schema, open the “XML” menu and select the “Validate XML Data” item. If you see the

following error, then the schema has not been found:

Visual Studio could not locate a schema for this document. Validation
can only ensure this is a well formed XML document and cannot validate
the data against a schema.

Double-check that you have copied the schema file to the appropriate directory above. If eve-

rything appears to be correct, then try restarting the Visual Studio application. If you still

have problems, please contact me.

Appendix D: Specification Authoring Study Instructions 276

3. Example Specification Walkthrough

Now we will walk through the design of a specification for a hypothetical to-do list applica-

tion. Note that while this example uses one process for building a specification, you do not

need to mimic this process when designing your own specifications. We do not know what
the best process is for writing specs, and part of this study is exploring different methods and

their outputs.

The to-do list application has the following functionality:

• List of to-do items

• Detailed information about each item, including a description, category, completion

date, and completion flag
• Add and delete functions for to-do list items

• Sorting functionality for to-do list on category, completion date, or completion flag

• A customizable list of categories

• Add and delete functions for category list items
• Reminder frequency setting which may be weekly, daily, or hourly

• Display preference for choosing whether or not to show completed tasks

For a regular appliance, you should be able to discover many more details about each of the
various functions than I have presented above. It is important that you explore the features

through the user manual and using the appliance so that you can ensure that your specifica-

tion is as accurate as possible.

Defining a State Variable

We will start by specifying state variables for the reminder frequency and display preference.
These are variables because each has a value that can be manipulated by the user. You could

choose to have separate commands for these settings, but in general it is better to use a state

variable wherever possible.

For the card-based method, we start by defining a state variable with an object card. Figure

D.1a shows the object card for the reminder frequency state variable. Because this object card

Appendix D: Specification Authoring Study Instructions 277

defines a state variable, a state variable type card must be attached to specify the type of the

state variable (shown in Figure D.1b). The reminder frequency can be set to three different
values, so I have picked an enumerated type for this state that contains three items. Labels

must be specified for each of the values of the enumerated type, which is done by attaching

three label cards to the type card (see Figure D.1c).

 a. b.

c.

Figure D.1. The cards that specify the reminder frequency setting. All of these cards would be attached
together with a paper clip.

You may have noticed that the object card shown for the reminder frequency setting has a

priority value of “5” specified for it. You may wonder where this value came from, especially

because priority values are chosen relative to the other members of the group that contains

this state variable. This value was chosen much later in the specification process, after I knew
the other items that would be in the same group as these state variables. In most cases, it will

be difficult to assign a priority value when you are initially defining an object because the

contents of the group that contains that object will not be known.

Appendix D: Specification Authoring Study Instructions 278

The XML for this state variable has all of the same components as the card, formatted ac-

cording to the schema (see Figure D.2).

 <state name="ReminderFrequency" priority="5">
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <value-labels>
 <map index="1">
 <labels>
 <label>Weekly</label>
 </labels>
 </map>
 <map index="2">
 <labels>
 <label>Daily</label>
 </labels>
 </map>
 <map index="3">
 <labels>
 <label>Hourly</label>
 </labels>
 </map>
 </value-labels>
 </type>
 <labels>
 <label>Reminder Frequency</label>
 <label>Reminder Freq.</label>
 <label>Reminders</label>
 </labels>
 </state>

Figure D.2. The XML code for the reminder frequency state variable.

The display preference setting is also a state variable, and has a definition that is very similar

to that shown for the reminder frequency variable. As an exercise, I suggest writing your

own description of this variable and then comparing it to my cards or XML shown in Ap-
pendix D.2.

Specifying List Data

Lists are specified using the special list group feature, which is specified on the group card

(see Figure D.3) or with the <list-group> element in XML (see Figure D.4). I have decided

Appendix D: Specification Authoring Study Instructions 279

that the list does not have any bounds and there will be one selection, and these decisions are

reflected in the descriptions that you see below. Note that in the card-based system, a list pa-
rameter card must be attached to the group card to define the bounds and selections.

Figure D.3. The group and list parameters card that describe the to-do list. This list has four state variable

members (not shown).

 <list-group name="List" priority="10">
 <selections number="one"/>

 ...
 </list-group>

Figure D.4. The XML code for describing the to-do list. The four state variable are defined where the "..."
appears in the above code.

Each of the variables contained within a list group has multiple values; one value for each
item in the list. If you are familiar with programming languages, this is similar to defining an

array of records or structs. Each to-do list item has four values (description, completion date,

category, and completion flag) so this list group will contain four different state variables.

The specification of the description, completion date, and completion flag variables is left as
an exercise, but the category variable is discussed in the next sub-section.

There is also another list in the to-do list application, which contains each of the valid cate-

gories that a to-do list item may have. As an exercise, I suggest that you attempt to specify
this list group, including its state variable(s). You can check your work by referring to the

completed specifications in Appendices B & C.

Using the List Selection Type

Appendix D: Specification Authoring Study Instructions 280

The categories variable in the to-do list has a value that is one of the items in the user-

configurable categories list. This means that we cannot use an enumerated type for this vari-
able, because we do not know in advance what categories the user will choose.

Our language supports this problem with the list-selection state variable type. In this case, we

can create a category variable within the to-do list group that has a list-selection type. The
type will specify that it selects an item from the category list, which is elsewhere in the speci-

fication. When the user changes the category list, the changes will automatically appear when

they later choose to modify their to-do list items. The cards and XML for the category state

variable are shown in Figure D.5 and Figure D.6 respectively.

Figure D.5. The object and state variable type cards for the Category state variable that is contained in the to-

do list group. Note the use of the list-selection type on the state variable type card.

 <state name="Category" priority="4">
 <type>
 <list-selection list="Setup.Categories.List"/>
 </type>
 <labels>
 <label>Category</label>
 </labels>
 </state>

Figure D.6. The XML code for the Category state variable that is contained in the to-do list group. Note the
use of the list-selection type in this variable.

Providing a User Interface for Modifying List Data

Appendix D: Specification Authoring Study Instructions 281

The description of the to-do list application includes functions for adding and removing

items from both the to-do list and the categories list. In our description language, we have
chosen to use a Smart Template for defining these special functions and allowing the inter-

face generators to take special action when rendering them.

Figure D.7. The object cards that describe the add and remove commands for the to-do list. These objects are

contained within a group that is tagged with the “list-commands” Smart Template.

 <group name="Commands" is-a="list-commands" priority="10">
 <command name="Add" is-a="list-add" priority="8">
 <labels>
 <label>Add To-Do Item</label>
 <label>Add To-Do</label>
 <label>Add</label>
 </labels>
 </command>

 <command name="Delete" is-a="list-remove" priority="7">
 <labels>
 <label>Delete To-Do Item</label>
 <label>Delete To-Do</label>
 <label>Delete</label>
 </labels>
 <active-if>
 <greaterthan state="ToDo.List.Length">
 <constant value="0"/>
 </greaterthan>
 <defined state="ToDo.List.Selection"/>
 </active-if>
 </command>

Figure D.8. The XML code for describing the add and remove commands for the to-do list. Note the group
that contains these items. Also note that dependencies have been provided for the Delete command. This will
be discussed in the “Dependency Information” section below.

Appendix D: Specification Authoring Study Instructions 282

The Smart Template used in this case is called “list-commands”. You may wish to read the

description of this template in Appendix D.1 in order to understand its usage. A group that
is tagged with this template may contain any number of commands that are tagged with

more specialized templates, such as “list-add,” “list-move-after” or “list-clear.” In this case,

we only wish to add commands for adding and removing items from the list, so we will add

two commands that implement the “list-add” and “list-remove” templates. The cards for
these commands are shown in Figure D.7 and the XML is shown in Figure D.8.

You should note that the list-XX smart templates do not have restrictions on the labels or

dependencies of these commands, so this information can vary depending on what is being
described. If there were two ways to add data to this list for example, then there could be

two commands implemented the list-add Smart Template, each with different labels. Even

if there is only one command of each type, it is important to fill out all of the information

for each object and group because an interface generator might not know about the Smart
Template that you have used. If this is the case and you have included all of the information,

the generator can still create an interface. If information is missing, then this would not be

possible.

