

EdgeWrite: A Versatile Design for
Text Entry and Control

Jacob O. Wobbrock

July 2006
CMU-HCII-06-104

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Brad A. Myers, Chair

Scott E. Hudson
Jennifer Mankoff

Richard C. Simpson, University of Pittsburgh
Shumin Zhai, IBM Almaden Research Center

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 2006 Jacob O. Wobbrock. All rights reserved.

This work was supported in part by the National Science Foundation under grant
UA-0308065. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the author and do not necessarily reflect those of the National
Science Foundation. Additional support was provided by General Motors, Microsoft,
NEC Foundation of America, NISH, Synaptics, and A.T. Sciences.

 ii

Keywords: Text entry, text input, unistrokes, gestures, assistive technology, computer
access, universal access, universal design, motor impairments, situational impairments,
mobile device, mobile phone, handheld, PDA, stylus, game controller, displacement
joystick, isometric joystick, power wheelchair joystick, touchpad, trackball, on-screen
keyboard, capacitive sensors, word prediction, word completion, goal crossing, physical
edges, EdgeWrite, Pebbles, Fitts’ law, Hick-Hyman law, Steering law, Zipf’s law.

 iii

Abstract
This dissertation presents a versatile design for text entry and control called EdgeWrite.

EdgeWrite was designed to provide accessible text entry on a variety of platforms to

people with motor impairments and to able-bodied users of small devices.

The EdgeWrite design includes a square input area, four corner sensors, corner-

sequence recognition, physical edges, goal crossing, and unistroke segmentation.

Advanced EdgeWrite features include continuous recognition feedback, non-recognition

retry, slip detection, and word-level stroking—concepts not before realized in a text entry

method. The EdgeWrite alphabet, which is the same for all EdgeWrite versions, was

designed for maximum guessability and learnability through participatory design. A key

result is that EdgeWrite is about as guessable as Palm OS Graffiti, a method lauded for its

immediate usability.

Multiple versions of EdgeWrite were built and user-tested, including Stylus

EdgeWrite for the Palm OS, Joystick EdgeWrite for game controllers and power

wheelchairs, Touchpad EdgeWrite, Trackball EdgeWrite, Isometric Joystick EdgeWrite

for mobile phones, and EdgeWrite on four keys or sensors. For each version, empirical

results from formal user studies were obtained. Of particular importance for users with

motor impairments are the results for Stylus and Trackball EdgeWrite, which show

marked improvements over existing techniques. In addition, five versions of EdgeWrite

built by other researchers further highlight EdgeWrite’s versatility.

As part of EdgeWrite’s ongoing evaluations, a new character-level error analysis for

text entry input streams was developed. This error analysis and the algorithms that

automate it constitute a methodological and theoretical contribution to the field of text

entry evaluation and measurement.

The thesis is:

A versatile design for text entry and control called “EdgeWrite,” which

uses physical edges, goal crossing, and a minimized need for sensing, is

effective on handhelds and desktops for people with motor and

situational impairments.

 iv

Acknowledgements
I would like to thank my advisor, Brad A. Myers, for his faithful support and sharp

insight. Not one of my projects would have fared as well apart from his input. It has been

a real pleasure working with him for five years. Along these lines, I also thank Scott E.

Hudson for his helpful comments.

My other committee members deserve special thanks for their time and energy in

improving this work. Jennifer Mankoff was a source of directional help. Richard C.

Simpson provided valuable access to subjects and resources. Shuman Zhai inspired me

by the rigor of his methods and brilliance of his innovations.

Along with Shumin Zhai, I owe an intellectual debt to I. Scott MacKenzie and R.

William Soukoreff for escorting text entry into the 21st century. Without these scientists,

my work would have been greatly impoverished.

This work has corporate and governmental sponsors and collaborators who deserve

thanks: the National Science Foundation, General Motors, Microsoft, NEC Foundation of

America, NISH, Synaptics, and A.T. Sciences.

A number of students, faculty, and others have influenced this work. In alphabetical

order, they are: Gregory Abowd, Sonya Allin, Lisa Anthony, Chris Atkeson, Htet Htet

Aung, Daniel Avrahami, Thi Truong Avrahami, Ryan S. Baker, Aaron Bauer, Gábor

Blaskó, Matthew Blythe, Dan Boyarski, Connie Campbell, Duen Horng Chau, Ed Chi,

Benjamin Cramer, Marian D’Amico, Kim D’Ewart, Victoria Danforth, Andrew Faulring,

James Fogarty, Jodi Forlizzi, Susan Fussell, Darren Gergle, Iván E. González, Steve

Hayashi, Mitch Hill, Bonnie John, Geoff Kembel, John Kembel, Silvia Kembel, Pedram

Keyani, Sara Kiesler, Roberta Klatzky, Andrew Ko, Panu Korhonen, Robert Kraut,

Queenie Kravitz, Johnny C. Lee, Edmund F. LoPresti, Tom Lorusso, Bob Milan, Jeffrey

Nichols, Sue O’Connor, Dan Olsen, Roni Rosenfeld, Brandon Rothrock, Joe Rutledge,

John SanGiovanni, A. Fleming Seay, Ted Selker, Howard Seltman, Michael Sinclair,

John Springsteen, Jeffrey Stylos, Alan Tannenbaum, Janis Thoma-Negley, James A.

Vroom, Elaine Wherry, Matthew Wick, Andrew Wilson, Alison N. P. Wobbrock,

Nicholas J. Wobbrock, and John Zimmerman. Thank you, all.

 v

My gratitude goes to my church friends in both California and in Pittsburgh. Whether

we journeyed only briefly or over the long haul, it was indeed the journey that mattered;

and not because of the road we walked, but because of who we walked it with. I admire

your commitment to faith.

My family—Góralska and American—has earned my deep thanks for their

encouragement, generosity, and devotion. My father and mother deserve great thanks for

their lifelong love and support. Without them I would not have lasted long in this Ph.D.

program. I count on my brother to keep me humble. I know he always will.

Finally, to my wife Ala, to whom this dissertation is dedicated: You have been my

strength, my will, and my rock. There is no one for whom I would more gladly punch

keys. If I can be half as good a man as you are woman to me, I will be twice as good a

man as any man could ever be.

 vi

Dedication

To Ala
Kocham cię

 vii

Table of Contents

Abstract iii

Acknowledgements iv

Dedication vi

Table of Contents vii

List of Figures xi

List of Tables xxi

1 Introduction 1
1.1 Motivation..1

1.1.1 The Need for Better Computer Access...1
1.1.2 The Need for Mobile Device Accessibility ..2
1.1.3 A Versatile Design for Text Entry and Control....................................4

1.2 The EdgeWrite Concept...6
1.3 Research Approach ..7
1.4 Dissertation Organization ..8

2 Related Work 11
2.1 Universal Design..11

2.1.1 Situational Impairments ...12
2.1.2 Mobile Device Accessibility ..13

2.2 Beating Fitts’ Law..14
2.2.1 Edges in the Interface ...15
2.2.2 Goal Crossing ...17

2.3 Input Devices and Techniques ...18
2.3.1 Multi-device Input..19
2.3.2 Stylus Input...21
2.3.3 Word-level Stroking ...23
2.3.4 Displacement Joystick Input...24
2.3.5 Touchpad Input...25
2.3.6 Trackball Input ...27
2.3.7 Isometric Joystick Input ...29
2.3.8 Mobile Keypad Input..30

2.4 Text Entry Evaluation ..33
2.4.1 Speed ..34
2.4.2 MSD and KSPC..35
2.4.3 Uncorrected, Corrected, and Total Errors ..36

3 The EdgeWrite Design 39
3.1 Background ..39

3.1.1 Remote Commander...39
3.1.2 Edge Keyboards ...40

 viii

3.1.3 Line Tracing Study...41
3.1.4 Genesis of EdgeWrite...43

3.2 Core Concepts..44
3.3 The EdgeWrite Alphabet ...47

3.3.1 Alphabet Design ...47
3.3.2 Theoretical Properties...52
3.3.3 Maximizing Guessability ...54

3.4 Advanced Features...63
3.4.1 Continuous Recognition Feedback...63
3.4.2 Non-recognition Retry..64
3.4.3 Slip Detection ...65

3.5 Fisch Word-level Stroking...67
3.5.1 Motivation ..67
3.5.2 The Fisch Design..68
3.5.3 Fisch Implementation ...71

3.6 EdgeWrite Technology ..73
3.6.1 EdgeWrite Library..73
3.6.2 Programmer’s Reference ..75
3.6.3 Palm OS HACK ...76

4 Stylus EdgeWrite 79
4.1 Motivation..79
4.2 Design ..81

4.2.1 The Feel of Stylus EdgeWrite ..81
4.2.2 The Design of Corners ...81
4.2.3 The Plastic Template ..83
4.2.4 Application Preferences..84
4.2.5 Fisch in Stylus EdgeWrite ..85

4.3 Evaluation ..85
4.3.1 Novice Able-bodied Use ..86
4.3.2 Novice Motor-impaired Use...90
4.3.3 Expert Able-bodied Use ...92

5 Joystick EdgeWrite 93
5.1 Motivation..93
5.2 Design ..94

5.2.1 Some Challenges of Writing with a Joystick......................................94
5.2.2 The Suitability of EdgeWrite..96
5.2.3 Interaction Design ..96

5.3 Evaluation ..98
5.3.1 Competitor Methods...98
5.3.2 Novice Use ...100
5.3.3 Expert Use ..107

 ix

6 EdgeWrite for Power Wheelchairs 109
6.1 Motivation..109
6.2 Design ..111

6.2.1 PW-Joystick EdgeWrite ...111
6.2.2 Touchpad EdgeWrite..113

6.3 Evaluation ..114
6.3.1 Power Wheelchair Users: Single Session...115
6.3.2 Power Wheelchair Users: Multiple Sessions....................................121
6.3.3 Expert Able-bodied Use ...130

7 Trackball EdgeWrite 131
7.1 Motivation..131
7.2 Design ..133

7.2.1 Initial Design: Impenetrable Virtual Edges133
7.2.2 Crossing to Stroke ..134
7.2.3 Determining the First Corner..137
7.2.4 Interaction Design ..139
7.2.5 Fisch in Trackball EdgeWrite...141
7.2.6 Implementation...142

7.3 Evaluation ..142
7.3.1 Theoretical Model ..143
7.3.2 Novice Able-bodied Use ..147
7.3.3 Longitudinal Motor-impaired Use..148
7.3.4 Motor-impaired Use with Word-level Stroking153

8 EdgeWrite for Mobile Phones 159
8.1 Motivation..159
8.2 Design ..162
8.3 Evaluation ..164

8.3.1 Character-level EdgeWrite vs. Multitap ...165
8.3.2 EdgeWrite and Multitap Eyes-Free ..171
8.3.3 Isometric Joystick on the Back...172
8.3.4 Word-level EdgeWrite vs. T9...175

9 EdgeWrite on Four Keys or Sensors 181
9.1 Motivation..181
9.2 Design ..182
9.3 Evaluation ..183

9.3.1 Competitor Methods...184
9.3.2 Method..185
9.3.3 Results ..187

9.4 Four Capacitive Sensors ..190
9.4.1 Implementation...190
9.4.2 Evaluation...192

 x

10 EdgeWrite by Others 195
10.1 Steering Wheel EdgeWrite (González)..195
10.2 WatchPad EdgeWrite (Blaskó and Feiner) ..197
10.3 Edgeless EdgeWrite (Andersen and Zhai) ...198
10.4 EdgePad for the GP32 (Ward) ...199
10.5 JMEdge (Richez) ...200

11 A New Character-level Error Analysis 203
11.1 Motivation..203

11.1.1 Aggregate and Character-level Errors ..206
11.1.2 Advantages of Using Input Streams ...207
11.1.3 Limitations of this Analysis..208

11.2 A Prior Analysis of P and T ...209
11.3 Making Sense of Input Streams ...212

11.3.1 Input Stream Error Types ...212
11.3.2 Assumptions for Resolving Ambiguity ..217

11.4 Error Detection and Classification...223
11.4.1 Algorithm Walkthrough Step by Step ..223
11.4.2 Character-level Metrics ..230
11.4.3 TextTest and StreamAnalyzer ..232

11.5 Comparison of Analyses ..233
11.5.1 Error Rate Tables..233
11.5.2 Confusion Matrices ..235

11.6 Summary ..237

12 Conclusion 239
12.1 Discussion ..239

12.1.1 Design Space ..239
12.1.2 Major Results ...241
12.1.3 Reflections and Insights ...243

12.2 Contributions..246
12.3 Future Work ...248
12.4 Final Remarks ..251

Appendix A: EdgeWrite Character Set 253

Bibliography 267

 xi

List of Figures
Figure 1.1. Numerous mobile devices exist on the market today, but many of

these devices remain inaccessible to both motor- and situationally-impaired
users.. 3

Figure 1.2. The devices on which EdgeWrite text entry has been implemented. 4
Figure 1.3. The word “edgewrite” written with depictions from the EdgeWrite

character chart. A heavy dot indicates the start of each letter. 7
Figure 2.1. Fitts’ law models the time required to access a target of size W at a

distance A units away. .. 14
Figure 2.2. Lewis Carroll’s Nyctograph alphabet, written under the bed-clothes

inside a series of square holes, one letter per hole. Courtesy of Alan
Tannenbaum. .. 16

Figure 2.3. The Macintosh menu bar and the After Dark screen saver, both of
which used impenetrable screen edges to improve target acquisition........................ 17

Figure 2.4. Crossing follows Fitts’ law but with the W constraint orthogonal to
the movement trajectory, rather than collinear... 17

Figure 2.5. In Dasher, probabilistic letter regions expand rapidly from right-to-
left toward the mouse cursor. Here the user is writing “Hello.” Used with
permission. ... 19

Figure 2.6. The MDITIM alphabet. Image adapted from (MacKenzie and
Soukoreff 2002b). Used with permission. .. 20

Figure 2.7. Quikwriting and its successor, Xnav. The stroke on the left produces
the word “quik”. Images are from (MacKenzie and Soukoreff 2002b) and
(Kanellos 2006). Used with permission. .. 21

Figure 2.8. The Graffiti alphabet and numerals. Note the similarity to hand-
printed Roman alphanumerics for most characters. ... 22

Figure 2.9. SHARK stylus keyboards allow both tapping and stroking of words.
The user has stroked the pattern for the word “system,” even though the
stroke itself is not required to hit every letter in the word. The idealized
pattern is also shown. Image taken from (Kristensson and Zhai 2004). Used
with permission. ... 23

Figure 2.10. Silverberg et al.’s prototype. In the right image, the left touchpad is
used to pan in four directions, and the right touchpad is used to zoom. Used
with permission. ... 26

Figure 2.11. WiViK with word prediction and completion. Preferences allow
letters and words to be triggered by either clicking or dwelling. 28

Figure 2.12. From left to right: Zhai et al.’s joystick mouse, Silfverberg et al.’s
one-handed pointer, Chau et al.’s EdgeWrite phones (front and back), and
Zaborowski’s musical ThumbTec. Images are taken from their respective
papers. Used with permission... 29

 xii

Figure 2.13. The Glenayre AccessLink II two-way pager and its alphabetic layout
for use with five keys. The layout is adapted from (MacKenzie 2002b). Used
with permission. ... 31

Figure 2.14. TextTest general-purpose text entry evaluation software............................ 34
Figure 3.1. This 12 year-old with Muscular Dystrophy is using Remote

Commander attached to his desktop PC. His text entry options are a stylus
keyboard or Graffiti (right), both of which are difficult. Images adapted from
(Myers et al. 2002). .. 40

Figure 3.2. An Edge Keyboard for the Palm OS. The phrase “the woman” has
been entered. Letters were arranged to minimize weighted digraph distance
using a simulated annealing algorithm. Image adapted from (Wobbrock et al.
2003a)... 41

Figure 3.3. The line tracing patterns varied according to the presence or absence
of edges and corners. The lines in condition 1 are presented at various angles
according to the ISO 9241-9 standard. Images adapted from (Wobbrock
2003)... 42

Figure 3.4. Results from the line tracing study. Lower is better for all measures.
Moving from left-to-right within each line type moves correspondingly down
the key at right.. 43

Figure 3.5. A conceptual EdgeWrite square with four corner regions. All
EdgeWrite input takes place within its square. The letter “a” is shown as it
might be written using a stylus. The heavy dot marks the beginning of the
stroke. ... 44

Figure 3.6. Defining strokes by their corner sequences allows wiggle to be
tolerated (left) and underlying mouse movement to be portrayed as clean arcs
between corners (right)... 44

Figure 3.7. Using four corners means that the same stroke made in different parts
of the square can be differentiated. The left stroke produces an “i”; the right, a
numeral “1”. ... 45

Figure 3.8. These strokes for “c”, “m”, and “u” can be defined with hexadecimal
integers 0x2184, 0x181424, and 0x1842, respectively. Corners are encoded in
4 bits. .. 46

Figure 3.9. The EdgeWrite character chart. This version shows only primary
forms... 48

Figure 3.10. EdgeWrite letters “b”, “d”, and “g” contain loops that become
“collapsed” along one edge. ... 49

Figure 3.11. EdgeWrite letters “w”, “m”, and “y” all contain a double-pass. 49
Figure 3.12. Two early attempts at portraying EdgeWrite characters. Neither

image does a good job at indicating the order of corners. Adapted from
(Wobbrock et al. 2003a)... 50

Figure 3.13. A capitalized “a”, “i”, and “u”. The dashed lines represent a suffix
stroke made to the top-left before segmenting. .. 50

Figure 3.14. EdgeWrite has two alternative strokes for setting punctuation mode
and one stroke for setting extended mode. ... 51

 xiii

Figure 3.15. The various cursor control strokes include (a) discrete arrow keys,
(b) a continuous scroll ring, and (c) discrete word, line, and document jumps.......... 52

Figure 3.16. Three forms of “e”, the first of which is the primary form. The other
two are shortcut forms preferred by some users for their efficiency.......................... 54

Figure 3.17. The guessability test software captured traces (left) and then
displayed them in their idealized forms (right). It prompted users using text-
to-speech only... 60

Figure 3.18. The results of the guessability and immediate usability study shows
that EdgeWrite improved and that EdgeWrite is competitive with Graffiti. 61

Figure 3.19. As a “w” is made, three other letters are recognized along the way............ 64
Figure 3.20. Non-recognition retry enables the garbled stroke at right to produce a

“w”. .. 64
Figure 3.21. An idealized stroke is trying to move diagonally from c1 to c3 in the

process of making an “s”, but slips through c2 on the way. The slip detector
corrects this. ... 65

Figure 3.22. The slip detector builds a binary tree of possible corner sequences. In
this tree, c2 and c4 are possible slip-corners. Black circles are children that
keep the slip-corner, while white children are those that remove it............................ 66

Figure 3.23. Making a Graffiti “t” and then extending it to produce the word
“the”. Dashed lines represent the stroke’s bounding box and crossing goals. 69

Figure 3.24. Weighted coverage of the 17,805 most common English words when
showing four fixed frequency-based completions per entered letter.......................... 70

Figure 3.25. Word-level stroke cancellation (left) and a change in selection
(right).. 71

Figure 3.26. The Painter class supports three styles of stroke drawing:
unconnected, straight, and bowed. Examples of each are EdgeWrite for the
touchpad, displacement joystick, and trackball, respectively..................................... 74

Figure 3.27. The EdgeWrite Programmer’s Reference documentation. 76
Figure 4.1. An EdgeWrite “y” (left) and a conceptual drawing for how the “y”

may feel in Stylus EdgeWrite (right).. 81
Figure 4.2. The tip of an angled stylus meets the PDA screen a small distance

from the edge of the dominant-hand-side of the square. This image is of a left-
handed user... 82

Figure 4.3. The evolution of corners in Stylus EdgeWrite. In (a), corners are just
pixels. In (b), they are rectangular regions, but diagonals sometimes hit
unwanted corners. In (c), they begin as rectangles, but “deflate” into triangles. 82

Figure 4.4. Left- and right-handed adjustments of the corners before deflation.............. 83
Figure 4.5. Two plastic templates, each with a 1.69 cm2 hole. .. 83
Figure 4.6. Template schematic for a Tungsten E, which also works well on a

Palm Vx. Holes provide access to the soft stylus buttons. This template is
designed to sit on the device chassis, above the PDA screen. All
measurements are in cm. .. 84

 xiv

Figure 4.7. A preferences screen, a character chart, and a screen for defining the
square. Defining the square aligns the software square with the physical
plastic square. ... 84

Figure 4.8. Stylus EdgeWrite unistrokes for “t”, “the”, and “they”................................. 85
Figure 4.9. Average KSPC of EdgeWrite and Graffiti. Lower is better; 1.0 is

perfect... 88
Figure 4.10. Graffiti and EdgeWrite accuracy for five subjects with motor

impairments. Accuracy was measured independent of memorization and
speed... 92

Figure 5.1. The Saitek P2500 and Logitech Dual Action Gamepad, both of which
have square areas around their thumb-controlled sticks. If released, both sticks
snap to center.. 95

Figure 5.2. (a) The partitioning of the Joystick EdgeWrite input plane. (b) The
“deflation” that occurs after a corner has been entered by a right-handed user. 96

Figure 5.3. When on the joystick, a right-hand thumb finds one diagonal easy and
the other more difficult. Deflation helps make the difficult diagonal easier. 97

Figure 5.4. A clean trace of an “a” (left) and a sloppy but recognized trace of “w”
(right). The “w” is sloppy because it fails to snugly impact the bottom-right
corner.. 98

Figure 5.5. The joystick test software showing date stamp with “v” currently
highlighted.. 99

Figure 5.6. The selection keyboard used in the study. It replicates the design in
use on the popular Xbox game console. The letter “a” is currently highlighted. 100

Figure 5.7. Uncorrected errors, corrected errors, and total errors for three
methods. ... 103

Figure 5.8. Speeds and data rates in WPM and KSPM for three joystick methods.
Whereas WPM considers only the length of the transcribed string, data rate in
KSPM is the speed with which all characters are transmitted, including
backspaces. ... 104

Figure 5.9. Subjective results for the three methods. Scales range from 1–5
(worst-best)... 106

Figure 5.10. Speeds of three experts with all three joystick methods. Means from
novices are included for comparisons. ... 107

Figure 5.11. Total error rates of experts in all three joystick methods. Means from
novices are included for comparisons. ... 108

Figure 6.1. The Mouse Driver system from Switch-It, Inc. enables a wheelchair
joystick to control a mouse cursor on a desktop PC. Unfortunately, text entry
reduces to pointing with an on-screen keyboard. Image from
http://www.switchit-inc.com. ... 110

Figure 6.2. The Everest & Jennings 1706-5020 power wheelchair joystick.................. 111
Figure 6.3. The design involved iterating over different plastic template sizes............. 112
Figure 6.4. Filtering was necessary to clean up the noisy joystick input. 112

 xv

Figure 6.5. Touchpad EdgeWrite uses a plastic template to provide a square
boundary on the touchpad’s surface. The boundary is mirrored in the
application window. ... 113

Figure 6.6. A subject using PW-Joystick EdgeWrite (left) and Touchpad
EdgeWrite (right). A paper character chart was shown during the study................. 117

Figure 6.7. Text entry speeds in words per minute for the three methods. 117
Figure 6.8. Uncorrected, corrected, and total error rates for the three methods............. 118
Figure 6.9. Subjective ratings for the three methods. Ratings are on a Likert scale

(1–5). Higher values are better. .. 119
Figure 6.10. The original “k” with diagonals and a new “k” without diagonals............ 121
Figure 6.11. EdgeWrite and WiViK speeds over sessions... 125
Figure 6.12. The speeds of the four techniques over sessions. 126
Figure 6.13. The touchpad and joystick affected EdgeWrite and WiViK

differently. .. 126
Figure 6.14. EdgeWrite and WiViK total error rates over sessions. 127
Figure 6.15. The total error rates of the four techniques over sessions.......................... 128
Figure 6.16. Learning curves show crossover points for both EdgeWrite

techniques... 129
Figure 7.1. Trackballs come in many different sizes making them appropriate as

computer access and mobile technologies. From left to right: Infogrip
BIGTrack (http://www.infogrip.com), Kensington Expert Mouse
(http://www.kensington.com), Appoint Thumbelina, and Infogrip’s Mini
Trackball. Relative image sizes are maintained. .. 132

Figure 7.2. (a) The initial design for Trackball EdgeWrite used impenetrable
virtual edges and a freely-driven mouse cursor. (b) An attempt to make cursor
movement more accurate by inferring the intended corner and always moving
directly toward it. ... 134

Figure 7.3. Accot and Zhai speculate that crossing goals could rotate to always
remain orthogonal to the cursor, thereby offering maximum target width. An
extreme form of this idea is a cursor in the center of a circle, where the
circumference itself is the goal... 135

Figure 7.4. The repeated crossings involved in writing the letter “z”............................ 135
Figure 7.5. Next-corner outcomes for different angles of departure from the

bottom-left corner of the EdgeWrite square. θd is the diagonal angle and θc is
the cardinal angle.. 136

Figure 7.6. Two different schemes for determining the first corner. 137
Figure 7.7. With the second scheme, users have eight angular regions to choose

from on the first pulse of the trackball. Region sizes are weighted by letter
probabilities. ... 138

Figure 7.8. Trackball EdgeWrite supports multiple options for capturing the
trackball with hot buttons, hot keys, and hot corners (top left). Other options
are also available. ... 139

 xvi

Figure 7.9. A semi-transparent Trackball EdgeWrite is writing in Notepad.
Notepad retains the input focus even though EdgeWrite receives mouse
events.. 140

Figure 7.10. Candidate words shown while stroking a “w” include words that
begin with an “i”, “v”, and “h” along the way, since these letters are subsets
of “w”. .. 141

Figure 7.11. Average speeds for three able-bodied subjects using character-level
Trackball EdgeWrite. Subjects knew the alphabet but had never used
trackballs. ... 148

Figure 7.12. Average error rates for each able-bodied subject. From left to right,
error rates within each subject are uncorrected, corrected, and total........................ 148

Figure 7.13. Jim’s favorite trackball is the Stingray because he can press its wide
left button with the palm of his left hand while his left thumb rolls the ball to
drag... 149

Figure 7.14. Jim’s performance with the two trackball methods over many weeks. 151
Figure 7.15. Jim’s speeds and corresponding total error rates with an on-screen

keyboard and word-level Trackball EdgeWrite. .. 154
Figure 7.16. Results over 11 weeks from extended use showing usage of word

completion and backspace. Week 3 is omitted because Jim did not use his
computer... 157

Figure 8.1. Mobile phones are continually shrinking in size while increasing in
computing power and capabilities. ... 160

Figure 8.2. Although visually aesthetic, the popular “flat” mobile phone keypads
often lack sufficient tactility to be used by feel.. 161

Figure 8.3. The front isometric joystick used by the thumb. ... 162
Figure 8.4. The back isometric joystick used by the index finger. 162
Figure 8.5. The control panel for rotating the EdgeWrite square and the rotated

axes shown in the EdgeWrite writing interface.. 163
Figure 8.6. Special software on the phone “caught” the recognized characters

from the desktop computer and displayed them on the phone’s screen. It also
drew stroke traces for Isometric Joystick EdgeWrite. .. 164

Figure 8.7. The i-Mate Smartphone 2 model used in our study in the Multitap
condition. In the second study, it would be used in the T9 condition. 165

Figure 8.8. Speeds and fitted learning curves over sessions for EdgeWrite and
Multitap. ... 167

Figure 8.9. Uncorrected and corrected error rates over sessions for character-level
EdgeWrite and Multitap. Lower values are better. Note the different ranges on
the y-axes.. 168

Figure 8.10. The speeds of subjects with character-level EdgeWrite and Multitap.
Subjects 1 and 3 were faster with EdgeWrite. Subjects 2 and 4 were faster
with Multitap. ... 169

 xvii

Figure 8.11. Subjective ratings for Isometric Joystick EdgeWrite and Multitap.
Ratings are on a Likert scale (1–5). Higher values are better................................... 170

Figure 8.12. Speeds and total error rates for EdgeWrite and Multitap when
subjects were unable to see the device. Higher values are better in (a); lower
values are better in (b). ... 171

Figure 8.13. The illustration shows how a trace of an English “C” on the back of
the device is visually correct if looking through the device but motor-reversed
from the perspective of the index finger... 173

Figure 8.14. Average speeds for the front and back EdgeWrite isometric
joysticks.. 174

Figure 8.15. Average uncorrected and corrected error rates for the front and back
isometric joysticks. Lower values are better. Note the different ranges on the
y-axes.. 175

Figure 8.16. The speeds of subjects with word-level EdgeWrite and T9. 177
Figure 8.17. Uncorrected and corrected error rates over sessions for word-level

EdgeWrite and T9. Lower values are better. Note the different ranges on the
y-axes.. 178

Figure 9.1. EdgeWrite letters mapped to four keys. Letters are defined by their
sequence of corner-hits: “a” = 824, “n” = 8142, “d” = 2484.................................... 182

Figure 9.2. The 3-key design used in the study. The letter “e” is currently
selected. .. 184

Figure 9.3. The 5-key design used in the study.. 185
Figure 9.4. The TextTest text entry test software and Four-key EdgeWrite. The 4-

key-noviz EdgeWrite condition lacked the stroke visualization window shown
here. .. 186

Figure 9.5. Average speeds over sessions and fitted learning curves. The right
graph shows the subject who was fastest with all four methods. 187

Figure 9.6. Average error rates over sessions for the few-key methods. Lower
values are better. Note the different ranges on the y-axes. 189

Figure 9.7. Four-sensor EdgeWrite uses four charge-pump capacitive sensors (the
metal-foil triangles). Four surface mount resistors are used as tactile bumps.......... 190

Figure 9.8. The schematic for one charge-pump capacitive sensor. 191
Figure 9.9. The schematic for Four-sensor EdgeWrite. The four pads correspond

to the four metallic triangles in Figure 9.7. Each one is equivalent to the
“sensor pad” in Figure 9.8. ... 193

Figure 10.1. Two EdgeWrite prototypes for use with steering wheels. The left one
uses small buttons. The right one uses a small touchpad. Both are controlled
by the thumb... 195

Figure 10.2. The experimental setup with the STISIM driving simulator. The list
of street names and input techniques are shown on the left monitor as
peripheral heads-up display.. 196

Figure 10.3. The IBM/Citizen WatchPad 1.5 being used for EdgeWrite text entry. 197

 xviii

Figure 10.4. Blaskó’s and Feiner’s interaction techniques for the WatchPad
already used corners and edges. Images taken from (Blaskó and Feiner 2004).
Used with permission. .. 198

Figure 10.5. Edgeless EdgeWrite has some different letters than EdgeWrite.
Image adapted from (Andersen and Zhai 2004). Used with permission. 198

Figure 10.6. The GP32 device and the EdgePad text entry utility. Used with
permission. ... 199

Figure 10.7. The JoyMouse++ and JMEdge control panel for enabling EdgeWrite
text entry using a PC-compatible joystick. Button 9 currently switches to
EdgeWrite mode... 201

Figure 11.1. An example presented (P) and transcribed (T) string. 203
Figure 11.2. An example input stream (IS) resulting in T from Figure 11.1.

Transcribed letters are in bold and backspaces are represented by “←”.................. 204
Figure 11.3. The example used in the original analysis (MacKenzie and

Soukoreff 2002a). This example is used for continuity.. 210
Figure 11.4. The optimal alignments of “quickly” and “qucehkly” (MacKenzie

and Soukoreff 2002a). .. 211
Figure 11.5. An input stream showing difficulty entering “u”....................................... 213
Figure 11.6. The “v” and “w” are corrected substitutions for “u”, while the “x” is

an uncorrected substitution for “u”... 213
Figure 11.7. The “vl” is erroneous but the subject did not correct it until after

correctly entering the first “ck”. ... 213
Figure 11.8. The input stream contains a non-recognition “ø”. 214
Figure 11.9. The “x” in the input stream is a corrected insertion. 214
Figure 11.10. The input stream shows an “a” inserted beyond the corresponding

length of the presented string. .. 215
Figure 11.11. The third “e” in the input stream could be the result of an accidental

doubling of the correct “e” before it... 215
Figure 11.12. The “d”’s are both deemed corrected substitutions. The second “d”

is not a corrected insertion because the “d” before it is an error. 216
Figure 11.13. The input stream shows two non-recognition insertions. 216
Figure 11.14. The “c” is initially omitted, resulting in a corrected omission. 216
Figure 11.15. The “c” is initially omitted, resulting in a corrected omission, even

though an “x” takes its place as an uncorrected substitution for “c”........................ 217
Figure 11.16. Our first assumption says that subjects proceed sequentially

through the presented string, so “uf” in IS is matched with “at” in P. 217
Figure 11.17. Was the “x” an attempted “a” or merely a corrected insertion? Our

first assumption favors the former.. 218
Figure 11.18. These two examples show a corrected insertion and a corrected

omission, respectively. ... 218

 xix

Figure 11.19. The second assumption allows for only one corrected insertion or
omission in a row. Thus, these examples contain only corrected substitutions. 219

Figure 11.20. The second assumption keeps us from treating the “at” in P as
initially omitted and the “xf” in IS as initially inserted. ... 219

Figure 11.21. The third assumption asserts that backspaces are made accurately,
but “ø←” and “←←” patterns may indicate exceptions. ... 220

Figure 11.22. The third assumption asserts that backspaces are made
intentionally, but “x←…←x” patterns may indicate exceptions. 220

Figure 11.23. This input is ambiguous as to whether the “z” should be aligned
with “t” or “s”. Both possibilities are represented in the optimal alignment set
(Figure 11.4) and are weighted accordingly... 222

Figure 11.24. Our fourth assumption treats the “x” and “y” as attempts at “s”. 222
Figure 11.25. The subject may have overshot with backspace past the erroneous

“f” and through the correct “a”, which he then neglected to replace. 223
Figure 11.26. The first step is to flag the letters in the input stream that compose

the transcribed string using a backward pass. .. 224
Figure 11.27. Algorithm for “flagging” the characters in IS that compose T. 224
Figure 11.28. Algorithm for computing the minimum string distance. In this case,

the ≠ comparison returns integer ‘1’ if true and integer ‘0’ if false. 225
Figure 11.29. Algorithm for computing the optimal alignments of P and T.

Reproduced with permission (MacKenzie and Soukoreff 2002a)............................ 225
Figure 11.30. A stream-aligned triplet of (P, T, IS). This is the fourth of the

optimal alignments from Figure 11.4. .. 226
Figure 11.31. Algorithm for aligning P, T, and IS. .. 226
Figure 11.32. Position values are shown atop characters in the input stream. They

are assigned using a forward pass. ... 227
Figure 11.33. Algorithm for assigning position values to characters in IS. Position

values help determine the intended letter in P for each letter in IS. 227
Figure 11.34. Comparisons made for the fourth stream-alignment (Figure 11.30). 227
Figure 11.35. Algorithm for classifying errors in the input stream. This algorithm

finds all errors from previous work (MacKenzie and Soukoreff 2002a) and the
new input stream error types described in §11.3.1. .. 228

Figure 11.36. Procedure used by DETERMINE-ERRORS (Figure 11.35). This
procedure looks forward in string S from a zero-based index start until a count
number of CONDITION-FNs have been satisfied, returning the index of the
countth successful test. An example is LOOK-AHEAD(P, 0, 2, IS-LETTER),
which would find two letters ahead of the first letter in P (i.e. the 3rd letter). 229

Figure 11.37. Procedure used by DETERMINE-ERRORS (Figure 11.35). This
function is analogous to LOOK-AHEAD but operates in the reverse direction. 229

Figure 11.38. Classification output for the triplet from Figure 11.30. Each line
can be read as classification(intended character, produced character)....... 230

 xx

Figure 11.39. (a) Confusion matrices from the previous analysis of P and T and
(b) the current analysis of P, T, and IS for the same empirical data. These
matrices are automatically produced by StreamAnalyzer. The large
discrepancies in the two graphs are due to corrected substitutions, since these
appear in IS but not in T. The high values against the back wall in the bottom
graph are non-recognition substitutions. .. 236

 xxi

List of Tables
Table 3.1. Segment counts in different EdgeWrite modes. Accents, mode setters,

capitalizations, cursor controls, backspaces, tab, enter, menu, and “ç” are
excluded. For alphanumeric characters, a weighted mean based on character
frequency is shown... 53

Table 3.2. The line-segment calculations are similar to Isokoski’s unistroke
complexity measure, shown here for various alphabets (Isokoski 2001). 54

Table 5.1. Characteristics of the three sets of test phrases. .. 101
Table 11.1. An excerpt of character-level results using MacKenzie and

Soukoreff’s analysis. The bottom row is for the whole table, not just for the
excerpt shown here. .. 234

Table 11.2. An excerpt of character-level results using the current analysis. The
bottom row is for the whole table, not just for the excerpt shown here. 234

Table 12.1. A design space of EdgeWrite input techniques. Rows group methods
by segmentation scheme. Colored column areas represent different properties.
Each of the 14 techniques is listed once within each colored area. Numbers in
parentheses are chapters. .. 240

 xxii

Chapter 1: Introduction 1

Chapter 1

1 Introduction

1.1 Motivation

This dissertation is motivated by two primary concerns. The first is the need for better

desktop computer access, particularly for people with motor impairments. The second is

the need for better mobile device accessibility, which affects disabled users and able-

bodied users alike. Improving text entry in these domains with a single versatile design is

the primary goal of this research.

1.1.1 The Need for Better Computer Access
The value of access to computers and information technology has increased dramatically

over the past decade. As the World Wide Web has grown, libraries, news sources, health

and financial information, entertainment applications, and other resources have become

increasingly available online. The Web’s value has further increased with improved

search. Other Internet applications like email and instant messaging have also grown in

use and importance in keeping in touch with coworkers, friends, and relatives. In just

over a decade, the Web has matured from a research curiosity to a factor contributing to

one’s very quality of life.

Accordingly, the importance of computer access for people with motor impairments

has never been greater. People with motor impairments often use wheelchairs, and

computer work such as programming, graphic design, or Web site creation may be a way

Chapter 1: Introduction 2

in which impaired individuals can make a living (Keates et al. 1998, Myers et al. 2002).

For people who are homebound, computer-based entertainment may be an engaging

alternative to watching television. Access to computers may also allow people to sustain

relationships with their families and friends who are located elsewhere, providing

communities for those who may otherwise be isolated (Nelson 1994, Shropshire 2003).

But all of these activities depend crucially on good computer access.

Although the importance of access has been recognized and numerous assistive

technologies exist (Anson 1997, Cook and Hussey 2001), providing access still remains a

formidable challenge. Studies show that less than 60% of people who indicate a need for

computer access devices actually use them (Fichten et al. 2000). Furthermore, at least

35% of purchased solutions are never adopted (Dawe 2006). Complex technologies in

particular, like voice recognition systems, are subject to high abandonment rates (Koester

2003). Reasons cited for these failures include the high cost of devices, device

complexity, and the need for extensive customization (Dawe 2004). Additionally, the

process of acquiring devices often proves prohibitively difficult and fails to incorporate

enough input from the people for whom the devices are intended (Riemer-Reiss and

Wacker 2000). The need for ongoing maintenance is also a noted problem (Fichten et al.

2000). Of prime importance, then, is simplicity in both the design of devices and in the

process of adopting them (Dawe 2006). In being usable on readily available devices,

EdgeWrite provides simpler access solutions.

1.1.2 The Need for Mobile Device Accessibility
Unfortunately, efforts to provide better computer access can no longer be focused on just

the desktop. We also face a growing need for better mobile device accessibility. In this

context, the term “mobile device” means any of a number of small portable devices,

including personal digital assistants (PDAs), mobile phones, pocket jukeboxes (e.g. the

Apple iPod), two-way pagers, mobile web browsers, and pocket game devices (Figure

1.1). Mobile devices are not only used by consumers, but are also used in the workplace

for tracking inventories, acquiring pricing information, supporting field investigations,

and communicating among employees. In fact, estimates from 2004 projected that by

2006, 10% of the American workforce would be entirely mobile (i.e. without an office)

(York and Pendharkar 2004).

Chapter 1: Introduction 3

Figure 1.1. Numerous mobile devices exist on the market today, but many of these

devices remain inaccessible to both motor- and situationally-impaired users.

Despite the growing prevalence of mobile devices in our society, there has been

almost no work on making them more accessible (Bertini and Kimani 2003). (A rare

exception is Blair’s customizable hardware interface (Blair 2005), which allows large

external buttons to access features on some mobile phones.) Small fonts and low contrast

make reading difficult (Mustonen et al. 2004), small soft buttons and input areas make

stylus actions prone to error, and low strength can make it difficult to press physical

buttons or apply consistent pressure to the screen (Myers et al. 2002). Although it is a

tired term, the “digital divide” is applicable here, and it threatens to grow if handheld

devices are not made more accessible to people with disabilities.

The need for better mobile device accessibility is not only felt by people with motor

impairments, but also by able-bodied users. Recently, manufacturers have been pressured

to improve mobile device accessibility, motivated not just by the needs of disabled users

but also by the needs of able-bodied users “on the go” (BBC News 2006). This points

toward a concept that recent academic work has dubbed “situationally-induced

impairments and disabilities” (Sears et al. 2003, Sears and Young 2003), or just

“situational impairments” for short. This phrase refers to the temporary, ephemeral

impairments that mobile device users incur due to the varied contexts in which they

operate. For example, a person walking down a dim street on a cold night trying to dial

his or her cell phone while wearing gloves incurs vibrational tremor, reduced visual

information, divided attention, and impaired motor skills. A less extreme case is simply

trying to read the screen of a mobile device while walking (Mustonen et al. 2004).

Devices are currently inaccessible to situationally-impaired users for many of the same

Chapter 1: Introduction 4

reasons that they are inaccessible to people with physical disabilities: small fonts, poor

contrast, awkward input mechanisms, shrunken targets, tiny dials, miniature joysticks, the

need for two hands, and cramped finger postures all compromise usability. Therefore, a

design well-suited to meet the needs of motor-impaired users may also help the able-

bodied mainstream. This is the spirit behind “universal design” (Mace et al. 1991,

Steinfeld 1994), and a key motivator of the current work.

1.1.3 A Versatile Design for Text Entry and Control
The concerns above highlight the need for better accessibility on both desktop personal

computers (PCs) and mobile devices. A successful solution for desktops must be simple,

cheap, robust, readily available, and require little configuration and maintenance (Dawe

2004, Dawe 2006). A successful solution on mobile devices must provide support for

overcoming situational impairments through properties like physical stability, high

tactility, increased visibility, and comfort (Hirotaka 2003, Silfverberg 2003, Wobbrock

and Myers 2005b). Not surprisingly, these properties will probably improve device

accessibility for motor-impaired users as well.

Although the use of computers involves many different activities, text entry

consumes a great deal of users’ time and energy. In a single month, many desktop users

strike hundreds of thousands or even millions of keys (MacKenzie and Soukoreff 2002b),

and European mobile phone users send 15 billion text messages (GSM World 2004).

Clearly, text entry is a considerable part of human-computer interaction (HCI), and

therefore an important part of computer access.

Figure 1.2. The devices on which EdgeWrite text entry has been implemented.

Chapter 1: Introduction 5

Furthermore, a significant part of the text entry process involves control. For

example, research shows that the four cursor keys comprise upwards of 10% of all

keystrokes made during general desktop PC use, rivaling even the use of the SPACE key

(MacKenzie and Soukoreff 2002b). Other control operations include accessing

application menus related to text entry (e.g. for font selection), tabbing among dialog

elements, and confirming selections with ENTER.

Accordingly, a versatile design for text entry and control has been created that

addresses these needs. The design is versatile in that it can adapt to various devices which

are inexpensive and “off the shelf” (Figure 1.2), it is intended to be used in both office

and mobile contexts, it has accessibility and mainstream audiences, and it is

technologically simple, requiring little more than a few sensors for input, which makes it

suitable for both high- and low-end computing platforms. Having a versatile design of

this type is important because:

• Users with motor impairments often experience rapid fatigue (Sears and Young

2003). A versatile design would allow users to switch among devices to

distribute strain across different muscles while using the same essential

technique.

• Some diseases are degenerative. A versatile design would permit users to switch

to new devices as their abilities change without having to learn new techniques.

• Adapting new techniques to users is a lengthy and expensive process involving

therapists and assistive technology (AT) professionals (Tremaine 2001). A

versatile design may shorten this process by providing alternative devices for the

same already-known technique.

• A versatile design may function as part of an “integrated control system” where

text and mousing are available on the same device, reducing device switching

and the need for multiple control sites, which have been shown to be barriers to

access (Guerette and Sumi 1994, Spaeth et al. 1998).

• New mobile devices appear often, and few people are eager to learn a new input

technique for every new device they acquire. A versatile design may be easily

implemented on new devices while placing minimal constraints on the design of

Chapter 1: Introduction 6

devices themselves. This may be called ubi-input, which is “learn once, write

anywhere” (Wobbrock and Myers 2005a).

• Formerly non-computerized devices are now being given computing power. For

instance, wrist watches used to be mechanical devices but now can serve as full-

fledged PDAs (Raghunath and Narayanaswami 2002, Blaskó and Feiner 2004).

As more devices become computerized, they may need some rudimentary form

of text entry. A versatile design may work for these new devices.

• As the storage capacity of mobile devices increases, the desire for text-driven

features like type-ahead and search may also increase. These features require a

versatile design for text entry capable of functioning on different types of mobile

devices, such as pocket jukeboxes and digital cameras, both of which can store

large amounts of data.

Although there has been a flurry of text entry research in the last decade (MacKenzie

and Soukoreff 2002b, Zhai et al. 2005), few methods have been reusable across desktop

PCs and mobile devices, and even fewer have sought to be accessible to special

populations. While high-performance methods tailored to specific devices and

applications will remain useful, a versatile design for text entry and control can help

improve the accessibility of both desktops and mobile devices for motor-impaired and

situationally-impaired users. The design that addresses these problems is called

EdgeWrite.

The following thesis will be demonstrated:

A versatile design for text entry and control called “EdgeWrite,” which

uses physical edges, goal crossing, and a minimized need for sensing, is

effective on handhelds and desktops for people with motor and

situational impairments.

1.2 The EdgeWrite Concept

At its most basic, EdgeWrite is a unistroke text entry method that relies on four corners

arranged in a square (see section 3.2). The order in which the four corners are entered

during an EdgeWrite stroke determines the character being made. For styli (§4),

Chapter 1: Introduction 7

displacement joysticks (§5–6), and touchpads (§6), physical edges connect the four

corners of a square and provide stability when writing.1 For trackballs (§7) and isometric

joysticks (§8), physical edges are impractical, so goal crossing is used instead (Accot

and Zhai 1997). On versions with just four keys or sensors (§9), corners correspond

directly to the input mechanisms, allowing gestures to be defined on minimal devices.

The EdgeWrite alphabet was designed in multiple stages. The final alphabet is

largely a result of a participatory design process intended to maximize guessability and

learnability (§3.3.3). Figure 1.3 shows the word “edgewrite” using depictions of

EdgeWrite strokes. Note that the curvature of the line segments is for readability only,

particularly in the event that a stroke passes more than once over the same edge. In

EdgeWrite, all actual motion is in straight lines along edges or diagonals and into corners.

Figure 1.3. The word “edgewrite” written with depictions from the EdgeWrite character

chart. A heavy dot indicates the start of each letter.

Some versions of EdgeWrite are targeted at people with motor impairments, such as

the versions for styli, power wheelchair joysticks, touchpads, and trackballs. Other

versions are targeted at able-bodied users in situations where conventional text entry is

not feasible, such as with a displacement joystick on a video game console, or with an

isometric joystick on a mobile phone. Thus, EdgeWrite is versatile across devices, users,

and contexts of use.

1.3 Research Approach

This research has been based on a highly iterative “design, build, and user test” cycle

where EdgeWrite versions are rapidly constructed and then evaluated in laboratory or

field settings with real users. Extensive log files are continuously written as a part of this

process to enable informed design decisions based on quantitative data. Refinements are

then made before subsequent rounds of user testing.

1 See the figure atop page 79 for an example.

Chapter 1: Introduction 8

The test protocols usually pit a version of EdgeWrite against a competitor method,

often a de facto standard, either in a between- or within-subjects design, depending on

carryover effects. Evaluations may be of novice users after minimal training, of expert

users already familiar with the technique, or of novice-to-expert users over a longitudinal

study. Longitudinal studies are the most informative because we can observe and model

learning with the power law (Card et al. 1983), and find “crossover points” where one

method overtakes another (MacKenzie and Zhang 1999). However, longitudinal studies

are expensive in both time and money, so single-session studies were often used. To

facilitate laboratory studies, a text entry evaluation suite and accompanying log file

analyzer were built (§11).

The current work also yielded new procedures for improving guessability (§3.3.3)

and for analyzing data from text entry experiments (§11.5). These procedures can be

reused by other researchers.

Accompanying the empirical work is some theoretical modeling, particularly of

Trackball EdgeWrite (§7.3.1). The theoretical models allow for upper-bound

comparisons when exploring alternative designs. The theories utilized include Fitts’ law

(Fitts 1954, MacKenzie 1992), the Steering law (Accot and Zhai 1997), the Hick-Hyman

law for visual search (Hick 1952, Hyman 1953), and Zipf’s law for language (Zipf 1932).

1.4 Dissertation Organization

This chapter has illustrated the potential value of a versatile design for text entry. Here is

a roadmap to subsequent chapters:

Chapter 2 describes prior work and its relation to EdgeWrite. Some of the work

relates to EdgeWrite in general, while other work relates to specific EdgeWrite versions.

Chapter 3 introduces the core design of EdgeWrite, including fundamental concepts

like corners, edges, recognition, segmentation, and “beating Fitts’ law” through the use of

physical edges and goal crossing. Section 3.3 describes the EdgeWrite alphabet and the

guessability procedure used to create it. Section 3.5 describes Fisch, EdgeWrite’s design

for word-level stroking.

Chapter 1: Introduction 9

Chapter 4 introduces the original version of EdgeWrite, the stylus version for PDAs.

Results show that both able-bodied users and motor-impaired users are more accurate

while writing with EdgeWrite than with its competitor, Graffiti.

Chapter 5 discusses Joystick EdgeWrite for use with computer game controllers.

EdgeWrite’s adaptation to the joystick is described, along with results that show

EdgeWrite is faster and produces more accurate text than two competitor methods,

selection keyboard and date stamp.

Chapter 6 discusses two techniques for text entry from power wheelchairs, PW-

Joystick EdgeWrite and Touchpad EdgeWrite. Both single session and longitudinal

studies are presented. Results show that Touchpad EdgeWrite is faster and more pleasing

to subjects than PW-Joystick EdgeWrite, but both are more error prone than using the

same devices to control a commercial on-screen keyboard called WiViK.

Chapter 7 describes Trackball EdgeWrite, the first version without physical edges.

Instead of physical edges, Trackball EdgeWrite uses the mouse cursor, and goal crossing

provides for the underlying writing mechanism. Results for character-level and word-

level versions are presented, showing Trackball EdgeWrite’s superiority over on-screen

keyboards in speed, accuracy, and subjective satisfaction.

Chapter 8 applies the design for Trackball EdgeWrite to isometric joysticks

embedded in mobile phones. Both trackballs and isometric joysticks lack a notion of

position, making them equally suited to the same software. Longitudinal results show that

character-level EdgeWrite on an isometric joystick rivals Multitap in speed, and word-

level EdgeWrite rivals T9.

Chapter 9 presents a feasibility study of EdgeWrite on four keys, where each key

serves as one of the EdgeWrite corners. Results from a longitudinal study of able-bodied

users show EdgeWrite’s superiority to prior 3-key and 5-key methods. The 4-key

EdgeWrite design is then adapted to four capacitive sensors, showing how EdgeWrite can

be built with minimal sensing technology.

Chapter 10 briefly describes versions of EdgeWrite built by other researchers

independent of the current work. These include versions for steering wheels, musical

expression, watch faces, game devices, and joysticks.

Chapter 1: Introduction 10

Chapter 11 discusses a new character-level error analysis for text entry input streams.

The algorithms presented are used to analyze data from an early EdgeWrite study. The

TextTest and StreamAnalyzer tools are also presented.

Chapter 12 concludes with a “design space,” reflections and insights, major empirical

results, a list of contributions, future work, and some closing remarks.

Chapter 2: Related Work 11

Chapter 2

2 Related Work

2.1 Universal Design

The philosophical foundations of the current work lie in universal design (Mace et al.

1991, Steinfeld 1994). The term “universal design” appeared first in the literature of

architectural design in 1991 (Mace et al. 1991). Since most buildings may be used by

anyone, the principle of making them accessible to everyone naturally followed. The

movement that had begun in 1968 with the Architectural Barriers Act had been given

new life in universal design. It was not long before the same barrier-reducing concepts

were applied to products (Steinfeld 1994) and software (Bergman and Johnson 1995). In

1997, a group of architects, product designers, and engineers ratified the second version

of the influential Principles for Universal Design (Connell et al. 1997), which has

become widely used as a complement to mainstream usability principles (Nielsen 1993).

The field of assistive technology, which began as a rehabilitation science and engineering

discipline after Word War II, and newer approaches like “design for all” (Stary 1997) and

“inclusive design” (Keates et al. 2000), have joined forces in the effort to meet the needs

of an aging population with more handicapped and elderly than ever before. Although

there are differences among these and other approaches, they share the common goal of

removing or overcoming barriers to access (Law et al. 2005).

The central idea in universal design is that all products and environments should be

designed so as to be usable by the greatest number of people (Mace et al. 1991).

Chapter 2: Related Work 12

Although truly universal designs are unrealizable in practice (Keates et al. 2000, Hull

2004), striving for this goal often enforces an ethic of simplicity and elegance.

Proponents of universal design point to examples where those with special needs and the

general population both benefit: curbs lowered for wheelchairs are valued by bicyclists,

automatic doors open for people in wheelchairs and shoppers pushing grocery carts,

advances in ergonomic seating help paraplegics and deskbound office workers, and

trackballs aid computer users with carpel tunnel and travelers without enough desk space

for a mouse. In these and many other cases, universal design has benefited both the

physically-impaired and the situationally-impaired.

Universal design views “impairment” differently than assistive technology

traditionally has. The eyes of universal design do not see two classes of users—the

impaired and the unimpaired. Instead, they see all users on a continuum of impairment.

Whereas one user may have a permanent physical disability, another may incur a

temporary situational impairment while under certain constraints. Thus, impairment is not

a static concept, but a fluid one that moves with context and constraint (Sears and Young

2003).

It is from this philosophical stance that EdgeWrite is offered as a versatile design for

text entry, one which has demonstrated benefits for both motor-impaired and able-bodied

users. For example, Stylus EdgeWrite (§4) provides higher accuracy to writers through

the use of stabilizing physical edges. This higher accuracy has been demonstrated for

both motor-impaired and able-bodied users (Wobbrock et al. 2003b). That both

specialized and mainstream populations benefit from EdgeWrite is a case-in-point from

the standpoint of universal design.

2.1.1 Situational Impairments
Although universal design has implicitly contained the notion of “situational

impairments,” this term and its inclusion in disability discourse is fairly recent. In 2003,

Sears et al. and Sears and Young coined the term situationally-induced impairments and

disabilities (Sears et al. 2003, Sears and Young 2003). They point to various

environmental factors (e.g. lighting, noise, vibration, and temperature) and various

contextual factors (e.g. engagement in multiple tasks demanding cognitive, perceptual,

and physical resources) as factors contributing to situational impairments. They offer two

examples to illustrate this. In the first, a worker outdoors whose fingers are cold

Chapter 2: Related Work 13

experiences a motor impairment not unlike a person with arthritis. In the second, a person

trying to enter text with a stylus while riding down a bumpy road experiences tremor not

unlike some people with Parkinson’s.

Which physical impairments and corresponding situational impairments might be

aided by similar designs for text entry? Certainly a blind user is not equivalent to an eyes-

free sighted user, nor is a tremulous user equivalent to someone ambling down a bumpy

sidewalk. But designs that aid the motor-impaired may nonetheless have properties that

aid the situationally-impaired. For instance, EdgeWrite has shown that physical stability

is one property that improves accuracy, even in the presence of tremor (Wobbrock et al.

2003b). Similarly, Silfverberg has shown that high tactility contributes to more usable

mobile phone keypads, particularly with limited or no visual feedback, which would be

the case for both blind and eyes-free users (Silfverberg 2003).

Recently, some researchers have studied the effects of walking on mobile device use.

Price et al. found that speech recognition error rates are significantly higher, about

15.5%, when walking compared to when seated (Price et al. 2004). Lin et al. studied

stylus tapping, finding that walking decreases throughput from 7.8 bits per second (BPS)

to 6.6 BPS (Lin et al. 2005). Marentakis and Brewster had subjects point to spatial audio

targets while walking through cones, finding that pointing speed and accuracy degraded

20% compared to standing still (Marentakis and Brewster 2006). Mustonen et al. found

that walking reduces reading speed by about 18% (Mustonen et al. 2004). Oulasvirta et

al. found that mobile attention spans are between 4–8 seconds, compared to 14–16

seconds in laboratory settings (Oulasvirta et al. 2005). Kjeldskov and Stage proposed six

mobile usability evaluation scenarios based on walking different tracks, finding that none

resulted in the same perceived workload as walking a real pedestrian street, but that user

performance was not significantly different for a variety of tasks (Kjeldskov and Stage

2004). Although there are other situational impairments besides those caused by walking,

this work represents an important start to this line of inquiry.

2.1.2 Mobile Device Accessibility
The value of mobile devices to people with disabilities has been observed (Abascal and

Civit 2001), but surprisingly little work has assessed the accessibility of mobile devices.

Exceptions include the study by Burzagli et al., which found that blind users had trouble

entering text and browsing on PDAs, largely due to the lack of screen-reading software

Chapter 2: Related Work 14

(Burzagli et al. 2005). Leonard et al. found that users with age-related macular

degeneration could still use handheld computers, but that high contrast was essential for

efficient use (Leonard et al. 2005). These findings have implications for device

manufacturers, since small devices may lack the output capabilities of desktop

computers.

A few prototyping efforts have sought to improve the accessibility of mobile devices.

Manaris et al. developed SUITEKeys, a speech recognition “keyboard” originally

developed for desktops but which the authors speculated could be ported to mobile

devices (Manaris et al. 1999). Blair created a set of hardware buttons that interface with

Symbian mobile phones, providing better access to some users with motor impairments

(Blair 2005). Göransson redesigned a PDA to better support users with Parkinson’s

disease (Göransson 2004). Lee et al. created a pair of chording gloves that can

accommodate both Korean and Braille as fingers are pressed into the thumb (Lee et al.

2003, Lee et al. 2005). Among these efforts, EdgeWrite is the most related to the problem

of PDA text entry for people with motor impairments (Wobbrock et al. 2003b). But text

entry is only one piece of the problem, and clearly there is much farther to go in

achieving mobile accessibility for all.

2.2 Beating Fitts’ Law

Fitts’ law models the time required to access a target as a function of the target size W

and its distance away A (Fitts 1954). Not surprisingly, it takes longer to successfully click

or tap on small or distant targets. Figure 2.1 illustrates these parameters.

Figure 2.1. Fitts’ law models the time required to access a target of size W at a distance A

units away.

Equation 2.1 is a commonly used formulation of Fitts’ law (MacKenzie 1992).

⎟
⎠
⎞

⎜
⎝
⎛ +⋅+= 1log 2 W

AbaT (2.1)

Chapter 2: Related Work 15

In Equation 2.1, a and b are empirical coefficients determined by regression. A

powerful aspect of Fitts’ law is that the units of A and W cancel, allowing us to compare

results across different experimental apparatuses.

Accordingly, “beating Fitts’ law” refers to improving target acquisition performance

through interaction techniques that either decrease the effective target distance A or

increase the effective target size W (Balakrishnan 2004). Perhaps the earliest examples of

the latter were in Ivan Sutherland’s Sketchpad system (Sutherland 1963), which included

gravity fields, snapping behavior, and drawing constraints. In accessibility, Hwang et al.

has investigated the effects of gravity fields on motor-impaired users (Hwang 2002,

Hwang et al. 2003). Other means of increasing target size are area cursors and sticky

icons (Worden et al. 1997), which are helpful for older adults who may have reduced

motor skill. More recently, the Bubble Cursor was a dynamic extension of area cursors

(Grossman and Balakrishnan 2005). Although a complete review of such techniques is

beyond the current scope, it is important to note that most EdgeWrite versions “beat Fitts’

law” through either physical edges or goal crossing, both of which can be regarded as

increasing the effective target size.

2.2.1 Edges in the Interface
Physical edges have been used in user interfaces before EdgeWrite. A charming text

entry example comes from Lewis Carroll, author of Alice in Wonderland. Carroll

published the following description of his invention, the Nyctograph, in the October 29,

1891 issue of The Lady:

Any one who has tried, as I have often done, the process of getting out of bed at 2 a.m. in
a winter night, lighting a candle, and recording some happy thought which would
probably be otherwise forgotten, will agree with me it entails much discomfort. All I have
now to do, if I wake and think of something I wish to record, is to draw from under the
pillow a small memorandum book containing my Nyctograph, write a few lines, or even a
few pages, without even putting the hands outside the bed-clothes, replace the book, and
go to sleep again. … I tried rows of square holes, each to hold one letter (quarter of an
inch square I found a very convenient size), and this proved a much better plan than the
former; but the letters were still apt to be illegible. Then I said to myself ‘Why not invent
a square alphabet, using only dots at the corners, and lines along the sides?’ I soon found
that, to make the writing easy to read, it was necessary to know where each square began.
This I secured by the rule that every square-letter should contain a large black dot in the
N.W. corner. … [I] succeeded in getting 23 of [the square-letters] to have a distinct
resemblance to the letters they were to represent. Think of the number of lonely hours a
blind man often spends doing nothing, when he would gladly record his thoughts, and

Chapter 2: Related Work 16

you will realise what a blessing you can confer on him by giving him a small ‘indelible’
memorandum-book, with a piece of paste-board containing rows of square holes, and
teaching him the square-alphabet (Carroll 1891).

The Nyctograph itself was probably quite simple, just a piece of paste-board with a

series of square cut-outs arranged in a grid. Carroll, who apparently suffered from

insomnia, would write his square-letters in the square holes “under the bed-clothes” by

running his pen along the interior edges of the holes. In the morning, he would transcribe

his notes in his regular hand.

Carroll’s description is full of concepts related to EdgeWrite. First, the invention is

inspired by situational impairments, namely fatigue, cold, and darkness. Second, it is

designed to be eyes-free through the use of physical edges. Third, in designing his

alphabet, Carroll prizes similarity to Roman letters. Fourth, Carroll sees an opportunity to

apply his invention to people with disabilities. A major difference from EdgeWrite,

besides the obvious fact that computers were nowhere involved, is that many of Carroll’s

square-letters were comprised of multiple disjoint strokes. He therefore solved the visual

segmentation problem by placing a heavy black dot in the top-left corner of each letter.

Figure 2.2 shows the Nyctograph letters (Tannenbaum 2005).

Figure 2.2. Lewis Carroll’s Nyctograph alphabet, written under the bed-clothes inside a

series of square holes, one letter per hole. Courtesy of Alan Tannenbaum.

Nearly a century later, the Apple Lisa appeared in January 1983 (Perkins et al. 1997,

Ludolph and Perkins 1998). Among many other novelties, the Lisa sported a menu bar

atop its graphical desktop screen (Figure 2.3). The menu bar, which still exists on Apple

Macintosh computers today, had an impenetrable border along its top edge, allowing

mouse cursors to overshoot menu targets arbitrarily. This impenetrable edge has been

shown to improve target acquisition times over Microsoft Windows-style “walking” or

“floating” menus (Walker and Smelcer 1990, Accot and Zhai 2002). This type of result

has been examined further by Farris et al. for different approach angles (Farris et al.

Chapter 2: Related Work 17

2002b), target distances (Farris et al. 2002a), and target sizes (Johnson et al. 2003) using

impenetrable edges along browser windows (Farris et al. 2001).

Figure 2.3. The Macintosh menu bar and the After Dark screen saver, both of which used

impenetrable screen edges to improve target acquisition.

The original After Dark screen saver also used edges. The program, also shown in

Figure 2.3, allowed users to “throw” their mouse cursor into the corner of their desktop

when they wanted to initiate their screen saver before leaving their computer. The corner

of the screen “pockets” the cursor, much like the plastic template used in Stylus

EdgeWrite traps a moving stylus (§4.2.2).

2.2.2 Goal Crossing
The trackball (§7) and isometric joystick (§8) versions of EdgeWrite do not use physical

edges. Instead they use goal crossing to facilitate writing. Unlike pointing, which

requires a cursor to enter an area target and remain stationary long enough to select it,

crossing requires only that a goal line be penetrated, like a football player scoring a

touchdown (Figure 2.4). Thus, one can think of the crossing goal as providing a similar

benefit as an impenetrable edge. In both cases, the cursor is free to overshoot the target

by an arbitrary amount.

Figure 2.4. Crossing follows Fitts’ law but with the W constraint orthogonal to the

movement trajectory, rather than collinear.

Chapter 2: Related Work 18

Accot and Zhai have shown that crossing follows the Fitts’ law formulation shown in

Equation 2.1 (Accot and Zhai 1997), but that the regression coefficients a and b differ

than for the traditional Fitts’ reciprocal pointing task (Accot and Zhai 2002). In

particular, for index of difficulties (ID) less than 4 bits, continuous orthogonal goal

crossing is faster than pointing. On trackballs and isometric joysticks, EdgeWrite motion

uses IDs ranging from 0.7–0.9 bits, where crossing performs very well.

In their development of CrossY, Apitz and Guimbretière found that crossing can

indeed serve as the basis for a full-fledged application, replacing traditional point-and-

click interactions for buttons, checkboxes, radio buttons, scroll bars, menus, and dialog

boxes (Apitz and Guimbretière 2004).

Marking menus (Kurtenbach and Buxton 1994) are also related to EdgeWrite, as one

could think of EdgeWrite letters as selections unfolding from hierarchical marking

menus. Marking menus also “beat Fitts’ law” in a way similar to crossing, since only the

direction of a mark determines the selection, not the stroke length. Also, the stroke-based

word prediction and completion system in Trackball EdgeWrite involves selecting words

in a style similar to marking menus (§3.5.2).

2.3 Input Devices and Techniques

Text entry is an area of research dating back to the 1950s. Early influential works include

Gentner et al.’s glossary of error terms (Gentner et al. 1984) and Grudin’s analysis of

transcription typing errors (Grudin 1984). Recently, mobile devices have spurred a

renaissance of sorts for text entry research due to the constraints imposed and the

challenges of small devices. Zhai has described the desirable properties of mobile text

input methods (Zhai et al. 2005), and MacKenzie and Soukoreff have provided a

thorough overview of mobile text entry methods (MacKenzie and Soukoreff 2002b).