Another variable that uses a Smart Template in this specification is the variable for comple-

tion date in the to-do list. As an exercise, I suggest that you find the appropriate Smart

Template and apply it when specifying this state variable.

Dependency Information

If you looked at XML code for the Delete command above (in Figure D.8), you may have
noticed that this command includes dependency information. Specifically, the Delete com-

mand is only available if there are more than zero items in the to-do list and an item in the

to-do list is selected. The card for this dependency formula (see Figure D.9) should be at-

tached to the object card for the Delete command.

Appendix D: Specification Authoring Study Instructions 283

Figure D.9. The dependency card for the Delete command. Note that extended names are used here for the
state variables. You may find it necessary to go back and make names more explicit on dependency cards after

you have organized the variables in your specification.

Organizing the Specification

Once all of the state variables, commands, and lists have been defined, you should consider

further organizing your description to make it more useful for an interface generator. In gen-
eral, you should try to make the hierarchy as deep as possible so that an interface generator

for a small screen device will be able to make intelligent decisions about how to separate the

pieces of the user interface.

In this specification, I chose to have two main groups. There is a group that contains the to-

do list, which consists of the list containing the to-do list data and the group of list com-

mands for modifying that data. The group of list commands also contains the sorting

function. The second main group is called “Setup,” and contains the display preference set-
ting, the reminder frequency setting, and the list of categories.

You will find in your specifications that you have many more functions than were included

in this to-do list application, which will required much more organization. As we mentioned
above, organization data is very important to the interface generator and may affect the qual-

ity of an interface generated from your specification. You should be sure to put some effort

into designing an interface hierarchy that is accurate and intuitive for your appliance.

Appendix D: Specification Authoring Study Instructions 284

Appendix D.1. Smart Templates

The following Smart Templates have been defined:

• address

• date

• date-time

• four-way-dpad

• four-way-dpad-with-enter

• list-commands

• media-controls

• time-absolute

• time-duration

• zoom-controls

The format for each of these templates is described below.

address
Overview
Represents an address, like might be entered into a navigation system.

Contents
This template only supports the Multi-State form. In the future, it might make sense to sup-
port a single state string form that contains a parsable address, but this is not required now.

There are no required states in this template. This allows the template to be used in a num-

ber of situations where a partial piece of an address is needed, such as zip code by itself. The

different states in this template are:

StreetName
This state represents the name of the street. It may have a string or enumerated type.

It must support the use of completions and server-side error correction, if either of

those features are available.
ApartmentNumber

This state represents the number of an apartment or suite at this address. This state
may have a string or integer type. When the integer is used, it may have type restric-

Appendix D: Specification Authoring Study Instructions 285

tions such as bounds or an increment. The labels of this state must be taken into ac-

count in order to know whether the number is for a suite, apartment, etc.
StreetNumber

This state represents the street number of the address. It must have an integer type,
but restrictions such as bounding are optional. It must support the use of comple-

tions and server-side error correction, if either of those features are available.
City

This state represents the city of the address. It must have a string or enumerated
state. It must support the use of completions and server-side error correction, if either

of those features are available.
State

This state represents the state or province in which the address is located. It may have

a string or enumerated type.
ZipCode

This state represents a zip code in the address. It may have a string, integer, or enu-
merated type. It must support the use of completions and server-side error

correction, if either of those features are available.
Country

This state represents the country of the address. It may have a string or enumerated
type. It must support the use of completions or server-side error correction, if either

of those features are available.

date
Overview
This template describes data that stores a date. This might be used by an appliance to store

and display the current date, or to record a date in the future when some pre-defined action
will be taken. This template currently supports both single state and multiple state instantia-

tions.

Contents
The contents of this Smart Template may be represented in several different ways. One state

with the string type may be used, or multiple states may be used. For the single variable case

there are the following type restrictions:

String
The state variable must have a string type. The value of the state variable must be a

parseable date string in one of the ISO 8601 international standard formats.

Appendix D: Specification Authoring Study Instructions 286

If multiple states are used to represent the date, they must have the following form:

Month
This state may have an integer type with bounds from 1-12, or an enumerated type
with 12 items.

Day
This state must have an integer type ranging between 1 and 31. The constant maxi-

mum may also point to a state variable that gives the proper maximum for the given

month. If maximum is set to a constant value of 31, then the user interface will en-
force the proper maximum for the given month and year.

Year
This state must have an integer type. Bounds on this variable are optional. Negative

values in this state variable will be interpreted as years BC, and positive years as AD.

Increments may also be specified for this state.

date-time
Overview
This template combines a date template with a time-absolute template to form a complete

representation for dates and times together.

Contents
The contents of this Smart Template may be represented in several different ways. One state

with the string type may be used, or the template may contain two groups that separately

instantiate the date and time-absolute smart templates. If one state variable is used, it has the

following restrictions:

String
The state variable must have a string type. The value of the state variable must be a

parseable date-time string in one of the ISO 8601 international standard formats.

If two groups are used, then one of those groups must be tagged with date and the other
must be tagged with time-absolute. These groups must conform to the restrictions for

these other Smart Templates.

four-way-dpad
Overview
This template represents a four-way directional control.

Appendix D: Specification Authoring Study Instructions 287

Contents
This template may only be applied to a group that includes four commands. The commands

must be:

Left
The command for the left button in the directional control.

Right
The command for the right button in the directional control.

Top
The command for the top button in the directional control.

Bottom
The command for the bottom button in the directional control.

four-way-dpad-with-enter
Overview
This template represents a four-way directional pad with an enter function.

Contents
This template must include the four-way-dpad smart template and one extra command:

Enter
The enter command

list-commands
Overview
This template is for commands that manipulate list data, such as adding, deleting, or moving
list items. This is the first example of a nested template, which means that the template must

contains other templates. In this case, there is a list-commands template which may only

contain list-add, list-remove, list-clear, list-move-after, or list-move-

before templates.

One tricky aspect of the list-commands template is linking each template instance to the

list that it manipulates. This is done by requiring that the template be at the same level and

immediately precede the list group that it manipulates. We suggest that each pair of com-

mands and list group be placed in their own group, but this is not required.

Contents
The list-commands template only supports the multi-state form. The constituent tem-

plates list-add, list-remove, list-clear, list-move-after, and list-move-

Appendix D: Specification Authoring Study Instructions 288

before must be single commands. Constituent templates may be used outside of the list-

commands template.

As mentioned above, any instance of the list-commands template must be placed at the

same level of the specification tree immediately preceding the list-group that the command

modify. This requirement is also true of any of the consituent templates when used outside

of the list-commands template.

The following are descriptions of the constituent templates:

list-add
Commands with this template should add a new item to the list. The server upon re-

ceiving the command should insert an item into the list at the appropriate location in

the list. The template implementation can automatically display a dialog box in this
case, or it may rely on the required-if infrastructure to determine whether an editing

dialog box should be displayed.
list-remove

Commands with this template should delete an item from the list, preferably the cur-

rently selected item(s).
list-clear

Commands with this template should remove all items from the list.
list-move-after

Commands with this template should move the currently selected item(s) to the next

higher index.
list-move-before

Commands with this template should move the currently selected item(s) to the next
lower index.

media-controls
Overview
This template represents the interactions that control the playback of any audio/visual me-

dia, such as a CD, MP3, or VHS tape. This template supports either state- or command-

based representations of the controls, and also handles related functions such as Next Track
and Previous Track.

Contents

Appendix D: Specification Authoring Study Instructions 289

This Smart Template may represent the controls as a single state variable and/or several

commands. The state-based representation must have an enumerated type with standardized
labels mapped to each value in the type in the valueLabels section. The state must have

the name Mode. The labels are described below. Other labels may be included in addition to

the standardized ones for the benefit of interface generators that don't recognize this Smart

Template.

Stop
This label identifies the state when the media is stopped.

Play
This label identifies the state when the media is playing.

Pause
This label identifies the state when the media is paused.

Rewind
This label identifies the state when the media is rewinding.

Fast-Forward
This label identifies the state when the media is fast-forwarding.

Record
This label identifies the state when media is being recorded.

If no state information is available from the appliance, a command-based description may be

used instead. Such a representation must include one or more of the following commands.

These commands should not be included if the Mode state is included in the description. Al-
lowable commands are:

Play
When this command is activated, the appliance should begin playing.

Stop
When this command is activated, the appliance should stop playing.

Pause
When this command is activated, the appliance should pause playback.

Rewind
When this command is activated, the appliance should begin rewinding.

FastFwd
When this command is activated, the appliance should begin fast-forwarding.

Record
When this command is activated, the appliance should begin recording.

Appendix D: Specification Authoring Study Instructions 290

In addition to having either the state or a set of commands, additional states and commands

may be specified that will be integrated with the rest of the playback controls.

Commands

NextTrack
When this command is activated, the next track should be selected.

PrevTrack
When this command is activated, the previous track should be selected.

NOTE: Other playback modes may be possible and should probably be considered. These

include:

• Reverse Play

• Fast-Forward while Playing vs. while Stopped
• Rewind (same thing)

• Different speeds of fast-forward and rewind

• Play New (for answering machines)

time-absolute
Overview
This template specifies absolute time, i.e. time-of-day. This includes the time value along

with parameters of the time such as the time zone, 12/24 hour mode, etc.

Contents
This template supports both the single and multi-state specification methods. The single

state method may only represent an absolute time value in 24-hour units. This value may be
rendered as a 12-hour time value with AM/PM depending on the configuration of the user's

device. The multi-state method may also include parameters for the time value, as described

below.

The single state form may have one of four primitive types:

Integer
The value of the state variable should contain the number of seconds since midnight.

No increment is allowed.

String

Appendix D: Specification Authoring Study Instructions 291

The value of the state variable must be of the form: hh:mm:ss or hh:mm, where h =

hours, m = minutes, and s = seconds. Note that unlike the time-duration tem-
plate, digits may be omitted if they are not significant. In other words, 1:45:56 has

the same meaning as 01:45:56. An arbitrary number of digits may be used for repre-

senting the fractions of a second.

If multiple states are used to represent the time-absolute template, then they must have
the following form:

Time
This state specifies the time. It may have any of the types listed above for the single-

state format. Either this state, or some combination of the hour/minute/etc. states

below may be included, but not both.
Hours

This state must have an integer type. The minimum and maximum must be 0-23.

This state is required if the Time state is not specified, and may not be included if the

Time state is defined.
Minutes

This state must have an integer type ranging from 0 to 59. This state must be speci-
fied if the Time state is specified, and may not be included if the Time state is

defined.
Seconds

This state must have an integer type ranging from 0 to 59. This state must not be in-

cluded if the Time state, but is otherwise optional.
TimeZone

This state optionally specified the time zone. It must have an enumerated type where

each value has at least one label of the form GMT-X or GMT+X, where X specifies

the number of hours from Greenwich Mean Time. The labels should also include

common names for each time zone (such as "Eastern" for GMT-5) to ensure that
generators not equipped with this Smart Template can still render an understandable

interface.
DaylightSavings

This state optionally specifies whether it is currently daylight savings time. This state

must have a boolean type.
HourMode

This state optionally specifies whether the time is specified in 24 or 12 hour mode.

The state must have a boolean type with labels for each value. One value must be la-

Appendix D: Specification Authoring Study Instructions 292

beled as "12Hr" and the other as "24Hr". If this state exists, it should be linked to

the rendering for the time value (if included).
Increments may be specified only for the least significant unit. For example, if a particular

template defines an hours state and a minutes state then an increment may be specified only

for the minutes state. Another template that defines all four of the possible states may only

have an increment specified for the fraction state.

time-duration
Overview
This template describes data that stores a duration of time. This could be used by media

player devices to describe the length of a song or the current playback point in a song, or by

microwaves to display the amount of cooking time that remains. This template supports

resolutions in the fractions of a second, seconds, minutes and hours. The fractions of a sec-
ond resolution is purposely left ambiguous and may be defined by the specification designer

by defining a range for the state. Milliseconds might be the fraction used for a timer applica-

tion, whereas frame number might be used by a VCR or other video application.

Contents
The contents of this Smart Template may be represented in several different ways. One state

with one of four primitive types may be used, or multiple states with an integer type may be

used. If one state is used, the Smart Template must be applied directly to that state (see Ex-
ample #2 above). The allowable types are:

Integer
The value of the state variable should contain the number of seconds in the time du-

ration.
Fixed Point

The pointpos may be set as necessary. The value of the state variable should contain

the number of seconds in the time duration. The decimal component represents the

fractions of a second that have elapsed.
Floating Point

The value of the state variable should contain the number of seconds in the time du-

ration, with the decimal component representing the fractions of seconds in the

duration.
String

Appendix D: Specification Authoring Study Instructions 293

The value of the state variable must be of the form: hh:mm:ss:fff, mm:ss:fff,

hh:mm:ss, or mm:ss, where h = hours, m = minutes, s = seconds, and f = fractions of
a second. Note that it is not optional to omit digits if they are not significant. In

other words, 1:45:56 is not valid, but both 01:45:56 and 01:45:560 are. Also

note that three digits are required for fractions of second component, if it is used.

If multiple states are used to represent the time-duration, they must have the following
form:

Hours
This state must have an integer type. A minimum and maximum may be optionally

specified.
Minutes

This state must have an integer type ranging between 0 and 60 if the Hours state is
specified. Minimum and maximum are optional if Hours is not specified. This state

must be included if both the Hours and Seconds states are specified.
Seconds

This state must have an integer type ranging between 0 and 60 if the Minutes state

is specified. Minimum and maximum are optional if Minutes is not specified. This
state must be included if both the Minutes and Fraction states are specified.

Fraction
This state must have an integer type. The ranges may be specified to fit the type of

fraction being used.

Increments may be specified only for the least significant unit. For example, if a particular
template defines an hours state and a minutes state then an increment may be specified only

for the minutes state. Another template that defines all four of the possible states may only

have an increment specified for the fraction state.

zoom-controls
Overview
This template represents controls for zooming something on the appliance.

Contents
This template may include two commands, only one of which must be included:

In
The zoom in command.

Appendix D: Specification Authoring Study Instructions 294

Out
The zoom out command.

Appendix D: Specification Authoring Study Instructions 295

Appendix D.2. Complete XML Specification for To Do List Application

<?xml version="1.0" encoding="utf-8" ?>
<spec xmlns="http://www.cs.cmu.edu/~pebbles/puc" name="ToDoApp" ver-
sion="PUC/2.2">

 <!--
 Labels for specification
 -->
 <labels>
 <label>PUC To-Do List Application</label>
 <label>To-Do List App</label>
 <label>To-Do List</label>
 </labels>

 <!--
 Groups
 -->
 <groupings>
 <group name="ToDo" priority="10">
 <labels>
 <label>To-Do List</label>
 <label>List</label>
 </labels>

 <list-group name="List" priority="10">
 <selections number="one"/>

 <state name="Completed" priority="5">
 <type>
 <boolean/>
 <value-labels>
 <map index="true">
 <labels>
 <label>Done</label>
 </labels>
 </map>
 <map index="false">
 <labels>
 <label>Incomplete</label>
 </labels>
 </map>
 </value-labels>
 </type>
 <labels>
 <label>Completed</label>
 </labels>
 </state>

Appendix D: Specification Authoring Study Instructions 296

 <state name="Category" priority="4">
 <type>
 <list-selection list="Setup.Categories.List"/>
 </type>
 <labels>
 <label>Category</label>
 </labels>
 </state>

 <state name="Description" priority="8">
 <type>
 <string/>
 </type>
 <labels>
 <label>Description</label>
 <label>Desc.</label>
 </labels>
 </state>

 <state name="CompletionDate" is-a="date" priority="3">
 <type>
 <string/>
 </type>
 <labels>
 <label>Finish By</label>
 <label>Due Date</label>
 <label>Due</label>
 </labels>
 </state>
 </list-group>

 <group name="Commands" is-a="list-commands" priority="10">
 <command name="Add" is-a="list-add" priority="8">
 <labels>
 <label>Add To-Do Item</label>
 <label>Add To-Do</label>
 <label>Add</label>
 </labels>
 </command>