Readers are directed to these sources for more details.

This section discusses the related work in text entry for a variety of input devices.

The first subsection highlights three “multi-device” methods of particular relevance to

EdgeWrite. The following subsections are divided according to device type, roughly

following this dissertation’s chapter organization.

Chapter 2: Related Work 19

2.3.1 Multi-device Input
Multi-device adaptability is an important aspect of EdgeWrite’s versatility. Although

most text entry methods are not explicitly designed for multiple devices, three stand out

as particularly relevant to EdgeWrite in this regard. The first is Dasher, a text entry

method that can be used with any cursor control device (Ward et al. 2000). With Dasher

(Figure 2.5), one moves through dynamic expanding letter regions, the sizes of which

correspond to a letter’s likelihood of entry. Although Dasher can achieve rapid entry rates

(~30 WPM), a common sentiment, particularly among novices, is that it can be

overwhelming because it is in constant visual flux. This also makes it difficult to use

Dasher purely by feel, since one must constantly attend to the changing display. Dasher

can be used on a PDA with a stylus, or with an eye-tracker for hands-free input (Ward

and MacKay 2002).

Figure 2.5. In Dasher, probabilistic letter regions expand rapidly from right-to-left
toward the mouse cursor. Here the user is writing “Hello.” Used with permission.

The second multi-device method is the Minimal Device Independent Text Input

Method, or MDITIM (Isokoski and Raisamo 2000). MDITIM defines all letters in terms

of north, east, south, and west primitives (Figure 2.6). As a result, it can be used with

touchpads, trackballs, mice, joysticks, and keyboards. The downside of MDITIM is that

letter shapes generally do not mimic their Roman counterparts in either look or feel. In

contrast, the EdgeWrite alphabet was designed to maintain mnemonic correspondence

with Roman letters (§3.3.3).

Chapter 2: Related Work 20

Figure 2.6. The MDITIM alphabet. Image adapted from (MacKenzie and Soukoreff

2002b). Used with permission.

In a study of MDITIM on different devices (Isokoski and Raisamo 2000), subjects

entered text with a touchpad for nine 30-minute sessions followed by a single session in

which they used a touchpad, trackball, mouse, joystick, and keyboard.2 Respective speeds

(WPM) and error rates were about 7.5 (6.2%), 6.5 (7.3%), 6.3 (4.8%), 5.6 (3.0%), and 4.9

(3.2%). These speeds are quite a bit slower than EdgeWrite on the same devices

(Wobbrock and Myers 2005a). Like Dasher, MDITIM has been adapted for use with an

eye-tracker, although performance results were not given (Isokoski 2000).

The third multi-device method is Quikwriting (Perlin 1998) and its evolution into

Microsoft’s Xnav (Kanellos 2006). Quikwriting defines letter regions about the perimeter

of a square area (Figure 2.7). One enters a letter by moving from the center to one of the

regions, possibly into a second region, and then back to the center. Since all letters begin

and end in the center, words and phrases can be written fluidly as single continuous

strokes. Isokoski studied the use of Quikwriting with styli, joysticks, and keyboards

(Isokoski and Raisamo 2004). After 10 hours of practice, subjects reached 16 WPM with

the stylus and 13 WPM with the joystick with uncorrected error rates of <1%. After this,

subjects were tested with the keyboard version and reached 8 WPM. Isokoski concluded

that Quikwriting is difficult to learn and not particularly fast, but feasible for writing on

multiple devices.

2 I calculated the keyboard method’s keystrokes per character (KSPC) to be 3.06. See (MacKenzie
2002b) for more details on calculating characteristic KSPC.

Chapter 2: Related Work 21

Figure 2.7. Quikwriting and its successor, Xnav. The stroke on the left produces the

word “quik”. Images are from (MacKenzie and Soukoreff 2002b) and (Kanellos 2006).
Used with permission.

Xnav has taken Quikwriting further by designing an alphabetical layout and creating

versions for Xbox joysticks, capacitive sensing phone keypads, hover-tracking Tablet

PCs, ultra-mobile PCs, and television remote controls. In addition, Xnav implements East

Asian languages like traditional and simplified Chinese.

2.3.2 Stylus Input
Unistroke alphabets and “soft” stylus keyboards are two predominant forms of stylus-

based text entry. As noted above (§1.2), EdgeWrite is an example of the former. This

section therefore focuses on unistroke systems. Information on stylus keyboards can be

found elsewhere (Soukoreff and MacKenzie 1995, Lewis et al. 1999a, Lewis et al.

1999b, MacKenzie and Zhang 1999, Zhai et al. 2000, MacKenzie and Soukoreff 2002b,

Zhai et al. 2002).

The earliest example of a unistroke alphabet was Notae Tironianae, designed by a

freed slave of Cicero in 63 B.C. (Buxton 2005). The earliest electronic character stroke

recognition system was probably Dimond’s from 1957, which used electric plates and an

energized stylus (Dimond 1957). In 1993, Xerox PARC’s Unistrokes (Goldberg and

Richardson 1993) formalized the single-stroke concept and coined the term, but it wasn’t

until Palm OS released Graffiti (Figure 2.8) that unistrokes became popularized

(Blickenstorfer 1995). The success of Graffiti is often attributed, at least in part, to its

similarity to hand-printed Roman letters (MacKenzie and Zhang 1997)—a property

Unistrokes lacked (MacKenzie and Soukoreff 2002b). The importance of Roman

similarity is preserved in EdgeWrite’s mnemonic strokes (§3.3.3).

Chapter 2: Related Work 22

Figure 2.8. The Graffiti alphabet and numerals. Note the similarity to hand-printed

Roman alphanumerics for most characters.

The character recognition approach in EdgeWrite is based on a sequence of corner

regions. Other region-based recognizers include LibStroke (Willey 1997) and Xstroke

(Worth 2003), which tokenize strokes based on underlying grids of nine regions.

A few studies have compared the performance of unistroke text entry systems.

Fleetwood et al. compared Graffiti to the Palm OS stylus keyboard and found that

novices were faster with the keyboard (7 vs. 16 WPM) but experts were faster with

Graffiti (21 vs. 18 WPM) (Fleetwood et al. 2002). For both novices and experts, Graffiti

error rates were higher than stylus keyboard error rates (9% vs. 2%). Költringer and

Grechenig found similar results for a study of novices using Graffiti 2 (9 WPM, 19%

errors) and the Palm OS stylus keyboard (13 WPM, 4% errors) (Költringer and

Grechenig 2004). Sears and Arora compared novice performance with Jot and Graffiti,

finding Jot to be significantly faster (7.37 vs. 4.85 WPM) but not detectably different in

terms of uncorrected errors (10.1% vs. 14.8%) (Sears and Arora 2002). Lewis compared

the entry rates of two keyboards—stylus QWERTY and a predictive dynamic layout—

with “perfect” handwriting recognition (Lewis 1999). He found that natural handwriting

was fastest (23 WPM), the standard QWERTY second (14 WPM), and a dynamic layout

third (6 WPM). However, subjects rated handwriting the most difficult due to the

device’s small size.

Although many of these results favor stylus keyboards, there are significant

drawbacks of soft keyboards not captured by these studies. These include the addition of

a second focus-of-attention (FOA), inability to write “by feel,” increased visual fatigue,

the need for screen real estate, and the need for collocated input and output (i.e. a touch

screen). Tapping on a stylus keyboard is akin to typing in a “hunt and peck” fashion.

Gestural systems largely avoid these problems but require their strokes to be learned.

Chapter 2: Related Work 23

2.3.3 Word-level Stroking
EdgeWrite includes not only the ability to make character-level strokes, but also word-

level strokes (§3.5). This subsection reviews other methods relevant to word-level

strokes.

An innovative hybrid of unistrokes and stylus keyboards is SHARK (Zhai and

Kristensson 2003) and SHARK2 (Kristensson and Zhai 2004). These stylus keyboards3

allow users to either tap words conventionally or stroke words as fluid unistrokes (Figure

2.9). Importantly, the stroking pattern for a word is the same as its tapping pattern, which

reinforces learning as users transition from tapping to stroking. Thus, SHARK avoids

many of the aforementioned drawbacks of stylus keyboards. Reported “burst” speeds

with SHARK2 for isolated repeated phrases range from 60–80 WPM.

Figure 2.9. SHARK stylus keyboards allow both tapping and stroking of words. The user
has stroked the pattern for the word “system,” even though the stroke itself is not required

to hit every letter in the word. The idealized pattern is also shown. Image taken from
(Kristensson and Zhai 2004). Used with permission.

Besides SHARK, word-level unistrokes can be made in both Cirrin (Mankoff and

Abowd 1998) and the aforementioned Quikwriting (§2.3.1). However, these methods

require users to access each letter within the word being entered, so although they utilize

a single stroke for each word, their strokes tend to be rather long and “swoopy,” lacking

any mnemonic correspondence to the Roman letters or words for which they stand.

Word prediction and completion systems are also relevant to word-level stroking.

Stroke-based examples include Ink Completion (Denoue and Chiu 2005) and Speech Pen

(Kurihara et al. 2005). However, unlike EdgeWrite’s word-level stroking, these systems

supply candidate words as part of a graphical list, and require visual verification and a

3 For legal reasons, SHARK has recently been renamed ShapeWriter.

Chapter 2: Related Work 24

separate action for selection. Some studies even show that list-based word selection slows

people down (Goodenough-Trepagnier et al. 1986, Soede and Foulds 1986). Also, having

separate actions for selection breaks the fluid motor patterns that users may develop for

making word-level strokes. In contrast, EdgeWrite allows words to be completed in a

single non-lifting stroke (§3.5.2).

2.3.4 Displacement Joystick Input
A “displacement joystick” is one in which the joystick’s angle determines the magnitude

and direction of the joystick’s output reading. Usually, the further the joystick is

displaced in a given direction, the faster an object or view moves in that direction.

Displacement joysticks differ from isometric joysticks, which sense force but do not

move.

There have been a few other gestural text entry methods for joysticks. One is Weegie,

a prototype method for use on X11, the popular UNIX window manager (Coleman 2001).

With Weegie, a user moves a joystick to various positions (e.g. 12 o’clock) to access

different characters. EdgeWrite differs from Weegie in that EdgeWrite’s strokes are

similar to Roman letters, whereas Weegie’s arrangement of letters has no Roman

similarity. Also, EdgeWrite requires only one stick, whereas Weegie requires two. A

second method, KeyStick, is a displacement joystick method for use on some mobile

phones (Bloor 2003, n-e-ware 2004). With KeyStick, a user moves the joystick left, right,

up, or down to access menus of characters. Like Weegie, the placement of KeyStick’s

characters within menus is not reminiscent of Roman forms. A third method, myText, is

another joystick method for mobile phones (Co-operwrite Ltd. 1997). Unlike Weegie and

KeyStick, myText is not menu-based but letter-like. myText recognizes gestures by

looking at “unit vectors” of motion. No scientific performance results have been reported

for any of these methods.

More common than gestural joystick text entry methods are various selection-based

joystick methods. The earliest of these is probably date stamp, which is familiar from

high-score screens from 1980s arcade games (Herz 1997). This method gets its name

from a post office stamp that has rotating dials for each character. Users pull down on the

joystick to “roll” the current letter “forward” from “a” to “z”, and push up on the joystick

to roll it back from “z” to “a”. Overshooting “z” results in returning to “a”.

Chapter 2: Related Work 25

Selection keyboards are another form of selection-based joystick text entry. Selection

keyboards are on-screen two-dimensional keyboards that show a selector highlight over

the current letter. Users move the joystick in the four cardinal directions to move the

highlight, and press a button to commit the currently selected letter. Modern video games

such as Halo and Brute Force use selection keyboards for text entry during player

configuration.

Wilson and Agrawala used the two thumb joysticks of an Xbox controller to

manipulate two distinct selectors on separate halves of a split selection keyboard (Wilson

and Agrawala 2006). They found that their dual-stick QWERTY design, at about 7.1

WPM, was significantly faster than a single-stick QWERTY layout (6.5 WPM) and a

dual-stick alphabetical layout (6.4 WPM). Total error rates for dual-stick QWERTY were

about 5.4%.

Displacement joysticks are also widely used on power wheelchairs. With the

exception of EdgeWrite (§6.2.1), no gestural text entry systems exist for wheelchair

joysticks, but there are commercial solutions for controlling a desktop mouse cursor from

a power wheelchair joystick. An example is the Mouse Driver from Switch-It, Inc.

(http://www.switchit-inc.com), a radio-controlled mouse cursor. However, text entry with

this technology amounts to point-and-click or point-and-dwell over an on-screen

keyboard.

Mouse cursor control using a power wheelchair joystick has been studied (Romich et

al. 2002, LoPresti et al. 2004). Results show that joystick-based mousing is slow but

feasible, and that proportional rate control is better than absolute mapping for text entry

using an on-screen keyboard.

2.3.5 Touchpad Input
Besides EdgeWrite, few text entry techniques exist for touchpads. Two limited

exceptions explored numeric text entry on touchpads. Enns and MacKenzie used a

touchpad as a television remote control, demonstrating that Graffiti numbers could be

used successfully to change television channels (Enns and MacKenzie 1998). Isokoski

and Kaki compared two clock-face metaphors for entering numbers on touchpads, one

that was essentially a single-tier marking menu and another that used two-tiers (Isokoski

Chapter 2: Related Work 26

and Kaki 2002). Peak speeds were about the same (~18 WPM), but the two-tiered scheme

was more accurate (14.6% vs. 10.2% total errors).

Most prior touchpad research has focused on new interaction techniques, not text

entry methods. Innovative examples include using a touchpad in the non-preferred hand

for manipulating maps (Hinckley et al. 1998), as an additional mode-switch for enabling

keyboard-based mouse emulation (Rekimoto 2003), and with an underlying electronic

relay to provide tactile feedback under pressure (MacKenzie and Oniszczak 1997). The

latter, dubbed the Tactile Touchpad, was shown to be 20% faster for selection tasks than

the lift-and-tap method, and 46% faster than using a touchpad button (MacKenzie and

Oniszczak 1998).

Similar to EdgeWrite’s plastic template, physical guides have been used on touch-

sensitive surfaces to guide fingers (Buxton et al. 1985). Buxton and Myers used two

touch-sensitive strips defined by physical edges to provide absolute positioning within a

document and relative positing for scrolling (Buxton and Myers 1986).

A few researchers have placed touchpads on the backs of devices to enable new

interaction techniques. Silfverberg et al. put two touchpads on the back of a portable

computer for panning and zooming with one’s fingertips (Silfverberg et al. 2003). This

device is shown in Figure 2.10.

Figure 2.10. Silverberg et al.’s prototype. In the right image, the left touchpad is used to

pan in four directions, and the right touchpad is used to zoom. Used with permission.

Schwesig et al. created a bendable computer that uses a touchpad on its back for 2D

positioning (Schwesig et al. 2004). They also created a selection-based text entry method

for use with the touchpad. The method, however, seemed to be only suitable for writing a

Chapter 2: Related Work 27

few words. Hiraoka et al. built a touchpad into the back of a cell phone in the Behind

Touch prototype (Hiraoka et al. 2003). The small pad had elevated bumps that could be

used for entering text and numbers into the phone.

A new type of touch-surface is related to Four-sensor EdgeWrite (§9.4). Capacitive

phone keypads are beginning to support touch-based interactions like gestures. The

Motorola A668 phone has a capacitive sensing keypad (http://direct.motorola.com), as do

Synaptics’ MobileTouch technologies (http://www.synaptics.com). Rekimoto et al.

explored a set of “preview” interaction techniques for touch-sensitive keypads in the

PreSense prototype (Rekimoto et al. 2003).

2.3.6 Trackball Input
Trackballs have been used mostly as pointing devices. An early study by Epps et al.

compared six pointing devices, including a 4 cm trackball, in target acquisition tasks

(Epps et al. 1986). They found that the mouse and trackball were significantly faster than

the other devices, but were not significantly different from each other. A follow-up study

by Sperling and Tullis found that the mouse was faster for selection, dragging, and

tracing, even among trackball users (Sperling and Tullis 1988). Accuracy differences

were not significant for selection and dragging, but were significant for tracing, showing

the trackball to be less accurate than the mouse. Therefore, Trackball EdgeWrite does not

require precise pointing or smooth freeform gestures like those in handwriting or most

unistroke methods.

An exercise related to “tracing” is “steering.” Accot and Zhai studied five input

devices, including trackballs, in various tunnel-steering tasks (Accot and Zhai 1999).

They found that trackballs are comparable to touchpads—but both are worse than mice—

and that trackballs perform best relative to other devices for short straight-line trajectories

less than 250 pixels. They note that the performance of trackballs and touchpads suffers

when the device must be “clutched” for travel over long distances. Accordingly,

Trackball (§7.2) and Touchpad EdgeWrite (§6.2.2) both avoid the need for clutching.

Further comparisons of pointing devices by MacKenzie et al. show that trackballs are

slower than mice and styli in pointing and dragging, and less accurate for dragging

(MacKenzie et al. 1991). Dragging is particularly difficult with a trackball because of the

confluence of the thumb and finger muscles. In a later study, MacKenzie et al. added that

Chapter 2: Related Work 28

trackballs often move accidentally when clicking inside targets (MacKenzie et al. 2001a).

Such slips can be particularly troubling for users with motor impairments (Trewin and

Pain 1999, Paradise et al. 2005). Accordingly, Trackball EdgeWrite does not rely on

buttons or require dragging or clicking. It can, in fact, be used button-free.

Hinckley and Sinclair developed the TouchTrackball that, when touched, caused a

ToolGlass window to appear in what they called an “on-demand interface” (Hinckley and

Sinclair 1999). When the trackball was released, the ToolGlass faded away.

With the exception of EdgeWrite, there have been no text entry methods developed

explicitly for trackballs. This is unfortunate, since trackballs are popular alternatives for

people with motor impairments and many of these users cannot type on physical

keyboards. What trackball text entry does exist has been with an on-screen keyboard.

Examples include WiViK (Shein et al. 1991) and Visual Keyboard (Bishop and Myers

1993). In Figure 2.11, WiViK is shown below Microsoft Notepad.

Figure 2.11. WiViK with word prediction and completion. Preferences allow letters and

words to be triggered by either clicking or dwelling.

Although on-screen keyboards are easy to learn, they have many drawbacks. For

instance, they exacerbate mouse travel to and from a document. They introduce a second

focus-of-attention such that a user’s eyes cannot remain on his or her document

(MacKenzie and Soukoreff 2002b, Anson et al. 2005). They also require repeated target

acquisitions for which trackballs are not well suited (MacKenzie et al. 1991, MacKenzie

et al. 2001a). Furthermore, they are visually fatiguing, equivalent to typing in a tedious

“hunt-and-peck” fashion. Finally, they consume screen real estate, considerably reducing

one’s visual workspace and exacerbating the need for window management. Although

word prediction and completion systems may increase the speed of on-screen keyboards,

Chapter 2: Related Work 29

they do not solve the above problems (Anson et al. 2005). A Trackball EdgeWrite test

subject once remarked that he would prefer a gestural text entry method that he could do

by feel over an on-screen keyboard, even if the on-screen keyboard were faster (§7.3.3).

Fortunately, this subject was faster with Trackball EdgeWrite than with his on-screen

keyboard, so he did not have to make this tradeoff.

2.3.7 Isometric Joystick Input
An “isometric joystick” is a joystick that senses force but does not move. Isometric

joysticks were part of the early formal study of input devices by Card et al. that helped

extend Fitts’ law to pointing devices (Card et al. 1978). Isometric joysticks became

popular with the advent of the IBM TrackPoint, the small isometric joystick embedded in

ThinkPad laptops (Rutledge and Selker 1990, Barrett et al. 1995). The TrackPoint is

slower than a conventional mouse for pointing, but faster for joint typing/pointing tasks

due to reduced switching costs. It also takes up much less space than a conventional

mouse, which has significant advantages for mobile computing.

Figure 2.12. From left to right: Zhai et al.’s joystick mouse, Silfverberg et al.’s one-
handed pointer, Chau et al.’s EdgeWrite phones (front and back), and Zaborowski’s

musical ThumbTec. Images are taken from their respective papers. Used with permission.

TrackPoint-style isometric joysticks have since been embedded in a variety of

devices (Figure 2.12). Zhai et al. combined one with a desktop mouse to facilitate

pointing with the mouse and scrolling with the finger-controlled joystick, finding this

design faster and more liked than the IntelliMouse scroll wheel (Zhai et al. 1997).

Silfverberg et al. embedded an isometric joystick in two handheld prototypes for pointing

on information terminals (Silfverberg et al. 2001). They found that their two-handed

prototype could achieve about 78% of a ThinkPad joystick’s throughput—and their one-

handed prototype about 68%—when using the thumb for control and a separate button

Chapter 2: Related Work 30

for selection. Zaborowski invented ThumbTec, a thumb-controlled isometric joystick

used in combination with three switches for playing music (Zaborowski 2004). Salem

and Zhai put a TrackPoint in a mouthpiece for tongue-controlled pointing (Salem and

Zhai 1997). Finally, Mithal and Douglas found that pointing with an isometric joystick

involves many more sub-movements than with a mouse, making the former more

difficult to control (Mithal and Douglas 1996).

In spite of these numerous designs utilizing isometric joysticks, there appear to be no

text entry methods developed specifically for such devices. In this regard, EdgeWrite’s

mobile phone isometric joysticks are unique (§8.2).

2.3.8 Mobile Keypad Input
Keypads for mobile devices may be thought to exist on a spectrum based on their number

of keys (MacKenzie 2002c). There are text entry methods for 3 keys, 4 keys, 5 keys, 6

keys, 8–12 keys, and 26+ keys. Most research has been devoted to the 8–12 key group,

since this is the size of most mobile phone keypads. EdgeWrite can be implemented as a

gestural few-key method with four keys (§9).

Text entry with three keys has been studied in-depth (MacKenzie 2002b, MacKenzie

2002c). Three-key methods rely on two keys to move a selector left and right and a third

key to select a letter. The 3-key design is a variant of the date stamp method used for

displacement joysticks (§2.3.4). The KSPC values for most 3-key methods range from

about 6.5 to 10.5 (MacKenzie 2002c). Typical entry rates are 9–10 WPM.

The gestural UDLR technique is intended for the four keyboard arrow keys

(Evreinova et al. 2004). All letters consist of 3 presses of the arrow keys, so KSPC is

3.00. After a week of practice, speeds reached ~13.5 WPM, but users reportedly suffered

from a great deal of confusion due to the alphabet’s rather arbitrary key sequences.

Five-key text entry can be found on two-way pagers like the Glenayre AccessLink II

shown in Figure 2.13 (MacKenzie 2002b). Five-key methods use four keys to move over

a matrix of letters and a fifth key for selection (Bellman and MacKenzie 1998,

MacKenzie 2002b). The KSPC for the Glenayre pager is 3.13 (MacKenzie 2002b).

Chapter 2: Related Work 31

Figure 2.13. The Glenayre AccessLink II two-way pager and its alphabetic layout for use

with five keys. The layout is adapted from (MacKenzie 2002b). Used with permission.

An interesting 6-key method is the GKOS keyboard (Tiainen 2000), a small

commercial chording keyboard (http://gkos.com). Although no scientific results are

given, the GKOS keyboard can reportedly reach 20 WPM after initial practice and 40

WPM for experts. Because it only uses six buttons, it can be integrated with mobile

phones, ultra-mobile PCs, and even car steering wheels (§10.1).

Jannotti’s design for Iconic text entry uses 10 keys of a numeric keypad, allowing

users to trace letter-shapes that are somewhat reminiscent of Roman forms (Jannotti

2002). Iconic’s KSPC is 2.43. It was reported to have a Fitts’ law-derived peak

theoretical speed of 19.8 WPM, but this was never empirically validated.

The most common text entry method in use on mobile phone keypads is Multitap.

Karlson et al. report that 32.3% of surveyed mobile phone users enter text using this

method, compared to just 18.3% using gestures, 17.0% using physical mini-QWERTY

keyboards, and 10.5% using T9 (Karlson et al. 2006). With Multitap, users press each

key the number of times (1–4) corresponding to the desired letter’s position on the key.

Thus, the letter “a” is one press of the “2” key, “b” is two presses, and “c” is three. The

KSPC for Multitap is 2.03 (MacKenzie 2002b).

There have been a number of Multitap variants designed to lower KSPC and increase

entry rate. Pavlovych and Stuerzlinger invented Less-Tap, a technique similar to Multitap

that uses an optimized letter arrangement within each key, saving about a half a key press

per character (Pavlovych and Stuerzlinger 2003). Its KSPC is about 1.53, which resulted

in a 9.5% speed improvement over Multitap for novices. Ryu and Cruz did similarly in

LetterEase, only instead of reassignment within keys, they reassigned letters across keys,

Chapter 2: Related Work 32

finding that this resulted in an empirical KSPC of 1.32 (Ryu and Cruz 2005). However,

LetterEase was slower than conventional Multitap for novices due to increased visual

search. Wigdor and Balakrishnan combined Multitap with three extra chording buttons on

the back of the phone (Wigdor and Balakrishnan 2004). This technique, named

ChordTap, was about 32% faster over multiple sessions than Multitap with two-hands.

Nesbat created MessagEase by re-lettering the mobile phone keypad and assigning each

letter to 2 key presses (Nesbat 2003). A Fitts’ law theoretical model showed an upper-

bound entry rate of 25.9 WPM, but this speed was not empirically validated.

Predictive techniques lower KSPC by using a language model to disambiguate key

sequences into the most probable word. After each key is pressed, the current key

sequence is compared to a word dictionary for the most likely match. Incorrect matches

can be corrected by the user with special keys that move through an n-best list.

Commercial systems of this sort include T9 (http://www.tegic.com), iTap

(http://www.motorola.com/lexicus), and eZiText (http://www.zicorp.com). To avoid the

drawbacks of using dictionaries, MacKenzie et al.’s LetterWise technique guesses the

most probable letter for a given key based on a prefix of up to 3 letters already entered

(MacKenzie et al. 2001b). Gong et al. added predictive next-letter highlighting to

Multitap and showed that this kind of visual cueing marginally improves performance

over LetterWise (Gong et al. 2005). Although faster than Multitap for in-vocabulary

words, predictive techniques require users to constantly monitor their output to verify the

results of disambiguation.

Mobile phone text entry has been modeled as well. Silfverberg et al. combined Fitts’

law with letter digraph probabilities to create a model of expert performance for various

mobile phone keypad techniques (Silfverberg et al. 2000). Model predictions were 25

WPM for one-thumb Multitap and 46 WPM for T9 using an index finger and two hands.

However, James and Reischel empirically tested this model, finding that it overestimated

expert performance in both Multitap and T9 (James and Reischel 2001). Instead of

modeling experts, Pavlovych and Stuerzlinger modeled novices, including model terms

for visual search, cognitive steps, and repeatedly pressing the same key (Pavlovych and

Stuerzlinger 2004). Gong and Tarasewich developed optimal alphabetical and non-

alphabetical letter assignments for phone keypads using genetic algorithms and

exhaustive search, where reducing KSPC and disambiguation accuracy were the fitness

criteria (Gong and Tarasewich 2005).

Chapter 2: Related Work 33

For wearable computing, Twiddler (http://www.handykey.com) uses a 12-button

chording keypad operated with a single hand (Lyons et al. 2004). Because chords require

substantial learning, Lyons et al. found that performance with Twiddler dramatically

increases over sessions, from 4.3 WPM in session 1 to 26.2 WPM in session 20 (after ~6

hr. 40 min.). In this study, Twiddler caught Multitap in session 5 (~1 hr. 40 min.) at about

13 WPM. By session 20, Multitap reached about 19.8 WPM. It should be noted that

Multitap was performed on a Twiddler keypad, and that subjects were allowed to use two

thumbs concurrently.

Finally, a number of mobile devices now use miniature keyboards sporting 26 or

more physical keys (MacKenzie and Soukoreff 2002b). The most famous of these are

probably the Blackberry RIM devices (http://www.rim.com), which use mini-QWERTY

keyboards. These types of keyboards were studied by Clarkson et al., who compared two

such keyboards in a longitudinal study (Clarkson et al. 2005). Results indicate that initial

two-thumb typing speeds are 30–35 WPM and reach 60 WPM after 20 twenty-minute

sessions. Although these speeds are impressive, drawbacks of such keyboards include the

need to use two hands, larger physical footprints, and inaccessibility to people with poor

motor function in their hands.

2.4 Text Entry Evaluation

Section 2.3 presented a number of relevant input devices. How input devices are

evaluated is of prime importance to ensure reliable results. In chapters 4–9 of this

dissertation, numerous text entry studies are conducted. Although different evaluation

procedures exist (§11.1), the evaluations of EdgeWrite reported in this dissertation use

the unconstrained text entry experiments. The unconstrained paradigm presents phrases

to subjects for transcription (i.e. copying) as shown in Figure 2.14. Using the TextTest

software, each phrase is presented after being chosen at random from a corpus of 500

phrases (MacKenzie and Soukoreff 2003). See §11.4.3 for more details.

During transcription, subjects are free to enter text as they would in any text box

widget, with the exception that cursor control and mousing is not permitted. Backspace is

the only means for error correction. Both correct and incorrect characters can be entered

without the intrusion of “error beeps” or red-letter highlights. Subjects are encouraged to

balance speed and accuracy, and to correct errors as they would when writing an email to

Chapter 2: Related Work 34

an acquaintance—somewhere between an informal note and a formal correspondence.

The benefits of the unconstrained paradigm lie mainly in its naturalness. Speed and error

measurements, for example, are not thrown into question by the presence of intrusive

error beeps or the halting of progress until a correct letter is entered. This section

provides a brief overview of the metrics employed in these evaluations.

Figure 2.14. TextTest general-purpose text entry evaluation software.

2.4.1 Speed
The calculation of speed in the unconstrained paradigm is straightforward, with one

caveat that is often overlooked: the numerator must be the length of the transcribed string

minus one (MacKenzie 2002a). The reason is that timing begins with the entry of the first

character and ends with the entry of the final character. Even in studies where subjects

press ENTER to advance to the next phrase, the final time is the timestamp of the last

entered letter.

Borrowing MacKenzie’s example:

the quick brown fox jumps over the lazy dog (43 characters)
^ ^
t = 0 seconds t = 20 seconds

The proper WPM calculation is thus:

characters5
 word1

minute1
seconds 60

seconds 20
characters 143

××
−

=wpm (2.2)

The result for this example is 25.2 WPM. Note that Equation 2.2 uses the standard

definition of 5 characters per word.

Chapter 2: Related Work 35

2.4.2 MSD and KSPC
In the unconstrained testing paradigm, speed calculations are straightforward but error

calculations are not. There are two types of errors: uncorrected errors that remain in the

transcribed string, and corrected errors that are any characters backspaced during entry.

Soukoreff and MacKenzie wrote a paper on calculating these metrics (Soukoreff and

MacKenzie 2001). Building on previous work (Damerau 1964, Levenshtein 1965,

Wagner and Fischer 1974, Landraud et al. 1989), they proposed the minimum string

distance (MSD) statistic for calculating uncorrected errors. Using the MSD statistic, we

can compare the presented string to the transcribed string and arrive at the number of

Morgan editing operations (Morgan 1970)—insertions, omissions, and substitutions—

required to turn one string into the other. This gives us a count of uncorrected errors.

Using the MSD algorithm (Soukoreff and MacKenzie 2001), our error rate formula is:

%100
),max(
),(
×=

TP
TPMSDrateMSD error (2.3)

In Equation 2.3, P is the presented string and T is the transcribed string. The

denominator is the greater length of either P or T. Note that this formula does not say

which characters are erroneous, just the number of errors. To find out which characters

are in error, we would need a character-level error analysis (§11).

For corrected errors, we can use the keystrokes per character (KSPC) dependent

measure.4 This measure is a simple ratio of the number of entered characters to the

number of characters in the final transcribed string.

T
KeystrokesKSPC = (2.4)

As an example, consider the following input:

Keystrokes: tw←he qvi←←uick brx←owm←n (25 keystrokes)
Transcribed: the quick brown (15 characters)

The KSPC error metric calculation is therefore 25 / 15 = 1.67.

4 This is not the same as the KSPC characteristic measure (MacKenzie 2002b), although it is
related. Characteristic KSPC is a theoretical model of keystrokes per character. In contrast, a
dependent KSPC result is based on how accurately subjects perform during a text entry exercise.

Chapter 2: Related Work 36

2.4.3 Uncorrected, Corrected, and Total Errors
Soukoreff and MacKenzie unified their MSD and KSPC error metrics in a later paper

(Soukoreff and MacKenzie 2003). They did this by classifying each character in a text

input stream as belonging to one of four categories:

Correct (C) All correct characters in the transcribed text.
Incorrect-Not-Fixed (INF) All incorrect characters in the transcribed text.
Incorrect-Fixed (IF) All characters backspaced during entry.
Fixes (F) All backspaces.

The separation of C and INF can be accomplished using the MSD algorithm.5 The IF

and F classes are counted by scanning the keystroke input stream. We can now compute

uncorrected and corrected errors and combine them into a unified total error rate.

%100×
++

=
IFINFC

INFted error rauncorrecte (2.5)

%100×
++

=
IFINFC

IFerror ratecorrected (2.6)

%100×
++

+
=

IFINFC
IFINFr ratetotal erro (2.7)

These are the formulae used to report error results throughout most of this

dissertation. Readers are directed to prior work for more details (Soukoreff and

MacKenzie 2003).

It should be noted that the total error rate is a somewhat arbitrary combination of

uncorrected and corrected errors. The reason lies in the fundamental difference between

uncorrected and corrected errors. Uncorrected errors are at odds with speed: the more

errors one leaves, the faster one can enter text. Corrected errors, on the other hand, are

subsumed in speed, since it takes time to correct errors. A text entry method that creates

and corrects many errors during entry but ultimately produces error-free text in a short

amount of time is a successful method, despite a high corrected (and therefore total) error

rate. Furthermore, in most text entry studies, corrected errors greatly outnumber

uncorrected errors, which makes the total error rate just a reflection of the corrected error

rate. The total error rate is useful, however, when some subjects correct most of their

5 As it turns out, INF = MSD(P, T) and C = max(|P|, |T|) – MSD(P, T).

Chapter 2: Related Work 37

errors while others choose not to; that is, when the corrected and uncorrected error rates

are roughly equal.

An additional drawback of these metrics is that they do not differentiate between

backspaced letters that were incorrect and backspaced letters that were correct

(Soukoreff and MacKenzie 2004). That’s because the IF class is just a count of

backspaced letters. In order to separate IF into corrected-and-wrong and corrected-but-

right letters, a character-level error analysis of the keystroke input stream is needed.

Although a character-level analysis existed prior to the current work (MacKenzie and

Soukoreff 2002a), it only considered presented and transcribed strings, not the IF class

and input stream. Thus, a contribution of this dissertation is providing new algorithms

and analyses for erased characters (§11).

Chapter 2: Related Work 38

Chapter 3: The EdgeWrite Design 39

Chapter 3

3 The EdgeWrite Design

This chapter describes EdgeWrite’s design independent of any specific version. It serves

as a foundation for Chapters 4–9, which present specific EdgeWrite implementations.

3.1 Background

This section describes the genesis of the EdgeWrite concept and the initial user studies

that informed its design.

3.1.1 Remote Commander
In 2002, we conducted field studies which found that although some people with

Muscular Dystrophy or Cerebral Palsy could not use a conventional keyboard or mouse,

they could effectively negotiate the small expanse of a PDA screen (Myers et al. 2002).

Thus, some people with motor impairments could use Remote Commander (Myers 2001),

a program for the Palm PDA that allows a handheld to control a desktop computer

(Figure 3.1). With Remote Commander, a person can move his or her stylus or finger

across the small PDA screen and thereby move the mouse cursor across the larger screen

of a desktop PC. Similarly, by tapping anywhere on the PDA screen, a person can actuate

a mouse-click on the desktop. Remote Commander proved quite useful for some people

with motor impairments, and was even featured in an issue of Quest, the magazine of the

Muscular Dystrophy Association, for enabling a home-schooled girl to complete her

homework (Stack 2001).

Chapter 3: The EdgeWrite Design 40

Figure 3.1. This 12 year-old with Muscular Dystrophy is using Remote Commander

attached to his desktop PC. His text entry options are a stylus keyboard or Graffiti (right),
both of which are difficult. Images adapted from (Myers et al. 2002).

Although pointing was made easier with Remote Commander, text entry was still

difficult for many users with motor impairments. The two built-in text entry methods on

Palm PDAs—stylus keyboards and Graffiti—are inadequate for many people with

tremor, low strength, poor coordination, or rapid fatigue. The small keys in stylus

keyboards can be difficult for anyone to tap, and unconstrained stroke alphabets require

substantial motor control to execute. Deviations outside the allowable range of stroke size

and shape often result in misrecognitions.

3.1.2 Edge Keyboards
As a result, we began to explore methods for improving PDA text entry for people with

motor impairments. Our initial design was Edge Keyboards as an attempt to improve

stylus keyboards for people with poor motor function (Wobbrock et al. 2003a). The idea

was to place the soft keys of the stylus keyboard around the perimeter of the PDA screen,

where raised physical edges provide a backstop against which the stylus can hit. As with

the Macintosh menu bar, the physical edges should make keys easier to acquire (Walker

and Smelcer 1990). Furthermore, Edge Keyboards would allow users to keep their styli

on the screen at all times, removing the need to hold their arms suspended.

Chapter 3: The EdgeWrite Design 41

Figure 3.2. An Edge Keyboard for the Palm OS. The phrase “the woman” has been

entered. Letters were arranged to minimize weighted digraph distance using a simulated
annealing algorithm. Image adapted from (Wobbrock et al. 2003a).

Figure 3.2 shows one version of an Edge Keyboard. With this keyboard, 10 able-

bodied novices could enter text at 10.2 WPM after 5 minutes of practice. This compared

to 12.4 WPM for Graffiti and 22.2 WPM for stylus QWERTY. Although motor-impaired

users might perform somewhat better with Edge Keyboards relative to Graffiti or stylus

QWERTY, the lackluster results for able-bodied users did not warrant the further

investigation of Edge Keyboards. The main problems appeared to be an increase in visual

search time, too much unconstrained stylus movement, and long stylus travel distances,

which negated any target acquisition benefits from physical edges. These three problems

would eventually be remedied in the design of EdgeWrite.

3.1.3 Line Tracing Study
Before proceeding further, a study was conducted to discover the effects of physical

edges on stylus movement. The goal was to analyze movement at a fine-grained level in

order to discover what types of movement would be most successful for people with

motor impairments. MacKenzie et al. developed path analysis techniques to compare

pointing devices on the desktop (MacKenzie et al. 2001a). Keates et al. extended these

measures for motor-impaired users on the desktop (Keates et al. 2002). The current study

was the first to use these techniques to analyze stylus movement on PDAs (Wobbrock

2003).

The different line placements shown in Figure 3.3 were compared to learn how

physical edges and corners affect the movements of motor-impaired users tracing lines.

Chapter 3: The EdgeWrite Design 42

Figure 3.3. The line tracing patterns varied according to the presence or absence of edges
and corners. The lines in condition 1 are presented at various angles according to the ISO

9241-9 standard. Images adapted from (Wobbrock 2003).

Three subjects, two with Cerebral Palsy and one with Muscular Dystrophy, were

presented with a series of line-tracing tasks on a standard Palm Vx screen measuring

160×160 pixels. Five line-types varied according to placement with respect to edges and

corners: (1) circular in the ISO 9241-9 standard pattern (Douglas et al. 1999); (2) at three

different angles into each of the upper corners; (3) along an edge and terminating in a

corner; (4) along an edge but terminating prior to a corner; (5) not along an edge but

orthogonal to and terminating on an edge. These numbers correspond to the numbered

lines in Figure 3.3.

MacKenzie et al.’s path analyses provide a detailed account of what happens during

movement (MacKenzie et al. 2001a). A Java program performed these analyses on the

movement data obtained in the study. Two new measures were also added to the

analyses. These were Start Error (SE) and End Error (EE), which were the pen-down

and pen-up distances from the start and end of the line segment, respectively (Wobbrock

2003).

Figure 3.4 shows the results of the study. Movement along an edge (line types 3 and

4) result in better performance at the p<.05 level than the other three types for speed

(MT), directional changes (MDC, ODC), and deviation from the task line (TAC, ME,

MO, MV). In addition, type 3 is significantly more accurate to the end point than all other

line types (p<.05). The only thing for which type 3 was not clearly better was for start

error (SE), probably because there was no corner involved at type 3’s starting point, only

Chapter 3: The EdgeWrite Design 43

at type 3’s ending point. Thus, it was clear that edge-guided lines can be traced more

quickly, stably, consistently, and accurately than other line types.

Figure 3.4. Results from the line tracing study. Lower is better for all measures. Moving

from left-to-right within each line type moves correspondingly down the key at right.

The results of this study confirmed that edges are highly beneficial for stability,

accuracy, and speed in straight-line gestures. The study also verifies that some motor-

impaired subjects can exert enough pressure against an edge to enjoy these benefits.

Motion along an edge and into a corner (line type 3) exhibited the best performance. The

challenge now was to leverage these findings in the creation of a new text entry method.

3.1.4 Genesis of EdgeWrite
From the exploration of Edge Keyboards (§3.1.2), it was clear that visual search,

unconstrained stylus motion, and long stylus travel distances should be avoided. From the

line tracing study (§3.1.3), it was clear that motion along an edge and into a corner was

the fastest, most accurate, and most stable (i.e. least “wiggly”). These findings

culminated in the design of the first EdgeWrite prototype, a version for use with a stylus

on a Palm PDA. Over time, this design would evolve into the technology described in the

rest of this chapter.

Chapter 3: The EdgeWrite Design 44

3.2 Core Concepts

More than any other aspect, four corners define the EdgeWrite technique. All versions of

EdgeWrite utilize four distinct corners arranged in a square (Figure 3.5). Whether the

square is instantiated physically, like with a plastic template for Stylus EdgeWrite (§4),

or virtually, like with an on-screen window for Trackball EdgeWrite (§7), the square

defines the space in which all EdgeWrite strokes occur.

Figure 3.5. A conceptual EdgeWrite square with four corner regions. All EdgeWrite

input takes place within its square. The letter “a” is shown as it might be written using a
stylus. The heavy dot marks the beginning of the stroke.

EdgeWrite strokes are made along physical edges and into corners, which provide

stability during the stroking process. In “virtual” versions where physical edges are not

present, goal crossing is used and corners are indicated by vectors. In both physical and

virtual versions of EdgeWrite, it is the corners that determine the strokes being made, not

the overall path of motion—that is, not the full point trace.

Since strokes are defined by their sequence of corners, path-based input devices like

styli, touchpads, and joysticks gain tolerance to wiggle due to tremor or instability. For

the versions that use trackballs and isometric joysticks, the use of corners allows “messy”

underlying mouse movement to be conveyed as idealized line segments that run cleanly

between corners. This idealization is particularly easy because no EdgeWrite characters

require that the same corner be entered twice in a row. Both cases are shown in Figure

3.6.

Figure 3.6. Defining strokes by their corner sequences allows wiggle to be tolerated (left)

and underlying mouse movement to be portrayed as clean arcs between corners (right).

Chapter 3: The EdgeWrite Design 45

As an EdgeWrite stroke unfolds, it is effectively “tokenized” into its corner sequence

in real-time. This tokenization provides a number of benefits not present in former

unistroke alphabets. For instance, EdgeWrite can incrementally recognize a stroke as it is

made (§3.4.1), only having to submit the current corner sequence to the recognizer when

a new corner is entered. This allows EdgeWrite to display recognition results before they

occur. Tokenization also allows EdgeWrite to provide certain advanced features like non-

recognition retry and slip detection (§3.4).

In essence, EdgeWrite’s corners provide intra-stroke segmentation points, allowing

its gestures to be easily decomposed into component parts. Because of this, EdgeWrite

only needs to receive those component parts as input. This enables EdgeWrite to be

instantiated on devices that do not have continuous sensing surfaces. In fact, four “binary

sensors” are all that is required for EdgeWrite input, since each sensor can correspond

directly to a corner (§9).

The use of four corners also provides absolute referents that can differentiate similar

strokes. For example, a vertical down-stroke on the left side of the square enters an “i”,

but on the right side, a numeral “1” (Figure 3.7). These “implicit spatial modes” help

reduce the number of actual modes required for different types of input.

Figure 3.7. Using four corners means that the same stroke made in different parts of the

square can be differentiated. The left stroke produces an “i”; the right, a numeral “1”.

Using corners allows EdgeWrite characters to be efficiently defined, stored, and

recognized. Each character is encoded as a 64-bit hexadecimal integer in which each

corner is allocated 4 bits (Figure 3.8). This simple encoding scheme means that no

training examples, glyphs, gesture prototypes, or pattern matchers are necessary for

character recognition. It also means that there are no recognition collisions, as each stroke

is unambiguous. This solves a common problem with gesture recognition systems where

gestures are not sufficiently distinct from one another (Long et al. 1999).

Chapter 3: The EdgeWrite Design 46

Figure 3.8. These strokes for “c”, “m”, and “u” can be defined with hexadecimal integers

0x2184, 0x181424, and 0x1842, respectively. Corners are encoded in 4 bits.

Another virtue of using corners is that end-users could define their own gestures

using exactly one “training” example. This would allow for easy defining of special

strokes for launching applications, entering boilerplate text, performing sequences of

actions, and so forth. Assuming the example stroke is performed as the user intends, the

system would have all the information it needs to recognize the stroke in the future. If the

gesture were already assigned, the user could be prompted to resolve conflicts. Although

this feature is not implemented in EdgeWrite, it is a straightforward extension based on

EdgeWrite’s reliance on corner sequences and an option for future work.

Corners also provide targets within the stroke-input space. This allows gestures and

selections to occur together in interesting ways. For example, words can be assigned to

corners as strokes are being made to provide word predictions and completions (§3.5).

These words can be selected by selecting their respective corners.

The choice of a square input area is not arbitrary. The use of a square guarantees that

edge-following motions will be in the four cardinal directions: up, down, left, and right.

These have been shown to be the easiest directions to move in a gestural alphabet, even

without an edge (Isokoski and Raisamo 2000). A more complicated polygon would result

in more vertices and more possibilities for the next corner. This could be cognitively

overwhelming in the case of many proximate vertices. Higher-order polygons would also

result in more oblique angles at the vertices, which may cause the stylus to “slip out”

during movement. While an acute angle pockets a stylus best, a square’s 90° corners are

adequate to catch a fast-moving stylus. A lower-order polygon, a triangle, would too

severely limit the number of possible character forms and reduce the extent to which the

forms resemble their handwritten counterparts. Section 3.3.2 analyzes some theoretical

properties of using four corners in a square.

When a character-stroke is finished, the user segments the stroke in a manner dictated

by the input device. With a stylus, the segmentation occurs when the pen is lifted. With a

Chapter 3: The EdgeWrite Design 47

isotonic joystick, it occurs when the joystick snaps-to-center. With a trackball, it occurs

when force (i.e. motion) ceases on the trackball. After segmentation, the stroke is

processed and the recognized character, if any, is produced.

3.3 The EdgeWrite Alphabet

The EdgeWrite alphabet is consistent across all versions of the technique. This section

describes the alphabet, how it was designed, and how its immediate usability compares to

Graffiti (MacKenzie and Zhang 1997).

3.3.1 Alphabet Design
The design of an alphabet will depend on the properties most championed by its

designers. For Unistrokes, this property was efficiency (Goldberg and Richardson 1993).

For MDITIM, it was maintaining unambiguous prefix codes while using only the four

cardinal directions (Isokoski and Raisamo 2000). For Graffiti, it was stroke

differentiability and similarity to Roman letters (Blickenstorfer 1995, MacKenzie and

Zhang 1997, Fleetwood et al. 2002).

Users with motor impairments do not have the luxury of enduring long practice

sessions in which they can accomplish many trials. In addition, the use of mobile devices

is intermittent. It is therefore crucial for EdgeWrite to be highly guessable and quickly

learnable. The properties championed in its design are Roman similarity and variation

accommodation.

Roman similarity was initially secured by observing how people write on paper and

mimicking that as much as possible. Numerous user studies helped to refine these initial

characters. Later, a formal guessability and immediate usability study improved the

alphabet further (§3.3.3), after which a few minor improvements resulted in the character

set shown in Figure 3.9.

Variation accommodation refers to the fact that people write letters differently, and

the EdgeWrite alphabet should encompass that variation rather than force users to

change. For example, some people commonly make their “n”’s from the top-left going

down, while others make them from the bottom-left going up. EdgeWrite defines both

strokes as “n”, as well as many others. In general, there are multiple forms of each letter,

including many without diagonals, since these are the segments not supported by an edge.

Chapter 3: The EdgeWrite Design 48

Figure 3.9 shows the primary character chart for EdgeWrite. It is called “primary”

because only one stroke is shown for each character. For a full chart, see Appendix A.

Figure 3.9. The EdgeWrite character chart. This version shows only primary forms.

Chapter 3: The EdgeWrite Design 49

Although many of the EdgeWrite characters look vaguely like their hand-printed

counterparts, their mnemonic power comes from the way they feel when being written.

One subject noted this when, after entering 20 phrases with Stylus EdgeWrite, he said, “I

don’t remember any of the pictures in my mind, but I still feel them in my hand”

(Wobbrock et al. 2003b).

EdgeWrite was designed to avoid some problematic aspects of Graffiti. For example,

EdgeWrite tolerates the presence or absence of initial down strokes on “b,” “d,” “m,” “n,”

“p,” and “r.” EdgeWrite also includes different forms of “k” to avoid the “k”-“x”

confusion familiar to Graffiti users (MacKenzie and Zhang 1997).

One feature of EdgeWrite letters is that would-be loops—e.g. the bases of lowercase

letters “b”, “d”, and “g”—are often “collapsed” along an edge, making for a double-pass

over the same edge (Figure 3.10). Similarly, for wide letters like “m”, “w”, and “y”,

collapsing along an edge is useful when the gesture has already moved across the square

but is not yet complete (Figure 3.11).

Figure 3.10. EdgeWrite letters “b”, “d”, and “g” contain loops that become “collapsed”

along one edge.

Figure 3.11. EdgeWrite letters “w”, “m”, and “y” all contain a double-pass.

Although double-passes “feel right” when writing, a challenge is portraying these

strokes on paper. If double-passes are drawn literally, then the result is merely a single

line. Figure 3.12 shows two early attempts at portraying characters, neither of which did a

very good job at showing double-passes.

Chapter 3: The EdgeWrite Design 50

Figure 3.12. Two early attempts at portraying EdgeWrite characters. Neither image does

a good job at indicating the order of corners. Adapted from (Wobbrock et al. 2003a).

A useful suggestion by John Zimmerman, a professor of visual design, was to arc the

stroke paths to their intended corners. The arcs make it possible to clearly depict a

double-pass over the same edge. They also often “point toward” the corners they intend.

Thus, the EdgeWrite character depictions shown in Figure 3.9 are representational, not

literal. In EdgeWrite, all motion is ideally in straight lines between corners.

As in Graffiti, some EdgeWrite gestures resemble lowercase letters, while others

resemble uppercase letters. All gestures produce lowercase letters unless the

capitalization suffix stroke is appended to the gesture. The suffix stroke is simply a

motion to the top-left corner—think “up” to “make it big”—after the regular stroke is

made but before segmentation. This modeless design was possible because no EdgeWrite

letters finish in the top-left corner. In user studies, subjects had no trouble with this

method of capitalization. Figure 3.13 shows three examples of capitalization.

Figure 3.13. A capitalized “a”, “i”, and “u”. The dashed lines represent a suffix stroke

made to the top-left before segmenting.

EdgeWrite defines numerals in the same alphanumeric mode as letters. Thus, letters

and numbers co-exist without the need for separate modes. However, EdgeWrite does

provide explicit modes for punctuation and extended characters. These modes are

entered with a single efficient stroke after which alternate characters become available

Chapter 3: The EdgeWrite Design 51

(Figure 3.14). Modes are not “sticky” like CAPS LOCK on a QWERTY keyboard, so

after a character is made, the mode turns off. Backspace also will turn off a mode after

the mode has been set.

Figure 3.14. EdgeWrite has two alternative strokes for setting punctuation mode and one

stroke for setting extended mode.

Accented letters can be entered in EdgeWrite using two successive strokes. The first

stroke determines the letter to be accented, and the second stroke applies the accent.

Available marks are grave (à), acute (á), circumflex (â), tilde (ã), diaeresis (ä), ring (å),

dot (ż), caron (ǎ), breve (ă), cedilla (ç), and ogonek (ą). Of course, not all accents can be

applied to all letters.

There are two types of backspace in EdgeWrite. A stroke from right-to-left along the

top of the square erases the most recent character. The same stroke along the bottom of

the square erases the most recent word. It also undoes a selected word completion when

this feature is being used (§3.5). Either stroke can also be used to unset an active mode.

Finally, text cursor control is also available in EdgeWrite. There are both discrete and

continuous ways to move the text cursor. Discrete ways include strokes to move the

cursor one character or word forward or backward, one line up or down, PAGE UP,

PAGE DOWN, to the HOME or END of the current line, or to the TOP or BOTTOM of

the entire document. Continuous cursor control is available by using the EdgeWrite

square as a cursor scroll ring. The initial direction in which one starts moving relative to

the right or top sides of the EdgeWrite square determines the scrolling direction.

Scrolling begins when the stroke completes its second full circle. Thereafter, each corner

entered is another character or line in the scroll. The user can reverse the direction of the

text entry cursor at any time without restarting or segmenting by simply changing his or

her direction around the scroll ring. Figure 3.15 shows the strokes available for cursor

control.

Chapter 3: The EdgeWrite Design 52

Figure 3.15. The various cursor control strokes include (a) discrete arrow keys, (b) a

continuous scroll ring, and (c) discrete word, line, and document jumps.

3.3.2 Theoretical Properties
If we define a “segment” to be a straight line between two vertices (corners), then for

gestures made inside a closed polygon with v vertices, the number of possible character

forms N using s segments is given by Equation 3.1:

∑
=

−⋅=
s

i

ivvN
0

)1((3.1)

This formula treats a tap at a vertex as a legal stroke, and assumes that the same

corner is never used twice in a row. For a square, v = 4. If s = 0, meaning we use no

segments, we have N = 4 available forms: a tap in each of the corners. With 1 segment,

we get N = 16 possible forms (4 + 4×31); with 2 segments, we get N = 52 (4 + 4×31 +

4×32); with 3 segments, we get N = 160; with 4 segments, we get N = 484; and with 5

segments, we get N = 1456. Thus, there are many forms to choose from with relatively

few segments.

There are 124 unique characters (excluding accents and capitals) in the primary

EdgeWrite character set pictured in Figure 3.9. The full character set contains 314

character strokes (Appendix A). The number of segments between corners for different

character subsets is shown in Table 3.1. Note that “letters” includes SPACE, which

represents about 18.7% of written English (Soukoreff and MacKenzie 1995).

Chapter 3: The EdgeWrite Design 53

Mode Characters
Mean No. of
Segments

Weighted Mean

Primary letters 27 2.85 2.52

Primary alphanumeric 37 2.97 2.53

Primary punctuation 33 2.12

Primary extended 36 2.53

Primary characters 106 2.56

All letters 117 3.97 2.78

All alphanumeric 145 3.94 2.79

All punctuation 49 2.59

All extended 100 3.62

All characters 294 3.62

Table 3.1. Segment counts in different EdgeWrite modes. Accents, mode setters,
capitalizations, cursor controls, backspaces, tab, enter, menu, and “ç” are excluded. For

alphanumeric characters, a weighted mean based on character frequency is shown.

From Table 3.1, we can see that the average primary EdgeWrite letter weighted by

letter frequency has 2.52 segments in it, excluding capitalization. The unweighted

average number of segments per character for the entire EdgeWrite character set is 3.62.

Isokoski defined unistroke complexity as the minimal number of straight-line

segments required to adequately specify character forms (Isokoski 2001). Since

EdgeWrite characters are already composed of straight lines, this measure can be used

without abstraction. The complexities for different alphabets are shown in Table 3.2.

Note that this complexity measure uses only letters and SPACE and is weighted by letter

frequency. The complexity of “e,” for example, has a much greater effect on an

alphabet’s overall complexity than the complexity of “q”. One can see that although

EdgeWrite letters are designed to be similar to Roman letters, they rank second in

efficiency. This comparison is only suggestive, however, because Isokoski’s measure

only considers the number of segments per letter, not segment length. Also, for curved

letters in alphabets other than EdgeWrite, the measure can be rather arbitrary.

Chapter 3: The EdgeWrite Design 54

Alphabet Unistroke Complexity

Unistrokes 1.40

EdgeWrite 2.52, 2.31

Graffiti 2.54

Roman hand-printing 2.76

MDITIM 3.06

Table 3.2. The line-segment calculations are similar to Isokoski’s unistroke complexity
measure, shown here for various alphabets (Isokoski 2001).

The lesser of the two EdgeWrite values (2.31) in Table 3.2 comes as a result of using

either one of two shortcut forms of “e” that EdgeWrite users often prefer. These shortcut

forms’ corner sequences are 0x214 and 0x284—both have only two segments in them

(Figure 3.16). Since “e” is so prevalent (10.8%), this change from the more verbose but

Roman-like “e” in Figure 3.9 reduces the overall complexity of EdgeWrite by 0.21

segments per stroke. Both numbers are included in Table 3.2 to illustrate the effect a

single common letter can have on overall complexity.

Figure 3.16. Three forms of “e”, the first of which is the primary form. The other two are

shortcut forms preferred by some users for their efficiency.

3.3.3 Maximizing Guessability*
As previously stated, the character charts shown in Figure 3.9 and Appendix A are the

final versions of the EdgeWrite character set. However, the EdgeWrite alphabet

underwent many fine adjustments and one thorough revision to get to this point. The fine

adjustments, which usually involved changing or adding a few alternate strokes, were

often done after completing various EdgeWrite user studies. The studies of Stylus

EdgeWrite (§4), Joystick EdgeWrite (§5–6), and Touchpad EdgeWrite (§6) are examples.

After these fine adjustments, however, a thorough revision was carried out by having

participants design the alphabet in a procedure intended to maximize guessability. This

resulted in a similar but improved alphabet that was used in studies of Trackball

EdgeWrite (§7), Isometric Joystick EdgeWrite (§8), and Four-key EdgeWrite (§9).

* Parts of this section are adapted from (Wobbrock et al. 2005b).

Chapter 3: The EdgeWrite Design 55

This subsection describes the guessability maximization procedure, which is

applicable beyond unistroke letters, and shows how it improved the guessability and

immediate usability of EdgeWrite. In the end, the participant-designed alphabet was

adjusted only a little to create the final alphabets shown in Figure 3.9 and Appendix A.

3.3.3.1 Motivation

The guessability of a system determines a great deal about its initial user experience. It is

unrealistic to expect that users will have the time or desire to undergo extensive training

with systems, whether by tutorial, on-line help, printed manual, or human instruction.

Thus, a user’s initial attempts at performing gestures, typing commands, or using buttons

or menu items must be met with success despite the user’s lack of knowledge of the

relevant symbols. This requires high guessability.

Guessability is particularly important in symbolic input, where users enter or access

symbols to indicate associated referents. Examples of symbols and referents are stylus

strokes that enter ASCII characters, command-line names that execute programs, or

graphical buttons that access features. In these cases, users often know what referent they

desire (e.g. the letter, program, or feature they want), but they do not necessarily know

what symbol to use (e.g. the corresponding stroke, command name, or graphical button).

In the past, guessability has been crucial to command-line interfaces. Prior studies

show that designers often supply only one command-line term per referent (Good et al.

1984, Furnas et al. 1987). But one term, no matter how “natural,” results in guessability

failures of 80–90% (Furnas et al. 1984). A previously proposed solution is “unlimited

aliasing” (Furnas et al. 1987), where the system makes the best guess at the intended

referent in the event of an unrecognized symbol. Having multiple synonyms has also

been recognized as a key to achieving high guessability in command-line interfaces

(Good et al. 1984, Furnas et al. 1987).

The guessability of text labels and graphical icons has also been studied (Wiedenbeck

1999). Guessable labels and icons are important for the usability of buttons, toolbars, and

menus. This dissertation’s method for maximizing guessability can be applied to studies

where participants devise text labels or sketch graphical icons for described features.

Procedures for such studies have been delineated elsewhere (Brinck et al. 2001, p. 316).

Chapter 3: The EdgeWrite Design 56

High guessability is especially important when using small devices for off-desktop

computing. Small devices mean contrived input schemes, limited screen real estate for

help screens, and “on the go” mobile use without access to unwieldy manuals. Also, the

typical intermittent use of handheld devices means that users have less time for in-use

learning. Modern users expect success right from the start.

Good guessability is also crucial for assistive technologies, because people with

physical disabilities often cannot endure lengthy training or practice sessions with many

trials per session. Also, therapists must match an assistive technology to a user in a matter

of hours, so systems must be usable from the start.

Guessability is not just limited to novices, either. Experts also need systems with high

guessability. When experts must perform an uncommon action, like entering an obscure

character in a unistroke alphabet (e.g. “q”), their otherwise high performance may be

impeded unless the obscure symbol is guessable.

Guessability can be contrasted with immediate usability (MacKenzie and Zhang

1997). Immediate usability is the holistic evaluation of a system after a brief period of

exposure. In contrast, guessability evaluates only the input symbols without any prior

learning.

3.3.3.2 Guessability Procedure

It is possible to design a highly guessable symbol set by acquiring guesses from

participants. With the same participant data, we can also evaluate the guessability of an

existing symbol set. Participants are first recruited to propose symbols for specified

referents within a given domain. The more participants, the more likely the resulting

symbol set will be guessable to external users. The goal is to obtain a rich set of symbols

from which to create the resultant symbol set.

Participants should be informed only of the details essential to proposing intelligent

symbols. For example, if unistroke symbols are required, participants must be told what

unistrokes are so that they refrain from making multi-stroke symbols. Participants should

not be shown any example symbols or symbols from preexisting symbol sets. Of course,

they must know the referents to which their symbols refer. Example referents are the

ASCII letters to which unistrokes refer, the functions to which commands refer, or the

features to which icons or text labels refer.

Chapter 3: The EdgeWrite Design 57

Participants propose a symbol for each referent in turn. Symbols are captured and

coupled with their intended referents. It is important not to bias the forms of the symbols

by displaying the referents. For example, if participants are proposing unistroke gestures

for ASCII letters, they should not see typeset letters as prompts. Similarly, if command

names are being proposed, prompts containing plausible keywords should be avoided.

It is essential for conflict resolution (below) that the captured symbols be testable for

equality. Testing equality may be trivial, as in the case of keyword symbols, or more

complex, as in the case of (x, y) point traces for some types of unistrokes. For more

complex symbols, designers may already have software to interpret them. Human

judgment can also determine equality among, for example, sketches of icons. In the case

of EdgeWrite gestures, since they are wholly defined by integer corner sequences, testing

for equality among gestures is trivial.

3.3.3.3 Resolving Conflicts

One might imagine that we could simply lump together all participants’ proposed

symbols as our resultant symbol set and trivially achieve 100% guessability for the

participants used. In practice, however, this is not usually possible due to conflicts—i.e.

the same symbol will have been used to indicate different referents. An example from the

literature is the email command “To Dennis” (symbol) being proposed to mean “send a

message to Dennis” (referent 1) and also “list messages sent to Dennis” (referent 2)

(Good et al. 1984). Similarly, the same unistroke may be proposed for “h” and “n”

(MacKenzie and Zhang 1997). Although many symbols can indicate one referent, only

one referent can be indicated by any given symbol. How do we decide which referent

“wins” the symbol?

Symbols are tested for equality and grouped so that identical symbols form a

“conflict group.” After grouping, the different referents within each group are identified

and the number of referring symbols counted. Then a scoring function determines which

referent within each group is assigned that group’s symbol. To maximize guessability, the

referent that wins the symbol is simply the one with the most proposed symbols.

Equation 3.2 expresses this as a function.

Chapter 3: The EdgeWrite Design 58

symbolsscore = (3.2)

For example, in 20 participants, if the same unistroke were proposed for “n”, “h”, and

“a” with counts of 14, 5, and 1, respectively, the gesture would be assigned to “n”.

In general, the more conflicted the set of proposed symbols, the lower the maximized

guessability of the resultant symbol set. Intuitively, high conflict means participants are

using identical symbols for different referents. Designers may improve this situation by

making referents more distinct, by relaxing constraints on symbolic forms, or by asking

participants to resolve all conflicts within their own sets of proposed symbols before they

are finished proposing.

Domain-specific considerations may be accommodated by using alternate scoring

functions, although guessability may not be maximized. For example, in alphabetic entry

we may wish to favor common letters over uncommon ones. Equation 3.3 is an example

of an alternate scoring function that balances both letter frequency (0..1) and the number

of proposed symbols.

symbolsfrequencyscore
1

= (3.3)

3.3.3.4 Calculating Guessability

Guessability has not been previously formalized in the literature. We therefore introduce

a measure of guessability for symbolic input. The guessability G of the resultant symbol

set S for the captured set of proposed symbols P is:

%100×=
∑
∈

P

P
G Ss

s

 (3.4)

In Equation 3.4, P is the set of proposed symbols for all referents, and Ps is the set of

proposed symbols using symbol s, which is a member of the resultant symbol set S. For

our example of “n”, “h”, and “a” above, S = �“n”� and G = 14/20 × 100% = 70%. This

means our resultant symbol set S was able to accommodate 70% of the symbols proposed

by the participants.

Chapter 3: The EdgeWrite Design 59

3.3.3.5 Calculating Agreement

We may wish to know the agreement among symbols proposed by the participants. We

therefore introduce a formalization of agreement A among symbols from our captured set

P. Intuitively, agreement should be 100% when proposed symbols are identical, and ~0%

when they are unique. For example, in 20 proposals for referent r, if 15/20 are of one

form and 5/20 are of another, there should be higher agreement than if 15/20 are of one

form, 3/20 are of another, and 2/20 are of a third. Equation 3.5 captures this:

%100

2

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
∑ ∑
∈ ⊆

R
P
P

A Rr PP r

i

ri (3.5)

In Equation 3.5, r is a referent in the set of all referents R, Pr is the set of proposals

for referent r, and Pi is a subset of identical symbols from Pr. The range of Equation 3.5

is 1/|Pr| × 100% ≤ A ≤ 100%. The lower bound is non-zero because even when all

proposals disagree, each one trivially agrees with itself. For our example of r, [(15/20)2 +

(5/20)2] / 1 × 100% = 62.5% and [(15/20)2 + (3/20)2 + (2/20)2] / 1 × 100% = 59.5%.