 <command name="Delete" is-a="list-remove" priority="7">
 <labels>
 <label>Delete To-Do Item</label>
 <label>Delete To-Do</label>
 <label>Delete</label>
 </labels>
 <active-if>
 <greaterthan state="ToDo.List.Length">
 <constant value="0"/>
 </greaterthan>

Appendix D: Specification Authoring Study Instructions 297

 <defined state="ToDo.List.Selection"/>
 </active-if>
 </command>

 <state name="SortBy" priority="5">
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <value-labels>
 <map index="1">
 <labels>
 <label>Category</label>
 </labels>
 </map>
 <map index="2">
 <labels>
 <label>Completion Date</label>
 <label>Date</label>
 </labels>
 </map>
 <map index="3">
 <labels>
 <label>Completed</label>
 </labels>
 </map>
 </value-labels>
 </type>
 <labels>
 <label>Sort By</label>
 <label>Sort</label>
 </labels>
 <active-if>
 <greaterthan state="ToDo.List.Length">
 <constant value="0"/>
 </greaterthan>
 </active-if>
 </state>
 </group>
 </group>

 <group name="Setup" priority="1">
 <labels>
 <label>Setup</label>
 </labels>

 <state name="DisplayPreference" priority="8">
 <type>
 <enumerated>
 <item-count>4</item-count>
 </enumerated>

Appendix D: Specification Authoring Study Instructions 298

 <value-labels>
 <map index="1">
 <labels>
 <label>All Items</label>
 <label>All</label>
 </labels>
 </map>
 <map index="2">
 <labels>
 <label>Incomplete Items</label>
 <label>Incomplete</label>
 </labels>
 </map>
 <map index="3">
 <labels>
 <label>Past Due Items</label>
 <label>Past Due</label>
 </labels>
 </map>
 <map index="4">
 <labels>
 <label>Completed Items</label>
 <label>Completed</label>
 </labels>
 </map>
 </value-labels>
 </type>
 <labels>
 <label>Display Preference</label>
 <label>Display Pref</label>
 <label>Display</label>
 </labels>
 </state>

 <state name="ReminderFrequency" priority="5">
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <value-labels>
 <map index="1">
 <labels>
 <label>Weekly</label>
 </labels>
 </map>
 <map index="2">
 <labels>
 <label>Daily</label>
 </labels>
 </map>
 <map index="3">

Appendix D: Specification Authoring Study Instructions 299

 <labels>
 <label>Hourly</label>
 </labels>
 </map>
 </value-labels>
 </type>
 <labels>
 <label>Reminder Frequency</label>
 <label>Reminder Freq.</label>
 <label>Reminders</label>
 </labels>
 </state>

 <group name="Categories" priority="5">
 <labels>
 <label>Category Setup</label>
 </labels>

 <list-group name="List">
 <state name="Category">
 <type>
 <string>
 <min><constant value="1"/></min>
 <average><constant value="10"/></average>
 <max><constant value="25"/></max>
 </string>
 </type>
 <labels>
 <label>Category</label>
 </labels>
 </state>
 </list-group>

 <group name="Commands" is-a="list-commands">
 <command name="Add" is-a="list-add">
 <labels>
 <label>Add Category</label>
 <label>Add</label>
 </labels>
 </command>

 <command name="Delete" is-a="list-remove">
 <labels>
 <label>Remove Category</label>
 <label>Remove</label>
 </labels>
 </command>
 </group>
 </group>
 </group>
 </groupings>

Appendix D: Specification Authoring Study Instructions 300

</spec>

Appendix D: Specification Authoring Study Instructions 301

Appendix D: Specification Authoring Study Instructions 302

APPENDIX E

EUsability Study Instructions

This appendix contains the informal document describing the process employed in the usab-
lity of the all-in-one printers. The document starts on the next page to preserve formatting.

303

Conditions

User Group Sequence in using the interfaces Number of users

1 physical hp physical canon 8

2 physical canon physical hp 8

3 puc hp puc canon 8

4 puc canon puc hp 8

5 puc hp uniform canon 8

6 puc canon uniform hp 8

Setup of Equipment

Questionnaires
• Background questionnaire: p1-3
• Post questionnaire: p4

Actions during Study
before study hardware Move pda/printer in position

 Connect usb cable of pda to desktop

 Point camera at pda/printer

 Warm up printers

 Add more paper

Appendix E: Usability Study Instructions 304

 software Start camtasia

 Start multitrack stopwatch

 Start activsync remote display

before 1st device 1st
task

 Start recording in camtasia

after 1st device Save task times in Multitrack stopwatch

 Reset Multitrack stopwatch

After study Stop recording in camtasia and save video file

 Save task times in Multitrack stopwatch

Script
Our research team is investigating how to create better interfaces for everyday appliances.

Physical: Today, you’ll be using two multi-function printers to complete some tasks. You’ll
be doing a set of 8 tasks using one of the printers, and then you’ll do the same set of tasks
using the other printer.

Puc->puc & puc->Uniform: Today, you’ll be controlling two multi-function printers to
complete some tasks. You’ll be doing a set of 8 tasks by controlling one of the printers, and
then you’ll do the same set of tasks by controlling the other printer. You won’t be directly
interacting with the printers but you’ll be controlling them using a handheld computer.

Q: Used a handheld computer before? Multi-function printer? Copier? Fax machine?

The multi-function printers that you’re going to use can print, copy, fax and scan, in black
and white as well as in color. This study will take about 90 minutes. I’ll record audio and
video, and the time that you take to complete the tasks. However, all this information will
remain anonymous. Before we start, I would like you to sign a consent form, and complete a
questionnaire.

Appendix E: Usability Study Instructions 305

Puc->puc & puc->Uniform: Now, we’re going to do two exercises. They are just to famil-
iarize you with the interface of the handheld. So you can take your time.

The first exercise is a Pocket PC tutorial. (this handheld computer is called Pocket PC.)

For the second one, I would like you to imagine the interface shown here is the configura-
tion dialog box of a word processor.

Now, we do the actual tasks. You will work on them one by one, and please complete them

on your own as I cannot offer help. You have 5 min to complete each task. If you complete a

task within the 5 min, you can proceed to the next one. But if at the end of the 5 min, you
haven't completed the task, I'll prompt you and ask you to move on. You are required to

keep trying within the 5 minutes, until you finish the task or 5 mins has passed. I'll explicitly

tell you when you're done with a task -- I'll say "You're done". If I do not say anything, that

means you're not done and you should keep trying.

Here’s the procedure for each task...

Before each task, I'll ask you to turn around so that you do not look at the screen of the

handheld computer. Then, I'll give you a card with the task instruction on it. You can take

your time to read the instruction because the time you spend on reading won't count to-

wards the 5 minutes. You can keep the card while you do the task; you can put it on the
table. And you can look at it if necessary. And, while you're reading the instruction, I'll reset

the interface, so that it will always look the same when you start a new task.

Appendix E: Usability Study Instructions 306

Tasks

Appendix E: Usability Study Instructions 307

Appendix E: Usability Study Instructions 308

APPENDIX F

FGallery of PUC Interfaces

This appendix contains a number of screenshots of interface generated by the PUC and any
interfaces used by the appliance simulators that have been created.

309

Figure F.1. The full interface for the
HP All-In-One printer generated
without consistency, as seen by users
in the usability study.

Appendix F: Gallery of PUC Interfaces 310

Figure F.2. The full interface for the Canon All-In-One printer generated without consistency, as seen by us-
ers in the usability study.

Appendix F: Gallery of PUC Interfaces 311

Figure F.3. The full interface for the HP All-In-One printer generated to be consistent with the Canon
printer, as seen by users in the usability study.

Appendix F: Gallery of PUC Interfaces 312

Figure F.4. The full interfaces for the Canon All-
In-One printer generated to be consistent with
the HP printer, as seen by users in the usability
study.

Appendix F: Gallery of PUC Interfaces 313

Figure F.5. The full interface generated for the Axis Pan-Tilt-Zoom
UPnP surveillance camera. Presets specified on the device can be ac-
cessed through the combo box at the bottom of the screen.

Figure F.6. Both screens of the
interface generated for controlling
Windows Media Player. The left
screen contains controls for play-
back and the right screen shows the
current playlist (empty in this ex-
ample).

Figure F.7. The full interface for
the Sony Camcorder appliance.

Appendix F: Gallery of PUC Interfaces 314

Figure F.8. The full interfaces for the InFocus television, which was a component of the home theater system
used for interface aggregation.

Appendix F: Gallery of PUC Interfaces 315

Figure F.9. The full interfaces for the Sony A/V Receiver, which was a component of the home theater system
used for interface aggregation.

Appendix F: Gallery of PUC Interfaces 316

Figure F.10. The full interface for the Panasonic VCR on the PocketPC. This appliance was used both in the
home theater scenario for interface aggregation and as one of the test appliances for the consistency system.

Appendix F: Gallery of PUC Interfaces 317

Figure F.11. The full interface for the Philips DVD player, which was a component of the home theater system
used for interface aggregation.

Appendix F: Gallery of PUC Interfaces 318

Figure F.12. The full interface* for Copier A gener-
ated without consistency.

Figure F.13. The full interface* for Copier B gener-
ated without consistency.

Figure F.14. The full interface* for Copier A gener-
ated to be consistent with Copier B.

Figure F.15. The full interface* for Copier B gener-
ated to be consistent with Copier A.

* These interfaces were generated with a new heading separator feature that did not exist during the original
work on the consistency. The new feature caused the generation process to produce slightly different interfaces
than those shown in Figure 1.5.

Appendix F: Gallery of PUC Interfaces 319

Appendix F: Gallery of PUC Interfaces 320

Bibliography

[Ali 2002] Mir Farooq Ali, Manuel A. Perez-Quinones, Marc Abrams and Eric Shell.
“Building Multi-Platform User Interfaces with UIML,” Computer-Aided Design of User
Interfaces, Valenciennes, France, May, 2002. pp. 255-266.

[Association 1996] 1394 Trade Association. AV/C Digital Interface Command Set. 1996.
http://www.1394ta.org/.

[Banavar 2004a] Guruduth Banavar, et. al. “An Authoring Technology for Multidevice Web
Applications,” IEEE Pervasive Computing. July-Sept, 2004a. 3(3). pp. 83-93.

[Banavar 2004b] Guruduth Banavar, Lawrence D. Bergman, Yves Gaeremynck, Danny So-
roker and Jeremy Sussman. “Tooling and system support for authoring multi-device
applications,” The Journal of Systems and Software. 2004b. 69(3). pp. 227-242.

[Barakonyi 2004] Istvan Barakonyi, Thomas Psik and Dieter Schmalstieg. “Agents That
Talk And Hit Back: Animated Agents in Augmented Reality,” Proceedings of the Third
IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR),
Washington D.C., Nov 2-5, 2004. pp. 141-150.

[Barnard 1981] P.J. Barnard, N.V. Hammond, J. Morton and J.B. Long. “Consistency and
compatibility in human-computer dialogue,” Interactional Journal of Man-Machine Studies.
1981. 15 pp. 87-134.

[Baudisch 2004] Patrick Baudisch, John Pruitt and Steve Ball. “Flat Volume Control: Im-
proving Usability by Hiding the Volume Control Hierarchy in the User Interface,”
Proceedings of CHI, Vienna, Austria, April 24-29, 2004. pp. 255-262.

[Bojanic 2006] Peter Bojanic. The Joy of XUL. 2006.
http://developer.mozilla.org/en/docs/The_Joy_of_XUL.

[Brouwer-Janse 1992] Maddy D. Brouwer-Janse, Raymond W. Bennett, Takaya Endo, Floris
L. van Nes, Hugo J. Strubbe and Donald R. Gentner. “Interfaces for consumer
products: "how to camouflage the computer?"” CHI'1992: Human factors in computing
systems, Monterey, CA, May 3 - 7, 1992. pp. 287-290.

[Card 1983] Stuart K. Card, Thomas P. Moran and Allen Newell. The Psychology of Human-
Computer Interaction. Hillsdale, NJ, Lawrence Erlbaum Associates. 1983.

[CMU 1998] CMU. Carnegie Mellon Pronuncing Dictionary. 1998.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[CMU 2006] CMU. Speech at CMU. Pittsburgh, PA, 2006. 2006.
http://www.speech.cs.cmu.edu/.

[de Baar 1992] D.J.M.J. de Baar, Foley, J.D., Mullet, K.E. “Coupling Application Design
and User Interface Design,” Conference on Human Factors and Computing Systems, Mon-
terey, California, ACM Press. 1992. pp. 259-266.

321

http://www.1394ta.org/
http://developer.mozilla.org/en/docs/The_Joy_of_XUL
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/

[Denis 2003] Charles Denis and Laurent Karsenty. “Inter-usability of multi-device systems:
A conceptual framework.” Multiple User Interfaces. A. Seffah and H. Javahery, Eds.
2003: John Wiley & Sons. pp. 373-385.

[DLNA 2006] DLNA. Digital Living Network Alliance Home Page. 2006.
http://www.dlna.org/.

[Doan 2001] AnHai Doan, Pedro Domingos and Alon Halevy. “Reconciling Schemas of
Disparate Data Sources: A Machine-Learning Approach,” SIGMOD, 2001. pp. 509-
520.

[Eisenstein 2001] Jacob Eisenstein, Jean Vanderdonckt and Angel R. Puerta. “Applying
model-based techniques to the development of UIs for mobile computers,” Intelligent
User Interfaces, Santa Fe, 2001. pp. 69-76.

[Eustice 1999] K.F. Eustice, T. J. Lehman, A. Morales, M. C. Munson, S. Edlund and M.
Guillen. “A Universal Information Appliance,” IBM Systems Journal. October, 1999.
38(4). pp. 575-601. http://www.research.ibm.com/journal/sj/384/eustice.html.

[Florins 2004] Murielle Florins, Daniella G. Trevisan and Jean Vanderdonckt. “The Conti-
nuity Property in Mixed Reality and Multiplatform Systems: A Comparative Study,”
CADUI'04, Funchal, Portugal, January 13-16, 2004. pp. 323-334.

[Foltz 2001] Mark A. Foltz. “Ligature: Gesture-Based Configuration of the E21 Intelligent
Environment,” Proceedings of the MIT Student Oxygen Workshop, 2001.

[Gajos 2004] K. Gajos, Weld, D. “SUPPLE: Automatically Generating User Interfaces,”
Intelligent User Interfaces, Funchal, Portugal, 2004. pp. 93-100.

[Gajos 2005a] Krzysztof Gajos, David Christianson, Raphael Hoffmann, Tal Shaked, Kiera
Henning, Jing Jing Long and Daniel S. Weld. “Fast And Robust Interface Genera-
tion for Ubiquitous Applications,” Seventh International Conference on Ubiquitous
Computing (UBICOMP), Tokyo, Japan, 2005a. pp. 37-55.

[Gajos 2005b] Krzysztof Gajos, Anthony Wu and Daniel S. Weld. “Cross-Device Consis-
tency in Automatically Generated User Interfaces,” Proceedings of the 2nd Workshop on
Multi-User and Ubiquitous User Interfaces, San Diego, January 9, 2005b. pp. 7-8.

[Gajos 2006] Krzysztof Z. Gajos, Jing Jing Long and Daniel S. Weld. “Automatically Gen-
erating Custom User Interfaces for Users With Physical Disabilities,” ASSETS,
Portland, OR, 2006. p. To appear.

[Gomes 2003] Lee Gomes. “Appliances Have Become Like PCs: Too Complex for Their
Own Good,” The Wall Street Journal OnLine. May 12, 2003.
http://www.pebbles.hcii.cmu.edu/puc/localmedia/wsj-20030512.pdf.

[Grudin 1989] Jonathan Grudin. “The Case Against User Interface Consistency,” CACM.
CACM. Oct, 1989, 1989. 32(10). pp. 1164-1173.

[Hall 2003] Richard S. Hall and Humberto Cervantes. “Gravity: Supporting Dynamically
Available Services in Client-Side Applications,” Proceedings of ESEC/FSE, Helsinki,
Finland, September 1-5, 2003. pp. 379-382.