3.3.3.6 Existing Symbol Sets

One may also use the same participant data to evaluate the guessability of an existing

symbol set S. Where a proposed symbol p∈P used an existing symbol s∈S that was

correctly intended for s’s referent r, the proposal p is assigned to s. These proposed

symbols (i.e. guesses) accumulate to form Ps, the set of proposals using symbol s. Then

Equation 3.4 is applied, giving the percentage coverage of the proposed symbols P by the

symbols in the existing symbol set S. If all proposed symbols P are covered by S, the

guessability G is 100%.

3.3.3.7 The Guessability of EdgeWrite

To put this procedure and its measures through their paces, the guessability of an earlier

version of the EdgeWrite alphabet was measured. We had iterated extensively on this

version of the alphabet after running multiple EdgeWrite studies using it, but we had not

designed it with the direct involvement of any participants. Using this guessability

procedure gave us the opportunity to formally assess its guessability and improve it.

Intuitively, one might not expect EdgeWrite to have high guessability since its letters are

made along the edges and into the corners of an area bounded by a square.

Chapter 3: The EdgeWrite Design 60

Twenty participants, mostly staff and students from Carnegie Mellon University,

served as paid volunteers. None had prior experience with EdgeWrite or Graffiti.

Participants were told they would be making unistroke gestures on a touchpad to indicate

letters for a new alphabet. The unistroke concept was explained to prevent multi-stroke

symbols. The importance of the four corners of the square input area was also explained.

No other constraints were in place and no examples were shown.

Participants were verbally prompted to enter each letter of the alphabet (a–z) and

each number (0–9) by a Visual C# program that also recorded their gestures (Figure

3.17). An audio prompt was used instead of a visual prompt to avoid biasing participants

by showing typeset letters. Participants were free to remake their symbols as often as they

liked, but once a symbol was committed for a character, it could not be changed. To

increase the variety of proposed symbols, participants were required to resolve conflicts

among their own symbols before they were finished. Thus, each participant contributed

36 unique symbols, for |P| = 20 × 36 = 720 proposed symbols in all.

Figure 3.17. The guessability test software captured traces (left) and then displayed them

in their idealized forms (right). It prompted users using text-to-speech only.

Since corner sequences fully define an EdgeWrite gesture, the 720 symbols could be

grouped easily by identical corner sequences in preparation for conflict resolution. The

agreement of P was A = 34.9%, meaning about a third of the proposed symbols for a

given referent agreed. After conflict resolution using the maximization scoring function

(Equation 3.2), the new symbol set S′ accommodated 577 of 720 proposed symbols, for

G′ = 80.1%. The earlier EdgeWrite symbol set S was then evaluated for the proposed

symbols P. It accommodated only 367 of 720, for G = 51.0%.

Chapter 3: The EdgeWrite Design 61

3.3.3.8 The Immediate Usability of EdgeWrite

In order to validate the improvement from S to S′, we replicated a prior study of the

immediate usability of Graffiti (MacKenzie and Zhang 1997). Recall that S′ was

assembled only from the proposed symbols of participants without designer intervention,

and S was created by designers over many prior studies. Indeed, we were skeptical that an

amalgam of uninformed participant symbols could actually be more usable than the

product of many hours’ design work. We also were dubious that either alphabet would

approach the immediate usability of Graffiti, since Graffiti had been shown to be “very

respectable” in this manner (MacKenzie and Zhang 1997).

Twenty new participants served as paid volunteers. None of them had prior

experience with Graffiti or EdgeWrite. The unistroke concept and importance of corner

sequences were described to them. The same computer apparatus and touchpad were used

as before.

As in the study of Graffiti (MacKenzie and Zhang 1997), participants entered the

alphabet (a-z) five times. This occurred twice in two separate phases of testing: first, after

1 minute of studying a 26-letter EdgeWrite character chart; then, after 5 minutes of

freeform practice with the same chart. Entered letters appeared in a Notepad document in

Times 36pt font. Participants were not allowed to correct erroneous entries but could

proceed as slowly as they wanted. Ten of the 20 participants used the earlier EdgeWrite

alphabet S, and 10 used the new user-designed alphabet S′. Thus, for each alphabet, there

were 26 × 5 × 2 × 10 = 2600 letters entered.

Figure 3.18. The results of the guessability and immediate usability study shows that

EdgeWrite improved and that EdgeWrite is competitive with Graffiti.

Chapter 3: The EdgeWrite Design 62

As in the prior study, we measured the “accuracy attainable after minimal exposure”

(MacKenzie and Zhang 1997). Figure 3.18 shows our results and those for Graffiti. After

1 minute of chart study, participants were 78.8% (σ=12.6) accurate with the earlier

EdgeWrite alphabet S. This improved to 81.6% (12.8) for the new user-designed alphabet

S′. This was very near the prior average for Graffiti of 81.8% (12.1). A one-way analysis

of variance shows no statistical differences for the three percentages (F2,42=0.23, p=.80).

After 5 minutes of freeform practice, participants entered S with 90.2% (11.0)

accuracy. S′ improved this to 94.2% (7.2). The latter was competitive with the prior result

for Graffiti of 95.8% (4.0). A one-way analysis of variance is nearly significant for the

three percentages (F2,42=2.43, p=.10). A paired contrast shows Graffiti was significantly

more accurate than S (F1,42=4.85, p<.05), but not significantly more accurate than S′

(F1,42=0.40, p=.53). Unfortunately, S′ was not significantly more accurate than S

(F1,42=1.73, p=.19), but the trend was in this direction.

3.3.3.9 Discussion

It was surprising that strict adherence to the guessability maximization procedure resulted

in an alphabet (S′) with higher average immediate usability than a highly iterated

designer-made alphabet (S). Although this improvement was not quite significant after 5

minutes, that the average immediate usability increased at all shows the power of using

participants to improve even refined symbol sets (Good et al. 1984). Furthermore, after

examining the immediate usability data, we saw that S′ could be improved further by

changing a few problematic symbols. For example, the “q” from S′ was only 57%

accurate, while the “q” from S was 75% accurate. Other letters that were better in S than

S′ were “t” (61% vs. 80%) and “y” (78% vs. 90%). Making these changes resulted in the

EdgeWrite character set shown in Figure 3.9 and Appendix A.

It was also interesting that the standard deviations were similar for the three alphabets

after 1 minute (~12), but shrank considerably after 5 minutes for S′ (7.2) and Graffiti

(4.0), but not for S (11.0), indicating more consistent performance for the more refined

symbol sets. It was pleasing that EdgeWrite could be made competitive with Graffiti’s

laudable immediate usability.

Chapter 3: The EdgeWrite Design 63

3.4 Advanced Features

Besides the core features described above (§3.2), EdgeWrite implements advanced

features not found in most unistroke systems. Three of them are described in this section:

continuous recognition feedback, non-recognition retry, and slip detection. Word-level

stroking is a fourth advanced feature, and is described in §3.5.

3.4.1 Continuous Recognition Feedback
In most unistroke text entry methods, a stroke is processed only after it has been

segmented (e.g. after the stylus has been lifted). In contrast, EdgeWrite recognizes

strokes as they unfold. Because strokes are fully defined by their corner sequences, there

is no need to continuously recognize strokes after each new input point, or to determine

some arbitrary criteria for knowing when to recognize strokes. Instead, a stroke-in-

process can be recognized when each new corner is entered. This process is called

continuous recognition feedback.

A few previous non-text systems have similar notions, although they have been more

computationally expensive. Rubine’s statistical feature-based recognizer has an extension

called eager recognition where the system continuously recognizes a gesture after each

additional input point (Rubine 1991). As soon as the recognition result is unambiguous,

the gesture is given a bounding box and further movement manipulates the completed

gesture. Zhao used incremental recognition of multi-stroke shapes to combine them into

single shapes in a diagram editor (Zhao 1993). Arvo and Novins developed Fluid

Sketches, a system in which continuous recognition after each input point gradually

morphs a shape trace into an idealized shape (Arvo and Novins 2000). Their system uses

differential equations and is computationally intensive, so it is only suitable for simple

shapes. To improve upon this, Tandler and Prante recomputed only those features that

may change with each new input point (Tandler and Prante 2001). Unfortunately, it is

unclear whether their approach works for more than lines and squares. Finally, Li et al.

tried to relax the computational demand of incremental recognition for arbitrary shapes

by using intention extraction for previous “lag windows” (Li et al. 2005). Intentions are

then combined to determine the incremental result of the unfolding shape.

EdgeWrite uses continuous recognition feedback to display the recognition result at

the current point in the stroke. Figure 3.19 shows these results when making a “w”.

Chapter 3: The EdgeWrite Design 64

Figure 3.19. As a “w” is made, three other letters are recognized along the way.

Continuous recognition feedback is useful for novices trying to learn letters for the

first time. It also is useful when combined with word-level stroking (§3.5), since

incremental results may also be whole words.

3.4.2 Non-recognition Retry
What happens if a user sees an incremental result and that result is not what he or she

wants? In most unistroke systems, the user would be forced to segment the stroke, incur

the unwanted letter, backspace, and try again. In contrast, EdgeWrite permits users to

fluidly restart the stroke without segmentation. This feature is called non-recognition

retry, and it is useful for both novices and experts. Whereas novices may see an

unwanted result, experts can often feel a mistake when writing. In either case, the user

can simply restart his or her stroke and usually obtain the correct result. Figure 3.20

shows two strokes, both of which correctly produce the letter “w” because of non-

recognition retry.

Figure 3.20. Non-recognition retry enables the garbled stroke at right to produce a “w”.

For the garbled stroke in Figure 3.20b, the user began down the left side of the square

but missed the bottom-left corner (1), not realizing this until after going to the bottom-

right, top-right, and bottom-right again. After realizing the mistake (2), the user returned

to the top-left and remade the stroke starting at (3). In practice, this process happens very

quickly when the user “feels” he or she has missed a corner.

When given a gesture to recognize, if EdgeWrite finds its corner sequence

unrecognizable, it iteratively trims corners from the start of the stroke’s corner sequence

Chapter 3: The EdgeWrite Design 65

until it finds a sequence it recognizes. This trimming is done one corner at a time from

the head of the sequence. For instance, the corner sequence of the clean “w” in Figure

3.20a is 0x18242. The corner sequence of the garbled gesture in Figure 3.20b is

0x142418242. Non-recognition retry tries every successively shorter sequence until it

recognizes the 0x18242 at the end.

What happens if the desired letter is a subset of another? For example, 0x8242

happens to be an alternate form of “n” and is also a subset of “w”. In this case, non-

recognition retry will indeed find the “w” first and not produce an “n”. Fortunately, in

practice this subset issue is rarely a problem, since the shorter strokes are not as likely to

be made erroneously. When subjects make mistakes, they tend to make them on the long

gestures like “k”, “m”, “q”, “w”, etc., which are not subsets of anything else.

3.4.3 Slip Detection
Slip detection is an advanced feature for those versions of EdgeWrite based on the

underlying movement of the mouse cursor—the so-called “virtual” versions with the

trackball (§7) and isometric joystick (§8). In principle, however, slip detection could be

applied to any of the “physical” versions as well, although this was not implemented.

When writing with Trackball or Isometric Joystick EdgeWrite, one may occasionally

slip through an unwanted corner when trying to make a diagonal. Note that this is the

opposite problem as with non-recognition retry, where a user accidentally missed a corner

(Figure 3.20b). Here, a user may have accidentally hit a corner. To mitigate this problem,

EdgeWrite includes a slip detector that adapts to the speed of the writer.

Figure 3.21. An idealized stroke is trying to move diagonally from c1 to c3 in the process

of making an “s”, but slips through c2 on the way. The slip detector corrects this.

The slip detector tracks the average inter-corner time ψn for the last n corners. If after

being in a corner c1, a stroke is made abruptly at p percent of ψn from a corner c2 to c3,

and c1 and c3 lie on a diagonal, then the stroke from c1 to c2 is removed and a connection

Chapter 3: The EdgeWrite Design 66

is made directly from c1 to c3 (Figure 3.21). That is, c2 is deemed to have been “slipped

through” on the way from c1 to c3. Testing showed that n = 16 and p = 37.5% work well.

However, the slip detector is “humble.” It knows it may not always be right.

Therefore, upon detecting a possible slip, it processes multiple corner sequences: some

with the slip-corner removed, and some with the slip-corner kept. Each recognition result

is then checked for its likelihood given the preceding letter using Bellman and

MacKenzie’s digraph lists (Bellman and MacKenzie 1998). The result with the greatest

digraph probability is retained, and the idealized stroke is updated. For example, “pu” is

more common in English than “pv”. Thus, after entering a “p”, if the system detects a

possible slip while making a “u” that would otherwise be corrected to a “v”, the “u” will

be entered instead. If there is no previous letter, then single-letter probabilities are used.

This process of recognizing “slip hypotheses” can be thought of as building a binary

tree (Figure 3.22), where each level in the tree is created in response to a possible slip. At

each split in the tree, one child removes the slip-corner from its parent’s sequence, while

the other child retains it. After a perceived slip, the current leaves are submitted for

recognition. The final result is the leaf that contains the letter with the highest digraph

probability given the previously entered letter.

Figure 3.22. The slip detector builds a binary tree of possible corner sequences. In this

tree, c2 and c4 are possible slip-corners. Black circles are children that keep the slip-
corner, while white children are those that remove it.

Data for a motor-impaired user of Trackball EdgeWrite show that the system detects

slips on about 5% of his letter strokes. Of these, about 93% are not backspaced following

the detector’s output. However, there is no easy way to tell from log files when the

detector is failing to detect slips, since corrections are made for a variety of reasons.

Chapter 3: The EdgeWrite Design 67

3.5 Fisch Word-level Stroking*

This section describes the fourth advanced feature of EdgeWrite: word-level stroking.

This concept, dubbed Fisch, is described here in general terms applicable to any

unistroke text entry method. Specific adaptations for Stylus EdgeWrite (§4.2.5),

Trackball EdgeWrite (§7.2.5), and Isometric Joystick EdgeWrite (§8.3.4) are left for their

respective chapters. Empirical results are also saved for those chapters.

3.5.1 Motivation
Even the most efficient character-level input systems are slow because they enter only

one character at a time (Kristensson and Zhai 2004). Unlike touch-typing with multiple

fingers, unistroke methods do not support parallelism. This inherently limits the input

rate.

One way to improve the input rate is to increase the efficiency of actions. For

example, instead of one stroke producing one letter, one stroke could produce one word.

A problem with word-level strokes, however, is the myriad of strokes required and the

challenge of learning them. Unlike letters, words are not easily represented by

“mnemonic” Roman letter-like stokes.

Stylus-based text entry methods—unistrokes and soft keyboards—range from 15–40

WPM (MacKenzie and Soukoreff 2002b, Zhai and Kristensson 2003). Recent attempts to

address this limitation for stylus keyboards include optimized key layouts (Zhai et al.

2002) and keyboards that allow users to make word-level gestures over their surfaces

(Zhai and Kristensson 2003, Kristensson and Zhai 2004). Such gestures may be called

word-level unistrokes, which enable higher entry rates than character-level unistrokes.

But stylus keyboards are not suitable for many of the smallest devices on the market

today (e.g. PDA wrist watches). In contrast, unistroke letters are written on top of each

other in the same space, and therefore may be suitable for particularly small devices. But

unistroke entry is character-by-character, which limits its speed. To the best of my

knowledge, there have been no word-level stroking solutions for character unistrokes.

Fisch provides a design for extending character-level unistrokes to word-level

unistrokes using a new technique called in-stroke word completion. The idea is not to

define overly verbose strokes that stand for complete words, nor to add a separate word

* Parts of this section are adapted from (Wobbrock and Myers 2006b).

Chapter 3: The EdgeWrite Design 68

completion list for selecting words, since list-based word selection often slows people

down (Goodenough-Trepagnier et al. 1986, Soede and Foulds 1986). Instead, the idea is

to allow character-by-character entry to remain unchanged while providing minimal

extensions to character-level unistrokes that turn them into words. Users begin word-level

strokes by stroking a word’s first letter, and then, without lifting, fluidly complete their

stroke to write an entire word. The same stroke always produces the same word, enabling

users to memorize the strokes and ramp from character-level entry to word-level entry.

Since natural language follows Zipf’s law (Zipf 1932), it is possible that learning even a

small number of common word-level strokes will produce an increase in overall entry

rates. For example, the word “the” represents over 6% of the British National Corpus,

and the most common 100 words account for over 46% (Zhai and Kristensson 2003).

The principles outlined above are similar to those behind the SHARK stylus

keyboard (§2.3.3). This design for word-level unistrokes is therefore dubbed Fisch, for

fluid in-stroke completion shorthand. Whereas SHARK uses a stylus keyboard, Fisch

uses only a little more space than that required for letter unistrokes. With SHARK and

Fisch, stylus keyboards and unistroke alphabets can both support character-level and

word-level entry, thus better serving both novices and experts.

3.5.2 The Fisch Design
The Fisch design for word-level strokes can be applied to any character-level unistroke

method, such as Graffiti, Jot, or EdgeWrite. Fisch integrates word-level strokes into these

unistroke methods without altering their process of character-level entry. The explicit

design goals of Fisch are that:

• Character-level strokes remain unchanged.

• Character-level strokes are minimally extended to produce words.

• The same stroke always produces the same word, enabling memorization through

motor repetition.

• Users can gradually transition from character-level entry to word-level entry as

they become experts.

The core idea in Fisch is for users to make a “subgesture” within a letter stroke that

indicates that the letter itself is finished and subsequent motion is for the completion of a

Chapter 3: The EdgeWrite Design 69

word. A natural and easily detectable subgesture is a “pigtail” loop like the one used in

Scriboli (Hinckley et al. 2005). Other “subgestures” are possible, including stylus-dwell

or explicit segmentation (i.e. lift). For now, we will assume a loop is used.

When a loop is detected, the stroke is recognized and the result serves as the prefix to

potential word completions. Additionally, a bounding box is imposed around the stroke

such that the stroke itself serves as the frame of reference for selecting word completions

by crossing over the box’s boundary toward the desired word (Figure 3.23). If no loop is

detected, the entire stroke is processed as a regular character-level stroke. Thus, letter

strokes remain unchanged, but can be extended to produce words.

Figure 3.23. Making a Graffiti “t” and then extending it to produce the word “the”.

Dashed lines represent the stroke’s bounding box and crossing goals.

In Figure 3.23a, the user has written a Graffiti unistroke for the letter “t”. If the user

were to lift the stylus at this point, a “t” would be produced as usual. However, in Figure

3.23b, the user continues the stroke by making a loop subgesture. In Figure 3.23c, the

system detects this loop and places an appropriately sized bounding box around the

stroke. The “t” is recognized and the system presents the four most common words

beginning with “t” at each side of the box. The sides on which the words appear are fixed

such that the same word always appears on the same side for a given stroke, allowing

users to reliably enter words in single strokes. In Figure 3.23d, the user fluidly continues

the gesture to perform a crossing task, which selects the word across the penetrated

boundary. Studies have shown crossing to be faster than pointing for close-range

selection tasks (Accot and Zhai 2002). Thus, when the user lifts, the word “the” is

entered. Importantly, the same stroke will always produce the word “the”.

For less common words, users can enter more letters to serve as a prefix before

selecting a completion. For example, once a user has entered a “t”, a subsequent “o”

stroke will produce “to-” completions “to”, “told”, “too”, and “today”. However, long

Chapter 3: The EdgeWrite Design 70

prefixes are rarely needed, as a surprising amount of language coverage is achieved by

showing just four words per entered letter. Figure 3.24 shows the weighted coverage of

the 17,805 most common English words (Kucera and Francis 1967) for 1–5 letter

prefixes with four frequency-based completions per letter. According to the graph, a user

has a 49.0% chance of being able to enter the word they desire in just one fluid stroke!

Figure 3.24. Weighted coverage of the 17,805 most common English words when

showing four fixed frequency-based completions per entered letter.

The difference between the top and bottom lines in Figure 3.24 indicates a design

decision: if the user enters a “t”, one of the words shown is “the”. If the user then enters

an “h”, should “the” be re-shown, even though the user did not select “the” already?

When not re-showing words in pilot studies, novices sometimes entered letters past the

initial presentation of their desired word, losing sight of their intended completion. Since

the gain obtained in not re-showing is minimal, Fisch opts to indeed re-show words.

Good user interfaces must allow users to abort actions underway. A user may cancel

a word-level stroke in Fisch by simply retreating over the crossing boundary and

terminating the stroke in the interior of the bounding box (Figure 3.25a). Depending on

the application, designers can elect to have this enter the character-level result, or enter

nothing at all. On the other hand, if a stroke ends outside the box, the completion that had

its boundary crossed last will be the one that is selected (Figure 3.25b). Importantly,

crossing goals extended infinitely far in both directions along their length. (Note the

arrow on the bottom of the “to” goal in Figure 3.25b.)

Chapter 3: The EdgeWrite Design 71

Figure 3.25. Word-level stroke cancellation (left) and a change in selection (right).

After a completion is entered, users can quickly undo it by performing a dedicated

backspace stroke. In most stroke alphabets, a simple stroke from right-to-left enters a

backspace. Thus, a right-to-left double-swipe, or some other backspace variant, may be

used to undo the completion, restore the former prefix, and restore the former word

completions at their previous corners.

Thus far, we have described how users can extend character-level strokes to complete

words. However, in the early stages of exposure, users cannot fluidly complete words,

but instead stop after each character stroke and look at the potential completions.

Therefore, Fisch leaves completions displayed after each letter is entered and permits

users to simply tap a word to select it. This is called direct word selection.

As stated, the Fisch design is suitable for most unistroke alphabets like Graffiti, Jot,

and EdgeWrite. Adaptations exist for Stylus EdgeWrite (§4.2.5), Trackball EdgeWrite

(§7.2.5), and Isometric Joystick EdgeWrite (§8.3.4).

3.5.3 Fisch Implementation
The word prediction and completion system implemented as part of the EdgeWrite DLL

(§3.6.1) has four components: (1) a vocabulary list of words and frequencies, (2) an

optional user-defined vocabulary list, (3) a trigram list with trigram frequencies, and (4)

an adaptive bigram cache that stores users’ words at runtime. The first and second

provide Fisch’s “fixed” frequency-based word completions as words are being made. The

third and fourth are not part of Fisch, per se, but provide context-dependent word

predictions after a word has been completed (i.e. after a SPACE has been entered).

Chapter 3: The EdgeWrite Design 72

The vocabulary list is stored in an alphabetically sorted array enabling binary search

for fast lookups. Each array slot contains a word string and the word’s frequency count.

This is all the data necessary for Fisch’s fixed frequency-based word completions.

Also in each slot of the vocabulary array is a hash table whose keys are word indices

and whose values are a list of word indices. The slot’s word string represents the first

word of a trigram, its hash table keys represent second words, and its hash table list

values represent third words. These data structures allow fast lookups for both fixed

completions and context-dependent predictions.

When a letter is entered, words that begin with the current prefix are gathered from

the vocabulary list. If a user-defined vocabulary list is loaded, its words with matching

prefixes are also gathered. These pooled words are then sorted in a separate list according

to their frequencies. The top four words are then offered as Fisch’s completions. Since

frequencies are pre-computed based on a large corpus of English words, these four

completions will always be the same for a given prefix.

When four frequency-based words are retrieved from the language model, they are

assigned to corners such that the highest priority word is given the corner in which the

current stroke resides. The two adjacent corners receive the next two words, and the

lowest priority word is placed at the diagonal away from the stroke’s current corner.

Once a word has been shown, it is stored in a hash table along with its corner and a “half-

life.” If a word is shown again, it will be shown in the same corner as it was before. If the

word goes unused for some time, it will “decay” and be eligible for reassignment. If a

collision occurs with two words vying for the same corner, the highest priority word

wins.

When a SPACE is entered, context-dependent predictions are offered. The most

recent two words are used to look up possible third-word predictions. The first word is

found in the vocabulary array using binary search. The second word’s index, which was

found when the word was entered, is used as a hash key in first word’s hash table for fast

lookups. The value returned, if any, is a linked list of possible third words. The top four

from this list are shown as predictions.

Predictions also come from an adaptive bigram cache. This cache holds recent

bigrams so that when a user enters a previously used word, words that followed it can be

Chapter 3: The EdgeWrite Design 73

offered as predictions. The cache is a list maintained in priority order such that when a

new bigram is entered or an old bigram is reused, it is placed at the top. Unlike the

trigrams, the adaptive bigram cache accommodates out-of-vocabulary words, enabling

the prediction of last names from first names, etc.

The English vocabulary list and trigrams were built by parsing 850MB of news

articles from the Wall Street Journal, Ziff Davis, Los Angeles Times, and Associated

Press. This parsing was carried out with the CMU-Cambridge Statistical Language

Modeling toolkit (Clarkson and Rosenfeld 1997). Custom parsers then pared down the

toolkit’s results, keeping 20,000 of the most common words, and only trigrams that

occurred 20+ times. After certain abbreviations were removed, the result was a 258 KB

vocabulary list of 19,122 words with frequency counts totaling 132,701,943. The

maximum frequency count was for the word “the” at 7,686,122, or 5.79%. The trigram

list is 10.6 MB and contains 517,988 trigrams with frequency counts totaling 40,230,622.

The maximum frequency count is for the trigram “the United States” at 46,947, or 0.12%.

Although news articles were parsed, this procedure could easily be run over other corpora

(e.g. email, instant messaging, academic prose, etc.).

3.6 EdgeWrite Technology

Rather than have each version of EdgeWrite require its own implementation from

scratch, EdgeWrite technology is encapsulated in a reusable library. The majority of

EdgeWrite versions are implemented using this library, with the exception of Stylus

EdgeWrite for the Palm OS (§4.2), which requires its own separate implementation.

3.6.1 EdgeWrite Library
The EdgeWrite dynamic link library (DLL) is written in Visual C# and can be used with

any .NET-compatible language (e.g. VB .NET, C#, J#). The library defines three primary

singleton classes central to different aspects of EdgeWrite. These classes are

Recognizer, Painter, and Logger.

The Recognizer is the main class in EdgeWrite. It defines an input plane on which

point input occurs. Besides points, it can be given corners directly, whereby it adds the

centroid of the corner region as a point. The Recognizer also allows the location of the

square to be interactively defined by the user, which is helpful for aligning a physical

Chapter 3: The EdgeWrite Design 74

template with the software definition of the square. Its primary methods are

AddPoint(), AddCorner(), Peek(), and Recognize().

The Recognizer has embedded within it the Charset.xml file. This file encodes the

EdgeWrite character set and is shown in Appendix A. A programmer who wishes to

supply the Recognizer with a different XML character set may do so at runtime.

The Recognizer is also in charge of interfacing with a backend word prediction and

completion system for implementing Fisch word-level stroking. By default, corner re-

entries are used to distinguish character-stroking from word-selection. However, clients

can also tell the Recognizer when character-stroking has ended and word-selection has

begun using the LockOrCycleWords() method, which provides support for customized

methods.

The Painter is in charge of the EdgeWrite view. This class supports various

properties and methods for drawing, including support for fonts. Its main method is

Paint(), and key properties include DrawResult, DrawWords, ResultFont,

WordFont, Regions, and PointConnection. This last property holds one of three

enumerated PointConnectionStyle values: Unconnected, Straight, or Bowed.

By simply setting the connection style to one of these three values, the stroke drawing

can correctly portray very different versions of EdgeWrite (Figure 3.26).

Figure 3.26. The Painter class supports three styles of stroke drawing: unconnected,
straight, and bowed. Examples of each are EdgeWrite for the touchpad, displacement

joystick, and trackball, respectively.

The Bowed style deserves special mention. When this style is active, successive

points will be drawn with a Bezier curve between them. The amount and direction of a

curve depends on any curves previously drawn between the same two points. Curves with

increasingly greater bowing are drawn as more arcs connect the same two points.

Chapter 3: The EdgeWrite Design 75

The Logger supports the writing of EdgeWrite activity to files. Corner sequences or

even full point traces can be logged as a part of each stroke. The Logger’s main methods

are Open(), Stroke(), and Analyze(). The last method writes log results to a text file

for statistical analysis.

The EdgeWrite library is versatile, being used in all versions of EdgeWrite except the

one for the Palm OS. Without its word prediction files, which are about ~10 MB in size,

the compiled EdgeWrite DLL is 188 KB. It is implemented in about 10,000 lines of C#

code. Some versions of EdgeWrite may only add a few hundred lines to that, while others

may add thousands. For example, Trackball EdgeWrite (§7) is implemented in about

5000 additional lines of C# beyond the DLL. This extra code is mostly application-

specific, devoted to things such as focus handling, application preferences, window

management, and so forth.

3.6.2 Programmer’s Reference
The EdgeWrite DLL is fully documented with a compiled help file resembling those used

by the Microsoft Developer Network (MSDN). This file, called the EdgeWrite

Programmer’s Reference, describes all public constructors, methods, and properties used

in the EdgeWrite DLL—more than just those of the four singletons above. The

documentation includes examples and sample code for those wishing to build an

EdgeWrite application.6 Figure 3.27 shows a screenshot.

6 The EdgeWrite DLL can be downloaded from http://www.edgewrite.com/dev.html.

Chapter 3: The EdgeWrite Design 76

Figure 3.27. The EdgeWrite Programmer’s Reference documentation.

3.6.3 Palm OS HACK
Because the Palm OS is not a Microsoft Windows-based platform, it requires a separate

implementation of EdgeWrite. In fact, Palm OS 3.5–4.x requires one type of

implementation known as a “HACK,” and Palm OS 5.0 and above requires another.

The HACK version of EdgeWrite is able to replace Graffiti on Palm OS devices by

remapping certain operating system calls, called “traps,” to function addresses within the

EdgeWrite codespace. This is necessary because Palm OS devices are not multithreaded

and without separate address spaces. Thus, in order to have EdgeWrite work concurrently

with any other application (e.g. MemoPad), EdgeWrite must appear to the operating

system as if it is part of the operating system. Because a user may have multiple HACKs

on their device at a time, a HACK manager is necessary to avoid HACKs interfering with

others. The HACK manager keeps track of which traps are mapped to which HACKs,

and ensures that the traps are passed along the “HACK chain” accordingly. EdgeWrite

uses the X-Master-Light from LinkeSOFT (http://linkesoft.com/xmaster) as its freeware

HACK manager of choice.

Chapter 3: The EdgeWrite Design 77

On Palm OS 5.0–5.4 devices, the operating system no longer fires traps in the same

way, and so a different implementation is necessary. Instead, OS 5 devices broadcast a

limited set of notifications to applications when certain events occur. Most applications

do not register with the operating system to receive such notifications, but EdgeWrite

does. When activated, EdgeWrite receives notifications for pen events and drawing, and

responds accordingly. This is similar in spirit to the HACK method, but is sanctioned and

governed by the operating system.

Chapter 3: The EdgeWrite Design 78

Chapter 4: Stylus EdgeWrite 79

Chapter 4

4 Stylus EdgeWrite*

4.1 Motivation

As described in §3.1.1, the two predominant forms of stylus-based text entry—stroke

alphabets and “soft” stylus keyboards—can be difficult for people with motor

impairments. Stroke alphabets require fine motor control and consistent screen pressure.

Stylus keyboards require the repeated acquisition of miniature on-screen targets. Both

methods can be difficult for people with tremor, spasm, poor coordination, rapid fatigue,

or low strength. As a result, it is necessary to design a better method for stylus text entry

on PDAs for people with these challenges. In particular, stability, tactility, reduced visual

search, and short stylus travel distances are of key importance.

Tremor is particularly problematic, as tremulous users may “bounce” the stylus

repeatedly on the screen, triggering unwanted modes and unwanted characters. In fact,

this problem renders Graffiti entirely unusable for some people. A similar problem is that

users with low strength often cannot apply enough pressure to make a single, contiguous

unistroke. The built-in digitizer on a Palm OS device, for example, will perceive such a

stroke as a series of disconnected stroke segments, separated by momentary lifts of the

stylus. A more accessible method of text entry must have tolerance to both problems.

* Parts of this chapter are adapted from (Wobbrock et al. 2003b, Wobbrock and Myers 2006b).

Chapter 4: Stylus EdgeWrite 80

Able-bodied users may also benefit from more stable means of text entry. Since

PDAs are designed to be used “on the go,” many situations arise where added stability

can be beneficial: riding a bus, walking, or annotating slides during a presentation while

standing.

As the line tracing study discovered (§3.1.3), physical edges offer many desirable

properties that may be useful in developing a more accessible stylus-based technique.

Appling pressure against an edge while moving a stylus provides:

• Greater stability: Decreased movement variability and movement offset

(MacKenzie et al. 2001a).

• Greater speed: Ability to move quickly yet remain on the target line.

• Higher accuracy: Targets along an edge or in a corner are easier to acquire.

• Tactile feedback: No longer is visual feedback the only means of self-correction

during movement, as tactile feedback is available (Buxton et al. 1985).

• Fitts’ law win: Edges allow for “target overshoot,” where acquiring targets on

edges is easier than acquiring targets “in the open” (Walker and Smelcer 1990).

The research goal in Stylus EdgeWrite is to exploit these “pure” benefits of physical

edges in a text entry technique, and to prevent other factors such as cognitive difficulties

from diluting them. Stylus EdgeWrite goes a long way toward realizing these goals, as it

relies heavily on edges and corners, both interactively and algorithmically. These edges

are imposed on the input area by a transparent plastic template with a square hole, inside

which all text entry is performed.

Empirical results for errors during entry show that Graffiti KSPC is 18.2% higher

than EdgeWrite KSPC (1.43 vs. 1.21, p<.05) for able-bodied users formerly unfamiliar

with either technique.7 This benefit comes without a significant difference in speed.

Users with motor impairments succeeded at using EdgeWrite but were largely unable to

use Graffiti due to excessive tremor and bounce. EdgeWrite’s physical edges reduced the

propensity of tremulous users to bounce the stylus on the screen, and the software

tolerates such bouncing by not producing unwanted characters.

7 Recall that lower KSPC corresponds to higher accuracy, with 1.0 being “perfect” (Soukoreff and
MacKenzie 2001).

Chapter 4: Stylus EdgeWrite 81

4.2 Design

This section describes aspects of the Stylus EdgeWrite design that are specific to this

version of EdgeWrite. Readers are encouraged to first read chapter 3, which covers the

core design concepts central to all versions of EdgeWrite.

4.2.1 The Feel of Stylus EdgeWrite
The Fitts’ law benefits of edges—the ability to overshoot a target by an arbitrary

amount—helps Stylus EdgeWrite letters feel more like their hand-printed counterparts

(Figure 4.1). When users hit a corner with a high force as they move the stylus, they may

feel as if they are moving farther in that direction than when they hit the same corner with

less force. This is, at least in part, why EdgeWrite letters can be easily learned: they feel

similar to Roman letters despite being mapped onto a square.

Figure 4.1. An EdgeWrite “y” (left) and a conceptual drawing for how the “y” may feel

in Stylus EdgeWrite (right).

In Figure 4.1, the form for “y” impacts the bottom-right corner twice: once on the

diagonal down-stroke, and once on the straight down-stroke (left). However, in making

this form, it can feel like the second stroke goes farther down because of the greater force

applied to the bottom edge on the second impact (right).

4.2.2 The Design of Corners
Although EdgeWrite’s corner-based recognition algorithm is straightforward (§3.2), the

design of Stylus EdgeWrite’s corners was not obvious. The corners began naïvely as

points instead of areas, and this proved to be inadequate, as users rarely hit the exact

corners. This was because users held their styluses at various angles. An angled stylus

impacts the edge of the plastic template a few millimeters above its tip, causing the tip to

jut into the square a few pixels, even when the stylus feels flush against the edge (Figure

4.2).

Chapter 4: Stylus EdgeWrite 82

Figure 4.2. The tip of an angled stylus meets the PDA screen a small distance from the

edge of the dominant-hand-side of the square. This image is of a left-handed user.

After increasing the corner size to an appreciable area, two other problems emerged.

Once moving, users would often accidentally hit corners, particularly when doing a

diagonal stroke, as in an “s.” This seemed to suggest that the corners should be made

smaller; but if the corners were too small, users would often fail to hit them on pen-down,

particularly for rapid backspace strokes (across the top from right to left). It seemed that

large corners were necessary when the stylus went down, but then small corners were

necessary thereafter.

The next step in the design process added precisely this. The corners were inflated

until the stylus was detected within one of them, and then deflated while the stylus was

moving (Figure 4.3). Deflated corners are not rectangular but are triangular to make

accidental corner-hits rare, especially during the making of a diagonal.

Figure 4.3. The evolution of corners in Stylus EdgeWrite. In (a), corners are just pixels.

In (b), they are rectangular regions, but diagonals sometimes hit unwanted corners. In (c),
they begin as rectangles, but “deflate” into triangles.

An observation during a user study prompted the most recent iteration on the corners.

A user with a chronic wrist injury held the stylus at a fairly shallow angle relative to the

PDA screen, similar to Figure 4.2. The result was that the elevated edge of the plastic

square prevented the tip of the stylus from getting close to the side of the square. Figure

4.4 shows the resultant adjustments made for both left- and right-handed users. Extra

corner area is provided along the x-axis for the dominant-hand side of the square in order

to account for users who hold their styluses at steep angles. A nice property of this design

is that it does not negatively impact users who hold their styli more vertically.

Chapter 4: Stylus EdgeWrite 83

Figure 4.4. Left- and right-handed adjustments of the corners before deflation.

4.2.3 The Plastic Template
Stylus EdgeWrite’s plastic template is important for EdgeWrite to work well. Informal

testing of different physical square sizes using a Palm Vx stylus showed that writing

could be effective in squares ranging from 0.7–1.9 cm on a side, with 1.3 cm having the

best combination of speed, accuracy, and “feel.” Although some of the larger square sizes

were slightly more accurate for able-bodied users, the stylus travel distances seemed too

large for people with motor impairments, who need short diagonals since diagonals lack a

physical edge. Thus, the size of the square hole in the “official” EdgeWrite template was

set to 1.3 cm on a side, or 1.69 cm2 (Figure 4.5).

Figure 4.5. Two plastic templates, each with a 1.69 cm2 hole.

Numerous prototypes exist, two of which are shown in Figure 4.5. The left model is

smaller and sits directly on the Palm screen. We found this to work fine for able-bodied

users, but users with motor impairments sometimes put pressure with their fingers on the

template, causing it to press against the screen and interfere with the digitizer. We

designed the right model in order to avoid putting pressure on the screen. This template

sits on the Palm chassis and therefore cannot touch the screen’s surface. In both cases, the

templates are taped to the PDA chassis for anchoring. Both templates are 0.15 cm thick.

Different Palm PDAs require differently sized plastic templates. After carefully

measuring a PDA’s input area, the templates are laid out in a vector drawing program.

Included in the layout are holes corresponding to the positions of any soft buttons that the

template would otherwise obscure. The templates are then laser-cut from clear acrylic.

Figure 4.6 shows a Tungsten E template schematic, which also works well on a Palm Vx.

Chapter 4: Stylus EdgeWrite 84

Figure 4.6. Template schematic for a Tungsten E, which also works well on a Palm Vx.

Holes provide access to the soft stylus buttons. This template is designed to sit on the
device chassis, above the PDA screen. All measurements are in cm.

4.2.4 Application Preferences
Stylus EdgeWrite works as a HACK on Palm OS 3.5–4.x devices, and as a notification-

based application on Palm OS 5.0+. See §3.6.3 for more details about this

implementation.

Both versions of EdgeWrite for the Palm OS have configuration screens that support

options for drawing, handedness, tolerance for low stylus pressure, and defining the

square (Figure 4.7). The lattermost involves tapping in the top-left and bottom-right

corners of the plastic hole to tell the software where the physical square is. Also, a

software character chart can be shown whenever the application is active by tapping one

of the soft buttons through one of the holes in the plastic template.

Figure 4.7. A preferences screen, a character chart, and a screen for defining the square.

Defining the square aligns the software square with the physical plastic square.

Chapter 4: Stylus EdgeWrite 85

The option for tolerating low stylus pressure sets a short lag after each pen-up event.

This lag can be set to None, Short, Medium, or Long corresponding to 0, 125, 250, and

500 ms, respectively. The lag is a time window in which additional pen input will be

appended to the current stroke. This provides tolerance for users who cannot apply

consistent pressure to the screen during a single stroke; as a result, they may lift

frequently and inadvertently. This feature proved useful to “Jim,” a motor-impaired

subject with low strength who also extensively tested Trackball EdgeWrite (§7.3.3).

4.2.5 Fisch in Stylus EdgeWrite
Recall the discussion of the Fisch technique for word-level stroking in unistroke text

entry systems (§3.5). As described, the design will not work in Stylus EdgeWrite because

a plastic template bounds the input area, preventing words from being selected via goal

crossing. As a result, it is necessary to adapt Fisch to Stylus EdgeWrite.

The adaptation consists of three parts. First, Fisch no longer uses a “floating”

bounding box that is determined by the location of the stroke. Instead, the bounding box

is assumed to be the fixed square defined by the plastic template. Second, Fisch maps

word completions to EdgeWrite’s corners instead of to the sides of the box, since corners

trap a moving stylus. Third, instead of detecting pigtail loops, Fisch detects corner re-

entries, which amount to a similar thing. As before, users can cancel a stroke, now by

lifting outside the corners. Figure 4.8 shows an EdgeWrite “t” and word-level strokes for

“the” and “they”.

Figure 4.8. Stylus EdgeWrite unistrokes for “t”, “the”, and “they”.

4.3 Evaluation

This section presents results from various laboratory studies of Stylus EdgeWrite. These

studies were conducted prior to the finalized design of Stylus EdgeWrite. In particular,

corners did not yet deflate as triangles (§4.2.2), there was no accidental lift tolerance

(§4.2.4), non-recognition retry was not implemented (§3.4.2), and the EdgeWrite

Chapter 4: Stylus EdgeWrite 86

alphabet had not yet been refined through the guessability study (§3.3.3). With these

refinements, results would only improve for the most up-to-date version of Stylus

EdgeWrite. Unless otherwise noted, only the character-level version was tested.

4.3.1 Novice Able-bodied Use
Although Stylus EdgeWrite is targeted towards people with motor impairments, its speed

and accuracy were assessed with able-bodied users to validate its design. Such an

evaluation is also informative with respect to situational impairments.

4.3.1.1 Subjects

Ten subjects who had no prior experience with handheld text entry were recruited from

the local community. Only half of the subjects were university students. Subjects were

paid $10 for their time. The experiment lasted one hour and consisted of two parts: a

practice session and a testing session.

4.3.1.2 Apparatus

A Palm Vx device served as the handheld computer on which the study was run. Test

software presented text phrases on the PDA screen, just above the text entry area where

subjects reproduced the text. The close proximity of the presented phrases and the text

entry area mitigated the two foci-of-attention problem (MacKenzie and Soukoreff

2002b).

Test phrases resembled realistic entries: letters, names, phone numbers, addresses,

and URLs. These phrases were created to resemble those used by Sears and Arora (Sears

and Arora 2002). It is worth mentioning that this study was run before MacKenzie and

Soukoreff released their widely-used corpus of 500 phrases (MacKenzie and Soukoreff

2003), which later studies employed.

All performance data was logged on a nearby laptop over a serial cable attached to

the Palm PDA. This data was then processed by a log file parser capable of computing

numerous statistics like intra-character times, errors in the final string (MSD), keystrokes

per character (KSPC), gestures per character (GPC), etc. Space precludes a detailed

discussion of each measure. See §2.4.2 for more information about computing these

measures.

Chapter 4: Stylus EdgeWrite 87

A character chart was available to subjects for use if they could not remember how to

make a character. Subjects were encouraged to guess “once or twice” if they could not

recall a character, after which they could use the chart. Their uses of the chart were

recorded.

4.3.1.3 Procedure

Each subject was assigned randomly to a between-subjects condition for input method:

Graffiti vs. EdgeWrite. The experiment lasted 1 hour and consisted of two parts: a

practice session followed by a testing session.

Before the practice session, subjects were taught the basics of the input method to

which they were assigned. For Graffiti, this included things like pointing out the input

area, pointing out the letter area and the number area, and demonstrating the appropriate

pressure with which to hold the stylus against the screen. It did not include expert-level

nuances like making the “v” backwards. For EdgeWrite, this explanation included the

importance of pressing firmly against the edges during movement, and the importance of

hitting corners in the correct order.

The practice session consisted of making each character twice successfully. Thus, if a

character was not recognized correctly, it was retried until success. Subjects progressed

through a character chart for EdgeWrite or Graffiti like the one shown in Figure 3.9.

The testing session consisted of entering 20 phrases, all about 50 characters in length.

Phrases were presented in the same fixed order for every subject. Subjects were not

artificially constrained in their entry of text: they could make errors or get out of sync

with the presented phrase. They were told before the first trial to “proceed quickly and

accurately, as you would enter text in the real world” (Soukoreff and MacKenzie 2001).

4.3.1.4 Adjustment to Data

Subjects continually improved over the first 12 trials, then began to flatten out in speed

and accuracy, so these first 12 trials are treated as additional training exercises. Thus,

only the last 8 trials are included in our statistical comparisons. In all comparisons, the

EdgeWrite value is reported first, followed by the Graffiti value.

Chapter 4: Stylus EdgeWrite 88

4.3.1.5 Results

The three measures of obvious importance are speed, accuracy during text entry, and

accuracy after text entry is complete. All three of these measures are calculated with the

methods described in §2.4.1–2.4.2.

A one-way repeated measures analysis of variance8 yields a non-significant result for

speeds: 6.6 vs. 7.2 WPM (F1,56=0.27, ns). If we consider all 20 trials to examine learning,

the means are even closer: 5.85 vs. 5.97 WPM (F1,152=0.02, ns). Further testing would be

required to differentiate the speeds of these two methods.

Accuracy during entry can be measured using keystrokes per character (KSPC). A

one-way repeated measures analysis of variance yields a significant result in favor of

EdgeWrite: 1.21 vs. 1.43 (F1,56=9.32, p<.02). Graffiti is therefore 18.2% more prone to

error; equivalently, EdgeWrite has 15.4% lower KSPC. Note that non-character-

producing strokes such as mode-setters are not included in this measure, since that would

unduly penalize any entry technique with modes. Figure 4.9 shows KSPC for Graffiti and

EdgeWrite over the last 8 trials.

Figure 4.9. Average KSPC of EdgeWrite and Graffiti. Lower is better; 1.0 is perfect.

Accuracy after entry can be measured using minimum string distance (MSD). A one-

way repeated measures analysis of variance is not significant: 0.34% vs. 0.39%

8 The analysis used a mixed model analysis of variance with a fixed effect for entry method and a
random effect for subject. Mixed model analyses result in higher denominator degrees of freedom
than more tranditional approaches but do not increase the chances for statistical significance. See
Chapter 3 in (Littell et al. 1996) for more details.

Chapter 4: Stylus EdgeWrite 89

(F1,56=0.02, ns). For our trials, this is roughly equivalent to one erroneous character for

every 250 characters entered, or about 5 trials. The fact that these values are so close

means speeds can be equitably compared, since in both methods few errors were left in

the transcriptions.

One also can examine the intra-character time (pen-down to pen-up) to determine

which alphabet’s strokes are faster. A one-way repeated measures analysis of variance

yields a significant result in favor of Graffiti: 580 vs. 290 ms (F1,56=20.57, p<.005). This

explains, at least in part, why there was no significant difference in speed even though

EdgeWrite was more accurate during entry (and thus required less time correcting errors).

EdgeWrite makes fewer errors but Graffiti has faster characters, so overall speed is about

the same.

The data can be analyzed with a new measure similar to the KSPC dependent

measure called gestures per character (GPC). This measure is the same as KSPC but

includes mode setters and all other recognized strokes—things KSPC must leave out. The

result can be used to show which alphabet is more “verbose,” requiring more multi-stroke

characters and more modes. A one-way repeated measures analysis of variance yields a

significant result in favor of EdgeWrite: 1.26 vs. 1.62 GPC (F1,56=14.65, p<.005). This

helps to support the claim that EdgeWrite uses less mode strokes, something important

for motor-impaired users, for whom every stroke counts.

Finally, both alphabets were extremely learnable and guessable, even in spite of the

fact that EdgeWrite had not yet undergone the formal guessability study (§3.3.3). For

EdgeWrite, subjects had to use the character chart for an average of 4.6 total characters

out of 1000 characters entered. For Graffiti, this average went up to 6.6. This comparison

did not yield a significant result (F1,152=1.72, ns).

Another measure of learnability is the amount of time spent on each trial. EdgeWrite

and Graffiti were surprisingly similar. Over the 20 trials, mean times were nearly

identical, at 118.2 seconds for EdgeWrite to 117.1 seconds for Graffiti (F1,152=0.00, ns).

4.3.1.6 Discussion

Both EdgeWrite and Graffiti were quickly learnable by people who had never used either

technique. Although this result was known for Graffiti (MacKenzie and Zhang 1997), at

the time of this study it was not yet known for EdgeWrite. The main significant finding

Chapter 4: Stylus EdgeWrite 90

was that Graffiti was 18.2% more error prone than EdgeWrite during entry, although both

methods produced similarly error-free transcriptions. Although there was not a significant

speed difference, Graffiti did have significantly faster characters from pen-down to pen-

up. However, EdgeWrite had fewer overall strokes as measured by GPC. It would thus

seem that the two techniques compare rather evenly for able-bodied novices, except for

EdgeWrite’s significantly higher accuracy during entry.

4.3.2 Novice Motor-impaired Use
Obtaining statistical results with subjects who have motor impairments is often infeasible

because of the high variance among people with disabilities, the difficulty in obtaining

subjects, and the small amount of testing each subject can do before growing tired

(Coyne 2005, Feng et al. 2005). Therefore, the text entry accuracy of just five users with

various motor impairments was studied for both EdgeWrite and Graffiti or Graffiti 2. It

was important to isolate a subject’s ability to perform a letter from his or her learning of

that letter, so a note card with each stroke drawn on it was used as a prompt. Subjects

were given as much time as they needed to make each stroke.

Subject 1 was a middle-aged woman with Parkinson’s disease and severe tremor. She

was asked to enter each lowercase letter (a–z) and each digit (0–9) twice in Graffiti and

then twice in EdgeWrite. Her recognition rates were 22/72 (30.6%) in Graffiti and 68/72

(94.4%) in Stylus EdgeWrite. In Graffiti, interspersed with numerous misrecognitions

were a number of accidental periods and other punctuation due to “bounce” on the

screen. Her tremor made it difficult for her to avoid setting the punctuation mode in

Graffiti. When she entered a 50 character phrase with both methods, she made over 3

times the number of errors in Graffiti as she did in EdgeWrite.

Subject 2 was a 30-something woman with Spastic Cerebral Palsy. When asked to

make each Graffiti letter and number, it turned out there were some she could never

correctly produce despite repeated efforts: “c”, “e”, “f”, “x”, “2”, and “4”. For

EdgeWrite, these were limited to just “2” and “7”, probably owing to their use of

diagonals. When she attempted the sentence, “The dog is going fast” in Graffiti she

produced, “The g i gbsiangu% fast” (8 errors). She skipped “d” after repeated

misrecognitions because it was too difficult. In EdgeWrite, she entered the sentence

without leaving any errors. Her only complaint was that the diagonals were difficult. This

prompted the later addition of alternative strokes that lacked diagonals. In the final

Chapter 4: Stylus EdgeWrite 91

EdgeWrite alphabet (Appendix A), most letters and numerals can be entered without

diagonals.

Subject 3 was a 30-something male with a form of Muscular Dystrophy. He had a

small baseline tremor. Using Graffiti, he was unable to make “b”, “d”, and “f” after

multiple tries and gave up on them. Using EdgeWrite, there were not any letters that he

could not produce. In fact, in an attempt to do 3 versions of each EdgeWrite

alphanumeric character, he made only 2 errors in 108 entries. When asked to produce the

sentence, “the ugly underwater urchin eats putrid meat lovingly” in Graffiti he produced,

“the ugl un erwater urchin eats putri meat lovingly” (3 errors). In EdgeWrite he produced

the sentence without leaving any errors.

Subject 4 was a 40-something woman with Cerebral Palsy. She was able to enter all

letters and numbers in both Graffiti and EdgeWrite, but upon switching to EdgeWrite

from Graffiti, she exclaimed, “This is a lot easier than before. Much easier, my

goodness.” She entered a 50 character phrase in Graffiti leaving 2 errors and in

EdgeWrite without leaving any errors.

Subject 5 was tested two years after these other subjects; as a result, he used Graffiti

2 instead of Graffiti. He also used the EdgeWrite alphabet that was the result of the

guessability study and subsequent refinements (§3.3.3). This subject was 50 years old and

had had a spinal cord injury for 15 years. Although he did not have tremor, he had low

strength and poor coordination in his hands and arms. Before using Graffiti 2, he trained

the recognizer by entering sample strokes for “p”, “t”, “y”, and “$”. Then he entered each

letter four times in Graffiti 2 and then in EdgeWrite (i.e. “aaaa”, “bbbb”, …, “yyyy”,

“zzzz”). In Graffiti 2 his accuracy was 57/104 (54.8%). In four attempts, he could not

successfully make “b”, “d”, “e”, “g”, “m”, and “w”. In EdgeWrite, his accuracy was

103/104 (99.0%). He only missed one attempt at “o” because he failed to enter the

bottom-left corner. EdgeWrite was so successful for this subject that he said he felt he

could finally use a PDA, which he had never been able to use before but wanted to.

Figure 4.10 shows the accuracy results of these five subjects. A two-tailed Wilcoxon

signed-rank test revealed a trend in favor of EdgeWrite over Graffiti (z=-7.50, p=0.063).

Chapter 4: Stylus EdgeWrite 92

Figure 4.10. Graffiti and EdgeWrite accuracy for five subjects with motor impairments.

Accuracy was measured independent of memorization and speed.

4.3.3 Expert Able-bodied Use
Stylus EdgeWrite has not been formally tested with a range of able-bodied experts.

However, I have rigorously tested myself (an expert) on a variety of devices (Wobbrock

and Myers 2005a), including character-level Stylus EdgeWrite. Over 10 phrases, my own

speed averaged 24.0 WPM with 2.8% total errors, 0.0% of which went uncorrected—that

is, all errors were corrected.

For informally evaluating Fisch, I conducted a self-test of “record speed”

(Kristensson and Zhai 2004). Accordingly, I chose a random phrase from a text entry

phrase set for repeated entry (MacKenzie and Soukoreff 2003). The phrase was, “for your

information only”, which in Fisch can be entered in 6 fluid strokes. I entered the phrase

33 times in 7 minutes. Over the first 5 tries, my speed averaged 18.0 WPM. On the 10th

try, my speed increased to 31.0 WPM; on the 15th, it was 55.7 WPM. My speed on the

final try was 63.3 WPM. There were no errors left in any of the entered phrases.

Fisch has been more extensively tested during evaluations of Trackball EdgeWrite

(§7.3.4) and Isometric Joystick EdgeWrite (§8.3.4).

Chapter 5: Joystick EdgeWrite 93

Chapter 5

5 Joystick EdgeWrite*

5.1 Motivation

Displacement joysticks have served as input devices since the earliest computers (Herz

1997). The two-player version of Computer Space (1972), the first coin-operated arcade

game, used two mounted joysticks. In 1978, Atari released its first game console, the

Atari 2600, which had no keyboard, just a joystick. Joysticks have been studied in

human-computer interaction since at least the seminal study by Card et al. in 1978 (Card

et al. 1978). Yet despite joysticks’ considerable tenure, no satisfying text entry

techniques have been developed for them. The methods that do exist are mostly selection-

based; they require screen real-estate to display options, are difficult to use without

looking, are hard to customize, and are slow, requiring many movements per character.

Today’s computer game industry might benefit from better text entry for game

consoles, which often have only game controllers as input devices. If they have

keyboards at all, they are sold separately at extra cost. Many game consoles are now

networked, and require extensive text entry during configuration before they allow game

play. For example, registration for the Xbox Live! service requires entering personal and

billing information and can take more than 30 minutes using a joystick and an on-screen

* Parts of this chapter are adapted from (Wobbrock et al. 2004b, Wobbrock et al. 2004a).

Chapter 5: Joystick EdgeWrite 94

selection keyboard. Furthermore, many networked games allow for communication

among players using short bursts of instant messenger-style text. With only selection-

based text entry methods for game controllers, this can be awkward.

Mobile devices have also placed high demands on text entry development. Numerous

text entry methods have been investigated, including those driven by buttons, character

recognition, virtual keyboards, thumbwheels, and voice. Many handheld devices, such as

the Ericsson T68i mobile phone, are equipped with miniature joysticks for navigation and

selection purposes, yet have no capability for joystick text entry. Joystick text entry on

mobile devices reduces the need for screen areas devoted to stylus entry, for virtual

keyboards that take up precious screen real-estate, and for multiple button-taps to select

desired characters. They also can be used without looking, which may have positive

implications for eyes-free use.

Another potential use of joystick text entry is for users of power wheelchairs (§6).

Technology is already commercially available to enable a person to control a computer’s

mouse from a power wheelchair joystick, but options for text entry are limited to mouse-

based selection techniques, like the WiVik on-screen keyboard (Shein et al. 1991).

This chapter presents a new joystick text entry method that is not based on selection,

but on gestures using the EdgeWrite alphabet. The properties of this alphabet make it

well-suited for text entry with joysticks. An experiment with able-bodied users shows

that joystick EdgeWrite is faster, produces more accurate phrases, and is more satisfying

to users than date stamp or selection keyboard, two prevalent selection-based methods.

5.2 Design

This section describes the design of Joystick EdgeWrite and the particular issues faced in

the development of this version. Important differences from Stylus EdgeWrite (§4.2)

exist in the design of Joystick EdgeWrite’s segmentation scheme and corner regions.

5.2.1 Some Challenges of Writing with a Joystick
Displacement joysticks, like those found on game controllers (Figure 5.1), commonly

operate in one of two modes: position-controlled or rate-controlled. With position-

control, or “absolute mode,” the physical range of the joystick is mapped to a plane (e.g.

the screen), and the position of the stick corresponds to a position in the plane. Joystick-

Chapter 5: Joystick EdgeWrite 95

driven screen magnifiers have been designed using position-control (Kurniawan et al.

2003). In contrast, with rate-control joysticks, the further the stick is moved from its

center, the faster the position or view changes. Rate-control, or “relative mode,” is

common in “first-person shooter” games and for joystick-controlled mouse cursors

(LoPresti et al. 2004).

Figure 5.1. The Saitek P2500 and Logitech Dual Action Gamepad, both of which have
square areas around their thumb-controlled sticks. If released, both sticks snap to center.

It would seem that position-control might be the ideal candidate for “writing” with a

displacement joystick, as one could trace an (x, y) path much like one does with a stylus

on a PDA. Many studies, however, confirm that joysticks are not particularly accurate for

positioning as mice, trackballs, touchpads, and tablets (Epps 1987, Murata 1991,

MacKenzie et al. 2001a). Indeed, our design explorations confirm the difficulty of

making smooth letter-forms using a joystick. The prospect of writing in an alphabet like

Graffiti is therefore dubious. If gestures are to be used, they will have to be designed to

overcome this difficulty.

Human physiology also complicates joystick text entry. For example, the dexterity of

the thumb changes with its position relative to the hand, causing changes in range of

motion (Hirotaka 2003). The index finger has the highest Fitts’ index of performance

(Langolf et al. 1976), making it better suited than the thumb for control tasks (Ehrlich

1997). The velocity of a writer depends on whether she moves her arm or only her wrist,

and upward strokes are generally faster than downward ones (Isokoski 2001). Some

results show that humans have a difficult time returning a joystick to the same position it

was before (Kurniawan et al. 2003). Such variables may subvert any attempts at joystick

writing. While not a panacea, EdgeWrite is well-suited to overcoming these challenges.

Chapter 5: Joystick EdgeWrite 96

5.2.2 The Suitability of EdgeWrite
EdgeWrite has properties that make it well-suited to meeting the challenges of joystick

text entry. All motion in EdgeWrite is ideally in straight lines between corners, but

straight lines are not required for good recognition, since recognition depends not on the

path of movement but instead on the sequence of corners that are hit (§3.2).

Displacement joysticks are usually best used for control, not positioning, but

EdgeWrite’s use of stabilizing physical edges allows a joystick bounded by a physical

square to be used in position-control mode for writing EdgeWrite characters. The areas

bounding the thumb joysticks on the Saitek P2500 and many Logitech game controllers

are squares (Figure 5.1). In the user study presented below (§5.3), the Saitek P2500 was

used without modification.

With a displacement joystick, it is difficult to make smooth curvaceous characters

like those required by Graffiti, but EdgeWrite characters are easy to make by pushing the

stick from corner to corner along the physical edges. Edges naturally guide the stick, and

corners naturally pocket it. EdgeWrite characters begin in one of four corners, easily

accessed from the center of a square with a self-centering joystick.

5.2.3 Interaction Design
To understand how EdgeWrite works with a displacement joystick, we must understand

how EdgeWrite partitions the joystick’s coordinate plane. Using C# and DirectInput, the

joystick is polled for its position every 55 ms, which proves sufficiently often. The (x, y)

position of the stick falls within the range of the [-100 … +100] and centers at (0, 0). In

practice, none of the joysticks surveyed centered perfectly; some were off by up to ±20.

Figure 5.2. (a) The partitioning of the Joystick EdgeWrite input plane. (b) The
“deflation” that occurs after a corner has been entered by a right-handed user.

Chapter 5: Joystick EdgeWrite 97

Like in Stylus EdgeWrite (§4), Joystick EdgeWrite’s corners are triangular regions so

that diagonal strokes do not accidentally hit them. In addition, some corners “deflate”

into smaller triangles to make diagonals easier to perform. Figure 5.2a shows the inflated

dimensions of the joystick coordinate plane for a right-handed user. Figure 5.2b shows

the deflated dimensions of the joystick coordinate plane. (The dot in the top-left indicates

the current joystick position.) For a right-handed user, the deflated dimensions take hold

whenever the joystick is in the top-left or bottom-right corners, which makes the difficult

diagonals easier (Figure 5.3).

Figure 5.3. When on the joystick, a right-hand thumb finds one diagonal easy and the

other more difficult. Deflation helps make the difficult diagonal easier.

The difficulty shown in Figure 5.3 arises because the thumb’s dexterity and range of

motion along the easy diagonal is much better than along the difficult diagonal. The easy

diagonal is along the natural arc of the thumb, while the difficult diagonal is along the

length of the thumb itself.

A design challenge is how to segment between letters. In unistroke text entry with a

stylus, a pen-down event starts a character and a pen-up event ends it. There is no analog

to this with a joystick. Versions that used button presses and center dwell-time for

segmentation were built, but both proved awkward and slow. Instead, Joystick EdgeWrite

segments characters by starting a character when a corner is entered, and ending it when

the polling of the joystick yields two successive points in the center (Figure 5.4). From a

user’s perspective, this means momentarily relaxing the joystick just enough so that it

naturally returns to its center. With this scheme, annoying pauses are not necessary

between characters, as they are with center dwell-time segmentation. In user testing,

users did not notice any delays, and there were no observed segmentation errors in

thousands of entered letters.

Chapter 5: Joystick EdgeWrite 98

Figure 5.4. A clean trace of an “a” (left) and a sloppy but recognized trace of “w” (right).

The “w” is sloppy because it fails to snugly impact the bottom-right corner.

Note the relatively few points actually sensed by the polled joystick for the letters in

Figure 5.4. The “a” on the left has only 10 input points, but 7 of them fall within corners.

The “w” on the right has only 9 input points, but 6 of them fall inside corners. This is

because corners naturally “pocket” the joystick, slowing it momentarily and improving

the chance that the stick position will be polled there. These examples highlight the

minimal sensing necessary for a functional version of Joystick EdgeWrite.

5.3 Evaluation

Joystick EdgeWrite was evaluated for both novices and experts against competitor

methods. Like in the evaluation of Stylus EdgeWrite (§4.3), this evaluation used the

EdgeWrite alphabet before the guessability study (§3.3.3). Also, continuous recognition

feedback (§3.4.1) and non-recognition retry (§3.4.2) had not yet been implemented, and

slip detection (§3.4.3) was only ever implemented for the “virtual” versions on the

trackball and isometric joystick.

5.3.1 Competitor Methods
Although joystick text entry is not particularly common, two predominant methods exist:

date stamp and selection keyboard. These methods were used as competitors to Joystick

EdgeWrite. Both are described in general terms in §2.3.4. They are described here as they

were implemented for the current study.

5.3.1.1 Date Stamp

Joystick-based date stamp is often implemented with a predetermined number of letter-

slots (i.e. “stamps”) and the inability to backspace. This implementation is feasible for

high-score screens in arcade games, but not for text entry studies where a presented

phrase must be transcribed. Therefore, for the purposes of this study, no predetermined

Chapter 5: Joystick EdgeWrite 99

letter-slots were used. Instead, the user receives a new stamp, initialized with “a” and

highlighted in blue, when he or she moves the joystick to the right (Figure 5.5). Moving

the joystick to the left erases the previous letter and initializes the stamp with that letter.

Thus, after backspacing a letter, a user is not forced to start from “a” again, but from the

erased letter, making slight under- and overshoots easy to fix. As usual, moving the stick

down cycles forward through the alphabet, and moving it up cycles backward.

Figure 5.5. The joystick test software showing date stamp with “v” currently highlighted.

The stamp employed in this experiment used Tarasewich’s thumbwheel sequence

except without punctuation (Tarasewich 2003). The sequence is

[space][a..z][0..9](repeat). If users hold the stick up or down, the date stamp cycles after

an initial pause of 390.6 ms with a repeat delay of 62.5 ms. These values were taken from

keyboard key-repeat times.

5.3.1.2 Selection Keyboard

The selection keyboard used in the study is shown in Figure 5.6. With it, a user can move

the selector up, down, left, or right, but not diagonally. When the user presses a joystick

button, the currently highlighted key is committed. When a key is committed, the halo

remains where it is and does not jump to a home position. The halo can wrap around the

keyboard horizontally or vertically, staying in the same row or column. Key-repeat

behavior, identical in timing to the date stamp method, governs rapid movement of the

halo. The layout in Figure 5.6 is copied from the Xbox Live! registration sequence and

two popular Xbox games, Halo and Brute Force. Note that selection keyboards differ

from point-and-click on-screen keyboards (§2.3.6) in that no mouse cursor is used and

virtual keys cannot be missed. Of course, the wrong key can still be pressed.

Chapter 5: Joystick EdgeWrite 100

Figure 5.6. The selection keyboard used in the study. It replicates the design in use on

the popular Xbox game console. The letter “a” is currently highlighted.

5.3.2 Novice Use
The first of two studies was a single session experiment involving novice users.

5.3.2.1 Subjects

Eighteen subjects from the nearby university communities were recruited. The median

age was 21.5. Four were female and 1 was left-handed. Subjects were paid $20 for a 90-

minute test in which they entered text using date stamp, selection keyboard, and

EdgeWrite. No subjects had any prior experience with EdgeWrite.