Bibliography 322

http://www.dlna.org/
http://www.research.ibm.com/journal/sj/384/eustice.html
http://www.pebbles.hcii.cmu.edu/puc/localmedia/wsj-20030512.pdf

[Harris 2004] Thomas K. Harris and Roni Rosenfeld. “A Universal Speech Interface for
Appliances,” International Conference on Speech and Language Processing (ICSLP), Jeju, Ko-
rea, 2004.

[HAVi 2003] HAVi. Home Audio/Video Interoperability. 2003. 2003. http://www.havi.org.

[Hayes 1985] Philip J. Hayes, Pedro A. Szekely and Richard A. Lerner. “Design Alternatives
for User Interface Management Systems Based on Experience with COUSIN,” Hu-
man Factors in Computing Systems, San Francisco, CA, Apr, 1985, 1985. pp. 169-175.

[Herman 2006] Ivan Herman and Jim Hendler. Web Ontology Language OWL / W3C Semantic
Web Activity. 2006. http://www.w3.org/2004/OWL/.

[Hodes 1997] Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber and Lawrence
Rowe. “Composable ad-hoc mobile services for universal interaction,” Proceedings of
the Third annual ACM/IEEE international Conference on Mobile computing and networking
(ACM Mobicom'97), Budapest Hungary, September 26 - 30, 1997. pp. 1 - 12.

[IMTC 2006] Georgia Tech IMTC. Projects: V2 Universal Remote Console Standard. Atlanta,
GA, 2006. 2006.
http://www.imtc.gatech.edu/projects/technology/images/v2_winamp.html.

[INCITS/V2 2003] INCITS/V2. Universal Remote Console Specification. Alternate Interface Ac-
cess Protocol. Washington D.C., December 31, 2003.

[ISO 1988] ISO. Information Processing Systems - Open Systems Interconnection - LOTOS - A Formal
Description Technique Based on Temporal Ordering of Observational Behavior. 1988.

[Ivory 2001] Melody Y. Ivory and Marti A. Hearst. “The State of the Art in Automating Us-
ability Evaluation of User Interfaces,” ACM Computing Surveys. December, 2001.
33(4). pp. 470-516.

[John 1996] Bonnie E. John and David E. Kieras. “The GOMS Family of User Interface
Analysis Techniques: Comparison and Contrast,” ACM Transactions on Computer-
Human Interaction. 1996. 3(4). pp. 320-351.

[John 2004] Bonnie E. John, Konstantine Prevas, Dario D. Salvucci and Ken Koedinger.
“Predictive Human Performance Modeling Made Easy,” CHI, Vienna, Austria, April
24-29, 2004. pp. 455-462.

[Kellogg 1987] Wendy A. Kellogg. “Conceptual consistency in the user interface: Effects
on user performance,” Proceedings of INTERACT'87, Conference on Human-Computer In-
teraction, Stuttgart, September 1-4, 1987.

[Kieras 1995] David E. Kieras, Scott D. Wood, Kasen Abotel and Anthony Hornof.
“GLEAN: A Computer-Based Tool for Rapid GOMS Model Usability Evaluation of
User Interface Designs,” Eighth Annual Symposium on User Interface Software and Technol-
ogy, Pittsburgh, PA, Nov, 1995. pp. 91-100.

[Kim 2004] Jihie Kim, Marc Spraragen and Yolanda Gil. “An Intelligent Assistant for In-
teractive Workflow Composition,” Intelligent User Interfaces (IUI), Madeira, Portugal,
2004. pp. 125-131.

Bibliography 323

http://www.havi.org/
http://www.w3.org/2004/OWL/
http://www.imtc.gatech.edu/projects/technology/images/v2_winamp.html

[Kim 1993] Won Chul Kim and James D. Foley. “Providing High-level Control and Expert
Assistance in the User Interface Presentation Design,” Human Factors in Computing
Systems, Amsterdam, The Netherlands, Apr, 1993. pp. 430-437.

[Lieberman 2006] Henry Lieberman and Jose Espinosa. “A Goal-Oriented Interface to
Consumer Electronics using Planning and Commonsense Reasoning,” Intelligent User
Interfaces, Sydney, Australia, 2006. pp. 226-233.

[Limbourg 2004] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon and Victor Lopez-Jaquero. “UsiXML: a Language Supporting Multi-Path
Development of User Interfaces,” 9th IFIP Working Conference on Engineering for Hu-
man-Computer Interaction jointly with 11th International Workshop on Design, Specification, and
Verification of Interactive Systems (EHCI-DSVIS'2004), Hamburg, Germany, 2004. pp.
200-220.

[Madhaven 2001] Jayant Madhaven, Philips A. Bernstein and Erhard Rahm. “Generic
Schema Matching with Cupid,” 27th VLDB Conference, 2001.

[Mahajan 1997] R. Mahajan and B. Shneiderman. “Visual and Textual Consistency Checking
Tools for Graphical User Interfaces,” IEEE Transactions on Software Engineering. 1997.
23(11). pp. 722-735.

[Melnik 2002] Sergey Melnik, Hector Garcia-Molina and Erhard Rahm. “Similarity Flood-
ing: A Versatile Graph Matching Algorithm and its Application to Schema
Matching,” 18th ICDE, San Jose, CA, 2002. pp. 117-128.

[Merrill 2006] Duane Merrill. Mashups: The new breed of Web app. 2006. http://www-
128.ibm.com/developerworks/library/x-mashups.html.

[Microsoft 2006] Microsoft. XAML. 2006. http://windowssdk.msdn.microsoft.com/en-
us/library/ms747122.aspx.

[Miori 2006] Vittorio Miori, Luca Tarrini, Maurizio Manca and Gabriele Tolomei. “Do-
moNot: a framework and a prototype for interoperability of domotic middlewares
based on XML and Web Services,” International Conference on Consumer Electronics
(ICCE'06), January 7-11, 2006. pp. 117-118.

[Mori 2004] Giulio Mori, Fabio Paterno and Carmen Santoro. “Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions,” IEEE Transac-
tions on Software Engineering. 2004. 30(8). pp. 1-14.

[Mori 2002] Guillo Mori, Fabio Paterno and Carmen Santoro. “CTTE: Support for Devel-
oping and Analyzing Task Models for Interactive System Design,” IEEE Transactions
on Software Engineering. September 2002, 2002. 28(9). pp. 797-813.

[Myers 2000] Brad A. Myers, Scott E. Hudson and Randy Pausch. “Past, Present and Future
of User Interface Software Tools,” ACM Transactions on Computer Human Interaction.
2000. 7(1). pp. 3-28.

[Newman 2002] Mark W. Newman, Shahram Izadi, W. Keith Edwards, Jana Z. Sedivy and
Trevor F. Smith. “User Interfaces When and Where They are Needed: An Infra-
structure for Recombinant Computing,” UIST'02, Paris, France, October 27-30,
2002. pp. 171-180.

Bibliography 324

http://www-128.ibm.com/developerworks/library/x-mashups.html
http://www-128.ibm.com/developerworks/library/x-mashups.html
http://windowssdk.msdn.microsoft.com/en-us/library/ms747122.aspx
http://windowssdk.msdn.microsoft.com/en-us/library/ms747122.aspx

 [Nichols 2002a] J. Nichols, Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld,
R., Shriver, S. “Requirements for Automatically Generating Multi-Modal Interfaces
for Complex Appliances,” ICMI, Pittsburgh, PA, 2002a.

[Nichols 2002b] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas
K. Harris, Roni Rosenfeld and Mathilde Pignol. “Generating Remote Control Inter-
faces for Complex Appliances,” UIST 2002, Paris, France, 2002b. pp. 161-170.

[Nichols 2003] J. Nichols, Myers, B.A. “Studying The Use Of Handhelds to Control Smart
Appliances,” 23rd International Conference on Distributed Computing Systems Workshops
(ICDCS '03), Providence, RI, May 19-22, 2003. pp. 274-279.

 [Nichols 2004a] Jeffrey Nichols and Brad Myers. Report on the INCITS/V2 AIAP-URC
Standard. 2004a. http://www.cs.cmu.edu/~jeffreyn/papers/cmu-puc-v2-report.pdf.