5.3.2.2 Apparatus

Tests were conducted in a laboratory using an 866 MHz Pentium 3 machine running

Windows XP with 256 MB RAM. Attached to it was a 16"×12.4" Hitachi monitor set to

1280×1024 resolution and 32-bit color. The test software shown in Figure 5.5 was

implemented in Visual C# using DirectInput 9.0b. The font was Microsoft Sans Serif 24-

point, and the joystick was a Saitek P2500 Rumble Force Pad (Figure 5.1). Importantly,

this joystick has a physical square boundary around its stick.

Quantitative data were logged by the test software and then analyzed according to the

measures in §2.4. These measures included speed in words per minute (WPM) and

accuracy as corrected, uncorrected, and total error rates (§2.4.3). In addition, raw data

rates were measured in keystrokes per second (KSPS). Joystick movements were also

logged. Subjective data was obtained with a post-test questionnaire.

Chapter 5: Joystick EdgeWrite 101

5.3.2.3 Procedure

Subjects used date stamp, selection keyboard, and EdgeWrite in a single-factor within-

subjects design. The entry methods were assigned to subjects in a fully counterbalanced

manner in order to neutralize learning effects and fatigue. Analyses of variance for

Method Order show no significant differences, indicating the counterbalancing worked.

Subjects practiced each method immediately before testing with it. Practice was

designed to provide the minimum amount of proficiency needed to perform the

technique. For date stamp and selection keyboard, this was just a single phrase (about 30

letters), since these methods were trivial to learn. For EdgeWrite, this was 10 phrases,

then each letter 3 times, then 2 more phrases, which took ~15 minutes.

Admittedly, practice for EdgeWrite was more extensive time-wise than practice for

the selection-based methods. This is simply because the selection-based methods were

easier to learn than EdgeWrite. Also, subjects quickly became bored with the selection-

based methods, and requiring equal practice times among the three techniques would

have caused undue boredom and fatigue. Section 5.3.3 contains results for users highly

practiced in all three techniques. These results show that more practice with the selection-

based methods does not result in improved performance for the selection-based methods,

but it does for EdgeWrite.

Testing consisted of a fixed set of 10 phrases with each method. Phrase set

assignment was even across entry methods to prevent bias. Subjects were instructed to

proceed “quickly and accurately” while testing (Soukoreff and MacKenzie 2003).

5.3.2.4 Trials

A single trial consisted of entering one phrase. The phrases came from a published phrase

set (MacKenzie and Soukoreff 2003). While the practice phrases were chosen at random

from a set of 500, test phrases were fixed in sets of 10 and assigned evenly to each entry

method. Table 5.1 shows phrase set characteristics.

Set Phrases Words Characters Correlation with
English

1 10 61 297 89.9%

2 10 52 298 92.7%

3 10 55 298 86.8%

Table 5.1. Characteristics of the three sets of test phrases.

Chapter 5: Joystick EdgeWrite 102

Consistent with MacKenzie and Soukoreff’s reasoning, numbers were not tested,

although they were implemented for each method because numbers are common in real-

world text entry and should be present even if untested.

5.3.2.5 Adjustment to Data

The data were analyzed using a repeated measures mixed model analysis of variance with

a fixed effect for Method and a random effect for Subject (Littell et al. 1996). Contrasts

between trials 1–5 and trials 6–10 for each method’s speed showed no significant

differences for EdgeWrite and date stamp, suggesting that subjects had somewhat

stabilized prior to testing. But such a contrast did show a significant difference for

selection keyboard (F1,493=8.51, p<.01), suggesting that subjects were still speeding up

during testing. Most of this speed-up was on the first trial. When it is removed, these

contrasts no longer show significant speed-ups for any method. Thus, all reported

analyses are for trials 2–10.

5.3.2.6 Speed

Means and standard deviations for speeds in WPM are: EdgeWrite 6.40 (σ=1.60),

selection keyboard 6.17 (1.18), and date stamp 4.43 (0.62). For comparisons, these are

graphed with keystrokes per minute (KSPM) in Figure 5.8.

An omnibus F-test of WPM is significant for Method (F2,466=217.20, p<.01).

Contrasts show that EdgeWrite is faster than selection keyboard (F1,466=5.11, p<.025) and

date stamp (F1,466=363.80, p<.01). Selection keyboard is also faster than date stamp

(F1,466=282.69, p<.01).

5.3.2.7 Error Rates

Figure 5.7 shows three error rates—uncorrected, corrected, and total errors (§2.4.3)—for

the joystick text entry methods date stamp, selection keyboard, and EdgeWrite.

Omnibus F-tests of all three error rates are significant for Method (p<.01). Contrasts

show that Joystick EdgeWrite has a higher corrected error rate than selection keyboard

(F1,466=132.16, p<.01) and date stamp (F1,466=73.61, p<.01). Surprisingly, however, the

opposite is true for uncorrected error rates. EdgeWrite produces significantly more

accurate phrases than selection keyboard (F1,466=6.24, p<.02), and nearly so compared to

date stamp (F1,466=3.68, p=.055). This discrepancy is discussed below.

Chapter 5: Joystick EdgeWrite 103

Figure 5.7. Uncorrected errors, corrected errors, and total errors for three methods.

Participant conscientiousness is a ratio of corrected errors to all errors (Soukoreff

and MacKenzie 2003). A score of 1.0 indicates a subject corrected all errors; a score of

0.0 indicates all errors were left in the transcribed string. Means and standard deviations

are: EdgeWrite 0.98 (0.09), selection keyboard 0.92 (0.26), and date stamp 0.89 (0.28).

An omnibus F-test is significant (F2,466=7.39, p<.01). Contrasts show that subjects were

more conscientious with Joystick EdgeWrite than selection keyboard (F1,466=7.15, p<.01)

and date stamp (F1,466=13.91, p<.01). Date stamp was not detectably different than

selection keyboard.

Thus, despite making more errors during entry (Figure 5.7b), subjects’ transcriptions

had fewer errors with Joystick EdgeWrite (Figure 5.7a), because subjects were more

thorough in correcting errors as they went. Although one should minimize both corrected

and uncorrected errors in any text entry method, uncorrected errors are the more

damaging of the two, since they are at odds with speed (§2.4.3). Thus, Joystick

EdgeWrite produces more accurate text in less time, albeit with more errors made (and

fixed) along the way.

5.3.2.8 Data Rate

Speed in WPM only considers the amount of text in the transcribed string and the time it

took to produce. It is also interesting to consider the amount of data transmitted from the

text entry device to the computer over time. This can be done by considering the input

stream, which includes all entered characters, even those erased and the backspaces that

erase them. Building off the KSPC acronym for keystrokes per character (Soukoreff and

Chapter 5: Joystick EdgeWrite 104

MacKenzie 2001), data rate can be called keystrokes per second (KSPS). The KSPS

metric gives us an idea of how fast users produce characters, regardless of how correct

those characters are. Note that KSPS only considers transmitted characters, not selector

movement in the case of the selection-based methods.

Means and standard deviations for KSPS are: EdgeWrite 0.66 (0.14), date stamp 0.41

(0.08), and selection keyboard 0.54 (0.10). An omnibus F-test of KSPS for Method is

significant (F2,466=361.03, p<.01). Contrast tests show that EdgeWrite is faster than

selection keyboard (F1,466=154.34, p<.01) and date stamp (F1,466=720.72, p<.01). The

selection keyboard is also faster than date stamp (F1,466=208.02, p<.01).

We can use KSPS to compute an upper bound for WPM by assuming all transmitted

characters were correct and persisted unto the final transcribed string. In this case,

Joystick EdgeWrite’s speed increases 23.0% from 6.40 to 7.87 (Δ=1.47), selection

keyboard 5.3% from 6.17 to 6.50 (Δ=0.33), and date stamp 10.8% from 4.43 to 4.91

(Δ=0.48). Thus, EdgeWrite seems to have more potential than the selection-based

methods when accuracy is improved, as would be the case with more practice. This is

supported by our results for users with more practice (§5.3.3).

For the purposes of comparing wpm to KSPS, we can convert KSPS to keystrokes

per minute (KSPM) with the usual definition of a word as 5 characters (Figure 5.8).

Figure 5.8. Speeds and data rates in WPM and KSPM for three joystick methods.

Whereas WPM considers only the length of the transcribed string, data rate in KSPM is
the speed with which all characters are transmitted, including backspaces.

Chapter 5: Joystick EdgeWrite 105

5.3.2.9 Gestures

Non-recognitions sometimes occur with gestural interaction techniques. We can compare

the number of EdgeWrite gestures made to the number recognized. The average number

of gestures made per trial was 42.15 (9.73). The average number of gestures recognized

per trial was 38.07 (7.92). Thus, about 10.6% of EdgeWrite gestures were unrecognized.

If all gestures had been recognized and were correct, EdgeWrite’s WPM would be 8.65

(1.75). This rate represents perfect performance given novice speeds.

5.3.2.10 Selector Movement

For date stamp and selection keyboard, it is interesting to compare the path of selector

movement to the minimal selector path. This minimal path is trivial to compute for date

stamp: for each letter, spin whichever direction (up or down) reaches the target letter first.

For selection keyboard, the minimal path for a phrase can be found using any optimal

path-finding algorithm, such as A*.

On average, subjects rotated through 329.81 (64.94) characters per trial in date

stamp. The minimal path required an average of 271.77 (46.25) rotations per trial. Thus,

subjects rotated about 21% more than necessary.

On average, subjects moved the selection keyboard selector 137.51 (25.27) times per

trial. The minimal path required an average of only 93.19 (13.45) movements per trial.

Thus, subjects moved the halo about 48% more than necessary. Note that the optimal

path included using the wrap-around feature of the keyboard.

5.3.2.11 Questionnaire Results

Subjects were given four Likert scales (1–5) on which to rate the three entry methods.

Figure 5.9 shows that subjects liked Joystick EdgeWrite better than the other two

methods. They also felt it was easier, more enjoyable, and faster. A repeated measures

analysis of variance of subjects’ average Likert scores yields a significant difference

(F2,34=11.37, p<.001). Contrasts show that EdgeWrite was preferred over date stamp

(F1,34=14.39, p<.001) and selection keyboard (F1,34=19.35, p<.001). No significant

difference exists between preferences for date stamp and selection keyboard (F1,34=0.37,

ns).

Chapter 5: Joystick EdgeWrite 106

Figure 5.9. Subjective results for the three methods. Scales range from 1–5 (worst-best).

5.3.2.12 Discussion

One might expect a recognition-based method to be less accurate during entry than a

selection-based method because of gestural slips and mistakes. But it is interesting that,

despite these errors, novices produced more accurate phrases with Joystick EdgeWrite

than with the other methods, and did so in less time. The selection keyboard requires a

second point of visual focus besides the transcribed text, so it is conceivable that subjects

may have left errors because they were attending to the keyboard and not the transcribed

text. It also may be the case that it is simply too cumbersome to fix errors with the

selection keyboard.

On average, however, EdgeWrite also produced more accurate phrases than date

stamp, which requires no additional focus of attention and supports easy error correction.

Perhaps with Joystick EdgeWrite, subjects feel quicker to remedy errors, or feel more

“engaged” with their input than with the fairly monotonous selection-based methods. Or,

perhaps because of the high error rate during entry, subjects are more vigilant in

correcting errors.

Surprisingly, subjects felt that selection keyboard was the slowest of the three

methods, even though date stamp was far slower. Subjects also felt selection keyboard

was the most frustrating of the methods. Subjects’ comments indicated that this was due

to the visual attention required.

Chapter 5: Joystick EdgeWrite 107

In this study, Joystick EdgeWrite was faster than selection keyboard by a small

margin with many novices over multiple trials. Although this result was statistically

significant, it should be regarded as the minimum amount of practice (~15 minutes)

required by a beginner to become reliably better with EdgeWrite than with selection

keyboard. Any further practice, as our results for expert users will show in the next

section, only increases EdgeWrite’s advantage.

5.3.3 Expert Use
To see how more practiced users fared with Joystick EdgeWrite, 3 more subjects were

tested. These subjects were already familiar with Stylus EdgeWrite (§4) and the

EdgeWrite alphabet, but not with Joystick EdgeWrite. They practiced with all three

joystick text entry methods for over 30 minutes, targeting difficult letters and entering

many phrases in each method. The performance of these 3 users with date stamp and

selection keyboard was near to that of the novices in the main study (Figure 5.10, Figure

5.11). Put simply, there simply wasn’t much room to improve. But with Joystick

EdgeWrite, these users were faster and less prone to errors than the novices before them.

The three experts made 13.2% fewer gestures: 36.60 per trial compared to 42.15 for

novices.

Figure 5.10. Speeds of three experts with all three joystick methods. Means from novices

are included for comparisons.

Chapter 5: Joystick EdgeWrite 108

Figure 5.11. Total error rates of experts in all three joystick methods. Means from

novices are included for comparisons.

I have also tested myself on a variety of devices (Wobbrock and Myers 2005a),

including Joystick EdgeWrite. Over 10 phrases, my own speeds averaged 14.7 WPM

with 8.8% total errors.

Chapter 6: EdgeWrite for Power Wheelchairs 109

Chapter 6

6 EdgeWrite for Power Wheelchairs*

6.1 Motivation

Inspired by the technology and results from Joystick EdgeWrite (§5), we began to

investigate how to improve text entry for people in power wheelchairs, since power

wheelchairs also use displacement joysticks. Many people with motor impairments use

power wheelchairs. An estimated 1.4 million people in the USA depend on wheelchairs

for mobility (Kraus et al. 1996). Of these, about 10% are in power wheelchairs, about

half of whom require more than one assistive technology to participate in daily activities

(Cook and Hussey 2001).

As noted in §2.3.4, commercial technology already exists for enabling mouse cursor

control from a power wheelchair joystick, for example, the Mouse Driver from Switch-It,

Inc. (http://www.switchit-inc.com). But mouse control is only part of a computer access

solution. The ability to enter text is also a cornerstone of successful human-computer

interaction. However, an integrated text entry method to accompany joystick mouse

control is not yet available. Instead, text entry from power wheelchairs usually takes the

form of point-and-click or point-and-dwell with an on-screen keyboard (Figure 6.1).

* Parts of this chapter are adapted from (Wobbrock et al. 2004c, Wobbrock et al. 2005a,

Wobbrock and Myers 2006c).

Chapter 6: EdgeWrite for Power Wheelchairs 110

Unfortunately, such text entry is unsatisfactory for a number of reasons (§2.3.6).

Alternatively, some people with motor impairments use speech recognition, but these

technologies have high abandonment rates due to technical difficulties, the need for

maintenance, and poor recognition rates (Koester 2003). In contrast, an integrated text

entry method for power wheelchair joysticks would give fuller access without requiring

additional devices (Guerette and Sumi 1994, Spaeth et al. 1998).

Figure 6.1. The Mouse Driver system from Switch-It, Inc. enables a wheelchair joystick
to control a mouse cursor on a desktop PC. Unfortunately, text entry reduces to pointing

with an on-screen keyboard. Image from http://www.switchit-inc.com.

Although they are less common than joysticks, touchpads also can be used to control

power wheelchairs. An example is the Touch Drive system from Switch-It, Inc.

(http://www.switchit-inc.com). With it, a person’s finger acts as a rate controlled

joystick: the farther it moves from the touchpad’s center, the faster the wheelchair turns

or moves in that direction.

Touchpads require less strength to operate than joysticks and little or no calibration.

However, touchpads have not generally been considered text entry devices. People in

power wheelchairs might benefit from an integrated device that could control their chair,

mouse, and text entry solution. This requires a versatile text entry method for touchpads.

Chapter 6: EdgeWrite for Power Wheelchairs 111

As further motivation, public information terminals are appearing in building lobbies,

libraries, bus stations, and community centers. Accordingly, the ability to access these

terminals is becoming more important. Just as the Americans with Disabilities Act

requires that many buildings have access ramps, future information kiosks may be

required to be accessible electronically via Bluetooth or another wireless technology. It

would be advantageous to have an integrated control system where the power wheelchair

joystick or touchpad could be used as the input device for mousing and text entry on such

terminals.

The last chapter (§5) presented a design for Joystick EdgeWrite targeted mainly at

game controllers and recreational joysticks. This chapter presents PW-Joystick

EdgeWrite, a similar design for the Everest & Jennings 1706-5020 power wheelchair

joystick. It also presents a design for Touchpad EdgeWrite using a Synaptics touchpad.

These two methods were evaluated with real power wheelchair users in single-session

and longitudinal studies.

6.2 Design

6.2.1 PW-Joystick EdgeWrite
With the help of A.T. Sciences, Inc. of Pittsburgh, Pennsylvania, PW-Joystick EdgeWrite

was implemented in C++ for the Everest & Jennings 1706-5020 power wheelchair

joystick, which was removed from its chair (Figure 6.2). Wires attached to the joystick

and the left auxiliary switch provide the voltage signals corresponding to the absolute

(x, y) position of the stick and the state of the switch. A National Instruments 6024E

DAQCard reads the voltage signals and makes them available to PW-Joystick EdgeWrite.

Figure 6.2. The Everest & Jennings 1706-5020 power wheelchair joystick.

Chapter 6: EdgeWrite for Power Wheelchairs 112

The software polls the joystick for its position every 5 ms. When the stick enters one

of the four EdgeWrite corners, a stroke begins. When the stick returns to the center of the

square for a short duration, the trace is deemed complete and recognition of the corner

sequence occurs. This segmentation scheme is the same as in Joystick EdgeWrite.

The joystick’s coordinate plane is restricted to the square hole that bounds the stick.

One design consideration was the size of this square (Figure 6.3). Through iteration, we

found that an edge length of 13.75 mm worked well. It was small enough to reduce the

amount of necessary movement, but big enough to reduce the risk of accidental corner-

hits. Another consideration was the thickness of the plastic. Our initial studies showed

that a thin piece of plastic often got stuck in the joystick spring, so a thicker piece had to

be used. The template was mounted using three bolts that were installed from the

underside of the joystick chassis (Figure 6.2).

Figure 6.3. The design involved iterating over different plastic template sizes..

The (x, y) position of the joystick was very noisy, in essence containing a great deal

of electronic “tremor” (Figure 6.4a). To filter out this noise, the last n points were used to

compute a running average, treating the result as a single point (Figure 6.4b). Trial and

error yielded n=12 as the value that removed sufficient noise while decreasing the

inevitable lag introduced by a running average.

Figure 6.4. Filtering was necessary to clean up the noisy joystick input.

Chapter 6: EdgeWrite for Power Wheelchairs 113

It is important to emphasize that the joystick is not used to drive a mouse cursor. In

other words, the joystick is not being used as a relative position device. Instead, the

absolute position of the stick within the physical plastic square is read, so that when a

user feels an edge or corner, their digital position is in agreement.

PW-Joystick EdgeWrite strokes generate key events as if they were typed on the

computer keyboard, allowing characters to be sent to any Windows application as long as

it has the current input focus.

6.2.2 Touchpad EdgeWrite
Another version of EdgeWrite was implemented in C++ for a Synaptics touchpad (Figure

6.5). Like the stylus and joystick versions of EdgeWrite, the touchpad version uses a

plastic template to delineate a square boundary. Although PW-Joystick EdgeWrite was

rather sensitive to the size of the square boundary, Touchpad EdgeWrite is not. The

physical square shown in Figure 6.5 is 30 mm on a side.

Figure 6.5. Touchpad EdgeWrite uses a plastic template to provide a square boundary on

the touchpad’s surface. The boundary is mirrored in the application window.

The edges of the touchpad’s plastic template aid tremulous finger motion in the same

way that physical edges aid stylus motion on a PDA. Users can feel the smooth plastic

edges as they move, exerting pressure against them for stability. The touchpad surface is

a capacitive sensor that senses human skin, so pressure on the plastic template does not

interfere.

Touchpad EdgeWrite is similar to Stylus EdgeWrite (§4) in that stroke segmentation

is accomplished when the finger (or pen) is lifted. Before a finger goes down on the

touchpad, the corners are rectangular. Once a finger enters a corner, however, the corners

deflate into triangles, preventing diagonal strokes from clipping unwanted corners.

Chapter 6: EdgeWrite for Power Wheelchairs 114

Like the stylus and joystick versions, Touchpad EdgeWrite does not drive a mouse

cursor but receives input as the absolute position of a finger within the EdgeWrite square.

Synaptics drivers allow the software to read the absolute position of the finger on the

touchpad’s surface and prevent touchpad events from moving the mouse cursor.

With help of the Synaptics drivers, Touchpad EdgeWrite receives touchpad events in

the background, so the input focus can remain on another window. EdgeWrite strokes

generate key events as if they were typed on the computer keyboard, allowing Touchpad

EdgeWrite to send text to any Windows application provided it has the input focus.

6.3 Evaluation

The first of two studies were participatory design sessions with 7 power wheelchair users,

6 of whom had Cerebral Palsy and 1 of whom had Multiple Sclerosis. The subjects

entered text phrases using Touchpad EdgeWrite, PW-Joystick EdgeWrite, and the WiViK

on-screen keyboard using the power wheelchair joystick.9 It was difficult for subjects to

learn the EdgeWrite alphabet in a single session compared to learning the on-screen

keyboard, which many subjects had used before. Despite this, Touchpad EdgeWrite was

the fastest and most liked method, PW-Joystick WiViK was second, and PW-Joystick

EdgeWrite was a close third. These results were promising since subjects had little time

to learn EdgeWrite before testing. For this reason, this initial study was followed by a

multi-session study as a second investigation.

In the second study, 2 subjects with Cerebral Palsy from the first study were tested

over 10 sessions on consecutive workdays. Each session consisted of entering text with

Touchpad EdgeWrite, Touchpad WiViK, PW-Joystick EdgeWrite, and PW-Joystick

WiViK. The goal was to discover a “crossover point” (MacKenzie and Zhang 1999): the

session at which EdgeWrite overtakes WiViK, if any. Our results show that the touchpad

methods were faster than the joystick methods, and that EdgeWrite overtook WiViK on

both devices after an initial learning period. Results are discussed in depth below.

Both of these investigations confirm that gestural text entry methods often take

longer to learn than selection-based methods. But a quality gestural method offers a

number of advantages over selection-based methods: it does not require precious screen

9 Due to time constraints, they did not use the touchpad to control WiViK. However, they did use
it in the second study.

Chapter 6: EdgeWrite for Power Wheelchairs 115

real-estate; it can be used without looking; it can be customized (or “trained”); and it can

require less motion per character, since, at least in theory, gestures can be quite small but

keyboards can only be shrunk so much before their keys become too difficult to acquire,

especially for users with motor impairments.

Both of the studies that follow took place with the EdgeWrite alphabet prior to the

guessability study (§3.3.3). In addition, continuous recognition feedback (§3.4.1), non-

recognition retry (§3.4.2), and word-level stroking (§3.5) had yet to be devised for

EdgeWrite.

6.3.1 Power Wheelchair Users: Single Session
This section describes the first study, which took place in a single session with 7 real

power wheelchair users. In particular, the section conveys the lessons learned and the

parameters identified for improvement.

6.3.1.1 The WiViK On-Screen Keyboard

In order to compare EdgeWrite to a currently available means of text entry with a

wheelchair joystick, the on-screen keyboard WiViK was used (Shein et al. 1991) in

conjunction with the wheelchair joystick (§2.3.6). In order to enable subjects to use the

WiViK software, proportional mouse control was implemented for the wheelchair

joystick. Also, a joystick switch was used to simulate a mouse click. When the switch

was pressed, it acted as a mouse-down. When the switch was released, it acted as a

mouse-up.

WiViK was used with the default settings, which included no spacing between keys,

no word prediction or completion, and click-triggering of keys rather than dwell-

triggering. The keyboard consumed the entire width and about 1/3 of the height of a

1024×768 screen. The WiViK keyboard was chosen because of its familiarity as a

mouse-driven on-screen keyboard.

Prior research shows that among the possibilities for joystick-driven mouse control, a

rate-controlled approach is both fastest and most accurate for on-screen keyboard text

entry, as opposed to absolute positioning or a hybrid mode (LoPresti et al. 2004).

Therefore, a rate-controlled joystick was used, the velocity and acceleration of which

were comparable to that used in prior work. When using WiViK with the joystick, the

Chapter 6: EdgeWrite for Power Wheelchairs 116

plastic template used by EdgeWrite (Figure 6.3) was removed because it would otherwise

restrict the joystick’s normal range of motion.

6.3.1.2 Subjects

The three text entry methods were tested and iteratively improved with the help of 7

power wheelchair users.10 Six of the 7 had Cerebral Palsy and were clients of the United

Cerebral Palsy Center of Pittsburgh, Pennsylvania. One subject had Multiple Sclerosis.

The average age of the subjects was 25.9 years, with a low of 21 and a high of 67.

Subjects had been in wheelchairs for an average of 14 years, with a low of 3 and a high of

30. Two of the 7 subjects were male. Four were right-handed. All but one of them used a

conventional QWERTY keyboard for text input, but nearly all of them said that they

could only do so for short periods of time before becoming fatigued. None of the subjects

had ever used EdgeWrite, but 6 of 7 had used WiViK. Thus, subjects were very familiar

with the competitor technique, but not with EdgeWrite.

6.3.1.3 Procedure

Subjects practiced each technique before entering a single test phrase (~30 letters).

Practice consisted of entering each letter 4 times in a row with a given technique (i.e.

“aaaa”, “bbbb”, …, “yyyy”, “zzzz”). This took 25–35 minutes with the EdgeWrite

techniques, and about 10–20 minutes with WiViK. The practice period was followed by a

test period in which, due to time constraints and rapid fatigue, subjects entered one

complete sentence of about 40 characters in length with each method. All 7 subjects used

PW-Joystick WiViK and PW-Joystick EdgeWrite, but only 4 subjects used Touchpad

EdgeWrite because of time constraints. A comparison of the joystick data from these 4

subjects to the other 3 subjects shows similar results, suggesting that touchpad results for

all 7 subjects would not be substantially different.

An EdgeWrite character chart was visible during the test (Figure 6.6). With the slow

pace of practice and subjects’ limited endurance, it did not seem appropriate to burden

subjects with memorizing the EdgeWrite characters. Instead, subjects were taught how to

read the chart and their behavior was observed. Reading the chart greatly slowed them

down compared to using WiViK, which requires no chart. The inter-character time—the

time from the end of one character to the start of the next—gives some idea of the delay

caused by reading the chart. The average inter-character time was 6.23 seconds. As

10 Eight subjects began the study but one was unable to perform any of the techniques.

Chapter 6: EdgeWrite for Power Wheelchairs 117

subjects become familiar with letters, this value goes down. The second study confirms

that after 10 sessions, the inter-character time was 3.74 seconds. This certainly affects the

overall speed of EdgeWrite.

Figure 6.6. A subject using PW-Joystick EdgeWrite (left) and Touchpad EdgeWrite

(right). A paper character chart was shown during the study.

Responses were solicited from subjects during the practice period and more formally

using a post-test questionnaire. In addition, subjects were encouraged to share their

impressions and ideas while practicing.

6.3.1.4 Results

As often is the case in accessibility research, the results lack sufficient power for

statistical significance because of the small number of trials and the high variability

among subjects. However, one can still compare the means of the three techniques and

associate performance with subjects’ comments, which were illustrative. Standard

deviations are reported in parentheses.

Figure 6.7. Text entry speeds in words per minute for the three methods.

Chapter 6: EdgeWrite for Power Wheelchairs 118

Speeds in WPM are shown in Figure 6.7 and error rates are shown in Figure 6.8.

Touchpad EdgeWrite was the fastest at 1.00 WPM (0.72), PW-Joystick WiViK was

second at 0.84 WPM (0.36), and PW-Joystick EdgeWrite was a close third at 0.77 WPM

(0.57). Although these speeds are slow, they are not uncommon for subjects with motor

impairments. In fact, many of our subjects used WiViK in everyday use, often with a

trackball, which may result in similar speeds.

Figure 6.8. Uncorrected, corrected, and total error rates for the three methods.

Clearly, subjects made more errors with the EdgeWrite methods than with PW-

Joystick WiViK. This is not unexpected of gestural input techniques compared to

selection-based ones, since when learning new gestures, users often perform them

incorrectly. On the other hand, to make an error with WiViK, a subject must place the

mouse cursor over the wrong key and still choose to press and release the switch—a

lengthy process easily avoided most of the time.

The results show a speed/accuracy tradeoff with Touchpad EdgeWrite and PW-

Joystick WiViK. That said, before this study, the sheer feasibility of Touchpad

EdgeWrite and PW-Joystick EdgeWrite for people with motor impairments was

unknown. Although these results are mediocre for EdgeWrite, we must remember that

nearly all subjects were familiar with WiViK and had used it extensively. The fact that

subjects could do EdgeWrite at all was enough encouragement to conduct a longitudinal

study in which subjects would have more time to become proficient with the techniques.

Questionnaire results showed that, of the 3 methods, subjects felt that Touchpad

EdgeWrite was the easiest to use, easiest to learn, fastest, most accurate, most enjoyable,

Chapter 6: EdgeWrite for Power Wheelchairs 119

most comfortable, and most liked (Figure 6.9). Subjects rated PW-Joystick WiViK

second in all of these categories, and PW-Joystick EdgeWrite third. A repeated measures

analysis of variance11 of subjects’ average Likert scores yields a significant difference

(F2,8.47=10.06, p<.01). Contrasts show that Touchpad EdgeWrite was preferred to PW-

Joystick EdgeWrite (F1,8.45=19.62, p<.01) and to PW-Joystick WiViK (F1,8.52=5.93,

p<.05). PW-Joystick WiViK was preferred to PW-Joystick EdgeWrite (F1,8.26=7.40,

p<.05).

Figure 6.9. Subjective ratings for the three methods. Ratings are on a Likert scale (1–5).

Higher values are better.

6.3.1.5 Lessons from Subjects

Subject #1 was a 67 year-old retired school teacher with Multiple Sclerosis. He was

notable for two reasons: he was the only person without Cerebral Palsy, and he was only

one of two subjects who was faster with PW-Joystick EdgeWrite than PW-Joystick

WiViK (1.91 vs. 1.22 WPM). The other was Subject #8, who was a 22 year-old female

with good fine motor control. She was only slightly better with PW-Joystick EdgeWrite

than PW-Joystick WiViK (0.52 vs. 0.50 WPM). Subject #1 demonstrated that the plastic

template should be thicker to prevent the exposed spring on the joystick post from

catching the template’s edge. After using PW-Joystick WiViK for a few minutes he said,

11 A mixed model analysis of variance can handle the missing data for Touchpad EdgeWrite.
However, this results in fractional denominator degrees of freedom (Littell et al. 1996).

Chapter 6: EdgeWrite for Power Wheelchairs 120

“It takes the patience of Job to do this.” Upon switching from WiViK to PW-Joystick

EdgeWrite, he said, “I’m much faster with this; don’t you think I’m much faster?”

indicating his first impression.

Subject #2 was a 21 year-old student. She initially had trouble with the diagonal

strokes with PW-Joystick EdgeWrite because she would move too slowly through the

center, and EdgeWrite would try to segment the stroke she had already done. She

motivated a change to the center dwell time required for segmentation. If a polled

joystick point falls outside the center area before the dwell time elapses, the dwell time

counter resets. The time that worked well for Subject #2 was 500 ms. This subject also

thought it would be easier to use PW-Joystick WiViK with the EdgeWrite template still

on the joystick because it would help prevent target over-shooting. This suggested that

joystick mouse control and PW-Joystick EdgeWrite could co-exist on the same device

without having to remove the EdgeWrite template.

A long dwell time was not sufficient for Subject #4, a 40 year-old volunteer. She

moved inconsistently with PW-Joystick EdgeWrite, sometimes making letters very

quickly, other times pausing for many seconds to think. For her, the ability to trigger

recognition with the joystick switch was added, which removed return-to-center

segmentation altogether. She enjoyed Touchpad EdgeWrite because she said it was the

easiest method with which to fix mistakes. “Once you understand what you are doing, it

goes completely well,” said Subject #4 of Touchpad EdgeWrite. Subject #7 echoed this

when she said, “If you get used to it, you’d be really fast I suppose.”

While the females tended to interact too gingerly with the joystick, the males,

Subjects #1 and #3, were too forceful at first. Discovering the right speed and pressure to

exert against the joystick template was an obvious part of learning PW-Joystick

EdgeWrite.

A common problem was that participants did not always start in the corner of the

plastic template before making their gestures with the joystick. This was less of a

problem with the touchpad. The reason may be that the joystick must be pushed from the

center to reach the starting corner, whereas a finger can begin in the corner of the

touchpad.

Chapter 6: EdgeWrite for Power Wheelchairs 121

Subject #4 provided an important insight into the design of the touchpad template.

Originally, the edge of the touchpad template was smooth and slightly beveled. But this

caused subjects’ fingers to slip up onto the template’s surface, actuating a “finger up” and

prematurely triggering recognition. This insight led to the fabrication of a thicker

touchpad template, the edges of which were left vertical and unbeveled. A settable lift

tolerance was also added, as it eventually was in Stylus EdgeWrite (§4.2.4).

Subject #6 highlighted the importance of end-user customizability. While using

Touchpad EdgeWrite, this subject’s finger did not always press flush against an edge of

the physical square. After the software square had been defined for her along the plastic

edges, it became clear that her fingers moved inside this square, and that the actual square

in which she moved was smaller than the one defined. When she defined the EdgeWrite

square for herself, her accuracy improved a great deal.

Finally, the diagonal strokes were difficult for many users of PW-Joystick

EdgeWrite. This is not surprising, because it is along the diagonals that one does not have

an edge to press against. The letter “k” (Figure 6.10a) was particularly problematic

because of its two diagonals in a row. For the second study, a new form of “k” was

designed (Figure 6.10b). The new “k” is still reminiscent of a Roman “k” but without a

diagonal. The new “k” proved much easier to perform and has become a part of the

EdgeWrite alphabet (Appendix A).

Figure 6.10. The original “k” with diagonals and a new “k” without diagonals.

6.3.2 Power Wheelchair Users: Multiple Sessions
The findings from the first study, which largely represent “walk up and use”-ability,

inspired a second investigation over multiple sessions. Such a study can identify a

“crossover point” where EdgeWrite, although initially harder to learn, overtakes WiViK

in speed or accuracy. Subjects #2 and #4 from the first study agreed to partake in a 10-

session study over consecutive workdays. There was about 3 months separating the end

of the first study and the beginning of the second one.

Chapter 6: EdgeWrite for Power Wheelchairs 122

6.3.2.1 Subjects

Subject #2 is female and 22 years old. She uses a computer more than a few hours a day,

largely for email, surfing the Web, and word processing. She reports being able to use a

standard physical QWERTY keyboard for up to 1 hour, after which point she switches to

an alternative method, usually a WiViK on-screen keyboard accessed with a standard

mouse, because of fatigue. She is able to write her name with a pen, but it takes her many

seconds, and it is legible only about 4 out of 5 times. The joystick on her power

wheelchair has a short stick with a plastic ball at the top.

Subject #4 is female and 41 years old. She uses a computer only about once a week

for email, surfing the Web, or word processing. She, too, reports being able to use a

standard physical QWERTY keyboard for up to 1 hour, at which point she either stops

using the computer or uses the WiViK on-screen keyboard with a standard mouse. She

can write her name legibly with a pen but it takes many seconds if not minutes, and is

legible only about 4 out of 5 times. The joystick on her power wheelchair is about twice

as long as and a great deal skinnier than the Everest & Jennings 1706-5020 model used in

these studies (Figure 6.2). Her joystick also had a much weaker spring. Subject #4 was a

great deal weaker than Subject #2, which affected her ability to move the joystick snugly

into the corners while using PW-Joystick EdgeWrite.

6.3.2.2 Design Improvements

Before conducting the second study, some design changes were made to the techniques

based on our observations from the first study. For example, tolerance was added for a

brief lifting of the finger from the touchpad’s surface. (Previously, when a finger was

lifted the stroke was immediately ended and recognition commenced.) The new

tolerance, which took the form of a customizable lift-delay, allowed subjects’ fingers to

lift briefly from the surface and return. Both subjects worked well with a 275 ms lift-

tolerance.

The triangular corner regions in Touchpad EdgeWrite were also reduced slightly

from 47.5% of the square’s width and height in each dimension to 42.5%. This was

because subjects would sometimes hit an unwanted corner while making a diagonal,

particularly from the bottom-left corner to the top-right for right-handed users. (Subject

#2 and Subject #4 were both right-handed.)

Chapter 6: EdgeWrite for Power Wheelchairs 123

The area considered the “center” for PW-Joystick EdgeWrite was reduced by about

11% to make accidental recognitions less common, since subjects would often move too

slowly through the center region while making a diagonal. In the first study, this caused

the software to think the joystick had been returned to center for segmentation between

letters. Subject #2 required a 500 ms center dwell segmentation threshold, while Subject

#4 required 1000 ms. Lower values resulted in some unwanted attempts at recognition

when moving through the center region.

Finally, as noted above, a new form of “k” that contains no diagonals was added to

the EdgeWrite alphabet. A new form of “e” was also added, one that is tolerant to the

omission of the bottom-left corner, since this corner was occasionally missed for “e”.

As stated above, the joystick used with WiViK was rate-controlled, so the farther it

was moved from its center, the faster the mouse cursor moved. The acceleration transfer

function was linear from the center of the joystick to its extremes. For PW-Joystick

WiViK, this acceleration was reduced from a maximum of 1.2 pixels/ms to 0.8 pixels/ms.

This change was made because of some occasional target overshooting that occurred

when subjects tried to acquire keys on the WiViK keyboard. With the reduced

acceleration, target overshoots in the second study were rare, and yet the mouse cursor

moved at a comfortable speed.

6.3.2.3 Procedure

The experiment was a 2×2×10 within-subjects factorial design with factors for Method

(EdgeWrite, WiViK), Device (PW-Joystick, Touchpad), and Session (1–10). With only 2

subjects, the experiment was aimed less at achieving statistical significance and more at

observing how long it takes users to learn EdgeWrite, and whether EdgeWrite would

outperform WiViK given more practice.

Each subject performed all 4 techniques (Method×Device) during each session. The

order of techniques was assigned randomly by the software for each session. Subjects

first practiced each technique by entering a short 2-word phrase (~10 letters). During the

test, subjects transcribed 2 phrases of about 6 words (~30 letters) each. This took from

10–30 minutes per technique, depending on the session, technique, technique order, and

other factors. Thus, a session consisted of about 70 characters for each of the four

techniques.

Chapter 6: EdgeWrite for Power Wheelchairs 124

The test phrases were drawn randomly from the published test corpus of 500 phrases

(MacKenzie and Soukoreff 2003). These phrases only contain letters, but as MacKenzie

and Soukoreff argue, unless the entry of numbers or punctuation involves a qualitatively

different mechanism (e.g. two hands instead of one), letters alone can be considered

representative. In the case of EdgeWrite and WiViK, numbers and punctuation are

accessed in the same general manner as letters.

Unfortunately, Subject #2 only finished 6 sessions with PW-Joystick WiViK due to

technical problems during the 7th and 8th sessions. She finished 8 sessions with the other 3

techniques. These imbalances are taken into account in the statistical analyses.

6.3.2.4 Analysis

The data were analyzed using a mixed model analysis of variance with a random effect

for Subject.12 Mixed models with random effects give wider confidence intervals (i.e.

larger standard errors) than fixed models and therefore set a higher bar for determining

statistically significant differences. They also result in greater denominator degrees of

freedom. The aforementioned imbalance in the number of sessions was accommodated in

part by using least squares estimates for means (LS Means).

6.3.2.5 Speed

Overall results show a main effect of Device on speed (F1,131=142.05, p<.001). The

touchpad was faster than the joystick (1.28 vs. 0.82 WPM). There was no main effect of

Method on speed (F1,131=2.95, ns). This is because the EdgeWrite methods were slower in

the early sessions but faster at the end. There was also no significant Method×Device

interaction (F1,131=0.01, ns), since touchpads were similarly faster than joysticks for both

EdgeWrite and WiViK.

12 Modeling Subject as a random effect is necessary for this analysis because the subjects represent
a sample from a larger population. The model also takes into account the fact that measurements
within subjects are not independent. For more information on mixed model analyses, see Chapter
3 in (Littell et al. 1996).

Chapter 6: EdgeWrite for Power Wheelchairs 125

Figure 6.11. EdgeWrite and WiViK speeds over sessions.

Figure 6.11 gives a sense of the rate at which both methods were learned. As noted

above, sessions 7 and 8 lack data for PW-Joystick WiViK for Subject #2. This actually

improves WiViK’s speed for those 2 sessions because Touchpad WiViK was

significantly faster than PW-Joystick WiViK (F1,131=70.07, p<.001).

As one might expect, there was a significant main effect of Session on speed

(F1,131=9.84, p<.003). Subject #2 improved her overall average from 0.91 WPM in

session 1 to over 1.17 WPM by session 6. (Sessions 7 and 8 were even faster at 1.41 and

1.22 WPM, respectively, but these lacked data for PW-Joystick WiViK.) Subject #4

improved her overall average from 0.87 WPM in session 1 to 1.11 WPM in session 10.

There was no significant Session×Device interaction (F1,131=0.03, ns), since the touchpad

and joystick were learned at similar rates. However, there was a significant

Session×Method interaction, indicating methods improved over sessions at different rates

(F1,131=10.35, p<.002). Contrast tests show that this improvement was due mostly to

EdgeWrite and not to WiViK, as there was significant speedup from the first 5 sessions to

the second 5 sessions for EdgeWrite (F1,99=25.61, p<.001) but not for WiViK (F1,99=1.73,

ns). Figure 6.12 breaks down speed for each of the four techniques.

Chapter 6: EdgeWrite for Power Wheelchairs 126

Figure 6.12. The speeds of the four techniques over sessions.

6.3.2.6 Total Error Rate

Results show a main effect of Device on total error rate (F1,131=23.39, p<.001). The

touchpad was more accurate than the joystick (5.56% vs. 10.74%). There was also a

significant main effect of Method on total error rate (F1,131=148.99, p<.001). As in the

first study, WiViK was more accurate than EdgeWrite (1.62% vs. 14.69%).

Figure 6.13. The touchpad and joystick affected EdgeWrite and WiViK differently.

A significant Method×Device interaction (Figure 6.13) shows that the two devices

affected each method’s accuracy differently (F1,131=15.58, p<.001). Contrasts show that

PW-Joystick EdgeWrite was significantly less accurate than Touchpad EdgeWrite

(19.39% vs. 9.98%, F1,131=39.94, p<.001). However, PW-Joystick WiViK was not

significantly less accurate than Touchpad WiViK (2.09% vs. 1.14%, F1,131=0.38, ns).

Chapter 6: EdgeWrite for Power Wheelchairs 127

As expected, there was a main effect of Session on total error rate (F1,131=15.75,

p<.001). There was also a significant Session×Method interaction (F1,131=10.14, p<.002),

indicating method accuracy changed for each method differently over time (Figure 6.14).

Contrasts show that this was due to EdgeWrite improving over sessions while WiViK

remained about the same. A contrast shows that EdgeWrite improved from the first 5

trials to the second 5 trials (F1,99=26.92, p<.001), while WiViK’s accuracy did not

(F1,99=0.39, ns). With more sessions and further refinements, particularly to the joystick’s

physical parameters (e.g. spring strength, stick length), EdgeWrite error rates would

probably drop further and become competitive with WiViK.

Figure 6.14. EdgeWrite and WiViK total error rates over sessions.

There was a significant Session×Device interaction (F1,131=5.55, p<.02), indicating

different rates of accuracy improvements with each device. From the first 5 trials to the

second 5 trials, subjects became more accurate with the joystick (F1,99=18.42, p<.001) but

not with the touchpad (F1,99=1.76, ns). Figure 6.15 breaks down total error rates by each

of the four techniques.

That the overall error rates are higher for EdgeWrite than WiViK is not unexpected,

since learning and performing a gestural entry technique will usually be more error prone

than selecting from an on-screen keyboard. But EdgeWrite results show dramatic

improvements in total error rates for each subject: from 21.2% in session 1 to 11.7% in

session 8 for Subject #2; and from 26.8% in session 1 to just 6.0% in session 10 for

Subject #4.

Chapter 6: EdgeWrite for Power Wheelchairs 128

Figure 6.15. The total error rates of the four techniques over sessions.

6.3.2.7 Learning Curves

It is customary in input studies to fit regression curves to speed data based on the power

law of learning (Card et al. 1983, MacKenzie and Zhang 1999). Such curves are of the

form y = bxc, where y is speed and x is session, and b and c are regression coefficients.

These performance models allow researchers to predict how a subject might perform in

future sessions. Fitting these curves is quite speculative for the current data, however,

since there are only two subjects. Nonetheless, the curves give a sense of how their

performance may proceed beyond session 10.

The regression curves for the 4 Method×Device combinations are shown in Figure

6.16. The data is highly varied, so obtaining high correlations is not possible. The

learning curves show clear upward trends for the two EdgeWrite methods. The flat or

downward slopes for WiViK are due to subjects’ prior familiarity with WiViK from

extended use. In addition, on-screen keyboards require little learning and offer little room

for improvement. Thus, the WiViK curves are governed more by fatigue than by

learning.

Chapter 6: EdgeWrite for Power Wheelchairs 129

Figure 6.16. Learning curves show crossover points for both EdgeWrite techniques.

The power law equations and R2 values are as follows:

• y = 0.978x0.1574 R2 = 0.38 Touchpad EdgeWrite

• y = 1.397x-0.0492 R2 = 0.09 Touchpad WiViK

• y = 0.632x0.1406 R2 = 0.36 PW-Joystick EdgeWrite

• y = 0.819x0.0110 R2 = 0.003 PW-Joystick WiViK

Crossover points for the touchpad and joystick techniques occur at about sessions 5.5

and 8.0, respectively, with EdgeWrite overtaking WiViK in both cases. While these

curves are speculative, they do give a sense of the overall trends: EdgeWrite did indeed

speed up and reduce errors over sessions. The higher R2 values for both EdgeWrite

techniques suggest that more learning took place for these methods than for the WiViK

methods, and would likely continue to do so with further practice.

6.3.2.8 Discussion

Overall, the results for speed and accuracy confirm both the challenge of learning a

gestural text input method and the potential benefits. The initially poor accuracy of

EdgeWrite, particularly the joystick version, is not surprising, and could be mitigated

with further design. For example, both subjects’ personal power wheelchair joysticks

were longer and had much weaker springs than the one used in the study. Optimizing

design parameters such as stick length and spring strength would be one way to improve

performance. The general advantage of the touchpad over the joystick points to

touchpads for future inclusion in computer access solutions.

Chapter 6: EdgeWrite for Power Wheelchairs 130

A post-test questionnaire showed similar results for the two subjects as from the first

study (Figure 6.9). Both subjects preferred Touchpad EdgeWrite overall, followed by

Touchpad WiViK, PW-Joystick EdgeWrite, and PW-Joystick WiViK. For both devices,

the WiViK methods were considered easier to learn but the EdgeWrite methods were

preferred for their perceived speeds.

6.3.3 Expert Able-bodied Use
To appreciate the differences among these text entry methods, I entered 10 phrases with

PW-Joystick EdgeWrite and Touchpad EdgeWrite (Wobbrock and Myers 2005a). My

speeds were 12.9 and 19.1 WPM, respectively. My total error rates were 8.4% and 4.7%,

respectively. However, all errors made during entry were corrected, which reduced

speeds, so these data represent “perfect transcription.” While this only reflects one expert,

it permits ballpark comparisons.

Chapter 7: Trackball EdgeWrite 131

Chapter 7

7 Trackball EdgeWrite*

7.1 Motivation

Trackballs are the preferred pointing devices for numerous computer users, particularly

for people with some form of motor impairment (Fuhrer and Fridie 2001, Wu et al.

2005). For people with low strength, poor coordination, wrist pain, or limited ranges of

motion, rolling a trackball can be easier than shuttling a mouse across the surface of a

desk. Trackballs’ accessible properties include: they do not require the wrist or forearm to

be elevated; they do not occupy much physical space, making them suitable for

placement in a person’s lap or on a wheelchair tray; they are easy to manipulate, as

rolling a trackball requires relatively little strength; if clutching is necessary, one must

only lift one’s finger or hand, not the device itself (as with a mouse); and trackballs are

simple, cheap, robust, and available, factors that when absent are known to be barriers to

adoption (Fichten et al. 2000, Dawe 2004, Dawe 2006).

Not surprisingly, many people who prefer trackballs due to motor impairments also

cannot use a conventional physical keyboard. For these people, some form of text entry

besides typing is required. Using the trackball itself for text entry reduces physical

* Parts of this chapter are adapted from (Wobbrock and Myers 2006d, Wobbrock and Myers

2006a).

Chapter 7: Trackball EdgeWrite 132

movement among devices and the need for multiple devices to be within reach (Guerette

and Sumi 1994, Spaeth et al. 1998). Thus, a common solution is to use a trackball with an

on-screen keyboard, and to click or dwell on the virtual keys. But, as described in §2.3.6,

this method of text entry has many problems (e.g. two foci-of-attention, exacerbated

mousing, consumption of screen real estate). In particular, on-screen keyboards can only

be used by sight in a “hunt-and-peck” fashion, making them visually tedious (Anson et

al. 2005). What is needed is a trackball text entry method that leverages the strengths of

trackballs but does not require an on-screen keyboard.

Figure 7.1. Trackballs come in many different sizes making them appropriate as
computer access and mobile technologies. From left to right: Infogrip BIGTrack

(http://www.infogrip.com), Kensington Expert Mouse (http://www.kensington.com),
Appoint Thumbelina, and Infogrip’s Mini Trackball. Relative image sizes are maintained.

Trackballs may also be preferred for reasons other than physical impairment.

Trackballs need little space in which to operate, unlike mice, which have large “desktop

footprints” (Card et al. 1990). Trackballs can be embedded in consoles or keyboards,

making them suitable for public terminals since they cannot be easily stolen. Trackballs

also offer rapid, fluid control and have been used in arcade games like Centipede. Finally,

trackballs can be made quite small (Figure 7.1), making them suitable as a thumb-

controlled device for mobile computers.

This chapter presents Trackball EdgeWrite as an alternative to on-screen keyboard

text entry with a trackball. The result is a faster and less tedious method of trackball text

entry for people who already use trackballs but cannot touch-type on a physical keyboard.

This includes people with repetitive stress injuries, spinal cord injuries, arthritis, and

some neuromuscular disorders.

Chapter 7: Trackball EdgeWrite 133

Trackball EdgeWrite is first evaluated in a single session with 3 able-bodied users.

Then, results are presented from an extended field deployment with a veteran trackball

user with a spinal cord injury. Lastly, results are shown for Trackball EdgeWrite’s Fisch

adaptation for word-level stroking (§3.5). After 15 years of using a trackball with an on-

screen keyboard, the veteran trackball user has switched to Trackball EdgeWrite for

everyday use.

7.2 Design

Thus far, this dissertation has described versions for styli, displacement joysticks, and

touchpads. All of these versions have relied on the absolute physical position of an input

device within a square. Trackball EdgeWrite is the first version to use relative

positioning, since trackballs themselves express no absolute position or rotation, only

change in rotation (Card et al. 1990). In relative positioning, the mouse cursor itself

becomes the locus of input, and issues arise that are different than in previous versions. In

cursor-based relative positioning, physical edges are no longer possible. An initial design

was therefore to reproduce physical edges as impenetrable virtual edges. However, this

proved insufficient for many reasons, described below (§7.2.1). Ultimately, the right feel

was obtained with goal crossing (§7.2.2) (Accot and Zhai 1997, Accot and Zhai 2002).

7.2.1 Initial Design: Impenetrable Virtual Edges
The initial design for Trackball EdgeWrite essentially replicated the physical design for

Stylus, Joystick, and Touchpad EdgeWrite in a virtual space. A window with

impenetrable virtual edges was used to bind the movement of the mouse cursor, which

was freely driven within the square from corner to corner (Figure 7.2a).

In an effort to make this free motion more accurate, a simple technique was used to

move the cursor directly toward intended corners. In Figure 7.2b, a virtual cursor and the

underlying real cursor are both positioned at A. The user moves the real cursor a distance

d to A′. A projection along this path intersects the square’s edge at E, where the nearest

corner is C. The distance d is then applied to the virtual cursor at A to move it to A″ on a

straight-line to C. The position of A″ is computed with Equation 7.1. Finally, the real

cursor at A′ is realigned with the virtual cursor now at A″. This is done for all movements

within the virtual square, allowing the user to change direction instantly but always be on

a straight line to their intended corner.

Chapter 7: Trackball EdgeWrite 134

Figure 7.2. (a) The initial design for Trackball EdgeWrite used impenetrable virtual

edges and a freely-driven mouse cursor. (b) An attempt to make cursor movement more
accurate by inferring the intended corner and always moving directly toward it.

() ()⎟
⎠
⎞

⎜
⎝
⎛ −+−+=′′ yyyxxx AC

D
dAAC

D
dAA , (7.1)

Admittedly, the use of impenetrable virtual edges was an obvious starting point for

the design of Trackball EdgeWrite. But although the straight-line movement scheme

helped, in the end this design for Trackball EdgeWrite did not “feel right.” This was

because there was only a loose correspondence between a user’s motion on the trackball

and the location of the mouse cursor within the virtual EdgeWrite square. For example, if

the user rotated the trackball forward-and-left, there was no guarantee that the mouse

cursor would be in the top-left corner—it depended on where the mouse cursor started

and on how much the user moved the trackball. Thus, another approach was necessary,

one that more tightly coupled users’ trackball movements with their location in the

EdgeWrite corners. Goal crossing would become this approach.

7.2.2 Crossing to Stroke
Recall the discussion of goal crossing from §2.2.2. Accot and Zhai compared different

types of pointing and crossing using a stylus (Accot and Zhai 2002). They found that the

fastest arrangement for short-range reciprocal trials was “continuous orthogonal goal

crossing,” where the pointing device, in their case a stylus, was continually held on the

surface and the goals were perpendicular to the movement trajectory. They speculated

that goals could rotate to always remain orthogonal to the cursor and thus offer the

maximum target width (Figure 7.3a). An extreme form of this idea is a cursor placed

Chapter 7: Trackball EdgeWrite 135

inside a circle, where the circumference is the goal (Figure 7.3b). This insight is one

inspiration for the design of Trackball EdgeWrite.

Figure 7.3. Accot and Zhai speculate that crossing goals could rotate to always remain
orthogonal to the cursor, thereby offering maximum target width. An extreme form of
this idea is a cursor in the center of a circle, where the circumference itself is the goal.

Using Trackball EdgeWrite, one writes by making short “pulses” towards intended

corners. When these pulses cause the mouse cursor to cross the circumference of a circle

(Figure 7.3b), the resultant angle indicates the next corner. Thus, the cursor does not

actually travel among corners to acquire them as targets, but crosses a radius and snaps to

the next corner instantly. In essence, it is the vector along which the cursor moves that

determines the next corner. Figure 7.4 depicts this process for writing the letter “z”.

Figure 7.4. The repeated crossings involved in writing the letter “z”.

In Figure 7.4a, the trackball cursor moves a distance r at an angle θ from the top-left

corner of the EdgeWrite square. The angle determines that the next corner is the top-

right, and the first stroke of the letter “z” is drawn (Figure 7.4b). Having snapped to the

top-right corner, the cursor now moves diagonally at an angle that indicates the bottom-

left corner, and the second stroke is drawn (Figure 7.4c). Note that for the third stroke,

the cursor moves towards the outside of the virtual EdgeWrite square, but at an angle that

still indicates the bottom-right corner. The completed “z” is thus drawn (Figure 7.4d).

Chapter 7: Trackball EdgeWrite 136

In essence, a series of short crossing tasks forms a letter. But clearly, much depends

on how the circle is partitioned and how θ is interpreted. For instance, consider the move

across the bottom of the “z” in Figure 7.4c. At what angle θ should the cursor instead

move diagonally back to the top-right?

Figure 7.5 shows the next-corner outcomes for different departure angles from the

bottom-left corner of the EdgeWrite square. The same scheme can be easily extrapolated

to the other three corners of the EdgeWrite square.

Figure 7.5. Next-corner outcomes for different angles of departure from the bottom-left

corner of the EdgeWrite square. θd is the diagonal angle and θc is the cardinal angle.

Three features of the design in Figure 7.5 are important. First, any movement left,

diagonal down-and-left, or down keeps the cursor fixed at the extreme bottom-left corner.

More generally, if the cursor moves at an angle that, were it to cross the circumference it

would remain in the same corner, it is held fixed in the center of the circle. This will

always hold for (180 – θd)° of the circle, where θd is the angular amount allotted to each

diagonal. This “pinning” to the circle’s center ensures that one always starts from a

corner’s center when moving to a different corner.

Second, the value in having big cardinal angles (θc) is that users do not always move

perfectly to the left, right, up or down. Larger values of θc create more room inside the

EdgeWrite square to move in the cardinal directions. However, adding to θc detracts from

the diagonals θd because θc + θd = 90°.

Third, although increasing θc gives more room inside the square to move in the

cardinal directions, one always has 90° with which to move along an edge, regardless of

Chapter 7: Trackball EdgeWrite 137

θc. That’s because one always has the angles to the outside the EdgeWrite square, as in

the bottom-left image in Figure 7.4c. So although θd and θc are tradeoffs, a total of 90°

remains for moving along an edge. In practice, however, having a larger θc provides a

“cardinal error band,” giving more room to move inside the EdgeWrite square.

It is important to emphasize that despite these underlying mechanics, users neither

see a visual cursor nor aim for particular angles when writing with Trackball EdgeWrite.

Instead, users simply pulse the ball towards intended corners, creating the feeling of fluid

writing.

7.2.3 Determining the First Corner
The example in Figure 7.4 assumes that one starts in the top-left corner. But of course,

not all EdgeWrite letters start there. This begs the question of how one begins a letter,

since unlike a stylus landing on a PDA or a finger landing on a touchpad, the trackball

cursor is persistent and cannot simply “appear” in the starting corner.

Figure 7.6. Two different schemes for determining the first corner.

Two different schemes were implemented for determining the first corner in

Trackball EdgeWrite. The first scheme is to have users enter the initial corner as if they

were starting from the center of the EdgeWrite square (Figure 7.6a). Although this

scheme adds an extra movement to the start of every letter, the accuracy demands are low

because the user has a full 90° with which to indicate the starting corner.

In the second scheme, one assumes one starts in the appropriate corner, and the

software disambiguates that corner as the gesture unfolds (Figure 7.6b). For example, in

Chapter 7: Trackball EdgeWrite 138

making a “z”, one would first move to the right. At this point, one may have intended to

move along either the top or bottom edge. Both possibilities are entertained until the next

move is diagonally down-and-left, at which point the ambiguity is resolved. Gestures that

occur along a single edge, like “i”, space, and backspace, never resolve into unambiguous

strokes. Such gestures can be defined to be the same on both sides of the square, so the

ambiguity can be made irrelevant.

Although the second scheme requires one less pulse per letter than the first scheme, it

proves slower and more difficult in practice because the initial stroke has eight possible

outcomes (Figure 7.7), not just four as in the first scheme. Even when the angular regions

of the circle are adjusted proportional to the probability of beginning a letter in that

region, the second scheme proved too difficult to perform reliably.

Figure 7.7. With the second scheme, users have eight angular regions to choose from on

the first pulse of the trackball. Region sizes are weighted by letter probabilities.

An interesting theoretical result is that an analysis of each scheme actually shows the

first scheme to be about 3 WPM faster despite the additional stroke required for each

letter! This is because of the high accuracy required for the second scheme’s initial

stroke. Thus, the first scheme was preferred. This was an unexpected theoretical finding,

as we had initially assumed the second scheme would be about 30% faster based on the

reduced number of strokes. That both empirical and theoretical results proved otherwise

shows the importance of basing designs on quantitative and theoretical measures instead

of intuition. The full theoretical analysis for the first scheme is given in §7.3.1.

Chapter 7: Trackball EdgeWrite 139

7.2.4 Interaction Design
Two other key issues arose when building Trackball EdgeWrite: how to switch between

mousing and writing, and how to segment between letters.

7.2.4.1 Capture and Release

Trackball EdgeWrite is designed to run invisibly in the background until it is needed for

text entry. When the trackball is being used for mousing, the mouse cursor is said to be

“released.” When the trackball is being used for writing, the cursor is said to be

“captured.” The mouse can be captured by clicking a dedicated trackball button (a “hot

button”), pressing a dedicated keyboard key (a “hot key”), or by dwelling in a corner of

the desktop (a “hot corner”). Hot buttons, keys, and corners are configurable in the

application’s preferences dialog (Figure 7.8).

Figure 7.8. Trackball EdgeWrite supports multiple options for capturing the trackball
with hot buttons, hot keys, and hot corners (top left). Other options are also available.

When captured, the mouse cursor vanishes and the Trackball EdgeWrite window

appears (Figure 7.9). To release the cursor, the user can click any trackball button or

perform a dedicated release stroke. Then the EdgeWrite window disappears and the

Chapter 7: Trackball EdgeWrite 140

mouse cursor is restored to its previous location. Thus, Trackball EdgeWrite never

requires that it be navigated to; instead, it comes to the user when summoned.

Other preferences exist for setting performance parameters like the radius of the

crossing circle, the amount of diagonal degrees, the segmentation timeout, and the mouse

sensitivity. Additional options include for window transparency (Figure 7.9), playing

sounds, and controlling where the EdgeWrite window appears.

Figure 7.9. A semi-transparent Trackball EdgeWrite is writing in Notepad. Notepad

retains the input focus even though EdgeWrite receives mouse events.

7.2.4.2 Segmentation

Trackball EdgeWrite letters are segmented when the underlying mouse cursor stops

moving for a very short time. Timeout values can be set in the preferences dialog (Figure

7.8), and range from 100 ms for experts to 750 ms for novices. This simple scheme works

reliably since the timeout timer is restarted after every mouse movement. A beginner can

still “stop and think” while making a gesture by slowly rolling the trackball toward the

corner they’re already in; this will not move them to a new corner but it will prevent the

stroke from segmenting. Subjectively for the user, segmentation involves a slight pause

between letters.

7.2.4.3 Advanced Features

Trackball EdgeWrite supports all advanced EdgeWrite features including continuous

recognition feedback (§3.4.1), non-recognition retry (§3.4.2), slip detection (§3.4.3), and

Fisch word-level stroking (§3.5). The last item is explained in the next section.

Chapter 7: Trackball EdgeWrite 141

7.2.5 Fisch in Trackball EdgeWrite
Like Stylus EdgeWrite (§4.2.5), Trackball EdgeWrite has an implementation of Fisch

word-level stroking. In contrast to Stylus EdgeWrite, however, Trackball EdgeWrite does

not allow for loops. The adaptation of Fisch therefore requires users to first segment their

letter strokes with a brief pause and then “pulse” the trackball into the corner of the

desired word completion. Although this is a two-step process, the same words always

appear in the same corners for the same preceding letters, enabling these “compound

strokes” to be used reliably.

As with all Fisch designs, character-level stroking remains unchanged in Trackball

EdgeWrite. This is important for two reasons: (1) it allows current users to remain

effective with the software, and (2) it allows users to gradually ramp up to using word

completions at their own pace.

While a user strokes, candidate words are shown at the four corners of the EdgeWrite

square (Figure 7.10). In order to provide appropriate completions, the current stroke is

recognized after each corner is entered.

Figure 7.10. Candidate words shown while stroking a “w” include words that begin with

an “i”, “v”, and “h” along the way, since these letters are subsets of “w”.

After a stroke is segmented and a letter is produced, the user can continue stroking

letters or, alternatively, make a short “pulse” to select a word. This pulse is a simple

motion from the center of the EdgeWrite square to the corner containing the desired

word, followed by a brief pause for segmentation.

When the text cursor is positioned after a word that has not been completed, a word-

level backspace from right-to-left across the bottom of the EdgeWrite square erases the

entire previous word. However, if the previous word was completed, then a word-level

backspace will erase only the completed suffix, restoring the word completions as they

appeared before selection. Importantly, the restored completions appear in the same

Chapter 7: Trackball EdgeWrite 142

corners as before, allowing the user to quickly select a different completion if desired.

Completed words always remember the character position at which they were completed

(if any), allowing future word-level backspace strokes to remove completed suffixes.

In addition to showing frequency-based word completions according to the Fisch

design (§3.5.2), Trackball EdgeWrite also shows context-dependent word predictions

after a word ends. Word predictions are, by definition, contextual and thus cannot be

stroked by feel. However, the selection mechanism for word predictions is the same as

for word completions: stroke into a single corner and then pause briefly to segment.

7.2.6 Implementation
Trackball EdgeWrite is implemented in C# using DirectInput 9.0c to receive mouse

events in the background, which is necessary so that focus can remain on a target

application (e.g. Microsoft Word) even while Trackball EdgeWrite receives mouse input.

A fair amount of code in Trackball EdgeWrite is devoted to keeping the input focus on

the target window and off Trackball EdgeWrite itself. Cases that must be handled include

when the user left-clicks while captured, or left-drags to reposition the Trackball

EdgeWrite window. After these actions, focus is returned to the target window.

Recognized characters are sent through the low-level keyboard input stream.

Trackball EdgeWrite works with any pointing device, but is best suited for devices

without absolute position, e.g. trackballs and isometric joysticks. With a miniature

trackball or an isometric joystick, EdgeWrite provides full text entry in very little space.

7.3 Evaluation

This section presents multiple evaluations of Trackball EdgeWrite. The first is a

theoretical analysis based on goal crossing. After that are three empirical evaluations, one

for able-bodied users and two for a user with a spinal cord injury. The EdgeWrite

alphabet after the guessability study was used (§3.3.3), and all advanced features (§3.4)

had been implemented. The first two evaluations are for character-level Trackball

EdgeWrite only. The third evaluation is for word-level Trackball EdgeWrite.

Chapter 7: Trackball EdgeWrite 143

7.3.1 Theoretical Model
The time it takes to make a single letter can be predicted using Accot and Zhai’s

discovery that crossing follows the Fitts’ formulation in Equation 2.1 (Accot and Zhai

1997, Accot and Zhai 2002).