[Nichols 2004b] Jeffrey Nichols, Brad A. Myers and Kevin Litwack. “Improving Automatic
Interface Generation with Smart Templates,” Intelligent User Interfaces, Funchal, Portu-
gal, 2004b. pp. 286-288.

[Nichols 2005] Jeffrey Nichols and Brad A. Myers. “Generating Consistent User Interfaces
for Appliances,” Workshop on Multi-User and Ubiquitous User Interfaces (MU3I), San
Diego, CA, 2005. pp. 9-10.
http://www.jeffreynichols.com/papers/nichols-mu3i.pdf.

[Nielsen 1993] Jakob Nielsen. Usability Engineering. Boston, Academic Press. 1993.

[Nylander 2004] Stina Nylander, Markus Bylund and Annika Waern. “The Ubiquitous In-
teractor - Device Independent Access to Mobile Services,” Computer-Aided Design of
User Interfaces (CADUI), Madeira, Portgual, 2004. pp. 271-282.

[Olsen Jr. 1989] Dan R. Olsen Jr. “A Programming Language Basis for User Interface
Management,” Human Factors in Computing Systems, Austin, TX, Apr, 1989, 1989. pp.
171-176.

[Olsen Jr. 2000] Dan R. Olsen Jr., Sean Jefferies, Travis Nielsen, William Moyes and Paul
Fredrickson. “Cross-modal Interaction using Xweb,” Proceedings UIST'00: ACM
SIGGRAPH Symposium on User Interface Software and Technology, San Diego, CA, 2000.
pp. 191-200.

[Omojokun 2006] Olufisayo Omojokun, Jeffrey S. Pierce, Charles L. Isbell Jr. and Prasun
Dewan. “Comparing End-User and Intelligent Remote Control Interface Genera-
tion,” Personal and Ubiquitous Computing. April, 2006. 10(2-3). pp. 136-143.

[OSGi 2006] OSGi. The OSGi Alliance Home Page. 2006. http://www.osgi.org/.

[Paterno 1997] Fabio Paterno, C. Mancini and S. Meniconi. “ConcurTaskTrees: A Dia-
grammatic Notation for Specifying Task Models,” INTERACT, Sydney, Australia,
1997. pp. 362-269.

[Polson 1986] Peter G. Polson, E. Muncher and G. Engelbeck. “A test of a common ele-
ments theory of transfer,” SIGCHI conference on Human factors in computing systems, New
York, NY, ACM Press. 1986. pp. 78-83.

Bibliography 325

http://www.cs.cmu.edu/%7Ejeffreyn/papers/cmu-puc-v2-report.pdf
http://www.jeffreynichols.com/papers/nichols-mu3i.pdf
http://www.osgi.org/

[Polson 1988] Peter G. Polson. “The consequences of consistent and inconsistent user in-
terfaces.” Cognitive science and its applications for human-computer interaction. 1988:
Hillsdale, NJ, Lawrence-Erlbaum.

[Ponnekanti 2001] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan and T.Winograd.
“ICrafter: A service framework for ubiquitous computing environments,” UBI-
COMP 2001, Atlanta, Georgia, 2001. pp. 56-75.

[Puerta 2002] A. Puerta, Eisenstein, J. “XIML: A Common Representation for Interaction
Data,” 7th International Conference on Intelligent User Interfaces, San Francisco, 2002. pp.
214-215.

[Puerta 1997] Angel R. Puerta. “A Model-Based Interface Development Environment,”
IEEE Software. July/August, 1997. 14(4). pp. 41-47.

[Reisner 1981] Phyllis Reisner. “Formal Grammar and Human Factors Design an Interac-
tive Graphics System,” IEEE Transactions on Software Engineering. March 1981, 1981.
SE-7(2). pp. 229-240.

[Reisner 1990] Phyllis Reisner. “What is inconsistency?” INTERACT, 1990. pp. 175-181.

[Rheinfrank 1996] J. Rheinfrank and S. Evenson. “Design Languages.” Bringing Design to
Software. T. Winograd, Ed. 1996: New York, Addison-Wesley (ACM Press). pp. 63-
80.

[Rich 2005] Charles Rich, Candy Sidner, Neal Lesh, Andrew Garland, Shane Booth and
Markus Chimani. “DiamondHelp: A Graphical User Interface Framework for Hu-
man-Computer Collaboration,” IEEE International Conference on Distributed Computing
Systems Workshops, June, 2005. pp. 514-519.

[Rosenfeld 2001] Roni Rosenfeld, Jr. Olsen, Dan and Alex Rudnicky. “Universal Speech
Interfaces,” interactions: New Visions of Human-Computer Interaction. 2001. VIII(6). pp.
34-44.

[Sandridge 2005] Nick Sandridge, Brian LaShomb, Katrina Roan and Terri Chapman. Code
Generation for J2ME and C#-based Mobile Devices using Domain Specific XML-Based Source
Languages. 2005. http://unix.eng.ua.edu/~blashomb/reu/491paper.doc.

[Satzinger 1998] John W. Satzinger and Lorne Olfman. “User Interface Consistency Across
End-User Applications: The Effects on Mental Models,” Journal of Information Man-
agement Systems. 1998. 14(4). pp. 167-193.

[Shriver 2001] S. Shriver, Toth, A., Zhu, X., Rudnikcy, A., Rosenfeld, R. “A Unified Design
for Human-Machine Voice Interaction,” Extended Abstracts of CHI 2001, Seattle, WA,
March31-April 5, 2001. pp. 247-248.

[Shvaiko 2005] Pavel Shvaiko and Jerome Euzenat. “A Survey of Schema-based Matching
Approaches,” Journal on Data Semantics. 2005.

[Sproat 1998] R. Sproat, Hunt, A., Ostendorf, P., Taylor, P., Black, A., Lenzo, K., Edging-
ton, M. “SABLE: A Standard for TTS Markup,” International Conference on Spoken
Language Processing, Sydney, Australia, 1998.

Bibliography 326

http://unix.eng.ua.edu/%7Eblashomb/reu/491paper.doc

[Srivastava 2003] Biplav Srivastava and Java Koehler. “Web Service Composition: Current
Solutions and Open Problems,” ICAPS Workshop on Planning and Scheduling for Web
and Grid Services, 2003. pp. 28-35.

[Staab 2003] Steffen Staab, et. al. “Web Services: Been There, Done That?” IEEE Intelligent
Systems. 2003. 18(1). pp. 72-85.

[Sukaviriya 1990] Piyawadee Sukaviriya and James D. Foley. “Coupling A UI Framework
with Automatic Generation of Context-Sensitive Animated Help,” ACM SIG-
GRAPH Symposium on User Interface Software and Technology, Snowbird, Utah, Oct,
1990, 1990. pp. 152-166.

[Sukaviriya 1993] Piyawadee Sukaviriya, James D. Foley and Todd Griffith. “A Second
Generation User Interface Design Environment: The Model and The Runtime Ar-
chitecture,” Human Factors in Computing Systems, Amsterdam, The Netherlands, Apr,
1993. pp. 375-382.

[Sun 2003] Sun. Jini Connection Technology. 2003.

[Sycara 2003] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar and Naveen Srinivasan.
“Automated Discovery, Interaction, and Composition of Semantic Web Services,”
Journal of Web Semantics. 2003. 1(1).

[Szekely 1995] P. Szekely, Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher, E.
“Declarative Interface Models for User Interface Construction Tools: the Master-
mind Approach,” 6th IFIP Working Conference on Engineering for Human Computer
Interaction, Grand Targhee Resort, 1995. pp. 120-150.

[Szekely 1992] Pedro Szekely, Ping Luo and Robert Neches. “Facilitating the Exploration
of Interface Design Alternatives: The HUMANOID Model of Interface Design,”
Human Factors in Computing Systems, Monterey, CA, May, 1992, 1992. pp. 507-515.

[Szekely 1996] Pedro Szekely. “Retrospective and Challenges for Model-Based Interface
Development,” 2nd International Workshop on Computer-Aided Design of User Interfaces,
Namur, Namur University Press. June 5-7, 1996. pp. 1-27.