For diagonal movement, the size Wd of the crossing goal is:

rW d
d π

θ
2

360
⋅= (7.2)

The index of difficulty for diagonal movement IDd is therefore:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⋅

= 1
2

360

log2

r

rID
d

d

πθ
 (7.3)

Thus, the time for diagonal movement Td is given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
⋅+= 1180log2 πθd

d baT (7.4)

For movement in the cardinal directions, recall that there is a constant target size of

90°. The target width Wc is therefore:

rWc π2
360
90

⋅= (7.5)

So, the index of difficulty for cardinal movement IDc is:

⎟
⎠
⎞

⎜
⎝
⎛ += 1

5.0
log2 r

rIDc π
 (7.6)

The movement time along cardinal edges Tc is thus given by:

710719.0⋅+= baTc (7.7)

For the pulse from the center to the first corner, there are four target angles each of

90°. Thus, the movement time Tf for the pulse to the first corner is the same as Tc:

Chapter 7: Trackball EdgeWrite 144

710719.0⋅+= baTf (7.8)

Using Equations 7.4, 7.7, and 7.8, the theoretical movement time for each EdgeWrite

letter and SPACE can be computed. For example, using a typical 65° for diagonal angles

θd and 150 ms for segmentation timeout τ, the time (in ms) to enter the letter “z” is given

by:

τ++++= cdcfz TTTTT "" (7.9)

τ++⋅= dc TT3
15004402.34 ++= ba

Obviously, the result for T“z” (and any other letter) is dependent upon our choice of a

and b—our Fitts’ regression coefficients. To my knowledge, no studies have elicited

these coefficients for continuous reciprocal goal crossing with a trackball. However,

Accot and Zhai have done so for a stylus (Accot and Zhai 2002), and also for a stylus and

a trackball for non-reciprocal straight-tunnel steering (Accot and Zhai 1999).

Extrapolating from these studies, a and b can be estimated for continuous reciprocal goal

crossing with a trackball. The values used are: a = -363.0, b = 642.1.

To compute the time (in ms) of the “average character” Tavg, each character’s time Ti

is weighted by its linguistic frequency Fi.

∑
∈

⋅=
Ci

iiavg FTT (7.10)

In Equation 7.10, i is a character in character set C. For simplicity, the primary letters

shown in Figure 3.9 are used for C, omitting “ç” and BACKSPACE, but including

SPACE. Next, Equation 7.11 is used to calculate the theoretical speed for the method (the

numerator is ms/min):

avgT
wpm

⋅
=

5
000,60

 (7.11)

Using a typical θd = 65° and τ = 150 ms, Equation 7.11 yields 23.1 WPM.

Note that this rate represents “perfect” entry—no errors, no error correction, and no

hesitation between letters other than the time τ required for segmentation. Also, trackballs

differ significantly in their sizes, friction, gain settings, etc. Thus, our estimate can only

Chapter 7: Trackball EdgeWrite 145

be considered a ballpark measure. However, it is useful for comparing different stroking

schemes, such as the two first-corner schemes discussed in §7.2.3.

This theoretical model can be extended to incorporate Fisch’s frequency-based word

completions. To do this, a computer program is needed to calculate the WPM of each

word in Trackball EdgeWrite’s list of 19,122 words (§3.5.3) assuming that each

completion is selected when it appears. The word list is large enough to accommodate

most words used in everyday English.

The speed Scps for our corpus can be calculated using Equation 7.12:

1000
1

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

+
= ∑

∈Kw
w

w
cps F

T
w

S (7.12)

Here, Scps is the weighted speed of text entry in characters per second (CPS), w is a

word in corpus K with length |w|, Tw is the time to write word w (in ms), and Fw is the

frequency of word w such that ΣFw = 1.00. The “+1” in the numerator is for the space that

is added after a completion is selected, and the “×1000” converts from characters per ms

(CPMS) to CPS.

To calculate Tw (in ms) for each word in the corpus, we calculate the time Tℓ to

perform each letter ℓ∈wp, where wp is the minimum prefix that will show w as a

completion (1 ≤ |wp| ≤ |w|). To this we add Tselect, the time to select the completion itself,

which is equivalent to Tf (Equation 7.8). As in Equation 7.9, τ = 150 ms must be included

in the sums for Tℓ and Tselect to account for the segmentation time after a letter or word

selection is made. Note that the computation of Tℓ is akin to Equation 7.9 for each letter

(a-z) and SPACE. Thus, the time Tw to write word w is:

select
w

w TTT
p

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈l
l (7.13)

For words which themselves are prefixes of at least four other more common words

(e.g. “ad”), there is no such wp that will show w as a completion. For these words, w must

be entered in full along with a trailing space:

Chapter 7: Trackball EdgeWrite 146

space
w

w TTT +⎟
⎠

⎞
⎜
⎝

⎛
= ∑

∈l
l (7.14)

To convert Scps in Equation 7.12 from CPS to WPM, we use the standard definition of

5 characters per word:

chars5
 word1

min1
sec 60

××= cpswpm SS (7.15)

Using Equations 7.12–7.15, the model yields an upper-bound entry rate of 52.5

WPM. This is 227% faster than the 23.1 WPM obtainable with only character-level

strokes. Like before, this result is unachievable by a real user. It represents perfect entry,

lacking considerations for hesitation, cognitive processes, visual search, slips, or

mistakes. Still, it is useful as an upper-bound for theoretical comparisons with prior

models.

For a more realistic estimate, our model can be enriched with a term for visual search

time based on the Hick-Hyman law (Hick 1952, Hyman 1953). This term Tn is added

after the entry of every letter ℓ and represents the time it takes for a user to find their

word amidst n choices, where n is the number of completions offered for the current

prefix (0 ≤ n ≤ 4). Drawing on prior rationale (Soukoreff and MacKenzie 1995), the

formula for Tn (in ms) is:

() 1000log2.0 2 ××= nTn (7.16)

Incorporating the Hick-Hyman law, Equations 7.13 and 7.14 become:

() select
w

nw TTTT
p

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

∈l
l (7.17)

() space
w

nw TTTT +⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

∈l
l (7.18)

Using Equations 7.16–7.18, the result drops 36.2% from 52.5 WPM to 33.5 WPM.

This is still 45.0% faster than our character-level result of 23.1 WPM. Note, however,

that even with the addition of visual search time, this result still represents perfect entry.

Chapter 7: Trackball EdgeWrite 147

A limitation of this model is that it only accounts for word completion, not word

prediction. However, modeling word prediction is more difficult because it depends on

context, including the user’s adaptive cache of recent words. Such a model is beyond the

current scope of this theoretical analysis.

7.3.2 Novice Able-bodied Use
For baseline comparisons, a study of Trackball EdgeWrite was conducted with able-

bodied subjects who knew the EdgeWrite alphabet but had never used trackballs. Their

knowledge of the EdgeWrite alphabet came from a previous study with a different

EdgeWrite version. This allowed trackball performance to be separated from learning the

alphabet. The study was not intended to compare two competitor methods, but to provide

an estimate of the performance of Trackball EdgeWrite for trackball novices.

7.3.2.1 Method

Three subjects ages 27–33 took part in the study. All were daily computer users who

owned a desktop mouse. None had ever owned or used a trackball. They were paid $15.

MacKenzie and Soukoreff’s text phrases (MacKenzie and Soukoreff 2003) were

shown in Courier 20pt on an IBM A21p laptop set to 1280×1024 resolution. The phrases

were transcribed with Trackball EdgeWrite using a Kensington Expert Mouse trackball

(Figure 7.1). The pointer speed was set to 40% of maximum on the mouse control panel.

Backspace was supported and subjects were not required to stay synchronized with the

presented text. They were told to balance speed and accuracy.

Subjects practiced for 45 minutes with Trackball EdgeWrite before transcribing 15

test phrases. During practice, the three subjects transcribed 58, 26, and 40 practice

phrases, respectively. Although they knew the EdgeWrite letters, they had a low level of

comfort with the trackball device. All of them said that they felt uncomfortable with the

device itself and needed more time to become proficient with it.

7.3.2.2 Results

Subjects’ speeds and error rates are shown in Figure 7.11 and Figure 7.12. As an

additional point of comparison, my performance is shown at the right of each graph. For

the three subjects, the average entry rate was 9.82 WPM. Their average respective

uncorrected, corrected, and total error rates were 0.59%, 3.31%, and 3.90%. These total

error rates are quite low (<4%) for a gestural method with an unfamiliar device.

Chapter 7: Trackball EdgeWrite 148

Figure 7.11. Average speeds for three able-bodied subjects using character-level
Trackball EdgeWrite. Subjects knew the alphabet but had never used trackballs.

Figure 7.12. Average error rates for each able-bodied subject. From left to right, error

rates within each subject are uncorrected, corrected, and total.

7.3.3 Longitudinal Motor-impaired Use
Although ~10 WPM is not particularly fast, a trackball user with motor impairments

resigned to using an on-screen keyboard at 4–5 WPM would probably welcome that

speed. In view of this, Trackball EdgeWrite was evaluated over the course of nine

participatory design sessions conducted from May to November 2005 with a veteran

trackball user who will be called “Jim.” Jim has a spinal cord injury that reduces the

dexterity in his arms, hands, and fingers such that he cannot satisfyingly use a

conventional keyboard or mouse. For 15 years he has relied upon trackballs and on-

screen keyboards for computer access. His favorite trackball is the Stingray from CoStar

Corporation (Figure 7.13).

Chapter 7: Trackball EdgeWrite 149

Figure 7.13. Jim’s favorite trackball is the Stingray because he can press its wide left

button with the palm of his left hand while his left thumb rolls the ball to drag.

Jim is now 46 years old and is still an avid trackball user. But he is a reluctant on-

screen keyboard user. For extended periods of text entry, Jim uses Dragon Naturally

Speaking, but he nonetheless frequently relies on an on-screen keyboard. He complains

that his speech recognition often “acts up” and ceases to work well. Sometimes his voice

is altered from medications or fatigue and his recognition rates drop. For short replies to

emails, putting on a headset and microphone is an arduous task, so Jim uses an on-screen

keyboard when he needs to enter just a few words. Also, certain tasks don’t work well for

him with speech recognition, like naming files, entering email addresses, editing proper

names, entering spreadsheet formulae, and filling out web forms. Thus, Jim’s text entry

solution has been a mixture of speech recognition and an on-screen keyboard using a

trackball to dwell over letters. At one time he used Click-N-Type

(http://www.lakefolks.org/cnt), but not long before this study started he had switched to

the Microsoft Accessibility Keyboard.

Jim has three main complaints about using an on-screen keyboard. First, the visual

attention required is enormous, as he constantly must look from the keyboard to his

document and back. Second, moving over keys to dwell requires that the dwell time be

long enough to avoid unwanted keys but short enough to produce text quickly, a difficult

balance to strike. He currently uses 500 ms as the dwell time. Third, the tedium of

making repeated keyboard selections is, according to Jim, “mind numbing.” Although

word prediction can help, Jim feels that word prediction slows him down as often as it

speeds him up, a sentiment consistent with findings in the literature (Goodenough-

Chapter 7: Trackball EdgeWrite 150

Trepagnier et al. 1986, Soede and Foulds 1986, Horstmann and Levine 1991). Plus, word

prediction adds more items to visually scan, adding to the tedium (Anson et al. 2005).

7.3.3.1 Quantitative Results

To ensure that the design iterations were beneficial, short “checkpoint studies” were

conducted when meeting with Jim. During these studies, Jim would use the latest version

of Trackball EdgeWrite to enter 5–7 test phrases. He would also enter the same number

of test phrases with the Microsoft Accessibility Keyboard. Word prediction was not

available in either method at this stage. Both methods were controlled by Jim’s personal

trackball (Figure 7.13), and neither method required any button presses. Jim’s speed and

accuracy results are shown in Figure 7.14.

Note that the checkpoint studies were not evenly spaced in time, particularly in the

jump from week 4 to week 10 and week 22 to week 32. During the first gap, Jim did not

use his computer. Thus, the data for week 10 can be viewed as retention results. Week 10

was the only week after week 1 in which the two methods were nearly equal in speed

(Figure 7.14a). The second gap was simply a break in testing.

After week 1, Jim’s speeds were consistently higher with EdgeWrite than with the

on-screen keyboard (Figure 7.14a). His average speed across all weeks with EdgeWrite

was 5.61 WPM (σ=1.40, max=8.25). With the keyboard it was 4.86 WPM (σ=1.17,

max=6.90). A Wilcoxon sign test shows that his EdgeWrite speeds were significantly

faster than his on-screen keyboard speeds (z=-19.5, p<.02).

The drop in performance during week 15 was due to a nagging tremor in Jim’s hand.

The drop in speed occurred about evenly for both methods. Accuracy results, on the other

hand, show that both uncorrected and corrected errors were worse for the on-screen

keyboard than for Trackball EdgeWrite (Figure 7.14c and Figure 7.14d), suggesting that

EdgeWrite accuracy may be less affected by such tremors.

Chapter 7: Trackball EdgeWrite 151

Figure 7.14. Jim’s performance with the two trackball methods over many weeks.

Jim’s speeds are modeled as learning curves and extended to week 50 in Figure

7.14b. Although such an extension is speculative, it gives us an idea of the possible trends

for Jim’s data. The power law equations and R2 values for Jim’s curves are:

• y = 3.713x0.1850 R2 = 0.53 Trackball EdgeWrite

• y = 3.796x0.1127 R2 = 0.21 On-screen Keyboard

Jim’s average uncorrected error rate was 1.12% (σ=1.39) with EdgeWrite and 2.03%

(σ=2.45) with the on-screen keyboard (Figure 7.14c). Although the trend was in

EdgeWrite’s favor, a Wilcoxon sign test is not quite significant (z=8.0, p=.22).

Chapter 7: Trackball EdgeWrite 152

Jim’s average corrected error rate was 10.06% (σ=2.37) with EdgeWrite and 4.52%

(σ=3.68) with the keyboard (Figure 7.14d). A Wilcoxon sign test for corrected errors

yields a significant result in favor of the on-screen keyboard (z=-20.5, p<.02). However,

an analysis of variance indicates that Session had a larger effect on decreasing corrected

errors for EdgeWrite (F1,7=5.21, p=.05) than for the on-screen keyboard (F1,7=2.92,

p=.13).

Although corrected errors—which are any letters backspaced during entry—are

higher with Trackball EdgeWrite, they are not necessarily damaging if the correction

operation is efficient (Soukoreff and MacKenzie 2003). Of course corrected errors should

be reduced, but the main tradeoff is between speed and uncorrected errors, which are

errors left in the transcribed string. A method can be successful even if it quickly

produces and repairs errors during entry if, in the end, it yields more accurate text in less

time, which is the case here.

7.3.3.2 Qualitative Results

In general, the time Jim spent using EdgeWrite each week varied according to his

personal computer use and his text entry needs. With Jim’s permission, Trackball

EdgeWrite wrote log files on his computer whenever it was being used. These logs show

that EdgeWrite was always left running in the system tray as of week 3, and was used

intermittently over the course of most weeks. The total use per week varied from just a

few minutes to a few hours. Jim’s usage increased in the later sessions.

Jim no longer uses an on-screen keyboard, but keeps Trackball EdgeWrite running at

all times, able to be called up at a moment’s notice. To begin writing, Jim simply places

the mouse cursor in the top-right corner of his screen, waits a moment, and then watches

as the cursor is “captured” automatically within the EdgeWrite square. This notion of

using hot corners to capture the mouse was Jim’s idea. When Jim is done writing, he

makes a dedicated stroke (see Appendix A) to “release” his mouse cursor and dismiss the

EdgeWrite window. The release stroke was also Jim’s idea. Thus, Jim can operate

Trackball EdgeWrite without clicking mouse buttons. Jim also helped to improve the feel

of the software with suggestions for altering the on-screen depiction and stroke feedback.

Jim’s reasons for preferring Trackball EdgeWrite over an on-screen keyboard are, in

his words:

Chapter 7: Trackball EdgeWrite 153

• “The on-screen keyboard is so terribly boring. EdgeWrite is fun, like a video

game. The on-screen keyboard is not fun. I don’t care which is faster.”

• “With EdgeWrite, you can keep your eyes on your document and just write as

you would holding a pencil. I don’t feel disabled when I’m using EdgeWrite.”

• “The on-screen keyboard requires too much visual scanning and concentration.

In EdgeWrite, if you know the letter, you can just bang it out by feel.”

• “I feel like I can write again.”

These results show that Trackball EdgeWrite is faster and produces just as accurate,

if not more accurate, text than an on-screen keyboard. Having reached a maximum speed

of 8.25 WPM in week 32, it seemed unlikely that Jim could go much faster with the

character-level version of Trackball EdgeWrite. After further development, Fisch word-

level stroking (§3.5) was incorporated into the application. What follows is a second-

stage evaluation with Jim using word prediction and completion.

7.3.4 Motor-impaired Use with Word-level Stroking
In order to empirically test Fisch word completion in Trackball EdgeWrite, two more

evaluations were conducted with Jim. The first was a comparison to the WiViK on-screen

keyboard (Shein et al. 1991). The second was an analysis of Jim’s log files over two

months of intermittent use. These evaluations began about 3 months after the end of the

character-level study, and about 2 weeks after Jim had been introduced to word-level

stroking in Trackball EdgeWrite.

7.3.4.1 Apparatus

Since Jim’s preferred on-screen keyboard, the Microsoft Accessibility Keyboard, does

not have word prediction or completion, the popular WiViK on-screen keyboard

(http://www.wivik.com) was configured to match Jim’s desired settings: 550 ms dwell,

about 650×250 pixels in size, and no “dead space” between keys. For word prediction

and completion, WiViK uses a program called WordQ, which was loaded with its fullest

dictionary, the “US Advanced” database containing 15,000 words. WiViK shows a

vertical 6-item word list to the left of the keyboard (recall Figure 2.11). The same action

for selecting a key selects a word in the word list—in Jim’s case, by hovering for 550 ms.

Chapter 7: Trackball EdgeWrite 154

7.3.4.2 Procedure

The study was a single-subject 2-factor design, with factors for Method (WiViK,

EdgeWrite) and Word Prediction (on, off). Jim did the word prediction versions second

within both methods. A coin toss determined that he would use WiViK first. Thus, the

technique order was: WiViK, EdgeWrite, WiViK+WP, EdgeWrite+WP. Jim entered 3

practice phrases and 8 test phrases in each condition. Each phrase was approximately 30

characters long.

7.3.4.3 Quantitative Results

Figure 7.15a shows Jim’s speeds for the four conditions in the current study. It also

shows Jim’s peak speeds from the prior study (§7.3.3). Note the substantial speedups of

both methods due to word prediction and completion.

Figure 7.15. Jim’s speeds and corresponding total error rates with an on-screen keyboard

and word-level Trackball EdgeWrite.

Figure 7.15b shows corresponding total error rates. However, because Jim fixed

almost every error during entry, these total error rates are really just corrected error rates.

Thus, Trackball EdgeWrite is producing similarly accurate text in a tad less time, albeit

with more errors made (and fixed) along the way.

A Wilcoxon sign test for speed is not significant (z=3.0, p=.25). However, the general

trend is in favor of Trackball EdgeWrite. This advantage is only slight for the current

study, however, probably because WiViK is superior to Jim’s preferred keyboard, the

Microsoft Accessibility Keyboard, although WiViK was configured with Jim’s settings.

Chapter 7: Trackball EdgeWrite 155

A Wilcoxon sign test for total errors is also not significant (z=2.0, p=.50). However,

both methods were producing error-free text in the end, since uncorrected errors for both

methods were ~0.0%. It is interesting that character-level Trackball EdgeWrite’s errors

were low in the current study even without word completion, probably because Jim has

had more practice since his prior peak performance at the end of the last study.

It is worth noting that the speed of WiViK improved 32.0% with word prediction

compared to without. This highlights the strength of WiViK’s commercial word

prediction and completion technology.

Taken together, these results show a 46.5% increase in speed and a 36.7% decrease in

errors for word-level Trackball EdgeWrite compared to Jim’s prior peak performance

with character-level Trackball EdgeWrite. The results also show that word-level

Trackball EdgeWrite is 75.2% faster and 40.2% more accurate than Jim’s prior peak

performance with his own on-screen keyboard. Finally, the results show that word-level

Trackball EdgeWrite is competitive with a major commercial product, the WiViK on-

screen keyboard with word prediction and completion.

7.3.4.4 Qualitative Results

Jim was asked to describe his experience with each of the four conditions in his own

words:

• WiViK: “[Y]ou are constantly either scribbling around so you don’t accidentally

trigger the wrong letter, checking to see if you typed the right thing, or looking

for the next key to hover over. Too much work both mentally and visually.”

• WiViK+WP: “Somewhat of a relief to hover over large words but it just increased

the amount of mental and visual work required. [It’s] one more section of the

screen you need to scan constantly. Only thing is, I wish EdgeWrite had its

vocabulary.”

• EdgeWrite: “EdgeWrite without word prediction is like using a 286 or

something. It’s much better than a keyboard or an on-screen keyboard, but the

ultimate is when you can flick the cursor into a corner and just pop the rest of the

word in.”

Chapter 7: Trackball EdgeWrite 156

• EdgeWrite+WP: “The best thing about EdgeWrite is there is no eye strain or

constant scanning between programs, letters, words, etc. The word choices are

right there where your eyes already are. It actually helps you stay focused on

what you’re writing.”

Jim’s sentiments confirm what prior studies of on-screen keyboards have found: that

they are exceedingly tedious and visually intense (Anson et al. 2005). Although word

prediction and completion improved WiViK’s speed by 32.0%, they did not resolve these

drawbacks. Trackball EdgeWrite, on the other hand, proved to be just as fast but without

the same visual tedium because it is gestural instead of selection-based, supporting

writing “by feel” rather than “by sight.” Jim also expressed a clear preference for

EdgeWrite with word prediction and completion.

7.3.4.5 Analysis of Extended Use

A single-session lab study allows one to formally quantify speed and errors, but it is over

the long-term that Trackball EdgeWrite must prove to be useful. Indeed, prior studies of

word prediction systems have shown that long-term use is critical to accurate assessment

(Magnuson and Hunnicutt 2002). Furthermore, Fisch word completion supports gradual

adoption as users familiarize themselves with the consistent positions of words.

Although log files do not enable one to rigorously quantify speed and accuracy, they

do allow one to measure the stroke savings gained by using word completion. One can

also look at the number of completions undone as an approximation of selection

accuracy, and compare this to the number of letters undone (backspaced).

Figure 7.16 shows these quantities graphed over two months of Jim’s intermittent

use. It represents 897.52 hours of software running-time for 13,288 total strokes. Of

these, 8774 were character strokes, 2201 were word-selection strokes, 1451 were

backspaces, and 249 were selection undos. In all, 15,629 characters were entered, 6855 of

which were from completions. For example, if Jim stroked the letters “t” and ‘h” and then

selected “there”, this would result in 6 entered characters: 2 from character strokes and 4

from the selected completion. The sixth character is a trailing automatic space.

Chapter 7: Trackball EdgeWrite 157

Figure 7.16. Results over 11 weeks from extended use showing usage of word

completion and backspace. Week 3 is omitted because Jim did not use his computer.

The top line shows the percent of letters entered as predictions or completions.

Without stroke-based word completion, these letters would all have to be entered in full.

The weighted mean over all weeks is 43.9%. The spike in week 6 is an outlier due to a

week of relative inactivity. Only 70 letters were entered that week, compared to most

weeks which saw 1500–3500 letters. A regression line shows this trend to be slightly

increasing.

It is interesting that the 46.5% speedup shown in Figure 7.15a is about the same as

the 43.9% savings shown in Figure 7.16. That is, the stroke savings more or less translate

to speed gains. This suggests that the perceptual, cognitive, and motor costs of Fisch

word completion are not overly taxing, which has been a problem with some prior word

prediction systems (Goodenough-Trepagnier et al. 1986, Soede and Foulds 1986).

The bottom line is the percentage of word completions undone. The weighted mean

over all weeks is 7.7%. As an indicator of completion errors, this value is probably high,

since users may undo selected completions for reasons other than errors, e.g., as a result

of changing what they want to write. A regression line shows this trend to be slightly

decreasing.

Chapter 7: Trackball EdgeWrite 158

For comparisons, the percentage of letters undone (backspaced) is shown as the

middle line. The weighted mean for undone letters is 16.5%. This value is not surprising

in light of previous results indicating that backspace is the second most common

keystroke in desktop text entry (MacKenzie and Soukoreff 2002b). A regression line

shows this trend to be slightly decreasing.

Across all weeks, the average number of characters entered per completion was 3.11.

Thus, with a simple “pulse” into one of four corners, users avoid entering over 3 more

characters for every word they write.

7.3.4.6 Discussion

Trackball EdgeWrite greatly benefits in speed and accuracy from having Fisch word

completion. Jim’s best prior performance with character-level Trackball EdgeWrite was

both slower and less accurate than his performance with the new word-level version. This

study also demonstrated that Trackball EdgeWrite rivals the major commercial on-screen

keyboard WiViK. The study further confirms that Trackball EdgeWrite is just as fast

using word prediction and completion, and that it is less visually tedious. Although

Trackball EdgeWrite is more error prone during entry, it produces error-free text in the

same amount of time due to efficient error correction. Over the course of both studies,

Jim went from a peak on-screen keyboard speed of 6.90 WPM without word prediction to

12.09 WPM with word-level Trackball EdgeWrite. His success with Trackball EdgeWrite

even resulted in a television news story in which Jim was interviewed (Ivanhoe Broadcast

News 2005). As it was for Jim, Trackball EdgeWrite could be useful to other motor-

impaired users who wish to “write” with their trackballs.

Chapter 8: EdgeWrite for Mobile Phones 159

Chapter 8

8 EdgeWrite for Mobile Phones*

8.1 Motivation

Mobile phones are enormously popular. At the close of 2003, there were 400 million

mobile phone users in Europe, 150 million in the United States, and 270 million in China

with an additional 5 million new users each month (GSM World 2004). Phones are

becoming increasing powerful as well, capable of displaying full-color graphics,

animations, and sound. These trends point toward a future in which mobile phones are

unified handheld video game devices, streaming media players, pocket jukeboxes, digital

cameras, portable internet terminals, and of course, person-to-person communicators.

Along with this trend of more powerful phones has come a second trend in which the

phones themselves are shrinking in size. In February 2004, NEC Corporation released the

first “credit card phone,” measuring only 85×54×8.6 mm and weighing 70 grams (Figure

8.1a). A few months later, another tiny phone was released, the NTT DoCoMo Premini

(Figure 8.1b). It measures just 90×39×19 mm and weighs only 69 grams. Its successor,

the Premini-II (Figure 8.1c), measures 105×46×19.4 mm, but unlike its predecessor, it

features a camera, a 320×240 pixel QVGA screen, and a music player. This trend of

cramming higher functionality into smaller devices shows no signs of stopping.

* Parts of this chapter are adapted from (Chau et al. 2006).

Chapter 8: EdgeWrite for Mobile Phones 160

Figure 8.1. Mobile phones are continually shrinking in size while increasing in

computing power and capabilities.

Unfortunately, despite these advances in compactness and capability—or perhaps in

part because of them—the user interfaces on most mobile phones are still unable to fully

capitalize on these new technologies (Hirotaka 2003). Currently, most phones use the 12-

key keypad based on a design dating to the 1960s. The 12-key keypad is unable to

support continuous, fluid control and consumes precious device real-estate.

To take advantage of the continuing trend in phone compactness and capabilities,

more expressive input mechanisms are necessary. Video games will require continuous

fluid control. Long lists of MP3 songs may require rapid scrolling driven by something

other than repeatedly pressing the same key. Basic photo cropping or panning may need a

device that supports continuous positioning. For many of these tasks, an isometric

joystick would be a valuable asset. Some mobile phones today do have joysticks, but they

are really just four-way switches that do not allow for fine control. An isometric joystick,

on the other hand, supports continuous fluid control without requiring the user’s thumb to

actually move because the joystick is controlled by pressure.

Another benefit of using an isometric joystick is that a user can feel his or her

pressure on the stick. Unlike phone keypads, which require the thumb to move from one

key to another over keys that all feel the same, an isometric joystick may better support

eyes-free use. In fact, prior studies show that the sleek unraised phone keypads that are

popular today (Figure 8.2) are very difficult to use without continual visual attention

(Silfverberg 2003).

Chapter 8: EdgeWrite for Mobile Phones 161

Figure 8.2. Although visually aesthetic, the popular “flat” mobile phone keypads often

lack sufficient tactility to be used by feel.

Text entry may be possible using an isometric joystick to support gestures instead of

methods that require repeatedly pressing keys. Furthermore, isometric joysticks share

much in common with trackballs, since neither device has any notion of position. Instead,

these devices report changes in rotation or pressure and the direction those changes are in

(Card et al. 1990). These commonalities make it possible for an isometric joystick

version of EdgeWrite to use the same software as Trackball EdgeWrite (§7) with adjusted

parameters.

Accordingly, this chapter presents the design, implementation, and evaluation of

Isometric Joystick EdgeWrite on a mobile phone. The phone prototype contains two

joysticks, one on the front for use with the thumb, and one on the back for use with the

index finger. The first of two evaluations compares character-level EdgeWrite to Multitap

in a 30-session longitudinal study. The second evaluation compares word-level

EdgeWrite to T9 (http://www.tegic.com) in a 6-session study with the same users. Results

confirm that in both cases, Isometric Joystick EdgeWrite is a competitive alternative to

keypad-based text entry. Furthermore, EdgeWrite on an isometric joystick consumes less

physical space than a 12-key keypad while offering opportunities for fluid control,

something emerging phone manufacturers may find very appealing.

In addition to the two primary studies, this chapter also contains results for using

Isometric Joystick EdgeWrite and Multitap without visual attention and for using the

isometric joystick on the back of the phone device. Of particular interest with the back

joystick is to discover the orientation of letters that subjects prefer.

Chapter 8: EdgeWrite for Mobile Phones 162

8.2 Design

To the best of our knowledge, this prototype is the first to integrate isometric joysticks

into a mobile phone for text entry. The hardware13 was built out of a real mobile phone,

the Red•E SC1100, which came with the Microsoft Windows Mobile 2003 Smartphone

Developer Kit. IBM donated some of their TrackPoint isometric joysticks, which are

commonly found in their ThinkPad laptop computers.

Figure 8.3. The front isometric joystick used by the thumb.

Figure 8.4. The back isometric joystick used by the index finger.

The wiring of the joystick circuits required careful planning since the original

hardware was to be kept intact. The prototype preserves almost all of the phone’s original

13 Duen Horng Chau built the hardware prototype. I customized the Trackball EdgeWrite software
to accompany it. Brandon Rothrock wrote the phone software for enabling the user study.

Chapter 8: EdgeWrite for Mobile Phones 163

components. In particular, the LCD screen continues to work so that user studies could be

run using the phone’s actual screen. The keypad circuit was removed from the phone to

make space for the installation of the front joystick (Figure 8.3). Unfortunately, this

disables the keys. But the keys themselves were kept to maintain the familiar appearance

of the phone. Integrating the back joystick was more straightforward, and only involved

removing an internal speaker and drilling a hole in the casing (Figure 8.4).

Software modifications were required for the back joystick to work with EdgeWrite.

In particular, the joystick’s left and right directions were flipped, so an option was added

to reflect the joystick’s input over the vertical. Also, an index finger on the back of the

device, when trying to push directly “up,” usually pushed at an angle somewhere between

10 and 11 o’clock, instead of “true up” at 12 o’clock. Thus, support was added for

arbitrary rotations of the EdgeWrite input plane. The result was a completely

configurable input area to accommodate all types of hands (Figure 8.5). Most subjects

preferred between 25°-35° of rotation, and discovered this value through trial and error

until it “felt right.”

Figure 8.5. The control panel for rotating the EdgeWrite square and the rotated axes

shown in the EdgeWrite writing interface.

Signals describing the joysticks’ movements were transmitted to a desktop computer

through a PS/2 connection via a cable at the bottom of the phone. The desktop computer

ran the Trackball EdgeWrite software, translating the joystick input into character

strokes, recognizing them, and then sending the recognized characters back to the phone.

A special program that ran on the phone, which was also the user test software, received

and displayed those characters on the phone’s screen (Figure 8.6).

Chapter 8: EdgeWrite for Mobile Phones 164

Figure 8.6. Special software on the phone “caught” the recognized characters from the
desktop computer and displayed them on the phone’s screen. It also drew stroke traces

for Isometric Joystick EdgeWrite.

Isometric Joystick EdgeWrite has a number of additional features that makes writing

with an isometric joystick easier. In particular, the sensitivity of the joystick and the size

of the virtual writing space can be changed to allow strokes to be created more

comfortably and accurately. Also, parameters of the underlying goal crossing technique

(§7.2.2) can be adjusted for greater accuracy and control, such as the length of the

crossing radius, the size of diagonal angles, and the segmentation timeout. These

parameters are visible in the top-right image of Figure 7.8.

8.3 Evaluation

Isometric Joystick EdgeWrite was evaluated in two studies. In the first study, the

character-level version was compared to Multitap over 30 sessions. As a sidebar to this

study, subjects also performed a single session with both methods holding the phone

beneath the edge of a table and out of sight. Subjects also entered additional phrases

during sessions 21–30 using the back isometric joystick.

In the second main study, the word-level version of Isometric Joystick EdgeWrite

was compared to T9 over 6 additional sessions using the same subjects.

In both studies, Isometric Joystick EdgeWrite used the EdgeWrite alphabet in place

after the guessability study (§3.3.3). Also, continuous recognition feedback (§3.4.1), non-

recognition retry (§3.4.2), and slip detection (§3.4.3) were all implemented.

Chapter 8: EdgeWrite for Mobile Phones 165

8.3.1 Character-level EdgeWrite vs. Multitap
The first experiment compared the character-level version of Isometric Joystick

EdgeWrite to Multitap. Multitap was chosen as the competitor because of its

predominance on mobile phones today. In one survey, it was the most common choice for

text entry among mobile device users (Karlson et al. 2006).

8.3.1.1 Subjects

Four male subjects in their early twenties took part in the study. Subjects were screened

for not having been regular Multitap or T9 users. No subjects had used any version of

EdgeWrite. They were paid $5 per session, with bonuses of $90 after session 10 and $40

after sessions 20 and 30.

8.3.1.2 Apparatus

Two separate phones were used in the study. One phone was the Red•E SC1100

Smartphone with two IBM TrackPoint isometric joysticks embedded in it (Figure 8.3,

Figure 8.4). The other was an i-Mate Smartphone 2 (Figure 8.7), used without physical

modification in the Multitap and T9 conditions. Both phones ran specialized software

written in C# that allowed them to display test phrases and, in the case of EdgeWrite,

draw character strokes. Stroke processing was carried out on a connected desktop PC,

which was running the Trackball EdgeWrite software adjusted for the isometric joystick.

The desktop also ran the TextTest user test program (Figure 2.14) and sent the test

phrases and processed characters to the phone for display.

Figure 8.7. The i-Mate Smartphone 2 model used in our study in the Multitap condition.

In the second study, it would be used in the T9 condition.

Chapter 8: EdgeWrite for Mobile Phones 166

8.3.1.3 Trials

A single trial was one text phrase drawn randomly from a modified version of the

MacKenzie and Soukoreff corpus of 500 phrases (MacKenzie and Soukoreff 2003). The

phrases were modified to be shorter so that they could be displayed without wrapping on

the Smartphone screen (Figure 8.6). Only letters and spaces were tested, since the

mechanisms for entering more obscure characters were not substantially different from

the mechanisms for entering letters. Capital letters were not included.

8.3.1.4 Procedure

The experiment was a two-factor within-subjects design with factors for Method

(EdgeWrite, Multitap) and Session (1–30). Four subjects used both methods in each

session entering 8 test phrases per method for 30 sessions. Thus, there were 4×2×8×30 =

1920 phrases in all, or about 48,000 characters. Method order was counterbalanced to

prevent order effects by having each subject alternate his or her starting method in each

session. Dependent measures for speeds and error rates are the means for the 8 trials

performed by each subject with each method in each session.

At the start of the first session, subjects were introduced to both methods and shown

how to perform them. They were also shown an EdgeWrite character chart and told how

to read it. However, they did not have the chart available to them when entering the test

phrases. Following this introduction, they entered each letter three times (“aaa”, “bbb”,

…, “yyy”, “zzz”) with each method. They also entered “the quick brown fox jumps over

the lazy dog” while correcting any mistakes as they went. This introduction and practice

took about 30 minutes, and only occurred before session 1.

In sessions 2–30, subjects entered 2 warm-up phrases with each method, during

which time they could view a character chart or ask questions if they desired. Then they

entered 8 test phrases. As stated, during the 8 test phrases, no EdgeWrite character chart

was made available to them. The 10 phrases took 5–10 minutes to enter.

Sessions were spaced by no less than 2 hours and no more than 2 days, with the

exception of session 21, which took place about one week after session 20. No more than

2 sessions could occur on a single day for a given subject. These restrictions were similar

to those used by other researchers in longitudinal text entry studies (MacKenzie and

Zhang 1999).

Chapter 8: EdgeWrite for Mobile Phones 167

8.3.1.5 Analysis

Data was analyzed using a mixed model analysis of variance with fixed effects for

Method and Session and a random effect for Subject (Littell et al. 1996). Session was

modeled as a continuous variable akin to time. Method Order was also included in the

model to test for order effects. A main effects test for Method Order on speed is not

significant (F1,229=0.01, p=.91), and neither is a Method Order×Method interaction

(F1,229=1.42, p=.24). That both of these tests are non-significant indicates adequate

counterbalancing.

8.3.1.6 Speed

Over all 30 sessions, the grand mean speed for Isometric Joystick EdgeWrite was 9.39

WPM (σ=2.34) and for Multitap was 9.64 WPM (1.65). The maximum session average

for EdgeWrite was session 29 at 12.32 WPM. For Multitap, it was session 28 at 12.22

WPM.

Figure 8.8. Speeds and fitted learning curves over sessions for EdgeWrite and Multitap.

A main effect of Method on speed is not significant (F1,229=1.75, p=.19). This is

because Multitap was faster than Isometric Joystick EdgeWrite in the early sessions, but

slower toward the end. A main effect of Session on speed is significant (F1,229=385.04,

p<.0001), confirming that subjects did speed up over time. A Session×Method interaction

is also significant (F1,229=11.05, p<.005), indicating that subjects improved at different

Chapter 8: EdgeWrite for Mobile Phones 168

rates with each method. When we look at the learning curves for the two methods, we can

see this difference (Figure 8.8).

The equations and R2 fits for the learning curves in Figure 8.8 are:

• y = 3.913x0.3375 R2 = 0.98 Isometric Joystick EdgeWrite

• y = 5.530x0.2169 R2 = 0.91 Multitap

The EdgeWrite model shows a particularly high correlation, suggesting that it is well-

modeled by the power law of learning (Card et al. 1983). The fitted learning curves

themselves cross over in session 18 (~2.15 hours), and from that session through session

30, EdgeWrite is faster on average.

8.3.1.7 Uncorrected Errors

Over all 30 sessions, the grand mean uncorrected errors for EdgeWrite was 1.01%

(σ=0.63) and for Multitap was 0.52% (0.38). The minimum (best) session average for

EdgeWrite was session 7 at 0.28%. For Multitap, it was sessions 3, 7, and 29 at 0.00%.

Although both methods had low uncorrected error rates in general, Multitap had

fewer uncorrected errors than EdgeWrite as indicated by a significant main effect of

Method (F1,229=17.44, p<.0001). Session did not have an effect on uncorrected errors

(F1,229=0.02, p=.89), which is typical in longitudinal text entry studies since expertise

does not necessarily reduce uncorrected errors. Figure 8.9a shows uncorrected errors over

sessions.

Figure 8.9. Uncorrected and corrected error rates over sessions for character-level

EdgeWrite and Multitap. Lower values are better. Note the different ranges on the y-axes.

Chapter 8: EdgeWrite for Mobile Phones 169

8.3.1.8 Corrected Errors

Over 30 sessions, the grand mean corrected errors for EdgeWrite was 7.69% (σ=1.35)

and for Multitap was 2.27% (0.80). The minimum session average for EdgeWrite was

session 7 at 3.37%. For Multitap, it was session 17 at 0.66%.

Multitap created fewer errors during entry than EdgeWrite as indicated by a

significant main effect of Method (F1,229=353.53, p<.0001). Session did not have an effect

on corrected errors (F1,229=0.07, p=.79). It is not atypical for a gestural method to be more

error prone during entry than a selection-based method. Fortunately, both methods left

relatively few uncorrected errors (≤~1%), although Multitap left fewer. Figure 8.9b

shows corrected errors over sessions.

Figure 8.10. The speeds of subjects with character-level EdgeWrite and Multitap.

Subjects 1 and 3 were faster with EdgeWrite. Subjects 2 and 4 were faster with Multitap.

Chapter 8: EdgeWrite for Mobile Phones 170

8.3.1.9 Individual Differences

With only four subjects, it is useful to look at the performances of individual subjects.

Each subject’s speed is graphed in Figure 8.10.

Wilcoxon sign-rank tests for matched pairs show that subject 1 was significantly

faster with EdgeWrite over sessions (9.07 vs. 8.25 WPM, z=112.50, p<.02). Subject 3

also was significantly faster with EdgeWrite (8.00 vs. 7.10 wpm, z=160.50, p<.001). On

the other hand, subject 2 was significantly faster with Multitap, mainly owing to the early

sessions (10.33 vs. 10.73 WPM, z=-106.50, p<.03). Subject 4 was the fastest subject with

both methods, and was much faster with Multitap (10.44 vs. 12.47 WPM, z=-228.50,

p<.0001). Taken together, these mixed results are inconclusive and warrant further testing

with more subjects to separate these two methods.

8.3.1.10 Qualitative Results

Initial impressions of Isometric Joystick EdgeWrite and Multitap were captured by a

questionnaire after subjects completed session 10. Their responses to 5-point Likert

scales are shown in Figure 8.11. In summary, subjects felt that Isometric Joystick was

slightly easier to use, faster, more enjoyable, more comfortable, and better liked.

However, they also felt EdgeWrite was harder to learn and slightly less accurate. A

repeated measures analysis of variance of subjects’ average Likert scores is not

significant, but the trend is in favor of EdgeWrite (F1,3=2.29, p=.23).

Figure 8.11. Subjective ratings for Isometric Joystick EdgeWrite and Multitap. Ratings

are on a Likert scale (1–5). Higher values are better.

Chapter 8: EdgeWrite for Mobile Phones 171

On the whole, subjects seemed to prefer Isometric Joystick EdgeWrite. Subjects

unanimously indicated that they would choose it over Multitap to write a line of text, a

few paragraphs, or even a few pages.

8.3.2 EdgeWrite and Multitap Eyes-Free
The Multitap study (§8.3.1) was conducted in ideal conditions. The subjects were seated

in a chair using a mobile phone with their undivided attention devoted to the text entry

task. However, this is not a realistic setting for much of mobile text entry. Therefore, we

attempted to see how the two methods fared when visual attention was impossible, which

is closer to real mobile use (Oulasvirta et al. 2005). At the end of the 30th session,

subjects were asked to enter another set of phrases when holding the device under the

edge of the table such that they could not see it. However, they could see the text output

on the desktop computer screen. Thus, subjects were blind to their device (“input blind”),

but not blind to the text they produced (not “output blind”). In a real-world setting, this

situation might correlate to when users have an ear-bud for audio feedback or a heads-up

or head-mounted display but are unable to look at their hands or their device.

Figure 8.12. Speeds and total error rates for EdgeWrite and Multitap when subjects were

unable to see the device. Higher values are better in (a); lower values are better in (b).

All subjects entered 8 phrases with Isometric Joystick EdgeWrite. However, subjects

1–3 became so frustrated with Multitap when unable to see their device that they gave up

after completing 1, 5, and 2 phrases, respectively. Only subject 4 completed all 8 phrases

with Multitap. Figure 8.12 shows subjects’ means for the trials they completed.

Chapter 8: EdgeWrite for Mobile Phones 172

EdgeWrite was faster on average than Multitap (9.78 vs. 5.00 WPM). However, this

difference failed to be significant in a Wilcoxon sign test (z=4.00, p=.25) due to lack of

power and subject 4’s data, which runs opposite to that of subjects 1–3. EdgeWrite was

also more accurate on average (18.77% vs. 28.16%). However, this difference was also

not significant (z=-3.00, p=.38). Total errors are shown instead of uncorrected and

corrected errors because different subjects adopted different correction strategies. Given

the difficulty of correcting errors in Multitap when unable to see the device, some

subjects left most of their errors uncorrected, while others spent much of their time trying

to correcting errors.

Although these results are not conclusive, they do show that keypad-based methods

are difficult to use without concentrated visual attention, a finding consistent with prior

studies (Silfverberg 2003). They also show that gestural text entry methods may fare

better in these circumstances. Further testing is required to elicit these differences, but

these results are promising for Isometric Joystick EdgeWrite.

8.3.3 Isometric Joystick on the Back
Also investigated was the performance of the index finger with an isometric joystick

embedded in the back of the device (BoD) (Figure 8.4). This was done in two parts. In

the first part, a letter orientation study was run before any of the sessions comparing

Multitap and EdgeWrite began. In the second part, subjects entered phrases using the

BoD joystick in sessions 21–30. That is, after subjects finished writing with Multitap and

EdgeWrite in those sessions, they entered another 10 phrases (2 practice, 8 test) with the

BoD isometric joystick. Both parts of the BoD study are described below.

8.3.3.1 Letter Orientation Study

Before subjects participated in their first session—before they had any exposure to

EdgeWrite or the isometric joystick phone—they traced English capitals “O”, “C”, “U”,

and “L” in four conditions. The conditions were formed from two factors: Joystick (front,

back) and Feedback (visible, not visible). Subjects 1 and 3 first traced the letters using

the front joystick, while subjects 2 and 4 first used the back joystick. In all cases, subjects

first did the “not visible” condition followed by the “visible” condition to avoid the latter

biasing the former. When feedback was visible, subjects could see their trace unfold on

the desktop computer screen. Subjects were told to pretend that the desktop screen was

the screen of their mobile device.

Chapter 8: EdgeWrite for Mobile Phones 173

Figure 8.13 shows how a BoD letter-trace might appear to the user if the user were

looking through the device. To illustrate the point clearly, Figure 8.13 uses a BoD

touchpad and an iPAQ device, even though a BoD isometric joystick and Smartphone

were used in the study. (Unlike a finger on an isometric joystick, which never actually

moves, a finger on a touchpad can trace a discernable path. However, the orientation

issue is equally relevant to a trace performed with an isometric joystick.)

Figure 8.13. The illustration shows how a trace of an English “C” on the back of the
device is visually correct if looking through the device but motor-reversed from the

perspective of the index finger.

The issue of interest is how subjects would orient letters when using the back

joystick. On the one hand, subjects may write visually-oriented, as if they could “see

through” the mobile phone to the trace drawn out by their index finger (Figure 8.13).

However, this would mean they are writing in mirror-image with respect to their index

finger. Thus, the other option is to write motor-oriented, where the index finger moves

through the same path it always does when writing. Clearly, software can produce

visually-correct output for either approach, but the question is, what do subjects expect?

Which is more natural?

The four letters “O”, “C”, “U”, and “L” were chosen for their different symmetries.

However, no differences were observed among letters. When using the front joystick, all

subjects traced all four letters in the expected fashion, visually and motorically correct.

This was true in both feedback conditions. For the back joystick without feedback, 3 of 4

subjects traced letters in a visually-oriented manner. Subject 1, however, traced letters in

Chapter 8: EdgeWrite for Mobile Phones 174

a motor-oriented manner. When feedback became available, however, all four subjects

traced in a visually-oriented manner, indicating that they thought this was the “proper

orientation.” Note that the trace feedback was like that shown in Figure 8.13, where it’s

as if subjects can “see through” their device. Thus, it seems that although one subject

may have thought differently apart from feedback, once visual feedback became

available, all subjects preferred this orientation. This sentiment is consistent with prior

results of letter orientation on differently-oriented surfaces of the body (Parsons and

Shimojo 1987). In light of these findings, when the BoD isometric joystick was used to

enter text in sessions 21–30, it was used corresponding to the visually-oriented condition.

8.3.3.2 Speed

The grand mean speed of subjects using the back isometric joystick was 7.70 WPM

(σ=0.96). The maximum session average achieved on the back of the device was 8.87

WPM in the 8th session. Recall that the BoD test was over 10 sessions from sessions 21–

30. By comparison, the average front-joystick speed for these sessions was 11.49 WPM

(0.42). In addition, over sessions 1–10, the average front-joystick speed was 6.56 WPM

(1.53). These data are shown in Figure 8.14.

Figure 8.14. Average speeds for the front and back EdgeWrite isometric joysticks.

8.3.3.3 Uncorrected Errors

The grand mean uncorrected error rate for the back joystick was 2.86% (σ=1.46). The

minimum (best) session average achieved on the back of the device was 0.57% in the 9th

session. For the front joystick over sessions 21–30, the average was 0.86% (0.42). For the

front joystick over sessions 1–10, the average was 0.68% (0.33). These data are depicted

in Figure 8.15a.

Chapter 8: EdgeWrite for Mobile Phones 175

8.3.3.4 Corrected Errors

Not surprisingly, corrected errors for the back joystick were noticeably worse than for the

front joystick. The grand mean corrected error rate for the back joystick was 12.62%

(σ=1.56). The minimum (best) session average achieved on the back of the device was

10.51% in the 8th session. For the front joystick over sessions 21–30, the average was

7.83% (0.81). For the front joystick over sessions 1–10, the average was 7.11% (1.95).

These data are graphed in Figure 8.15b.

Figure 8.15. Average uncorrected and corrected error rates for the front and back

isometric joysticks. Lower values are better. Note the different ranges on the y-axes.

The statistical tests for these data are omitted because it is unclear that a fair

comparison can be made. On the one hand, subjects had 20 prior sessions of EdgeWrite

practice with the front joystick before performing with the back joystick. Comparisons to

data from sessions 1–10 are therefore not particularly meaningful. On the other hand,

subjects were just writing with a new joystick for the first time, so comparisons to data

from sessions 21–30 are speculative. It is clear from the graphs, however, that using a

joystick with an index finger on the back of a device is entirely feasible, being

comparable in speed but more prone to error than the front joystick. To the best of my

knowledge, this work is the first explicit BoD text entry study.

8.3.4 Word-level EdgeWrite vs. T9
The second main experiment was conducted about a month after the first (§8.3.1) with

the same subjects, this time comparing the word-level version of Isometric Joystick

EdgeWrite to T9. This word-level version is the Fisch design for Trackball EdgeWrite

Chapter 8: EdgeWrite for Mobile Phones 176

(§7.2.5). T9 was chosen as the competitor because it is one of the most popular predictive

disambiguating phone keypad-based methods. About 10.5% of surveyed phone users

enter text with T9 (Karlson et al. 2006).

8.3.4.1 Procedure

The experiment was a two-factor within-subjects design with factors for Method

(EdgeWrite, T9) and Session (1–6). Four subjects used both methods in each session

entering 8 test phrases per method for 6 sessions. Thus, there were 4×2×8×6 = 384 test

phrases in all, or ~9600 characters. Test phrases were pulled randomly from the same

published corpus as before (MacKenzie and Soukoreff 2003). Dependent measures for

speed and error rates are the means for the 8 phrases entered by each subject with each

method in each session.

As before, subjects entered 10 total phrases (2 warm-up, 8 test) with each method in

each session, or 20 phrases per session. Before the first session, subjects were introduced

to word-level EdgeWrite and T9. This introduction took about 15 minutes, and only

occurred before the first session. Sessions were spaced by no less than 2 hours and by no

more than 2 days. No more than 2 sessions could occur on a single day for a given

subject.

8.3.4.2 Analysis

As before, the data were analyzed using a mixed model analysis of variance with fixed

effects for Method and Session and a random effect for Subject. Method Order was

included in the model to test for order effects. A main effects test for Method Order on

speed is not significant (F1,37=0.04, p=.83), and neither is a Method Order×Method

interaction (F1,22=0.00, p=.97), indicating adequate counterbalancing.

8.3.4.3 Speed

Over all 6 sessions, the grand mean speed for word-level EdgeWrite was 12.81 WPM

(σ=1.37) and for T9 was 15.20 WPM (0.78). These are 36.4% and 57.7% faster than the

grand means for character-level EdgeWrite (9.39 WPM) and Multitap (9.64 WPM),

respectively. The maximum session average for word-level EdgeWrite was session 5 at

14.27 WPM. For T9, it was session 6 at 16.10 WPM. These speeds fall between those

from a prior study of T9 for novices (9.09 WPM) and experts (20.36 WPM) (James and

Reischel 2001), suggesting that subjects’ T9 proficiency was good but could improve.

Chapter 8: EdgeWrite for Mobile Phones 177

Figure 8.16. The speeds of subjects with word-level EdgeWrite and T9.

Figure 8.16 shows each subject plotted separately because of the large differences

among subjects—particularly subject 4—which would be lost in a combined plot. Subject

4 was a clear outlier in T9 performance. Mean speeds without his data are 12.58 WPM

(σ=1.53) for EdgeWrite and 12.56 WPM (1.05) for T9.

T9 was faster than EdgeWrite as indicated by a significant main effect of Method

(F1,37=8.21, p<.01). However, with only six sessions, insufficient learning took place for a

significant main effect of Session (F1,37=3.95, p=.06). A Session×Method interaction is

also not significant (F1,37=0.33, p=.57).

Chapter 8: EdgeWrite for Mobile Phones 178

Wilcoxon sign-rank tests for matched pairs show no significant differences in

EdgeWrite vs. T9 speed for subject 1 (12.67 vs. 10.91 WPM, z=7.5, p=.16), subject 2

(14.36 vs. 15.90 WPM, z=-6.5, p=.22), and subject 3 (10.71 vs. 10.87 WPM, z=-1.5,

p=.84). However, subject 4’s T9 speed is significantly faster (13.49 vs. 23.11 WPM, z=-

10.5, p<.05). Thus, the significant effect of Method on speed can be largely attributed to

subject 4’s performance. Recall that subject 4 was also much faster than subjects 1–3

with Multitap and EdgeWrite in the previous study (Figure 8.10).

8.3.4.4 Uncorrected Errors

Over all 6 sessions, the grand mean uncorrected errors for EdgeWrite was 0.54%

(σ=0.32) and for T9 was 0.21% (0.30). These values are 46.5% and 59.6% lower than

those for character-level EdgeWrite (1.01%) and Multitap (0.52%), respectively. This is

pleasing, since the uncorrected errors for character-level EdgeWrite were low to begin

with. The minimum (best) session average for EdgeWrite was session 5 at 0.23%. For T9,

it was sessions 3 and 6 at 0.00% (Figure 8.17a).

A main effect of Method on uncorrected errors is only marginally significant in T9’s

favor (F1,37=4.07, p=.051). Session did not have an effect on uncorrected errors

(F1,37=0.52, p=.47).

Figure 8.17. Uncorrected and corrected error rates over sessions for word-level

EdgeWrite and T9. Lower values are better. Note the different ranges on the y-axes.

8.3.4.5 Corrected Errors

Over 6 sessions, the grand mean corrected errors for EdgeWrite was 11.26% (σ=3.21)

and for T9 was 1.12% (0.58). This is the first metric that is worse for word-level

Chapter 8: EdgeWrite for Mobile Phones 179

EdgeWrite compared to character-level EdgeWrite (7.69%)—worse by 46.4%. In

contrast, T9 was 50.7% better than Multitap (2.27%). The minimum session average for

EdgeWrite was session 5 at 7.42%. For T9, it was session 3 at 0.46% (Figure 8.17b).

T9 created fewer errors during entry than EdgeWrite as indicated by a significant

main effect of Method on corrected errors (F1,37=115.55, p<.0001). Session also had a

significant effect (F1,37=4.70, p<.05), as subjects reduced their errors over sessions. A

significant Session×Method interaction (F1,37=5.94, p<.02) indicates that sessions affected

each method differently. Figure 8.17b shows that it was EdgeWrite’s corrected errors that

improved dramatically over sessions.

The fact that corrected errors were high for word-level EdgeWrite is at least in part

due to the way corrected errors are counted (§2.4.3). With Fisch word-level stroking,

multiple letters can be entered in a single action. Similarly, multiple letters can be erased

in a single action. However, to remain consistent with other studies for the sake of

comparisons, every erased letter must be counted as a separate corrected error. The

efficiency of error correction is therefore not accounted for by this measure. This is a

limitation in the aggregate corrected errors metric (Soukoreff and MacKenzie 2003) that

gives it reduced applicability to word-level entry methods. See §11.1.1 for a related point

about measuring character-level errors.

T9, on the other hand, did not “commit” letters into the text entry field until a subject

had finished entering his or her key sequence and possibly cycled through an n-best list.

When a subject finally pressed SPACE, his or her current word was committed all at

once. This means that subjects could preview their word before it was entered, and hence,

drastically reduce corrected errors. Of course, T9 would be impossible to use “under the

table” for this reason.

8.3.4.6 Discussion

As with the Multitap study (§8.3.1), the results of the T9 study are inconclusive and more

testing is required. However, it is fair to say that word-level EdgeWrite is at least

“competitive” with T9. Subject 1 was better on average in every session with EdgeWrite

than with T9. Subjects 2 and 3 were mixed, and subject 4 was a clear outlier in

performance with both Multitap and T9. A post-test questionnaire revealed that subject 4

was a trained piano and guitar player, criteria for which we did not screen. This subject’s

Chapter 8: EdgeWrite for Mobile Phones 180

musical training may well have influenced his finger dexterity and caused him to be

somewhat unrepresentative of the “typical” mobile phone user.

Technical improvements may also help distinguish EdgeWrite from Multitap and T9.

There was a minor amount of lag occasionally perceptible in the experiment due to the

communication between the desktop computer and the mobile phone. This lag was not

present for Multitap or T9, but did appear for EdgeWrite due to the larger amounts of

data being transmitted to draw strokes on the phone screen (Figure 8.6).

Another improvement is to fix the way word selections are undone in EdgeWrite. In

the second study, a user could make a word-level backspace to undo a selected word

completion as long as they performed the backspace immediately after word selection. If

any other text entry events happened before the selection was undone, the undo state was

lost and a word-level backspace would erase the whole previous word, not just the

completed letters. This is a technical limitation that will be remedied for future studies,

but the logs show it hurt the performance of word-level EdgeWrite against T9.

Unfortunately, it is impossible to estimate by how much.

Still, it is very encouraging that different versions of EdgeWrite can rival two major

mobile phone text entry methods in a fraction of the physical space required by a keypad

after just over 2 hours of practice. Also, the results from “under the table” suggest that

EdgeWrite is a much better option when visual attention is limited or impossible. This

may make Isometric Joystick EdgeWrite better for users who are walking or riding.

Finally, it is valuable to see that in speed and uncorrected errors, word-level EdgeWrite

improved character-level EdgeWrite by 36.4% and 46.5%, respectively. These values are

consistent with Jim’s respective improvements of 46.5% and 36.7% from the word-level

Trackball study (§7.3.4).

Chapter 9: EdgeWrite on Four Keys or Sensors 181

Chapter 9

9 EdgeWrite on Four Keys or Sensors*

This chapter presents two new forms of EdgeWrite, versions that do not use digitizing

surfaces or virtual “surfaces” with the mouse cursor. Instead, these versions use four

discrete “binary” sensors that are directly mapped to the four corners of the EdgeWrite

square. One prototype is implemented using a standard numeric keypad. The other uses

four capacitive sensors in an integrated hardware sensing unit. The majority of the

chapter is devoted to the 4-key prototype and the longitudinal study that evaluates it.

9.1 Motivation

Text entry with only a few keys has been studied in mobile computing for some time

(Bellman and MacKenzie 1998, MacKenzie 2002c, MacKenzie 2002b). As mobile

technologies shrink while becoming more powerful and network-aware, few-key methods

remain relevant for devices such as wrist-watch PDAs, GPS units, and 2-way pagers.

Areas besides mobile computing may also benefit from few-key methods. For example,

fabric keypads have been sewn into smart clothing (Orth et al. 1998), and few-key

methods have been designed for people with limited ranges of motion (Evreinova et al.

2004).

* Parts of this chapter are adapted from (Wobbrock et al. 2006).

Chapter 9: EdgeWrite on Four Keys or Sensors 182

Prior few-key methods have mostly been based on selection, displaying letters on a

screen and having the user pick repeatedly from among them. Although selection-based

methods are easy to learn, they have serious drawbacks for mobile text entry similar to

the drawbacks of on-screen keyboards for desktop text entry (§2.3.6): (1) they require a

screen; (2) the selections themselves consume precious screen real-estate; (3) they require

a user’s visual attention and cannot be performed by feel; (4) they involve two foci-of-

attention, the text being written and the selectable letters; and (5) they can be quite slow

and tedious.

Gestural methods, on the other hand, depend not on an on-screen depiction of

selections but on the execution of meaningful motor patterns. Therefore, they generally

do not incur the aforementioned drawbacks. In the few cases where gestures have been

applied to keys (Isokoski and Raisamo 2000, Jannotti 2002, Evreinova et al. 2004),

however, they have been somewhat arbitrary and difficult to learn. However, the

advantages of gestures for few-key text entry warrant the investigation of a quickly

learnable gestural technique. Therefore, EdgeWrite was implemented for use on four

keys.

9.2 Design

As discussed in §3.2, EdgeWrite gestures are fully defined by the sequence of corner-hits

they make inside an EdgeWrite square. In the four-key version, then, each key-press

represents a corner-hit (Figure 9.1). Thus, unlike MDITIM or UDLR (§2.3.8), key-

presses do not represent strokes, but endpoints of strokes, allowing for more Roman-like

gestures.

Figure 9.1. EdgeWrite letters mapped to four keys. Letters are defined by their sequence

of corner-hits: “a” = 824, “n” = 8142, “d” = 2484.

Chapter 9: EdgeWrite on Four Keys or Sensors 183

With this four-key design, the KSPC of EdgeWrite’s primary letter forms is 3.52.

This is higher than the 5-key selection keyboard to which EdgeWrite will be compared,

which has a KSPC of 3.24. But gestural methods do not require visual search like

selection-based methods do. So in this case, there is a tradeoff between KSPC and visual

search.

Adapting a unistroke stylus method to four keys requires a solution to the

segmentation problem, since “stylus lift” is not relevant. For segmentation, Four-key

EdgeWrite uses an adaptive timeout that adjusts on a per-letter basis to the speed at

which a user makes a letter according to Equation 9.1.

1
2

1

−

−
⋅=
∑
=

−

n

tUPtDOWN
FT

n

i
ii

 (9.1)

In this equation, T is the time until segmentation, F is a multiplier preference ranging

from 1.20 (expert) to 2.00 (novice), tDOWNi is the down-time of the ith key-press, tUPi is

the up-time of the ith key-press, and n is the total number of key-presses (n > 1).14 Thus,

for users who hesitate little between key-presses, segmentation occurs sooner than for

users who hesitate more. After each key-down event, the timer is stopped so that

segmentation cannot occur until all keys are up. When all keys are up, the timeout is

computed and the timer restarted. When the timer elapses, segmentation occurs, meaning

the corner sequence is recognized and reset.

9.3 Evaluation

This study compared Four-key EdgeWrite to predominant 3-key and 5-key methods. The

study was conducted over 10 short sessions simulating “daily intermittent use.” Only

character-level EdgeWrite was tested, and continuous recognition feedback (§3.4.1) and

non-recognition retry (§3.4.2) were implemented. Slip detection (§3.4.3) was not a part of

this method.

14 A special case is used for n = 1 in which a base timeout of 250 ms is used. This value is still
multiplied by the F scaling factor.

Chapter 9: EdgeWrite on Four Keys or Sensors 184

9.3.1 Competitor Methods
Few-key text entry has predominantly been accomplished with either 3-key or 5-key

selection-based methods. The latter are even in use on mainstream commercial products.

These methods are reviewed in general in §2.3.8. Here, more specific details are given.

9.3.1.1 Three-Key Design

Although there are many possible layouts for 3-key text entry methods, the one in Figure

9.2 was found by a previous study to be “particularly promising” (MacKenzie 2002c).

This design places SPACE to the far left, and the selector snaps there after each entry.

This enables users to unhesitatingly move the selector to the right after each entry. We

calculated its KSPC to be 10.53 using previously used letter frequencies (Soukoreff and

MacKenzie 1995). Layouts with lower KSPC do exist, but these often increase visual

search time at the expense of speed (Bellman and MacKenzie 1998). In a previous study,

the design in Figure 9.2 was measured at 9.10 WPM and 2.11% total errors in a single

session (MacKenzie 2002c). For this study, the design was augmented with

BACKSPACE (‘<’) for error correction. Its placement to the left of SPACE does not

increase KSPC because the selector snaps to SPACE and does not wrap.

Figure 9.2. The 3-key design used in the study. The letter “e” is currently selected.

The 3-key method is greatly enhanced by key-repeat. The key-repeat times used in

this study were taken from prior work (MacKenzie 2002c), set to 176 ms for the initial

delay and 32.1 ms for the repeat delay. These are fast key-repeat times and enable high

performance.

9.3.1.2 Five-Key Design

The 5-key method uses four keys to move over a matrix of letters and a fifth key for

selection. The design in Figure 9.3 is based on the Glenayre AccessLink II pager (Figure

2.13) as described by MacKenzie (MacKenzie 2002b). Its alphabetic layout is optimized

to put common letters “e”, “s”, “t”, “n”, “o” and “u” near SPACE. Where the Glenayre

pager had punctuation marks, here we replaced them with asterisks since punctuation was

not used in this study.

Chapter 9: EdgeWrite on Four Keys or Sensors 185

Figure 9.3. The 5-key design used in the study.

The KSPC for the commercial product is 3.13. As with the 3-key method, the 5-key

method is augmented with BACKSPACE (‘<’). Its placement to the left of SPACE

minimally increases KSPC to 3.24. This is 0.28 less than the Four-key EdgeWrite

method. Like the 3-key method, the 5-key method employs snap-to-home (SPACE) and

key-repeat.

Both the 3- and 5-key designs could reduce KSPC using optimization techniques. But

KSPC is not the sole design factor, as visual search time is significant. Manufacturers

have generally eschewed fully optimized keyboards, perhaps favoring users’ first

impressions over their extended performance. Certainly, the intermittent use of few-key

text entry methods requires that they be quickly learnable.

9.3.2 Method
This section describes the experimental method used to evaluate the three-key, five-key,

and Four-key EdgeWrite methods.

9.3.2.1 Subjects

Five subjects (2 female) ranging from 27 to 33 years old took part in the study over 10

consecutive days. Subjects were all right-handed daily computer users. Their keyboard

typing rates were measured to provide context for their few-key results. Their mean

typing speed was 70.79 WPM (σ=13.76) with 3.54% total errors (σ=1.22%). None of the

subjects had used any of the few-key methods. They were paid $10 per session.

9.3.2.2 Apparatus

The test software shown in Figure 9.4 presented phrases from a standard corpus

(MacKenzie and Soukoreff 2003). In all, the software logged 1600 test phrases, or about

50,000 characters. Backspace was supported, and subjects were not forced to remain

synchronized with the presented text.

Chapter 9: EdgeWrite on Four Keys or Sensors 186

As in prior work (Bellman and MacKenzie 1998), subjects used a standard desktop

numeric keypad with one hand to control the few-key methods. Subjects were told to use

the key configuration they found most comfortable. They used three fingers with 3-key,

three or four fingers with 5-key, and four fingers with 4-key EdgeWrite (e.g., on the 1, 2,

4 and 5 keys). Note that with all these methods they used these fingers at the same time,

holding them over the numeric keypad to enable a very limited form of touch-typing.

Using the numeric keypad allowed for the comparison of these methods under “ideal”

conditions: one-handed with familiar comfortably-sized keys. Custom devices could be

tailored toward any of the techniques if the study’s results warrant further design.

Figure 9.4. The TextTest text entry test software and Four-key EdgeWrite. The 4-key-

noviz EdgeWrite condition lacked the stroke visualization window shown here.

9.3.2.3 Procedure

Each session consisted of 2 warm-up phrases and 8 test phrases for each of the 4

methods. These 10 phrases took ~5 minutes to complete per method. To see how Four-

key EdgeWrite fared with no stroke visualization, a condition called 4-key-noviz

EdgeWrite was included. In this condition, the stroke window in Figure 9.4 was removed.

Although this resulted in two EdgeWrite methods per session (viz and noviz), the total

time for EdgeWrite was still just ~10 minutes. Moreover, the two selection-based

methods shared common features, e.g., key-repeat times and certain keys. The

presentation order of the four methods was counterbalanced according to a Latin Square.

Chapter 9: EdgeWrite on Four Keys or Sensors 187

During the 2 warm-up phrases, an EdgeWrite character chart was displayed, but this

chart was not shown during the 8 test phrases. Not surprisingly, subjects had to guess

many strokes in the early sessions. Although not showing a character chart undoubtedly

hurt Four-key EdgeWrite, it allowed for the assessment of learnability without aids.

9.3.3 Results
This section presents the results of the longitudinal comparison of the few-key text entry

methods.

9.3.3.1 Analysis

The data were analyzed using a mixed model analysis of variance in which Method (3-

key, 5-key, 4-key, 4-key-noviz) and Session (1–10) were fixed effects and Subject was a

random effect (Littell et al. 1996). The model included Method Order (1–4), but no order

effects were found on speed (F3,164=0.58, p=0.63), indicating adequate counterbalancing.

9.3.3.2 Speed

Mean WPM over all 10 sessions were: 3-key 9.08 (σ=1.31), 5-key 10.62 (2.61), 4-key

EdgeWrite 12.50 (3.91), 4-key-noviz EdgeWrite 12.94 (3.99). By session 10 these

improved to: 3-key 9.81 (1.33), 5-key 12.86 (2.26), 4-key EdgeWrite 15.95 (3.22), 4-key-

noviz EdgeWrite 16.86 (3.06). Figure 9.5a depicts speeds over sessions.

Figure 9.5. Average speeds over sessions and fitted learning curves. The right graph

shows the subject who was fastest with all four methods.

A main effect for WPM is significant over 10 sessions for Session (F1,164=350.63,

p<.01), Method (F3,164=72.61, p<.01), and Session×Method (F3,164=27.91, p<.01). That is,

Chapter 9: EdgeWrite on Four Keys or Sensors 188

subjects sped up over time and did so at different rates with each method. Contrasts show

that the speeds of the EdgeWrite methods were not detectably different from each other

(F1,164=1.45, ns), but were significantly faster than 3-key (F1,164=202.78, p<.01) and 5-key

(F1,164=67.21, p<.01). Also, 5-key was faster than 3-key (F1,164=26.88, p<.01).

Subjects learned the EdgeWrite methods quickly, overtaking the selection-based

methods by session 2. The learning curve equations fitted to the power law of learning

(Card et al. 1983) for Figure 9.5a are:

• y = 6.998x0.364 R2 = 0.99 4-key EdgeWrite

• y = 7.389x0.352 R2 = 0.99 4-key-noviz EdgeWrite

• y = 7.398x0.231 R2 = 0.97 5-key

• y = 7.822x0.097 R2 = 0.90 3-key

Subject 3 performed the fastest with all four methods (Figure 9.5b). Over 10 sessions,

his WPM peaked at: 3-key 11.03 (1.35), 5-key 15.99 (1.65), 4-key EdgeWrite 20.75

(1.47), 4-key-noviz EdgeWrite 21.73 (1.50). Subject 3’s single fastest phrase occurred in

session 9 with the 4-key EdgeWrite method at 24.06 WPM and 0.0% total errors. This is

remarkable for “gesture-typing” on four keys after ~90 minutes of practice.

Subject 3’s learning curves for Figure 9.5b are:

• y = 8.688x0.384 R2 = 0.96 4-key EdgeWrite

• y = 9.237x0.375 R2 = 0.98 4-key-noviz EdgeWrite

• y = 8.553x0.261 R2 = 0.94 5-key

• y = 9.470x0.064 R2 = 0.72 3-key

9.3.3.3 Uncorrected Errors

Uncorrected errors are graphed in Figure 9.6a. Means over 10 sessions were: 3-key 0.60%

(0.75), 5-key 0.96% (1.10), 4-key EdgeWrite 1.69% (1.71), 4-key-noviz EdgeWrite 2.00%

(2.05). A main effect for uncorrected errors is significant for Session (F1,164=4.00, p<.05)

and Method (F3,164=9.05, p<.01) but not for Session×Method (F3,164=0.43, ns). Contrasts

show that the EdgeWrite methods were not detectably different from each other

(F1,164=1.37, ns), but left more errors than 3-key (F1,164=22.71, p<.01) and 5-key

(F1,164=10.42, p<.01). Also, the 3-key and 5-key methods were not significantly different

from each other (F1,164=1.73, ns).

Chapter 9: EdgeWrite on Four Keys or Sensors 189

Figure 9.6. Average error rates over sessions for the few-key methods. Lower values are

better. Note the different ranges on the y-axes.

9.3.3.4 Corrected Errors

Corrected errors are graphed in Figure 9.6b. Mean corrected error rates over 10 sessions

were: 3-key 1.69% (1.61), 5-key 1.73% (1.49), 4-key EdgeWrite 7.23% (4.26), 4-key-

noviz EdgeWrite 6.74% (4.30). A main effect for corrected errors is significant for

Session (F1,164=38.93, p<.01), Method (F3,164=64.32, p<.01), and Session×Method

(F3,164=9.87, p<.01). Contrasts show the EdgeWrite methods were not detectably different

from each other (F1,164=0.75, ns), but were more error prone than 3-key (F1,164=130.82,

p<.01) and 5-key (F1,164=125.69, p<.01). Also, 3-key and 5-key were not significantly

different from each other (F1,164=0.02, ns). Although more error prone overall, EdgeWrite

errors dropped significantly over sessions (F1,80=47.43, p<.01) and did not appear to level

off, so they may have continued to drop over future sessions.

9.3.3.5 Discussion

Despite being gestural, the EdgeWrite methods were quickly learned, demonstrating the

benefits of mnemonic gestures. It is clear from the learning curves that more sessions, or

sessions offering more practice, are needed to find the asymptotic speeds of the

EdgeWrite methods. The study’s results also indicate that removing a visualization of the

letter stroke being made is not detrimental to EdgeWrite, which may have positive

implications for wearable contexts.

It is not surprising that the gestural methods were less accurate, although uncorrected

error rates were quite low for all four methods (≤2%). It may be possible to improve

Chapter 9: EdgeWrite on Four Keys or Sensors 190

accuracy by intelligently handling premature segmentations or by preventing backspaces

for a brief period after non-recognitions, since subjects would sometimes “feel” a mistake

and hastily make a backspace, only to find their mistake was a non-recognition and their

backspace removed a previously correct character.

9.4 Four Capacitive Sensors

Four-key EdgeWrite used a numeric keypad to quickly prototype a new version of

EdgeWrite using only four sensors. Another way of implementing EdgeWrite is with four

capacitive sensors (Figure 9.7). Four-sensor EdgeWrite is somewhat similar to Touchpad

EdgeWrite (§6.2.2), except that the sensing surface is not continuous but discrete. Each

capacitive-sensing corner is only capable of reporting whether or not it is being touched;

thus, it might be called a “binary” sensor. Segmentation cannot therefore be achieved

with “finger lift” as it can on a touchpad, since whenever the finger moves between

corners, it will appear to be lifted. In Four-sensor EdgeWrite, an adaptive timeout is used

for segmentation according to Equation 9.1.

Figure 9.7. Four-sensor EdgeWrite uses four charge-pump capacitive sensors (the metal-

foil triangles). Four surface mount resistors are used as tactile bumps.

9.4.1 Implementation
Capacitive sensors can be implemented a variety of ways. Four-sensor EdgeWrite uses

four “charge-pump” capacitive sensors15. This type of capacitive sensor is fairly robust

and easy to implement.

15 This circuit was described by Johnny C. Lee and Scott E. Hudson in 05-897 Electronics
prototyping for HCI, Carnegie Mellon University, Spring 2006.

Chapter 9: EdgeWrite on Four Keys or Sensors 191

The sensor pad can be most anything that will hold a charge, such as a mass of

tinfoil, an insulated copper wire, a metal plate, or thin foil-like pads like those used for

the model in Figure 9.7. The metal does not need to be exposed, but can be covered by a

thin layer of tape, plastic, or rubber.

A schematic for a single charge-pump sensor is shown in Figure 9.8. Each sensor pad

is coupled with a dedicated capacitor C0 measuring 0.1μF. This capacitance is large

relative to the small capacitance C1 of the sensor pad. Two microprocessor pins are used

in the circuit as well, one for charging the sensing pad (PAD), and one for pulling charge

from the sensor pad into the large capacitor (DRAIN). A resistor R (~50Ω) is also

included as a precaution so that a short cannot occur between the sensor pad and the PAD

pin.

Figure 9.8. The schematic for one charge-pump capacitive sensor.

The sensor works by counting the number of cycles it takes to charge the capacitor C0

such that PAD will read “high.” The capacitor C0 is charged by “pumping” little bits of

charge from the sensor pad C1 into C0 over time. When a finger is absent, the number of

pumps will be some value A. When a finger is present, it brings with it a much larger

capacitance C2, and the number of necessary pumps P to charge C0 will be much less than

A. When this occurs, a finger is detected. The algorithm for a single sensor pad is:

1. Set both PAD and DRAIN to low to discharge the circuit. Set COUNT to zero.
2. Set DRAIN to high impedance to effectively disconnect it.
3. Set PAD to high to send charge into C1, and C2 if it is present.
4. Set PAD to high impedance to effectively disconnect it.
5. Set DRAIN to low to pull the charge from C1 (and C2) into C0.
6. Read the value of PAD:

if 0: increment COUNT and goto step 2.
if 1: a finger is present if COUNT ≤ THRESHOLD; goto step 1.

Chapter 9: EdgeWrite on Four Keys or Sensors 192

For the actual circuit, four complete sensors like the one shown in Figure 9.8 were

connected to eight pins on a Microchip Technology PIC16F819 microprocessor

(http://www.microchip.com). Because of some pernicious side effects that arose when

calling functions to rapidly change the states of the pins for four simultaneous sensors,

direct memory access had to be used instead, where function calls were circumvented by

directly setting 1’s and 0’s at memory offsets on the processor. The result was a fast

sensing loop capable of supporting writing with a finger.

The circuit schematic is shown in Figure 9.9. The schematic was developed by

adapting a previous circuit designed by Johnny C. Lee that supports in-circuit

programming using a Melabs serial programmer (http://www.melabs.com) and

communication with the PC over a Pololu USB-to-serial adapter

(http://www.pololu.com). The extended circuit includes four capacitive sensors and

works with a desktop application written in C# that receives serial events and translates

them into EdgeWrite character strokes, capable of entering text into any application.

9.4.2 Evaluation
Four-sensor EdgeWrite has not been formally evaluated. It was intended to demonstrate

the feasibility of EdgeWrite text entry on cheap sensing technology with only four

capacitive sensors. More complex sensing arrays like those used in touchpads or PDA

screens are thereby demonstrated to be unnecessary for EdgeWrite text entry.

In an effort to establish ballpark figures for performance, I tested character-level

Four-sensor EdgeWrite myself by entering 15 phrases presented by the TextTest

program. My overall speed for these phrases was 11.38 WPM (σ=0.93). My fastest speed

for a single phrase was 13.09 WPM, while my slowest speed was 9.95 WPM.

Uncorrected and corrected error rates were 1.49% (2.32) and 2.87% (2.82),

respectively. These numbers are comparable with many of the “full fledged” versions of

EdgeWrite described in this dissertation, which is noteworthy given the minimal sensing

technology used to implement Four-sensor EdgeWrite.

C
ha

pt
er

 9
: E

dg
eW

ri
te

 o
n

Fo
ur

 K
ey

s o
r S

en
so

rs

19
3

Fi

gu
re

 9
.9

. T
he

 sc
he

m
at

ic
 fo

r F
ou

r-
se

ns
or

 E
dg

eW
rit

e.
 T

he
 fo

ur
 p

ad
s c

or
re

sp
on

d
to

 th
e

fo
ur

 m
et

al
lic

 tr
ia

ng
le

s i
n

Fi
gu

re
 9

.7
.

Ea
ch

 o
ne

 is
 e

qu
iv

al
en

t t
o

th
e

“s
en

so
r p

ad
”

in
 F

ig
ur

e
9.

8.

Chapter 9: EdgeWrite on Four Keys or Sensors 194

Chapter 10: EdgeWrite by Others 195

Chapter 10

10 EdgeWrite by Others

Other researchers have created versions of EdgeWrite using the publicly available XML

character set (Appendix A) or the EdgeWrite DLL (§3.6.1). This chapter briefly reports

on these projects as a way of further demonstrating the versatility of EdgeWrite.

10.1 Steering Wheel EdgeWrite (González)

For his undergraduate Bachelor’s honors thesis in computer science at Carnegie Mellon

University, Iván E. González implemented a number of input techniques for steering

wheels intending to provide better access to car navigation systems.

Figure 10.1. Two EdgeWrite prototypes for use with steering wheels. The left one uses
small buttons. The right one uses a small touchpad. Both are controlled by the thumb.

Chapter 10: EdgeWrite by Others 196

Among his techniques were two versions of EdgeWrite. One version used the four

built-in buttons on a Logitech steering wheel used for gaming on desktop PCs (Figure

10.1a). An additional plastic piece made it easier for a user’s thumb to slide over these

buttons. The other version used a small touchpad, a Synaptics StampPad, embedded in

the surface of a different computer game steering wheel (Figure 10.1b). The StampPad

worked automatically with the Touchpad EdgeWrite software (§6.2.2). González also

implemented a number of selection-based methods for the StampPad, such as repeated

stroking, rate-controlled scrolling, and radial dialing (e.g. like on an Apple iPod) to

select from a list of street names in a mock heads-up navigation system.

After preliminary testing, González chose the StampPad version to use in a study of

street name selection while stationary and while driving. González conducted the study

with the STISIM driving simulator (http://www.systemstech.com) (Figure 10.2).

Figure 10.2. The experimental setup with the STISIM driving simulator. The list of street
names and input techniques are shown on the left monitor as peripheral heads-up display.

The same four subjects who participated in the prior study using the mobile phone

isometric joystick were used (§8.3). Besides EdgeWrite, they also used a number of

selection-based techniques. For stationary street name entry using the steering wheel,

González found that EdgeWrite beat all five on-screen keyboard techniques when

selecting from a set of 228 street names. However, it was faster to directly scroll through

the list instead of spell out the name. When the best of these techniques were tested while

Chapter 10: EdgeWrite by Others 197

doing simulated driving, however, EdgeWrite ranked first in avoiding center-line

crossings, speeding, and crashes, and was a close second in street name selection time.

The only measure in which EdgeWrite fared worse than the list-scrolling techniques was

in touching the shoulder of the road. More testing is needed for definitive results, but this

preliminary study shows that EdgeWrite on a steering wheel may be competitive with the

off-wheel navigation systems using on-screen keyboards that are used in cars today.

10.2 WatchPad EdgeWrite (Blaskó and Feiner)

Gabor Blaskó and Steven Feiner of Columbia University implemented a finger-controlled

version of EdgeWrite for the IBM/Citizen WatchPad 1.5 (Blaskó and Feiner 2004). This

wrist watch runs the Linux operating system for which Blaskó wrote a version of

EdgeWrite (Figure 10.3).

Figure 10.3. The IBM/Citizen WatchPad 1.5 being used for EdgeWrite text entry.

EdgeWrite is particularly appropriate here because of the watch’s raised square bezel.

Also, Blaskó and Feiner already had developed interaction techniques for the watch

based on the four corners of the watch’s screen (Figure 10.4). Thus, the conceptual step

to using EdgeWrite was an obvious one.

The researchers did not evaluate EdgeWrite text entry on the watch, but their

implemented prototype was capable of transmitting entered characters to a desktop

terminal via a wireless connection, making a future evaluation easy to conduct.

Chapter 10: EdgeWrite by Others 198

Figure 10.4. Blaskó’s and Feiner’s interaction techniques for the WatchPad already used
corners and edges. Images taken from (Blaskó and Feiner 2004). Used with permission.

10.3 Edgeless EdgeWrite (Andersen and Zhai)

Tue Haste Andersen and Shumin Zhai implemented an EdgeWrite variant called

Edgeless EdgeWrite, or ELEW (Andersen and Zhai 2004). ELEW removes the need for

strokes to hit absolute corner locations by using a proportional shape matching gesture

recognizer. This allows ELEW to remove the plastic edges of a physical square and to

redefine some of the EdgeWrite letters accordingly (Figure 10.5).

Figure 10.5. Edgeless EdgeWrite has some different letters than EdgeWrite. Image

adapted from (Andersen and Zhai 2004). Used with permission.

ELEW was not intended as a version for people with motor impairments. Instead,

ELEW was used in an experiment to test whether audio feedback, including musical

feedback, improves people’s experience of writing strokes. Musical feedback was

synthesized in real-time according to the eight possible directions one might move in an

ELEW character. Thus, the straight-line properties of the EdgeWrite alphabet were a

useful asset to this experiment.

After running 16 subjects, Andersen and Zhai did not find any significant differences

among their audio conditions in terms of speed or accuracy of entry. However, they did

note subjects’ significant preference for the most “musical” of the feedback conditions,

wherein the synthesized music responded in real-time to the speed of the writer. The

study also found a comparable speed and accuracy to regular EdgeWrite with somewhat

less practice, perhaps due to the redesigned alphabet.

Chapter 10: EdgeWrite by Others 199

10.4 EdgePad for the GP32 (Ward)

Ian Ward implemented a version of EdgeWrite called EdgePad for the four-way

directional pad on a GP32 game device (http://gp32.sector808.org/edgewrite.php). The

GP32 game device is an open source handheld platform that does not have a touch screen

or stylus (Figure 10.6). In fact, it only has a directional pad and a few buttons. Not

surprisingly, the device’s existing text entry methods are lacking, which prompted

Ward’s efforts. In a personal communication, Ward stated that he implemented EdgePad

because the GP32 is a small device with limited screen space, and he was frustrated with

the slow speeds of its on-screen keyboards. He said that with EdgePad, he uses a fixed

timeout to segment between letters when the D-pad returns-to-center. He reported that he

can use EdgePad “accurately and quickly without looking at the screen.” His website says

he can enter text at 10 WPM and “hardly make any mistakes.”

Figure 10.6. The GP32 device and the EdgePad text entry utility. Used with permission.

Ward, who goes by “Woogal,” was interviewed by Hooka, a GP32 fan site

containing interviews of top GP32 developers. What follows is an excerpt:16

Hooka: What kind of stuff do you read/write with lazy reader and EdgePad?

Woogal: I read a lot of old sci-fi, particularly H.G.Wells.

Hooka: You started EdgePad before you had a chatboard, I remember trying to use it
and not getting the hang of it. Why did you decide to do an EdgeWrite style
writing for GP32?

16 The complete interview can be found at http://www3.telus.net/public/hooka/woogal.html.

Chapter 10: EdgeWrite by Others 200

Woogal: I had tried using the existing text entry systems on the GP32 but wasn't really
happy or comfortable with any of them. I started to do a little research into
alternatives and came across a paper on using EdgeWrite for joystick input. The
idea intrigued me and fitted all my ideal criteria (able to use it without looking
at the screen, and not have most of the very limited screen space taken up with
an on screen keyboard), so I thought I'd give it a go.

10.5 JMEdge (Richez)

Xavier Richez wrote JMEdge (http://perso.orange.fr/xavier.richez/jmedge-en.html), a

Windows application that runs in the System Tray and translates joystick events into text

input. JMEdge is similar to Joystick EdgeWrite (§5), except that it lacks any visualization

of strokes being made, and it requires a button-press to segment between letters—return

to center is not used. This makes it slower than Joystick EdgeWrite and seemingly more

error prone, although a formal evaluation has not been conducted.

JMEdge is part of the JoyMouse++ system that enables a joystick to emulate the

mouse on a desktop computer. The control panel for JoyMouse++ and JMEdge is shown

in Figure 10.7.

Chapter 10: EdgeWrite by Others 201

Figure 10.7. The JoyMouse++ and JMEdge control panel for enabling EdgeWrite text
entry using a PC-compatible joystick. Button 9 currently switches to EdgeWrite mode.

Chapter 10: EdgeWrite by Others 202

Chapter 11: A New Character-level Error Analysis 203

Chapter 11

11 A New Character-level Error Analysis*

Over the course of this work, numerous text entry evaluations were conducted and

hundreds of thousands of text entry events were analyzed. The TextTest and

StreamAnalyzer programs (§2.4) were built to facilitate many of these studies and

analyses. These tools support the running of studies in the unconstrained text entry

paradigm (Soukoreff and MacKenzie 2001, Soukoreff and MacKenzie 2003). Although

this paradigm has many benefits, it lacks a character-level analysis of the input stream—

those events that occur during text entry but that do not appear in the final transcribed

string. This chapter presents the algorithmic work for such an analysis. As such, it

constitutes a contribution to the literature on text entry evaluation.

11.1 Motivation

Measuring accuracy in unconstrained text entry experiments (§2.4.3) is not entirely

straightforward. For example, in Figure 11.1, P is a string presented to a subject and T is

the subject’s transcription. How many errors are there?

P: the quick brown
T: the quicxk brown
 ^^^^^^^^

Figure 11.1. An example presented (P) and transcribed (T) string.

* Parts of this chapter are adapted from (Wobbrock and Myers 2007).

Chapter 11: A New Character-level Error Analysis 204

In Figure 11.1, a simple pair-wise comparison suggests that everything after the “c”

in T is in error. But this is probably not the case. More likely, there was one insertion

error, the “x” in T. Automatically detecting such errors between P and T has been the

subject of recent work (Soukoreff and MacKenzie 2001, Soukoreff and MacKenzie

2003).

What if we consider not just the final transcribed string but the entire input stream,

the record of all input events produced by the subject? If errors were made and corrected,

the input stream would hold more error information than the transcribed string. This

information could be useful to designers and evaluators for improving techniques. For

example, the transcription in Figure 11.1 could have been produced from the input stream

(IS) in Figure 11.2:

IS: f←tn←he p←qul←ik←cxk bfo←←rown

Figure 11.2. An example input stream (IS) resulting in T from Figure 11.1. Transcribed
letters are in bold and backspaces are represented by “←”.

In the input stream, “←” symbols indicate backspaces and bold letters compose the

final transcribed phrase T. Clearly, there were more errors in transcribing this text than T

alone reveals. Thus, an analysis of T without IS paints an impoverished picture of errors.

We could try to analyze IS for errors, but input streams are messy and ambiguous, and

determining errors within them is difficult. The core challenge in determining input

stream errors is assessing intention. What is the subject trying to enter at every character

position? Because of the difficulty in answering this question, many previous text entry

evaluation strategies unnaturally constrained text entry experiments so as to make the

determination of errors, particularly character-level ones, trivial. But this comes at the

cost of so totally altering the natural transcription process that results from such studies

are cast into doubt.

For example, one artificially constrained experimental paradigm disallows erroneous

characters completely. As the subject transcribes text on a line beneath the presented text,

any attempted character that does not match the character directly above it is not

displayed. Often in this paradigm the entry of an erroneous character results in an audible

“beep.” Subjects may incur many successive beeps without ever seeing characters appear

because their entries do not match the presented character at their position. What’s worse,

backspace is rendered irrelevant, even though backspace is the second most common

Chapter 11: A New Character-level Error Analysis 205

keystroke in real desktop text entry after space (MacKenzie and Soukoreff 2002b). But

inferring intention in this paradigm is trivial, because one assumes a subject is always

trying to enter the next character in the presented text, even though this is not always true.

The experience for subjects entering text in these evaluations is highly unnatural and

potentially frustrating, since each error creates a “road block” that stops them abruptly,

often for many characters. Nevertheless, this paradigm’s ease of use has caused many to

employ it (Venolia and Neiberg 1994, Isokoski and Kaki 2002, Evreinova et al. 2004,

Ingmarsson et al. 2004).

Another way to unnaturally constrain text entry experiments is to allow errors but to

prevent error correction, usually by disabling backspace. Two examples are in the

evaluations of the OPTI keyboard (MacKenzie and Zhang 1999) and the Half-Qwerty

(Matias et al. 1996). In this paradigm, subjects are free to enter any letter, but once

entered, letters can not be backspaced. Characters are deemed erroneous if they do not

agree with the presented letter at the current position. Erroneous characters are often

accompanied by an audible “beep” and accuracy is calculated as a pair-wise comparison

between the letters of P and T. Thus, when subjects make errors, they are forced to

mentally “catch up” to the presented text by entering the next letter at the current

position, rather than by trying the missed letter again. Maintaining synchronicity is

therefore of utmost importance, and single insertions often result in multiple successive

out-of-synchronization errors, also known as “error chunks” (Matias et al. 1996). Given

the importance and prevalence of error correction during real text entry, this paradigm,

like the previous one, is very artificial and often frustrating for users.

A third approach has been simply to ignore errors altogether, for example by using

paper mockups of text entry methods. In this paradigm, errors are not recorded, analyzed,

or reported. Surprisingly, some published studies fall into this category (Lewis et al.

1999b, MacKenzie et al. 1999, Rodriguez et al. 2005). The obvious drawback here is that

speed and accuracy are tradeoffs, and analyzing one without the other encourages

unreliable and flimsy comparisons.

Unfortunately, all three of these contrived paradigms are unnatural when compared to

text entry outside the lab. This fact has motivated recent developments in automated error

rate calculation (Soukoreff and MacKenzie 2001, Soukoreff and MacKenzie 2003) and

the advent of the unconstrained text entry evaluation paradigm. In unconstrained text

Chapter 11: A New Character-level Error Analysis 206

entry experiments, subjects are presented with phrases and are told to transcribe them

“quickly and accurately.” Subjects are neither forced to maintain synchronicity with the

presented text nor are they required to fix errors—but they may and usually do. In

essence, they are free to enter text nearer to how they would do it in “the real world.”

Importantly, a subject’s subjective experience more closely matches their customary text

entry experience, where error beeps, stalled text cursors, and error chunks are not the

norm. The data acquired in unconstrained evaluations are automatically analyzed by

algorithms designed to accommodate them. This chapter contributes to this set of

algorithms.

11.1.1 Aggregate and Character-level Errors
Aggregate error rates give an indication of a text entry method’s accuracy over all

entered characters. For example, the keystrokes per character (KSPC) metric (§2.4.2),

which was used in the evaluation of Stylus EdgeWrite (§4.3.1), is an aggregate metric. As

stated, KSPC is a ratio of all entered characters, including backspaces, to final characters

appearing in the transcribed string. Although the calculation of KSPC requires the input

stream, it only requires a count of characters entered, not the discovery of what those

characters were intended to be. This is also true of a widely-used definition of “corrected

errors” (§2.4.3), which treats any backspaced character as an error, even if the erased

character was, in fact, correct. A later paper acknowledged this limitation (Soukoreff and

MacKenzie 2004), separating backspaced letters into two categories: corrected-but-right

and corrected-and-wrong. However, that paper did not offer any algorithms for

performing this separation, which is something the current work provides.

Many evaluators have reported KSPC error rates based on the number of backspaces

made during entry (Sears and Zha 2003, Wobbrock et al. 2003b, Gong and Tarasewich

2005), but these are aggregate error rates, not character-level ones. While aggregate error

rates provide a baseline for comparison, they are not sufficiently fine-grained to aid

designers in targeting problematic characters. Designers and evaluators need more than

aggregate measures; they need an indication of what is happening at the level of

individual characters. For example, a character-level error analysis can tell us the

probability of entering a “y” when attempting a “g”. It can also tell us which characters

are prone to errors of insertion, omission, or substitution, or which characters are

particularly slow or fast to produce.

Chapter 11: A New Character-level Error Analysis 207

Until now, however, the unconstrained text entry paradigm has lacked a formal

character-level error analysis that handles input streams. While the unconstrained

experimental paradigm is a significant advance over the more artificial paradigms

mentioned in the previous section, the lack of a character-level error analysis for input

streams is a serious drawback. Thus far, character-level error analyses for the

unconstrained paradigm have focused on presented and transcribed strings (MacKenzie

and Soukoreff 2002a), not input streams. As mentioned, the difficulty in analyzing input

streams is that they are fraught with ambiguity, making it hard to discern the subject’s

intention at each character position. This chapter addresses this ambiguity by using a

small set of reasonable assumptions. It argues that over the course of a text entry study,

the number of times the assumptions are invalid will be vastly outweighed by the number

of times they are valid, a claim supported by empirical results. These carefully

formulated assumptions enable the unlocking of the rich character-level information of

input streams.

11.1.2 Advantages of Using Input Streams
Analyzing input streams from unconstrained text entry evaluations has a number of

practical benefits for designers and evaluators of text entry methods. Among these

benefits are:

• The input stream usually yields more data per trial than the transcribed string,

since by definition |IS| ≥ |T|. Therefore, depending on the research questions

being asked, analyzing the input stream for character-level errors may allow us to

run fewer trials and save time and money on evaluations, which are often time

consuming and expensive (Jeffries et al. 1991). This will be the case if error data

is what we are after. However, if we are interested in learning rates as measured

by speeds over sessions, analyzing IS will not reduce the number of required

sessions.

• When instructed to “enter the text quickly and accurately” (Soukoreff and

MacKenzie 2003), subjects tend to fix most, if not all, of their errors in text entry

trials. For example, in the study accompanying a character-level error analysis

from the prior work (MacKenzie and Soukoreff 2002a), subjects left only 2.23%

errors in T. Other studies show even fewer uncorrected errors: 0.79% (Soukoreff

and MacKenzie 2003), 0.53% (§5.3.2), and 0.36% (§4.3.1). In the extreme case,

Chapter 11: A New Character-level Error Analysis 208

if subjects correct all errors, P and T will be identical and no character-level error

information will be available. Such a contingency does not reduce the value of

IS, however, since corrected errors—the errors subjects made but fixed—are still

captured.

• Speed and uncorrected errors are tradeoffs in text entry (MacKenzie and

Soukoreff 2002b). Therefore, to equitably compare speeds, some experiments

(Lewis 1999) have required perfect transcription, where leaving errors in T is not

permitted. But character-level error analyses of perfect transcription studies are

useless using only P and T since they will always be identical. Analyzing IS, on

the other hand, allows for the extraction of character-level results, even in perfect

transcription studies.

• For stroke-based or handwritten entry such as EdgeWrite and Graffiti

(Blickenstorfer 1995), one possible outcome of an attempted character is a non-

recognition. By definition, T cannot contain non-recognitions, but IS can.

Therefore, looking at IS can be valuable to designers trying to identify characters

that are difficult to recognize in stroke-based entry methods.

11.1.3 Limitations of this Analysis
Like most automated analyses, the current work has limitations. It is designed to analyze

data from unconstrained text entry experiments in which subjects transcribe text rather

than generate it. Although generating text is more natural, it has numerous problems

when used in experiments, such as introducing thinking time, complicating the

identification of errors, and abdicating control of letter and word distributions

(MacKenzie and Soukoreff 2002b, MacKenzie and Soukoreff 2003). For these reasons,

text entry evaluations nearly always involve text transcription.

In the unconstrained paradigm, text is assumed to flow serially forward with the entry

of new characters and backward with the correction operation (i.e. backspace). Therefore,

the current analysis does not accommodate “random access” editing using cursor keys,

multi-character selection, or the mouse cursor. Indeed, a comprehensive analysis of text

entry performance is a current goal of researchers, but even the metrics for such an

analysis are not yet understood, let alone algorithms for automated measurement.

Chapter 11: A New Character-level Error Analysis 209

The current analysis does not accommodate method-specific tokens within the input

stream, such as the individual key-presses in Multitap (e.g., 222-NEXT-2-8 = “cat”).

Rather, the current analysis examines input streams containing all entered characters and

backspaces in a method-agnostic fashion that makes it suitable for any character-level

text entry technique. Method-specific analyses still have to be implemented in a method-

specific fashion, and are viewed as supplements to this work.

The current work functions well for any type of character-level method. These

methods include typing, unistrokes, stylus keyboards, eye-tracking keyboards,

thumbwheels, character recognizers, and so on—any technique that produces one

character at a time. The results are less informative, however, for word-level methods that

produce multi-character chunks. Examples of such methods are word-producing

sokgraphs (Zhai and Kristensson 2003), word prediction systems (Wobbrock and Myers

2006b), and speech recognition systems. Although the algorithms will work for such

methods, character-level errors are less relevant since the “character” is not the unit of

production. The algorithms could be adapted to accommodate word-level entry by

treating multi-character chunks as individual symbols. Such an extension is not a

theoretical complication but is beyond the scope of this work.

The remainder of this chapter first describes the character-level error analysis for the

unconstrained text entry paradigm from prior work (MacKenzie and Soukoreff 2002a) on

which this work directly builds. The prior character-level analysis examines only P and

T. Then this chapter describes the extensions to this work that make it suitable for input

streams. A taxonomy of input stream errors types is presented, including the assumptions

underlying each, and algorithms for their detection are given. Finally, two analyses of

real experimental data are conducted, one with the prior analysis of just P and T, and one

with the current analysis using P, T, and IS. With the current analysis and the software

that implements it, designers and evaluators stand to benefit from richer character-level

error information which, in turn, will result in more refined text entry techniques from

rigorous evaluations.

11.2 A Prior Analysis of P and T

The current work builds on a prior character-level analysis of just P and T (MacKenzie

and Soukoreff 2002a). This technique must first be understood before describing the

Chapter 11: A New Character-level Error Analysis 210

current work. Thus, a brief overview of that technique is presented. Readers are directed

to the prior work for more details.

The prior analysis began by asking, “How many errors are in the following

transcription?”

P: quickly
T: qucehkly

Figure 11.3. The example used in the original analysis (MacKenzie and Soukoreff
2002a). This example is used for continuity.

A pair-wise comparison of the letters in Figure 11.3 suggests that all letters after the

“qu” are in error. But intuition tells us that the “kly” at the end seems correct. How can

we determine the correct number of errors?

The answer lies in using the MSD statistic (§2.4.2). Recall that this statistic tells us

the shortest “distance” between two strings, which can be characterized as the minimum

number of errors between them. This is also equivalent to the minimum number of simple

editing operations, so-called “Morgan’s operations” (Morgan 1970), required to turn one

string into the other.

In Figure 11.3, MSD = 3. This means that there are a minimum of 3 errors in T

relative to P. It also means that in no less than 3 simple editing operations can we make

“quickly” and “qucehkly” into equivalent strings. The error types are:

• Insertion — occurs when a letter appears in T but not in P. For example, if P is

“cat” and T is “cart”, we have an insertion for “r”. We can represent an insertion

by placing a hyphen “-” in P where the insertion appears in T. For example, we

would write “cat” as “ca-t”.

• Omission — occurs when a letter appears in P but is omitted from T. For

example, if P is “cat” and T is “ct”, we have an omission of “a”. We can

represent an omission by placing a hyphen in T where the omitted letter appears

in P. For example, we would write “ct” as “c-t”. The prior analysis termed these

errors “deletions” (MacKenzie and Soukoreff 2002a), but “omission” will be

used here as in earlier papers (Gentner et al. 1984).

Chapter 11: A New Character-level Error Analysis 211

• Substitution — occurs when corresponding letters in P and T do not agree. For

example, if P is “cat” and T is “kat”, there is a substitution of “k” for “c”.

As stated, MSD = 3 for our example. But although we know that 3 errors exist

between P and T, and therefore 3 operations are necessary to equate them, we do not

know which 3 errors occurred, or which 3 operations reflect the subject’s intentions. For

example, did the subject substitute the “c” for the “i” in Figure 11.3 or did he or she omit

the “i” and correctly enter the “c”?

To handle this ambiguity, we first generate all possible operation sets of cardinality 3

that make P and T equivalent. These are called the optimal alignments of P and T

(MacKenzie and Soukoreff 2002a). There are 4 optimal alignments for our example in

Figure 11.3:

P1: qu-ickly
T1: qucehkly

P2: qui-ckly
T2: qucehkly

P3: quic-kly
T3: qucehkly

P4: quic--kly
T4: qu-cehkly

Figure 11.4. The optimal alignments of “quickly” and “qucehkly” (MacKenzie and
Soukoreff 2002a).

To detect errors after identifying the optimal alignments, we simply move through

the (Pn, Tn) pairs comparing letters in a pair-wise fashion at each position. If two letters

agree, a no-error is the result. If two letters disagree, a substitution occurred. If a dash

appears in P, an insertion occurred. If a dash appears in T, an omission occurred.

Ambiguity is handled by weighting each error by the inverse of the number of

alignments. For example, in the 4 alignments above, each substitution for “i” is tallied as

1 × 0.25. Summed together, we get 0.75 as the substitution error rate for “i”. In other

words, we say there is a 75% chance that the user committed a substitution for “i” while

entering “qucehkly”. Accordingly, there is a 25% chance that the user omitted “i”, as

seen in the fourth alignment.

Chapter 11: A New Character-level Error Analysis 212

The main limitation of this prior analysis is that it ignores all erased characters. In

most unconstrained text entry experiments, corrected errors greatly outnumber

uncorrected errors. This means that much richer error data is available to us if we include

corrected errors in our analyses. This is particularly true for character-level errors, since

uncorrected character-level errors may be rare for any given character. Including

corrected character-level errors allows us to see which characters really are error-prone

during entry.

11.3 Making Sense of Input Streams

The analysis of input streams yields new types of errors. It also entails new complexities

due to ambiguity. This section describes both.

11.3.1 Input Stream Error Types
When we move from an analysis of just P and T to an analysis involving IS, new types of

errors arise. These new errors provide more detail about the text entry process and give us

a more powerful scope under which to view errors. This section presents a taxonomy of

input stream error types with relevant examples. The assumptions used in this section are

made explicit in the section that follows (§11.3.2).

11.3.1.1 Uncorrected No-Errors, Substitutions, Insertions, Omissions

Hereafter, Gentner et al.’s errors (Gentner et al. 1984) are prefaced with the term

“uncorrected” to indicate that these errors remain in the transcribed string. We therefore

have uncorrected no-errors, uncorrected substitutions, uncorrected insertions, and

uncorrected omissions. The definitions of uncorrected errors remain unchanged from the

prior work (Gentner et al. 1984, MacKenzie and Soukoreff 2002a).

11.3.1.2 Corrected No-Errors

Correct characters are often erased in the text entry process, particularly when touch-

typing (Soukoreff and MacKenzie 2004). These correct-but-erased characters are called

corrected no-errors. When combined with uncorrected no-errors, they compose the set of

correctly entered characters.

11.3.1.3 Corrected Substitutions

Consider the following input stream, where “←” is a backspace.

Chapter 11: A New Character-level Error Analysis 213

 P: quickly
IS: qv←w←uickly

Figure 11.5. An input stream showing difficulty entering “u”.

The input stream in Figure 11.5 shows a correctly entered “q” but apparent trouble

producing the following “u”. The subject first entered, and then backspaced, a “v” and a

“w” before correctly entering the “u”. This might be because “u”, “v”, and “w” are keys

too close together on a mobile device’s keyboard, or because a user easily confused

strokes for “u”, “v”, and “w” in a stroke-based method. For example, “u”-“v” confusion

is common for novices when writing Graffiti.

In Figure 11.5, we term “v” and “w” corrected substitutions for “u”. That’s because

if either “v” or “w” (but not both) were left in lieu of “u”, we would have had an

uncorrected substitution for “u”. Note that the term “corrected” refers to the fact that “v”

and “w” were backspaced, not to the fact that “u” correctly ended up in T. For example,

“v” and “w” are corrected substitutions for “u” in Figure 11.6 despite an “x” persisting as

an uncorrected substitution for “u”:

 P: quickly
IS: qv←w←xickly

Figure 11.6. The “v” and “w” are corrected substitutions for “u”, while the “x” is an
uncorrected substitution for “u”.

Subjects in text entry experiments often go a few letters past erroneous entries before

noticing their errors and backspacing to fix them (Soukoreff and MacKenzie 2004). This

can result in an input stream like the following:

 P: quickly
IS: qvlck←←←←uickly

Figure 11.7. The “vl” is erroneous but the subject did not correct it until after correctly
entering the first “ck”.

In Figure 11.7, the subject may not have spotted the erroneous “vl” until after the first

“ck”. The “v” should be classified as a corrected substitution for “u”, the “l” as a

corrected substitution for “i”, and the erased “ck” as corrected no-errors.

Chapter 11: A New Character-level Error Analysis 214

11.3.1.4 Non-recognition Substitutions

A non-recognition substitution occurs when an attempt to produce a character yields no

result. Although non-recognitions are more applicable to stroke-based entry than to keys

or buttons, virtual keyboards may regard clicks or taps that land in the “dead space”

between keys or along their margins as non-recognitions, since these are also futile

attempts to produce characters. Thus, non-recognitions are applicable to methods beyond

those that use recognizers. Indeed, any method in which an attempt to produce a character

can produce nothing is relevant.

Non-recognitions can be represented in the input stream as “ø”. Consider the input in

Figure 11.8.

 P: quickly
IS: qøuickly

Figure 11.8. The input stream contains a non-recognition “ø”.

In this example, the first attempt at “u” produced no actual character (“ø”). The

second attempt produced a “u”, and the user proceeded correctly thereafter. Note that no

backspace is required to remove a non-recognition since it does not represent a printed

character.

There are various ways to add non-recognitions to input streams (IS). One way is for

a text entry technique to send a special non-printable character code to be trapped by the

user test software and logged directly as a non-recognition. This approach may be called

“explicit non-recognition handling.” A second approach is for a log file analyzer to infer

a non-recognition when it sees that a stroke (or other effort) was begun and ended but did

not produce a character. This approach can be called “implicit non-recognition handling.”

As described below (§11.4.3), the test software supports both methods.

11.3.1.5 Corrected Insertions

Insertions are extra characters in T or IS lacking a corresponding character in P. Consider

the input in Figure 11.9.

 P: quickly
IS: qxui←←←uickly

Figure 11.9. The “x” in the input stream is a corrected insertion.

Chapter 11: A New Character-level Error Analysis 215

Here, it seems the subject inserted an “x” before the first “u”, but later noticed the

“x” and erased it. If the “x” were not erased, it would have resulted in an uncorrected

insertion. As it is, it is a corrected insertion. Note that this classification is independent of

the fact that the second “u” is ultimately transcribed in T. It is not independent, however,

of the fact that a “u” immediately follows the inserted “x”. The analysis relies on this fact

to determine that the “x” was inserted and not an attempted “u”, and the “u” an attempted

“i”, which is possible but not likely.

Note that in Figure 11.9, the first “u” and “i” are treated as errors by aggregate

measures that only count backspaces in the input stream (Soukoreff and MacKenzie

2003). But clearly, the first “u” and “i” are correct, and the current analysis treats them

that way, classifying them as corrected no-errors.

A second type of corrected insertion is when characters are entered beyond the length

of P. Figure 11.10 shows an example of this:

 P: quickly
IS: quicklxa←

Figure 11.10. The input stream shows an “a” inserted beyond the corresponding length
of the presented string.

In this example, it seems the “a” was inserted at the end of IS and then erased. Since

all letters in P and IS are already paired, the “a” is deemed a corrected insertion.

A third type of corrected insertion is when we have two identical letters in a row, and

the first one is correct but the second one is incorrect. Consider the following:

 P: speech
IS: speee←ch

Figure 11.11. The third “e” in the input stream could be the result of an accidental
doubling of the correct “e” before it.

In this example, it seems likely that the third “e” is not an attempt at “c” but an

accidental double-entry of the previous “e”. This type of corrected insertion is probably

more common to keypad or keyboard entry than stroke-based entry, since double-entries

can occur when physical buttons are pressed too firmly, held down too long, or because

the key-repeat rate is too fast. Double-entries sometimes occur with a stylus on a virtual

Chapter 11: A New Character-level Error Analysis 216

keyboard for subjects with tremor (Wobbrock et al. 2003b). Input techniques can be

“debounced” to help protect against these kinds of insertion errors.

One requirement for this type of corrected insertion is that the character prior to the

potential double-entry is correct (the second “e” in Figure 11.11). This increases our

confidence that the character under consideration (the third “e”) is indeed a double-entry.

Consider:

 P: speech
IS: spedd←←ech

Figure 11.12. The “d”’s are both deemed corrected substitutions. The second “d” is not a
corrected insertion because the “d” before it is an error.

The input in Figure 11.12 should probably not be treated as having a corrected

insertion for the second “d” because the first “d” is itself erroneous as a corrected

substitution for “e”. In this case, the second ‘d” is treated as a corrected substitution for

“c”.

11.3.1.6 Non-recognition Insertions

Only the second of the three types of corrected insertion, those caused by entering letters

beyond the length of P (Figure 11.10), applies to non-recognition insertions. For

example:

 P: cat
IS: catøø

Figure 11.13. The input stream shows two non-recognition insertions.

The input stream in Figure 11.13 shows two non-recognition insertions, both of

which occur after each letter in P is already paired with a letter in IS.

11.3.1.7 Corrected Omissions

Omissions occur when characters in P are skipped in T or IS. Corrected omissions occur

when a character in P is initially skipped but then later replaced, thus remedying the

omission. Figure 11.14 shows an example.

 P: quickly
IS: quikl←←ckly

Figure 11.14. The “c” is initially omitted, resulting in a corrected omission.

Chapter 11: A New Character-level Error Analysis 217

It seems the “c” is initially skipped but later replaced, resulting in a corrected

omission. (Corrected no-errors must be tallied for the first “kl”.) Note that the

classification of “c” as a corrected omission does not depend on a “c” ultimately being

transcribed. For example:

 P: quickly
IS: quikl←←xkly

Figure 11.15. The “c” is initially omitted, resulting in a corrected omission, even though
an “x” takes its place as an uncorrected substitution for “c”.

The input in Figure 11.15 seems to contain a corrected omission for “c”, because “c”

was initially omitted. This classification depends on the correctly entered “k”

immediately following the “i”. If the “k” were another letter, we would have no reason to

believe that the letter was not an attempted “c”—and therefore a corrected substitution.

Note that the transcribed “x” results in an uncorrected substitution for “c”.

11.3.2 Assumptions for Resolving Ambiguity
Section 11.3.1 made some implicit assumptions to resolve ambiguity. This section makes

those assumptions explicit, arguing for their reasonableness and necessity if value is to be

extracted from input streams at the level of individual characters.

11.3.2.1 Subjects Proceed Sequentially Through P

The first assumption is that subjects proceed sequentially through P as they enter IS. This

assumption is the bedrock on which this analysis is built. Consider the following:

 P: cats
IS: cuf←←ats

Figure 11.16. Our first assumption says that subjects proceed sequentially through the
presented string, so “uf” in IS is matched with “at” in P.

Our first assumption pairs “uf” with “at” in Figure 11.16. Without this assumption,

we would have to allow that any letter in IS could be paired with any letter in P, or none

in P at all! This assumption is reasonable given the nature of text entry experiments in

which subjects are instructed to sequentially transcribe presented strings.

Now consider the following:

Chapter 11: A New Character-level Error Analysis 218

 P: cat
IS: cx←at

Figure 11.17. Was the “x” an attempted “a” or merely a corrected insertion? Our first
assumption favors the former.

In this example, it seems the subject entered an “x” while attempting an “a”. Are we

sure? What if the “x” was not an attempted “a” but an insertion that was promptly

corrected? In other words, do we have a corrected substitution of “x” for “a” or a

corrected insertion of “x”? Our first assumption favors the former: “x” is paired with “a”.

Prior character-level evidence shows that substitutions are usually much more common

than insertions (MacKenzie and Soukoreff 2002a).

However, this assumption does not prevent us from detecting corrected insertions and

corrected omissions. Consider:

 P1: cat
IS1: cxa←←at

 P2: cat
IS2: ct←at

Figure 11.18. These two examples show a corrected insertion and a corrected omission,
respectively.

In the first pair, was “x” an attempted “a” and “a” an attempted “t”? Or was the “x”

simply inserted? Because the first “a” in IS1 matches the “a” in P1, we favor the latter and

report a corrected insertion for “x” and a corrected no-error for “a”.

In the second pair, was “t” an attempted “a” or was “a” omitted and then promptly

added? Since the first “t” in IS2 matches the letter after the “a” in P2, namely the “t”, we

favor the latter and report a corrected omission for “a” and a corrected no-error for the

first “t” in IS2.

11.3.2.2 Subjects Insert or Omit Only One Character in a Row

The second assumption states that subjects insert or omit only one character at a time.

Consider these variations on the input streams from Figure 11.18:

Chapter 11: A New Character-level Error Analysis 219

 P1: cats
IS1: cxfa←←←ats

 P2: cats
IS2: cs←ats

Figure 11.19. The second assumption allows for only one corrected insertion or omission
in a row. Thus, these examples contain only corrected substitutions.

In the first pair, we could regard both “x” and “f” in IS1 as corrected insertions

because they are followed by an “a”. But then, at how many consecutive insertions do we

draw the line? For tractability, we chose to draw it at one and deem “xfa” as an attempted

“ats” and report them all as corrected substitutions.

In the second pair, we might regard both “a” and “t’ in P2 as corrected omissions. But

again, at how many consecutive omissions do we draw the line? We chose to allow one

sequential omission, since subjects are instructed to progress sequentially through P and

skipping multiple letters is discouraged and uncommon in practice.

The assumptions so far allow us to avoid considering unlikely possibilities, such as:

 P: cats
IS: cxfs←←←ats

Figure 11.20. The second assumption keeps us from treating the “at” in P as initially
omitted and the “xf” in IS as initially inserted.

The limitation of one insertion or omission in a row prevents us from treating “at” in

P as omissions and “xf” in IS as insertions. Instead, we simply have corrected

substitutions of “xf” for “at”, which are much more likely and straightforward.

11.3.2.3 Backspaces Are Made Accurately and Intentionally

The third assumption is that backspaces are made both accurately and intentionally.

Backspace (“←”) is fundamental to text entry. For this reason, keyboards usually make

backspace larger than other keys and unistroke alphabets like Graffiti and EdgeWrite

assign simple straight line strokes to backspace. Designers are motivated to make

backspace quick and accurate due to its frequency and importance. As previously stated,

backspace has been shown to be the second most commonly typed desktop key after the

spacebar (MacKenzie and Soukoreff 2002b).

Chapter 11: A New Character-level Error Analysis 220

The current analysis assumes that backspaces are made accurately; that is, an

attempted “←” results in a “←”. Since we do not have any backspaces in P to compare to

those in IS, there is no implied intention on which we can rely. Accommodating the

possibility of erroneous backspaces greatly complicates the analysis and is an ambitious

topic for future work.

Clearly, not all backspaces are going to be made accurately in a large text entry

experiment. Consider these cases:

 P : cat
IS1: cxø←at
IS2: cxz←←at

Figure 11.21. The third assumption asserts that backspaces are made accurately, but
“ø←” and “←←” patterns may indicate exceptions.

In IS1, we regard the non-recognition (“ø”) as an attempted “t”, after which the

subject notices the erroneous “x” and erases it. But what if the non-recognition was a

failed first attempt at backspace? It is difficult to say, since subjects often notice errors

only after they’ve gone past them (Soukoreff and MacKenzie 2004), and “ø” could have

been an attempted letter.

Similarly, in IS2 we regard the “z” as an attempted “t”, after which the subject notices

the erroneous “x” and erases “xz”. But what if the “z” was an attempted backspace to

begin with? Again, there is no way to know, but the “←←” pattern may indicate a failed

attempt at backspace. But then again, subjects often move a few letters past an error

before noticing the error and backspacing to fix it, so perhaps the “z” was an attempted

“t” after all. There is simply no way to know, so we rely on our assumption.

The third assumption also says that backspaces are made intentionally; that is, an

attempt at something other than “←” does not result in a “←”. Consider the following:

 P: cat
IS: ca←at

Figure 11.22. The third assumption asserts that backspaces are made intentionally, but
“x←…←x” patterns may indicate exceptions.

Perhaps the subject initially thought the “a” was in error. Or perhaps the backspace

was an attempted “t”, which erased the already correct “a”, and therefore the “a” had to

Chapter 11: A New Character-level Error Analysis 221

be replaced. Under this assumption, we treat the backspace as intentional. Corrected no-

errors like the first “a” in Figure 11.22 can occur when subjects enter text quickly, since

they will occasionally anticipate an error and enter a backspace even when their entry

turns out to have been correct.

To assess the feasibility of these assumptions about backspace for a stroke-based

method, the logs from the study of Stylus EdgeWrite in §4.3.1 were manually examined.

If backspaces were error-prone, we should see many “ø←” and “←←” patterns in the

input streams. If backspaces were unintentional, we should see many “x←…←x”

patterns, where x is a correct entry and “…” are optional intervening characters.

Together, subjects in the study attempted 4932 characters. Of these, 4660 produced

characters and 272 were non-recognitions. Of the 4660 entered characters, 4207 were

alphanumeric and 453 were backspaces. The sequence “ø←” occurred 55 times, and

“←←” occurred 38 times. In scrutinizing the strokes by hand, however, it was clear that

only 8 “ø←” were due to unrecognized attempts at backspace. Similarly, only 2 “←←”

were due to misrecognized backspaces. Thus, only 10/453, or 2.21%, of attempted

backspaces appeared to violate the first part of our assumption.

Because recognition-based methods are often less accurate than selection-based

methods during entry (Költringer and Grechenig 2004), the first part of our third

assumption is likely to hold even more reliably for stylus keyboards, on-screen

keyboards, mini-QWERTY keyboards, and others, since backspace is selected and is not

the result of a potentially sloppy stroke.

The sequence “x←…←x”, where x is a correct entry, was observed 6 times. This

means only
624207

6
+−

, or 0.14%, of attempted alphanumeric characters were

unintentional backspaces,17 supporting the reasonableness of the second part of the third

assumption.

11.3.2.4 Omissions in T Are Also Omitted in IS

The fourth assumption says that letters skipped in T are also skipped in IS. Consider the

following:

17 The denominator is the total number of attempted alphanumerics: the total number of produced
alphanumerics (4207) minus those that were attempted backspaces (2) plus the backspaces that
were meant to be alphanumerics (6).

Chapter 11: A New Character-level Error Analysis 222

 P: cats
IS: cax←y←z
 T: caz

Figure 11.23. This input is ambiguous as to whether the “z” should be aligned with “t” or
“s”. Both possibilities are represented in the optimal alignment set (Figure 11.4) and are

weighted accordingly.

The transcription T for this input aligns with P as both “caz-” and “ca-z”. Two

alignments are needed because we cannot be sure whether “z” was an attempted “t” or an

attempted “s”. It may be that the subject was attempting “t” all along and forgot the “s” at

the end. Or it may be that the subject did not see the “t” and was attempting the “s”. As

discussed above (§11.2), weighting by the number of alignments accommodates this

uncertainty. Thus, in the first alignment (“caz-”), “x” and “y” are treated as attempts at

“t”; in the second (“ca-z”), they are treated as attempts at “s”.

On the other hand, what if we had an “s” in the final transcription instead of a “z”?

This is shown in the following example:

 P: cats
IS: cax←y←s
 T: cas

Figure 11.24. Our fourth assumption treats the “x” and “y” as attempts at “s”.

In this case, there is only one optimal alignment of T with P, “ca-s”, which contains

an uncorrected omission for “t”. Because the “t” was skipped, we assume the “x” and “y”

were not attempts at “t”, but attempts at “s”. After all, it was with the entry of an “s” that

the subject was satisfied to leave a character in that position. To assume otherwise is to

allow that “x” was perhaps first an attempt at “t”, and that “y” was another attempt at

“t”—or perhaps suddenly an attempt at “s”. We would have to assume that subjects left

nothing to show for their attempts at “t” and became misaligned as a result.

In our experience over many text entry studies, subjects are rarely this capricious.

Numerous studies have shown that regardless of the text entry method being used,

subjects try hard to stay aligned with P while transcribing T. If they fail to obtain a

correct letter after many tries, they often leave their final incorrect attempt and proceed,

thereby remaining aligned with P, rather than erasing their final attempt and becoming

misaligned thereafter. In other words, if the “y” in Figure 11.24 was indeed an attempt at

“t”, it is unlikely that subjects would first erase it before attempting the “s”, because this

Chapter 11: A New Character-level Error Analysis 223

throws them out of alignment and their “s” would appear below the “t”. If indeed “y” was

a failed attempt at “t”, subjects will usually leave it and simply try the “s”. In short,

subjects eschew gaps and embrace alignment.

One complication with this assumption, however, is when subjects overshoot with

backspace and neglect to replace letters. For example:

 P: cats
IS: caf←←ts
 T: cts

Figure 11.25. The subject may have overshot with backspace past the erroneous “f” and
through the correct “a”, which he then neglected to replace.

Figure 11.25 shows the erasure of an erroneous “f” and a correct “a”. Nothing is

replaced for the “a” that was accidentally erased, so the aligned transcription is “c-ts”,

which contains an uncorrected omission for “a”. Since the subject omitted “a” in T, it is

assumed they omitted it in IS, but that is not true here. This complication arises because

over backspacing without replacement injects ambiguity into discerning intention.

Fortunately, over backspacing without replacement is relatively uncommon, and is

discouraged by well designed user test software that uses fixed-width fonts for P and T

and displays P above T in close proximity. Manual inspection of data from the Stylus

EdgeWrite study (§4.3.1) revealed that only 2/453, or 0.44%, of backspaces were

overshoots. And in both cases, the letter erased by overshooting was replaced, meaning

this assumption held for all 4207 characters. Still, relaxing this assumption is a topic for

future work.

11.4 Error Detection and Classification

The following algorithm automates the detection and classification of the 10 error types

described above (§11.3.1). Automatically-generated error reports can aid designers and

evaluators in improving text entry techniques by revealing troublesome characters.

11.4.1 Algorithm Walkthrough Step by Step
The algorithm from prior work compared P and T (MacKenzie and Soukoreff 2002a).

The current algorithm builds on this work and compares P and IS. The pseudocode

enables technique designers and evaluators to incorporate this analysis into their own

work. In the code, both space and letters are referred to as just “letters” and backspace is

Chapter 11: A New Character-level Error Analysis 224

the only error correction operation. In for loops, the to keyword includes the upper-

bound. For readability, string indices are not bounds-checked, and the comparison of A[i]

to B[j] is taken to be false if either index i or j is beyond the end of its respective string A

or B.18 The notation |S| means the length of string S or the cardinality of set S. The “⇐”

symbol means “assign” while the symbol “⇐+” means “append to string” or “add to set.”

The style of this pseudocode is based on that of a popular algorithms book (Cormen et al.

1990).

11.4.1.1 Flag the Input Stream

In the first step, we flag the transcribed letters in the input stream, i.e., we flag the letters

in IS that compose T. We do this with a backward pass over IS, incrementing a counter

after passing “←”, decrementing it (but not below zero) after passing a letter, and leaving

it unchanged after passing a non-recognition (“ø”). We flag letters for which the counter

is zero before decrementing. Figure 11.26 shows a hypothetical input stream for T =

“qucehkly” from Figure 11.3. Flagged letters are bold:

count: 12100010001000121000010
 IS: pv←←quc←cøk←ehly←←klyz←

Figure 11.26. The first step is to flag the letters in the input stream that compose the
transcribed string using a backward pass.

The pseudocode for this step is given in Figure 11.27.

FLAG-STREAM(IS)
1 count ⇐ 0
2 for i ⇐ |IS| – 1 to 0 do
3 if IS[i] = '←' then
4 count ⇐ count + 1
5 else if IS-LETTER(IS[i]) then
6 if count = 0 then FLAG(IS[i])
7 else count ⇐ count – 1
8 return IS

Figure 11.27. Algorithm for “flagging” the characters in IS that compose T.

11.4.1.2 Compute the MSD Matrix

The second step is to compute the minimum string distance (MSD) matrix. The MSD

algorithm fills a matrix of integers as it determines the minimum number of operations

18 Where necessary, one can add checks so that tests fail if an index is out of bounds. Thus,
if (A[i] = B[j]) expands to if (i < |A| and j < |B| and A[i] = B[j]).

Chapter 11: A New Character-level Error Analysis 225

required to equate two strings. A prior version of the algorithm (Soukoreff and

MacKenzie 2001) is adjusted to return not just the string distance but also the filled MSD

matrix, which we will use in the next step. Readers wishing further details on this

algorithm are directed to that paper or earlier ones (Levenshtein 1965, Wagner and

Fischer 1974).

MSD-MATRIX(P, T)
1 D ⇐ new matrix of dimensions |P| + 1, |T| + 1
2 for i ⇐ 0 to |P| do
3 D[i, 0] ⇐ i
4 for j ⇐ 0 to |T| do
5 D[0, j] ⇐ j
6 for i ⇐ 1 to |P| do
7 for j ⇐ 1 to |T| do
8 D[i, j] ⇐ MIN(D[i – 1, j] + 1,
9 D[i, j – 1] + 1,
10 D[i – 1, j – 1] + P[i – 1] ≠ T[j – 1])
11 return D[|P|, |T|] and D

Figure 11.28. Algorithm for computing the minimum string distance. In this case, the ≠
comparison returns integer ‘1’ if true and integer ‘0’ if false.

11.4.1.3 Compute the Set of Optimal Alignments

The third step is to compute the set of optimal alignments of P and T (see Figure 11.4). In

Figure 11.29, D is the MSD matrix, and x and y are initialized with the lengths of P and

T, respectively. P’ and T’ are initially empty strings and the “+” operation on them is

string concatenation. For more information, readers are directed to prior work

(MacKenzie and Soukoreff 2002a).

ALIGN(P, T, D, x, y, P’, T’, ref alignments)
1 if x = 0 and y = 0 then
2 alignments ⇐+ (P’, T’) // add a new aligned pair
3 return
4 if x > 0 and y > 0 then
5 if D[x, y] = D[x – 1, y – 1] and P[x – 1] = T[y – 1] then
6 ALIGN(P, T, D, x – 1, y – 1, P[x – 1] + P’, T[y – 1] + T’)
7 if D[x, y] = D[x – 1, y – 1] + 1 then
8 ALIGN(P, T, D, x – 1, y – 1, P[x – 1] + P’, T[y – 1] + T’)
9 if x > 0 and D[x, y] = D[x – 1, y] + 1 then
10 ALIGN(P, T, D, x – 1, y, P[x – 1] + P’, “-” + T’)
11 if y > 0 and D[x, y] = D[x, y – 1] + 1 then
12 ALIGN(P, T, D, x, y – 1, “-” + P’, T[y – 1] + T’)

Figure 11.29. Algorithm for computing the optimal alignments of P and T. Reproduced
with permission (MacKenzie and Soukoreff 2002a).

Chapter 11: A New Character-level Error Analysis 226

11.4.1.4 Stream-Align IS with P and T

In the fourth step, we add a copy of IS, each still “flagged,” to each optimal alignment

pair computed by ALIGN, thereby forming optimal alignment triplets. We then stream-

align the triplets so that P, T, and IS are all aligned. We do this by aligning the flagged

letters in IS with their correspondents in P and T. The last alignment from Figure 11.4

looks like this when stream-aligned:

 P4: ____qui__c___--____kly__
 T4: ____qu-__c___eh____kly__
IS4: pv←←qu_c←cøk←ehly←←klyz←

Figure 11.30. A stream-aligned triplet of (P, T, IS). This is the fourth of the optimal
alignments from Figure 11.4.

The triplet in Figure 11.30 uses underscore spacers (“_”) in P and T where flagged

letters in IS are absent, and in IS where uncorrected omissions are in T (i.e., where “-”

symbols appear in T). Figure 11.31 gives the pseudocode for stream-aligning P, T, and IS.

STREAM-ALIGN(IS, alignments)
1 foreach aligned pair <P’, T’> in alignments do
2 IS’ ⇐ COPY(IS)
3 for i ⇐ 0 to MAX(|T’|, |IS’|) – 1 do
4 if T’[i] = '-' then
5 INSERT('_', IS’[i])
6 else if not IS-FLAGGED(IS’[i]) then
7 INSERT('_', P’[i])
8 INSERT('_', T’[i])
9 triplets ⇐+ (P’, T’, IS’) // add a new aligned triplet
10 return triplets

Figure 11.31. Algorithm for aligning P, T, and IS.

11.4.1.5 Assign Position Values to Characters in the Input Stream

The fifth step is to assign “position values” to each character in IS. Position values help

determine the intended letter in P for each letter in IS. Flagged letters always receive a

position value of zero. (Recall that flagged letters are those in IS that compose T.

Unflagged characters are erased letters, backspaces, non-recognitions, and underscore

spacers.) Within each unflagged substring between two flags in IS, a letter’s position

value is the substring index it would have had if that substring were transcribed to that

point. A backspace’s position value, by contrast, is the position value of the letter that the

backspace erases. The position values for our example are shown in Figure 11.32.

Chapter 11: A New Character-level Error Analysis 227

 011000000000000011000000
IS4: pv←←qu_c←cøk←ehly←←klyz←

Figure 11.32. Position values are shown atop characters in the input stream. They are
assigned using a forward pass.

The algorithm for assigning position values is shown in Figure 11.33. The function

receives the set of triplets from STREAM-ALIGN.

ASSIGN-POSITION-VALUES(ref triplets)
1 foreach aligned triplet <P, T, IS> in triplets do
2 pos ⇐ 0
3 for i ⇐ 0 to |IS| – 1 do
4 if IS-FLAGGED(IS[i]) then
5 SET-POSITION-VALUE(IS[i], 0)
6 pos ⇐ 0
7 else
8 if IS[i] = '←' and pos > 0 then
9 pos ⇐ pos – 1
10 SET-POSITION-VALUE(IS[i], pos)
11 if IS-LETTER(IS[i]) then
12 pos ⇐ pos + 1

Figure 11.33. Algorithm for assigning position values to characters in IS. Position values
help determine the intended letter in P for each letter in IS.

11.4.1.6 Proceed Through IS to Detect and Classify Errors

The sixth and final step of the algorithm proceeds through each IS in each stream-aligned

triplet and classifies each input stream character. The procedure takes successive

substrings between flagged letters in IS, where the substrings are bound by a flagged

character on their right but not on their left. Thus, the first three substrings of IS4 from

Figure 11.30 are “pv←←q”, “u”, and “_c←c”. Letters within a substring are then

compared to corresponding letters in P. These “corresponding letters” are determined

using the position values just assigned in Figure 11.33. The comparisons performed for

the fourth stream-alignment (Figure 11.30) are illustrated in Figure 11.34. Note that this

processing is applied to each triplet returned by STREAM-ALIGN, not just this one.