[Tomko 2004] Stefanie Tomko and Roni Rosenfeld. “Speech Graffiti vs. Natural Language:
Assessing the User Experience,” HLT/NAACL, Boston, MA, 2004.

[UPnP 2005] UPnP. Universal Plug and Play Forum. 2005. 2005. http://www.upnp.org.

[Vander Zanden 1990] Brad Vander Zanden and Brad A. Myers. “Automatic, Look-and-
Feel Independent Dialog Creation for Graphical User Interfaces,” Human Factors in
Computing Systems, Seattle, WA, Apr, 1990. pp. 27-34.

[Vanderdonckt 1995] J. Vanderdonckt. “Knowledge-Based Systems for Automated User
Interface Generation: the TRIDENT Experience,” Technical Report RP-95-010, Na-
mur: Facultes Universitaires Notre-Dame de la Paix, Institut d' Informatique, 1995.

[Vanderdonckt 1999] J. Vanderdonckt. “Advice-Giving Systems for Selecting Interaction
Objects,” User Interfaces to Data Intensive Systems. 1999. pp. 152-157.

[W3C 2006] W3C. Resource Description Framework (RDF). 2006. http://www.w3.org/RDF/.

[Ward 1990] W. Ward. “The CMU Air Travel Information Service: Understanding Sponta-
neous Speech,” DARPA Speech and Natural Language Workshop, 1990.

Bibliography 327

http://www.upnp.org/
http://www.w3.org/RDF/

[Wiecha 1990] Charles Wiecha, William Bennett, Stephen Boies, John Gould and Sharon
Greene. “ITS: A Tool for Rapidly Developing Interactive Applications,” ACM
Transactions on Information Systems. Jul, 1990, 1990. 8(3). pp. 204-236.

Bibliography 328

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	1.1 The Personal Universal Controller
	1.2 Topics Outside the Scope of this Work
	1.3 Contributions
	1.4 Dissertation Overview

	2 Related Work
	2.1 Control of Appliances
	2.1.1 Commercial Products
	2.1.2 Commercial Standards
	2.1.2.1 INCITS/V2 Standard
	2.1.2.2 Universal Plug and Play
	2.1.2.3 Digital Living Network Alliance
	2.1.2.4 Home Audio-Video Interoperability
	2.1.2.5 JINI
	2.1.2.6 OSGi

	2.1.3 Research Systems
	2.1.3.1 Universal Interactor
	2.1.3.2 IBM Universal Information Appliance
	2.1.3.3 ICrafter
	2.1.3.4 Xweb
	2.1.3.5 Ubiquitous Interactor
	2.1.3.6 Analyses of Actual Remote Control Usage
	2.1.3.7 DiamondHelp
	2.1.3.8 Roadie

	2.2 Automatic & Guided User Interface Design
	2.2.1 Early Model-Based Systems
	2.2.1.1 Mickey
	2.2.1.2 Jade
	2.2.1.3 UIDE
	2.2.1.4 Humanoid
	2.2.1.5 Mastermind
	2.2.1.6 ITS
	2.2.1.7 TRIDENT

	2.2.2 Model-Based Systems for Very Large Interfaces and Platform Independence
	2.2.2.1 Mobi-D
	2.2.2.2 ConcurTaskTrees
	2.2.2.3 XIML
	2.2.2.4 IBM PIMA and MDAT
	2.2.2.5 UIML and TIDE
	2.2.2.6 TERESA
	2.2.2.7 USIXML
	2.2.2.8 XAML and XUL
	2.2.2.9 SUPPLE

	2.3 Aggregate User Interfaces

	3 Preliminary User Studies
	3.1 Hand-Designed User Interfaces
	3.2 User Studies
	3.2.1 Procedure
	3.2.2 Evaluation

	3.3 Study #1
	3.3.1 Participants
	3.3.2 Results
	3.3.3 Discussion

	3.4 Study #2
	3.4.1 Participants
	3.4.2 Results
	3.4.3 Discussion

	3.5 Analysis of Interfaces
	3.6 Requirements
	3.6.1 Two-Way Communication
	3.6.2 Simultaneous Multiple Controllers
	3.6.3 No Specific Layout Information
	3.6.4 Hierarchical Grouping
	3.6.5 Actions as State Variables and Commands
	3.6.6 Dependency Information
	3.6.7 Sufficient Labels
	3.6.8 Shared High-Level Semantic Knowledge

	4 System Implementation
	4.1 Architecture
	4.2 Controlling Appliances
	4.3 Generating Interfaces on Controller Devices
	4.3.1 PocketPC and Desktop Implementation
	4.3.2 Smartphone Implementation

	4.4 Communication

	5 Specification Language
	5.1 Design Principles
	5.2 Language Design
	5.2.1 Functional Language Elements
	5.2.1.1 Appliance Objects
	5.2.1.2 Type Information
	5.2.1.3 Label Information
	5.2.1.4 Dependency Information
	5.2.1.5 Group Tree
	5.2.1.6 Complex Data Structures
	5.2.1.7 Smart Templates

	5.2.2 Content Flow Language Elements
	5.2.2.1 Ports
	5.2.2.2 Internal Flows: Sources, Sinks, and Passthroughs

	5.3 Evaluation of the Specification Language
	5.3.1 Completeness
	5.3.2 Learnability and Ease of Use

	6 Consistency
	6.1 Understanding Consistency
	6.1.1 Evaluating Consistency
	6.1.2 Applying Consistency

	6.2 Specification Authoring Study
	6.2.1 Study #1
	6.2.2 Study #2
	6.2.3 Discussion

	6.3 Requirements for Consistency
	6.4 Understanding and Finding Similarities between Specifications
	6.4.1 Knowledge Base
	6.4.1.1 Mapping Graphs

	6.4.2 Automatically Finding Mappings

	7 Handling Domain-Specific and Conventional Knowledge
	7.1 Roles
	7.2 Design and Use
	7.2.1 Implementing a Smart Template for an Interface Generator

	7.3 Smart Template Library
	7.4 Discussion

	8 Interface Generation
	8.1 Generation Platforms
	8.1.1 PocketPC and Desktop
	8.1.2 Smartphone
	8.1.3 Speech

	8.2 General Concepts
	8.3 Generating the Abstract Interface
	8.3.1 Mutual Exclusions in Dependency Information
	8.3.2 Choosing Abstract Interaction Objects

	8.4 Modifying the Abstract Interface for Consistency
	8.4.1 Heuristics for Unique Functions
	8.4.2 Functional Modifications
	8.4.3 Structural Modifications
	8.4.3.1 Moving
	8.4.3.2 Re-ordering

	8.5 Generating the Concrete Interface
	8.5.1 PocketPC and Desktop
	8.5.1.1 Creating the Initial Interface
	8.5.1.2 Fixing Layout Problems

	8.5.2 Smartphone

	8.6 Modifying the Concrete Interface for Consistency
	8.7 Results and Discussion

	9 Aggregating User Interfaces
	9.1 Scenarios
	9.2 Content Flow for Understanding Systems of Appliances
	9.3 Aggregation Architecture
	9.4 Flow-Based Interface
	9.5 Aggregate User Interfaces
	9.5.1 Active Flow Controls
	9.5.2 Active Flow Setup
	9.5.3 General Setup
	9.5.4 Merging Controls

	9.6 Discussion

	10 Usability Evaluation
	10.1 Interfaces
	10.2 Protocol
	10.2.1 Tasks

	10.3 Participants
	10.4 Evaluation of Usability
	10.4.1 Results
	10.4.2 Discussion of Usability

	10.5 Evaluation of Consistency
	10.5.1 Results
	10.5.2 Discussion of Consistency

	10.6 Discussion

	11 Conclusion
	11.1 Discussion
	11.2 Impact
	11.3 Contributions
	11.4 Future Work
	11.5 Final Remarks
	A Sample VCR Specification
	B Specification Language Reference
	B.1 XML Schema
	B.2 Element Index
	B.3 Element Descriptions
	C Other PUC XML Language Schemas
	C.1 Communication Protocol Schema
	C.2 Knowledge Base Schema
	C.3 Multi-Appliance Wiring Diagram Schema

	D Specification Authoring Study Instructions
	E Usability Study Instructions
	F Gallery of PUC Interfaces