Figure 11.34. Comparisons made for the fourth stream-alignment (Figure 11.30).

Chapter 11: A New Character-level Error Analysis 228

DETERMINE-ERRORS(triplets)
1 foreach aligned triplet <P, T, IS> in triplets do
2 a ⇐ 0
3 for b ⇐ 0 to |IS| – 1 do
4 if T[b] = '-' then
5 UNCORRECTED-OMISSION(P[b])
6 else if IS-FLAGGED(IS[b]) or b = |IS| – 1 then
7 M ⇐ new integer set // corrected omissions
8 I ⇐ new integer set // corrected insertions
9 for i ⇐ a to b – 1 do // iterate over a substring between flags
10 v ⇐ GET-POSITION-VALUE(IS[i])
11 if IS[i] = '←' then
12 if CONTAINS(M, v) then REMOVE(M, v)
13 if CONTAINS(I, v) then REMOVE(I, v)
14 else if IS[i] ≠ '_' then
15 target ⇐ LOOK-AHEAD(P, b, v + |M| – |I|, IS-LETTER)
16 if IS[i] = 'ø' then
17 if target ≥ |P| then NONREC-INSERTION('ø')
18 else NONREC-SUBSTITUTION(P[target], 'ø')
19 else // IS[i] is a letter
20 nextP ⇐ LOOK-AHEAD(P, target, 1, IS-LETTER)
21 prevP ⇐ LOOK-BEHIND(P, target, 1, IS-LETTER)
22 nextIS ⇐ LOOK-AHEAD(IS, i, 1, IS-NOT('ø', '_'))
23 prevIS ⇐ LOOK-BEHIND(IS, i, 1, IS-NOT('_'))
24 if IS[i] = P[target] then
25 CORRECTED-NOERROR(IS[i])
26 else if target ≥ |P| or IS[nextIS] = P[target]
27 or (IS[prevIS] = IS[i] and IS[prevIS] = P[prevP]) then
28 CORRECTED-INSERTION(IS[i])
29 I ⇐+ v // track this corrected insertion
30 else if IS[i] = P[nextP] and IS-LETTER(T[target]) then
31 CORRECTED-OMISSION(P[target])
32 CORRECTED-NOERROR(IS[i])
33 M ⇐+ v // track this corrected omission
34 else CORRECTED-SUBSTITUTION(P[target], IS[i])
35 end for // i from a...b – 1
36 if P[b] = '-' then UNCORRECTED-INSERTION(T[b])
37 else if P[b] ≠ T[b] then UNCORRECTED-SUBSTITUTION(P[b], T[b])
38 else if P[b] ≠ '_' then UNCORRECTED-NOERROR(T[b])
39 else if IS[b] = 'ø' then NONREC-INSERTION('ø')
40 a ⇐ b + 1 // a starts the next substring

Figure 11.35. Algorithm for classifying errors in the input stream. This algorithm finds
all errors from previous work (MacKenzie and Soukoreff 2002a) and the new input

stream error types described in §11.3.1.

Chapter 11: A New Character-level Error Analysis 229

LOOK-AHEAD(S, start, count, CONDITION-FN)
1 index ⇐ start
2 while 0 ≤ index < |S| and not CONDITION-FN(S[index]) do
3 index ⇐ index + 1 // proceed until the condition is met
4 while count > 0 and index < |S| do
5 index ⇐ index + 1
6 if index = |S| then break
7 else if CONDITION-FN(S[index]) then
8 count ⇐ count – 1
9 return index

Figure 11.36. Procedure used by DETERMINE-ERRORS (Figure 11.35). This procedure
looks forward in string S from a zero-based index start until a count number of

CONDITION-FNs have been satisfied, returning the index of the countth successful test. An
example is LOOK-AHEAD(P, 0, 2, IS-LETTER), which would find two letters ahead of the

first letter in P (i.e. the 3rd letter).

LOOK-BEHIND(S, start, count, CONDITION-FN)
1 index ⇐ start
2 while 0 ≤ index < |S| and not CONDITION-FN(S[index]) do
3 index ⇐ index – 1 // go back until the condition is met
4 while count > 0 and index ≥ 0 do
5 index ⇐ index – 1
6 if index < 0 then break
7 else if CONDITION-FN(S[index]) then
8 count ⇐ count – 1
9 return index

Figure 11.37. Procedure used by DETERMINE-ERRORS (Figure 11.35). This function is
analogous to LOOK-AHEAD but operates in the reverse direction.

The intended letter in P (i.e. P[target]) is determined by using the position value at

IS[i]. This value, which in DETERMINE-ERRORS is stored in the variable v, is added to

|M| – |I| to determine the target in P. The set M stores the position values of letters that

precipitate corrected omissions, and the set I stores position values of letters that are

corrected insertions. When a backspace ('←') is processed, the sets M and I are inspected

to see if they contain the position value of the backspace; that is, to see if a corrected

omission or corrected insertion was just “undone.” If the value v is found, it is removed

from M or I accordingly. This, in turn, appropriately affects the determination of the

target index, since target is calculated using v + |M| – |I|.

Figure 11.38 gives the output of DETERMINE-ERRORS for the example triplet from

Figure 11.30 and Figure 11.34. The output shows 18 results. This compares to only 9

results available from an analysis of just P and T. Thus, using the input stream has

Chapter 11: A New Character-level Error Analysis 230

doubled the character-level error data available for analysis. The triplet is reproduced

here for convenience.

 P4: ____qui__c___--____kly__
 T4: ____qu-__c___eh____kly__
IS4: pv←←qu_c←cøk←ehly←←klyz←

corrected substitution (q, p)
corrected substitution (u, v)
uncorrected no-error (q, q)
uncorrected no-error (u, u)
uncorrected omission (i, -)
corrected no-error (c, c)
uncorrected no-error (c, c)
non-recognition substitution (k, ø)
corrected no-error(k, k)
uncorrected insertion (-, e)
uncorrected insertion (-, h)
corrected omission (k, -)
corrected no-error (l, l)
corrected no-error (y, y)
uncorrected no-error(k, k)
uncorrected no-error (l, l)
uncorrected no-error (y, y)
corrected insertion (-, z)

Figure 11.38. Classification output for the triplet from Figure 11.30. Each line can be
read as classification(intended character, produced character).

11.4.2 Character-level Metrics
After processing data from an experiment, we have error tallies for each letter. We also

have counts: how many times was each letter presented? transcribed? entered? intended?

correct? unrecognized? Note that only the first two of these are available from an analysis

of just P and T.

11.4.2.1 Three Error Rates

Each character has three separate error rates: uncorrected, corrected, and total. These are

defined as follows for a given character i:

i

i
i dTranscribe

NoErrorsdUncorrecte
Error RatedUncorrecte

1 −= (11.1)

ii

i
i dTranscribeEntered

NoErrorsCorrected
Error RateCorrected

−
−=

1 (11.2)

i

ii
i Entered

NoErrorsCorrectedNoErrorsdUncorrecte
Error RateTotal

1

+
−= (11.3)

Chapter 11: A New Character-level Error Analysis 231

Equation 11.1 answers the question, “of the i’s remaining in the transcription, what

percent were erroneous?” Equation 11.2 answers, “of the erased i’s, what percent were

erroneous?” Equation 11.3 answers, “of all entered i’s, what percent were erroneous?”

Note that a high error rate for Equation 11.2 means that most of the backspaced i’s were

in fact errors and should have been corrected. Conversely, a low rate for Equation 11.2

means that subjects were erasing already-correct i’s, which means they were too hasty to

backspace.

The total error rate for a letter (Equation 11.3) refers only to actual entries of that

letter. It says, “given that an i was entered, what are the chances that i was correct?”

Omissions of i are therefore not captured by Equation 11.3. Instead, omissions are

handled by their own error rate, described below.

11.4.2.2 Substitutions vs. Intentions

The character-level data allow us to answer the question, “what is the probability of

getting i when trying for i?” For this we take the ratio of substitutions to intentions. The

number of times a letter was “intended” is obtained by adding its substitutions and no-

errors. These five error types (uncorrected, corrected, and non-recognition substitutions;

and uncorrected and corrected no-errors) have intended target letters and actual produced

letters (or non-recognitions).

i

i
i Intended

onsSubstitutidUncorrecteRateonSubstitutidUncorrecte = (11.4)

i

i
i Intended

onsSubstitutiCorrectedRateonSubstitutiCorrected = (11.5)

i

i
i Intended

onsSubstitutitionNonrecogniRateonSubstitutitionNonrecogni = (11.6)

(11.7)

Equation 11.4 answers the question, “when trying for i, what is the probability we

produce an uncorrected substitution for i?” Similar questions can be asked of corrected

substitutions (Equation 11.5) and non-recognition substitutions (Equation 11.6). Equation

11.7 answers, “when trying for i, what is the probability that we don’t get i?”

Chapter 11: A New Character-level Error Analysis 232

11.4.2.3 Omissions vs. Presentations

We can also determine whether or not some letters are prone to omission. For this we

take the ratio of omissions to presentations, i.e., the number of times a letter was omitted

compared to the number of times it was presented to the subject for transcription.

i

i
i Presented

OmissionsdUncorrecteRateOmissiondUncorrecte = (11.8)

i

i
i Presented

OmissionsCorrectedRateOmissionCorrected = (11.9)

i

ii
i Presented

OmissionsCorrectedOmissionsdUncorrecteRateOmissionTotal +
= (11.10)

Equations 11.9 and 11.10 are special in that they can be over 100% if a single

presented letter is omitted repeatedly. This is a theoretical possibility but subjects are

unlikely to exhibit this behavior.

11.4.2.4 Insertions vs. Entries

We can also discover whether or not a letter i is prone to insertion. For this we take the

ratio of i’s insertions to i’s entries.

i

i
i Entered

InsertionsdUncorrecteRateInsertiondUncorrecte = (11.11)

i

i
i Entered

InsertionsCorrectedRateInsertionCorrected = (11.12)

i

ii
i Entered

InsertionsCorrectedInsertionsdUncorrecteRateInsertionTotal +
= (11.13)

11.4.3 TextTest and StreamAnalyzer
To facilitate the automation of the analyses described in this paper, two complementary

applications were built. The first is TextTest (shown in Figure 2.14), a program designed

for conducting text entry evaluations. It works on Microsoft Windows systems with any

text entry method, provided the method sends characters through the low-level keyboard

input stream. For example, the SendInput() and keybd_event() Win32 functions or

the SendKeys methods in C# or VB .NET do this on Windows systems. TextTest can

also send or receive characters over TCP for conducting studies on mobile devices.

Chapter 11: A New Character-level Error Analysis 233

Recognition-based text entry methods can send special non-printing character codes

to TextTest for explicitly logging character-starts, character-ends, and non-recognitions.

TextTest randomly presents phrases from a published corpus of 500 (MacKenzie and

Soukoreff 2003), or from any custom phrase set, and writes XML log files for easy

parsing. TextTest is implemented in C#.

Accompanying TextTest is a log file analyzer named StreamAnalyzer that parses

TextTest’s XML logs and computes various measures of text entry performance.

Alternatively, when run with the “-d” switch, StreamAnalyzer can be used to analyze any

P and IS given directly from the console. StreamAnalyzer performs all of the analyses

described in this paper and in papers on which this work builds. It writes its output to a

space-delimited text file, which can easily be pasted into a spreadsheet for statistical

analysis. Like TextTest, the analyzer is written in C#. Both programs have been available

for download at http://www.edgewrite.com/dev.html since 2004.

11.5 Comparison of Analyses

To illustrate the advantages of analyzing input streams over just analyzing transcribed

strings, both analyses were used on text entry data from the study of Stylus EdgeWrite

(§4.3.1) in which 5 first-time novices entered a total of 75 sentences for 3750 presented

characters. They made 4932 attempts for 4660 produced characters and 272 non-

recognitions. Of the characters, 4207 were “letters” (alphanumerics or spaces) and 453

were backspaces.

11.5.1 Error Rate Tables
Character-level probability tables show error rates for each letter (MacKenzie and

Soukoreff 2002a). MacKenzie and Soukoreff’s analysis enables the production of tables

that list error rates for uncorrected insertions, substitutions, and omissions. Space

precludes a full table here, so Table 11.1 shows the letters with the 3 highest error rates

and the letter “e” for comparisons.

Chapter 11: A New Character-level Error Analysis 234

Table 11.1. An excerpt of character-level results using MacKenzie and Soukoreff’s
analysis. The bottom row is for the whole table, not just for the excerpt shown here.

Note the relatively few total uncorrected errors examinable by this analysis (0.5%).

In fact, only 8 of the 37 characters (a–z, 0–9, space) in the full table have non-zero error

rates. Perhaps subjects were careful in correcting errors. Or perhaps they did not make

many errors to begin with. With this analysis, there is no way to know.

A much bigger table results from analyses of input streams. The table has a row for

each letter and a column for each count and character-level measure. This table, which is

automatically generated by StreamAnalyzer, reports that “e” was intended 344 times,

entered 360 times, correct 330 times, and unrecognized 8 times. The chances of getting

another character when intending an “e” were 4.0%. There were no omissions of “e” and

5 insertions of “e”, or 1.4% of all entered “e”’s. These are the types of results available

from our character-level analysis of input streams.

Table 11.2. An excerpt of character-level results using the current analysis. The bottom

row is for the whole table, not just for the excerpt shown here.

Chapter 11: A New Character-level Error Analysis 235

Table 11.2 is an excerpt from the full table, containing only a subset of the full

table’s rows and columns. It shows the letters with the 3 highest error rates and the letter

“e” for comparisons.

The results in Table 11.2 differ substantially from those in Table 11.1 because of the

inclusion of corrected errors. Overall, an attempt to make a letter had a 14.4% chance of

being a substitution, not just a 0.2% chance as reported in Table 11.1. This rate is high

because the test subjects were first-time users with minimal practice.

11.5.2 Confusion Matrices
The error rate tables tell us which characters are prone to different errors, among them

substitutions. But the tables do not tell us what those substitution errors are. For this we

use a confusion matrix (Grudin 1984, MacKenzie and Soukoreff 2002a). This is similar,

but not identical to, the confusion matrices used in handwriting recognition. Those

confusion matrices indicate where a gesture recognizer has trouble differentiating

between written characters or words. By contrast, the confusion matrices here show

where the user has intended some letter but produced another. This may indeed be due to

a poor recognizer, or it may be due to user confusion, forgetting how to make a letter, or

guessing incorrectly. For example, in Graffiti, “k” and “x” are mirror images. Although

the Graffiti recognizer has no trouble distinguishing between them, novices often mistake

one for the other (MacKenzie and Zhang 1997).

In the matrix, the x-axis is the intended character and the y-axis is the produced

character. For a character, “total attempts” is the sum of its matrix column and “total

entries” (not including insertions) is the sum of its matrix row.

Values along the diagonal—where the intended and produced characters match—

represent correct entries and dwarf the values off the diagonal. Values along the diagonal

are therefore omitted so that the substitution errors are more visible in Figure 11.39.

Chapter 11: A New Character-level Error Analysis 236

Figure 11.39. (a) Confusion matrices from the previous analysis of P and T and (b) the

current analysis of P, T, and IS for the same empirical data. These matrices are
automatically produced by StreamAnalyzer. The large discrepancies in the two graphs are

due to corrected substitutions, since these appear in IS but not in T. The high values
against the back wall in the bottom graph are non-recognition substitutions.

Figure 11.39a has a maximum value of just 1 off of its diagonal. Figure 11.39b has a

maximum value of 32 for non-recognition substitutions (“m”, ø) and 18 for alphabetic

substitutions (“u”, “l”).

a.

b.

Chapter 11: A New Character-level Error Analysis 237

One unexpected finding from Figure 11.39b not available in Figure 11.39a is the high

number of “l”’s produced when trying for “u”’s, since (“u”, “l”) = 18. In EdgeWrite, if

subjects lift their stylus prematurely while trying for a “u”, an “l” can result, and

apparently this happened often.

Another unexpected finding was the high non-recognition rate for “n”, since (“n”, ø)

= 28. The reason for this appears to be that in making the diagonal portion of “n”,

subjects sometimes caught the bottom-left corner accidentally, which resulted in a non-

recognition since that corner sequence is not defined in alphanumeric mode. A

subsequent redesign of the corner regions changed them from rectangles to triangles and

remedied this problem (§4.2.2).

Another interesting character-level finding was the high substitution rate of “i” for

“l”, since (“l”, “i”) = 16. This tells us that when subjects were trying to produce an “l”,

they often conceived of a lowercase “l”-shape, i.e., a line straight down. Such a stroke is

an “i” in EdgeWrite, whereas an “l” is a capital “L”-shape down and then across.

Yet another finding of interest was the confusion of “f” for “t”, since (“t”, “f”) = 15.

The strokes for “t” and “f” are mirror images of each other, i.e., reflections over the

vertical. Apparently this was confusing to subjects when intending to write “t”. However,

the reverse was not the case, since (“f”, “t”) = 1, meaning that when trying for “f”,

subjects were not confusing it with the shape of “t”. Incorporating linguistic information

in the form of letter digraph probabilities, for example, might be one way to remedy this

confusion by allowing the “f” stroke to enter “t” if the previous character indicates that

“t” is much more likely than “f”.

11.6 Summary

The unconstrained text entry evaluation paradigm has changed the way rigorous text

entry experiments can be conducted. However, with the advent of this paradigm comes a

major challenge in capturing character-level errors, particularly in the input stream where

such errors are most prevalent. Although they were artificial and often frustrating for

users, the former constrained text entry evaluation paradigms made it trivial to assess

character-level errors, making the use of the new unconstrained paradigm a tradeoff

rather than an outright win over older, more artificial paradigms.

Chapter 11: A New Character-level Error Analysis 238

This chapter has presented a technique and tools for the analysis of aggregate and

character-level errors in the input stream, independent of the character-level entry method

under investigation. It has shown the value in performing character-level error analyses

on input streams rather than just on transcribed strings. Despite the inherent ambiguity in

input streams, we are able to extract error information using four testable assumptions.

The taxonomy of input stream error types provides a means of describing character-level

errors in a well-defined fashion at a fine-grained level. The current measures, the

algorithms that automate them, and the software that implements them can aid designers

and evaluators of text entry methods by providing them with a richer picture of the text

entry process.

Chapter 12: Conclusion 239

Chapter 12

12 Conclusion

12.1 Discussion

This dissertation presented a versatile design for text entry and control called EdgeWrite.

As part of this presentation, new generally applicable text entry concepts have been

developed such as continuous recognition feedback, non-recognition retry, slip detection,

and word-level stroking. Many of these techniques capitalize on the fact that strokes are

fully defined by a sequence of corners—a simple but useful concept that enables new

interaction techniques not previously realized in any text entry method. Beyond these

new concepts, numerous specific EdgeWrite versions have been designed, built, and

evaluated. A wide range of devices, technologies, and segmentation schemes have been

used, some targeting motor-impaired users and others aimed at the able-bodied

mainstream. Although results for different versions vary, all versions are robust, usable

implementations suitable for text entry in the real world.

12.1.1 Design Space
One way of visualizing the various versions of EdgeWrite is by constructing a design

space (Card et al. 1990). The space, shown in Table 12.1, classifies techniques according

to segmentation scheme, use of edges, input area size, positioning control, and sensing. It

also groups similar techniques and gives their chapter numbers for reference.

C
ha

pt
er

 1
2:

 C
on

cl
us

io
n

24
0

T

ab
le

 1
2.

1.
 A

 d
es

ig
n

sp
ac

e
of

 E
dg

eW
rit

e
in

pu
t t

ec
hn

iq
ue

s.
R

ow
s g

ro
up

 m
et

ho
ds

 b
y

se
gm

en
ta

tio
n

sc
he

m
e.

 C
ol

or
ed

 c
ol

um
n

ar
ea

s r
ep

re
se

nt

di
ff

er
en

t p
ro

pe
rti

es
. E

ac
h

of
 th

e
14

 te
ch

ni
qu

es
 is

 li
st

ed
 o

nc
e

w
ith

in
 e

ac
h

co
lo

re
d

ar
ea

. N
um

be
rs

 in
 p

ar
en

th
es

es
 a

re
 c

ha
pt

er
s.

Chapter 12: Conclusion 241

The design space shows all 14 of the EdgeWrite techniques described in this

dissertation, including those developed by others (§10). Although there is similarity

among some of the techniques, there is also great diversity when we consider the rather

large differences that exist between trackballs and displacement joysticks, styli and four-

keys. That one unified design for text entry can work with a mnemonic Roman-like

alphabet on such a breadth of devices is an important accomplishment of the current

work.

The design space also reveals new opportunities to explore. Empty cells indicate

untapped regions that may hold new possibilities for design. For example, it may be

fruitful to investigate a stylus version that uses pressure to segment instead of lift, thereby

allowing a blind person to maintain contact with the writing surface at all times.

Similarly, no “tiny” displacement joystick methods were explored; could snap-to-center

segmentation be used for a mobile phone-sized displacement joystick? How would that

compare to an isometric joystick (§8)? What about an eye-tracking version that uses an

adaptive timeout to segment, since no concept of “lift” is available? These are just some

of the possibilities the design space reveals.

12.1.2 Major Results
Beyond EdgeWrite devices and techniques, this dissertation has presented empirical

studies of EdgeWrite methods, often comparing them against commercially-available

competitor methods. In summary, the significant empirical results that highlight

EdgeWrite’s strengths are:

• Stylus EdgeWrite had 15.4% lower KSPC than Graffiti (1.21 vs. 1.43) for able-

bodied novices during entry with no significant difference in speed. Furthermore,

Stylus EdgeWrite was 37.3% more accurate than Graffiti for five motor-impaired

novices (98.4% vs. 71.7% accuracy). Able-bodied experts are able to write at

24.0 WPM with 2.8% total errors with the character-level version. In addition,

Fisch in-stroke word completion supports “record speeds” of over 60 WPM for

certain phrases.

• Joystick EdgeWrite left 62.5% fewer errors than selection keyboard (0.27% vs.

0.72% uncorrected errors) and was 3.7% faster (6.40 vs. 6.17 WPM) for able-

bodied novices. In addition, it left 56.5% fewer errors (0.27% vs. 0.62%

Chapter 12: Conclusion 242

uncorrected errors) and was 44.5% faster (6.40 vs. 4.43 WPM) than date stamp.

On a 5-point Likert scale, subjects rated EdgeWrite 39.1% better than selection

keyboard and 33.0% better than date stamp. Experts range from 10.4–14.7 WPM

with 6.3–8.8% total errors.

• Power Wheelchair Joystick EdgeWrite was initially slower (0.77 vs. 0.84 WPM)

and less accurate than joystick WiViK for motor-impaired novices. However, it

improved significantly over sessions, and its learning curve shows a crossover

point with joystick WiViK at session 8 (~3 hours). Its peak session speed was

0.98 WPM in session 7. Able-bodied experts can write at 12.9 WPM with 8.4%

total errors.

• Touchpad EdgeWrite was 19.0% faster (1.00 vs. 0.84 WPM) but made

significantly more errors than joystick WiViK for motor-impaired novices.

Nevertheless, subjects categorically preferred Touchpad EdgeWrite to joystick

WiViK. Touchpad EdgeWrite improved significantly over sessions, and its

learning curve shows a crossover point with touchpad WiViK at session 5.5 (~2

hours). Its peak speed was 1.56 WPM in session 8. Able-bodied experts can write

at 19.1 WPM with 4.7% total errors.

• Trackball EdgeWrite was 15.4% faster (5.61 vs. 4.86 WPM) and left 44.8%

fewer errors (1.12% vs. 2.03% uncorrected errors) than an on-screen keyboard on

average over nine semi-weekly sessions for a subject with a spinal cord injury. Its

peak character-level speed was 8.25 WPM compared to 6.90 WPM for the on-

screen keyboard. In a second study, word-level Trackball EdgeWrite entered text

at 12.09 WPM, which was 46.5% faster than character-level Trackball

EdgeWrite (8.25 WPM) and 75.2% faster than the on-screen keyboard without

word prediction (6.90 WPM). Also, the word-level version provides a 43.9%

stroke savings over long-term use. Furthermore, the subject indicated a strong

preference for EdgeWrite because of its reduced visual attention and fatigue. He

has given up on-screen keyboards in favor of Trackball EdgeWrite for everyday

use. Able-bodied experts can write from 6.75–12.75 WPM with <4% total errors

with the character-level version.

Chapter 12: Conclusion 243

• Isometric Joystick EdgeWrite was just as fast as Multitap, each at about 9.5

WPM. Multitap had fewer errors, but both methods had low uncorrected errors

(≤1%). Learning curves show EdgeWrite overtaking Multitap at session 18 (~4

hours). Two of 4 subjects were significantly faster with EdgeWrite, and all 4

subjects preferred EdgeWrite to Multitap. The word-level version was just as fast

as T9 for 3 subjects (~12.8 WPM), but for one subject it was significantly slower

than T9. However, it was 36.4% faster and left 46.5% fewer errors than the

character-level version of Isometric Joystick EdgeWrite.

Isometric Joystick EdgeWrite outperformed Multitap when used “under the

table” such that the device was held out of sight. EdgeWrite was faster than

Multitap (9.78 vs. 5.00 WPM) and more accurate (18.77% vs. 28.16% total

errors).

Isometric Joystick EdgeWrite showed promise on the back of a mobile phone

using an index finger. Subjects could write at 7.70 WPM with 2.86% uncorrected

errors. The peak session speed for the back joystick was 8.87 WPM.

• Four-key EdgeWrite was tested with and without its stroke visualization. With

these versions combined, after 10 sessions it was 67.2% faster than a 3-key

method (16.41 vs. 9.81 WPM) and 27.6% faster than a 5-key method (16.41 vs.

12.86 WPM). However, it also left more errors, although uncorrected error rates

were low for all methods (≤2%). The fastest subject entered his quickest phrase

at 24.06 WPM with Four-key EdgeWrite. In addition, not seeing the stroke

visualization seemed to have no effect on performance with Four-key EdgeWrite.

• Four-sensor EdgeWrite supports writing using four capacitive sensors. Able-

bodied expert speeds are 11.38 WPM with 4.36% total errors.

12.1.3 Reflections and Insights
This dissertation has presented multiple versions of EdgeWrite. But what can be said

about EdgeWrite in general? Although each version uses the same alphabet, most

versions differ in substantial ways, making it difficult to derive lessons from EdgeWrite

as a whole. However, there are some reflections and insights that the process of

designing, building, and evaluating EdgeWrite has generated. These are shared in this

section.

Chapter 12: Conclusion 244

In many ways, EdgeWrite’s corners are more central than its edges. In fact, the

importance of EdgeWrite’s corners makes CornerWrite a reasonable alternative.

Although some versions of EdgeWrite have physical edges, others do not—but all

versions employ some notion of corners as targets for strokes. Corners define

EdgeWrite’s characters. They constitute the “bare necessities” of the technique, as

demonstrated by Four-key (§9.2) and Four-sensor EdgeWrite (§9.4), which have nothing

but corners. Certainly physical edges are helpful to the stylus, touchpad, and joystick

versions, but corners play a critical role in all versions of the technique.

EdgeWrite’s Roman-like letter-strokes are one of its major strengths. Having Roman-

like letter-forms brings a great number of benefits, including higher guessability,

shortened learning and practice times, better memorability, and lessened frustration for

users who may balk at having to learn seemingly arbitrary gestures. The major tradeoff

here is that the EdgeWrite gestures are not optimized for minimal movement, but the

difficulty of learning Unistrokes (Goldberg and Richardson 1993), the need for reduced

practice sessions for people who fatigue rapidly, and the intermittent use of mobile

devices all point toward the need for a Roman-like alphabet.

Another benefit of EdgeWrite’s corner-defined Roman-like alphabet is that it can be

learned on one device but immediately used on another. This cross-device transfer of skill

was useful to Jim (§7.3.3), who initially learned EdgeWrite on a trackball but could later

transfer his knowledge to the Palm PDA. Similarly, the subjects who used the steering

wheel version (§10.1) had previously learned the alphabet with the isometric joystick on

the mobile phone (§8.3). Transferring their knowledge of the EdgeWrite alphabet from

the phone to the steering wheel was very easy for these subjects.

It is clear from this work that the process of designing technology can benefit from

incorporating both theoretical models and real-world participants. The use of a theoretical

model helped correct an erroneous intuition in the design of Trackball EdgeWrite

(§7.2.3), namely that removing the need to move to the first corner would result in a

faster technique. Although this intuition seemed straightforward, it turned out to be

wrong both in theory and in practice.

Similarly, incorporating real participants in the design process helped improve the

designer-made EdgeWrite alphabet (§3.3.3), even though participants were not aware that

Chapter 12: Conclusion 245

they were “designing” at all. The variety of responses made available by participants is a

key benefit. The challenge is to reduce the participants’ task to something concrete while

still being valuable to the designers.

In empirical studies, it was interesting to note that subjects often discovered character

strokes other than those appearing on the primary chart (Figure 3.9). These discoveries

support the case for high redundancy in the EdgeWrite alphabet. Notably, EdgeWrite has

more alternate strokes for letters than Unistrokes, Graffiti, or even Jot. Also interesting

was that when subjects found an alternate character form, they usually stuck with it,

preferring to use something they had discovered than to continue guessing possible

alternatives.

It was also clear from studies that subjects’ motor perception is much faster than their

visual perception. For example, subjects would often “feel” that they had made a mistake

while making a stroke and (sometimes prematurely, before segmentation) enter a

backspace. This phenomenon may have been heightened for the versions with physical

edges, since physical edges provide a sort of passive haptic feedback to the user. A

feature that takes advantage of this fast motor-perceptual loop is non-recognition retry

(§3.4.2), since it allows subjects to fluidly restart letters in which they feel they have

erred without requiring them to wait and verify that an error has been produced.

A number of the studies in this work compared EdgeWrite, a gestural technique, to

various selection-based methods (on-screen keyboards, date stamps, few-key designs,

etc.). The same tradeoffs in these studies were always present. Selection-based methods

have almost no learning curve but offer limited room for improvement. Gestural methods,

like EdgeWrite, are initially more challenging to learn, but offer higher performance in

the end. Accordingly, longitudinal studies consisting of multiple sessions are often

necessary to compare methods from these two genres. Such studies help solve the

problem of how much initial practice to give to each method. They also support the

discovery of a crossover point (MacKenzie and Zhang 1999), where a gestural method

(often) overtakes a selection-based one. A challenge for future research is to create high-

performance selection-based text entry methods that combine the power of gestural

methods with the “obviousness” of selection-based methods.

Chapter 12: Conclusion 246

In many ways, this work was made more challenging (and rewarding) by its focus on

people with motor impairments. One such challenge was recruiting people with

disabilities, since they have a limited ability to travel, frequently interrupted schedules,

and a greater likelihood of illness or injury (Coyne 2005, Feng et al. 2005). They also

fatigue more rapidly, which complicates training at the start of a study. Furthermore,

people in special populations are much more varied in their abilities, making design

improvements more difficult to make for all users. This illustrates the need for high end-

user customizability, such as the settable lift delays in Stylus (§4.2.4) and Touchpad

(§6.2.2) EdgeWrite, or the ability to define the EdgeWrite square in most versions.

A final lesson that became clear with each additional EdgeWrite version was that

seemingly small improvements can amount to big differences in the ultimate success of a

method. The software and hardware for each EdgeWrite version required fine-tuning

through much informal and formal testing. For example, the design of the dynamic

corners was very different for the joystick version (§5.2) than for the stylus version

(§4.2.2). The length of the power wheelchair joystick and the strength of its spring were

also noted as having a large impact on the user experience of that version (§6.3.2).

Similarly, the same software was used for Trackball EdgeWrite (§7.2) and Isometric

Joystick EdgeWrite (§8.2), but not without supporting new features for the latter that

included rotating the input space, shrinking the crossing radius, adjusting the mouse

sensitivity, and so on. Other input device research has shown similar sensitivity to the

fine adjustment of many parameters for ultimate success (Ehrlich 1997).

12.2 Contributions

The contributions of the current work fall into four categories: techniques, artifacts,

methods, and tools. Techniques are general concepts that may be applied to other text

entry methods or interaction designs. Artifacts are built prototypes useful to some

population. Methods are new empirical approaches to evaluation that inform design.

Tools are software products useful to other researchers.

TECHNIQUES

• Developed a versatile design for text entry capable of being instantiated on a

range of hardware and software. This design, called EdgeWrite, was shown to be

effective, learnable, and competitive with rival methods.

Chapter 12: Conclusion 247

• Introduced new text entry concepts such as continuous recognition feedback,

non-recognition retry, and slip detection. These innovations substantially

improve the user experience of EdgeWrite, and may be used in other methods.

• Designed Fisch in-stroke word completion for scaling character-level text entry

methods to word-level ones. Importantly, Fisch does not alter or impair regular

unistroke text entry. Fisch may be applied to any unistroke method, and was

adapted Fisch to Stylus EdgeWrite, Trackball EdgeWrite, and Isometric Joystick

EdgeWrite.

• Demonstrated how physical edges and goal crossing can be used to facilitate

writing with devices that did not formerly support gestural text entry.

ARTIFACTS

• Built and deployed eight robust implementations of EdgeWrite on devices

ranging from styli to joysticks, trackballs to four-keys. In particular, Stylus

EdgeWrite and Trackball EdgeWrite are in continued use by real-world users

with motor impairments. Other versions, like Touchpad EdgeWrite and Joystick

EdgeWrite, are currently being considered by both end-users and companies.

• Designed the highly guessable and learnable EdgeWrite alphabet and its XML

definition. This alphabet or a variant may be useful to others who require a well-

defined or highly constrained Roman-like character set.

• Built and deployed the EdgeWrite library for easy integration into others’

software projects. This library, a DLL, can be used to add EdgeWrite text entry

to any .NET application in as few as 10 lines of code.

• Designed, built, and evaluated the first study of back-of-device (BoD) text entry

using an isometric joystick on a mobile phone.

METHODS

• Developed a new method for maximizing and evaluating the guessability of

symbol sets. This method can aid symbol designers who deal with alphabets,

icons, text commands, etc. Operationalized guessability and provided formulae

for its measurement.

Chapter 12: Conclusion 248

• Devised a character-level error analysis for the input stream in unconstrained text

entry experiments. This error analysis and its accompanying algorithms may help

text entry method designers to isolate problematic characters and improve their

techniques. It also gives us a fuller picture of the text entry process itself.

TOOLS

• Developed the TextTest tool for conducting text entry experiments. TextTest has

been used by other text entry researchers (Költringer and Grechenig 2004,

Wilson and Agrawala 2006) who have built a technique and needed software to

rigorously evaluate it.

• Developed the StreamAnalyzer tool for analyzing data collected in a text entry

study. StreamAnalyzer produces both aggregate and character-level output,

including error rate tables and confusion matrices. The output can be easily

pasted into any statistics package or Excel.

12.3 Future Work

Although the current versions of EdgeWrite are robust deployable prototypes, there is

still room to improve them. This section details some of those improvements. It also

highlights some of the more interesting future projects.

The EdgeWrite DLL (§3.6.1) could be augmented to support total replacement of the

PC keyboard. Mode-strokes would have to be defined for CONTROL, ALT, SHIFT, and

the function keys. In addition, strokes for INSERT, DELETE, ESCAPE, PRINT

SCREEN, and so forth would have to be defined. Another improvement would be for the

DLL to support end-users defining their own “stroke macros” and then assigning those

strokes to actions like pressing a sequence of keyboard keys, launching Microsoft Word,

opening a web browser, or outputting one’s email signature. For defining stroke macros,

only one “training” stroke would be necessary since EdgeWrite’s strokes are

unambiguously defined by their corner sequences.

For word-level stroking, the DLL could be augmented to support end-user parsing

and aggregation of text corpora. Word prediction and completion may improve when

users are able to scan their own emails, instant messages, academic papers, and other

documents, and build vocabulary lists based on their own writing styles.

Chapter 12: Conclusion 249

Thus far, Stylus EdgeWrite has focused on people with motor impairments. But let us

remember Lewis Carroll, who recognized the potential of his Nyctograph design for the

blind (§2.2.1). EdgeWrite may pose similar value. The challenge of writing completely

eyes-free with Stylus EdgeWrite is that when one lifts the stylus to segment, one often

loses track of the EdgeWrite square, making it difficult to return the stylus to the square

without looking. An alternative may be to devise a continuous stroking version where the

stylus is never lifted, and therefore users can always feel where they are. Such a system

would require a means of segmentation other than “lift.” Viable options may be pressure,

a pigtail loop (Hinckley et al. 2005), a fixed number of corners per letter (Evreinova et al.

2004), or unambiguous prefix codes (Isokoski and Raisamo 2000). Whatever the choice,

a non-lifting stylus version may be of value to those without sight, or to sighted users in

need of a completely eyes-free solution.

Trackball EdgeWrite was modeled using the Steering Law for crossing tasks (Accot

and Zhai 1997). Such a model is elusive for Stylus EdgeWrite, however, because hitting

physical edges is unlike both pointing and crossing. Acquiring targets in the presence of

physical edges is somewhat like crossing but without the “follow-through” that occurs

once the goal has been reached. Future work may include studies to elicit a law of

acquiring targets along physical edges.

The displacement joystick versions still require accuracy improvements. Although

they are capable of producing transcriptions more accurately and faster than previous

methods designed for displacement joysticks, their corrected errors should be reduced.

Segmentation errors were generally not a problem. Instead, the difficulty was in hitting

some unintended corners while moving quickly. Incorporating a path-based recognizer

like the one used in ELEW (Andersen and Zhai 2004) may help remedy this problem. For

the power wheelchair joystick, improvements could be made by tailoring the joystick’s

parameters such as spring strength, stick length, and range of motion. As it was, the

joystick that was used had a stiff spring and a short stick, which was quite unlike most of

its users’ own wheelchair joysticks.

Trackball EdgeWrite yielded some of the most promising results of this work (§7.3).

However, due to the iterative and participatory nature of its design, it has only been in

regular use by one person. There has been recent interest by others in Pittsburgh,

Missouri, and Sweden. Thus, future work includes further testing and dissemination.

Chapter 12: Conclusion 250

The software for Trackball EdgeWrite, which is also used in Isometric Joystick

EdgeWrite (§8.2), may be useful in an eye-tracking (Isokoski 2000) or nose-pointing

version (Austen 2004). Eye-tracking and nose-pointing can be used to move a mouse

cursor, and Trackball EdgeWrite would allow goal crossing to replace area pointing

while writing. This may make it possible to write gesturally with one’s eyes or nose.

newAbilities, Inc. makes a mouth retainer called the TongueTouch Keypad to support

tongue-typing by people with quadriplegia (http://www.newabilities.com). The 9-button

keypad fits in the roof of one’s mouth and sends sensor-presses to the desktop PC via a

transmitter placed at the back of the head. Currently, one must type with the tongue on

tactile bumps in a Multitap-fashion to enter text. Perhaps an EdgeWrite version for the

tongue using only four corner sensors would be effective. Furthermore, tongue-based

cursor control has been explored using an isometric joystick (Salem and Zhai 1997).

Perhaps Salem and Zhai’s device would be suitable for Isometric Joystick EdgeWrite.

Isometric Joystick EdgeWrite could also be useful when embedded in other tiny

devices. A key fob with an isometric joystick would enable short-length password entry

for accessing one’s automobile, thereby preventing a lost key from being used to “fish”

for a vehicle in a parking lot. A digital pen with an isometric joystick in its tip could

double as a desktop or mobile pointing device. The pen might also be outfitted with

accelerometers to support EdgeWriting in the air, since articulated “corners” would be

marked by extreme changes in acceleration.

Four-sensor EdgeWrite could be integrated with mobile phones by using a touch-

sensitive phone keypad. With such a keypad, certain buttons could correspond to the

EdgeWrite corners, such as the 1, 3, 7 and 9 keys. Using the 5-key in the center to enable

corner re-entries (§4.2.5), Fisch word-level stroking would be possible. Touch-sensitive

phone keypads already exist (§2.3.5), and gestural text entry upon them may be

successful using Four-sensor EdgeWrite.

New evaluations are also important to future work. In particular, evaluations during

actual walking, riding, or simulated driving would better isolate performance under

situational impairments. Similarly, further studies of methods when being used eyes-free

or in low light are in order. Isometric Joystick EdgeWrite is already promising in this

regard (§8.3.2).

Chapter 12: Conclusion 251

The EdgeWrite character set could be modified for entering letters other than those

used in English. Although it is already possible to enter most letters used in Western

languages, one end-user modified the character set to optimize EdgeWrite for Swedish

input, where certain characters with diacritical marks (e.g. å) are common. Going further,

one could conceivably define strokes for other non-Roman alphabets such as Hebrew or

Cyrillic. Asian input poses a different challenge, however, since most Asian ideograms

are multi-stroke and involve a number of small embellishments. A multi-stroke version of

EdgeWrite that combines unistrokes into single ideograms may be possible, although the

experience of writing would be unavoidably altered from that of making such characters

on paper. This would fundamentally alter the nature of EdgeWrite, which thus far has

been designed for high guessability and learnability by leveraging similarity to hand-

printed Roman letters.

12.4 Final Remarks

This dissertation has attempted to demonstrate the following thesis:

A versatile design for text entry and control called “EdgeWrite,” which

uses physical edges, goal crossing, and a minimized need for sensing, is

effective on handhelds and desktops for people with motor and

situational impairments.

The EdgeWrite design has indeed proven versatile, capable of entering text on a

variety of devices for different types of users. All versions have been accessible to their

intended audience, whether motor-impaired or situationally-impaired using a small

device. Physical edges and goal crossing provided the bedrock writing mechanisms on

which the EdgeWrite techniques were built. User studies have demonstrated that this

thesis indeed holds.

Going forward, it is important that text entry researchers prize more than just speed

and accuracy, although these will remain prerequisites for any good technique. Numbered

among the qualities of any excellent technique should also be accessible. This quality

will become continually more important as devices shrink and proliferate through our

aging information-rich society.

Chapter 12: Conclusion 252

Appendix A: EdgeWrite Character Set 253

Appendix A

EdgeWrite Character Set

This appendix shows the full EdgeWrite character chart, version 3.0.1, beginning on the

next page. After the chart, the XML definition is also given.

Appendix A: EdgeWrite Character Set 254

Appendix A: EdgeWrite Character Set 255

Appendix A: EdgeWrite Character Set 256

Appendix A: EdgeWrite Character Set 257

Appendix A: EdgeWrite Character Set 258

Appendix A: EdgeWrite Character Set 259

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<charset name="EdgeWrite" version="3.0.1">

<mode name="All">
<entry char="backspace" uint="8" sequence="21" comment="character backspace" />
<entry char="backspace" uint="8" sequence="48" comment="word backspace" />
<entry char="left" uint="28" sequence="212" comment="cursor left" />
<entry char="left" uint="28" sequence="484" comment="cursor left" />
<entry char="right" uint="29" sequence="121" comment="cursor right" />
<entry char="right" uint="29" sequence="848" comment="cursor right" />
<entry char="up" uint="30" sequence="424" comment="cursor up" />
<entry char="down" uint="31" sequence="242" comment="cursor down" />
<entry char="Ctrl+left" uint="131100" sequence="2121" comment="word left" />
<entry char="Ctrl+right" uint="131101" sequence="1212" comment="word right" />
<entry char="Home" uint="15" sequence="4848" comment="Home key" />
<entry char="End" uint="14" sequence="8484" comment="End key" />
<entry char="PgUp" uint="11" sequence="4242" comment="Page Up key" />
<entry char="PgDn" uint="12" sequence="2424" comment="Page Down key" />
<entry char="Ctrl+Home" uint="131087" sequence="8181" comment="document top" />
<entry char="Ctrl+End" uint="131086" sequence="1818" comment="document bottom" />

</mode>
<mode name="Alphanumeric">

<mode name="Modes">
<entry char="Punctuation" uint="2" sequence="81" comment="mode stroke" />
<entry char="Punctuation" uint="2" sequence="42" comment="mode stroke" />
<entry char="Extended" uint="3" sequence="41" comment="mode stroke" />

</mode>
<mode name="Accents">

<entry char="à" uint="768" sequence="141" comment="grave" />
<entry char="á" uint="769" sequence="282" comment="acute" />
<entry char="â" uint="710" sequence="428" comment="circumflex" />
<entry char="â" uint="710" sequence="418" comment="circumflex" />
<entry char="ã" uint="771" sequence="2418" comment="tilde" />
<entry char="ä" uint="168" sequence="42481" comment="diaeresis" />
<entry char="å" uint="730" sequence="42184" comment="ring or dot" />
<entry char="å" uint="730" sequence="48124" comment="ring or dot" />
<entry char="č" uint="711" sequence="281" comment="caron" />
<entry char="ă" uint="728" sequence="241" comment="breve" />
<entry char="ç" uint="184" sequence="841" comment="cedilla" />
<entry char="ç" uint="184" sequence="842" comment="cedilla" />
<entry char="ą" uint="731" sequence="481" comment="ogonek" />
<entry char="ą" uint="731" sequence="482" comment="ogonek" />

</mode>
<entry char="space" uint="32" sequence="12" comment="space" />
<entry char="space" uint="32" sequence="84" comment="space" />
<entry char="newline" uint="10" sequence="28" comment="enter" />
<entry char="tab" uint="9" sequence="14" comment="tab" />
<entry char="alt" uint="18" sequence="82" comment="menu" />

<entry char="a" uint="97" sequence="824" comment="" />
<entry char="a" uint="97" sequence="814" comment="" />
<entry char="a" uint="97" sequence="8248" comment="" />
<entry char="a" uint="97" sequence="8148" comment="" />
<entry char="a" uint="97" sequence="218424" comment="" />

<entry char="b" uint="98" sequence="1848" comment="" />
<entry char="b" uint="98" sequence="18248" comment="" />
<entry char="b" uint="98" sequence="18148" comment="" />
<entry char="b" uint="98" sequence="84818" comment="" />
<entry char="b" uint="98" sequence="824818" comment="" />
<entry char="b" uint="98" sequence="81848" comment="" />
<entry char="b" uint="98" sequence="812148" comment="" />
<entry char="b" uint="98" sequence="812848" comment="" />
<entry char="b" uint="98" sequence="1812148" comment="" />
<entry char="b" uint="98" sequence="1812848" comment="" />
<entry char="b" uint="98" sequence="121848" comment="" />

Appendix A: EdgeWrite Character Set 260

<entry char="c" uint="99" sequence="2184" comment="" />
<entry char="ç" uint="231" sequence="4812" comment="cedilla" />

<entry char="d" uint="100" sequence="2484" comment="d" />
<entry char="d" uint="100" sequence="24184" comment="d" />
<entry char="d" uint="100" sequence="24284" comment="d" />
<entry char="d" uint="100" sequence="48424" comment="d" />
<entry char="d" uint="100" sequence="418424" comment="d" />
<entry char="d" uint="100" sequence="42484" comment="d" />
<entry char="d" uint="100" sequence="81248" comment="D" />
<entry char="d" uint="100" sequence="181248" comment="D" />

<entry char="e" uint="101" sequence="12184" comment="" />
<entry char="e" uint="101" sequence="1214" comment="" />
<entry char="e" uint="101" sequence="82184" comment="" />
<entry char="e" uint="101" sequence="48128" comment="" />
<entry char="e" uint="101" sequence="21284" comment="" />
<entry char="e" uint="101" sequence="21484" comment="" />
<entry char="e" uint="101" sequence="214" comment="quick e" />
<entry char="e" uint="101" sequence="284" comment="quick e" />

<entry char="f" uint="102" sequence="218" comment="" />

<entry char="g" uint="103" sequence="21248" comment="" />
<entry char="g" uint="103" sequence="2128" comment="from 9" />
<entry char="g" uint="103" sequence="212484" comment="" />
<entry char="g" uint="103" sequence="218484" comment="cap form" />
<entry char="g" uint="103" sequence="2184248" comment="" />
<entry char="g" uint="103" sequence="21842484" comment="" />
<entry char="g" uint="103" sequence="214248" comment="" />
<entry char="g" uint="103" sequence="2142484" comment="" />
<entry char="g" uint="103" sequence="284248" comment="" />
<entry char="g" uint="103" sequence="2842484" comment="" />
<entry char="g" uint="103" sequence="281248" comment="" />
<entry char="g" uint="103" sequence="2812484" comment="" />

<entry char="h" uint="104" sequence="1824" comment="" />
<entry char="h" uint="104" sequence="18124" comment="" />
<entry char="h" uint="104" sequence="1814" comment="" />

<entry char="i" uint="105" sequence="18" comment="" />
<entry char="j" uint="106" sequence="248" comment="" />

<entry char="k" uint="107" sequence="18284" comment="" />
<entry char="k" uint="107" sequence="1828" comment="" />
<entry char="k" uint="107" sequence="18184" comment="" />
<entry char="k" uint="107" sequence="18484" comment="" />
<entry char="k" uint="107" sequence="18214" comment="" />

<entry char="l" uint="108" sequence="184" comment="" />

<entry char="m" uint="109" sequence="81424" comment="" />
<entry char="m" uint="109" sequence="181424" comment="" />
<entry char="m" uint="109" sequence="81824" comment="" />
<entry char="m" uint="109" sequence="181824" comment="" />
<entry char="m" uint="109" sequence="82424" comment="" />
<entry char="m" uint="109" sequence="182424" comment="" />
<entry char="m" uint="109" sequence="81814" comment="" />
<entry char="m" uint="109" sequence="181814" comment="" />
<entry char="m" uint="109" sequence="812424" comment="" />
<entry char="m" uint="109" sequence="1812424" comment="" />
<entry char="m" uint="109" sequence="818124" comment="" />
<entry char="m" uint="109" sequence="1818124" comment="" />

<entry char="n" uint="110" sequence="8142" comment="" />
<entry char="n" uint="110" sequence="18142" comment="w?" />

Appendix A: EdgeWrite Character Set 261

<entry char="n" uint="110" sequence="8124" comment="" />
<entry char="n" uint="110" sequence="81242" comment="" />
<entry char="n" uint="110" sequence="8242" comment="" />

<entry char="o" uint="111" sequence="21842" comment="ccw" />
<entry char="o" uint="111" sequence="24812" comment="cw" />

<entry char="p" uint="112" sequence="1218" comment="" />
<entry char="p" uint="112" sequence="8128" comment="" />
<entry char="p" uint="112" sequence="18128" comment="" />
<entry char="p" uint="112" sequence="12818" comment="" />

<entry char="q" uint="113" sequence="21242" comment="q" />
<entry char="q" uint="113" sequence="24212" comment="q" />
<entry char="q" uint="113" sequence="4214" comment="q" />
<entry char="q" uint="113" sequence="24214" comment="q" />
<entry char="q" uint="113" sequence="21424" comment="q" />
<entry char="q" uint="113" sequence="2184212" comment="Q" />
<entry char="q" uint="113" sequence="2184214" comment="Q" />
<entry char="q" uint="113" sequence="184212" comment="Q" />
<entry char="q" uint="113" sequence="184214" comment="Q" />
<entry char="q" uint="113" sequence="124812" comment="Q" />
<entry char="q" uint="113" sequence="124814" comment="Q" />
<entry char="q" uint="113" sequence="812484" comment="Q" />
<entry char="q" uint="113" sequence="842184" comment="Q" />

<entry char="r" uint="114" sequence="812" comment="" />
<entry char="r" uint="114" sequence="1812" comment="" />
<entry char="r" uint="114" sequence="81214" comment="" />
<entry char="r" uint="114" sequence="181214" comment="" />
<entry char="r" uint="114" sequence="81284" comment="" />
<entry char="r" uint="114" sequence="181284" comment="" />

<entry char="s" uint="115" sequence="2148" comment="" />
<entry char="t" uint="116" sequence="124" comment="" />
<entry char="u" uint="117" sequence="1842" comment="" />

<entry char="v" uint="118" sequence="182" comment="" />
<entry char="v" uint="118" sequence="142" comment="" />

<entry char="w" uint="119" sequence="18242" comment="" />
<entry char="w" uint="119" sequence="14242" comment="" />
<entry char="w" uint="119" sequence="184242" comment="" />
<entry char="w" uint="119" sequence="181842" comment="" />

<entry char="x" uint="120" sequence="1428" comment="" />
<entry char="x" uint="120" sequence="2814" comment="Graffiti k" />
<entry char="x" uint="120" sequence="1482" comment="" />

<entry char="y" uint="121" sequence="1424" comment="" />
<entry char="y" uint="121" sequence="14248" comment="" />
<entry char="y" uint="121" sequence="184248" comment="" />

<entry char="z" uint="122" sequence="1284" comment="" />

<entry char="0" uint="48" sequence="218428" comment="" />
<entry char="0" uint="48" sequence="248128" comment="" />

<entry char="1" uint="49" sequence="24" comment="" />

<entry char="2" uint="50" sequence="12484" comment="" />
<entry char="2" uint="50" sequence="8284" comment="" />
<entry char="2" uint="50" sequence="12814" comment="" />
<entry char="2" uint="50" sequence="124184" comment="" />

Appendix A: EdgeWrite Character Set 262

<entry char="3" uint="51" sequence="1248" comment="" />
<entry char="3" uint="51" sequence="12148" comment="" />
<entry char="3" uint="51" sequence="12848" comment="" />
<entry char="3" uint="51" sequence="121248" comment="" />
<entry char="3" uint="51" sequence="124848" comment="" />

<entry char="4" uint="52" sequence="18424" comment="" />
<entry char="4" uint="52" sequence="28424" comment="" />
<entry char="4" uint="52" sequence="2842" comment="" />
<entry char="4" uint="52" sequence="4824" comment="Brad's" />

<entry char="5" uint="53" sequence="21848" comment="from g" />
<entry char="5" uint="53" sequence="4148" comment="" />
<entry char="5" uint="53" sequence="21428" comment="" />
<entry char="5" uint="53" sequence="218248" comment="" />

<entry char="6" uint="54" sequence="2848" comment="" />

<entry char="7" uint="55" sequence="128" comment="" />
<entry char="7" uint="55" sequence="1242" comment="Brad's" />

<entry char="8" uint="56" sequence="21482" comment="" />
<entry char="8" uint="56" sequence="28412" comment="" />
<entry char="8" uint="56" sequence="212848" comment="" />
<entry char="8" uint="56" sequence="121484" comment="" />

<entry char="9" uint="57" sequence="2124" comment="" />

</mode>
<mode name="Punctuation">

<entry char="." uint="46" sequence="4" comment="period" />
<entry char="," uint="44" sequence="8" comment="comma" />

<entry char="'" uint="39" sequence="81" comment="sgl quote" />
<entry char=""" uint="34" sequence="42" comment="dbl quote" />

<entry char="/" uint="47" sequence="28" comment="" />
<entry char="/" uint="47" sequence="82" comment="" />
<entry char="\" uint="92" sequence="14" comment="" />
<entry char="\" uint="92" sequence="41" comment="" />

<entry char="?" uint="63" sequence="124" comment="" />
<entry char="!" uint="33" sequence="18" comment="" />
<entry char="|" uint="124" sequence="181" comment="" />

<entry char=":" uint="58" sequence="24" comment="" />
<entry char=";" uint="59" sequence="248" comment="" />

<entry char="(" uint="40" sequence="2184" comment="" />
<entry char=")" uint="41" sequence="1248" comment="" />
<entry char="[" uint="91" sequence="4812" comment="" />
<entry char="]" uint="93" sequence="8421" comment="" />
<entry char="<" uint="60" sequence="284" comment="" />
<entry char=">" uint="62" sequence="148" comment="" />
<entry char="{" uint="123" sequence="2814" comment="" />
<entry char="}" uint="125" sequence="1428" comment="" />

<entry char="@" uint="64" sequence="21842" comment="ccw" />
<entry char="@" uint="64" sequence="24812" comment="cw" />
<entry char="@" uint="64" sequence="284218" comment="" />
<entry char="@" uint="64" sequence="2842184" comment="" />
<entry char="@" uint="64" sequence="218428" comment="Brad's" />
<entry char="@" uint="64" sequence="248128" comment="" />

<entry char="#" uint="35" sequence="1824" comment="" />
<entry char="#" uint="35" sequence="2828" comment="" />

Appendix A: EdgeWrite Character Set 263

<entry char="$" uint="36" sequence="2148" comment="" />
<entry char="%" uint="37" sequence="128" comment="" />
<entry char="%" uint="37" sequence="1284" comment="" />
<entry char="^" uint="94" sequence="824" comment="" />
<entry char="^" uint="94" sequence="814" comment="" />

<entry char="&" uint="38" sequence="21482" comment="" />
<entry char="&" uint="38" sequence="28412" comment="" />
<entry char="&" uint="38" sequence="41284" comment="" />
<entry char="&" uint="38" sequence="48214" comment="" />

<entry char="*" uint="42" sequence="2841" comment="" />
<entry char="*" uint="42" sequence="1482" comment="" />

<entry char="-" uint="45" sequence="12" comment="hyphen" />
<entry char="_" uint="95" sequence="84" comment="underscore" />

<entry char="+" uint="43" sequence="1812" comment="" />
<entry char="+" uint="43" sequence="18121" comment="" />
<entry char="=" uint="61" sequence="1212" comment="" />
<entry char="=" uint="61" sequence="8484" comment="" />

<entry char="`" uint="96" sequence="141" comment="" />
<entry char="´" uint="180" sequence="282" comment="not on keyboard" />
<entry char="~" uint="126" sequence="8142" comment="" />

</mode>
<mode name="Extended">

<entry char="•" uint="8226" sequence="4" comment="bullet" />
<entry char="°" uint="176" sequence="42184" comment="degree" />
<entry char="°" uint="176" sequence="48124" comment="degree" />

<entry char="™" uint="8482" sequence="81424" comment="TM" />
<entry char="™" uint="8482" sequence="181424" comment="TM" />
<entry char="™" uint="8482" sequence="81824" comment="TM" />
<entry char="™" uint="8482" sequence="181824" comment="TM" />
<entry char="™" uint="8482" sequence="82424" comment="TM" />
<entry char="™" uint="8482" sequence="182424" comment="TM" />
<entry char="™" uint="8482" sequence="81814" comment="TM" />
<entry char="™" uint="8482" sequence="181814" comment="TM" />
<entry char="™" uint="8482" sequence="812424" comment="TM" />
<entry char="™" uint="8482" sequence="1812424" comment="TM" />
<entry char="™" uint="8482" sequence="818124" comment="TM" />
<entry char="™" uint="8482" sequence="1818124" comment="TM" />

<entry char="®" uint="174" sequence="81214" comment="(R)" />
<entry char="®" uint="174" sequence="181214" comment="(R)" />
<entry char="®" uint="174" sequence="81284" comment="(R)" />
<entry char="®" uint="174" sequence="181284" comment="(R)" />

<entry char="©" uint="169" sequence="2184" comment="(C)" />
<entry char="¢" uint="162" sequence="4812" comment="cent" />

<entry char="‘" uint="8216" sequence="81" comment="left sgl quote" />
<entry char="“" uint="8220" sequence="812" comment="left dbl quote" />
<entry char="’" uint="8217" sequence="24" comment="right sgl quote" />
<entry char="”" uint="8221" sequence="248" comment="right dbl quote" />

<entry char="§" uint="167" sequence="2148" comment="section" />
<entry char="×" uint="215" sequence="1428" comment="multiply" />
<entry char="×" uint="215" sequence="2814" comment="multiply" />
<entry char="÷" uint="247" sequence="28" comment="divide" />
<entry char="÷" uint="247" sequence="82" comment="divide" />

<entry char="€" uint="8364" sequence="12184" comment="euro" />
<entry char="€" uint="8364" sequence="1214" comment="euro" />
<entry char="€" uint="8364" sequence="82184" comment="euro" />

Appendix A: EdgeWrite Character Set 264

<entry char="€" uint="8364" sequence="48128" comment="euro" />
<entry char="€" uint="8364" sequence="21284" comment="euro" />
<entry char="€" uint="8364" sequence="21484" comment="euro" />

<entry char="¥" uint="165" sequence="1424" comment="yen" />
<entry char="¥" uint="165" sequence="14248" comment="yen" />
<entry char="¥" uint="165" sequence="184248" comment="yen" />

<entry char="£" uint="163" sequence="184" comment="pound" />
<entry char="£" uint="163" sequence="1841" comment="pound" />

<entry char="ð" uint="240" sequence="2484" comment="eth" />
<entry char="ð" uint="240" sequence="24184" comment="eth" />
<entry char="ð" uint="240" sequence="24284" comment="eth" />
<entry char="ð" uint="240" sequence="48424" comment="eth" />
<entry char="ð" uint="240" sequence="418424" comment="eth" />
<entry char="ð" uint="240" sequence="42484" comment="eth" />
<entry char="ð" uint="240" sequence="81248" comment="eth" />
<entry char="ð" uint="240" sequence="181248" comment="eth" />

<entry char="Ð" uint="208" sequence="24841" comment="Eth" />
<entry char="Ð" uint="208" sequence="241841" comment="Eth" />
<entry char="Ð" uint="208" sequence="242841" comment="Eth" />
<entry char="Ð" uint="208" sequence="484241" comment="Eth" />
<entry char="Ð" uint="208" sequence="4184241" comment="Eth" />
<entry char="Ð" uint="208" sequence="424841" comment="Eth" />
<entry char="Ð" uint="208" sequence="812481" comment="Eth" />
<entry char="Ð" uint="208" sequence="1812481" comment="Eth" />

<entry char="¿" uint="191" sequence="481" comment="inverted ?" />
<entry char="¡" uint="161" sequence="18" comment="inverted !" />

<entry char="æ" uint="230" sequence="824" comment="ae" />
<entry char="æ" uint="230" sequence="814" comment="ae" />
<entry char="æ" uint="230" sequence="8248" comment="ae" />
<entry char="æ" uint="230" sequence="8148" comment="ae" />
<entry char="æ" uint="230" sequence="218424" comment="ae" />

<entry char="Æ" uint="198" sequence="8241" comment="AE" />
<entry char="Æ" uint="198" sequence="8141" comment="AE" />
<entry char="Æ" uint="198" sequence="82481" comment="AE" />
<entry char="Æ" uint="198" sequence="81481" comment="AE" />
<entry char="Æ" uint="198" sequence="2184241" comment="AE" />

<entry char="œ" uint="339" sequence="21842" comment="oe" />
<entry char="œ" uint="339" sequence="24812" comment="oe" />

<entry char="Œ" uint="338" sequence="218421" comment="OE" />
<entry char="Œ" uint="338" sequence="248121" comment="OE" />

<entry char="ß" uint="223" sequence="1848" comment="ss" />
<entry char="ß" uint="223" sequence="18248" comment="ss" />
<entry char="ß" uint="223" sequence="18148" comment="ss" />
<entry char="ß" uint="223" sequence="84818" comment="ss" />
<entry char="ß" uint="223" sequence="824818" comment="ss" />
<entry char="ß" uint="223" sequence="81848" comment="ss" />
<entry char="ß" uint="223" sequence="812148" comment="ss" />
<entry char="ß" uint="223" sequence="812848" comment="ss" />
<entry char="ß" uint="223" sequence="1812148" comment="ss" />
<entry char="ß" uint="223" sequence="1812848" comment="ss" />
<entry char="ß" uint="223" sequence="121848" comment="ss" />

<entry char="µ" uint="181" sequence="1842" comment="mu" />
<entry char="µ" uint="181" sequence="18424" comment="mu" />
<entry char="µ" uint="181" sequence="81842" comment="mu" />
<entry char="µ" uint="181" sequence="818424" comment="mu" />

Appendix A: EdgeWrite Character Set 265

<entry char="ƒ" uint="402" sequence="218" comment="florin" />
<entry char="₣" uint="8355" sequence="2181" comment="Franc" />

<entry char="ø" uint="248" sequence="218428" comment="o-slash" />
<entry char="ø" uint="248" sequence="248128" comment="o-slash" />
<entry char="Ø" uint="216" sequence="2184281" comment="O-slash" />
<entry char="Ø" uint="216" sequence="2481281" comment="O-slash" />

<entry char="–" uint="8211" sequence="12" comment="en dash" />
<entry char="—" uint="8212" sequence="84" comment="em dash" />
<entry char="±" uint="177" sequence="1812" comment="+/-" />
<entry char="±" uint="177" sequence="18121" comment="+/-" />

<entry char="²" uint="178" sequence="12484" comment="^2" />
<entry char="²" uint="178" sequence="8284" comment="^2" />
<entry char="²" uint="178" sequence="12814" comment="^2" />
<entry char="²" uint="178" sequence="124184" comment="^2" />

<entry char="³" uint="179" sequence="1248" comment="^3" />
<entry char="³" uint="179" sequence="12148" comment="^3" />
<entry char="³" uint="179" sequence="12848" comment="^3" />
<entry char="³" uint="179" sequence="121248" comment="^3" />
<entry char="³" uint="179" sequence="124848" comment="^3" />

<entry char="¬" uint="172" sequence="124" comment="not" />

<entry char="¶" uint="182" sequence="1218" comment="paragraph" />
<entry char="¶" uint="182" sequence="8128" comment="paragraph" />
<entry char="¶" uint="182" sequence="18128" comment="paragraph" />
<entry char="¶" uint="182" sequence="12818" comment="paragraph" />

<entry char="¤" uint="164" sequence="2841" comment="currency" />
<entry char="¤" uint="164" sequence="1482" comment="currency" />

<entry char="‰" uint="8240" sequence="128" comment="permille" />
<entry char="‰" uint="8240" sequence="1284" comment="permille" />

<entry char="«" uint="171" sequence="284" comment="<<" />
<entry char="»" uint="187" sequence="148" comment=">>" />

</mode>
</charset>

Appendix A: EdgeWrite Character Set 266

Bibliography 267

Bibliography
Abascal, J. and Civit, A. (2001) "Universal access to mobile telephony as a way to

enhance the autonomy of elderly people." Proceedings of the 2001 EC/NSF
Workshop on Universal Accessibility of Ubiquitous Computing. Alcácer do Sal,
Portugal (May 22-25, 2001). New York: ACM Press, pp. 93-99.

Accot, J. and Zhai, S. (1997) "Beyond Fitts' law: Models for trajectory-based HCI tasks."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '97). Atlanta, Georgia (March 22-27, 1997). New York: ACM Press, pp.
295-302.

Accot, J. and Zhai, S. (1999) "Performance evaluation of input devices in trajectory-
based tasks: An application of the Steering Law." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '99). Pittsburgh,
Pennsylvania (May 1999). New York: ACM Press, pp. 466-472.

Accot, J. and Zhai, S. (2002) "More than dotting the i's: Foundations for crossing-based
interfaces." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '02). Minneapolis, Minnesota (April 20-25, 2002). New
York: ACM Press, pp. 73-80.

Andersen, T. H. and Zhai, S. (2004) "Explorations and experiments on the use of auditory
and visual feedback in pen-gesture interfaces." DIKU Technical Report 04/16
(December 14, 2004). Copenhagen, Denmark: University of Copenhagen.

Anson, D. K. (1997) Alternative Computer Access: A Guide to Selection. Philadelphia: F.
A. Davis Company.

Anson, D. K., Moist, P., Przywara, M., Wells, H., Saylor, H. and Maxime, H. (2005)
"The effects of word completion and word prediction on typing rates using on-
screen keyboards." Proceedings of the 28th Annual Conference of the
Rehabilitation Engineering and Assistive Technology Society of North America
(RESNA '05). Atlanta, Georgia (June 23-27, 2005). Arlington, Virginia: RESNA
Press.

Apitz, G. and Guimbretière, F. (2004) "CrossY: A crossing-based drawing application."
Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST '04). Santa Fe, New Mexico (October 24-27, 2004). New York: ACM
Press, pp. 3-12.

Arvo, J. and Novins, K. (2000) "Fluid sketches: Continuous recognition and morphing of
simple hand-drawn shapes." Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST '00). San Diego, California (November
6-8, 2000). New York: ACM Press, pp. 73-80.

Austen, I. (2004) "A new rule of cursor control: Just follow your nose." The New York
Times. October 28, 2004, New York.

Bibliography 268

Balakrishnan, R. (2004) ""Beating" Fitts’ law: Virtual enhancements for pointing
facilitation." International Journal of Human-Computer Studies 61 (6), pp. 857-
874.

Barrett, R. C., Selker, E. J., Rutledge, J. D. and Olyha, R. S. (1995) "Negative inertia: A
dynamic pointing function." Companion to the ACM Conference on Human
Factors in Computing Systems (CHI '95). Denver, Colorado (May 7-11, 1995).
New York: ACM Press, pp. 316-317.

BBC News. (2006) "Gadget firms tackled on usability." BBC News. May 15, 2006,
London, UK.

Bellman, T. and MacKenzie, I. S. (1998) "A probabilistic character layout strategy for
mobile text entry." Proceedings of Graphics Interface 1998. Vancouver, B.C.
(June 18-20, 1998). Toronto: Canadian Information Processing Society, pp. 168-
176.

Bergman, E. and Johnson, E. (1995) "Towards accessible human-computer interaction."
In Advances in Human-Computer Interaction, Vol. 5, J. Nielsen (ed). Norwood,
New Jersey: Ablex.

Bertini, E. and Kimani, S. (2003) "Mobile devices: Opportunities for users with special
needs." Proceedings of the 5th Int'l Symposium on Human-Computer Interaction
with Mobile Devices and Services (Mobile HCI '03). Udine, Italy (September 8-
11, 2003). Berlin: Springer-Verlag, pp. 486-491.

Bishop, J. B. and Myers, G. A. (1993) "Development of an effective computer interface
for persons with mobility impairment." Proceedings of the 15th Annual
Conference on Engineering in Medicine and Biology. IEEE Press, pp. 1266-
1267.

Blair, P. (2005) "A customizable hardware input interface for wireless, mobile devices."
Proceedings of the 28th Annual Conference of the Rehabilitation Engineering
and Assistive Technology Society of North America (RESNA '05). Atlanta,
Georgia (June 23-27, 2005). Arlington, Virginia: RESNA Press.

Blaskó, G. and Feiner, S. (2004) "An interaction system for watch computers using tactile
guidance and bidirectional segmented strokes." Proceedings of the 8th IEEE
Symposium on Wearable Computers (ISWC '04). Arlington, Virginia (October
31-November 3, 2004). Los Alamitos, California: IEEE Computer Society, pp.
120-123.

Blickenstorfer, C. H. (1995) "Graffiti: Wow!" Pen Computing Magazine, January 1995,
pp. 30-31.

Bloor, R. (2003) "Symbian DevZone taks to What Next: A better small device interface?"
The Symbian DevZone, June 16, 2003.

Brinck, T., Gergle, D. and Wood, S. D. (2001) Usability for the Web. San Francisco:
Morgan Kaufmann.

Bibliography 269

Burzagli, L., Billi, M., Gabbanini, F., Graziani, P., Palchetti, E., Bertini, E. and Gabrielli,
S. (2005) "Testing accessibility in mobile computing." Proceedings of the 11th
International Conference on Human-Computer Interaction (HCI Int'l '05). Las
Vegas, Nevada (July 22-27, 2005). Mahwah, New Jersey: Lawrence Erlbaum
Associates. On proceedings CD.

Buxton, W., Hill, R. and Rowley, P. (1985) "Issues and techniques in touch-sensitive
tablet input." Proceedings of the ACM Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH '85). San Francisco, California (July 1985).
New York: ACM Press, pp. 215-223.

Buxton, W. and Myers, B. A. (1986) "A study in two-handed input." Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI '86). Boston,
Massachusetts (April 13-17, 1986). New York: ACM Press, pp. 321-326.

Buxton, W. (2005) "Piloting through the maze." interactions 12 (6),
November/December 2005, p. 10.

Card, S. K., English, W. K. and Burr, B. J. (1978) "Evaluation of mouse, rate-controlled
isometric joystick, step keys, and text keys for text selection on a CRT."
Ergonomics 21 (8), pp. 601-613.

Card, S. K., Moran, T. P. and Newell, A. (1983) The Psychology of Human-Computer
Interaction. Hillsdale, New Jersey: Lawrence Erlbaum.

Card, S. K., Mackinlay, J. D. and Robertson, G. (1990) "The design space of input
devices." Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI '90). Seattle, Washington (April 1-5, 1990). New York: ACM
Press, pp. 117-124.

Carroll, L. (1891) "The Nyctograph." In The Magic of Lewis Carroll, J. Fisher (ed). Great
Britain: Thomas Nelson and Sons (1973), pp. 214-217.

Chau, D. H., Wobbrock, J. O., Myers, B. A. and Rothrock, B. (2006) "Integrating
isometric joysticks into mobile phones for text entry." Extended Abstracts of the
ACM Conference on Human Factors in Computing Systems (CHI '06). Montréal,
Québec (April 22-27, 2006). New York: ACM Press, pp. 640-645.

Clarkson, E., Clawson, J., Lyons, K. and Starner, T. (2005) "An empirical study of typing
rates on mini-QWERTY keyboards." Extended Abstracts of the ACM Conference
on Human Factors in Computing Systems (CHI '05). Portland, Oregon (April 2-7,
2005). New York: ACM Press, pp. 1288-1291.

Clarkson, P. R. and Rosenfeld, R. (1997) "Statistical language modeling using the CMU-
Cambridge toolkit." Fifth European Conference on Speech Communication and
Technology (Eurospeech '97). Rhodes, Greece (September 1997). pp. 2707-2710.

Co-operwrite Ltd. (1997) myText. Co-operwrite, Ltd. Available at http://www.my-
text.com/technical_memorandum.pdf

Coleman, M. (2001) Weegie. SourceForge.net. Available at http://weegie.sourceforge.net

Bibliography 270

Connell, B. R., Jones, M., Mace, R. L., Mueller, J., Mullick, A., Ostroff, E., Sanford, J.,
Steinfeld, E., Story, M. and Vanderheiden, G. (1997) "The Principles of
Universal Design, Version 2.0." The Center for Universal Design (April 1,
1997). Raleigh, North Carolina: North Carolina State University.

Cook, A. M. and Hussey, S. M. (2001) Assistive Technologies: Principles and Practice.
2nd ed. St. Louis: Mosby Press.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990) Introduction to Algorithms.
Cambridge, Massachusetts: The MIT Press.

Coyne, K. P. (2005) "Conducting simple usability studies with users with disabilities."
Proceedings of the 11th International Conference on Human-Computer
Interaction (HCI Int'l '05). Las Vegas, Nevada (July 22-27, 2005). Mahwah, New
Jersey: Lawrence Erlbaum Associates. On proceedings CD.

Damerau, F. (1964) "A technique for computer detection and correction of spelling
errors." Communications of the ACM 7 (3), pp. 171-176.

Dawe, M. (2004) "Complexity, cost and customization: Uncovering barriers to adoption
of assistive technology." Refereed Poster at the ACM SIGACCESS Conference
on Computers and Accessibility (ASSETS '04). Atlanta, Georgia (October 18-20,
2004).

Dawe, M. (2006) "Desperately seeking simplicity: How young adults with cognitive
disabilities and their families adopt assistive technologies." Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI '06). Montréal,
Québec (April 22-27, 2006). New York: ACM Press, pp. 1143-1152.

Denoue, L. and Chiu, P. (2005) "Ink completion." Refereed Poster at Graphics Interface
2005. Victoria, British Columbia (May 9-11, 2005). Canadian Human-Computer
Communications Society.

Dimond, T. L. (1957) "Devices for reading handwritten characters." Proceedings of the
Eastern Joint Computer Conference. Washington, D.C. (December 9-13, 1957).
New York: Institute of Radio Engineers, pp. 232-237.

Douglas, S. A., Kirkpatrick, A. E. and MacKenzie, I. S. (1999) "Testing pointing device
performance and user assessment with the ISO 9241, Part 9 standard."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '99). Pittsburgh, Pennsylvania (May 15-20, 1999). New York: ACM Press,
pp. 215-222.

Ehrlich, K. (1997) "A conversation with Ted Selker." interactions 4 (5), pp. 34-47.

Enns, N. R. N. and MacKenzie, I. S. (1998) "Touchpad-based remote control devices."
Summary for the ACM Conference on Human Factors in Computing Systems
(CHI '98). Los Angeles, California (April 1998). New York: ACM Press, pp.
229-230.

Bibliography 271

Epps, B. W., Snyder, H. L. and Muto, W. H. (1986) "Comparison of six cursor devices
on a target acquisition task." Proceedings of the Society for Information Display.
San Diego, California (May 6-8, 1986). Society for Information Display, pp. 302-
305.

Epps, B. W. (1987) "A comparison of cursor control devices on a graphics editing task."
Proceedings Human Factors Society 31st Annual Meeting. New York. Human
Factors Society, pp. 442-446.

Evreinova, T., Evreinov, G. and Raisamo, R. (2004) "Four-key text entry for physically
challenged people." Adjunct Proceedings of the 8th ERCIM Workshop on User
Interfaces for All (UI4ALL '04). Vienna, Austria (June 28-29, 2004).

Farris, J. S., Jones, K. S. and Anders, B. A. (2001) "Acquisition speed with targets on the
edge of the screen: An application of Fitts' Law to commonly used web browser
controls." Proceedings of the Human Factors and Ergonomics Society 45th
Annual Meeting (HFES '01). Minneapolis, Minnesota (October 2001). Human
Factors and Ergonomics Society, pp. 1205-1209.

Farris, J. S., Jones, K. S. and Anders, B. A. (2002a) "Using impenetrable borders in a
graphical web browser: How does distance influence target selection speed?"
Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting
(HFES '02). Baltimore, Maryland (September/October 2002). Human Factors
and Ergonomics Society, pp. 1300-1304.

Farris, J. S., Jones, K. S. and Anders, B. A. (2002b) "Using impenetrable borders in a
graphical web browser: Are all angles equal?" Proceedings of the Human
Factors and Ergonomics Society 46th Annual Meeting (HFES '02). Baltimore,
Maryland (September/October 2002). Human Factors and Ergonomics Society,
pp. 1251-1255.

Feng, J., Sears, A. and Law, C. M. (2005) "Conducting empirical experiments involving
participants with spinal cord injuries." Proceedings of the 11th International
Conference on Human-Computer Interaction (HCI Int'l '05). Las Vegas, Nevada
(July 22-27, 2005). Mahwah, New Jersey: Lawrence Erlbaum Associates. On
proceedings CD.

Fichten, C. S., Barile, M., Asuncion, J. V. and Fossey, M. E. (2000) "What government,
agencies, and organizations can do to improve access to computers for
postsecondary students with disabilities: Recommendations based on Canadian
empirical data." International Journal of Rehabilitation Research 23 (3), pp. 191-
199.

Fitts, P. M. (1954) "The information capacity of the human motor system in controlling
the amplitude of movement." Journal of Experimental Psychology 47 (6), pp.
381-391.

Fleetwood, M. D., Byrne, M. D., Centgraf, P., Dudziak, K. Q., Lin, B. and Mogilev, D.
(2002) "An evaluation of text-entry in Palm OS—Graffiti and the virtual
keyboard." Proceedings of the Human Factors and Ergonomics Society 46th

Bibliography 272

Annual Meeting (HFES '02). Baltimore, Maryland (September 30-October 4,
2002). Human Factors and Ergonomics Society, pp. 617-621.

Fuhrer, C. S. and Fridie, S. E. (2001) "There's a mouse out there for everyone."
Proceedings of CSUN's 16th Annual Conference on Technology and Persons
with Disabilities. Los Angeles, California (March 19-24, 2001). California State
University Northridge.

Furnas, G. W., Landauer, T. K., Gomez, L. M. and Dumais, S. T. (1984) "Statistical
semantics: Analysis of the potential performance of keyword information
systems." In Human Factors in Computer Systems, J. C. Thomas and M. L.
Schneider (eds). Norwood, New Jersey: Ablex, pp. 187-242.

Furnas, G. W., Landauer, T. K., Gomez, L. M. and Dumais, S. T. (1987) "The vocabulary
problem in human-system communication." Communications of the ACM 30
(11), pp. 964-971.

Gentner, D. R., Grudin, J. T., Larochelle, S., Norman, D. A. and Rumelhart, D. E. (1984)
"A glossary of terms including a classification of typing errors." In Cognitive
Aspects of Skilled Typewriting, W. E. Cooper (ed). New York: Springer-Verlag,
pp. 39-43.

Goldberg, D. and Richardson, C. (1993) "Touch-typing with a stylus." Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI '93).
Amsterdam, The Netherlands (January 1993). New York: ACM Press, pp. 80-87.

Gong, J., Haggerty, B. and Tarasewich, P. (2005) "An enhanced multitap text entry
method with predictive next-letter highlighting." ACM Conference on Human
Factors in Computing Systems. Portland, Oregon (April 2-7, 2005). New York:
ACM Press, pp. 1399-1402.

Gong, J. and Tarasewich, P. (2005) "Alphabetically constrained keypad designs for text
entry on mobile devices." Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI '05). Portland, Oregon (April 2-7, 2005).
ACM Press, pp. 211-220.

Good, M. D., Whiteside, J. A., Wixon, D. R. and Jones, S. J. (1984) "Building a user-
derived interface." Communications of the ACM 27 (10), pp. 1032-1043.

Goodenough-Trepagnier, C., Rosen, M. J. and Galdieri, B. (1986) "Word menu reduces
communication rate." Proceedings of the 9th Annual Conference of the
Rehabilitation Engineering and Assistive Technology Society of North America
(RESNA '86). Minneapolis, Minnesota (June 23-26, 1986). Arlington, Virginia:
RESNA Press, pp. 354-356.

Göransson, B. (2004) "The re-design of a PDA-based system for supporting people with
Parkinson's disease." Proceedings of the 18th British HCI Group Annual
Conference (HCI '04). Leeds, United Kingdom (September 6-10, 2004). British
Computer Society.

Bibliography 273

Grossman, T. and Balakrishnan, R. (2005) "The Bubble Cursor: Enhancing target
acquisition by dynamic resizing of the cursor's activation area." Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI '05).
Portland, Oregon (April 2-7, 2005). New York: ACM Press, pp. 281-290.

Grudin, J. T. (1984) "Error patterns in skilled and novice transcription typing." In
Cognitive Aspects of Skilled Typewriting, W. E. Cooper (ed). New York:
Springer-Verlag, pp. 121-143.

GSM World. (2004) "The Netsize Guide." http://www.gsmworld.com.

Guerette, P. and Sumi, E. (1994) "Integrating control of multiple assistive devices: A
retrospective review." Assistive Technology 6 (1), pp. 67-76.

Herz, J. C. (1997) Joystick Nation: How Videogames Ate Our Quarters, Won Our Hearts,
and Rewired Our Minds. Boston: Little, Brown and Company.

Hick, W. E. (1952) "On the rate of gain of information." Quarterly Journal of
Experimental Psychology 4, pp. 11-26.

Hinckley, K., Czerwinski, M. and Sinclair, M. (1998) "Interaction and modeling
techniques for desktop two-handed input." Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST '98). San Francisco, California
(November 1998). New York: ACM Press, pp. 49-58.

Hinckley, K. and Sinclair, M. (1999) "Touch-sensing input devices." Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI '99).
Pittsburgh, Pennsylvania (May 15-20, 1999). New York: ACM Press, pp. 223-
230.

Hinckley, K., Baudisch, P., Ramos, G. and Guimbretière, F. (2005) "Design and analysis
of delimiters for selection-action pen gesture phrases in Scriboli." Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI '05).
Portland, Oregon (April 2-7, 2005). New York: ACM Press, pp. 451-460.

Hiraoka, S., Miyamoto, I. and Tomimatsu, K. (2003) "Behind Touch: A text input
method for mobile phone by the back and tactile sense interface." Proceedings of
Interaction 2003. Tokyo, Japan (February 27-28, 2003). Information Processing
Society of Japan, pp. 131-138.

Hirotaka, N. (2003) "Reassessing current cell phone designs: Using thumb input
effectively." Extended Abstracts of the ACM Conference on Human Factors in
Computing Systems (CHI '03). Ft. Lauderdale, Florida (April 5-10, 2003). New
York: ACM Press, pp. 938-939.

Horstmann, H. M. and Levine, S. P. (1991) "The effectiveness of word prediction."
Proceedings of the 14th Annual Conference of the Rehabilitation Engineering
and Assistive Technology Society of North America (RESNA '91). Kansas City,
Missouri (June 21-26, 1991). Arlington, Virginia: RESNA Press, pp. 100-102.

Bibliography 274

Hull, L. (2004) "Accessibility: It's not just for disabilities any more." interactions 11 (2),
pp. 36-41.

Hwang, F. (2002) "A study of cursor trajectories of motion-impaired users." Extended
Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI '02). Minneapolis, Minnesota (April 20-25, 2002). New York: ACM Press,
pp. 842-843.

Hwang, F., Keates, S., Langdon, P. and Clarkson, P. J. (2003) "Multiple haptic targets for
motion-impaired computer users." Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI '03). Ft. Lauderdale, Florida (April
5-10, 2003). New York: ACM Press, pp. 41-48.

Hyman, R. (1953) "Stimulus information as a determinant of reaction time." Journal of
Experimental Psychology 45 (3), pp. 188-196.

Ingmarsson, M., Dinka, D. and Zhai, S. (2004) "TNT - A numeric keypad based text
input method." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '04). Vienna, Austria (April 24-29, 2004). New York:
ACM Press, pp. 639-646.

Isokoski, P. (2000) "Text input methods for eye trackers using off-screen targets."
Proceedings of the ACM Symposium on Eye Tracking Research and Applications
(ETRA '00). Palm Beach Gardens, Florida (November 2000). New York: ACM
Press, pp. 15-21.

Isokoski, P. and Raisamo, R. (2000) "Device independent text input: A rationale and an
example." Proceedings of the ACM Conference on Advanced Visual Interfaces
(AVI '00). Palermo, Italy (May 2000). New York: ACM Press, pp. 76-83.

Isokoski, P. (2001) "Model for unistroke writing time." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '01). Seattle,
Washington (March 31-April 5, 2001). New York: ACM Press, pp. 357-364.

Isokoski, P. and Kaki, M. (2002) "Comparison of two touchpad-based methods for
numeric entry." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '02). Minneapolis, Minnesota (April 20-25, 2002). New
York: ACM Press, pp. 25-32.

Isokoski, P. and Raisamo, R. (2004) "Quikwriting as a multi-device text entry method."
Proceedings of the 4th Nordic Conference on Human-Computer Interaction
(NordiCHI '04). Tampere, Finland (October 23-27, 2004). New York: ACM
Press, pp. 105-108.

Ivanhoe Broadcast News. (Year) "Hi-tech typing." Discoveries and Breakthroughs Inside
Science. Released October 2005 by The American Institute of Physics, U.S.A.
Transcript available at http://www.ivanhoe.com/science/story/2005/10/65a.html

James, C. L. and Reischel, K. M. (2001) "Text input for mobile devices: Comparing
model prediction to actual performance." Proceedings of the ACM Conference on

Bibliography 275

Human Factors in Computing Systems (CHI '01). Seattle, Washington (March
31-April 5, 2001). New York: ACM Press, pp. 365-371.

Jannotti, J. (2002) "Iconic text entry using a numeric keypad." Unpublished work.
Available at http://www.jannotti.com/papers/iconic-uist02.pdf

Jeffries, R., Miller, J. R., Wharton, C. and Uyeda, K. M. (1991) "User interface
evaluation in the real world: A comparison of four techniques." Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI '91). New
Orleans, Louisiana (April 27-May 2, 1991). New York: ACM Press, pp. 119-124.

Johnson, B. R., Farris, J. S. and Jones, K. S. (2003) "Selection of web browser controls
with and without impenetrable borders: Does width make a difference?"
Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting
(HFES '03). Denver, Colorado (October 2003). Human Factors and Ergonomics
Society, pp. 1380-1384.

Kanellos, M. (2006) "Microsoft scientists pushing keyboard into the past." CNET
News.com, May 3, 2006.

Karlson, A. K., Bederson, B. and Contreras-Vidal, J. L. (2006) "Studies in one-handed
mobile design: Habit, desire and agility." Unpublished work. Available at
http://www.cs.umd.edu/hcil/mobile/survey/

Keates, S., Clarkson, P. J. and Robinson, P. (1998) "Developing a methodology for the
design of accessible interfaces." Proceedings of the 4th ERCIM Workshop on
User Interfaces for All (UI4ALL '98). Stockholm, Sweden (October 1998). pp. 1-
15.

Keates, S., Clarkson, P. J., Harrison, L.-A. and Robinson, P. (2000) "Towards a practical
inclusive design approach." Proceedings of the ACM Conference on Universal
Usability (CUU '00). Arlington, Virginia (November 16-17, 2000). New York:
ACM Press, pp. 45-52.

Keates, S., Hwang, F., Langdon, P., Clarkson, P. J. and Robinson, P. (2002) "Cursor
measures for motion-impaired computer users." Proceedings of the ACM
SIGCAPH Conference on Assistive Technologies (ASSETS '02). Edinburgh,
Scotland (July 2002). New York: ACM Press, pp. 135-142.

Kjeldskov, J. and Stage, J. (2004) "New techniques for usability evaluation of mobile
systems." International Journal of Human-Computer Studies 60 (5-6), pp. 599-
620.

Koester, H. H. (2003) "Abandonment of speech recognition by new users." Proceedings
of the 26th Annual Conference of the Rehabilitation Engineering and Assistive
Technology Society of North America (RESNA '03). Atlanta, Georgia (June 19-
23, 2003). Arlington, Virginia: RESNA Press.

Költringer, T. and Grechenig, T. (2004) "Comparing the immediate usability of Graffiti 2
and virtual keyboard." Extended Abstracts of the ACM Conference on Human

Bibliography 276

Factors in Computing Systems (CHI '04). Vienna, Austria (April 24-29, 2004).
New York: ACM Press, pp. 1175-1178.

Kraus, L. E., Stoddard, S. and Gilmartin, D. (1996) Chartbook on Disability in the United
States. Washington, D.C: National Institute on Disability and Rehabilitation
Research.

Kristensson, P. and Zhai, S. (2004) "SHARK2: A large vocabulary shorthand writing
system for pen-based computers." Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST '04). Santa Fe, New Mexico (October
24-27, 2004). New York: ACM Press, pp. 43-52.

Kucera, H. and Francis, W. N. (1967) Computational Analysis of Present-Day American
English. Providence, Rhode Island: Brown University Press.

Kurihara, K., Goto, M., Ogata, J. and Igarashi, T. (2005) "Speech Pen: Predictive
handwriting based on ambient multimodal recognition." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '05). Montréal,
Québec (April 22-27, 2006). New York: ACM Press, pp. 851-860.

Kurniawan, S., King, A., Evans, D. G. and Blenkhorn, P. (2003) "Design and user
evaluation of a joystick-operated full-screen magnifier." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '03). Ft. Lauderdale,
Florida (April 2003). New York: ACM Press, pp. 25-32.

Kurtenbach, G. and Buxton, W. (1994) "User learning and performance with marking
menus." Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI '94). Boston, Massachusetts (April 24-28, 1994). New York: ACM
Press, pp. 258-264.

Landraud, A. M., Avril, J.-F. and Chretienne, P. (1989) "An algorithm for finding a
common structure shared by a family of strings." IEEE Transactions on Pattern
Analysis and Machine Intelligence 11 (8), pp. 890-895.

Langolf, G. D., Chaffin, D. B. and Foulke, J. A. (1976) "An investigation of Fitts' Law
using a wide range of movement amplitudes." Journal of Motor Behavior 8 (2),
pp. 113-128.

Law, C. M., Sears, A. and Price, K. J. (2005) "Issues in the categorization of disabilities
for user testing." Proceedings of the 11th International Conference on Human-
Computer Interaction (HCI Int'l '05). Las Vegas, Nevada (July 22-27, 2005).
Mahwah, New Jersey: Lawrence Erlbaum Associates. On proceedings CD.

Lee, S., Hong, S. H. and Jeon, J. W. (2003) "Designing a universal keyboard using
chording gloves." Proceedings of the ACM Conference on Universal Usability
(CUU '03). Vancouver, British Columbia (November 10-11, 2003). New York:
ACM Press, pp. 142-147.

Lee, S., Hong, S. H. and Jeon, J. W. (2005) "Universal access to PDA by modular I/O
design." Proceedings of the 11th International Conference on Human-Computer

Bibliography 277

Interaction (HCI Int'l '05). Las Vegas, Nevada (July 22-27, 2005). Mahwah, New
Jersey: Lawrence Erlbaum Associates. On proceedings CD.

Leonard, V. K., Jacko, J. A. and Pizzimenti, J. J. (2005) "An exploratory investigation of
handheld computer interaction for older adults with visual impairments."
Proceedings of the ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS '05). Baltimore, Maryland (October 9-12, 2005). New
York: ACM Press, pp. 12-19.

Levenshtein, V. I. (1965) "Binary codes capable of correcting deletions, insertions, and
reversals." Doklady Akademii Nauk SSSR 163 (4), pp. 845-848.

Lewis, J. R. (1999) "Input rates and user preference for three small-screen input methods:
Standard keyboard, predictive keyboard, and handwriting." Proceedings of the
Human Factors and Ergonomics Society 43rd Annual Meeting. Houston, Texas
(September 27-October 1, 1999). Santa Monica, California: Human Factors and
Ergonomics Society, pp. 425-428.

Lewis, J. R., Kennedy, P. J. and LaLomia, M. J. (1999a) "Development of a digram-
based typing key layout for single-finger/stylus input." Proceedings of the
Human Factors and Ergonomics Society 43rd Annual Meeting. Houston, Texas
(September 27-October 1, 1999). Santa Monica, California: Human Factors and
Ergonomics Society, pp. 415-419.

Lewis, J. R., LaLomia, M. J. and Kennedy, P. J. (1999b) "Evaluation of typing key
layouts for stylus input." Proceedings of the Human Factors and Ergonomics
Society 43rd Annual Meeting. Houston, Texas (September 27-October 1, 1999).
Santa Monica, California: Human Factors and Ergonomics Society, pp. 420-424.

Li, J., Zhang, X., Ao, X. and Dai, G. (2005) "Sketch recognition with continuous
feedback based on incremental intention extraction." Proceedings of the ACM
Conference on Intelligent User Interfaces (IUI '05). San Diego, California
(January 9-12, 2005). New York: ACM Press, pp. 145-150.

Lin, M., Price, K. J., Goldman, R., Sears, A. and Jacko, J. (2005) "Tapping on the
move—Fitts' law under mobile conditions." Proceedings of the 16th Annual
Information Resources Management Association International Conference
(IRMA '05). San Diego, California (May 15-18, 2005). Hershey, Pennsylvania:
Idea Group, pp. 132-135.

Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996) SAS System for
Mixed Models. Cary, North Carolina: SAS Institute, Inc.

Long, A. C., Landay, J. A. and Rowe, L. A. (1999) "Implications for a gesture design
tool." Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI '99). Pittsburgh, Pennsylvania (May 15-20, 1999). New York:
ACM Press, pp. 40-47.

LoPresti, E. F., Romich, B. A., Hill, K. J. and Spaeth, D. M. (2004) "Evaluation of mouse
emulation using the wheelchair joystick." Proceedings of the 27th Annual
Conference of the Rehabilitation Engineering and Assistive Technology Society

Bibliography 278

of North America (RESNA '04). Orlando, Florida (June 2004). Arlington,
Virginia: RESNA Press.

Ludolph, F. and Perkins, R. (1998) "The Lisa user interface." Summary for the ACM
Conference on Human Factors in Computing Systems (CHI '98). Los Angeles,
California (April 1998). New York: ACM Press, pp. 18-19.

Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A. and Looney, E. W.
(2004) "Twiddler typing: One-handed chording text entry for mobile phones."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '04). Vienna, Austria (April 2004). New York: ACM Press, pp. 671-678.

Mace, R. L., Hardie, G. J. and Place, J. P. (1991) "Accesible environments: Toward
universal design." In Design Intervention: Toward a More Humane Architecture,
W. E. Preiser, J. C. Vischer, and E. T. White (eds). New York: Van Nostrand
Reinhold.

MacKenzie, I. S., Sellen, A. and Buxton, W. (1991) "A comparison of input devices in
elemental pointing and dragging tasks." Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI '91). New Orleans, Louisiana
(March 1991). New York: ACM Press, pp. 161-166.

MacKenzie, I. S. (1992) "Fitts' law as a research and design tool in human-computer
interaction." Human-Computer Interaction 7 (1), pp. 91-139.

MacKenzie, I. S. and Oniszczak, A. (1997) "The tactile touchpad." Extended Abstracts of
the ACM Conference on Human Factors in Computing Systems (CHI' 97).
Atlanta, Georgia (March 1997). New York: ACM Press, pp. 309-310.

MacKenzie, I. S. and Zhang, S. X. (1997) "The immediate usability of Graffiti."
Proceedings of Graphics Interface 1997. Kelowna, British Columbia (May 21-
23, 1997). Toronto: Canadian Information Processing Society, pp. 129-137.

MacKenzie, I. S. and Oniszczak, A. (1998) "A comparison of three selection techniques
for touchpads." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '98). Los Angeles, California (April 1998). New York:
ACM Press, pp. 336-343.

MacKenzie, I. S. and Zhang, S. X. (1999) "The design and evaluation of a high-
performance soft keyboard." Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI '99). Pittsburgh, Pennsylvania (May 15-20,
1999). New York: ACM Press, pp. 25-31.

MacKenzie, I. S., Zhang, S. X. and Soukoreff, R. W. (1999) "Text entry using soft
keyboards." Journal of Behaviour and Information Technology 18 (4), pp. 235-
244.

MacKenzie, I. S., Kauppinen, T. and Silfverberg, M. (2001a) "Accuracy measures for
evaluating computer pointing devices." Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI '01). Seattle, Washington (March
31-April 5, 2001). New York: ACM Press, pp. 9-16.

Bibliography 279

MacKenzie, I. S., Kober, H., Smith, D., Jones, T. and Eugene, S. (2001b) "LetterWise:
Prefix-based disambiguation for mobile text input." Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST '01). Orlando,
Florida (November 2001). New York: ACM Press, pp. 111-120.

MacKenzie, I. S. (2002a) "A note on calculating text entry speed." Unpublished work.
Available at http://www.yorku.ca/mack/RN-TextEntrySpeed.html

MacKenzie, I. S. (2002b) "KSPC (keystrokes per character) as a characteristic of text
entry techniques." Proceedings of the 4th Int'l Symposium on Human-Computer
Interaction with Mobile Devices and Services (Mobile HCI '02). Pisa, Italy
(September 18-20, 2002). Heidelberg, Germany: Springer-Verlag, pp. 195-210.

MacKenzie, I. S. (2002c) "Mobile text entry using three keys." Proceedings of the 2nd
Nordic Conference on Human-Computer Interaction (NordiCHI '02). Århus,
Denmark (October 19-23, 2002). New York: ACM Press, pp. 27-34.

MacKenzie, I. S. and Soukoreff, R. W. (2002a) "A character-level error analysis
technique for evaluating text entry methods." Proceedings of the 2nd Nordic
Conference on Human-Computer Interaction (NordiCHI '02). Århus, Denmark
(October 19-23, 2002). New York: ACM Press, pp. 243-246.

MacKenzie, I. S. and Soukoreff, R. W. (2002b) "Text entry for mobile computing:
Models and methods, theory and practice." Human-Computer Interaction 17 (2),
pp. 147-198.

MacKenzie, I. S. and Soukoreff, R. W. (2003) "Phrase sets for evaluating text entry
techniques." Extended Abstracts of the ACM Conference on Human Factors in
Computing Systems (CHI '03). Ft. Lauderdale, Florida (April 5-10, 2003). New
York: ACM Press, pp. 754-755.

Magnuson, T. and Hunnicutt, S. (2002) "Measuring the effectiveness of word prediction:
The advantage of long-term use." Speech, Music and Hearing 43, pp. 57-67.

Manaris, B., MacGyvers, V. and Lagoudakis, M. (1999) "Universal access to mobile
computing devices through speech input." Proceedings of 12th International
Florida AI Research Symposium (FLAIRS '99). Orlando, Florida (May 3-5,
1999). Menlo Park, California: AAAI Press, pp. 286-292.

Mankoff, J. and Abowd, G. D. (1998) "Cirrin: A word-level unistroke keyboard for pen
input." Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST '98). San Francisco, California (November 1998). New York:
ACM Press, pp. 213-214.

Marentakis, G. N. and Brewster, S. A. (2006) "Effects of feedback, mobility and index of
difficulty on deictic spatial audio target acquisition in the horizontal plane."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '06). Montréal, Québec (April 22-27, 2006). New York: ACM Press, pp.
359-368.

Bibliography 280

Matias, E., MacKenzie, I. S. and Buxton, W. (1996) "One-handed touch-typing on a
QWERTY keyboard." Human-Computer Interaction 11 (1), pp. 1-27.

Mithal, A. K. and Douglas, S. A. (1996) "Differences in movement microstructure of the
mouse and the finger-controlled isometric joystick." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '96). Vancouver,
British Columbia (April 13-18, 1996). New York: ACM Press, pp. 300-307.

Morgan, H. L. (1970) "Spelling correction in systems programs." Communications of the
ACM 13 (2), pp. 90-94.

Murata, A. (1991) "An experimental evaluation of a mouse, joystick, joycard, lightpen,
trackball, and touchscreen for pointing: Basic study on human interface design."
Proceedings of the 4th International Conference on Human-Computer
Interaction (HCI Int'l '91). Stuttgart, Germany (September 1-6, 1991). New
York: Elsevier Science, pp. 123-127.

Mustonen, T., Olkkonen, M. and Häkkinen, J. (2004) "Examining mobile phone text
legibility while walking." Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI '04). Vienna, Austria (April 24-29, 2004).
New York: ACM Press, pp. 1243-1246.

Myers, B. A. (2001) "Using hand-held devices and PCs together." Communications of the
ACM 44 (11), pp. 34-41.

Myers, B. A., Wobbrock, J. O., Yang, S., Yeung, B., Nichols, J. and Miller, R. (2002)
"Using handhelds to help people with motor impairments." Proceedings of the
ACM SIGCAPH Conference on Assistive Technologies (ASSETS '02). Edinburgh,
Scotland (July 8-10, 2002). New York: ACM Press, pp. 89-96.

n-e-ware. (2004) KeyStick text entry system, v. 3.3.0. n-e-ware, Inc. Available at
http://www.n-e-ware.com/KeyStick.htm

Nelson, J. A. (1994) "The virtual community: A place for the no-longer-disabled."
Proceedings of the 2nd Annual Conference on Virtual Reality and Persons with
Disabilities. Northridge, California. California State University Northridge, pp.
98-102.

Nesbat, S. B. (2003) "A system for fast, full-text entry for small electronic devices."
Proceedings of the ACM Int'l Conference on Multimodal Interfaces (ICMI '03).
Vancouver, British Columbia (November 5-7, 2003). New York: ACM Press, pp.
4-11.

Nielsen, J. (1993) Usability Engineering. San Diego, California: Academic Press.

Orth, M., Post, R. and Cooper, E. (1998) "Fabric computing interfaces." Conference
Summary of the ACM Conference on Human Factors in Computing Systems
(CHI '98). Los Angeles, California (April 18-23, 1998). New York: ACM Press,
pp. 331-332.

Bibliography 281

Oulasvirta, A., Tamminen, S., Roto, V. and Kuorelahti, J. (2005) "Interaction in 4-second
bursts: the fragmented nature of attentional resources in mobile HCI."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '05). Portland, Oregon (April 2-7, 2005). New York: ACM Press, pp. 919-
928.

Paradise, J., Trewin, S. and Keates, S. (2005) "Using pointing devices: Difficulties
encountered and strategies employed." Proceedings of the 11th International
Conference on Human-Computer Interaction (HCI Int'l '05). Las Vegas, Nevada
(July 22-27, 2005). Mahwah, New Jersey: Lawrence Erlbaum Associates. On
proceedings CD.

Parsons, L. M. and Shimojo, S. (1987) "Perceived spatial organization of cutaneous
patterns on surfaces of the human body in various positions." Journal of
Experimental Psychology 13 (3), pp. 488-504.

Pavlovych, A. and Stuerzlinger, W. (2003) "Less-Tap: A fast and easy-to-learn text input
technique for phones." Proceedings of Graphics Interface 2003. Halifax, Nova
Scotia (June 2003). Waterloo, Ontario: Canadian Human-Computer
Communications Society, pp. 97-104.

Pavlovych, A. and Stuerzlinger, W. (2004) "Model for non-expert text entry speed on 12-
button phone keypads." Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI '04). Vienna, Austria (April 24-29, 2004). New
York: ACM Press, pp. 351-358.

Perkins, R., Keller, D. S. and Ludolph, F. (1997) "Inventing the Lisa user interface."
interactions 4 (1), pp. 40-53.

Perlin, K. (1998) "Quikwriting: Continuous stylus-based text entry." Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST '98). San
Francisco, California (November 1-4, 1998). New York: ACM Press, pp. 215-
216.

Price, K. J., Lin, M., Feng, J., Goldman, R., Sears, A. and Jacko, J. (2004) "Data entry on
the move: An examination of nomadic speech-based text entry." Proceedings of
the 8th ERCIM Workshop on User Interfaces for All (UI4ALL '04). Vienna,
Austria (June 28-29, 2004). Berlin, Germany: Springer, pp. 460-471.

Raghunath, M. T. and Narayanaswami, C. (2002) "User interfaces for applications on a
wrist watch." Personal and Ubiquitous Computing 6 (1), pp. 17-30.

Rekimoto, J. (2003) "ThumbSense: Automatic input mode sensing for touchpad-based
interactions." Extended Abstracts of the ACM Conference on Human Factors in
Computing Systems (CHI '03). Ft. Lauderdale, Florida (April 2003). New York:
ACM Press, pp. 852-853.

Rekimoto, J., Ishizawa, T., Schwesig, C. and Oba, H. (2003) "PreSense: Interaction
techniques for finger sensing input devices." Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST '03). Vancouver, British
Columbia (November 2-5, 2003). New York: ACM Press, pp. 203-212.

Bibliography 282

Riemer-Reiss, M. L. and Wacker, R. R. (2000) "Factors associated with assistive
technology discontinuance among individuals with disabilities." Journal of
Rehabilitation 66 (3), pp. 44-50.

Rodriguez, N. J., Borges, J. A. and Acosta, N. (2005) "A study of text and numeric input
modalities on PDAs." Proceedings of the 11th International Conference on
Human-Computer Interaction (HCI Int'l '05). Las Vegas, Nevada (July 22-27,
2005). Mahwah, New Jersey: Lawrence Erlbaum Associates. On proceedings
CD.

Romich, B. A., LoPresti, E. F., Hill, K. J., Spaeth, D. M., Young, N. A. and Springsteen,
J. P. (2002) "Mouse emulation using the wheelchair joystick: Preliminary
performance comparison using four modes of control." Proceedings of the 25th
Annual Conference of the Rehabilitation Engineering and Assistive Technology
Society of North America (RESNA '02). Minneapolis, Minnesota (June/July
2002). Arlington, Virginia: RESNA Press, pp. 106-108.

Rubine, D. (1991) "Specifying gestures by example." Proceedings of the ACM
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91).
Las Vegas, Nevada (July 28-August 2, 1991). New York: ACM Press, pp. 329-
337.

Rutledge, J. D. and Selker, T. (1990) "Force-to-motion functions for pointing."
Proceedings of the IFIP TC13 Third Int'l Conference on Human-Computer
Interaction (INTERACT '90). Cambridge, England (August 27-31, 1990). North-
Holland, pp. 701-706.

Ryu, H. and Cruz, K. (2005) "LetterEase: Improving text entry on a handheld device via
letter reassignment." Proceedings of the 19th Conference of CHISIG Australia on
Computer-Human Interaction (OzCHI '05). Canberra, Australia (November 21-
25, 2005). Narrabundah, Australia: CHISIG of Australia, pp. 1-10.

Salem, C. and Zhai, S. (1997) "An isometric tongue pointing device." Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI '97). Atlanta,
Georgia. New York: ACM Press, pp. 538-539.

Schwesig, C., Poupyrev, I. and Mori, E. (2004) "Gummi: A bendable computer."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '04). Vienna, Austria (April 24-29, 2004). New York: ACM Press, pp. 263-
270.

Sears, A. and Arora, R. (2002) "Data entry for mobile devices: An empirical comparison
of novice performance with Jot and Graffiti." Interacting with Computers 14 (5),
pp. 413-433.

Sears, A., Lin, M., Jacko, J. and Xiao, Y. (2003) "When computers fade: Pervasive
computing and situationally-induced impairments and disabilities." Proceedings
of the 10th International Conference on Human-Computer Interaction (HCI Int'l
'03). Crete, Greece (June 22-27, 2003). Mahwah, New Jersey: Lawrence Erlbaum
Associates, pp. 1298-1302.

Bibliography 283

Sears, A. and Young, M. (2003) "Physical disabilities and computing technologies: An
analysis of impairments." In The Human-Computer Interaction Handbook, J.
Jacko and A. Sears (eds). Mahwah, New Jersey: Lawrence Erlbaum Associates,
pp. 482-503.

Sears, A. and Zha, Y. (2003) "Data entry for mobile devices using soft keyboards:
Understanding the effects of keyboard size and user tasks." International Journal
of Human-Computer Interaction 16 (2), pp. 163-184.

Shein, F., Hamann, G., Brownlow, N., Treviranus, J., Milner, M. and Parnes, P. (1991)
"WiViK: A visual keyboard for Windows 3.0." Proceedings of the 14th Annual
Conference of the Rehabilitation Engineering and Assistive Technology Society
of North America (RESNA '91). Kansas City, Missouri (June 21-26, 1991).
Arlington, Virginia: RESNA Press, pp. 160-162.

Shropshire, C. (2003) "Local Web veteran launches Internet service aimed at seniors."
Pittsburgh Post-Gazette. November 19, 2003, Pittsburgh, Pennsylvania.

Silfverberg, M., MacKenzie, I. S. and Korhonen, P. (2000) "Predicting text entry speed
on mobile phones." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '00). The Hague, The Netherlands (April 1-6, 2000).
New York: ACM Press, pp. 9-16.

Silfverberg, M., MacKenzie, I. S. and Kauppinen, T. (2001) "An isometric joystick as a
pointing device for handheld information terminals." Proceedings of Graphics
Interface 2001. Ottawa, Ontario (June 7-9, 2001). Toronto: Canadian Information
Processing Society, pp. 119-126.

Silfverberg, M. (2003) "Using mobile keypads with limited visual feedback: Implications
to handheld and wearable devices." Proceedings of the 5th Int'l Symposium on
Human-Computer Interaction with Mobile Devices and Services (Mobile HCI
'03). Udine, Italy (September 8-11, 2003). Berlin: Springer-Verlag, pp. 76-90.

Silfverberg, M., Korhonen, P. and MacKenzie, I. S. (2003) "Zooming and panning
content on a display screen." International patent WO 03/021568 A1, March 13,
2003.

Soede, M. and Foulds, R. A. (1986) "Dilemma of prediction in communication aids."
Proceedings of the 9th Annual Conference of the Rehabilitation Engineering and
Assistive Technology Society of North America (RESNA '86). Minneapolis,
Minnesota (June 23-26, 1986). Arlington, Virginia: RESNA Press, pp. 357-359.

Soukoreff, R. W. and MacKenzie, I. S. (1995) "Theoretical upper and lower bounds on
typing speed using a stylus and soft keyboard." Behaviour and Information
Technology 14 (6), pp. 370-379.

Soukoreff, R. W. and MacKenzie, I. S. (2001) "Measuring errors in text entry tasks: An
application of the Levenshtein string distance statistic." Extended Abstracts of the
ACM Conference on Human Factors in Computing Systems (CHI '01). Seattle,
Washington (March 31-April 5, 2001). New York: ACM Press, pp. 319-320.

Bibliography 284

Soukoreff, R. W. and MacKenzie, I. S. (2003) "Metrics for text entry research: An
evaluation of MSD and KSPC, and a new unified error metric." Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI '03). Ft.
Lauderdale, Florida (April 5-10, 2003). New York: ACM Press, pp. 113-120.

Soukoreff, R. W. and MacKenzie, I. S. (2004) "Recent developments in text-entry error
rate measurement." Extended Abstracts of the ACM Conference on Human
Factors in Computing Systems (CHI '04). Vienna, Austria (April 24-29, 2004).
New York: ACM Press, pp. 1425-1428.

Spaeth, D. M., Jones, D. K. and Cooper, R. A. (1998) "Universal control interface for
people with disabilities." Saudi Journal of Disability and Rehabilitation 4 (3), pp.
207-214.

Sperling, B. B. and Tullis, T. S. (1988) "Are you a better "mouser" or "trackballer"? A
comparison of cursor-positioning performance." SIGCHI Bulletin 19 (3), pp. 77-
81.

Stack, J. B. (2001) "Palm Pilot connects girl with classroom." QUEST 8 (1), February
2001, pp. 48-49.

Stary, C. (1997) "The role of design and evaluation principles for user interfaces for all."
Proceedings of the 7th International Conference on Human-Computer
Interaction (HCI Int'l '97). San Francisco, California (August 24-29, 1997). New
York: Elsevier Science, pp. 477-480.

Steinfeld, E. (1994) "The concept of universal design." Proceedings of the Sixth Ibero-
American Conference on Accessibility. Rio de Janeiro (June 19, 1994).

Sutherland, I. E. (1963) "SketchPad: A man-machine graphical communication system."
Proceedings of the AFIPS Joint Computer Conference 23. pp. 323-328.

Tandler, P. and Prante, T. (2001) "Using incremental gesture recognition to provide
immediate feedback while drawing pen gestures." Unpublished work. Available
at http://www.ipsi.fraunhofer.de/ambiente/paper/2001/UIST-2001-tandler-
gesture-feedback.pdf

Tannenbaum, A. (2005) "Square Alice." Spring meeting booklet. Austin, Texas: Lewis
Carroll Society of North America.

Tarasewich, P. (2003) "Evaluation of thumbwheel text entry methods." Extended
Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI '03). Ft. Lauderdale, Florida (April 5-10, 2003). New York: ACM Press,
pp. 756-757.

Tiainen, S. (2000) The global keyboard optimised for small wireless devices. GKOS.
Available at http://gkos.com

Tremaine, M. (2001) "Making technology accessible economically." EC/NSF Workshop
on Universal Accessibility of Ubiquitous Computing: Providing for the Elderly
(WUAUC '01). Alcácer do Sal, Portugal (May 22-25, 2001).

Bibliography 285

Trewin, S. and Pain, H. (1999) "Keyboard and mouse errors due to motor disabilities."
International Journal of Human-Computer Studies 50 (2), pp. 109-144.

Venolia, D. and Neiberg, F. (1994) "T-Cube: A fast, self-disclosing pen-based alphabet."
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI '94). Boston, Massachusetts (April 24-28, 1994). New York: ACM Press,
pp. 265-270.

Wagner, R. A. and Fischer, M. J. (1974) "The string-to-string correction problem."
Journal of the Association for Computing Machinery 21 (1), pp. 168-173.

Walker, N. and Smelcer, J. B. (1990) "A comparison of selection time from walking and
bar menus." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '90). Seattle, Washington (April 1-5, 1990). New York:
ACM Press, pp. 221-225.

Ward, D. J., Blackwell, A. F. and MacKay, D. J. C. (2000) "Dasher—A data entry
interface using continuous gestures and language models." Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST '00). San
Diego, California (November 6-8, 2000). New York: ACM Press, pp. 129-137.

Ward, D. J. and MacKay, D. J. C. (2002) "Fast hands-free writing by gaze direction."
Nature 418, p. 838.

Wiedenbeck, S. (1999) "The use of icons and labels in an end user application program:
An empirical study of learning and retention." Behavior and Information
Technology 18 (2), pp. 68-82.

Wigdor, D. and Balakrishnan, R. (2004) "A comparison of consecutive and concurrent
input text entry techniques for mobile phones." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '04). Vienna, Austria
(April 2004). New York: ACM Press, pp. 81-88.

Willey, M. (1997) "Design and implementation of a stroke interface library." IEEE
Region 4 Student Paper Contest (March 24, 1997).

Wilson, A. D. and Agrawala, M. (2006) "Text entry using a dual joystick game
controller." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '06). Montréal, Québec (April 22-27, 2006). New
York: ACM Press, pp. 475-478.

Wobbrock, J. O. (2003) "The benefits of physical edges in gesture-making: Empirical
support for an edge-based unistroke alphabet." Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems (CHI '03). Ft. Lauderdale,
Florida (April 5-10, 2003). New York: ACM Press, pp. 942-943.

Wobbrock, J. O., Myers, B. A. and Hudson, S. E. (2003a) "Exploring edge-based input
techniques for handheld text entry." Proceedings of the 3rd Int'l Workshop on
Smart Appliances and Wearable Computing (IWSAWC '03). In 23rd Int'l
Conference on Distributed Computing Systems Workshops (ICDCSW '03).

Bibliography 286

Providence, Rhode Island (May 19-22, 2003). Los Alamitos, California: IEEE
Computer Society, pp. 280-282.

Wobbrock, J. O., Myers, B. A. and Kembel, J. A. (2003b) "EdgeWrite: A stylus-based
text entry method designed for high accuracy and stability of motion."
Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST '03). Vancouver, British Columbia (November 2-5, 2003). New York:
ACM Press, pp. 61-70.

Wobbrock, J. O., Myers, B. A. and Aung, H. H. (2004a) "Writing with a joystick: A
comparison of date stamp, selection keyboard, and EdgeWrite." Proceedings of
Graphics Interface 2004. London, Ontario (May 17-19, 2004). Waterloo,
Ontario: Canadian Human-Computer Communications Society, pp. 1-8.

Wobbrock, J. O., Myers, B. A. and Aung, H. H. (2004b) "Joystick text entry with date
stamp, selection keyboard, and EdgeWrite." Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems (CHI '04). Vienna, Austria
(April 24-29, 2004). New York: ACM Press, p. 1550.

Wobbrock, J. O., Myers, B. A., Aung, H. H. and LoPresti, E. F. (2004c) "Text entry from
power wheelchairs: EdgeWrite for joysticks and touchpads." Proceedings of the
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '04).
Atlanta, Georgia (October 18-20, 2004). New York: ACM Press, pp. 110-117.

Wobbrock, J. O., Aung, H. H., Myers, B. A. and LoPresti, E. F. (2005a) "Integrated text
entry from power wheelchairs." Journal of Behaviour and Information
Technology 24 (3), pp. 187-203.

Wobbrock, J. O., Aung, H. H., Rothrock, B. and Myers, B. A. (2005b) "Maximizing the
guessability of symbolic input." Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems (CHI '05). Portland, Oregon (April 2-7,
2005). New York: ACM Press, pp. 1869-1872.

Wobbrock, J. O. and Myers, B. A. (2005a) "Gestural text entry on multiple devices."
Proceedings of the ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS '05). Baltimore, Maryland (October 9-12, 2005). New
York: ACM Press, pp. 184-185.

Wobbrock, J. O. and Myers, B. A. (2005b) "EdgeWrite: A new text entry technique
designed for stability." Proceedings of the 28th Annual Conference of the
Rehabilitation Engineering and Assistive Technology Society of North America
(RESNA '05). Atlanta, Georgia (June 23-27, 2005). Arlington, Virginia: RESNA
Press.

Wobbrock, J. O. and Myers, B. A. (2006a) "From letters to words: Efficient stroke-based
word completion for trackball text entry." Proceedings of the ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS '06). Portland, Oregon
(October 23-25, 2006). New York: ACM Press. To appear.

Wobbrock, J. O. and Myers, B. A. (2006b) "In-stroke word completion." Proceedings of
the ACM Symposium on User Interface Software and Technology (UIST '06).

Bibliography 287

Montreux, Switzerland (October 15-18, 2006). New York: ACM Press. To
appear.

Wobbrock, J. O. and Myers, B. A. (2006c) "Adding gestural text entry to input devices
for people with motor impairments." In Universal Usability, J. Lazar (ed). New
York: John Wiley & Sons. To appear.

Wobbrock, J. O. and Myers, B. A. (2006d) "Trackball text entry for people with motor
impairments." Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '06). Montréal, Québec (April 22-27, 2006). New
York: ACM Press, pp. 479-488.

Wobbrock, J. O., Myers, B. A. and Rothrock, B. (2006) "Few-key text entry revisited:
Mnemonic gestures on four keys." Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI '06). Montréal, Québec (April 22-
27, 2006). New York: ACM Press, pp. 489-492.

Wobbrock, J. O. and Myers, B. A. (2007) "Analyzing the input stream for character-level
errors in unconstrained text entry evaluations." Transactions on Computer-
Human Interaction (TOCHI). To appear.

Worden, A., Walker, N., Bharat, K. and Hudson, S. E. (1997) "Making computers easier
for older adults to use: Area cursors and sticky icons." Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '97). Atlanta,
Georgia (March 1997). New York: ACM Press, pp. 266-271.

Worth, C. D. (2003) "Xstroke: Full-screen gesture recognition for X." Proceedings of the
USENIX Annual Technical Conference (USENIX '03). San Antonio, Texas (July
2003). USENIX Association, pp. 187-196.

Wu, T.-F., Wang, H.-P. and Chen, M. C. (2005) "Enabling computer access for children
with cerebral palsy." Proceedings of the 11th International Conference on
Human-Computer Interaction (HCI Int'l '05). Las Vegas, Nevada (July 22-27,
2005). Mahwah, New Jersey: Lawrence Erlbaum Associates. On proceedings
CD.

York, J. and Pendharkar, P. C. (2004) "Human–computer interaction issues for mobile
computing in a variable work context." International Journal of Human-
Computer Studies 60 (5-6), pp. 771-797.

Zaborowski, P. S. (2004) "ThumbTec: A new handheld input device." Proceedings of the
2004 Conference on New Interfaces for Musical Expression (NIME '04).
Hamamatsu, Japan (June 3-5, 2004). Singapore: National University of
Singapore, pp. 112-115.

Zhai, S., Smith, B. A. and Selker, T. (1997) "Dual stream input for pointing and
scrolling." Extended Abstracts of the ACM Conference on Human Factors in
Computing Systems (CHI '97). Atlanta, Georgia (March 22-27, 1997). ACM
Press, pp. 305-306.

Bibliography 288

Zhai, S., Hunter, M. and Smith, B. A. (2000) "The Metropolis keyboard—An exploration
of quantitative techniques for virtual keyboard design." Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST '00). San Diego,
California (November 2000). New York: ACM Press, pp. 119-128.

Zhai, S., Hunter, M. and Smith, B. A. (2002) "Performance optimization of virtual
keyboards." Human-Computer Interaction 17 (3), pp. 229-269.

Zhai, S. and Kristensson, P. (2003) "Shorthand writing on stylus keyboard." Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI '03). Ft.
Lauderdale, Florida (April 5-10, 2003). New York: ACM Press, pp. 97-104.

Zhai, S., Kristensson, P. and Smith, B. A. (2005) "In search of effective text input
interfaces for off the desktop computing." Interacting with Computers 17 (3), pp.
229-250.

Zhao, R. (1993) "Incremental recognition in gesture-based and syntax-directed diagram
editors." Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI '93). Amsterdam, The Netherlands (April 24-29, 1993). New York:
ACM Press, pp. 95-100.

Zipf, G. (1932) Selective Studies and the Principle of Relative Frequency in Language.
Cambridge, Massachusettes: MIT Press.

	1 Introduction
	1.1 Motivation
	1.1.1 The Need for Better Computer Access
	1.1.2 The Need for Mobile Device Accessibility
	1.1.3 A Versatile Design for Text Entry and Control

	1.2 The EdgeWrite Concept
	1.3 Research Approach
	1.4 Dissertation Organization

	2 Related Work
	2.1 Universal Design
	2.1.1 Situational Impairments
	2.1.2 Mobile Device Accessibility

	2.2 Beating Fitts’ Law
	2.2.1 Edges in the Interface
	2.2.2 Goal Crossing

	2.3 Input Devices and Techniques
	2.3.1 Multi-device Input
	2.3.2 Stylus Input
	2.3.3 Word-level Stroking
	2.3.4 Displacement Joystick Input
	2.3.5 Touchpad Input
	2.3.6 Trackball Input
	2.3.7 Isometric Joystick Input
	2.3.8 Mobile Keypad Input

	2.4 Text Entry Evaluation
	2.4.1 Speed
	2.4.2 MSD and KSPC
	2.4.3 Uncorrected, Corrected, and Total Errors

	3 The EdgeWrite Design
	3.1 Background
	3.1.1 Remote Commander
	3.1.2 Edge Keyboards
	3.1.3 Line Tracing Study
	3.1.4 Genesis of EdgeWrite

	3.2 Core Concepts
	3.3 The EdgeWrite Alphabet
	3.3.1 Alphabet Design
	3.3.2 Theoretical Properties
	3.3.3 Maximizing Guessability*
	3.3.3.1 Motivation
	3.3.3.2 Guessability Procedure
	3.3.3.3 Resolving Conflicts
	3.3.3.4 Calculating Guessability
	3.3.3.5 Calculating Agreement
	3.3.3.6 Existing Symbol Sets
	3.3.3.7 The Guessability of EdgeWrite
	3.3.3.8 The Immediate Usability of EdgeWrite
	3.3.3.9 Discussion

	3.4 Advanced Features
	3.4.1 Continuous Recognition Feedback
	3.4.2 Non-recognition Retry
	3.4.3 Slip Detection

	3.5 Fisch Word-level Stroking*
	3.5.1 Motivation
	3.5.2 The Fisch Design
	3.5.3 Fisch Implementation

	3.6 EdgeWrite Technology
	3.6.1 EdgeWrite Library
	3.6.2 Programmer’s Reference
	3.6.3 Palm OS HACK

	4 Stylus EdgeWrite*
	4.1 Motivation
	4.2 Design
	4.2.1 The Feel of Stylus EdgeWrite
	4.2.2 The Design of Corners
	4.2.3 The Plastic Template
	4.2.4 Application Preferences
	4.2.5 Fisch in Stylus EdgeWrite

	4.3 Evaluation
	4.3.1 Novice Able-bodied Use
	4.3.1.1 Subjects
	4.3.1.2 Apparatus
	4.3.1.3 Procedure
	4.3.1.4 Adjustment to Data
	4.3.1.5 Results
	4.3.1.6 Discussion

	4.3.2 Novice Motor-impaired Use
	4.3.3 Expert Able-bodied Use

	5 Joystick EdgeWrite*
	5.1 Motivation
	5.2 Design
	5.2.1 Some Challenges of Writing with a Joystick
	5.2.2 The Suitability of EdgeWrite
	5.2.3 Interaction Design

	5.3 Evaluation
	5.3.1 Competitor Methods
	5.3.1.1 Date Stamp
	5.3.1.2 Selection Keyboard

	5.3.2 Novice Use
	5.3.2.1 Subjects
	5.3.2.2 Apparatus
	5.3.2.3 Procedure
	5.3.2.4 Trials
	5.3.2.5 Adjustment to Data
	5.3.2.6 Speed
	5.3.2.7 Error Rates
	5.3.2.8 Data Rate
	5.3.2.9 Gestures
	5.3.2.10 Selector Movement
	5.3.2.11 Questionnaire Results
	5.3.2.12 Discussion

	5.3.3 Expert Use

	6 EdgeWrite for Power Wheelchairs*
	6.1 Motivation
	6.2 Design
	6.2.1 PW-Joystick EdgeWrite
	6.2.2 Touchpad EdgeWrite

	6.3 Evaluation
	6.3.1 Power Wheelchair Users: Single Session
	6.3.1.1 The WiViK On-Screen Keyboard
	6.3.1.2 Subjects
	6.3.1.3 Procedure
	6.3.1.4 Results
	6.3.1.5 Lessons from Subjects

	6.3.2 Power Wheelchair Users: Multiple Sessions
	6.3.2.1 Subjects
	6.3.2.2 Design Improvements
	6.3.2.3 Procedure
	6.3.2.4 Analysis
	6.3.2.5 Speed
	6.3.2.6 Total Error Rate
	6.3.2.7 Learning Curves
	6.3.2.8 Discussion

	6.3.3 Expert Able-bodied Use

	7 Trackball EdgeWrite*
	7.1 Motivation
	7.2 Design
	7.2.1 Initial Design: Impenetrable Virtual Edges
	7.2.2 Crossing to Stroke
	7.2.3 Determining the First Corner
	7.2.4 Interaction Design
	7.2.4.1 Capture and Release
	7.2.4.2 Segmentation
	7.2.4.3 Advanced Features

	7.2.5 Fisch in Trackball EdgeWrite
	7.2.6 Implementation

	7.3 Evaluation
	7.3.1 Theoretical Model
	7.3.2 Novice Able-bodied Use
	7.3.2.1 Method
	7.3.2.2 Results

	7.3.3 Longitudinal Motor-impaired Use
	7.3.3.1 Quantitative Results
	7.3.3.2 Qualitative Results

	7.3.4 Motor-impaired Use with Word-level Stroking
	7.3.4.1 Apparatus
	7.3.4.2 Procedure
	7.3.4.3 Quantitative Results
	7.3.4.4 Qualitative Results
	7.3.4.5 Analysis of Extended Use
	7.3.4.6 Discussion

	8 EdgeWrite for Mobile Phones*
	8.1 Motivation
	8.2 Design
	8.3 Evaluation
	8.3.1 Character-level EdgeWrite vs. Multitap
	8.3.1.1 Subjects
	8.3.1.2 Apparatus
	8.3.1.3 Trials
	8.3.1.4 Procedure
	8.3.1.5 Analysis
	8.3.1.6 Speed
	8.3.1.7 Uncorrected Errors
	8.3.1.8 Corrected Errors
	8.3.1.9 Individual Differences
	8.3.1.10 Qualitative Results

	8.3.2 EdgeWrite and Multitap Eyes-Free
	8.3.3 Isometric Joystick on the Back
	8.3.3.1 Letter Orientation Study
	8.3.3.2 Speed
	8.3.3.3 Uncorrected Errors
	8.3.3.4 Corrected Errors

	8.3.4 Word-level EdgeWrite vs. T9
	8.3.4.1 Procedure
	8.3.4.2 Analysis
	8.3.4.3 Speed
	8.3.4.4 Uncorrected Errors
	8.3.4.5 Corrected Errors
	8.3.4.6 Discussion

	9 EdgeWrite on Four Keys or Sensors*
	9.1 Motivation
	9.2 Design
	9.3 Evaluation
	9.3.1 Competitor Methods
	9.3.1.1 Three-Key Design
	9.3.1.2 Five-Key Design

	9.3.2 Method
	9.3.2.1 Subjects
	9.3.2.2 Apparatus
	9.3.2.3 Procedure

	9.3.3 Results
	9.3.3.1 Analysis
	9.3.3.2 Speed
	9.3.3.3 Uncorrected Errors
	9.3.3.4 Corrected Errors
	9.3.3.5 Discussion

	9.4 Four Capacitive Sensors
	9.4.1 Implementation
	9.4.2 Evaluation

	10 EdgeWrite by Others
	10.1 Steering Wheel EdgeWrite (González)
	10.2 WatchPad EdgeWrite (Blaskó and Feiner)
	10.3 Edgeless EdgeWrite (Andersen and Zhai)
	10.4 EdgePad for the GP32 (Ward)
	10.5 JMEdge (Richez)

	11 A New Character-level Error Analysis*
	11.1 Motivation
	11.1.1 Aggregate and Character-level Errors
	11.1.2 Advantages of Using Input Streams
	11.1.3 Limitations of this Analysis

	11.2 A Prior Analysis of P and T
	11.3 Making Sense of Input Streams
	11.3.1 Input Stream Error Types
	11.3.1.1 Uncorrected No-Errors, Substitutions, Insertions, Omissions
	11.3.1.2 Corrected No-Errors
	11.3.1.3 Corrected Substitutions
	11.3.1.4 Non-recognition Substitutions
	11.3.1.5 Corrected Insertions
	11.3.1.6 Non-recognition Insertions
	11.3.1.7 Corrected Omissions

	11.3.2 Assumptions for Resolving Ambiguity
	11.3.2.1 Subjects Proceed Sequentially Through P
	11.3.2.2 Subjects Insert or Omit Only One Character in a Row
	11.3.2.3 Backspaces Are Made Accurately and Intentionally
	11.3.2.4 Omissions in T Are Also Omitted in IS

	11.4 Error Detection and Classification
	11.4.1 Algorithm Walkthrough Step by Step
	11.4.1.1 Flag the Input Stream
	11.4.1.2 Compute the MSD Matrix
	11.4.1.3 Compute the Set of Optimal Alignments
	11.4.1.4 Stream-Align IS with P and T
	11.4.1.5 Assign Position Values to Characters in the Input Stream
	11.4.1.6 Proceed Through IS to Detect and Classify Errors

	11.4.2 Character-level Metrics
	11.4.2.1 Three Error Rates
	11.4.2.2 Substitutions vs. Intentions
	11.4.2.3 Omissions vs. Presentations
	11.4.2.4 Insertions vs. Entries

	11.4.3 TextTest and StreamAnalyzer

	11.5 Comparison of Analyses
	11.5.1 Error Rate Tables
	11.5.2 Confusion Matrices

	11.6 Summary

	12 Conclusion
	12.1 Discussion
	12.1.1 Design Space
	12.1.2 Major Results
	12.1.3 Reflections and Insights

	12.2 Contributions
	12.3 Future Work
	12.4 Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

